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EDITOR'S PEEFACE,

IN the year 1850, my friend the late* J. E. Drinkwater-

Bethune forwarded to England a number of copies of a work on

* John Elliot Drinkwater, the eldest son of Lieutenant-Colonel John

Drinkwater, author of the "
History of the Siege of Gibraltar," was born

July 12, 1801, was educated at Westminster and at Trinity College, Cam-

bridge, and took the degree of B.A., as fourth wrangler, in 1823. He was

called to the bar about 1827, and when Lord Grey came into office in 1831,

was employed by the Government on various commissions. He was for about

fourteen years counsel to the Home Office, and had much to do with the Par-

liamentary Reform Bill, the Municipal Reform Bill, Medical Reform Bills,

the establishment of the Queen's Colleges in Ireland, the organization of the

County Courts, and other important measures. During this time he published,

in the Library of Useful Knowledge, part of a treatise on algebraical expres-

sions, which was never finished, and lives of Galileo and Kepler, which exhibit

great research and acumen, and stand high among modern English efforts in

scientific biography. He also printed for private circulation a translation of

Schiller's
" Maid of Orleans," and of some of Tegner's Swedish poems. In

1836 his mother inherited the estate of Bethune of Balfour, in Fife, and the

whole family added the name of Bethune to their surname. In 1848 he sailed

for India as fourth ordinary member of the Supreme Council, and president

of the Law Commission. Lord Dalhousie added the presidentship of the

Council of Education. He devoted more attention to the cause of education

than even to his legislative duties. In his private capacity he founded at

Calcutta a school for Hindoo girls of the higher classes. He bequeathed the

land and building to the East-India Company, on condition that the school

should become a Government institution. The offer was accepted, and the

school is in successful operation. He also prevailed upon the representatives

of the family of Tippoo Saib to throw open to Mohamedans of good family

the school which had been endowed for the exclusive use of that family. He

procured an enactment by which natives converted to Christianity are not

deprived of their rights of inheritance. He had to encounter much virulence

of opposition, both from natives and Europeans ;
but his character and manners
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Maxima and Minima, by Ramchundra, teacher of science, Delhi

College, with directions to present copies to various persons,

and among others to myself. On examining this work I saw in

it, not merely merit worthy of encouragement, but merit of a

peculiar kind, the encouragement of which, as it appeared to me,

was likely to promote native effort towards the restoration of the

native mind in India. Mr. Drinkwater-Bethune's lamented death,

which took place shortly after he had dispatched the books, pre-

vented my knowing whether he also entertained any opinion simi-

lar to mine as to the distinctive character of Eamchundra's work
;

but, from his own knowledge of the history of mathematics, I

think it highly probable. I addressed my thanks for the present

to his successor, Mr. Colvile, with some remarks on the subject.

Having taken further time to think of it, I determined to call the

attention of the Court of Directors to Ramchundra's work, in the

hope that it would lead to acknowledgment of his deserts. I

accordingly addressed a letter (July 24, 1856) to Colonel Sykes,

the Chairman, to whom I had previously mentioned the matter

at a casual meeting. This letter was at once forwarded to the

Lieutenant-Governor of the North-West Provinces, with instruc-

tions to procure a report on the case, and to suggest, on the

supposition of a public reward being approved of, the kind of

reward which should be given. Answers were received by the

Court, which were communicated to me on the 3rd of March,

1858. They contained various replies to the questions proposed,

by H. Stewart Reid, Esq., Director of Public Instruction in the

North-West Provinces, and other gentlemen connected with the

procured him the respect he deserved before his death, which took place

August 12th, 1851, from inflammation of the liver. He lived two lives of

real utility, one in England and one in India
;
and as many in either country

know nothing of his career in the other, and this work is intended for both, a

short abstract of his life is here given. This abstract is the more .appropriate

as his encouragement of Ramchundra was the first of the train ofcircumstanceso

which produced the reprint now before the reader.



same department. "With some difference of opinion as to the

mode of acknowledgment, there was unanimous appreciation of

Uamchundra's services to his country, and admission of the

desirableness of encouraging his efforts. The Court accompanied

the communication of these answers to me with a request that I

would point out how to bring Ramchundra under the notice of

scientific men in Europe. In my reply (March 18), assuming

distinctly that I conceived the question to be, not merely how

Eamchundra could be rewarded, but how his work might be made

most effective in the development of Hindoo talent, I recom-

mended the circulation of the work in Europe, with a distinct

account of the grounds on which the step was taken. I entered at

some length into my own view of those grounds, and volunteered

to draw up the statement which should accompany the publication.

After some correspondence on details, the Court (July 1), ex-

pressing entire satisfaction with my views, and characterizing

them as
"
deserving of the most attentive consideration by all

who are charged with the superintendence of education in India

in its higher grades," accepted my offer to superintend the present

reprint, for circulation in Europe and in India.

I shall at once proceed to a short account of these views
;
after

which I shall give some account of E-amchundra, the author of the

work. Of course it will be remembered that the late Court of

Directors is in no way answerable for the details of my exposition,

though their decided approbation was bestowed on the general

sketch which I laid before them.

There are many persons, even among those who seriously turn

their thoughts to the improvement of India, who look upon the

native races as men to be dealt with in the same manner as Caffres

or New Zealanders. Judging by the lower races of the Peninsula,

and judging even these more by the grosser parts of their mytho-

logy than by the state of domestic life and hereditary institutions,

they presume that the Indian question resolves itself into an



inquiry how to create a mind in the country, and that mind fash-

ioned on the English standard. They forget that at this very

moment there still exists among the higher castes of the country

castes which exercise vast influence over the rest a body of

literature and science which might well be the nucleus of a new

civilization, though every trace of Christian and Mohamedan civil-

ization were blotted out of existence. They forget that there exists

in India, under circumstances which prove a very high antiquity,

a philosophical language which is one of the wonders of the world,

and which is a near collateral of the Greek, if not its parent form.

From those who wrote in this language we derive our system of

arithmetic, and the algebra which is the most powerful instru-

ment of modern analysis. In this language we find a system of

logic and of metaphysics : an astronomy worthy of comparison with

that of Greece in its best days ;
above comparison, if some books

of Ptolemy's Syntaxis be removed. We find also a geometry, of

a kind which proves that the Hindoo was below the Greek as a

geometer, but not in that degree in which he was above the

Greek as an arithmetician. Of the literature, poetry, drama,

&c., which flourished in union with this science, I have not here

to speak.

Those who consult Colebrooke's translation of the Vija Ganita,

or the account given of it in the Penny Cyclopaedia, will see that I

have not exaggerated the point most connected with this preface.

For others I will quote the impression made, five-and-thirty

years ago, upon the mind of a mathematician whose subsequent

career and present position will give that weight to an extract

from his opinions which would have been given to any reader of the

whole article by the article itself, even had it been anonymous.

Sir John Herschel, in the historical article Mathematics, in JSrew-

ster's Cyclopaedia, after some general account of the Hindoo

algebra, proceeds as follows :
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" The Brahma Sidd'hanta, the work of Brahmegupta, an Indian

astronomer at the beginning of the seventh century, contains a

general method for the resolution of indeterminate problems of

the second degree ;
an investigation which actually baffled the

skill of every modern analyst till the time of Lagrange's solution,

not excepting the all-inventive Euler himself. This is matter of a

deeper dye. The Greeks cannot for a moment be thought of as

the authors of this capital discovery ;
and centuries of patient

thought, and many successive efforts of invention, must have

prepared the way to it in the country where it did originate, ^t

marks the maturity and vigour of mathematical knowledge, while

the very work of Brahmegupta, in which it is delivered, contains

internal evidence that in his time geometry at least was on the

decline. For example, he mentions several properties of qua-

drilaterals as general, which are only true of quadrilaterals

inscribed in a circle. The discoverer of these properties (which are

of considerable difficulty) could not have been ignorant of this

limitation, which enters as an essential element in their demon-

stration. Brahmegupta then, in this instance, retailed, without

fully comprehending, the knowledge of his predecessors. When
the stationary character of Hindu intelligence is taken into the

account, we shall see reason to conclude, that all we now possess

of Indian science is but part of a system, perhaps of much greater

extent, which existed at a very remote period, even antecedent to

the earliest dawn of science among the Greeks, and might autho-

rize as well the visits of sages as the curiosity of conquerors."

Greece and India stand out, in ancient times, as the countries of

indigenous speculation. But the intellectual fate of the two nations

was very different. Among the Greeks, the power of speculation

remained active during their whole existence as a nation, even

down to the taking of Constantinople : it declined, indeed, but it

was never extinguished. Their latest knowledge was inquisitive,
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as well as their earliest. They preserved their great writers

unabridged and unaltered
;
and Euclid did not degenerate into

what are called practical rules.

In India, speculation died a natural death, A taste for routine

a thing to which inaccurate thinkers give the name of practical

converted their system into a collection of rules and results.

Of this character are all the mathematical books which have been

translated into English ; perhaps all which still exist. That they

must have had an extensive body of demonstrated truths is

obvious
;
that they lost the power and the wish to demonstrate is

certain. The Hindoo became, to speak of the highest and best

class, the teacher of results which lie could not explain, the

retailer of propositions on which he could not found thought. He

had the remains of ancestors who had investigated for him, and

he lived on such comprehension of his ancestors as his own small

grasp of mind would allow him to obtain. He fed himself and his

pupils upon the chaff of obsolete civilization, out of which Euro-

peans had thrashed the grain for their own use.

But the mind thus degenerated is still a mind
;
and the means

of restoring it to activity differ greatly from those by which a

barbarous race is to be gifted with its first steps of progress.

No man alive can, on sufficient data, reason out the restoration

of a decayed national intellect, possessed of a system of letters

and science which has left nothing but dry results, inveterate

habits of routine, great reverence for old teachers, and small

power of comprehending the very teaching which is held in tradi-

tional respect. And this because the question is now tried for the

first time. Many friends of education have proposed that Hindoos

should be fully instructed in English ideas and methods, and made

the media through which the mass of their countrymen might

receive the results in their own languages. Some trial has been

given to this plan, but the results have not been very encouraging,

in any of the higher branches of knowledge. My conviction is,
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that the Hindoo mind must work out its own problem ;
and that

all we can do is to set it to work ; that is, to promote independent

speculation on all subjects by previous encouragement and sub-

sequent reward. This is the true plan ;
all others are neither fish

nor flesh.

That sound judgment which gives men well to know what is

best for them, as well as that faculty of invention which leads to

development of resources and to the increase of wealth and com-

fort, are both materially advanced, perhaps cannot rapidly be

advanced without, a great taste for pure speculation among the

general mass of the people, down to the lowest of those who can

read and write. England is a marked example. Many persons

will be surprised at this assertion. They imagine that our country

is the great instance of the refusal of all unpractical knowledge in

favour of what is useful. I affirm, on the contrary, that there is

no country in Europe in which there has been so wide a diffusion

of speculation, theory, or what other unpractical word the reader

pleases. In our country, the scientific society is always formed

and maintained by the people ;
in every other, the scientific aca-

demy most aptly named has been the creation of the govern-

ment, of which it has never ceased to be the nursling. In all the

parts of England in which manufacturing pursuits have given the

artisan some command of time, the cultivation of mathematics and

other speculative studies has been, as is well known, a very fre-

quent occupation. In no other country has the weaver at his loom

bent over the Principia of Newton
;
in no other country has the

man of weekly wages maintained his own scientific periodical.

With us, since the beginning of the last century, scores upon

scores perhaps hundreds, for I am far from knowing all of

annuals have run, some their ten years, some their half-century,

some their century and a half, containing questions to be answered,

from which many of our examiners in the universities have culled

materials for the academical contests. And these questions have

b



always been answered, and in cases without number by the lower

order of purchasers, the mechanics, the weavers, and the printers'

workmen. I cannot here digress to point out the manner in which

the concentration of manufactures, and the general diffusion of

education, have affected the state of things ;
I speak of the time

during which the present system took its rise, and of the circum-

stances under which many of its most effective promoters were

trained. In all this there is nothing which stands out, like the

state-nourished academy, with its few great names and brilliant

single achievements. This country has differed from all others

in the wide diffusion of the disposition to speculate, which dis-

position has found its place among the ordinary habits of life,

moderate in its action, healthy in its amount.

The history of England, as well as of other countries, having im-

pressed me with a strong conviction that pure speculation is a

powerful instrument in the progress of a nation, and my own birth

and descent having always given me a lively interest in all that

relates to India, I took up the work of Eamchundra with a mingled

feeling of satisfaction and curiosity : a few minutes of perusal

added much to both. I found in this dawn of the revival of Hindoo

speculation two points of character belonging peculiarly to the

Greek mind, as distinguished from the Hindoo
;
one of which may

have been fostered by the author's European teachers, but certainly

not the other.

The first point is a leaning towards geometry. Persons who

are not mathematicians imagine that all mathematicians are for all

mathematics. Nothing can be more erroneous. Not merely have

the two great branches, geometry and algebra, their schools of

disciples, each of which looks coldly upon the other
;
but even

geometry itself, and algebra itself, have subdivisions of which the

same thing may be said. Eor example, Mr. Drinkwater-Bethune,

above mentioned, was by taste an algebraist ; as a practised eye

would at once detect from his unfinished work on equations.
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Business brought him to ray house one morning, nearly thirty

years ago, at a time when I happened to be studying some of the

geometrical developments of the school of Monge. On my point-

ing out to him some of the most remarkable of the conclusions,

he said, with a smile,
" I see that sort of thing has charms for

you." Now the Hindoo was also an algebraist, as decidedly as

the Greek was a geometer : the first sought refuge from geometry

in algebra, the second sought refuge from arithmetic in geometry.

The greatness of Hindoo invention is in algebra ;
the greatness of

Greek invention is in geometry. But Hamchundra has a much

stronger leaning towards geometry than could have been expected

by a person acquainted with the Vija Ganita ; but he has not the

power in geometry which he has in algebra. I have left one or

two failures one very remarkable unnoticed, for the reader to

find out. Should this preface as I hope it will fall into the

hands of some young Hindoos who are systematic students of

mathematics, I beg of them to consider well my assertion that

their weak point must be strengthened by the cultivation of pure

geometry. Euclid must be to them what Bhascara, or some

other algebraist, has been to Europe.

The second point is yet more remarkable. Greek geometry, as

all who have read Euclid may guess, gained its strength by

striving against self-imposed difficulties. It was not permitted to

take instruments from every conception which the human mind

could form
;
definite limitation of means was imposed as a con-

dition of thought, and it was sternly required that every feat of

progress should be achieved by those means, and no more. Just

as the Greek architecture studied the production of rich and

varied effect out of the simplest elements of form, so the Greek

geometry aimed at the demonstration of all the relations of

figure on the smallest amount of postulated basis. The great

problem of squaring the circle, now with good reason held in

low esteem, was the struggle of centuries to bring under the
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dominion of the prescribed means what might with the utmost

ease have been conquered by a very small additional allowance.

The attempt was unsuccessful
;
so was that of Columbus to dis-

cover India from the west. But Columbus commenced the addition

of America to the known world
; and in like manner the squarers

of the circle, and their refuters, added field on field to the extent

of geometry, and aided largely in the preparation for the modern

form of mathematics. Very few of these additions would have

been made, at or near the time when they were made, if it had

satisfied the Greek mind to meet each difficulty, as it occurred,

by permission to use additional assumptions in geometry.

The remains of the Hindoo algebra and geometry show to us no

vestige of any attempt to gain force of thought by struggling

against limitation of means : this, of course, because their mode of

demonstration does not appear in the works which are left, or at

least in those which have become known to Englishmen. But we

have here a native of India who turns aside, at no suggestion but

that of his own mind, and applies himself to a problem which has

hitherto been assigned to the differential calculus, under the con-

dition that none but purely algebraical process shall be used. He
did not learn this course of proceeding from his European guides,

whose aim it has long been to push their readers into the diffe-

rential calculus with injurious speed, that they may reach the full

application of mathematics to physics ;
and who often allow their

pupils to read Euclid with eyes shut to his limitations. Eamchun-

dra proposed to himself a problem which a beginner in the diffe-

rential calculus masters with a few strokes of the pen in a month's

study, but which might have been thought hardly within the possi-

bilities of pure algebra. His victory over the theory of the difficulty

is complete. Many mathematicians of sufficient power to have

done as much would have told him, when he first began, that the

end proposed was perhaps unattainable by any amount of thought ;

next, that when attained, it would be of no use. But he found in
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the demands of his own spirit an impulse towards speculation of a

character more fitted to the state of his own community than the

imported science of his teachers. He applied to the branch of

mathematics which is indigenous in India, the mode of thought

under which science made its greatest advances in Greece. My
own strong suspicion that it was the want of this mode of thought

which allowed the decline of algebra in ancient India, coupled

with my thorough conviction that, whether or no, this mode of

thought yields the proper nutriment for mathematical science in

its early and feeble life, produced the recommendation to the

Court of Directors to which this reprint owes its existence.

Eamchundra's problem and I think it ought to go by that

name, for I cannot find that it was ever current* as an exercise of

ingenuity in Europe is to find the value of a variable which will

make an algebraical function a maximum or a minimum, under

the following conditions. Not only is the differential calculus to

be excluded, but even that germ of it which, as given by Eermat

in his treatment of this very problem, made some think that he

was entitled to clain the invention. The values of $x and of

$ (x+7i) are not to be compared; and no process is to be allowed

which immediately points out the relation of </>#
to the derived

function tfx. A mathematician to whom I stated the conditioned

problem made it, very naturally, his first remark, that he could

not see how on earth I was to find out when it would be biggest,

if I would not let it grow. The mathematician will at last see

that the question resolves itself into the following: Eequired

a constant, r, such that $x r shall have a pair of equal roots,

without assuming the development of </>(#+^)> or any of its

consequences.

* It would not at all surprise me if it should be found that someone

inquirer has suggested the problem ; but, if so, I think the search which I

have made entitles me to say that the suggestion entirely failed to attract

attention, and to establish the difficulty as a recognized exercise.
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It will readily be seen that a short paper, with a few examples,

would have sufficed to put the whole matter before a scientific

society. But it was Ramchundra's object to found an elementary

work upon his theorem, for the use of beginners, with a large

store of examples. As to the method which he has adopted, Eu-

ropeans must remember that his purpose is to teach Hindoos, and

that probably he knows better how to do this than they could tell

him. The excessive reiteration of details, and the extreme mi-

nuteness of the algebraical manipulations, are excellent examples

of that patience of routine which is held to be a part of the

Hindoo character. I may make two remarks on matters which

would strike the most casual observer.

First, the constant occurrence of " the same solved without im-

possible roots," and the transformation by which it is effected,

will remind the English mathematician who has his half-century

over his head, of the old "
pure quadratic," and the victory which

was supposed to be gained when the " adfected quadratic
" was

evaded by attention to the structure of the given equation. Eam-

chuudra and Dr. Miles Bland, &c. &c., are here precisely on the

same scent, both making much of the same little.

Secondly, in the confusion of terms which sometimes appears,

in language implying that an equation is a factor of an equation,

instead of an expression a factor of an expression, we have the

same incorrectness which appears in more than one edition of

Waring' s Meditationes Algelraicce, and which occasioned some

amount of objection to the whole theory from those who could not

see the inaccuracy and its correction. As in

" Scribatur x a=0, x /3=0, x y= 0, x =0, &c. et per

sequationem ex horum factorum continua multiplicatione

(x a) X (x {3) X (x y) X (x ) X &C.=0

generatam dividatur data aquatic."

I believe that selections from liamchundra's work might advan-
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tageously be introduced into elementary instruction in this coun-

try. The exercise in quadratic equations which it would afford,

applied as it is to real problems, would advantageously supersede

some of the conundrums which are manufactured under the name

of problems producing equations.

In the printing I have followed the original in every point,

altering nothing except obvious errata, including the restoration

of the numeral symbol 0, which in the original is always the

letter o. This again is a mistake into which Waring allowed his

printer to fall in almost all his writings. I thought that the Euro-

pean reader would be more curious to look at the way in which

the Calcutta printer treated mathematical manuscript when his

author was no nearer than Delhi, than to see the manner in which

I could mend it. My printers, Messrs. Cox & Wyrnan, have

entered fully into the plan, and have produced as nearly a fac-

simile as possible. I may add that the Calcutta printer has

acquitted himself in a manner entitled to especial notice and high

praise.

Ramchundra, the author of this work, has transmitted to me

some notes of his own life, from which I collect as follows. He was

born in 1821, at Paneeput, about fifty miles from Delhi. His

father, Soondur Lall, was a Hindoo Kaeth, and a native of Delhi,

and was there employed under the collector of the revenue. He

died at Delhi in 1831-32, leaving a widow (who still survives) and

six sons. After some education in private schools, E-amchundra

entered the English Government school at Delhi, to every pupil

of which two rupees a month were given, and a scholarship of five

rupees a month to all in the first and second classes. In this

school he remained six years. It does not appear that any par-

ticular attention was paid to mathematics in this school
; but,

shortly before leaving it, a taste for that science developed itself

in Eamchundra, who studied at home with such books as he

could procure. After leaving school, he obtained employment as
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a writer for two or three years. In 1841, changes took place in

the educational department of the Bengal presidency ;
the school

was formed into a college ;
and Ramchundra obtained, by compe-

tition, a senior scholarship, with thirty rupees a month. In 1844,

he was appointed teacher of European science in the Oriental

department of the college, through the medium of the vernacular,

with fifty rupees a month additional. A vernacular translation

society was instituted, and Ramchundra, in aid of its object,

translated or compiled works in Oordoo, and also on algebra,

trigonometry, &c., up to the differential and integral calculus.

"These translations" I now proceed to quote Eamchuudra's

words " were introduced into the Oriental department as class-

books
;
so that in two or three years many students in the Arabic

and Persian departments were, to a certain extent, acquainted

with English science : and the doctrines of the ancient philosophy,

taught through the medium of Arabic, were cast into the shade

before the more reasonable and experimental theories of modern

science. The old dogmas, such as c that nature abhors a vacuum,'

and ' that the earth is the fixed centre of the universe,' were gene-

rally laughed at by the higher students of the Oriental, as well as

by those of the English departments of the Delhi College. But

the learned moulwees, &c., who lived in the city and had no

connection with the college, did not like this innovation on their

much-beloved theories of the ancient Greek philosophy, which

from centuries past had been cultivated among them.

"
I, with the assistance of the higher students of the English

and Oriental departments, formed a society for the diffusion of

knowledge among our countrymen. We were ambitious enough

to imitate the plan of the Spectator. We first commenced a

monthly, and then a bi-monthly periodical, called the Faivdeddnnd-

zireen (i. e. useful to the reader), at the cheap price of four annas

a month, in which notices of English science were given, and in

which not only were the dogmas of the Mohamedan and Hindoo
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philosophy exposed, but also many of the Hindoo superstitions

and idolatries were openly attacked. The result of this was that

many of our countrymen, the Hindoos, condemned us as infidels

and irreligious ;
but as we did not advocate Christianity, but only

recommended a kind of deism, and as we never lost our caste pub-

licly, by eating and drinking, all our free discussions did not much

alarm our Hindoo friends. When in private meetings our friends,

seeing us so warmly advocating English science and knowledge,

taunted us by saying we will become Christians, as such and such

pundit had become, then we considered this as an insult, and

stated in reply, that the pundit referred to had not received any

English education, and that he was ignorant, and was therefore

deceived by the missionaries, whom we considered as ignorant and

superstitious as our own uneducated friends. We went so far as

to challenge our Hindoo friends to bring any Christian missionary

to us, and see whether he can persuade us. It was then my
conscientious belief that educated Englishmen were too much

enlightened to believe in any bookish religion except that of reason

and conscience, or deism. Sometimes, when the late Baptist

missionary, Mr. Thompson, stopped me in the bazaar, and required

me to think of my eternal concerns, and gave me some tracts, &c.

in Persian and Oordoo, I did not speak to him much, received

parts of the New Testament, &c., and when I returned home I

put them in a corner, and never read them.

" Once - a learned Mohamedan came to me with a copy of the

New Testament in Oordoo, and having read some portion of St.

Paul's epistles, spoke greatly against the apostle, and the mission-

aries in general, because St. Paul teaches that circumcision is of

no use for salvation. His object in reading this to me was to get

an English scholar and a teacher of English science to agree with

him in saying how absurd Christianity and Christians were.

Though what he read was in my mother tongue, still it was

wholly Greek to me
;
I did not understand the question. In
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order to put a stop to this talk, in which I had then no interest,

I briefly told him that, for my part, I considered not only Chris-

tianity, but also Mohamedanism, and all bookish religions, as

absurd and false. Upon this all Hindoos and Mohamedans pre-

sent paid me the compliment of being a philosopher, and departed

with marks of approbation and goodwill.
" A respectable and learned Mohamedan, secretly assisted by

some other* celebrated moolwees of the city, published a treatise

in Oordoo in refutation of the motion of the earth, on the prin-

ciples of Aristotelian philosophy ;
the whole train of reasonings

being copied almost verbatim from a metaphysical work in Arabic,

called Myboodee. But no sooner was this publication made

over to us, than a moolwee, and some higher students of the Ara-

bic department, got up a sharp reply, and published it
;
to which

no answer was returned. Afterwards, in addition to the bi-

monthly periodical, we commenced a monthly magazine, called

the MooJiib-i-Hind, or the Friend of India. But it must be

confessed that we did not receive sufficient support from the native

public, and it was principally through the patronage of English

authorities, as Sir John Lawrence (the magistrate of Delhi), Mr.

A. A. Eoberts (ditto ditto), Dr. A. Eoss, Mr. J. E. Gubbins (then

judge at Delhi), who subscribed for several copies of our perio-

dicals, that we got sufficient money to pay the expenses of our

publications. But afterwards, times and circumstances being

changed, wre were compelled to discontinue them
;
so that, in 1852,

the bi-monthly periodical was also discontinued, after being kept

up more than five years.

" In 1850 I published the mathematical work to which this

account of my humble life is intended to be attached. As the

work was published in Calcutta, I requested a friend of mine

there to present copies of it to distinguished men in that city ;
but

the reviews published in some Calcutta papers were generally

unfavourable to the publication." In another letter Eamchundra
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says,
" When I composed my work on * Problems of Maxima and

Minima,' I built many castles in the air
;
but Calcutta reviewers,

&c. destroyed these empty phantasms of my brain." He also

describes himself as subjected to kind rebukes from some of the

best friends of native education in the North-West Provinces, for

his ambition in publishing his work in English.
"
During the examination vacation in 1851, having obtained

three months' leave from the college, I went down to Calcutta, of

which I had heard much, and which I was very desirous of seeing.

When I arrived there, I happened to read a number of the Cal-

cutta Review, in which a very unfavourable notice was given of

my work. My friends then advised me to write an answer to

it, which I did, and the editor of the Englishman very kindly

published it in his paper.
" Dr. Sprenger, who was formerly principal of the Delhi Col-

lege, introduced me to the Honourable D. Bethune, of the

Supreme Council, who very kindly received from me thirty-six

copies of my work, and paid me 200 rupees as a donation." It

should be noted that Ramchondra had published the work entirely

at his own expense.
" I afterwards learned that he sent a

number of these copies to England."

After mention of the correspondence, &c. described at the begin-

ning of this Preface, Eamchundra proceeds as follows :

" The honourable members of the Court of Directors were

pleased to confer honours upon me, and the Government in this

country sanctioned a khillut (dress of honour) of five pieces, which

I am told I will obtain at Delhi, and also a reward of 2,000

rupees, which I have already received at the hands of Captain

Robert Maclagan. I am much thankful to the English Govern-

ment that they are so bent upon encouraging science and know-

ledge among the natives of this country, as to take notice of a

poor native of Delhi like myself.
" The most important event of my life, at least what I consider
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to be as such, was, that by God's unsearchable and gracious Provi-

dence I was brought to the knowledge of the Saviour. After I

had finished my mathematical work, and before I went down to

Calcutta on leave, I had become a believer in the Gospel. Before

this belief had taken possession of my heart, there were two erro-

neous notions in my head (and which I believe must ever be in

the heads of nearly all native youths educated in Government

colleges and schools, as long as the system of instruction conti-

nues to be pursued as it is till now)." The first of these notions

was that the English themselves did not believe in Christianity,

because they did not, as a Government, exert themselves to teach

it. The second was that a person who believes in one God stands

in need of no other religion. I omit the details of Ramchundra's

reasoning, because this publication is expressly intended for India

as well as England, and because I do not feel authorized to intro-

duce into a work published by the late and present Government

of India, what might originate a discussion on a most difficult

question of Indian policy. E-amchundra proceeds thus :

" Both of these erroneous notions were dispelled in the following

manner. Once a Brahmin student was sent by an English officer

from Kotah to the Delhi College, and was recommended to the

principal's notice. This stranger in Delhi waited to see the church

during divine service. The principal, Mr. Taylor, also requested

me to go with the Brahmin student to see the divine service in

the church, if I liked. And thus, out of mere curiosity, we went

there, and saw several English gentlemen whom I respected as

well-informed and enlightened persons. Many of them kneeled

down, and appeared to pray most devoutly. I was thus unde-

ceived of my first erroneous notion, and felt a desire to read the

Bible. Mr. Taylor recommended me first to go through the New

Testament. I commenced it, and read through it with attention
;

and thus I became aware that salvation is not merely in knowing

that there is one God, and that polytheism and idolatry are false,
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but that it is in the name of our most blessed Saviour, the Lord

Jesus Christ
;
and in this manner I was cured of my second error.

I afterwards read the English translation of the Koran, by Sale,

the Geeta in English, and had conversations and discussions with

those who knew these books in the original languages ;
and at last

I was persuaded that what is required for man's salvation was

in Christianity, and nowhere else. I then read many Christian

books, together with some treatises of Hindooism and Mohame-

danism, and had frequent discussions with the professors of each

of them, but particularly with the latter. But the final step of

baptism was difficult for me to take
;
for by this I was sure to

lose caste and dissolve all family connection, &c.
;
and therefore

I wished to believe that baptism and a public profession were not

necessary for becoming a Christian. When I went down to Cal-

cutta, Mrs. very kindly gave me a letter to the late Professor

Sturt, of the Bishop's College there
;
and when by means of this

letter I was introduced to him, though he gave me reasons for the

necessity of baptism according to the Gospel, I very obstinately

did not agree with him. Near the end of March, 1851, 1 returned

to Delhi, and for more than a year I remained in great distress of

mind, until the llth of May, 1852, when I and the late Sub-

Assistant Surgeon Chimmun Lall, who had formerly obtained

some Christian knowledge in Calcutta, were, by God's special

grace, brought to submit to baptism by the late Eev. Jennings,

chaplain of Delhi."

Kamchundra continued as teacher at Delhi College, the princi-

pal of which was Mr. E. Taylor, of whom he speaks in terms of

the highest gratitude and respect. Mr. Taylor was one of the

victims of the mutiny, as was also Chimmun Lall, just mentioned.

" The mutineers also inquired after me
;
but my younger brothers,

who are as yet Hindoos, concealed me in the female apartments

of my family's house, in a lane, and my neighbours and acquaint-

ances were kind enough not to betray me. On the evening of the
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third day, that is, on 13fch May, 1857, when it was dark, I

escaped out of the city, accompanied by two faithful servants, who

took me to the village of Matola, about ten miles distant from

Delhi, I remained in this village about a month, in great danger

of being betrayed by those who were opposed to the zemindar who

had very kindly lodged me in his house. Here I daily used to

persuade the zemindars that it was wrong that the English were

gone for ever, by telling them the vast resources, the power, and

the knowledge of the English nation. On 10th June, 1857, a

body of mutineers passed by this village, and some one told them

that a Christian was living in it
;
but my old servant was warned

of this a few minutes before : he awakened me, and told me of my

danger. At first I hid myself in the zemindar's cottage, expecting

to be found out and killed
;
but a very prudent Brahmin zemindar

advised me and my servant to fly to the jungles before the muti-

neers could arrive. AVe did so
;
but before we could run three

quarters of a mile, we heard a great noise in the village, bullets

were whistling about us, and horsemen appeared to be in our

pursuit, for the noise of galloping was distinctly heard. I then

rushed into a thorny little bush, not minding the thorns that

went into my flesh. By God's merciful providence the mutineers,

after plundering and giving a good beating to the zemindars, &c.

with whom I lived in the village, did not penetrate into the

jungle, but went their way towards Delhi. When there was

quiet towards the village, I and my old Jaut servant traversed

the whole jungle, and with great difficulty reached the English

camp on the 12th June, 1857. Here I was employed as an

English translator of daily news from Delhi, for the information

of the general and other commanders, and remained in the camp
till the capture of Delhi on the 20th September, 1857. In Janu-

ary, 1858, 1 was appointed as native head master in the Thomasou

Civil Engineering College at Eoorkee, on 250 rupees a month
;

which situation I held for eight months, and in the beginning of
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the present month, September, 1858, I was appointed as head

master of the school (not a college) which is being organized at

Delhi."

Having thus given the reader the account which he will

naturally expect of the reasons for this publication, and of the

author of it, I leave those reasons to his attentive consideration,

and that author to his kindly criticism, and to the interest which

must be excited in the mind of any one who is capable of feeling

curiosity about the history of human progress, by the revival in

India, fostered by Europeans, of speculation on one of the sciences

for which Europe is indebted to India.

A. DE MORGAN.

UNIVERSITY COLLEGE, LONDON.

January 17, 1859.
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PREFACE.

FOR the last four or five years I was desirous of solving

almost all problems of Maxima and Minima by the principles

of Algebra, and not by those of the Differential Calculus.

All those problems which brought out equations of the

second degree were of course easily solved by the method of

imaginary roots given in some works on Algebra, particu-

larly in Wood's Algebra by Lund, and the Encyclopaedia

Metropolitana. But even these problems in several cases

required particular artifices, without which it was impossible

for me to solve them. All these problems are solved in the

first chapter of this little work. Besides the method of

imaginary roots, I have given another, quite independent

of Imaginary quantities, quantities which to many beginners

of Mathematics, appear somewhat mysterious and unintel-

ligible. This latter method I may venture to call a new

method, because in all mathematical works which I have had

access to, I have never seen a single problem of Maxima or

Minima solved by it, though it is used to reduce an adfected

quadratic to a pure one in a great many works on Algebra.

Thus far I have spoken of the first chapter.

All the problems solved in the second chapter bring out

cubic equations, the solution of which on the condition of



Maximum or Minimum, required a new method, which I

could not find, though I searched for it in several works

enumerated hereafter. I then resolved to find out a method,

and in intervals of leisure during three years I continually

thought on the subject, and at last found it out. This is a

method which appears extremely simple and easy, though it

baffled all my endeavours for the space of three years. I

may call it new, for I did not find it in any book I looked

into.

The third and fourth chapters, and the supplement con-

tain problems and general solutions of particular equations

of the fourth, fifth, and the sixth degree, together with those

problems in which two or three variable quantities enter.

The methods used in these parts of the work, though more

difficult and intricate than that used in the second chapter,

were easily discovered.

This work contains about 130 problems taken chiefly

from the following works : Simpson's Fluxions, Hall's Dif-

ferential Calculus, Gregory's Examples, Connel's Differential

Calculus, Walton's Differential Calculus, Ritchie's Differen-

tial Calculus, Young's Differential Calculus, Encyclopedia

Britannica, Hirsch's Geometry, works on Mixed Mathema-

tics, &c. Besides the problems solved here, many more may

be solved by the methods given in this treatise.

I have also given definitions, formulae, and propositions

necessary for the study of this work in the Introduction.



In conclusion, I flatter myself with the hope that my
labours will be of some use to those Mathematical students

who are not advanced in their study of the Differential

Calculus, and that the lovers of science, both in India and

Europe, will give support to my undertaking.

Owing to the necessity of having the work printed in

Calcutta, and my consequent inability to superintend the

sheets passing through the press, many errors, almost insepa-

rable from a work of this nature, have unavoidably crept in ;

for these I must beg the indulgence of my readers.

RAMCHUNDRA.

DELHI,

IQth February, 1850.
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INTRODUCTION.

(1.) REDUCTIONS OF EQUATIONS.

[Definitions.']

1. An equation is an algebraical expression of equality

between two quantities.

2. A root of an equation is that number, or quantity,

which, when substituted for the unknown quantity in the

equation, verifies that equation.

3. A function of a quantity is any expression involving
ft I y>

that quantity; thus, axz+ b, &c. These functions are
x

usually expressed by/ (x] .

PROP. Any function of x, of the form #n + px
n~~l +

qx^~
l + &c., when divided by x a or x + a, will leave a

remainder, which is the same function of a or a that the

given polynomial is of x.

Let/ (x]
= x^+pxn~ l + qx-~* + &c. ; and, dividing/ (a?)

by # a or x+ a, let Q denote the quotient thus obtained,

and R the remainder, which does not involve x ; hence, by
the nature of division, we have / (x) Q (x a) + R or

f (x] = Q (x + a) + R. Now these equations must be true

for every value of x ; hence, if x = a the first equation

becomes / (a)
= R and if x a the second equation

becomes / ( a) =R, and hence it appears that / (a) or R is

the same function of a as the given polynomial is that

of x. If/ (#)
= and a be a root of this equation, then by

definition (2) we must have / (a)
= or R = 0, and hence

i$



= o or L^L= --= or Q is in both
.2? a x a x -{-a x -\-a

cases = 0.

Ex. Let / (x]
= xz xz+ r = and a a root of this

equation :

x + a] x* x*+r ( x* (0 + 1) a? +|(a + l)

o?
3 +aa?8 =Q = .......... Ans.

-
( + 1) ^

-
(a + l),2?

2 a(0+l) a?

(a + 1) a? + r

a (a + 1) x + 2
(a + 1)

r-02
(0 + l)=# = 0.

