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PREFACE.

It will probably appear, to some, a work of super-

erogation to add another tract on Plane and Spherical

Trigonometry to the great number already before the

public ; especially as some of those treatises are the

productions of men whose talents and attainments

were unquestionably of the highest order. Still, it has

appeared to me that, however valuable many of those

works must be considered, there are none of them

exactly suited to the use of schools in which this

branch of mathematics is traced to its principles. It

is, indeed, no unusual thing to find young men who

have studied this science in the way it is commonly

taught, who are very imperfectly acquainted with the

nature, and almost entirely ignorant of the construc-

tion, of the tables which they are continually using.

And it must be admitted, that, when the nature and

construction of logarithms, and of sines and tangents,

are explained by Algebra and common Geometry, the

processes are generally either so obscure, or so prolix,

as to discourage the majority of students. The Diffe-

rential Calculus is well known to furnish the most

direct, if not the only direct, and simple method of

A*
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vi PREFACE.

investigating the formulae by which those tables are

most expeditiously computed. But that calculus itself,

as commonly exhibited, presents so many refined

speculations, that very few, except those who have a

taste for mathematical studies, can avail themselves of

its advantages.

As it is evidently unscientific to erect a system,

either in theory or practice, upon unknown principles,

it has been my object, in the following work, to trace

every process which is required to be adopted, to

principles which are supposed to be previously under-

stood. The student is supposed to be already

acquainted with Algebra and Geometry. If the

student is master of the first six, and the eleventh

books of Euclid
; or, which is nearly the same thing,

of the first six, and the second supplementary book

of Playfair's Geometry ; and of as much algebra as is

contained in the first ninety pages of my treatise ; he

may proceed with confidence to the study of the

following tract.

This work was intended to include as much only

of the Differential Calculus, as the elucidation of the

science of Trigonometry required. I have therefore

confined myself to differentials of the first order; and,

by the use of proper expedients, have deduced the

requisite formulae from those differentials. Some of
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the methods used in this work are supposed to be new ;

and, if so, they may be considered as improvements

upon the labours of my predecessors. Of this cha-

racter are the investigations of Gregory's theorems

for computing an arc in terms of its tangent, and for

computing logarithms.

The treatises on Spherical Trigonometry with which

our schools are supplied, are nearly all of them desti-

tute of anything on the subject of Spherical Projec-

tions. This appears to me an important defect. A
small tract on that subject, which I added, more than

thirty years ago, to a Philadelphia edition of Thomas

Simpson's Plane and Spherical Trigonometry, is the

only one, so far as I know, which is to be found in

our schools ; unless we consider Davies's Descriptive

Geometry as one. Simpson's work being now out of

print, and the work of Davies, notwithstanding its

merits, not appearing calculated to supply the place of

the appendix, I have revised, or rather written anew,

that part of my early labours, and subjoined it to this

work.

The present treatise being designed as an introduc-

tion or preliminary to Astronomy, a concise tract on

the Conic Sections, including all the properties of the

ellipse and parabola which are usually cited by writers

on that science, has been introduced. This appeared
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requisite, because some of those properties were

unavoidably referred to in the tract on Spherical

Projections ; and, among the treatises on that subject

already in print, it was not easy to fix upon any one

to which I could refer, that would be generally known

to my readers. Besides, it appeared no difficult matter

to include in this work all the information which the

astronomic inquirer would need in the prosecution of

his studies. The Conic Sections being, as the name

implies, derived from the cutting of a cone, I thought

it more direct to deduce the primary propositions from

the section of the cone, than to lay down first a plane

figure, derived in a different way; and, after demon-

strating most of its properties, to prove at last its

identity with a conic section.

In the practical examples, some astronomical terms

are used which are not defined, because it was sup-

posed that few young persons would study this work

without some previous acquaintance with terms so

generally understood.

The references to the properties of geometrical

figures are made to Playfair's Euclid ; but they will

generally apply to Simson's translation of Euclid's

Elements. This oldest work on Geometry, with the

few improvements introduced by the Scotch geometer,

is, in my opinion, better calculated to lead the attentive
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student into an accurate acquaintance with this noble

science, than any modern treatise which has fallen into

my way. Among those improvements, however, the

substitution of the language of Algebra, in the fifth

book, in place of that which Euclid made use of, Can

hardly be reckoned as one. Play fair's exposition of

the fifth definition is certainly a good one; but, in

other respects, I consider Simson's translation of that

book greatly preferable to the form in which Playfair

has left it.

Philadelphia, 10 Mo. 1844.





PLANE TRIGONOMETRY.

INTRODUCTION.

In the practice of Trigonometry there are several tables

generally used, the construction and uses of which constitute

an essential part of the science. But when the construction

of these tables is deduced from Geometry and common Alge-

bra, the subject is certainly presented to the student in a very

discouraging shape. The rules by which these tables are

most readily computed, are easily derived from the Differen-

tial Calculus ; but that branch of science, when pursued to

any considerable extent, involves many refined and difficult

speculations. It therefore generally happens that the stu-

dents of Trigonometry acquire a practical acquaintance with

the auxiliary tables, but understand neither their construc-

tion nor nature.

As those parts of the Differential Calculus which the con-

struction of all the tables commonly used in trigonometrical
calculations absolutely demands, lie within a narrow compass,
and involve no very difficult inquiries, I shall employ a few

pages in explaining the elements of this science, so as to

enable the student to understand the nature and origin of the

formulae which are commonly used in the computation of the

trigonometrical tables

CM)



12 PLANE TRIGONOMETRY.

Article 1. The Differential Calculus is founded essentially

upon the relation which variable and dependent quantities,

considered as decreasing till they vanish, bear to each other

in their evanescent or vanishing state. This rati-o is called

their ultimate ratio. Newton observes that the ultimate ratio

of evanescent quantities is not the ratio which they have

before they vanish, nor afterwards ; but the ratio with which

they vanish.* As the ultimate ratio of vanishing quantities

is not the ratio which they have before they vanish, but at

the instant when they vanish, it is most convenient to deter-

mine that ratio by supposing the evanescent quantities to

have actually vanished. This may often be done in a way
which leaves no room for error or doubt. One or two exam-

ples in common Algebra will render this obvious :

xr— —a+x

fi— x?—— = aiJrax Jr x~.

Now, these results being strictly correct, whatever value

may be assigned to a or x< let x be supposed at first less than

a, and to increase till it becomes equal to a
;
d1— x2 and

a— x, are thus rendered decreasing and evanescent quanti-

ties, whose ultimate ratio is the ratio which they have, not

before x becomes equal to a, but at the instant when that

equality is attained. But when x=a, a+x=2a=-y ; and

ar-\-ax-\-x
2=3a2

=-^-.
Hence the ultimate ratio of a— x to

a-— or, when x approximates and ultimately equals a, is the

ratio of 1 : 2a; and the ultimate ratio of a— x to aa— x3
,

under like circumstances, is the ratio of 1 : 3a\

Principia, Scholium, Book I., Art. 1.
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Art. 2. In the investigations connected with the Differen-

tial Calculus, quantities are considered under two very dif-

rent aspects: constant and variable.

Constant quantities are such as remain unchanged, or

retain the same value throughout the investigation. Variable

quantities are those which change their value in the course

of the solution or demonstration. Constant quantities are

usually denoted by the initial letters, a, b, c, &c. ; variable

ones by the final letters, x, y, z, &c.

Art. 3. When two variable quantities enter into an equa-

tion, so that the value of one depends upon the value of the

other, and one of them is increased by any quantity or incre-

ment ; the quantity which must be added to the other to

preserve the equation, is called the corresponding increment.

Thus, if y=ax
2
, and we increase x by the increment h, so that

x becomes x-\-h, the new value of y will be

a(x+hy=ax
2+ 2axh+ ah2

',

hence the corresponding increments of x and y are // and

2axh -f all
2
.

The variable quantity from which a differential is deduced

is called an integral.

Differentials of dependent variables may be considered as

the corresponding increments of those variables, in the ulti-

mate state of the increments, when they are diminished till

they vanish. Or differentials may be defined to be quantities

having to each other the ratio which is the ultimate ratio

of the corresponding increments, those increments being sup-

posed to decrease till they vanish.

Hence it follows that one differential cannot enter into

an equation without another. We never inquire into the

absolute, but merely into the relative values of differentials.

Art. 4. The differential of a variable quantity is denoted

by prefixing the letter d ; thus dx signifies the differential of

x. When the integral is a compound quantity, it is enclosed

in brackets, or a point is introduced between it and the letter

d : thus the differential of xn
is expressed by d(x

n

), or d.xn ;

B



14 PLANE TRIGONOMETRY.

whereas dxn
signifies the n power of dx, the same as {dx)

n
.

The differential of x+y is also expressed by d(x+y). In these

cases the letter d is not an algebraic quantity, but a sign, or

an abridgement of the words differential of.

Art. 5. Let y = x + z, and let x and z be increased by the

increments h and k respectively. Denote the new value of y

by y' ; so that

y = x + h -\- z + h ;

wherefore y
—

y = h + k;

or the increment of y = the sum of the increments of x and z.

Now, this being true, whether the increments are taken in

their vanishing state or any other, we evidently have

dy = dx + dz.

Again : Let y = ax,

and y'
=

a(x-\-h)
= ax + ah ;

then y'
—

y — ah;

which is also true, whether the increment h is taken in its

vanishing or finite state : consequently,

dy = adx.

Art. 6. Let y
— x2,

and y'
=

(x + h)"
= *' + %xh + &;

whence y'
—

y = 2a:A + A2
,

and y
,

*=%x -{ h =—,
—

:

n 1

consequently, %; : y — y : : 1 : 2# + A.

But the ultimate ratio of 1 : 2x + h is the ratio of 1 : 2x ;

wherefore, dx : dy : : 1 : 2a: ;

or . . . . dy = 2o%£r ;

that is, da:2 = 2^^r. If the equation dy = 2xdx be put into

this form,
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dx
~
**

the last member 2x is called the differential coefficient.

Art. 7. To find the differential of xz.

Put y =: x + z ;

then y
2 =

(a? + z)
2 =

af + 2xz + z
2

;

and (Art. 5,) dy = dx + dz;

also c?.y
2 =

d.(x + z)
2 =

(Art. 6) 2(x + z) (c?x + dz)
= 2xdx + 2xdz + 2zdx + 2z<7z.

But
'

d.y
1 =

d(x> + 2xz + z
2
)
=*

(Arts. 5 & 6) 2.^ + 2^(xz) + 2zdz.

Comparing these values of d.y
2
, we have

2d.(xz)
= 2xdz + 2zdx ;

or d.xz — xdz + zdx.

Hence, d.xyz
=

xd.yz + yzdx == xz/^z + rrzdy + yzcfo.

Again :

d.xyz _ dz dy dx

xyz z y x

and the same thing may be proved, whatever be the number

of variables.

Art. 8. To find the differential of xn
,
n being a whole

positive number.

It is obvious that xn = x.x.x.x to n terms. Hence, by Art. 7,

d.xn dx dx ndx—— = h— + &c. to n terms = :

wherefore, by clearing of fractions,

d.xn p nxxl
~ ]dx.

x
Art. 9. To find the differential of— , both numerator and

denominator being variable.
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Put z = -
;

y

wlience, y%
—

x,

and, (Art. 7), ydz + zdy = dx :

consequently,

dx—^
d% ^ ^—Z^M = & = ydx— xdy

y y y
l

'

,

J

that is, d.'~ — ydx— xdy

y y
m

Art. 10. To find d.x", m and n being positive integers.
m

Put y = a? ;

then, . . . y
n — xm ;

and, (Art. 8) ny
n

~hly = mxm - }dx;

whence,

mxm ~ }dx m xm~ l m —~\

Art. 11. To find the differential of a?
_n =— .

xn

then yx
n = 1.

But 1 being invariable, its differential is 0; therefore,

d.yx
n = 0.

Or, yd.x
n
-f xn

dy = ;

that is, nyx
n~~ ]dx + xn

dy = :

whence,

j —nyx
n~ xdx xn~ ]dx — ndx

dy =
"Ji

=— n
-^ir =^+r=— nx— ^dx;

or, <7.ar~
n = — nx~'n~~ ]dx.

From this article, and Arts. 8 and 10, it is evident that
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d.xn = nxn '
x

dx,

whether n is integral or fractional, positive or negative.

Art. 12. Let the two ascending series, Ax* + Bxb + Cxc +
Dxd + &c, and Mxm + Nxn + Px p + Qx* + &c, be always

equal ; so that whatever value may be assigned to x, we shall

still have,

Axa+Bx,b+ Grs+ Da:d + &c. = Mxm+ Na:n+ Pa:p+Q^ + &c.
;

then, a = m, b = n, c = p, &c. ;

and A - M, B = N, C = P, &c.

For, if possible, let a be less than m, and divide the equation

by #a
; then

A + Bo*"11 + Gcc"a + Da "8 + &c. =
Mxm-& + Nx"-* + Pxp-a + Qx-

q-a + &c.

But as the series are both ascending ones, b, c, d> m, n, p, q,

&c. are all greater than a. Hence, if x = 0, all the terms of

this equation, except the first, will vanish ; hence in that case

A = 0, which is evidently absurd. Therefore, a is not less

than m ; and in a similar way it may be proved that m is not

less than a;,
therefore a = m, and the above equation be-

comes
A + Bxb~* + Oc- a + Dxda + &c. =
M + Ntfn-m + P^p-m + Qx*~

m + &c.

And making x = 0, A = M. Consequently, A#a = Mxm
;

wherefore,

Bxh + Cx* + DxA + &c. = Nxn + Pa:p + Q^ + &c.

Then, by the same process of reasoning, we find b = n; and

B = N. Hence the proposition is manifest.

Art. 13. An important application of the property just

announced may be exhibited in the demonstration of New-
ton's binomial theorem.

It is evident that in the general development of (1 -f- x)
n
,

the first term must be 1
; for when x = 0, (1 + x)

n = l n = 1.

We may therefore assume

(1 + x)
n = 1 + Axp + Bx« + CxT + Da?8 + &c.

3 B*
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in which A, B, &c., are unknown, but determinate coeffi-

cients; and p, q, r, &c, unknown exponents, integral or

fractional, positive or negative. Suppose x a variable quan-

tity. Then, differentiating both sides of this equation, and

dividing by dx, we have, %
'

«.(1 -f xf"
1 = pAx^+ qBx-*-

1 + rCxT~ l + sT>x*~ l

-f &c.

Multiplying bj I + x,

rc.(l + ;r)
n = pAx»~

l + qBx*"
1 + rCxr~ l + sDx8-1 + &c.

pAx» + qBx* + rCxT + s&x3 + &c.

Then, from first equation, multiplying by n,

n{\ + x)
n = n -f nAxp + nBxq + nCxr + &c.

These equations being identical, we have by transposition,

pAx'-
] + qBx*-

1 + rCxT " 1 + sDx" 1 + &c. = n +

(n
—

p) Axp+ (n
—

q) BxQ+ (n
—

r) Cx
T + (n

—
s) ~Dx

9 + &c. ;

and by comparing, first the exponents, and then the coeffi-

cients, (Art. 12,) we have

p
— 1 = Q ; q

— 1 = p; r— I — q ; &c. ;

or, p = 1 ; q = 2 ; r = 3 ; s = 4; &c. :

and

a t>
n— 1

a
n— l n n— %v> n—In—2

A=w;B=—g— A=n.—
g- ;C=—^— B=n.—^-.—^-;

&c.

Consequently,
w— 1 c w— In— 2 ,

(1 + x)
n = 1 + n# + n.—Q—ar+ w-~o

—
•
—

q~~ ^ + &c -

From this we readily obtain the development of (a + by.

For,

(a+by = a«(l + -)";

in which we have— instead of x in the preceding. Conse-

quently,

, 7V ( , b n— \ b* n—In—2 P .
)
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= an + nan-}b + n. —^~a
n-2b2 + n. —^— .

—
^— an~W &c.

