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A TREATISE

THEORY OF EQUATIONS

CHAP. I.

ON THE STRUCTURE OF EQUATIONS.

1 . By the term Equation is meant, in general, the algebraic

expression of the equality existing between two quantities,

without reference to the form in which that equality is

presented, or to the distinction between the known and

unknown quantities which are involved in it. But in the

following pages the general term will be restricted to that

class of equations only, which contains but one unknown

quantity. This is to be understood in all cases, unless the

contrary be stated. The indices of the unknown quantity

will in all cases be supposed positive integers : and the

coefficients will, in general, be supposed real
;

that is, either

numbers or symbols which do not involve the imaginary sign.

If the coefficients are imaginary in particular cases, they will

be expressed in that form, or it will be stated that such a form

is to be understood.
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2. The general type of such equations, according to the

usual arrangement of their terras, will be

Xn -t-p^-
1 + p2

X»-2 + + P» = 0.

The degree, or dimensions, of the equation will be determined

by the index of the highest power of the unknown quantity.

Thus the preceding equation is of the nth
degree.

3. As it will frequently be necessary to speak of the

quantity, or expression,

Xn + pY
Xn-1 + P2

Xn~2 + + Pn,

without reference to its equality to zero, but merely consider-

ing it as a function of the symbol x, it will be convenient to

designate it as the polynomial composing the equation. For

the sake of brevity in our notation, as well as for the conve-

nience of exhibiting the particular values of this polynomial,

it will be denoted by f(x). And similar advantages will

attend the adoption of Lagrange's notation, for its differential

coefficients taken with respect to x successively ; which will

accordingly be represented by

/o), ri*i /"'(*> /*(*)•

So that we can immediately express the result of substituting

for x any known value a in this series of polynomials, by

writing the series

/(«). /'(«). /*(«) /"(«)•

4. Now it is evident, that by giving different values to x,

the value of f(x) will vary ; and it may so happen that when

x receives the particular value a, the particular value of f (x)

shall be zero
;
or that we have identically /(a) = 0.
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In this case, the particular value a is said to satisfy, or to be

a root of the equation

/<*) = o.

And it is to the properties of these roots, as connected with

the formation of the polynomial /(%), that our attention is

now to be directed.

5. The first object of inquiry which here presents itself is,

whether under all forms of the polynomial f(pc) we shall

have a right to conclude that there exists any such particular

value, or root, expressible in a known form, possible or im-

possible ? For we are immediately obliged to relinquish the

hope of finding in all cases a real root of the equation, from

our experience in the case of quadratic equations; as for

instance,
x* + 1 = 0,

x = ± V
r
-1.

The question then is, does there in every case exist a root

which is expressible by algebraic symbols? The following

demonstration by M. Cauchy of the existence of such a root

appears to be free from objection.

6. There will always exist some real values of p and 0,

which shall render

p (cos + V — 1 sin 0)

a root of the equationf (x) = 0.

For the sake of brevity, denote by a the quantity

p (cos + v' — 1 sin 0) ;

and let a receive an increment h of the same nature, namely

h s= <r(cos^> -f V'— 1 sin0).



4 THEORY OF EQUATIONS.

Then, expanding by Taylor's theorem, after writing a -f h

for x, we shall find

f(a + h) ==/(«) + A/ (a) +

observing that the theorem cannot fail for a polynomial of

this description. Here f(a) is supposed not zero, or a would

be a root ; and f (a) is also supposed not zero, for if it be

zero, then we may take the first term of the series which is

not zero, and the reasoning will still be the same.

Now, for the convenience of the calculation, let the quan-
tities involved in the above series be put under the same

form as a and h, which can always be effected
;

so that we

may assume

f(a) — A (cos a + V— 1 sin a),

f(d) = A'(cosa' + V- 1 sin a'),

/(a + h) =. R (cosw + \/— I sinw).

Then, after the substitution, and reduction by the aid of

Demoivre's theorem, we shall have

R (cos w + V — 1 sin to)
= A (cos a -f V— I sin o)

4- 4V Jcos(a -h <f) 4- v' — 1 sin (a 4- 0)? )

+

from which, by the separate equality of the possible and

impossible parts, we obtain the two equations

R cos oj = A cos a 4- AV cos (a + 0) 4-

R sin w == A sin a + A'<r sin (a 4- $) 4-

and, by adding the squares of these equations,

R2 = A2 f 2AA'» cos(«' + -
a) 4-AV 4- . . .
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Now the sign of R2 — A2 can be made to depend on its first

term by diminishing a. Hence we can in every case render

R2 < A2
, because

<j>
is an arbitrary angle.

But on the other hand, since there must be some minimum

amongst the quantities A2
, R2

, and all other similar quantities,

we may suppose that p, 9, have been so chosen as to give A2

this minimum value. Hence, after this choice of p and 0, we

cannot make R2 < A2
.

It follows then, that this minimum value must be zero;

and that p, 0, are then so chosen that

p (cos -f t&«*J sin 0)

is a root of the equation. For if A be not zero, we can in all

cases make R2 < A2
.

We may remark that the above proof applies, when the

coefficients are impossible quantities.

Hence, in every case, we have a right to conclude that there

exists a value of x of the form

p (cos -f */ — 1 sin 9),

which shall render f{x) = 0; or, in other words, that every

equation has a root expressible by means of algebraical

symbols.

7. The investigation of the roots of the equationf(x) =
is identical with the decomposition of the polynomial f(x)
into its factors. For, whenever any root a of the equation is

found, the corresponding factor x — a of the polynomial is

determined : and vice versa\ The proof of this is at once

evident, if we observe that Taylor's series can never fail for

such a polynomial.
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Now we have

/(*) =/(« + *— <*),

=/(*) + *-«/(«*> + .. . +(x-a)\

Hence, if f(a) = 0, that is, if a is a root, x — a is a

factor. And conversely, if x — a is a factor, we must have

f(a) = 0, and a will be a root.

8. Impossible roots enter equations by pairs, and each

pair corresponds to a real quadratic factor of the poly-

nomial.

For if one root of the equation be

p (cos + s/ — 1 sin 0),

then, by substitution and reduction,

p
n
(cosw0-f\^Tsin nO)+pl p"-

1

(cos n— 10-f\/Zl sinrc— 10)

+ i?2J°
n"2

(cos w — 20 + V^TT sin n~^~20) + . . . = 0;

and since the equality can be separated, we must also have

p
n
(cos nO—S^-l sin nO) \-plp

n~l

(cosn— 10—V^T sinrc— 10)

+ JPa/
""2

(cos w — 20 — V — 1 sin n — 20) + . . . = 0;

from which we conclude that

p (cos
— /^l sin 0)

is also a root of the equation.

Now the two corresponding factors of the polynomial will be

x — p cos — s/ — 1 p sin 0,

x — p cos + */ — I p sin
;

and their product gives the quadratic factor

(x — p cos 0)
2

-|- p
2 sin2 0,

or #2 — 2xp cos -f p
2
.



STRUCTURE OF EQUATIONS. 7

9. Every equation has as many roots as it has dimensions,

and no more.

For it has been shown that /(#) = 0, has always one

root, and therefore /(a?) has always some factor of the form

f(x)
x — av which exactly divides it. Now the quotient g v J

x — o,
j

is a quantity perfectly similar to f{x) in form, but of one

dimension lower. It must then have a factor x — a2 , and

f(x)
the quotient . w \

w^ be a polynomial of n — 2
{x — a

x) {x
— a

2)

dimensions. Proceeding in this manner, we shall at length

find a quotient of no dimensions, which will be unity ; thus

/(*)
I:

(x
-

Oj) (x - eg (x — an)

that is,

f(x) = (x - oj (as
— a

2) (x
— O.

It is evident that the quantities av a
2 , an, are

roots of the equation /(#) = ; and that no other quantity

can be a root of it.

For any other quantity Q, when substituted for x, will give

the result

/(Q) = (Q _ a,) (Q - a
2) . . . . (Q - «.),

which is not zero ; and consequently Q cannot be a root.

10. Connexion of the coefficients of an equation with its

roots.

Let the roots be denoted by a, b, c, /
; and let

the equation be of n dimensions with the usual coefficients.

Then, by the decomposition of the polynomial, which has

been effected,
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xn + p {
xn' A + p.2 x

n~2
-f + pn

=z (x — a) (x
—

b) (x — c) (x — I)

— xn — xn~x
(a + b-\-c + d + y

-4- x^"2
{ab +ac + be 4- )

— xn~3 (abc 4- acd + )

4- (— I)f .abed . . . . /

= xn — xn-l

2(a) + xn '2
2(ab) — . . . + (— l)

n abc . . . I,

denoting by S the sum of all quantities similar to the one

to which it is prefixed.

Hence, generally, we shall have

(— l)
r
pr fc= sum of products of every r roots.

11. By means of the relations just established between the

coefficients and the roots of an equation, we can determine the

values of any symmetrical functions of the roots, without

knowing the roots themselves ; as in the following examples :

Ex. 1 . To find the sum of the squares of the roots of an

equation.

It is manifest, that in multiplying 2 (a) by itself, terms of

two kinds will be produced ; namely, a2, ab
;

and while the

term a2 can be formed in one way only, the term ab can be

formed by the a of either factor, and the b of the other, and

will consequently appear twice. Wherefore

S (a) . S (a) = S (a
2
) 4- 2S (ab),

orp
2 = S(a

2
) + 2^,
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Ex. 2. To estimate 2 (a
2
bc).

Commence with forming the product

2(a) . 2(a6c);

and observe that its terms are of two kinds, a2bc } abed ; also

that a?bc can enter but once, whilst abed can be produced in

four different ways.

Hence

2(a) . 2(afc) = 2(a
2
6c) -f 4 . 2(afaa

T

),

ox P\P* = S(a
2
6c) + 4p4 ,

2(a26c) = Plp3 -4pr

Ex. 3. To find the value of 2 (a
262).

Adopting the same method as above,

2(a&) 2(a&) = 2(a
262) + 22(a

2
fo) + 62 (abed),

or p2
2 * 2 (a

2*2) + 2(^/>3
-

4p4) + 6>4 ,

V(aW)=p*-2Plp3 + 2pr

S(t

Here 2

_ sum of prod, of every n — 1 roots

abc . . . . I

= _?»=}.
Pn

'

Hence 2 (f) = ^&d - *.
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12. The same process would of course conduct us to the

expressions for the sums of the powers of the roots. But

these can be found in a more direct manner by the following

methods :

Since we have the identity

f(x) = (x — a) (x — b) (x
—

c) (x — /) ;

••4?
=
('-90 -DC -3 N>.

and by taking the Naperian logarithms

ff(&[ 's-Wf i sQ2
) _ l sp3

)

#
—

2 #2 3 x3

But since we have

The first side of the above equation is capable of expansion

in negative powers of x. After expanding, the equation of

coefficients will give the sums of the powers of the roots.

A similar process will apply for finding the sums of the

negative powers of the roots. For, as above,

f(x) = (x
—

a) (x — 6) (x — c) (x
—

I) ;

and therefore, observing that pn = (— l)
w

. abc I,

^M-'Stl^1

But since we have

/O) _ ! , Pn-,* +Pn-2*
2 + . . . . +X»

Pn
'

Pn

by expansion and equation of coefficients, we have the sums of

the negative powers of the roots.
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13. The above method is, however, only applicable with

ease to the cases where n is not large, or at least where the

number of terms of the equation is not large. In other cases

it is best to calculate the sums of powers from each other in

succession.

Sincef(#) = (x
—

a) (x — 6) (x — c) . . . . (x — I),

by taking Naperian logarithms, and differentiating the equa-

tion, we shall have

/Or)

l l

x — a x — b

I .a
,

a?

x x* x3

+ . . + x-l

X x 1

+I+i+
X2 x-

xn~ l xn
\
n +

x x2

But f(x) = a;'
1 + jt?x

xn~ l + + ft

y (#) = nxn~ l + n — I p^x
71*2 +....+ pn_x ;

and after the substitution of these values, the above equation

will contain only negative powers, and we can compare the

coefficients of like powers of x.

The comparison of the coefficient of— will give the equa-x
tion

(n—r)pr = 2(0 + Pl S (aT
1

) + . . . + p,.^ S(«) + npr ,

or, = S (o
r
) + px SCa^1

) + + Pr-i S (a) + r^r .
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By making r = 1, 2, 3, successively, we can find

2(a), 2 (a
2
), S(a

3
), in order.

We may remark that the formula still holds when r is

greater than n, for in that case all the coefficients after pn are

to be considered as zeros.

A very slight modification of the preceding equation will

give the values of the sums of the negative powers of the roots.

We obtained, by logarithmic differentiation, the equation

1 +*+...+ l

f(x) x — a x — b
'

x — I
3

and if the second side be expanded in ascending powers of x,

instead of descending powers, we shall have

^SS --*©-»Q-«©
from which we obtain

-*/<*>
=/(*){*s(±)

+
*»s(i)

+
},

and after supplying the values off(x) and f (x), the com-

parison of coefficients of xr will give us

-rPn_r = p. 2 (1) + p^ S (i) + . . . + p„_,+l 2
(I),

or,

14. We have hitherto considered the roots «, b, c, . . . . /,

of the equation, without reference to any particular relation

that may exist amongst them. There is, however, one very

important case, that of equal roots, in which the equation may
be reduced to a lower degree.
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Let us suppose, then, that r roots of the equation become

alike, and consequently that (x — a)
r becomes a factor of/"(#).

Then, since

/(*) =/0) + O - a)/ (a) +
it follows that we must have, besides the equation f(a) = 0,

the r — 1 additional equations

f(a) =

/"O) =

/r - ,

(«) = o.

In fact, since we have

it is manifest that (x — a)
r~ l will be a factor of f'(x), or

f(x) = (x -ay- l

$(X);

similarly f\x) = (x — a)
r~ 2 xW*

and the first r — 1 differential coefficients will vanish when

x = a. And the same conditions must hold for any other

repeated factor as (x — by ; so that if we have

fix) & (x•- ay . (x - by tf> (a?),

we must also have

fix) = (x- ay-* o - by-* +<&,
and so on.

15. By means of the conditions which have been deter-

mined for the case of equal roots, we can reduce the degree

of the equation containing them.

Thus, let f(x) have some factors entering once, others

entering twice, and so on : and let X
OT denote the product of

/
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all the factors which enter m times into f (x) ;
so that X

WJ

enters m times into f(x). Then we shall have

/(*) = x, x/ xy
And from what has preceded, it is manifest that the greatest

common measure of f(x) and f\x) will be

x
2
x

3
*x

4
*

which we shall call fY(x). Then treating the polynomial

/» = X2 X 3
*X

4
3

in the same manner as f(x) was treated, we shall find the

greatest common measure ofyj (x) and/"/ (x) to be

/,(*) = X,X4*X,'

and so on, as long as the operation can be executed.

Now if we form from these successive polynomials f(x),

fi(x)> fi(®)> the successive quotients ^ (V),

02 (*)> 03 (•)» such ^at

0i (*) = y^ = x
i Xi X3

2W=^-X2
X

3
X

4

and so on, as far as possible ;
it will be evident that X1? X2 ,

X
3 , can be determined from these quotients by a

second operation of division, in the same order ; for we have

__0L(£)

v _ 02 0*0
2 "03^''3

and so on, as far as the degree of repetition of factors admits.
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The solution of the original equation

is thus reduced to the equations

X
l
= 0,

X
3
= 0,

x
3
= o,

all of which are of less dimensions.

This method has also the advantage of pointing out which

of the roots enter once, twice, or oftener.

The following is an example of the above process :

Ex. Required to solve the equation

x5 — x4 + 4#3 — 4#2 + 4# — 4 =s 0,

which has equal roots.

In the first place,

f(x) = x5 — x* -f 4x3 — 4x2 + 4# — 4,

f O) = 5x* — 4#3
-f 12#2 — 8x + 4;

and by the rule for finding the greatest common divisor of

two algebraic quantities,

ffa = a? + 2,

and there is no common divisor, but

/.(*) = £

Secondly, to form the primary quotients,

a. (x) =-C^ = xt-x* + 2x-2,
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where X is any integer whatever
;
and we obtain the values

2Xtt , , . 2Xtt
x — cos + V — 1 sin ;n n

and by giving X the values 1, 2, 3, . . . . n, we obtain n

different values for x ; but these values recur when X is made

greater than n, or less than ] .

Now, observing that we have

1
2mr , . 2rnr

cos + */ _. 1 sin ,

cos

cos

2tt ,_ . 2,r 20-1)tt ,—- . 2(n-l)ir-- - \/_l sin -_ = cos -^ '- + V~ 1 sin —,n n n n

4tt ,-_
. 4tt 2(w~2)tt , . 20-2)tt— - \/_ i 8in
—- = cos -3 E + yCTl sin~ —

,

and that n = 1 -f an even number, we may write the roots

thus ;

First, the single real root = 1.

n - 1

Secondly, the —
^
—

pairs of impossible roots, which are

2tt - ,-_ . 2tt
cos— ± V — 1 sm-,

n n

4tt I

'

'

.
4ir

cos— ±V — 1 sm-- ?

