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PREFACE.

TN the present treatise, I have given an account, from the

modern point of view, of the theory of the circular functions,

and also of such applications of these functions as have been usually

included in works on Plane Trigonometry. It is hoped that the

work will assist in informing and training students of Mathematics

who are intending to proceed considerably further in the study of

Analysis, and that, in view of the fulness with which the more

elementary parts of the subject have been treated, the book will

also be found useful by those whose range of reading is to be more

limited.

The definitions given in Chapter iii., of the circular functions,

were employed by De Morgan in his suggestive work on " Double

Algebra and Trigonometry," and appear to me to be those from

which the fundamental properties of the functions may be most

easily deduced in such a way that the proofs may be quite general,

in that they apply to angles of all magnitudes. It will be seen

that this method of treatment exhibits the formulae for the sine

and cosine of the sum of two angles, in the simplest light, merely

as the expression of the fact that the projection of the hypothenuse

of a right-angled triangle on any straight line in its plane, is equal

to the sum of the projections of the sides on the same line.

The theorems given in Chapter vii. have usually been deferred

until a later stage, but as they are merely algebraical consequences

of the addition theorems, there seemed to be no reason why they

should be postponed.
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A strict proof of the expansions of the sine and cosine of an

angle in powers of the circular measure has been given in Chapter

VIII.
;
this is a case in which, in many of the text books in, use, the

passage from a finite series to an infinite one, is made without any

adequate investigation of the value of the remainder after a finite

number of terms, simplicity being thus attained at the expense of

rigour. It may perhaps be thought, that at this stage, I might

have proceeded to obtain the infinite product formulae for the sine

and cosine, and thus have rounded o& the theory of the functions

of a real angle; for convenience of arrangement, however, and in

order that the geometrical applications might not be too long

deferred, the investigation of these formulae has been postponed

until Chapter xvii.

As an account of the theory of logarithms of numbers is given

in all works on Algebra, it seemed unnecessary to repeat it here
;
I

have consequently assumed that the student possesses a knowledge

of the nature and properties of logarithms, sufficient for practical

application to the solution of triangles by means of logarithmic

tables.

In Chapter xiL, I have deliberately omitted to give any

account of the so-called Modern Geometry of the triangle, as it

would have been impossible to find space for anything like a

complete account of the numerous properties which have been

recently discovered; moreover many of the theorems would be

more appropriate to a treatise on Geometry, than to one on

Trigonometry.

The second part of the book, which may be supposed to

commence at Chapter xiii., contains an exposition of the first

principles of the theory of complex quantities ; hitherto, the very

elements of this theory have not been easily accessible to the

English student, except recently in Prof Chrystal's excellent

treatise on Algebra. The subject of Analytical Trigonometry has

been too frequently presented to the student in the state in

which it was left by Euler, before the researches of Cauchy, Abel,

Gauss, and others, had placed the use of imaginary quantities
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and especially the theory of infinite series and products, where real

or complex quantities are involved, on a firm scientific basis. In

the Chapter on the exponential theorem and logarithms, I have

ventured to introduce the term "
generalized logarithm

"
for the

doubly infinite series of values of the logarithm of a quantity.

I owe a deep debt of gratitude to Mr W. B. AUcock, Fellow of

Emmanuel College, and to Mr J. Greaves, Fellow of Christ's

College, for their great kindness in reading all the proofs ;
their

many suggestions and corrections have been an invaluable aid to

me. I have also to express my thanks to Mr H. G. Dawson,

Fellow of Christ's College, who has undertaken the laborious task

of verifying the examples. My acknowledgments are due to

Messrs A. and C. Black, who have most kindly placed at my

disposal the article "Trigonometry" which I wrote for the

Encyclopaedia Britannica.

During the preparation of the work, I have consulted a large

number of memoirs and treatises, especially German and French

ones. In cases where an investigation which appeared to be

private property, has been given, I have indicated the source.

I need hardly say that I shall be very grateful for any

corrections or suggestions, which I may receive from teachers or

students who use the work.

E. W. HOBSON.

Christ's College, Cambridge,

March, 1891.

Second Edition,

In the second edition various corrections have been made, and

a few additional examples have been inserted.

February, 1897.
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CHAPTER I.

THE MEASUREMENT OF ANGULAR MAGNITUDE.

1. The primary object of the science of Plane Trigonometry-
is to develope a method of solving plane triangles. A plane

triangle has three sides and three angles, and supposing the

magnitudes of any three of these six parts to be given, one at

least of the three given parts being a side, it is possible, under

certain limitations, to determine the magnitudes of the remaining
three parts; this is called solving the triangle. We shall find

that in order to attain this primary object of the science, it will be

necessary to introduce certain functions of an angular magnitude,
and Plane Trigonometry, in the extended sense, will be under-

stood to include the investigation of all the properties of these so-

called circular functions and their application in analytical and

geometrical investigations not connected with the solution of

triangles.

The Generation of an Angle of any Magnitude,

2. The angles considered in Euclidean Geometry are all less

than two right angles, but for the purposes of Trigonometry, it is

necessary to extend the conception of angular magnitude so as to

include angles of all magnitudes, positive and negative. Let OA
be a fixed straight line, and let a straight line OP, initially coinci-

dent with OA, turn round the point in the counter-clockwise

direction, then as it turns, it generates the angle AOP ;
when OP

reaches the position 0A\ it has generated an angle equal to two

right angles, and we may suppose it to go on turning in the same

H. T. 1
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direction until it is again coincident with OA
;

it has then turned

through four right angles ;
we may then suppose OP to go on

turning in the same direction, and in fact, to make any number
of complete turns round

;
each time it makes a complete

revolution, it describes four right angles, and if it stop in any

position OP, it will have generated an angle which may be of

any absolute magnitude, according to the position of P. We
shall make the convention that an angle so described is positive,

and that the angle described when OP turns in the opposite or

clockwise direction is negative. This convention is of course

perfectly arbitrary, we might if we pleased, have taken the

clockwise direction for the positive one. In accordance with

our convention then, whenever OP makes a complete counter-

clockwise revolution, it has turned through four right angles
reckoned positive, and whenever it makes a complete clockwise

revolution, it has turned through four right angles taken negatively.

As an illustration of the generation of angles of any magnitude, we may
consider the angle generated by the large hand of a clock. Each hour, this

hand turns through four right angles, and preserves no record of the number
of turns it has made

; this, however, is done by the small hand, which only
turns through one-twelfth of four right angles in the hour, and thus enables

us to measure the angle turned through by the large hand in any time less

than twelve hours. In order that the angles generated by the large hand

may be positive, and that the initial position may agree with that in our

figure, we must suppose the hands to revolve in the opposite direction to that

in which they actually revolve in a clock, and to coincide at three o'clock

instead of at twelve o'clock.
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3. Supposing OP in the figure, to be the final position of

the turning line, the angle it has described in turning from the

position OA to the position OP, may be any one of an infinite

number of positive and negative angles, according to the number

and direction of the complete revolutions the turning line has

made, and any two of these angles differ by a positive or negative

multiple of four right angles. We shall call all these angles

bounded by the two lines OA, OP, coterminal angles, and denote

them by {OA, OP); the arithmetically smallest of the angles

(OA, OP) is the Euclidean angle A OP, and all the others are

got by adding positive or negative multiples of four right angles

to the algebraical value of this.

The Numerical Measurement of Angles.

4. Having now explained what is meant by an angle of any

positive or negative magnitude, the next step to be made as

regards the measurement of angles, is to fix upon a system for

their numerical measurement. In order to do this, we must

decide upon a unit angle, which may be any arbitrarily chosen

angle of fixed magnitude, then all other angles will be measured

numerically by the ratios they bear to this unit angle. The

natural unit to take would be the right angle, but as the angles

of ordinary size would then be denoted by fractions less than

unity, it is more convenient to take a smaller angle as the unit.

The one in ordinary use is the degree, which is one ninetieth

part of a right angle. In order to avoid having to use fractions

of a degree, the degree is subdivided into sixty parts called

minutes, and the minute into sixty parts called seconds. Angles
smaller than a second are denoted as decimals of a second,

the third, which would be the sixtieth part of a second, not

being used. An angle of d degrees is denoted by d, an angle

of m minutes by m\ and an angle of n seconds by n", thus

an angle d m' n" means an angle containing d degrees + m

minutes + ?i seconds, and is equal to 777: + T^FTr, + nr> nr. nr.^ 90 90 . 60 90 . 60 . 60

of a right angle.

This system of numerical measurement of angles is called

the sexagesimal system. For example, the angle 23 14' 56'''4

23 14 564
<J^*^^

90
+
90760

+
90.60.60

^ ^ "^ht angle.

12
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It has been proposed to use the decimal system of measurement of angles.

In this system the right angle is divided into a hundred grades, the grade

into a hundred minutes, and the minute into a hundred seconds
;
an angle of

g grades, m minutes and n seconds is then written g^ ^rC n'\ For example,

the angle 1397' 4'' -2 is equal to 13*97042 of a right angle. This system has

however never come into use, principally because it would be inconvenient in

turning time into grades of longitude, unless the day were divided differently

than it is at present. The day might, if the system of grades were adojjted,

be divided into forty hours instead of twenty-four, and the hour into one

hundred minutes, thus involving an alteration in the chronometers
;

one

of our present hours of time corresponds to a difference of 50/3 grades of

longitude, which being fractional is inconvenient.

It is an interesting fact that the division of foiu* right angles into 360

parts was used by the Babylonians ;
there has been a good deal of speculation

as to the reason for their choice of this number of subdivisions. )

The Circular Measurement of Angles.

5. Although, for all purely practical purposes, the sexagesimal

system of numerical measurement of angles is universally used,

for theoretical purposes it is more convenient to take a different

unit angle. In any circle of centre 0, suppose AB to be an arc

whose length is equal to the radius of the circle
;
we shall shew

that the angle AOB is of constant magnitude independent of

the particular circle used
;

this angle is called the Radian or

unit of circular measure, and the magnitude of any other angle

is expressed by the ratio which it bears to this unit angle, this

ratio being called the circular measure of the angle.
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6. In order to shew that the Radian is a fixed angle, we shall

assume the following two theorems :

(a) In the same circle, the lengths of different arcs are to one

another in the same ratio as the angles which those arcs subtend

at the centre of the circle.

(b) The length of the whole circumference of a circle bears

to the diameter a ratio which is the same for all circles.

The theorem (a) is contained in Euclid, Book vi. Prop. 33, and

we shall give a proof of the theorem (b) at the end of the present

Chapter. From (a) it follows that

arc^^ ZAOB
circumference of the circle 4 right angles

*

Since the arc AB is equal to the radius of the circle, the first

of these ratios is, according to (6), the same in all circles, conse-

quently the angle AOB is of constant magnitude independent of

the particular circle used.

7. It will be shewn hereafter that the ratio of the circum-

ference of a circle to its diameter is incommensurable, that is,

we are unable to give any integers m and n such that m/n is

exactly equal to the ratio. We shall, in a later Chapter, give an

account of the various methods which have been employed to

calculate approximately the value of this ratio, which is usually

denoted by tt. At present it is sufficient to say that tt can only

be obtained in the form of an infinite non-recurring decimal, and

that its value to the first twenty places of decimals is

314159265358979323846.

For many purposes it will be sufficient to use the approximate value

22 355
3-14159. The ratios =3*142857, =3-1415929... maybe used as approxi-

mate values of tt, since they agree with the correct value of tt to two and six

places of decimals respectively.

8. We have shewn that the radian is to four right angles

in the ratio of the radius to the circumference of a circle
;
the

2
radian is therefore - x a right angle ; remembering then that

a right angle is 90, and using the approximate value of tt,

31415927, we obtain for the approximate value of the radian
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in degrees, 57'2957796, or reducing the decimal of a degree to

minutes and seconds, 57 17' 44"*81.

The value of the radian has been calculated by Glaisher to 41 places of

decimals of a second i. The value of l/r has been obtained to 140 places of

decimals 2.

9. The circular measure of a right angle is Jtt, and that of

two right angles is tt, and we can now find the circular measure

of an angle given in degrees, or vice versa
;

if c? be the number of

degrees in an angle of which the circular measure is 0, we have

- =
:p^ ,

for each of these ratios expresses the ratio of the given

angle to two right angles ;
thus - d is the circular measure of

180
an angle of d degrees, and 6 is the number of degrees in an

TT

angle whose circular measure is ^
;

if an angle is given in degrees,

minutes and seconds, as d mf n'\ its circular measure is

{d + m/60 + n/3600) tt/ISO.

The circular measure of V is -01745329..., of 1' is '0002908882..., and

that of 1" is -000004848137

10. The circular measure of the angle AOP, subtended at the

arc A^
centre of a circle by the arc AP, is equal to

y-- 1^ ?- ,
for

^ radius oi circle

,
. ^. . , , arc JIP /lAOP

this ratio is equal to -rr* or ^ . ^ .^ arc AB Z AOB

The arc AP may be greater than the whole circumference and

may be either positive or negative, according to the direction in

which it is measured from the starting point A, so that the

circular measure of an angle of any magnitude, is the arc which

subtends the angle, divided by the radius of the circle. The

length of an arc of a circle of radius r, is rO, where 6 is the

circular measure of the angle the arc subtends at the centre

of the circle. The whole circumference of the circle is therefore

27rr.

1 On the calculation of the value of the theoretical unit angle to a great number

of places. Quarterly Journal, Vol. iv.

2 See Grunert's Archiv, Vol. i., 1841.
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Proof that the Circumferences of Circles vary as their

Diameters.

11. In order to prove that the lengths of the circumferences

of different circles vary as their diameters, we have recourse to the

Newtonian conception of a curve as being the limit of an inscribed

polygon, when the number of sides of the polygon is indefinitely

increased, each side of the polygon becoming indefinitely small.

The length of the curve is then considered to be the limit of the

sum of the lengths of the sides of the polygon. Suppose a regular

polygon of n sides to be inscribed in a circle, then in accordance

with this conception, we regard the circumference of the circle as

differing from the perimeter of the polygon, by a quantity which

may be made as small as we please by making the number n of

the sides great enough. Suppose C to be the length of the

circumference of the circle, and P^ the perimeter of the polygon,

then C Pn-\- sCn where Xn may be made smaller than any assign-

able quantity by making n increase sufficiently. If C, P/, oCn be

corresponding quantities, for the same value of n, for another circle,

we have by Euclid Book vi., Prop. 20, Pn : Pn - I> '- J^\ where

D and D' are the diameters of the circles;

.*. C Xn : C Xn ''. D : D\

or CD' - CD = xjy - x,lB.

Now Xrjy XnB becomes less than any assignable quantity, when n

is indefinitely increased, or in other words the limit of XnD' x^D
is zero

;
hence CD' - CD = 0, or C : C :: D : D'.

In the preceding proof, the length of the circumference of the circle has

been implicitly defined to be the limit which the perimeter of an inscribed

regular polygon approaches as the number of sides is indefinitely increased.

If there be inscribed in the circle a polygon whose sides are not equal but are

different from one another in accordance with any arbitrarily prescribed law,

it has not been shewn that the perimeter of such polygon, when the number

of sides is indefinitely increased, necessarily tends to the same limit as in the

case of a regular polygon. The investigation of this point is contained in

that of the fundamental Theorem of the Integral Calculus. The above proof

may be regarded as complete if we assume the restricted definition of the

length of the arc of a curve as the limit of the perimeter of an inscribed

polygon with equal sides.
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The area of a sector of a circle,

12. In order to find the area of the sector of a circle, bounded

by any two radii, consider a regular polygon inscribed in the

circle, as in the last article. The area of the triangle of which

one side of the polygon is base, and of which the radii at the

extremities of that side are sides, is half the product of the base

and the altitude of the triangle ;
the altitudes of all such triangles

are the same, hence the sum of the areas of any number s of such

triangles taken consecutively, is half the product of the altitude

into the sum of the s sides of the polygon. When the number n of

the sides of the polygon is indefinitely increased, s bearing a finite

ratio to n, the sum of the s sides is ultimately the length of a

finite arc of the circle, and the altitude of the triangles is ulti-

mately the radius of the circle, hence the area of the sector of the

circle which is the limit of the sum of the triangular areas, is half

the product of the radius into the length of the arc of the sector.

The area of a sector of which the bounding arc subtends an angle

whose circular measure is 6y at the centre of the circle, is \r x rO

or ^r'^d. The whole circle is a sector of which the bounding arc is

the whole circumference, hence the area of the whole circle is 7rr^

EXAMPLES ON CHAPTER I.

1. What must be the unit of measurement, that the numerical measiu*e

of an angle may be equal to the diflPerence between its numerical measures as

expressed in degrees and in circular measure ?

2. If the measures of the angles of a triangle referred to 1, 100', 10000"

as units, be in the proportion of 2, 1, 3, find the angles.

3. Find the number of degrees in an angle of a regular polygon of n sides

(1) when it is convex, (2) when its periphery surrounds the inscribed circle m
times.

4. Two of the angles of a triangle are 52 53' 51", 41 22^ 50" respectively ;

find the third angle.

5. Find, to five decimal places, the arc which subtends an angle of 1 at

the centre of a circle whose radius is 4000 miles.
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6. An angle is such that the difference of the reciprocals of the number
of grades and degrees in it, is equal to its circular measure divided by 27r ;

find the angle.

7. The angles of a plane quadrilateral are in a.p. and the difference of

the greatest and least is a right angle ; find the number of degrees in each

angle and also the circular measure.

8. In each of two triangles the angles are in g.p.
; the least angle of one

of them is three times the least angle in the other, and the sum of the

gi'eatest angles is 240
;
find the circular measure of the angles.

9. If an arc of ten feet on a circle of eight feet diameter, subtend at the

centre an angle 143 14' 22", find the value of ir to four decimal places.

10. Find two regular figures such that the number of degrees in an

angle of the one is to the number of degrees in an angle of the other as the

number of sides in the first is to the number of sides in the second.

11. ABC is a triangle such that, if each of its angles in succession be

taken as the unit of measurement, and the measures formed of the sums of

the other two, these measures are in a.p. Shew that the angles of the

triangle are in h.p. Also shew that only one of these angles can be greater
than of a right angle.

12. Shew that there are eleven and only eleven pairs of regular polygons
which are such that the number of degrees in an angle of one of them, is

equal to the number of grades in an angle of the other, and that there are

only four pairs in which these angles are expressed by integers.

13. The apparent angular diameter of the sun is half a degree. A planet
is seen to cross its disc in a straight line at a distance from its centre equal
to three-fifths of its radius. Prove that the angle subtended at the earth, by
the part of the planet's path projected on the sun, is 7r/450.



CHAPTER II.

THE MEASUREMENT OF LINES. PROJECTIONS.

13. If it is required to measure a given length along a given

straight line, supposed indefinitely prolonged in both directions,

starting from any assumed point, the question arises, in which

direction is the given length to be measured off. In order to avoid

ambiguity, we agree that lengths measured along the straight

line in one direction shall be considered positive, and consequently
in the other direction negative ;

it is necessary then in such a

straight line to assign the positive direction. Suppose, in the

figure, we agree that lines measured from left to right shall be

A B C

considered positive and from right to left negative; the length AB
is then positive, and the length BA negative, or AB BA.

14 If (7 be any third point anywhere on the straight line, we

shall have AB AG-\-GB, for example if, as in the figure, C lies

beyond B, the line GB is negative, and therefore its numerical

length is subtracted from that of AG. The sum of the lengths of

any number of such straight lines generated by a point which

starts at A and finishes its motion at B, is accordingly equal to

AB.

15. When, as in Art. 2, an angle is generated by a straight

line OF turning from an initial position OA, we shall suppose



THE MEASUREMENT OF LINES. PROJECTIONS. 11

that, whilst turning, the positive direction in the line OP remains

unaltered, thus the angle which has been generated in any position

of OP, is the angle between the two positive directions of the

B

bounding lines. It follows, that if AB, CD are the positive

directions in two straight lines, the angle between AB and DC
differs by two right angles from the angle between AB and CD,
for a line revolving from the position AB, must turn through an

angle in order to coincide with DC, 180 greater or less than the

angle it must turn through in order to coincide with CD.

If we consider all the coterminal angles bounded by AB and

CD, and hy AB and DC, respectively, we shall have {AB, CD)

{AB, DC) + 180, the angles being all measured in degrees.

16. When a straight line moves parallel to itself, we shall

suppose its positive direction to be unaltered, so that if AB, CD
are non-intersecting straight lines, the angle between them is equal
to the angle between AB and a straight line drawn through A
parallel to CD. For ordinary geometrical purposes, the angle
between AB and CD, is the smallest angle between AB and this

parallel, irrespective of sign.

Projections.

17. If from the extremities P, Q of any straight line PQ
perpendiculars PM, QiV be drawn to any straight line AB, the

portion MN, with its proper sign, is called the projection of the

straight line PQ on the straight line AB. It should be noticed

that PQ and AB need not necessarily be in the same plane. The

projection of QP is NM, and has therefore the opposite sign to

-that of PQ.
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If the points P and Q be joined by any broken line, such as

PpqrQ, the sum of the projections of Pp,pq, qr, rQ on AB, is equal

to the projection of PQ on AB. For the sum of the projections^

is M'm, + mn-\-ns + sN', which is, according to Art. 14, equal to

MN. We obtain thus the fundamental property of projections.

The sum of the ji^ojections on any fixed straight line, of the parts

of any broken line joining two points P and Q, depends only upon
the positions ofP and Q, being independent of the manner in which

P and Q are joined.

A particular case of this proposition is the following :

The sum of the projections on any straight line, of the sides,,

taken in order, of any closed polygon, is zero. If in the above figure,

the points P and Q coincide, the broken line joining them becomes

a closed polygon, and since the projection of PQis zero, the sum of

the projections of the sides, taken in order, of the polygon, is alsa

zero. The polygon is not necessarily plane, and may have any
number of re-entrant angles.



CHAPTER III.

THE CIRCULAR FUNCTIONS.

Definitions of the circular functions.

18. Having now explained the manner in which angular and
linear magnitudes are measured, we are in a position to define the
Circular Functions or Trigonometrical Ratios. Suppose an angle
AOP of any magnitude A, to be generated as in Art. 2, by the

revolution of OP from the initial position OA, remembering the

convention made as to the sign of angles. Let B'OB be drawn

perpendicular to A'OA
;
we suppose the positive directions in

A'OA and B'OB to be from to ^, and to 5 respectively. We
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also remember the convention made in Art. 15, as to the positive

direction of the revolving line.

The ratio of the projection of OP on the initial line, to the length

OP, is called the cosine of the angle A, and is denx)ted by cos A.

The ratio of the projection of OP on the straight line OB which

makes an angle 4- 90 with the initial line, to the length OP, is called

the sine of the angle A, and is denoted by sin A.

The ratio of the projection of OF on OB, to its projection on OA,
is called the tangent of the angle A, aTid is denoted by tan A.

The ratio of the projection of OP on OA, to its projection on OB,
is called the cotangent of the angle A, and is denoted by cot A.

The ratio of OP to its projection on OA, is called the secant of
the angle A, and is denoted by sec A.

The ratio of OP to its projection on OB, is called the cosecant of
the angle A, and is denoted by cosec A.

Thus we have

. OM . , ON ^ , ON

, , OM , OP , OP
cot^ =

^-^,
sec^ = ^, cosec^ = ^.

When each of the lengths in the ratios is taken with its proper

sign, the sign of OP is always positive, but those of OM, ON, are

each positive or negative according to the magnitude of the angle

A. It should be observed that MP is equal to, and of the same

sign as ON, so that

. , MP ^ , MP , . OM A OP
sm^=^, tan^ =

^^, cot^=-^, cosec^ =
-^.

In the figure, the angle A has four different magnitudes AOP^,

AOPs, AOPs, AOP4, corresponding to the four positions Pj, P^,

PP.,oiP,

The projection of any positive or negative length AB, on a straight line

(72), is obtained by multiplying the length AB taken with its proper sign,

by the cosine of the angle between the positive directions of the lines on

which AB and CD lie
; the projection is thus given with its proper sign.

It should be observed that since OP, in the figure, always retains the

positive sign as it revolves from the position OA, when it coincides with OA'

it has the opposite sign to that of OA'.
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19. The six ratios defined above, are the six Circular

Functions, called also Trigonometrical Ratios or Trigonometrical
Functions. Each of them depends only upon the magnitude of the

angle A, and not upon the absolute length of OF. This follows

from the property of similar triangles, that the ratios of the sides

are the same in all similar triangles, so that when OF is taken of a

different length, we have the same ratios as before for the same

angle. These six ratios are then functions of the angular magni-
tude A only ;

we may suppose A to be measured either in the

sexagesimal system or in circular measure. For convenience, we
shall in general use large letters j4, J5, C,... for angles measured in

degrees, minutes and seconds, and small letters a, yS, 6, (/>,...
for

angles measured in circular measure
;
so that, for example, sin A

denotes the sine of the angle of which A is the measure in degrees,

minutes and seconds, and sin a is the sine of the angle of which

a is the circular measure. To these six circular functions two

others may be added, which are sometimes used, the versine written

versin A, and the coversine written coversin A
;
these are defined

by the equations versin A 1 cos A, coversin ^ = 1 sin A.

The versine and coversine are used very little in theoretical

investigations, but the versine occurs very frequently in the

formulae used in navigation.

20. In the case of an acute angle, the definitions of the

circular functions may be put into the following form. Let P

be any point in either of the bounding lines of the given angle ;

draw FN perpendicular to the other bounding line, we have then
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the right-angled triangle PAN, of which the angle PAN is the

given one A.

CosA is then defined as

side adjacent to A
hypothenuse

'

. side opposite to A
tanA as . , ^, . j ,

side adjacent to A

sec A as
hypoihenuse

side adjacent to A '

. . side opposite to A
smA as , \. ,

hypothenuse

,
. side adjacent to A

cot A as r-j r- J ,

side opposite to A

. hypothenuse
cosec A as . ,

^
r: : 7 .

side opposite to A

21. Until recently, the circular functions of an angle were defined, not as

ratios, but as lengths having reference to arcs of a circle of specified size. If

PA be an arc of a given circle, let PiV be drawn perpendicular to OA, and let

FT he the tangent at P ;
the line FN was defined to be the sine of the arc

FA, ON to be its cosine, FT its tangent, OT its secant, and AN its versine.

In this system the magnitudes of the sine, cosine, tangent, &c. depended not

only upon the angle FOA, but also upon the radius of the circle, which had

therefore to be specified. The advantage of the present mode of definition of

the functions as ratios, is that they are independent of the radius of any

circle, and are therefore functions of an angular magnitude only. The sine

of an arc was first used by the Arabian Mathematician Al-Batt4ni (878 918) ;

the Greek Mathematicians had used the chords FP of the double arc, instead

of the sine FN of the arc FA.
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Relations between the circular functions.

22. Referring to the definitions of the circular functions,

we see at once that there are the following relations between

them,

(1) cos^sec^=l, (3) tanJ[cot^ = l,

(2) sin A cosec A=l, (4) tan A sin -4/cosA
cot A cos A I

sin A

Expressed in words, the relations (1), (2), (3), assert the facts

that the secant, cosecant, and cotangent of an angle are the reci-

procals of the cosine, sine, and tangent of the angle respectively ;

and relation (4) expresses the fact that the tangent of an angle is

the ratio of its sine to its cosine, or what, in virtue of (3), comes to

the same thing, that the cotangent of an angle is the ratio of the

cosine to the sine of the angle.

23. Referring to the figure in Art. 18, the square on OP is,

by the Pythagoraean theorem, equal to the sum of the squares of

its projections OM and MP, so that since the ratios of these pro-

jections to OP, are the cosine and sine respectively of the angle

^, we have (cos J.)2+ (sin^^ = 1, or as it is usually written,

cos^A + sin^A = 1. If we divide both sides of this equation by cos^J.,

and remember the relations (1) and (4), we have 1 -1- tsm^A = sec- -4
;

similarly if we divide both sides of the equation by sia^A, and

remember the relations (2) and (4), we have 1 -l-cot^ J. =cosec^^.

Thus the three identities,

cos^ A + sin^ A = l )

l+tanM = secM > (5)

1 -I- cot^ A = cosec^ulj

are different forms of the same relation between the functions.

24. The five independent relations just obtained between

the six circular functions, enable us to express any five of these

functions in terms of the sixth. The student should verify the

correctness of the following table, in which the meaning of x in

each column, stands at the head of that column, and the value of

the expressions in each horizontal line, at the beginning.

H. T. 2
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Properties of the circular functions.

26. If the angles AOP, AOp he A and A respectively, we

see that OP and Op have equal projections OM, upon OA, but

B

that their projections ON, On, on OB are of equal magnitude but

opposite sign, therefore

cos( J.)
= cos ^, and sin ( ^) = sin^ (6);

it follows that tan ( A) = tan A, cot ( A) = cot A
,

sec( J.)
= sec^, cosec( J.) = cosec^.

If a function of a variable has its magnitude unaltered when
the sign of the variable is changed, that function is called an even

function, but if the function has the same numerical value as

before, but with opposite sign, then that function is called an

odd function; for instance x^ is an even function of x, a? is an

odd function of x, but ^ +^ is neither even nor odd, since its

numerical value changes when the sign of x is changed. We see

then that the cosine and the secant of an angle are even functions,

and the sine, tangent, cotangent, and cosecant, are odd functions.

The versine is an even function, hut the coversine is neither even

nor odd.

27. The values of the circular functions of an angle, depend

only upon the position of the bounding line OP, with reference

to the other bounding line OA, consequently all the coterminal

22



20 THE CIRCULAR FUNCTIONS.

angles (OA, OP) have the same circular functions, or in other

words, all the angles n.S60 + A, where 7i is any positive or

negative integer, have their circular functions the same as those

of J.. If a be the circular measure of the angle which contains

A degrees, all the angles 2?i7r + a, in circular measure, have the

same circular functions. We have also, since all the angles

2?i7r a have the same circular functions,

and

sin {2n7r a)
= sin() = sin a,

cos (2n7r ot)
= cos (~ a) = cos a.

The properties we have obtained are both included in the

equations
sin (2n7r + a) = + sin a]

cos (2n7r a)
= cos a (6).

28. If the angle 180 - ^ or tt - a, is bounded by OQ, then OQ
makes the same angle with 0A\ as OP does with OA, and we see

that the projections of OP and OQ on OA, are equal and of opposite

J'

sign, and the projections of OP and OQ, on OB, are equal and of

the same sign, therefore sin (tt a) = sin a, and cos (tt a)
= cos a.

These equations hold whatever a may be, so that we can change a

into a, and we have

and

sin (tt + a)
= sin ( a)

= sin a

cos (tt + a)
= cos {-a) cos a.
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Thus we have the system of equations

sin (tt + a) = + sin a

cos (tt a)
= cos a

from these we obtain

tan (tt a)
= + tan a.

Also

(7);

.(8).

.(9).

sin (2w + 1 TT a) = sin (tt a)
= + sin a'

cos (2n + 1 TT + a)
= cos (tt a) = cos a

tan (2w + 1 TT + a)
= tan (tt a) = + tan a,

29. In the figure of Art. 28, the angle OP makes with 0B\ is

90 + J., therefore the cosine of the angle 90 -\- A or ^tt + a, is the

ratio of the projection of OP on 0B\ to OP
;
hence since the pro-

jection on 0B\ is equal with opposite sign to the projection on OB,
we have cos (J-tt + a)

= sin a
; changing ^ir + a into a, we have

cos a = sin (a Jtt), hence in virtue of (6), we have

cos a = sin
("I-

TT a).

In these equations we can, if we please, change the sign of a,

since a may be either positive or negative ;
we have then the

equations
sin

(-J-TT
+ a)

= cos a
]

cos(^7r a) = + sin a I (10).

tan (Jtt a) = + cot
aj

We have also, from (6) and (9),

sin (m + i TT + a) = (- 1)'^ sin (^tt a),

cos (m + J TT a)
=

( I)*" cos (| tt + a).

tan(m + ^ tt + a)
= tan {^ir a),

hence

sin (m 4- J TT i a)
=

( 1)*^ cos a

cos (m + J TT a)
= + ( 1)"* sin a (11).

tan (m + J TT + a)
= + cot a

The angle tt a is called the supplement of the angle a, and

the angle Jtt a is called the complement of a.

We have shewn that the sine of an angle is equal to the

sine of the supplementary angle, and the cosine of an angle is

equal, with opposite sign, to the cosine of its supplement ; also that

the sine of an angle is equal to the cosine of its complement, and the

cosine of an angle is equal to the sine of its complement.
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The formulae (6) to (11), enable us to find the circular functions

of an angle, when we know the values of the circular functions of

that angle between zero and J tt, which differs from the given angle

by a multiple of Jtt, or also when we know the circular functions

of the complement of this latter angle.

PeHodicity of the circular functions,

30. When a function f {x) of a variable, has the property

f{x) ='f(oo + k), for every value of x, k being a constant, the function

f(x) is called periodic; if moreover the quantity k is the least

constant for which the function has this property, then k is called

the period of the function.

It follows at once that if/(a?) =f{x-\-k\ then f(x) =f(x+ nk),

where n is any positive or negative integer; if then we know

the values of the function, for all values of x lying between two

values of x which differ by A:, we know the values of the function

for all other values of x, the function having values which are a

mere repetition of its values within the interval for which they
are given.

The property (6), of sin a and cos a, shews that these func-

tions are periodic functions of a, the period being 27r, or if

the angle is measured in degrees, sin^ and cos J. are periodic

functions of A, the period being 360. The property (7), shews

that these functions are such that their values, for values of the

angle differing by half the complete period, are equal with

opposite sign. The property (8), shews that the tangent is

periodic, the complete period being tt, half the period of the sine

and cosine. Obviously the period of the secant or of the cosecant,

is 27r, and that of the cotangent is tt. It will be hereafter seen

that the circular functions derive their importance in analysis,

principally from their possession of this property of periodicity.

Changes in the sign and magnitude of the circular functions.

31. We shall now trace the changes in the magnitude and

sign of the circular functions of an angle, as the angle in-

creases from zero to four right angles.

(1) To trace the changes in the value of the sine of an angle,
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we must observe the changes in magnitude and sign of the

projection ON, in the figure of Art. 18. When the angle A is zero,

ON is zero, and as A increases up to 90, ON is positive and

increases until when A is 90, ON is equal to OP, thus sin A is

positive and increases from to 1. As J. increases from 90 to

180, ON is positive and diminishes until when A is 180, it is

again zero, therefore sin A is positive and decreases from 1 to 0.

As A increases from 180 to 270, ON is negative and increases

numerically, until when A is 270, ON= OP,, hence sin^ is

negative and changes from to 1. As ^ increases from 270 to

360, ON is negative and diminishes numerically, until when A
is 360, it is again zero, thus sin A is negative and changes from
- 1 to 0.

(2) In the case of the cosine, we must observe the changes in

magnitude and sign of the projection OJf. We find that as A
increases from to 90, cos A is positive and diminishes from 1 to

;
as ^ increases from 90 to 180, cos^ is negative and changes

from to 1
;
as ^ increases from 180 to 270, cos^ is negative

and changes from 1 to
;
and as A increases from 270 to 360,

cos A is positive and increases from to 1.

(3) To trace the changes in the tangent of an angle, we must

consider the ratio of ON to OM; when the angle is zero, this ratio

is zero, and is positive and increasing as the angle increases from

to 90
;
when the angle is 90, the projection OM is zero, and ON

is unity, hence tan 90 = oo
;
as J. increases from 90 to 180, the

tangent is negative and changes from x to 0. As ^ increases

from 180 to 270, tan A is positive, since ON and OM are both

negative, and it increases until it again becomes infinite when
^ = 270. As A increases from 270 to 360, the tangent is

negative and changes from oo to 0. It will be observed that

tan A changes from + x to x in passing through the value 90,
and from x to + x in passing through 270

;
to explain this, it

is only necessary to remark that as a variable x changes sign by

passing through the value zero, its reciprocal 1/os changes sign in

passing through the value x .

(4) The changes in the values of the cosecant, secant, and

cotangent of A, may be deduced from the above, if we remember
that they are the reciprocals of the sine, cosine, and tangent,

respectively. Their values for ^ = 0, 90, 180, 270, 360, are
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given in the following table, which also includes the results ob-

tained above for the sine, cosine, and tangent.
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cosec^, and 0' for sec^; the ordinates at 0, A, By are asymptotes
of this curve.

0' A' B B' X
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Example. Draw graphs of the followingfunctions

(1) 5^wx4 cosx.

(3) ^a7ix+ecx.

(5) sir^ X 2 cos x.

(2) cos (tt sin x) . cos (tt cos x).

(4) sin (rr cos x)Jcos (tt sin x).

(6) sm (^TT+ Jtt cos x) .

Angles with one circular function the same.

33. We shall now find expressions for all the angles which

have one of their circular functions the same.

(1) If in the figure, ^OP is a given angle, and PPi is drawn

parallel to OA, the angles {OA, OP) and {OA, OP^) are the only

angles which have their sine the same as that of AOP, for they

are the only angles for which the projection of the radius on OB,

is equal to ON
;
these angles are ^nir + a and 2mr + tt or, where a

is the circular measure of AOP, and n is any integer; they are

both included in the expression m7r + ( l)"*a, where m is any

positive or negative integer ;
this is therefore the expression for all

the angles whose sine is the same as that of i.

(2) Next draw PP.^ parallel to OB, then the angles {OA, OP)
and {OA, OP^), are the only angles which have the same cosine as

a, for they are the only angles for which the projection of OP on

OA, is equal to OM; they are both included in the formula 2m7ra,
where m is any positive or negative integer.
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(3) If PO is produced to Pg, the angles (OA, OP), (OA, 0P,\
are the only ones which have the same tangent as a

;
these angles

are respectively 2n7r + a and 2n7r + tt + a, and are therefore both

included in the formula mir + a, where m is any positive or

negative integer.

(4) Since angles which have the same cosecant, have also

the same sine, we see that m7r-\-(iy^a includes all the angles
whose cosecant is the same as that of a

;
also 2m7r + a includes

all angles whose secant is the same as that of a, and m7r + a

includes all angles whose cotangent is the same as that of a.

In every case zero is included as one value of m or n.

Determination of the circular functions of certain angles.

34. The values of the circular functions of a few important

angles, can be obtained by simple geometrical means.

(1) The angle 45 or Jtt, is an acute angle in a right-angled

isosceles triangle, the sine and cosine of this angle are therefore

obviously equal to one another, and since the sum of their squares

is unity, each of them is equal to l/\/2 ;
the tangent of the angle

is therefore unity.

(2) Each of the angles of an equilateral triangle is 60 or ^ir.

Let ABC be such a triangle ;
draw AD perpendicular to BC,
TiT)

then the cosine of the angle B, is ^-^ , and this is equal to J ;
the

sine of the same angle is Vl J = ^ V^. The complement of 60
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is 30 or Jtt, hence we have cos 30 = J ^/S, and sin 30 =
J. We

have also tan 60 = ^/S, and tan 30 =
1/^/3.

(3) Draw AE bisecting the angle BAB, then the angle BAE
is 15 or ^TT. We have by Euclid, Book vi. Prop. ill.

EB AB ^ ^*^'

therefore
BE
BB

V3

BE
2 + V3'

and thence ^^ or tan 15, is equal to

From this we obtain

V6-V2

V3
V3 (2 + V3)

or 2-V3.

sin 15 = cos 15 = \/6 + V2
'4

We can from these values, obtain the sine, cosine, and tangent of

75 or 3%7r, the complementary angle. If we proceeded in the same

way, bisecting the angle BAE, we should obtain the tangent of

7 30' or
-^jTT, and we might continue the process so as to obtain

the tangent of all angles of the form "
o~o > where p is a, positive

integer, but we shall hereafter obtain formulae by which the

functions of these angles may be successively calculated, thus

obviating the necessity of continuing the geometrical process.

By a similar geometrical method, we might obtain the circular

functions of the angles of the form 7r/2^.

(4) Let ABC be a triangle in which each of the base angles
is double of the vertical angle A ;

the base angles are each 72, or

A
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|7r, and the vertical angle is 36, or ^tt. If ^5 is divided at D so

that AB . BD = AD"-, then it is shewn in Euclid, Book Iv. Prop. x.

that ^i) = j[)(7=CjB. Draw ^^ perpendicular to 5(7. Denoting
the ratio oi AD to AB by a?, we have l x = x^, and solving this

quadratic, we find aj = J(V5 1); we must take the positive
AD -

root, hence -j^
= J (V5 1), thus

cos 72 = sin 18 = 4 1^
= i (^^5

- 1 ) ;

from this we obtain sin 72 = cos 18 = J VlO + 2 ^5.

AG
Also cos 36 = J ^-^ ,

since DAG is an isosceles triangle,

therefore cos 36 = J (^^ + 1), hence sin 36 = J V10-2V5.
Since 54 is the complement of 36, we have therefore the

values of sin 54 and cos 54.

In the following table, the values we have obtained are collected

for reference. The functions in the first line, refer to the angles
in the first column, and the functions in the last line, to the angles
in the last column.
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ExA3lPLE. Fiifid the sine anid cosiiie of 120, and of 676.

We have 120 =90 + 30, hence

sin 120 = cos 30 = ^3, cos 120 = - sin 30 = -
^.

Again - 576 = -
(3.180 + 36), therefore

sin (
- 576)= sin

( + 180 - 36) -= sin 36,
also cos - 576 = cos (180

-
36)=-.

- cos 36.

The inverse circular functions.

35. If
2/

is a function f(x) of a;, then a; may also be regarded
as a function of y ;

this function of y, is called the inverse function

of f(x), and is usually denoted by f~^ (y), thus x =/~^ (y). If

f(oc) is a periodic function, of period k, so that f(oo)=f{x-\- ink),

where m is any positive or negative integer, the function f~^ (y)

will have an infinite number of values given by a; + mk, where x is

any one value of f~^ {y) ;
such a function of y is called multiple-

valued, since it has not a single value for each value of the

variable y. We see therefore that corresponding to a periodic

function f(x) = y, there is a midtiple-valued inverse function f~^ (y)

which has an infinite number of values for any one value of y, these

values differing by multiples of the penod o/f(x).

36. If there are two or more values of x, lying between and

k, for which f{x) has equal values, the multiplicity of values of

f~^(y) is still further increased, since it will have each of the

values of x for which f{x) = y, and the infinite series of values

obtained by adding multiples of k to each of these. For example,

suppose that there are two values x^, x^, each lying between and

k, for which f{x) = y, then the inverse function /~^ {y) has the

two sets of values x^ + mk, Xe^ + nk.

37. In the case of the circular function sin x = y, the values

of the inverse function sin"^?/ are n7r + ( ly^^i, where x^ is any
value of X for which sin x^ = y \

in this case the complete period

of sin X is 27r, and there are two values of x, say x^ and tt Xi, lying

between and 27r, for which smx = y; thus the values of sm~'^y are

the two series of values n.2'7r + Xi and n. 27r + vr ~ ajj, both included

in n7r + ( l)'*a7i.

In a similar manner, we see that the values of cos~^ y are in-

cluded in 2w7r + x, where cos x y.

The periods of the functions tana;, cot a;, are tt, only half

those of sin x and cos x, and there is only one value of x between
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and TT, for which tan x or cot x has any given value
;
thus tan"^ y

has the values nii -^r x^, and cot~^2/ the values n7r + a?i, where x-^ is

that value of x between and tt, such that tan x^ or cot x^ is equal

to
2/.

38. The numerically smallest quantity x which has the same

sign as y, and is such that sin a; = y, is called the Principal Value

of sin~^2/; a similar definition applies to the principal values of

tan~^ y, cot~^ y^ cosec"^ y.

The numerically smallest positive value of x which is such

that cos x = y/\^ called the Principal Value of cos~^ y ;
a similar

definition applies to sec"^?/.

Thus the principal values of sin~^ y, tan~^ y, cot~^ y, cosec"^ y,

lie between the values Jtt, and the principal values of cos~^2/,

sec~^ y, lie between and tt. In some works, the principal values

of sin~^ y, cos~^ y, tan~^ y, are denoted by Sin~^ y, Cos~^ y, Tan~^ y ;

the general values are then given by

sin~^2/=n7r+( l)**Sin~^?/, cos'^y
= 27i7r Cos~^2/, tan~^2/=/i7r+Tan~^?/;

we shall however not use this notation. It must be remembered

that in many equations connecting these inverse functions, it is

necessary to suppose that the functions have their principal values,

or at all events that the choice of values is restricted. For

example, in such an equation as sin~^ y + cos~'^y
=

^tt, the choice of

values of the inverse functions is restricted.

It should moreover be noticed that the functions cos~^y, sm~^y,
have only been defined for values of y lying between + 1

; beyond
those limits of y, the functions have no meaning, so far as they

have been at present defined. The student should draw, as an

exercise, graphs of the various inverse circular functions.

In Continental works, the notation arc sin x, arc cos x, arc tan x,

is used for sin~^ x, cos~^ x, tan~^ x.

EXAMPLES ON CHAPTER III.

1. Prove the identities

(i) tan J(l-cot2^)+cot^(l-tan2yl)= 0,

(ii) (sin A + secAy-{- (cos A + cosec ^
)'-^

=
(
1 + sec^ cosec A)^.

2. The sine of an angle is 5 ^ ;
find the other circular functions.
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3. If tan A + sin A = m, tan A sin A = 7i,

prove that m^ - n^ ^sjmn.

/. TT sin ^ cos ^ n J X A J X r.
4. Having given ^ b=A ^ = 9' find tan^ and tan^.' sin^ ^

cos J5
^

5. If ^-^=x/2, J-^=V3, find 4 and 5.
sin^ ' tan 5 ^ '

6. If cos A = tan 5, cos B= tan (7, cos (7= tan ^,

prove that sin ^1 = sin ^= sin C= 2 sin 18.

7. Solve the equations :

(i) sin ^ + 2 cos ^= 1,

,..v COS a _ 3
^"^ tera~2'

(iii) V3 cosec2 ^= 4 cot 6.

8. Solve the equations :

cos(2;r4-y)= sin {x 2y)\

cos {x+ 2y)
= sin (2^

9. Find a general expression for ^, when sin'-^^= sin2a, and also when

sin^= -cos ^=1/^2.

p-2y)|

Ix-y))'

10. Find the general values of the limits between which A lies, when
sin^^ is greater than cos^^.

11. Find the general value of 6, when 9 sec^ ^=16.

12. If tan (tt cot 6)= cot (tt tan 6\

then tan ^= i {2w+ 1 + \/in^+An-\b],

where n is any integer which does not lie between 1 and 2.

13. Give geometrical constructions for dividing a given angle into two

parts, so that (1) the sines, (2) the tangents of the two parts may be in a

given ratio.

14. Construct the angle whose tangent is 3 J%

15. Divide a given angle into two parts the sum of whose cosines may be

a given quantity c. What are the greatest and least values c can have 1

16. If WH=cos^+sin^,

prove that 2wg
-

Zu^^+ 1=0,

6zio
-
ISwg+ lOwg 1 = 0.

17. Two circles of radii a, h touch each other externally; 6 is the angle
contained by the common tangents to these circles, prove that

ia+ bf
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18. A pyramid has for base, a square of side a
;

its vertex lies on a line

through the middle point of the base, perpendicular to it, and at a distance h
from it

; prove that the angle a between two lateral faces is given by

2A \/2^+4Psma=
a2+ 4A2

19. Two planes intersect at right angles in a line AB^ and a third plane
cuts them in lines AB^ AC

\
\i the angles DAB^ CAB be denoted by a, /3

respectively, prove that the angle BA makes with the plane CAB is

tan a tan ^tan-i
Vtan'-^a+ tan^/S

20. Shew that if OB be the diagonal of a rectangular parallelepiped ; the

cosines of the angles between OB and the diagonals of the face of which

OA^ OB^ are adjacent sides, are respectively

AB OA^'^OB^
OB^^^ OBTAB

'

21. Two circles, the sum of whose radii is
,
are placed in the same

plane, with their centres at a distance 2a, and an endless string, quite

stretched, partly surrounds the circles, and crosses itself between them.

Shew that the length of the string is (^tt + 2v'3) a.

22. Prove that

cos tan Ism cot
'^^(^^qrgj

'

23. Illustrate graphically the change in sign and magnitude of the func-

W2
tions 3 sin .r+ 4 cos .r, e* sin ^, and sin ( -j-

sin x \ for all values of x.

Shew that the equation 2^=(27i-f 1) tt vers x, where n is a positive integer,

has 2/1+3 real roots and no more, roughly indicating their localities.

H. T.



CHAPTER IV.

THE CIRCULAR FUNCTIONS OF TWO OR MORE ANGLES.

The addition and subtraction formulaefor the sine and cosine.

39. We shall now find expressions for the circular functions

of the sum and of the difference of two angles, in terms of the

circular functions of those angles.

Suppose an angle AOB of any magnitude A, positive or

negative, to be generated by a straight line revolving round

from the initial position OA, our usual convention being made as

to the sign of the angle, and suppose further that an angle BOG of

any magnitude B, is described by a line revolving from the initial

position OB, then the angle AOG is equal to ^ + -B
;
in 00 take a

point P, and draw PN perpendicular to OB.

According to the convention in Art. 15, the straight line ON
is positive or negative according as it is in OB, or in OB produced ;

also NP is positive when it is on the positive side of OB, revolving

counter-clockwise, and negative when on the other side. The

positive direction of the straight line on which NP lies, makes

an angle ul + 90 with OA. We have ON == OP cos B, and

NP = OP sin B, for ON and NP are the projections of OP
on OB, and on the line which makes an angle A + 90 with OA .

In figure (1), each of the angles ^, jB, is positive and less than

90
;
in

fig. (2), the angle A lies between 90 and 180, and the

angle B also lies between 90 and 180; in
fig. (3) the angle A lies

between 180 and 270, and the angle B is negative and lies

between - 90 and - 180. In figs. (1) and (2), NP is of positive

length, and in fig. (3), NP is of negative length, since in the last
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case, PN is the direction of a line making an angle A + 90 with

OA.

By the fundamental theorem in projections, given in Art. 17,

the projection of OP on OA, is equal to the sum of the projections

of OiV^ and iVP on 0^, or

OP cos (^ + 5) = ON cos A+NP cos {A + 90)
= OP cos ^ cos J5 + OP sin B cos (A + 90)

therefore cos (A + B) = cos A cos B sin A sin B (1).

If instead of projecting the sides of the triangle ONP on OAj
we project them on a line making an angle H- 90 with OAy we

have

OP sin (A+B) = ON sinA + NP sin (A + 90)
= OP sin AcosB+ OP sin (A + 90) sin B

therefore sin (A + B) = sin A cos B + cosA sinB (2).

The formulae (1) and (2) have thus been proved for angles of

all magnitudes, both positive and negative. The student should

draw the figure, for various magnitudes of the angles A and B, in

order to convince himself of the generality of the proof.

If we change B into B, in each of the formulae (1) and (2),

we have

cos (A B) = cos A cos ( B) sin A sin ( B)

and sin (A B) = sinA cos ( B) - cos A sin ( B)

hence cos (A B) = cos A cos 5 + sin ^ sin 5 (3),

and sin (J. 5) = sin ^ cos 5 cos ^ sin -B (4).

These formulae (3) and (4) would of course be obtained directly,

by describing the angle B in the figure, in the negative direction,

so that the angle POA would be equal to A B.

40. The formulae (1), (2), and (3), (4), are called the addition

and subtraction formulae respectively ;
either of the formulae (1)

and (2), may be at once deduced from the other
;

in (1) write

A + 90 for A, we have then

cos (90' -\-A-hB) = cos (90 + A) cos B - sin (90 + A) sin B

or sin (A -\- B) = sin A cos B cos A sin B,

and changing the signs on both sides of this equation, we have the

formula (2) ;
in the same way, by writing A + 90 for A in (2), we

should obtain (1). It appears then that all these four fundamental

formulae are really contained in any one of them.
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41. The proof of the addition and subtraction formulae, given by Cauchy,
is as follows : With as centre describe a circle, and let the radii OP, OQ

make angles A, B, respectively, with OA ; join FQ, and draw PJf, QJH, per-

pendicular to J., and QR parallel to OA
,
then we have

PQ^=QR^+RP^
={ON-OMf+{PM-QNf
= OA^ {(cos ^- cos ^)2+ (sin A- sin Bf)
= 20A^ (1

- cos A cos B-sinA sin B).

Let PS be drawn perpendicular to the diameter QQ', then

PQ^=QS. QQ'=20A{0A-0S)
= 20A^{l-co8{A-B)],

therefore cos(J.--jB)=cos^cos^+sin^ sin^ (3).

The other formulae may then be deduced
; (1) by changing B into -j5, (2) by

changing B into 90 -B, (4) by changing B into 90 +5.

42. Besides the two proofs which we have given of the

fundamental addition and subtraction formulae, both of which are

perfectly general, various other proofs have been given, some of

which are in the first instance only applicable to angles between

a limited range of values, and require extension in the cases of

angles whose magnitudes are beyond that range. We shall make

this extension in the case in which the formulae have been first

proved for values of A and B between and 90. Whatever

A and B are, it is always possible to find angles A' and B', lying
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between and 90, such that A=m . 90 -\-A\ B = n.90'' + R,
where m and n are positive or negative integers ;

we have then

cos (A+B) = cos {m + n 90 -^ A' + B') ;

(1) if m and n are both even, we have
m+

cos {A-^B) = (- 1)
'

cos {A' + B)

= (-1)2 (cos A' cos B' - sin ^' sin B'),

m m
now cosA{-' ly cos A\ sin A={~ ly sin A',

with similar formulae for jB,

hence cos {A +B) = cos ^ cos 5 sin ^ sin -B
;

(2) if m and n are both odd, we have

m+l

cos^ = (- 1)
'

COS (90 + ^') = (- 1)
'

sin A'

sin ^ = (- 1)
''

sin (90 + -A')
= (- 1)

*
cos A\

with similar formulae for B, hence as before we obtain by sub-

stituting the values of cos -4', cos 5', sin J.', sin 5' the formula

for cos {A + i^) ;

(3) if m is odd and n is even,

cos {A+B) =

now cos J. =

sin -4 =

-1)
'

COS (90 + ^' 4-^0
m-t-n+l

~1)
'^

sin (^' + 5')

-1)
*

(sin^'cos5' + cos^'sin5')>
m+l n

1)
'^

sin A', cosB = {-iy cos 5'

;- 1)
^

cos J.', sin B={-\y sin 5',

hence substituting as before, we have the formula for cos {A + B).

The other formulae may be extended in the same manner.

43. The form in which the addition formulae were known in the

Greek Trigonometry i, is Ptolemy's theorem given in Euclid, Bk. vi.

Prop. D; this theorem is, that if ABGD be a quadrilateral in-

scribed in a circle, AB . CD + AD . BG = AG . BD. Any chord

AB is the sine of half the angle which AB subtends at the centre

of the circle, the diameter of the circle being taken as unity, and

^ See the Article "
Ptolemy" in the Encyclopaedia Britannica, ninth Edition.
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this half angle is the angle subtended by the arc AB at the cir-

cumference. We shall shew that the formulae for sin (a + ff) and

cos (a y8) are contained in Ptolemy's theorem.

(1) Let BD be a diameter of the circle, and ADB =
a,

BDG==^; then ABD^^ir-a, DBG=\ir-^, ^0 = sin(a + /3),

^5 = sin a, (7i) = cosft thus the theorem is equivalent to the

formula

sin (a + ^) = sin a cos fi + cos a sin yS.

(2) Let CD be a diameter of the circle, and BCD = a,ACD = y8,

thus AB = sin (a /3), and the theorem is equivalent to

sin (a /9) + sin /3 cos a = cos ^ sin a.

(3) Let BD be a diameter of the circle, and ADB =
a,

GBD =
l3, then ADC =

^tt + a - /3, thus AG = cos (a- y8), and the

theorem is equivalent to

cos (a yS)
= cos a cos yS + sin a sin /3.

(4) Let CD be a diameter of the circle, and BGD = a,

ADG =
/3; then BCA=a + ^-^7r, AB = - cos (a -i- jS), and the

theorem is equivalent to

cos (a + /8) + cos a cos y8
= sin a sin /3.

Example. Employ/ Ptolemy'$ theorem to 'prove the following theorems:

sin a sin -
y) + sin /3 si7i (y

-
a) + sin y sin (a j8)

=
0,

sin {a + jS) sin (/3 + -y)
= sin asiny+ sin ^sin{a+^+ y).

Formulae for the addition or subtraction of two sines or two

cosines.

44. We obtain at once frona the addition and subtraction

formulae

sin (J. + jB) + sin {A-B) = 2 sin A cos B,

sin {A-{- B) sin {A -B) = 2 cos A sin B,

cos {A-\-B)-\- cos {A - B) = 2 cos ^ cos 5,

cos {A- B)- cos (J[ + 5) = 2 sin A sin 5,

let ^+^=(7, A-B = D, we obtain then, since A=:^(G + D),

B=i(G-D), the formulae

sin + sin D = 2 sin J (C + D) cos i (C- D) (5),

sin (7 - sin D = 2 cos J (C + i)) sin i{G-D) (6),

cosO + cosi) = 2cosi((7 + i))cosJ(a-2)) (7),

cosD - cos C = 2 sin i{C-\-D) sin i (C - D) (8).
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These important formulae (5), (6), (7), (8), are the expressions

for the sum or difference of the sines or of the cosines of two

angles, as products of two circular functions; they may be ex-

pressed in words as follows

The sum of the sines of two angles is equal to twice the product

of the sine of half the sum, and the cosine of half the difference of

the angles.

The difference of the sines of two angles is equal to twice

the cosine of half the sunn, and the sine of half the difference

of the angles.

The sum of the cosines of two angles is equal to twice the

product of the cosine of half the sum, and the cosine of half the

difference of the angles.

The difference of the cosines of two angles is equal to twice the

product of the sine of half the sum, and tJie sine of half the reversed

difference of the angles.

45. These formulae may be proved geometrically by the

method of projections.

Let BOA=^C, GOA = D, and let OB = OC; draw ON per-

pendicular to BG, then N is the middle point of BC, also

]SrOA = i{C+ D), NOB^NOG = ^{G-D).
The sum of the projections of OB, OG, on OA, is equal to the sum
of the projections of ON, NB, ON, NG, on OA, and since the

projections of NB and NG are equal with opposite sign, this is

equal to twice the projection of ON, therefore

OB cos a+ OG COS D==20N cos ^((7+ D),

and since ON= OB cos i (C
-
D),
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we have the formula

cos(7+cosD = 2cosi(a+ 2))cosi(C~i)) (7).

If instead of projecting on OA we project on a straight line

perpendicular to OA, we have

O^sin 0+ OCsinD = 20iV^sini(0 + D),

hence sinC + sini) = 2sin J(a+ i))cosi(C-D) (5).

Also the projection of 00 on OA, is equal to the projection of

OB, together with twice the projection of BN, or

00 cos D == OB cos C-i-2BN sin i(G-\-D),

hence cosD-cosO^ 2 sini(a+ i))sin J(O-D) (8),

and if we project on the line perpendicular to OA, we have

00 sin D = OB sinC-2BN cos iiC + D)

or sina-sini) = 2sin J(0-i))cosi(C + i)) (6).

A curious method of multiplying numbers, by means of tables of sines,

was in use for about a century before the invention of logarithms. This

method depended on a use of the formula

sinA sin B=^ {cos (A-B)- cos {A + B)} ;

the angles A and B, whose sines, omitting the decimal point, are equal to the

numbers to be multiplied, can be found from a table of sines, and then

cos {A -f i?), cos (4 - B) can be found from the same table ;
half the diflference

of these last gives the required product. This method was called 7rpoada<f)ai-

p<Tis. An account of this method will be found in a paper by Glaisher, in

the Philosophical Magazine for 1878, entitled "On Multiplication by a

Table of single Entry."

Examples.

(1) Prove the identity

sinA sin (B- C) dn (B+C - A) + m'ti B 5m'(C
- A) sin (C +A - B)

+ sin C sin (A
- B) sin

(
A+B -

C) = 2 sin (B - C) dn (C
- A) sin (A

-
B).

The second and third terms on the left-hand side may be written

J sin B {cos {B- ^A) - cos (2(7- B)] +\ sin C{cos {G- 25) - cos (2^
-

C)],

which is equal to

I {sin 2 (i?
- ^)+ sin 2^ - sin 2(7- sin 2{B- )}

-|-i{sin2((7-5)+ sin25-sin2^-sin2((7-^)},
or i(sin25-sin2(7)-^sin2(5-(7)+ i{sin2(5-^)-sin2((7-^)},
or sin {B

-
C) {\ cos (5+(7)- cos {B

-
(/) +^ cos (5+ C- 2^)},

which is equal to sin (B-C) {cos A cos {B-\-C- A) -cos {B- C)} ;

adding the term sin A sin {B
-
C) sin {B \-C- A),

we have sin {B-C) {cos (5+ (7 - 2J )
- cos (5- (7)},

or 2 sin {B - C) sin {C- A) sin (A-B).
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(2) Prove that

2 cos A dn (B - C) sin (B + C- A)= 2 aiw (B - C) sm(C - A) dn (A- B).

This may be deduced from Ex. (1), by changing A, B^ C into 90*'-^,
90 -5, 90 (7 respectively, or may be proved independently as in Ex. (1).

Prove the identities

(3) 2s^7^As^7l(B-C)=0, 2cos Asm(B-C) = 0.

(4) 2 5iw(B+C)w(B-C) =
0, 2co5(B+C)m(B-C)= 0.

(5) 2 sin B sin C sin (B
-
C)= - sin (B - C) sin (C

- A) sin (A - B),

2 cos B C05 C cos (B - C)= - sm (B
-
G) sin (C

- A) sin (A- B).

(6) Prove that if A+B +C = tt,

sin^A= sin'^ B+ sm^ C 2 swt B sin C cos A,
w<i cos^A= 1 cos^ B - cos^ 0-2 cos A cos B cos C.

A large number of Trigonometrical identities are analogous to similar

Algebraical identities i. For example, the following algebraical identities

correspond to examples (1) to (5),

2a(6-c)(&+ c-a)= 2(6-c)(c-a) {a-h\ to (1) and (2),

2a(6-c) = 0, to (3), 2(6 + c)(6-c) = 0, to (4),

2 6c(6-c)=-(6-c)(c-a)(a-6), to(5).

We shall, in Chap, vii., give the theory of these correspondences.

Addition and subtraction formidaefor the tangent and cotangent.

46. From the addition and subtraction formulae, we may
deduce formulae for the tangent or cotangent of the sum or differ-

ence of two angles, in terms of the tangents or cotangents of those

angles. Thus

, .
.

. sin (A B) sin J. cos jB 4- cos A sin B
tan {AB) =

) .
, pf

=
-. p-E-. ~r. ^,

cos {A B) cos A cosB -{ sm A sm B
hence dividing the numerator and the denominator of the fraction

by cos A cos B,
sin A sin B

, A Tiv COS A ~
COS B

tan (A + B) s
j \ ^ ,^ ~ ^ sm J. sm 5 '

COS A cosB
thus we have the two formulae

/ .
, D\ tan ^ + tan B . _ .

^(-^+-^>- i-tan^tan (9>'

fA -D\
tan ^ tan 5 ,__.

*^(^-^> =
lT"t^irZto (^">

^ A large number of these correspondences are given by M. Gelin, in Mathesis^

Vol. II.
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In a similar manner we obtain the formulae

^ / A Ti\ cot ^ cot B \ ._ - -

cot(^+5) = i 5- (11),^ ^ cotA+coti5 ^ ^'

*./A D\ COtJlcot^+l .-^.
cot(J.-jS) = ^ -r- (12).^ ^

cot5 -cot J.
^ ^

The formulae (9), (10), (11), (12), are the addition and sub-

traction formulae for the tangent and cotangent.

Various formulae.
m

47. The following formulae may be deduced from the for-

mulae which we have obtained for two angles, and are frequently

useful in effecting transformations. The student should verify

each of them

sin {A -\- B) sin {A-B) = sin^ A - sin^ B = cos^B - cos^A . . .(13),

cos (A + B) cos {A-B) = cos^A - sin^ B = cos^ B - sin^ A . . .(14),

sin (A + B) cos (^ -
^) = sin ^ cos ^ -I- sin jB cos 5 (15),

cos (A + B) sin (A B) = sin A cos A sinB cosB (16),

sin (A-^B) _ tan A + tan B , kx

sin {A-B)~ tsinA - taniB ^ ^'

COS (J. + 5) _ 1 tan J. tan jB
.^^,.

cos (A~^B)
~

1 -h tan ^ tan B ^ ^'

tan^ tan5 =^H^^^^ (19).
cos A cos B

From the formulae for the addition and subtraction of two

sines or cosines, we obtain at once

sin J. -I- sin 5 _ tan ^ (A + B) .^^.
sinA- smB~ tan J (^ - B)

^ ^'

sin A + sin B ^ -. . .
, r,. /-,>.

r^ ^ = tani(^ B) (21),
cos^ + cos5 2\ - /

sin ^ + sin 5 ^ 1 / ^ - r\ /oox
D-= T = coti(^ + J5) (22),

cos B cos A

cos A + CO, B ^ ^^^^^+B) cot i(A-B).. .(23).
COS iJ COS ^
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Examples.

(1) Prove the identity

1 cos^A cos^ B cos^ C 4- 2 cosA cos B cos C

=45iw^(A+B +C)w|(-A+B+C)in^(A-B+C)w|(A+B-C).
The expression on the left-hand side may be written

- cos2 A - cos {B+ C) cos (J?
-

(7) + cos A {cos {B+C)+qos{B- C%
which is equal to {cos A cos {B+ C)] {cos {B-C) cos A],

then splitting each of these factors into two factors, we obtain the expression

on the right-hand side. If ABC issb multiple of 27r, then

1 cos^^ coa^B cos^C-H 2 cos A cos B cos C
is zero

;
this result is sometimes useful.

(2) Prove that

1 cos^A cos^ B cos^ C - 2 cosA cos B cos C
= -4 cos HA+B4-C)cos^(-A+B + C)cosi (A- B+C)co4 (A -hB-C).

This may be deduced from (1), or proved independently.

(3) Prove that 2/A+B +C= titt,

sin 2A+ sin 2B +sin'2C= { 1)""^ 4 siw A sin B siw C.

We have

sin 2A + sin 2B+ sin 2(7= 2 sin ^ cos ^ -f 2 sin (nir
- A) cos {B

- C)

= 2sin^ {(- 1) cos {B+C)-{-\Ycoa{B- C)}

=
( I)"~i4sinu4 sin ^ sin C.

(4) Prove that^ under the same supposition as in Ex. (3),

1 +C0S2A+C0S 2B+cos2C= (
-

1)" 4 cosA cosBcos C.

Prove the identities

(5) sin 3A= 4 sin A sin (60 +A) sin (60
-
A).

(6) cos 3A= 4 cosA cos (60 +A) cos (60
-
A).

(7) smA+si7iB+smC-sm(A+B+ C)
= 4 S2W i (B+C) siw 4 (C +A) siTi J (

A+ B).

(8) cosA+cosB+cosC+cos(A4-B + C)
= 4cos^(B4-C)cos^(C + A)cos^(A+ B).

(9) 2 sin 2A sin^ (B+ C)
- sin 2A sin 2B sm 2C

= 2 sm (B + C) sin (C + A) sin (A+ B).

(10) 2 cos 2A cos^ (B+ C)
- cos 2A cos 2B cos 2C

= 2 cos (B+C) cos (C-fA) cos (A+ B).

(11) 2 sin^A sm (B+ C - A) 2 sinA sin B sin C

=s^7l(B + C-A)s^7^(C +A-B)sm(A^-B-C).

(12) 2 cos'^Kcos (B +C- A) - 2 cosKcos B cosC

= cos (B+C- A) cos (C+A- B) cos (A+B-C).
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(9) and (10) correspond to the algebraical identity

2 2a (6+c)2-8a6c= 2 (6+c) (c+ a) (a+ b) ;

(11) and (12) to the identity

2a^{b+c-a)- 2abc={b+c-a){c+a- b){a+b- c).

Addition formulae for three angles.

48. From the addition formulae (1) and (2), we may deduce

formulae for the circular functions of the sum of three angles, in

terms of functions of those angles ;
we have

&m{A+B + G)

= sin {A + B) cos G + cos {A -I- B) sin G

(sin ^ cos jB+cos A sin B) cos0+ (cos AcosB sinA sin B) sin C,

and cos{A-\-B-\-G)

cos {A + B) cos G sin {A + B) sin G

(cosA cosB sinA sin5) cosO (sin J. cos5+ cos^ sin5) sin G,

hence we have

sm{A+B + G)

= sinA cos B cosG -\- sin B cos C cos J. 4- sin G cos A cos 5
-sinul sin5 sin (7 (24),

cos (J[ + 5 + a)

= cos A cos5 cos G cos ,4 sin B siuG ^ cos 5 sin G sin .4

cos (7 sin^ sin 5 (25).

The formulae (24), (25) may be written in the form

sin (A+B-^G)
= cos A cos B cos G (tan A + tan B + tan (7 tan A tan .B tan 0),

cos (^+5 + 0)
= cos -4 cos B cos (7(1 tan5 tan (7 tan (7 tan A tan -4 tan B) ;

hence by division we have the formula

tan (A+B + G)

tan A + tan B + tan (7 tan A tan i? tan G
1 tan B tan (7 - tan G tan ^ tan A tan 5

We might obtain in a similar manner, the formula

cot(A+B + G)
cot^ cot BcotG cot ^ cot 5 cot G

,(26).

cot ^ cot (7 + cot GcotA-\- cot J. cot ^ 1
.(27).
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Examples.

( 1 ) Prove that tan (45 +A) - tan (45 - A)= 2 tan 2A.

(2) ^ Prove that if A+B+C =n7r,

tanA+ tan 3+ tan C tan A tanB tan C=0
;

and if A+B+C= (2m + 1) ^ ,

tan B tan C + tan C tan A+ tan A tan B = 1
;

and state the corresponding theorems for the cotangents.

Addition formulae for any number of angles.

49. It is obvious that we might now obtain formulae for the

circular functions of the sum of four angles, then of five angles,

and so on
;
we shall prove by induction that the formulae for the

sine and the cosine of w angles A^, A^^.^.A^ are

sin(^i + ^2+...+ ^) = ^i-^3 + >Sf5- (28),

cos(^i + ^2+...+ ^) =
/Sfo-/Sf2 + /Sf4- (29),

where Sr denotes the sum of the products of the sines of r of the

angles and the cosines of the remaining n r angles, the r angles

being chosen from the n angles in every possible way, thus

Sq = cos -4i cos J.2. . .cos An

Si = sin Ai cos A^. . .cos An + cos Ai sin A^ cos A^. . .cos An +. . .

The formulae (28), (29), agree with the formulae (1), (2), and

(24), (25), for the cases n = 2, n = S; assuming the formulae to

hold for n angles, we shall shew that they hold for n-\-l angles ;

we have

sin (^1 4- ^2 + + ^n + ^n+i)

= sin(^i+...+ ^n)cos^n+i + cos(^i +...+ ^n)sin^4.i
= cos An+i (Si -Ss-\-S5...)-\- sin An+i (So

- ^2 + S^- )>

now let S/ denote the sum of the products of the sines of r of the

angles Ai,A^...,An+i, and of the cosines of the remaining n-\- 1 r

angles, the r angles being chosen from the w + 1 in every possible

way, then we have

Si = Si cos An+i + So sin An+i,

for in ^1 cos .4^+1, there is in each term the sine of one of the

angles Ai, A^.-.An, and in each term of /S^osin J-^+i there is only

sin^+i.
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Similarly

^3'
= ^3 cos An+i + >S^2 sin ^^+1

Sa' Sa COS An+i + ^4 sin An+i

hence sm(A^-\-...+ A^+i) = S^ -S^ + S^'...

We may similarly shew that

cos (^1 +. . .+ An+i) = ^0'
-

S^' + S^\ . .

thus if the formulae (28), (29), hold for n angles, they also hold for

n + 1, and they have been shewn to hold for 71 = 2, 3, hence they
are true generally.

These formulae may be written in the form

sin (J 1 + ^2 + + An) = cos Ai cos A^. . .cos An {ti 4 + h- )

cos (Ai + ^2 + + An) = cos Ai cos A2. . .cos An (1 ^2 + ^4- X

where tr denotes the sum of the products of tan Ai, tan A^. . .tan An,

taken r together ;
hence by division we have

tan (A, + A,+...+ A) =
\'~

*' +
f"

' "

(30),
J-

t'2 -r r4 . . .

which is the formula for the tangent of the sum of n angles, in

terms of the tangents of those angles.

The formula (30) may also be proved independently. Assuming it to hold

for n angles, we shall prove that it holds ior n+ l
;
we have

^ i-r 2-r -r n+ij
1 _ tan (^1 + ^2+ +^n) tan J+i

(1-^2+ ^4- )-tanJ + i(^i-^3+ ^5-...)*

Now if tr denote the sum of the products of the tangents of r of the n+1
angles, we have then

f
J
^^ 'i I" tan jo.

jj ^ 1

^2
^

'2
"

*i ^^^ -^ n + 1

*3
^^

^3 "I" ^2 ^^^ -^n + 1

hence tan(^i+ J2+ ...-f^^,) = ^i

-^s^^,
^-

;

since the formula (30) holds for 7i= 2, 3, it therefore holds for w=4, and

generally.
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Eocpression for a 'product of sines or of cosines, as the sum

of sines or cosines.

50. We may obtain formulae which exhibit the product of

the sines or of the cosines of any number of angles, as the sum of

sines or cosines of composite angles ;
we have

2 sin Ai sin A^ = cos (^i ^2) cos (A^ + A^).

2^ sin Ai sin A^ sin Az=2 sin A^ cos (^1 ^3) 2 sin A3 cos {Ai + ^2)

= sin (^1
- ^2 + -4 3) + sin (- A^ + A^-^- A^

+ sin (^1 + -^2
-
^3)

- sin (^1 + -4a + -^s)

= S sin (- -4i + ^3 + Ai) - sin (^^ + ^2 + -^s).

2^ sin ^1 sin A^ sin A^ sin ^4

= 2 sin (^1
- ^2 + -4 3) sin ^4 + ... 2 sin (^1 + ^2 + A^ sin A^

= cos (J-i
- ^2 + ^3 - ^4)

- cos (^1
- ^2 + -^3 + ^4)

+ cos (- ^1 + ^2 + ^8 - ^4)
- cos (- ^1 + ^2 + ^8 + ^4)

+ cos( ^i + -42-^3-^4)-cos( -4i + ^2--4s + -44)

-cos( -4i + ^2 + -43-^4) + cos( ^1 + -^2 + -^3 + -44)

= cos (^1 + ^2 + -4.3 + ^4)
- X cos (^1 -\-Ai-\-Ai- A^

4- ^ S cos (-4i + ^2 - -^3
- A^,

Similarly

2 cos J-i cos A^ = cos (J-i -^2) + cos {A^ + A^.

2^ cos J-i cos A^ cos J.3

= 2 cos (J.1 A^ cos ^3 + 2 cos (^1 4- A^ cos J.,

= cos (- ill + ^2 + ^3) + cos (^1
- ^2 + ^3)

+ cos (^1 + ^2 - A^ + cos (^1 + ^2 + ^3)

= S cos (- uli + ^2 + ^3) + cos (^1 + ^2 + ^3).

2^ cos J.1 cos A^ cos A^ cos -44

= S cos (- ^1 + ^2 + -43 + ^4) + i S cos (^1 + ^2 - ^3 - -44)

+ cos (^1 4- ^2 + ^3 + ^4)-

The general formulae for n angles are the following
n

<- 1)"' 2*^-1 sin A-, sin A^... sin A^
n

= Cn Cn-i + Gn-2 ...+( l)^^C^n (31)

when n is even,
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where Cn-r is the sum of the cosines of the sum of n r of the

angles taken positively and the remaining r taken negatively, the

negative angles being taken in every combination
;
and when n is

odd
n-l

(_ 1)
2 2-i sin ^1 sin ^2 . . . sin An

= n,- Dn-^-h Dn-,- ...-{ {-ly^D^in+i) (32),

where Dn-r denotes the sum of the sines of the sum of n r of

the angles taken positively and the remaining r taken negatively ;

2**~^ cos A 1 cos A^... cos An
= Cn-\- Gn-1 + On-2 + + ^0^ (33)

when n is even, and

2**~^ cos Ai cos Ao... cos An
= Gn + Gn-x + ... + Gj,(n+l) (34)

when n is odd.

These formulae (31), (32), (33), (34), have been proved above, in

the cases n = 2, 3, 4, and may now be proved generally, by

induction; assume the formula (31) to hold for n, multiply it by
2 sin^+i, and replace any term 2(7_y sin J.+i by a sum of sines,

we then obtain for the product

-

( 1)'"^
2^ sin A^ sin A^... sin An sin An+i

the expression
n

J^'n+i D'n + ... + ( I)'' ^^1(11+2) .

where D'r denotes the sum of the sines of the sum of r of the 7i+ 1

angles taken positively and the remainder taken negatively ;
this is

what (32) becomes when n is changed into n + 1
; proceed again in

a similar manner with this result, we then shew that the product
n+2

(_1)2 2+isin^i...sin J+2
is equal to

n+2

C^''n+2 G"n+i +... + ( 1)^ ^G J (n+2)

where G"r refers to ti + 2 angles ;
thus the formula (31) is proved

for the value n + 2, if we assume (31) and (32), for the value n\

similarly we may shew that (32) holds for w + 2, therefore as these

formulae have been proved for ti = 3, 4, they hold generally. The

formulae (33), (34), for the products of a number of cosines may
be proved in a similar manner.

H. T. 4



50 THE CIRCULAR FUNCTIONS OF TWO OR MORE ANGLES.

Example. Prove that for n angles a, jS, y, 8...

2sm(a/3 7 8 ...)=2'*~i sin a cos ^ cos y cos 8. ..

2 cos {a ^ y 8 ...)=2^~^cosacos ^cosycos 8...

lohere 2 implies summation extending to all possible arrangements of the signs

indicated in the n-l ambiguities.

Formulae for the circular functions of multiple angles.

51. If in the addition formulae which we have obtained for

two and more angles, we suppose each angle equal to -4, we obtain

the formulae

sin 2^ = 2 sin -4 cos^ (35),

cos 2A = cos^A - sin'^A = 1-2 ain^A = 2 cos^^ - 1 . . .(36),

sin 3^ = 3 sin A cos^ A sin^A,

or sin3^ =3sin^ -4sin3 J. (37),

cos 3^ = cos' A ScosA sin^ A,

or cos3^ =4cosM -3cos^ (38),

fi(Yi IVn 2^
sin nA=n sinA cos*-M ^^ ^ ^ sin^^ cos**-'^ +. . .(39),

n (n ~~ 1 )

cos nA = cos" A
^^-s-]

" ^^^* -^ cos**-^ A

w(n-l)(7i-2)(n-3) .
,

. ^, . ,.^.+ ^^

^'ll
^sinM cos**-M ...(40).

These last formulae (39), (40), follow from (28), (29), since 8r

in Art. 49, contains as many terms as there are combinations of

n things taken r together, and becomes equal to

n(n 1)...(m r + 1) . ^ . ^_^ .