As the equation d.xn — nxn
~~~^dx, on which this demonstration

is founded, is equally correct whether n is integral or frac-

tional, positive or negative, it is evident that the preceding

development of (a + b)
n

is also correct, whatever may be the

value of n.

Of Logarithms.

The calculations which are connected with Trigonometry
are much facilitated by the use of logarithms ; it will there-

fore be proper, in a treatise on that science, to explain their

nature and use.

Art. 14. If we take a series of numbers in geometrical

proportion, beginning with a unit, as 1, a, a-, a3
,
a4

,
a5

,
a fi

,
a7

,

&c, it is manifest that the product of any two of these terms

is a term whose exponent is the sum of the exponents of the

factors. Thus,

a\a? =a a7
; am.an = am+\

If then A = am ,
and B = a", ,

AB = am+n
:

A2 = A.A = am+m = a2ra
:

On the other hand

A3 = am+m+m
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The logarithm of ~ will be the logarithm of A diminished by

the logarithm of B. In other words, the business of multiply-

ing and dividing by given numbers may be effected by the

addition and subtraction of their logarithms.

As am = A, a given number ; we readily perceive that, by

assuming different values of a, we shall change the value of

m ; that is, we shall have different numbers to denote the

logarithm of a given number A, by varying the value of a.

Thus it appears there may be an indefinite variety of systems,

according to the various values which may be taken for a.

This quantity a is called the radix or base of the system.

Art. 15. To investigate a formula by which the logarithm
of any given number may be computed, we may assume

ax = y ; y being any given number whatever ; then x = loga-

rithm of y : and the object in view is to find a general expres-

sion for x in terms of y. If we suppose x to be variable, it

is manifest that y — ax must also be variable.

In the first place, if x — 0, then y '= a — 1, whatever value

may be assigned to a ; it is therefore evident that the loga-

rithm of 1 is in every system.

Now, let y'
= ax+h = ax

.a
h = ya

b
:

and, to reduce this second member to a more manageable

form, put 1 + b = a ;

then, (Art. 13,)

^=y(l+5)
fc

f=y+y
| hb+h.^bHh!

1

-^.
— P + &c.

|

Therefore,

y-
-

y = y
\

hb +h~b- + h!^.~V + &c.
j

;

and, consequently,

y'
—

y c. h— 1_„ h— I h— 2,

h

( 1
it— i

7C,
n— i it— ^., e )
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Now, when h = 0, the series in the second member of this

equation becomes

b—W +W—W + l^
5— &c.;

and this is the value to which this series approximates as h

is diminished, and to which it arrives only at the instant

when h = 0. Put, then,

b-W + ±V-\V + #J. &c. = ~;

and it will be V_Zll = 1-.
h m

Hence the ultimate ratio of h to y —~
y is the ratio of m to y,

dy y
consequently, j- =s —

;

or, =4i'i& (A)

In this equation, the value of m depends upon the value of a ;

and as a may be assumed at pleasure, we may assign any
value we please to m. This is more convenient than to as-

sume a value of a, and from that assumption to find the value

of m. It is usual to call m the modulus of the system. When
m is taken = 1, the logarithms thence deduced are called

hyperbolic logarithms, because they correspond with certain

areas contained between the curve and asymptotes of an equi-

lateral hyperbola. In Briggs', or the common logarithms,

the radix a is assumed = 10 ; but m is computed by a method

hereafter explained.

Art. 16. As no general method has been discovered by
which to express the logarithm of a number in finite terms

of the number itself, we are obliged to have recourse to infi-

nite series. When numbers are to be computed by means of

such series, it is of importance to have the series constructed

in such manner that the successive terms shall become smaller

and smaller ; so that, a limited number of terms being intro-
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duced into the computation, the rest of the Series may be

rejected without sensible error.

To find the logarithm of a + *,.
a being constant, and z

variable.

By Art. 15, if x — log. of?/,

mdxi
dx= —-.

y

Assume, then, log. of a+ z = log. a + Azn+ Bzp
-f Czq+Dzr+

&c. ; in which the exponents to, p, q, &c, as well as the co-

efficients A, B, C, &c, are indeterminate. In this equation,
if z = 0, we have log. a = log. a, as it evidently ought to be ;

and the quantities to, p, q, A, B, C, &c, being susceptible of

any value, positive or negative, integral or fractional, the

above equation must express the log. of a + z, if it can be

expressed at all in terms of z.

Differentiating this equation, and dividing by dz, we have

7YI—— = nAzn~ l + pBzP"
1 + qCz*-

x + rDz'"1 + &c.a+z i

By multiplication and transposition,

naAzn-~ l + poBz"™
1 + qaCz«-~

l + raDzH + &c. ) _ Q— m-\- nkzn + pBz
p + qCz

q + &c. I

~

Equating the exponents and the coefficients respectively of

the corresponding terms,

to— 1 = 0, jo
— 1 = to, q

— I =p, r— I = q, &c.

togA— m=0, paB+TOA=0, qaC + pB=0, rdD + ^C=0, &c.

Hence, to = 1, p = 2, q = 3, &c. ;

and A = -,B=— -—0=^-^,0 = — -<—;,
&c.

a 2ar Sa* 4a {

Consequently,

*•:> , TOZZ TO2Z
2

TO2Z
3

7TOZ
4

log. (« + ,)
=

log. a + -- 2^ + 3^-3^+ &c.

Putting — z for -f z,
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,
•

x , mz mz 1 mz' ] mz i

£

log. (a— z)
==

log. a -—
,

—
5-3 j-j

— &c.

Therefore, log.
-- = 2m i — + ~ + -

r
—

(
+ &c.°

a— z la 3(1* 5a'
J

When a = 1,

iog.;_±Hm
j

2+ ! + ! + f + &c.

To find a number in terms of its hyperbolic log.

In this case, if x = log, y,

? =
</•

dx

Put y = 1 + Axn + Bxp + O1
-{- D,xr + &c. ; where y = 1,

when a? = 0, as it ought to be.

Differentiate and divide by dx ; and

J? (= y)
= nAxn ~ l + pBx*-

1 + qCx*~
l + rDaH + &c.

Comparing these values of y, and equating the coefficients and

exponents respectively, we have

Art. 17. From the formulae contained in the last article,

the logarithms of small numbers? are readily computed ; and

those of large ones are easily deduced from the smaller. A
few examples are subjoined.

Required the logarithm of 2.

Here * = ~j =
J.

z = § = .3333333333

^W|s =.0370370370

2s = j^=.0041 152263

z7 = i zs = .0004572474

z9 = .0000508053
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Hence, the common log. of 2 = .3010299956.

From this log. we may find the logarithm of any power of 2

by multiplication alone.

Art. 18. The common logarithm of any prime number

may be readily computed when that of the next inferior

integral number is known.

Let p = the number whose log. is required ; q = the pre-

ceding whole number ; R = 2m = .8685889638 ;
and putting

p _l + z

n j v— <1
*

we find, z = —:

— = —,— .

p + q p + q

As an example, let the log. of 9 be required ; that of 8, the

third power of 2, being known.

In this case, p = 9, q = 8, and z = fo Hence, the

log. of 1
=
y7+ Jpp

+ ,_!_ + >.

Jl^
= .0511525224 ;

in which A is the preceding term ; B, C the preceding terms

without the divisors, 3, 5.

To the log. of f add the log. of 8, or three times the log. of

2 ; the sum .9542425093 = log. of 9 ;

and its half, or .4771212546 ==
log. of 3.

From these logarithms, the logarithms of all the powers of

3, and of all the products of 2 and 3, and of all the products
of their powers, may be obtained by multiplication and

addition.

As a second example, let the log. of 49 or T2 be required,
the log. of 48 being known from those of 2 and 3. Here,

1 + z

p = 49 ; q = 48 ; , = || ; and z = ^. Hence,

R
97

'

*'(97V
a

4 c

log. of i%\

= — + J.T^r = .0089548426 ;
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to this add the log. of 48 ; and the sum = 1.6901960797 is

the log. of 49, and its half = .8450980398 is the log. of 7.

Art. 19. Although the methods already explained are

sufficient to enable the student to compute the logarithm of

any given number, yet there are other expedients for abridg-

ing the labour of such computations; one of which is the

following :

Let «, b, c, be three equi- different numbers, whose common
difference is 1 ; so that a — b— 1, and c — b + 1 ; then ac =*

b2— 1, and ac + 1 = 62
; consequently,

ac+l _ b*

ac
~~

ac'

If now we put the first member of this equation in place of?/

1 +
1—
1 + z

or
^

in the general equation, (Art. 16,) we shall have

1
z =

2ac + V

a quantity which will converge more rapidly, the greater a

and c are. Finding, then, the log. of

ac+ l

we have the log. of

ac

ll
ac

If, now, the logarithms of any two of these numbers a, b, c,

are known, the log. of the third is immediately determined.

For, put

A=log. of a ; B=log. of b ; C==log. of c ; and S=log. of ;

ac

then, since

ac+l _b* ^

ac ac
1
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it follows that S = 2B— A— C ;

whence either A, B, or C being required, is immediately de-

termined by means of the others.

As the series for computing the log. of

ac+l

converges more rapidly, when a, &c. are large numbers, than

when they are small ones, the labour is frequently abridged

by computing the log. of a power or multiple of the number

whose log. is required.

Let the log. of 1 1 be required, those above computed being
considered as known.

Here we may take a — 98, b — 99, and c = 100 ; whence

1 1
Z
~2ac+l~19601 ;

and S = log. of^±^ = j^. =.0000443135,° ac 19601

the other terms being rejected, because they do not affect the

result short of the fourteenth decimal. Now, the log. of 98

is known from those of 49 and 2, and the log. of 100 = 2, the

log. of (10)
2
. Consequently, in the equation

S = 2B— A— C;

the terms are all known except B. Therefore,

B = i (A + C + S).

A _ c .3010299956 .

1 1.6901960797 .
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Art. 20. As the radix of the common system is 10, the

log. of 10 = 1, the log. of 100 = 2, the log. of 1000 = 3, &c. ;

hence it follows that the log.of any number less than 10 con-

sists wholly of decimals ; the log. of a number which is more

than 10, but less than 100, is more than 1, but less than 2
;

the log. of a number which is more than 100, but less than

1000, is more than 2, but less than 3, &c. ; that is, if the

number is between 1 and 10, the integral part of the log. is

; if the number is between 10 and 100, the integral part of

the log. is 1 ; if the number is 100 or more, but less than 1000,

the integral part of the log. is 2. This integral part is usually

termed the index of the logarithm.

As a number, when multiplied or divided by any power
of 10, is still indicated by the same significant figures, the

position of the decimal point only being changed by the pro-

cess ; so the logarithm of a number being increased or .dimi-

nished by adding or subtracting the log. of any power of 10,

suffers no change except in the index or integral part.

Hence we readily perceive that the index of the log. will be

0, 1. 2, or 3, according as the first left-hand significant figure

of the corresponding natural number denotes units, tens,

hundreds, or thousands.

The log. of 1 being 0, the log. of a proper fraction must be

negative ; yet, as a decimal number is equivalent to an inte-

gral one divided by some power of 10, the log. of a decimal

number differs in nothing but the index from the log. of a

whole number which is indicated by the same significant

figures. The relation between the logarithmic index and the

power of 10 denoted by the left-hand digit of the correspond-

ing natural number, may be illustrated by arranging the

integral logarithms and their corresponding natural numbers

in adjacent lines, as follows :

3 2 10—1 —2 —3 —4 Log.
ioooioo io i TV=.iTk=.oi ToU-.oooi T4oo=-oooirj§!

Here it is evident that if a natural number falls between 1
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and 10, its log. will fall between 0. and 1., or it will consist

wholly of decimals. If the number is between .1 and L, the

log. will be between — 1 and ; that is, the index of the log

will be — 1., while the decimal part of it will be positive. In

like manner, when the natural number lies between .01 and

.1, the index of the log. must be —2, and the decimal part

of it a positive quantity. Hence we observe that when the

natural number consists wholly of decimals, the logarithmic

index will be — 1.,
—

2.,
—

3., &c, according as the left-hand

significant figure of the natural number denotes tenths, hun-

dredths, thousandths, &c.

In printing tables of logarithms, it is usual to omit the

index, leaving it to be supplied in practice upon the prin-

ciples above explained.
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PLANE TEIGONOMETRY.

The object of Plane Trigonometry is, when of the sides

and angles of a plane triangle we have enough given to limit

it, to determine the parts which are not given.

As every oblique angled triangle may be divided into two

right angled ones, it is found most expedient to commence
the subject by examining the relations and properties of tri-

angles of the latter kind. The terms of the science are

therefore adapted chiefly to right angled triangles.

Definitions.

Article 21. Definition 1. An
arc of a circle is any part of the

circumference, usually taken less

than the whole. As AB, or BHD.

2. The chord of an arc is a

right line drawn from one end of

the arc tQ the other. Thus, BE
is the chord of the arc BAE, or

BDE.

3. The sine of an arc is a

straight line drawn from one ex-

p tremity of tKe arc, at right angles

to the diameter, which passes through the other extremity.

Thus, AD being a diameter to the circle, the line BF, at right

angles to it, is the sine, or right sine, of the arc AB or DHB.

4. The tangent of an arc is the right line which touches

(31)



32 PLANE TRIGONOMETRY.

the circle at one extremity of the arc, and extends till it

meets another right line, which is drawn from the centre

through the other extremity. Thus AG, which touches the

circle at A, is the tangent of AB.

5. The secant of an arc is the right line intercepted be-

tween the centre of the circle and the extremity of the

tangent. Thus CG is the secant of the arc AB.

6. The versed sine of an arc is the part of the diameter

intercepted between one end of the arc, and the sine which

passes through the other end. Thus AF is the versed sine

of AB, and DF is the versed sine of DHB.

7. The part by which an arc differs, in excess or defect,

from a quadrant, or fourth part of the circumference, is called

its complement. Thus, the arc ABH being a quadrant, HB
is the complement of AB or of DHB.

8. The cosine, cotangent or cosecant of an arc, is the sine,

tangent or secant of the complement of that arc. Thus BI,

HK and CK, the sine, tangent and secant of HB, are termed

the cosine, cotangent and cosecant of AB.

9. What an arc lacks of a semicircle, is called its supple-

ment. Thus BUD is the supplement of AB.

10. The circumference of every circle is supposed to be

divided into 360 equal parts, called degrees ;
each degree

into 60 equal parts, called minutes', each minute into 60

equal parts, called seconds, &c. Degrees, minutes and

seconds are designated thus, °, ', ".

11. As angles at the centre of a circle have to each other

the same ratio as the arcs on which they stand (33.X3) ; the

latter are usually termed the measures of the former. Hence
an angle at the centre of a circle is said to contain as many
degrees, minutes and seconds, as the arc which subtends it.

The sine, tangent,* &c, of an arc, is also called the sine, tan-

gent, &c. of the angle which is measured by the arc. Thus

BF, the sine of AB, is called the sine of the angle ACB.
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General Properties and Relations of Arcs, Sines, Tan-

gents, $$c.

Art. 22. If the arcs AH and DH are quadrants, and

therefore equal, it follows (33.6) that the angles ACH and

DCH are equal, and therefore are right angles. Hence the

angle at the centre of a circle, subtended by a quadrant, is

always a right angle.

Art. 23. The lines AG and HK, 'which touch the circle

at A and H, are respectively at right angles to CA and CH
(18.3); hence CAG and KHC are right angled triangles. Now
the lines AG and CH, being at right angles to AC, are pa-
rallel to each other (28.1) ; consequently, the alternate angles
IICK and CGA are equal ; wherefore the triangles CHK and

GAC are similar. The triangle CFB is also evidently similar

to CAG; and CIB to CHK; therefore those four triangles
are similar to each other. Also, the figure CFBI being a

parallelogram, CI = FB, and CF = BI. From these trian-

gles we have of course the following analogies :

1. As CF : FB : : CA : AG, or as cosine : sine : : radius : tang.

2. As CF : CB : : CA : CG, or as cosine : rad. : : radius : sec't.

3. As CI : CB : : CH : CK, or as sine : radius : : radius : cosec.

4. As AG : CA : : CH : HK, or as tang. : radius : : radius : cotan.

5. As CG : AG : : CB : BF, or as secant : tang. : : radius : sine.

In the algebraic formula? used to express the relations of

sines, tangents, &c, it is most convenient to assume the ra-

dius = 1. Making, therefore, this assumption, we may con-

vert the foregoing analogies into the following equations.

,
sine sine

1. —:
— = tangent ; sine = cosine.tangent ; cosine = .

cosme, - *=*? &
tan

2. — = secant ; cosine.secant = 1 ; cos=—- = —-
cosine • sec't Vl + tan2

5
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3. -— = cosecant ; sine.cosecant == 1.
sine

1 _ 1 cosine
4. — = cotan ; tan.cotan = 1 ; cotan = -— = —

: .

tan „* tan sine

Hence, taking P and Q any arcs, tan P. cotan P = tan Q.

cotan Q; consequently (16.6),

tan P : tan Q : : cotan Q : cotan P.

5. sine == tangent tangent

secant V 1 + tan2

Art. 24. It is sometimes necessary to attend to the alge-

braic signs of these quantities, particularly when they are

reduced to general formulae.

An arc estimated in one di-

rection is considered as posi-

tive, and in the opposite direc-

tion as negative. The same

may be said of the sines, tan-

gents, &c. Thus the arc AB,
its sine FB, cosine CF, tan-

gent AG, and secant CG, are

considered as positive ; but,

when estimated in the oppo-
site direction, they are consi-

dered as negative. Now, we

readily perceive that when
the arc is less than a quadrant, as AB is, the sine, tan-

gent, &c, are all positive. But if we take the arc more

than a quadrant, but less than a semicircle, as AL, the sine

LM is still positive, but the cosine CM is negative, being
measured from C in a direction opposite to CF. The tangent
AP and secant CP are also negative ; the former being drawn
in a direction opposite to AG, and the latter not produced
from C through L, the extremity of the arc, but in the oppo-
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site direction. If we take the arc more than a semicircle,

but less than three quadrants, as AHDN ; the sine MN be-

comes negative, the cosine CM also negative, the tangent AG
positive ; but the secant CG, not being produced through N,
but in the opposite direction, is negative. If we take the arc

more than three quadrants, but less than four, as AHDE ;

the sine EF is still negative, but the cosine CF and the

secant CP are positive ; the secant being produced from the

centre, through the extremity of the arc, till it meets the

tangent ; but the tangent AP is negative.

These signs, when prefixed to the several quantities in the

preceding equations, are found to be conformable to the

algebraic rules for the adaptation of signs. In the first

quadrant,

+ sine 11 1
~ .—= + tan;

— = + sec;-
—— = + cosec;

——= -f cot.
+ cosin + cos -f sine +tan

In the second quadrant,

+ sine 11 1— ==—tan; =—sec;
-—

:
— = -f cosec;

—-—=— cot.—cosin —cos +sine —tan

In the third quadrant,

— sine 11 1—= + tan; =—sec;
—

:
— ==—cosec;

—-—=+cot.—cosin —cos —sine -ftan

In the fourth quadrant,

— sine 11 1—tan;— =+sec; :
—=—cosec;

—— =— cot.
+ cosin -fcos —sine — tan

Art. 25. It is easily perceived that the sine, tangent, &c,
of a given arc are limited, being dependent upon the length of

the arc ; but the sine, tangent, &c, of an angle, being the

sine, tangent, &c, of the measuring arc, whatever may be

the radius with which that arc is described, evidently admit

various values. Thus EC, HI, MN, which are the sines of
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BC, FI, KN, respectively, are also the sines of the angle at

A. The lines BL, FO, KP, which are the tangents of the

same arcs, are likewise the tangents of the angle at A.

Art. 26. It appears from cor. to 15.4, that the side of a

regular hexagon, inscribed in a circle, is equal to the radius

of the circle. But the side of a regular hexagon, inscribed

in a circle, subtends an arc of 60°; hence the chord of 60° is

equal to the radius of the circle. Again, since a quadrant
subtends a right angle at the centre of the circle (Art. 22),

it is evident that the sine of a quadrant, or 90°, is the radius

of the circle (see Fig. p. 34) ; thus HC the sine of AH, or

ACH is the radius of the circle. Further, if we suppose CG
to bisect the right angle ACH, we shall have CGA (which =
HCG, by 29.1)

= ACG ; whence AG = CA ; that is, the tan-

gent of 45°, or half a right angle,
= the radius. Thus it

appears that the chord of 60°, the sine of 90°, and the tangent

of 45°, are respectively equal to the radius of the circle.

Trigonometrical Propositions.

Art. 27. The sines of two angles adapted to any radius

have to each other the same ratio as the sines of the same

angles adapted to any other radius.
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Let BAC and BAD be

two angles, whose sines

adapted to the radius

AC or AB, are EC and

FD; while the sines of

the same angles adapted
to the radius AG or AH,
are KH and LI.

Since the angles at E,

F, K and L, are right

ones, it is evident that

the triangles AEC and AK.H are similar ; as are also AFD
and ALL Consequently,

As AC : CE : : AH : HK ;

and alternately,

AC : AH : : CE : HK.

In like manner,

As AD : AI : : DF : IL ;

wherefore, CE : HK : : DF : IL;

and again alternately,

CE : DF : : HK : IL.

Q. E. D.

Cor. If we substitute the word tangent or secant in place

of sine, the proposition will still be true ; and the demonstra-

tion will be made out in the same manner by drawing tan-

gents to the circles at B and G, and using those tangents, or

their secants, instead of the sines.

Art. 28. In any right angled plane triangle, as the hy-

pothenuse is to the perpendicular, so is radius to the sine of

the angle at the base ; as the hypothenuse is to the base, so

is radius to the cosine of the angle at the base
; and as the

base is to the perpendicular, so is radius to the tangent of

the angle at the base.
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Let ABC be a

triangle, right an-

gled at B ; from A,

with the radius

AD, describe the

arc DE, measur-

ing the angle A ;

through E and D,

draw the sine EH
and tangent DF.

Then the triangles

ABC, ADF and AHE, being similar,

As AC : BC : : AE : HE ;

As AC : AB :: AE : AH;

AB : BC :: AD : DF;

As AC : BC : : radius

As AC : AB : : radius

As AB : BC : : radius

and

that is,

and

the sine of A ;

the cosine of A ;

the tangent of A.

Q. E. D.

Art. 29. In any right lined triangle, the sides have to each

other the same ratio as the sines of the opposite angles.

Let ABC be a trian-

gle ; make AE = BC
;

from the centres B and

A, with the radii BC
and AE, describe the

arcs CG and EH ; from

C and E, let fall on AB
c

(produced if necessary)
the perpendiculars CD
and EF ; these perpen-
diculars are the sines

of CG and EH, or of

the angles B and A to
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the radius BC or AE. Now, from the similar triangles

ACD,AEF;

As AC : CD :: AE : EF (4.6);

and alternately,

AC : AE : : CD : EF, : : sine of B : sine of A ;

these sines being suited to anv radius whatever (Art. 27).

Q. E. D.

Art. 30. In any right lined triangle, the sum of any two

sides is, to their difference, as the tangent of half the sum of

the angles, opposite to those sides, to the tangent of half their

difference.

Let ABC be the tri-

angle; AC, AB, the

sides. From the centre

A, with the distance

AC, describe the circle

DCEF; meeting AB,

produced in D and E ;

and CB, produced in

F ; join AF, DC ;
and

through E draw EG
parallel to BC, meeting
DC produced in G.

Then it is evident that DB is the sum, and BE the difference,

of AC and AB. The outward angle CAD of the triangle

ABC, is equal to the two inward and opposite angles, ABC
and ACB (32.1). But AEC, at the circumference, is equal
to half the angle CAD at the centre (20.3) ; that is, AEC =
half the sum of ABC and ACB. Again, AC = AF ; there-

fore, AFB = ACB (5.1). But,

ABC = AFB + BAF (32.1)
= ACB + BAF ;
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consequently, BAF = the difference between ABC and ACB ;

and therefore ECF = half that difference (20.3). But EG
being parallel to BC, the angle CEG = ECF. Furthermore,

the angle DCE in a semicircle being a right one (31.3), ECG
is also a right angle. Now, because BC is parallel to EG ;

DB : BE : : DC : CG (2.6).

But CD is the tangent of CED, and CG the tangent of CEG,
suited to the radius EC ;

and these tangents have to each

other the same ratio as the tangents of the same angles

adapted to any other radius (Art. 27). Hence,

AC + AB : AC — AB : : tang of } (ABC + ACB) : tang of

J (ABC— ACB).

Q. E. D.

Art. 31. In any right lined triangle, having two unequal
sides ;

as the less of those sides is to the greater, so is radius

to the tangent of an angle ; and as radius is to the tangent

of the excess of that angle above half a right angle, so is the

tangent of half the sum of the angles opposite to those sides,

to the tangent of half their difference.

B Let ABC be the trian-

gle ;
AB the less, and AC

the greater side. Draw
AD at right angles to AC,
and equal to AB ; cut off

AE, also = AB ; and join

DE and DC. Then, DAC
being a right angle,

DA : AC : : rad : tangent
of ADC (Art. 28).

Now, because AE = AD, the angle ADE = AED ; hence

each of those angles is half a right angle. Since the triangles
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ADE and ADC have the angle at A common, the angles

ADC + ACD = ADE + AED = 2ADE.

Again, since

ADC = ADE + EDC = AED + EDC ;

and AED = ACD + EDC (32.1) :

it follows that ADC— ACD = 2EDC ;

that is, ADE is half the sum, and EDC half the difference,

of ADC and ACD. Hence (Art. 30),

As tan of ADE : tan of EDC :: AC + AD : AC— AD :: tan

{ (ABC + ACB) : tan J (ABC— ACB).

But the tangent of ADE = radius (Art. 26); hence the above

analogies are the same as those announced at the beginning
of this article.

A

Q. E. D.

Art. 32. In any plane triangle, as the base is to the sum
of the sides, so is the difference of the sides to twice the dis-

tance between the middle of the base and the perpendicular

falling upon it from the vertex of the triangle.

Let ABC be a trian-

gle, whose base is AB.
From the vertex C, with

the greater side AC, de-

scribe the circleAEGF,
cutting BC produced in

E and F, and AB pro-

duced in G; join AE,
FG; bisect AB in H,
and draw CD at right

angles to AB. Then,
since CD, which passes

through the centre of the circle, cuts AG at right angles,

6 D*
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that is, AB : AC + BC

AD = DG (3.3) ;

or AG = 2AD ;

and AB = 2AH;

therefore,

BG fe 2HD.

Now, the angle BAE —
BFG ; and AEB = BGP
(21.3); consequently, the

triangles ABE, FBG, are

similar ; wherefore,

AB : BE :: BF : BG;

AC — BC : 2HD.

Q. E. D.

Art. 33. If the half difference of two unequal magnitudes
be added to the half sum, the result is the greater magnitude ;

but if the half difference be subtracted from the half sum,

the result is the less magnitude.

E B
1 Let AB and BC de-
c note any two unequal

magnitudes, whose sum is AC and half the sum AE or EC ;

make AD = BC ; then DE = EB, the half difference. Now,
AB = AE + EB ; and BC = EC— EB. Q. E. D.

Art. 34. When the sides of a triangle are given, we have

the three following proportions for finding either of the

angles.

Find half the sum of the three sides, and from that half

sum subtract the sides severally. Then,

1. As the rectangle of the half sum, and the excess thereof

above the side opposite the proposed angle, is to the rectan-

gle of the other two remainders ; so is the square of radius

to the square of the tangent of half the angle.

2. As the rectangle of the sides containing the required

angle is to the rectangle of the excesses of the half sum
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above those sides respectively ;
so is the square of radius to

the square of the sine of half the angle.

3. As the rectangle of the sides containing the required

angle is to the rectangle of the half sum, and the excess

thereof above the side opposite to the proposed angle ; so is

the square of radius to the square of the cosine of half the

angle.

Let ABC be the triangle ; produce AB, AC, to II and L.

Bisect the angles BAC, ABC and HBC, by the lines AG, BG
and BK, respectively; and let AG, BG, meet in G. Now,
since the angle CBH is greater than BAC (16.1), it is obvious

that HBK is greater than BAG; and, therefore, (13.1,) BAG
-fABK is less than two right angles; consequently (cor. 29.1),

BK and AG produced will meet. Let them meet in K; and
A draw KH, KM, EL,

and GD, GF, GE, re-

spectively, perpendicu-
lar to AB, BC and AC.

Then it is obvious (4.4)

that DG, FG and EG
are equal ;

as well as

KH, KM and KL.

Now, in the triangles

ADG, AEG, the side

AG being common, and

the perpendiculars DG,
EG, equal, we have

(47.1) AD = AE. For a like reason, BD = BF, CE = CF,
BH = BM, CL = CM, and AH = AL. As BH = BM, and

CM = CL, it follows that

AH + AL = BC + AB + AC.

Hence AH or AL is equal to half the sum of the sides. But

that half sum = AD +BD +CF=AD+BC=BD+ AC.

Hence, AH— BC=AD;
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AH— AC = BD;

AH— AB = BH.

Now, the angles ABC
and CBH, being together

equal to two right angles

(13.1), DBG + HBK =
one right angle = DBG +

L BGD. Consequently, the

triangles DBG, HBK, are

equiangular. Also, the

triangles ADG and AHK
are equiangular.

Hence (4.6)

BD : DG :: HK : HB;

wherefore (16.6) BD.HB = HK.DG.

Also, AD : DG :: AH : HK;

consequently (23.6),

AD2
: DG2

: : AH.AD : HK.DG, or BD.HB.

But (Art. 28 and 22.6),

AD2
: DG2

: : rad2
: tan2 DAG or JBAC.

Therefore,

AH.AD : BD.HB : : rad2
: tan2 JBAC.

This is the first proportion.

Again, it has been proved that CF = CE, and GF = GE,
CG being common; hence (8.1) the angle GCF = GCE;
wherefore,

GCA+GAC(=CGK)=JBCA+pAC=JHBC(32.1)=HBK.

Consequently (13.1), AGC — ABK; these angles being the

supplements of CGK, HBK. Also the angle GAC = BAK.
Therefore, the triangles AGC and ABK are equiangular;
whence (4.6),
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AB : AK :: AG : AC .-. AK.AG = AB.AC.

Also (4.6), AG : GD : : AK : HK;
wherefore (23.6),

AG2
: GD2

: : AK.AG : HK.DG : : AB.AC : BD.IIB.

But (Art. 28 and 22.6)

AG2
: GD2

: : rad2
: sin

2 DAG or sin2 ^BAC.

Hence, AB.AC : BD.HB : rad2
: sin2 JBAC ;

which is proportion 2d.

Further :

AG : AD : : AK : AH .-. (23.6) AG2
: AD2

: : AK.AG :

AH.AD :: AB.AC : AH.AD.

But (Art. 28 and 22.6),

AG2
: AD2

: : rad2
: cos2 DAG or cos2 * BAC.

Consequently,

AB.AC : AH.AD : : rad2
: cos2 JBAC ;

which is the third proportion.
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SECTION II.

The properties of plane triangles, which are explained in

the preceding section, are sufficient, with the aid of the usual

auxiliary tables, to enable the student to solve all the com-

mon cases in Plane Trigonometry. But for the solution of

more complex problems, and particularly for the purpose of

understanding the manner in which the trigonometrical

tables are computed, it is necessary to investigate other

theorems. This is most readily effected by the analytical

method. In what follows, the radius to which the sines,

tangents, &c, are adjusted, is always taken = 1. But it

may be observed that whenever it is required to apply the

results, here obtained, to the case where the radius is denoted

by any other number, nothing more is necessary than to

change all the trigonometrical lines in the same ratio in

which the radius is changed.

Article 35. Let

AB, AC, AD, be

three equidifferent

arcs, whose common
difference is BC or

CD. From the cen-

tre O, draw OA,
OC

;
from B, C, D,

draw BE, CF, DG,
at right angles to

OA ; join BD, meet-

ingOC inn; through
B, n, draw BH, nm, parallel to AO ; and np parallel to CF.

Then, since the arc BC = CD, if we suppose BO and DO
joined, those arcs will subtend equal angles at O (27.3).
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Hence (4.1) Bn = Dn ; and BnO = DnO; consequently, DnO
is a right angle. Hence, BE = sin AB ; CF — sin AC ; DG
= sin AD ; Dn = sin CD or BC ; OE = cos AB ; OF = cos

AC ; OG == cos AD ; On = cos CD or BC. Since np is parallel

to CF, and nm to BH, it is obvious that the triangle Onp is

similar to OCF; and Dnm to DBH; and as DB = '2Dn, it

follows that BH = 2nm ; and DH = 2Dm. Since DnO =
mnp, both being right angles, Dnm = Onp ;

and the angles at

m and p are right ones ; therefore Dnm, Onp, are similar tri-

angles. Of course, the three Dnm, Onp, OCF, are similar.

Hence, we have the following proportions :

As OC : CF : : On : np.

As OC : OF : : On : Op.

As OC : OF : : Dn : Dm.

As OC : CF : : Dn : nm.

Taking now OC = 1, and substituting for CF, OF, &c,
sin AC, cos AC, &c, these proportions furnish the following

equations :

np = sin AC. cos CD. (A)

Op ps cos AC. cos CD. (B)

Dm a cos AC. sin CD. (C)

nm == sin AC. sin CD. (D)

From equations A and C,

sin AD(=np+Dm)=sin AC. cos CD + cos AC. sin CD. (1)

and

sin AB(=np— Dm)=sin AC. cos CD— cos AC. sin CD. (2)

From equations B and D,

cos AD(=Op— nm)= cos AC. cos CD— sin AC. sin CD. (3)

and

cos AB(=Op+w»i)=cos AC. cos CD+ sin AC. sin CD. (4)
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By adding equations 1, 2*;

sin AD + sin AB = 2 sin AC. cos CD. (5)

By subtracting,

sin AD— sin AB * 2 cos AC. sin CD. (6)

Bj adding equations 3, 4
;

cos AB + cos AD = 2 cos AC. cos CD. (7)

By subtracting,

cos AB— cos AD = 2 sin AC. sin CD. (8)

Art. 36. From

these equations, a

number of others

may be deduced.

Suppose AC =
CD ;

and put AC=
a ; then AD = 2a,

and AB = 0; and

Fp G U

equation 1 becomes sin 2(1=2 sin a. cos a. (1)

equation 3, cos 2a = cos2 a— sin2 a. (2)

equation 4, cos 0=1 = cos2 a + sin2 a,

which corresponds with 47.1.

From the equations for sin 2a and cos 2a, it is manifest

that sin a = 2 sin \d. cos \a. (3)

E

cos a = cos 3

\t sin 2
\a.and

But cos 3
\a = 1 — sin3

\a. .-. cos a = 1

From the last, 2 sin3 \a=\ — cos a.

(4)

-2sin*ia. (5)

(6)
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In equation 4, substitute for sin3
\a its equal 1 — cos2

\a,

and the equation becomes

cos a = 2 cos3
%a— 1. (7)

From this equation,

2 cos3
\a = 1 + cos a. (8)

By Art. 23.1,

sin \a 2 sin \a. cos \a . J L.
tan *a =^ =—ai^T1 =<e* 3' 8>

(9)
1 -f cos a

"

By Art. 23.4,

cos \a 2cosAa. sinia . _
'

sin a ,_-.
cotan 4a= -^-f- = o^Vi ' =

(eq-3 > 6)l •
(
10)J sin fa 2sm~$a

vn 7
1 — cos a x '

sin3 ia 2sin2
\a

'

„ _1 — cos a .,"-
tan" a

^s?fe
=
S5s?fcr<

,» 6' 8>tt^w <n >

cotanHa=^.^L =
|£2!;i_«=(eq. 6) 8)i±-

c^.
(i2)2 sin

3 ia 2 sin2 £a
v n '

1 — cos a v '

Art. 37. Take now AC = a, CD = b ; whence

AD = a + & ;

and AB = a— b ;

and equations 1 and 2, Art. 35, become

sin (a ± 5)
= sin a. cos b =fc cos a. sin 6. (1)

3 and 4 become,

cos (a =fc i)
= cos a. cos Z> qp sin a. sin 5. (2)

Now,

.
,

.. sin(a ± Z/) sin a. cos b ± cos a. sin b
tan (a =fc &)

= —7--^ = , 1
*- = (div '

cos(a± 0) cos a. cos zp sin a. sin v
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viding numerator and denominator by cos a. cos b, and using

. sin k tan a =b tan b
tan for ) ^

—-. (3)cos '
1 qp tan a. tan o x '

Equations 5, 6, 7, 8, also become

sin (a + b) + sin (a
—

b)
= 2 sin a. cos 6. (4)

sin (a + ft)
— sin (a

—
5)
= 2 cos a. sin &. (5)

cos (a
—

b) + cos (a + b)
= 2 cos a. cos b. (6)

cos (a
—

b)
— cos (a + b)

= 2 sin a. sin 5. (7)

By Art. 23.1,

sin a sin b sin a. cos 5 ± cos a. sin &
tan a ± tan & = ± ,

= t =
cos a cos o cos a. cos 6.

(eq.i)!l^±l) (8)x n 'cos a. cos 6 x '

By Art. 23.4,

cos b cos a sin a. cos b ± cos a. sin #
COt ft ± COt a =— r ± n = : : 7 ' =

sin b sin a sin a. sin b

sin a. sin b w

By changing our notation, other equations may be de-

duced.

Let AD = a ; AB = b ; then AC = $($ + &), and DC or

BC = ^(a
—

b). With this notation, equations 5, 6, 7, 8, Art.

