












A TKEATISE

ON

HYDRODYNAMICS

numeraud

BY

A. B. BASSET, M.A.

OF LINCOLN'S INN, BARBISTEE AT LAW; FELLOW OF THE CAMBRIDGE PHILOSOPHICAL

SOCIETY ;
AND FORMERLY SCHOLAR OF TRINITY COLLEGE, CAMBRIDGE.

VOLUME I.

CAMBRIDGE :

DEIGHTON, BELL AND CO.

LONDON: GEOKGE BELL AND SONS.

1888

[All Riyhts reserved.]



PRINTED BY C. J. CLAY, M.A. AND SONS,

AT THE UNIVERSITY PRESS.



PREFACE.

IN the present Treatise I have endeavoured to lay before the

reader in a connected form, the results of the most important in-

vestigations in the mathematical theory of Hydrodynamics, which

have been made during modern times. The Science of Hydro-

dynamics may properly be considered to include an enquiry into

the motion of all fluids, gaseous as well as liquid ;
but for reasons

which are stated in the introductory paragraph of Chapter I.,

the present treatise is confined almost entirely to the motion

of liquids. The progress of scientific knowledge in all its

branches has been the peculiar feature of the present century,

and it is therefore not surprising that during the last fifty years

a great increase in hydrodynamical knowledge has taken place ;

but many of the most important results of writers upon this

subject have never been inserted in any treatise, and still lie

buried in a variety of British and foreign mathematical periodicals

and transactions of learned Societies
;
and it has been my aim to

endeavour to collect together those investigations which are of

most interest to the mathematician, and to condense them into a

form suitable for a treatise.

The present work is divided into two volumes, the first

of which deals with the theory of the motion of frictionless

liquids, up to and including the theory of the motion of solid

bodies in a liquid. In the second volume, a considerable portion

of which is already written, it is proposed to discuss the theory of

rectilinear and circular vortices
;
the motion of a liquid ellipsoid
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under the influence of its own attraction, including Professor

G. H. Darwin's important memoir on dumb-bell figures of equi-

librium
;
the theories of liquid waves and tides

;
and the theory

of the motion of a viscous liquid and of solid bodies therein.

References have been given throughout to the original autho-

rities which have been incorporated or consulted
;
and a collection

of examples has been added, most of which have been taken from

University or College Examination Papers, which have been set

during recent years.

The valuable report of Mr W. M. Hicks on Hydrodynamics, to

the British Association in 1881 2, has proved of great service in

the difficult task of collecting and arranging materials. I have

also to express my obligations to the English treatises of Dr

Besant and Professor Lamb, from the latter of which I have

received considerable assistance in Chapters IV. and VI.
;
and also

to the German treatise of the late Professor Kirchhoff.

I am greatly indebted to Professor Greenhill for his kindness

in having read the proof sheets, and also for having made many
valuable suggestions during the progress of the work.

In a treatise which contains a large amount of analytical

detail, it is probable that there are several undetected errors
;

and I shall esteem it a favour if those of my readers who discover

any errors or obscurities of treatment, or have any suggestions to

make, will communicate with me.

UNITED UNIVERSITY CLUB,

PALL MALL, EAST.
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CHAPTER I.

HYDROKINEMATICS.

1. THE science of Hydrodynamics may be divided into two

separate branches, viz. the motion of liquids and the motion of

gases. The chief interest arising from the latter branch of the

subject is due to the fact that air is the vehicle by means of

which sound is transmitted, and consequently the discussion of

special problems relating to the motion of gases belongs to the

theory of sound rather than to hydrodynamics; it must also be

recollected that in order to deal satisfactorily with many problems
connected with the motion of gases, it is necessary to take into

account changes of temperature and other matters which properly

belong to the science of thermodynamics. In the earlier chapters

of the present treatise the general theory of the motion of fluids

is discussed, including those peculiarities of motion which are

alike common to liquids and gases ;
but the subsequent chapters

are limited almost entirely to the consideration of special problems

relating to the motion of liquids.

In ancient times very little advance in hydrodynamics appears

to have been made. In modern times the earliest pioneers were

Torricelli and Bernoulli, whose investigations were due to the

hydraulic requirements of Italian ornamental landscape gardening;

but the first great step was taken by D'Alembert and Euler, who

in the last century successfully applied dynamical principles to

the subject, and thereby discovered the general equations of

motion of a perfect fluid, and placed the subject on a satisfactory

basis. The discovery of the general equations of motion was

followed up by the investigations of the great French mathe-

maticians Laplace, Lagrange and Poisson, the first of whom has

left us a splendid memorial of his genius in his celebrated Theory

of the Tides.

B. 1



HYDROKINEMATICS.

The next advance was made by Poisson
1 and Green 2

;
the

former of whom in 1831 discovered the velocity potential due

to the motion of a sphere in an unlimited liquid, and the latter

of whom in 1833, without a knowledge of Poisson's work, discovered

the velocity potential
due to the motion of translation of an

ellipsoid in an unlimited liquid. Green's investigation was com-

pleted for the case of rotation by Clebsch
3
in 1856.

The velocity potential due to the motion of a variety of cylin-

drical surfaces has also been discovered during the last fifteen

years ;
but a similar advance has not been made as regards the

motion of two or more solids. The kinetic energy of a liquid due

to the motion of two cylinders whose cross sections are circular,

has been obtained by Hicks 4 and Greenhill
5

. The former has alse

written several valuable papers on the motion of two spheres
6

,

which have placed this problem in a perfectly satisfactory con-

dition. A complete discussion of the motion of two oblate or

prolate spheroids whose excentricities are nearly equal to zero or

unity, would be an attractive subject for investigation, and would

throw light on the motion of two ships sailing alongside one

another.

In 1845 Professor Stokes
7

published his well-known theory of

the motion of a viscous liquid, in which he endeavoured to account

for the frictional action which exists in all known liquids, and

which causes the motion to gradually subside by converting the

kinetic energy into heat. This paper was followed up in 1850 by
another 8

,
in which he solved various problems relating to the

motion of spheres and cylinders in a viscous liquid. Previously to

this paper no problem relating to the motion of a solid body in a

liquid had ever been solved, in which the viscosity had been taken

into account.

Since the time of Lagrange the essential difference between
the motion of a fluid when a velocity potential exists and when it

does not exist had been recognised ;
and an opinion very generally

Mtm. de VAcad. des Sciences. Paris, vol. xi. p. 521.

Trans. Roy. Soc. Edinburgh, vol. xm. p. 54.

Crelle, vol. LII. p. 119.

Quart. Journ., vol. xvi. pp. 113 and 193.

Ibid. vol. xvm. pp. 356362.
Proc. Camb. Phil. Soc., vol. in. p. 276, vol. iv. p. 29, and Phil. Trans., 1880.
Trans. Camb. Phil. Soc., vol. vra. p. 287.

Ibid. vol. ix. part n. p. 8.
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prevailed that if at any particular instant some particular portion
of the fluid were moving in such a manner that a velocity poten-
tial existed, the subsequent motion of this same portion of fluid

would always be such that the component velocities of its ele-

ments would be derivable from a velocity potential. The first

rigorous proof of this important proposition was given by Cauchy,
and a different one was subsequently given by Stokes 1

,
but until

the year 1858 no complete investigation respecting the peculiari-

ties of rotational motion had ever been made. This was effected

by Helmholtz 2
in his celebrated memoir on Vortex Motion, which

may perhaps be considered the most important step in hydro-

dynamics which has been made during the present century. The

same subject was subsequently taken up by Sir W. Thomson 3 and

the theory of polycyclic velocity potentials fully investigated.

During the last six years important additional investigations on

the theory of vortex rings have been made by Hicks 4 and J. J.

Thomson 5
.

The last twenty years have witnessed a great advance in

hydrodynamics, and numerous important papers have been written

by many eminent mathematicians both British and foreign,

which will be considered in detail in the present work.

We shall now proceed to consider the definitions and principles

of the subject.

2. A fluid may be defined to be an aggregation of molecules,

which yield to the slightest effort made to separate them from

each other, if it be continued long enough. All fluids with which

we are acquainted may be divided into liquids and gases ;
the

former are so slightly compressible that they are usually regarded

as incompressible fluids, whilst the latter are very highly com-

pressible.

A perfect fluid is one which is incapable of sustaining any

tangential stress or action in the nature of a shear
;
and it will be

shown in the next chapter that the consequence of this property

is, that the pressure at every point of a perfect fluid is equal

in all directions, whether the fluid be at rest or in motion. A

1 Trans. Camb. Phil. Soc., vol. vm. p. 305.

2
Crelle, vol. LV. p. 25 ; translated by Tait, Phil. Mag. (4) xxxin. p. 485.

3 Trans. Roy. Soc. Edin., vol. xxv. p. 217.
4 Phil. Trans., 1881, 1884 and 1885.

5 Adams' Prize Essay, 1882.

12
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perfect fluid is however an entirely ideal substance, since all fluids

with which we are acquainted are capable of offering resistance to

tangential stresses. This property, which is known as viscosity,

gives rise to an action in the nature of friction, by which the

kinetic energy is gradually converted into heat.

In the case of gases, water and many other liquids, the effects

of viscosity are small
;
such fluids may therefore be approximately

regarded as perfect fluids. It will therefore be desirable to com-

mence with the study of the motion of perfect fluids, reserving

the consideration of viscous fluids for the second volume.

There are certain kinematical propositions which are true for

all fluids, and which it will be convenient to investigate before

entering upon the dynamical portion of the subject. These

propositions form the subject of the present chapter.

3. The motion of a fluid may be investigated by two different

methods, the first of which is called the Lagrangian method, and
the second the Eulerian or flux method, although both are due to

Euler.

In the Lagrangian method, we fix our attention upon an
element of fluid, and follow its motion throughout its history.
The variables in this case are the initial coordinates a, b, c of the

particular element upon which we fix our attention, and the time.

This method has been successfully employed in the solution of

very few problems.

In the Eulerian or flux method, we fix our attention upon a

particular point of the space occupied by the fluid, and observe
what is going on there. The variables in this case are the
coordinates x

} y, z of the particular point of space upon which we
fix our attention, and the time.

Velocity and Acceleration.

4. In forming expressions for the velocity and acceleration of
a fluid, it is necessary to carefully distinguish between the

Langrangian and the flux method.

I. The Langrangian Method.

Let t, v, w be the component velocities parallel to fixed axes,
>f an element of fluid whose coordinates are x, yt

z and
y + fy, z + Bz at times t and t + St respectively, then

x, v = y, w = z
(1),
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where in forming x, y, z we must suppose as, y, z to be expressed in

terms of the initial coordinates a, b, c and the time.

If the axes, instead of being fixed, were moving with angular
velocities

lt 2 , 3
about themselves, the component velocities

would be given by the equations,

It should be noticed that x, y, z are the velocities of the fluid

relative to the moving axes.

The expressions for the component accelerations are

fx
= u = X

t f,
= y t fn

= z . ................. (3),

when the axes are fixed, and

when the axes are in motion. Here u
t v, w must be supposed to

be expressed in terms of a, b, c and t.

II. The Flux Method.

5. Let BQ be the quantity of fluid which in time Bt flows across

any small area A, which passes through a fixed point P in the

fluid
;
let p be the density of the fluid, q its resultant velocity, and

e the angle which the direction of q makes with the normal to A,

drawn towards the direction in which the fluid flows. Then

BQ = pqABtcos e,

therefore q = -j-.
p A cos e dt

Now .A cose is the projection of A upon a plane passing

through P perpendicular to the direction of motion of the fluid
;

hence BQ is the independent of the direction of the area, and is

the same for all areas whose projections upon the above-mentioned

plane are equal. Hence the velocity is equal to the rate per unit

of area divided by the density, at which liquid flows across a plane

perpendicular to its direction of motion.

The velocity is therefore a function of the position of P and

the time.

6. We may therefore put u = F(x, y, z, t); whence if the axes

are fixed, and if u -j- Bu be the velocity parallel to x at time t + Bt

of the element of fluid which at time t was situated at the point

0, y, z),

Bu = F(x + uBt, y + vBt, z + wBt, t + 8t)- F(x, y, z, t).
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Therefore the acceleration,

Su du du
,

du du
f,
= hm

St

=
dt
+U

dx
+ V

dy
+ W

dz-

Hence if d/dt denotes the operator

d/dt + ud/dx + vd/dy + wdjdz,

the component accelerations will be given by the equations

'du , dv , dw ,KX

^ =
8T^

=
8T *"

When the axes are in motion let u + Bu be the component

velocity at time t + &, parallel to the new position of the axis of x,

of the element which at time t was situated at the point x, y, z
;

then if U, F, W be the component velocities relative to the axes,

8u = F(x + USt, y + VBt, z + WBt, t + Bt)
-

F(x, y, z, t).

Therefore

Bu _ du
jj
du -ydu yy

du

&""<&"* (fo
+

dy dz'

where the values of U, F, W are given by (2). Hence if d/dt

denote the operator d/dt + Ud/dx + Vd/dy + Wdjdz, the com-

ponent accelerations parallel to the moving axes are given by the

equations

Similarly it can be shown that if or, 0, z be cylindrical coordi-

nates, and u, v, w be the component velocities measured in the

directions in which the former quantities increase,

- _ du v*
f _dv uv _ dw

,y.

where

d_ _ d d v d d
dt dt di& VT d0 dz'

If (r, 0, $) be polar coordinates and u, v, w be the velocities

measured in the directions in which these quantities increase,

/. _ du v
2 + w2

, dv uv w2

dt T
'

dt r T

~ dw uw uv

where

_ = .f? -L A 4. !! _1
dt dt^ ~dr^rd0
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The Equation of Continuity.

7. Before proceeding further, it will be convenient to intro-

duce the following lemma, which is a particular case of Green's

Theorem, which will be considered more fully in Chapter IV.

Let %, rj, % be any functions of x, y, z, which are finite and

continuous at all points within a closed surface S, then

where the triple integral extends throughout the volume enclosed

by 8, and the double integral is taken over the surface of S, and

I, m, n 'arid the direction cosines of the normal at any point of
S drawn outwards.

Integrating the left-hand side of (9) by parts we obtain

where the brackets refer to the limits of integration. Now since

the surface $ is closed, it follows that any line parallel to x which

enters the surface a given number of times must issue from it the

same number of times, hence if I is positive at the point of

entrance, it must be negative at the corresponding point of exit ;

hence

where the integration with respect to 8 extends over the whole

surface. Treating the other two terms in a similar manner we

obtain the theorem in question.

8. If the motion of a fluid be continuous, it is evident that

the increase in the amount of fluid within a fixed space, which

takes place during any given interval, must be equal to the amount

which flows in across the boundaries of that space.

Let p be the density of the fluid at time t, then the increment

during an interval St in the mass of the fluid bounded by any
fixed surface 8,

-II]
The amount of fluid which flows into $ across the boundary,

=
ffp (lu + mv + nw) &t dS,

ax ay dz
]
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by (9). Equating these two values of the increment, we obtain

dp d^pu} d^pv)
d (pw) _

~dt* dx dy dz

This equation is usually called the equation of continuity.

In the case of a liquid p is constant, whence

..

dx dy dz

9. The same result is often obtained in a different manner,

which we shall illustrate by finding the equation of continuity of a

liquid referred to polar coordinates.

Let u, v, w be the velocities in the r, 6, </>
directions, and let

r* sin ebr&OSf be a small element of volume. The quantity of

liquid which in unit of time flows in across the face r
2
sin

= pur
2 sin0'80 &/>.

The quantity which flows out across the opposite face

= pur
2
sin <9S0S< + p sin (r*u)

Hence the total loss

. ~d (r*=
p sin 6 j

Equating the total loss due to the flow across all the faces of

the element to zero, we obtain

dw /10 ._ ___ _ ......... (12).

If cylindrical coordinates are employed, the equation is

du dvdw

10. In a large and important number of problems the quan-

tity udx + vdy + wdz is a perfect differential
d<$>,

whence

u = d(f>/dx, v = d<t>/dy, w =
d<f>jdz ;

hence if ds be a linear element drawn in any direction, and q be

the velocity in the same direction q
=

d^jds. The function $
is called the velocity potential.

Substituting the above values of u, v, w in (11), we obtain

fl&r dy' dz'

or V 2

</>
= 0.



THE BOUNDING SURFACE.

This equation is usually known as Laplace's equation, and the

operator V
2
as Laplace's operator.

The values of V2
in polar and cylindrical coordinates are re-

spectively,

V 2 = ~ + - - Cot6>

dr2
T dr T

2
dd* T

2 d6 r* sin
2 6 dd>

2

d2 Id
and _ j

o 7 /19 I 7 9v dO dz .(16).

These results may be readily obtained by substituting the

values of u, v, w in terms of
c/>

in (12) and (13).

11. The preceding forms of the equation of continuity are not

convenient when the Lagrangian method is employed. To find an

appropriate form, consider a small rectangular parallelepiped

whose diagonal is PQ. Let a, b, c, a + Sa, b+ Bb, c + Sc be the

coordinates of P and Q respectively. At the end of a time t, the

fluid of which the parallelepiped is composed will form a dif-

ferently situated oblique-angled parallelepiped. The volume of

the latter =JSaSbSc,

where J is the Jacobian of x, y, z and is equal to

doc

Ta'

dx

db'

dx

~dc'
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fluid at the surface must be equal to the normal velocity of the

surface, hence the sheet of fluid of which the boundary is com-

posed must always consist of the same elements of fluid.

Hence
F (x + u8t, y + v$t, z + wot, t + of)

= 0,

and therefore

dF dF dF
t

dF
-=- +u^r + v-r-+w-j- = ()

dt dx dy dz

If the boundary is fixed, the condition becomes

lu + mv + nw = (20).

If the axes be in motion, the condition is

dF+u dF dF dF=Q
dt dx dy dz

where U, F, W are the velocities of an element of fluid relative to

the axes.

It should be noticed that (19) or (21) must be satisfied by

every surface which is composed of the same elements of fluid.

Lines of Flow and Stream Lines.

13. DEF. A line of flow is a line whose direction coincides

with the direction of the resultant velocity of the fluid.

tf.
The differential equations of a line of flow are

dx = dy = dz ^"'^-X
U V W

'

Hence if ^ (a?, y, z, t)
= av Xz(x> V> z

>
= a

z
be anv two in ~

dependent integrals, the equations ^ = const., %2
= const., are the

equations of two families of surfaces whose intersections determine

the lines of flow.

DEF. A stream line, or a line of motion, is a line whose
direction coincides with the direction of the actual paths of the

elements of fluid.

The equations of a stream line are determined by the simul-
taneous differential equations,

x = u, y = v, z w,

where x, y, z must be regarded as unknown functions of t. The
integration of these equations will determine a?, y, z in terms
of the initial coordinates and the time.
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14. If through every point of a small closed curve lines

of flow be drawn, they will enclose a mass of fluid which may be

called a tube of flow.

Let us apply the lemma of 7 to a portion of liquid bounded

by a tube of flow and two planes perpendicular to it. Putting
u = f, v = rj, w = f, and taking account of (11), we obtain

du dv= +
dw\ , f/7- \

,

357***
=
JJ r + mv + nw

)
*

At every point of the curved surface of the tube of flow,

lu + mv + nw =
;

at the two ends this quantity is respectively

equal to ql
and q2 ,

where q l
and q2

are the velocities of the

liquid at the ends. Hence the surface integral = g^c&Sfj q<flS2
=

;

whence the product of the velocity of a liquid and the cross

section of a tube of flow is constant throughout the length of
the latter.

In the next place, a line of flow cannot begin or end in any
portion of a liquid throughout which the velocity is finite, but must

either form a closed curve or have its extremities in the boundaries

of the portion of liquid.

For if a line of flow endedAthe liquid, it would be possible to

draw a closed surface cutting a tube of flow once only. Hence
lu + mv + nw would be zero at every point of the closed surface

excepting where it cuts the tube of flow, and therefore the surface

integral would not be zero.

15. When a velocity potential exists, the equation

udx + vdy + wdz =

is the equation of a family of surfaces, at every point of which the

velocity potential has a definite constant value, and which may be

called surfaces of equi-velocity potential.

If P be any point on the surface, (f>
= const., and dn be an

element of the normal at P which meets the neighbouring surface

</>
+ &(j> at Q, the velocity at P along PQ will be equal to d<p/dn ;

hence
d(f> must be positive, and therefore a fluid always flows

from places of lower to places of higher velocity potential.

The lines of flow evidently cut the surfaces of equi-velocity

potential at right angles.

16. The solution of hydrodynamical problems is much sim-

plified by the use of the velocity potential (whenever one exists),
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since it enables us to express the velocities in terms of a single

function
<f>.

But when a velocity potential does not exist, this

cannot in general be done, unless the motion either takes place

in two dimensions, or is symmetrical with respect to an axis.

In the case of a liquid, if the motion takes place in planes

parallel to the plane of xy, the equation of the lines of flow is

(22).

., f+j
The equation of continuity is

du dv
-j- + -7-

= 0,
dx dy

which shows that the left-hand side of (22) is a perfect differ-

ential cfr/r,
whence

u ^d v = _d ......... . ........(23) .

dy dx

The function ty is called Earnshaw's current function.

When the motion takes place in planes passing through the

axis of zt
the equation of the lines of flow may be written

w(wdvr-udz) = ..................... (24).

The equation of continuity is

d (fffu) dw _Q
c?cr dz

which shows that the left-hand side of (24) is a perfect differential

cfyr,
whence

1 cty 1 etyw= --5r ,
u = ---

-r- ............... (25),w a-cr is dz

where
i|r

is Stokes' current function.

17. The existence of a velocity potential function involves

the conditions that each of the three quantities,

dwjdy dvjdzy du/dz dwjdx, dv/dx dujdy,

should be everywhere zero; when such is not the case we
shall denote the above quantities by 2f, 2??, 2f. The quantities

f, 77, f, for reasons which will be explained in the following

chapter, are called the components of molecular rotation. They
evidently satisfy the equation

jf +
*
+ de =0 (26)dx dy dz
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Formulae of Transformation
1

.

18. The equations connecting the components of molecular

relation with the velocities are,

^_dw dv du_dw efo du
7

.

^~dy dz'^'dz dx>^-dx~dy
In order to obtain the equivalent equations when polar

coordinates are employed, let r, 0,

be the coordinates of P, and let

u, v, w and u + Sii, v + Sv, w + Sw be

the velocities at the points r, 6, <p

and r + Sr, 6 -f 0, </>
+ &(f> respec-

tively, measured in the directions

in which these quantities increase
;

also let u+ Su, v + Sv', w + Sw' be

the velocities at the last mentioned

point parallel to the directions of

u, v, w.

Let us choose the axes of #, y, z

so as to coincide with the directions of r, 0, and
cf> respectively, then

dx = dr, dy = rd6, dz = r sin
6d(j),

and therefore we at once obtain

du _du dv' _ dv dw' _ dw
dx

~
dr

'

dx dr
'

dx
~

dr .(28).

Let Q be a point whose coordinates are r, 9 + SO, <
;
then

dudu sa\ /j f dv
7 ' i * -r -TO 00 )

COS 00 fl + ^7:
cZw, _ V dO J \ dd

dy

I du v

r dO~r .(29),

-r^ au cos

dy rS0

1 dv u

dw' 1 dw= -^r-r

cii/ ^ du

1
Besant, Mess, of Math., vol. xi. p. 63.

(30),

.(31).
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Let R be a point whose coordinates are r, 0, $ 4- 8<t> ;
and let

=SX''> then

Hence

r sn

-
:
-

-7
r sin a r

* /
cos 8 " " + <> sm ~

dz r sin

/OQ \

(33),

d(f>

Hence

r sin 680

...(34).

dy dz r dO r r sin 6
d(f)

_ du _ dw' 1 du dw w
dz dx r sin 6 d<p dr r

9f - du' _dv v 1 du

dx dy
~
dr r r dd

19. If cylindrical coordinates CT, 0, z are employed ;
let u, v, w

and u + Bu, v + 8u, w + Sw be the velocities at the points -57, 6, z

and CT + 57, + 80, z + 8^ respectively ;
and let u + e?w', v + dv

be the velocities at the last mentioned point parallel to u and v.

Then dx = diz, dy

and duf_^du_ dv^_di/ dw' _dw
dx dv* dx~dv' ~dx~dv

algo

dy

I du v
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dv

arid

vdB v
dw dw
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4. In the last example prove that if the motion is irrotational

the velocity potential is equal to

/ (log tan0 + i<f>) + F (log tan|0
-

t</>),

where t = J 1 andf and F are arbitrary functions.

5. An infinite mass of liquid is bounded by the plane zx, on

which are small corrugations given by y = < (x). The velocity of

the liquid at an infinite distance from the plane is parallel to x

and equal to F. Prove that the velocity potential is

6. In the general motion of a fluid, prove that if F is the

normal acceleration at any point on a closed surface described in a

fluid, 6 the expansion, &> the molecular rotation, and 2 the strain

invariant

fg -f gh + A/ a2
6
2

c
2

,
where/= du/dx, 2a = dwjdy + dv/dz,

then W= fl/? + 2 + 2a>
2 - 22

7. Fluid is moving in a fine tube of variable section K, prove
that the equation of continuity is

where v is the velocity at the point s.

8. If F (x, y, z, t) is the equation of a moving surface the

velocity of the surface normal to itself is

+ (dF/dz}\

Hence deduce equation (19).

9. If x, y and z are given functions of a, 6, c and t, where a,

6 and c are constants for any particular element of fluid, and if

u, v and w are the values of x, y, z when a, 6, c are eliminated,

prove analytically that

d*x du du dw c?^

10. Liquid which is moving irrotationally in three dimen-
sions is bounded by the ellipsoid (x/ctf + (yjb^ + (*/c)

2 =
1, where
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a, b, c are functions of the time, such that the volume of the

ellipsoid remains constant. Prove that if the ellipsoid is rotating

with angular velocities co
1 ,

co
2 ,

o>
3
about its principal axes, and

u, v, w are the component velocities of the liquid parallel to the

principal axes, the equation of continuity and the boundary con-

ditions are satisfied if

_ ax a)
s (a? b

2

) y co
2 (c

2 a2

)
z

=

~a~ a2 + 6
a

c
2 + a8 '

with similar expressions for v and w.

11. If the lines of flow of a fluid lie on the surfaces of coaxial

cones having the same vertex, prove that the equation of con-

tinuity is r - + r
-j- (up) 4- 2pu 4 cosec 6 -=-

(pv)
= 0.

ctt diT cL(b

12. Show that

x*l(akt*f 4- fa* {(y/b)* + (z/c)
2

}
= I

is a possible form of the bounding surface at time t of a liquid.

13. The position of a point in a plane is determined by the

length r of the tangent from it to a fixed circle of radius a, and

the inclination 6 of the tangent to a fixed line. Show that the

equation of continuity for a liquid moving irrotationally in the

plane will be

d*<f)
1

d(f>
1

d*(f) a? /d
2

(f)
1 d<p\ a /

d*<j>
1 cZ^

o^?"
2 r dr r2

c?^
J

r*
a
V^"

2
T drj 1*

Hence indicate a method of finding the motion of a liquid

in the developable surface whose edge of regression is a right

helix, pointing out any peculiarities of the motion.

14. If the velocity potential of a liquid is of the form

(f)=f(vr)F(0)'x(z), where w, 0, z are cylindrical coordinates,

prove that the equation of continuity is satisfied if f, F, % satisfy

the three equations

where n and K are constants
;
and hence show that

<f>
= %A cosh K (z c) cos n (0 a) I cos (/cr sin a) nay) da>.

J o

B.
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15. In the motion of a liquid in two dimensions, the velocity

at any point is given by two components v, v
f

along the directions

which pass through two fixed points distant a from one another.

Show that the equation of continuity is

dv dv r* 4- r'
2 a

2
/dv dv'\ v v

f

where r, r are the distances of any point of the liquid from the

fixed points.



CHAPTER II.

ON THE GENERAL EQUATIONS OF MOTION OF A PERFECT

FLUID.

20. IT was stated in the preceding chapter, that the pressure

at every point of a perfect fluid is equal in all directions, whether

the fluid be at rest or in motion. It will now be shown that this

property is the consequence of such a fluid being incapable of

offering resistance to a tangential stress.

Let ABCD be a small tetrahedron of fluid, and let p, p be the

pressures per unit of area upon
the faces ABC and BCD.

By D'Alembert's Principle,

the reversed effective forces and

the impressed forces which act

upon the volume of fluid, together
with the pressures upon its faces,

constitute a system in statical

equilibrium. The first two vary
as the volume, and the last vary as the areas of the faces of the

tetrahedron
;
and therefore if the tetrahedron be made to diminish

indefinitely, the former will vanish in comparison with the latter.

Hence the tetrahedron will ultimately be in equilibrium under the

action of the pressures upon its faces.

Resolve the pressures upon the faces ABC and BCD parallel

to AD. Since the projections of the two faces upon a plane

perpendicular to AD are equal, the conditions of equilibrium

require that p p', which proves the proposition
l

.

1 This proposition is true even in the case of viscous fluids, provided they are at

rest.

22
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TJie Equations of Motion 1

.

21. Let X, F, Z be the components per unit of mass of the

impressed forces which act on the fluid
; p its density, and q its

resultant velocity. Describe any imaginary closed surface 8 in the

fluid, and let e be the angle which the direction of q makes with

the normal to S drawn outwards.

The rate at which momentum flows into S, parallel to a,

together with the rate of increase of the component of momentum

parallel to #, of the fluid contained within S, must be equal to the

component parallel to x of the impressed forces which act on the

fluid within S, together with the component parallel to x of the

pressure upon the boundary of 8.

The rate at which momentum flows into S, parallel to x, is

ffpq*l cos edS = ffpu (lu + mv + nw) dS

by 7.

The rate of increase of the component of momentum parallel
to x of the fluid contained within 8

=
SHjt (pU)dxd^'

The component parallel to x of the impressed forces

The component parallel to x of the pressure upon the boundary
ofS, is

Whence

which requires that

, d(puv) d(puw)
'* dt dx dy dz

1 This method of obtaining the equations of motion is due to Prof. Greenhill
See Encyc. Brit., Art. Hydrodynamics.
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acceleration in any direction, and dp/dh be the space variation of

the pressure, the equations of motion are of the form

~
/o
dh

'
*'

Hence if the axes instead of being fixed are moving with

angular velocities
lt 2 , 3

about themselves, the equations of

motion will be obtained by employing the expressions for the

accelerations given in 6, (6), and are therefore,

1 dp du TT du T7- du TIT du ~
-

-f-
=

-T- + U j- + V -J-+W -T- -v&3 + w02

p dx dt dx dy dz

_^ u
p dy dt dx

p dz dt dx

dy

dy

T- -u>0tdz

dz

uO, ...(4).

24. Let us now suppose that the forces arise from a con-

servative system whose potential is V. Since p is a function of

p, we may put

and the left-hand sides of (1), will be respectively equal to

dQ/dx, dQ/dy, dQ/dz. If therefore we eliminate Q by diffe-

rentiating the second equation with respect to z and the third

with respect to y, we shall obtain

.
_

dt dx dx dx

where
, 77, f are the components of molecular rotation and

6 = dufdx + dvjdy + dwjdz. Eliminating by means of the equa-
tion of continuity dp/dt + pO = 0, and taking account of the two

other equations which may be written down from symmetry, we
shall obtain

JSL.l.l^+.S^+I*?
dt \pj p dx p dx p dx

^(y\_%du.'
rl<to,dw

dt \p) p dy p dy p dy

I
- -

]
=

[

_
_j

r

dt \pj p dz p dz p dz

,(5).

25. It was stated in Chapter I, that in many important
problems the motion is such that a velocity potential exists.
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The condition that such should be the case is, that f, 77, should

each vanish. We shall now prove, that when the fluid is under

the action of a conservative system of forces, a velocity potential

will always exist whenever it exists at any particular instant.

Let us choose the particular instant at which a velocity poten-

tial exists as the origin of the time
;
then by hypotheses , 77, f

vanish when t
;
also the coefficients of these quantities in (5),

will not become infinite at any point of the interior of the fluid
;

it will therefore be possible to determine a quantity L, which shall

be a superior limit to the numerical values of these coefficients.

Hence
, 77, f cannot increase faster than if they satisfied the

equations ^ (
-

}
= (f + 77 + f), &c. &c.

ot \p/ p

But if + 77 + f = Qp, we obtain by adding the above equations

whence H = Ae*Lt
.

Now fl = when t = 0, therefore A=Q; and since fl is the

sum of three quantities each of which is essentially positive, it

follows that f , 77, f must always remain zero, if they are so at any

particular instant. The above proof is due to Prof. Stokes
1
.

26. There is, as was first shown by Prof. Stokes, an important

physical distinction in the character of the motion which takes

place, according as a velocity potential does or does not exist.

Conceive an indefinitely small spherical element of a fluid

in motion to become suddenly solidified, and the fluid about it

to be suddenly destroyed. By the instantaneous solidification

velocities will be suddenly generated or destroyed in the different

portions of the element, and a set of mutual impulsive forces will

be called into action.

Let x, yt
z be the coordinates of the centre of inertia G of the

element at the instant of solidification, x + x'
t y + y',

z +z those

of any other point P in it
;
let u, v, w be the velocities of G along

the three axes just before solidification, u v, w' the velocities of P
relative to G

;
also let u, v, w be the velocities of G, u

t ,
v
l}
w

l
the

relative velocities of P, and f, 77, f tne angular velocities just

1 " On the friction of fluids in motion," Section II. Trans. Camb. Phil. Soc.

vol. viu.
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after solidification. Since all the impulsive forces are internal,

we have
u = u, v = v, w = w.

We have also, by the principle of conservation of angular mo-

mentum, 2m [y (w l

-
w')

- z (^ -')}= 0, &c.

m denoting an element of the mass of the element considered.

But u
t

-
j]z

-
y, and u is ultimately equal to

du , du , du t

dx dy
** dz

and similar expressions hold good for the other quantities. Sub-

stituting in the above equation, and observing that

v'y' = 0, and 2ra#'
2 = 2m?/'

2 =

. fdw dv\ p

we have f = ---, & .

We see then that an indefinitely small spherical element of

the fluid if suddenly solidified and detached from the rest of the

fluid will begin to move with a motion of translation alone, or

a motion of translation combined with one rotation, according as

udx + vdy + wdz is, or is not, an exact differential, and in the latter

case the angular velocities will be determined by the equations

e>t
dw dv a _du dw ,,_dv _du

^~dy~dz'
^ ~~

dz
~
dx ' *

~
dx dy'

On account of the physical meaning of the quantities f, 77,

they are called the components of molecular rotation, and motion

which is such that they do not vanish is called rotational or vortex

nation; when they vanish, the motion is called irrotational.

In the foregoing investigations, it has been assumed that the

pressure is a function of the density and also that the fluid is

under the action of a conservative system of forces
;

it therefore

follows that vortex motion cannot be produced, and consequently,
if once set up, cannot be destroyed by such a system of forces. We
shall presently show that the theorem is not true if the pressure
is not a function of the density. If therefore by reason of any
chemical action the pressure should cease to be a function of the

density during any interval of time however short, vortex motion

might be produced, or if in existence might be destroyed.
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Lagrange's Equations.

27. In Lagrange's method the initial coordinates a, b, c and

the time are the independent variables, hence the equations of

motion are

Multiplying the preceding equations by xa) ya ,
za1 where the

suffixes denote partial differentiation with respect to a, 6, c,we obtain

Qa^UXa + Vy^ + WZ^

Qb
= iix

b + vyb + wzb
I .................. (6).

Qc
=ux

c + vyc + wz
c }

These equations together with the equation of continuity

pj= poj
are Lagrange's hydrodynamical equations of motion.

Weber s Transformation.

28. Integrating the right hand side of the first of (6) between

the limits t and 0, the first term becomes

I uxa dt
=

I xxa dt = (xxa) I xxa dt
Jo J o ^o

1 d="-*-
2

where u is the initial value of u. If we treat each of the other

two terms in a similar manner and put

where q is the resultant velocity of the liquid, we obtain

_ dX

uxb -}- vyb + wzb

dv I

v Of >Un 77 *

db

ux + vyc + wz,
- wo=

(7).

These equations together with the equation of continuity and

d%/dt
= Q + %q*, give five equations for determining x, y, z, p, %;

p being supposed to have been eliminated by means of (2) or (3).

The above equations may be expressed in a different form, for

multiplying by dJjdxa , dJjdxb) dJ/darc
and adding, we obtain

dJ dJ dJ'

with two similar equations.
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29. Multiply (7) by da, db, dc and add, and we obtain

udx + vdy + wdz - u da - v db - w dc =d% (9).

If at any particular instant which we shall choose for the

origin of the time a velocity potential exists, u da + v db + iu dc

will be a perfect differential
;
hence ifp be a function of p, d% will

also be a perfect differential, which proves that if a velocity

potential once exists, it will always exist
;
but if p is not a function

of p we cannot put Q = - V j/T
1

dp, but must write

for d%/da, in which case the right hand side of (9) becomes

**-/*(*)J o \ P '

where d denotes space differentiation. The right hand side of (9)

is no longer a perfect differential
;
hence udx + vdy + wdz is not a

perfect differential.

If therefore the pressure be not a function of the density, vortex

motion can be generated or destroyed in a perfect fluid moving
under the action of natural forces.

Conchy's Integrals.

30. Eliminating Q from the last two of (6), we obtain

u
bxc
- u

c
xb + v

byc
- v

cyb + wbzc
- w

c
zb
= 0.

Integrate this equation with respect to t, and let u
,
v

,
W

Q
be

the initial values of u, v, w ;
then

ubxe
- u

c
xb + vbyc

- v
cyb + wbzc

- w
c
z

b
=--^ -~

.

-D llf
du du du

"^Tx^ +
Tyy^dz*"^^-

Substituting these values of uf ,
ut , &c., we obtain the equations

dJ dJ dJ
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Multiplying these equations by xa ,
xb ,

x
c
and adding, and

remembering that Jp = pQ ,
we obtain

These equations show that f, ?;, f are always zero, if they are

initially so.

31. The equations of motion can be integrated whenever

a force and a velocity potential exist
;
for putting

and multiplying (1) by dx, dy, dz respectively and adding, we

obtain

. du dv - dw

Now in the present case

du du du dv dw
5r
= -]7+u-r + v-r + w -j-

ot at dx dx dx

where q is the resultant velocity. Integrating, we obtain

+^ = ^(0 ................. (11),

where F is an arbitrary function.

32. DEF. A vortex line is a line whose direction coincides

with the direction of the instantaneous axis of molecular ro-

tation.

The differential equations of a vortex line are thus

dx dy dz
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Clebsch's Transformation
1

.

33. When a velocity potential does not exist, a first integral

of the general equations of motion can be obtained by means of a

method which depends upon the analytical theorem, that if u, v, w
are any given functions of x, y, z it is always possible to determine

three quantities </>, X, %, such that

udx 4- vdy + wdz = d$ + \d% ............... (12).

In order to prove the theorem, let u', v, w', $ be four quantities,

such that

u = u' +
cj)x ,

v = v' + $>y ,
w = w'+<f>t

.

These equations involve three relations between the four

quantities u', v, w', $ and are therefore insufficient to determine

them as functions of u, v, w ;
we may therefore assume any relation

between u', v, w which may be convenient. Let us therefore

suppose that

u (w'y
-

v',) + v' (u'a w'x) + w' (vx
' - u'

v)
= 0.

This is the condition that u'dx + vdy 4- wdz should have an

integrating factor, we may therefore put this quantity equal to

which proves the proposition. It therefore follows that,

= + X = + X = + X .....(13).dx dx dy dy dz dz

The components of molecular rotation are given by the

equations

(14).

The form of these equations shows that the vortex lines are

the intersections of the surfaces X = const., = const.

Therefore

du d
fd(f> dv\ du dv dw=

1
Crelle, vol. LVI. p. 1. See also Hill, Quart. Journ. vol. xvn

; Tram. Camb.
Phil. Soc. vol. xiv. p. 1; Phil. Trans. 1884, p. 363; Proc. Loud. Math. Soc.
vol. xvi. p. 171.
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Putting H=-Q +
j

+
\j

+ tf ...............(16),

and substituting the values of du/dt and dQ/dx from (15) and (16)

in (]), we obtain

with two similar equations.

Multiplying by f, 77, f and adding, we obtain

dH dH dH
f-7

--h r)
--t-c-7 = ............... (18).^

ass dy
* dz

If ds be an element of a vortex line, and w be the resultant

molecular rotation, the operator is equal to cod/ds, whence in-

tegrating along a vortex line, we obtain

Writing for a moment P =d\/dt, R =
3%/9 and eliminating H

from (17), we obtain

Multiplying these equations in order by X
z , X,., X, and adding

and taking account of (14), we obtain

fP, + ,P,+ ?P, = ..................(20).

If a?, y, z be
arc;?/ point on the surface X = A, where A is an

absolute constant, and if f/o>, 77/0), f/a> be the direction cosines of

the vortex line at this point ; equations (14) and (20) show that this

vortex line lies on the surfaces X = A and X + d\/dt .dt = A, which

is impossible unless d\/dt
= 0. Similarly 9^/9^

=
;
whence the

surfaces X and ^ and therefore the vortex lines are always composed
of the same elements of fluid. This important theorem was first

established by Helmholtz 1
.

Hence it follows from (17) that Hx,H^Hg
are each equal to

zero, and therefore H is a function of the time alone; whence the

pressure is determined by the equation

1

Crelle, vol. L,V. and Phil. May. (4) vol. xxxm. p. 485.
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34. We can now show that in the case of a liquid, the

integral

dtdxdydz (22),

is a maximum or minimum, where the value of p/p + V or Q is

given by (21), and the time remains invariable.

For

8

Therefore

ffffu&u dtdxdydz = fffu

Omitting the triple integrals which refer to the boundary we

see that the first three terms of &Q give rise to the terms

- 6 (80 + XSx)} dtdxdydz,
which

, n du dv dw
where ^ = __ + __ +

Also the last three terms of 8Q (omitting triple integrals) give
rise to

Whence

dtdxdydz

+ triple integrals.

In order that the quadruple integral should vanish, we must
have 6 = 0, dxfit

= 0, d\/dt = 0, which by virtue of the equation of

continuity and 33 is obviously the case.
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On the Application of the Principles of Energy and Least Action.

35. Let 8 be any imaginary closed surface, which is fixed in

the fluid. The work done during a small interval St upon the

liquid contained within 8, by the impressed forces which act

upon its mass, together with the work done by the pressure upon
the boundary of 8, must be equal to the increase during the

interval Bt of the kinetic energy of the liquid contained within 8,

together with the kinetic energy which, during the same interval,

flows into 8 across the boundary.

The work done by the impressed forces

dV dV dV\ ,
u -^ 1- v , \-w -j\ ot dxdydz.dx dy dz J

The work done by the pressure upon the boundary

= ffp (lu + mv + nw] &t dS

by 7. Hence the total work done

_fff f
dQ

v
dQ~

JJJ
P

\ dx dy

Let T be the kinetic energy per unit of mass, so that

T=Ui

The increase in the kinetic energy of the liquid contained

within 8

The amount of kinetic energy which flows into $

= !fpT(lu + mv + nw) St dS

+ (pwT)

Taking account of the equation of continuity 9 (10) the total

increase in the kinetic energy

r r r ^ '7^

flip oi Stdxdydz.
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fff ftT dQ dQ dQ\
Whence p h~- u-j- + v -j w-j-]

]jy \dt dx dy dz]

which requires that

ST jn jn JO
=

(23).

If we substitute the values of u, v, w from (13), we find that

dT _ f d d d\ /d<p dtf

dt \ dx dy dz) \dt dt,

The last two terms vanish by 33, whence (23) becomes

d d

Now if ds be an elementary arc of a stream line u = qdx/ds, &c.,

and the operator is therefore equal to qd/ds. Integrating along a

stream line, and restoring the values of Q and T, we obtain

F(f).

p dt dt

36. The equations of motion may be deduced, as Mr Larmor

has shown, by means of the Principle of Least Action combined

with the Lagrangian method.

Let x
y y, z be the coordinates at time t of an element of fluid

whose initial coordinates are a, b, c
;
the Principle of Least Action

requires that

//// { 2V (** +? + *)
-

Vp] dt dxdydz

should be a maximum or minimum subject to the condition that

d (a, b, c) p
'

where the time of the motion is constant.

Hence if X represent an undetermined function of x, y, and
we must have

IlllJJJJ
- v - *'

/
(a, o, c)

Taking the variation of the first two terms, we obtain

dt
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Integrating by parts and omitting the triple integrals, this

IfM
I}
M

2 ,
M

a
be the minors of dxjda, dx/db, dcc/dc in J

=
, + , + ,

a, b, a)
l da 2 db 3 dc

'

whence, omitting triple integrals,

da db dc J

Sx dt dadbdc.

The first term in brackets vanishes, and the second term is

equal to JdK/dxy

whence - xS T dt dadb dc
d (a, b, c)

d\ ~ d\ ~ d\ P, I T7 7 77 7

-j- Bx + -j- 8y + -j- z\ Jdtdadbdc.ax dy
^ dz

}

Hence the conditions of the problem require that

__,
dy p dy

.(24).

__ =
dz p dz

Now ti, y, z are the component accelerations of the element

whose coordinates are x, y, z, and are therefore equal to du/dt,

dv/dt, and dw/dt respectively ;
and when we interpret \p which

must represent the pressure, equations (24) are the equations of

motion in the ordinary form.

On Steady Motion.

37. When the motion is steady du/dt, dv/dt and dw/dt are

each zero. In this case the general equations of motion can be

integrated without having recourse to Clebsch's transformation.

It will however be necessary to distinguish between irrotational and

rotational motion.

B. 3
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The general equations of motion may be written,

= _
dt dt

* dx

|f
St

.(25).

_ 2 2t)f
=

9 eft cfo dz

When the motion is steady and irrotational u, v, w, %, 77, % are

each zero; whence, multiplying by dx, dy, dz, adding and inte-

grating, we obtain

or .(26).

In this case the quantity C is evidently an absolute constant.

When the motion is rotational, let ds be an element of a stream

line, then
dx dy dz

Multiplying the general equations by u, v, w and adding,

,
,

. dQ 1
dnz

we obtain -^ = -|ds~ 2 ds>

(27).whence

This is Bernoulli's Theorem.

Since we have integrated along a stream line, the quantity A
is not an absolute constant, but a function of the parameter of a

stream line : in other words if ^ = const., ^ = const, be two surfaces

whose intersections determine the stream lines, A is a function

of
A|T

and 2.

38. Let us now consider the steady motion of a liquid
1 which

is symmetrical with respect to the axis of z. The vortex lines

will evidently be perpendicular to every plane through the axis

of z, hence by 19 (41) the molecular rotation G> will be determined

by the equation
~ du dw
2o> = , 7 .

dz dur

1
Stokes, "On the steady motion of incompressible fluids," Trans, Camb. Phil.

Soc. vol. vn. p. 439.
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Substituting for u and w their values in terms of Stokes'

current function ^, 16 (25), we obtain

(28).

The equations of motion are

dQ du du, .d(q*) ,

-7^
= M ^7- + W-T- = -J-

.P-^ +oV dw dz i dw

dQ dw dw
, d(q

z

)
-T^ = W , +w^ = 4 ^-dz d-& dz dz

Eliminating Q ^q
2

,
we obtain

dco dco

dw dz

The equation of continuity 9 (13) is

whence (29) becomes

dco dco (du dw\ Au _ \-w-j h ft>
-j H -y- 1

=
(29).dw dz \dw c~

du dw u A
^7
--

1

--
7
--

1

-- - ">
a-CT ^ -5T

dw dco uo)

u-j- +w~j--- =
0,

din dz OT

/ d d\ CD A /QnN
or w^ +w^--=0 ................... (30).

V ot-sr a^/ w

Substituting the values of u, w and o> in terms of ty, (30)

becomes _^ + _ () ^ }
\(iz dw dw dz)\Tff

z
\dz

z da? w dw)}

A first integral of this equation is evidently

*+ *+ id* - . .w + d^-v-d*
= fw ............... (32)>

whence by (28)
.................. , ..... (33).

When the motion takes place in two dimensions, we shall, in

exactly the same way, arrive at the equations

d?
,

d
u -^ + v ~ =

0,
ax dy

32
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a first integral of which is

(36),
aar ay

whence by (34)

2?+/W = (37).

39. The subject of the steady motion of a liquid has been

treated in the following manner by Clebsch
1
.

Let b and c be any functions of a?, y, z and t
;
then if the

suffixes denote differentiation with respect to x, y and z, we may
evidently put

u = b
y
c
z
- b

z
c
y , v = b

z
cx
- bxcz> w = bxcy

- b
y
cx (38),

for these values of u, v and w satisfy the equation of continuity.

From (38) we deduce

&.+*,+*.=<>)
ucx + vc

y + wc
z
=

J

hence the stream lines are the intersections of the surfaces

b = const., c = const.

Putting 2T=u* + v
2 + w*,

and multiplying equations (25) by dx, dy, dz respectively and

adding, we obtain

where M
l
= v(vx

- u
y) + w(uz

wx)= 2v + '~2wrj,

with similar expressions for M
2
and M

3
. From the values of M

ltM
2 ,
M

3
it follows that

Eliminating u, v, w from (39) and (41), we obtain

M
I} bx} cx

= 0.