This last equation expresses the condition of a, being a

negative root of the given equation.

(2.) TO FIND THE EQUATION TO THE PARABOLA. (Fig. 1.)

Let a point S be taken without the right line CB, and let

the indefinite line Sm revolve about the point S in the plane

SBC; also, let Cm, which is perpendicular to CB, cut Sm
in m ; then, if Sm be always equal to Cm, the locus of the

point m is a parabola.

Through 8 draw BSP at right angles to CB, and if SB
be bisected in A, the curve will pass through A, as appears

by the construction ; draw mP perpendicular to BP, and let

AP= x, Pm = y, AS= a; then SP*+ Pm*= (Sm*= Cm*) =

BP*, or (x-aY+y*=(x+aY', that is, <z>
2-2^ + o2 + ^=

#2+ 2#<3?+ a2
, or y^^ax. This equation is called the equa-

tion of the Parabola, because it expresses the relation between

the lines AP & Pm which determine the position of points

on the curve.



(3.) TO FIND THE EQUATION TO THE ELLIPSE. (Fig. 2.)

Let two indefinite lines Sm, Hm, revolve, in a given plane,

about the points S, H, and cut each other in m, in such a

manner that Sm + mH may be an invariable quantity;

then the locus of the point m is an Ellipse. Bisect SH in

C, and from m draw mP perpendicular to SH, or SH pro-

duced ; let CP = x, Pm = y, CS = c, Sm + Hm = 2 a.

Then \/SP* + Pm2- Sm} and \/HP* + Pm*= Hm ; there-

fore V SP Z + Pm" + V HP* + Pm* = Sm + Hm, or

V(c #)
8+ y + V(c + #)

2+ ?/
2 = 2a : hence \/(c #)

2+#2

'i}+y <2'

) and squaring both sides, c2

= 4 a2 - - 4 a V(c + x)
2 + y

2 + c2 + 2 c^ + a? +
that is, by transposition, 4 a2 + 4c# = 4 \/(c + r)

2 + y
z

or a? + ex =a\/ (c + x)* + y
2

-,
and again squaring both

sides, a4 + 2a2c# + c2^2 = a2c* + Ztfcx + a2^2 + ?
^
2
,
or

a~y* = a* - a2
c'
2 -

(a
2 - c2

)
^2

; let a2 - c2 = 62
,

then

^
2

2
2/
2 = azb2 -

tfx*, and y
2 =

(a
2

#") ; this equation is
Cv

called the equation of the Ellipse, because it expresses the

relation between the lines cP and Pm, which determine the

positions of points on the curve.

(4.) TO FIND THE EQUATIONS TO THE ELLIPSOID,

SPHEROID, AND SPHERE. (Fig. 3.)

An Ellipsoid is a solid figure, such that sections of it per-

pendicular to its three axes are all Ellipses, and consequently
its three axes are unequal.

A Spheroid is a solid figure, generated by the revolution of

an Ellipse about its major or minor axes, and consequently
two of its axes are equal to each other, and sections of it



perpendicular to the axis, about which the revolution is con-

ceived to be performed, are all circles.

A Sphere is a solid figure, generated by the revolution of

a circle about one of its diameters. Figure 3 represents the

eighth part of an Ellipsoid.

AB is part of the Ellipse in the plane xy
AD xz

BD yz

And the section QPR parallel to xy is also an Ellipse.

The surface may be conceived to be generated by a vari-

able Ellipse CAB moving upwards parallel to itself, with its

centre in CZ. Let nQR be one position of this variable

Ellipse ; and let

Cn = z CA = a nR = x^

nm = x CB = b nQ yl

mP = y CD = c

then from the Ellipse QPR we have

f! i

*? y?
'

Also from the Ellipses DRA and DQB we have

x 2 y 2

therefore -~- = ~
; and, multiplying the first equation by

Cl O

*v> 2 2 /v>^ A/2 /y 2 <y2

J- or its equal -, we have -= 4- ?s = -4- = 1
a2 62 a2 o2 a2 c2

/v^^ /i 2 /v2

. . 1- ^- + = 1 equation to the Ellipsoid :

a2 A2 c2

leta = .. + ^-f =1 equation to the Spheroid;

let a = b = c .*. ~ = 1 equation to the Sphere.2



(5.) TO FIND THE AREA OF A TRIANGLE. (Fig. 4.)

Rule 1st. Multiply the base by the perpendicular height,

and half the product will be the area. The truth of this rule

is evident, because any triangle is the half a parallelogram

of equal base and altitude, by Euclid, prop. 41, 1st Book.

Rule 2nd. When the three sides are given : add all the

three sides together, and take half that sum. Next, subtract

each side severally from the said half sum, obtaining three

remainders.

Lastly, multiply the said half sum and those three remain-

ders all together, and extract the square root of the last pro-

duct, for the area of the triangle. For let a,b,c, denote the

sides opposite respectively to A,B,C, the angles of the tri-

angle ABC; then by prop. 13, of Euclid, book 1st, we have

BC* = AB* + AC2 - 2AB. AP, or 2 = o2 + c2 - 2c. AP
__ _

or AP =----
; hence we have

<wC

(ff
*-*8 22 -

= 0-

2 - a2

)

2

4c2 4c2

_ (2bc + Q2 + c2 - a2

) (2 be
- 62 - c2 + fl

2

)

4c2

.-. 4c2 CP2 =
.{(* + c)

2 - 2

} { a2 -
(c
-

b}
z

}
= (a + + c) (

a + 6 + c) (a + c) (a + c)

6 + 1 / -.
- -,T-7-r

]
= V * (5

-
a) (5-6) (^

-
c)

where s=a + #-f-c = half the sum of the three sides.



(6.) TO FIND THE DIAMETER AND CIRCUMFERENCE OF ANY

CIRCLE, THE ONE FROM THE OTHER. (Fig. 5.)

This may be done by the following proportion, viz. As

1 is to 3*1416, so is the diameter to the circumference. For,

let ABCD be any circle, whose centre is E, and let AB, BC,
be any two equal arcs. Draw the several chords as in the

figure, and join BE; also draw the diameter DA, which

produce to F, till BF be equal to the chord BD. Then the

two isosceles triangles DEB, DBF, are equiangular, be-

cause they have the angle at D common; consequently

DE : DB::DB : DF. But the two triangles AFB, DCS, are

identical, or equal in all respects, because they have the angle

F = the angle BDC, being each equal to the angle ADB,
these being subtended by the equal arcs AB, BC ; also the

exterior angle FAB of the quadrangle ABCD, is equal to

the opposite interior angle at C ; and the two triangles have

also the side BF= side BD ; therefore the side AF is also

equal to the side DC. Hence the proportion above, viz.

DE : DB::DB : DF=DA +AF becomes DE : DB : : DB :

2DE + DC. Then by taking the rectangles of the ex-

tremes and means, it is DB* = 2DE~ + DE. DC. Now if

the radius DE=l, this expression becomes DB*=2+ DC,
and hence DB = \/2 + DC. That is, if the measure of

the supplemental chord of any arc be increased by the num-

ber 2, the square root of the sum will be the supplemental

chord of half that arc. Let AC a side of the inscribed

regular hexagon = 1 /. DC = V AD* - AC - = \/~W~-^\

= \/3~= 1-7320508076, the supplemental chord of of the

periphery. Then, by the foregoing theorem, by always

bisecting the arcs, and adding 2 to the last square root, there

will be found the supplemental chords of the 12th, the 24th

the 48th, 96th, &c., to the 1536th part of the periphery; thus



it is found that 3'9999832669 is the square of the sup-

plemental chord of the 1536th part of the periphery ;
let

this number be taken from 4, the square of the diameter,

and the remainder = 0-0000167331 /. ^/ 0-0000167331 =
0-0040906112 = TsVe of the periphery; this number then

being multiplied by 1536, gives 6*2831788 for the perimeter

of a regular polygon of 1536 sides inscribed in the circle =
the circumference very nearly when the diameter of the

circle = 2.

(7.) THE AREA OF ANY CIRCLE = RECTANGLE OF J CIRCUM-

FERENCE AND J ITS DIAMETER. (Fig. 6.)

Conceive a regular polygon to be inscribed in a circle;

and radii drawn to all the angular points, dividing it into as

many equal triangles as the polygon has sides, one of which

is ABC, of which the altitude is the perpendicular CD from

the centre to the base AB.

Then the triangle ABC is equal to a rectangle of half the

base AD and the altitude CD; consequently, the whole

polygon, or all the triangles added together which compose

it, is equal to the rectangle of the common altitude CD,

and the halves of all the sides, or the half perimeter of the

polygon.

Now, conceive the number of sides of the polygon to be

indefinitely increased ; then will its perimeter coincide with

the circumference of the circle, and consequently the altitude

CD will become equal to the radius, and the whole polygon

equal to the circle. Consequently, the space of the circle,

or of the polygon in that state, is equal to the rectangle of

the radius and half the circumference. Q.E.D.



(
8

)

(8.)
EVERY SPHERE IS TWO-THIRDS OF ITS CIRCUMSCRIBING

CYLINDER. (Fig. 7.)

By prop. 12 of Euclid, Book 12th, the cones AIB and

QIM are in the triplicate ratio of IF and IK, that is to say

we have this proportion

Cone AIB : cone QIM :: IF3
I IK3

:: FH5

: (FH-2FK) 3

.'. Cone AIB : frustum ABMQ :: FH* : FH 3

- (FH-2FK)*
:: FH* : 6FH2FK- 12FHFK2 + 8FK* but cone

= one-third of the cylinder ABGE, hence ;

Cylinder AG : frustum ABMQ :: 3FH3
: 6FHZ.FK-

Now cylinder AL : cylinder AG ::

.-. Cylinder .4 : ABMQ::6FH'2
: QFH'2- I2FH.FK +

$FK2
, .................. (1)

Now it is evident that IK = KM .'. IK1 + KN2 =
KM* + KN2 = IN2 = IG 2 = KU-. Now circles are to each

other as the squares of their diameters, or of their radii;

therefore the circle described by KL is equal to both the

circles described by KM and KN; or the section of the

cylinder is equal to both the corresponding sections of the

sphere and cone. And as this is always the case in every

parallel position of KL
}

it follows that the cylinder EB,
which is composed of all the former sections, is equal to the

hemisphere EFG and cone IAB} which are composed of all

the latter sections. By proportion (1) we find

Cylinder AL : segment PFN::6FH* : l2FH.FK-SFK2
div.

::FH* : FK(3FH-2FK)
But cylinder AL circular base, whose diameter is AB

or FH multiplied by the height FK ; hence cylinder AL
circle EFGHx FK.
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.-. Segment PFN=*: circle (^FH - 2FK)

FK* .................................................................. (2)

IfFK=FH, then the sphere = | cylinder. Q.E.D.

NOTE. For the cylinder AL = frustrum ABMQ + segment PFN
and .'. cylinder AL frustrum ABMQ = segment PFN.

(9.) TO FIND THE AREA OF AN ELLIPSE. (Fig. 8.)

b
The equation to the Ellipse is y = - N/ a2 x1 and to the

circle described 011 the major axis as diameter is y
l v/a2 #2

.

Comparing these two equations we find

y -y
l
or. 2 a y 2by

l
,
and .'. y \ y

1
:: 26 : 2a.

\JL

In the diagram annexed 2 a = A lA,2b = B lB
} x = any

of the lines or abscissas measured on the line CA or

CA 1 from the point (7, y = any of the perpendicular lines

denoted by pm or plm which are called the ordinates of

the Ellipse, and y
1 = any of the perpendicular lines

denoted by Pm or P lm which are called the ordinates

of the Circle. Now if the area of the Ellipse and Circle

be supposed to be divided into bands perpendicular to the

axis major AA 1
, by ordinates Ppm, placed so closely to-

gether that the arcs of the curves between them may be con-

sidered to be straight lines, the areas of the spaces of the

Ellipse and Circle between every pair of contiguous ordinates

will be proportional to those ordinates, and as all the ordi-

nates are in the same ratio, the sum of all the areas between

the elliptical ordinates, that is, the area of the Ellipse itself,

will be to the sum of all the areas included between the cir-

cular ordinates, that is, to the area of the Circle itself, as any

elliptical ordinate is to the corresponding circular ordinate,

that is, as the axis minor of the Ellipse is to its axis major,

c



By article 6th we find that the circumference of the Circle

described upon the major axis is to its diameter as 2 is to

6-2831 &c. or 1 : 3'1415 &c. (which \et=p) :: 2a : circum-

ference = 2pa .*.
T|
circum. = pa and a = semi-diameter .'.

the area of the Circle = pa x a = pa
z
, we therefore find area

of the Ellipse : pa
2

: : 2b : 2 a.', area of the Ellipse = pab.

(10.) TO FIND THE SUM OF 71 TERMS OF THE SERIES

1+4+ 9 + 16+ 25+ ...... n*.

Assume 1+4+9+16+25+ ......n2 = Pn3 + Qn2 +
Rn + S, and since there are four co-efficients to be deter-

mined, we must have a corresponding number of indepen-*

dent equations; hence

when n=l we have P+Q+R+S=I
n=2 ......

And from these four simple equations we find, by continued

subtraction, P=J, Q=i, R=i an^ ^=0; therefore the

sum of 1 + 4 + 9 + 16 + 25 + ...... n* = ^n
3 + \r? +

n . n(n + 1) (2n + 1) Tn = -
(2^

2 + 3^+l) = -^r '- - -
. If n be sup-D A O

posed to be indefinitely great, n and 2n may be put instead

of (rc+1) and (2n+I) and .*. in this case the sum of the

ift3

series = ....................................................... (A.)
o
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(11.) TO FIND THE AREA OF A PARABOLA. (Fig. 9.)

The equation to the parabola is ?/
2 = 40<2? and consequently

we have the following equations :

APT2

Kp* = 4>aAK.'. AH2 = 4>aHp or Hp = =L

Lri* = kaAL .'. AG* = 4>aGn or Gn = -- &c. = &c.
40

AF* = 40Fr or Fr = - &c. = &c. = &c.
40

An
Let AH= HG = GF= FD = &c. and each = -

n

A ff2 A 7/3

.'.rect.HK=Hp x AH = p- x AH=^- =
40 40

rect. Gq = HG x Gn = HG x

.
3

rect. Fw= GFx Fr=GFx = = &c. = &c.

. . The sum of these rectangles = - - + -i
- + -: r+ &c.

A y-/v.-i /I x/vj J /l.y^/W>

_
-^^3

2N
AD*

(
n +

/L/7'>i3 * ' /L/yyi" O^rW/t' Tct*/^ *v

^4D
2 ^D (w + 1) (2 + 1) ^^ ^ ^4D

( + 1) (2n + 1)x
40 rc

2
2. 3 2 3

It is evident that if the number of parts into which the

line AD is divided be infinitely great, the sum of the rect-

angles must be equal to the area ApnrCD and also by art.

... (n + 1) (2n + 1) n2

10, equa. (A)
- ^ ^ - '- = .-. the area Apnr CD

<v. O O

DCx ^i) w2 DC x AD= _ x = .

*
. the area Apnr CD of the

n3 3 3

parabola = rect. AD x AB Apnr CD = DC x AD
DC x AD ZDCxAD

3-
= ^ . Q.&.L).



A TREATISE ON PROBLEMS OF MAXIMA AND MINIMA
SOLVED BY ALGEBRA,

CHAPTER I.

Problems in the solution of which simple and quadratic

equations only are used.

PROB. (1.) TO DIVIDE A GIVEN NUMBER INTO TWO SUCH

PARTS THAT THEIR PRODUCT MAY BE THE GREATEST

POSSIBLE.

Put the given number = a, one of the parts required =
x, and consequently a x = the other part, .

*
. x (a x) =

ax x1 = product = maximum, which let = r .

'
. a? ax

= r. Solving this quadratic equation we find x =

- -r A/ -- r. Now it is evident that r cannot be greater
<v V Q

a?
than for if it be so, the value of x becomes impossible ;

a

therefore the product ax x*1 or r is greatest when - - =
4c

a
TJ and .

*

. x =
&

The same solved without impossible roots.

In the expression axx* which is to become a maximum,

let x y + -' where the value of y determined by the
Jit

condition of ax a? being a maximum, will show whether

it is positive, zero, or negative. We now find

fft [% f^

ax x1 = ay + y
z

ay = #
2
, which is evi-

dently a maximum when y = 0, .

*
. x = - as before.
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PROB. (2.) TO DETERMINE THE GREATEST RECTANGLE

INSCRIBED IN A GIVEN TRIANGLE. (Fig. 10.)

Let the base AC of the given triangle = b, and its alti-

tude BD = a, and let the altitude BS of the inscribed rect-

angle me (considered as variable) be denoted by x, Then,

because of the parallel lines AC, ac, we find the proportion,

BD : AC : : DS : ac or a : b : : a x : ac or ac

o/b ~~ bx=-
; whence the area of the rectangle or ac x BS

o

bax ~~~ bx^1 b=-- = - (ax x2) = max. It is evident that
a a ^

when a quantity is a maximum, any determinate part, multi-

ple or power of it must also be a maximum, and consequently

the determinate ax #2 of - (ax x^} must be = max.
a

which let = r .'. ax x* r or #2 ax = r. Solving

this quadratic equation we find,

x
a / G^

1

= -=b A / -
r, and it is manifest now that ax a?

2

2 V 4
2

or r cannot be greater than (for the reason stated in the

last problem), and, therefore, when r = max. we must have r

Q->
fl

= . . x = -. Whence the greatest inscribed rectangle is

that whose altitude is just half the altitude of the triangle.

The same solved without impossible roots.

In the expression ax op, which is to become a maximum,

let x = y +
|

.-. ax - x* = a (y +
|)
-

(y +
|)

2 = ay +
2 a2 2

JIT- ?/
2

ay =
?/
2
, which is evidently = max.

when y = 0, or x = - as before.
<v



PROB. (3.) OF ALL RIGHT-ANGLED PLANE TRIANGLES HAVING

THE SAME GIVEN HYPOTHENUSE, TO FIND THAT (ABC)
WHOSE AREA IS THE GREATEST POSSIBLE. (Fig. 11.)

Let AC a, AB = x and BC = y. Then, #2 + ?/
2
being

= a2 we shall have y = \/ a? xz
, and consequently

= - \/a2
a?

2 = the area of the triangle = max. and
<w

#2^2 yA

consequently the square of the area, or = max.

and also four times this, or (fix* a?
4 = max. which let = r.

. . x* a*x? = r. Solving this quadratic equation we

2 mr
find #2 = zt A / - r. and it is manifest that a2

<r
2 x*

2 V 4

a4
or r cannot be greater than ; therefore when r max. we

~E

* 2 a /-5must have r = , . . or = and x=
^ /-, and y va^ x"

/- . Hence it appears that the right-angled plane tri-

v ^

angle contains the greatest area whose two sides containing

the right angle are equal to each other.

The same solved without impossible roots.

In the expression a2#2
a?
4 which is to become maximum

CL (Q 2i vv A, 2/2i

= 2
?/
2 + y* a?y

z =
2/
4
, which is evidently

= maximum when y
4 = 0, and .*. #2 = - or x = /- as

before.



PROB. (4.) OP ALL RIGHT-ANGLED PLANE TRIANGLES CON-

TAINING THE SAME GIVEN AREA, TO FIND THAT WHEREOF

THE SUM OF THE TWO SIDES, AB+ BC, IS THE LEAST

POSSIBLE. (See Fig. 11.)

Let one leg AB, be denoted by x, and the area of the

2a
triangle by a ; then the other side will be denoted by ,

and
x

2a
the sum of the two legs will be x -\ = minimum, which

x

let = r .'. x* rx = 2a (1.)

T
Solving this quadratic equation we find x = -

e

f\+

2a, and it is evident now that r cannot be so

r*
small as to make less than 2a; therefore, when r =

4

r^1

/ T
min. we must have = 2a . . r = 2 v 2a and x = -

4 2

= \/2a = AB. Whence BC = is also = \/2a. There-
x

fore the two legs are equal to each other.

The same solved without impossible roots.

From equation (1) in the preceding solution we have <2?
2

T
rx = 2a, and .*. rx x1 2a. Let x y + - .*. rx

A

- a* = r (y + -
(y + = ry + ^

- y
z - ry

-
-^

7
.2

= 2a, or - y
z = 2a, . . r- = 8 + 4y

2
. Now it is evident

4

r or r2 is the least possible when y = 0, . . r = 2 \/2a and

x v2a as before.
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PROB. (5.) DIVIDE A GIVEN LINE, AE >
INTO TWO PARTS, SO

THAT THE SUM OF THE AREAS OF THE SQUARES DESCRIBED

ON THESE PARTS SHALL BE THE LEAST POSSIBLE.

Let a = the given line, oc one of the parts, then a x will

be the other part. Then, x?+ (a #)
2
is a minimum, that is

2#2
-f a2 2ax is a minimum. Now a2

is a given determinate

quantity and therefore when 2<2?
2 + 2 %ax = minimum

we must also have 2#2 2ax = minimum or its half, viz.

a?
2 ax= minimum, which let = r .

'

. ot? ax = r. Solving

this quadratic equation we find x = - d= A/ r -f Now

r can be less than zero, that is it may become negative;

but, when negative, it cannot be so great as to make the

radical impossible. Therefore, when the least possible, r must
9

fl-
1

Q, ^ .

become a negative quantity = and hence x = -. This

problem may be solved by the following method which is

more elegant.
r a?

Let 2#2 + 2 2ax = r, .-. tf ax = -
(1)

<v A>

Solving this quadratic equation we find,

CL / T Or T
x = - A/ -

. Now r or - cannot be so small as to
& V & 4 >

T ($
make - less than , because in this case the radical quantity

<v 4

becomes impossible; therefore when r is the least possible,
9

we must have - = -- and .*. x = - Hence the given line
4 <w

must be bisected.

The same solved without impossible roots.

In the equation (1) let x = y -f-
'- and therefore we find

/w



/ a\ r a* 9 a* r , ,.- a (y +
2)
=

2
~~

2"
r y

4"
=

2'
^ef^f<*

r = 2^
2 + . Now it is evident that r is the least possible

when y or 2y
2 = 0, .' . # = - as before.

It must here be remarked that when in the solution of

problems of minima we leave out some given negative quan-

tity, we sometimes make r, or the minimum quantity, less

than zero or negative, as is done in the first method of solu-

tion of the preceding problem.

PROB. (6.) OF ALL CONES UNDER THE SAME GIVEN SUPER-

FICIES (s) TO FIND THAT ABD WHOSE SOLIDITY IS THE

GREATEST. (Fig. 12.)

Let the radius of the base AC = x, and the length of

the slant side AB = y, and let p denote the periphery

(3*14 &c.) of the circle whose diameter is unity. Then the

circumference of the base will be 2px, the area of the base

= px*
1

, and the convex superficies of the cone = pxy (which

last is found by multiplying half the periphery of the base

by the length of the slant side) . Wherefore, since the whole

superficies is = pop -f pxy s, we have y
--- % ;

LjJU

= \/AB* -AC* = \/^-9
-

V p^x"

which multiplied by ^-, or J of the area of the base, gives

whence the altitude CB
p

<2?
2 / s2 2s

TST- A / -55 ft>r the solid contents of the cone : which
3 V p^x- p

O /no

being a maximum, its square (s
2
.??

2
2psx

4
)
=

-ŷ

D
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/ s %ps .

{ & a?
4
) must also be a maximum. Since -7 is a con-

\2p
a

stant given quantity, therefore 3? cfi must also be =

maximum, which let = r .
'

. a?
2

<r
4 = r, and %* -

2p 2p

op = r. Solving this quadratic equation we find & =

s f s*

-r- =*= A / TTT-s r. .'.
4 V 16jo

2

5 / s= and a? = A / .

4o V 4

sz

. .'. when r = max. it must be =
4p

s
xr = and a? = A . Now = -- a? =

_ _
/, = V^_ /, =V 4o V 4>4jo p

it appears that the greatest cone under a given surface (or a

given cone under the least surface) will be, when the length

of the slant side is to the semi-diameter of the base in the

ratio of 3 to 1, or (which comes to the same thing) when the

square of the altitude is to that of the whole diameter in the

ratio of 2 to 1.

The same solved without impossible roots.

s s
In the expression #2 x* = max. let a?

2 = + y .-.

S
2 ^4 _fl _. I \2 _^!. _.

2

* ~~
" y ' " = "

y
'

- y y
z = T -

-5 y
z = max. when y = 0, .

*

. a? = -
* z

4p

and x = A / as before.V
s

4>p



PROB. (7.) TO DETERMINE THE POSITION OF THE RIGHT

LINE DE, WHICH, PASSING THROUGH A GIVEN POINT P
SHALL CUT TWO RIGHT LINES AR AND AS, GIVEN IN

POSITION, IN SUCH SORT THAT THE SUM OF THE SEGMENTS,

AD AND AE} MADE THEREBY, MAY BE THE LEAST POSSI-

BLE. (Fig. 13.)

Make PB, parallel to AS, = a, and PC, parallel to AR,
= b ; and let BD = x. Then by reason of the parallel

lines, we will have the proportion x \ a \ \ b \ CE = - -
:

x

Therefore AD + AE = b + a + x +
(

-- = minimum. Now

b + a, being a constant given quantity, x + - is also a
x

minimum, which let = r. .*. x H = r or x*1 rx = ab.
x

T / i

Solving this quadratic we find x - dz A/ ab or r =

2\/ab and x = - = \/ab.

The same solved without impossible roots.

Since x2 rx = ab, we find rx #2 = ab. Let

<v 2 ' 2

y
z

ry = y
z = ab or r2 = 4<ab + 4^

2 = min.

when y = and therefore r = 2 A/o^ and # = - =
2

as before.



PROB. (8.) IE TWO BODIES MOVE AT THE SAME TIME, FROM

TWO GIVEN PLACES A AND B, AND PROCEED UNIFORMLY

FROM THENCE IN GIVEN DIRECTIONS, AP AND BQ, WITH

CELERITIES IN A GIVEN RATIO, IT IS PROPOSED TO FIND

THEIR POSITION, AND HOW FAR EACH HAS GONE, WHEN THEY

ARE THE NEAREST POSSIBLE TO EACH OTHER. (Fig. 14.)

Let M and N be two cotemporary positions of the bodies,

and upon AP let fall the perpendiculars NE and BD ; also

let QB be produced to meet AP in C, and let MN be drawn :

moreover, let the given celerity in BQ be to that in AP, as

n is to m, and let AC, BC, and CD (which are also given), be

denoted by a, b, and c, respectively, and make the variable

distance CN=x : Then, by reason of the parallel lines NE
and BD, we shall have CB : CN :: CD : CE or b : x \\ c :

cvCE .-. CE = . Also, because the distances, BN and AM,

gone over in the same time, are as the celerities, we likewise

have, n : m :: BN : AM or n : m : : x b : AM, or AM=
mx mb mb

, and consequently CM = (AC AM\ a +
n n

mx mx ,, , mb\ 11**= d , (by writing d = a -f -I. Whence MN2 =
n n v J n i

CM* + CN* - CM x 2CE = (d
-

)* + a*-(d-)n
'

n '

lex
v
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Now let the quantity without the brackets = Q, the co-effi-

d2

cient of x A and m2 2cm = B, and we shall
5" I I ~T 7

nr no

therefore find Q (x
2 Ax + B) minimum or x2 Ax +

B = min. which let = r, and .*. x2 Ax + B = r or x2

- Ax = r -- B
(1.)

A2

Before solving this equation we must show that is less
4

than B. Since c = CD and b = BC .. b -7 c and b2
-7 c

2

.-. n2b2
-7 n2

c
2

(2.)

2dm 2cd

n b 2nd (bm -\- en) A2

Now A = = .*. =
m2 2cm m2b + n2b + 2mnc

' '

4
? -f- 1 + r"

n- no

n2d2

(bm + en)
2 bd 2n2

and B =
(m

2b + tfb + Zmncy
~

m*b + tfb + 2mnc

nW (mW H- nW + 2mnbc) fi
, n .

A2

, \, -gr- -^ -. We therefore find B : : :

(m-b + n^b + 2mnc)'
i 4

mzbz + ri*b
z + 2mnbc : m-bz + 2mnbc + c

2n2
. Now as m262

= m2^2
, 2mnbc = 2mnbc}

and nzb2
~7 n2cz by inequation (2) .*.

the third term of this proportion is greater than the fourth

A2 A2

. . B is greater than and .

*
.

- : B = a negative quan-
~B 4Jb

tity_, and may therefore be supposed P. The equation

A f~ A2

(1) gives x2 Ax = r B ..<a? = -- A/ r + B
w ^

A= -- vr P. Now r cannot be less than P .

*
. r = min.

e

^ A mnbd + n2cd
when r = P .'. x = -- = ^ ^ =

;
from whence

2 m2b 4- n2b + 2mnc

BN, AMj and MAT" are also given.
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The same solved without impossible roots.

jl
In the expression #2 Ax + B = min. let x = y -f

<w

B = +

A1 A<L

--Ay--
A2

'A2

P.'.B
'

P .
*

. y
2
4- P = min. which is the case when

4

A mribd -f n*cd
y = .*. x -- = -- as before.

2 m?b + tfb + 2mnc

PROS. (9.) LET THE BODY M MOVE UNIFORMLY, FROM A
TOWARDS Q, WITH THE CELERITY 111, AND LET ANOTHER

BODY N PROCEED FROM B
} AT THE SAME TIME, WITH THE

CELERITY n. NOW IT IS PROPOSED TO FIND THE DIREC-

TION BD OF THE LATTER, SO THAT THE DISTANCE MN
OF THE TWO BODIES WHEN THE LATTER ARRIVES IN THE

WAY OF DIRECTION AQ OF THE FORMER, MAY BE THE

GREATEST POSSIBLE. (Fig. 14.)

Let BC be perpendicular to AQ, and make AC = a, BC
=

bj andBN= x. Therefore, if the position M, be supposed

cotemporary with N, we shall have

1YIX
n : m : : x : AM . . AM = : whence CM = -- a, and

n n

consequently MN = (CN - CM) = vV - b2 - -
v
- + a =

it/

max. which let =r, .-. \/<r
2 bz= r -\ a, and .'. x*

n

,
2 ,

mx Zrmx mtx*
bz = (r+ of- = r2 + 1 5 2ar

n n n* n

mz n2 2m (a r)+ ", .'. 2ar r2 b* a? = 5 x- x
n" n
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2mn(ar) (2ar r* bz az
}n

z

.-. a?
8--r-TT^ <*" = --

5
-* ...... (1) and

imrn-4 mj w
2mn(a r) mznz (a r)

2 mznz
(a r}

z

/a . _v__'_
rjQ _j_
_;_'__

v '

_j_mz
ra
2

(m
2 nz

)

z
(m

2
ft

2

)

2

(2ar r2 bz az
)
nz
(m

z nz
) mn(a r)--

5
-

57-5
- and therefore x 5

--
s

(m
2 w2

)

2 ml nz

Vtf~(
a - r

)

2 - rc
262

(m
2 - nz

)

(m*
- nz

)

z

Now it is evident that in order that this problem may be

possible, r must be less* than a, and consequently r = max.

when ft* (a r)
2 = nzbz

(m
z nz

), for r cannot be taken so

great as to render n*(a r)
2
"7 nzbz

(m
z nz

} 3 and therefore

b\/mz nz mn(a r) mb
a r =-- and x =

g
--^ = / 5

-
=, and

n m* w v m* inr

: Whence m : n :: BN : CN :/ 2 2

Radius : cosine N.

It is also evident that this problem is impossible when

m Z. n.

The same solved without impossible roots.

In the equation (1) let the coefficient of x = A and the

second member = B .*. xz Ax = B. Now let x = y +
A A\ z A\ Az

2~
*

2'
" ^ 2'

' y '

"4

Az Az Az

Ay = y
z

J
- - = B, and therefore y

z = B -f

by substitution, . . (a r)
2

nz

)

z

y
z (mz -nz

)

z + nzbz (mz - nz
)*-'.--1-'

an(j thereiore a r =
*

* This is evident, because if r = a the root becomes impossible, and if

r 7 a, there can be no limit to its increase, that is, it cannot admit of being

a maximum.
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nW(m2 - rc
2
)-'- or r a

*(*-*) Now it is evident that

r = max. when the quantity, subtracted from a = min. which

can only happen when y = 0, .

'

. when r = max. we must

b / =-5 b\/m- ft
2

have r = -- Vmz n* or .a r =-- and . . a?

^4 Tftftfa r) mb ,= = =
--

TT- / s
-

o as before.
2 m^ n2 v nr w

PROB. (10.) TO FIND THAT POINT (F) IN A GIVEN ELLIPSE

ABHD WHICH, OF ALL OTHERS, IS THE MOST REMOTE

FROM THE EXTREMITY B OF THE CONJUGATE AXIS.

(Pig. 15.)

Drawing FE parallel to the transverse axis AH, and

making AH = a, BD = b, and BE = x, we have, by the

property of the curve BF* = BE2 + EF2 = a* + ~ (bx
- #2

)

cfix a2
fl
2

= a?
2 + -T 72 ^2< -^OW a greater than b, .' . -n must

fl
2v ^2 _ a2

be greater than unity, and therefore (1 -j a? = - r

2

cfb
- * - * = max - and

rt-f)

therefore -5
-^ x x? = max. which let = r, and we there-

as 6w

2 7

fore find xz --- x = r. Solving this quadratic we

^azb / 1 ^azb \
2

find x - -rt A/ (2 -) r. Now it is evident
a2

b^ V \ 2 6-/



that r = max. when f-| ^j
= r. But from the nature

of the figure, the greatest value that x
(
= BE) can possibly

admit of is b = BD, therefore if the relation of a and b be

such that
-j- 75 is greater than b} this solution is mani-

festly impossible. To determine this limit, therefore, make
1 ^ /

-73 = b', then it will be found that 2bz = a\ Whence
iJL

'-~

(J

the foregoing problem can only obtain when 2BDZ
is equal

to, or less than AH 2
.

The same solved without impossible roots.

,, . d2b a~b
In the expression -5 p x or = max. let -5 75

= A
or b" or b"

.'. Ax -- a? = max. Let x = y + , therefore Ax x-
A

A^ A^ d-
= Ay -f y

z Ay -
y

1 max. when y =

A A a?b
.-.# = ?/ 4- = -= as before.

^ J ** f* i*L

PROB. (11.) GIVEN THE BASE AND PERPENDICULAR OF A

TRIANGLE, TO DESCRIBE IT SO THAT THE VERTICAL ANGLE

MAY BE A MAXIMUM. (Fig. 16.)

Let AB =
c, DC = p, and AD = x, .-.

x DJ3 f y= tan #-,- - = tan b =- and .*. tan C = tan
p DC p

X C X
tan a + tan b p n cp

f(l _|_ /;J
== .

f
. .*.

1 tan a tan /; 1 x (c x)

~ ~

p~ ex -f x-
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n a
AJ- __ / ^ -4 fT*"*

= maximum .'.---- = min. which let = r .'. st-

ep

c
ex = rpc p*. Solving this quadratic we find x = -

<v

/c2 _ 4 2
\

pc(r H--- ). This problem has three cases:
~j)f/C

'

c2 4 2

1st. Let c z. 2p and .. - must be a negative quantity.
4jpc

and therefore in this case r cannot be taken so small as to be

less than this negative quantity, .*. when r = min. it must=
a 2

c
and.-. sc = -. 2nd. Let c = 2p .'. c2 = 4p

s
.'.. ..

4pc 2
2

c _
= 0. and x = - + v per. Now when r, or the

co-tangent or the tangent of the complement of the vertical

angle C = min. it must = 0, or x = -. In this case, since
28

the complement of C= 0, the angle itself must = 90 degrees.

3rd. Let c -7 2p or c2 -7 4jo
2

. In this case when r or the

co-tangent of the angle C = min. it must be a negative
c2 _ 42

quantity, equal to the positive quantity
-

, and .'.a?

= -. In this third case it is evident that the vertical angle
<v

C must be obtuse, because its co-tangent is negative. It is

also evident that in every case the triangle is isosceles.

The same solved without impossible roots.

In the expression a?
2 ex + p* = min. let x = y + - .'.

A

a*- cx+p*= y*+ cy+ ^
-

cy
-

|-
+ p* = ^ - + /"

^= min. when y = 0, .'. ^r = - as before.
ju



PROS. (12.) TO FIND THE POINT D IN THE STRAIGHT LINE

CE, FROM WHICH AB SUBTENDS THE GREATEST ANGLE.

(Fig. 17.)

Let AC = a, CB = b, and CD = x. It is evident that

AM BM
tan. ADB = tan. (ADM - BDM) = MD MD

MA MB
MD*

(AM-BM) MD . .

MB* -i. AM KM ' 1S evident that MD = x sin v,

AM = a oo cos. 9 and BM = b x cos. 0, we, therefore,

(a b) x sin 9
find tan. < = .

2/3 gr rr-
^r-

a maxi-
arsurfl -f (a x cos. 0) (b x cos. 0)

+ (a x cos. 0) (b x cos. 0)mum '. y =- .
-r.

--
f ^-- a mim-

(a b) x sin

mum
; and since ( Z>)

sin 9 is a constant given quantity

#2 sin2 + (a x cos 0) (b x cos 0)-- must also be a mini-
x

mum which let = r, .' . X* sin2 9 + ab (a + b) cos x +
cos2

0- <z>
2 = tf

2
(sin

2 + cos2

9) + ab - (a + b) cos 9' x =
xz + ab (a + b) cos 0'<r = rx, therefore xz

I (a + 6) cos + r
|

a? = ab. Solving this quadratic we find

(a + b) cos 9 + r
_^

I \(a + b) cos0 + r^
2
"

~7
~~2~ V l T~ j

Now r cannot be taken so small (or, if necessary, negatively

A J ( + *) cos 9 + rl 2

so great) as to make
<^^

-'-- > less than ab,

because this supposition makes the value of x impossible .