35, become

sin a + sin b = 2 sin J(<z + 5). cos ^(a
—

b). (10)

sin a— sin b = 2 cos J(a + £). sin J(«
—

b). (11)

cos 6 + cos a = 2 cos ^(a + 6). cos J(a
—

&). (12)

cos b— cos a = 2 sin £(a + 5). sin |(a
—

&). (13)
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Also,

U jl h\ - sin
-a(
a + &

) _ 2 sin *(a + 6). cos £(a
— h

) _.
tan 3 (a + 6)

-
cog |^j + ft

j

-
2 cos

"

i

(a + ^ cos |p_ ^
/ in io\ sin a + sin 6

(eq. 10, 12) T. (14)v
_

' cos a -f cos 6

sin |(«
—

ft) _ 2 sin *(a
—

ft),
cos *(a + ft)_

~V '
~~

cos J(fl
—

ft)

—
2 cos i(a

—
b). cos l(a + b)~

/ n mx sin a— sin ft

(eq. 11, 12) ;

r. (15)v T ' cos a + cos b

cos i(<2 + ft)
2 cos Ua + ft),

sin {{a
—

b)
cotan Ua + b) = ——77-

'

,
, x
= «
—

:

—
77
——

tt
—

5
—

77 r\ZK ' sin \{a + b) 2 sin |(a + b). sin £(«
—

b)

sin a— sin ft=
(eq. 11, 13) 7- . (16)v ^ ' cos — cos a N '

_ cos J (a
—

ft)
2 cos |(a

—
ft),

sin *(a + ft)

cotan j(n
—

ft)
=-2HT(fl -.fc)

~
2 s in ^(a

—
ft),

sin J(a + 6)

,^ 4«» sin a + sin ft ;4 __=
(eq. 10, 13)

-—
-t . (17)v n ' cos — cos a x '

tan Ua— ft) . , A , rx
sin a— sin ft

f)
—r r(

=
(eq. 14, 15)- .j.

. , , (18)
tan £(a + ft)

v ^ 'sin a + sin ft
x '

tan|(«— &) , 1K 1m cosft— cosa

From equations 15 and 16,

cot \{a -f ft)
cos a + cos ft

tan J(a
—

b)

—
cos ft— cos a'

(20)

The following is an analytical investigation of the rules,

already given in Art. 34, for finding an angle of a plane tri-

angle., when the sides are known.

X
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Let ABC be the triangle ; and put the angle ABC = B ;

the side AB = c; AC = b; BC = a; BD = d; the line CD
being at right angles to AB. Then (12, 13.2),

c2 + a 2 = &2 ±2a7;

the sign + being used when B is acute, as in Fig. 1 ;
and

the sign
— when B is obtuse, as in Pig. 2.

Fig. 2.

Hence, db<* =
c3 + a'— fr

2c

But (Art. 28)
— = cos B ;

a

the cos B being positive or negative, according as the angle
is acute or obtuse (Art. 24). Consequently,

cos B =
c9 + a2— b»

2ac

and

1 + cos B = 1 +

4 (cor. to 5.2)

cs-f a3_&* __
ca+2ac+as—ft* _(c+a)

3-&3

2ac 2ac 2ac

(c + a + b) (c + a— b)

2ac
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Now, Art. 36, Form. 8,

1 -f cos B = 2 cos3
JB ;

wherefore,

(c+ a+ b) (c+a—b) |(c>6>fe). {(c+a— b)
cos 3 AB =

4ac ac

c + a + b\ s.(s
—

b)=
(puUing

, = —2—)— ;

—
; (A)

which is Rule 3, Art. 34.

c 3 + a* —b*
,

Again, from the equation cos B = ~
»
we nave

i ;
c»+ as—63 2ac+6 2—c

2—a
s

1 — cos B = 1 -
2ac 2ac

b*—(c
s—2ac+ a z

) _ b»—(c—a)
a

Qac 2ac

But, Art. 36, Form. 6,

1 — cos B = 2 sin
a

JB ;

consequently,

63—(c—a)* l(b+ c—a). {(b+ a—c)
sin3 ^B =

iac ac

(B)ac

which is Rule 2, Art. 34.

Since tan = -^ (Art. 23) ; tan 3 B = —-^ = (by eq.
cosine v ' cos8 B v J '

, -r^ (s
— a) .(s— c)A and B) J /

*
. x

- '
;'

s . (s
—

b)

which is Rule 1, Art. 34.

E*
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Art. 38. Let ABC
be a semicircle ; ADC
its diameter; D the

centre ;
AB the chord

of an arc; AE, BG,
lines touching the cir-

Iji ~^c cle in A and B, and

meeting in G. Join DG, DB, CB ; and produce DB, CB, to

meet AE in E and F.

Now, the angle ABC in a semicircle being a right one

(31.3), the adjacent angle ABF is also a right one (13.1).

Again, since AG and BG touch the circle, each of the angles

GAB, GBA == the angle ACB in the alternate segment (32.3) ;

hence GAB = GBA, and GB == GA (6.1). Furthermore,

since AFB + FAB = ABC (32.1)
= ABF (31.3 and 13.1) =?

GBF + GBA ; it follows that GFB = GBF ; whence GB =
GF ; and AG + GB = AF. But the triangles ADG, BDG,
being evidently equal, the line AG is the tangent of half

the arc intercepted between A and B ; hence AF =s twice

the tangent of that half arc. The chord AB is also twice

the sine of the same half arc. Now, the triangles ACB,
FAB, being right angled at B, and having the angle ACB =
FAB, are similar ; whence AC : CB : : AF : AB : : AG :

JAB : : tan of ^ arc : sine of the same half arc.

Let, now, the point B move along the arc towards A ; the

lines which pass through B moving with it : then, as the

angle at C diminishes, the line CB must approximate to AC,
and ultimately become equal to it. Consequently, the ratio

of AF to AB, or of the tangent to the sine of half the arc

between A and B, is ultimately a ratio of equality.

Again. The angle ADG = JADB = ACB (21.3) ; con-

"sequently, DG is parallel to CF (28.1) ; and therefore,

EB : BD : : EF : FG (2.6) ;
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or, doubling the consequents,

EB : AC : : EF : FA ;

whence, by composition (18.5),

EB + AC : AC : : AE : AF.

But AC : CB : : AF : AB (4.6) ;

therefore, ex equali,

AC + BE : CB : : AE : AB (22.5).

But as the point B approaches A, the line BE decreases

and ultimately vanishes. The angle at C ultimately vanish-

ing, 4he line CB becomes finally equal to AC. Hence the

ratio of AC + BE to CB, and consequently of the tangent

AE to the chord AB, becomes ultimately a ratio of equality.

Hence it is manifest that the ultimate ratio of the tangent
of an evanescent arc to its sine, or to its chord, is a ratio of

equality.

B Let AEB be a circular arc,

whose centre is C ;• AD, BD, two

right lines touching the circle in

A and B. Join CD, AB; and let

CD cut the arc in E, and the

chord AB in F. Through E,

draw GH parallel to AB ; and

join AE, BE. Then, from what

is above proved, AD = BD ; the

c
angle ACF = BCF ; and conse-

quently (4.1), AFC = BFC; whence GIT, being parallel to

AB, and therefore at right angles to CE, touches the circle

in E. Also, AD is the tangent and AF the sine of the

arc AE.

Since AFE is a right angle, the angles AEF and ADF are

each less than a right angle (17.1). But AED = AFE +
EAF (32.1) is greater than a right angle. Hence, AD is

greater than AE, and AE than AF (19.1). That is, the tan-
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gent is greater than the chord, and the chord than the sine.

Again, since GD + DH are greater than GH (20.1), it is

obvious that AD + DB must be greater than AG + GH +
HB. But AG + GE being greater than AE (20.1), and EH
+ HB than EB ; AG + GH -f HB must be greater than AE
+ EB. Also AE + EB are greater than AB.

If we were to join CG, CH, and draw the tangents and

chords to the intercepted arcs, we might demonstrate, in the

same manner, that the sum of the tangents thus drawn would

be less than AG + GH + HB, and the sum of the chords

greater than AE + EB. By continued bisections, we thus

find the sum of the tangents continually decreasing, and the

sum of the chords always increasing. But the tangents and

chords are, by this process, brought to approximate still

more and more nearly to the circular arc which lies between

them. Hence we infer that when, by the evanescence of the

arc, the ratio of the tangent to the chord or sine becomes a

ratio of equality, the ratio of the arc itself to the tangent,
chord or sine, is a ratio of equality.

D

E Fp
tial Calculus.

Let AB =
OC being

= 1.

Art. 39. As near-

ly all trigonometri-
cal calculations are

usually performed

by means of auxili-

ary tables, it be-

comes necessary to

explain the nature

and origin of those

tables. This is most

expeditiously effect-

ed by the Differen-

BE =
y; OE = x; BCD = h; the radius

Then, as proved in Art. 35, equation C,

Dm = cos (z + jjk).
sin \h ;

whence, sin (z + h)
= sin % + 2 cos (z + ^).sin \h ;
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consequently,

sin (z + h)
— sin z _ 2 cos (z + *A).sin J A cos(z-f-|A).sin|Zt

A h \h

But (Art. 38) when h becomes evanescent, the ultimate ratio

of
}Ji

to the sin \h is a ratio of equality. Also the ultimate

ratio of cos (z + \K) to cos z is a ratio of equality. Hence,

e/.sinz /dy\

—fa =te-)
= cosz = *;

consequently, dy = xdz.

Again, x2
-f y

z = 1 ; whence, 2;«£c -f 2*/c?!/
= 0; or

—ydy — yxdz
dx = —2-2- =—- =—ydz.x x J

Now, let t = tan z =— ; then
x

y xdy— ydx
'

xldz + y*d%

x x4„^_£~ mS=-«f^ (since f+ fim 1)

Z =
(] + *2) <fe, because -2 = 1 + t

2
(Art. 23, 2.)

x-

Art. 40. To find the length of an arc z in terms of its tan-

gent, t. No formula has been discovered for expressing an

arc in finite terms of its tangent ; recourse must therefore be

had to infinite series.

Let, then, z = Atn + B*p + Cf + Df, &c, in which the

exponents and coefficients are unknowrn. As the tangent of

an arc becomes nothing at the same time the arc itself

vanishes, the series here assumed must express the arc z, if it

can be expressed at all in terms of t.

From this equation,

^=nAt*-1 + pBt^"
1 + qCt*-

1 + rBv-1 + &c.

8
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But (Art. 39),

dz

Comparing these values of 77;
n— 1=0, p

— 1 = 2, q— 1

= 4, r— 1 = 6, &c. ; and nA. = 1 ; pB = — 1 ; qC = 1 ; ?*D

=— 1, &c. ; from which n = 1; p = 3; q = 5, &c. ; A = 1 ;

B = — ^ ; C = I; D = — \, &c. ; which values, substituted

in the primitive equation, give

z = t— jf + j**
— *f + jf + &c.

The length of the arc being thus found in terms of the

tangent, the next object is to find a value of t which will

converge rapidly in this series, and at the same time corre-

spond to a known part of the circumference of a circle.

One of the most convenient methods yet discovered of effect-

ing this object, is the following :

Let a and b denote two circular arcs ; such that tan a=\,
and tan b = J; then (Art. 37, Form. 3),
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readily found. But, from this datum, to find a general for-

mula for the sine and cosine, requires the aid of the Differen-

tial Calculus. And no method has been discovered to denote

the sine or cosine in terms of the arc, without recourse to

infinite series.

Let z = an arc ; y = sin z ; x = cos z ; and assume

x = 1 + Azn + Bzp + Czq + Dzr + &c. ;

in which the first term of the series is taken = 1 ; because,

when z = 0, x = 1. From this equation,

dx

-^
= nAzn~l + pBz»-

1 + qCz*-
1 + rT>zr~ l

-f &c.

But (Art. 39),

dx

Therefore,

y = — nAz"" 1 —
pBzP"

1—
qCz*-

1— rDz'" 1 — &c. ;

and

du

fz= — (
n— 1).»Az"-

2—
(p
—

l).pBzP-
2—

(7
—

l).?Cz<-»

— (r— l).rDz
r~2 — &c.

But (Art. 39),

-|
= x = 1 + Azn + Bzp + Czq + &c.

Comparing the corresponding terms of these series,

n— 2 = 0; p— 2=ti; q
— 2 = p; r—-2 = q,&e.

(to
— l).nA = — 1; (/>

—
l).pB = — A ; &c.

Whence n = 2; p = 4; ? = 6; r = 8; &c.

A- _Lr_J_ p_ 1 n_ X
*A ~

2'
*~

2.3.4'
U

2^Z^6 ; U_
2.3.4.5.6.7.8

&c*

Consequently,
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x = l~1 + 2^4-3X47^6 + &C - (A)

* = Z ~is +
2^475-2.3.416.7

+ &C> (B)

To exemplify these series, let the sine and cosine of 1° be

required. In that case,

*=.017453292520;^=
.000152308710 ; ^=.000000886080;

m .000000003866; *&-== .000000000013.
2.3.4

—^vyw '

2.3.4.5

Substitute these values in series A and B. Whence x =
.999847695156; and y = .017452406453.

z* z3

If, instead of these values of z,-^, s~q>
&c -> we substitute

in the series A and B, \ of the first, \ of the second, J of the

third, &c, we shall obtain the cosine and sine of 30' ; and

from these results we may, by a similar process, find the

cosine and sine of 15'.

Thus, cos of

30'=1—.000038077177+ .000000000242= .999961923095 ;

and sin of

30'=.00872664626O—.000000110760=.008726535500;

Also, cos of

15'=1—.000009519299+ .000000000015= .999990480728 ;

and sin of

15'=.004363323130—.000000013845=.004363309285.

z2

If, instead of the values of z, -~-, &c, first found, we take

e*3 of the first, gg
1^ of the second, &c, and substitute them

in equations A and B, we shall have the cosine and sine

of r.
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Thus, cos of r=l.—.000000042308=.999999957692;
and sin of

1'= .000290888209—.000000000004= .000290888205.

When the sines and cosines of two arcs are known, the

sine and cosine of their sum, or difference, are readily found

from equations 1 and 2, Art. 37. Or the sine and cosine of

any arc, v, being found, the sine and cosine of 2u, 3v, 4v, may
be determined in the following manner :

From Art. 37, Form. 4 and 7, we have, by transposition,

sin (a + b)
= 2 sin a. cos b— sin (a

—
b) (C)

cos (a -f b)
= cos (a

—
b)
— 2 sin a. sin b (D)

Taking, then, b = any arc v ; and a successively = v 3 2v,

3v, &c. ; these equations become

sin 2v = 2 sin v. cos v
;

- V C*->

cos 2v = 1 — 2 sin2 v ;

sin 3u = 2 sin 2v. cos v — sin v
;

cos 3v = cos v — 2 sin 2p. sin i; ;

sin 4u = 2 sin 3d. cos u— sin 2u ;

cos 4u == cos 2v — 2 sin 3v. sin u.

Hence, the sine and cosine of v being known, the sine and

cosine of any multiple of v may be found.

Art. 42. The sine of an arc, being half the chord of twice

the arc, and the chord of 60° = 1, (Art. 26,) the sine of 30°

= I ; consequently, if we take a = 30°, in the equations C
and D of the last article, we shall hnve

sin (30° + b)
= cos b — sin (30°

—
b) ;

cos (30° + b)
= cos (30°— b)

— sin b.

If, then, the sine and cosine of every degree and minute,

as far as 30°, were computed by the preceding methods,

F

t

lA^s
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these equations furnisn a mode of computing the sines and

cosines of the remaining arcs by subtraction only.

To find the sine and cosine of 31°,

cos 29° = cos 30°. cos 1°+ sin 30°. sin 1° = .874619707108

sin 1° = .017452406453

cos 31°= .857167300655

cos 1°= .999847695156

sin 29° = sin 30°. cos 1°— cos 30°. sin 1° = .484809620238

cos. 31° = .515038074918

The sines, computed as above explained, and arranged in

a table, constitute a table of natural sines. Those sines, as

put down in the tables, are seldom extended to more than

seven decimals, and frequently not even so far ; but, in com-

puting such tables, it is necessary to extend the sines of the

primary arcs considerably further than the number of deci-

mals intended to be retained, in order to render the numerous

deductions from them sufficiently correct.

The tangents may be found from the sines and cosines, by
sine

simple division; for tan = —
(Art. 23). The secants are1 cosine v '

also deduced from the cosines ; for secant =
cosine

Art. 43. The tables of sines, tangents, &c, which are

commonly used in trigonometrical calculations, are loga-

rithmic, and are easily deduced from a table of logarithms
and of natural sines. But it may be observed that the sine?

computed to a radius 1, are all decimals except the sine of

90°. Hence, the logarithms of those sines, if the common

logarithms are used, must all have negative indices, excep
the sine 90°, whe.se logarithm is 0. To avoid this inconve

nience the decimal point in each of the sines is removed tec
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places towards the right, which is equivalent to finding the

sines to a radius of 10000000000. The logarithm of this

number is 10; and the sine of 1" computed to this radius is

48481.37, whose log. =4.6855749. From which it appears

that all arcs or angles which can occur in practice, have

their logarithmic sines positive.

The sines computed according to the preceding articles

have the decimal point, in each case, removed ten places to

the right ; the logarithms of the results are then taken from

a table of logarithms, and arranged in a table. This com-

poses a table of logarithmic or artificial sines. Then, since

cos : sine : ; rad : tang (Art. 23) ;

the index of the logarithmic sine being increased by 10, and

the logarithmic cosine subtracted, the remainder will be the

logarithmic tangent. And, since

cos : rad : : rad : secant (Art. 23) ;

if we subtract the logarithmic cosine from 20 (twice the log.

of radius), the remainder will be the secant. Again,

tang : rad :: rad : cotan;

consequently, the logarithmic tangent of an arc, being sub-

tracted from 20, will leave the logarithmic cotangent.

In trigonometrical calculations where logarithms are used,

it is most convenient to take the arithmetical complements
of the logarithms which are to be subtracted, (that is, what

those logarithms want of 10 or 20,) and add them with the

other additive logarithms, rejecting as many tens or twen-

ties from the result as there are complements used. When
the subtractive numbers are logarithmic sines, tangents or

secants, the arithmetical complements can be taken imme-

diately from the table ; for the cosecant is the arithmetical

complement of the sine ; the cotangent of the tangent ; and

the cosine of the secant. All this is manifest from the na-

are of logarithms, and the analogies in Art. 23.
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Art. 44. A few trigonometrical problems will now be

given to exercise the preceding rules.

1. Given, AB 35, AC 30,

BC 25, the three sides of a

triangle ; to find ihe distances

from the several angles to a

point E within the triangle,

such that the angles AEB,
AEC and BEC shall be equal

to each other.

Construction. On AB, one

of the sides, describe the

equilateral triangle ABD ; and

about that triangle describe a

circle; join DC, cutting the

circle in E ; then is E the point required.

Join AE, BE ; then, since the angles of the triangle ABD
are all equal (cor. to 5.1), each of them contains 60°, or ^ of

two.right angles (32.1). But AED=ABD ;
and BED=BAB

(21.3) : therefore AED = 60°, and AEC = 120°. Also BEY
J

= 60°, and BEC = 120°.

Calculation. With the three sides, the angle BAC may Vf

found by Art. 34, Rule 2.

AB 35 AC 8.4559320

AC 30 AC 8.5228787

BC 25

sum 90

J sum 45

J sum— AB 10 log. 1.

i sum— AC 15 " 1.1760913

2)19.1549020

sinpAC 22°12J' 9.5774510
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BAG 44° 25'

BAD 60°

DAC 104° 25

£DAC 52°12J'

ACD + ADC"^4
,

36

Then, by Art. 30,

As

is to

So is tan

to tan

AD + AC
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As sin AEC 120° AC .0624694

is to sin CAE 18° 48' 9.5082141

So is AC 30 1.4771213

to CE 11.164 1.0478048

2. Given, the vertical angle
ACB 70°, the segments into

which the base is divided by
the line CD bisecting the ver-

tical angle, viz. AD 30, and DB
20, to determine the angles
and sides of the triangle, and

the line which bisects the ver-

tical angle.

Construction. Bisect the base AB in E ; through E draw
FEG at right angles to AB ; make the angle EAF = com-

plement of the vertical angle, above AB when that angle is

acute, but below when it is obtuse. From the centre F,
where the line AF meets the perpendicular, describe a circle

passing through A, and cutting FEG in G; join GD, and

produce it to cut the circle in C ; join CA, CB ; and ACB
will be the triangle required.

Since AE = BE, and the angles at E are right ones, the

line AF = BF (4.1) ; consequently, the circle must pass

through B. The angle AFE being equal to BFE, the arc

AG = BG (26.3) ; consequently, ACG = BCG (27.3). Also,

the angle AFE = twice ACG (20.3) = ACB ; therefore, ACB
is the complement of EAF.

Calculation. In the right angled triangle EAF we have,

besides the right angle, the side AE = 25, and the angle
EAF = 20° ; from which we find, by Art. 28, AF = 26.604,
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and EF = 9.099 ; whence EG = 17.505 ; then, in the right

angled triangle GED, we have EG
; and ED = 5 ; from

which we find the angle EDG or CDB = 74° 3' ; then

CAD = CDB— ACD (32.1)
= 39° 3'.

In the triangle ADC we then have AD = 30, and all the

angles, from which, by Art. 29, we find AC = 50.29, and

DC = 32.951. Lastly, from 3.6, we have

AD : DB : \ AC : BC = 33.527.

3. Given, the base AB 70;

the vertical angle ACB 75°;

and the ratio of the sides, viz.,

AC : BC : : 4 : 3, to deter-

mine the rest.

Divide AB in D, so that

AD : DB : : 4:3 (10.6) ; then

the construction will be the

same as in the last example.

The calculation will like-

G wise be similar to the last.

The results are, AF = 36,235 ; EF = 9.378 ; BDC = 79°

27'; CAB = 41° 57'; ABC = 63° 3' ; AC = 64.596; BC =
48.447; DC = 43.927.

4. Given, the base AB 500 ; the difference of the sides 100 ;

and the vertical angle ACB 72°, to determine the rest.

O

Construction. On the base AB
describe the segment of a circle

containing an angle equal 90° + ^
the vertical angle (33.3) ; place in

this circle the right line AD =
the difference of the sides ; pro-
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duce AD ; join DB ; and make the angle DBC = BDC ; then

is ABC the triangle proposed.

Draw CE at right angles to DB ; then, CD being = CB
(because the angle CBD = CDE), the angle DCB is evidently
bisected ; and the angle

ADB = DEC + DCE = 90° + JACB ;

also, AD = AC— BC : hence the construction is manifest.

Calculation. In the triangle ABD, AB, AD, and the an-

gle ADB, are known; whence the angle BAD may be

found ; from which and the given angle ACB, the angle ABC
becomes known. Then AB and all the angles of the triangle

being known, AC and BC are determined. The results are

BAC = 44° 41', ABC = 63° 19', AC = 469.74; and BC
= 369.74.

5. Given, the base AB 465,

the vertical angle ACB 75° ;

and the sum of the sides 760,

to determine the rest.

Construction. On AB de-

scribe a segment of a circle

containing half the vertical

angle ; from A, place the line

AD = the sum of the sides,

in this segment ; join DB ;

and make the angle DBC = BDC. Then will ACB be the

triangle proposed.

Because the angle DBC m BDC ; DC = BC ; and the exte

rior angle ACB = twice ADB ; also AC + BC = AD.

Calculation. With the sides AB, AD, and angle ADB ; the

angles ABD and BAD may be found ; whence ABC becomes

known. Then AC and BC are determined. Results : ABC
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= 46° 45', or 58° 15' ;
AC = 350.64, or 409.36 ; BC = 409.36

or 350.64

6. Given, the base AB 50 ; the line DC, drawn from the

middle of the base to the vertex 40 ; and the ratio of the

sides, AC : BC : : 3 : % to determine the sides

Construction. Divide AB in E, so that AE : EB in the pro-

posed ratio of AC : BC ; produce AB to F, so that BF shall

be a third proportional to AE —- EB and EB ; from the cen-

tre F, through E, describe the arc EC ; from the centre D,
with the given distance DC, describe an arc, cutting the

former in C ; join AC, DC and BC ; then ABC is the triangle

proposed.

From the proportion AE — EB : EB : : EB : BF, we

have (18.5), AE : EB : : EF : BF;

therefore (12.5) AE : EB : : AF : EF ;

consequently (19.5),

AF : EF :: EF : BF;

whence (F. 6), AC : CB : : AE : EB.

Calculation. In the triangle CDF, we have all the sides to

find ^ the angle FDC, which is the
-J
sum of DAC and DCA ;

then, with that J sum and the sides AD, DC, the angle DAC
and side AC may be found.

Result: AC = 55.50: BC = 37.00.
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7. Given* the sides of the

triangle ABC, viz., AB 90, AC
80, BC 70, to determine the dis-

tances AD, CD and BD, to a

point D, which is so situated

that the angles ADB and ADC
are 70° and 40° respectively.

Construction. On AB, and

on the side opposite to C, de-

scribe the segment of a circle

containing an angle of 70° ;

complete the circle; at the

point B make the angle ABE
= 40°; from C, through E,

where BE cuts the circle, draw CE, and produce it till it

cuts the circle again in D, the point required ; join DA, DB,
and the work is done.

The angle ADE == ABE (21.3)
= 406

\
whence the con-

struction is manifest.

Calculation. Join AE ; then the angles ABE, BAE, and

the side AB> are known ; whence AE may be found. The

angle CAB may also be determined from the three sides;

hence CA, AE, and the contained angle, become known ;

from which ACE and AEC, and consequently AED, may be

found. But AED = ABD (21.3) ; therefore the angles of the

triangle ABD become known, as well as those of ADC ; from

which and the given sides, AD, BD and CD may be found.

Result: AD = 82.915; DB = 73.406; DC = 123.178;

and DAB = 50° 2' 6".

8. Given, the base AB 50 ; radius of the circumscribing
circle 30 ; and ratio of the sides, AC : BC : : 3 : 2, to find

the sides.
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N

will touch the lines AB, AN, in E and G (4.4). On the

diameter DF, describe the semicircle DHLF, cutting AB in

H and L ; from either of these points L draw LK, touching
the circle GEK in K, and cutting AN in M ; then ALM is

the triangle proposed.

Join DL, DK, DM ; LF, MF ; and draw FN, FP at right

angles to AN, LK respectively. Now, since DE = DK, the

angles at E and K are right ones, and DL is common to the

triangles DEL and DKL, it follows that the angle DLE =
DLK. But DLF is a right angle (31.3) ; hence, DLE +FLB
=DLF (13.1) ; from these equals, take the equals DLE and

DLK
;
and we have BLF == KLF. Thence, the angles at

B and P being right ones, it is obvious that LB = LP, and

FB = FP. Again, in the triangles FAB and FAN, we have

AF common, and the angles of the one respectively equal to

those of the other ; hence AN == AB, and FN = FB = FP ;

consequently (47.1), MN = MP.

Now, it has been proved that LP = LB ; consequently,

ML = MN + LB;

and, therefore,

AM + AL + ML = AB + AN= 2AB
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Calculation. In the right angled triangles AED, ABF, we
have the angle at A, and the lines ED and AB given; from which

AE, EB and BF are determined. Then the angle DCF being
a right one, the semicircle on DF must pass through C (con-

verse 31.3) ; consequently, CB.BF = LB.BH (cor. 36.3). If,

now, we suppose a line drawn from the centre of the semi-

circle, cutting EB at right angles in I, it is manifest (2.6 and

3.3) that EB and HL are both bisected in I
; whence EL =

HB ;
and EL.LB = CB.BF, a known rectangle. Hence IL2

{= IB-— EL.LB
(5.2))

becomes also known.

Result: AL=50.306; AM=31.139; LM=38.555.

10. Given, the base 50; difference of the other sides 10;

and radius of the inscribed circle 12 ; to determine the sides.

Construction. Make AB=
the base 50, and bisect it in

C; lay down CD = J the

difference of the sides
;
at D

erect a perpendicular DE=
radius of the inscribed circle

A~~ c D B 12; from E, with the dis-

tance ED, describe a circle ; through A and B draw the lines

AH, BH, touching the circle in F and G ;
ABH is the triangle

required.

Join EF, EG; then (47.1) AD = AF ; BD = BG; FH =
GH; consequently,

AH— BH = AD— BD - 2CD.

Calculation. With AD, DE, and BD, DE, find the angles

BAE, ABE, from which BAH and ABH are known ; and

thence the sides AH and BH.

Result: AH == 45.79; BH = 35.79.

11. Given, the perimeter of a triangle 120; radius of the

inscribed circle 10 ;
and vertical angle 70°, to determine the

sides.

10 G



74 PLANE TRIGONOMETRY.

M

l\/?&



SECTION II. 79

complement of DCB. Also, the angles LIG and ILG, being

respectively equal to BDC and DBC, and LG = BC, the side

IL = DB (26.1); hence the semiperimeter of the triangle

ADI = AB.

Calculation. Draw FK parallel to AB, meeting GH pro-

duced in K, and join FG ; then, in the triangle DBC, having

BC and all the angles, BD is found ;
whence ED becomes

known ; from which, and the angles, DF and EF are found ;

then, in the right angled triangle FGIv, FG and GK are

known ; whence FK or EH becomes known ; whence AH
and BH are known.*

Result: AD=45.719 ; AI=27.02; DI=47.261.

12. Given, the sides of the triangle ABC> viz. : AB 4G4,

AC 418, and BC 385 ;
it is required to find a point D within

the triangle, such that AD, BD and CD shall be to each other

in the ratio of 7, 6 and 5 respectively.

Construction. Divide AB in the point E, and AC in G, so

that AE : EB : : 7 : 6 ; and AG : GC : : 7 : 5 ; produce AB
and AC to F and H, so that BF and CH shall be third pro-

portionals to AE— EB and EB, and to AG— GC and GC

respectively ; from the centres F and H, with the distance?

FE and HG, describe arcs cutting each other in D ; join AD

*
Examples 9 and 11 are essentially of the same nature, and might have

Seen solved by the same method ;
the two solutions furnish a little variety.
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BD and CD ;
and the figure is constructed. For, as was

proved in the 6th example,

AD : BD : : AE : EB : : 7 : 6 ;

and AD : CD :: AG : GC : : 7 : 5;

whence, BD : CD : : 6 : 5.

Calculation. Join DF, DH and FH
; then, in the triangle

ABC, we have all the sides to find the angle BAC ; then, in

the triangle AFH, we have the sides AF, AH, and the in-

cluded angle, to find the angle AFH and side FH ; in the

triangle FDH, the three sides are then known to find the

angle DFH ; whence the angle AFD becomes known : then,

in the triangle AFD, we have the sides AF, FD, and the

contained angle, to find the angle FAD and the side AD ; from

which BD and CD are found from the given ratios.

Results: BAD = 25° 59' 8"; CAD = 25° 27' 15"; AD =
283.688 ;

BD = 243.161 ; CD = 202.635.

[The following ingenious construction of this problem, which

admits of a simpler calculation than that already given, has

been kindly furnished the author by Samuel Alsop, Principal
of Friends' Select School, Philadelphia.]

Construction. Make FE =
t

6; and on it describe FEG
similar to CBA, the given

triangle, making

FE:EG:FG::BC:BA:AC.

s
On FG describe the triangle

FGA, making FA = 7, and

AG a fourth proportional to

BC, AB and 5. Upon AE, on

the same or any other scale, lay down AB = 464, and com-

ulete the triangle ABC. Draw BD parallel to EF, cutting

VF in D, which will be the point required. For, join CD;
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draw EH parallel to BC ; arid join FH. Then, since AEH
is similar to FEG, being both similar to BAC ;

AE : EG :: EH : EP ;

therefore (6.6), AEG and HEF are similar ; and

AB : BC : : AE : EH : : AG : FH.

But AB : BC : : AG : 5 ;

therefore, FH == 5. Consequently,

AD : BD : CD : : AF : FE : FH : : 7 : 6 : 5.

Calculation. In the triangle ABC, with the given sides, find

the angle BAC = FGE ; also find AG, GF and GE. From
the three sides of the triangle AGF, find the angle AGF;
whence AGE becomes known. In the triangle AGE, find

AE; then

AE : EF : : AB : BD
;

from which AD and CD are found from the given ratios.

13. In a right-angled isosceles triangle, the hypothenuse is

30 yards longer than one of the sides
; what are the sides ?

Ans. : hypoth. 102.4264 : sides 72.4264.

14. The hypothenuse of a right-angled triangle is 75, and

the sum of the sides is 105; what are the sides?

Ans. : 60 and 45.

15. The sides of a triangle are in the ratio of 4, 6, and 7 ;

and the line bisecting the greatest angle is 20 ; required the

sides. Result : 22.87, 34.31, 40.02.

16. Given the perimeter of a right-angled triangle 120,

and the radius of the inscribed circle 10 ; required the sides

of the triangle? Ans. : 50, 40, and 30.

a*
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17. From a position in a horizontal plane, I observe the

angle of elevation of a tower, which is 100 feet high, to be

60° ; how far must I measure back, to obtain a position from

which the elevation shall be 30°? Ans. 115.47 feet.

18. A person on the top of a tower which is 50 feet in

height, observes the angles of depression of two objects on

the horizontal plane, which are in the same straight line with

the bottom of the tower, to be 30° and 45°. Determine their

distance from each other and from the observer.

Ans. Distance from each other 36.60 feet.

From the observer 70.71, and 100 feet.

19. From the top of a tower, whose height is 108 feet, the

angles of depression of the top and bottom of a vertical

column, standing in the horizontal plane, are found to be 30°

and 60° respectively. Required, the height of the column.

Ans. 72 feet.

20. Suppose the angle of elevation of the top of a steeple

to be 40°, when the observer's eye is level with the bottom,

and that from a window 18 feet directly above the first sta-

tion the angle of elevation is found to be 37° 30'. Required,
the height and distance of the steeple.

Ans. Height, 210.44 feet.

Distance, 250.79 feet.

21. Two columns, 80 and 100 feet in height, standing on

a horizontal plane, are distant from each other 220 feet ; it is

required to find a point in the line joining their bases, from

which the angles of elevation of the two columns shall be

equal. Ans. The point is 122| feet from the higher column.

22. The altitude of a cloud was observed to be 34° 20', and

that of the sun in the same direction 50° ; also the distance

of the shadow of the cloud from the station of the observer

measured 375 yards. Determine the height of the cloud.

Ans. 600 yards.



SECTION II. 79*

23. In a plane triangle there are given, the base 60, an

adjacent angle 55° 30', and the ratio of the side opposite the

given angle to the other unknown side 6 to 5 ; to determine

these sides. Ans. 50.047, and 41.706.

24. From a station in a horizontal plane, I observed the

angle of altitude of the summit of. a cliff which bore exactly

north to be 47° 30'. I then measured N. 87 W. 283 feet, and

again taking the angle of altitude, found it to be 40° 12'.

What was the height of the cliff? Ans. 354.53 feet.

Remark. In the solution of the preceding problem, it will

assist the pupil if he will observe, that when two right angled

triangles have the same perpendicular, their bases are to each

other as the cotangents of the angles at the base.

25. Three ships sailed from the same place to different

ports in the same parallel of latitude; the first sailed directly

south 55 leagues, when she arrived at the desired port ; the

other two sailed upon different courses, between the south

and west, till they arrived at their destined ports, which were

57 leagues asunder, and the angle included by their courses

at the port sailed from was 38°. Required, the course and

distance run by each of the two latter vessels.

Ans. S. 52° 12', W. 89.75 leagues;
and S. 14° 12', W. 56.73 leagues.

26. Walking on shore, I was surprised by the flash of a

gun, at sea, bearing S. 56° 15' E. ; seven seconds after the

flash I heard the report, and four seconds after that I heard

the echo from a castle bearing from me S. 56° 15' W. Re-

quired, the distance of the gun and castle; sound being esti-

mated to pass over 1142 feet in one second of time.

Ans. Distance of gun, 7994 feet; of castle, 3005.51 feet.

27. In a right angled triangle there are given, one of the

legs 94, and the segment of the hypothenuse adjacent to the

other leg, made by a perpendicular from the right angle, 66,

to determine the triangle.

Ans. The other leg is 93.56, and the hypothenuse, 132.62.
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28. Having given two sides of a triangle, 40 and 50, and

the line drawn from the included angle to the middle of the

third side, 34; to determine the third side. Ans. 59.80.

Construction.— Form the triangle BAE, making AB 40,

AE 50, and BE 68 ; complete the parallelogram ABCE, draw
the diagonal AC, and ABC will be the required triangle.

29. At three points in the same horizontal straight line, the

angles of elevation of an object were found to be 36° 50', 21°

24', and 14°, the middle station being 84 feet from each of the

others. Required, the height of the object.

Ans. 53.96 feet.

30. Tn a level garden there are two lofty firs, having their

tops ornamented with gilt balls : one is 100 feet high, the other

80, and they are 120 feet distant at the bottom. Now, the

owner wants to place a fountain in a right line between the

trees, to be equally distant from the top of each, and to make

a walk or path from the fountain, in every point of which he

shall be equally distant from each of the balfe ; also, at the

end of the walk he would fix a pleasure-house, which should

be at the same distance from each ball, as the two balls are

from each other. How must this be done?

Ans. From bottom of taller tree to fountain, 45 feet.

From ball to ball, 121.655 "

Length of the walk, 52.678 "

From bottom of taller tree to house, 69.282 "

31. Three objects, A, B, and C, are situated in the same

straight line, and are distant from D, 312, 150, and 123 yards ;

also, the distance of A from B is to the distance of C from

B as 22 to 13. How far is B from A and C ?

Ans. From A 198 yards, from C 117 yards

Construction.—Make AD = 312, and divide it in E so that

AE : ED : : 22 : 13. On DE form the triangle DEB, making
DB 150, and EB = §§ DC. Join AB, produce it till it meets

DC drawn parallel to BE in C, and the figure is constructed.
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32. Given, the angles of elevation of an object taken at

three positions, A, B, and C, in the same horizontal straight

line, 17° 46', 33° 41', and 39° 6', respectively ; also, from A to

B is 264 feet, and from B to C 156 feet. Required, the height

of the object.
Ans. 133.33 feet.

33. There are three towns, A, B, and C, whose distances

apart are as follows: from A to B 6 miles; from A to C