Hence we may put

M^Bbl+Cc'A (42),

where B and C are quantities whose values we shall hereafter

determine
; (40) may now be written

1

Crelle, vol. LIV. p. 293.
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dQ-dT = B (bxdx -f b
ydy f b

tdz) + C (cxdx + c
vdy + czdz),

or dQ-dT=Bdb + Cdc ..................... (43).

Since the left-hand side of (43) is a perfect differential, the

right-hand side must be so also, whence if F be a function of b and

c, we must have

7?
dF C dFB=

>
( =

and therefore Q- T= F(b, c) ......................(45)

is an integral of the equations of motion.

When the motion is irrotational, Mlt
M

a ,
M

s
and therefore B

and C are each zero, and therefore F is an absolute constant.

40. We must now find the values of B and G. If we sub-

stitute the values of u, v and w from (38) in the expression for T
and differentiate partially, we shall obtain

dT__ = _

dT = - wcx

dT

d (dT\ d /dT\ d fdT
whence T- ( JT 1 + j~ l^jT ) + ;y { ji

dx\dbx
> dy\dby

) dz\dbz

= -cx (wy
-v

z)-ci,(uz
-wx )

-c
z (vx -uy ]

From the first two of equations (42), we obtain

Bw =
M^Cy M

2
cx

by (39). Therefore

d fdT\ d fdT\ d fdT\ dF

Similarly

d_
fdT\ d

/dT_\
d fdT\ = _ c= _dF ?

-f --
'

-1 -
'

-7 . . I _7 I ftp \ fjn I rlT
/,./ (J(j6 VU/C/,/ COO
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41. By means of the preceding equations it can be shown

that the conditions of steady motion make

a maximum or minimum.

For

and

Whence, omitting the double integrals which refer to the

boundary, we obtain

-
-/// (f)

*I(f) *
(f)} ***

^Y Sb + -y- Sc [ dxdydz
db dc

j

by (46) and (47) ;
whence

which proves the proposition.

Impulsive Motion.

42. Let u, v, w and u', v', w' be the velocities of a fluid, just

before, and just after the impulse ; p the impulsive pressure. Then

if S be any closed surface, the change of momentum parallel to

x, of the fluid contained within 8, must be equal to the component

parallel to a; of the impulsive pressure upon the surface of S.

Hence /// p (u
-

u) dxdy dz = -
ffpldS

dpfffa
JJJ dx

Therefore p (u u) = --

Similarly p (v
-

v)
= - -

(48).

Multiplying by dx, dy, dz and adding, we obtain

r/7i
- =

(u u)dx + (v v)dy+ (w' w)dz...... (49).
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In the case of a liquid p is constant, whence differentiating

(48) with respect to x, y, z respectively, and taking account of the

equation of continuity, we obtain

If the liquid were originally at rest it is clear that the motion

produced by the impulse must be irrotational, whence if
(f>

be its

velocity potential, we must have

p = p(f> (50).

EXAMPLES AND APPLICATIONS.

43. A mass of liquid whose external surface is a sphere of

.radius a, and which is subject to a constant pressure II, surrounds a

solid sphere of radius b. The solid sphere is annihilated, it is

required to determine the motion of the liquid.

It is evident that the only possible motion which can take

place is one in which each element of liquid moves towards the

centre, whence the free surfaces will remain spherical. Let R, R
be their external and internal radii at any subsequent time, r the

distance of any point of the liquid from the centre. The

equation of continuity is

whence r
2
v = F(t).

The equation for the pressure is

1 dp dv dv
-L -

_ _ ___ 11 _
p dr dt dr

_ F_(fy _ L
dtf

r*~
2 dr

'

whence - = A H-- - Av
2

,

p r

when r = R, p = H, and when r = R, p = 0, whence if F, V be

the velocities of the internal and external surfaces

also

Since the volume of the liquid is constant,

R3 -R3 = a5 -b* = c
3

,
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whence
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^- -il
+cf

Putting z = R*V'2

, multiplying by 2R2 and integrating, we

2 H(E
3 -63

) Jr2 ( 1 1
obtain |

--
~4

- = V
-j

-,

which determines the velocity of the inner surface.

If the liquid had extended to infinity, we must put c = oo
,
and

we obtain

whence if t be the time of filling up the cavity

M-*)-*^),

,,
/ >!>

r (|)
6
V6nnfr

The preceding example may be solved at once by the Principle
of Energy.

The kinetic energy of the liquid is

L^
I L_l.

The work done by the external pressure is

47TH I" r*dr = fUTT (a
3 - R3

)

H (6
3 -R5

)
= V*R*P jl--1_-I

.

(R R3
c
3 V

whence

44. The determination of the motion of a liquid in a vessel of

any given shape is one of great difficulty, and the solution has
been effected in only a comparatively few number of cases. If,

however, liquid is allowed to flow out of a vessel, the inclinations
of whose sides to the vertical are small, an approximate solution

may be obtained by neglecting the horizontal velocity of the
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liquid. This method of dealing with the problem is called the

hypothesis of parallel sections.

Let us suppose that the vessel is

kept full, and the liquid is allowed to

escape by a small orifice at P. Let h

be the distance of P below the free

surface, and z that of any element of

liquid. Since the motion is steady,

the equation for the pressure will be

Now if the orifice be small in comparison with the area of the

top of the vessel, the velocity at the free surface will be so small

that it may be neglected ;
hence if IT be the atmospheric pressure,

when z = Q, p H, v = and therefore C Tl/p. At the orifice

p = II, z = h, whence the velocity of efflux is

v = J%gh,

and is therefore the same as that acquired by a body falling from

rest through a height equal to the depth of the orifice below the

upper surface of the liquid. This result is called Torricellis

Theorem.

45. Let us in the next place suppose that the vessel is a

surface of revolution, which has a finite horizontal aperture, and

which is kept full
1

.

Let A be the area of the top AB of the vessel, Z7the velocity

of the liquid there
;
let K, u

; Z, v be similar quantities for the

aperture CD, and a section ab whose depth below AB is z:

also let h be the depth of CD below AB.

The conditions of continuity require that A

and since the horizontal motion is neglected, the

equation for the pressure is .

1 dp dv dv
~

7
= 9 --TL~ V -J-

p dz at dz

Now U and u are functions of t alone, whilst Z
is a function of z only, whence

dv_AdU = Kdu
dt~ Z dt

~
Z dt

'

1 Besant's Hydromechanics.
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V . dU [
z
dz 1

whence E = F(t) +g*-A-jj] j-
when z = 0, p = II, v = U, therefore

E. = F(t)-^U\
p

when z = h, p = U, v = u, whence if a = I Z'1

dz,
J

- = F(t) +gh-AaV-u*,
P

whence AaU = gh + ^ ( U
2 -

u*)

Putting (A/K)*
- 1 = 2m, Zjghm = ax, and integrating, we

obtain

where (7 is the constant of integration. Now initially U= since

the motion is supposed to begin from rest, therefore C = 1, and we

obtain

= /^tanh^V m*

=
A / tanh t Jqhmla.v /^

The velocity of efflux is

u =
A/(l + 2m)

^- tanh t Jghm/a.

After a very long time has elapsed tanh t\/ghm/a becomes

equal to unity, and if K be very small compared with A t
m oc

,

and we obtain Torricelli's Theorem

u =
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EXAMPLES.

1. A FINE tube whose section A; is a function of its length s, in

the form of a closed plane curve of area A, filled with ice is moved

in any manner. When the component angular velocity of the

tube about a normal to its plane is fl, the ice melts without change
of volume. Prove that the velocity of the liquid relatively to the

tube at a point where the section is K at any subsequent time

when a) is the angular velocity is

where 1/c =fk~
1

ds, the integral being taken once round the tube.

2. A centre of force attracting inversely as the square of the

distance is at the centre of a spherical cavity within an infinite

mass of liquid, the pressure on which at an infinite distance is CT,

and is such that the work done by this pressure on a unit of area

through a unit of length, is one half the work done by the attractive

force on a unit of volume of the liquid from infinity to the initial

boundary of the cavity ; prove that the time of filling up the cavity

will be

a being the initial radius of the cavity, and p the density of the

liquid.

3. In the case of the steady motion of a gas issuing symmet-

rically and subject to no forces, neglecting changes of temperature ;

prove the following relation between the velocity v and the

distance r from the centre
;

favr* = Q exp (v*
-

u*)/2k,

where Q is the quantity of gas that issues per unit of time, k is

the constant ratio of the pressure to the density, and u is the

velocity at points where the pressure is k.

4. In the steady motion in one plane of a liquid under the

action of natural forces, prove that

vV*u - uV*v = 0,

where
'

V 2 = d2

/dx* + dz

jdy\
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5. Jets of water escape horizontally from orifices along a

generating line of a vertical cylinder kept always full. Show that

(to axes inclined at an angle JTT to the vertical) the equation of the

lines of equal action for unit mass of water is of the form

Show also that the line of equal time for particles of water

issuing simultaneously from the orifices, is the free path of the

water which leaves the vessel by an orifice at a depth below the

surface equal to that time.

6. A cistern discharges water into the atmosphere through a

vertical pipe of uniform section. Show that air would be sucked

in through a small hole in the upper part of the pipe, and explain

how this result is consistent with an atmospheric pressure in the

cistern.

7. A mass of liquid is moving so that the velocity at any point

is proportional to the time, and the pressure is given by

pip
=

prove that this motion may have been generated from rest by finite

natural forces independent of the time, with suitable boundary
conditions : and show that if the direction of motion at every point

coincides with the direction of the impressed force, each particle of

liquid describes a curve which is the intersection of two hyperbolic

cylinders.

8. Water is revolving with angular velocity w in a smooth

fine circular tube of radius a which it completely fills, and which

rests on a horizontal plane. If the tube be made to revolve with

uniform angular velocity
'

about a pivot in its plane, show that

the absolute angular velocity of the water round the centre C of

the tube is unaltered. Also if -cr be the average pressure of the

water throughout the tube, show that the mean pressure of the

water for a section through any pointP of the tube is OT + yu,aco>'

2
cos 0,

and that the resultant pressure on the tube at P per unit of length
is mvr/fjia + maw

2 + 2raco>'
2
cos 0, where is the angle between OP

and 00 produced, c = OC, m is tjie mass of water which would

fill a unit length of the tube, and ^ that of a unit volume of

water.
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9. Prove that the equations of motion of a fluid referred

to moving axes may be expressed in the form

I dp v du du du du
- ~r - X + -=,- + u-f- + v-r- + w j-
p dx dt dx dy dz

~
(>? + *>

3

2

) x ~ ( 8
~ 6)

i
a)

2) V

and two similar equations: where u, v, w are the component
velocities of the fluid relative to the moving axes whose component

angular velocities are a)
l}

o>
2 ,

o>
3

.

10. A solid sphere of radius a is surrounded by a mass of

liquid whose volume is 47rc
3

/3, and its centre is a centre of attractive

force varying directly as the square of the distance. If the solid

sphere be suddenly annihilated, show that the velocity of the inner

surface when its radius is #, is given by
i /9TT 9 \

*V {(of 4 cT - co}
= + p? (a?

-
<f) (c

s + off,

where p is the density, II the external pressure and
//,

the absolute

force.

11. Prove that if w be the impulsive pressure, </>, </>'
the

velocity potentials immediately before and after an impulse acts, V
the potential of the impulses,

& + pV -}- p (fi <f>)
= const.

12. A mass of compressible fluid is arranged in concentric

spherical layers round a point under its own gravitation. Show
that if radial vibrations be set up, the displacement z of an element

is given by
1 tfz d?z j dp %\dz_ /2-7 dp

,

1~
p r

the pressure and density being connected by the equation p = kpv,

and p in the differential equation being the density of the element

when at rest.

13. If p denote the pressure at any point of a liquid moving

irrotationally in two dimensions, under the action of a conservative

system of forces, prove that

14. The surface of a vessel consists of two equal right cones,

height 2c, with coincident bases
;

it is fixed with its axis vertical

and filled with water to half way up the axis of the upper cone, the
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air above this level being initially at atmospheric pressure and the

vessel closed. The water flows out of the vessel from a ring of

apertures on the level of bisection of the axis of the lower cone.

On the hypothesis of parallel sections, obtain a differential equation

for the velocity of efflux, while the free surface is above the

midway point, and show that one equation to find its maximum

value in this stage is

'

[1
-

(c/(2c
-

x)}']
-
Zg (c + x)

= &r [{c/(2c
-

x)}*
-

1] p'
1

,

where x = height of surface above midway point.

15. If the motion of a homogeneous liquid be given by a

single valued velocity potential, prove that the angular momentum
of any spherical portion of the liquid about its centre is always zero.

16. Homogeneous liquid is moving so that

u = <yx + cay, v = fix yy, w = 0,

and a long cylindrical portion whose section is small and whose axis

is parallel to the axis of z is solidified and the rest of the liquid

destroyed. Prove that the initial angular velocity of the cylinder is

A+B
where A, B, F are the moments and products of inertia of the

section of the cylinder about the axes.

17. Liquid is contained between two parallel planes ;
the free

surface is an elliptic cylinder whose axis is perpendicular to the

planes, and the semi-axes of whose section are a
lt b^ All the

liquid within a confocal elliptic cylinder, the semi-axes of whose

section are a
2 ,

6
2 , is suddenly annihilated

; prove that if II be the

pressure at the outer surface, the initial pressure at any point of

the liquid is

n log ( +6 )
-

log (<v+ &,)

where a and b are the semi-axes of a confocal cylinder through the

point.

18. Fluid is contained within a sphere of small radius
; prove

that the momentum of the mass in the direction of the axis of a; is

greater than it would be if the whole were moving with the

velocity at the centre by

Ma?
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19. Obtain by means of Clebsch's transformation, 39, the

equations (33) and (37) of 38.

20. Prove that when the motion of a liquid is steady, it is

possible to draw a series of surfaces P = const, each of which shall

be covered with a network of stream lines and vortex lines. Prove

also that at every point of such a surface

dP

where q and o> are the resultant velocity and molecular rotation,

and e is the angle between their directions.

21. A cylindrical vessel of any form which is rotating about its

axis, is filled with liquid which is rotating as a rigid body. Prove

that if the cylinder be reduced to rest, the resulting motion of the

liquid will be steady.

22. If the motion of a liquid be referred to axes moving with

angular velocities
lt

$
2 ,

#
3
about themselves, prove that the com-

ponents of molecular rotation are determined by the equation

d% JL.W 4- TT
d% V d% -LW d% t

du
-i.

du ,*> du
-j- wv + eft + U -$ h V -,

--h W -r- = c -7- + V i r C-y- ,

dt dx dy dz b dx dy *dz

with two similar equations ;
where u, v, w are the component

velocities of the liquid parallel to the moving axes, and U, V, W
are its component velocities relative to these axes.



CHAPTER III.

ON SOURCES, DOUBLETS AND IMAGES.

46. WHEN the motion of a liquid is irrotational and symmet-
rical with respect to a fixed point, which we shall choose as the

origin, the value of
</>

at any other point P is a function of the

distance alone of P from the origin; and Laplace's equation

becomes

W r Tr~
'77?

Therefore
<f>
= --

,

dd> m
and -j-

=
-g .

dr r
2

The origin is therefore a singular point, from or to which the

stream lines either diverge or converge, according as m is positive

or negative. In the former case the singular point is called a

source, in the latter case a sink.

The flux across any closed surface surrounding the origin is

= 4?rm,

where dl is the solid angle subtended by dS at the origin, and e

is the angle which the direction of motion makes with the normal

to S drawn outwards.

The constant m is called the strength of the source.
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47. A doublet is formed by the coalescence of an equal source

and sink. To find its velocity potential ;
let there P

be a source and sink at 8 and H respectively, and

let be the middle point of SH, then

m m
* -

mSHcosSOP
OP*

fT S

Now let SH diminish and m increase indefinitely, but so that

the product m . SH remains finite and equal to p, then

fi cos SOP

_
r3 '

if the axis of z coincides with OS.

Hence the velocity potential due to a doublet is equal to the

magnetic potential of a small magnet whose axis coincides with

the axis of the doublet, and whose negative pole corresponds to

the source end of the doublet.

48. The velocity potential due to a sheet of doublets of

strength m per unit of surface, which is such that the axis of each

doublet coincides with the direction of the normal to the sheet at

the point at which it is situated, is

If m be constant, </>
= mO.

Hence the velocity potential due to a doublet sheet is equal to

the magnetic potential of a simple magnetic shell of strength m.

49. When the motion is in two dimensions, and is sym-
metrical with respect to the axis of z

t Laplace's equation becomes

dr*
""

r dr

Therefore
<f>
= m log r,

d<{> _ m
dr

=
f '

15.
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where r is the distance of any point from the axis. This value of

< represents a line source of infinite length, whose strength per

unit of length is equal to m.

If ty be the current function,

m _ 1 dty

7~r dO'

Therefore ^ = mO

= m tan"
1 -

.

x

The velocity potential due to a doublet in two dimensional

motion is

</>
= m log SP-m log HP

SH p cos SOP

Theory of Images.

50. Let H
lt
H

2
be any two hydrodynamical systems situated

in an infinite liquid. Since the lines of flow either form closed

curves or have their extremities in the singular points or bound-

aries of the liquid, it will be possible to draw a surface S, which is

not cut by any of the lines of flow, and over which there is there-

fore no flux, such that the two systems Hlt
H

2
are completely shut

off from one another.

The surface S may be either a closed surface such as an ellip-

soid, or an infinite surface such as a paraboloid.

If therefore we remove one of the systems (say H^) and sub-

stitute for it such a surface as S, everything will remain unaltered

on the side of 8 on which H
l

is situated
;
hence the velocity of

the liquid due to the combined effect of H^ and H
a
will be the

same as the velocity due to the system Hl
in a liquid which is

bounded by the surface $
The system Ht

is called the image of H^ with respect to the

surface S, and is such that if H
z
were introduced and 8 removed,

there would be no flux across S.

The method of images was invented by Sir William Thomson,
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and has been developed by Helmholtz, Maxwell and other writers
1

;

it affords a powerful method of solving many important physical

problems.

We shall now give some examples.

,
S' be two sources whose strengths

Through A the middle point of SS'

plane at right angles to SS'. The

component of the velocity of the

51.

Let

are m.

draw a

normal

liquid at any point P on this plane is

-
c^r* cos PSA+ J^ cos PS*A = 0.

o r

S'

Hence there is no flux across AP. If therefore Q be any

point on the right-hand side of AP, the velocity potential due to

a source at S, in a liquid which is bounded by the fixed plane AP,
is

m m

Hence the image of a source 8 with respect to a plane is an

equal source, situated at a point H on the other side of the plane,

whose distance from it is equal to that of S.

52. To find the image of a source placed outside a sphere*.

P

Let S be the source, the centre of the sphere, a its radius,

OS=f,POS=0, A6
= cos0.

Then, if <& be the velocity potential due to the source,

m

1
Helmholtz, Crelle, vol. LV. 1858; Thomson, Reprint of papers on Electricity

and Magnetism, p. 52; Maxwell, Proc. Eoy. Soc., 18 Feb. 1872; Electricity and

Magnetism, vol. n. c. 12.

2 W. M. Hicks, "On the Motion of Two Spheres in a Liquid," Phil. Trans. 1880.

42
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Now at all points in the neighbourhood of the sphere, r </;
hence <3> can be expanded in a convergent series of the form

m m

where Pn (/*) is the zonal harmonic of degree n.

At all points outside the sphere, the velocity potential of the

image of S can be expanded in a series of the form

Since the sphere is at rest, the surface condition is

=
dr

+
dr

~
'

when r = a.

Therefore P. +S. .
Pn
= 0;

whence ^L =
0,

win

therefore

-

where c = a2

//.
Now if c < r,

L(r*-
'

Hence, adding and subtracting wa//r from (1), the value of

may be written

(r
2 -

The first term represents a source of strength ma/f, situated at

a point H such that OH= c = a?/f, and which therefore coincides

with the electrical image of S with respect to the sphere : the
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second term represents a line sink of strength m/a per unit of

length, extending from the inverse point // to the centre of the

sphere.

53. To find the image in a sphere of a doublet whose axis

passes through the centre of the sphere.

H H' S' S

Let be the centre of the sphere, a its radius, 8 a source of

strength //,,
8' an equal sink, and let H, H' be the inverse points

of S, S'; also let OS=f, HP =
r, PH8 = 0. Then, if < be the

velocity potential of the image,

/ml pa 1

But OH . OS = OH' . OS' = a2
,
therefore

also

Therefore

paf- 8S'\ /, a*SS' n\ pa
l + -^ 1+ --^-cos^ - ~

fr\ f ) \ 'r I /

Now fiSS'
= m, where m is the strength of the original doublet,

hence

'a\
3 cos0

This is the velocity potential of a doublet situated at the

inverse point H, whose strength
= - m (a/f)

3
.
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54. To find the image of a doublet whose axis is perpendicular

to the line joining it with the centre of the sphere.

R H 8

Let 8 be a source, S' an equal sink
; H, H' the inverse points

S, 8'. The image of S is a source of strength ^ajf at H, and a

line sink of strength pja per unit of length from to H.

1777'
S&&

Now HH -- ~ 2 ,

whence the source and sink at //, Hf

coalesce into a doublet at H
of strength

tiSS'a* _ ma
9

/'
=

/
3 '

where m is the strength of the original doublet.

Let R, R be any points on OH, OH', such that

OR. OS = OR'. OS'-,

then
*

and the two sink and source elements at R, R' coalesce into a

doublet of strength

/* SS'. OR m
~~

. ~f
~~ > . \J t.

a f af

Hence the image of 8 is a positive doublet at H of strength

ma3

//
3

, together with a negative line doublet of strength mOR/af
per unit of length, extending from to H.

55. In the next place, let there be a source of strength m at

a point P outside a sphere whose centre is and radius a
;
and a

line sink from P to Q, (where Q is a point on OP which lies on

the side of P remote from 0), of strength m/PQ per unit of

length
1
. Let R be any point between P and Q ; P', R', Q' the

inverse points of P, R, Q. Also let OR = x, OR' = y.

1 W. M. Hicks, "On the Problem of Two Pulsating Spheres in a Fluid," Proc.

Camb. Phil. Soc. vol. in. p. 276.
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The image of P consists of

(1) a source at P' of strength ma/OP,

(2) a line sink from to P' of strength m/a per unit of

length.

The image of the line sink element dx at R produces

(3) a sink at R', of strength

madx _ mady~

and

(4) a line source from to R of strength mdx/PQ . a per
unit of length.

In order to calculate the image of the line sink between P and

Q, it will be convenient to consider first the portion of the image
between and Q', and secondly the portion between Q' and P'.

Since every element of PQ produces an elementary line source

of strength mdx/PQ. a between and Q', the resultant is a line

source between and Q' whose strength per unit of length is

f
Q mdx _m

J OP PQ~a
~

a
'

This line source cancels the portion of (2) which lies between

and Q'.

Only those elements of PQ which lie between P and R con-

tribute anything to the density at R, hence, adding the effects of

(2), (3) and (4), the total strength at R is

mdy

B.

Therefore

Hence the image consists of a single source at P' of strength

ma/OP, and a line sink from P' to Q' of strength
- ma/OP . P'Q'

per unit of length ;
that is, the image is an arrangement of the

same form as the object.
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56. To find the image of a source in a cylinder, the motion

being in two dimensions.

Let 8 be a source situated outside a cylinder, // the inverse

point. Then, if an equal source be placed at H, the normal velocity

q due to the combined effect of both is

But since OH. 08= OP*, the triangles OSP and OPH are

similar, therefore

= ~ cos OPY + ' (SP + OP cos PY)

m

Hence the image of a source at S is an equal source at the

inverse point H, together with an equal sink at the centre of

the cylinder.

Similarly the image of a doublet is an equal doublet, but of

opposite strength, situated at H.

57. We shall conclude this chapter by applying the method

of images to determine the velocity potential due to a source

situated between two infinite parallel planes
1
.

P

1 W. M. Hicks, Quarterly Journal, vol. xv. p. 274.
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Let P be the source, and let the origin be the middle point 0,

of a line through P perpendicular to the two planes.

The image of P in the plane B will be another source Pv such

that BP
l
= BP; the image of P

l
in the plane A will be another

source P
2
such that AP^ = AP^ and so on for an infinite series.

Similarly the image of P in the plane A will be a source P/

v such

that AP\ = AP, and the image of P\ in B will be a source P'
2,

such that BP\ = BP'
2 ,
and so on. The velocity potential of the

motion of the liquid contained between the two planes due to the

source P, will be equal to the velocity potential of P together

with the velocity potential of the two infinite trails of images.

Let AB = 2a,

then OP
l
= a + BP = 2a -

OP
3
= a + 5P, = 6a -

OPn
= 2m -

Similarly OP'n
= 2?ia +

(i) Let the motion be in three dimensions, and let z
t
w be

the coordinates of any point Q of the liquid ;
then

1

2a +W + ^]
. _ __

,

1

LV{(
- '

Therefore

- r
""

LVK^ + |

Each of these expressions is of the form F (z, or), where

We proceed to find a finite expression for this series. If a is

positive,

2a r*'

TT J a2 +
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therefore

1 <te fi* eft?

** f 1 1

\(z + 4?ia) cos 6 is i (z + 4na) cos

Also sin =

therefore, taking logarithms and differentiating, we obtain

Therefore F (z, ia)

i i 1

dO
7ri

~
z cos 6 TXL + 4na cos ^ ^ cos + ari + 4?ia cos 6

= -
I ! cot (^ ixti sec 0) cot (z + WA sec 0)!- sec ^ c?^

4at J (
4a v 4a v y

j

1 f*
r
sec (9 sinh (TT^ sec (9/2a) c?^

2aJ cosh (Trro- sec 0/2a) cos (irz/2a)

i cZ r^
a* I log (cosh (TTTO- sec 6/2a) cos (TT^/SCI)} c?^.

The first integral becomes infinite at the upper limit, but since

the variable part of potential functions is the only part which it is

1 [%
n

necessary to consider, we may subtract 5- I sec 6 dO, which will
^a J o

make the integral finite, and we shall obtain

n, N If*"
1

exp (
- 7TS7 sec 0/2a)

- cos (ml'-la)
J? (x. IB]

= zr- -
T--TTS-- '

x sec c/ ac/.
2a J cosh (TTOT sec 0/2a)

- cos (irz/2a)

And since < = ^ ((^ + -
2a), ^} + F [z

-
f, &}, we finally obtain

1_ [*"" |"exp (- TTOT sec 0/2a) + cos TT (^ +
2aJ ["coscosh (TTOT sec ^/2a) + cos TT (z + f)/2a

xp (- TTOT sec 0/2a)
- cos TT (z )/

cosh (TTOT sec 0/2a)
- cos IT (z )/2a

(ii) Let the motion be in two dimensions : writing x and y
for z and w respectively, we obtain

a? + -
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Let /O, y)
=

log E! {(a? + 4na) + y
8

},

where the symbol IT denotes the infinite product for all positive

and negative integral values of n including zero.

. 7T0
Now sin = -7T0 7T0f, 6>

2
\ / <9\= - 1 -- ...... 1 --2~2 )

c c \ c J \ ircry

where II' denotes that the value w = is excluded. Now

E^ {(as + na)
2 -

y*}
= n"

go (o;
+ y+ no) (o;-y + na)

therefore

/(., y)
- logn^^v

The first term which is constant may be omitted; we therefore

obtain

f(x, y)
=

log sin^ (as + iy) sin^ (a;
-

4y)

=
log (cosh vry/2a cos 7rx/2a) log 2

;

whence, omitting constant terms, the value of may be written

$ = J log (cosh 7ry/2a cos TT (a? f)/2a}

+ 2 lg (cosh 7ry/2a + cos TT (a? + f)/2a}.

EXAMPLES.

1. Prove that when the motion of a liquid is irrotational

and symmetrical with respect to an axis, Stokes' current function

satisfies the equation

sin0 d

and thence show that the current function due to a source of

strength m is

\fr
= m cos 6 + const,
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2. When the motion is in two dimensions, prove that the

current function due to a source is mO, and apply this result to

find the image of a source in a circular cylinder.

3. The motion of a liquid is in two dimensions, and there is

a constant source at one point A in the liquid and an equal sink

at another point B ;
find the form of the stream lines, and prove

that the velocity at a point P varies as (A P. BP)~
l

,
the plane

of the motion being unlimited.

If the liquid is bounded by the planes x = 0, x = a, y = 0, y a,

and if the source is at the point (0, a) and the sink at (a, 0), find

an expression for the velocity potential.

4. The motion of a liquid in two dimensions is steady, and is

due to the presence of any number of sources and sinks. If the

mass of any source or sink be supposed equal to that of the liquid

which it would generate per unit of time (the masses of the sinks

being negative), show that any source has a tendency to move
with an acceleration made up of accelerations from every other

source and towards every sink, and proportional in each case to

the numerical strength of the source and sink, and the inverse of

its distance.

5. Liquid is bounded by two perpendicular planes OX, OF.

A source is situated at a point whose distances from the planes
are a and b respectively. Find the pressure at any point of either

of the planes, (i) when the motion is in two dimensions, and (ii)

when in three dimensions.

6. The boundary of a liquid consists of an infinite plane

having a hemispherical boss, whose radius is a and centre 0. A
doublet of unit strength is situated at a point 8, whose axis

coincides with OS, where OS is perpendicular to the plane. P is

any point on the plane, OP =
nr, OS =f. Prove that the velocity

of the liquid at P is

LI.
*r*Vf )

7. Prove that

< =f(t){(r* + a8

2az)~b + (r
2 + a2 + 2az)~^ r'

1

} + i|r (t)

is the velocity potential of a liquid, and interpret it. Find the

surfaces of equal pressure if gravity in the negative direction of

the axis of z be the only force acting.
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8. Liquid enters a right circular cylindrical vessel by a supply

pipe at the centre and escapes by a pipe at a point A in the

circumference ;
show that the velocity at any point P is pro-

portional to PB/PA . PO, where B is the other end of the diameter

A 0. The vessel is supposed so shallow that the motion is in two

dimensions.

9. A source is placed midway between two planes whose

distance from one another is 2a. Find the equation of the stream

lines when the motion is in two dimensions
;
and show that those

particles which at an infinite distance are distant \a from one of

the boundaries, issued from the source in a direction making an

angle Tr/4 with it.

10. The boundaries of a liquid are given by 6= 7r/2n, and

a source of strength m exists at the point 6 = 0, r = a. Prove

that the current function for two dimensional motion is

m
, _, r

in
sin 2nO

2^
tan

11. A quantity of liquid moves in that quadrant of the plane

of xy in which x and y are both positive, and which is bounded by
the planes yz, zx : at the point (a, 0) is a semicircular source of

liquid, and at the origin a quadrantal sink. Assuming that the

amount of liquid flowing out of the source per unit of time is equal

to the amount which flows into the sink, and that the motion is in

two dimensions; find the velocity potential, and prove that the

general equation of the stream lines is



CHAPTEE IV.

VORTEX MOTION AND CYCLIC IRROTATIONAL MOTION.

58. THE most general kind of motion of which a fluid is

capable is one which is a combination of rotational and irrotational

motion
;
that is to say, the component velocities may be regarded

as consisting of two parts, u
lt

vv w^ and u
z ,

vv w# where the former

quantities are derivable from a velocity potential, whilst the latter,

which depend upon the molecular rotation, cannot be so derived.

The peculiarities of the motion specified by the latter quantities,

and which depend upon the molecular rotation, were first investi-

gated by Helmholtz 1 and will now be considered.

59. We have defined a vortex line to be a line whose direction

coincides with the direction of the instantaneous axis of molecular

rotation. If through every point of a small closed curve a series of

vortex lines be drawn, they will enclose a mass of fluid which

may be called a vortex filament, or shortly a vortex.

We have shown that if the forces which act on the fluid have a

potential, and the density is a function of the pressure, the motion

of the fluid constituting the vortex can never become irrotational.

It will now be shown that every vortex possesses the following

three fundamental properties :

(i) Every vortex is always composed of the same elements of

fluid.

(ii) The product of the angular velocity of any vortex into its

cross section is constant with respect to the time, and is the same

throughout its length.

1
Crelle, vol. LV. p. 25; translated by Tait, Phil. Mag. (4) xxxm. p. 485.
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(iii) Every vortex must either form a closed curve or have its

extremities in the boundaries of the fluid.

Let a, b, c be the initial coordinates of an element of fluid

whose coordinates at time t are x, y, z. Then

da db dc ds
Q-- = = = - =

(i jT Ci *ir (i IT

But dx = -y- da -f -jr db + -5- <fc
aa db dc

dx dx .M dz

pco,

by 30 (10); hence P
ft)

Let u, v, w be the component velocities at x, y, z\ and let

u + du, v + dv, w + dw be the velocities at a neighbouring point
x + dx, y 4- dy, z + dz on the same vortex line. Since

dx _ dy _ dz _ ds _ e" ~
'

77 a)

du dur e f,, du du
therefore du = - -=- + rj -y- +

p \
* dx '

dy

Zw dv ,.dw

by 24 (5).

The quantity cfa* is the rate at which the projection of the

element ds on the axis of x is increasing in length ;
and since this

projection is equal to ed(p~
l

g)/dt, the line ds still forms part of a

vortex line.

This proves the first theorem.

To prove (ii) let a be the area of the cross section at time t,

then, since the mass of the element remains unchanged,

Therefore by (1) cr w =
era),

which proves that aco is independent of the time.
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Also, by 7 and 17 (26),

or //w cos edS = 0,

where e is the angle between the axis of rotation and the normal

to S drawn outwards.

Now if we choose S so as to coincide with the surface of any
finite portion of a vortex of small section, together with its two

ends, cos e vanishes except at the two ends
;
and is equal to + 1 at

one end, and 1 at the other; hence

co^S^
- ft>

2
d$

2
=

0,

which proves the second part of (ii).

To prove the third theorem, we observe that if a vortex did

not form a closed curve or have its extremities in the boundary, it

would be possible to draw a closed surface cutting the vortex once

only, and the surface integral would not vanish.

The first theorem and the first part of the second theorem

depend on dynamical considerations
;
the second part of this

theorem and the third theorem are kinematical.

60. Since every kind of motion may be regarded as a combi-

nation of rotational and irrotational motion, we may put

;

dx

dN dM
\

--=-
j ,

dy dz

dd> dL dN
n\ - _T_ I _ _ _

dy dz dx

dz
^

dx dy
'

where < is the velocity potential of that part of the motion which
does not depend on the molecular rotation.

Hence in the case of a gas,

du dv dw _ I dp

but in the case of a liquid V2
< =

: in addition to the above

equations which
</>
must satisfy at every point of the fluid, <J>

must
also be determined so as to satisfy the boundary conditions.

Ifweput
dx dy dz

'
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, . . nf. dw dv dJ _2rwe obtain 2 = -, r
- =

-^ V2

Z,
dy dz dx

with two similar equations. Hence if

J = or a constant

we have V2

Z-f2f = 0, V*M+2rj = 0, V2
JV

r+2f=0 (2).

It follows from (2) that if J = or a constant, the quantities

L, M, N are the potentials of distributions of matter whose densities

are respectively equal to f/27r, ??/27r, ^/2ir ;
hence if #', y',

/ be any

point where molecular rotation exists, x, y, z any other point, andf
the reciprocal of the distance between these two points, then

(3),

where f, T/, f are the values of the components of molecular

rotation at (x, y , z) and the integrations extend throughout those

portions of fluid where there is vortex motion.

We have now to prove that the above values of L, M, N make
J = or a constant.

a- df dfSince -r- = -T^T ,

we have J = ^-

i + ^L + ?

2ir]J]\daf dy d

The volume integral vanishes by 17 (26), and if the vortices

form closed rings the surface integral vanishes, since at the

surface of each vortex 1%' + mrf + n
f = 0.

Also, if the fluid extends to infinity and is at rest there, the

surface integral will either vanish or be equal to a constant, since

%, ?;', f
'

and / all vanish at infinity. But if the fluid is bounded

either externally or internally, and some of the vortices extend to

this boundary and then break off, we must suppose the boundaries

B. 5
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removed and a hydrodynamical system substituted for them, such

that the velocity at points occupied by the boundary remains un-

changed. This hydrodynamical system will necessarily consist, in

part, of the continuations of these vortices, which must either

extend to infinity or form closed curves, and in either case the

surface integral taken throughout the vortices included in this

larger region, as well as throughout those included in the original

region, will vanish or be constant.

61. If 8u, Sv, $w be the component velocities at a point x, y, z

of a fluid due to an element dx'dy'dz whose rotations are f ', 77',

'

then

df ,
d

ap
whence if r"

1

=/, we obtain

-
<*)} dx'dy'dz',

...... (4).

Hence, if q is the resultant velocity due to the element,

dx'dy>M .................. (5),

where e is the angle which r makes with the direction of the axis of

rotation of the vortex element. It also appears from (4), that this

velocity is perpendicular to the plane containing the direction of
r and the vortex element, and that its direction is that in which
the point (x, y, z) would move if it were rigidly attached to a body
moving with the vortex element.

62. At all points external to a vortex the motion is irrota-

tional, and a velocity potential consequently exists. We shall

now show that the velocity potential at any point, due to a vortex
of small cross section, is proportional to the solid angle subtended

by the vortex at that point.

Let x, y, z be the given point, x', y' ,
z any point on the vortex,

r the distance between (x, y, z) and (x , y, /). Using polar co-
ordinates r, e, x referred to (x' , y', z') as origin, we have

) y - y'
= r sin 6 sin %,

*-*'
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Now if H be the solid angle subtended at (x} y, z) by the

vortex,

/(I -cos 0)dx

ds

where the integration with respect to s extends once round the

vortex.

fl '/* ft
1}/ CM f\/

Therefore (y
-

2/0 -j (x x') -jf-
= r* sin

2
6

-f>
.

ds u/s cLs

Therefore

[ -, (z z'(.
,. dx . ,, dy) ds

11 = dy < (il v) -, (x X ) Hr r ~, r^> ~, T^
J J r

[

v - '
ds

'

ds} (x-x'}
> + (y-y)*

The first term is equal to 2?r or zero according as the vortex

does or does not embrace the axis of z
;
also

dl (( , ,.dx .

/N dy'} ds
-r-

= - M (y
- y ) -7 (**-*) -r- r -T

y-7/y I V** ' 7 /Vo N ' y-7o /w3

Now by (4) if w be the ^-component of the velocity due to a

vortex of small cross section cr,

ds

w d(f> _ coo-~~

* =-^0 ........................... (6).

If the section of the vortex be of finite area, the velocity

potential will be

where the double integral extends over the cross section.

Since the solid angle H diminishes by 4?r, whenever the point

x, y, z describes a closed curve in the positive direction, which

embraces the vortex once, cf>
is a many valued or cyclic function.

The product of the angular velocity and the cross section of a

vortex filament, is called the strength of the filament.

52
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Vortex Sheets.

63. If we have a sheet of thickness h, consisting of rotation-

ally moving liquid, and if w increase and h diminish indefinitely

but so that the product wh remains finite, equal to &>', we ultimately

obtain an indefinitely thin film of rotationally moving liquid

whose molecular rotation is '. Such a film is called a Vortex

Sheet.

By (3), if f, V, f be the components of
',
the quantities L, M, N

which determine the velocities are given by the equations

where E is the distance between any point on the vortex sheet

and the point (a?, y, z), and the integration extends over the

vortex sheet.

64. It was first pointed out by Helmholtz 1

,
that the equations

of motion and the equation of continuity of a perfect fluid do not

exclude the possibility of slipping taking place along a surface
;

for the only conditions to which the velocity must be subject are,

that it must be finite at all points of the fluid, other than points

where sources or sinks exist, and also that its normal component
at all points of any surface drawn in the fluid must be continuous.

The above conditions obviously do not require that the tangential

component should be the same on both sides of such a surface,

and hence the conditions to which the velocity must be subject
will not be violated if slipping takes place.

65. We shall now show that every surface of discontinuity
over which slipping takes place has the properties of a vortex

sheet.

Let I, m, n be the direction cosines of the normal at any point
P of such a surface of discontinuity ; u, v, w; u, v', w the compo-
nent velocities on the positive and negative sides of the surface.

It is evident that it will be possible to draw a line in the tangent
plane at P such that the tangential components along this line of

the velocities on both sides of the surface shall be equal. Let
X

, fjf, v be the direction cosines of this line; and let X, //,,
v be those

1 Phil. Mag. Nov. 1868.
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of the line through P perpendicular to I, m, n and X', //, v', and

which is therefore the line along which slipping must take place.

Then I (u u') + m (v v) + n (w w')
=

0,

V (u
- u) + fi (v

- v) + v'(w-w') = Q',

also let \(u u)+iJb (v v) + v (w w') a.

From these equations we easily obtain

u u' v v' w w'
r = - - = - - =0- (9).\

JJL
V

Let L =
^

the integration extending over the positive side of the sheet only ;

then

dS
R '

Now the surface S may be regarded as the limit of the surface

of a solid bounded by 8 and another surface indefinitely near S
whose distance from it is h

;
we may therefore write

1 ff, . J0 1 (({( d 1 d l\, , ,L
-j (mw -nv}dS--r- I w j~ ^ - v -?- -^ dxdydz
47rJJ

v

47r77JV cfa/ .R cfo E/

where the surface integral extends over the surface $ and the

surface indefinitely near it, and the volume integral extends

throughout the volume enclosed by the two surfaces. The latter

integral evidently vanishes in the limit. Integrating by parts we

obtain

1 mi idw dv'

=
27r R dS ' (11) '

ultimately.

Comparing (10) and (11), we obtain

77
=

It therefore follows that the effect of the surface of discon-

tinuity is the same as that of a vortex sheet whose molecular

rotation is Jcr, and that the direction of the vortex lines is perpen-
dicular to that of slipping.
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Circulation.

66. We have shown that the motion of a fluid may be

separated into two kinds, rotational and irrotational motion
;
and

it appears from 62 that irrotational motion may be subdivided

into two classes according as < is a single valued or a many valued

function. In the former case the motion is called acyclic, and in

the latter case cyclic irrotational motion.

67. The line integral $(udx + vdy + wdz) taken along any
curve joining a fixed point A, with a variable point P, is called

the flow from A to P.

If the points A and P coincide, so that the curve along which

the integration takes place is a closed curve, this line integral

is called the circulation round the closed curve.

If any surface which is bounded by a closed curve be divided

into elementary areas by a series of

lines drawn upon it, the circulation

round the bounding curve is equal to

the sum of the circulations round each

of the elementary areas
;
for the flow

along the sides of all the elements,

except those sides which form part of

the boundary, is taken twice over and
in opposite directions.

In the same way it can be shown
that the circulation round any closed

curve is equal to the sum of the circulations round its projections
on the coordinate planes.

68. Let us now determine the circulation for an elementary

rectangle ABCD, whose sides are du^

dz, the positive direction being from

the axis of y to that of z.

Let x, y, z be the coordinates of 0,

the centre of inertia of the rectangle ;

u, v, w the velocities at 0.

The portion of the circulation due to the two sides B and D is

(w + \wy dy) dz-(w- \wy dy) dz = w
y

and that due to trie two sides C and A = -
v, dydz.
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Hence the circulation
=

(w,
- vz) dydz.

Hence, if dS be an element of a surface S whose projection on

the plane yz is the rectangle ABCD, the circulation round the

boundary of 8
=

Jf[(wy
v
a) dydz + (uz wx] dzdx + (vx u

y) dxdy\.

Hence we obtain the following important analytical theorem,

which is due to Prof. Stokes 1

,
viz.

dw dv du dw dv du/7(
\\\
Jj {

,

l J j
dy dzj \dz dxj \dx dy

= f(udx + vdy + wdz) .................. (12),

where the surface integral is taken over any surface bounded by a

given curve, and the line integral is taken once round the curve.

Substituting the quantities , 77, ,
we obtain

...... (13).

69. Several important consequences can be deduced from this

theorem.

If there are no vortices in the fluid, f, ij,
are everywhere zero,

and the circulation vanishes. Hence in this case < must be a

single valued function.

Since every vortex must either form a closed curve, or have its

extremities in the boundaries of the fluid, it follows that if the cir-

culation be taken round a closed curve which embraces a vortex

once only, the surface 8 must cut the vortex an odd number of

times. Hence in this case the circulation will not vanish, but will

be equal to twice the surface integral on the left-hand side of (13).

Since
, 77, f are zero at all points of 8, except those which lie

in the vortex, the value of the circulation is 2//a> cos eda where do-

is an element of that portion of 8 which is cut off by the vortex, co

the molecular rotation, and e the angle which its direction makes
with the normal to cr drawn outwards.

Hence the value of
</>

at any point P of a closed curve which

embraces a vortex experiences a constant augmentation every time

P travels round the curve to its original position, which is equal to

twice the above-mentioned surface integral. This constant aug-
mentation is called the cyclic constant of

(f>.

1 Smith's Prize Examination, 1854.
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If the line integral is taken round a closed curve which does not

embrace a vortex, 8 can be drawn so as not to cut any of the

vortices
;
if 8 cut any vortex once, it must cut it again, and by 59

the two portions of the surface integral cancel one another
;
hence

the surface integral and therefore the circulation round such a

curve will be zero.

Since the circulation taken round any indefinitely thin vortex

filament is equal to twice the product of its angular velocity and its

cross section, it follows from 59 that the circulation is inde-

pendent of the time
;
and since every vortex of finite section can

be divided into indefinitely thin vortex filaments, it follows that

the circulation round a vortex of finite section is also independent

of the time.

70. It thus appears that whenever there is circulation the

velocity potential is such as would be due to some distribution of

vortices in the fluid. These vortices need not however have an

actual existence, since in the case of a liquid it is possible for hollow

spaces to exist in the liquid round which circulation takes place ;

or the vortices of which
</>

is the velocity potential may lie beyond
the boundaries of the fluid. For example, if <

= tan'
1

yjx = 6,

(j>
is a two dimensional many valued velocity potential whose cyclic

constant is 2vr for all circuits which embrace the origin, and zero

for all other circuits : and it will be shown in the second volume,

that if the pressure at a distance from the origin be properly adjusted

by means of suitable boundary conditions, it is possible for the

cylinder r = a to be a free surface, which forms the inner boundary
of a liquid, and the space within which is devoid of liquid. It is

also possible to have circulation round a fixed rigid cylinder, in

which case
<f>

will be the velocity potential of one of the possible

motions of the liquid which may take place.

71. Since a fluid always flows from places of lower to places of

higher velocity potential, it follows that when the motion is acyclic

the stream lines cannot form closed curves but must begin or end

in the boundaries or singular points of the fluid
;
but when the

motion is cyclic some of the stream lines may be closed curves,

whilst others begin and end in the boundaries of the fluid.

72. The circulation round any closed circuit may be shown
not to alter with the time as follows

1
.

1 Sir W. Thomson, " Vortex Motion," Trans. Roy. Soc. Edin., vol. xxv.
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Let AB be a curve joining two points A and B of a fluid which

always passes through the same elements of fluid
;
also let / be

the tangential velocity of the fluid at any point P of AB
;
then

fds = udx + vdy + wdz
;

therefore ^ (fds)
= 57 dx + u W^ + &c.

Let pq be the projection of ds on the axis of x\ u, u + du the

component velocities of p and # parallel to x
;
then

w = docjdt, u + du = d(x + dx)jdt'9

hence du = d. dx/dt, therefore

9,7 7 x 9w 7 9v 7 9w 7 7

5- (MO# + vdy + wdz) = ^-dx+ ^-dy + -^dz + udu
dc d dc oz

Therefore (tfoj + vdy + wtfe)
= [Q + J?

2

]*
-

[Q + ig
2

]^.

Since Q and q are always single valued functions, the right-

hand side vanishes when the integration is taken round a closed

curve, which proves the proposition.

73. If at some particular instant, which we shall choose as the

origin of the time, the motion is irrotational and acyclic, the cir-

culation will be zero round every closed circuit, and the preceding

proposition shows that it will always remain zero.

Hence we obtain another proof of the proposition that motion

which is once irrotational is always so
;
and also that irrotational

motion which at any particular instant is acyclic, always remains so.

Simply and Multiply-Connected Regions.

74. Whenever the motion is cyclic, the flow between two

points will not have the same value for two different lines joining

them, unless the lines are such as are capable of being made
to coincide, without cutting through any of the vortices or passing

through the boundaries of the fluid. The latter class of lines are

called reconcileable lines, the former irreconcileable lines.

75. We are thus led to consider the properties of simply and

multiply-connected regions, which are defined as follows.
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A simply-connected region, is one in which any two lines join-

ing two given points, may be made to coincide with one another,

without passing out of the region in question.

The spaces inside or outside an ellipsoid or paraboloid are simply

connected regions.

A multiply-connected region, is one in which two or more lines

can be drawn connecting two points, which cannot be made to

coincide with each other without passing out of the region in

question.

The space inside or outside an anchor ring, is an example of a

doubly-connected region.

A region in which n irreconcileable lines can be drawn, is called

an n-ply connected region.