(rc— l)ir J ,—-
. (n — \)ir

And the corresponding real factors of xn — 1 will be

First, the single factor x — 1.
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n — 1

Secondly, the —^—- quadratic factors,

2tt
x1 — 2x cos i-l,n

x2 — 2x cos \- 1,

:*_2*coS^^r +l

Ex. 2. To resolve x11 —
1, w being even.

The general form of the roots is the same as before ; and

taking away the last root, which = 1, we must unite the rest

in pairs as before ; but after taking away that last root, there

will be an odd number left, which can be paired as before,
71

only that the middle one corresponding to A = ~ is left single.

This single root is

COS 7T + V 1 sin 1.

Hence, for the corresponding real factors of xn — 1, we

have:

First, the single factors (# — 1), {x -f I).

Secondly, the ^
— 1 quadratic factors,

2ir
x2 — 2x cos h 1,

71

x2 — 2x cos — +1,
71

x*-2z COs (n
- 2)w + 1
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Ex. 3. To resolve x11 + 1, when n is odd.

By changing x into — x, in Ex. 1, and changing the signs

of the result, the factors of xn -f 1 , will be,

First, the single factor x + 1 .

Secondly, the
I

quadratic factors,

2tt
x2 + 2x cos 1- 1,

x* + 2x cos— + 1,

o r» (»— 1)7T ,

X2 + 2# COS- —
-f 1.

Ex. 4. To resolve xn + 1, » being even.

Since xn
-f 1 = 0, gives

#n = —
1,

X = cos

COS (2X 4" 1) 7T +

(2X + 1)tt

"1 sin(2X + 1)tt,

+ v — 1 sin

X being any integer whatever; and by giving X the values

0, 1, 2, n — 1, we obtain n different values of x, all

of which are impossible, and all different ; but if X be made

greater than n — 1 ,
or less than 0, the values recur.

Now observing that we have

(2rc-l)7r , ) ;
. (2n- 1)tt

cos L h V — 1 sin —
IT~ cos v 1 sin
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(2n U 3) it > , . (2n - 3) v
C0S ~

n
+ S/ - ] sm n

=sz cos , .
3tt

v — 1 sin
—-

>

we shall be able to class the n impossible values of x into ~

pairs,

cos

cos-±*/TTi sm --,

37r
/

.
. 3n

cos— ± V — 1 sin
—

>

w n

(n-l)TT J . (»-l)7T— ± v — 1 sm

And the corresponding ~ real quadratic factors will be

x2 — 2x cos- + 1,n

x2 — 2x cos h 1,
n

x — 2a? cos (n-iy + 1.

In the preceding examples there has been no difficulty in

the decomposition into factors, because we were at once

certain of having obtained all the roots of the equation. This

is also the case in the more general problem.

Ex. 5. To find the real factors of

x2n — 2xn cos0 f 1,
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For the polynomial above given is evidently the product of

xn — cos 4- v' — 1 sin 0,

xn — cos — */ — 1 sin ;

and by equating these separately to zero, we find the roots of

#2» _ 2xn cos + 1 = 0.

These roots are evidently given by the single formula

2Xtt + ^ ,
.

. 2Xtt +x = cos ± \/ — 1 smn n

And the required factors are

o o 2X7T + . ,#2 — 2# cos ! h 1.

Here X is to receive the n values, 1, 2, 3, n.

17. We shall now treat of the inverse problem, namely,

that of finding the polynomial, when the roots of the equation,

formed by equating that polynomial to zero, are known.

Thus, to find the polynomial of the rift degree, which shall

become zero for the n values of x,

«p a2' fl
3

a»>

we have the factors of the polynomial

and observing that a constant factor will not affect the roots

of any equation, we conclude that the required polynomial is

fix) = C O - a
x) O — a£ . . . . (x

— O,
denoting by C any constant quantity, which is indeterminate,

until some other condition is proposed for f(x) to satisfy, and

for particularizing C.

Thus, if any value of f(x) be known for a value of x not

causing f(x) to vanish, we can determine C in terms of the

known value.
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Let/(a ) be supposed known,

/Oo) = C («q
-

«i) («o
- a

i) K - «J;

and by dividing the former equation by this, we obtain

f\x) __ x — a
x
x — a

2
x — an

/K)
~~

«o
—

°i ao~ a
2

* "

«o-«»
'

In the particular case in which it is required to find a poly-

nomial f(x), which shall be zero for the values of x
}

a
\>

az><*3> an ,

and shall become == 1, when x = a
Qi or /(a ) =1, the

required polynomial is

x — a, x — a a: — a„
/(*)

°0— °1 «0
—

«2

18. There is another problem of more generality, which

can be reduced to the preceding. It is to find a polynomial
of n dimensions, when the n -\- 1 values of the polynomial
due to n + 1 values of the variable are known. That is, to

find f(x) , having given the n + I values

A%)> /(ai)> f(<h)> /K)>
which are due to the values of x,

%> «i> «
2 » a«-

Here we must assume

/Or) = O(*)/K) + *!(*)/(«,) + + *„(*)/<«0,

where
<p (x), fa(x), <j>n(x) 9

are all polynomials of the nth
degree ; and, consequently, f(x)

is of the same degree.

Now it is manifest that we shall have
O(#) == zero for

the values

x = a
lt
x = a

2 ,
x = any

but that
<f> {%) must = 1.



STRUCTURE OF EQUATIONS. 23

X
Hence

<(> (x) a -a„

And similar reasoning will hold for the determination of

tf*)j tf>20)> »(*)•

Hence we obtain, finally,

/» , \ /» x «. X — (Xi X (Xn X uL

+/(«,)4
«i — o.

+/«o-*
r
o

We may here remark, that if a be any other constant, then

the polynomial /(#) —f(a) will take the n + 1 values

/K) -/(«), /(O -/(«), /(«„> -/<*)-

Hence we shall have the equation

/(*)-/(«)= l/K)-/(«)l

+ !/(«.)-/(«)!•

a? — a,
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As an example, take n ~ \, and put a = a
;
we shall then

have

/(*) -/K) = !/(«,) -/K)? <p^;a
i

— ao

which is the equation for a straight line passing through two

given points, supposing x to denote the abscissa, and f(x)
the corresponding ordinate.

The general problem is one of considerable utility in inter-

polating the series

/(«„)> /(«,)> /(<*). • • • • • /K)>

corresponding to the values

%> tt
l>

a
2> • °n>

so as to obtain the term f(x) corresponding to any interme-

diate value x.



CHAP. II.

ON THE TRANSFORMATION OF EQUATIONS; OR THE DETER-
MINATION OF EQUATIONS BY MEANS OF THE RELATIONS
EXISTING BETWEEN THEIR ROOTS AND THE ROOTS OF
GIVEN EQUATIONS.

19. The general problem is, having given the equation

f(x) == 0, whose roots are a
x , a2 , a3 , aH , to find the

equation F(y) = 0, whose roots are to be all the combina-

tions of the roots a
lt
a
2 , a3

~ . . . an, of which the general type

is0Ol?
a
2 , a

r ).

Here one value of y will be

y = <p(a]} a
2 , a

r),

and since a,, a
2 , . . . . ari belong to the n roots of the equa-

tion/^) = 0, we shall have the r equations of condition

f(a2)
=

from which, and the equation

V = <i>(ax ,a2 , «,),

we shall be enabled to eliminate the quantities a,, a
2 ,

. . . . ar ;

E
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and the resulting equation *(#) = will have for its roots

all the combinations similar to <j>(alf
a
2 , . . . . ar). This is

evident from the consideration that the same resulting equation

$(?/) ss would have been obtained by the assumption of

any other combination,

as y = <t>(a2,a3f a^).

But it must be remarked, that the final equation so found

will also contain the roots

<t> Oi» av a
t),

^ 2 > av a
*)>

and
<j> (av a

2 , a2 , a
2) y

(f> (<*2> a \>
a

\>
ai)>

with several other classes, all of which are equally foreign

to the problem, if combinations without repetitions be re-

quired.

If, however, r = I, or the values of y are dependent upon
the values of x singly, there will not be any such difficulty.

We then have

f{x) = 0,

y = #0*);

whence, by elimination, we have the correct final equation

F(y)==Q.

It will be seen in the sequel, that, in particular cases of

r greater than 1
, there will always be found a method of ex-

cluding the obnoxious roots from $ (y) = 0, and reducing it

to the correct equation F (y) = 0; and this will be effected

by some artifice peculiarly adapted to each case.
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20. There is also another method of finding the equation

F(y) = 0; for we can find its degree by means of the

number of the combinations of the form

<t> («p «2 > ar) »

and assuming indeterminate coefficients, we can write the

equation F (y) = 0.

These coefficients will now be symmetrical functions of all

the roots, and can therefore be estimated in terms of the

coefficients of/ (a?).

21. The following are examples of the case, where y

depends on one root only of the equation /(#) = 0.

Ex. 1. To form the equation whose roots shall differ from

those of/X^O = in sign only.

Assume for F (y) = the equation

y
n + ^i2/

n-l + q^y
n-2 + . . . . + ^ = Q,

since F(y) is evidently of the same degree as /(#), that is, of

the nth
degree.

Then, if a, b, c, ... . /, are the roots of f(x) = 0, we
have

ft.« - S(- a) = 2(a) = - Pv

q2
= S(a6) =p2,

?3
= 2(a£c) =-/>3,

9n = (~ 1)>«.

And the required equation is

y
n _

p] y
n-l + nyn-1 _ + (_ Xy^ _ Q

The rule in this case is to change the signs of the alternate

terms of the equation, beginning with the second.
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Thus, the roots of the equation,

a* _ 27,r2 + 14# + 120 == 0,

or xA + . x3 — 27a?2 + 14a? + 120 = 0,

are 4, 3,
—

2, and — 5.

But when the signs have been changed according to the

above rule, as

#4 _ o.#3 _ 27a?2 - 14a? -f 120 = 0,

or at - 27a?2 - 14a? 4- 120 = 0,

the roots will have been changed to

— 4,-3, 2, and 5.

This transformation can also be effected by eliminating x,

thus,

y = — m,

and the resulting equation is

/(- v) = o.

Ex. 2. To increase or diminish the roots of an equation by

a given quantity.

Put y = x - %
x = S + y:

then the roots will be diminished by S, if 8 be positive ; or will

be increased by
—

8, if S be negative.

Hence, by substitution in f(x) = 0, we obtain the result-

ing equation in y,

/(») + yf (8) + o/'(S) +••••+ y
n m o.
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Thus, to diminish by 3 the roots

5, 2, - 3,
- 4

of the equation before mentioned,

a;4_27^_ ux + 120 = 0.

Here/(8) = 84 r- 278* - 148 + 120 = - 84,

/'(8) = 483 - 548 - 14 = - 68,

f (8)
= 1282 - 54 = 54,

f" (8) = 248 = 72,

and substituting these values, we obtain the final equation in y,

y* + I2y3 + 27^ - 68y - 84 = 0;

whose four roots are

2,
—

1,
— 6, and — 7.

By means of this transformation we can take away any

term of an equation. Thus, if we wish that the new equation

shall want its second term, we should assume that the co-

efficient of y
n~ l = zero, or

Pj 4. nS = 0,

n

and we must increase the roots of the equation, each by
— •

Thus, for the equation

x3 — 6x2 + 5 = 0,

assume #=2/4-8 = ^4-2,

and^the transformed equation is

2/
3 -l%- 11=0,

which wants its second term.
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Ex. 3. To increase or diminish all the roots in a given

ratio.

Assume the equation, whose roots are

ma, mb, ml,

and which is of the nth
degree, to be

y
n + q,y

n~ l + q2 y
n'2 + ....*•+ gn = o.

Then q 1
= — 2 (ma) = —m^2(a) = mpv

q2 = S(m2
a6) = m2

S(a&) = m2
^,

ft F= ™n
J°»-

And the required equation is

y
n + mpx y

n~* + m2
p2y

1l
~2

-f + #2n/?M = 0.

One chief advantage of the preceding transformation is,

that it enables us to render the coefficients integers, when

they are vulgar fractions, or can be reduced to that form ;

that is, when they are commensurable.

Thus, to render the coefficients of the equation

integers, we must assume

m = 2 . 3 = 6,

and the resulting equation will be

y
3 + I2y

2 + 9y + 24 = 0.

This transformation might also be effected by elimination,

as follows :

/(*) = o,

y = mx.

Hence x = -
,m

and/g)
= 0.
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Ex. 4. To find the equation whose roots are the squares of

the roots of the given equation.

Here we have to eliminate x from the equations

/(*) = o,

y == z2
;

and the result is to be an equation in y, not containing frac-

tional powers of y ; which it must do if the elimination were

performed by substituting for x its values ±
s/y.

Instead then of this elimination, we shall form a polyno-

mial of the 2nth
degree, and containing only even powers of x;

the form of the polynomial being the product of the factors

(a-a
_ a2) (x

2 — b2) (x
2 — c2) .... (z

2 — I2) ;

and then write y for x2
, and equate to zero.

Now, observing that we have

/(*) = Cf
-

a) (x - b) (*-/),

/(- *> = (- l)», (i + a) <* + b) $rw%;

and we shall obtain the required polynomial

FO2
)
= (x

2 - a2) O2 - b2) .... O2 - I2),

by forming the product

And if we put y in the place of x2 in F(#2
), and equate

to zero, we shall have the required equation,

F(y) = 0;

which is evidently the same equation with

/(VP /(- s/y)
= 0,

omitting the factor (— 1)" = ±1.
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Thus, in the example

a;3_ 6#2 + &r- 10= 0,

we shall form the product of

yt
- 6y + %} - 10,

^ + 6y -f %i + 10,

and equate to zero the product; which process gives the

equation

y*
-

20y
2 - 56y

- 100 = 0.

The proof of the advantage of adopting the method here

given is, that an analogous method will apply for any other

powers of the roots, provided the index be an integer.

Ex. 5. To find the equation whose roots are the rth powers

of the roots of the given equation.

We have to form and equate to zero the polynomial of the

nth degreej

(y
-O (y

-
*>
r
) (y-ir

);

or, we may proceed to form the function

FOr
)
= (a?

— ar) (x
r — br) (x

r — 1%

and then write y for xr
, and equate to zero ; the only datum

for the formation of this function being

/(a?) = (»
-

a) (x
-

b) (x-l).

Now if we designate the roots of

*' - 1 = 0,

by \v X2 ,
Xr, we shall have

(«
r -

I) = (*-X.) (*-*) O-Ar);
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or ar — #r = (a
— \x)(a— X2cc) (a

— X
r#) ;

similarly, 6r — xr = (6
— X^)^—X2a;) (£

—
X,.#),

And forming the product, we have,

calling F(t/) = (y
- ar)(y

-
b*) ..... (y

-
$fc

(- d* .F(af) = (- ixrpfQtfdJiQdd
• • • • /(\*o.

and the equation F(y) = is the same as the equation

/(Al2/0 ./(A^;) /(Ary;)=0,
in which only integer powers of y will appear.

Ex. 6. To find the equation whose roots are the reciprocals

of the roots of the given equation.

Here /(a?) == 0,

1

y =
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We may remark here, that if the transformed equation be

the same as the original one
;

that is, if the coefficients are

the same when inverted, or differ only in the sign of the whole

series ; the roots of the transformed equation are the same as

those of the given equation. Hence the roots of the given

equation must consist of either 4- 1, or — 1, repeated any

number of times, (these being the only quantities which are

identical with their reciprocals,) and of pairs of roots of the

form a, -, b,-r, every pair of which will give a

similar pair in the transformed equation. Such equations are

called Reciprocal Equations, and their solution is very much

simplified by this property of their roots.

22. We shall now proceed to give examples of the case

where the roots of the transformed equation are connected

with the roots of the given equation, in such a manner that

each one of the former depends upon more than one of the

latter.

Ex. 1. To find the equation to the differences of the roots.

Here y = a— b,

and f(a) = 0,

A*) = o,

are the equations which, by the elimination of a, b, will give
the final equation F (y) = 0.

Eliminating a, we have

f(b + y) = 0,

/(*) = 0,

from which b is to be eliminated.
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If we had eliminated b first, we should have obtained the

equations

f(a) = 0,

/(«-.?) = 0,

from which a is to be eliminated.

Hence we see that the final equation

F(y) = 0,

is to be obtained from the elimination of x between the equa-

tions

/(*) =\
f(x + y) = Oi'

or, between the equations

/(*) =,

f(x-y) =

This shows that F(y) will not alter its form when y is

changed into — y, and therefore F(y) contains only even

powers of y; a fact which we may point out a priori. For if

a , j3, y, be roots of the equation F (y) = 0, and

we suppose that

a — a — b,

P = b-c,

y = C — d.

then — a == b — a,

-f$ = c-b,
—

y = d — c,

which are still roots of the equation ;
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consequently, we shall have

F (SO = {y-a)(y + a) (y
-

0) (y + /3), . . . .