*
.

f(a + b) cos0 + r]
2

when r = mm. we must have (
--~-

^
= ab,

I 6 j

o /~T
.-.r 2 V ab (a + b) cos and x = cos + r

<w

_ /~r
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The same solved without impossible roots.

In the expression xz
<f (a -f b) cos + r \ x = - ab

^
let the co-efficient of x = A and let x = y + ,

we there-
&

A* A1

fore find x9- Ax + ab = y* + Ay +
'

Ay - +
''

<v

06 = y
2 - + ab = y'

2 + fl* - - : = 0, or = if +

Az

ab. Now it is evident that r and - - = min. when y = 0, .*.
TO

A ,
- = vab . . x =V ab as before.
A.

PROB. (13.) TO BISECT A TRIANGLE BY THE SHORTEST

LINE. (Fig. 18.)

Let ABC be the given triangle, and PQ the shortest line

required. Also let CP = x, CQ =
y, PQ = u, and a, b, c

the three sides of the triangle, and C the angle BCA. Pm
and Bn are perpendiculars drawn from the points P and B

Pm
on the line CA. Now by similar triangles we find -== =

C/x

Bn = sin C, .

*
. Pm = x sin C and Bn = a sin C and . .

CQ x Pm xv sin C , CA x J3ft 05 sin C ,= J ~ and ~+- = -
; but

CQ x Pm C^4 x -fift xy sin C
supposition 2 x -^

-- = --- .'. A x ^
-- =

A A

ab sin C ab
..

By Prop. 13, Book 3d of Euclid we find

aW
u* = x1 + y

2 - Zxy cos C = x1 + - - 6 cos C = mm.
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a-fr-

which let = r . .*. a?
4

-\ ab cos C. a? = rx1
, and there-

4

fore x* (ab cos C + r) #2 = -
. Completing the

~E

square and extracting the square root we find,

ab cos C + r __ . / (ab cos C 4- r)
2 262

Now 2

2 V 4

is greater than 262 cos2
(7, .'.in order that the value of a?

2

may not become impossible, we must have ab cos C + r

ab, .'. r = ab ab cos C, and .'. when r = min. we must

ab cos C + r 06
have ar : ; : ..# =

^ .-. M2 = - + - ab cos C = 06 (1 cos C) =
<4 <v

+ c2
(0

2 + 62
)) c2

(0 6)
2

._ ^ >_ ail(j t

-

< u(

(c + b) (c + a b)

solved without impossible roots.

Let 06 cos C + r = ^4 and - - = B . . the equation x*

cos C + r) oc? = becomes ofi Aoc1 = B.
4c

A A2

Also let #* = y + -, .-. ^ - -40? = y
2 + ^ + -

= ir = B, .
'

. ?/
2 + B = -r . . when and24 44

r = min. y = 0, . . B = - or = - - and ab A = ab444
cos C -f r and r = ab ab cos C = ab (1 cos C) and

A ab cos C + r ab /ab , ,,

a? = = =
, .. x =. A/ as before.

O O O * v 9A A A ~ &
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PROB. (14.)

Let y = x tan 9 5-7, : find x that y may be a maxi-
4p cos2 9

XT 40 cos2 9 tan 9' x x2-

mum. Now y = = max. and since
4p cos2 9

4p cos2 9 is a constant given quantity, we must have 40 cos2 9

tan 9 x #2 = max. which let = r. Also let the coeffi-

cient of x in this equation = 2A, and we therefore find

2Ax x* = max. = r or 2Ax x*1 = r and hence <a?
2

2Ax = r. Solving this quadratic we find x = A +
V A* -

r, .

*
. when r = max. we must have A2 = r . . x

2A 40 cos2 9 tan 9A = = = 2p cos- 9 tan 9 = 2p sm 9 cos 9

n . n 402 sin2 9 cos2 9
and we find y = 2p tan sin cos 9 =-

cos2

2/? sin2 p sin2 = p sin2 0. The equation is that of the

path of a projectile, and the maximum value of y is the

greatest altitude above the horizontal plane.

The same solved without impossible roots.

In the expression 2Ax x*
1 = max. let x y + A, . .

%Ax - x* = 2Ay + 2A* -
y

z - 2Ay - A2 = A* --
y*

2A
which is evidently = max. when

2/
= 0.'.r = ^4=- - =

<e

2p sin 9 cos 9 as before.

PROB. (15.) DIVIDE A NUMBER a INTO TWO SUCH FACTORS

THAT THE SUM OF THEIR SQUARES SHALL BE A MINIMUM.

Let x = one of the factors. . .
- = the other factor, and
x
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a2

their squares = #2
H

^
= min. = r .' . x* + a? = rx

9

-, and
SEi

.'. #4 rx* = 2
. Solving this quadratic we find, #2 =

r /r2
""

- dr A / --- #2
.

2 V 4
. It is now evident that when r = min. we

2

y.2 y. y,
-

must have = a2 or - = a, .' . #2 = - = .* . x =V a.42 2

The same solved without impossible roots.

In the expression x* rtx?
1 = a2

suppose a?
2 =

?/ +
,- .'. a?* - rx- = y + ry + - -

ry
-

-^
-. = y-

-
-^

=

r2

az
.'. y

1 + a2 =
, which is evidently a minimum when

y = 0, ..- = and a?
2 = - = a

> .' . x = v a as before.

PROB. (16.) FIND THAT FRACTION WHICH EXCEEDS ITS SECOND

POWER BY THE GREATEST POSSIBLE NUMBER.

Let x be the fraction, and it is required to find such a

value for x which may make a?
1 ^2 a maximum. Let

x x1 = r . . x* x = r, and solving this quadratic we

find x = J + V\
- - r. Now it is evident that r cannot be

greater than J, and therefore when r = max. it must be =
J and . . x = \ = the fraction required.

The same solved without impossible roots.

In the expression x a?
2 = maximum, let x = y + the

#2

coefficient of -^
= y + |, and . . we find x x1 = y + \

fi

y
z

y \ = J y
z
, which is evidently a maximum when

y =0, .*. x \ as before.



PROB. (17.) OF ALL TRIANGLES UPON THE SAME BASE, AND

HAVING THE SAME PERIMETER, FIND THAT WHICH HAS THE

GREATEST AREA.

Let 2P be the perimeter, a the given base, x and y the

remaining sides. It is demonstrated in the Introduction that

in any plane triangle whose sides are a, x and y and semi-

perimeter = P, the area = \/P (P --
a) (P --

x) (P
--

y) ;

and because the square of a maximum is a maximum, we

must have P (P a) (P x) (P y) = max. and

P (P a) is a given constant quantity, we must also have

(P x} (P y} = max. Now y = 2P a x .' . P y
= P 2P + a + x=a + x P, therefore by substitu-

tion we find (P x} (a + x P] = max. and .*. aP P-

+ (2P a) x x* = max. and as aP P2
is a constant

given quantity, we must also have (2P a) x a? =
max. which let = r. We now have x1

(2P a) x =

r, and solving this quadratic we find x =

_-*-- r. It is evident that when r is a maximum.
4

(2P - ff)

2 2P - a a
it must be = ----- .'. x = - = P - and y

= 2P - a - x = 2P - a - P + - = P --znd there-
& &

fore y = x, or the triangle is isosceles.

The same solved without impossible roots.

In the expression (2P a) x x1 = max. let x =

@P _ (,Y (2P - ay-
) y - ~ = -

j-
-

y- =
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2P a
max. which happens when y = .*. x = P

&

- as before.
Ju

PROB. (18.) TO INSCRIBE THE GREATEST PARALLELOGRAM

WITHIN A GIVEN TRIANGLE ABC, THE ANGLE A BEING

ONE OF THE ANGLES OF THE PARALLELOGRAM. (Fig. 19.)

Let AEGF\>Q the greatest inscribed parallelogram required,

and ED the perpendicular let fall from one of its angles E,

upon one of its sides AF. Also let AB =
c, AC = b and

AE = x.

The area of the parallelogram = AF x ED. The lines

EG and AC being parallel, the triangles ABC and EBG
must be similar, and consequently AB : EB :: AC I EG, or

c : AB AE :: b : AF; or c : c x :: b : AF, .-. AF =
b \ c ir\-- and the perpendicular ED is evidently = EA x

c

sin A = x sin A. Now substituting these values of AF and

f ,
, a? sin ^4 x 6 (c x)

iLD, we find area ot the parallelogram =-s-
C

b sin A . b sin ^4 .=- fe an = max. : and since- is a constant
c c

given quantity, we must also have ex 2?
2 = max. Let

ex & =. max. = r .*. a?
2 ex = r, and therefore a? =

c /c^~- =b A/ ---
r, and hence it is evident that when r = max.

2 V 4
c2 c

it must be = ~, and .*. x = - or AE =
, .. -

.

solved ivithout impossible roots.

Q
In the expression ex x* = max. let a? = ?/ + jr

and
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c2 c2 c2

. . ex X*1

cy + - -

y* cy =
?/

2 which
fy T? ~fc

f>

is evidently = max. when y = 0, .*. a? = - as before.
iV

PROB. (19.) OF ALL EQUI-ANGULAR AND ISOPERIMETRICAL

PARALLELOGRAMS FIND THAT WHICH HAS THE GREATEST

AREA. (Fig. 20.)

Let ACDE be the required parallelogram, AE = x, AC
= y, and semi-perimeter = a. It is evident that the area of

this parallelogram
= AC x EB (1.)

Now by supposition a? + y = a, . . y = a x = AC
and EB = AE sin A = x sin A

; substituting these values

of AC and EB in equation (1) we find, area of the parallelo-

gram = sin A (ax x2

)
= max. Now as sin A is a con-

stant given quantity, we must have also ax -- a? = max.

which let = r .'. x* ax = r. Solving this quadratic

tt / G?"

we find # = - A / r. and it is evident from this value
2 V 4

2 f,

of x, that when r = max. we must have r = .'. x = -

4 2
a a .

and y = a x a = o .* # = y. Hence it appears
<v <O

that of all equi-angular and isoperimetrical parallelograms,

the equi-lateral has the greatest area.

The same solved without impossible roots.

In the expression ax x* = max. let x = y + '- and
&

O Q

^ r 2

2
<,

- 2

therefore ax x1

ay ^\- y^ ay
- = y- =A 44

max. when y = 0, . . a; = - as before.



PROB. (20.) OF ALL TRIANGLES ON THE SAME BASE, AND

HAVING EQUAL VERTICAL ANGLES, TO FIND THAT WHICH

HAS THE GREATEST PERIMETER. (Fig. 21.)

Let ABC be the required triangle, of which the base AC
is given = b, and the vertical angle ABC = B : it is required

to find the mutual relation and magnitudes of the remaining

sides AB = x and BC = y when the perimeter or the sum

of all the sides is a maximum. Let a perpendicular AD be

drawn to the line BC. It is evident, by the first principles

of trigonometry, that BD = AB cos B = x cos B, AD =
AB sin B = x sin B and .*. DC =

, and .'. y = BD + DC = x cos B +
\/ 2 #2 sin2 B . . perimeter = b + x + x cos B +

= b + 1 + cos x + VTF~"
= max. and as b is a constant given quantity, we must also

have (1 + cos B) x + \/b
z x* sin2B = max. which let = r

>
2

- -
oif- sin2B = r (1 + cos B) x } and, squaring both

sides, we find b2 x* sin2B = r2 2r (1 + cos B) x +

(1 + cos B)
2
x*, therefore { sin2 B + (1 +

O (1

3/1
i Ti\ "70 9 9

/"*f\Q r\ \ WY* /I" __ 1*^ * O^w
I JL i C/Uo

JLJJ
I Uu U I w .

/
sin* I* + (1 + cos -B)

2

Solving this quadratic we find x =

1 + cos)
2

Now it is evident that r or sin2!? r2 when a maximum, must be

r .
,

o 6\/sin2JB+ (1= < sin25 + (1 + cos BY- >b2 or r = -

smB

b(l + cos B)and therefore we find x = .

sin jB Vsin2 B + (1 + cosJ5)
2
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cosB
and y x cosB + v62 x*1 sin2

jB=
sin\/smlB + (1 + cos)

2

b sinB b cos B + b cos2 B + b sin25
\/sin2 B + (1 + cos 73)

2

""

sin JB A/sin2 + (1 + cosi?)
2

= . :=== . . x = y. Hence of all

sinBV sin2 B + (1 + cos5)
2

triangles on the same base, having equal vertical angles, the

isosceles has the greatest perimeter.

The same solved without impossible roots.

In the ____ let
sin2 B + (1 + cos BY sin3 B + (1 + cos .B)

2'

(1 + cosB) V
----

7 >7 nj 1 1 1 f I

sin2 jB + (1 + cos.8)
2

"
J
sin2 5 + (1 + cosJ3)

2
"

2 p . n .

-
0^2

= g
' ^ 2mr x = n qr*. Also

sin2 5 -f (1 + cos!?)
2

let a; = y + Twr and we therefore find y
2 + 2mry 4- m2r2

in __ *2

= w or2 .'. r2 =

\/ vt

which is evidently = max. when y = 0, .
*

. r = .

V q rtf

m\/ n b (1 + cos B)
and .'. x = - =-

,

' = by
Vq - m2 sin B \/sin2 .B + (1 + cos B)

2

substitution as before.

PROS. (21.) TO INSCRIBE THE GREATEST RECTANGLE IN A

GIVEN SEMICIRCLE. (Fig. 22.)

Let CN = x, and CA = a .-. NP =Vand there-

fore the rectangle required = 2PM x CM = 2x vV x2 =
max. .-. 4*a?x

2
4or* = max. and .-. a?zz x* = max. which
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a2 /a*
let = r, .-.%* oV = r, . . #2 = d= A/ --- r2. It

2 V 4

a4 a2

is evident that when r = max. it is = .
*

. #2 = . . x =

a

same solved without impossible roots.

a
In the expression a2#2 #4 = max. let #2 = y + ..

/

/L O O O O 1

or = cry + ---
y ory -r -.-- y = max. when

fy TC 4j

if-
=, 0, . . #2 = -- and x = as before.

v 2

PROS. (22.) OF ALL SQUARES INSCRIBED IN A GIVEN SQUARE

TO FIND THAT WHICH IS THE LEAST. (Fig. 23.)

Let ABCD be the given square, and abed the required one.

Also let AB = BC = a, aB = x, .* . Aa a x. Now it

is evident that ab = ac, the Z. A = z. B and the angles Aab

and Aba are together equal to 90 degrees = angles Aab

and Bac .'. Z. Aba = Z. #ac .*. the third angle Aab = Z.

jBca .*. ^40 = Bc-y but ^4a = a x .' . Be = a x. Now
it is evident that aB* + .Be2 = ac2 or #2 + (a #)

2 = 0c2

= the area of the square required = a maximum, which let

= TJ . . 2<2?
2 2ax + a? = r, and by proceeding exactly as

in problem (5) we find x = - when r = max.
&

The same may be solved without impossible roots as in

problem (5.)



PROS. (23.) TO INSCRIBE THE GREATEST RECTANGLE IN A

GIVEN ELLIPSE. (Fig. 24.)

Let AFGBED be the given Ellipse, and FDEG the in-

scribed rectangle required. Also let mC (where C is the

centre) = Cn = x, AC = a and pC = b .'. mn 2#. Now

by the property of the Ellipse demonstrated in the Introduc-

tion we find mF= - A/a2 - #2
.'. 2mF = \/a2 - x?

a a

and therefore the rectangle FE = FD x DE = FD x mn
2b /
-

5- 4 /-5 5-
--T 4= V a" x- x AX = v aL x" x* = max. . and as

a a a

is a constant given quantity, we find \/azx^ x* = max.

and also aV x* = max. which let = r, . . x* cPa? =

a2 /a*
r. Solving this quadratic we find a?

2 = A/ --
?*, and

<V TD

4

hence it is manifest that r cannot be greater than - - and
4

a4 2

therefore when r = max. it must be = and . . x" and

a
x -=.

This problem may be solved without impossible roots,

exactly in the same way as problem (21.)

PROB. (24.) GIVEN THE BASE AND THE VERTICAL ANGLE OF

A TRIANGLE, SHOW THAT WHEN IT IS ISOSCELES ITS AREA

is A MAXIMUM. (See Fig. 21.)

Let ABC be the required triangle of which the base AC
is given = b, and the vertical angleABC = B: it is required

to find the mutual relation of the remaining sides AB = x
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and BC = y when the area of the triangle is a maximum.

Let a perpendicular AD be drawn to the line BC. It is

evident, by the first principles of Trigonometry, that BD =
AB cos B = x cos Bj AD = AS sin B = x sin B and . .

DC = AC* - AD2 = & - ^ sin2 B and .'.y =
DC=occQ$B + \/62

<r
2 sin2

.Z?, therefore the area of the tri-

angleABC- AD x BC= <

= sinB (<r
2 cos B + x \/bz a? sin2

B) = max. Now as

sin B is a constant given quantity, we must have a?
2 cos B +

x vff - xz sin2
.Z? = max. which let = r, .

*
. x v&>2 #2 sin2J?

= r x* cos B or &2#2 x* sin2 B = r* 2r cos B ot? +
x* cos2B or a?

4
(cos

2^ + sin2 ^) (b
2 + 2r cos.#) a?

2 =
r2 or #4

(
2 + 2r cos

)
x* = r2 . Solving this qua-

b* + 2r cos5 /(6
2 + 2rcos#)

2

dratic we find #2 =-- A/ ---- r2V2 V 4

/* V - 4r (r sin2 B - b* cos J5)

2 4
-

;

Now it is evident that r cannot be taken so great as to

make 4r (r sin2 B b2 cos B} greater than b*, and therefore

when r = max. we must have b* = 4r (r sin2
.Z? Z>

2

, r ,,. ,. ,, ,
and from this equation we find rz --. r =

, . ,, . , . bz
(1 4- cos B}

and, solving this quadratic, we find 2r = _.^ 2 p -.

Substituting this value of 2r in the equation a?
2='

b* (1 + cos B) /b
z

(1 + cos m
we find x- = .

2 -p
- and x = A/ V

.

2

y

2 sin2^ V 2 sin2B
and y = ^J) + DC = x cos B + \/ & - x* sin2 .# =

cos /6
2
(l + cos.#) /A/ V

. + A /V 2sm2^ V.
---

2sm2^ V 2 sin2 B

(1
-

__.___ . _
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/V3 sin2jP 3

sides of this equation we find

/64 si

A/ .V 4 si

+ - -J squaring both

4-

. 9 ^.
sin2 ,6 2

- cos .5
.

24 sin2 B 2

(cos
2

(1 + cos) + sin2^ (1
- cos 5)}--

J
.

2 sin

(1 + cos3 ^ - sin2B cos^)
i:-

o 2 D
- = b cos B +

2 sm2 B

{ 1 + cos B (1
- sin2 B) - cos # sin2 B }
2 sin2 #
1 + cos B 2 sin2 # cos

cos ,e + )

j

.

2 sin2^
Q̂ xl

y and . . y = x. Hence ito 2 P ..
<4 sin x*

appears that the triangle must be isosceles, in order that its

area may be a maximum.

PROB. (25.) TO FIND THE LEAST TRIANGLE TCt, WHICH CAN

BE DESCRIBED ABOUT A GIVEN QUADRANT. (Fig. 25.)

Let CA = a, tC = x, and CT y. It is evident that

the line or hypothenuse Tt is a tangent to the quadrant at

the point P, and therefore the angles tPC and CPT'are right

angles. By similar triangles, according to Prop. 8, Book 6

of Euclid, we have tC : CP :: CP : CN or x : a :: a :

CN .-. CN = - and NP = CM = V CB* - CN2 =
x

__ v j - a\ Also CT : CP :: CP : CM
X1 X

** / o o OiX
-, -, ,,

or w : a :: a : -var ^. .'. v = 7 and therefore
/V) / O O^ \ / /y1-1 - //r



(
41

)

the area of the triangle TCt \xy \a x .

V X*- a?

minimum. Now \a is a constant given quantity, .*. .

x
or its square -5 ?

= min. which let = r, .-.%* = rx*
or a2

ra? or x* rx* = r.cP (!)

y /y2 4/YZ
2

Solving this quadratic we find x = - =t A/ -7
=

A / and here it is evident that r cannot be
2 V 4
less than 4a2

, .-.it must be = 4 2 when it is a minimum, .',

#2 = - = - - = 2a2 and x a V 2 and y = .

t \ / nfi** _ ftV * IM

~2 A/5~
= a v2> .. a? = y. Hence it appears that the angle

P7"C must be = 45 degrees, or that the triangle described

must be isosceles when it is the least possible.

The same solved without impossible roots.

In the equation (1) viz. in X* rx* = ro? let x* = y

+ - and therefore x* TX* = y
z + ry + T ry tr

~
4? <w

7*
2

y
2 = ra2

, . . r2 4m2 = 4y
2
, and therefore we find

~E

r = 2a2 + v42/
2 + 4a4

, and here it is evident that when r =
min. we must have 4y

2 or y = 0, .-. r = 2a2 + 2a? = 4a2

7* 4fl
2

/
and ^2 = - = = 2a2

, .
'

. x = V 2 as before.
< <C

G



PROB. (26.) SUPPOSING A SHIP TO SAIL FROM A GIVEN PLACE

A, IN A GIVEN DIRECTION AQ, AT THE SAME TIME THAT

A BOAT FROM ANOTHER GIVEN PLACE B, SETS OUT IN

ORDER (IF POSSIBLE) TO COME UP WITH HER, AND SUP-

POSING THE RATE AT WHICH EACH VESSEL PROGRESSES TO

BE GIVEN, IT IS REQUIRED TO FIND IN WHAT DIRECTION

THE LATTER MUST PROCEED, SO THAT IF IT CANNOT COME

UP WITH THE FORMER, IT MAY HOWEVER APPROACH IT AS

NEAR AS POSSIBLE. (Fig. 26.)

Let the celerity of the ship be to that of the boat in the

given ratio of m to n ; also let D and F be the places of the

two vessels when nearest possible to each other, and, from

the centre B, through F, suppose the circumference of a

circle to be described. Then the distance DF, being the

least possible, the point F must be in the right line DB,

joining the point D and the centre B ; because no other point

in the whole periphery, at which the boat from B might arrive

in the same time, is so near to D as that wherein the line DB
intersects the said periphery. But now, to get an expression

for DF, in algebraic terms, let BC be perpendicular to AQ
and make AC a, BC = b, CD = x, and then BD will be

= v BC- + CD2 = v bz + x~ ; moreover, because m : n

fid ~\~ VtX
: : AD or a+ x \ BF. we will have BF= , and conse-m

7-75 * na + nx /-TS , na
quently DF = V & + a? = V b* + a?m m

= min. which let = a, .'. \/ bz + x2 = a -fm m

which let = r. Now it is evident that since is a con-m m
stant given quantity, and q = min. we must also have q +
nana . /T9~~, 5- nx -

or r mm. . . V b1
-f <2?

2 -- = mm. = r orm m
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Vt IT /= r + and therefore bz + #2 = r2 H-- # H . .m m mr

ra
2

ft
2 Znrx 2rmn (r

2 bz)m
z- xz--=r2

b* or xz-----x= = ^~ ...... (1)m? m mL n2' mi n2'

Solving this quadratic we find,

ri*\ -f
___ - / .-_-."

m
mnr / (r

2

______ f- /\ / .

9 9
"

%/2 ^2 V

A / { m2 (
m2

(m
2

/i
2

)

2

A/ -r -. Here it must be
mz in" V /Wv>2 /y>2N 2~

lit [ill/ /fr I

remarked, that this problem becomes impossible when m is

less than n, for in this case the quantity
2

(m
2 n2

)m?

must become a positive quantity, and therefore there remains

no condition of r becoming a minimum. Now it is evident

that mV2 or r cannot be taken so small as to make the root

impossible, therefore when r = min. we must have mV2 =

b\/m* n2 mnr
o*m^(m-

J

n-) and .*. r = and x =
m m" n

nb /TO; 9-
na + nx na

"

; also DF = V b" + x" = r =

* w na ov m" n" na , .= -
: whence the positionmm m

of F is known. From the above it is observable that, as DF
must be a real positive quantity (by the question), this

method of solution can only be of use when m is greater

than n, and b\/m? ri*, also greater than na : for in all other

cases the boat will be able to come up with the ship.

The same solved without impossible roots.

/yVW/M/l* I n/*^ . /)^ 1 '**
T , . ,

N
Amur \r

- u )ui .

In the equation (1) or x* ^ x = *
5 -^ let

A * / nnn^ _. 'W^ nm" nn&Itv tv llv
~ iv

half the co-efficient of x = A, and the second member of
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the equation = B, . . a?
2 %Ax B. Now let x = A + y

.-. a?
2 - 2Ax = y

z + 2Ay + A* - 2Ay - 2AZ = y
z - Az

= B, .'.y
z = B + Az

, and by substitution, y* = B + A* =
(r

8 - bz

)
m2 nMr* mW* + (r

2 - 2

)
m2

(m
z nz

)

mz -nz
~

(m
2 - w2

)

2
=

(m
2 - ra

2

)

2

.^m2
(m

2 - w2

) *

(m
2

ft
2

)

which is evidently a minimum when y
z or y = 0, .*. r =

z nb
and x = - as before.m

PROB. (27.) TO FIND SUCH A VALUE FOR X AS WILL MAKE

b (X a)
2 A MAXIMUM.

Let b2
(x a)

z = r, .* . b #2 + %ax a? = r, and . .

a?
2 2ax = b a? r. Solving this quadratic we find

x = a d: \# ~ r, and here it is evident that r cannot be

greater than b; therefore when r = max. we must have

r = b, .*. x = a.

The same solved without impossible roots.

In the equation #2 Zax = b a2
r, let # = y + a

. . #2 2# = y
2 + 2ay + 2 2y 2a2 = y

z a2 =
6 - a2

r, .*. r = 6 y
z which is evidently a maximum

when y
z or y = 0, .*. r = b and # = a as before.



PROB. (28.) TO FIND SUCH A VALUE FOR X AS WILL

X
MAKE --

5 A MAXIMUM.
1-far

x 1 + x*
Since ,
-

5
= max. . .

- = min. which let = r, there-
X

fore a;
2 rx = 1. Solving this quadratic we find # =

M / T2
7*
2

+ A/ -3
-- 1, and here it is manifest that r or cannot

2 V 4 4

be taken so small as to be less than 1, therefore when r =
r2 r 2

min. we must have = 1, .*. r = 2 and a; = - = - = 1.
4 A A

The same solved without impossible roots.

r
In the equation x

2 rx = 1, let x = y + - and there-
&

rz rz r%

fore xz rx = y
2 + ry + ry = y

2
-r = 1,

4 Ji 4

. . = y
z + 1, which is evidently a minimum when y = 0,

4

T*
2

7* 2
.. = 1. .'. r = 2 and # = -:= = 1 as before.

4 22

PROB. (29.) TO DETERMINE FOR WHAT VALUE OF X THE

EXPRESSION tt
4 + b3X C2#2 BECOMES A MAXIMUM.

(fl

4 ^3
\

-r H--? a; x2
)
=

c
2

c2 /
max.

G4 i3 a4
or r H r x #2 = max. Now since 5- is a constant

c2 c2 c4

b3

given quantity, we must have x x2 also = max. which

b3 b3

let = r, . . -3- x x2 = r, or #2 --
3 x = r. Solving
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3 / 6

this quadratic we find x = + A/ r, and here it is

b6

evident that r cannot be greater than and therefore when
"iiC

6ft b*
r is a maximum we must have r = and x = r

The same solved without impossible roots.

b3 b3

In the expression x ^
x rletx = y + 2

and
c <% c

b3 b3 b6 b3 b6

therefore #2 - x = y
z

-] * y + --7 *y in
c2 c2 4c4 c2 2c4

6 6

2/

2 = r .'. r = y
2 which is evidently a max.

6s

when ?/
= 0, .'. x = -^ 9 as before.9 2

PROB. (30.) TO DETERMINE SUCH A VALUE FOR X AS MAY

y- '
i ,.-...

. a3 2arx + aa;
2 A MINI-

MUM.

Here it is evident that a is a constant given quantity, and

consequently %/a3 2a?x + ax2 or its cube a3 2a2
a; + ax2

must also be a minimum. Again as a is also a constant given

... a3 2a?x + ax2

quantity we must have = cr 2ax + or =
u

min. which let = r .*. a:
2 2ax = r cfi. Solving this

quadratic we find x = a + \/ r, and here it is evident that

when r = min. it must be = 0, . . x = a. This problem

may be solved without leaving out any constant given quan-

tity in the following manner, which is more elegant

Let a + v/03 2a?x + ax2 = r, .'. a3 2a?x + ax2 =
1 1* ~~ d )

3 ~~ Z
3

(r a)
3

.'. xz 2ax = . Solving this quad-a
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Vi
n v*

-. Here it is evident
a

that r cannot be taken less than a, because this supposition

makes the root impossible : therefore when r = min. it must

be = a, .
'

. x = a as before.

The same solved without impossible roots.

( \*\ ^

In the equation x2 2ax = '- let x = y + a
a

.-. x2 2ax = y
2 + 2ay + a2

2ay 2a2 = y
2 a2

.
*

. (r a)
3 = ay

2
, . . r = a*y% -f a, which is

evidently a minimum when y = 0, .. r = a and x a as

before.

PROB. (31.) TO FIND THAT NUMBER X WHICH, BEING MUL-

TIPLIED BY THE SQUARE OF ANY GIVEN NUMBER 0, AND

THE PRODUCT DIVIDED BY THE SQUARE OF THE DIFFER-

ENCE OF a AND X, THE QUOTIENT IS THE GREATEST

POSSIBLE.

The product of the square of a and the required number

x = a2x
}
and the square of the difference of a and x =

(a x)
2

. Therefore the quotient which is to become a

maximum is -. r~. Since the reciprocal of a maximum
(a x)

2

(a ~~ x i

must be a minimum, we must have 5
= min. which

a2x

let = r, .
*

. (a x)
2 = a2rx or a2 2ax + x2 = a2rx

} . . x2

(2a + a2

r) x = a2 or x2 a (2 + ar) x = a2
. Solving

this quadratic we find,

a (2 + ar) _^

a (2 + ar) /a
3
(4r + ar2

)
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Here it is evident that when r is a minimum it must be =
2a

0, . . x = = a. In this problem impossible roots are not
A

required at all.

The same solved without impossible roots in another way.

In the equation #2 a (2 + ar) x = az
let x = y -f

a
^

a
' *2 a

(
2 + ar

)
x y

2 + a
(
2 + ar

) y +

4 "v ".i 9 2
~ y 4

= a3
, .-. we find 2

(2 + cr)
2 = 4y

2 + 4a2
,

.'. r =

2
which is evidently a minimum when y = 0,

.*. r = 5
= 0. and x = a as before.

PROS. (32.) TO DETERMINE THOSE CONJUGATE DIAMETERS OF

AN ELLIPSE WHICH INCLUDE THE GREATEST ANGLE.

Call the principal semi-diameters of the Ellipse a, b, the

sought semi-conjugates x and of, and the sine of the angle

they include = y. Then by conic sections we find

#2 + x'
2 = 2 + bz

.'. x' = Va? + b2 - x* and xx'y = ab

.
*

. v = r and therefore y = - = min. Here
x\/a* + b

9- - a*

it should be remarked that when we desire to find the

greatest value of an angle we may proceed to find the least

value of its sine, for the angle is greater and greater as it is

more obtuse, and the sine of an angle is the less the greater

is its obtuseness. It is for this reason that we have put y, or

the value of the sine of the greatest angle, equal to minimum.
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Now, omitting the constant given quantity ab, and inverting

and squaring the function, we find (a
2 + bz

)
#2 a* = max.

which let = r} and therefore x* (a
2 + Z>

2

)
<2?

2 = r. Solv-

^-M2

/(a
2 + 62

)

2

mg this quadratic we find ar = - dt A/ --- '-- r

and here it is evident that r cannot be taken greater than

(fl
2

_|_ J2\2
--- and therefore when r = max. it must be =

4

(a
2 + fl

2

)

8
/a

2 + 62
--- -

. . x \/ z . In the solution 01 this pro-
4f V

blem that property of the Ellipse is made use of which has

not been demonstrated in the Introduction.

The same solved without impossible roots.

In the equation a?
4

(a
2 + 2

)
#2 = r, let #2 = y +

}
and .-. x* -

(

2
4- &2

)
<27

2 = y
8 + (a

2 + 62

) y +

3! I
(a

* + v> y - (

(^2
I m2

= r, and therefore r = - 7 -- y\ which is evidently
"Jo

a2 + 62 a +
a maximum when y 0, .' . ^ = 5 or a?

as before.

/a
2

=
/^/

Now as y = -r=. - we must have by substitution

xVtf + b2 -

y =
tfTb2

/
-T-V2

H



PROB. (33.) GIVEN THE EQUATION y
z

2m%y + #2 = 2

TO DETERMINE SUCH A VALUE OF X AS WILL MAKE y A

MAXIMUM.

From the given equation, in which m is less than unity, we
find a? 2myx = az

y
z
,
and solving this quadratic we

find x = my -: \/a?+ (m
2

l)y
z = my+ Var (1 m-) y

2
.

Here it is evident that y cannot be taken so great as to make

(1 m?) y
z
greater than a2

, and therefore when y = max.

we must have (1 m?) y* = a*, .*. y = and x =
V 1 m2

ma

wr

The same solved without impossible roots.

In the equation a? 2myx = a* y
2

let x = z + my,
.'. x* Zmyx = zz + 2my^r + m2

y
2

2my<2r 2m2
y

2 =

a2 r2

,
g
w^ich is evidently a maximum when z = 0, . . y =

- m
and ^ = as before.

PROS. (34.) IN A GIVEN CIRCLE TO INSCRIBE THE GREATEST

RECTANGLE POSSIBLE. (Fig. 27.)

Let AC be the rectangle, and EF a diameter bisecting

BC, OG = a: and radius = a, then (Euc. III. and II.) EH
OF; also, BO = V~tf~-^x? .'. BC = 2BO = 2Va2 - x2

and HO = 2OG = 2x .'. rectangle AC = 2x x 2yV _ #2

or 4# \/a2
a?

2 = max. and therefore the square of the

fourth part of this rectangle, viz. a2^2
a?
4 = max. which

let = r, . . x* aW = r.
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a2 /a41

Solving this quadratic, we find x* + A/ r, and

4

here it is evident that r cannot be greater than and there-

Q^I g%
fore when r is a maximum it must be = -r- .'. #2 = -

4 A
a

and # = ,_ .

\/2

7
T

Ae same solved without impossible roots.

In the expression a2#2
a?
4 = max. let #2 = y +

a2 a4 a4 a4 2
.-. v - a?* = a2

?/ + - - y -
<ry

-
j = j

-
2/

which is evidently a maximum when y = 0, and therefore #2

ft
2

fl5= .
* x = ._ as before.

PROS. (35.) THROUGH A GIVEN POINT, WITHIN A GIVEN

ANGLE, TO DRAW A STRAIGHT LINE, WHICH SHALL CUT

OFF FROM THE ANGULAR SPACE THE SMALLEST TRIANGLE

POSSIBLE. (Fig. 28.)

Let P be the given point, A the given angle, and CB the

line required. Draw PF and CE perpendicular to AB, and

PD parallel to AC: then, since the angle A and the posi-

tion of P are given, AD, DP and PF are also given.

Let AD = a, DP = b, PF = c, and AB - x :

then BD : DP :: BA : AC
and DP '. PF :: AC '.

CE
From proportion first we find BD : BA :: DP : AC, or

BA x DP
AL =

p-rr
and trom the second proportion AL =

CE x DP BA x DP CE x DP BA
PF '*' BD ~~FF '

r BD
"
PF an
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hence BA I BD :: CE : PF, or ED \ PF :: BA : CE,

a : c : : x : CE = and therefore ABC =
x a 2

n

= min. and is a constant given quantity,
2(*

-
a)

~

2

a?
therefore- is also a minimum, which let = r, .*. a?

2 =
x a

rx ra, and .*. X? rx = ra. Solving this quadratic we

r /r* r /r(r 40)
find x =

y: Y - T : V ~
here it is evident that r cannot be less than 40, and conse-

quently when r is a minimum we must have r = 4 .

*
. x =

L.= ^ = 2a.
2 2

Hence, if AB be taken equal to twice AD, the straight

line passing through B and P will cut off the smallest tri-

angle possible.

The same solved without impossible roots.

T
In the equation #2 rx ra let x = y + , .'. a?

A
y.2

o2 n n3>

rx = y* + ry + - ry - = y*
- = - ra .-. -

ra = y* or r2 4ra = 4y
2 or r = 2a =fc \A%2 + 4a2

which is evidently a minimum when y = 0, . . r = 2a -f 2a

= 4>a as before, and x = - = - - = 2a.
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PROB. (36.) THE EIGHT-ANGLE B OF THE RIGHT-ANGLED

TRIANGLE ABC, RESTS UPON THE STRAIGHT LINE DE,
TURNING IN ONE PLANE UPON B AS A CENTRE ; RE-

QUIRED THE POSITION OF THE TRIANGLE, WHEN THE SUM

OF THE PERPENDICULARS AD AND CE IS A MAXIMUM.

(Fig. 29.)

Let AB = a,BC= b, and AD - x-, then DB = vV-a?2
;

also AB : BD :: BC : CE, or a : A/^~=~^ :: b : CE = -
a

,__ b ._
A/a2 - x* and AD + CE = x + - V 2 - a? = max.

\JL

f _
which let = r. . . A/02

a?
2 = r oc and

a a

2
-f <2?