Hence in a simply-connected region, every closed circuit is

capable of being contracted to a point without passing out of

the region. In an n-ply connected region, it is possible to draw

Ti 1 different circuits, which cannot be contracted to a point

or be made to coincide with one another without passing out of

the region.

Any circuit drawn in a multiply-connected region, which is

capable of being contracted to a point without passing out of the

region, is called an evanescible circuit
;
and any two circuits which

can be made to coincide with each other without passing out of the

region, are called mutually reconcileable.

76. Every n-ply connected region, may be reduced to a simply
connected region, by drawing n- 1 barriers or diaphragms, such that

each diaphragm meets every simple non-evanescible circuit once

only. For example, the space outside two circles which do not cut

one another, is a triply-connected region in two dimensions
;
but

if from a point on each of the circles, we draw two lines to infinity

which do not cut one another, the region becomes simply-con-
nected.

77. If
<f>
be a polycyclic velocity potential, the circulation round

any closed curve, which does not cut any of the barriers is conse-

quently zero : if the circuit cuts all of the barriers once only, the

circulation is /C
A
+ #

2 + &c. where K
I ,

;

2
are the cyclic constants

corresponding to each barrier. The number of barriers which
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must be drawn, in order to make the circulation round every

closed curve vanish, is equal to the number of cyclic constants

78. Every polycyclic function may be expressed as the sum

of the same number of monocyclic functions, as the function has

cyclic constants. For if the number of cyclic constants be n there

will be n simple non-evanescible circuits round which the circulation

does not vanish
;
hence if

where fl
lt
H

2
...... are monocyclic functions, whose cyclic constants

are unity ;
and which are such that the line integral

fln dx dl- dy dln dz
T2 -r + --T- -r + ~r* T-dx as dy as dz as

taken round any closed circuit is zero, except when the circuit cuts

the barrier corresponding to /cn ,
it follows that the circulations

round each of the simple n non-evanescible circuits, are respectively

equal to K
I)

K
2
......

,
hence the circulation round a circuit which

cuts each barrier once only is equal to /c
t
+ #

2
4 ...... + tc

n
.

Vorticity.

79. Let a mass of rotationally moving fluid be divided up into

elementary vortex filaments
;
and let P be any point on the axis

of one of these filaments, dm the mass of the filament which

contains P, &> and dS the molecular rotation and cross section of

the filament at P at time t. Then the quantity a>dS/dm is called

the vorticity of the fluid at the point P.

This quantity has the same value at all points of the filament

which contains P, and is constant with respect to the time, for if

the suffixes denote the initial values of the quantities (or their

values at some given epoch) and ds is an element of the axis

of the vortex element, the vorticity

dm I p d8
~

I p
'

by 59, (1); where 1
Q
is the initial length of the filament.

The aggregate vorticity of a mass M of rotationally moving
fluid is equal to the sum of the vorticities of every filament, and

therefore

1 [[= i> 1 1

MJJ

, acos aS,
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where dS is an element of any surface which cuts all the vortex

filaments once only, and e is the angle between the direction of o>

and the normal to S drawn outwards.

If the rotationally moving fluid is surrounded by irrotationally

moving fluid, and consists of an arrangement such as a circular

vortex ring, which is resolvable into elementary circular filaments

which are perpendicular to the meridian sections of the ring, the

aggregate vorticity is equal to ^icjM, where K is the circulation

round any closed circuit which embraces the ring once. But if

the rotationally moving fluid consisted of the arrangement above

described, together with an outer sheet which is resolvable into

filaments lying in planes passing through the meridian sections of

the ring, the circulation will remain unaltered, but the aggregate

vorticity will be

where M
1
is the mass of the inner ring, M2

that of the sheet, and

&>, dS are the molecular rotation and cross section at any point of

one of the elementary filaments of the sheet. Hence the aggregate

vorticity is not necessarily proportional to the circulation.

Green's Theorem.

80. The following theorem, which is of great importance in

Electricity and various branches of physics, is due to Green 1
.

Let
(f)
and ty be any two functions, which throughout the interior

of a closed surface S are single valued, and which together with

their first and second derivatives are finite and continuous at every

point within S ; then

fff/eta dty d4> d^lr d<j> d^r\ , 1 ,

T^-T^ + T^TT' + Tr--^- dxdydz
JJJ \dx doc dy dy dz dz )dy dy

...(14),

where the triple integrals extend throughout the volume of S, and the

surface integrals over the surface of S, and dn denotes an element of

the normal to 8 drawn outwards.

1 Matliematical Papers, p. 24.
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Integrating the left-hand side by parts, we obtain

where the brackets denote that the double integral is to be taken

within proper limits. Now since the surface is a closed surface, any
line parallel to x, which enters the surface a given number of times,

must issue from it the same number of times
;
also the ^-direction

cosine of the normal at the point of entrance, will be of contrary

sign to the same direction cosine at the corresponding point of

exit
;
hence the surface integral

6 -7 IdS.

Treating each of the other terms in a similar manner, we find

that the left-hand side of (16)

=
/I ^ 7T~

^ ~
\ \ I

^V*"^ dxdydz.

The second equation (15) is obtained by interchanging

81. We may deduce several important corollaries.

(i) Let
(j>
be the velocity potential of a liquid, and let ^ = 1

;

then y
2

(
= 0, and we obtain

d8 ............ (17).

The right-hand side is the analytical expression for the fact

that the total flux across the closed surface is zero
;
in other words

as much liquid enters the surface as issues from it.

(ii) Let
(/>
and

\Jr
be both velocity potentials, then

(iii) Let $ = -^, where
(/>

is the velocity potential of a

liquid ;
then

If we multiply both sides of (19) by p, the left-hand side is

equal to the kinetic energy of a liquid, and the equation shows

that the kinetic energy of a liquid whose motion is acyclic and

irrotational, which is contained within a closed surface;' depends

solely upon the motion of the surface.



78 VORTEX MOTION AND CYCLIC IRROTATIONA.L MOTION.

82. Let us now suppose that liquid contained within such a

surface is originally at rest, and let the liquid be set in motion by
means of an impulsive pressure p applied to every point of the

surface. The motion produced must be necessarily irrotational, and

acyclic ;
also if

</>
be its velocity potential, it follows from 42 (50)

that p = -p(f). Now the work done by an impulse, is equal to the

product of the impulse into half the components in the direction

of the impulse, of the initial and final velocities of the point to

which it is applied ;
hence the work done,

and equation (19) asserts that the work done by the impulse is

equal to the kinetic energy of the motion produced by it, which is

a particular case of the Principle of Energy.

83. Let us in the next place suppose that liquid is contained

within a closed surface which is in motion
;
and let the motion of

the liquid be irrotational and acyclic; also let the surface be

suddenly reduced to rest. Then if < be the new velocity potential,

dcj>/dn
=

0, and therefore

whence d<f>/dx, dfyjdy, and dfyjdz are each zero, and therefore the

liquid is reduced to rest.

84. In proving Green's Theorem, we have supposed that the

region through which we integrate, is contained within a single
closed surface, but if the region were bounded externally and

internally by two or more closed surfaces, the theorem would still

be true, provided we take the surface integral with the positive

sign over the external boundary, and with the negative sign over

each of the internal boundaries.

85. Let us suppose that the liquid extends to infinity and is

at rest there, and is bounded internally by one or more closed

surfaces $,, $2 &c., and let us calculate the value of T for the space
bounded by 8lt

$
2 &c., and a very large sphere S whose centre is

the origin. Then

where the square brackets indicate that the integral is to be taken
over each of the internal boundaries.
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Now at the surface of S, <j>
will be of the order m/r, where m

is a constant, and dfyjdn
=

dfyjdr
= m/r

2

;
also if dl be the solid

angle subtended by dS at the origin, dS = r
2dO

;
therefore

4-Trm
2

which vanishes when r = x . Hence the kinetic energy of an

infinite liquid which is at rest at infinity, and which is bounded

internally by closed surfaces is

T = -l

where the surface integral is to be taken over each of the internal

boundaries.

The preceding expressions for the kinetic energy show that

if the motion is acyclic and the internal boundaries of the liquid

be suddenly reduced to rest, the whole liquid will be reduced to

rest.

86. When the motion takes place in two dimensions, Green's

Theorem may be established in a similar manner. Let the liquid

be bounded externally by a closed surface S, and internally by one

or more surfaces S
lt
$

2
.... Then

fffd'frdd) d^d6\ 7 7 f
, fdd> 1

dd>
7

Mr- -T- + -r- -r-} dxdy = I & v- dy + -=-*- dx
jj\dx dx dy dy J

y
}
r
\3x

y d

fy
dx

]\

-

where y
2 =

d^/da? + d?/dy* and the square brackets denote that the

line integral is to be taken once round the circumferences of each

of the internal boundaries. Now if we integrate round the

boundary of the liquid in the contrary directions of the hands of

a watch, the integration with respect to y will be in the same

direction and that with respect to x in the opposite direction

to s, whence the first integral becomes

d<b dx dd> dx\ 7

-fj -f- -j- ) ds,dxds dy ds)

also if dn be an element of the normal drawn outwards,

dxjds = dyjdn, dy/ds = dxjdn,
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This is Green's Theorem for two-dimensional space.

Hence the kinetic energy of the liquid is

In this equation < may be either the velocity potential or the

current function.

If the liquid extends to infinity and is at rest there, the value

of
</>

if single valued, at a great distance from the origin, must

be of the form

A log r + r~
l

(B cos 6 + G sin 0),

and therefore when r is very large the first integral becomes equal

to
2-7T/3

A 2

log r which becomes infinite when r = oo unless A =
;

when this is the case, since all the other terms vanish, we obtain

the integrations being taken round the internal boundaries only.

87. All the results of the last article may be also obtained by
means of Stokes' theorem 68 (12), and they may be extended

to the case of polycyclic velocity potentials in the same way as in

the next article. It should however be noticed that if be a

polycyclic function, it will contain terms of the form A6, and

hence ty will contain terms of the form A log r and will therefore

be single valued. We may therefore, in the case of cyclic motion,

employ the single valued current function, instead of the velocity

potential ; but when there is circulation it follows from the

last article that the kinetic energy will be infinite if the liquid

extends to infinity. We shall show how the difficulty thus intro-

duced may be evaded in Chapter VIII.
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Thomsons Extension of Greens Theorem.

88. The proof of Green's Theorem given in 80 holds good

only when
<f>
and ty are single valued functions. If they are poly-

cyclic functions, the surface and volume integrals on the right

hand side of (14) and (15) become indeterminate. The extension

of this theorem when
(f>

and ^ are polycyclic functions is due to

Sir W. Thomson 1
.

Let us suppose that the region is multiply-connected, and that

<f>
is a polycyclic function whose cyclic constants are /c

lt
K
2
... Let

the region be made simply connected by drawing the requisite

number of barriers. Since we are not allowed to cross any barrier

during the integration, we must include the surface on both sides

of the barrier in the surface integrals. Hence if
dor^, <&r

g
...be

elements of the different barriers corresponding to the quantities

K
I}
K

2
... respectively

-I
2- da, +

where on the right-hand side, the integration with respect to S
extends over the boundaries, and that with respect to a

l
over both

sides of the barrier <rr

Now the values of dty/dn are equal in magnitude and of

contrary sign at two contiguous points situated on different sides

of the barrier, also the value of
<f>

on the negative side exceeds

that on the positive side by K
I}

therefore

where the integration on the left-hand side extends over both

sides of the barriers, and that on the right over the positive side

only.

Hence instead of ffadty/dn. dS, we must write

1 "On Vortex Motion," Trans. Roy. Soc. Edin., vol. xxv. p. 217.

B. 6
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Similarly if ty were a polycyclic function whose cyclic constants

are K, K ...... we must write instead of ff^d^/dn . dS,

Hence when
</>
and ty are polycyclic functions and the region

is a multiply-connected one, Green's Theorem becomes

(25),

............ (26),

where the first integrals on the right hand side are to be taken

over the outer boundary, and the square brackets denote that the

second integrals are to be taken over each of the internal bound-

aries.

89. Putting (j)
=

^r, it follows that if the liquid extends to

infinity and is at rest there,

The first term represents the work done by the impulsive

pressure which must be applied to the boundaries $ in order to

produce the actual motion from rest. The second term represents

the work done by a uniform impulsive pressure K^, applied in

the positive direction to every point of the barrier corresponding
to KV Hence cyclic irrotational motion may be artificially gene-
rated by means of a proper impulsive pressure applied to every

point of the boundaries, together with uniform impulsive pressures
K
iP>

KzP ......
> applied respectively to every point of the barriers,

which must be drawn in order to make the region occupied by
the liquid simply connected. We may therefore generalise the

theorem of 85, by asserting that if irrotationally moving liquid

occupying a multiply-connected space, is bounded by moving surfaces,

which are suddenly brought to rest, the whole liquid will be reduced
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to rest unless its motion is cyclic ; and that in the latter case, the

cyclic motion which could have been generated in the manner above

described will not be destroyed.

90. The foregoing arguments show that if the bounding surface

of a liquid which was originally at rest, be made to vary in a given

arbitrary manner, the kinetic energy of the liquid at each instant,

will be less than it would be if the liquid had any other motion con-

sistent with the given motion of the bounding surface.

Since the liquid is originally at rest, the motion which is

caused by the variation of the bounding surface will be acyclic

irrotational motion. But the most general kind of motion which

is possible within the surface is a combination of acyclic, cyclic

irrotational motion, and vortex motion. The first can be destroyed

by means of a suitable impulsive pressure applied to every point

of the boundary, but the two latter cannot be destroyed by any

operations performed on the boundary alone. Hence the kinetic

energy of the acyclic motion alone, must always be less than the

kinetic energy of the most general possible motion.

This theorem is due to Sir W. Thomson 1
.

91. When the motion is rotational the kinetic energy cannot

be obtained by Green's Theorem, since within a vortex there is no

velocity potential. In this case

T = if> /// ^2 + v
2

-f w2

) dxdydz,

dM\

d6 dM dL\] 7 7 7

~f + ~j -j- r dxdydz,dz dx dyj)

by 60. Integrating by parts, the terms involving (f>

i/3 // (^ + mv + nw) dS,

since the volume integral vanishes by virtue of the equation of

continuity. The other terms

= iP f! [L (nv
~ mw) + M(lw- nu) +N (mu - lv)} dS,

dw\ ,,. fdv du\] 777

"Notes on Hydrodynamics," Camb. and Dubl. Math. Journ., vol. iv. p. 90.

62
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If the liquid extends to infinity and is at rest there, and all the

vortices are within a finite distance of the origin, the surface

integrals will vanish and we obtain

............ (28).

92. Let us now suppose that we have two closed vortices of

small cross sections crv <7
2
. Let dsv ds

2
be elements of their lengths ;

K *

2
.

2
the circulations due to them ;

then

where the line integrals extend round each respective vortex. Now

l dx , , KZ [1 dx , , s s
-j-jda. + -T- \--j-, dsz \

&c.&c.

Therefore T=- (Ate* + 25^*, + CK?)
O7T

. f/1 (dx dx dy dy dz dz\ , -, ,

where A = - K- -T-, + / -^-, + -j- -j -,
)
ds ds ,

jjr \dst ds^ ds
l
ds

l
ds

l
ds

t J

ffl (dx dx dy dy dz dz\ , ,B= \\-\-j--j- +^r~^r + J--J- ds.ds
2>

Jjr \dsl ds,2 ds
l
ds

2
ds

l dsj

and C is obtained from A by changing s
iy s/ into s

2 ,
s
a
'. If e be the

angle between the two elements dsv ds
z ,
these expressions may be

written

cose cose cose

The quantities A and G are evidently the coefficients of

self-induction of two electric currents of unit strengths which

coincide with the vortices /^ and /e
2 respectively, and the quantity

B is the coefficient of mutual induction of two such currents.

Hence the kinetic energy of the hydrodynamical system is equal

to the electro-kinetic energy of two currents of strengths J/^ (pjir)

and JtfsCp/77") respectively, which occupy the positions of the

vortices. This proposition may easily be extended to any number
of vortices.
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93. Another expression for T may be obtained in the form

For the first term

fff
(

/dv du\ /du dw\] 7= \\\u \y (
, -j-

- *
( T ~ j~ ff dxdydz^

jjj r w dy/ \os CMJ/J

-u*[ dxdydz,
ay )

since the surface integral vanishes. Transforming the other terms

in the same way, adding, and making use of the equation of

continuity, we obtain

M 2 2 du dv dw\ 7 7 ,

u + + w- + xu + yv
- +zw

)
dasdydz.

Integrating the last three terms by parts, the right hand side

of (29)

94. When the motion is symmetrical with respect to the axis

of z, an expression for T may be obtained in terms of Stokes'

current function
;
for

T =^p - F +
(

:

3L U*wfc-'VJwlvW \dz)\
Therefore

T ['ifrfd'ty -j d"^r j \ I [^(dj^f -, dty -, \~\= I ^- dz H 7 CIOT II ^ w^ H j dm
rrp J w\Cwr cfe / L^ ^\d^ dz /J

rr^/c?
2

^ i c?^ c?
2
iir

where the first integral refers to the external, and the second

integral to the internal boundaries of the liquid.

Now in order that this kind of motion may be possible, it is

necessary that the boundaries should be surfaces of revolution

whose axes coincide with the -axis of z. Let s be an element of

the meridian curve of one of the boundaries, and let the inte-

gration with respect to s be taken from z to -or. Since the

integration with respect to w will be in the same direction, and

that with respect to z in the opposite direction to s, the first

integral becomes

[^ (d^r dv d^ dz\ , [^ dty ,
I

- {- -; y*- -,- )ds = -
ds,

J & \ dz ds d-& dsj J -a dn
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where dn is an element of the normal drawn outwards. The

volume integral is equal to

where co is the molecular rotation : whence

.....(30) -

If the motion is irrotational and the liquid extends to infinity,

and is at rest there,

where the integration is taken once round the meridian curves of

each of the internal boundaries.

On the Connection between Vortex Motion and Electromagnetism.

95. In 60, we have shown that the velocity potential at P
due to a single closed vortex filament of strength m, is

where O is the solid angle subtended by the vortex at P.

This is the magnetic potential of an electric current of strength

m/27r, which flows round a closed circuit coinciding with the

vortex (Maxwell, Electricity and Magnetism, vol. n. 410 and

484). Now the magnetic potential due to such a current is the

same as that due to a simple magnetic shell of strength m/2?r
which is bounded by the current

;
also by 48, < is the velocity

potential due to a doublet sheet of strength m/2?r bounded by the

vortex. Hence a vortex filament and a doublet sheet respectively

correspond to an electric current and a magnetic shell, and a

vortex sheet may be replaced by a doublet sheet in the same

manner as an electric current may be replaced by a magnetic
shell.

The action of a vortex filament upon the surrounding liquid is

determined by the quantities L, M, N, whence it follows from (3)

that the molecular relation corresponds to an electric current : the

quantities L, M, N to the components F, G, H of electromagnetic
momentum

;
and the velocities u, v, w to the components a, /3, 7

of magnetic force (see Maxwell, 616).
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Also the magnetic potential of a magnetic shell, and the

velocity potential due to a doublet sheet are essentially single

valued functions, since the line integral of magnetic force and

the circulation are zero for all circuits which do not cut the shell

or doublet sheet, and which it is not permissible to cross
;
on the

other hand the magnetic potential due to an electric current, and

the velocity potential due to a vortex, although represented by
the same quantities, are cyclic functions, the cyclic constant being

equal to 2m, where m is the strength of the vortex. This cyclic

constant is equal to the line integral fd^/ds . ds taken once round

a closed circuit embracing the vortex or current once
;
and in the

former case it represents the circulation, and in the latter case

the work which would have to be done in moving a magnetic

pole once round the current in opposition to the magnetic force

exercised by the current (Maxwell, 480).

The potential energy of a magnetic shell of strength 1,

placed in a magnetic field, the components of whose vector

potential are F, Gr, H is (Maxwell, 423)

ds ds ds

The flux through a closed vortex ring is,

// (lu + mv + nw) dS

[[(, fdN dM\ fdL dN\ fdM dN
= H M -7 r-+^-7 j-) + n(-5 -r-
JJ( \dy dz ) \dz dxj \dx dy

[( T dx , , dy ,r dz\ ,= I(L ~r +M -/ + N -r )ds,J\ds ds ds)

and this corresponds to the potential energy of the magnetic

shell.

The following table shows the connection between the two

subjects :
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Hydrodynamical Quantities
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EXAMPLES.

1. Liquid is contained in a simply-connected surface S; if tzr

is the impulsive pressure at any point of the liquid due to any

arbitrary deformation of 8 subject to the condition that the

enclosed volume is not changed, and OT' the impulsive pressure for

a different deformation, show that

2. If a sphere be immersed in a liquid, prove that the

kinetic energy of the liquid due to a given deformation of its sur-

face, will be greater when the sphere is fixed than when it is free.

3. If V be the attraction potential of a uniform circular

lamina of unit density, in the plane of xy, prove that wdV/dz will

be the velocity potential of a circular vortex filament coinciding
with the boundary of the lamina.

4. The boundaries of a liquid are two fixed concentric cylinders

of radii a and c. Prove that if the motion of the liquid is irrotational

and in two dimensions, the velocity potential must be equal to

K0/27T, where tc is the circulation round any closed circuit which

embraces the inner cylinder once only; and that the kinetic

energy is equal to /c
2

(47T)"
1

log a/c.

5. Apply the equations of impulsive motion, to show that if

liquid be contained within a closed surface, the circulation and the

molecular rotation cannot be altered by any impulse applied to

the boundary.

6. A mass of ice is contained within an ellipsoidal case which

is rotating in any manner about its centre : prove that if the ice

be melted and the boundary be deformed in such a manner that

it remains ellipsoidal, the resultant molecular rotation at any

point is proportional to the diameter of the ellipsoid which is

parallel to the tangent to the vortex line at that point.



CHAPTER V.

ON THE MOTION OF A LIQUID IN TWO DIMENSIONS.

96. THE solution of questions relating to the motion of a

liquid in two dimensions, can be most conveniently effected by
means of Earnshaw's current function ty. This function when the

motion is irrotational, which will be the case in most of the

problems discussed in the present chapter, satisfies the equation

the solution of which is

Also

a),

--
dx

.(2).

.(3).

If the liquid is bounded by fixed surfaces, the normal component
of the velocity must vanish at the boundaries. This condition

requires that ty
= const, at all points of boundaries which are fixed.

97. When the cylindrical boundary is in motion, the following

conditions must be satisfied at its surface.

(i) Let the cylinder be moving with velocity U parallel to the

axis of x, and let 6 be the angle which the normal to the cylinder

makes with this axis
;
then at the surface

u cos 6 + v sin 6 = 7 cos 0.

Now cos = dy/ds ;
sin 6 = dx/ds ;

therefore by (3)

ds
t

ds
'
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Integrating along the boundary, we obtain

(4),

where A is a constant.

(ii)
If the cylinder be moving with velocity V parallel to the

axis of y, the surface condition in the same manner can be shewn

to be

^ = -Vx + B ........................... (5).

(iii) Let the cylinder be rotating with angular velocity a>
;

then at the surface

u cos 6 + v sin 6 = coy cos 6 + cox sin 6

dty dr
or -j-

= cor-r .

as as

Therefore ^ = - Jwr
2 + G ..................... (6),

where r = Jx
2 + y*.

When there are any number of moving cylinders in the liquid,

conditions (4), (5) and (6) must be satisfied at the surfaces of each

of the moving cylinders.

In addition to the surface conditions, i/r
must satisfy the

following conditions at every point of space occupied by the

liquid ;
viz. *fy

must be a function which is a solution of Laplace's

Equation (1), and which together with its first derivatives must be

finite and continuous at every point of the liquid. If the liquid

extends to infinity and is at rest there, the first derivatives must

vanish at infinity.

Conjugate Functions.

98. DEF. If % and 77 are functions of x and y such that

/(* + iy) ........................ (7)

then % and rj are called conjugate functions of x and y.

Differentiate (7) with respect to x and y respectively, eliminate

the function // and equate the real and imaginary parts in the

resulting equation, and we shall obtain

d^^dtj d% _ __ drj

dx dy' dy dx
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Now, if $ and ^ be the velocity potential and current function

of a liquid, it follows that if < and ^ are written for and
rj

respectively, equations (8) are satisfied
;

hence
<f>

and
i|r

are

conjugate functions of x and y.

99. Again

dx
'

dx dy' dy
-(9),

.(10),

(11),

where V2 =
d*/dx* + d*/dy*.

Equation (9) shows that the curves f = const., rj
= const, form

an orthogonal system. Equations (2), (7) and (11) show that

2 =/(# + iy) + F(x- iy)[ .

2i/rj=f(x+iy)F(x-iy))
"* ''

whence f i?)
= F (x ty).

Hence if (x, y, c)
= be the equation of any family of

curves which can be expressed in the form

2% (c)
= 2? =f(x +iy)+F (x

-
ly)

the equation of the orthogonal system of curves will be

2"? =/ (# +iy)-F(x- iy),

where T) is constant along each curve of the orthogonal system.

Again we have

-,
dm * drt ^

drj
= -~ dx -f

~
dy.dx dy

Therefore if ds be the distance between two adjacent points,

Hence if dsg, ds^ be small arcs of the curves and 97 respec-

tively

Jdsn
= .(13).

100. If $ and
i|r

are conjugate functions of f and ?;, then $ and

are conjugate functions of x and y.
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For < + n/r

and ? + "7=/(fl?+ *y),

therefore
(/>
+ vty

= % (a? -I-
*;?/).

101. Let p and q be the velocities perpendicular to f and 97

in the directions in which these quantities increase, then

(14).

If we consider a small curvilinear rectangle bounded by the

curves f, 77 ; f + 8f, 77 -f- 77, the difference between the fluxes over

the faces f + Sf and 77 + 877, and those over the faces f and 77
is

/<>

(if
+ w

but if we choose the two tangents to the curves f and 77 at their

point of intersection as the axes of x and
?/,

the difference between

these fluxes will be

Hence V^ + ..................... (15).

In the case of an irrotationally moving liquid, both sides of

this equation must be zero
;
hence Laplace's equation when trans-

formed into any variables f, 77 which are conjugate functions of

x and y, becomes

d <b d (b A x- \

702 ~f* ~j 2
== "

\-^^/'

If we assume as the value of
t/r any solution of (1) or (16)

and substitute this value in any of the three equations (4), (5)

or (6), we shall obtain a system of curves, any one of which would,

by its motion in the prescribed manner, produce lines of flow

determined by the equation ty
= const.

102. We shall now give some examples.

(i) Let <x!r=-iF<
./

-

Va?x
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When r = a, ty
= Vcc

;
also the velocity is finite and con-

tinuous at all points outside the cylinder r = a, and vanishes at

infinity ;
hence ^r is the current function when a circular cylinder

of radius a is moving in an infinite liquid with velocity V parallel

toy.

The velocity potential is

2t</>
= Fa2

p+iy x-iy

or .(18).

The paths of individual particles of liquid due to the motion

of a cylinder along a straight line, have been calculated and traced

by Clerk-Maxwell
1
.

(ii) If the liquid instead of extending to infinity is bounded

by a fixed concentric cylinder of radius c, the initial motion of the

liquid can be obtained as follows.

Since (x uy)
n

is a solution of Laplace's equation, it follows

that r
n
(A cos nd + B sin nd} is also a solution, where n is any

quantity positive, negative, real or complex.

Hence if the inner cylinder be moved along the axis of x with

initial velocity U, we may put

.B\ Q

When r = a, d(f>/dr
= U cos 0, whence

When r = c, dfyfdr
=

0, whence

Therefore
<#>
= - J^ (r + -} cos 0.

c -a2

\ rj

This is the expression for the initial value of the velocity

potential. The motion at any subsequent time after the cylinders

have ceased to be concentric will be determined in 122.

1 " On the Displacement in a case of Fluid Motion," Proc, Lond, Matlt. Soc.

vol. in. p. 82.
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(iii) Let
ifr
= \A {(x + iy)

3 + (x
-

iy)*}

Substituting in (6) the equation of the boundary becomes,

c,>(x* + y
z

)
= C ............ (19).

If we choose the constants so that the straight line x = a, may
form part of the boundary, we find

Hence (19) splits up into the factors

(x a) ;
x + 2/4/3 + 2a

;
a? 7/\/3 4- 2a.

The boundary therefore consists of three straight lines forming
an equilateral triangle, whose centre is the origin.

Hence ty is the current function due to liquid contained in an

equilateral prism, which is rotating with angular velocity &> about

an axis through the centre of inertia of its cross section. The values

of
i/r

and $, when cleared of imaginaries, are

^ =- r
3
cos 30, </>

=
%- r3

sin 30.
6a 6a

(iv) Let + = %A{(x + tyy + (x-iyY}

= A(a?-y*).

Substituting in (6) we find

Putting

the equation of the boundary becomes

*2 + 2/

2

)=<? ............... (20).

-2A 1

>/r
is therefore the current function due to the motion of liquid

contained in an elliptic cylinder, which is rotating about its axis.

The preceding value of ty is also the current function, when
the liquid is bounded by two concentric, similar and similarly
situated elliptic cylinders,
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103. To find the current function when liquid is contained in a

rectangular prism which is rotating with angular velocity (o about

its axis
1

.

If 2a, 2c be the sides of the cross section of the prism, the

boundary conditions are

u = -y- = coy, when x a,

dy

d^lr
v f- = (ox, when y = c.

dx

Also

Let

then :r=>
dy

x = a

dx
=

0, y = c

and

.(23),

.(24).

Let

V
2

% _2ft)=0

% = 2 (6 cos \x + % sin \x),

where and f are functions of y alone. Substituting in the first

of (23) we obtain,

dO ^ ,
df .

=- cos \a + -^ sin = 0,

therefore

7T

xx ^ /i /
'

c\ \\
Jience v =Z4V jCos ( LKI -f- 1 ) TT

Substituting this value of v in (24), we obtain

.(25).

Now

and I* cos (2m + 1)^ cos (2n + 1) ^ (to = or a,
J -a ^tt ^ti

according as m is unequal or equal to n.

1
Stokes,

" On some cases of Fluid Motion," Trans. Camb. Phil. Soc. vol. vm.

p. 105. Ferrers,
" Solution of certain questions in Potentials and Motion of

Liquids," Quart. Journ. vol. xv. p. 83. For the expressions for the component
velocities of the liquid in terms of elliptic functions, see Greenhill, Quart. Journ.

vol. xv. p. 144,



RECTANGULAR PRISM. 97

Multiplying (26) by cos (2n + 1) 7rx/2a, and integrating between

the limits a and a, we obtain

n + l)V
2

therefore

h (ft, + 1)2 + * -h (ft, + 1) g -
.

If we substitute this value of
2ra+1

in (25), and then substitute

the resulting value of ^ in the second of (23), we obtain

whence

A V

2n+1
(2n + 1}V cosh (2n + 1) 7rc/2a

'

_ 32a2
o) ^ (

-
)
n
cos (2n + 1) 7r^/2a . cosh (2n + 1) 7ry/2a

7T
3

(2?i -f I)
3
cosh (2n + 1) 7rc/2a

oo
(
-

)

n
cos

~

(2n + I)
3

Now if # lies between JTT and JTT,

cos*-icos3* + lcoS 5*- =^-^:
hence the second series is equal to a)(a

2

x*}, and the value of
i/r

is therefore

32a2w ^( )
n
cos (2w + 1) 7ne/2a cosh (2w + 1) iryl^a_L ^^ _

^

A more symmetrical expression may be obtained from the

consideration that
\|r

must be unaltered when a and x are written

for c and y\ making these changes and adding the results we

obtain,

16a2w jo (-)
n
cos (2n + 1) 7ne/2a cosh (2?i + 1) 7ry/2a

TT
S

~
(2n + I)

3
cosh (2n + 1) 7rc/2a

16c
2
to ^ (_)

n
cos (2w + 1) ?r

ty/2c cosh (2?i + 1) 7r^/2c

7T
3

(2n + I)
3
cosh (2n + 1) ?ra/2c

B. 7



98 MOTION IN TWO DIMENSIONS.

104. To find the velocity potential when liquid is contained in

a cylinder whose cross section is the sector of a circle, which is

rotating about an axis through the centre of the circle
1

.

Let a be the angle of the sector, a the radius of the cylinder,

co its angular velocity, then

(27),

and the surface conditions are

-j
=

cor, when 6 = or a (28),

-3?s=p. when r = a (29),
ar

also
(f>
must not become infinite when r = 0.

where R is a function of r alone. Substituting in (27) we obtain

<FR 1 dR
r dr H*~''

'

the solution of which is

Hence since X has not at present been determined, the value of

<j> may be written

<f)
= A

Q
r* cos 2 (0 + /3 ) + 2 (^r

x
4- J5r

~ A
)
cos X (0 + ).

Substituting in (28) we obtain

2A r* sin 2 (0 + /3 ) + 2 X (^Lr
A + ^r~ A

) sin X (0 + /3)
= - wr2

.

This equation is satisfied, provided

2A sin (2(9 + 2/3 )
= -

a>, ) ,

V when ^ = a or 0,

+ Br~*) sin X (^ + )
- 0, J

which requires that

2A =
Jvr

-
a, 2^1 cos a = -

a>,

1
Stokes, "On the critical values of the sums of periodic series," Trans. Camb.

Phil. Soc. vol. vin. p. 533. Greenhill, "Fluid motion in a rotating semi-circular

cylinder," Mess. Math. vol. vm. p. 42; "Fluid motion in a rotating quadrantal

cylinder," Ibid. p. 89; "Fluid motion in a rotating rectangle formed by two

concentric circular arcs and two radii," Ibid. vol. ix. p. 35; "On the motion of a

frictionless liquid in a rotating sector," Ibid. vol. x. p. 83.
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Therefore

6 =r^~ sin (26> -a)
2 cos a

Since must not be infinite when r = 0, Bn
=

; substituting

in (29), we find that for all values of 9 between a and 0,

too, sec a sin (2(9
-

a) + - S*^. (2ra + 1) a^2n+1>r/a cos (2w +1) 7r(9/a
= 0,

whence by Fourier's theorem

"sin (2(9
-

a)c

4a2 -

therefore
TT (2n + 1) {(2n + 1)" ?r* - 4a'J

and 6 = -ft>- r
2
sin (20

-
a)2 cos a

cos (2n + 1) 7T0/a

105. The interpretation of this expression presents no difficulty

so long as a < TT, but when a > TT the velocity becomes infinite at

the origin. The following explanation of the motion which takes

place when this is the case, is given by Prof. Stokes :

"Let OAB be a section of the sector made by a plane

perpendicular to the axis, and cutting it

in 0. Suppose the cylinder turning round

in the direction indicated by the arrow.

Then the liquid in contact with OA and

near 0, will be flowing relatively to OA,
towards 0, as indicated by the arrow at 0.

When it gets to 0, it will shoot past the

face 05; so that there will be formed a

surface of discontinuity indicated by the dotted line, extending
some way into the liquid, the liquid underneath this line and near

flowing in the direction A 0, while the liquid above is nearly
at rest."

72
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Whenever a liquid is flowing past a sharp edge, the analytical

expression for the velocity, calculated on the assumption that the

liquid is perfect and flows according to the electrical law of flow,

always becomes infinite at the edge; a result analogous to that

which occurs in the theory of the distribution of electricity on

conductors, where it is found that the analytical expression for the

density upon a conductor having a sharp edge becomes infinite at

the edge.

The mathematical investigation of the discontinuous motion

which takes place in such cases is one of great difficulty, but

certain special cases will be considered in the next Chapter.

106. The problem of finding the velocity potential and current

function, when a cylinder whose cross section is a given curve, is

moving in an infinite liquid, has been solved in comparatively
few cases. The theory of conjugate functions affords a powerful
method of attacking such problems, but the principal difficulty

consists in finding a relation between the complexes g+iq and

x + t,y,
such that the given boundary shall be represented by some

particular value of one of the functions f or
77.

The principal solutions of this problem, which have hitherto

been obtained, will be given in the following articles.

107. Let x + iy
= c cos (

-
477) (30),

then x = c cos f cosh 77,

y = c sin f sinh
77,

and the curves 77
= const., % = const, are a family of confocal ellipses

and hyperbolas.

If a and b be the semi-axes of the cross section of the ellipse

77
= ft then

a = c cosh ft

b = c sinh ft

a2 - 6
2 = c

2
.

Also J* = T/ ,

2
. . (31).c (cosh Z77 cos zf)

Here 77 may have any positive value, and f may have any real

value whatever; when 77
=

0, the ellipse becomes a double line

joining the foci
; and when 77

= oo the curves become circles
;
also

J vanishes at infinity.
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Now
o/r

satisfies the equation

and this equation is satisfied by the expression

^ (AH cos wf + n sin nf) ......... (33),

which is the proper form of a potential function outside an elliptic

cylinder, since by (14) and (31), it makes the velocity vanish at

infinity.

To find the form of
ifr

inside the cylinder, we observe that (32)

is also satisfied by the series

Sj (An cosh nrj cos nt; + Bn sinh nrj sin ng + Cn sinh nrj cos nf

+ Dn cosh TIT; sin wf) ...... (34).

Now if we examine the components of the velocity in the

neighbourhood of the line joining the foci, it will be found that

they will be discontinuous, unless dty/drj and dty/dj; either vanish

or change sign in passing from one side of this line to the other
;

the last two terms of (34) are therefore inadmissible. Hence every

potential function, which together with its first derivatives is finite

and continuous inside an elliptic cylinder, must be of the form

00

2, (A n cosh nrj cos n% + Bn sinh nrj sin n(f) ......... (35).

This value also makes the component velocities finite at the

foci; for in the neighbourhood of these points Jc = (?;
2 + S

2

)~
2
,

and from (35) both dty/dt; and d^/drj are infinitesimals of the first

order.

Hence, by (4) and (5) if tyxi ^ry be the current functions when

the cylinder rj
= @ is moving parallel to x and y with velocities

[/"and F respectively,

+ ? sinh sin f

= Fce~ Y}+ ^ cosh ft cos

Again, r
2 = x* + y

2 =
^c

2

(cosh 2rj + cosh 2f ).

Hence, if
i/r3

be the current function when the cylinder is

surrounded with liquid and is rotating with angular velocity o>, we

must put
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Substituting in (6) and putting 7]
=

/3, we obtain

A cos 2 + icVcosh 2/3 + cos 2f)
= C.

Hence C = Jc
2
o> cosh 2/3,

and (37).

The value of the velocity potential may be deduced from the

preceding values of
i/r

or from the corresponding expressions for an

ellipsoid, which will be given in Chapter vn. and which were first

obtained by Green 1 and Clebsch
2

. The expressions in the text are

due to Prof. Lamb 3
.

The motion of a liquid in a rotating cylinder, whose cross

section is formed (i) by the arcs of confocal ellipses and hyperbolas,

(ii) by arcs of confocal parabolas, has been investigated by Dr
Ferrers

4
.

108. We shall now solve the same problem for a cylinder

whose cross section is the inverse of an ellipse with respect to its

centre
5

.

Let + 4y
= csec(f+M7) .................... (38),

then
Vcosh

2

77 shin
2

??

a?_ f \

2 * sin'
2

f}
'

cos

whence the curves f = a, f]
=

ft are the inverses of a family of

confocal hyperbolas and ellipses with respect to their common
centre.

Also = cosh ij cos f,

-^
= sinh 77 sin ,

2c
2

-

= cosh 2?7 + cos 2f;

,., _ (cosh 2?y + cos 2g)
s

2c'
2

(cosh 2r; cos 2\ j

1 Tram. Roy. Soc. Edin. vol. xm. p. 54.
2

Cr^ZZe, vol. LII. p. 119.
3 " Some hydrodynamical solutions," Quart. Journ. xiv. p. 40.
4
Quart. Journ. xvn. p. 227.

6 Ibid. vol. xix. p. 190, and vol. xxi. p. 336.

(39).
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Here 77 may have any positive value, and f any value positive or

negative, but as the values of x and y are periodic with respect to f,

it is only necessary to consider values of lying between and 2ir.

When 77 is large the curves 77
= const, consist of small oval

curves about the origin, with which they ultimately coincide when

77
= oo

;
and when 77

= they become two double lines extending

from the points x = c to infinity in the positive and negative

directions respectively.

Also when 77 is large

Hence, within the cylinder, every potential function must be of

the form

2e- W1
' (A n cos rcf + n sinnf)

............... (40).

Outside the cylinder, every potential function must be of the

form
oc

Sj (A n cosh nj] cos nj; + Bn sinh rnj sin w(f) ......... (41),

for the velocities will be discontinuous along the two double

lines, unless dty/dj; and d^rjdrj either vanish or change sign in

crossing from one side of these lines to the other, and (41) is the

only form which satisfies these conditions. This form also makes

the velocity at the points x = c finite.

Now x + ly c sec (f + 77)

= 2c (e-
7^ - e- 3r)43^ + e -^ +5l -

&c.);

therefore x = 2c 2* (-)" e-^+1)^ cos (2w + 1) ft

y = 2c 2* (-)"
-<a +1 > ' sin (2w + 1) f.

Hence, if ^, ^ be the current functions when the cylinder is

moving with velocities U and V parallel to x and y respectively,

^ 2 77,^ (-Y
e
~

(2* +1)/3 sinh (2w + !) ^ sin
" "

sinh (27i + 1; #

where /9 is the value of 77 at the boundary.
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109. The two series (42) and (43) constitute the complete

solution of the problem when the motion of the cylinder is one of

translation. The results can however be put into a more compact
form by means of elliptic functions. To do this, let

f + M7
= w

, f-^^; K/7r = K'/2/3, so that g
= 6~ 2

^; then

cos(2n + 1) u cos
-q

= - UKa ^ cosecam (

^^ + K }
cosecam f

^^ + K
7T

( \ 7T J \ 7T

^ Uct (sec u sec v) ;

therefore

1 TTT. ( ftKu
'

tyx
= - UKcL

-j

cosecam H K
7T

[ \ 7T

cosecam (
- + K

) [
+ Uy.

Putting 2^/7r + K=6, 2Kr)/7r
=

0, dn2 = a, sn2

(0, A;')
=

/3,

and clearing of imaginaries, the term in brackets becomes

2^ (1
-

a/3) tf sn
eft
en

<ft
en 6 dn (9

" a '

the functions of $ being to modulus k'.

The denominator of S

, i f a 2ik* sn 6 en 6 en ^ dn 6
therefore S= -- , 2 ,

r -^~ =-
dn2

</>

- dn2
6 en

2

$

_ 2t&'
2
sn

(f)
en sn ^

1 - sn
2

x dn2

</>

'

where

Hence we finally obtain

the functions of f being to modulus k, and those of 77 to modulus k'.

Similarly

,

c
{
secam + secam --

} Vx.
7T 7T



CROSS SECTION THE INVERSE OF AN ELLIPSE. 105

Putting 2/^/7r
= % , 27T77/7r

= <, dn2

% = a, sn
2

((, k')
=

j3, and

clearing of imaginaries, the term in brackets becomes

~
"

(a
- k"

2

) (1
-

/3) + a/3 (1
-

a) (1
-
fc")

'

The denominator

2 en y en <i

therefore 8 =
-,
--2,2, .

1 - sn
2

x dn'
2

</>

Hence we finally obtain

~

110. When the cylinder is rotating about its axis with angular

velocity co, the surface condition is

sinh 2/3 e
2^ + cos 2fNow 1 +

cosh 2/3 + cos 2f cosh 2/3 + cos 2

1

= 2 + 22 (
-

)

n
e~ cos 2nft

therefore

cosh 2/3 + cos 2f

= c
2
cosech 2/3 + 2c

2
cosech 2/3 S^ (

-
)

n
e~

2^ cos 2nf.

Therefore

= we
2
cosech 2/8

- 2 *>C
*
cosech 20 2 (

-
)" e'^ . . .(46 ).cosh

111. If liquid is contained in a cylindrical cavity bounded by
the curve tj

=
/3,

^ = - we
2
cosech 2/3

- 2o)c
2
cosech 2 2* (

-
)

n
e~ 2wr? cos

= coc
2
cosech 2/3 coc

2
cosech 2/3 ( ^-^- ^ 1

Vcosh 2/3 + cos 2

_ c
2
co cosech 2/3 sinh 2?;

cosh 2?? + cos 2^
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112. The results of 109 admit of various interpretations, by

means of which we can obtain the solutions of several problems in

other branches of physics. Thus the function fa is

(i)
The potential without the cylinder, of the induced

charge, when the cylinder is placed in a field of uniform electric

force parallel to x.

If we invert with respect to the origin, which is equivalent to

putting c
2

#/r
2
for x, and x + ly

= c cos (f irj), fa is

(ii) The potential of the induced charge within an elliptic

cylinder which encloses an electric system whose potential is

Vc*x/r\

(iii) fa is the temperature within a solid elliptic cylinder

whose boundary is maintained at a temperature Fc2

#/r
2

.

113. The equation

x + ly
= 2c sec

2

J (f + urj)

represents a family of confocal Unions. The curves rj
= const, are

the inverses with respect to a focus of a family of confocal ellipses,

whilst the curves f = const, are the inverses with respect to the

same focus of the orthogonal family of confocal hyperbolas. The

current functions due to the motion in an infinite liquid of a

cylinder whose cross section is the curve 77
=

/3, and also of liquid

contained in a rotating cylindrical cavity of this form, may be

obtained in a similar manner to that employed in 109 111 (see

Quarterly Journal, Vol. xx. p. 234).

114. Let us now consider the system of curves given by the

equation

f , ii (x + tyY <?
+ M? = i log

V

^ .

c

This is equivalent to the system

(48),

(49).

(48) is the equation of a family of confocal lemniscates, the

distance between whose foci is 2c; and (49) is the equation of

a family of rectangular hyperbolas, each of which passes through
the foci of the lemniscates and cuts them orthogonally.
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It is easily seen that

2x = c (1 4- e
2^+l

">p + c {1 + e2 ^-'")}*,

2*y
= c {1 + e

a +
"')}

i - c {1 + e^-^}*
1

,

r
2 = c

2

(1 + 2e2^ cos 2r; + e
4
*)

1
,

"
_(! + 2e~ 2 cos
c

f and 77 may have any values whatever. At infinity, (
= oo

,

/=
;
at either of the foci f= - oo and J"= e~ 2

Vc = oo . When

f = the curve becomes the lemniscate of Bernoulli (r
2 = 2c

2
cos 20) ;

7]
and ^TT + 77 are the angles which the asymptotes of the hyperbola

make with the axis of as, and in the first quadrant rj varies from

to JTT.

Hence, for motion parallel to a?,

tyx
= - $Uci [{1 + e-a(f-*-i>}i

-
{1 + e-a

and for motion parallel to y

^ = - JFc [{1 + c- 2^- 2a
-^>p + {1 + c- 2

where a. is the value of f at the surface.

115. Before dealing with the rotation of the cylinders, we

shall make a short digression for the purpose of considering the

coefficients of cos nO in the expansion of (1 + 2c cos 6 + c
2

)'

2

,
which

we shall denote by Ln ,
where c < 1.

Now

(1 + 2c cos + c
2

)
1 =

(1 + ce*')* (1 + ce-*>)
4

=
(1 + 1 ce^ + aCV + . . . j8fnc"- + . . .)

x (1 + 1 C6- i0 + >Sf
2
c
2 - 2i0 + . . . ^"e-*^ + . .

.),

(-)*-
1

1.3.5...(2n-3)where >S=^ -

therefore Zn
. 2c" [8n + J >Sfn+1 c

2 + Sn+2 ^c
4 + >Sn+3 / +...}.

The value of L
n , however, may be put into a more convenient

form for calculation, for

1 + 2c cos ^ + c
2

)* cos (n + !)

c T
77 cos nd cos (n + 2)6

2 (w + 1) ! + 2c cos



108 MOTION IN TWO DIMENSIONS.

Also

(1 + 2c cosfl +c2

) {cos nO
- cos (n+ 2) 0)

TT (1 + e
!

) (n + 1) r f* cos Q-l-
-^M-M ~T C

I

c ' l +

cos Q-l)<?-cos(re

therefore

Also

Now

Also

therefore

therefore

therefore

Again,

2) I,J ;

[*(! + 2c cos 6> + c
2

)

*
c?6>

*

(1 + c) E (k, JIT), where

dF(c)
1-c

2c cos -f c
2
)" cos OdO

sn

o (1-f 2ccos0 + c*)

= cF (c)
-

1-rrL^ + 1
(1 4- c

2

) f
J o

1+c2

cos

5

therefore f7rL :
= cF +

4c

therefore
,

=
{(1 + c

2

)
E -

(1
- c ,(54).
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Having obtained the values of L and Lv the values of the

successive functions can be calculated by means of the sequence

equation (52).

116. To find the current function due to the rotation of the

cylinder in an infinite liquid.

(i) Let f be positive at the surface of the cylinder and equal

to a, then

r
2 = cVa

(1 + 2e~ 2a cos 2?? + e
-4a

)*

= cVa 2 Ln (a) cos 2m?,

where Ln (a) is put for Ln (e~
2a

).

Hence ^3
= -

|-a>cV
a 2Zn (a) e~ 2n ^- a)

cosZnrj ......... (55).