22 miles ; and from B to C 20 miles. A messenger is des-

patched from B to A, and has to call at a town D in a direct

line between A and C. Now, in travelling from B to D, he

walks uniformly at the rate of 4 miles an hour, and from D
to A at the rate of 3 miles an hour. Supposing him to per-

form his journey in three hours, it is required to determine

the position of the town D.

Ans. The distance of D from A is 4.72 miles.

In the above example, we have J AD + £ BD = 3, or

AD + |BD = 9. On AC lay off AE = 9, and join BE;
then in the triangle BDE the side BE and the angle BED
become known, and ED : DB : : 3 : 4. Hence the point D is

readily determined.

34. The lengths of three lines drawn from a given point to

three angles of a square are, 35, 46, and 50 yards ; to deter-

mine a side of the square. Ans. 59.95 yards.

35. Wishing to ascertain the length of a tree which leaned

in the plane of the meridian, I measured from the foot of the

tree north 85 feet, when I found the angle of elevation of the

top to be 35°. I then took a second station 50 feet east of

the former, at which the elevation was 30°. Required, the

length of the tree. Ans. 52.44 feet.

11
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SPHERICAL TRIGONOMETRY.

Article 45. The business of Spherical Trigonometry is,

to investigate the properties of triangles formed on the sur-

face of a sphere, by the arcs of circles whose planes pass

through the centre.

As the diameter of a circle is the greatest straight line in

it (15.3), so the diameter of a sphere is necessarily the great-

est straight line in it. Hence, when a plane passes through
the centre of the sphere, the diameter of the circle which is

formed by the section of this plane and the sperical surface,

is greater than any other line in the sphere which is not a

diameter.

A plane cutting the sphere, but not passing through its

centre, forms, by its section with the spherical surface, a

circle whose diameter is less than the diameter of the sphere.

That the section is a circle, is readily inferred from 14.3 ;

and that the diameter of that circle is less than the diameter

of the sphere, is plain from 15.3.

Definition 1. Those circles whose planes pass through the

centre of the sphere, are called great circles ; but circles

whose planes do not pass through the centre of the sphere,
are called less circles.

Corollary 1. The diameter of every great circle is also a

diameter of the sphere.
Cor. 2. The common section of the planes of two great

circles, is a diameter to each of those circles.

(78)
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Cor. 3. Every great circle in the sphere divides every
other great circle into two equal parts.

Def. 2. The axis of a circle is the right line which passes

through its centre, and is at right angles to the plane of the

circle ; and the poles of a circle are the points where its axis

meets the surface of the sphere.

Def. 3. A spherical angle, or the angle formed by two

great circles, is the inclination of their planes.

Cor. When two great circles are at right angles to each

other, each of them passes through the poles of the other ;

and if they pass through the poles of each other, they are at

right angles. Also, when the plane of a great circle is at

right angles to the plane of a less one, the former circle

passes through the poles of the latter. For the axis of every
circle passes through the centre of the sphere, and is at right

angles to the plane of its own circle.

Def. 4. A spherical triangle is formed by the arcs of three

great circles, each of which cuts the other two, but in such

manner that each of the arcs composing the triangle is less

than a semicircle.

Def. 5> If AD and

DF, two quadrants of

great circles, are placed

at right angles to each

other ; and through the

points A, F, two other

great circles, AE, FB
;

are described, cutting

each other in C; the

triangles ABC, FEC
are called complementat

triangles.

Art. 46. The arc of a great circle, intercepted betweer

another great circle and its pole, is a quadrant.
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D

Let AEBF be a great circle, whose centre is C, and axis

DCG, its poles being D and G ; DAGB another great circle

passing through the axis DCG; these great circles are at

right angles to each other (17.2 sup.), and CA their common
section at right angles to CD ; hence the arcs AD, BD, AG
and BG, are quadrants.

Art. 47. The angle made by two great circles is measured

by the arc intercepted between them, at the distance of 90°

from the angular point.

Let ACB, ADB, be

two semicircles, whose

common section passes

through E, the centre

of the sphere ; from E,

draw EC, ED, at right

angles to AB, one in the

plane ACB, the other in the plane ADB ; and let the plane
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passing through EC, ED, cut the surface of the sphere in the

arc CD ; CD is part of a great circle (Def. 1), and AE is at

right angles to its plane (4.2 sup.) ; consequently, AC and AD
are quadrants; and A, B are the poles of CD. Also, the

inclination of the planes ACB, ADB is the angle CED (Def.

4.2 sup.) ; and that angle is measured by the arc CD.

Cor. Since the plane of CED is at right angles to AB, ana

consequently to each of the planes ADB, ACB (17.2 sup.), it

must pass through the axes of those planes ; and therefore

the circle DC, continued, must pass through the poles of ADB
and ACB. Those poles being 90 degrees from their respect-

ive circles, the arc intercepted between them is manifestly

equal to CD, the measure of the spherical angle CAD.

Art. 48. In the complemental triangles ABC, FCE ; AC
is the complement of CE ; BC is the complement of FC ; AB
of the angle at F ; and the angle at A of the side FE.

For, since FD and

AD are quadrants at

right angles to each

other, F is the pole of

AD, and A is the pole

ofFD (Art. 46); hence

FB, AE are also quad-

rants; consequently,BD
is the measure of the

angle at F, and DE of

the angle at A ; whence
the proposition is ob-

vious.

Art. 49. In isosceles spherical triangles, the angles oppo-
site the equal sides are equal.

Let ABC be a spherical triangle, whose sides AB and AC
are equal ; it is to be proved that the angles ABC and ACE
are also equal.
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Take D the centre of the sphere,

and join DA, DB and DC ; and

in the plane of ADB, draw AE
at right angles to DB. In like

manner, in the plane ADC, draw
AF at right angles to DC. Then,
since the arc AB is equal to AC,

"j!j the angle ADB at the centre of

the sphere is equal to the angle ADC ; therefore the triangles

ADE, ADF, right angled at E and F, having two angles of

the one respectively equal to two angles of the other, and

the side AD, opposite the right angle in each, common to

both ; have the sides AE, AF, adjacent to the right angles,

also equal (26.1).

Again, in the plane BDC, draw EG and FG at right angles

to DB and DC respectively, and let them meet in G. Then,

because AE and EG are both at right angles to DB, the line

DB is at right angles to the plane which passes through AE
and EG (4.2 sup.) ;

and therefore the plane DBC is at right

angles to the plane AEG (17.2 sup.). In like manner, the

plane DBC is proved to be at right angles to the plane AFG;
consequently, the line AG, the common section of the planes

AEG, AFG, is at right angles to the plane DBC (18.2 sup.) ;

wherefore the angles AGE, AGF are right angles (1 Def. 2

sup.)

Now, the right angled triangles AGE, AGF, having the

perpendicular AG common, and the hypothenuse AE equal
the hypothenuse AF, must have their bases EG, FG, also

equal (47.1) ; and therefore the angles AEG, AFG, likewise

equal (8.1) ; that is, the spherical angles ABC, ACB, are

equal. Q. E. D.

Art. 50. If two angles of a spherical triangle are equal,

the sides opposite to them are also equal.

Let the spherical angles ABC, ACB be equal ; then the

sides AB, AC shall be also equal. ^
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Making the same construction as in the last article, w
have, as before, the angles AGE, AGF, both right angles s

also the angles AEG and AFG, which are the same as the

spherical angles ABC and ACB, likewise equal, and the side

AG common to the triangles AGE, AGF ; therefore AE is

equal to AF (26.1). Then, in the right angled triangles

ADE, ADF, we have the perpendiculars AE, AF equal, and

the hypothenuse AD common ; wherefore DE is equal to DF
(47.1), and consequently the angle ADE equal to ADF (8.1) :

whence AB is equal to AC (26.3).

Q. E. D.

Art. 51. Any two sides of a spherical triangle are together

greater than the third.

Let ABC be a spherical

triangle; any two of its

sides taken together are

greater than the third.

Take D the centre of the

sphere, and join DA, DB
and DC. Then the solid

angle at D is contained by
the three plane angles

ADB, ADC and BDC, of which any two taken together are

greater than the third (20.2 sup.) ; therefore any two of the

arcs which measure those angles are likewise together greater
than the third. Q. E. D.

Art. 52. The three sides of a spherical triangle are toge-

ther less than the circumference of a circle.

Let ABC be a spherical

triangle; the sides AB +
AC + BC are less than

360°. Continue two of

those sides AC, AB, till
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they meet in D ; then ACD and ABD are semicircles (Art.

45, Cor. 3, Def. 1). But BD + CD are greater than BC. If

to these unequal quantities we add AB + AC, we have ABD
+ ACD greater than BC + AB + AC ; that is, AB + AC +
BC are less than two semicircles, or 360°.

Q. E. D.

Art. 53. In any spherical triangle having unequal angles,

the greater angle has the greater side opposite to it.

In the spherical triangle ABC, let the angle ABC be greater

than ACB ;
and take CBD = BCA ; then (Art. 50) BD=CD ;

consequently, AC = BD + AD ; but (Art. 50) BD + AD are

greater than AB ; that is, AC is greater than AB.

Q. E. D.

Conversely : If the side

AC is greater than AB, the

angle ABC is greater than

ACB. For if it is not

greater, it is equal or less.

If the angles were equal,

the opposite sides would also be equal (Art. 49) ; and if ACB
was greater than ABC, the side AB would be greater than

AC.

Art. 54. If the angular points of a spherical triangle are

made the poles of three great circles, these three circles, by
their intersections, will form a triangle, which is said to be

supplemental to the former ; and the two triangles are such,

that the sides of the one are the supplements of the arcs

which measure the angles of the other.

Let A, B, C, the angular points of the triangle ABC, be

the poles of the great circles FE, DE, DF, which form the

triangle FED ; and let the sides of the former triangle be

produced till they meet those of the latter. Now, since A
and C are the poles of EF and DF respectively, the distances



SECTION III. 85

from F to A and from F
to C are quadrants (Art.

46) ; hence F is the pole

of KACL. In the same

manner it is proved that

D and E are the poles of

NBCH and GABM ; con-

sequently, EM + LF =
180°; thatis,EFandLM
are supplements to each

other. In like manner it

may be proved that DE
and GH; DF and KN;
AC and KL; AB ar.d

GM; BC and NH, are

respectively supplements to each other. But ML, GH and

KN are the measures of the angles A, B and C ; also KL,
NH and GM are the measures of the angles F, D and E (Art.

47). Hence the proposition is manifest? Q. E. D.

Cor. Since the sides FE, FD and DE, together with the

measures of the angles A, B and C, are equal to three semi-

circles, or 540° ;
and the three sides of any spherical triangle

are together less than two semicircles, or 360° (Art. 52), it

follows that the three angles of the triangle ABC are more

than 180°, but less than 540°.

Aet. 55. Let AEB and

AHB be semicircles, whose

planes are at right angles to

each other ; and AB the

common section of those

planes, a diameter to the

sphere; AH, HB, quad-
P e rants; and C any other

point than H in the semicircle AHB; then CD, CE, CF,

being arcs of great circles, intercepted between the point C
12
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and the semicircle AEB ; the arc CA, which passes through

H, is greater, and CB, the remaining part of the semicircle,

is less, than any other arc contained between C and AEB ;

also those nearer to CHA are greater than those which are

more remote.

Draw CG and HI at right angles to AB ; then is CG at

right angles to the plane AEB (Def. 2, 2 sup.) ; hence, GD,
GE, GF, being drawn, the angles CGD, CGE, CGF, are all

right ones. And AH, BH, being quadrants, H is evidently
the pole, and I the centre, of AEB ; consequently, GA is the

greatest, and GB the least, of all the straight lines drawn
from G to the circumference

;
and GD is greater than GE ;

and GE than GF (7.3). Now,

AO-CGM-GA8
;

and . DC3 = CG3 + GD 3
;

of which GA3
is greater than GD 3

; wherefore AC 2
is greater

than DC 3
, and AC greater than DC. But the arcs AC and

DC are each less than a semicircle ; and, therefore, the greater
chord subtends the greater arc ; that is, the arc AC is greater
than DC. In the same manner it may be proved that the arc

DC is greater than EC, that EC is greater than FC, and

FC greater than BC. Q. E. I).

Art. 56. In a right angled spherical triangle, the sides

containing the right angle are of the same affection as the

angles opposite to them.*

Let ACB be a spherical triangle, right angled at A ; and

let AC, AB be continued till they meet in D ; and bisect ABD
in E

;
then ACD, ABD are semicircles (Art. 45, Cor. 3 to

Def. 1) ; and AE is a quadrant. But the angle at A being a

right one, AEB passes through the pole of AC (Art. 45, Cor.

* Sides are said to be of the same affection when they are both less or

both greater than quadrants ; the same is said of angles when they are

both less or both greater than right angles. A side and an angle are also

of the same affection when the former is less or greater than a quadrant,
and the latter less or greater than a right angle.
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to Def. 3). Consequently E is the pole of AC (Art. 46) ; CE
is a quadrant, and ACE a right angle.

Now, AC being taken

less than a quadrant, the

angle ACB will be less or

greater than ACE, ac-

cording as B lies be-

tweenA and E, or between

E and D; that is,when AB
is less than a quadrant, the angle ACB is less than a right

angle ; and when AB is more than a quadrant, ACB is more

than a right angle. And if we suppose ACB to be less than

a right angle, it is manifest that AB is less than a quadrant ;

and, if greater, greater.

Again, in the right angled triangle DCB, in which DC is

greater than a quadrant, it is manifest that the angle DCB is

greater or less than a right angle, according as DB is greater
or less than a quadrant ; and vice versa. Q. E. D.

Art. 57. When the sides of a right angled spherical tri-

angle, about the right angle, are of the same affection, the

hypothenuse is less than a quadrant ; but when those sides

are of different affections, the hypothenuse is more than a

quadrant.

Retaining the construction used in the last article, and

bisecting ACD in G, we have G the pole of ABD, and CE a

quadrant as before. But CB is either greater or less than

CE, according as it is nearer to or farther from CGD than

CE is (Art. 55) ;
that is, the hypothenuse is less than a quad-

rant when the sides are both less or both greater than a

quadrant ; but the hypothenuse is greater than a quadrant
when one side is less, and the other greater, than a quadrant.

Q. E. D.

Cor. 1. Conversely, when the hypothenuse of a right angled

spherical triangle is less than a quadrant, the sides are of the

same affection ; but, when the hypothenuse is greater than a

quadrant, the sides are of different affections.
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Cor. 2. Since the oblique angles of a right angled spherical

triangle are of the same affection as the opposite sides (Art.

56) ; therefore, according as the hypothenuse is greater or

less than a quadrant, the oblique angles will be of different,

or the same affection.

Cor. 3. Because the sides are of the same affection as their

opposite angles ; therefore, when an angle and the side adja-

cent are of the same affection, the hypothenuse is les-s than a

quadrant, and vice versa.

Art. 58. In any right angled spherical triangle, as radius

is to the sine of an oblique angle, so is the sine of the hy-

pothenuse to the sine of the opposite side.

Let ABC be the triangle,

right angled at B ; take D
the centre of the sphere ;

join DA, DB, and DC ; in

the plane ADC, draw CE
at right angles to DA ;

from E, draw in the plane

ADB, the line EP at right

angles to DA, meeting DB
in F ; and join CF.

Then, the lines EC and

EF being both at right angles to DA, the plane CEF is at

right angles to DA (4.2 sup.) ; consequently, the planes ADB
and CEF are at right angles to each other (17.2 sup.). But

the plane DBC is, by hypothesis, at right angles to DAB ;

hence the planes CEF and DBC, being both at right angles
to DAB, their common section FC is also at right angles to

the same plane (18.2 sup.) ; wherefore DFC and EFC are

right angles. Hence CF is the sine of CB ; also CE is the

sine of CA ; and the angle CEF is the inclination of the

planes CDA and BDA ; that is, Cl^F = the spherical angle
CAB. Now (Art. 28),

As radius : sine of CEF : : CE : CF ;



SECTION III. 89

that i?,

As radius : sine of CAB : : sine of AC : sine of BC.

Q. E. D.

Art. 59. In any oblique angled spherical triangle, the sines

of the angles are to each other as the sines of the opposite

sides.

Let ABC be the trian-

gle ; and through C de-

scribe the arc CD of a

B great circle, at right an-

gles to AB ; then, by last

article,

As sin of A : radius : : sin DC : sin AC ;

'

radius : sin B : : sin BC : sin DC ;

therefore (23.5),

sin A : sin B : : sin BC : sin AC.

Q. E. D.

Art. 60. In any. right

angled spherical triangle,

as radius is to the sine of

one of the sides, so is the

tangent of the adjacent

angle to the tangent of

the opposite side.

Let ABC be the trian-

gle, right angled at B;
take D the centre of the

sphere, and join DA, DB,
DC; in the plane ADB,
draw BE at right angles



90 SPHERICAL TRIGONOMETRY.

to DA ; from E, draw EF, in the plane ADC, at right angles
to AD, and meeting DC produced in F ; and join FB. Then
EB and EF being at right angles to DE, the plane FEB is

at right angles to DE (4.2 sup.) ; consequently, the plane

ADB, which passes through DE, is at right angles to the

plane FEB (17.2 sup.) ; therefore the common section BF of

the planes EBF and DBC, is at right angles to the plane
DAB (18.2 sup.) ; whence EBF and DBF are right angles ;

and, consequently, BF is the tangent of BC ; BE is also the

sine of AB ; and the angle BEF the same as the spherical

angle BAC. Now (Art. 28),

that is,

As radius : tan BEF : : BE : BF ;

As radius : tan BAC : : sin AB : tan BC ;

and alternately (16.5),

As radius : sin AB tan BAC : tan BC.

Q.E.D.

Art. 61. If two right angled spherical triangles have the

same perpendicular, the sines of the bases are to each other

^ reciprocally as the tan-

gents of the adjacent

angles.

Let ADC and BDC be

t
the triangles ; DC the

common perpendicular;
then (Art. 60),

As sin AD : radius : : tan DC : tan A ;

and As radius : sin BD : : tan B : tan DC ;

whence (23.5),

AD : sin BD : : tan B : tan A.

Q. E. D.
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Art. 62. In any right angled spherical triangle ;
as radius

is to the cosine of the angle at the base, so is the tangent of

the hypothenuse to the tangent of the base.

p
. Let ABC be the tri-

angle ; B the right, an-

gle ;
and FCE the com-

plemental triangle.

Then (Art. 60),

As radius : sin FE : :

tan F : tan CE ;

that is (Art. 48),

As radius : cos A : :

cotan AB : cotan AC.

B But (Art. 23.4),

As tan P : tan Q : : cotan Q : cotan P ;

consequently,

As radius : cos A : : tan AC : tan AB.

Q. E. D.

Art. 63. If two right angled spherical triangles have the

same perpendicular, the cosines of the vertical angles are to

each other reciprocally as the tangents of the hypothenuses.

Let ADC, BDC (see fig. on opposite page), be the triangles

right angled at D ; then (Art. 62),

As cos ACD : radius : : tan DC : tan AC ;

and As radius : cos BCD : : tan BC : tan DC ;

therefore (23.5),

As cos ACD : cos BCD : : tan BC : tan AC.

Q.KD
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Art. 64. In any right angled spherical triangle ; as radius

is to the cosine of the hypothenuse, so is the tangent of either

angle to the cotangent of the remaining angle.

In the triangle FCE (see fig. on opposite page), we have

(Art. 60),

As radius : sin CE : : tan FCE : tan FE ;

that is (Art. 48),

As radius : cos AC : : tan ACB : cot BAC : : (Art. 23.4)

tan BAC : cot ACB.

Q. E. D.

Art. 65. In any right angled spherical triangle ; as radius

is to the cosine of one of the sides, so is the cosine of the

other side to the cosine of the hypothenuse.

In the right angled triangle FCE, we have (Art. 57),

As radius : sin F : : sin FC : sin CE ;

that is (Art. 48),

As radius : cos AB : : cos BC : cos AC.

Q. E. D.

Art. 66. If two right angled spherical triangles have the

C same perpendicular, the

cosines of the hypothe-
nuses are to each other

as the cosines of the

* bases.

Taking ADC and BDC
as the triangles right

angled at D, we have (Art. 65),

As radius : cos DC : : cos AD : cos AC ;

and As radius : cos DC : : cos BD : cos BC ;

whence (16.5),
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cos AD : cos BD : : cos AC : cos BC.

Q. E. D.

Art. 67. In any-

right angled spherical

triangle; as radius is

to the sine of either

oblique angle, so is the

cosine of the adjacent
side to the cosine of the

opposite angle.

In the right angled

triangle FCE, we have

b (Art. 58),

As radius : sin FCE : : sin CF : sin FE ;

that is (Art. 48),

As radius : sin ACB : : cos BC : cos BAC.

Q. E. D.

Art. 68. In two right angled spherical triangles, ACD,
BCD (fig. p. 92), having the same perpendicular CD, the co-

sines of the angles at the base are to each other as the sines

of the vertical angles.

By Art. 67 and A. 5,

As cos DAC : cos DC : : sin ACD : radius
;

and, by same article,

As cos DC : cos DBC : : radius : sin BCD ;

consequently (22.5),

As cos DAC : cos DBC : : sin ACD : sin BCD.

Q. E. D.

13
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Art. 69. The same things being supposed as in the last

article, the tangents of the bases are to each other as the

tangents of the vertical angles.

By Art. 60,

As radius : sin CD : : tan ACD : tan AD ;

and As radius : sin CD : : tan BCD : tan BD ;

consequently (11 and 16.5),

tan ACD : tan BCD : : tan AD : tan BD.

Q. E. D.

Art. 70. In two

right angled spheri-

cal triangles ABC,
ADC, having the

same hypothenuse

AC, the cosines of the

bases are to each

other reciprocally as

the cosines of the per-

pendiculars.

For (Art. 65),

As radius : cos AB : : cos BC : cos AC ;

and from the same article inverted (A 5),

As cos AD : radius : : cos AC : cos DC ;

hence (23.5),

As cos AD : cos AB : : cos BC : cos DC.

Q. E. D.

Art. 71. The same things being supposed as in the last

article, the tangents of the bases are to each other as the

cosines of the adjacent angles. For (Art. 62),

As radius : cos CAB : : tan AC : tan AB ;
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and, by inversion,

As cos CAD : radius : : tan AD : tan AC ;

therefore (22.5),

As cos CAD : cos CAB : i tan AD : tan AB.

Q. E. D.

A

Art. 72. As the sum of the sines of any two unequal arcs

is to their difference, so is the tangent of half the sum of

those arcs, to the tangent of half their difference.

Let AB, AC be the arcs ;

L the centre of the circle ;

andAH the diameter passing

through A ; make AF=AB;
join BF, and let BF cut AH
in D ; draw CE parallel to

BF,andCG to AH; let CG
meet BF in I ; join GB, GF
and CF. Then, since AF
= AB, FD = BD; and

HDF = HDB ; hence BD is the sine of AB ; and CE, which

is parallel to BD, is the sine of AC ; therefore, FI is the sum,

and BI the difference, of the sines of AB and AC.

Again, the arc CF is the sum, and CB the difference, of

AB and AC ; therefore the angle FGC is measured by half

the sum, and BGC by half the difference, of AB and AC
(20.3). But the angle GIF = HDF (29.1), and is therefore

a right angle ; consequently, IF is the tangent of CGF, and

IB the tangent of CGB, to the radius GI ; therefore, for any
other radius (Art. 27, Cor.),
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to their difference, as the cotangent of half their sum is to

the tangent of half their difference.

Retaining the construction of the last article, it is easily

perceived that GI is the sum, and IC the difference, of the

cosines of AB and AC ; also the angle GFI is the complement
of CGF; and IFC - BGC; hence,

cos AB+ cos AC : cos AC — cos AB :: cotan ^(AB+AC) :

tan J(AB— AC). Q. E. D.

Art. 74. In any oblique angled spherical triangle, a per-

pendicular being let fall from the vertex on the base, i,t will

be, as the tangent of half the base is to the tangent of half

the sum of the sides, so is the tangent of half the difference

of those sides to the tangent of the distance between the

c
perpendicular and mid-

dle of the base.

Let ABC be the trian-

gle, CD the perpendicu-
and E the middle of

base. Then (Art.

As cos AC : cos BC : : cos AD : cos BD ;

whence (E 5),

As cos AC+ cos BC : cos BC— cos AC : : cos AD + cos BD ;

cos BD— cos AD ;

consequently (Art. 73),

As cotan l(AC + BC) : tan J(AC
— BC) : : cotan A(AD +

DB) : tanl(AD— DB) :: cotan AE : tan ED ;

and, alternately,

As cotan i(AC+ BC) : cotan AE :: tan £(AC—CB) : tan ED.

But (Art. 23.1),

cotan i(AC + BC) : cotan AE : : tan AE : tan J(AC+BC);
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therefore,

As tan AE : tan £(AC+ BC) :: tan i(AC— BC) : tan ED.

q: E. D.

Art. 75. In any oblique angled- spherical triangle, a per-

pendicular being let fall from the vertex on the base, and an

arc described bisecting the vertical angle ; it will be, as the

cotangent of half the sum of the angles at the base is to the

tangent of half their difference, so is the tangent of half the

vertical angle to the tangent of the angle formed by the per-

pendicular and the arc bisecting the vertical angle.

Let ABC be the triangle, CD the perpendicular, and CF
the arc bisecting the vertical angle ; then (Art. 68),

As cos A : cos B : : sin ACD : sin BCD ;

hence (E 5)

cos A+cos B . cos A— cos B :: sin ACD -f sin BCD : sin

ACD— sin BCD ;

therefore (Arts. 72, 73)

As cotan J(A + B) : tan i(B— A) :: tan $(ACD +BCD)
:tan|(ACD— BCD) :: tan ACF : tan DCF.

Q. E. D.

Scholium. From the analogies demonstrated in Articles 60,

62, 63, 65, 66 and 67, we may frequently determine the affec-

tions of the sides and angles of the triangles, by adverting
to the signs of the terms, as explained in Art. 24. Thus, in

Art. 60, the base AB being always less than a semicircle, the

sin AB is positive; hence the tan BAC and tan BC are both

positive or both negative; consequently, BAC and BC are

both less or both more than 90°. In Art. 62, when the angle
at the base is acute, its cosine is positive ; consequently, the

tangents of the hypothenuse and base will be both positive or

both negative ; therefore the arcs themselves will be both more

or both less than 90° ; that is, they will be of the same affec-

13 i
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tion. But when the angle at the base is obtuse, its cosine

will be negative ; and therefore the tangent of the hypothe-
nuse and that of the base will be one positive, and the other

negative ; consequently, the arcs themselves will be of dif-

ferent affections. In Art. 63, when the vertical angles are

of the same affection, their cosines have the same sign ; con-

sequently, the tangents of the adjacent sides will have the same

sign, and will therefore be of the same affection. The same

principles are applicable to the other cases. The conclusions

thus obtained are consonant to those obtained in a different

manner in Arts. 56, 57.

The analogies above demonstrated are sufficient to enable

the student to calculate the sides and angles of spherical tri-

angles from the usual data; yet there are various useful

forms, hereafter demonstrated, which are applicable to par-

ticular cases. We have also two concise rules, discovered

by Baron Napier, the celebrated inventor of logarithms, by
which the cases in right angled spherical triangles are con-

veniently solved ; and, being easily remembered, they are

frequently used in practice.

Art. 76. In right angled spherical triangles, there are five

parts which may have different values assigned to them

without changing the right angle, viz. : the hypothenuse, the

two sides, and the two oblique angles. Now, the sides, and

the complements of the hypothenuse and oblique angles, are

called the five circular parts ; one of which being assumed as

the middle part, the two which lie contiguous to this middle

part are called the adjacent extremes ; and the other two

are termed the opposite extremes. Then Napier's rules are :

1. The rectangle of radius and the sine of the middle part

is equal to the rectangle of the tangents of the adjacent
extremes.

3. The rectangle of radius and the sine of the middle
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part is equal to the rectangle of the cosines of the opposite

extremes.

These rules may be explained and demonstrated in the

following manner :

c Let ABC be the tri-

angle, right angled
at B. Then, assum-

ing AB as the mid-

dle part, the side BC
and complement of

BAC are the adja-

cent extremes ; and

the complements of

AC and ACB are the

opposite extremes. Now (Art. 60),

As radius : sin AB : : tan BAC : tan BC ;

and, alternately,

As radius : tan BAC : : sin AB : tan BC.

But (Art. 23),

As radius : tan BAC : : cotan BAC : radius.

Hence,

cotan BAC : radius : : sin AB : tan BC ;

therefore (16.6),

radius . sin AB = cotan BAC . tan BC ;

which is Napier's first rule.

Again (Art. 58),

As radius : sin ACB : : sin AC : sin AB ;

whence (16.6),

radius . sin AB = sin ACB . sin AC ;

which is Napier's second rule.
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If we assume BC the middle part, AB and the complement
of ACB become the adjacent extremes; and the complements
of BAC and AC, the opposite extremes. Napier's rules may-

then be demonstrated in that case exactly as before.

Assuming next the complement of BAC as the middle part,

AB and the complement of AC become adjacent extremes ;

and BC and the complement of BCA opposite extremes.

Then (Art. 62),

As radius : cos BAC : : tan AC : tan AB ;

alternately,

As radius : tan AC : : cos BAC : tan AB.

Hence (Art. 23),

As cotan AC : radius : : cos BAC : tan AB ;

consequently (16.6),

radius . cos BAC == cotan AC . tan AB ;

which is rule first.

Again (Art. 67),

As radius : sin BCA : cos BC : cos BAC ;

whence,

radius . cos BAC = sin BCA . cos BC ;

which is rule second.

In the same manner, the rule is demonstrated, when the

complement of ACB is taken as the middle part.

Lastly, assuming the complement of AC as the middle part,

the complements of BAC and BCA are the adjacent extremes ;

and AB, BC, the opposite extremes. Then (Art. 64),

As radius : cos AC : : tan ACB : cotan BAC ;

alternately,



SECTION III. 101

As radius : tan ACB : : cos AC : cotan BAC ;

wherefore (Art. 23),

As cotan ACB : radius : : cos AC : cotan BAC ;

consequently,

radius . cos AC = cotan ACB . cotan BAC ;

which is rule first.

And (Art. 65),

As radius : cos AB : : cos BC : cos AC ;

whence,

radius . cos AC = cos AB . cos BC ;

which is rule second.

The following table exhibits the different cases, and the

equations arising from Napier's rules :

o
S

1
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Example 1. In the

spherical triangle

ABC, right angled
at B, given the side

AC 52° 15', and the

angle A 23° 28', to

find the other sides

and the remaining

angle.

The perpendicular
BC may be found by Art. 58 ; the side AB, by Art. 62 ; and

the angle C, by Art. 64. Or, using Napier's circular parts,

we find BC by the second equation, case 2, in the foregoing
table ; AB by the first equation, case 3 ; and the angle C by
the first equation, case 5. The results are, BC 18° 21' 9" ;

AB 49° 49' 57"; C 75° 6' 58".

Ex. 2. Given, the base AB 61° 25', and the adjacent angle
A 32° 45', to determine the rest.

The hypothenuse AC may be found by Art. 62 ; the per-

pendicular BC by Art. 60 ; and the angle C by Art. 67 ; or

by cases 3, 1, 4 of the circular parts.

The results are, AC 65° 22' 52" ; BC 29° 27' 32" ; and C
75°.

Ex. 3. Given, the base AB 75° 28', and the perpendicular
BC 41° 15', to find the rest.

The results are, AC 79° 7' 30"; A 42° 10' 32"; C 80°

18' 1".

Ex. 4. Given, the angle A 23° 28' 30", and angle C 75° 22',

to find the rest.

The results are, *$ 53° 2' 36"; AB 50° 38' 22"; BC 18°

33' 40".
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Ex. 5. In the oblique

angled triangle ABC,
given the sides AB 70°,

AC 58°, and the angle
CAB 52° 30', to find the

rest.

Suppose the arc CD of

a great circle at right angles to AB to pass through C ; then

the given triangle will be divided into two right angled ones,

ADC and BDC.

In the triangle ADC, the side AD and angle ACD may be

computed by Arts. 62 and 64. Hence BD is known. Then
the angle B, the side BC, and the angle BCD, may be found

by Arts. 61, 66 and 69.

Results : B 64° 28' ; BC 48° 12' 46" ; ACB 91° 0' 21".

Ex. 6. In the spherical triangle ABC, given the angle BAC
50° 15', ACB 92°, and side AC 57° 30', to find the rest.

The arc CD being made perpendicular to AB, the side AD
and angle ACD may be found as in the last example ; whence

BD, BC, and the angle at B, may be computed by Arts. 69,

63 and 68.

Results: BA 69° 25* 2"; BC 46° 4' 16"; ABC 64° 12' 16".

Ex. 7. In the triangle ABC, given AB 71° 30' ; AC 59°

20'; BC 50° 10' ; to find the angles.

Drawing CD at right angles to AB, and taking AE = JAB,
the arc ED is found by Art. 74 ; from which AD and BD
become known ; and thence the angles may be found by Arts.

62 and 59.

Results: BAC 54° 3' 51"; ABC 65° 5' 4"; ACB 90° 48'

47".

Ex. 8. In the triangle ABC, given the angle BAC 51° ;

ABC 58°; and ACB 110°; to find the sides.
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Using the construction of the last example, and describing
CF so as to divide the vertical angle into two equal angles,

the angle FCD may be found by Art. 75 ; whence the angles

ACD and BCD become known ; and thence the sides AC, BC

may be determined by Art. 64 ; and AD, BD, by Art. 67.

Results : AC 64° 28' 31" ; BC 55° 47' 13" ;
AB 90° 44' 26".

Art. 77. It has been already mentioned that there are

various useful forms which are applicable to particular cases.

By means of these, the necessity of dividing an oblique

angled triangle into two right angled ones, is always
obviated. Of these forms, the following are the most im-

portant. They are investigated most conveniently by
algebra.

c Let ABC be a spherical

triangle ; CD a perpendi-
cular upon AB; and, to

accommodate the expres-
t sions to the language of

algebra, let the capital

letters A, B, C denote the

angles, and the small letters a, b, c, the opposite sides ; the

segments AD, BD, being represented by d, e, and the oppo-
site angles ACD and BCD by D and E respectively. In

these investigations, the radius is taken = 1.

Now (Art. 62),

1 : cos A tan b : tan d.

But (Art. 23),

sin sin d sin b= tan .-. r = cos A.
cos d cos bcosin

Again (Art. 66).

cos b : cos a : : cos d : cos (c
—

d) ;

wherefore,
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cos a cos (c—d) ,- n„ _ ~,cos c.cos a
7+ sine.sin d

r = --rJ-= (Art. 37, Form. 2) j
cos o cos a x ' cos a

sin d . . sin b— cos c + sine.--—; = cos c + cos A.sinc. r ; by putting
cos a cos o J l °

. sin b . sin J
cos A. 1 instead ot ..

cos b cos a

Clearing this equation of fractions,

cos a = cos c.cos b + cos A.sin c.sin b, (1)

By Art. 64,

_ _ ;
•'-

"

•' i^ sin B cos E
As 1 : cos a : : tan B : cot E : : (Art. 23) ~ : ~—

=cr •"•v ' cos B sin E
cos E . sin B

COSG.
sin E 'cos B'

By Art. 68,

As cos B : cos A : : sin E : sin (C
— E) .-.

cos A sin (C—E) , k _,_ _, fc% sin C.cos E—cos C.sin E
^ = r^— =(Art. 37, F. 1) .—-^cos B sin E v ' sin E

. cos E sin B= sin C-—ts
— cos C. — cos a.sin C. ^ — cos G ; substi-

sin E cos B

cos E
tuting for-—^. Then, clearing of fractions,6 sin E 6

