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INTRODUCTION

TO THE SECOND VOLUME.

AFTER the lapse of nearly four years, in the face of many hindrances,
untoward events, and difficulties, I have succeeded in bringing

through the press this second and concluding volume of my mathe-

matical and physical researches.

It is proper to mention that the volume will be found to contain

four distinct treatises : (a) on Elliptic Integrals, ($) on Rotatory
Motion, (y) on the Higher Geometry, and (8) on Conic Sections,
followed by an Appendix to the first volume.

An outline of the following researches on the Geometrical Pro-

perties of Elliptic Integrals was published in the Philosophical
Transactions of the ROYAL SOCIETY for 1852, p. 311, followed by a

Supplement "printed in the volume for 1854, p. 53. Ample time

and unbroken leisure have enabled me to recast and enlarge those

essays. Though the work was onerous, it was also, I may say, a

labour of love, lightened by the discovery, sometimes unexpected,
of new truths of great geometrical beauty.

Amongst these researches not the least important is the discovery
of three curves of double curvature whose rectification may be

effected by elliptic integrals of the first and third orders. These
are the geometrical types of those transcendental expressions due to

Legendre and Lagrange. The algebraical relations discovered by
these illustrious geometers are the exponents of the geometrical

properties of those curves. Those versed in the subject will not

need to be told how the simplicity of these relations contrasts with
the abortive attempts of the most illustrious mathematicians to

devise, on a plane, curves whose quadrature or rectification might
represent those expressions. I do not here propose to give an

analysis of the work ; but, for the sake of the few who care to

inquire into those matters, I would call attention to Chapter VIII.
on conjugate amplitudes, and to Chapter X. on derivative hyper-
conic sections.
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In the course of these investigations this important truth is

clearly established, that the theory of those celebrated functions

constitutes a general trigonometry for those curves in which sur-

faces of the second order intersect. Of this general trigonometry
circular and parabolic trigonometry are the extreme cases. In the

former the modulus is zero, in the latter unity. Thus an unbroken

analogy runs throughout the whole, and the several cases are linked

together under the great mathematical law of continuity.
As a test of the utility of those researches in physics, I have

applied them, in the following essay, to the discussion of the cele-

brated problem, to determine the rotation of a rigid body, in free

motion, round a fixed point j
and I have shown how the position

of such a body at the end of any given epoch may be made to

depend on the evaluation of those algebraical expressions or their

equivalents, the arcs of hyperconic sections.

The investigations on rotatory motion given in this volume were

made, the greater portion of them, very many years ago. Some
of them appeared from time to time in those periodical publications
whose pages are open to discussions on subjects of this nature.

In this treatise a complete investigation has been attempted of

the laws of the motion of a rigid body revolving round a fixed point,
and free from the action of accelerating forces an investigation
based on the properties of surfaces of the second order, of the curves

in which these surfaces intersect, and on the theory of elliptic inte-

grals. The results which have been obtained are exact and not

approximate, general and unrestricted by any imposed hypothesis.
I have carefully abstained from introducing any methods which,

to one moderately versed in the first principles of the integral cal-

culus, might not fairly be assumed as known. There is but one

exception. In a few cases, where the method was peculiarly appli-

cable, I have ventured to make use of tangential coordinates, the

theory of which is fully developed in the first volume of this work.
The reader may, however, if he chooses, omit those applications,
without in any way breaking the continuity of the subject.

I have not been led away by mathematical pedantry to attempt
to render this essay purely algebraical, by rejecting geometrical

conceptions and the aids thence derived to simplicity and clearness,

knowing that, very often, the elegance of the analysis is owing to

the distinctness of the graphical conception, and that, though the
forms of the reasoning may be different, the subject is identically
the same.

The problem of the rotation of a rigid body round a fixed point
is one that has engaged the attention of the most eminent mathe-
maticians of Europe. More than a century has passed away since

D'Alembert first, and Euler soon after, investigated the analytical
conditions of such a motion, and formed those differential equations,
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on the integration of which the determination of the motion ulti-

mately depends. In their investigations, which were purely alge-

braical, they used to a great extent the principles of the transfor-

mation of coordinates a method of research, it must be conceded,

which, though unexceptionable on the ground of mathematical

rigour, is generally found to lead through operose and cumbrous

processes to complicated results.

Some years afterwards, Lagrange took up the subject, and deve-

loped the theory in formulae of great symmetry and generality.

Combining the principle of D'Alembert with that of virtual velo-

cities, he deduced the differential equations of motion, containing
six quantities to be determined. By means of these equations, the

three components of the angular velocities round the principal

axes, which determine the position of the instantaneous axis of

rotation in the body, and the three other angular quantities which
define the position of the body itself in space, at any epoch, may
be expressed in terms of the time. But these quantities, however

they may be determined, furnish us, as it has been justly observed,
with no conception of the motion during during the time. They
prove to us that the body, after the lapse of a certain time, must
be in a certain position ;

but we are not shown how it gets there.

We may, by means of calculations, more or less long and compli-
cated, ascertain the bearings of the body at any required instant ;

we cannot, so to speak, accompany it during its motion. It is

determined per saltum, and not continuously ;
we are wholly

unable to keep it in view and follow it, as it were, with our eyes

during the whole progress of rotation.

To furnish a clear idea of the rotatory motion of a body round a

fixed point, and free from the action of accelerating or other external

forces, but in motion from the influence of one or more primitive

impulses, was the object of a memoir, presented many years ago
to the Institute, by that eminent mathematician, M. Poinsot. In
this memoir, the motion 'of a body round a fixed point, and free

from the action of accelerating forces, is reduced to the motion of
a certain ellipsoid, whose centre is fixed, and which rolls, without

sliding, on a plane fixed in space'. The axes of this ellipsoid are

assumed proportional to the inverse square roots of the moments
of inertia round the principal axes of the body, passing through
the fixed point, and -coinciding in direction with them. He states

as his final result, that the time and the other ultimate quantities
must be determined by the aid of elliptic integrals. He does not,

however, give any account of the processes by which he arrived at

his results ; and few of the attempts which have since been made to

supply that omission have been very successful.

Some time afterwards the late Professor M'Cullagh, of Dublin,
turned his attention to this problem, which, owing to the mvnt
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researches of Poinsot, had then attracted considerable notice.

He adopted an ellipsoid, the reciprocal of that chosen by the latter

geometer, and deduced those results which had long before been

arrived at by the more operose methods of Euler and Lag-range.
His method of investigation, however, was peculiarly his own ; but,

so far as the author is aware, he never published his method of

research.

The idea of substituting, as a means of investigation, an ideal

ellipsoid, having certain relations with the actually revolving body,
claims as its author the illustrious Legendre. Although he conducts

his own investigations on principles altogether different, he yet
seemed to be, in his Traite des Fonctions Elliptiques, well aware of

the use which might be made of this happy conception.
Several years ago, when engaged in applying the new analytical

method, founded on my peculiar system of tangential coordi-

nates, I was led to views somewhat similar to those of Legendre,
from remarking the close analogy or rather identity which exists

between the formulae for finding the position of the principal axes

of a body, and those for determining the symmetrical diameters of

an ellipsoid. I still further observed, that the expression for the

length of a perpendicular from the centre on a tangent plane to an

ellipsoid, in terms of the cosines of the angles which it makes with

the axes, is precisely the same in form with that which gives the

value of the moment of inertia round a line passing through the

origin. Guided by this analogy, I was led to assume an ellipsoid,

the squares of whose axes should be directly proportional to the

moments of inertia round the coinciding principal axes of the body.
At first sight the inverse ellipsoid, assumed by Poinsot, may

seem to possess some advantages over the direct ellipsoid, at least

so far as such an ellipsoid may be said to approximate in form to

the natural body. For example, if we consider the case of the

rotation of a solid homogeneous ellipsoid round its centre, the ideal

or mathematical ellipsoid of Poinsot will bear a resemblance to the

figure actually in motion. In the direct ellipsoid of moments,
which is made the instrument of investigation in the following

pages, this resemblance does not exist
;
for the coinciding axes of

the material and mathematical ellipsoids are such that the sum of

their squares is constant. Should the revolving figure be an oblate

spheroid, its mathematical representative will be a prolate spheroid.
The reader must bear this diversity of figure in mind, in applying
the conclusions of theory to an actually revolving ellipsoid.

Although it may seem a matter of little moment which of the

ellipsoids we choose as the geometrical substitute for the revolving

body, it is not so in reality when we come to treat of the properties
of the integrals which determine the motion. These integrals

depend on the properties of those curves of double flexion in which
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cones of the second degree are intersected by concentric spheres,

liy means of the properties of these curves, a complete solution

may In* obtained, even in the most general case, to which only an

approximation lias hitherto been made. The solution of a mathe-
matical problem may only then be said to be complete, when in the

final result the calculation of the sought quantities may be made
to depend on some known elementary quantity or quantities, such

as a certain straight line, an arc of a circle, &c. So in this problem,
the elliptic transcendents, to the determination of which the calcu-

lation of the motion is ultimately reduced, are shown to represent
arcs of spherical conic sections, whose elements depend on the

nature of the body and on the magnitude and position of the im-

pressed moment. In all the solutions of this problem which have

hitherto appeared, the investigations are brought to a close when
the expressions, either for the time or other sought quantity, are

reduced so as to include the square roots of quadrinomials involving
the independent variable to the fourth power. In this treatise the

investigations are continued beyond that point, and the quadrino-
mials have been reduced, as shown in the preceding treatise, to

arcs of hyperconic sections.

An elliptic integral of the first order being shown to be only a

particular case of elliptic integrals of the third order, as the circle

is a species of ellipse, it follows that the analogies between integrals
of the first and third orders will be more numerous and intimate

than between the second and either of the others. Such is in fact

the case. Elliptic integrals of the first and third orders constantly
occur in combination. In the discussions of the following pages,
for example, integrals of the first and third orders present them-
selves in various combinations, while an integral of the second

order does not once occur in the essay.
The application of the theory of elliptic functions to the discus-

sion of the problem of a rigid body revolving round a fixed point,
has led to the following remarkable theorem :

The length of the spiral between two of its successive apsides,
described in absolute space, on the surface of a fixed concentric

sphere, by the instantaneous axis of rotation, is equal to a quadrant
of the spherical ellipse described by the same axis on an equal

sphere, moving with the body.
The ordinary equations of motion being established, the author

proceeds to show that if the direct ellipsoid of moments be con-

structed, the rotatory motion of a body, acted on solely by primitive

impulses, may be represented by this ellipsoid moving round its

centre, in such a way that its surface shall always pass through a

point fixed in space. This point, so fixed, is the extremity of the

axis of the plane of the impressed couple, or of the plane known to

mathematicians as the invariable plane of the motion.
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But a still clearer idea of the motion of such a body may be

formed by the aid of another theorem, which shows that the whole
motion of a revolving body may be represented by a cone which

rolls, without sliding, on a fixed plane passing through its vertex,
while this plane revolves with a uniform motion round its own
axis. This, perhaps, is the simplest conception we can form of a

revolving body. Now the principal axes of this cone, and its focal

lines, depend on the constitution and form of the body, or, in other

words, are functions of the moments of inertia round the principal
axes ; while the initial position of the plane of the impressed couple
in the body will determine the tangent plane to this cone. But
when the two focal lines of a cone, and a tangent plane to it, are

given, the cone may as completely be determined as a conic section

when its foci and a tangent to it are given. Nothing more simple
than this conception : a cone rigidly connected with the body, the

position of whose focal lines, and whose principal vertical angles,

depend on the form and constitution of the body, revolves without

sliding on a plane, while the plane itself revolves uniformly round
its own axis. We may also observe, that when the plane of the

impressed couple passes through one of the focals of the rolling
cone the motion is sui generis ; it no longer may be represented by
a rolling cone. The cone degenerates into a plane segment of a

circle, which swings round one or other of the cyclic axes of the

ellipsoid of moments, these cyclic axes being the boundaries of the
circular segment.

Although it may be, and doubtless is, very satisfactory in this

way to be enabled to place before our eyes, so to speak, the very
actual motion of the revolving body, yet it is not on such grounds
solely that the following essay has been published. Were the theory
of no other use than to give strength and clearness to vague and
obscure notions on this confessedly most difficult subject, enough
had been already accomplished by the celebrated geometer whose
name is so deservedly associated with this subject. It is as a

method of investigation that it must rest its claims to the notice of
mathematicians as a means of giving simple and elegant inter-

pretations of those definite integrals, on the evaluation of which
the dynamical state of a body at any epoch can alone be ascer-

tained. If the author has to any degree succeeded in accomplish-
ing this, it is because he has drawn largely upon the properties of
lines and surfaces of the second order, and of those curve lines in

which these surfaces intersect. If he has been enabled to advance

any thing new, it is solely owing to the somewhat unfrequented
path he has pursued. That it was antecedently probable such

might lead to undiscovered truths, no one conversant with the

applications of mathematical conceptions to the discussions of those
sciences will deny. To introduce auxiliary surfaces into the dis-
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ciissions and investigations of physical science is an idea no less

luminous than it has been successful. The properties of such sur-

faces often aid our conceptions or facilitate our calculations in ;i

very remarkable manner. M. Dupin, for example, reduces the

problem of the equilibrium of a floating body to that of a solid

resting on a horizontal plane, the solid being the envelope of all

the planes which retrench from the floating body a given volume.
We have a still more striking instance in the wave-theory of light.
Therein we find the surface of elasticity the equimomental surface in

the theory of rotation. Few indeed there are among mathema-
ticians who require to be informed how the wave-surface of Fresnel,
and its reciprocal polar, the surface of wave-slowness of Sir William
R. Hamilton, have served to clear our conceptions on a subject as

yet scarcely understood, to realize and embody an indistinct and

shadowy theory. Nay, more, the geometrical properties of the

surface of wave-slowness in the hands of Sir W. Rowan Hamilton
have led to the anticipation of the theory of conical refraction.

They have enabled us to invert the natural order of induction and
to place theory in advance of experiment. Were further illustration

needed, one might refer with confidence to the treatise of Maclauriu
on the figure of the earth, to the researches of Clairaut on the

same subject, and to the investigations of Poisson, Cbasics, and

Ivory on the attraction of ellipsoids. A theorem in surfaces of the

second order, on which he has bestowed his name, enabled Ivory to

evade the difficulties of the problem on which he was engaged. So
true is the fine anticipation of Bacon :

Ct For as Physicall know-

ledge daily growes up, and new Actioms of nature are disclosed
;

there will be a necessity of new Mathematique inventions"*.

The author has taken occasion, during the progress of the essay,
to derive those partial solutions on particular hypotheses, whieh

are given in the usual text-books on this portion of dynamical
science. To the reader familiar with those solutions it will, doubt-

less, be satisfactory to see tHern follow, as simple conclusions, from

principles more widely general. These partial solutions serve, as

it were, to test the truth and accuracy of the principles on which
the entire theory is based. To those who read the subject as a

portion of academical study, it will, no doubt, prove interesting to

discover an additional link connecting the deductions of pure

thought with the laws of matter and motion. They will not fail

to observe the analogy, that as the properties of the sections of a

cone by a plane have elucidated the motions of translation of the

planets in their orbits, so likewise the theory of the rotation of

those bodies, round their axes, may be founded on the properties
of the sections of a cone by a sphere.

*
Of the Advancement of Learning, book iii. chap. 6.

VOL. 11. b
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As introductory to the treatise on conies, I have given an essay-

on what may be called the higher geometry on a plane. This

embraces the theory of transversals, invented and developed by
Carnot, and the principles of harmonic and anharmoriic ratio, a

powerful instrument in the able hands of Chasles. The properties
of triangles with reference to inscribed and circumscribed circles,

the properties of orthocentres and of orthocentral triangles, the

remarkable theory of the nine-point circle, and of the excentral

triangles connected with it are also fully developed. In this old

and seemingly worn-out subject the reader will yet find something
new.
The substance of the following essay was read before the Royal

Irish Academy, nearly forty years ago (March 1837)*. It has

lain by me unpublished ever since. 1 have been strongly recom-
mended to add it to this volume by a friend of mathematical

attainments of a very high order to whom I had shown this essay

(Mr. W. J. C. Miller, Mathematical Editor of the ( Educational

Times,' and Registrar of the General Medical Council, to whom I

am much indebted for his judicious advice and suggestions in this

portion of the volume, and also for the care and accuracy which he
has bestowed on the correction of the press). The shortness and

simplicity of the demonstrations encouraged me to submit those

propositions to geometers, few of them requiring any more know-

ledge than that of the simplest propositions of Euclid.

It may be objected to the method developed in the following

pages that all the properties of the conic sections are derived almost

exclusively from those of the right cone. In reply to this objec-

tion, it may be observed that the object is not to investigate the

properties of cones or other surfaces of the second order, but those

only of plane curves ; that the right cone is used as a simpler and
more powerful instrument of discovery than the oblique cone ; and
that any argument for deriving those properties from this latter

* The Secretary communicated the substance of a paper "On the Conic

Sections," by James Booth, Esq.
The methods hitherto adopted in deducing the central and focal properties of

the conic sections from arbitrary definitions having appeared to the author
defective in geometrical elegance, he has endeavoured in this paper to derive
them from a new definition.

If two spheres be inscribed in a right cone touching the plane of a conic

section, the points of contact are called foci.
The property from which the definition of a focus here given is derived,

though known for some time, has not been hitherto applied" further than to
show that this point is identical with the focus as usually defined.

By the help of the above definition, and of the simplest elementary principles,
the central and focal properties already known have been deduced, generally in
one or two steps, and several new theorems have been likewise discovered in the

development of the method. Extract from the Proceedings of the Royal Irish

Academy, March 16, 1837.
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surfacr would be equally applicable in favour of deducing them
from any other suitable surface of the second order. Besides, any
conic section being given on a plane, a right cone of which it may
be considered a section, can always be constructed. The mere
extension to the oblique cone is too trivial, when compared with the

number of other surfaces of the second order having like properties,
to merit any special attention*.

The right cone with a circular base is selected in preference to

any other surface, because the properties of its plane sections, hence
called conic sections, may be derived with more clearness, brevity,
and simplicity, than those of like sections in any other surface. It

must be borne in mind that the surface is used simply as a means
or instrument to obtain the properties of its plane sections ;

and
these can be deduced from the right circular cone with greater

facility than from any otherf.
The prolix difFuseness of most of the treatises' on this subject,

the interminable series of proportionals which cumber every page,
and the tcdiousness of the demonstrations follow from the fact that,
as soon as the cone had afforded one or two principal properties
of its sections, these have been selected as definitions of the sections,
and the attempt is made, often with much ingenuity, to base a

wide and general system of these curves on the apex of one narrow
definition J.

* La construction que nous veaons de donner des foyers des coniques, prises
dans le cone oblique, ne se prete pas a la demonstration des proprietes de ces points,
et n'est pas propre meme a iudiquer a priori leur existence dans les coniques. II

reste done a recnercher comment, par la consideration des coniques dans le cone,
on peut etre conduit a la decouverte de leurs foyers. CHASLES, Aperqu, p. 286.

t Les Anciens avaient considere les sections coniques dans le c6ne, mais seule-

ment pour en concevoir la generation et en demontrer quelques proprietes prin-

cipales, et faire servir ensuite ces proprietes primitives a la recherche, et a la

demonstration de toutes les autres : de sorte qu'ils formaient leur theorie des

coniques sans connaitre la nature ni aucune propriete du cone, et independamment
de celles du cercle qui lui sert de'base. CHASLES, Apcrpi, p. 119.

\ Nous dirons, en passant, qu'outre la methode des Auciens et celle adoptee
par De la Hire, nous en concevons une troisieme qui n'a point ete employee, et

qui cut ete
propre pourtant, si nous ne nous abusons, a sirnplifier extreinement les

demonstrations, et a mettre dans tout leur jour les principes et la veritable origins
des diverses proprietes des couiques : sous ce rapport, on ne pent se dissimuler

que la methode des Anciens n'onrait qu'obscurite.
Cette methode eut consist^ a etudier les proprietes du cone lui-meme, et a les

forniuler, independamment et abstraction faite de celles des coniques ;
et cellea-

ci se seraient deduites des premieres avec une facilite et une generalite ravissantes.
On le concevra sans peine, car partout ou les Anciens employaient trois demon-
strations differentes pour demontrer la meme propriete dans les trois sections

coniques, ellipse, hyperbole et parabole, parce qinls s'appuyaient sur les caractercs

particuliers a chacuue de ces courbes, une seule demonstration suffira pour do"-

raontrer, dans le cone meme la proprieie analogue, d'ou celles des trois coniquea
doivent se deduire comme de leur vraie et commune origine.
Pe cette maniere, on erit vu prmdre naissance dans le cone a plusieur? pro-
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Thus if we were to assume the determining ratio, so simply
established in the following treatise, as the basis of a system of

conic sections, we should follow that adopted by Boscovich, Walker,
Sir John Leslie, and others, in their several treatises on this

subject. The numerous books compiled for the use of the Uni-

versities start from the same definition. De la Hire suggested as a

fundamental definition of a system of conies the constancy of the

sum or difference of the focal vectors to any point on the conic.

But a much more fertile property was derived by Dr. Hugh
Hamilton, author of a treatise of conic sections published in 1758,
and very celebrated in its day. He shows that if two fixed lines

be drawn, and two other intersecting lines parallel to them, but

variable in position and cutting the cone, the ratio of the rectangles
under their segments is constant, and independent of their position,

subject only to the condition that they remain parallel to the two
fixed lines given in position. This is perhaps the most general

property of the cone with reference to the properties of its several

plane sections. But Dr. Hamilton's anxiety to abandon the cone
and to arrive as speedily as possible at those theorems which relate

to the foci, directrices, and centres, led him into a course of inves-

tigation but little calculated to exhibit the peculiar advantages of

the basis he had chosen*.
The definition of a focus, on which this treatise chiefly rests, is

derived from a beautiful theorem discovered a few years since by
MM. Quetelet and Dandelin, first published in 1822.

It follows indeed so obviously from prop. 37, lib. ii. of Hamilton's

Conic Sections, that one is at a loss to understand how this acute

and original geometer failed to discover it. The wonder is how he
missed stumbling over it, as it lay so obviously in his way ; and none
of his readers has since supplied the omission.

Although largely to augment the number of general and remark-
able properties of those curves which have been brought to light by
the continuous labours of accomplished geometers in successive

ages maybe considered very arduous, (as I wrote in 1837), yet it is

hoped that several new theorems, especially those on the curvature
of these sections, derived from the properties of the cone, will not
be found elsewhere.

prie"tes des coniques, telles que celle des foyers, qu'il semble qu'Apollonius ait

devinee
;
et que ce geometre, ni aucun de ceux qui 1'ont suivi, n'ont rattache'e ni

aux proprietes du cercle, ni a celles du cone
;
de sorte que 1'origine premiere de

ces points singuliers, celle qui ne participe que de la nature du cone ou la courbe

prend naissance, est reste"e ignoree. CHASLES, Aperqu, p. 121.
* Quoniam Apollonius omnia fere conicorum demonstrata conatusestin planum

redigere, antiquioribus insignior : neglecta conorum descriptione, et aliunde

quserens arguments, cogitur perssepe obscurius et indirecte demonstrare id, quod
contemplando solidae figures sectionem apertius et brevius demonstratur. D.
Francisci Maurolici opera Mathematica, p. 280. See CHASLES, Aperqu, p. 120.
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The properties of conic sections may be divided into two distinct

das-rs, the angular and the metrical. The former will be found

chiefly to depend on the focal properties of the sections developed
from the definition of the foci as the points of contact of the plane
of the section with spheres inscribed in the cone, while the latter

will be more easily established by the methods of harmonic lines

and planes. The definition of a centre is founded on the properties
of harmonic pencils. Thus the two classes of properties are quite
distinct. The shortness and simplicity of the demonstrations prove
that these two principles, the definitions of the foci and the centres

of these curves, afford the true key to their investigation.
In most modern treatises on this subject, the three sections are

treated independently, as if they had no common genesis, and the

demonstrations rest, not on geometrical constructions, but on
endless rows of tedious and repulsive proportionals. In the fol-

lowing pages an attempt is made to derive the cardinal properties
of those celebrated curves from their common origin, the cone,

independently of any arbitrary definition. Some of those pro-

perties, and these amongst the most important, which are com-

monly established by the tedious processes of a disguised algebra,
come out at once clear and self-evident from mere inspection.
When those leading theorems are once established for conies in

general, it becomes a matter of the utmost facility to apply them
to the investigation and discussion of theorems and problems of a

less general character on a plane.
There is also to be observed in some of those treatises a puerile

affectation of geometrical rigour, in rejecting the use of such
abbreviations as sin, cos, tan, so generally used in mathematical
works to denote certain constantly occurring ratios. One is at a

loss to understand how the force of a demonstration is augmented
by using instead of sin A the circumlocution " In the right-

angled triangle ABC the ratio of the perpendicular BC to the

hypotenuse BA." This notation, borrowed from trigonometry,
wherever it is adopted, gives a singular clearness and brevity to

the demonstrations. And again, it is difficult to imagine in what

respect it is less rigorous to say a than the straight line AB.
The reader's attention is specially directed to Chapter XXIX.,

in which the radius of curvature of conies is derived directly from
the right cone, without the help either of the Differential Calculus,
or of Infinitesimals or of any other such device. I am not aware
that any attempt has ever been made to obtain the curvature of a
conic directly from the cone whereof it forms a section.

There cannot be a more powerful help to develop that faculty of
the mind which may be called geometrical imagination, that power
to place clearly before the mind's eye the several positions which

planes, lines, and surfaces assume as they intersect in space, than
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the contemplation of those curves considered as the intersections

of planes and surfaces. In no science is this power of clear and

steady conception so necessary as in Astronomy and Mechanics.

It is worthy of remark that solid geometry as it is called, or a

reference to space of three dimensions, facilitates very often, and
that too in a striking manner, the proofs of theorems concerning

figures on a plane. A signal example of this will be seen in the

simple proofs of the principal properties of conies established by
the help of the right cone.

The object which the author has proposed to himself in the fol-

lowing pages is not so much to use a single method in the solution

of a cloud of problems arid theorems, many of them remarkable

only for their intricacy, but to apply a variety of methods to the

discussion of a class of selected properties, and to show that while

some questions yield with ease to one method, they are almost

insoluble by another.

Thus in some instances several demonstrations will be found for

the same theorem. It is of far greater importance, and will give a

wider grasp of the subject, to contrast and compare different methods
when applied to the investigation of the same theorem. The student

will then perceive that every method has something inherent to

recommend it, and that the method which in one case will give a

simple and easy demonstration, will afford obscure and complicated
results in other cases apparently not more difficult.

For this reason I have been more solicitous to develop a variety
of methods than to follow out some one selected principle into all

its details. It is no doubt a test of ingenuity and mathematical

ability to be able to build up an imposing structure of mathematical

demonstration based upon one fundamental principle alone. But
this apparent simplicity is found often to lead to long calculations and

complicated results in the development of the principle assumed.

To the well-informed reader it will be evident that the modern
methods of geometrical investigation which in recent times have

been applied to the development of geometry have to a great extent

superseded the old. In the geometry of the Greeks, the demon-
strations were partial, often requiring a separate proof for every
modification of figure. Some one property (as in the conic sections

for example) was made the basis of a superstructure erected with

infinite ingenuity and matchless skill, but often tedious, compli-

cated, and involved, owing to the narrowness and remoteness of

the definition.

It has been well observed by a very profound mathematician and

elegant writer, that when a subject is contemplated from a true

point of view it may be explained in a few words to a passenger in

the street*. As disjointed limbs and broken fragments (confused
* Nous ajouterons avec un des g^ometres inodernes qui ont le plus m6dit6 snr
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images) when viewed from the focus of a conical mirror range
themselves in symmetrical order and assume definite forms, so it is

with the truths of science ; confused, isolated, and indistinct they
remain until their true stand-point of view be taken.

The aim and scope of the modern geometry widely transcend

the limits which ancient science imposed on itself, while the tradi-

tional reverence in which those old methods were held was long an

obstacle to the development of physical and mathematical know-

ledge*. AVe have no just reason, however, to be surprised at this

superstitious veneration for the great works and mighty genius of

antiquity. Strange indeed had it been otherwise. It is sometimes

said that we do not retain that traditional reverence for antiquity,
that veneration for great names, which distinguished the pro-
moters of intellectual advancement at the birth of modern civi-

lization that we no longer feel that exclusive admiration for the

literature and science of Greece and Rome, which, three or four

centuries ago, was a marked characteristic of every one who pro-
fessed to cultivate them. Now this veneration for ancient wisdom
is founded on a fallacious analogy. The young naturally confide

in the experience and knowledge of the old
;
and as the old have

preceded them in point of time, we are led by the seeming analogy
to look upon the early life of the world as its old age instead of

its youth. Lord Bacon, in his Advancement of Learning, says,"
certainly our times are the ancient times when the world is

now ancient, and not those which we count ancient, ordine retro-

grade, by a computation backward from our own times." Again,
an exaggerated admiration of antiquity, and a sort of longing

regret for times passed away, are by no means hopeful signs of a

present healthy progress. It has sometimes been remarked of those

who can boast a long line of ancestors, and yet have degenerated

la philosophic des mathe"inatiques,
"
qu'ou ne peut se flatter d'avoir le dernier

mot d'une the"orie, tant qu'on nia peut pas 1'expliquer en peu de paroles a un

passant dans la rue."

Et en etfet, les ve'rite's grandes et primitives, dont toutes les autres derivent,
et qui sont les vraies hases de la science, ont toujours pour attrihut caracte"risque
la simplicity et 1'intuition. CHASLES, Aperpi, p.

115.
* Si pre"sentement on me demande mon opinion sur la ge'ome'trie pure, je

demanderai a mon tour de faire une distinction s'agit-il de la ge'ome'trie a'Archi-

mede, d'Euclide, d'Apollouius, et de tous ceux d'entre les modernes qui, comme
Viviani, Halley, Viete et Fermat, ont marche* sur leurs traces? J'avouerai

franchement, quelque opinion que 1'on puisse en prendre de moi, que je n'en suis

pas enthousiaste. Que si, au contraire, on veut parler de cette ge'ome'trie qui,

ne'e, pour ainsi dire, des meditations de 1'illustre Monge, a fait de si immensea

progres entre les mains de ses nombreux disciples, on me trouvera toujours dis-

pose" a lui rendre le plus gclatant homtuage, et a reconnaitre qu'elle nous a fait

de'couvrir en vingt anne"es plus de
proprie'te's

de l'e"tendue qu on n'en avait pu
de"couvrir dans IPS vingt suNcles qui les avaient pre'ce'de'es. Annalex <le Matfit-

matiqnp, torn. viii. p. 169.
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in the descent, that they were satisfied to base their claims to con-

sideration, not on the grounds of personal merit, but on the great-
ness of those who had gone before them. The same is as true of

nations as of individuals. Diodorus and Plutarch, by their extra-

vagant eulogies of the extinct republics and legendary heroes of

antiquity, tried to console themselves for the degeneracy of the

times in which they wrote. By their enthusiastic admiration

of forms of government that had been abolished, they indirectly

censured the enormities of the grinding despotisms under which

they could scarcely call even their lives their own
;
and the language

in which they lauded the liberties they had lost was the surest

index of the slavery under which they groaned. The same tone of

saddened retrospection breathes through the fine preface of Livy's
immortal history.

But, independently of these considerations, there is a legitimate
cause and weighty reason for this profound admiration of antiquity.
Let us in imagination go back to the year 1500 of our era, or

thereabouts ;
let us imagine a man somewhere in the south of

Europe, or in one of the Greek cities of the lesser Asia, within sight
of that purple sea, beyond whose sunny shores civilization had
never yet been able to advance. Let us further suppose him to be

profoundly versed in all human learning, and acquainted with every
cardinal event in man's history. What are the reflections that

would naturally arise in the mind of so accomplished and philo-

sophical a spectator taking a comprehensive view of the annals of

mankind, and of the progress of civilization from its earliest

recorded dawn down to his own time?

He would have seen all human knowledge either absolutely sta-

tionary or actually retrograding. He would have seen that the

mathematical science of his own day had not made a single step in

advance during the long period of 1700 years, from the state in

which it was left by Archimedes and Euclid and Apollonius ; for

the Roman civilization throughout its long duration never produced
even a fifth-rate mathematician. He would have seen that since

the days of Hippocrates and Galen the science of medicine had dege-
nerated into a mere empirical art

; that there was no body of laws

worthy of the name but the Roman codes ; that alchemy flourished,
for chemistry was not yet ;

that astrology had displaced the little

astronomy that was known ; that there was absolutely no such

thing as physical science ; that the multitudinous facts of natural

history had yet to be observed and noted, excepting those only
investigated by Aristotle, that most profound and accurate physicist ;

that in poetry, oratory, architecture, and the kindred arts ofpainting
and sculpture, the ancients transcended rivalry or even successful

imitation ;
in short, that the whole sum of human knowledge, scant

as it was, had continued without augmentation or accession during
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lit'tivii long centuries of man's eventful history; that the acutest

\\ii^ and the most subtle intellects were forced to move round and

round in the same dull mill-circle, and thresh the straw that had

bern threshed a thousand times before; that the profoundest
thinkers failed to make even the shallowest discovery either in

science or in art ; that the most learned men occupied themselves,

century after century, in piling up pyramids of commentaries on

those wondrous men Aristotle and Plato, who, like the Pillars of

Hercules in the old mythology, separated the clear, the definite,

the settled, and the known from the dark, the vague, the boundless,
and the obscure, when, moreover, our supposed inquirer, con-

tinuing his survey, would have learned that whole regions of the

earth's surface were passing clean out of the knowledge of civilized

man, that the ideas which learned professors and adventurous

travellers formed about countries not far remote were vague and

contradictory, that less was known four centuries ago about the

geography of the world and the relative magnitudes and positions of

the several regions thereof than in the times of Scylax, Herodotus,

Strabo, Ptolemy, or even Agatharchides, that the knowledge of

many fine inventions and curious processes in the arts had actually

perished (and has never to this day been rediscovered) when, in

addition to this, looking to the political aspects of the world, hewould
have seen the very fairest and most hallowed regions of the earth's

surface overrun by the wild fanatics of Arabia, or trodden down by
the savage hordes of Turkestan, who with unbroken front were

advancing like the ocean tide rushing up an estuary, to overwhelm
under one undistinguishing flood every monument and every insti-

tution that survived of the ancient civilization (even now who
shall truly say that the liberties of the west and the civilization of

our own time, beginning to show symptoms of early decline and
marks of premature decay, are entirely beyond the reach of the

ever advancing wave of Russian despotism, urged onwards by the

barbarous hordes of the deserts of Eastern Asia ?) and when, lastly,
to such an ideal spectator, reviewing the history of man's progress

upon earth, that great renovating institution the Church, would
have been presented to his view, not as the living, breathing incar-

nation of the Gospel, giving health and vigour to the nations of

antiquity worn out and effete, but like Niobe of old petrified into

stone, and becoming herself a huge stumblingblock in the way of

progress, a rock of offence to those who saw not that her corrup-
tions and errors were, in some measure at least, due to the evil days
through which she had had to pass.
Nor from such a retrospect could our spectator have drawn, with

regard to the future, other than the most desponding anticipations.
No man could foresee that as the night is darkest before the dawn,
so out of this dense moral night and deep darkness of the human

VOL. II. C
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understanding a new order of things was soon to arise, and the light

of a higher and better civilization to gladden mankind. It is no

wonder then that men, looking back through the vista of a length-
ened period of time, and seeing that every thing that was worth pre-

serving in literature, science, and art whether it be poetry, oratory,
or the drama whether it be architecture, sculpture, or painting,
was the creation of comparatively a small number of gifted minds

and the birth of a few remote centuries, it is no wonder that men
in those days held the deep conviction that nearly every thing that

could be known was already discovered. In fact they had a special

name for it. They called it the " omne scibile." They called it

not "omnis Scientia/' but "omne scibile," not merely every thing
that was known, but every thing that could be known. It is not

strange, then, that a feeling of admiration apparently akin to hero-

worship should have been felt for those who at a bound had reached

the limits and touched the very outer verge of knowledge attain-

able by man.
It is generally assumed, as an assertion not admitting of dispute,

that the origin of the present methods of physical investigation is

due to Bacon, and that an outline of those methods may be traced

throughout his works, more especially in the ' Novum Organum/
the ' instauratio Magna/ and the ' De Augmentis Scientiarum.'

It requires some hardihood to call in question such an established

opinion ; yet, to one who, free from prejudices and preconceived
notions, shall carefully read those works, it will be abundantly
evident that Bacon's great merit lay in giving form and pressure
to the accepted modes of thought of his own time. His chief object
seems to have been to denounce authority, to set at naught anti-

quity, to undervalue ancient philosophers and their theories, to

prove that 110 natural knowledge could be established by their

methods of procedure, and that the ancient syllogism was an im-

potent instrument of investigation. Now this was the very spirit
of Bacon's age. Human authority had already been denounced in

Ecclesiastical affairs ; and the fruit of this was the Reformation.
The authority of Aristotle and the old Greek philosophers was

questioned ; and a general scepsis identified was the result. In

politics this denial of human supremacy led to the great rebellion

of 1641. Bacon deserves the credit of realizing the spirit of his

own times, which was intensely sceptical. He first snowed that

all advance in the natural sciences must be based on original and

independent inquiry, without reference to the theories of the old

philosophy.
A. very brief examination of Bacon's works would completely

establish this view. In the 84th aphorism of the first book of the
' Novum Organon

' he says
" Reverence for antiquity has retarded

mankind, and thrown as it were a spell over them, and the autho-
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nty of men who \\erc held to be great in philosophy. It is a mark
of feebleness to yield every thing to ancient authors, and to deny
his supremacy to time; for truth is the daughter of time, not of

authority." He adds that "the present time is to be considered
as the ripe maturity of the world, with all our accumulated facts

and experiences, and not antiquity, which may rather be called the

ehi Id hood of mankind." In fact the whole tone and spirit of the

book is a powerful protest against the influence of authority in

matters of science.

It is often said that Bacon was opposed to the construction of

philosophical hypotheses. This is true in one sense, but not in

another. There are what may be called provisional, as well as

established theories. When Newton saw the historical apple fall

to the ground, and conjectured whether the moon might not itself

be a big apple, he made his calculations, assuming the law of gra-
vitation as his hypothesis. But when he found that, owing to an
erroneous estimate of the mass of the earth, then accepted by
astronomers as correct, his calculations did not confirm his theory,
he abandoned his hypothesis. Now this is an instance of a, provi-
sional hypothesis. When, some years afterwards, Newton obtained
a more correct value of the mass of the earth, he resumed his cal-

culations, established his theory, and thus turned his provisional
into an established hypothesis, which, for countless ages yet to

come, is likely to respond to the mechanism of the heavens.

Bacon agrees with Cousin that the syllogism does not investigate
first principles. This, however, nowise invalidates the use of logic.
It is not the business of logic to investigate first principles. In the

longest and most subtle demonstration there can be found nothing
in the conclusion that was not previously involved in the principles
assumed as the basis of the proof. In most physical inquiries
it \\c except .Mathematical Astronomy and, perhaps, Optics there

are but very few steps in the process of physical induction.

Bacon, however, was much more successful in the work of

destruction than in that of reconstruction. He could pull down ;

but he could not build up. The specimens of philosophical induc-

tion which he gives in the second book of the ' Novum Organon
'

are most of them puerile, if not silly, and frequently contradict his

own principles. He equally fails in laying down the true goal and

just object to be kept in view in the cultivation of natural knowledge.
He holds up no higher standard than gross material utility. He
proposes to make men comfortable in their persons and dwellings.
This is a low standard ;

it falls far below that of the old Greeks.
But some allowance must be made for him. He lived in a cold

ungenial clime, very different from the bright and sunny lands of

Attica. In the great object of his works the subversion of the
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authority of the ancient philosophers, and the uprooting of all

reverence for antiquity he has thoroughly succeeded ; and he
succeeded because he embodied the spirit of his age and cleared

the ground for those who were to follow.

The word science has in these latter days been divorced from its

original meaning, geometry and the creations of the pure intellect.

It is now appropriated to observations in natural history and to

experiments in chemistry. These subjects of research are no doubt

very interesting and valuable ; but they are not science in the original
and best sense of the word. Yet without a knowledge of mathe-
matics it is impossible to make any real advance in the discoveries

ofphysical science. Take the case of that great science Physical As-

tronomy, of which Sir J. Herschel says,
" admission to its sanctuary

and to the privileges and feelings of a votary is only to be gained by
one means sound and sufficient knowledge of mathematics, the

great instrument of all exact inquiry, without which no man can ever

make such advances in this or any other of the higher departments
of science as can entitle him to form an independent opinion on

any subject of discussion within their range/'

But, notwithstanding the concurrent testimony of the greatest
men of every age, it is in the mouths of many a very common
objection which leads them to ask, "What possible use can there be
in mathematics? how few are they to whom they can be of

the least utility in after life \" So it might with equal plausibility
be asked why practise running, leaping, or wrestling ? seeing that

very few become professed athletes. But just as athletic exercises

develop the muscles, improve the health, and invigorate the body,
so severe studies strengthen the understanding, form habits of

thinking, and deepen the grooves of thought, even though the

subjects of those studies be in the course of time wholly forgotten.
Like those old quarries we read of in Pentelicus or Paros, though
the blocks of marble, the material of the breathing bust or god-
like statue have gone, never more to return, yet the ruts of the

wheels that bore them, the grooves in the face of the rock along
which the guiding gear and cordage ran, are as fresh and as sharp
as if they had left off working only yesterday.
And nowhere is this low utilitarian sentiment more loudly

expressed than amongst those who have acquired such attainments

as they possess at our national Universities. Those persons pick up
just as much learning or science as may suit their purpose and help
them forward on the path of life they have selected. In fact,

learning and science are valued just as acquaintance with book-

keeping by double entry is valued, as a means to an end, and that

end by no means the noblest. To secure their approbation,
research must have a bearing on some useful practical money-
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making object. This is in accord with the spirit of the age, a

spirit of pretence and vanity and sham*.
At this state- of things we ought not to feel any surprise. Our

Universities are no longer calm retreats for the encouragement of

patient and continuous thought expended on the development of

branches of science which do not promise an immediate ready-

money return ; they are now almost wholly engaged in conducting
the elementary education of the upper and middle classes of this

country. And hence it is that some of those who have most widely
extended the boundaries of knowledge are men who early abandoned
their college retreats, or have never been inside the portals of a

University college at all. Men, such as Thomas Simpson, and

Boole, and Davies, and Horner and others, not to speak of those

whom, as still alive, it might be invidious to mention, have had
the genial current of their souls frozen by a chill penury, or were

relegated to a dull oblivion, or at least to a passing obscurity, by
combinations of cliques, nowhere more general or more potent
than in the mathematical world. It would be a curious but

perhaps a bootless inquiry to discuss why, from the days of Apollo-
nius of Perga, called the great geometer, to our own, a characteristic

failing of mathematicians has always been envy.
The education of our own day tends to produce a dead level of

mediocrity. There will be few to note for crass ignorance, and

scarcely any to admire for profound learning. The age is so fast

that it cannot stop to think ;
it cannot pause to ponder. Nay, more,

it cannot with common propriety express its own wants and wishes ;

for the "
pure well of English undefiled

"
is rapidly turning into a

puddle of slang. If ridicule be a test of truth, as the author of the

Characteristics asserts it to be, we ought by this time to have reached

the very extreme limit of correct opinion. For every thing, now-

a-days, is treated in a spirit of mockery, levity, or contemptuous
indifference. That this happy result has not yet been obtained is

a proof of the fallacy of LORD SHAFTESBURY'S great discovery in

ethics. There will be, as in all human affairs, a reaction and a

change ;
and men will once again follow the more excellent way.

Attempts are perseveringly made to remove the Elements of

Euclid from the high position which it has held for more than
two thousand years, of being unquestionably the best introduction to

geometry. It is assailed on the ground that it is too tedious, too

rigorous in its demonstrations, that it wants order, and is deficient

in symmetry. It is asserted that it is time such old-world notions

* At apud plerosque tantum abest, ut homines id sibi proponant, ut scieu-

tiiirum et artium niassa au<rmeutum obtineat
;
ut ex ea, qiue pnesto est, mnssa

nil amplius sumaut aut quaerant, quam quantum ad usum professorium, aut

lucrum, aut existimationem, aut hujusmodi compendia convertere poasiut.
BACON, Nov. Org. lib. i. Aph. 81.
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and methods were exploded, and that what we want now, is some

easy, handy compilation, on a level with the comprehension of most

people, which would commend itself by its practical utility in

meeting the passing needs of daily life ; and if such a short cut to

geometry be not rigorous in its demonstrations, what possible dif-

ference could it make to any one whether the proofs were real or

only seeming ?

But Euclid is not likely to be dethroned for some little time

longer. Not very long ago a Committee was appointed by a new

geometrical Society to draw up a syllabus ofthe elements ofgeometry
to supersede the tedious and repulsive work of Euclid. The Com-
mittee, which consisted of six members, was requested to draw up
a joint report 011 the subject. But, Quot homines tot sententia, six

different reports were sent in ! ! no two members so far agreeing
in their views as to unite in drawing up a joint report.

It is also, we are told, likely that the study of Greek in this

country will soon be given up, if not altogether, at least in a great
measure. This is a prospect even still darker ;

for it implies a decline

in the cultivation ofthe finest language that has ever yet been spoken
on the earth, and a consequent degradation of the standard of that

learning by which a nation is ennobled.

It hardly needs to be said that I publish these volumes not only
without the expectation of reimbursement, but with the certainty
of heavy pecuniary loss. I can appeal to no University syndicate
to share my burden. It is perhaps right that for this act of indis-

cretion I should make an apology to the public, whose one sole

test of literary and scientific excellence is Will it pay ? That old-

world notion of working for work's sake is now utterly exploded,
not alone among the ignorant and the vulgar, in whom it might be

forgiven, but even amongst those who stand highest in the ranks

of science in our own day. How often do we hear such researches

stigmatized as unprofitable and vain ! Yet the great masters of

wisdom in every age have otherwise taught ; and I have followed

their teaching, not deterred by the conviction that abstract science

has become obsolete and stale. Many of those discoveries, the
fruit of a long and desultory life, I would not willingly let die.

Popularity as an author or reputation as a discoverer in science is

to me a matter of supreme indifference. Neither is it an object
with me of any importance to make money by the publication of

my discoveries, as I am fortunately placed above those needs which
sometimes press so heavily on many of the most illustrious culti-

vators of literature and science.

J. B.
Stone Vicarage,

New Year's Day, 1877.
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ON' THK

GEOMETRICAL PROPERTIES

OF

ELLIPTIC INTEGRALS,

INTRODUCTION.

IN publishing the following researches on the geometrical types of

elliptic integrals, I may be permitted briefly to advert to what had

already been effected in this department of geometrical research.

Legendre, to whom this important branch of mathematical science

owes so much, devised a plane curve whose rectification might be

effected by an elliptic integral of the first order. Since that time

many other geometers have followed his example, in contriving
similar curves, to represent, either by their quadrature or rectifi-

cation, elliptic functions. Of those who have been most successful

in devising curves which should possess the required properties,

may be mentioned M. Gudennann, M. Verhulst of Brussels, and

M. Serret of Paris. These geometers, however, have succeeded in

deriving from those curves scarcely any of the properties of elliptic

integrals, even the most elementary. This barrenness in results

was doubtless owing to the very artificial character of the genesis
of those curves, devised, as they were, solely to satisfy one condi-

tion only of the general problem*.
In 1841 a step was taken in the right direction. MM. Catalan

and Gudermann, in the journals of Liouville and Crelle, showed
how the arcs of spherical conic sections might be represented by
elliptic integrals of the third order and circular form. They did

not, however, extend their investigations to the case of elliptic in-

*
Legendre a cherche" a repre"senter en ge'ne'ral, la fonction dig. (c, </>) par

un
arc de coiirbe

;
mais ses tentatives ne nous ont pas sembl heureuses, car il n'est

parvenu a r^soudre comple'tenient le probleme, qu'en employant une courbe

transcendante, dans laquelle I'arnplitude <f>
et Tares ont entre eux une relation

ge'ome'trique encore plus difficile a saisir que dans la lemniscate. VEBHULST,
Traitt den Functions Elliptiques, p. 295.