(ii) When is negative at the surface, the cylinder consists

of two portions, which we must suppose to be rigidly connected

together ;
in this case let f = a at the surface, where a. is

positive; then

(56).

In the case of a cylindrical cavity filled with liquid, the values

of r are

%* > Ln (a) cos 2m? - JcV a L (a) (57),

and -
Jwc

2 2* e
2 'l(a+^ Ln (a) cos 2*117

-
\u(?L, (a) (58).

117. When a =
;
and the cross section becomes a lemniscate

of Bernoulli, the preceding formulae become much simplified.

Putting u = x + iy, v = x iyt
we obtain

^--^fcab-^) (59) '

^=- iFcte +7^} (60>-

118. The values of -^ when the cylinder is rotating about its

axis may be obtained in this case without having recourse to the

general formulae of 116, for the value of r
2
at the boundary is

2c
2
cos

77, whence ^ = coc
2
e~ cos

77. This may be expressed in

the form
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119. To find
i/r

when the liquid is contained in a cylindrical

cavity formed by one of the loops of the curve, we observe that ^r

cannot contain any lower power of e^ than e
2^

(f being of course

negative), otherwise the velocities would be infinite at the foci,

where J = e'^jc. Now
r
2 = 2c

2
cos 77 ;

also for all values of 77
between JTT and \TT both exclusive,

n=oo
(-)*-

1

S v

Therefore

= - a

rf(j
T + *cos,, + Jtair'|^

120. Lastly, let us consider the equation

x -f iy
= c tan ^ (f+ 677;

.

Then tan f = tan J (? + "7 + f
- "

Therefore
? + 2/

2
-f 2c cot f

- c
2 =

Also t tanh 77
= tan | (f -f ^77 f + ^,77

(62).

.(63).

.(64).

Therefore

Again,

Therefore

-Zc coth

x
, :y

^ c
sin

Jr (? + "?) cos j(g-
COS 2 ( ~l~ t7

?) cos ^ (%
~

sin f + t sinh 77

cosh 77 -f cos

x = csin f
cosh 77 -f cos

c sinh 77

cosh 77 + cos

.(65).

.(66),

/= -
(cosh 77+ cos f).

c
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121. Equation (6-i) represents a family of circles whose cen-

tres lie on the axis of x, at a distance c cot f from the origin 0,

and whose radii are equal to c cosec f. Each circle passes through

two fixed points A and B on the axis of y, whose distances from

are c and c.

y

The angle f is half the angle subtended by AB at the centre

of the circle. Hence the curve f = represents the portion AB of

the axis of y. When f has any positive value between and TT the

curve consists of that segment of a circle passing through A and B
which lies on the positive side of the axis of y ;

and when f = TT

the curve becomes the whole of the axis y except the portion AB.

When f has any negative value between and = TT the curves

consist of segments of circles described on AB, and which lie on the

negative side of the axis oft/.

Equation (65) represents two families of circles whose centres

lie on the axis of y, at distances + c coth 77
from 0, and whose radii

are equal to c cosech 77. These circles do not cut the axis of x.

When
77
= oo the curve reduces to the point A ;

when 77
has

any positive value the curve represents a circle surrounding this

point ;
and when 77

= the curve becomes the axis of x. When
77 has any negative value the curve represents a circle surrounding
the point B, with which it ultimately coincides, when 77

= oc .
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Let P be any point on one of the circles A, then

= 2cy (coth ?]
-

1),

BP* = 2cy (coth 77 + 1) ;

Whence every circle of the system rj is such that the ratio

AP/BP is constant along each circle
;

therefore A and B are the

common inverse points of each circle of this system. In con-

sequence of this property the coordinates and
77 are called di-

polar coordinates.

122. We can now find the current function when two circular

cylinders are moving in any manner in an infinite liquid \

Let 77
= a, 77

=
/3 be the equations of the two cylinders sur-

rounding the points A and B respectively; and let oc^y^\ %
2 , y9

be coordinates of any point on the cylinders A and B respectively,

then

1-e'

1 + e"-

= ci {1 -f- 2Sj (
-

)
n e~ na (cos Tif + 1 sin n%)} ;

00

therefore #, = 2c S. ( )
n e~ wa sin ?

, (67).

yl
= c + 2c S

t ( )
n e~ wa cos nf)

Again,

^2 ^2/2
= c tan

cl-e
1 +

"
= -

jl + 2S
t (-)

w 6~w^(cosnf - tsinnf)[ ;

-
therefore a? = - 2c S, (

-
)
n e~^ sin wf )

.00 f (o8>
ya
= c + 2c Sj ( )

w e~ nP cos Tif)

Let w, t; be the component velocities parallel to a? and y of

the cylinder ^t, and u', v those of B
;
then

ty
= uyl

- vx
l
+ const, at J.

| ,^^,

^r
=

w'2/2 v'a?
a + const, at 5 J

1
Greenhill, "Functional Images in Cartesians," Quart. Journ., vol. xvm. pp.

356362. See also Hicks, Ibid. vol. xvi. pp. 113 and 193.
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Hence

= 2o 2 (
-

) 6 ( cos Bf + sin
smh w, (a + /3)

v

cos n _ v sn
smh ?i (a -f

If the cylinder a were moving inside the cylinder j3, we should

obtain in the same manner

= 2c S, (
-

) e

(
( cos f + sin nf)

+ 2o 2." (
-

)" *-<* ( cos ng + 1;' sin ng) ...(71).

123. We shall hereafter require an expression for the kinetic

energy T of an infinite liquid in which two cylinders are moving.

By Green's theorem,

p

Now

A/ra
= 2c Sj (

-
)

w e~ na
(u cos n + v sin wf),

f^l
= 2c 2* (

-
)
w ne~ wa coth n(a+P) (u cos wf + v sin wf)

00

+ 2c 2j ( )
n ne~ nP cosech n (a + ft) (u

f

cos n^ v sin wf).

Hence the first integral

= 47TC
2
(V + v

2

) 2j" ne-
2wa coth n (a + /9)

00

+ 4?rc
2

(MW
X

vif) 5)
x

7ie~w((X+^ cosech n (a 4- /S).

Similarly the second integral is equal to

- 47TC
2

(U'
2 + V

2

)
2*716-2^ COth 71 (a + /3)

- 4?rc
2

(ww
x -

vv) %ne- n(a+ ft cosech w- (a + j3).

Hence

2r = P (u
2 + v

2

) + Q (U* + v'
2

) + 2L (uu
-

vv') ...... (72),

where P =
4i7rpc*'2 1

ne- 2na coth n (a

(73).

2
t
ne~ ?^a+^) cosech 71 (a + /

B. 8
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124. Before we can make use of the foregoing values of P, Q

and L, it will be necessary to express them in terms of the radii

a and b of the two circles and their coordinates. To do this, let

P = 47TC
2
2, n0?

n
= ^

= 47TC
2 2
w=l

27i 2 w
=!

Now q + 2q +

therefore, inverting the order of summation,

P = 47TC*

Now

therefore p = ,(74).

Similarly

Again

_ Q
2Wm
/|

.(75.)

.(76).

Since the quantities #
15 2

are functions of the respective

distances of the circles a and /3 from the axis of yt
these values

of P, Q and are of the required form. The coordinate x does

not enter into the expressions for the coefficients.

The kinetic energy of a liquid in which two cylinders are

moving, was first obtained by Mr W. M. Hicks 1
: the investigation

given in the text is due to Prof. Greenhill
2
.

1 "On the motion of two cylinders in a fluid," Quart. Journ. vol. xvi. pp. 113

and 193.
2 "Functional Images in Cartesians," Quart. Journ. vol. xvm. pp. 356362.
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EXAMPLES.

1. An elliptic cylinder is filled with liquid which has molecular

rotation f at every point, and whose particles move in planes

perpendicular to the axis
; prove that the lines of flow are similar

ellipses described in periodic time

2. A fixed cylinder whose cross section is any one of the

lemniscates rr
r = c

2

,
where c is any constant and 2a is the distance

between the points from which r, r are measured, is surrounded

by an infinite mass of water in steady cyclic irrotational motion
;

show that the stream lines are all lemniscates of the same system,

and that the velocity along a stream line at any point varies as the

distance from the centre.

Prove also that the polar coordinates (referred to the centre) of

a liquid particle in terms of the time t are given by

r* = a?cn/jit c
2

dn//^,

20 = am//,, k = a/c.

3. The cross section of a cylinder is a sector formed by the

circle r = a, and the lines 9 = a. Prove that if the cylinder be

rotating with angular velocity &>,

l
cos 26 . --, ..+.(r/q)'^

1'''fc
coB(2n+l),rg/2g-^r - ^ ( -

4. The transverse section of a uniform prismatic vessel is of

the form bounded by the two intersecting hyperbolas represented

by the equations

J2(a?-if) + a* + y
9 = a*, V2(2/

2 -a2

)+tf
2 + y*

= b\

If the vessel be filled with water and made to rotate with

angular velocity w about its axis, prove that the initial component
velocities at any point (x, y) of the water will be

0)

respectively.

82
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5. A cylinder whose cross section is the limacjon

- = cos
2 6 sech

2

J/3 + sin
2

\Q cosech 2

Jft
zc

is in motion in an infinite liquid with velocities V, V parallel to

the lines = 0, 6 = ^TT respectively ; prove that

( )

n ~ l
we

~
nl* cosech n/3 sinh nrj sin rcf

j ( )
n ~ 1 7ie~^ sech n/3 cosh TIT; cos n%,

where f and 77 are conjugate functions such that

x + iy
= 2c sec

2

\ (f + *??).

6. Prove that if the cylinder in the last example be rotating

in an infinite liquid with angular velocity ay,

00

ijr= 8o>c
2
cosech

3

/3 (cosh /3+ 2 coshySSj ( )

n
e~ n^ sech n/3 cosh rnj coswf

+ 2 sinh /SS1
ti

( )

n
e~w^ sech ?i^ cosh WT; cos n%),

and that if a cylindrical cavity of this form be filled with liquid

and made to rotate,

8&)C
2

(cosh /3 sinh 77 sinh ft (1 + cosh 77 cos f)|^ sinh
3

@ (cosh 77 + cos (cosh 77 -f cos
)

2

J

'

7. A circular cylinder is moving parallel to the axis of x\

prove that if there is cyclic irrotational motion about the cylinder

the velocity potential is

27T

where K is the circulation round any closed circuit embracing the

cylinder once.

8. A hollow cylinder of radius a, closed at both ends, is

divided into two parts by a plane diaphragm through its axis, and

filled with liquid. If the vessel be made to rotate about its axis

with angular velocity o>, prove that the motion of the liquid

relative to the vessel will be such that its velocity potential is

fr
z

a2
\ . 0/1 , .^arsinfl . fr a\- 2 I -5

-
-5 )

sin 20 tan *

^ r - 4 - + - cos 6 ,

\a? r2
J a? r* \a rj

where r, 6 are polar coordinates of any point of the liquid
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9. Prove that

(as + a)
2 + if

*-*epr#+f
gives a possible motion in two dimensions. Find the form of the

stream lines, and prove that the curves of equal velocity are

lemniscates.

10. In the irrotational motion of a liquid, prove that the

motion derived from it by turning the direction of motion at each

point in one direction through 90 without changing the velocity,

will also be a possible irrotational motion, the conditions at the

boundaries being altered so as to suit the new motion.

Discuss the motion obtained in this way from the preceding

example.

11. Liquid is moving irrotationally in two dimensions, be-

tween the space bounded by the two lines 6 = JTT and the

curve r3
cos 30 = a3

. The bounding curves being at rest, prove
that the velocity potential is of the form

12. The space between the elliptic cylinder (x/af + (y/b)
2 =

1,

and a similarly situated and coaxial cylinder bounded by planes

perpendicular to the axis is filled with liquid, and made to rotate

with angular velocity &> about a fixed axis. Prove that the

velocity potential with reference to the principal axes of the

cylinder is co (a
2

b
2

) xyl(c? + b
2

),
and that the surfaces of equal

pressure when the angular velocity is constant, are the hyperbolic

cylinders
n$ fjfix y _ Qt

13. If < =/(#, y) } T/T
F (x, y) are the velocity potential and

current function of a liquid, and if we write

X =f((f), ^r), y = F((f), i/r)

and from these expressions find and
i|r ; prove that the new

values of < and ^ will be the velocity potential and current

function of some other motion of a liquid.

Hence prove that if
<j>
= %2

y
2
, ty

=
2xy, the transformation

gives the motion of a liquid in the space bounded by two confocal

and coaxial parabolic cylinders.
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14. In example 12 prove that the paths of the particles relative

to the cylinder are similar ellipses, and that the paths in space are

similar to the pericycloid

x = (a + 6) cos + (a
-

b) cos (--
^ j

ft

y = (a + b) sin 6 + (a
-

b) sin (

15. Water is enclosed in a vessel bounded by the axis of y

and the hyperbola 2 (x* 3y*) + oc + my = 0, and the vessel is set

rotating about the axis of z. Prove that

(f> = 2

= 2 (a
3 -

3#?/
2

) + i (V - ?/

2

) + may.

16. When the stream lines for steady motion are similar

concentric and similarly situated ellipses, the motion of a particle

is the same as if it were acted upon by a central force to the

centre
;
and if the potential of the impressed forces is a function

of the distance from the centre, the lines of equal pressure are

circles.

17. The coordinates (x, y) of a particle at time t are given by

x a + A cos Znirt + B sin Znirt,

y = b + \A sin 2mrt \B cos ZnTrt,

where A, B, X and n are constants with regard to x and y, but A
and B functions of a and b. Prove that if the different particles

corresponding to different values of a and b are the particles of a

liquid, A and B must be conjugate functions of the complex
a + t,b/\. Under what conditions is a free surface possible ?

18. The space between two confocal coaxial elliptic cylinders

is filled with liquid which is at rest. Prove that if the outer

cylinder be moved with velocity U parallel to the major axis, and

the inner with relative velocity V in the same direction, the

velocity potential of the initial motion will be

, TT Tr cosh (0 TJ) . ,

6 = Uc cosh TJ cos Vc -
r~f^

--
-( smh a cos

,

cosh (j3 a)

where rj
=

/3, T)
= a are the equations of the outer and inner

cylinders respectively, and 2c the distance between their foci.
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19. If in the last example the outer cylinder were to rotate

with angular velocity H, and the inner with angular velocity o>,

prove that initially

T
~ cosh 2 ( ?? a) . _ .. . o cosh 2 (B 77) .

d> = iOc
2 ^-T

'
sin 2 - i&>c

2
. , -^sm2smh 2 (/3

-
a) smh 2 (/3

-
a)

20. If w = x + ty, v = x ly, and n be any positive real

quantity, prove that when a cylinder whose cross section is the

curve r
n = 2c

n
cos nO is moving with component velocities U, V

parallel to the axes, in an infinite liquid, the current function is

where ^ = - J a {v (v
n - c

n
)~~

n - u (u
n - c

n
)

^y
= - c

{
v (v

- c )-

1

* + u (U
n - c

n)\
Hence prove that if the cross section is the cardioid

r = 2c(l+cos0),

^ = 2rc f sin (^r
-
^c cos J0) (r + c - 2 Jwcos i^)~

2

,

^ = re (r + c cos 2 Jrc cos J0) (r -t- c 2 ^/^c cos ^0)~*.



CHAPTER VI.

ON DISCONTINUOUS MOTION.

125. IN the preceding chapter, we obtained expressions for

the velocity potential and the current function of a liquid which

is flowing past an elliptic cylinder, and it might be thought that

by making the minor axis of the cross section vanish, we could

obtain the solution for a stream which is flowing past a rect-

angular plate. This however is not the case
;

for if the minor

axis be made to vanish, it will be found that the velocity of

the liquid becomes infinite at the edges, and therefore the pressure

becomes equal to oc
,
which indicates that a hollow would be

formed in the neighbourhood of the edges. In order that the

motion represented by the formulae should be possible, it would

be necessary that at every point of the liquid boundary of

the hollow, the pressure should be constant, and therefore the

liquid boundary would have to be a line of constant pressure

as well as a stream line; but it is not difficult to show from

the formulae that it is not possible for a line of constant pressure

to coincide with a stream line, and hence the formulae fail when

the cylinder degenerates into a rectangular plate.

126. The problem of determining the steady motion of heat

and electricity, is precisely the same as that of determining the

motion of an irrotationally moving liquid subjected to the same

boundary conditions, so far as the velocity potential is concerned ;

but there is an important distinction between the two problems,
for in the former the pressure condition does not exist. Hence the

solution of problems in the conduction of heat or electricity cannot
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receive a hydrodynamical interpretation, unless the value of the

pressure given by that solution never becomes negative at any

point occupied by the liquid ;
in other words, whenever it is

possible for the liquid to flow according to the electrical law of

flow
;
but when this is not the case, the hydrodynamical applica-

tion of such formulae would give results, which although in many
cases approximately representative of the motion at a considerable

distance from the region of negative pressure, certainly do not

give correct results in the neighbourhood of this region.

127. We have noticed in Chapter IV, that there is nothing

in the nature of a perfect fluid to prevent slipping taking place

between two contiguous layers, and we have shown that a surface

along which slipping takes place is a surface of discontinuity,

which possesses the properties of a vortex sheet
;
but the possibility

of such slipping is not taken into account in the ordinary theory,

which assumes that the liquid flows according to the electrical

law. But in order to solve problems in which liquid is flowing past

a sharp edge, it will be necessary to take into consideration the

possibility of slipping ;
and we must therefore endeavour to obtain

a solution, such that a certain surface of no flux which passes

through the sharp edge shall also be a surface of constant pressure.

This surface of no flux will either form the free boundary of the

liquid, or will constitute a surface of separation between the moving

liquid and a region of liquid at rest, and in the latter case will be

a surface of discontinuity along which slipping must take place.

The only problems of this class which have yet been solved are

problems of two dimensional motion, and the method of solution

is due to Kirchhoff 1 and depends on the properties of complex
variables.

128. Any complex variable x + iy, may be represented geo-

metrically by means of a vector drawn from the origin to the

point whose rectangular coordinates are (x, y).

If we put x = r cos 6, y = r sin 0, the length of the vector will

be r, and 6 will be the angle which its direction makes with the

axis of x. The quantities r and 9 are respectively called the

modulus and amplitude of the complex x + iy.

The sum of two vectors x + iy and a + ib is x + a + i (y + b),

which represents a vector drawn from the origin to the point

(x + a, y + 6). Hence the sum of two vectors is represented by
1

Crelle, vol. LXX.
; and Varies, iiber Math. Phy. Chapters xxi., xxn.
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the diagonal of the parallelogram of which the two vectors are

adjacent sides.

Similarly the difference between two vectors is represented by
a line drawn from the origin, which is equal and parallel to the

line joining the opposite extremities of the two vectors.

The product of the two vectors is

(x + ly) (a + ib)
= ax by -f i (bx -f ay)

= R (cos (f) -f i sin
</>),

where R cos $ = ax by, Rsiu(f> = bx + ay.

Hence R* = (a* + 6
2

) (x* + y*),

.

1 byIax

Whence the .product of two vectors is a vector whose length is

equal to the square root of the product of the two vectors, and

whose direction is inclined to the axis of x, at an angle which is

equal to the sum of the inclinations of its factors.

Similarly the quotient of two vectors is a vector whose length
is equal to the square root of the quotient of the two vectors, and

whose direction is inclined to the axis of x
y
at an angle which is equal

to the difference of the inclinations of the dividend and divisor.

129. Let z and w denote the two complexes x + iy and < + i-ty ;

and let x and y be rectangular coordinates of a point P in a plane,

which we shall call the plane of z
;
and let < and ty be rectangular

coordinates of a point P' in another plane which we shall call the

plane of w. Then if w and z be connected by any relation

w =/(X), it follows that if P trace out any curve in the plane of

z, P' will trace out a corresponding curve in the plane of w.

for

130. Every function of a complex has a differential coefficient,

_ dw _ d<j> +
~~dz~ ~dx + idy

(dfyjdx + Ld-^/dx) dx + (dfyjdy +
dx + idy

dd> dilr fd(f> d
^~ + fcT7=MT^ + ^--'
dy dy \dx dxj

this ratio is independent of the ratio dyjdx.

A i .

And since
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If $ and
T/T

be the velocity potential and current function of

a liquid,

dw dd> d\lr

-=-^ + l / =U-M.
dz dx dx

Therefore =^ = 1
(u + ,*)

= ? (say),

where g is the resultant velocity of the liquid ;
hence the vector f

represents the reciprocal of the velocity of the liquid.

131. In the class of problems which we are about to consider,

the boundaries of the liquid consist partly of straight lines which

constitute the fixed boundaries of the liquid, and along which the

direction of the velocity is necessarily constant
;
and partly of the

free surface of the liquid or of surfaces of discontinuity, which

divide the moving liquid from the region of liquid at rest, and along

which the pressure and consequently the magnitude of the velocity

must be constant. Hence, if we choose the scale of measurement

such that q=1 along the latter surfaces, the boundaries will

become transformed in the plane of f into an arc of a circle

of unit radius, which corresponds to the free surface, or surfaces of

discontinuity ;
and into the radii of this circle, which correspond

to the fixed boundaries. The points where the radii meet the

circle correspond to the points where the fixed and free boundaries

intersect
;

also since the velocity must not become infinite, f can

never vanish, and therefore the portion of the plane of f external

to this circle and included between the two radii, corresponds

to the portion of the plane of w occupied by the moving

liquid.

Along the boundaries fixed and free, of the liquid in the plane

of z, we must have ty
=

a, and ^ =
/3, where a and ft are constants

;

hence the corresponding portion of the plane of w consists of the

space included between the two parallel straight lines ^ =
a,

* = .

We must therefore endeavour to connect f and w by a relation,

such that the above mentioned portions of the two planes of

f and w shall correspond ;
and also that certain points in these

two planes shall correspond to certain points in the plane of z.

When this has been effected, the relation between z and w, which

determines
</>

and
i/r

in terms of x and y y
must be obtained by

integration.
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132. We shall define a lune as the space which is included

between two circular arcs which meet but do not cross.

The angle of a lune is the angle at which the arcs meet.

Let z = x + iy,
z =x + iy', where (x, y), (x

f

, y) are the rect-

angular coordinates of two points P, P in the planes of z, z

respectively. We shall now show that if P trace out any lune of

angle a in the plane of z, and P' trace out another lune of angle a'

in the plane of z', it is possible to connect z and z' by a relation,

such that the angular points of the two lunes shall correspond ;

and also that any third point on the perimeter of one lune

shall correspond to any third point on the perimeter of the

other.

The equation

,
AZ + B -DZ' + B

where J., B, (7, D are complex constants, transforms any circle in

the plane of Z into another circle in the plane of Z'. For if the

point P describe a circle about the point c = a -\- ib as centre, we

must have

mod (Z - c)
= const (2)

or (# of + (y b)
z = const.

Substituting the value of Z in terms of Z' from (1), (2)

becomes

Z -
fi

Z'-C
%

where K, C
lt
C

2
are new complex constants. Now if k, pl} /?2

are

the moduli of K, Z' - C
lt
Z' - <7

2 , (3) may be written

kp,* = const.,

whence P' moves so that the ratio of its distances from the

two fixed points C
lt

(7
2

is constant, and therefore describes a

circle.

Since (1) contains three disposable constants, viz. the ratios of

the three quantities A, B, C, to D, it follows that these ratios may
be chosen, so that a circle passing through three given points in

the plane of Z shall correspond to a circle passing through three

given points in the plane of Z'.
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133. Let X + iY=%f
= 1

..................... (4)
Z - C

2

where c^a + ib, c
2
= a + t/3.

Let A and B be the points c
t
and c

a
. The vector 5S being

the quotient of the two vectors AP and BP, is represented in the

plane of ^ by a straight line whose inclination to the axis of X
is equal to APB. Now if P describe a circle passing through A
and J9, the angle APB is constant, hence every circle passing

through the points A and B in the plane of z, corresponds to a

straight line passing through the origin in the plane of 25.

Also if P and Q are any two points on two different circles passing

through A and B, the inclination of the two corresponding lines

in the plane of 5% is equal to BQA BPA, that is to the angle of

the lune AQBPA. Hence (4) transforms any lune in the plane

of z into two straight lines in the plane of 52? whose inclination is

equal to the angle of the lune.

If we put Z =%n
,

the two straight lines in the plane of 5^ become transformed into

two straight lines in the plane of Z inclined at an angle n times

as great ;
hence if a be the angle of the lune and n =

TT/OL,
the

equation

=
( ')\z - cj

.(5)

transforms a lune in the plane of z whose angle is a and whose

angular points are c
t ,

C
2
into a single straight line in the plane

ofZ.

Similarly if z be any other plane, the equation

(6)

transforms a lune in the plane of / whose angle is a' and whose

angular points are c/, c
a

'

into a single straight line in the plane

pfZ'.

If therefore we substitute the values of Z, Z' from (5) and (6)

in (1), the resulting equation transforms any lune of angle a in the

plane of z into a lune of angle a' in the plane of /
;
and by

suitably choosing the ratios A : B : C : D, we may make any three

points on the perimeter of one lune correspond to any three points
on the perimeter of the other.
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(7),

134. We must now notice some particular cases.

(i) Let z = e
w

or x + iy
= e

whence x = e cos ty, y = e sin

When ty or TT, y = ;
hence (7) transforms the two parallel

straight lines ^ = 0, ^ = TT in the plane of w into the single

straight line y = in the plane of z.

(ii) Let

Putting

we obtain

z = *Jw or x + iy
=

<s< + (8).

x = \/R cos = sn

When JR sin \^ = const. = c, y = c
;
hence (8) transforms the

confocal parabolas JR sin J% = c in the plane of w into the

parallel straight lines y = c in the plane of z. Now if c = the

parabolas degenerate into a double line extending from the focus

to oo . Hence (8) transforms a straight line in the plane of w ex-

tending from a fixed point to infinity, into the whole of the axis

of x, in the plane of z.

(iii) Let us now consider the portion of space bounded by
the straight lines OA, OB in the plane of f,

which is external to the circular arc AB.

If 7 is the inclination of OA, OB, the

equation f = f*^ transforms the two straight

lines OA, OB in the plane of f into a single

A straight line in the plane of f
'

;
and the

arc AB into the semicircle ab. Hence the

transformed region in the plane of f', is the portion of space lying

a'

on the upper side of ab
,
and which is bounded by the semicircle

and the infinite straight lines aa, bb'. This region may be regarded
as a lime of angle |TT, one of whose arcs is the semicircle apb ;

and whose other arc consists of the infinite lines aa', bb', which
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may be regarded as an arc of a circle whose centre is at infinity.

By (5), the equation

z

transforms this lune into a single straight line in the plane of z
t

hence the required transformation is

(9).

rly +

135. We shall now apply the preceding method to the solu-

tions of some special problems.

A jet of liquid escapes by a slit AB from a large cistern of

which the side is x'x; required the motion, which is supposed to

be in two dimensions.

w

The figures show the corresponding lines in the planes of z,

and w
; corresponding points being represented by the same letters

in each of the three planes, and the fixed and free boundaries and

their corresponding lines by thick and thin lines respectively.

The lines xA, Bx along which the direction of the velocity is

invariable, are represented in the plane of f by the straight lines

x'A, Bx ;
and the free surface of the jet along which the magnitude

of the velocity is invariable and equal to unity, by the semicircle

APQB. The portion of the plane of f lying above the line

xBQPAx', corresponds to the space occupied by the liquid. In

the plane of w this space corresponds to the region contained
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between the parallel straight lines x'AP and xBQ. Let -^
=

0,

^ = TT be the stream lines x AP, and xBQ : also let = be the

equipotential surface passing through A and B.

In order to transform the region in the plane of f to that

in the plane of w, we must put 7 = TT in (9) and we obtain from (7)

and (1),

Ce + D
'

Since a liquid flows from places of lower to places of higher

velocity potential, the following conditions must be satisfied :

(i)
= -oo, ?=o>, (ii)

= oo,=-t,

(iii) w = 0, =1> (iv) 10 = 177, ?= 1.

Of these (i) gives B = D\ (ii) gives A=C\ and (iii) and (iv)

both give A = -B
',

whence

L

Let be the angle which the tangent to AP makes with AB
;

along AP <?
=

1, ^ =
0, and is positive ;

hence

whence

Also

cos (9 + 1 sin = e-* + 1 l-e-W,

cos^ = e~*,

sin d = Jl - e-2*.

therefore measuring s from J., we obtain

and

therefore

-T- = cos = e~ s
,

1 e~ (10),

A being the origin. When s = oo . x = 1
;

also since the final

width of the jet is TT, the width of the slit is TT 4- 2.

The ratio of the final width of the jet to the width of the slit,

is called the coefficient of contraction of the jet, which is there-

fore equal to 7r/(7r + 2) or "611.
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Again

(11).M - Jl - e-*

Eliminating s between (10) and (11), the equation of the

free surface of the jet is

y =
2 - lo

Also the radius of curvature is tan 0, which vanishes at the

origin.

If we put J*/
a for f we obtain the solution when the boundaries

xB, x'A are inclined at an angle a.

136. Let us now suppose that the conditions of the last

example are varied by introducing a tube projecting inwards
1

.

,i

B' A'

B

The containing vessel is supposed to be so large that we may
disregard what takes place at the sides. The motion will then be

as follows. The liquid will flow along the side B'B, and at B the

direction of its velocity will begin to change, and the liquid will

finally flow out in a stream whose section will be less than that of

the tube.

1 Helmholtz, Phil. Mag. Nov. 1868.
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Since the aperture of the tube is supposed to be small, the

curve in the plane of f which corresponds to the free boundaries

may be approximately regarded as a circle, and if we put
" = V?

the space bounded internally by this circle and the lines AA f

,

BB, will be transformed into the region in the plane of f in

the last example. The solution in this case may be obtained from

the last example by writing V? f r and we obtain

Along the free surface of the jet, we have

cos + i sin 6 =

therefore

X = 1 5 6~2s

sn

the middle point of AB being the origin. When s oo
, y = y'j

so that 2y' is the final breadth of the stream and is therefore equal
to TT; when s = 0, y \ir + y'

=
7r, whence AB=27r, and the co-

efficient of contraction = J.

137. Lord Kayleigh
1 has shown that if the vessel were of

finite dimensions, the coefficient of contraction must always be

greater than J ;
for let cr" be the area of a section of the vessel so

far removed from the orifice that the velocity over it is sensibly

constant and equal to v". Let v, a' be the ultimate velocity and

section of the jet, cr the section of the tube. The equation of

continuity gives

v cr .

By the principle of energy

and by the principle of momentum

pa-
= crV2 -

1 "The Contracted Vein," Phil. Mag. Dec. 1876.

pa-
= o-V2 - crV 2

.
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From these equations we obtain

131

which shows that the section of the tube is an harmonic mean
between the sections of the cylinder and jet. When a" = oo

,

a I o- = \ as before.

138. When a rectangular lamina is held fixed in a stream

which meets it obliquely, there will be a region of dead water

behind the lamina, which will be at rest, and the total pressure on

the lamina will be due to the difference of pressures upon its

anterior and posterior faces.

The stream line ^ meets the lamina at some point and

then divides, each branch following the lamina to its edges, and

afterwards forming the boundary between the moving liquid and

the dead water behind the lamina.

a A B b

The portion of the plane of f corresponding to the moving

liquid is that which lies below the semicircle AA'B'B and the two

infinite lines Bb, Aa\ and the points + oo correspond to 0. The

whole of the plane of w corresponds to the portion occupied by the

moving liquid, with the exception of the double line shown in the

figure, which may be regarded as the limiting form of a parabola.

Let a be the angle at which the stream meets the lamina
;

since the equation w = *Jw converts the double line in the plane

92
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of w, into a single straight line in the plane of w, we must

put
A \lw 4- B

The conditions to be satisfied are

(i) </>=oo, f= cos a- isina,

(ii) w = 0,
= oo .

From (i) we obtain

A = - C tan
2

|a,

and from (ii)
B D, whence

C
Let 7^

= V K. (1 -f cos a), a>

J3

,*-l\
2

1 -(1 -cos a) ijto
and we obtain (

J-jJ
=

x + (1 + cos a) Vft)
,

or ?=n + N/H
2 -l (12),

1
where O = cos a + .

When the velocity of the stream at infinity is equal to F, which

will be supposed to be the case in what follows, we must change

f into fF, and (12) becomes

-1.. ..(13).

In the plane of z let be the origin, OB the axis of x
; along

AB must be real and equal to u~l

,
and at A and B % = F"1

.

Hence at all points of the lamina we must have O > 1, and at A
and B, H = 1 and + 1 respectively.

Let I be the breadth of the lamina, then since along AB
K<f>

= a) and d<f>jdx
= u,

the limits of integration being determined by

H = cos a -4- -= + 1.
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If ft be a new variable such that

ft
= Jw sin

2
a cos a,

the limits of ft will be 1, and we obtain

4 VKl =( {(13 + cos a) cos a + sin
2

y. + Jl-ft* sin a) cosec* a dft.
J -i

wu fc"
4 + * sin g

4 '

Along the lines AA', BB' the pressure p = p (C
-

\ F
2

),
which

must be equal to the hydrostatic pressure of the dead water. At

the surface of the lamina,

Hence the total pressure on the lamina is,

-

4 + TT sin a

which determines the resistance which the lamina offers to the

stream, and shows that it depends partly upon the square of the

velocity and partly upon the angle which the stream makes with

the lamina.

The moment of the pressure is

Now by (14),

J VKx = / (cos a (ft + cos a) + sin
2
a + JI /3

2
sin a) cosec

4 adft.

Hence, if the origin be suitably chosen, the value of x will be

_ g
2
cos a 4- 2ff + |/5 y/i

-
ff" + sin"

1

ft] sin a
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The odd terms in /3 contribute nothing to the integral, and

therefore

cos a -or cos a

The distance of the middle point of the lamina from the origin

is cosa/F^Tsin
4 a

;
hence the distance of the centre of pressure

from line middle point is

3 cos a. 31 cos a

4&TFsin4
a 4 (4 -f TT sin a)

'

If ^TT > a > 0, the negative sign shows that the centre of pressure

is on the upstream side of the middle point ;
hence if the lamina

be free to turn about an axis parallel to its edges whose distance

from the middle point is

3^ cos a
~

it will be in equilibrium. If a = JTT, 57 = 0; and the lamina will

set itself transversely to the stream. When a = 0, x is a maximum
and is equal to 3/16, in which case the axis divides the lamina in

the ratio 11 : 5.

139. The results of equations (15 and 16), which are due to

Lord Rayleigh
1

, may be stated in another form as follows. "If the

axis of suspension divide the width in a more extreme ratio than

11 : 5, there is but one position of stable equilibrium, that namely
in which the lamina is parallel to the stream with the narrower

portion directed upwards. If the axis be situated exactly at the

point which divides the width in the ratio 11 : 5, this position

becomes neutral, in the sense that for small displacements the

force of restitution is of the second order, but the equilibrium is in

reality stable. When the axis is still nearer the centre of figure,

the position parallel to the stream becomes unstable, and is

replaced by two inclined positions making with the stream equal

angles, which increase from zero to a right angle as the axis moves

towards the centre. With the centre line itself for axis, the lamina

can only remain at rest when transverse to the stream although of

course with either face turned upwards'
2
."

1 "On the resistance of fluids," Phil. Mag. Dec. 1876. 2 Ibid.
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140. In order to obtain the intrinsic equation of the surface

of separation, we have along this surface

Therefore
p.
= II = cos a

d<j> vNow -j-
= V,

ds

therefore
(/>
= V I

dx 1
and therefore =- = cos = cos a +

The constant c is to be determined from the fact that when s = 0,

cos = 1. In the case of perpendicular incidence, we have

c = I/ F^T, whence
dx _ / c

ds V 5 + c
'

or # = 2 (cs + c
2

)^ + constant,

from which it appears that x does not approach a finite limit as s

increases indefinitely.

The methods of this chapter only apply when the motion is in

two dimensions
;
so far as I am aware, no problem of this class has

been solved when the motion is in three dimensions.

MISCELLANEOUS EXAMPLES.

1. If u, v, w, (f>
are any functions of x, y, z, prove that

udx + vdy + wdz d(f>
has an integrating factor

;
hence show that

if u, v, w be the velocities of a fluid, then along any vortex line

udx + vdy + wdz = d(f>.

2. If in an infinite mass of homogeneous incompressible fluid

in equilibrium under finite fluid pressure only, an indefinitely long

cylindrical column be suddenly annihilated, prove that no motion

will take place.

3. Prove that the velocity potential due to a unit source

placed outside a sphere of radius a, and at a distance / from its

centre is

</>
= _

(r
2 _

2/r cos 6 +/
2

)~*
-
a/'

1

(r
2 - 2c r cos + o

2

)~*

+ a~
l

{log [c
- r cos <9 + (r

2 - 2c r cos + c
8

)*]
-

log r (1
- cos

(9) j,

where (r, 6) are polar coordinates referred to the centre of the

sphere as origin, and c = ofIf.
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4. Prove that the rate at which the energy of a mass of

liquid, contained within an imaginary closed surface described ii

the liquid is increasing, is equal to

S5(P + P P) 2 cos

where p is the pressure, V the potential of the impressed forc(

q the resultant velocity at any point of 8, and e is the anglt

between the direction of q and the normal to 8 drawn out-

wards.

5. If a, 6, c be curvilinear coordinates of any point (x, y, z) of

a liquid, such that the lines of flow are the intersections of the

surfaces b = const., c = const. ; apply 39 to prove that when the

motion of the liquid is not steady, a first integral of the general

equations of motion is

where J =
d (a, b, c)

d(a:tyt z)

6. If the molecular rotation of a mass of liquid which com-

pletely fills a rigid circular cylinder be equal to Jr"
1Ff

(r), where

r~
l F' (r) is any function of r which does not become infinite

within the cylinder ; prove that the paths of individual particles

of liquid are circles described in periodic time

7. In 135, if v be the velocity at any point on the middle

line of the jet, whose distance from the orifice is y, prove that

1 I + v

the ultimate velocity of the jet being unity, and the scale of

measurement being such that TT + 2 is the width of the orifice.



CHAPTER -VII.

ON THE KINEMATICS OF SOLID BODIES MOVING IN A

LIQUID.

141. IN the present chapter we shall obtain expressions for

the velocity potential, in a variety of cases in which a liquid

is bounded externally or internally by moving solids, when the

motion is in three dimensions. We shall suppose that the motion

of the liquid is irrotational and acyclic, and consequently the

motion will be completely determined by means of a velocity

potential (/>
which must satisfy the following conditions

;

(i) <f>
must be a single valued function, which at all points of

the liquid satisfies the equation V2

(f>
=

;

(ii) (j)
and its first derivatives must be finite and continuous

at all points of the liquid, and must vanish at infinity if any

portion of the liquid extends to infinity ;

(iii) At all points of the liquid which are in contact with a

moving solid, d<p/dn must be equal to the normal velocity of the

solid, where dn is an element of the normal to the solid drawn

outwards
;

if any portion of the liquid is in contact with fixed

boundaries, d$/dn must be zero at every point of these fixed

boundaries.

142. Let us now suppose that a single solid is in motion in an

infinite liquid.

Let Ox, Oy, Oz be three rectangular axes fixed in the solid, and

let
<^> 1

be the velocity potential when the solid is moving with unit

velocity parallel to Ox, and let ^ be the velocity potential when
the solid is rotating with unit angular velocity about Ox. Let

</>2 ,

<f>3 , Xv %s be similar quantities with respect to Oy and Oz. Also

let u, v, w be the linear velocities of the solid parallel to, and

&>,,
&>

2 ,
o>

3
be its angular velocities about the axes.
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The velocity potential of the whole motion will be

For if X, fju,
v be the direction cosines of the normal at an;

point x, y, z on the surface of the solid, we must have at the

surface

d(j> l
c<>

2 _ d(f> 3 _
dn

' dn dn

dn ^ ^ ' dn
'

dn
"

*"

Hence ,
- = (u ycoR+ zcoj\+(v 20)

l
-f xa)

3 ) /u,+ (w xa

= normal velocity of the solid.

143. To find the velocity potential when a sphere of radius a is

moving parallel to the axis of x
1
.

Let u be the velocity of the sphere, a its radius, 6 the angle

which the radius to any point on its surface makes with Ox, then

at the surface,

- = u cos 6,
dn

or ^-OOB*.;. ..(2),dr

when r = a.

Since the motion is symmetrical with respect to Ox, and the

velocity must vanish at infinity, </>
must be of the form

where Pn is the zonal harmonic of degree n. Substituting in (2),

we obtain

A
Q

2A cosO p
1 4s &c. = u cos 6,
a a

whence A = A
2
= &c. = 0,

and A
l

= -
^ua

3
,

, , f o cos 9
tneretore & = \ua 5

r

1
* /Q\= -1^-3 (3).

1
Poisson, "M6moire sur les mouvements simultan6s d'un pendule et de 1'air

environnant," Mem. de VAcad. des Sciences, Paris, vol. ix. p. 521.
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144. If the sphere were moving with component velocities

it, v, w, parallel to the axes, the velocity potential would be

This expression is the velocity potential of a doublet situated

at the centre of the sphere, whose axis coincides with and whose

source end is turned towards the direction of motion of the sphere.

145. The velocity potential may be determined by the method

of images, when the solid, which is formed by the revolution about

the line joining their centres, of two spheres which intersect at

right angles, is moving parallel to its axis
1

.

Let A and B be the centres of

the two spheres, G a point on their

circle of intersection
;
then if CS

is perpendicular to AB, S is the

common image of B and A with

respect to the spheres A and B.

and let u be the velocity of the solid along AB ;
also let (r, 0),

(rv 0J, (r2 , 2)
be the polar coordinates of any point P referred

to B, 8 and A respectively as origin.

The velocity potential due to the motion of B alone is

ub3

</>i
=
-2^ COS ^

which is the same as that due to a doublet of strength ^ub
3
at B.

The image of this in A is a doublet at S of strength

and the imae of this in B is a doublet at A of strenth

This is precisely what is required to give the requisite normal

velocity over A and B, whence

b
3
cos 6 a?b

3
cos 6.

1
Stokes, Math, and Phys. Papers, vol. i. p. 230.
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146. The motion of two spheres will be discussed in Chapter

XL, but when the space between two concentric spheres is filled

with liquid, and the spheres are moved in any manner, the velocity

potential of the initial motion can be obtained as follows
1

.

Let a and b be the radii of the outer and inner spheres respec-

tively, their common centre
;
and let the outer sphere be moved

with velocity u along any direction OA, also let the inner sphere

be moved with velocity v along a direction OB which is perpendi-

cular to OA. Let 6 be the angle which the radius to any point P
makes with OA, % the angle which the plane OAP makes with

the plane AB.

The surface conditions are

,dr /a

The function

<!>
=

(Ar + J
cos 6 + (Or + -2 ] sin 6 cos

(4).

satisfies Laplace's equation. Substituting in the first of (4) we

must have

A- = u, C-^-0.
and from the second of (4)

25 _ r W _
A--^=0, c--p-==v,

= ua9

/(a
9 -b5

),
B = %ua?b

3

/(

b* \ vb*

whence

and

147. The velocity potential due to the motion of an ellipsoid

in an infinite liquid was first obtained by Green in 1833, for the

case of translation only
2

;
the solution was completed for the

of rotation by Clebsch in 1856 s
.

(i) Let the ellipsoid move parallel to the axis of x with unit

velocity.

1
Stokes, "On some cases of fluid motion," Trans. Camb. Phil. Soc., vm. p. 105.

8 "Researches on the vibration of pendulums in fluid media," Trans. Roy. Soc.

Edin., 1833.
:J " Ueber die Bewegung einer Ellipsoids in einer tropfbaren Fliissigkeit," Crdle,

LII. p. 103.
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If F be the potential at an external point of a homogeneous

ellipsoid of attracting matter of unit density, the equation of

whose bounding surface is

where X is the positive root of the equation

The potential at an internal point is obtained by putting

X = in the definite integral. We shall write this expression in

the form

V=(A^+Btf + Cxz*)-Hx (6),

f* dtlr

where A K = ^irabc ,-j Vr-Ti &c.

and we shall drop the suffix X, when these quantities refer to an

internal point.

If p is the perpendicular from the centre on to the tangent

plane at #, y, z
;
the surface condition is,

~dn
= l =

<?
'

x dd) l y dd>i z acf), x , .

or -5 ~- h ^ -j H
-

-j
= -

(8).a2
rfa; 6

2

rfy c dz of

Since J. xa? is the ^-component of the attraction of the

ellipsoid, this quantity obviously satisfies conditions (i)
and (ii)

of

142
;
we may therefore assume that

Hence at the surface

d\
~ j,dx V & dx]

dfyi ^TTCHX d\

dy of dy
'

d\_
dz

~
v? dz'
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Differentiating (5) with respect to x, and then putting \ = 0,

we obtain

d\ _ 2*f? d\ = 2yp* d\

dx
~
~aT '

dy
~

b*
'

~dz

hence the left-hand side of (8) becomes

ax (A - 47r)/a
2

,

whence a = (A
~

,

and 9, = A
-T .A 4>7T

It therefore follows that if the ellipsoid is moving with

velocities, u, v, w parallel to the axes

(ii) Let the ellipsoid be rotating with unit angular velocity

about Ox
;
then the surface condition is

Q............(10 ).

Writing for a moment Y and Z for B*y and CKz, it can easily

be shown that the function zY yZ satisfies Laplace's equation,

for V*r-,S = 2 -
dy

dzdy dydz

also at great distance from the origin Y and ^ are at least of

the order r~
2

,
and therefore ^ t

is at least of the order r~
l and

therefore vanishes at infinity.

Let us therefore assume

then at the surface

<**i '/v^ 7 dy<dY dz
r- = * j -^ ^~ + ^ ~i y f-dn \ an an an y dn

Substituting in (10) we obtain

a' = T^r-

The functions ^2 , ^3
can be written down from symmetry.
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148. The quantities A^ Z?A and (7A may be expressed in terms

of elliptic functions of the first and second kinds; but the most

important case is when the ellipsoid is one of revolution.

Ci)
If we put b = c < a, the surface becomes an ovary ellipsoid

ami

>*
(a

2 + ^) (

47rac
2 r dv

if (a
2 + X)*

= (a
2 - c

8

^i/ ;
therefore

where e is the excentricity of the generating ellipse. Also

f-^-J*"
47r (1

- e
2

) r dv

(ii)
If we put a = b > c, so that the surface becomes a

planetary ellipsoid we obtain

if (c
2 + X)

4 =
(a

2 - rfv ;
therefore

27r(l-e'
2

)V v
A>,= ^3 '- cot ^-nrrr

(15).

It will be observed that in the case of an ovary ellipsoid

v = e~\ where e' is the excentricity of the generating ellipse of

the confocal ellipsoid which passes through the point (x, y, z) ;

and that in the case of a planetary ellipsoid
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149. If c = the planetary ellipsoid becomes a disc, and

rf> =
;
hence a disc which moves parallel to itself cuts through

the liquid without producing any motion.

To find the velocity potential when the disc is moving perpen-

dicularly to its plane, we observe that at the surface v =
;
hence

when c and v are small c = av, therefore

2-7T
2
C

2w (I ._ t
\

therefore < = - - * I
- - cot v) .

7T \V J

If
fji,

v are elliptic coordinates, this equation may be written
1

,
== _ /

1 _ j;cot
-i

j;)
7T

By 99 (14) and 110 (31), the velocity perpendicular to the

hyperboloid /JL
= const, is

d \ v
2 + fju

2

dfji
TT \/ v* + fj?

At all points in the plane 2 = which do not lie on the disc,

0, and the velocity perpendicular to this plane

which becomes infinite when v = 0. The velocity is therefore

infinite at the edges, as we should expect since the liquid is

supposed to move according to the electrical law of flow.

The solution for a stream flowing past a fixed disc behind

which there is a region of dead water, has not yet been dis-

covered.

1 The function qn (v) is a spheroidal harmonic of the second kind, and is equal to

(-l)*
(n+l)

Qn (iv) where Qn (v) is a zonal harmonic of the second kind. The

potential at an external point of any distribution of electricity upon an oblate

spheroid which is symmetrical with respect to the axis of the spheroid, can be

expanded in a series of terms of the type qn (v) Pn (/*).
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150. To find the velocity potential when liquid is contained in

an ellipsoidal cavity which is rotating about its centre.

Here

Assume %t
= Ayz.

The ,

An V dy c" dz

Equating these two values of d-fajdn, we obtain

^62 -c2

6
2 -c2

Hence v, =^ yz.x* 5
2

_|_ c
2 y

This value of ^ satisfies Laplace's equation, and is such that

the velocities are finite and continuous at all points of the

liquid. Hence

151. Let us now suppose that the space between two

concentric coaxial and confocal ellipsoids is filled with liquid, and

that the inner and outer ellipsoids are suddenly moved with

velocities U and V respectively parallel to the axis of .

Let the accented and unaccented letters refer to the outer and

inner ellipsoids respectively ;
and let

The surface conditions are

dn c*
'

dn c*
'

From the first equation we obtain

M+N(C-4ir)= U,
and from the second

whence M =

-
C' -C'

1
Greenhill, "Fluid motion between confocal elliptic cylinders and confocal

ellipsoids," Quart. Journ. vol. xvi. p. 227.