cos A = cos a.sin C.sin B— cos C.cos B. (2)

By Art. 62,

As 1 : cos B : : tan a : tan e : : (Art. 23, 4) cotan e : cotan a

_ _ cos e
.*. cotan a = cos B.cotan e => cos B.— ;

sin e

. . cotan a cos e
wherefore, =r- = —« •

cos B sin e

14
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But (Art. 61),

As tan A : tan B : : sin e : sin (c
—

e) ;

therefore,

tan B sin (c
—

e) /k -V _ , x
sin c.cos e.—cosc.sine

; T = ^ = (Art. 37, F. 1) :

tan A sin e v ' sin e

cos e . cotan a= sin c- cos c = sin c. ^ cos Ct
sin e cos J3

Consequently, by clearing of fractions,

cos B.tan B = cotan a.sin c.tan A— cos c.cos B.tan A.

Now,

cos B.tan B=sin B (Art. 23) and r = cotan A.
tan A.

sin B.cotan A+cos c.cos B ._.

Hence cotan a = : . (o)sine .

By Art. 64,

As 1 : cos b : : tan D : cotan A=cos fr.tan D=cos b. ^
cos D

By Art. 63,

As tan a : tan b : : cos D : cos (C
— D) ;

tan b cos (C
— D) ow _

x
.-. ;

= *—^r--= (Art. 37, Form. 2) cos C
tan a cos D v

[

. sin D sin D tan ft.cotan a— cos C
+ sin C. ^ .-.

=p:
=

;

—~ '

cos D cos D sm U

Consequently,

sin fr.cotan a— cos C.cos &
cotan A == :

—~ . (4)sm C v '

These forms are not suited to logarithmic computations ;

but they are useful in the investigation of othor equations, to

which logarithms are conveniently applied.
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From Form. 1, above given, we find, by transposition and

division,

. cos a— cos c.cos b
cos A = -

1
—

;

sin c.sin b

hence,

cos a— cos c.cos b
1— cos A = 1

sin c.sin b

cos c.cos b + sin c.sin b— cos a ,:, „ „
1 r-t =

(Art. 37, Form. 2)sin c.sin b v '

cos (c
—

b)
— cos a

sin c.sin b

But (Art. 36, Form. 6),

1 — cos A = 2 sin 9

-JA ;

and (Art. 37, Form. 13),

cos (c
—

b)
— cos a = 2 sin %(a + c— b).sm ±(a + b— c)

.-. sin 5 u _sin i(a + c—6) .sin £(a + b—c)
syA— r ; r^

sin c.sin b (5)

. . c ,, .. . cos a— cos c.cos b
Again, trom the equation cos A = . wesm c.sin b

have

cos a— cos c.cos b
1 + cos A = 1 +

sin c.sin b

cos a— cos c.cos b + sin c.sin b

"Iran"*- "=
(Art. 37, Form. 2)

cos a— cos (c + b)

sin c.sin b

But (Art. 36, Form. 8)

1 + cos A = 2 cos 8
£A ;
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*
sin c.sin b v '

Again :

tan* i A - sin3 ^A - si" l(a+c—b) sin j(a+b—c)
* cos

s

|A sin i(c+ b+ a) sin i(c+b—a)'

™

Equations 5, 6 and 7 furnish convenient expressions for

finding an angle, when the three sides are given.

From Form. 2,

cos A + cos C.cos B
cos a = .

—
~r--.
—s ;

sin C.sin B

wherefore,

_ cos A+cos C.cos B
1 COS G= 1 .

—
77-:
—

=i =
sin C.sin B

sin C.sin B—cos C.cos B—cos A
sin C.sin B

—
(cos C.cos B—sin C.sin B)—cos A _ —cos (B+ C)—cos A

sin C.sin B sin C.sin B

cos (B + C) + cos A= • n • p =
(Art - 37, Form. 12)sin C.sin B v '

— 2 cos |(B + C + A).cos fr(B + C— A
)

sin B.sin C

But (Art. 36, Form. 6),

1 — cos a = 2 sin3
\a ;

Wherefore,

«*£ -cosKB-fC+Aj^KB+C-A),J
sin B.sin C v '

* Since the three angles of a spherical triangle are together greater than

180°, but less than 540° (Art. 54, Cor.), cos i(B+C+ A) will always be

a negative quantity, and consequently —cosine a positive quantity.
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Again :

_ _ cos A+cos C.cosB
1 -f cos a= H -.

—
7^—:
—

ts
=

sin C.sin B

cos C.cos B -f sin C.sin B + cos A _ cos (C
— B)+cos A

sin C.sin B sin C.sin B

(Art. 37, Form. 2).

But (Art. 36, Form. 8),

1 + cos a = 2 cos 3

\a ;

and (Art. 37, Form. 12)

cos (C
— B)+cos A=2 cos£(A + C— B).cos J(A+B— C);

whence,

cos* i
fl

cos|(A+C-B).cosKA+B~C)
cos ?a- sin C.sin B * W

Further :

,i
sin2 \a -cosKB+C+A).cosj(B+C--A)

tan ^a ~~coss
\a
~

cos i(A+C— B).cos |(A+B—C)'
^1U>

Equations 8, 9 and 10 may be conveniently used for de-

termining the sides, when all the angles are given.

By Art. 59,

As sin b : sin a : : sin B : sin A;

wherefore (E. 5),

sin b+ sin a : sin b— sin a :: sin B+ sin A : sin B— sin A;

consequently, by Art. 72,

As tan J(6+a) : tan l(b—a) : : tan £(B+ A) : tan £(B—A). (N)

wherefore,

ta„KB-A)=ta„KB+A).^||=§ (P)

15
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Again (Art. 68),

As cos B : cos A : : sin E : sin D ;

hence (E. 5),

As cos B+ cos A : cos A—cos B : : sin E+ sin D : sin D—sin E ;

consequently (Arts. 73.72),

As cotan J(B+A) : tan J(B—A) : : tan JC : tan i(D—E) ;

whence

tan .

(D-E)=ta„ .C.-^i|^= (Art. 23.4)

tan JC.tan
*

(B
—

A).tan \(B + A).

By Art. 63,

As tan b : tan a : : cos E : cos D ;

wherefore (E. 5),

As tan J+ tan a : tan b—tan a : : cos E+ cos D : cos E—cos D.

But (Art. 37, equation 8),

, ,
sin (b ± a)

tan b db tan a = 2 r ;

cos a.cos o

consequently,

sin (a + b) : sin (b
—

a) : : cotan JC : tan J(D— E) ;

wherefore,

tan i(D— E)=cotan^C.
S
?

n
,

(

f"7^= (
Art - 36 > eq- 3)JX '

sin (b + a)
v ' '

2 cos j(b
—

a).sin ±(b
— a)

cotan
nC-2-—-T(a + b).sm ±(a + b)'

Equating these values of tan £(D— E),

tan JC.tan J(B
—

A).tan i(B + A) =

cos h (b
—

q).sin | (b
—

a)
cotan u^'cos i

(
a + ^.s jn J(a + &)"
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In this equation, substitute for tan J(B
—

A), its value given
in equation P ; then,

tan JCton' >(B + A)
'a

"^
~ a

|=2V
'. tan l(b + a)

cos l(b
—

a).sin Mb— a)
C0tan iUcos i(a + b).s'm J(a + b)'

, i/p ,. A \ _ cotan 2C»cos *(&—oQ.sin j(&—a).tan j(&+ a)
tan 3^b+a;- tan iC .COs |(«+^).sin |(a+6).tan |(^—a)

*

Now f Art. 22.1V

sin 1 _ tan

tan
' *

cos sin

Hence,

tn«i(J

Now (Art. 23.1),

and (Art. 23.4),

1 cotan
cotan = -—

.*.
— = cotan 3

.

tan tan

Our equation is therefore reducible to this :

tan' i(B+A)=cotan'
iC .

cos3

^~
«>

^ X ' z
cos-8

l(a+b)

consequently,

tan*(B+A)=cotan^g=|. (11)

From equation P,

i/t> a\ in cos K^— a).ten Mb— a)
tan |(B— A)=cotan-lC. 177—;

—
(-7
—

-tj—,
—

C=2V y 2 cos l(b + a).tan i(o -f a)

,>_ sin l(&— a)
cotan ifi, A ^ v (12)sin i(b + a)

K '

From proportion N,

As tan h(B+ A) : tan i(B—A) : : tan i(b+ a) : tan £(&—a)
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x tani(B— A) ^
... tan £(&-a)=tan W+

fl)-^ h \B + A
j-

(0)

By Art. 66,

As cos a : cos 5 : : cos e : cos d ;

therefore (E. 5 and Art. 73),

As cot z(b+a) : tan i(b— a) : : cot £c : tan i(d
—

e) ;

whence,

tan Ud— e)=cot ic.-^^r-^T = (
Art - 23, ec

l-
4
)v ' cotan i(6 + a)

v

cot ic.tan 1(6 -f a).tan £(&
—

a).

Again (Art. 61),

As tan B : tan A : : sin d : sin e ;

therefore (E. 5 and Art. 72),

As tan B+ tan A : tan B—tan A : : tan \c : tan h(d
—

e) ;

. tan B— tan A , . . ow _ v
.-. tan Ud— e)=tan £c. s—- r=(Art. 37, eq. 8)v ' tan B + tan A v

,
sin (B— A) ,

. nrt _.

tan
^-sinlB—Al

=
(
Art - 36 ^ e^ 3)

1 sini(B— A).cosi(B— A)
tan

3jc.gin ^R + A^cog i(B + Ay

Equating these values of tan h(d
—

e), and substituting

for tan h(b— a) its value in equation Q;

, , „
tan l(B— A)

cot icm* ,(b+ a)

-J^g-j^
=

sini(B— A) cos KB— A) , /7
r

tan he -—.^ ' Vn •
—

nfopr , Ai •*• tan*
5(6+«)=

sin i(B -f A) cos A(B -f A)
v '
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tan Ic.sin |(B — A).cos i(B— A).tan j(B+A)
cotk.sin i(B+ A).cos £(B + A).tan i(B

— A)
~

cos» KB— A)
tan9 \c-

cos3
£(B + A)

*

consequently,

„ i i cosi(B— A)
tanK^+«)=tanic.^gT

-
A-J. (13)

From equation Q,

ta„ i (J -a)=ta„ ic .

S

4^|^. (14)

Equations 11 and 12 may be used when two sides and the

included angle are given to find the other angles ; and equa-

tions 13 and 14 when two angles and the side between them

are given to find the other sides.*

From these four last equations, the following are derived

by a very simple process :

cota„|C=tani(B+A).£|^. (15)

cotaniC=tan|(B-A).^||^. (16)

tanic=tan^+a).^|||^^. (17)

tan ic=tan J(A
-

a).^ l
(B _S^y (18)

A few examples are given to exercise these equations.

* The discovery of these four equations is attributed to Baron Napier.

15 K *
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Z Ex. 1. In the spheri-

cal triangle ABZ, given

AZ=54° 10', BZ m 39°

25', AB = 72° 36', in

ZA produced Aa = 2',

and in ZB, B6 = 35', to

find ab.

First, with the three sides, find the angle Z, by equa-

tion 5.

ZA 54° 10'
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Result : BAC 31° 32' 42" ; ABC 35° 35' 15" ; ACB 136°

32' 48".

Ex. 5. Given, the angle BAC 50°, ABC 60°, ACB 85°, to

find the sides.

Result: AB 51° 59' 16"; AC 43° 13' 48"; BC 37° 17

26".



SECTION IV.

CONIC SECTIONS.

Article 78. Definition 1. If, from a point in the circum-

ference of a circle, a right line be drawn to pass through a

fixed point which is not in the plane of that circle, and then

caused to revolve round that fixed point so as to describe the

whole circumference of the circle; the curve surface, de-

scribed by this revolving line, is called a conical surface;
and the solid included between this curve surface and the

generating circle, is called a cone.

Def. 2. The circle described by the revolving line is called

the base, and the fixed point the vertex, of the cone.

Def. 3. The straight line drawn from the vertex to the

centre of the base, is called the axis of the cone.

Def 4. When the axis is at right angles to the plane of the

base, the cone is called a right cone ; but when the axis i3

oblique to that plane, the solid is termed a scalene cone.

As the line which, by its revolution, describes the conical

surface, maybe indefinitely extended, two cones having a

common vertex, and equal solid angles at the vertex, may be

generated by the same revolution.

Art. 79. Let the cone ABCD be cut by a plane which

passes through its vertex A, and cuts the base in the right

line BC ; the common section of this plane with the surface

(117;
16
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of the cone, will be a triangle. The
common section of the base and cutting

plane is a right line (3.2 sup.) ; and the

right lines drawn from B and C to the

vertex, are in the cutting plane (2.2

sup.) ; and those lines correspond to the

position of the revolving line when it

passes through B and C ; they are there-

fore in the conical surface.

Q. E. D.

Art. 80. Let the cone ABC be cut by a plane which is

parallel to the plane of the base ; then the section of this

cutting plane with the conical surface, is a circle whose

centre is in the axis of the cone.

Let AF be the axis of the cone ;

DLE the cutting plane. In the cir-

cumference of the base take any point

K ; join FK ;
and through AF, FK,

suppose a plane to pass, cutting the

conical surface in AK, and the cut-

ting plane in GH ; then (Art. 79, and

3.2 sup.) AK and GH are right lines.

Let also another plane ABC pass

through the axis ; its section with the

base will be a diameter,.because F is the centre of the circle ;

and the section of this plane with the conical surface is a tri-

angle (Art. 79). Take BC and DE, the sections of this plane
with the parallel planes BCK and DLE ; then (14.2 sup.) DE
and GH are respectively parallel to BC, FK ; consequently,

As AF : AG : : BF : DG : : FC : GE : : FK : GH.

But BF, FC and FK are all equal; therefore, DG, GE and GH
are also equal ; consequently (9.3), DLEH is a circle whose

centre is G. Q. E. D.
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Art. 81. Let AB, DE, two lines at right angles to each

other, such that AD.DB =± DE 2
;

then a semicircle described on

the diameter AB will pass

through the point E.

Bisect AB in C ; then, since

AD.DB = DE 3
,

AD.DB + CD 3 = DE 3 + CD 2
;

that is (5.2 and 47.1), CB3 = CE a
.-. CB £ CE. Conse-

quently, a circle described from the centre C, with the radius

CB, will pass through E. Q. E. D.

M ,~+

Art. 82. Let ABLC be

a scalene cone; ABC the

triangle formed by the sec-

tion of the conical surface

with a plane which passes

through the axis, and stands

at right angles to the plane
of the base ; and let another

plane GHK, at right angles
to the plane ABC, cut that

plane in GK, making the

angle AGK = ACB, and

AKG = ABC;* then the

plane GHK cuts the coni-

cal surface in a circle.

In the section of the cut-

ting plane and conical sur-

face, take any point H;
through H let a plane
DHE pass, parallel to

the base of the cone, cutting the planes GHK and ABC in

the lines HF and DE respectively. Then, since the plane

* This is called a sub-contrary section.
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DHE is parallel to the plane of the base, it is at right angles
to the plane ABC (15.2 sup.). But the plane GHK is at

right angles to the same plane ; therefore the common section

HF is at right angles to the plane ABC (18.2 sup.), and con-

sequently to the lines DE and GK in that plane (Def. 1, 2

sup.)

Now, the angle GDP being = FKE ; and DFG = KFE
(15.1) ; the triangles GDF, EKF, are similar ; therefore,

As DF : FG : : FK : FE (4.6)

consequently, DF.FE=GF.FK (16.6). But DHE is a circle

(Art. 80) ; therefore, DF.FE = HF 3

(35.3). Hence, GF.FK
== HF 2

; and consequently GHK is a circle (Art. 81), whose

diameter is GH. Q. E. D.

Art. 83. Let ABC be

a triangle formed by the

section of a cone with

a plane passing through
its axis at right angles
to the plane of its base ;

and let another plane

DFE, cutting the cone,

be at right angles to the

plane of the triangle,

and so situated that

FG, the common section

of these planes, shall be

parallel to AC, the op-

posite side of the trian-

gle ; then the common section of the plane DFE with the

conical surface, is a curve called a
•q^gboly, ; the general

property of which this article is intended to exhibit.

In this curve take any point H, and through II let a plane,

parallel to the base of the cone, be passed ; and let this plane

cut the plane of ABC in the line LM, and the plane DFE in
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HK. Then, because the planes LHM and DFE are at right

angles to ABC, their common section HK is at right angles
to the same plane (18.2 sup.) ; it is therefore at right angles
to FG and LM. Now, the section of the plane LHM with

the conical surface, is a circle (Art. 80) ; wherefore, LK.KM
= HK3

(35.3). In like manner, BG.GC == DG3
. The plane

LHM being parallel to the base, LK is parallel to BG (14.2

sup.) ; therefore,

As FG : FK : : BG : LK :: (1.6) BG.GC : LK.KM : :

DG 3
: HK3

.

Def. 5. The line FG is called the axis, and F the vertex,

of the parabola ; any segment of the axis FK, reckoned from

the vertex, is called an abscissa ; and a perpendicular KH, on

the axis, is called an ordinate.

The demonstration in this article, therefore, shows that

any two abscissas are to each other as the squares of the

corresponding ordinates.

A Art. 84. Let ABC be a trian-

gle, formed by the common sec-

tion of a cone and a plane through
its axis, at right angles to the

plane of the
^ase ; DIEF the com-

mon section of the conical sur-

face, and a plane which is at

right angles to the plane of the

triangle ABC, passing through
its opposite sides, but neither pa-
rallel to the base, nor sub-con-

trarily situated ; the curve DIEF
is called an ellipsp : the general

property of which this article is

designed to explain.

Bisect DF, the common sec-

tion of DIEF and ABC, in L
;

take any other point K in DF ;

and through L and K let the

16 l

D
kO

M (
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planes MIN and PEO pass parallel to tho base of the cone

cutting ABC in MN, and PO, and DIEF in LI and KE.

Through D and F draw the lines DG and HF parallel to BC.

Now, since (15.2 sup.) the planes MIN and PEO are at

right angles to the plane ABC; LI and KE, the common
intersections of these planes and the plane DIEF, are at right

angles to the plane ABC (18.2 sup.); and consequently to the

lines MN,PO and DF in that plane (Def. 1.2 sup). Also the

common sections of the planes MIN and PEO, and the conical

surface, are circles, of which MN and PO are diameters (Art.

80). Therefore, ML.LN = LP, and PK.KO = KE 2
. Now,

the lines MN and PO are parallel to BC (14.2 sup). Hence,

by similar triangles,
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Art. 85. Let ABC
be a triangle, formed

by the section of a

cone and a plane pass-

ing through its axis,

at right angles to the

plane of its base ; and

let DFE be a plane at

right angles to the

plane of the triangle,

so situated that GF,
the common section of

these planes, being

produced, will meet

CA, the opposite side

of the triangle also

produced, beyond the

vertex A ; then the

curve which is the

common section of the conical surface and the plane DFE, is

called an hyperbola ; the general property of which is to be

shown.

In this section, take any point N; through which let a

plane pass parallel to the plane of the base ;
and let ILK be

the common section of this plane with the plane of the tri-

angle, and NL its section with the plane DFE.

Now (18.2 sup.), DG, the section of DFE and the base of

the cone, and NL, are both at right angles to the plane of the

triangle. Also (Art. 80), the common section of the conical

surface, and the plane which passes through NL, is a circle
;

consequently, IL.LK^LN
2
, and BG.GC=GD2

(35.3). Since

IK is parallel to BC (14.2 sup.), by similar triangles,

As FG : FL : : BG : IL ;

and As HG : HL : : GC : LK ;
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consequently (23.6),

As FG.HG : FL.HL : : BG.GC : IL.LK : : GD 2
: NIA

Def. 7. The line HG is called the axis of the hyperbola ;

HL, FL, as likewise HG, FG, corresponding abscissas ; and

DG, NL, the ordinates.

The property of the hyperbola, proved in this article, there-

fore, is this : The rectangles of corresponding abscissas are

to each other as the squares of their ordinates.

From what has been demonstrated in the last six articles,

it appears that tkere are five different figures which may be

formed by the section of a plane and the surface of a cone,

viz., the triangle, circle, parabola, ellipse and hyperbola.

The properties of the triangle and circle being explained in

common Geometry, the remaining three are usually denomi-

nated the Conic Sections. A few of the most useful proper-

ties of these figures, deduced from the general relations

above demonstrated, are subjoined.

Of the Parabola.

Art. 86. Let BAC be a parabola ; AD, part of the axis, an

DC'2
abscissa ; DC an ordinate ; AE = AF == rrfv EG perpendi-

cular, and CG parallel to ED ; then, FC being joined, FC
shall be equal to CG.

Since EF is bisected in A,

4AF.AD + DF3 = ED 3

(8.2)
= CG 3

.

But (47.1),

FC3 = DC 3 + DF 3 = (by construction) 4AF.AD + DF3
.

Therefore, CG3 = CF* ; and CG = CF. Q. E. D.

Def. 8. The line EG is called the directrix ; 4AE, the latus

rectum; and the point F, the focus.
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these lines will be less or greater than the latter, according
as the point is within or without the parabola.

First, let N be taken within the parabola ; join FN, and

produce it till it meets the parabola in C ; let NP and CG be

at right angles to the directrix ; and join CP. Then CP is

greater than CG (17.1 and 19.1) ; but CN-HNP>CP. (20.1)

>CG;andCG = CF = CN + NF.-. CN + NP>CN + NP;
and therefore NP>NF.

Next, let O be without the parabola ; then, a similar con-

struction being used, OG> OR
;
but OC + CG> OG. Also

OC + CG = OC + CF (Art. 86) = OF ; therefore, OF> OR.

Q. E. D.

Cor. Hence, a point is either in, within or without a para-

bola, according as the line drawn from it to the focus is equal

to, less or greater than the perpendicular falling from it upon
the directrix.

Art. 89. Let D be a point in the parabola ; DF the line to

the focus ; DB the perpendicular to the directrix ; and DG
a line bisecting the angle FDB ; then DG touches the para-

bola.

In DG, take any other point I ; and join IF, IB ; then the

angle FDB being bisected, we have (Art. 86) the sides BD,

DI, and the contained angle BDI, severally equal to FD,DI,
and the contained angle FDI; consequently, BI = FI (4.1).

But BI is evidently greater than IL, the perpendicular from

I to the directrix (19.1) ; hence the point I is without the

parabola (Art. 88, Cor.) ; and therefore DG touches the para-

bola. Q. E. D.

Cor. 1. A right line through the vertex, at right angles to

the axis, is a tangent to the parabola. For AM being drawn

through the vertex A, at right angles to EF, it is evident that

every point in AM, except the point A, is farther from F
than from the directrix.
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Cor. 2. If FB be drawn from the focus to the point where

the line through D parallel to the axis meets the directrix, it

is manifest that FB is bisected and cut at right angles by the

tangent DG. For the triangles BDH and FDH are in every

respect equal (4.1).

Art. 90. Let DG touch the parabola in D, and meet the

axis in G ; then DF being drawn to the focus, and DN at

right angles to the axis, FG = DF, and AG = AN.

Because DB is parallel to FG, the angle FGD = BDG
(29.1)

= GDF (Art. 89). Hence FG "m FD (6.1).

Again, since FD = DB (Art. 86) = EN ; and EA = AF,
AG = AN. Q. E. D.

Def. 9. The line NG is called the subtangent ; the second

part of this article, therefore, shows that the subtangent is

double the abscissa ; or GN = SAN.

Def. 10. The line DP, drawn from the curve to the axis,
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perpendicular to the tangent, is called the normal ; and NP,
the segment of the axis between the ordinate and the normal,

is called the subnormal.

Art. 91. The subnormal is equal to half the latus rectum.

The angle GDP being a right angle, is equal to DGF +
DPF (32.1) ; and GDF = DGF, as shown in the last article;

the remainder FDP = DPF ;
.-. FP = FD (6.1) fe DB (Art.

86) == NE. Taking FN from each, NP = EF = £ the latus

rectum. Q. E. D.

Cor. From this demonstration, we have DF = FP.

Abt. 92. Let DG touch the

parabola in D, and FI be the

perpendicular from the focus F
to the tangent ; A, the vertex ;

then shall FI be a mean pro-

portional between DF and

FA.

Join AI, and draw through
D the ordinate DN. Then,

since the angle DIF = GIF ;

and DF = GF (Art. 90) ; DI
= IG. Also, AN = AG con-

sequently, AI is parallel to DN
(2.6) ;

and therefore the angles

at A are right angles ; where-

fore the triangle IAF is similar to GIF or DIF (8.6). Hence,

As DF : FI : : FI : FA.

Q. E. D.

Cor. As DF : FA : : DF2
: FI 2

(cor. 2.20.6).

Art. 93. Let UK touch the parabola in H, and HR be

parallel to the axis AM ; from any point Q in the parabola,

let QV be drawn parallel to HK ;
then QV, produced, will
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meet the parabola in another point ;
and the line between its

points of section with the curve will be bisected by RH.

From Q, draw QS at right angles to the directrix ; and

from the centre Q, with the distance QS, describe a circle
;

this circle will evidently pass through the focus F (Art. 86),

and touch the directrix in S (cor. 16.3). Join FR, and let

QV cut FR in Y ; then, since HK is at right angles to FR,
and also bisects it (Art. 89, cor. 2) ; the angles at Y are right

angles ; and the point X, where the circle cuts FY the second

time, lies between F and R. Also, FY = YX (3.3). Make
RT = RS; draw TP parallel to AM, meeting QV in P

; and

through the points F, T, X, describe a circle. Then, since

FR cuts the circle FXS, and RS touches it, FR.RX = RS2

(36.3)
= RT2

; consequently, RT touches the circle FTX in

17
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T (37.3). Hence the centre of that circle is in TP, which is

at right angles to RT (19.3) ; it is also in VY, which bisects

FX at right angles (cor. 1.3) ; it is therefore in P; the point

P is of course in the parabola (Art. 86).

Now, PT, HR and QS being parallel, and TR = RS, it

follows (2.6) that PV = VQ. Q. E. D.

Def. 11. Any line OR, parallel to the axis, is called a dia-

meter of the parabola ; the point H, where the diameter meets

the curve, is called its vertex ; 4HR is called the latus rectum

of that diameter ; the line PV or VQ, parallel to the tangent

HK, is called an ordinate and HV an abscissa to the diameter

OH.

Art. 94. Let PZ be drawn at right angles to the diameter

OR, and PV parallel to the tangent HK ; then PZ2=4AF.VH.
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Retaining the construction of the last article, let the tan-

gent HK meet FR in a, and the diameter TP in c
;
draw en

parallel to FR, and join Aa. Then, since FR is bisected in

a (Art. 89, cor. 2) ; and FX in Y (3.3) ; Ya or nc = ^XR :

also, Pc = VH (341). But (as was proved in Art. 92), the

triangle FAa is similar to FaK or Yen. Consequently,

As Fa : FA : : Pc : en ;

whence FA.Pc (or FA.VH) = Fa.nc (16.6). Hence,

4FA.VH = FR.RX = TR2 = PZ2

Q. E. D.

Art. 95. If, from two points P, A, ordinates, PV, AO, be

drawn to any diameter OR, the squares of those ordinates

shall be to each other in the same ratio as their abscissas ;

that is,

As PV3
: AO 3

: : VH : OH.

Draw PZ, AW, at right angles to OR ;
then (Art. 94) PZ 3=

4FA.VH; and AW* = 4FA.OH; consequently (1.6),

PZ3
: AW a

: : VH : OH.

But the triangles PVZ, AOW, being similar,

PV 8
: AO3

: : PZ 3
: AW3

: : VII : OH.

Q. K D.

Art. 96. The square of any ordinate is equal to the rec-

tangle of its abscissa, and the latus rectum of the diameter.

Let PV be an ordinate to the diameter OH; from the

vertex of the axis let AO be drawn to the same diameter,

parallel to PV ; from H, draw HM at right angles to the

axis. Then, since AOHK is a parallelogram,

OH = AK -
(Art. 90) AM = HW .-. OW = 20H.

Now,
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AO - AW3 + OW2
(47.1)

= 4AF.0H + 40H 9

(Art. 94, and

cor. 2.8.2)
= 4RW.OH + 4WH.OH = 4RH.OH.

But (Art. 95),

As AO- : PV2
:: OH : VH :: (1.6) 4RH.OH : 4RH.VH.

Hence, PV 2 = 4RH.VH. Q. E. D.

Art. 97. A double ordinate passing through the focus of a

parabola, is equal to the latus rectum of the diameter to

which that ordinate is applied.

Let F be the focus ; VH a diameter ; EG the directrix ;

HD a tangent to the parabola ; PFO, the line through the

focus parallel to DH. Join FH ; then, PV being parallel to

DH, the angle DHG = FVH; and DHF =* HFV (29.1).

But DHG = DHF (Art. 89) ; therefore, FVH = HFV; and

HV = FH (6.1)
- HG (Art. 86). Now, PV = VO (Art. 93),

and PV2 = 4GH.HV (Art. 96) = 4HG2
. Hence PV = 2HG

(cor. 2.8.2). Therefore, PO = 4HG.

The case of the double ordinate applied to the axis, is

proved in Art. 87. Q. E. D.
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hence, by inversion,

As EC 2
: EB2

: : CN.ND : EM2 or NL2
.

It is therefore manifest that the property demonstrated in

Art. 84 is equally true, whichever axis is divided by an

ordinate.

Cor. Since CN.ND is less than CE2
(27.6), it follows that

NL2
is always less than EB2

, and consequently NL less than

EB.

Art. 100. If, on either axis of an ellipse, a circle be

described; and from any point in the ellipse a perpendi-

cular be drawn to that

axis, meeting the circle ; it

will be, as the axis on

which the circle is de-

scribed is to the other
i

axis, so is the ordinate to

the circle, to the ordinate

to the ellipse.

Let ACBD be the ellipse,

and first let the circle be

described on the greater axis AB, and let LM be the ordi-

nate ; then (Art. 84),

As EB2
: EC2

: : AM.MB : ML2
.

But AM.MB = MP2
(35.3). Hence (22.6),

As EB : EC : : MP : ML.

Again, let the circle be described on CD, and the ordinate

LN meet the circle in I ; then (Art. 99),

As CE2
: EB2

: : CN.ND : NL2
.

But CN.ND = NI2

(35.3) ; therefore (22.6),

CE : EB : : NI : NL.

Now, CE : EB : : CD : AB.

Hence the proposition is manifest.
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Cor. Two ordinates, ML, TR, being drawn to the same

axis, ML : TR : : MP : TS.

Art. 101. The sum of the lines FH, GH, drawn from any

point in the ellipse to the two foci, is equal to the greatei

axis AB.

Take E the middle of

AB,* and through it draw
the perpendicular CD ; this

will be the less axis. From
H draw the ordinate HI,

and take EL a fourth pro-

portional to EB, EG and EI.

Then (22.6),

As EB2
: EG2

:: EI2
: EL2

.

Consequently (19.5),

EB2
: EG2

: : EB2— EI2
: EG2— EL2

(that is, 5.2) : : AI.IB

: FL.LG.

Hence (17.5 and Def. 12),

EB2
: EC2

:: AI.IB : AI.IB— FL.LG.

Therefore (Art. 84),

AI.IB— FL.LG = IH2
.

Again, BE2
f EL2 = 2BE.EL + BL2

(7.2) ;

also, GE2 + EI2 = 2GE.EI + GI2
.

Taking the latter of these equations from the former, and

remembering that BE2— EI2= AI.IB (5.2) ;
that GE2— EL 2

= FL.LG ; and that BE.EL == GE.EI (16.6) ; we have

AI.IB— FL.LG = BL2— IG2
;

that is, IH2 = BL2— IG2
. Hence, IH2 + IG2 = BL2

, Con-

sequently (47.1), GH2 = BL2
; and GH = BL.

* The middle of the axis is usually called the centre of the ellipse.
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Taking AE2 + EL2 + 2AE.EL = AL2
(4.2), and FE2 +

EP + 2FE.EI = FI2

, and proceeding as before, we have

IH2 = AL2— FP .-. FP + IH2 = AL2
;

whence (47.1), FH2 = AL2
; therefore, FH = AL. Conse-

quently,

FH + GH = AL + BL = AB.

Q. E. D.

Cor. 1. Since FH = AL,and GH = BL, it is manifest that

EL = FH— AE = AE— GH.

Hence, FH— GH ==± 2EL ; or EL = $(FH— GH).

Cor. 2. If, from a point without the ellipse, two right lines

be drawn to the foci, their sum will be greater than the

greater axis of the ellipse ; but if a point be taken within the

ellipse, the sum of the lines drawn from it to the foci will be

less than the greater axis. This is evident, from what is

above proved and 21.1.

Cor. 3. Conversely : A point is either in, without or within

an ellipse, according as the sum of the lines drawn from it to

the foci is equal to, greater, or less than the greater axis.

Art. 102. If, from any point P of an ellipse, a straight line

PR = AE, half the greater axis, be applied to the less axis

K JT CD, cutting the greater axis

in S ; then shall SP = EC,
half the less axis.

From P draw PT at right

angles to AB ; then, because

of the similar triangles TSP,
ESR:

As PR: PS :: ET:ST;

hence (22.6 and 19.5),
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As PR2
(
= AE2

)
: PS2

:: AE2— ET2
: PS2— ST2

:: (5.2

and 47.1) AT.TB : TP2
:: (Art. 84) AE2

: EC2
;

therefore, PS = EC. Q. E. D.

The ellipsograph, or instrument for describing an ellipse,

is founded upon this property.

Art. 103. From a point H in an ellipse, two lines HF,
HG, being drawn to the foci, and one of them FH produced,
the line HV, which bisects the exterior angle, is a tangent to

the ellipse.

Make HW, in FH produced, = HG ; join GW, cutting the

bisecting line in V ; in VH, take any point K ; and join KG,
KW and KF. Then the triangles GHV, WHV, have GH=
WH, and the angle GHV=WHV; hence (4.1), GV=WV,
and the angle GVH = WVH. Consequently, GK=WK;
and, therefore,

FK + GK = FK + WK.
But FK +WK>FW (20.1), and FW=FH+HG=AB (Art.

101); therefore FK+GK>AB; and (Cor. 3, Art. 101) the point
K is without the ellipse. This being true of every point in

HV, except H, the line HV is a tangent to the ellipse.

Q. E. D.

Cor. 1. From this demonstration it is obvious that the line

HV, bisecting the exterior angle GHW, also bisects GW, and

cuts it at right angles in V.

Cor. 2. Hence the angles FHK, GHV, which the lines from

the foci to the point of contact make with the tangent, are

equal. For WHV = KHF (15.1).

Art. 104. Aright line through the vertex of either axis,

parallel to the other axis, is a tangent to the ellipse.

The line DM parallel to AB, makes the angle GDM=DGF,
and MDN = GFD (29.1), and DGF = GFD (5.1) ; conse-

quently, DM bisects the angle GDN, and is therefore a tan-

gent to the ellipse (Art. 103).

18 at*
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Next, take BY parallel to CD, and through any point X
in CD draw XZ parallel to BE, meeting the ellipse in Z ;

then XZ is less than EB, (Cor., Art. 99); that is, Z lies between

DC and BY ; therefore, the line BY is without the ellipse.

Art. 105. Let the right

lines FW and GW, ofwhich

FW=AB, the greater axis,

be drawn from the foci to

meet in W ; and let VH, bi-

secting GW at right angles

in V, cut FW in H ; then

HV touches the ellipse in

H. Join HG ;
then it is evi-

dent (4.1) that GH =WH,
and the angle GHV=WHV; hence the angle GHW is bisect-

ed by the line HV ; and since HG = HW,
FH + HG = FW = AB;

therefore (Art. 101, Cor. 3), the point H is in the ellipse;

and (Art. 103) HV is a tangent to the ellipse.

Cor. A line which cuts GW at right angles, but does not

bisect it, is not a tangent to the ellipse. For this line is

parallel to HV, and, if it cuts GW between V and W, it does

not meet the ellipse ; but if it falls between G and V, it must

cut the ellipse.

Art. 106. A straight line which meets an ellipse, but does

not bisect the exterior angle formed by the lines drawn to

the foci, is not a tangent to the ellipse.

Let HR meet the ellipse in H, but not bisect the exterior

angle GHW. On HR let fall the perpendicular GN; and

produce it to M, making NM = GN; join FM, meeting HR
in I

; join also GI* GH and HM. Then (4.1), GI = IM, GH
=HM, and the angle GHN=MHN. Hence the angle GHM



CONIC SECTIONS. 139

is bisected by the line HR, but by supposition the angle

GHW is not ; consequently, HM does not coincide with

HW ;
and therefore FHM is a triangle, of which FM is less

than FH + HM (20.1). But

FH + HM = FH + HG = AB (Art. 101).

Also FM = FI + IG. Therefore, FI + IG are less than AB,
and the point I is within the ellipse (Art. 101, Cor. 3). Hence

HR is not a tangent.

Cor. From this and Art. 103, it is evident that the tangent
must bisect the exterior angle formed at the point of contact

by right lines drawn to the foci ; and that only one right line

can touch the ellipse at a given point.

Art. 107. Let HM touch the ellipse in H, and meet the

greater axis AB produced in M ; and from H let HI be drawn
at right angles to AB ; then, E being the centre, EI, EB and

EM shall be proportionals.

Take EL a fourth proportional to EB, EG and EI ; this

line is half the difference between FH and GH (Art. 101,
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Cor. 1). Now, the tangent HM bisects the exterior angle of

the triangle FHG (Cor. 2, Art. 103), and, meets the base pro-

duced; therefore (A. 6),

AsFH : HG :: FM : MG;

consequently (E. 5 and Art. 101),

As 2EB : 2EL :: FM+MG (2EM) : FG (2EG) ;

wherefore (15.5),

AsEB : EL :: EM : EG?

consequently (1.6),

As EB3
: EB.EL : : EM.EI : EG.EI.

But EB.EL = EG.EI (16.6) ; therefore, EB3 = EM.EI ; and

(17.6), EI : EB : : EB : EM.

Q. E. D.

Cor. If the tangent MH meet the less axis EC produced
in P, and HN be drawn at right angles to EC ; then shall

EN, EC and EP be proportionals.
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By similar triangles,

As PE : PN :: EM : NH or EI :: (1.6) EM.EI : EI2 ::

(by this article) EB 2
: EP.

Hence (D. 5),

As PE : EN : : EB3
: EB 3— EP : : (5.2, Art. 84 and 16.5)

EC3
: EN2

.

Again <1.6), As PE : EN : : PE.EN : EN2
.

Consequently, PE.EN = EC*; or EN : EC : : EC : EP.

Art. 108. Let MHP touch the ellipse in H, and meet the

axes in M and P ;
then if, on the axes, circles be described,

cutting the ordin^tes HI and HN in R and O, the lines MR
and PO shall touch the circles.

Join ER ; then, since ER = EB, we have (Art. 107),

As EI : ER : : ER : EM.

Hence (6.6), the triangles EIR, ERM, are similar; conse-

quently, ERM is a right angle ; wherefore (cor. 16.3), RM
touches the circle. In the same manner it may be proved
that OP touches the circle.

Art. 109. Let PT be a right line touching the ellipse in

O ; FP, GT, perpendiculars falling upon it from the foci F
and G

; then shall FP.GT = EC2
, the square of the less semi-

axis.

Join FO, and let FO,
GT, produced, meet in W;
and join OG, ET. Then,
since the angle GOT =
WOT;andGTO=WTO;
the side OG = OW, and

GT=WT(26.1). Hence
FW = FO + OG = (Art.

101) AB. Now, in the

triangles FGW, EGT, FG
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= 2EG, GW == 2GT, and the angle at G common ; therefore

(6.6), FW = 2ET, or EB = ET. Consequently, the circle

described on AB will pass through T. In the same manner

it may be proved that it will pass through P.

Next, produce TE till it meets the circle in S, and join

FS ; then, because ES = ET, EF = EG, and the angle SEF
== TEG (15.1) ; the side FS must = GT, and the angle EFS
= EGT (4.1); consequently, FS is parallel to GT (27.1)-

that is, FS is in the same straight line with PF. For GT
and FP are at right angles to the same line, and are therefore

parallel.

Now, FP.FS == AF.FB (35.3)
= EC2

(Art. 98) ;

therefore, FP.GT == EC2
. Q. E. D.

Art. 110. Let RK be a tangent to the ellipse in H; the

li-ne HN a perpendicular to RK, meeting the greater axis in

M, and the less in N; HI, HP, ordinates to the axes AB, CD ;

then it will be,

AsEB2
: EC2

: : EI : IM;

and As EC2
: EB2

: : EP : PN.

Join FH, GH ; and pro-

duce FH to L, making HL