VOL. II. B



2 ON THE GEOMETRICAL PROPERTIES OF ELLIPTIC INTEGRALS.

tegrals of the third order and logarithmic form
;
nor even to that

of the first order. These cases still remained without any analo-

gous geometrical representative, a hlemish to the theory.
It will be shown in the following pages that the elliptic integral

of the first order, which is merely a particular case of the circular

form ofthe elliptic integral of the third order, represents a spherical
conic section whose principal arcs have a certain relation to each

other, and that the true geometrical representative of an elliptic

integral of the third order and logarithmic form, is the curve of

intersection of a right elliptic cylinder by a paraboloid of revolu-

tion having its axis coincident with that of the cylinder. The

geometrical representative of the peculiar form when the parameter
is negative and greater than 1, is shown to be a curve which I call

the Logarithmic hyperbola, and which may be thus generated. If

a right cylinder standing on a plane hyperbola as a base, be sub-

stituted for the elliptic cylinder, the curve of intersection may be
named the logarithmic hyperbola. It will have four infinite

branches, whose asymptotes will be the infinite arcs of two equal

plane parabolas. This curve, and not the spherical ellipse, is the

true analogue of the common hyperbola.
The main object of the following treatise is to prove, that Elliptic

Integrals of every order, the parameter taking any value whatever

between positive and negative infinity, represent the intersections of

surfaces of the second order.

To these curves may be given the appropriate name- of Hyper-
conic sections.

These surfaces divide themselves into two classes, of which the

sphere and the paraboloid of revolution are the respective types ;

from the one arise the circular functions, from the other the loga-
rithmic and exponential. The circular integral of the third order

is derived from the sphere, while the logarithmic function of the

same order is founded on the paraboloid of revolution.

Although in the following pages I have, for the sake of simplicity,
derived the properties of those curves, or of the integrals which

represent them, from the intersections of these normal surfaces

(the sphere and the paraboloid) with certain cylindrical surfaces,

yet the intersections so produced may be considered as the inter-

sections of these normal surfaces with various other surfaces of the

second order. Let U=0 be the equation of the sphere or parabo-

loid, and V=0 the equation of the cylinder. The simultaneous

equations U=0, V=0 give the equations of the curve of intersec-

tion. Let / be any abstract number whatever; then U+/V=0
is the equation of another surface of the second order passing

through the curve of intersection. Let U=0 be the equation of

a sphere, for example. Accordingly as we assign suitable values

to the number /, we may make the equation U+/V=0 repre-
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sent any central surface of the second order. 15tit \vc cannot, by

any snhst itution or rational transformation, make the equation

U+/V=0 represent a non-central surface instead of a central

one, or vice versd.

Although a remarkable relation exists between the areas and

lengths of some of these hyperconics, such as the circle and the

spherical ellipse, yet more distinctly to show the analogy which

pervades all those curves, I have not had recourse in any case to

the method of "
elliptic quadratures/' as it is termed*. We can-

not admit such a violation of the law of geometrical continuity as

to suppose that while a function in one state represents a curve

line, in another, immediately succeeding, it must express an area.

Such can only be taken as a conventional explanation, until the real

one, characterized by the simplicity of truth, shall present itself.

In the course of these investigations, it will be shown that the

formulae for the comparison of elliptic integrals, which are given

by Legendre and other writers on this subject, follow simply as

geometrical inferences from the fundamental properties of these

curves, and that the ordinary conic sections are merely particular
cases of those more general curves above referred to under the

name of hyperconic sections.

It will doubtless appear not a little singular that the principal

properties of those functions, their classification, their transforma-

tions, the comparison of integrals of the third order with conju-

gate or reciprocal parameters, were all investigated and developed
before geometers had any idea of the true geometrical origin of

those functions. It is as if the formulae of trigonometry had been

derived from an algebraical definition, before the geometrical con-

ception of the circle had been admitted. As circular trigonometry

may be defined the development of the functions of circular arcs,

whether described on a plane or on the surface of a sphere, and

parabolic trigonometry f as the development of the relations which
exist between the arcs of a p'arabola, so this higher trigonometry,
or the theory of elliptic integrals, may best be interpreted as the

development of the relations which exist between the arcs of hy-

perconic sections.

* En conside"rant lea fonctions elliptiques comnie des secteurs, dont Tangle est

pre'cise'ment 6gal a 1'amplitude rf>, nous avons eu Tavantage de justifier la d?no-

Miination d'aruplitude appliqutSe a Tangled) ;
et meme celle de functions ellipti-

ques, en ge"ne"ral, puisque les courbes aJgeoriques par lesquelles nous avons re-

pre'sente' ces transcendantes, se construisent avec facilite" au moyen desnmms
vecteurs d'une ou de deux ellipses donne"es. VERHULST,

' Traite des Fonctions

i;//i/>tiques,' p. 295.

M. Verhulst has represented the three kinds of elliptic integrals by means of

sectorial areas of certain curves. It is manifest, however, that it is incomparably
<-;t-i<T to do this than to represent these transcendents by means of the arcs of

curves. R. L. ELLIS, Riyurt un the recent proyress of Analysis, p. 73.

t See Vol. I. page;',l:;
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Indeed it may with truth be asserted that nearly all the princi-

pal functions, on which the resources of analysis have chiefly heen

exhausted, whether they he circular, logarithmic, exponential or

elliptic, arise out of the solution of this one general problem, to

determine the length of an arc of a hyperconic section.

It may be said, we cannot by this method derive any properties
of elliptic integrals which may not algebraically be deduced from
the fundamental expressions appropriately assumed. But surely
no one will assert that the properties of curve lines should be alge-

braically developed without any reference to their geometrical

types.
We might, from algebraical expressions suitably chosen, derive

every known property of curve lines, without having in any in-

stance a conception of the geometrical types which they represent.
The theory of elliptic integrals was developed by a method the in-

verse of that pursued in establishing the formulae of common trigo-

nometry. In the latter case, the geometrical type was given the

circle to determine the algebraical relations of its arcs. In the

theory of elliptic integrals, the relations of the arcs of unknown
curves are given, to determine the curves themselves. This is

briefly the object of the present paper.
The true geometrical basis of this theory would doubtless long

since have been developed, had not geometers sought to discover

the types of those functions among plane curves. They were be-

guiled into this course by observing, that in one case that of the

second order the representative curve is obviously a plane ellipse.

Hence they were led by a seeming analogy to search for the types
of the other integrals among plane curves also.

I have attempted thus to place on its true geometrical basis a

somewhat abstruse department of analysis, and to clear up the ele-

mentary notions from which it may, with the utmost simplicity, be

developed. It is only in the maturity of a science that the rela-

tions which bind together its cardinal ideas become simplified. An
author, who has himself contributed much to the progress of

mathematical science, well observes,
"

qu'il est bien rare qu'une
theorie sorte sous sa forme la plus simple des mains de son premier
auteur. Nous pensons qu'on sert peut-etre plus encore la science

en simplifiant, de la sorte, des theories deja connues, qu'en Fen-

richissant de theories nouvelles, et c'est la un sujet auquel on ne

saurait s'appliquer avec trop de soin." GERGONNE,
' Annales des

Mathematiques,' torn. xix. p. 338.

It may be asked, of what use is the theory of elliptic integrals ?

This is a very natural inquiry in an age when every intellectual

acquisition, when every exercise of the understanding is tested by
its gross material utility. Yet it may suffice to say in reply, that

this theory will be found of use in many geometrical and physical
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inquiries. These I'liiietioiis not only exhibit the rectification and

quadrature of conic and hyperconic sections, but they subserve the

theories of the common and conical pendulums and of the elastic

curve. In Astronomy, the elements of the orbits of the planets,
the attraction of ellipsoids, and the problem of the rotation of a

solid body round a fixed point, receive their final and complete
solutions by the help of these integrals. M. Lame has proved how

questions \\hieh involve the distribution of heat and the nature of

isothermal surfaces may be reduced to tbe same functions.

In a subsequent portion of this volume, it will be shown that

the complete mathematical solution of that celebrated problem the

rotation of a solid body, has been for the first time obtained by the

aid of those functions in their state of complete development.

CHAPTER I.

1.] The theory of Elliptic Integrals is founded on the develop-
ment of the quadrinomial integral,

f( t>\ f\ V

VA+ Btf+ Ca^+ DtfS+tf
4 '

in which A, B, C, and D are constants, while f (x) denotes a ratio-

nal function of x.

It has been shown by Legendre, and, after him, by Verhulst,

Hymers, and others, that by the help of some ingenious transfor-

mations the above integral may be reduced to one or other of the

following fundamental forms,

dtp c
1 l/* /I 2

"

2 /*

J

and

or, as they have been denoted by Legendre,

Fc(<p), Ec(<p), and Uc(p,(f>).

I have ventured to make some alterations in the established no-

tation of elliptic integrals. I have written i for the modulus, in-

instead of c, and j for its complement instead of b; so that

The symbol c, used by writers on this subject to designate the

modulus, was adopted by analogy from the formula for the recti-

fication of a plane elliptic arc by an integral of the second order.
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Although in the circular forms of the third order it still signifies a

certain ellipticity, yet it has no longer the same signification in the

usual form of the first order, or in the logarithmic form of the

third.

Instead of the usual symbol, A= \/l C2 sin2<p= \^l &
2 sin2

<p,

v/I has been substituted when i is the modulus. Should it be-

come necessary to designate the amplitude cp,
the expression may

be written v/I^, while \/I, may denote a function whose modulus

is i
t

.

For the elliptic integrals of the first and second orders,

\^f and
Jd<p

v/I have been substituted. Hence
J^TT represents

17= ==, and fdilr VI, maybe put for fdi/r \/l i/sin
2
^.Ivl 2

snr<p J J
c/

The surface of revolution may be named the generating surface,

while the intersecting surface is always a right cylindrical surface.

The parameter, of which p is the general symbol, we shall suppose
to vary from positive to negative infinity, and to pass through all

intermediate states of magnitude.
The nature of the representative curve will depend on the value

assigned to the parameter p in the expression

[ +p sin2
<p]

v 1 i
2 sin2

<p

The modulus i we shall assume to be invariable and less than 1.

In this progress from +00 to co
,
the parameter passes through

thirteen distinct values, each of which will cause a variation in the

species or properties of the hyperconic section, the representative
curve of the given elliptic integral.

In the following Table we may observe that the generating sur-

face in passing from a sphere to a paraboloid, in its course of trans-

ition becomes a plane.
It is somewhat remarkable that the common form of the elliptic

integral of the first order does not appear in the Table, although
it is implicitly contained in cases II. and VIII. ; for the circular

form of the third order, when the parameter is equal to the modu-
lus i, may be reduced to the first. The reason why the first form
of elliptic integral does not appear in the Table is this : in the

thirteen cases given, the origin is placed at the centre, or sym-
metrically with respect to the represented curve. When the elliptic

integral of the first order is given in the usual form, without a

parameter, it represents a spherical parabola, but the origin is non-

symmetrical, that is, the origin is placed at a focus.

Instead of p, the general symbol for the parameter, we may sub-
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stitntc for it particular values, such as /, m, or n, as the case may
require. The (juautitios /, m, n, i, and./ are connected by the fol-

low inj; e(iuations :

i
9
-fj*= 1

,
Im= i2

,
andm n+ mw=i2

,
in the circular form, 1

t
2
+j

z= 1
,
///=i2, andm+ n mn=i9

)
in the logarithmic form, J

/// and // may be called conjugate parameters ;
while / and m, or

/ and // may be termed reciprocal parameters.
For (1 wsin9

<p)
we may put M, and N for (l+wsin

2
<p).

These thirteen cases are exhibited in the following Table :

Case.
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ON THE SPHERICAL ELLIPSE.

2.] A spherical ellipse may be denned as the curve of intersec-

tion of a cone of the second degree with a concentric sphere.
In the spherical ellipse there are two points analogous to the

foci of the plane ellipse, such that the sum of the arcs of 'the great

circles, drawn from these points to any point on the curve, is con-

stant. Let a and /3 be the principal semiangles of the cone ; 2a
and 2/3 are therefore the principal arcs of the spherical ellipse.

Let two straight lines be drawn from the vertex of the cone, in

the plane of the angle of 2a, making with the internal axis of the

cone equal angles e, such that

cos a
cose= ---........ (2)

cos/3

These lines are usually called focals, or the focal lines of the cone.

The points in which they meet the surface of the sphere are termed
the foci of the spherical ellipse.

Every umbilical surface of the second order has two concentric

circular sections, whose planes, in the case of cones, pass through
the greater of the external axes. Perpendiculars drawn to the

planes of these sections, passing through the vertex (they may be

called the CYCLIC AXES of the cone], make with the internal axis of
the cone in the plane of 2/3 (the plane passing through the internal

and the lesser external axis] equal angles 97, such that

sin/3
COS V)

= -r -........ (3)sin a

Let a series of planes be drawn through the vertex, and perpen-
dicular to the successive sides of the cone. This series of planes
will envelop a second cone, which is usually called the supple-
mental cone to the former. The cones are so related, that the

planes of the circular sections of the one are perpendicular to the

focal lines of the other, and conversely.
The equation of the spherical ellipse may be found as follows,

from simple geometrical considerations.

Let 2a and 2/3 be the greatest and least vertical angles of the

cone
;
the origin of coordinates being placed at the common centre

of the sphere and cone. Let the internal axis of the cone meet
the surface of the sphere in the point Z, which may be taken as

the pole. Let p be an arc of a great circle drawn from the point
Z to any point Q, on the curve, ty being the angle which the plane
of this circle makes with the plane of 2a. We shall then have for

the polar equation of the spherical ellipse,

1 cos2 sin2 xr

tan2 p tan2 a tan2 ft'
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To show this, through the point Z let a tangent plane be drawn to

the spin-re. This plane will intersect the cone in an ellipse. This

ellipse may be called the plane base of the cone, while the portion
of the surface of the sphere within the cone may be termed the

spherical base of the cone. The plane of the great circle passing

through Z and Q will cut the plane base of the cone in the radius

vector R ;
and if we write A and B for the semiaxes of this ellipse,

whose plane touches the sphere, we shall have for the common

polar equation of this ellipse, the centre being the pole,

Now, the radius of the sphere being k, and p, a, /3 the angles sub-

tended at the centre by R, A, B, we shall clearly have

R= tanp, A=tana, B = tan/9;

1 cos2 -Jr sin2 -*r

whence 5= * +5 * 7 5-5......tana p tan2 a tan2
/3

We may write this equation in the form

1 sin2 p cos2 -Jr -o N
sin2 -Jr., . 20N

. g
r= ^-g-i- (1 sm2

a)+-^-2^-(l sm2
/3);sm2

p sm2 a v sm2

1 cos2 -^ ,

sin2
-\/r

or reducing, = .

T + -^-^...... (5)sm2
p sm2 a sin2 /?

This is the equation of the spherical ellipse under another form,
which may be obtained independently by orthogonally project-

ing the spherical ellipse on the plane of the external axes
;
or by

taking the spherical ellipse as the symmetrical intersection of a

right elliptic cylinder with the sphere.

3.] If in the major principal arc 2a of a spherical ellipse, we
assume two points equidistant from the centre, the distance e being

determined by the condition cbse=---x, as in (2), the sum of the

arcs of the great circles drawn from these points Fig. 1.

the foci to any point on the spherical ellipse is con-

stant, and equal to the principal arc 2a.

Let and ff denote the arcs drawn from the

points F, F to a point Q upon the curve, QZ=p,
and the angle QZF=<f, FZ=F'Z=e.

Then, as FZQ, FZQ, are spherical triangles, we

cos cose cosp
get cosilr=--:

-t
,

. . . (a)
sin e sin p

COS ff COS 6 COS p
COSllr= ;

_T
. . Hj)sine smp

VOL. 11. C
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COS a---- (c), and the equation of the curve given in [(2)]
C/Oo A.J

COS 6

n2
'/r

..... (d)

Between (a), (b), (c), (d), we must eliminate p, ^Jr,
and e. Adding

together (a) and (b), also subtracting (b) from (a), we get

cos#+ cos0'=2cosp cose; and cos 6 cos 6'= 2 smp sine cos-^r;

from (d), I = cot2 atan2
p cos2^+ tan2p cot2 -tan2

p cot2 /3 cos2 ^-;
/cos2 /3 cos2 a
I
V

\ .

i s
/

cosp-- --.
2 , _ , . .

sm2
p cos2 i|r=cot

2 a--r-o-k : substituting for
sin2 /3

or
sm a sm

sinp cosijr, its value deduced by subtracting (b) from (a), we find

cos2 a (cos 6 cos ff)
2 + sin2 a (cos 6+ cos ff)

2= sin2 2a,
or cos2 B -f cos

2 & 2 cos 6 cos& (cos
2 a sin2 a)= 1 cos2 2a

;

whence cos2 2a 2cos# cos & cos2a=l cos2 ^ cos2 #'.

Completing the square and reducing, we obtain

cos 2a= cos 6 cos 6' + sin 6 sin 0'= cos (6 0'} or

2a=00' ........ (e)

The positive sign to be taken when the curve is the spherical

ellipse.

4.] The product of the sines of theperpendicular arcs let fallfrom
the foci of a spherical ellipse on the arc of a great circle touching it,

is constant.

Let IB and OT' be the perpendicular arcs let fall from the foci on

the tangent arc of a great circle ;
we shall have

sin -BT sin id= sin (a + e) sin (a e) .

Let OT, tff', fff", be the perpendicular
arcs, let fall from the centre, and the

two foci F and F
y,

on the tangent
arc mn. These three arcs will meet
in the point o, the pole of the arc

mn. Let p be the perpendicular
from the centre on the straight line

which touches the plane elliptic base ;

of this straight line, mn is the projec-
tion. We shall therefore have

j9
2=A2 cos2 X+B2 sin2 X,

or tan2 -or= tan2a cos8\+ tan2 /3 sin2 X,

cos2 a

Fig. 2.

whence cos2 IF=
1 sin2 e sin2 X'
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Now FZQ= X, whence iu the spherical trhui^lc FZO,

FO=|-<ZO=- CT
,

sin in
1 cos e sin or

\\r anal! have cosX= = .

sin e cos ta-

in the other spherical triangle F'ZO, we shall also have

sin HT" cos e sin -sr

cosX=-
sm e cos m

Adding first, and then subtracting these equations, one from the

other, we shall find

sin iff
1+ sin tv"=2 cos e sin iff,

sin iff
1

sin iff"=2 sin e cos iff cos X.

Squaring these equations, and subtracting the latter from the

former, we shall obtain

sin a' sin iff"=cos2 e cos2 iff (1 sin2 e sin2 \) .

Substituting for cos iff its value given above, and reducing,

sinw' smtsr"=sin (a-f e) sin (a e) (6)

5.] The area of any portion of a spherical surface bounded by a

closed curve, may be determined by the formula,

r* fo
area=l <ty I do- [sin o-],

/0 'O

where a- is the arc of a great circle intercepted between the fixed

point Z taken within the curve as pole (fig. 3), and any variable

point m assumed within the bounding curve on the surface of the

sphere, p being the spherical radius vector of the curve measured
from the pole Z, and passing through m, while

i/r
is the angle

which the plane of this gre"at circle, passing through the points

Z, m, makes with the fixed plane of a great circle passing through Z.

Let O be the centre of the sphere, Z the pole, m the assumed

point, ZQ, the great circle passing through
them. Through Z let a great circle OZQ' Fig. 3.

be drawn, indefinitely near to the former,

d^/r being the angle between the planes.

Through m let a plane be drawn perpendi-
cular to the axis OZ, meeting the great circle

OZQ! in m1

. Through n, a point on ZQ in-

definitely near to m, a parallel plane being
drawn, it will meet the great circle OZQ' in

a point n', indefinitely near to m1

. Now it is

manifest from this construction that the
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whole spherical area to be determined is the sum of all the indefi-

nitely small trapezia, such as mnm1 n1

,
into which in this manner

it may be divided. To compute the value of this elementary tra-

pezium, we have mm'=sino-d-\Jr, mw=dcr. As the pole Z is

within the curve, the limits of er are and p ;
and as the surface

is assumed to extend all round Z, the limits of
-ty

are and 2vr.

f** ff

Whence area= 1 <tyl dcr[sin<r] ....... (a)
Jo Jo

Integrating this equation between the limits and p, we find

/*217

area= I di|r[l cos/>] ....... (b)*
Jo

The second integration can be accomplished only when we know
the relation between p and

i/r,
or the equation of the bounding

curve.

6.] To find an expression for the length of a curve described on
the surface of a sphere, whose radius

is 1.

Let u and u' be two consecutive points
on the curve, ZQ, ZQ' the arcs of two

great circles passing through them in-

clined to each other at the indefinitely
small angle di/r. Through u let a plane
be drawn perpendicular to OZ, and meet-

ing the great circle ZQ' in v.

Then ultimately uvu' may be taken
as a right-angled triangle, whence

Now uu'=d<r, wv=sinp d^} u'v=Ap } whence

do-= [dp
8 +smutty2

]*.

Integrating this expression between the limits pt
and pn,

or
i/r

and 0, accordingly as we take p or ty for the independent variable,
we get

* Equation (b) may be established by the help of the simplest elementary

principles. We know that the surface of the segment of a sphere comprised
between a tangent plane and a parallel secant plane is equal to the circumference

of a great circle multiplied into the distance between these planes. This* dist-

ance is 1 cos p ; p being the arc of a great circle, measured from the point of

contact of the tangent plane to the parallel secant plane. If through the dia-

meter perpendicular to these planes we draw two great circles, inclined one to

the other at the angle d\|^, the surface of the sperical wedge thus formed will be

cosp).
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7.] To apply these expressions to find the length of an arc of a

spherical ellipse.

In this ease it will be found simpler to integrate the differential

expression for an arc of a curve, taking p instead of ty as the in-

dependent variable. We may derive from (5) the following ex-

pressions,

2 r _sin
2

/3 fsin2 a sin2 pl
^|^

siii
2
p I sin2 a sin2 /3j [

2 sjn^arsin
2
p-sin

2
/31

(T sin2 p \ sin2 a sin2 /3J J

Differentiating the former with respect to ty and p, and elimi-

nating sin ty, cos
i/r, using for this purpose the relations established

in (a), we shall find

d>/r sin a sin ft cos p
(b)

r p v sin* p sin* p

Substituting this value of - in the general expression for the

dp sin p \/sin
2 a sin2 p v/sin

2
p sin'

2

ft

ting this value of -p in the general express

arc in the last section, the resulting equation will become

sin p y/cos
2
p cos2 a cos2

/3

\/ (sin
2 a sin2 p) (sin

2
p sin2

ft)
],

. . .
(

an elliptic integral which may be reduced to the usual form by the

following transformation : assume

9 _ sin2 a cosa
<p 4 sin2 /3 sin2

<p
8 P~ 22 2

/3 sin2
<p

.....
7T

The limits of integration are and -. Differentiating this ex-
ti/

pression, and introducing inte (c) the relations assumed in (d), we
shall obtain for the arc the following expression :

tan/3 .

.
, "| 4 /, /8in2a-sm HV 1 -

( 8in2a

sm2
j8

- (8)

Let e be the eccentricity of the plane base of the cone, whose semi-

axes are A and B, as in sec [2] ,

A2-Ba tan2 a- tan2 ft sin2 a- sin2 ftf/X ._,

f _^^^_^_^^^_^^^ _

A2 tan2 a sin2 a cos2 /3

'

we may derive from (2) and (3)

sin2 a sin2 ft , . , sin2 a sin2 /3
sin8 77=

--
s

- and sm2 e= q-&~ >sm2 a cos2 ft
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or grouping these results together,

tan2 a tan2 B sin2 a sin2 3
* '.^>,* _ _

tan2 a sin2 a cos2 /3

. Q sin2 a sin2 /3 ,2
.

2 sin2 a sin
2

/3
sin2 77=--=-3---=&2

,
sm2 e= 5. =rc. . (9)

sin* a cos"1 a

These quantities m, n, and z
2

fulfil the equation of condition

assumed in (1)

i'
2........ (e)

If we introduce these values into (8) ,
the transformed equation will

become

_tan/3 . Cr_df_-i

~tan a
S1 *'

J |_[1
- e2 sin2

<p] ^/l -sin2
17 sin2 <pj

'

an elliptic integral of the third order and circular form, since e
2

is

greater than sin2 77, and less than 1 .

This is case IX. in the Table, page 7.

This is the simplest form to which the rectification of an arc of

a spherical ellipse can be reduced. The parameter of the elliptic

integral is the square of the eccentricity of the plane elliptic base ;

and the modulus is the sine of half the angle between the planes of

the circular sections of the cone.

If we write m for e
2
,

i for sin 77, and express the coefficient

-- sin B in terms of m and i, the expression (10) may be trans-
tan a
formed into

/V
"I

j
'

[l-msin
2
<p] Vl^P sin2

<p

It is easily shown that the coefficient
-^

sin 8 of the elliptic in-
run a

tegral in (10) or its equivalent I -
J
\/mn is the square root of

the criterion of sphericity,

m

For if we substitute in this expression for i its value given in (1)

m n+mn=i2
} we shall find

.- tan/3 .

K= "sin
tana

a A m\ /

5=1- -\vrnn. . . . . (f)
\ m /

As \/ K is manifestly real, the elliptic integral is of the circular

form.
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8.] To find the area of a spherical ellipse.

Resuming equations (4) and (5) of the spherical ellipse,

1 cosa
>/r sin2

-^
, 1 cos2

-^-
sin2^

tan2 p tan2 a tan2 /S'

'

sin2 p sin2 a sin2 /3*

dividing the former by the latter, and reducing, we shall find

tan2 a
.

co.p-co.a-^- - (a)

Substituting this value of cos p in the general expression for the

spherical area (b) sec. [5], we obtain the result

tan2 a

area=-^r cos a
j (b)

To integrate this equation, let us assume

tan/3
tanyi = -

tan<p : (c)
tana

and we shall find, on making the necessary transformations in the

,. . tan#
preceding expressions, the area= <y<

, cos a x
tan a

J . /tan8a- tan2 ft\ .
2

1 / /cos2 -cos2a\ .

2
-)sm2

<p >\/ I [- -)si\ tan* a / J V \ cos2 p /

(12)

Let A and B be the semiaxes of the plane elliptic base of the

cone, and e its eccentricity, then we shall obviously have

2_A2-B2
_tan

2 a-tan2
ff

~A*~ tan'a

and e being the angle between the spherical focus and centre,

cos a . r .. , . _ cos2 ft cos2 a
cos e = as m sec 1 21 , whence sin2 e= . (e)

cos p cos2 ft

Introducing these relations into (12), we shall obtain the formula

tan/9 fr d<p 1
area=y cosal 71 2 . 2 n , . . ==f^- . (13)tana J L[l e2 sm2

<p] yl sm2 esin2 (pj

This is an elliptic function of the third order and circular form,
since e2 is less than 1

,
and greater than sin2 e.
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This seems to be the simplest form that can be found for the

quadrature of the spherical ellipse, the parameter and squared
modulus of the elliptic transcendent being the squares of the ec-

centricities of the plane and spherical ellipses respectively.

We shall show hereafter that there is a class of spherical ellipses

whose quadrature may be effected by elliptic functions of the first

order.

To determine the geometrical signification of the angle of re-

Fig. 5.duction
<p,

in the above trans-

formation.

On the major axis of the

plane elliptic base of the cone,
let a semicircle be described.

Let OP be drawn, making the

angle ^ with the major axis

OB. Let the ordinate through
P be produced to meet the

circle in Q, join OQ, ;

tan-Jr PD B tan/3 , ,
tanilr tan/3 , A,

then- 7^5=rvis=ir=r- -;but- -*-= -; see (10)tanQOB QD A tana tan<p tana

whence Q,OB=<p, or
<p

is the eccentric anomaly of the point P.

*7T 7T

Now, when -^=0, <p=0, and when ^= o> <f
=

2'
wnence

*P

and ty coincide at these limits. Writing S for the area of the

quadrant of the spherical ellipse ;
as the surface evidently consists

of four symmetrical quadrants, the area or length of one quadrant
will manifestly be one fourth of the area or length of the whole ;

whence

tan/3
area=vr - cos a

tana

d<p

. e2 sin2
<p] V 1 sin2 e sin2 ;]

(W)

9.] Let 2a' and 2/3' be the principal arcs of the supplemental cone,

a! being in the plane of /3, and
/3'

in that of a. Let S' be the length
of a quadrant of the spherical ellipse the intersection of this cone

with the concentric sphere. Then we may deduce from (10)

d<p

. e'
2 sin2 <p} V 1 sin2 if sin2

<p

Now, as the cones are assumed to be supplemental,

].
. (a)

7T

a + /3'
=

> ft + a' =
o >

whence sin a' = cos /3, sin /3'
= cos a,
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. . . tan/3' tan/3 ,2cos a '= sin B, cos/3'=sm a ; therefore-
,
= ; -, t'*= e*, and

tan a' tan a
sin T/= -s i e (b)

Introducing these transformations into the last formula

v , tan/3 fr <fy -|i'= A -cosal TT 5-7-5 /, . 9 . , . (15)tana
, L{1 e* sm* <pV yl sure sin2 <pjc U

Now, if we turn to the expression found for the area of a spheri-
cal ellipse, given in (13), we shall find that it consists of two parts
a circular arc, and an elliptic integral identically the same with the

IT
one just investigated, when taken between the limits and -. We

SB

thus arrive at the very remarkable result, that the rectification of

a spherical ellipse depends on the quadrature of the supplemental
ellipse, and reciprocally.

If we add together (13) and (15),

S+S'=|;
....... (16)

or taking the whole surface 4S of the spherical conic, and the cir-

cumference 4S' of the supplemental conic, introducing, moreover,
k the radius of the sphere, we obtain the remarkable theorem

4S + 42'= 2A:
2
7r (17)

Now 4A:S' is twice the lateral surface of the supplemental cone,
and 4S is the surface of the spherical ellipse. We may therefore

infer that

The spherical base of any cone, together with twice the lateral

surface of the supplemental cone, is equal to the surface of the hemi-

sphere.
Let 4S' denote the spherical base of the supplemental cone, and

L the lateral surface of the original cone : from the preceding
equations we obtain

Adding these equations,

4(S + S') + 2 (L + L') = 4*2
7r. "I

Subtracting one from the other, . . . . (18)

4(S-S')=2(L-L');

or, if any two cones, supplemental one to the other, are cut by a

concentric sphere,
The sum of their spherical bases, together with twice the sum of

their lateral surfaces, is equal to the surface of the sphere.

And, The difference of their bases is equal to twice the difference

of their lateral surfaces.
VOL. II. D
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Again, let a cone whose principal angles are supplemental be

cut by a concentric sphere,
The area of the spherical base, together with twice the lateral sur-

face, is equal to the surface of the hemisphere.

10.] We may, by the method of projective coordinates, derive

an expression for the arc of a spherical ellipse.

In this case we shall consider the spherical ellipse as the curve

of intersection of a right elliptic cylinder by a sphere having its

centre on the axis of the cylinder.

Let

be the equations of the cylinder
and sphere, ABCD and FGCD ;

then, do- being the element of an
arc on the surface of a sphere
whose radius is 1, k&o- will be the
element of the corresponding arc
on the surface of the sphere whose
radius is k.

(19)

Fig. 6.

Hence -_-A.-TT-

dX, A/ TWW
x, y and z being functions of the independent variable X

;
.

Assume

^2_ ^cos
2^ ._ 64 sin2 X

;

) l.O\ O -x'

0*) sin 2 X
y

''

. . (21)

Differentiating these expressions,

and as

d?^ 2
5.\ _. <^" \u~ o~)

"

sinrA^cps-
8

X,
dX

y
/ [a

2 cos2X
;
+ W- sin2 X

y]
3
[a

2
(A:

2 a2
) cos

2 X
y -fW^W-} sin2xT

'

Substituting these expressions in (20), we find

/ //
(23
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The numerator of this expression may be resolved into the factors

a2
)
cos2X

/
+ (

2
b*} sin8X

y],

and the equation may now be written

-gg
)
cos2X,+ (k*-t>

dX, A;[a
2 cos2X

/
+ 62 sin2X

/] VH*S-~ a
)
cos% +**(**--

(jfZ

b*
70 5
ft* _ /7 *

Hence

(24) may now be transformed into

do-do-dX

d<p;
dX

7 dtp / A: [a
2
(**- 62

)
cos2

<py
+ &2 (A

2- a2
)
sin8 <pj \/a

2 cos2^+ 6

If we imagine a concentric cone to pass through the mutual inter-

section of the cylinder and the sphere, we shall have

, b=k sin/3,

in2 o_~
tan2

Whence (26) may be transformed into

tan . n Cr d<f>,
-

" - 1
. n ,

0-=- sin/3 I- 1
(28]

tan a K
J [[1 -e2 sin2

<py] Vl -sin2 17 sin
2
^J

'

an expression identically the same with (10).

The angle <p /
in this expression is identical with

<p
in (10).

For 2+ g_ ffl4 cos%+ ^4 sin2 X,_ a4+ 64 tan2 X,+ y " 22 2
~

2 2;

eliminating tanX/ by (25),

^ , tfg= ^(*
a-^t

)
c

2
(A

2-62
)
cos2

<p /
+ 62(^-a2

)
sin2

<p/

Now a2= *2 sin a, &2= #2 sin2 /3, /:
2 -fl2=^2 cos2 a, /t

2 -i2=
and ,r

2
-f y

2= A;
2 cos2 p.

Reducing, we get

~>r-ir^r- Q J 1

(29)tan*a cos^^+ tan^p sm*<p /

Comparing this expression with (d) sec. [7], it follows that
<p
=

<p;
. (30)
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In the foregoing expressions (11) sec. [7] and (28) for the recti-

fication of an arc of a spherical ellipse, the elliptic integrals are of

the third order and circular form, with negative parameters. We
shall now proceed to show that the same arc may be expressed by
an elliptic integral of the third order and circular form, having a

positive parameter.

11.] It is shown in the first volume of this work, at page 184,
that ifp, the perpendicular let fall from a fixed point as pole on a

tangent to the curve, makes the angle X with a fixed straight line

drawn through the pole, t being the intercept of the tangent between
the point of contact and the foot of the perpendicular, we shall

have

(31)

Fig. 7.

the upper sign to be taken when the radius of curvature is greater
than /?, the lower sign to be used when it is less than p.
To investigate an analogous formula for the rectification of a

spherical curve, the intersection of a cone of any order with a

concentric sphere.
Let a point Z be assumed on

the surface of the sphere as pole,
and through this point a tangent

planeZAQB, or (@) ,
to the sphere

being drawn, the cone whose
vertex is at O, the centre of the

sphere, and which passes through
the given spherical curve, will

cut this tangent plane () in a

plane curve AQB, whose rectifi-

cation may be effected, when pos-

sible, by the preceding expression.
Now a tangent plane OOP, or

(T) , may be conceived as drawn

touching the cone, and cutting
the tangent plane () in a straight
line QP or t, which will be a tan-

gent to the plane curve in ().
It will also cut the sphere in an
arc of a great circle (KTS) which will touch the spherical curve in K.

Let the distance QO of the point of contact of the line t with the

plane curve from the centre of the sphere be R. Through the
centre of the sphere let a plane OZP, or (II), be drawn at right
angles to the straight line t. Now this plane, as it is perpendicu-
lar to t, must be perpendicular to the planes () and (T) which
pass through t. As the plane (II) is perpendicular to the plane (),
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it must pass through (Z) the point of contact of this plane with the

sphere, and cut the plane of the curve AQJB in a straight line ZP,
or p, which passes through the pole, the point of contact of ()
with the sphere. This line p being in (II), must be perpendicular
to /. The plane (II) will also cut the sphere in an arc of a great
circle Zw= r

J perpendicular to /ew, the tangent arc to the spherical
curve

;
for these arcs must be at right angles to each other, since

the planes in which they lie, (II) and (T), are at right angles. Let
P be the distance OP of the point in which the plane (II) cuts the

straight line t, from the centre of the sphere ;
r the distance Q,Z of

the pole of the plane curve to the point in which / touches it, T

being the angle which / subtends at the centre of the sphere, and k

its radius

p= k sin iir, t= P tan T,

T is the angle between OQ and OP.
Let ds be the element of an arc of the plane curve between any

two consecutive positions of R, indefinitely near to each other ;

#d<r the corresponding element of the spherical curve between the

same consecutive positions of R. Then the areas of the element-

ary triangles on the surface of the cone, between these consecutive

positions of R, having their vertices at the centre of the sphere,
and for bases the elements of the arcs of the plane and spherical
curves respectively, are as their bases multiplied by their altitudes.

Let S and S' be these areas
;
then

P1
dX

:

But the areas of triangles are also as the products of their sides

into the sines of the contained angles, i. e. in this case as the squares
of the sides, or

S:ff::R:*,. '. (b) -*,. . . (c)

1 ~D f J2 ""^

putting for ds its value given in (31), -r-= ^2< fi$+p f (d)

-T.
dP dp dpwhence PJT-=#J> and/ = .

UA, CIA, dA.

Substituting these values in (d),

do-

dX~ '""^Rl i dX"^ ^ f (6)
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We shall now proceed to show that the last term of this equa-

tion is the differential of the arc, with respect to X, subtend*

the centre of the sphere.

t P
This arc being T, tanr=p cosr=^-.

- .dP
Therefore

or as r= -^, j^= ^ ^ -r 3T2~;n dX (
* ''

HA/ tl/v ti/v ^

Adding this equation to (e), we get for the final result,

cr= fdX sin-cr T.
]

d tj
' ' * W

If t=-^-, the formula becomes cr=ldX sm-or+ T.
dX J

}

12.] This formula serves a twofold purpose ;
for it will also enable

us to give the quadrature of the supplemental figure on the

surface of the sphere. Let p
1 be that radius vector of the supple-

mental figure on the surface of the sphere which is the prolonga-

tion of -or; p' + -5T=^,
and therefore sin -07= cos p'; X remains the

same in both curves ;
whence

\ sin'BrdX= \ cosp'dX (h)

But it was shown in (b) sec. [5] that the expression for the area of

a spherical curve is

area=J(l cosp') dX=X JsinOTdX.
. . .

(i)

Thus the proposition established in sec. [9] as to the reciprocal re-

lations between the rectification and quadrature of supplemental

spherical conies of the second order, is shown to hold with respect
to supplemental conies of any order described on the surface of a

sphere.

Throughout these pages, to avoid circumlocution and needless

repetitions, we shall designate as the ^ro-jected tangent, or briefly
as the protangent, that portion of a tangent to a curve, whether it

be a straight line, a circle, or a parabola, between its point of con-

tact, and a perpendicular from a fixed point let fall upon it, whe-
ther this perpendicular be a straight line, or a circular or a para-
bolic arc. This definition is the more necessary, as the protangent
will continually occur in the following investigations. The term
is not inappropriate, as the jro-tangent is the projection of the

radius vector on the tangent.
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Hi.] To apply the formula (33) to the rectification of the sphe-
rical ellipse.

Let, as before, A aiid B be the semiaxes of the plane elliptic

base of the cone, r the central radius vector drawn to the point of

contact of the tangent t, p the perpendicular from the centre on
this tangent, / the intercept of the tangent to the plane ellipse be-

tween the point of contact and the foot of the perpendicular, X the

angle between p and A. Let a, ft, p, tx, r be the angles subtended

at the centre of the sphere, whose radius is 1, by the lines A, B, r,

p, t, we shall consequently have

A=A:tana, B=A:tan/3, r = k tanp, p=k tan -or,

1T.Jand /= V 2
+./>

2 tanr=P tan

Now in the plane ellipse

(A-B*)gin*XcoeXsm2
X, and /

2=^ -
:

(34)

P*

therefore in the spherical ellipse

whence sec2 -BT =sec2 a cos2 X+ sec2 ft sin2 X.

Dividing the former by the latter,

tan2 a cos2 X+ tan2 ft sin2 X
sin2 13-= -

9 _ <TO 9 ^ (36)
sec"1 a cos- X + sec* p sur X

Introducing this value of sin -or into (33), the general form for

spherical rectification, the resulting equation will become

"tan2 a cos2 X+ tan2 ft sin2
X~|

i

sec2 a cos2 X -I- sec
2
ft sin2 X J

14.] To reduce this expression to the usual form of an elliptic

integral.

Assume tan ^= cos e tan X (38)

It must first be shown that this amplitude ^ is equal to the ampli-
tude

<p
in (d) sec. [7], and therefore to

<pt
in (25), as was established

in sec. [10].
In an ellipse, if

-^r
and X are the angles which a central radius

vector, and a perpendicular from the centre, on the tangent drawn

through its extremity, make with the major axis, we know that

B2 tan2 B
tani/r

=
^ tanX= ^ tanX. Introducing this value of tan

-*fr

into (5) sec. [2] and reducing,

Q r tan8a cos2 X+ tan2# sin2X
cos2 p=cos- a cos2 ft t 5 3^ s^ o-^ 5 r-~- .

I_tan
2 a cos2/3 cos

2X + tan2
/? cos

2a snrAJ
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Comparing this value of cos2 p with that assumed for cos2
p in (d)

sec. [7], namely,

sin2 a cos2
<p + sin2 8 sin2 <p

prm* n_-_:---
P

we get, after some reductions, tan <p= cose tan X..... (39)

But in (38) we assumed tan%= cose tanX. Hence the amplitudes

<p, <p',
and % in (d) sec. [7], (25), and (38) are equal. We may ac-

cordingly write
<p

instead of % or
<pr Substituting the value of

tan A, derived from the equation, tan <p= cose tanX, in (38), the in-

tegral in (37) becomes

t.

cos a cos /9 [sin
2 a (sin

2 a sin2 8} sin2
<p] d<p

[cos
2 a+ (sin

2 a sin2 8) sin2
<p] -v/sin

2 a cos2
<p + sin2 8 sin2

<p

cos a
,

sin2a sin2/? . sin2a sin2 /3Now cose=
r>,

tan2e=
=,

. sm2
?7= r-s . (40)cos p cos2 a sin2 a

Making the substitutions suggested by these relations, and redu-

cing, we shall find

$_ Cr
m aj Lcos a sm aj L [1 + tan2 e sin2

<p] V 1 sin2 T; sin2

cos a cos 8 C d<p

sin a v/1 sin2 ^ si

~
P

sn<p

an elliptic integral of the third order, with a positive parameter,
and therefore of the circular form.

This is case IX. in the Table, page 7.

Writing n for tan2 e, i for sin
77, and expressing sin a, cos a, sin/3,

cos/3 in terms of w and z, (41) becomes

fl"

J L

__
V 1 2 sin2

<p

If we put A, for the criterion of sphericity, as in sec. [7], with

respect to n the positive parameter, or ,= (!+) (
w+-j,

or
*/*,=(- -) Vww, it may easily be shown that V/^=

C S/
?

cosasma
the coefficient of the preceding integral. Hence also, K K,=J*.
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15.] To express the protangent r in terms of \ and
<p.

We found
in sec. [11]

2 __**__jV__(A
2-B2

)

2 *in2 \co82\_
~P2~Py~ [/fc

2 + a2 cos2\+ 62 sin2\] [a
2
cos*A.+ 62 sin2 X]'

Now
A2-B2 sin2a-sin2

/3
A.= k tana, B= A: tana, e2= 7-5 , and snre= ^ -.A2 cos2 /3

e2 sin a sin X cos \
whence tanr= -

. . . (43)
V 1 e

2 sin* X y 1 sin2 e sin2 \

To express tan r in terms of the amplitude <p.

Assume the relation established in (d) sec. [7] or (25) or (38) or

(39), tan
<p
= cos e tan \. Introducing this condition into (43), we

obtain

e tan e sin <r> cos <ptanr= ==
.

y
.
L ..... (44)

v 1 8111*77 sm^fp

or as \m= e, v^

. , mnsn<p cos<pthe last equation becomes tanr=---, >. ~^J . . . . (45)
-v/l-i2 sin2 9

Hence (42) may now be written

_/l+
~\ n

~"

(46)
sin

<p
cos

<p

A/1 i
2 siu2

<p \/l i
2 sin2

<p

Now this formula and (11) represent the same arc of the spherical

ellipse ; they may therefore be equated together. Accordingly

(!^ft ^-= =J]}
\ n /J L [1 + n sin2

<p]
v' 1 i

2 sin2 <pj

/l-m\ f r d(p
-I

\~wT/J L[l-msin
2
<p] \/l-i

2 sin2 <pj

d<p 1 _, r \/mn sin <p cos
.g . o + ~7=" tan -===:
i
2 sm2

<p ymw L \/l i
2 sm2

<r

This is the well-known theorem established by LEGENDRE, Traite

des Fonctions Elliptiques, torn. i. p. 72, for the comparison of

elliptic integrals of the circular form, with positive and negative
VOL. II. E
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Fig. 8.

parameters respectively. These circular forms arise from treating
the element of the spherical conic either as the hypotenuse of an

infinitesimal right-angled triangle, or as an element of a circular

arc, having the same curvature. When we adopt the former prin-

ciple, we obtain for the arc an elliptic integral of the third order,

circular form, and negative parameter. When we select the latter,

we get a circular form of the same order, with a positive parameter.

Equating these expressions for the same arc of the curve, the re-

sulting relation is Legendre's theorem. We thus see how an el-

liptic integral with a positive parameter may be made to depend on
another with a negative parameter less than 1 and greater than i

2
.

16.] We must not confound
the angle X in the preceding
article with the angle X, in Art.

[10] . We shall investigate the

relationbetween them. Through
ZO, the axis of the cylinder, let

a plane be drawn making the

angle ty with the plane ZOA.
Let this plane cut the spherical

ellipse in the point K, and the

plane ellipse the orthogonal pro-

jection of the latter in the point
Q. Through K draw an arc of
a great circle KIT touching the curve, and through Q draw a right
line touching the plane ellipse. From Z let fall the perpendicular
arc ZTT on the tangent arc of the circle, making the angle X with
the arc Za. From O let fall on the tangent to the plane ellipse
at Q, the perpendicular OP making the angle \, with OA.

Then tan X= -
g 'a

sin''
tan\|r.

Hence we derive tanX,
tanX

Consequently tan X . tan X
y

= cos2 e tan2 X.

But we have shown in (39) that

tan2
<p

cos2 e tan2 X,

whence tan2 <p=tanX tanX
y, (48)

on the tangent of the amplitude <p
is a mean proportional between

the tangents of the normal angles which a point of contact K on the

spherical ellipse, and its projection Q, on the plane ellipse the base of
the cylinder produce.

17.] We may obtain, tinder another form, the rectification of
the spherical ellipse.
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Assume the equations of the right cylinder and generating
sphere as given in (19),

r*

+ -J*=l,
and x* + y* + z*= k*.

t (/

Make x=asin0, y= /3cos#;

hence z*= k*-a'2 sin2 0-62 cos2 0;' ..... (49)

and therefore *
d<7/- [

a*(k*~^ ** + &(&- a*} sin2 0-U-U

J
'

(

Now
a2

(A:

2- A2
) =# sin2 a cos2 0, 62

(/c
2- a2

)
= /c

4 sin2 cos2 a,

k*-b*= k* cos2 /3, /c
2-

<z
2= 2 cos2 a.

Substituting these values in (50) ,
and integrating,

,CW f
tan2 a cos2 + tan2 ff sin2

0"|
^

~J Lsec2 a cos2 + sec2 /3 sin2 J
'

If we now compare this formula with (37) and make 0=\, we
shall have </ CT= T.......... (52)

Hence we may represent the difference between two arcs of a sphe-
rical ellipse, measured from the vertices of the major and minor
arcs of the curve, by an arc T of a great circle which touches the

spherical ellipse.

18.] We may thus, by the help of the foregoing theorems, show
that when any elliptic integral of the third order and circular form
is given, whether the parameter be positive or negative, we may
always obtain the elements of the spherical ellipse, of whose arc
the given function is the representative.

Let the parameter be negative.

9 tan2 a tan2 /3 . . sin2 a sin2 /3As e2= =m, andsm2 = i
2

tan2 a sm2 a

9 '9
I ll i

- vn ~

we shall have tan2 a=^ri
--r. tan2 6= ^ . . . . (53)

i
z
(l m) t

2

In order that these values of tan a, tan /3 may be real, we must
have m>i2 and m<l.

Let the parameter be positive.

3 sin2 a sin2 /3 , . . sin2 a sin2 ftNow tan2 e= =n. 2

cos* a sin* a

hence .

tana=|,
tan2

/3=| ^ l2..... (54)

There is in this case no restriction on the magnitude of n.
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19.] To determine the value of tlie expression

l + n\
/ ff

n )
V/

JL(n J
^

J L(l+rasin
2

<p) VI -#

when n is infinite.