. 10



146 KINEMATICS OF MOVING SOLIDS,

and therefore

9 =

If the outer ellipsoid were rotating about the axis of z with

angular velocity O, and the inner with angular velocity o>, the

surface conditions would be

1 1

(19),

We must therefore assume

$ = Mxy +N (BK A^) xy.

From the first equation we obtain

lM+tf(B-A)}& + j!)-
and from the second

{M+N(ff-A')} (1
+

i,)

-
*rN(p

- ^ )
= O ( ^

which determine the constants M and N.

152. We shall next investigate the motion of a liquid about

an indefinitely thin spherical bowl 1
.

Let a be the radius of the sphere of which the bowl forms

a part, its centre, c the radius of the small

circle which forms the rim of the bowl, A the

pole of this circle which will be called the

vertex of the bowl, Q any point on the bowl
;

also let V be the potential at P of a distribu-

tion of matter of density cr on the bowl. Then

Q
[[o-dS

JJTQPQ'
Now PQ2 = r

2 + a* - 2ar cos 77.

Therefore

dV

hence ld(Vr)
a dr -if

where e = TT - OQP. The right-hand side of this equation is the

magnetic potential at P of a complex magnetic shell of strength a.

1 Proc. Lond. Math. Soc. vol. xvi. p. 286.
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153. Let us now suppose that the motion of an infinite liquid

is caused by any system of sources, sinks, or vortex filaments
;
let

<E> be velocity potential due to this system (which we shall call the

external system) when the bowl is absent
;
and let $ be the velocity

potential after the bowl has been introduced. Then we may put

</>
= ft + <l>,

where H is to be determined.

If the bowl is fixed, which for the present we shall suppose to

be the case, the surface condition is

when r = a. This condition is to be satisfied on both sides of the

bowl.

Now, if we remove the bowl, and substitute over its surface a

sheet composed of doublets, whose axes are in the directions of the

radii passing through them, and whose strength a-, per unit of area,

is such that the normal velocity at every point of the sheet is

equal and opposite to the normal velocity due to ^>, all the con-

ditions of the problem will be satisfied. But the velocity potential

of such a sheet of doublets is analytically equivalent to the

magnetic potential of a complex magnetic shell of the same

strength, which occupies the position of the bowl, and whose

positive side coincides with the sink side of the sheet of doublets
;

hence the problem is reduced to finding the potential and strength

of such a magnetic shell when the normal component of the

magnetic force at the surface of the shell is given.

Now we have shown that, if V be the potential of a surface

distribution of matter upon the bowl of density er, then

ld(7r).\L -- -=- .

a dr

also, if O and fl be the values of fl at two contiguous points just

outside and just inside the shell respectively, then

The magnetic force at the surface of the bowl is

dfl _ ld*(Vr)
dr a dr2

n ^ZVJ-^Tt1 "*>
dp, l-//,

2

ctyV
by Laplace's equation.

102
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Now the value of the magnetic force at the surface of the bowl

can always be expanded in a series of spherical surface harmonics

T ; hence, if

and therefore if
-g-

2
t
Yn (20)

at the surface, the corresponding value of Fat the surface is

The formula (21) fails when n =
;
the only case, however,

which is necessary for our purpose to consider, is when the mag-

netic force is symmetrical with respect to the axis of the bowl, and

has a constant value F at its surface. In this case,

"Sf

i d - dv

therefore F= \Ftf log (1
-

/&) + \A log f

"
+ B .

i p

Now Fmust not be infinite when /i
= 1, therefore

and the value of F may be written

But, if an infinite straight line extending from the centre of the

bowl to oo be electrified with line density Fa*, its potential is

= Fa? log r (1 + //,).

Hence F is the potential of the induced charge when the bow)

is under the action of a positively electrified line extending from

the centre to oo . If, therefore, ^ be the potential of the bowl

under the action of a positive charge of unit intensity, situated at

a point on the axis distant u from the centre, and on the negative

side of it,

V=Fa?F% du.
J
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154. The preceding result enables us to find the velocity

potential due to a source situated at the centre of the bowl. In

this case

f m
therefore --

7- = 2 >

dr a

therefore
-"/.o

dr

155. To find the velocity potential due to the motion of the bowl

in an infinite liquid.

(i) Consider the case of motion parallel to the axis.

If the liquid were flowing from right to left past the bowl, the

velocity at infinity being equal to w, then

4> = wz

and
<j>
= Oz wz,

<Kl
n

whence -^ = w cos u
dr

at the surface.

Hence, if the bowl is moving parallel to its axis with velocity u,

*.
=

-

Now, by (21), Ve
= - J wa? cos

at the surface. V
z
is therefore the potential of the induced charge.

when the bowl is placed in a uniform field of force parallel to its

axis whose potential is \waz + const., whence

(ii) Let the bowl be moving perpendicular to its axis with

velocity v, and let the plane from which the angle i/r
is measured

contain the direction of motion; then if
</>'

be the velocity potential,

3- = v cos ^Jr sin 6,
dr

therefore V = - va
z
cos ty sin 6

at the surface. V is therefore the potential of the induced charge,
when the bowl is placed in a uniform field of force perpendicular to

a plane containing its axis.
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(iii)
Let the bowl be rotating about an axis.

It is clear that, if the bowl were rotating about an axis through

the centre of the sphere of which it forms a part, the bowl would

simply cut its way through the liquid without producing any
motion. Now, a rotation about any other axis is equivalent to a

rotation about a parallel axis through the centre, together with a

velocity of translation perpendicular to the plane containing the

centre of the bowl, and the original axis of rotation
;
hence the

motion of the liquid due to the rotation of the bowl is equivalent

to that due to a properly chosen motion of translation.

156. It thus appears from the preceding articles that the

velocity potential due to the motion of the bowl in a liquid,

depends upon the electro-static potential of an electrified bowl,

which is placed in a field of force whose potential is known. We
shall now show how to find this potential, when the field of force

is symmetrical with respect to the axis
1
.

Let AGB be a section of the bowl through
its axis, / the centre of the sphere of which

the bowl forms a part, also let AIC = ot,

If in the equation

1

we put h = e
ta

and equate the real and imaginary parts of the

resulting expressions, we obtain

cos \ a. + P cos fa + P_ cos fa + . . . . = r ]

V2 (cos a- cos 0)H... (22),

smia + P1 smfa + P2 sinfa + =0

when 6 > a. But if < a, the first series is zero, and the second

series = (2 (cos
- cos a)}

~*

.

1
Ferrers,

" On the distribution of electricity on a bowl," Quart. Jo-urn, vol. xvm.
p. 97.
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Differentiating the second series with respect to
,
we obtain

cos \ a. + 3P
t
cos fa + 5 cos fa +

Silla
orO . ...(23),

^2 (cos 6 cos a)
1

according as 6 < or > a.

Multiplying (23) by 2 cos J (2n + 1) a, we obtain

cos7wc 4- cos (TI + 1) a + 3P
t (cos (n 1) a 4- cos (n + 2) a} -f .....

+ (27i + 1) Pn {1 + cos (2n + 1) a} + etc.

V2 sin OL cos J (2% + 1) a

I
or u,

(cos cos of

according as 6 < or > a.

If we suppose 6 < a, and integrate both sides with respect

to a, between the limits TT and a, we shall find that the series

4. n -*) ,

sin (7i + s + 1)
}
f
sin (*-

L n ~

...... (24)..4?ra L ^./a
(cos <9- cos af

But if we suppose 6 > a and integrate with respect to a

between the limits a and 0, we shall find that the series in

question vanishes. It therefore represents the density of a certain

distribution of electricity in the bowl. The potential of this

distribution is

V = l f X

|"

sin (n ~ g
)
a

, sin(n + g+l)g"| (a\
s+l

p
7T S=Q L 71-S 71 + 5 + 1 J \r)

g
.

if r > a
;
but if r* < a we must interchange a and r and multiply

the result by a/r.

To find the value of F at the surface of the bowl, we must put
r = a, and differentiate jvith respect to a.

;
we thus obtain

dV
-^

= 2cosi (27i + 1) {cos la + Pl
cos J 3a + Pa

cos |-5a + ......
}

V2 cos-p 6/> a,

TT (cos a cos #)'
J

= 6 < a,

by (22).
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Hence
(cosa-cos0)

2

To determine F (6), let a = TT in the series (25) for V and

we obtain V= Pn.

The series on the right-hand side of (25) is the potential of

the bowl when placed in a field of force whose potential at the

surface of the bowl is equal to Pn ,
and the density is given by

(24); and since the potential of every field of force which is

symmetrical with respect to the axis of the bowl can be ex-

panded in a series of zonal harmonics, we can determine the

potential and density of the bowl when placed in any such field.

157. In order to obtain the potential when the bowl is

placed in a field of force whose potential is %waz, we must put

n = 1 in the series (25) and multiply the result by Jwa
2
, hence

sin(s + 2_ wtf ^=. [sin (a -1) a
*~

27r ,=0 L *-l

In order to sum the first series, we have

,

8
'"

therefore const.
j-
+ P

l log h + P2
h +

dh

n-l + &c.

h'1
cos

Putting h successively equal to ae
la

/r and ae~
ta

/r, subtracting,

and putting 8t
for the first series in (26), we obtain

-^ = -(a'-

r -u-i r6
pa sinh

+ (a
2 -

a cos. 6
sinh

_t
re a cos

Let

a sin a sin

a* + r
2
cos 2a 2ar cos a cos = X cos 2^

r2
sin 2a 2ar sin a cos = X sin 2^;,

r
2 + a2 - 2ar cos (a

-
0)
= /,

r'
2 + a2 - 2ar cos (a + 6)

=
<f.

...(27).
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Then \=pq
and the first two terms of (27)

= 2*. J\ sin x-

But

4r
a
sin

2
a - (p - <ff

= 2 (X
- a2 - r

2
cos 2a + 2ar cos a cos 6)

= 4\ sin
2

%.

Hence the first two terms

In order to find the value of the last two terms, let us denote

the quantity in square brackets by 2n/r.

Since

cosh (sinh"
1 m - sinh"

1

^) = V(l + m?) (1 + ^2

) + ww,

we easily obtain

a2
sin

2
cos 2^ = (rV

ta - 2are
la

cos (9 + a1

)*

x (rV
2ta - 2are~

ia
cos + a2

)*

(r
2 + a2

cos
2 6 2ar cos a cos 0)

= X--|(/ + g
2

) + a2
sin

2

6>,

^v
_ rn

therefore ^ = sin"
1
J* . ..

za sin a

. _. 2r sin a= sin -
,

p + ^

therefore

c*
a

f ^ 2 2 N2ii a2 cos^ .

^ =
2? (^

2
sin

8
a - (p

-
2)

2

)

2 + ^ sin

The second series can be summed in a similar manner, and we

shall finally obtain,

F = - r cos sin- JL,
= -

1| [

i
[4r

2
sin

2 a -
(P - 9)f . . .(28).

158. If the positive signs be taken, this is the potential at all

points within the space bounded by the plane passing through the

rim of the bowl, and that portion of the sphere passing through
the centre and rim of the bowl, which lies outside the bowl.

The potential for the space enclosed by the bowl and the

plane through its rim is obtained by changing the inverse sine in
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the first term to TT - sin"
1

,
and taking the negative sign before

the second term, and the positive sign before the fourth term.

The potential for the remaining portion of space is obtained

by changing the inverse sine in the third term to TT sin'
1

,

and taking the positive sign before the second term, and the

negative sign before the fourth term.

159. We cannot employ an analogous method for determining

the potential when the bowl is placed in a field of force perpen-

dicular to a plane containing the axis, since no analytical theorem

has been discovered for obtaining the potential of a bowl which is

placed in a field of force whose potential is a tesseral harmonic

sin (m<f> + em) P (cos 0).
1

The solution can however be obtained by the following in-

direct method. If we put n = in (25), and sum the resulting

series, we shall obtain the potential of an uninfluenced electrified

bowl. Invert the result with respect to a point P in the plane

containing the rim of the bowl, whose distance from the centre is

equal to /, and multiply the result by
- m. We shall thus obtain

the potential when the bowl is under the influence of a positive

charge m at P. Now if we place a negative charge m at

a point P' in P produced such that OP' =f, and make the two

charges move off to infinity, whilst the product 2m/f
2 remains

constant and equal to %va, the field of force will ultimately become

a uniform field of force perpendicular to a plane containing

the axis whose potential is ^vasin Ocos ty, where
i/r

is the angle

which the plane through the axis and the point (r, 6, ty) makes

with some fixed plane through the axis. The resulting expression

for V will be the potential of the bowl when placed in this field

of force.

The result of this process is,

V = = cos o/r sin 6 \r sin
1 - - + ~ ^-2 {(p + q)

2
4c

2

}*

2 + -7 x 2 {(p + qf
- 4r2

sin
2

a)'* .

r*
2

p + q r(p-rqy
l

a . _,2rsma_- sin
l

1 If an electrified circular disc is placed in a field of force whose potential is

F(r, 0)sin (< + e), the potential of the induced charge can be obtained by Bessel's

Functions, see Proc. Camb. Phil. Soc. vol. v. p. 425 ;
and thence by inversion, we

can obtain the potential of an electrified spherical bowl when placed in a field of

force of the above form.
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The inverse, sines and the double signs before the second and

fourth terms must be interpreted in the manner explained in the

preceding article. (See Proc. Lond. Math. Soc. XVI. p. 296.)

The preceding expressions for the velocity potential make the

velocity infinite at the edge of the bowl, and therefore the

motion represented by the formulae could only be approximately
realised in practice.

160. In order to obtain the motion of a liquid in which a

solid is moving by means of the velocity potential, it is necessary

to find a potential function < which satisfies an equation at the

surface of the solid which involves the first derivatives of
(f>,

and

this circumstance creates a difficulty which has proved insuperable,

excepting in the case of an ellipsoid, an anchor ring
1

,
and a

spherical bowl. But if the solid is one of revolution which is

moving parallel to its axis, the motion can be determined by
means of Stokes' current function, which Rankine 2

has shown has

a definite value at the surface of the solid.

Taking the axis of z as the axis of revolution, let w, u be the

velocities of the liquid parallel and perpendicular to the axis of z
;

the surface condition is

Iw + mu = IV,

where V is the velocity of the solid, or

1 d^fr dtz 1 d^r dz v dtv

GJ- d ds UT dz ds ds
'

Integrating along a meridian curve, we obtain

t = i^2
........................... (29).

Now
T/T

satisfies the equation

In this put ^r
=

r, and we obtain

rf2% +^ +
l d% _ x = o,

dz*
'

dw* & dtp 57*

which shows that % sin
(f>

is a solution of Laplace's equation ;
hence

(29) may be written

1
Hicks, "On Toroidal Functions." Phil. Trans. 1881, p. 609.

- Phil. Trans. 1871.
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Hence if U be the electric potential of the induced charge,

when the solid is placed in a uniform field of force perpendicular

to a plane containing the axis and whose potential is - %Vy, then

Unr cosec $ will be the current function when the solid is moving

with velocity V parallel to its axis.

In the case of a sphere

Va?y Vcfvr sin
<f>

_, ,
,

Vet* Fa3
sin

Therefore =~" =

EXAMPLES.

1. An ellipsoidal shell is filled with liquid and rotates uni-

formly about a given diameter; prove that the path of every

particle of liquid relatively to the ellipsoid will be an ellipse whose

plane is conjugate to the given diameter
;
and that every particle

will sweep out, about the centre of its elliptic path, equal areas in

equal times.

2. Liquid flows past the solid ellipsoid (xjcif + (y/b)* 4- (s/c)
a= 1,

the velocity at infinity being uniform and parallel to as. Prove

that the lines of equal pressure on the surface of the ellipsoid are

its curves of intersection with the cone y*jtf + z*/c*
=

a?/A
4
, where

A is a variable parameter.

3. Liquid is bounded by the ellipsoid (#/a)
2 + (y/b)

2 + (^/c)
2 = 1.

If the surface undergo a uniform torsion about a principal axis,

prove that the instantaneous velocity potential is proportional to

xyz for the liquid in the interior of the ellipsoid, and to

for the external space, where

d\
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4. Prove that the velocity potential due to a source of

strength ra, placed at a point on the axis of a circular disc and

distant / from it, at points on the side of the disc on which the

source is situated, is

dP m

where P is the potential of the induced charge when the disc is

under the action of a charge m, situated at a point on the axis on

the other side of the disc, and whose distance from it is /.

5. The ellipsoid (x/af + (y/6)
2 + (zjcf

= 1 is surrounded by an

infinite mass of water and rotates about the axis of x. Prove that

the component velocities of any particle of water parallel to the

axes will be respectively proportional to

dM_dN dN_dL dL_dM
dz dy

' dx dz
'

dy dx
'

Twhere L ("=
J ^

where P = VK + ^) (& + ^) (c
2 + ^),

and X is the positive root of the equation

a? f z*

a2 + \
+

6
2 + x"

f
c
2 +X~

Prove also that if the ellipsoid be filled with water, the values

of L, M, N with instead of \ for the inferior limit, will similarly

determine the velocity of any internal particle of water.

6. A sphere of radius a which is surrounded by an infinite mass

of liquid, is strained uniformly so that e, f, g are the principal

components of strain after unit time. Prove that the velocity

potential of the initially resulting motion is
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7. A sphere of radius a is surrounded by an infinite mass of

liquid. If the surface of the sphere be suddenly moved with

normal velocity eyz +fzx + gxy, prove that the velocity potential

of the resulting initial motion is

a6

(eyz +fzx 4- gxy)/3r
5

,

where r
2 = a? + f + z\

8. Given that

x = a (cosh a + cos - cosh 7),

y = 4a cosh Ja cos |/3 sinh ^7,

z = 4a sinh Ja sin \$ cosh ^7,

transform the equation of continuity into the form

(cos ft -f cos 7) -7^ + (cosh 7 + cosh a)
-? + (cosh a - cos /3) ^ ^

=
0,

and show that the surfaces for which a, /3, 7 are constant are

confocal paraboloids.

Hence show that the velocity potential for infinite liquid

streaming past the fixed hyperbolic paraboloid
=

j3v with

velocity V parallel to the axis of x at infinity, is given by

0= F^-a/Ssin^),
and write down the corresponding values of

</>
when the fixed

surface is the elliptic paraboloid a = av or 7 = yr

9. The axes of an ellipsoid which is filled with liquid vary
with the time in such a manner that the volume of the ellipsoid

remains constant
; prove that the velocity potential of the

liquid is

10. The axes of an ellipsoid which is surrounded by an un-

limited liquid vary with the time in such a manner that the

ellipsoid always remains similar to itself; prove that

11. Determine the initial motion of liquid outside an ellip-

soid, when component velocities (i) px, py, pz ; (ii) pyz, pzx, pxy
are imparted to every point of its surface

;
where p is the perpen-

dicular from the centre on to the tangent plane at x, y, z.



CHAPTER VIII.

ON THE GENERAL EQUATIONS OF MOTION OF A SYSTEM

OF SOLID BODIES MOVING IN A LIQUID.

161. WHEN a number of solid bodies are moving in an in-

finite liquid, the motion of the solids is most easily determined by

regarding the solids and liquid as constituting a single dynamical

system, and then employing Lagrange's equations. But as the

methods and formulae employed are different according as the

motion of the liquid is cyclic or acyclic, it will be convenient

to consider these two cases separately.

Acyclic Motion.

162. The following notation will be employed ;
let

um >
vm> wm '-> Pm> 9V, >

Tm ^e ^ne linear an(^ angular velocities

respectively of any solid Sm , along and about axes fixed in the

solid.

</C &T *'" 5 X*' %/> %"' the velocity potentials of the

liquid, when the solid Sm is moving with unit linear and angular

velocities respectively along and about axes fixed in 8mt and all

the other solids are at rest.

<&m the velocity potential due to the motion of Sm when all the

other solids are at rest.

W the velocity potential of the whole motion.

Mm the mass of $ .
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From 142 (1) it follows that

for at the surface of Sm ,
d<&m/dn is equal to the normal velocity of

Sm ,
and is zero at the surfaces of each of the other solids

;
whence

afso,
= 2*................................ (2).

By 85 (20) if t be the kinetic energy of the liquid

where the integration extends over all the solids
;
whence

'

Substituting the values of M*, <&
19

<I>
2
... in this equation, it

appears that is a homogeneous quadratic function of the

velocities. If | (wm w,n ), (Xn> vm) denote the coefficients of um*, umvm ,

&c. we obtain

...(3).

&c. &c.

These equations at once follow from Green's Theorem, and

from the fact that dfa'/dn is zero at the surfaces of all the solids

except Sl
.

163. If all the solids are free, each solid will possess six degrees
of freedom, and its position will therefore be determined by six

independent coordinates. The velocities of each solid can be

expressed in terms of these generalised coordinates and their time

fluxes by means of the ordinary methods of Rigid Dynamics, and

the kinetic energy of the liquid will therefore be expressible as a

homogeneous quadratic function of the generalised velocities of

the solids. The coefficients of the velocities will be functions of

the generalised coordinates, and of quantities which determine the

form and dimensions of the solids. Their values cannot be found

without a knowledge of the velocity potential of the liquid, and

they have been determined only in a few cases.
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The kinetic energy
'

of the solids can be found by the usual

methods, hence if T be the kinetic energy of the solids and liquid,

(4),

from which it is evident that T is a homogeneous quadratic func-

tion of the velocities of the solids.

164. Since the coordinates of individual particles of liquid do

not enter into the expression for the kinetic energy, it will be ne-

cessary to establish the legitimacy of the employment of Lagrange's

equations in the present case. The application of these equations

is a particular case of the theory of Ignoration of Coordinates.

Let the position of a dynamical system be determined by
means of a system of coordinates O

lt
#
2 ..., %x , %2

... ;
and let us

suppose that the coordinates ^ do not enter into the expression

for the potential and kinetic energies. Since

f=o, jl- a
dx dx

Lagrange's equation corresponding to % will be

ddT =
dt dx

dT
whence -=-7

= const. = K ................... ...... (5).

The constant K. is the generalised component of momentum

corresponding to % ;
and there will be as many equations of the

type (5) as there are coordinates %. Now whatever the motion of

the system at any particular period may be, it can evidently be

produced instantaneously from rest by the application of a system
of impulsive forces, which must be equivalent to the momentum of

the system at the particular period. If however the motion of the

system is such that it could always be produced from rest or

destroyed, without the application of the impulse components

corresponding to %, in other words if the velocities % could be

produced or destroyed solely by means of impulsive forces arising
from the connections of the system, all the constants K will be

zero, and (5) becomes

By means of (6) all the velocities % can be eliminated from T\
B. 11
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if T denote the result of this elimination, then since Q and

enter into T through #, we have

dO

dT

by (6). Similarly

de

ddT _dT' _ d
L dT_dT_ _dV

dt de de
~

dt de de de
'

which shows that when K = 0, we may employ the modified func-

tion T from which the %'s have been eliminated in forming

Lagrange's equations.

Now if the dynamical system consists of a number of moving
solids together with the liquid in which they are immersed, and

which either extends to infinity or is bounded by fixed solids
;
and

if the motion of the liquid is solely due to that of the solids

moving about in it, we have shown in 85 and 89 that its

motion will be acyclic and irrotational, and that it could be

instantaneously produced or destroyed by means of a proper

system of impulsive forces applied to the solids and boundaries

alone : also since neither the kinetic nor potential energy contains

the coordinates of individual particles of liquid, the preceding

investigation shows that the equations of motion may be obtained

by forming Lagrange's equations by means of the expression for

T given by (4), which contains the coordinates and velocities of the

solids alone.

If the momenta K are not zero, Lagrange's equations in their

ordinary form cannot be employed. The modified function which

must be used in this case will be determined in 173.

165. The system of impulsive forces which must be applied to

the solids to produce the actual motion at any period, when com-

pounded into a single force and a couple about the line of action

of the force, is called by Sir W. Thomson the "
Impulse of the

Motion."

If all the solids are free and the liquid extends to infinity and

is at rest there, the Impulse of the Motion is equal to the momentum
of the system ; and if no impressed forces are in action, it must be
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constant in magnitude and direction throughout the motion. But

if the liquid has fixed boundaries, the impulse of the motion is

equal to the difference between the momentum of the system, and

the impulsive forces arising from the pressures exerted by the fixed

boundaries.

When there is circulation and the liquid extends to infinity

and is at rest there, the impulse of the motion is equal to the

impulse of the forces which must be applied to the solids, together

with the impulses which must be applied to the barriers in order

to produce the cyclic motion.

166. Let p be the pressure of the liquid, l
lt
m

lt n^ the direction

cosines of the normal to S^ j*
1}

/

rj 1 , ; \, /^, v
l
the force and

couple constituents of the impulse which must be applied to 8
lt

in order to produce the actual motion from rest, then,

But --

dT
Therefore ft

= T- , &c.

an

c.
I

(7).7 rn

Similarly \ =
-j

, &c.
Cvl/i

Since T is a homogeneous quadratic function of the velocities

of the solids,

Differentiating with respect to ^ on the hypothesis that

are the independent variables, we obtain

dT du dv

Writing out (7) in full, we obtain

112
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Differentiating these equations with respect to ft ,
on the

supposition that , ^ ...... are the independent variables, we

obtain

&c. &c.

Multiplying these equations by u
lf

vr .. respectively and adding,

we obtain

. du. dv, .

Whence -^ = uv -j
= p1

&c................... (8).
(IC^ OtAj

Equations (7) and (8) are well-known dynamical relations.

Kirchhoff's Equations.

167. When a single solid moves in an infinite liquid, the

equations of motion may be obtained, as Kirchhoff has shown 1

, by

expressing in an analytical form the fact that the rates of change
of the component linear and angular momenta of the system along

and about three rectangular axes fixed in the solid are respectively

equal to the components of the impressed forces and couples along

and about these axes.

Since we are dealing with a single solid we may drop the

suffixes and put (o
lt

o>
2 ,

w
3

for the angular velocities of the

solid.

If f, i), % be the component linear momenta along, and X, //,,
v

be the component angular momenta about three rectangular axes

which are moving with angular velocities O
lt

6
Z ,

6
3
about them-

selves, of any dynamical system whatever; and if X, Y, Z and

L, M, N be the components parallel to and about the axes of the

forces and couples respectively which act upon the system, it is

known 2
that the equations of motion of the system are

1 Forks, uber Math. Phys. p. 60.
2
Hayward, Trans. Camb. Phil. Soc. vol. x. ; see also Besant's Dynamics, 232.
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X wrj-}- v% /J,0a

(9),= L

where u, v, w are the component velocities parallel to the axes, of

the origin of coordinates.

Since these equations are true for any dynamical system

whatever, they will hold when the motion of the liquid in which

the solid is immersed is cyclic or rotational or both
;
but the

analytical expressions for the momenta f, 97, &c. will depend upon
the particular kind of motion of the liquid.

When the motion of the liquid is irrotational and acyclic,

the momenta are determined by (7); also if the motion is

referred to the principal axes of the solid
1
=

Wj, 2
= o>

2 , 3
= &>

3 ,

and the equations of motion become

d dT dT dT
-j- -j

&> -j- + 0) -T =
dt du 3 dv * dw

dt dv l dw 3 du

d dT dT
,

dT
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draw OX, OY, OZ parallel to the fixed axes, and let OA, OB, 00

be the principal axes of the solid at 0.

The angular velocities are given by the equations (Routh's

Rigid Dynamics, vol. I. 256)

Wj
= sin

(f> TJr
sin 6 cos $ \

o>
2
= 9 cos

<f>
+ ^ sin 6 sin < \ (11).

o)
8
=

<f> 4- TJr
cos J

Also the component velocity of in the direction of OZ) is

w cos < v sin $ = (x cos
i/r + ?/ sin ^) cos 6 z sin 0,

and in the direction of OE is

u sin
(/>

-f v cos = sin ^ + y cos
A|T.

Solving these equations, and observing that w is the component

velocity of in the direction of OG, we obtain

u x (cos 6 cos < cos ^ sin
</>

sin
i/r)

+ y (cos ^ cos $ sin
i/r + sin

</>
cos ^) - ^ sin ^ cos

</>

v = x (cos ^ sin < cos
i|r + cos

</>
sin

-v/r)

y (cos ^ sin
^>

sin ^ cos
<f>

cos
i|r) + z sin ^ sin ^>

w = ic sin ^ cos
i|r + 2/

sin ^ sin
i|r + ^ cos

(12).

169. The preceding equations may be considerably simplified
in the case of a solid of revolution.

Let OG be the axis of revolution, OX, OY, OZ three straight
lines parallel to axes fixed in space, let w be the velocity of
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along 00, u, v the velocities at right angles to 00 in and perpen-
dicular to the plane ZOO. Then

u = x cos ty cos + y sin ^r cos 6 z sin 6 \

v - x sin
i/r -f- y cos ^ I

(13).

w = & cos
t/r

sin -f ?/
sin ^ sin # + cos # J

Also if &)p &>
2 ,

o>
3
be the angular velocities about OA, OB, 00

(o^ TJrsmO, o)
2
=

0, co
3
=

(j> + ^ cos (14),

where the plane OOE is fixed in the body.

The velocities of each of the solids can be expressed in a

similar manner by means of equations (11) and (12), or (13) and

(14) ;
hence if we can obtain the values of the coefficients in terms

of the coordinates, the motion can be completely determined.

Cyclic Motion.

1*70. We must now consider the more general problem of the

motion of any number of solids, each one of which has several

apertures through which circulation takes place
1
.

The following additional notation will be employed. Let

< = velocity potential of the whole motion.

^ = do. due to motion of solids alone.

n = do. due to cyclic motion.

1 Proc. (Jamb. Phil. Soc. vol. vi. p. 117.
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*.', *.", *'"; *.,', X." %."' the velocity Potentials of the liquid,

when the solid Sm is moving with linear and angular velocities

respectively along and about axes fixed in 8mt and all the other

solids are at rest and there is no circulation.

<rm ,
a-m', <r

TO
"... the areas of the apertures of Sm .

Km) /cm',
/em"... the circulations through them.

&>OT ,ft>m', a>m""- the velocity potentials due to unit circulations

through the apertures of Sm ,
when all the solids are at rest.

^m* ^m' ^m'"' ^G fluxes through the apertures of Sm
relative to Sm.

<3>m the velocity potential due to the motion of Sm and the

circulations through its apertures, when all the other solids are

at rest.

By Thomson's extension of Green's Theorem, it is known that

the motion at any period could be instantaneously produced from

rest, by the application of suitable impulses to each of the solids,

together with uniform impulsive pressures tcmp, /c'mp . . . applied to

every point of the barriers <rm ,
<7m

'

... respectively. Let Xm) Ym ,
Zm ;

Lm ,
Mm ,

Nm be the force and couple components of the impulse

along and about axes fixed in Sm ,
which must be applied to Sm .

Let
> *>, ; \> /*m , "; ', Vm be the components of the

impulses which must be applied to each of the barriers of S
n ;

also

let f.-2f. &c.; Xm=Xm + %m &c., and let
, p.,^ HM ,

|Wm , $Lm be the generalised components corresponding to um) vm ...

of the momentum of the cyclic motion, when all the solids are

at rest.

Let Mm be the mass of Sm ,
the kinetic energy of the liquid,

T that of the whole motion. It will be shown that T is the

sum of two homogeneous quadratic functions of the velocities and

circulations respectively. Let these be denoted by X and ft

respectively, and let (-(u^ii^), (umvm)
denote the coefficients of

**, umvm , &c.

Since the w's are the velocity potentials due to unit circulations

round circuits which cut the apertures to which they correspond
once only, when all the solids are at rest, they must satisfy the

following conditions.

(i) At all points of the liquid V
2
&> = 0, and w and its first

derivatives must be finite and continuous at all points of the liquid,

and must vanish at infinity.
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(ii) At the surface of each solid da>/dn
= 0.

(iii) ft> must be a monocyclic function whose increment is

unity for all circuits which cut the barrier to which it corresponds

once only, and zero for all circuits which do not cut this barrier.

It therefore follows that

and that

171. The kinetic energy of the liquid is

where the first integral is taken over the surfaces of all the solids,

and the second over all the barriers. Since d<&m/dn at the surface

of 8m is equal to the normal velocity of Sm,
and is zero at the

surfaces of each of the other solids,

We can now show that

(MlfO = -

ff

JJ

(16).

*" -
''

The above equations can be at once established by Thomson's

extension of Green's Theorem. For if in equations (25) and (26)
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of 88, we put </>
= a)

1} ty
=

fa, then since a)
l

is a monocyclic
function whose increment is unity for all circuits which cut the

barrier cr
l once, and zero for all other circuits, and fa is a single

valued function, we obtain

dn
dS.

Now dfa/dn is zero at the surfaces of all the solids except Slt

and dcojdn is zero at the surfaces of all the solids, whence the

third of equations (16) follows at once. The others can be proved
in a similar manner

;
hence the products of velocities and circu-

lations do not enter into the expressions for the kinetic energy of

the system, and we may therefore put

where X is a homogeneous quadratic function of the velocities of

the solids alone, and is a similar function of the circulations.

172. If p be the pressure and l
lt
m

1} n^ the direction cosines

of the normal to ,

dn

K f
d

But -T =

where the summation refers to corresponding products, and ex-

tends to all the barriers; hence

Also
t
=
^jpl l^cZo-, &c. &c.

where ^, mj, n
t
are the direction cosines of the normal to the

barrier a
1 ;

whence
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where the summation S
t
extends to the barriers of S

l only ;
also

f, ........ (18).

From (17) we see that the component impulse corresponding to

u
lt
which must be applied to S

l
in order to keep it at rest, when

the cyclic motion is generated by the application of proper impulses

to the barriers of all the solids is p 1 1 d^^/dn . 2 (icda-) ;
and

therefore by (18) the generalised component of momentum 3^ cor-

responding to u
v
of the cyclic motion when all the solids are reduced

to rest, is

(IT
whence X

l
=
^- + K

l
.......................... (20).

Similarly it can be shown that

_ (22).

and Aj
= 2\

t
= p //2 X [K (ny mz) da]

173. We must now obtain an expression for the modified

Lagrangian function.

Let the coordinates of a dynamical system be divided into two

groups 6 and %, the latter of which does not enter into the

expression for the energy of the system. Since the kinetic energy
is a homogeneous quadratic function of the velocities 6 ... %...,
we may put

In this expression none of the coefficients involve x , and

Lagrange's equation corresponding to %, gives

dT
-j

= const. = K, &c.
dX

where K is the generalised component of momentum corresponding
to

; writing these equations out in full, we obtain

(xx)
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the number of equations being equal to the number of the co-

ordinates ^.

Let P, Pj, be the portions of K. KV which do not

involve the ^'s, then P, Plt
are linear functions of the #'s

alone, and (24) may be written

(xx) x + (xx.) x, + = -P)
I
-V//W

]
/W -4

[
/V/ /V/ )

/V
\/V/Vl/ /V V/Xl/\/l/ /\/l

If A denote the determinant

V^Ci/Cs/'
J

the solution of (25) may be written

A ' = ^ (/c PV
^ (%%) **

V/XA;I/

cZA ^A , v . ( (26).
tjt'Y == \/c

~ Jr )
~

d{ ryry )

If therefore we put
. 1 dA ,

N
1 cA

( /^/ ) ( KK )
== OCCA ct (yy ) A ft (w )

'

OO"> (ifif\ ~P^ -4- 9 I if if \ ~P~P -L ^

2^ = /^^ ^2 _i_ 2 f/c^ ) /c/c + I

(*'')'

(26) may be written

Let ^ be the portion of T which is independent of % ; then,

since Tis a homogeneous quadratic function of the velocities,

. dT .
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Writing out the last term in full, it is easily seen from (27)

that it vanishes
;
and therefore since ty is a homogeneous quadratic

function of the velocities 6 alone, it follows that T is equal to the

sum of a homogeneous quadratic function of the velocities 6,

together with a similar function of the momenta K. We may
therefore put

r= + tf (29),

where X^Q-ty (30).

Let be the generalised component of momentum correspond-

ing to 6, and let be the value of after the velocities 6 have

been destroyed by means of proper impulses applied to the system.

The momenta K will evidently be unaffected by these impulses,

but the velocities % will be affected, since the impulse required to

destroy 6 will produce reactions arising from the connections of

the system which will change the values of the %'s. Now

Zl ^.
1 f\

\ /V/ \fJif fl P /d# \* Gtr/

whence ^ =
(^x)^ K^%I)TJ I" (31),

andtherefore f =

_."

de

d ^T cz ^x c^e
whence -y- r=- . + (33).

It appears from (31) that the momentum is a function of

the momenta K and the coordinates only.

dT dX dfc
Again -r^

=
-JQ

+
-TQ

.

Now since enters into through K, we have

=
1-

- -
-f- . . .

dO d/c dO dic^ d6 dd
1
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where the symbol tl/d0 operates on the coefficients and not on

the momenta K. Differentiating (26) with respect to 6, we obtain

<*-&*-
^ / Jti

d
(34).

Multiplying the system of equations of which (34) is the type

by K, *,... respectively and adding, we obtain

die d0 die. dO

VOi- ~r\ M CC/Jl'
-ry V wOl" .~

dO dQ die
l dd' die.

(35).

Multiplying the equations of which (31) is the type by 6, #,...

respectively and adding, we obtain

d

dO

,

whence

d$ b^ &
therefore (35) becomes -^ + -^ -^ 2(0) = 0,

whence

We may now drop the symbol ft/dO on the understanding that

the momenta K are to be treated as constants, and Lagrange's equa-

tions become

d

dtd0

dV

Since and $t do not contain 0, the modified function is

If the velocities 0... be expressed in terms of new velocities u...,

and X be the new momentum corresponding to u after the u's have

been destroyed, it can easily be shown that,

2
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For let 6= Au + Ajjb v
+ AJJL^ + ......

then dO/du = A, dd/di^ = A^ &c.

v dT l

also by (32), 2, =-7-J v

V du) du

therefore

= 2

whence (36) may be written

(Xu)-St+V .................. (37).

174. We have therefore obtained a form of Lagrange's equa-

tions, which can be employed when the kinetic energy is expressed in

terms of the velocities corresponding to the coordinates by which

the position of the system is determined, and the constant momenta

corresponding to the time fluxes of the ignored coordinates.

Now by 89, when a liquid of density p occupies a multiply-

connected region, circulation K can be generated by means of a

uniform impulsive pressure tcp applied to every point of one of

the barriers which must be drawn to make the region simply

connected, and the circulation thus generated cannot be destroyed

excepting by the same process as that by which it has been

produced. It therefore appears that the product of the circulation

and the density is a quantity in the nature of a generalised com-

ponent of momentum.

Hence in order to determine the motion of a number of

perforated solids in an infinite liquid, we must first calculate by
means of (16) the quantities and $; the former of which is the

kinetic energy due to the motion of the solids alone, and is

therefore a homogeneous quadratic function of their velocities, and

must be expressed in terms of the generalised coordinates and

velocities of each solid; and the latter of which is a similar

function of the circulations. The quantity K in (37) is evidently

the generalised component corresponding to u, of the momentum
of the cyclic motion which remains after all the solids have been

reduced to rest, and its value is given by (19) or (22), according
as it is in the nature of a force or a couple.

1 In this term T is supposed to be expressed in terms of the velocities

u... and ....
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175. We can now ascertain the physical meaning of the

generalised velocity % which corresponds to the momentum /cp.

Let
ijr,

be the flux through the aperture ^ of S
t
relative to

S^ Then if l
lt

rap ^ be the direction cosines of the normal to a
1

-m

^i~fa&^

But

die'

If therefore we put

we obtain

H- (38).
pc^

Now if T be expressed as a quadratic function of all the

momenta
ldT = .

p die
^*

But (39),

by (20). Hence in order to obtain ^ we must differentiate (39)

with respect to ic
lt

on the hypothesis that the momenta X are

constant, and that u is a function of K
I ;

whence by (19) and (22),

w d% du .

?
i + ^i(7i + c

i
rJP

(40).+ P I j- dai
+ 2^r

J J dn d/c
1
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From (20) we obtain

where the summation extends to all the unsuffixed letters in-

cluding v u^ Multiplying these equations by u
l)

v
l
... respec-

tively and adding we obtain

y dX dll , Q
du dK

l

J l i i 'i a il

7/T7

whence by (38) and (40) -= =
pyjr l ,

a/c
l

whence ^ =
^jr^

Hence the flux through the aperture cr
1
relative to the solid

S
l

is the generalised velocity corresponding to the momentum K
tp.

This theorem was discovered by Sir W. Thomson 1
.

176. We shall now apply the preceding results to determine

the motion of a single solid having only one aperture.

If u, v, w ;
(ov o>

2 ,
o>

3
be the linear and angular velocities of

the solid, along and about axes fixed in the solid, and Ii the

velocity potential due to the circulation

where

Also by (19) and (22)

1L = /3/ 1 f ny mz -

r/7
7

+ ^&c..................................................... (41),

1 Proc. JJoy. 5oc. Edin., vol. vn. p. 668.

12
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In this case the quantities ... are evidently constants, and

we can either obtain the motion by expressing u, v ... in terms

of x ... by (11) and (12), or by (13) and (14), and then employing

Lagrange's equations; or since X, Y ... are the components of the

momentum of the system along and about the axes of the solid,

we may substitute their values in (9) from (41), and thus determine

the motion by KirchhofFs equations.

Motion of a Si/stem of Cylinders.

177. If we endeavour to calculate the right-hand side of (87),

in the case of the two-dimensional motion of a number of cylinders

in an infinite liquid, when there is circulation round some or

all the cylinders, it will be found that some of the terms become

infinite. In order to avoid this difficulty, we must describe an

imaginary fixed circular cylinder in the liquid, the radius of

whose cross section is a very large quantity c, and then calculate

the value of L for the space contained between the moving

cylinders and the outer one, omitting all the terms which vanish

when c becomes infinite. It will then be found on substituting

the value of L thus obtained in Lagrange's equations and per-

forming the differentiations, that all the terms which become

infinite with c disappear, and we thus obtain the equations of

motion of the cylinders
1

.

178. The calculation of L can most easily be effected by

employing the current function instead of the velocity potential,

for the former function is always single valued unless any sources

or sinks exist in the liquid.

Let u
lt

v
l
be the component velocities of any cylinder Sl along

rectangular axes fixed in the cylinder, w
l

its angular velocity,

K
I
the circulation round any closed circuit which embraces this

cylinder once only.

Let the centre of the cross section of the outer cylinder be

the origin, and let as
l) yl

be the co-ordinates of the centre of inertia

of the cross section of S
l
referred to rectangular axes fixed in space;

#/, y^ the co-ordinates of the same point referred to moving axes

through which are parallel to the directions of u
lf

v
v

. Also let

1 Proc. Comb. Phil Soc., vol. vi. p. 135.
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^ be the current function, and H be the velocity potential of the

cyclic motion when all the cylinders are at rest.

In the figure let CA, CB be the axes of any one of the cylinders

along which uv v
l
are measured, then

das' dx'

where the first integral is to be taken once round the circum-

ference of the cross section of the outer cylinder, and the square
brackets denote that the second integral is to be taken once round

the circumferences of the cross sections of each of the moving

cylinders.

At the surface of each of the moving cylinders ^ is constant,

hence the second integral vanishes, therefore

dx
fc~-

ds
ds.

Let (r y 0') be polar co-ordinates of a point referred to Ox as

initial line, then at a sufficient distance from 0, % can be expanded
in a series of the form

Therefore

-pc 1
J

log c + -
c

Similarly = -
p

t
x
cos ff + 33, sin 0') + . . . sin <9W

}

(43).

dx'dy> = -
fxJ ds

12
(44).

2
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Again, if Jg^ be the angular momentum about C of the cyclic

motion,

'

+y
'

<'
dx

'

dy
' -

By Stokes' theorem the double integral

The first integral =7rpc
2
m, the second integral may be written

hence

Also

-
irp ,,

,

The interal

f
2"

( 1 )

p I
\m log c + - (8 cos ^ 4- 13 sin ^) V

^ o ( c
J

x m - - (a cos ^ + 3 sin 0)1 d0 - 27r/3m
a

log c.

c
)

(46).Whence 5? = Trpm
2

log c + J/oS

Hence we finally obtain

L = X + TT^S (80 - t3w) + 2 (^U))
-
Trpm

2

log c - ipS (^) + V ......

If we substitute the preceding expression for L in Lagrange's

equations and perform the differentiations, it will be found that

the terms irpc^m in jg, and ?r/om
2

log c disappear ;
we may therefore

write

V ...... (48).
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179. The quantity X which does not depend on the cyclic

motion, can be obtained by the ordinary methods. With respect

to the other terms we must first obtain the values of ^ and H
;

we must then draw from a series of lines parallel to the

directions of u
lt

u
2 ..., and take each of these lines successively

as the initial line, and expand ^ in a series of the form

X = - m log r
- - (& cos 6 + <fcj sin 6)

- ...

which will determine the values of the gl's and 33's.

The velocities u, v and the co-ordinates x, y expressed in terms

of x, y, the co-ordinates of C referred to fixed axes, and the angle
which CA makes with Ox, are given by the equations

u x cos 6 + y sin 0, v = x sin 6 + y cos
6]

x = x cos 6 -f y sin 0, y = x sin 6 + y cos 6]

When there are several cylinders, the value of ^ at the surfaces

of the different cylinders is a function of their forms and positions,

and is therefore a function of the co-ordinates
;
when there is

only one cylinder the value of % at its surface is an absolute

constant.



CHA.PTEE IX.

ON THE MOTION OF A SINGLE SOLID IN AN INFINITE

LIQUID.

180. WHEN a single solid is moving in an infinite liquid

whose motion is irrotational and acyclic, the kinetic energy of the

solid and liquid is a homogeneous quadratic function of the com-

ponent velocities of the solid alone, and is therefore of the form
;

2T = Pu2 + Qv* + Rw* + 2Pvw + 2Q'wu + 2R'uv

+ Aa>* + Bco* +<7o>3

2 + 24'oy 8 + 2Bf

co
3
co

1
+ 2C'oy,

+ 2^ (Lu + Mv + Nw)
+ 2o)

2 (L'u + M'v -f N'w)

+ 2a>
3 (L"u + M"v + N"w) ........................... (1),

where u, v, w ;
<o

iy
o)

2 ,
co

3
are the component linear and angular

velocities of the solid.

If the motion is referred to the principal axes of the solid, the

quantities P, Q, R are called the effective inertias of the solid

parallel to the axes; and the quantities A, B, C are called the

effective moments of inertia about the axes. Their values are

determined by the equations

(2)A =* I

where M is the mass of the solid, II
its moment of inertia about

the axis of x, and &...,;&... the constituents of the velocity

potential.

The other coefficients depend solely upon the form of the

solid and the density of the liquid ;
their values are given by

162. (3).
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181. When the form of the solid resembles that of an ellipsoid,

which is symmetrical with respect to three perpendicular planes

through its centre of inertia, and the motion is referred to the

principal axes of the solid at that point, the kinetic energy must

remain unchanged when the direction of any one of the component

velocities is reversed
;
hence the kinetic energy cannot contain

any of the products of the velocities, and must therefore be of the

form
;

2T = Pit + Qv* + Rw* + Aa>? + o>
2

2 + Ceo* (3).

If in addition, the solid is one of revolution about the axis of z,

the kinetic energy will not be altered if u is changed into v, and

fOj
into o>

2 ,
whence P = Q, A = B, and

2T = P (u* + v*) + Rw* + A (<*? + *>./) + CV (4).

Although every solid of revolution must be symmetrical with

respect to all planes through its axis, it is not necessarily sym-
metrical with respect to a plane perpendicular to its axis. The

solid formed by the revolution of a cardioid about its axis is an

example of such a solid. In this case the kinetic energy will be

unaltered when the signs of u, v or &>
3
are changed, and also when

u is changed into v and co
1
into <w

2 ;
hence in this case

1T=P (u
9 + v

2

) + Ru? + A (<o* + ft>
8 ) + Co>

8

a + 2Nw (^+).. .(5).

If the solid moves with its axis in one plane, (say zx\ v and o^

must be zero, and the last term may be got rid of by moving the

origin to a point on the axis of z whose distance from the origin

is - N/R. This point is called the Centre of Reaction.

We shall now consider some special cases.

Motion of a Sphere.

182. Let a sphere of radius a, density cr, and mass
'M be pro-

jected with velocity V in an infinite liquid of density p ;
and let

the sphere be acted upon by a constant force Z perpendicular to

the initial direction of projection.

Let the axis of x be in the direction of projection, and that of z

in the direction of the force, then

= -
J 3 (ux + wz)
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where
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P =M-
pfftld

/cos2
sin

J o

where M' is the mass of the liquid displaced. Therefore

and Lagrange's equations give

_

dt dx dt dz

Integrating we obtain

(M + JJf> = const = (M + JJf)'
F

whence a = F ........... , .................. (6),

and (M+$M')z=Zt

hence (M+\M)z = %Zt ... ................. (7).