= HG ; join GL, and draw

EO parallel to HM. Then

GL is at right angles to

HK (Cor., Art. 103) ; and

therefore parallel to HM or

OE. Hence EO, which bi-

sects FG, also bisects FL
(2.6); wherefore FO=EB.

Then, HL being = HG, and OL = FO; HO = half the dif-

ference of FH and HG. Consequently (Art. 32),

AsEB : EG :: EI : OH;
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also (2.6),

As FO (EB) : FE (EG) : : OH : EM;

hence (23.6),

AsEB2
: EG2

:: EI : EM;

therefore (D. 5),

As EB2
: EB2— EG2

: : EI : IM.

But EB2— EG2 = EC 2
(see def. 12). Consequently,

As EB2
: EC2

: : EI : IM.

Again, fr.om similar triangles,

As EI (PH) : IM :: NP : HI (PE);

and by inversion,

IM : EI : : PE : PN.

Hence, EC2
: EB2

: : PE : PN. Q. E. D.
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therefore (12.5),

As ER : EA : : ER + EI : EA + EL.

But ER + EI = HM ; and EA + EL = FH. From the

analogy ER : EA : : EA : EF, we have (19.5),

ER : EA : : AR : AF.

Hence, EA : EF : : HM : HF : : AR : AF.

Q. E. D.

Def. 13. If we
make EN = ER,
and draw NP pa-

rallel to RM, each

of the lines RM,
NP, is called a di-

rectrix to the el-

lipse; and if HP,

HG, are drawn, the

latter to the focus And the former at right angles to the

directrix, it may be proved as before that

HP : HG : : BN : BG.

Cor. Because ER : EA : : EA : EF;

(16.6) EA2 = ER.EF = EF2 + EF.FR ;

therefore, AE2— EF2 = EF.FR; that is, EC 2 = EF.FR.

M
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therefore (Art. Ill),

As AE : FE : : RF + FH.cos BFH : FII ;

consequently (16.6),

FH.AE i RF.FE + FH.FE.cos BFH;

whence,

FH.AE—FH.FE.cos BFH=RF.FE=(Cor., Art. Ill) EC
2
.

Consequently,
EC2 EC2

FH -
AE— FE.cos BFH

"
AE + FE.cos AFH

For, cos AFH * —cos BFH. Q. E. D

Cor. If IH be produced to meet the semicircle on AB in

T, and ET be joined, then shall

FH = AE + EF.cos BET = AE— EF.cos AET.

By Art. 28,

As 1 : cos BET :: ET (=AE) : EI : : EF : EL=EF.cos BET.

But

FH=AL (Art. 101)=AE + EF.cos BET=AE—EF.cos AET.

Art. 113. Every diameter* to an ellipse is bisected in the

centre.

Let HI, passing through the centre E, meet the ellipse in

H and I ; then is EI = EH. For if it is not, take EP=EH 5

and from H, I, P, draw lines to the foci F and G. Then we
shall have EH = EP ; EF = EG

; and the angle HEF =
PEG (15.1) ; therefore (4.1), FH = PG. In like manner, GH
== FP ; therefore,

FH + HG = FP + PG.

But, FH + HG = FI + IG (Art. 101) ;

consequently, FP + PG = FI + IG ;

which is absurd (21.1).

* Any right line passing- through the centre, limited at both extremities

by the ellipse, is called a diameter.

19 N
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Art. H4. The tangents to an ellipse passing through the

extremities of any diameter, are parallel to each other.

Let HM and IN touch the ellipse in H and I, the extremi-

ties of the diameter HI ; and produce FH, GI, the lines from

the foci, to K and L ; then the angles GHK, FIL are bisect-

ed by the tangents HM, IN (Cor. 1, Art. 106). And since

GE, EH are respectively equal to FE,EI (Art. 112), and the

angle GEH = FEI (15.1), the angle EHG = EIF, and the

side HG = FI (4.1). In the same manner, FHE = GIE;

consequently, the whole angle FHG = FIG
; and, therefore,

(13.1) GHK = FIL; whence GHM *a FIN. But EHG =
EIF; therefore, EHM = EIN; whence (27.1) HM is parallel

to IN.

Cor. Hence, if tangents be drawn through the extremities

of any two diameters, they will form a parallelogram.

Def. 14. If the diameter OT be drawn parallel to the tan-

gents through the extremities of IH, then OT is said to be

conjugate to IH.

Art. 115. Let OT, which is conjugate to IH, cut the

radius vector, or line from the focus to the curve, FH in V;
then is HV = AE, half the greater axis.

Through the other focus G, draw GW parallel to OT, cut-

ting FH in W. Then, because OT, and consequently WG,
is parallel to the tangent HM, the angle HWG = KHM ;
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and HGW^GHM (29.1) ; therefore (Cor. % Art. 103), HWG
=HGW; and consequently HG = HW (6.1). Since EV is

parallel to GW, and FE = EG ; therefore (2.6), FV = VW.
Hence, VH=FV+HG; and therefore (Art. 101) VH=AE.

Q. E. D.

Art. 116. If the diameter OT is parallel to HM, the tan-

gent at H, thei#the diameter HI shall be parallel to TN, the

tangent at T.
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(27.1). But EQM is a right angle (18.3) ; therefore, QEP is

also a right angle (29.1) ; and EPN is a right angle (18.3) ;

therefore, PN is parallel to EQ (28.1). Consequently, the

angle LNP = KEQ (29.1) ; and as NLP = EKQ, we have,

As LN : EK : : LP : QK : : (Cor., Art. 100) LT : KH.

Hence, LN : LT : : EK : KH;

consequently, the triangles LNT, KEH are similar (6.6), and

the angle LNT = KEH; therefore (27.1), TN is parallel to

EH. Q.E.D.

Cor. 1. Hence, OT being conjugate to IH, IH is also con-

jugate to OT.

Cor. 2. Hence, also, if through the extremities H and T
of two conjugate diameters, ordihates, HK, TL, be drawn to

the greater axis, meeting the circle described on that axis in

Q and P; the tangent QM to the circle is parallel to the

radius EP, and the tangent PN to the radius EQ.

Art. 117. The sum of the squares of any two semi-conju-

gate diameters, is equal to the sum of the squares of the

semi-axes.
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to NET, because EH is parallel to TN, and HM to ET.
The triangle HMK is likewise similar to TEL. Conse-

quently,

As EM : MH :: EN : ET;

and AsMH : MK :: ET : EL;

therefore (22.5),

As EM : MK : : EN : EL : : (Art. 107, and Cor. 2 to 20.6)

EB2
: EL2

.

Also, As EM : EK : : EB2
: EK2

.

Consequently (24.5),

EM : MK + EK : : EB2
: EL2 + EK2

;

wherefore, EB2 = EL2 + EK2
.

If the tangents MH, NT, produced, meet the other axis

CD produced, in S and R ; and the ordinates HW and TX
be drawn to that axis ; we have, in like manner, the triangles

ESH, SHW, respectively similar to RET and ETX ; whence,
as before,

AsES : SW :: ED2
: EX2

;

and As ES : EW : : EC2
: EW2

.

Consequently,

EC2 = EX2 + EW2 = LT2 + KH2
.

'

Wherefore,

EB2 + EC2 - EL2 + LT2 + EK2
-f KH2 =

(47.1) ET2+EH2
.

Q. E. D.

Cor. Since EK2+EL2=EB2=EQ2=EP2
, it follows (47.1)

that EL == KQ, and EK = LP. Hence,

As EB : EC : : EL : KH : : EK : TL.

In like manner,

As EC : EB : : EX : WH : : EW : XT.
20
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Art. 118. The parallelogram formed by the tangents

through the extremities of any two conjugate diameters, is

equal to the rectangle of the axes.

/ c
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Therefore,

PH.HV = SE.EL = EC2

(Cor., Art. 107).

Art. 121. Let CD, FG be conjugate diameters; DL, a

tangent to the ellipse ; HI, a chord parallel to DL, cutting CD
in K ; then shall HI be bisected in K ; and

As DE2
: EG2

: : DK.KC : HK2
.

Let DL, HI meet the greater axis AB produced in L and

V; through H, D, I and G, draw HM, DO, IN and GW at

right angles to AB, meeting the circle on AB, in R, P, S and

W; join PL, RS, SV, EP and EW; and let RS cut EP in

T ; and join TK. Now, since IV is parallel to DL, the angle

NVI = OLD (29.1), and VNI = LOD, both being right an-

gles; therefore (4.6),

As VN : NI :: LO : OD.

But (Cor., Art. 100),

AsNI : NS :: OD : OP;

therefore (22.5),

As VN : NS :: LO : OP;

consequently (6.6), the angle NVS = OLP. Hence (28.1),

VS is parallel to LP.
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Again, from similar triangles,

As VM : MH :: VN : NI;

and (Cor., Art. 100),

MH : MR :: NI : NS;

therefore (22.5),

As VM : MR : : VN : NS.

If, therefore, we suppose VR joined, the angle MVR = NVS
(6.6) ; consequently, VS and SR are in the same straight line.

Now, as DL touches the ellipse in D, PL touches the circle

in P (Art. 108). Hence, EPL is a right angle (18.3) ; and

RS, which is parallel to PL, is bisected in T (3.3). Since

HV is parallel to DL, and TV to PL ; we have (2.6),

As EK : KD :: EV i VL : : ET : TP;

hence TK is parallel to PD (2.6), and consequently to SI and

RH; wherefore,

ST : TR : : IK : KH.

But ST = TR; therefore, IK = KH.

Again, since EW is parallel to PL (Cor. 2, Art. 116), and

therefore to RV ; and EG to DL or HV ; the angle EVR =
VEW, and EVH =VEG

; hence, HVR = GEW. Also, HR
being parallel to GW, the angle VHR — EGW ; for each of

them is equal to GtiR (29.1). Hence,

EW : EG : : VR : VH : : RT : HK.

Now, from similar triangles,

As ED : EP :: EK : ET;

and, therefore (22.6),

As ED2
: EP2

: : EK2
: ET2

: : (19.5)

ED2—EK2
: EP2— ET2

:: (5.2 and 47.1) DK.KC : RT2
.

But EW2
or EP2

: EG2
: : RT2

: HK2
:

20
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therefore (22.5),

As ED2
: EG2

: : DK.KC : HE
Q. E. D.

Of the Hyperbola.

Art. 122. Let ABC be a triangle

formed by the section of a cone and

a plane passing through its axis, at

right angles to the plane of its base ;

and let a plane at right angles to

the plane of the triangle cut the

cone in DFE and the opposite

cone, made by the extension of the

sides of the given cone on the other

side of A, in OHR ; then (Art. 85)

the curves DFE and OHR form

opposite hyperbolas.

The two branches of either hy-

perbola, as likewise the two opposite

hyperbolas, are like figures, and

equal to each other.

Let BDC be the base of the cone ; DE, the intersection of

BDC and the plane DFE ; and GFHP, the intersection of the

cutting plane and the plane of ABC.

In GF take any point L, make HP = FL, and through L
and P let planes pass parallel to the base of the cone ; then

the sections KNI, MRT, of these planes and the conical sur-

face, are circles, whose centres are in KI, MT (Art. 80), the

intersections of these planes with the plane of ABC, which

passes through the axis of the cone. But (18.2 sup.) SLN
and OPR are at right angles to the plane of ABC, and there-

fore (Def. 1.2 sup.) to KI and MT in that plane; therefore

(3.3), SL = LN, and OP = PR. Hence, the two branches

of either hyperbola are equal to each other.
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Again, since the planes MOT and KSI are parallel, MT is

parallel to KI (14.2 sup). Hence the triangles FLI and MFP
are similar, as likewise the triangles KHL and PHT ; there-

fore,

AsFL : FP :: LI : MP;

and AsLH : HP :: KL : PT;

consequently,

As FL.LH : FP.HP : : LI.KL : MP.PT : : (35.3) LN2
: PR2

.

But, by construction, FL === HP ; therefore, LH ±= FP, and

FL.LH = FP.HP; .-. LN2 = PR2
, or LN = PR. Conse-

quently, equal ordinates corresponding to equal abscissas, the

opposite hyperbolas must be like figures and equal to each

other. Q. E. D.

Art. 123. Let MAN, PBQ (see fig. on page 156) be two

hyperbolas, formed by the sections of a cone and a plane, as

described in Art. 122 ; AB, the interval between the points

where the cutting plane cuts the opposite cones, correspond-

ing to HF in the figure on page 154.

Bisect AB in E ; draw DEC at right angles to AB ; and,

drawing the ordinate HI from any point H in the curve, to

meet BA produced in I, make ED and EC such that

AI.IB : IH2
:: EA2

: ED2
or EC 2

;

then AB is called the first, and DC the second, axis of the

hyperbola. The points A, B, are called the vertices, and E
the cenfre, of the hyperbola.

From this construction and Art. 85, it is obvious that AE2

is to ED2
as the rectangle of any corresponding abscissas is

to the square of their ordinate.

Art. 124. Def. 15. Join AD ; and make EF, EG, each

equal to AD ; then F and G are called the foci of the hyper-
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M.

bolas; and the double ordinate RFS, passing through the

focus, is called the latus rectum.

The latus rectum is a third proportional to the first and

second axes. For BA is bisected in E ; therefore,

BF.FA + AE2 = EF2

(6.2)
= AD2 = AE2 * ED2

(47.1) ;

consequently, BF.FA = ED
2

; hence (Art. 123),

AE2
: ED2

:: ED2
: RF2

or FS2
;

wherefore (22.6),

AE : ED :: ED : RF or FS;

and AB : DC : : DC : RS.

Cor. From this demonstration, it is obvious that

ED2 = AF.FB = BG.GA.
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Art. 125. If from any point H in the hyperbola, a perpen-

dicular HK be let fall on the second axis, it will be,

As ED2
: AE2

: : ED2 + EK2
: HK2

.

For (Art. 123),

As AE2
: ED2

: : AI.IB : IH2
: : (12.5)

AE2 + AI.IB : ED2 + IH2 or ED2 + EK2
.

But (6.2), AE2 + AI.IB = EI2
.

Hence, by inversion,

ED2
: AE2

: : ED2 + EK2
: EI2 or HK2

.

Q. E. D.

Art. 126. The difference of two right lines, HG, HF,
drawn from any point.H in the hyperbola to the foci, is equal

to AB, the first axis.

Take EL a fourth proportional to EA, EF and Ei ; HI

being an ordinate to the point H. Then (22.6),

AsEA2
: EF2

:: EI2
: EL2

;

therefore (17.5),

AsEA2
: EF2— EA2

(ED
2

)
:: EI2

: EL2— EI2
:: (19.5)

EI2— EA2
: EL2— EI2— ED2

.

But (6.2), EI2— EA» = ALBI;

and (Art. 123),

AsEA2
: ED2

:: AI.IB : III
2

;

therefore, EL2— EF— ED 2 =* IH2
.

Again, EA2 + EL2 == 2AE.EL + AL2

(7.2) ;

and EF2 + EI2 = 2EF.EI + FI2
.

Taking the difference of these equations, and remembering
that EF2 — EA2 = ED2

; and AE.EL = EF.EI, because

AE : EF : : EI : EL ; we have,

EL2— EI2— ED2 = AL2— FI2
.

21
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Hence, AL2— FP=IH2
; or AL2 = IH2 + FP = (47.1) FH2

;

or AL = FH.

Further, EL2 + EB2 + 2BE.EL = BL2
(4.2) ;

also, EI2 + EG2 + 2IE.EG £ IG 2
.

Taking the difference as before,

EL2— EI2 — ED2 = BL2— IG2
.

But EL2— EI2— ED2 = IH2
;

therefore, BL2— IG2 =IH 2
;

and, therefore,

BL2 = IG2 + IH2 =
(47.1) GH2

; or BL = GH.

Consequently,

BA=(BL— AL=)(>H— FH.
Q. E. D.
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Art. 127. If, from a point Z within an hyperbola, two

right lines, FZ, GZ, be drawn to the foci, the difference of

these lines is greater than AB, the first axis ; but if from a

point b without the hyperbola, two right lines, bG, bF, be

drawn to the foci, the difference of these lines will be less

than the axis AB.

First, let ZG meet the hyperbola in a, and join Fa ; then,

since FZ is less than Fa + aZ, the difference between GZ
and FZ is greater than between GZ and Fa + aZ ; that is,

than Ga— Fa. But (Art. 126) Ga— Fa = AB; therefore,

GZ— FZ is greater than AB.

Next, let Fb meet the hyperbola in d, and suppose Gd

joined; then, because Gd is greater than Gb— bd, Gd— dF;
that is, AB is greater than Gb— bF, or Gb— bF is less than

AB. Q. E. D.

Cor. Hence a point is either in, within, or without an hy-

perbola, according as the difference of the lines drawn from

it to the foci is equal to, greater, or less than the first axis.

Art. 128. If, from any point H (see fig. on page 160) in

the hyperbola, a right line HM be drawn bisecting the angle

FHG, made by Ikies to the foci F, G, the line HM will be a

tangent to the hyperbola.

Take on HG, the line HL =5 HF ; and take in MH any
other point P, and join PL, PF ; then (4.1), FP=LP. Now,
since HF == HL, LG must be equal to AB (Art. 126) ; hence,

AB = PL + LG— FP.

But PL + LG are greater than the right line joining P and

G ; hence the excess of that line above PF is less than AB ;

consequently, the point P is without the hyperbola (Cor., Art.

127). And this being true of every point in PM except the

point H, that line must be a tangent to the hyperbola.

Q. E. D.

Cor. 1. From this we may infer that the tangent must

bisect the angle FHG ; for if it was possible to draw a tan-
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gent through H which did not bisect the angle, we might
have two right lines touching the same curve in the same

point, and yet not coinciding with each other.

Cor. 2. The line ka through the vertex of the hyperbola,

at right angles to GF, is a tangent ; for the angles GAa, FAa,
are equal.

Art. 129. Let FN, GI be perpendiculars falling from the

foci F, G, upon a tangent HI ; then shall FN.GI = ED2
, the

square of the second semi-axis.

Take, as in the last article, HL == HF ; join LN, NE ; and

produce NE to meet GI in K. Then, since HF = HL ; and

the angle FHN = LHN (Cor. 1, Art. 128) ; the angle HNF
must be equal to HNL (4.1) : consequently, HNL = a right

angle, and therefore FNL is a right line (14.1). Now, in the

triangles NFE, LFG, we have the angle at F common, and

the sides NF, FE, the halves of LF, FG, respectively;

whence (6.6) the angle FNE = FLG, and NE = half LG;
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consequently (28.1), NK is parallel to LG. But LN is pa-
rallel to GK; hence (34.1), LN = GK, and NK = LG = AB
(Art. 126). Hence,

EN = EK = JAB = EA.

Consequently, a circle described from the centre E, at the

distance EA, will pass through N and K ; it will also pass

through I, because KIN is a right angle (converse of 31.3).

Therefore (cor. 36.3), AG.GB = IG.GK; that is, (Cor., Art.

124), ED2 = FN.GL Q. E. D.

Art. 130. Let HM touch the hyperbola in H, and meet
the first axis AB in M, and HS be an ordinate to that axis ;

then it shall be,

As ES : EA : : EA : EM.

Take ER a fourth proportional to EA, EF and ES ; then, as

proved in Art. 126, AR = FH, and BR = GH. Then, the

vertical angle of the triangle GHF being bisected by the line

HM (Cor. 1, Art. 128),

AsGH : HF :: GM : MF (3.6) ;

hence (E. 5)

GH+ HF : GH— HF :: GM + MF : GM— MF;

then, taking the halves of these quantities,

ER : EA :: EF : EM;

and, alternately (16.5),

ER : EF : : EA : EM.

But ER : EF :: ES : EA;

therefore (11.5), ES : EA : : EA : EM. Q. E. D.

Art. 131. Let FO, Go, be the ordinates through the foci ;

OT, ot, tangents to the hyperbolas at O and o, cutting the

first axis in T and t ; QTU and qtu, perpendiculars to AB ;

21 o*
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then, taking any point H in the hyperbola, and drawing HQ</

parallel to the axis AB, it will be,

As FH : HQ :: FA : AT : : GH : Bq :: GA : BT.

Draw HS at right angles to the axis; and take ER a

fourth proportional to EA, EF, ES ; then (Art. 126) AR =
FH, and BR = GH. Now, by construction,

ER : ES : : EF : EA : : (Art. 130) EA : ET : : (19.5)

ER—EA : ES— ET :: EF—EA : EA— ET;

for the last four terms substituting their equals,

FH : HQ :: AF : AT.

Again (12.5),

ER : ES :: ER+EA : ES+ET :: EF+EA : EA+ET.

Hence, GH : Uq : : FB (GA): BT.

And these ratios in both cases are the same as EF : EA.
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Each of the lines QU and qu is called the directrix of the

hyperbola.

This article being compared with articles 86 and 111, it is

manifest that from any point in either of the three conic

sections, two straight lines being drawn, one of them to the

focus and the other at right angles to the directrix, they will

have to each other a constant ratio. In the parabola, the

perpendicular upon the directrix is equal to, in the ellipsis

it is greater, and in the hyperbola it is less, than the radius,

vector, or line front the focus to the curve.

Art. 132. Let AB, DC be the axes of the hyperbolas; AH,
AI, at right angles to AB, and each equal to half DC ; then,

right lines being drawn through E, the middle of AB, and

the points H and I, and indefinitely extended, they are called

the asymptotes ; the property of which, to be demonstrated

hereafter, is, that they continually approach the hyperbola,
but do not meet it.

The asymptotes do not meet the hyperbola.
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From any point N in the hyperbola, draw NM at right

angles to the axis, and let it meet the asymptote in X ; then

(from similar triangles and 22.6),

As EA2
: AH* : : EM2

: MK2
.

But (Art. 123),

As EA2
: ED2

(AH
2

)
:: AM.MB : MN2

;

and EM2
is greater than AM.MB (6.2) ; therefore, MK2

is

greater than MN2
, and MK greater than MN.

Art. 133. Retaining the construction in the last article,

produce KM to meet the asymptote EQ in L; then shall

KN.NL = ED2
.

As in last article, we have,

EA2
: ED2

: : EM2
: MK2

: : AM.MB : MN2
: : (19.5)

EM2—AM.MB : MK2—MN2
: : (6.2 and 5.2) AE 2

. KN.NL.

Hence, KN.NL = ED2 = HA.AI.

Cor. Hence, OPQ being drawn parallel to KL, the rect-

angle OP.PQ = KN.NL; and, therefore (16.6),

As KN : OP : : PQ : NL.

Art. 134. The asymptotes continually approach to the

hyperbola.

Taking KL and OQ as in the last article, it is evident that,

ER being greater than EM, PQ is greater than NL ; but,

KN : OP :: PQ : NL;

hence, OP is less than KN.

Art. 135. Through the vertex A, and any other point N
of the hyperbola, let the lines AS, NT be drawn parallel

to one of the asymptotes EQ, meeting the other in S and

T; then.

As ES : ET : : TN : SA.
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Draw AW, NV parallel to EO; then the triangles IAW,

LNV, are similar ; as are also HAS, KNT ; hence the follow-

ing analogies :

As AW : NV : : AI : NL : : (Art. 133) KN : HA : : TN : AS.

Therefore, As ES : ET : : TN : SA.

Cor. If PU be drawn parallel to EQ, then

EU : ET : : TN : UP.

Scholium. From the property demonstrated in Art. 135 is

deduced a relation between logarithms and the areas con-

tained between the hyperbolic curve and its asymptote. Let

EA =s ED, and consequently ES = SA, and SEW a right

angle. The hyperbola is then called an equilateral or rect-

angular one. If in that case we assume ES = 1 ; and of

course the square SW also = 1 ; then ET being estimated in

units of ES, and the area ASTN in units of SW, it is proved

by writers on differentials that ASTN is the logarithm of

22
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ET, provided the modulus (Art. 15) m = 1. Hence, those

logarithms are termed hyperbolic.

It is, however, observable, that these hyperbolic areas may
be made to express logarithms of other kinds. For, if the

relation between the axes is such that, ES being = 1, the

area of the parallelogram SW shall be expressed by the

modulus, the area of ASTN will be the logarithm of ET,

according to the system to which that value of m belongs.

But the demonstration of these properties would lead further

into the differential and integral calculus, than the design of

this work admits.
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SPHERICAL PROJECTIONS.

Article 136. The business of Spherical Projections is to

represent by lines, drawn or described on a plane given in

position, the circles which are described on the surface of a

sphere. The lines thus drawn or described on the plane, are

called the projections of the circles which they represent ;

and are so framed that, to an eye properly located, every
circle on the sphere will appear coincident with its repre-

sentative.

Def 1. The plane on which the circles of the sphere are

represented, is called the plane of projection ; and the point

where the eye is supposed to be located, the projecting point.

A right line drawn from the projecting point to any point on

the sphere, and extended to meet the plane of projection, is

termed a projecting line.

Def. 2. Every circle on the sphere is called an original

circle; and the figure which represents it on the plane of

projection, a projected circle.

Def. 3. In the orthographic and stereographic projections,

the plane of projection is supposed to pass through the centre

of the sphere. Then the common section of this plane and the

spherical surface is a circle, wThich is called the primitive

circle. This circle is evidently a great one (Art. 45) ; and,

being both on the sphere and plane of projection, may be

considered as an original circle, projected into itself.

Def. 4. In the orthographic projection, the projecting point

is in the axis of the primitive circle ; but so remote, that all the

(167)
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projecting lines drawn to the different points of the sphere

may be considered as parallel.

Def 5. In the stereographic projection, the projecting point

is at one of the poles of the primitive circle.

Def. 6. The line of measures of any circle which is to be pro-

jected, is the common section of the plane of projection, and

another plane which passes through the axes, both of the

primitive circle and of the circle to be projected.

Def. 7. The semitangent of an arc is the tangent of half the

arc ; not half the tangent of the arc.

Of the Orthographic Projection.

Art. 137. If a right line AB be projected orthographically

upon a plane, the projection will be a right line ; and the

original line will be to its projection, as radius to the cosine

of the inclination of the original to the plane of projection.

Let EF be the plane
of projection, seen

edgewise ; Aa, Bb,

the projecting lines,

through the extremi-

ties of AB, meeting

the plane of projection

in a, b. Conceive a plane to pass through Aa, Bb
; this plane

will include AB, and be at right angles to the plane of pro-

jection (def. 4 and 17.2 sup). The common section of these

planes will evidently be the projection of AB ; but this sec-

tion is a straight line (3.2 sup.) contained between Aa and

Bb ; that is, it is the line ab.

Through A draw AD parallel to ab; then is DAB the

inclination of AB to the plane of projection. And (Art. 28)

radius : cosine DAB : : AB : AD or ab.

E
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Cor. 1. When a line is parallel to the plane of projection,

its projection is equal to the original line.

Cor. 2. When two lines which make an angle with each

other are parallel to the plane of projection, their projections

make an equal angle with each other. This is obvious from

9.2 sup.

Cor. 3. Any figure which is delineated on a plane parallel

to the plane of projection, is projected into a figure similar

and equal to itself.

Art. ,138. A circle whose plane is at right angles to the

plane of projection, is projected into a right line equal to its

diameter.

Let EF be the

plane of projec-

tion, seen edgewise ;

ABDC, the circle;

Gil, IK, right lines

perpendicular to the

plane of projection,
•^ ^*^-

:

^ ^
touching the circle

in A and D ; then the plane GHKI will evidently include the

circle ; and its intersection HK with the plane of projection,

must be the projection of the circle : but HK = AD, the

diameter of the circle.

Cor. Hence any figure which is delineated on a plane at

right angles to the plane of projection, is projected into a

right line.

Art. 139. A circle of the sphere, whose plane is parallel

to the plane of projection, is projected into a circle equal
to itself, and concentric with the primitive circle.

For every circle of the sphere which is parallel to the

plane of projection, has the same axis with the primitive
circle ; and that axis being at right angles to the plane of

22 p
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projection, is a projecting line (def. 4). Consequently, the

centre of the original circle must be projected into the centre

of the primitive. And every radius of that circle is projected
into a line equal to itself (Cor. 1, Art. 137).

Cor. As the radius of any circle on the sphere is the sine

of its distance from its own pole ; the radius of a projected
circle whose original is parallel to the primitive, is the sine

of the distance of that original circle from its pole.

Art. 140. A circle whose plane is inclined to the plane of

the primitive, is projected into an ellipse, whose major axis

is equal to the diameter of the original circle, and whose

minor axis is to the major, as the cosine of the inclination of

the planes is to radius.

Let AGBH be the ori-

ginal circle ; P, its centre ;

GH, its diameter parallel

to the plane of projection ;

AB, the diameter at right

angles to GH ; ABba, a

plane at right angles both

to the plane of projection

-—if.
""

g

and to the plane of AGBH. From any point D in the origi-

nal circle, let DE be drawn perpendicular, and DQ parallel

to BA ; and let the given circle be projected into the figure

agbh; the lines Aa, Gg, Bfr, Wi, P/?, Q?, Del, Ee, being the

projecting lines, which (def. 4) are necessarily at right angles

to the plane of projection. Then, since GH and DE are

parallel to the plane of projection, their projections are equal

to the lines themselves (Cor. 1, Art. 137) ;
that is, gp = GP;

ph = PH ; de = (qp=) DE = QP. Hence,

gq.qh
= GQ.QH = (35.3) DQ2

.

But Pp, Ee, and Bb, in the plane aABb, being parallel,

BP : EP :: bp : ep (2.6) ;
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consequently (22.6),

BP2
: EF (or DQ3

)
:: bp

2
: ef or dq

2
;

that is, gp
2

: gq.qh : : bp
2

: dq
2

;

wherefore agbh is an ellipse, whose major axis is gh = GH,
the diameter of the original circle (Art. 84). Also, gh

(
as AB) : ab : : radius : cosine of the inclination of AB to

the plane of projection (Art. 137). Now, the plane AGBH
and the plane of projection are both at right angles to the

plane aABb ; hence, if those planes were extended so as to

meet, their common section would be at right angles to the

same plane (18.2 sup.), and therefore at right angles to AB.

Hence, the inclination of AB to the plane of projection is the

inclination of the original circle AGBH to the same plane.

Cor. 1. The major axis of the ellipse into which a circle is

projected, is twice the sine of the arc of a great circle inter-

cepted between the original circle and its own pole.

Cor. 2. The minor axis of the same ellipse, or that axis

produced, passes through the centre of the primitive circle.

For the plane ABba, being perpendicular to the circle AGBH,
and passing through its centre, must pass through its axis ;

and that axis passes through the centre of the primitive

circle.

Cor. 3. The distances of the extremities of the minor axis

from the centre of the primitive circle, are the sines of the

greatest and least distance of the original circle from the

pole of the primitive.
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Of the Stereographic Projection.

Art. 141. To explain the nature of this projection, let

ABED be a circle formed by the section of a spherical sur-

face and a plane which

passes through the centre

of the sphere; this plane
is here represented by the

plane of the paper; take

C the centre of this circle,

then C is also the centre

of the sphere; draw the

diameter ACE; and sup-

pose another plane, per-

pendicular to AE, to pass through C, the centre of the

sphere ;
this plane will be perpendicular to the plane ABED

(17.2 sup.), and its common section with the spherical surface

will be a great circle ; which circle, seen edgewise, may be

represented by BD, a diameter to the circle ABED at right

angles to AE. If, then, A be taken as the projecting point,

the circle represented by BD will be the primitive circle,

whose centre is C ; and as the pole E, opposite to the pro-

jecting point, is projected in C, the pole of the primitive

circle is projected in its centre.

Art. 142. Any point on the sphere is projected into a point

distant from the centre of the primitive, the semitangent of

the arc of a great circle intercepted between the given point

and the pole of the primitive, opposite the projecting point.

Retaining the construction of the last article, let F and G
be two points to be projected ; join AF, AG ; and let AF,
AG, produced if necessary, cut the plane of the primitive in

I and H ; these points are evidently the projections of F and

G. But IC is the tangent of CAI, and CH the tangent of
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CAH; that is, CI is the semitangent of ECF (20.3) or of EF ;

and CH the semitangent of ECG, or of EG. Q. E. D.

Cor. Any point in the hemisphere BED, opposite to the

projecting point, will be projected within the primitive cir-

cle; but a point on the hemisphere BAD, adjacent to the

projecting point, will be projected without the primitive.

For the distance of any point in the first hemisphere from

the pole E, is less than a quadrant ; but in the second it is

greater ; and the semitangent of 90° = tangent of 45° =
radius.

Art. 143. Every circle of the sphere which passes through

the projecting point, is projected into a right line at right

angles to its line of measures.*

The original circle, being in the same plane as the project-

ing point, cannot be projected out of that plane; it will,

therefore, be projected into the common section of that plane

and the plane of projection : but that section is a right line

(3.2 sup.) ; therefore, the projection of the circle is a right

line. And as the plane of the circle projected, and the plane

of projection, are at right angles to the plane which forms

the line of measures (Art. 136, Def. 6), their common section

is at right angles to that plane (18.2 sup.); and, therefore,

the line of measures is at right angles to the projection of the

given circle.

Cor. 1. A circle which passes through the poles of the

primitive, is projected into a right line which passes through
the centre of the primitive, at right angles to its line of

measures.

Cor. 2. Every circle which passes through the poles of the

primitive is projected into a line of semitangents. This is

evident from Art. 142.

* The projection of a circle which passes through the poles of the primi-

tive, is usually called a right ciiaie. £v*>

23
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Art. 144. Every circle of the sphere which does not pass

through the projecting point, is projected into a. circle.

Case 1. When the plane of the original circle is parallel to

the plane of projection.

Let A be the projecting point ;

E, the opposite pole; BCD, the

plane of projection at right angles

to AE ; C, the centre of the pri-

mitive circle ; FHGI, the circle to

be projected; LMNP, its projec-

tion. If, now, while the point A
remains fixed, we suppose the line

AF carried round with a conical

motion, so as to describe the circle FHGI ; the common sec^

tion of the conical surface and the plane of projection will

be LMNP, the projection of the circle FHGI. But the plane
of that section, being parallel to the plane of the base, is a

circle (Art. 80).

Cor. The radius, CN or CL, of the projected circle is the

semitangent of EG or EF, the distance of the original circle

from the pole opposite to the projecting point.

Case 2. When the circle to be projected is not parallel to

the plane of projection.

Let A be the projecting

point; E, the opposite pole;

FHGIj the circle to be project-

ed ; LMNP, its projection ;

ABED, the common section

of the spherical surface and a

plane which passes through

the axes both of the primitive

and of the circle FHGI, and

therefore at right angles to both these planes. Then BN, the
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common section of this plane and the plane of projection, is

the line of measures for the circle FHGI (Art. 136, Def. 6).

Supposing, as before, the line AF to be carried round the

circle FHGI, it will describe a conical surface, whose com-

mon section with the plane of projection will be LMNP, the

projection of FHGI.

Because the plane ABED passes through the axis of

FHGI, it must pass through its centre and the axis of the

cone; therefore the line FG, the common section of this plane

and the plane of the circle, is a diameter, which is projected

into the line LN.

Draw GK parallel to NB. Then the angle LNA = KGA
(29.1) = AFG (21.3), because AK=AG; hence the triangles

AFG, ANL, which have the angle at A common, are equi-

angular to each other ; and the section LMNP is a subcon-

trary section, and therefore (Art. 82) is a circle, whose

diameter is LN.

Cor. The projected pole and centre of the projected circle

are both in the line of measures.

Art. 145. The centre of a projected less circle, at right

angles to the primitive, is in the line of measures, distant

from the centre of the primitive the secant of the circle's

distance from its own pole ; and the radius of the projected

circle is the tangent of the same distance.

Let A (see fig.
on p. 176) be the projecting point ; ABED, as

before, the common section of the spherical surface and a plane
which passes through the centre of the sphere, and is at right

angles both to the plane of projection and the plane of the cir-

cle to be projected ; BCDN, the plane of projection, seen edge-
wise ; C, the centre of the sphere ; FG, the common section of

the circle to be projected and the plane ABED ; FG will then

represent that circle, seen edgewise. Join AF, AG, CG and

EG ; and let AF, AG meet BN in L and N ; these points

will then be the projections of F and G ; and, consequently,
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E

the line LN will be the projection of FG, the diameter of the

circle to be projected. As the circle to be projected is per-

pendicular to the plane of projection, that plane must pass

through its poles ; hence the point D, where that plane cuts

the circle ABED, is one of the poles ; and, therefore, FD =