=
(y

2 -a2
)(y

2
-/3

a
)

— * (^
2
)j suppose.

If we now put y
2 = z, we have

* (2) = (2
- a2) (2

-
j3

2
)

which is the equation to the squares of the differences of the

n __ [th
roots ; and therefore is of the n .

—
^
—

degree.

We have yet to perform the elimination of x between

If the elimination be performed directly, the resulting

equation F (y) = will contain n roots = zero, and we shall

have to suppress the factor y
n

. These roots correspond to the

differences

a — a,

b-b,

c — c,

or the combinations with repetitions.

These roots may, however, be suppressed in the commence-

ment of the calculation, since we may take, instead of the

two equations above, another pair of equations formed from

them ;

f{x) = ov

/(f + ?/) -/(*) m oi*
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Now the second equation is satisfied by y as 0, and,

therefore, is of the form

ft. + (x,y) = <h

and, by suppressing this factor y, we have the correct result, by

obtaining the final equation in y, from

f(x) *
^(x, y) == 0>

In fact we have, by Taylor's series, after expanding the

second equation, and suppressing the factor y,

+ (*» y) =/(*) + o/"<» + + y"l
>

from which equation, and the equation

f{x) = 0,

we obtain the required equation

F(y)=0.

As this transformation, or rather the second transformation,

by putting y
1 = z % and forming the equation whose roots are

the squares of the differences of the roots of the original

equation, is one of considerable importance ;
and because the

process of elimination, though more beautiful in theory, is less

commodious in practice; we shall proceed to form the equation

in zy whose degree is known, by calculating its coefficients.

This is the method adopted by Lagrange.

Assume the equation to be

, n (n
—

1)where ?n == —^-~ ->

Let a, j3, 7, X, be its roots ; which are the squares

of the differences of the roots a, b, c, , . . . /.
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Now we have, for any integer k,

(x
-

a)** = x* — 2kxnJc-la + 4- «*j

(*
- b)* = x*~ 2kx'*~ lb + + V*,

whence, by addition, we have

2 \(x
—

a)*} = nx* - 2&2(«)#
2*- 1

. . . . + rc2 (a
2
*).

And from this equation, writing for x successively a, b, c,

/, we have, after adding all such equations, and

observing that every member of the first side, as (ft— a)
2
*,

will be repeated under the form (a
—

&)*,

22 (a*)
= *2 (a

2
*)
- 2&2 (a) 2 (a

2*"1

) + w2 (a
2
*);

and collecting the terms of the second side in pairs, we

obtain

2 (a*) = n2 (a
24
)
- 2&2 (a) 2 (a

2*"1

) . . . .

-j

-<-*)- l:^::::
(1-V'rf

observing that the middle term is left single.

Now we can find the sums of the powers of the roots,

2 (a) 2 (a
2
) 2 (a

2
*)

in terms of the coefficients

Pv Pv Pv IV*

hence 2 (a*) can be found in terms of the same quantities.

But 2 (a
k
)

can also be determined in terms of the new

coefficients

Qv 9v 9v ?»>'>

hence, by equating the two values, we have an equation

connecting the new coefficients with the old ones ; and, by

putting k = 1, 2, 3, ... m, successively, we shall successively

determine the coefficients of the required equation.
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Even this process, however, becomes too complicated for

practice when n is > 4.

Ex. 2. To find the equation whose roots shall be the sums

of every two roots of the given equation.

Here y= a + b,

/Ca)
= 0,

are the equations, from which we are to eliminate a and b, in

order to obtain the required equation

F(y) = 0.

First, let b be eliminated, and we have

- a) = J

'

Secondly, we have to eliminate a from these two equations ;

but if that operation be performed immediately, the result

would contain the roots 2a, 2b, . ... 21, which are foreign to

the question.

To avoid this, we must form the equations

/(«) = o,

/(y-«)-/(«) = o

the second of which is satisfied by y = 2a, and therefore

contains the factor y — 2a, which is foreign to the question,

and must be expunged.

In fact, expanding the second equation by the series of

Taylor, we have

f(a + y -2a) -f(a) = 0,

ovf(a) 4 V
-^f'{a) + + (y

- 2a)^ = 0,
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observing that we must suppress the factor y — 2a; and we

shall now obtain the correct equation by eliminating a from

this equation, and / (a) = 0. We shall then have to take

the square root of F (y)
= 0, since each root enters twice.

Ex. 3. To find the equation of which the roots shall

express the ratios of every two roots of the given equation.

a
Here y = p

/(a) == 0,

f(b) = 0. J

Proceeding as usual, we have

/(«) = o

m = • r

orf(b) = -,

so that the final equation in y results equally from eliminating

x between

'© = »

or betweenf(x) = ~i

/(**) = )'

Hence we may remark, that the required equation

will not change, when we write - for y ; in other words, it is

a reciprocal equation. This is also evident, from the con-

sideration that every root
j-

has for a companion the inverse -.
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The final equation resulting from the elimination will

contain n roots equal to unity, being the ratios

a b l
9

a b I

to avoid this, take the equations

/(*) =
<>}

f{xy)-f{x) = Oy

and for the second equation, write

f\x + x(y-\)\ -/(*) = <>,

or expanding and suppressing the factor (y
—

1) x,

/(*) +
* (y

2T
1)
/"(*) + *-- 1

(y
- l r~> = o.

We give the following examples for practice :

Ex. 4. To find the equation whose roots shall be the pro-

ducts of every two of the roots of the given equation.

Ex. 5. Form the equation whose roots shall be all com-

binations of the form p (a -f b) -f q . ab, a and b being two

roots of/ (a?)
== 0, and p, q, constant quantities.

23. In particular cases of the general equation, particular

artifices are preferable ; thus, for the cubic

x3 + px
2 + qx + r — 0,

whose roots are a, b, c, we can find the equation whose roots

are

b + c a + c a 4- b
9
—t— »

—
Z
—

'

a c

a + b + c . a -\- b + c
,

a 4- b 4- c ,

or —
1, r 1?

~ — l >

a b c

G
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by putting?/ = —
|- 1,

~Por x = , / ,

1 +y
and substituting in the given equation.

24. It will not be improper, in this place, to treat of a class

of problems which can be most easily solved by the method of

transformation; they are those in which there is a given

relation between some of the roots of the given equation, and

those roots are required. The general problem is, having

given that one of the roots g depends on a certain number of

the others, as for instance upon three by the relation

g = $ (a, b, c),

required to find this root g of the equation.

Form the equation whose roots are all combinations similar

to
<j> (a, b, c).

Let this be F (a) = ;
then one root of F ($) = is g}

which is also a root of f(x) = 0; and, consequently, F (x),

fix), have a common factor x — g, which can be found by

the usual method.

If any other root h is in similar circumstances, they will

have a common factor (x — g) (x — h).

Ex. 1. Suppose that we knew that there were two roots of

f(x) = 0, of the form ± a, to find these roots.

Since ± a are two roots of

xn +p x
xn^ +p2

xn~2 + + Pn
= 0;

it follows that, on changing the signs of the roots of the equa-

tion, we shall have =F a still roots of

xn — p }
xn~^ + p2

xn
~2 —

-f pH = 0.
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We suppose n to be an even number ; and it will be seen

that a similar proof will apply when n is odd.

Now since ± a satisfy the two preceding equations, they

will also satisfy their sum and difference
; or, omitting the

factor x of the difference, they will still be roots of the equa-

tions

Xn + p2
Xn~2 + + Pn =

\

Px
Xn'2 + P3

Vn~4 + +Pn-l = °J

Hence the two polynomials forming these equations must

have a common factor x2 — a2 at least. And if there be any

other pair of roots ± b in similar circumstances, x2 — b2 is

also a factor.

Thus, for the equation

#3 _ 2x2 — x + 2 = 0,

which has two such roots, we form the equation

x* + 2a;
2 — x — 2 = 0;

and forming the sum and difference, after suppressing the

factor x,

x2 - 1 = 0^

and the common factor is evidently

x2 -l;
so that these two roots are ± 1.

.
j

. x3 — 2x2 — x + 2
t
.

Also, since
^ i

= x — z, the remainingx — i

root is 2.

Ex. 2. The difference of two roots of the equationy*(#) =
is S, to find these roots.
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Let the less of the two roots be a, and therefore the other

be a + $. Increase the roots of the equation by 8, these two

roots become a -f S, a + 28 ; so that a + S is still a root of

the transformed equation. In other words, x — a — S is a

factor of the two polynomials

andf{x — $);

observing that the roots of the equation

/(* - S)
= 0,

are those of/ (x) — increased by 8.

Thus, for example, knowing that the difference of two roots

is 2 in the equation

#3 _ 2#2 - x + 2 = 0,

and searching the common factor as above, we find

a-f8= 1, and a = 1 — S = — 1.

Ex. 3. Having given the sum of two roots off{x) ttt 0, to

find the roots.

Ex. 4. Given the product of two roots, or their quotient,

to find these roots.

Ex. 5. The sides and hypothenuse of a right-angled triangle

are roots of/ (x) = ;
find the hypothenuse.

These examples are given for the sake of rendering the

subject familiar, by exciting individual practice in problems
of this description. We shall add two other examples.

Ex. 6. The roots of f(x) = are all in arithmetical

progression ; find them.
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Ex. 7. The roots of /(#) = are all in geometrical pro-

gression ;
find them.

These two examples are best solved by means of the

coefficients.

25. There is, however, one class of equations whose roots

are connected by certain relations, to which the ordinary

process of transformation will not be applicable. For the

method becomes illusory, when the transformation reproduces

the original equation.

The most important case is that of reciprocal, or recurring

equations. It was stated, that the roots of these equations

consisted of single roots, either -f 1, or — 1 ; and of pairs

of the form a,-, b, j-
We shall suppose that all the

roots ± I have been expelled, which can always be done by

trial, so that the equation is no longer satisfied by ± 1. In

this state, which is the simplest of all recurring equations, the

polynomial is of even dimensions, and its last term will be

= (
_ a)

(_I)
(
_

6)
(_I)

= 1 .

Hence we shall write the equation

x2m + p^apm-l + + pjc _j_ 1 —. 0.

And the polynomial

X2m +pi
3tfi
m- 1 + +PXX+ 1

= O - a) (x
-

-)
(x - b) (x

-
g)

. .....
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and, consequently, dividing by x
m

, we have, after collecting the

terms of the polynomial in pairs equidistant from the ends,

d-«)a-/3)

putting x + - = l

a + - = a
a

* + i =

It follows, therefore, that the polynomial

can be put under the form

r + ?1 £
wi- 1

4- + &.;

and that on equating it to zero in this form, its roots, or the

values of & will be a, j3, 7 ;
so that the original

equation will then be reduced to the m quadratics

X2 _ aX + 1 =
"J

x* — $x + l
—

.r 7a? + 1

where a, 0, 7 depend on an equation of the mth

degree only, since they are the roots of

k
m +q^m- ] + +^ = 0.
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We have yet to perform the transformation of the polynomial

(*" +?) +Pi (^f iF*)
+ * ' * * + Pm

intor+ lit*"
1 * + fc

where £ .•?= an—
a?

Now we have identically

(1-*q(i-0 = i_0 + p.

and taking the Naperian logarithms, expanding, and equating

the coefficients of t
n in the equivalent series, we have

(
xn

-f
—-

j
== coefficient of t

n in the series
n\ xn

J

_ 1 (u— t
2y —

,
at - py-* -

n J n — 1
v

or xn
4- — = coefficient of t

n in the series

= 'C-n e-2
4- fl*5-^^*

4 -
. . .

n.(n-s-\)(n-s-Z) . . . (n-2s+ 1)+ C_lj 1.2.3 s
4

Hence, by the application of this theorem to the cases n = m,
ra 2= m — 1, successively, every term of

(*"
+ i) + p< (

a;
'"", +

*p) +— +'-

will be expanded in powers of £ ; and the whole will thus be

reduced to

e» + y, r-« + + ?„,•
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By way of exemplifying the process, we shall apply it to the

equation

x» - 3^8 + 5x6 — 5x4 + 3cc2 - 1 = 0.

Here the first remark to be made is, that there are no odd

powers, and therefore the roots are of the form ±
*/y,

where

the values of y are given by the equation

y
s _

3^4 + 5^3
_ 5y

2 + ty
_ i =

Secondly, this equation is satisfied by y = 1, and hence

the factor y
— 1 is to be expunged before treating it as

a reciprocal equation. This gives the equation

f -
2y* + 3^ _ 2y + 1 = 0,

which is no longer satisfied by ± 1 .

Assume rj
=z y -\- -; and since

(^)- 2H) +3=o>

we shall have, by the expansion,

tf - 2) - 2V + 3 = 0,

^- in 4. i dt o,

and there are two roots = 1 .

Hence the equation in y is reduced to two equal quadratics,

y
2 -y+ 1 =0;

whence we have, for the four values of y ,

two roots = + ~ 3
as cos 60° + \Z^1 s in 60°,

and two roots =
~ ~ = cos 60° — \Z~\ sjn 60°.
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Hence the ten values of x will be

two roots, ± 1,

two equal pairs, ± (cos 30° + V~\ sin 30°),

two equal pairs, ± (cos 30°
— s/^-[ sin 30°).

We may remark, that the general equation

#"±1=0
is of the same kind, and when n is not too large, may be

solved in a similar manner.

But, in every case, we must recollect that it will be extremely

advantageous to get rid of the roots ± I, at the very com-

mencement of the operation ; for it is of the greatest import-

ance that the equation in % should be of as low a degree as

possible, on account of the troublesome expansion necessary in

forming it.

n



CHAP. III.

ON THE THEORY OF THE LIMITS OF THE ROOTS, AS FAR

AS IT WAS KNOWN PREVIOUS TO FOURIER.

26. It very early became an object of inquiry to assign

the intervals in the series of all possible magnitudes from — oo

up to 4- oo , within which each of the roots of the equation

ought to be sought. And although this question was never

fully answered in a form adapted to practice, until the recent

publication of Fourier's Treatise, yet various interesting as

well as important theorems were the result of the researches

of former analysts in this direction. The important deter-

mination of the number of impossible roots of the equation

was also practically unaccomplished previous to Fourier's

theory of the separation of the roots. But the investigation

of a limit to the number of the positive and negative roots

had been previously effected by the theorem, known under

the name of the Rule of Signs, which was first given by

Descartes. The properties of the limiting equation were

also discovered, and the method of finding a superior and

inferior .limit. On this account, as well as for the sake of

giving the method of Fourier in a connected form, we shall

first demonstrate the principal theorems which had been

brought to a complete state by previous analysts.
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27. We shall commence with the rule of signs of Descartes,

which is to be enunciated in the following manner :

There can be no more positive roots in any equation than

there are changes of sign in the series of signs of the terms

composing the equation ;
and no more negative roots than

there are continuations of sign.

Let the signs of the equation f{x) = 0, that is, of the

polynomialf (a?), be

+ - 4- + + + -+,
and let a new real root be introduced into the equation.

First, let this be a positive root m; then f(x) must be

multiplied by the factor x — m; and setting down only the

signs of the multiplication, we have

+ - + + + + - +
"

- 4- + + + + -

± ± -f ± - + -

Secondly, let the root be negative, as — m; then multiply-

ing f(x) by x + m, and retaining the signs only of the

operation, we have

+ — + + + + - +
+ — + + + + — +

+ ±±+± ±+±± +

Now it will easily be seen, that we have added at least

one change of sign in the first case, and at least one con-

tinuation in the second, whatever be the signs of those terms

where it is doubtful whether the sign is to be 4- or — .

So that every additional positive root introduces at least
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one additional change, and every additional negative root at,

least one additional continuation ; and, consequently, there

cannot be more positive roots than there are changes, or more

negative roots than there are continuations of sign.

If all the roots are real, their number is equal to the

number of changes together with the number of continuations.

Hence it follows, that the number of positive roots is equal to

the number of changes, and the number of negative roots

equal to the number of continuations.

28. An even number of roots, or none, will lie between

a and /3, when the quantities f (a) and f (j3)
have the same

sign ; and an odd number, when they have a different sign.

For if the roots off(x) = are

a, b, c, . . . . p (cos ± V — 1 sin 0) ... .

then we have the identity

f(x) = (x—a) (x~b) \{x-p cosO)
2+p2 sin2 0£

and, consequently,

f(a) _ a — a a — b (q— p cos ft)
2 + p

2 sin2 fl

/(0)~j3-a"0-& {P-P cosQ)* + p*sm*0

Now if no root lie between a and j3, every factor of J
. \/

will be positive ; but every root which does lie between those

limits will give one corresponding negative factor; since

a .

is negative only when a lies between a and j3.

j3-a
f(a)

/((3)
the

Hence, if m roots lie between a and /3,
the sign of

depends on (- l)"
1

; that is, /(a) and /(j3) will have the

same sign, if m — 0, or if m be even; but they will have

different signs, if m be odd.
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29. To find a limit greater than the greatest root.