2 or
a a

2V (i
2 - r2

)

2

ni* I '5 - - -^^_-_ 'v* - ^__
\JJL W T rt W -

a2 + 62 2 + b2

Solving this quadratic we find,

aV
(Z>

2 - r2
)
a2

(a
2 + b*) + a*r2

a

/V
/ fl

262

(a
2

V a2

(a
2 + b*)

- r* }-
. Now it is_

a2 + o2

(a
2 + 62

)

2

evident that r2 cannot be greater than 2 + bz and conse-

quently when r2 = max. it must be equal to (a
2 + bz

)
. . r

2 2 2a
and a? = -

4- ^tf + 62

a third proportional to AC and AB; which determines the

position of the triangle. To find the sum of the perpendi-

culars, substitute the value of x\ then, CE + AD =
b /~ a* a2 b ab a2

\. / tt __ -f-
_ = x_ 4- ===

a V a? + b2 A/oM7^
""

*
'

A/a* + 62 \/a2 + ^
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1 ._
= va2 + b2 = AC, .'. the sum of the perpendi-"

Va2 + b2

culars, when a maximum = the hypothenuse of the original

triangle.

The same solved without impossible roots.

2a2r (b2 r2}a
2

In the equation x2 r ^ x = - ^ let x = y -f
a2 + b2 a2 + b2

a2r 2a2r 2a2r a*r2
_ ...

_

MA T _
_ __.

.

tyi !__ 7y* I _ at
,

I ^j^, ^^^
*?i 70w O, 7 O """"

5/ I Oi 79.V /9 7O\O

2a2r 2a*r2 a*r2 (b2
t

v

a* + b* (a
2 + b2

)

2
~

(02 + ^2
-

a2 + b2

, +*2
-r2) y

2
(a

2 +b2
)
2

therefore-\ , .
2 2

'- = y
2
, . . r2= a2 + b2

y v

2 2
(a* + b2

)

2 a?b2

which is evidently a maximum when y = 0, .' . r2 = a2 + b2,
._ #2

.. r = va2 + b2 and x =
,

as before.
Va2 + b2

PROB. (37.) TO FIND THE POSITION OF THE SAME TRIANGLE

ABC (see last Fig.) WHEN THE SUM OF THE SURFACES OF

THE TWO TRIANGLES ADB AND CBE IS A MAXIMUM.

It has already been shown that, if AB = a, BC = b, and

DA = x, then DB = \/a2 - x2 and CE - -
(a

2 - x2
)*-,

ct

Now BA : AD ::CB : BE, by similar triangles, or, a : x : :

b:BE= X-,

,. ADB\
X /-R

--
5 /= -Va2 x2 + - x x -Va2

2 2a a

(2 +
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b2

and as \ -f =-% is a constant given quantity, we must also

have x va2 - - x2 = max. or its square aV x* = max.

which let = r, .*. #4 a2x2 = r. Solving this quadratic

a2 /a2

we find, x2 = A/ ---
r, and hence it is evident that

A * TC

a2

r cannot be greater than and therefore when r is a maxi-

CL CL CL

mum it must be = .' . x2= and x = ._ = AD. But.
4 3_

VV - #2 = A/a2 - ^ = -^L = ^4D, .-.the angle
v 2

ABD is half a right-angle.

The same solved without impossible roots.

a2

In the equation
2
u?

2 x* rletx2 = y + and therefore
40

tt* tt
2

tt*
2r2 a?

4 = a?y + 77 2/

2 2
y --r = i-- y

2 which is
A 44

fl
2

CL

evidently a maximum, when y = 0, . . x2 = and a? = T=.

v 2
as before.

PROB. (38.) A STRING ABE OF A GIVEN LENGTH, IS FIXED

AT Ay ONE EXTREMITY OF THE DIAMETER OF A CIRCLE,

AND WOUND ROUND PART OF THE ARC AB. THE REMAINDER

OF THE LINE, BEING STRETCHED OUT INTO A STRAIGHT

LINE AND TERMINATING IN THE DIAMETER PRODUCED; TO

FIND THE RADIUS OF THE SEMICIRCLE SO THAT THE AREA

BDE, INTERCEPTED BETWEEN THE PRODUCED PART OF

THE DIAMETER, THE ARC BD
}
AND THE STRING, MAY BE

A MAXIMUM. (Fig. 30.)

Let / = the length of the string ABE,
x = variable radius EC;
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Then from the well-known properties of the circle

. arc AB x BC px
2

Sector ACB =--
; and semicircle =

f

where p = circumference of a circle whose diameter is unity.

We therefore find BDE = Sector ACB + triangle CBE -

semicircle.

AB x x BE x x px2

The condition that 2 ~JJ~

the string is intended
( 4H TiW\ 2

to continue on a tan- = \
A1* + ^^ ^ px _

^
_ ^^

gent to the circle is

omitted. ED. , / I
9\ , .= ^p ( x x*\ = max. and since

\p is a constant given quantity, we must have also -'-us x2

= max. which let = r, .*. x x2 = r, and x2 -- x =
P

J>_
i /~i*~~

r. Solving this quadratic we find x = =fc A/ j 2 r,

I2

and it is manifest that r cannot be greater than -
, and

I
2

consequently when r = max. we must have r = -r . . x =
4jtr

or radius = and therefore / = 2p x radius = p x dia-
2p 2p
meter = circumference ; and hence it appears that the radius

is such that, if the circle were completed, its circumference

would be equal to the length of the string.

The same solved without impossible roots.

In the expression x x2 = max. let x = y H-- and
p 2p

I II2 I
x x2 = x + ,> if

--
p p 2p

2 p 4p

ftherefore x x2 = x + ,> if
-- x

2 2

1

r~2
~~ y

2 which is evidently a maximum, when y = and
^p

therefore x as before.
2p



PROB. (39.) GIVEN A POINT A, IN THE RADIUS BC, OF

THE SEMICIRCLE DEB; TO FIND THE POINT E AT

WHICH, IF A TANGENT EG BE DRAWN, THE ANGLE

AEG, FORMED BY AE AND EG, SHALL BE A MINIMUM.

(Fig. 31.)

Let C be the centre, CA = a, AE = x, CE = b, the

angle CEA =
$.

Then, since CEG is a right angle, and therefore a con-

stant quantity, it follows that, when AEG is a minimum,
AEC is a maximum; and the problem resolves itself into

the determination of E when is a maximum. Now, by

prop. 13th of the 2nd book of Euclid, and by principles of

Trigonometry, we find a2 = b2 + a? %bx cos 0, and there-

#2 _^_ ^2 _ 02
fore cos =-^- . But is always less than a

right angle ; hence when < is a maximum, cos will be a

minimum ;

- a2

= mm. which let = r,

.. b2 + x2 a2 = %bxr or x2 %brx = a2 b2 . Solving

this quadratic we find x = br :rt \/b2r2 b2 + a2
,
and it is

evident, by inspection of the diagram, that CB is greater than

CA .
*

. b2 -7 a2 and a2 b2 = a negative quantity, which let

= P2
. . x = br^=. \/b2r2 - P2

. Now it is clear that r

cannot be taken so small as to make 6V2
less than P2

, and

therefore when r = min. we must have b2r2 = P2 = b2 a2

and r Vb
2 - a2 / b2

77j
and x = br = b A/

r^or b2 = a2 + x2 or CE2 = CA2 + AE2
, and hence

it appears that CAE is a right angle.
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The same solved without impossible roots.

In the equation a?
2 2brx = a? b* let x = y + br

.-. x1 - Zbrx = y
2 + Zbry + 2 r2 - 2bry

- 26V2 = y
a -

6V2 = a2 - b* = -
(6

2 - a2

)
.-. r2 = y

" +
t*

~ ^
which

tr

72 2

is evidently a minimum when y = 0, .*. r2 = .' . r =

b" b
2 a2 and x = br = v bz (# as before.

PROB. (40.) TO FIND A POINT D, IN THE SEMICIRCLE

ADB, SUCH THAT THE SUM OF THE DISTANCES AD +DP
MAY BE A MAXIMUM; P BEING A GIVEN POINT IN THE

RADIUS EC. (Fig. 32.)

Let D be the required point : draw DE perpendicular to

AB ; also, let AC= a, AE = x, CP = b. Then by prop. 35,

3rd book of Euclid, we find, DE2=2axx'i

; therefore PD=
-^ + (a + b - xY=

Now by prop. 8 of the 6th book of Euclid AD=\/ABxAE
.'. AD + PD= \/2ax + V

'

(a + b)
2 2bx maxi-

mum. Let v2<r = y .' . x = %- and %bx = and there-y a

fore y -f A/ (a + b)
z = max. which let = r, and con-

sequently (a + b)
2

:
= r2 2ry + y

2
.'. - y

2
2r?/

=
(
a + 6)2

_ rs and .-. ^ _ .
y =a + b
" a + b

Solving this quadratic we find y= ;"=*= \/ -. jT,y a+ b V (a+ bY(

and hence it is evident that r cannot be so great as to make
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abr2
greater than a (a + b)

3
, and therefore when r is a maxi-

Vfa -j_ )3

A >

<zr / 2
( + b} v

2
0(0 + b)

and .*./ = 7 = A/ ** and x = J-
= nl

'

;

a + b V 2 26

converting this into an analogy, we have 2b '. a :* a + b '. x.

From this it appears that if from AB we cut off AE, a

fourth proportional to 2CP, AC and AP, and through E
draw ED perpendicular to AB, meeting the circumference in

D, then D is the point required. Since x or AE = ^r >

it follows that, as b decreases, x must increase, and that when

b = 0, x = =
infinity. This is no doubt a fair and legiti-

mate conclusion, when the value of x is viewed as an abstract

formula ; it is inconsistent, however, with the nature of the

problem before us, in which we perceive that xy so far from

admitting of indefinite increase, can never exceed the diame-

ter AB or 2a. This limit above which x cannot ascend, will

naturally fix a corresponding limit, below which b cannot

descend ; to reach this we have merely to substitute for x its

greatest value 2a in the equation x = _ .
-

;
the resolu-

60

tion of which will give the minimum value required ; thus,

2a = -
. . b = -; that is, the conditions of possibi-&b o

lity fix P between B and another point distant from it by f

the radius of the circle.

The same solved without impossible roots.

2ar a(a + b)
z

In the equation ir 7 y = --. let y =
a + b

y a + b

ar 2ar , 2ar ~, .

~7rTb''' r
~

7TTl y ''

'

^TT>
Z '

(a + b)
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2ar 2a*r*
2

aV2 a (a
' = " '

+ b (a + b)
z

(a + b)
9-

'

a + b

f a(a + b)
3 -

(a + b)
z zz .. .

and therefore rz = *---^- which is evi
ab

dently a maximum when z = 0, .*. r2 = -
7 and y =

ar /a
z
(a + b) y

z
a(a + b) . e--

7 \/ ,- and x = ~- = ^ 7
- as before.

a + V 2a 2b

PROB. (41.) OF ALL THE CONES WHICH CAN CIRCUMSCRIBE

A GIVEN SPHERE, TO FIND THAT WHICH HAS THE LEAST

POSSIBLE SOLIDITY. (Fig. 33.)

Let D mn and AEB be the circular, and triangular sec-

tions of the given sphere, and the required cone the solidity

of which is to become a minimum.

Let CD = a = radius of the sphere.

CE = x and Am = y = radius of the base of the cone.

It is evident that the angle EDO is a right angle, and conse-

quently the triangle EDC is equiangular and similar to the

triangle EmA .*. Em : mA :: ED : DC or x + a \ y \\

Vx^ a2
I a, and therefore y = ) .* . the area of the

V ^2 a2

circle, which is the base of the cone = py
2
(where p =

circumference of the circle whose diameter is unity) =

pa"(x -f a)
2 (a + <2?)

2
c vl

\ IT- = pa X -r- r> and therefore the solid
<2?
2 a2

(a + SEf) (x a)

(x + a)
2

contents of the required cone = pa? x -r- ~T x
(x + a) (x a)

x + a pa
2

(x -\- a)
2

- =*- x ---- = mm. Let y = x a .*. x +
x a

.. , pa
2

(x + a)
2

/?a
2

a = y + 2a, arid we therefore find -^- x =
-g-
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(y + 20)
2

pa?
x -- = mm. and since *~ is a constant given

y 3

quantity, we must also have --- = min. which let = r,
*s

and therefore y
z + 4>ay + 402 = ry .'. y

2 + (40 r) y =
40 ~~ 7*

402
. Solving this quadratic we find y = 2

v <->- *->-. . /'('
- *> ..j

here it is evident that r cannot be less than 80, and therefore

when r is a minimum, we must have r = 80, and . . y =
40 r 40

= = = 20 and x = y + = 30 .
*

. Em x 4- =
<v <6

40 = twice the diameter of the given sphere. Hence it

appears that the altitude of the smallest cone which can be

circumscribed about a given sphere, is equal to twice the

diameter of the sphere.

The same solved without impossible roots.

In the equation y
z + (40 r) y = 402 let y = z

^^ ... jf + (
4 _

r) y = * -
(4*

_
r) z +

i^Ljl!'

+ 4a - r z - (4ffi
~

r)2 = s* - (4a
~

r)2 =

and therefore 4<2r
2 + 1602 = (40 r)

z =
(r 40)

2
.*. r = 40

+ \/4<2'
2 + 1602

; here it is manifest that when r is a mini-

mum we must have z = 0, and therefore r = 80 . . y =
40 r = 20 and x = y + a = 30 and Em = x + = 40

2

as before.*

* Here y has been used in two different senses, but not so as to pro-

duce confusion. ED.
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PROS. (42.) TO FIND THAT NUMBER WHICH BEING ADDED

TO ITS RECIPROCAL THE SUM IS THE LEAST POSSIBLE.

Let x = number required and - = its reciprocal.x

Now by the conditions of the problem we have x +
x

min. or = min. which let = r, .*. $ rx = 1.
x

r /^T~
Solving this quadratic we find x = - A/ 1, and

& V 4

hence it is evident that r cannot be taken so small as to make

rz
less than 1. and therefore when r = min. we must have

4

T*
2 T
- = 1, .*. r = 2 and x = = 1.

The same solved without impossible roots.

T
In the equation x*1 rx = 1, let x = y + - and there-

&

rZ r2
y.2

fore a? - rx = y* + ry + -
ry
- = if

- = -
1,

. . r2 = 4y
2

-f 4 which is evidently a minimum when y = 0,

T
. . r = 2 and x = = 1 as before.

PROB. (43.) AC AND BD BEING PARALLEL, IT IS REQUIRED

TO DRAW FROM C A LINE CXY SUCH THAT THE SUM OF

THE TRIANGLES ACX AND BXY SHALL BE A MINIMUM.

(Fig. 34.)

If AC = a, AB = b, AX = x, it is easily seen that the

area of the triangle ACX is proportional to ax, and that of

a(b
- xY / (b

- xY\BXY to -* '- so that we have a < x +
x x
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minimum, and therefore x + = min. which let = r.
x

2b + r b"
T** /i^ ) hi /y> ^y>" o* * /y^ - _ 'y* ^^
Hf |~~ C/

" fcUvU ~
oC/ ^-^ / w c*/ ci/

" ~

<v <v

Solving this quadratic we find

+ T1
8Z>

2 2b -\- r

16 4

r)r

16

and here it is evident that r cannot be taken so small as to

make (46 + r) r less than 462
, and therefore when r = min.

we must have r2 + 46r = 4Z>
2

.'. r = \/862 26 and x =

2b + r 2k 2b + VW 2b \/~2 b

4 4 4
"

v/ 2

mines the line

which deter-

The same solved without impossible roots.

2b + r tf 2b
In the equation or--- x = -- let x = y +

& <v

2J + r 2b + r (26 + r)
3 2J-~2< iG

y _ .i _i. = yZ
_ \ L _ -- an(j therefore r

= x/16?/
2 + 862

25, which is evidently a minimum when

y = 0, .*. r = \/8b* 2b and x - = as before.



( 64 )

PROS. (44.) TO FIND THE HEIGHT ABOVE THE GIVEN POINT

A FROM WHENCE AN ELASTIC BALL MUST BE SUFFERED TO

DESCEND FREELY BY GRAVITY, SO THAT, AFTER STRIKING

THE HARD PLANE AT B
f

IT MAY BE REFLECTED BACK

AGAIN TO THE POINT A, IN THE LEAST TIME POSSIBLE,

FROM THE INSTANT OF DROPPING IT. (Fig. 35.)

Let C be the point required, and put AC = x, and AB =
a ; then the spaces of falling bodies, by the force of gravity

being as the squares of the times, we find CB = gf- and CA

=
gt'

2
,
where g 16 feet nearly, and consequently t = =

V g

and f = CA, and therefore t - t
f =/ V \~S**.J.+ CV1.LVI. VJ-AV^J. V^ J. V/A W V C/ /~

v# Vg

j= \/CA = j= Va + x j=Vx the time downV g V g V g

AB, or the time of rising from B to A again : hence the

whole time of falling through CB and returning to A is

i
1 /- 1 / 1 /

,V a + x -T=VX H -7=^V a + x =. (2\/a -f x/_ V i*
I w / V w I / V w I

*' /

v^ v^ v^ v^
= min. and as ^= is a constant given quantity, we must

V 9

have 2\/fl -f x V'

x = min. which let = r .' . 2va -{- x =
r -f vx. Now let A/^- = y . . x = y

2
. . 2\/ + y

2 = r -\-y

and squaring both sides of the equation we find 4 -f- 4y
2 =

2^ y& 4#
r2

4- 2ry + y
2 and y

2
y = . Solving this qua-

dratic we find y = - dt A/ , and here it is evident
o y

that r cannot be taken so small as to make 4r2
less than 12,

and therefore when r = min. we must have 4r2 = 12, and

therefore r = v3a = v a v 3 and y = = A/ -

o V o

and a? = y
2 -

, that is AC = Jo



T7ie same solved without impossible roots.

2r r* 40 r
In the equation y-

--
y = -- let y = z + ,0*0 o

f 2r 2r r2 2r
therefore y*-~y=z2'+ z + -- z-

2 JL
r

2

9 ~3~ ~gT "9" "9"

I2a /9z
2 + I2a , . ,

and 4rj = 9^J + 120 .'./ A/-^
- which is

9

evidently a minimum when 2* = 0, .*./ = \/ 3 \/# and ^ =
r /
y : =

/y/
.-. a? : = y

2

y as before.

PROB. (45.) GIVEN THE HEIGHT OF AN INCLINED PLANE
;

TO FIND ITS LENGTH, SO THAT A GIVEN POWER ACTING

ON A GIVEN WEIGHT, IN A DIRECTION PARALLEL TO THE

GIVEN PLANE, MAY DRAW IT UP IN THE LEAST ^TIME
POSSIBLE.

Let a denote the height of the plane, oc its length, p the

power, and w the weight. Now the tendency down the plane

is = gw sin. of the angle made by the length with the base

of the plane = gw - = -
, where a force of gra-x x

vity = 32i feet, and the tendency up the plane = gp .'.

the whole motive power up the plane = gp
' =

(pxaw)g
; but the mass resisting this motion isp + w, there-

x

fore the accelerating force for raising the weight upon the

(px aw] q
plane is equal to ^- - ^-. Now the space ascended =

(p + w)x
K
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f . / n
x ft- = .

--r-S. f- where/ = force .*. r = 7^-
-*-r-

(p + w}x (px aw)g

a?= min. and .*.- = min. which let = r. and there-
px aw

fore a?
2 = prx awr . . x1

prx = awr. Solving this

, . pr A?V2 4awr pr
quadratic we find, x ^- dt A/ ---- = -~

<V * T? ^

A/ j and hence it is evident that r cannot be

taken so small as will make p*r less than 4>aw, and therefore

,

when r = mm. we must have p
2r = 4taw and r =

g-
. . ^r

= TT = - and . . p : w : : 20 : x : : double the height of
2 p

the plane : its length.

The same solved without impossible roots.

In the equation x* prx = awr let x = y 4- ^-, there-

fore a? prx = y
z + ry +

4
4<awr = 4?r or r --5- r =

/A/V
, .. . . , .

and therefore r = = h A/ --:
i=- which is evi-

dently a minimum when y = 0, and . . r = ^ and x =

as before.
2 p

*** Here 4? and w are masses, not tveights, as stated; and -J/ should

have been used instead of/. ED.



PROB. (46.) A LARGE VESSEL OF 10 FEET, OR ANY OTHER

GIVEN DEPTH, AND OF ANY SHAPE, BEING KEPT CON-

STANTLY FULL OF WATER, BY MEANS OF A SUPPLYING

COCK, AT THE TOP; IT IS PROPOSED TO ASSIGN THE

PLACE WHERE A SMALL HOLE MUST BE MADE IN THE

SIDE OF IT, SO THAT THE WATER MAY SPOUT THROUGH

IT TO THE GREATEST DISTANCE ON THE PLANE OF THE

BASE. (Fig. 36.)

Let AB denote the height or side of the vessel ;
D the

required hole in the side, from which the water spouts, in the

parabolic curve DG, to the greatest distance BG, on the

horizontal plane.

It is evident that the velocity of the water descending

from A to D with which it must spout out in the horizontal

direction must be expressed by the equation v = v%gs =

\/~2 x \7T\/y = A/IT x \/ZD x \f~g ............... (i)

It is also evident that the time t in which the water spouting

out from the hole at D must reach the ground, must be the

T)~D

same in which it may descend from D to B and P = -= =
Iff

2DB V2x VDB
..

9 V g

Multiplying the equations (1) and (2) we find tv = hori-

zontal space GB = 2\/AD'DB = maximum, and supposing

AB = a and AD = x we find %\/x(a x]
= 2\/ax -- #2

= max. and .

*
. ax a? = max. which let = r, and therefore

a?
2 ax = r. Solving this quadratic we find, x = =fc

tu

-T r, and hence it is manifest that r cannot be greater

a
than -

,
and consequently when r = max. we must have
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a2 a= r and x = -. So that the hole must be in the middle
4 2

between the top and the bottom.

The same solved without impossible roots.

In the equation ax 00*" let x = y + -, and therefore we
A

Or Q2
tt

find ax a? = ay + y
2

ay = y
2 which

is evidently a maximum when y = 0, . . x = - as before.
A

PROB. (47.) IF THE SAME VESSEL, AS IN PROBLEM 46,

STAND ON HIGH, IT IS PROPOSED TO DETERMINE WHERE

THE SMALL HOLE MUST BE MADE, SO AS TO SPOUT

FARTHEST ON THE SAID PLANE. (Fig. 37.)

Let the annexed figure represent the vessel as before, and

bG the greatest distance spouted by the fluid DG, on the

plane bG. Here, as before, bG = 2\/AD-Db = 2\/x(c x)

= 2\/cx xz
, by putting Ab = c, and AD = x. So that

2\/cx x2 or ex x*1 must be a maximum, which let = r,

and therefore #2 ex = r. Solving this quadratic we

c /~c?~~
find, # = - db \/ r, and hence it is evident that r

2 V 4

c2

cannot be greater than , and consequently when r is a
rt

c
2

c
maximum we must have r = and therefore x = . So

4 A

that the hole D must be made in the middle, between the top

of the vessel and the given plane, that the water may spout

farthest.

The same may be solved without impossible roots, as

problem (46.)
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PROB. (48.) TO DIVIDE A NUMBER tt INTO TWO SUCH PARTS

THAT IF THE SQUARE OF ONE OF THESE BE SUBTRACTED

FROM THEIR PRODUCT, THE REMAINDER IS THE GREATEST

POSSIBLE.

Let x = one of the parts, and therefore a x the other

part, .*. ax a? = product of the two parts, and a?
2 =

square of one of them, and therefore ax x* x* = ax

a IT

2#2 = max. which let = r . . x2 x = . Solving

a / a? r a
this quadratic we find x ~J~ \f T^ 9~

== T

A/ - -
,
and hence it is manifest that r cannot be taken

so great as to make 8r greater than 2
,
and consequently

when r is a maximum we must have 2 = 8r, and therefore

a
x = .

4

The same solved without impossible roots.

In the expression ax 2^?
2 or its half (- x

a?)
which is

made a maximum, let x = y + and therefore x x?=
4 A

o O O
tv Cl> \JL CL \JL 01*1* i j i
"
y + ~5~

~~ y ?r V ^ ^ ~~ y which is evidentlyA o 2 ' 16 16

a maximum when y = 0, and . '. x = - as before.
4

PROB. (49.) TO FIND THE POINT IN THE LINE JOINING THE

CENTRES OF TWO SPHERES FROM WHICH THE GREATEST POR-

TION OF SPHERICAL SURFACE IS VISIBLE. (Fig. 38.)

Let npA and Dgs be two great circles of the two spheres

in the same plane, AD their common tangent, and C and m
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their common centres. Also let Cm =
c, Cv = a, wm =b,

and CB x. Now by similar triangles (prop. 8th of 6th

book of Euclid) we have CB : CA : : CA : Cb, or x \ a \ : a :

a? d?-

Cb = .'. bv = Cv Cb = a and dw = mw dm
x x

b*
. The surface of the spherical segment whose

c

height is bv = 2pa x bv (p = circumference of a circle

(Q3
\

a2

)
and the surface

x '

of the spherical segment whose height is wd = 2pb x md

= 2p \b
z

) and therefore the sum of the surfaces
V c x'

(d3
\

a2

)
-f

2p (b* )
= 2p (a

2 + A2 -
)
= max.

V c xi \ x c x>

and since 2p is a constant given quantity, we must also have

(o

3 b3
\

1 )
= max. which let = a, therefore

X C X'

a3 b3

1
= a2 + b2

q. Here it is evident that when
X C X

q = max. o2 + b2
q must be a minimum, which let = r,

a3 b3 ca3 + (b
3 a3

)xand therefore 1
=

5
~ mm - which

O . / T O q\
ca3 + (b

3 a3)x ^ cXTlet = r ..-*- '
r. Now let x =. -

,

ex or y -f r

ca3 + (b
3 a3

}rn3 -4- i
3 - - nS\ T v ' M _i_ 1j-irtOU' \U ~ Ui )<JL U "f" J

therefore ' = ^ -

/* *y _ /y>" /*& /
t ' cv C/

'

(

b3 a3
-f 2a3 V + b3 b3 a3 + 2a3---

1

---- = mm. and since--
c cy e
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is a constant given quantity, we must have - = min.
y

CT b3

which let = r, .'. a3
y
z + b3 = cry and y

z -y = -.9 y y a3 y a3

^
I (&y"

Solving this quadratic we find y = r^ A/ -g

and here it is evident that r cannot be taken so small as to

make c
2r2

less than 4a3#3
,
and therefore when r = min. we

must have cV2 = 4a3 3
.-. r = - and y = ^* = -4 ;

c 2a3
of

,, c c c
therefore ^7 =

y + 1

solved without impossible roots.

cr b3

v --- let y ^r

a3 a3 2cr

cr b3
In the equation if

- v --- let y = z + ^r
3 3

cr cr cV2 cr c2r2
,~

y ~ * ~

^2 j-r= -
. . r2 = ^"^ * ~T

a

u
which is evidently

4 6 a3 c
2

a minimum when x = .'. r = and y ^
= ~

C Ctt-<r .

.'. oo = - = as before,
y + 1 of + 6f

*** Inaccurate description of the figure : .5Z) and -B^i are not in the

same straight line. ED.

PROS. (50.) TO FIND THE VALUE OF THE ANGLE X WHEN

m SIN. (x a) cos. x = MAXIMUM.

It is evident that m being a constant given quantity, we

must have sin. (x
--

a] cos. x sin. x cos. a cos. x sin. a

cos.
2 x = max.

Now let cos. x y, cos. a = b, and sin. a = A/1 - - bz = c
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.-. by vl - - y
2

cy* = c ( \Ar - -
y* y

z
] = max. or

7 _ 7 2

- \A/
2 -

y^ y
z = max. which let = r, and therefore -yc c

62
62 + c2 62

y - -
y = y + 2# r + r r #

4 --
y* = - r2

. But 2 + c
2 = 2 + 1 - 52 = 1, and therefore

1 7.2 _

s*u *'
/^^

Solving this quadratic we find

A" _ _ O*/*2 / 7j4 /LA^y&i* _ AM&/& /I x2\
ft \J fct O / C/ T:C/ O /

~ " " TC/ O 1 ~^~ V I / v

y =
2

* V 4 -d)

Now c is the sine of a given angle, .*. c2 must be less

than unity, and consequently 1 c2 must be positive, and

hence it appears that, excepting 64

, all the rest of the terms

in the numerator of the fraction under square root are

negative, and for this reason we cannot take for r so great

a value as will make 4Z>
2cV + 4r2c2 (1 c2

) greater than b* ;

hence when r = max. we must have

4r2c2 (1 c2
) + Wc~r = b*, and from this quadratic

ffi b^
we find r2 + r = A

. ,, ^ and therefore r =
1 c2 4e2

(1 c2

)

70 ~L 9 T 9
fr b" tr

4c2
(1
- c2

)

2
2(1

- c2

)

"

2c(l
- c2

) 2(1
- c2

)

-
c) V

Now from equation (1) we find
*

-

2c(l c2

) 2c(l + c)

b*-2rc* b*c b* cos.
2 a

1 + c 2(1 + c) 2(1 + sin.a)

2

1 sin.
2

1 sin.a a a a . a= cos.'
2 - 2 sin. - cos.- -f- sm.2 -

2
sin.a) 2 2 "2^ "2 2

(

CQS . a 1 . a 1

y = cos. - x -7= - sin.
^
x -=

* V 2
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= cos. cos. 45 sin. sin. 45 = cos. (45 -f -) but y*2

= cos.#, .-.#= + 45.
A

The same solved without impossible roots.

In the equation y*
-

(b*
- 2rc2

) y
z = - cV2 let f = z

7,2

---

<0

s - 2rc2
)

2
(#>

- 2rc2
)

2

(b-
2 -

4 <v

4

4cV (1
- c

2
) + 4W = 6* - 4^2

, but 1 - c
2 = 62 and .'.

^4 _ 4^2
r2 + r =-^rv Now since r = max. we must have

_ ^
r2 + r = max. or its equivalent A1C> , must be = max.

4ow
c"

^4

which can only happen when z = .*. r2 + r = .

2
,
2
.

V^,2
C2 _|_ ^4 1

4^272
--

o
=

/6
2
(6

2 +c2
) A /b*+I- b* ilV 462

c
2 V 4c2

"

2c
2 9/ 9<wf ^

F+~
r=

2c(l+ c)

=::

2c(l + c)

Now from equation y* = z + ~ where
i <v

c/
^

< O WP finrl ?/^^ "^ ^-'1
~

^-* AAtiVl. I/ v ^^ ,_ v
^ -. . _- k

2 2c(l + c) 2(1 + c)

as before. 2

This is the solution of the problem to find in what direc-

tion a body must be projected with a given velocity, that its

range, on a given plane, may be the greatest possible.



PROS. (51.) TO FIND X WHEN ^ IS A MAXIMUM.
az

Since 2
is a constant given quantity we must have

x(a x) = ax x* = max. which let = r .'. #2 ax = r

/~~21 r *

J
T 4

a2

It is manifest that r cannot be greater than and therefore

a CL

we must have r - when it is a maximum, ..# = -.

The same may easily be solved without impossible roots.

This is the solution of the optical problem to determine

the position and magnitude of the least circle of aberration.

PROS. (52.) A REGULAR HEXAGONAL PRISM IS REGULARLY

TERMINATED BY A TRIHEDRAL SOLID ANGLE FORMED BY

PLANES, EACH PASSING THROUGH TWO ANGLES OF THE

PRISM
;
FIND THE INCLINATION OF THESE PLANES TO THE

AXIS OF THE PRISM, IN ORDER THAT, FOR A GIVEN CON-

TENT, THE TOTAL SURFACE MAY BE THE LEAST POSSIBLE.

(Fig. 39.)

Let ABCabc be the base of the prism, PQRS, one of the

faces of the terminating solid angle passing through the

angles P, R.

Let S be the vertex of the pyramid. Draw SO perpendi-

cular to the upper surface of the prism. Join OM, RP, SQ
intersecting each other in N. Then it is easy to see that

MN= NO and consequently SO = QM, and, as the triangles

POR, PMR are equal, so that, whatever be the inclination

of SQ to ON, the part cut off from them is equal to the part
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included in the pyramid SPR, and the content of the whole,

therefore, remains constant. We have then to determine the

angle ONS, or OSN, so that the total surface shall be a mini-

mum. Let AB, the side of the hexagon, = #, AP, the

height of the prism, = b, OSN = 0. Then ON - MN = \a,

and SN = \a co.sec. 0, and QM = ^acot.O. The surface

APBQ = \a (2b
- \a cot. 0) . The surface PQRS=PRxSN

= co. sec. 0. Whence the total surface of the solid is

n /?

(2b
- -'

r cot. 0) + - co. sec. = Gab - - - cot. +
<v A

3* co. sec. = Gab + (3* co. sec. cot. 6)
= min.

Z

and therefore v 3 co. sec. cot. = min. which let = r.

Also let cot. 6 = a? and .-. co. sec. = \/l + <

2
.' A/3 +

,2? = r, and therefore 3 + 3#2 = a?
2 + 2r# + r2 and #2

r2 3 r
r# = ^ . Solving this quadratic we find x = +

oi <V

. and it is now evident that r cannot be taken so
4

small as to make 3r2 less than 6, and therefore we must have

>_ r I
3r2 = 6 when r = min. . . r = v 2 and x = = = or

cot. = 7=^ and tan. = \/ 2 . Hence tan.

and SRQ = 2*.

The same solved without impossible roots.

rx

In the equation #2 rx = let <r = y + . . a?
2

2T + yy + -; ry

4<y
z + 6 = 3r2 and r2 =

-=--5 which is evidently a mini-
o
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V~Q
. r I

- = V 2 and x = = -^& v2
as before.

This is the celebrated problem of the form of the cells of

bees. Maraldi was the first who measured the angles of the

faces of the terminating solid angle, and he found them to be

109 28' and 70 32' respectively. It occurred to Reaumur

that this might be the form which, for the same solid con-

tent, gives the minimum of surface, and he requested Konig
to examine the question mathematically. That Geometer

confirmed the conjecture; the result of his calculations

agreeing with Maraldi's measurements within 2'. Maclaurin

and S. Huillier, by different methods, verified the preceding

result, excepting that they showed that the difference of 2'

was owing to an error in the calculations of Konig, and not

to a mistake on the part of the bees.

PROB. (53.) TO FIND SUCH A VALUE FOR X AS MAY MAKE

X

(a + x) (b + x)
A MAXIMUM.

X
It is evident that when r ^ r- = max. we must

(a + x) (b + x)

(a + #) (b + x} ab + (a + b} x + x*
have - = mm. and . .

' =
x x

ab + #2
, 7 .

mm. or a + b -\
= mm. and as a + b is a constant

x
ab + 3?

given quantity, we must also have = mm. wmcn
x

let = r . . x*1 rx = ab. Solving this quadratic we find

T / T^
1

x \/ -
t ab. and here it is evident that r cannot

2 V 4
r2 ab

be taken so small as to make - less than - - and therefore
4 2
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r2

when r = min. we must have = ab
}

.
-

. r 2*/ab and x =

The same solved without impossible roots.

T
In the equation oP rx = ab let x = y + -Â

n3i A2 n3>

. x*- rx = y
2 + ry + -r-- ry = y

z ab

.-. r2 = 4?/
2 + <kab which is evidently a minimum when y=0,
/___ 'j*

.. r = Zvab and ,2? = = v as before.
2

This is the solution of the dynamical problem to find the

magnitude of the body which must be interposed between

two others, so that the velocity communicated from the one

to the other shall be a maximum.

PBOB. (54.) THE DIFFERENCE OF TWO NUMBERS BEING

GIVEN, TO FIND IN WHAT CASE THE THIRD PROPOR-

TIONAL TO THE LESS AND THE GREATER OF THEM IS A

MINIMUM.

Let a = the given difference of the two numbers, x =
greater number, and therefore x a = the lesser number.

a?We now have x a \ x \\ x \ = the third propor-x a

tional required = min. which let = r, .'. #2 rx = ra.

iy*
/ iv&

4/*Q5 7*

Solving this quadratic we find SB = =fc A/ =
A V 4 A

nrA/ (r 4a), and here it is evident that r cannot be

taken so small as to become less than 4#, and consequently

when r = min. we must have r = 4ft, ..#:= = --=2#
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= greater number, and the lesser number = x a = 2a a

= a. Hence it appears that the third proportional required

is the least possible when the greater number is double the

lesser number.

The same solved without impossible roots.

T
In the equation #2 rx = ra let x = y -f and

Ju

y |*l ||JI

therefore #2 rx = y
2 + ry H ry = y

2

= ra, . . r* 4ra = 4y
2 and r = 2a -f \/4<y

z + 4a2 which

T
is evidently a minimum when y = 0, . . r = 4 and x =

2

- = 2# as before.
<9

PROB. (55.) THE CONTENT OF A CONE BEING GIVEN, FIND

ITS FORM WHEN ITS SURFACE IS A MINIMUM.

X the altitude, and y the radius of the base.

Let be the given content = . . ^5 .

o o

Then u = surface = convex surface + base.

But convex surface = sector of circle, of which the radius

is the slant side, and the arc the circumference of the base of

cone, .-. u py VV -f y
z + py

z
. But y

2 = .'.

\/ 3 + as
3 + cf

^
L

Now
x l x

is a constant given quantity we must have

V a3 + x* + at = mm. which let = r. and .*.
x

va3 + x3 + a* /= r, and V a3 + x* = rx a*-, squaringx

both sides we find a3
-f x3 = r2<r2 2r#a* -f- a3

, and there-



fore x*" = r\v 20* and <2?
2 r*x = 2ra%. Solving this

7*
2 / fff3 8c^)

quadratic we find x = -f A/ - --- and here it is

evident that r cannot be taken so small as to make r3 less

than 8a%, and . . r3 = 8a% and r = 2a$ . . r2 = 4a and x =

------ 2r T

The same solved without impossible roots.

yJ
In a?