As m n + mn=i*}
or (I m) (l + tt)

= l i
2=/2

,

when n is infinite, w=l.
Resuming the expression given in (47) ,

/l+n\ fr dtp -|
0"=l- I </mn\ T-. r~s : 7l -a g

\ /i / J |_(1 +w srrr <p) v 1 t sin <pJ

t I (J.(p - 1 I ^y Tflffy S1H COS I_ =- 1
T

.
=^ tan L r r

i

\/mn 1 vl i
2 sin2 <p L \/l i

2 sin2 (p J )

c/

we find that when n is infinite, a is a right angle.

sin2 a sin2 ft ,, ,,
TT

For yz=tan2e= = co ;
therefore a=.

cos'' a ^

Now -^ being the angle between the spherical radius vector drawn

to the extremity of the arc, and the major principal arc, we have

tan \!r= 5 tan X. and tan <p
= - tan X,

tan2 a cosp

tan ft sin ft
or tan /w<= tan (p.

tan a sin a

Hence -^ is indefinitely less than
<p,

when w is infinite, or when a

is a right angle. In this case therefore cr=0, and we get, when n

is infinite, and
<p
not 0,

'i+V,-fr d$ n _T
(55)

We might have derived this theorem directly from (46) , by the trans-

formation

\n sin
<p
= tan G>.

This is case I. in the Table, p. 7.

CHAPTER II.

ON THE SPHERICAL PARABOLA.

20.] It remains now to exhibit a class of spherical conic sections

whose rectification may be effected by elliptic integrals of the first

order.
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Tin- curve which is the gnomonic projection of a plane parabola
on the surface of a sphere, the focus being the pole, may be rectified

by an elliptic integral of the first order.

Let a sphere be described touching the plane of the parabola at

its focus. The spherical curve which is the intersection of the sphere
with a cone, whose vertex is at its centre, and whose base is the

parabola, may be called the spherical parabola.
To find the polar equation of this curve.

The polar equation of the parabola, the focus being the pole, is

r=
, 4g being the parameter of the parabola. Let y be the

angle which g subtends at the centre of the sphere, and p the angle
subtended by r, then

(56). . .

1 + COS &)

Let p be the perpendicular from the focus on a tangent to the

parabola, p the angle which this perpendicular makes with the

axis of the parabola; p= - -. Whence in the spherical curve,
-

as j9
= A:tanw, ff

= ktan.<y,

tan 7 sin 7
tanCT= -ij or smCT=

,

'
. . (57)*

cos//, Vl cos2 7 sin2 /*

* The expression for a perpendicular arc from the focus of any spherical ellipse
on a tangent arc to it may be found as follows :

The spherical triangle, fig. 2, sec. [4], FOF', in which OFF'=/z, OF=5--or','

. TT . sinw" cos2t sinw'=-w
, grves

from (6) we have sin -or' sinw"= sin (a-f-) sin (a t); eliminating sin -or" between
these equations, we obtain, after some reductions,

.
2 _ sin 2

(2e) cosV+2 sin(a +f) sin(a e) cos(2e) +sin(2e) cos /*V sin2(2a) sin2 (2) sin
2

/*
felll" "W, SS _ . -n_ TT

f\r-i > sc\ \ 5 T
----- '

2[l-sm
2

(2f)sm'
!

/i]

When the curve is the spherical parabola, a-f-f= t-j,
a e=y, and the preceding

expression becomes sinw'= ^ -- or sinw'=l as we take the sign
V l-cos-'-ysm

2

/*

-or +
The locus of the foot of this perpendicular is a great circle touching the sphe-

rical parabola at its vertex. Draw the tangent circle at A, and produce the

perpendicular -or' until it meets this tangent circle in D. Write 8 for this pro-
duced perpendicular arc. Hence in the right-angled spherical triangle D A,

cos a= tan y cot 8. or tan 8= ^. Buttaniir'= -. Whence -0^=8. The
cos p. cos p.

second value of w', when the circle ie drawn touching the spherical parabola at

the other vertex B, is K, as shown above. This is manifestly the true value of
m

w', since the focus F is the pole of the great circle touching the curve at B.
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Introduce this expression into the general form for spherical rec-

tification, G- =
Jsin-ard/A

+ r, given in (31); we use the positive

sign with T, since t= ~-
; and as r, *&, and p are the sides and an

angle of a right-angled spherical triangle, since 2yu,
=

o>, we get, by

Napier's rules, tan r= sin or tan/*, whence, by substitution,

(58)=rin f
'J -

. cos"7 sm p
When the sphere becomes indefi-

nitely great, the spherical parabola

approaches in its contour indefi-

nitely near to the plane parabola ;

k being the radius of the sphere,

a
sin 7= tan 7=^-,

since 7 in this case is indefinitely
A

small, whence cos2 7= !. In this

manner, since s= ka, (58) may be

transformed into

_ sin/*

yl cps*ysui

9

1

ui*/frJ

f
r =<7i

J COS
fJ, COS^jU.

the well-known formula for the rectification of a plane parabola.

When, on the other hand, the sphere becomes indefinitely small

compared with the parabola, 7 approximates to a right angle, and

(58) becomes
s=

fj,+ tan" 1

(tan //,)
=

2/i,

as it should be, since 2fj> is the angle which the radius vector p
makes with the axis.

We shall find the notice of these extreme cases useful.

21.] Although we have called this curve the spherical parabola,
as indicating its mode of generation, it is in fact a closed curve,
like all other curves which are the intersections of cones of the
second degree with concentric spheres. It is a spherical ellipse ;

and we shall now proceed to determine its principal arcs.

Let ADG be a parabola, F its focus, O being the centre of the

sphere which touches the plane of the parabola at F, and being also

the vertex of the obtuse-angled cone, of which the parabola ADG is

a section parallel to the side of the cone OB. Let the angle AOF or
the arc Fa be 7, a and /3 being the principal semiangles of the cone ;

whence .

1 sin y
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Fig. 10.

To determine the angle /3, or the arc Cb. Bisect the vertical angle
AOB of the cone by the line OD, and draw DG an ordinate of the

x'pv/-!
v 2

parabola. Then tan2
/3=(^r-pr

\ . As AOD is an isosceles triangle,

OF=AO= : and
cosy

OF2 20F :

sur

We have also, as DG is an ordinate of the parabola,

f\ Tfl f\ Ll2

DG2=4AF x AD=4OF.tan 7 x =4
cosy cos

Hence, substituting, tan2/3= v -i-^-.
1 81117

-ly, tan* =
,

2 si" ?
.

1 sm7' 1 siny'

"We may therefore announce the following important theorem :

The spherical ellipse,whoseprincipal arcs are given by the equations

(59)

7 being any arbitrary angle, may be rectified by an elliptic function
of the first order.

Write x for tan a, y for tan ft, and eliminate sin 7 from the pre-
ceding equations,

tan2 a-tan2 /3=#2
y
a
=l, .... (59*)

the equation of an equilateral hyperbola. We thus obtain the fol-

lowing theorem :
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Any spherical conic section, the tangents of whose principal semi-

arcs are the ordinates of an equilateral hyperbola whose transverse

semiaxis is 1, may be rectified by an ellipticfunction of thefirst order.

The quadrature of a spherical conic may be effected by an elliptic

function of the first order, when the cotangents of the principal semi-

angles of the cone are the ordinates of an equilateral hyperbola whose

transverse semiaxis is 1.

22.] When we take the complete function, and integrate between

the limits and
-^,

we get, not the length of a quadrant of the

spherical parabola, as we do when we take the centre as origin, but

the length of two quadrants or half the ellipse. We derive also

this other remarkable result, that when /* is a right angle, the

spherical triangle whose sides are the radius vector, the perpendi-
cular arc on the tangent, and the intercept of the tangent arc be-

tween the point of contact and the foot of the perpendicular, is a

7T

quadrantal equilateral triangle. For when /u-= ,

TT 7T 7T

p=
~2'

' =
2'

^ =
2'

It may also easily be shown, that the arc of a great circle which
touches the spherical parabola, intercepted between the perpendi-
cular arcs let fall upon it from the foci, is in every position con-

stant, and equal to a quadrant*.
Hence the spherical parabola is the envelope of a quadrantal arc

of a great circle, which always has its extremities on two fixed great
circles of the sphere, the angle between the planes of these circles

being= + y.

If we take the spherical conic supplemental to the given sphe-
rical parabola, the foci of this latter are the extremities of the
minor principal arc of the former, and the cyclic arcs of the former
are tangents to the latter at the extremities of its major principal
arc.

Resuming the equations given in (59), which express the tan-

gents of the principal semiarcs of the spherical parabola in terms
of sin y, namely

,
1 sra.7'

,
sin yAs sin or = . ..--

'
-, and sin w' sin -or" =sin y. see (6). we must have

V 1 - cos
2

y sm
2

yu,

siniir"= Vl cos
2

y sin
2

p. Hence, as &'= FO, and w"=^ F'O,
2i 2

coa FO . cos FO' = sin y= cos FF : or the angle FOF' is a right angle. (Fig. 2.)
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writing i for cos 7, and j for sin 7, we get

whence

TT

Again, since 2e +y=-, sin2e=cos7=z,andcos2e=t/.

Now n=tan2
e, 7n=e2

: hence n=w=

(CO)

It is proper to remark that, in the case of the spherical parabola,
l j

i is not the modulus, but
^

-..

23.] We shall now proceed to the rectification of an arc of the

spherical parabola, the centre being the pole. By this method we
shall obtain certain geometrical results which have hitherto ap-

peared as mere analytical expressions. In (8) or (28) we found
for an arc of a spherical ellipse measured from the major principal

arc, the following expression, the centre being the pole,

>*.,;- of d(Pa.
"tan a J (1 e2 sin2

<p) \/l sin2 rj sin2
<p'

or, substituting the values of the constants given by the preceding
equations,

**
(61)

But when the focus is the pole, we found for the arc the following

expression in (58),

Equating these values of <?; we obtain the resulting equation,

. . (62)

24.] We shall now show that the amplitudes <p
and

/u,
in the pre-

ceding formula are connected by the equation

tan(<p /it) =j tan /*, (63)

a relation long ago established by Lagrange.
VOL. II. y
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Let r and -or' be the perpendicular arcs from the centre and focus

of the spherical parabola on a tangent arc to the curve. Let X

and
//,
be the angles which these perpendicular arcs make with the

major principal arc. The distance between the centre and focus of

the spherical parabola, with the complements of these perpen-

diculars, constitute the sides of a spherical triangle. We shall

therefore have

Now sec2 r=sec2 a cos2 X + sec2 /3 sin2 X, as in (35) j
or writing for

sec a, sec j3 their particular values in the spherical parabola, given

in (59) 2
sec2 -53-= = sin2 X (65)

1 sin 7
. tan 7 2 ,

tan2 7+ cos2 /* .

Again, as tan*r'=
^, CosV

reducing (64), the result is

2^ 2(1+ sin 7) , ,

tanX=
(cot /.-sinytan /u)

2

In the case of the spherical parabola,

C0s2 e_!^_^ whence (66) becomes

1+siny , tan/i + sinytan^
cosetanX= . ,

or cosetanX= = . (67)
cot p, sin7 tan p' 1 siny tan

//,.
tanp

The second member of this equation is manifestly the expression

for the tangent of the sum of two arcs
fj,

and v, if we make
tan v= sin y tan

/tt.

Hence cos e tan X=tan (/z+ v) .

In (25) ,
or (38) or (39) , we assumed tan

<p
= cos e tan X.

Hence <p=//,+ v, or tan
(<p /i)=tauv=sm7 tan /A.

A simple geometrical interpretation of Lagrange's theorem,
tan

(<p fj,}
= sin -jPtan fj,

may be given by the aid of the spherical parabola.
Let DR'B be the great circle, the base of the hemisphere, whose

pole is F (fig. 11). Let BQA be a spherical parabola, touching the

great circle at B, and having one of its foci at F the pole of the

hemisphere whose base is the circle DR'B. Let RQ, be an arc of a

great circle, a tangent to the curve at Q. From F let fall upon it

the perpendicular arc FR. The point R is in the great circle AR
which touches the curve at its vertex A (see note to p. 29) . The

pole of this circle is the second focus F'; for AF'=FB= -. Let

the arcs RF, RF make the angles fi and v with the transverse arc
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11

AM. Hence AR=v. In the spherical triangle FAR, right-angled
;it A, \\c IKIVI- sin AF= tan v

cot ft. Now, as AF= y, sin A F

r=siny=y; and if
<p
=

v=
tp ft, or, reducing,

tan (p /A) ==/ tan fj, ;

whence wr may infer that while

Me original amplitude is the

angle fj,
at the focus F, Me rfe-

rived amplitude <p
w Me sum

of the angles p and v at the

foci F and F', or the ampli-
tude

<p
is the sum of the arcs

of two great circles, touching
the spherical parabola at the

extremities of the principal

major arc of the curve, inter-

cepted between those points of contact and the perpendicular arc FR
let fallfrom the focus F on the tangent arc RQ to the curve.

Hence while the original amplitude p is equal to an arc of the

tangent circle at B, made by RF produced to meet this circle BR',
the derived amplitude <f>

is equal to the sum of two arcs of the tan-

gent circles drawn at A and B, and given by the same construction.

When the function is complete, or ^ -^,
R will coincide with

R' the pole of the great circle AB, whence v is also= -; and as

= 7r. This shows that when the function is complete,
or the amplitude is a right angle, the amplitude of the derived
function will be two right angles.
When the spherical parabola approximates to a great circle of

the sphere, the second focus F' will approach to F the immovable
focus. The arc RF' will .therefore approach to coincidence with
the arc RF, or the angle v will approximate to p, so that p=p + v

=
2fj, nearly.
This is the geometrical explanation of the analytical fact observed

in this theory, that when the modulus diminishes, or the spherical
parabola approximates to a great circle of the sphere, the ratio of

any two successive amplitudes approximates to that of two to one.
When the greater principal arc of the spherical parabola is a

right angle and a half, sin7=^, and, if C be its circumference,

C= -f TT. But two quadrants 2s, or the loop
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w

of a lemniscate, are= S%F-
/

/

i~
"' HenC6 25=C~ 7r '

Or the loop of a lemniscate is equal to the difference between the

circumference of the spherical parabola whose greater principal arc

is
-y,

and a semicircle.

When a quadrant of the spherical parabola is taken, or when the

point of contact Q coincides with the extremity of the principal
7T

minor arc of the curve, we shall have
<p
= y

Sinceinthis caseRQ=PQ,FV=FV; therefore A6=.OFV=OFV,
or RF'V=/i+ v. As V is the pole of RP, and F is the pole

of AR, the point R is the pole ,,. ,

of VF. Hence RFV is a

right angle ; but /*+ v=RF'V,

whence
<p
=

o- As

tan(<p /u.) j tan p,

when 0=77, tan /*= -r-. If
z VJ

in the expression

;'
tan u,

tanr= .

J
.

r==

given in (58), we substitute

this value oftan ft, we shall get
7T

tanr=l, or r=--
4

Since FVF' (fig. 12) is an isosceles spherical triangle, and

cosFF= cos2e=/, and tan2FFV=tan2
/* =i, cos FF tan2FFV= 1,

or the angle V is a right angle, or PR is a quadrant.
As two quadrants of a spherical parabola are together double of

one, we shall have, writing the integral I
^

in the

J vl 2 sin2 /A

abbreviated form I %=,
J VI

7T
- or

r
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Now, when i is nearly 1,1 -^=
= 1- - = log (sec/u, + tan /*).

Taking this expression between the limits /u.=0, and^fc=tan~'(-j ,

\r /

we shall have, since sin /*= ,
-

.,
cos u= .-, and neglecting

Vl+j Vl+j
j and its powers when added to l,j being very small,

2 f *?y d/a / 2 \
=-=, whence I -r^= lg( 7=l-

v> Jo VI V vj/
w

Therefore (68) gives f
2

^?? =log(^)*....... (69)
Jo VI V'

25.] To show that

ffy
1

vra^-i+

the amplitudes <p
and

/u, being connected as before, by the equation

tan(<p /*) =;' tan/A. Since, as in 67,

1 + sin 7
tanp= - = - /---,

cot
fji

sin 7 tan /M cot
/it ^ tan /*

differentiating this expression with respect to
<p
and /A,

1+^ d^=cosV+^sinV^
sin8 ^ d/x, cos2 /^ sin

2
/L6

* '

tan* f= (l+
(co

Whence, after some reductions,

We have also tan* f= . {7
(cos

2
/A 7 sin2 /A)

2

(7

I_A 2

Multiplying this expression by ^
-.} , and reducing,

Multiplying together the left-hand membei*s of the equations (70),

* ...... "
resultat fort remarquable, d^j4 signal^ par Legendre ;

mais nous

ignorons comment il y est parvenu.' VEHHULST, Traitt Eltmentaire dcs Fonctions

EUipfiqncs, p. 168.
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(72) and (73), and also the right-hand members together, we shall

get, after some obvious reductions, and integrating,

This is the well-known relation between two elliptic integrals of

17
the first order whose moduli are i and -., or, in the common

.1
l ~ b

notation, whose moduli are c and
^

,.

;' tan a
26.1 Let r be the arc whose tangent is r"

. .-.,'
V 1 1

2 sm2
/A

then tan2T=
sn ^ c s ^ ~ an

. . . (75)
cos4

fji
i* sin4

fj,

and combining (71) and (73), we shall find

^ (1 +j) sin /A cos //, V 1 i* sin2
,

'\2 . cos4
/!. y

2 sin4
fj,

Dividing (75) by (76), the result becomes

2;'

tan2r= .
... (77)

We are thus enabled to express T, the portion of the tangent arc

between the point of contact and the foot of the perpendicular arc

on it from the focus, in terms of
<p
instead of /A.

If we introduce this value of T into (62) and combine with it the

relations established in (74), the resulting equation will become

r /i ,*\ -i /
1 i

J \
'

2
tr, 1 \



ON THE GEOMETRICAL PROPERTIES OF ELLIPTIC INTEGRALS. 39

Adopting for the moment the ordinary notation of elliptic integrals,

I/ 2;m= c= , -.. whence 1 + c= =-^-.
1 +J 1 +J

Introducing this notation, the last formula will become

. . (79)

In the '
Traite des Fonctions Elliptiques/ torn. i. p. 68, we meet

with the formula

v 1

Now, when rc= c, this formula becomes

c)tany

(80)

(81)

whence (79) and (80) are identical.

27.] Let us now proceed to rectify the spherical parabola by the
formula for rectification given in (47), the centre being the pole.
For this purpose, resuming the formula for rectification established
in (41), and deducing the values of the parameter, modulus, and
coefficients in that expression from the given relations,

(82)

we get

1 sin 7 1 j L sin 7 1 j

The parameter, tan2 e=

The modulus,

The coefficient -.
sm a cos a l+j

The coefficient
cosacos/3= J-L/

sin a 1 +j
l-j

sin 77
= :

cos/3 2

and etane=

i . (83)

Making these substitutionsm (41), the resulting equation will become

n - (84)
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But from (58), the focus being the pole, we derive

(88)

In (74) we showed that

Introducing this relation into the last formula, and equating

together the equivalent expressions for the arcs in (84) and (85),

we get for the resulting equation,

..(86)

We shall now proceed to show that the common formula for the

comparison of elliptic integrals having the same modulus and am-

plitude but reciprocal parameters is, in this particular case, identical

with the geometrical theorem just established.

The formula is, in the ordinary notation,

. . (87)

We must accordingly show that, c being tan2 e, and therefore

-. I sm
<p
cos

<p

tan~
+tan2

e)tan<p

(88)

If we write T, T', and 3 for these angles respectively, we have to
show that

: *
(89)
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r-f- r
1

is the arc of the great circle, which touches the spherical

parabola, intercepted between the perpendicular arcs let fall from
the centre and focus upon it.

We must, in the first place, by the help of Lagrange's equation
between the amplitudes, established on geometrical principles in

sec. [24] , reduce these angles to a single variable,
fju

is taken as

the independent variable instead of <p, as the trigonometrical func-

tion of
<p

in terms of fi is in the first power only.
We have, therefore,

,vl

The equation between the amplitudes <p
and /

tan (p n] j tan
/-t, gives

cos2 /A ^ sm-'/A

Eliminating p by the help of this equation, from the value of tan t

given in the preceding group,

(1 7) sin LL cos u, cos2 u,+ j sin2 u,
tanr= ,L ^= x 9

J
. . 9 ~.v 1 i

2 sin2
fj,

cos2 /* j sm
2

/u,

Using this transformation and reducing,

tan (T+ T7

)
= tan /AV 1 i

2 sinV, .... (92^

a simple expression for the length of the tangent arc to the spherical

parabola between the perpendicular arcs let fall from the centre and
focus upon it.

From the last equation we may derive
'

2
^

(93
cos p, j- sn ^

Using the preceding transformations, we may show that

cosA^l ""** 8^n2 /*

cos4
/!* y

2 sin4 /A

Hence d=2(T + r'). .......... (94)
VOL. II. O
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Therefore (86) becomes

(95)

We have thus shown that in the particular case of the general
formula for comparing elliptic functions of the third order with

reciprocal parameters, when the parameter is positive and equal to

the modulus, the circular arc in the formula of comparison (87) is

equal to twice the arc of the great circle touching the curve and

intercepted between the perpendicular arcs let fall from the centre

and focus upon it.

If we take the parameter with a negative sign, the circular arc r
in (62) will represent the tangent arc between the point of contact

and the foot of the focal perpendicular.
The spherical parabola, like any other spherical ellipse, may be

considered as the intersection of an elliptic cylinder with a sphere
whose centre is on the axis of the cylinder.

Let a and b be the semiaxcs of the base of the cylinder, and k

the radius of the sphere, a and /3 being the principal semiarcs of

the spherical parabola,

but in (59*) we found tan2 a tan2
/3
=

!

shall have, i being the eccentricity of

cylinder,
*2= s(l+i). t ^ }

28.] The foregoing investiga-
tions furnish us with the geome-
trical interpretation of the trans-

formations of Lagrange. Let the
successive amplitudes <p, -fy, % of

the derived functions be con-
nected by the equations

tan
(<p fi) =j tan

//,,
>

tan(^r <p)==/,tan<p,

tan (x ^r) =ju tan ty,

&c., &c.,

We may imagine a series of con-
focal parabolas having a common

; hence, substituting, we
the base of the elliptic

(96)
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axis, described on a plane in contact with a sphere at their common
focus. These parabolas will generate a series of confocal spherical

parabolas on the surface of the sphere, BCA, BC'A', BC"A", BC'"A'",
which will all mutually touch at the vertex B remote from the

common focus F. Let the distances between the common focus F
and the vertices of the plane parabolas subtend, at the centre of the

sphere, angles 7, /, 7", &c., whose cosines i, i
t ,

i
lt ,
&c. are connected

by the equations

l_-v/fZ]2 i_^/iZT l-i/fTTa
t.=--

,
z..=--- '., z,,,=-,

- "
. . . &c., (yoj

nvi=? i + si-i*' 1-^i+y
it is plain that y= FA, /=FA', /= FA", 7"'

= FA'", &c.

We may repeat this construction successively, until the parameter
of the last of the applied tangent plane parabolas shall become so

indefinitely small, compared with the radius of the sphere, that it

may ultimately be taken to coincide with its projection. We shall

in this way reduce, at least geometrically, the calculation of an

elliptic integral of the first order to the rectification of an arc of a

parabola that is, to a logarithm, as in sec. [20] . If, on the con-

trary, the moduli i, i,,
i
tl ,

&c. proceed in a descending series, the

angles y, y t, ylt continually increase, the magnitudes of the con-

focal applied parabolas increase, till at length their parameters
become so large, compared with the radius of the sphere, that their

central projections pass into great circles of the sphere. The eva-

luation of the elliptic integral will therefore ultimately be reduced
to the rectification of a circular arc. These are the well-known
results of the modular transformation of Lagrange.
The formula established in (58) for the rectification of the sphe-

rical parabola, gives

_
v 1 cos2 7 sin2

/z,
L v 1 cos2 7sin

or, writing i for cosy,,/ for'sin 7, and VTfor ^1 i
2 sin2

<7 T=

cr' and T' being the corresponding quantities for the next derived

spherical parabola,

Now,>4 and=T}.

v
M in (98) and (74) ,

whence 2(<7 T)
= v//(a

'~ T
')
...... (99)
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Thus a simple ratio exists between the arcs, diminished by the

protangents, of two consecutive confocal spherical parabolas.
TT

When the functions are complete, //.
is taken between and

-^ ;
it

<p therefore, as in sec. [24], must be taken between and TT; but

when the amplitude is taken between and TT the function is

doubled. Moreover, when the functions are complete, the point
Q coincides with B

;
so that in this case the complete function

represents not one, but two quadrants of the spherical parabola,
*7T"

the focus being the pole. Hence as T=
-^,

T^TT. It must be re-
&

membered that <r denotes two quadrants of the spherical parabola
as shown in sec. [24] .

Whence putting C, C', C", C'", &c. for the circumferences of the

successive confocal spherical parabolas, derived by the preceding
law, we may write

C -w=s V; (C, -TT)
^

C, -"=>; (C,,-9T)

TT

Multiplying successively by the square roots of j, j,, jn , jni, &c.,

adding, and stopping at the fifth derived parabola,

C -TT= jjJuJMJn &c. (Cy-*r).

Let this coefficient be vTf and we shall have

C 7T=VJ (CV -7T)....... (101)

Now we may extend this series, until the last of the derived

spherical parabolas shall differ as little as we please from a great
cirale of the sphere. Let the circumference of this last derived

spherical parabola be Cv . Then Cv =27r, and (101) becomes

C=7T(1+^J)........ (102)

Hence, calculating the quantity J, we may express the circum-
ference of a spherical parabola by the circumference of a circle.

When all the spherical parabolas are nearly great circles of the

sphere, i, i,, i,,, w= 0, nearly; and jjjlf jH ju,= l t nearly. Whence
J=l, nearly; or

C= 27T..... ... (103)

When the spherical parabolas are indefinitely diminished,

^ i
*//
= l> nearly, andj,jt,jtl,jtll

= Q, nearly, therefore J= nearly;

or C= TT......... (104)
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Hence the circumferences of all spherical parabolas are greater
tl 1:111 two and less than four quadrants of a great circle of the

sphere.

XM).] Denoting the angles at the centre of the sphere, subtended

by the halves of the semiparameters of the applied confocal para-
bolus, by 7, y, y", &c., we shall have cos 7= ?, cos y =ij, cosy'= iw,

cos /'= i
ul , and sin 7 =;' ,

sin y ==;'
sin y '

=j,,, sin y" ==;,. We may,

using successively the equation i,= _H _i, determine in terms
1 + ^1 i

2

of / the successive values of i., i,,, i,,,, and of;., /,,. ;',.,. &c., as follows :
/ I' II' III'' */ l' V tl'*' III' *

i*T . .-rfl3t^T-

-=
[ ^

=

I . (105)

Hence we may derive the successive values of jpju,jllt
in terms

For

o,-

(106)

We may express the coefficient J, or the continued product of

J>Ji>Jii>Jm> &c -> in terms ofy> tne complement of the original mo-
dulus. Including in our approximation the fifth derived modulus,
we get

(2)i . (2)'+* . (2)'+*+* . (2)
(107)

As an elliptic integral of the first order may be multiplied, or
divided into any number of equal parts, as shown in every treatise

on this subject, so its representative, an arc of the spherical para-
bola, like that of the circle, may be multiplied, or divided into any
number of equal parts.

30.] It may not be out of place here to show, although the in-
\ cstigation more properly belongs to another part of the subject,
that the arc of a spherical parabola may be represented as the sum
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of two elliptic integrals of the third order, having imaginary para-
meters ; or in other words, that every elliptic integral of the first

order may be exhibited as the sum of two elliptic integrals of the

third order, having imaginary reciprocal parameters.

Parameters, whose product is equal to the square of the modulus,

may be called reciprocal parameters.
Assume the expression given in (58) for an arc of the spherical

parabola, the focus being the pole, and
/j,

the angle which the per-

pendicular arc from the focus, on the tangent arc of a great circle

to the curve, makes with the principal transverse arc,

Jdit
. f sin y tan p

..
r _ + tan-' .{-7-=

*/l-cos2
-ysinV (vi Cos2 y sin

Let cos 7=2, sin 7=7, and, to preserve uniformity in the notation,
write

<p
for p. Then differentiating the preceding equation, it

becomes after some reductions,

dor_ j[l P sin2
<P+ cos2

<p +J
2 sin2 <p]

'

dtp [cos
2

<p
i
z sin2

<p
cos2

<p +j* sin2
<p]

</ 1 i
s
sin*p'

Now the numerator is equivalent to 2/(l i
2 sin2

<p), and the first

factor of the denominator may be written in the form

1 2i2 sin2
<p + i

2 sin4
(p.

But i*=i2
(i*-t-j*)) hence this last expression may be put under the

form 1 2z2 sin2
<p + i

4 sin4
<p + i

2
/

2 sin4
<p.

This expression is the sum
of two squares. Resolving this sum into its constituent factors, we
get

___ b
(i-<;V-l)sin

2
(p]^l-z

2 sin2
<p'

Now this product may be resolved into the sum of two terms.
Let

do P

. i(i jvl) sin2
<p]

v 1 i
2 sin2

<p
J

or, reducing these expressions to a common denominator,

sn < 1-ii- 1 sin2

and comparing this expression with that given in (b), we shall see
that

=
2/, P-Q=0; therefore P=>, Q=/. . . (e)
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Integrating (c), we get

-
I)sin

d<p

(108)

_ 2
(j j v/_ l

)
sin2

<p]
v 1 i

2 sin2
<p

If we replace i by cos y, and j by sin y, the parameters become

cos 7 (cos 7+ ^ 1 sin 7) and cos 7 (cos 7 v' 1 sin y) , whose pro-
duct is cos2 y, the square of the modulus. They are therefore re-

ciprocal ;
and putting m for cos 7 (cos 7+ v' 1 sin y) and n for

cos y (cos y */ 1 sin 7) ,
we shall find that these values of m and n

satisfy the equation of circular conjugation, m n+ mn=i?. It

follows therefore that when the rectification of the spherical para-
bola is effected, the centre being the origin, the representative elliptic

integral is of the third order and circular form ;
the parameters m

and n are equal to each other, and to the modulus, and are therefore

reciprocal. But when the focus of the spherical parabola is as-

sumed as the origin, the rectification of this curve may be effected

by an elliptic integral of the first order, and this integral may also

be exhibited as an integral of the third order and circular form,
but with imaginary parameters, which are also reciprocal.

CHAPTER III.

ECTIONS WITH REC

X ?/

31.] Let -2+^=1 be the equation of an ellipse, the base of an

ON SPHERICAL CONIC SECTIONS WITH RECIPROCAL PARAMETERS.

X9

-2

elliptic cylinder. Let two spheres be described, having their centres

at the centre of this elliptic base, and intersecting the cylinder in

two spherical conic sections. These sections will have reciprocal

parameters, if k, H, the radii of the spheres, are connected by the

equation

(*
2- 2

)(*,
2-a2

)=a
4
*
2

, ..... (109)

a2 62
i
2
being, as before, equal to --^ .

When k and k
t
are equal, we get k 2= az (l + i). This value of k

agrees with that found for k in (96) ; or, in other words,when the two

spheres coincide, the section of the elliptic cylinder by the sphere is

a spherical parabola. Hence also, a spherical parabola always lies

between two spherical conic sections having reciprocal parameters.
Let e2 and e'

2 be the parameters of those sections of the cylinder
made by the spheres. Then, as shown in (9),

_ =
sin2 a cos2

~
a2

(/t

2-
fc
2
)

A2- a2 + a9? '
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but the equation of condition (109) gives

In the same manner the spherical conic whose radius is
k,' gives

e = , 2
: therefore e-ef

or e2 and ef are reciprocal parameters.

To compute in this case the value of the coefficient - sin

in the expression given in (10) for rectification,

_tan_/3
. C_dp

~~
tan a

Sm P
J [1

_ e2 sin2 <p]
V 1- i

2 sin2
<p'

Since

tan2 /3
.

we obtain by substitution,
t-^ sm ^=

but the equation of condition (109) gives

As this expression is symmetrical, we shall have for the spherical

conic section whose radius is k
t,

tan/3, . a W- n^^\-^sm^yj....... (Ill)
tan a

t kk,

tan/3 . tan/3, . . /no\
Hence -sm/3= - a MHftj .... (112)

tan a tan a
t

or the coefficients of the elliptic integrals which determine the arcs

of two spherical conic sections having reciprocal parameters are

equal.
Let K be the criterion of sphericity ; then, as

=*,......... (113)

32.] To determine the values of the angles \ and A/ which cor-

respond to the same angle <p
in the expressions for the arcs of sphe-

rical conic sections having reciprocal parameters.

cos2 a F-a2 kz -a2

Since cos* e= =-5
=

-5 ^= 75
-~~ ^o,cos2 /3 k2 62 A2 a2+ a2r



ON THE GEOMETRICAL PROPERTIES OF ELLIPTIC INTEGRALS. I'J

introducing the equation of condition
(

2 a2
) (k? a'

2
)=a

4
P,

we get cose=T; but tan
<p
= cose tan\, as in (39); hence

K
t

k k
tan X= -' tan

<p,
and tan X,

= - tan
<p ;

if CL

Fig. 14.

therefore k tanX=^ tanX
y , (114)

or the tangent of the angle X which the perpendicular arc from

the centre of the spherical conic, on the arc of a great circle

touching it, makes with the principal major arc, is inversely as

the radius of the sphere.
A simple geometrical construction

will give the magnitude of those

angles X and Xr Let the ellipse

OAB be the base of the cylinder ;

OCC', ODD' being the bases of the

hemisphereswhose intersections with

the cylinder give the spherical conic

sections with reciprocal parameters.
Erect the tangents DP, CQ, each

kk
equal to ' tan

<p,
and join PO, QO.

The angles AOP, AOQ are X and Xr
\\hen DP=CQ=0, X=X

y
= 0;

"

whenDP=CQ=ao,X=X,=. The condition (109) shows that

when k= a, y

= cc . Now as k, tanX,= a tanX is finite always so

*7T

long asXis not absolutely= ~> in order that its equal ^tanXy may
m

be finite also, we must have X
y always equal to for every finite

value of tan X.

33.] The tangent of the principal arc of a spherical parabola is

a mean proportional between the tangents of the principal arcs of
two spherical conies with reciprocal parameters, the three curves

being the sections of the same elliptic cylinder by three concentric

spheres.

Since

Introducing the equation of condition (A:

2 a2)(^
2 a2

)
= 4

t
2

(109), we get

tan a tan 0,= ......... (115)

VOL. n.
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Let k
n be the radius of the sphere whose intersection with the

cylinder gives the spherical parabola; then
y/

2=a2
(l+). See

(96).-

Hence 2-a*=a2 and tan2 ^=-2^2
=

tan a tan a^tan
2 a

lt
. (116)

15.

therefore

The altitudes of the vertices

of the three principal major
arcs of the two spherical
conies with reciprocal para-

meters, and of the spherical

parabola, above the plane of
the elliptic base ofthe cylinder,

are in geometrical progres-
sion. Let AQ, be the alti-

tude of the vertex of the

major arc of the spherical

parabola ; AP, AR the corresponding altitudes of the vertices of the

major arcs of the spherical ellipseswhich have reciprocal parameters.

Then AP= Vk* a2
, AR= V^/

2 a*> AQ,= \/k
tf a/

t=a \/i.

The equation of condition gives, as in (109), APx AR=AQ2
.

We shall give, further on, an expression for the sum of the arcs

of two spherical conic sections having the same amplitude, but re-

ciprocal parameters.

34.] The projections of supplemental spherical ellipses on the

plane of XY are confocal plane ellipses.

For sin ?7=sin e', sin 7/=sin e. See sec. [9] .

Hence a*-b*_a*-b* a?-bf_a*-

This gives as the resulting value,

or

Two cones, supplemental to each other, are cut by a plane at

right angles to their common internal axis. The sections are con-

centric similar ellipses, having the major and the minor axes of

the one coinciding with the minor and major axes of the other.

For
tan2

a-tan*_
tan2 a

9 tan2 a.~ tan2
/9, cot2 /3 cot2 a tan2a- tan2 /S

and
f, s -= -Tg^j- =

2
- -> oit'sse.

tan2 a
y

cot2 /3 tan2a
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CHAPTER IV.

ON THE LOGARITHMIC ELLIPSE.

35.] The logarithmic ellipse may be defined as the curve of

symmetrical intersection of a paraboloid of revolution with an

elliptic cylinder. This section of the cylinder by the paraboloid
is analogous to the section of the cone by the concentric sphere in

[7] ; for this cylinder may be viewed as a cone having: itssec.

vertex at the centre of the paraboloid, i. e. at an infinite distance.

Let the axes of the paraboloid and cylinder coincide with the

axis of Z, the vertex of the paraboloid being supposed to touch

the plane of XY at the origin O.

It may be proper to note that every tangent plane to the elliptic

cylinder will cut the paraboloid in a parabola, just as every tan-

gent plane to a cone will cut a concentric sphere in a great circle.

Let k be the semiparameter of the paraboloid Oab, and let a and b

be the semiaxes of the base of the elliptic cylinder ACB ;
then the

equations of these surfaces, and consequently of the curve in which

they intersect, are

(117)
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Let dS be an element of the required curve,

.... (118)

#, y, and 2- being dependent variables on a fourth independent
variable 0.

Assume
x= acos0, y= b sin 9, then o2 cos2 6 + 2 sin2 = 2fo. (119)

Differentiating and substituting,

(r\
a }

j*)
= a2 sin2 + &a cos2 +

(-
gr-

1- sin2 cos2 0. (120)

To reduce this expression to a form suited for integration, it may
be written,

/t
2 + (a

2 -62
)[F+ a2 -Z>2]sin

2
0-(a

2-62
)

2 sin4 0. (121)

This expression may be reduced as follows :

Let P= 62 #2/Q=(a2 -62
)[F + a2-&2

], R=-(a2 -62
)

2
; (122)

and the preceding equation will become

in4"0..... (123)

Let this trinomial be put under the form of a product of two

quadratic factors,

(A + B sin2 0) (C
- Bsin2

0) =AC J- B (C
- A) sin2 -B2 sin4 0. (124)

Comparing this expression with the preceding in (121), we get

AC=62 *2, C-A=/t2+ a2 -62
,
B = a?- a

. . . (125)

To integrate (123) : assume tan2
<p
=~ ?tan2

0. . . (126)
J\.

The limits of integration of the complete functions will continue

as before. Making the substitutions indicated by the preceding
transformations, the integral will now become

. (127)

.... (128)
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These values of A, B, C satisfy the equation m + n mw= i
2
, as

assumed in (1). As A;
2=C A B, C>A + B, or n>m, the pre-

ceding expression may now be written

It will presently be shown that A and C must always have the

same sign, whence i^>n.

'+B
As i

2= ---, and as C is always greater than B, i
2 <l. From

1 + B
(125) we may derive

B) AC
k*~ (C-A-B) 2 '

A2-(C-A-B) 2

Now, that the values of a and b may be real, we must have OB,
while A and C must be of the same sign ;

but as B is essentially

positive, C, and therefore A, must be positive.

B , A+ C i
2

Since -T T5 =n> an" n =~> as m (1^8),
A. ~p -U \*j 71

we may eliminate A, B, C from the values of the semiaxes of the

base of the elliptic cylinder, and express a, b, and k in terms of

i and n. We may thus obtain

a2_ n(Ij^Kf^- n) b^ _n(^-n)(l-n)
z

[2n=P=n*' k*~ [2w-i
2- 2

]
2 ;

or more simply in terms of n and m,

a?_mn(l m) 62 _mn(l n)

In order that these values of a and b may be real, we must have
n positive, i

2 > w, and 1 > i
2

.

This is case VI. in the Table, p. 7.

If we put c for the eccentricity of the plane elliptic base of the

cylinder, we shall have after some obvious reductions,

(!_;*) (I_ c2)=(l_ w)2 ,
or c2= . . . . (131)

Now this simple equation between n, m, and c enables us with

great ease to determine the eccentricity c of the base of the elliptic

cylinder whose section with the paraboloid gives the logarithmic

ellipse, when we know the parameters m and n, or the modulus i,

of the given elliptic integral.
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36.] To integrate the expression given in (127), we must assume

_sin<p cos<p
f! 9^T

- .....
[1 ft sm2

<p]

Differentiate this expression with respect to
<p,

and we shall have

<M>
n_l 2(l+i

2
)
sin2

<p+ 3i2sm4
<p 2rc(sin

2
(p

sin4
tp) (1 t* sin2

(p)

d<p

"

[1 wsin2
<p] Vl z'

2 sin2
<p [1 wsin2

<p]
2 Vl ^sin2

<p

Let 1 w sin2
<p
= N, 1 i2 sin2 <p=I, as before.

Separating the numerators of the preceding expression into their

component parts, and attaching to each their respective denomi-

nators, we shall have

1 1

and

2(l+i
2
)sin

2
(p_2(l+i

2
) (l-nsin

2
(p l)_2(l+i

g
)

The next term gives

3^2 sin4
(p__ 3J

2
(1 rcsin2

<p I)sin
2
<p_ 3z2 sin2

cp 3^sin2
<p

NVI
= ""

NVI
""

VI nNVl'
'

Now these two terms may be still further resolved
;
for

3z2 sin2(p_3 (l-^
2 sin2tp-l) _3 VI 3

n VI

3z2 (1 wsin2<p-
-i-

'

VI n2 NVI w2 Vl aN VI'

whence (d) becomes

3s'
2 sin4

<p 3s/ 3 3i2 Si8 " * 'NI n n Vlw2 Vl w2N VI

Combining the expressions in (b), (c), (d) or (e), the first term of
the second member of

(a) may be written

[1-2 (1 + 2
2
) sin2

<p + 3P sin4 (p] 3 V
[1 w sin2

(p] Vl z'

2 sin2^ n
> ()
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nn 2n(sin
2
<p

sin4
<p) VI e i \Lhe second term,

-
. 9 \'9

--
, of (a) may be thus dc-

(1 wsm2
<p)

2

velopi'd,

VI__ 2rca-ft8in2(p-l) Vl_ 21 21

N2 N2
NV"l

+
N*~Vi

;

and these two latter expressions may be written

21 2l-i2 sin2 < 2_
N Vl~ N VI N VI

~ ~

N VI

_2J
2
J_ 2fl 2

"
n VI w N VI N VI

(g) becomes

N2 wv/I

2w sin4 <pl
1 he term -- _ may be written

2ralsin4 (p_ 21 fl 2/tsin2(p4-^
2sm4

(p
2 -I- 2nsin2<p+ 1"]'

N2 VI "l"L N2 V^
.. (k)

21 41 21
+

. \/Iw.N VI w.N2 \/T

21 2

41 4(1 -i
2 sin2 y) 4

4J
2
(l-nsin

2
<p-l)

wN VI" wN VI ~wN VI
4

w2

41 4i2 . (i*=

Combining (k) with (m), we shall have

2rclsm4(p_2 VI 4i2 4
2_ 1 21

2 ;N2 VI w2 VI N VI N2 VI

adding (n) to (h),

2w(sin
?
<p

sin4 <p)I 2 VI /4i
2 2i2\ 1

>X n / yi
i - (P)
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adding () and (p) together, we shall obtain as the final result,

or multiplying by n, putting for i* its value n +m-mn, transposing

and integrating,

. .
- (r)

(l-)
"

But we have shown in (129) that
"

Id<p

N2 VI
whence

2(nm) v

v mn k J

\
. . (133)

+ n_n)(^+ (
n-m^ l - nlC d(

?-*! N VI,
Hence an arc of a logarithmic ellipse may be expressed by a

straight line k<&n ,
and in terms of elliptic integrals of the first,

second, and third orders, the latter being of the logarithmic form.

The expression j
- may be reduced to

PC dip _ fl_ xf d<p

^JN VI n
"

W)JN2 VI
J

and therefore combining this expression with (r) ,

1- (134)
m

37.] When the elliptic cylinder and the paraboloid are given, we

may determine the parameter, modulus, and constants of the func-

tions which represent the curve of intersection of these surfaces, in

the terms of the constants a, b, and k.

The modulus, parameter, coefficients, and criterion of sphericity

may be expressed as linear products of constants haying simple
relations with those of the given surfaces.
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Resuming the equations given in (125),

. (135)

we find
(
A+ C)

2=
(

2 + a2- A2 )
2 +

Assume 4/>*=F +( + )*, 40
8=

we sliall then have the following equations :

C=A=(b+p-q)(b+ q-

-a
-b

Substituting these values in (129) ,
AVC obtain as the resulting expres-

sions

.

2
4 (a -f b) (ab)pq

~(p + q + b)(p+ q-bj(a+p-q)(a + q-p)

<a}(b+p q}(b +qp} [ Q37)

n= (a+ b}(a-b}

(a+pq}(a+ qp)'
These values of m, n, and i

2
satisfy the second equation of condition

in (1),

m+ n wm= i
2

;

and if we denote by K the criterion of sphericity,

p + q aV
1 i I ) ' (J-Oo)

p-\-q b/

we may express the parameters and modulus of the elliptic integral
of the third order and

logarithmic form by a Fig. 17.

geometrical construction c

of remarkable simplicity
when the intersecting
surfaces are given, or

when a, b, and k are

given.
Take BA=, BD= 6,

and from O the point of

bisection of AD, erect

k B^9L

the perpendicularOC= -.
A

Then (135) gives ;?
= BC, q AC; and putting P and Q, for the angles

BAG and ABC, a + b=2p cosQ, a 6= 20 cos P. As p, q, b are the
VOL. II. 1
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sides of the triangle BCD, and the angle BCD=P Q,

<P-QN

008

Again, as a, p, q are the sides o the triangle ABC,

Substituting these values in (137), we get

cos P cos Q cos P cos Q,

\ 2 J

2 /P-Q\'
*(-?-)

_ 2 [cos P cos Q] * , ._cosQ,cosP
I

-
7^. T

cos Q+ cos P ;=-^ ~
cos Q, + cos P

and if c be the eccentricity of the elliptic base of the cylinder,

sm2P.sin2Q
"

sin(P+Qr
These. are expressions remarkable for their simplicity.
We also find for the criterion of sphericity tc,

(

P
-i-

Q
)

~
sin1

/P+Q\

k.

COS
]
COS

L_ \ 6 / 2

(140)

(141)

As is the altitude of a triangle whose sides are a, p} q.

38.] In the preceding investi-

gations, the element of the curve

has been taken as a side of a

limiting rectilinear polygon in-

scribed within it. We may how-
ever effect the rectification of the

curve, starting from other ele-

mentary principles. Let APB be

the plane base of the elliptic cy-

linder, and let a series of normal

planes PPW wtn-W be drawn to

the cylinder, indefinitely near to

each other, and parallel to its

axis. We may conceive of every
element P-cr of this plane ellipse

between the normal planes as the

projection of the corresponding
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element s-vr
1 of the logarithmic ellipse. Let r be the inclination of

the element dS of the logarithmic ellipse to the corresponding
element ds of the plane ellipse. We shall have, dX being the ele-

mentary angle between the planes PPW and crsrVv',

..... (142)

(1# Q /?

Now (31) gives dx=^ +^>
c P rd2

and therefore 2 = 1 -^ d\+ 1 ~-a sec r . dX. (143)
J cos T J dX2

In the plane ellipse p
<2=a* cos2 X+ i2 sin2 X, whence

d*p= (a
9-

b*} (a
2 cos4 X - 62 sin4 X)

dX2
~

a
"~

We have now to express cos T in terms of X.

From (119) combined with (120) we may derive

~
d#2 + dt/

2 A2 (a
2 sin2 6+ b cos2 9)

7/ fj^> fj if
A

Eliminating
- between the equations tanX=^ -, and -= tan 6,X U X X U

we shall have
a,

taiiX= , tan 0.
o

If we eliminate tan 6 by the help of this equation from (145), we
shall obtain

_~ __
aa-62

) [o
2-6 2- /^

]

sin* X ^(

Substituting this value of COST in (143), and writing P', Q!, R' for

the coefficients of powers of sin X, the resulting equation
become

*2= fdXJ

(a
2 b*}(

dM 2 cos4X-&2 sin4 X) >'
' '

'

J k (a
2 cos2 X+ 6* sin2 X) cos rj

As the first of these integrals is precisely similar in form to the

integral in (123), we may in the same manner reduce the expression
into factors. Accordingly let

F -f Q' sin 2 X+ R' siu4 X= (a + /3 sin
2
\) (y

-
|8 sin- X) . . (149)



60 ON THE GEOMETRICAL PROPERTIES OF ELLIPTIC INTEGRALS.

Writing a, /3, y instead of A, B, C, and following step by step the

investigation in sec. [35], we shall have, as in (126) and (128), -/r,

m, and i
{ being the amplitude, parameter and modulus,

As 7=a2
F, /3=a

2 i2,
and 7-=a2 -i2-F, . (151)

we shall have the following relations between the constants , 6, y,

m, i
t,
and A, B, C, w, i, in (150) and (128),

/3
= B, = C-B, y=

y-/3=A, + /3
= C, y

C) .a
.