Let a be this greatest root, and suppose a to be greater

than a; then, taking the same equation, we have

f(a) = (a- a) (a- b) ... . \(a—p cos Of + p
2
smW] ....

which is positive, since all its factors are so. And the result

is still positive for quantities greater than a.

Hence, if we can find a quantity a, such that x = a, and

every greater value of x, shall render f (x) positive, then a

shall be a limit superior to any root.

But the following method of finding a superior limit is pre-

ferable to the preceding, and is better adapted to practice :

Decrease the roots of the equation

/(*) = 0,

each by the quantity X; which is done by putting

y = x — X,

or x = y + X;

and the final equation in y is

/(A + y) = 0,

or/(A) + y /(X) + f^/"(A) + + y
n = 0.

Now, by taking X large enough, the signs of /(X), /'(X),

f"(X), . • • • can be rendered all positive; and when this is

the case there is no positive value of y, as there is no change

of sign.

Consequently, there can be no positive value of x — X;

or, in other words, X is a superior limit to the roots of the

equation / (x) == 0.

Hence, the rule is to find a value X for x, such as shall

render positive the series of polynomials
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and that value is a superior limit for the roots of the equation

/<*) = <>.

We may remark, that the same quantity X is also a superior

limit to the roots of any of the equations

f»(x) =£ 0,

/«-i(,) =

30. To find an inferior limit to the roots of the same

equation, we must change the signs of the roots, and find a

superior limit to the new roots : this limit, with its sign

changed, will be an inferior limit to the original roots.

We can also find a superior limit to the negative roots, and

an inferior limit to the positive roots. For if we change the

roots to their reciprocals, and find the superior and inferior

limits of the new roots, then the reciprocals of these limits

will be respectively the inferior limit to the positive roots,

and the superior limit to the negative roots of the original

equation.

31. It was implied in the statement of Art. 26, that the

theoretical separation of the real roots, or the assignment of

the interval containing each root, had been accomplished

previous to the method of Fourier. This was done by

Lagrange, in the following manner:

First, let the equation be cleared of equal roots. Secondly,

form the equation of the squares of the differences of the

roots, and find its inferior limit S2 ;
the quantity S will be

inferior to any difference of the roots, taking always the less

from the greater. Lastly, find the superior and inferior limits
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of the roots, / and /', and it is evident that any interval of the

series

V, V + % V + 21 , up to t%

will contain no root, or one only ;
and thus, by trial, we can

find the intervals of the real roots, and consequently their

number.

The method of trying the intervals of the series

i3 t + g, l' + 28, i up to /,

is to substitute the terms of that series successively in f(x),

and to write the signs of the results in order. Every change

of sign in that row of signs, points out the interval containing

one of the roots; and the number of such changes of sign

gives the number of real roots of the equation /(a?) = 0.

Hence also, by subtracting this number from n, we obtain

the number of impossible roots.

But although perfect in theory, yet in practice this method

is useless, except for equations below the fifth degree ;
since

the equation of the squares of the differences cannot be

formed. Besides, the process has the disadvantage of trying

a large number of intervals, many of which the method of

Fourier will at once exclude.

32. The real roots of the equation f'(x) = lie between

those off(x) = ;
so that an odd number of the roots of

f\x) — will be found between every two of the roots of

f(x) = 0, when the real roots of both equations are written

in one series in the order of magnitude.

For let a, b, c, be the real roots of the equation

f(x) == ; then we have

f(x) =~ O-a)O-6)0r-c) . . . \(x-P cos0f+p
2 sm2

0l . .
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and if we take the logarithms of these expressions, and diffe-

rentiate,

/(*)_ 1
j

*

t

2(x-pcos0)
j\x) x — a x — b

' '

(%—p cos 0)
2+ p

2 sin2 6
'

so that, on multiplying by f(x), every fraction on the second

side will become a polynomial ;
and we may remark that the

f(x)
factor x — a will enter into every polynomial except

J '

,X — CL

fix)
and the factor x — b into every one but , > and so on for

all the real factors.

Hence, upon substituting for x, the value a, these polyno-
f(x)

mials will all vanish, except
J

; and on putting x = b,X — CL

f(x)
the only one which does not vanish will be 7 ; and so on

J x — b

for all the real roots of/"(V) = 0. And, consequently,

f'(d) =: value of - due to x = aJ v ' x — a

= (a-b) (a-c) \(a
—

p cos 0)
2

-f p
2 sin2 0^

and, by a similar process,

f(b) = (b~a)(b- c) \ib-p cos0)
2
4- p

2 sin2 0£ ....

f(c) = (c-a)(c-b) \(c
-

p cos0)
2 + p

2 sin2 0^

And, by forming the successive quotients

f(a) _ «-c a -rf (a- jQ cos0)
2
+/c>

2 sin2

/(ft)
T >:: ^ft- c*6- d (b-p cosd)

2 + p
2 sm2 6

""

/(*) - U ft — A & — <* (6- <Q cos0)
2 +

/
o2 sin2

J(c) T
'~~

^c- rt'c-rf""(c- /ocos0)
2 +

i

o
2 sin20"

'

from which we conclude that all these quotients are negative,



LIMITS OF THE ROOTS. 57

since no factor of any one of them is negative, except the

d Q
factor — 1 ; for we cannot have -7 negative, unless c lies

o c

between a and b, which is not the case. Consequently the

series of quantities

f(fl), f(b), f(e)

are alternately positive and negative ; and an odd number of

roots off(x) — lie between every two of the roots a,b,c, . . .

of the equation f(x) = 0.

It is manifest that if r be the number of real roots of

f(x) = 0, then the least number of real roots that fix) ca

can have is r — 1, so that one root may lie between every

two of the r roots of/*(a?) = 0.

The case of equal roots might be considered in a similar

manner. But it is better to clear the equation of equal roots

by the method previously given, and apply the present rule to

the reduced equations given by that method.

We may remark, that when the limiting equationf{x) =
can be solved, and we have its real roots a, j3, 7, S,

in the order of magnitude, then the roots a, b, c, d,

of the primitive equation f(%) = 0, lie singly between the

terms of the series

00 > a, /3, y, §, ,
— co .

Hence, if we form the series of results

/(»),/(«)>/(/3),/(Y), /(-oo),

the number of changes of sign in the series of signs of these

results will be the number of the real roots a, b, c, d,



CHAP. IV.

ON THE SEPARATION OF THE ROOTS BY THE METHOD OF

FOURIER.

33. In order to investigate the intervals between which

each root of the equation

/(*) = o

is to be found, it will be necessary for us to consider, at one

view, the series of polynomials

f(x),f\x),/\x), /*(*),

which it will be more convenient to write in the inverse order,

f«{x),f«-\x), . . . .f"(x),/\x),f(x).

Let us now give to x a determinate value a, positive or

negative. And let the signs of the above series of quantities

be set down, instead of the quantities themselves. A series of

signs will thus be formed which will always commence with + ;

because f\x) = 1.2.3 n is always positive. But

the signs after the first will vary, as a varies in magnitude.

If now we begin with a = — oo , the series will consist of

4- and —, alternately ; since the dimensions ofthe polynomials

are, respectively,

0, 1,2,3, , »,
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and on substituting
— oo for x, the sines will depend upon

their first terms, that is, upon

(-i^c-i) 1^-!)2
,— (~i)

M
-

And when a has gone through all stages of magnitude, up

to + oo, the series of signs will evidently contain no — .

Hence the n changes of sign due to — oo have become con-

tinuations, when a has become -f oo .

For the sake of brevity we shall denote the series

f\d),f-\d) /'(«)>/(«)>

by the symbol, result (a).

And the series of signs of the terms composing that series,

will be denoted by the symbol, sign (a).

Also, the number of changes of sign in the series of signs,

will be denoted by the symbol, change (a).

34. We shall now proceed to show, that as a continually

increases from — go to + co , change (a) will from time to

time diminish by one or more units, but that it will never

increase. And that change (a) will lose one unit every time

that a becomes equal to a root of the equationf(cc)_= 0.

It is evident that sign (a) can receive no change of any of

its terms, so long as the gradual increase of a does not at some

instant render zero one or more of the, terms of result (a).

It becomes necessary, therefore, to examine what takes place

for values of a, just before and just after that value, which has

produced such zero or zeros.

In the first place, then, we shall suppose that there is only

one such zero, and that this is the last term of result (a) ; in

which case, f(a)
—

0, and a is a root. Write for a succes-

sively a + 4; then, since no difference can exist between
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sign (a + da) and sign (a) if we omit their last terms, we

have only to compare the last two terms of

result (a
— da) and result (a -f da),

to estimate the difference between

sign (a
—

da) and sign (a -f da).

These two terms will be

f(a - da), f(a
-

da)'

f'(a -f da), f(a + da).

And since we are concerned with the signs of these quanti-

ties only, and not with their magnitudes, we may write these

terms

/», -
duf\a)\

f'(a), + daf'(a)}'

And so far as concerns the change or continuation of sign

between these two terms, we may omit the factory(a), so

that we have

1,
—

da\

1, + da)

And it is manifest that we shall have change (a -f- da) less

by unity than change (a
—

da). This loss of one change

corresponds to the root a.

Secondly, let there still be but one zero in result (a), but not

in its last term; as for instance, fr
(a) = 0. Here it is

manifest that sign (a + da) and sign (a) will be perfectly

alike, except so far as regards the term corresponding tof r
(a).

And to judge of the effect of this term upon

sign (a
— da) and sign (a + da),

we need only consider that term and its neighbours on either

side, in the two series of numbers

result (a — da) and result (a + da).
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These three terms will be

fr+\a - da), f*{a
-

da), fr
~\a - da)\

/r+i(a + da),f(a + da), f~\a + da))'

or so far as concerns the changes or continuations of sign of

the corresponding terms of

sign (a
— da) and sign (a + da),

we may write these terms.

}

or, dividing the terms hyfr
+\a), and setting down q for the

quotient of/
r_1

(a) divided byfr+l
(a), we have

1,
— da, q

I, + da, £.

And it is manifest that change (a
—

da)
—

change (a -f da)

will be equal to or 2, according as q is negative or positive ;

that is, according as fr+l
(a) and fr

~\a) are of opposite or

of similar signs.

Thirdly, let us suppose that there are r successive zeros,

and that these are the r last terms of result (a) ; so that there

are no other zeros than

/->(«) = 0,f~\a) = f(a) = 0, /(a) = 0.

It will be necessary here to consider the effect of the

substitution of (a + 8), where 8 is very small, but not infinitely

small ; otherwise we should still have r — 1 zeros. As in the

previous cases, we shall have to consider only the terms

f%a T £),/-'(« + 8), f(a + 8), f(a =f 8) ;

or, expanding by Taylor's series, and observing the r zeros

given above, as well as omitting positive numerical coefficients,
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inasmuch as the signs only are the object of investigation.
we may write

/r
(a),

-
8/'(a), + */'(«), (- 8)'/'(a)i

/ r
(«), + S/

r
(«), + Sy>(«), + S'/

rW )'

or, suppressing the common factorfr
(a) i

it -A +»,~»3
,— , c-ay

and, consequently, in passing from sign {a— 8) to sign («+S),
there are lost exactly r changes of sign ; which correspond to

the r equal roots (a) of the equation, pointed out by the

circumstance of having at once

/(«) = 0, -/'(a) =0, /-i<» i 0.

Fourthly, let there be r successive zeros, not the last r terms

of result (a) ; as, for instance, if we have

fm
~\a) = 0, /H# = '0, • . . . /"-'(a) = 0;

and let there be no other zeros.

Here, by proceeding on the same plan, we shall have to

consider the terms

/"(«=*= 8), fm-r
-\a + %);

and by expanding and simplifying, as in the preceding cases,

and setting down q for the quotient off m~r
~\a) divided by

fm
(a), we shall at last reduce these terms to

i, -S, +^-S3
, ,(-Sy, q

h + 8, +S2
, +S3

, i + 8r
, ?-

so that there will be a loss of exactly r changes in passing
from sign (a

—
8) to sign (a -f 8), when r is even

; and when
r is odd, we shall have

change (a— 8)
—

change (a'+8)^r+ 1/

according as q is negative or positive, that is, according as

/m(a)-and/ wl
"r_1

(a).bave opposite or similar signs.

:i
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But in none of these cases can any change of sign be

gained in passing from sign (a — 8) to sign (a 4- S).

Finally, if there be several such zeros, or sets of successive

zeros, in different parts of result (a), the above reasoning will

apply to every such zero, or set of successive zeros. So that

we are now able to draw the following conclusions :

1st. There is a continual diminution of change (a), by one

or more units at a time, during the increase of a from — 00 to

4- oo ; and change (a) never increases during that increase

of a.

The limits of change (a) are

change (
— 00 )

= n "V

change ( 4- 00 )
= J

2ndly. Every time that a becomes == a root of the equa-

tion, or = each of a set of equal roots, change (a) will lose,

in the passage of a through that value, one unit for every

such root. And change (a) must thus lose, during the in-

crease of a from — 00 to + 00
, as many units as there are

real roots.

3rdly. If a has such a value as shall render zeros any
number of terms of result (a), though a is not a root of the

equation, then change (a) may lose, in the passage of a

through that value, an even number of units, or may not lose

any. And from the preceding conclusion, with respect to

the real roots, it is evident that every loss of a pair of changes
in this manner, must correspond to a pair of impossible roots

of the given equation.

35. The preceding conclusions at once give us a rule for

avoiding those intervals, in our investigation of the roots,

which cannot contain any roots of the equation under con-
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sideration. For change (a) must lose one of its units for

every root that a passes in its increase
;
and it may Jose be-

sides these units, an even number more corresponding to

imaginary roots. Hence there cannot be more real roots

between a and b, than there are units in the number

change (a)
—

change (b);

supposing b to be greater than a.

If, therefore, we find that

change (a) = change (b),

we may rest assured that no real root lies between a and b.

If we have

change (a) = change (b) -f 1,

there will evidently be one real root of the equation between

a and b, and only one.

And, generally, if we have

change (a) e= change (b) + an odd number X,

there is at least one root between a and b, and there may be

3, or 5, .... or X, roots between those limits.

But if, on the contrary, we have

change (a) = change (b) -\-
an even number

fi,

we cannot affirm that there is any root of the equation between

a and b, though there may be 2, or 4, or 6, or p,

roots between those limits.

36. We may remark, that by taking the limits — go and 0,

or and -f- oo , we find the limits which the numbers
j
of

negative or positive roots cannot exceed; and, in fact, we

obtain the rule of signs of Descartes.
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For we shall have the limit of the number of positive roots

of the equation, or of the roots between and oo , equal to

change (0)
— change (oo )

= change (0).

Now if we consider the series, sign (0), we shall find that

its signs are the same as those of the coefficients of the

original equation, and, consequently,

change (0) = number of changes in/(#);

so that there are not more positive roots than changes of sign

in/O).

And the limit of the number of negative roots will evidently

be equal to

change (— oo )
—

change (0)

— n — number of changes \x\f(pc)

= number of continuations in /(#),

which accords with the rule of signs.

37. There is one important remark to be made before

proceeding to the application of the theorem with respect to

the number, change (a).

If it happens that there are any zeros in the series, sign (a),

then it is not possible to estimate properly the number,

change (a). In this case we must have recourse to the two series,

sign (a =F S), and estimate the two numbers, change (a + 8).

And when it is required to compare the numbers, change

(a
—

b), change («), change (a + b), we must compare

change (a
—

b) with change (a — £>), and change {a -f b)

with change (a + 8); b being any positive quantity, and 8 a

very small positive quantity.

The rule for deducing sign (a ± 8) from sign (a), which

contains zeros, may be collected from the preceding theory.

K
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It may be enunciated thus :

To form the series sign (a
—

S) from sign (a), we must

commence copying the signs of sign (a) from left to right;

but when we arrive at a zero in sign (a), we are to set down
the sign opposite to the one just written, for the corresponding
term of sign (a

—
§).

To form the series for sign (a -+- S), we must proceed as

before; only that for the zero we are to set down the same

sign as the one just written.

The following example of the rule of the double sign will

best explain its meaning:

sign (a_S) == + + _ + _ + + _ +

sign (a) = + + _000+— +0-
sign (a-i-$)r=-f+ + — 4 + -

38. The following are examples of the application of the

preceding method to particular equations :

Ex. 1. xb - 3x* — 24a;3 + 95*2 - 46* - 101 == 0.

Here we have the polynomials

f(x\= x5 - 3*4 — 24.r3 + 95a:2 - 46* - 101,

/(*) = 5*4 - 12*3 - 72** + 190* - 46,

f(x) = 20*3 - 36*2 - 144* + 190,

f"(x) = 60*2 - 72* - 144,

f\x) = 120* - 72,

fix) = 120.