2 r2<2? = 2m? let a? = y + and therefore
<

*, .*. r* = 4z/
2 + 8r' which is evidently a minimum

when y = 0, . . r4 = 8r^ and r = 2a* and r2 = 40 ; there-

fore x = = 2 as before.



CHAPTER II.

PROBLEMS OF MAXIMA AND MINIMA IN THE SOLUTION OF

WHICH CUBIC EQUATIONS ARE USED.

BEFORE reading this chapter the article on " Reduction of

Equations," in the Introductory Chapter, must be studied

with great care, for this reduction is effected in almost every

problem which follows.

PROB. (1.) WHAT IS THE FRACTION, THE CUBE OF WHICH

BEING SUBTRACTED FROM IT, THE REMAINDER IS THE

GREATEST POSSIBLE ?

Let x = the fraction required, and the greatest remainder

= r, . . x x* = r and x* x = r, .

*
. #3 x + r = 0.

In order to solve this problem merely by means of quadra-

tic equations, let one of the negative roots of this cubic

equation = a, and it is evident x + a must exactly divide

x3 x -f r = 0, and therefore the following process is

obtained.

no + a] & # + r = |^#
2 ax 4- a? 1 = . . . (A.)

ax x

ax* (P x

~W~-~- \}x + r

(a
2

1) x + a3
a, . . r must be = a3

a,

T
and .

*
. a2

1 = . . by equation (A) we find tf
2 ax

T T
+ = 0, and #2 xa = . Solving this quadra-

a a

a fa?= T* Vtic we find x = - =fc A and here it is evident
2 V 40
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that the greatest value of r is when a3 = 4r = 4a3 4a

a = ; and x = 7= = the required value
^ v/3

Of 07.

The same solved without impossible roots.

M ft

In the equation tf
2 ax let o? = y + -jj-

.*.#2

2

a8 o a2 r
ao? = y- + ax + -ay = y-

~ ~
a3

.-. r = ay*-
1

, which is evidently a max. when y = 0, .*.

4

r = -^-; but r = a* a, .'. 4a3 40 = a5
, .'. 3a3 = 40

4
2 1

i, cand o = = . . o? = TT- = -7= as before.
^ v/3

PROB. (2.) WHAT IS THE FRACTION THE CUBE OF WHICH

BEING SUBTRACTED FROM ITS SQUARE, THE REMAINDER IS

THE GREATEST POSSIBLE ?

Let x = the fraction required, and the greatest remainder

= r .* . a?
2

07
s = r .

'
. x3

a?
2 = r, or #3

a?
2 + r = 0.

In order to eliminate the second term of this equation, let

x = y + J ; and by this substitution we find,

^ = (y + i)
3 = y

3 + 2/

2 + Jy +
-^r

- *2 - -
(y + A)

2 = - f -
-| y - |

r = + r.

2
.*. x* x* + r = y

3
^y + r - = 0. Let

<v7

one of the negative roots of this equation = a,

M
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27
+ J y"

- by + r - |L = o iy - y + a2 -
j = o...(A.)

- y
a -

by

2
(a

2 ~
i) y + r -

a 2_ > ___
3 27

which must also be greatest.

From this equation a2
b an(i therefore from equa-

r

tion (A) we find y
1

ay -\
-- = 0, .

*

. y
2

ay = --
u a

n / f$ ___ ^y^

Solving this quadratic we find y = - -3= \f -
, and

A V 4fif

here it is evident that when r' greatest quantity possible,

we must have a3 = 4/ = 4 3
;

- .*. 3a2 = - .*. a = -.
o o o

This problem may be solved without eliminating the second

term of the cubic equation, in the following manner.

Let one of the negative roots of the equation a?
3 #* +

r = = a, and therefore

x + a] a?
3 #2 + r (_x? (a + 1) a? + az + a= 0...(A.)

-
(a + 1) <3?

2 + r

(g + 1) a?
2 a (a + 1) a?

(a
2
-h a) # + r

(a? + a}x + a (a
2 + a)- .

'

. a (a
2 + a)

T= a3 + a2 = r. and a2 + = and therefore from equa-
a

T
tion (A) we find #2

( + 1) x -\
-- = or #2

(a + 1) x
\JL

--
. Solving this equation we find x ^ =fc

a &



V -
, and here it is evident that when r =

4a

greatest quantity possible, we must have a (a + I)
2 = 4r =

4 3 + 4a2
.-. a2 + 2a + 1 = 4a2 + 4a, or a J and 4? =

a + 1 /a (a + I)
2 4r J + 1 , -

^
+

/Y/
J> U 3__::0 = | as before.

7%e same solved without impossible roots.

^ a
In the equation y

z
ay = let y = z -f -~- an^l

fl <w

rt f 2 2

2 2

,2therefore y
a

ay = zz + + az = z*
4 <

-r- = .*./= azz which is evidently a max.
4 fl5 4

a3 a a3 a
when # = 0. .'. r = -r-, but r = a3 =-. .*. -r- = or 5

4 34 o

.-. 3a3 = -- and a = f . Now y = - = ^ and a? = y + J

= | as before.

PROS. (3.) TO DETERMINE THE DIMENSIONS OF THE LEAST

ISOSCELES TRIANGLE ACD THAT CAN CIRCUMSCRIBE A

GIVEN CIRCLE. (Fig. 40.)

Let OS = the radius of the given circle = a, and DO =
the distance of the vertex of the triangle from the centre=#.

Now the triangles DEC and DOS having the angle ODS
common and the angles at B and S right angles, are similar

.-.DS: OS::DB: BC or V> - a2
: a:\a+ x: BC.'.BC

CL \CL \ X\
and the area of the triangle = BC x DB

+ gj_ whick bein a min. its suare must also be a= -^ = which being a min. its square
/ 2

(ft I *yA 4 [ // I nff ]

3

min., and consequently, W y or its equivalent ~^-_~



(a -f x)
3

is a min. Also let i/
= # + a .' . y 2a = # a .'.

x a

= which let = r .*. y
3

ry -}- 2ar = 0. Let a
y ACL

negative root of this equation = b . . y + b must exactly

divide y
3

ry + 20r = .'. we shall have the following

process

y + bj y
3

ry + 2ar = {j/
1

y + b2 r = ...(A.)

2/
3

-f #y
2

by
z

ry

^>y
2

ff-y

(b
z

r) y + 2ar

(^
2

r) y + i(i
2

r)

.. b3 br = 2ar

b3
.. r =

j.
Also from equation (A) we have y

z
by =

AOL -j- u

r b2
, and .

*
. y = A/ r . Now if r be the least

b3 3b2

possible, we must have r = r- or --r = r- or 4^ =
4 2a + b 4

60 + &b or b = 6a, and y = = - - = 3^ and a? = y a
A sw

= 3 = 2a = the value required.

solved without impossible roots.

In the equation y
2

by r b2
let y = z + -

.

'

. y
2

A
bz b2 b*

by = z*+bz + ?--bz-^- = z* - 4 = r - b* .-.

4 < 4

= ,?
2 + bz - = z* + j which is evidently a min.

when ^ = 0, .-. r =
-,
but r -

-, .-.-= -
4 2a -}- b 4 2fl + b

and 6a + 3b = 4^ .* . ^ = 60 and y = =-- = 3a, and
<^ <w

we therefore find x = y a = 3a = 20as before.
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PROS. (4.) TO DETERMINE THE GREATEST CYLINDER dg THAT

CAN BE INSCRIBED IN A GIVEN CONE ADB. (Fig. 41.)

Let a EC, the altitude of the cone

b = AD, x the diameter of the cylinder, considered

. ,. /3. 14159 &c.\
as variable; p = (

-- ). Now it is evident that the

area of the circle frgs = pa?, and by similar triangles AC :

b b x 7/, ab ax
BC :: Ad : df or ~ : a :: : d/= -

b
...... (A.)

And the solid content of the cylinder = ---~- =

?)tt
~- x (bx* x*} which is a max. . . bo? a?

3 is a max. Let

bz? a? = r, .'. x* ba? + r = 0, and x = y + ,
and

o

making this substitution we shall find x* bx? -j- r = y
3

bz 2b3 b3

y + r , also let r which is a max. = r' and

b*
'

y
3 --^y + r/ = 0; and proceeding as in prob. (2) this

o

problem may easily be solved. We however subjoin the

process.

Let a negative root of this equation = c} .

'
. y + c must

bz

exactly divide y
3

y + r' = 0.

y -f- <U y
3 - --

y + r
' = U2 - w + c

* - - = o.

- cy -
-3-

y

cy*
-

_ ,3 .- C
3
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bz r1

and c2 -- = . . from equation (B) we find y* cyo c

r' / c /c3 4/= 0. or v cv = -- .'. v = -7T- =fc A/-
c c 2 V 4c

Now in order that r' may be the greatest possible, we must

b3

have 4r' = c3 ; but r' = r - - = c3 -- .'. c3 = 4c3

27 3

_ ... C= _ --?=
3-
=

and x y -f = . Also from equation (A) we have
o o o

3=a ---. =
, and hence it appears that

O

the inscribed cylinder will be the greatest possible when the

altitude thereof is just J of the altitude of the cone.

The same solved without impossible roots.

fJ
In the equation y

2
cy

-- let y = z + and
C At

c2 c2

therefore y*
1

cy = zz + cz + -:-- cz --- = z*
4 A

c2 r' c3-- and therefore r' = -- cz2 which is evidently4 c 4

c3 bzc
a maximum when z = 0. . . r' = :- : but r' = c3 --^- and

4 3

2b ._ c= 4c3 --
^ .-. 3c2 = and c = . Now y = -

6 b b b 2b= and therefore <2? = y-|- -=-4-- = -as before.
c> o o o o
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PROB. (5.) TO DETERMINE THE DIMENSIONS OF A CYLINDRIC

MEASURE ABCD OPEN AT THE TOP, WHICH SHALL CONTAIN

A GIVEN QUANTITY (OF LIQUOR, GRAIN, &C.) UNDER THE

LEAST INTERNAL SUPERFICIES POSSIBLE. (Fig. 42.)

Let the diameter AB = x, AD =
y, p = 3.14159 &c. and

c = the given content of the cylinder. In this case it is

evident that px will be the circumference of the base, and

consequently, by multiplying it by y, the altitude, we shall

find pxy = the concave superficies of the cylinder. It is

also evident that since - = half the circumference and
& &

half the diameter of the base, we shall have r = the area
4

of the base, which, being multiplied into the altitude y, we

UX II

shall have ^^- = solid content of the cylinder = c, .
*

. y4
4c 4c

.'.pxy = and consequently the whole surface of the
x

V J I-' 1,
' ' ' T L

cylinder = --\-
~- which is a minimum. Let --f-#4 a? 4

= r. and .'. 16c + px* = 4nz? .*. x* -- x H-- = 0. Let
p p

one of the negative roots of this equation = a and there-

fore x + a must exactly divide x3 -- x -\
-- = 0.

p p
An* "I f)f* Atf

x + a\ x*-x + = 1 x*-ax + az - = 0.
p p p

x3 + ax*

p
axz a?x

I , 4r\
(a

2

)
x +

\ n Ip p

" _

We therefore
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407* 16(?
find a* =

, and . . r =^ - ^^. From equa-
p p 40

tion (A) we find #2 ax = a2
, and x = --

2

4r---
. Now in order that r may be the least pos-

4r 3a2
pa* - I6c 3a2

sible we must have = or -- = or pa? ==
9 4 G9 4

3 8/T
and = 4 x A/ and x = - = 2 x A/ -

. NowV
JJ V J9

because joo?
3 = 8c and ^?<r

2
y = 4c . . px* 2pz?y .'. x = 2y

*/~c
and y = A/ , hence y is known, and from this it appears

that the diameter of the base must be just double of the

altitude.

The same solved without impossible roots.

In the equation x*- ax = --- 2
let a? = y 4- - and

jP ^

a2 a2 a2

therefore #2
ew? = ?/

2 + ay -f ay
-- = y

z --
j-

4r
9 4^?2/

2 + 3po
2

. .= --
,

'
. r = -

1fi
-

, which is evidently a mim-

-, Spa? . pa* 16c ,.mum when y = 0, .'.r = -^ \ but r = - -
,
therefore

lo 4

3/?0
2

pa* -I6c 3/T
TB~ A or pa* = 64c and a = 4 x A /16 4a 'V and

as before.



PROS. (6.) TO FIND THE LEAST PARABOLA WHICH SHALL

CIRCUMSCRIBE A GIVEN CIRCLE. (Fig. 43.)

Since the parabola and the circle touch at P .

*

. CP is a

normal to the parabola, and Cm is the subnormal = J latus

rectum. Let Cm = z . . equation to the parabola-is

y
z = 2z.x ........................ (A.)

/j
i ^ _ ^

Pm2 = r2 z2
.'. Am = -

.

2z
r 4- zY2

AD = Am + mC + CD = + z + r =
2z 2z

4
Now the area of the parabola EAF = - AD.DE and DE =

o

\/2z.AD .'. area EAF = ~ AD x \/2z.AD = ^'^
.

3 z
fa _j_ g\ 3

.*. u = --- = minimum. Let r + z = y.'.z=yz

z/^
r .'. - = minimum = u, and . . ?/

3
uy + ur = 0. Let

one of the negative roots of this equation = a, and there-

fore y + a must exactly divide the equation y* uy-\-ru = 0.

y -f a) y
3

uy + ru =
\^y* ay + 2 u = 0... (B.)

y
3 + ay

2

ay
z

(a
2

u) y + ru

(a
2

u) y + a3 au

and therefore we
a?

must have a3 au = ru .' . u = -- .

a -f r

Now solving this quadratic (B) we find y = =f=

A

3a2 a3 3a2 a 3

u -
; and in order that u may become a minimum, we

must have u = ..
4 a + r

N
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ci ST*
30 -f- 3r = 40 .

*

. a = 3r . .
2/
= = .- . z = y r

same solved without impossible roots.

In the equation y
2

ay -f- or u = or y* ay = u a?

let y = w + , and therefore y
2

ay = wz
-f aw -f --

a2 a2 302

--
?r = w 1 --

T~ = u a * w = w + :

r-j which is24 4

evidently a minimum when w = 0, .'. u = - -; but w =
4

3 s 3a2

= - or 4a = 3a + 3r and a = 3r, and
a + r a 4- r 4

therefore y = - = and z = y r =
-^-

as before.

PROB. (7.) THE FOUR EDGES OF A RECTANGULAR PIECE OF

LEAD, a INCHES IN LENGTH AND b INCHES IN BREADTH,

ARE TO BE TURNED UP PERPENDICULARLY SO AS TO FORM

A VESSEL THAT SHALL HOLD THE GREATEST QUANTITY OF

WATER, HOW MUCH OF THE EDGE MUST BE TURNED UP ?

It must be observed that the piece of lead is a rectangular

sheet, and consequently when x = breadth of edge turned

up: then x (a 2x) (b 2%) = content of vessel = maxi-

mum .'. 4#3 2 (a 4- b) x1
4- abx = 4r = maximum, or

a 4- b 9 ab a + b
x o <^

J + - <r r = 0. Let x = y 4- -

A 4 O

3 3 ^_J 2 (" + ^ (
a + &

)

3

y
2 12 216

"2""
^ = ~

'~2~ ^
"

~6"~~ y 72~
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ab ab

r = r.

.

12 72 216 24

Now r is a maximum ; and besides r the remaining terms of

the second member of the equation are constant and given

quantities, and consequently the whole of the second member

must be a maximum when r is so, and therefore when we

suppose r' = the whole second member, we must have r' =
maximum.

(a + bY - Sab a* - ab + b2

12"
=

12
- y ny

r' = 0. Suppose that one of the positive roots of this

equation is = c, and therefore y c must exactly divide

y
?>

ny r' = 0.

y cj y
3

ny / = (j/
2 + cy + c2 n = ... (A.)

y
3 -

cy
2

q/
2

ny

(c
2

n) y r'

(c
2

n) y (c
3

en)

.'. c3 en = rr and

= c
2 n and consequently from equation (A) we

tV* f*

c 2

Now it is evident that when / or 4r' is maximum, we must

V '

y =

n \/a? ab + b2 a 4- b 1
and x = y36 66

| + b -- Vdl - ab + 62

|.
We have here taken the nega-
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tive value of y, because on this supposition only can the

equation y
3

ny = r' be a maximum.

The same solved without impossible roots.

In the equation y
2 + cy -\ = or y

2 + cy = let

f* S*Zt f*

y = z .-. y
2 + cy = z2 cz + -f cz = z2

-r = .'. = z2 which is evidently a max.
4 c c 4

r1 c2 r1

c* en c2

when z = 0. .

*
. = : but = = or c"

c 4 c c 4

n

t/ JJ C/ V ^-

/2 / n c= or3c2 -4n.'.c==h2
/\/

~ and y = - = -
r j. --..- .- .^.. ... . .,..

w va2 6 + Ir - a + b

~3 ~6~ ~6~

fa + \/a2 ab + 2\ as before.

PROS. (8.) TO INSCRIBE THE GREATEST RECTANGLE IN A

GIVEN PARABOLA BPAqD. (Fig. 44.)

Let Am = x .

'

. Pm = Z\/mx and Pq =
me = -4c ^4m = b x . . area nq of the required rect-

angle = 4(6 oc) vmx = max. .. (b x] \/~x = max .*.

(5 #)
2

<2? = IPx 2bx2 + ^?
3 = r = max. Let a = one

of the positive roots of this equation, .

*

. x a must exactly

divide b2x 2bx2 + x* r =

2
-f x

(a-2b) x2 -a(a -
(a b)

2 x r

(a b)
2 x a (a b)

2- - .-. r = a (a b)'
2
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T
and =

(a bY . . from equation (A) we find #2 + (a 2b)

r (a
x H-- = 0. Solving this quadratic we find oo = -

/a(a-2b)*-4>rdz A/ - - and here it is evident that when r=V 40

max. then a (a 2)
2 = 4r = 40

( b)
2

.*. a 26 = =fc

2(0-6).
1st. a 2b = 2a 2b .-. a = and x = b.

4tb b
2nd. 26 = 2b 2a .'. a = and x -.

o o

By a reference to the annexed diagram, it is evident that

x = -
corresponds to max. and x = 6 to min.

Q

7%e 5me solved without impossible roots.

r (a _ 2b]
In X* + (a 2b) x + = let ne = y

^ - - and
Ct .V

__
2b) oo = y*

-
(a
-

2b) y + + (a
-

2b)

(a - 2b)* (a - 2b)
z r a (a

-
2b)

2

M -i-L == tr* --- __ ' T = --
2 4 a 4

a(a2b) 2

ay* which is = max. when y 0_, .*. r = - --
-,

but
4

r = a(a
- bf .'. a (a

-
b)*

= or a - b =

a 2b

-5- and

1st. 2a 2b = a 2b .'. a = and x b.

2nd. a 2b = 2b 2a . . a = - - and x = - as before.
o o



PROB. (9.) TO DIVIDE A GIVEN LINE INTO TWO SUCH PARTS

THAT THEIR PRODUCT MULTIPLIED INTO THE DIFFERENCE

OF THEIR SQUARES SHALL BE A MAXIMUM.

Let 2a be the given line and a + x and a x the required

parts. Now by the problem (a
2

a?
2

) x 4a# = max. .* . x

(a? <z?
2
)
= max. which let = r or xz drx + r = 0.

Also let b = one of the negative roots of this equation.

ar + bjafi a*a? + r = (_a*
- bx + b* - a2

(A.)

(6
2 a2

)
x + r

(b*
- a2

)
x + b(b*

-
cr)

.-. r = b(& - a2

)

T T
.' . bz a2 = -=- and from equation (A) <#

2 bx -\
- =

b b

T b / b^ 4/*
or #2 bx = --- and x = - =t A / . Now it is

b 2 V 45

evident that when r = max. we must have bz = 4r = 4

(b
2 - a2

) .-. bz = 462 - 4a2
.-, 4as = 3is

.'. b = -~ and
\/3

b a

"2
: =

V7?

The same solved without impossible roots.

T b
In the equation #2 bx = --

j-
let x = y + -~- an{^

6 <<J

72 12

therefore we find x1 bx = y^ -\- by -\
---

by
-- =

4 A
b2 r b3

y
2 -- = --

j-,
and . . r = by

2 = max. when y = 0,

.-. r = ~
; but r = b(b*

-
*)

.-. ~ = b(tf
- a1

)
or b* =
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as before.

PROB. (10.) TO INSCRIBE THE GREATEST ELLIPSE IN A GIVEN

ISOSCELES TRIANGLE. (Fig. 45.)

Let Da = 2x, cb = y, AD = a, DB = b. Now by the20
i/t* 30

property of the Ellipse we have en =
^
-

. . an
CJLJ. a ~~ 30

ax 2xz ax BD2
y

2-- Dn =- . But r r x Anz = Pn? = ~
a x a x

(a 2x}a irb
-

/a ^?\

(an x nD] .'. oz
{

-
)
= y .

-- -
.

-

. TT yx = 7==.
\ a x) (a o?y A/ a

x v a Zx = max. .'. x* (a 2%) = ax* 2x5 = max. =

2r or x* x1 + r = 0. Let b = one of the negative
A

roots of this equation.

.. r = bib* +
(

r-)
.'. = ft

2 + - and hence from equa-
^ & ' b

tion (A) we find x* (b + -) x = 5- and .'. x = -

\ 4
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+ J A/ (b + 5) =- when > = max. then bib + -) = 4r.

4 = 46 ..&=- and 26 = |-.-2 o o

40

25 + g J5_ IT 4a
_g_ ^

~4~ ^T T : =

12
=

IF
:

s"'

The same solved without impossible roots.

(a \ v
b + } x = -- let^7 = ^ +

g /7 g \
b + -^ (b + -

g g > "'

7 7

a

~Z
r = by

2 = max. when y = 0, .'. r =

a

)

; but r =

,

2 g g 2b + a
and 4>b = b -\- .'. b =.. ..

4 26
-5-

as before.
o



PROB. (11.) WITHIN A GIVEN PARABOLA TO INSCRIBE THE

GREATEST PARABOLA, THE VERTEX OF THE LATTER BEING

AT THE BISECTION OF THE BASE OF THE FORMER.

(Fig. 46.)

Let ABC be the given parabola of which the axis BD =
a and 4m the latus rectum are known. Let Br = x .*. rD=

a x and mr = y = %vmx .'. the area of the required/ t

2y (a x) 4v m
,

. /
parabola mDr = -^-^-s = ~ (a x) V x = max.

o o

.'. (a x] \/ x or (a xY x max. Now let (a #)
2 x

=. r .'. x* 2aa?z + cPx r = 0; also let b = one gf the

positive roots of this equation, and consequently x b must

exactly divide it.

710 rt O i *> /\IOi/7 r*\ i/ 7\9
^7 j /) I

/T" . J, ft f^ . L^ fl. ffi rr"-- ' ^* ~^~ I I I 'V*^ ..-i-. [ n */ /y 1 ^ ^..L. (
// ._ ri \ &

(

(b
-

2a) tf
2 - 6

(ft
- 2) x

(a b)* x r

(
a -lYx-b(a- by

-.-.r=b(a
T

or (a &)
2 =

-j-.
Now from equation (A) we find

and in order that r may be a max. we must have b(b 2)
2

4fz= 4r = 46 (a b)
2 or Z> 2a = 2a 2Z, or 6 = : - .*.

o
2a

b -2a IT a
<r ~ "

T~~ ~
2"
~

3'

o



The same may be solved without impossible roots.

T
In the equation a?

2 + (b 2a) x = -- =- let x = y

b 2a (b
.-. ^ + (b

-
2a) x = y*

-
(b
-

20) y +..

(b-2a)* (b2-
2a) y -

, ,
- 2) 2

,

%- = max. when w = 0. and .-.?= -
;

----
: but r

4

A(
-

i)
2

.'. 46
(
-

7;)

2 = b(b
-

2a)
2 or 4aa - 8J -f

4fl= b2 4ab + 4a2 and 4Z> = 3&2
. . b = : - and a? =

2a "3 a~ = T =
3

as before -

PROB. (12.) TO INSCRIBE THE GREATEST CONE WITHIN A

GIVEN SPHERE. (Fig. 47.)

Let ArcB be the required cone inscribed within the sphere

AmcB. Let the diameter Bm of the given sphere = 2a, BD
= x .-. Dm = 2a x, p = 3.14 &c. Now by the property

of the circle AP = 2ax - xz
.'. 4AD Z= 4>(2ax

-
x*) .-. the

area of the base Arc of the required cone = ^7 4(20# #2

)
Ti

P= p (2ax a?
2
)

.'. content of the cone = ~ x (2ax a?)o

= (2o?
2

a?
3
)
= max. .'. 2##2

a?
3 = max. which let

o

= r .

'

. a?
3 20<#

2 + r = ;
also let b = one of the negative

values of this equation, and consequently x -f b must exactly

divide it.
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x+ bj aP 2aa? + r= Q ^x
2

-(b + 2a)x+b(b+ 2a) = 0, (A.)

x* + bx*

-
(b + 2a) x*

b(b + 2a) x + r

b(b + 2a)x + W(b + 20)

T
(b + 20) or b(b + 20) = -r. Now from equation (A)

we find xz
(b + 20) x = 7- or x = =fc

b 2

, and in order that r or 4r may become
~xO

a max. we must have 4r = b(b + 20)
2 or 4Z>

2
(b + 20) =

20 b + 20
0(0 + 20)

^
.*. 4o = b + 20 or b = .'. a? = - =

O <w

-^ + 20
3 40

The same solved without impossible roots.

T
In the equation a?

2
(b + 20) x = --

j-
let a? = y +

- and therefore we find by substitution
<v

^_ (Z
, + 2a)x = f+(b + 2a)ij+

{

L^)- _
(b + 20)

(5 + 20)
2

(5 + 20)
2 r b(b + 2)

2

- .i--' - 1 - -- - - - * ----= tl - -- - - - * T
' '

2 4 b
' '

4

72 b(b + 20)
2

,

oy
l = max. when

2/
= .

*
. r = - ----

;
but r =

4

(b + 20) and .'. ft (b + 20) = ..& = and
4 o

& + 20 40= as before.
& o
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PROB. (13.) GIVEN THE SURFACE OF A CYLINDER TO FIND

ITS FORM, THAT ITS VOLUME MAY BE A MAXIMUM.

Let the whole surface of the cylinder = s and x = diame-

ter of its base. Now it is evident that the areas of the two

t

opposite circles of the cylinder = t- where p = 3.14 &cv
&

the circumference of the base = px, and the convex surface

rn /v>2 O a __ nn
/y>= s =-jr which divided by px, the circum-

/V ei

O o __ n~t rf*

ference of the base, gives the altitude = . Now

multiplying this value of the altitude into -
,
the area of the

ft T1 2s 1)X
base, we find the content of the cylinder = r- x ^

-
4 2px

2s= max. and . . 2sx pxz = max. or x
8 p

2s 1
x* = max. which let = r. . . x* x + r = 0. Now let

P
a = one of the negative roots of this equation and conse-

quently x + a must exactly divide it.

a.Ho)a*-??a ? + r = Ola!s -ap + oa -- = (A )
"

P
a ~

P
'

x* -f ax*

2s
/~i /Yt& nn
CvOt/ tv

P
fl W* /7"
CtoC/ t* /

2^>
xi 2

^*
(tt

2

V p
i 2s\ i e 2s\

(

2

--)^ + (---)



r 2s
or = 2

. Now from equation (A) xl ax
a p

r a /a3
4>r , .

or x it A / -- and in order that r may be a
a 2 V 40 J

(2s\a? --
-J

and .'. a =2s^

P

^r and # = --== A/
;

-
. Writing this value of x in

2V2s a /2s= - = A/ -.
2 V 3

O o __
the equation altitude = - we shall find altitude =

2px

VI and hence it appears that altitude = the diameter

of the base.

The same solved without impossible roots.

f CL

In the equation oc^ax= let x=y+ and therefore
a 220 rt

fl fl V
x? ax = ?y

2
H- ay 4- 0V = w2 =

4 240
.*. r =

02/
2 = max. when y = 0, .'. r = r ; but r =

r

(*)
o\ /y3 / o o\ ^ y o

2
--) and .-.-= 0(0

2
)
and a = 2 A/ ;

.'.

pi 4 V p I V op
a /~2sx = = A/ - as before.V 02?

PROB. (14.) TO PROVE THAT THE ALTITUDE OF THE GREAT-

EST CYLINDER WHICH CAN BE INSCRIBED IN A GIVEN

SPHERE, IS EQUAL TO 2r \/ ^ ',
T BEING THE RADIUS.

(Fig. 48.)

Let the altitude mn of the cylinder required = 2x, and r

being the centre of the sphere rn = x .*. Bn = v?- - xl

= the radius of the base of the cylinder, and . . the area of
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the base = p (r
2

<r
2

)
where p = 3.14, &c. Now since

altitude of the cylinder = 2x, its contents must be 2p

(f*x x3
}
= max. which let = 2pq, .

'
. x3 r^x + q = 0.

Let one of the negative values of this equation = a, and

consequently x + a must exactly divide it.

x + aJ x* r^x + q = |^
2 ax + a2 r2 = 0,. . . (A.)

x* + ax*

ax*

(a
2 r2

)
x + q

(a
2 r2

)
x + a3

.*. q =. a3 ar*

Q
.' . = az rz

. Now from equation (A) we find a?
2 ax

q a /a
3

4q= .*. x = - A/ -
. and in order that q may

a 2 V 4a

be the greatest possible, a3 must be = 4>q
= 4 3 4r2

.'.

/T a /Tcr = 4a2
-4r-, .'. a = 2r

/\f
.*. x = = r /y .-.

2sc = altitude required = 2r .\f .

T O

7%e 5me solved without impossible roots.

In the equation x*- ax = let x = y + -
.

*
. x'

L

tf a? az
qax = y- + ay + - ay - = y

a - = - *- or q

a3 a3

= ay
2 = max. when y = 0, .. = : but </

= a3

4 4aO'fr* /Tt

., 00 <*' **

6Z7*^ and .

*

. ^r-J
__ nff-'

* rr nr* .

A/

7^= . .

\/3 2 v/3

as before.
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PROB. (15.) A CANDLE STANDS ON A HORIZONTAL TABLE

DIRECTLY OVER A POINT, AT A GIVEN DISTANCE FROM A

SMALL OBJECT ON THE TABLE ; WHAT OUGHT TO BE THE

HEIGHT OF THE FLAME WHEN THE OBJECT IS ILLUMI-

NATED THE MOST POSSIBLE ? (Fig. 49.)

Let A be the object on the table, B the point under the

candle, and C the flame, considered as condensed at a point.

The intensity of the illumination on the object A depends on

its distance from C, and on the angle which the rays make

with the surface (supposed to be horizontal) . By the princi-

ples of Optics, the intensity at different distances, the angle

of obliquity being the same, will be inversely as the square of

the distance ; with different degrees of obliquity, the distance

being the same, as the sine of the angle which the rays make

with the surface. Therefore the intensity, as depending on

both obliquity and distance, will be expressed by -7-^ sin.
"

CAB = - -. But a = AB. n = sin. CAB, then the illu-
AC*

f BC AW 1
mmating power on the surface at A = r^ x TF^ X r^-AC ACZ AB2

. . . 9= sm. n 5
= max. .'. sin. n cos/ n = sm. n (I sm."%)

a?

= sin. n sin.3 n = max. = r. Now let sin. n = x, . . x x*

= r, .*. x* x + r = 0. By problem (1) when r = max.

then x = ._ .. sin. n = .__ By the trigonometrical
\/3 \/3

tables n = 35 16'; this gives BC = AB x -/-L = AB x
v 2

7
71 nearly; so that the height of the flame must be about

of the distance AB.

The same may be solved without impossible roots as in

problem (1).



PROB. (16.) TO DIVIDE 12 INTO TWO PARTS, SO THAT THE

LESSER MULTIPLIED BY THE SQUARE OF THE GREATER

SHALL BE A MAXIMUM.

Let x = greater part .*. 12 x = lesser part. Now it

is required to find such a value for x that (12 x) a? or

12^2 x3
may be a maximum. Let 12<r2 #3 = r .*.

cc* 12x2 + r = 0. Suppose that a = a negative root of

this equation, and consequently x + a must exactly divide it.

x + aj -r
3 -12o;2

-}-r= \^x*-(a + l2)x+a(a+ I2) =0, (A.)

a;
3
-f

-
(a + 12) s2 + r

-

(a + 12) x2
(a + 12) a?

a (a + 12) ar + r

a (a -f 12) x + 2

(a -f 12)

7*

.-. r = a2

(a + 12) .*. = a (a -f 12). Now from equa-

tion (A) we find #2
(a + 12) # = -- or x

a 2

va(a+ 12 2 - 4r .

--
. and in order that r or 4r may be a

max. we must have a (a + 12)
2 = 4r = 4 2

(a + 12) or a

. a + 12= 4 and x - = 8.

The same may be solved without impossible roots.

T
In the equation #2

(a + 12) x = -- let a? =

t_^
;
and .-. x*- (a + 12) x = y+ (o+ 12) y +

(a

(a + 12)
2

( + 12)
2 r

y- -g- =r -j- T"
( +

aw- = max. when y 0^ and . . r = -
.

4
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but r = a2
(a + 12) .-.

a(" +
A

12)
'

= 2
(a + 12) .'. = 4,

4
a + 12 ,

and x = 5
= 8 as before.

40

X3
3<2?

2

PROB. (17.) WHAT ARE THE VALUES OF X WHEN -5 5-

+ 2<2? BECOMES MAXIMUM OR MINIMUM?

Multiply this expression by 3, and let the product = r, .

'
.

<a?
3

;

- a? -f x r = 0, also let = one of the roots of
&

this equation.

x-a) ^3-H

(
-

|)
* +6

(

2
-jr- + 6) x r

-a(*- + 6)

.. r = a(az --
-f 6) .*. = a2 -- + 6. Now from

2 a 2

,. i 9\ r 2 9
equation (A) a?

2 + ( a -\ x = -- or x = ---

and in order that r or 4r may be a

/ 9\
2 9

max. we must have a(a -J
= 4r = 4a (a

2 --
5- + 6)
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81 l ^
or a2 - 90 + - = 4a2 - 180 + 24 or 3a2 - 90 = -

4 4

.'.a2 30 = -.. = -dt 1 = or and a? =
4 ^ ^ &

20 - 9 4 20-9
-: = r = 1 lor maximum: x = . =44 4

1 ~ 9 8 o^= = - = 2 for mm.
2 4

same solved without impossible roots.

Q

a

(LJ
\

) x let x y

9

, / y\ / y
*

'

\

"

IT/
^ ~~ y

"
'

\
a '

~9~X /w / \ ^i .

9

, Ox
2 / 9\ / 9\ V 2/

r

4
.__

r= --
A
--- 0w2= max. when y Q, .*. r =
4 4

but r = 0(0
2 _ + 6) .'.-4 =

(

2 - + 6)

or 2 30 = and 0= 1 = or and x

20-9
- = 2 or 1 as before.
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PROB. (18.) WHAT NUMBER IS THAT FROM THE CUBE OF

WHICH ITS SQUARE AND TWENTY-ONE TIMES ITSELF

BEING SUBTRACTED, THE REMAINDER IS THE GREATEST

POSSIBLE ?

Let x = number required ; then according to the question

x3 xz 21 x = max. = r .' . x3 xz 21 x r = 0.

Also suppose a = one of the roots of this equation.

x aj x3 x*2lxr=0 (_x
z+ (a l)x+a?a 21= 0, (A)

(a
-

1) a;
2 -

(a 1) x
z

a(a 1) x

(a? a 21) x r

(
aa - a - 21) x - 0(0

2 - a -21)
.. r =

T
0(0

2 a 21) .'. = a2 a 21 .*. from equation (A)

t
r 1 70(0 I)

2 4r
a;

2 + (a 1} x = or x = db A / ~
.

2 V 4

Now in order that r or 4r may become a maximum we must

2
have 0(0 I)

2 = 4r = 40 (0
2

21) or 2 =

85 0-1
and .*. = 5, .*. a? = = 3.

The same solved without impossible roots.

r G> ~~~ 1
In the equation #2 + (a 1) 4? = let a? y 2

and . . a?
2 + (a 1) #= y

z

(a 1) y + -
-: + (a 1) y

(_I -_1)

2

_ 2 (0
-

I)
2

_ T_ _ a(a
-

I)
2

2 40 4

0(0 I)
2

- ay
2 = max. when y = 0, and . . r = - '-

; but r =
4
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((?
- a - 21) .-.

a{fl
~

1)2 =
(a

2 - a - 21) .-. a2 -
|-a

85 15 a-1 -5-1= or =-.- = --
5,

= 3 as before.

PEOB. (19.) TO CUT THE GREATEST ELLIPSE FROM A

GIVEN CONE. (Fig. 50.)

Let ABD be the cone, PB the elliptic section, AC=a, Cn=
x, major axis = 2m = PB, BC = b, nP= y, minor axis = 2n

= ro. Now the area of the Ellipse = irmn (see the Integral

Calculus, or my treatise called an Insight into the Nature of

the Integral Calculus). It is evident that PB : IB : : PQ : El

or2:l ::PQ:El, and#P:P/ :: BD:lFor 2 : 1 ::BD:IF.'.

PQ = 2EI, and BD = 21F or PQ x BD = 4>El x IF= 4fo2 =

xBD = \2x x2b = Z\x, and 2m =

4- Pnz = \/(b + a}* + Pn* but Pn = CA x ^ =

.'.2m= / + a}* + -

(b
- xY and .-. area =

irVbx f~. a? .