DG ; also, BN is the line of measures. Draw GP touching
the circle ABED in G, and cutting BN in P; then, as proved
in Art. 144, the angle ANL = AFG. And since GP touches

the circle AGDE, and GA cuts it, the angle PGN = GFA
(32.3)

= GNP; consequently, PN - PG (6.1).

Again, since ACD = ECD, being both right angles ; and

CAF=CEG; it is plain (26.1) that EG cuts CD in L; then,

since CG=CE, the angle CGL=CI^L. Taking these equals

from the right angles CGP, LCA; the angle LGP=CLE=
PLG; hence, LP=PG. Consequently, PG — the radius of

the circle described on the diameter LN; but GP is the

tangent, and CP the secant of GD.

If now we suppose the figure to revolve on BN until the

plane of ABED becomes perpendicular to CA, the circle

ABED will be the primitive circle ; and the points L, D, P,

N, will remain unchanged : consequently, the circle described

from the centre P with the radius PL = PG, will be the pro-

jected circle proposed.
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Art. 146. Any oblique* great circle will be projected into

a circle whose centre is in the line of measures, distant from

the centre of the primitive, the tangent of its inclination to

the primitive, and the radius of the projected circle is the

secant of that inclination.

Let, as before, A be the projecting point ; ABED, the great

circle at right angles to the primitive, and to the circle to be

projected ; BN and FG, the common sections of the plane of

this circle writh the plane of projection, and with the plane

of the circle to be projected, respectively. Then BN will

represent the plane of projection, and FG the circle to be

projected, both seen edgewise ; the line BN will also be the

line of measures. Join AF, AG, meeting BN in L and N ;

these will be the projections of F and G, and LN the dia-

meter of the projected circle. Now, the plane of the primi-

tive circle, and of the circle to be projected, being both at

right angles to the plane of ABED, their common section,

which passes through C, the centre of the sphere (Art. 45), is at

right angles to that plane (18.2 sup.) ;
hence CB and CF are at

right angles to that common section ; consequently, the angle

FCB is the inclination of the circle FG to the primitive (def.

* A circle whose plane makes an oblique angle with the plane of prnjpc

tion, is called an oblique circle.
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4.2 sup). Draw AI, making the angle CAI == FCB. To
these equals add CAL = CFL, and LAI=FLB (32.1)

= ILA

(15.1). Consequently, LI - AI (6.1).

Again, the angle FAG in a semicircle being a right angle

(31.3), is equal to BCF+CAF+CFA (32.1)
= LAI + CFA.

Hence, IAN = CFA. But ANI^AFC, by subcontrary sec-

tion (Art. 144) ; wherefore, ANI=IAN, and AI=IN. Hence

the radius of the circle described on LN, that is, the projec-

tion of FG, is equal to AI. But AI is the secant, and CI the

tangent, of CAI or BCF, the inclination of the circle FG to

the primitive.

If, then, as before, we suppose the figure to revolve on BN
until the plane of ABED becomes perpendicular to AC, the

circle ABED will be the primitive ; and the circle described

from the centre I, with the radius IA or IL, will be the pro-

jection proposed.

Cor. 1. Hence an oblique great circle being projected on

the plane of the primitive; and, from the point where the

projected circle cuts the primitive, two right lines being
drawn to the centre of the primitive and of the projected

circle ;
the inclination of those lines is the same as the incli-

nation of the original circle to the primitive.
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Cor. 2. Of all projected great circles, the primitive is the

least ; for the secant of any arc is greater than the radius.

Def. 8. The angle made by two circles, whether on the

same or different planes, is the angle made by their tangents

passing through the point of intersection.

When the circles are both great circles, the tangents are

at right angles to the diameter of the sphere, passing through
the point of intersection, which is the common section of the

planes of these circles ; and, consequently, the angle made by
the tangents measures the inclination of the planes.

The definition contained in Art. 45 is therefore but a par-

ticular application of the more general one now given.

Cor. The angle made by the radii (drawn to the point of

intersection) of two circles on the same plane, is equal to the

angle made by the circles.

Art. 147. The angle made by two great circles on the

surface of the sphere, is equal to the angle made by their

representatives on the plane of projection.

Let A be the place
of the eye or projecting

point; B, the opposite

pole; O, the centre of

the sphere ; HCLG, the

primitive circle ; I and

K, the poles of the pro-

posed great circles ;

ACIB, a great circle

passing through A, B
and I

; BKLA, another

great circle passing

through A, B and K.

Draw AOB, the axis of the primitive ; and 01, OK, the axes

of the proposed circles. Let the plane ACIB cut the plane
of projection in the line OC ; and BKLA cut it in OL ; then
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(def. 6), OC and OL will be the lines of measures of the cir-

cles, whose poles are I and K respectively. Also (Cor., Art.

47), the angles IOB, KOB and IOK are respectively equal to

the angles which the proposed circles make, on the surface

of the sphere, with the primitive and with each other. In

the plane ACIB, suppose the line AM to be drawn parallel

to OJ, meeting OC in M. Then, since the angle OAM=BOI
(29.1), the angle which the great circle, whose pole is I,

makes with the primitive ; and M is in the line of measures

of that circle ; it follows (Art. 146) that M is the centre, and

MA the radius, of the representative of that circle on the

plane of projection. In like manner, suppose AN, in the

plane BKLA, drawn parallel to the axis OK, and meeting the

line OL in N ; then N will be the centre, and NA the radius,

of the circle on the plane of projection which represents the

original circle, whose pole is K. Now, since AM is parallel

to 01, and AN to OK, it follows (9.2 sup.), that the angle

MAN == IOK, the inclination of the proposed circles.

Lastly, the points M, N, being in the plane of projection,

let the triangle MAN revolve on MN, till the point A falls

into the same plane, and its position will evidently be the

point where the projected circles intersect each other ; and

as the radii of those circles make, at the point of intersection,

the same angle as the original circles on the surface of the

sphere, the projected circles themselves make the same angle

(cor., def. 8). Q. E. D.

Art. 148. If a tangent to an original circle be projected,

the projected tangent will be a tangent to the projected cir-

cle, provided the original circle does not pass through the

projecting point.

A projected circle is the intersection of the plane of the

primitive and a cone, whose vertex is the projecting point,

and base the original circle. If a plane be supposed to pass
both through the projecting point and a tangent to the origi-

nal circle, this plane will evidently touch the surface of the
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cone : and the intersection of this plane and the plane of pro-

jection will be a tangent to the intersection of the cone and

the plane of projection. But the former of these intersections

is the projected tangent, and the latter the projected circle.

Q. E. D.

Cor. If two original circles have a common tangent, the

projections of these circles will have their radii drawn to the

point of contact, in the same straight line.

For the radii of both the projected circles is in a line

drawn through the point of contact at right angles to the

projected tangent.

Art. 149. The angle made by any two circles on the sur-

face of the sphere, is equal to the angle made by their repre-

sentatives on the plane of projection.

Let DIBC be a great
circle of the sphere ; BT,
a straight line touching
it at the point B ; through
BT let another plane

pass, cutting the sphere
in the circle BGF; this cir-

cle is, by Def. 1, Art. 45, a

less circle. As BT is a

tangent to the great cir-

cle, it is a tangent to the

sphere, and therefore to

the circle BGF. Conse-

quently, if these circles are projected, their projections will

have their radii, which are drawn to the point of contact, in

the same straight line (Cor., Art. 148). If, then, through the

point B, another great circle and a less one, having a common
tangent, be supposed to pass, these circles, when delineated

on the plane of projection, will have their radii, which are

drawn to the point of contact, also in the same straight line.
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But (Art. 147) the angle made by two great circles on the

surface of the sphere, is equal to the angle made by their

representatives on the plane of projection, or by the radii of

those representatives drawn to the point of intersection. And

(def. 8) the angle made by two circles is the angle made by
their tangents passing through the point of intersection;

hence it is obvious that the angle made by the two less cir-

cles, or by either of them, with a great circle touching the

other at the point of intersection, is equal to the angle made

by the two great circles.

Therefore the truth of the proposition is manifest.

Q. E. D.

Art. 150. The extremities of the diameter of a projected

circle are in the line of measures, distant from the centre of

the primitive, the semitangents of the least and greatest dis-

tances of the original circle from the pole of the primitive

opposite to the projecting point. .

Let A be the projecting

point; ABED, the great cir-

cle whose plane is at right

angles to the plane of the

primitive and of the circle to

be projected ; BD the primi-

tive, and FG the circle to be

projected, both seen edgewise.
Then the right line BD, which

is the common section of the

plane ABED and the plane of the primitive, is the line of

measures of the circle FG (Art. 136, Def. 6). As the extre-

mities F and G are projected into H and I, the line IH, which

is in the line of measures BD, is evidently the diameter of

the projected circle. Also, E being the pole opposite to the

projecting point, EF and EG are the least and greatest dis-
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tances of the circle FG from that pole; and CH, CI are the

semitangents of EF, EG (Art. 142).

Cor. 1. The points where a projected oblique great circle

cuts the line of measures, within and without the primitive,

are distant from the centre of the primitive the tangent and

cotangent of half the complement of the inclination of the

original circle to the plane of the primitive.

The angle BCF is the inclination of the original circle FG
to the plane of the primitive (see Art. 146) ; and therefore

FCE is the complement of that inclination. But CL is the

tangent of LAC = tangent of half FCE (20.3). Also, since

FAG is a right angle (31.3), CN, the tangent of CAG, is the

cotangent of half FCE.

Cor. 2. The centre of a projected circle is in the line of

measures, distant from the centre of the primitive, half the

difference of the semitangents of the greatest and least dis-

tance from the pole opposite to the projecting point, when
the circle encompasses that pole; but half the sum of the

semitangents, when the circle lies wholly on one side of the

pole.
•

Art. 151. Any circle and its poles being projected on the

plane of the primitive, the segments of the diameter inter-
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cepted between its extremities and one projected pole, have

to each other the same ratio as the segments between the

same extremities and the other pole.

F E

Let A be the projecting point ; ABED, as before, the great

circle at right angles to the plane of projection and of the

circle to be projected ; BD, the line of measures ; FG, the

common section of the plane ABED and the plane of the

circle to be projected ; P, Q, the poles of the same circle.

Then PQ is a diameter to ABED at right angles to FG (Art.

45, Cor. to Def. 3) ; and the arc PF is equal to PG. Hence

F, P, G, being projected to H, p, I, the angle HAp = IAp

(21.1) ; consequently,

\p : H/> : : IA : HA (3.6).

Again, producing GA to K, and joining QF, the angle QAK
*9 QFG (22.3 and 13.1)

= QAF (21.3), because QG = QF.
Hence (A. 6),

lq : qU :: IA : AH;

consequently, Ip : Up : : lq : ^H.

Cor. Hence, of the two segments into which the diameter

is divided by the projected pole, the greater is that which

is more remote from the centre of the primitive circle ;
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and therefore the centre of the projected circle is furthei

from the centre of the primitive, than the projected pole.

Art. 152. The projected poles of any circle are in the line

of measures, within and without the primitive ;
and distant

from its centre, the tangent and cotangent of half its inclina-

tion to the primitive.

Retaining the construction of the last article, the angle

ECP = the inclination of the primitive to the circle, whose

poles are P and Q (Art. 47, Cor.) ;
and these poles being in

the circle ABED, are projected to p and q in the line of mea-

sures BD. But

Cp = tan CA^ = tan ^ECP (20.3) ;

and pAq being a right angle (31.3),

Cq == cotan Ckp = cotan JECP.

Cor. The projected pole of the primitive is its centre ; and

the projected pole of a right circle lies in the primitive.

Art. 153. If two planes cut the sphere, and also intersect

each other, and from the points where their common section

meets the spherical surface, taken as poles, two circles be

described at equal distances from those poles ; the arcs of

these circles, intercepted between the cutting planes, on the

same side of the common section, are equal to each other

Case 1. When the cutting planes both pass through the

centre of the sphere.

Let ABDPLG, ACEP, be the

cutting planes; AP, their com-

mon section ; BC, DE, the inter-

•

cepted arcs ; BF, CF, DH, EH,
the common sections of their

planes and the cutting planes.

It is to be proved that BC=DE.
Because the cutting planes pass

24 q*
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through the centre of the sphere, their common section AP is

a diameter to each of the circles formed by the spherical
surface and the cutting planes. And since A, P, are the

poles of the circles BC and DE, the line AP is perpendicular
to the planes of those circles (Art. 45, Def. 2) ; therefore,

AFB, AFC, PHD, PHE are right angles (def. 1.2 sup.) ;

whence FB is parallel to HD, and FC to HE (28.1) ; conse-

quently, the angle BFC = DHE (9.2 sup). The lines BF,

CF, DH, EH, are also equal, because they are sines of equal
arcs ; wherefore, BC = DE (26.3).

Case 2. When one of the cutting planes passes through
the centre of the sphere, and the other does not.

Let ABDP be the common
section of the spherical surface

and the cutting plane, which

passes through the centre;

ACEP, the common section of

the same surface and the other

plane ; AP, the common sec-

tion of the planes; BC and DE,
as before, the intercepted arcs

of the circles described from A and P ; O, the centre of the

sphere, and consequently of ABDP ; BF, DH, the common
sections of the planes of the circles BC, DE, and the plane

of ABDP ; N, I, the intersections of BF, DH, with the line

AP. Join AO, PO, FC, NC, HE, IE, AC, PE; then, as in

the first case, BF, CF, DH, EH, being sines of equal arcs,

are equal to each other ; and AFB, PHD, right angles : AF,
PH, are also equal, being versed sines of equal arcs. Now,
in the triangle AOP, the side AO = OP ; wherefore, OAP =
OPA; then, in the triangles AFN, PHI, we have AF=PH;
the angle FAN=HPI, and AFN-PHI ; whence (26.1), AN
= PI, and FN=HI. Then, in the triangles ANC, PIE, we
have AC = PE (29.3), AN = PI, and the angle NAC = IPE
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(21.3) ; consequently, NC = IE (4.1). Lastly, in the trian-

gles CFN, EHI, the sides are respectively equal ; wherefore

the angle NFC = IHE (8.1), and consequently the arc BC —
DE (26.3).

Case 3. When neither of the cutting planes passes through
the centre of the sphere.

Through the common section of these planes and the cen-

tre of the sphere, let a third plane pass ; then, by the last

case, the arcs of one of those equidistant circles, intercepted
between the third plane and each of the others, are respect-

ively equal to the corresponding arcs of the other similarly

intercepted : and, therefore, their sums or differences are also

equal. But, when the third plane passes between the other

two, the sum of the arcs contained between it and the other

planes is the arc in question. When it passes on the same
side of them, the difference is the arc proposed.

Art. 154. Let EFGH, efgh, be the projections of two

equal circles, of which EFGH is as far from its pole P as

efgh is from the projecting point ; then any two right lines

EP, FP, drawn through P, will intercept the representatives
of equal arcs of those circles; on the same side, if P falls within

the circles ; but on the contrary side, if it falls without
; that

is, EF = e/, and GH =£•/?.
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For (Art. 153) two planes passing through the projecting

point and the pole of the original circle, which is represented

by EFGH, will cut off equal arcs from those circles. And
those planes will (Art. 143) be projected into right lines,

which will evidently pass through the projected pole P.

Cor. 1. Let a circle be project-
ed into a right line EF at right

angles to the line of measures

I EG; and from C, the centre of

the primitive, let a circle be de-

scribed through P, the projected

pole of EF
; then any two lines

PE, PF, will cut off from the circle an arc, ef, containing
the same number of degrees as the arc which is represented

by EF. And the arc, intercepted between PE and PF, of

any other circle which passes through P, will contain the

same number of degrees.

For any circle which is projected into a right line, must

pass through the projecting point (Arts. 143, 144) ; and,

therefore, the distance of that circle from its pole is the same

as the distance of the pole from the projecting point. Con-

sequently, the projected circle through P represents an origi-

nal circle, as far from the projecting point as the circle which

is projected into EF is from its own pole. Hence, EF and

ef represent equal arcs. The latter part of the corollary is

evident from 26.3.

Cor. 2. If two right lines be drawn through the projected
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pole of a great circle, the intercepted arc of that circle will

contain the same number of degrees as the intercepted arc

of the primitive.

For any great circle is distant 90° from its pole ; and the

primitive is 90° from the projecting point.

Cor. 3. If, from the point where two projected great cir-

cles cut each other, two right lines are drawn through the

projected poles of those circles, the intercepted arc of the

primitive circle will measure the spherical angle made by
those circles at the point of their intersec ti<*i.

For the arc of a great circle, contained between the poles

of two other great circles, is the measure of the angle which

the axes of these circles make with each other ; and that

angle is the same as the inclination of the planes of those

circles (Cor., Art. 47).

Scholium. If the circles of the sphere were to be projected
on a plane parallel to the plane of the primitive, the projec-

tions would be similar to those on the plane of the primitive

itself; for the projecting line, when carried round on the cir-

cumference of a circle which does not pass through the

projecting point, forms a conical surface ; and that surface

being cut by the plane of the primitive, and by any other

p-lane parallel thereto, the sections are similar, but of greater
or less dimensions. Thus projecting on the plane of a less

circle parallel to the primitive, instead of projecting on the

primitive itself, would be only changing the scale. In the

subsequent parts, however, of this section, the plane of the

primitive will be used.

In the following problems, the primitive circle is always

supposed to be described with the chord of 60° ; and the

secant, tangent, and semitangent referred to, are such as

correspond to the scale used for the primitive. These differ-

ent lines are frequently marked by the side of the scale of

chords, on the small scales introduced into boxes of mathe-

25
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matical instruments ; but more frequently on the foot or two
feet scales, which contain Gunter's lines.

Art. 155. Problem. To describe a circle parallel to the

primitive, at a given number of degrees from its pole.

E
From the centre of the

primitive, with a radius equal
to the semitangent of the

given distance of the circle

from its own pole, describe

the circle required. Or draw
the diameters AB, DE at

right angles to each other;

and from the extremity E
of one of them, lay off the

proposed number of degrees on the primitive as EF ; join

DF, cutting AB in G; from the centre C, at the distance

CG, describe the circle required.

The radius CG is the tangent of CDG, or semitangent of

EF, as it ought to be (Cor., Case 1, Art. 144).
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Art. 156. Prob. To describe a less circle at right angles

to the primitive, and at a given distance from its own pole.

Let B be the pole of the circle proposed ; through C, the

centre of the primitive, and the pole B, draw the right line

CD ;
from C to D, lay down the secant of the given distance ;

from the centre D, with a radius equal to the tangent of the

same distance, describe the circle proposed. Or, from B, lay-

down BE on the primitive ; join CE ; draw ED touching the

circle; from D, with the distance DE, describe the circle

proposed.

It is obvious that DE is the tangent, and CD the secant,

of BE, as they ought to be, Art. 145.

Art. 157. Trob. To describe an oblique circle at a given
distance from a given pole.

hetp be the projected

pole ; through p draw
the line of measures

ApB ; apply C/>, the dis-

tance of the given pole

from the centre of the

primitive, to the line

Qf semitangents ; and,

having found the num-

ber of degrees, thus

measured, in Cp, take the sum and difference of this number

and the distance of the proposed circle from its own pole ;

lay down these results taken from the semitangents, on the

line of measures, from C to g and/; on the diameter fg de-

scribe the circle required. Or, having drawn the line of

measures, draw the diameter DCE at right angles to it;

draw Dp to meet the primitive in P ; from P, lay down on

the primitive PF, PG, each equal to the given distance of the

circle from its pole ; draw DF, DG, cutting the line of mea-

sures in/and g; on fg describe a circle ; it will be the circle

required.



192 SECTION V.

This construction follows from Art. 150.

Scholium. This method is applicable to great circles as

well as less ; but the former cases are conveniently managed

by other methods hereafter given.

Art. 158. Prob. To describe a great circle, the projected

pole of which is given in position.

Case 1. When the given pole is in the primitive circle.

Through the given pole draw the line of measures ; and at

right angles thereto draw a diameter to the primitive circle ;

this diameter will represent the circle proposed.

Because the pole is in the primitive, the original circle is

at right angles to the primitive (Art. 45, Cor.. Def. 3) ; and,

being a great circle, it must pass through the poles of the

primitive. Consequently (Art. 143, Cor. 1), it is represented

by a right line through the centre of the primitive, at right

angles to the line of measures.

Case 2. When
circle.

the given pole is within the primitive

Let p be the projected pole ;

through p draw the line of

measures CpG; apply Cp to

the line of semitangents ; take

CG equal to the tangent of the

number of degrees in Cp;
from G, as a centre, with the

seGant of the same number

of degrees, describe the circle

D DHE, which will be the one

required.

Or, draw the diameter DCE at right angles to the line of

measures ; join Dp, and produce it to the circumference in

P ; make PF = PE ;
draw DF cutting the line of measures

in G ; from the centre G, with the radius GD, describe the
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circle DHE, the circle proposed. The line Cp is the projec-

tion of an arc of a great circle, intercepted between the pole

of the primitive and the pole of the circle proposed ; and that

arc measures the inclination of those circles (Art. 47, Cor).

The arc is also projected into a line of semitangents (Art.

143, Cor. 2) ; hence Cp, measured on the semitangents, or the

arc PE, indicates the same inclination. But, by the con-

struction, CG is the tangent and GD the secant of PE ; con-

sequently (Art. 146), DHE is the circle, whose pole is
j>.

Art. 159. Prob. Through two given points, to describe a

great circle.

Let A, B be the

given points ; through
the centre of the pri-

mitive and one of the

given points draw the

right line ACF. If

that line passes through

B, the business is done ;

for ACF is the projec-

tion of a great circle

at right angles to the primitive (Art. 143, Cor. 1). But if

ACF does not pass through B, apply CA to the line of semi-

tangents, and make CF the semitangent of the supplement
of CA ; through ABF describe a circle, and the thing is done.

Or, draw the diameter DCE at right angles to ACF ; draw

DAG cutting the primitive in G ; draw the diameter GCH ;

join DH ; and let DH, produced if necessary, cut AF in F ;

and through ABF describe the circle ABF, as before.

From the construction, it is obvious that AF is the projec-

tion of a semicircle ; consequently, any circle which passes

through A and F must be a great one (converse to Cor. 3,

Def. 1, Art. 45).

25
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Art. 160. Prob. About a given pole, to describe a circle

through a given point.

Let p be the given pole

and B the given point ;

through p and B describe

a great circle (Art. 159) ;

and draw BF touching it

in B (17.3) ; draw, from

the centre of the primi-

tive, the right line C/)F,

meeting the tangent in F ;

from the centre F, at the

distance FB, describe the circle BGH ; and the work is done.

The centre of a circle whose pole is p is in the line of mea-

sures QoF (Cor. to Case 2, Art. 144). The circle />B, passing

through the pole p of the proposed circle, is at right angles

to it (Cor. to Def. 3, Art. 45) ; hence the radii of their pro-

jections, drawn to the point of their intersection, must also

be at right angles to each other (Art. 149) ; consequently, the

centre of the required circle is in the tangent BF (18.3) ; it

is, therefore, at the intersection of Cp and BF.

Art. 161. Prob. To find the poles of a given projected
circle FNG.

E

Through the centre of the given circle and centre C of the

primitive, draw the right line FCGP, cutting the given circle
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in F and G. Measure CF and CG on the line of semitan-

gents ; take the half sum or half difference of these measures,

according as F and G are on the same or opposite sides of C,

and lay its semitangent from C to p ; then is p one of the

poles required : observing, however, that p must be on the

same side of C as the centre of the given circle. Lay down
CP from the semitangents equal to the supplement of Cp, and

on the opposite side of C ; then is P the other pole required.

Or, draw the diameter ACE at right angles to FG ; draw
also AG, AF, cutting the primitive in L and M ; bisect LM
in I ; join AI, cutting FG in p ; draw the diameter IH to the

primitive circle ; draw AH, produced if necessary, to meet

FG produced in P ; then p and P are the poles required.

When the circle is a great one, as AGE, the poles may be

found with more facility in a different manner.

Draw FC from the centre of the given circle to the centre

of the primitive, and produce it. Measure CF on the line

of tangents: take half the number of degrees thus found, and

lay down the tangent of this result from C towards F to p ;

and its cotangent in the opposite direction to P ; then will p
and P be the poles required. Or, draw the diameter ACE
at right angles to FC ; join AF ; bisect the angle CAF by the

line Apl, cutting FC in p and the primitive circle in I ; draw
the diameter IH and the line AHP as before ; then p and P
are the poles required.
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E

In the case of the less circle, CG is the semitangent of

EL, and CF the semitangent of EM; consequently (i\.rt.

150) EL and EM are equal to the least and greatest dis-

tances of the original circle represented by FNG, from the

pole of the primitive opposite the projecting point. Hence

EI, half the difference of EM and EL, when F and G are on

opposite sides of C (as in the figure), or half the sum when

F and G are on the same side, is the distance of the pole of

the original circle from the pole of the primitive. Cp, the

semitangent of EI, is therefore the distance of the projected

pole of FNG from the centre of the primitive (Art. 142).

And the projected pole lies in the line which joins the centre

of the projected circle and the centre of the primitive (Art.

144, Cor. to Case 2). Also, p and P are on the same project-

ed great circle, at the distance of 180°; hence, P is the pole

opposite to p.

In the case of the great circle, CF is the tangent of CAF,
the inclination of AGE to the primitive (Art. 146, Cor. 1).

But, by the construction, ECI = CAF ; consequently, the arc

EI measures the distance of the pole of the original circle,

represented by AGE, from the pole of the primitive (Cor. to

Art. 47). Hence Cp, the semitangent of EI, is equal to the

distance of the projected pole of AGE from the centre of the

primitive (Art. 142).
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Art. 162. Prob. To describe a great circle making a given

angle with the primitive at a given point A.

Draw through the given point the diameter ACE ; and

through C, the centre of the primitive circle, draw a line CF
at right angles to AE ; make the angle CAF = the angle

proposed ; and from F, the intersection of AF, and CF, de-

scribe the circle AGE ; which will be the circle required.

Or, from the centre of the primitive, with the tangent of the

given angle, describe an arc; from the point A, with the

secant of the same angle, describe an arc cutting the former •

and from the point of intersection describe, through the point

A, the circle AGE.

This construction is obvious from Art. 146.

When the given angle is a right one, the lines AF and CF
are parallel ; hence, in that case, the centre of the required

circle is at an infinite distance ; consequently, the circle be-

comes a right line passing through the centre of the primitive.

See Cor. 1, Art. 143.

Art. 163. Prob. Through a given point P, to describe a

great circle, making a given angle with the primitive.

From the centre of the primitive, with the tangent of the

given angle, describe an arc; from the given point, with the

secant of the same angle, describe an arc cutting the former

in F ; from the centre F, through P, describe the circle APB ;

this will be the circle required.

26
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Or, through P draw the

diameter DE ; at the cen-

tre C erect a perpendicular
CG ; make the angle CDG
= the given angle; from

C, through G, describe an

arc ; and from P, with the

distance DG, describe an-

other, cutting the former

in F ; then F is the centre

of the required circle.

This, like the last, de-

pends upon Art. 146.

N. B. If the circles described from C and P do not meet,

the problem is then impossible ; and this case occurs when

the required angle is less than that which would be measured

by PD, taken on the scale of semitangents from 90° towards

the beginning of the scale.

Art. 164. Prob. To describe a great circle, making at a

given point P a given angle with a given great circle APB.

Through the given point P draw the diameter DE, meeting
the circle again in H; find F the centre of the given circle;

draw FI at right angles to DE ; join PF ; make the angle
FPL = the given angle ; then, from L, describe the circle

MPN ; this is the circle required.

The line FI, being at right angles to PH, bisects it (3.3) ;

consequently, every circle whose centre is in FI, and which

passes through P, will also pass through H. Now, as APB
and DCE are the projections of great circles, PBH is the

projection of a semicircle (Cor. to Def. 3, Art. 45) ; hence,

any other circle passing through P and H must be a great

circle. MPN is therefore a great circle ; also (Art. 147) the

angle BPN = FPL.
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Art. 165. Prob. Through a given point P, to describe a great

circle making a given angle with a given great circle DE.

Find the pole of the given

circle (Art. 161); about that

pole describe a circle GFH
at a distance equal to the

measure of the given angle

(Arts. 155-6-7); about the

point P as a pole, describe a

great circle IFK, cutting GFH
in F and K (Art. 158) ; about

D one of those points F as a

pole, describe the great circle LPM; and the work is done.

Since P is the pole of IFK, every point in that circle is 90°

from P ; consequently, the great circle whose pole F is in

IFK, must pass through P. And as the distance of the poles

of two great circles is the measure of the angle which those

circles make with each other, the construction is manifest.

If the given angle is a right one, the circle must be de-

scribed through P and the pole of DE, by Art. 159.

Art. 166. Prob. To describe a great circle making given

angles with two given great circles AB and CD. See fig. on

page 200.

Find the poles r, s of the given circles (Art. 161) ; describe

about r and ft less circles, at distances respectively equal to

the measures of the given angles (Art. 157) ; from the inter-

section E of these circles, as a pole, describe the great circle

FG (Art. 158) ; that circle is the one required.

This construction evidently depends upon the principle,

that the distance between the poles of two great circles is

the measure of their inclination (Cor. to Art. 47).

If the circle to be described is to be at right angles to each

of those which are given, it must be described through their

poles, by Art. 159.
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Art. 167. Prob. To describe a right circle (that is, a great
circle at right angles to the primitive) making a given angle
with a given great circle CD.

Find s, the pole of CD ; about s describe a circle at a dis-

tance equal to the measure of the given angle ; from the point

H, where this circle cuts the primitive, lay down HI, on the

primitive,
= 90° ; through I draw the diameter IL, the right

circle required.

Every great circle at right angles to the primitive is pro-

jected into a right line through its centre (Art. 143, Cor. 1).

[Note. There is a limit in this and the last article. If, in

Art. 166, the circles about r and s do not meet ; or, in this

article, if the circle about s does not meet the primitive ; the

problem is impossible.]

Scholium. When the proposed angle is a right one, lay down
90' from C on the primitive circle ; and through the point

thus found draw a diameter for the right circle required.

Art. 168. Prob. Through a given point Z, to describe a

great circle which shall touch a given less circle ABC.

From Z, as a pole, describe the great circle DGE (Art
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158) ; find P the internal pole of ABC (Art. 161), and Q the

opposite pole ; about Q de-

scribe a circle FGH, at a dis-

tance from Q equal to the

complement of PB, the dis-

tance of ABC from its own

pole (Arts. 155-6-7); from

the point G, where these cir-

cles cut each other, taken as

a pole, describe the great cir-

cle ZIL (Art. 158) ; this cir-

cle will touch the given circle

ABC. Through PGQ de-

scribe a circle cutting ABC in I ; this will be a great circle,

because P and Q are opposite poles, and PI 4- QG are by-

construction = 90° ; hence GI === 90° : and G being the pole

of ZIL, that circle must pass through I, and make the angle
ZIP a right angle. Hence (Art. 55) PI is less than any other

arc of a great circle contained between P and ZIL ; there-