^^

^4
- sm*^A cos**-^A .

T !

The formulae (39), (40), may also be written

sin nA = cos* A <nta>nA ^^

^y
tan^ A-^ ...Y

{ n(n l)
cos nA = cos" A \1

^^-^i
^^^^ ^

.(.-l)(.-2)(.-S);- _ I
4 !
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We find also from (9), (26), and (30),

^ _ . 2 tan JL
^"^"'^

=T:rtai?^ (41).

^ . 3 tan A tan^A*^'^=
l-3tanM (*2X

We have thus obtained formulae for the circular functions of

the multiples of an angle, in terms of those of the angle itself.

It should be noticed that each of the series of quantities

sin^, sin 2^1, sin 3^

cos J, cos 2^, cos 3^

is a recurring one
;
for we have

sin (ri+ l) J. = 2cos^ . sin w^ -sin {nV) A,

cos(7i+ l)^ 2 cos^ . cosw^-cos(?i 1)^ ;

thus each term of either series is obtained by multiplying the preceding one

by 2 cos ^, and then subtracting the term next but one preceding. By this i

means the terms of the series may be successively calculated, if we assume \

the formulae (35) and (36).

The scale of relation of either of the series

1+^ sin ^+^2 gin 2^ + , l+^cos^+^^^os 2^4- ,

is consequently 1-2^ cos A-{-3fi.

Expressions for the powers of a sine or cosine, as sines or

cosines of multiple angles.

52. In order to obtain expressions for a power of the cosine

or sine of an angle, in terms of cosines or sines of multiples of that

angle, we must make all the angles equal to one another, in the

formulae of Art. 50
;
we thus obtain the formulae

2sin2^ = l-cos2^,
4 sin^ ^ = 3 sin ^ sin ZA,

8 sin* J. = cos 4^ - 4 cos 2A + 3,

2 cosM = 1+ cos 2^,

4 cos^ A ZaosA-^ cos 3^,

8 cos* J. = cos 4^ + 4 cos 2A + 3,

42
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- w (n 1 ^

+ (-l)H i ?; (44)

(n even),
2L=i n(n l)

(-1)
^

2'^-^sin^A=smnA-nsm(n-2)A+ -^^^- ^sm(n-4)^-...

(n odd),

2^-1 cos" J. = COS yi^ + 71 COS (w
-

2) J. + ^
;

^cos(7i- 4)^ +...

+
ipft! ^*'>

(71 even),

71 I 71 ~~ 1 ^

2**-^ cos" -4 = COS 71-4 + 71 cos (71
-

2) ^ H
^-^^

^ COS (71 4)^ +...

+ w Tn-r-7 -TTT COS J. (47)
J(7i-l)!^(n + l)!

^ ^

(71 odd).

The formulae (44), (45), may be deduced from (46), (47), by writing

90 A for J., or conversely.

Relations between inverse functions.

53. Corresponding to the addition formulae of this Chapter,

formulae involving the inverse circular functions mayjbe found.

Thus in formulae (1) and (3), put cos ^ = a, cos B = b, then we
have

cos~^ a cos-i b = cos~^ {a6 + Vl a^ Vl 6} ;

similarly from (2) and (4), we have

sin-i a sin-^ b = sin-^ {a Vl -b^ b Vl - a^].

From (9), (10), (11), and (12), we obtain

tan~i ^ ^ tan~^ b = tan~^ :i~~-T ,

1 + ao

cot~^ a cot~^ b = cot~^ -7 .

b a

Again from (26) and (30), we have

,7 ^ ^ ^ ^ f a-\-b-\- c abc \
tan~^ a + tan~^ 6 + tan~^ c = tan~^ ^^ -. ^ ,

\l oc ca abj
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tan~^ Oj + tan~^ ag + . . . + tan~^ an = tan"
-ff 2 + ^4 . . . ^

where 5^ is the sum of the products of oti ag . . . a^ taken r together.

It should be observed that in these formulae, the particular

values to be assigned to all except one of the inverse functions, are

arbitrary, but the particular value of that one is determined when
the values of the others have been assigned. Moreover if in a

formula involving, for instance, three inverse functions, two of them

have their principal values, it is not necessarily the case that the

third has its principal value. For example, in the formula

tan~^ a + tan"^ h = tan~^ (a + &) / (1 ab)

if tan~^ a, tan~^ b, are both positive and have their principal values,

that is, values between and ^tt, and if their sum is greater than

Itt, this sum is not the principal value of

tan-^(a + 6)/(l -ab);

this principal value is an angle between and Jtt, which has the

same tangent as the sum of tan~^ a and tan~^ b.

Geometrical proofs of formulae.

54. Direct Geometrical proofs may be given of many of the formulae of this

chapter, we shall give three examples of such proofs. It should be remembered
that such proofs often hold only for a limited range of the angles.

(1) To prove the formulae tan {A + J5)
=^^A^^:54j.^ ^

1 + tan A tan B

E



54 THE CIRCULAR FUNCTIONS OF TWO OR MORE ANGLES.

Let ABf CD
J
be two chords of a circle at right angles, and let the angles

ADE, BDE be denoted by ^ and 5 ; since AE . EB=CE . ED, we have

AE EB
AE-^EB AB

1-

ED _
AE EB

~
ED^EC~ BF

whence

ED' ED

tan A + tan B
=ta.n{AB).

1 + tan A tan B

(2) To prove the formulae

sin 2A=2 sin A cos A, cos 2A= cos^ A sin^ A.

Let AOA' be the diameter of a circle, and let PAA'=Aj then P0A'=2A ;

draw PiV perpendicular to ^^'.

Then sin 2^=^, now PN, AA'= 2lAPA'=AP. PA',

therefore

also

. , AP.A'P ^^'2sin^cos^ . .sm 2A = y^^ 7-r. = 7^^ 7-i, = 2 sm ^ cos A,

cos 2A = ^-vi =

OP.AA' OP.AA'

ON AN^-A'm AP^-A'P^
AA'^

= co^^ As>iv?!A.0P~ 2.AA'.0P

(3) To prove the formulae

sin 3^ =3 sin ^ - 4 sin^ A, cos 3^ =4 cos'^ - 3 cos A.

Let GAB=ACB=A ; let AB meet the tangent at C to the circle round the

triangle ABC, in E, draw BD perpendicular to CE.
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The angle BED is 3^, or 180 - 3^. Now

AE AACE AC^
BE~ aBGE~ BC^

= 4 cos2 A
;

therefore

hence

and

AB= 4 cos2 i4 - 1 =3- 4 sin^ A ;BE

. ^, BB BD AB ^ . . . .
^

.

sin 3il=^^
=
-^ . ^=3 sin ^ - 4 sms J,

cos3A-+^^-^^ 5^~:5C\e^ AB
=cos A (4 cos2 ^ -

1) 2 cos il =4 cos^ ^ - 3 cos A.

The proofs in (1) and (3), were given by Mr Hart in the Messenger of

Mathematics. Vol. iv.

Examples.

Prove geometrically the formulae

1 cos 2A
(1

(2

(3

(4

(5

(6

(7

(8

(9

tan^K^ ^ . .

1+ cos 2A
tan (45 + A) - tan (45

- A)= 2 tan 2A.

sinKsinB= sin'^^{A.-\-W)-sin^\{K
-

B).

sin^ a+ sin^ j3
= svn^ (a+ ^) 2 sin a sin ^cos{a+^).

tan ^ tan ^ = -.
n m+ n 4

co2A+ cos^ B+cos^C+ 2 cosA cos B cos C= ly where A+B+C= 180.

sinA+sin B- sin 0=4 sin ^A sin ^B cos ^C^ where A+B+C = 180.

cot 6= cosec 26+ cot 2$.

C05 36 -sm 18=^.
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EXAMPLES ON CHAPTER IV.

Prove the identities in Examples 1 15 :

1. cos2 A +cos2 (120 + ^) + cos2 (120
- J)=t.

2. (cos A +sin Ay+ (cos J. - sin J )*
= 3 - cos 4A.

3. sin 3A sin^A + cos 3A cos^ A = cos^ 2A,

4. 4 cos^A sin 3^+4 sin^ A cos 3^ = 3 sin AA.

6. sin3 ^ +sin3 (120 + J) -sin3 (120
- J)= -

1 sin ZA.

sin ^+ sin 3^+ sin 5.4+ sin 7^ . ^.
6. -. r-j z. =-: =tan 4A.

cos A + cos 3^ + cos 5A + cos 7A

7. 16cos^^-cos5^ = 5cos^(l + 2cos2i4).

8. cosec (m-^n) a: cosec wu? cosec wo? - cot (m+ w) a; cot mx cot wx
= cot m:c+cot nx - cot (m+ w) x.

9. 2 cos ^ (cos 3^ - cos 3(7)

= 4 (cos B-cosC) (cos (7- cos ^) (cos ^1 - cos B) (cos ^ + cos 5+ cos C).

10. 2 sin A (sin2 5+ sin2 C) sin (5 - C)
= am{B-Cr)Bm{C-A)8m{A-B)am{A+B+ C).

11. tan(il + 60)tan(^-60)+tan^tan(.l + 60)+tan(^-60)tan^=-3.

12. cot (^+60) cot(^
- 60)+cot A cot{A +60)+ cot(^

- 60)cot^ - - 3.

cos 3A cos 6^ cos 9^ cos 18^

cos^ cos 2^ cos 3^ cos 6^
= 2 {cos 2A - cos 4i4 + cos 6^ - cos 12^4}.

smjB-^C+B-A)
sin {A - B) sin {A - C) sin {A -B)

cos 4il cos 4B
15. -;

-.
; 7-A iiT : 7 a PR +

sin A sin {A
- B) sin (^1

-
(7)

^
sin 5 sin {B- C) sin {B-A)

+ -; ^r-^ T^ , , . ,^ j^. =8sin(^ +5+C)+ cosec ^ cosec i? cosec C.

Bm.CB\n{C-A)B,\n{C-B)

If ^ +5+C=7r, prove the relations in Examples 16 27 :

16. 2 tan ^ cot5 cot (7=2 tan ^ - 22 cot A.

17. 2 cot A =cot A cot B cot (7+ cosec .4 cosec B cosec C.

18. 2sin(5-(7)cos3^=-sin(^-(7)sin((7-^)sin(^-^).

19. 2 (sin 5+ sin (7) (cos (7+ cos yl ) (cos ^ + cos B)
= (sin jB+ sin (7) (sin (7+ sin J ) (sin ^ + sin B).

20. 2 sin A cos (^
-

jB) cos{A-C)= 3 sin^ sin B sin (7+ sin 2^ sin 25sin 2(7.

21. 2 sin 2B sin 2(7= 4 {sin^ A sin^ 5 sin^ (7+ cos^ J cos^ 5 cos2 C
+ cos ^ cos B cos (7}.
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22. 2 cos 2A (tan B- tan C)
= -2sin{B- C) sin {G-A) sin (.4

- B) sec A sec B sec C.

23. 2 cos2 A (sin 25+ sin 2C)= 2 sin ^ sin B sin C

24. 2 cos A sin 3^ = {2 sin 2A] {f+ 2 cos 2A}.

25. (sin^+sin^+sin (7)(-sin^ + sin5+sinC)(sin J.-sin5+sin (7)

(sin A-\-s,mB- sin C) = 4 sin^ A sin^ i5 sin^ (7.

2Q. sin^ ^ cot J^ 1

sin2 B cotB 1

sin2 C cote I

=0.

27. 2 cosec -ff cosec C sec (5 - C)

=sec (B-C) sec (C- J) sec {A - B) (3+8 cos^ cos B cos (7).

28. Prove that if 0+^+7=^77,
sin2 a+ sin2 /3+sin2 <y+ 2 sin sin ^ sin y= 1.

29. Prove that

1 1 1

1 +2 cos (^7r+ ^) 1 + 2 cos (Itt -6) 2 cos ^ - 1
*

30. Prove that

sin2 (^+ a) + sin2 (^+ /3)
- 2 cos (a

-
/3) sin (^+ a) sin (^+ ^)

is independent of 6.

31. If tan 3= :;
". o shew that tan (a-B) = (\-n) tan a.

l-yisin^a \ r-/ X /

00 T^ ^ ^ sin a sin ^
^.i, ^ x /i

sin a sin
32. If tan d> = ;^ , prove that tan 6= -;--

,
.^ cos 6 cos a cos 9 + cos a

33. If \/2 cos ^ = cos 5+ cos3 5, V2 sin ^ = sin 5 - sin3 5,

prove that + sin (^ - 5) = cos 2i5= ^ .

34. Prove that

cos3^+cos3<f) ,
. ,. ,;, ,K , ' J^ , j\ fA , u.\

77, . , \ =(cos d+ cos d)) COS (e+d>)- (sin ^+sin </>)
sm {e+(f>).

2 cos {6 q>) 1
r/ \ ry \

35. If 6 and (^ satisfy the equation

sin ^+ sin = ^3 (cos
- cos 6),

then will sin 3^+ sin 30 = 0.

36. Prove that tan 70 = tan 20 + 2 tan 40 + 4 tan 10.

cos* a sin* a

cos^/S sin2/3

38. If cos (A+B) sin {C+D)=cos (A
- B) sin (C- D\

then cot A cot 5 cot C= cot i).

39. If a+^+7=^7r, then

^cos a+ sin a) (cos ^+ sin /3) (cos y+ sin y)
= 2 (cos a cos /3 cos y + sin a sin jSsiny).

37. If -"- "
+ ~^= 1, then ^"-,

^ + ^^;^V^= 1.
cos*^ sin*^

cos^ a sin^ a
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40. If A +B+ C= TT and cos A=cobB cos (7,

then will cot B cot C=\.

41. If 4 sin^ a sin^ /3 sin^ y +sin* a+sin* /3+sin* y - 2 sin^ /3 sin^ y
- 2 sin^ y sin2 a - 2 sin^ a sin^ /3

=
0,

shew that a + /3 y is a multiple of tt.

tan(a+^-y)^tany
tan(a-^+y) tan^'

prove that sin 2a + sin 2/3+ sin 2y= 0.

43. If sec a= sec /3 sec y+ tan /3 tan y,

prove that

sec j3=sec y sec a4-tan y tan a and sec y=sec a sec /3+ tan a tan /3.

-. sin^ ^ cos <f>
- cos^ ^ sin d) sin'^ d) cos 6 cos^ d> sin 6 , ., . x

44. If -^^
^ = ^- ^^ ^ = cos (^+ 0),cos ^ tan a cos <^ tan /3

^, sin^ a cos iS - cos^ a sin /3 sin^ fl cos a - cos^ fl sin a , . ^..
then ^^

^
^ = '^ HT^^ =c^ (a +i3)-

cos a tan ^ cos ^ tan ^ '

45. If u4, 5, 6^ be positive angles such that A-\-B+ (7=60", prove that

sec il sec ^ sec (7+ 22 tan B tan C= 2.

46. If

cos(^+^)cos(^-hy) + l _ cos(^+ y)cos(^+ a) + l _ C08(^-ha) COS (^+/3)+ l

cosO+y)
~

COs(y4-a)
~

COS(a+^)
*

prove that cosec (/S a) cosec (y
-

a)+ cosec (y
-

/3) cosec (a
-

/3)

+ cosec (a
-
y) cosec (j3

-
y)
= 1.

47. Having given

sin* 6 -f sin* = 14 sin^ Q sin^ and sin ^+ sin <^
= sin

^^tt,

prove that 2 sin ^=sin (^tt J7r)/sin ^tt or cos (^r ^7r)/cos \tr.

48. If cos (^ +5+ C) =cos ^ cos -6 cos (7,

then 8 sin (^+ C) sin (C+^) sin (4 +iB)+sin 2^ sin 25 sin 2C=0.

49. If tan ^+tan<^ + tan>/r= tan ^ tan tan\/r
= tan {6+<l>-{-y\r\

then either two of the angles 6^ 0, i//-
must be equal to mn + ^ir^ nn ^n,

or else one of them and also the sum of the other two must be multiples

of TT.

50. If?l^^(^n)cos(fl-2o) + ?l5irz)cos(fl-2
cos a

^
cosjS

+ ^^"^~^^ cos {6
-

2y)
= sin (/3

-
y) sin (y

-
a) sin (a

-
^),

cos y

prove that cos 6= cos a cos j3 cos y.

51. If a, j3, y, S be any four angles and 2(r= a+i3+ y4-d, then

cos a cos /3 cos y cos 8 +sin a sin /3 sin y sin 8

= cos (o-
-

a) COS (<r
-

jS) cos (o-
-

y) cos {<t
-

b)

+ sin (o-
-

a) sin (o-
-

/3) sin (o-
-

y) sin (o- 8).
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52. Prove that

tan~i ^=2 tan~i {cosec tan"* ^ tan cot~* ^}.

53. Prove that

54. Prove that

tan-i {| (cos 2a sec 2^+cos 2^3 sec 2a)} =tan-i {tan^ (a+ ^) tan^ (a
-

/3)} +tan-i 1.

55. Prove that

tan-il + tan-i2 + tan-i3=7r= 2(tan-il + tan-i|+tan-i|).

56. If cos~i^-l-cos~iy+ cos~*5;=7r,

then x^-\-y^+z^+ %xyz=\.

57. If tan~i?/= 5tan~i;r, find y as an algebraical function of x
',
hence

shew that tan 18 is a root of the equation 5^^ - 10^2+ 1 = 0.

58. If 2(r= a+ i3+ y, shew that

, _j / 2 cos a cos /3 cos y \

\C0S2 a+ COS^ /3+ C0S2 y
- 1 /

- tan" 1
[tan o- tan (o-

-
a) tan (tr- ^) tan (o- -y)]=tan~i 1.

59. Prove that

60. Prove that the algebraical equivalent of the equation

sin
~ 1 ^+ sin

~ 1
3/
+ sin

~ 1 2+ sin
~ 1

? = wtt,

where n is an integer, is

{4 (5 x){s y) {s z){s-u) {xy+ zu) {xz-\-yu) {xu +yz)}

. {4s (s - x-y){s -x-z){s-x-u)-{zu- xy) {yu
-
xz) i^/z

- xu)}=Oy

where 2s=x+y+ z+u.

Solve the equations in Examples 61 75 :

61. sin ^+ 2 cos ^=1.

62. sin5^= 16sin5^.

63. sin ie - sin ^= sin 3^.

64. tan 2^= 8 cos^ 6 - cot 6.

65. tan(45"4-J)= 3tan(45-^).

66. 2sin(^-<|))=sin(^+<^) = l.

67. sec 4^- sec 2^=2.

68. sinm^-|-sinw^-l-sin(m+?2)d=0.
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69. sin ^ 6+ am k- 6= cos 6.
2 2

70. tan ^+ sec 2^=1.

71. 2(sin4^ + cos*^)= l.

72. tan ^+ tan 3d + tan 5^=0.

73. cot-i.r-cot-i(jp+2)=15.

74. asin~i^4-6cos~iy=al
a co8~i .r 6 sin"

75. cosec 4a cosec 4d= cot 4a cot 4^.

76. Draw graphs of the functions (a) sin a;+ sin 2.r, (6) cos 2^/cos a\

77. Find all the solutions of the equation

a (sin d -cosa)= 6 (sin a- cos 6).

78. If wi be any integer, and A {B+C^ tt, shew that

sin 2jnA + sin 27n5+sin 2mC=(- 1)"*"^^ 4 sin mA sin m^sin wC,
cos 2mA + cos 2mB 4- cos 2mC= ( !)" 4 cos mA cosmB cosmC- 1.

79. Prove that x*+Sxz+ 4z^=4xh/,

where

;r=sin ^ + sin i?+ sin (7, y= sin 5 sin C+sin Csin A +sin A sin 5,

2=sin A sin ^sin C.

80. Prove that if

1 - tan B tan C l-tanCtan^_ 1-tan^ tan5
cos'^^ cos^B

~
coa^C '

either tan J, tan (7, tan^S are in arithmetic progression, or A +B+C is an

integral multiple of n.

81. If cosil=cosdsin 0, cos 5= cos sin ^, cos C=cos^sin d, and

A+B-\-C=nf prove that tan d tan tan
>/^
= l.

82. Solve the equations

4 (cos 3d+ cos 4d) (cos 3d+ cos d)= 1,

4 (cos 3d+ cos 5d) (cos 6d+ cos 7d)= - 1.



CHAPTER y.

THE CIRCULAR FUNCTIONS OF SUBMULTIPLE ANGLES.

Dimidiary Formulae.

55. If in the formula (36), of the last Chapter, we write Jot

for A, we have

cos a = cos^ ^a sin^ Ja = 2 cos^ J-a 1 = 1 2 sin^ ^a,

whence we have

1 cos a = 2 sin^ -Ja, 1 + cos a = 2 cos^ -|a ;

taking the square roots, we obtain the following formulae for cos J x

and sin ^a, in terms of cos a,

sin Ja = V^ (1 cos a), cos Ja = + VJ (1 + cos a) ;

dividing one of these expressions by the other, we have also

h'^=/,J\
, _ cos a

tan , _ .. . .

+ cos a

These three formulae contain an ambiguity of sign ;
now if a i&

given, the three functions sin \ol, cos \ol, tan ^a, have each a unique

value, and the true expressions for them can therefore contain no

ambiguity. The reason of the ambiguity in the three expressions

obtained above, is that they give the values of sin ^a, cos \ a, tan ^a,

not when a is given, but when cos a is given; now as we have

proved in Art. 33, all the angles ^mr + a, where 72 is an integer,,

have the same cosine as a, hence formulae which give sin ^a, cos ^a,,

tan ^a, in terms of cos a, will give these functions for all the angles

included in the formula \ {jLutt + a), and not merely the values of

sin-|a, cos
"I a, tan-^a, themselves.
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To find the values which sin ^ (2n7r a) may have, we must

consider the two cases of an even and of an odd value of n; if n=27n

sin ^ (4m7r a) = sin (+ Ja) = + sin Ja,

if ?i = 2m + 1

sin J (4wi7r + 27r + a)
= sin (tt + a)

= + sin Ja ;

hence the values of sin ^a and sin^a are given by the formula

which expresses sin Ja in terms of cos a. Similarly cos ^ (2?i7r + a)

and tan ^ (2n7r + a) can be shewn to have the values + cos ^a,

+ tan^a, and thus the formulae which express cos^a, tan|a, in

terms of cos a, will give the values of cos^a and cos Ja, and of

tan ^a and tan |-a, respectively. Thus the ambiguity of sign in

the three formulae is accounted for.

56. The ambiguity of sign in the three formulae we have

obtained, may be illustrated geometrically.

If AOP = a, and A OP^ = ol, the two sets of coterminal angles

{OA, OP), (OA, OPi), are the only ones which have the same

cosine as a; if QOq, Q'Oq' be the bisectors of the angles ul OP, AOPi,

respectively, the bisector of any of the angles (OA, OP) is OQ or Oq,

and of the angles (OA, OP^) is OQ' or Oq\ hence the formulae for

sin ^OL, cos J a, tan J a, when cos a is given, will give the sine, cosine,

and tangent of all the four sets of coterminal angles {OA, OQ),

(OA, Oq), (OA, OQ'), (OA, Oq'). The sines of the angles in the

first and fourth sets are equal to sin ^a, and in the second and third,

to sin ^a ;
the cosines of the angles in the first and third sets, are
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equal to cos^a, and in the second and fourth, to cos^a; the

tangents of the angles in the first and second sets, are equal to

tan J a, and in the third and fourth, to tan^a.

57. We shall now remove the ambiguities in the three

formulae of Art. 55. The function sin^a is positive or negative,

according as ^a lies between 2nTr and (2w4-l)7r, or between

(2n + 1) TT and (2n + 2) tt, that is according as a/27r lies between

2n and 2n+ 1, or between 2n-{-l and 2n+2; hence we have the

formula

sin |a = (- 1)^ V|- (1
- cos a) (1),

where p is the positive or negative integer algebraically next less

than a/27r.

The function cos Ja is positive or negative, according as Ja lies

between 2?i7r Jtt and 2n7r+^7r, or between 2/i7r+ Jtt and 2?i7r+f tt,

that is according as ^(a + 7r)/7r lies between 2n and 2n-{-l, or

between 2w + 1 and 27i + 2
;
hence

cos |-a
= (- 1)5 Vj (1 + cos a) (2),

where q is the integer algebraically next less than J (a + 7r)/7r.

We have also

tan ia = (-1)^-^/1^1^^^ (8);2 ^ ^ V 1 + cos a ^ ^ '+ cos a

the quantity p q is always either zero or 1.

58. If we write ^a for A in the formula (35) of the last

Chapter, we have

sin a = 2 sin J a cos ^a,

hence

, sin-i-a sin a 2sin2ia
tania = t- =^ s-?

= ^
"^

cosja 2cos2^a sma

Thus we have the two formulae

. sin a 1 cos a ...

tan*a=- = ; (4),'^

1 + cos a sm a

which give tan Ja without ambiguity. These formulae give tan Ja

when both sin a and cos a are given ;
now the formula 2?i7r + a

contains all the angles of which both the sine and cosine are the

same as the sine and cosine of a, hence formulae for tan J a in terms

of sin a and cos a, give the tangents of all the angles nir-\-^OL, and
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all these angles have the same tangent tan ^a ;
this accounts for

the absence of ambiguity in the formulae (4).

59. We shall now obtain formulae for sin^^a, cos^a, and

tan ^a, in terms of sin a
;
we have

1 4- sin a = 1 + 2 sin ^a cos Ja = (sin Ja 4- cos Ja^,

also 1 sin a = 1 2 sin ^a cos ^a = (sin ^a cos ^a)^,

hence sin^a + cos ^a= + Vl i-sin a,

sin Ja cos ^a = + Vl sin a
;

therefore sin Ja = ^ {+ Vl + sin a + Vl sin a},

cos Ja = i (+ Vl 4- sin a + Vl sin a).

In each of the ambiguities, either sign may be taken
;
we have,

therefore, four values of sin ^a, and four values of cos ^a, in terms of

sin a. Formulae which express sin ^a and cos ^a in terms of sin a,

will give the sine and cosine respectively of all the angles included

in the formula i(?i7r + (- l)'*a), for as we have shewn in Art. 33,

the sines of all the angles n7r+ ( !)'*, have the value sin a. To
find the sine and cosine of the angles ^ (nir + (- l)"^) we must

consider four cases.

(1) If 71 = 4)171,

i {mr 4- (- l)^a) = 2imr 4- ^a ;

the sine and cosine of these angles are sin^a and cos^a respec-

tively.

(2) If 7?= 4m 4-1,

^ (nir + (- l)"a) = 2m7r 4- ^tt
- Ja ;

the sine and cosine of these angles are cos Ja and sin J a respec-

tively.

(3) If n = 4m 4- 2,

I (nir 4- (- 1)^ a) = 2m7r 4- tt 4- Ja ;

the sine and cosine of these angles are sin^^a and cos^a

respectively.

(4) If 71 = 4m 4- 3,

i (titt 4- (- l)'^a)
= (2m 4- 1) TT 4- i-TT

~ ia ;

the sine and cosine of these angles are cos^a and sin^a

respectively.
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Thus we obtain four values sin^^a, cos^a, sin Ja, cos Ja, by
the formula which gives sin^a, and four values cos^a, sinja,

cosja, sin^a, by the formula which gives cos^a.

The four sets of vadues of x and y which satisfy the equations

(a? 4- y)^
= 1 + sin

a]

(a? 2/)2
= 1 sin aj

are x sin^a) i = cos-|a) x== ^va.\cL\ ? = cosja

2/
= cosJaj' 2/

= sinJa)' 2/
= -cos^aj' y = -sinj

60. As in the preceding case, the ambiguities in the formulae

of the last Article, may be illustrated geometrically. Let

POA = a, PiOA = TT a, then the angles which have the same

B

:i-

^ B'

sine as a, are the two sets of coterminal angles {OA, OP),

{OAj OPi); hence ifQOq, Q'Oq be the bisectors of the angles AOP,
AOPi, the four sets of coterminal angles (OA, OQ), {OA, Oq),

(OA, OQ'), {OA, Oq'), will be the angles whose sine and cosine will

be given by the formulae which express sin J a, cos J a, when sin a

is given. We see that Q'OB = ^a, and QVA=^{7r-a), hence

the sines of these four sets of coterminal angles are sin ^a, sin ^a,

cos J a, cos J a, and their cosines are cos^a, cos^a, sin J a,

sin Ja; these are the four values of sin^a, cos Ja respectively,

which are given by the two formulae.

61. We have

sin Ja + cos Ja = V2 (-^ sin ^a + -t^
cos

Ja)

= /v/2sin(ia + Jtt),

H. T. 5



6Q THE CIRCULAR FUNCTIONS OF SUBMULTIPLE ANGLES.

and similarly

sin Ja cos^a = \/2sin(^a iir)]

hence sin Ja + cos^a is positive or negative, according as
^r hi

lies between 2n and 2n + l, or between 2/i+l and 2n-\-2, and

sin
"I
a cos J a is positive or negative, according as

^r J lies be-

tween 2n and 2w + 1, or between 2n + 1 and 2/i + 2
;
therefore

sin ^a + cos ^ a = (- 1)P Vl -f sin a,

sin Ja - cos Ja = ( 1)^ Vl sin a,

where p is the positive or negative integer algebraically next less

than
jc + i, and q is the integer algebraically next less than

^ J ;
we have then the three formulae

sin ia = i {(- ly Vl + sin a + (- 1)' Vl - sin a] (5),

cos ia = i {(- ly Vl + sin a - (- !> Vl - sin a) (6),

t.niaJ^^^Sl^^-'^'^;^'^^- (7).
(- ly Vl + sin a - (- 1)9 Vl - sin a

62. To express sin ^a, cos J a, tan J a in terms of tan a, we have

sin^ Ja = J (1 cos a)

V Vl4-tan=^a/

cosHa = ifl + 7 );
V tVl+tan^a/

hence sin Ja = a /^ f1 , ) ,

.
V H +Vl+tan=^a/

=
\A(

cosia = A/i 1 +

and consequently tan ^ a =

fVl + tan^a/

Vl + tan=^a-l

tan a

each of these formulae contains ambiguities. We leave to the

student the discussion of these ambiguities, which should be made
as in the previous cases.
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It should be noticed that the values of tan J a are the roots of

the quadratic equation in tan
-J- a,

2 tan i-a
tan a =

.j

-
fr- '

1 tan^-^a

obtained by replacing A by ^a, in the formula (41), of the last

Chapter.

63. The functions sin a, cos a, tan a, can be expressed without

ambiguity in terms of tan J a ;
for all the angles which have the

same tangent as ^a, are included in the formula niri-^a, and

2 (nTT + ^a) or 27i7r + a are angles which have all their circular

functions the same as those of a. To find the expressions, we

have

2 sin ^a cos ^ a _ 2tan|-asm a =

cos a =

hence also tan a =

cos"* i a + sin^ J a 1 + tan^ ^a
'

cos'-^ ^a sin^ -Ja _ 1 tan^ ^a
cos"^ ioL + sin^ Ja

~
1 + tan^ ^a

'

2tanja
1 tan^ J a

'

Examples.

(1) If 2cos 6=^\/\ sin 2d /\/l + siv, 26, shew that B must lie between

(8n + 5)J
a7id

(8n4-7)^,

lokere n is an integer.

/ox D ^7 ^ cos\K sin\A.
(2) Prove that

^ -
-\-

.
.

- = sec A,
^/l+sinA ^/l sinA

the radicals denoting positive quantities, provided A lies betioeen

(4n
-
^) TT and (4n+ ^) ir,

where n is an integer. What are the signs in other cases'?

/o\ Ti 7 7/. 7 . JXsinx+ l

(3) Frove that the four values of = are

'\/\-\-sin X- 1

cot^x, tan\{Tr-\-x), tank's., co^j(7r + x).

(4) If sin 4A= a, shew that the four values of tan A are given by

l((l+a)i-l}{l+(l_a)^}.

(5) In the formula tan\K==- ^ , prove that the ambiguity of

sign may be replaced by { 1)"^, where m is the greatest integer in (A+ 90^)/180''.

52
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The circular functions of one-third of a given angle.

64. If we replace A, in the formulae (37), (38), (42), of the

last Chapter, by J a, we obtain the three equations

sina = 3sin Ja 4sin^ Ja (8),

cos a = 4 cos^ Ja 3 cos ^ a (9),

3 tania tan^4a ,-^.
tana = , \. .

^
(10);

1 Stan'^Ja
^

we have thus, in each case, a cubic equation for determining a

circular function of J a, in terms of one of a. Hence if sin a be

given, we obtain three distinct values of sinja; if cos a be

given, we obtain three distinct values of cos J a, and if tana be

given, we obtain three distinct values of tan J a.

(1) In the case of the formula (8), we have sin a given, and

thus we shall obtain for sin
Jot,

the values of the sines of one-third

of all the angles {OA, OP), (OA, OPi), which have the same sine

as a. Let the trisectors of the angles (OA, OP) be OQi, OQ^,

OQs, so that QiOA = Ja, and QiQ^Qs is an equilateral triangle, and

Q,0A=^7r + ia, Q,0A=i7r+ia;
the trisectors of the angles (OA, OPi) are Oq^, Oq^, Oqs, where qiq^qs.

is an equilateral triangle, and qfiA = J (tt a), so that

q20A='ir-'^a, q^OA = ^tt ^ol

We see at once that QaS'u Qi^^, Q^qs are parallel to OA
;
the

sines of the two sets of coterminal angles (OA, OQi), (OA, Oq^,
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are sin Ja, those of the sets (OA, OQ2), (OA, Oq^), are sin(f7r + Ja),

and those of (OA, OQ3), (OA, Oq^), are sin (|7r + Ja) ;
therefore the

three roots of the cubic (8), in sin^^a, will be sin J a, sin (^tt Ja),

and sin (J tt + J a).

(2) In the case of the formula (9), the angles which have the

same cosine as a, are (OA, OP) and (OA, OPi); let the trisectors

of the first set of angles be the three lines OQi, OQ2, OQ3, where

QiOA = Ja, and Q1Q2Q3 is an equilateral triangle ;
the trisectors

of the second set of angles are Oqi, Oq^, Oq^, where q^OA = Ja, and

q^q^qz is an equilateral triangle ;
we see at once that Qiq^ Qiq<i, and

Q.^q^, are perpendicular to OA. The cosines of the two sets of

angles {OA, OQi), (OA, Oq^), are cosja, those of the two sets

(0A,0Q2), (OA, Oq^, are cos(f7r + Ja), and those of the two sets

(OA, OQs), (OA, Oq-s), are cos (Itt + Ja) ;
therefore the three roots of

the cubic (9), in cos Ja, are cos ^a, cos (Jtt Ja) and cos (Jtt + Ja).

(3) In the case of the formula (10), the angles which have the

same tangent as a, are (OA, OP) and (OA, OPi). As before OQi,

OQ2, OQ3, in the figure on page 70, are the trisectors of the first

set of angles; the trisectors of the second set are Oqi, Oq.^, Oq^,

where qiq^q^ is an equilateral triangle, and qfiA = J (tt + a) ;
we

see that QiOq^, Q^Oq^, QsOqi are diameters of the circle. The

tangents of the sets (OA, OQi), (OA, Oq^, are tan^a, of (OA,

OQ2), (OA, Oq,) are tan(|7r + Ja), and of (OA, OQ,), (OA, Oq,),

are tan (f tt + ^ol), hence tan J a, tan (Jtt ^a), tan (^ir + Ja), are

the roots of the cubic (10), in tan J a.
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We may express the results of this article thus, the roots of the

cubic in x,

Zx 4a;3 = sin ol, are sin Ja, sin J (tt a), sin J (tt + a),

those of the cubic

4iZ^ 3a; = cosa, are cosja, cosJ(7r a), cosJ(7r + a),

and those of the cubic

tan a (1 3a?^)
= 3a? ic', are tan J a, tan ^ (tt a), tan

J^ (tt + a).

Determination of the Circular Functions of certain angles.

65. The formulae of this Chapter may be applied to the

determination of the circular functions of angles which are

submultiples of angles whose circular functions are known.

(1) We have sin Jtt = cos f 7r = 1/V2 ;

hence from the formulae (1) and (2), of Art. 57,

sin Jtt
= i V2 - V2, cos Jtt

=
-^ ^2 + ^2,

sin^7r=-^N/2-V2TV2, cos^ = Jn/2 + V2 + V2,

and proceeding in this way, we can calculate sin tt and cos tt.

(2) We have sin Jtt
=

1/2, cos Jtt
= V3/2 ;

hence from formulae (5) and (6), we have

sin ^ir = i (V6 - \/2), cos -J^-tt
= i (V6 + V2),

the values obtained for sin 15, cos 15, in Art. 34
;
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proceeding in this way we calculate the sines and cosines of all the

angles 2^.
(3) We have sin ^tt

= 2 sin -^tt cos ^tt
and sin Jtt

= 2 sin ^tt cos ^tt,

therefore sin-^7rsin|7r
= 4 sin-^Tr cos ^Trsin jI^ttcos^tt;

hence since sin f tt = cos J^tt,

we have 4 cos ^tt sin j^^tt
=

1,

or sin ^tt sin ^^tt
=

^,

that is cos ^tt sin ^^tt
=

-J^,

also (cos ^TT 4- sin
jSg-Try

= 1 + 1 = I ;

therefore cos Jtt + sin
j^^

tt = J V5,

or sin -^^ir
= ^

(\/5
-

1), cos ^tt =
:| (v'5 + 1),

and hence cos-J^7r
= i\/lOT'2^75^ sin ^tt = J VlO 2 V^ ;

these values agree with those given in Art. 34.

It should be noticed that if a is any angle of which the sine

and cosine are known, then the sines and cosines of all angles of

the form ma/2", where m and n are positive integers, can be found

in a form which involves only the extraction of radicals, for we have

shewn how to find the functions of all angles of the form a/2", and

when these are known, the formulae of the last Chapter enable us

to Imd sm and cos
^^

.

66. We are now in a position to calculate the circular

functions of all angles differing by 3 or 7r/60, commencing at

3, and going up to 90.

We have sin 3 = sin (18
- 15)

= sin 18 cos 15 - cos 18 sin 15

= tV (V6 + V2) {^Jo
-

1)
- 1

(V3 - 1) V5^T75,

similarly cos 3 = J (V3 + 1) VsTV^ + jV (V6
-

\/2) (\/-5
-

1).

We have also

6 = 36 - 30, 9 = 45 - 36, 12 = 30 - 18,

21 = 36 - 15, 24 = 45 - 21, 27 = 30 - 3,

33 = 45 - 12, 39 = 45 - 6, 42 = 45 - 3,

hence we can calculate the sines and cosines of all the angles

3, 6 up to 45; it is then unnecessary to proceed farther, since

the sine or cosine of an angle greater than 45, is the cosine or sine



72 THE CIRCULAR FUNCTIONS OF SUBMULTIPLE ANGLES.

of its complement, which is less than 45. The results of the

calculation are given in the following table :

sine

3 = ^7r
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In this table, the sines of the angles 3, 6, ...up to 87, are given; the

cosines will be found by taking the sines of the complementary angles. The
values of the surds in the above expressions, are given to 24 decimal places in

the Messenger of Math. Vol. vi., by Mr P. Gray. In Button's tables the

values of these surds are given to 10 places of decimals. A complete table

giving the tangents, secants, and cosecants of these angles, with the denomi-

nators in a rationalized form, will be found in Gelin's Trigonometry.

EXAMPLES ON CHAPTER V.

Prove the relations in Examples 1 8, where A-\-B+C=\S(f :

tan J^ _ 1 - cos ^ +COS 5+cos C
tan i (7

~
1 cos 6'+ cos J. +COS i^

*

2. ^m{A-B)^m{A-C)+sS.n{B-C)^m{B-A)+^m{C-A)&m{C-B)
= 2 COS \{B- C) cos \{G- A) cos \{A -

B) - 2sin %A sin f^sin fa

3. cos4^^ + cos4|5+cos4^(7+2cos^ cos2|5cos2|(7
4-2 cos5 cos2^acos2^4 + 2 cos (7cos2^^ cosH^=8 cos2 ^^ cos2^i?cos2ja

4. Ssin^ J.= 3cos-|^J cos^i5cos;|(7+cosf J. cosfjBcosf (7.

5. 2 cosec J. (1 + cot B cot C)

= cosec A cosec B cosec C {4 cos \{B-C) cos |((7- A) cos |(^ -B)-\).

6. ScosecJ. (l-cot5cotC)

=\ sec \A sec \B sec \ (7+cosecA cosecB cosec C.

7. 2 sin 2^ sin (5- C)

= 16 cos \A cos ^5 cos IC sin \{B-C) sin 1{C- A) sin ^{A-B).

cos ^^ sin
-I
J5+ sin

"I
C_ 1 + tan J J.

cos,\B+ Qiia.\Gmn\A 1+tan^i?*

9. Prove the identity

sin^(i?-a) s\n\{C-A) sin|(^-^)
sin|(5+C7) ^sin|(C+^)

"^
sin |(^+^)

sini(^- C) sin ^{C-A) sin|(^ -^)

"^sin^(^+(7)sin|((7+^)sin^(^+^)
'

10. li A-{-B+G= 360, and if

then tan \A+ tan \B+tan \ C 1.

11. Prove that

, , .
,

, , , cosec 2.r cosec y cosec 2y cosec x
tan ti^+V) tan i(^ - y)= -^ ^ -^ .^^ ^' ^^ ^' cosec 2^ cosecy+ cosec 2y cosec x
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12. Shew that if cot | a + cot |^= 2 cot ^, then

{1-2 sec 6 cos {a-B) + sec2 ^} {1
- 2 sec ^ cos (/3

-
^)+ sec^ ^}

= tan* 6.

13. If^+5+(7+2>= 360, prove that

cos^J. cos ^i) sin ^^ sin ^ (7 cos ^^ cos ^(7 sin ^^ sin^Z)
= sin^(^+^)sin^(.l + C)cosJ(^+i)).

14. Prove that

sin2^(5-C')+sin4((7-^)+ sin2J(^-5)
+ 2cos^(5-C)cosJ((7-^)cosi(^-^) = 2.

15. Prove that

sin(y-g) + sin(g-.37) + sin(:y-y) _ i/ __ n* i/

l+cos(y 2)+cos(0 :j7)+cos(^ y)~
^^ / IV ; fl y;

16. Investigate what relation must hold between a, ^, y, in order that

cos a+cos/S+cos-y = 1 4-4 sin ^a sin ^^ sin ^y.

17. If A +B+ C-\-D=360% prove that

cos(5+ (7+i)) + cos(C+i)4-.4) + cos(Z)+.4+i?)+ cos(J+2?+C)
= -4cos^(.4+5)cosJ(.4 + C)cosJ(ii+Z>).

18. If tan^^=tan3-^0, and tan = 2 tan a,

shew that ^+ = 2a.

,^ T^ .
2 sinsin(-^)sin(5-<i))sin(s->lr) ^, ^

tan2^a>=tan ^ tan ^(s 6) tan ^(5 0) tan ^(- V^),

where 28=6+cf>+yfr.

20. If ^+J5+(7+i)=180'', shew that

sin ^ + sin 5+ sin C- sin 2)= 4 cos i (^ + i>) cos ^ (5+ D) cos J(C+ 2>).

21. If a +/3+y= 277, prove that

sin ^ (1 4- 2 cos y) +sin y (1 + 2 cos a) 4- sin a (1 + 2 cos
jSl)

=4sin^(y-^)sini(a-y)sin^(^-a).
22. If 25= a+ 6 4- c, prove that

cos ^s cos ^{s a) cos i^(5 6) cos ^{s c)

4- sin ^5 sin ^(s-a) sin ^(5-6) sin ^ (5 c)
= cos Ja cos J6 cos ^c.

23. If a+/34-y=i7r, then

(1 tan^a) (1 tan^^iS) (1 tan^y) _sina4-sin jS+sin y 1

(1 + tan^a) (1+tan^^) (1+tan ^y)"" cos a 4- cos ^ 4- cosy

24. Prove that if a 4-^+y= tt,

cos (1/3 + y
-
2a) 4- cos (fy4 a - 2j3) 4- cos (f a 4-j3

-
2y)

= 4 cos i (5a
-

2/3
-

y) cos ^ (5/3
-
2y
-

a) cos |(5y
- 2a - ^).

25. If cos2 = cos a/cos /3, cos^ ff = cos a'/cos j3,

and tan ^/tan ^'= tan a/tan a',

shew that tan ^ a tan Ja'= tan ^ |3.
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26. If cos a= cos i3 cos cf)
= cos /3' cos (/>',

and sin a = 2 sin ^ sin ^ 0' ;

shew that tan ^ a= tan ^ /3 tan ^ /3'.

27. li A+B+ C= 180, and tan |^ tan |5= tan |C ; shew that

tan|^+tan|5+tan |(7=cot |^ + cot|jB+ cot |(7.

28. If tan^(y+2)+ tan^(2!+^) + tan|(^+3/) = 0,

prove that sin x+ siny+ sin 2:+ 3 sin (^+y+ 5;)
= 0.

29. Prove that

cos a sin ^(B+ a) sin |(/3 -y) + cos /3sin ^(^-f j3) sin ^(y- a)

+ COS
-y
sin "K^+y) sin "Ka ^)

= 2 sin iO -y) sin ^(y- a) sin ^(a-^) sin ^(a+/3+ y+ ^).

30. Solve the equations

tan ^a+tan ^^= ^ 1

tana+tan/3= | J

*

^^ sin(0 + a)sin(0-a) sin ((^+ /3) sin (0
- ^) ,,. ^ ,^ .

shew that cos^ ^ a+ cos^ | /3
- cos^ ^= ^.

32. If tan (^tt+ | ^)
= tan^

(Jtt+ ^ c^) , prove that

^
(l+a^sin2 0) (1+^-2 sm2<^)

'

and find a, /S.

33. If a+i3+y=7r, shew that

tan~i (tan ^^ tan |-y)4-tan~i (tan ^y tan ^a) + tan~i (tan ^a tan ^f3)

[ sm^a+sin^jS+ sin^yJ

34. Prove that the sum of the three quantities

cos^ ^y cos^ ^j3 cos^ ^a cos^ ^y
cos'^ ^j3 cos2-|y+ sin2 ^/3 sin^ ;|y

*

cos^-^a cos^ -^y+sin^ ^a sin^ ^y
'

cos^^lS cos2-|a

cos^ ^/3 cos2 ^a+ sin^ |/3 sin^ ^a
'

is equal to their continued product.

35. Prove that

cos ^0+y) cos ^(y+ g) cos^(a + /3) _ 3 cos ^(/3+y) cos ^'(y + a) cos ^(a+/3)

C0S^(j3-y) COS^(y-a) COS^(a-^) cos ^(/3-y) cos |(y-a) cos -^(0-/3)

_ cos a COS j3 COS y - COS (a+i3+ y)

~cos^(j3-y)cos^(y-a)cos^(a-i3)
36. Having given that

cos a + cos /3+ cos y _ sin a+ sin /3+sin y ^

COs(a+^-fy)
~

sin(a+/3+y)
'

prove that each fraction is equal to

cos
(/3+y)+ cos (y+ a) + cos (a+ j3),

and also to {tan a tan -^jS+ y)}/{tan a+ tan -10+ y)}.



CHAPTER VI.

VARIOUS THEOREMS.

67. In this Chapter, we give various examples of transformations

of expressions containing circular functions. Some of the theorems

given are of intrinsic interest, others are given on account of the

methods employed in proving them. Facility in the manipulation
of expressions involving circular functions, can only be obtained by
much practice, but a careful study of the processes we employ in

various cases, will very materially assist the student in acquiring
the power of dealing with this kind of s3rmbols.

Identities and Traiisformaticms.

68. Examples.

(1) Prove that

sin 2a sin (/3
-
y) + sin 2/3 sin {y

-
a) \-sin 2y sin (a

-
/3)

=
{sin (i3+ y)+ sin (y+ a) +sin (a +^3)} {sin (y

-
)3)+wi (a y) + sin (jS

-
a)}.

The factors on the right-hand side of the equation, are the sum and the

difference respectively, of the two quantities sin y cos )3+ sin a cos y -fsin j3 cos a

and cosysinjS+ cosasiny+ cosjSsina; hence the product of these factors is

equal to

(sin y cos /3+ sin a cos y+ sin j3 cos a)^
-

(cos y sin /3+ cos a sin y+ cos jS sin a)^.

Now sin^-ycos^/S cos^y sin2/3=sin2y sin^^, hence the algebraical sum of

the square terms is zero
;
the product terms are equal to

2 sin a cos a (sin ^ cos y cos j3 sin y)+ 2 sin j3 cos /3 (sin y cos a - cos y sin a)

+ 2 sin y cos y (sin a cos )8
- cos a sin /3),

and this is equal to

sin 2a sin 03
-
y) + sin 2^3 sin (y

-
a) + sin 2y sin (a

-
13) ;

thus the identity

2 sin 2a sin 03
-
y)= 2 sin (/3+y) 2 sin (y

-
/3)

is proved.
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(2) In the last example, put j7r+ a, $77+ /3, jTr+y, for a, ^, y, respectively ;

we then obtain the identity

2 cos 2a sin (j3
-

7)
= 2 cos (/3+y) . 2 sin (y -/3).

(3) Prove ^Aa^

2 sin^ a sin (/3 y)
= sm (a + /S + y) 5iw (/3

-
y) sin (y

-
a)m (a

-
/3).

In this case, as in many others, we replace the quantities sin^ a, siu^ /3,

sin^ y, on the left-hand side of the equation, by the equivalent expressions in

sines of multiple angles ;
the expression on the right-hand side then becomes

1 2 sin a sin (i3
-
y)
-
5 2 sin 3a sin -

y)

or -
1 2 sin 3a sin (3

-
y) in virtue of Ex. (3), Art. 45.

We now replace the products of sines by the difference of cosines, the

expression then becomes

1 {cos (3a -1- /3
-

y)
- cos (3a -H y- i3)+ cos (3/3+ y

-
a)
- cos (3^

-
y -1- a)

+ COS (3y -I- a- 3)
- COS (3y

- a -f 3)},

and the algebraic sum of the first and last terms in the bracket is

2 sin 2 (y a) sin (a -h jS -I- y) ;

taking the second and third terms, and the fourth and fifth together, in the

same way, the expression becomes

^ sin (a+ /3-fy) 2sin 2 (y a)

or - sin (a -h/3 -f y) sin (/3
-
y) sin (y

-
a) sin (a

-
/3)

in virtue of Ex. (3), Art. 47.

(4) Prove that

2 co^ a sin (j3
-

y)
= cos (a -|-/3 -fy) sin

(/3 y) sin (y
-

a) sin (a
-

/3).

(5) Prove that

2 sin^ a sin^ (/3 y)
= 3 sin a sin /3 sin y sin (/3

-
y) sin (y a) sin (a /3) ;

this follows from the fact that x+y-\-z is a factor of oc^-^-y^+z^ ^ooyz ;

put ^= sin a sin (/3
-

y), y= sin ^ sin (y
-

a), 2= sin y sin (a
-

/3), then x-\-y+z= 0.

(6) Prove that

sin (a+ 13) sin (a
-

/3) sin (y+ 8) sin (y
-

S) + sin (/3 -1- y) sin (/3
-
y) 5m (a -f )sm (a

-
b)

-f- sw (y 4- a) sin (y a) sin (j3 -1- S) sin (^3 S)
= 0.

The expression

(^2 _^2) (^2
_

-2^2) ^_ (2,2
__

;22) (^2
_

^2) + (^2
_

^2) (^2
_
^2)

vanishes identically ; put x sin a, ^= sin /3,
2;= sin y, w= sin 5,

then remembering that

sin2 a - sin2 /3
= sin (a -f- /S) sin (a

-
/3)

the theorem follows.

(7) Prove that

2 {cos ^cosy cos a) {cos ycosa cos ^) {cos acos^ cos y) -{-sin^ a sin^ /3 sin^ y
sin^ a {cos ^cosy- cos of sin^ /3 {cos ycosa- cos 3)2 sin^ y {cos acos ^ cos y)'^

{\cos^a cos^^ co8^y-\-'2,cosacos^cosy)'^.
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This follows from the known theorem that the square of the deteiminant

a h g is equal to hcf'^ fg ch fhhg
h h f \ fg ch cag^ gh af

g f c
\ fh hg gh af ah W-

put a=6= c=:ij /=cosa, g=coa^, A= cosy, then 6c-/2=sin2a,...,

expanding the determinant, the theorem follows.

(8) Prove that

cos 2a cot ^{y-a) cot J (a
-
^)+ cos 2/3 cot ^ (a- /3) cot ^ (i3

-
y)

+C08 2y cot i{Q-y) cot iiy-a)
= cos 2a-\- cos 2^+ cos 2y+ 2 cos (fi+y)+ 2 cos {y+ a)+ 2 cos {a -\-^).

Replace each cotangent on the left-hand side, by means of the formula

cot i 6= ; ;,- , then reduce the whole expression to the common denominator
"^ sm^ ^

sin (j3
-

y) sin (y a) sin (a /3) ;
the numerator becomes

2 cos 2a sin (j3
-

y) {1 + cos (y a)} {1 + cos (a
-

/3)},

or 2 cos 2a sin -
y) + 2 cos 2a sin (|3

-
y) cos (y

-
a) cos (a

-
/3)

+ 2 cos 2a sin (/3
-

y) {cos (y
-

a)+ cos (a
-

^)},

or {1 +2 cos (jS
-

y)} 2 cos 2a sin -
y)
-
J 2 cos 2a sin 2 (/3 y)

-f 2 cos 2a sin (/3
-
y) cos (y

-
a) cos (a /3).

Now 1+ 2 cos ()3
-
y)
=4 cos J (/3

-
y) cos J (y

-
a) cos f (a

-
/3)

from Ex. 4, Art. 47,

and 2 cos 2a sin (/3 y)=2 cos (/3+ y) 2 sin (y-)3)
= 4sin^()8-y)sin J(y-a)sin|(a-^)2cos(/3+ y).

Also 2 cos 2a sin 2 (/3
-
y)
=

0,

and 2 cos 2a sin -
y) cos (y a) cos (a /3)= J 2 cos 2a {sin 2 (/3

-
y)

- sin 2 (y
-

a)
- sin 2 (a

-
)3)}

= ^ 2 cos 2a sin 2
(i3
-

y)
-
J 2 cos 2a 2 sin 2 03

-
y),

which equals sin (j3
-
y) sin (y a) sin (a

-
i3) 2 cos 2a,

hence the numerator of the whole expression is equal to

sin (/3
-
y) sin (y a) sin (a

-
/3) {2 2 cos (/S+ y) + 2 cos 2a} ;

therefore the expression is equal to 2 2 cos (/3+y) + 2 cos 2a.

(9) Jf

a+ i3+ y=7r, and tan l(^+y- a) tan l{y+a- ^)tanl{a-\-^- y)
=

l,

prove that l+cosa+ cos^+ cos y= 0.

Squaring the given equation, we have

sin2 (^ - la) sin2 (^- ^^) sin2 (^tt
-
|y)

= C0s2 (|,r
-

la) C0S2 (^rr
-

^/3) C0s2 (^ -
|y),

or (1 -sin a) (1 -sin/3) (1 -siny)=(l + sina) (1 +sin/3) (1 + siny) ;
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hence sin a+ sin ^+ sin y+ sin a sin /3 sin y= 0,

or 4 cos ^a cos ^/3 cos ^y+ sin a sin /3 sin y= ;

hence 1 +2sin;|asin;|/3sin^=0,

also cosa+cos^+ cosy l = 4siu|asin-|/3sin^;

therefore cos a+ cos /3+ cos y + 1 = 0.

(10) Prove that if

tan ^ (/3+y a) tan ^ (y+ a - ^3) ta7i^(a+^ - y)
=

1,

then sin 2a+sm 2/3+sm 2y= 4 co5 a cos j8 cos y.

We have

sin ^ (/3 4-y
-

a) sin ^ (y+ a -/3) sin ^ (a +i3
-

y)

= COS^(^+y-a)cos^(y4-a-/3)cos|(a^-^-y),
or {cos (/3

-
a)
- cos y}sin i (a+ j8- y)

=
{cos (/3

-
a)+ cos y} cos ^ (a+ iS

-
y),

which may be written

cos
(/3
- a ) cos ^ (a+^ - y+ ^tt) + cos y sin ^ (a+ /3

-
y + ^tt)

= 0.

Now sin 2a+ sin 2/3+ sin 2y
- 4 cos a cos /3 cos y is equal to

2 sin (a +/3) cos (i3
-

a)
- 2 cos y {cos (/3

-
a) + cos (a +/3)

- sin y},

or 2 cos (/3
-

a) {sin (a+ /3)
- sin (^tt

-
y)}

- 2 cos y {cos (/3+ a)
- cos (^tt

-
y)},

which is equal to

2sin^(a+^+y-j7r){cos(/3-a)cos|(a+^-y+ l7r)+cosysin|(a+^-y+ |7r)},

and this is equal to zero.

(11) Having given that

4 cos (y z) cos (z x) cos (x y)= 1,

prove that

1 + 12 cos 2 (y
-

z) cos 2 (z x) cos 2 (x y )

=4 cos 3 (y z) cos 3 (z
-
x) cos 3 (x

-
y).

Let ay-z^ ^=z Xy y=x y^ then a+ j3+y=0,
hence 1 cos^ a cos^ /3 cos^ y -|-'2 cos a cos /3 cos y= 0,

therefore cos2a + cos2/3+ cos2y=|.

Now cos 3a cos 3/3 cos 3y= cos a cos /3 cos y (4 cos^ a - 3) (4 cos^ ^ 3) (4 cos^ y
-

3)

=
^ (4

- 27 - 482 cos2 /3 cos^ y+ 362 cos2 a)

= I (31
- 482 cos2 /3 cos2 y)

and cos 2a cos 2/3 cos 2y= (2 cos^ a - 1) (2 cos^ /3
-

1) (2 cos^ y - 1)

= (^- 1+3-42 C0s2^C0s2y)

= f 42 cos^ /3 COS^ y,

hence

4 COS 3o cos 3/3 cos 3y
- 12 cos 2a cos 2/3 cos 2y= 1.

(12) Having given

y2+ z2 2yz cos a _ z^+ x^ 2zx cos /3 _ x^+ y
2

2xy cos y
sin?- a siv?^ sin^y

'
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prove that one of the following sets of equations holds\ 2s denoting a4-/3+y;

X ^ 7 ^ 2

C0(S a) C0S{S ^) C0(S y)'

X ^ y ^^ z

CO* S COS (S y) COS (s ^)
'

X
== _y =^

z

COS (s y) COS s COS (s a)
'

X ^ y ^ _z^
COS (s /3) COS (s a) cos s

*

Let each of the equal fractions be denoted by k% and put ^=>&cos^,

y=^cos0, 2=^cos>^, we have then

COS^ ^ +cos2 \lr
2 cos

(f)
cos

yjr
COS a= 1 COS^ a,

or (cos a COS cos ^)2= sin^ sin^
-^^j

whence cosa=cos(0^/r); similarly we can shew that cos ^= cos
(\/r ^),

cos'y=cos(^+ 0), whence without loss of generahty we can put u= <f)ylr,

^^yjr + d, y=d(f>. In order that these equations may be consistent, we
must take all the ambiguous signs to be positive, or else two of them

negative and one positive. In the former case we find 6=sa, (l>=s-^,

'sjr=s-y', in the other cases we find the three sets of values

e=8

0=S-y
^/.=^-s

^=y-s'

0=s

e=s-^]

<f>
= a s

thus one of the four given relations is always satisfied.

The solution of equations.

69. Examples.

(1) Solve the equation

sin 20 sec 40-{-co8 20= cos 6$.

This equation may be written

sin 20 sec 49+ cos 20- cos 69= 0,

or sin 2^ sec 45+ 2 sin 4^ sin 2^= 0;

hence sin 25=0, or sec 45+2 sin 45=0,
that is sin 85= 1.

Hence the solutions are

5=|mrr, 5= |
Jtztt-C-

1)
|J

.

(2) Solve the equation^

cos^ a sec X 4-sin^ a cosec x= 1
, for x.

We may write the equation

cos^ a sin X+ sin^ a cos a;= sin a? cos
a-',

1 This example is taken from Wolstenholme's problems.
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or sin^ a cos x cos a sin''^ a sin ;r=sm x (cos x cos a),

hence sin^ a sin (a ^^)
= sin x (cos ^ cos a),

both sides are divisible by sin ^{a x\ rejecting this factor, we have

2 sin^ a cos ^{a~x)= 2sin x sin ^(a+.^?)
= cos ^(^ a) cos ^(3.^?+ a),

'

therefore cos -1(3^+ a)
= cos ^(^- a) cos 2a,

or 2cos^(3.i'+a)= cos^(^+ 3a) + cos^(^' 5a),

which may be written

cos ^ {3x+ a)
- cos

"I {x+ 3a)= cos ^{x 5a) cos | (3^+ a),

therefore sin |(;r
-

a) sin (x-\-a)= sin {x a) sin -K^+ 3a) ;

again rejecting the factor sin ^{x- a), we have

sin(^+ a)= 2 cos
1^ (.37 -a) sin -K^r -f 3a)= -{sin (.^+ a) + sin 2a},

whence sin {x -{-a} sin a cos a.

The solutions are therefore

x=2mr-{-a, and .r= W7r a+(- 1)""^ sin"! (sin a cosa).

(3) Solve the equations

a 5m (x+ y )
b 5i7i (x

-
y) = 2m cos x]

asm(x+y)+bsw(x-y)= 2n cosy J

'

We have

-2 {a sin {x+^) + b sin
(^^
-
y)}2

-^ { sin (^ +y) - 6 sin {x
-
y)Y

= 4 (cos^ y cos2 x)
= 4: sin {x-\-y) sin (^

-
y).

Let -i -.~ ^ U then ^ is given by the quadratic equationsm \X ~~
y)

aH'^(\- ^\2t[ah(\ + ^-2[\h^(\--^=0.

-y . n . ^ n , . 1 sin(;r+y) tan.?7-f tan?/
Using t for either root of this equation, we have t= -. ) ^v =t 1

-
,^ '

&in(xy) tan^r tany

whence ~ =
; also dividing one of the given equations by the other,

tan y tl
TTt COS ^ Q/t u / 1

we have = ~r ;
and thence eliminating y by means of these two

n cos y at+ o

equations and the relation sec^y tan2y= l, we have

nWat-bV n A-l\^ 2 1
sec2 X - -

r
)
tan2 x=l,

m^\at+ bj \t+l

from which we find

t ^* \at+bj J [m^ \at-\-bJ \t+i-J J

which gives four values of tan x^ two corresponding to each root of the

quadratic which determines t. Thus x is found, and then y is given by

tan y =- tan x.

H. T. 6
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Eliminations.

70. Examples.

(1) Eliminate 6 from the equations r,
= r, ^^-^r

= m.
^ ' '' ^

cos [a- 2,6) sin (a
-
3^)

^ , sin cos^ 6+ cos d sin^ $ sin cos
We have m= ^-, ^r^r

= -^. rr,sin (a -2^) sin(a 2^)'

whence ^r
= sin a cot 20 - cos a.

2m

cos* - sin* cos 20
Also m=

cos cos (a
-
30)

- sin ^ sin (a
-
3^) cos (a

-
20)

1

cos a +sin a tan 2^
*

hence ( +cosaJ ( cosaJ
= sin2a,

or 2m^ l=m cos a,

the result of the ehmination.

(2) Shew that the result of eliminating from the eqimtions

cos3{0a) _cos3{0-\-a-y) _ cosSa

COS{0-^)
~

COS{0+^-y)
~

COS^

is independent of 8.

0, y 0, and zero, are independent values of x which satisfy the equation

cos 3 (^ a) _ cos 3a

cos (.r
-

/3)

~
cos ^

*

We have

cos 3x cos 3a+ sin 3^ sin 3a= ^ (cos x cos /3+ sin ^ sin /3),

where ;&= cos 3a/cos /3 ; substituting for cos
3:i7, sin 3x their values in terms of

cos .r, sin a: respectively, then dividing throughout by cos^ \r, we have the

following cubic in tan
:r, (

= t\

cos 3a {4- 3 (1 +0}+sin 3a {3^ {I +t^)-4:t^} = k {cos /3+ ^ sin /3) (1 +^2)

or t^ {k sin /3+ sin 3a) + 1^ {k cos ^+ 3 cos 3a) + 1 {k sin ^ - 3 sin 3a)

+^ cos /3 cos 3a=0,

hence tan 0, and tan (y
- 0\ are the roots of the quadratic

^2 (k sin ^+ sin 3a)+ t{k cos ^+3 cos 3a)+^ sin^- 3 sin 3a=0 ;

therefore
^ , , ^s ^cos/3+ 3co3 3a

J . >, i / ^v ^ sin 3 - 3 sin 3a
and tan tan (y

-
0)==-j. ^ ,

. ^ ,^' '
a: sin /34- sin 3a

, ^ -(^cos/3+ 3cos3a) ,_
hence tan 7= ^^

t^. ^r
- cot 3a

' 4 sin 3a

or y-3a= (2r+l)^7r
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where r is any integer, thus the result of the elimination is independent
of ^.

(3) Eliminate 6 from the equations

s. cos 6
, J sin 6 . . .

/, / <>
.

-> ., , o >.vi
'

+ ^-^
=

1, X m ^- y cos ^= (a^ sin^ e+ h^ co^ 6f.

Square each of the equations, and put tan 6=ty the equations become

t^ (a2
-
^2) _|.2^^+ (62

_
^2)

=
0,

respectively, and we have to eliminate t from them.

Solving for t^ and t, we have

J2 ^ ^
1

'^'^^V^"a2+ ah ) &2 ^2^ -^ ^2

Hence

hence l-^=a+6a

is the result of the elimination.

(4) Eliminate 6 from the eqications

X sin 6+J cos ^=2a sin 20, xcos d j sin 6=a,cos 26.

Solving for x and y, we find

^=acos^(2 cos2^), y=asin ^(24-cos 2^)

or x=a cos 6 (cos^ ^ -f 3 sin^ 6),y=a sin ^ (3 cos^ Q+ sin^ ^),

therefore x -\-y
= a (cos 6 4- sin ^)^, xy= a (cos ^ sin ^)^,

hence (^+3/)^=a^ (1+sin 2^), (^ y)^
= <x^ (1 -sin 2^)

and the result is

{x-{-yy+{xyY= 2(^.

Relations hetiueen roots of equations.

71. Examples.

(1) Consider the equation

a cos d+ hsin 0=c.

Let a, /3, be distinct values of 9 which satisfy it, then

acosa+ 6 sin a= c,

acosj34-&sin^=c;

62
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a h
therefore

sin /3- sin a cos a cos /3 sin(/3-a)'

hence tan |(/3+ a)
=

6/a,

and also -cos|(j3-a)=Tsin^(/3-|-a)= -
cos^ (^+a).

These relations may also be found as follows: put tan^^=^, then the

given equation may be written

a(lr-jf2) + 26^=c(l+^2)

or i2(c+a)-26^+c-a= 0.

The roots of this quadratic are tan ^a, tan ^/3,

hence tan \ a tan ^^=
ca

whence we obtain the relation f^T, ,
= -

.

cos^(/3+ a) a

26
Also tan ia+ tan AS=

"* "^ c+a

from which the other relation may be obtained.

(2) Consider the equation

a, cos 20 \-h 8i7i 20 + ccos6+ dsiii d+ e=0.

Let ^=tan ^^, then the equation may be written as a biquadratic in ^,

t*{a-c+ e)+ t^{-4b+ 2d)-\-t^(-Qa+2e)+ t{4b+ 2cr)+ {a+ c+e)=0;
if tan^^i, tan^^2> ^^i^zt tani^4,

be the roots of this biquadratic, we have

2tani^, = ^-_-^^, 2tanJ^,tani^,=^-_^-^,

Stan^^itan J^2*^^i^3= _ ,
tan J^itan^^2*^"i^3t^iii^4= - -

^

>

and from these relations, symmetrical functions of the four tangents may be

calculated.

If 25=^1+^2+ ^3+^4 we have

2 tan I

tan^^^jtai

4b-2d-\-{Ab+2d) b

, 2 tan 1 ^1
- 2 tan ^0^ tan ^6^ tan ^6^~

1 - 2 tan ^$1 tan |^2+ ^ii i^i *an ^d^ ^^ i^s tan ^d^

a c+e-{2e-6a)+a+c+e~ a'

We leave it as an exercise for the student to prove the relations

a b c d e

cos 5 sins 2cos(5-^i) 2sin(s-^i) 2003^(^1+^2-^3-^4)*

(3) //

sin a cos (a+ 6) tan 2a= sin ^ cosO+ 6) tan 2/3
= sin y cos (y+ 6) tan 2y
= sin d cos {8+ 0) tan 28
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and no two of the angles a, ^, y, d differ hy a midtiple of tt, shew that

a+^+ y-\-b+ 6 is a multiple of n.

Write each of the equal quantities equal to k, then a, /3, y, b are roots of

the equation sin x cos {x+ 6) tan 2^= >&

which may be written

2 tan^ ^ (cos ^ - sin ^ tan x)k{\- tan* x)^

, ^ 2sin^. ^^2 cos 6 ^ , ^ .hence 2tana= r ,
2 tan a tan /3=^ r- ,

2 tan a tan /3 tan y= 0,

and tanatanjStany tanS= -1
;

therefore tan (a+^+y+ S)=^_g ^^^^_^
= - tan ^,

hence a+j3+y+ + disa multiple of tt.

(4) If Of ^, y be unequal angles each less than 27r, prove that the equations

cos (a+ 6) sec 2a=cos{6+ ^) sec 2j3
= cos {6+ y) sec 2y

cannot coexist unless

C05 + y)+ COs(y+ a) + COs(a+ ^) = 0.

Writing k for each of the equal quantities we have

cos a cos 6 sin a sin 6-k cos 2a= 0,

cos /3 cos ^ - sin /3 sin ^ ^ cos 2/3= 0,

cos y cos B sin y sin 6 k cos 2y=0,

hence eliminating cos 6^ sin ^, we have

2 cos 2a sin (/3
-
y)
=

or 2 cos +y) 2 sin (y
-
^)= 0, by Example (2) Art. 68,

hence 2 cos (/3+y )
= unless 2 sin (y

-
/3)
=

0,

that is unless sin ^ y) sin |(y
-

a) sin ^ (a jS)
= 0.

This example may also be solved in a similar manner to example (3).

Maxima and Minima. Inequalities.

72. Examples.

(1) The greatest value of

a cos ^+ b sin 6 is Va^+ b^.

Put hja= tan a, then h= \/a^+ b^ sin a, a= V^^+ b^ cos a,

thus acosd+b8in6= '\/a^+b^cos{$-a)i

now cos(^-a) always lies between 1, hence acos^+ 6sin^ lies between

(2) 7/ u= \/a;-cos^0+ h^sin^6 + \/aFsmFe+Wco^, then u lies between

a+ h and ^/(aF+h^).
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Let X= a2 cos2 e+ h"^ sin2 ^= |(a2^ ^,2) ^_^ (^2
_

52) cos 2^,

then u=^X'\-\/a^-\-h^-Xy

w2= a2+ 52^2Vi(2 + 62)2-{|(a2+52)_~^|2^

hence i* is greatest when ^= ^ (a^+ ^^^ or the greatest value of u is \/2 (a^ -|- 52^
.

also i* is least when ^ (a^+ J2)
_ ^ jg greatest, that is when x is least, which will

be when cos 2^= -
1, in which case x=h'^^ and then u= a-\-b\ this therefore is

the least value of ii.

(3) Shew that if 6 lies between and it, cot ^6 cot6>%

We have

^1/1 i. /I
sin#^ 3-4sin2i^ l + 2cosid

cot^^- cot ^= ^-rz*^--fl = -
. ^

^ = . ^^ ,*
sm^^sin^ sind sind

hence cot|^5-cot^=cosec^+ cosec^d ;

now cosec 6, cosec \6 are each never less than unity, if 6 lies between and r,

hence cot ^6-cot6>2.

(4) If the sum of n angles, each positive and less than ^tt, w given, shew

that the sum or the product of the sines of the angles is greatest ichen the angles

are all equal.

A similar theorem holds for the cosines.

Let oj, a2...a be the angles and s be their sum. Then we have

sin ur+ sin a,= 2 sin J (or+ og) cos J (or
-

a,),

now cos \ {or ag) is less than unity unless 0^= 0,, hence

sin Or+sin a,< 2 sin i{ar+ a$)

unless ar=ag. If any two of the angles aj, og-.-a, are unequal, we can

therefore increase 2 sin a by replacing each of those two angles by their

arithmetical mean, hence 2 sin a is greatest when all the angles are equal ;

we have therefore ^ Bin a^n sin s/n.

Again sin Or sin a,= J {cos (0^
-

a,)
- cos (o^.+ a,)},

and this is less than ^{1 cos (0^+0,)} or sin^ ^(a^+ aa)

unless Or= 08- Hence as before, if any two angles in the product sinai.

sin 02 ... sin a are unequal, we can make the product greater by replacing each

of those two angles by the arithmetic mean of the two
;

it follows that

sinaj, sin a2...sina is greatest when ai=a2=... = an, or the greatest value of

the product is (sin s/n)**:

(5) Under the same condition as ill the last example, shew that the sum of

the cosecaTits of the angles is least when the angles are all equal.

We have

cosec a,.+ cosec Oa

hence for a given value of Ur+ Og, cosec a^+ cosec a^ has its least value when
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cos ^{ur- 08)
=

I, or when ar= ag. The reasoning is now similar to that in the

last example.

(6) Under the same conditioTis as in the last two examples, shew that the

sum of the tangents or of the cotangents of the angles is least when the angles

are all eqvAxl.

(7) Shew that if a+j3-f'y
=

7r, cos a cos ^ cos y ^ \ j^.

Porismatic systems of equations.

73. A system of equations is said to be porismatic^ when the

equations are inconsistent unless the coefficients satisfy a certain

relation; when this relation is satisfied the equations have an

infinite number of solutions.

The system

acos /3cosy+ 6 sin /3siny+ c+ a' (sin j3+ sin y) + 6' (cos /3+ cos y) -I- c' sin (/3+ y)
=

0,

acosy cos a+ 6 sin y sin a+ c+ a' (sin y+ sin a) + h' (cos y+ cos a)+ c' sin (y -f a)
= 0,

acosacosj3+ 6sinasin^ + c + a'(sina+ sin^) + 6'(cosa+ cosj3)+c'sin(a+/3) = 0,

is a system of three porismatic equations.

Consider the equation

acosacos^+6sinasin^4-c+ a'(sin^+ sina) + ^'(cos^+cosa)+c'sin(^+a)= 0,

this is satisfied by ^=^, and by 6=y. Write t^his as an equation in

tan \6= t, thus :

t^{ a cos a-\-c+ a' sin a-\-h' cos a-h' -c' sin a) + 2^ (6 sin a+ a'+ c' cos a)

+ {a cosa+ c+ 'sina+ 6'+ 6'cosa+ c'sina)= 0.

From this equation we find

tan ^fi+ tan ^y, and tan \^ tan ^y,

,
,

, .^ ,

. 2(6sina+a'+c'coso)hence tan A
(|3+y)

=
ttt nn 7- (^^^ '"
2(acosa+ 6'+ c sma)

We should find similarly

,, . , 6sin/3+a'+ c'cosj3
tan^(a+7)= ^ T, 1~- 7^1

we can now deduce the value of tan |(a ^3) ;
we find for the numerator, the

value

(6 sin ^+a' + c' cos /3) {a cos a-\-b' + c' sin a)
-

(6 sin a+ a'+ c' cos a)

(acos/3+6'+ c'sinj8)
or

2 sin |(a
-

i3) {(c'2
-
ab) cos |(a

-
jS)+ (aV - bb') cos ^a + /3)

-
{aa'

-
b'c') sin |(a+ /3)},

1 See Proc. London Math. Sac. Vol. iv. "On systems of Porismatic equations"

by Wolstenholme.
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and for the denominator,

(6 sin a+ a'+ c' cos a) (6 sin /3 + a'+ c' cos /3) + (a cos a+ b'+c' sin a)

(acos/3+ 6'+c'sin/3)

or

(a2 + c'2) cos a cos /3 4- (52+ c'2) sin a sin /S+ (a'2+ 6'2) -|. (a'b+ h'd) (sin a+ sin ^)

+ (aV + ah') (cos a+ cos /3) + (a+ 5) c' sin (a -f ^) ;

dividing this fraction by sin ^ (a /3), we have this denominator equal to

(c'2
-
ah) (1 + cos (a

-
/3)}+ (a'c'

-
hh') (cos a+ cos /3)

-
(oa'

-
h'c') (sin a+ sin ^\

hence

(a -J- 6) {a cos a cos /3+ 6 sin a sin /3+ c+ a' (sin o+ sin j8)+ fc' (cos a+ cos ^)

+ c'sin(a+i3)}

is equal to c'2 - a'2- 5'2 + ^a+ c6 - a6.

Hence unless the condition

c'^-a'^-h'^+ca+cb-ab^O

is satisfied, the system of equations cannot be satisfied except by equal values

of a, iS, y. When this condition is satisfied, any one equation can be deduced

from the other two.

The summation of series,

74. A large number of series involving circular functions, can

be summed by the method of differences. The most important

example of the use of this method, is the case of a series of sines

or cosines of quantities in Arithmetical Progression.

Let the series be

>Sf= cos a + cos (a + i5) + cos (a + 2/9) + . .. + cos ja + {n
-

l)yS},

we have cos a = -x- yr 1^^^ (^ + J/^)
~ ^^^ (^

~
i^)}>

cos (a +/3) =
2"^!^ t^''' ^" "*" ^^^^

" ^'"^ ^"^ "^ *^^J'

cos{a + (w-l)y8}

1
f

. / 2/1 - 1 ^\ . / 2?i - 3 ^\1=
2si^phr-'"^^)-'^H""^'~2-^j};

whence >Sf=icosec J/3 jsin
la +

^ 13
j

sin (a ^/Sn

( n l^\.n8 8 ,- .= cos f aH 9~P )

sm cosec
^ (1).
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In a similar manner we find

sin a + sin (a -f /3) + sin (a + 2/S) + ... + sin {a + (/i
-

1) /?}

= smf a+ .
/3j

sm -^ cosec^ (2).

The sum (2) may be deduced from (1), by changing a into a + Jtt.

In (1) change ^ into yS + tt, we have then for the sum of the

series

cos a - cos (a + yS) + cos (a + 2/3) -... + (- 1 )*-^ cos {a-\-(n-l)l3},

cos (a + g- P )
cos Y sec

^ ,
or sm ( a + ^ /8 1 sm sec

^
,

according as n is odd or even. The sum of the series

sin a sin (a + y8) + sin (a + 2/8). . .

can be found from (2), in a similar manner.,,

Examples.

(1) Prove that

sin na/sin a= 2 {cos (n
-

1) a 4- cos (n
-
3) a+ cos (n

-
5) a + . ..} ?

andfind a similai' expansion for cos na/cos a.

(2) Sum the series

cos^a+ cos^ (a+ i3) + ... +cos2{a+ (n- 1)^}.

We have

cos2a= |(l+cos2a), cos2(a+ i3)
= ^{l + cos2(a+ i3)}...,

hence the sum required is

^n+ ^ cos {2a+{n l)^} sin n^ cosec ^.