-n-nm = - A/ (b + x}
2 + -Tg (b %Y = max. and .-.

a2 a2 + bz
x (b + x)

2 + -75
<r (6 ,r)

2 = max. and therefore 7^

2 (a
2 #2

)
a?

3 -- 7-- x* + (a
2 + i2

)
x max. Dividing this

2
-f 62

expression by the constant quantity ^ we have x*

}

#2
H- #2# = max. To shorten the calculation let

4- bz

_ b2}
T^- = Q .

'
. a?

3
<7#

2
4- #2# = max. = r, . . <^

3 ow2
-f2

4- b2

r = 0. Now suppose v = one of the roots of this

equation.
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(v q) #
2 + ffx

(v q) X* v(v q) x

(v
2

vq + b2
)
x r

(v
2

vq + bz
)
x v(v

2
vq + 2

)

T
.-. r = v(v* vq + b2

)
and = vz

vq + 62 . Now from

T
equation (A) we find x* + (v q) x = -- and . . x =

v q /v(v q)
z 4r , .-- d= A / -i-2Z- and m order that r or 4r

2 V 4v

may become = max. we must have v(v q)
2 = 4r =

2 <7
2 452

4t? (v
2

vg + 62
)

or v2
gv = ----- .-. v =

o o

\/4(7
2 1262 v q q v q v

-

* v __ _
2 2

~
2 2

3q q

2x3 2x3 2x3
q ix/4g

2 - 1262

g =t \/^
2 - 3d2

,~~ --
; q ~-

2b (a
2 - d2

)
=fc 6\a4 - 14 2^2 + A*

;';**
-

3 (a
2 + y)

-
' Thls problem 1S

possible so long as the altitude a and base 2b are such as

make a4 14a262 + b* a positive quantity. The limit of

possibility is when the radical disappears; then we have the

following equation a4 - 146V + 4964 = 48 4
.-. a2 = 7bz =fc

6rfc4\/3 6 3/sr4v 3) .' . x
3 8=fc4\/3 3 2+



The same solved without impossible roots.

T V Q
In the equation of1 + (v q) x = -- let x = y --r ^

v 2

(v - o)
2

.-. x2 + (v
-

q) x = y
2

(v
-

q) y + - ~- + (v
-

q) y
-

(v
-

q)
2

(v q)
2 r v(vq) 2

- ^- = y
2 - ^- = or r = v

.

* y-- vy
2 =

2 4 v 4

v (v o\
2

max. when y = 0, .'. = r = vft;
2

#g + b2

).4
--

From this equation as before we may find v=- <

a2 - bz dt b\/a* -
and hence a? = s- - ^7-5

-
i?j
- as before.

3 (a- + W

PROS. (20.) THE CORNER OF A LEAF IS TURNED BACK, SO

AS JUST TO REACH THE OTHER EDGE ; FIND WHEN THE

LENGTH OF THE CREASE IS A MINIMUM. (Fig. 51.)

The full leaf is mnAB, and when its corner A is turned

back and touches the other edge mB of the page at the point

a, the triangular piece QPA of the leaf falls upon its remain-

ing piece mBPQn, and each of the angles QaP and QAP is

= 90, and consequently the figure QaPA may be inscribed

in a circle.

It is also evident that aP=PA and aQAQ and by the

property of the circle aA x PQ=2AQxAP ............... (1.)

Now let PA=x and AB=a .' . by Prop. 12, 2nd book of

Euclid Aaz = aP2 + AP* + 2BP x PA = 2x* + 2 (a
-

a?)

x 2^ + 2ax 2a?= 2ax .*. Aa = \/2ax. Now AQ? =
QP* - AP2

.-. from equation (1) aAz x PQ2 = 4^4Q2 x AP*
= 4,AP* x PQ2 - 4^4P4

.-. 4./4P4 = (4^P
2 -- aA2

) PQ2
.-.

9T -- n
-

2ax) PQ .-. PQ = - = min.
&x a
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II I (f. \1I I ft 1
3

= max. Let 2# a y, . . x = - and 247
s =

y= max. .-. rr. Now let =
,

. ..
(y + a)

3
(y + a)

ab y c be* I_ " _____ _____ v/

c (y + a)
3

'

a^b + c)
3

(c + 6)
3 a2

c

5 is a constant, given quantity. .

*
. -. rt-o = max. It is

a2

(c + b)
3

7 O 7 O
h(* h f* t c \

evident that -
TT- = T x -, rr2 = U rr)

(c +0)
3 c + 6 (c + 6)

2 N c + b>

c2 c /T c \ c2

X T^ TT-o. NOW let r = Z, .

'

. 1 T X ~, 7T,,. Now let 7 = zt .

'

.
(
1

c + 6 \

2=
(1
-

*) -r
2 = zz - ^3 = max. .-. by Prob. 2nd, z - =

c 3 c + b b b
l_

ab

T+~b
'

~2
~ T "7 2" c

a

a , y + a 2 30
:

2~
!

"T" ~2~ T
The same may easily be solved without impossible roots.

PROS. (21.) TO FIND THE POSITION OF THE PLANET VeUUS

IN RESPECT OF THE EARTH, WHEN HER LIGHT IS THE

GREATEST. (Fig. 52.)

The planet does not appear brightest when her disc is per-

fectly round ; she is then too remote to produce that effect ;

and besides, she is seen in the direction of the sun. In her

inferior conjunction her crescent is too narrow, almost the

whole illuminated part being turned towards the sun. It is

therefore in some intermediate position, which is to be deter-

mined, that she is brightest. Let S be the Sun, E the Earth,



arid ABCD Venus, ABD its illuminated hemisphere, which is

turned towards the Sun, and CBD its hemisphere towards

the Earth : produce SV to F.

The portion of the illuminated surface towards the Earth is

contained between two planes DV, BV, perpendicular to the

plane EVS ; and this surface will manifestly be projected

into a crescent, the breadth of which is the versed sine of the

angle BVD, which is equal to EVF, because if EVE be added

to both, each is a right angle.

Now the area of the crescent is always as its breadth;

therefore, the whole disc being taken as a unit, the illumi-

nated part will be expressed by the versed sine of the angle

EVF, or by 1 + cos. EVS. Again the brightness of the

planet is inversely as the square of the distance, therefore the

brightness depending on its position, in respect of the Sun

and its distance from the earth jointly, will be proportional

1 + cos. EVS T _ , e ,

to-===5
-

. Let a = ES, the distance of the Earth
ht v

from the Sun, b = VS the distance of Venus from the Sun,

x = VE, the distance of Venus from the Earth. Then

xz + bz a2

cos. EVS = -
r-j
-

, and therefore the brightness
2bx

I + cos. EVS x2 + 2bx + b* - a?
of the planet = -

x* + 2bx + & - a*
max. or--- = max. which let = r, .' , x* -f

XA

2bx + b2 a? = rxz or rx3 xz 2bx + a2 bz = 0. Now

let x = .'. ~ - 4 - + a* - b* = 0, and .-. (o
2 - b2

)

y y
3 y y

y
3 2%2

y + r = 0, and dividing this equation by a2 62

fi iwe find ys --
5
-~ y --

5
-

TO y H2 2 y * y
r

a a -

Now since r = max. and -
-^

constant quantity, .

*

.

Ct
~~ u
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r 26
75
= max. which let = v

;
also let -= rr,

= m and

a-
1 o -

^3
_ myt ny + v = 0. Suppose that c = one of the

negative roots of this equation, and consequently y + c must

exactly divide the said equation

+

(c + m) y* ny

(c + m) y
2

c(c + m} y

(c
2 + cm n) y + v

(c
2 + cm n) y 4- c(c

2 + cm
ri)

v
.. v = c(c

z + cm n}, .*. = c2 + cm n, and from
c

v c + m
equation (A) we have y

z
(c + m) y =-- or y =

O &

/c(c + m)* 4<v __ ,

=h A/ -7*
-

. Nowin order that 4?; or v may be=V 4c

max. we must have c(c + m)
2 = 4v = 4c (c

2 + cm
ft)

or

fc
I 4<?7

c2 -f- 2cm + m2 = 4c2 + 4cm 4ft .*. c2 + c =
o c>

m /= -- +A/
4m2 + 12w 2\m2 + 3n m _ Torc= -- +A -g

-- =---
. Now

c + m A/m2 4-3ft4-m , - . ...
,

, .

y = 5
=- --

, and from equation (1) taking
<w O

the values of m and n we find v/m2
-f3ra= A/ 7-5 7575V

(0^-0*)*

3^ + m \/3a2 + 62 + 2b _
3 (*-#)

1_ 1- and .

*

. x

\/3 2 + 2 - 26.

Q



In numbers a = 10,000, b = 7,233, therefore x = 4,304,

the angles ^=39 43' 30", F=117 55' 20", =22 2r 10".

(From the 7th edition of the Encyclopaedia Britannica.)

The same solved without impossible roots.

-f ,, ,
.

, x v , c + m
In the equation y

2
(c + m) y = let y z H

c 2

(c + m)
2

(c + m)
2 v c(c + m}

2

? __ J L- J 7
. r^v -|1

O /<
OT V

A 4} c 4

cz2
, which is evidently a maximum when z = 0, . . v =

- BU^ v = c (c
2 + cm n) .'. -^- =

x N + 3n m
c (c

2 + cm n) . . c = and therefore y =o

c + m \/m2 + 3n2 + w= as before.

PROS. (22.) REQUIRED TO DETERMINE WHAT MUST BE THE

DIAMETER OF A WATER-WHEEL, SO AS TO RECEIVE THE

GREATEST EFFECT FROM A STREAM OF WATER OF 12 FEET

FALL. (Fig. 53.)

In the case of an undershot-wheel put the height of the

water AB =12 feet = a and the radius BC or CD of the

wheel =#, the water falling perpendicularly on the extremity

of the radius CD at D. Then AC = a x, and the velocity

due to this height, or with which the water strikes the wheel

at D will be as \/a x, because the squares of times or velo-

cities are as the spaces, and consequently velocities are as the

square roots of spaces, and therefore the effect on the wheel,

being as the velocity and as the length of the lever CD, will

be denoted by xv a x or v ax* x*3 which therefore must
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be a max. or its square ax* x3 = max. Let ax* x* =
r or x* ax* -f- r = ; also let b = a negative root of this

equation . . x + b must exactly divide it.

/>i \ A />o3 n w-* I- /v C\ w-* (rt I- fi\ nf* ! A"* ! ///} ~ II I /\ 1
t-v T^ C/ J w """" tvw T^ / \J \ w \ C/ T^ Ct' I ct/ T^ C/ r wt/ V/ \ii.I

.x V_ \ / y \ /

(6 + a) x* +r
(6 + a) x* b(b { d)x

(b
z
-f ab) x + r

. . r b (b*+ ctb)

T
.

'

. -7- = b* + ab .
'

. from equation (A) we find x* (b + a)

r b -f a /b(b + a)
2 4r , . ,

x = r .-. a? = - =fc A/ ~ which, when
b 2 v 46

r or 4r = max. must give Z>(6 4- a)
2 = 4r = 46

(Z>

2 + 6)
=

( + b) .'. b + a = 4ib and 6 = -.. x = s =
O A

-j-; hut a = 12, .' . x - = 8 feet radius.
o o

But if the water be considered as conducted so as to

strike on the bottom of the wheel, as in the annexed figure

(Fig. 54), it will then strike the wheel with its greatest velo-

city, and there can be no limit to the size of the wheel, since

the greater the radius or lever BC, the greater will be the

effect. (From the 3rd vol. of the old edition of Button's

Course of Mathematics.) In the case of an overshot- wheel

a %x will be the fall of water, \/a Zx as the velocity, and

x\fa~-- Zx or \/ax2 - Zx* the effect, then ax9-1 2#s is a

maximum. Here instead of x we must put down %x .'. 2x

= .

*

. x = = 4, the radius of the wheel.
6 o

But all these calculations are to be considered as inde-

pendent of the resistance of the wheel, and of the weight of

the water in the buckets of it.
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The same solved without impossible roots.

v b ~4" a
In the equation x2

(b + a) x = 7-, let x \- yO fi

... tf - (ft + ^ y, = y* + ^ + fl
) y +

( + g
) _ ^ + ^

(b + )

2
fd 4- a}

2 r
y 5-^- = y -

2 4 4

+ a)
2

0^ = max. when y = .'. r = -. . But r =
4

b(b
z + ab) .'. = 0(

2 + flfl)
and 46 = b + a .-.

rE

,

'

a * + 2a , 12 x 2
o = - and a? = ^ =

; but a = 12 .'. x = -
O & O C)

= 8 feet as before.

PROS. (23.) TO DETERMINE THE STRONGEST ANGLE OF POSI-

TION OF A PAIR OF GATES FOR THE LOCK ON A CANAL OR

RIVER. (Fig. 55.)

Let AC, BC be the two gates, meeting in the angle C,

projecting out against the pressure of the water, AB being

the breadth of the canal or river. Now the pressure of

water on a gate AC, is as the quantity or as the extent or

length of it, AC, and the mechanical effect of that pres-

sure, is as the length of lever to half AC, or to AC itself.

On both these accounts then the pressure is as AC2
. There-

fore the resistance or the strength of the gate must be as

the reciprocal of ACZ
. Now produce AC to meet BD, per-

pendicular to it, in D ; and draw CE to bisect AB perpendi-

cularly at E; then by similar triangles AC : AE : : AB '. AD;
where, AE and AB being given lengths, AD is reciprocally

as AC, or AD* reciprocally as AC2
; that is, AD2

is as the

resistance of the gate AC. But the resistance of AC is in-

creased by the pressure of the other gate in the direction
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BC. Now tile force in BC is resolved into the two BD,
DC; the latter of which, DC, being parallel to AC, has no

effect upon it, but the former, BD, acts perpendicularly on

it. Therefore the whole effective strength or resistance of

the gate is as the product AIP x BD. If now there be put

AB = a, and BD = x, then AD* = AB* - BD* = a? -
a?

2
; consequently AJ)* x BD = (a

2
a?} x x = (fix x*

for the resistance of either gate : and if we would have

this to be the greatest, or the resistance a maximum, we must

find such a value of x which will make (fix a? = max.

= r. Let b = one of the negative roots of this equation,

and consequently x + b must divide it exactly.

x + ?>J x5 - (fix + r =
(j*?

2 - bx + b2 - a? = 0, ... (A.)

x (x

(b*
2
)
x + r

(b*
- a2

)
x + b(bz

- a2
)- .-. r - b(b*

- a2
)

T
.'. -=- = bz (fi .'. from equation (A) we find a?1 bx =

r b /b3 4r _ . ,-
. . x - =t A/ . Now in order that r or 4r may

be = max. we must have b3 = 4r = 4<b (b* a2

) or b =

7= and x =
7==. a A/ = -57735, the natu-

\/3 \/3 v 3

ral sine of 35 16' ; that is, the strongest position for the lock

gates is when they make the angle A or B = 35 16'; or

the complemental angle ACE or BCE = 54 44', or the

whole salient angle ACB = 109 28'. (From Button's

Fluxions.)
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The same solved without impossible roots.

v b
In the equation #2 bx --

7- let x = y + and . .

O Al

b2
b* bz rx*-bx= y* + by + -

by
- = y*

- = -

b3 b3

.'./* = --
by

2 = max. when y = .

*

. r = ; but r =
TD ^

7,3 f)n 7,

a2
)

.-.
-^

= 5(6
2 - a2

)
and .-. b = -4- or x =

|
=

as before.,_
\/3

PROB. (24.) IT IS REQUIRED TO DETERMINE THE SIZE OF A

CUBICAL SOLID, WHICH BEING LET FALL INTO A CONICAL

VESSEL FULL OF WATER SHALL EXPEL THE MOST WATER

POSSIBLE, FROM THE VESSEL; ITS DEPTH BEING = O, AND

DIAMETER OF THE MOUTH = 2b. (Fig. 56.)

Let ABC be the given vessel, the diameter of its mouth
= 2b and its depth HC = a. EmnD = the required cube.

Let FC = x. Now by similar triangles we find HC : AH : :

FC : EFor a \b\\x\ EForEF= and .'.ED = 2EF=
a

, and consequently the area of the base of the requireda

cube = ( )
= which being multiplied by HF

\ a i a?1

(= HC FC = a x = the height of the immersed part

of the cube) the product = -^- (a x) = the solid con-
u

tent of the immersed part of the cube = quantity of water
A ~U$i

displaced. Now since
g-

is a constant quantity, therefore

a?
2

(a sc)
= ax* x* = max. = r .' . xz ax* -f / = 0.



Let c = one of the negative roots of this equation, conse-

quently x + c must exactly divide it.

SB -f- cj X* ax* + r = ^#
2

(c + a) x + c2 -f c... (A.)

a?
3 + ex*1

(a + c) a?
2 + r

( + c) <2?
2

c(c -f a) x

c(c + a] x + r

c(c + a) x + c(c
2 + ca)

T
. . r = c(c

2 + ca) .*. = c2 + c#. Now from equa-
c

tion (A) we have xz
(a + c} x = .*. x = =fc

c 2

Vc(a
+ c)

2 4r
--

rjf

-
> and in order that r or 4r may become

a max. we must have c(c + a)
2 = 4r = 4 c(c

2 + ca) = 4c2

, N
a c + a 2a

(c + a) . . c + a = 4c and c = . . x = - = and
Q /^ O

consequently one of the equal sides of the required cube =
2a

2b x -^-3

a 3 9

The same solved without impossible roots.

In the equation x2
(c + a) x = -- let x = y -\

---
c &

.-. xz -
(c + a) x = ?/

2 + (c + a) y +
^ * "'--

(c + a)

(c + a? (c + )

2 r c(c + a)*y ^-L. = y* J-L. -- y = _:-L.

2 4 c 4

c(c + )

2

cy
l max. when y = .*. - - = r = c(c

2 + c) .-.
4

a c + a 2a . ec + a = 4corc= .'.0: =
jr

= as before.
O /i O
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PROB. (25.) IT IS REQUIRED TO DETERMINE THE SIZE OF A

BALL, WHICH, BEING LET FALL INTO A CONICAL VESSEL

FULL OF WATER, SHALL EXPEL THE MOST WATER POSSIBLE

FROM THE VESSEL; ITS DEPTH BEING 6 AND DIAMETER 5

INCHES. (Fig. 57.)

Let ABC represent the cone of the vessel, and DHE the

ball, touching the sides in the points D and E, the centre of

the ball being at some point F in the axis of the cone. Put

AG= GB = 2 = a, GC=6 = b .' . AC = V'A& + GC2

= 6J = c, DF= FE = FH = x the radius of the ball. The

two triangles ACG and DCF are equiangular; therefore

AG : AC:: DF : FC; that is a : c \\x : = FC-, hence GF
a

= GC - FC = b - and GH = GF + FH = b + x -
a

coo = height of the segment immersed in the water. Then

(by Button's and other authors' works on Geometry, see

Introduction,) the content of the immersed segment will be

(6 DF - 2GH) x GH* x '5236 = (6# - 2# - 2b + }
V a I

x (x -f b
) x '5236 = maximum, and therefore

V a I

/n cx\ / cx\
z

[%x H ) (x + b
)
= max.; but 2x b +

V a I V a
'

ex 2a + c ex a c
x b and x -f o = x + o b

a a a a

x where c is greater than a, because c is the hypothe-

nuse and a the perpendicular of a right-angled triangle. Let

c a (b y] a ,, 20 + c
b x = y .*. x = and consequently

a c a a

(b -y} a (2a + c) 3a*b - a(2a + c) yX O o =
7

r

a(c a) a(c a)



Sab (2a + c) y ,2a + c \ /a c ,\-
\ ' *s . / />> /ill _____ 'y i /j I

~~*
. . O- -

t/ I iff T v i

c a \ a I \ a '

/2a + c \ /, c a\
z

Saby
2 (2a + c) y

3

(
x b) (b

=
\ a I \ ax i c a

2a + c / Sab .
,\ 2a + c-.

(
- yz y3

}
= max. Now as- = a con-

c a \20 + c
y "7 c a

stant quantity, we must also have
jr y y

3 = max.
i4fl5 ~r C

= r : also let -- = A, and .
'

. 2/

3 ^/2 + r = 0. Let
20 + c

n = one of the negative roots of this equation ;

) y
3 Aif+r=Q \^y

z
(n + A) y + n(n + A)=Q, (B.)

(n + A) y
2 + r

(n + A) y
2

n(n -f A) y

n(n + A) y + r

n(n + A) y + n* (n + A)
.-. r = nz

T
(n + A) and - = n(n -f A] .' . from equation (B) we have y

n

r n + A /n(n+A)*4>r
(n +A) y or y = g =fc A/ ^ -^ and

n 2 V 4ra

hence it is evident that 4r cannot be greater than n(n + ^4)
2

and therefore when it is a max. we must have n(n + ^4)
2= 4r

+ ^4) and .-. rc + ^4 = 4ft or w = ;
and hence

and x =

o

re + ^4 2^4 2 x 3S 2ab

2ab
(h

^
\ y a

-y}a \
l) "2a + c)

Xa
(b y) a _
c ~ c a (c a) (2a + c)

the radius of the ball; consequently its diameter is 4^ inches,

as required.
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The same solved without impossible roots.

T
In the equation y

2
(n + A) y = let y = s +

71

n + A
2 / A\ 2 A\ (

n + ^)
2

2 4

, (ft + ^4)
2

(n + AY r
(n + A) z v - - = #2 2 - = .'. r

2 4 n

n(n + ^4)
2

ft(w -f- ^4)
2

= 2 - ' nz1 = max. when z = .'. r = -

7 ,
4 4

but r = nz (n -f A) .*. w2
(ft + A) = -. .'. n = .

v ' v '
/4, X

/
ft
_ 2^4\

n + A 2A (b y) a \ 3 /

Also v = ^ = -7T- and x = =
2 3 c a

, 30& abc ,

but -4 = .. a? =
-7 r^ r as before.

2a + c (c a) (2a + c)

PROB. (26.) TO FIND SUCH A VALUE OF X AS SHALL

(X 1)2
MAKE -7 -^ A MAXIMUM.

(3D + I)
3

Let x + 1 = .'. (x + I)
3 = x - 1 = - 2 =

y y y

and (x I)
2 =

?- and therefore we find
y y

2 - ?
2

(*-i) ^ ^ y ~_

(x + I)
3

'

^ 1
i

/

= 4
(2/

3
?/
2 + y) = max. and .*. v 3 v2 + -j-4 4

= max. Now let y = z +

..?/ = ^ + ^ +
-g-ar

+

o o ^
ni . yy^ ^ _

3
'

9

1 11
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#
3
-2/

2 + -^y
= ^3 -j* + j^--^= max. and

12 1

TTJ
is a constant quantity, and .*. z3 z max.

=
r, .'.-z3 - z-r = 0.

Let one of the positive roots of this equation = a, and

consequently z a must exactly divide it.

z - a z* - z - r =
(

2 az + 2 - - = 0.

and 2 - = .. from equation (A) z2 + az = --
12 a a

d I oft _ ^f
or z = -~- =t A/ -- where 4r cannot be greater than

a3
, .*. when r = max. we must have a3 = 4r = 4a fa2

y^

or a2 = 4a2 -- .'. a2 = and = . Also z --
o y o /&

1 11 1= _ and?/ = 2r + =
, .-.^+ 1 = =6, .-.^ = 5.

"

The same solved without eliminating the second term of

the cubic equation y
3

y
z + y r = 0.

^t

Let a = one of the positive roots of this equation, and

consequently y a must exactly divide it.



I 3 2
1 12 /

1 \
2

" j y y 4 / y *

\ 2 /

~
^ '

y
3

ay
z

(a
-

1) f + y

(a 1) y*
-

a(a
-

I) y

U*. .,. iv
(a

-

) 3,
-

(o
-

2/
.*. r =

/ 1 \
2 r / 1 \

2

0(0
j

or = (o 1 y and from equation (A)

a(a I)
2

= --- !

Now in order that r or 4r may become a max. we must have

a(a
-

I)
2 = 4r = 4a (a

-
-^) -'

2 - 2o + 1 = 4a2 -
^ /i '

2 oll 1
4o + 1 or o = and y = --- = .

*
. ^ + 1 = = 6

and x = 5 as before.

The same solved without impossible roots.

r a
In the equation z2 + az let z = w and .'.

a 2

r/
z

r/
2

//
2 rn o U U O U '

z-
1 + az = w2 aw H - + aw = WL =

4 2 4 o

.' . r = ow2 = max. when w = 0.'.r = r =
4 4

/'
' 1 \ ! !

gr j ^^ I

* O * Z ~~
\ 19/** ~ Q*"* -L<v' O O

.*.o?= 1 = 5 as before.
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PROS. (27.) TO SAW OUT OF THE TRUNK OF A TREE A

RECTANGULAR BEAM THAT SHALL HAVE THE GREATEST

POSSIBLE POWER OF SUSPENSION. (Fig. 58.)

Actual experiments lead to this result, that in a parallelo-

pipedon of uniform thickness, supported on two points and

loaded in the middle, the lateral strength is directly as the

product of the breadth into the square of the depth, and

inversely as the length.

Let ACBm be the circumference of the trunk and the rect-

angle AB the base or top of the beam cut out of the trunk.

AB = diameter of the trunk = #, AC breadth = x, and

BC = depth of the beam = \/ 2 #2
. Also let/= strength

of the wood of which the tree is composed, and /=the length

of the beam which is in this problem = a constant quantity.

We have before observed that the power of suspension =
/ x breadth x depth

2
fa (a? a?) f 2

, , , , I QJ X "~ " X i

length I I
v

max. .*. cPx x3 = max. = r .*. x3 (fix + r 0. Let

one of the negative roots of this equation = b, and conse-

quently x + b must exactly divide it.

of + &J #3 _ tfx + r - o (j|.s
_ lx + #* - a2 -

0, ... (A.)

(b
z a2

)
x + r

(tf
- a*}x + b(b*

- a2

)

.-. r= b(b*
- a2

)

. . b2 a? =
-J-.

Prom equation (A) we find x* bx =

y* b /b3
4"7*

or #=-=*= A/ r; and hence it is evident that when
b 2 V 46

r or 4r = max., i3 = 4r = 46 (6
2 2

)
or 362 = 4a2

.*. 6 =
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20 b a ,,, , /-s 5 / a~
. . x = pr

= ?= = breadth and v or x*= A/ a2 -

A/3 A/3 v

Vij- = depth of the beam. Now from the points m and

C draw mr and Cn perpendiculars to the diameter AB, then

by prop. 8, 6th Book Euclid, we have AB : AC :: AC : An
a a

or a : x : : a? : An = =
jr. Also ^4# : Urn : : Bm :

a 3a 3
a

OC tt

Br or a l oo : : x \ Br = -- .. nr = ^45 rB An =
a 3

a 5 = -

; hence the following construction.
o o o

Divide the diameter of the trunk into three equal parts,

and from the two points of section draw the perpendiculars

and complete the rectangle, which will be the base or top of

the rectangular beam required.

The same solved without impossible roots*

T ~b

In the equation oP hoc
j-

let x = y + . . xz

o A

b2
b* bz r

b% = y
z + by -\ by = y

z = -7-
' r

4 246
b3 b3

~ 1 ^2 = max> wnen y = .*. r = -r
TC 4l!

b3 2a b a
or b r=. and x = = = as before.

4 A/3 2



CHAPTER III.

PROBLEMS OF MAXIMA AND MINIMA IN THE SOLUTIONS OF

WHICH EQUATIONS OF THE FOURTH, FIFTH, SIXTH, AND

SEVENTH DEGREE ARE USED.

Section 1.

PROB. (1.) WHAT FRACTION IS THAT THE FOURTH POWER

OF WHICH BEING SUBTRACTED FROM ITS CUBE THE RE-

MAINDER IS THE GREATEST POSSIBLE?

Let x == the fraction required, .'. <a?
3 x* = max. = r

. . x* #3 + r = 0. Now let the product of the two values

of this equation = #2 ax + b, which must consequently

divide it exactly, and .*. we find,

(a l)x+ az a 5=0, ..(1)

(a 1) #
3 bx* + r

(a 1) #
3

a(a 1) #
2 + b(a 1) x

(a? a b) a? b(a 1) x + r

Now it has been proved in the introductory chapter that

when any equation is divided by two factors of the form x c,

oe d, successively, or by their product of the form #2 ax

+ b at once, then the remainder R must be equal to zero and

entirely independent of x in the case when c and d are

supposed to be the roots of the given equation. We therefore

find b(a
-

1)
= a(a*

- a - b) and r = b(a? -a- b)...(2) ;

T
.*. -y

= a2 a b. Also we have b(a 1) = a(a
z a b)
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or ab b = a? a* ab, .'. 2ab b = b(2a
-

1)
= 3 -

a3 a2
a?(a 1) ,2

.-. b = --- = 7
--^ * az a b = a? a

2a 1 2 1

a3 - a2 a (a
-

I)
2 a2

(a
-

1)' *

and . 4r - -
'

(3)29/7 (9ft -
<Vl* J.

^/Wti .

Now from equation (1) we find, a?
2 + (0 1) # = 7- and

solving this quadratic we find <#= o~~ A/

- 1 (2
-

I)
2

. Here
46

403 (0 ]\3
it is evident that 4r or - ~ cannot be taken so great

\ACL L)

as to make it greater than b (a I)
2 or ^

(n^Vnltr, ^
and consequently when r=max. we must have -

3
(
-

I)
3 4
or 1 = ---- or 2a ~ I = 4 . . a =

I)

1 a - I J-l 3

2
'

2 2
"

4*

The same solved without impossible roots.

r a 1
In the equation a?

2 + (a 1) a? =
j-

let x y
-

b &

(a I)
2

and .-. X* + (a 1) x y
2

(a 1) y + * 7 - +

(i v I O/
"""

JL ) o i G/ * "
JL J i

-|

/7 - I
j >yy . ___ -^ i

^ 7/
^

_sm-l-^J
-

, , ____ o y\ r\ y -^

b(a I)
2

-: oy*9 which is evidently a maximum when y 0,
TJ

7 / T\2 *?/ 1\^

and consequently r = - -
: but r is also = -^ -^~J 4 (20 1)*
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b(a
-

I)
2 3

(0
-

I)
3

and therefore we find - __-- or b =
4 (2a 1)-

,

403
(0
-

1) _40_"

(20
-

I)
2 20 - 1 (2a

-
I)

2 "20-1
1 0-1 j

- 1 3_ - _ .-. x - -- - - - -
4

as betore.

PROS. (2.) TO FIND SUCH A FRACTION, THE FOURTH POWER

OF WHICH BEING SUBTRACTED FROM ITSELF, LEAVES THE

GREATEST REMAINDER POSSIBLE.

Let x = fraction required, then by the problem we find

x x* = max. which let = r .' . a4* x + r = 0. Let

x* ax + b be the product of the two values of this equa-

tion, which must consequently be exactly divided by it,

.-.#2 ax + bj x* - x + r = (j?
2 + ax + 2 i = 0,...(l)

a?* ax* +

ax* bo? x + r

abx

(0
2 -

b) a? --
(ab + 1) x + r

(a*
_

b} x* - 0(0
2 -

b) x + b(a
L -

b)

a3 _
]^

3

.

*

. ab + 1 = 3 06 . . b = -- and 3 b = 2

20 20
s + 1 3 - 1 3 + 1

~2^ : and r = b(a
~

b]
= -2T- x -5TT

=

-l)(03 +l) AT-~~--. Now from equation (1) we find XL + ax

r a
.4- / l

~b
' '* '

2
- VVa-b 4r TT

. Hence it is evident
45

that 4r cannot be greater than a?b and .* . when r or 4r=max.

fls_ 1 (0
3 -l) (0

3 + 1)we must have a-b = 4r : but b = - and -

20 40
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a2 (a
3 -

-J.) 4(a
3

1) (a
8 + 1) 2a3

(a
3-

1)
' ~

4a2

. a, = 2fl = a/ = _

3 2 V 8

7'Ae same may be solved without impossible roots.

7* Qi

In the equation #2
4- 0# = --

7- let a? = y -- and
b A20

CL

therefore we find a? + ax = y^ ay + -
-\- ay -- =

2 r azb . .

y*
--- = - or r = -- ov1 which is evidently a46 4

maximum when y = . . r = - -or4r = a2
^. But 4r =

4

4(a
3

1) (a
3 + 1) > _ y _ a__

3

/~% 1= A/ -^-
= ^=r as before.

PROB. (3.) TO DESCRIBE THE LEAST TRIANGLE TCt ABOUT

A GIVEN PARABOLIC ARC APB OF WHICH C IS THE

FOCUS. (Fig. 59.)

Let AN = oc, AC = a, and therefore tC = + SB. Also

by similar triangles we find, tN \ NP :: tC : CTor 2x :

4- CT (
a + x

} x v/ x ^x
. !^T . . (

a +

x /C (aand therefore the area tTC = --- = -



a + oc . x= mm. and . .
--= mm. and .* .

-- =: max. Let x
x (a + x)

4

ab

ab
t

, x c abc~ ''

c
'

(a + xy
'

(ab

c4

be3 be3 be3
or 777 = max. It is evident that

(c 4- by (c + by
~

(c + by

b c3
i c \ c3

Tx . =3-11 T X 7-JT;. Let y =
c -f a (c + o)

3 \ c + 0/ (c + o)
3

7 .'. = (1 y) V
3 = V3

V
4 = max. In this

c + b (c + by
o q

case by problem (1) we find y = -. but 7
= y =

4 c + b 4

c + # 4 4 ab x b
or = .-. 1 H = . But x = .. =co co c a c#41 x 1 , a

~^ ~3 "3 ~a~ ~3' "3*

The same may be solved without impossible roots as pro-

blem first.

The same may be solved by the following more direct and

common way by which the two first problems have been

solved. TI- ay
1 x y I ay y

4

Let a + x = .*. the -. r-. = % = x -^r
y ( + xy y

v4"

=y3
2/
4=max. and .'. y

3
y
4=max. which ]et=r .*. y

41

(Jv

-y3 + f = 0. Let y
z

by + c = product of the factors
(JL

of the two values of this equation and consequently we have

I * # . ^-xlrt./T J- i A (/ *~* / ^ \

a \ a' CL

by
3 + cy

z

}
3

a' y
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and therefore r = clb2 ---
c) .............................. (2.)

and
c(b

-
i)
=

i(4
-

|
-

c)
.............................. (3.)

From equation (3) we find be -- = b3 --- be and con-
a a

,, c Z>
2

c(2& - 1) ab3 -
sequently 2bc --- = b3 -- .-.

a a a a

)
.'. c = -yr

-- - anc^ from e(
l
uation (2) we find r =

x
a 2aft-l a

b*(ab T) /ab* - b_)_ /a - a \

2ab - 1 \ a 2ab - I ' 2ab -

~

/cffi-2ab*+ b\
_ _

&2

(aZ>
-

1) (ab
-

I)
2 X b (ab

-
\ 2

' '

azb -a 2ab - I 2azba '

(2ab
-

l)
2
a*

(1 \ T
b --

] y H-- = 0, . .

d ' C

//7 I \
2

+ / (b -- 1 x c 4r and hence it is
a

/

A/V
evident that r or 4r cannot be taken so great as to become

/ 1 \
2

greater than (b -- ) x c and consequently when r = max.
* \JL

'

/, 1 \
2

4(ab - l)
3^3

we must have 4r = c[b -- . But 4r = .: ,--^
V a I (2ab l)

za
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= C
\
b

a I 2ab -T~ v
"

a / az

(2ab-l)

4(06
-

1)
363 46 1

A-l
and .*. 2ab = - 1 .-. 6 = ;

but y2a' 2

2a a 3 1 4 a= .-. a + a? = = = + and .'.
40 3

= as before.
o

may now easily be solved without impossible roots.

(1 \ r
b

j y = let y = z

-r^- and .'. y* + (b - } y = zz -
(b
-

} z +
2 \ a ' \ a '

(*
- 1)

2

V
'

ft-!)
2

fc-
:= Z*

.

(ft
- I) * _

\ a i 2 4
2

r \M= - and consequently r = csr
2 which is

c(ft
- 1

evidently a max. when z =
; . . r = -

. . 4r =

but c = . ,. 4r =
a > a2 2ab 1

_
1)3

and,4r is also = 7
- ..

2
,

-

20 I)
2 x a a?(2ab I)

- -

I)
3 x fr*

J^ 46
JL_-

I)
2 x a

'* T 2A- 1
*'' = ~M



b- -1-1
a 2a a 3 , 4#

a
2 2 4a 3

, e
a. + .'.#= as before.

o o

PROB. (4.) LET ^4.8 BE THE DIAMETER OP A CIRCLE, IT IS

REQUIRED TO FIND A POINT, C, IN THE DIAMETER, SO

THAT THE RECTANGLE FORMED BY THE CHORD DE, WHICH

IS PERPENDICULAR TO AB, AND THE PART AC MAY BE

THE GREATEST POSSIBLE. (Fig. 60.)

Let AB = a, AC = x, and CB = a x, then (a x}x

= CD* and CD = aa-p
-,
therefore DE =

and the rectangle EG = x x 2VMP x*1 = max. .
*

. its square

4<2?
2

(ax x2

) or 4a<2?3 4^4 = max. .*. ax? x* = max.

which let = r . . x* ax* + r = 0. Let X* bx -f c =
product of the two values of this equation, and therefore

we find ;

j ^-<a?3+r=0 (j?
2+ (b-a}x+ b*-ab-c=Q, (A.)

x* bx* + ex*

(b a) X
s ca?

2
-f r

(b a) x* b(b a] x* + c(b a] x

(b
z ab c) x* c(b a] x + r

.'. c(b a) = b(b* ab c) ................................. (1.)

and r = c(b*
- ab - c) .'. b* - ab - c = ............ (2.)