' ? *

. (152)

/3 B=
&*, or

y=z, t=
fl
=

r>-

Hence the moduli are the same in the two forms of integration,
and the parameters m and n will be found to be connected by the

equation m+n-mn= i* ; (153)

m and n are therefore conjugate parameters, as they fulfil the con-

dition assumed in (1).

The amplitudes <p
and

x/r
are equal; for in (126) we assumed

J,
and in (150) tan2 '^^- tan2 X; but

.

tan X=7 tan 6, as in (146), whence tan2 -^=73- tan2
<p.o u (A.+ JjJa

In (152) we have found + /3
= C, and A+ B=7, whence

tan2 f=^5
~ tan2

<p.
But AC=W, and 7=a2

/t
2
,

as shown in (125) and (151), whence

^=<p......... (154)

We shall now proceed to find the value of the second integral
in (148).
From (147) we may derive

Differentiating this expression, reducing, dividing by cos r, and

integrating, we shall finally obtain

f. dX(tf ea'

J cos T a2 cos2cos2 X+ 42 sin3 X)i

.
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(148) may now be written

A2=fd\ VI* + Gt' sin2 X+ R
J

-*2 --.
COS3 T

(157)

If we measure the arc of the logarithmic ellipse from the minor

principal axis, or from the parabolic arc which is projected into b,

instead of placing the origin at the vertex of the major axis as in

(119), we must put

and following the steps indicated in that article, we shall obtain

. . (159)VI" -f Q! sin2 S+ R'^sm
1^. . .

If we now make S=\, and subtract the two latter equations one
from the other, the resulting equation will be

COST (160)

Fig. 19.

But this integral is, we know, the expression for an arc of a
common parabola whose semiparameter is k, measured from the

vertex of the curve to a point on it where its tangent makes the

angle r with the ordinate.

Thus the difference between two elliptic arcs measured from the

vertices of the curve, which in the plane ellipse may, as we know,
be expressed by a straight line, and in the spherical ellipse by an
arc of a circle (as shown in sec. [15]), will in the logarithmic ellipse
be expressed by an arc of a parabola. As a parabolic arc can be
rectified only by a logarithm, we may hence see the propriety of

the term logarithmic, by which this function is designated.
39. If from the vertex A of a

paraboloid, an arc of a parabola be

drawn, at right angles to a parabolic
section of the paraboloid, it will meet
this parabolic section at its vertex.

Let the arc AQ be drawn at right

angles to the parabolic section Qv
of the paraboloid, the point Q is the
vertex of the parabola Qy.
Draw QT and Q/ tangents to the

arcs QA and Qv. Then QT and Qt
are at right angles, since the arcs

AQ, Q.V are at right angles. As QT
is a tangent to a principal section

passing through the axis of the para-
boloid, it will meet this axis in a

point T ; and as QMs a tangent to
the surface of the paraboloid, it will

be perpendicular to QN the normal to the surface. Now as Q.t is per-
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pendicular to Q,T and to Q,N, it is perpendicular to the plane QTN
which passes through them, and therefore to every line in this

plane, and therefore to the axis AN, or to any line parallel to it,

as the diameter Q,n. Hence, as the tangent Qt to the parabola Q,v

is perpendicular to the diameter Q,n, Q is the vertex of the para-
bola.

Hence, in the logarithmic ellipse, one extremity of the protangent
arc is always the vertex of the parabola which touches the loga-
rithmic ellipse at its other extremity.

This is a very important theorem, as the protangents are arcs of

equal parabolas, all measured from the vertices of the parabolas.
Hence also the length of the protangent arc depends solely on its

normal angle.
As an arc of a circle may be expressed by the notation

5=sin~ 1

(|), y being the ordinate and k the radius, so in like

manner an arc of a parabola may be designated by the form

s= tan~M|), y being the ordinate, and k the semiparameter. To
\/C -

distinguish the parabolic arc from the circular arc, the former may

be written s==rav~ } (-,} . Again, as we say, in the case of the

circle, the angle and the arc kco, co being the angle contained

between the normals to the curve at the extremities of the arc, so

in the parabola, we may write &> for the angle between the normals,
and (Ar.t) for the corresponding parabolic arc. In the case of the

parabola the arc is always supposed to be measured from the vertex ;

in the circle the arc may be measured from any point, as every point
is a vertex.

40.] Resuming the equation (157),

*2-fdX V?' + Q! sin2 X+ R' sin4 X- A2

J

we shall now proceed to develop the first integral of the second
side of this equation. As the integral is precisely the same in form
as (123), and the amplitude ^=<p, as also the modulus i

t
=i} we

may substitute
, /3, y for A, B, C, m for n, 3>m for <>, retaining

the modulus and amplitude, which continue unchanged, as we have
established in (152) and (154) ; or substituting for a, /3, 7 their

values in m and i, we get

d<p

m
. ri-msin2

! Vl-i2 sin2

m v/1 i
2 sin2

<p
J Vz(i

a
m)(l m]
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I f \\ ( eliminate i from the coefficients of this equation, putting M for

( 1 m sin2
<p) ,

and N for (1 wsin2
<p), as also VI for Vl J

2 sin2
<p,

(133) may be written

2(-m)S_ . (l-itU-i)f d? 1

~^S~*~
w

JNVI
. (162)

and (161) will be transformed into

(1 m}(n m) C dtp

m

\C&? (d /f
2(^~m ) r d7

J VI V J cos'

dr

J VI J \>n jc s"r
j

If we compare together (162) and (163), which are expressions
for the same arc of the logarithmic ellipse, and make the obvious

reductions, putting for <!> and <, their values g]
n(P costp y an(j

, we shall get the following as the resulting equation

of comparison,

d<p

/IN Vi V m /JM Vi
)" (164)

i
2
Td<p 2 C dr sintpcosp VI

~"~
/ r
^^

/
---

WU VI V^WjCOS
a T

From (155) we may deduce

sinT= ^~"r r.
(165 ^

we shall therefore have

tan r sec T== V^sinjpcosp^ (166)MN
It may easily be shown that tan T sec T represents the portion of a

tangent to a parabola intercepted between the point of contact and
the perpendicular from the focus.

C dr C dr
Hence tanTsecT=2l

. 1 (167)
J cos3 T J cos T
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Combining (164), (166) and (167), and using the ordinary notation

of elliptic integrals,

dr

cos T

d sin T _J_f_dT__
1 sin2 T' v0*nj cos r

f
d

|~
\Jrnn sin

<p
cos

<p~|
,

1 I d L v/I z
2 sin2 (p

-I

^ sin
<P
cos

<P~]

2

^2 sm2
> J

we have therefore

rd
T Vm^sin^costpl^

I
. (169)

dtpL v/l-^sin2^ -I

~ rnn sn
<p
cos <

;

This is the expression given by LEGENDRE, Traite des Fonctions

Elliptiques, torn. i. p. 68. Written in the notation adopted in this

paper, the formula would be

_ ,

VI
f

41.] We may express a and b, the semiaxes of the elliptic base

of the cylinder, in terms of m and n, the conjugate parameters of

the elliptic integrals in the preceding equations. From the equa-
tion of conditionm+nmn= i'

2
,
and the expressions given in (130),

we may eliminate i
2
, and obtain

a?_mn(I m) b<2_mn(\n)~ ' ' ' '

Therefore -=
a

ri

(l m) m 1 m

Hence the ratio of the axes of the elliptic base of the cylinder is a

function of the modulus and parameter.
The ratio of the corresponding quantities in the case of the

spherical ellipse may be derived from the equation

or -= VI -**=.;.
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This ratio is therefore independent of the parameter. There is,

then, an important difference in the two cases. In the one case,
the ratio of the axes is independent of the parameter, and will con-
tinue invariable while the parameter passes through every stage
of magnitude. But in the logarithmic ellipse the vertical cylinder
will change its base with the change of the parameter. We shall

see the importance of this remark presently.

These ratios are :

In the sphere, -=j; in the paraboloid, -=
jj

. . . (172)

42.] Resuming equation (157) and developing it by a process
similar to that applied to (127), we get

= ?? I L* ' "*" TJ"T _J.| "'
(173)

Now (151) and (152) give

m
,

__
Making these substitutions, we get

>=a C [l-i*sinWf ,C AT

J [1 wasin2
<p]

2 Vl i
2
sin*<p J cos3 r'

Now let m=0, then (165) gives r=0, and we shall have

x? C i / T *o o

2,=J dip v I t* sm2
<p.

This is the common expression for the rectification of a plane

ellipse whose greater semiaxis is a, and eccentricity i. This is

case IV. of the Table, p. 7.'

We cannot arrive at this limiting expression by making e'
2=m=Q

in (53) ; for this supposition would render z=0, which, throughout
these investigations, is assumed to be invariable.

43.] If, as in the case of the spherical parabola, we makew=m,
or n=l v/1 i

z
> the values of r and y become infinite. What,

then, is the meaning of the elliptic integral of the logarithmic
form of the third order when n=m, or n=l \/l i

2 ? In the

I/
circular form of the third order, when m= n, w= r -., and the

spherical ellipse becomes the spherical parabola, which, as we
know, may be rectified by an elliptic integral of the first order.

VOL. n. K
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Not only do the ratios -r, -r become infinite, but they become
K K

1.1 1 n
equal: for -==- = 1 when m= n. What, then, does the in-

a2 1 m
tegral in this case signify ? It does not become imaginary or change
its species.

Resuming the equation established in (133),

If we now introduce the relation given in (130)

a_ \in(i*ri) (1 i*)

~k~ Zn-P-ri*

we shall have by substitution

Vl-n a

If we now suppose m= n, or n=l
the last equation will become

. . (176)

In this case ^= ........ <177)

This is the expression for the length of an arc of a logarithmic

ellipse, the intersection of a cylinder, now become circular, with a

paraboloid whose semiparameter k= Q; therefore, the dimensions
of the paraboloid being indefinitely diminished in magnitude, this

intersection of a finite circular cylinder by a paraboloid indefinitely
attenuated must take place at an infinite altitude. We naturally
should suppose that the section of a cylinder which indefinitely

approaches in its limit to a circular cylinder by a paraboloid of

revolution, would be a circle
; yet the fact is not so. The inter-

section of these surfaces, instead of being a circle, is a logarithmic

ellipse, whose rectification may be. effected by an elliptic integral
of the second order, as we shall now proceed to show.
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In the first place let us conceive the paraboloid as of definite

magnitude, and the cylinder to be elliptical, its semiaxes as before

being a and b. Then, as a and b are the ordinates of a parabola,
at the points where the elliptic cylinder meets the paraboloid, at

its greatest and least distances from the axis of the surfaces, we
sha11 have * l * "

(178)

Hence a*-b*= 2k (Jz"). Let s? z" = h, then h is the thickness

or height of that portion of the cylinder within which the loga-
rithmic ellipse is contained.

, 1irl . . 2 12 k*mn . , kmn
Now (171) gives a2 o2= : therefore 2h=

n m nin,

k *Jmn(\ m) , a ^inn
and we have also a '-: hence A= 77

n m 2 y/1 m
Now when n vn, a=b, k=Q, while we get for h

= JL-^g*IL/' (179)

We thus arrive at this most remarkable result, that though the

cylinder changes from elliptic to circular, while the parameter of

the paraboloid approximates to its limiting value 0, yet the thick-

ness of the zone (that is, h) does not also indefinitely diminish, but

assumes the limiting value given above.

Now if we cut this circular cylinder, the radius of whose base

is a, by a plane making with the plane of the circular section, or

with the plane of XY, an angle whose tangent is ,
the semiaxes

Ot

| and 9$ of this plane section will manifestly be

n= a, and ft=Va*+/P or fc^=L. . . (180)
A \ i ~ 71

If we denote the eccentricity of this plane ellipse by i,,

n 1 Vl i
2

1 j TT 1
'/.= -;

= =- -.. Hence 7=; r. . (181)' 2-n i +A/i_i 1+^ 1+t,

It is shown by Legendre and other writers on this subject that,

if c and c, are two moduli connected by the equation
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and
<p
and i/r

two angles related as in (63), writing <p
for /i, so that

tan(i/r <p)=6tan<p, ...... (183)

we shall have

An independent demonstration of this theorem will be given in

sec. [44].

Now l + '.- ^-^ hence

c
- c

,

and, using the common notation for the present, (74) gives

6Fc(<p)
=-- F

e/ (ijr)
. Adding these equations, we get

lism^ . . . (185)

or, using the notation adopted in this work,

^Jdf ,/!, + !
sin ^r- [Jd<p Vl+j =0, . (186)

since n= 1 b= 1 7 .

Substituting the value of the first member of this equation in

(176), the resulting equation will be

sin
<p

cos
<p VI

2 J" '2 co88<p+/smY

Having put for <!> its value in this case, namely

- _sin<p cos
<p

\/I^ ~
<2^r~i 9 ->

cos
cp -\-j sin <p

we must now combine the last two members of this equation.

Adding, they become

-

n 'S sin ilr ^ : ; ^ r (1"8)
^ ( cos^

<p +^ sm^
^> j

From this expression we must eliminate the functions of
<p.

Now (73) gives ^1=-^^^^, (189)
V 1

writing <p
for /A,
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Substituting this value of ^l in the preceding expression, for

which we put t, we get

2sin<pcos<p
( }

From this equation we must eliminate sin<p, cos<p.
If we solve the preceding equation (189), we shall obtain as the

resulting expressions

2sin2
<p
= l v/I/c

2cos2
<p
= l + y'lyCOS'^r ^sin

2 ^/

Multiplying these equations together, and recollecting that

J,= 1 i
y

2 sin2
ijr,

we shall find

4 cos2
<p

sin2
<p
= sin2^ [I,+ 2 \/V/ cos ^ + if cos2

i|r]
. (1 92)

Now the second member of this equation is a perfect square,

whence 2sin<p cos<p
=

sin-\/r[ V-l/ + */
cos

A/r]
. . . . (193)

Substituting this value of 2 sin
<p cos<p in (190), we get

n .

~
v + cos-vK n i. sin ilr cos

i/r---

= !-

equation (187) may now be written

a (2 n) a (1+j)
Now, as ^= -A-^

--L= ._ v

\-" an(i
2 vi-w 2 vy

we get ultimately

The second term of the last member of this equation is evidently
the common expression for the protangent to a plane ellipse between
the point of contact and the foot of a perpendicular on it from the

centre; while Hi
j d-^r y% or &

j"d-\Jr
\/l ,

2sm2
^r, is the expression

for the arc of a plane ellipse whose semi- transverse axis is H, and

eccentricity i,.

IT
"When the function is complete, #= K and tyir. See (183).
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TT

/17T p5
Hence, as I di/r \/Iy=2 1

d>|r x/I,,

Jo J
7

T
2=&l

Jo
d^/r VI, (197)

'0

S therefore, in this case, is equal to a quadrant of the plane ellipse

whose principal semiaxis H, and eccentricity i
t
are given by the

equations

,
and ,=

- -. - - -

P v J i*-

To distinguish this variety of the curve, we may call it the

circular logarithmic ellipse, as it is a section of a circular cylinder.

Accordingly, in the two forms of the third order, when the con-

jugate parameters are equal, or m=n, the representative curves of

these forms become the spherical parabola and the circular loga-
rithmic ellipse.

This is Case V. in the Table, p. 7. The results of the preceding
investigation will reappear in the demonstration of the theorem,
that quadrants of the spherical or logarithmic ellipse may be ex-

pressed by the help of integrals of the first and second orders.

44.] It is not difficult to show that this particular case of the

logarithmic form, when the parameters m and n are equal, also

represents the curve of intersection of a circular cylinder by a

paraboloid wrhose principal sections are unequal.

Let o?
2+ y

2=o8 and ^+^,=2z .... (199)

be the equations of the circular cylinder and of the elliptic para-
boloid.

(cos2 $ sin2 #)
Assume x= a cos 6, y= asin0; then 2z= a2

\
----h T^ [, (200)

I
* k

)

and ^=-sin0, ^=
acos0,|r|:=a

2

(p Jsin0cos0. (201)

Hence =al + a2 ,- sin2 0cos2 0T. . . (202)

Now we may reduce this expression by two different methods
to the form of an elliptic integral.

By the first method, eliminating cos2 6, this expression becomes

' (203)
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We may, as in (124), reduce this expression to the form of a

product of two quadratic factors,

(A + B sin2 6} (C
-B sin2 0)

=AC + B (C
-
A) sin2 -B2 sin4 d. (204)

Comparing this expression with the preceding,

AC-*, B-.-
or C=A + B, and AC=

Let us now, as in (126), assume

..... (206)A

and, following the steps there indicated, we shall have

S=A

fef^\A-f^-^
an expression of the same form as (127).

B B(2A+ B) .

Ut A+B="' TSW*
A A2

^
therefore 1 n=-r TJ, and 1 i

2=7T
-
^-^ I

A+ B (A+ JbJ)-
4

(

f (209)

Hence 1 n v'l i
2

,
or n=m

J

If we develop this integral by the method indicated in sec. [36],
\ <> 5 /" J .

C7l
~ ^A

i Q(Z)

the coefficient - of the integral I
n J(l nsin2^) Vl-^sin2

^)'

in the result, will be 0, and the reduced integral will become, since

B
A+B~~

J =
'
and B= a2 ~

' '

Let z1 and 2" be the altitudes of the points above the plane of

XY, in which the principal sections of the elliptic paraboloid meet
the circular cylinder. Then 2" z' is the height or thickness of the

zone of the cylinder on which the curve is traced.

Now a2= 2)b/

,
a2 =2*'c"; whence 2"-r/=~-
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Let this altitude or thickness of the zone be put h, and we shall

have

Hence the arc of this species of logarithmic ellipse may be ex-

pressed by integrals of the first and second orders.

It is not a little remarkable that whether the integrals of the

third order be circular or logarithmic, or, looking to their geome-
trical origin, spherical or parabolic, when the conjugate parameters
are equal, or m=w, we may express the arcs of the hyperconic
sections thus represented, in terms of integrals of the first and
second orders only, the integral of the third order being in this

case eliminated.

If we now resume equation (202) and make

(213)

sin 20=2 sin cos cos ^, and 2d0= d^. Therefore (202) will

become

hence, asA= 1-^ -I, we shall have

22= V^+T2 dx\l-- rin x . . . (215)

This is the common form for the rectification of a plane ellipse,

whose principal semiaxes are V 2+ ^2 and a. Let
i,
be the eccen-

tricity of this plane ellipse,

h B n _i_ y/l jg

~2-n~ '
(
2]

and the relation between
<p
and ^ is given by the equations

7T A
20=

2+ X> tan20=
gtan

2
p, or tan0= Vl

Hence

1 + sin ^= 1 -nt
, or sec x+ tan x= V/tanp. (217)

When x=0, tanp=J- ; when %=^ <p= ; when ^=-^"^= 0.
\J A & 2

Hence ^ is measured from the perpendicular on the tangent to the
ellipse, at the point which divides the elliptic quadrant into two
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segments whose difference is equal to a b, as will be shown further

on
; while p is measured from the semi- transverse axis a. Thus

while x varies from (that is, from the position at right angles

to this perpendicular, and below it) to (that is, to the perpendicular

itself),<p varies from to tan" 1
---

1
an(^ while ^ varies from to

V>
7T 7T

^, <t> varies from tan" 1 -= to ^. Thus while y passes over two
VJ *

right angles, <p passes over one right angle.
We may now equate the two expressions (211) and (215) ;

and

the resulting equation will be

or

Thus we may express an elliptic integral of the first order by means
of two elliptic integrals of the second order. Hence we obtain the

geometrical origin of the well-known theorem, given in (184) .

When the functions are complete, since

IT IT

fa _ /*2 _
&X Vl i

;

2 sin2y=2
j
dy %/l i/

2 sin2 y, we get

I
1

dtp__ fa C
d*Vl-t,

2 sin2X=(l+./) d<pVl + (l-n)
[_/o Jo

,(219)

which agrees with (186).

44*.] From the foregoing investigations it will follow that, if

there are two moduli so related that

'~i + </!=?- l+j*

and two amplitudes such that

...... (b)

we may express an elliptic integral of the first order by the help
of two elliptic integrals of the second order, whose moduli are

i and
i,
and whose amplitudes are

<p
and %.

VOL. II. L
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A like relation is established by Lagrange's theorem (186) in

which the moduli are the same, but the amplitudes are given by
the equation tan (^ <p)

=
/ tanp....... (c)

Lagrange's theorem as given in (186) is

=0. . (d)

While the theorem established in (218) is

It may be proper to show that these theorems (d) and (e), though
apparently diverse, are identical.

These equations will be identical if we can prove that

Vxi;+ (1 -*. (f)

To show this, we must eliminate
<p
between the equations

tan (ty <p) =j tan
<p,

and sec %+ tan ^= \Jj tan
<p.

Eliminating <p
and reducing,

tan*Vrtan* %=lii^. -.
..... (g)

Hence sin^
C SX ...... (h)

[1 if sin8x>

,r,^
, _ ^and *P=

ri r-s-T-
=

, ,
. -. since w= j :

[1n sin2
<p]

2 '

consequently 2<I>=

/I- A
(

therefore sin ir 24>=

We have also

^- /;\
- 2
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But n
[1 i/o

,,

'

as will be shown further on ; consequently

Substituting these values in (j), the equations are manifestly
identical.

We may thus by the help of Lagrange's formula, as given in (d) ,

or by the new expression enunciated in (e) , express an elliptic in-

tegral of the first order by the help of two elliptic integrals of the

second order ;
but we are unable to reverse the process, and ex-

hibit an elliptic integral of the second order, as a function of two

elliptic integrals of the first order. The problem has been tried,

but in vain.

If we multiply (218) by a, bearing in mind that a2 62=a2
z
2

and b= aj, we shall have, since n= l J,

-(*-V*'> . . (m)

but when the functions are complete, since

IT

J'

we shall have

-

f

(a -(- b) and 2 \/ab are the semiaxes of the ellipse whose amplitude
is ^ and modulus ir Hence we may derive the following
theorem :

The difference between the quadrants of two ellipses whose semi-

axes are a, b, and (a + b], 2 \/ab is equal to a complete elliptic in-

tegral of the first order whose modulus is i; or, The difference
between the quadrants of two ellipses whose semiaxes are a, b and

(a + b), 2 \/ab is equal to half the difference between the circum-

ference of a spherical parabola and a semicircle, both described on a

sphere whose radius is a.
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It may be worth while to mention that a + b is the length of the

tangent drawn to the ellipse whose semiaxes are a, b, and inter-

cepted between the axes ;
while the point of contact is the critical

point, or the point where, as Fagnano has shown, the constituent

arcs of the quadrant of the ellipse differ by a b.

\/ab is the perpendicular from the centre on this tangent.

CHAPTER V.

ON THE LOGARITHMIC HYPERBOLA.

45.] The logarithmic hyperbola may be denned as the curve of

symmetrical intersection of a paraboloid of revolution with a right

cylinder standing on a plane hyperbola as a base.

Let Oxx1 be a paraboloid of revolution, whose vertex is at O,
and whose axis is OZ. Let ACB be an hyperbola in the plane of

XY, whose vertex is at A, and whose axis is the straight line OAD.
Let the planes ZOX, ZOD, ZOY cut the paraboloid in the plane
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parabolas Ox, Od, Oy, and let cab be the curve on the surface of
the paraboloid whose orthogonal projection on the plane of xy is

the plane hyperbola ABC. Then acb is the logarithmic hyperbola.
Vertical planes erected on the asymptotes of the hyperbola in

the plane of XY will pass through the axis OZ, and will cut the

paraboloid in two parabolas passing through the vertex O, which
will be asymptotic curves to the logarithmic hyperbola. These
curves will be found to have properties analogous to those of the

plane hyperbola and its asymptotes.

Let *~P
= 1 ' anda?2 + y

8= 2** .... (220)

be the equations of the hyperbolic cylinder and of the paraboloid
of revolution, and consequently of the curve in which they inter-

sect ; let T be an arc of this curve,

T

x, y, z being functions of a fourth independent variable \.

a4 cos2 X A4 sin2 A,

Assume ar=-~-~^ , 2 . 2 ., y -5-^ , g . a
*

(222)a2 cos2 A, A2 sin2 A.
* a*cos*X 2 sm2X v

It is manifest that these assumptions are compatible with the first

of equation (220) ;
and the second of that group gives

2 . 2_+ y ~a2 cos2X~
Differentiating (222), we get

(a
2 cos2X-A2 sin2 X)

3'

dX/
"

yt
2
(a

2 cos2X-62 sin2 X)
4
\

We might, by the help of the imaginary transformation sin 6= V 1 tan &,
e from the el

'

ulting equati

e mg, y
pass at once from the elliptic cylinder to the hyperbolic cylinder. Let tan0'=w,
and the resultin equation will be of the form

dY

an expression which, on trial, it would be found very difficult to reduce. The

difficulty is eluded by making the transformation pointed out and adopted in

the text
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Hence

k dT

(

2 cos2X-62 sin2 X)
2

Let this radical be put = \/R,.

Assume B,=
(
A+ B sin2 X) (C-B sin2 X) )

=AC + B(G-A)sin2X-B2 sin4X;j

hence AC=a2 2
,
B=a2+ 62, C A=

and therefore k*=A+ B C .

Let us now assume sin
<p
such that

and 2 cos2X-62 sm2X=a2-

or as

Making

we find =

'j
(226)

there resiilts
2 cos2X 62 sin2X=-r -~r 1 .

, ^sin
2
^ .

A+ Ccos2iL A + C r
j

Hence -- ^T_ VAC . [A+ C cos^] cos<p

a2*2 dX a4 (A+ C)[i-/sin
2
<p]

2
'

differentiating the equation sin2 X=-r-^

"

g ,
. . (230)

dT_dTdX .
2_~' r ~

' ' ' '

, n T i2 (* cos2 (pd(pwe get . finally, T= .

- 1- - (233)* VB(A+C)J[l-/sin2
<p]2 Vl-z2

sinV
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46.] We may develop another formula for the rectification of
an arc of the logarithmic hyperbola.

Assuming the principles established in sec. [38] ,
we may put

T=-Jj9secudX-

In this formula p is the perpendicular from the axis of the hyper-
bolic cylinder let fall on a tangent plane to it, passing through the

element of the curve, and v is the angle which a tangent to this

element makes with the plane of the base, v in this equation is

analogous to r in the last section.

In the above expression the negative sign is used, as the curve
and the angle X are incremented in opposite directions.

dz

d\

//d^\
2

/dyV (aO
+
(-l

Now p*= d2 cos2 X A2 sin2 \, and tan v=

We must substitute for these differentials, their values given in

(223), and introduce the value of
<p
assumed in (227), whence

(A+ C)
2 ACcos2

<po* II_-_' __ . (OQ^}~
9

cos2 ?]
2
(a

2 cos2X- 2 sin2 X)
'

,

But (231) gives =
d<p

whence
2
/i:cos

2
<pdipy

. (237)

We must now determine the value of the second integral in

(234), namely

jo^secvdX.

Since p*= a2 cos2 X- 62 sin2 X,

?. udX- -(a
'+y)Caa cos'X+ ^sin'XJsecudX

dX2
b< ~^s2X^62 8iii~
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Now we may derive from (223)

sin\ cosX
tanv= *

i..... (239)

Differentiating this expression, then multiplying by sec v, and in-

tegrating, we obtain

* 42 *

Comparing this expression with (238), and introducing into (234)
the values found in (237) and (240), we obtain

?= f
dv g* f_ coa'fdp

* J cos3 u VB (A+ C) J [1-w sin2 ?]
8 Vl-*2 sina f

'

n
Making m

A + B , , C/A+ BN i
2 C

since /=---, and i
2=-, assumew== . (243)

and we shall have m and n connected by the equation of condition,
denned in (1),

m+ n mn= i2 .

The three parameters /, m, n, and the modulus i are connected

by the equations
mn= i

2...... (244)

/ and n are reciprocal parameters, the reader will recollect, while

m and n are conjugate parameters.

By the help of these equations, any one of the quantities /, m,
n, ft may be eliminated, and an equation established between the

three remaining quantities.

47.] It was shown in (226) , that C-A= a2 + i2- 2
,
B= a2+ 2

,

/fc
2=A+B-C, and 2A2=AC, whence

AC_ y_(A+ B)(B-C)
C)

2' A2
~

(A+ B-C) 2 '

In order that these values of a and b may be real, we must have
B > C, and A of the same sign with C, both positive ; otherwise

\/R in (225) would be imaginary. As /=
, />! ; here the

.A.-)- \j

parameter / is greater than 1, while m and n are each less than 1.

We may express the semiaxes of the hyperbola, the base of the
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hyperbolic cylinder, in terms of the modulus i and the parameter / ;

for by the equations immediately preceding we may eliminate A,
B, and C in (243). We thus find

therefore

_ /(/-I)

We may express the semiaxes in terms of the conjugate para-
meters m and tt

F~ [ + -2m8
]

hence

B 2+ 52 m . A;
2

nF-
or we may express a and 6 more simply in terms of / and m.

Eliminating n and i
2
, we get

a*_m(l-m) 62 _/(/-!) ,

jfc- (/-m)
2 '

^2 ~(/-m)
2

'

Let ^ be the eccentricity of the hyperbolic base of the cylinder,
the following equation between

c,,
i and

/_, analogous to (131), will

follow from (246),

(,- 1).*/ =(*-*)*...... (251)

Hence when i and I are given, c
t may easily be found.

48.] If we equate together the values found for T, the arc of the

logarithmic hyperbola, in (233) and (241), we shall have

2 T

J [1
- / sin2<p]

2 Vl- i
2 sin2<p

[.(252)
du_

[1
-m sin2

<p]
2 Vl -i2 sin2

<p

"
cos3 v

For brevity, put

L= 1 / sin2
<p,
M= 1 m sin2

<p,
N= 1 n sin2

<p,
I= 1 i

2 sin2 p. (253)

The preceding equation may now be written

(254)

VOL. II. M
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or if we substitute for the coefficients of this equation their values

given in (246) , we shall have

1

. . . (255)

cosv,

Let

sin<pcos<pVl- - -- . . . (256)

Now the process given in sec. [36] will enable us to develop the

integrals

i, as follows :

-i2
) f d<p Vi

and

2^(1-1*;

; (257)

)Ca9 /^(i-^
J \/I m(i*m)

d<p

. (258)

The equations of condition ln=i* and m+ w mn ? give

?t3_,-i. and g=Q!+?fld5_2=Qf. . (259)
z
2 m / m ("-l)

We have also, since

Making these substitutions, adding together (257) and (258),

the coefficient of J dip VI vanishes, and we shall have

o
(
; .ff)a fcos^djp [ gja (1

.

g)

rcos2
(pdj)_/sin(p

cos(p VI
L2 VI 'J M2 VI

A
M VI
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but (255) gives

r
'

J L2 VI

Combining this equation with the preceding,

L VI m JM r-i)J VI

/sin<p cos<p Vl_,
"LIT ELf

/(/-l)JcosDj

. (261)

Now

and as
i'2

> m (1-1}
'

In the last equation, substituting this value of fp and then di-

viding by /, we obtain

(J-1
}

Vl /(/-l) VI

sin<pcos<p Vl_2A / I ft r dt>

LM V /(/-1)J cos^;

Now
Iv

,
C dv ,

2
LM

T-= tanuseci;4-l andcos^f= 5-,
cosd u Jcosu cos* f

as may be shown by combining (226) with (235).

Hence sini>=\f -j ^r *an<p VI,

and therefore tan v sec v= A /
\

~ '

v I i LM

Substituting this value in the preceding equation, we find

/-J2

(262)

(263)

(264)

(265)

//-

\ i -i VI

_ /TV // l)
cosu

>
. . (266)
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In (170) we showed that, m and n being conjugate parameters
connected by the equation m+ n mn=t2

}

l-n d(p (1-m) dtp _ P_ C dtp _
1

^
dr~ '

ATNow

1(1-1)

Substituting these values in the preceding equation, and dividing

by 75,
we obtain

i

fdr
1COST

If we add this equation to (266), the coefficient of the integral

I .- will vanish, and the resulting equation will become
J J

.-

JM Y A

f_jg_
,

f
JL VI J

,N VI VI V(J-l)(/-;
2
)

V"^ r
f

dt; r dr
-[

-l)(/-;
2)Ucosv JcosrJ-

We shall now proceed to show that

/ J /*

I-- 1

/I

JCOSV JCOST/ T t

under the form 1 ^.
} if we make the assumption

J cos ir

^C

may be put
*

VI

ief being equal to (l-n) (--l)
-

Now

hence

(269)

s

^i2
"
f dv _ f dp [-[l-i

2
sin2 (p-i

2 sin2
<p
cos2 <p] ~]

-J VI L ~LM~
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But we derive from (165) and (166) the value

dr _T d<p [ncos
2

<p
n sin2

ft+m2 sin4
ft]~

or, subtracting,

/T^V/7=(l)cosi; N
,. (272)

These two latter integrals may be combined into the single

integral

'[1 -i
2 sin2

ft
-n cos2

ft] [1 -i
2 sin4

ft] dft

LMNVI
Now, as m+ n mn=fi, the first factor of the numerator becomes

(1 n) (1 m sin
2

ft)
=

(1 n)M ; and therefore

/7-i
8

f f du C Ar 1 _ (I- i*\ f[1 -i* sin4
ft]

V/(7=I)LJcosi, JcosrJ-V / /J LN VI
Substituting the first member of this equation for the last term

in (268), we find
j f* j /*n *9 '

U(p I Q(p t [1 t SI]

5vT J vr~J
Now, since we have assumed in (269)

.

smi/=
VI

LN
; cos2

<f>

3

hence

and consequently

dt/
-

.

cos i/

fj?
JL V

,

L Vi N
This formula is usually written

LN VI

= 7=+ =
VI V*J cos

(276)

(277)

f_

J [l-

f
J [1 rin

d . (278)

V. A /
,

We have thus shown that from the comparison of two expres-
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sions for the same arc of the logarithmic hyperbola, we may derive

the well-known equation which connects two elliptic integrals of

the third order, and of the logarithmic form, whose parameters are

reciprocal *.

Hence also it follows that if v, r, and i/ are the angles which

normals to a parabola make with the axis, and if these angles, which

may be called conjugate amplitudes, are connected by the equations

ML /m
o ,

=A / -tan<r>2 V ncos^
<p

-M aJnT- V^sinpcosp (27g)
i

;

VI
LN . , /m n x tan <psmi/=, ' n *"N

Vyvyo v T g ^> " (\ / i^- "/ 7 _-

Icos2
<p V n VI

^

we shall have

......
J COS V I COS I/ J COS T'

49.] The difference between an arc of a logarithmic hyperbola,
and the corresponding arc of the tangent parabola, may be expressed

by the arcs of a plane, a spherical, and a logarithmic ellipse.

Resuming the equation (241) ,

du _T_ a2 Tcos2 <pd<p

us^u~~k~ VB(A-fC)J M2 VI*
and combining (248) with (249), we may easily show that

2nm

and from (258) we may deduce that

M VI
* We might by the aid of the imaginary transformation sin 0= V 1 tan ^

have passed from this theorem, connecting integrals with reciprocal parameters,
to the corresponding theorem in the circular form. It seems better to give an

independent proof of this theorem by the method of differentiating under the

sign of integration, as we shall do further on. Although these theorems have

algebraically the same form, their geometrical significations are entirely different.

In the logarithmic form, the theorem results from the comparison of two expres-
sions for the same arc of the logarithmic hyperbola. But in the circular form, the
theorem represents the sum of the arcs of two different spherical conic sections

described on the same cylinder by two concentric spheres, or on the same sphere
by two cylinders having their axes coincident.

t These values of v, r, and v' satisfy the equation of condition which connects
the conjugate amplitudes in parabolic trigonometry, tan G> = tan <p sec x+tan x sec <P-

We must replace a>, <p, x by v, v', and T. See vol. i. p. 313, (a).



ON THE GEOMETRICAL PROPERTIES OF ELLIPTIC INTEGRALS. 87

Let G=(l-m)+Jd<pVI-m<I>m . . . (282)

Substituting this value of 1 ^~T in the preceding equation, we
^) ivj. \ i

find, after some obvious reductions,

C Av' 2T=
"Jcos

3 v k
~ \/mnGc _n(lm)C d<p

m + n 2mn \/mn J M VI

Now, a
;
and b

t being the semiaxes of the base of an elliptic cy-
linder whose curve of section with the paraboloid is a logarithmic

ellipse, let, as in (171),

af_mn(\m) b*_mn(ln) .

A2
~

(n-m)*' A*" (n-m)*
'

and if we put 2 for an arc of this logarithmic ellipse, we shall have,
as in (163),

_
k nm VT/W J M -v/I cos T

Subtracting this equation from the preceding, we shall finally
obtain

(284)
-- -

.

cos3 u J cos3 T (w m) (m+ w 2mn)

We may express the arc T by the help of one parabolic arc only,
if we introduce the equation established in (160),

, hence
COS3 T

i

(285)

-
COS3 V '

/,
^mn(l-n)mk Vn _ C

_d^
,

(w-m)(w+ m-2mw) Lm v ;

J VI J

replacing G by its value in (282).

When sin <p= , 1^=75, and the arc of the logarithmic hyperbola
v/ *>

becomes infinite, the arc of the parabola also becomes infinite and
an asymptote to the logarithmic hyperbola ; the difference, how-

ever, between these infinite quantities is finite, and equal to

G_2 mtegratea between the limits <p=0,__
(n m) (n 4-m 2mri)
and < = sin~ 1

/~*.
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It is needless here to dwell on the analogy which this property

bears to the finite difference between the infinite arc of the common

hyperbola and its asymptote. When n=m, the above expression

becomes illusory. We shall, however, in the next article find a

remarkable value for the arc of the logarithmic hyperbola when

m=n.
We may express the above formula somewhat more simply.

As in (248) 7=^
* m (

l ~~ n
), and

b
t_ \/mn(\ ri) ^_/___L_ *Jmn(\ ri)m__

n m \/m(n m)(n+m2mri)

The equation given in (285) now becomes

Q..... . (286)
COS V i K

The ratio between the axes of the original hyperbolic cylinder

and of the derived elliptic cylinder may easily be determined ; for

y_(l-m) (} d b*_l-m .- a * - b

Let c
t
be the eccentricity of the hyperbolic base, and c that of the

elliptic base, then

Comparing (a) with (6),

/-/ /-A-ij 2ro(l-)
\n = \l~i == *-~\ i

-
r~*

a b (nm)
This equation gives at once the ratio between the axes of the hyper-
bolic and elliptic cylinders.

50.] On the rectification of the logarithmic hyperbola when the

conjugate parameters are equal, or m=n.
We have shown in sec. [43] that, when m= n, the arc of the

logarithmic ellipse is equivalent to an arc of a plane ellipse; so,

when m=w, the arc of a logarithmic hyperbola maybe represented

by a straight line, an arc of a parabola, and an arc of a plane

hyperbola.
In (262), if we make m=n, or l=I+j, n=lj, we shall have,

writing N for M,
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and in (170), if we make m=n, and M=N,

Adding these equations together, as 1 nj, we get

sin <p cos <

.NN LIN uj
j

while the arc of the logarithmic hyperbola, as in (233), is

T W-

In this case, the coefficient = K> as may be shown by
2'

putting, in the general value for this expression given in (249),

m=.n-, hence

2T
T

Now (257) gives

and the general value of / being /
2 + z

2
2/e

2
, as in (256),

/=2/(l-n)
2
, /=2-w, and /-i2

=/(l-ra), since /w=i2 .

The last equation may now be written, combining (e) with it,

Adding this equation to (c),

/ ,

M /<!>/_ (1
JN OW r-

j
VOL. II.

^) sin
<p
cos

<p v/I_ tan
<p V'l

,

tan
<p \/i

.^
-^-

;
- T =-

jL j L
N
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Combining this value of </ with the preceding equation, we shall

find

cosi; cosT

^Traces2 2 cos2 1
. j ... /T I ._ I- -I

+tan<p yi|^ -^2 -^

7*tan<p \/I
and this latter term, in this case, may be reduced to - ~

But, a and b being the semiaxes of the hyperbolic cylinder, (248)

ab mnii .
, , . 2 sjab k

glves ^=7^r "L^* or m thls case^ M m=w^ -T7--=;-

Now A / is the distance from the centre to the focus of anV
ij

1 1

hyperbola the squares of whose semiaxes are - ab and 4 ab
;
hence

J l

represents an arc of an hyperbola the squares of whose semiaxes
7 7

are - ab and 4 ai, as will be shown in sec. F521 .

J l

k
Introduce this value of

-.,
and divide by 2,

COS8 V 1 COS3 T
- (290)

Now, when this equation is integrated between the limits <p=0

and
<p
= sin" 1

,* / _, or, taking the corresponding values, between
I/

r=0 and 7=8^-' ( =-r4 )*
or Between v= and v=^, T is infinite,

\1 ~rj/

J-\
is also infinite; but

COS3 V
twice the difference A between these infinite quantities is finite.

1 I/
Let sin2

<p,
=

-j,

sin
r,
= -< ; then
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Hence the difference between an infinite arc of the equilateral

logarithmic hyperbola, and the corresponding infinite arc of its

asymptotic parabola, is equal to a straight line + an arc of a plane

jwirabola an arc of a plane hyperbola.
When the parameters m and n are equal, the logarithmic hyper-

bola may by analogy be called equilateral, seeing that though the

squares of the axes of the hyperbolic base of the cylinder are not

equal, they differ by a constant quantity.

Resuming (250),

b* ll-l

But when m= n, 1=1 +j, m=\j) substituting these values in

the preceding expressions,

2(b*-a*)=k*.

51.] On the logarithmic hyperbola when /=oo. Case XIII.,

p. 7.

T
3) '

r

Now, as ln=i2
, and as i is finite, while /=<x>

,
n=0.

The equation of condition m+ n mn=i2
, gives therefore m= i

2
.

Equations (248) and (249) give = 0, 6= k.

B VAnd as \/B (A -f C) = -=-, we get;
v m

62 If* A/*M */7AT V "* V * /T -o= ^-= ^-_= vt, since m= i^= n/ ;

T ,- C_ cos2 tpd(p

^=
:

V*J (-x./gi^^p Vl-^sin2
^*

Let /sin2 <p=sin
2
i/r; therefore

V^ cos <pd<p=cos T/rdi/r, [1 / sin2 <p]
2=cos4

i/r,

and cos<=

Making these substitutions in the preceding equation, we get

T vi f d* ? i
=!-= I . When /=oo, ^=0, n=0;

k /
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hence T=k--, ....... (292)
J cos3

a/f-

or the logarithmic hyperbola in this case becomes a common para-
bola.

As =0, b=k, the hyperbolic cylinder becomes a vertical plane,
at right angles to the transverse axis.

Hence, comparing this result with that in sec. [19], we find that,

when the parameters are either + oo or co
,
the corresponding

hyperconic section is a plane principal section of the generating

surface, i. e. either a circle or a parabola.

52.] By giving a double rectification of the common hyperbola,
we shall the more readily discover the striking analogy which exists

between this curve and the logarithmic hyperbola.
Let Y be an arc of a common hyperbola, whose equation is

A a tt
4 COS2 X u am /v

Assume a?
2
=-^ ~- e . . r= 9

-

9 . -, 9 -,,^. . (a)
a2 cos2 X 62 sin2 X a2 cos2 X 62 sm2 X

Differentiating these expressions, and substituting, we get

dY_ 62

dX~

2 __

Assume sin2 <t>==-- sin2 X, and let i
2=

O to . . . (b)
-1 z 2O to .

az+ o2

^
~

'

-wj,.
i. f ,, . ,. f dX dY dY dX

finding trom this equation the value of T--. as ^ = 3^-. 3-, we
d<p' d<p dX '

shall finally obtain, since

J [1 -sin
2
<p] Vl- 2 sin

<p

2
'

Sec. [88] gives
Y=JjpdX+J^,

or Y=-fjdX-i?. . . (d)

Now,as^=a2 cos2 X-52 sin2 X, ^=-J
2+ &2

)
sin X cos X

MX
(

2 cos2 X-62 sin2 X)^

as sin2 <p=-JL*in2
X, ...... (e)

CL ~T~ u

dX a cos
<p
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hence -=- V 2+ 62 tan<p \/l-*2 sin2
<p ; . . (g)

and as p= a cos
<p,__ cos __= ~ ~

whence, finally,

. . . .
(i)

/
* sm

<P cos <P

VI- -^j-f. W
as may be shown by putting

g= sin(pco8(p_

V/l-z^sin2 ^'

Differentiating this expression and multiplying by i
2
,

^
2d< _ z

2 2i2 sin2
<p + f

4 sin4
<p

, ,

df
~

[l-i
2 sin2 <p]f

rj_ i
2 sin2 <pl

2_ fl _i2}
This expression may be put in the form -- J-^-^

,

integrating

r d<p /.

1 71 -2-2 i"
=AJ [1 z

2 sm2
<p]5

J

^ sn <- * sn <--2-2 i"
-

[1 z
2 sm2

<p]5
J Vl- sm2

<p

This is the integral referred to in sec. [44*] .

Adding the integral (k) to,(i),

,- i
2
sin<pcos<p

Hence, dividing by (1 i
2
),

3^+Ji VI"^+
JVT

' ' ' ' (o)

v C* i\tf\

and (c) gives = I
^

.

a(l -i
2
) J fl sin2 <pl Vl i

2 sin2 <p
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Eliminating Y from these equations, we obtain

Jd(p
C d<p

[1 sin2
<p] \/l *

2 sm2
<P J [1

2 sin2
<p] \/l i

2 sina

r
J.. (293)

tan<p
I" /^

~"
^n~~. i 7\ I

The parameters are reciprocal in this equation, being 1 and z
2

.

Now this is the extreme case of the formula for the comparison
of elliptic integrals of the third order and logarithmic form. We
perceive that this formula results from the comparison of two ex-

pressions for the same arc of a common hyperbola. We may also

see that it is the limiting case of the general formula for the com-

parison of elliptic integrals of the third order having reciprocal

parameters a formula which in like manner has been deduced

from the comparison of two expressions for the same arc of the

logarithmic hyperbola. It is also evident that^'
2

being the

2 sn<z> cos<p .. .
J_.

,.

difference between tan<p. VI and-
J= -, it is the difference

between tangents, one drawn to the hyperbola, the other to the

plane ellipse; for tan<p v'l denotes the portion of a tangent to an

hyperbola between the point of contact and the perpendicular on

it from the centre, and - denotes a similar quantity in

an ellipse. This difference is precisely analogous to the expression
(* i\ f* r\

that occurs in (284) 1 ^-- 1 -

-^ , which denotes the difference

J cos3 v J cos3 T

between two parabolic arcs, one drawn a tangent to the logarithmic

hyperbola, the other a tangent to the logarithmic ellipse.

Hence a hyperbolic arc may be expressed by two elliptic arcs.

(Landen's theorem.)
For, eliminating the integral of the first order between

(i) and

(218), we get, putting

Y-/tan? Vl=

The difference A between the infinite arc of the hyperbola and its

asymptote is found by integrating the above expressions between
7T

and
^.

< becomes =0; and the difference is given by the equation
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CHAPTER VI.

ON THE VALUES OF COMPLETE ELLIPTIC INTEGRALS OF THE

THIRD ORDER.

53.] We have hitherto investigated the properties and lengths
of elliptic curves, on the supposition that the generating surface,

whether sphere or paraboloid, was invariable, and that the lengths
of the curves were made up by the summation of the elements

produced by the successive values given to the amplitude <p
between

certain limits ;
and , suppose, if the arcs are to be quadrants.