Since x remains constant and equal to its initial value, it

follows that if a sphere which is acted upon by no forces, is pro-

jected in any direction with given velocity, it will continue to

move along that direction with the velocity of projection. The

same result can also be shown to be true in the case of any solid

which is symmetrical about an axis, and which is projected

parallel to that axis. This however is altogether contrary to ex-

perience, and the reason of this discrepancy between theory and

observation is, that we have assumed the liquid to be frictionless,

whereas all liquids with which we are acquainted a?e more or less

viscous. The viscosity gives rise to a retarding force by which the

solid and liquid are gradually reduced to rest, and the kinetic

energy is converted into heat.-

The motion of a sphere in a viscous liquid will be considered in

the second volume.

Equation (7) shows that the only effect of the liquid is to pro-

duce an apparent increase in the inertia of the sphere, whose

amount is equal to half the mass of the liquid displaced.

When the sphere is moving under the action of gravity

Z = (M- M') g ;
therefore
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Hence the sphere will describe a parabola in the liquid with

vertical acceleration^ (<7 p)/(o~ + ^p}
l

.

183. In the preceding investigation we have assumed that the

liquid always remains in contact with the sphere ;
but it may

happen that the pressure becomes negative at some point of the

sphere, in which case a hollow would be formed in the liquid.

If the sphere is moving with constant velocity V in a straight

line,

Vazx
*= --gp-.

also since the origin to which < is referred is in motion with

velocity V,

op dx

where II is the pressure at infinity. Hence if

D<f7V,

p will become negative when 6 lies between a and TT y., where

a < ^TT, and a belt of liquid will be thrown off and violently dis-

turbed motion will ensue. For a discussion of the subsequent

motion, see a paper by Sir W. Thomson, Phil. Mag., March, 1887.

184. A sphere of radius a and mass M is contained within a

fixed concentric sphere of radius c, and the intervening space is filled

with liquid of density p which is initially at rest. If an impulse I

be applied to the inner sphere, prove that its initial velocity w is

equal to

r\M t

Let
</>
= -

t + Br cos 6.

Then ~ = w cos when r = a,dr

-7-
= when r = c.

dr

Greenhill, Mathematical Tripos, 1877.
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waa
c* R wa3

Therefore A = - - ,B = -

wa3
c
3

and =__

Now if
/)

be the impulsive pressure on inner sphere p =
p<f>,

therefore

Mw = I+ pffa cos 0dS

T Trpwa
3

(c
3
4- 2a

3

) [ .= 1 ^ 3 cos
2

sin
c -a3

J

27rpa
3

(c
3 + 2a3

) w

ode

3 (c
3 - a3

)

Motion of a Cylinder.

185. When a right circular cylinder is projected in an infinite

liquid which is at rest, and no forces are in action, it will move

(as will presently be shown) in a straight line with uniform velocity,

and the only effect of the liquid will be to produce an apparent
increase in the inertia of the cylinder, which is equal to the mass of

the liquid displaced. There is however an important difference

between the motion of a cylinder and of a sphere, since the space
outside a cylinder is a doubly connected space, and hence circula-

tion round the cylinder is possible.

We shall therefore consider the problem in its most general

aspect
1

.

Let a be the radius of the cylinder, (r, 0) the polar coordinates

of any point referred to its centre
; (x, y) the coordinates of the

same point referred to fixed axes, (a, ft} the coordinates of the

centre of the cylinder, (u, v) its component velocities referred to

the fixed axes
;

tc the circulation. Then

a2

, K&
9 = -- (u cos u + v sm u) + ~

,

(x
-

a.) + (y ft) 2-7T x a

1 Lord Eayleigh,
" On the irregular flight of a tennis ball," Mess. Math., vol. vn.

p. 14; Greenhill, "Note on previous paper," Mess. Math., vol. ix. p. 113.
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Now d = u, 13 = v,

whence we easily find

<
= - - (u cos0 + v sin 6) + -

2 (u* + v
z

)
-^ (u cos 6 + v sin 6f

+ - -' (u sin 6 v cos 6)v

and therefore when r = a

<j>
= a (a cos 6 + v sin 0) + uz

-f v
2

2 (w cos + v sin 0)
2

/

+ ,v (u sin + v cos 0).
-

-Tra

2
*

2
Also V s8

7 + I

' j5
Vdr/ \r d0

Therefore when r = a

/c
2

/<

o'
2 = -- ~

2 + - :
(w sin ^ - v cos 0) + it'

2 + y
2

.

47ra ?ra

If gravity be the only force in action, and the axis of y be

drawn vertically upwards, the pressure is determined by the

equation

~ a (a cos 6 4- v sin 6) + -
(u

2 + v
2

) + s-
-

i H-- (u sin 6 v cos 6),
p 2 O7TCL TTCb

- 2 (u cos 6 + v sin 0)* + g (fi + a sin 0)
= const.

Let Jf, F be the forces parallel to the axes due to the pressure,

then

X = -
jap cos 6d6

t
Y=- T ap sin 6dO,

J ^0

whence omitting the terms which are independent of 6, and which

therefore vanish when integrated round the circle, we obtain

fZir
( KX=

ap I
-

(u sin 9 v cos 0) a (u cos 6 + v sin 6)
J Q \7TCt

- 2 (u cos + v sin 0)
2 + #a sin 01 cos 0d0>

=
A:/9?; irofpu ........................ (8).

Similarly T = fcpu Trcfpi) + Trgpa? .................. (9).

Hence if a be the density of the cylinder, the equations of

motion are

TT(TO?U = X, 7r<TO?V = Y TTCH/ft
2
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which by (8) and (9) become

(10).

We draw the following conclusions from (10),

(i) Let K = 0, g = 0. In this case the acceleration vanishes

and the velocity is constant. Hence if the cylinder is projected

with any velocity, it will continue to move along the direction of

projection with this velocity, and the only effect of the liquid will

be to produce an apparent increase in the inertia of the cylinder

which is equal to the mass of the liquid displaced.

(ii) Let K = 0. In this case the horizontal velocity is constant,

and the cylinder will describe a parabola with vertical acceleration

(iii)
Let g = : and let the initial velocity be parallel to y

and equal to V. Putting /cp/7ra? (p + cr)
= X, and integrating (10)

we obtain,
u = V sin \t, v = V cos \t,

a= V AT
1

cos \t, j3= V X' 1
sin \t.

If therefore the cylinder is projected with velocity V in any
direction, and no external forces are in action, it will describe a

circle in the same direction as that of the cyclic motion.

(iv) When neither g nor K are zero, the integrals of (10) are

u = - Fsin \t, v = Fcos \t,

a=>-?)ff*
V

(a- + p) X X 13
= - sin
X

and therefore the cylinder describes a trochoid moving from right
to left with mean velocity (er p) g/(o- + p) X.

186. The preceding results may also be obtained by Lagrange's

equations ;
for with the notation of 178,

also if (/, 6') be current coordinates

X = log {(r cos & #)
2 + (/ sin 6' yj

1

}

27T

== ~ log r' + Q / (^c cos & + ?/ sin 0'),

whence a = -
/oc/27r, i3 = -

Ky/Z-rr.



MOTION OF AN ELLIPTIC CYLINDER. 189

Taking for a moment the origin at the centre of the cylinder,

the value of is

dr

~
I {rdrde

whence j^ is constant, and the value of L is

L =
\ir< (x* -f- 2/

2

) + %Kp (xy
-
yx\

whence equations (10) at once follow.

187. Let us now suppose that the cross section of the cylinder

is any curve, which does not possess cusps projecting into the

liquid
1

,
and that there is no circulation. The kinetic energy will

be a homogeneous quadratic function of the velocities u, v, o>, and

by changing the directions of the axes we can make the term wo

disappear. We shall however for simplicity confine ourselves to

the case in which the cross section is a curve (such as an ellipse),

which is symmetrical with respect to two perpendicular straight

lines through its centre of inertia. In this case all the products

will disappear, and

277=Pit2 + (y + ^a>2

(11).

Let the liquid be initially at rest, and let the solid be set in

motion by means of an impulse F. This impulse is equivalent to

a linear impulse F applied at the centre of inertia of the cylinder,

together with a couple about its axis. Let O be the initial

angular velocity due to the couple, /3 the angle which the direction

of the impulse F makes with the initial direction of u.

If 6 be the value of this angle at any subsequent time, the

Principle of Conservation of Linear Momentum gives,

Pu = Fcos&, Qv = -F sin 6.

Substituting in (11) we obtain

1
Greenhill,

" On the motion of a cylinder through a frictionless liquid under no

forces," Mess. Math., vol. ix. p. 117.
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Let Q > P
;
then if

6 will vanish, and the cylinder will oscillate
;
but if

6 will never vanish, and the cylinder will make a complete
revolution.

Case I. When the cylinder oscillates, (12) may be written

where / = FJ(Q-P)/APQ, P sin
2/3-^=P sin

2
2.

Equation (13) shows that 6 can never be < a nor > TT a through-
out the motion, hence the axis of least effective inertia (i.e. the

longest diameter of the cross section) will oscillate between the

angles a and TT a. The cylinder will therefore move so that

its flattest side tends to turn itself towards the direction of

motion.

Let cos 6 = cos a sin <,

then (13) becomes

cos a sm 9;

and therefore cos = cos a sn (K + It) (14),

and the period of oscillation is 47T//.

Let (#, y) be the coordinates of the centre of inertia of the

cross section referred to fixed axes, then

x u cos 6 v sin 0, y=u sin + v cos 0,

whence = - + F (,--) cos* 6

\ (15).

These equations show that the centre of inertia of the cross

section of the cylinder moves along a straight line parallel to the

direction of F with uniform velocity FjQ, superimposed upon
which is a variable periodic velocity, and at the same time vibrates
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perpendicularly to this line. This kind of motion frequently

occurs in hydrodynamics, and a body moving in such a manner is

called by Thomson and Tait a Quadranted Pendulum
1
.

Substituting the value of 9 from (14) in terms of t in (15), and

integrating, we shall obtain the values of x and y in terms of t,

and the equation of the path will be obtained by eliminating t

from the resulting equations.

Case II. When the cylinder makes a complete revolution, let

then it is easily seen that k < 1, and (12) becomes,

d = -t(I-k*cos*0)l

whence cos 6 sn (K It/k\

choosing the constant so that vanishes with t. Hence the

solution can be continued as before.

Case III. This is the limiting case between I. and II.

~

and therefore

/ = logtan \Q.

dy IA
1 herelore -~ =

,-, cos u,
du X

IA
y = F sm *

dx F 'lA

F IA
x =

PI log tan^ +
~F~

cos ^'

Putting IA/F= c, and eliminating 6 we obtain the equation of

the path, viz.

1 Natural Philosophy, vol. i. part i. 322.
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The curves described by the centre of inertia of the cylinder

in the three cases, have been traced by Greenhill and are shown in

the figures 1, 2, 3 of the accompanying diagram.

If the cylinder is projected parallel to the longest diameter of

its cross section and be slightly displaced, it appears from (12) that

its motion will be the same as that considered in Case III.

The values of P, Q, A for an elliptic cylinder are,

whence Q < P.

188. If the cross section is a curve such as a cardioid, which

is symmetrical with respect to only one straight line through its

centre of inertia, which we shall take as the direction of u, the

kinetic energy will be

2T = Pu2 + Qv* + Aw* + ZLcou,

and if we transfer the origin to a point on the axis of y whose dis-

tance from the origin is L/P, the kinetic energy will be

and the previous results apply.

Motion of an Ellipsoid
1

.

189. If a solid which is symmetrical with respect to three

planes through its centre of inertia, which are mutually at right

angles, is set in motion along one of its principal axes, and there

are no forces in action, it will continue to move along that direction

with uniform velocity. Similarly if it be set in rotation about a

principal axis, it will continue to rotate about that axis with

uniform angular velocity, provided the solid does not contain any

apertures through which circulation takes place.

1
Greenhill, "Fluid motion between confocal elliptic cylinders and confocal

ellipsoids," Quart. Journ., vol. xvi. p. 227.

B. 13
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Let us now suppose that the solid is set in motion by means of

an impulse F, whose direction is inclined at an angle a to the axis

00 of the solid.

If the axis of z coincides with the direction of the impulse,

and no forces are in action, the component momentum parallel to

z must be equal to F, and the components parallel to x and y
must be zero throughout the motion, whence

Pu = F sin 6 cos
<f),

Qv = F sin cos 0,

Rw = F cos 6.

Substituting these values of u, v, w in (3) we obtain,

i \ P Q J
' R

The motion is therefore the same as that of a rigid body

rotating about its centre of inertia, under the action of a system of

forces whose potential is

190. Let the solid be moving without rotation along one of its

principal axes which coincides with the direction of the axis of x,

and be slightly disturbed from its state of steady motion.

Let u = u + u be the new velocity parallel to x after disturb-

ance. In the beginning of the disturbed motion, u', v, &c. are all

small quantities, and Kirchhoffs equations give

Pu = 0, Qv = - Pu co
3,

Rw = Pu a>
2 ,

Av^O, B<b
2
= (R-P) UQW, Cw

3
= (P-Q) u v.
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Hence Qv +
P (P ~ < v = 0,

L/

The motion will therefore be unstable unless P is greater than

either Q or R.

191. The only solid for which the quantities P, Q, R, A, B, G
have been determined is the ellipsoid.

From 180 (2),

A = I
1 p fffa (ny mz) dS.

Hence if we write

, f
00 d\

A = 27rabc I -r-2 g /2 y >a -rj ,

we obtain from 147
rr

-A^L dS>A -4)7T

MA'
-

r/ ,

4*7T A

by 7 (9), where M' is the mass of the liquid displaced. Similarly

A -
I,
=

JM (tf + c
2

)
-

pafffyz (ny
- mz) dS,

c
2

)
-

pa'

Since C f

>B'>A', it follows that J2> Q>P, whence in the

case of the ellipsoid the least axis is the only direction of stable

motion.

192. When the motion is such that two of the axes always
remain in a plane, the equations of motion can be integrated ;

for

if these axes be the directions of u and v, we have w = 0, o>
1
= 0,

fc>
2
= 0, and

2T = Pi<? + Qv* + Ca>*,

the kinetic energy 'is therefore of the same form as in the case

of the cylinder considered in 187.

132
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Under the same circumstances, when the solid is symmetrical

with respect to two perpendicular planes through its centre of

inertia, the kinetic energy is of the form

2T = Pu? + Qv* + A>*

which is reducible to the previous form.

On the Motion of a Solid of Revolution
1
.

193. In considering the motion of a solid of revolution, it will

be convenient to discuss the case of a ring through whose aperture

there is circulation. If in our results we put K = 0, we shall .

obtain the motion of any solid of revolution ring shaped or not

when there is no circulation.

Let G be the centre of inertia of a plane curve S, OZ any
fixed straight line lying in the plane of 8, and let OG be per-

pendicular to OZ. We shall assume 8 to be symmetrical with

respect to OG, but otherwise it may be of any form, provided
there are no singular points capable of giving rise to sharp edges ;

and the ring will be supposed to be generated by the revolution of

8 about OZ. Then will be the centre of inertia of the ring, OZ
its axis of unequal moment, which will be called the axis of the

ring; and the circle described by G will be called the circular axis

of the ring.

Let the ring be introduced into an infinite liquid which

is at rest, and held fixed
;

let the circular aperture be closed up

by means of a plane diaphragm, whose area is cr
;
and let cyclic

irrotational motion be generated by applying to every point of this

diaphragm a uniform impulsive pressure Kp, where p is the density
of the liquid, and then let the diaphragm be removed.

The velocity potential of this cyclic motion will be

*-*&,
where O is a monocyclic function whose cyclic constant is unity,
and K is the circulation, round any closed circuit, which embraces

the ring once only.

The resultant momentum of the cyclic motion will be parallel

1 Proc. Camb. Phil. Soc., vol. vi. p. 47.
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to the direction of the impulsive pressure on the diaphragm, and

equal to y& ;
and the energy to \Kn?> where

and n is the ^-direction cosine of the normal to the ring drawn

outwards, and dS an element of its surface.

If the ring be set in motion, the kinetic energy and momentum
of the ring and liquid will be determined by the equations

2 T = P (u
2 + v

2

) + Rw- + A (ay* +O + Ca>* + Kit ...... (17),

.(18).

Since the liquid is incapable of producing a couple about the

axis of the ring, o>
3
= const. = co throughout the motion.

Hence, if the ring be let go after the cyclic motion has been

generated, it will remain at rest
;
for the only possible motion will

be in the direction of its axis, and consequently

2 T= Rw9 + Ceo
2 + KK? = its initial value,

therefore w = 0.

194. Let the ring be set in motion by means of an impulsive

couple G about any diameter OB of its circular axis.

The axis OC of the ring will evidently move in a fixed plane,

which is perpendicular to the axis of the couple. Let be the

inclination of OG to OZ at time t
; u, w the velocities of along

OA and OC.
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The principle of Conservation of Linear Momentum gives,

whence

cos d + ? sin 6 = 0,

= -J& sin
(19).

If z, x be the velocities of along and perpendicular to OZ,

then

x = u cos + w sin 0,

z w cos u sin 0.

Therefore
G7 1

.(20).

Also 2T= Pw2 + Rw* + A 0* + .KV5 = const.

Substituting the values of w and w from (19) we obtain,

say,

where co is the initial value of 0.

The character of the motion depends upon the roots of the

equation f(&)
=

0, which we shall now consider.

The roots are

cos =

Case I. Let E > P.

In order that the roots may be real, we must have

If this condition be satisfied, one root will be positive and < 1,

and the other will be negative and less than 1. Hence will

vanish when has some value /3 lying between and TT, and the

ring will oscillate between the angles /3 and ft.
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But if >

both roots will be imaginary, and 9 will never vanish. Hence the

ring will make a complete revolution.

Case II. LetP>.
In this case both roots are real, and one of them is positive and

< 1 provided a> is sufficiently small
;
but if o> is sufficiently large

both roots will be negative and < 1. In order that one root

should not be < 1, it is necessary that

If this condition be satisfied, the ring will oscillate between the

angles ft and ft, where ft lies between and TT
;
but if

258

the ring will make a complete revolution.

195. In order to find the period of oscillation or revolution,

as the case may be, we must express 6 in terms of t.

Case I. R > P.

(i) Let the roots be real and equal to p and q, where

q > 1 > p > 0.

Equation (21) may be written

6* = M* (cos d - jp)(cos d + q),

fJ7'l

where M*

Q l-D cos
2

Let cos# =

where D

1 +

1-
+ p

/ T\

Then dd

where
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Therefore

,,,. ~

therefore < = am It,

where /= $M V(l +P)(l + ?)

Therefore -- 2

~

arid the period of a complete oscillation is 4sK/L

(ii)
Let the roots be imaginary and equal to p iq.

Then &2 = M 2

{(cos0-p? + q*}.

1 - Z) + (1 + D) cos <

Let COS * =
l

Then M n A ,

1 +D + (!-/>) cos 0'
and

+ 2 cos
^> [(1

-
j9)

2 + q*
- D* {(1 +p)

2 + q*}] + [(1+ D -p (1
-

Hence if

the coefficient of cos < will vanish
; substituting this value of D,

we obtain,

dO 1 d(f>

V((cos d -pf + q*} {(I +p
2

where W =
I fl +-l-p'-g*-

{(l+/ + g
2

)

2 -V} 2
-l

Hence $ = am /%

where I'=M {(I +/
and we finally obtain

and the time of a complete revolution is 4tKfI'.



MOTION OF A RING. 201

Case II. P > E.

In this case both roots are real, and one root is always negative

and numerically greater than unity.

(i) Let the roots be p and q, where q>l>p>0. The

transformation is the same as in Case I. sub-case (i).

(ii) Let the roots be p and q, where q > 1 >p > 0.

Then 2 = M z

(cos 6 +p) (cos 6 + q),

where M*

In this case we employ the same transformation, but must put

s
2(q-p)

(in) Let the roots be - p and - q, where q > p > 1.

1 - D sin
2 6

We must put cos 6
l+Dsin2

(/>'

where D = -
,

p + l

=
7

In order to obtain the path described by the centre of inertia

of the ring, we must substitute the value of 6 in terms of t in

(20), and integrate the result.

We can however ascertain the character of the motion of

without integrating (20). For differentiating (21) we obtain

A 6 = - ^ sin - 5&
2 (~ -

~^\
sin cos 6.

Therefore x = -=-
,

and x = ^ (0
-

w).

Also the value of z may be written
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The term in square brackets has its greatest value when =
0,

in which case J^ = 0; hence z can never become negative. The

motion of is such that moves along the initial direction of the

axis of the ring with a uniform velocity, superimposed upon which

is a variable periodic velocity; and at the same time vibrates

perpendicularly to this line.

196. Since the momentum due to the circulation alone is

always perpendicular to the plane of the ring, it follows that if a

ring initially at rest be set in motion by means of a couple about a

diameter, the direction of this momentum will be changed ;
and

the opposition which the liquid exerts against this action on the

part of the ring, will produce a couple tending to oppose the rotation

of the ring. Also, since the impressed couple can produce no effect

on the linear momentum of the system, it follows that the effect of

changing the direction of the momentum due to the circulation,

will be to cause the ring to move with a velocity of translation,

which gives rise to a linear component of momentum of the whole

system, such that the resultant of the latter and 52 (whose direction

has been changed) must be a momentum equal to 5S, and whose

direction coincides with the original direction of S3.

197. We shall now investigate the stability of the motion of a

ring, which is moving parallel to its axis in the direction of the

cyclic motion.

When the motion is steady

%=Rw + 5% = const. = 7,

v = Cco
3
= const. = (2Q,

g_9 .x-jft-9.
In order to obtain the disturbed motion, we must have recourse

to Kirchhoffs equations of motion
;
we shall also suppose that the

co-ordinate axes are fixed in the ring.

Putting for shortness

the equations of disturbed motion are,

Pu - Ptiv + 7a>
2
= 0,

Pv - 7 1 + Plu = 0,

A(b
1
+ Zv + (C - a) fla>

2
=

0,

Ad>
9
-Zu- (0-0)0,^ = 0.
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Putting u = u'e
pt

,
&c. the equation for determining p is,

Pp -Pfl 7

pn pp -7 o

Z Ap (C-A)l
-Z -(C-A)Cl Ap

o,

or

If Zy is positive both values of jp
2
are real and negative, and

the motion will be stable
;
but if Zy be negative, the motion will

be unstable unless

If n = the roots are

and the criterion depends altogether on the sign of Zy. Now

Zy = 7
2

Pyw.

(i) Hence if tc and w are both positive, 7 will be positive and

Zy>0 if R>P,
but if R<P, Zy will not be positive unless

S > (P - R) w.

(ii) If /c is positive and w negative = w', y = 5& Rw'',

hence if 5&> Rw, then Zy > ;
but if 5& < Rw', Zy will not be

positive unless

(5~P)V>Sg,
which requires that R>P.

(Hi) If /e and U is not zero,

Zy = R(R-P} w\

Hence if R > P the motion will be stable
;
but ifE<P the

motion will be unstable unless

198. Another kind of steady motion may be obtained by setting
the ring in motion by means of a couple G about a diameter of its

circular axis, and at the same time applying an impulse j^ in the

opposite direction to that of the cyclic motion.
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The effect of the latter impulse is to destroy the linear

momentum of the system, hence

f=0, ?=0.

5^
Therefore u = 0, w = -

Kirchhoffs 5th equation gives

fju
= const. = 6r = A6.

The motion of the ring is such that its centre of inertia 0,

describes a circle about a fixed axis parallel to the axis of the

couple, through which the plane of the ring always passes. If r

be the distance of from this axis,

5 * Gr_=- = r0=_
;

therefore r = -^~- .U Or

In order to determine the stability, we must put

= G + Acop v = 0,

a

in KirchhofFs equations of motion, where the quantities u, v, &c.,

on the right-hand sides of these equations, are small quantities in

the beginning of the disturbed motion. Also, if the axes are fixed

in the ring,

and the equations of disturbed motion are

Ew -- <u =
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From the first and third equations we obtain

,
. (Gtw = w sin 4- a

Rw (Gt

The fifth equation gives

5&w' (Gt= ~- sin
(

-

A
- + a

) + const.
(r \A.

The second and fourth give

v = const.,

a) = -.- n vt -f const.
A. LI,

These equations show that the motion is stable for all displace-

ments which do not tend to remove the centre of inertia from the

plane of its motion; but the motion is unstable for all displacements
which tend to produce this effect. If the disturbance is such that

v = Q, the disturbed motion will still be stable, but the axis of

rotation will be shifted through a certain angle.

199. A third kind of steady motion, which is helicoidal, is

obtained by first communicating to the ring an arbitrary angular

velocity fl about its axis; secondly by applying an impulsive

couple G about an axis inclined at an arbitrary angle a to the axis

of the ring ;
and thirdly by applying a determinate impulse in the

plane of the axes of the ring and couple.

In order that steady motion may be possible, it is necessary
that v and therefore 77 should be zero throughout the motion. This

Z

condition may be secured by means of an impulsive force whose

components in the direction of X and Z are 5? sin a, and F.
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The equations of momentum are

(f cos 6 + f sin 6) cos ty ^ sin ty
=

0,

(f cos + fsin 6} sin
i/r -f 77 cos ->/r

=
0,

- f sin + f cos = .F+ 5S cos a
;

whence

cos a) sin
(9]

|

.................. (23).

s0 J

Since the components of momentum parallel to the axes of X
and Y (which are fixed in direction, but not in position because

is in motion) are zero throughout the motion, the angular momen-

tum about OZ is constant, whence

-J.o>
1
sin0 + <7Dcos0 = G+ Cfl cos a ......... (24).

The equation of energy gives

Pu* + Rw2 + A (ft),

2 + 2

)
= const.,

putting Z = F+ 5S cos a, this becomes

Z* sin
2 6 {^cosfl-5%1

2

{g+fla(cosg-co80){
aPR A sin

2
(9

+ A62
const. = its initial value ............... (25).

This equation determines the inclination 6 of the axis.

200. So far our equations have been perfectly general, we
shall now introduce the conditions of steady motion. These are

=
, ^r

=
yu/ ,

= = ............... (26),

whence (24) becomes

^//,sin
2 a= ........................ (27).

Differentiating (25) with respect to t, and using (26) and (27),

we obtain

A^ cos a- Cap + -
p Z2

COBOL - =
0...(28).

In order that steady motion may be possible, we must have

-] ......... (29).

Hence, if R > P steady motion will always be possible, but if

P> R, steady motion will be impossible unless the condition (29)
is satisfied.
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If x, y, z be the co-ordinates of 0, we have

f t\ i\ 5^)
x = (u cos 6 + w sin 0) cos ^r

=
\Z(-^ -p\

cos a
-^>

sin a cos ^,

y = (u cos + w sin 0) sin ^ =
JZ

f v>
-

-pj
cos a -

-^
t sin a sin fit,

. . /sin
2
a cos

2
a\ 5S cos a

i = w cos 6 u sin ^ = Z
[ ^ I b

-

f> >

V JT H J ft

whence the centre of inertia describes the helix

52) .

y= - --cosa-
-g

sn a cos

^ cos a

This last result may be at once obtained from the fact that the

impulse of the motion must consist of wrench about a fixed axis
1
.

201. To examine the stability differentiate (25) with respect

to t, we thus obtain

Hence the motion will be stable or unstable according as /' (a)

is positive or negative.

Now

therefore

/ =/ (
a)
= Afi

2

(1 + 2 cos
2

a)

cos a + -
A Z*

( -^
-

-p J
cos 2a + -^ cos a.

Eliminating U by means of (28) we obtain

Z Z -
(1
- 3 cos

2

a) + ~ cos a

1 An elementary demonstration of the results of this article when there is

no circulation, has been given by Greenhill ; Quart. Jour., vol. xvii. p. 86.
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The condition that p
2 should be positive is easily found to be

that

should be positive.

If there is no circulation y& = 0, Z = F, whence the condition

becomes

which requires that a should lie between cos"
1 1 and 0, or between

TT cos"
1

J and TT.

The azimuthal motion of a solid of revolution when there is no

circulation, has been worked out by Prof. Greenhill in the Quart.

Jour., vol. XVI. pp. 247 254
;
and another investigation by him

by means of Weierstrass's Functions will be found in the

Appendix.

General Motion of a Solid.

202. Having discussed the preceding special cases of motion

we shall pass on to discuss certain general theorems relating to

the motion of a single solid.

If the form of the solid is similar to that of a two bladed screw

propeller of a ship, which is symmetrical when turned through two

right angles about the axis of z, the kinetic energy must be

unaltered when the signs of u, v, wv co
2
are all changed, whence

2T= Pu* + Qi? + Ew* + 2R'uv + Aa>? + o>
2

2 + Ceo* + 2CX,
+ 2^ (Lu + Mv) + 2

2 (L'u + M'v) + 2N"a)
s
w (30).

If the solid resembles a four bladed screw propeller which is

symmetrical when turned through any multiple of a right angle,
the kinetic energy must be unaltered when -

v, u,
- &>

2 ,
&>

1
are

written for u, v, wv co
2 respectively, whence

2T= P (u* + v
2

) + Rw* + A + o>
2

2

) + Cco
3

2

+ 2L (top + tojo) + ZM(<o$ - (o
2u) + 2N"v3

w (31).

In this expression the term co^ w^u can be got rid of by
moving the origin along the axis of z.
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If the solid is symmetrical with respect to itself when the axes

of x and y are turned through any given angle a in either direction,

it can be shown that if (1) be transformed by putting

u = u cos v sin 0, wl
= w^ cos 6 o>

2

'

sin 0,

v = u sin 6 + v' cos 6, o)2
= w{ sin 6 + e 2

'

cos 0,

the condition that the transformed expression for T should be

unaltered when 6 is put equal to a or a, is that T must be of the

form (31).

This kind of symmetry is called helicoidal symmetry.

Let us now suppose that there is another axis situated anywhere,
with respect to which the solid possesses helicoidal symmetry.
Since the form of (31) is not affected by turning the axes of x and y

through any angle, we may suppose them placed so that the other

axis of helicoidal symmetry lies in the plane xz. Turning the

axes of x and z round that of y through a certain angle <, the

new axis of x will be the axis of helicoidal symmetry, and the

expression for the energy will be of the form (31) but with the axes

of x and z interchanged ;
whence

...... (32).

A solid of this kind is called by Sir W. Thomson an isotropic

helicoid
1
.

203. When a solid is set in motion along a given direction, it

will not in general continue to move along that direction : similarly,

if the solid be set in rotation about a given axis, it will not in general
continue to rotate about that axis. We shall however show that

there are always three directions mutually at right angles, such

that if the solid is set in motion along any one of them without

rotation and then left to itself, it will continue to move along this

direction with uniform velocity.

When there are no impressed forces, Kirchhoffs equations of

motion, 167, are satisfied by putting o^
= G>

2
= o>

8
=

0, and u
t v, w

all constant, and

\dT_ldT_ IdT
u du v dv w dw'

1 Proc. Roy. Soc. Edinburgh, vol. vn. p. 384. See also, Larmor, "On
Hydrokinetic Symmetry," Quart. Journ. vol. xx. p. 261.

B. 14
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whence 2T = Pi? -f Qv* + Rw* + ZP'vw + ZQ'wu, + ZR'uv,

Pu + Kv + Q'w R'u + Qv + P'w _ Q'u + P'v + Rw
and ~^r ~^r ~^~

These equations show that the resultant velocity must be

in the direction of one of the principal axes of the ellipsoid

Par + Qy* + Rw* + %P'yz + ZQ'zx + ZR'xy = const.,

which proves the proposition.

204. It is shown in treatises on Statics that every system of

forces is reducible to a wrench; that is to say a single force, and

a couple whose axis coincides with the direction of the force. The

ratio of the couple to the force is called the pitch of the wrench.

Similarly the motion of every rigid body is reducible to a twist

about a certain screw; that is to say a velocity of translation

along a certain line which is called the axis of the screw, together

with a rotation about that axis. The ratio of the linear to the

angular velocity is called the pitch of the screw.

If in 203 the axes of coordinates coincide with the three

directions of permanent translation, the impulse is determined by
the equations

'

<Zr D dT Tf-- = Pu; X = -j
= Lu,

du dco
l

and therefore consists of a wrench of pitch L/P.

205. The above motion is not the only permanent steady

motion of which the solid is capable : for if the velocities and there-

fore the momenta are constant, KirchhofFs first three equations

of motion give

1 = ^ = ^=7* (33),

and the last three combined with these give

\ hu jL hv v hw
k (34).

Equation (33) expresses the condition that the axes of the screw

and wrench should be parallel, the condition that they should be

coincident is

which by (33) is equivalent to (34).
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Hence there exists a simply infinite system of possible steady

motions, each of which consists of a twist about a certain screw.

The pitches of the screw and the wrench are in general

different
;

if K be that of the former and K that of the latter

, X + fjLT] 4- v _ co^u + co^v + co
3
w k

' ~
2

~~ '''S'" +
h

'

whence k = h (K K).

And the expression for the kinetic energy becomes

2T= gu 4- r)v + %w + X^ + /u,&>2 + va>3

where co is the resultant angular velocity.

The values of h and k are not independent, for if the three

directions of permanent translation be chosen for the axes of

coordinates, and we substitute in (33) and (34) the values of f, 77,

&c. obtained by putting P', Q
f

,
R equal to zero, we shall have the

following system of equations

(A -&)&>! + C'co
2 + B'c*

3 + (L- h) u + Mv + Nw =
&c. &c.

&c. &c.

Substituting the values of u, v, w from the last three equations
in the first three, it will be found that (35) are of the form

y'co 1
+ /3a>2 + a

y

a)
3

P'w^ + aV2 + 7&.>3

whence k is determined by the equation

a - k
t j, &

7, P-k, *

The roots of this equation are all real
;
hence to every value of

h there are three values of k, which are all real
;
and the axes

of the three screws are mutually at right angles but do not in

general intersect.

142
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206. We shall now show that when the impulse of the motion

consists of a couple only, the motion of the solid consists of a

motion of translation combined with a motion of rotation, which is

the same as that of a certain ellipsoid which rolls upon a certain

moveable plane.

Taking the axes of permanent translation as the axes of

coordinates, we have f = vj
= f= throughout the motion

;
hence

Pu + L^ + L'a>
9 + L"a>

s
= &c. &c.

Aw^ 4- C"ft)
2 + B'cos + Lu + Mv + Nw = X &c. &c.

If we eliminate u, v, w from the last three equations by means

of the first three, it will be found that

d d d
X=j > PJ* v = ^~>

d(o
l

dco
2

dco3

where

2 = $0^ + <&ft)
2

2 + <&ft>3
2 + 2$ Gy, + 2<a'ft>3 1

+ W0&. . .(36),

M . Lz M* N*
^ ==A ~p~~Q~' >̂

&C
'> &C'>

,, L'L" MM" N'N"
1 =^ -

-p Q 5- &c., &c.

The equations of motion are

X =
cozfj,

w
2
i/ &c. &c (37).

In equations (37) let us change the directions of the axes

which are fixed in the body, so that they coincide with the principal

axes of the quadric

3P#
2 + <%2 + !U2 + Effyz + Z,'zx + 23SL'an/

= const.

If this be done, and the equation of the quadric referred to

these axes is

arf+^+T^-l,
we shall have

V =
aa>/, fL

=
^fl>a', z/' = 7&>3',

and (37) becomes

oWj' (/S 7) ft>
2

'

&)/
= 0, &c.

whence the motion of rotation is obtained by making the above

mentioned quadric roll on the plane

\x + py + vz = const.,

whose direction is fixed in space (since X, p, v are constant), with

an angular velocity proportional to the length 01 of the radius

vector drawn from the origin to the point of contact /.
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The motion of translation is obtained by making the plane and

quadric move through space with a velocity whose components are

given by f = 0, rj
=

0, f = 0.

The theorems of the last two articles are taken from a paper

by Prof. Lamb, Proc. Lond. Math. Soc. vol. vm. p. 273.

EXAMPLES.

1. Apply Lagrange's equations to determine the equations of

motion of an anchor ring ;
and thence obtain the theorem that the

flux through the aperture relative to the ring, is the generalized

velocity corresponding to the product of the circulation and density
of the liquid.

2. If A and B be the forces required to act per unit of time, in

order to generate unit velocity perpendicular and parallel respec-

tively to the axis of an ellipsoid of revolution in an infinite liquid,

and if G be the couple required to act per unit of time in order to

generate unit angular velocity about an equatoreal axis, prove that

the kinetic energy of the ellipsoid and the liquid is

J (An* + Av* + Bw* + Gu? + Gu>* + Ca>*)

with Euler's notation, C being the polar moment of inertia of the

solid.

Express T in terms of Lagrange's coordinates x, y, z, 0, <, i/r ;

and prove that if the axis of z be parallel to the impressed impulse

F, then

sb = F (-.
-~J

sin 6 cos 9 cos

y F ( -r -

j
sin 6 cos 6 sisn r,

.

z = - +
-g-J , </> +i|r cos = o>

3,

sin
2 6 + Ca)

3
cos0 =E (a constant),
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3. In the midst of an infinite mass of liquid at rest, is a sphere

of radius a, which is suddenly strained into a spheroid of small

ellipticity. Find the kinetic energy due to the motion of the

liquid contained between the given surface, and an imaginary

concentric spherical surface of radius c; and show that if this

imaginary surface were a real bounding surface which could not

be deformed, the kinetic energy in this case would be to that in

the former case in the ratio

C
5

(3a
5 + 2c

5

)
: 2 (c

5 - a5

)

2
.

4. A pendulum with an elliptic cylindrical cavity filled with

liquid, the generating lines of the cylinder being parallel to the

axis of suspension, performs finite oscillations under the action of

gravity. If I be the length of the equivalent pendulum, and I' the

length when the liquid is solidified, prove that

^
*

where M is the mass of the pendulum, m that of the liquid, h the

distance of the centre of gravity of the whole mass from the axis of

suspension, and a, b the semi-axes of the elliptic cavity.

5. Find the ratio of the kinetic energy of the infinite liquid

surrounding an oblate spheroid, moving with given velocity in its

equatoreal plane, to the kinetic energy of the spheroid ;
and denot-

ing this ratio byP, prove that if the spheroid swing as the bob of

a pendulum under gravity, the distance between the axis of the

suspension and the axis of the spheroid being c, the length of the

simple equivalent pendulum is

I -pia

where a is the equatoreal radius, a and p the densities of the

spheroid and liquid respectively.

6. A pendulum has a cavity excavated within it, and this

cavity is filled with liquid. Prove that if any part of the liquid
be solidified, the time of oscillation will be increased.

7. Prove that if a number of solids be moving freely under
their mutual attractions in an unbounded liquid, the impulse of

the motion remains constant.
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8. The space between two infinitely long coaxial cylinders of

radii a and b respectively, is filled with liquid of density p, and the

inner cylinder is suddenly moved with velocity U perpendicular to

the axis, the outer one being kept at rest. Show that the resultant

impulsive pressure on a length I of the inner cylinder is

9. An elliptic cylindrical shell, the mass of which may be

neglected, is filled with water, and placed on a horizontal plane

very nearly in the position of unstable equilibrium with its axis

horizontal, and then let go. When it passes through the position

of stable equilibrium, find the angular velocity of the cylinder, (i)

when the horizontal plane is perfectly smooth, (ii) when it is

perfectly rough ;
and prove that in these two cases, the squares of

the angular velocities of the cylinder are in the ratio

(a
2 - 6

2

)
2 + 4&

2

(a
2 + 6

2

) : (a
2 - 6

2

)

2

,

2a and 26 being the axes of the cross section of the cylinder.

10. A solid ellipsoid of density a is placed inside a fixed con-

centric, confocal, and similarly situated ellipsoidal shell, and the

space between them is filled with liquid of density p. Supposing
that the whole matter attracts according to the Newtonian law,

and that cr > p, show that when the solid ellipsoid is slightly

displaced parallel to its greatest axis, the time T of a small

oscillation is given by

where a, b, c and a', b', c are the semi-axes of the outer and inner

ellipsoids, and

f abcd\
jA. = I Y .

11. The space between two coaxial cylinders is filled with

liquid, and the outer is surrounded by liquid, extending to infinity,

the whole being bounded by planes perpendicular to the axis. If

the inner cylinder be suddenly moved with given velocity, prove
that the velocity of the outer cylinder to that of the inner will be

in the ratio

26
2

c> : p (a*V
- oV + b

4 + 6V) + a- (a
2 - 6

2

) (6
2 - c

2

),

where a and b are the external and internal radii of the outer

cylinder, a- its density, c the radius of the inner cylinder and p the

density of the liquid.
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1 2. The ellipsoid (#/a)
2 + (y/6)

2 + 0/c)
2 = 1, is filled with liquid

originally at rest, and rotates uniformly about an axis through its

centre of inertia : prove that the surfaces of equal pressure are

given by the equation

(4, 5, <7, J.', .B', C')(x,y,z)*=\
where

.

__ (c
2 -a2

)(3c
2 + a2

)o>2

2

_ (a
2 - 6

2

) (36
2 + a2

)<
(f + a*)* (a

2 + 6
2

)

2

6V + cV + a2
6
2 -3a4

A
-(?+(.)( + &)

""*

and Oj, w2 ,
o>

3
are the component angular velocities of the ellipsoid.

13. In the last example prove that if the ellipsoid be set in

rotation and then left to itself, the components of the velocity of

the liquid relatively to the ellipsoid are

y-

and that if the ellipsoid revolves about a fixed axis after

revolutions of the ellipsoid, every particle of liquid will be in the

same position relatively to the ellipsoid,

14. A closed vessel filled with liquid of density p, is moved in

any manner about a fixed point 0. If at any time the liquid

were removed, and a pressure proportional to the velocity potential

were applied at every point of the surface, the resultant couple
due to the pressure would be of magnitude G, and its direction in

a line Q. Show that the kinetic energy of the liquid was pro-

portional to
|/>&>(T cos 0, where o> is the angular velocity of the

surface, and 6 the angle between the direction of a> and OQ.

15. A solid cylinder of radius a immersed in an infinite liquid,

is attached to an axis about which it can turn, whose distance

from the axis of the cylinder is c, and oscillates under the action
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of gravity. Prove that the length of the simple equivalent

pendulum is

<r and p being the densities of the cylinder and liquid.

16. A light cylindrical shell whose cross section is an ellipse

filled with water is placed at rest on a smooth horizontal plane in

its position of unstable equilibrium. If it is slightly disturbed,

prove that it will pass through its position of stable equilibrium
with angular velocity o>, given by the equation

17. A quantity of heavy heterogeneous liquid is placed inside

an ellipsoid, which is then moved so that the density of the liquid

is always the same function of the depth. Prove that a certain

cone coaxial and concyclic with the reciprocal ellipsoid, moves so

as always to have one of its generators vertical.

18. Liquid of density p is contained between two confocal

elliptic cylinders and two planes perpendicular to their axes. The

lengths of the semi-axes of the inner and outer cylinders are

c cosh a, c sinh a, c cosh fi, c sinh ft respectively. Prove that if the

outer cylinder be made to rotate about its axis with angular

velocity H, the inner cylinder will begin to rotate with angular

velocity

Up cosech 2 (ff
-

a)

p coth 2 (ft a) + \<r sinh 4a
'

where or is the density of the cylinder.

19. A circular cylinder of mass M, whose centre of inertia is

at a distance c from its axis, is projected in an infinite liquid under

the action of gravity. Prove that the centre of inertia of the

cylinder and the displaced liquid will describe a parabola, while

the cylinder oscillates like a pendulum of length

where M' is the mass of the liquid displaced, and k is the radius

of gyration of the cylinder about its axis.

20. The space between two coaxial similar and similarly
situated elliptic cylinders is filled with liquid, and the cylinders
are rotating with uniform angular velocity ay. Find what would

be the new angular velocity if the liquid were suddenly solidified.
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21. A hollow vessel of the form of an equilateral prism filled

with liquid, is struck excentrically by a given blow in a plane

perpendicular to the axis and bisecting three edges; find the

initial motion of the vessel.

22. A cylinder whose cross section is an ellipse is moving in

an infinite liquid. Prove that when there is circulation round the

cylinder, its equations of motion are

(Pu cos 6 - Qv sin 6 + Kpy) = X,
(tt

-- (Pu sin 6 + Qv cos 6 Kpx) = Y,

where (x, y) are the coordinates of the centre of the cross section,

X, Y the components of the impressed forces parallel to fixed

axes, N is the impressed couple about the axis of the cylinder, u, v

are the component velocities of the cylinder parallel to the major
and minor axes of its cross section, and is the angle which the

major axis makes with the axis of x.

23. Prove that helicoidal steady motion is always possible

when a planetary ellipsoid is moving in an infinite liquid ;
but it

is not possible in the case of an ovary ellipsoid, unless the ratio of

the angular momentum of the ellipsoid about its polar axis, to its

component velocity along this axis is greater than 2</RA (1 R/P) ;

where R and P are the effective inertias of the ellipsoid about its

polar axis, and an equatoreal axis and A is its effective moment of

inertia about the latter axis.

24. A solid of revolution of mass M, is rotating in any
manner about its centre of inertia, in an infinite liquid. Prove

that if it is allowed to descend under the action of gravity, its

vertical velocity at time t will be equal to

where M' is the mass of the liquid displaced; and 6 is the

inclination of the axis of the solid to the vertical at time t.

Obtain the differential equation for determining dd/dt.



CHAPTER X.

ON THE MOTION OF TWO CYLINDERS .

207. WE have shown in Chapter V. that, when two cylinders

are moving in a liquid of density p, the kinetic energy of the

whole motion is

2T=(M+ P) (u* + tf) + (M
f

+ Q) (u
z +O + 2L (uu

-
w'),

where M, M' are the masses of the cylinders ; u, v, u, v' their com-

ponent velocities perpendicular to and along the line joining their

centres. The values of the coefficients are given
1

by equations (73)

of 123 or (74), (75) and (76) of 124
;
and are functions of the

distance between the cylinders alone.

208. We shall now apply these formulae to the consideration

of the motion of a cylinder in a liquid bounded by a fixed plane,

when there is no circulation
2

.

When two equal cylinders are projected with equal velocities

perpendicularly to the line joining their centres, it is clear that

during the subsequent motion, the velocities of each cylinder

perpendicular to this line will remain equal, and that their veloci-

ties parallel to this line will be equal and opposite. Hence the

plane which is perpendicular to this line and bisects it will be fixed

in space, and there will be no flux across it. One of the cylinders

may therefore be removed, and the above mentioned plane sub-

stituted in its place ;
we shall thus obtain the motion of a cylinder

in a liquid which is bounded by a rigid plane.

1 See Errata.
2
Hicks,

" On the motion of two cylinders in a fluid," Quart. Journ., vol. xvi.

p. 193.
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Let the axis of x lie in the plane, and be perpendicular to the

axis of the cylinder ;
the kinetic energy of the liquid will be ob-

tained by putting a = /3, t
=

2
= Jq ;

u = u', v = - v' in equations

(74), (75) and (76) of 124 and halving the result. Hence if

<r be the density of the cylinder, and a its radius

2r-{(P+) + ^aV}(t*
1 + tr

l
)

=
(!* + if) (1),

where l R =
ircfp

|l
+ 22 Q-~ g^J 4- TraV

If no external forces act upon the system, the energy, and also

the momentum parallel to #, are constant
;
the latter condition gives

dT
-j-

= const. = G,du

or Eu=G (2).

Since T and G are both constant, the equations of motion may
now be written

Ru = G

Differentiating with respect to t and remembering that R is a

function of y alone, we obtain

Now .R is necessarily positive; also y = a cosh a = \a, (1 +
therefore R decreases as y increases

;
hence dR/dy is negative, and

therefore v has always the same sign as -y
2

v?. Let U be the

resultant velocity, < the angle which its direction makes with the

axis of y, then

U* dR OJLV =
-2Rdj

C S^
If therefore the direction of motion makes with the axis of y an

angle lying between JTT and f TT, the acceleration from the plane
will be negative and the cylinder will be attracted towards the

plane, but if this angle lies between and JTT or fTT and TT, the

acceleration will be positive, and the cylinder will be repelled from

the plane.

Also since u = G/R}
and R decreases as y increases, u increases

as the cylinder moves from the plane, and vice versa.

1 The value of P + L in terms of elliptic functions will be given in the Appendix.



CYLINDER MOVING PARALLEL TO A PLANE. 221

U* dR
if we put

-<ntdj=s
the component accelerations are

209. If the cylinder be initially in contact with the plane,

and be projected perpendicularly from it, u = 0, and

where the suffixes denote the initial values of the quantities.

Since q
= when y = oo

,
the limiting value of R is ?ra

2

(p + a-).

When y = a, q = 1
;
in order to find the value of R

,
let q 1 X,

where X is a small quantity which ultimately vanishes : then

U + i + ...)U

Whence the ratio of the initial to the terminal velocity is

210. When the direction of projection is not perpendicular to

the plane, the direction of the velocity at any subsequent time is

given by the equation

cot
<f>
= v/u = *jRp 1

,

where p = 2T/6r
2

,
and the upper or lower sign must be taken

according as the initial value of < is < or > JTT. Let cot
<f>

be

initially positive, so that the cylinder is projected from the plane,

then since R diminishes to the limit ?ra
2

(p + a) it follows that if

7ra?p (p + cr)< 1, there will be some point which is determined by
the equation Rp = 1, at which cot

</>
= 0, and where the cylinder will

consequently be moving parallel to the plane. During the subse-

quent motion cot $ will be negative, and the cylinder will approach

the plane and R will increase. The quantity >jRp 1 continually

increases as R increases, and hence will increase from JTT and the

cylinder will ultimately strike the plane. Hence the cylinder will

or will not strike the plane according as Tra?p (p + er) < or > 1.