The sum of any positive integral powers of the terms of the series (1) and

(2) may be found by a similar method.

(3) Sum the series cosec 2a -f cosec 2^a+...+ cosec 2" a.

We find cosec 2a= cot a cot 2a, cosec 2^ a= cot 2a - cot 2^ a,

cosec 2 a= cot 2-i a - cot 2" a,

hence the sum required is cot a - cot 2'' a.

Y^ (4) Sum the series

3sinx-sin3x 3sm3x-sm3^x 3sm3^~^x-sm3x
cos3x

"*

ScosWx 3n-^co53'^x

We have tan 3"~i^- ^ tan 3"^'

3 sin 3'*-!^ cos 3".2?- cos 3"-i^ sin 3".r 2 sin 3"-i.r cos 3**^'-sin 2 . S'^-^x

3 cos 3'~ i.r cos 3''a? 3 cos 3"'
~
^x cos 3"^
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_ 2 sin 3
-
U- (cos 3"^ - cos 3"

~ ^
^) _ - 8 sin^ 3"

"
^a; cos 3-i^~

3 cos 3"~i a; cos 3"^
~"

3 cos 3" ~i a: cos 3**^

_9 3sin3'*-i^--sin3"^~~
3 cos 3^ '

, 3 sin a: - sin 3^ 3 /I
. , \whence = -

I -tanar-tan^ ) ,cos 3x 2 \3 /
'

, 3 sin 3;r- sin 32^ 3/1, , 1. \^"^^"
3 cos 32^

=
2 (3^

*^^ ^'^-
3
*^"

^) '

=
|(^tan3^-3i3tan3-i^);

3 sin 3*-ia:- sin 3"^ 3 / 1 , ^ 1

3''-i cos 3^
therefore the sum of the series is

-(-
2V3
? fA tan 3"^- tan ^j .

75. The sum of a series of either of the forms

u^ cos a + 71.2 cos (a + yS) + U3 cos (a + 2^) + ... -\- Un cos [a -\- (n 1) ff],

Ui sin a + ^2 sin (a + yS) + 2^3 sin (a + 2^) + . . . + w sin [a + (n 1) yS),

can be found, if Ur is a rational integral function of r, of any

positive integral degree 5.

Let S= tti cos a + 112 cos (a + y8) + . . . + Wn cos {a + (w
-

1) y8),

then

2 cos /3 . /Sf = -Wi {cos (a
-

yS) + cos (a + &)} + ^2 {cos a + cos (a + 2/3)}

4- . . . -Wr {cos (a + ^ 2/9) + cos (a + ryS)}

+ . . . 4- Wn {cos (a + w 2yS) + cos (a + nff)],

whence

2(1 cos /3)S = (2ui U2) cos a + (2ti2 Ui
-

^^3) cos (a + /8) + ...

+ {2Ur Ur-i Ur+i) COS (a + r IB)

+ . . . + (2Un-i Un-2 Un) COS (a + % 2/3)

+ {2Un Un-i) COS (oL + n 1/3) t<] COS (a yS) ^n COS (a + w/3).

Now 22*;. i^y-i Ur+i is a rational integral function of r, of degree

s 1, whence excluding the first and the three last terms, we have

a series of the same kind, but of which the coefficients are of lower

degree than in the given series. We again multiply by 1 cos /3,

and proceed in this way 5 times
;
the series will then be reduced

to the form (1).
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Examples.

(1) Sum the series

cosa+ 2 cos(a+^)+ 3 co (a+ 2^)+ ...H-n cos {a+ (n- 1) ^}.

We have in this case 2Ur w,,_i w^ + 1
= 0, 2wj t^g

= 0, whence

2 (1
- cos iS) /S'^ (n+ 1 ) cos {a+ (71

- 1
) j3}

- cos (a
-
^)
- 7i cos (a+w^),

or iS'=^(7i+ l)cos{a+ (w-l)/3}/(l-cosi3)
-
\ cos (a

-
i3)/(l

- cos ^)-\n cos (a+ w/3)/(l
- cos /3).

(2) /S'wm the series

C05a+ 22 cos (a+^) + 32 cos (a+ 2/3) + ... +n2 co5{a+ (n
-

1) /3}.

This series will be reduced to the last one by multiplication by 2 (1
- cos /3).

76. The series

cos a + ^ cos (a + yS) + x^ cos (a + 2/3) + . . . + x^-^ cos
{oL + {n 1) /8},

sin a + ^ sin (a 4- /3) + a-^ sin (a + 2/3) + . . . + ic^"^ sin {a + (n
-

1) y8},

are recurring series of which the scale of relation is 1 2^ cos /3 + a^,

for we have

cos (a + r^) + cos (a + r 2^) = 2 cos /3 cos (a + ^ 1/3),

and sin (a + rff) + sin (a + r 2y8)
= 2 cos /3 sin (a + r 1^).

The series can therefore be summed by the ordinary rule for

summing recurring series. If S denote the sum of the first series

we find

^(l-2^cos^ + a^)

= cos a a; cos (a ^) x^ cos (a + n^) + a;^+^ cos [oL-\-{n 1) ^].

If a; < 1, we find, by making n infinite, the sum of the infinite

series

cos a + a? cos (a + yS) + ^^ cos (a + 2(3) + . . .

. , cos a ^ cos (a y8) -n . ,. r\ a A
to be ^ ^r Pi J-^ . Puttmff a = 0, we find

1 - 2^ cos yS + a?2
^

l- ^cosg_^.^ ^^^^ ,^^^ 2yS+ ad inf.,

l-2a;cos/3 + i2
-r H

whence also

x^ = l + 2cos/3 + 22cos2/3 + ...ad inf (3).
1 2a; cos 13 + x^

77. In some cases the sum of a series may be found by means

of a figure. We will take as an example the series (1) and (2) of

Art. 74. Let OA^, A^A^, A^A^, ... An-iAny be equal chords of a
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circle, and let y8 be the angle between OJ-i produced, and A^A.,',

draw a straight line OX so that At,OX = a, then the inclinations

of 0^1, A^A^,...An-iAn, to OX, are a,a+y8, a+2/3, ...a+(7i-l)/3,
and that of OAn is a + i(n l)/3; also if D be the diameter of

the circle, we have

OAi = D sin ^/3, 0^,^ = D sin ^nS.

Now the sum of the projections of OA^, A^A^, ... An-iAn, on

OZ, is

0^1 cos a + ^1^2 cos (a + /3) + ... +^n_iJ.cos {a + (?i-l)/3},

or D sin ^/3 [cos a + cos (a + ^) + . . . + cos [a + (?i
-

1) y8]],

and this must equal the projection of OAn which is

OAn cos [a + i(n-l)^],

or D sin ^n/9 cos {a + ^ (n 1) /8}, therefore

cos a + cos (a + y8) + . . . + cos (a + (nl)ff}
= cos {a + ^(nl)ff} sin Jn/8 cosec ^yS.

If we project on a straight line perpendicular to OX, we obtain

the sum of the series of sines.

Examples.

(1) OA is a diariieter of a circle^ 0, P, Q... are points on the circumference

such that each angle PAO, QAP, RAQ... is a; AP, AQ, AR... meet the tangeM
at in p, q, r... Find hy means of this figure the sum of the series

secma sec{m + l) a + sec (m+ l) a sec {m+ 2) a+ ... to n terms.

(2) Prove geometrically, that if a, /3, y...K, he any number of angles,

sec a sec (a+ /3) siii ^+ sec{a+ ^) sec{a+p+ y) sin y

-\-sec{a+ ^ + y)sec{a-\-^-\-y+ b)sinb + ...

-'

=secasec{a+^+y+...+K)sin{^+ y+ ...+K).

EXAMPLES ON CHAPTER VL

1. Eliminate B from the equations

cos'^6+ acos6=b, sin3^ + asin^=c.

2. Eliminate 6 from the equations

{a H- b) tan (^
-
0)= (a

-
b) tan {6+ 0), a cos 20+ 6 cos 26= c.



EXAMPLES. CHAFTER VI. 93

3. Prove that

(a sin + 6 cos 0) {a sin
yjr+ bcos

yj^)
sin

{(f) -yj/)

+ {a sin
-v/r
+ 6 cos

i/^) (a sin 6+ b cos ^) sin
(>//

-
6)

+ (a sin 0+b cos ^) (a sin
(f> + b cos 0) sin {6-<f>)

+ (a2+ 62) sin (0
-

yj^)
sin

(>/r
-

^) sin (^
-

</>)
=0

;

and interpret the equation geometrically.

4. Keduce to its simplest form, and solve the equation

cos^ 6 - cos^ a= 2 cos^ $ (cos 6 - cos a)
- 2 sin^ (sin ^

- sin a).

5. Prove that the sum of three acute angles A, B, C, which satisfy the

relation cos2J^+cos''^J5+ cos^C=l, is less than 180.

6. l{A + B-{-C= 90, shew that the least value of tanM + tan^B+ tan'-^C
is unity.

7. Find ^, <f>
from the equations

sin ^+ sin 0+sin a=cos ^+cos + cos a )

e+(l)
= 2a ]'

8. If ^+5+ (7= 180", shew that 8 sini^ sin ^^ sin ^(7:). 1.

j a;iimO+^ iiin(j) + zsm-\l/' _ 4 sin ^ sin ^ sin -v^+ sin (^ + + \//")

^cos^+ycos^+^cos^l/- ~~4cos^cos^ cos^ cos(^+ ^+ ^//')

'

prove that ^iQi(0+V^-^)+ysin^(^/.+ ^-(^)+^sin^(^-|-0-^/^)
^

^COS^(0+ \/^-^) + ?/COS^(^+ ^-<^)+ 2COs|(^+ 0-'\/^)

^4sin^(0 + \/r-^)sin^(\/^+ a-(^)sin^(^ + 0--v/^)4sin^(^+ </) + \/^)~
4:COS^{({>+ ylf

-
6) Gos^lyfr + 6 -

(I)) coii^{e+ <f) -yir)
- col{e+ <l)-\-yfy

in -D 4.U 4.
2 sin 3a sin (/3

-
7) / . o, x

10. Prove that ^ ^ / on
=sm (a+ ^3+ y),

2sm2('y-^)
'

and generally, if n be any odd number

2 sin naiim(B-y) ^ ; . ,
,

,,
,

. ^

where jo, q, r are any odd numbers whose sum is n.

11. Having given

a^ COS a cos /3 + a (sin a+ sin /3)+ 1 = 0,

a^ cos a cos y+ a (sin a+ sin 7)+ 1 = 0,

prove that a^ cos ^ cos y+a (sin^+ sin y)+ 1 = ;

/3, y being less than tt.

12. If e^, 62 are the two values of B which satisfy the equation

cos ^ cos ^ sin B sin
<f)_ .

cos^a sm^a

shew that
Bj^

and ^2 being substituted for B, cf)
in this equation, will satisfy it.
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13. If

acds a cos /3+6 sin a sin /3
=

c, a cos j3 cos -y+ft sin j3 sin ^=0,

acosy cos5+5siuysin8= c, a cos 8 cos t+ 6 sin S sin=c,

and acosecosa+ 6sin6sina= c,

prove that 1^ + ^ + :L.^
(\ + l^ (l + l'j(l+^^,

the angles being all unequal and between and 2r.

14. If

sin(^+ a)
= sin(0+Q)= sin

j3, and a sin (^+ <^) + 5 sin(^ ^)=c,

prove that, either

asin(2a2^)= -c or asin2a6sin 2^=c.

15. If the equation

Sin2n + 2
^/sin2n _j. (jos2

+ 2
^/cos^"a= 1

hold when w= l, shew that it will hold when n is any positive integer.

16. Eliminate from the equations

4 (cos a cos ^+ cos
<f)) (cos a sin 6+ sin

</>)

= 4 (cos a cos ^+ cos
>//) (cos a sin ^+ sin

yjr)
=

(cos ^ cos ^) (sin ^ - sin ^),

and prove that cos (0->//')
=

l, or cos 2a.

17 If tany^ sin(x-a)
^^^^

tany ^ sin (a; -2a)
tan /3 sin a tan 2^ sin 2a '

, , ,
tan y sin x cos :r

shew that . -^-^
= -^ = ^ : .sm 2^ sm 2a cos 2a - cos 2/3

18. Prove that the system of equations

sin (2a- ^-y) _ sin (2i3-y-a) _ sin (2y-a-/3)

cos(2a+/3+y)
~
cos{2(i+y+a)

~
cos(2y+a+/3)

*

if a, P, y be unequal and each less than n, is equivalent to the single equation

cos2(/3+ y) + cos2(y+ a) + cos2(a+ ^)= 0.

19. If JC=2cos(/3-y)+ cos(^+ a) + cos(^-a)

= 2 cos (y
-

a)+ cos (^+i3)+cos (^ -jS)

= - 2 cos (a
-

/3) cos (B+y)- cos {6 y),

prove that x= ^\v^B^ if the difference between any two of the angles a, /3, y
neither vanishes nor equals a multiple of tt.

20. If ^ +^ -f C= 180 and if

2 sin (271+ 1) J. sin (5 - C)= 0,

n being an integer, then shew that

2 sin {71- 1) A sin (^+ 1) {B-C)=0.
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21. If cot|(a^-^)(coS'y-cos^)+ cot|(a + 'y)(cos5-cos^)
+ cot ^ (a+ S) (cos j3

- cos y)
=

0,

and no two of the angles are equal, or differ by a multiple of 27r, prove that

cot
1^ (/3+ a) (cos y

- cos 8)+ cot ^ (/3+ y) (cos 8 cos a)

+cot^(^+ 8) (cosa-cosy)= 0.

22 If
sin(a+^) sinQ^^) ^ cos(a+^)

^

cos(3+ <9) ^^
sin(a+ 0) sin(/3+ 0) cos(a+<^) cos(/3 + 0)

'

shew that either a and /3 differ by an odd multiple of ^tt, or 6 and
cf)

differ by
an even multiple of tt.

23. If acos(0+ >/^) + 6cos(0-\/r)+ c=O,

acos(^+ 0) +6cos(^-<^) +c=0,

and if 6, 0, >/r
are all unequal, shew that a^ -b^+ 2bc = 0.

24 If
cos(a+ i3+ ^) ^ cos(y+ a+ ^)

sin (a+ /3) cos^y sin (y+ a) cos^ /3
'

and j3, y are unequal, prove that each member will equal

cos(/3+y+ ^)

and cot 6=

sinO+y) cos^a'

sin (3+ y) sin (y+ a) sin (a+ j3)

cos (j3+ y)cos(y4-a) COS (a+i3)+ sin2 (a+^+ y)
*

25. If ^, 5, (7 be positive angles whose sum is 180, prove that

cos^+cos^+cos(7>l and ^3/2.

26. Solve the equation

64sin7^ + sin7^=0.

27. If 2s= 07+y+ -s, prove that

tan {s-x) + tan (s-y) +tan {s-z)- tan s

4 sin X sin y sin z

1 - cos'^ ^' - cos^y
- cos^ - 2 cos ^ cos y cos ^

'

tan-i(s-^)+tan-i(s-y)+tan-i(s-^)-tan-i5

=tan-i
^

(^.2+ y2^ ^2^ 4)2
_ 4 (^2^2 _,. ^2^2 4. ^^2^2)

'

cos ^ sin ^ cos 6 sin 6 ,

28. If + -. = ~+7i^ =^^
cos a sin a cos a sin a

, , .
cos B cos 4> sin ^ sin 6

,
_

prove that s
^ + ^-5 H i = t>.^

cos'^ a sin-* a

29. If 2 sin a cos (^ + 0) = 2 cos (^
-

(^) + cos^ a,

and 2 sin a cos (^+ \/r)
= 2 cos {yj^-B) + cos^ a,

then 2 sin a cos
(</>+ ^) = 2 cos (<^

-
^Z^)+ cos^ a.
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30. If cos (y
-

2) +COS {z-x)-\- cos (a; -y) = -
3/2,

shew that

cos3 (^+^)+cos3 (i/+ e)+cos^ {z-\-0)-3cos (x+ff) cos (y+ ^)cos {z+e) = 0,

for all values of 0.

, jr sin ra sin(r+ l)a sin(r+2)aol. it i- =
,Cm n

Drove that
^Q^ = co^{r-\-\)a ^ cos(r+2)fl

^
2^2-^(^+71) m{n-l) n{l-\-n)-2m^'

32. Prove that the equations

(
^ + -

)
sin a=^ H hcos* a,

\ xj z y

( y + -
)
sina= -

-I- -+cos2 a,K y) X z
'

\z->r -)sina= -4--+ cos2a,
\ z) y X

are not independent, and that they are equivalent to

111
x-Vy-vz--\ h -= -sm a.

X y z

33. Prove that

2 cos (3- y) cos (^ +3) cos {6 + y)+ 2 cos (y- a) cos (^+ y) cos (^+a)
+ 2cos(a-i3)cos(^+a)cos(^+3)-cos2(^+ a)-cos2(^+ i3)-cos2(^ + y)-l
is independent of ^, and exhibit its value as the product of cosines.

34. Prove that if a, 3, y, d be four solutions of the equation

tan(^+^)= 3tan3^,

no two of which have equal tangents, then

tan a + tan 3+ tan y+ tan 5 = 0,

tan 2a+ tan 2j3+ tan 2y+ tan 25= 4/3.

35. If 6tan(r+a:)= 3tan(r+,y) = 2tan(r+2),

shew that 3 sin^ {x-y)-\-h sin^ (y
-

2)
_ 2 si\:^{z-x)=- 0.

36. Solve the equations

sm
cos

~i;r-sin~iy=|7r)

~^xQ,o%-'^y\'n)
'

37. Prove that the n'Oci convergent to the continued fraction111 . (tan a+ sec a)'* -(tan a -sec a)"

2tana + 2tana + 2 tana+ (tan a+ sec a)"
"^ 1 -

(tan a - sec a)**
+ ^

*

38. Eliminate 6 from the equations

3a cos 6-\-a cos 3^= 4r"l

3a sin B a sin Z6=4yj
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Q J
- tan {$

-
a) _ tan(0-a) _ tan

{\Ia
-

a)

p
~

q
~

7'
'

prove that

p{q-r)^cot{<t)-ylr)-{-q{r-pf cot {'\l/'-'e)+r (p-q)^ cot {6- <f))='0.

40. Develop
l + acosO+bainO

in a series of the form

Aq+ Ai cos (^-a) + ^2 cos 2 (^
-

a)4-

41. Solve the equation

tan 3^ - tan 2$- tan ^ =0.

42. If

cos^X+ cos^y= cos 3a, sin^ ^+ sin^ ?/
= sin 3a, and ;r+ y= 2/3,

prove that 8 sin^ 3 (a+ /S)
= 27 sin 2/3 sin^ 4/3 cos (3a+ 3).

43. If acos^cos'\/^+ 6sin0sin\//>= c,

- a cos
i//-

cos ^ + 6 sin ^ sin ^= c,

a cos ^ cos ^ +6 sin ^ sin =
c,

prove that hc-{-ca+ ab= 0, unless a = b c.

44. Solve the equation

cos"i(.r + ^) + cos~i^+cos~i (x-^)=^.

45. Eliminate
cf)
from the equations

a^y sin
(f)+ 62^ cos

<f)+ ab {a^ sin^ 0+62 cog2 ^^
_

q^

a^ sec
(f> b^ cosec = a^ - 62,

46. Solve the equation

cos 5^ + 5 cos 3^+ 10 cos ^= |.

47. Eliminate 6 from the equations

a cos ^ cos 2^= 2 (a cos B a'),

a sin ^ sin 2^= 2 (a sin ^ 3/).

48. Prove that the number of solutions in positive integers (including

zero), of the equation 3x+^=n {n integral), is

*[+^-^(-)^^iiT^1-
49. Solve the equation

6 cos 3^ -3 sin 3^- 10 cos 2^+ 5 sin 2^+ 22 cos ^-5 sin ^= 10.

50. Find the greatest value of

cosec2 $ tan2 B

cot2^+tan2^-l*

H. T.
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51. Prove that

sec^ a sec^ a sec^ a sec^ a

~~^ - 1 - 4 - 1 -

to r quotients, is equal to

sinra

2sin(r+l) a cos a'

52. Eliminate 6, (fi
from the equations

asin(^-a) + 6sin(^+ a)
= ^sin((^+^)^-ysin(<^-i3)

a cos (^
-

a)
- 6 cos (^+ a)

=^ cos (0+ /3)
-y cos (0

-
3)

e(})=y.

53. Prove that

2 cos o (cos 3j3
- cos 3y)

= 4 (cos ^ cos y) (cos y COS a) (cos a COS ^) (cos a+ COS /3+ cos y).

54. If acosa+ 6cosi34-ccosy=0,

asina+6sin/3+ csiny=0,
a sec a+ b sec /S+c sec y=0,

prove that, in general, +a6+c=0.

65. Eliminate d from the equations

sin 3 (^+ ^) + 3 sin (Jtt+ ^)
= 2a,

sin 3 (Jtt
-

^) + 3 sin (^ - ^;
= 26.

56. If ^1, ^2 > ^3 ^ values of d satisfying the equation tan (6+ a) =ir tan 2^,

and such that no two of them diflfer by a multiple of tt, prove that

^l+ ^2+ ^3+
is a multiple of tt.

57. Prove that

cos 4^ = 8 sin (^ + J5+ C) + cosec A cosec B cosec C.
sin ^ sin {A - B) sin {A - C)

58. Prove that

2 {sin3 (^
-

a) cos 2 (a
-

<^) sin O -
y) + sin^ {6

-
^) cos 2 0-0) sin (y

-
a)

+ sin3 {6
-
y) cos 2 (y

-
0) sin (a

-
/3)}

= {sin 2a+ sin 23+ sin 2y
- 3 sin '2.6]

sinO -
y) sin (y

-
a) sin (a

-
/3),

where =^(a+3+y 3^).

59. If ^+5+ C+i>=I80, prove that

{S-^mA) (^S-sin 5) (/S-sin C) {S-BinD)

= J (sin^ sin5+ sin C sin i)) (sin^B sin C+miA sini)) (sinC sin^ + sin B sini)),

where 2/S'=sin J[ + sin5+sin(7+sini).
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60. Prove that the sum of the products of n terms of the series

cos a+ cos (a 4-/3) + cos (a+ 2^)+

taken two and two together is

^ cosec^ ^/3 sec ^/3 sin ^n^ [sin ^n/3 cos ^/3+ sin ^ (?i
-

1) ^ cos {2a + (n
-

1) /3}]
-
|w.

f?l Tf
cos ^+ sin ^ _ 4 (cos 6- sin 6) (cos 2^ - sin 26)

2 + cos 2<9+ sin 2^
~

4 (cos 26 - sin 2^)2
-

(cos 6
- sin ^)2

'

shew that there will be three values of 6, such that

tan 6i+ tan 62+ tan 6^
= 9.

62. If tan2^-tan^=tan2^ tan(/) = tan2\/r tan>/r,

shew that ^+ + >//>
is an odd multiple of ^tt.

63. If ^cosa+y sina+2+ cos2a= 0,

;^? cos 3+y sin /3+ + cos 2/3= 0,

.:J7COSy4-y siny+ 2;+ cos 2y= 0,

prove that x cos +y sin ^ + ^+ cos 20
= 8 sin |(a+ /3+y+0) sin ^ (<^

-
a) sin |(0 -

3) sin 1 (0 -y).

64. Eliminate ^, from the equations

tan^+tan0= a,

sec ^+sec <t)
=

b,

cosec 6+ cosec =
c,

and shew that, if b and c are of the same sign, be> 2a.

65. Prove that the result of eliminating 6 from the equations

cos (6
-

3a) _ cos {6
-

3j3) _ cos {6
-
3y)

cos^ a cos^ /3 cos^ y
'

is sin O-
y) sin (y

-
a) sin (a

-
/3) {cos (a + ^+ y)

- 4 cos a cos ^3 cos y)}
= 0.

66. If (1 -;r+^2)-i be expanded in powers of x, shew that the coefficient

of :r** is sin ^{n+ l) 7r/sin ^tt.

67. Prove that 2 cos 4a sin 03+ y) sin O -
y)

= - 8 sin (/3
-

y) sin (y
-

a) sin (a
-

/3) sin (/3+ y) sin (y+ a) sin (a +^3).

68. Prove that

2 cos 2 O -fy a) sin (/3 y) cos a = 8 sin (/3
-
y)

sin (y
-

a) sin (a
-
^) cos a cos j3cos y.

69. If asin^+ 6cos^=acosec^+ 6sec^,

shew that each expression is equal to

'

{J-b^){J+b^)^.

70. Find the greatest value of

sin O -
y ) + sin (y

-
a) + sin (a

-
^).

72
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71. Solve the equation

cos (xa) cos i^-b) cos {xc)= sin a sin 6 sin c sin .r 4- cos a cos b cos c cos x.

72. Solve the equation

cos 2::j7+ cos 2(xa) + cos 2
(.27 6) +cos 2 (:r c)=4 cos a cos b cos c.

73. Solve the equation

sin^ 3a + sin^ 2a= sin^ a (sin 3a+ sin 2a).

74. Eliminate 6 from the equations

a cos 2^ + 6 sin 26 = c,

a' cos 3^+ 6' sin 3^=0.

75. UA +B+C=180% shew that

sin2 15 sin2 ^C+ sin2 ^Csin2 JJ + sin2 ^A sin2p
is not less than 3^ (sin2 A +sin2 5+sin2 G).

76. Eliminate 6 from the equations

4r= 5a cos 6 a cos 5^,

4y= 5a sin ^ - a sin 5^.

77. If cos 2a sin (3
-
y) sec (/3 + y)

= cos 23 sin (y
-

a) sec (y -f a) = COS 2y sin (a
-
3) sec (a+ 3),

prove that cos 2a+ cos 2^+ cos 2y= 0,

and sin2O+y)+sin2(y+a)+sin2(a+3)=0.

/78. Prove that

2 COS {ma+ jS)
= cos (^J/a+ i3) sin J (Jf^ 1 ) a cosec Ja,

n=0

and 2 2 2 cos(ma+n3+joy-i- )

= cos J (J/a+ iV/3+Py+ . . .) sin J (Jf^- 1
) a sin ^ (i\^+ 1

) 3. . .cosec ^a cosec J^. . . .

Sum to % terms the following series in Exs. 79 93.

79. sin2 a 4- sin2 2a+ sin2 3a+ + sin2 na.

. 80. sin2asin2a+sin2 2asin3a+ + sin2wasin(w+ l)a.

81. cosec a cosec (a+ /3)

+cosec (a+3) cosec (a+2/3) + +cosec {a-\-{n- 1) j3} cosec (a+w/3).

82. sin a; sin 2^ sin 3^

+sin 2.27 sin Zx sin 4r+ + sin iix sin (n + 1) :y sin (w+2) ;r.

83.
sin3a+gSin3

3a+
^sin3

32a+ +g^-j
sin3 3"-ia.

84. tan^tan3^+tan2^tan4^+ +tan72^tan(7i+ 2)^.
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85. tan 6 sec 2^+ tan 2^ sec 22^+ + tan nO sec 2^.

86.
tan^+2tan|

+ -tan|+ +^_^tan^.

87. tan x sec^
x-\--^

tan ^ sec^ -
\j ji ji

+ g2tan|sec2|+ +^rri^^'^^i^^'' ^i-

88. l + ccos^cos(^+ c2cos2^cos20+ +c^-icos(?2-l)^cos(n- 1)<^.

cos 2d 2cos4d 4cos8d 2"-^ cos 2^ d

S2 2^"^ sin2 4d ''^ffS^'^
"*

sin2 2d *

sin 6 sin 2d sin n6

cosd+ cosPd cos2d+ cos22d coswd+ cosw^^*

cot 2a cot 3a cot,(^+ l)a
1 - C0s2 2a sec2 a 1 - cos^ 3a sec^ a l-cos^ (ii+ l)a. sec^a*

92. 1.3sin- + 3.5sin + + (2n-l) (2^+ 1) sin ^?^?i^.

93. 3.4 sin a+ 4 . 5 sin 2a4- + {n+2) (n+Z) sin no.

94. If $1, $2 ^6 ^^^ solutions of the equation

sin (d+ a)+ sin (d+ .S)+ sin (a+ /3)
=

where d^, ^2, a, and ^ are each less than 27r,

shew that sin (dj+ O^) + sin (j3+ Bj)+ sin O+ 62)
= 0-

95. Prove that

, . .2^/4 + 1
, ,^ ,^4+ 1 ,

k/2 + 1 2I/2 + 1
and i tan

" 1 ^- -~ I tan ~i "^
._ = A-tt.^

V3 V3

96. If a, j3, y, 5 are four unequal values of 0, each less than 2n', which

satisfy the equation

cos 2 (X
-

d) +C0S (/A
-

d) + cos V= 0,

prove that a+j3+y+8-4\= 2mr,

and that sin^(/3+'y+ -a-2/A)+sin^(y + S+ a-^-2/i)
+ sin|(8+ a+/3-y-2/x)+sin^(a+^+y-d-2/ii) = 0.



CHAPTER YIL

EXPANSION OF FUNCTIONS OF MULTIPLE ANGLES.

Series in descending powers of the sine or cosine.

78. If in the formula (40), of Art. 51, we write for sin^J. its

value (1 cos^ J.)*", and arrange the series in powers of cos^, we

shall obtain an expression for cos?i-4 in powers of cos^ only.

Writing 6 iov A, we have

cos nO = cos'^ d -
^
^^7

^^
cos^-2^ (1

- cos^ 0) + ...

+ (_ l)r
n(n-l) 0>-2r+l) ^^^_, ^ _ ^^

(2r)!

The coefficient of ( l)*" cos^"^ 6 in this series is

n(n 1) ... (n 2r + 1) w (?i 1) ... (n 2r 1) .

(2^0^
^

(2r + 2) !

^^"^^

?i(?i-l)...(n-2r-3)(r + l)(r + 2)+
(2r + 4)! 2!

this is equal to the coefficient of aP^ in the product of (1 + ocf' and

(1 l/a72)-(^+i), ic being supposed to be greater than unity; the

coefficient is therefore equal to the coefficient of x^~'^ in the

expansion of (1 +ic)"~''~^(l l/^)"<*'"^^^ This latter coefficient is

equal to

(-r-l).^(-2r+l)
f ^ ^^

_
2^^ ^^ ^ ^^
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and this is equal to

(n-r-l)..^(n-2r-\-l) ^^ ^^ _^ ^^_^ _^ ^^
_

^^^ ^^ ^ i)n-2r-xj^

or to
n(n-r-l). (.-2r + l) ^^.^

r !

The coefficient of cos" ^ is seen to be ^ {(1 + 1) +(1 - !)},

or 2""^
;
the coefficient of cos""^ 6 is the term independent of

X in the expansion of (1 + osY~^ (1 l/^)~^ and this is easily seen

to be (1 + ly-^ + (n-2)(l+ ly-' or n . 2""^

Hence we have

cos nO = 2"-i cos" ^ - ^, 2"-^ cos"-^ ^ +
^
%"

^
2"- cos"-^ ^. . .(1),

J. ! ^ !

of which the general term is

, (>i-r--l)...(n-2r + l) ^^__^ ^^^_^ ^_
7* !

In a similar manner we obtain from the formula (39) of

Art. 51, the series

n 2
sin ne/sin

= 2"-^ cos^-^ = 2"-^ cos"-^

+ (^-3) (^-4) 2n-5 cos"-5 (9
-

(2),

of which the general term is

,_^y {n-r-l)...(n-
2r)

^^_^_. ^^^,_^, ^^

7" !

79. If in the formulae (1) and (2), we change into ^tt-^,

we obtain the formulae

^ n
(- 1)2 cos n0 = 2"-i sin" ^ -

y
2"-^ sin"-^ ^

+ M^Lzl) 2-s sin"-^' ^ (3),

(- 1)2""^ sin ne/cos = 2"-^ sin"-i l9
-^^ 2"-^ sin""' (9

where n is even, and

(_ i)i(-i) sin n0 = 2"-i sin" 0-j 2""' sin""'' ^

+ (^-3)(n-^) 2n-5 sinn-5 ^ (4),

rt

+
^^^^"^^

2^-^sin"-^(9 (5),
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n 2
(_ i)i(n-i) cos nd/cos 6 = 2"-i sin"-i d r S"-^ sin'*-^ 6

+ (^^-=4^2-sin-^ ^^^^

where n is odd.

Series in ascending powers of the sine or cosine.

80. In order to find expansions of cos nO, sin nd, in ascending

powers of cos 6 or sin 6, we may write each of the six series we
have obtained, in the reverse order. It will, however, be better

to obtain the required series directly.

First suppose n even, we have then

cos 71^ = (1
- sin^ 6)^ - ^^^~^\ l - sin2 ^)i-i sin^ 6

n(7i l)(n 2)(n 3)/- . ^. , o ^/i+ -^^

'-^^^
^-^

^(l-sin2^)i-2sin*^ ;

expanding each power of 1 sin^ Q by the Binomial Theorem, we
have

cos

n(yi-l) (71-2) (71-3)
"*"

4!
sin*^ &c.,

the coefficient of ( 1)* sin^ Q being

|n(^n~l)...(j^n~5 + l) rz(yi~l)(^yi-l)...(^n-g + l)

s\
"^

2! (5-1)1
c n(n--l)(7i-2)(n--3)(^7i-2)...(^yi-g+l)
"*"

4! (s-2)!
"^ '

which may be written in the form

l yi(n-2)(yi-4)...(y?.-2^+2) f/2g-l>^/^2g->l \ fts-\ \

s\ 1.3. 5. ..(25-1) |V"^~yV~2 ^J-V"2 ^"^V

,
/25-l\/25-l ^\ /25-1 -\/7l-l\

5(s-l)/2s-lW25-l A /25-1 ^\(n-\\(n-\ _N
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Now, taking Vandermonde's theorem*

{p + q\ = P8-\- sps-iqi 4- ^2! -^^-2^2 + . . .

where ps denotes p(p 1) ...(p s-\-l)', since this holds for all

2s 1 n 1
values of p and q, let p ^ , q = ^ , then applying the

theorem to the series in the brackets, we see that the coefficient

of(-iysin2^is

1 7l(w-2)... (71-25 + 2)

s\ 1.3.5...(2s-l)
{\n-\-s-V) {\n + 5- 2) ... {\n)

n" (n^
-

2^) (n^
-

4^) . . . (n'' -2s- 2\^)

i2s) !

We have therefore, when n is even,

cos n^ = 1 - jr-: sm2 ^ H ^- ^ sm^ 6 ...
2! 41

. ^.nUri'-2^) ...(n^-2s-2^) .
,

. ,^,+ (-iy ^^

^-tA-, -^sm2^6'+ (7);

this series is the series (3), written in the reverse order.

81. We have also

sin nO = cos ^ 1 n (1
- sin^ 6)^^-'^ sin

n(nl) (n 2) ,- . . ^. ,
, /i , 1

supposing n even, we expand each term of the series in powers of

sin^ 6
;
we find the coefficient of ( 1)^+^ cos 6 sin^*"* 6 to be

1 n(n-2)...(n-2s-}-2) {f
2s-l \ /2g-l\ /^-1 \

(5-1)! 1.3. 5. ..(25-1) \[ 2 A-i"^^^ ^H 2 A_A 2 A

I

(^-l)(^-2) /25-l \ /n-l \

2 ! \ 2 /_3 \ 2 /2

+ ...,

which is equal to

1 ?i(n-2)...(w-25+2)
(5-1)! 1.3. 5. ..(25-1)

(in+s-l)...(in + l)

n(n^- 22) (n^
_

42) ... (^
_ 25 - 2 2)

or to
(2^zriyi

^ See Smith's Algebra, page 282.
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We have therefore when n is even

t^/cos ^ = r- sin ^
^ ^sm3^ + ...

J- o !

sinn(

,(-l)^. "("'-^'^-;^";-^^-^l\in.-.,^...(8).

82. When n is odd, we have

2!
cosn(9 = cos ^ ^(l-sin^)i("-i)

-
^^%y-i^(l-sin2^)Hn-3)gin2^+...

and sin n^ = w (1
- sin^ ^)Hn-i) gin ^

^^

^^r^

'

(1
- Sm^ ^)i(n-

8) gii^s ^ + . . . ;

expanding in powers of sin 6, as in the last article, we find in a

similar manner

cosn^/cos^ = l
2 sm'^4-^^ 4^^ -'^sm*^ ...
2 ! 4 !

1 o ! 5 !

83. If in the formulae (7), (8), (9), (10), we change 6 into

^TT 6, we obtain the following formulae

(- l)i cos n(9 = 1 -^ cos^ e + ^

, ,

-^

cos^ (9

n2(w'-22) (712-42) -
^

gj
^ cos ^ + . . .(11),

(- l)i^+i sin n(9/sin (9 = ^ cos (9
- ^^^'"^'^

cos ^

w (n^
- 2n (?i2

_
42)+ _v J-^ ^cos''^ (12),

5 I

when n is even, and

(-.l)Kn-i)sinn^/sin(9=l-^^^os26'+^-^^^-^^
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(_ l)Un-l) cos 72(9 = ^ COS (9
- "" ^""^

"
^'^

cos^ 6>

+ _J^
Ki ^cos^...(14)

when n is odd. These formulae are all the same as those of

Arts. 78 and 79.

The circular functions of sub-multiple angles.

84. If in the formulae (1) to (6), or in the equivalent formulae

(7) to (14), we write 6/n for 6, we obtain equations which give
6 6

cos - or sin -
, when cos 6 and sin 6 are ffiven. We will consider

n n ^

the various cases.

(1) Suppose cos 6 given, then the equation obtained from (1)

Q
will give us n values of cos -

. If cos 6 is given, we should

2A;7r + ^
expect to find the cosines of all the angles

^
,
since ^kir + 6

represents all the angles which have the same cosine as 6, where k is

any integer. Now whatever value k has, we can put k = s + k'n,

where s always has one of the values 0, 1, 2 ... w 1, and k' is a

positive or negative integer. We have then

2k7rd fe + 2s7r,^ ,A l9+2s7r
cos = cos + zttA; = cos ,

. n \ n J n

thus we should expect to obtain the n values,

e 6 + 277 6>4-47r ^ + 2(n-l)7r
cos - , COS

, cos cos ^
,

n n n n

and these will be the roots of the equation we obtain from (1).

These roots are in general all different, since neither the sum nor

the difference of two of the angles is a multiple of 27r.

(2) Suppose cos^ is given, then the equations obtained from (3)

Q
or (6) will give the values of sin -

. Before we use (6), we must
n

6
square both sides and write 1 sin^ - for cos^ -

;
thus we obtain an^ n n

Q
equation of degree 2m, for sin -

,
when n is odd, and the equation



108 EXPANSION OF FUNCTIONS OF MULTIPLE ANGLES.

(3) gives us an equation of degree n when n is even. We expect

to obtain all the values of sin = when cos 6 is ffiven: as in
n

the last case, we can shew that all these values are included in the

expression sin ^^ where s has the values 0, 1, 2 ... ii 1. When

n is odd, all these values are different, and therefore we obtain 2n

values which are the 2n roots of the equation obtained from (6).

., . , . (71-28)17-6 . ^STT + d ,

When n is even, we have sm ^^ = sm ,
hence

n n

in this case there are only n values, these being given by the

equation obtained from (3).
*

(3) When sin 6 is given, we use the equation obtained from

6 9
(2) to find cos -

, this efives 2n values of cos - , for we must
n ^ n

6 6
square both sides and replace sin^ - by 1 cos^ -

,
before using the

equation. We shew as before that the expression cos ^^ -

Q
has 2n values, so that we expect to find cos- given in terms of

sin 6, by an equation of degree 2n.

(4) If sin 6 is given, sin- will be given by (4) or (5), accord-
it

ing as n is even or odd. When n is even, the equation from (4)

efives 2/1 values of sin -
;

these will be the 2n values of
n

Sir \- ( \y 6
sin ^^

. When n is odd, the equation formed from (5)

Skives n values of sin -
;

these will be the n different values of
n

. SIT +(-iyesm ^^
.

n

Symmetrical functions of the roots of equations.

85. The formula (1) may be regarded as an equation of the nth.

degree in cos 6, when cos 7i6 is given. Now each of the n angles

6, 6 + , ^ + 6 ]
^

,
is such that the cosine of n

n n n
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times the angle is equal to cosnd, hence since cos 6, cos [6 + ],

cos 1 6 A
j

cos
j
^ H ^^ > are all different, they are the

n roots of the equation (1) in cos 6
;
we can now use the ordinary-

theorems for calculating symmetrical functions of the roots of

equations, to calculate symmetrical functions of the n cosines

cos Id-]
TTJ , r having the values 0, 1, 2 ... ti 1. We may of

course, when it is convenient, use the forms (11) and (14) which

are equivalent to (1). Again the equation (2) may be used to

calculate symmetrical functions of the cosines of the n 1 angles
for which sin nO/sin. 6 has a given value.

The equation (3) may be used in the same way to calculate

symmetrical functions of the 2m sines

sm ^, sm ^ + - ,
sm ^ + sm ^ + ,

\ 771/ \ mj \ m J

where n 2m.

In the same way the theorem (5) may be used to calculate

symmetrical functions of the 2m 4- 1 sines

sin^, sin (^+7; -] , sin(^+s 7) sin(^+^r ^],
V 2m + 1/ V 2m +1/ V 2m + 1/'

where n = 2m + 1.

The equation

id^nnOu. ^ ^tan^^^- ^^

^-^1 ^tan^^ V

, ^ n (w
-

1) (7^
-

2) ^= n tan 6 ^ ^y ^tan^^+

may be regarded as an equation in tan 6, of which the roots are

tan^,
tan(0

+
^), tan(0+^) tan{0

+ ^^^''
and may therefore be used for calculating symmetrical functions

of these quantities.
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Examples.

(1) Prove that the sum of the cosecants of

6,6+^ ^+^<-^>",n n '

taken two at a time, is ^^n^ cosec"^ ^n^, n being an even integer.

Using the equation (7), the required sum is the sum of the products of the

sines of the angles taken n - 2 at a time divided by the product of all of them
;

this is equal to the coefficient of sin^ 6, divided by the term not involving

sin 6. or ^-- -r^ which is equal to cosec^ hid.'

2(l-cosn^) ^42
(2) Prove that

COS^ Iw+ COS^ fTT+ COS'^ fTT+ C05* f^T
= 19/16

and sec^ln-\- sed^ %tt+ sed^ fir+ sec^ ^=\\20.

If sin 9^/sin 6 be expressed in terms of cos ^, and be then equated to zero,

the values of cos 6 obtained by solving the equation of the eighth degree so

obtained, will be

COS^TT, COSfTT COSfTT.

We notice that

cos f7r= cos ^TT, C0S^7r= COSfTr ,

thus cos|7r, cos|7r, cos7r, +cosf7r

are the roots of the equation. We may either use the series (2), or proceed

thus : if sin 9^=0 we have

sin f>6 cos AB+ cos b9 sin 4^=

or (sin 3^ cos 26+ cos 3^ sin 26) (2 cos^ 2^-1)
+ (cos 3^ cos 26 - sin 3^ sin 26) 2 sin 2^ cos 26=0;

substitute the values for sin 3^, cos 2^... and reject the factor sin 6, then let

x=co^^6, we obtain the following biquadratic in x

{(4r2
-

1) (2^-
-

1) + 2 (4^2
_
3^)1 12 {2x

-
1)2

-
1} + {4 {2x

-
1) (4^2

_
3^)

-8(4^-l)(l-^)^}(2:c-l)=

or (16^2_i2^-^l)(a'c2_8^'-|-l)+ (64^-80^24.20^)(2^-l)=

or, arranging according to powers of a?,

256^ - 448^+ 240^2 _ 40^ -f 1 = 0.

The sum of the roots of this equation is 448/256, and the sum of the products
of the roots taken two together is 240/256, hence the sum of the squares of the

4482 -2.240 .256

"(256)2

of the roots is 402 - 2 . 240, or 1 120.

(3) Prove that sin a+sm 2a+ sin 4a= ^\/7,

where a=^.
We find (sin a+ sin 2a+ sin 4a)2= sin2 a+ sin2 2a+ sin2 4a.

roots is
(z)\r\2 =if 5

^^^^ *^ ^^^ ^f *^ squares of the reciprocals
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Now the roots of the equation sin 7^/sin ^=0 in sin ^ are

+ sin a, sin 2a, sin 4a ; put a:= sin^ 0^

then the equation in x is found to be

64^-112^2+ 56^-7=0,
hence sin^ a+ sin^ 2a+ sin^ 4a= 1 12/64= 7/4 ;

therefore sina+sin2a+ sin4a= ^\/7.

(4) Evaluate sin .

Writing a= 27r/17, we find by the formula for the sum of the cosines of

angles in arithmetical progression

(cos a+ cos 9a+ cos 13a+ cos 15a) + (cos 3a+ cos 5a+ COS 7a+ cos 1 la)= -
^.

Also (cos a+cos9a+ cos 13a+ cos 15a) (cos 3a+cos5a+ cos 7a+ COS 11a) is found,

on multiplying out and replacing each product by half the sum of two cosines,

to be equal to 1. The two quantities in brackets are therefore the roots of

the quadratic z^+^z-l = 0, of which the roots are j ( 1 ^17). It is easily

seen that cos a+ cos 9a+ cos 13a + cos 15a is positive, and

cos 3a+ cos 5a+ cos 7a 4- cos 1 la

is negative, we have therefore

cos a+ cos 9a+ cos 13a+ cos 15a=J(\/l7-l)

cos 3a+ cos 5a+ cos 7a+ cos 1 la= -J(\/l7 + l).

We can now shew that (cos a + cos 13a) (cos 9a+ cos 15a)= J, hence

cos a+ cos 13a, cos 9a+ cos 15a are the roots of the quadratic,

hence cos a+ cos 13a=^ (
- 1 + v'17 + V34 -2^/17);

similarly we find cos 3a+ cos 5a= ^ (
- 1 - ^17+ \/34+ 2 x/17).

Now cos a cos 13a= ^ (cos 12a+ cos 1 4a)= ^ (cos 3a+ cos 5a) ;
and since we have

thus found the sum and the product of cos a, cos 13a, we can find each of

them. Noticing that cos a > cos 13a, we have

cosa= iV{Vl7-l+V34-2\/T7+2Vl7 + 3Vr7-\/l70+38Vl7}.
We have then

sin 7r/l7
=Vi (1

- cos a)

=^\/34-2Vl7-2V34-2Vi7-4N/l7+3Vl7-Vl70+ 38Vl7.

(5) Shew'^ that if f(x, y) he a homogeneous fuTwtion of s., y o/ n 1

dimensions,

f {sin X, cos x)

sin (x Oj) sin (x a^.. .sin (x a)
= i {sin Or, cos Ur)

r=i sin (x ttr) siyi {ar
-

a^) sin {a^ 02) . . .sin (a^ a)
'

1 This theorem was given by Hermite in a memoir " Sur I'lnt^gration des

Fonctions circulaires
" in the Proc. Loud. Math. Soc. for 1872.
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The expression on the left-hand side of the equation may be written

77 s/ \ ,^ V . 1 where ?= tanA', ar=tan Or-
{t a-^(^ a^...\1.-a^ cosa^cosaicosag.-.coson

Now since /(^, 1) is of degree w 1, lower than w, we have by the ordinary

method of resolving into partial fractions

/(,i) '^ /K, 1)

(i-ai)(i-a2).. (*-.) r=i (i-ar)K-i)(ar-a2)-"(r-orn)

_ / (sin Oy ,
cos a^ . cos x cos a^ cos a2. . .cos o^

sin(^-ar)sin (ar-ai)...sin (ar-a)
'

thus the result follows.

Factorizatio7i.

86. Since cos nd can be expressed as a rational integi'al function

of the nth degree in cos 6j we can express cos nO as the product
of n factors linear in cos

;
the values of cos 0, for which cos n0

vanishes, are

TT Stt (2?i-l)7r

these cosines are all different, therefore

7r\ / /, _ 37r\

2n)
cos 710 = A

[cos
cos^ J

(cos cos ^- I

I
. (2n-l)7rl

jcos^-cos ^^ |,

where J. is a numerical factor. Since the highest power of cos

in the expression for cos n0 is 2**~^ cos" 0, we see that A = 2"~^

therefore

cos n0 = 2"~^ f cos ^ cos^ j
f cos ^ cos ^ j

/ . (2?i-l)7r\

(^cos^-cos^ ^^-j.

Now cos = cos ^^

^
^

, therefore this expression may be

written

cos n0 = 2'^-^
[
cos^ - cos^ ^ j

fcos^ - cos^ ^ j

(cos^6>-cos^ ^'''^^^'^)cos^,

when n is odd, and
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COS w^ = 2^-1 fcos^ e
- cos2 ^ ) fcos'^

6 - cos^

"

"^^

2nJ V 27i/

cos^^ cos^ ^^

if n is even
;
these expressions may also be written

cos w(9/cos l9 = 2^-1
(sin^ ^ - sin^ 6) f

sin^ -^ - sin^
2n J \ 2n

when n is odd, and

cos ne = 2^-1
("sin^ ^ - sin^

^"j ("sin^

-^ - sin^ (9

j

sm^ "^ ^ sin2

when n is even.

In each of these equations put ^ = 0, we then obtain the

theorems

2^(^-1) sm^ sm^^ sm^
^r

^- = 1,
2n 2n 2n

when n is odd, and

when ?2 is even.

...(15),

The positive sign is taken, in extracting the square root, since

the angles are all acute.

If we divide the expressions for cos ndjcos 6 or cos nd by the

corresponding one of the products in (15) squared, we obtain the

expressions

cosTi^ /^ sin^^ \ /- sin^^ \ /^ sin^ .

when n is odd, and

when n is even.

H. T.
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We may write the theorems (16) and (17) thus :

cosneicosd^'^'u Vl fi^'^,, \ (16),
-'

( ^^^'^''''
where 7i is odd, and

r=hi
I sin2 6 . ^^.cosne=Il I-

.(,,_!), \ Vl7).

where n is even.

87. As in the last article, since sin nd/sin 6 is an algebraical

function of degree n \ in cos ^, we may find a corresponding

expression for it, in factors linear in cos B
;
in this case

TT 27r (n 1 ) TT
cos -

, cos . . .cos ^^

n
.
n n

are the values of cos 6 for which sin nd/sin 6 is equal to zero.

These values may be thus grouped + cos -
,
+ cos

;
hence

as before

sin ?i^/sin
= 2**-^ cos 6

[cos^
d - cos^ -

) Ccos'-^
6 - cos^

j
. . .

cos2 e - cos"
^

^r-^^ ,

zn )

when n is even, and

sin 72^/sin 6 = 2""^
[
cos" - cos"

-) ('cos"
6 - cos"

)
.

when n is odd.

We can write these equations in the forms

sin nd/sin d = 2"-i cos 6
('sin"

- - sin" 0]
("sin"

- sin"
(?]

. . .

when 71 is even, and

sin ?i^/sin 6 = 2"-i
[sin"

- - sin" e\ fsin" - sin" e\,.

when w is odd.

2%
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We shall shew in the next Chapter that sin nd/sm 6 n, when
^ =

;
hence

n-l

n=2 sm - sm (18),
n n ^ ^

the last factor being sin ^
^r-^ or sin ^^ -

, according as n

is even or odd. Hence

sinne/n sill = cose U /l-.^iii-L\ (19),
*='

I sin^-
\ n

when n is even, and

smne/nsme^ U /l-
\ (20),

I sm^
\ n

when n is odd.

88. The expression cos n6 cos
n(f> may be regarded as an

algebraical function of cos of degree n, and can therefore be

factorised
;
the values of cos 6 for which the expression vanishes

are cos
(j),

cos
(<^ + ~~) >

^^^ [^ "^
)

J
hence

r=n-if / '2r7rM
cos nO -cos n<l>

= 2''~^ U
jcos

^ - cos
(</> + jk..(21).

89. ^We shall now factorise the expression af^ 2x'^ cos n^ + 1.

We have

a?" - 2 cos 71^ + x-'^ = (x""-^ + x-''+^) (x- 2 cos 6 + x-^)

+ 2 cos ^ (x''-' -2cos{n-l)d-\- -+i)
- (^-2 - 2 cos (n

-
2) (9 + ^-^+2)^

If we denote x"^ 2 cos nO + ^~^ by w^, we may write this identity

Un = {x^~^ + ;r~^+i) 2^1 + 2Un-i COS ^ -W^-g ;

this equation shews that Un is divisible by Ui, provided Un-i and

Un-2 are divisible by u^.

Now ^2 = (; 2 cos 6 -|- a?"^) (a; + 2 cos 6 + a?"^),

hence U2 is divisible by i^j, and therefore u^, and so on.

^ This method was given by Ferrers in Vol. v. of the Messenger of Mathematics.

82
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Hence u^ is divisible by zij, and therefore oc^ 2x cos ^ 4- 1 is a

2r7r
factor of x^ 2x^ cos nd +1; since 6 can be changed into 6 H

without altering cos nd, we see that, when r is any integer,

af-2xcos(0+^]+l
is a factor of the given expression ;

if we let r = 0, 1, 2. ..ti 1 we

obtain n different factors of the given expression, and these are all

the factors, hence

^2n_2^n cos 71^ + 1= n iay'-^xcos Id +
]
+ lL.(22);

this may also be written

af^ - 2a;y cos ne-\-y'^= U \af- 2xy cos
(^^
+ ^^\ + 2/4 . . .(23).

90. In the equation (22), put ^ = 0, we have then

r=n-l/ Irir \

(a;n_i)2= n (a^^-2a?cos +1),
r=0 V n J

and since cos =cos , the factors on the right-hand
n n

side of this equation are equal in pairs, except that when n is even

there is the single factor x"^ -\-2x + 1, and whether n is even or odd,

there is the single factor a^ 2x + \, hence

x"-l = {iic'-l) n ar'~2a;cos -^ + 1 (24),
r=l \ n J

when n is even, and
r=i(-i)/ 2r7r \

^^ - 1 = (a;
-

1) n ar^ - 2^ cos -^ + 1 (25),
r=l \ n J

when n is odd.

Again, putting 6 = 7r/?i, in the formula (22), we have

*"='^~if (2r+lW )

(x''^-\y= n \a?-2xco^
^ ^^>^^

4-il;^
r=o I

^
J

(2r + l)7r 2(7i-r)-lnow cos ^ = cos -^
TT,n n

hence the factors are equal in pairs, except that when n is odd we
have the single factor x^ -\-2x-\- 1, hence

^n ^ 1 J"^
^

L2 _ 2x cos (?!li)5 +
ij (26),

when n is even, and
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r=i(n-Z)
( C2r + 1W )

a;'^ + 1 = (^ + 1) n \x' - 2x cos
^ ^

+
l[ (27),

when ?^ is odd.

91. In the equation (22), put ool, we have then

r=n-l
(

/ 2r7rM
1 - COS w6> = 2^-1 n

Jl-cos((9
+ ^

j
;

changing 6 into 20, this becomes

sin2??.^ = 22^-2 sin^^ sin^
(<?
+
-) sm^(d + ^^]

... sin^
('(9
+
^ ~ "^'^

or sinn^=2"-^sin^sin[^+-j sin
(d-^-^j

... sin/'^-
71

where the ambiguous sign is as yet undetermined. It has been

shewn in Art. 51, that the form of the expansion of sinn^ in

terms of sin ^ and cos 6 is definite
;
the sign of the product on the

right-hand side is therefore always the same
; put then 6 = 7r/2n,

the sign to be taken is clearly positive as each factor is positive.

We have therefore

sinr?6>=2-^sin(9sin(^+ -)sin('(9
+

")

...sin (e+^--^^\..{2S).

In (28), change into 6 -}- 7r/2n, we thus obtain

cos^ =
2-sin(.

+
^Jsin(.

+ g)
...sin (^H-^) ...(29).

The theorem (18) can be deduced from (28), by putting ^= 0, and taking

the square root. In a similar manner, the theorem (15) may be deduced from

(29).

Examples.

(1) Prove that ifn be an odd integer^ sin n^+cos n^ is divisible by

sm 6+ cos 6, or else by sin 6 cos 6.

Let w=sin9i^+cosn^,

then w-|-w_4=2cos2^. w_2=2(cos2^-sin2^)?^_2.

Hence, if Wn-4 is divisible by cos ^+sin ^ or by cos 6 - sin ^, w is divisible

by the same quantity. Now 'Mi
= sin^+cos^, hence W5, Wg, W13... are aU

divisible by sin^-|-cos^; also w_i=cos^-sin^, hence Wg, Wy, u^i,,. are all

divisible by cos ^- sin 6.

(2) Factorise tan nd - tan na.

sin n{d-a)We have tan n6 tan na
cos nd cos na

"



sm

118 EXPANSION OF FUNCTIONS OF MULTIPLE ANGLES.

In the formula (28), write a ^ for 6^ we then have

in7i(^-a)= (-l)"-i2-i'~n ^inf^-a- ^
r=o \ nj

= (_l)n-i2H-icos"^'^~n cos(^a+
Vtan^-tan/'a+

^'jl

=
(_l)n-icos^sin7i(^a

+|y~n ^jtan^-tan/^a+'^^l
.

.

Again we have from (16) and (17)

cosn^= cos^ n /I ,^ , , \ or n /I

271/ \ 2w y

according as n is even or odd. Now 1 -
'

^r:r=cos2 ^ ( 1 -
: ^^^ ) ,^

sm^^ V tan2/3/
'

hence the expression for cos nO may be written

cos*^ n /I- ,, \ or cos" ^ n /l-
tan*f^ \

n I

-1
I ....2(2^-1)t) r=i( tan^^^^"^^'^)'

We have therefore

sin n

tan 71^- tan Tia= (
-

1)""
1 ''+i)''|jH-K^}

cos na /, tan^^
n /i-^ I tan^^^^-^^'^

71

the product in the denominator being taken up to r=^i or ^ {ii 1), according
as n is even or odd.

EXAMPLES ON CHAPTER VIL

1. Prove that, if n be an odd positive integer, and a=7r/n,

tan9i</)
= (-l)*^**"^Han<^tan(<^+ a) tan(0+?i-l a),

and w tan n^= tan <^ 4- tan (0+ a) + +tan (^+7i 1 a).

2. Prove that

sin 5^ -cos 5^_ ._y 1 -2 sin 2^-4sin^2^

sin5^+cos5"<9
~

^ ^'^^
1 + 2 sin 2<9 - 4 sin2 2^

*

3. Prove that

7iCot?ia= COta+ Cot f a +
)
+ +COt ( a4

j
,

n being an integer.
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4. If =
7r/13, shew that

cos ^ + cos 3(^ + cos 9^= J (1 + \/l3),

and cos5^ f cos 70+ cos 110=j(l-\/l3).

5. Prove that

TT 27r 37r 47r Stt Qtt In flVcos 3 cos z cos cos TT cos - cos -- cos -- = -
I .

15 15 15 15 15 15 15 \2/

6. Prove that cos -i=- + cos -;=- + cos = - -
.

Form the cubic of which the roots are

27r 47r Sir
cos -= ,

cos -zr
,

cos -=- .

7
'

7
'

7

7. Prove that the roots of the equation

^- 3 \/3^2 _ 3^ 4. ;^3=

are tan 20, tan 80, tan 140.

8. Prove that

sin4a+sin4 3a+sin4 7a+ sin4 9a+sin4 lla+sin* 13a+sin* 17a+sin* 19a=3i,

where a=7r/20.

9. Prove that

2-i sin 9 sin
(<#>+ -^j

sin
(0+-^)

sin
(</>+ '''~^ )

nn ( , .
7r\= COS -COS ?l

(</)+ -
j

.

10. Prove that

tana+
tan(^-a)+tan(^|^

+
a)+tan(|^-a)

+

to 2w terms, is equal to '^n cosec 2?ia.

11. Prove that

. 27r . 47r . n A^ir . n'^'iT . nir

2n 2n 27i . 2n 2n

where n is an even positive integer.

12. Prove that

_ / n~ \ 2*1-1
'

sin2 -

n 2n
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14. Prove that m sin n6-n sin m6 is divisible by sin^ 6, if m and n are

positive integers such that m or w is even.

15. Shew that if m is a positive integer, sec^*" il + cosec^'"^ ^ can be

expressed in a series of powers of cosec2^.

, T^ .,
,

sin 2a sin 4a sin(2n 2)a
16. Prove that n=-^-. ^-= r^^ ^,

sin asm 3a sin (2/1 1) a

where a= 7rl2n.

17. Prove that

.^.
sin^g; sin^a

sin {x a) sin {a; b) sin (a?
-

c) sin {x a) sin (a b) sin {a-c)'*

,. sin X cos (x a) sin a
(2) -rj . . . ji. -=2 ^ '

sin {x a) sin {x
-

b) sin (^ c) sin
(:?;
-

a) sin (a 6) sin (a c)

*

18. Prove that the product of

1+COSa, 1+COS ( aH
j

1+COS f aH
) ,

is 22-"{(-l)*"-co8j7ia}=^ or 2i-" (1 +cos?ia),

according as ti is even or odd.

19. Prove that

7i2=^versin^)

'

+
(versin ^^) \(^y^r^in^^^~\

,

n terms being taken on the right-hand side.

20. Prove that

(tan 7^ + tan 37^ + tan 674) (^n 22^ -f tan 52J -f tan 82^) = 1 7 + 8 v/3.

21. Shew that, if m is odd,

tan7?i<^=tan<^cot
^(/)-f ^jtan {4>

+
^j

^"K^^^)^^''(^^^)-
22. If 28a= 7r, shew that

^14= 213 sin a sin 2a sin 13a,

and cos 2a+ cos 6a+ cos 18a= \sjl.

23. Prove that tanr-tan;^ tan - =1,
2n 271 2?i

'

n being any positive integer.

24. Prove that

/
.
27r\

.
/

. 2n^\n\
cosec.r+cosecl x-\ ) -f TJ-cosec [x-\ I

\ nj \ 71 J

=9i{cosecwa7+cosec {7ix+7r) + +cosec(w^+7i- In)}.
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25. Prove that, according as n is even or odd,

2(l + cos?z^) or (l + cosn^)/(I + cos^)

is the square of a rational integral function of 2 cos 6. Shew that '

1+cos 9^=(l + cos 6) (16 cos4 ^ - 8 cos^ ^ - 12 cos^ ^ + 4 cos ^+ 1)2.

26. Prove that 2"
- 1 cos** 6 - cos nO is divisible by 1 + 2 cos 2^, when n is of

the form 6m- 1, and by (1 + 2 cos 2^)^, when n is of the form 6m+ l, m being
a positive integer.

Prove that

210 cosii ^ - cos 11(9= 11 cos ^ (1 +2 cos 2(9) {(1+2 cos 2^)3+ (1 + 2 cos 2^)+ 1}.

27. Prove that, if n be an odd positive integer, and

tan (Jtt + ^(/))
= tan^ (^tt + ^6),

r7^^

r=i(w-l)
then sin0=7isin^ IT

1 + sin^ 6 cot^

1 + sin^ 6 tan^

28. Shew that any function of the form / (sin 6, cos 6)l<^ (sin 6, cos 6),

where/ and denote rational integral functions of degree n, containing cos" 6,

can be expressed in the form ^n sin
|^ (^

-
a)/n sin \{6- a'), where A and the

quantities a, a', are independent of 6^ and there are 2^1 factors in the numerator

and 27i in the denominator.

T ;, ,. .
acos 2^+ 6 cos ^+ csin^+ o? . i . ,, . /.

If the function
,,,ag+yeo8^+o-sin^+rf

-
^'" <'^1'"^'*"'> "^ *'^ f'^''

prove that 2a and 2a' are even multiples of tt.

29. Prove that

tan +4 sin = \/li.

30. Prove that

26 sin'' ^+ sin 7(9
, ^ / /^ tt

2cos7^-cos7^
=tan^tan2M + ;f tan2

(-?)



CHAPTER VIII.

RELATIONS BETWEEN THE CIRCULAR FUNCTIONS AND
THE CIRCULAR MEASURE OF AN ANGLE.

92. We shall now investigate theorems which assign certain

limits between which the sine, cosine and tangent of an angle
whose circular measure 6 is less than Jtt, must lie. The first

theorem which we shall prove is that if 6 he the circular mettsure

of an angle less than ^tt, then sin 6 < < tan 6.

Let AOB=:AOB' = d and let TB, TB' be the tangents at

B and B', then we shall assume that BGE < arc BAB' < BT+ TE,

consequently we have

BC\OB < arc BA/OB < BT/OB.

Now e = arc BA/OB, sin = BCIOB, and t8ind = BT/0B;
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therefore sin 6 <6 < tan B. If 6 had been greater than \ir, T
might have been on the other side of 0, and the inequalities which

we have assumed would not necessarily hold.

Since sin 6 <6 < tan 6, we have 1 < ^/sin 6 < sec 6
;
now sup-

pose 6 to be indefinitely diminished, then in the limit when ^ = 0,

we have sec 6 = 1\ hence also the limit of ^/sin 6, when 6 is indefi-

nitely diminished, is unity. Since

- = (^ cosec ^)~S and ^
= sec 6 .{B cosec B)~^y

u V

we have the theorems that the limiting values of ^-
and ^

when B is definitely diminished, are each unity.

The theorem may also be proved thus: The triangle OAB, the sector

OAB, and the triangle OBT, are in ascending order of magnitude; and

A OAB=^OA . BC=10A'^ sin B, also sector OAB^^OA^.d, and

AOBT=^OB.BT=iOm.ta.ne,
therefore sin 6<6< tan 6.

The inequaUty BCB'<ajrc BAB'<BT+ TB', may be proved by elementary

Geometry, if we assume the definition given in Art. 11, of the length of a

curvilinear arc as the limit of the sum of the lengths of the sides of an

inscribed polygon when the number of sides is indefinitely increased.

93. The reason, to which we referred in Art. 5, w^hy the

circular measure is more convenient in Analytical Trigonometry

than any other measure of an angle, is that in this measure the

sine and tangent of an infinitely small angle are each ultimately

equal to the angle itself, whereas if we use any other measure, as

for instance seconds, this is not the case
;
we have in the case of

seconds

sin n" _ sin B ir

^If'T ^iSOx 60x60'

tan n'^ tan B ir

n"
~

B 180x60x60'

where B is the circular measure of n seconds, hence the limits of

^^ ^
when 71 is indefinitely diminished are each equal to

-^^ ^ ^A. If then we used seconds instead of circular
180 X 60 X 60

measure, we should constantly have the quantity ^g^ x 60 x 60

n n

TT
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occurring, instead of unity, in the large class of formulae which

involve the limiting values of - and -
.

o o

The limits of m sin ,
m tan are each a, when m is infinitely great, for

m sin = a { ^ ) , m tan = a ( jr ) where 6= , and when m is indefi-m \ J wi \ J m,

nitely increased, 6 becomes indefinitely small. The limiting values of . . ,

7 ^ ,
when 6 is indefinitely diminished, are each equal to pjq.

94. Since, if ^ < ^tt, tan \6>^6, we have sin \d > \6 cos i^,

hence 2 sin J^ cos^d>6 cos^ ^6^

or sin ^ > ^ (1
- sin^ ^d), now sin^ ^i9 < {^e)\

hence sin^>^(l-J^) or sin^>^-J^.
Also cos ^ = 1 2 sin^ ^6, and this is greater than 1 2 {^Oy,

or cos ^ > 1 ^6'^, Also since sin ^6 >\d \ {^df we have

cds^<l-2(i^-^^0^<l-i^ + 3-V^-2^^,,

hence cos ^ < 1 J^ -f i*^^. We may state the results we have

obtained thus :

If 6 he the circular measure of an angle less than Jtt, then sin 6

lies between 6 and 6 \6^, and cos 6 lies between

l-i6>^ and i-^e' + ^^e^,

95. We shall now shew that if ^ < ^tt,

sin ^ > ^ - ie\ cos ^ < 1 - i(92 + ^i-j^.

This makes the limits for sin 6 and cos 6 closer than in the

theorems of the last article.

We have 3 sin J^
- sin ^ = 4 sin^ ^6,

3 sm
.5^
- sm

^
= 4 sm^^ ,

3sm--sm^^=4sm^-.
Multiply these equations by 1, 3, 3^ 3'^~^ respectively, and then

add them, we have

3^ sin
1^
- sin (9 = 4

^sin^ |
+ 3 sin

3,
+ ... + 3^"^ sin^

g^^)
,
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3*

4 ^, /^ 1 1 1 \

<3-^^l^
+

3^
+

3^
+ - + 3N-

Now let w be increased indefinitely, then the limit of

3"

is unity, and of the series 1 +
-^^
+- + ... is =- = | ;

therefore

~3^

(9 - sin ^ < ie\ or sine > 6- ^6'.

Also cos (9 = 1 - 2 sin^ i(9
;

therefore cos ^ < 1 - 2 (1(9
-

-^-^OJ < I - ^6^ + ^\d\

Hence sin 6 lies between 6 and 6 ^6^, and cos 6 lies between

1 ^6^ and 1 - ^0^ + ^^^ the angle 6 being less than Jtt.

We have also tan 6 = sin ^/cos 6, hence

or tan 6 > 6 -\-ie^ -\-\6^
-
^^e\ therefore tan (9 ><9+ ^6^.

Elder s product.

96. We have sin ^ = 2 sin ^6 cos J(9,

sin2
=

2sin^cos2-2,

sin
22
= 2

sm^^
cos

23,

sill
2^1

= 2 sm
27,

cos
2^,,

/, n ^ <9 d . e
hence sm ^ = 2" cos - cos - . . . cos

^^
sin

^^^
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Now when n is indefinitely increased, the limit of 2** sin is ^

hence the limit, when n is infinite, of the product

e e e e . B,me
cos

2
cos - cos

2-3.
..COS

2^,
IS
-^-

.

In this product, put ^=^, we then obtain Vieta's expression for tt, viz. :

TT 2 2 2

Examples.

(1) Prove that as 6 increases from to Jir, ^ continuaUy diminishes^

and ^ continually increases,
o

We shall shew that 3 > } j ;
that is

(^+ A) sin ^>^ (sin ^ cos A+ cos ^ sin A), or - >
e h+{\-cmh)e'

T^T , , , ,
tan ^ _ sin A , sin A sin A

Nowweknowthat 3 >1> T ,
and 7 >T-r7i rwi smce 1-cosA

h h A+ (l-cosA)^'

is positive, hence the inequality is established
;
thus ^ diminishes from

B

1 to 2/7r, as 6 increases from to \tt.

We shall next shew that

tan(^-i-A) tan^ ., /^i tn >, />. tv . >. ,.. ,

zV^ >
-~Q- >

o^ ^ si^ (^+ A) cos 6>{e+h) sm ^ cos (^+ A) ;

this is equivalent to

A ' i-^ I A ,A,i\ sinA sin^ ,. ,,6smh>h sm cos (^+A), or -j > - cos (^+ A\

now we may suppose h<d, hence by the first theorem

sin A sin 6 , ^. _ sin / sin ^ , ^ , k

T > -x~ )
^iid therefore - -^>a~ cos (^+ A).

Thus as 6 increases from to ^n,
-

^i
increases from 1 to 00 . The theorems

may be seen to be true, by referring to the graphs of sin 0, cos 0, given in

Art. 32; it will be seen that in the first case the ratio of the ordinate to

the abscissa diminishes, and in the second case increases, as increases from

to ^TT.

(2) Prove that the equation ^a^x=Xx has an infinite number of real roots,

andfind the approximate values of the large roots.

In Art. 32, we have drawn the graph of the function tan x
;
draw in the

same figure the graph of X^, this is a straight line through the point 0. The
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straight line will obviously intersect each branch of the graph of tan x, and

the values of ^ corresponding to these points of intersection are the solutions

of the equation. There is therefore a root of the equation between

^=(2^-1) I
and (2^+ l)|,

TT
where k is any integer. If k be large, then {2k+ 1) ^ is obviously an approxi-

77

2
mate solution; to find a neaij^r approximation let ^=(2^+ 1) g+y, where y is

Att
small, then-coty=X3/+ (2^+l)

-
; putting cosy= l, siny=y, and neglecting

y^y we have

-l= (2*+ l)^y, or3,= -^j^, therefore
^=(2*+l)|- p-^^

is the approximate solution. To find a still nearer approximation, neglect ?/^,

2
puttmg y= -

, . m the terms which involve ^^, we have

hence ^{2k+l)'^= -l+i^-X)

ov v

(2i&+ 1)2X2^2'

2 8
^^^

~ '

{2k^\)\TT
'^^^~^\u+ lW'r:^

'
*^ approximate value of x is there-

fore
^-(2^+l)|- (2^^^i)^^

+ (i-X)
^2^^1^3X3,3

. We have supposed X to

be neither very large nor very small.

1 6
(3) Prove that ^=cotd+\ tan -=-\-^ tan

-+ 1 tan
^+ . ad inf.

It can easily be shewn that

6 6
h cot - - cot 6=\ tan -

,

B 6 6
hence also i cot - - ^ cot -= | tan -

,

1 .^ 1 . ^ _ 1
+

^
^^^

92n
~

92^1^1
^^^"^ 92^ 1

~
92;i

''^^
92^ '22" 22" 22"~i 22**~i 22" 22

hence by addition we have

1 ^1Now when n is indefinitely increased, the limiting value of^ cot
-^^

is 7 ,
22 22" ^

hence the sum of the series to infinity is ^
- cot 6.

If we put 6=
^TT, we obtain the theorem

-=
itan|-l-itan|+t,_^g

-= i tan'l^-l-
1
tan^+ J^ tan ^+ ....
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y The limiting values of certain expressions.

97. When n is indefinitely increased, the limiting values of each

of the expressions, cos -
, ^ ,

is unity, hence the limiting values

n

A I ,
are also unityprovided r is any quantity which

n

is independent of n ;
but if r is a function f(n) of n, which becomes

0\f{n) I ^^^n
infinite when n does so, the expressions (

cos -
j

,
I ^ |

are

\ ^

undetermined forms of the class 1, and the values of their limits

depend upon the form off(n).

... / ^V<^)
To determine the limiting values of ( cos -

j
,
we have, denoting

the expression by u,

loge u = \f{n) loge (
1 - sin^.2 _

n

= -Uin) sm^ - + t sin"* - + . . .

n ^ n

hence we can find the limiting value of logg u, and therefore of u,

in the following cases

(1) f{n)
= n.

1
. ( . e

,
. J \

loge u = ^n sm -
1 sm - + -J

sm^ - + ...;n\ n n

n
\ now 71 sin - = 1 in the limit and the other factor becomes zero,^ n

hence loge ^ = 0, or t^ = 1 in the limit.

(2) f{n) = n\

. .6/, , . e
loge ^ = - in'sin^-

(^1

+ isin- +
...j

= -i^2in the limit;

thus the limit of u is e~^^.
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(3) f{n) = nP, where ^ > 2.

log. z.=:~Ksin^f(H-isinf + ...).
72^^

n\ n

= 00
,
when n is infinite,

hence the limit of u is zero.

. e
sin -

98. To find the limiting value of I y^ I
;
since x is less

^
n / n

. e
sm - ^ / sm -

n u , ,. .. ^1 n

n

than 1 and greater than ^
or cos -

,
the limit of I ^ I lies

tan- \
-

n \ n

between 1** or 1, and (cos-i
;
thus from case (1) in the last

Article, the limiting value of the expression is unity. We see

^p- I
and of I ^ I

(p>2)

n / \ n /
lie between 1 and e~^^, and between 1 and 0, respectively.

Series for the sine and cosine of an angle in powers of its

circular measure.

99. In the formulae (39), (40), of Chapter lY. write 6 for

A, and let x^nO, we have then

sin ic = ii cos"-i ^ sin ^ - (̂^-1)(^-^)
^^^n-z q gi^s ^ + . . .

+ (_ 1). "<"-l^)-(7^'')
cos e sin-+' 0+...,

n (n ~~ 1 1

cos X = cos^ 6 ^n^ cos"-^ 6 sin^ 6 + ...

2!

/ ^.,n(n l)...(n 2s + l) _ /i .
<, /i+ (- 1) \c.\, ^^ ^ cos^-2 6 sm2 6+ ....^ '

(2s) !

We may write these series in the forms

(2r+l)
H. T.
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, . x(a;-6)
'

^^ /sin dV
cos a; = cos** ^ - ^-TT-, -^cos**-2^^^- +...

where

x(x-e)...(x-2FTld) _^_, ^ /sin 6I\+"
^ = WTW. <=os^^(^^j

-....

Now each term in R will be numerically greater than the

following one, provided

(a;-2r + Sd (x -2r + 40) /tan ^y
(2r + 4) (2r + 5) V 6 )

^
'

for the ratio of any term to the following one diminishes as

r increases ;
also each term in S will be less than the next one,

provided

{x
- 2s + 26) (x

- 2s + 3^) /tan 6'

(25 + 3) (25 +4)

/tan o\ 2

<1.

Suppose r, s any fixed numbers so great that these conditions

are satisfied, then the series of terms in jR and S are such that

each term is less than the preceding one, therefore R and S are

positive and each less than its first term
;
we can therefore put

x(x-d)...(x-2r + 2d) ^ ./sin^\2'+8^ = '-
wh)-\

-'cos-
^(-^) .

and S = e

j^^^^^ cos-^0(^-^j
,

where e, e are proper fractions. Now let n be indefinitely

increased, x remaining finite, so that 6 becomes indefinitely small,

and let r and s be fixed numbers such that

. (a;-2r+3(9)(a;-2r + 4(9) /tan OV
'^=''

(2r + 4) (2r + 5) V~^/ ^ '

{x-2s-{- 26) (x-2s + SO) /tan 19 ^^

^'=
(25 + 3) (25 + 4) [~6~)

^ ^'

Now since L ^
=

1, we have L
( z~)

=
1> where k is any
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COS -
\ nl

fixed finite number ;
also L cos*^~* 6 = L l ^ ,

and we know
'

cos*^ 6

cos
-J =1, and also L cos* 6 = 1, therefore

L cos"~* ^ = 1. The series for sin x, cos a?, become therefore, put-

ting ^ = 0,

sin = ^ - 1; + f,-...+(- ly ^5^-TY, + (- ir> e.
3! 5!

'

^(2r + l)!^
'

\2r + i)\'

where
, 6o' are the limiting values of e, . These equations hold

for all finite values of x, provided r, s are numbers large enough
to satisfy the inequalities

/y2 /y2
tMJ ^ %MJ ^

(2r + 4)(2r + 5)
'

(25 + 3)(2s + 4)

such values of r and 5 can be found, for any given value of x.

Now let r and 5 become indefinitely great, the finite series then

become infinite ones, and we have, since the last term of each

series becomes infinitely small,

/r^ /v^ /V.7 ,y,2m+l
tAy %Rj %AJ , K %Aj

sm ^ = a;-^, + - -^ + ...+(- IX
3! 5! 7!

' ^ '

(2m+l)!
^"''

/>2 /yf4 /y6 /y2Wl

COS.=
l-2;+J;-g^ + ...+(-ir(2^,+

....

The ratio of the absolute value of the m + 1th term to the

preceding one, is -^ in the first series, and -^r in the second^ ^ 2m + l '2m
series, and whatever x is, each. of these ratios may be made as

small as we please by making m large enough ;
we thus verify what

has been proved above, that these infinite series are convergent for

all finite values of x.