A
Thus the length of the quadrant is obtained by adding together
the successive increments that result from the continuous additions,

indefinitely small, which are made to the amplitude. We may,
however, proceed on another principle to effect the rectification of

those curves. If, to fix our ideas, we want to determine the length
of a quadrant of the spherical ellipse, we may imagine the vertical

cylinder, which we shall suppose invariable, to be successively
intersected by a series of all possible concentric spheres. Every
quadrant will differ in length from the one immediately preceding
it in the series, by an infinitesimal quantity ;

and if we take the

least of these quadrants, and add to it the successive elements by
which one quadrant differs from the next immediately preceding,
we shall thus obtain the length of a quadrant of the required sphe-
rical ellipse, equal to the least quadrant which can be described on
the elliptic cylinder, plus the sum of all the elements between the

least quadrant and the required one. Thus, for example, the least

'quadrant which can be drawn on an elliptic vertical cylinder, is its

section by a horizontal plane, or a quadrant of the plane ellipse,
whose semiaxes are a and b. In this case the radius of the sphere
is infinite. The least sphere is that whose radius is a, and which
cuts the cylinder in its circular sections. Hence the greatest sphe-
rical elliptic quadrant is the quadrant of the circle whose radius

is a. All the spherical elliptic quadrants will therefore be comprised
between the quadrants of an ellipse, and of a circle whose radius

is a. Any quadrant, thereforeA of a given spherical ellipse is equal
to a quadrant of a plane ellipse plus a certain increment, or to a

quadrant of a circle minus a certain decrement. The same rea-

soning will hold as well when we take any other limits besides

7T
and

-q.
These considerations naturally lead to the process of

tii

differentiation under the sign of integration, because we cannot

express, under a finite known form, the arc of a spherical or loga-
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rithmic ellipse, and then differentiate the expression so found,
with respect to a quantity which hitherto has been taken as a

constant.

We may conceive the generation of successive curves of this

kind to take place in another manner. Let us imagine an inva-

riable sphere to be cut by a succession of concentric or coaxal right

cylinders indefinitely near to each other, and generated after a given
law. These cylinders will cut the sphere in a series of spherical

ellipses, any one of which will differ from the one immediately

preceding by an indefinitely small quantity. If we sum all these

indefinitely small quantities, or, in other words, integrate the ex-

pression so found, we shall discover the finite difference between

any two curves of the series separated by a finite interval. One
of the limits being a known curve, the other may thus be deter-

mined.

To apply this reasoning.
In the following investigations we shall assume the generating

sphere to be invariable, and the modulus i with the amplitude <p

to be constant. The intersecting cylinder we shall suppose to vary
from curve to curve on the surface of the sphere. But i is con-

a2_ 2

stant, and i
2=

^ > see (<W). Now, a and b being the semiaxes
Gf

of the base of the cylinder, it follows that the bases of all the vary-

ing cylinders are concentric and similar ellipses. Hence in the

elliptic integral of the third order, which represents the spherical

ellipse, the parameter e2 or m and the criterion of sphericity V'*

will vary.
In [9] we found for a quadrant of a spherical conic section, which

we may denote by <7, the expression

'= V
e2 sin2

<p] VI i
2 sin2 p

Let k be the radius of the sphere.

Since^^ ^-3,
e will vary, as being a function of a the

A; j a

transverse semiaxis of the variable cylinder. We have also

e2*=(l-e2
)(e

2 -i2
) (294)

Hence -^ 2e(l]:
de \ e4/

and if, as before, we write M for l-msin2
(p, or 1 e2 sin2

<p,
we

shall have
TT

/-f5= VK\
Jo

(295)
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Differentiating this expression on the hypothesis that i and p are

constant, while e is variable, we shall have

ir |"~ ? ^
~

J w -. - j /~ j . /o j f* o J

cj(T_ . o/c I
*

dp \Kn \ dp I
*

up

de
=
2~7ScUUo M Vl

+
~T~ Jo M8 VI Jo M VI j*

Multiplying this equation by ***, and recollecting that
e

= 2e ( I . ), we shall have
V e4/

oV

de

v*?!- A _A
-de V eVJo

,

2

But (134) gives, writing M2 for N2
, e2 for m, and z

2 for mn + mn,

9if&K

e

\

VI
. . (297)

)

Introducing this value into the preceding equation, the coefficient

r

<

P-^ will vanish, and we shall have
M VI

Dividing by -^
,
and integrating on the hypothesis that

<p
and *

e

are constant,
~

_ ~i n - ~i

f 2
i /T C de C 2

d<p Tde(e
2

z
2
) ,<r= I

d<p VI 1 = /- + constant;
_J JJe V* L_Jo VIJJ e3 V*

or, as in (294) e / K= V' (1 e2
) (e

2
i
8
) ,
we shall have

~
~i ^

f"2o"= I d<p VI
_Jo

~LJo7
4- constant

. . . (299)

VOL. II.
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We must recollect that the complete integrals within the brackets

are functions, not of
<p,

but of i
2
, 0, and

|.
They are therefore

constants.

It is not a little remarkable that the coefficients of the complete

elliptic integrals are themselves also elliptic integrals of the first

and second orders. To show this, assume

e2 =cos2 + i
2 sin2 (300)

Therefore l-e2=/2 sin2 6, and e2 P=j* cos2 0; we have also

ede= j2 sin cos 0d0.

Hence, if I-/ sin2 0=J,

f d* f _jg^ _ = _
J \/(e

2
i
2
)(l e2

)
J */l ^sin

2

^'

2 sin cos
and v/g="~7T_-g g~a-

In the same manner we may show that

=? fc_ f _Jg
l- e2 e2 -"J Vl-/si

(301)

; (303)_ sin cos 6
ld<9 \/l 7

2 sin2 7
12 (304)d

(3 5)

Substituting these values in (299), we obtain

(306)

To determine this constant. We must not suppose i= 0, in this

case, as is generally done, to determine the constant. This would
be to violate the supposition on which we have all along proceeded,

namely, that the variable cylinders are all similar, and therefore

that i must be constant. We must determine the constant from
other considerations.

i
2
/t
2

Since e^=-^ ^-5, when a=0, e
2= z'

2
. But as in (300)2
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7T
e*=cos*0+ i

z sin2 0, therefore 0=^> As a, the major semiaxis of

the base of the cylinder, is supposed to vanish, the curve diminishes

to a point, and therefore o-= 0.
t7T

When a= k, e2= l, and 6=0. We have in this case cr=-; for
Z

the sections of a sphere by an elliptic cylinder, whose greater axis

is equal to the diameter of the sphere, are two semicircles of a

great circle of the sphere. Hence, when 6=0, &=T)> sin 0=0,

f C dfl

1 d<s \/J = I F-= 0; therefore the constant is equal to a- when
J 'J v J

frr

= 0. But when 6=0, (r=
-^,

or the constant is equal to .

<* A>

The formula now becomes

7T

'

r- ~\t*ia
i a

(
A0

dip VI ~~TT
jo jj yJ

Ja
d<p f d0 f sin

|-7f-ld0VT-hf-
o v* J yJ J V

sn cos

yj

r (307)

7T
When Q=-x, e= i, and o-=0, as the variable cylinder is in this

.w

case diminished to a straight line
;
therefore the preceding formula

will become

,

f1 d0 f? f a
d(p f5

1 ^JU. <WvJ
J-U. viJU.

or, using the ordinary notation of elliptic integrals,

;

, (308)

-FjFy (308*)

Hence we obtain the true geometrical meaning of this curious for-

mula of verification discovered by Legendre. In its general form

(307) represents the difference between the quadrants of a great
circle and of a spherical ellipse. When the spherical ellipse va-
nishes to a point, this expression must represent, as in (308) ,

the

quadrant of a circle.
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54.] If we now apply the preceding investigations to the curve

described on the same sphere by the reciprocal cylinder, or by the

cylinder which gives a function having a reciprocal parameter as

denned in sec. [31], we shall find by substitution in (299)

"
?

-Jo

T

J
S

-J VI

.f

e'
2

e'
2

L~ + constant

. (309)

But by the conditions of the question, as in (110),

:9
I JO

pp' 1 />' *,c *, c

l-/sin
2 0'

C Ae1 _C d0

J \/ (e'
2

z'

2
) (

1 e'
2
) J V 1 j* sin2 0'

Jde'

/(J2& C
;'

2 sin2 0d
* / ^^ . ^

,,/2 % / i 10
~^~

I /"i "5
~

C V I />'* J 4/ I ----r 1* Gl I^
JL

"~~ C %/ 'V X y gjjj

. (310)

d0

Vl-/sin
2 ^

Substituting these values of the integrals in (309),

We shall now show that the constant C= 0.

When 0=0, e=l, and therefore e'= i. Since e'=i, and cr is a

quadrant of the vanishing spherical ellipse whose principal arcs

a=0, /3=0, we shall have ^=0. Hence also Jd0 \/J=0, I -y =0;

therefore the constant is 0. When 0=^, e'= 1, and (309) becomes
JL

r

o VJ.

f

vi

-,
\
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7T

or, in the common notation, gssEiFy+EyFi FfF/,
it

a formula already established in (308) .

If we add together (307) and (312), we shall have, since

j* sin cos

r *

7T

-ir (313)

.

' /l-m\
,

C d<p
Now, as m (11) o-=

(
-

] iJmn\-^r . _ . , . a >

\ m / J [1 msm2
<p] vl * sm2

<p

,
/I mA f d<p=
l~^T J ^^J [l-m,sin

2
<p] ^T=?*tfj>'

in which mw' or eV2= i
2

.

Whence, as i- -\ \/mn= \- ;

M \Sm.n.= \/K, aswe have shown
\ m / \ m

t
/

in (113),

wsin8
<p] \/l z

2 sin2
<p

!

* (314)

+ V4 V- -?- =Vir

The reader will observe how very different are the geometrical
origins of two algebraical formulae apparently similar. In the

logarithmic form of the elliptic integral, the formula for the com-

parison of elliptic integrals, with reciprocal parameters (one of

which is greater, while the other is less than 1), resulted from

putting in equation two
algebraical expressions for the same arc of

the one logarithmic hyperbola. See sec. [48] . In the preceding
case, that of the spherical ellipse, the analogous formula expresses
the sum of the arcs of two inverse spherical ellipses, whose ampli-
tudes are the same.

We shall use the term inverse spherical ellipses to denote curves
whose representative elliptic integrals have reciprocal parameters.
The terms reciprocal and supplemental have long since been appro-
priated to curves otherwise related.

Let a and /3, y
and /3y

denote the principal semiarcs of two such
curves. Since the modulus i is the same in both integrals, the

orthogonal projections of these curves, on the base of the hemi-

sphere, are similar ellipses. (9) gives

e2 = i
2 sec2 , p,

2= i
2 sec2 0, ; and we assume e^e^ i^.
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Hence sec/3 sec@l
i=l (315)

Again, as tan2 (1
- e2

)
= tan2 18

= sec2 18
- 1

,

and tan2 ,(! -e,
2
)=tan

2
/S^sec

2
/?,-!,

multiplying these expressions together, and introducing the relation

established in (315),

tan2 a tan2 a.i
2=L555L^!L^' __J__- 1 . (316)

Hence the principal arcs of the inverse spherical ellipses are con-

nected by the symmetrical relations

tantana,i=l, and sec/3 secj3 y
=l. . . (317)

When the inverse curves coincide, =
,, /3

=
/3;,

and the last

equations may be reduced to tan2 a tan2
J3
= l. Now we have

shown in (59) that when the principal arcs of a spherical hyperconic
section are so related, the curve is the spherical parabola, or when
the curve becomes its own inverse it is the spherical parabola.

sin2 a sin2 /3 sin2 /3We have shown in (9) that z
2= -=1

sin 1 a

(3) gives cos 17=- , Zy being the angle between the cyclic arcs

of the spherical ellipse. Hence i=sin 17, but i is constant. There-

fore all inverse spherical ellipses have the same cyclic arcs.

Resuming equation (314), and making the assumption that the

two inverse spherical ellipses coalesce and become identical, the

resulting curve is the spherical parabola. In this case m= n=i,
and (314) may now be written

2V17^ . Q n /, o =f== V*i 7^=J [1 msm2
<p] VI m2sm2

<p J vl

But as

sm
<p

I~

1_ j 2;
and m=--+ see (60), we shall have v^=T~-j and the foregoing

equation becomes
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But (62) gives

'

\\/ i-flLjMrin**
J V Vl +jt .. (319)

=/f_=i= ^+tan->-t^L
J v I 3

2 sin2 /* v 1 i
2 tan2 /i

Now it is shown in (68) that when the second side of this equation

is integrated between and filt
tan p, being = -^, the quadrant of

/-AV
, . , , , , .4

tanvy/ d/a TT
the spherical parabola becomes j j ==^=^ = 4. since

*} \ X ^~ ? Sill LL

-2 is equal to 1 when tan/i= ^.
j\ i

2 sin u *J i

Hence the first side of this equation represents a quadrant of a

spherical parabola, or
JT

j C* d<P 7T

and this expression is identical with (313), since V
'K=

r-^r--
when

an expression derived from principles quite remote from those
established in the earlier portions of this book. These coincidences

may be taken as satisfactory tests of the accuracy of some rather

complicated investigations, based on principles both obscure and
remote.

55.] That portion of the surface of a sphere which lies between
the cyclic circles may be called the cyclic area.

The spherical parabola divides the cyclic area into two regions.
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In the one, between the pole and the spherical parabola, lie all the

inverse curves, whose parameters range from z
2 to i. In the other,

between the spherical parabola and the cyclic circles, lie all the

conjugate inverse curves, whose parameters range from i to 1.

Let acb, adb be
the cyclic circles, the *5j>- **

intersection of the

sphere by an elliptic

cylinder whose trans-

verse axis is equal to

the diameter of the

sphere, and whose
minor axis is 2j. Let
a series of concyclic

spherical ellipses be

described within this

cyclic area, whose
semitransverse arcs

are 01,02, 04, 05,
and let 03 be the spherical parabola of the series. For every
curve, 01 or 2, inside the spherical parabola, there may be found
another outside it, 05 or 04, such that their principal arcs are

connected by the equations

tana tan
y i=l, sec /3 sec /3;

i 1 .

The algebraic expressions for the arcs of'these curves having the
same amplitude give

elliptic integrals with Fig. 22.

reciprocal parameters.
The concyclic sphe-

rical ellipses will be or-

thogonally projected on
the base of the hemi-

sphere into as many
concentric and similar

plane ellipses, whose
semiaxes are 01, 02, 04,
05. The cyclic area will

be projected into the

plane ellipse A B C D,
and the spherical para-
bola into the area of the

plane ellipse, whose
transverse semiaxis is

k
Let E be the
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area of the plane ellipse the projection of the cyclic area, and II

the area of the plane ellipse the projection of the spherical para-

bola. Then E= 7r/A:
2

,
and II =

.,

X ~T~ 1

whence or the

ellipse the projection of the spherical parabola divides the area of

the ellipse the projection of the cyclic area into two portions, such

that the outer is to the inner as i : 1. The semiaxes of E are k

and kj, while the semiaxes of II are and k i), where/
--

i= sin r), 2rj being as in (9), the cyclic angle.
The importance of this curve, the spherical parabola, in the dis-

cussion of the geometrical theory of elliptic integrals is obvious.

We may determine the principal arcs of two inverse spherical

ellipses by a simple geometrical construction. Let AZB be a ver-

Fig. 23.

T'

tical section of the hemisphere on which the curves are to be de-

scribed. Let F be the focus of the elliptic base of the maximum

cylinder, whose principal transverse axis is accordingly equal to the

diameter of the sphere.
'

Join OZ, FZ, and draw ZC at right angles
to ZF, meeting the line AO in C. Produce ZO until OD=AC,
and on OD as diameter describe a circle. We are required, given
one principal arc Za, to determine the corresponding principal arc

Zo' of the inverse hyperconic. Draw the tangent ZG. Through a

draw the line GOu. Through D draw the line DwG7
. Join OG7

,

it will cut the sphere in a', the vertex of the principal arc 7id .

Let OZ=
, then ZG=tana; and as CZF is a right-angled tri-

A:
2 k

le, CO=ZD= -=-, k and B being the semiaxes of the

VOL. II.
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maximum cylinder. As all the bases of the cylinders are similar,

Now as ZOG and ZDG' are similar triangles, ZG : ZO : : ZD : ZG',

or /fctana : k : :

*
: ZG' or ZG'=T- . But ZG'= tan,; hence

i i tan a

tan a tan
,
i= 1, or the arcs and a,

are connected by the equation
established in (317).
When we require to know which of these successive curves on

this sphere is the spherical parabola, the same construction will

enable us to determine it. Draw ZT, a tangent to the circle on

OD, take ZT'= ZT"= ZT, and join T' and T" with O cutting the

sphere in c and c'. Zc= Zc' is the principal semi- transverse arc ofthe

spherical parabola; for ZT,
2= &2 tan2 a=OZ .

>=
, or tan2 = -r.

i i

7T
As ZT'>ZO, cZc'>-^ ; or the principal arc of a spherical para-

bola is always greater than a right angle. Since in the spherical

parabola y + 2e=^, the angle COT'=e, or COT' is equal to half

the distance between the foci of the curve.

56.] It is easy to show that the integrals of the first order in

sec. [53] may be represented by two spherical parabolas having one

common focus at F, the nearer vertex of the one curve coinciding
with the focus of the other.

Thus, let F be the pole of Fig. 24.

the hemisphere ABD. Let D

BC/ and AC,F, denote two

spherical parabolas having
one common focus at F, F

y

and / being the other foci.

Let F/=7, and therefore

FF,= -7. Hence the mo- A.
e

dular angles of the two

curves are 7 and ^7;
and if we make cos 7= i,

/7T \
eos( 7 )=;.

Thus, while the arc of the one is given by the integral

i 1
/i J . ==r, the arc of the other depends on the integral

z"smz

f d?

J VI -/sism
2

<p
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57.] On the value of the complete elliptic integral of the third

order and logarithmic form.

Let

Jo [l-n si]

d<p

N r
. . . (320)

sin2
<pJ V 1 z

2 sin2
<p

/i2 \
Assume /c the criterion of sphericity= (1 n) I 1

j
, . . (321)

then
dp d<p

a dp

Multiply by 2/c, then

N
_. (322)

But (134) gives, making the necessary substitutions as in (297),

\

>'; . (323)

and p_df_ _ [2z_

2

_2_2^ I f

Jo N Vl~ L 2 n JJ N VI

Introducing the substitutions suggested by the two latter equations
into (322),

Now T-= ( -g 1 ),

\n
2

/

. . . (324)

whence

~T

an VI

d*

dn
. (325)
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If we divide this equation by 2 */K, tne first member will be the

differential of \/K . Integrating this equation,

, (% d<p 1

L). viJ
=. (326)

Assume

rc=i2 sin2 0, then /C= ~, dn= 2i2 sin cos 0d0. (327)
L I/

i~ 14. a /\ l~^~~
"""

S 7\

J n^ v* / *

^
J
/^

Jsi

We must now integrate this expression,

dfl

sin2 \/l *
2
si]

i
2 cos2 0d(9

sin2 0)3

f
J
2 cos2

J (1 -i
2
si

=(^--^ f y.
J sin2 \/l i

2 sin2 J Vl *
2 sin2

"

vT^i* Sin2
+
J (1

_ J2 Sin2
^f

=
J -v/l^FSn2^"

*

J (l-i
2 sin2 0)i

(329)

f
J

adding these equations,

dfl cot0

tan2 6> Vl-i2
si

_____ ,

(299).
J

We have next to compute the value of the integral I--=.

Jn V*

f
d0

fdfl
J Vl-i2 sin2 J Vl#flV'*

Substituting these values of the integrals in (326),

d<p

.. . (331)
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If we now substitute this value of
C 2 d<p
I

T

/7
m the equation given

Jo N VI
in (175) for a quadrant of the logarithmic ellipse, namely

IT IT TT

^f^i+J>Vl,
2 Vl-

n

]

IV
since =

(1 z^sin2 0) cot2 0, we shall obtain the result-

ing equation,

(332)

writing H for

P~2
d<p f

- f"2

-73 J d# V (Ie) d<p VI
^.Jo V1J i_J j J

(333)

or in the ordinary notation,

When we require to determine the constant, we must not suppose
0=0; for this would render n=Q, and so change the nature of the
curve. Neither should we be justified in making z'=0 (as some
writers do) ; for this would be to violate the original supposition
(and all the conclusions derived from it), namely that i is constant
and less than 1. Moreover, since m +nmn=i'2

=Q, on this hypo-
thesis, m+n=mn ; or m and n would each be greater than 1, which
is inconsistent with the possible values of those quantities.
We have now to determine the value of the constant. In these

investigations we have all along supposed n>m. The least value
n can have is n=m. Were we to suppose n to be less than m, it

would be nothing more than to write m for n, since m and n are
connected by the equation m -f n mn= i

2
. Hence, ifm is not equal

to n, one of them must be the greater, and this one we agree to call

n, writing m for the lesser. To determine the constant, let us
assume n=m.
Now n=i2 sin2 #, as in (327), and n, when equal to

cot2 6 =
m s

and= 1 Vl i
2 = 1 j, (LO)

= i z* smz
(/ =/

tan#=/-.
|

. Hence the coefficient of H in the last equation,
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-x- FT, becomes 0. since in this case cot0= \/j; and
cot0 Vile) 7

as n= m, the curve is the circular logarithmic ellipse. See sec. [43] .

The last equation now becomes

'1
'o

' (334)

Now, if we turn to (176), we shall find this, without the constant,

to be the expression for the quadrant of a circular logarithmic

ellipse, or the curve in which a circular cylinder, the radius of

whose base is a, intersects at an infinite distance a paraboloid inde-

finitely attenuated. Hence the constant is ; and (332) without

the constant represents a quadrant of the logarithmic ellipse ex-

pressed by elliptic functions of the first and second orders.

CHAPTER VII.

ON THE LOGARITHMIC PARABOLA.

58.] The logarithmic parabola may be defined as the curve of

intersection of a parabolic cylinder and a paraboloid of revolution

the vertex of this surface being supposed to touch at its focus the

plane of the parabola, the base of the parabolic cylinder.
Let the equation of the paraboloid be

(a)

and y
2= 4A2 + 4A# that of the parabolic base of the cylinder, the

origin being at the focus, k is the semiparameter of the para-
boloid, and h is one fourth of the parameter of the base.

Therefore a?
a+ y*= (2h+ at)*

= 2kz; ..... (b)

hence, x being the independent variable,

d g h

therefore

dS (2A +#)[*+ (h+x) (2A+ *)
' '

Now the expression under the radical being a quadrinomial in x,
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must be reducible to the usual form of an elliptic integral. We
must choose a suitable transformation. Let

an'r- _
Lull I i o . i a~~ To

"
i .... lei

2 - 2 2

deriving this value from (c). , Substituting this value in (d) and

reducing, we obtain the simple expression

d2_2A+a?
da? k sin T'

T is evidently the inclination to the plane of XY, of a tangent drawn
to the curve.

We must now eliminate x. Since

k* tan2 T= 2#>+ 3hx+ x*,

adding and subtracting 2h?hx, we shall have

/t
2 tan2 r= (2A + #)

2 -;

Completing the square by adding , and taking the square root,

The positive sign only must be taken ; for whenx=h, tan r=0.
Substituting this value of 2h + x in the expression for the arc,

d2 h+ <S (4k* tan
g T+ h?)

dx~ 2ksinr
~..... W

If now we differentiate (e), we shall obtain

d# 2A:
2 sinT

dr cos3 T\/(4
2 tan2 T

Multiplying the last equation by this expression,

QZf di ux Ilk k

dr
~~

da; dr
=

cos3 T v' (4^;
2 tan2 T+ A2

)

+
cos8 r

dr , f dr

59.] There are now three cases (a), (/3), (y) to be considered :

2k=h, 2k<h, 2k>h.

Case (a). Let h=2k, and the last equation will become

COS3 T COS2 T
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f dr
Now k tanr is the ordinate of a parabola, and k 1

g
is the length

of an arc of this parabola from the vertex to a point where a tangent
to it makes the angle r with the ordinate. Hence, if we assume on
the logarithmic parabola a point M, and through this point draw a

plane touching the parabolic cylinder, this plane will be vertical,

and will cut the vertical paraboloid in a parabola whose semipara-
meter will be k. This parabola will touch the logarithmic parabola
at the point M. Hence in this case the length of the logarithmic

parabola to the point M will be equal to the arc of the plane para-
bola from its vertex to the point M, plus the ordinate of this para-
bola at the point M.

Case (/3). Let h>2k.
The general expression may be written

dr

cosr T smT.jV^z^ri

(c)

and the last equation becomes

dr dr_,f_dr f dr

J cos2 TV (1 -i
2 sin2 T)

+
J cos3 rcos2 T-v/(l-i

2 sin2 T)"
r 'v

Jcos
3 T (

d
)

Now, Y being the arc of an hyperbola, a the transverse axis,

and i
z -=

2 , 2 ,
it was shown in (c) sec. [52] that

dr
; . . . . (e)

'

cos2 TV (1 i
2 sin2 r)

hence, if k= -
= -, we shall have

Logarithmic parabola= plane hyperbola+ plane parabola, (f)

The semiaxes a, b of this hyperbola may easily be determined by
the equations

We may eliminate the arc of the hyperbola and introduce instead

elliptic integrals of the first and second orders.

Let 4/1= 1 i
2 sin2 T, then as in (d)

2 f dr dr

'cos2 r\/I cosa r'
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and the formula (293), for comparing elliptic integrals with re-

ciprocal parameters, gives

We have also, as in
(1) sec. [52]

Jdr
1 . z sn T cos r

r7i
=
r^72 drv/I f

Adding and reducing,

Case (7). Let 2k >h.
To integrate in this case, we must transform the second member

of the equation (h) sec. [58] . Assume

2tanr=A tanv...... . . (j)

4^2_ ^2
Then if we make rg-

=J
2
> we sna^ nave

\ ?. , *.
, da? A sin v

a?)=A + A secu, and J-=TT
dt> 2 cos2 1/

But sin2 T=-rT5-7^ . . a x .

d2' A V ( 1 /
2 sin2 v) A -/ ( l ;* sin* ,

hence -r-= o ^ - + s -^ ~^~ (k)rii V. j^r\o* i *J r>/^o" *i x '

Now, since

2 cos2 u 2

dv_
CO82 T 2 COS2 l'

cos v cos
and cos T= -

^v (1 <;
2 sin2 v) v J

writing J for (I/2 sin2 f), we shall have

J
2 sin2 u)

_ cos3r 2J coss y

or S'=^ f dv

2J -/(I'/sin^

A r___du__ *fJi_
2 ( J ^

J cos* !/(!-/ sin8 w)
+

Jcos3 T

Now the second term of the right-hand member of this equa-
VOL. n.
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tion is the expression for an arc of an hyperbola the distance

between whose foci is h. Hence

y=^-f--
d
;...- --+Y+n, . . . (m)

II being an arc of the parabola.
We may eliminate the function of the first order and represent

in this case the arc of the logarithmic parabola by the arcs of an

ellipse, an hyperbola, and a parabola.
Let Y be the arc of an hyperbola whose semitransverse axis is

-, and putting E and II for the elliptic and parabolic arcs,
/

n(T), . . (n)

or, as the equation may be written,

ON THE CURVE OF SYMMETRICAL INTERSECTION OF AN ELLIPTIC

PARABOLOID BY A SPHERE.

60.] The curve of symmetrical intersection of a sphere by a para-
boloid, whose principal sections are unequal, may be rectified by an

elliptic integral of the third order and circular form.

Let a?
2+ y

8+a=2r*and^-+-=2* . ... (a)K K-t

be the equations of the sphere and paraboloid, in contact at the

vertex of the latter. Then, finding the values of Ax, dy, and dz,

~z[z-2(r-k)][2(r-k l)-z']'

Assume z=2(r k) cos2 6+2(r k
1)sin

z ..... (c)

Introducing the new variable 6 and its functions,

V(r-A) + (r-*,) tan2

Assume k(r A:
1 )

2 tan2 ^= A
1 (r-A)

2 tan2 <p; . . . . (e)
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then, introducing the variable
<p
and its functions,

k
, )
cos2

<p+^ (r k) sin2

nd __<-_ (f)~ '

Multiplying together the foregoing values of -73 and ^-,
and inte-

grating,

d_
'

if we write m for

Tli andi* for ..... -

(h)J r

^ sin2 a sin2 /3 2 sin2 a sin2 /3 . . .

JNow, as i" ^-3 ,
and m= ez=-^-=-, as m (9),sm2 a sm2 a cos2 /3

we get from these equations

whence Vr2
^/^, sin {>='tana

Making these substitutions, (g) will become

,= V^^M, ^^ sm j8 f- -^= (j)t/c
i tan a K

J [i
_ c sin*

<p] v/1 -sin2 77 sin2
<p

Now, as we have shown in (10), this expression denotes an arc

of the spherical ellipse whose principal angles are given by the

equations (i), and whose radius is VY2 kk
}

. Hence, if a sphere
be described whose radius is not r, but \/r2 kk

} ,
the length of the

curve, the intersection of the sphere (r) with the paraboloid (kkj
will be equivalent to that of a spherical ellipse described on the

sphere whose radius is *Jr* kkr
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When r=k, k being greater than k
lf (d) becomes

-A or s=

Hence s is an arc of a circle. That such ought to be the case is

manifest
;
for in this case the sphere intersects the paraboloid in its

circular sections, and A /
~

* is the cosine of the angle which the
V k

plane of the circular section of the paraboloid makes with its axis.

It is obvious that the square of the radius of the sphere must
be greater than the product of the semiparameters of the principal
sections of the paraboloid ;

otherwise the surface of the sphere would
fall within that of the paraboloid and their intersections would
become imaginary.

CHAPTER VIII.

ON CONJUGATE AMPLITUDES, AND CONJUGATE ARCS OP

HYPERCONIC SECTIONS.

61.] Conjugate arcs of hyperconic sections may be denned, as

arcs whose amplitudes <p, %, to are connected by the equation

cos 6)= cos
(p
cos ^ smpsiny^ yl z

2 sin2 o>. . (335)

This is a fundamental theorem in the theory of elliptic integrals,
and may be called the equation of conjugate amplitudes. It holds

equally in the three orders of elliptic integrals.
The angles <p, %, <o may be called conjugate amplitudes.
When the hyperconic section is a circle, i=0, and

cos w = cos <p cos v sin <p sin v,
/\t /X*

whence t =
(p + ^, or the conjugate amplitudes are

<p + %, <p,
and ^.

The development of this expression is the foundation of circular

trigonometry.
THT-L T . COS , ^When CD= , sin ^= r - and

Vl z
2 sin2

ip

}
(
a
)

cosysm<P= /, .. a -

When the hyperconic section is a parabola, t= l, and (335) may
be reduced to

tan o> = tan
<p
sec ^+ tan ^ sec

<p (b)
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If we make the imaginary transformations

tano>= V lsino>', tan<p= V lsin<p', tan%= i/ Isiny/,

sec
<p
= cos

<p',
sec ^= cos y/,

the preceding formula will become, on substituting these values,

and dividing by V 1,

sin a)' =sin
<p'

cos ^ + sin y/ cos
<p',

the well-known trigonometrical expression for the sine of the sum
of two circular arcs.

Hence, by the aid of imaginary transformations, we may inter-

changeably permute the formulae of the trigonometry of the circle

with those of the trigonometry of the parabola. In the trigono-

metry of the circle, co=
<p +^ ; and in the trigonometry of the para-

bola co is such a function of the angles <p
and ^ as will render

tan [(<p, yj]=tan<p sec^+ tan^ sec<p. We must adopt some appro-

priate notation to represent this function. Let the function
(<p, %)

be written (p-
1
-^, so that tan(<p-i-%) =tan<p sec^+ tan^ sec<p. This

must be taken as the definition of the function
<p

-1-
^.

The theory of parabolic trigonometry, which more properly

belongs to this part of the subject, has been fully developed in the

first volume of this work (see page 313) .

If we take (335) , square it, and add (cos a cos yj
2 to each side to

complete the squares, and reduce, we shall have

cos<p= coso) cos^+ sino) sin^ \/l i
2 sin2

<p.
. . (c)

In like manner

snw l~

since (335) shows that when
<p
= 0, coso>= cos^;, it follows that in

(c) and (d) the radical must be affected with the positive sign.

62.] Let us assume the equation given in (335) between the

conjugate amplitudes,

cos <o=cosp cos ^ sin p sin^ \ 1 i* sm*G>.

Differentiating this equation on the assumption that w is constant,

"
d<p

(336)

writing Vl for Vl i
2 sin2 w.

_ cos <p cos y cos to

But \/L= ^ -isin
<f>
cos y
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substituting this value of VL in the preceding equation,

[sin <p
cos % + cos

<p
sin % VX] becomes sin co v%>

and

cos
<p
sin %+ sin

<p
cos ^ VIM becomes sin co v'lp ;

consequently

sinw Vlxdp + sinw V%d%=0; .'. . . (b)

or dividing by sin co Vl<p V^x^ we sna11 btain

-+-=-0. . ...... (c)

Integrating this expression,

-C. ..... (d)

Now, when %= 0, <p
= co. Hence C= 1 -

J

and the resulting expression becomes

, ,

(337)

This is the fundamental equation that connects conjugate elliptic

integrals of the first order, if their conjugate amplitudes are con-

nected by the algebraical equation

cos co= cos p cos % sin
<p
sin % \/l z

2 sin2 co.

63.] The equation (335) between the conjugate amplitudes,

cos co =cos
<p
cos % sin

<p

which gives the foregoing relation between conjugate elliptic inte-

grals of the first order, naturally leads to the assumption of such a

form as the following,

as equal to some function of
<p, p^,

and w ; or as co may be assumed
to be independent, and ^ a function of

<p by virtue of (335), we may
assume, using the notation adopted in this work

(338)

and proceed to determine
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Differentiating this expression,

..... (a)

cos <f>
cos eu cosv

bllt VI.= Sn, riBX
*. ...... 00

cos % cos o> cos
ft ,, .~~

or, reducing to a common denominator,

d<p(2sin<p cos<p 2 sin<p coso> cosy,) +d^(2sin^ cosy, 2 sin
y, coso> cos<p)

2sin<psinY,sina>

Now 2 sin
<p
cos <pd<p

= d sin2
<p,

and 2 sin^ cos^d^= d sin2 ^,

while

2d<psin<pcos^cos6> 2d^sin^cos<pcoso)=2d. (cos<pcos^coso)).

Hence
, d fsin

2
<p+ sin2v+ 2 cos <p cosy cos o>l

d<p Vl + dY Vlv= -J^- -^- (c)^ v x
2sin<psm^smcu

But if w$ square and reduce the conjugate equation (335) we
shall have

sin2
<p -f sin

2
^+ 2 cos<p cos^ cos w= 1 + cos2 to + i

2 sin2
<p
sin2^ sin2 o) ;

hence

d [sin
2
<p + sin2%+ 2 cos

<p
cos

Y, cos w] =iM (sin <p sin^ sin o>)
2
, (d)

or df(<p)= i
2
d(sin^) sin^sinw)...... (e)

Substituting this value of f
(<p)

and integrating

Jd<p Vlp+Jdy, V'Ix ==^ + *2|S^n(P sin ^ sin w.

To determine the constant C. When %=0, <p=o>, and f(<p)=0;
and therefore C=Jdft> \/l;

Hence finally

Jd<p \/I<p+Jd^ Vlx j*dft>
Vl<o= *

2
sin<psin^sina). . (339)

64.] To prove that

_C dw _1_ *an-ir w *^# sin
<p
siny shift)

J (l+wsm2
a)) vX> V/AC Ll-j-n n cos

<p cosy cos oJ

or putting U =sin
<p
sin y sin <u, and V=cos

<p
cos y cos o, . (a)
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and using the notation hitherto adopted in this book,

3VC
_ f

d% f _ tan-.

VJNxVIx J
Differentiating the foregoing expression on the supposition that co

is independent of
<p
and %, and that ^ is a function of

<p,
as in (335),

we shall have

=d%), . (342)

assuming as before f(<p) for the unknown function of
<p.

d<Z) dy
But as -== 4t, as shown in sec. [621, the last expression

V% Vlx

may be written

d<p

sn<p ~| _.,/./
x

2 2 2
~

Li + n sin2
<p + n sin2 %+ w2 sin2 p sin2 ^

or . -^ ^=
|^j

d<p r i^-i,_
2 + ra sin2

<p+ w sin2X+ n* sin2
<p
sin2

_
and -=*=.

-^,
as in sec. [62], substituting in the preceding

\ -10 r

expression

i_[vi^d(p+ vr;dx] = ^ f( } (343)
i
2
[1 + n sin2

<p + n sin2^ + w2 sin2
<p
sin2%]

But it has been shown in sec. [63] that

Vlipd(p+ v/Ix d;j=i
2 d (sin^ sin^ sinw) ;

[1+ n sin2
<p + sin2%+ w2 sin2

<p
sin2%]

=

For brevity let this denominator be put D, and let

sin
<p
sin ^ sin co= U, as in (a),

then the preceding expression becomes
-tpr-

=
df((p). . . (345)

We must develop this expression. (335) gives

cos3
<p
cos2 %= cos2 co + 2 cos a) sin

<p sin ^ VI + sin2
<P

sin2

and cos2
<p
cos2

^;
= 1 sin2

<p
sin2

^; + sin2
<p

sin2^;.
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By the help of this relation we may eliminate sin2
<p + si

the denominator D, and we shall get finally,

D=l +wsin2
&> 2wcosG>sin<psiu^ \/Iu> + sm

U U2

from

or =
smw

writing as before U for sin
<p
sin % sin .

The equation now becomes

/en sin2 <adU

, (346)

(347)

having multiplied this expression by V'*> of which we shall pre-

sently see the need.

65.] Assume the equation,

tan=^^ (348)

comparing the denominator of this expression with that of the

preceding formula, and also the numerators, so that the coefficients

of U and U2
may be the same in both expressions, we shall then

have

n2
&>), CB= w sin &> cos ft> \/Iw

in which A, B, C are undetermined constants.

Differentiating this expression,

ABdU

and A2 + C2= n2 + ni2 sin2 &> .

Hence B=sino) yl-fam*j C=

\/mn

n cos co

. /l+w\and A=nsin&>(-
\ n /

But it has been shown in (42) that

, A n sin w V *
-,

. -r,
hence A= -

, and AB=

(350)

Having thus found for A, B, C values which satisfy the equation
(347), and render the differential expressions (347) and (349)

VOL. II.
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identical, their integrals must be identical. But the integral of

r AU 1

(347) is V*f(?)i and the integral of (349) is = tan- 1 -

Hence v//gf< = tan- 1
; .... .(351)

or substituting for A, B, C, U their values as given in (350), we shall

cos<p cos y cos &>

have, putting for y !, in the constant C its value
s

as derived from (335),

/--> . r n \/K sin (p sin v sin o> ~i- 1

\>
>J

foK(y\
(352)

n cos
<p
cos

y,
cos o>

or finally, putting for A//C its value ( \ \/mn,

r Cl , \/mn sin
<p sin y sinw

Vf(<fi)=tan-
1

1 -- cos <p cos v cos a)
l + n

66.] Hence if we assume the conjugate amplitudes p , y, to as

denned by the equation (335), and take the sums of the conjugate
integrals of the first, second, and third orders, we shall find them
connected by the following equations :

,f dx f d _ .

J v Jyr
\/I

d(P + r %_ _ r dm = 1
tan

_ 1
r n V^si

ip JNX Vlx JN^VL V*
'

Ll + w wwcos(pcos%cose
When * is negative, f

(<p)
is no longer a circular function, but a

logarithm, or, in other words, the circular arc becomes the arc of a

parabola, since the elliptic integral of the third order and loga-
rithmic form represents the sections of a paraboloid.

On Conjugate Arcs of a Spherical Parabola.

67.] The well-known relations between elliptic integrals of the
first order, whose amplitudes are conjugate, develop some very
elegant geometrical theorems.

Thus, in fig. 25, since the arc AQ=/ f JL + QR, and the

T d
'

1

|

arc

T d
=J 1 = + QR' (see sec. [20]), the arcs
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iiT. 25.

Now AQ+ BQ=two quadrants of the spherical parabola, and
tr

QR + QR'= ^ -,
whence half the circumference, or

In sec. [22] it has been shown that the complete integral repre
sents the semicircumference, whence

Comparing these equations (a) and (b) together, we get

^ f x

vr/J virjJ VI,

Now, as the triangle RR'P is a quadrantal right-angled triangle,
see sec. [24], the relation between the angles AFR, BER', or

<p

and ^, is easily discovered. Since I?PE is a spherical triangle
7T

right-angled at P, and FE=2e=- y, we get j tan<p tan^;=l,
,

A

since sin 7==;. When AQ=BQ, <p
= x> and tan<p= -=..

The locus of the point P is a spherical ellipse, supplemental to

the former, having the extremities of its principal minor arc in

the foci F, E of the former.

68.] Let <r, <T
t ,

a-n be three arcs of a spherical parabola, corre-

sponding to the conjugate amplitudes <p, %, to. Then, successively

substituting these amplitudes in (58), the resulting equation
becomes

T J
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But as the amplitudes <p, %, co are conjugate, the sum of these

integrals of the first order is = 0, whence

(T + a, (T
tl
=T + r ru....... (353)

Or, when the amplitudes of three arcs of a spherical parabola are

conjugate amplitudes, the sum of the arcs is equal to the sum of the

protangent circular arcs. The word sum is used in its algebraical
sense.

On Conjugate Arcs of a Spherical Ellipse.

69.] If, in (42), we substitute successively <p, %, w, and add the

resulting equations, we shall have

l+n\^'
rC d<p C dy C d<o ~i

1 7=4 1 ~l~r^ T T
/
+ T

// I

(354)

Now the conjugate relation between <p, %, and a> renders the sum
of the integrals of the first order=0, and the sum of the integrals
of the third order equal to a circular arc , which is given by the

following equation, as shown in (352),

n
1 -- cos

<p
cos % cos w

Hence cr + a-
l

a-
ll

= Tr
l
+ T

ll
...... (356)

Or, when the amplitudes are conjugate, the sum of three arcs of a

spherical ellipse may be expressed as the sum offour circular arcs.

When one of the amplitudes eo is a right angle, cr
lt
becomes a

quadrant of the spherical ellipse =0-. ^=0, and = T=TP as we
shall show presently, whence

(cr o-
;) O-SST, which agrees with (52).

Or the difference between two arcs of a spherical ellipse, measured

from the vertices of the curve, may be expressed by a circular arc.

T IAK\ f j -L JIn (45) we found tanr=-=^= =*-, tanr.=
A/i i

2 sin2
<p

~

Now, when w= ^, (a) sec. [61]
/i

COS(D COSV
gives 9m%=~-~====, sm(p= ,-f^Vl sm2

cp vl * sm2

%
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\^mn sin <t> cos <p *Jmn sin v cos y
\\ 1 1once Vmn sm 9 siny = =.

=
,. . ^=^>

7T
or @=T=T

y
when r

/;
=0 or o>=

-^-

70.] When we take the negative parameter m instead of the

positive n, (11) gives

Now the sum of these arcs is equal to a circular arc
/,
which

may be determined by the expression

tfm ft = V^ sin p sin % sin a,

(35g)m
1 + -- cos <p cos v cos cu

1 m *

as in (352) ;
whence O-+ CT,

cr
;/

=
;
...... (359)

A little consideration will show that
,
must be taken with the

negative sign ;
for if we compute the values of tan and tan

/

from (355) and (358), we shall find

tang-tan = UV V^ ( + )
1

a symmetrical expression which remains essentially positive, how-
ever we may transpose tan and tan <*)

y
.

Hence tan (3^= tan( ,)
=tan

/}
or

y
must be taken with

the negative sign.
If we compare together (356) and (359) , we shall have the fol-

lowing simple relation between the five circular arcs , y, r, r,, r,,,

<H)+
/

= T + T
/
-T

/y
....... (360)

We may give an independent proof of this remarkable theorem.

The primary theorem (335) cos co= cos
<p
cos ^ sin

<p
sin ^

sin to cos w sin <p sin y sin o> cos o>

gives t

\/Iu cos
"P
cos X~ cos m

and cos2
<p + c

Let snupsinysinwrsU, cos<pcos^;cosa)=V. . (361)

M _ \lmtl sin CD cos o> V^^ U cos2 a>
IN OW tan TII--=====-- ~~-

5
-rr=- ^

Vl 2 sin2 a> cos2w V

V^Ucos^ t|mT= V^Ucos2
^.

cos2
<p

V cos2^ V
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,
x

tan T -f- tan T, tan T,, + tan T tan T, tan TWand tan (T+ r, T,,)
= -'-'-

,

1 + tan T
/y
tan r,+ tan T tan

/;
tan r, tan r

whence tan (T+ T, r
;/)
=

I
_
T
r COS2

(p
COS2V COS2ft) m/iU2 COS2

<p
COS2^ COS2G)

^^Lc^s^^+
cos2

X-V
+c^2^^V~ (cos

2
<p-V) (cos

2
X-V)(cos

2
a)-V)

o. o __O O* ~,-,'2v*.,-,.^-. l2_,.

_ TJ2
Cos2% cos2&) cos2o) cos2

(p__ cos2
cp

" __
"Y) (cos

2
o)-V) (cos

2
o)- V) (cos

2
,?
-V) (cos

2
<p-V) (

If we reduce this expression, we shall have, on introducing the

relations

, (363)
and cos2<w cos2%+ cos2

<p
cos2a>+ cos2% cos2

<p

( . ,.tan (r+r,-r,,) - (363)

If we now combine the values of tan and tan
,, given in

(355) and (358), we shall have

tan (0+ a) _ (364)^
/H-(i

2+ mw)V-mn(V2+/U2
)

'

whence O + O^T+ T,
r

/y ,

as is evident from an inspection of the preceding formulae.

On Conjugate Arcs of a Logarithmic Ellipse.

71.] In (162) substitute % and w successively for
<p.

Let

sin
<P cos <p

,

(

(365)

1 wsin2^ 1 wsin2 o)

we shall have, adding the three resulting equations together, and
,. .,. , nm
dividing by -r=,

\mn

TO 0_ n) rf d<p f d^ f dw

~(-) 9b>y^5+
J^-J

dtp.:: f d% /* dta
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Now, as
<p, x> and w are conjugate amplitudes,

fJL
J VIVi/J Vix JVC

Vlx Jda) Vl<o= i2sin
<P sin^ sineo. See (339).

Whence

2 PC V V T V
v w X p

--
K nm nil

/.

f d

J N
/-

.
'

V/CU N0 VI N
x VI

We have now to compute the sum of

Since VI
-
= co8 <pco8 x-CQ8a,

sin
<p
sm ^

sn to cos to

UN

if we m ake, as before, cos
<p
cos^ cos w= V, and sin

<p
sin^ sin G>=U .

Finding like expressions for <I> and X, we shall have

n rsin2 <pcos
2
<p sin2v cos2v sin2 o>cos2 6)~|

nfl^^l- ?
-^ +-4=-* --^-UL N^ Nx Nw J

V rn sin2w w sin2^ n sin2 <~~" ~~ ~

,, n sin*
<p

cos*
<p_ cos'y (1 +n sin2^ 1) _ cos2

<p cos2
<p

TT-VT TT-*. T ^ "W-*^ ^" '" " -

nnd
cos2 (p_l+n-nsin

2^-l_ 1 (1-n)
UN^

~

, nsin2
(pcos

2
(p_ 1 _cos

2
<p (1-n)~^^~ ~nU ~U~"^lJ^r j

Vw sin2 <p V V^^ L=
Yy

=T=

Finding similar expressions for the functions of o> and ^, and

recollecting that, as in (362),cos
2
<p + cos2x+ cos2 o>= 1 +2V i

8U2
,

(368)



128 ON THE GEOMETRICAL PROPERTIES OF ELLIPTIC INTEGRALS.

we shall have, making W= l n + riV,

nU(n<5>+ nX-nSl)=3-n+ nV+ni?U
z-W^ +^- + ^-

Now fd<p -v/I^+Jd^ VI* Jd&> VL=*
2
U; as in (339), whence

<-fda> ^C)] 1

i" i i
'369)

Nx

+
N;-

1
]J

We shall find, after some complicated calculations,

2*U8
,
..... (370)

and NxNw +NttN?+N?Nx=W2 + 2W-ra(l-ra)(i
2 + m)U2

. (371)

Substituting the values hence derived, the whole expression

becomes divisible by rail
2
,
and we shall obtain, finally, the follow-

ing expression,

nm
, . . (372)

2mn^
+
(n-m)(W2-n2/cU2

)

It will be shown that

_ r C dd> I dv C d/I _ i 1 /v

IjN,^ jN.vixlN.^,,^ {373)

=5 log

or writing, as before, W for 1 n+ wV, and multiplying numerator

and denominator by the numerator,

/-rf ^ r dx _r do, n r
' v "UN? vi* J NX vrx JNU viJ L

When /c becomes negative or V
'

K imaginary, we may pass from

the circular to the logarithmic form of the third order by the usual

imaginary transformation. When K is negative (352) gives

____ /n \/ /C\J= V 1, where tan @=

It is a well-known theorem (see vol. i. p. 335) that

i^3*^|l- - (374)
I- V-ltanJ
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Now instead of \/ Ttan @ we must write sin f= ^ , and the

preceding equation becomes

=log
,

=log
,_>

; (375)

and this logarithm becomes log (sec-f tan), which is, we know,

the integral of 1 -* We shall therefore have
Jcos

n v* d df
;
and as 2 f

d
, f

j ^|=secf tan+J

the result, dividing by 2, becomes

(n-m) (W2-n2/cU2
)

. . (376)

Hence the sum of three arcs of a logarithmic ellipse may be ex-

pressed by an arc of a parabola and a straight line.