If Trcfp (p + a)
=

1, and a be the initial value of 0,

cot a = V (jR/ira*
-

p
-

o)/(p + a) ;
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whence a cylinder projected at an angle > a will meet the plane at

an angle
tan"

1

*J{Tra?p (^p + cr p) 1
j,

and a cylinder projected at an angle < a will move, when at an

infinite distance from the plane in the direction

cot"
1

*J{7rd*p (p + a)- I}.

If the direction of projection is equal to a, the cylinder when
at an infinite distance will move parallel to the plane.

211. Let one of the cylinders be fixed whilst the other moves

independently.

Let (r, 6) be polar coordinates of the centre of the moving
cylinder referred to the centre of the fixed cylinder as origin ;

if

R=P + M; then
2T = (Y

2 + r
2 2

).

Since R is independent of 6, we must have

dT- = const. = h,
dO

or Rr'2 = A.

Also since

we obtain

ddT_dT =()
dt dr dr

Let U be the resultant velocity, < the angle which its direction

makes with the radius vector
;
the radial acceleration

, U* dR
f= -2Rdr~ COs2(t) '

Since R decreases as r increases dR/dr is negative ;
hence the

cylinder will be repelled when $ lies between and JTT or between

JTT and TT
;
and will be attracted if < lies between JTT and |TT.

212. If the cylinders be initially in contact, and one of them be

projected with velocity V along the line joining their centres, then
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If the cylinders are equal it can be shown in a similar manner

as before, that

or

whence /lir*p
+

V
"

<r +

- p

Cyclic Motion.

213. Let us now consider the motion of two equal cylinders

round which there is circulation in opposite directions, and which

are initially projected with equal velocities parallel to Ox.

Let A and B be the common inverse points of the two cylinders,

a the radius of either of them, u, v and u, v their velocities

parallel and perpendicular to Ox, y the ordinate of the centre of

the cylinder A ;
also let the circulation round A be in the contrary-

directions of the hands of a watch.

It is known from the theory of rectilinear vortices, which will

be explained in Vol. II., that the cyclic motion is the same as

B

would be produced by two rectilinear vortices of circulations K

and K situated at A and B, hence with the notation of 178,

the value of ^ will be

K , AP KTj

by 121.
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Also, if a be the value of 77 at the surface of the cylinder A,
and AB =

2c,

a = ccosecha, 7/
= ccotha .................. (5),

and 2 (%) = /c
2

a/?r.

Since this kind of cyclic motion could be produced by applying
a uniform impulsive pressure icp to every point of that portion of

AB which lies between the cylinders, we must have |J
= 0. Let

(r, 0} be the polar coordinates of P referred to 0, then

K , r2 + c
2

2rc sin KG .

y = 7 log -s-5 s
-

:
75
= sin + &c.,*

4-7T
5 r2 + c + 2rc sin TJT

whence gt = 0, 23 = -
KC/TT.

Therefore X = X + 2/cc/m
-

*>2/27r + V
Also if If, M' be the masses per unit of length of either of the

cylinders, and of the liquid displaced,

E =Mf

l + 2 1 -

If we suppose the cylinder B to be replaced by the fixed plane

Ox which forms the boundary of the liquid, the value of L must

be halved, and the equations of motion of the cylinder A will be

,
d d% , c (Zc K* da. Tr />T x

J-7:^-- k -,
-- KpU-j-+ T -

-j-= F ............ (7).8
cfe <fo

2
dy rf^ 4-7T rfy

From (5) we obtain

c = Jy* a? and
2/
= acosha,

,, e dc ,, cZa 1
therefore -y-

= coth a, = -

dy rfy c

whence (7) becomes

1
d d% _ rfX

2

i^I-j- i j
--

/cpwcotha + -

r
- = F ......... (8).2 dt dv 2

rfy 4?rc

Let us now suppose that gravity is the only force in action, and

that the plane boundary Ox is horizontal, forming, so to speak, the

bed of the ocean
; (6) and (8) respectively become

Ru + icpc
= const. = h

(v*-u?)~- Kpu Cot}i + =- (M-M 1

) g
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These equations are satisfied by v = 0, u and y constant, pro-

vided u satisfies the quadratic

(M-M')g = b (10),

where p = \dR/dy. The roots of this quadratic will be real

provided *y coth
2 a >p

j**
+ 4 (M-M')g\ (11).

CASE (i).
Since p is positive the roots will always be real if

M'>M
and K?p < TTC (M

f

M) g.

In this case the liquid is denser than the cylinder, and one of

the roots of (10) will be positive and the other negative, and the

positive root will be numerically greater than the negative root.

Hence there will be two cases of steady motion, in one of which

velocity of the cylinder will be in the same direction as that of

the liquid, due to the circulation at points between the cylinder

and plane ;
and in the other the velocity will be in the opposite

direction
;
also the velocity in the former case will be greater than

in the latter.

CASE (ii).
M' > M, /c*p > 4?rc (M M} g.

In this case the roots of (10) will be both real and positive

provided (11) is satisfied; hence the velocity in the two cases of

steady motion will be in the same direction as that due to the cir-

culation.

CASE (iii).
M > M'.

In this case the cylinder is denser than the liquid, and the

roots of (10), if real, must be both positive, hence the two

velocities must be in the same direction as that due to the cir-

culation.

CASE (iv). If either g= or M = M, (11) becomes

Trpc coth2
a. > p.

Here both roots of (10) are positive, and the two velocities

must be in the same direction as that due to the circulation.

This case has been discussed by Mr W. M. Hicks 1
.

1
Quart. Journ. vol. xvu. p. 194.

B. 15
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CASE (v). Suppose that the cylinder is reduced to rest, and then

let go. Since u and v are initially zero, the initial acceleration is

Hence if the liquid is denser than the cylinder it is possible

for the right-hand side to vanish
;
in which case the cylinder will

remain in equilibrium under the combined action of gravity

and the pressure due to the cyclic motion.

If the plane formed the upper boundary of the liquid the sign

of g in these five cases would have to be reversed.

215. The results of the last two cases may be inferred from

general reasoning.

We have shown in 14, that the product of the velocity of a

liquid and the cross section of a tube of flow, is constant through-

out the length of the latter. Now in Case V. where the cylinder is

at rest, the tubes of flow are circles, and those portions of them

which lie between the cylinder and the plane will be more com-

pressed than the portions which lie on the remote side of the

cylinder ;
hence the velocity of the liquid at points between the

cylinder and the plane will be on the whole greater than at points

which lie on the opposite side of the cylinder, and consequently

the pressure on the side of the cylinder nearest the plane will be

less than that on the remote side, and therefore the cylinder will

be attracted towards the plane. If the cylinder is less dense than

the liquid, and the plane forms the lower boundary of the liquid,

the effect of gravity will be to repel it from the plane, and hence

there must be a certain position in which the two forces balance

one another, and in which the cylinder will be in equilibrium.

If on the other hand the plane forms the upper boundary of the

liquid, there will be a position of equilibrium, provided the

cylinder is denser than the liquid.

216. In Case IV. let the cylinder be moving with a small

velocity u parallel to the plane, and in the same direction as that

of the circulation between the cylinder and the plane. Let the

cylinder be reduced to rest by impressing on the whole liquid a

velocity u equal and opposite to that of the cylinder. At points
between the cylinder and the plane, the reversed velocity u of the

liquid and the velocity due to the circulation will be in opposite
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directions, whilst at points on the other side of the cylinder they
will be in the same direction. Also by 14 each velocity will

be on the whole greater at points between the cylinder and plane,

than on the opposite side of the cylinder. Hence if u be small

enough, the cylinder will be attracted towards the plane, and

therefore if u increase from zero, a certain critical value u
:
will be

reached, at which the cylinder is neither attracted nor repelled,

but will be in equilibrium. In this case the resultant velocity at

points between the cylinder and plane, will be in the opposite direc-

tion to that on the other side of the cylinder.

If u continue to increase, the cylinder will at first be repelled

from the plane, but ultimately a second critical value u
2
will be

reached, at which the resultant of u
2
and the velocity due to the

circulation at points between the cylinder and the plane will on

the average be equal to the same quantity on the opposite side of

the cylinder, and there will be another position of equilibrium. In

this case the resultant velocity of the liquid at points between the

cylinder and the plane will be the same direction as that on the

other side of the cylinder.

If u exceeds this second critical value the cylinder will thence-

forth be attracted. The two critical values of u are evidently the

roots of the quadratic obtained by putting g = in (10).

EXAMPLES.

1. A cylinder of radius a is surrounded by a concentric

cylinder of radius 6, and the intervening space is filled with

liquid. The inner cylinder is moved with velocity u and the

outer with velocity v along the same straight line
; prove that the

velocity potential is

~ (v u) a?b
2
cos 6

r COS + 7T^ \
'

(6
2 -

a') r

2. A long cylinder of given radius is immersed in a mass of

liquid bounded by a very large cylindrical envelope. If the

envelope be suddenly moved in a direction perpendicular to the

cylinder with velocity F, the cylinder will begin to move with

velocity -J-F, provided the density of the cylinder be three times

that of the liquid.

152
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3. Two infinite parallel cylinders in an infinite liquid are

projected with given velocity; (i) in opposite directions along a

line at right angles to their axes, (ii) in the same direction per-

pendicular to this line. Prove that they experience in the first

instance a repulsion from one another, and in the second instance

an attraction towards one another.

If their radii are indefinitely small in comparison with one

another, prove that their motion is initially the same as that of

two rectilinear vortices of equal and opposite strengths.

4. A solid cylinder with flat ends is fixed between two parallel

planes, and a cylindrical shell of the same length can slide freely

between the planes. If the space between the cylinder and shell

is filled with liquid, and the shell is placed so as to be coaxial

with the cylinder and then jerked in any direction with velocity

V, prove that the resultant impulse on the cylinder is

2MVb* (a
2 - 6

2

),

where a and b are the radii of the cylinder and shell, and M is the

mass of the liquid which the cylinder displaces.

5. The space between a moveable cylinder and a fixed excentrio

cylinder is filled with liquid. If the moveable cylinder be initially

projected with given velocity, perpendicular to the line joining its

centre with that of the fixed cylindrical boundary, determine its

motion, (i) when there is no circulation, (ii) when there is circu-

lation.

6. Examine the stability of the steady motion of a cylinder

parallel to a fixed plane, discussed in 214.



CHAPTER XL

ON THE MOTION OF TWO SPHERES 1

.

217. WHEN two spheres are in motion in an infinite liquid,

the velocity of each sphere may be resolved into three components

!,
vv w^ ;

u
2 ,

v
2 , wv where uv u

z
are the component velocities of

the spheres along the line joining their centres
;
and vv wl ;

vv w2

are the component velocities parallel to two straight lines at right

angles to one another, which are perpendicular to the line joining
the centres of the two spheres. It would therefore at first sight

appear, that the kinetic energy of the liquid must contain twenty-
one terms, but it can easily be shown that twelve of these terms

must vanish. For let us suppose that v
lt
w

lt
w

2 ,
v
2
are each zero,

and consider the term involving u^w^. The kinetic energy on

1 The present chapter has been taken from the following papers by Mr Hicks :

" On the Motion of Two Spheres in a Fluid," Phil. Trans. 1880, p. 455.

" On the Problem of Two Pulsating Spheres in a Fluid," Proc. Camb. Phil Soc.

vol. in. p. 277, and vol. iv. p. 29 ;

and a paper by the author,
" On the Motion of Two Spheres in a Liquid and allied Problems," Proc. Lond.

Math. Soc. vol. xvm. p. 369.

Keferences may also be made to the following papers :

Stokes. " On some Cases of Fluid Motion," Trans. Camb. Phil. Soc. vol. vm.

p. 105.

Bjerknes. Forhand. SJcand. Naturfors, Christiania 1868, and Forhand. Vidensk.,

Christiania 1871 and 1875.

G. Forbes. "
Hydrodynamic analogies to Electricity and Magnetism," Nature,

vol. xxiv. p. 360.

Bertin. "Ph6nomenes Hydrodynamiques inversement analogues a ceux de

1'Electricite et du Magnetisme," Ann. de Chimie et de Phys. (5) xxv. p. 257, 1882.

Pearson. " On the Motion of Spherical and Ellipsoidal bodies in Fluid Media,"

Quart. Journ. vol. xx. p. 60.

Herman. "On the Motion of Two Spheres in a Fluid and allied Problems,"

Quart. Journ. vol. xxn. p. 204.
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account of the symmetry of the motion, must clearly be unaltered

if the direction of w
2
be reversed, and this requires that the

coefficient of u^wz
should be zero. By similar reasoning it can be

shown that all the other coefficients must vanish, except those

of u*, u*, i

efficients of v*
t v,

2 ' 1

.*.

w*, UJJLZ , VjV2 , WjWz ;
and also that the co-

\ must be respectively equal to those of

W

Hence the kinetic energy of the system may be written

T= J (Au*
- 2BUlu, + 0<) + $A' <X

2 + w?)

+ B' (v^ + WlwJ + i CT (v* + <),

where the six coefficients are functions of the distance between

the centres of the two spheres and their radii.

The values of A, B and C must be determined by supposing
that the motion of the spheres is along the line joining their

centres, and those of A', B', C' by supposing that the motion is

perpendicular to this line.

Motion along the Line of Centres.

218. Let A and B be the centres of the spheres, a and b their

radii, c the distance between their centres.

be the velocity potential when A is moving withLet c

velocity uv along BA and B is at rest
; <f>2

the velocity potential

when B is moving with velocity u
z along the same direction and

A is at rest. By 162 the velocity potential of the whole motion

is
</>j
+ (j)z ,

and the kinetic energy of the liquid is

= T + 2T + T* "** T *
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In order to find the value of & we shall employ the method of

images.

If B were absent, the velocity potential due to the motion of

A, would be the same as that of a positive doublet
1

at A of

strength \uj, whose axis coincides with BA. By 53 the

image of this in B, is a negative doublet situated at the inverse

point Ft
where BF . BA = 6

2

,
and whose strength is ujof&/2(?.

This latter doublet will have an image in A, and so on ad infi-

nitum. Hence the kinetic energy of the liquid due to the motion

of the sphere A, will be the same as that due to two infinite

systems of doublets, both of which lie respectively within each

sphere.

219. Let pn be the distance of the nth image in A from A, pn

its strength ;
and let <rn be the distance of the nth image in B

from A, vn its strength. The part of Tn due to pn will be

[
n a (a cos 6 4- pn) sin 6 cos 6 dO

7rpa\

_ (pn 4- ax) xdx

But

f
1

(r 4- cue) xdx d f
1

J -i (a
2 + r

2 + 2ar#)
f dr *

-i (a
2

xdx

When r = pn
< a, the integral is equal to

But when r = crn > a, it equals

d 2a 4ta
,q\

dr 3?
= ~

8?
'

Therefore Tu = JwpwX ^ - frpa'ug vn<rn-.

Now
/Lt
= J a

3

^ , /*n
= as

^w<7~
3
.

1 A doublet is considered positive when its source end is at the positive

extremity of its axis. If m be its strength, its velocity potential is -mr~2 cos 0.
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Hence if M^ be the mass of the liquid displaced by the

sphere A,

This is the kinetic energy due to the surface integral of A's

motion over itself.

Again,

whence

p.
] * '

Eliminating crn from (5) we obtain

cfp^ + tfo = ............(7).

220. The formulae of the preceding section enable us to

obtain an approximate value of Tn as far as c~
12 without much

difficulty, but in order to obtain the complete solution we must

solve (7). To do this, put pn u
n + w, and choose x so as to make

the constant term vanish, and we obtain

c#
2

-(a
2 + c

2 -&2

)a+a
2
c = ............... (8).

Let F, F2
be the common inverse points of the two spheres,

the middle point of FF
9 ;

also let FF
3
= 2X, OA = r

lt OB = rv then

(9).therefore r
x

2 -r
2

2 = a
2 - 6

2

;

also r
t
+ r

2
=

c,

therefore r
x
=

(a
2 + c

2 - 6
2

)/2c

Let P be any point on the sphere A, and let the constant

ratio F
ZP/FP be denoted by qv and let qz

be the similar constant

for the sphere B. Then since the triangles PF2
A and FPA are

similar,

qt
= F,A/a = (r, + \)/a = o/(r,

-
X),

and (8) becomes

a2 = 0,
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the roots of which are x
l
=

i\ + X, x2
= r

t

- X. Putting pn
= u

n + x
lt

equation (7) may now be written

unun_^
-

(x2
-

a?/c) un + (X
- a2

/c) un_ v

= 0.

Now a2 =
xjCy whence, writing v~l

for u
n , we obtain

In this equation

X. T.

Whence putting q = qjqv we obtain

c

the solution of which is

vn
= Efn

JX"
1

,

hence pn = aql
+ (E(f

n -
\ X'

1

)"
1
.

But p = when n = 0, therefore

2X

2X
therefore

Pfl
=

aq,
-

Also c - p.
=

r, + r
2
-

r,
- \ + 2\/(l

-

= *
(say);

(<>-/.)

therefore u = g
''-'-'.....

"

p.pM..... -ft
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If therefore we put

Q (?r'> 2)
=

(i
-

<?r
2

)
8

sT(rrj
we obtain Ta = \Mtf {1 + 3Q (q~\ q)} ...............(11).

Similarly if the sphere B were moving with velocity u
z along

BA whilst A is fixed, it can be shown that

2".
= I-MA'U+SQ (?..?)} ...............(12).

221. We must now calculate the quantity T19
which is the

surface integral of B's motion taken over A, and which by Green's

theorem is equal to the surface integral of A's motion taken over

B. We thus obtain,

T
19
= - Jp

JT</>
2^ dS

1
= - irpa\ f<k sin (9 cos 0d<9.

Let pn
'

denote the distance from A of the nth image of B
in A, pn

'

its strength ;
also let <rn

'

denote the distance of the nth

image in B from A, vn
'

its strength ;
then remembering that the

original doublet is in B, we obtain

^ = -
(a/<r'n_y v n_v pt = - (a/c)

3
v

,'
= - Ja

3^3^ . . .(13).

Hence

A ...... (14).

Also

ft'
=

aye, er
1

' = &Y(c-/O. p,'
=

a'/(c
-

r,') ...... (15),

whence, proceeding as before, it will be found that

and it can be shown as before that
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Whence, determining E by the condition that p^ =
a*/c, we

shall find

p.
1 =

?,
- sxa -fr =

<r,
-

a (c
-

//n_i) 1 - <f
n

Therefore
yu,n

'

=

Now from (9) we obtain

<?*
=

;

2Xc
therefore 1 - q

2 =
7 ^-7 ^-

= r1 -

(r2 + X)(r1
+ X) ab

If therefore we put

we obtain

Hence, if m
1 ,
m

2
be the masses of the two spheres, the kinetic

energy of the whole motion when the spheres are moving along

the line joining their centres is

where A = ra
x + ^Ml (1 + 3Q (q~*, q)Y

.(20).

The three coefficients A, B, G can be shown to diminish as the

distance between the spheres increases
;
for when c and therefore

X is large,

q =a&/4X
2

,

ultimately, and therefore A, B
}
and C diminish as c increases.

Also, since T is essentially a positive quantity, AC > B2
.
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222. The general formulae (20) are too complicated to be of

much use, we shall therefore obtain approximate values of A, B
and G as far as c~

12
.

From (5) and (6) we obtain

whence

also from (6)

From (7)

therefore
a2 a2

(c
2 -62

)

whence .(22).

The last expression varies as c
12

,
whence expanding the values

of /J>Jp , pJfJ<o
in powers of c"

1

,
and neglecting higher powers than

c~
12

,
we obtain

c" v c- <r c"

and the value of C can be obtained by interchanging a and b.

To determine B to the same order, we obtain from (16)

whence D 27rpa
3
6
3 L a3

2

xj = 5 < 1 H z

c
3

( c

(23),

Collecting our results, the values of A, B and C as far as

lla

P _ ." ~ K "'

c"

3a3
6
3

(a
2

...(24).
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Motion perpendicular to the Line of Centres.

223. When the spheres are moving perpendicularly to the line

joining their centres, the kinetic energy may be determined by
the method of images without much difficulty, provided we

neglect powers of c~
l

higher than the eighth ;
but if it is desired to

carry the approximation to a higher degree, the successive images
become exceedingly complicated, and it is better to employ a

different method, which will be explained later on.

224. Let v
lt

v
2
be the velocities of A and B perpendicular

to AB. If B were absent the velocity potential due to A's motion

would be the same as that due to a positive doublet at A, of strength

^a3

,
whose axis is perpendicular to AB. By 54 the image

of this in B, is a positive doublet of strength J01
a3

&
3
(f

8
situated

at the inverse point F, together with a negative line doublet

extending from F to B, whose strength at any point P is

^v^BP/bc per unit of length. Hence the successive images
consist of a series of single doublets and line doublets, and

evidently become exceedingly complicated.

Let ^ be the angle which any plane through AB makes with

the direction of motion of the spheres, r the distance of any
doublet element from A, //,

its strength. The kinetic energy will

be given by an expression of the same form as (1), whence

the part of Tn depending on p will be

iff!J o J o
(r

2 + a2 + 2ar cos <9)

f

VifJ/L (i*

a .

(r
2 + a

2 + 2ar cos 0)
f

The value of this integral is

(r
-

a)
8

],

in which the upper or lower sign is to be taken according as

r > or < a. Hence the value of the integral is

|of
3

,
a > r

;
and 4r~

3

,
r > a

and therefore the part of Tn depending on ^ is JTT/J/IW, or

f7rp/iV1
a3

/r
3

, according as r < or > a.
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Let v and cr be the strengths and distances from A, of the

doublets within B due to A's motion, and
yu-

the strengths of the

doublets within A. Then

Tn = fw/Dflj 2 (/A + raV)

Now every y produces in -4 an image consisting of a doublet

of strength vcf/a* at a distance a2

/cr from the centre of A, together

with a negative line doublet extending from the doublet image to

the centre of A, and whose line strength at a point whose distance

from A is x, is vxjaa: Hence the whole amount of the image
is

Also every //, except fi forms part of an image of some

particular v, hence

<r a a

Therefore

(25).

225. In order to find the term involving v^, we must find

the portion of the kinetic energy due to B's motion over A and

double the result.

Since the original doublet is in B, every v except v forms part

of an image of some
//,,

whence if the accented letters refer to

the images of B's motion

00 v
'

hence T
1Z
=

^irpv, 2 +

(26),
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and we therefore obtain

where A' = m, + Of -h + 32, (<-**
I * \ *

.(27).

226. We shall now calculate the values of the coefficients

when all the images are omitted except plt
vv //,/.

The image of A in B consists of a doublet of strength pQb*/c
3
at

F, together with a negative line doublet from F to B of strength

fjL x/bc per unit of length ;
also BF = b*/c, AF= (c

2
6
2

)/c.

The image in A of the doublet at F is a doublet at a point F'

whose strength is

"'"S/>3

-T^i (28),

where AF' = a2

c/(c
2

&
2

), together with a negative line doublet

from P' to A whose whole amount is

aAF 2(c
2 -62

)

3

In order to find the whole amount of the image of the line

doublet between B and F
t

let P be any point in BF, Q a point on

AF' such that AP . AQ = a2

;
also let BP =

x, AQ = y ;
then

y (c x) = a
2
. The doublet element fiQxdx/bc at P, produces a

doublet element ^xcfclxlbc (c x)
5
at Q, together with a line

doublet from Q to A whose whole amount is

C
c ~ x

ydy _
j a (c x)

line doublet is

*

be a (c x) 26c (c xf
'

Therefore the whole amount of the line doublet is

xdx

(c-xf~ 4c
2

(c
2 -62

)

adding (28), (29) and (30) we obtain
'

2c
2

(c
2 -62

/
)

2

A
.

, , Q

Again ^= 3 , _
=|? .................. (32),
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whence substituting from (31) and (32) in (27), we obtain

ab
A'A =

The second ratio
//,2//*

is of the order c~
12

,
and the next term in

B' is of the order c"
9
. Hence (33) gives the correct values of A'

and C' as far as c~
10

,
and the expression for the kinetic energy

derived from (33) is correct as far as c~
8
.

227. We shall now explain a different method for obtaining

approximate values of the coefficients
1
. The approximation is

carried as far as c~
12

,
but it could without much additional labour

be carried to a higher order if desired.

It will first be necessary to establish the following proposition.

In the figure, let PM=<&, AM =
z, BM = z, AB =

c, cos0 = /*,

cos 6' = ft ;
also let P

(//,)
be an associated function of degree n

and order m, whose origin is A, and axis is AM
;
and let P r

(p)
denote a similar function having the same axis and whose origin is

B. Then we shall prove that, when r < c,

r
m

f + m! (n

(/i-m)!c
w+w'

and when r' < c,

f

L 2m!
__

(2m +1)!

r

c
m

- m) 2m !

,

(2m !~ c
'

1 Proc. Lond. Math. Soc. vol. xvm. p. 371.
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It is known that P can be expressed in either of the forms 1

-W*
f [p + cos < sn

where M =

Therefore

(/ + iw COS
(/>)

n+

-jfa"f '^ COS (f)ll"
+m+1 '

whence, if X =
/JL + V^ - 1 cos 0, and r < c,

^

whence, by the first form of P, we obtain

pm _ r

(n
- m) I c

n+m+1
_

2m\ m
(2m + 1) ! c

m+l

(-)'(n + m + 8)l /rV

(2m + 5! (c)(2m + 5)

In order to obtain the second equation, let us change 6 and &
into their supplements; then, since

P: {cos (TT
-

0)}
=

(-)"-'" PI" (cos 0),

we obtain

rn
(n+m)\ p,m (n + m + 1) ! S
2m\ (2m 4 1)! c

m>1

1
'~*~

I /rY

(2m + *)!"

The corresponding formulae when r > c or r' > c could be easily

obtained, but they are not required for the present investigation.

1 These formulae will be proved in the second volume. See also Heine, Kuge-

functionen, ch. iv. : Mess. Math., vol. xin., p. 147.

B. 16
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228. Let
<j) l

be the velocity potential of the liquid when A is

moving with velocity vv whilst B is kept at rest, and let fa be the

velocity potential when B is in motion and A is fixed. Then if
</>

be the velocity potential of the whole motion,

<
= & + &........................... (36).

The problem is therefore reduced to the determination of fa,

for when this is known, fa can be written down by symmetry.

Let % be the angle which a plane through AB and any point P
makes with the plane through AB which contains the directions

of motion of A and B
;
also let Qn , Qn

'

be written for Pn
* and P'B\

Then, in the neighbourhood of A, (f> l
must be expressible in the

form of the series

for this value of fa satisfies the surface condition

/dfa\ . ap = v. sin 6 cos y.
\dr !

a

In the neighbourhood of B, $ l
must be expressible in the

form

...... (38),

for the value of fa satisfies the surface condition

The series consisting of powers of r"
1 and r'"

1
are convergent at

all points outside the two spheres, but the series consisting of

powers of r and r will be divergent if r and r be sufficiently

great ;
but we shall only require these latter series in the neigh-

bourhood of the two spheres where they are convergent.

The kinetic energy consists of a series of terms of the form

f2lT fit

dx QnV^a? cos
2

x sin
2 6d6 = ira\

J o J o

(n=l) ........... (39),

=
(n any other value).
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Hence the terms involving Q,, Q 8 ,
&c. contribute nothing to the

energy, and we may therefore, in writing down the final value of

0j, reject all terms except those involving Q^ or Q/.

229. Dropping the factor cos % for the present, we should

have, if B were absent,

Putting m = 1, ?? = 1 in (35), the value of this near B is

From (38) it follows that, in order to make the velocity at B
vanish, we must add the series

.

, ,

."

2c
3
V2r'

a "*"

Scr'
8"*" 4cV*

"*"

5cV* /'

Transforming this latter series back again to A by (34), and

retaining the important terms only, the value of
</>j

near A becomes

4c
7

In order to satisfy the surface condition at J., add the terms

Neglecting powers of c"
1

higher than the twelfth, the value of

these added terms near B is

Adding the terms

omitting Q2

r

, &c., and restoring cos%, the value of the velocity

potential near B becomes

a3
6
3 a3

6
3

a? + b
2

The first term of (40) on transformation becomes

162
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whence the value of
<f> l

near A is

4
'

c
2

16c
6

.(42).

The values of $2
at A and .5 can be written down by symmetry ;

whence, if T be the kinetic energy of the system

where

A' =
,-* ^

>
4

b
5

(a
3 + 6463

)

l ts
2 9a4 a3 64a3

)

irpa'6'f. aV a'6
3

(a
2 + 6

!" 1 " 4 ~

,...(43),

where m,, ra
2
are the masses of the spheres A and 5; Mv Mz

those of the liquid displaced by them, and p is the density of the

liquid.

The values of A, B', C' have been calculated by Mr Herman
as far as c~

15
.

230. We shall now apply the preceding results to obtain the

solution of some problems.

If a sphere is projected in a liquid which is bounded by a fixed

plane, we must put a = b, U
1
= u

2
= u,vl

= v
2
= v, then

2T= (A + B) u* + (A' + B')v\

and, if higher powers than c~6 be neglected, we obtain from (24)

and (43)

(44),
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where ^c is the distance of the sphere from the plane. Lagrange's

equation
ddT dT_

-J-. ^j fJ 7- V
at du dc

gives (A + B}u =
v*^-c (A' + B')- u*^ (A + B).

Also, since the momentum parallel to the plane is constant

(A + B f

) v = const. = G.

Let V be the resultant velocity of the sphere, 6 the angle which

its direction makes with the normal to the plane, then

(A +B)u= F2
sin

2
6 (A' + B')

- cos
20(A+ B)

If, therefore,

/2 (c
3 + 2a3

)tan a = 4 / ^= ^ ;V c + a

it follows that, whenever the direction of motion makes with the

normal to the plane an angle which is < a or > TT a, the sphere
will be repelled from the plane ; but, whenever this angle lies be-

tween a and TT a, the sphere will be attracted. Also, since A ' + B
increases as c diminishes, the velocity parallel to the plane will be

accelerated when the direction of motion lies between a and TT - a
;

and retarded when this direction makes with the normal an angle

<a or >TT a. If, therefore, the sphere be projected parallel to

the plane, it will ultimately strike it.

We have shown in 208 that in the case of a cylinder a = JTT,

hence in the case of a sphere a > JTT. The discussion of the sub-

sequent motion of a sphere projected in any given direction in a

liquid bounded by a fixed plane, can be carried on in the same

manner as in the corresponding case of a cylinder, but it must be

recollected that the preceding values of the coefficients may not

give correct results if the sphere gets too close to the plane.

231. Let X, Y be the forces upon the sphere, arising from

the pressure of the liquid, then

V '

f 2 &
/ A> T>'\ 2 & I A -D\[ // AX = mu = m 4v -

7
-

(A + B ) u -y- (A + B) > . (A
(

etc dc
}

Y=mv = - 2muv %- (A' + B') . /(A
1 + B').
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From (44) we obtain

whence neglecting higher powers than c~
7 we obtain

9ifma3

2 1 2
a3

[u* (4m - M) + t;
2

(if
-
m)]

4
~

9Mmuva? ( (4m -.M) a3
)

*

1
+

2 (2m + Jkf)?J
'

232. Let us now suppose that the sphere A is a pendulum

performing small oscillations along AB about its mean position,

whilst the sphere B is free to move.

Let A be the mean position of A, B the initial position of B :

A', B' their displaced positions, and let AA' = x, BB' = y, AB = c
;

A'B' =p. Then p = c-\-x y and if px is the force required to

maintain the oscillation of A
,
the equations of motion are

d>-t>

where the accents denote the values of A, B, C at time .

To obtain a first approximation, neglect squares and products
of small quantities, and we find

Cy -Bx = 0.

If therefore the sphere A is initially displaced to a distance

# and then let go, the integrals are

X=X
Q
cos kt,

where k* =

Since y is negative and increases numerically so long as x lies

between x and #
,

it follows that to a first approximation B
is repelled from A so long as A is moving away from its initial

position A', and attracted when A is returning to A'.
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233. In order to obtain a second approximation, we must

take into account the squares of small quantities. Let

Bx
y = -FT (cos kt -l) + -z,

where z is at least of the order x*. Then

p
(B \ Bx

Q= c - (
- 1 1 XQ

cos M +
-jf

+ z
>

=x-y~c.
Therefore B's equation of motion becomes

-
, ^..

f +<aj-y)"~"

Neglecting cubes of small quantities, this equation may be

written

Gz =/+ L cos let +M cos 2kt,

fdA 2BdB
.
&
c
2where / = -^ -3 -=- +

4 V oc c ac

4 dc

If we only take into account the first terms in A and B, which

is equivalent to neglecting the twelfth and higher powers of c"
1

,

we obtain from (4) and (21)

therefore

therefore
dc C (2a
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where cr is the density of the sphere B ;
whence

The term / indicates that the sphere B, in addition to its

vibratory motion, will be attracted towards or repelled from the

sphere A, according as / is positive or negative. Hence there

will be repulsion when

i.e. when c>

which can only happen when a < p or the density of the sphere B
is less than that of the liquid.

If therefore the sphere B is denser than the liquid it will in

general be attracted, but if the density of the sphere is less than

that of the liquid there will be a critical point, beyond which

there will be repulsion, and within which there will be attraction,

this critical distance is given by

b_~

Since this result has been obtained on this assumption that c

is so large compared with a and b, that powers of c"
1 above the

twelfth may be neglected, it fails to give a correct result if with a

given density, c comes out nearly equal to b. If a-jp
= '9 then

This theorem is due to Sir W. Thomson
;

the preceding
demonstration is due to Mr Hicks.

On the Pulsations of Two Spheres.

234. The term pulsation is applied to denote a periodic

change of volume
;
and the problem which we shall now investi-

gate is the following : Let there be two spheres in a liquid, whose

centres are fixed, and which are composed of some elastic material

such as india rubber
;

let each sphere be compressed or expanded
into a concentric sphere and then let go ;

it is required to deter-

mine the motion.
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If the spheres were composed of some highly elastic material,

the inequality of the pressure of the liquid upon their surfaces

would produce a deformation which would cause their surfaces to

cease to be spherical ;
we shall therefore suppose the rigidity of

the spheres to be sufficiently great to render such deformations

inappreciable.

235. If
</>j

be the velocity potential of the liquid when the

sphere A pulsates, and B does not
;
and fa be the similar quantity

when A and B are interchanged,

* = & + &
Let a and b be the radii of the spheres A and B, c the distance

between their centres. If B were absent the value of fa would be

a?d/r, for this value of fa satisfies the boundary condition

dfa/dr
= a. This is the velocity potential due to a source of

strength a*d situated at the centre of A, and by 52 the image of

this in B will be a source of strength a?bd/c at the inverse point P,

together with a line sink extending from the inverse point to

the centre of B, of strength a?d/b per unit of length. Putting

m =
a?bd/c, f = b

z

/c,
the strength of the source at P is ra, and that

of the line sink from B to P is - m/f per unit of length ; and by
55 the image of these in A is an arrangement of the same kind.

Hence
X
and fa will be the velocity potentials of two infinite

systems of sources and line sinks, which respectively lie within

each of the spheres.

236. Taking the density of the liquid as unity, let F
a
be the

resultant of the pressure of the liquid on B towards A, then

= 7T&
2

(< + J F2

) sin WdO,

where V is the velocity of the liquid at the surface of B
;

let

Then sin 2(9= P
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In order to find the portion of F
2
which depends upon F

2

,
let

v = b
z

b, then F2 =
v^/b* + (dfyjbdO}

2

;
and since v is constant over

the surface of B, the portion of F
2 depending upon it is zero,

whence, denoting the portion of the pressure depending upon F2

by /, we have

7- 1 1.2 [" -rr* aaja i (* fdd>\
2

.

I = ITT^ I V sin Zvdu =
-J-7T TTJ sm

J t J \av/

= -
iT <t>

sin 26 + cos 20 dd
da au )

By Laplace's equation

., d<f> ,
2

c^
2

^) , .,
dd>-

-j-m
= %b ^r + ^ ^r + cot ^ -7?

c?(9
2

rfr dr2
c?^

in which r is to be put equal to b after the differentiations have

been performed. Hence dfy/dr
=

v/b*, so that

/ = i7r
<j> U^ + b*^?-2<l> sin2^ + 2cos2 ^^ [ d0 -

J (\b dr V
But

fir dd) f"
2 cos

2
^

(f) -S dd = </>

2
sin 20d0 +

J o
^^ Jo

and

whence

and 2̂
= 7rf&

2P + gP-KKi&
2

^J) (46)

when r b.

237. Let P
l
be the part of P due to ^, then if

yu-n be the

strength of any image whose distance from B is r, the portion of

P
l
due to this is

_ 2 r r sm (

J o (6
2 + r

2 - 2br cos

which is equal to
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Hence if
fjun be the strength of the nth source image in A from

A, and p'n that of the other extremity of the line sink image ; tin;

part of P
1
due to

fj,n is

.(47).

Let i/n denote the strength of the nth image in B, <r
n ,

cr'n the

distances of its extremities from B] then the part of P
l
due to vn is

^ , .
vnxdx

=_^^> (48) .

Now

theref re Z>-d^-i) ^
Adding (47) and (49) and summing for all integral values of n

from oo to 0, we obtain

238. In order to find the portion P2
of P due to

c/>2,
we must

remember that the original source is now in B. Let <rn ,
&'n denote

the distances of the extremities of the nth image in B from B, due

to <
2 ,

then expressing //,, pn , p'n
in terms of vn ,

crn ,
<r' n we shall

obtain

o
00 y K ~O--

where
yu-n , /on , /o'n refer to the images of ^L

J

s motion, and i/n ,
<r

jf ,
a'n

to those of ^'s motion.
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By direct calculation we easily find

Po
= 0, p'o

=

_g
2

c(c
2 -a2 -62

) ,
a2

(c
2 - a2

)

ft-
(c*_6

2

)*_aV
J p *~

c(c
2 -a2 -62

also if w
t
be the mass of the liquid displaced by .4,

.m

...(52),

^ =
r

( ,_ 6
rS 22}

. . .(53).

The i>'s and o-'s can be obtained by symmetrically interchanging
a and 6 and putting m2

for mr If we write M
z ,
N

z
for the two

series in the right-hand side of (51), we shall find that

i +_ _
(c

2 - a2

) (c
2 - a2 - 6

2

)
2

a?b
6

1
+

{(c
2 - a2

)

2 - 6
2
c
2

} {(c
2 - 6

2

)

2 - 2aV + a2

(a T^)}
s
+ '"

J
...... (54) '

2
~

47TC _a3

^
3_ 1

+
(C

2 _ tf _ ^) j (( j
_ ay _ 6V

j

2 + -

J
...,(0

and P = -2 (3f2 + iY
2 )

..................... (56).

From the above formulae it appears that JyT
2
is of the order c~'

2

,

and JV
2
of the order c~

5
.

239. The value of the portion of F
2
which depends on the

square of the velocity is more difficult to obtain, and we shall

content ourselves with obtaining an approximate value as far as

the term c~
5

.

Let us now put u = a?d, v = tfb, and let Pn denote zonal har-

monics when the origin is at A and axis BA, and P'n similar

quantities when the origin is at B.

Near the surface of B

Rn + -" p '

+ const-

v
and

</>2
= - - + 2, Bn + tm P' n + const.
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Dropping the accents for the present and writing C
n for the

coefficient of Pn
2
in the value of

</>,
we obtain

Since Pn
2
is unchanged when p is written for p,

f P\^ = Q.

Hence Q = 42 CjD. f

'

PmP

the summation extending to all positive integral values of m, n

except m = n. Let

*= f PP.di*.
J

IJ.

Then f PmPn pdp = f PmPa dp + f * dp
J -I J _! J -i

= f dt*,.
J -i

Now (Ferrers' Spherical Harmonics, 24),

d> =_I_ (n(n + l)

(m-w)m + w + l) 2w + l
mV n+1 -^

2m + 1 H m

Hence I &d/jL vanishes unless m =n+l or n 1 and its values
'-i

in the two cases are

2 (m + 1) d
2?/i

a '

240. Putting m = 0, r = R in (34) and (35) we obtain

fl)Pt
r (n + !)(*-

T^T 2 ! c<

P (71 + 1) Pt
r

_^ (TI + 1) (n + 2) P/^ ~~ ~
1+2 O f ,.1+8

I. ..(57).
(-)

nPn _ P' (w 4- 1) P! -# (w + 1) (w + 2) P2
#2

rn+1
" =

c^1
+

c
n+2

2! c
n + s

Now if 5 were absent, the value of ^ would be

*.=--;
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The value of this near B is

In order to make the velocity at the surface of B vanish, we
must add the series

_ 'utf / P; 2P'62

"

c
2

ft
2

Transforming each term of the last series by means of (57), the

value of
<j> 1

near A becomes

*.- --;-st
p.- tf*}

Adding the proper series, the value of ^ near A becomes

u ubs
ubs

( as

The added term produces at B a constant term of the order

c~
7

,
which contributes nothing to the pressure, hence the value of

( near B is

c c

Changing Pl
into -

P/, it follows from (58) that the value of

near B is

whence the value of (> near 5 is

&c. ...

Putting in this R =
b, we obtain

v u vas 36 (u v

also

Therefore
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Also by (45)

d2

Q . f
1

, d't

tit"*]SEP"*
0(21*0 u2 vW 8u*b]

(6V
+

6c
3 + 6V + W]

'

Restoring the values of u and v, we obtain

4 dR*
'

V"? <

By (54), (55) and (56)

P
2 s higher powers of c"

1
.

c c

Therefore by (46) the force depending on the square of the

velocity

~=?* (61),

which varies as c
5

.

TT 7-1 C\ 79 d ,~. r ,,- , Ctbb
Hence F = 2?r6

-j- (M + N,') r .

dt c

The value of F
l
the force on A towards B, can be obtained by

symmetrically interchanging a and b.

241. If we neglect all powers of c"
1

above the second

2?r6
2 d .

.

Let a = a + a sin -~
,

so that a, 6 denote the mean values of the radii. The mean value

of F.2 will be

Tc

167T
3

- 7V2 /, [
T 2vt 2?r Xj , ,

ab) ap I cos -_ cos
-^ (< e) ct^

o

87r
3a2

5
2

a/3 2-7T6 ^



256 MOTION OF TWO SPHERES.

Hence if the spheres are pulsating in the same periodic time

they will attract one another when their phases differ by less than

a quarter of a period ; but if the phases differ by more than a

quarter and less than three quarters of a period, they will repel one

another.

EXAMPLES.

1. An infinite liquid contains a fixed sphere of radius b, and a

sphere of radius a and mass M fastened to a spiral spring per-

forming small oscillations in the line joining the spring to the

centre of the sphere. Prove that if a and b are so small (or c so

large) that we may neglect powers of a/c and b/c above the sixth,

the time of oscillation is

where M
l

is the mass of the liquid displaced by the moving

sphere, T the time of oscillation if
1 the fixed sphere were removed

from the liquid, and c the mean distance between the centres of

the spheres.

2. An infinite mass of liquid is divided into two parts by an

infinite rigid plane, arid a sphere is moving in the liquid in a line

perpendicular to the plane. Explain by general reasoning what

will be the effect of making a circular opening in the plane with

its centre in the line of motion of the sphere, when the sphere is

moving (i) towards the plane, (ii) from the plane.

3. Two equal small spheres of mass ra and radius a, which

attract each other with a force equal to the product of their

masses divided by the square of the distance between them, move
in a straight line towards each other in an infinite liquid. If \ is

the ratio of the density of the liquid to that of the spheres, and x

the distance between their centres
; prove that so long as (a/x)*

and higher powers can be neglected, the velocity of either sphere is

x Jm (1 -h JX)

the motion beginning when the spheres are at an infinite distance

apart.
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4. If a spherical vessel of radius a contain a concentric sphere
of radius b and density <r, the intermediate space being rilled with

liquid of density p, prove that if the vessel be moved with velocity
U

t
the concentric sphere will move forward with relative velocity

5. An impulse / is applied to one of two spheres, perpen-
dicular to the line joining their centres. Prove that with the

notation of 229, both spheres will begin to move parallel to the

direction of the impulse and in opposite directions, and that their

velocities v
1 ,

v
2
are determined by the equations

C' B' A'C'-B'*'

6. Liquid of unit density fills the space between two con-

centric spheres. The outer one whose radius is b and the inner

one whose radius is a, is suddenly distorted in such a manner that

the velocity at any point of its surface is cF(0, <), with the

condition that its volume remains unaltered. Find the velocity

potential of the liquid, and prove that when F (9, (/>)
is a zonal

harmonic of degree n, the kinetic energy of the liquid is

n (n + 1) (2n + 1) (6
2n+1 - a2n+1

)

'

7. Liquid is confined within a sphere of radius b
;
and a solid

sphere of radius a is moving with velocity v along a radius

of the fixed sphere. Prove that if the distance as between the

centres of the two spheres is small compared with 6, the velocity

potential is approximately equal to

I 9r\ x l ^r2
\ "I

I + fj
cos 6 + x

(i
+
g.) (3 cos" -

l)j
,

the origin being the centre of the fixed sphere.

8. The space between a spherical envelope and a solid

concentric sphere is filled with liquid which is at rest. If the

outer surface is moved so that at each point its velocity is a

spherical surface harmonic Y
n , prove that the solid sphere will

remain at rest, unless n = 1 .

B. 17



258 MOTION or TWO SPHERES.

9. Prove that the augmented inertia of a ball pendulum of

radius a oscillating in a spherical envelope of radius b is

where M is the mass of the liquid displaced.

10. A string of length / a is attached to a sphere of radius

a and mass ra, by means of some mechanical arrangement which

prevents the sphere from rotating. The other end of the string is

attached to a fixed point, and the system is surrounded by a

liquid of unlimited extent, which is bounded by a fixed plane.

Prove that if the string is initially at right angles to the plane,

and sphere is projected perpendicularly to the string, with velocity

F, the tension of the latter will be equal to

m
[

7L
1 " f

3/n _ cos &] + (I - ^"cos 0) sin
2

^7^ \-3
- - ~

2 (2m + M)c* \c ^
c

where \c is the distance of the fixed point from the plane, 6

the angle which the string makes with its initial position, M
the mass of the liquid displaced by the sphere, and powers higher
than c~

4
are neglected.
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I. To prove the equation

P =
kp*.

The laws of Boyle and Charles show that the pressure, volume, and

temperature of a gas are connected by the relation

po = B6 (1),

where R is a constant, and 6 is the temperature measured from the

absolute zero of the air thermometer, i.e. from 270 C.

Let a quantity dH of heat be communicated to the gas ;
the effect of

communicating this amount of heat will be to change the pressure,

volume, and temperature of the gas, and since by (1) the volume is a

function of the pressure and temperature we may put

dH=KpdO + \dp (2),

where Kp is the specific heat at constant pressure. From (1) we have

dO dp dv

whence eliminating dp from (2) we obtain

dff= pd$ +\p(^-^J,
whence if Kv be the specific heat at constant volume

Let us now suppose that the gas experiences a small change of

volume but without loss or gain of heat, then dH=Q, and (2) becomes

KpdO + Xdp = 0.

Eliminating and X by means of (3) and (4), and putting y =KpjKv ,

we obtain

dp dv ~

-L+y =0 (5).
p

' v

Now it is an experimental fact that y is independent of the pressure,

temperature or volume, whence integrating (5) we obtain

pv
y = const.,

or . p = kp
y

,

where p is the density.
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II. To express the value of R (see page 220) in terms of elliptic

functions.

The value of R is

.................. (i)

and we have to express this series in terms of elliptic functions. From

124 it follows that the value of R or (P + L) p~
l
is

+ 2*0**co ng

Now

rC A

1

Changing x into x + iirK'/K we obtain

JZZ J7" . ^ i

5-
cosecam2

Kxl-rr = (#-.#)- Si r~
7T 7T

J X
1 ^

Adding we obtain

cosecam2

KX/TT)
= (K-E)-

cos race.

-f
cos

-, /- -v <7l(l + <7 ) coscc 2^}
Also 2n (1 + ow

) cos nx = -\ cosec2
ia; +^ ^-^ .

(1
- 22

Therefore

,) + J

The required series is equal to the limit of the right-hand side of (3)

when x = 0, that is

III. Professor Greenhill has kindly worked out the following

investigation of the Motion under no forces of a Solid of Revolution in

Infinite Liquid, by Weierstrass's functions.