Examples.

(1) Expand cos^ x in powers ofx.

We have co8^a;=^ (cos 3^+3 cos^) ; expanding cos 3x, cos x'. in powers of

32n I 3
X, we find for the general term in the expansion of cos^^, (

-
1)** 7-7-^\'. x^'^.' ^ / 4 (2/i) !

It will be seen that any integral power of cos x or sin .r, or the product of two

such powers, may be expanded in powers of .r, by putting the expression into

the sum of cosines or sines of multiples of ^.

92
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(2) Expand tan x in powers of x as far as the term in \!.

We have tan.=
{.-^

+^-^4}{l-^
+ |j- .^J"',

leaving out

terms of higher order than x^. Expanding the second factor, we have

multiplying out and collecting the coefficients of the terms up to ^", we find

tanar=a?+^a;3^.^^+ ^7_^7.

/s rf. 7 7 7. ... 7 J, sin (tan x)- tan (sin x) , _

(3) Find the limiting value of
^ ^

^
^^

,
when x= 0.

The numerator of the expression is equal to

tan X-} tan^ x+ ^l^ tan^ x - -g^jj tan'' a; - sin .r- ^ sin^x-^ sin^ x - -^ sin'" Xy

using the expansion obtained in the last example. This is equal to

^20(1+^^"^)- 5040(^+^^+^^''+tt^O-^^-^(i+^HH^)+T^(i+l^')-
~

rejecting all terms of higher order than x"^
;
this expression reduces to -

^x'''.

The limiting value of the given expression is therefore 1/30.

A Relation between Trigonometrical and Algebraical

Identities.

100. From any Trigonometrical identity in which the angles

are homogeneous functions of the letters, a series of Algebraical

identities may be deduced, by expanding the circular functions

in powers of the circular measure of the angles, and equating

the terms of each order. Thus for example, in the formula

sin a sin 6 = ^ (cos (a 6) cos (a + 6)}, expand each of the sines

and cosines and equate the terms of the second order, we have

then ab = l {(a + bf - (a
-

bf}. In Articles 44 and 47 of Chapter

IV., we have given a number of examples of analogous Trigono-

metrical and Algebraical identities; in each case the Algebraical

identity is obtained, as we have above explained, from the Trigo-

nometrical one. For example, in example (11 ),
Art. 47, which may

be written

2 sin^ a sin (6 + c a) 2 sin a sin b sin c

= sin (6 -h c a) sin (c -H a 6) sin (a 4- 6 c),

if we equate the terms of the third order, when the sines are

expanded, we obtain the analogous Algebraical identity

Sa^ (b-^c-a)- 2abc = (b + c- a){c + a'-b){a-{-b
-

c).
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EXAMPLES ON CHAPTER VIII.

1. Prove geometrically that

tan 6 > 2 tan ^^, where <^.
2. Trace the changes in the value of tan 3^ cot^ ^, as $ increases from

to ^.
Shew that 17 + 12^/2 is a minimum and 17-12^2 a maximum value of

the expression.

3. Prove that tan 3^ cot $ cannot lie between 3 and 1/3.

4. Prove that 6 > ^r-, ;, ,
where 6<^n.

2+cos^' ^

5. Prove that 3 tan 5^ > 5 tan 3^, if 6 lies between and tt/IO.

6. Shew that the value of .- o^ :ri when ^= 0, is i.

7. Prove that sin (cos d) < cos (sin B), for all values of d.

8. Prove that the value of the infinite product

(l-tan^|)(l-tan2g(l-tan2|3).
.IS .

tan^

9. If -.

-r^
= l+n, and n be very small, prove that

sin (^
=

(1 ^n) sin ^d, approximately.

10. Find the value of ^^^^~?^l ,
when e=hr.

cos {6 sm $)
' ^

11. Find the limiting value, when ^= 0, of ^ .

12. Prove that the limiting value of

f cot^ yanMirr+jg)

W2"-2sinV ,when^=i.,is.l

13. Prove that

(
)
= 1 - sm'^ - - cos'^ - sm-^ - cos-^ - cos^ - sm^ - -

\ X J 2 24 248
14. If in the equation tan^= : 1- r 1 , the angles

cot 0^ + cot 02 cot 03+ cot a^

oj, 02, ag, 04 be all nearly equal ; shew that 6 is very nearly equal to

i(i+ a2+ 3+ 4)-
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15. Sum the series

cos - +2 cos - cos ^ +22 cos - cos COS ^ + to n terms.
2 2 2"^ 2 2^^ 2"*

16. Prove that the sum to infinity of the series

tan- sec^+ tan ^sec -+tan z^^sec ^ + is tan x.
2 22 2 2^ 22

17. Shew that
A 6 S 6

6 - sin 6 cos ^= 2 sin 6 sin^ ^ + 2^ sin - sin^ -+ 2^ sin - sin^ -+ ad inf.
2 2 4 4 8

18. Prove that tan^: J J Jcot - - cot - - cot -
2 4 8

19. If ^ < TT, shew that

[n
A 6~\ [~ B B B~\

sin-+sin-2 + +
sin-J|^cos-+cos2r,

+
+COS27J

S A . ^ "l

<{:^sm^sm- sin^^J
.

20. If a and b be positive quantities, and if a^
= ^ (a + 6), b^

=
(i6)*,

1 (62 _ a2)i
2=i(^i+ ^i) ^2=(^2^i) >

^^^ ^ ^^> shew that ^ = & =
cos 1

r-

Shew that the value of n may be calculated by means of this formula.

21. Find the value of the infinite product

(sin B cos ^B)^ (sin ^B cos ^Bf (sin ^B cos |^)

22. If tan ^= 4^, the value of B between and ^tt will be

2 V2r

11 403

"^24^3 "^480775"^'

23. Prove that ^-- ^ = 2
1 + 2 cos B 1

=il
. B

' ^ I -.
sin ;r-sm^ Si 2"

2"_ ^
^2C0S--1

24. Prove that

2cos2^+ l

2cos^+ l

25. Sum to n terms the series

=
(2 cos ^- 1) (2 cos 2B

-
1) (2 cos 2-i^- 1).

-
log tan 2B+

^2 ^^S
*^^ ^^^+ ^ log tan 2^B+ ,

26. Having given that the limiting value, when ^=0, of ^ ^-
^

is

neither zero nor infinite, find n.
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27. Find the limit, when a;=0, oi

1 cos 2x+ cos 4r cos 6a^ 4- cos 8x cos 10^ - cos 14x+ cos 16^

3 4 cos 2:r+cos 4a;

28. Prove that the sum of the infinite series whose r^^ term is

29. If e be very small, and = ^ - 2e sin ^+ fe^ sin 2^, shew that

6= <j)-\-2e8m<f)+ fe^ sin 2^, nearly.

30. If y=2;4-i{-sin(^+^a), expand z in powers of the small quantity k,

as far as the term in k^.

31. From the Trigonometrical identity

sin {d-h) sin (a
- c)+sin {h c) sin (a o?) + sin {c-d) sin (a

- 6)=0,

deduce the Algebraical identity

{d-h){a-c){{d-bf+{a-cf] + {h-c){a-d){{h-cf+ {a-d)^]

+ (c-c^)(a-6){(c-<^)2+ (a-6)2}=0.

32. Prove that <^ differs from ^y^-r ^rr^ by ^^^ nearly, being a
^

(^iu -|- cos ^(p)

small angle. (Snellius' formula.)

33. Find the circular measure, to five places of decimals, of the smallest

angle which satisfies the equation sin (^+ ^tt)
= 10 sin a^.

34. Solve the equation (sin 0)'^^^^ b, approximately, where a is positive

and not large, and 6 is known to be nearly equal to a, which is itself not very
small.

35. Shew that there is only one positive value of such that = 2 sin 0,

and find its value to two places of decimals by means of a table of logarithms.

36. In the relation asm~^a^=b sin"^^/', where a and b are integers prime
to each other, prove that there are 26 values of y for each value of ^, unless

a and b are both odd numbers when there are b values.

37. Assummg that if a be the acute angle whose sine is
,
sin 7a must

be
, prove that casa-cos

^ exceeds y-^ by less than -0000005.



CHAPTER IX.

TEIGONOMETRICAL TABLES.

101. In order that the formulae of Trigonometry may be of

practical use in the solution of triangles and in other numerical

calculations, it is necessary that we should possess numerical tables

giving the circular functions of angles, so that from these tables we

can find to a sufficient degree of accuracy the functions correspond-

ing to a given angle, and conversely the angle corresponding to a

given function. Such tables are of two kinds, (1) tables of naturaP

sines, cosines, tangents, &c., in which the numerical value of the

sines, cosines, tangents, &c., of angles, are given to a certain number

of places of decimals, and (2) tables of logarithmic sines, cosines,

tangents, &c., in which the logarithms to the base 10, of these

functions, are given to a certain number of places of decimals.

The latter kind of tables are those which are now used for most

practical purposes ;
in nearly all such tables the logarithms are all

increased by 10, so that the use of negative logarithms is avoided
;

the logarithms so increased are called tabular logarithms and

written thus, L sin 30
;

so that L sin 30 = 10 + log sin 30.

Calculation of tables of natural circular functions.

102. We shall first shew how to calculate tables of the natural

circular functions, which will give the values of these functions

accurately to a certain specified number of places of decimals, for

all angles from to 90, at certain intervals such as 1' or 10".

We will first calculate the sine and cosine of 1' and of 10''.

1
Logarithms were formerly called "artificial" numbers, thus ordinary numbers

were called " natural" numbers.
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(1) To find sin r, COS V.

Let 6 = 7z TiA denote the circular measure of 1', then
180 X 60

^ 3-141592653589793... ^ .ooo290888208665
10800

to 15 places of decimals, hence

jl93
= J (-0003)3

= -000000000004

to 1 2 places of decimals.

Now from the theorem in Art. 95, sin 1' lies between 6 and

6 ^6^, and these quantities only differ in the twelfth decimal

place, therefore to eleven places of decimals

00029088820 is the correct value of sin 1'.

We find also 1-^0^ = -999999957692025029

to 18 decimal places,

and ^d' = ^V (-00029. . .)'
= '00000000000000029

to 17 decimal places.

Now cos 1' lies between 1 - ^6^ and 1 J^^ + -^6^ ;
and since

these two quantities differ only in the 16th decimal place, we have

cos 1' = -999999957692025 correct to 15 decimal places.

(2) To find sin 10", cos 10".

If 6 = hrT^TTp. ,
the circular measure of 10",

64800

we find e = -000048481368110, to 15 decimal places,

J^3
= -000000000000021, to 15 decimal places,

hence the two quantities and $ ^6^ agree to 12 decimal places,

therefore sin 10" = -000048481368, to 12 decimal places.

Also ^6* is zero to 17 decimal places, thus cos 10" = 1 ^0^,

or cos 10" = -9999999988248, to thirteen decimal places.

103. The formulae

sin nA = 2 cos A sm(n l)A sin (n 2) A,

cos nJ. = 2 cos A cos {n l)A cos (n 2) A,

enable us to calculate the sines and cosines of multiples of V, or of

10". Let A = 10", 2 cos 10" = 2-k where k = -0000000023504,

then the formulae may be written

sinnA sin(w l)A = {sm(n l)A sm(n 2)A}ksin(n 1)A,

cos nA cos{n 1)A = (cos(7i 1)A cos{n- 2)A} kcos(n l)A ;
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if in these formulae we put n = 2, we can calculate sin 20"

and cos 20". We can now by letting ?i = 3, 4, 5,... calculate

the differences sin nA sin (n 1) A, cos 7iA cos (n 1) A,

when the preceding differences sin (n 1) A sin (n 2) A,
cos (n 1) A cos (n 2) A, and also sin (n 1) A, cos (n 1) A,

have been found
;
hence these differences can be found by a

continued use of the formulae
;
we can then find sin nA, cos nA,

and thus we can form a table of sines and cosines of angles at

intervals of 10". We have k = -000000002354, thus in calculat-

ing ksm(n 1)A, k cos{n l)A, we need only use the first few

figures of the value of sin (n-'l)A, cos {n l)A.

104. When sinnA, cos7iA, are thus calculated by successive applications

of the formulae, the errors arising from the use of approximate values of

sin J, cos^, will accumulate during the process ;
it is therefore necessary to

consider how many places of decimals must be used during the process, in

order that with assumed values of sin^, cos^, correct to a certain number of

places of decimals, we may obtain values of sin nA, cos 7^-4, which will be

correct to a prescribed number of places of decimals.

Suppose m the number of places of decimals to which sin^, cos J, have

been calculated, and suppose that r is the number of places of decimals that is

retained in the calculation of the sines and cosines of successive multiples ;

let Un be the value of sinn^ or cos nA, obtained by this process, and u^+x^
the corresponding correct value, we have then

also w=(2 -
k') Un-i-Un-2, whcrc k' is the approximate value of ^ to r places

of decimals
;
let {k

-
k') Un-iyn we have then

hence x^^^yA /c) x^^^-^ x^^.^ yn

or .^n=2^n-i-^n-2-^n, whcrc ^=y+^^-i ;

this may be written (^n
~" ^n - 1)

=
(-^n - 1

~
-^n - 2)

~
-^n >

whence {x^-i- x^_^^{Xn-2- ^n-z)
-
^n-i

/y /y /y ^_ fir

2

therefore ^-^n-i=^i-(%+%+"-+'2'n) ;

the quantity kx^-^ is very small compared with 2^_j, hence yn-\-kXn-i differs

insensibly from y^, hence each of the quantities z^, z^...Znis less than 1/10^,

therefore their arithmetic mean On is less than 1/10'*, thus

Xn ~" Xn -\^X-^^ (n L) C7 ,

or Xn= nx^-{B2 + '2,e^-^...-\-n-\Bn)',
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now ^2) ^3-..^n, are each numerically less than 1/10'*, hence

-(^2+ 2^3+-)
is less than |w (w- 1)/10'', or

11 n(n-l)
"^10' 2.10'-

'

7h To

a fortiori
^"^lO^^

+ Oo^" ^"^'

If in this formula, 7/i= 12, w= 10800,

108 5832

^*^Yo^"^ 10'"
~*

< -0000000108+ -00 5832,

where there are r-8 zeros in the last decimal, hence if r=15, ^ < "00000007,

or Un is correct to seven places of decimals
;
now 10800 x 10"= 30, hence the

sine or cosine of 30 will be found correct to seven places of decimals if when

calculating the sines or cosines of the multiples of 10" up to 30 we retain

15 places of decimals throughout the calculation. The formula (a) may be

applied in all such cases to determine the number r, so that x^ may be zero

to a certain number of decimal places^.

Example.

Prove that in order to calculate the sines and cosines of multiples of 10"

up to 45, correct to 8 places of decimals, the values of sin 10", cos 10" being

known to 12 decimal places, it is necessary to retain 17 decimal places in the

calculation.

105. When a table of sines and cosines of angles at intervals

of 10", or of 1', is required, it is only necessary to calculate the

values for angles up to 30, we can then obtain the values of the

sines and cosines of angles from 30 to 60, by means of the formulae

sin (30 + ^) + sin (30 -A) = cos A,

cos (30
- ^ )

- cos (30 + ^) = sin J.,

by giving A all values up to 30. When the sines and cosines of

the angles up to 45 have been obtained, those of angles between

45 and 90 are obtained from the fact that the sine of an angle is

equal to the cosine of its complement, so that it is unnecessary to

proceed in the calculation further than 45.

The method of calculating Tables of circular functions, which we have

explained, is substantially that of Rheticus (1514 1576); his tables of sines,

tangents, and secants were published in 1596, after his death. The earliest

1 This article has been taken substantially from Serret's Trigonometry.
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table is the Table of chords in Ptolemy's
"
Almagest," for angles at intervals

of half a degree. Historical information on the subject of Tables will be

found in Button's "
History of Mathematical Tables

"
;
see also De Morgan's

Article on Tables in the "
English Encyclopaedia."

The verification of numerical values.

106. It is necessary to have methods of verifying the correct-

ness of the values of the sines and cosines of angles calculated by
the preceding method

;
this may be done by the following means :

(1) We have formed in Art. ^Q, a table of the surd values of

the sines and cosines of the angles 3, 6, 9... differing by 3; we
can therefore calculate the sines and cosines of these angles to

any required number of places of decimals, then the values of the

functions obtained by the method of calculation above explained,

may be compared with the values thus obtained. If necessary,

the values of the sines and cosines of angles differing by 1 30',

may be obtained by means of the dimidiary formulae, and we have

thus a still closer check upon the calculations.

(2) There are certain well-known formulae called formulae

of verification, these are

cos (36 + ^) + cos (36
- ^) = cos ^ + sin (18 + ^) + sin (18

- A)
sin^= sin (36 + ^) -sin (36-^) + sin (72 -J.) -sin (72 + ^),

(Euler's formulae).

cos ^ = sin (54 + ^) + sin (54-^) -sin (18 + ^) -sin (18-^),
(Legendre's formula).

The verification consists in the substitution of the values obtained

of the functions, in these identities.

Tables of tangents and secants.

107. To form a table of tangents, we find the tangents of

angles up to 45, from the tables of sines and cosines by means of

the formula tan A = sin^/cos A ;
the tangents of angles from 45

to 90 may then be obtained by means of Cagnoli's formula

tan (45 + ^) = 2 tan 2A + tan (45
-

A).

A table of cosecants can be formed by means of the formula

cosec A = tan ^4 + cot J., and a table of secants by means of the

formula sec J. = tan A + tan (45 ^A).
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Calculation by series.

108. A more modern method of calculating the sines and

cosines of angles is to use the series in Art. 99
;

if we put

a? = . 7: we have
n 2

. ,..^^o. , ,
1 fm irV 1 fm ttV

sm(-90| =
(-.K)-^.f--.2 +5-, --2^'^?o)=e-i)-3-ie-i

cos(^90)
= l-i1 /m

Try
1 /m 7r\^

We thus obtain the formulae

sin (m/7i 90) = 1-57079 63267 94896 61923 13 m/n

-0-64596 40975 06246 25365 58 m^/n^

+0-07969 26262 46167 04512 05 m^/n^

-0-00468 17541 35318 68810 07 wJ/n'^

+ 0-00016 04411 84787 35982 19 m^/n^

-0-00000 35988 43235 21208 53 mH/w"

+0-00000 00569 21729 21967 93 mi>i3

-0-00000 00006 68803 51098 11 m^^/n^^

+0-00000 00000 06066 93573 11 m^V^i''

-0-00000 00000 00043 77065 47 mi>i9

+ 0-00000 00000 00000 25714 23 m^^n^^

-0-00000 00000 00000 00125 39 m^^n^^

+ 0-00000 00000 00000 00000 52 m^/n^
cos (w/7i 90) = 1-00000 00000 00000 00000 00

-1-23370 05501 36169 82735 43 m^ln^

+ 0-25366 95079 01048 01363 66 mVw*
-0-02086 34807 63352 96087 31 m^/n^

+ 0-00091 92602 74839 42658 02 m^/n^

-0-00002 52020 42373 06060 55 m'^^/'n}^

+0-00000 04710 87477 88181 72 m^^n^^

-0-00000 00063 86603 08379 19 m^yn^'^

+0-00000 00000 65659 63114 98 mis/wio

-0-00000 00000 00529 44002 01 m}^/'n}^

+ 0-00000 00000 00003 43773 92 ^20/^20

-0-00000 00000 00000 01835 99 mP/n^^

+ 0-00000 00000 00000 00008 21 m2V7j24

-0-00000 00000 00000 00000 03 w26/7i26
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Since we need only calculate the sines and cosines of angles up
to 45, the fraction mjn is always taken less than |, so that very

few terms of the series suffice for the calculation to a small number

of decimal places. These series are taken from Eulers "
Analysis

of the Infinite," where they are given to six more decimal places.

Logarithmic Tables.

109. When tables of natural sines and cosines have been

constructed, tables of logarithmic sines and cosines may be made

by means of tables of ordinary logarithms which will give the

logarithm of the calculated numerical value of the sine or cosine

of any angle ; adding 10 to the logarithm so found, we have the

corresponding tabular logarithm. The logarithmic tangents may be

fouiid by means of the relation L tan ^ = 10 + Z sin A L cos A,

-and thus a table of logarithmic tangents may be constructed. We
shall in a later Chapter give a direct method by which tables of

logarithmic sines, cosines, and tangents, may be constructed.

Description and use of Trigonometrical Tables.

110. Trigonometrical tables, either natural or logarithmic,

a,re constructed as follows :

(1) They give directly the functions for angles between

and 90 only ;
the values of the functions for angles of magnitudes

beyond these limits may be at once deduced.

(2) The tables give the values of the functions of angles from

to 45*, and from 45 to 90, by means of a double reading of

the same figures ;
the names of the functions, sine, cosine, tangent,

and also the degrees (< 45), are printed at the top of the page,

and the corresponding minutes and seconds are printed on the

left-hand column, the angles increasing as we go down the page ;

again the names cosine, sine, cotangent, &c. and the degrees

(>4o), are printed at the bottom of the page, in the same

columns in which sine, cosine, tangent, respectively are printed

at the top; in the right-hand column are printed the minutes

and seconds for the angles which are complementary to the

former ones, these latter angles of course increasing as we go
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up the page. We give as a specimen a portion of a page of

Callet's seven-figure logarithmic tables for angles at intervals

of 10".

17 deg.

/
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the difference between the values of the function for the smaller

tabular angle and an angle greater than this angle by y",
is :^ a

;

the increase of the function for an increase 10" of the angle is

a, and that for an increase y" (< 10'') is that fraction of a which

y" is of 10''. In the specimen of Callet's tables which we have

given, the differences between consecutive logarithms is given
without the decimal points, in the columns headed dif.

For example, suppose we wish to find Zsin 17 51' 13", we find from the

table

L sin 17 51' 10" =9-4865328,

L sin 17 51' 20"= 9-4865982,

o?i/:
= 654;

we have ^ x 654= 196*2, hence we must add -0000196 to the first logarithm
and we obtain L sin 17 51' 13"= 9-4865522.

Again suppose we require the angle whose tabular logarithmic tangent is

9:5082032. We find from the table that the given logarithm lies between

the two

L tan 17 51' 40"= 9-5081819,

L tan 17 51' 50"= 9*5082540,

dif.
= *l^\ ;

the difference between the given logarithmic tangent and the first obtained

from the table, is 213, hence the angle to be added to 17 51' 40" is

f|fxlO" = 2"-9 approximately, hence the required angle is 17 51' 43"

approximately.

The Principle of Proportional Parts.

112. We shall now investigate how far, and with what excep-

tions, the principle of proportional increase, which we have assumed

in the last article, is true.

Suppose oc to denote any angle, and f(x) to denote a natural

or logarithmic function of oo, we shall shew in the various cases?

that if h be any small angle measured in circular measure, added

to w,

f{x + h)-f{x)=:hf{x) + h?R,

when f'{x) is another function of x, and J? is a finite quantity
which remains finite when /i = 0. From this we see that, provided
h be sufficiently bxubIX, f{x + h)f{x) is for a given value of x

proportional to the quantity h, and it will appear that in general
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the quantity h?R will be so small that it will not affect the values

of the functions to the number of decimal places to which they are

f(x -\-K) fix) .

tabulated
;
hence*^-^ r "^^ is constant to the requisite number

of decimal places for a given value of x. However, two exceptional

cases will arise,

(1) If X be such that /' {x) is very small then the difference

f{x 4- h) f{x) may vanish, to the order in the tables; the difference

f(x + h) f{x) is then said to be insensible, and in that case two

or more consecutive tabulated values oif{x) may be the same.

(2) If X is such that R is large compared with /' {x), the term

h^R may not be small compared with hf (x), in this case the differ-

ence f(x + h) f{x) is not proportional to A, and is said to be

irregular.

In either of these cases (1) and (2), the method of proportions

fails, but we shall shew how by special devices the difficulties are

obviated.

The student who is acquainted with Taylor's theorem, will see that the

formula given above is really the special case of Taylor's theorem

where ^ is a proper fraction, thus R=^f"{x-\-Bh), and the error made in

assuming /(;^:+A.) /(a?)=A/' (^), lies between the greatest and least values

which \K^f" {z) assumes between the limits z=x and z-=x-^h.

118. First let f{x) = sin x,

then sin {x + A) = sin x cos h \- cos x sin A,

or sin {x-vh) sin x = cos x{h ^h^ +...) sin a? {^h^ -^-^h^ + . . .)

= h cos x ^h^ sin x + higher powers of h
;

in this case /'(a?)
= cos x, and the approximate value of ii is J sin x,

thus sin (x -{- h) sin x = h cos x ^h^ sin x (1),

is the approximate difference equation.

Similarly it may be shewn that, approximately,

cos (x + h) cos x = h sin x ^h^ cos x (2).

A . / 7 ^ sin h
Agam tan (x-{-h) tan x = t r-

cos ix; cos
(ic + /i)

h

cos^ x hsinx cos x
'

or, approximately,

tan (x + h) tan x=^h sec^ x + h^ sec^ x tan x (3).

H. T. 10
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Ai r / , z.\ r . sin(x-\-h)
Also L sm (w + h) Lsm x= loer ^^ sma;

=
log (1

-
^h^ 4- h cot x),

or L sin (x + h) L sin a; = A cot a; ^ /i^ cosec^ a; (4).

Similarly L cos (x-{ h) L cos x = h tan a;
^-A-^

sec^ a? (5),

Ztan(a; + A)-Xtana; = -^ 2h'^?^ (6).smajcosa; sm^za?

In each case we have found only the approximate value of

II, that is to say, we have left out the terms involving cubes and

higher powers of h. It appears from these six equations that

if h is small enough, the differences are, for values of x which

are neither small nor nearly equal to a right angle, proportional

to h. The following exceptional cases arise.

(1) The difference sin (a; + /i) sin a? is insensible when x

is nearly a right angle, for in that case h cos x is very small
;

it

is then also irregular, for ^h^ sin x may become comparable with

h cos X.

(2) The difference cos (x-^h) cos x is insensible when x

is small
;

it is then also irregular.

(3) The difference tan (x -\-h) tan x is irregular when x

is nearly a right angle, for h^ sec'^ x tan x may then become

comparable with h sec^ x.

(4) The difference L sin (x + h) L sin x is irregular when
X is small, and both insensible and irregular when x is nearly a

right angle.

(5) The difference L cos (x -i-h) L cos x is insensible and

irregular when x is small, and irregular when x is nearly a

right angle.

(6) The difference L tan {x + h) L tan x is irregular when

X is either small or nearly a right angle.

It should be noticed that a difference which is insensible

is also irregular, but that the converse does not hold.

In order to investigate the degree of approximation to which the principle

of proportional parts is in any case true, it is the simplest way to consider the

true value oi R\ in the case of sin (^+A) sin x the true value of the second

term is \h^ sin (x+ 6h), where ^ is a proper fraction
;

if the table is for

/ IOtt \2
intervals of 10", the greatest value of \Ji^ is ^ (

^^r ^-r
-

j
or ^ (-00005)2,
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this gives no error in the first eight places of decimals; in the case of

tan(^+A)-tan^ the error is {'00005ysec^{x-\-6k)taji(x+dh\ hence when

tana?+tan3^=40, the error will begin to appear in the seventh place of

decimals. In the case of Zsin^ there is no error in the seventh place of

decimals if a:> 5".

114. When the differences for a function are insensible to the

number of decimal places of the tables, the tables will give the

function when the angle is known, but we cannot employ the

tables to find any intermediate angle by means of this function
;

thus we cannot determine oo from the value of L cos x, for small

angles, or from the value of L sin no, for angles nearly equal to a

right angle. When the differences for a function are irregular

without being insensible, the approximate method of proportional

parts is not sufficient for the determination of the angle by means

of the function, nor the function by means of the angle ;
thus the

approximation is inadmissible for L sin x, when x is small, for

L cos X, when x is nearly a right angle, and for L tan x in either

case.

In these cases of irregularity without insensibility, the following

means may be used to efl'ect the purpose of finding the angle

corresponding to a given value of the function, or of the function

corresponding to a given angle.

(1) We may use tables of Lsinx, Ltamx, for the first few

degrees calculated for angles at intervals of one second, and for

L cos X, L tan x, for the few degrees near 90, calculated for each

second
;
Callet gives such a table in his trigonometrical tables

;
we

can then use the principle of proportional parts for all angles which

are not extremely near zero or a right angle.

(2) Delambres method.

This method consists of splitting L sin x or L tan x into the

sum of two terms, the differences for one of which are insensible

for values of x near those at which the irregularity takes place,

and the differences for the other one are regular; the difference

for the first of these terms is irregular, but this is of no con-

sequence, owing to its being also insensible. Thus if x be the

circular measure of n" a small angle,

L sin n" =
( log \- La] + log n,

102
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L tan n" = (log \- Lol\ + log n,

where a is the circular measure of V\

Now log {n + h) log n = log (
1 + -

hence the differences for log n are regular, if h be small compared

with n. Also the differences for log , log ,
are insensible,^ X ^ X

for

sin (x + h) 1
sin x , sin (a? + A) , x-\-h

losr
^^ T^ -

log
=

log ^
-^ -

log
- -

x + h ^ X ^sma? X

= h cot X -^ cosec^ x 1- ^-

2 X za?

=
/,(cot^-^)+J(i-cosec^^)

_ / 1 _1\ /tV 4cos2^ r
\sin X cos X x) 2 \ sin'-^ 2x a^j

each of these differences is insensible since the coefficient of h is

small when x is small.

If tables of the values of log y La, log f- Za, are^ X X

constructed for the first few degrees of the quadrant, we may
use these tables in conjunction with the tables of natural

logarithms of numbers, to find n accurately when L sin n" or

L tan n' is given, and conversely.

If L sin n" or L tan n" is given, find the approximate value of

sm X
n, then from the table we get the value of log

-
-\- La or

X

tfln X
log 1- La, either of which changes very slowly, then log n is

X

given by the value

^ . A sin a? ^ \
X sin n log \- La] ,

\ X J

T- , ,t (y tan X r \
or L tan n ( log V La\,
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and we find n accurately from the table of natural logarithms. If

sin OS

n is given, the table gives the value of log 1- La, and sin n" is
OS

then found by the formula.

(3) Maskelynes method.

The principle of this method is the same as that of Delambre's.

If a; is a small angle, we have

sin a?
^

x^ /_ x^\^ x .
,

,= 1 = (1 I = cos^a;, approximately,

hence log sin x = log x-\-^ log cos x
;

when a; is a small angle, the differences of log cos x are insensible,

hence it is sufficient to use an approximate value of cos^z?. If

log sin X is given we find an approximate value of x, and use that

for finding log cos x; x is then obtained from the above equation.

If X is given we can find log x accurately from the table of natural

logarithms, and also an approximate value of log cos x, the formula

then gives log sin x. We can shew in a similar manner, that

log tan X is given by the formula log tan x = log x ^ log cos x.

Example.

Shew that the following formula is more nearly true than Maskelyne's :

log sin ^= log ^
-

^-g log cos ^+ f| log cos ^d.

Adaptation of Formulae to Logarithmic Calculation.

115. In order to reduce an expression to a form in which

the numerical values can be calculated from tables of loga-

rithms, we must make such substitutions as will reduce the given

expression to the product of simple expressions; this may be

frequently done by means of one or more subsidiary angles, as

the following examples will shew.

(1) \/a^ + 6* = a^ sec^
(p, where tan

(/>
= 6Va^ hence

log v^a* + 6 = 2 log a + f (^ sec
</)

- 1 0),

where Z tan <^
= 10 4-3 (log 6 log a),

thus va^ + 6* can be calculated by means of logarithmic tables,

(j) having first been found from the tables.
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(2) a COS a 4- 6 sin a = <x cos (a <f))
sec

</>,
where tan

<^
=

h/a,

hence

log (a cos a + b sin a)
=

log a + L cos (a <^) X cos 0,

where
(/>

is found from

L tan
<^
= 10 + log b log a.

116. To calculate numerically the roots of a quadratic

equation supposing the roots to be real.

Let aa^ + 6a? + c = be the equation, and first suppose a and c

to be both positive. We have tan^ 6 2 cosec 26 tan ^ + 1 = 0;

now let oc = y^cja, the equation becomes
3/- + byj^ac +1 = 0;

hence if sin 2^ = 2 Vac/6, the quadratic in y will be the same as

that in tan 6, the roots of which are tan 6, cot 6, thus the

roots of the given quadratic are Vc/a tan 6, ^cja cot 6, where

sin 2^ = 2 s/acjb, and hence the roots may be calculated by means

of logarithmic tables.

If a and c are of opposite signs, we may take the quadratic

to be aaf^ 4- 6^ c = ;
in this case put x yJcja and it reduces

to
2/^ + byl^ac 1=0; comparing this with the equation

tan^ ^+ 2 cot 2(9 tan ^- 1 =

we see that if tan 2^ = 2 Vac/6, the roots of the quadratic in x

are ^c\a tan 6 and ^cja cot 6.

117. To calculate the roots of the cubic a? \- qx-^r ^

supposing them all to be real. We shall suppose q to be negative.

Consider the equation

sin^ ^ - f sin ^ 4- i sin 3^ =
;

let X =
2/
V 4g'/3, then the equation in x becomes

2/'-f2/ + ^(-3/4g)^ = 0;

this will be the same as the cubic in sin 6, if

sin 3(9 = 4r (- 3/4^)^
= (- 27rV4^3)^

hence the values of x are

V- 4^/3 sin 6, V- 4^/3 sin (6 + f tt), V-~4g/3 sin {6 + |7r),

the condition that sin 3^ :f> 1, is the condition that the roots of the

cubic are all real.
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We shall shew in a later Chapter, how to calculate the roots of

a cubic when two of them are imaginary.

The processes by which we have solved the quadratic and

cubic equations, shew that the two algebraical problems are really

equivalent to the geometrical problems of bisecting and trisecting

an angle respectively. It follows that a quadratic equation can

be solved graphically by means of the ruler and compasses only,

whereas the cubic can not in general be solved graphically by
these means, since they are inadequate for solving generally the

geometrical problem of trisecting an angle.



CHAPTER X.

RELATIONS BETWEEN THE SIDES AND ANGLES
OF A TRIANGLE.

118. If ABC be any triangle, we shall denote the angles

BAC, ABC, ACB, hj A, B, C, respectively, and the lengths of the

sides BG, CA, AB, by a, h, c respectively. We shall, in this

Chapter, investigate various important formulae connecting the

sides a, b, c, of a triangle with the circular functions of the angles.

These formulae will afford the basis of the methods by which we
shall solve a triangle in the various cases in which three parts of

the triangle are given.

119. From the fundamental theorem in projections, we see

that the sum of the projections of BA, AC, on BC, is equal to BC,
and that the sum of their projections on a perpendicular to BC is

zero. Expressing these facts we have, since the positive direction

of AC makes an angle C with the positive direction of BC,

or

and

L G B

BA cos B-\- AC cos C = a,

c cos 5 + 6 cos C=a,

BA sin B - AC sin C= 0, or csinB-b sin (7=0,
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which may be written 6/sin B c/sin G. These relations and the

corresponding ones obtained by projecting on and perpendicular tu

each of the other sides, in turn, may be written

a = b cos C + c cos B\

h = ccosA +acos C\ (1),

c = a cos j8 + 6 cos ^
J

a/sin A = 6/sin B = c/sin C (2).

The equations (2) express the fact that, m any triangle, the

sides are proportional to the sines of the opposite angles.

120. The relations (2) may also be proved thus: Draw the

circle circumscribing the triangle ABC, and let R be the length
of its radius, then the side BG is equal to twice the radius multi-

plied by the sine of half the angle BG subtends at the centre

of the circle, that is

BG=2RsmA, or 2Esin(180 -
^),

hence a = 2R sin A
; similarly

b=:2RsmB, and c = 2RsmG;
hence a/sin A h/sin B = c/sin C = 2R.

These relations (2) may also be deduced from (1); writing the first two

equations (1) in the form

a-bcos C-ccosB=Oj
- a cos C+b~c cos J. =0,

we can determine the ratios of a, b, c; we obtain

a be
cos C cos ^ + cosB cos B cos C+ cos A 1 - cos^ C '

hence -r. jy
= 5 ^ 7.= . ^ ^ ,

or a/sin^ = 6/sin5=c/sin (7.

To deduce (1) from (2) we have

a= sin(^+0)= , (sin^cos (7-|-cosi5sin(7),am A ^ '
sni A ^

b c
hence a=- =^ sin B cos C+ .

- cos B sin C= b cos (7+ c cos B,smB sm

which is the first of the relations (1).

If we eliminate a, 6, c, from the three equations in (1), we obtain the

relation cos2^ + cos2 5-|-cos2(7+2cos^ cos^cos (7=1, which holds between

the cosines of the angles of a triangle.
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121. If we multiply the equations in (1) by a, 6, c respec-

tively, and then add, we have

62 4-c2-a2 = 26ccos^,

which gives an expression for the cosine of an angle, in terms of

the sides
;
we may write this relation and the two similar ones for

cos B, cos G, thus

a^ = h^-{.c'- 26c cos
^1

b^ = c^ + a^-2cacosB[ (3).

c'' = a' + -2abcosC)

122. We may obtain these relations (3) directly by means of

Euclid, Bk. II. Props. 12 and 13. If AL be perpendicular to BC,
we have, when G is an acute angle,

AB' = AG' + BG' - 2BG . GL,

and when G is obtuse

AB' = AG' + 50 + 2BG. GL
;

in the first case GL = AG cos G, and in the second case

GL = AG 008(180" -G) = - AG cos C,

therefore in either case

c^ = a2 ^ 62 _ 2ab cos G.

To deduce the relations (2) from (3) we have

. b^-\-c^ a^
'"^^==

2bc
'

therefore

. 462c2 - (62 4. g2 _ ^2)2 ^ (26c+ 62+ c2-a2) (26c+ a^- 62 -c2)^^
462c2

~
462c2

{a+ b+c)(b+ c-a){c+ a-b){a+b-c)^^ sm ^-
-^j^ ,

thus 5 is equal to the symmetrical quantity

{a-\-b+ c) {b+c- a) (c+a-b) {a+b-c)

hence

4a^b^c^

sin^A sin2B sin^ C
a2 62 c2

'

from which (2) follows.

To deduce (1) from (3), divide the first two equations of (3) by c, and then

add them, we get

a2_j_62 a2_|_62= 2cH 2(6cos J. + acos5), or c= 6cos.4 +acos^.
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123. We have

sin^ ^A = i{l- cos A ), cos^ JJ. = ^ (1 + cos A),

hence

6^ + c^ - a^N .
, ,

/ b^-^d"- a^

or

smH^=i(l-^j^ ), cos^i^=i(l+ 25^);

sin^ ^A =
^^ +

^-^]^(;-^
+ ^>

,
cos^ iA = (^ + ^ +

^>g
+ ^^^)

.

Now let 25 = a + 6 + c, then 2 (s a) = 6 + c a, and we have

sin^i^ =^
^ ^, cos^i^ =

be
'

therefore

these formulae are more convenient than (3) as a means of

determining functions of the angles when the sides are given,

because they are more easily capable of being adapted to

logarithmic calculation.

r>i c^- sin 5 sin (7
,

124. Since . =
,
we have

b c

sin B sm G_bc 2 sin ^{B C)cosi(B + C) _b c

sin J.
~
~a' '

^^^

2sinl{B-^C)cosi(B + C)
~

a
'

hence
^ <^ . <^^^iSlz^ and

^ " ^ - ^^^^^^ ~ ^^

(6 + c)sin^^ (6-_c)jCos4^

'''~cosi(5-(7)' ''~sini(^-C)
^^^'

we obtain by division the formula

tan i (5 -(7) = ^^^ cot i^ (5).

To prove these formulae geometrically, with centre A and radius AB
describe a circle cutting AC in D and JE; draw DF parallel to BB, then

CE=b+c, DC=c-b, DEB=\A, DBF=C+^A-dO=^C-lB. We have

CD ^ sin DBF b-e_ sm^{B-C)
CB

~
sin CDB '

^^
a

~
cos ^^

'
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also

hence

b+ c _ CE KB _ BD dot ^A _ cot^^
c-h CD DF BBtsin^iC-B) tan^((7-i5)'

tan ^ {B-C)=^ cot ^A.

The area of a triangle.

125. The area of a triangle is half that of a parallelogram on

the same base and with the same altitude
;

if the side a is the

base, the altitude is b sin C or c sin B, we have thus the expressions

^ ab sin (7, and J ac sin B,

for the area of the triangle ;
the area of a triangle is therefore

half the product of any two sides multiplied by the sine of the

included angle.

Using the expression for sin J., found in Art. 122,

^ V(a 4- 6 + c) (6 + c - a)(c + a-b)(a-\-b - c\

we have for the area of a triangle the expression

I \/(a + 6 + c) (6 + c - a) (c + a - 6) (a + 6 - c),

or \/s{s a){s b){s-c) (6);

this formula was obtained by Hero of Alexandria^ (about 125 B.C.).

The formula (6) may also be written

i \/26V 4- ^c^a" + 2a?b'' -a^-- c\

^ See Ball's History of Mathematics, p. 82, where the original geometrical proof

of the formula is given.
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Variations in the sides and omgles of a triangle.

126. We shall now investigate the relations which hold

between small positive or negative increments in the values of

the sides and angles of a triangle. Suppose three of the parts of

a triangle to have been measured, of which one at least is a side,

the other three parts will be determined by means of the formulae

of this Chapter ;
the relations between the increments of the parts

will enable us to find the effect in producing errors in the values

of the latter three parts, of small inaccuracies in the measurement

of the former parts. We shall suppose that the increments are so

small that their squares and products may be neglected.

Suppose A, B, C, a, b, c, to be the values of the angles and

sides of a triangle, as ascertained by the measurement of one side

and two angles, two sides and one angle, or the three sides, the

other three values being connected with the three measured ones

by means of the formulae given above. If the three parts have

been measured inaccurately, there will be consequent inaccuracies

in the values of the other three parts as found by the formulae
;
let

A + BA, B + hB, G + BG, a + Ba, b -\- Bb, c + Be be the accurate

values of the angles and sides
;
we shall obtain relations between

the six errors BA, BB, BG, Ba, Bb, Be. It will be convenient to

suppose the increments of the angles to be measured in circular

measure
; they can however of course be at once reduced to

seconds.

We have c sin B b sin (7=0,

(c + Bc)sm(B + BB) - (6 + Bb)sm(G+BG) = 0;

since when the squares of BB, BG, are neglected,

sin (B + BB) = sin 5 + BB cos B, sin (G + BG) = sin (7 + BG cos G,

we have, (c + Be) (sinB+BB cos B) - (b + Bb) (sin (7 + BG cos G) = ;

hence if we neglect the products Be, BB, Bb, BG, we have

c cos B .BB -{-sin B . Be b cos G . BG sin G . Bb = 0.

This, with the two corresponding equations, may be written

sin G . Bb sin B . Be = c cos B .BB b cos G .BG\

smA .Be smG.Ba = a cos G . BG ccos^ . BA\ (7).

s\nB .Ba sm A .Bb = b cos A .BA a QosB .BB]
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Also BA + SB + BG = (8),

in virtue of the relations

A+B + G^ir, A+SA+B-^SB+C+BG^ir.

The equations (7) are not independent, as may be seen by

writing them in the form

^-^-- = cotB.SB-cotC\W
c

- = cotC.BC~cotA.BA
c a

-^ = cot A. SA- cot B. SB
a

which shews that any one of the equations may be deduced from

the other two.

The system consisting of two of the equations (7) and the

equation (8), is sufficient to determine any three of the six errors

when the other three are given, except that one at least of the

three given errors must belong to a side.

By eliminating SB, BC, between (7) and (8), we obtain an

equation giving Sa in terms of Bb, Be, and BA ;
this may however be

found directly from the formula a^ = -\-c^ 2bc cos A
;
we obtain

aBa = {b
- c cos A) Bb + (c b cos A) Be + be sin ABA,

which, with the two corresponding formulae, becomes in virtue

of (1)

aBa = a cos C .Bb + a cos B .Bc + bc sin ^ . S^]
bBb = b cos A. Be + b cos CBa + casinB . Bb[ (9).

cBc = c cos B .Ba -\- c cos A .Bb -h ab sin C . BG]

Relations between the sides and angles of polygons.

127. Let di, tta, ^s.-.ttn denote the lengths of the sides, taken

in order, of any plane closed polygon, and let a^, a^-'-OLn denote the

angles, measured positively all in the same direction, which these

sides make with any fixed straight line in the plane of the

polygon; then from the fundamental theorem in projections in
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Art. 17, we have, projecting on the fixed straight line and

perpendicular to it, the two relations

Oi cos flj + tta cos 02 + + cos tt^
= 0,

! sin flfj + 02 sin Kg + + ^n sin a = 0.

Now let the line on which the projection is made, be the side a,
if we denote by y(3i

the external angle between an and a^, by ySa the

external angle between Oi and Oa, &c. then

!
= A, a-j

= A + ^2, as = A + ^^2 + A, &c., On = 27r,

we have then

Oj cos ft + Oa cos (ft + ft) + as cos (ft + ft + ft) +. . .+ ttn
=

O^j

! sin ft + as sin (ft + ft) + a^ sin (ft + ft + ft) +. . . > (10),

+ a_i sin (ft + ft +. . .+ 0n-i) = OJ

the two fundamental relations between the sides and angles of a

polygon. If there are only three sides, these relations reduce to

(1) and (2) respectively, remembering that ft = tt A^, ^2 = 'Tr A^.

128. In the first equation in (10), take an over to the other

side of the equation, then square both sides of each equation and

add
;
in the result the coefficient of 2a,.ag is

cos (ft + ft + ... + ft)cos(ft + ft + ... + ft)

+ sin (ft + ft + ... + ft)sin (ft + ft + ... + ft),

or cos (ft+i + ft+2 + . . . + ft) ;

this is the cosine of the angle Ors between the positive directions

of the sides a^. and a^; we thus obtain the formula

ctn
=

tti^ + tta^ + . . . + an-i^ + ^o^a^ COS 6^^ + ...-\- ^a^a^ cos ^^^ 4- . . . (1 1
),

which is analogous to the formulae (3), to which it reduces when
n = 3. In the formula (11), r and 5 are each less than n and are

unequal.

The area of a polygon.

1 29. The area of a polygon is given by the expression

i(aia2sin^i2 + ... + a^c^ssin ^^^ + ...) (12),

or ^'^a^as sin 6^^, the summation being taken for all different values

of r and 5; if we suppose s is always the greater of the two

quantities r and s, the angle 6^^ is, as in the last Article, the

sum of the external angles ft+i + ft+2 + . . . + ft. To prove this
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formula, we shall first shew that in the case of a triangle it

reduces to the expression ^aza^ sin A^, and shall then shew that

if it holds for a polygon of 72 1 sides, it also holds for one of

n sides.

We have in the case of the triangle A^A^A^, in which

A1A2 = di ,

^12 = TT ^25 ^23 = TT -^g, 6i3=27r A2 As',

hence in this case ^%a,.as sin 6rs is equal to

^ (oitta sin ^4.2 + ^20^3 sin A^ a^a^ sin A-^ or ^a,^!!^ sin ^ 1 ,

thus the formula holds when n = 3.

Now suppose the formula true for a polygon of sides

^1 > ^2 ) ^ 1 >

so that the area of the polygon is

^Xa^a^ sin d^s + ^a'_i2a^ sin 6n-i,r,

where r and s are each less than n1, now replace the side a'n-i

by two sides a_i, a, thus making a polygon of n sides
;
we have

to add ^an-xdn sin ^n-i, n ;
t^he area of the polygon of n sides is

then

^Sa^a^ sin 0^, + ^a'n-^a^ sin d'n_^^ ^ + iaw-i^n sin d^-i, .

Now we have, by projecting the side a'_i on a^,

a'w_i sin ^V, -i = a-i sin
^^, _i + a^ sin

^,., ,

hence the above expression becomes

jSa^a^ sin 6^^ + J^a^ (^n-i sin ^^,_i + a sin
6^, ) + ia-ian sin 6n-i,n,

or l-Sa^agSin^^g,

where r and s have all different values from 1 up to 71, such that

r<s.

The formula (12) has been shewn to be true when n = 3, and

is therefore true for n = 4 &c., and therefore holds generally.

It should be observed that in the formula (12), the coefficient

of ttj vanishes, in virtue of the second equation in (10) ;
the

formula therefore becomes JXcirO^sSin ^,.^g, where r and s have all

values from 2 up to n, s being always greater than r.
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EXAMPLES ON CHAPTER X.

Prove the following relations in Examples 1 11, for a triangle ABC.

1. a sin {B-C)+ hB\a. (C-^)+ c sin {A-B)=0.

2. a^ cos A-\-l^ cos B+c^ cos C=ahc (1 + 4 cos A cos B cos C).

3.
a2cosC+c2cos^=^{62+(c-a)2}.

4. a cos^ cos 2^ + 6 cos B cos 2B+ c cos (7cos 2(7

+ 4 cos ^ cos B cos C(a cos J. + 6 cos5+ c cos C) = 0.

5. a2 cos 2{B-C)= b^ cos 25+ c^ cos 2C+ 26c cos {B - C).

6. a^ cos (jB- (7) + 63 cos {C-A)+c^ cos (^ -5)= 3a6c.

7. c3=a3cos35+3a26cos(25-^) + 3a62cos(5-2^)-f63cos3J.

8. (cot^^-tan|5-tan^(7)n(cot^5-tan^(7-taniJ)^

+ (cot ^C- tan ^^ - tan ^B)^= (cot ^^ + cot ^5+ cot ^ C)K

9. 62 _|. c2
- 26c cos {A + 60)= c2+ a2 _ 2ca cos (5+ 60)

=a2+ 52_2a6cos((7+60);

interpret this result geometrically.

10. cos ^B sin {^B+C) : cos ^C sin (J (7+5) :: a+ c : a+ b.

11. (a+6)sin5=26sin(5+iC)cos^a

12. Prove that, if the sides of a triangle be in a.p., the cotangents of its

semi-angles are in a.p.

13. If the squares of the sides of a triangle are in a.p., shew that the

tangents of its angles are in h.p.

14. If 1 - cos ^, 1 - cos B, 1- cos (7, are in h.p., shew that sin J., sin B,

sin
(7,

are in h.p.

16. If 6 - a= wc, prove that A =.cos
~ i

(m cos ^C) ^C,

, .WD .V l+mcos5
and cot h(B-A)= . p .

16. Prove that, in a triangle, cos ^ + cos 5+ cos C> 1 and :^ f .

17. Prove that, in a triangle, tan^ ^B tan2 iC+tan^ i (7tan2^^ +tan2 ^A

tan2^5<l, and that if one angle approaches indefinitely near to two right

angles, the least value of the expression is ^.

18. Prove that a triangle is equilateral if cot ^ + cot i?+ cot C= ^3.

H. T. 11
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19. If in a triangle,

cosec A cosec B cosec C+ 4 cot A cot B cot C
= sec ^A sec ^B sec ^(7+ 4 tan ^A tan ^5 tan ^(7,

prove that one angle is 60.

20. If in a triangle, cos^ =cos B cos C, prove that cotB cot C=^.

21. If ^ be an angle determined from cos ^= , prove that

i/A n\ (a+ fe)sin(9 , w^ , m csin^
cos^(^-^)=

' '

,
and cos^{A+B)= ^.

22. If is a point inside an equilateral triangle, prove that

cos (50(7- 60)=-. -j^o^o'
23. If c=b+^a, and BC is divided in so that BO : 00 :: I : 3, prove

that Z.^(70=2z.^Oa

24. If CD, CE make equal angles a, with the base of a triangle ABCy
shew that area ABC : area CED :: c : 26 sin ^ cot a.

25. If ^5 be divided in (7, i), so that AC=CD=DB, and if P be any
other point, prove that sin APD sin jBPC=4 sin ^P(7sin BPD.

26. If the sides of a parallelogram be a, 6, and the angle between them be

o), prove that the product of the diagonals is {(a^+ 6^)2 40^62 cos^w}*.

27. If i> is the middle point of the side BC of a triangle, and lBAD= 6,

LCAD=(f)y shew that cot 6- cot
<f)
=cotB- cot C

28. A straight line divides the angle (7 of a triangle into segments a, /3,

and the side c into segments ^, y, and is inclined to this side at an angle $ ;

prove that x cot a y cot ^=y cot ^ :r cot jB= (.r 4-y) cot ^.

29. If the sides of a triangle are in a. p., and if the greatest angle

exceeds the least by 90, prove that the sides are as V7+ 1, : J7
'

\/7 - 1.

30. Prove geometrically, that in any triangle

a cos 6= b cos {CB) + c cos {B+ 6), 6 being any angle.

If a, 6, c denote the sides AB, BC, CD, of any plane quadrilateral, shew that

asin^-6sin(^-5)-i-csin(^-5-(7) _ .

a cos ^ - 6 cos (^
- 5) + c cos (^ - jB- C)

~

31. If a triangle ABC be such that it is possible to draw a straight line

AD meeting BC in D, so that lBAD is one third of lBAC, and also BD is

one third oi BC, prove that a%'^= {h'^-c'^){h'^+^G^).

32. BC is a side of a square ;
on the perpendicular bisector of BC, two

points P, Q, are taken, equidistant from the centre of the square ; BP, CQ, are

joined and cut in A
; prove that in the triangle ABC,

tan A (tan B - tan (7)2+ 8= 0.
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33. If 3/2_|_
^2 _ <^yz cos a= a?\

22+^2_2^r^ cosj3=62L and a+/3+7=27r,

a^-\-y^ 2xyQ0S yc^\
prove that

ijfz sin a+zx sin j3+^ sin y)2=| {^h'^c^+ 2c2a2+ 2a262 - a* - 6* - c*).

34. If ^, 5, C are angles of a triangle, and x, y, 2 are real quantities

satisfying the equation

y sin C z sin B _ z sin ^4 ;r sin C
x y COB Cz cos B y zcosAxcosC

then will
x _ y _ z

sin J. sin^ sin C
35. Prove that the area of the greatest rectangle that can be inscribed in

a sector of a circle of radius R, is R^ tan ^a, where 2a is the angle of the

sector.

36. Shew how to construct the right-angled triangle of minimum area,

which has its vertices on three given parallel straight lines
;
and if a, b, are the

distances of the middle line from the other two, shew that the hypothenuse

makes with the parallel lines an angle cot"^ j .^ a+ b

37. If the angles of a triangle computed from slightly erroneous

measurements of the lengths of the sides be A, B, C, prove that if a, ^, y be

the approximate errors of lengths, the consequent errors of the cotangents of

the angles are proportional to

cosec A (/3 cos C+y cos B a), cosec B {y cos A + a cos C- ^),

cosec C (a cos B + ^ cos A y).

38. Prove that, if in measuring the three sides of a triangle, small errors

X, y be made in two of them a, b, the error in the angle C is

-(-coti?+|cot^ j,

and find the errors in the other angles.

39. The area of a triangle is determined by measuring the lengths of the

sides, and the limit of error possible either in excess or defect in measuring

any length is n times the length, where n is a small quantity. Prove that in

the case of a triangle of sides 110, 81, 59, the limit of error possible in its area

is about 3*1433 n times the area.

40. Prove that the cosines c^, Cg, Cg, c^, of the four angles of a quadri-

lateral, satisfy the relation

112



CHAPTEE XL

THE SOLUTION OF TRIANGLES.

130. We shall now proceed to apply the formulae obtained

in the preceding Chapter, to the solution of triangles, that is, when
the magnitudes of three of the six parts are given, to find the

magnitude of the remaining three parts ;
one at least of the three

given parts must be a side. We shall generally select such

formulae as can be used for numerical computation by means of

logarithms, as these formulae only are of use in practice.

The solution of triangles is made to depend upon a knowledge
of the numerical values of circular functions of the angles, hence

since such circular functions are the ratios of the sides of right-

angled triangles, it is seen that the solution of all triangles is

really performed by dividing up the triangles into right-angled
ones.

The solution of right-angled triangles.

131. Suppose the angle (7 of a triangle to be 90, then this

is one of the given parts, and we can solve the triangle in the

various cases in which there are two other parts given, one at

least being a side.

(1) Suppose the two sides a, b, to be given ;
then the angle

A can be determined from the formula tan A =
a/b, and B is then

found as the complement of A
;

also c = a cosec A, which deter-

mines c, when A has been found
;
the logarithmic formulae for

solving the triangle are then

L tan ^ = 10 + log a log b,

5 = 90 - A,

log c = log a L sin A -f- 10.
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(2) Suppose the hypothenuse c and one side a to be given ;

then the angle A is determined by means of the formula

sin A =
a/c, B is found as the complement of A, and h is found

from the formula h cGo^A, or from b^ = c^ a^.

The logarithmic formulae are

LsmA = 10 { log a log c,

B = 90- A,

and log b = log c + L cos ^ 10

or log 6 = Jlog (c + a) + J log (c
-

a).

(3) Suppose the hypothenuse c and one angle A are given,

then B is found at once as the complement of J.
;
a is found

from a=:csin^, and b as in the last case.

The formulae are

log a = log c + Z sin ^ 10

B=^90-A,

log b = log c -{- L cos ^ 10

or log6 = |log(c + a) + Jlog(c a).

(4) Suppose one side a and one angle A to be given, then B
is 90 ^, c is a cosec A, and b is found as in the last two cases

;

the formulae are

log c = log a LsinA + 10,

5 = 90-i4,

log b = log c + L cos A 10

or log b = Jlog (c + a) + Jlog (c
-

a).

132. In certain cases, the formulae of the last article are

inconvenient, for example in case (2) if the angle A is nearly 90,
it cannot be conveniently determined from the equation sin A =

a/c,

since the differences for consecutive sines are in this case in-

sensible, we therefore use another formula
;
from the theorem (4)

of Chap. X. we obtain 6tan^.B = c a, bcot^B = c -{ a, hence

tan^ ^B = ,
thus we have tan (45 hA) = (

) ,
and this

formula, being free from the objection, may be used to determine A.

Again in cases (3) and (4), the formula 6 = c cos ^ is in-

convenient if A is very small
;
we may then use the formula

6 = c c sin ^ tan ^A.
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133. Various approximate formulae may be found for the solution of

right-angled triangles. Let us denote by a, ;3, the circular measures of the

angles A, B respectively.

(1) An approximate form of the formula a=ccos5, is

which is obtained by taking the first three terms of the expansion of cos B in

powers of the circiilar measure of B; this formula may then be used for

approximate calculation of a, when c and B are given, provided /3 is less than

unity.

(2) Since sin^=a/c, we have a ^a^+ y|jja^=a/c, approximately; to

obtain a in terms of a/c, we have as a first approximation a= alc, and as a

second approximation a= --|-6 (
-

) j the third approximation

a , (a

c *^

\c

IS

.-M(")'+*"'
or

which may be used to calculate a.

(3) From the equation tan^5=f -J ,
we can obtain the approximate

(4) Using Snellius' formula = r- ~^ ,
for the circular measure of

^ ( ^ -p cos ^(p)

an angle (see Ex. 32, p. 135), in which the approximate error is -^^^t put

2(f) ^J
we then obtain the formula ^= 5 ,

and the error is approximately

T8J5^^ 5 *^^s ^ is given in degrees by the approximate equation

^=^r^x57-2957.2c+a

The solution of oblique-angled tmangles.

134. To solve a triangle when the three sides are given;

any one of the formulae

{{s-h){s-c)\^tan \A =
|- s{s a)

with the corresponding formulae for the other angles, may be

used
;
these formulae are adapted for logarithmic calculation.
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Example.

The sides of a tnangle are proportional to 4, 7, 9 ; find the angles^ having

given

% 2 = -301030.

L tan 12 36'= 9-349329, diff. for V= -000593

L tan 24 5'= 9-650281, diff. for V= -000339.

We find 5=10, -a=6, 5-6= 3, 5-c= l, and hence tQ.n\A \f\I^Q,

tan^jB=\/2/10, thus X tan ^^ = 10-^(1 + -301030) = 9-349485

and Xtan ^5= 10-|-|(-301030
-

1)
= 9-650515.

To find A, we have 9-349485 -9*349329 = -000156, and ^.^ . 60"= 15"-8

approximately, hence ^.1= 12 36' 15"-8, or ^ = 25 12' 31"-6.

To find B, we have 9-650515 - 9-650281 = -000234 and ff . 60"=41"-4

approximately, hence |i?-24 5' 41"-4, or 5= 48 11' 22"-8; also

C= 180 -^ -5= 106 36' 5"-6
;

thus we have found the approximate values of the angles.

135. To solve a triangle when two sides and the included

angle are given.

Suppose 6, c, and A, are the given parts, then B and C may
be determined from the formula

tan i(5 - C) = 1^^ cot 1 J.,

together with B -\- C = 180 A
;
the logarithmic formula is

Ztani(5-a) = log(6-c)-log(6 + c) + Zcot|^.

Having found B and G, the side a may be found from any one

of the three formulae

log a = log c -\- LsinAL sin (7,

log a 4- X cos J (J5
-

(7)
=

log {b + c) + L sin ^A,

log a + Z sin ^(B C) = log (b c) + L cos ^A.

We may also determine a thus : Since a^ = b^ + c^ 26c cos A
we have

a2 = (6 + cY - 46c cos"^ ^A,

hence a = (6 4- c) cos </>,
where

(f)
is given by

.
, 2^/bccosiAsm <p
=

i ;^
6 + c

'
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thus we may first find <^ by the logarithmic formulae

Z sin
</)
=

log 2 + |log 6 4- i log c + Z cos ^A log (6 + c),

and then determine a by the formula

log a = log (6 + c) + Z cos
cj)

10.

Example.

//a= 123, c=321, B= 29 l&,Jind A, C, b, having given

log 99= 1-9956352, Ldn^^\&= 9-6891978,

log 123=2-0899051, Zsm 15 42'= 9-4323285, c^i/. /or 1"= 74-87,

log 2220= 3-3463530, L cot 14 38'= 10*5831901,

log 2221 = 3-3465486, L tan 59 39'= 10*2324552, diff. forr= 48-27.

WehaveZtan^((7-^)=Zcotl438'+ log99-log222
= 10-5831901 + 1*9956352 - 2-3463530

= 10-2324723.

171
Now 10-2324723 -10-2324552= -0000171, and

^^:^=^'^ approximately,

hence ^{C-A)= 59 39' 3"-5, also ^(C+^)= 75.22', therefore ^ = 15 42' 56"-5,

(7=135 l'3"-5.

Again log 6= 9-6891978+ 2-0899051 ~Z sin 15 42' 56"-5,

and 56-5 x 74-87= 4230-155, hence Zsin 15 42' 56"-5= 9-43275 15,

therefore log b= 2-3463514, so that 6= 222 - yMs"= 221-992.

136. To solve a triangle when two sides and the angle opposite

one of them are given.

This is usually known as the ambiguous case.

Suppose a, c, and A, are the given parts, then sin C is deter-

c
mined from the equation sin (7 = - sin A

;
when sin C is thus found,

a

there are in general, if csinA :f>a, two values of C less than 180,
the one acute and the other obtuse, whose sine has the value

determined
;
we must consider three different cases :

(1) if csin j4 > a, we have sin C>1, which is impossible, and

indicates that there is no triangle with the given parts ;

(2) if c sinA a, then sin 0=1, and the only value of C is 90,
thus there is one triangle with the given parts, and that one is a

right-angled triangle ;
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(3) if c sin J. < a, then sin (7< 1, and there are tw(j values of G,

one acute, the other obtuse
;

(a) if c<a, we must have G < A, hence G must be acute,

thus there is only one triangle with the given parts ;

(yS) if c> a, the angle G is not restricted to being acute, and

both values are admissible, in this case then there are two

triangles with the given parts ;

(7) if c = a, then G A or 180 A\ for the latter value of G
two sides of the triangle are coincident, the first then gives the

only value of G for which there is a triangle of finite area.

We may state the above results thus :

c sin A> a

c sin A = a

c sin J. < a

no solution

one solution

c <a one solution

c > a two solutions
;

When C is nearly 90, it cannot be conveniently determined by means of

its sine ; in that case we may use one of the formulae

tan C= + csin^

\/(a+c sin J) {a
- c sin A)

,
tan (45 + iC) ==-x/:-^

-l-csin^

c sin A
'

137. It is instructive to investigate geometrically, the different

cases considered in the last article.

From B draw BD perpendicular to the side 6, then

BD = c sin ^
;

with centre B and radius a, describe a circle
;

then if a is less than csin^, this circle will not cut the side AG
and no triangle with the given parts can be drawn, but if

a>csin^, the circle will cut AG in two points, G^ and G^. In

the case a < c, both G^ and G^ are, as in Fig. (1), on the same side

of A, and the two triangles ABGi and ABG^ have each the given

parts, the angles AGjB, AG^B being supplementary; if however
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B

a> c, then C^ and G^ are on opposite sides of A, and only the

triangle ABG^ has the given parts. The triangle ABC^, in this

latter case, has the angle at A not equal to A, but to 180 J.,

and therefore does not satisfy the given conditions.

If a = c sin A, the circle touches AG at D, and the right-angled

triangle ADB is the one triangle with the given parts.

We remark that since, in Fig. (1),

AD = c cos A, and G^D = G^D = Va^ - c^ sin^ A
the two values of b are

c cos A + Va^ c^ sin^ A and c cos ^ Va^ _ c^ sin^ ^,

these values being both positive when there are two solutions ^

we may also obtain these values of b as the roots of the quadratic

equation in b,

a2 = 62 + c2-26ccos^.

138. To solve a triangle when one side and two angles are given.

Suppose a the given side, and A, G, the given angles, then B is

determined from the equation B = 180 A G, and the sides b, c

will be determined by means of the formulae

log b = log a -^ L sin B L sin Ay

log c = log a + L sin G L sin A.
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Example.

jya=10, A=51"' 30' 40", B= 76, Jind b, having given

log 12.396= 4-0932816, L sin 76 = 9-9869041,

log 12397= 4-0933166, L sin 51 30'= 9-8935444,

Zsm 51 31'= 9-8936448.

We have log b
= 9*9869041 + 1 - Z sin 51 30' 40"

and Zsin 51 30' 40"= 9-8935444 +fg x -0001004

=9-8936113,

hence log6= 1-0932928, therefore 6= 12-396+J| x '001,

or 6=12-3963 approximately.

139. The expression ccosA's/a^-c^sm^A for 6, may be adapted to

logarithmic calculation; let sin = - sin J, then 6= .

~
,
thus

having been determined from the equation Zsin^=Xsin^ + logc-loga, we

can determine b from log b= log a+L sin
{(f)
+ A) L sin A.

Denoting by a, /3, y, the circular measures of the angles A,B,C, respectively,

and by a, /S', y, the complements of a, /3, y, we obtain the following approxi-

mate formulae for the solution of triangles.

(1) Suppose A, Cj a, are given, not being large; then from the formula

c=--. r-A 7.K , we get the approximate formula
sm(^ + C)'

^ ^^

c=a cosec {A + C){y-^^+ j^y^}-

Also if A and C are both not large, we have

c=-
(a+y)-i(a+y)3+j-i^(a+ y)^-...'

hence c is given approximately by

c=a-^- {l-fK'+ 2ay)},
a+y

which may be used for calculating c.

(2) Suppose, as in the last case, that A, (7, a, are given ;
also suppose C is

nearly 90, then C=^^, therefore
c=^^^^{l-h"+^.y')

may

be used to determine c approximately.

If both A and C are nearly 90, we have

acosy' a(lW^+...)
Sin(a'+ y')' (a'+y')-^(a'+ y')3+ ...'

therefore ^=
^^' ^^

" ^' ^^'
~

"'^ + ^""^

gives c approximately.
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140. We shall give a few examples of the solution of triangles,

when instead of sides and angles there are other data.

(1) Suppose the three perpendiculars from the angles on the opposite

sides given; denote them by Pi^ Po,^ Ps, we have then api bp2=cp2= 2 area

of triangle. Now since

.,.=y'
s{8- a)

we have oo^\A= J^M>^^M.^V^Pj[-I>.n^I>2l>x^I>.V.)

which determines A
;
also jt?2=c sin A^ hence c is determined when A is known.

(2) Suppose the perimeter and the angles of the triangle given. We have

s=R (sin A + sin ^+ sin (7),

hence R is determined, and the sides are then

27? sin ^, 2i?sin5, 2i2sinC, or a=-
-,

-. ^ : 7^,' ' ' sm^+sm^+smC
o HITI i ,4

with similar values for h and c; this value of a reduces to r^ ^
ttst*

008^^ cos ^C7
which is adapted to logarithmic calculation.

(3) Suppose the base, height, and difference of the angles at the base

given. Let a be the base, p the height and B - C= 2a, the given difference :

then since ^+(7=180-^, we have ^=90 + a-|^, C=90-a-^^, also

ap (cotB+ cot C)=p {tan {\A
-

a)+ tan {\A + a)},

j^, -. a 2sin^ , ^ . . , ., , .

therefore - = . , hence cos A is given by the quadratic
p cos^+cos2a o J ^

d? (cos A + cos 2a)2= 4p'^ (
1 cos^ A )

or cos^ A {p?+ 4p') + 2a2 cos 2a . cos A = Ap^ cfi cos^ 2a,

the solution of which is

A _ ^^ ^Q^ ^ + '^V (^P^+ ^^ sin^ 2a)^

a2+4p2 a2+ 4jt?2

these are two values of cos A corresponding to two solutions of the problem.

Solve the triangle with the following data:

(4) C, c, a+ b.

(5) B, a, b+ c.

(6) The area arid the angles.

(7) C, c+ a, c+ b.

(8) The angles and the height.
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The solution of polygons.

141. The relations between the sides and angles of polygons,
and the methods of solving a polygon when a certain number of

sides and angles are given, have been considered by Carnot^

L'Huilier'', Lexell^ and others. The two fundamental equations
in this so-called Polygonometry, have been given in Art. 127.

In order that a polygon of n sides may be determinate, 27i 3

of its 2n parts must be given, and of these at least n 2 must

be sides. To prove this, suppose the polygon divided by means of

a diagonal, into a triangle and a polygon of w 1 sides
;

if the sides

and angles of the latter polygon were determined, we should only

require to know two parts of the triangle in order to determine

the figure completely, since one side of the triangle is already

determined as a side of the polygon, hence to determine a polygon
of n sides we require to know two more parts than for a polygon
of n\ sides

;
since therefore for a triangle three parts must be

given, one of which is a side, for a polygon of n sides we must

have 3 + 2 (n 3), that is 2n 3 parts given. If of these 2n 3

parts, only n 3 were sides, we should have n angles given ;
but if

n 1 angles are given, the n\h. is also given, so that only 2n 4*

independent parts would be given, thus at least n 2 of the given

parts must be sides.

In some cases, a polygon can be conveniently solved by dividing
it by means of diagonals into triangles, taking the diagonals for

parts to be determined
;
this method is however not always con-

venient, as may be seen, for example, by considering the case of a

quadrilateral when two opposite sides and three angles are given.

142. To solve a polygon of n sides, when n 1 sides and n 2

angles are given.

(1) Suppose the angles to be found are adjacent to the side

to be found. We shall, as in Art. 127, use the external angles

y8i, ff^'-'^n between the sides, instead of the internal angles;

1
Carnot, Geometrie der Stellung.

2
L'Huilier, Polygonometrie. Geneva, 1789.

3
Lexell, Nov. Comm. Petrop., vols. xix. xx.
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suppose an the side to be found, then from the second equation

(lO)of Art. 127, wehave

sin ySi {! + tta COS ^2 + ^3 cos (/^a + y^s) + + n-i COS (ySg + . . . + jSn-i)}

= - COS /3i {as sin ^82 + a^ sin (A + A) + . . . + a^-i sin (/Sg + . . . + y8n-i)},

hence

^ gg sin /gg + a3 sin (ft + /^.s)+ + o^n-i sin (ff2 + + y^n-i)
^^

tti + a2CosyS2+a3Cos(ft+/33)+ . . . + a7i-i cos (ft +. . . +^n-i)
'

this determines ft in terms of the given angles ft, ft ... ft_i and

the given sides a^^a^... -! ;
it should be noticed that this equation

is found by projecting the sides on a perpendicular to the unknown
side

;
the remaining angle yS is then determined from the rela-

tion ft + ft + ... + ft = 27r.

Having found ft and ft, we can determine a^ from the

equation obtained by projecting the sides on a^,

an = {i cos ft + ttg cos (ft + ft) + . .
.),

or by means of the equation (11) of Art. 128, which gives an^ in

terms of the squares and products of the other sides and of the

cosines of the angles between the sides.

(2) Suppose the angles to be found are adjacent to one

another but not to the side which is to be found. We shall take

ttn as the side to be found, and ft, ft+i the angles to be found,

then ft + ^H-i = 27r-(ft + ft+...+ft_i + ;eH-2+...+^n),

thus ft + ft+i is known; also from the second equation (10)

aj. sin (/Si + ft + . . . + ft)
= -

aj sin ft a^ sin (ft + ySa) . . .

-
ar-i sin (ft -f ft + ... + fir-i)

-
^r+i sin (ft + ... + ft+O - ...

-an-isin(ft+ ... + ft),

hence ft + ft + ... + ft can be determined, and therefore /3^

The side a^. is then determined as in the last case.

(3) In the case in which the two unknown angles are not

adjacent to one another, let H, K be the angular points at which

the angles are unknown
; join HK, then the polygon is divided

into two polygons, in one of which all the sides except one, are

known, and all the angles except the two which are adjacent to the

unknown side. We can solve this polygon as in (1), determining

HK and the angles H and K.
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In the other polygon we now have all the sides except one

given, and all the angles except two adjacent ones
;
this polygon

can therefore be solved as in (2); we have then all the sides of

the given polygon determined, and the angles at H and K are

determined by adding the two parts into which they were divided

by HK, and which have been separately found.

143. To solve a polygon of n sides, when n 2 sides and n 1

angles are given.

We determine the remaining angle at once from the condition

A + A+...+y3n=27r.

To determine an unknown side a^, use the equation

! sin /3i + tta sin (A + ySg) -f . . . + a_i sin (A + ^2 + . . . + ^n-\) = 0,

obtained by projecting perpendicularly to the other unknown side

an. We can then determine a^ in a similar manner, or use the

other fundamental equation.

144. To solve a polygon of n sides, when the n sides and n ~ 3

angles are given.

Let P, Q, R, be the angular points at which the angles are not

given; join PQ, QR, RP, then the polygon is divided into four

parts, one of which is a triangle. In each of the parts except

PQR, all the sides except one are given, and all the angles except
those adjacent to those sides, we can therefore determine PQ, QR,
RP, and the angles at P, Q, R. We can then find the angles of

the triangle PQR, of which the sides have been determined. We
obtain now by addition the angles at P, Q, R, of the given

polygon.

Heights and distances.

145. We shall now give some examples of the application

of the solution of triangles to the determination of heights and

distances. For fuller information on this subject, as for the de-

scription of instruments for measuring angles, we must refer to

treatises on surveying. The angle which the distance from any

point of observation to an object, makes with the horizon, is

called the elevation or the depression of that object, according
as the object is above or below the horizontal plane through
the point of observation.
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146. To find the height of an inaccessible point above a hoH-

zontal plane.

Let P be the inaccessible point and G its projection on the

horizontal plane, let PC = h, and suppose any line AB = a, measured

on the horizontal plane, if possible so that ABC is a straight line
;

let the elevations of P at ^ and B be measured, denote them by
a and

;
then a = AG- BC = h (cot a - cot y8), therefore

, _ a sin a sin /?

which determines h. If it is impracticable to measure the base

line directly towards G, let it be measured in any other direction
;

let the elevations a of P, be measured at A, and also the angles

sin 8PAB =
7, and PBA =

B, then PA =AB
sin (7 + h)

,
and h=AP^moL,

therefore h = a ^ , --k^, thus h is determined.
sm(7 + 6)

147. To find the distance between two inaccessible points.

Let P and Q be the two objects, and let any base line AB = a,

be measured, the points A, B, being so chosen that P and Q are
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both visible from each of them. At A measure the three angles

PJ.Q = a, QAB = p, PAB = y; it should be observed that the

angles PAQ^ QAB, are in general not in the same plane. At B
measure the angles PBA =

S, and QBA = e.

From the two triangles ABP, ABQ, we have,

sin BAP = a

and AQ a

formulae

sme
sin (/3 + )

'

sin(7 + S)'

Thus AP, AQ are determined by the

logAP =
log a + Z sin S X sin (7 + h)

log ^Q =
log a + jL sin e X sin (yQ + e).

In the triangle PAQ, we now know AP, AQ, and the angle

PAQ =
a, we find then the angles APQ, AQP, by means of the

formulae

L tsm i(APQ- AQP) = L cot ia-i-\og(AQ-AP)-log(AQ + AP\
APQ + AQP == 180 - a.

We then find PQ, by means of the formula

log PQ = logAP + Lsina-L sin AQP.

148. Pothenot's Problem. To determine a point in the plane

of a triangle at which the sides of the triangle subtend given

angles.

Let a, /8, be the angles subtended by the sides AG, GB, of a

triangle ABG at the point P, and let x, y, denote the angles

PAG, PBG respectively; the position of P is found when the

angles x and y are determined, for the distances PA and PB
can be found by solving the triangles PA G, PBG.

H. T. 12
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We have a)-{-y=27r a~ff C.

., 6 sin a? asiny -r,^
Also .

- = T ^ = PC.
sm a sm p

Assume
(j)

to be an auxiliary angle such that

a sin a
tancf)

6 sinks'

,
, - sm a? sm a; sm y ^ ,

,
. ^q.

therefore - = tan 6, hence -. r^ tan (6 45 ),

sm^/
^ sma7 + sm2/

^^ ^

or tan i (a; ?/)
= tan i{x + y) tan (<^ 45)
= tan (45

-
</>)

tan J (a + /3 + C),

thus ^
2/

can be found, and since x + y is known, we can find

X and y.

149. Examples.

(1) li is observed that the elevation of the top of a mountain at each of the

three angular points A, B, C, of a plane horizontal triangle ABC, is a; shew that

the height is ^a tan a cosec A. Sheio also, that if there be a small error n" in the

elevation at C, the true height is very nearly \ ; r-
(
1 + -t"'~~^ -"o" )

Let be the projection of the top of the mountain on the plane ABCy we
have then, if h is the height of the mountain, h=OA tan a=OB tan a= 0(7tan a,

thus is the centre of the circle round ABC, hence 0^=^a cosec ^, or

h=\a tan a cosec A. When the measurement of the elevation at C is a+n",
let (y be the projection of the top of the mountain, then since the elevations at

A and B are equal, 00' is perpendicular to AB
;
let A+^ now be the height of

the mountain. We find geometrically,

O'A = 0^ + 00' cos C, 0'G= OC- OO cos {A - B\
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when 00' is so small that its square may be neglected, hence

A+ :c= 0'^ tan a= 0'(7 tan (a+ w")

= {OA + Oa cos C) tan a= [OC- 00' cos {A - B)\ tan (a +n"),

hence x=0(y . cos C . tan a= 00' cos (^ - B) tan a+ OC sec^ a . sin ti",

since tan (a +?i")= tan a+ sec2 a. sin Tt", approximately; eliminating 00',

we have x cos (-4 .5) tan a= cos C tan a {00 sec^ a . sin n"
;J7),

hence 2a; sin ^ sin 5= 00 sec^ a cos sin ii",

xu i- XI, X I, i,x I .
.