When one of the arcs % is a quadrant, V=0, and the equation
becomes

(377)

which coincides with (160).

If we apply to (163) the same process, step by step, and make

sin isin 5"= w /

, in which W
;
=l m+ rriV, we shall find

Wy

_? _? 7, f d$. km*n V*f
UV

*
J cos3 ^"

1
"

(w-m)(W
2-m2

A:
/
U2

, f dr , r dr, _ , C drn

J COSST Jcos
3
^ J co&Sru,

(378)

If we subtract this equation from (376), we shall have

J/ 10. / j / j / j
d?

,
r <* = r d>r

!

i
d<r

/ r dT
/.

COS3^ J COS8 ^ JCOS
3 T JCOS

3
^ JCOS

3T

n m

(379)

VOL. II.
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Now this last term is divisible by (n rri),
and may be reduced to

the expression

mn

If in (170), which gives the relation between elliptic integrals of

the third order, we substitute successively the conjugate amplitudes

<p, %, and a), and add the equations thence resulting, we shall have

f
Jcos

fJlL-
Jcosry

cosr (381)

in which

.

e_ \Jrnn sin
<p
sin^ sin ft>

AJ

COS
<p
COS

y^
COS ft)

i

, .,_ v inn sm
<p
sin

y^
sm o>

Sill L w
_SUIT

lm
smT.= smr

/;
=

Vl i
2 sin2

<p .

\/mn sin eo cos to

(382)

If, in these equations, we change n into w, and therefore sin

into V 1 tan (H), sin into V 1 tan @
y,

sinr into V 1 tanr, sinT
y
into V 1 tanr

y,

and sinr
/y
into V 1 taiiT

/y ,

the preceding equations will become

__
~

' 1T/
~

__
,
an

;
_

\/ wm sn eo cos w

and +@
/
= T + T

y
r

y/,
as in (360), values which coincide with

those found in sec. [69] for the circular form. Or we may pass
from the logarithmic to the circular form, or from the paraboloid
to the sphere, or inversely, by the imaginary transformations above
referred to*.

Un examen plus approfondi des fractions de troisieme espece, nous fera con-
naitre que ces deux classes sont essentiellement irre"ductibles entre elles. VER-
HULST, Traite des Functions Elliptiques, p. 78.
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CHAPTER IX.

ON THE MAXIMUM PROTANGENT ARCS OP HYPERCONIC SECTIONS.

72.] Since the protangents vanish at the summits of these curves,

there must be some intermediate position at which they attain their

maximum. When the curve has but one summit, as is the case in

the parabola, the hyperbola, the logarithmic parabola, and the

logarithmic hyperbola, there evidently can be no maximum*.
i
2
sin<pcos<p T ,.

In the plane ellipse, the protangent /= -=
; . J . It we

Vl * sm2
<p

differentiate this expression with respect to
<p,

and make the dif-

ferential coefficient 3 =0, we shall get

4= (384)
yj

Substituting this value of tan
<p

in the preceding expression,

t=a-b (385)

In this case, the arcs drawn from the vertices of the curve, and

which are compared together, have a common extremity, or they

together constitute the quadrant, as may be thus shown.

The coordinates x, y of the arc measured from the vertex of the

I/ U
minor axis are #= a sin 3, y= b cos & : therefore - =- cot 3= / cot 3,x a

since ja=b. If we now make cot3= y?j y #=$ Again, as

tt u u
tan X=Yg ,=/

2
tan\; or making \=^, or tan\= -p, hence

b x a,
, yj

11 if 11

Z-j
=j7 }

or 7j=-. Therefore the arcs have a common extremity.

We have also tan2 X=r. This property of the plane ellipse, called

Fagnani's theorem, may be found in any elementary treatise on

elliptic functions.

* The investigation of these particular values of those portions of the tangent
arcs to the curves, which lie between the points of contact and the

perpendicular
arcs from the origin upon them or, as they have been termed in this paper, pro-

tangent arcs is of importance, because, as we shall show in the next chapter,
in the different series of derived hypercouic sections, the maximum protangeut
arc of any curve in the series becomes a parameter in the integral of the curve

immediately succeeding.
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On the Maximum Protangent Arc in a Spherical Hyperconic Section.

73.] If we assume the expression found for this arc T in (45),

where i represents sin?;, 2?) being the angle between the cyclic

planes of the cone,

VWsin<pcos<p , .

tan r= -^7r_J!^
r

, ..... 386)
y 1 z

2
snr<p

T being the angle which the linear protangent t to the elliptic base

subtends at the centre of the sphere. Differentiate this expression,
dx

as in the last article, and make j-=0, we shall find, as before,
d<

tanp= ,_*. (387)
\j V sin /3

If we substitute this value of tan
<p

in the preceding expression, we
shall obtain

tan T= tan sec /3 tan/? sec a, . . . (388)

writing f to denote the maximum protangent.
Now if we turn to sec. [68], we shall there find that this equa-

tion connects the amplitudes of three conjugate arcs of a plane

parabola. -Or if r, ft, and a are made the three normal angles of

a plane parabola, and (k.r), (#./3), (k.a] the three corresponding
arcs of the parabola, we shall have

(k . a) (k ./3) (k . T)
= k tan a tan j3 tan T.

If in (386) we substitute for sincp and cos<p their values

\/7
and

,

J
, the expression will become

tanr=. (389)
(1-Kfl

We shall see the importance of this value of T in the next chapter.
I/

In the spherical parabola, as m=n=i, tan2r=^ -.=ir

Precisely in the same manner as in the plane ellipse, we may
show that when tan T has the preceding value, the arcs drawn from
the vertices of the curve have a common extremity. This will be
shown by proving that the vector arcs, drawn from the centre of
the curve to the extremities of the compared arcs, have the same
inclination to the principal arc 2. Now, ->|r

and
o/r' being these

inclinations, as in sec. [14] , we find

tan4
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;iud (39) shows that tan
<p
= cos e tan X. Hence, reducing,

tan2 3 sin2 B

Again, (49) shows, when we measure the arc from the -minor

principal arc, that cot#=,-, or cot#= -r tamlr'. Now, in
b x sm p

order that we may compare these arcs together, we must have

#=X. Hence

, . . tan2 B 1 ,, .

tan2
>Jr'
= - -r.- ....... (b)
tan2 a tau2

<p

When we substitute for
<p any particular value, (a) and (b) will

give the corresponding values of tan
-fy

and tan
i/r' ; but when we

make tan2 <p
= - =-., the values of

sin B j
and i/r' become equal, or

Fig. 26.

the compared arcs together constitute the quadrant.

74.] To determine the inclination, to the horizontal plane, of

the tangent drawn to any point of the spherical ellipse. The

spherical ellipse being taken as the curve of intersection of a cylinder

by a sphere as in sec. [10] , through a side Rr of the cylinder let

a plane be drawn, it will cut the sphere in a small circle, which will

touch the spherical ellipse in the point r, and will cut the base of

the hemisphere in the straight line HP, which touches the base of

the cylinder at the point R. Let O be the centre of the sphere
and Z the centre of the spherical hyperconic. Through the line

OZ let a plane be drawn at right

angles to the plane of the small

circle Rr-n-P, it will cut the sphere
in the arc of a great circle ZTT at

right angles to the arc rir ; and as

the three planes, namely the hori-

zontal plane, the plane of the small

circle Rr-TrP, and the plane of the

great circle ZOP?r, are mutually at

right angles, the straight lines in

which they intersect PR PTT, PO
are mutually at right angles; there-

fore P is the foot of the perpen-
dicular drawn from the centre O
of the base of the cylinder, to the tangent RP which touches the
curve. P is also the centre of the small circle Arrr, since A13 is a
chord of the sphere. Hence ATT is a quadrant, and therefore rir or
v is the inclination of the element of the spherical ellipse at r to
the base of the hemisphere. Now ZO is the radius of the sphere,
and Pr that of the small circle. RPO is a right angle ; and.thcre-
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fore OR2= OP2 + PR2
. Hence Rr2= Or2-OR2

. Now for the

moment putting A and B for the semiaxes of the base of the

cylinder, OP2=A2 cos2 X
/
+ B2 sin2 X

/,
and

--
...(A

2-B2
)
2 sin2X

/
cos2X

/
-^

y /PR2
=^-T2
-

o^
-

.jo' . ^ ; whence OR2 =-ro-2 .
,
r 2 ^ , (a)A2 cos2X

/
-t-B

2sm2X
/

- A2 cos2X
;
+ B2sm2

X/

TS , A4 cos2 X- + B4 sin2 X
/

and therefore Rr2 =Or2
^2
-

2^ . x>2 s^A2 cos2X
y
+B2 sin2X

;

Let Or=l, A= sin, B= sin/3, ..... (b)

RP2

J (sin
2 - sin2 /3)

2 sin2 X, cos2 X,
and as tan2

i/==H-, tan^v= . 5
-- --

sin2 a cos2
cos^Xy+ sin2 ^ cos2 /3 sin2

A,,*

COS OL

t, as in (25), tan X
y

= cose tan
<p
=

^tan<p. Substituting,

we get the expression

sin e sin sin <p cos <p
tan v= r

.

T
. (390)

V(l~ sin2 e sin2
<p) (1 sin2

97
sin2

<p)

In supplemental spherical ellipses, since sin 77 and sin e, see

sec. [9] , are respectively equal to sin e' and sin 77', we infer

therefore that in supplemental spherical ellipses the inclinations

to the plane of XY of the tangents to the curves are the same
when the amplitudes <p

are the same.

If we now differentiate this expression, and make -r-=0, we

shall find that tan*<p=- -. If we substitute this value of tan<p

in (390), we shall get

tanv=tan( /3), or j/= /3. . . . (391)

Hence the maximum inclination to the plane of XY of the tangent
to the spherical ellipse is equal to the difference between its prin-

cipal semiarcs. It is remarkable that the point of the curve which

gives the maximum difference between the arcs, which together
constitute the quadrant of the spherical ellipse, is not the point of

greatest inclination; for this latter point is found by making

tan2 <p=i -p)
while the point of maximum difference is obtained

by- putting tan2 <p= . This is the more worthy of notice, as we
Sill O

shall find the two points the point of maximum division, and the

point of greatest inclination to coincide in the logarithmic ellipse.
If we take the two plane ellipses which are the projections of

the spherical ellipse, one being the perspective, and the other the
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orthogonal projection, and seek on these plane ellipses their points
of maximum division, we shall find that the angles, which tin; per-

pendiculars on the tangents, through these points of maximum
division of those plane curves, make with the principal arc, are the

values which must be assigned to the amplitude <p,
to determine

the point where the tangent to the curve has the greatest inclina-

tion to the plane of XY, and the point which divides the quadrant
into two parts such that their difference shall be a maximum.
This is plain ; for the semiaxes of one ellipse are Stance, Artan /9;

while the semiaxes of the other are A: sin a and Arsin/8. And these

angles are given by the equations

tan a sin a
tan2 X= ---n ; and tan2 X,=- ~.

tan/3 sm/3

On the Maximum Protangent Arc in a Logarithmic Ellipse.

75.] We must follow the steps previously indicated, and differ-

entiate the expression found in (165),

njmn sin <z> cos <p / x

SIIIT= T*...... (a)
Vl i?siii*<p

T here denotes the inclination of the element of the curve to its

orthogonal projection on the ellipse, the base of the cylinder, which
intersects the paraboloid in the logarithmic ellipse, see sec. [38] .

T is also the normal angle of the tangent parabolic arc to the loga-
rithmic ellipse, whose plane touches the vertical cylinder. This

expression will be a maximum when the parabolic arc is a maxi-
dr

mum. Put the differential coefficient j-=0. This gives, as before,

tan<p= -=. Substituting this expression in (a), we get

"We shall find the importance of this expression in the next chapter.

From (392) we derive tan2T= Tj
-

.-,

(1+.;)
.-, 9
-

.2 mn

Now (l+y)
2=2+ 2/ i

a=2 + 2/ m n+mn. Hence, as

whence we get tanr= . Multiply this equation,
yl m+ yln

numerator and denominator, by *J\ mV\n, and the last
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expression will become

\/mn \l\-m \/mn \/l n
tanr=

n m nm
In (171) we found for the semiaxes of the cylinder, whose in-

tersection with the paraboloid is the logarithmic ellipse,

a_\/mn\/lm b_ *Jmn \l\ n
^ -_l^^"\ (393)

k~ nm '
k nm \ * /

This gives a simple expression for the tangent of the maximum

parabolic arc, analogous to (385) and (391). We have only to

take in the parabola, whose semiparameter is k, an arc whose ordi-

nate is a b, to determine the maximum protangent parabolic arc.

The value tan<p= p, which fixes the position and magnitude
VJ

of the maximum protangent arc to the logarithmic ellipse, renders

tan2X= For (150) gives tan2
<p
= tan2 X. But (152) gives

+/3 C C 1 , tan2 \.

= ^ =:, and ~ ^=5^-- ;
hence tan^<p=-

--
.

a C B C B lm 1 m
If we now make

/lm a

=V i=a=v

as we may infer from (171). Now, substituting this value of

tan2 A, in (155), we shall get

a b
tanr= r .

k

Comparing this expression with (393), we find that the maximum
protangent arc is equal to the maximum inclination.

Again, if we differentiate the values of x, y, z given in (158),
the coordinates of the extremity of the arc measured from the

minor axis, and substitute them in the general expression for the

tangent of the inclination of any curve to the plane of XY, namely

,
and make S=X, as before, putting for tan2X=tan2&

2

the value T, we shall get ^^^ _. = r . Hence the arcs

have a common extremity, since they have the same inclination to

the plane of XY. As T=tan2X is the value of tan2 X which gives

the maximum protangent =a b in the plane ellipse the base of

the cylinder, it follows that the point of maximum division on the
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logarithmic ellipse is orthogonally projected into the point of

maximum division on the plane ellipse; and the corresponding

protimgent in the latter a b is the ordinate of the parabolic arc

which expresses the difference between the corresponding arcs of

the former. Thus, while the arcs which together constitute the

quadrant on the plane ellipse differ by the difference of the semi-

axes a by the corresponding arcs of the logarithmic ellipse will

differ by an arc of a parabola whose ordinate is a b.

76.] When the amplitude <p
is given by the equation tan<p= j=.,

V>
or when the protangent is a maximum, the corresponding arc of

the spherical ellipse, or of the logarithmic ellipse, may be expressed

by functions of the first and second orders only. This may be

shown as follows. When tan<p
=

j=,
the arcs cr and <r

t
of the

V>
spherical ellipse, or the arcs 2 and S, of the logarithmic ellipse,

together make up the quadrants Q, or Q,,;
see sections [73] and [75] .

Hence <r+ o-, Q,, or 2-j-S^Q,. But we have also
cr, <T=T,

as in (52), and S, 2= r, as in (160). Therefore 2<7=Q, T,

= T. Or a- and
cr,,

or S and

2
y may be expressed as simple functions of the quadrant

and T. Now the quadrant, as we have shown in the last

section, may be expressed by functions of the first and second

orders only, while T is an arc either of a circle or of a parabola.
Hence an elliptic integral of the third order, whose amplitude

(p=tan~
1

( -=] may be expressed by functions of the first and

second orders only''
6
'.

CHAPTER X.

ON DERIVATIVE HYPERCONIC SECTIONS.

77.] We shall now proceed to show that, when a hyperconic
section is given, whether it be spherical or paraboloidal, we may
from it derive a series of curves whose moduli and parameters
shall decrease or increase according to a certain law ;

so that ulti-

* Tout kappa dont 1'amplitude a pour tangente trigonom&rique -j-=, [or, as
V b

it is written in this work, I TT^ll peut s'exprimer par des fonctions d'une espece

infMeure. VEBHULST, TravU des Fonctions Ettiptiques, p. 99.

VOL. II. T
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mately the rectification of these curves may be reduced to the cal-

culation of circular or parabolic arcs, or, in other words, to circular

functions or logarithms. We shall also show that all these derived

curves, together with the original curve, may be traced on the same

generating surface, i. e. on the same sphere or paraboloid.
In sec. [44]* we have shown that the rectification of a plane

ellipse whose semiaxes are a and b, may be reduced to the rectifi-

cation of another plane ellipse whose semiaxes
a,,

b
t
are given by

the equations a
l
=a + b,bl

=2 \/ab, of which the eccentricity is less

than that of the former, a+ b is that portion of the tangent, drawn

through the point of maximum division, which lies between the

axes
;
and \/ab is the perpendicular from the centre on it.

We have shown in (63) and (74), that if
<p
and ty are connected

by the equation tan (ty <p}=jtfui<p, while i and i
t
are so related

that

we shall have

J \/l i
2 sina

^)
2 j Vl z^sin

2^ 2

Let us now introduce this transformation into the elliptic inte-

gral of the third order, circular form, and negative parameter. In

(191) we found

2 sin2
<p
= 1 -f i

t
sin2 ty cos ty \^I,.

C dip C d<pNow IT- 7^ = 1 r~^ ^ .
=^=-JM yl J [1 msm2

^)] VI * sm2
<p

Or replacing <p by its equivalent functions in ty, and recollecting
that m n+mn=iz

} since m and n are conjugate parameters of

the circular form, we shall find

jizvr
t1

-
1-^ H^'^cc.t VQ vr;

(894)

We may eliminate the radical m cos ty \/Iy
from the denominator

of this expression by treating it as the sum of two terms.

Multip^ing and dividing the function by their difference, since

,-.,
l+J

2

(M VI mn
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It is truly remarkable that whether the parameter of the original
function we start from be positive or negative, the parameter of the

first derived integral will always be positive. Indeed it is necessary
that this should be the case, because the parameters of the derived

functions, increasing or diminishing as they do, must at length pass
from between the limits 1 and i

2
. Should they do so, the integral

would be no longer of the circular form, but of the logarithmic.
Now we cannot pass from one of these forms to the other by any
but an imaginary transformation. This objection does not hold

when the parameter is positive, because the limits of the positive

parameter are and co . It is, too, worthy of remark that the first

derived parameter is always the same, whether we transform from

positive or negative parameters. Write

mn /orm\n.= .. a ; (396)
(I+j)

z

n
t
is the first derived parameter.

We may transform (395) into

d(Z> ,, . vf*i , |~rt WMy/i - a . , /T~l-L-== (l-Mi)i d-ur 2 m '(1 +w,sm2
o!r 1) Tncosy VI,M VI I L n, ^

J

J [i+^sin
2
^] vr,

Now
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If we replace I ^=- in the preceding equation by its value
3 J VI,

f dp
I

/=,
and put Ny

for 1 + n
t
sin2

o/r,

V;M VI

i
2
f d<p 1
1 ?- ^=tan ]

mnj VI \mn

N,

VI

(400)

Now the common formula for comparing circular integrals with

conjugate parameters is, we know, see (47),

lm \ f d<p/l+ft\f dtp /

V w /J N VI \

VI
, _ tan

_
i

l i
2 sin2 f

Adding these equations we obtain this new formula,

l-m\
,

By the help of this important formula we may establish a simple
relation between the sum of the original conjugate functions of the
third order and the first derived function of the same order.

78.] If a- be the arc of a spherical ellipse, it is shown in (46) that

-sinp
. (401*)

and in (11) that ^=

Adding these equations together, and introducing the relation just
now established,

ty i
2 C dp _j r

Vwz^sintp

VI< V^wJ VI L Vl-*'2 sin2
<p

Now, as m w= i
2 mn, (m -f- w)

2= i
4

2z2mn+w%2+ 4mn.

mn
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17We have also mn=n
l(\+j}'

2
,

i
t=-*-, i*=(l j)(l+j), and

2(2-?) =2(1+/)=/ hence

m + n= (l+j)*(l+nt) Jmlt
.... (403)

/m+ n\ '_ /l+w.\ ;
_

and therefore
V"^~J Vw

/=\~^~/
Vw/

w
/- (

404
)

It is worthy of especial remark that this coefficient of I ^

f
N

'd

in (401) is precisely the same in form as the coefficient of 1 Z-~.

JN VI
The preceding equation (402) may now be written

Let cr
y,
w

y,
i
t, ty be analogous quantities for the derived spherical

ellipse a-, ; substituting their values in (401*) ,

i
2

i
2

f
2

Let y, g y, y;,, g/w ,
&c. denote T==, ~r=, ,- , &c., and put

* ^ ^ * &c - fo

(1 +.;) (1 +./;) (1 +ju) (1 +y/w) , &c. Let also 4>, ^, ^, ^, &c. denote
the arcs, whose tangents are

Vwiw sin
<p
cos

<p \/ml
n

l
sin

i/r
cos

i|r *Jmtl
n

tl
sin^ cos^ o

'

Making these substitutions, and writing Q, Q
y,
Q/p &c. for the

coefficients of

(405) - (406)
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Taking the derivatives of these expressions, we may write

Subtract (a,)
from (a), (by)

from (b), and (c;)
from (c), the inte-

grals of the third order disappear, and we shall have

. (407)

If we add these equations together,

(o <rj= (?/ -?) - +^/-*. (408)

If we multiply the first of (407) by 23, the second by 22, the
third by 2, and the fourth by 2, and add the results,

an integral which enables us to approximate with ease to the value
of the integral of the third order and circular form, in terms of an

integral of the first order.

We have shown in sec. [28] how the integral of the first order

may be reduced.
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The above expressions may be reduced to simpler forms when
the functions are complete. In this case <I>= 0, ^=0, ^= 0,

^=0, &c. ;
and when <r is a quadrant, <r

t
will be two quadrants,

cr
n
will be four quadrants, <r

ni
will be eight quadrants, and so on.

Tin- preceding expression may now be written, denoting a quadrant

by the symbol <7,

-Sq) I (410)-=.

In (396) we found for the parameter of the derived integral of
vn/n

the third order the expression n
t

.
N g.

On referring to the

geometrical representatives of these expressions, we find for the focal

distance e, of this derived curve the expression w.=tan2 e,= -;
-
(i +;)

but if we turn to (389) we shall see that this is the expression for

the maximum protangent to the original spherical ellipse, which is

TflJl

given by the equation tan2r=
2

. We thus arrive at this

curious relation between the curves successively derived, that the

maximum protangent of any one of the spherical ellipses becomes the

focal distance of the one immediately succeeding in the series.

79.] Given m, n, and i, we may determine m,, n
t ,
and i

t,
for

T y 7/i7i

i,= T4, ft/=Tj ya- Substituting these values of i
t
and n

t
in the

equation which connects the parameters, ml
n

{

-

Hence, given m, n, and i
} we can easily compute the values of m

t,

n,,
and

i,,
and then of m

tl),nlt ,
and i

lt ,
and so on as far as we please.

Given the semiaxes a and b of the elliptic cylinder whose inter-

section with the sphere is the original spherical ellipse, to determine
the semiaxes a

/
and b

t
of the cylinder whose intersection with the

sphere shall be the first derived spherical ellipse.
We may derive from (53) and (54) the values of a and b in terms

of m, n, and i, or, eliminating i, in terms of m and n only ; for

*"" io^~ /i . r o* t*f TO
A:
2

w(l+w)' *2 m
_O JL2*/T \

TT U i Tti Oi 7l,( 1 "~ ?/i, I

Hence -4 = -' . -L Jl il .

m
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Or substituting the values of m
t
and n

t
in terms of m and n, and

therefore of a and b,

a+ b _2 \/ab

When the radius of the sphere is infinite, or the derived curve is

a plane ellipse, a,=a + b, b
t

= 2 \/ab, as in sec. [77].
When m=n=i, m

t
=n

l
=i

i -,
or when the given curve is a sphe-

rical parabola, the derived curve will also be a spherical parabola.
Hence all the curves of the series will be spherical parabolas.

If we take the corresponding integral of the third order with a

reciprocal parameter I, such that /m=z'2
,
and deduce by the fore-

going process the first derived function of the third order, we shall

find the parameter l
t
of this function to be positive also, and reci-

procal to n
t ,
so that /

y
w

y
=z

y

2
.

Hence, if we deduce a series of derived functions from two pri-
mitive functions of the third order and circular form, having either

positive or negative reciprocal parameters, the parameters of all the

derived functions /
;,

lu,
l
nl, n,,

n
tl,

n
llt,

will be positive, and reciprocal
in pairs, so that Ifn^if, ^/w//

=z
//

2
, ^y;W;;/

=i
y//

2
, &c.

80.] We may apply the same method of proceeding to the loga-
rithmic ellipse, or to the logarithmic integral of the third order,

=^, in which i
z > m.

(1 msin2
<p) Vl 2 sin2

<p

If on this function we perform the operations effected on the
similar integral in (394), we shall have, after like reductions,

f d<P _- (1+>'<) f
JMVI 4(1-)J

We must recollect that

T 1 '2 2 f
mn

I/= -
z/

2 sm2
^, and m

t=^
We may reduce this expression.
The numerator may be put under the form

m, ' '

Now 2m != 1 and '=-.
m, n m, m
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We have also :-*= = ..

t !+_;

Hence, making the necessary transformations,

(1 m)C d<p ^(nm) VI, C <ty i \fI
l C&^_ \/i,Cc<

~^T~JMVI
=
~"^ TjM^i+^rj VA~~I j

If into this expression we introduce the relation given in (74),

T 2 j vi;

writing <p
for /z, and >/r

for
<p,

we shall have

* J M/ Vl/
mwj Vl

, . V^^sincp cos<pNow in (399) it has been shown that V^/ smi/
r=

/^ -9-^a ^~>
Vl 1> sm2

<p

and as ^nm= ^m,(l +j], the last term of the preceding equation

may be written

V^
f \lrnn sin

<p
cos

<p~

d<pL v/l-i2 sin2 <p
. r .

mn sin2
<p
cos2

<p

1 i
2 sin2

<p

Substituting this value in the preceding equation, and comparing
it with (169) or (170), we shall find

'

V- (416)__
M VI \ n /J N VI wm i J M /

This equation is analogous to (401) . By the help of it and the last

equation we can always express

Jd<p
f d<p . - C d^- or \

- in terms 01 I-L-=.

MVI JNVI JM,VI,

Since m
{-=^- ^ is symmetrical with respect to n and m, we should

have obtained the same value for the derived parameter had it been

deduced from 1 *-= instead of I ^. Since '.=- -.

JNVI JMVI !+J

m (1-j)
a mn f Vl Vl 1

2

andm.= n/=rr . -\g
- =

7
-=-7r= '

(1+
2'

1+;)
2 mn Ll-m+l Jrr . -\g

-
(1+;)

2 mn
VOL. II.
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81.] We may express m t
and n

t simply, in terms of a and b, the

semiaxes of the base of the elliptic cylinder, whose curve of section

with the paraboloid is the logarithmic ellipse.

In (171) we have found the values of m and n in terms of a, b,

and k, namely,

a \Jmn(\ m) b_ \^mn(l n)_
k~ n m k n m

a b \/\ m \/l n ?
Hence -== ; -.=

, or, assuming the value 01 n, in
a + b Y/i_m + VI n

Now

mn (1+/)
2 mn (\/lm+ Vl nY"

(IT* flsi 1YI I 7W,= nrvyA wj iivi . -. .\ Q, .*
/ / "i i "\ 2 /I i *\ 2

a 6 v'fH*
and (a) gives r-= 7^

therefore l-^,= ( Vl-m- yi-
M! mn

Hence, reducing, w
'

If we now compare together these expressions for m, and n,,

namely,

m.=

we shall find that n^m^ so long as k >2 \fab, that when ^r=

n
t
-=m

l}
and that when &<2 V

'

ab, n
t
<m

t
.

To determine the axes of the base of the cylinder whose inter-

section with the paraboloid gives the derived logarithmic ellipse.

Since-74-=
''

. -. -^^--- as we may infer from"
(
ni~mi)

"
(
ni~mi)

(171), we shall have, substituting the preceding values of m
t
and n

t,

af_-
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When =co, or when the paraboloid is a plane, a
t
=

(a

b,=2 's/ab, -which are the values of the semiaxes of a plane ellipse

,
. . . a b 1 \/i *

2

whose eccentricity is - -r= . as we should have anti-
a + b 1 + Vl- 2

cipated ; for these are the values found in sec. [77] and sec. [79]
for the axes of the derived plane ellipse.

mn /I ;V . 2When m= n=l-j, m
y
=

2
=- =t*, and n,=0.

Hence, when the original logarithmic ellipse is of the circular form,
the first derived ellipse is a plane ellipse.

When F=46, (418) shows that m^n,, or -^=-JQc t as in

sec. [43] ; but m
t
-=n

t,
is equivalent to n=m( V1+./+ \0')

2
-

Whenever therefore this relation exists between the parameters
and modulus of the original integral, the first derived integral will

represent the circular logarithmic ellipse, which may be integrated

by functions of the first and second orders. Accordingly whenever
the above relation exists between the parameters, the integral of

the third order may be reduced to others of the first and second
orders.

If in the second, third, or any other of the derived logarithmic

ellipses we can make the parameters equal, this derived ellipse will

be of the circular form, and its rectification may be effected by
integrals of the first and second orders only ; accordingly the rec-

tification of all the logarithmic ellipses which precede it in the scale

may be effected by integrals of the first and second orders only.
We may repeat the remark made in sec. [79]. The derived

functions of two integrals of the logarithmic form with reciprocal

parameters, have themselves reciprocal parameters.

82.] If we now add together (162) and (163), we shall have

4(n-m) 2_ , . r* P__

r (nm)C dr
+ 2 d<p VI 2 , 1 g-J r V

A/TMOT 1 COS3 '

(420)

We must now reduce this equation into functions of ^ instead

of $, >|r
and p being connected, as before, by the fundamental

equation

tan (^ p) =j tan p.
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The elements of these transformations are given in page 69, namely

/r-
. *Jmn sin <t> cos <p , .

2sm2
<p=l + z

/
sm2

i/r cos>/r Vl and j= \
T = vn^my.

V 1 * sm2
<p

From this last equation we may derive

(1 n sin9
<p) (1 m sin2 <p)=I (1 m

t
sin2 ^r) .

Now, as 3>n=
1 n sin2

<p --l
or, putting for sin2

<p
its value,

2 V^ [1 m
y
si

In the same manner, we may find

<*, _
l

"
.
-

p-|

2 Vmw [1 ^s

Adding these equations together, and recollectingthatm + n mn= i
2
,

we shall get

*?xb ,+m$> ^ V CT/Psin^ + VOT, V^ cos -f sin^ y/I,

\/^ [l-m^in
2
^]

Now, as

2=
(1 +(! /), and \/mn= ^

In (186) we found

n^ (426)

Subtracting this expression from the preceding, the terms involving
sin

T/T
will disappear.

We must now compute the sum of the coefficients of 1
^=

in

(420) and (426). Since

fd<p (l-H',)f <ty ... (l+^f*
8

,*
8

on , -xl
1

/Y= o~^ 1 -^>
this coefficient becomes - '

I H---
2(l-f/jJ
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Or as in + n = j
2 + mn, this coefficient may be written

2 ri
2

~~\

Or as mn=m.(l +;)
2
, it becomes finally,

-
r - 1 I. . (427)

l + ijLm, J

H
E+S-'M^f-S^-ifdS-

1^ (428),_ (l-nand
yl ^

( m) (ft w) 1 r d^/r

[1 m
i
si

Now, as n+ m^=i2+ mn

Hence (n m)'
2=i4

and as 4
=(l+./)

9
(l~.7)

2
j mn=ml (l +J)

12

, substituting

therefore w-m2=

4
and as -^

-^5= (1 +s';)
2

) the expression will finally become

n-m=
m i, /I m,

hence - =~~
If we now add together (420), (425), (426), (428), and

(429|,
we

shall have, dividing by
(

-^^, putting %, for ^^cos^/r
VI

V wm (1 w
y
sin2

A/T)

42_ _mL*JmL_y. Vmf f
, ,f

F=

(l-m,)^
+
(1-^)VV- f d^ A; f d^ f dr

M^r+V J vrr J^^J
Let us now take the logarithmic ellipse whose equation contains

m,, n
t,

i
t , >/r

instead of m, n, i, and <p,
we shall have from (163),
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If we now subtract these equations one from the other, combining
together like integrals, the integral of the third order will vanish

and we shall have

COS8 T,

,.(433)

Hence, as we may express an arc of a plane ellipse by an arc of a
derived ellipse, an integral of the first order, and a straight line

a known theorem so we may extend this analogy and express an
arc of a logarithmic ellipse by an arc of a derived logarithmic

ellipse, by functions of the first and second orders, by an arc of a

parabola and by a straight line. The relations between the moduli
and amplitudes are the same in both cases,

17
i
t
= -

-., and tan
(ijr p)=j tan

<p
.

Let mn , n,,,
in, ty,

be derived from mr n
, i,, ty, by the same law

as these latter are derived from m, n, z, <p, namely,

I-/
i

t

= -
-., tan (ijr <p) =j tan

<p,
m = mn

.\ J

'1 w + VI!
and derive an arc of a third logarithmic ellipse, we shall have,

putting A, B, C, D for the coefficients of the integrals, and II for

the parabolic arc,

* - c'*'+ D '
n"

Multiply the first of these equations by 2 and add them, 2
y
will be

eliminated. In this way we may successively eliminate 2
y ,
S

/p 2yy/,

until ultimately we shall have

&*>V f^ i i *-*__2-+i- =

v being the number of operations, and denoting by F and E, the

sum of the integrals of the first and second orders, by W the sum
of the straight lines, and by II the sum of the parabolic arcs.
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If in (401) and (416) we substitute the coefficients of the derived

integrals as transformed in (404) and (430), the relation between

the original and the derived integrals of the third order will be, for

the circular form or the spherical ellipse,

q+/A _f dp

(l+n sin2 p) V 1 *
2 sin2 p

\-m ._ dtp

. sin2 p) \/l i
2 sin2 p

(l+n, sin2
i/r) V 1-

,

2 sin2

and for the logarithmic form or logarithmic ellipse,

(434)

isinp

fc ', (435)

i j / /
l

i

83.] The preceding investigations lead us to consider a new classi-

fication of elliptic integrals, which, in a geometrical point of view,
would seem to be more natural than the one at present in use.

As the first order is merely a particular case of the circular form
of the third, its geometrical type (the spherical parabola) being
a particular species of spherical conic, while the two forms which
are classed under the third order are irreducible one to the other,

representing, as they do, curves of different species, it would seem
a more appropriate division to found their classification on their

geometrical types, the plane, the logarithmic, and the spherical

ellipses, which those integrals represent. Thus that which is now
the second would stand the first, the logarithmic form of the

third order would hold the second place, while the circular form
of the third order, of which the present first order is a particular

case, would occupy the third rank. However, as the present
division has been sanctioned by time, and by the great names of

the founders of this department of mathematical science, Legendre,
Jacobi, Abel, and others, it would be presumptuous to propose to

change it. Besides, in a point of view purely analytical (the view
of the inventors) the present division of these integrals may be
held to be the most appropriate ;

for example, it naturally presents
itself in the computation of tables of the numerical values of those

integrals.
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Hitherto we have considered the elliptic integral or its equiva-

lent, the arc of the hyperconic section cr, as a function of its

amplitude <p,
or assumed as it were, the amplitude <p

as the inde-

pendent variable. But we may reverse this course and consider

the amplitude as a function of the arc cr of the hyperconic section.

A notation has been devised by which the amplitude <p may be ex-

pressed as a function of the integral or its equivalent a. When
the modulus of the elliptic integral is 0, the integral becomes

Cx da?
I ^= or sin" 1 ^. Now this is a function very little used as

Jo Vl-*2

compared with sin a?
;

so that sin x is always considered the direct

function, and sirred? or the arc the inverse function. The reason

of this is, as I have elsewhere shown, that our acquaintance with

circular functions is not derived from the integral calculus, while

our knowledge of the properties of the arcs of hyperconic sections

can in no other way be obtained. It will render our language
more precise, if we apply the term elliptic integral to those ex-

pressions in which the amplitude is the independent variable, and

elliptic functions to these expressions in which the arc is the inde-

pendent variable.

In this way, writing sin p= sin amp. a, we might develop a

great system of trigonometry for the hyperconic sections. In this

general system when the modulus i= 0, we pass into circular

trigonometry, and when the modulus z= l, we may develop an

equally extensive system of parabolic trigonometry as given in

the first volume of this work, p. 313. In truth that essay ought
to have been incorporated in this treatise, in which passing over

elliptic functions, we confine our researches to the geometrical

properties of elliptic integrals. To enter on the wide field of

elliptic functions, or as it may be called the trigonometry of the

hyperconic sections, would lead us very far beyond the limits we
have prescribed to ourselves; and it has, moreover, been amply
treated by Legendre, Jacobi, Abel, and other great continental

mathematicians.
There are several plane curves whose lengths we may express

by elliptic integrals of the third order. For example, the length
of the elliptic lemniscate, or the locus of the intersections of
central perpendiculars on tangents to an ellipse, is equal to that

of a spherical ellipse which is supplemental to itself, or the sum of

whose principal arcs is equal to IT, as shown in vol. i. p. 196. We
cannot represent elliptic integrals of the third order generally by
the arcs of curves whose equations in their simplest forms contain

only two constants. Thus let a and b be the constants. We shall

have two equations between the constants, the parameter, and the

modulus of the function, i= i (a, b}, n= ,(a) b). Assume a as inva-
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riablc, and eliminate b, we shall have one resulting equation between

i, n, and a, or F(, i, ri)=Q; or n depends on i.

When there are three independent constants, as in the preceding

investigations, a, b, and k, we shall have z= f(, b, k), n=i'(a, b, k) .

Eliminating successively b and k, we shall have two resulting equa-

tions, instead of one, F(a, k, i, ri)=Q, and F'(a, b, i, n) = 0; or i

and n depend on two equations, and may therefore be independent.
The general fundamental expressions for the rectification of curve

lines, whether of single or double flexion, show that the arc of a

curve may in general be represented as the sum of two quantities,
an integrated and a non-integrated part ; or, as the proposition may
be more briefly put, an arc of a curve may be expressed as the sum
of an integral and a residual. Thus the arc of a plane ellipse is

equal to an integral and a residual, which latter is a straight line.

An arc of a parabola is the sum of an integral and a residual, which
latter is also a straight line. An arc of a spherical ellipse is the

sum of an integral and a residual, the latter being an arc of a

circle, while an arc of a logarithmic ellipse is made up of two por-

tions, one a sum of integrals, the other (the residual) being an
arc of a common parabola. It appears therefore to be an expendi-
ture of skill in a wrong direction to devise curves whose arcs should

differ from the corresponding arcs of hyperconic sections by the

above-named residuals. Thus geometers have sought to discover

plane curves whose arcs should be represented by elliptic integrals
of the first order, without any residual quantity the common
lemniscate for example, when the modulus has a particular value.

It is possible that such may be found. In the same way, an expo-
nential curve may be devised whose arc shall be represented by the

f* r\fl

integral k \ *, instead of taking it with the residual quantity

k tan 6 sec B as the expression for an arc of a common parabola.
Thus geometers have been led to look for the types of elliptic inte-

grals among the higher orders of plane curves, overlooking the

analogy which points to the intersection of surfaces of the second
order as the natural geometrical types of those integrals.

It has thus been shown that the curves of intersection of con-

centric surfaces of the second order may in all cases be rectified by
elliptic integrals. When the intersecting surfaces are not con-

centric, the rectification of the curve of intersection may be reduced
to the integration of an expression which may be called an hyper-
elliptic integral.
The general expression for the length of an arc of this curve

will be an integral of the form

s=
ax4 -f bx3+ ex3 -f ex +f

VOL. II.
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When the surfaces are symmetrically placed and have a common

plane of contact, the above expression may be reduced to

s=
aa? + bx2 + ex+ e

This form may be reduced to an elliptic integral.

When, moreover, the surfaces are concentric and symmetrically

placed, the preceding expression may still further be simplified to

r= I dx A / 0.x
2- + fix+ 7

ax2
-f bos+ c

which is the general form for elliptic integrals.

We can perceive therefore that the solution of the general

problem, to determine the length of the curve in which two sur-

faces of the second order may intersect, investigated under its most

general form, far transcends the present powers of analysis. It is

only when one of the surfaces becomes a plane, or when they are

concentric and symmetrically placed, that the problem under these

restricted conditions admits of a complete solution.

We may hence also surmise how vast are the discoveries which

still remain to be explored in the wide regions of the integral cal-

culus. We see how questions which arise from the investigation
of problems, based on the most elementary geometrical forms

(surfaces of the second order) baffle the utmost powers of a refined

analysis, with all the aids of modern improvements. It is not a

little curious, that nearly all the branches of modern analysis, such

as plane and spherical trigonometry, the doctrine of logarithms
and exponentials, with the theory of elliptic integrals, may all be

derived from the investigation of one geometrical problem to

determine the length of an arc of the intersecting curve of two
surfaces of the second order.

In the logarithmic hyperconic sections, we may develop pro-

perties analogous to those found in the spherical and plane

sections, if we substitute parabolic arcs for arcs of great circles in

the one, and for straight lines in the other. Here follow a few of

those theorems.
1. From any point on a parabolic section of the paraboloid let

two parabolas be drawn touching the logarithmic ellipse or the

logarithmic hyperbola, the parabolic arcs joining the points of

contact will all pass through one point on the surface of the para-
boloid.

2. If a hexagon, whose sides are parabolic arcs, be inscribed in

a logarithmic ellipse or logarithmic hyperbola, the opposite para-
bolic arcs will meet two by two on a parabola.

3. If a hexagon, whose sides are parabolas, be circumscribed to
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a logarithmic ellipse, the parabolic arcs joining the opposite ver-

tices will pass through a fixed point on the surface of the para-
boloid.

4. If through the centre of a logarithmic ellipse or logarithmic

hyperbola two parabolic arcs are drawn at right angles to each

other, meeting the curve in two points, and parabolic arcs be

drawn touching the curve in these points, they will meet on

another logarithmic ellipse or logarithmic hyperbola.
5. If a circle whose radius is a be described on the surface of

the paraboloid, and therefore touching the logarithmic ellipse or

the logarithmic hyperbola at the extremities of its major axis, and

from the extremities of any diameter two parabolic arcs be drawn

to any third point on the circle, if one of these parabolic arcs

touches the logarithmic ellipse or the logarithmic hyperbola, the

other will pass through a fixed point on the surface of the para-
boloid.

6. If on the paraboloid we describe a circle whose radius is

V 2 ^ and if from the extremities of any diameter of this circle

we draw parabolic arcs touching the logarithmic ellipse or the

logarithmic hyperbola, these tangent parabolic arcs will meet on

the circle.

These theorems will suffice. There would be little difficulty in

extending the list. In fact nearly all the projective properties of

straight lines and conic sections on a plane may be transformed

into analogous properties of great circles and spherical conic sec-

tions on the surface of a sphere, and of parabolic arcs and loga-
rithmic sections on the surface of a paraboloid.

CHAPTER XI.

ON THE QUADRATURE OF THE LOGARITHMIC ELLIPSE AND OF THE

LOGARITHMIC HYPERBOLA.

84.] The properties of the Logarithmic Ellipse and the Loga-
rithmic Hyperbola have the same analogy to the paraboloid of

revolution that spherical conies have to a sphere, or which conic

sections bear to a plane. To determine the areas of these curves,

or rather the portions of surface of the paraboloid bounded by
them, is a problem not undeserving of investigation.

The Logarithmic ellipse has been defined in Chapter IV. as the

curve of intersection of a paraboloid of revolution with an elliptic

cylinder whose axis coincides with that of the paraboloid.
The Logarithmic hyperbola, in like manner, has been defined in

Chapter V. as the curve of intersection of a paraboloid of revolution
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with a cylinder whose base is an hyperbola, and whose axis coincides

with that of the paraboloid.

Through the vertex Z of the paraboloid let two parabolas be

drawn indefinitely near to each other, ZP, ZQ, and let two planes

indefinitely near to each other at right angles to the axis OZ cut

the parabolas in the points u, u1

,
v

}
v1

.

The little trapezoid uvu'v' is the element of the surface
;
and if

the normal un makes the angle /JL
with the axis OZ, d-fy being the

elementary angle between the planes, uu'= ktan.fjidty, k being the

semiparameter of the generating parabola.

Hence the elementary trapezoidNow uv= ds=

,
.

uvu'v'=
cosc

cos4 p.

f f sin/* j

Integrating this expression, area= k2
1 d-^r I ^ dp ; . (436)

or performing the integration with respect to fi}

K* C
area

=-^-
1 dty sec3 p + constant.
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Now when the area is 0, sec/u=l, and therefore

k*C= I
oS/r.

constant= I oSr. Whence

(437)

This is the general expression for the surface of a paraboloid
between two principal planes, and bounded by a curve.

When this curve is the logarithmic ellipse, let the area be put
[LE].
We must now express -fy

and /* as functions of another variable, 6.

Let x=aco&0, y= bsin0, the base of the cylinder being the

at* v2

ellipse whose equation is + j^
= ^> ^ is the angle which

CL

V#2+y2 makes with the axis a.

vr V b
.

,.

JNow tan -ur= -:=:- tan 0. (438)
x a

and d^=-g 2 7. ,2
.

, a (439)*t- Asxaal H I /, - o i > * H

But

therefore secV= VfV "^ >
v

v<v
~r " ;ai" v

. . (440)

Hence substituting these -values in (437), we get for the area

I -LJ-LJ I -^
~^" *""Q 1 ' -. .

^

*
I

v . (441)
d0

Let

t being the modulus and e2 the parameter, as in (15).



158 ON THE GEOMETRICAL PROPERTIES OF ELLIPTIC INTEGRALS.

The above expression may be written

3d
a2 cos2 + 62 sin 0) V (#

2 + 2
)
-

(

2-
#*) sin

2
0..]'

2ab

- 2- *2 sin2
-. (443)

d(

1 +

Therefore, integrating the preceding expression,

r 1=
A03 C

T^J [1 -e
2
sisin2 0} Vl-i2 sin2

i
2 sin2

ab

. (444)

Hence the area of the logarithmic ellipse, or rather the area of
the paraboloid bounded by the logarithmic ellipse, may be ex-

pressed as a sum of elliptic integrals of the first, second, and third

orders, with a circular arc.

Since 5 > 2 /2 ,
e2 >i2

,
or the function of the third order is

a* a2+ /fc
2 '

of the circular form. Assume a spherical conic section such that

a f> nZKt
tana= 7 ,

therefore -cos=
tan a

bk

a
sin2 e=

Combining the first and last terms of the preceding equation, they
become

-*
ftan-t(*\a

tan0- cos a I r
J [1 e

2
sii sn emin* 01'

Now this is the expression for the surface of a segment of a sphe-
rical ellipse whose principal angles are 2 and 2B, as shown in
sec. [8]. Let this be S.
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In the next place, k

is a portion of the elliptic cylinder whose altitude is k, and the

semiaxes of whose base are V^2
4- ^

2 and v^2+ k*
2

. Let this be C,

abk
and

abk C d0

^+1V Vl-^si

is an expression for an arc of the spherical parabola whose focal

distance is one half the focal distance of the former. Let this be

denoted by P.

Hence, if we denote the entire surface round Z by [LE] ,

3[LE]=4AC + 7 g
P-4*2 S. . . (445)

Or the area of the logarithmic ellipse may be expressed as a sum
of the arcs of a plane ellipse, of a spherical ellipse, and of a sphe-
rical parabola, multiplied by constant linear coefficients.

85.J To find the area of the logarithmic hyperbola.

The general expression for the area, as in (437), is
J (sec

3
p 1) di|r.