And if we substitute for *, successively,

,
-

10,
-

1, 0, 1, 10,
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we shall find

sign (- 10) = 4-
- + - + —

sign (- 1) =: + - + -+ +

sign (0) ss + +

sign (1) s 4- + - + + -

sign (10) = + + 4- + -4- 4-

from which we obtain the numbers

change (— 10) = 5

change (—1) =4
change (0) == 3

change (1) =3
change (10) ss

Hence we conclude, that one root of the equation lies

between — 10 and — 1; a second lies between — 1 and 0;

a third between 1 and 10; and the remaining pair, if they

are real, are also comprised between the limits 1 and 10.

At present we cannot determine the question concerning these

roots, whether they are real or not; but we shall hereafter

give a rule applicable to such cases.

Ex. 2. Let the proposed equation be

a?
4 — 4a:3 - 3x 4- 23 = 0.

The series of polynomials will be

f(x) = a;
4 — 4.z3 — 3x 4- 23,

f(x) s; 4.z3 - 12a;2 - 3,

f(x) z= 12a-2 - 24a?,

/'"(#) = 2\x - 24,

fix) = 24.
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And if we substitute for x, successively,

0, 1, 10,

we shall find

sign (0) == -f - - +

sign (1)
= + +

sign (10) = + + + + +
and applying the rule of the double sign, we shall write these

series

sign ( + S) -=+-±-+1
sign (1 :+: 8) = + h= +

sign (10) = + + + + + .

5 representing a very small fraction.

Hence we obtain the numbers

change (
—

8) = 4
*

change ( + $) = 2

change (I
-

8)
= 2

change (1 + S) = 2

change (10) =0
from which we conclude, that there are two impossible roots,

because two changes are lost at once between the substitution

of — 8, and of -f S, although is not a root ; and that the re-

maining two roots, if they are real, must lie in the interval from

1 to 10.

Ex. 3. The cubic equation

x3 + 2x2 - 3x + 2 =
gives the following table :

f(x) = x 3 + 2x2 - 3x -f 2,
-

f'(x) = 3a,2 + 4# - 3,

f"(x) = Ox + 4,
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sign (- 10)

sign (— 1)

sign (0)

sign (I)

change (- 10) = 3"

change (—1) = 2

change (0) = 2

change (I) =0
one root lies between — 1 and — 1

if they are real, between and 1 .

+ -
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and the substitution of — 1,0, 4-1, successively, will give

sign (- 1) = + - + - + - 0*

sign(0) =+0 0-1;

sign(l) = + + + 4- 4- + 0/

and upon applying the rule of the double sign, we obtain

sign (- 1 + 8) =+-+-+ -

sign (+8) =++++++
sign (1+8) =++4- + + + +

^

Here we conclude, from the corresponding numbers,

change (— 1 — 8) = 6
"

change (— 1 + 8) = 5

change (—8) == 5.|

change (+8) =1

change (1-8) =1

change (1 + 8) = J

that there are only two real roots, — 1 and + 1 ; and that the

remaining four impossible roots correspond to the simultaneous

loss of four changes in passing through zero.

Ex. 5. Let the equation be

xb
4- 3x* + 2x3 — 3a? - 2x — 2 = 0.

/(a?) = x> + 3z* + 2x3 - 3x2 — 2x - 2,

f'(x) = 5x4 + 12#3 + 6a;2 - 6x - 2,

/"(a?) = 20#3 + 36a?2 + 12a; - 6,

f'\x) = 60a-2 + 72a; + 12,

f'\x) = \20x + 72,

rw = 120.
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We shall therefore have the following table, writing the

double sign for a zero according to the rule :

V IV III II I

sign (-1) + — ± — + -

sign(O) + + +

sign (1) + + 4- 4- + -

sign (10) + + 4- 4- + +•

Here two roots are impossible ;
two may lie between — 1

and ; and the remaining root lies between 1 and 10.

The above is the abbreviated form of the table best

adapted for practice.

Sx. 6. Let the equation be
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39. We have now completely determined the intervals

in which the roots of the equation must be sought ; and have

excluded from the investigation all those intervals which by
the rule of signs cannot contain any root. These latter inter-

vals are of much greater extent than the former ; and it is in

the exclusion of these that the method of Fourier possesses

one of its chief advantages over that of Lagrange.

But there is still another, and a very important question,

which here presents itself, in those cases where any interval

contains more than one root : are those roots all real ?

The first example offers an instance of this inquiry. It was

found that between I and 10, three roots of the equation

were to be sought. One of these must be real
;

but the

remaining pair, so far as we know at present, may be

imaginary. We might subdivide the interval into several

smaller intervals, and by continuing such a process we should

at last separate the three roots, if they are real, and we should

have each of them comprised within a separate interval. But

if two of the roots are imaginary, the process of subdivision

would not come to a conclusion ; and we should still be igno-

rant, whether the separation was impossible because the roots

were imaginary, or was only very much delayed because their

difference was extremely small.

This difficulty is theoretically surmounted by the method of

Lagrange; for if we can find the inferior limit of the differences

of the roots, we shall know when to stop in our subdivision of

intervals. But the practical determination of that limit is

impossible for equations whose degree is greater than 3 or 4 «

as the calculation of it becomes complicated more and more

for each additional unit in the degree of the equation, and the

difficulty increases at a rapid rate. Hence we must seek some

other method, as a criterion of the reality of the included
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roots. Such a criterion, in a form readily applicable to

practice, has been given by Fourier.

40. It will be convenient, before proceeding to the de-

monstration of the criterion of Fourier, to adopt an abbreviated

and expressive notation for the number change (a)
— change (6),

which indicates the number of roots of the equation jf (a?)
=

to be sought in the interval from a to b. This will be effected

by writing for the number change (a)
— change (6), the

expression, root-index («, b). The method of finding this

root-index for any equation, and for any interval, is obvious

from what has preceded. We need only refer to Example (1)

of Art. (37). For that equation we find the following root-

indices :

root-index (—10, —
1) = 1

^

root-index (—1,0) — 1 I.

root-index (1, 10) = 3 J

But further, in considering the interval from a to b, it will

not be sufficient to determine for the polynomial f(jx), the

quantities change (a), change (&), and their difference root-

index {a, b). We must apply the same process to every one

of the derivatives

f\x),f\x), /»(*).

The three series of numbers so obtained are to be written in

reverse order, that is, in the order of

/nWJvH /'(*), /M,
and will form what we shall term change-series (a), change-
series (b), and index- series (a, b).

Referring again to Art. (37), and to Example (1), for

illustration, we shall have the following table for the interval

(1, 10).

L
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V IV III II I

sign(l) + + - + + -

sign (10) + + + + + -f

change-series (1) 12 2 3

change-series (10)

index-series (1,10) 12 2 3,

the last series is formed by subtracting the terms of the two

preceding series vertically.

In practice it is usual to write only the index-series, and its

terms are set down between the rows of signs, thus :

V IV III II I

sign (1) + + - + + -
1 2 2 3

sign (10) + + + + + +.

Asa complete acquaintance with the preceding notation will

be necessary, in order to follow the train of reasoning, we add

the following examples, in which the process of forming the

index-series is shown :

Ex. 1. x 1 — 2X5 - 3a;3 + 4a;2 - 5x + 6 = 0.

/(a*) — x1 — 2x5 — 3x3 + 4#2 — 5x+ 6,

f\x) = 7a;6 - 10a;4 - 9a;2 + 8x - 5,

f\x) = 42a?5 - 40a;3 - l&r + 8,

f"'(x) = 210#4 - 120a?2 - 18,

f'\x) = 840a;3 - 240ar,

f(x) == 2520a:2 - 240,

jT'QO
= 5040a;,

/"(a?) = 5040,
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from which we obtain the following table of signs, and can

thence form the index-series for each interval, as follows :
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from which we have the table

III II I

sign (- 10) + - + -
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The index p is either 0, 1, or 2. If it be not 0, we can

reduce it to in the following manner. Since fr
(x) = has

only one root lying in the interval (a, b), fr
*\x) — cannot

have a root equal to that root; for then/
r
(x) de must have

equal roots lying in the interval {a, 6), which is not the case.

Hence there can always be found a new interval (a!, b') in-

cluded within the larger one under consideration, for which

new interval the index p is zero, and the succeeding index is

still unity. The larger interval is thus divided into the three

intervals

(a, a'), (a
1

, V), (V, b) y

which give the corresponding series of indices as far as these

three terms are concerned,
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42. The only case now left for our consideration, is that

presented by the table

(a,b) 1 2,

and the object is, if possible, to separate the two roots of the

equation

f~\x) = 0,

indicated by the above table.

For this purpose, we must seek a value c intermediate to a

and b, such that /r
~'(c) shall have a different sign from that

of/'~
1

(a) and/
r
-'(J); or such that

/r
-'(«)

Let us now put

/-(«)
= ne§ -

j-'W)
= neg -

c = a -|- h >

c p- b-ky
whence b— a = h + k,

and expand the preceding conditions by Taylor's series, so that

the term of the second order shall include the remainder of

the series ; that is, let us make the substitutions

fr-Xc) =r~\a) + hfr {a) + |/*+'(X);

fr
'\c) = fr

~\b) - kfr(b) + |V
r+,W,

where X is some value intermediate to a and c
; and fi lies

between c and b.
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The preceding conditions will then take the following-

form :

Now, observing the table

P+Kx),f\x),fr-\X)

(a,b) 1 2,

it will be evident that we shall always have a positive quotient

for the two fractions

/r+
'

(X) and ****&

Hence, transposing these terms, the second sides of the

equations may still be written as before ; thus we shall have

neg.

1 - k
/^b)

= aeg -

> 9

Again, by inspection of the above table, we shall find

7# = nes

fr
-\t>)

7W s pos -

and multiplying the preceding equations respectively by these

latter, we find the conditions reduced to

fr
(.b)

+ h = pos.

— k = neg.
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which give, by subtraction,

If we call Q the sum of the quotients for the fractions

neglecting the signs of those quotients,

and also call D the difference of the interval (a, b),

or, T) = b — a = h + k
;

then the preceding condition becomes

D - Q = pos.

or, D > Q.

It follows at once, from this condition, that when we find

Q = or > D,

no such value of c can exist.

If, on the contrary, we find that

D> Q,

then such a value of c may exist
;

but it does not follow that

such a value must necessarily exist.

43. We shall now proceed to the discussion of the first

case, when

Q = or > D.

Since no value c can lie between the two roots of the

equation

f'-\x) = 0,

which may lie in the interval (a, b), it follows, that if these
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roots exist they are equal. Suppose then that they do exist,

and that each = y. Then fr
~\x) and fr

(x) must have a

common divisor
(j> (a?),

of which there is one factor x — y, and

only one; and the other factors, if there are any, are also

factors entering intojf
r
(#); consequently, <j>(x)

can only have

the root y lying in the interval (a,b). And we shall then have

t-Trl negative. If then we find that such a divisor
<j> (x)

exists, and that ~r\ is negative, we shall know that the two
OT

roots of

r~\x) =
are equal; and if y be not a root offix) t= 0, entering

r+ 1 times, the series of signs denoted by sign (y) will

give at least two consecutive zeros, included by terms which

are not zero
;
and the rule of the double sign points out

immediately two impossible roots of the equation

/(*) = 0.

If therefore we apply the method of equal roots tofix), we

shall discover whether any such root y enters r + 1 times, or we

are to conclude that there are two impossible roots at least of

the equation fix) = 0. If the latter case happens, we can

diminish by 2 all the succeeding root-indices. For in the

succeeding root-indices, a part of every term is formed by the

two changes which are lost by the series sign (y) in passing

through y.

Again, if the two roots of the equation

/r
-(*) =

are impossible, then there will be a loss of two signs in sign (y)

when y becomes equal to the single root of

f\x) w 0,

lying in the interval (a, b). For there will be one zero

M
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between like signs. Hence we may, as before, subtract 2 from

the succeeding root-indices.

If therefore we find Q = or > D, and there are not r + 1

equal roots of

/(*> = o

in the interval («, b), we are in all cases to subtract 2 from

the succeeding root-indices.

44. But there remains the second case for consideration,

when

D > Q.

We must choose at pleasure in the interval (a, b) a new

value c. If we find that /r_1
(c) differs in sign from fr~l

(a)

andfr
~\b) 9 the two roots are separated. But if the contrary

take place, we are to choose of the two intervals (a, c), (c, b),

that one which still gives the table

0, 1, 2,

and form the criterion anew, with a less value of D. We
must however first enquire, whether the two roots are equal ;

for if they are so, we need proceed no further.

By this process we shall at last be able to separate all the

real roots of the equation

/GO = o

into their respective intervals; and, of course, know their

number.

45. We shall now give some examples of the application of

the criterion, in order that the process may become more

familiarized than it can possibly be under the shape of a

general theorem.
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Ex. 1. x3 + 2x2 — 3x + 2 = 0.

f(x) = x3 + 2x* - 3ar + 2,

/(a?) =$ 3#2 + 4x - 3,

/"(*) - 6.

The interval (0, 1) gives the table

III II I

(0) + + - +
12

(1) + + + +•

Hence, observing the series of root-indices, we shall have

to consider whether the interval 1 is greater or less than Q,

the sum of the quotients "ttttTx, and
Jrrry neglecting their

signs. Now we have

/(0) = 2,

/'(0) = -
3,

/(I) = 2.

/'(I) = 4.

and we find that

U -
3
+ 4~6'

consequently Q is greater than the interval unity; and we

conclude that the two roots indicated by the figure 2 for the

interval (0, 1) are impossible, as there are not equal roots.

The abbreviated form of the table for the whole process, is

(0)

0)

2

"4
are not equal roots.

Ill



x5 — 3a?4 -
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It is, therefore, to the last of these intervals only that we

are to attend ; and the criterion gives

21 32

30
+

43
> '

whence we conclude that the roots are impossible.

Ex. 3. xb + x4 + x3 — 2x2 + 2x — 1

The interval (0, 1) gives the table

(0)

(I)

and f'(x) and/
/7

(V) nave n0 common divisor.

The interval is to be separated.

(0)

(!)

(1)

Here the single quotient

2 _ 1

4-2'
and, consequently, the roots due to the interval f 0, _

J
are im-

possible.

V IV
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46. Instead of giving any more examples of the application

of the criterion, we shall give several examples of the complete

separation of the roots, combining both processes, the rule of

signs, and the criterion. These will be best exhibited in the

tabular form adapted for practice. The operations of sub-

dividing the intervals, when necessary, are here expressed at

once. To become perfectly acquainted with the method, so as

to perceive at one view its several parts and their relations, it

cannot be too much recommended that every one should go

through the working of these examples for himself.

Ex. 1. xb — 3#4 - 24#3 + 95x2 - 46x - 101 = 0.

f(x) = x5 — 3#4 - 24a?3 + 95.x2— 46x - 101,

/'(*) = 5x* - 12a;3 - 72*2 + 190* - 46,

/'(*) = 20#3 - 36x2 - U4x + 190,

f"(x) = 60#2 - 72# - 144,

/"(*)== 120a? -72,

/"(*) nt
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Here one root lies between — 10 and — 1 ; a second

between — 1 and 0; a third between 3 and 10: but the two

remaining roots due to the interval from 2 to 3 are impossible,
21 32

because we have
of;
+ To > ^ and there are not equal roots.

Ex. 2. x" — 4#3 — 3x -f 23 = 0.

f(x) = x* — <±x3 — 3x + 23,

f'(x) p 4#3 -
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Ill II I

(-10) + - + -
1

(-1) 4-
- - +

(0) + + - +
3 2

1 2

(1) + + + +•
4 2

Here one root lies between — 10 and — 1
;
and the two

roots due to the interval from to 1 are imaginary, because

2 2~ + - > 1, and there are not equal roots.

Ex. 4. x* — x3 + 4a;
2 + x — 4 = 0.

f(x) — xA — x3 + 4x2 + x — 4,

fix) = 4x3 -3^4- 8*+ 1,

f"(x) = YZx1 — 6ar + 8,

f'{x) = 24*- 6,

r%*)
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Ex. 5. x6 - 12#* + 60x* -{- 123a;2 + 4567a; — 89012 = 0.

f(x) = «« - 12a?5 + 60a;4 + 123a?2 -f 4567a; - 89012,

fix) = 6x5 - 60a;4 + 240a-3 + 246a; -f 4567,

/'(*)
= 30a^ - 240a;3 + 720a;2 + 246,

f"\x) = 120a;3 - 720a;2 + 1440x,

f\x) = 360a;2 - 1440a; + 1440,

/"(a;) = 720a; - 1440,

/"(*) - 720.

VI V IV III II I

(-10; +- + - + -+•
1

(- 1) + ~ + - +

(0) -f
- + + + + -

(I) +- + + + + -
12 2 2 2 3

(10) + + 4 + 4- + +.

Here/'"(a;) = has equal roots in the last of the intervals,

and these are not roots of/ (x) = 0; hence there is only one

root between 1 and 10
;

there is also one root between — 10

and — 1 : the other four are imaginary, by the rule of the

double sign, and the criterion.