Taking the expression (4) for the kinetic energy T of the solid of

revolution and of the surrounding infinite frictionless liquid given in

181, but writing^, q, r instead of Wj, a>2 ,
co3 respectively, then

T - JP (u* + v*) + %Rw> + %A (p
2 + q

2

)
+
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and employing this in the equations of motion of 167, supposing there

are no impressed forces
; then since

dT dT dT
-j-

= Pu, -j-
= Pv, , = Rw :

du dv dw
dT dT dT
dp

=Ap>

dj
= A *> Tr

= Cr
>

the equations of motion become

P^-Pvr + Rwq = .................. (1),

P~ -Rwp + Pur = .................. (2),

= .................. (3),

P-R)vw = ................. (4),

P-R)uw = .................. (5),

=

Equation (6) shows that r is constant during the motion
;
and from

the other equations we can obtain three first integrals of the equations

of motion.

dr
First

>
pu+v

so that IP (u
2 + v2

)
+ Rw2 + \A (p

2 + q*) + \Cr* =T (7),

a constant, the constant value of the kinetic energy during the motion.

/ du dv\ dw
Secondly,

so that P* (u
z + v2

)
+ R*u? = F* ........................ (8),

a constant
;
and then F represents the resultant linear momentum of

the system.
/du dp dv dq\ ~ TJ dw

Thirdly, API ~r p + u ~^- + -j- q + v -? )
+ CR -=- r = 0,

\dt
* dt dt

*
dt) dt

so that AP(up + vq) + CRwr = G ..................... (9),

a constant; and then G may be taken to represent the constant angular

momentum of the system.

From equations (7), (8), (9),

P2

(u
2 + v2

)
= F 2 - R'2w2

,

A(p
2 + q

2

)
= 2T- Cr2 - Rw2 - P (u

2 + v2

),

G - CRwr
P (up + vq)

=-----
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so that from equation (3)

WV

a qnartic function of Rw, so that Rw is an elliptic function of the time

t, which we shall proceed to express by means of the notation of

Weieretrass.

PT
Potting, for the moment, - = x = cosO, then

where x* x^ x* xz denote the roots of the qnartic in x, arranged in

descending order of magnitude ; also

Now pot x-x*

'' D *-*!

J> *-**

*-dd^'
D s-e*

are the roots of the discriminating cubic of the quartic

gt and g% being the qnadrinvariant and the cubinvariant.

and we may choose /), so that

so that now, with Weientnas's notation (Halphen, Trmte des fvnctwn
el de lean application*, Pan*, 1886),

! and **j denoting the real and imaginary half periods of the elliptic

functions, and r the time of oscillation ; the Imaginary half period w

being added in order to make oscillate between , and ^, and therefore

x between 2, and a^.
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Then the time of oscillation r is given by

<of_F
s /l l\

~~A\R~P)'
We may write pc instead of d

; and use pu instead of p (tojr + a*,)

for brevity, and then D =
p'c, and

pu-pc'

x

3. =
pw-pcpc-e,'

p'c pu e.
a:-a-3 = -:

pu-pcpc-e,'

and then, as explained in the Proceedings of the London Mathematical

Society, vol. xvii.. p. 279, 1886, introducing the function u, denned by

t p
/y

Vfc + oO'
^~

and p2c, p'2c are the coefficients of a? and # respectively in the quartic

(x
- xj (x

-
x,)(x

-
x>)(x

- xj ;

,

8

Taking the axis OZ in the direction of the resultant impulse F
(fig. p. 166), then

Pw = -.Fsin0cos<k Pv = /T

sin^sin<^, Rw = JPcos 0,

and P (up + tag)
= F sin (- p cos < + ^ sin <),

so that equation (9) becomes

= G-CFrcosO,
or, using x to denote cos 0,

cty G-OFrx G+CFr_l_ ,
G - CFr 1

'* ^ l+
+ * ^.P 1-

the equation to determine the azimuthal motion
\{r.
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As explained in the Proc. London Math. /Soc., vol. xvii. p. 280,

writing u for ta^/r + a>3 ,
this equation becomes

p'b(pu-pc)
2 '

an

du 2
(pa pc)(pu

-
pa)

2

(pb pc)(pu
-

pb)

a and b being the values of u which make cos = I or + 1, respectively.

Then 2|t=^- + ^^--J^---E^diu pa pc pu pa pb -pc pu pb

=
(a + c) + t(a.-c)-2ta-((u + a) + i(u- a) + '2a

+ C (b + c)
+ C (6

-
c) + 26 -

C (
M + 6) + C (

M -
6)
- 26,

o- (u-a)<r (u-b) .

J/f
- it log )

---
7
--

r( 4- ItPw,&
o- (M + a) a (w + 6)

2

where P - C (a + c) + C (a
-

c) + C (6 + c) + C (6
-

c),

j*- -\* /a (
u + a)-(u + b)

.O. G 6 I --.
--r -. 77- .

\ <r (u a) cr (u o)

Taking a point on the axis OC at unit distance from 0, the pro-

jection of the motion of this point on a plane through perpendicular

to OZ will be given by

x + iy = sin Wj
~ cr (u + a) o- (u + b)= C 7 4 exP (- l^w).

o- (M + c) o- (u
-

c)

In a similar manner, by means of the equation

d , , . . d , . . .uv-uv

. .up + vq Rw
r^ -7- .

.G-CBwrRw

we can express w + iv by means of Weierstrass's cr functions
;
and the

same method can be applied to the expression of p + iq and also of

x + iy, x and y now denoting the coordinates of with respect to fixed

axes in a plane perpendicular to the direction of the resultant impulse F.

It will be noticed that the letter u has been used in two senses,

first as expressing a component velocity of translation, and secondly as

an abbreviation for t^/r + oo3 ;
this was unavoidable in order to reconcile

the different notations, but will not be found to lead to confusion.
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Crown 8vo. 8s.

Thucydides. The History of the Peloponnesian War. By Richard
ShUleto, M.A. Book I. 8vo. 6s. 6d. Book II. 8vo. 5s. 6d.

LATIN AND GREEK CLASS-BOOKS.
Faciliora. An Elementary Latin Book on a new principle. By

the Rev. J. L. Seaper, M.A. 2s. 6d.

A Latin Primer. By Rev. A. C. Clapin, M.A. Is.

Auxilia Latina. A Series of Progressive Latin Exercises. By
M. J.B.Baddeley.M.A. Fcap.Svo. Part I. Accidence. 3rd Edition, revised.
2s. Part II. 4th Edition, revised. 2s. Key to Part II. 2s. 6d.

Scala Latina. Elementary Lathi Exercises. By Rev. J. W.
Davis, M.A. New Edition, with Vocabulary. Fcap. 8vo. 2s. 6d.

Passages for Translation into Lathi Prose. By Prof. H. Nettle-

ship, M.A. 3s. Key (for Tutors only), 4s. 6d.

Latin Prose Lessons. By Prof. Church, M.A. 9th Edition.

Fcap. 8vo. 2s. 6d.

Tales for Latin Prose Composition. With Notes and Vocabu-

lary. By G. H. Wells, M.A. 2s.

Analytical Latin Exercise*. By C. P. Mason, B.A, 4th Edit.

Part I., Is. 6d. Part II., 2*. 6d.

BY T. COLLINS, M.A., HEAD MASTER OF THE LATIN SCHOOL,

NEWPORT, SALOP.

Latin Exercises and Grammar Papers. 6th Edit. Fcap. 8vo. 2s. 6d.

Unseen Papers in Latin Prose and Verse. With Examination
Questions. 4th Edition. Foap. 8vo. 2s. 6d.

in Greek Prose and Verse. With Examination Questions.
3rd Edition. Fcap. 8vo. 3s.

Easy Translations from Nepos. Gcesar, Cicero, Livy, &c., for

Eetranslation into Latin. With Notes. 'Js.
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Soala Grseoa : a Series of Elementary Greek Exercises. By Rev. J. W.
Davis, M.A., and R. W. Baddeley, M.A. 3rd Edition. Fcap. 8vo. 2s. 6d,

Greek Verse Composition. By G. Preston, M.A. 5th Edition..

Crown 8vo. 4s. 6d.

Greek Particles and their Combinations according to Attic Usage.
A Short Treatise. By F. A. Paley, M.A., LL.D. 2s. 6d.

Eudiments of Attic Construction and Idiom. By the Eev.
W. C. Compbon, M.A., Assistant Master at Uppingham School. 3s.

BY A. M. M. STEDMAN, M.A., WADHAM COLLEGE, OXFORD.

First Latin Lessons. Is.

MisceUaneous Latin Exercises. Fcap. Svo. Is. Qd.

Easy Latin Exercises on the Syntax of the Kevised Latin Primer
and Shorter Latin Primer. With Vocabulary. Crown 8vo. 2s. 6d.

Easy Latin Passages for Unseen Translation. Fcap. Svo. Is. 6<L

Latin Vocabularies for Repetition. 2nd Edition, revised. Fcap.
8vo. Is. 6d.

Latin Examination Papers in Grammar and Idiom. Crown
Svo. 2s. 6d. Key (for Tutors and Private Students only), 6s.

Greek Examination Papers in Grammar and Idiom. 2s. 6d-.

Greek Testament Selections. 2nd Edition, enlarged, with Notes
and Vocabulary. Fcap. Svo. 2s. 6d.

BY THE KEV. P. FBOST, M.A., ST. JOHN'S COLLEGE, CAMBRIDGE.

Eclogse Latinse ; or, First Latin Beading-Book, with English Notes
and a Dictionary. New Edition. Fcap. Svo. Is. 6d.

Materials for Latin Prose Composition. New Edition. Fcap. Svo.

2s. Key (for Tutors only), 4s.

A Latin Verse-Book. An Introductory Work on Hexameters and
Pentameters. New Edition. Fcap. Svo. 2s. Key (for Tutors only), 5s.

Analecta Grseca Minora, with Introductory Sentences, English
Notes, and a Dictionary. New Edition. Fcap. Svo. 2s.

Materials for Greek Prose Composition. New Edit. Fcap. Svo.

2s. 6d. Key (for Tutors only), 5s.

Florilegium Poeticum. Elegiac Extracts from Ovid and Tibullus,
New Edition. With Notes. Fcap. Svo. 2s.

Anthologia Graeca. A Selection of Choice Greek Poetry, with Notes.

By F. St. John Thackeray. 4tfi and Cheaper Edition. 16mo. 4s. 6d.

Anthologia Latina. A Selection of Choice Latin Poetry, from
Nasvius to Boethius, with Notes. By Bv. F. St. John Thackeray. Revised
and Cheaper Edition. 16mo. 4s. 6d.

BY H. A. HOLDEN, LL.D.

Foliorum Silvula. Part I. Passages for Translation into Latin -

Elegiac and Heroic Verse. 10th Edition. Post Svo. 7s. 6d.

Part II. Select Passages for Translation into Latin Lyrio
and Comic Iambic Verse. 3rd Edition. Post Svo. 5s.

Folia SilvulsB, sive Eclogae Poetarum Anglicorum in Latinum el

Grtecum converses. Svo. Vol. II. 4s. 6d.

Foliorum Centurise. Select Passages for Translation into Latin >

and Greek Prose. 10th Edition. Post Svo. 8s.
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TRANSLATIONS, SELECTIONS, &c.

%* Many of the following books are well adapted for School Prizes.

.ffischylus. Translated into English Prose by F. A. Paley, M.A.,
LL.D. 2nd Edition. 8vo. 7s. Qd.

Translated into English Verse by Anna Swanwick. 4th
Edition. Post 8vo. 5s.

Horace. The Odes and Carmen Sseculare. In English Yerse by
J. Conington, M.A. 10th edition. Fcap. 8vo. 5s. 6d.

The Satires and Epistles. In English Verse by J. Coning-
ton, M.A. 7th edition. 6s. 6d.

Odes. Englished and Imitated by various hands. l.. fid.

Plato. Gorgias. Translated by E.M. Cope, M.A. 8vo. 2nd Ed. 7s.

Philebus. Trans, by F. A. Paley, M. A., LL.D. Sm. 8vo. 4s.

Thesetetus. Trans, by F. A. Paley, M. A., LL.D. Sm.Svo. 4s.

AnalysisandIndex of theDialogues. ByDr. Day. PostSvo. 5s.

Sophocles. (Edipus Tyrannus. By Dr. Kennedy. Is.

Theocritus. In English Verse, by C. S. Calverley, M.A. New
Edition, revised. Crown 8vo. 7s. 6d.

Translations into English and Latin. By C. S. Calverley, M.A.
PostSvo. 7s. 6d.

Translations into English, Latin, and Greek. By R. C. Jebb, M.A.,
H. Jackson, Litt.D., and W. E. Currey, M.A. Second Edition. 8s.

Extracts for Translation. By R. C. Jebb, M.A., H. Jackson,
Litt.D., and W. E. Currey, M.A. 4s. 6d.

Between Whiles. Translations by Rev. B. H. Kennedy, D.D.
2nd Edition, revised. Crown 8vo. 5s.

REFERENCE VOLUMES.

A Latin Grammar. By Albert Harkness. Post 8vo. 6*.

By T. H. Key, M.A. 6th Thousand. Post 8vo. 8s.

A Short Latin Grammar for Schools. By T. H. Key, M.A.
P.E.S. 16th Edition. PostSvo. 3s. Qd.

A Guide to the Choice of Classical Books. By J. B. Mayor, M.A.
3rd Edition, with a Supplementary List. Crown 8vo. 4s. 6d. Supple-

mentary List separately, Is. 6d.

The Theatre of the Greeks. By J. W. Donaldson, D.D. 8th

Edition. Post 8vo. 5s.

Keightiey's Mythology of Greece and Italy. 4th Edition. 5*
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CLASSICAL TABLES.
Latin Aooidenoe. By the Rev. P. Frost, M.A. It.

Latin Versification. Is,

Notabilia Quaedam ; or the Principal Tenses of most o! the
Irregular Greek Verbs and Elementary Greek, Latin, and French Con-
struction. New Edition. Is.

Richmond Rules for the Ovldian Distich, &o. By J. Tate,
M.A. Is.

The Principles of Latin Syntax. Is.

Greek Verbs. A Catalogue of Verbs, Irregular and Defective
; their

leading formations, tenses, and inflexions, with Paradigms for conjugation,
Rules for formation of tenses, &c. &c. By J. S. Baird, T.C.D. 8th Ed. 2s. 6d.

Greek Accents (Notes on). By A. Barry, D.D. New Edition. 1*.

Homeric Dialect. Its Leading Forms and Peculiarities. By J. S.
Baird, T.C.D. New Edition, by W. G. Rutherford, LL.D. Is.

Greek Accidence. By the Rev. P. Frost, M.A. New Edition. 1.

CAMBRIDGE MATHEMATICAL SERIES.
Arithmetic for Schools. By C. Pendlebury, M.A. 3rd Edition,

stereotyped, with or without answers, 4s. 6d. Or in two parts, 2s. 6d.
each.

EXAMPLES (nearly 8000), without answers, in a separate voL 3s.

Algebra. Choice and Chance. By W. A. Whitworth, M.A. 4th
Edition. 6s.

Euclid. Books I.-VI. and part of Books XI. and XII. By H.
Deighton. 4s. 6d. Key (for Tutors only), 5s. Books I. and II., 2s.

Euclid. Exercises on Euclid and in Modern Geometry. By
J. McDowell, M.A. 3rd Edition. 6s.

Trigonometry. Plane. By Bev.T.Vyvyan,M.A. 3rd Edit. 3s. 6&
Geometrical Conic Sections. By H. G. Willis, M.A. Man-

chester Grammar School. 7s. 6d.

Conies. The Elementary Geometry of. 5th Edition, revised and
enlarged. By C. Taylor, D.D. 4s. 6d.

Solid Geometry. By W. S. Aldis, M.A. 4th Edit, revised. 6.
Geometrical Optics. By W. S. Aldis, M.A. 3rd Edition. 4s.

Rigid Dynamics. By W. S. Aldis, M.A. 4s.

Elementary Dynamics. By W.Garnett,M.A.,D.C.L. 4th Ed. 6s.

Dynamics. A Treatise on. By W. H. Besant, D.Sc., F.B.S. 7s. Gd.

Heat. An Elementary Treatise. By W. Garnett, M.A., D.C.L. 4th
Edition. 4s.

Elementary Physics. Examples in. By W. Gallatly, M.A. 4s.

Hydromechanics. By W. H. Besant, D.Sc., F.E.S. 4th Edition.
Parti. Hydrostatics. 5s.

Mathematical Examples. By J. M. Dyer, M.A. , Assistant Master
Eton College, and R. Prowde Smith, M.A., Assistant Master at Cheltenham
College. OK.

Mechanics. Problems in Elementary. By W. Walton, M.A. 6.s
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CAMBRIDGE SCHOOL AND COLLEGE
TEXT-BOOKS.

A Series of Elementary Treatises for the use of Student*.

Arithmetic. By Kev. C. Elsee, M.A. Fcap. 8vo. 13th Edit. 3. Gd>

* By A. Wrigley, M.A. 3s. Qd.

A Progressive Course of Examples. With Answers. By
J. Watson, M.A. 7th Edition, revised. By W. P. Gondie, B.A. 2s. 6d.

Algebra. By the Eev. C. Elsee, M.A. 7th Edit. 4s.

Progressive Course of Examples. By Bev. W. F.

M'Michael,M.A.,and R. Prowde Smith, M.A. 4th Edition. 3s. 6d. With
Answers. 4s. Qd.

Plane Astronomy, An Introduction to. By P. T. Main, M.A.
5th Edition. 4s.

Oonic Sections treated Geometrically. By W. H. Besant, D.Sc.
6th Edition. 4s. 6d. Solution to the Examples. 4s.

- Enunciations and Figures Separately. Is. 6d.

Statics, Elementary. By Eev. H. Goodwin, D.D. 2nd Edit. 3s.

Hydrostatics, Elementary. By W.H. Besant, D.Sc. 13th Edit. 4s.

Mensuration,AnElementary Treatise on. By B.T.Moore, M.A. 3s.6d.

Newton's Principia, The First Three Sections of, with an Appen-
dix

;
and the Ninth and Eleventh Sections. By J. H. Evans, M.A. 5th

Edition, by P. T. Main, M.A. 4s.

Analytical Geometry for Schools. By T. G.Vyvyan. 4th Edit. 4s. 6d.

Greek Testament, Companion to the. By A. C. Barrett, A.M.
5th Edition, revised. Fcap. 8vo. 5s.

Book of Common Prayer, An Historical and Explanatory Treatise
on the. By W. G. Humphry, B.D. 6th Edition. Fcap. 8vo. 2s. 6d.

Music, Text-book of. By Professor H. C. Banister. 13th Edition,
revised. 5s.

Concise History of. By Kev. H. G. Bonavia Hunt,
Mus. Doc. Dublin. 8th Edition revised. 3s. 6d.

ARITHMETIC AND ALGEBRA.
See the two foregoing Series.

BOOK-KEEPING.
Book-keeping Papers, set at various Public Examinations.

Collected and Written by J. T. Medhurst, Lecturer on Book-keeping in

the City of London College. 3e.
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GEOMETRY AND EUCLID.

Euclid. Books I.-VI. and part of XI. and XII. A New Trans-
lation. By H. Deighton. Books I. and II. separately, 2s. (See p. 8.)

The Definitions of, with Explanations and Exercises,
and an Appendix of Exercises on the First Book. By R. Webb, MJL
Crown 8vo. Is. 6d.

Book I. With Notes and Exercises for the use of Pre-

paratory Schools, &c. By Braithwaite Arnett, M.A. 8vo. 4s. 6d.

The First Two Books explained to Beginners. By C. P.

Mason, B.A. 2nd Edition. Fcap. 8vo. 2s. 6d.

The Enunciations and Figures to Euclid's Elements. By Rev.
J. Brasse, D.D. New Edition. Fcap. 8vo. Is. Without the Figures, 6<il.

Exercises on Euclid and in Modern Geometry. By J. McDowell,
B.A. Crown 8vo. 3rd Edition revised. 6s.

Geometrical Conic Sections. By H. G. Willis, M.A. (See p. 8.)

Geometrical Conic Sections. By W. H. Besant, D.Sc. (See p. 9.)

Elementary Geometry of Conies. By C. Taylor, D.D. (See p. 8.)

An Introduction to Ancient and Modern Geometry of Conies.

ByC. Taylor, D.D., Master of St. John's Coll., Camb. 8vo. 15s.

Solutions of Geometrical Problems, proposed at St. John's

College from 1830 to 1846. By T. GasMn, M.A. 8vo. 12s.

TRIGONOMETRY.

Trigonometry, Introduction to Plane. By Eev. T. G. Vyvyan,
Charterhouse. 3rd Edition. Cr. 8vo. 3s. 6<J,

An Elementary Treatise on Mensuration. By B. T. Moore,
is. 6d.

ANALYTICAL GEOMETRY
AND DIFFERENTIAL CALCULUS.

An Introduction to Analytical Plane Geometry. By W. P.

TurnbuU, M.A. 8vo. 12*.

Problems on the Principles of Plane Co-ordinate Geometry.
By W. Walton, M.A. 8vo. 16.

Trilinear Co-ordinates, and Modern Analytical Geometry of
Two Dimensions. By W. A. Whitworth, M.A. 8vo. 16s.

An Elementary Treatise on Solid Geometry. By W. S. Aldis,
M.A. 4th Edition revised. Cr. 8vo. 6s.

Elliptic Functions, Elementary Treatise on. By A. Cayley, D.Sc,
Professor of Pure Mathematics at Cambridge University. DemySvo. 15s.
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MECHANICS & NATURAL PHILOSOPHY.

Statics, Elementary. By H. Goodwin, D.D. Fcap. 8vo. 2nd
Edition. 3s.

Dynamics, A Treatise on Elementary. By W. Garnett, M.A.,
D.C.L. 4th Edition. Crown 8vo. 6s.

Dynamics. Kigid. By W. S. Aldis, M.A. 4s.

Dynamics. A Treatise on. By W. H. Besant, D.Sc.,F.B.S. Is. 6d.

Elementary Mechanics, Problems in. By W. Walton, M.A. New
Edition. Crown 8vo. 6s.

Theoretical Mechanics, Problems in. By W. Walton, M.A. 3rd
Edition. Demy 8vo. 16s.

Hydrostatics. ByW.H. Besant, D.Sc. Fcap.Svo. 12thEdition. 4*.

Hydromechanics, A Treatise on. By W. H. Besant, D.Sc., F.B.S.
8vo. 4th Edition, revised. Part I. Hydrostatics. 5s.

Optics, Geometrical. By W. S. Aldis, M.A. Crown 8vo. 3rd
Edition. 4s.

Double Refraction, A Chapter on Fresnel's Theory of. By W. S.

Aldis, M.A. 8vo. 2s.

Heat, An Elementary Treatise on. By W. Garnett, M.A., D.C.L.
Crown 8vo. 4th Edition. 4s.

Elementary Physics. By W. Gallatly, M.A., Asst. Examr. at
London University. 4s.

Newton's Principia, The First Three Sections of, with an Appen-
dix

; and the Ninth and Eleventh Sections. By J. H. Evans, M.A. 5th
Edition. Edited by P. T. Main, M.A. 4s.

Astronomy, An Introduction to Plane. By P. T. Main, M.A.
Fcap. 8vo. cloth. 5th Edition. 4s.

Practical and Spherical. By R. Main, M.A. 8vo. 14.

Mathematical Examples. Pure and Mixed. By J. M. Dyer, M.A. ,

and R. Prowde Smith, M.A. 6s.

Pure Mathematics and Natural Philosophy, A Compendium of

Facts and Formulae in. By G-. R. Smalley. 2nd Edition, revised by
J. McDoweU, M.A. Fcap. 8vo. 3s. 6d.

Elementary Mathematical Formulae. By the Eev. T. W. Open-
shaw, M.A. Is. 6dL

Elementary Course of Mathematics. By H. Goodwin, D.D.
6th Edition. 8vo. 16s.

Problems and Examples, adapted to the '

Elementary Course of

Mathematics.' 3rd Edition. 8vo. 5s.

Solutions of G-oodwin's Collection of Problems and Examples.
By W. W. Hntt, M.A. 3rd Edition, revised and enlarged. 8vo. 9s.

A Collection of Examples and Problems in Arithmetic,
Algebra, Geometry, Logarithms, Trigonometry, Conic Sections, Mechanics,
&c., with Answers. By Rev. A. Wrigley. 20th Thousand. 8s. 6d.

Key. 10s. 6d.
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TECHNOLOGICAL HANDBOOKS.
Edited by H. TKUEMAN WOOD, Secretary of the Society of Arts.

Dyeing and Tissue Printing. By W. Crookes, F.R.S. 5s.

Glass Manufacture. By Henry Chance, M.A.; H. J. Powell, B.A.;
and H. G. Harris. 3s. 6cZ.

Cotton Spinning. By Richard Marsden, of Manchester. 3rd
Edition, revised. 6s, 6d.

Cotton Weaving. By R. Marsden. [Preparing.

Chemistry of Coal-Tar Colours. By Prof. Benedikt. Translated

by Dr. Knecht of Bradford. 5s.

Woollen and Worsted Cloth Manufacture. By Roberts Beau-
mont, Assistant Lecturer at Yorkshire College, Leeds. 7s. 63.

Colour in Woven Design. By Roberts Beanmont. [Preparing,
Others in preparation.

HISTORY, TOPOGRAPHY, &c.

Rome and the Campagna. By R. Burn, M.A. With 85 En-
gravings and 28 Maps and Plans. With Appendix. 4to. 21s,

Old Rome. A Handbook for Travellers. By R. Burn, M.A.
With Maps and Plans. Demy 8vo. 5s.

Modern Europe. By Dr. T. H. Dyer. 2nd Edition, revised and
continued. 5 vols. Demy 8vo. 21. 12s. 6d.

The History of the Zings of Rome. By Dr. T. H. Dyer. 8vo. 16*.

The History of Pompeii: its Buildings and Antiquities. By
T. H. Dyer. 3rd Edition, brought down to 1874. Post 8vo. 7s. 6d.

The City of Rome : its History and Monuments. 2nd Edition,
revised by T. H. Dyer. 5s.

Ancient Athens: its History, Topography, and Remains. By
T. H. Dyer. Super-royal 8vo. Cloth. 7s. 63.

The Decline of the Roman Republic. By G. Long. 5 vols.

8vo. 5s. each.

A History of England during the Early and Middle Ages. By
0. H. Pearson, M.A. 2nd Edition revised and enlarged. 8vo. Vol. I.

16s. Vol. II. 14s.

Historical Maps of England. By C. H. Pearson. Folio. 3rd
Edition revised. 31s. 6d.

History of England, 1800-46. By Harriet Martineau, with new
and copious Index. 5 vols. 3s. 6d. each.

A Practical Synopsis of English History. By A. Bowes. 9th

Edition, revised. 8vo. Is.

Lives of the Queens of England. By A. Strickland. Library
Edition, 8 vols. 7s. 6d. each. Cheaper Edition, 6 vols. 5s. eaoh. Abridged
Edition. 1 vol. 6s. 6d. Mary Queen of Scots, 2 vols. 5s. each. Tudor and>

Stuart Princesses, 5s.
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Eginhard's Life of Karl the Great (Charlemagne). Translated,
with Notes, by W. Qlaister, M.A., B.O.L. Crown 8vo. 4s. 6d.

The Elements of General History. By Prof. Tytler, New
Edition, brought down to 1874. Small Poet 8vo. 3s. 6d.

History and Geography Examination Papers. Compiled by
C. H. Spence, M. A., (ilifton College. Crown 8vo. 2. 6<J.

PHILOLOGY.
WEBSTER'S DICTIONARY OP THE ENGLISH LAN-

GUAGE. With Dr. Mann's Etymology. 1 vol. 1628 pages, 3000 Illus-

trations. 21s. ; half calf, :JOs.
; calf or half russia, 31s. 6d. ; rusaia, 21.

With Appendices and 70 additional pages of Illustrations, 1919 pages,
31s. 6d. ; half calf, 21. ; calf or half russia, 21. 2s.; russia, 21. 10a.

*THE BEST PRACTICAL ENGLISH DiCTiONAKY EXTANT.' Quarterly Review, 1873.

Prospectuses, with specimen pages, post free on application.

Richardson's Philological Dictionary of the English Language.
Combining Explanation with Etymology, and copiously illustrated by
Quotations from the best Authorities. With a Supplement. 2 vols. 4to.

4t. 14s. 6d. Supplement separately. 4to. 12s.

Brief History of the English Language. By Prof. James Hadley,
LL.D., Yale College. Fcap. 8vo. Is.

The Elements of the English Language. By E. Adams, Ph.D.
21st Edition. PostSvo. 4s. 6d.

Philological Essays. By T. H. Key, M.A., F.R.S. 8vo. 10s. 6d.

Language, its Origin and Development. By T. H. Key, M.A.,
F.R.S. 8vo. 14s.

Synonyms and Antonyms of the English Language. By Arch-
deacon Smith. 2nd Edition. Post 8vo. 5s.

Synonyms Discriminated. By Archdeacon Smith. Demy 8vo.
2nd Edition revised. 14s.

Bible English. Chapters on Words and Phrases in the Bible and
Prayer Book. By Rev. T. L. O. Davies. 5s.

The Queen's English. A Manual of Idiom and Usage. By the
late Dean Alford. 6th Edition. Fcap. 8vo. Is. sewed. Is. 6d. cloth.

A History of English Rhythms. By Edwin Guest, M.A., D.C.L.
LL.D. New Edition, by Professor W. W. Skeat. Demy 8vo. 18s.

Elements of Comparative Grammar and Philology. For Use
in Schools. By A. C. Price, M.A., Assistant Master at Leeds Grammar
School. Crown 8ve. 2s. 6d.

Questions for Examination in English Literature. By Prof.

W. W. Skeat. 2nd Edition, revised. 2s. 6d.

Etymological Glossary of nearly 25OO English Words de-
rived from the Greek. By the Rev. E. J. Boyce. Fcap. 8vo. 3s. 6d.

A Syriac Grammar. By G. Phillips, D.D. 3rd Edition, enlarged.
8vo. 7s. 6d.
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DIVINITY, MORAL PHILOSOPHY, &o.

BY THE REV. F. H. SCEIVENEB, A.M., LL.D., D.C.L.

Novum Testamentum Greece. Editio major. Being an enlarged
Edition, containing the Readings of Westcott and Hort, and those adopted
by the Revisers, &c. 7s. 6d. For other Editions see page 3.

A Plain Introduction to the Criticism of the New Testament.
With Forty Facsimiles from Ancient Manuscripts. 3rd Edition. 8vo. 18s.

Six Lectures on the Text of the New Testament For English
Readers. Crown 8vo. 6s.

Codex BezsB Cantabrigiensis. 4to. 26s.

The New Testament for English Readers. By the late H. Alford,
D.D. Vol. I. Part I. 3rd Edit. 12s. Vol. I. Part II. 2nd Edit. 10s. 6d.
Vol. II. Part I. 2nd Edit. 16s. Vol. II. Part II. 2nd Edit. 16s.

The Greek Testament. By the late H. Alford, D.D. Vol. I. 7th
Edit. 11. 8s. Vol. II. 8th Edit. 11. 4s. Vol. III. 10th Edit. 18s. Vol. IV.
Part I. 5th Edit. 18s. Vol. IV. Part II. 10th Edit. 14s. Vol. IV. 11. 12s.

Companion to the Greek Testament. By A. G. Barrett, M.A.
5th Edition, revised. Fcap. 8vo. 5s.

The Book of Psalms. A New Translation, with Introductions, &o.

By the Very Rev. J. J. Stewart Perowne, D.D. 8vo. Vol. I. 6th Edition.
18s. Vol. II. 6th Edit. 16s.

Abridged for Schools. 6th Edition. Crown 8vo. 10*. 6d.

History of the Articles of Religion. By C. H. Hardwick. 3rd
Edition. Post 8vo. 5s.

History of the Creeds. By J. E. Lumby, DD. 3rd Edition.
Crown 8vo. 7s. 6d.

Pearson on the Creed. Carefully printed from an early edition.
With Analysis and Index by E. Walford, M.A. Post 8vo. 5s.

Liturgies and Offices of the Church, for the Use of English
Readers, in Illustration of the Book of Common Prayer. By the Rev.
Edward Burbidge, M.A. Crown 8vo. 9s.

An Historical and Explanatory Treatise on the Book of
Common Prayer By Rev. W. G. Humphry, B.D. 6th Edition, enlarged.
Small Post 8vo. 2s. 6d. ; Cheap Edition, Is.

A Commentary on the Gospels, Epistles, and Acts of the
Apostles. By Rev. W. Denton, A.M. New Edition. 7 vols. 8vo. 9s. each.

Notes on the Catechism. By Bt. Bev. Bishop Barry. 8th Edit.

Fcap. 2s.

The Winton Church Catechist. Questions and Answers on the

Teaching of the Church Catechism. By the late Rev. J. S. B. Monsell,
LL.D. 4th Edition. Cloth, 3s. ; or in Four Parts, sewed.

The Church Teacher's Manual of Christian Instruction. By
Rev. M. F. Sadler. 38th Thousand. 2s. 6d.
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FOREIGN CLASSICS.
A Series for use in Schools, with English Notes, grammatical aiul

explanatory, and renderings of difficult idiomatic expressions.

Fcap. Svo.

Schiller's Wallenstein. By Dr. A. Buchheim. 5th Edit. 5s.

Or the Lager and Picoolomini, 2s. 6d. Wallenstein's Tod, 2s. 6d.

Maid of Orleans. By Dr. W. Wagner. 2nd Edit. Is. Qd.

Maria Stuart. By V. Kastner. 2nd Edition. 1*. 6cZ.

Goethe's Hermann and Dorothea. By E. Bell, M.A., and
E. Wolfel. Is. 6d.

German Ballads, from Uhland, Goethe, and Schiller. By C. L.
Bielefeld. 3rd Edition. Is. 6d.

Charles XII., par Voltaire. By L. Direy. 7th Edition. Is. 6d.

Aventures de Telemaque, par Fenelon. By C. J. Delille. 4th
Edition. 2s. 6d.

Select Fables of La Fontaine. By F. E. A. Gasc. 18th Edit. Is. &d.

Picciola, by X.B. Saintine. ByDr.Dubnc. 15th Thousand. Is. 6d.

Lamartine's Le Tailleur de Pierres de Saint-Point. By
J. Boielle, 4th Thousand. Fcap. 8vo. Is. 6d.

Italian Primer. By Eev. A. C. Clapin, M.A. Fcap. 8vo. Is.

FRENCH CLASS-BOOKS.
French Grammar for Public Schools. By Kev. A. C. Clapin, M.A,

Fcap. 8vo. 12th Edition, revised. 2s. 6d.

French Primer. By Kev. A. C. Clapin, M.A. Fcap. 8vo. 8th Ed. Is.

Primer of French Philology. By Kev. A. C. Clapin. Fcap. 8vo.

4th Edit. Is.

Le Nouveau Tresor; or, French Student's Companion. By
M. E. S. 18th Edition. Fcap. 8vo. Is. 6d.

French Examination Papers in Miscellaneous Grammar and
Idioms. Compiled by A. M. M. Stedmau, M.A. 3rd Edition. Crown
8vo. 2s. 6d.

Key to the above. By G. A. Schrumpf , Univ. of France. Crown
8vo. 5s. (For Teachers or Private Students only.)

Manual of French Prosody. By Arthur Gosset, M.A. Crown
8vo. 3s.

Lexicon of Conversational French. By A. Holloway. 2nd
Edition. Crown 8vo. 4s.

PROF. A. BARRERE'S FRE!s7CH COURSE.

Elements of French Grammar and First Steps in Idiom.

Crown 8vo. 2s.

Precis of Comparative French Grammar. 2nd Edition. Crown
8vo. 3s. 6d.

Junior Graduated French Course. Crown 8vo. Is. 6rf.
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F. E. A. GASC'S FRENCH COUESE.
First French Book. Fcap. 8vo. 98th Thousand. Is.

Second French Book. 47th Thousand. Fcap. 8vo. 1*. Qd.

Key to First and Second French Books. 5th Edit. Fcp. 8vo. 3*. Qd.

French Fables for Beginners, in Prose, with Index. 16th Thousand.
12mo. Is. 6d.

Select Fables of La Fontaine. 18th Thousand. Fcap.Svo. 1*. 6d.

Histoires Amusantes et Instruotives. With Notes. 16th Thou-
sand. Fcap. STO. 2s.

Practical Guide to Modern French Conversation. 17th Thou-
sand. Fcap. STO. Is. 6d.

French Poetry for the Young. With Notes. 5th Edition. Fcap.
STO. 2s.

Materials for French Prose Composition; or, Selections from
the best English Prose Writers. 19th Thous. Fcap. STO. 3s. Key, 6s.

Prosateurs Contemporains. With Notes. 10th Edition, re-

Tised. 12mo. 3. 6d.

Le Petit Compagnon ;
a French Talk-Book for Little Children.

12th Thousand. 16mo. la 6d.

An Improved Modern Pocket Dictionary of the French and
English Languages. 45th Thousand, with Additions. 16mo. 2s. 6d.

Modern French-English and English-French Dictionary. 4th
Edition, re-rised. In 1 TO!. 10s. 6d.

The ABC Tourist's French Interpreter of all Immediate
Wants. By F. E. A. Gasc. Is.

MODERN FRENCH AUTHORS.
Edited, with Introductions and Notes, by JAMES BOIELLE, Senior

French Master at Dulwich College.

Daudet's La Belle Nivernaise. 2s. 6d. For Beginners.

Hugo's Bug Jargal. 3s. For Advanced Students.

GOMBEBT'S FRENCH DRAMA.
Being a Selection of the best Tragedies and Comedies of Moliere,

Racine, Corneille, and Voltaire. With Arguments and Notes by A.
Gombert. New Edition, revised by F. E. A. Gaac. Fcap. STO. Is. each;
sewed, 6d.

CONTENTS.
MOLIERE : Le Misanthrope. L'ATare. Le Bourgeois Gentilhomme. Le

Tartuife. Le Malade Imaginaire. Les Femmes SaTantes. Les Fourberies
de Scapin. Les Pr&ieuses Ridicules. L'Ecole des Femmes. L'Ecole des
Marts. Le MMecin malgr^ Lui

RACINE :Ph6dre. Esther. Athalie. Iphige"nie. Les Plaideurs. La
TheTralde ; ou, Los Freres Ennemis. Andromaqne. Britannious.

P. CORNEILLE: Le Oid. Horace. Oinna. Polyeuote.
VOLTAIRE : Zaire.

GERMAN CLASS-BOOKS.
A Concise German Grammar. By Frz. Lange, Ph.D., Professor

R.M.A. Woolwich. In three Parta. Part I. Elementary. 2s. Part II.

Intermediate. Is. 6d. Now ready. Part III. AdTanced. In the press.

Materials for German Prose Composition. By Dr. Buchheim.
llth Edition, thoroughly reTiaed. Foap. 48.64. Key, Parts I. and II., 3s.

Parts III. and IV. ,4s.
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German Conversation Grammar. By I. Sydow. 2nd Edition.
Book I. Etymology. 2s. 6d. Book II. Syntax. 1. 6d.

Wortfolge, or Rules and Exercises on the Order of Words in
German Sentences. By Dr. P. Stock, la. 6d.

A German Grammar for Public Schools. By the Rev. A. C.
Clapin and F. Holl Midler. 5th Edition. Fcap. 2s. 6d.

A German Primer, with Exercises. By Rev. A. C. Clapin. 1.
Kotzebue's Der Gefangene. With Notes by Dr. W. Stromberg. 1*.

German Examination Papers in Grammar and Idiom. By
R. J. Morich. 2s. 6d. Key for Tutors only, 5a.

German Examination Course. By Prof. F. Lange, Ph.D.
Elementary, 2s. Intermediate, 2s. Advanced, la. 6d.

MODERN GERMAN SCHOOL CLASSICS.

Small Crown 8vo.

Key's Fabeln Fiir Kinder. Edited by Prof. F. Lange, Ph.D. Is. 6d.

Bechstein's Marchen. Edited by Prof. H. Hager, Ph.D.

Benedix's Dr. Wespe. Edited by F. Lange, Ph.D. 2s. 6d.

Schiller's Jugendjahre. Edited by Prof. H. Hager, Ph.D.
[In the press.

Hof&nan's Meister Martin, der Kufner. By Prof. F. Lange, Ph.D.
ls.6d.

Heyse's Hans Lange. By A. A. Macdonell, M.A., Ph.D. 2s.

Auerbach's Auf Wache, and Eoquette's Der Gefrorene Kuss.
By A. A. Macdonell, M.A. 2s.

Moser's Der Bibliothekar. By Prof. F. Lange, Ph.D. 2s.

Eber's Eine Frage. By F. Storr, B.A. 2s.

Freytag's Die Journalisten. By Prof. F. Lange, Ph.D. 2s. 6<L

Gutzkow's Zopf und Schwert. By Prof. F. Lange, Ph.D. 2s.

German Epic Tales. Edited by Karl Neuhaus, Ph.D. 2s. 6rf.

Humoresken. Novelletten der besten deutschen Humoristen der

Gegenwart. Edited by A. A. Macdonell, M.A. Oxon. Authorised Edition.

[Jrv preparation,

ENGLISH CLASS-BOOKS.
Comparative Grammar and Philology. By A. C. Price, M.A.,

Assistant Master at Leeds Grammar School. 2s. 6d.

The Elements of the English Language. By E. Adams, Ph.D.
21st Edition. Post 8vo. 4s. 6d.

The Rudiments of English Grammar and Analysis. By
E. Adams, Ph.D. 16th Thousand. Fcap. 8vo. Is.

A Concise System of Parsing. By L. E. Adams, B.A. Is. 6d.

Examples for Grammatical Analysis (Verse and Prose). Se-

lected, &c., by F. Edwards. New edition. Cloth, Is.

Notes on Shakespeare's Midsummer Night's Dream. By T.

Duff Barnett, B.A. 1. Julius 0ar, 1$. ; Heary Y., 1. ; Macbeth, If. ;

Tempest, Is.
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By C. P. MASON, Fellow of Univ. Coll. London.

First Notions of Grammar for Young Learners. Fcap. 8vo.
41st Thousand. Clothu 9d.

First Steps in English Grammar for Junior Classes. Demy
ISmo. 44th Thousand. Is.

Outlines of English Grammar for the Use of Junior Classes.
71st Thousand. Grown 8vo. 2s.

English Grammar, including the Principles of Grammatical
Analysis. 30th Edition. 125th Thousand. Crown 8vo. 3s. 6d.

A Shorter English Grammar, with copious Exercises. 34th
Thousand. Crown 8vo. 3. (M.

English Grammar Practice, being the Exercises separately. 1*.

Code Standard Grammars. Parts I. and II., 2d. each. Parts in.,
IV., and V., 3d. each.

Notes of Lessons, their Preparation, &c. By Jos6 Eickard,
Park Lane Board School, Leeds, and A. H. Taylor, Rodley Board
School, Leeds. 2nd Edition. Crown 870. 2s. 6d.

A Syllabic System of Teaching to Read, combining the advan-
tages of the ' Phonic ' and the '

Look-and-Say
'

Systems. Crown 8vo. Is.

Practical Hints on Teaching. By Rev. J. Menet, M.A. 6th Edit.
revised. Crown 8vo. paper, 2s.

How to Earn the Merit Grant. A Manual of School Manage-
ment. By H. Major, B.A., B.Sc. Part I. (3rd Edit.) Infant School, 3s.

Part II. (2nd Edit, revised) , 4s. Complete, 6s.

Test Lessons in Dictation. 4th Edition. Paper cover, 1*. 6d.

Drawing Copies. By P. H. Delamotte. Oblong 8vo. 12. Sold
also in parts at Is. each.

Poetry for the Schoolroom. New Edition. Fcap. 8vo. 1*. 6d.

The Botanist's Pocket-Book. With a copious Index. By W. B.

Hayward. 6th Edition, revised. Crown 8vo. cloth limp. 4s. 6d.

Experimental Chemistry, founded on the Work of Dr. Stockhardt.

By 0. W. Heaton. Post 8vo. 5s.

Lectures on Musical Analysis. Sonata-form, Fugue, &c. Illus-

trated from Classical Masters. By Prof. H. C. Banister. 7s. 6d.

GEOGRAPHICAL SERIES. By M. J. BABBINGTON WARD, M.A.

With Illustrations.

The Map and the Compass. A Reading-Book of Geography.
For Standard I. New Edition. 8d.

The Round World. A Reading-Book of Geography. For
Standard II. lOd.

The Child's Geography. For the Use of Schools and for Home
Tuition. 6d.

The Child's Geography of England. With Introductory Exer-
cises on the British Isles and Empire, with Questions. 2s. 6d. Without
Questions, 2s.

Geography Examination Papers. (See History and Geography
Papers, p. 12.)
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Helps' Course of Poetry, for Schools. A New Selection from
the English Poeta, carefully compiled and adapted to the several standards

by E. A. Helps, one of H.M. Inspectors of Schools.

Book I. Infants and Standards I. and II. 134 pp. small 8vo. 9d.

Book II. Standards III. and IV. 224 pp. crown 8vo. Is. 6d.

Book III. Standards V., VI., and VII. 352 pp. post 8vo. 2s.

Or in PARTS. Infants, 2d. ; Standard I., 2d. ; Standard II., 2d.

Standard III., 4d.

Picture School-Books. In Simple Language, with numerous
Illustrations. Royal 16mo.

The Infant's Primer. 3d. School Primer. 6d. School Reader. By J.

Tilleard. Is. Poetry Book for Schools, la. The Life of Joseph. Is. The
Scripture Parables. By the Rev. J. E. Clarke. Is. The Scripture Miracles.

By the Rev. J. E. Clarke. Is. The New Testament History. By the Rev.
J. G. Wood, M.A. Is. The Old Testament History. By the Rev. J. G.
Wood, M.A. Is. The Story of Bnnyan's Pilgrim's Progress. Is. The Life
of Martin Luther. By Sarah Crompton. Is.

BOOKS FOR YOUNG READERS.
A Series ofReadingBooks designed tofacilitate the acquisition ofthepower

ofReading by very young Children. In 11 vols. limp cloth, Qd. each.

Those with an asterisk have a Frontispiece or other Illustration.

*The Old Boathouse. Bell and Fan; or, A Cold Dip.

*Tot and the Cat. A Bit of Cake. The Jay. The
Black Hen's Nest. Tom and Ned. Mrs. Bee.

*The Cat and the Hen. Sam and his Dog Redleg.
Bob and Tom Lee. A Wreck.

*The New-born Lamb. The Rosewood Box. Poor
y

Fan. Sheep Dog.

*The Two Parrots. A Tale of the Jubilee. By M. E. >

Wintle. 9 Illustrations.

*The Story of Three Monkeys.

*Story of a Cat. Told by Herself.

Suitable

/or

Infants.

The Blind Boy.
Babes in a Wood.

The Mute Girl. A New Tale of

The Dey and the Knight. The New Bank Note.
The Royal Visit. A King's Walk on a Winter's Day.

Queen Bee and Busy Bee.

*GulTs Crag.

*A First Book of Geography. By the Rev. C. A. Johns.
Illustrated. Double size, Is.

SyUabic Spelling. By C. Barton.
Standard I., 3d.

Suitable

for
Standards
I. & II.

In Two Parts. Infants, 3d.
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BELL'S READING-BOOKS.
FOR SCHOOLS AND PAROCHIAL LIBRARIES.

Now Reach/. PostQvo. Strongly bound in cloth, Is. each.

*Life of Columbus.

"Grimm's German Tales. (Selected.)
*Andersen's Danish Tales. Illustrated. (Selected.)

Great Englishmen. Short Lives for Young Children.

Great Englishwomen. Short Lives of.

Great Scotsmen. Short Lives of.

*Masterman Ready. ByCapt. Marryat. Illus. (Abgd.)

*Poor Jack. By Capt. Marryat, B.N. (Abridged.)

*Scott's Talisman. (Abridged.)

*Friends in Pur and Feathers. By Gwynfryn.
*Dickens's Little Nell. Abridged from the ' The Old

Curiosity Shop.'

Parables from Nature. (Selected.) By Mrs. Gatty.

Lamb's Tales from Shakespeare. (Selected.)

Edgeworth's Tales. (A Selection.)
* Gulliver's Travels. (Abridged.)
*Robinson Crusoe. Illustrated.

*Arabian Nights. (A Selection Bewritten.)

*The Vicar of Wakefleld.

*Settlers in Canada. By Capt. Marryat. (Abridged.)

Marie : Glimpses of Life in Prance. By A, B. Ellis.

Poetry for Boys. Selected by D. Munro.

*Southey's Life of Nelson. (Abridged.)

*I*ife of the Duke of Wellington, withMaps and Plans.

*Sir Roger de Coverley and other Essays from the
j

Spectator.

Tales of the Coast. By J. Bunciman.
* These Volumes are Illustrated. '

Suitable

for
Standards
in. A iv.

Standards
IV. A V.

Standards
7. 71. &

VII.

Uniform with the Series, in limp cloth, &d. each.

Shakespeare's Plays. Kemble's Beading Edition. With Ex-
planatory Notes for School Use.

JULIUS O2ESAR. THE MERCHANT OF VENICE. KING JOHN.
HENRY THE FIFTH. MACBETH. AS YOU LIKE IT:

London : GEORGE BELL & SONS, York Street, Covent Garden.

'/
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