1
atana/.

,
cosO sinii"\

therefore the true height A+ a?, is * . -r~
\
1 + -

i -- b -= tt )^ * ^ sin ^ \ sm^ sm B sm 2a/

(2) The sides of a triangle are observed to he a=5, b=4, c= 6, hut it is

known that there is a small error in the measurement of c
;
examine which angle

can be determined with the greatest accuracy.

Let 6+^ be the true value of the side c
;
let ^ + 5^, B+dB, C+8Cj be the

angles of the triangle, the parts 8A, dB, 80, depending on ^; we suppose x so

small that its square may be neglected.

We have

approximately, hence sin A .8A= ^^x.

Also cos(^+ 8i5)
=

27576+^) =1(1
+
loj'

^^"^ BmB.hB=-^x,

and cos(0+80)=?^^^^|^=i('l-^-|^V henc

. , sin A sin B sin G
Also __ = __ = __,

so that 24 . 8^ =40 . 85= - 15 . bC.

. Thus bB is numerically smaller than bA and 80, hence the angle B can be

determined with the greatest accuracy.

EXAMPLES ON CHAPTER XI.

.]. The sides of a triangle are 8, 7, 5
;
find the least angle, having given

log 112= 2-0492180,

L cos 19 6' =9-9754083, difF. for 60"= -0000437.

2. If in a triangle a= 65, 6=16, 0=60, find the other angles, having

given

log 3= -4771213, Xtan 46 20'= 10-0202203,

log 7= -8450980, L tan 46 21'= 10-0204731.

122
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3. The sides of a triangle are 3, 5, 7 feet, find the angles, having given

log 13-5= 1-1303338, log 14= 11461280,

L cos 10 53'= 9-9921175, L cos 10 54'=9-9920932.

4. If 5= 45, C= 10, a= 200 ft., find 6, having given

log 2= -3010300, log 172-64= 2-2371414,

L sin 55 = 9-9133645, log 172-65= 2-2371666.

5. If in a triangle 6= 2-25 ft., c= 1-75 ft., ^ = 54, find B and (7, having

given

log 2= -301030, L cot 27 = 10-292834,

i tan 13 47'= 9-389724, Z tan 13 48'= 9-390270.

6. If the ratio of the lengths of two sides of a triangle is 9 : 7 and the

included angle is 47 25', find the other angles, having given

log 2= -3010300, L tan 66 17' 30"= 10-3573942,

L tan 15 53'= 9-4541479, difi". for l'= 4797.

7. An angle of a triangle is 60, the area is 10 */3 and the perimeter is

20, find the remaining angles and the sides, having given

log 2 = -3010300, L sin 49 6'= 9-8784376,

log 7= -8450980, L sin 49 7'= 9-8785470.

.8. In a triangle ABC, it is given that a=10ft., 6= 9 ft., a=tan-i(^);
find c. If errors not greater than 1 in. each are made in measuring a and 6,

and an error not greater than 1 in measuring C, shew that the error in

the calculated value of c will be less than 2*7 in.

9. In the ambiguous case a, 6, B being given, where a> 6, if c, d be the

values of the third side, shew that c^ 2cc' cos 2-B+c'2=462 cos^ B.

10. In the ambiguous case in which a, 6, ^, are given, if one angle of one

triangle be twice the corresponding angle of the other triangle, shew that

aV3 = 26sin^, or 463 sin^ ^ = a^ (a+ 36).

11. The base of a triangle is equal to its altitude, and the two other

sides are of known length ;
determine the remaining parts of the triangle

by formulae adapted to logarithmic calculation. Shew that the ratio of the

given sides must lie between \ {sjh 1) and \{sfZ-\-V).

12. A triangular piece of ground is 90 yards in its longest side, and 100

yards in the sum of the other two sides, and one of its angles is 46. Deter-

mine the other angles, having given

X tan 23 = 9-6278519,

L tan 13 15'= 9-3719333, L tan 13 16'= 9-3724992.

13. An angle of a triangle is 36, the opposite side is 4, and the altitude

Vs 1, solve the triangle.
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14. Shew that it is impossible to construct a triangle out of the perpen-

diculars from the angles of a triangle on the sides, if any side is <J (3 \/5) x

perimeter; and it is certainly possible to construct such a triangle if each side

is >^ perimeter.

15. If a triangle be solved from the parts (7=75, 6= 2, 0=^6, shew that

an error of 10" in the value of (7, would cause an error of about 3"'44 in the

calculated value of B.

16. Having given the mean side of a triangle whose sides are in A. P., and

the angle opposite it
; investigate formulae for solving the triangle, and find

the greatest possible value of the given angle. Solve the triangle when the

mean side is 542 feet, and the opposite angle is 59 59' 59".

17. Solve a triangle, having given the length of the bisector of a side, and

the angles into which this divides the vertical angle.

18. Solve a triangle, having given one side, the angle opposite it, and the

perpendicular from that angle on the side.

19. A triangle is solved from the given parts a, h, A. If the values of

a, h are affected by small errors x, y respectively, find the consequent error in

the value of the perpendicular from A on the opposite side, and prove that

this error is zero if x sin^B cos C=y (sin^B sin^ C).

20. A lighthouse is seen N. 20. E. from a vessel sailing S. 25. E. and a

mile further on it appears due N. Determine its distance at the last

observation correctly to a yard, having given

Z sin 20 = 9-534052, log 2= -3010300,

log 206= 2-313867, log 207 = 2-315900.

21. A cliff with a tower on its edge, is observed from a boat at sea, the

elevation of the top of the tower is 30
;

after rowing towards the shore a

distance of 500 yards in the plane of the first observation, the elevations of

the top and bottom of the tower are 60 and 45 respectively; find the heights
of the cliff and tower.

22. A is the foot of a vertical pole, B and C are due east of A, and Z> is

due south of C. The elevation of the pole at B is double that at C, and the

angle subtended by AB at D is tan-ii also BC=20 ft., CD=ZO ft.; find the

height of the pole.

23. From a certain station the angular elevation of a mountain peak in

the north-east is observed to be a. A hill in the east-south-east whose height
above the station is known to be A, is then ascended, and the mountain peak is

now seen in the north at an elevation /y. Prove that the height of its summit

above the first station is h sin a cos ^ cosec (a ^).

24. A train travelling on one of two straight intersecting railways,

subtends at a certain station on the other line an angle a, when the front of
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the first carriage, and an angle a when the end of the last, reaches the junction.

Prove that the two lines are inclined to each other at an angle 6 determined

by 2 cot ^= cot a -^ cot a.

25. A cylindrical tower stands on a horizontal plain ;
an eye in the plain

views the visible arc of the rim of the upper end of the tower. If a, a', a", be

the angular elevations of either end of such arc above the plain, when the eye

is at distances c, c', c" respectively, prove that

(C'2
-

C"2) C0t2 a+ (C"2
-

c2) C0t2 a' + {c^
-

c'2) C0t2 a"= 0.

26. A balloon was observed in the N.E. at an elevation a ;
ten minutes

afterwards, it was found to be due N., at an elevation /3. The rate at which the

balloon was descending was afterwards ascertained to be six miles an hour
;

shew that its horizontal motion, supposed uniform, was at the rate of

6

V 2 *an a tan /3

miles an hour, the wind at the time being in the East.

27. I observe the angular elevation of the summits of two spires which

appear in a straight line to be a, and the angular depressions of their reflexions

in still water to be ^ and y. If the height of my eye above the level of the

water be c, then the horizontal distance between the spires is

2ccos2asinO y)

sinO -
a) sin (7

-
a)

*

28. The angular elevation of a tower at a place A due south of it is 30,
and at a place B, due west of A and at a distance a from it, the elevation is

a
18 ; shew that the height of the tower is

\/2^/5+ 2

29. A tower 51 feet high, has a mark at a height of 25 feet from the

ground ;
find at what distance the two parts subtend equal angles to an eye

at the height of 5 feet from the ground.

30. A person on a level plain on which stands a tower surmounted by a

spire, observes that when he is a feet distant from the foot of the tower, its

top is in a line with that of a mountain. From a point b feet farther from

the tower he finds that the spire subtends at his eye the same angle as before,

and has its top in a line with that of the mountain
;
shew that if the height

of the tower above the horizontal plane through the observei-'s eye be c feet,

the height of the mountain above that plane will be -
2
^^*'

31. A man, 5 feet high, standing at the base of a pyramid whose base is

square, sees the sun disappear over one of the edges, half-way along it. Shew
that if a and h are the distances of the man from the two nearest corners, and

6 is the altitude of the sun, the height of the pyramid is

10 + tan dVi (5a2
- 2a6+ 62) feet.
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32. From the top of a hill the depression of a point on the plain below is

30, and from a spot three-quarters of the way down, the depression of the

same point is 15
;
find within 1' the inclination of the hill.

33. ABCD is the rectangular floor of a room whose length AB is a feet.

Find its height, which at C subtends at A an angle a, and at B an angle /3.

If a=48 ft., a= 18, ^=30, prove that the height is 18 ft. 10 in. nearly.

34. A tower is situated on a horizontal plane at a distance a from the

base of a hill whose inclination is a. A person on the hill, looking over the

tower, can just see a pond, the distance of which from the tower is h. Shew

that, if the distance of the observer from the foot of the hill be c, the height of

he sin a
the tower is

a+6-l-ccosa*

35. A person standing between two towers, observes that they subtend

angles each equal to a, and on walking a feet along a straight path inclined at

an angle y to the line joining the towers, he finds that they subtend angles
each equal to /3 ; prove the following equations for determining the heights of

the towers, AA' (cot^ ^ cot^ a)
=

a^, (A' h) (cot^ j8
- cot^ a)

=2a cot a cos
-y.

36. From a hill-top the angles of depression (a, ^) of two piers of a bridge
are observed, and the distance a between the piers subtends an angle at the

point of observation ; prove that the height of the hill is

\a cot (^ sec \B Vsin a sin ^,

where cos ^= 2 cos \B . Vsin a sin j3 . (sin a+ sin ^)
~

^.

37. A man on a hill observes that three towers on a horizontal plane
subtend equal angles at his eye, and that the angles of depression of their

bases are a, a', a" ; prove that, c, c', c" being the heights of the towers,

sin (g
- a) ,

sin {a
-

a) ^

sin (g
- a )_ ^

c sm a c sm a. c sm g

38. A gun is fired from a fort, and the intervals between seeing the flash

and hearing the report at two stations B^ (7, are t, t' respectively ;
i> is a point

in the same straight line with BO, at a known distance a from A
; prove that

iBD=bf and CD=c, the velocity of sound is y ^
./g "I [

Examine the

case when a^hc.

39. From a point on a hill-side of constant inclination, the angle of

elevation of the top of an obelisk on its summit is observed to be g, and a feet

nearer to the top of the hill to be /3; shew that, if h be the height of the

obelisk, the incHnation of the hill to the horizon will be

cos-1
(a sin g sin /31

\h
'

sin"(3
-

g)J

*

40. On the top of a spherical dome stands a cross
;
at a certain point the

elevation of the cross is observed to be g, and that of the dome to be /3 ;
at a
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distance a nearer the dome, the cross is seen just above the dome, when its

elevation is observed to be y ; prove that the height of the centre of the dome
, ^, , . a sin 7 sin a cos V cos a sin 3
above the gromid is .

-,
'. . .

sin (y a) cos y COS ^

41. At noon on a certain day the sun's altitude is a. A man observes a

circular opening in a cloud which is vertically above a place at a distance a

due south of him
;
he finds that the opening subtends an angle 2^ at his eye,

and that the bright spot on the groimd subtends an angle 2<^. Shew that if

X is the height of the cloud

x^ (cot^ atan^ tan^
ff)

2cm7 cot atan^ + a^ (tan^ ^ tan^ &)
= 0.

42. From a point on the sloping face of a hill, two straight paths are

drawn, one in a vertical plane due South, the other in a vertical plane at right

angles to the former, due East
;
these paths make with one another an angle

a, and their lengths measured to the horizontal road at the foot of the hill are

respectively a and h. Shew that the hill is inclined to the horizontal at an

1 . _, /a2+ 6^-2a6cosa\i
angle sm i

( j. .

\ ao sin a tan a /

43. The breadth of a straight river is calculated by measuring a base of

length a along one side of the river and observing the angles made with this

base by lines joining its extremities to a mark on the opposite bank. If the

instrument by which the angles are measured, gives each a value which is

(1+w) times the true value, n being very small, shew that the error in the

computed breadth is nearly equal to na . . ^. 3r"^ ^ being the

circular measures of the above angles.

44. An observer from the deck of a ship 20 feet above the sea, can just

see the top of a distant lighthouse, and on ascending to the mast-head, where

he is 80 feet above deck, he sees the door which he knows to be one-fourth of

the height of the lighthouse above the level of the sea
;
find his distance from

the lighthouse, and its height, assuming the earth to be a sphere of 4000

miles radius.

45. Three vertical posts are placed at intervals of one mile along a

straight canal, each rising to the same height above the surface of the water.

The visual line joining the tops of the two extreme posts cuts the middle post

at a point eight inches below the top ; find to the nearest mile the radius of

the earth.

46. Borings are made at three points J., 5, (7 in a horizontal plane, and

the depths at which gault is found are a, 6, c respectively; also AB h^

BG~h^ ABC a. If the upper surface of the gault be a plane, shew that its

inclination to the horizon is given by
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47. The angular elevation of a column as viewed from a station due north

of it being a, and as viewed from a station due east of the former station and

at a distance c from it being ^3, prove that the height of the tower is

c sin a sin /3

{sin(a-^)sin(a+/3)}**

48. A lighthouse stands 9 miles due N. of a port from which a yacht sails

in a direction E.N.E., until the lighthouse is N.W. of her, when she tacks

and sails towards the lighthouse until the port is S.W. of her, when she tacks

again and sails into port. Shew that the length of the cruise is 16 miles

nearly.

49. A circular pond of radius a is surrounded by a gravel walk of uniform

width 6, and the whole is enclosed by a fence of height d. A person of

height k stands just inside the fence. Shew that the portion of the fence

whose highest points can be seen by reflection from the water is -th, where

12 , { h+d ^b^+2ab)- = -cos-M r=. nr^Ci

d
provided A<c^ (1 + 2a/6), and >l . .

50. The width of a croquet-hoop, the thickness of its wires, and the

diameter of a ball are given ;
the ball being in a given position, shew how to

find the conditions that it may just be possible for it to go through the hoop

(1) straight, (2) by hitting one wire, (3) by hitting both wires; assuming that

the angle of incidence is equal to the angle of reflection.

51. Three mountain peaks A^ B^ C, appear to an observer to be in a

straight line, when he stands at each of two places P and $, in the same

horizontal line
;
the angle subtended by AB and BG at each place is a, and

the angles A QP^ GPQ are and -^ respectively.

Prove that the heights of the mountains are as

cot 2a+ cot
>/r

: ^ (cot a+ cot
yj/) (cot a+ cot

cf))
tan a : cot 2a+ cot ^,

and that if QB cut AC in D, AC= CD sin 2a (cot yj^ + cot 2a).

52. A man standing at a distance c from a straight line of railway, sees a

train standing upon the line, having its nearer end at a distance a from the

point in the railway nearest him. He observes the angle a, which the train

subtends, and thence calculates its length. If in observing the angle a, he

makes a small error 6, prove that the error in the calculated length of the

cd
train has to its true length a ratio -; , ; : .

sin a (c cos a- a sm a)

53. The height A of a mountain whose summit is ^, is to be determined

from the observed values of a horizontal base line BC (a), the angles ABC^

ACBy and the angle {z) which AB makes with the vertical. Shew that

, _ a cos z sin C

~^m{B+ CJ'
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If h be known approximately, shew that the best direction of BC in order

that an error in measuring C may have least eftect on the accuracy of the

above value of A, is given by 5=2 tan~i ( ,
) .

54. Three vertical flag-staflPs stand on a horizontal plane. At each of the

points J, B and C in the horizontal plane, the tops of two of them are seen in

the same straight line, and these straight lines make angles a, /3, 7, with the

horizon. The plane containing the tops, makes an angle 6 with the horizon.

Prove that their lengths are BCI{\Jcot'^^-cot'^B+ \/co\?y-cot^6), and two

similar expressions. Explain how the signs of the roots must be taken.

55. A tower AB stands on a horizontal plane and supports a spire BC. An
observer at a place ^ on a mountain, whose side may be treated as an inclined

plane, observes that AB, BC each subtend an angle a at his eye; he then

moves to a place F, measuring the distance FF{= 2a), and observes that AB,
BC again subtend angles a at his eye ;

he then measiu-es the angle AFE{=^)
and CFE{ = y). Shew that if x and y are the heights of AB, BC respectively

f, cos /S cos 7 cos^ a 1'
^'Cosi3=ycosy= a-^l , .^ ,

.

'
1 /^ k\ .

I cos2i(/3+ 7)cos2^0-'y)J

Also if G is the middle point of EF, and H is the point on the Hue of

greatest slope through (7, at which AB, BC subtend an angle S, and GH is

measured (
=

6), prove that the inclination 6 of the mountain to the horizon is

given by

sm ^+ ^
~ cos 6= 0,2 o ^26 a^-\-y^ Ixy cos 28



CHAPTER XII.

PEOPERTIES OF TRIANGLES AND QUADRILATERALS.

150. In this Chapter, we shall for the most part assume

without proof the theorems in Euclidean Geometry which are

necessary for our purpose, referring to works on pure Geometry,
for the investigation of those theorems.

The circumscribed circle of a triangle.

151. We have already, in Art. 120, obtained the formula

jK = ^acosec-4, for the radius of the circle circumscribing a

triangle, or as it is now frequently called, the circum-circle.

This formula may also be obtained as follows :
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Let be the circum-centre
;
draw OD perpendicular to the

side BG of the triangle ABC, then D is the middle point of BO,
and the angle BOB = A.

Since BD = OB sinBOD we have

^a = BsiaA, or R = iaco8ecA (1).

If S denote the area of the triangle ABG, we have

S = ^bc sin Ay thus we have the expression R = ahcj^S . . .(2).

Also OD = OBcosA=RcosA,

The inscribed and escribed circles of a triangle.

152. We know that four circles can be drawn touching the

three sides of a triangle ;
the inscribed circle, or in-circle, touches

each side internally, let / be its centre
;
the escribed circles each

touch one side of the triangle and the other two sides produced,.

let 7i, /a. Is be the centres of these circles
;
we know that IA, IBy

IC, bisect the angles A, B, G, respectively, and that IA bisects

the angle A, and I^B, I^G, bisect the angles J5, (7, externally; it

follows therefore that AI^, BI^, GI2, are the perpendiculars from

/i, Ja, /a, on the opposite sides of the triangle IxIJzj and that I
is the orthocentre of the triangle /1/2/3.

The circum-circle of the triangle ABG is the nine-point circle

of the triangle IJJzi and therefore passes through the middle
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points of the sides IJ^, I^Ii, I^I^, and also through the middle

points of III, Il^y IIz-

153. Let H, K, Z, be the points of contact of the in-circle

of the triangle ABC, with the sides BC, CA, AB, respectively.

A

Then AIBC+ AIGA + AIAB = S.

Now AlBC:=iIH.BG=ira, AlGA^irh, AlAB = ^rc

where r denotes the radius of the in-circle, hence

Jr (a + 6 + c)
=

<Si, whence we have the formula r = S/s. . .(3),

for the radius of the in-circle.

Also a^BH + HG = r (cot ^B + cot ^G),

hence r = a sin ^B sin ^G sec ^A (4),

another expression for r, which might of course be deduced from (3).

Combining the formulae (1) and (4) we have the symmetrical

expression r = 4jR sin ^A sin ^B sin JC (5).

Again, since AK + BG=^i (BG + GA + AB)
we have AK AL = s a,

andsimilarly BE = BL = s -b, GH== GK = s ^ c,

hence since r = AK tan ^A = BH tan ^B = GK tan ^C,

we obtain the expressions

r = {s a) tan \A {s h) tan \B {s c) tan ^G (6),

which may also be deduced from (3) or (4).
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154. Expressions corresponding to those of the last Article,

may be found for the radii Vi, Vz, r^, of the escribed circles.

Let Hj, jfiTi, Li, be the points of contact of the circle whose

centre is I^, with the sides of the triangle ABG. Then

AI.AB -\- AI.AG- AI^BG = S, therefore in (b-\-c-a) = S,

thus we have the formulae

r, =
S

n =
S

r,=
8

s a s s c

for the radii of the escribed circles.

Also a = BH^ + H^G = n (tan ^B + tan \G),

therefore rj = a cos ^B cos ^G sec ^A

.(7),

.(8),

whence we obtain the formula

ri = 4i2sin^^cos J5cos JC (9),

with corresponding expressions for r^ and r^.

Again, since

BH, = BLu and GH^^GK^, and AK^ = AL^,

we find BH^ = s-c, GH. =^s-h, AK^=- AL^ = s.

thus we obtain the formulae

ri = 5taniil = (s-c)cot J5 = (5-6)cot JO (10).
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Examples.

(1) Prove that ri+ r2 +r3-r=4R

rri+ rg-i+ rg-i =r-i.

(2) Prove the follovring formulae for the sides and angles of a triangUy

in terms of the radii of the esanbed circles :

(a) a= M?:^L^, O) sin^^= =^=,
VraTg+ rgFi+ rjra V (ri+ rg) (r^+ Fg)

{y) sin^ =2ri^ffl!iL2.
(ri+ r2)(ri+ r3)

(3) Prove that ^==i^^^^^-il^^^^^'~^^^\

(4) Prove that 16R2rrir2r3=a2b2c2.

(6) Prove that cosA= -^
^

.

(6) If the escribed circle which touches a, is equal to the drcum-circle, prom
that cosA= cos B+ cos C.

(7) Prove that r^ (r2+ rg) cosec A= rg {r^+ rj) cosec B= rg (rj + Tg) cosec C.

(8) If a, oj, og, og, are Me distances of the centres of the iiiscribed and

escribed circles, from A, and p is the perpendicularfrom A ow BC, prove that

(a) aajagag =4R2p2^

(b) a^+ a^HagHag^ =16R2,

(c) a-2+ 01-2+ 03-2+ 03-2
= 4p-2.

(9) Shew that the area of the triangle formed by joining the centres of the

escribed circles is -^ ,
or 8R2 cos\K cos ^B-co ^C.

(10) Shew that the radius of the circle round any of the four triangles

formed by joining the centres of the inscribed and escribed circles, is double o/R.

(11) Prove that the areas Iilgis, I2I3I) Islil? ^\^'^i ^^^ inversely as

^i ^IJ ^2) ^3*

TT2 TT2 TT2 Tf

(12) Prove that (a)
^2^3, ^ hh^ ^ M2 _ g -

,

^2''3 ^3^1 ^1^2 *

(b) r3 . Ill . II2 . II3 =IA2 . IB2 . IC2.

(13) If di, 6-2, d^, be the distances of I from the angular points of a

triangle, shew that ^-?-^ = -
.^ ' abc s

(14) Ifsf, h', c', are the sides of the triangleformed by joining the points of
a2 a'2 b2-b'2 c2 c'2

contact Hj, Hg, Hg, of the escribed circles, shew that = v-
a D
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(15) Prove that the sides of the triangle formed hyjoining the centres of the

circles BOC, COA, AOB, are as sin 2A : dn 2B : sin 20.

(16) Prove that the drcum-circles of the two triangles in the ambiguoits

case, when a, b, B, are given, are equal in magnitude; shew also that the

distance between their centres is (b^ cosei^ B a')^.

(17) In the ambiguous case of the solution of a triangle, 'prove that the

distance of the points of contact of the inscribed circles with the greater of the

two given sides, is equal to half the difference of the values of the third side.

(18) If pi, p2j Ps) be the radii of the circles described about IBC, ICA, lAB,
prove that 4R3_ R (pj2+ p^2 _|. ^^2)

_
^^^^^^ q.

(19) Prove that the radii of the escribed circles of a triangle, are the roots

of the cubic x^- x^ (4R+ r) -f xs^ - rs^= 0.

The medians.

155. The lines AD, BE, OF, joining the angular points of a

triangle to the middle points of the opposite sides, are called the

medians. The length of AD is given by the well-known geo-
metrical theorem AB^ + AC^ = 2 {AD"" + BD% thus the squares of

their lengths are given by

>^2 ^ 152 ^ 1^2 _ ^fj2^ ^^2 ^ 1^2 ^ ^fjji
_

152^

^3' =K + i6'
-

Jc'^ (11).

Let Ml denote the angle ADC, then

cot ifi = DLIAL = \{BL- CL)/AL,

where ^i is perpendicular to BC, therefore M^ is given by

cotMj = i(cotB-cotG) (12).
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The point G, where the medians intersect one another, is called

the centroid of the triangle. It is well known that G divides each

of the mediaDS in the ratio 2:1.

Examples.

(
1

) Prove that cot AGF+ cot BGD+ cot CGE= cotA+ cot B+ cot C.

(2) If a, i3, y, are the centres of the circles BGC, CGA, AGB, and A, A', are

the areas of the triangles ABC, a^y, prove that 48 AA'= (a^+ b^+ c2)2.

(3) i/" Ri, R2, R3, 6e the radii of the circles BGC, CGA, AGB, prove that

a2(b2-c2) b2(c^-a2) c2(a2-b2)

R,2
+

R22
+

R32

(4) If the angles BAD, CBE, ACF, are a, /3, y, and the angles CAD, ABE,

BCF, are a, jS', y', ^ove that

cot a-\-C0t ^+ C0ty= C0t a +cot^+ COty'.

The bisectors of the angles.

156. Let a and Wj be the points in which the internal and

external bisectors of the angle A meet the opposite side BG. Let

/, g, h, be the lengths of the internal bisectors Aa, Bfi, Gy, and

/', g', h\ the lengths of the external bisectors Aui, B^i, Gy^. To

find the positions of a and Wi, we have Ba/Ga = BA/GA = BaJGui,

whence

Ba = ^^, Ga = ,^, B., =^, Gcc,=^
^^

6 + c' 64-c'
' c-6' ' c-6'

To find the lengths//', we have

AABa+ AAGa = S= AAa^B - AAa.G,

hence f(b + c) sin J-^ =/ (c
-

6) cos J^ =
2>Sf,

H. T. 13
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therefore/ and /' are given by

b + c c-b .(13).

Examples.

(1) 7/^ a, /3, y, are the angles that Aa, B/3, Cy, make with the sides a, b, c,

shew that a sin 2a+ b sin 2j8+ c sin 2y= 0.

(2) Tj^ fj, gi, hj, are the lengths of the bisectors of the angles, produced to

meet the circum-circle, shew that

f-i cos ^A+g-i cos ^B+h-i cos ^C= a-i+b-i+ c-i,

and fi cos ^A+gi cos ^B+ hj cos ^C = a4-b4-c.

(3) Prove that a^ cuts Cy in the ratio 2c : a+ b.

The pedal triangle.

157. The triangle LMN formed by joining the feet of the

perpendiculars AL, BM, ON, from A, B, C, on the opposite sides,

is called the pedal triangle oi A, B, G. Let P be the orthocentre

of the triangle ABC, then since PMA, PNA are right angles, a

circle whose diameter is PA circumscribes PMAN, hence MN
is equal to PA multiplied by the sine of the angle in the

segment MN, or MN = PA sin A
;
now if is the centre of the

circum-circle, and OD is perpendicular to BG, it is well known
that AP = 20D, and we have shewn in Art. 151, that this is

equal to 2R cos A : hence MN = 2R sin A cos A = a cos A . Also
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the angles PLM, PLN, are each the complement of Ay or

MLN =7r 2A
;

the sides and angles of the pedal triangle are

therefore respectively

a cos A, bcosB, ccosC]

'7r-2A,7r-2B,7r-2G\
^^^)-

It should be remarked that ABC is the pedal triangle of /1/2/3.

The pedal triangle of LMN is called the second pedal triangle of

ABC, and so on.

We have assiimed that the triangle is acute-angled; if the angle A is

obtuse, it can be easily shewn that the angles of the pedal triangle are

2A -IT, 2B, 2(7, and that the sides are acos^, 6 cos 5, ccosC.

Examples.

(1) Prove that the radius of the circle inscribed in the triangle LMN is

2R cosA cos B cos C.

(2) If a, jS, -y,
are the diameters of the circles MPN, NPL, LPM, shew that

be ca ab

(3) Prove that if r', r^', rg', r^^ are the radii of the inscribed and escribed

circles of the pedal triangle^ then
^

^,

^ =
\.\

^
.

(4) If AL, BM, CN, meet the circum-circle in L', M', N', shew that

All BM' CN'_
AL'^BM"'^CN~ *

The distances between special points.

158. Let P be the orthocentre, the centre of the circum-

circle, / of the in-circle, I^ of one of the escribed circles, G the

centroid, and U the centre of the nine-point circle of the triangle

ABG. According to Euler's well-known theorem, the three points

0, G, P, lie on a straight line, and PG = 20G; the point U is also

on OP, at its middle point. Each of the angles lAO, lAP is equal
to i(Br-G); also AO = R,AP = 2R cos A,

AI = r cosec ^A = 4i2 sin ^B sin ^G, AIi = 4fR cos ^B cos ^G.

We can now find expressions for the distances of the points

0, /, P, Ii, U, from one another.

132
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(1) To find 01 = B.

We have

S'^ = AO^ + AI^- 2A0 . AI cos OAI,

hence

82 = E2 (1 + 16 sin^ \B sin' iC - 8 sin \B sin \G cos i^ - (7)

or S^ = i^2 (1
_ 3 siji ^^ sij^ j5 sin |(7),

we thus obtain Euler's formula

h^ = R'-2Rr (15).

(2) To find Oil = Si. We have

Si'
= i22 (1 + 16 cos^ iB cos^ JC - 8 cos ^B cos J(7cos j5^^

or Si2
= E2(x + 8siniiLcos|5cos^(7),

which gives Bi'
= R^+2Rrj_ (16).

(3) To find OF.

From the triangle OAP we have

OF" = 0.12 + j[p2 -20A.AP cos O^P

or 0P2 = P2 (1 _|. 4 cos^^ - 4 cos ^ cosB -
C),

which gives OP2 = i22(i
- 8 cos ^ cos 5 cos C) (17).
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(4) To find IV.

IP^ = 4jR2 cos2 A^-l^B? sin^ \B sin^ \G
- 16R' cos A sin ^B^sin \G cos \{B-G),

hence /P^ = 4i22 [cos^ ^ + (1
- cos jB) (1 cos C) cos A sin B sin G

cos J. (1 cos B) (1 cos C)},

or IP" = 4i22 1(1
~ cos A) (1

- cos B) (1
- cos G)

cos J. cos 5 cos
(7} (18),

or /P2 = 2r^ - 4i22 cos A cos 5 cos G.

(5) TofindlJJ.

We have

hence /U'^ = r^ + JE^ _ Pr - ^E^ = (^i^
- r^

hence lU=^R r; in a similar manner it can be shewn that

IJJ= ^R + r*! ;
now ^R is the radius of the nine-point circle,

hence the expressions we have obtained for lU, I^U, shew that

the inscribed and escribed circles touch the nine-point circle. We
have then a trigonometrical proof of Feuerbach's theorem, of

which a considerable number of geometrical proofs have been

given.

Examples.

(1) Jf ^i) ^2, t^f are the lengths of the tangents from the centres of the

escribed circles to the circum-circle, prove that

J^ J^ 1 _a-}-b-fc

tj^ tg^ tg^ abc

(2) Prove that the area of the triangle 10P is

-2Wsin^(B-C)sin^{C-A)sin^{A-B).
'

(3) Prove that GV-= J^ E2 {2 sin^ |B sin^ \0 - -^ 2 sin'^ A}

and GP+4Rr=^(bc+ ca+ab)-i(aHb2+ c2).

fA\ r> .1 .r^T32 2a2(a2-b2)(a2-c2)
(4) Prove that 0P2= ^^ -^ ^

.

(5) If a, /3, y, be the distances of the centre of the nine-point circle from the

angular points, and g its distance from the orthocentre, shew that

a2+^2+y2+ g2
= 3R2.

(6) Prove that the nine-point circle does not cut the circum-circle unless the

triangle is obtuse, and in that case they cut at an angle

cos~i (1 + 2 cosA cos B cos C).
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(7) Shew that, if the distance between the orthocentre and the centre of the

circum-circle is ^a, the triangle is right-angled, or else tan B tan C= 9.

(8) If Qis the centre of the nine-poini circle, shew that

'(Qi2-Qi3)(Qii-Qi)=b2-c2.

(9) If OIP is an equilateral triangle, shew that cos A+ cos B+ cos C=f.

(10) If the centre of the in-circle be equidistant from the centre of the

circum-circle and the orthocentre, prove that one angle of the triangle is 60.

Expressions for the area of a triangle.

159. A very large number of expressions for the area of a

triangle, in terms of various lines and angles connected with the

triangle, have been given. Large collections of such formulae

will be found in Mathesis, Vol. III. and in the Annals of

Mathematics, Vol. I. No. 6.

We give here a few of these expressions, leaving the verification of them

as an exercise for the student.

(1) Vrvyv^ (2) 'J^RpiPzPs, (3) | ^a (o Wj) (o- -m^){<T- m^
where 2(r=mi+ m2-\-m^.

(A\
g^

,;.>, /cOS^(^-C)+grc08^((7-^)+AcOS^(^-^
^^

2cotJ^'
^^

2(/-icos^^+^icos^^+A-icos|C7)
'

(6) 7-2 cot ^ ^ cot J jB cot ^(7, (7) r^ cot ^A -{-2Rr sin A, (8)' rgrgtan^^,

(9) "-ifzf . (10) VV ,^\\
"

Various properties of triangles,

160. If Q be any point in the plane of the triangle ABC, we
have the identical relation AQBC -\- AQCA + AQAB =A ABC,
the areas of the triangles with vertex Q being taken with the

proper signs ;
for example, AQBG is negative when Q and A are

on opposite sides of BC. By taking Q in various positions, we

obtain various well-known relations between the angles of a

triangle.

(1) Let Q be at 0, the above relation becomes

sin 2A + sin 25 + sin 2(7 = 4 sin A sin 5 sin (7

since the angles BOG, COA, AOB are 2A, 2B, 20 respectively.
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(2) Let Q be at I, we obtain the relation

sin iA sin i(B + (7) + sin ^B sin J((7 + J.) + sin JCsin ^(A + B)
= 2 cos ^A cos ^B cos -J-C

(3) Let Q be at U, we get

sin Acos(B-C)-{- sin 5 cos ((7
- ^) + sin Ccos (A - B)

= 4 sin J. sin B sin C.

161. The identical relation which holds between the six

distances of any four points A, B, G, Q, in a plane, may be

expressed in various forms.

(1) Using the equation A QBG + A QGA +AQAB = AABG,
and expressing each of the four triangles in terms of its sides, we

have the required relation in a form involving four radicals.

(2) To obtain the same relation in a rationalised form, denote

the angles BQG, GQA, AQB, by a, jS, y respectively; then since

a + y8 + 7 = 27r, we have

1 cos^ a cos^ ^ cos^ 7 + 2 cos a cos yS cos 7 = 0.

Now substituting for cos a its value (QB' + QO" - BG')I2QB.QG
with the corresponding expressions for cosyS, cos 7, we have the

required relation.

162. Taking any general relation between the sides and

angles of a triangle, another relation may be deduced, by re-

placing the sides and angles by the corresponding sides and

angles of the pedal triangle. The sides and angles of this

triangle are given in (14), and we may therefore replace a, 6, c,

in the given relation, by a cos A, hcosB, ccos (7, and the angles

A, B, C by TT - 2A, tt - 25, tt - 2G.

As an example of this transformation, we obtain from the

known relation a^ = -\- c^ 2bc cos A, the new relation

a^ cos^A = 62 cos2B + c^ cos^ G + 26c cos B cos G cos 2A.

This method of transformation may be extended, by taking
the nth pedal triangle, of which the sides are

(- 1 )"-! a cos A cos 2A cos 4J. . . .cos 2'^-^A
,

(_)-! ^ cos B cos 2B cos 45. . .cos 2"-i5,

(- l)"-i c cos G cos 2(7. . .cos 2"-iO,
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and the angles are

J(2^ + 1) TT - 2M , J(2^ 4- 1) TT - 2^5, J(2'* + 1) tt - 2"C,

when n is odd, and

- 1
(2*^

-
1) TT + 2M, - 1

(2*^
-

1) TT + 2M, -
J (2

-
1) tt + 2M,

when n is even
;

thus in any relation between the sides and angles of a triangle, we

are entitled to write, ( 1)**"^ acos^ cos 2J.... cos 2'^~^A for a, and

J(2^ + l)7r
- 2M or 2M -

^2*^
-

l)7r for ^, according as n is odd

or even, with corresponding expressions for the other sides and

angles.

163. In any general relation between the sines and cosines of the angles
of a triangle, we may substitute pA +qB+rC, qA + rB+pC, rA -\-pB+qCj for

Aj B, C, respectively, whereat?, q, r, are any quantities such that
jt?+ 2'+r is of

one of the forms 6n-l, 6n+ 2, where n is a positive integer, provided that

when ^+ 3-+^ is of the form 6/61, the signs of all the sines are changed, and

when p+q+r is of the form 6n+2, the signs of all the cosines are changed.

This theorem follows from the facts that in the first case the smn of the

angles 2n7r-{pA-\-qB-\-rC), 2mr-{qA+rB+pC), 2mr-{rA+pB-\-qC)jis tt,

and in the latter case the sum of the three angles

{2n+l)7r-{pA+qB+rCr),{2n+ l)7r-{qA+rB+pC),
{2n+l)Tr-(rA +pB+ g-C), is tt .

Properties of Quadrilaterals.

164. Let ABGD be a convex quadrilateral; denote the sides

AB, EC, CD, DA, by a, b, c, d, respectively, and the diagonals AG
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BD, by X, y, respectively ;
also let A + G = 2ol, and let

<f>
be the

angle between the diagonals.

We shall find an expression for the area /S, of the quadrilateral

in terms of a, 6, c, d, and a.

We have y^
= a^-\-d?- 2ad cosA=h^ + c^- 2hc cos 0,

therefore ad cos A be cos C =^(a^ + d^ h^ c%

also ad sin ^ + &c sin (7 = 2>Sf
;

square and add the corresponding sides of these equations, we get

a^d^ + h^d" - 2ahcd cos 2a = 4>Sf2 + ^ (a^ + c?^ - 6^ - c%
hence IG/S'^ = 4 (ad + hcf

-
(a^ -{d^-- cf - IQahcd cos^ a,

or 16>Sf2 = {(a + df -(b- cy}{{b + c)^
-

(a
-

(^)2}
- 16a6cc? cos^ a

;

hence S^ = {s a) (s -b)(s c) (s d) abed cos^ a. (19),

where 2s a + b + c + d.

In the case of a quadrilateral inscribable in a circle we have

2a = TT, thus,

;Sf2 = (s-a)(5-6)(5-c)(5-(^) (20).

The expression (19) shews that the quadrilateral of which the sides are

given, has its area greatest when a=^, that is, when the quadrilateral can be

inscribed in a circle.

The theorem (20) was discovered by Brahmegupta, a Hindoo Mathema-

tician of the sixth century.

165. Expressions for the area of a quadrilateral can be found,

which involve the lengths of the diagonals and the angle between

them.

The area of the quadrilateral is the sum of the areas of the four

triangles into which the diagonals divide it
;
the area of each of

these triangles is half the product of the two segments of the

diagonals which are sides of it, multiplied by sin</); hence by
addition we have

S = \xy sin
<^ (21).

Also,

20A . OB cos
(l)
= OA'' + OB'- a\ 20C. OD cos

(f>
= OG' + OD' - c'

20A . OD cos
(l>
= d'-OA^- 0D\ 20B . O^cos

</>
= 6^ _ 05^ - 0G\

hence 2xyco^(j> = b^-\-d''-a?-c? (22),

therefore S = {Q)" + d'' - a^ -
c'')idin(f> (23),
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and eliminating (/>,
we obtain Bretschneider's formula

>Sf = J {4ar=3/2
-

(6^ + c^2 - a^ - c2)2}i (24),

which expresses the area in terms of the diagonals and the sides.

If a circle can be inscribed in the quadrilateral, we have a-\-c=b+d, hence

the formulae (23), (24), become S=^ {ac-hd) tan 0, and

166. An expression may be found for the product of the

diagonals of a quadrilateral, in terms of the sides and the cosine

of the sum of two opposite angles.

Through B and G draw straight lines meeting in E, so that

the angles GBE, BGE may be equal to the angles ABDy ADB,

respectively. The triangles EGB, ABD, are similar, hence

An_BB^AB
GE ~GB BE'

thus AD.GB = BD. GE. Also since the angles GBD, ABE are

equal, and AB : BE :: BD : BG, the triangles ABE and GBD are

similar, therefore ^5 . CD = 5i) . ^^.

Since AG" = AE^ + EG' - 2AE . EG cos (A + G),

multiplying by BD^, we have

a?2|/2
= aV + 62(i' - 2a6cc? cos 2a (25).
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If 2a = TT, we have Ptolemy's theorem xy ac-\- bd, for a quadri-

lateral inscribed in a circle.

If 2a = Jtt, we have fl?y
= a^c^ + b^d^, for a quadrilateral in

which the sum of two opposite angles is a right angle.

167. In the case of a quadrilateral inscribed in a circle, the

lengths of the diagonals cc, y, and of the third diagonal, formed by

joining the point of intersections of the sides a and c to that of

b and d, may be found in terms of the sides.

Let FG be the third diagonal, and denote the lengths of

AC, BD, FG, by x, y, z, respectively. We have

a;2 = ^2 + 62 _ lab cos B

and a?=^c^-\-d^- 2cd cos D,

hence

'

^fJ, +-L^=^V^ + *
ab cdj ab cd

'

hence a>^ = (ac + bd){ad + bc)l(ab -\- cd) (26),

and similarly it may be shewn that

y^
=

(ac + bd) (ab + cd)l(ad + be).

We have also

sin D dxFA=AD
sin (A + B) y cos D + x cos A '
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hyand similarly FB =

hence

y cos D + X cos A '

FA FB FB-FA a

dx hy by dx by dx'

it may be shewn in a similar manner that

GG.GB = acxy

(ay cxy
'

Now the square on FG is equal to the sum of the squares of the

tangents from F and G to the circle (see McDowell's Geometry,

p. 92), hence we have

f a%d ac

[(by dxy {ay cxy

Now from the values found above, for x^ and y^, we have

X _ y _ by dx _ ay ex

ad + bc
~

ab-[-cd
^
a(b^-d^)

"
b(a^-c^)

'

therefore substituting in the expression for z^, we obtain

z^ = (ad + bc){ab + cd) {(jF^
+
(^5^)j

(27).

Examples.

(1) If the quadrilateral is inscribed in a circle^ shew that the radius of the

circle is i f(ab+cd)(ac+bd)(ad+bc)li

(2) Shew that the distance between the centre of a circle^ of radius r, and the

intersection of the diagonals of an inscribed quadrilateral is

(ab-+ay^aTb3)
K-+'^) {- (b^-d^)^+bd (a^-c^W].

(3) Shew that the diagonals of a quadrilateral inscribed in a circle meet at

,
, (a2+c2)~(b2+d2) ^^ r(s-b)(s-d)\* , ,. , ,ian angle cos-^ - ttv^ Vr^ - or 2 tan^ \) (-7 \\ ,

and thai the^
2(ac+bd) ((s-a)(s-c)j

, . , /. 7. 7 . abcd(ac+bd)
product of the segments of a diagonal is , ,..

, -, >.

(4) If S is the area of a quadrilateral inscribed in a circle^ shew that the

straight lines joining the middle points of the opposite sides meet at an angle

fn.-ii
4S (ad + bc)(ab+cd)1

t(b2~d2)(a2~c2)* ac+bd J*
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(5) // E, F, G, are the intersections of pairs of the diagonals of a quadri-
lateral inscribed in a circle, shew that the area of the triangle EFG is to that of
the quadrilateral in the ratio a^^M^ : (a^b^ ~ c^d^) (aM^ ~ b^c^).

(6) Prove that the area of a quadrilateral in lohich a circle can he inscribed

is Vabcd sin ^ (A+ C) ;
shew also that \/ad sin \A.

= \/bc sin \C

(7) With four given straight lines, three distinct quadrilaterals can he

constructed, each of which is inscribable in a circle ; their areas are equal ; the

six diagonals which intersect within the circle are equal in pairs ; and if a, ^,y
he the lengths of these lines, S the common area, and R the radius of the circle,

shew that R= a^y/4S.

(8) The difference of the areas of the triangles whose bases are the sides

h, d, of a quadrilateral, and whose vertices coincide with the intersection of the

diagonals, is j \j4.Q.^c^ (x^ -H y^ b^ d^)^.

(9) If a quadrilateral he such that all rectangles described about it are

similar, shew that d?+c^h^-\-d?.

(10) A quadrilateral is such that one circle can be described about it, and

2 Vabcd
another inscribed in it ; shew that the radius of the latter is

a-i-b+c+d

(11) If the diagonals of a quadrilateral intersect in 0, shew that

area AOB . area ABCD = area ABC . area ABD.

Properties of regular polygons.

168. Let be the centre of the circles circumscribed about,

and inscribed in a regular polygon of n sides. Let R, r, be the

radii of the former and the latter circles, and let a be the length
of a side of the polygon.
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If AB he a, side of the polygon, and D its point of contact

with the inscribed circle, the angle AOB is 27r/w, and the angle
AOB is ir/n ;

we have

a = 2Rsm- =2rtan- (28),

thus the radii of the circles are determined, when the side a is

given. The area of the triangle OAB is

1 . 27r 1
2 4-

"^- Jxr sm
,

or 2i ar, or r^ tan ,

2 n 2 n

hence the area of the polygon is

1 27r TT
-ni^^sin or wr^tan- (29).
2 n n ^ ^

It should be observed that the problem of inscribing or circum-

scribing a regular polygon of n sides in, or about a circle, is

reduced to the determination of the circular functions of the

angle tt/ti.

169. Examples.

(1) Circles are described on the sides a, b, c, of a triangle as diameters, prove
that the diameter D of a circle which totiches the three externally, is such that

If D, E, F, are the middle points of the sides of the given triangle, and

is the centre of circle whose diameter is J), we have

OD=i{D-a), OE=\{D-h), OF=\{D-c)\
also ^a, \h, ^c, are the sides of the triangle DBF, thus expressing the areas of

the triangles in the relation a OEF+ a OFD+ a 0DE= lDEF, in terms of

the sides, we obtain the required relation.

(2) From a point P, perpendiculars PL, PM, PN, are dravm to the sides

of a triangle ABC ;
shew that the area of the triangle LMN is

^ (W d^) sinA sin B sin C,

where d is the distance of P from the centre of the circum-cirde.

Produce OP to meet the circum-circle in P', and let P'Z', PM', FN', be

drawn perpendicular to the sides, their feet lie on a straight line called the

pedal line ofP with respect to the triangle. The perpendicular from a point
on the side of a triangle, is reckoned as positive or negative according as the

point is on the same side or the opposite side of that side, as the opposite

angle of the triangle.
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We have
pr^~Qj) ==oP^R'

^^^^^ PL={R- d) cosA+^ P'L\

with similar expressions for PM, PJV; now

2iiLMN=PM. PN&mA+PN . PL^mB+PL . PMsinC

= {R-d)^2 sin A cos B cos C+^2PM' . P'i\^' sin^

207

B^'

d
+ ^{R-d)^FL'^mA;

also \'2F ]! . F N' &m A is the area of the triangle L'M'N\ which is zero, and

2P'X'sinvl = ~^2a. FL'=\l, lFBC = \lABG,2R R it
'

and 2 sinA cos B cos C= sin A sin BsinC;

hence 2 aLMN= {R - df sin A sin 5 sin C+2d {B- d) sin A sin j5 sin C

= {R^
-

d^) sin A sin 5 sin C.

(3) i/^ A, B, C, he any three fixed points, and P any point on a circle whose

centre is 0, shew that AP2 . a BOC + BP^ . a COA+CP^ . a AOB is constant for
all positions of P on the circle.

Denote the angles BOG, GOA, AOB, by a, ^, y, then a+/3+ y
=

27r, and let

the angle POA be 6. We have AP^=OP^+ 0A^-20A . OP cos
<9, and similar

expressions for BP^, GP^, hence the expression above is equal to

OP^. LABG+20AK ^B0G-20P20A .ABOG.cose-,
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the first two terms in this expression are independent of the position of P on

the circle, and the coefficient of 2OP in the last term is

^OA . OB . 0(7 {cos e sin a+ cos (^ + y) sin ^+ cos {^-6) sin y}

or ^ OA . OB . 00 cos 6 (sin a+sin /3 cos y 4-cos /3 sin y)

which is zero
;
thus the theorem is proved.

Particular cases of this theorem are the following,

(a) P^2gin2^ +P^sin25+P(72sin20 is constant if P lies on the

circum-circle ;

(6) PJ-^sin^+P^sin^+ PO^sin (7 is constant if P lies on the in-

circle.

(c) P^2sin^cos(5-(7)+ P52sin5cos((7-^)+P(72sinOcos(il-^) is

constant if P lies on the nine-point circle.

(4) Slmw that the length of the side of the least equilateral triangle thai can

he drawn with its angular points on the sides of a given triangle ABC, is

2Av/2

x/a24-b2+c2+4\/3A'

where A is the area of ABC.

Let DEF be such an equilateral triangle, and let the circle round DEF
cut BC and AG in H and O respectively ;

the angles FOA ,
FEB are each 60,

thus FG^ FH are in fixed directions; also the angle HFO is 120- (7.

a

We have, ifAF be denoted by x^

FG=x sin ^/sin 60, FH={c-x) sin 5/ sin 60,
hence

EO'^= cosec2 60 {x^ sin2A+(c- xf sin2 B-1x{g-x) sin A sin B cos (120
-

G)}.

Now the radius of the circle is EG1 2 sin (120
-

(7), hence the circle is least

when EG is least. The least value of a quadratic expression \x^ + 2y^+ v,
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in which X is positive, is i; ^, for '\a^+2fiX-{-v may be written in the form

X /'^r -f^Y+ 1/
-
^ . We find therefore for the least value of HG sin 60,

r
2

.

2 7> (c sin2^+ c sin ^ sin B cos 120" -C)^ 1 ^

r
^"

sin2^ + sin25+2sin^sin^cos(120-(7)J
'

which is equal to

c sin A sin B sin (120
- C)

or

{sin2 A + sin2^+ 2 sin ^ sin B cos (120
-

C)}^
'

^/2 c2 sin^ sin B sin (120
-
C)

sin (77a2+ 62^c2+4V3A

Now the side of the equilateral triangle is HO sin 60/sin (120"- (7), thus

2aV2
the least value of the side is

7a2+ 62+c2-l-4\/3A

(5) Describe three circles mutually in contact^ each of which touches two sides

of a given triangle.

Let pi, P2> p3j be the radii of the circles, then MN=2\lp^^^

hence a=BM-^CN+MN= p^ cot |5+ pg cot ^(7+ 2\/p2P^,

with similar equations for b and c.

Let ^= Pi cot 1^ , 3/2
=

p^ cot ^5, ^2= pg cot i(7,

Vtan ^B tan |(7=
- cos a, Vtan 1(7tan ^A = - cos /3, A/tan~ptan^= - cos

-y ;

we find sin2a=l-tani^tan-|(7=a/s, and similarly sin2/3= 6/s, sin2'y=c/5,
hence we have the equations

y^+z^27/z cos a _ 2;2+^2 _ 2^;^ cos ^ _ x^-{-'ip-2xy cos y
sin2a sin2j3

~
sin2'y

~
'

H. T. 14
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these have been considered in Art. 68, Ex. (12); adopting the first solution

there found, we have

a;=*/scos{a- a)y y='sjs cos((r-j3), 2=\/5 cos (or-y),

where 2<r=a+i3+y,

hence Pi
= tan \A cos^ (or a), P2

= tan \B cos^ (o- j8), P3
= tan |C cos^ {a- y)y

are the required radii of the circles. The other solutions give the radii of

three sets of circles which are such that two in each set touch two sides

of the triangle produced ;
of one such set, the radii are

s tan \A cos^
,
g tan \B cos^ (s y), tan ^Ccos^ {s ^).

There are altogether eight sets of circles which satisfy the conditions of

the problem.

This solution is founded on that of Lechmutz given in the Nouvdles

AnnaZes, Vol. v. A geometrical solution of this problem, which is known as

"Malfatti's Problem" will be found in Casey's Sequel to Euclid. A history of

the problem will be found in the Bulletin de VAcademie Royale de Belgique

for 1874, by M. Simons.

EXAMPLES ON CHAPTER XII.

1. If ^ be the angle between the diagonals of a parallelogram whose sides

a
J 6, are incHned at an angle a to each other, shew that tan ^= g_,g .

2. If a, /S, y be the distances, from the angular points of a triangle, to

the points of contact of the inscribed circle with the sides, shew that

3. The area of a regular inscribed polygon, is to that of the circumscribed

polygon, of the same number of sides, as 3 : 4
;
find the number of sides.

4. From each angle of a parallelogram, a line is drawn making the same

angle, towards the same parts, with an adjacent side, taken always in the

same order
;
shew that these lines will form another parallelogram similar to

the original one, if a^~h'^='yLah cos B, where a, 6, are the sides, and B is an

angle of the parallelogram.

5. The straight lines which bisect the angles ^, (7, of a triangle, meet the

circumference of the circum-circle in the points a, y',
shew that the straight

line ay is divided by (75, BA^ into three parts which are in the ratio

sin^^A : 2 sin ^A sin ^B sin ^C : sin^ J(7.
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6. If / be the centre of the in-circle of a triangle, la, lb, Ic perpendiculars

on the sides, p^, pg, ps the radii of circles inscribed in the quadrilaterals

Able, Bcia, Calb, prove that

Pi I _P2_ ^ P3 _ cL+'b+ c

r-Pi r-p^ r-ps 2r

7. Prove that the line joining the centres of the circum-circle and the

in-circle of a triangle, makes with BC an angle cot~i
( , 79 :, )

.
'

\cos^+ cos(7 1/

8. If in a triangle, the feet of the perpendiculars from two angles, on the

opposite sides, be equally distant from the middle points of those sides, shew

that the other angle is 60, or 120, or else the triangle is isosceles.

9. If ABC be a triangle having a right-angle at C, and AE, BD drawn

perpendicularly to AB, meet BC, AC, produced in E, D respectively, prove
that tan CED^iBxi^BAC, and A ECD = I^ ACB.

10. If a point be taken within an equilateral triangle, such that its

distances from the angular points are proportional to the sides, a, b, c, of

another triangle, shew that the angles between these distances will be

^-^A,\'n+B,\n+ C.

11. The points of contact of each of the four circles touching the' three

sides of a triangle, are joined; prove that, if the area of the triangle thus

formed from the inscribed circle be subtracted from the sum of the areas of

those formed from the escribed circles, the remainder will be double of the

area of the original triangle.

12. If ABCD is a parallelogram and P is any point within it, prove that

hAPG. cot APC-hBPD . cot BPD is independent of the position of P.

/12L) Three circles touching each other externally, are all touched by a

fourth circle including them all. If a, b, c, be the radii of the three internal

circles, and a, /3, y, the distances of their centres from that of the external

circle respectively, prove that

\bc ca ah) a^ h^ &

14. P, Q, R, are points in the sides BC, CA, AB of a triangle, such that

^ =^ = 4^ ;
shew that AP^+BQ'^-\-Cm is least, when P, Q, R, bisect the

PC k^A BR
sides.

15. Oili the sides a, b, c, of a triangle, are described segments of circles

external to the triangle, containing angles a, jS, y, respectively, where

a-\-^-\-y=ir, and a triangle is formed by joining the centres of these circles;

shew that the angles of this triangle are a, /S, 7.

142
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16. Through the middle points of the sides of a triangle, straight lines are

drawn perpendicular to the bisectors of the opposite angles, and form another

triangle; prove that its area is a quarter of the rectangle contained by the

perimeter of the former triangle and the radius of the circle described

about it.

17. P is a point in the plane of a triangle ABG^ and X, i/, N^ are the feet

of the perpendiculars from P on the sides; prove that if MN+ NL \-LM he

constant and equal to Z, the least value of

PA^+PB^+PC^ is ^2/(sin2 A + sin2 B+ sin2 C).

18. Lines B'C\ C'A\ A'B', are drawn parallel to the sides BC, CA, ABy
of a triangle, at distances r^, r^, rg, respectively; find the area of the triangle

A'B'C.

If eight triangles be so formed, the mean of their perimeters is equal to the

perimeter of the triangle ABC, but the mean of their areas exceeds its area by

(a2ri2+6V+cV3^)/4A.

19. On the sides of a scalene triangle ABC, as bases, similar isosceles

triangles are described, either all externally or all internally, and their vertices

are joined so as to form a new triangle A'B'C
-, prove that if A'B'C be

equilateral, the angles at the base of the isosceles triangles are each 30 ; and

that if the triangle A'B'C be similar to ABC, the angles are each

where A is the area of ABC.

20. A straight line cuts three concentric circles in ^, jB, C, and passes at

a distancep from their centre
;
shew that the area of the triangle formed by

, . X . A 1, n BC.CA.AB
the tangents a.t A, n, C, is

^
.

21. If iV is the centre of the nine-point circle of a triangle ABC, and

J)f JEf F, are the middle points of the sides, prove that

BC cosNDC+ CA cosNEA +AB cos NFB=0.

22. On the side BA of a triangle, is measured BD equal io AC; BC and

AD are bisected in E and F\ E and F are joined; shew that the radius of

the circle round BEFm ^BCco&qc\A.

23. If A', B', C, be any points on the sides of the triangle ABC, prove

that AB' . BC . CA'+ B'C. CA ,A'B=4R.A A'B'C.

24. If ^, 3/, z, denote the distances of the centre of the in-circle of a

triangle from the angular points, shew that

a*^+6y+ 0*^4+ (a+ 6 + cfxhfH^= 2 i^'^c^z^+ 02^222^ 4. a^y^xY)-

25. D, E, F, are the points where the bisectors of the angles of the

triangle ABC meet the oppqsite sides; if x, y, z, are the perpendiculars
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drawn from A, B, C, respectively, to the opposite sides of DEF, Pi, P2, P3,

those drawn from A^ B, C, respectively, to the opposite sides of ABC, prove

that ^+^+^= 11+8 sin ^A sin ^B sin j^G.X y z

26. Shew that the distances of the orthocentre of a triangle from the

angular points, are the roots of the equation

27. If each side of a triangle bears to the perimeter a ratio less than

2 : 5, a triangle can be formed, having its sides equal to the radii of the

escribed circles.

28. ABG\s, a triangle inscribed in a circle, and from Z), the middle point

of BG^ a line is drawn at right angles to BG^ meeting the circumference in E
and F\ AE, AF are joined. If triangles be described in the same way by

bisecting AB^ AG, shew that the areas of the three triangles thus formed, are

as sin(5-C) : s\n{G-A) : am(A-B).

^9) Three circles whose radii are a, b, c, touch each other externally;

prove that the radii of the two circles which can be drawn to touch the three,

abc
are

{bc-\-ca+ ab) + 2^/abc (a+b+ c)

30. ABG is a triangle; on its sides, equilateral triangles A'BG, B'GA,

CAB, are described without the triangle ; prove that (!) AA', BB\ GG' meet

in a point 0, (2) OA! =OB-ir OG,

(3) r^^A'B'G'^i^ABG+^^^BG^+GA^+AB^).o

31. A\ B\ are the middle points of the sides a, 6, of a triangle ; D, E, are

the feet of the perpendiculars from A, B on the opposite sides; A'D, B'E are

bisected in P, ^; prove that PQ= \\la?+ 6^ _ 2a6 cos 3(7.

32. The perpendiculars from the angular points of an acute-angled

triangle meet in P, and PA, PB, PG, are taken for sides of a new triangle.

Find the condition that this is possible, and if it is, and a, /S, 7, are the angles

of the new triangle, prove that

cos a cos /3 cos 7 , . ^1 H 7 -\ n \ 7,=* sec A sec B sec G.
cos J. cosi^ cos (7

^

33. Two points A, B, are taken within a circle of radius r, whose centre

is G. Prove that the diameters of the circles which can be drawn through
A and B to touch the given circle, are the roots of the equation

x^ ifc^
- aW sin2 G)

- 2xrc'^ {r^
- ab cos G)+ c^ (r*

- 2r^ ab cos G+ a^b^)
=

where the symbols refer to the parts of the triangle ABG.
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34. If a triangle be cut out in paper, and doubled over so that the crease

passes through the centre of the circumscribed circle and one of the angles J,
shew that the area of the doubled portion is

^ 62 sin2 (7 cos Ccosec (2C- B) sec {C- B\ where C>B.

(35y
From the feet of the perpendiculars from the angular points A, B, C,

of a triangle, on the opposite sides, perpendiculars are drawn to the adjacent
sides

;
shew that the feet of these six perpendiculars lie on a circle whose

radius is

R (cos2 A cos2B cos2 (7-fsin^A sin^ B sin'^ C)^.

36. Prove that if P be a point from which tangents to the three escribed

circles of the triangle ABC, are equal, the distance of P from the side BC,
will be

\{b+ c) sec ^A sin \B sin ^C.

37. If X, y, 0, be the sides of the squares inscribed in the triangle ABC, on

the sides BC, CA. AB, shew that -H 1-- = -^-^^ 1--.' ' X y z a c r

38. AA\ BB\ CC, are the perpendiculars from A, B, (7, on the opposite

sides of the triangle ABC] 0^ O2, O3, are the orthocentres of the triangles

AB'C, BC'A\ CA'B'. Prove (1) that the triangles 0^0<^0^, A'B'C are equal,

and (2) that 2r^Rj^=RaBi,Rcj where Ra, Rb, Re are the radii of the circles

Og^'Og, O^B'Oi, OiC'02, and r^ is the radius of the circle inscribed in A'B'C\
and R^ of the circle about A'B'C.

39. If X, y, 0, are the distances of the centres of the escribed circles of a

triangle, from the centre of the in-circle, and d is the diameter of the circum-

circle, shew that

xyz-\-d{a^+y^+ z^)
= 4c?3.

40. The lines joining the centre of the in-circle of a triangle, to the

angular points, meet that circle in J^, B^, C^; prove that the area of the

triangle A^B^C^ is \r^ (cos ^A + cos ^jB+ cos \C).

41. If each side of a triangle be increased by the same small quantity Xy

shew that the area is increased by Rx (cos^ +cos J5+ cos (7), nearly.

42. AA\ BB\ CC'j are diameters of a circle, J), E, F, are the feet of the

perpendiculars from A', B', C, on BC, CA, AB, respectively; prove that

AJ), BE, CF, meet in a point, and that the areas ABC, DEF, are in the ratio

1 : 2 cos A cos B cos C

43. If ID, IE, IF, are drawn from the in-centre / of a triangle, perpendi-

cular to the sides, find the radii of the circles inscribed in lEAF, IFBD,
IBCE'y if they are denoted by Pi, P2> Psj respectively, shew that

(r
-

2pi) (r
-

2p2) (r
-

2p3)
= r^ - 4piP2P3.



EXAMPLES. CHAPTER XII. 215

\4J Shew that the radii of the circle^'which touches externally, each of

three given circles, of radii a, b, c, which touch each other externally, i- a*u.

given by

\lRbc{h+c+R) + \/Rca{c+ a+ E) + \/Rab{a+h-\-R)= ^Jabc{a\-h^\-c).

45. Perpendiculars AA^^ BB^, GC^y to the plane of a triangle ABC, are

erected at its angular points, and their respective lengths are a, 6, c
;
shew

that if A and A^ be the areas of ABC and A^B^C^, then

A^-^^=l{a^{x-y){x-z) + l^{i/-z){y-x)+c^{z-x){z-y)]

=\{a^^{pc-y){x-z) + h^^{y-z){y-x)+ c^^{z-x){z-y)}.

46. Three circles are described, each touching two sides of a triangle, and

also the inscribed circle. Shew that the area of the triangle having their

centres for angular points, bears to the area of the given triangle, the ratio

4 sin \A sin ^B sin \C (sin \A + sin \B+ sin \ C)
: cos \A cos \B cos \C (cos \A + cos \B+ cos \C).

47. If the lines bisecting the angles of a triangle meet the opposite sides

in i), E, Fj prove that the area of the triangle DEF is

2r2 cos \A cos ^B cos ^C/cos ^{B-G) cos | (C- ^) cos \{A- B\
and that

{a^-hf{a-^cfEF^+{h+ c)\h-\-afFD'^+ {c+af{c-\-hfDE'^=lQ^m{llR+ ^r\

where A is the area of ABC.

48. is the centre of the circum-circle of a triangle, K is the orthocentre,

and OK meets the circle in P and P\ and the pedal lines of P and P' in

Q and '; prove that OQ . OQ'= 2R^ cosA cos 5 cos C.

49. iV is the centre of the nine-point circle of a triangle ; Z>, E, are the

middle points of CB and CM, prove that the area of the quadrilateral EDGE
is \p^ (sin 2J +sin 25 -f 2 sin 2(7), where p is the radius of the nine-point circle.

50. A triangle is formed by joining the centres of the escribed circles, a

third from this, and so on
;
shew that the sides of the Tith triangle are

A n-A Ztt+A (2"-2-l)7r-l-(-l)'*-2^acosec cosec 7- cosec ^ cosec -^ ,

'

,

2 2^ 2^ 2"~i

and similar expressions.

51. If N is the centre of the nine-point circle of ABC, and AE meets BG
in D, shew that

BE : BA :: cos {B-C) : 4 sin 5 sin C

and that the area of BNC is ^R^ sin A cos {B G).

52. Shew that the radius of the circle which touches the three circles

BGE, EAFj FBD, where i), E, F, are the feet of the perpendiculars from

Af B, G, on the opposite sides, is

2i2sin^ sin 5 sin Ccos^ cos jS cos (7 (sin J. 4- sin 5+ sin C)
sin^ A sin^ B sin^ C 2 sin^A cos'^ A + 2 cosA cos j8 cos (72 sin jB sin C

'
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53. If from any point 0, perpendiculars OD^ OE, OF, are drawn to the

sides BG, CA, AB, of a triangle, prove that cot ^i>C+cot 5^^ + cot CFB= 0.

54. If b, c, B, are given, and there are two triangles with these given

parts ; shew that their inscribed circles touch, if

c2(cos2^+2cos^-3)+ 26c(l-cos^) + 52=0.

55. If t^, ^2? hi ^ ^tie lengths of the tangents drawn from the centres of

the escribed circles of a triangle to the nine-point circle, shew that

/2 /2 /2 /2_/2 /2_/2 /2_/2
h^ + h. + ^^=r+7R, and-i ^ + ^2_i3 +^_Ji =2r+lli2.
n ^2 ^3 r^-r^ r^-r^ i\-r^

56. Prove that the sum of the squares of the distances of the centre of

the nine-point circle of a triangle, from the angular points, is

i22 (jj. _,_ 2 cos J cos 5 cos C).

57. Four similar triangles are described about a given circle, and their

areas are A, Aj, Ag, A3, shew that

(a) An angle of the triangles is 2 cot"^ (
^

j ,

(6) A*=Ai*+ A2*+ A3^

(c) the radius of the circle is (AAiA2A3)^.

58. Through the angles A, B, C, of a. triangle, straight lines are drawn

making angles ^, 0, x/r,
with the opposite sides of the triangle, in the same

sense. Prove that the diameter of the circle circumscribing the triangle

formed by these lines is

sin(2J+<^--\/r)cos^+ sin(2^+ \//--^)cos<^+ sin(2(7+^-<^)cos>/r
sin {A + (f)-yl^) sin {B+f-e) sin ((7+^-0)

*

59. The sides of a triangle subtend angles a, ^, y, at a point ; prove that

(1) cosJa4-cosJ/3+ cos|y= 4cosJO-l-y)cosJ(y-fa)cos J(a+/3),

(2;
0-4=

,

fesin(, -^)

V &c sin a sin {a A) +ca sin /3 sin {^-B)+ ah sin y sin (y
- C)

60. If
c?i, c?2, c?3, be the distances of any point in the plane of an equi-

lateral triangle whose side is a, from the angular points, prove that

Hence shew that the sum of two equilateral triangles, each of which has

its vertices at three given distances from a fixed point, is equal to the sum of

the equilateral triangles described on the distances.

61. If P be any point within a triangle ABC, and Oj, 0^^ O3, are the

circum-centres of the triangles BPC, CPA, APB respectively, then if p be the

circum-radius of O-^O^O^, shew that

4p sin 6 sin ^ sin
-v^
= ^ sin 6-\-y sin c^+z sin

'v|/',

where x, y, z, are the lengths PA, PB, PC, and 6, 0, >//>,
are the angles BPC,

CPA, APB.



EXAMPLES. CHAPTER XII. 217

^2J If a, b, c, be the radii of three circles touching each other externally,

anor^, rg, be the radii of the two circles that can be drawn to touch these

three, shew that f-
= - + t + -

r^ r^ a c

63. If the bisectors of the angles B, C, of a triangle, meet the opposite
sides in B, F, prove that !F makes with BC an angle

(6 c)sin^tan~i
(a+ h) cos C-\- (a+c) cos B '

64. If I be the centre of the circle inscribed in A BC, I^ that of the circle

inscribed in JBC; 1^ that of the circle inscribed in I^BC, and so on, shew that

as n is indefinitely increased, In^n-i divides BC in the ratio of the measures

of the angles C and B.

65. Points D, E, F, are taken on the sides BC, CA,AB, of a triangle, and

through D, E, F, are drawn straight lines B'C, C'A', A'B', equally inclined to

BC, CA, AB, respectively so as to form a triangle A'B'C similar to ABC.

Prove that the radius of the circumscribed circle of A'B'C is

{EF cos a+FD cos ^+DE cos y)/4 sin A sin B sin C,

where a, jS, y, are the inclinations of AA', BB', CO, to BC, CA, AB, respec-

tively.

66. If P be a point on the circum-circle whose pedal line passes through
the centroid, and if the line joining P to the orthocentre cuts the pedal line

at right angles, prove that

PA^^ PB^+ P02= 4i^2 (1
_ 2 cos A cos B cos C).

67. Bs is a point in the side BC of a triangle ;
if the circles inscribed in

the triangles ABD, ACD touch AD in the same point, prove that D is the

point of contact of the in-circle of ABC with BC\ but if the radii of the

circles be equal, then

CD : BD :: coseci>4-cosec C : coseci)+cosec^.

68. From a point within a circle of radius r, three radii vectores of

lengths rj, rg, r^, are drawn to the circle, and the angle contained by any

pair is Srr/S; shew that

3r2(r2r3+ r3ri+ rir2)2=(r22+r2r3+r32)(r32+r3ri+ri2)(ri2+rir2+r22),

and that the distance of the point from which the radii are drawn, from the

centre of the circle, is d, where

if-
-

c?2) (^2^3+ rgri+ r^rg)
=

r^r^r^ {r^ + rg + r^.

69. Circles are inscribed in the triangles D^E^F^, D^E^F^, D^E^F^, where

D-^, E^, F^, are the points of contact of the circle escribed to the side BC;
shew that if pj, pg, P3, be the radii of these circles

-
:
-

:
i = l-tani^ : l-tani5 : l-taniC.

Pi P2 Pz
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70. In a triangle ABC, A\ B', C, are the centres of the circles described

each touching two sides and the inscribed circle
;
shew that the area of the

triangle A'B'C is

tanJ(7r-^)tanJ(7r-5)tanJ(7r-(7)

{cosec ^{ttA) cosec ^{n-B) cosec J (tt
-

(7)+ 4} r^.

71. The three tangents to the in- circle of a triangle, which are parallel to

the sides are drawn
;
shew that the radii of the circles inscribed in the three

triangles so cut off from the corners, are given by the equation

s^x^ r&^x^ ^2 (^2 _j_52 ^^2_ 2hc 2ca 2ab) x-r^= 0.

72. The perpendiculars from the angular points of a triangle, on the

straight line joining the orthocentre and the centre of the in-circle are
/?, q, r

;

, , ,
sin A q sin B r sin C

prove that ^j 7,
= hi 7 = 1^

sec i^ sect/ sec 6 -sec J. sec 4- sec i?

a convention being made as to the signs of p, q, r.

73. A point is taken within an equilateral triangle, and its distances from

the angular points are a, /3, y. The internal bisectors of the angles between

(/3, y), (y, a), (a, /3), meet the corresponding sides of the triangle in P, Q, R,

respectively ;
shew that the area of FQR is to that of the equilateral triangle,

in the ratio

2a^y : (/3+ y) (y+ a) (a + jS).

74. If
I, m, n, are the distances of any point in the plane of a triangle

ABC, from its angular points, and d the distance from the circum-centre,

prove that

l^ sin 2A + m2 sin 2B+n^ sin 2(7= 4 {R^ + d^) sin A sinB sin C.

75. If G is the centroid of a triangle, shew that

cot GAB+cot GBC+coi GCA =3 cot a>= cotABG+ cotBCG+ cot CAG

and cot AGB+ cot BGC+ cot CGA+ cot a) =0,

where cot a= cot A + cot B -f cot C.

Also if K be the symmedian point, that is a point in the triangle, such

that the angles KAC, GAB are equal, and two similar relations, then

cot AKB + cot BKC+ cot CKA + ^ cot w+ f tan w= 0.

76. Each of three circles, within the area of a triangle, touches the other

two, touching also two sides of the triangle ;
if a be the distance between the

points of contact of one of the sides, and /3, y, be like distances on the other

two sides, prove that the area of the triangle of which the centres of the

circles are angular points, is J (Ji^y^ + y^c?-\-a^^'^)^.

77. If a, h, c, d, be the perpendiculars from the angles of a quadrilateral

upon the diagonals d^, d^, shew that the sine of the angle between the

diagonals, is equal to iS -^
'
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78. If ABCD be a quadrilateral, prove in any manner, that the line

joining the intersection of the bisectors of the angles A and G with the

intersection of the angles B and i), makes with AD an angle equal to

_, f sin.l-sini)+sin(^+^) 1

|l + cos^ +cos2>+cos(^+^)r

79. ABODE is a plane pentagon; having given that the areas of the

triangles EAB^ ABG^ BCD^ CDE, DEA are equal to a, h, c, c?, e, respectively,

shew that the area A of the polygon may be found from the equation

A^-(a+ b+c-\-d+e)A-\-{ab+ bc+cd-\-de+ea)=0.

80. Shew that if a quadrilateral whose sides, taken in order, are a, b, c, d,

be such that a circle can be inscribed in it, the circle is the greatest when the

quadrilateral can be inscribed in a circle, and that then, the square on the

radius of the inscribed circle is rnrTTx
{a+ c){b+d)

81. A polygon of 2n sides, n of which are equal to a, and n to b, is

inscribed in a circle
;
shew that the radius of the circle is

<(
a^+ 2a& cos - +b^] cosec - ,

n ) n

82. A quadrilateral whose sides are a, 6, c, c?,
can be inscribed in a circle ;

its external angles are bisected
; prove that the diagonals of the quadrilateral

formed by these bisecting lines, are at right angles, and that the area of this

, ., . , . T 8^{ab-\-cd^{(id-\-bc)
quadrilateral is *

,

^
,

{a-\-c)(b-^d)\]{8-a){s-b){8-c){s-d)

where 25=a+ 6+ c+o?.

83. A quadrilateral ABCD is inscribed in a circle, and EF is its third

diagonal, which is opposite to the vertex A
; prove that if the perpendiculars

from A on BG^ GD, meet the circles described on AD, AB, respectively as

diameters, in P, then FQ sinD=EF (sin2 A - sin2 D).

84. The power of two circles with regard to one another, is defined to be

the excess of the square of the distance between their centres, over the sum
of the squares of the radii. Prove that for a triangle ABG, the power of the

inscribed circle, and that escribed circle which is opposite ^, is ^ {a^+ {bc)^}y
and hence verify that if the inscribed circle touches an escribed circle, the

triangle must be isosceles.

85. The sides, taken in order, of a pentagon circumscribed to a circle, are

a, bj c, d, e; prove that its area is a root of the equation

a:^-x^s{^2a^{b+e-c-d)-^2a^+^2acd}
+ {s a e){s b d){s-c e){s-da){s-c b)s^=Oy

where 2.9 is the sum of the sides.
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86. If a, b, c, d, be the distances of any point on the circumference of a

circle of radius r, from four consecutive angular points of an inscribed regular

polygon, find the relation between a, 6, c, and d, and prove that

2_ (ab cd) (be ad) (ca
-
bd)

~{a+ b-c d){b+ c-a-d){c+ a b-d){a-\-b+c-\-d)'

87. The perimeter and area of a convex pentagon ABODE, inscribed in a

circle, are 2s and S, and the sum of the angles at B and B, at A and C
are denoted by a, ^, ;

shew that

s2(sin2a + +sin2f) + 2/S'(sina-|- -|-sine)2=0.

88. ABCD is a convex quadrilateral of which the sides touch one circle,

while the vertices lie on another; tangents are drawn to the circumscribed

circle at ^, B, C, D, so as to form another convex quadrilateral ; prove that

the area of the latter is

2 (<r 2abcd) (abcd)^ or

(a- bed) (o- eda) (o- dab) {a- abe)
'

where r is the radius of the circle ABCD, 2,s=a-\-b+e-{-d,

and 2(T= bed+eda+dab+ abc.



CHAPTER XIII.

COMPLEX QUANTITIES.

170. In works on Algebra, quantities of the form x-\-ly,

called complex quantities, are considered, and the application to

them, of the ordinary laws of algebraical operations, is justified.

We shall in this Chapter, consider the mode in which such

complex quantities may be geometrically represented, and in

which the results of additions and multiplications of such

quantities may be exhibited. It will appear that circular

functions present themselves naturally in this connection, and

indeed that such functions must be introduced in order to give
conciseness to the results of the multiplication and division of

complex quantities.

The geometrical representation of a complex quantity.

171. A positive or negative real quantity x, is represented

geometrically by laying off on a fixed infinite straight line A'OA,
a length OM= x, to scale, measured from any specified point in

one direction or the other, according as x is positive or negative ;

we may then consider that the quantity x is represented either by
the position of the point M, or by the straight line OM. In order

to represent a purely imaginary quantity cy, take a fixed straight

line B'OB, in any fixed plane containing A'OA, perpendicular to

the latter line, then measure from a length ON = y, in the

direction OB or 0B\ according as y is positive or negative, then

we shall consider that the imaginary quantity ly is represented by
the point N^ or also by the straight line ON. A circle of radius



222 COMPLEX QUANTITIES.

unity cuts A'A and B'B in the points which represent the

magnitudes 1, i respectively. In order to represent the

complex quantity x + ly, complete the rectangle OMPN, then

we shall consider that the point P, or also the straight line OP^

represents x + ly. We thus suppose that the result of the addition

of the two quantities x and ly, is represented geometrically by the

diagonal of the parallelogram of which the two straight lines OM,
ONy which represent x and uy respectively, are sides. In the

figure, Pi represents a quantity a?i + /yi in which both a^j and y-^
are

positive, Pa a quantity x^ + ly^.
in which x.^ is negative and 3/2 positive,

and P3 a quantity x^ + uy^ in which x^ is positive and 3/3
is negative.