N
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Ex. 6. x5 + x* + a:
2 - 25a: — 36 = 0.

/(a?) = «• + «* + #2 - 25a: — 36,

/*(*) = 5x* + 4a;3 + 2a: - 25,

f"(x) == 20a:3 + 12a;2 -f 2,

/^J) =» 60a:2 + 24a:,

f'\x) = 120a: + 24,

/"(*) = 120.



SEPARATIOK
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We can now proceed accurately in the resolution of sin x
and cos x into their factors, all of which are of the first degree,

and enter only once.

First, to find the factors of sin x.

The roots of the equation

sin x =
are 0, ± ir, ± 2ir, ± 3?r, to oo .

We may therefore assume

sin x = k . x {x -f if) (x
— n)

s k.x(x
2 -ir2

)(x
2 -22

ir
2
) . . . .

where k denotes some constant.

The preceding equation may be put into the form

*nx =
Kx(l-£)(l- ij£)

where k' is still some constant.

For the determination of k', we may observe that, when

x = 0, then sin x — x ; or, in other words, that the limit of

, when x becomes zero, will be unity. But this will not
x

be the case in the above equation, unless k = 1 .

Hence, we have finally,

sin * =
».(l_g)(l-|L)

the series of factors being continued to infinity.

By a process of exactly the same nature, we find that

cosa7=^l__^l__j
the factors, as before, being continued to infinity.
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48. We shall conclude the present chapter by a recapitu-

lation of the rules to be observed in the process of the separa-

tion of the roots. This process consist of two parts : the rule

of signs for any interval, and the criterion of the existence of

the roots indicated for an interval which may contain more

than one root.

When the equation / (x) z=0 is proposed for investigation,

the first step is to form, by successive differentiation, the poly-

nomials

f\x), f"(x), /»(*).

These polynomials, with the given polynomial f(x), are to

be written in the inverse order

/•(*), /"-(*) /(*),/«•
We are then to substitute for x, in the series so formed, the

successive terms of the series

- 100, - 10, - 1, 0, 1, 10, 100,

and write down the series of signs corresponding to these

substitutions
;
the number of such substitutions is to be limited

by those two, of which one gives only changes, and the other

only continuations of sign. In case of a zero occurring in the

series of signs, it is to be replaced according to the rule of the

double sign ; or, in other words, the series of signs is to be

taken on each side of the transition through that zero, instead

of the series at the point of transition.

All intervals in which no change of sign is lost, are imme-

diately to be rejected, as containing no root of the equation.

All intervals in which only one change of sign is lost, are

to be set down as containing a single real root of the equation.

iVny interval in which more than one change of sign is lost,

may contain as many roots as there are lost changes of sign.

But to discover whether this is the case or not, we must
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apply the criterion. The first step is to form the index-series

for that interval, according to the rules already laid down.

The index corresponding to any term fr
(x) of the series of

polynomials, denotes the number of changes of sign lost in

that interval by the partial series of polynomials

/"O),/-'^) /'W;
or, in other words, that index expresses the number of roots

that/
r
(a?)

= may have in the interval under consideration.

By this means a series of indices will be formed beginning

with 0, and whose last term is greater than 1. The difference

between two successive terms of the index-series will in all

cases be 0, or ± 1.

Considering now any one such series, we must fix upon

that term in which the index 1 occurs for the last time in the

series. This last index 1 is necessarily followed by 2. If it

be not preceded by 0, then we are to subdivide the interval ;

and by this subdivision, the last index 1 will in all cases

occur later in the series, unless it happen that we find for any

interval the three successive indices

0, 1, 2.

When this condition presents itself, we cannot be certain of

moving the index 1 towards the end of the series, by the

process of subdividing the interval. So that we are now

warned to apply the criterion.

Denoting by

/r+,(o, /*•(*)> /r
-(*)

0, 1, 2

the part of the tahle to which the criterion is to be applied,

we are to form the sum of the two quotients

/>-'(«) fr-Kb)
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neglecting the algebraic signs ; and we must examine whether

that sum be equal to the difference b — a of the limits ; if it is

equal to that difference, or greater than it, then the two roots

indicated forf
r
~\x) = are either equal or imaginary.

If they are equal, there ought to be a common factor (#)

of the two polynomials fr
~\x) and fr

(%), such that
--jr.

is a

negative quantity.

Whenever this is the case, we must examine whether these

two roots are also roots of the equations formed by equating

to zero each of the succeeding polynomials

/*-
2
0*)>/

r-3
(*), /(*);

that is, we must seek, by the method of equal roots, whether

the equation f(x) = has a set of r + 1 equal roots, which

lie in the interval (a, b). We may remark that this operation

will be unnecessary, when the last index of the series is less

than r -f 1 . If there is not such a set of equal roots of the

equation f(x) = 0, we conclude that this equation has two

impossible roots.

If the two roots of the equation/
1
""

1

(x) == are impossible,

then we also conclude that the equationf (a?)
= contains

two impossible roots.

In both cases, therefore, the index-series may have all its

terms diminished by 2, after the term corresponding iof
r
(pe).

And the last index 1 will have been removed towards the end

of the series.

Lastly, when the difference b — a is greater than the sum

of the quotients above mentioned, we must reduce this differ-

ence by subdividing the interval, in order either to separate

the two roots off
r
~\x) = 0, or to obtain an interval proving

the impossibility of that separation.
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The whole operation of the separation of the roots will come

to a conclusion when the index-series all end with or 1.

The number of such final indices I will give the number

of real roots of the equation f(x) — ;
and their positions

will point out where each of those real roots is to be sought.

We may remark that, whenever a single zero occurs between

like signs, or whenever several successive included zeros occur,

in the series of signs corresponding to any definite value of the

variable, there is an indication of impossible roots. These

values then ought to be as much the object of our search as

the roots of the equation, at least as far as concerns their

existence. Now it is the precise object of the criterion to

point out the existence of these values indicative of impossible

roots, or to demonstrate the possibility of the roots, by sepa-

ration.



CHAP. V.

ON THE METHOD OF DIVISORS.

49. The method of Divisors was proposed by Newton for

the discovery of the integral roots of any equation, if such

roots existed. It will be shown that this process can be

applied to the discovery of all the roots of the equation, which

are commensurable, when the coefficients of the equation are

commensurable quantities; that is, all the roots which are

either integers, or can be expressed in the form of vulgar

fractions. Although the method of Fourier will determine

such roots exactly, yet, as the method of divisors forms a

complete theory for roots of this kind, and is also practically

applicable, it deserves still to hold a place in the Theory of

Equations.

50. We shall first show, that by transformation all the

commensurable roots of any equation, whose coefficients are

commensurable, can be rendered integers. For we can, by

transformation, render the coefficients of the equation integers.

Now in this state of the equation there cannot exist any
root expressible in the form of a vulgar fraction. For if we

should suppose that one root of the equation

xn
4- p x

x 11- 1 + 2V?""
2 + + pH = 0,

o
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whose coefficients are all integers, could be expressed by the

fraction -r in its lowest terms, that is, when the integers a and

b are prime to each other, we should have

or ~ -f p x
an

~ x + + pnb
n~* =

;

that is, we should arrive at the absurd equation,

fraction -j- integer == 0.

Hence the commensurable roots, if any exist, must now

be integers.

51. In order to determine the integer roots of any

equation/ (#) — 0, let us suppose that one of its roots is

the integer a ; then we have

/(a) =± 0,

or an + p^-1 + p2
an'2

4- . • • • + Pn
= °>

in which the coefficients of a are all integers. We shall

write this equation in the inverse order, thus

Pn + Pn- X
* + Pn-2 a* + + Pian

~ l + an = °'

Dividing this equation by a, we have

- + Pn-l + Pn-2 a + + Pl^2 + «"" 1 = °;
CL

so that the quantity^ cannot but be an integer ;
let this in-

teger be denoted by qv and we obtain

?1 + Pn-i+^-2 «+ + Pla»-* + a»-i = 0.

Again, dividing by a, we obtain

q±±Pn=1 + Pn2 + pn_3
a + . . . . + Pla»-> + *+ = 0;

d
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so that the quantity^-
1 "=1 cannot but be an integer; and

we may denote this integer by q2.

Proceeding to form the new equations

?2 + Pn-2 + Pn-3 °> + + Vl^ + «n
"2 = 0,

92 + Pn-2 + ^_3 + ^an-4 + a»»-3 _ Q.

we find that we must have

%£ ^=2 = an integer q3
.

And in this manner we shall continue to find a series of

conditions which a must satisfy, the last of which will be

obtained by the equation

?n-i + Pi + a = 0,

a

that is, we must have the quantity

Hence the conditions, in order that a may be an integer

root of the equation /(a?) == 0, are

& =
ft
= integer,

9l +
/"~

] = q2
= integer,

gl +
/-

a = ?3 = integer,

%
-*a

P% = ?_, = integer,
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We shall now show the practical method of applying the

above conditions to the determination of the integer roots of

the equation. But it will be better in the first instance to

find by immediate trial, whether there are any roots = ± 1,

and if there are such roots to expel them from the equation ;

so that the reduced equation is no longer satisfied by ± 1 .

We shall now form a table of the divisors of pn ; to each

of which the double sign ± is to be affixed. For the first

condition shows that in this table all the values of a are to

be sought, since we must have a dividing pH exactly.

We shall next form a corresponding table of the values

of qr And we can now commence forming the table of

values of q2 ; setting down only those values of q2
which

prove to be integers.

We may now erase from the first table of divisors, or

values of a, all those which give no term in the table of

values of q2 ; for such values of a cannot be roots, by the

second condition.

Proceeding now to form the table for q3
on the same plan,

that is, setting down only integer values of q3, and whenever

q3
is not an integer, erasing the corresponding value of a from

the first table, we shall have preserved only those values of

a which satisfy the condition q3
= integer.

In this manner the table of values of a will at each step

contain only such values as may still be roots of the equation.

And when we arrive at the table for qn ,
we are to erase from

the first table all values which do not give qn = — 1. The

table then remaining for the values of a will contain the

integer roots of the equation.

We may remark, that at the outset of the operation, the

table for a need not contain any values which do not lie

between the inferior and superior limits of the roots.
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We may also remark, that by increasing or diminishing all

the roots by any integer, the integer roots will still remain

integers. Nor if pH is such a quantity as to give a large table

of divisors, the equation may be transformed in the above

manner, so that the last term shall give a smaller number of

divisors. But if we put

y = x — m,

or x = y -f- wz,

the last term of the new equation \sf(m); it will therefore be

our object to find some positive or negative integer value for

m, such that/(ra) shall have a small number of divisors, and

then decrease the roots by that integer value.

But instead of effecting such a transformation, it will be

sufficient to remark, that if a be an integer root of the original

equation, then a — m is a root of the transformed equation,

and, consequently, we shall have

f(m)
?i "I —

integer.
a — m

Now, by giving m several integer values, we can form

several new criteria, to be satisfied by the table of values of

a, previous to the trial of the conditions above given. So

that we can, at the commencement of the operation, reduce

the table of values of a to a considerable extent. The best

criteria of this kind are those most easily calculated, namely,

J _ J = mteger,

T?¥ = inteSer'

and so on, to any extent that may be required in reducing

the table for a.
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52. The following is an example of the method of

divisors :

x* _ x3 — 13a;2 + 16«r - 48 = 0.

Here the superior limit is 14, and the inferior limit is — 8;

hence the table of divisors is, at first,

(a) 12, 8, 6, 4, 3, 2,-2,-3,-4,-6.

We have omitted the divisors ± 1, as they are found by

trial not to be roots.

Now, applying the criteria,

r-r^- = integer,a+ 1

the corrected table of divisors is

(a) 4, 2,
-

2,
- 4

48
We may now proceed to form the table for qv or

(ft) -12,-24, 24, 12.

i i a

Again, forming the table for ft, or 2i
, we obtain

(ft) 1,
- 4,

- 20, - 7.

By a similar process for q3
= ^

, we obtain the table

denoting by/ any fractional quantity.

Hence we now obtain the corrected table of divisors

(a) 4,
-

4,

and the corresponding table for q3 is

(ft) -3,-5.
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Lastly, forming the table for qA
or ^

,
we obtain

tm

(ft) -1,-1.

Hence ± 4 are the only integer roots of the proposed

equation.

The best form of the table for practice is the following :

(a) 4, 2,-2,-4
- 48 (?,)

- 12, - 24, 24, 12

+ 16 (ft) 1, -4,-20, -7
-13(?3) -3, -5
- 1 (?4)

-
1,

- 1.

In the above table the coefficients of the equation are

placed in order, as they are wanted in the operation, by the

side of the quantities qv q2, q3 , and qr And whenever a

fractional value occurs in the table, or any integer but

— 1 in the last line, it is not marked. So that we may

neglect all the divisors standing at the head of those columns

which do not reach to the last line.

53. The method of divisors is, however, still defective in

one point, to which we must now give our attention. Al-

though we have found the values of all the integer roots of

the proposed equation, yet some of these roots may enter

into that equation more than once. We must, therefore,

either apply directly the method of equal roots to the pro-

posed equation ; or we must again apply the method of

divisors to the limiting equation, commencing with the table

remaining for the integer values of a} from the operations of

the first application of the method
;

so that we may find

whether any of the integer roots so determined, are also roots
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of the limiting equation. By continuing this process as far

as is necessary, with regard to the successive derived equa-

tions, the solution will be rendered complete.

The following are examples to which it will be necessary

to apply the last process, in order to complete the solution

given by the method of divisors :

Ex. 1. To find the integer roots of the equation

#4 _ 8^,3 + &p2 _ 16 = 0.

Ex. 2. To find the commensurable roots of the equation

o ,
45 _ 27 81 i

x4 — 9x3 + -y x2 + — x — -r = 0.
4 2 4

Ex. 3. Solve, by the method of divisors, the equation

X3 _ 2x* - iw + 8 = 0.



CHAP. VI.

ON THE METHOD OF NEWTON FOR OBTAINING APPROXI-

MATELY THE REAL ROOTS OF ANY EQUATION, SO FAR

AS IT HAD BEEN DEVELOPED PREVIOUS TO ITS COM-

PLETION BY FOURIER.

54. The method of approximation given by Newton sup-

posed that two limits a and b had been found, between which

a root of the equation must lie. It was then easy to reduce

by trial the difference b — a of these limits, until it became

a fraction, whose square might be neglected in the process of

approximation.

Let us suppose then, that an approximate value of the root

in question is a; so that the difference between the correct

value a of that root, and the approximate value a, must be a

small fraction S. Then we have

/(«) = o,

since a is supposed to be the exact value of the root : and by

substituting for a its value a + $, we obtain

f(a + $) = 0;

from which equation, by expanding in a series of powers of
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8, and neglecting all its powers beyond the first, we obtain

the approximate equation

/(«) + 8./(«) = <>.

From this latter equation we obtain an approximate value

of 8, which we may denote by $v namely,

a _ _/(«)

And we have thus arrived at a new approximate value for

the root in question, which we may denote by av so that

o, = a 4- 8, ;

and in general we may suppose that a
x

will be a nearer

approximation to the root a, than the original approximate
value a.

We may now repeat the process, commencing with the

approximate value av in order to arrive at a nearer approxi-

mation a
2

. For this purpose we must put

a = a
x -\- 8,

and we obtain the equation

f{ax + 8) = 0,

which gives the approximate equation

/(«.) + 8-/'(«) = 0.

If we now call S2 the approximate value of 8 derived from

this last equation, we obtain

and the new approximate value will be known, since we shall

have

a
2
= a

x -f S2 .

In this manner the approximation can be carried on to any

required degree of accuracy.
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55. The following is the example to which Newton applied

the process just described, for the sake of showing the prac-

tical advantages of the method of approximation he proposed.

Ex. x3 - 2x - 5 = 0.

Here one root lies between 2 and 3, so that we may assume

a = 2 + &

And we find that the first approximation will give us

a,
= 2 + Bv

where S = —till
.wnere e>

l
-

^/(2)

Now
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Continuing the approximation, we find that

_ /(2, 0946)
°3 "T /(2, 0946)

0, 000541708~
11, 16196

== - 0, 00004853 nearly,

so that we obtain

«
3
= 2, 0946 - 0, 00004853

== 2, 09455147.

And the approximation might be continued if required.

56. It was stated, that in general the approximate values

av a
x> **»>••• would converge towards the true value of the

root a. This however depends on the possibility of rejecting
the succeeding terms of the equation in comparison with the

second term, in the approximation to the quantity S, which is

the error of the preceding approximate value of the root.

Now if we denote the root by a -j- S, the two first terms of

the equation will be f(a) 4- §f(a). But the succeeding
terms will contain higher powers of $, so that in general they
will be much smaller than the second term. If, however, we

happen to have f'(a) very small, the second term may be of

the same order as the third, or even of an inferior order : so

that our. mode of approximation is in this case totally incorrect.