_ a
From equation (1), c = - - .'. & ab c = b2

a

tf(b
-

a) b(b
- aY r

ab - ---L = -1- -L = . Now from ............ (A.)
-- -

20 a 20 a
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r b a
we have xi + (b a} x = or co = - =t

/ (b a)
2 r r

\/ - - and it is here evident that when r or - =V 4 c c

(b
-

a)
2 r b(b

-
a}* 1

max. we must have - - - = = ~i .*. r =
4 c 20 a 4

a

b a b a 2
.'. b = and x

i -a 2 2 2

30
:

T-

7%e same solved without impossible roots.

r b ~ a
In the equation x* + (b a) x = let x = y -

(b a) x y
z

(b a) y

c 2

(b
- aY

_ ay r

2 4 c 4
/7 \ 9 / 21 \ ^

cw2 = max. when r = - .'. - - - = =
4 4 c

b(b
- aY 1 b a b- a

-^T . . = or b = and x
2b a 4 2b a 2 2

= as before.
4

PROS. (5.) TO DIVIDE 12 INTO TWO PARTS, SO THAT THE

LEAST MULTIPLIED BY THE CUBE OF THE GREATEST, SHALL

BE A MAXIMUM.

Let x = greater part .*. 12 x = lesser part and

X* = max. = r .*. a?
4 12<#3 + r = 0. Let the product of

the two values of this equation = <2?
2 ax + b.
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/.a2 oar+JJ x4-l2x3+r=0 (^
2
+(0-12)#+

2-120-6=0, (A.)

ax? +

(a
-

12) <z-
3 -

(a
-

12) <2?
3 - a (a

-
12) x

1 + A (a
--

12) x

(a?
- 120 --

b) ^ -
b(a

-
12) x + r

.-. r = %2 - 120 --
6) .'. - = a* - 120 -- b ......... (1)

Also b(a
--

12) = 0(0
2 - 120 - b)

= a3 - - 1202 -- ab .'.

b(2a - 12) - - a 12fl
. . ^ - -

3 '

"

, i o 9/7 19l \.& AU J <v

.* . from (1) -r = 2 120 b = 2 120 ^ =-r- =
6 20 12

g3 - 2402 + 1440 0(0
-

12)
2

0(0
-- 12)

2

_

<W0 JLi4 <V0 JL<V <V0 J <V

2
(0-- 12) ^ 0(0

-
12)

2

_
3
(0

--
12)

3

20-12
X

20-~12 (20-12)
2

'

tion (A) a?
2

-f (0 12) x = r or a? =
b &

\f ~
. Here it is evident that when r or 4r=

max. we must have b(a 12)
2 = 4r or ~ r~'

(
a ~ l^)

2

403
(0
-

12)
2 40

(20
-

12)

'

fl :

2

e solved without impossible roots.

T
In the equation #2 + (0 12) # = --

j-
let a? = y

10
'

.-. ^2 + (0
-

12) x = y*
-

(a
-

12) y +
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_
b 4

fl(g
-

12) _^!^_-
2a - 12

'

4(20
-

12) (20
-

12)

a = 6 and x = --- = 9 as before.

PROB. (6.) TO INSCRIBE THE GREATEST ISOSCELES TRI-

ANGLE IN A GIVEN CIRCLE. (Fig. 61.)

Let AEG be the isosceles triangle required,, and suppose

BD = x and BE = diameter = 2a .'. DE = 20 x .' .

half the base = AD = \/2ax of" and area of the isosceles

triangle = AD x BD = x v2ftif a? =. \/2ax3 x* =
max. .*. 2ax3 x* = max. = r .*. a?* = 2ax3 + r = 0.

.'. let %z bx + c = product of the two values of this

equation,

x*-2a3?+r=0 Iz2+(b-2a)x+ b2 -2ab-c=0, (A.)

x* bx* +

(b-2a) x*-b(b-

(b*-2abc) xz
-c(b-2a)

-. r = c(b*
- 2ab - c) .'. = b* - 2ab - c . . (1.)

c

Also c(b
-

20) = b* - 2ab2 - be .-. c = - .'.
2b 2a

r b3 - 2ab* b(b
- 2) 2

= b2 - 2ab - c = b* - 2ab - OA = -^--r4c 2b 2a 2b 2a

T
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, b(b
-

2e)
2

&(b - 2o) 4(4firm 7* - /> v -- - - . -__- V -. -

2b - 2a 2b -20 2b - 2a

(2b
-

2a)'
'

a? + (6 20) .2? = or a? = - - =fc

C/ t*J

V-7^
- and here it is evident that when r or 4r

4c

fffQ 2a} 3

= max. we must have c(b 2a}
2 = 4r or ~--~- =

2b 2a

4b*(b
-

2a)
s 4b

7f--TTT2~ *. 1 = ;rj
--;r- .' . b = a and 0? =

(2b 2a)
2 2b 2a

b -2a 3a= -
. Hence AD AT--? /" ~9a^= v 2ax x* = \J 3a2 --^4

= ^1 ... AC = 2AD = a\/~3. AB = \/AD* + B&
<v

Vo
~2 Q/-/2

+ - = \/3a2 = a\/~ .'. the triangle required
~~E

is equilateral.

same solved without impossible roots.

T
In the equation a? + (b 2a) x = -- let x = y

C*

= ^f- (b
-

2a) y +
(-^

r

cy^ = max. when y = .*. r =. ..

b - 2a) V>(b' -But r = - -- - and c =

7 c 12b 2a 4

^-- ..
2b 2a (2b

(b-2a)
z 4b
or ! = - ~

-' b = a and
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x = - = . Hence AD = VUme - a~ -

= x

as before.

FROB. (7.) TO INSCRIBE THE GREATEST PARABOLA IN A

GIVEN ISOSCELES TRIANGLE. (Fig. 62.)

Let AGF be the given isosceles triangle and CHPME tlie

required parabola. Let AD = b, GD = a, and GP = x.

Now KPG being a subtangent to the parabola, we must have

by conic sections GP = PK = x .
*

. GK = 2% ;
also PK '.

PD :: HK* : CD*................................................ (A.)

Now by similar triangles GD ; AD : : GK .* HK, or a I b : :

. ...
.2% .

-- = HK .'.by proportion (A), x \ a x ::
a a"

47,2 97, _
CDZ

.'. CD* ~(a - x]x .-. CD = Via - x]x: Now
fir a

2 2b 2
the area of the parabola or -

t

- PD x CD = - - x (a x)o a o

V (a
-- x)x v (a x}*x = max. or (a %y% = max.

Let a x = y .*. x a y .-. (a ^)
3
<^ = y

3
(a y)

= ay
3

y
41 = max. = r .'. ?/

4
?/

3 + r = 0. Proceeding

exactly as in the solution of Prob. (4) we shall find y =
3a 3a a

~ and x = a y a --- = -.

4 44
The same may be solved without impossible roots as

Prob. (4) was.

This problem if solved by the common method given in

works on Diff. Calc. must ultimately produce a cubic equation,

to solve which is generally tedious.
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PROB. (8.) TO DETERMINE THE GREATEST PARABOLA THAT

CAN BE FORMED BY CUTTING A GIVEN CONE ACD.

(Fig. 63.)

Let nv, parallel to CA, be the axis of the parabola rvm

and rm the base (or ordinate) thereof. Putting DC = a,

~bxCA = b} and Dn = x
; then, by parallels, a .* b '. '. x \

-

a

nv; moreover by the property of the circle, we have rnz=
nmz = Dn x Cn = ax x~, the square root of which multi-

plied by - x - -

(because every parabola is of a paral-O a O

lelogram of the same base and altitude) gives
- - v ax -- x"
oa

for the contents of the parabola = max. .

*
. ax* x* = max.

= r . . .z?
4 ax* -f r = 0. Now by proceeding exactly as in

Prob. (4) we find x = when ax* x* = max.
4

The same may be solved without impossible roots in exactly

the same manner in which Prob. (4) was.

PROB. (9.) THE CORNER OF A LEAF IS TURNED BACK, SO

AS JUST TO REACH THE OTHER EDGE OF THE PAGE, FIND

WHEN THE PART TURNED DOWN IS A MINIMUM. (See

Fig. 51.)

It has been shown in Problem (20) Chapter 2nd that aA x

/ 9r3

PQ = 2AQ x AP and that aA = \/2ax, PQ = A/~V %x a

V4$e27* = 2# x A Q .

'

. the area of the part
%x a



x x AQ 2 / / x*
turned down = = v a \f =

2 4 V 2x a

= min. .*. = min. Let 2.2? a = y .'.

2x a 2x a

y + a a* (y + a)* (y + a)* _
' * ' ' 2x~a ~16~ T6T

y
I6y y AIT, ab

--SL-r- = max. or -. 7 r- = max. Also let y =
(y + )

4
(y + )

4 c

ab

y c c*ab C3b

(y + op
: ;

a*(b + c)
4

'

a*c(b + c)
4

=

a3
(b + c)

4

C*

1 be* be3 be3

x T.
--

r-r = max. --
r^ = max. But

(b + cY (b + c)
4

(b + c)
4

JTT-) TT^-NS' let /r4- = ^ (1
-

*)*
3 =

b + c/ (6 + c)
3 o + c

z* z* = max. Proceeding exactly as in problem (4) we

3 c 3 b + c b 4
find z = - or T i

= .-.- = --
1- 1 = - =46+c4 c c 3

1 6 1 , o5 a + a

y +l .-. _ =

3"

2

The same may be solved without impossible roots as

Prob. (4) was.

Section 2.

PKO15. (10.) TO FIND SUCH A VALUE OF X AS MAY MAKE

x5 = MAX. = r.

We have now the equation x5 mx* + r = Q, and let the

product of the three values of this equation = x* -\-

bx -f c and .'.we have



'#
5+ a

la? ex*

(
2
.+ am b)x?+ (ab+ 1m -

c)x
2+ (ac+ cni)x -f r

.-. a2 + am 6 = ....... . (2.)
c

A.\so ab -j- bm c = a3 + 2m 6 ;....../ ................ (3.)

9 , , azb -\-abm b2

ac + cm = a-o + ao?^ 62 or c = - - ... [4.1
a + m

From (3) and (4) we have 6 + 6??i c = ab + bm

-f- aim + 6w2 azb abm + 62

+ m a + m
bz

- = a >5 + arm ab. or mao + w z + 6" =
a + 7^

a2m2 a26 ma6 or /,
2 + (2ma + m2 + a2

)
6

=
(a

2 + aw*)
2 or 62 + (a + m)

2 6 = a2
(a + w)

2 or 6

(a + m)
2

/(a + w)
4

-f 4o2
(a + m)

2

= - *^Y^ + V-4^- or 6 ^

(a + m)
2 + \/(a + m)

4 + 4a2
(r/ H- mf

r a + m
From (1) or (a + m) x = or a? = -

2

,2

V'(a
+ mY r (a + m)

2 r
.*. when r = max. = =

4 c 4 c

2a(a + m) + (a + m)
2

(a + m) \/( + m)
2 + 4a2

+ m b =

or a + m = 4a -f 2a -f- 2m 2V (a + m)
2 + 4a2 or

5a + m = 2\/(a + m)
2 + 4a2 or 25a2 + 10am + m2 = 4a2 +

4m2 + 16 2 or 5o8 + 2am = 3m2
, .-. a2 + a =
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m

+ m
a + m 5 4m . v. la 4

oc - = ---- =
. if m = 1, then x =

& o o

PROB. (11.) TO FIND SUCH A VALUE OF X AS MAY MAKE

mx3 x6 = MAX. = r.

We have now the equation x& mx3 + r = 0, and let the

product of the three values of this equation = xz
-f ax? +

boo + c, we therefore find,

<?J a?
5 ^^-fr^O l^r

2
fltf+ a2 I m=0, .... (A.)

.r
5

-}- tftf
4 + J^3 + cot?

1

ax4 (b + ?) ar
3 c#2

3 aba;2 cax

T
.. r = ca2 be cm or a2 b m . . (1.)

c

ab c = a3 ab am ........................ (2.)

,, 7,9 7

2^ bz bm
ca = a^ 62 m or c =- ... (3.)

bz bm bz + bm
and .'. ab c = ab -- = ---- =

a a

a3 ab am .'. bz + bm = a* azb azm or b =
a? + m /a* + 2a2m + m2 + 4 4 4 2m a2 + m
. .- - - I /\ / ____ , .-_^- ______ ______

2 -V 4 ~2~

V5a
4 2a2m + ma

_ (fl

2 + m) + A/oa4 - 2a2m + m2

4

^* Of /7
2

7*

and equation (A) gives x^ ax= .-.# = -dt A/ ----
c 2 V 4 c
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az r
.'. = - = a m =

4 c 2

and a2 = 6 2 - 2m 2\/5a4 2a?m + m2 or 5a2 2m =

2\/5a*2a?tn + m2
. . 25 4 20a2m + 4m2 = 20a4 8a2m +

4m2 or 5a4 - 12ma2 = .-. o8 =
, and # = - .-. a* =

5 2

oa 12m 3m /3m _ /3"
s"
"*" VT- -!** VT-

PROS. (12.) TO FIND SUCH A VALUE OF a? AS MAY MAKE
2 x5 = MAX. = r.

We have the equation x5 mx1 + r = 0, and let the pro-

duct of three values of this equation = a?
3 + ax1 + bx + c .

'

.

5=0, ... (1.)

(c -h m) #2

ax* 2
<2?

3 abx* acx

(

2
b) x

z + (ab c m)#
2 + acx -+- r

. ^2 _ j __ _i_
^ /2.)

G& m c = a3 ab , (3.)

ac = orb 62 or c = ., (4.)
a

-am-
.'. ab m c = ab m

a a

= = a3 ab or bz am = a4 a~b or 62
-f

2 / 4

a?b = a* + am .-. b = -- + A/ -
\- a* + m =

v 4

- 2
-f X/5a4 4-4cm 3a2 - \/5a4 +4m-

^r
- .*. al b=--- and from (1)
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CL / fl&
2

7*

and (2) x -
-f- A/ -- .. when r = max. we must

2 V 4 c

a? r 3 2 A/5 4 -f4am
have = = a? b = .'. a2 = 6a2

4 c 2

2v/5a4> + 4am . . 25a4 = 20ft4 + 16am .'. a3 =
,
and# =

o

a a3 2m s

/2m .

. . #3 _ _
t

.

t # _ A / If m = 1, then <2? =
A O 5 V O

PROB. (13.) TO FIND SUCH A VALUE OP X AS MAY MAKE

mx x5 = MAX = r.

We have x5 mx + r = 0, and let the product of three

values of this equation = x* + ax? + ba + c, and therefore

we have,
6 mx+r=Q {jxPax+ cPb^Q, .... (1.)

5 + ax* + bx* -f ex*

ax* bx* ex* mx
ax* a2#3 aba2 acx

.-. c(
2 -

b)
= r .'. a* - b = ........................ (2.)

Also ab c = a5 ab ...................... ................. (3.)

,
2 + m

ca m = alo b* .
'

. c =-- ......... (4.)
a

azb b* + m b2 m
.*. ab c = ab--- =- = a3 ab or

a a

Z>
2 m = a* a?b .*. bz + a?b = a* + m and .*. b =

2 +\/5a4 +4m a /a2 r-
. Now from (1), x -. -. + /y -^

-
,

u
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a r
.-. when r= max.. = = 2 = 2

4 c

3a2 \/5 4 + 4m /---
jr .'. a8 = 6o8 - 2\/5a4 + 4m .'. 25a4

2

= 20 4
-f- 16m. .-.

4 = ^-^. Now since = we must
5 4 c

a4 16m m
16

=:
16 x 5

=

IT'
*' *

VT 1
If m = 1, then o? = A/ - = -77=.V 5 v<K

Section 3.

PROB. (14.) TO FIND SUCH A VALUE OF 07 AS MAY MAKE

mo?5 #6 = MAX. = r.

Since we have #6 mo?5 + r = 0, let the product of four

values of this equation = o?
4 + ax* + Jo?2 + ex + d . .

) xe mx5 + r= {.x*(a + m)x + a~ + am b=Q, (1.)

o?
6 + ax5 + io?4 + co?

3 + do?
2

(a + m) o?
5 Jo?

4
co?

3
c?o?

2

(a -f- m)o?
5

(a
2
-f am) o?

4
(Z> + bm) o?

3

(ca + cm) o?
2

(ad -f dm) x

ab + bm c) a? + (tf# + cm d) x^+ (ad+ dm)x

(a
3 + a2w aV) a? + (a

2b + aim b2) x
2 +

(ca
2 + cam bc)x

+ r

+ d (a
2 + am b)

.-. r = d (a
2 + am b) .' . a? + am b = -

(2.)
CL

Also />> + bm c 3 + a2w Z> (3.)

ca + cm d = azb + abm b2

(4.)
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ca2 + acm be .

ad + am = ca~ + acm be, .'. a =-- ... (5.)
a 4- m

b)
.'. ca + cm a = c(a + m) a = c(a + iwj

--J--=

a + m

c(a +m) 2
c{a(a+ m) b} c(a + m) (a + m a] + be

a + m a + m

c(a + m) m + be
2

, , , 9= --- = a?b + abm b- ab (a + m) 62

+ m

Z>( + m) {( + m) b}
.'. c = - -

: and from equation (3)
m(a + m) + b

l(a + m){a(a + m)
- - b}

ab + bm c = b(a + m) ;
-

^

m(a + m) -\- b

mb(a + m)
z + b2

(a + m) - - ab (a + m)
2 + b2

(a + m)

m(a + m) + b

2bz
(a + m) -f- &( + m)

2
(m )-

/
-

T X
.

7
-^ =

( + *) a"
m(a + m) + 6

or 2 2
(a + m) + &

( + m)
2
(m a)

= wa2

(a + w*)
2

+ ab(a m) (a + m) aZ>
2 or (2(0 + m) + a] bz +

{ ( + m)
2
(m a) a( + m) (a m)}b = maz

(a + m)
2

or (3 + 2m) i2 + { (a + m) (m a) (2a + m) } b= maz

(a + m)
2

(a + m) (2a + m) (m a) . ma?(a + m)
2

or cr + - --- b =-----
.

"

. b =
3a + 2m

.
3a + 2m

(a + m) (2a + m) (ma) + \/(a + m)
2
{ (2a + w)

8
(m a)

2 + 4ma2
(3a + 2m) j

(a + m) (2a + ?>Q (m a) + \/(4a
4 + 8a3m + 5a3m + 2am3 + m*} (a + m)

2

"~
2 (3a + 2m)

(a + w) (2a + w) (tn a) + (a + wi)
2 v4a2 +

2 (8a
-,nom-a=--

^ & ^ (a + ,) (2a + m) (-.
_ From (2) a(a

, _ 2a(3a + 2/n) (a + m) (a + m) (2a + m) (a m) (a + m)
2 v/la2 + ma

2(3
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It is evident that 2a(3a + 2m) (a + m) = 6a3 + 1002m + 4am2

and (a + m) (2a + m) (a m) = 2a3 + a*m 2am2 m3
.'.

2a (3a + 2m) (a + m) (a + m) (2a + m) (a m)

4a3 + 902m + 6a m2 + m3 = (a
2 + 2ma + m2

) (4a + m)

=
(a + m)

2

(4 -f m), therefore we find a? + am b =

(a + m)
2
(4a + m) (a + m)

2 \/4a2 + m2

+ m /(a + m)
2 r (a + m)

2

7: + \J : r .*. when r = max..
2 V 4 d 4

(a + m)
2

(4a -f m) (a + m)
2 \/4 2 + m2

.*. 1 =

2(4>a + m) - 2v/4a2
4- m2

/-pj-
-

5-s--- .*. 5a = 2v4a2 + m2 or
3a + 2m

2m-- + m K
1C o . 2m a + m 3 5m
16a2

-f- 4m2 or a
, and a? =,

O <w <w

5
If m = 1, then a? = -.

b

PROB. (15.) TO FIND SUCH A VALUE OF X AS MAY MAKE

#6 = MAX. = r.

Let y = a?
2

. . my
2

?/
3 = max. By Prob. chap. 2nd, we

, 2m 2m /2m cmust have y = or a? = -5- .-.r= A/ -^-. If m = 1,
o o ^ o

then a? = A/ -
.
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PROB. (16.) TO FIND SUCH A VALUE OF X AS MAY MAKE

xQ = MAX.

Let y #3
.'. my y

z = max. then by Prob. chap. 1st,

m z

/m#3 = .. x = \f .

V &
we must have y = - or #3 = -^ .. x = \f ^-. If m 1

then x = a , .

PROB. (17.) TO FIND SUCH A VALUE OF X AS MAY MAKE

mx* xQ = MAX.

Let #2 = y .*. my y
3 = max. then by Prob. chap. 2nd,

/m 2 /m */mwe must have y A/ or #a =
/y/

. . x = A/ . If

m = 1. then a? = TT^-
v/3

PROB. (18.) TO FIND SUCH A VALUE OF X AS MAY MAKE

mx x6 = MAX. = r.

Since we have the equation mx X* = r or xP mx +
r + 0, let the product of four values of this equation =
x41 + axz + bo? + ex + d,

<xPmx+r=iQ \jx? ax+a2 5=0. ..(1.)

x& + axb -

ax5 bx* ex3 dx* mx
ax5 aV* abxz acx* adx

(a
2

V) a?
4+ (ab c)a?-\- (ac d^x

2
-f (ad m)x

+ r

+ c?(
2 -

b)

.'. d(a?
-

b)
= r or 2 - ft = -^ (2.)
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Also ab c = a3 ab ....................................... (3.)

ac - d= a?b - b* ....................................... (4.)

ad m co? be ....................................... (5.)

. ca? be + m
Equation (5) gives a =- .*. ac a = ac

ca? be + m be m a3b ab2 + m-- =- = crb o2
. . c =-;

--
a a b

a3b ab2 + m 2abz azb m
.*. ab c = ab--j

- =- =-- =
b b

a3 -
ab, .'. 2ab2 - a3b m - a3b abz

.-. 3a&2 - 2a3b =
2az m a8 + \/a6 + 3amm .

*
. b* -- - b = - and . . 6 =- --

o 6a 6a

a3 + Va6 + 3am 2a3 Va6 + 3am-
. From(l)

-, a fa- r a2

we find, x = + A/ -j,
.

'

. when r = max. then

r 2a3 - Va6 + 3am= -7- = aw b =---- and therefore 3a3 =
a 3a

4\/a6 + 3am . . 25a6= 16a6 + 48am, . . a5 =
, and

a5 16m
-->-

^ /*O ^

~2~'
' * - QO -

then x =

2
'

' ~

32" 3.32

1

m ''/m- T A /
6

- x V~6'

It may be remarked here that all the problems of the two

last sections of this chapter may be solved without impossible

roots, in the manner laid down in preceding chapters.



CHAPTER IV.

PROBLEMS OF MAXIMA AND MINIMA IN WHICH TWO OR MORE

VARIABLE QUANTITIES ARE USED.

IF there are two variable quantities, find the value of each

in terms of the other, according to the conditions of maxi-

mum or minimum, and it is evident that by this means we

will find two equations by the comparison of which the values

of the two variable unknown quantities will be found in

terms of known constant quantities. If there be three vari-

able quantities, find the value of each in terms of the other

two, and thus make three equations, by means of which the

values of the three unknown quantities will be determined.

The same method may be adopted when there are four or

more variable quantities.

The reason of this rule is obvious. When the being of

maximum or minimum of any function depends on the values

of two variables, for instance, then it is evident that the

value of a single variable in terms of the other, found on

the function being a maximum or minimum, will, itself, be a

variable quantity, since the other variable is not yet deter-

mined; and consequently there will be infinite maxima or

minima of the function proposed. Now, in order to find the

required maximum or minimum out of these, we must solve

the function with regard to both for their maximum or mini-

mum values, then compare these two values, and thus deter-

mine them. The same reasoning may be applied in the case

of functions of three or more variables.



PROB. (1.) TO INSCRIBE THE GREATEST PARALLELOPIPEDON

WITHIN A GIVEN ELLIPSOID.

Let 2x, 2y, 2z be the edges, 2a, 2b, 2c the principal diame-

ters of the ellipsoid .
*

. the contents of the parallelopipedon =

%xyz = u, and by what is shown in the Introduction we

find the equation of the ellipsoid to be

L ?L f i

c2
"

a2
""

fi
8
"

z* = c2 (1 -2 j
and .'. square of Socyz

*
tt O '

2 2

x c2
(l

- -
2
- O = 64c2 x

= max. and .-. a862 y - - fey a2*2
?/
4 = max. First

let x be considered as constant and y as variable .
*

. a262o;2y
2

2^2 v

y_ _ 4 = max . ...

a262 _ ^2- 4 = max. = r .- .
* -- -

^
=

j,

2az
'V 4#*

r = max. we must have ^ = r, and .*. y
z =

(I-)

Now let y be considered as constant and x as variable, .
*

.

- aVy - 62

2/V = 6V

max. .-. - ~x a:
4= max. = r, .' . x

*-v _ a2
2)

22
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2i2 - y
r, when r = max. .'. or = - . ... (2.)

_
-

. y
z = --

9
-

. Comparing this equation with equa-
Cv

,

- 26V 2a262 - 46V
t.on (1) we find =- - =-

a
-

Ct CL

.'. 3&2
<2?

2 = a?b2 . .'. <#
2 =

, .*. x = ._ and .*. equation

m . . 3 2 262 *2 6
(1) gives y- = ^ = -^ = - .-. y = -^ and

^ _ C2 A
. . ^ _ . J/!\ c2 /! . 1 1\ _?! . ^

V a2 62 / V 3 3/ 3'

=
,__ If v volume of ellipsoid, v = pabc where p

= 3.14 &c. . . u = 7^= or u : v : : 2 : pV 3 .

PV3

PROB. (2.) GIVEN THE SUM OF THE LENGTHS OF THE THREE

AXES OF AN ELLIPSOID, FIND THE LENGTH OF EACH, THAT

THE VOLUME OF THE ELLIPSOID MAY BE A MAXIMUM.

Let x, y, z be the three axes and s their sum .*. x 4- y +
z = s.'.z = s x y and the volume of the ellipsoid =
%pxyz = ^pxy (s x y] |jo (sxy

-
xhj xy*) = max.

.-, sxy x*y xy* = max. First let x = a constant quan-

tity, .'. x (sy xy if)
= x {(s

-

x) y y*} = max.

and .

*

. (s x) y y* = max. = r . . y
z

(s x} y = r,

s x / (s #)
a

and .

'

. y = - \/ r. Here it is evident
_
*B

(S _ x\*

that when r = max. we must have = r, .*. v =
4

s x
(
L

)
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Now let y = a constant quantity, .*. sxy x^y xy*-
=

y (sx x* xy] = y{(s y) x x*} = max. .'. (s y)

o ^^ fti

x -- a? = max. = r, . . #2
(s y] x = r, .

'

. x = ~- =fc

V'- r, and .

*

.
- -~

r, when r = max. .

*

. x=
fc 4

S y T, ,
S #

-y-,
.-. y = s 2x. Equation (1) gives y , .'.

s x s
s x = - = 2s 4# = s x .

'
. c>x = s, .

*
. x = and

o
2s s s

y = s x = s = and z = s x y = s
o o u

S S

o-
=

-Q-,
and hence it appears that the axes of the ellip-o o

soid required, when a maximum, must be equal to each other ;

that is to say, the ellipsoid required must be a sphere.

The same may easily be solved without impossible roots.

PROS. (3.) TO FIND THE VALUES OP X AND y}
WHEN

x* + y
5

Saxy = MAX. OR MIN.

In the first case let x = a constant quantity and find the

value of y which will make x* + y
3

Zaxy = max. = p . .

y
z

Zaxy = p x* r, . . ?/
3

axy r = 0. Now let

b = one of the negative roots of this equation, and .

*
. y + b

must exactly divide it.

y + b) y
3

3axy r = (jr
--

by + b2 ax = 0, (A.)

y
z + bif

by
z

Qaxy

by
2 bz

y

(b
z

Sax] y r

(b
2 -

3ax) y + b (b*
-

Sax) .' . b (b*
-

Sax]

[= --TV. 62 - 3a#= -
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7*

.-. Sax b2 = -r and 3aba? b3 = r. Now equation (A)

V
r b b3 + 4r 5

gives jr
-
by -.

,
.;. y

: -
/y/ -g- = -

,
. Here it is evident that if 4r + 46 3 be

46

a negative quantity, there shall never be a maximum or a

minimum, and if 4r + 4#3 be positive, we shall have a

minimum
;

for in this case we cannot suppose r so small or

negatively so large as to make 4r + 463 less than 363 which is

negative, .*. when r = min. we mnst have 4r + 4#3 = 3b3 or

\2abx 4 3 + 4&3 = \2abx = 3b3 or b = 2-\/~ax and y

= yaw. When y is considered as constant, we can show,

exactly in the manner above stated, that oo = vay, .'. x2 =

ay = avaoc, .*. x*=a3
x, .'. jc

3=a3
, .'. x=a, and y= \/ax=

va?'= a.

The same solved without impossible roots.

T b
In the equation y* by = r, let y = z + and there-

U A
bz b2 b2 r

fore y
2

by = z2
-j- bz + bz = z* -- =

-j-

b3

. . r = bz2 --
. Here it is evident that r becomes a mini-

4

mum by being negatively large (for r = p x3
}
and . . when

b3
r = min. we must have z = 0, .' . r = ---- = Sabx b3

, .*.
4

- b3 = IZabx 463
.-. 3b3 = I2abx .'. b = ^\ax as before.

PBOB. (4.) TO FIND THE VALUES OF X AND y SUCH THAT

xz

y
3
(a x y)

= MAX.

First let x be considered as variable and y as constant, . .

x3
(a

-- x - -
y} =

(a y) x3 x* = max. or Ax3 x* =



( 156 )

max. where a y = A. Now proceeding exactly as in

Prob. (4), chapter 3rd, we find x = - - = v

,

^
(1)4 4

Now let x be constant and y be variable, and dividing the

given expression by .r
3 we find y

z

(a x y}
=

(a x)

y
1

y
5 = By* y^ = max. where a x = B. Now pro-

ceeding exactly as in Prob. (4), chapter 2nd, we find y =
2B 2 2 / 3

, .) f
-o- = (a x) = < a (a y} V from equation (1)66 6 { 4 j

2 / a 3^/\ 2a 6y a y a
.' . v = 1

- =
1

- = h .

*

. y = and
3 U 4/ 12 12 6 2' 3

JLf (
a

\
3 a

^ (

Tv
a

3/ T "3
:

"2"'

The same may be solved without impossible roots as pro-

blems in the preceding chapters.

PROB. (5.) GIVEN THE PERIMETER OF A TRIANGLE ABC,
SHOW THAT ITS AREA IS THE GREATEST, WHEN IT IS

EQUILATERAL.

Let 2p = the perimeter of the triangle required, AC = x,

AB y and . . CB = 2p x y, and consequently, by

what is shown in the introductory chapter, the area of this

triangle = Vp(p x) (p y) (x + y p) = max. and .-.

P(P x
] (P y) (

x + y
~

P) max - Now when x is con-

stant, we find (p y) (x -f y p) = max. .'. p* + px +

2py xy y
2 = max. and since x and p are constants, we

find Spy xy y
z max. = r, . . if- + xy 2py = r. . .

2/

2

(2p x} y = r, and solving this quadratic we find

2p - x /(2p - x)'
1 - 4r

y = d= A/ - and .
*

. when 4r or r =

O^ ____ /y

max. we must have (2p x)
2 =

4>r, and .'.?/ =
; -, (A.)A
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Now suppose y to be constant . .
(p x) (x + y p) =

max. or p
z + 2px --py xz

xy = max. and since y and p
are constants, we find 2px xz

xy = max. = r .*. xz

(2p y]x = r. Solving this quadratic we find x =

V/2'n
7/)

2
4<r

-, and here it is evident that when r or

4r = max. then (2p
-

y)
z = 4r, .''. x = 2p ~ V

(B.)
it

OA^ ^ /y*

Comparing equations (A.) and (B) we find y = -= =
40

2 ZP + y %

2
=

4~^ "' y = 2p + y> '*' y =
~3

P' ' '

^

a; = -~j
- = =

jt?,
and the third side =

<v <w O

Zp x y = 2p p ^-p = p, and hence it ap-o o o

pears that the triangle required must be equilateral.

The same may be solved without impossible roots, as pro-

blems in the preceding chapters.

PROB. (6.) GIVEN THE SURFACE OF A RECTANGULAR PARAL-

LELOPIPEDON, FIND WHEN THE CONTENT IS A MAXIMUM.

Let a?, y} and z = length, breadth, and thickness of the

parallelopipedon and 2a = its surface. Now it is evident

that the whole surface given must be = ^xy -f 2xz + 2yz =

2a or xy -\- xz + yz = a, and .. z = - and the con-

xy x (a xy] ._
tent = i- = max. When x = constant and

x -h y

y = variable . '. y x - = max ......................... (A.)



( 158
)

CL ~~ 7V/

and when y = constant and x = variable then x x -

x + y

max............................................................. (B.)

-r, ay xtf-
liquation (A) gives - = max. = r, .

'

. ay xir rx+
* x -f y

a r a r

and hence it is evident that as r is greater, so (a r)
2 be-

comes less, and 4#2r greater, and .*. when r = max. we must

have (a r)
2 = 4#V or 2 2ar -f r2 = 4#2

r, and . '. y*
2

2 ( + S^2

)
r = az

, .-. r = a + 2^2 =t 2o?\/a + #2
,

.'. y =
// ___ ^ r ____

= a? v 4- #2
...... (C). When y = constant,

AX
a

then from equation (B),
- = max. = r ; and exactly

' if

as above we find x =.
ij \/a -j- ?/

2
..................... (D.)

From equation (C) , y -f a?= V + x"-, .
*

. if + 2a?y + ^2=
/y 7/ fif 77

+ ^?
2

, . . a? = ^r , and from equation (D) we find -

2y ^y
/ - ^^ // -4 77" s

= - y V<* + y*> .'
9

= ~ vo + /
2
,
and .-.

2 + Saw2 + i/
4 a 4- ?/

2- -^ = + </
2 or L = ], ... a + y

. = 4*/
2

.-.

a

a 1 3

a ~~ TT /~ /~
.. a xy 3 fa faand ^r = -- i =- = A / -, . . x = ?/

= z = A/ ;x / V 3J V 3+ y

and . . #77 + ^i/ + y2r
= #2 + ^2 + #2 = 3^2 _ 3 x _

fl
.

o

hence it appears that the required parallelopipedon is a cube.

The same may easily be solved without impossible roots.
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PROS. (7.) INSCRIBE THE GREATEST TRIANGLE ABC WITHIN

A GIVEN CIRCLE. (Fig. 64.)

Let R = radius of the given circle, a, b, c, the unknown

sides of the triangle required, n = z. B, m = z. C. .
*

. area

BC x AD BC.AB.AC .

of the triangle =- - =- -
,

because by

6 B. Euc. we have 2R x AD = AB.AC. .-. 2Rc sin. n = cb

sin in
.'. b 2R sin.tt .-. c = b -^ : = 2R siu.m and a = 2R

sin. n

siu.A = 2R sin. (m + n) .'. area required = -- = 2R2

^

sin.w sin.ra x sin. (n + m) = max. .'. siu.n sin.m sin. (m -f n)

= max. Now let sin. n = x .*. cos^ = \/l -- a;
2
, sin. m =

y .'. cosm = \/\ --
y
2

.-. xy (x\/l
--

y* + y\/\ -- #2

)
= max.

First suppose that x= constant, .'. y(x\/\ y
z + y \/l a;

2

)

/I-2 2/Vl - x* _
. \/\ - x*

or vy- w4 -f - = max. Let-- = ^4 ..
a; x

\/?/
2 -

?/
4 + Ay2 = max. = r .'. y

z
y* = rz

2Ary
z +

^

-

A* + 1 A* + 1'
~

2(A* + 1)

'

and here it is evident that r cannot be taken

so great, as becoming greater than A may make 4r(A r)

= a negative quantity greater than one, for in this case the

root becomes impossible, and therefore when r = max. we

must have 4r(A r} = 1 .'. r? Ar = -.. r =
4

A'+ \/Az + 1 2Ar +1 A2
-f 1 + A\/A* + 1

fl n n 11 _________ _____________________________

2 "2(^
2 + l)~ 2(^t

2 + l)

1 .r
2 14- \/T~~ ^"r2

1_ j .|0
* 9 J-T^V-L'*' '9

but ^ = -
5 . . vL =---- or sin/ m =

x* 2
1 + cos ft

In exactly the same manner as shown above we may find,
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1 + cosm
sin. n --- ............................................. (B.)

when y = constant and :- is supposed = A. From (B)
*/

we find

1 + cosm 1 cosm
1 sin.

8 n = cos- n = 1 ----- == ----
;

<v <v

but equation (A) gives cos2 n =
(1 2sin.

2
w)

2 =
1 cosm 1 cosw---- or cos2 2m =----

. . cos m = 1 2 cos" 2m
&

= (2 cos2 2m 1)
= cos 4m .'. cosm = cos 4m.

Hence it appears that m is such an angle that its cosine is

equal to the negative cosine of its quadruple .*. m = 60

1 + cosGO 1 + iNow from equation (B) Bin. m =--- = =
<W .V

O
\/~*\

.-. sin. n = -
.-. n also = 60 .'. the third angle =4 2

A = 180 - 60 - 60 = 60 .'. the triangle required is

equiangular and equilateral. One of its sides = a = 2R

sin. A - 2R x ^-~ = R \/~3 = b = c.

The same may easily be solved without impossible roots.