Now, the equation of the base of the hyperbolic cylinder being
f*~ ti
*** */ 1 1 i /\ Z.J./1 / A A f*\

g I |f*T y ^ ft sf*f* f/ 7/ ~~~
f) L JlTl \j (4<4iO }

a2 A2
'

V b .

then tan y= ^-= - sin V.
x a

and aT= i cos#d#, cos2

hence

T -
,

= .

cos2
t/r

a a2 + 62 sin2

ab cos 0d0
. . ,.

a2 + Zr sm2

2 r2

Since tan-4

/i
= =

secs /i=
cosz ^

jin
2
^]i

Let [LY] denote the area of the logarithmic hyperbola, then

-y f
J
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Let V be put for * cos2 + a2 + b* sin2 } .... (448)

and the last equation will become

- f+
JVV VV

cos2 e

and this may be written in the form

Let ,
-

g
A:
2 + a2

and the preceding equation may be written

3[LY]=-P

dfl

cos2 yl-

a (/r fl
z

)

2 r Ad
Ftan-'f-

Since

. (449)

and as (1 m) (l + ri)=I i
2
,
m=~

,
and (47) gives

CL -J- K

/l + ^\T d^ /I m\C &6

\ n /JN Vl~^ m /JM VI

- JL r ^ 1
_, / \lrnn sin ^ cos ^\

mnj Vl Vm V VI '
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hence

l + w\ ,_f d0 fl-m\ ,
C M

But

Hence

/V

3[LY]

i
2 C A0

I = -4- tan~
'mnj VI L

_i f Vww sin $ cos

. . (451)

T=

VI

'mn=-

+
VI

-[-
cos

VI

. (452)

Now, ifY be an arc of the plane hyperbola of which ^k^b* is the

transverse axis, and i the reciprocal of the eccentricity, we shall

have
ababaz+ b* C A0

V 2
+>fc

2
Jcos

2
6' VI'

(453)

And if we take the spherical ellipse whose principal semiangles,
a and /3, are given by the equations

b b

we shall have sin2e=

tana
cos= nh

-.,
also i/r= tan"

1
/ -sin

0|.

Hence the sum of the first and last terms may be written

r, tan/3 f d0 ~1

^-- cos a I :

tan a J [l
_ e2sin2^] Vl -sin2esm2^J

and this expression is S, the value of the area of the spherical

ellipse (/3), as shown in (13) .

Now, let $| be the transverse axis of the auxiliary hyperbola;

VOL. II.
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Hence the coefficient of I - may be written
-p ~**j> and the equa-

J V 1

tion (452) finally assumes the form

3*[LY] =oft
[Y

+^j f~] -AS +* tan"
[jV/^sincos^J

<

Or the area of the logarithmic hyperbola may be expressed as a

sum of the arcs of a common hyperbola, of a spherical ellipse, of a

spherical parabola, and of a circular arc, multiplied by constant

coefficients.

There is one particular case in which the area of the logarithmic

hyperbola may be represented by a very simple expression. Let
k= b ; then, if we turn to (448), V=a2

-f W-, and 1= 1, since i= 0.

Hence (452) may be changed into

3 [LY] = a *JtfTb* tan +& tan- 1

( .-^- tan 0\

+ 62 tan- 1

(
-4= =a sin cos 0} -b* tan- 1

(-sin 0] ;

\aV 2 + ^2 \a '

and this expression may be reduced to

8[LY]=a
' " ' ' ~" ' "' }

Y, (455)

j

a value entirely independent of elliptic integrals, and which may
be represented by a straight line and the difference of two circular

arcs.

CHAPTER XII.

ON THE RECTIFICATION OF LEMNISCATES.

86.] There is a particular class of plane curves, of which the
lemniscate of Bernoulli is an example, to which the principles
established in the foregoing pages may be applied with much
elegance.

Definition. This entire class of curves may be defined by the

following property. The square of the rectangle under the radii

vectores drawn from the foci to any point on the curve is equal to

a constant, plus or minus the square of the semidiameter passing
through this point multiplied by a constant quantity.
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Let Q, Q! be the foci, and O the centre, p, p, r the lines drawn

Fig. 28.

from these points to any point on the curve. Let OQ,=OQ'= c,

and let/be a variable constant.

Then by the definition

p*p,*=C*f*i
A......... (a)

But p
2
p/

2=
(*?+ y

2
)

2 + c4 +2cV- 2c2#2
,

and r2 =a?2+ y
2

;

hence
(a?

2 + y
2
)

2
=(/* + &;Vs+ (/

2-2c2
)y

2
. . . (456)

This is the general equation of the curve, which assumes different

forms as we assign varying values to / and c. Some examples
may be given.

() Let c= 0, or/=oo , the equation is that of a circle.

(/3) Let/
2 >2c2

, and make/2 + 2c2=a2
, /2-2c2=62

,

the equation will become (x
2
-f y

2
)

2= a2#2 + b'
z
y
2

.

This is the equation o a curve which may be called the elliptic
lemniscate. It is the locus, as is well known, of the intersection
of central perpendiculars with tangents to an ellipse ; and its recti-

fication has been fully investigated in vol. i. p. 196.

(y) Let /2= 2c2 . The equation becomes (#
2+y2

)

2=4cV, or
the equation is that of two equal circles in external contact.

(8) Let/
2<2c2

. The equation becomes

(a*+ y*)*=(2(?+f*)a?-(2<*-f*)y*, and

(e) Let/2=0. The equation becomes (#
2+y2

)

2=
or the equation is that of the lemniscate of Bernoulli.

(f) Let f2
, passing through 0, be taken with a negative sign.

The equation in this case becomes

and

In one case only does the equation of the lemniscate in its general
form coincide with that of Cassini's ellipse, namely when/=0
and h=c, A2

being the product of the radii vectores from the foci.

The definition of Cassini's ellipse being
" a curve such that the
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product of the radii vectores drawn from two fixed points, the foci,

to a third point on the curve, shall be constant and equal to ti
2 "

its equation will obviously be, 2c being the distance between the

foci,

A4-c4
=(#2+ y

2
)

2-2c2
(#

2-#2
); .... (b)

when h=c, (#
2+ 2T

2

)

2=2c2
(#

2-y2
)
......

(
c)

This is the equation of the lemniscate of Bernoulli.

These elliptic lemniscates may also be denned as the orthogonal

projections of the curves of symmetrical intersection of a paraboloid
of revolution with cones of the second degree, having their centres

at the vertex of the paraboloid. Let a and /3 be the principal

semiangles of one of the cones. Its equation is

(d)

es

(e)

Let the equation of the paraboloid be #2 + y
2
-f 2kz.

Eliminating z, the equation of the projection of the curve of inter-

section will become

(#
2+ y

2
)

2= 2#2+6y...... (457)

When the section is an ellipse, the equation of this curve is, as

2k 2k
Make tana= , tan/3=y,

and the equation of the cone becomes

On the Hyperbolic Lemniscate.

87.] The equation of the lemniscate in this case is

Following the steps indicated in sec. [86] , we shall find

dX2 2 cos2X-62 sin2 X' (a)

the limits of X are and tan" 1

T .

b

Assume 8in2\=_-_^? -.

(b)a262 -f a
4 sin2

<p -f b
4 cos2

<p

The limits of
<p, corresponding to X=0 and X=tan-1

-?, are

<p
= 0, and <p=-......... (c)
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Substituting this value of sin2 \ in the preceding equation, we shall

find

dX cos<p

From (b) we may derive

dX a*b ,.
'

Multiplying the two latter equations together and reducing, we get

a3 dip

When a= 6, or when the lemniscate is that of Bernoulli, there

results the well-known expression

When a > b the integral is of the third order and circular form ;

but when a<b the integral is of the third order and logarithmic
form. That it is of the logarithmic form may thus be shown.

Let -_JL?Mj and *
2=-H r-

a4
Hence i2~m==

^(a
2+ 62

)

> ....... (460)

or i
2

is greater than m ; but we know that the form is logarithmic
when the square of the modulus is greater than the parameter,
when it is affected with a negative sign.

This is a remarkable result. All analysts know the impossibility
of transforming the circular form into the logarithmic, or vice versa,

by any other than an imaginary transformation ; the utmost efforts

of the most accomplished analysts have been exhausted in the

attempt; yet in this particular case their geometrical connexion
is very close. The modulus and the parameter are connected by
the equation

2j ....... (461)

the upper sign to be taken in the circular form, the lower in the

logarithmic.
There are two distinct cases to be considered when a is greater

than b, and when a is less than b.
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Case I. a>b.
Let a plane ellipse be constructed whose principal semiaxes A

and B are given by the equations

!

, B2=a2
, ...... (f)

and let a sphere be described from the centre of this ellipse with a

radius

B2 ===K.

Then we can find, as follows, the length of an arc of the spherical

ellipse, the intersection of the sphere whose radius is R with the

cylinder standing on the ellipse whose semiaxes are A and B.

Since

and

therefore

A2

s/ _sm _=5_R2
~

a2

-, cos* a= -41

cos x:

p= -3j
a2

R cos /3 _
cos a sin a 6 (a

9
i

We have also

R cos /3 cos __atP

sin a ~(a
2

b*) V^

2 _ 2 - 22-
tan e

cos a

sin2 a- sin2 /3

sm a 9 . 70'
a2+ 62

(g)

Substituting these values in (46) the expression for an arc of a

spherical ellipse with a positive parameter, and writing s for the

arc, we get

a8

C

/J V

dtp

[ . (462)

62
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Comparing this with (459) , we find

or the difference between an arc of a hyperbolic lemniscate and an
arc of a spherical ellipse may be expressed by an integral of the
first order, together with a circular arc. When a=b, the radius
of the sphere is infinite, the sphere becomes a plane, so that it is

not possible to express an arc of a spherical ellipse by the common
lemniscate.

Case II. Let b>a.
In this case the arc of the hyperbolic lemniscate may be ex-

pressed by an arc of a logarithmic ellipse of a particular species, or
one whose parameter and modulus are connected by the relation

given in (461).

Resuming the expression in (459) for the arc of the hyperbolic
lemniscate,

:2
sin2

<p
^ S ~ w V T M

2
2 62 ,

__ =<m. .

* 1

b*

(i)

m+ n mn=i2
, n=

Let & and & be the semiaxes of the base of the elliptic cylinder,
k the parameter of the paraboloid whose intersection with the

cylinder gives the logarithmic ellipse. Assume for the principal
semi- major axis of the elliptic base

m, n,
In (171) we found the following relations between &,iS, k

nz

=mn(ln) W_mn(lm}
A2

~~

(n-m)
2 '

A2
"'

(n-m)^'

and as we assume &= V 2+ 62
,
we get, substituting for m and n

their values in terms of a and b, the semiaxes of the hyperbola

98=, and &= -
,

... (k)
a2 \/6

2 a2

In (163) we found for the equation of the logarithmic ellipse
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measured from the minor axis, and multiplied by the undetermined
factor Q,

or. v (l-m\ / 7n f_d?
20,2,= I
-

1 ymnkQ,]-;-, . 2 -, /, .* .

\ m / J [l-wsm2
<p] Vl.- 2

s

\.
. (464)

__ Q-

I in this equationwe substitute for m, n, and k theirvalues as given

(^

_ ifyi\ __
- } \imnkQ, with the

a3

coefficient of the expression for the lemniscate in (459),

we shall find

Q=

hence the last equation, substituting this value of Q;, will become

li(465)
abb C d<p ffl rA2 a?\ 2 V 2 + b* ~

! ,.. <P

Jd(p
^ fl

Vi
~

or the swm of an arc of a hyperbolic lemniscate and of an arc of a

logarithmic ellipse may be expressed as a sum of integrals of the

first and second orders with a circular arc.

When 6= a, the above expression will become

dtp

In this case the parameter of the paraboloid becomes infinite,

and therefore the paraboloid a plane, just as the sphere became a

plane in the last case
;
so that we cannot express integrals of the

third order, whether circular or logarithmic, by an arc of a common
lemniscate.

Although the lemniscates may be rectified by elliptic integrals of

the third order, as well circular as logarithmic, yet these curves

cannot be accepted as general representatives of integrals of the

third order, because, in the functions which represent those curves,
the parameters and the moduli are connected by an invariable

relation, as in (461). Thus the elliptic lemniscate, whatever be
the ratio of the axes of the generating plane ellipse, can be repre-
sented only by a particular species of spherical ellipse, that whose

principal arcs are supplemental.



THE THEORY

AND THE
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CHAPTER XIII.

88.] We shall now proceed to apply the principles developed in

the foregoing pages to the investigation of a physical problem of

much celebrity and great interest in Astronomy :
the motion of

rotation of a rigid body round a fixed point. The discovery of the

geometrical properties of elliptic integrals may be applied with

singular felicity to the illustration of the complicated motions of

the several axes of this body, the spirals, curves, and cones described

by them during its rotation round the fixed point. Let this point
be taken as the origin of three rectangular coordinates, their direc-

tion being arbitrary as well with respect to the body as to absolute

space. Let us, moreover, make the supposition that the body is

not subject to the action of accelerating forces, but in a state of

motion originated by a single impulse, or by any number of single

impulses, which may be combined into one. This may be consi-

dered as the normal state of the rotation of a body ; because if it

should besides be subjected to accelerating forces, such new forces

will introduce variations into the arbitrary constants of the problem.
It has, moreover, the advantage of admitting a complete solution ;

we are not compelled to have recourse to approximations. It

will be shown that the curves which the final integrals represent
are spherical conic sections curves which may as easily be deter-

mined, from the principles laid down in the preceding chapters, by
means of the constants which enter into the integrals, and the am-

plitudes of those functions, as the arc of a circle may be ascertained

when we know its radius and the angle which the arc subtends at

the centre. Hitherto there has not been any attempt made, at

least so far as the author is aware, to carry the solution further

than to show that as the final integrals involve the square roots of

quadrinomial expressions with respect to the independent variable,

they might be reduced to the usual forms of elliptic functions.

Bui these integral* have not been interpreted so as to give a

graphic representation of the motion, by means of the properties
of those functions.

Assuming the usual definition of the moment of inertia of a body
with respect to a certain straight line (that it is the sum of all the
constituent elements of the body, each multiplied into the square
of its distance from this axis) , we shall briefly give the usual method
of finding it.

Let the given axis make the angles X, /JL, v, with the axes of

coordinates, R being the distance of one of the elements dm from
the origin, and the angle which this line makes with the axis.

The distance, therefore, of the particle dm from the axis is R sin 6 ;

and the moment of inertia round this axis is the sum or integral of
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all the terms, such as R2 sin2 0dm, which the body affords. Writing
H for the moment of inertia round this axis,

H=Jdm[Rsin0]
2
, ..... (466)

the integral being extended to the whole mass of the body. H is

therefore a quantity of five dimensions.

To transform this integral into another, which shall contain the

rectangular coordinates xyz of the particle dm. We have

Ecos 6=x cosX+y cos /*+z cos v;

deriving the value of sin d from this expression, and substituting it

in (466), we get

2 cos//, cos v dmyz 2 cosX cos v dmxz 2 cosX cos/itJdm^ry j

Now these six integrals depend solely on the assumed position of

the coordinate planes with respect to the body, and not on the posi-
tion of the axis of moments, which is determined by the angles

X, p, v. These integrals, referred to the same system of coordi-

nates, will therefore be the same for every assumed axis. Let them
be computed and designated as follows

=N,|
.

j

The value of H may now be written,

H=L cos2 X-fM cos2
//,+ NCOS*i/2U cos /x cos v)

(A,ra\

2V cosX cos v 2W cos X cos p,j

We may reduce this expression to represent a straight line

drawn from the origin to some curved surface, by the following
transformations :

=nA, M=nA
;,
N=nA

//,|

=nB, V=nB,, W=nB
//.j

let H=nP2
, L=nA, M=nA

;,
N=nA

/

U

Substitute these values, and divide by the cubical constant n,

equation (469) becomes

A cos2X+A
;
cos2 /*+ A/;

cos'v 2B CQSJJ, cos v|
.. .

2B
y
cosX cos v 2BW cosX cosp=P2

j

Now this, as may easily be shown, is the expression for the

length of a perpendicular let fall from the centre of a surface of

the second order on a tangent plane to this surface. As the coeffi-
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cients L, M, N are necessarily finite and positive, the coefficients

of the surface A, A,, A /;,
which have a given ratio to the former,

must also be finite and positive. The surface is therefore an ellip-

soid. That the above expression represents such a perpendicular

may be shown as follows.

89.] The tangential equation of a surface of the second order

(see vol. i. p. 66), the origin being at the centre, is

w+ 2B
/fC+2B //fi;=l. . (472)

In this equation , v, % denote the reciprocals of the portions of

the axes of coordinates between the origin and the variable tangent

plane, supposed to envelop the surface in every successive possible

position. The squared reciprocal of the perpendicular from the

centre on the tangent plane is
?+ y2+ 2

. If X, ft, v denote the

angles which this perpendicular Py
makes with the axes of coordi-

nates, cosX=Py , cos/-i=PyU, cosv=P /
. Substituting these values

of f, v, % in the preceding equation, and multiplying by P,
2
, we find

A cos2X+A
;
cos2

jj,+ A/;
cos2 v+ 2B cos

//,
cos j>)

+ 2B
;
cos\ cos v+ 2B

/;
cos\ cos^= Py

2
j

'

an equation which coincides with (471) ; hence P
y
=P.

If we divide (469) by P
2
,
and introduce the quantities , v, by

the help of the equations cos X=P, cos
fj,
= Py, cos v=P, H= nP2

,

we shall find

L^+Mva+N?-2Ui;-2VfS-2Wi;=n. . (474)

It is shown in the first volume of this work, p. 63, that, if x, y, z
denote the projective coordinates of the point of contact of the

tangent plane to the surface,

(475)

Let x
ly l

z
l
denote the coordinates of the foot of the perpendicular

P on the tangent plane; then as Pcos\=a?
;, andP=cos\,#y

=P2
|;;

in like manner, y ;
=P2

y, z
t ^^ : whence

U. . . (476)

-*) = (N -nP2)-Uu - V| )

Now, writing T for the distance measured along the tangent
plane between the foot of the perpendicular upon it from the

centre, and the point of contact of this tangent plane, xt x, y( y,

z,z are the projections of T upon the three coordinate axes. It
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is also evident that (xyf^, (xyz], and (0,0,0) are the projective
coordinates of the three angles of the right-angled triangle whose
vertex is at the centre and whose base is T.

It may easily be shown, and we may therefore assume, that the

orthogonal projections of the area of this triangle upon the coor-

dinate planes of xy, yz, and xz are

\y(x-x)-x(y-y}'\, 0(y,-y)-y(*,-*)],)
>

and \x(zt z} z(x, x)~\ )

respectively.
If we substitute in these expressions the values of the projective

coordinates, which may be deduced from (476) , writing A for the

area of this triangle, and A/,, Am; , Aw, for its projections on the

coordinate planes of yx, xz, and xy, (I,, m,, n, being the direction

cosines which a normal to the plane of A makes with the axes of

x, y, z respectively) ,
we shall have

. (478)

=P2
[(L -M)u-(Vi;-U)(;-W(t;

2
-f)]

We shall discover the dynamical illustrations of these expressions
further on.

90.] To determine the axes of figure of the ellipsoid.

It is manifest, whenever the distance T between the foot of the

perpendicular from the centre on the tangent plane, and the point
of contact of this tangent plane with the surface, vanishes, that the

radius through the point of contact becomes also a perpendicular
to the tangent plane, and therefore one of the axes of the surface.

When T=0, its projections on the coordinate axes vanish, or

x
l x=Q, yl y=6, 2,z=Q; (476) then becomes, putting n, as

we evidently may do, equal to 1,

(L _pa)f_V$-Wi/=0)
(479)

From these equations eliminating the quantities , v, ,
we get the

following cubic equation in P2
,

(L-PKM-P*)(N-P)_U2(L-P2)-V2

(M-P*H-W2(N-P2)-2UVW=OJ
The roots of this equation are the three semiaxes squared of the

ellipsoid.
We need not here stop to show that the three roots of this cubic

equation are real, as the proposition has already been established

in various ways, see vol. i. sec. [84]. The following is a group of
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symmetrical formulae for determining the position of any one of

these axes in space when its magnitude is determined.

Let P,
2 be one of the roots of the cubic equation, or the square

of one of the semiaxes ; let L-P 2= Q, M- P,
2=

Qt,,
N-P 2=Q

y/ ;

also let \, p, v be the angles which this axis P/
2 makes with the axes

of coordinates ; then cosA,= P
y , cosjj,= lv, cos )/= ?,.

This equation may also be written

QQ/^-QUS-Q/V^-Q^-SUVWrrrO. . . (481)

Resuming equations (479), and introducing the given value P,
2

of P2

(482)

V=O.

Combining the first of these equations with the second, and

eliminating v,

_ QQ,-W8

combining the second with the third, and again eliminating u,

multiplying the two latter,

U*'

In like manner g^-g^!!.|
2 COS2 \ QyyQ^ U2

whence, adding,

y
U2

(Qy/
Q

y
-U2

) + (QQW
-V2

) + (Qy
Q-W2

)

'

and like expressions for cos2
//,
and cos2 )/ may be found. See vol. i.

p. 73.

We may express these formulae in a more compact notation as

follows :

If we take the first derivative of (480), we shall find it to consist

of three members. Substituting for P2 one of its values, P,
2
suppose,

the resulting expression may be written

T -f <0 + O, and the last formula becomes

also QOS^ ==
- cos2v= (484)
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91.] In every revolving body there exists an instantaneous axis

of rotation, or a line of particles which remain at rest during an
instant. Let C be the position of a point in the revolving body at

any given time, C' the position of the point during the next instant.

Let the arc CC' be ds. At the extremities of this arc d* let normal

planes be drawn to the curve. If these planes are parallel, the

motion is one of rotation round an axis infinitely distant, or the

motion is one of translation. If the planes are not parallel, let

them meet ; the straight line in which they intersect is the axis of

rotation during the indefinitely small time in which the arc CC'
or ds has been described.

This line, the intersection ofthe normal planes, must pass through
the fixed point, if there be one in the body ; otherwise there would
exist in the body a fixed point and a fixed straight line not passing

through the point, which would retain the body in a state of rest,

contrary to the supposition.

Again, there cannot be, during the same instant, two or more
axes of rotation in the body ; for two fixed lines are equivalent to

three fixed points, which would retain the body in a state of rest.

The same considerations will show that the instantaneous axis of

rotation could not possibly be a curve.

The angular velocity of a body is defined to be the arc of a circle

whose radius is 1, described in the element of the time, and whose
centre is on the axis of rotation.

92.] To determine equations of the instantaneous axis of rota-

tion.

The fixed point being taken as origin, let z'y'z' be the coordinates

of the point C, (acf + do?) , (y
1 + dy') , (z

1+ dz>) of the point C'. The

equation of the normal plane passing through C is

xdz'+ydy
t+zdzl

=x'dx'+y'dy'+ 2'd2'=0, ... (a)

since the plane must pass through the origin ; hence as

0,'dx1 + y'dy
1 + z'dz'= 0,

the point C must move on "the surface of a sphere. The equation
of the normal plane passing through C' is

a?dV + yay + 2rdV=0...... (b)

The equation of the osculating plane passing through the arc ds

being

we may determine the constants from the consideration that the

osculating plane is perpendicular to each of the normal planes.
The osculating plane is therefore perpendicular to the intersection

of these planes that is, to the instantaneous axis of rotation.

Let \, p, v be the angles which this line makes with the axes of
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coordinates, then-=77, -=T\ ',
and the equations of this

cos v C cos v C
straight line become

Az-Cx=0, B,r-Ay=0, Cy-Bz=0..... (d)

Let to be the angular velocity round the instantaneous axis of

rotation ;

d*
then =T7-, R being the radius of curvature.

Make r= a>cosv, and as

cos v= C ds

Now R (as is shown in treatises on the geometry of three dimen-
ds3

sions*)isequalto

whence r=^-%. In like manner, let p= (ocos\, q^cocosft;

A B

. (485)

Substituting in (d) these values of A, B, C, we get

pzrxQ, qxpy=0, ryqz0.

Fig. 29.

These are the equations of the instantaneous axis of rotation, as

we shall show presently from dynamical considerations.

93.] The angular velocity round the instantaneous axis being &>,

the angular velocity round any other axis which makes the angle
6 with the former is to cos 6.

Let OA be the instantaneous axis of rotation, OB an axis which
makes the angle 6 with the former.

Through O let a plane be drawn

perpendicular to OB. In this plane
assume any point C, with the centre

O and radius OC let a sphere be

described, and through C let a

plane be drawn perpendicular to

OA and meeting this line in Q.
The point C will move, in conse-

quence of this rotation, on the cir-

cumference of the circle the inter-

section of the sphere by this plane, and therefore on the surface of

the sphere itself. Hence the tangent CC' is perpendicular as well

* LKROY, Analyse appliquee a la Geometric des Trois Dimensions, p. 295.
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to the line CO as to CQ. Let the angle CQC'=o>, the angle
COC/= G/; thenCC'=CQ.a>= OC.o>', and CQ=OCcos0; hence

d=6*00*0........ (486)

Now, as the angular velocities of every other element of the body,
round the axes OA, OB, are w and &>' respectively during this

instant, it is plain that the angular velocity of every particle of

the body round these axes is connected by the relation

to'= to cos ;

hence p, q, r in the last section are the angular velocities round
the axes of x, y, z.

94.] Let as before Ox, Oy, Oz be any three rectangular coordi-

nates passing through the fixed point O, and X, Y, Z the velocities of
the particle dm of the body resolved along these axes, x, y, z being
the coordinates of the particle dm. These velocities being trans-

lated to the origin are there equilibrated by the resistance of the
fixed point O; while they generate the moments (Y# Xy)dm,
(Zy Y>)dm, (X.z Z,r)dm in the planes of xy, yz, sx respectively.
We may conventionally assume that the rotations from x to y,

from y to z, and from z to x, shall be taken as positive, and the
rotations in any of the opposite directions as negative. Let a be
the angular velocity round the instantaneous axis of rotation,

X, fi, v the angles this axis makes with the axes of coordinates,

p, q, r the components of the angular velocities atong the axes of

xyz, so that

j9
= wcos\, <7=6>cos/A, r=wcos)/. . . (487)

The velocity of the particle dm parallel to the plane of xy is

r V#*+ y
2

; and this resolved along the axes of x and y is

-rV^T.= and r V*2T.=> or-yr and xr.

in accordance with the conventional agreement as to the signs of

rotation in the coordinate planes ; whence

the velocities parallel to the axes of x and y are yr and xr,

of y and z are zp and yp,

of z and x are xq and zq,

whence X=zq yr, ^i xrzp, Z=ypxq;
and these velocities translated to the origin generate the moments

~\x^y=(xr zp}x(zqyr}y, in the plane of xy,}

Zy Y.Z == (ypxq}y (xr zp}z, in the plane of yz
f

r . (488)

X^r 7tX = (zqyr}z (ypxq}x} in the plane of xz. )

VOL. II. 2 A
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"We may determine the position of that group of particles (if any)
in the body which at the given instant are at rest, by making X=0,
Y=0, Z=0. These conditions are satisfied by making xrzp=Q,
zqyr= Q, ypxq= Q.

These, it is hardly necessary to observe, are the equations of a

straight line passing through the origin, equations which we have

already found in (485) from geometrical considerations.

95.] If we extend to the whole mass the velocities found for the

single particle dm in the preceding section, we must integrate the

expressions for these velocities. Introducing the notation adopted
in (468), we find, multiplying the last equation by dm and inte-

grating,

= L -Vr -

(489)

J(Y#-Xy)dm=Nr -Ug -Vp.

Now, as the impressed couple or the resultant of all the impressed

couples must, by the principle of D'Alembert, be equivalent to the

effective moments, if we make this impressed couple K, and /, m, n

the direction-cosines of its axis k,

(490)

When the principal axes are the axes of coordinates, U=0,
V=0, W=0, and we get the well-known equations

K/=Ljo, Km=Mq, Kw=Nr. . . . (491)

Hence the components of the angular velocity round the prin-
cipal axes are equal to the components of the impressed couple
at right angles to these axes, divided by the moments of inertia

about them, or

K/ Km Kw

96.] If we compare together the formulae given in (475) and
(490), we shall make the second members identical by assuming

P~f^> q=fv>
r=f> f being a linear quantity ; . (492)

f2
whence <o

2=/2
(

2+ vz+ 2
)=^ ; or the angular velocity is inversely

proportional to the perpendicular on the tangent plane, which may
be called the instantaneous plane of rotation.
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Resuming the equations (475) and (490), introducing also the

relations established in (492), we obtain

K/=L/>-Vr-W?=/(L-V-Wu)==/n.r, or

K/=/n.r; in like manner Kw=/ny, Kn=fnz, whence

K*=/*n*(a*+y* + z*)=f*D*k*..... (493)

Now x, y, z are the coordinates of the point of contact of the

tangent plane ; whence we infer that k, the semidiameter drawn

from the centre to the point of contact of the instantaneous plane of
rotation, is constant during the motion.

From the relations of (492), it also follows that if through the

fixed point we draw any three rectangular axes in the body, the

angular velocities round these axes are always inversely propor-
tional to the segments of those axes cut off by the instantaneous

plane of rotation ; or, in other words, the symbols , v, ,
the tan-

gential coordinates of the instantaneous plane of rotation, will

denote the components of angular slowness round those axes.

97.] Resulting from the rotation of the body, there arises a new
class of forces, which in general tend to alter .

the position of the axes of rotation of the &'

body. They are known as the centrifugal
forces. When translated to the origin they

generate a couple, whose magnitude and

position we are now to determine.

Let OQ be the instantaneous axis of rota-

J} Q 7*

tion, , -, the cosines of the angles it
Q) 0) 0)

makes with the axes, x, y, z are the coor-

dinates of the particle dm. The centrifugal
force which acts on this particle dm is equal
to the square of the velocity divided by the radius that is,

2Q 2
&> um _, M2 Qm . an(j this force, as it acts in the direction of Qm,

may be resolved into the forces o>
2
(# x,), o^(y y^), ^(zz,),

respectively parallel to the axes of x, y, and z. x
{ y^ zt

are the

coordinates of the point Q. Now

we also have
w

^=^+^^l^, or
(O O)

2

; but a>
2
x=x(p'

2+
q'* + r2), whence

o)
2^-^) =q(qx-py] +r(rx pz) =X', )

a>*(y-y,)=r(ry-gz)+p(Py-qz)=\',[. . . (494)

o>
2
(2 2-,) =p(pz rat) +q(qz -ry}=7J. }
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From these equations we obtain

Y'a?-X'y=pq (f
-#2

) + yx(p*
-

q*} + rz(py- qz] ,

or, extending this expression to the whole mass,

Writing analogous formulae for the other axes, making Gl
t,

Gm,, Gn
t equal respectively to Jdm(Z'y Y'^r), Jdm(X'j3r Z'a?),

fdm(Y'# X'y), and using the notation established in (468), we

get

Gl,
= (M-N)?r+(V?-Wr)jB + Ute

2 -r2

),j

->*),[ . (495)'

When the principal axes coincide with the axes of coordinates,
U= 0, V= 0, W= 0, and the formulae become

(496)

When one of the axes of coordinates, that of z suppose, coincides

with the instantaneous axis of rotation, we havej9= 0, 5=0, r= <o,

and (495) becomes

(496*)

J) Q
If we multiply the first of (495) by -, the second by , the third

7*

by -, and add the results, the sum will be zero, or

0; . . - (497)

whence it follows that the plane of the centrifugal couple always

passes through the instantaneous axis of rotation.

Multiply together line byline the groups in (490) and (495), and
add the results ; the sum will be cipher, or

KGj7/y
+wm,+nwy]:=0..... (498)

Whence we may infer that the planes of the impressed and centri-

fugal couples are always at right angles to each other.

98.] If we compare (478) with (495), we shall find the second
members identical, if we assume, as in (492),

P=tf, q=fr, r=ft; whence /
2=P2

o>
2
,

and therefore G=Anw2........ (499)
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We may hence infer that the triangle whose sides are the semidia-

meter to the point of contact of the tangent plane, and the perpendi-
cular on this tangent plane from the centre, coincides in position with

theplane ofthe centrifugal couple. The centrifugal couple is also equal
to the centrifugal triangle multiplied by the mass and the square of
the angular velocity, as shown in the preceding formula.

The reader will not fail to have observed the ease and simplicity
with which the properties of the ellipsoid, treated generally, without

reference to the principal axes, by the method of tangential coor-

dinates, may be used to illustrate and establish the corresponding
states of a body in motion round a fixed point. The subsequent

investigations might in most cases have been discussed with the

same generality and facility; but as the principle of this new

analytical geometry, the method of tangential coordinates, as deve-

loped in the first volume of this work, is probably as yet but little

known, it may be more satisfactory to conduct these investigations
on principles universally admitted. To simplify the results, we
shall adopt a particular system of coordinates which will render

the formulae much more manageable. If we choose the principal
axes of the body as axes of coordinates, U= 0, V= 0, W= 0, and
our investigations will therefore be very much simplified.

Let a > b > c be the three semiaxes of the ellipsoid in the order

of magnitude, L, M, N the moments of inertia about the coinciding

principal axes of the body. We may assume, as in (470), the squares
of the semiaxes of the ellipsoid proportional to the moments of

inertia round these axes, so that

a2n=L, 62n=M, e2n=N, .... (500)

n being a constant depending on the mass and constitution of the

body.
This ellipsoid we shall call the ellipsoid of moments.

Introducing these transformations and simplifications, (469),

(490), and (495) become,

os2
>/], ...... (501)

=n62
?, Kw=nc2

r, ....... (502)

J,=n(A
8
-c*)gr, Gf,=n(c*-a

a
)/w, Gn,=n(a

2 -Z>4)^. (503)

In formula (501) it is evident that the part within the brackets is

the expression for the square of a perpendicular from the centre on
a tangent plane to the ellipsoid. Let this perpendicular be P, and

(501) will become
H=nP ........ (504)

Hence it follows that the moment of inertia of any rigid body
round a given axis is the mass of the body multiplied into the square
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of the coinciding perpendicular from the centre on a tangent plane
to the ellipsoid of moments.

Square the terms of (502), add them, and multiply by o>
2
,
we

shall obtain the result

K2
<u

2= ii
2 [aY +*y + c4/-

2
] (p* + <?

2 + r2
) ; .

also, as <o cos \=p, <o cos ^ q, ft) cos v=r,

H2
ft)
4= ii

2
[aV+ 62?

2 + c2r2]
2
,

whence we shall obtain

G2=K2
ft)
2-H2

o)
4
,
..... (505)

an important formula, which gives the value of the centrifugal

couple in terms of the impressed couple, the moment of inertia, and

the angular velocity round the instantaneous axis of rotation.

99.] Assume the impressed couple K= nfk)
k beiug the semi-

diameter of the ellipsoid perpendicular to the plane of K. The

product fk is of course constant ;
it will be shown presently that

/ and k are each constant.

As the axes of coordinates are the principal axes,

Kl Km Kn //)f,, N

p= i? q=w r=ir See (491) -

Let x, y, z be the coordinates of the vertex of k, then

1=2 m=4, n= j, L= na2
, M= n62, N=nc2

,

>

|K K K

f* fy fr f
' ' (506)

and K=n//t; whence P= ^, 1= p>
r~^}

Squaring these values and adding,

. . . (507)

The cosines of the angles which this perpendicular makes with
P# Py P^

the axes are 5-, -vf . _-. while the cosines of the angles which the
er b* c2

instantaneous axis of rotation makes with the same axes are

p q r fa f . Pa? . ., , o Py
-,-,-; but p=J

-z and <w= ^, whence -=-o-; similarly
-= T| .

to CD CD a2 P a) a2 J
&) 62 '

r z
-=$', we may therefore infer that

The instantaneous axis of rotation coincides with the perpendicular
from the centre on the instantaneous tangent plane drawn through the

vertex of k the axis of the impressed couple. The angular velocity
round this axis is inversely proportional to this perpendicular.
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100.] During the whole period of rotation, the semidiameter k of
the ellipsoid, perpendicular to the plane of the impressed couple, is

constant.

Through any point Q on the surface of an ellipsoid let a tangent

plane be drawn, and through
the centre a plane parallel to * l - "*

it. Let a concentric sphere be

described through the point Q,,

intersecting the surface of the

ellipsoid in the curve of double

curvature Q*. To this curve,
let a tangent QT be drawn
at the point Q ;

and through
this tangent let a diametral

plane be drawn intersecting in the straight line Ob the diametral

plane ROA parallel to the tangent plane through Q.
Hence it follows that QO, Ob are the semiaxes of the plane sec-

tion QO6 of the surface. Let OQ= &, Ob= u. Let fall from O a

perpendicular OP on the tangent plane QPr. This line will also

be perpendicular to the parallel diametral plane OR, and therefore

to every line in this plane, and therefore to the line Ob. Now the

tangent line QT, as it is on the tangent plane to the ellipsoid, and

passes through the point Q, must be a tangent to the plane section of

the ellipsoid passing through it
;
and as it is besides a tangent to a

curve drawn upon the surface of the sphere, it must be at right

angles to the radius of the sphere OQ ; hence OQr is a right angle,
and therefore OQ must be a semiaxis of the section OQr, because,
when a tangent to a conic section is perpendicular to the diameter

passing through the point of contact, this diameter must be an
axis of the section. Now, as the parallel planes QPr, OR6 are

cut by the plane QOr, Ob is parallel to QT and consequently
at right angles to OQ. Hence OQ, Ob are the semiaxes of the

section OQT.
Since Ob is perpendicular to OP as well as to OQ, it is perpen-

dicular to the plane of OPQ, which passes through OP, OQ that

is, to the plane of the centrifugal couple ; whence we are led to

infer that the semiaxes k and u of the diametral section of the

ellipsoid, whose plane passes through the tangent to the curve of

double curvature in which the ellipsoid and sphere intersect, coin-

cide with the axes of the impressed and centrifugal couples K and
and G respectively.
Assume a point v on the line Ob, so that Ov may be to k as the

centrifugal couple G is to the impressed couple K. The diagonal
OT of this instantaneous rectangle will represent, as well in mag-
nitude as in direction, the axis of the resultant couple at the end
of the first instant. During this instant, accordingly, the vertex of
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the axis of the impressed couple will have travelled on the surface

of the ellipsoid, as also on the surface of the concentric sphere
whose radius is k. It follows therefore that, at the end of the first

instant, the vertex of the axis of the resultant couple will be found

on the curve of double curvature in which the ellipsoid and sphere
intersect. The same proof will hold for the second and for every

succeeding instant, whence k continues always invariable. Now
the impressed couple K was assumed in sec. [99] equal to n/A: ;

but as n and k are each constant, / must likewise be constant.

If, to fix our ideas, we take the plane of K horizontal, and k

therefore vertical, we may infer that the rotatory motion of the

body will be such that its representative ellipsoid will bring all its

semidiameters which are equal to k successively into a vertical

position, and therefore the surface of the representative ellipsoid
will always pass through a fixed point in space.
Hence the motion of rotation of a rigid body round a fixed

point may easily be conceived by the help of the ellipsoid of

moments.
Let us imagine the centre of this ellipsoid to be fixed, that its

surface always passes through afixedpoint in space, and that tangent

planes are always drawn to the ellipsoid through thisfixedpoint . The

perpendiculars from the centre on these successive tangent planes
will represent in magnitude and position the instantaneous axis of
rotation.

101.] It was shown in (507) that the angular velocity a> was
f

equal to ^ ; and as / is constant, the angular velocity round the

instantaneous axis of rotation varies inversely as P (the perpendi-
cular let fall from the centre on the instantaneous plane of rotation) .

Hence it follows that the square of the angular velocity round the

instantaneous axis of rotation is always proportional to the area of
the diametral section of the ellipsoid perpendicular to this axis.

The angular velocity K round the axis of the impressed couple is

constant during the motion.

p
Let 6 be the angle between k and P. Then cos^=^; now

f /P f
K= ca cos 9, as shown in (486), and w= ^, whence /c=;^-=4 ;

Jr Jr iC ic

f
but /and k are each constant, or K -.= constant. . . . (508)K

The magnitude of the centrifugal couple G varies as the tangent
of the angle between the axis of the impressed moment and the

instantaneous axis of rotation.

Resume the equation given in (505), G2=K2
<w

2 HV. Write
for K, H, and o> their values as given in sec. [99], (501), and
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f
(507) namely, K=nfk, H= nP2

,
and =. We have also

Jvi_ pa f
tan0=_! _, and *=T, whence

P K

G=K/ttan0....... (509)

It will be evident on inspection, that the indefinitely small

portion Ou of the line Ob parallel to the tangent drawn at Q, to

the section of the ellipsoid whose semiaxes are k and u, and which
is equal to QT, may be taken as the element of the arc of the

spherical curve traced out by the vertex of k during the element

d#
of the time dt. Writing -r- for this element Ov, and referring to

Qf

sec. [100], we have the ratio Ou : k : : G : K,

ds Gk
or Ou=-j-=^, but G=K/etan0, andfick.

(I/ K

Whence ^=/tan0........ (510)
Qf

dsNow -TT is the velocity with which the curve of double curvature

passes through Q, the fixed point in space. We may thence infer

that the velocity with which the pole of the impressed couple

passes along this curve, or the velocity with which the curve

passes through the fixed pole, varies as the tangent of the angle 6
between the axis of the impressed couple and the instantaneous axis

of rotation.

102.] To find the values of
-^-, -^, -,-, or of the velocities of

the pole of the impressed couple in the direction of the principal
axes of the body.

Az

nr i dz dt , ds , L n , &Z dz ,We have j-=j-> and -r-=/tan0, whence
^-=^-fta.nff,

and

d7
ds2 cLr

2
dy

2

^2=l+j-2+ T^2.
Now (xyz) is a point on the surface of the

ellipsoid of moments, as also on that of a concentric sphere whose
radius is k. The equations of these surfaces are

o p o

+ i+ = l, and .r
2 + y

2 + *2 =**. . . (511)

VOL. II. 2 B
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Eliminating y and x successively, and then differentiating, we
find

#c- -

_
4
(6

2- c2
)

2yV + 64 (c
- a2

)

2^2

hence gp-- (*(a*-b*)*aPy*

and #2 =d?2+ y
2 + .s

2
; hence

or eliminating x and ?/ by (511),

-
-F)^ _ (514)

Making the substitutions suggested by these equations, we
shall obtain

22 *

103.] The axis of rotation due to the centrifugalforces lies in the

plane of the impressed couple.
Let w' be the angular velocity round the axis of rotation due to

the centrifugal couple, and p,, q,, r, its components round the prin-

* When the axis of the impressed moment very nearly coincides with one of

the principal axes (that of c suppose), the differential equations of motion may
easily be deduced.

In this case as x and y are each very small, their product xy may be neglected ;

w^=, ? =/f, r=, and ===-^=0. Hence r is constant,, ,

equal to n suppose. We also have

whence =~ nq=--nq, or writing A= n 2
,
B= n&2

,
C=nc2

;

at or be f 2 a

A d
f-|-(C-B)M?=0. Similarly

These are the equations deduced by Poisson for this particular case. (Traitt
de Mecanique, torn. ii. p. 159.)
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oipal axes. Thru, as the angular velocity round any principal axis

is equal to the couple which produces the motion resolved at right
ank>s to this axis, and divided by the corresponding moment of

inertia,

dxG
ds

j0/=-y ; now G= Ktc tan 6, K = n/fc, L= n 2
,

dx dx dx

, dx (I/ dt ~dl
and -j-= ,--= -jr- M whence p.f^.

As ds f tan 6 'a?
dt

Making corresponding substitutions for q t
and r

t,
we shall have

dx dy dz

ft=/|, ?,=/f, r,-/f (516)

Now the cosines of the angles which this axis of rotation makes

with the axes of coordinates are , ,; and the cosines of the

X 11 2
angles which the axis k makes with the same axes are -r, ~, 7. If

we denote the angle between the axis k of the impressed couple
and P

y
the instantaneous axis of rotation due to the centrifugal

couple by #6P
y,

Ixdx ydy zdz\

cos ArOPyzz:- (Pfp+ qiy + i'tz}
=T~ \ ~<r~l~~r2~ 2" /

==^ (517)

since the part within the brackets is the differential of. the

equation of the ellipsoid.
We may infer, therefore, that not only is the axis of the centrifugal

couple contained in the plane of the impressed couple, but the axis

round which the centrifugal couple would give the body a tendency to

revolve lies in the same plane also *.

* To determine the angular velocity when L=M, or, using Poisson's notation,
when A=B.

fz dr fdz f(a*-b
2
)As r=

'^2 j7=^^= ay a *#="> since a2 = 6
3

. Hence r is con-

stant= w.
./* 2 I -.0

;
then

/"*&* Ka

a>
2= a

-j-- sin2 *. We have K= n/A, A=na2
;
whence w2=Ma

4-^1 sin3
*.

The expression given by Poisson, Traitt de Mtcaniquc, p. 159.
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104.] Through the vertex of u the axis of the centrifugal couple,
let a tangent plane to the ellipsoid be drawn. The perpendicular
from the centre on this tangent plane, is the instantaneous axis of

rotation due to the centrifugal couple.
Let x

t yt
z

t
be the coordinates of the vertex of u

;
l
t, m,}

n
t,
the

cosines of the angles it makes with the axes; \
t, fJ>t, v,,

the angles
which P

y
the instantaneous axis of rotation due to the centrifugal

couple makes with the same axes. Then, as u is perpendicular as

well to k as to P
y,

k k k
'

'La* 62 c2
~

Eliminating from these equations mt
and

I, successively,

-..r cosX
/

cos v
; y, or*/ cos

v, Q'ZI

f

and _/==___' 'It- whence
rc, *, */ n, z,'

u

cos \
y

c2 /, cos /*. c2 m , . . ,, /, m. , .

=-o , =T^ '. Substituting for -*-.
' their values

cos v
t

a2 n
t

cos
v,

62 w^ n, n,

given in the preceding equations, and reducing, we find

cos2 v= ^ ^ (518^CU
y^

. a L2\2~.2,,2 i /J,2 s,2\2,,.g~2 i /'r.S ^,2\2^,22* V."-10 /

We may find analogous expressions for cosXy and cos/^.

(
1 ' >

-.-,

(
1 ' >

fi 7/ fi 2T

Introducing the terms -.-, -, -, by the help of (515),

- - (519)

Now the cosine of the angle which the axis due to G makes
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M

with the axis of z is -*; writing for r
t
and

to,
their values as given

in (516),

r<

'/

Whence, comparing (519) with (520),

^i=cosi'/ : in like manner ^=cos\,, l=
o>, to, &>,

or, The perpendicular let fallfrom the centre on the tangent plane,
drawn through the vertex of the axis of the centrifugal couple, coin-

cides with the instantaneous axis of rotation due to this couple.

The perpendicular Py
is therefore in the plane of the impressed

couple.

105.] To find the component of the angular velocity to
y
due to

the centrifugal couple resolved along the instantaneous axis of

rotation.

Let 8 be the angle between the axes of the rotations due to the

impressed and centrifugal couples. Then

or substituting the values of o>, p, q, r, a>,, p t, qt, r,,
as given in

(506) and (516), we shall have

dx y dy z dz~|

ff+| af
+-4BJ.

Now the part within the brackets is the differential of

whence e^cos 8= p, d7
=
/d/(pr ^ut as a)==p

da> .d/l\ , da> ^=^ ' whence ~ =ta
'
cos S '

Or, The increment of the angular velocity round the instantaneous

axis of rotation, is due to the component of the angular velocity

arising from the centrifugal couple, and resolved along the axis.

106.] To investigate expressions for the lengths of u and P
;

.

As u makes angles with the coordinate axes whose cosines are

1-, a , -r- , since u is parallel to the tangent to the common inter-
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section of the ellipsoid and sphere, and is besides a semidiameter

of the surface,

! AW l
(

\ds} \dSj
12 ^ '

vr dx dx dt dy dy At dz dz At , ds e^ -.

Now 1T=A> & Z~T& 7T=i7 TJ and -r;=/tan^asm(511).ds dt ds' ds dt ds' d

Whence ^=
^

2 . 2 2/
T '

9a '-. . . (522)
Mi, ft f\f. s*t * TOTl* H ^ 'U U C J LcLH U

Again, as P
/

2= 2 cos2 X
;+ A2 cos2^+ c2 cos2

v,,
we shall have,

putting for cosA^, cos/^, cosv
;
their values as given in (518),

i=

If we combine (511), (522), and (523), we shall find

/ds\ 2

/d^\
2

/dy\ /d^y
\dt) _(dt) \dt) \dt)~~ ~~ ~~

dy\ /d

, */ A ^i^but Pl=f-, q{=f-J-} r
t-f-f as shown m (516).