Now this will take place whenever the original equation

f(x) = has another root nearly equal to a; for then

f'(x) = has a root nearly equal to a, and therefore not

differing much from a : so that f(a) will be a very small

quantity. For if we call that root a + fi, where fi is very

small, we obtain f{a -f fi)
—

0, or

f'(a) f terms involving /u
= 0,
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so that f(a) is of the order of p. There are also other cases

in which f(a) may be very small. It is therefore necessary

to find some criterion with respect to the applicability of

Newton's method. The following is the reasoning of La-

grange on this subject; but no certain criterion was given,

until the aspect of this branch of analysis was so completely

changed by the discoveries of Fourier.

57. Tn order that the method of approximation may be

applied with safety, it is necessary that the succeeding ap-

proximation shall give a result a + 8, which is nearer the

truth than the preceding result a : so that the condition of

applying the method with certainty is, that we shall have

a -\- S differing less from the root a than a does, the alge-

braical sign of that difference being immaterial. In other

words, we must have

(a + 8 - a)
2 < (a

-
a)

2
,

or 28. (a- a) + & = neg.

1 fa
- a\

s - (a
~

a) 77-r
= "eg.

Now, if a, a, a
'

. . . . denote the roots of the equation

we have the identity

/(a?) = («
-

a) (x
-

a') ....

and by differentiating this equation, after taking the loga-

rithms of both sides, we find

f(x) X — a X — a
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and'-r^ — + , + .

J {a) a — a a — a

1

4- K suppose.a — a

And our condition will now take the form

- - 1 - R (a - a) = neg.

or
^ + R (a

—
a) = pos.

Hence we must either have the two quantities

R, and a — a,

of the same sign ; or if they have different signs, their product

must be less than J neglecting its sign.

It is easy to form a posteriori equations, where that condi-

tion will not hold ; we have only to suppose that the differ-

ence between a and a is very small, and that a lies between

them, but very near to a ; the rest of the roots being such as

to give small terms in the value of R. Now in this case the

signs of R, and a — a, will be different ; for the sign of R will

depend on that of its first term -n which differs in signa — a

from a — a : also we may suppose R so large, that the

product R (a
—

a) shall be numerically greater than J.

Again, if there are two impossible roots of the form p (cos

± \/ — I sin 0), we shall have two corresponding terms of R,

a — p cos — s/ — 1 p sin a — p cosQ +*/ — \ p sin

2 . (a
—

p cos 0)~
(a
— p cos 0)

2 + p
2 sin

2 6
'
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and if we have sin very small, the two terms will be nearly

_ 2

(a
—

p cos 0)

so that if a lies between a and p cos 0, and is very nearly

equal to the latter, the value of R is of the same kind as

before, and the condition will not be satisfied.

It seems impossible, then, to establish a criterion, without

a previous knowledge of the roots of the equation. But

there is one case in which it may be shown that the method

will necessarily be applicable. If a be greater than all the

real roots a, a , a!
'

. . . . and also greater than the possible

parts of the imaginary roots, then every term of R corre-

sponding to a real root, and the sum of every pair corresponding

to a pair of impossible roots, will be positive ;
that is, R will

be of the same sign as a — a. And, on the contrary, if a is

less than all the real roots, and the possible parts of the ima-

ginary roots, every term of R will be negative ; but a — a is

also negative, so that the condition is still satisfied.



CHAP. VII.

ON THE COMPLETION OF NEWTON'S METHOD OF APPROXI-

MATION BY FOURIER.

58. Before entering upon the method of Fourier, it will be

expedient to remark, that the separation of the roots has now

been completely effected ;
so that by following his plan we

can now be assured that only one root of the equation

f(x) = lies within any interval (a, b) proposed for examina-

tion.', The objecrof the approximation is then to determine

values nearer and nearer to the root lying between those

limits, by a method at once regular in its plan and rapid in

its effects. In this manner all the digits of the root will at

last be found, if the number of those digits be limited
; or

the approximation may be pushed as far as may be thought

fit, in case the number of digits of the root be infinite. The

process of approximation is that given by Newton, so far

as regards the nature of the operations. But it is only

under certain limitations that this method can be employed

with confidence of success. The question which must first

be solved as a preliminary to the application of Newton's

method, involves one of these limitations. It is thus stated

by Fourier.
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59. Though the limits (a, b) do not comprise more than

one root of the given equation, yet a criterion is still wanted

to point out whether the interval is sufficiently small to permit

the commencement of the method of approximation at either

of the limits (a, b). What then is the nature of this criterion?

60. We shall first remark, that it will always be possible

to reduce the last three terms of the index-series for the in-

terval (a, b) to the three indices

0, 0, 1.

For sincef(x) = has only one root between the limits

(a, b), it follows that f'(x) — cannot have a root equal to

that root of the proposed equation f(x) = 0. Hence we can

always obtain an interval, which shall include the root of

f(x) = 0, and not include any root of f'(x) = 0. In other

words, the last two terms of the index-series can always be

rendered and 1.

But we are not able to state the same proposition with

respect to the equation f\x) — 0; since in some particular

cases it may happen that the root off(x) == 0, comprised
within the interval (a, b), is also a root of f"(x) = 0. We
must inquire therefore, whether there be any common divisor

<j> (x) of the polynomials /(#) and/
7/

(V); and if so, whether

the equation $ (x) = has any root within the interval (a, jb).

Now if $(%) does not exist, or if it exists, but 0(#) =
has no root within the interval (a, b), then/"0) = can have

no root equal to the root of f(pc) = which we are investi-

gating: and it will be possible to include this root of/ (x)
—

within some interval which excludes all the roots o?f"(x) == 0.

In this case then we can reduce the three last terms of the

index-series to the indices

0, 0, 1,

Q
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But if the common divisor
<j> (x) is found to exist, and also

$ (x) 3= to contain a root between the limits (a, 6), then

there can be no other such root than the very root of/(o?) = 0,

of which we are in search.

For all the roots of $ (a?)
=± are roots of f(x) = 0,

which has only one root within the interval (a, b). We may,

therefore, discover this root by commencing anew with the

equation {x) = 0, which is of lower dimensions than

J\x) = 0. By this means we can discard such a particular

case, inasmuch as it can be reduced to the general case of an

inferior equation.

In all cases therefore we shall consider it possible to reduce

the three last indices to

0, 0, I.

61. We shall now proceed to show, that when this reduc-

tion of the index-series has been made, we may apply with

confidence the method of approximation given by Newton,

commencing the operation from one of the limits (a, b).

Suppose then that for the interval (a, b) we find that the

last three terms of the index-series are

fX*), /'(*),/(*).

0, 0, 1.

And let the root comprised in this interval be y ; of which

c is an approximate value, not lying beyond that interval, but

whose extreme values are the limits a and b. We shall seek

the condition that c must satisfy, in order that the approxima-
tion may be carried on with safety, commencing with c.

Now if we assume

y = c -f h,

tben0=/(y)=/(c + h);
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and by the Newtonian approximation we find the new quantity

c
x
= c 4- hv

by using the approximate equation

o =/(*) + *,/'(<?>

to obtain the value of hv which is supposed to be nearly the

correct value of h.

But the correct equation would have been, according to the

rule of the remainder of Taylor's series,

0=/(c) + hf\\) y

where X lies between c and y.

Now, in order that the approximation may proceed with

success, we must have the error of c
x

less than that of c,

neglecting signs. Or, in other words, we must have

(y -cy> (y-c x)\

or h\ > (h — h
x )

2
,

or 2hh
x

— h* > 0,

h 1
or__^ pos .

;

that is, we must have

f'(c) 1

The first remark to be made here is, that it will not be safe

to employ an interval (a, b) in which f\x) changes its sign.

f'(c)
For as X is unknown, we could not say a priori that y^r was

itself a positive quantity, unless we knew that f'{x) did not

change its sign during that interval. Hence it becomes

necessary to have the last index but one reduced to 0.
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62. But this condition is not sufficient, for we must also

have

f\c) 1

Now the true equation

= /(c + h)

may be written either in the form

0=/(c)+/*/'(A),

or, expanding to one more term, in the form

0=/(C)+A/'(C
)+J/"((«).

where
jx

is also a quantity lying between c and y. By the eli-

mination of h from these two equations, we obtain

0-1 /'(c)
,
1/(<0/"(m)U -

/'(X)
+

2 ^/'(X)p
'

so that we have

/'(X) 2-2 +
3 |/'(X)P'

and our condition, that

/'(c) 1

/CX)-2
= P°S -

will manifestly be satisfied, if we have

l/'(*)P+/(c)/"(M) = Pos.

The second remark to be made here is, that we cannot with

safety use any interval in which f"(x) changes its sign. For

as
fi

is unknown, we cannot say a priori whether /"(ill) will

satisfy any condition relating to signs, or not ; unless we knew

the sign of/"(/u), by knowing that /"(#) keeps its sign for

the whole of the interval. Hence the last index but two must

be reduced to zero.
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63. But we have still to satisfy the condition

f/'(A)P+/W"G«) = pos.

Now as the values of A, jx,
are unknown, the only mode of

satisfying with certainty the preceding condition, is to make

°r/(c) f(p) = Pos -5

observing that f"(x) preserves its sign during the interval

{a, b).

But we have, by the table of signs,

f>W)
= pos -

7(*)=
neg -

whence
/(Sr^ =nes- '

and either the numerator or denominator of this fraction must

be positive, whilst the other is negative.

The third remark now to be made is, that the method of

Newton cannot be safely applied to both limits alike
;
but that

only one of the limits can be employed with certainty of success.

And the criterion for choosing that one of the two limits,

suppose c, is that in the series denoted by sign (c) the last

term and the last but two are alike.

64. We have now shown that there can always be found

a limit c, such that the Newtonian approximation can be

commenced with certainty of success. In other words, we

shall always be able to deduce from the approximate value c

a second approximation cv whose error shall be less than the

error of c. But there remains still the question, whether we
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can proceed with certainty to a third approximation c
2 , com-

mencing at the second approximation cv For this purpose it

will be necessary to inquire into the nature of the approximation
cv which has been obtained by the application of Newton's

method under the limitations given by Fourier. Recurring
then to the expanded forms of the true equation

0=/(e + h),

we find, on the elimination of h,

or, if we take into consideration the choice of the limit c, we

can write this equation in the form

that is, T 1 = pos.,

h-h
xor

-AT =pos - ;

and expressing this condition in terms of c, c,, and y, we find

that

1_J = pos.;

hence
c,

lies between c and y.

The fourth remark, then, to be made on the Newtonian

process is, that the approximate value given by that method,

under the limitations of Fourier, is always on the same side of

the root as the limit from which the approximation commenced.

Hence we have only to write the new limit c
x

for the old

limit c, and the whole ofthe preceding limitations will ofcourse

be satisfied by the new interval ;
so that the process may be

renewed with confidence, commencing at the last approxima-

tion cv And in this manner the process can be continued to

any extent with certainty of success.
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65. There is yet one question which must be solved before

the Newtonian approximation can be considered complete.

This relates to the measure of the degree of approximation at

any stage of the operation. We must therefore seek some con-

venient expression for the limit, which the error cannot exceed.

This limit will, in the first instance, be the difference b — a of

the interval, so that we have h<b-a; or rather h2 < (b—a)
2
,

since we are speaking of the magnitude of the error, and not

of its sign. The error of the next approximation will be

h — hv Now we have

0=/(C)+A,/'(C)
|

0=f(c)+hfXc)+^f"W\
where

ju
lies between c and c + h, and therefore of course

between a and b. But by subtracting the above equations we

obtain

= (A_A,)/(C) + |V"W.

( ''
~

4 1/'(C)J
'

that is, the error h — h
x
is of the order h2

} since we shall not,

except in particular cases, find •

,
to be very large.

J (S)

The best method for calculating a limit of the error h — hv
f"( ^

is to take a coefficient K not far from the true value of
-jrrk,J \c)

yet always greater than that true value numerically, and then

h4

to consider K2
-j

as the limit of the- square of the error h— hv

The necessity of taking notice of the limit of the error is,

that we may not perform any useless arithmetical operation,

by finding the successive approximations to too many places of

— f(c)
decimals. For in finding the value of hv which is ,/ ,

/ \c )
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we ought to carry on the division only to so many decimal

places as must of necessity be correct
;
and we must conse-

quently stop before the digit which is of the same order as

the probable error. Now, inasmuch as every error is of the

same order as the square of the preceding one, it follows

that at every new approximation the number of correct

decimals given by the process will become doubled. Thus the

process is not only perfectly certain to succeed, but the

rapidity of approximation is accelerated continually ; and it is

on this account that it is preferable to any other method of

approximation whatever.



CHAP. VIII.

ON THE METHOD OF APPROXIMATION GIVEN BY LAGRANGE,

AS SIMPLIFIED BY THE THEOREMS OF FOURIER.

66. We shall suppose in general that the interval, whose

limits are the successive integers c and c + 1, contains at

least one root y of the equation under consideration'; in some

cases it may contain other roots besides y, and the method of

Fourier will always discover how many. The object then of

this approximation is to discover immediately values nearer and

nearer to each of the roots y} S, .... so contained in the

interval (c, c + 1), commencing with the value c.

For this purpose, then, assume

1
X = ° +

3?'

and substitute in the proposed equation

f(x) = ;

the transformed equation will be

o
=/(* +

I)

~M + ~}m + •'• •+£
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or, when reduced to the ordinary form,

fiP) /(c)

And the roots of this new equation correspond to the roots

of the given equation, being connected with them respectively

by the equation

* = c + i,

Now if there are k values of x lying between c and c + 1,

namely y9 i9 , it follows that there will be exactly

k values of x' , which are greater than unity, and which we
shall denote by y, $, . . . . as corresponding to y, 8,

These values are roots of the equation in x , and the integers

c'} d'
, . . . . next below them may be found by the method of

Fourier. If these integers are all different, the process now

becomes separated for each of the roots ; if all or any part of

them are alike, the process is not yet separated for the corre-

sponding roots. In all cases we are to proceed separately with

each one of the different integers amongst the series c', d' 9 . . .

The following is the process for c'.

Assume

and transform the equation as before. Then as many values

as there are of x' lying between c' and c 4- 1, so many values

will there be of x" greater than unity. Hence, if the method

of Fourier points out k' roots of the equation in x' , we shall

have to seek for k' integers c" , d", .... next below the roots

of the equation in x".

If there are not k' different integers, we cannot completely

separate the procaes at present, but we are to proceed sepa-

rately with each one of the different integers of the series
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c" , d", It is manifest that this process can be

continued to any extent.

We shall then have, for the root y,

1

y = c +
j

Now if any of the integers c, c', c" } c'"} be an exact

root of the corresponding equation, instead of being merely a

limit of the root, the continued fraction will close with that

integer, and give the exact value of the root. In all other

cases we must conclude that the root in question is incom-

mensurable ;
and we may carry the approximation as far as we

choose.

67. The successive convergents will be

(1.) c,

(2.)
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Now, by eliminating c'" from the equations

P4
= C

'"P* + P%\

9*
~ c"'?3 + qJ

we have

£4 _ 9_4 = £2 _ h
Pz 9* P3 ?3

'

w^Pa-Ma^P&z-Wv

But, by a similar elimination of c" ,

92Ps-P293 = Pi92-9iP2'

And lastly, by the elimination of c', we find that

9iP2~Pi92^ ?i f=f
l

Hence we have

P*_Pi = JL
92 9i 9x92

9s 92 9293

?4 ?3 ^4

so that we may infer generally

Hence the difference of the two convergents ^2±), &, neg-

lecting its sign, will be ;
and of course less than —-

f
.

9n9n+\ 9n
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But by observing that

y = C + —
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Putting therefore

we find

61 x"2 - 94#"2 - 20s" -1=0.
And the integer to be taken for the next below x" is 1

Assume therefore



CHAP. IX.

ON THE INDIRECT RULES FOR THE SOLUTION OF EQUATIONS
OF LOW DEGREES, WHICH HAVE BEEN ACCIDENTALLY
DISCOVERED: WITH THE TRUE THEORY CONNECTING
THESE METHODS, NAMELY THE APPLICATION OF THE
METHOD OF SYMMETRICAL FUNCTIONS OF THE ROOTS
TO THE SOLUTION OF THE EQUATION ITSELF: AND,

LASTLY, THE REASON WHY THIS METHOD CANNOT BE
EXTENDED BEYOND THE FOURTH DEGREE.

69. On the solution of quadratic equations by the method

of completing the square.

Suppose that the given equation is

x2 + px 4- q = 0.

p2

The rule directs us to transpose q, and add
*g

to both

sides, in order to render the first side a complete square:

after this, the extraction of the square root of both members

of the equation will reduce the quadratic to two simple equa-

tions, owing to the ambiguity of sign on either side, after

extracting the square root.
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The process is thus indicated :

P
2

P
2

x2 + px +
*j
= % -

q,

which last equation is equivalent to the two equations

P _

and the two roots obtained are expressed by

X +
2

*.V9K
Now this is obviously identical with the process of taking

away the second term of the equation, by the method of

transformation.