A'OA is called the axis of real quantities, and B'OB the axis of

imaginary quantities.

172. Let r denote the absolute length of OP taken positively,

and 6 the angle which OP makes with OA, measured counter-

clockwise from OA, then

x r cos 6, y = r sin 6, and 2 = x-{- ty
= r (cos 0+ l sin ^),

where r ^x^ + y^,
= tan~^ - .^ X
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The essentially positive quantity r = ^1x"^ + 'y^
is called the modulus,

and the angle is called the argument of the complex quantity

x-\- Ly. A straight line OP measured in any direction from in

the plane, is thus capable in virtue of its two qualities of absolute

length, and of direction, of completely representing a complex

quantity. The quantity x -\- ly may also be represented by any

straight line in the plane, drawn parallel to OP, and of equal

length, since such a straight line represents both the modulus and

the argument oi x + ly.

173. Suppose a point P to describe a circle with centre 0,

and any radius r, commencing from A' and moving in the counter

clockwise direction, then the modulus of the complex quantity

represented by P, remains constant and equal to r, whilst the

argument increases algebraically continually from tt. We may
suppose the point P to make any number of complete revolutions

in the circle, then at every passage through any fixed position Pj,

the quantity x + iy has the same value, or an addition of a multiple
of 27r to the argument leaves x + ly unaltered. In other words, a

quantity

x-\- ty
= r (cos 6 + l sin 6)

considered as a function of its modulus r and its argument 6, is

periodic with respect to the argument.

For any quantity x + uy, that value of B which lies between

the values tt and tt, may be called the principal value of the

argument ;
and we shall in general, in speaking of the argument

of such a quantity, mean the principal value.

It should be observed that the principal value of the argument

6, is not necessarily the principal value of tan~^ -, as defined in

Art. 38
;

for a given quantity x + uy, both cos 6 and sin 6 have

given values, therefore 6 has only one value between tt and tt.

In this sense, the argument of a positive real quantity is 0, that of a

positive imaginary quantity is
-^tt,

and of a negative imaginary quantity
-

| tt.

The principal value of the argument of a negative real quantity is, as defined

above, ambiguous, being either tt or tt ;
we shall however consider it to be

TT. The conjugate quantities x-\-iy^ x-iy have the same modulus, but their

arguments are 6 and -6. The modulus of ^+ ty is frequently denoted by
mod. {x-^iy).



224 COMPLEX QUANTITIES.

174. It is of fundamental importance to observe that whilst a

real quantity x can, whilst increasing continuously from x-^ to x^,

only pass through one set of values, this is not the case with a

complex quantity x + ly. There are an infinite number of ways in

which such a quantity may change continuously from x^ + ly^ to

^2+ ^2/2,
even supposing that both x and y continually increase, for

the continuous increase of x from x^ to x<^, is entirely independent of

the increase of y from y^ to
3/2.

This is essentially involved in the

fact that two distinct units of quantity are contained in a complex

quantity, and is represented geometrically by the fact that two

points Pj and P^ in the diagram, may be joined in an infinite

number of ways, the representative point moving along any

arbitrary curve joining Pj and Pg. If a real quantity is to increase

from
x-i_

to x^, always remaining real, the representative point is

restricted to remaining in the x axis
;

if the quantity is not

restricted to having its intermediate values real, the representative

point may describe any arbitrary curve drawn joining the two

points on the x axis.

We may express this point by saying that a purely real or a

purely imaginary quantity is essentially one dimensional, whereas

a complex quantity is two-dimensional, and requires a two-dimen-

sional space for its geometrical representation.

The method of representing complex quantities geometrically, was given

by Argand in a tract published in 1806, but an earlier attempt at their

representation had been made by KUhn in 1750. The theory founded on

this method of representation was developed by Cauchy, Gauss, Riemann,
and others, and forms the foundation of the modern theory of functions.

The addition of complex quantities.

175. Suppose two complex quantities a^i -j- tyi, x^ + ly,^,
are re-

presented by the points P, Q ; complete the parallelogram OPRQ,
then the projection of OR on either axis is the sum of the

projections of OP, PR, or of OP, OQ, on that axis, hence the point
R represents the sum (x^ + x^)-^ t (yi 4- 3/2)

of the two given complex

quantities. We see therefore that the sum of two complex quan-
tities is obtained geometrically by adding the straight lines which

represent those quantities, according to the parallelogram law.

We have supposed that equal and parallel straight lines of the
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same length, and in the same direction, represent the same quantity,

thus PR drawn from P parallel and equal to OQ represents

^2 + ty2> we may therefore express the rule of addition thus
;
draw

from the straight line OP to represent ^i+ Lyi, and then from P
draw PR to represent od., + cy^, join OR, then OR, or the point R,

represents the sum oci + a*o H- ^ (y^ + y^),

176. The mode of extension of the rule for addition, to any
number of quantities, is now obvious.

Draw OPi in the first figure on page 226, to represent oc^ + i^i,

then from Pj draw PiPa to represent ^2+ ^2/2,
from P2 draw P2P3,

to represent a?3+ ly^, and so on
;
then join OPn, the sum of the n

quantities x^-\- ly^, x^^-iy^,.., Xn-\- lyn, is represented by the

straight line OPn, or by the point P.

Since the length 0P cannot be greater than the sum of the lengths OP^,

P^P2,...Pn-\Pn') it follows that the modulus of the sum of a number of com-

plex quantities is less than, or equal to, the sum of their moduli.

H. T. 15
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B

177. In order to subtract x^-^-iy^ from x-^ + vy-^,
a line PRy

must be drawn from P to represent {x + ty^, this will be equal
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to PR, and in the opposite direction, then the difference is repre-

sented by OR^y or by the point R^,

The multiplication of complex quantities.

178. The product of the two quantities

and if we replace the quantities by

Vi (cos 6^-\- L sin ^1), r^ (cos 6^ + 1 sin 6^,

their product may be written riTg {cos(^i + ^2)+ *sin(^i + ^2));

this expression shews that the modulus of a product is equal to the

product of the moduli, and the argument of the product is equal to

the sum of the arguments of the two quantities.

We can now obtain a geometrical construction for the product
of two quantities; let A, P,Q, represent the three quantities 4-1,

a

Wj + I'^i, 2 + ^2/2 ; joii^ ^P> on OQ describe a triangle QOR similar

to AOP, and so that the angle QOR is equal to +^1, then

ROA = e,+ d and also OR : OQ :: OP : OA, hence the length of

OR is equal to the product of the lengths of OP and OQ] it

follows that the point R represents the product (^1 + ^2/0 fe + ^2/2)-

152
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If we now introduce a third factor x^ + ly^ 7*3 (cos Q.. + i sin Q^y

we have

n^a^ {cos (^1 + ^2) + 1 sin (^1 + ^2)} {cos 0^ + 1 sin ^3)

= nnn {cos (^1 + ^2 + ^3) + t sin ((9i + ^o + ^3)},

and we obtain, in a similar manner, the product of four or more

complex quantities. In the case of n such quantities, we obtain

the formula

(''i + ly^ (^2 + ^2/2) (^ + t2/n)

=
n^2...r^{cos(^i + ^o + ... + ^^) + tsin(^i + ^2 + --. + ^n))...(l).

Or tlie modulus of the product of any number of complex quantises
is the product of their moduli, and the argument of their product is

the sum of their arguments. The product may be obtained geo-

metrically, by a repeated application of the construction we have

given for the product of two quantities.

Division of one complex quantity by another.

179. The quotient {x^ + iy^l{x.. + ly^ is equal to

1 r
2 {fl?ia?2

+ y^y.
- l (x,y.

-
x^y,)] or ^ {cos (6,

-
^,) + 1 sin (6,

-
6^)],
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thus the modulus of the quotient is the quotient of the moduli,

and the argument of the quotient is the difference of the argu-
ments of the two quantities.

To construct the quotient geometrically, join the point Q
{xz + ty^, to the point J. (+ 1), and draw a triangle ORP similar to

the triangle OAQ, the angle ROP being measured equal to ^2;

then the angle ROA is 61 0^, and OR = OP/OQ, therefore the

point R represents the quotient.

The powers of complex quantities.

180. If in equation (1), we put all the factors on the left-

hand side of the equation equal to a; + ty, we obtain the formula

{x + lyy^
= ?'** (cos 710+ I sin nO) ;

thus the modulus of the ?ith power of a complex quantity is the

nth. power of the modulus, and the argument is n times that of the

given quantity.

To construct such a power geometrically, let Pj (w 4- cy), be

joined to ^(+1); on OPi draw the triangle OP^P^ similar to

OAPi, on OP2 draw OP^Ps similar to the same triangle,

and so on, then the lengths of OPi, OP2,... OPn are r, r^,...r^,

respectively, and the angles PiOA, P^OA,..,PnOA are By 26,... nd

respectively, therefore the points Pj, P^...P,i represent the quan-
tities (x + ly), (x -\- lyY, ...{x+ lyjK

In the particular casej^ 1, we have

(cos ^ -}- A sin BY = cos nB -f- 1 sin nB,

and if Qi represent cos ^ -1- * sin B, then the points Qi, Qa* Qn,which

represent the different powers of cos B-{- 1 sin B, are all on the

circle of radius unity, and so that the arc between any two

consecutive points of the series, subtends an angle B at the

centre 0.

181. In accordance with the theory of indices, supposing n to

1

be a positive integer, the expression {x + lyY denotes a quantity

of which the nth power is a? + ly. Now since the ^th power
of the modulus of a quantity is the modulus of its nth power,
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and since the modulus of any quantity is real and positive, the

1

modulus of {x -f lyY is -{/r, where y/r is the real positive ?ith root

1

of r. Suppose that ^yr (cos <^ + t sin
</>)

is a value of {x 4- ^2/)**,
then

we have

r (cos (f>-\-
1 sin

(\>y^
= r (cos 6 -\-i sin 6),

or cos n(f) + i sin n(\)
= cos ^ + t sin 6, therefore cos n<j>

= cos 6, and

sin n0 = sin 6, or n<^
= ^ + 257r, where s is any positive or negative

integer including zero, hence a value of

xi /- f + 2s7r .6 + 2s7r)
(x + lyr IS V r

-^
cos H i sin V

^ "^

(
n ^^

j

since the nth power of this expression is equal to x-\- ly, the
1

above reasoning shews that every value of (x + ly)^ must be of this

form.

If we give s the values 0, 1, 2, ... ?i 1, the expression

^+257r . e + 2s7r
cos f- 1 sm

n n

has a different value for each of these values of 5, for in order that

it may have equal values for two values Sj, ^2 of s, we must have

^+2Si7r e + 28^17 , . ^ + 25i7r . e + 2s.,'ir
cos = cos

, and sm = sin ,n n n n

whence

= zfcTT H ,
01^ (Si ^a)

= nk,n n

where k is some integer ;
this cannot be the case if Si and ^2 are both

less than n, and unequal, therefore the values are all different.

If we give s other values not lying between and ?i 1, we

shall obtain no more values of (cos ^ + tsin BY, for if ^2 be such a

value of 5, it is always possible to find a number s^ lying between

and ?i 1, such that s^ ^2 is a multiple of n, and therefore

the value of the expression for 5 = 5i, is the same as for s = s...

We see then that all the values of {x + lyY are given by the

series of n quantities



COMPLEX QUANTITIES. 231

cos h t sin
n n

v^r (cos- + tsin-j, y/rU

n/-{ <9+2(n-l)7r^ . ^ + 2(7i-l)7r)Vr -^cos ^^

1- 1 sm ^^ ^>
,

(
n n

)

where y/r is real and positive.

182. If 6 be the principal vahie of the argument of a? + ty, that

is, that value of the argument which lies between tt and tt, we

cos - + t sin -
)
as the principal value of (x + ly)^ .

We may consider

e . 6 6+27r . ^ + 27r ^ + 47r . (9+47r
cos --\-i sm -

,
cos + 1 sm

,
cos f- c sm

n 71 n n n n

as the principal values of the nth roots of

cos^+isin^, cos(^4-27r)+ tsin(^+27r), cos(^+47r) + tsin(^ + 47r)

1

respectively. The different values of (x + ly)^ are then the

principal values of the corresponding expression in r and 6 when
n different values of the argument are taken, the principal value

1

of (x + iy)^ being considered as that expression in which 6 has

its principal value.

The two values of a^, where a is a positive real quantity, are

\/a(cosO+isinO) and \/(cos7r+isin7r), that is ^/a and -V^, where .^a is

the positive square root of a. The values of { ay, in which case ^= 7r,

are \/a (cos ^tt + 1 sin ^tt), V^ (cos 77 + 1 sin |7r), or t >Ja,
-

1Va. The principal

value of a^ is ^a, and of
(
-
a)^ is ija.

183. The ??th roots of unity are obtained from the expressions

in Art. 181, by putting r = l, 6 = 0\ they are therefore

- 27r . 27r 47r . 47r
1, cos hi sin , cos 1- 1 sin -

,

n n n n

2(71-1)17 . 2(?i-l)7r
cos ^ 1- fc sm ^

n n

If we denote by (o, the root cos l-tsin ,
the whole of the

n n

roots are given by the series 1, ,
w^ ... ft)**~\
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Since

(9 + 2r7r . e + 2rTr f 6 . e\ f ^rir . 2rir
cos 1- 1 sin = cos - + t sin - I cos h t sin

n n \ n n/ \ n n

it follows that if y/co + iy denote the principal value of {x-\-vy)^,

then all the values are given by the series

\/x + lyy (o \/x + ty, CD* \/x + ty, ft)**""^ Va; + ty.

Examples.

(1) Find all the values of{- ly and of {- 1)*.

(2) Find the values of (1 +V-lA

184. We shall now shew how to represent geometrically the

nth roots of a complex quantity; the method will give an

intuitive proof of the existence of n different values of the nth

root. Without any loss of generality we may take the modulus

to be unity, so that we have to represent the values of

1

(cos 6 + L^mSY.

Let a point P describe the circle of radius unity starting
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from Ay at which ^ = 0, then in any position of P for which the

angle POA described by OP, is 6, the point P represents the

expression cos 6 -\- 1 sin 6, Let another point p start from A at

the same time as P, and let its angular velocity be always equal
to Ijn of that of P, so that the angle pOA is always equal

6 6
to Olriy then p represents cos - + t sin - . When P reaches any

position Pi for the first time, let p be at pi, then the angle

PfiA is n times the angle pfiA, therefore Pj represents the nth

power of the quantity represented by p^ ,
or conversely p^ repre-

sents an nth root of cos 6-^ + l sin 6^. Now let P move round

the circle until it again reaches Pj, so that it has described the

6 4- Stt

angle 6i + 27r, then p will be at p^, where pJJA is equal to
;

if P proceeds to make another complete revolution, when it again

6 -|-47r
reaches the position Pi, p will be at p^, where pflA =

^

, andn

so on. The points pup^, '"Pn, are the angular points of a regular

polygon of n sides inscribed in the circle. When P makes more

than n complete revolutions round 0, the point p will again reach

the positions J5i, ^2 Each of the points Pi,Pi...pn represents a
1

value of (cos ^1 + t sin ^1) ", since the nth power of the expressions

represented by any one of these points, is the expression repre-

sented by the point P. The point p^ represents the value

for the smallest argument 6^. We have thus obtained the
1

n values of (cos d^-\-t sin ^1)**, and we see that these values are the

different values of cos h t sin , when 5 = 0, 1, 2...
n n

n-1.

185. To obtain graphically the nth roots of any expression

a)-\-iy, we must be able (1) to divide an angle into n ^qual parts,

and (2) to inscribe a regular polygon of n sides in a circle, and (3)

in order to construct the modulus, we must be able to construct a

straight line whose length is the nth root of the length of a given
line. In order to obtain all the nth roots of unity, it is only

necessary to solve the second of these geometrical problems, since

in this case the angle to be divided into n parts is zero. The

problem of inscribing a regular polygon of 71 sides in a given circle,

is therefore equivalent to that of obtaining the numerical values
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of the roots of the equation ^*^ 1 = 0. This geometrical problem
can be solved by the use of the rule and compasses, in the following

cases :

(1) When ?^ is a power of 2
;
for example ri = 4, 8, 16, 32.

(2) When w is a prime number of the form 2"* + 1
;

for

example, when n = 3, 5, 17, 257. This was proved by Gauss in his

Disquisitiones arithineticae.

(3) When n is the product of different prime numbers of

the form 2*^ + 1, and of any power of 2
;
for example, when n = 15,

85, 255.

The proof of Gauss' theorem would lead us too far into the

theory of numbers
;
we have however considered the special case

n = 17, in Art. 85, Ex. (4), where sin 7r/l7 is found in a form

involving radicals.

De Moivre's Theorem.

186. For all real values of m, cos mO + t sin m6 is a value of

{cos 6 + t sin ey.

This theorem, known as De Moivre's theorem, has been proved
in Arts. 180 and 181, in the two cases m = n, and tn l//i, where

?i is a positive integer. To complete the proof, we have to consider

the cases when Tn pjq, a positive fraction, and when m is negative.

It is clear that (cos ^ + t sin ^)9 = {ao^pd + 1 sin j^^)^, and one value

ofthisiscos^^.sin^-^.

If m = A; we have

(cos ^ + t sin dy =
(cos ^ + i sin 6)

k '

1 . . r
and one value of this is always ^n .

, ^ ,
or cos kd i sin kd,

^

cos kd -\- L sm kv .. (^~^y , ,

which IS equal to cos mu + i sm mv. -
( ^ o ^

It should be remarked that all the values of (cos ^ + t sin ^)^

are given by the expression

cos ^ + I sin ^-^ -

q q

where 5 = 0, 1, 2...g 1, when p is prime to q.
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If^ is not prime to q, let p'jq' be their ratio in its lowest terms,

then the expression just found is equal to

q q

and this will only give q' different roots
;
the whole of the q values

can be obtained from the expression

(i)^+257r) . (pd + 2s7r)
cos ^^

f- 1 sm ^^ '
,

by letting s = 0, 1, 2, ... q 1.

187. The theorem

(cos di + 1 sin ^i) (cos 6.2 + t sin ^2) . . . (cos On + t sin On)

= COS(^i + ^2+...+^n) + tsin(^i + ^2+-..+^n)

used in the proof of De Moivre's theorem, affords a proof of the

theorems (28), (29), (30) of Art. 49. We may write the left-hand

side of this identity, in the form

cos Oi cos 0.2... cos On (1 + c tan ^1) (1 4- 1 tan ^2) (1 + 1 tan On),

hence equating the real and imaginary parts on both sides of the

identity, we have

cos (^1 + ^2 + + On) = cos Oi cos ^o COS ^^ (1 ^2 + ^4
"

)>

sin (0^ -{- 0-2 -\- . . . + On)
= cos t?i cos 0^ ... cos On (ti t-i + ts ...),

where tg denotes the sum of the products of the n tangent taken s

at a time.

The theorems (39), (40), (43), of Art. 51, are obtained at once

from the theorem cos nO + c sin nO = (cos -\- i sin 0)^, by expanding
the right-hand side of the equation, by the Binomial theorem, and

equating the real and imaginary parts on both sides of the

equation.

AVhen n is a positive integer, we have (cos^+ tsin^)"=cosw^ + isinw^,

and therefore also (cos ^ t sin^)"=cos?i^-tsinn^, thence we obtain the

formulae

cos 71^=^ (cos ^+ 1 sin ^)" + ^ (cos 6 - 1 sin ^)"

I sin n6=^ (cos ^+ 1 sin 6^- ^ (cos ^ - 1 sin 6Y.

The first of these equations is really an expression of the fact mentioned in

Art. 51, that l+x cos, 6 -{ x^ co^26 \- ... + x*^ oo^nd is a recurring series of which

l-2^"cos^+ ^^ is the scale of relation; denoting cosw^ by w, we have

Un 'icx>^6.Un-i+ u^i-j^=0'j to solve this equation assume, as usual in such
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cases, Un=Ak^j then we obtain for k the quadratic k^- 2k cos 3+ 1=0, of

which the roots are ^=cos ^tsin^, heuce

Un=A (cos ^+ 1 sin 6Y+B (cos ^
- 1 sin 6Y

is the complete solution of the equation for u^. Putting n= \, and ?i=2, we
find A=B=^j and thus obtain the expression given above for eosnff. The

expression for sin n6 may be found in a similar manner.

Factorization.

188. We are now in a position to resolve x^^ (a + ih) into

n factors linear with respect to os. The expression vanishes if os is

equal to any one of the values of (a + cby^ ;
if qi, q^... qn, denote

the n values of this expression, we shall have

a;** (a + ib) = (a? q^) {x q^,.,{x qn)^

for since a?" (a + ih) vanishes when x^qg^O, x qg must be a

factor without remainder, thus we obtain n different factors and

there can obviously be no more. Put a = r cos 6, h = r sin 6, then

the expression for a;" (a + ih) in factors, becomes

II ia; p cos htsm 1^

,=0 I V n n J)

where p = ^r = (a^ + 6=^)K

From this result several of the factorizations already obtained in

Chap. VII. may be deduced.

(1) Let a = 1, 6 = 0, we then obtain

s^n-\i 2s7r . 2s7r\x^\ n [x cos A sm -

,=0 \ n. n J

, . Isir 2 in s) IT ^and smce
1

^ _^~ = 27r,
n n

this gives us, if n is odd,

s=i(-i) / 257r . 257r\ / 2.97r . 257r\
I 11 \ {r. nns i.sm -j? nns ^ /.sm iX I=(ip I) 11 (a; cos tsm a; cos htsm

=i \ n n / V n n }

8=j(-i)/ 2s7r

=(a;-l) n [x^-1x^Q^ +1

and a;^-l=(a?-l)(a; + l) D f a?^ - 2a; cos - + 1
J

if ?i is even.
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(2) Let a = 1, 6=0, then we obtain the formulae,

a;'*+l=(a? + l) 11 f/r^-2a?cos^
^^

+ 1
J

, (ri odd),

s=H-2)/ C2s+l)7r \
a?^+l= n U-2~2fl?cos'

^ +1 , (w even).
s=o V n J

^

(3) ar^~2ic"cos^ + l

=
(x'^ cosO c sin ^) (iz;"

cos ^ + t sin 0)

=-V ^ + 2s7r . ^ + 2s7r\/ d+2s7r . d-\-2s7r= n fl? cos tsin a?- cos \-isin
s=o \ w n J\ n n

6-\-2s'7r= n {a^-2xcos hi,
5=0 \ n J

or writing (v/y for a?, and multiplying both sides by y^\ we have

s=n-l / 1 27j- \

of*' - 2x''y'' cos -h y"^
= U

(x'' -2ooy cos ^
+2/'

s=o \ n /

(4) From the last result we have

s=n-l / 6 A- 2s7r\
x"" -[- x-"" - 2 COS 6 = n h + 57-1-2 cos .

8=0 \
,

n J

Put X = cos (^ 4- 1 sin
<^,

then x~^ cos <^ i sin <^,

and a;*'^ = cos
n(f) + t sin

?i<^,
x~^ = cos nc^ l sin n^,

therefore, changing 6 into n^,

cos ?i^ cos ?i^ = 2*^-1 n Kcos<^ cos ( ^ + -
j^.

Properties of the circle.

189. Certain well-known properties of the circle may be ob-

tained by means of the factorization formulae of the last Article.

Let A-^A^A-i . . .An be a regular polygon of n sides inscribed in a circle

of radius a, and let P be any point in the plane of the circle, its

distance from the centre of the circle, being denoted by c. Let

the angle POJ-i be denoted by 0, then the angles POA^, POA^...

are 6 + 27r/w, 6 + 4f7r/n. . . respectively. Then

8=n-i (
/ 2r7r\ )

PA^\PA,\PA,'...PAn'= n
\a'-2accosld+~^]+c-)-,



238 COMPLEX QUANTITIES.

hence we have the theorem

PA^\ PA^\ PA^\ . . PAn"" = a-** - 2a'c'* cos nd + c^",

which is known as De Moivres property of the circle.

In the case when P is on the circumference, the theorem

becomes

PA,. PA,. PAs... PAn = 2a'' sin inO.

In the case when P is on the radius OA,, we have ^ = 0, and

the theorem becomes

PA,.PA,...PAn=^a''-'C'\

Again if P lies on the bisector of the angle A^OA,, we have

6 =
irjifij

and the theorem becomes

PAy.PA....PAn^Ct" + C'\

The last two cases are known as Cotes properties of the circle.

190. Examples.

(1) Express x'"~ ^/(l +x') in partial fractions^ m being an integer less than ii.

If a be a root of the equation ar+l = 0, the partial fraction corresponding

to the factor x - a, is , . , or ; taking the two fractions cor-
na^~'^ x-a n x a

responding to the conjugate values of a, cos risin tt, together,
1% Iv

we obtain the fraction

_ 2r+l . . ^ 2r+l ,
_

, 'zx cos m -
i) TT 2 cos {n wi + 1 ) tt

1 n ^ ' n ^ '

n
.,

2r+ l
X^ 2X cos TT + 1

71

or

^ cos(2r+l) 7^-.^cos (2r-|-l)
- TT

2 ^ n
^

^ n

^"^-2^ cos TT + l

if n is odd, we have the additional fraction , , r ; hence when n is odd
71{X+1)

^

^-i / -.w ,v. ov i( ,>cos(2r4-l) 7r-A'cos(2r + l) TT

H 2
^ ' X^- 2X cos TT + 1
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and when n is even

1T^**
~
^ r=o 2r+l

,
-

*

^-2a;cos n+ l
/I

(2) Express x'"~i/(x'* 1) iw partial fractions^ m ?>em^ Zess ^Aciw n.

(3) Pr(y\}e that

x-acon^ 1
'^-J-^

V n /

x2n_2xacon^+a2 nx**"! r=o
x-^ - 2xa cos

{e.^y.^-

The denominator of the fraction ., \ a , -,
is resolved into

^2n_ 2^ a cos nd+ a^^

factors, and the fraction corresponding to each factor can then be determined

as in Example (1).

(4) Prove that

, , nmn^ 1 '=n-i j

5^V^^
'

con^ cosn^ r=o cosd -cos
{(f) + 277/11)

*

, . n2 sm n^ sin n(f) I _ '""J"^
sin (0+ 27r/n)

^
sin 6

'

{cosn6~cosB<pY~ r=o {cos 6- cos
{<f)+ 27rin)}^'

The expression on the left-hand side in (a), is an algebraical function of

cos^, and can therefore be resolved into partial fractions, as in Ex. (1); the

equation (b) is obtained by differentiating both sides of (a) with respect to 0,

or what amounts to the same thing, by changing (j)
into (p+h and equating

the coefficients of A, on both sides of the equation.

(5) Shew that if

cos d-hcos <f)-\-cosylA 0, a'iid sin 6+ sin ^+ sin
^1^
=

0,

then cos 3^ -f cos 3(f)+ cos 3yfr-3cos {6+ (f)+ yl/)= 0,

and
.

sin 36+ sin
3(f)+ sin 3>/r 3 sin (^ -j-^+ -v/r)

= 0.

This is an example of the general method of deducing Trigonometrical

theorems from Algebraical ones, by substituting complex values for the

letters. If a-\-b+c=0, we have a^+b^+ c^-3abc=0; let a=cos^+ isin ^,

b= cos
(f)+ 1 sin

(f),
c= cos ^+ 1 sin

yj/,
then we have given that if

(cos 6+ cos
(f) + cos

yjr)+ 1 (sin 6 + sin
(f)+ sin

-v/r)
=

0,

(cos 3^ 4- cos 3^ + cos
3>//') + 1 (sin 3^ -f sin 3^ + sin

3>//>)

- 3 {cos (^+ ^ + \/r) + 1 sin (^+ </) -I- ^/r)}
= b

;

equating to zero the real and imaginary parts separately in each equation, the

theorem follows.
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EXAMPLES ON CHAPTER XIII.

y , r. XI , /l+sin64-tcosd)V ,^ .^ /^ 1. Prove that I
- - .^ Z =cos (imr - nd>) +t sin (hnr - neb).

^ \l + sin0-tcos0/ ^"^ ^' ^- ^'

2. Evaluate

{cos ^
- cos

(f) + 1 (sin B
- sin <^)}"+ {cos 6

- cos -
1 (sin ^

- sin <f>)}^.

3. Prove that

(l.,).-(:_^.^,
(^+ta^9 (.Htan^l) (.Htan^:),

where r=|(7i-l) or^-1, and A is 1 or n^ according as ?i is odd or even.

4. Prove that

4 sin ^ (/3
-
y) sin J (y

-
a) sin |(a

-
^) 2 sin ( /?a + g'/3+ />)

=sin{(n+ l)a-iO+y)}sini(^-y)+ ...

where 2 denotes the sum taken for all positive integral values of p, q^ r,

(including zero), such that p+q-{'r=n.

5. If jo is a positive integer and a, iS, y... are the roots of the equation

^p=l, and n is any numerical quantity greater than unity, shew that the only111
real value of a" + 13'*+7"+ ...is tan- / tan

' n I pn

^ 6. If {l+:vy'=Po+PrV+p^^+

prove that Po~P2+Pi~ = 2^" cos ^n tt,

Pi-Ps-^Po- =
2^"sini?i7r.

7. If a.\, .V2...a^ni
b *he corresponding roots selected from the conjugate

pairs of roots of the equation .r^** - 2^" cos 7i^4- 1 =0, and if

r=n / ^.^\

/(a)= 2 ^Vr cos [a-\ ) , prove that
r=l ^ ** /

fM/M /(%)=
(i7i)P-i[/|^(a,

+
a2+...+ap)|J.

8. If a, j3, y, 8, f, be any five angles such that the sum of their cosines

and also the sum of their sines is zero, shew that

2 cos 4a=1(2 cos 2af - 1
(2 sin 2a)2

2 sin 4a= 2 sin 2a . 2 cos 2a.

9. If ^j, ^2 ^) be the sum of the products of the n quantities tan^,
tan 2.^, tan 2%, tan 2"~i^, taken 1, 2, 3...71 together, prove that

1 - ^2+ ^4
""

^6+ = 2" sin .r cos (2"
-

1) :r cosec 2"*-

ti t^+ t^-... = 2^ sin a: sin (2"
-

1) ;p cosec 2**;r.
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3
10. If cos (/3

-
y ) + cos (y

-
a)+ cos

( /3)
= -

^ ,
shew that

A

COS iia+ cos 71/3+ cos ny

is equal to zero unless w is a multiple of 3, and if w is a multiple of 3, it is

equal to 3 cos|fn(a+/3+y).

11. Prove that the values of x which satisfy the equation

n{n-\) nin\){n'i) ,

, -,vinf+n\-nx ^ '
x^-\- :^ ^^+...-f(-lf"^"^^^^= 0,

, (4r+l)7r u .
are ^=tan - -

,
where r is any integer.

12.

where

-r. ., .''"'*, -.N , sin^racos^w-^ra Vin-^-Vsx
Prove that 2 i-Vf-^ ,, . ^ ^

=
yz ^-.^r^ w-n ,

r=i ^^tan^ra (1 4-^)^'*"^^- (1 -^)2"
+ i'

~2?H^1'

13. If gP,. denotes the sum of the products taken s together of the

quantities

tan2 7r/(2w + l), tan^ 27r/(2^i+l), tan^ n7r/(2?i+ l),

the quantity tan2r7r/(27i+l) being omitted, and if

^^= (
-

l)'-i sin2 r7r/(27i+ 1) . cos2-3r7r/(2M+ 1),

prove that 2^y.8P^= 0, the summation extending to all values of r from 1 to

Tiy and 5 having any value from 1 to n.

14. A regular polygon of n sides is inscribed in a circle, and from any

point on the circumference chords are drawn to the angular points ;
if these

chords are denoted by Cj, Cg, ... <?, (beginning with the chord drawn to the

nearest angular point and taking the rest in order), prove that the quantity

Cj^C2+ C2C^+... + Cn-iCn+CnCi is independent of the position of the point from

which the chords are drawn.

15. If A^A^ ... A^+i, are the angular points of a regular polygon inscribed

in a circle, and is any point on the circumference between A^ and Jgn + i?

prove that the sum of the lengths OA^, OA^, ... OA^^^^ is equal to the sum of

OA2, 0A,...0A2n-

16. If pi, P2 Pn are the distances of a point P in the plane of a regular

polygon from the vertices, prove that

2-,=
1 p2 r2 - a2 j.2n _ 2r^a^ cos nd+ a?^

'

where a is the radiiLS of the circle round the polygon, r is the distance of P
from 0, and 6 the angle OP makes with the radius to any vertex of the

polygon.

1 7. Straight lines whose lengths are successively proportional to 1, 2, 3 ... w,

form a rectilineal figure whose exterior angles are each equal to 27r/n ;
if a

polygon be formed by joining the extremities of the first and last lines, shew

that its area is

w(w + l) (271+ 1) ^TT .16 ,7r 7r
^

/ ,^

'
cot - H cot - cosec* - .

24 n n n n

H. T. 16
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18. The regular polygon A-^A^^A^... A,^ has 2m sides; shew that the

product of the perpendiculars from the centre of the circumscribed circle on

A^A^, ^1^3, ... A^A^, is {\ay^-^ ^m.

19. Shew that \i A^A^... A^, B-^^B^... B^m be two concentric and similarly

situated regular polygons of ^n sides, then

PA,.PA,....PA^., ^ PB,.PB,....PB^_,
PA^.PA^....PA^ PB^.PB^...PB.^

'

where P is anywhere on the concentric circle whose radius is a mean propor-

tional between the radii of the circles circumscribing the polygons.

20. A point is taken within a circle of radius a, at a distance h from

the centre, and points Pj, Pg) ^n> ^-re taken on the circumference so that

P^Pg) A-^SJ ^nA> subtend equal angles at 0\ prove that

OPi+ (?P2+ ... + OPn=(a2-62)(OPr^ + OP2-^+ ... + OP-i).

21. Prove that if w is a positive integer

cos n0= l + 2n sm - cos + -~-^
- 2^ sm^ - cos ^ -'

22. Shew that the number m of distinct regular polygons of ?i sides which

can be inscribed in a given circle of radius r, is equal to half the number of

integers less than n and prime to it.

Shew also that the product of their sides is equal to r*"\/w/V^ 2w, or

r"*, according as n is, or is not, the power of a prime number.

23. A regular polygon of n sides AqA^A^,,. An-i is inscribed in a circle

of radius a and centre 0, and from a point P on OAq, lines PA^, ... PA^-i
^re drawn making angles ^j, ^gj ^n-u with PO. Prove that the continued

r=n=l

product n {PAr^ 2PAr^a'^ COS 7n6+ a^^) is equal to the continued pro-
r=0

r=ml
duct n (PAj.^^-2PAr^a^ COS nO+a^^)f where the latter expression refers

r=0

to a polygon of m sides inscribed in the circle in a similar manner, the position

of P being unaltered.



CHAPTER XIY.

THE THEORY OF INFINITE SERIES.

191. We shall, in this Chapter, give some propositions con-

cerning the convergeiicy of infinite series in which the terms are

real or complex quantities. Anything like a complete account of

the theory of such series would be beyond the limits of this work
;

we shall therefore confine ourselves to what is absolutely necessary

for the purpose of discussing the nature and properties of trigono-

metrical series.

The convergence of real series.

192. Let a^.a^y a-i, a, be a series of real quantities

formed according to any law, and let /Sf = ai + aa + (Xg + + ,

then if 8n has a definite finite limit >Si, when n is indefinitely

increased, the infinite series o^-\- a^-\- az-\- is said to be

convergent.

We shall, in this Chapter, use the notation LSn to denote the

limiting value of Sn when n is infinite.

If the limit of Sn is infinite, or if it is finite but not definite,

the series is not convergent. In the former case the series is

divergent, and in the latter case in which the limit of 8n depends
on the form of n, the series is said to oscillate. Oscillating series

are frequently included under the name divergent series.

The series 1 + ^+^+4 + is divergent since LS^= ;
the series

1+1-2+1+1-2+
oscillates, since LSn is equal to 1, 2, or 0, according as n is of the forms

3r+l, 3r+ 2, or 3r.

162
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193. Supposing none of the quantities 01,02,0^3 to be

infinite, the necessary and sufficient condition for the convergency
00

of the series Xa, is that, corresponding to any finite positive
1

quantity e as small as we please, a number m can he found such

that the arithmetical value of a+i + a+2 + + a+,. is less than e,

whatever number r is, if n is equal to, or greater than m.

To shew that the condition is sufficient, denote by Rn the

infinite series or+i + a+2 + >
which is the remainder after n

terms in the given series, then by making r infinite, we see that

Rn is numerically less than e, if 71 ^ m, hence S has a value between

Sn-V ^ and Sn e where e may be made as small as we please ;
also

Sn being the sum of a number of finite quantities is finite, hence

S is finite.

Also Sn+r ^n = ^n+i + ^n+'i + + Ctn+r, thuS Sn+r ^n Can be

made as small as we please by making n large enough, therefore

LSn = LSn+r, hcuce the value of S is definite, being independent of

the form of n.

The condition has been stated so as to exclude the case of an

oscillating series.

If we take r=l, the condition includes that a+i may be

made as small as we please by taking n large enough, thus

Lan = 0.

The rapidity of the convergence of a series may be measured

by the least value of m corresponding to a given value of e, that

is to say, by the number of terms which it is necessary to take in

order that the remainder may be less than an assigned quantity.

In the case of the geometrical series l-\-a;-\-x^ which converges to the

value 1/(1 ^^), when a; is less than unity, we see that

'^n +! + + <^n + r i _

and this will be less than e, if < e
;

in this case, supposing x to be

positive, the value of m is the integer next greater than -, . The

value of m increases as a; increases, thus the rapidity of convergence of the

series diminishes as a: increases ;
when x approaches unity, and becomes

ultimately indefinitely near it, m increases indefinitely, thus the convergence
of the series becomes infinitely slow; when a;=l, the series is, of course,

divergent.
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194. Let us next consider the case of a series in which there

are both positive and negative terms
;
in such a series there will

be one or more positive terms followed by one or more negative

terms, and we may, without altering the series, add together the

consecutive positive terms, and also the consecutive negative

terms, so that without loss of generality, we may consider a series

^1 0^2 + 3 4 + in which !, tt2, are all positive quan-
tities. Suppose such a series to be convergent, then if the series

i + 0^2 + cts + ill which all the signs are made positive, is also

convergent, the series Oi ag + ^3 is said to be absolutely

convergent, whereas if the series ai 4- a-a + ag + is divergent,

the series ai ag + ^3
~ is said to be semi-convergent or

conditionally convergent, or accidentally convergent.

The series l~^-2~^+S~^^-\- is absolutely convergent, since the series

l~2+2~2+3~2+ is convergent, but the series l~i-2~i + 3~i is

semi-convergent, since the series l~^+ 2,~^ + 3~^ + is divergent.

A series aj ag+^s is always convergent if each term is numerically

greater than the next following, and if is indefinitely small when n is

infinitely great; for the sum of any number of terms is obviously positive

and less than a^, hence the limit of the sum is finite, and it cannot oscillate

since

Z/>J + r~ J^^n ^^ i {Cf'n + 1
~ ^n + 2 "f" X <^n + r))

which is ultimately zero, as it is numerically less than a+i.

195. In a semi-convergent series, the order of the terms

cannot in general be deranged without altering the sum
;
let Sp

be the sum of the first p positive terms, and S'g the sum of the

first q negative terms with their signs changed, then if the series

be re-arranged so that the sequence of the positive terms is

unaltered, and also that of the negative terms, but so that of

the first p + q terms, p are positive and q are negative, the sum of

the series so re-arranged is the limit of Sp S'g, when p and q are

infinite. Now the two series Sp, S'g each consists of positive

terms, hence the limits of Sp and of S'g are each either finite and

definite or else infinite, by hypothesis they are not both finite and

definite as the given series is not absolutely convergent, hence

either one or both of the limits Sp, S'g is infinite; if both are

infinite the value of L (Sp S'g) will depend on the ratio in which

p and q become infinite. If one only of the limits Sp, S'g is

infinite, L (Sp S'g) is infinite and the original series was not

convergent. In the original order aj aa + ag... of the series,^
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and q become infinite in a ratio of equality, but if, for example,
we write the series aj + ag aa + 0^5 + a? a4 + . . ., jp and q become

infinite in the ratio 2:1, and the limits of S^q S'q, and Sq S'q

when q is infinite, are in general not equal.

As an example, consider the semi-convergent series 1-^+^-^+...; denote

its sum by S, then

_^ / I 1 1 1\

~f\4?i-3 4n-l 4n-2 4n)'

Let S' denote the sum of the series 1-^-^+5+^ i+ in which the

order of terms in the series S has been altered, we have

hence ,S'3->^,=I (^^ "i)
/ 1 1 \

when n becomes indefinitely great, we have therefore S'=^S. This example
was given by Dirichlet, who first pointed out that the sum of a semi-con-

vergent series depends on the order of the terms.

196. Riemann has shewn that the terms in a semi-convergent
series may be so arranged that the sum may have any given
value a.

Suppose a is positive, take first p positive terms, p being such

that >Sp_i < a and Sp>oL\ then take q negative terms, q being so

chosen that Sp >Sf'^_i
> a, and 8p S'q<a; next take p' positive

terms such that Sp+p'^^, Sq<a, and Sp+p' Sq>0L, then q' negative
terms such that Sp+p' Sq+g' < a, and /S^^+y ^q+q'-i > ,

and so on.

Proceeding in this way, we obtain a series such that its sum
differs from a, by less than its last term, hence when we make
the number of terms infinite its sum will ultimately be a.

The convergence of complex series.

197. Suppose ^1 -}- ^2 + + ^?i to be an infinite series, in

which each term Zn is a complex quantity Xn + lyn ;
the series 'Zz is

n n

convergent only when each of the two sums Sa?, Zy has a definite
1 1

finite limit when n is infinitely great ; denoting these limits by X,
Y respectively, we consider X-f aF to be the sum of the infinite
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series '2z. In case the limiting value of either of the sums ^x, ly
is either not finite, or is an oscillating quantity, the series Xz is

not convergent.

Suppose Zn ^n (cos ^n + * si^ 6n), then we shall shew that

the series Xz is convergent provided the series Sr, in which each

term r is the modulus of the corresponding term Zn ,
is convergent.

The given series Xr (cos dn-\- 1 sin On) is convergent provided each

of the series Sr cos On, ^^n sin 6n is convergent ;
now each of the

quantities r^cos^,^, r sin ^ lies between the quantities + r^,

therefore the sum of each of the series 2rcos 6n, Ir^sin On is less

than Xr; also the quantity Sn+r Sn is for either of the series

Xr cos 0, 2r sin 0, numerically less than for the series Xr
;
if then

the latter series is convergent, so is each of the former ones, hence

the series Xzn is convergent.

The converse is not necessarily true, thus the series

XVn (cos On + C SUi On)

may be convergent, whilst Xvn is divergent.

If the series 2r formed by the sum of the moduli is convergent,
then the series Xvn (cos On + l sin On) is said to be absolutely con-

vergent.

For example, the series of which the general term is n-^ (cos w^+ t sin n6\ is

absolutely convergent, since the series 2 n~'^ converges, whereas the convergent
series of which the general term is n~i (cos n^ + 1 sin w^), (27r>^>0), is not

absolutely convergent, since the series 2 n~^ is divergent.

Continuous functions.

198. Suppose /(^) to be a function of the quantity z = x-\- ty,

which has a single finite value for every value of z which lies with-

in any given limits
;
this function will then have a single value for

every point in the diagram, which lies within a certain area
;
this

area may be any finite portion of the plane, or the whole of the

plane.

Such a function is said to be continuous at the point z = z-^,
^

if a finite quantity t) can always be found such that the modulus of V
f (z) f (zj) is less than an assigned finite quantity e, taken as small

as we please, for all values of z which are such that the modulus of
z Zi is less than t).

A function which satisfies this condition at every point within

any given area, is said to be continuous over that area.
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Uniform convergence.

199. Let fn{z) be a function of z or x + iy, which is con-

tinuous over any area
;
then if the series

M^)+Mz) + +Mz) +

is convergent, we may denote its sum by F{z). Suppose

Mz)+Mz) + +Mz),
where n is any fixed number, is equal to Sn, then the quantity

/n+i {z) +fn+2 (-2^) + is called the remainder after n terms and

may be denoted by Rn ;
we have therefore F (z)

= Sn + Hn- Now
suppose that corresponding to any given finite quantity e, however

small, a finite value of n, independent of z, can be found, such

that for all values of z represented by points lying within any

given area, the modulus of Rrn is less than 6, where m is equal
to or greater than n, the series is said to converge uniformly for

all values of z represented by points within that area.

If as z approaches indefinitely near any fixed value 2^1, in order

that the moduli of all the remainders Rm may be less than e,

it is necessary to suppose n indefinitely great, then in the neigh-
bourhood of the point z-^, the series does not converge uniformly
and is said to converge infinitely slowly. For any space including
a point near which the series converges infinitely slowly, it is

impossible to assign any finite fixed value of n, such that for

all values of z within that space, the moduli of R^ are less than

the fixed finite quantity e, and thus the series does not converge

uniformly throughout that space. When z is absolutely equal
to 01, the series may be either convergent or divergent.

We may state the matter as follows :

Suppose that as z approaches some fixed value ^i, the number
of terms n of the series f {z) \-f {z)-\- ... which must be taken,

in order that mod. R^ < e, where m is equal to or greater than n,

depends on the modulus oi z z^ in such a way that n continually

increases as mod. (z Zi) diminishes, and then n becomes indefi-

nitely great when mod. (z Zj) becomes indefinitely small, the

series is said to converge non-uniformly in the neighbourhood
of 2^1.
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In the neighbourhood of such a point, the rate of convergence
of the series varies infinitely rapidly, and when mod. (z z^) is

infinitely small, the series converges infinitely slowly..

It should be observed that a convergent numerical series

cannot converge infinitely slowly ;
thus when z is absolutely equal

to ^1, the convergence of the series fi(zj) -\-f2 (zi) -^ ..., if it is

convergent, is no longer infinitely slow; it is only when z is a

variable quantity such that mod. (z Zj) is infinitely small, that

the series /i (z) \-f2 (z) + ... converges infinitely slowly. It is

consequently more exact to speak of the non-uniform convergence
of a series in the neighbourhood of a point, than at the point

itself. The number of terms n that must be taken in order that

the modulus of the remainder Rn (^) may be less than a fixed

quantity e, increases as z approaches the value Zi, becomes

indefinitely great when mod. (z z^) becomes infinitely small,

and then, if the series is convergent at the point Zi, suddenly

changes to a finite value
;

this number n is therefore itself

discontinuous in the neighbourhood of such a point.

By some writers, a series is defined to be uniformly convergent over a

given area, when a number n can be found such that for all values of 0, the

modulus of the remainder R^ is less than e. The definition given in the text

is more stringent than the one here mentioned
;

it is possible to construct

series which converge uniformly according to the latter but not according to

the former definition.

200. If the functions fi{z), f^iz) are continuous for all

values of z represented by points lying within a given area A,

then the function F {z) which represents the sum of a conver-

gent series '^f{z), is a continuous function for all values of z

represented by points lying within the area A, provided the series

Sf (z) converges uniformly over the whole area A.

For we have F {z)
= Sn + Rn, '^ being such that for all values

of z to be considered, the modulus of Rn is less than e; let -e-

receive an increment hz, and let BF(z), BSn, BRn be the corre-

sponding increments of F(z), Sn, and Rn, then since by supposition
the moduli of Rn and Rn + SRn are both less than e, the modulus

of BRn is less than 26. Also since Sn is a continuous function

of z, we may by choosing Bz small enough, make the modulus

of BSn less than e
; hence, provided Bz is less than a certain

value, the modulus of BSn + BRn or of BF (z) is less than 3e, since

the modulus of BSn + BRn is not greater than the sum of the
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moduli of SSn and BRn. Now 3e can be made as small as we

please, therefore mod. hF{z) can be made as small as we please

by making hz small enough, that is to say the function F{z) is

continuous.

It will be observed that for this proof, the less stringent definition of

uniform convergence, given in the note to Art. 199, is siifl&cient.

201. For values of z, for which the series converges non-

uniformly in the neighbourhood, the sum of the series is not

necessarily continuous
;

in this case the reasoning of the last

Article fails. The limiting value of the function y,i {z), when z = z-^,

if/^(^i), but it does not follow that S {/n (-3^) /n(-^i)}, becomes
1

n
zero. We may denote the sum S [f{z)f{z-i)] by F{n, z z^), a

1

function of n and of z z^; now the limiting value of F(n, z Zy)

when z is first made equal to z^y and then n is afterwards made

infinite, is zero
;
but if n is first made infinite, and afterwards

-2^ 2^1 is made zero, the limiting value of F {n, z Zj) is not

necessarilv zero.

As an example of this phenomenon, Stokes considers the real series

2(1+^) n{n-\-l) {{n-l) x + l} {na:+l)

when ^"=0, this series becomes

1.2"*" '^n{n+ l)'^'

Now the general term is

1
,

2a;
"T

n{n-\-l)^ {{n-l)x+l}{na;+l)'

[n
"^

(7i- 1)^+1/
~

[n+ l
"^

nx+lj
'

therefore the sum of the series is 3, whatever x may be
;
the sum of the series

:j 5 + ^5+ is however unity, thus the series is discontinuous in the

neighbourhood of the value of .r=0.

1 2
The remainder after n terms is -\

, putting this equal to e, we

find ?l=
{.^'+ 2-e(^+l) + ^/{e(^+l)-(^+ 2)}2-4f^(e-3)}/2e^,

which increases indefinitely as x becomes indefinitely small, thus the series

converges infinitely slowly when a; is infinitely small ;
this is the reason of the

discontinuity in the sum of the series.
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The discovery of the distinction between uniform and non-uniform conver-

gence of series has usually been attributed to Seidel, who published his "Note
iiber eine Eigenschaft der Eeihen welche discontinuirliche Functionen dar-

stellen" in the Transactions of the Bavarian Academy for 1848; the theory

had, however, been previously published by Stokes, in a paper
" On the Critical

Values of the sums of Periodic Series^," read on Dec. 6, 1847, before the

Cambridge Philosophical Society. Although the theory is in some respects

stated more fully by Seidel than by Stokes, the latter must be considered to

have the priority in the discovery of the true cause of discontinuity in the

functions represented by infinite series 2. The distinction between uniform

and non-uniform convergency has played a very important part in the modern

developments of the subject.

The matter is summed up by Seidel in the following theorem : Having

given a convergent series, of which the single terms are continuous functions

of a variable z, and which represents a discontinuous function of z : one must
be able, in the immediate neighbourhood of a point where the function is

discontinuous, to assign values of z for which the series converges with any

arbitrary degree of slowness.

The geometrical series.

202. Consider the geometrical series 1 -\- 2 + z^ -h -f ^^-\

where z = w + ty
= r (cos 6-\- tsin 0). We have for the sum of this

series the value

lz''^ 1 _ T-w (cos nO -\- L sin 716)
or ^^ - '

1z 1r (cos 6 + ism6)
'

put 1 r cos 6 = pcos (f),
rsinO = p sin

<^,

then p = + Vi"- 2r cos 6 -f r\

the sum then becomes

1 ^n f
'

\

-
(cos <^ + t sin (^) jcos (n6 + <^) 4 t sin (7iO+<f>n ;

and when n is made indefinitely great, the second term in this sum
becomes indefinitely small, if r < 1, but if r > 1, it becomes infinite.

Thus the infinite series 1 +z-\-z^+ + ^^-^ + converges if

the modulus of z is less than unity, and its sum is then

1
/ , ,

. . . 1 r cos 6 -\- L .r sin 6-
(cos 9 + t sm <f>)

= ^ ;

p^
^ ^^ l-2rcosl9 + r2

'

if the modulus of z is greater than unity, the series is divergent,
and if equal to unity also not convergent, since the sums of the

^ See Stokes^ collected works, Vol. i.

2 On the history of this discovery see Reiff's
" Geschichte der unendlichen

Reihen."
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two series 2 cosnd, ^sinnd, which have been found in Art. 74, do

not approach a definite value when n is indefinitely great.

We have, by equating the real and imaginary parts of the

series and the sum,

1 r cos

T-2rcos^ + r

r sin 6

= 1 hrcos6-\-r^cos2d+ + r** cos n^ +

r sin ^ + r^ sin 2^ + + r" sin ?i^ +
1 2r cos ^ + r^

these series hold for all values of r lying between + 1, excluding
r = 1 and r = 1, for which the series are divergent. To see that

this is the case, we need only write z for 2 in the original series.

The geometrical series is uniformly convergent for all values of

jz of which the modulus is less than unity by a finite quantity how-

z^
ever small

;
for the remainder after the first n terms is

:j ,
and

1 z

the modulus of this less than - -^
,
where h is any fixed real quan-

tity less than unity, but as near it as we please, and greater than

the modulus of z
;
the series will then be uniformly convergent for

all values of z of which the modulus is less than h, if

h""

<., orifn> ^^g^V'^(^"^^

hence since it is possible to choose n so that for all values of z of

which the moduli are less than h, the remainders after n terms are

less than e, the series converges uniformly for all such values.

Series of ascending integral powers.

203. We shall now consider the more general series

(Xo + diZ + a^z^ + + anZ^ +

where ao, a^, a^ are complex quantities independent of the

complex variable z. Let r be the modulus of ^, and flo, !, org,

a.n those of ao, a^, a.2 an The series of moduli is

ao + ai^ + Oa^^H- + anr^+ ;

this series is convergent provided the limiting value of ran+Jan,

when n is indefinitely great, is less than unity by a finite

quantity, however small, that is provided r < Xa/an+i. Denote this

limiting value by p, then if
/9
= 0, the series is never convergent.
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if
/o
= 00

,
the series is always convergent, but if p is finite, the

series is convergent provided r < p, and divergent if r>p, since

the modulus of the general term increases without limit when n

becomes indefinitely great. When r = p, we must apply some
further test to ascertain whether the series is convergent or not.

About the point 2 = 0, describe a circle of radius p, this

circle is called the circle of convergence, and p is called the

radius of convergency ; for all values of z represented by points
within this circle, the series a^ + a-i^z -\- . . . { anZ'^ + ... is convergent,
and for points outside, the series is divergent. The convergency
for points on the circumference of the circle, requires special

examination in each particular case.

In the case of the geometric series 1+2+ 2^+ ... the radius of convergency
is unity.

204. In the last Article, we have assumed that OLnjoin+i has a

definite limit p, when n is made infinite
;

this is however not

always the case, but we can shew that if the series converges for

values of z of which the modulus is any quantity p-^, it converges
for all values oi z for which the modulus is less than p^.

We have for the series of moduli

tto + a^r + tta^ + . . . + a^r^ + . .
=

^o + i

( )
/^i + a2

[- j
Pi^ + . .

;

now if r</9i, each term of the series on the left-hand side is less

than the corresponding term of the convergent series

ao + ttiPi + a2pi^+ .-.,

hence the series a^ + a^r -}- a^r"^ + . . . is convergent, and therefore

ao + diZ + ^2^^ +. . . converges if mod. z< p^.

205. We shall next shew that the series converges uniformly
for all values of z for which the modulus of z is less than the radius

of convergency p, by a finite quantity which we may make as

small as we please.

Suppose p k to be this value of the modulus and let pi be a

fixed quantity lying between p and p k, also let p k = p^ h;

the sum of the series of moduli of all terms after the nth. is

ttn^^' + an+i^"+' +

or
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now the quantities citnpA ^+iPi^^^ are all finite or zero, since

the series is convergent when r = pi ; suppose the greatest of these

quantities to be K, then

.r- +
,,."+...<irj(^)"+Q""

+
...[

<M3"('-3"'<'('-s)"i
hence we shall have o^'''^ + ?i+i^*^"^^ + ... < e,

provided ^[1 J ^< e
;

the smallest value of n which satisfies this condition is independ-
ent of r, hence the series converges uniformly for all values of r

which are less than p k, when A: is a finite quantity as small as

we please.

Denoting by F{z) the sum of the series

ao + ai^ + ... + anz'^ + ...

for values of z of which the moduli are less than the radius of

convergency, it follows from Article 200, that F{z) is a con-

tinuous function of z, for all points lying inside the circle of

convergency. If the radius of convergency is infinite, F{z) is con-

tinuous all over the plane.

206. The convergence of the series on the circle of conver-

gency itself, has not yet been considered
;
we may without loss of

generality take the radius of convergency to be unity.

It can be shewn that the series a^ -\- a^z + a^z^ + . . .
,
when the

coefficients are real, converges for points on the circle of conver-

gency, with the exception of the point z = l,i{ the coefficients are

all positive, and of the point z \, when the coefficients are

alternately positive and negative, provided the coefficients ao, Oi,

Qa . . . are in descending order of absolute magnitude, and provided
the limit of an, when n is infinite, is zero.

Let ^^ = (Xo + a-^z + a^z'^ + . . . + a^-i-s^*^"^

and suppose the coefficients all positive, then

Bn (1
-

-Sr)
=

tto ttw-i^^"' Z
{{CLq ttj) + (tti

- a^ z -\- {cb^ a^) z^ + . . ,



THE THEORY OF INFINITE SERIES. 255

now the series (ao a^ + (i a^ + (aa ^3) + is convergent,
therefore the two series

(tto fli) + (! 0,2) cos ^ + (ag ag) cos 2^ + . . .

(tto tti) + (! ^2) sin ^ + (aa ots) sin 2^ + ...

are also convergent, since the cosines and sines all lie between

+ 1, thus the series

(ao (h) + (0^1 a^z-\r {a^ -as)z^-{- ...

is convergent when mod. z=l
;
since an-iZ'^ becomes zero when

n is infinite, we see that LSn (1 z) is finite when mod. z = 1,

hence unless z = l, LSn is finite.

If the coefficients in the series are of alternate signs, change
z into z, then this case is reduced to the last.

Whether the series is convergent when z = l, or in the case of

coefficients of alternate signs, when z= l, has not been determined,

and depends upon the particular series. The series may be only

semi-convergent on the circle of convergency.

If the coefficients of the series are complex, we can divide the

series into two, in one of which the coefficients are real and in

the other imaginary; the two series can then be considered

separately.

207. Suppose F{x) is the continuous function of x, which

represents the sum of the series ao + ciiX + a^^^ + with real

coefficients which converges for real values of x, less than unity,

and suppose also that the series converges when 00 = 1] we shall

shew that the sum of the series cio + (Xi + ag + is the limit of

F(l h) when the positive quantity h is indefinitely diminished,

that is to say, the continuous function F(x) continues to repre-

sent the sum of the series, when a; = l. This theorem was given

by AhelK

Let 5n = ao + ai-h a2+ + ,

then F(x) = So-\-{siSo)a; + {s2 Sj)x'^+

or F{x) = (1 a?) (So + SiX -f s^^ + ),

since the series is absolutely convergent, therefore

F(l-h) = h{so-{-s,{l-h)+ +5_i(l-/if-i)

-{-h(l-h)^{Sn + Sn+^{l-h)-{- }.

^ In Grelle's Journal, Vol. i.
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The number n may be taken so large that Sn, Sn+i, s^+o,

are all as near s as we please, suppose they all lie between s ^
and 5 + a

; suppose also that h is so small that nh is ultimately

indefinitely small, then since So + Si(lh) + + Sn-i (1 h)^~^ is

a finite quantity, when it is multiplied by h, it becomes a quantity

which ultimately vanishes. Also

h(l- hf [Sn + Sn+i {l-h) + Sn+2 (1
- hf -\- }

lies between

;, (1
_ hy (s

- 0) (1 + (1
-

/i) + (1
- hy + j

and /i(l-/0^(s+ a){l+(l-/t) + (l-A)2+ ),

or between (1
- hy (s

- ^) and (1
-

h)" (s + a) ;

now (1 h)^ lies between 1 and 1 nh, thus (1 A)" is ultimately

equal to unity.

Since a and are indefinitely small whefn n becomes indefi-

nitely great, we see that LF{\ h) = s.

If ttoj <^ij cf'i, are complex quantities, we may divide the

series F{a;) into two parts, one real and the other imaginary, and

the theorem applies to each separately, hence it holds for the

whole series.

Next let F(z) be the continuous function, which represents,

when mod. z <1, the sum of the series ao + a^z + a^z^ + where

z is Si complex quantity r (cos 6 + c sin 6), then

F {{l-h)(cos e-hcsme)} = {ao + ai{l-h)cose -{ cu,(l-hycos2e+ ...}

+ A {oi ( 1
--

^) sin ^ + 02 ( 1
- Ay sin 2^ + )

and the theorem holds for each of the series on the right-hand
side

;
hence if the series Oq + aiZ -f a^^ -f is convergent when

mod. z = 1, the sum of the series, when z = cos 6 + l sin 6, is

i^(cos^ -I- tsin^); thus the function represented by the series is

continuous on to the circle of convergency.

In order that the necessity for the investigation in this Article may be

seen, we remark that a similar theorem would not hold for the series

obtained by altering the order of the terms in the series c^q+ <^i-^+ ^V^^+
For example, consider the two real series

^-^.r2+i^-i^+ ... and ^-f^^-ir2+4^+ ^.^^-i^+ ... ;

as long as x<l, the series are absolutely convergent, and their sum is the

same; when however .v=l, the sums of the series are not equal, as has

been shewn in Art. 195. The sum of the first series is continuous up to the

value ^'=1, of ^, but that of the second is not so.
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208. Suppose that

Uo -\- a^z -h a^z^ + =bo+biZ + b^'^-{-

when the modulus of z is less than any finite quantity p, the series

being convergent when mod. z< p, then ao = 60, a^ bi, aa = 62

Since the series are equal for all points within a circle of

radius p, we may put z = 0, hence tto
=

60, therefore

ttiZ + a^z^ + = biZ -^ b^z^ + ;

since this equality holds for values of z differing from zero, we can

divide by z, hence Oj + ag^ + = 61 + 62^ + , and as before,

since the series are still convergent, we can shew that ai b^. If

we proceed in this way, we can shew that all the coefficients are

equal, thus the two series are identical.

Convergency of the product of tiuo series.

209. Let Sy S' denote the sums of two absolutely convergent
series

! + a2 + 0^3 + +an+
&1 + 62+&3+ + bn +

then it can be shewn that the series

aA + (ci'A-haJ)i)+ + (ai6 + aa^n-i + . . . + (xA) +

obtained by multiplying together the given series, is convergent,
and that its sum is SS\

Denote by Sn the sum of n terms of the product series, and let

a, /8 be the moduli of a and b respectively. Since the series S, 8\
are absolutely convergent, the series of moduli are convergent;
denote their sums by 2, 2', and let

o-n -=
ai/3i + (fliA + ofsA) + + {oLiPn + (^A-i+ +aA).

We have SnSn - Sn = aj)n + cCsK-i + + anbn

hence mod. (SnSn Sn) < aj3n + aj3n-i + + a/5n

Now an< ^'nXn< o"2n, bccause (T^n contains more terms than the

product 'En^n, whereas o-n contains fewer; hence the limit of cr,

when n is infinite, is finite, and therefore since the limits of

an, cF^ must be the same, each is equal to 2S' ;
thus the limit of

mod. (SnSn Sn) is zero, or s = SS'.

H. T. 17
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The convergence of double series,

210. Let Gfj 4- tto + 3 + + a,i + be a convergent series

of positive real quantities whose sum is S; suppose also that each

term a^ is expressed as the sum of a convergent series of positive

quantities, say

SO that the given series may be written

(ai,i+ai,2 + ai,3+ )+(a2,i + a2,2 + a2,3 + )

+ (a3,i + a3,2+ )+ ;

then we shall shew that the given series may be rearranged in the

form

(!,! + 02,1 + a3,i + ... + otn,i+...) + (ai,2 + 02,2 + a3,2+... 4- an,2+ )

without altering its sum. We have

>Sf = ai + a2 + + an-\-R

01 = 01,1+01,2+ +ai,7n +A

On Oyi^ 1 -|- C(n^ 2 + + On,m + ^n

where R,Ri Rn niay be made as small as we please by making
n and m respectively, large enough, hence

q=mp=nS=t E Op,g + i2 + i2i + i^4- + Rn,
q=l p=l

now each of the quantities jRi, R^ Rn may be made less than

e/n, by making m large enough, e being any quantity as small as

we please, thus R^-\-R2+ +Rn<e, therefore the limit of

^= 00 p=x>
S S Op, 5

is equal to S. Also the series

pz=(30 p=oo p=oo

^ <^,1+ ^ P,2 + + ^
Ofp.Tl

p=l p=l p=l

q=zoo p=aD
differs from 2 2 o^, ^ by a quantity less than R-\-Ri+ R2-{:..Rn,

q= l p= l

hence the limiting value of this last series when n is made infinite,

is also 8. We may write the result thus :

5=00 /p=oc ^ p=cc fq=^
I2 2 0^,5^= 2

]
2 o^,J.
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Next let a^^s be the modulus of a complex quantity a^,*, then

we have the following theorem : If ai + a2+ ++ be an

absolutely convergent series, and if each term a,, be expressed as the

sum of an absolutely convergent series ar,i+o^r,2+<^r,3+ >
then the

P=:CO p=<X>

given series may be replaced by the series 2 0^,1 4- S a^,2 +
p=i p=i

without altering its sum. This theorem follows from the above, as

all the series certainly converge if the series of moduli do so.

An important case of this theorem, of which we shall afterwards

make use, is the following :

If F (y, z)
= ao + a^z + aoZ^ + a^s^ + be an absolutely con-

vergent series, and if

aiZ =bi,o + h^iy + bi^2y^ + bi^sf+

^2^' = h,o + b2,iy + 62,22/' + h^y^ +

where each of the series in powers of y, is absolutely convergent,
then

F(y,z) = (bo,o + b,^o2 + b,,o2'-\- ) + (60,1 + 61.1
^ + 62.1^'+ )y

a series arranged in powers of y.

The Binomial Theorem.

211. A very important case .of series in ascending integral

powers of a variable, is the series

^ m (m ~ 1) m(m l)(m 2) ,
l + m^ +

^^1
^^ + -^

qT -2' + ,,.

In the particular case in which m is a positive integer, the

series is finite, and its sum is (1 + z)^, the ordinary proof of this

being applicable to a complex value of z.

We shall suppose 2: to be a complex quantity, but shall confine

ourselves to the case in which m is real. In this case On/ctn+i is

71+1 ...
equal to ,

the limiting value of which is unity ;
the series

therefore converges absolutely and uniformly within a circle of

radius unity. Denoting the sum of the series by f(m), and

172
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applying the theorem of Art. 209, we find for points within the

circle of convergence, as in the ordinary form of Euler's proof,

and thence f{"ni^f{im^. . .f{m^ =f{mi + iiio, + ... + iiiq).

First suppose m to be a positive fraction pjq in its lowest

terms, then putting mi = m2= .,. = mq=plq, we have

[/(p/?)]' =/(p).

therefore fip/q) is a ^'th root of f{p), that is of (1 +zy. Let

1 + r cos 6 = ri cos
<^,

r sin = ri sin (p,
then

(1 + zy = Vi^ (cos p(f) + t sin p<l)),

and the values of the qth roots of this are

^'
f p(i>-\- 2s7r . pd) + 257r)

r*!? -^CQS
^^

1- tsm-^^ >

I ^ ? )

where s has the values 0, 1, 2 ... ^ 1
;
we have

n = + Vl +2rcos^ + ?^,

and we may suppose 6 to be that value of tan~^
:,- 7: which

^ ^^ ^
1 + r cos ^

is acute (positive or negative) ;
such a value exists, for cos

</>
is

positive for all points within the circle of convergency. We see

then thatf(plq) is a value of ^7*1^ jcos-^-^
h i sin"^^ !

,

and s must always have the same value, since we know that

f(plq) is a continuous function for all points within the circle of

convergency.

To find the value of s, put <^
= 0, then fipjq) is real, and must

therefore be equal to a real value of

q,- f
2s7r

,

. 2s7rlV n^ icos V L sm -

and therefore 5 = 0, or s = Ig* in case q is even
;
if r is sufficiently

small/ [-)
is certainly positive, hence 5 cannot be equal to ^q and

must therefore be zero.

We have thus proved that the sum of the series, when m =plq,
is the principal value of (1 + zy^^, that is

(1 + 2r cos e + r2)^/29 fcos-^ + t sin ^^) ,
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where the expression (1 + 2r cos d -\-r^)pl'^9 has its real positive value,

v sm
and d) is the numerically smallest value of tan~^ -^ ;; , where^ "^

1 + r cos ^

z = r (cos 6 + 1. sin 6).

Next let m = p/q ; putting mj = p/q, m^ = -i-plq, we have

/(-plq)xf(plq)=f(0) = i,

hence fi-pl<i) = f(^y
or f(plq) is the reciprocal of the principal value of (l+zy^^,
that is the principal value of (1 + z)~pK We may state the

complete result as follows:

The sum of the series

m (m 1) m (m l)...(m n+ 1)
1 +mz + ^Ti ^22+...+ ^^

r
- -^-^z^'-h...

2 ! n!

for all values of z of which the modulus is less than unity, is the

principal value o/(l 4- z)*^, which is

(1 + 2r cos 6 + r^)^"* (cos m</) + l sin m<^),

when m is any real quantity, r being the modulus and 6 the argu-
r sm

ment of z, and 6 being that value of tan~^ q j, which lies
-' ^ ^ '' 1+rcos^

between + \tt.

This result was obtained by Cauchy, and will be found in his

Analyse Algebrique,

212. It now remains for us to consider the case when mod.

2=1.

Denoting the terms of the series

m(m 1) m(m l)(m 2)

by ao> Gti, Oa, ,
we have an+i/cin

= (m n)/(n + 1) ;
when n>m

this ratio is negative, therefore the terms of the series are altern-

ately positive and negative, after a fixed term; the series is,

by Art. 194, convergent if the terms diminish in absolute magni-
tude and become ultimately indefinitely small. This will be the

case ifn m<7i + l, that is, if m > 1
;
thus the series is a semi-

convergent one, if m> 1, whereas if m
:|> 1, it is divergent,

since the absolute magnitudes of the terms increase indefinitely.
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From the proposition in Art. 197, it follows that the series

TYh \7Yh ~ 1 )

1 +mz -\
^^-^-j

z^ -\- ... converges when mod. z = l, provided

m> 1, and z^ 1.

When 2^ = 1, all the terms of the series are, after a certain

term, of the same sign ; applying the known test

Lji{l-\-an/an-i)>l,

the series will be convergent if

Ln [1 (n m l)/n} > 1, or if m > 0.

According to the theorem in Art. 207, whenever the series

m (m 1)l+mz+ ^

^^

'
z^-\'

converges on the circle of convergency, its sum is the value of

(1 + 2r cos ^ + r^)^"" (cos m^ + 1 sin m^)
at the point. We may state the complete result as follows :

The series

m(m -
1) m(m 1) ... (m n+ 1) ^, .

2! n!

converges when mod. z = l, ifm is positive, for all values ofz] also

if m is between and 1, for all values of z except z = 1, in

which case the argument of z is tt. The series diverges when

m = 1, and when m < 1. For all values of z for which the

series converges, its sum is (2+2 cos^)*^ (cos -Jm^+t sin ^m^), where

6 has a value between tt.

The Binomial Theorem has been considered generally, for complex values

of m, by Abel, in a memoir published in Crenel's Journal, Vol. i.

The circular functions of multiple angles.

213. An important application of the Binomial Theorem in its

generalized form, is the expansion of (cos ^ -f i sin 6)^, of which, by
De Moivre's Theorem, the principal value is cos m6 -f i sin mO,
if 6 lies between + tt. Writing (cos ^ + t sin 6)"^ in the form

cos"*^ (1 + 1 tan 6)'^, we have

m(m 1)
cos md + I sin m6 = cos"*^

2!
tan2^+...

f X /I m(m l)(m 2)^ ,^ )"
+ I, jm tan 6 ^^ ^ ^ tan^ 6 + ...y
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provided the series is convergent ;
this condition will be satisfied

if 6 lies between the limits + Jtt, whatever be the value of m,

and also when 6 = Jtt, provided m > 1.

(1) Suppose m positive, then we have

cos md = cos"^e\l-
'^('^-

^) tan^ (9

^m(m^l)(m-2)(m-3)^^^,^__
I

^^^^

sinm^ =
cos-^|mtan^- ^^'^^'^"^^an^ + ...|

(2),

for all values of m, provided 6 lies between + Jtt, and they hold

for ^ = + Jtt. These results are an extension of those obtained

in Art. 51, for the case of m a positive integer, in which case

there is no convergency condition.

(2) Suppose m negative, then changing m into m we have

cos md cos"^6^ = 1 21^ *^^ ^

^ m(m+l)(m+2)(m
+ 3) ^^.^_ ^3^^

A , n . /I m(m + l)(m-l-2)^ ,^ ...
sm m6 cos"* ^ = m tan ^ ^^ ^ ^

tan^ 6 + (4),

which hold for all positive values of m, provided 6 lies between

j + Jtt. These results hold for 6 = ^ir, only if m lies between 1

and 0.

214^ The formulae (1) and (2) of the last Article, have in the

case when m is a positive integer, been applied in Chapter vii. to

obtain expressions for cos m^, sin hkJ), in series of ascending powers
of sin

<f>.
We proceed now to find similar expressions, when m

is not a positive integer.

We have proved that when m is an even positive integer

m^ .
,

mP (w? 2^) . , ,

cos m<p = 1 ^ sm^c^ -\
^ sm^ (p

^

gy ^sm<^ + (5),

1 This Article is taken substantially from Serrefs Trigonometry.
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and that when m is an odd positive integer

,
.

,
m (m^

-
12)sm m(p = m sm 9 ^~q]

^^^ ^

+ ^ ^ -^sin(^- (6).

These series were obtained from the expressions for cos m(f),

sin m</>, in powers of cos
cp and sin

</>, by substituting for powers
of cos

(f>, powers of 1 sin^
(j>, expanding each of these by the

Binomial Theorem for a positive integral index, and arranging

the result in powers of sin
<^.

The same series will be obtained

when m is any positive integer, not limited as to evenness or

oddness, provided cos
<^

is positive, which will be the case if <^

lies between \ir ;
the powers of 1 sin'^ <^ will no longer

necessarily be integral, but the Binomial Theorem is still applicable

since all the series will be convergent. Since all the series of

powers of sm^<f> are absolutely convergent, by Art. 210, we may
arrange the result of the expansions, in a series of powers of

sin^c^. Thus we see that if 'in is any positive integer, each of

the series (5), (6) holds, provided c^ lies between + ^tt ;
the first

series does not consist of a finite number of terms unless m be

even, and the second not unless m be odd.

Let
TYV^ . TYh \Tn? "" 1^)

/(m) = 1 -f tm sin
(^ sin^

</>
t ^-^, sin^ <^ +

where the series on the right-hand side is obtained by adding the

series (5) to the series (6) multiplied by t. When m is a positive

integer, we have f (m) = cos
rrKJ) + l sin

7n<l>,
if <^ lies between

+ Jtt. Now when m^ and ^2 are positive integers, we have

/(mi) xf{m^ (cos mi<^ + i sin mi<^) (cos m.^i^ + 1 sin m^^
cos (ttii + m^ </)

-1- f sin (7^1 -I- m^ (j)

The product of the two series f{m-^), f{rn>^ will be of the same

form, whatever m^ , tyi^ may be, thus as in the proof of the Binomial

Theorem, we conclude that the equation

/(mi) yf{m^) =/(mi + m^)

holds for all values of ttij and mg, provided the series are convergent.

We have consequently

/(mi)/(m2) .../(m^) =/(mi +m2+ ... + m^);
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let m^ rti^.,.mq=^plq, where p and q are positive integers,

we get then

{f{plq)Y =f(p),
1

hence f(plq) is a "value of {/(p)]'^, and is therefore of the form

pd) + 2s7r . pd) + 2s7r
cos-^^^^- 1- V sm^^-^--

,

where s is some integer. Now when
</)
= 0, we have /(p/5')

=
1,

hence since the series f(plq) varies continuously as
(ft

increases

from ^TT to + Jtt, we must have s = 0, if ^ lies between these

limits, hence in that case

f (p/q)
=
cos^

+
Lsm^,

Again/( m) xf(m) =/(0) = 1, therefore

/( m) = J-.
r = cos m(f) t sin mcf)

= cos ( m) <^ + t sin ( m) </>.

We have shewn thus that the two series

cos m<^
= 1 - sm2

<^ -\
^-~ ^- sm"*

</> (5),

sm mq) = m sin 9 ^-^-r
^ sm^

(f>3!

5! ^sm^<^- (6),

hold for all values of
(j) lying between + Jtt, whatever real quantity

^m may be, as the series are convergent for all values of m.

A similar proof will shew that the two series

m^ 1^
cos m^/cos <^

= 1 ^ sin^
<^

+ ^

^1 ^-sm'(t>- (7),

sm mcp/cos (p
= m sm 9 ^ ^ sm^ <^

^ ^^
^sm'^c/)- (8),

5!

hold for all real values of m, provided <^ lies between + ^tt.

The series (7) terminates only when 7n is an odd integer, and

<{8) only when m is an even integer.
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215. If we take the series for cosm</>+tsinm<^, from (5) and (6),

and put ^ = A sin
<^,
we have since (cos </>

+ i sin 0)"* = (Jl + -^^ + ^)"*,

the expansion

(VI 4- ^^ + ^)^ = 1 + m^: + 2r2_f.
_L__^

^^ _t.
L__ ^^ _}. ..,

+ m(m''-l^)...(m'^-2g-3|^) ^^^

(2s
-

1) !

^

m2(^'-2n...(m2-25-2n^
(25)!

^ +

In a similar manner we have from (7) and (8)

m (m^~ 2^) ... (m^- 2g -2^) ^_^^
(2s -1)!

^

{m''-V)(jn^-S^)... (m^- 2g- Ih) ^^
(2^)1

^ ^

It can be shewn that these expansions hold for all real values

of m, provided the modulus of z is less than unity. By some

writers, these expansions are investigated directly, and then the

series (5), (6), (7), (8) are deduced. It is however not easy to

investigate these series by elementary methods, except when the

modulus of z/'^l 4- z^ is less than unity ;
we should, with that

restriction, obtain the series for cos mcf), sin mcj), only when
</>

lies

between + Jtt, which is the same restriction which applies to the

series (1) and (2).

216. If in the series (5) and (6), we change </>
into ^w <f>,

we

obtain the following series which hold for values of
<j>

between

and TT,

fir J \ ^ m^ . m^ {w? 2^)cosm(-
</>j

= l
yj

cos^ (p H ^
-^

'- cos* <p .. .(9),

sm m (

-^ 9 1
= m cos 9 ^-^-^

cos^ <p + (10).