PROB. (8.) TO FIND THAT POINT WITHIN A GIVEN TRIANGLE,

FROM WHICH IF LINES BE DRAWN TO THE ANGULAR

POINTS, THE SUM OF THEIR SQUARES SHALL BE A MINI-

MUM. (Fig. 65.)

Let ABC be the given triangle, and let BD a, AC = b,

AD = c, AE oc, EG = y where G is the point required,

.-. DE x c, FB = a y, and EC = b x, and there-

fore AG*+ CG* + GB* = a + if + (b
-

<z>)

2 + y
2 + (a

-
c)

2

+ (a
- yY= 3^2+ 3y*- 2(b+ c) x -- 2ay + 2 + b2 + c

2

2(b + c) 2a a + & + c8

= max. .-. X* + y
2 --^ i x - y + -

o 6 6
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max. = r. First let y constant and x variable, x2

2(b + c) a* + V + c* 2a
-^

2
'- x - r y

2 + y and .'. x =

b -f c i a2 + bz + c2 #2 -f 2#c -f c
2

<,
2

~3~ V ~~3~ ~9~
" y

"

~3
y

b + c f~ 2bc 3a2 2b2 2c2

=fc
/Y/3

^

r + - - - y + y.3V 9 3

By inspecting the diagram it is manifest that 2bz
-7 2bc

.'. 2bc 262 = a negative quantity = n, .' . we find

b_+_c /
3 V n

9

/yj O / Q/V^ O //
/t- <wt/ Ot*- ^ <wt*

"9" IT "9~
" y If y *

Now we say that \- y
2
is 7

-^- y ',
if it is not so, 1st, let

y o
vc ft *J ) /y O ff O XY'- ^/ ^^ A / T/ ^Tf^ou 9 <^t* /iti ot* i*m A/ AU>

9 3 39 3

an imaginary quantity; 2nd, let -f y
2
/. ^

-
y, and .*. let

9 o

(

, 9r + P = - y,,. T --y=
a d= \- 2a? - 9P 3 2--- = an imaginary quantity. Hence

o y

?/

2 + y = a negative quantity = m, suppose ; .

*
. x =

b + c f~ n 2c2
, . ,,- A/ r -- ----- m

} and . . when r = mm. then
O tj >j

n 2c2 5 + c ^r,

r = + + m and x = - ...... (1) . When x a
y / o

constant, then from the original equation we find

20 a2
4- b2 + c2 2(6 + c)

y
* - y = r--

^
--

<2?
2 +

-^-g
- a? and as

above it may be shown that when r = min. we must have

3c2
2(b + c) a

r =--- + tf
2 -

--j
'

a, .'.y = ... (2.)

The same may easily be solved without impossible roots.

Y
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PROS. (9.) TO FIND A POINT WITHIN A TRIANGULAR PYRA-

MID, FROM WHICH IF LINES BE DRAWN TO THE ANGULAR

POINTS, THE SUM OF THEIR SQUARES IS THE LEAST POSSI-

BLE. (Fig. 66.)

Let ACEB be the given pyramid, ABC its given base,

EG = a = perpendicular drawn from the vertex to the base

of the pyramid. Let K be the point required and the per-

pendicular drawn from this point to the base = KH and HD
= perpendicular from H to AC = y, and AD = x, GF =

perpendicular from G to AC = b, and AF = c. Let Hn be

drawn parallel to DF, . . Hn = DF = c x and Gn = GF
- HD = b - y, .'. HG2 = (c- x)

2 + (b
-

y)
2

. Also let

AC = d, .'. DC = d -- x. Draw Kl parallel to HG and

.
*

. HG2 = Kl'2 . Join K, B and B, H, and now it is evident

the Z. KHB = a right angle. By a process exactly similar

to that used in the foregoing proposition, it may be shown

that HIP = (d x)
2 + (e y}"- where e is the altitude of

the triangular base of the pyramid. Let KH = z .*. KB2 =
(d
-

x)
2 + (e

-
y)

2 + z2

(1.)

It is manifest that AH2 + KH2 = AD2 + HD2 + KH2 =
x2 + f + z2

(A.)

CK2 = CH2 + KH2 = CD2 + HD2 + KH2 = (d
--

x}
2

-f

y
2 + z2 = d2 -2dx + x2 + y

2 + z2

(B.)

KE2 = Kl2 + IE2 = Kl2 + (EG - KH)
2

= (c- x)
2 + (b

-
y)

2 + (a
-

z)
2

= c2 2cx + b2 - 2by + a2 - 2az + x2 + y
2 + z2

= a2 + b2 + c2 - Zcx - Zby - 2az + x2 + y
2 + z2

...(C.)

From equation (1) we find

KB2 = d2 + e
2 2dx - 2ey + x2 + y

2 + z2

(D.)

Adding together these four equations we find

AK2 + BK2 + CK2 + EK2 =
4z>2 + %2 + 4z2 + a2 + b2 + c2 + 2d2 + e

2

2az 4idx 2ey
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2 2 2
c + 2d b + e

a_

az + V- + c
2 + 2d* + e

2
N

JNlow as- - = a constant .*. when z, or y,4

or #, are supposed to be constants respectively, we shall have

severally the following three equations, the second members of

which must be such as to become negative when the orignal

minimum quantities are taken very small, for these second

members are nothing more than the difference of the mini-

mum quantities supposed and constant quantities taken to

the other sides of the equations.

- x min. = r when y and z are constants,

y
z -

y = min. = r when x and z are constants,

z* '- z = min. = r when x and y are constants, and
to

from these equations we find

and z = -r- A / -^- -f- r) and here it is evident that r
4 V lo

cannot be taken so small or negatively so large, as to make

the roots impossible, and therefore when r = min. we must

c + 2d b + c a
and.'.*: --= -

The same may easily be solved without impossible roots.

*** The symbol r is used in three different senses. ED.



PROI5. (10.) TO FIND VALUES OF X AND y SUCH AS WILL

MAKE (X + 1) (y + 1) (*+!) = MAX (1) WHERE
^x^y^z A lf)\a c - -** W
Taking logarithms of the equation (2) we find

x log a + y log b + z log c log A and let log a = p} log b

= m
} logc = n and log A = q (3)

q px my
.'.px + my + nz = q, .'. z = .*. z + 1 =
Q "+ n ~~" f)X mtJ

-; substituting this value of z + 1 in (1)

we find

(x + 1) (y + 1)
-^- -Ml- max. or (x + 1)

ft/

(y + 1) (q + n px my) = max. Now when x + 1 =
constant, we have (y + 1) (q + n px my) =

(q + n)

y pxy my"-
1

my px + q + n max. . .

/ . ((q+ n mpx)
(q + n m px) v mif px + a +ni ^- L

\ m
px q n) q + n m px

1 " max. .*. -V m =m ) m
px q n px q n

y y = max. Now as
" =m m

. . , q + n m px
constant, we have = - y y* = max. = r, .'.

2 q + n m px
y = r. Solving this quadratic we

.c-, q + n mpx / (q + n m px)*
find y = - =t A/ ^H *L _ r and

2m V 4m2

here it is evident that when r = max. we must have

(q + n m px)
2 q+n m px

-- = T *
ii =. = (4 i

4m2 2m
Now let y = constant .*. (x + 1) (q + n px my) =
max. .*. (q + n my) x px* my + q + n - px =

(
. 9 (q + n p my

(q + n p my) x px' + q + n my = < -
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n my} q + n p myy.1 x p = max . ... *_Z-^L- __- .
. .. _-

p f p
q + n my q + n myx or + 3-- = max.. and as ---- =

P P
i. ^ q + n p my

constant, we must have ----- x x* = max. = r
P

and therefore #2 ---- a? = r ; solving this

P

quadratic we find x -~ =fc A/ -^ _ r

q + n p my
.% when r = max. then a? = 2 -_ 1 (5.)

2p
~f~ % ~~

f) fYVU
. . px = - -

. Substituting this value of px

in (4) we find y =
q + n p my

q + n m ^
<v

2m

q + n 2m + p + my q + n + p 2m .

4m 3m
' ''

''

Substituting the values of
g', w, j9, m from equations (3) we

fl
, log ^4 + log c + log 2 log 6 log (Aac) 2 log 5

3 log b 3 log b

log(Aabc) , .

.'. y + 1 = 5-: 7 (7.)3 log 6

Substituting the value of y from equation (6) in (5) we

find q + n + p 2m
q
__

n ~ P 3
~

_2q + 2n- 4p + 2m

2p 2 x 3p

= . Now substituting the values of q. n, my

3p
logA + log c + log b 2 log aand p from (3) we find x = ~ 2m 2

3 log

log (^&c)
- - 2 log a log (Aabc)~

STj
-

. . U/ -f 1 jr-r IO.)
3 log a 3 log a

Now from equation x log a + y log 6 + 2 log c = log ^4, we

find z log c = log A x log a y log
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3 log^-log^-log (be) + 2 Iog0-log^-log(ac) + 2 log 6

~3~

log ^4 log (fo) log (ac) + 2 log + 2 log 6

~3~

logA log # log c log a log c + 2 log + 2 log 6

~3~

logA + log + log 2 log c
_ log (Aab) 2 log c~~

~3~

'' We find * + * + ! ^ + !

= max. =
27 log a log b log c

The same may easily be solved without impossible roots.

PROB. (11.) TO INSCRIBE A TRIANGLE WITHIN A GIVEN

CIRCLE SO THAT ITS PERIMETER MAY BE A MAXIMUM.

(Fig. 67.)

Let ABC be the triangle required. The centre of the given

circle is E, and ED, EF, EG perpendiculars let fall from the

centre on the sides of the triangle. Let the z. AEC =29
.'. each of the angles AED, and CED = 9. Likewise AEF
= FEE = and .-. the z. EEC = 360 - 29 -

2<j>
and

.-. BEG = GEC = 86 - 29 -2<t> = i 8o _ (0 + 0) and
20

sin.. BEG = sin. (9 + <j>).
Also let the radius of the given

circle = -. Now it is evident that AD =
-^-

sin. 9 .*. AC

= 2AD = asm. 9, and in like mannerAB = a sin.0, and BC
= a sm(9 -f

</>)
.*. perimeter = {sin0 + siu0 -f sin(0 +
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= max. .*. sin. 9 4- sin. + sin. (9 + 0) = max. Now let

sin. 9 = constant .*. sin 4- sin. 9 cos. 4- sin. ^ cos. 9 =
(1 4- cos. 9) sin.

<f>
4- sin. 9 cos. = max. Let 1 4- cos. 9

= n, sin. = x, sin. = c, .
*

. cos. ^ = v 1 a?
2

.
*

.

/T 2 9 22 90VI W /*A / I W** -^ TYl OV />* /*-^ _ / /M^ i i />**J *J ry\ru* /y>/&G& ^^ L/ V J- w - J-LlC*A r 7 ' C C/oC/ / & nil <JU

+ v>-^ sY)*1
i /**" I o^ i ^y>w ir._-i >^ /w /y* /y '-i /* . />**5 /y*-'/^ t*/ 1C* { /' I t*/ c^llil (A/ n i I/ / Cv

/* 99
J
/jo /j- /* _ />*'

-5 5 a? = -5 ; solving this quadratic we find a? =
c2 4- ft

2 c2
4- ft

^^ _j_ c\/ @ -I- /j" y&
s 5 .

*
. when r = max. we must have c2 4-

/- ;
3- = r2 .'. r = vc2 + ft
2
, .*. x =

+ ft
2 vV

1 + cos. 9 1 4- cos.

\/l + 2cos.0 4- cos.
2

4- sin.
2

\/2(l 4- cos. 9)

VI 4- cos. 9 /I 4- cos. 9--
^
---

, .'. x : = sm.^ =: /y
-----

. In like

manner when sin. = constant, we may easily find sin. 9 =

. Now let sin. 9 = y . . cos.0 =

and we have supposed sin.0 = x , . cos.^>
= vl ^?

2
.*. a?

2=
1 4- V 2 1 4- ,--- and \p

=--- and . . 4#* 42?
2
4- 1 =

& A>

I -y* .'.y* = 4*?2 (1
-- Xs

] .................................... (2.)

Also <%
4 -

4?/
2

4- 1 = 1 - - a? .-. 4<2?
2 = 16y

8 -
16t/

4
;

substituting this value of 4<a?
2 and 1 a?

2 in equation (2) we

find y
2 = (16y

a -
16z/

4
) (4?/

4 - 4/ 4- 1)
= -

64y
8 +

128!/
6 - 80/ 4- 16z/

2 and / -

2y
4

4-
^ y

8 - ^ = 0.

5 15
Now let y

z = z, .'. z* 2zz + z 0. This equa-4 b4

g
tion is exactly divisible by z -- as may appear by actual

T^

division ..-= a value of z = y
z

.*. ?/ = A/ -

4 * ^ V 2
and
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J
I A/1 7y2 "I I 1 O / O

x? = - - = and x = /y or sin.

/O f o

and sin = A/ -
.

*
. = ti = 60 and hence it

A *

appears that the triangle required is equiangular, and the

sides = - each where a = radius.
ju

The same may easily be solved without impossible roots.

PROB. (12.) TO FIND SUCH VALUES OF X
y y, Z AS WILL

XIIZ
MAKE -- -Z-i- -- = MAX.

(a? 4- a) (x + y) (y + z} (z + e)

First let y and z = constant quantities .*.

(x + a) (x + y)

(x + a) (x + ?/) <3?
2 + (a + y) a? + ay= max. .'. -- --221 = --2--^-i = mm .

^7 #

= r, .*. i2?
2

(r a y] x = ay. Solving this quadratic

r a y /(r a
?y)

2

we find x =----~ rfc A /
'-- Jl-- ay. and here

2 V 4
,2

it is evident that when r = min. then = ay .*.

r a y / r a y /
. \/ mi v> i \/ fiii

2
v ay> * -

2
v y v i

Secondly when x and z = constants we find likewise

y = \/ocz (2.)

Thirdly when x and y = constants we find z = \/ye... (3.)

From (1) and (2) we find x* = ay and #2 = ^ and ay =.
z

-, . . a =^ . . ?/
3 = az1 and from (3) we find y, .

'

. y
3=

9 A o-|~= az-, .'. z* = ae3 , . . z vae3 and ?/
= =

e3 -y
e e
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\/ae = \/azez, x= \fay, .' . tf* a?y
z = a? x ae = a^e, .' . x =

v #3
e. Hence it appears that x, y and ^ are in geometrical

*/7
progression and the common ratio is A/ .

The same may easily be solved without impossible roots.

PROB. (13.) IF THE CONTENT OF A RECTANGULAR PARALLE-

LOPIPEDON BE GIVEN, FIND ITS FORM WHEN THE SURFACE

IS A MINIMUM.

Let the content of the parallelopipedon = a = xyz .*.

z = : and it is evident that half its surface must be
xy

a a <2?y + ax + ay= xy + xz + yz = mm. or xy H---1

-- = ----

y x xy

x^if -f ax + ay= mm. First let y constant .-. --- =

ax a \- +
* >

x
y > y= mm. .-.

x
ax a-

a

.*. when r = min. we must have = A/ .'. x
y

. Likewise when x = constant and r = min. we find,
y

/
/ a j a a / ,1 P &

y = A/ and z = - - = = v ^y ; therefore a?
2 =V x xy a y

V xy
,

2
#

4
a2

2

2 a a2

ana ?/
- '

y ^
or # ^ .

*

. =
7, . . 1 =

x a? y^ y y y
9
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or y = a* . . x2 = = t
. . x = a* and z = vxy = vcfia*

Cl 3

= \/cfi = i Hence it appears that the parallelopipedon

is a cube.

The same may easily be solved without impossible roots.

PROB. (14.) TO FIND A POINT P WITHIN A QUADRILATERAL

FIGURE ABCDj FROM WHICH IF LINES BE DRAWN TO THE

ANGULAR POINTS, THE SUM OF THEIR SQUARES SHALL BE

THE LEAST POSSIBLE. (Fig. 68.)

Let AD = b, AE = a, BC = c. From the points Dt

C and P draw straight lines perpendicular to the base or the

base produced of the given quadrilateral .*. FD = b sin. A,

FA = b cos. A, GC = c sin. B, BG = c cos. B. Draw EPH
parallel to AB and let AN = x, NP = y .' . EP = FN =
AN + AF = x + b cos. A, ED = DF - - EF = DF -

PN = b sin. A -
y. PH = NG = NB + BG = a -- at +

ccos.B, CH= GC- HG = GC - PN = csiu.B - y; we

therefore find, AP2 = x2 + y* ................................. (1.)

PB2 =
(a
-

x}
2 + f ........................... (2.)

PC2 = (a
- x + c cos. B)

2 + (c sin. B - y)
2

(3.)

DP2 = (x + bcos.A)
2 + (bsin.A

-
y)

z
...... (4.)

Adding these four equations we find ;

AP2 + PB2 + PC2 + DP2 = 2y
2 + x2 + (a

-

x}
2 +

(a x + ccos. B)
2 + (csin. B - -

y)
2 + (x + bcos.A)

2 +
(b sin. A y)

2 = min.

First let y = constant and a? = variable, .

*

.
.
x2 +

(a x}
2 + (a x + c cos.B)

2 + (x + b cos.^4)
2 = min.

or 4^2

2(20 b cos. A + c cos.B) x + 2a2 + b2 cos 2A
2a b cos. A + c cos. 5

cos. =

-f cos. + c cos
-

'

4

. JB\
,

~
)
= 4(#

2 Ex + Q) = mm.
*



7? /~R^
. . cT

5 -- Rx -f Q = min. = r, .

'

. x = =L A/ - + r Q.

Here it is evident that r cannot be taken so small as to

R*
make r Q a negative quantity greater than ,

and .*.
4

R2 R
when r min. we must have = Q r, . . a? = - - =

4 &

2a b cos. A + c cos. 5

Secondly let <# = constant, we find 4y
2 2 (b sin. ^4 +

c sin. J5) y + b* sin.M + c2
sin.2 B = min. and proceeding

exactly in the manner as shown in the case of y being a con-

b sin. A + c cos. B
stant we nnd ?/

=---
.

4

The same may be solved without impossible roots.

PROB. (15.) LET u = ax + by + cz, A MAXIMUM AND

#2 + */

2 + #2 = 1, FIND 57, y, AND r . . u = ax + by +
cv I x*

y
" MAX.

First let y = constant .*. ax + c\/l x* - -
y*

1 = a(x +
C /^ 2 2V C /I 2 2
,_, ^A / I __ />?*< __ 'ij^'i TYi iv * nf* L A / I . /> . - /jj^ TV>QV fa*V J- w V y

~ llldA. **/ ^ V J-
^^ w if -IlltL-V* /

u C C , fl"
1

-f- C_ /j/2 __ 2 ^^ O'**'** I

o f/ / fyl u/ r2 '
o /

cr a? a' a

C2 C
2 20V-- y r* and therefore a;

2 --
5
-

5 a; =zy

_aV__4_ /=
2+c2

~ V
(a

2 + c2

)

2

and .'. when r = max., then (c
2 c2?/

2
) (a

2 + c
2

)
= 2

c
2r2

7(c
2

-cy)(a
2+ c

= V ~-
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Secondly, when x = constant, proceeding as above and

putting b instead of a and x instead of y we find y =

Cf
2 ~~ C$"u

Squaring equations (1) and (2) we find a?
2 =

g f- .'.

(2.)

y
a' + c2

T
a_ a2-

(

8 + cy2

_ 8 _ff ffa? a? - (a
8 + c8)^

//^ /l^ - -I - - /*" /f"C* t/
[

O vv

(O
i 9\ O /

cr + cr)ar (a

c2

1 ^* .

~ v ^_ ^t*-ri/yo/
-L o

"

9
== --

~~
flr a-

2 f
a + c

9 ^
'

I 9- c2 V IT+ c2 62 + c2
'

o8 62 + c2/ b* + c^2

rvtit -_
b* + c2

a* a b*- Pa*

*2 -

bz + c2

(6
2 + c2

) (

2 + ^ + c
2
)

"
a? + bz + c*

b a?
.' . x = = and zz = 1 a?

2 z = 1 r-

C3
9

The same may easily be solved without impossible roots.
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PROB. (16.) FIND THAT POINT WITHIN A GIVEN TRIANGLE,

FROM WHICH IF LINES BE DRAWN TO THE ANGULAR

POINTS, THE SUM OF THEIR SQUARES SHALL BE A MINI-

MUM. (Fig. 69.)

This Problem is a more elegant solution of Prob. (8.)

Let ABC be the triangle, and P a point within it; a, b, c

the sides of the triangle. Draw PN, AD perpendicular to

the base; join AP, EP, CP. Let CN = x; NP = y ;
then

AD = b sin. C; CD = b cos. C. Then CP2 = a? + y*, BP2

- ^ + (
a _ XY= y

2 + x2 + a2 - %ax, AP2 = (6cos.C- x}
2

+ (6sin.C- y)
2 = bz + x2 + y

2 - 26(# cos.C + ysin.C);

3<z>
2 + 3/

2 + a2 + b2 - - Sax 2b (x cos. C + y sin. C) =
a? H- bz Zax 2b . . ~

ijuiii. . . w ~r y ~r n o -jr- ^* vuo. <-/ T
o o o
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ftsin.C, / a2 + ft
2

= -- V r - -y-
ft
2 sin.

2C
9

ftsin.C b2 $m.2C - 3ft
2 o2

"

r + -g-
---

g-.
Here it is

ft
2
sin.

2C- 3ft
2

ft
2

,evident that --- =
(sin.

2 C 3)
= a nega-

y y
ft sin. C

.
*

. when r = min. we must have r = Q .

'

. y =

tive quantity which let = Q .*. y = ^--
== vr -- Q,

ftsin.C

The same may easily be solved without impossible roots.

For -Q read -Q-^- ED.
o

PROB. (17.) TO FIND A POINT WITHIN A GIVEN TRIANGLE,

FROM WHICH IF PERPENDICULARS BE LET FALL UPON THE

SIDES, THE SUM OF THEIR SQUARES SHALL BE A MINIMUM.

(Fig. 70.)

Let ABC be the triangle as before, P the point within it,

draw PN, PM, PQ respectively perpendicular to CB, CA
AB. Let CN = x-3 NP = y, PM = p, PQ =

q, CB =
a, CA =

ft,
AB c .'. u = y

z
-f p

2 + q*. Now it is evi-

dent that jp = MP* = FP2 x cos.2 MPF = FP2
cos.

2

C = (FN - PN)
2
cos.

2 C =
(at tan. C -

y)
2
cos.

2 C =
(x tan. C y)

2
/y ^tan. C\ 2

. ~. 9
* ..,

y) = r- ^ )
=

(y cos. C x sin. C)
2

sec.
2 C \ sec. C /

Also q
2 = PQ2 = PE2 cos.

2EPQ = (EN - - PN)
2 cos.

2B =
/y (a x] tan.J5\ 2

. 2

( sec.B ~)
= {y COS ' jB ~<a '-*) sm '5 }

*

u = y
2

-f (ycos.C a? sin. C)
2 + {ycos.B (a x) sin.j5}2

= min. or y
2 + 2/

2
cos.

2 C 2xy cos. C sin. C + y
2
cos.

2B
4- 2?

2 sm.2 C - 2y (a
-

a?) cos. 5 sin.JB + (a
-

x}
2
siu.

2B
= min.
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First let x = constant . . if + y
z cos.

2 C 2xy cos. C

sin. C + y* cos.
2B 2y (a x) cos. B sin. B

=
(1 + cos.

a C + cos.
8
.Z?)y

2
1y{x cos. C sin. C + (a x] cos. J? sin. B}

I {x cos. C sin. C + (a x) cos.l?sm..Z?}\=
(1 + cos.

2
<7 + cos.

2
J5) y

2 - 2y-
----

=7
-^-1

\'V 1 + cos.
2C + cos. jB /

{# cos. C sin. (7 + (a x] cos. .B sin.
* v -= mm.

cos.
2 C

min. = a negative quantity and .*. as in the foregoing pro-

x cos. C sin. C + (a x] cos. B sin. B
blem we find y = - ^ ^-^

1 + cos.
2 C + cos/B

(cos. C sin. C cos.B sin. B) x + a cos.B sin.B . .

I + cos.
2 (7+ cos.

25

Secondly let y = constant . . 2%y cos. C sin. C + #2
sin.

2C

cos.B sin.jB %ax sin.
2.B -f a?

2
sin.

2 .5

- 2 (y cos.C sin.C y cos.B sin.-B -f a sin.2J5)#=

= mm. 2(?/cos.(7sin.C

min. = a negative quantity, and . . as in the foregoing problem,

vfcos.Csin.C cos.B sin. B} + a sinAB /nxwe find .3? = 2-*
. 2P ,

.
2^ (2)sm. 2

JB + sin.
2
C;

Now let cos. C sin. C cos.B sin.B =
a cos.B sin.B = S

1 + cos.2C+ cos.
2JB = T

a sin.
2 = Q
sin.

2C= R
+ Q Px + S

(3.)

Ty - s
,K .

or x =-2 -...(5.)

Comparing equations (4) and (5) we find;

RS 4- PO
y = -^ pg-

and substituting the values of

from equations (3) we find,
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(sin.
2i? + sin.

2
C} a cos.B sin. B + (cos. Csin. C cos.B sin. B} a sin.

2
J9

(1 + cos.
2jB + cos.

2
C} (sin.

2C+ sin.
2
J5)
-

(cos. Csin. C- cos.B sin. -B)
2

sin.
2Csin.5 cos.^ + a sin.

2^ cos.C sin.C
B + sin.

2C + sin.
2C cos.

2
jB + cos.

2
<7 sin.

2jB + 2cos.C

[sin. C cos.B sin..B

a sin.jB sin. C sin. (B + C)

1 - cos.2J3 + 1 - cos.2 C + sin.
2 Ccos.25 + cos.

2 C sin.
2jB

[-f- 2cos.Csin.Ccos.5 sin.l?

a sin.A sin.B sin. C
=

2(1 cos.2 B cos.
2
(7 + cos. B cos. C sin. B sin. C)'

a

substituting the values of sines and cosines of A
}B,C, in

terms of the sides of the given triangle we find, y =
abc sin.A abc sin.B , abcsm.C

p = ~* 3 q ~~ =
2 -2

--
a + + c a

The same may easily be solved without impossible roots.

PROS. (18.) TO FIND THE VALUES OF 3C}y,Z, THAT,

tfZy^z* ofiy^z* xPy^z
5 MAY BE = MAX

First let x, y = constants and z = variable,

^2
/
3
{ (a x y) z4 z 5

}
= max. and

.-. (a x y} z* z5 = max. .'. by Prob. (10), chap. 3,

z = (a
~ * ~ y>

or 4z> + 4y + 5z = 4>a ............... (1)

Secondly let x, z = constants and y = variable, then pro-

ceeding as before we find (a x z) y
3

y* = max. and

3(a x z]*

V = --
^
--L .'. 3<r + 4y + 3z = 3a ............ (2.)

Thirdly let y, z = constants, and x = variable, then as

before (a
-

y z} ^ - at* = max. .'. by Prob. (2), chap. 2,
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3x + zy + 2Z== %a ............. (3.)o

Subtracting (3) from (2) we find 2y + z = a ......... (4.)

Multiplying equations (1) and (3) by 3 and 4 respectively

we find, 12-z- + 12y + 15^ = 120

Sy + 82 = Sa

4>y + 7z = 40, and multiplying

(4) by 2 we find % + 2z = 2a

20 40
5z = 20 . . z = .'. 4>y + = 20

O O

Oyy Qft /\ ft

.-. y = ^
- and .-. 3^7 + 2y + 2z = Zx + + 3# +

J.U o o

70
_

70 __ 30
~TT" <V0 . ijCC AiCL ~

~~7" ~3~ .
"

. DC - ._

5 555
The same may be solved without impossible roots.

2 A



SUPPLEMENT.

IT will be observed throughout this work that a great

many equations of the second degree solved for finding out

the maximum value of r have been reduced to the form a?

+ Ax = r or 2?
2
-f Ax + r = 0, where A is generally

negative, and in like manner the cubic and biquadratic equa-

tions have been reduced to the forms, x* + Ax* + Bx + r

= 0, #4 + Ax* + Bx* + Cx -f r = 0, where the maximum

value of r is to be determined.

The object of this supplement is to solve these general

equations, and thus to find out general expressions which

may enable us to solve numerous problems of this book in

an instant, without going through long and sometimes

tedious operations.

We will also add in this part of the work a few interesting

problems which we have unfortunately forgotten to put in

their proper places.

1st. Solve the equation X* + Ax + r = 0, where r =
A /^A*

max. We have x* + Ax = r . . x = - + \f : r
A V 4

A2 A
.'. when r = max. we must have = r .. a? = ... (A.)4 2

EX. 20,2? - - x9- = max. = r .*. #2 - - 20# + r = 0. Here

20
A = - 20 .-. by (A), x = ^ = 10.

JL

In like manner other examples of this kind may be solved

by means of (A).

2nd. Solve the cubic equation, <r
3
-f Ax* + Bx + r = 0.

Let a negative root of this equation = a . .
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a?+J

(A a] X* +
(-4

--
a) x? +

(a? + B aA) x + r

(a
2 + B - aA) x + a (a

2 + B - aA)

T
.'. a? -f B aA = .-. Equa. (1) gives #2 + (A a) x

a

r A a / (A a}'
, .'. X = I A / \

- ' % / ^

2 V 4

Here it is evident that when r = max. we must have

~ fl
"

- aA, .-. ^42 -
4 a

- 4aA or 3 2 - 2^4 = A* 4>B or a

- 4.B ^4 + \4^2- I2B
f

A- a
3 .*. a -- ana x3 ..

a- A - -12B -2A . .

2 6
.............................. ( '

Ex. (1) x* - x* + r = 0. Here A = -
1, 5 = 0, .'. a?

- - P) ^3 - x + r = 0, A = 0, JB = -
o o

1, .-. a? = --. = -^. EX. (3) a? - Gx - \$x + r = 0,
V 3

\/36 + 45 + 6
-4 = 6, B = 15, .-. by (B), x =--- =5.

3rd. Solve the general equation of the fourth degree, viz.

x* + Ax* + Bx* + Cx + r = 0.

Let the product of the two values of this equation = x*

-\-ax-\-b, and we therefore find,
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Q (^x?+(A-a)

[Aa-b=Q...(l.)

(A - a] x* + (B - b) X* + Cx

(A a) x* + (Aa - a2
)
tf + (Ab ab)x

(B+a
2- Aa b)x?+ (C+ ab Ab)x

(B+a?Aab)a?+ (aB+a?-Aa*ab)x

.-. B + a2 - Aa - b =
-j

.................................... (2.)

Also C 4- ab Ab = aB + a3 Ad? ab, .'. b =
aB + a 3 Aa2 - C

2a-A .............................................

_ a
Now solving the equation (1) we find x =

2
_ a r
- ----r ; and here it is evident that when r =
4 b

max. then - - - = -=- = B + a2 Aa b, .*. (A a)
2

4 b

= 45 + 4a2 - 4^40 - -
46, and from (3)

4J5 + 4a3 - 4-4a2 - 4C
(A a)

2 = 45 + 4a2 4>Aa - - ---
^
-

frtt A

or 4a5 + 4a3 - 8^4a2 - 4^45 + 4^42 + 4C =
Q A

5a*A + 2a3 - A\ and therefore 3 - - - a2 + 2Ba
w

A3

+ 2C + . =0 ................................................ (C.)

Now it is evident that from this equation the value of a

A a
may be determined, which, when put in x = --- =

A
a _ _

-
, we will find out the value of x sought.



Ex. (1). *4 - x3 + r = 0. A = -
1, B = 0, C = 0, .-.

3

+-J
2

--|
= 0. Let = !, .'.

3 + -|a*-l
=

131 0-^4 j + 1
_3^

8 8
'

2
:

~2~ 2 4*

Ex. (2) . x* x + r = 0, ^ = 0, B = 0, and C = 1, .'.

^4 a a 2*
a3 2 = 0, .'. a = 2 and x --- = = =

A A
l 1

Ex. (3) . #4 - 8.r3 + 22*2
24a; + r = 0. Here -4 = -

8,

J5 = 22, C = - -
24, .-. a3 + 12a2 + 44a + 48 = 0. Let

a = - -

4, .- .
- 64 + 192 + 48 - 176 = - 48 + 48 = 0,

a A + 8 4 + 8
and = -= -r- = _^_ = 2.

Ex. (4). To inscribe the greatest parabola in a given isos-

celes triangle. (Fig. 62.)

Let AD = b, GD = a, GP = x, . . the area of the para-

4$ ._
bola = - - v (a x\*x = max. .*. (a x}

3x = a3x

+ Sax3 x4 = max. = r, .*. a;
4 3a#3 + 3azx2 a3x + r

= 0. Here A = 3a, B = So?, C= a3
. Now substi-

tuting these values of A, B, C, and putting y instead of a in

the equation (C) we find,

9a 5a3

y
3 + -

y* + 6d?y + 0. By trial the value of y is
A A

5a A +
found = -

, .'. x =-
^

3 - ~
2

2
*

Ex. (5). In the trapezium ABCD, the base ^LB = a, AD
= jBC = b, find CZ), CD being parallel to AB, that the area

may be a maximum (m & rc are the points where the perps.

cut the parallel line required and mn = x) .
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It is evident that Am = nB .*. the area of the whole tra-

Dm x Am Cn x nB Dm x Am
pezium = 1- mn x Dm -\

=
2 A

Dm x Am n+ mn x Dm + = = Dm x Am + mn x Dm =
Ju

~2~ "V b*~ (~9~

= max. = r, .-. x* - 2(2b
z + aV - Sabzx -- 2

(46
2 -- a2

)

+ r = 0. Here A = 0, B = - -
2(26

2 + a2
), C = - - 8a62

,

.-. y
3

4(25
2 + a2

) y 16a62 = 0. Let y = - 20,

.-. 8a3 + I6ab* + 8a3 16a^>
2 = 0, and therefore

- w = o, y

It may be remarked in this place that cubic equations got

by reduction of biquadratic equations may be solved by
Garden's Rule, instead of the method of trial as effected in

the preceding examples.



A FEW NEW PROBLEMS.

PROB. (1.) FIND THE GREATEST AREA THAT CAN BE INCLUDED

BY FOUR GIVEN STRAIGHT LINES. (Fig. 71.)

Let a, b, c, d, = four given straight lines, n = the angle

included by a
}
b and m = the angle included by c, d and D =

,. . , cdsm.m absin.n cd
diagonal ; . . area required = -- + -- = --

<4 A A

( . ab . \ ab
sin. m -\

--
, sin. n = max. . . sin. m -\

--
, sin. n = max.

V cd cd

.
2

2ab . .

Squaring this expression, smsm + -r sm.m sin. ft +
CCL

sin.
2
ft = max. = r ............................................. (1.)

But c2 -f d2 -- 2cd cos.m = 7)2 = a? + b* - 2ab cos.rc,

ab c* + d* - a2 - bz

.*. cos.w 7 cos. ft =--
=- = B and .*.

cd 2cd

2ab
cos.

1*! ---r cos.m cos. ft H cos>

Adding equations (1) and (2), and transposing, we find

a8*8
. _i_ 732

C2^2

cos. (m + n) =-rr =- : and here it is evident
2ab

cd

that the greatest value for r, or the second member of the

equation, is the greatest positive value of the first member ;

that is to say, we must have cos. (m -f- n) = 1 x cos.

(m + ft)
= 1, which can only take place when cos. (m + n)

= - - 1 or m -f- ft = 180 .. sin.m = sin. ft, and therefore,
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ab + cd
Area = J sin.ra = V (P - a) (P

-
b) (P -c) (P-d)

4>

where P = as found b calculation.

PROS. (2.) TO FIND SUCH A VALUE OF X THAT (mx + H)

(ny + m) = MAX. AND amx . y
ny = c.

From the second equation we find, mx loga + ny log& =
logc. Let log a = A, log 6 = B, and logc = C, ..

C mAxmAx -h nBy = C, .-. ny = -= - .. ntf + m =
JO

C mAx +-~-
, and therefore (mx + n) (ny + m) =

(mC+ m*B nmA] nC + nmB
there-5 -

-O J3

(mC + m2^ wm^4) nC + nmB Br
fore x* *--L x ---_--- .-. we

mzA mzA m*A

n j / C
find (as in problems m Chap. 1st) x

log c + m log b n log a cbm--^- lo 4*-
2m log a an

log a
8"1

'

PROS. (3.) OM AND OP ARE TWO ARCS OF GREAT CIRCLES

ON A SPHERE, AND THE ARC PM IS DRAWN PERPENDI-

CULAR TO OM, FIND WHEN THE DIFFERENCE BETWEEN

OP AND OM IS THE GREATEST. (Fig. 72.)

Let POM = a, OP = $, and OM 0, .'.
<f>

-- = max.

= r. By Napier's Rules ^for the solution of right-angled

triangles (spherical) tan 9 = cos. a tan 0, .*. =
<f>

r .' .
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a 'tan d> + tan r x + r'
tan = 7 = cos. tan

</>
or (where

1 tan tan r 1 r'x

r' = tan r = max.) = ax x (where = cos. a, and a:

1 a 1 a 1= tan 0) or or + x =
, . . x = =h

or a %ar'

A 9 9
--

. Here it is evident that when r = max.
4ft-/" a

(1 a)

z

then -
Q 9

= min. .'. when r = max. then we must
4 2r2

(1
-

a)
2

1 a - 1 a - 1 1
have - = . . r = . . x = -- = =

fl

=
(cos. a)

I had to say something more regarding the Algebraical

theory of Maxima and Minima, but being afraid of enlarging

the work too much, I conclude these sheets.

p. s. D'ROZARIO AXD co., PRINTERS, TANK SQUARK.
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