For let a? = y — £ ,

then the transformed equation is

\/i

i/?-

70. On the solution of cubic equations by the method

of Cardan.

Let the second term of the proposed cubic be taken away
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by transforming the equation, if necessary. The equation is

then of the form

x3 + qx -4- r = 0.

Suppose now that for the single symbol x we substitute the

sum of two symbols, as a + /3.
Then we shall have the

equation

(«+ j3)
3 + ?(a + j3) + r = 0,

or, a3 + j3
3

-f 3a0(a + j3)

'

+ 90 + /3) 1=0.

+ r

Now as x can be divided into two parts in an infinite

number of ways, we may make a second assumption concerning

these parts ;
and we shall suppose that they satisfy the con-

dition

3a)3 + q - 0.

The equation between a and j3 is thus divided into the two

others

3aj3 + q = 0^

a3 + 3 + r = Oi

Eliminating /3,
we have

a
27a3 + ~

a6 + ra* = ^

2
~ V 4+27

Now since a and j3 enter into the two equations symmetri-

cally, it follows that we should find the same values for /3
3

;

so that the two roots may be considered as representing
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indifferently the two quantities a3 and /3
3

. And we may
write

2^V 4
+

27'

P 2 V 4+27'
and the value of x will be

(-i
+ vT*8*+(-SV;+fl*-

In finding the value of a, we must recollect that every cube

root of any quantity will have three values, of which two are

always imaginary ; and the third will also be imaginary, if the

quantity whose cube root is to be extracted, be itself imagi-

nary. Again, ]3 will have three values, which will correspond

respectively to the three values of a. Hence x will have

three values
;

so that the three roots of the cubic are found

by one operation.

Suppose a, j3',
to be any one pair of values of a and

/3.

Then, denoting by p the quantity

we shall have

cos — + VZT\ sin
~

, 4?r , , . 4?r

p
2 = cos

-j-
+ V — 1 sin

-g-

And the cube roots of 1 are

l
> P> P

2

Hence the three values of x are

«' + £',

pa + P
2
/3',

pV + t#- J
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71. We shall in all cases be able to find by the processes

of arithmetic, this one pair of values a , j3', except the quan-

r2 a3

tity -7 + ^z be negative.

Putting the sign of q in evidence, we are now to consider

the solution of

x 3 —• qx + r = 0,

in the case where we have

r2 q
3

j-f^neg.,

or2>'
3 2'

neglecting the sign of r.

Now, in this case, we have

-=^v?-4 27

Assume now cos 9 = ^—
"

; and we shall obtain

9
*

"3 =
37/3 ^

cos " + ^ ~ 1 sin ^ '

obtaining one value by Demoivre's theorem.
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And the corresponding value for
|3 will be

P _? 1

3 a

= y \

Hence the three values of x are

gf . e

3
C0S

3 »•

Vl3 .cos
g)

COS

COS

2ir +
3 '

4tt +

This case was termed by the old algebraists the irreducible

case of Cardan's rule. We may remark that this happens
when the three roots are all real.

72. The solution of a biquadratic equation by the method

of Ferrari.

Let the second term of the given equation be taken away,

if necessary : the equation is then of the form

x4 + qx
2 + rx + s — 0.

Transpose all the terms but the first, and then add to both

sides the quantity
2nx2 + n2

.

The equation will then take the form

O2 + n)
2 = (2n — q) x

2 — rx + n2 — $;

and since n is arbitrary, it will now be our object to determine

??, so that the second side shall be an exact square ; and then,

by extracting the square root, the biquadratic is reduced to

the two quadratic equations

x2 + n = ± \(2n
- q)lr

-
(n

2 -
s)i\ .
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Now the condition for the quantity

(2n — q) x2 — rx + n2 —
s,

to be a perfect square, is that

(2n - q) (V - »)
=

J,

OT
(»
-

|) <*-.)
=

£;

that is, n must be a root of the cubic equation

w 3

-|ra
2 -s«+ ^ - g-

= 0.

There will always be one real value of n, and this can be

found by Cardan's rule. And, consequently, the biquadratic

can always be reduced to two quadratics, and its four roots

determined.

This method has sometimes been ascribed to Waring,
instead of its real author, who was Cardan's pupil.

73. We shall now point out why the equation for the

determination of n is a cubic.

If we examine the two quadratics to which the biquadratic

has been reduced, we find for the last term of one of them,

the quantity

n — VW2 —
5,

and, consequently, this quantity is the product of the two

roots of that quadratic, that is, of two of the four roots of the

given biquadratic. Hence, if we denote these four roots by

a, b, c, d, we shall have

n — */n2 — s = ab.

Also, the last term of the other quadratic will be equal to

the product of the remaining two roots ; that is,

n -f s/n2 — s = cd.
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Hence, by addition, we find that

2n = ab + cd.

But since there was no reason for choosing the particular

pair a, b of the four roots for one of the quadratics, and

leaving the pair c, d for the other, it is evident that n must

have the three values

J (ab 4- cd), i (ac + bd), \ {ad + be) ;

and, consequently, the equation for determining n is a cubic.

These three values correspond to the three different pairs of

quadratics to which the biquadratic can be reduced; and

which are thus indicated by writing their roots

fab\ f«c\ fad\
ledJ Xbdf XbcJ'

74. The solution of a biquadratic by the method of Des

Cartes.

Let the proposed biquadratic, deprived of its second term,

be
x* _j_ bx2 + ex + d = 0.

Now, since the first side of this equation may always be

considered as the product of two quadratic factors with real

coefficients, and since the coefficient of the second term will

be the sums of the coefficients of the second terms of the

quadratic factors; it follows that, because the second term

has been taken away by transformation, we may assume

x4 + bx2 + ex + d = O2 + Vy% + «) O2— Vyx + z
')>

where y is some positive quantity, and z, z' are either positive

or negative. Hence, performing the multiplication and equa-

ting the coefficients, we must have

z + z' — y = b,

0' - z) Vy = c>

zz' =d:
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which three equations are sufficient for determining y, 2,

and z'.

For, by the first equation,

(z + z') Vy = (y + 6) v^j
and, by the second,

0'
— z)^y = c;

whence, 2z' \/y = (y + b) \/y -f c, ^

and 22 Vy = (y + b) \/y
— c )'

and, by multiplication,

423'y
= (y + &)

2
7/
— c2,

or, observing that 22' = d,

y
3 + 2%2 + (6

2 -
4d) y - c2 = 0.

Now as the last term of this equation is essentially negative,

there must be at least one real root which is positive; which

may be found. Also, when y is found, z
', % are known by

the preceding equations : and the solution is reduced to that

of the two quadratics

x2
-f a/y.x -f- z = 0,

x2 —
\fy.x 4- z ss 0;

which give the four roots required.

We observe that + */y is the sum of two of the roots of

4.3
the proposed equation, and as there are

,-^,
or six ways of

combining the roots two and two, and since every such com-

bination leaves a supplementary combination of the other two

roots, there are three ways of dividing the four roots into two

pairs; that is, there are three ways of dividing the first side

of the equation into two quadratic factors. It is on this

account that the equation for finding y rises to the third

degree.*

* On this subject, see the excellent remarks in the note upon Art. 768 of

Peacock's Treatise on Algebra.
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75. The solution of a biquadratic by the method of Euler.

As before, let the equation, deprived of its second term, be

xx
-f bx2 + ex 4- d = 0,

and suppose x to consist of three parts a, 0, y ;

•"• ^ = a + |3 + 7,

.\ #2 = a2 + 2 + 7
2 + 2 (0<y + ay + a/3),

= P + 2 (07 -f a7 + aj3), for brevity.

Transposing P, and squaring and writing Q for 2
7
2

+ a2 7
2 + a2 2

, we have

x* - 2P#2 + P2 = 4Q + 8a07 (a + + 7)

= 4Q + Safiy.x;

/. x4 - 2Px2 -
Safiy.x + P2 - 4Q = 0,

which, compared with the proposed equation, gives

a2 + 2 + 7
2 = P = ~ J&

2
7
2 + «2 7

2 + «2 ]3
2 = Q = i (P

8 - «, = tV (*
2 ~

4rf),

and a07 ds —
g.

From these equations it is evident that a2,
2
, 7

2
, are the

roots of the auxiliary equation

3

'

b
2

b2 - U c2

^ + 2^ + -T6-y-64 =0;

from which equation they may be found, and thence the

values of x determined.

Since the last term of the cubic is negative, there is at

least one real positive root, I suppose ;
and the other two are

either both positive, both negative, or both impossible ; and

they may be denoted, in the three cases, by m, n> by
— m t

— w, and by p (cos ± */*— 1 sin 0), where p is a positive

number.
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Hence we shall have a = ± a/ I, and
j3, 7, respectively

equal to

± \/m, ± s/n in the first case,

± v — m, ± v _ n in the second;

and, in the third case,

/ $ 0\
]3
= ± v> f cos - -f V _ 1 sin

g J,

y=±</p ( cos - - */ - 1 sin gV

Now a: = a + j3 -i- 7; and the only restriction upon the

values of a, j3, 7, is given by the equation a]3y — —
5> which

shows that the product a/3y must have a different sign from

that of c.

When r is negative, the product a]3y must be positive; and

applying this restriction to each of the three cases, we have,

in the first case,

x — \fl ± (y'ffi + V^)> of — v^* ± (ys/m— \fn)\

in the second case,

# = a/1±s/— I (\/m—^n), or — \Sl±*/— 1 (\/^+ -\/w);

and in the third case,

a /i

a? = v^ ± 2\/p cos^,
or — \/l ± 2 v'— 1 vV sm o-

And, on the contrary, when r is positive, it will be found

that the values of x are the same as the above, changing only

the sign of ^/l in each of them.

Hence we have only four roots in each case, although there

were apparently eight roots if there had been no restriction to

the values of a, j3, 7.

T
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76. We shall now proceed to show the general principle

upon which these methods proceed. It is that of symmetrical

functions, as before stated.

In general, we have one simple equation between the roots

of the given equation, namely, that their sum is equal to the

coefficient of the second term with its sign changed. Now the

object of the general method of solution, by means of symme-

trical functions, is to form n — 1 other simple equations

between the roots. This is done by assuming z equal to some

linear function of the roots, and forming the equation in z,

which must be one of n — 1 dimensions, if possible, in order

that we may have n — 1 values of z.

By substituting these n — 1 values of z, and permuting the

roots of the given equation in the equation

z = linear function of the roots,

we shall obtain n — 1 simple equations between the roots,

and thus be enabled, with the addition of the equation

— px
= sum of the roots,

to find all the roots of the given equation. The process will

be best exemplified in the equations of low degrees ; and it

will be shown that it fails to be of any practical utility for

equations beyond the fourth degree.

The above method is due to Lagrange, who also demon-

strated its failure for higher orders.

77. Solution of a cubic by the method of Lagrange.

Let the three roots of the cubic equation be a, b, c ; the

equation itself being

x3 + qx -f r = 0.

Then we have a -f b + c — 0; and if we can form two
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other simple equations involving a, b 9 c, we shall be able to

find the roots by the known method of elimination between

simple equations.

Let one of these simple equations be

t(« + bp + cp
2
)
= z;

then, since there is nothing to distinguish one root from

another, it follows that the elimination, which gives the final

equation in z, must also gives z the values

\ (c + ap + V)>

i (b + cp + ap*) 9

i (a + cp + bf),

\(b + ap + cp*),

i(c + bp -f V) J

and the final equation will therefore be of six dimensions.

But if we assume

p = cos y + i/"Zl sin
-rg,

(whence p
3 = 1),

i (a + V + c/o
2
)
=

*,,

* (a + cp + fy>
2
) =p *

2 ,

it will be evident, by inspection, that the six values of z are

Wv Z
*P> ziP

2
>

z
2 , Ztf, z^p

2
;

and that u (== s 3
) has only the two values z*, z

2
3

. Also we

shall have

i (a + b + c)
= 0,

±(a + bp + cp
2
)
= zv

£ (a + cp -f fy>
2
) =* 2

2 ;
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and if we observe that p is an impossible root of p
3 — 1 = 0,

p3 — 1
and therefore satisfies

"
=- = p

2+p+ 1 = 0, we shall have
p— 1

.
a = a, + fy

* = V + *2P>

Now let u2
-f Pw -f Q = be the equation, in which u has

the values z£9 z
2
3

; then

— P =z a
t

3 + a
2
3

,

= TV |2S(a*) + 12a£c + 3(p + p
2
) S (a

2
&)?,

and, since a6c = —
r, S(a

3
)
= — 3r,

p + ^^-1, 2(a
2
6) = 3r,

/. P = + r.

Again, Q =
£,

3
;z
2
3

;

but we have z
x
z
2
= f |S (a

2
) + (p + p

2
) S (a&)|,

and, since 2 (a
2
)
= —

2q, 2 (aZ>)
= £,

and the equation determining u is

w2 + rw-|^
= 0;

whence u = — ~ ± 4 /L _i_ £
2
-

y/ 4+2'

Also, the three roots are
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It is evident that the three roots cannot be possible, unless

z
x
z
2
be both impossible. But in this case they will be so.

For we may represent zv z
2) by R (cos 9 ± V — 1 sin 0) ; and

Q3

comparing u2 + ru — ~ = 0, with (u— zf) (u—z
3
), we have

2R3 cos30 = —
r,

R6 = Z^!*
27 >

whence R and can be found, since q is, in this case, negative.

And the values of a; will be 2R cos 0, 2R cosf~ + 0]
and2R

Let the given biquadratic equation be

x* 4- qx
2 + rx + s = ;

and, as before, assume one of the simple equations to be

i(a+ b9 + cp
2 + dp

3
)
= z\

and there will in general be 24 values of z, by interchanging

a, b, c, d.

But if we assume that p = —
1, and that

*i
= i f(« + b)

—
(c + d)l,

z
3
= i {(a + d)-(b + c)],

then it is evident, from inspection, that z has only the six

values

± zv ± z
2, ± z

3 ;

and, therefore, u =' z2 only has three values, zf, z2
2
, z

2
.

Let u3 + Fu2
-f- Qu -f R = be the equation determining

w
; then, since a + b + c-\-d = 0,
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*
3
- *(« + <*);

whence Sj
2 + *

2
2
4- £

3
2 = — P,

= | ^3a
2 + b2 + c* + rf

2 + 2(a& + ac + arf)J,

and, as it must involve the roots symmetrically, we may inter-

change a with b, c, d, successively ; whence, adding the four

identical values of P, and taking the fourth part,

P =
=^ *4S (a*) +42 («&)?..

_+ q.
2

again, by a similar process, we have

w
16

'

also z
lz^2

= \(a + b) (a + c) {a + d),

= \ W + «2
(P + c + d) + 2 (aftc)|,

= — -, since 6 + c -t- d = — a;
8

whence R
64

And the equation in u is

The roots of this equation can be found, and we then have

= i (« + b + c + <*)i

2,
= J O + * — c — d),

*
2
= i (« + c — b — d),

z
3
= l(a + d-b-c);

whence a, b, c, d will be known.
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The reducing cubic, in this case, is the same with that

of Euler; and we must apply the same restriction to the

double values of zv z
2 , #

3 , as before. For we have z
x
z
2
z
3

T= — -, and therefore we must have such values of z Xi
z
2 , zvo

as shall make their product of a different sign from that of the

coefficient r.

The theory of symmetrical combinations, which is found

successful in resolving equations of the third and fourth degree,

can be applied to those of higher orders. But, to use the

words of Lagrange,
"

passe" le quatrieme degr6, la m^thode,

quoiqu' applicable en general, ne conduit plus qu' a des

equations r^solvantes de degr^s superieurs a celui de la

proposee." Thus, in the case of equations of the fifth degree,

the theory leads to a reducing biquadratic ;
but to obtain its

coefficients we must solve an equation of the sixth degree.

So that the method is useless in practice.

There is, however, no doubt that the doctrine of permu-

tations, and of symmetrical combinations of the roots, contains

the principles from which we are to expect the resolution of

equations of the higher orders, if that problem be possible.

In the 12th volume of the Italian Society, and in a work

published at Modena in 1813, M. Paolo Ruffini has proved,

that no function of five letters is susceptible of only three or

four different values by the interchange of the letters. And
M. Cauchy, in the 1 6th volume of the Journal de V Ecole

Polytechnique, has shown, that if a function of n letters has

more than two values, it has at least k values, k being the

prime number next below ft.

On these grounds it has been inferred, that the resolution

of equations of the fifth degree, and consequently of the

higher orders, is in reality an impossible problem. (Lacroix,
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Compt. des Elem. cT Algbbre, p. 61). But it must be ob-

served, that it is here assumed that the coefficients of the

reducing equation are symmetrical functions of all the roots.

It may, however, be possible that the resolution might be

effected by means of equations, whose coefficients are only

partial expressions susceptible of several values. On this

supposition the problem may perhaps be considered as not

altogether impossible.

THE END.

METCALFE, PRINTER, CAMBRIDOK.
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