We can now find series which express cos m<^, sin mcj), when

has any valued If
(/>
= rvr + </>o,

where
cpo

lies between ^tt, and r

is an integer, we have

cos m(/>
= cos mrTT cos m<^o sin mrir sin m</>o ;

1 The formulae (11), (12), (13), (14) were given by D. F. Gregory in the

Cambridge Mathematical Journal, Vol. iv.
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also sin
</>
=

( 1)*" sin 0o, thus we have, if
</>

lies between (r + ^) tt,

1 ~
9~f

Sl^^ <^ + . . .

j

/ ,x f . .
m(m^ l^) . , , ) .^,.sm (m 1) rir im sm

(fy ^-^^
sm^ + . . . V . . .(11).

Similarly

1
9-7

sin^ + . . .

j

m sin (^ ^^-^-j
sin^

</> + ... V .. .(12).

From (9) and (10), we obtain in a similar manner

cos m<f>
= cos m (2r + l)^Jl ^ cos^ <^ + . . .

^

+ cos (m - 1) (2r + 1) 2 j
m cos

</> -^^,
^
cos </>+...

^
(13),

sin m0 = sin m (2r +l)^jl ^ cos^ <^ + . . .

+ sin(m l)(2r + l)^jmcos<^
^

^
"^cos'^^- ...y (14),

where (^
lies between vtt and (r 4- 1) tt.

217. Series of some interest may be derived from (5) and (6),

(7) and (8), by giving m particular values \ Let
</>
=

Jtt, we have

then, writing x for m,
,2

/y.2 //v.2_92\

^^=1-2! "^"41 ^^^'

smi7ra;=aj--^^-
^ + -^

/f^
^-

...(16).

Again letting m =
2a;, cj)

=
Jtt, in (5) and (8), we have

cosj7ra;=l-2-,
+ -A___J__A JA Z+ (17),

1 1 /O f (a7^-P) ^(a;2-P)(^2_22) ^smi7ra^ =
iV3| 3!

"^"^ /,
-

.-.[..(IS).

Various series may be found for powers of tt, by expanding cos^7r.r,

sin|7r^... in powers of
a;, and equating the coefficients of the powers of x to

1 The series in this Article were obtained by Shellbach, see Grelle^s Journal,

Vol. 48
; they have also been discussed by Glaisher in the Messenger of Mathematics,

Vols. n. and vii. Series equivalent to (15) and (16) are given by M. David in the

Bulletin de la Soc. Math, de France, Vol. xi.
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those picked out from the above series; for example from (16), we have by

equating the coefficients of ^,

7r3_l 11 1.3

48
~

3 2
"^

5 2 . 4
1^\

1 1.3.5/ }_,l\

Expansion of the circular measure of an angle in powers

of its sine.

218. If in the expansions (5) and (6), for cosm</), sin7?i0, in

powers of sin<^, we arrange the series as series of ascending

powers of m, as we are, by Art. 210, entitled to do, we may equate

the coefficients of the various powers of m, to the corresponding

coefficients in the expansions of cos m<f>, sin m<^, in powers of
<^ ;

we thus obtain from (6)

.
,

1 sin^ <A 1.3 sin'^ 6
.

^ = sm
<^ + ^ ^ + ^r-l TT +

2 3 2.4 5

1.3.5...(2r-l) sin^^^<^^
2.4.6...2r 2r + l

^ ^'

and from (5)

.
,

2 sin*<f) 2 . 4sin<i)

2.4...(2r-2) sin;^
^3. 5...(2r-l) r

^ ^ ^'

these hold for values of
</>

between + Jtt. We may also write

them
.

^
la^ 1.3a^

, ,,^.sm-^a; = a; + ^3+274 v + (19),

(si-.y = ^ + |.J + |-*J+ (20),

where sin~^ x in either equation, is the positive or negative a,^cute

angle whose sine is equal to x.

The series (19) was discovered by Newton; the method of

proof is that of Cauchy.

219. By changing x into x-\-hm the series (20), and equating
the coefficients of

fi
on both sides of the equation, which process

is equivalent to d differentiation with respect to x, we obtain

the series

sin~^a; 2,2.4' .^-^___=^+_^ +
^

^+ (21),
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or putting sin
(f)

for x,

2 2 4
</>/sin (^ cos (^

= 1 + ^ sin20 + ^: sin*</> + (22),

or writing 2<j>
= 6

^/sin ^ = 1 + ^ (1
- cos ^) + ^? (1

- cos ^y + ...

which may be written

1 12
^cosec^=l + ^vers(9+^-^vers2^+ (23).

Again, in (22), put tan
</>
=

3/,
and we obtain the series

Expression of powers of sines and cosines in sines and cosines

of multiple angles.

220. We shall now shew how expressions of the form

cos"* ^ sin** ^, may be conveniently expressed in cosines or sines

of multiples of 0. We shall in the first instance confine our-

selves to the case of positive integral values of m and n. Let

z cos ^ + i sin 6, then z~^ cos 6 t> sin 6, hence 2 cos 6 z + z~^,

ItsmO z z~^, and

(2 cos 6}"" (2i sin 6y = (^ + z-^)'^ (z
-

z-^)'^ ;

if we expand the expression in z, in powers of z and z~'^, we can

arrange the result in a series of terms of one of the two forms

k (z^ + z~^), k (z^ z~^) where A; is a multiplier depending on m, n,

and r
;
now z^' = cos rd -\- 1 sin rO, and z~^' = cos r6 i sin rO, by

De Moivre's Theorem, hence

k (z"" + z-') = 2k cos r6, 2k {z''
-

z-"")
= 2t^ sin rd,

thus we have the required expression for cos"* 6 sin** ^ in a series of

cosines or sines of multiples of 6.

Example.

Express sin^ 6 cos^ 6 in series of multiples of 6.

We have (2tsin^)S(2cos^)6=(2-5-i)5(^+2-i)6=(22-2-2)5(2_j.2-i)

which is equal to (2I0
- 5^6+ 1 0^2 - 10^

- 2+ 52
- - s

-
lO) (^+2

-
1),

or 2"-h2-5i;7- 52*+ 10^3+ 102-10^-1- 102-3+ 52-5 + 5^-7 -3-9 -2-11,
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which is equal to 2i (sin 11^+ sin 9^-5 sin 7^-5 sin 5B + 10 sin 3d+ 10 sin d),

therefore sin^ B cos^ B is equal to
-j^ (sin 11^ + sin 9^ - 5 sin 7^ - 5 sin 69

+ 10 sin 3^+ 10 sin ^).

This process may also be arranged thus, writing c for cos ^, s for sin ^,

(2c)6=l + 6+ 15+ 20+ 15+ 6+ 1,

{2ls) (2c)6=1 +5+ 9+ 5- 5- 9- 5- 1,

(2i5)2(2c)6=l +4+ 4- 4-10- 4+ 4+ 4+ 1,

(2t5)3(2c)6=l+3+ 0- 8- 6+ 6+ 8- 0-3-1,

(2ts)4(2c)6=l+2- 3- 8+ 2 + 12+ 2- 8-3+ 2+ 1,

(2is)5(2c)=l + l- 5- 5 + 10+10-10-10+5+5-1-1;
here the powers of z are omitted on the right-hand side, and a figure in any
line is obtained by subtracting from the figure just above it the one that

precedes the latter.

This very convenient mode of carrying out the numerical calculation is

given by De Morgan in his Double Algebra and Trigonometry.

221. We can obtain formulae for (2 cos OJ^ and (2 sin 6y\

when m is a positive integer, in cosines or sines of multiples of 6,

by the method we have employed in the last Article. We have

(2 cos ey=-{z^-z-^y^z^-\-mz'^-^^-^-^ ^2r'^*+ ... +^-"^

hence

7Yh (tYh "^ 1 I

2"*-^ cos^ d = cosm6 +m cos (m - 2) ^ H ^-^
^
cos (m - 4) ^ + . . .

where the last term is

1 m ml ^
7. 7-^ TTT^i ^ or r:== =^ COS 6,

2(im)!(iw)! {\m-\)\ (^m + l)!

according as m is even or odd.

From

(2tsin^)^=(^-0"' = '^*''-^^'""'+ Vi ^-^"""^ - + (- 1)"''2~"*>

we obtain similarly

2*-i ( \y sin*"- 6 = cos mO m cos (m 2)6

+ ot
- cos (m - 4) ^ -...+(- 1)' ^.. .

., .,

when m is even,
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m 1

or 2"-i (- 1)
'^

sin* 6 = sin mO - m sin (m-2)d
m(m l) . , ,. ^ , ,,^ ml . ^

^' (Jm-1)! (Jm+1)!
when m is odd.

These formulae have already been obtained in Chapter vii.

222. We shall next consider the expansions of cos"* 6, sin"* 6,

in cosines and sines of multiples of 6, when m is any real quantity

greater than 1. We have from Art. 212,

2"* ( cos i^)"* cos m (J0
-

kir)

= 1 + m cos
<jE)
+

^yj 'cos2</)+
^^ ^ ^cos3</> + ...

2"* ( cos J0)"* sinm (i<^
-

kir)

.
, , m(m-l) . o, . m(m- l)(m~ 2) . ^,=m sm

</>
+

^Yj
- sm 2<^ + ^ ^ ^ sm 3^ + . . .

where
<^ lies between (2k l)7r and (2A; + l)7r. Multiplying the

first series by cos a, and the second by sin a and adding, we get

2"* (+ cos i<^)*^ cos (a -J-TTK^ + mkir) = cos a +m cos (a </>)

m(m 1) / _,, m(m--l)(m 2) , .,+ -^2l -cos(a-2<^) + ^ ^ ^ cos (a- 30) + ...

where
<j>

lies between (2k 1) tt and (2k + 1) tt. Let
(p 2d, then

corresponding to the two cases of A? even (= 2^), and k odd (= 2s + 1),

we have

2m (jQgm COS (a-md + 2ms7r)

= COS a 4-m cos (a 26) H ^-^
^ cos (a 4)6) + . . .

where 6 lies between 257r Jtt and 2s7r + Jtt, and

2^ (- cos ^)*" cos (a
- m^ +m 2s + 1 tt)

/ r/iv m(m 1) . .^.= cos a + m cos (a
-

26) -\ ^-^
- cos (a

- W) + . . .

where 6 lies between 2s7r + Jtt and 2s7r + ftt.

In these results, put a = m6, then we have

2"*cos"*^cos2ms7r

= COS m6 + m cos (m -
2) ^ H

^-^^
- cos (m - 4) ^ + . . .(25),
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where 6 lies between 2s7r ^tt and 2s7r + ^tt ;
also

2*^ (- cos By cos (25 + 1) mir
nrn ( Qli 1

|= COS md +m cos (m -2)d-\ ^-^^

^
cos (m - 4) ^ + . . . (26),

where 6 lies between 2s7r + ^tt and 2s7r + f7r.

Again, put a = m^ + ^tt, then we have

2m cos"* ^ sin 2m57r

171 \7Yh ~~" X )= sinm^ +m sin (m --
2) ^ H ^-^

- sin (m 4) ^ -l- ... (27),

where 6 lies between 257r Jtt and 257r + ^tt. Also

2" (- cos ^)"* sin (2s + 1) i7r

= sinm^ + 7?isin (m- 2) 6 -\

^ ^
sin (m - 4) ^ + ... (28),

where ^ lies between 2s7r + ^tt and 2s7r + ftt.

Next change 6 into ^
J^tt,

and then put a = mO, we then have

2m gini ^ cosm (2^ + i)7r

= cos mO ?M cos (m 2) ^ H ~-^
^ cos (m 4) ^ . . . (29),

where 6 lies between 2s7r and (2s + l)7r ;
also

2"* (- sin ey^ cos m (2s + f) TT

= COS m^ m cos (m 2) ^ H ^-^
- cos (m 4) ^ . . . (30),

where 6 lies between (2s + l)7r and (2s + 2)7r.

Lastly, put a = m^ + ^tt, and change ^ into 6 ^tt, we have then

2"" sin"* ^ sin m (2s + i) tt

771 ( 711/ ^~ 1 ^= sin m9 - m sin (??i
-
2)6 + ^-^^

^ sin (m-4>)d-... (31),

where 6 lies between 2s7r and (2s + l)7r ;
also

(~ 2 sin d)"^ sin m (2s + f)7r

= sin m^ -msin (m - 2)^ +
^

g~ sin (m - 4)^ - ... (32),

where ^ lies between (2s + l)7r and (2s + 2)7r.

These series are convergent for all values of 6, if m is positive.

If m lies between and 1, the extreme values of 6, 2s7r + ^tt or

2s7r, (2s + l)7r must be excluded, as the series cease to be conver-

gent for those values of 6.

The eight formulae of this Article were given by Abel, in his memoir

on the Binomial Theorem, and appear to have been overlooked by subsequent
writers.



CHAPTEE XV.

THE EXPONENTIAL FUNCTION. LOGARITHMS.

The exponential series.

223. Let us consider the infinite series

z^ z^ z^

2 ! 3 ! n\

which we shall denote by E{z), where 2^ is a complex quantity

X + ly. If r is the modulus of z, the series 1 + ^ + ^
i

+ i^

convergent for all finite values of r, since the ratio of the {n + \ )th

term to the nth. is rjn, which diminishes continually as n increases
;

consequently the series E{z) is absolutely convergent for all finite

values of z. This series is called the exponential series.

224. If we multiply together the two expressions E{Z'^ and

E (z^), the term of the mth degree in Zi and Z2 is

m - m 1 . -. m 2 . 2 . m

ml'^(m-l)ll! (m-2)! 2"! "^m!

which is equal to : {zi + ^2)"*? by the Binomial Theorem for a

positive integral index. We have therefore for the product of

E (zi) and E (z.^, the series

which is E (z^ + Z2). Now by the theorem in Art. 209, since the

series E(zi), E{z^, are both absolutely convergent, the product
of their sums is equal to their product as above formed, therefore

E{z,)xE{z,)=^E{z, + z,) (1).

H. T. 18
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From this fundamental equation, we deduce at once

E{z;) X E{z^)... X E{zn) = E{z^ + z^+ ... +^)
and thence [E{z)Y = E{nz) (2),

where n is any positive integer\

225. If in the equation (2), we put : = 1, we have

E(n) = {E{l)]\ where ^(1) = 1 + 1 +1 +1 + ...
;

it is shewn in works on Algebra, that the quantity -^(1) is ani

incommensurable quantity equal to 2*718281828459..., and it is

usually denoted by e. We have therefore when n is a positive

integer, E (n)
= e\

*

*

Again in (2), let z^pjq, where p and q are prime to one

another, and let n^q, we have then {E(p/q)}^
= E(p), hence

E (p/q) must be a qth root of E (p) or e^
;
since E (p/q) is real

and positive, it follows that E(p/q) is the real positive value

of IJe^j which we call the principal value of e^K

Again in (1), put Zi
= n, z^ n, then since E (0) = 1, we have

E{n)= 1/E(n) = principal value of e~^.

W6 have thus proved that for any real quantity n, the sum of

the series E (n)
= 1 + n + ^ + . . .

,
is the principal value of e",

where e is defined by E (1)
= e. This is the exponential theorem

for a real exponent.

226. We shall now shew that whatever z is, the series E(z)
is equal to the limiting value of (1 + zlm)^, where m is a positive

integer, when m is indefinitely increased. We have

(1 + zlm)"^ I \
z m(m-l) z^

. m(m l)...(m s + 1) z^

m 2 ! m^ si m^

V m/ 2 1 v mj \ m) \ m J si

1 This investigation is due to Cauchy, see his Analyse Algehrique.
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Now if a, 6, c ... be any positive real quantities less than

unity, we have

(1
-

a) (1
-

6) > 1 - (a + 6)

(l-a)(l -6)(l-c)>(l-a-6)(l-c)
> 1 - (a + 6 + c)

(l_a)(l_6)(l-c)..., <1, and >l-(a + 6 + c + ...)

say =l-^(a + 6 + c+...)

where 6 is some proper fraction, hence we have

\ mj\ mj \ mj \m m mj

where Q^ is some proper fraction.

X(l+^/m)"=l+^ + ^ + . ..+-,+ +i^

where H is the limiting value of

The series in the bracket has a modulus less than that of

z z^
the convergent series 1 + j + ^ + . . .

,
and when m is indefinitely

increased, 2^j2m becomes zero, therefore the limiting value of

(1 + z/m), when m is indefinitely great, is the function E (z). The

quantity e is the limiting value of (1 + l/m)'^. ^

227. The theorem proved in the last Article, gives us the

means of finding the value of E (z), where z = x-\- lij,
a complex

quantity. We have

(X + ti/N"*
1 H

j
; put 1 + xjm = p cos

</>, yjm = p sin
</>,

1 H ^
J

=
p'^ (cos </)

+ i sin^)^= /3*"(cos m^ + t sin m<^), by

/ 2iC a;'^ + v^
De Moivre's theorem. Also p \/ 1 -\ 1 ~, and 6 is the

'^ \ m m^ ^

principal value of tan"^ -
. The limitinsf value of p"* is that of

X J. X + m

\ m/
( {x + mf)

182
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or of E(x)\l+ .-^
^ ^

[
;

now suppose that r is a fixed finite quantity less than Vm + xj\Jmy

then the limit of

1 + 7=^ \m (Vm + xj^jTYif)

is between unity and that of

or between 1 and e^^'^l'^'
;
now r may be made as great as we please,

subject only to the condition r < Vm 4- x\ijm^ hence the limit of

X^ {x^-mf]

is unity, and therefore that of p"" is E{x), which is the principal

value of e*. The limiting value of m tan~^ ? is that of -
,

1 \
^

^
\ = e* (cos 2/ + t sm 2/),

where e^ has its principal value
;
thus

'(a? + ii/)
= e^ (cos y 4- f sin y). I

Expansions of the circular functions.

228. If in the last result we put a; = 0, we have

E (ly)
= cos y + isiuy, .

hence cos y + ^ sm
3/
= 1 + *y

-
|-j

- ^
^,
+ . . . ,

or equating the real and imaginary parts on both sides of the

equation, we have cos
3/
= ! -

|-j
+

|-j-
... +(- !)

T^-y,
4- ... (3),

yS y5 y28+l

s^ny =y-l +
l...+i--iy^y+ (4),

the series for cosy and siny expanded in powers of the circular

measure y ;
these series have already been obtained in Art. 99.
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We may also write these results in the form

1 \ (5).

^my = ^[E{Ly)-E{-Ly)]

The exponential values of the circular functions.

229. If 2: is a real quantity, the function eF as defined in

Algebra, is a multiple-valued function except when -sr is a positive

integer ;
if ^ is a fraction pjq in its lowest terms, e^^^ has q values,

the ^-th roots of e^; of these values, that one which is real

and positive is called the principal value of e^, and is equal to

E{z). We shall in general understand e^ to have its principal

value E{z).

When z is not a real quantity, no definition of e^ has as yet

been given, and it is so far a meaningless symbol.

It is convenient however to give by definition a meaning to

the symbol e^ or e^+'2/. At present we give only a partial defi-

nition of the meaning we shall attach to e^
;
we define only what

may be called its principal value, and shall shortly proceed to a

more general definition.

The principal value of the function e^, we define to be the series

E (z), or'^, what amounts to the same thing, the limit, when m is an

indefinitely great positive integer, of {1 -\- z/m).
It should be observed that this definition of the principal value

of e^+'2/, is such that the function satisfies the ordinary indicial law

ei+i2/i X e^2+'2/2 = giCj+aja+t (2/1+2/2)

this follows from the theorem (1) of Art. 224. We shall in

general when we use the symbol e^, understand it to have its

principal value E{z) as just defined.

230. With this understanding as to the meaning of the symbol

d^+'y, we have, by Art. 227,

Qx+iy _ gx ^(jQg 2^ + ^ sin y)

and putting ^ = 0, e'^ = cos i/ + t sin
3/.

1 The latter form of the definition is that introduced by Schlomilch, see

Zeitschrift filr Math. Vol. vi.
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The theorem (5) may now be written

cos y = -^ {e'y + e-'y) \

1 \ (6).
sin y = ^-

{e'y
-

e-'y)

These are called the exponential values of the cosine and sine.

The student should bear in mind that these theorems (6) are

nothing more than a symbolical mode of writing the equations

(3) and (4) which have also been written as in (5).

The only advantage of the symbol e'^ over the symbol E{iy\ is that the

former one reminds us more readily of the law of combination given in

Art. 224. The theorem (1) is of the same form as that for the multiplication

of real exponentials ;
we therefore find it convenient to introduce exponentials

with imaginary indices, for which the law of combination shall be that

expressed by (1).

Periodicity of the exponential and circular functions.

231 . We have shewn that E{z) ^ (cos i/ + 1 sin ?/) ;
now cos y,

sin y are unaltered if 2A;7r be added to y, k being any positive or

negative integer, consequently E (z)
= E {z -\- 2ik7r), or E{z) is a

periodic function, of period 2*7r. Since e^ = e^+2A;t7r^ ^j^g exponential

e^ is periodic, with the imaginary period 2t7r; also e'^ = e'-^^'^^'^\

or e'^ as before defined, is a periodic function of z, with a real period

27r.

We have thus seen that each of the two functions e^, e'^, is

singly periodic, the first having an imaginary period 2t7r, and the

latter a real period 27r. The student who is acquainted with the

elements of Elliptic Functions will know that it is possible to

construct functions which have both a real and an imaginary

period ;
such functions are called doubly periodic.

232. The circular functions cos y, sin y, were first introduced

by means of a geometrical definition, and we have regarded them, in

the earlier part of this work, as functions of an angular magnitude
measured in circular measure. We can however drop the idea of

the angular magnitude, and regard them as functions of a variable

quantity; that quantity is of course equal in magnitude to the

circular measure of the angle by means of which they were defined.

The main importance of these functions in Analysis, is derived
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from their property of single periodicity ;
it was shewn by Fourier

and others, that all functions having a real period can, under

certain limitations, be represented by means of a series of these

circular functions. It would however be beyond the scope of the

present work, to enter into this most important branch of

Analysis.

Analytical definition of the circular functions.

283. It is possible to give purely analytical definitions of the

circular functions, and to deduce from these definitions their

fundamental analytical properties, so that the calculus of circular

functions can be placed upon a basis independent of all geometrical

considerations
;
these definitions will include the circular functions

of a complex quantity.

We can define the cosine and sine of z, by means of the

equations
GO^ Z =- \{E{lz) + EX- LZ)] \

sin 2^ = ^ [E (iz)
- E{- iz)}

in
2i,

z^
where E(z) denotes the series 1+^4-- + .... In other words, we

define cos z as the sum of the series 1 ^r-; + -r-. . . . , and sin z as the
2 ! 4 !

2^ Z^
sum of the series -2^

q^
+

m-j
We may regard this then as the

generalised definition of the cosine and sine functions, and it

includes the case of a complex argument, which was not included

in the earlier geometrical definitions.

For real values of z, the functions cos z, sin z, are in accordance

with the earlier geometrical definitions, because the series which

they represent, agree with those obtained in Art. 99, from the

geometrical definitions.

234. From these definitions, we can now deduce the funda-

mental properties of the two functions. We have

cos z + Lsmz = E{iz), and cos t sin ^ = ^ ( iz),

hence cos^^ + ^in-z = E (iz) E (- lz)
= ^ (0)

= 1.
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Also

COS (^1 + 2-2)
=

|- [E (izi + 1Z2) + -'(- iz^
-

iz^)]

= i{E (lz,) E (cz,) + E{-- lz,) E (- Lz,)]

= J [E{iz,) + E(- Lz,)} {E(tz,) + E(- tz,)] + i {E{lz,)

-E{-LZ,)}{E(cz,)-E(-iz,)}

or cos (Zi + Z2)
= cos Zi cos

,2^2
sin ^1 sin 2^2.

Similarly sin (zi + ^2)
= sin z^ cos 2^2 + cos Zi sin 2^2.

Thus the addition theorems follow from our definition.

235. Next consider the equation E(z) = l. This equation
has no real roots except z = 0, for we have E (z)

=
e^, which cannot

equal unity, for any real value of z except z = 0, since e is not

equal to unity. Also E(z) = 1 can have no root of the form

a + 10, for if ^(a + tyS)
= 1, then also E(a t/9)

= 1 and therefore

E (2a) = E {a-\- ijS) x E (a i/3)
= l, which is impossible unless

a = 0. Hence the roots of E(z) = l must be imaginary; suppose
the numerically smallest to be denoted by 2t7r, so that E{2t7r)= 1,

TT denoting some quantity not yet determined, then we have

E(2h7r)=^[E{2c7r)}^=l

where k is any integer, therefore 2ki,7r is also a root of jE' (2^)
= 1

;

also there can be no root 2pL7r lying between 2ki7r and 2 (k + 1) iw,

for in that case we should have

E{2pc7r
-

2h7r) = E{2pL'ir) xE(- 2kL7r)
= 1

and 2{p k) lit which is less than 2t7r, would be a root of E{z) 1,

contrary to the supposition that 2t7r was the numerically least root.

Therefore all the roots of E{z) = 1, are of the form + 2kc'n; where

2i7r is the numerically least root. The quantity tt being thus

introduced into the analytical theory, we have for any value of z

E(z + 2t7r)
= E{z)xE (2t7r)

= E {z)

or E (z) is periodic, and of period 2t7r.

It follows from the definitions of cos z and sin z that they are

also periodic, their period being 27r
;
hence cos 27r = cos = 1 and

sin 27r = sin = 0. We have of course not verified the identity of

TT as here defined, with the ratio of the circumference of a circle to

its diameter. This may however be done, by considering the case

of a real angle, for which the period of the cosine or sine is 27r,

according to either definition of the quantity tt.
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236. We have also, E (ltt) x E (ltt)
= j& (2t7r) = 1, hence E (ctt)

must equal 1, since it cannot equal +1, as lit is not a root of

E (^)
= 1

;
also E ( ott)

= 1, hence we have cos tt = 1, sin tt = 0.

Again E (J iir) x E (^ iir)
- E (ltt)

= 1,

and E{ii7r)x E{-ii7r) = l,

hence E(^t7r) = ^ and E( iiir)
= + t,

therefore cos Jtt = 0, and sin^Tr = 1
;
to remove the ambiguity,

we remark that if z is real, sin z cannot vanish between the values

z = and z = tt, for if E(lz)
- E (- cz)

= 0, we have E(2lz) = 1,

which is not the case for any values of z between and tt, also for

a very small positive real value of z, sin z is positive, and therefore

it must be positive for all real values of z between and tt, as it

cannot change sign between those values, therefore sinj7r = + l.

Having now obtained the values of the cosine and sine of 0,

^TT, TT, 27r, we can, by means of the addition theorems, prove all

the ordinary properties of the cosine and sine functions.

The functions tan z, cot z, sec z, cosec z will now be defined by
means of the equations tan z sin z/cos z, cot z = cos z/sin z,

seo z = 1/008 z, cosec ^ = 1/sin ^, and we can then investigate the

properties of these functions in the usual way.

All the properties of the circular functions investigated in Chapters iv.,

v., and VII., are deduced from the addition formulae and the property of

periodicity ;
it follows that all the properties which are there proved for real

arguments, hold also for complex arguments.

237. A very important case is that in which the quantity z is

entirely imaginary, and equal to ly, we have then

^ g2/
_ 0-y

cos iy
= i {ey + e-y), sin ly

=
^ {ey

-
e-y), tan ly

= c

^^

~
,

^^

ey e~y
the expressions J (e^/ + e~y), ^ (ey e~y), :^ are called the

hyperbolic cosine, sine and tangent of y, and are written cosh y,

sinh y, tanh y respectively ;
thus we have

cosh y = cos Ly, sinh y l sin ly, tanh y i tan ly.

We shall consider these functions in a special Chapter.
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Natural logarithms.

238. If u = E(z) which is a single-valued function of the

complex quantity z, we may define z = E~^ (u) to be the logarithm
of u to the base e

;
this system of logarithms is called the natural

system of logarithms. Since E{z) is periodic with respect to z,

the inverse function E~^ (z) will be multiple-valued to an infinite

extent; if logu is one value of z, the general value hogu will

be given by Log u = log u -f 2tk7r, since E(z)=E {z-\- 2tA;7r), where

k is any positive or negative integer. In particular, the logarithms
of a real positive quantity oo will be log cc -{ 2ik7r, where log x

denotes its ordinary real logarithm.

239. Let Ui = E(zi), Kz = E (z^), then since

E(z,)xE(z,) = E(z, + z,)

the logarithms of the product U1U2 are the logarithms o E{zi + Z2\

that is Zi + z.2-\- ^ikir, or we have

Log iti -h Log U2 = Log (uiV^) -h 2t,k7r.

We may suppose the quantity 2ik7r included in Log (uiU^^ hence

we may write this equation

Log Ui + Log Uz = Log (i^Wa)

in which the particular value of one of the logarithms is deter-

mined when those of the other two are given.

Now let u p (cos (j)
+ Lsin

</>)
where p is real, then by the

result just proved, we have Log u = Log p + Log (cos <f) 4- tsin<^), and

since E(c(f>)
= cos

<j> + c sin
<j), tcf)

is a value of Log (cos <f>
-h c sin

</>),.

and log p + 2Lk7r is the general value of Log p, we have therefore

Log u = log p + i((l) + 2k7r) for the general value of Log u, where

by log p, we mean the real value of Log/3.

If <f>
is restricted to being between the values ir and tt,

we shall call log p {- icf)
the principal value of Log u and shall

denote it by log u ;
we have then the general value Log u given by

Log u = log u + 2ik7r, where log u is its principal value, and k is

any positive or negative integer.

We may write this result

Log (cc + iy)
= ^ log (a^ + 2/') + t (tan-^

^ + 2k7r) (7).
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The principal value of the logarithm of a real negative quantity
X has not been sufficiently defined, since the argument of such

a quantity may be either tt or tt
;
we shall however suppose, for

convenience, that for its principal value the argument is tt, so

that its principal value is log^+^Tr, and the general value of

its logarithm is log x + {2k ^-Vjiir.

The general value of the logarithm of a real positive quantity
X is given by Log x = log x + Log 1 = log x + 2iA;7r, the principal

value being log a-.

The principal value of Log l is ^ttc, hence Log c = {2k + J) t7r
;

the principal value of Log ( c) is ^ttc, hence Log ( t)=(2A; J) ltt.

It is also possible to consider the logarithm of w as a single-valued function

of the modulus p and the argument (p,
the latter being supposed to go through

all values from oo to +00, not being restricted as above to lying between tt

and TT ; the logarithm of u is then the single-valued function of p and 0,

log p-{- 1(f),
and every time <^ increases by 27r, the logarithm increases by 2i7r,

and the numerical value of the quantity u becomes the same as before. The
student who is acquainted with the theory of Riemann's surfaces, will appre-
ciate the full force of this mode of considering a multiple-valued function as

converted into a single-valued one.

I'he general exponential function.

240. If a be any quantity, real or complex, the symbol sJ- may
he defined to mean E (z Log a), where Log a has any of its infinite

number of values
;
when Log a has its principal value log a, we

shall call E (z log a) the principal value of dJ-.

r-i- r,/ T X -.
2 Log; a {zLog-aYSmce JS'(^Loga) = l+ 1^ + ^

2'
'^"'

we have the general exponential theorem

^Logg 2' {Log ay

and the principal value of a^ is given by

^~T!~ 2I
'^""

In the case in which a and z are both real, we have the]

ordinary form of the exponential theorem "*

which gives the principal value of a'^.
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241. In the particular case a = e, we have

Log e = log e + 2tA;7r = 1 + 2i^*7r,

and the general meaning of the symbol e^ is E {z Log e) or

E {z-\-2Lk7rz)\ the principal value of e^ is E {z), and this is in

accordance with the definition of the principal value of e^ given in

Art. 229. The general value of e^ is therefore

E (z) (cos 2k7rz + i sin 2k'Trz).

We shall still continue to use the symbol e' for its principal value.

242. The general value of a^ as above defined, is equivalent
to E {z (log r + i^ 4- ^ikir)], where a = r (cos ^ + t sin ^) = a H- tyS, 6

being between tt and ir
; writing z x-\-i,y,\fQ thus have for the

general value of (a + t;Q)^+*^ the expression

E {x log r % -
2A;7ry + * (y log r + a;^ + 27rA;a;)}

which is equal to

^\o^r-dy-m^ {cos {y log r + a;^ + 27^^'^) + l sin (?/ log r + a?^ + 27rA;a;)}.

The principal value of (a + L^Y'^'-y is therefore

^log r-ey
jcos (y log r + x6)-\- 1 sin (y log r + x6)],

where r=\/o^-\^^\ ^ = tan-i;3/a.

The value of tan~^y8/a, to be taken, is not necessarily its

principal value as defined in Art. 38.

If r= 1, we have for the principal value of (cos ^ + 1 sin ^)*"^'^, the fiinction

E{L6{x-\-iy)] which may be written cos(^+iy)^+ sin(^+iy) ^ ; this is the

extension of De Moivre's theorem to the case of a complex index.

243. In order that the equation a^ x a^^ = a^+^2, may hold,

we must suppose that the values of a^', a^, a^'+^a, are those

corresponding to the same value of Log a
;
in that case we have

a^i xd^^^E j^i (log a 4- ^ikir)] x E
[z^ (log a + 2tA;7r)}

=E ((^1 + z^) (log a + 2f^7^)j

but this will not hold if we take different values of k in the two

functions a^\ a^\ In particular, the equation o?^ x a^^ = a^i+^a is

true of the principal values of the functions.

244. The expression {p^^y^ is not necessarily a value of a^^\

but every value of a^^^^ is a value of (a^^y^, for

a^i22 = E
{z^z.^ Log a) = E [z^z^ (log a + ^tkir)]
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and (a^O^'
= ^

{^2 Log a^^}
= E

[z^ {z^ Log a + ^Lk'ir)}

= E {z^z^ (log a + 2Lk7r) + 2t . AjV^^s},

hence the values of a^'^^ are only those of (a^^y^ in the case k' = 0.

If in every case we take the principal values, then the equation

a^i22 = (ft^i)2^2
holds.

If we use the symbols a^ e^ as equivalent to their principal

values ^(-2: log a), E(z), as is usually done in practice, then we

may, as we have just shewn, perform operations in expressions in

which these symbols occur, according to the ordinary rules for

indices, as in common Algebra.

Example.

If A, B, C, D... be the angular points of a regular polygon of n sides,

inscHhed in a circle of radius a and centre 0, prove that the sum of the angles

that AP, BP, CP... make with OP is tan~^ -, where OP=r, and
' '

a" cos n^-r"' '

the angle AOP= ^.

s=n-l {f)4.'^^\
We have ?

- a^e""^= n {r
- ae' \

"^ n /}
s=0

hence taking logarithms,

log (r" a" cos nd la^ sin nO)

= 2 log jr
acosf ^H

J
tasinl^H jV,

and equating the coefficient of i on both sides of the equation,

2sir^

,
a^sinn^ 8=n-i

\ n
^^^ -^ A ;;= 2 tan-i

a" cos nd - r" 5=0
a cos 1^4 ]r

\ n )

corresponding values of the inverse functions being taken
;
the expression on

the right-hand side is the sum of the angles OP makes with AP, BP ,

a" sin nB
hence this sum is tan~^

a" cos nB r"

Logarithms to any base.

245. If the principal value of a^ is equal to u, then z is called a

logarithm of u to the base a, and may be written Log^^ u. Now the

principal value of a^ is E (z loge a), where loge a is the principal

logarithm of a to the base e, and if E (z loge ci)
= u, we have

z loge cb = Loge ^ = loge ^ + ^ikiT, therefore

Loga U = Loge UJXoge
=

(loge ^ + 2f^7r)/loge a.
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The principal value of Log^ u, we regard as logg u/loge a, and can

denote by log^ u, hence the general value

Loga '^^ = loga ti + 2f^7r/loge a,

a multiple-valued function in which the different values differ by

multiples of 2i,7r/\ogea. In the particular case a = e, the above

definition accords with that in Art. 238, giving loge ic 4- 2tA;7r for

the general value of Loge u.

Generalized logarithvis.

246. We may give the following definition of a logarithm,

which is more general than that given in the last Article.

If any value of a^ is equal to u, then ^ is a logarithm of u to the

base a, and may be written [Loga ^] to distinguish it from Log^ u

as used in the last Article. The most general value of a^ is

E (z Loge ci)>
and if this is equal to u, we have

z Loge <^ = Loge u, or z (loge (^ + 2iA;V) = loge ^ + ^ckir^

where k and k' are integers, hence the general value of [Log^ u] is

Loge '^l^oge a or (loge '^* + 2tA:7r)/(loge a + 2t/cV), which is multiple-

valued to an infinite extent, in two ways. The logarithms Log^ u

are therefore included as the particular set of values of [Loga u]

obtained by putting k' = 0. We may call [Loga ^] the generalized

logarithm of u to the base a.

247. If a=e, we have [Loge u]
=

(loge u + 2ik'ir)/{l + 2tA;'7r)

which is the expression for the generalized logarithm of u to the

base e. In the more restricted logarithm Loge ^^, we have defined

2: to be a value of Loge u when the principal valice of e^ is equal
to u, but in the generalized logarithm [Loge ^Jj we consider z to

be a value of [Loge '^^J
when any value of e^ is equal to u.

The generalized value of [Loge 1] is 2tA?7r/(l + 2aA;V), and of
|

[Loge (- 1)] is (2k + 1) iirlil -t- 2^^V).
-^

The expression (logeW+ 2i^7r)/(l + 2t^'7r) may be considered from another

]ogu+2ikir

point of view
;
the principal value of {^(1 + 2t^'7r)}

i+2tA'7r jg \yj ^he theorem

(2), ^(log^+ 2i^7r) which is equal to u, hence (logt^+2t^7r)/(H-2i^'7r) may
be regarded as the logarithm according to the definition in Art. 238, of u to

the base ^(l + 2i/r'7r) which is the principal value not of e but of e^^^'^'^, so

that we have in fact [Log ?] equal to the values of
^og;E(i+2Lk'n)^y

^^^
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different values of h'. Thus we may regard the generalized logarithms to the

base e, as ordinary logarithms to the base not e but e^+^iAw ^j^j^j]^ though

numerically equal to e, has different arguments according to the value of h'.

248. The question was at one time frequently discussed, whether a

negative real quantity can have a real logarithm ;
thus for example whether

\ can be regarded as the logarithm of \/e, the fact being borne in mind

that ^ has the values \/e. The answer to this question depends on the

definition we take of a logarithm ;
if we take the ordinary definition in Art.

238, that is a logarithm of u when the principal value of e* is equal to w,

then a negative real quantity can never have a real logarithm ;
but if we

define a logarithm as in Art. 246, that ^ is a logarithm of u^ when any value

of e* is equal to u^ then a negative real quantity may have a real logarithm.

If r be a positive real quantity, we have

P _ logr+ (2>{r+l)t7r _ {logr+ 2^^(2^+ l)7r2}-f-c{(2^-H)7r-2^Vlogr}

and this is real if log r= (2^+ 1)/2^'. If therefore r be such that log r is of the

form {2k+ 1)/2k' where k and k' are integers, a value of [Log(-r)] is real
;

if

log r is not of this form, we can always find a quantity r^ differing as little as

we please from r, such that [Log (
-

r-J] has a real value
;
for a fraction p/q

in its lowest terms can always be found which differs by as little as we please

from logr; let log r'=plq, if q be even then [Log( /)] has a real value, and
2sp+l _ J^ _j_

r'=rij but if q be odd, we have r'=e ^^^ xe ^9, and e 2? can be made as

near unity as we please by taking s large enough, or log r' can be made to differ

by as little as we please from
-^- ,

therefore a quantity ^ =logr2

can be found, which differs by as small a quantity as we please from logr,

and then a value of [Log( r^)] is real. We conclude then that although
there is not for every value of r, a value of [Log (

-
r)] which is real, we can

always find a quantity r^ such that r^-r is as small as we please, and such

that a value of [Log ( r-J] is real.
^

The Logarithmic series.

249. The principal value of (1 -hzy"' is E {m loge(l +2)}, but

by Art. 211, the principal value of (1 + 2)'^ is the sum of the series

-
. m(m 1) m(m l)...(m 5 + 1)

Z\ si

provided this series is convergent, which is the case if the modulus

of 2 is less than unity, and also if it is equal to unity, except in

certain cases. Now it has been shewn in Art. 210, that we are

entitled to arrange this series in powers of m, provided the series
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. m(wi-l)...(m-s + l) .

obtained by arranging
^

^
z^ m powers ot m, is

absolutely convergent for all values of s
;
this condition is satisfied,

if mod. {z) < 1, since the series obtained by changing the negative

signs in the series, and replacing z by its modulus r, has for its

^, m(m+ l)(m+ 2)...(m+5- 1) . ^,.sum the expression
^ -^ -^ ^ r*

;
this sum

is zero when s is infinite, if r < 1.

Since E \m loge (1 + z)\ stands for the series

m2{log,(l+^)}2
l + wloge(l+^) + 2!

we are, by Art. 208, entitled to equate the coefficients of powers of

m, in the two series, hence

l0ge(l+^) = -2:-i^2_^l^-... + (-iy-^-^*+ (8).
o

This series which gives the principal value of Loge(l -f^), is called

the logarithmic series; it has been proved to hold when mod.

z<\\ also according to Art. 207, the series has still log^ (1 + -2^)

for its sum, when mod. z=\, provided the series is convergent,
which is the case unless the argument of z is tt.

250. Writing z = r (cos -\- 1 sin &), we have

loge (1 + -2^)
=

loge (1 + ^ cos d + LT siu Q),

and this is equal to

\ loge (1 + 2r cos ^ + 7-2) + 1 tan-i r sin ^/(l + r cos 6),

where the inverse tangent has its principal value
;
we have then

the two series

\ loge (1 + 27- cos ^ + r^)
= r cos 6? - Jr^ cos 2^ + Jr^ cos 3(9 - . . .(9),

tan-i ^ sin e\{\ +rcos6) = r sin 6 - -^r^ sin 26 + Jr^ sin 3^ - . . .(10),

where r < 1.

If we put r = 1, we have

loge (2 cos ^(9)
= cos (9 - J cos 2(9 + 1 cos 3(9 - (11),

1(9 = sin (9
-
i sin 2(9 + 1 sin 3(9 - (12),

where 9 lies between + tt, and cannot equal + tt.

If in (11) we change 6 into 26, we have the theorem

logcos^= -log2+cos2^-^cos4^+^cos6^- ...

which holds if 6 lies between +|^7r.
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Changing 6 into
^^rr ^, we have

log sin ^= log 2 cos '2i6 \ cos 4^ ^ cos 6^ ...

which holds if 6 lies between and tt.

The series (12) furnishes an example of discontinuity, owing to the series

becoming infinitely slowly convergent as 6 approaches the value tt; when

^=77, the sum of the series is zero, but when 6 is less than tt by a finite

quantity as small as we please, the sum of the series is ^^.

Gregory s series.

251. We have log (cos 6 + i sin 6) = l6, where 6 lies between

+ TT, hence log cos ^ + log (1 + 1 tan 6) = l6, or

logcos^ + t(tan^-Jtan3^ + Jtan5^...)

+ (J tan^ e-\ tan^ ^ +...) = i^,

provided tan 6 lies between + 1, which is the case if 6 lies between

+ J TT, and may equal i tt
;
hence we have, since cos 6 is positive,

i logcos^ = - Jtan2(9 + Jtan*^-...

and ^ = tanl9-Jtan3^ + itan5^- (1.3).

The latter series is called Gregory's series, and holds if 6 lies

between Jtt, both limits being included.

Change 6 into ^tt 6 then we have

Jtt
- l9 = cot 6>

-
^cot' e + icot^ 6-...

which holds when 6 lies between \ir and f tt. The general expres-

sions for any angle 6 are

^ = riTT + tan ^ - 1 tan^ ^ + . . .

or ^ = (n + |-)7r-cot^ + Jcot3^- ...

where in the first series n is an- integer such that 6 nvr lies

between + J tt, and in the second such that 6 nir lies between

4-7r and f tt.

Gregory's theorem may be also written in the form

tan~^ x = x
^cc^ -\- ^oc^ ...

where x lies between 1, and tan~^ x has its principal value.

The series for sin-i ;r in powers of ^, obtained in Art. 218, may be deduced

from Gregory's series. Let 6= sin
~ ^

^, then we have

sm~i^= -^ ^ :ra +:
(l-^2)i (1-^^2)1 "(l_:^;2)l

Y ofir
+ 1

^^'
^^'2^+1(1-^2)^2^+1)+

H. T. 19
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if X is less than unity, the series obtained by expanding

1 ^^+1

2r+l (l-.r2)*(2-+i)

in powers of x, is absolutely convergent ;
we are therefore entitled to arrange

the series in powers of x. We find for the coefficient of ( l)'"^2r
+

i^ the

expression

1
f,

2r+l (2r+l)(2/'-l) (2r+l) (2r-]) ... 11

2r+l t 2
"*" 2.4 "^^ ^ 2.4.6...2r J'

the expression in the brackets is the sum of the first r+ 1 coefficients in the

expansion of (1 y'f^^'^'^^' in powers of y, and this is equal to the coefficient of

f in (1 -y)-i (1 -2/)^<2r+i) ^^ ^^ _^^J(2r-i)^ ^Yiich is equal to

(2r-l)(2r -3)...l
^ '' 2.4.6... 2r

*

hence the coefficient of ^r^^'
+ i in the expansion of sin ~^^, is

1 1.3.5...(2r-l)

2r+l' 2.4.t)...2r
'

therefore

.
,

1 :r3 1.3^ 1.3.5... (2r--l) a:2^
+ i

sm-i^=^+-.- + -+ +
"2:4.6...2r 2^^!

^

this proof only shews that this series holds for values oi x between l/x^2r
The quadrature of the circle.

252. The problem of the quadrature of the circle, which is

equivalent to the determination of tt, can be solved to any required

degree of approximation, by taking a sufficient number of terms

in any one of a large number of series which have been given for

TT. The simplest series which we can obtain, is got by putting
S Jtt, in Gregory's series

;
we have then

J r = 1 i -I- J- 4- 4-

which however converges much too slowly to be of any practical

use for the calculation of tt.

253. If we use the identity ^7r=tan~i|^+tan-iJ, and substitute

for tan~^ J, tan""^ J, their values from Gregory's series, we have

This is called Euler's series.
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Another series may be obtained from the same identity by

substituting for tan~^ J and tan~^J, their values from the series

X { 2 x' 2.4/ a^ V
l+a^ I

"*"

3 1 + ^-2
"^

3T5 U + 0)^

tan-^. = .-^^ 1 + S^^ .+:-;r^^ +..

which we have obtained in Art. 219. We have then

1 -Ail ? A 2.4/2 Y
4'^"Io| "^3*10"^3.5U0y

'^"'

_3
( 2J^ 2.4/1 Y

^loj "^3io"*"3.5Vioy
^*"

254. Other series obtained in a similar manner have been

used by various calculators. Clausen^ obtained his series from the

identity Jtt = 2 tan~^ J 4- tan~^ |, using Gregory's series
;
Machin's

series is obtained from

i TT = 4 tan-i 1 _ tan~^ ^i-g 5

Dase used the identity

I TT = tan~i ^ + tan~^
-J

-I- tan~^ J.

A more convenient form of Machin's series was used by Rutherford,

who used the identity ^ tt = 4 tan~^ | tan~^ ^^ 4- tan~^ ^^. Hutton^

gave the series

o. li 2 1 2.4 1

^^ ,, 2 2 2.4/ 2 V+
"'6^^+3-l()0

+
3:5(l00h

of
this is obtained from the expansion of x tan""^ x in powers of r-

^

by putting x = ^ and a; = |, and using Clausen's identity.

Euler has given the series

_28( 2/^\ 2_Af2y ]

'^"loj '^3U00;'^3.5(j"00y'
^

*[

30336 2 / 144 \ 2^/ 144 Y 1

100000

which can be deduced from the identity

TT = 20 tan-i 1 + 8 tan-^ ^.

1 See a paper
" On the calculation of w "

by Edgar Frisby in the Messenger

of Math., Vol. II.

2 Phil. Trans., 1776.

192
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The value of tt has been calculated by W. Shanks to 707

decimal places^
1 1^ 3^ 5^

The continued fraction - - - -
^"n- was given in 1658 a.d. by

1 "P ^ "T" ^ l" ^ "T*

Lord Brouncker, the first president of the Eoyal Society. It is obtained by

transforming Gregory's series 1-3 +^-7 + ... according to the usual rule.

1 1 2 2 3 3 4
Stern 2 has given the continued fraction ^7r=l -f

-

y^ ^-~ ~1+ 1+ 1+ 1 + ...

An interesting account of the history of the subject of the quadrature of

the circle will be found in the article "
Squaring the Circle

"
in the Encyclo-

paedia Britannica. See also an article by Glaisher in the Messenger of

Mathematics, Vol. in. "On the quadrature of the circle a.d. 1580 1630."

We shall give Lambert's proof that the quantity rr is irrational, that is,

that it is incapable of being expressed exactly in the form m/w, where m and n

are positive integers. Lindemann has shewn ^ that tt cannot be a root of any

algebraical equation, of any degree, with rational coefficients
;

this is a

demonstration of the impossibility of "
squaring the circle" by means of the

ruler and compasses ;
his method is founded on that which has been applied

by Hermite to prove a similar theorem for the quantity e. A simple proof of

Lindemann's theorem has been given by Hilbert*.

Trigonometrical identities.

255. It can be shewn as in Art. 190, Ex. (5), that any identical

algebraical relation/(a, 6, c.) = 0, between any number of quan-
tities a, h, c... will lead to two corresponding trigonometrical
identities. These will be obtained by giving a, h, c... the complex
values

cosa + isina, cos /3 + t sin /3, C0S7 + tsiny...

and reducing the given identity to the form

whence we obtain the trigonometrical identities

(/,(, ^,7...) = 0, t(a,/3,7...) = 0,

which will involve the sines and cosines of a, fi, 7....

The works of reduction will usually be shortened by using the

symbolical forms e"*, e'^. . . instead of cos a + t sin a, cos ff -\- 1 sin yS. . ..

Example.

ET .7 .7 ^.^ (x-b)(x-c) , (x-c)(x-a) . (x-a)(x-b) ,From the identity ) ,
; )

: + )r '-^ ( + ) [ ) .i= 1,
'^(a-b)(a-c) (b-c)(b a) (c-a)(c-b)

'

^ See Froc. Royal Soc, Vols, xxi, xxii.

2 Crelle's Journal, Vol. x. See also a note by Sylvester, Phil. Mag., 1869.
3 Math. Annalen for 1882. ^ Math. Annalen, Vol. 43, 1893.
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deduce the identity

sm{a-fi)sin{a-y)
^

8in{^-y)sin{^-a)

Sin (y a) sm {y p)

Let x=^'^, a=^, 6=^2'^, c'=e2''>', then we have

or -. 4 7>r-v / ^v {cos 2 (^
-

a)+ sin 2 (^
-

a)} ; transforming each fractionsm (a-/3)sin(a y)
^ ^ \ /> t>

in this manner and equating the coefficient of t to zero, we obtain the identity
to be proved.

The summation of series.

256. When the sum of a finite or an infinite series

ao + a^o) -\- ac^ -h ...

is known, we may deduce the sums Si and S2 of the series

ao cos a + a^x cos (a + ^) + a^^ cos (a + 2^) + . . .

tto sin a + a^x sin (a 4- ^) + a^^ sin (a -1- 2^) + . . ..

For suppose /(^) = cto + o^i^ + as^ + . . .

then e'/(^e') = >Sfi + t/Sf^,

and also e~'''^f{xe~'^)
= S^ lS.2,

therefore ^1 = J {e"^f(xe'^) + e~"'/(^e~*^)},

and
^^2=2- {e"*/ (^e'^)

- e""*/ (xe~'^)} ,

the values of S^, S2 thus obtained, can now be reduced to a real

form.

Examples.

(1) Sum the series

CO* a+ xco(a+/3)+x2 cos (a+ 2/3) + +x"-icos {a+ (n- 1)/?}.

\ ^We have =1+^+^2^. +^-1.

Change ^ into xe*"^ and multiply by e'*
; we have then

^,^
l-:V^e'

^gCa^^^^c(a+^)^^2eKa+2^)^ +;rn-V (a+i^l^)
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and similarly we have

therefore the sum of the given series is

,
e'" (1-3?0 (1 -.2;e~^^)4-e~^''(l -.r'>e~^^^) (1

- xe'^)

whifch is equal to

cos a - .27 cos (a
-

/3)
- :r" cos (a+ w/3) +:r'

"^ ^ cos (a+/i
-

1/3)

l-2a?cos/3+.2;2

(2) *S'wm ^Ae infinite series

sina-\-xsin{a-\-^)-\ ^. + H ^-^ -\-

2! n!

r.2

We have e*=l+:r+^+ +^+
2,1 n\

put .re^^ for x^ and multiply by e'*, we have then

2! 7^!

and similarly

2! n\

hence the sum of the given series is

Qj. ]_^C08^ /gi(a!8ini8+a)_^-i(j;8in^+a)|

which is equal to

e^^^='^sin(a+.rsin^).

257. We shall now give some examples of the application of

the exponential expressions for the circular functions, to the

expansion of expressions in series.

(1) To expand (1 2d? cos 6 + oc^)~^ in a series of powers of x,

where x is less than uuity ;
we have

(1
- 2x cos e + ^0"' = (1

-
^e'^y (1

-
oi;e-'^)-\

which expressed in partial fractions is equal to

2i sin ^ V 1 xe'^ 1 xe~'^
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expanding each fraction in powers of x, we have

^ . ^ (&^ + xf!"'^ + x^e^'^ 4- . . . + x^-^ e"'^ + . . .)
2i sm ^ ^

2t sin 6

which is equal to

cosec (sin ^ + a; sin 2^ + ^ sin 3^ + . . . + x'^'^ sin w^ + . .
.).

It may be shewn, in a similar manner that

l-x""

1-2x0086 + 0^
1 +2a7Cos^4-2^cos2^ + ... -\- 2x'' cos nd + . . .

(2) To expand logg (1 + 2^^ cos ^ + a?^)
in powers of x, where x

is less than unity ;
we have

loge (1 + 2x cos 6 + x^)
=

loge (1 + xe'^) + loge (1 + xe-'^) ;

hence expanding each logarithm on the right-hand side, we obtain

the formula (9), of Art. 250.

(3) To expand e^^ sin (bx + c) in powers of x, we may write

the expression

If we expand e^'*"^'^'^, e^"'~'-^^^ in powers of x, we find the coefficient

of x'^ to be

s f {" (f^ + ^^)''
- e-'' (a - cby] ;

let 6/a
= tan a, then the expression becomes

2* 71 !

"^ ^
.

or (a^ + b^)^ sin (c + ria) ;

this is the coefficient of x^ in the required expansion.

(4) Having given sin x = n sin {x + a), to expand x in powers
of n, when ?i< 1.

We have e"^ e''^ n {e'(^+) g-t(a;+a)
j

or e^ia;
_ 1 = ijg-ta {g2i(x+)

_
;^j^

therefore e^*'^ = , ;

1 - ne*"
'
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taking logarithms and expanding the right-hand side, we have

2i (x + kir)
= n (e**

-
e"**) + (e"'"

-
e-^t-) + ...

hence x + kir = n sin a + ^n^ sin 2a + Jn^ sin 3a + . . .

where A? is an integer.

If B be the angle of a triangle and be less than A, we can

expand the circular measure of B in powers of b/a ;
since

smB = - sin (B + 0),

we have, since in this case k = 0,

i? = - sin (7 + i^ sin 2C + 4^, sin 3(7+ ...

EXAMPLES ON CHAPTER XV.

1 Prove that the general term in the expansion of ^ 5 in

powers of 0, is '^

/-^
~

2", and that the general term in the

expansion of
^j-^^l^:^

is

{n+3)sm(n+ l)(f)-(n+l)sm{n-\-3)<f) . ^ (n+2)8mncf>-nsm{n+2)(li

4sin^0 4sm^<f>

{Euler.)

2. If tan x=
, prove that x=n sin a+^^ sin 2a+ 1^^ sin 3a+ . ..

X 72' COS d

n being less than unity.

3. If coty= cot X+ cosec a cosec ^, shew that

y=sin X sin a+^ sin 2^sin2 a+ 3 sin S^sin^ a+

4. If tan ^0= 1 z
j
tan

^<f>,
shew that

2X^ 2X^
^= + 2\sin^H ^sin 20+-^ sin 3<^4-,

X=|+(|)%2(|)V5(|)V
5. If tan B=x+ tan a, prove that

6= a +0^ cos^ a \x^ cos^ a sin 2a ^^ cos^ a cos 3a+ j^"^ cos* a sin 4a+ ,
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6. If (1 + m) tan ^= (1
- m) tan ^, when and

cf)
are positive acute angles,

shew that ^= - main 20 4-|^^^ sin 40-1^3 sin 60+

7. If tan a= cos 2a) tan X, shew that

X a= tan2 ^ gj^ 2a+ ^ tan* a sin 4a+^ tan'' a> sin 6a+

8. If sin ^=-71 cos (a'+o), expand ^ in ascending powers of n.

9. Shew that the coefficient of xp in the expansion of (1
- 2;?cos ^+^^)~'^

is 2{aj,cosp6^+aiap_iCos(jo-2) ^+ a2^p_2Cos(jo-4)^+ },

where a^ is the coefficient of o;"^ in the expansion of (1 ^')~".

10. Prove that 7r2= 18 2 t^t^ ,

11. Prove that in any triangle

b b^

logc=loga cosC-^ 2^^^2^~^~3^^^^^~

supposing b to be less than a.

12. If the roots of the equation aa::^-\-bx-\-c=0 be imaginary, shew that

the coefficient of ^'^ in the development of {ax^+ b^+c)~''- in powers of ;r, is

g^ sin (71+ 1)^

c^^^+^sin^
'

where $ is given by 6 sec B+^fs/acO.

13. If p2=: ;-
i- -

)- :., .
.,

.
, expand logg p m a series of cosmes

'^

{l+nfcoB^d+{l-nysin^0
^ '^

of even multiples of 6.

14. Expand logg cos (0+^) in a series of sines and cosines of multiples
of^.

15. Prove that

17 713 (-l)
+ i f2, ^, , )

1_ 4.^ i J_ Ql-"_|_71-2nL I

21 81.343^
^

27i-l \3
^

j^

16. Prove that

1-1 + 1_1.4.1_1 . J__ ^ ^(V2+ l)

7 9 15 "^17 23'*' 25 8

17. Find all the values of (V- 1)^
~
\

18. Prove that {a+ ay/-l tan 0)^e
(a sec <fr)-* V - 1

-^ ^^ ^^-^ quantity, and
find its value.

19. If a cos ^+ 6 sin ^= c, where c>\/a^-{-b% shew that

^=(4+l) |+.log/^^^E?-ta-i|.
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20. From the expression for x^+ 1 in factors, deduce that

tan~i
1 + cos nd

fl-2cos-^
= tan ^

,

'
+tan ^

sin 2^ (
1 - 2 cos - ) sin 2^ {

1 - 2 cos
)

TT

l + cos2^ 1-2C0S- l + cos^{ 1-2C0S
+ .

27r\

nj
"

' ^^"
^y^^

" ^"'^
n )

21. From the identity j
= -. -^t r;*' x a x o {xa){x o)

deduce cos {6+ a) sin (^
-

/3)
- cos (^ 4- /3) sin {6-a)= sin (a

-
jS) cos 20,

sin {6+ a) sin {6-^)- sin (^+^) sin (^
- a)=sin (a-iS) sin 20.

22. Prove that

tan-ig tan-i^ tan-iy _7r V? i
2 + x/3_ 11 11

a
"^

^
"*"

y ~2'^4 ^^2-V3~ 7
"*"

13 19*^25 **'

where a, j9, y are the three cube roots of unity.

23. Express the logarithms of c+di to the base a+6t, in the form -.1 -{-Bi.

24. If tan"(Jir+|V')=tan"(^7r+|<^),

shew that mtan~i -^=%tan"'i ^.
i I

25. In any triangle, shew that

cosw5+ b^ cos 71-4 = c** wa6c**
~ ^ ^os (^ B)

^^^^~-^a^'^c^-Uos2{A-B)- i

n being a positive integer.

26. If log,loggloge(a+ <i3)=jD + i5',

then /^'^cos(e^sin^)=^log,(a2+/32),

and e*''^"^sin(/sin^) = tan-i^. -

a

27. Shew that the coefficient of x^ in the expansion of e* cos ;^ in as-

cendmg powers of x, is r cos -
.

nl 4

28. Prove that

1 = sec3 2X + + (-l)"2sec3 2\tanX(l+yicos2\)cosw,^+
(l + ecos<9)2

where 2X is the least positive value of sin~i e.

29. Prove that the series

1 1

1.3.5...(2m+ l) 3.5.7...(2m+ 3)
+ ad inf.

can be expressed in the form -^Zy "*, where J,, ^i, (7^, are whole numbers,
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(2m) '

and .1^= 1. 3. 5...(2m- 1), 6; = ^^2-,

B^= {27u-l)B^_,-2(m-l)l

30. Prove that

in" cos w0 =sin'* cos w^+ti sin""^ cos {n l)0 sin (^
-
0)

+'li|llL)sin-2<^cos(n-2)^sm2(^-(/))
+ +sin"(^-0),

71 being a positive integer.

31. Prove the identity

32. Prove that 1+^-1-1+
=5^2

"

33. Reduce tan
~ ^

(cos ^+ 1 sin S) to the form a+ &t, and hence shew that11 77

cosd+;?cos3^+ -cos5^ = -
,

3 5 4

the upper or lower sign being taken, according as cos d is positive or negative.

34. Prove that one value of Loge (1 +cos 2d+i sin 26) is logg (2 cos 6)-\-i.0j

when 6 lies between ^ and ^. Deduce Gregory's series.

Prove that one value of sin~ ^
(cos 6 -f i sin B) is

cos
- 1 Vsin 6+ 1 logg (\/sin 6+>Jl + am d\

when 6 lies between and ^tt.

35. Find the sum of the series I A^ e^2n+i)a; gj^^ (2^+1) y in which

-4m=
2 1 1

" 2n+ l 2n-l 271+ 3*

36. In any triangle, shew that if a<c

^^H'cos2B2 ! c^

cos yj^

6
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40. Prove that

cos X cos 2.r cos 7J^_2'*~^(1+ cos ^)" 1

(7i-l)!(7^+l)!"'"(?i-2)!(?i+ 2)!'*'
"^

(27i) !

~
(2ri)l 2~(7?r!)2*

41. If 7i is a positive integer, aud

^'=:H-icos2^+ + ,

^

,T./ ^cos''-i^cos(r-l)^+
{n\)\{r\)\

prove that

2AS'siii"^= {l+(- !)}(- l)*^cos?i^+{l -(-!)"}(- l)^^''-^^siiiw^.

42. Prove that the expansion of tan tan tan. . .tan .r, (?i tangents) is

^+ 271
|-,+47l(57l-l)|^

+ y (175712-8471+11) ^,+

43. If tan
(Ja 4>)

= tair'* ja, then shew that

<^
=
Y gSina-g g2i'^2a

+ g-psin3a-

44. Shew that, if tan B< 1

tan2^-^tan*^+ ^tan6^- =sin2^+ Jsin4^+^sin6^+

45. Prove that, n being a positive integer,

n{n-l){n-2) n{n-l){n-2){n-Z){n~4:)(n-5)"^3! "^
6!

"*"

=
l|2+(-l)n.2cos-|''L

46. Shew that the equations

O!^ sin 2a +7/^ sin 2)3 +2;2 sin 2y
-
2y2 sin O + y) 22;.^ sin (y+ a)

-
2.2;y sin (a+ /3)

=O
a?2 cos2a 4-y^ cos 2/3+ ^^ cos2y 27/z cos (iS+ y)

- 2zx cos (y+ a)
- 2^ cos (a + /3)

= 0*

are satisfied by any of the following values :

X \ y \ z w sin2^(^-y) : sin2^(y-a) : sin2^(a-/3)

:: sin2^0-y) : cos4(y-a) : cos4(a-^)
:: cos2|0-y) : sin2|(y-a) : cos2|(a-/3)

:: cos2^(i3-y) : cosH(y-a) : sin4(a-/3).

47. If ^1, ^2? ^3) ^4) Q^ distinct values of Q which satisfy the equation

acos2^+6sin 2^+ccos^+o?sin^+e= 0,

shew that

a _ 6 _ c _ d _ e

C0S5
~

sin s
~
2 cos {s-6)~ 1. sin {s 6)~l, cos^ (^i+ ^g"" ^3~ ^4)

'

where 2 =
^1+ ^2+ ^3+ ^4-

48. Prove that

(- l)^"tan"^= l - 71 sec ^ cos ^+
^^^-j

- sec^ ^cos 26- {n even),

(^I)i(-i)tan^=7isec^sin^-^fi^sec2^sin2^+ (ri odd).
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49. If siii~i ^-= a-^x+a^+ ,
shew that the sum of the series

a^\-a^^-\a^^^x^^+ is }^{co^~'^{\/\-\-x^+a^ x^)-\-s,\Yi~'^x).

50. If a, ^, y, are the n roots of the equation x'^+jOj.i^"

~ ^+ +jo
=

0,

prove that

taii~i +tan-. ^^'/ +
asin^

a cos 6-x '

/3 cos 6-x

_f -1 jOjsin^. A''*~i+Jt>2sin2^. ^""2+ +jDsinw^
^^ -^P\ ^^^ ^ ' ^^~^ "^Pi ^^^ 2^ ^^'^+ "^Pn cos 71^

'

51. If (1 c) tan ^= (1 +c) tan 0, then each of the series

csin2^-^c2sin4^+ ^c3sin6^- ^
c sin 2<^ 4- \c^ sin 40 + \(? sin 6^+

is equal to ^0, where ^ and ^ vanish together, and c<\.

52. Prove that

cos Itt+^ cos 7r 4- g^
cos ^tt+ og? inf.=0.

53. Shew that the series

cos^+- ._cos3:r+^- - cos 5.27+ J -;r cos 7.^4-
z . 3 2.4.5 2.4. D. 7

assumes the following values,

(1) sin~i(cos^^-sin^^), when 7r>.:i?>0,

(2) sin
~ 1

(cos ^x+ sin ^x), when 27r > ^>7r.

54. If c=cos2^-|^cos3^cos3^+ icos^^cos5^-

shew that tan 2c= 2 cot^ 0.

55. Shew that

e*'^sin(asin/3) + e"^*2^sin(asin2/3) + e"^(*^-i>^sin{asin(w-l)/3} = 0,

ifj8=2,r/w.

56. Prove that

sin ^ . sin ^- ^ sin 2^sin2 ^+ ^ sin Ze sm^B- =cot-i (1 + cot ^cot^ 6).

57. Prove that

log (cosec x)= 2 (cos^ .; - ^ sin^ 2x+ 1 cos^ 3x-^ sin^ 4:^4- ).

58. Prove that

69. Shew that the sum of the series

,1 ^1.3 . 1.3.5 ^ . cos id
1 --cosd+ ^r

. cos2d-- -cos3d+ IS
*

cos

2 2.4 2.4.6 s/2^^^d'

where 6 lies between +7r.
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Sum to infinity the series in Examples 60 71.

60. cos ^-^ cos 3^+1 cos 5^-

_, _ cos 2^ cos 4^

yi cosec^ ^, cosec^^
62. cos^+ p cos 2^+

^-|
cos 3^4-

63. cos e cos 2^+ cos '2.6 cos 3^+ cos 3^ cos AQ+^r, cos 4^ cos 5^+ ,

2! 3!

64. sin^-
, sin3^+^-: sin 5^-

o\ 5 !

cos^ cos 2^ cos 3^
^^-

172. 3 "^27374 "^37475"*"

fifi Pn . 4. cos(^2^) .
cos (a+ 4/3) cos (a+ 6^)

66. COSa +
yj +

^
+

-yi
+

67. cos ^ cos ^ cos 2^ cos 20 4-^ cos 3^ cos 3^-

^ , . ^ tan^asinS^ tan3asin4.r
68. tanasm2.rH 1

^-|
+

2cos
gScosfl

69. 1 + e^^^
^
cos (sin 6) + -^-p- cos (

2 sin ^) + -
^ cos (3 sin ^) + ... .

2! ^ ^ 3!

70. sin 6 . sin ^-| sin2 ^ . sin 2^+| sin^ ^ sin 3^-

71. msin2a-Jwi2sin2 2a+ ^m^sin2 3a- where m<\.



CHAPTER XVI.

THE HYBERBOLIC FUNCTIONS.

258. The hyperbolic cosine, sine, tangent, &c., have already
been defined in Chap. XV., by means of the equations

cosh ti = i {e^ + e-^), sinh u = \ {e^
-

e""), tanh u sinh i^/cosh u,

coth u = 1/tanh u, sech u = 1/cosh u, cosech u 1/sinh u,

where the exponentials e^, e~^* have their principal values. The

hyperbolic functions are expressed in terms of circular functions

of L'U, by the equations

cosh u = cos iu, sinh tt = i sin lu, tanh ii=^ i tan m,

coth u = i cot m, sech u = sec m, cosech u= i, cosec lu

Relations between the hyperbolic functions.

259. We have, at once from the definitions, the following

relations between the hyperbolic functions

cosh^ u sinh^ m = 1 (1),

sech^ ^^ + tan h^ 1^ = 1 (2),

coth^ 11 cosech^ tt = 1 (3).

These correspond to the relations

cos* ^ + sin* ^ = 1, sec* 6 - tan* ^ = 1, cosec'^ 6 - cot* 6=1,

between the circular functions, and are at once deduced from them

by putting 6 = m. By means of the relations (1), (2), (3), com-

bined with the definitions, any one hyperbolic function can be
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expressed in terms of any other one. The results are given in the

following table.

sinh u-

cosh u=

tanh-M:

coth w=

sech?^=

cosech u-

%mh.u=x



.(8),
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we have, by changing u, v into ^(u + v), i(u v) respectively,

sinh u + sinh v = 2 sinh ^(u + v) cosh i(u v)\

sinh u sinh v = 2 cosh ^{u + v) sinh ^(u v)\^

cosh u + cosh ?; = 2 cosh ^(u + v) cosh i (^ v)

cosh ^* cosh V = 2 sinh ^ (i* + ?^)
sinh i(u v))

which are the formulae for the addition or subtraction of two

hyperbolic sines or cosines.

iFormulae for multiples and suhmultiples.

262. From the formulae (4), (5), (6), and (8), the relations

between the hyperbolic functions of multiples or suhmultiples,

may be deduced, as in the case of the analogous formulae for

circular functions. We find

sinh 2^ = 2 sinh u cosh w,

cosh 2u = cosh^ u + sinh^ u = 2 cosh^ u--\ = l-\-2 sinh^ u,

, - 2 tanh u
tanh 2u =

1 + tanh^ u '

sinh 3it = 3 sinh ?/. + 4 sinh^ u, cosh 3w = 4 cosh^ w 3 cosh u^

3 tanh u + tanh^ u
tanh ^u =

1 + 3 tanh^ u

-
, /l + cosh U ' ^ ^ /cOsh U 1

cosh 4 It =y -g ,
smh ^u = ^^ ^

'

, , /cosh u \ sinh w
tanh ^1^

= W -

cosh u+\ 1 + cosh w
'

Series for hyperbolic functions.

263. We have

e^ cosh u + sinh w, e~" = cosh it sinh u,

thus the series for cosh Uy sinh i^ in powers of u, are

cosh ^^ = 1 +
g-t
+

T"!
+

Sinh u u-\- ^,-\- .+ ...

o ! o !

H. T. 20
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Also the principal value of (cosh u + sinh w)"* is always

cosh mu sinh mu,

whatever m may be
;
this corresponds to De Moivre's theorem for

circular functions. We may express the theorem thus

cosh mu = ^ {(cosh u + sinh u)''"' + (cosh u sinh uy^\,

8mh.mu== ^ {(cosh It + sinh uy^ (cosh u smhic)^].

264. We obtain from the last expressions, by expansion,

1 1 , 1 m(m-l)(m 2) , , . ,smhmu= mcosh"*"^ ti smh u-\ ^

-^p
^
cosh'""^ u siim^u-\- . . .

O :

TTt \7Yi ~~ X )

coshmi^=cosh''^i^ H
^-^-j

- cosh"*"^ u sinh^ u

m(m l)(m 2)(m 3) ,^ ^ . ,,+ ^
^-^^-,

~ ~ cosh^--* u smh^ w + . . ..

41

As in the case of circular functions, we can deduce from these

series, the expansions of sinh m% cosh inu in powers of sinh u
;

it

is however unnecessary to repeat the work of collecting the various

coefficients, as we may obtain the result at once by substituting lu

for in the formula of Art. 214, Chapter XVI. We thus obtain

sinh mu = m sinh u -\ ^r, sinh^ u
o I

m (m^ V) (m^ S^) . ,,+ -^
--4^^

^ smh u + ...

5 !

, - m^ . ,
..

m^ (m^ 2^^) . ,
,

cosh mu = 1 + 7T-: smh'' M H ^-7- smh"* ic-{- ...
2! 4!

which series hold for all values of m, provided they are convergent,

which is the case if sinh u^\. If we put sinh a = 1, we find

u = log (1 + V2).

265. From the series for sinh mu, we deduce, as in the case of

the circular functions, a series for u in powers of sinh u. Equating
the first powers of m, we obtain

. , 11.1, 1.3 1 . ,, 1.3.5 1 . ,^u smh u -
.^ smh^ u + ^ , .

- sinh** u ~
-j

7. = smh'^ u -{- ...

This series is convergent if sinh u^l, or if u^ log (1 + \/2).

In particular, we have

1 /, /ox . 11 1.3 1 1.3.51
log(l+V2) = l-2.3 + 2:^..-^;^,y+....
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Periodicity of the hyperbolic functions.

266. The functions cosh u, sinh u, have an imaginary period

27rt, since e" = e^'^^'"-. We have therefore

cosh It cosh {u + ^iirk), sinh u = sinh {u + ^Lirk),

where k is any integer. Since ew+"-* = e, g-(w+Ti)
_ _g-^ ^^

have cosh (tt + iir) = cosh w, sinh {u + t7r)
= sinh u, therefore

tanh {u + vir)
= tanh u, or the period of tanh u is f7r, only half that

of cosh iL, sinh u. We find the following values of sinh u, cosh u,

tanh it corresponding to the arguments 0, ^ttl, ttl, |7rt.
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if we neglect the square of Bu, we have

ON' = a (cosh u cosh Bu + sinh u sinh 8u) = a (cosh u + hu sinh u)

and

Q'iV' = a (sinh w cosh Sw + cosh ii sinh 8z^)
= a (sinh ?t + hu cosh ^^)

therefore iV^iV' = hu .a sinh dt^, Q'w = Bii . a cosh Ji*.

Now A OQQ' = A OQ'n A OQri, hence since we may ultimately

replace the arc QQ' by its chord, we have to the first order in hu,

area OQQ =iON\ Q'n -\QN.Qn,
= \a cosh {u + hu) . a cosh i^ . hu Ja sinh it . a sinh t^ . hu,

=
^ a^ . 8it (cosh^ -it sinh^ u) = \a^ , hu.

If then Ave divide the arc AQ into an indefinite number of

parts, and apply the above to find the area of each such part, we

have for the area OAQ, the expression \a^'%hii', now for A, u = 0,

therefore area OAQ==^a'U.

It should be observed that to represent points on the other branch of the

hyperbola, u must be changed into itt
-

\t, since cosh (itt w) = cosh u^ and

sinh (trr m)= sinh u.
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268. If we describe a circle^ of radius OA = a, and let P be

any point on the circle, PM its ordinate, then denoting the angle
POA by 6, we have area OAP =

ia'6. Let PN be the tangent
at P, we have then

OM :^ a cos 0, PM= a sin 6, PiV=atan^, ^if=avers^.

From N draw NQ perpendicular to OA, and equal to NP, then

ON" NQ^ = cv^
;
therefore the locus of Q is a rectangular hyperbola

of semi-axis a. Now denote the area of the sector OAQ by ^aX
then as we have proved in the last Article, we have ON a cosh u,

QN = a sinh u. Thus we see that just as the ordinate and abscissa

of a point P on the circle, are denoted by a sin 0, a cos 0, respec-

tively, where ^a^O is the area of the circular sector OAP, so the

ordinate and abscissa of the point Q on the rectangular hyperbola
are denoted by a sinh it, a cosh if respectively, where ^a^u is the

area of the sector OAQ. Thus the hyperbolic sine and cosine

have a property in reference to the rectangular hyperbola, exactly

1 The figure in this Article is taken from a tract by Greenhill entitled "A
Chapter on the Integral Calculus."
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aiialogous to that of the sine and cosine with reference to the

circle. For this reason the former functions are called hyperbolic

functions, just as the latter are called circular functions.

269. We have from the figure of the last Article, when we

consider the point Q on the rectangular hyperbola, corresponding
to the point P on the circle,

a tan 6 = QiV= a sinh u. and a sec = ON = a cosh u,

therefore the arguments 0, u, for corresponding points, satisfy the

relations tan 6 = sinh u, sec 6 = cosh u. Since

, , sinh u
tanh ^u = ~

-, ,^
1-1- cosh u

we have tanh Jw = ;;
= zr /i

= tan ^6,^
l-|-sec<^ 1-fcos^

^

or 6 and u satisfy the relation tanh ^u = tan ^6.

Since AOQM< sector OAQ<AOAQf we have

tanh u<u< sinh u.

It follows that the limiting values of
, ,

when u is indefinitely

diminished, are each unity, since cosh 0=1.

270. We have

e^ = cosh u -f sinh u = sec 6 + tan 6,

therefore u loge (sec 6 + tan 6)
=

log^ tan (J tt -f- J 0).

Various names have been given to the quantity O; it is called by-

Cayley the Gvdermannian function of Uy and denoted by gdu, so

that 6 = gdu, u=gd~^0 = log tan (Jtt -f :|^) ;
this name was given

in honour of Gudermann, who however called the function^ the

longitude of u. By Lambert, 6 was called the transcendent angle,

and by HoueP the hyperbolic amplitude of u (written amh u). A
table of the values of log tan (J tt 4-^^) for values of 6 from to

90 at intervals of 30', and to 12 places of decimals, is to be found

in Legendre's "Theorie des Fonctions EUiptiques," Vol. ii., Table iv.

The table which we give at the end of the Chapter, for intervals

of one degree, was extracted^ from Legendre's table by Prof.

1 See GrelWs Journal for 1833.

2 gee "Theorie des Fonctions complexes."
^ See the "

Quarterly Journal,'^ Vol. xx., p. 220.
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Cayley. The table enables us to find the numerical values of

the hyperbolic functions of u, by means of the relations

sinh u = tan 6, cosh u sec 0,

using a table of natural tangents or secants of angles.

Those who desire further information on the subject of the hyperbolic
functions and their applications, may refer to Laisant's "Essai sur les Fonc-

tions Hyperboliques
"

in the M^moires de la Soci^te des Sciences de Bordeaux,
Vol. X., also the treatises

" Die hyperbolischen Functionen "
by E. Heis and

"Die Lehre von den gewohnlichen und verallgemeinerten Hyperbol-funk-
tionen

"
by Gunther.

Expressions for the circular functions of complex quantities.

271. The circular functions with a complex argument may,

by the use of the notation of the hyperbolic functions, be con-

veniently expressed in the form a. + l^, where a and ^ are real

quantities. Thus sin (x + t,y)
= sin x cos ly + cos x sin ty,

hence sin {x + ly)
= sin x cosh y + i cos x sinh y (9).