fore, those circles touch each other at I.

Art. 169. Prob. To lay down a given number of degrees
on a given great circle, or to measure an arc of it.

Case 1. When the given circle is the primitive, lay down
or measure the arc by the scale of chords.

For the primitive is an original circle, and is therefore

measured as in common Geometry.

Case 2. When the given circle is a right one, that is, one

passing through the centre of the primitive, lay down or

measure the arc on the scale of semitangents (Art. 143, Cor.

2), observing that an arc beginning at the centre of the pri-

mitive must be measured from the beginning of the scale ;

but one beginning at the primitive must be measured from

the 90th degree on the scale towards the beginning or end

of the scale, according as the arc extends towards or from
the centre of the primitive.

26
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Or, let ACB be the right cir-

cle; draw the diameter DCE
at right angles to AB ; then, to

lay down any proposed number
of degrees from A or C, lay
them on the primitive from A
or E to F

; join DF, cutting
AB in G ; or, to measure AG
or CG, draw DG to cut the

primitive in F ; then AF is the

measure of AG, and EF of CG.

Suppose the figure to revolve on AB till CD becomes per-

pendicular to the plane of projection; then is D the project-

ing point, and AEB the semicircle passing through the pole

of the primitive ; consequently, AG is the projection of AF,
and CG of EF.

Case 3. When the given circle is an oblique one.

Let DUE be the circle ; find its internal pole I (Art. 161) ;

then, to lay down an arc HL or EL, lay the proposed num-

ber of degrees on the primitive from A or E to F, and join IF,

cutting the given circle in L, the point required ; or, to mea-

sure HL or EL, join IL, and produce it to F in the primitive ;

then AF is the measure of HL, and EF of EL.

The primitive circle is as far from the projecting point, as

DHE is from its pole ; therefore (Art. 154), the right lines

IA, IF, cut off corresponding arcs AF, HL.

Art. 170. Prob. To lay down any proposed number of

degrees on a less circle, or to measure a given arc of it.

Case 1. When the given less circle is parallel to the

primitive.

Lay the proposed number of degrees on the primitive

circle; and through the extremities of the arc draw right

lines to the centre ; the intercepted arc of the less circle is
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that proposed ; or, to measure the arc, draw right lines from

the centre, through its extremi-

ties, to the primitive, and mea-

sure the intercepted arc of the

latter. Thus BH is the measure

of IL, and EH of ML ; for the

B projected less circle parallel to

the primitive is formed by cut-

ting the conical surface by a

plane parallel to the base ; con-

sequently, the projected circle

differs from its original in nothing
but its dimensions.

Case 2. When the circle is not parallel to the primitive.

Let ABC be the less cir-

cle; find its pole D (Art.

161) ; describe a circle

FGH, as far from the pro-

jecting point as ABC is

from its pole (Art. 155) ;

then any arc of ABC may
be laid down or measured

by the aid of FGH as an

arc of a great circle is, by
means of the primitive in Art. 169, Case 3 ; observing that

an arc of FGH is laid down or measured as directed in Case

1. Thus, I being the centre of the primitive, ML, a part of

its circumference, is the measure of FG ; and FG the mea-

sure of AE (Art. 154).

Art. 171. To measure the angle made by two great circles

whose position is given.

Find the poles of the circles (Art. 161) ; from the angular

point, through those poles, draw two right lines; and the

intercepted arc of the primitive is the measure required.
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Let ACB, ECF, be the circles ;

G, I, their poles ; then the arc of

a great circle, contained between

I and G, would measure the angle

ACF (Art. 154, Cor. 3). Or, draw

lines from the point of intersection

C to the centres of the circles ACB
and ECF; then the angle con-

tained between these lines will

measure the angle ACF (Cor.,

Def.8).

Art. 172. Prob. To form a general projection of the sphere

on the plane of a meridian.*

Let ZONH denote the me-

ridian ; Z, the zenith ; N, the

nadir; P, S, the north and

south poles; EQ, the equator;

HO, the horizon ; then ZE =
OP, the latitude of the place.

Then, circles being described

through P and S, making suc-

cessively angles of 15°, 30°,

45°, 60°, 75° and 90°, with

the primitive; these will be

the meridians, or hour circles, for the different hours.

A few examples will now be given to exercise the student

in Spherical Projections and Calculations.

Of Rectangular Spherical Triangles.

1. Given, the hypothenuse 70° 15', and the adjacent angle
30° 30', to find the rest.

* See Definitions, page 217.
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Construction. Describe

the primitive circle ABC,
and the oblique great

circle ADC, making the

given angle with the pri-

mitive at the point A
(Art. 162); on AD lay

AE equal to the given

hypothenuse (Art. 169) ;

and through F, the pole

of the primitive, and the

point E, describe the

great circle FEG, cutting

the primitive circle in G; then AGE is the triangle proposed,

of which G is the right angle.

Calculation.

As rad : cos A : : tan AE : tan AG (Art. 62) = 67° 23'.

As rad : sin A : : sin AE : sin EG (Art. 58) F 28° 32'.

As rad : cos AE : : tan A : cot AEG (Art. 64) = 78° 45'.

It is obvious, from the construction, that there is no ambi-

guity in this problem ; for the points E and F being given,
the great circle passing through them can have but one

position.

Again, the side EG is of the same affection as the angle A
(Art. 56) ; also, AG is of the same affection with EG, or a

different one, according as AE is less or greater than a quad-
rant (Art. 57) ; and the angle AEG is of the same affection

as AG (Art? 56).

2. Given, the hypothenuse 125° 25', and one leg 37° 40', to

find the rest.

Construction. Having described the primitive ^ :

icle ABC,
lay AG on it equal the given leg; through G and the

27



206 SECTION V.

pole F, draw the right

circle GFE ; from the

point A, as a pole, at a

distance equal to the hy-

pothenuse (or from the

opposite pole C with its

supplement), describe a

less circle DEH (by Art.

156), cutting GFE in E ;

through A and E describe

the great circle AEC
(Art. 159) ; then AGE is

the triangle proposed.

Calculation.

rad : cos EAG (Art. 62)= 123° 18'.

rad : sin AEG (Art. 58)- 48° 34'.

rad : cos EG (Art. 65)= 137° 4'.

In this problem there is no ambiguity ; for the angle AEG
is of the same affection with the side AG (Art. 56) ; EG is

of the same affection with AG, when*AE is less than a quad-

rant, and of a different one when AE is greater (Art. 57) ;

and the angle EAG is of the same affection as EG (Art. 56).

As tan AE
As sin AE
As cos AG

tan AG
sin AG :

: cos AE

3. Given, one leg 75°

26', and the adjacent an-

gle 40° 10', to find the

rest.

Construction. Describe

the primitive circle ABC,
and the oblique great cir-

cle AEC, making BAC
equal to the given angle

(by Art. 162); on the

primitive lay AG equal

the given leg; and through
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G and the pole of the primitive, draw the right circle GEF,

cutting AC in E ;
then is AGE the triangle in question.

Calculation.

As rad : sin AG : : tan A : tan EG (Art. 60) = 39° 15'.

As cos A : rad : : tan AG : tan AE (Art. 62) = 78° 46'.

As rad : sin A : : cos AG : cos AEG (Art. 67) = 80° 40'.

This problem includes no ambiguous case ; for the side EG
and the angle at E are respectively of the same affection

with the angle A and the side AG (Art. 56) ; and the hypo-
thenuse is less or greater than a quadrant, according as AG
and GE are of the same or different affections (Art. 57).

4. Given, one leg 36° 45', and the opposite angle 42° 16',

to find the rest.

Construction. Describe

the primitive circle ABC,
and the oblique great cir-

cle AC, making at the

point A an angle equal to

the given one (Art. 162) ;

i
about the pole F of the

primitive, at a distance

equal to the complement
of the given leg, describe

a less circle, cutting the

oblique circle AC in E
(Art. 155); through E

and the pole F describe the great circle GEF (Art. 159),

cutting the primitive in G ; then AGE is the triangle pro-

posed.

Calculation.

As sin A : sin EG : : rad : sin AE (Art. 58) = \

62° 49 ''

( 117° 11'.,
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As tan A : tan EG : : rad : sin AG (Art. 60) =
j

As cos EG : cos A : : rad : sin AEG <Art. 67) =
j

55° 15'.

124° 45'.

67° 27'.

112° 33'.

The cases contained in this problem are ambiguous, as is

obvious from the construction ; the unknown sides and angle

being susceptible of two values, which are supplemental to

each other.

5. Given, the two legs, 70° 29' and 30° 16', to find the

rest.

Construction. On the

primitive circle lay down
AG equal to one of the

legs ; and through G and

the pole of the primitive
describe the right circle

GF ; on which lay down
GE equal to the other leg

(Art. 169) ; through A and

E describe (by Art. 159)
the great circle AEC;
and AGE is the triangle

which was to be con-

structed.

Calculation.

As sin AG : rad : : tan EG : tan A (Art. 60) = 31° 46'.

As sin EG : rad : : tan AG : tan E (Art. 60) = 79° 52'.

As rad : cos AG : : cos EG : cos AE (Art. 65) == 73° 14'.

This problem contains no ambiguity ; for the angles at A
and E are of the same affections as the opposite sides (Art.

56) ; and AE is less than a quadrant, when AG and GE are

of the same affection (Art. 57).
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6. Given, the two oblique angles, 28° 19' and 75° 15', to

find the sides.

Construction. Describe the oblique great circle AC, making
with the primitive at A
an angle equal to one of

those given (Art. 162) ;

about the pole P of this

circle, at a distance equal
to - the measure of the

other given angle, or of

its supplement if obtuse,

describe a less circle cut-

ting the primitive in H
and I (Art. 157); from H
nearest to A, when the

second angle is acute, or

from I the more remote

point of intersection,when

the angle is obtuse, lay down HG on the primitive equal a

quadrant; through G describe a great circle at right angles

to AG, cutting AC in E ; then AGE is the triangle proposed.

For, H is evidently the pole of GEF ; and the distance HP
is the measure of the angle AEG.

Calculation.

As tan A : cotan E : : rad : cos AE (Art. 64)
= 60° 45'.

As sin A : rad : : cos E : cos AG (Art. 67) = 57° 32'.

As sin E : rad : : cos A : cos EG (Art. 67) = 24° 27'.

This problem contains no ambiguity; for the sides AG and

EG are of the same affection as the opposite angles (Art.

56) ; and when those sides-, or their opposite angles, are of

the same affection, the hypothenuse is less than a quadrant

(Art. 57).

27
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Of Oblique Angled Spherical Triangles.

1. Given, two sides, AC 45° 30', BC 30° 30', and the an^

A opposite one of them, 36° 45', to find the rest.

Construction. On the primitive circle lay down AC, one

of the given sides
; about the pole C describe a less circle, at

the distance BC of the other given side ; describe a great

circle, making, at the point A, with the primitive, an angle

equal to the given one (Art. 162), intersecting the less circle

in B
; through C and B describe a great circle (Art. 159) ;

and ABC is the triangle to be made.

When BC, the side opposite the given angle, is the less of

the two, there may be two points of intersection, and, conse-

quently, two positions of B. Hence, in that case, the problem
is ambiguous.

Calculation: Describe the great circle CD through the

pole of AB; then ADC, BDC are rectangular triangles.

Hence,

As rad : cos A : : tan AC : tan AD (Art. 62) = 39° 12'.

As cos AC : cos BC : : cos AD : cos BD (Art. 66)- 17° 41'.



SPHERICAL PROJECTIONS. 211

As rad : cos AC : : tan A : cotan ACD (Art. 64)=62° 22'.

As tan BC : tan AC : : cos ACD : cos BCD (Art. 63)=36° 46'.

As sin BC : sin AC : : sin A : sin ABC (Art. 59)=57° 14'

or 122° 46'.

Hence, AB = 56° 53', or 21° 31' ; and ACB = 99° 8', or

25° 36'.

Or, without a perpendicular.

Find ABC as above. Then,

Ascosi(AC— BC) : cos i(AC+ BC) :: tan i(ABC+BAC)
: cotan JACB (Art. 77, eq. 15)=49° 34', or 12° 48'.

Hence, ACB = 99° 8', or 25° 36'.

And,

As cos i(ABC— BAC) : cos i(ABC+BAC) :: tan -J(AC+

BC) : tan £AB (Art. 77, eq. 17) =28° 26^', or 10° 451'.

Whence, AB 56° 53', or 21° 31'.

2. Given, two sides, 75° 20' and 60° 16', and the included

angle 40° 18', to find the rest.

Construction. Describe

a great circle, making at

the given point A an

angle with the primitive

equal to the given one

(Art. 162). Make AB,
AC, respectively, equal
to the given sides (Art.

169) ; and describe a

great circle through B
and C (Art. 159); then

ABC is the triangle pro-

posed.

In this problem, there is no ambiguity.
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Calculation. Draw CD at right angles to AB. Then,

As rad : cos A :: tan AC : tan AD (Art. 62) = 53° 10'.

As sin BD : sin AD : : tan A : tan B (Art. 61) = 60° 56'.

As cos AD : cos BD : : cos AC : cos BC (Art.66)=39° 59'.

As rad : cos AC : : tan A : cotan ACD (Art. 64)= 67° 11'.

As tan AD : tan BD :: tan ACD : tan BCD (Art. 69) =35° 57'.

Hence, ACB = 103° 8'.

Or, without a perpendicular,

As cos J(AB + AC) : cos £(AB— AC) :: cot £BAC
: tan i(ACB + ABC) (Art. 77, eq. 11) = 82° 2'.

As sin i(AB + AC) : sin |(AB— AC) : : cotan £BAC
: tan £(ACB— ABC) (Art. 77, eq. 12) == 21° 6'.

Whence, ACB = 103° 8', and ABC = 60° 56'.

As sin ABC : sin BAC : : sin AC : sin BC (Art. 59)=39° 59'.

3. Given, one side 80° 44', and the two adjacent angles,

40° 50' and 70° 12', to find the rest.

Construction. On the

primitive circle, lay down
AB equal to the given

side; and describe two

great circles, making an-

gles with the primitive,

at the points A and B,

equal to the given ones

(Art. 162), and let those

circles cut each other in

C; ABC is the triangle

proposed.
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Calculation. Through B, the extremity of a given side,

and P the pole of AC, describe a great circle, cutting AC
(produced, if necessary) in D. Then,

As rad : cos A : : tan AB : tan AD (Art. 62)= 77° 50'.

As rad : cos AB : : tan A : cotan ABD (Art. 64)= 82° 5'.

As cos CBD : cos ABD :: tan AB : tan CB (Art. 63)=40° 49'.

As tan ABD : tan CBD :: tan AD : tan CD (Art. 69)= 7° 44'.

As sin ABD : sin CBD :: cos A : cos BCD (Art. 68) =80° 57'.

Hence, AC = 70° 6', and ACB == 99° 3'.

Or, without a perpendicular,

As cos J
(B + A) : cos i(B— A) : : tan £AB : tan £(AC +

BC) (Art. 77, eq. 13)
= 55° 27'.

As sin i(B + A) : sin J(B
— A) : : tan ^AB : tan \(A&

—
BC) (eq. 14) = 14° 39'.

As cos !(AC — BC) : cos i(AC + BC) : : tan J(B + A)
: cot JACB (eq. 15) = 49° 31'.

Whence, AC = 70° 6', BC = 40° 48', and ACB = 99° 2'.

4. Given, two angles, 50° 16' and 60° 36', and a side 42°

34', opposite one of them, to find the rest.

Construction. Describe

(Art. 162) a great circle,

making with the primi-

tive, at the point A, an

angle equal to the given

one, to which the given
side is adjacent. On that

circle lay down AC equal
to the given side (Art.

169) ; through C describe

(by Art. 163) a great

circle, making with the

primitive an angle equal
28
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to the other given one ; and let that r.ircle cut the primitive
in B : then ABC is the triangle.

Calculation. Draw CD at right angles to AB. Then,

As rad : cos A : : tan AC : tan AD (Art. 62)= 30° 25'.

As tan B : tan A : : sin AD : sin BD (Art. 61)= 20° 4' 21".

As rad : cos AC : : tan A : cotan ACD (Art. 64)=48° 27' 26".

As cos A : cos B : : sin ACD : sin BCD (Art. 68)=35° 5' 9".

As sin B : sin A : : sin AC : sin BC (Art. 59)= 36° 39' 46".

Wherefore, AB = 50° 29' 21", and ACB = 83° 32' 35".

Or, without a perpendicular.

Fin»l BC as above. Then,

As cos ^(B
— A) : cos J(B + A) : : tan J(AC + BC)

: tan £AB (Art. 77, eq. 17) = 25° 14' 42".

As cos ir(AC — BC) : cos ^(AC + BC) : : tan £(B + A) :

cotan JACB (eq. 15)
= 41° 46' 17".

Wherefore, AB = 50° 29' 24", and ACB = 83° 32' 34".

5. Given, the three sides, 80c

find the angles.

16', 60° 44', and 50° 20', to

Construction. On the

primitive, lay down AB
equal to one of the given
sides ; from A and B, as

poles, at distances equal
to the other sides respec-

tively, describe (Art. 156)
two circles, ICK and

GCH, cutting each other

in C ; through A, C, and B,

C, describe (Art. 159) two

great circles; then ABC
is the triangle proposed.
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Calculation. Through C, describe the great circle CD at

right angles to AB, and bisect AB in E , then,

As tan AE : tan ^(AC + BC) : : tan J(AC— BC) : tan ED
(Art. 74) = 8° 56' 14".

Whence, AD = 49° 4' 14", and BD = 31° 11' 46".

As tan AC : tan AD : : rad : cos A (Art. 62)=49° 44' 18' .

As tan BC : tan BD : : rad : cos B = 59° 51' 33".

As sin AC : sin AD : : rad : sin ACD (Art. 58)
- 60° 0' 17".

As sin BC : sin BD : : rad : sin BCD = 42° 17' 25"

Wherefore, ACB = 102° 17' 42".

Or, without a perpendicular.

Take P = half the sum of the sides ; then,

As sin P.sin (P— BC) : sin (P
—

AC).sin (P
— AB):: rad2

: tan2

£A (Art. 77, eq. 7)
« 24° 52' 9".

Wherefore, A = 49° 44' 18".

And (Art. 59), B = 59° 51' 34", and C = 102° 17' 42".

6. Given, three angles, 60° 36', 66° 20', and 99° 50', to find

the sides.

Construction. At the centre of the primitive, make an angle
C equal to the greatest given angle ; and describe a great
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circle, making, with the right circles including that angle,
two angles respectively equal to the other two given ones

(Art. 166) ; and let A and B be those angles : then ABC is

the triangle proposed.

Calculation. Through C let two great circles, CD and CE,

pass ; the former at right angles to AB, and the latter bisect-

ing the angle ACB. Then, ^

As cotan £(B + A) : tan KB "— A
)

: : tan ACE : tan ECD
(Art. 75) = 6° 47' 44".

Whence, ACD = 56° 42' 44", and BCD = 43° 7' 16".

As |an A : cotan ACD : : rad : cos AC === 68° 17' 13".

As tan B : cotan BCD : : rad : cos BC (Art. 64) =62° 5' 42".

As sin A : rad : : cos ACD : cos AD (Art. 67)= 50° 57' 5".

As sin B : rad : : cos BCD : cos BD= 37° 9' 41".

AB = 88° 6' 46".

Or, without a perpendicular,

As sin B.sin C : cos |(A + C— B).cos $(A + B— C) : : rad2

: cos
2

^BC (Art. 77, eq. 9) ;

whence, BC = 62° 5' 58". And (Art. 59), AB = 8«8° 6' 46",

AC = 68° 17' 12".

Otherwise. From A and B, as poles, describe the great
circles FG, FH, cutting the primitive in G and H ; then the

triangle FGH is supplemental to ABC (Art. 54). That is,

GH = 180° — ACB ;
FH = 180° — ABC ; FG = 180° —

BAC ; whence the sides of FGH are known. Then,

As sin FH.sinFG : sin i(HG + FH— FG).sin i(HG + FG
— FH) :: rad2

: sin
2

JHFG or cos
2

JAB ;

whence, AB = 88° 6' 46", as before.
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Promiscuous Examples.

The following astronomical terms being occasionally used

in the succeeding examples, it is deemed advisable to insert

their definitions.

The axis of the earth is the line through the centre on

which it revolves; the points where the axis meets the

surface of the earth are the poles of the earth ; and the points

where the axis produced meets the concave surface of the

visible heavens, are the celestial poles.

The common section of the earth's surface and a plane

passing through its centre at right angles to its axis, is

termed the terrestrial equator; and the section of the same

plane and the concave surface of the visible heavens, is called

the celestial equator, or equinoctial circle.

Meridians are great circles passing through the poles, and,

consequently, cutting the equator at right angles.

A right line drawn from the centre of the earth, through
the place of an observer, and continued till it meets the celes-

tial sphere, cuts it in a point which is termed the zenith of

the place. The point where the same line, extended beyond
the centre, meets the celestial sphere, is termed the nadir.

The great circle of which the zenith and nadir are the

poles, is termed the horizon.

A meridian passing through the zenith of any place, is

called the meridian of that place.

The angle formed by the meridian of a place, and a great
circle passing through the zenith, and a celestial object, is

called the azimuth.

The distance, reckoned in degrees, minutes, &c, on the

meridian, between the equator and a place on the earth's

surface, is termed the latitude of that place.

The angle contained between the meridian of a place, and

28 t
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some other assumed as a first meridian, is termed the longi-

tude of the place. The longitude is usually reckoned east-

ward or westward as far as 180°.

The common section of the plane of the earth's orbit and

the celestial sphere, is called the ecliptic. This circle is the

sun's apparent annual path.

The points where the ecliptic cuts the celestial equator are

termed the equinoxes. The point in which the sun appears
when passing from the southern to the northern side of the

equator, is termed the vernal equinox.

The arc of the celestial equator, reckoning eastward,

between the vernal equinox and the point where a meridian

through any celestial object cuts the equator, is called the

right ascension of that object ; and the arc of the meridian

between the object and the equator, is termed the decli-

nation.

The arc of the ecliptic, reckoned eastward, between the

vernal equinox and the point where a great circle, passing

through the pole of the ecliptic and any celestial object, cuts

the ecliptic, is termed the longitude of that object ; and the

arc of that great circle, betwreen the object and the ecliptic,

is termed its latitude.

The angle formed by the ecliptic and the celestial equator
is termed the obliquity of the ecliptic.

The right ascension of the point in the celestial equator
which is cut by the meridian of a place, is called the right

ascension of the mid-heaven.

The point of the ecliptic which is cut by a great circle

passing through its pole and the zenith of a place, is called

the nonagesima degree.

Ex. 1. Required, the distance on a great circle of the earth

between Point Venus in Otaheite, and Edinburgh ; also, the

direction of each from the other ; the latitude of the former

berns 17° 29' South, and longitude 149° 29' West; and the
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atitude of the latter 55° 57' North, and longitude 3° 11'

West.

Cons/ruction. Assume the

primitive circle as the meri-

dian of Point Venus ; and

take P as the north pole;
from P lay down PA = the

polar distance, 107° 29', of

the place ; through P describe

a great circle, making, with

the primitive at P, an angle
146° 18', equal to the differ-

ence of longitudes (Art. 162) ; on this circle lay down PB
34° 3' = the polar distance of Edinburgh (Art. 169) ; through
A and B describe a great circle. Then AB is the arc, and

PAB, PBA the angles required.

Computation. The sides AP, BP, and the angle APB, being

given, the angles at A and B are found (Art. 77, eq. 11, 12),

viz. : PAB = 25° 32', PBA = 47° 15'. Then (eq. 18), AB **

133° 53'. Consequently, Edinburgh bears from Point Venus,

N. 25° 32' E. ; and Point Venus bears from Edinburgh, N.

47° 15' W. ; distance 133° 53'.

Ex. 2. Required, the bearing and distance on a great circle

of the Observatory at Greenwich from the Capitol at Wash-

ington: the latitude of the former being 51° 28' 40" N. ; the

latitude of the latter 3S° 53' N., and longitude 77° 2' W. from

the meridian of Greenwich.

Ans. N. 49° 20' E. ; dist. 53° 8'.

Ex. 3. When the sun's declination is 23° 28' N., how long
after midnight does it rise in latitude 39° 57' N., and how far

from the northern point of the horizon ?

The construction of this problem is readily understood
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from the figure ; taking HO
for the horizon; OP=39° 57',

the latitude of the place ;
de-

scribing a circle about the

pole P, at the distance 66°

32', the sun's polar distance ;

supposing this circle to cut

HO in n
; then, the great cir-

cle PwS being described, the

triangle POrc, right angled at

O, will contain the elements

required ; the angle ?vPO, con-

verted into time at the rate of one hour to 15°, or four min-

utes to 1°, will be the time required ; and nO, the required
distance from the northern part of the horizon.

Result: On 58° 42', 0?n 68° 41'.

Ex. 4. Given, the latitude of the place, 39° 56' N. ; decli-

nation of the sun, 23° 28' N. ; and zenith distance, 60° 30' ;

to find the azimuth and polar angle.

To construct this on the

plane of the meridian, take

the primitive circle HZPO
for the meridian; HO, the

horizon ; Z, the zenith ; P,

the north pole ; and, there-

fore, PO = the latitude of

the place. About P describe

a circle at a distance = 66°

32', the sun's polar distance

(Art. 156) ; and about Z, at

F a distance = 60° 30', the

sun's zenith distance, de-

scribe another circle, cutting the former in N ; then describe

great circles through NZ and NP (Art. 159) ; and in the

triangle NPZ, the angle PZN is the azimuth, and ZPN the
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polar angle required. Those angles may be computed by-

Art. 77, eq. 5, 6, or 7.

Result: NZP 82° 56', ZPN 70° 20'.

Ex. 5. In the beginning of 1842, the right ascension of

Aldebaran (the bull's eye) was 66° 42' 50", and the declina-

tion 16° 8' 36" N. Required, the longitude and latitude at

that time ; the obliquity of the ecliptic being 23° 27' 40".

To project this on the

plane of the celestial equa-

tor, take the primitive
ABCD to denote that cir-

cle; A and C being the

equinoxes, and P the north

pole : through A, C, describe

the circle AGCH, making
an angle of 23° 27' 40" with

the primitive ; then AGCH
will represent the ecliptic ;

take Q the pole of AGCH ;

make AE = the star's right

ascension; through E, P,

draw the line EP ; this will represent the meridian passing

through the star. On EP lay down ES (Art. 169) = the

star's declination ; then S is the place of the star. Through
SQ describe (Art. 159) a great circle cutting the circle AGC
in F ; then AF is the longitude, and FS the latitude required.

Through AS describe a great circle; then the angle EAS
may be computed by Art. 60, and thence AF and FS by
Arts. 71 and 70.

Result : long. 67° 34' 23" ; lat. 5° 31' 18" S.

Ex. 6. Given, the latitude of the place, 40° north ; the

obliquity of the ecliptic, 23° 28' ; and the right ascension of

the mid-heaven, 60° ; to find the longitude and altitude of the

nonagesima degree.
29
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To project this example on the plane of the meridian, let

the primitive circle HZMO denote the meridian; HO, the

horizon; Z, the zenith, or pole of HO. On the primitive

circle lay down HP, ZM, each equal to the latitude of the

place, or 40° ; then P will be the pole of the equator. About

P, at the distance 23° 28', the obliquity of the ecliptic, de-

scribe a less circle; through M and C (the centre of the

primitive), draw the right circle CMA ; this will represent

the equator. Make MA = 60°, the right ascension of the

mid-heaven; the point A will be the vernal equinox. Make
CL = 30° ; then L will be the autumnal equinox, for CM =
90°. About the pole L describe the great circle QPS, cut-

ting the less circle in Q ; then Q is the pole of the ecliptic.

Through L describe a great circle having Q for its pole ; this

circle will denote the ecliptic, and pass through A. Lastly,

through Q and Z describe a great circle QZNR, cutting the
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ecliptic in N, and the horizon in R ; N is the nonagesima,
whose longitude is AN, and altitude NR or QZ.

Calculation, Let QP cut the equator in E ; then AE—AM
=EM=ZPE» Hence, QPZ becomes known = 150°; then,

in the triangle ZPQ, ZP == 50°, PQ = 23° 28' ; with which

and the contained angle, we may find the angle ZQP = 23°

53' 44", and side QZ == NR = 71° 0' 18". Consequently, the

longitude of the point N = 66° 6' 16".

Ex. 7. Given, the latitude of the place 41° 36' north, anc 4

the sun's declination 22° 10' north, to find the time from noon,

or the polar angle, when the sun is on the vertical circle

which passes through the east and west points of the horizon,

and the sun's altitude at the same time.

Result: Polar angle 62° 41', or time from noon 4 hours 11

minutes ; altitude 34° 38'.

Ex. 8. On the first day of the year 1836, when it was noon

at Greenwich, the right ascension of Jupiter was 101° 55',

and declination 23° 4' 2" north ; at the same time, the right
ascension of Saturn was 212° 17', and the declination 10° 30'

50" south. What was their distance on the arc of a great
circle 1

Ans. 112° 44' 59'.

Ex. 9. In the beginning
of 1842, the declination of

the polar star was 88° 28'

north. What was its azi-

muth, when its elongation
from the meridian was the

greatest, the observer being
in latitude 40° north ?

Ans. 2° 0' 6".
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Ex. 10. In latitude 40° north, required the duration of

twilight at the several times when the sun's declination is

23° 28' south, 5° 50' south, and 23° 28' north ; the twilight

being supposed to begin when the sun's centre is 49' below

the horizon,* and to end when it is 18° below.

Ans. 1 h. 35 m. ; 1 h. 29 m. ;f and 2 h. 4 m.

Ex. 11. Given, two zenith distances of the sun's centre,

65° 20' and 60° 18', taken at the same place, both being in

the forenoon ; the interval between the observations, mea-

sured by a good time-piece, 1 hour 32 minutes ; the sun's

declination 20° south, and the approximate latitude of the

place 40° 15' north ; to find the time of the last observation,

and the correct latitude of the place.

Let HO be the horizon;

HZO, the meridian ; Z, the

zenith; P, the north pole;
BZ and AZ, the given zenith

distances. Then PZ is the

colatitude ; and PB, PA, the

sun's polar distance.

Now (by Art. 77, eq. 1),

cos AZ = cos ZPA. sin AP
sin ZP + cos AP.cos ZP ;

and

cos BZ = cos ZPB.sin BP.sin ZP + cos BP.cos ZP.

Hence (AP being = BP),

cos AZ— cos BZ = (cos ZPA— cos ZPB) sin AP.sin ZP ;

* The refraction of the sun's light, when in the horizon, is 33', and

apparent semi-diameter about 16'; hence his upper limb is just visible

when the centre is 49' below the horizon.

j-
This is the shortest twilight in latitude 40° N.,and occurs twice in the

year, viz., in spring and »itumn. when the sun's declination is 5° 50' S.
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consequently (Art. 37, eq. 13),

sin J(BZ + AZ).sin J(BZ— AZ) = sin J(BPZ + APZ).
sin i(BPZ— APZ) sin AP.sin ZP ;

of which, BPZ—APZ is given from the elapsed time. Hence,

• imp7 m AP7^
Bin «BZ + AZ).sini(BZ- AZ)

sin i(BPZ + APZ) =
^jxjfcye^ ^BPZ^-AJZ)

=

15° 51' 11".

Whence APZ - 4° 21' 11", and (by Art. 59) AZP == 175°

17' 24" ; from which we find (by Art. 77, eq. 18), ZP ==- 49°

50' ; and therefore PO, the corrected latitude, 40° 10' ;» and

time from noon, when the least zenith distance was taken, 17

minutes 24 seconds.

Ex.12. Given, the approximate latitude, 39° 26' N.; the

sun's declination, 20° 41' N. ; sun's corrected zenith distance

at 11 h. 30' 15", by watch, 21° 30' ; and at 12 h. 26' 28", by
watch, 18° 52'. Required, the corrected latitude, and error

of the watch.

Ans. Lat. 39° 29' ; watch too fast, 18 min. 57 sec.

Ex. 13. At the time when Sirius and Aldebaran were in

the same vertical circle, the true zenith distance of the latter

was found to be 30° 16' ; the stars being on the east of the

meridian. Required, the latitude of the place, and right

ascension of the mid-heaven ; the right ascension of Sirius

being 99° 33' 30", and its declination 16° 30' 18" south ; the

right ascension of Aldebaran 66° 43' 45", and its declination

16° 11' 12" north.

Ans. Lat. 35° 8' 42" N. ; right ascension of mid-heaven

39° 17' 23".

* When the latitude thus found differs considerably from the approxi-
mate latitude, the computation ought to be repeated, with the result first

obtained substituted for the approximate latitude.

29
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Examples of a Mixed Character.

Ex. 1. From the top of a cliff near a river, two buoys at

anchor being observed, whose distance from each other was
known to be 300 yards, their angles of depression below the

plane of the observer were found to be 30° and 40° respec-

tively; and the angle at the eye, subtended by the line joining

them, was 37°. Required, the distance of each buoy from

the observer, and the altitude of the cliff above the level of

the water.

The observed depressions, each increased by 90°, form two

sides ; and the angular distance, the base of a spherical tri-

angle, with which the angle opposite the base is found =44°.

This is the horizontal angle, subtended by the line joining the

buoys.

Drawing then a vertical line through the position of the

observer to meet the plane of the water ; and, from the point
where it meets that plane, drawing lines to the buoys ; those

lines will be to each other as the cotangents of the given

angles of depression ; and the angle which they make with

each other will be 44°, as above found. The construction is

this :

Take AB=300, the given dis-

tance ; on AB describe a segment
of a circle ACB, containing an

angle of 44° ; complete the cir-

cle, and bisect the arc AEB in

E; make the angles ABF and

BAF = 30° and 40° respective-

ly ;
draw FG at right angles to

AB; join EG, and produce it to

meet the circle in C; join CA,
CB ; then, since the angle ACB is bisected by the line CG,

As AC : CB : : AG : BG (3.6) : : cot BAF : cot ABF.
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Consequently, C is the point in the plane of the water which

is cut by a vertical line passing through the place of the

observer.

The calculation is easily made. For (Art. 28 and Art. 37,

eq. 8),

As sin (BAF+ABF) : sin (BAF— ABF) : : AB : BG—AG.
Hence AG is known. If we join AE, BE, the side AB, and

all the angles of the triangle ABE, are given ; whence AE
becomes known. Then, in the triangle AGE, the sides AE,

AG, and the contained angle, are known; from which the

angle AEG = ABC is found. In the triangle ABC, we then

have the base AB and all the angles, to find AC and BC.

Then, from either of these and the angle of depression, the

altitude of the cliff may be found. Lastly, with the distances

AC, BC, and the angles of depression, the distances from A
and B to the place of the observer are determined

Result : Altitude of cliff, 249 ; distances, 388 and 49S

Ex. 2. Suppose an observer on a frozen lake takes the

altitudes and angular distance of two cliffs on the shore, as

follows : altitude of first, 50° ; of second, 55° 30' ; angular

distance, 25° 20'. Then, advancing on the ice 500 yards, in

the vertical plane which passes through the first cliff, the

altitudes are 57° and 59° respectively. Required, the dis-

tance of the cliffs from <Mkcfi utfier, and their respective

altitudes above the surface of the lake.

Ans. Distance of cliffs, 2347 or 2850 yards ; altitude of

first, 2636 yards ; of second, 4069 or 552 yards.

Ex. 3. The crew of a vessel at sea discovering a light in

the horizon, which they suppose to be a vessel on fire, sail

directly towards it, over 1° of a great circle, when they per-

ceive that it is a fire on a mountain, which is then 1° 30'

above the horizon. Required, the distance of the light when

first seen, and the height of the mountain above the level of
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the sea ; the earth being considered as a spnere wnose radius

is 3968 miles.

Answer. Distance, 138.5 miles ; height, 2.4 miles.

Ex. 4. Given, AB, a horizontal line, 1785 yards in length,

running exactly north ; D, C, two elevated peaks, eastward

from AB, such that the elevation of C above the plane of the

horizon, seen from A, is 16° 30', and the elevation of D 20°

40'. But, seen from B, the elevation of C is 14° 25', and the

elevation of D 13° 15'. Also, the angle BAG, taken in the

oblique plane passing through AB and C, is 38° 16' ; the

angle CAD, taken in the plane which passes through A, C
and D, 87° 20'. Required, the distance and bearing of DC
when reduced to the horizontal plane on which AB lies.

Result : DC, N. 29° W. ; 2,556 yards.

TUB END
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