Similarly we find

cos {x + ly)
= cos^ cosh y c sin x sinh y (10).

sin (x + cy) cos {x cy)Also tan (x + ly) cos {x + ly) cos {x ly)

sin 2^ + sin 2iy

hence

cos 2x + cos 2iy

, . sin 2 + t sinh 2?/ . , ^ .

tan(a; + t2/)
= ^ r-^- (U).^ ^^

cos 2d? + cosh 2^/
^ '

The inverse circular functions of complex quantities,

272. We shall first consider the function ^va~^ {x + ly). Let

sin~^ {x + ly)
= a \- 1/9, then

X + Ly
= sin (a + ifS)

= sin a cosh /3 + t cos a sinh ^,

or a; = sin a cosh ^, y = cos a sinh ^ ;
we have therefore, for the

determination of ^, the equation x^/cosh" ^ -\- y^/sinh.^ ^ ^1, or
2

(cosh2 ^ -
1) + 2/2

cosh2 ^ = cosh^ /3 (cosh^ 13-1).
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If we solve this quadratic for cosh^yS, we find

cosh^ y3
=

J(ar^ + 2/2^1) + ^V(^ + 2/2+ l)2-4z^^,

therefore cosh l3
=

^ V^^ ^y^ + 2x+l J '^x^ + y^ + 2a; + 1,

and since cosh ^ is positive, we must have, if x is positive,

cosh ^ = i\/(x-\-iy + y^ ^\/(x-iy-hy\

The corresponding value of sin a is

^/cosh yS or ^'s/{x + If + f + \ \/(x-iy-\-y\

now cosh y8 > 1 > sin a, hence we have

cosh 13 = i \/(a; + 1)2 + ^2 ^ ^ V(a;
-

1)^ + y^
= ^^

sin a = iV(a?+l)2 + i/2
_

^\/(a;- 1)2 + 2/2
= ^.

These are the values of cosh /8, sin a, whether x is positive or

negative.

The quadratic cosh /8
= u, gives /8 = + log {u + Vw2 1) ;

we have therefore

sin~^ (x + ly)
= Ajtt 4- ( 1)* sin~^ v i log [w + 'Ju^ 1} '

where A; is an integer, and sin~^ v is the principal value of a, which

satisfies the condition sin ol v. To determine the ambiguous sign,

put a; = 0, then sin~^ ly^kir i log (Vl +y^ + y), hence

oy
= cos Ajtt sin [t log (Vl + i/^ + y)]

^t
l^/ + V

1/2 + 1 J

hence the ambiguous sign must be that of
( 1)*, or

sin-i (^ ^ ^2/)
= Ajtt + (- 1)* sin-i v + (-1)^l log {i^ + s/u^"^} . . .(12),

where u = i '^(x + lf + f + J ^/{x-iy + y^,

and ?; = ^V( + 1)=* + 2/'
-
i V(d?

-
1)2 + y\

If we consider sin~^i; + l log {^* + \/u^
1], as the principal value

of sm~^(x + ty), and denote it by sm~^(x + iy), the general value is

kir -\- ( ly^ sm~^ (x + ly) which is the same expression as for real

arguments.

A special case is that of x>l, y = ;
in this case u = x, v=l,

and the principal value of sin~^ a? is ^tt + i log {x + Var^ 1
j.

We
know a priori that sin~^^ can have no real value when x>l.
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273. Next let cos~^(^ + t2/)
= a-f- iyS, we have then as in the

last case, x cos a cosh /3, y = sin a sinh j3, and we find, as before,

cosh yS
=

J \/(.+ \f + y^ + jV(^ - If -{-y^
= u,

cos a = ^^/(x-\-iy + y'
-

^\/(^-- 1)2 + 2/'
=

v,

hence cos~^ (^ + ty)
= 2^7r + cos~^ v l log [u + Vw^ 1].

To determine the sign of the last term, we put ^ = 0, then

ly
= cos [ ^TT 4 log {y + ^/y'^ + 1]

= + sin {+ l log {y + V^/^ + 1)}

= (+)(^2/),

hence we see that the second ambiguous sign must be the opposite
of the first, or

cos-^ {x 4- ty)
= 2A;7r + {cos"^ v t log {u + \lu^ 1)} . . .(13).

If cos~^ V L log {li + Vzt- 1) denotes the principal value of

cos~^ {x + ly), then the general value is ^kir cos~^ {x + ^2/).

274. Let tan~^ {x -\- ly)
=^ ol + ifi, then

_ sin 2a + t sinh 2^5
"^ "^ '^

~
7os^2c(^cosh 2y8

'

, sin 2a sinh 2/3nence tC ^ ii = -
*

cos 2a 4- cosh 2fi
' ^ cos 2a + cosh 2(3

'

we have

, sin' 2a + sinh^ 2/3 cosh^ 2/3
- cos^ 2a cosh 2yg

- cos 2a
^

(cos 2a + cosh 2^3)' (cos 2a + cosh 2y3)' cosh 2/3 + cos 2a
'

-, , o 2 cos 2a
1 -, o .

2 cosh 2)8
or 1-^-2/^= _,^^ _.o >^^d l+.c' + 2/^

=
cosh 2^ + cos 2a

'
' ^ cosh 2y3 + cos 2a

therefore tan 2a = , and tanh 2y3 = r -
^ .\x^ y- 1^-x^ + y^

e'^-e-^^ 22/ ,
^.

x^ + {y^-lYbmce =
- =

, ^ , we have e^^ = -

j^ =^ ,

g2^ + e-2^ 1+^.2+2/2' .^;2 + ^2/-l)'

hence the values of tan~^ (x + ly) are given by

tan- (* + .y)
= .fcTT + J tan-'

-j-J-^
+ i . log j5||^]j

. . . (14 ).

TAe inverse hyperbolic functions.

275. If sinh a = 2^, then a is called the inverse hyperbolic sine

of ^, and is denoted by sinh~^^. A similar definition applies to

cosh~^ z, and tanh~^ z.
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Ifz = sinh a = L sin ta, we have iz = sin lol, or a = - sin~^ (cz).

Similarly ii z = cosh a = cos ta, we have a = - cos~^ z
;
we find

also if 2^ = tanha, a = -tan~UiA We have therefore the inverse
c

hyperbolic functions expressed as inverse circular functions by the

equations
sinh~^ z = I sin~^ (lz),

cosh~^ z=~ L cos~^ (z),

tanh~^ z = I tan~^ (iz).

276. By means of the expressions we have found for the

inverse circular functions of a complex quantity, we may find the

values of the inverse hyperbolic functions. We shall however find

the expressions for them independently.

(1) li z = sinh a, we have e" e~* = 2z, solving this as a

quadratic for e*, we find e'^ = z ^1 + z^,

hence 0L = 2ik7r + \oge(z -{-^/r~-h^), or 2tk7r-\-\oge(z '^1 -{ z%
both values of a are included in the expression

LkTT + (- 1)* log {z + Vl + ^3)^

Thus the general value of sinh~^y is ikir + ( l)*log^(2^ +*/l-\-z^),

and its principal value is loge (^ + Vl + z^) ;
this principal value is

the one which is usually denoted by sinh~^ z.

(2) If ^ = cosh a, we have e* + e~" = 2z
;
hence we find

e'' = z Vj^ITi^ thus a = 2Lk7r log^ (z + ^/z^ -1),

hence 2tk7r loge (^ + ^^^ 1) is the general value of cosh~^ z
;
the

principal value, which is the one generally understood to be

denoted by cosh-^ z, is log^ (z + ^/z^ - 1).

g2a ]^ \ + Z
(3) If 2^ = tanha, we have rr z, or e^* = ^- ,

hence
^ ^

e^" + 1 \z
a = iA^TT + J loge [

= 15 ^bis is the general value of tanh~^,s', the

principal value being J log

(4) We find for the principal values of coth~^r, sech~^^,

cosech"^ z, the expressions

., (z+i\ , i + \/r^2 i + ViT^-^

^

il^^^i^^j' l^g^
-,

' ^'Se

respectively.



r = Ja^ sinh Su, or sinh 3i^ = 4
( ^^ -

)
.
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The solution of cubic equations.

277. We have shewn in Art. 117, that when the roots of

the cubic a^ + qx -\- r = are all real, and q is negative, they

are V-|gsin^, V- |gsin (^ + |7r), V l^'sin (^ + f tt), where

/ 27r2\^
sin 8^ = I r-^ . We shall now shew how to solve the cubic

in the case when two of the roots are imaginary. In this case, the

condition 27^^ + 45^ > is satisfied.

(1) Suppose q positive ;
consider the cubic

4 sinh'* u + S sinh u = sinh Su,

let a) = a sinh u, then x satisfies the equation

oc^ + ^a^ . X ^ \a^ sinh Su = 0,

this will coincide with the cubic x^ -^ qx -\- r = 0, if q = \cC^,

/27
r^y

v64 qV

Now the roots of the cubic 4sinh^i* + 3sinh i* = sinh3^, are

sinh w, sinh(i^ + |7ri), and sinh(i^ + J7rt), hence the roots of the

cubic a^ \- qx-\-r = Oj are

V^^ sinh 2*, Vlg^ sinh (li + |7rt), Vjg' sinh
(i^^ + J7rt),

or V|^ sinh u, ^^q ( sinh u isj^ cosh u),

f ?^2U
where sinh 3?^ =

-J-
f 27 -

) . We find the quantity Zu from a

table of hyperbolic sines, when the numerical values of q and r

are given, and then sinh u, cosh u, from the same tables
;
thus the

numerical values of the roots will be found.

(2) When q is negative ;
consider the equation

4 cosh^ u Z cosh u cosh 3w,

we find, as in the last case, that \i q \o?,r = \a^ cosh Zu, the

cubic which a cosh u satisfies is x? -\-qx-Vr ^, thus the roots

required are

V |g cosh ^/,
V |g cosh {u + \iri),

V ^q cosh {u + J7rt),

or V I q cosh t*, V ^g' ( cosh w \/3 sinh i*),

where cosh 3i^ = ^ ( 27 -
j

. Hence, as in the last case, we can
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employ tables of hyperbolic functions to find the numerical values

of the roots of the cubic, when the values of q and r are given.

278. Table of values of u for given values of 6.

6

1

2

3
4
5"

6
7

8
9
10
11

12
13
14
15

16

17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

0174533
0349066
0523599
0698132
0872665
1047198
1221730
1396263
1570796
1745329
1919862
2094395
2268928
2443461
2617994
2792527
2967060
3141593
3316126
3490659
3665191
3839724
4014257
4188790
4363323
4537856
4712389
4886922
5061455
5235988
5410521
5585054
5759587
5934119
6108652
6283185
6457718
6632251
6806784
6981317
7155850
7330383
7504916
7679449
7853982

u loge tan (Itt+ \B)

0174542
0349137
0523838
0698699
0873774
1049117
1224781
1400822
1577296
1754258
1931766
2109867
2288650
2468145
2648422
2829545
3011577
3194583
3378629
3563785
3750121
3937710
4126626
4316947
4508753
4702127
4897154
5093923
5292527
5493061
5695627
5900329
6107275
6316581
6528366
6742755
6959880
7179880
7402901
7629095
7858630
8091672
8328406
8569026
8813736
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EXAMPLES ON CHAPTER XVL

1. Prove that

8 sinh nx sinh^ a;=2 sinh {n+ 2) x 4 sinhnx+2 sinh (n
-

2) x.

2. If cos (a+ t/S)
= cos ^ + 1 sin ^, shew that sin (f)= sin^ a= sinh^ /S.

3. If cos (d+ t^) cos (a+ t^)
=

l, prove that tanh2<^cosh2/3=sin2 a,

and tanh^ j3 cosh^ (^
= sin^ 0.

4. If tany=tanatanhi3, tan2;=cotatanh^,

shew that tan (y+ s)
= sinh 2/3 cosec 2a.

5. Reduce ei<+'^) to the form A + 15.

6. If logeSin(^+ t</))
= a + ti3,

shew that 2 cos 2^= 2 cosh 2(f)
-

4e^*,

and cos(^-<^) = e^co8(^+/3).

7. If tan (^+ ly)
= sin {u+ tv), shew that coth v sinh 2^/

= cot u sinx

8. Express (cos {6 -{-i(f)) + i sin {9
-

tc/))}*"^'^ in the form A + li?.

9. Prove that

. _, /tan2^+ tanh20\ . ^ ,
/tan ^ - tanh d)\ ^ , , ^ /i i.u ^xtan-i - -

^ ^ + tan-i t .rn^ ir^ I =tan-i (cot ^ coth cb),

\tan 2^ - tanh 2<^/ \tan ^+tanh</)/
^ ^^

10. If 'M=cosa-^cos3a-ficos5a

'y= sin a l^sinBa+ ^sinSa-
prove that cot 2u tanh 2v=tan a.

11. Prove that the sum of the infinite series

cos Ad cos 8^ cos 12^

"^~4T~"^ 8! ~T2T~"'"

is ^ {cos (cos $) cosh (sin 0) + cos (sin B) cosh (cos ^)}.

12. Prove that

n=oo
( _iNn sin (2m+ 1)71^ l)=m

!o T2^1 ! sfn^
- =

^?,
^^^^ ^^"^^^) "^^^ ^^^" ^^^^ + "^^

where a is the unit of circular measure.

13. From Euler's theorem

sin x
cos i^ cos i^ cos io^.

deduce that

1 1 11 11,11
log^o^ ^-1 2 1+.r* 4 1+^* 8 1+^*

(2) -^= cosech^ x+^ sech^ ^i^+j^ sech^ -: ^+ ^^ sech^ 5 ^+ ,

\ /
^2 2-^ 2 4-^ 4 8^ 8



CHAPTER XVII.

INFINITE PRODUCTS.

The Gonvergency of Infinite Products.

279. Let u^, u^ Un be a series of quantities formed ac-

cording to any given law, then if the value of the product

U(l-hu) = (l-\-u,)(l-\-Ui) (1+Wn),
1

has a definite finite limit when n is increased indefinitely, the

product is said to be convergent.

When the product is not convergent, its limiting value may
be zero or infinite, or it may have a finite value which is not

definite but depends on the form of n, the product is then said

to oscillate
;
for example it may have one value when n is even,

and another when n is odd.

n

The necessary and sufficient conditions that the product 11(1+1*)
1

n

may be convergent are (1) that the value of 11(1+1*) remains
1

finite however great n is taken, and (2) that the limiting values
n n+r

of the two products IT (1 + w), TL (1 +u) may be equal, when n is

1 1

indefinitely great, where r is any positive integer.

The condition (2) is necessary in order to exclude the case of

an oscillating value of the product, as when it is satisfied, the

limiting value of the product is independent of the form of the
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nuaiber n which becomes infinite. This condition (2) includes as

a particular case, that in the limit,

n (1 + w) = n (1 + u),
1 1

hence the limit of Un+i, or of Hn, must be zero when n is infinite.

280. Suppose u^,U2 u^ to be real positive quantities each

of which is less than unity, and denote by P and Q respectively,

the infinite products

{1 {- u^) (1 -{- u^) (1 + Us) ,

(1
-

Wi) (1
-

^2) (1 -Us) ;

we shall prove that P and Q both converge, or both diverge,

according as the series S-zt = Wi 4- 1^2 + ^3 + converges or

diverges.

We have

(1 +Ui)(l +W2) (1 + Un) >l + U^ + U2+ +Un,

hence P > 1 + Xu, therefore P diverges if 2% does so.

If the series 'lu converges, we may without loss of generality

suppose that Xu is less than unity, for in order to make it so, it

will only be necessary to remove a finite number of terms from

the beginning of the series, and we can remove the corresponding

factors from the product without affecting its convergency.

We have, as in Art. 226,

(1 U^)(l
-

U2) (1 Un) >1 (ih + lh-^ +Un),

hence Q lies between unity and 1 Xu, and is therefore finite
;

also

(1
-

Un+x) (1
-

Un+2) (1
-

Un+r),

lies between unity and 1 (u^+i + w^+2 + + '^n+r) 5
^^ow since

all the quantities u are positive, if the series S?i converges, it does

so absolutely, hence the limit of Un+i + Un+2 + Un+r is zero,

when n is indefinitely increased
;
thus the limiting value of the

n+r n

ratio of n (1 1*) to n (1
--

w) is finite, so that the second con-
1 1

dition of convergency is also satisfied; therefore Q converges if

Sw does so.

1 11
Again since = > 1 + w, we see that ^ > P, or P < ^ ,

hence
1 u y (^
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since P is greater than unity, its limiting value is finite
;

moreover

(1 + Un+i) (1 + Un+2)"-{^ + W+r) < 7i
"

w^j
"

x 7j

"
\

hence the limiting value of (1 -\-Un+i)(l + Wn+2)---(l + ^n+r), when

n is infinite, is unity, therefore both criteria for the convergency of

P are satisfied. If Xu diverges, P is infinite and Q is zero.

281. Next let u^, 1/2, Un, he complex quantities, the

modulus of each of which is less than unity ;
we shall shew that

n

the product IT (1 + ii) converges if the series 2 mod. u does so.

1

n
We have to shew that IT (1 + ii) is finite when n is infinite,

I

and also that the modulus of (1 + Un)(l + '^^n+i) (1 + Un+r) 1>

is in the limit equal to zero, when n becomes infinite.

We have

(1 + Ui) (1 -f- U2) (1 + Un) = 1 + ^fl + U2 + UiU^ + ;

now the modulus of the sum of any number of quantities is less

than the sum of their moduli, hence denoting by piy p2 the

moduli of ti^, U2 we see that the modulus of

(l-hu,)(l+ih) (l+Un\
is less than 1 +

/Si + /^a + pip2 +
or than {1 + p^) (1 -\- p^) (1 + pn),

which is finite however great n is, if S/o is convergent ;
thus the

n

modulus of n (1 + w) is finite when n is infinite.
1

Also the modulus of (1 + tin+i)0- + ^^2) (1 -\-Un+r) 1 is

less than

(1 + pn+i) (1 -H pn+2) (1 + pn+r)
"

1.

which is zero when n is infinite, for the product 1lI{1+ p) converges,
1

since the series %p converges absolutely.
n

The product 11 (1 + u) may be convergent whilst the series
1

S mod. Un is not so
;
in that case the product is called a semi-

convergent one.

It is obvious that there may be any finite number of factors in

the product 11 (1 + ii), for which the moduli of the ii are greater
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than unity ;
this will not affect the convergency of the product,

since such factors may be removed and the theorem applied to the

remaining product.

If Wi, *2, ...M,... are functions of a variable z, which are continuous when
00

the point z is within any given area, then the product n (1 + w) is said to be

uniformly convergent over that area, provided that corresponding to any

positive quantity e as small as we please, a number n can be found such

that for all values of z within the given area, the modulus of

n(i+^)-n (!+?)
1 1

is less than
,
for all values of m which are equal to, or greater than n.

Expressions for the sine and cosine as infinite products.

282. We shall now find expressions for sin a?, cos x, as infinite

products involving the circular measure x
;
we first suppose x to

be real.

We have
_ . X . X+ IT

sin ic = 2 sin - sm ^
2 2

^, . X . x + TT . x-\-27r . x + Stt.
2' sm 7 sin 5 sm -. sin -. ,

4 4 4 4

and continuing this process, we obtain

rt ,
. X . X -{-TT . a? + 27r . x-\-(n l)'rrsm X = 2^~^ sm - sm sm sm ^^

,n n n n

where n is any positive integral power of 2
;
hence

8ina?= 2'*~^sin - cos - sm^ sm^
n n\ n

(-

^
. 27r . x\ / . n 27r - x\
sm^ sm^ - sm^ ^ sm' -

< n nj \ 2n nj

putting a? = 0, this becomes

n 2**
1 sm' - sm' sm' -^ ;

n n zn

hence, by division we find

/ sm' -
\ / sm' - \ / sm' -

sin^
I

n \l n \ I
^

n
^ ^

\ oTT 11

~
o^Tr l"'l

""

n-lirn sm - cos - \ sm' -
/ \ sm' / \ sin'n n \ n/ \ n/ \ 2?i

This is the particular case of the theorem (19), of Art. 87, when
n is a power of 2. We might, of course, assume the general
theorem.

H. T. 21
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Let ^(n 2)
=

ry then if m be any number less than r, we

have
^^

sin^
. 00 xi ^ n

sina;=7isin- cos - 1
n n\ . ^TT

. x
sin^-

where R = \ 1
. ,m + Itt

sin^
n

Now, n being taken greater than 2a;/7r, m may be so chosen

that a;<(m+ l)7r, then R is positive and less than unity; also R
is greater than

. x ( m+ Itt r7r
1 sin^ - i cosec'^ f- + cosec^

n
[

n n

Now we have shewn in Art. 96, Ex. (1), that if ^ < ^tt,

,
sin ^ sin^TT

then n> 1 ,

- nir n^ , . x af^

hence cosec^"^ < j-r ;
also sm^- < ,n 4p^ n n^

hence R>1 -ri, r iTo+7 ;;^+-"+-,r>4 [(m + 1)2 (m + 2)2 r^J
'

^ xU 1 1 1

4 (m(m+l) (m + l)(/7i + 2)
***

(r l)rj'

4 Vtti r/ 4m
'

Since i^ is between 1 and 1 ^ ,
we may put i2 = 1 7^ ,4m "^ "^ 4m

where ^ is a proper fraction
;
we have then

sm x = n sm - cos - I 1
n n

sin-"

rriTT I V 4my'
'

sm^*
'

n

where m is any quantity less than n, such that x<{m + l)7r.
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Now let n become indefinitely great, m remaining finite, we

have then, since each sine in the product may be replaced by the

tie

corresponding circular measure, and since cos - becomes unity,

sm< =
^(l-5)(l

-
2^,) (l-;;^.) (l- ).

where di is the limiting value of 0, when n is indefinitely in-

creased.

Now by increasing m sufficiently, we may make the factor

1 -p- as nearly equal to unity as we please, hence we have the

expression

sm =
(l

-
5) (l

-
^) (l

-
3^.)

(1).

for sin a? as an infinite products

283. From the formula (17), in Art. 86, if n is even,

sin^- \ / sin^-

cos^ = l 1
II

1 ^ 1 =2,

J

we may shew that

cos'-('-i")(-.) ('

4^2 \f._ Ox"

2m -
l|VV V 2m/

'

where m is any finite number such that 2x< (2m + l)7r, and 6 is

a proper fraction
;
hence we obtain for cos x as an infinite product,

the formula

('-?)('-)('-.) <^>

284. On account of the importance of the formulae (1) and

(2), we shall give another proof, taken from Serret's Trigonometry.

Taking the formulae

sin ic = n sm - cos - 11 1 ^^

1 The investigation of this Article is due to Schlomilch, see his Compendium
der hoheren Analysis, Vol. i.

212
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COS cc= 11 1

^=il . ,(2r-l)7r j'

zn

which hold for even values of n, we transform them by means of

the formula 1 r- r = cos^ a ( 1 ^ ~\
,
into the forms

sm^ ^ V tan^ jSJ

fx^^ n
1

^-i f tan^ -
^x ^:^l , n

cos X = cos^ - . n I 1

71

X

2n

Now it has been shewn in Art. 96, Ex. (1), that as 6 increases

from to Jtt, 3 diminishes, and
^ increases, hence

/^ sin^aN A a^v / tan^aN

where the absolute value of each quantity is to be taken.XX X
Suppose n so large that + x/n < ^tt, then + sin - < - < + tan - ,

X
and + cos- < 1, the signs being so taken that each quantity has

its arithmetical value
;
the two expressions for sin x shew that

r=i(-2)
+ sm a; < a; U 1 -

,

r=i \ rW
/p r=J( 2) / /^

and + sin a; > + cos^ -.x H (1
n r=i V rV

and the two expressions for cos x, shew that

+ cos a; < + n 1
r=i V (2r- 1)273^/'

, x^'z^f^ 4)0^ \
and + cos a; > cos** - 11 1

,n r=i \ 2r-lVV
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now we know that cos^ - =!, where e^ is a quantity which
n

vanishes when n is infinite
;
we have therefore

cos a?

when On, On are proper fractions which vanish when n is infinite ;

making n infinite, we obtain the expressions (1) and (2).

If we had used the formulae

sm^'=7isin- II I 1-

\ sm^
^ n

X
cos^=cos-

)

n I
. 2r-l7r

I

which hold for an odd value of n,

and the formulae

1, ,. / tan^-
^x . ^'=i(-i)/ ,

n
sm^=cos'*-. tan- n I 1- ,,

n

1, ,. / tan^-

cos ^= cos"- 11 11- 1L\
2r-l7r r

obtained from them, similar reasoning would have led to the same results.

285. We shall next consider the case of a complex variable

z = x+ Ly'y
we find as in Art. 282,

z z
sin s^ = w sin - cos - 1 1

n n\

where i2 = I 1

gij^^m + lTT
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where n is an even integer, and r = ^(n 2); we have to determine

z
limits for the value of R. Let p denote the modulus of sin - ,'^ n

then as in Art. 281, since the modulus of the sum of any quantities

is less than the sum of their moduli, we see that the modulus

of i^ 1 is less than

now we know that e^'' >1 + Ap^, if A is any positive quantity,

hence the modulus of i^ 1 is less than

p2icosec'^ + ...+cosec2 j

and this is less than

, fi i_,_J l_, 11

or than g*^^lm m+l'^m+l
m+2+-"rJ_]^

therefore the modulus of iJ 1 is less than

e ^"^ ^^-1, or than e -1;

thus the modulus of jR 1 lies between zero and e ^ 1. Now

OS 1/ SC 11 SC '1/

p* = sin^ - cosh^ ^ + cos^ - sinh^ ^ = sin^ - + sinh^ ^
,

n n n n n n

hence the limiting value of pHi^ is x^ + y^^ therefore the limiting

value of the modulus of i? 1, when n is increased indefinitely,

lies between zero and e ^'^ 1
;
now e ^^ may be made as near

unity as we please, by taking m large enough, thus R may be

made as near unity as we please, by taking m large enough ;
when

n is indefinitely increased, each of the sines in the expression for

sin z becomes ultimately equal to its argument, therefore

IT'
'2 \- 92^2 / \ Q2_22VV V 3V-

The formula

may be proved in a similar manner.
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286. We remark about the formulae (1) and (2), that they

satisfy the condition of absolute convergency given in Art. 281,

since the two series S and - S .^ ttt are convergent.

Each quadratic factor in either product may be resolved into

two factors linear in ic, thus

-'(* 3 (-!)( *)(-a
~"C-f)('-?)('-FJ(-)

which may be written in the forms

mix^x^u{l + \ (3),

cosa;= ft
f
1 +

) (4).
-xV 2r-l7r/

In these latter forms, the products are semi-convergent, since

the products

1 V rirj I \ VTrJ 1 \ 2r-l7r/ i ^ 2r - Itt/

00
|

00 2
are divergent, the series S -

, X ^ :, being divergent. A semi-

convergent product has the property analogous to that of semi-

convergent series, that a derangement of the order of the factors

affects the value of the product ;
we are entitled to consider the

formulae (3) and (4), as correct, only when it is understood that

an equal number of positive and of negative values of r are to be

taken
;
thus (3) and (4) must be regarded as an abbreviation

of the forms

xLn^oo n (1 + --
] ,

cos 00 =Ln=y, 11(1+ -

)
.sma;

287. It has been shewn by Weierstrass^, that the divergent

product

^ See the Abhandlungen of the Berlin Academy, for 1876.
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may be made convergent, by multiplying each factor by an ex-

ponential factor; thus the product

3ir

{('-D-IK'-a-lfr-s)
e

is absolutely convergent.

We have

1 +A ] e"^ = f1 + A ) e'M'"'^;"2^2+3^ ^

where S^ denotes an absolutely convergent series, which for finite

values of z, diminishes indefinitely as n increases.

Suppose that for all values of z whose modulus is not greater
Z^CL

than a given quantity, mod. (1 + 3) :(> a, then S mod. ^

z^

converges absolutely, hence 2
9 2 2 (-*- "^"^ ^^^^ converges abso-

lutely, and therefore 11
-jl o~i3 0- + ^n)}-

is absolutely conver-

gent. We have thus shewn that the product

n(i^
z\ --^

mrj

and therefore also tt (1 )
e**""

1 V nTTj

is absolutely convergent. l^f{z) denotes the value of

1 V nirJ

we have f{z)f{- z) = .

z

The above result may be employed to evaluate the limiting

value of the expression

*-M)('-i) (>-.-J('+3('-a

when m and n are made infinite in any given ratio.

(1+^)
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If Sn denotes the series 1-^ 4- 2-^ + 3"^ + + n~'^, we see that

sm ^ = ^ L(j) {z) . e""
;

now it is well known that the limit when n is infinite, of Sn loge n

is a finite quantity 0*5772156
,
called Euler's constant, hence

n
the limiting value of Sn Sm, when m and n are infinite, is log^ .

We have therefore,

sm z
and the value of L(j> (z) is

, only when m and n become infinite
z

in a ratio of equality.

288. The formulae (2) or (4) for cos oo, may be deduced from

(1) or (3), by means of the formula cos x = sin 2^7/2 sin oo.

We have

2sma; _oo V TTrJ I _, V tttJ

the factors in the numerator, for which r is even, cancel with

those in the denominator, hence if we consider the product in the

numerator to be the limit of 11
(
1 + ^

,
and that in the

-2n\ rirj

denominator to be the limit of 11
(
1 H ) ,

when n is infinite,
-n\ rirJ

we see that cos a; = 11
(
1 +

)
which agrees with (2) or (4).

The condition of convergency of the products shews that taking 2n

instead of n, in one of the products, does not affect the limiting

value of that product when n is made infinite.

289. We may deduce the product formula for sin x from that

of cos X, or vice-versa, by means of the formulae sin x = cos (^tt x),

cos X = sin (|-7r x). From the formula (4) we have

sm a? = n
(
1 +=~ = n -r==-

2r-l7r/ -xV2r-l7r

= n ^^ ^n (^1 -
-oc2r-l' -00 V rir
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where the factor x corresponds to r =
; putting x = 0, we see

that we must have 11 ^
=

1,

hence sin a; = a; ft
(
1

)
.

-ooV rirj

290. The product formulae for sin x and cos x may be easily

made to exhibit the property of periodicity which those functions

possess.

Let f{x) = xIi(l-\-^,
; n \ TIT/

then

/(; + 7r)^(^ + ,r) (^1+^(^1 + ^^]

1 +
niT / V TT

= _.,i + Vi + ^^ fi+^)(l-|)TT/ V 27r/ V 71 +
n + \

n\ 71 Itt/

=-^+("+^>V('^),mr x

now when n becomes infinite, we have Lf {x + ir)
= Lf {x),

which is the equation sin (a? + tt)
= sin a;

;
the formula (4) may

be made, in a similar manner, to exhibit the property

cos (a; + tt)
= cos x.

The function sin^ vanishes when ;r=0, +
tt,

+ 27r..., and these values

correspond to the factors x^ 1 -
,
1 =r~ 1^^ the formula (3); also it has

IT ZTT

been proved in Art. 235, that sin x does not vanish for any imaginary value of

X, thus if it be assumed that sin a; can be expressed in the form of an

infinite product A ^-^ ,
the values of a, 6, c must be 0,

n, -TT, 277, -277.... The value of ^ is then determined by putting ^= 0, and

sm jc

using the theorem Z =
1, we obtain the formula (1) or (3). This is of

course worthless as a proof of the formula, since we have no right to assume

without proof that sin x is capable of expression in the required form.

291. It is important to notice the forms which the formulae

(1) and (2) take in the case of an imaginary argument ly, we
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obtain in that case, the expressions for sinh y, cosh y as infinite

products

'TTV V 3%2sinh2/
=
2/(l+|J(H-^^,

"='- (-)('-^
2\ /

4^2
1 +

5V'

(5),

(6).

The formulae (1), (2), (5), (6), were first obtained by Euler, by means of

the identity

n=m-\
z'^-\ = m{z^-\) n -

n-=l

1 20COS h-s^m

2 - 2 cos m
X

putting 2= 1H ,
it becomesm

2^ J

/ x\^ /, x\-^ m n=m-\

(1+-) -(1+- = n

m '"0+3 (-^''S:
if m be now made to increase indefinitely, this becomes

71=00 / ^2 \

which is the formula (5).

The formula (1) was deduced by changing x into ix. The formulae (2), (6)

were obtained in a similar manner, from the expression for z^'^+\ in factors.

Examples.

292. (1) Investigate Wains' expression for it.

In the expression for sin^r in factors, put x=\n^ we have then the

approximate formula

=l('4.)(-i.) (-i).
where n is large ;

this may be written

n 77^ TT 2. 4. 6.. .271

^^"(^^ + ^)
=

1.3.5...(2;.-1 )-

which is Wallis' formula.

(2) Factorise cosh y - cos a, cos x cos a.

We have coshy - cos a= 2 sin ^ (a+ ty) sin ^ (a ly)

putting y=0, l-cosa=^a2n
(^1 -^^^^J
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hence

cosh y cos a

1 - cos a

"\ "^aV? V "^27177+ 0/ V ^n-n-a)\: 27i7r+ aj \^
"^

27i7r - aj
'

therefore

cosh y - cos a= 2 sm2 \a .
(
1 +^ )

5 \\ + , ^, S \\ +j^ r-J .

Writing ix for y, we have

-cosa=2sin2^a.fl-^)njl- ,. ^^ }{[^- (^

^ J
\ a / 1 I (27177 + a)2J [ (27177 -a)2J

COS 57-

(3) Prove that

tan-^^+ tan-^r^+tan~^zr-^+tan-^.-^-^-\-.
TT^ 477^ 977^ I677''

=^-tan~^ ltanh~j~.cot-j^j.

00 ( (^ -if- fW^^lWe have &m{x+ Ly)
= {x+ iy)Il \\ - 221 > taking logarithms, this be-

comes

log(sin^coshy+ icosA'sinh2/)
= log(:r+iy)+ ilog jl ^-^^-t.-^U

equating the imaginary parts on both sides of the equation, we have

tan~i(tanhvcot^)=tan-i^-ltan-i ., ^. -;^ ^ '
a? 1 7iV-a^^+y2'

let ^=y=l/V2,

we have then
GO 1 / 1 1 \
2 tan~i -5-5=i77-tan-M tanh-^.cot-Tjr ).

Series for the tangent, cotangent, secant, and cosecant.

293. We have shewn in Art. 285, that

sin^=
^(l

+ -l(l--l(l + ^](l-S'-S('*2-J'-f.

mirj \ mirj
^

where 7n is any number greater than a certain number, and e^
is such that its modulus may be made as small as we please by

making m large enough. We have then

log sin z = \ogz + log ^1+ 1j
4- log (l-?A^\og(l+^j
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In this equation, change z into z^h, we have then

log sin (^ + ^) = log (^ + A) + log {\ +
^

j
+ log

(^1

-
"^^^j

+ ...

where e^' is the new value of e^n\ subtracting the last two

equations we have

log (cos /i + sin /fc cot z)

=
log(l^J).log(l-|-^)+log(l+^-^)^

4. log (i + -A_U log f
1 + -A. U log f

1 +i-V

divide both sides of this equation by h, and then let h be indefi-

nitely diminished
;
the limit of ^-^

^ is that of

log(l -|-/icot2r) ^ xi X p 1
1 (-i h \. 1

^-^
J or cot z, that 01 y loe: 1 H is

. ,

h h \ z rirj z r7r

supposing z is not a multiple of tt
;
hence we have1111 1

cot0 = -+ + + -S-+ S-+
Z Z + 7r Z TT Z -{-ZTT Z ZTT

L 1
,

1
, T-li /l + m'\

+ + +Z T log :r- ,

z-\-m7r z mir a \l-{-m/

and we shall shew that L -r log ( ^j j
is a quantity which may

be made as sniall as we please by taking m sufficiently large. It

was shewn in Art. 285, that the modulus of e^ lies between zero

and e *^
1; e^ may therefore be denoted by (e

^
1) 6^.

where the modulus of 0^ is less than unity ;
we have therefore

I '8 (itS)
=
I f^'""'

~ ^')-* (^""- ""'>+ 1'

and this is equal to
j- {ej em) (1 + </>m)>

where the modulus of </>^

diminishes indefinitely as m increases.

(x+hf+y2 x2+y2

+ i{0rn-0rn){e
^ +6^ -2},
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lix_

hence L
'-^^^-j^

= 6^ . e '^
L^j-^-\-{e^ -1)Z ^^"^^"^

.

Now 6jn is a continuous function, and like e, i5 ultimately

independent of the form of m, when m is infinitely great, since

the expression for sin ^ as a product is convergent ;
therefore

' d
the value of L ^

,
-

, when m is infinite, is not infinite, hence

'

L -^^-y
- can be made as small as we please by increasing m

sufficiently, therefore the same is true of

^ (m- em) (1 + </>m),
or

^ log
^ ^ J*

;

therefore we have111 1 1 r
cot^ = - + + + +

;
+ -\-E7n

z z-\-ir z IT z + mir z m7r

1 m 1

Z \ Z^ ^ vT*

where Urn diminishes indefinitely when m is indefinitely increased;

thus we have for cot z the series11111
cot^=- + ^ + + ^^ + S-+ 0\Z Z -\-7r Z 77 Z + ZTT zztt

or cotz = - + 2z2 , ^, , (8).

The series in (7) is semi-convergent, and that in (8) is absolutely

convergent, for all values of z except z=Oy tt, 2ir for

which the series are divergent.

In order that the student may appreciate the necessity for the investigation

in the text, of the remainder in the series for cot
2:,
we remark that if /(-s) be

the sum of an infinite convergent series Ui{z)-\-U2{z)-\-...-\-Un{z)-\- ', we are

not entitled to assume that

^*= h =f ^''=0 ^

Suppose R^n (z) is the remainder of the series after m terms, then

f{z) = Ui(z)-\-U2{z)+ ... + u^{z)+ R^{z)

f{z+ h) = u^{z+ h)+ u^{z+h)-\-.,.+2i^{z+k)+ R,{z+k),
hence

f{z+ h)-f{z) l u,{z+ h)-Ur{z) ^ ^ R^{z+ h)-R^{z)^*=
h =f k

"*"^
h '
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now since the given series is convergent, Rm{z\ E^iz+h) become indefinitely

small when m is indefinitely increased
;

it does not however necessarily follow

that L -^ r ^^^^ does the same, and it is only when it does, that

we are entitled to make m infinite in the derived series. If for example
A

Rm (2) were of the form sin m-s, we should find

k

which is not zero when m is made infinite, but oscillates between the values

A.

294. From the expression

-"(>-3('-S('-l5)
we obtain by a method similar to that of the last Article, the

infinite series

1 11 1- tan ^ =
j

h Y~" "1 rT~ +~~^ +
z-\--^7r z i^TT z-^-^ir Z ^TT

1 1 .

"^-2 + i-(2m-l)7r'^^-i(2m-l)7r"^
^ ^'

1

1 (2m 1/77^ 4^'^

the series (9) is semi-convergent but (10) is absolutely convergent
for all values of z except j7r, +f7r

295. We may find a series for cosec z by means of either of

the formulae cosec ^ = cot
-|-2;

cot
^,
cosec^ = ^cot|^^ + ^ tan^^^;

using the first of these formulae, we find on substituting the

series for the cotangents

cosec z =
2 2 2 2 2

z z-\- ZTT z ZiT z-\-4f7r z ^ir1111 1 1 1

rz'-V^^ z^.^JT^^J^r^^J^-^^j:^''
hence cosec ^

_1_JL 1 1 J. 1 1

z z + ir z TT z-\-27r z ^ir z + Stt z Stt
"

1 s (-1/2^
or cosec ^=- + Z .\ \ (12).
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In the formula (11), change z into z + ^7r, we have then

yz + ^TT z ^ttJ \z + f7r z%irj
'

or sec -g = 4S -. ^ ., .^^ ^ /- (14),

this series, when r is large, has its general term approaching the

(-ly-^
value ^ z-

,
therefore the series is only semi-convergent.

The cotangent and tangent series may also be obtained as follows :

Using the expressions for sin (2+ A) and sin 2 as infinite products, we find

by division

sin(2-|-A) / AN /7r2-22_A2_2AA /2V-02-A2-2^0\
sin 2

_ / AW 7r2-22-A2_2AA /2V-22-A2 -2AA
"V 2/\ 71^- 2^ ]\ 2V2-22 y*

if we assume that the product on the right-hand side can be expanded in powers
of A, by multiplication, and put the left-hand side in the form cos A -|- sin A cot 2,

then expand in powers of A, and equating the coefficients of A on both sides of

the equation, we find

1 22 22 ..

^'^=J +z^^ +?^2V+ (^>-

The justification for our assumption that the infinite product may be arranged
in a series of ascending powers of A, the coefficients of which are the infinite

series obtained by ordinary multiplication, would require an investigation of

the conditions that such a process gives a correct result ; to do this, would

however require certain general theorems for which we have no space. The

tangent series may be obtained in a similar manner, from the infinite product

cos (2 -I-A) (t^
- 422- 4^2 _ 8A2\ /327r2_ 422 - 4A2 - 8A2\_ /b-2-422-4A2-8A2\ n

~\ 7r2-4s2 )\C0S2 \ 7r2-422 )\ 327r2-422 /

If the cotangent of 2 is expressed in the form

\ 2m-l|Vy/ V ^'^tV

and this expression be transformed into partial fractions, the denominators of

which are the factors in
211(1 ^~\, we should obtain the series (8); a

similar remark applies to tan 2, sec 2, cosec2. The series have been obtained ^

by Glaisher, directly, by carrying out this transformation.

^ See Quarterly Journal, Vol. xvii.
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Expaimon of the tangent, cotangent, secant and cosecant

in powers of the argunnent.

296. We have shewn in Art. 293, that

1 * 2^

where R^ is a quantity which may be made as small as we please

by taking m large enough. Now if the modulus of z is less

than nr, we have

1 1 /, 2;2 ^
^7r2_^2 ^2^2 \ ^<^2 ^^4 ^2^2

hence if we suppose that the modulus of z is less than tt, we may
expand each of the fractions l/(r^7r^ z^) in this manner, and we

have, arranging the result in powers of z

1 2zfl 1
.

1\ 2z'/l 1 1\

z w'W 2^ my if" VI* 2>4 nv

let /San denote the sum of the convergent series111
then 'Sf2n

= T^ + si^4- H ^ + e^, where ean is a quantity which

may be made as small as we please, by making m large enough ;

we have then

,
1 2z^ 2^% 2z^-^^
Z ir^ TT TT^

2z 2z^ 2z^~^
+ itw + -ie2 + ^64+ H ^;r-62n +ir TT TT^*

We see that 2 > 64 > eg , hence the modulus of

2z 2:^
-762+ r 4 +

2z 2;^
is less than e^ multiplied by the modulus of + . + which

2z'^~^
is a convergent series, since mod. z<'k, therefore S ^ ean may

H. T. 22
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be made as small as we please, by making m large enough. We
have therefore the infinite series for cot z^

cot^ =i-|s,-^'s,-^S.- (15)

which holds for all values of z such that mod. z<7r, and in par-

ticular for all real values of z between + ir.

From the theorem

tanz = Sl-^
-

T-^+-Rm,
1 (zr l)^7r^ 4^^

we may obtain, in a similar manner, the series for tan z in ascend-

ing powers of z. This series may however be deduced from (15),

by means of the identity tan z = cot z 2 cot 2z
;
we find

tan.= ^(^'-^)-^.+ ^-<g^llg^,+ ^<^--l>-^^.+ ...(16),

which holds if the modulus of z is less than Jtt, and in particular,

for real values of z between ^tt.

Substituting for cot^z, cot z their values from (15), in the

formula cosec z = cot ^z cot z, we have

cosecz =
^
+
(2-l)^^S,

+ ~-.^^S,^^^.^S.+ (17),

which holds if mod. z<7r.

297. To obtain a formula for sec^, in powers of z, we use

the formula

= 47r(sec^ = 47r ; t-- i^;r-. :r-+ ^
\7r^-4!Z^ SV-4>z^ 5273^-4^2

(~l)"--n2m- l)\ ,,

^(2m-l)=^7r^-4W"^
'" '

supposing the modulus of z to be less than Jtt; we have on

expanding each fraction

_2Mi 1 1
("liZ!"'! 2* aP L L

'^^^~7r 1"3"^5" ^"2^i:^rrf
+
^'^ P"33"^5

(2m - 1)=^)
^'"*'' U'""^' 3^^'

(-1)"^-^ )

^(2m-l)^"+4'^
"^^VI
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Now let Ssju-i denote the sum to infinity of the infinite series111
jsm+i gm+i

'

52n+i

and let the remainder after the first m terms be eo^i+i, then we
have

92 94 92*1+2

SeC2r= Si+ 2r%+ +^^^.z"'^m+i +
TT TT^ 7j-2n-w

22 94

let e' be the greatest of the quantities e^ 63 then the modulus

22 2^
of 1 H r 2%o 4- is less than e times that of

TT TT^

22 2^ , 2-+ -3^'+ -^^+ ,

which last series is convergent when the modulus of z is less than

We have thus shewn that the remainder of the series we have

obtained for sec z, is a quantity which diminishes indefinitely as m
increases, hence we have for sec z the infinite series

22 2^ 2^
sec^ = -2i + ^%4--,^S5 + (18),

which holds if mod. z < Jtt.

298. It is a well-known theorem in Algebra, that the function

zl{e^l) where e^ has its principal value, can be expanded in a

series of the form

2 ^2! 4!
^ ^^ ^

(2/1)!
^

where B^^B^, B^, are certain numbers called Bernouillis

numbers, and that this expansion holds for all values of z for

which the series is convergent.

If we multiply by e^ 1 we have

^'
, .

^'"
. If. I B, , B,

^=i^-^2-!+ +
(2i^)l+ 11^-^

+
21^^-41^ +

+(-ir-(^,^--^ }

z being taken so small that both the series on the right-hand side

are absolutely convergent, we may multiply them together, and

222
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an*ange the product in a series of powers of z
;
the resulting series

will be absolutely convergent, hence equating the coefficients of

the powers of z above the first, on the right-hand side, to zero, we
have a series of equations

^-114-1 = -^4.1^-11^1-0
2! 2*2!3! ' 4!~^3!2! 4!2'^5! '

the general tjrpe of which is

(2n)! 3!(27i-2)!"^ "^(2?^-l)!2! (2?i) ! 2"^(2/i + l)!

By means of these equations, the numbers B^, B, B^ may
be calculated ;

we find

B. = h ^2 = A, ^a = A. ^. = A* ^5 = #V ^6 = A-o> ^7 = S, &C.

299. The coefficients in the expansions of cot z, tan z, cosec z,

in powers of z, may be expressed in terms of Bernouilli's numbers.

e^^ + g-tz / 2 \

We have cot ^r= ^^ __ ^_^^
= l

(1
+ ^^j ,

hence, if mod. z is small enough,

Also cosec z cot ^^
- cot z, hence we have the series

1 2(2-l)A 2(2-l)A,^cosec2:=-+
^ q/ ^ +--^rr^ ^ +

2(2--l)^^
(2n)!

^ ^ ^

Again since tan 2: = cot ^ 2 cot 2zy we have the series

2^(2^-1)^ . 2^2^ -1)^, ^3 .

2! 4!

2-(2--l)^ _^
(2m)!

^ ^ ^

It has been shewn that the series (19) and (20) are convergent

if mod. z<7r, and that (21) is convergent if mod. z < ^ir.

The series in (19), (20), (21), must be identical with those in

(15), (16), (17), respectively, hence equating the coefficients in

(19) to those in (15), we have

9 9-2 2* 2 2^^
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hence using the values of J^i, B2, in Art. 298, we have

r6 7p8 22i 177^

945' '^^'"9450' '^^"72iOT^"'

thus S^ may be calculated by means of the formulae which give

Bn.

The series (19) and (21) give a ready means of calculating the tangent or

cotangent of an angle, the first few terms of the series are

1 ^ ^ 2.2^
cot.:^=

X 3 45 945

^^ 2^ 11x^
tan.;=^-+- + +3^ +

7Th 7)1/

The calculation of tan 90, cot 90 may be carried out as follows.

tan(m/?i90)=

2mnl{n^-m^) x '6366197723675

+w/n X -2975567820597

+m%3x -0186886502773

+ m^/n^ X -0018424752034

+myn^ X -0001975800714

+m9/w9 X -0000216977245

+miV^" X -0000024011370

+ ^13/^13 X -0000002664132

4.^15/^15 X -0000000295864

+ ^17/^^'' X -0000000032867

+wii9/wi9 X -0000000003651

^^21/^21 X -0000000000405

+m23//i23 X -0000000000045

+m^ln^ X -0000000000005

In these expressions, the terms

cot(wi/?t90)=

n/mx -636619772367581

-4mnl{4:n^'-m^) x -3183098861837

-w/tix -2052888894145

-
m^ln^ X -0065510747882

-
m^/n^ X -0003450292554

-
mV?i7 X -0000202791060

-
m^l'nP X -0000012366527

-
wii/^i^^ X -0000000764959

-
wii3/7ii3 X -0000000047597

_ ^15/^15 X -0000000002969

-
m^V^i^ X -0000000000185

-
77ii9/?ii9 X -0000000000011

8z 2z

ir^-4z^^ z 7r^ z^
which occur in the

formulae (10) and (8), are first calculated separately, the series being then

more rapidly convergent.

These series are taken from Eider''s "Analysis of the Infinite," they are

however given by him to twenty places of decimals.
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Series for the logarithmic sine and cosine.

300. We have shewn in Art. 285, that

i'-'('-5){'-&) (-^)"--)'

"-"(>-a(--) ('-?i^)<--'->'
where 6m, Om are quantities whose moduli may be made as small

as we please by taking m large enough ; taking logarithms, we

have

log sin ^ = log^ + log
^1
-

^2)
+^<^g

(1
-

2^2)
+

+
log(l-^)4-log(l-^a

1-
^j + log

(^1-35^,]
+

expanding the logarithms, we have

,
sin ^ ='

/ 1 1 M -2^
1 /I zi X

Now
f\ J_ 1 \

i ^sw 32n 52^
I"

y

111 /111
1 1 1-I2n ' 02^ 32^

1 /J_ J^ 1_
2^* vl^" 2^* 3"^*

"T

hence
]^2n

"*

31^
+

5iMi
"^ ~"

2^"
"'"'

we have therefore

l0g?^=-:S^^2n +
S^^,e,n

+ l0g(l-^^)

log cos ^ = - S
-^^^^ z^S^

"^ ^^i^ '^''' "^ ^^^ (^
"

^'^'^'
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where 63^, rj^, are the remainders after m terms in the two series

11 11
I 4. I

L
I 2n

~
'0211

"^ '

'^2n
*^

^2n
*^

^2n ^ ^2n
The modulus of S - e^ is less than that of e' t ,

and

that of S T Tjzn is less than that of rj' 2 -
, where e' W are

the greatest values of 6271, Vm respectively; if mod. z<7r, the

j^2n

series 2 is conv(

is convergent, hence

j^2n ^ ^2n^fin
series 2 r- is convergent, and if mod. z < ^ir the series 2 ^-

sm .2^ <2^^

22n __ 2

log cos 2: = X -
-S:2"^2n + i^ ,

where i^^, Rn are quantities which vanish when n is infinite.

22n 1 --.2?i

Since /Sfan
=

,^ v , i5, we have the following infinite series for

, sin^ ,

log , log cos 0,

Ino- ?l5 _ _ 9 ^'
f!. _ 93 :^

^ _ Om-1 ^" ^'"
/09>

"'^^~- ''r!2! ^24! ^
m-(2)!

- ^''^^'

where mod. z<7r,

logcos^ = -2(2-^-l):^.|,-2(2^-l)f.J-
P /y2n

.2^-i(2=^-l)^-f-- (23),n (2n)!
^ ^

where mod. z K^ir.

The first few terms of the series (22), (23), are

sin^ z'^ 2^ z^

log z 6 180 2835

hence also

, z" 2^ 2^

log COS. = ------

log tan. = log. + - +- +
2835^
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The series (22), (23), may be employed to calculate tables of logarithmic

sines and cosines
;

it is best to calculate separately the first logarithms,

log f 1
2 )

, log ( 1
2 )

>
as we thus obtain the series in a more convergent

form than in (22), (23).

We have

,
. WITT

,
. m . / m2\ (/Br ttS*- 1 \

^2'')
logsm-=log.+log- + log

(^l-^,j-2 |(^- ^-^j
-
^^j ^^

mn , A m^\ ^(/2^''-lBr n^'' l\ m^'']
logcos

=log(^l-^j-2 |(^^-
-

^-2^--j ^,|.

Multiplying the logarithms on the right-hand side of these equations by the

modulus '4342944819, we get the ordinary logarithms of sin 90, cos 90 to

the base 10
;
the formulae thus found are

L (sin m/n 90)=

logm -{- log {2n- m)+ log (2k, -fm)
- 3 log *i + 9-594059885702190

-m^ln^x -070022826605901

-mV^*x -001117266441661

-
m^ln^ X -000039229146453

-
m^/n^ X -000001729270798

-
wIO/tiIo X -000000084362986

-
wii2/%i2 X -000000004348715

-
miVTii* X -000000000231931

-mi6/?ii6x -000000000012659

-m^^ln^^ X -000000000000702

-
wi2o/n2o X -000000000000039

Z(cos?i/7i90)=

log {n m)-\- log (n+ m) 2 log n

+ 10-000000000000000

- ^2^2 X -101494859341892

-mVw* X -003187294065451

- m6/w6 X -000209485800017

-ms/w^x -000016848348597

-
mio/7iio x -000001480193986

-
mi2/ni2 X -000000136502272

-
m^^l'n}^ X -000000012981715

-/ii6/7ii6 X -000000001261471

-m^^l'n}^ X -000000000124567

- m^ln^ X -000000000012456

-
m22/7i22 X -000000000001258

-
m2Vn24 X -000000000000128

-
m26/?i26 X -000000000000013

These series were given by Euler, the decimals being given to twenty places.

Examples.

301. (1) Fhvd the values ofS.n-^ Sn"*, 2 (2n- l)-2, 2 (2n-l)-4.Ill 1

We have

- sin ;27 , /, a^\ x^ 1 x^ 1

log = 2 log 1-^-^ =--2 2 ~o- KA^ -A-

. ,
sin X , f^ x^

^
x/^ \ (x'^ x^\ 1 /^2\ 2

also log
=log(^l-g+j^-...j=-(^-g-j2o)-2(6J

-
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Sin ^
hence, equating the coefficients of x\ a/^, in the two expressions for log ,

we have 2n-^=l7r^, 2n~^=-^7rK Again

logcos^'=2log
|1 -^2^^^;;;^^,|= --^

2
^-2^^^

, /, X^ X* \ {x^ a^\ 1/^2x2
and

logos^=lg(^l-2+24"-V^~V"24J"2V27'
therefore equating the coefficients of x^ and ^, we find

2 (271-1)-
2=

1,72, 2(27i-l)-4=^^7r4.Ill
(2) Sum the infinite series

^y^g
+
^-^-^

+
:^-^^

+ . . . .

In the theorem (10), put 22=a'7r, we thus find for the sum of the series,

tanh \nx. The sum might have been obtained directly from the expression

for cosh ttx in factors, by taking logarithms and diffijrentiating.

(3) Sheio that the sum of the squares of the reciprocals of all numbers whicly
are not divisible by the square of any prime^ is \hlrr\

Let a, ^, y denote the prime numbers 2, 3, 5
,
then the required

sum is equal to the infinite product

(-a"(-a"(-a"
this is equal to ^ -L^ TT^TT TT^i

(i--i) {'-w) 0-y)

(i+l,+l,+...)(i+j,+j,+...)(n-l
+
i.+-)

111
^~22 32 42

'

and this is equal to ~~l"~n'"~T
"

^*'2*"^3*"^44'^***

or to -^ ^
which is equal to 1 6/772.

(4) An infinite straight line is divided by an infinite number of points into

portions each of length a. Prove that if a point be taken such that y is its

distance from the straight line^ and x the 'projection on the straight line^ of its

distance from one of the points of division, the sum of the squares of tJie

reciprocals of the distances of this point from all the points of division is

sinh -
n a

ay , 27ry 27rx*
''

cosh - - cos
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00 1
The series to be summed is 2 -5 ; r^, which is equivalent to

1 00 / 1 1 \
2 I I . The sum of the series is therefore

'iiy -\xty-\-na x+iy-\-naJ

JL.
jcot

^Lfci^) - cot^Jsyk ,

2tya {a a )

sin
TT a

or
^ sm !^ ^ sm ^^ ^

a a

which reduces to the given result.

EXAMPLES ON CHAPTER XVII.

1. Prove that

cos

2. Prove that

H-sin^=|

/I . y,N- 1 9/,/, cos2^\/, cos2^\
(^ sm ^)=i,r cos^ ^

(^1

+^-^ j (^1 +-^-g j...

00 00 1

3. Prove that 2 2 ; r-, r = - n'K where t, j, have all unequal
-00 -00 {x-\-i){x-\-j)

integral values, and x is not an integer.

4. Prove that

5. Prove that

, ^^ j^ J^ (l +^)(l+f)(l +^)

6. Prove that

34
+
54+74

+
94
+

64^^ 12

7. If

^(^)-6^-y}- ''(^)=s{i-(^.i)}>

express X (x-\-\a) in terms of /x (.27),
and /a {x-\-\a) in terms of X {x\ and thence

find the value when m is infinite, of
' ' ''

. V2wi+ 1.
2"*?>i



EXAMPLES. CHAPTER XVII. 347

8. If Py. denotes the products of
g, -g, ^...

taken r at a time, shew

that
22"P=^-2^

+
^2,^

_
2) 1

A+
(2^134) !

^2+ +2!^"-i'^^"-

9. Prove that

12 12,32 12.32 52 ^2
22 22.42 22.42.62 "tt*

10. Sum the series 111
1*.34 3*. 5* 5*. 7*

11. Shew that the sum of the products of the fourth powers of the

reciprocals of every pair of positive integers is .

12. Prove that

/2 22 \( ^ 1 1 \ "^^

V "*"iTr2'^ 1+22
**

1+32"^ / V4+r2'*"4+32'^4+52"*"*"*:7'" 8

13. Prove that the sum of the series

(riT3y+ (2-i:4y+ (3-^75)'+
isi7r2-ff.

14. Shew that

J (wi2-l)(22m2-l) (r2m2-l)
'*='*

{w2-(m- 1)2} {22m2-(m- 1)2} {r2m2-(m'*- 1)2}

isw 1. 13 5
15. Shew that the sum of the series , ;;3 5 + ^9-; ^ ... is

12 -f^2 32-1-^2 6-2+^

Itt sech \irx.

16. Prove that

tan~i X - tan"-i ^x+tan '^ Ix- = tan"^ tanh Inx.

17. Prove that

logl2-2l0g7r= A^2+ i'^4+ i*^6+ -^l^2n-^

where S^ is the sum of the reciprocals of the Hh powers of all numbers which

are not prime.

18. The side BC of a square ABCD is produced indefinitely, and along it

are measured CC^, CjCg, C20^, each equal to BC ;
if 6^, 62 be the

angles BAC^ BAC^j BAC^ ,
shew that sin ^j sin ^2 si'^ ^3 ^^ ^^Z-

= \/2r cosech rr.

19. If 2, 3, 5 ... are all the prime numbers, shew that

(-(-.a(-^.) =-^
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27. If

1 1 1 1 1 1

n m n+m 3n m Zn+7n 5n m 5n+m

^
(n-m)2^(7i+m)2^(3?i-m)2^(3w+wi)''i^

(w m)^ (i+m)3 (371 -m)3 {3n+m)^

(?i
-

wi)*
^
(w+m)*

^
(3w+m)4

^
(Sn-m)*^

prove that

P=^ 0-2^!?)^ /?=(?^!?^ g (24yH+32P+8)7r*
2n' ^~

2.4.7i2
'
^

2.4.6.7^3'
'^

2. 4. 6.8.11*
'

where /:=tan-r^. (Euler.)

28. Prove that the sum of the series 1 - ^^ + z^
- ttq+ >

iii which all

odd numbers not divisible by 3, are taken, is n^/lS^jS. {Euler.)

29. Prove that the sum of the squares of the reciprocals of all numbers

which are not divisible by 3, is 47r727. {Eider.)

30. Prove that

sinhy+sinhc

V 'cyV 7r2+c2;V 4^2 + ^2^^ 97r2+c2/-

_ ^ _l^'\ A 2^-y'\ A
, 2cy+y^ A 2cy-y2\

~\ <^)\ 47r2+ c2yV 47r2+c2yV 167r24-c2;

sinhc

and

coshy cosh c _ A y^ A ^*^
~

3^^^

1 coshc

{Elder.)

31. Prove that when n is odd.

C0t2|^+C0t2|^+ +COt2^2l)^
=^(^-l)(^-2),

cot*?^+cot*|^
+ +cot4^^'^=J^(n-l) (7^-2) (712+ 371- 13).

/ ^2n\ / :K2n\
32. Prove that the infinite product (1+^^") ( l +

32;i)
( l +

ga^i)
is

equal to

-r- n (cosh jrcur+ cos 7r)3^), or -r-. rt cosh Air.'*; 11 (cosh ttcut+ cos
7r/3Jt7)

according as 7i is even or odd, o^, /3r> denoting sin
,
cos respectively,

where r is an odd number. {Glaisher.)
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l +
22;^j(

1 +^j
is equal to

I n-l I n-2
, n (cosh 27ra^ cos 27ri3a?), or -jt r; sinhTr^ II (cosh. 2iraa,'- cos 2irBj^)

according as ?^ is even or odd, a, /3, having the same meaning as in the last

question. ( Glaisher. )

34. Prove that

_J__ +_1_ + _L_+
_ TT

**-i g sinh 2irax+^ sin 27r3.y _ 1~
,^n-i J cosh 27rar COS 27r/3vP 2^2n'

, /3, having the same meaning as in the last question. (Glaishei'.)-

35. Shew that

aa;+% ^^^ {ax -^-hy+r (a^+ b^) ax-\-bi/-r {a-+ 6'^)|

a^+f
"^

,.=1 t(^+m)2-|-Cy+^-^)^ (;r-m)2+(y-r6)2|

is equal to ,r sin
(2.^f) / {cosh (2,rf^)

- cos
(2. 5||)}

.



CHAPTER XVIII.

CONTINUED FRACTIONS.

Proof of the irrationality of tt.

302. Let /(c) denote the infinite series

+
l.c 1.2.c(c + l) 1.2.8.c(c + l)(c + 2)

'

then /(c + 1) -/(c) = ^(^/(c
+ 2),

hence M.^^^^ . ..^fj^^^
/(c + 1) c(c + l)/(c + l)'

therefore /(c + '^)lf{c) can be expressed as a continued fraction of

the second class

1 a;Vc(c + l)^V(c + l)(c + 2)^V(c + 2)(c + 3)

1- 1- 1- 1-

Let c ^, and write \x for ic, the series /(c) becomes

a? x^
1 1 1-

1.2^1.2.3.4^

or cos a;, and/(c 4- 1) becomes ,

X

. tana? 1 x^ x^ a?
hence = = ^^ -f^- =

X 1-3-5-7-
an expression for tan a; as a continued fraction of the second class.

303. Lambert's proofs of the irrationality of tt, depends on the

1 Published in the memoirs of the Academy of Berlin in 1761.
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continued fraction found in the last Article. Put x
\'Tr,

and if

possible let Jtt =m/n, where m and n are integers, we have then

m iri^ rn^ m^
1 =

n 3/1 on^n '

now after a certain term, the denominators of the fractions mln,

mV3w, m^l5n exceed the numerators by a quantity greater

than unity, hence, by a well-known theorem^, the continued fraction

on the right-hand side of the equation, has an incommensurable

limit, and cannot therefore be equal to unity; hence ^ir cannot be

equal to a fraction m/n in which m and n are integers, therefore ir

is incommensurable.

Transformation of the quotient of two hypergeometric series.

304. The fraction F(a, jS + l, y+1, x)IF(a, P, % og\ where

F
{oL, y8, 7, x) denotes the hypergeometrical series

1.7 1.2.7.(7+1)
can be transformed into the continued fraction

X KiX K^fC KyR

where

_ a(7- )g) , _ (^ + l)(7+l-) , _ (a+l)(7+l-^)
^"7(7+1)'

'

(7+l)(7 + 2)
' ^'

(7 + 2)(7 + 3)
'

(/3 + 2) (7 4- 2 - g) ^ ( + ?i-l)(7 + 7i-l-/3)

(7 + 3)(7 + 4)
' '^^-^

(7 + 271 -2)(7 + 211-1)
'

_ (^ + 7^)(7 + ?^-a)

(7 + 2n-l)(7 + 27i)*

As an example of the use of this transformation, taking the

series

f 2.4 )

<^
= sin (^ cos <^ \\ +|sin2<^ +^ sin*0 + \

,

and putting a = 1, /?
= 0, 7 = J, a? = sin'^

<^ in the above formula of

transformation, we find

1.2 . 1.2 . 3.4 .

I J \ iT sin^ <f> 7s- > sm^ <f> ^ =- sm^ <f>

sm <^
cos <^

1 . 3 ^3.5 ^
d . 7 ^

<P= 1- 1- 1- 1-
' See Todhunter's Algebra, Art. 792.
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The second convergent gives Snellius' formula for
</>,

_ sin ^ cos
(j) _ 3 sin

2</>

*^T-|sin2^~ 2(2 + cos20)*

Elder's Transformation.

305. Other series may be transformed by means of Euler's

theorems

which may also be written^ in the form

1111 1 a,^ a
+ + + r

As an example of this method, we obtain from the theorem

TT , miT 11 1 1 1- cot = + ^ +
n n m n m n +m 2n m 2n +m

the theorem

TT mir _ 1 m^ (n mf (n + m)^ (2n my (2n + m)^
n n m+ n 2m + 2m + 2m + 2m + n 2m +

* "

EXAMPLES ON CHAPTER XVIII.

Investigate the theorems in Examples (1) to (13).

tanh.^ 1 ^2 ^2

a; 1-f- 3+ 5+

n tan a: {n^-l) tan^ x {n^
-
4) tan^ ^ {n^-9) tan^ x

2. tanT.^- ^_ 3_ ^_ ^_

when ^<^7r, 72. being unrestricted.

T^tan^ {n^
-

4) ta,n^ X (n^ 16) tan^ ;r

3. tann^=

4. tan7i;r=

1-tan'^*-- 3-3tan2^- 5-5tan2.r-

jitan^ (w2-l)tan2^ {n^
-

9) tan^ a;

5. tan
^^-^^ 3^ 5^

1- 3-tan2^- 5-3tan2^-

X X^ 4:X^

1 See Smith's Algebra, Art. 367.

H. T. 23
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l-x^+ 3-3:172+ 5_5^+

. tan~i;r=r s -z tt-h1+ 3-^-f 5-2x^+

8. tanna;= = -^^ ^ ^ ^ ,

1 o 5

^ TT TT . 1 (n-l)w 71 (71+1) (271-1)271
9. -cosec-=H ^

^^ ^-- - ^
:;

-

n n 711+ 1+ 71 1+ 1 +

sin7ra?_ X \-\-x \-x 2(2+:r) 2(2-;r)
irX

~
1- X- l+x X l+:r

nx .
,
X l+x l-x 3(3+:r)

11. COS-^=l+:j -^^

2 1 X- 2+x X-

,^111111
1 9 cot =

X X-1+ 1+ 3a;-2+ 1+ oa:-2+

13. 1-

1.2 . ,^ 1.2 . ,, 3.4 . ,, 3.4 . ,,-
sin^ 1.3 - 3.5 2 57 2 79 2

^ 1- 1- 1- 9-



MISCELLANEOUS EXAMPLES.

1. Prove that if m is a positive integer

cos mx cos ma
cos X - cos a

= cosec a {2 sin a cos (i
-

1) ^+2 sin 2a cos (wi
-

2) ^4- ,

+ 2 sin (m 1) a cos ^^ +sin ma\.

2. Prove that ifm and w are positive integers

sin mx 1 , -, \t ,x-a
=;;- 2 ( 1 r sin ma cot j;,sm nx Y,n 2

where a=
,
and that the expressions are also equal to

{Hermite.)

2n
2 (

- 1 )^ sin ma cot {x a),

or
2n

2 (
-

1)* sin ma cosec (x a),

{Hermite^according as m-f ti is even or odd.

3. Prove that

cot {x a) cot (^ ^) cot {x X)= cos ^nn + 2A cot (x a)

where ^ = cot (a
-

/3) cot (a
-
y) cot (a X

). (Hermite.)

4. li A, B, C be the angles of a triangle, and
.2;, y, z are real quantities

determined by the equations

cosh X (sin B sin (7)^
= cos ^A,

coshy (sin C sin ^1 )^
= cos ^ B, cosh 2 (sin ^ sinBy= cos ^ C,

then any three points so situated that the distances between each pair are

proportional to x, y, 2, respectively, lie on a straight line.

5. If x>^. shew that tan -
^ > 7- ; ;, and < z

^ , .

6. Prove that - 2 2 is equal to the greatest integer in mfn.n p=i ]c=o n
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tan~i

7. Prove that

462
;+tan -1 462

(2a 6)2 +362
'

(2a 36)2+ 362
+ +tan-i

462

is equal to tan"^ -^

(2a 271-16)2+ 362

;
and hence shew that the sum of the infinite

a^+ nah+ h^

series cot-i (l2+ |) + cot-i (22+ |)+cot-i(32+|)+ is cot-i^.

8. If tan A sec B+tan B sec A =tan (7,

prove that

tan^ sec J. + tan 5sec^+tan Csec C+2ta,nA tan 5tan C=0.

Trace a connection between this result and the known theorem that

sin J. cos J.+sin^cos J5+ sin (7 cos (7- 2 sin J. sin 5 sin (7=0,

where -4,-6, (7, are the angles of a triangle.

9, If m and n be any quantities, prove that

n{n-\-l) x^
^\Q.X \\

(wi+fi)(m + w+l) 2 !

+ ^
(m+ 7i)(m+ w+ l)(w+ 7i+ 2)(m+ 7i+ 3) 4 !

%(?t+l) (71+ 2) (71+ 3)

=
(7W.+ 7iCOS;r)

X

m+n 1

- {m (7W,+ 1) (wi+2)+ 71 (7^+ 1) (71+2) cos x}

^
(7/i+ 7l)(7 + 7l+l)(Wl+ 7l + 2)3 !

+ ...

10. Prove that

1 cos a,

cos a, 1

cos(a+ i3), cosjS,

cos(a+i3+y), cos^+ y),

cos(a+i3+ y+ 5), cos(i3+y+8), cos(y + 8),

cos(a+ ^), cos(a+j8+y), cos(a+i3+ y+ 8),

cos jS, cosO+y),
cos O + y+ S),

cosy,

1

cos 8,

1

cosy,

C0s(y+ 8),

cosfi,

1

= 0.

11. Prove that the determinant

1, cos -4, sin -4, cos(3i4 + Jr);

1, cos 6, sin 5, cos(35+X),

1, cos (7, sin (7, cos(3(7+Z),

I
1, cosZ), sini), cos(3Z)+A'),

is equal to 2 sin (J[ + >S'+Z) multiplied by the product of the sines of half the

differences between A, B, Cj D, and also by a numerical factor, S denoting

^{A +B^C+D).

12. Prove that, if

cos (4^
-

3/
-

2) sin (.y
-

^) + cos (47/
-

e'
-
^) sin (;s

-
.r)+ cos (42

- ^ - y) sin (^
-

?/)
= 0,

and no two of the three x, y, z are equal, or differ by a multiple of tt, then

cos '^x+ cos 2?/ + cos ^z= 0.
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13. Prove that, if y and d be two values of 6 between and tt, which

satisfy the equation

sin 26 cos2 (a+ jS)+ sin 2a cos^ {^+0)+ sin 2/3 cos^ (a+ ^)
=

0,

then a and ^ satisfy the equation

sin
2(f)

cos2 (y+ 8) + sin 2y cos^ ( + (^)+ sin 2d cos^ {y\-(f))
= 0.

14. If tan a, tan /3, tan y are the three values of tan - obtained when
o

tan 6 is given, prove that

(1) cos a cos iS cos y sin (a+ jS+y) + sin a sin ^ sin y cos (a+ i3+ y) =0.

(2) sin 03+ y) sin (y + a) sin (a+ i3)
= sin 2a sin 2/3 sin 2y.

15. Shew that

^ . ,^ , y+ a a+^ . 2a+3/3+ 3y2 sm (/3
-
y) cos

'

-^r
cos ^ sin ^

T~~Z ^^ r+ +^ 2a+3^+ 3y2 Sin (/3
-
y) cos ' - cos _ - cos '

= siQ 2
(a+ /3+ y) + 2 sin (2a+ ^+ y)

cos2(a+i3+y) + 2cos(2a+ ^4-y)'

where the summation 2 refers to the sum formed by a cyclical interchange of

the angles a, /3, y.

16. Prove that, if

,
2 cos ^'^"^2 '""^2^

^=1+
1+ 1+ 1+ '

the error made in taking the nth convergent to u instead of u is

2{u'^-l)

/a 9 ,COS~Hwu sj^^ u^ cot
,

-. -

(_2)

17. Prove that the series

1 1

^2_i 3^2_3 5^2 _ 5

TT

o + T^} K- to 00

has for its sum
4 Hi^-4

18. Shew that the equation tan 2;= as, where a is real, cannot have

imaginary roots unless a<l, and that then it has one pair of imaginary
roots.

19. Shew that the antiparallels through J., B, (7 to any three lines AO^
BOf CO with respect to the angles A^ B, (7 of the triangle ABC meet in a

point 0', and that the six feet of the perpendiculars from and 0' on the

sides lie on a circle.

If GL, GM, GN be perpendiculars to the sides BC, CA, AB from the

centroid (r, and P any point on the circumference of the circle LMN^ shew

that

(4^2+ ^,2 _,. c2) ^ p2+ (2+ 452+ c'-^)
^p2+ (^2 + ^,2^ 4^2) (7p2

is constant.
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20. If ^' be real, and 1>^>0, and if tan'^z mean the least positive

angle whose tangent is z, shew that

2 (-!) tan ^7^^ ,

.' =tan-Msinh - sec ^\.

21. If P be any point on a circle passing through the centres of the three

circles escribed to the triangle ABC, prove the relation

r (1 + COSA cosB - COS C) -\ (1
- COS A + cos B - cos C)

00 cct

-f , (1 -cos A -cos 5+ cos C)= l+cosA +cos5+ cos C.
ab

22. If w =^ cos w^+^sin7i^, where A and B are independent of n,

prove geometrically the equation

w + 1
- 2Wn cos ^-fw_i = 0.

Prove that

26sin7^+sin7^

26cos7^-cos7^'
: tan 6 tan2 U+

^^
tan^

(^
-
^)

23. If Oi, O2 ; G^i, (r2 ^15 ^^^2 ; A' A be respectively the two positions

of the circumcentre, centroid, nine-points centre, and orthocentre of a triangle

in the ambiguous case, prove that

2O1O2= 3(?iG^2 cosec A = ^.N^N^,
= P^P^ sec A

;

a, 6, J. being the given parts.

24. Lines AB'C, BC'A', CA'B' are drawn through the angular points

A, B, C of a triangle, making equal angles 6 with AB, BC, CA respectively ;

and lines AC'B", CB"A% BA"C" making equal angles 6 with AC, CB, BA
respectively. Shew that the triangles A'B'C, A"B"C" are equal in all

respects, the area of each being A sin^ 6 (cot 6 - cot A cotB- cot C)'^. Shew

also that if Ta, T^" be the tangents to the circumcircles of these triangles

from the point A, with a similar notation for the tangents from B and (7, then

will

aTA'=cTc'\ hTB'=aTA'\ cTc'^hT^'.

25. Sum the series

y r 1
.11

where the value 71= is omitted, and jo, q are positive integers to be increased

without limit.

26. Shew that, if a= 27r/17, the quantities

cosa+ cos32a+cos3*a+ cos3^a, and cos 3a+ cos 3^ a+ cos 3^ a+ cos 3^^ a

are the roots of the equation z^-\-\z
=

\, and explain how the process thus

indicated can be continued to obtain the value of cos a.

ABCDEFGHK are nine consecutive vertices of a regular polygon of

seventeen sides inscribed in a circle whose centre is
; a, /3, y, S are the
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projections upon OA of the middle points of the chords BE, CK, DF, GH
respectively ;

shew that the common chord of the two circles on a/3 and yb as

diameters passes through 0, and is of length \0A.

27. If a, /3, 7, 8 be the distances of the nine-points centre from those of

the inscribed and escribed circles of a triangle ABC, shew that

1 1 1 1
^Q

jS+ y + 8- 11a "^y+ 8+ a- 11)3 8+0+^-117*^0+^+7-118
'

and that a2+3^7^+ 8^=Ii^ (13
- 8 cos ^ cos B cos C),

where R is the radius of the circumcircle.

28. Prove that tan +4 sm =^1 1.

29. Prove that if / be the centre of the inscribed circle of a triangle ABC^
and L, M, JV the centres of the escribed circles, the circles inscribed in the

triangles IMJV, INL, ILM touch the circle ABC, and the tangents of the

angles of the triangle formed by the three points of contact are respectively

equal to

2 cos ^^ + cos ^5+ cos I (7 - sin ^5 - sin ^ (7- 2

l-cos^5-cos^C7+sin^^+sin^C

and two similar expressions.

30. Shew that if x be not an integer, the series

'2,x-\-m-\-n

in which m and n receive in every possible way unequal values, zero or

integers lying between / and -
/, vanishes when / increases indefinitely.

31. Shew that sin"* 6 cos** 6 can be expanded in the form

J
^i^(wi+r^)^+ ^.^^"(m+n-2)^+^^"(m+7i-4)^+&c."
cos COS cos

when m and n are positive integers.

Shew also that

{p+ %)Ap^^-\-{m-n)Ap + ^+ {m-\-n-p)Ap^Oy

except in the case of the last terms of the series, when both m and n are even.

32. The circumference of a circle whose centre is 0, is divided into n

equal parts at the points P^, P^, P3 -?> ^nd Q is any internal point.

Prove that

tan P^qO+ tan P^jQO+ + tan P^QO=n tan P'gO,

where P' is a point on the circle such that QOI"=n. QOP^^, and ^ is a point

on QO such that (if the ordinates QR, QR' cut the circle in R, R')

QOR'=n.QOR.
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33. Prove that, if m-^^m^f m^ are the integers less than and prime
to m, and i Pi)P2 ^re the different prime factors of m,

sin m6 . n sm . n sm
n sin (0+'^') = '. ^ a^aMi

2 n sin . n sin
Pi P1P2P3

34. Prove that the sum of the products

smjoasmg' ( a+
j
sm r ( a+^ 1

for all positive integral values ofp, q, r which are such ih&t p + q-{-i'=s, when

>3 is zero unless 5 is a multiple of 3, and is -5^ sin sa, when s is a multiple

of 3.

35. Prove that

ta5=
-|l-_+---:^+ |,

J

. . .r f, 3 , ,
31 , 187 .

, 1 /

2sini^=f{l-lJ.H2^8^- },
J

where .r= tan 2^.
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