Whence =' '
(
524

)

d Gyfc /"And as ^=-^- [see (501)] and eo=^, we shall have

(525)

To investigate an expression for the angle p, between the axes of
rotation due to the impressed and centrifugal couples.
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The cosines of the angles which the axes of rotation make with

tin- axes of coordinates are

,1, -,',- A whence co3 P=
ft) ft) 0) ft), ft), ft)*

XT
*-*

Now - and = ___

Pxyz(b*-c*\whence pp.=
J '(-- - I. Finding like expressions for
a262c2 V a2 /

a2- 62 i2 - c2 c2- a2"!
and rr acos _-+_-+__J ;/f

but _
whence -^p^-^^"^. (526)

The values of &> and
o>,

are given in (507) and (524).
This formula shows that whenever any two of the axes of the

ellipsoid of moments are equal, or whenever the axis of the impressed

couple happens to lie in one of the principal planes of the ellipsoid,

the angle between the axes of rotation due to the impressed and cen-

trifugal couples is a right angle.

CHAPTER XIV.

ON THE CONES DESCRIBED BY THE SEVERAL AXES DURING THE

MOTION OF THE BODY.

To determine the cones described by the axes of the impressed
and centrifugal couples, as also by the axes of rotation due to those

couples in other words, to investigate the loci of k, P, u, and P
/

referred to the principal axes of the body during the motion, will

be the object of the present chapter.

107.] To find the locus of k, the axis of the impressed couple.
The equation of the cone whose vertex is at the centre, and

which passes through the curve in which the ellipsoid of moments,
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and the invariable sphere whose radius is k, intersect, may easily
be investigated, as k passes through the intersection of the ellipsoid
and sphere

the equation of a cone of the second degree, whose axes coincide

with those of the ellipsoid.
This cone and the spherical conic section which constitutes its

base will repeatedly present themselves in the course of the fol-

lowing pages ;
it may therefore be proper to denote them by some

appropriate name.
As the side of this cone is constant, being the axis of the im-

pressed couple, it may with propriety be named the invariable

cone ; and the spherical conic may be termed the invariable spherical

ellipse.

108.] To investigate the nature of the surface described by P
the instantaneous axis of rotation.

\y jj,, v, being the angles which P makes with the axes,

cos v a*z cos v o*z

We have also the equations of the ellipsoid and sphere,

rp2 yt ^2

~2+ TS+ -3= 1, ^2+ /
2+ 2^

2= A:
2

. Eliminating x, y, z, we get

Let xyz be the coordinates of any point on the surface of

sc
the cone at the distance R from the origin; then cos A,=^7,

it

>y g

=^, cosv=^, and the equation of the cone becomes

the equation of a cone which is also of the second degree.
As this cone too will frequently recur, we may name it the cone

of rotation.

109.] To determine the equation of the cone described by the
axis u of the centrifugal couple.
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Let d ]f d be the coordinates of a point on the axis u of the

centrifugal couple; then

dr dy
a/ dJ a2 /62-eV V

1 5* b*fa*-c*\zD=j-= -2(-2 r)-> n=T-= -9(-a 15)-- See (512).r Az c2 \a
2

62/# 2' d? c2 \a2 b*)y
<l.v (l.v

From these equations and the equations of the ellipsoid and sphere,

eliminating x, y, z, we find, omitting the traits as no longer neces-

sary, the following equation of the fourth degree*,

110.] To determine the equation of the cone described in the

body by P
y
the axis of rotation due to the centrifugal couple.

The axis P, makes with the axes of coordinates the angles \t, (it ,
vr

Let x
t y,2 t

be the coordinates of a point on the surface of this cone;
then y22 22

z1

cosv, xwb*/' z
t

cos
v, y\a

*
It may not be out of place to show that the equations of the invariable cone,

and of the cone of rotation given in sec.
[107J and sec. [108] are equivalent to

the equations of the same cones given by Poisson in his Trait6 de Mfaanique
(torn. ii. pp. 151, 152). To show this, assume the equation of the vis viva given
at page 140 of the same volume, A=A/)

a

+Bj
2+Cr2

. Now

A= no", p=&, whence Aj>
2=n/"^ ;

finding similar values for By
2 and O2

,
we obtain

we also have A= na2
,
B=n62

,
C = nc2 .

A fi2

k'=K=nfk; hence A;'
2
=n.n/

2
A;
2

=^.A.^, or -
2
=

(I K

But the coefficient

I 1\ I/, a2
\ n/, AA\ n k'*-Ah

be wntten I-'= I- =

making similar substitutions for the other coefficients and dividing by r^,we getm

In the same way (628) may be transformed into

(A'
3 - AA)*

a+ (*'
a -B%2+ (k

- CA)z
a= 0.

These are the equations given by Poisson.

VOL. II. 2 C
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Eliminating x, y, z from these equations, as also from those of the

ellipsoid and sphere,

2222 2 2-c2
)

2a2c2*V|
)

C2a2b*xY=0)'
*

'

which is also an equation of the fourth degree.

111.] The circular sections of the invariable cone coincide in

position with the circular sections of the ellipsoid.
It is a property of surfaces of the second order*, that if in two

such surfaces referred to the same or parallel axes the coefficients

of the squares of the corresponding variables differ all by the same

quantity, the circular sections of any two such surfaces are parallel.
Now the coefficients of the squares of the variables in the

equation of the ellipsoid are -^ T^, -%, and the coefficients of

* Let A:r2+Ay+A"z2
+2Byz+2B'a:3+2B".ry+2Ca:+2C'?/+2C"z= l

be the equation of a surface of the second degree, referred to rectangular axes.

Let the surface now be referred to a new system of rectangular coordinates, such
that the plane of x'y' shall be parallel to one of the umbilical tangent planes, or
to one system of circular sections of the surface. If in this transformed equation
we make z'= 0, we shall obtain the equation of a circle referred to rectangular
axes, if the roots are real. The equation being that of a circle, we thence derive
two conditions the equality of the coefficients of the squares of the variables,
and the evanescence of the coefficient of the rectangle x'y' . Let 6 be the angle
between the axes of z and z'. If we take the intersection of the plane of xy with
the plane of one of the circular sections as the axis of x', ty being the angle
between the axis of x and x'

}
we shall have, by the known transformations of

coordinates, and putting z'=0,

x= cos ^x'+ cos 6 sin -^y', y= sin
-fyx'+cos 6 cos tyy', z = sin Qy '.

Substituting these values of T, y, z in the given equation, the resulting equation in

x1

and y' is that of the conic section in which the plane of x'y' intersects the

given surface. As this section must be a circle, we get the two conditions

[(A A'')cos
2
4/+ (A'

-
A")sin

2
i//
- 2B"sin $ cos

i/>]
tan2<9+ 2 [B cos $+B r

sin i//]tan 6

=4B" sin^ cos ty (A A') (cos
2
^ sin2

i//)

and
, ^_B"(cos

2^ sin2^)+(A A') sin^cosi/'

B'cosi// Bsini/r

From these equations eliminating tan 6,we should obtain a resulting equation
of condition in ij/, whose coefficients would be functions of (A A'), (A A"),

(A' -A"), B, B;,
B".

As the coefficients of the squares of the variables do not enter the coefficients

of the resulting equation, but the differences of those coefficients only, it follows
that two surfaces of the second order whose equations are of the form

/ &c. =

will have the planes of their circular sections parallel.
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the equation of the cone are -, p, i^~"^> ~~~p> f w^icu the

1
constant difference is To-

rt
2

112.] There are some general properties of rotatory motion,
such as the principles of the conservation of areas, the conservation

of living forces , &c., which may with much simplicity be here estab-

lished.

Resuming the equation (466) and multiplying by eo
2
,
we get

Ha>2

=Jdm[Ro>sin0]
2
,

the integral being extended to the whole mass of the body. Now
R sin 6 is the velocity of the particle dm. The above integral
therefore denotes the sum of all the elementary particles of the

body multiplied each into the square of its velocity. This is termed
the vis viva of the body.

f
In (504) it was shown that H=nP2

, and G>=^; whence

Ha>2=n/2
, or the vis viva of the body is constant, since n and/

are constant.

Let the vis viva of the body be denoted by F, we shall have

F= constant....... (531)

Multiply the tangential equation of the ellipsoid of moments

given in (474) by/
2
,
then

n/
2=L/

2
!
2 + M/V+N/2?-2U/X- 2V/

2 - 2W/2 y .

In (492) it was shown that p=f%, q=fv, r=f, whence

F=Lj9
9+ M?2+ Nr2 -2IV--2Vpr-2^, . . (532)

which is the equation of the vis viva in its most general form.

When we take the principal axes as axes of coordinates,

U= 0, V=0, W=0, or F=Lp2+M?2+Nr2
, . (533)

the form in which the equation of the vis viva is usually exhibited.

If we square the equations given in (490), and add the results,

(L
2 +V2

-fW>2 + (M2+W2+U2
) q*+ (N

2 +U2+V2
)r

2
}

. (534)

In this equation is contained the principle of the conservation of
areas; for (Kl=Lp Vr Wg-), see (490), is the sum of the areas

described on the plane of yz, multiplied into the particles which
describe those areas. Now these areas are projected on the plane
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of the impressed couple, by multiplying this expression by the

cosine of the angle between the planes that is, by / or its equal

Lp-Vr-Wq , (Lp-Vr-Wg)2
, ., ,-==-*

; and therefore -i-3--^- denotes the sum ot
&. J\-

the particles of the body multiplied into the areas described by
these particles on the plane of yz, and then projected on the plane
of the impressed couple. Finding analogous expressions for the

two other coordinate planes, we get for the sum of all the particles
of the body multiplied into the areas which they describe on the

plane of the impressed couple,

, ,~~
but the sum of these expressions must, we know, be equal to K,
whence we obtain the formula given above.

When the axes of coordinates are the principal axes, V=0,
U=0, W=0, and we get the well-known equation,

K2=Ly+My +N2r2...... (535)

We may, in a very simple manner, establish the equations which

embody the principles of the vis viva, and the conservation of areas,

without using the method of tangential coordinates, when we restrict

our choice of coordinates to the principal axes of the body ; for

L=na2
, j9
=

-2, as shown in (500) and (506).

Finding like values for the other analogous quantities and

adding,

2=F. . (536)

Again, Ly+MV + Nr2 =n2
/2

(#
2 +y2+*2

)
=n2

/
2A2=K2

. (537)

Let p,, q,,
r

t ,
denote the angular velocities round the principal

axes, the components of the angular velocities due to the centri-

fugal couple ; then

. . . (538)

(I)We have L=na2
, p,=f ^-. Writing similar expressions for

the other analogous quantities,
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Now ^=/tan 0, see (501), and =*, as in (508) ;

at K

whence L2
/;,

2 +MV +N2r
y

2=n2
/
2/2 tan2

=n*f*k*

We may also show that,

. tan8 =K2*2 tan9 0.
k*

. . (539)

113.] Using the principles established in the foregoing pages,
the reader will find little difficulty in verifying the following
theorems : ....... (a)

0, ...... (b)

pi am r ,n 1 d 2 ,
.

The sum of the squares of the distances of the vertices of the

three semiaxes of the ellipsoid of moments from the plane of the

impressed couple, divided by the corresponding moments of inertia,

is constant during the motion.

Let x
t
be the distance of the vertex of a from the plane of the

X (/ J'

impressed couple. Then x
t =zal, and l=-r; hence ^/=-r- and

K K
nft *

-jp2

L=na8
, or --

,
whence

The sum of the squares of the distances of the vertices of the

three semiaxes of the ellipsoid from the plane of the impressed

couple, divided by the squares of the corresponding moments of

inertia, is constant during the motion.

a*#2 a?
2 1 /a"

2\As before xf= -, L2=n2a4 ; therefore =L --[ } whence
A;
2 L* n2 2

\a
2
/

Let tangent planes be drawn to the vertices of a, b, c, the three
semiaxes of the ellipsoid, cutting off from the axis of the plane of
the impressed couple three segments. The sum of the squares of
the reciprocals of those segments will be constant during the
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motion. Denoting these reciprocals by f, v, we shall have
/y> ty*

=2, during the motion; for f==-, or k%=-; hence
K K tt

Again, a2!
2+ Z>

2u2+ c
2 2=

(/
2+ m?+ w2

)
= 1 .

, v, ,
the reciprocals of the segments cut off from the axis of

the plane of the impressed couple by three tangent planes drawn

through the vertices of the axes of the surface, may be the segments
of the axes of coordinates cut off by any tangent plane to the

ellipsoid.
If through the vertex of k, which is a point fixed in space, a

plane be drawn parallel to the plane of the impressed couple, this

fixed plane will cut off segments from the axes of the ellipsoid

during the motion, the sum of the squares of the reciprocals of
which is constant.

Writing , v, for these reciprocals, we have

=l} kv=m, k$=n; hence ^+ v2+^=. . . (g)

CHAPTER XV.

INVESTIGATION OF THE POSITION OF THE BODY AT THE END OF

A GIVEN TIME.

114.] We must now proceed to the investigation of formulae by
whose aid we may be enabled to determine the position of the body
at the end of a given epoch. For this purpose we shall obtain two
distinct classes of formulae, to determine not only relatively to

certain fixed lines within the body (the principal axes suppose)
the position of certain other lines, but also absolutely the position
of these lines themselves in space. This double investigation is

necessary, because the locus of a point will vary accordingly as we
choose the axes of coordinates fixed in space, or varying in position

according to some given law. For example, the instantaneous axis

of rotation describes on a sphere concentric with the body, and

moving along with it, a spherical conic, while it describes on a con-
centric sphere fixed in space a spiral which undulates continually
between two small parallel circles of the sphere.

Again, under certain conditions the same straight line may
describe in the body a plane, or on the moving sphere a great



ON THE MOTION OF A RIGID BODY ROUND A FIXED POINT. 199

circle, while it describes in absolute space a sort of spiral cone, or

on the surface of the fixed sphere a spiral approaching very nearly
to the loxodromic or rumb line.

We have hitherto assumed k as lying between the mean and
least semiaxes of the ellipsoid, or a2 >Z 2 >A:2 >e2

. Should we

require to consider the case when k lies between the greatest and
mean semiaxes of the ellipsoid, the formulae will be most easily
modified so as to embrace this hypothesis also, by taking in that

case c as the greatest semiaxis, and b the mean semiaxis as before,
or a2 <i*<A:2<c2

. While on the former supposition the binomials

a2 62, a2 c2
,
A2 c2, a2 A;

2
, 62 A:

2
,

A;
2 c2, are all positive, on

the latter they will all be negative. Now, in the formulae which
we shall have to deal with in the remaining portion of this subject,
these binomials occur generally in pairs, connected either by mul-

tiplication or division. It will result, therefore, that no effective

change of sign will generally take place, whether we suppose k to

lie between the greatest and mean semiaxes, or between the mean
and the least. The case where k is equal to the mean axis will

require a separate investigation. When the body is a solid of

revolution we cannot take N equal to L or M, or c equal to a or b,

because we suppose c to be the greatest or the least of the three

semiaxes. The only hypothesis, not inconsistent with previous

assumptions, is L= M, or a= b; and this is the assumption gene-
rally made when the case of a solid of revolution is considered.

Resuming one of the equations (515),

-y........
If we agree to take -r- with the positive sign when a>b, we must

attach the negative sign when a<b.
To integrate this equation, we must express x and y in terms of z.

This we can easily do by eliminating x and y alternately from the

equations of the ellipsoid of moments and the concentric sphere.
We hence find

= a V(6-cV8
-<?*(&*-*) _b Vc*(a-*

2)- (a*-c
2
)z

8

c v^= 2 c v^^F
Making these substitutions in (a), the last equation becomes

. (540)

*
If we assume the relations established in the note at page 186,

A= na% B=n6>, C= nc>, A=n/*, A'.n/A, r= =, =,
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To facilitate the integration of this equation, assume

c [a ~~ K ){o
~~ K ) /*tt\

t,
'

-. . (o41)

Substituting the value of z derived from this equation in (540),

\df)
=
/

2
[(a

2- 2
) (b*

- c2
)
cos2

<p + (6
2 - A2

) (a
2- c2

)
sin2

<p]

' "

or integrating, we obtain the following elliptic integral of the first

order,

f-
abc

f ,
^

(542)-f ,- C2

)\ / r
(a*-^(*2-

JV L(6
2-c2

)(a
2- 2S1

115.] 7%e modulus of this function is the sine of the semifocal

angle of the invariable cone.

Resuming the equation of this cone given in (527), and writing
a and /3 for its principal semiangles,

tan2 =-
C*(0* K*)' C'(a"K"-)

Now, e being the semifocal angle of this cone, cos e= ^
cos/3

. ,n . . 9 cos2 jS cos2 (a
2 62)(&

2 c2)
as in (2), or sm2 e=

-5-^
= /r2 aw2 T^\> -

(
D

)
cos2 13 (o

2 c
2
) (a

2 A2
)

_ _
hence cos^= F

-
f ,and seccose= ?

=
; . (e)

Consequently the coefficient of the elliptic integral in (542),

abc , ... abc2 sec cose
- ... may now be written-, (d)2222

/ V (a
2-

In (508) it was shown that f=kfc. Introducing this relation

into the preceding coefficient, and making.* -- .... (543)
abc*

and by the help of these relations eliminate from (540) the quantities a, b, c, /,
z, kt

we shall obtain the resulting equation

\/AB.Cdr

the expression which Poisson arrives at, Traite de Mfaanique, torn. ii. p. 140.
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(54-2) may now be written

(544)
l sm2 esm2

<p

In (58) it was shown that the arc <r of a spherical parabola whose

principal arcs a and /3 are given by the equations

2
_ 1 4- sin 7 . - 2 sin 7tan2 * = ---

: -, tan2 B= ,

181117 1 siny

may be represented by an integral of the first order, or

C dip sin 7 tan <p 1
o-=smyl ^+ tan-M .

r "-
; (e)

J v 1 cos8
y sm

2
<p

L y 1 cos2ysm2
<p-J

writing 9 for the circular arc, we get the simple formula

jt=a <;........ (545)

In this case, tan2 =-- =cot2 i e, or 2a + e=7r. . . (f)
1 cos e

2 and e are therefore supplemental.
tjf _ ej^

When e vanishes, a=
, /3=-, or the spherical parabola becomesA ii

a great circle of the sphere.
When the moment N of the body is very nearly equal to L or

M, c2 must very nearly be equal to a2 or b*, and the coefficient j
becomes indefinitely small.

116.] It may easily be shown that the amplitude <p
of the elliptic

integral assumed in (541) is the eccentric anomaly of the vertex of k,

the axis of the impressed couple. Let Q and b be the semiaxes of

the plane ellipse, the intersection of the invariable cone with a plane
which touches the sphere whose radius is k, which is drawn at right

angles to the axis c of the ellipsoid, the internal axis of this cone.

Let the plane which passes through the axis c and k cut the

plane of the ellipse in th'e semidiameter R, making the angle ^
with the axis a of the ellipse. Then, as a= tana, li= A;tanj8,

and, p being the angle which k makes with the axis of z, R=k tan p,
we shall have

1

tan2 * tan2 /?
cos2 p= --, as shown m sec. [81.*

Let
<p'

be the eccentric anomaly, then tan
p'=j-tan -^r,

. (a)

,
tan /3 . cos2 a

or tany-= tan', and cos2p= 1
-- . .- ,- . . . (b)tana 1 sm2 e siu2

VOL. II. 2 D
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In (541) we assumed

.

2

_ _
and 7-5 igT-Wo

-
g,'=sin

2
e. Comparing this expression with (b)

(a
2

k*) (o c2
)

we find <>=<>'.

Or
<p

is the eccentric anomaly of the vertex of k.

117.] Resuming the equation established in (544), we may invert

the formula, ;7=cose 1 . , and express the ampli-
J Vl-sin2 esin2

(p

tude
<p
in terms of the function jt. Accordingly let

<p
be a function

ofjt, or
<p
=

(jt) *, the parenthesis denoting a function ofjt. Sub-

stituting this value in the value assumed for z in (541) ,
we find the

following values of x, y, z

2_
2
(6

2- 7c
2
) (**

- c2
)
sin2 (jt) }

(
a*-k*) (6

2 -c2
)
cos2 (jt) + (b*-k

2
) (

2 -c2
)
sin2 (jt)'

7*> > (
546

)cos + - a-c sn

c2
)
cos2 (jt) + (6

2 A2
) (a

2 c2
)
sin2 (jt)

'

)

* That the assumption here made is allowable, may be shown as follows.

Let (1
- i

2 sin2 <p)-% be developed in a series of cosines of multiple arcs
; for the

successive integral powers of sin
2
Q may be so developed. Accordingly let

J
.

- =A+2B cos 2<p +-4C cos 4<p+6D cos 6<p &c.

Integrating these equivalent expressions, and putting t for
j

. j-^f, we
j \ L t sin (p

sin4<p+Dsin6<p .... &c. now

Substituting these values of the sines of the multiple arcs of <p in the preceding
equation,

or, by the inverse method of series,

<p=M+
or <p may be taken as a function ofj't, or we may put <p=(;Y), as in the text.
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We may also express x, y, z in terms of the time and of the

constants of the invariable cone. Transforming the expressions
in the preceding formulae, we find

tan*/3sm
2
Q7)

see2 a cos2 (jt) + see2 ft sin2 (jt)
'

tan2 a. cos2 (jt}

sec2 cos2 (jt) + sec2 /3 sin2 (jt)'

1

(547)

2 sec2 a cos2 (jY) + sec2 >3 sin2

From either of these groups of equations we may find the coor-

dinates xy z of the vertex of k the axis of the impressed couple, in

terms of the time. We can thus determine the particular diameter

of the ellipsoid which happens to coincide with the axis of the im-

pressed couple at the end of the time t. And ifwe suppose the ellip-

soid brought into this position, we shall have the inclination of the

equator of the body to the plane of the impressed couple. This,

however, is not sufficient to determine completely the position of

the body. The body might take any position round this line as an

axis, xy z remaining unchanged. We must therefore determine

the position of some other fixed line or plane in the body. One
of the most obvious is the intersection of the plane of the equator
of the body or of the plane of x y with the plane of the impressed

couple. The position of this line being ascertained at any epoch,
the position of the body will be completely determined.

118.] To determine the value of (o the angular velocity at the

end of any given time.
/a r 2 2 2i

Since to
2=^=/2

\ 4+ |j
+^ , substituting for x y z their values

given in terms of the time in (547), we find

tan2 a ,. ... tan2 )37+-- cos2 O/) +
, ...1

(jt)

(548)-

sec2 a. cos2 (jt) + sec2 /3 sin
2
(jt)

This formula may be simplified as follows.

It was shown in sec. [108] that the instantaneous axis of rotation

describes a cone of the second degree, whose equation is

Let ' and ft be the principal angles of this cone. It may c asily
be shown that

"
c2(^ t>2)

-
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c2 c2

whence tan a'= 7^ tana, tan /3'=-3 tan /8 (b)

Introducing into the value of a> these functions, we get

l'sin
2
C//)-

c4 Lsec2 a cos2 (jt) +sec
2
/3 sin2 (jt)

* Let the axis of the impressed couple very nearly coincide with one of the

principal axes (that of c suppose) ;
then k is very nearly equal to c, or to z, and

the angular velocity round the axis of z, being given by the equation r=-~, as

in (506), r=-, a constant quantity which may be put equal to w
t
or K = H.

C

In this case the invariable cone becoming indefinitely attenuated, sec=l,
sin e= 0, and k=c nearly ;

so that the formula given in sec. [114]

-xcose
kf /(q

\/
~

f- -*
J Vl-si

niav now be written. nt=- . To use the notation adopted by
A(o

a -caX&
8-ca

)

\/
"

~~^6~

Poisson in the Traits de Mecaniqne, let A, B, C denote the moments of inertia

round the principal axes
;
then A=na2

,
B=n62

,
C = nc2

,

whence . /(*-*)(-*)_ /(A-C)(B-C)V <M* "V AB
or n8t= q>, whencey= ??S.

,,., ,.

'

2

In (546) we found ^= _,,
Since k2

is equal to e2 nearly, let 7v
2= c

2+'2
,
in which v is a quantity indefi-

nitely small
;
the above formula may now be written

,__yV[fe
2 -c2

i/
2
]sin

2M^_~
(a

2 - cs)(6
3- c2) v\(W 6

2

)cos
2

wS^+(a
2- c

2

) sin
2
^]'

or, neglecting i/
2 when added to finite quantities,

(a? -(*)(&-<?)

Taking the square root and reducing,

vfNow assume . = a,2
v 2&2

(a
2

c
2
)(6

2-c2

)

fx _
whence ^ = V B(B C) sin(8+y). y is added, since a? and ^ may be sup-

fy _
posed not to vanish together. In like manner, 4?= VA(A C) cos (n^-f-y).
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We may also express the components p, q, r of the angular

velocity in terms of the time

(550)

= nQV) 1
'

P =

a4 Lsec2a cos2 (.;/)+ sec
2
/3 sin

2
(./0-T

|*!r
tan2* cos* (jt) . I

64 Lee2 cos2 ( #) + sec2B sin2 ( ;7) J
'

r2= _
c4 sec2 a cos2 (jt) + sec2 /3 sin

The angles which the instantaneous axis of rotation makes with

the principal axes, are given by the equations

COS\_C
2 X_C'

cos v a*z~a cos

c c

or, as tana' =7g tana, tan/3'= -2 tan/9, as in (b),

cos\

cos v
tan /3' sin =tan' cos i

tan2 /Q' sin
2
(jt)

COS2 /X
=

sec2 ' cos2 (,/V) + sec2 ft sin2

tan2 a' cos2 (jt)

sec2 a' cos2 (^Y) + sec2 ft sin
2
(^7)

' (551)

COS2 V=
sec2 cos2 (y/) +sec

2
(3 sin2 (,/V)*

These equations give us the position of the instantaneous axis of

rotation with reference to the principal axes, in terms of the time.

119.] We must now, in order completely to determine the position
of the body at the end of'the time /, investigate a formula which
will enable us to ascertain the position of some other line in the

body at the end of the given epoch. We may take the straight line

In (606) it was shown that p=^, q=ji ;
whence

= * A/A(A-C)cos(&+y).
These are the formulae established by Poisson, on this particular hypothesis,

by methods wholly dissimilar. ( Traitt de Mtcanique, torn. ii.
p. 154.)

When k is absolutely equal to c, v=Q, and therefore =0, or p=0, q=0,
whatever be the value of t. Since K =/fcn, F=/ 2

n, we get

j^a_ pja=
LM(L-N)(M-N)'

r
'
U8in* Poi8SOn

'

8 notation
'
*a=
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in which the equator of the body (the plane of x y suppose) and

the plane of the impressed couple intersect.

The angular velocity of the body round the axis k being uniform

and equal to K, the angle described on the plane of the impressed
moment in the element of the time d/ will be K&t, or the angle tct

in the time t, measured from a given line in this plane, its inter-

section with the plane of the equator of the body, or the plane of

the axes a, b. But this line, which may be called the line of the

nodes, will itself have an angular motion on the plane of the im-

pressed moment during the time ;
this angle may be denoted by ty,

whence the whole elementary angle will be

d>Jr , d3 . cty d3
-TT-I-K- Let this angle be -T-, then -~+ /e= -. . (a)

Now this elementary angle is the projection, on the plane of the

impressed moment, of the angle on the plane of a b, over which the

projection of the axis k on the plane of a b passes in the time dt.

Let p be the angle between these planes, or the angle between k and

the axis of z. Then cos/o
=

-r, and the angle of which -r- is the

-

projection is =-. Hence the area described on the plane of a b

Add
by the projection of k upon it is (#

2 + y
2
) --ri* This area may

also be represented by the expression Wy^r, #
~~Tj\- Equating

these expressions for the same elementary area,

-vr # cv cx .

Now
At=

L~T^' it-"-**?
-- " m

Whence

The equations of the ellipsoid and sphere give

62c2 r2 + aVy2= a262c2- a2A2*r2
,

2 2
/
2+ 262#2= 2*2 /t

2

Consequently y-^=/^ t2
. . . . (d)
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And as a2 + y
2= A2

z*, 4= K, we at length obtainT

To integrate this equation, assume as in (541)

_ C COS

_ __ iwi----62
)sin

2
<p'

and writing for d/ its value as given in (541*), we obtain by inte-

gration the elliptic integral

No\v, e being the eccentricity of the plane base of the cone the

locns of the axis of the impressed couple, (a) sec. [115] gives

2_-_-
tan2 * ~"b*(a*-k*y

ac(b*-k*) tan/3We hnd also ,. ., g , g v /A .

-57= +* -- cos
, . . . (i)/ 2 * c2 -tan

taking the negative sign when A > .

Introducing these transformations, the last equation (h) becomes

(553)tan a J [1 -e2 sin*
<p] Vl -sin2 e sin2

If we now turn to the formula given in (15), we shall there find

that this elliptic integral is the algebraical expression for an arc

of the spherical ellipse, supplemental to the one whose principal
arcs are and /3, supplemental in this case, therefore, to the

invariable spherical conic. Writing a for this arc, we get the

simple relation

....... (554)

We may hence infer that the line of the nodes, or the intersection
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of the plane of the equator ab with the plane of the impressed

couple, describes an angle which is made up of two parts : one of

these parts is a circular arc increasing uniformly with the time ;

the other, <r, is an arc of the spherical ellipse which is the base of

the cone supplemental to the invariable cone. Now, as the axis of

the impressed couple is always a side of the invariable cone, the

plane of the impressed couple will always be a tangent plane to the

supplemental cone ;
and it may easily be shown that the line of

contact of the plane of the impressed couple with this cone is always
at right angles to the line of the nodes.

It follows, therefore, that the line of the nodes is retrograde, and
in the time t will describe the angle Kt+ a-.

The angle -^ equal to Kt+ a,we may imagine to be thus described.

Let this supplemental cone be conceived to roll on the plane of the

impressed couple with such a velocity that the axis of the con-

jugate tangent plane may describe the invariable cone with the

velocity given in (510). Let, moreover, the invariable plane be
conceived to revolve uniformly round its axis. We shall then have
a perfect idea of the rotatory motion of a body revolving round a

fixed point, free from the action of accelerating forces. In this

manner it is shown that the most general motion of a body round
a fixed point may be reduced to that of a cone which rolls without

sliding with a certain variable velocity on a plane whose axis is

fixed, while this plane rotates round its axis with a certain uniform

velocity.
This cone is always given, and may be determined as follows :

The circular sections of the invariable cone coincide with the

circular sections of the ellipsoid of moments (see sec. [Ill]),
whence the cyclic axes of the ellipsoid, or the diameters perpen-
dicular to the planes of those sections, will be the focal lines of the

supplemental cone. As the invariable plane is always a tangent
plane to this 'cone, we have elements sufficient given to determine
it

; for when the two focals of a cone and a tangent plane to it

are given, we may determine it, just as we may a conic section when
its foci and a tangent to it are given.

120.] From these considerations it follows that we may altogether

dispense with the ellipsoid of moments, and say that if two straight
lines are drawn through the fixed point of the body, in the plane of

the greatest and least moments, making equal angles with the
axis of greatest moment, whose cosines shall be equal to the square

root of the expression ^

'

' and a cone be conceived having

these lines as focals, and touching, moreover, the plane of the im-

pressed couple, the entire motion of this body will consist in the

rotation of this cone on the invariable plane, with a variable velocity,
while the plane revolves round its own axis with a uniform velocity.
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Fig. 32.

Let ACB be the mean plane section of the ellipsoid, or that which

passes through the axes 2a, 2c ; ON,
ON' the cyclic axes ; then, if the

plane of the impressed couple coin-

cides with any of the principal

planes, the cones round the cyclic
axes as focals become planes also,

and the axis of rotation coincides

with one of the axes of the figure.

Again, if the plane of the im-

pressed couple intersects the mean plane between N and C, it will

envelope the cone whose focals are ON, ON', and whose internal

axis is therefore OA. But if it intersect between A and N, it will

envelope the cone whose focals are ON, OM, and whose internal

axis is OC. Whence the range in the former case (which may be
taken as the measure of the stability of rotation round the axis

whose moment is the greatest) is to the range in the latter case

(which may also be assumed as the representative of the stability of

rotation round that axis whose moment of inertia is the least) as

the supplement of the angle between the cyclic axes of the ellip-

soid is to the angle between these axes.

It is also evident that the sign of the spherical elliptic arc will

depend on the sign of the binomial (6
2

k*) in (j) sec. [119]. The

signs of Kt and <r being contrary when b< k, they will be the same
when b>k. We may therefore infer that the direction in which
the angle <r shall be described will depend upon the position of the

axis k in the body whether it lies within the region between the

planes of the circular sections of the ellipsoid, or without.

From the theorem established in sec. [4] we may infer that the

product of the sines of the angles, which the cyclic axes of the body
make with the plane of the impressed couple, is constant during
the motion ; for the cyclic axes of the ellipsoid of moments are the

focals of the cone suppleme'ntal to the invariable cone.

121.] To determine the angle between the instantaneous axis of

rotation and the line of the nodes.

Let this angle be Br The cosines of the angles which the axis

of the impressed couple makes with the axes of coordinates being
as before /, m, n, let the cosines of the angles which the line of the

nodes makes with the same axes be l
llt
m

tl ,
n

lt ; X, JJL, v, are the angles
which the instantaneous axis of rotation makes with the same
axes.

Then cos 8,
= l

lt
cos X+mu cos p -f nn cos v (a)

As the line of the nodes lies in the plane of the impressed

couple, and is therefore at right angles to its axis k,

(b)

VOL. II. 2 E
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and as it is perpendicular to the axis of Z, see sec. [119],

hence (a) and (b) become

cos
S,
= ln cos X +m tl

cos p, l,,l+mnm ; and /
y/

2 + w?
v/

2= 1 .

These equations give mn -j==

whence

_/cos/ti wcosX ,_x _y ^_^x _^V
I . I'19 i Q '

If' If* /2 ' ' A2 }

s
-

orcosd.= - / a ^...... (555)22

When two of the moments of inertia are equal (L= M, suppose),
a b, and cos8

y=0, or 8
y
=90 . Whence we may infer that when

the body is a solid of revolution, the angle between the instantaneous

axis of rotation and the line of the nodes is always a right angle.
The angle 8

t
is also a right angle whenever the axis of the im-

pressed couple lies in one of the planes of the principal sections of

the ellipsoid; for then x=Q, or y= 0.

122.] To determine the angle between the line of the nodes and
the axis u of the centrifugal couple.

Let ^ be the angle which the axis u of the centrifugal couple
makes with a fixed line, ty the angle which the line of the nodes

makes with the same fixed line ;
then as the line of the nodes and

u are in the plane of the impressed couple, see (498), the angle to

be determined is (% ^).
Now the cosines of the angles which u makes with the axes are

Ax dy Az , ,
d# dy ,

Az
'''' whence cos fc-^Hw+^^
The values of l

tl ,
m

lt)
n

lt
were found in the last section to be

m / _ ft ,_x _y
'
H"~ ~~' "'

We may hence deduce

y da? x dyl
lai-T^h -.. (a)

but T-
ds at as as at as

-, dx ,(5
2 c2) dy . (c

2 a2)ana -j-=j , 9 yz, 3^=/- o xz. as in
cu o^c elf a^c^
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Whence

d* fz
dt

C< =

~VF=
_ C

The part within the brackets is -
% -; and

-j-=/tan Q, see (510) ;

z /k2 c2 \
cos(x-^)= --cotO. . . . (b)

p being the angle between the axes c and k, cos p= -. IntroducingK

this value of z into (514) and the trigonometrical functions of a
and /3 the principal semiangles of the invariable cone, as given in

(a), sec. [115], _
tan 0=(*^\ A /cosV-cos

2 * cos* /3
(c)

V c
2 /V sin2 sin2 /3

whence cos2 (v-^r) =
sin2 * sin2 /3

sm2
p-cos

2 cos2
|

and tan2 (y-^) = ^n
2 -sin2

p)-(sin
2
p-sin

2
^)

sin2 sin2 /9 cos
2
p

This formula leads us to infer that when =
/3, % i|r

is always
0, or %= <

^1

; whence the axis of the centrifugal couple, when
the solid is one of revolution, always coincides with the line of the
nodes.

Again, when p ot
}
or p=(3, X= ty'>

*^at ^ whenever the axis

of the impressed couple lies in one of the principal planes of the

solid, the axis of the centrifugal couple coincides with the line of the

nodes.

CHAPTER XVI.

123.] In the'preceding sections formulae are given which enable
us to determine the position of the axis of rotation, and of the axis

of the plane of the impressed couple, with reference to fixed lines

taken within the body. It still, however, remains to determine
the positions not only of those lines, but of the fixed lines within
the body, relatively to absolute space. True, we may by trans-

formations of coordinates, and by the choice of other variables,
obtain solutions from the formulae already established, by methods

which, however, are tedious, complex, and not a little obscure. It

will be found not only the most direct, but by far the most elegant
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method of procedure, to conduct the investigation independently,
and start from first principles.
As the body must now be referred to fixed lines in space, it is

no less obvious than natural that we should assume the plane of the

impressed couple as one of the coordinate planes. Let this plane
be taken as that of x y, its axis that of z. Moreover let the plane
of the greatest and least principal axes of the ellipsoid of moments
coincide with the plane of x z

}
at the beginning of the time t. The

instantaneous axis of rotation will be in the same plane at the same

epoch, and will make with the vertical axis k an angle whose tan-

gent is given by the equation

(557)

This may easily be shown
;

for the perpendicular from the centre

on a tangent through the vertex of k, a semidiameter of an ellipse

whose semiaxes are a and c, makes with k an angle whose tangent
is given by the last formula.

In like manner, for the principal section whose semiaxes are

b and c, we get

C2)
. .... (557*)

(D and O
/
are the maximum and minimum values of 0, the angle

between the axis of the impressed couple and the instantaneous

axis of rotation.

124.] We now proceed to establish the following proposi-
tion :

The area described by the axis u of the centrifugal couple, on the

plane of the impressed couple, varies as the time.

The following relations were established in (524), (510), (507),

(508)
As

At to, As
_,, / /=> = i 6 "- and "=

whence -'=/<: tan <9...... (558)
&) V,u

Let O be the centre of a sphere whose radius is 1, concentric

with the ellipsoid of moments, Z the point in which the axis of the

plane of the impressed couple meets it, and OI the direction of the

instantaneous axis of rotation at the end of time t. Let the plane
which passes through these lines OZ, OI, or the plane of the cen-

trifugal couple coincide with the plane of x z at the same instant.

Then the axis of Y will at that instant be the axis of the centrifugal
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couple ; and the perpendicular from the centre on the tangent
plane to the ellipsoid, at the point where the axis of Y intersects

Fig. 33.it, will be the axis of rotation

due to the centrifugal couple,
see sec. [104] . Let the direc-

tion of this perpendicular be
OJ. Through OIJ let a plane
be drawn. If, along Of, OJ the

instantaneous axes of rotation,
we assume lengths OI, Or,
proportional to the angular
velocities o>, &>' round these

axes, the diagonal OI', of the

parallelogram constructed with
those lines as sides, will repre-
sent in direction the instanta-

neous axis of rotation at the

end of the time t+ At.

Let OI, Or taken in this proportion, be the sides of the paral-

lelogram ; the diagonal OI' will be the contemporaneous position
of this axis of rotation.

Let the angle ZOI= 0, YOJ= 0'; also let B be the angle between
the planes of IOJ and ZOX. Then, as the instantaneous axis of

rotation due to the centrifugal couple lies always in the plane of

the impressed couple, see sec. [103], the line OJ is in the plane of
*7T

xy, and the angle JOX= &. Let ^ be the angle which the
<i/

vector arc makes with a fixed great circle of the sphere passing

through Z. The instantaneous axis having moved into the position
OI', the arc ZI will have moved into the position ZI', or through
the angle d^, in the time At. Let Iv be an arc of a great circle

perpendicular to ZI', and as II'u is an infinitesimal right-angled

triangle we shall have II' sin 8= If= -*~ sin 0. Again, as IJX is a

spherical triangle, right-angled at X
;

sin IJ : sin JX : : 1 : sin 8,

or sin IJ = cosfl'

sinS

We are also given by the construction,

a)'_ sin II'_ II' sin 8_d% sin 9

w sin 1J cos & At cos 6'
'

and (525) gives

'
~Pk-=_T_/e tan v.
P'u
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/

Equating these values of , and introducing the relations

P= k cos 6, P'=w cos &
',
we get

u*^H
= Kk* (559)

Now uz~ is the elementary area described on the plane of the
U.6

impressed moment by the semidiamcter u of the ellipsoid which

coincides with the axis of the centrifugal couple ; whence the area

described by this semidiameter is proportional to the time, or

. v.J=/rfA2 4- constant (560)
dt

125.] To determine the position of the instantaneous axis of

rotation in absolute space, at the end of any given time.

If along the axes of rotation due to the impressed and centrifugal

couples, we take two lines to represent the angular velocities due
to those couples, the diagonal of the parallelogram, constructed

with these lines as sides, will represent the instantaneous position
of the axis of rotation.

Now, if we turn to the figure at p. 213, we shall see that

sin II' : sinU : : to' : &>, and ultimately TT=sinII'; whence

do- to' . TT /dcr\2 w'2 a)'
2

T-= smIJ: or I -1 =5- s-cos^IJ. . . (a)
dt a \ dt ) eo

2
&)

2

The general formula for the element of an arc measured on the

surface of a sphere is

d(9>

We must now reduce this formula.

dy /ck2

In (559) it was shown that -^= ^-,
and in (525) that

(16 tl

at
1

/ck*
2

==
pT~

s in 0- Making the substitutions suggested by these
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transformations, we shall find

(
C

-jf)

a

=AVsina 0r --1~|_^COS2 IJ. (c)
\(U / LI U 2 W4J G)

2

We shall now proceed to reduce the first term of the second
member of this formula. To facilitate the calculations, let

(d)

(ds\

4

Y. ) , we shall have

S?1 Q=/tVsin2

/cUT

\&L{*?f-[*i i (e^
LP>2

id/J
\"l I'

' '

s, it must be borne in mind, is the arc of the invariable conic ; and

zyx are the coordinates of the vertex of k referred to the principal

planes of the ellipsoid.

Now, if we turn to sec. [106] and sec. [1071, we shall there
find

dfV /dyV /d
t) \(\t) \to

2 1

1

/d^\
2

/d^
yd// (at

I

62 C

SV+

Introducing the substitutions suggested by these transformations,
we shall obtain

*4*2 sin2 6

at

(6)



216 ON THE MOTION OF A RIGID BODY ROUND A FIXED POINT.

Making the obvious reduction in this equation,

,

We have also, see (515),

_ /dtA 2

'
(to)

=->

n _UydjA
2 /d Y_

V2 #7 W/ \d//
=

Finding similar values for the other symmetrical expressions, sub-

stituting, introducing the relation x'
2 + y'

2 + z'
2= k'*

) and writing
ds

for j- its value /tan 6, we shall finally obtain

_ |-

"L
n

O)'
2

We have now to compute the term 5- cos
2 I J.

<u
2

In sec. [106] it was shown that the angle between the axes of

rotation due to the impressed and centrifugal couples, was given by
the formula

whence k
or \

In (506) and (516) it was shown that

//y T * ^ A* /^*^ -i/ **// / i (/
~~~ C J V^

*^ /^2 ^ -* ^

"^
^2 A2^>2 ^ JrSr /

^"~
2 iQ '

Finding analogous expressions for gg^ and rr
;,

7.2_ 7,2-1

(J)
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f f
Now <u=4=

-c* c2-a2 Q2-6a
_(6

2-c2
)(ffl

2-c2
)(a

2 -62
)

,

2
~~~ ~~ ***

a>'
2

/g*
4 cos4 (a

2- 62
)

2
(a

2 - c2
)

2
(6

2- c2
)

2#V*2

C<

Multiplying this expression, numerator and denominator, by
tan4 6, writing ick for /, and in the expression

substituting for the terms of the second member the values found
in the preceding equations, reducing, and taking the square root,

dfl_ K&? sin cos 6 (a
2- 62

) (6
2-c2

) (a
2-

c*}xyz ,.~ 444 tan2

We have now to express x, y, z in terms of 0.

Combining the simultaneous equations of the ellipsoid of moments,
of the concentric sphere, and of the perpendicular from the centre
on the tangent plane to the ellipsoid, namely

we obtain from these equations,

#*_[6
2c2 tan2 0-(62-

a4
'

\ / \ /

. . (562)

+ (a
2-

Substituting these values of x,y,z in (561), the resulting equation
will become

a'ftV sine sec3 fl

VOL. II. 2 p
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This is an elliptic integral of the first order, which may be reduced

to the usual form by assuming

(564)

Before we proceed further, we shall give the geometrical inter-

pretation of this assumption.
Let a cone be conceived whose internal axis shall coincide with

the axis of the plane of the impressed couple, or with the axis of z,

and whose principal arcs shall be the greatest and least elongations
of the instantaneous axis of rotation from the axis of the impressed

couple. This cone will generate on the surface of the sphere a

spherical conic, the tangents of whose principal arcs (2a", 2/3") are

given as in (557) by the equations,

*)

This cone may be named the cone of nutation.

Now, if from the centre of this curve the vector arc 6 is drawn
to a point on it, X is the angle which the perpendicular arc from
the centre on the tangent arc through the vertex of 6, makes with

the principal arc a".

To simplify the notation, let

Y=(a2 -Ar2)(A
2-c2)-a

2
c
2 tan2 0, I . . . (565)

Z = a262 tan2 6+ (a?
- A2

) (6
2- A8

) , )

and the equation (563) will become

At a?b*c* tan2 6

v/X.Y.Z.'

If we differentiate (564), and make the transformations resulting
from that assumption, we shall get the following relations :

= A2 (a
2- b2

) (k*
- c2

)
cos2X

;
j

42Y= *2(a
2- 62

) (F- c2
)
sin2X ; and I . (566*)

2-&2
) (a

2-c2
)sin

2
X.)

By the help of these transformations, equation (566) takes the

form

+ abc
f_ dX2222 2- >
f_ dX

-c2
) \ / _ r(2-62)(A2-
J V L62-c2 2- S1

which is precisely the same elliptic integral we found in (542),
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_ from it only in the amplitude X and the sign. When
b>a the positive sign must be taken. We shall show presently
that $ and X have opposite signs.

Tins formula may be thus written, as in (544),

+ abc* sec cose C dX
t= I . (OOO)

1.9 - . 1 1 _a -\ / '<?__ _2\ i /l _ait - -'- - "*

When the integrals are complete they are identical, as they
manifestly should be, because the maximum and minimum values

of 6, the greatest and least elongations of the instantaneous axis

of rotation from the axis of the plane of the impressed couple,
should be given by the same formula, whatever system of axes we
choose since this value must be independent of the position of any
axes chosen at will, being a function of the constitution of the

body, and of the magnitude and position of the impressed couple.

126.] To determine the angle %, which 6 the vector arc, drawn
from the vertex of k, to the pole of the instantaneous axis of rota-

tion, makes with a fixed plane passing through k the axis of the

impressed couple.

dy icl?

Resuming the equation -57
=

g-j
established in (560), we have

now to express M2 in terms of X.

If we turn to (522) , we shall there find

d#\2
/d?A

2
/Az\*

) I -A ) /
)

or e
- . L ,

Eliminating by the relation = + +

as shown in (515).

Having made these substitutions, we shall find

d*
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Eliminating #2 and y
2
by the equations of the ellipsoid and sphere,

As
introducing also the relations ^-ftanO and

a*b2c4 tan28= (a
2 - c2

) (b
2- c

2
)
k2z2- c4 (a

2- k2
) (b

2- k9
} ,

as given in (514), we get

tan2 0+(a2-*2
)(6

2 -/:2)(c*-*
2
)

a2b2c2 tan2 8
' ' '

(
*W)

In this equation substituting the value of tan 6, given in terms
of \ in (564), we obtain

!_ (
g2- *2

)
cos2 x+ (

&2-
w2 ~62

(a
2
-F)cos

2 X+ a2 (6
2
-F)sin

2

Now this may easily be reduced to the form

But it has been already shown in
(i)

sec. [119] that

e being the eccentricity of the plane elliptic base of the invariable

cone.

w,

Whence *!=!_(*!_-)[_ ir-gr-l. .... (572)rt/z \ /jx / I ^.. ^>*QTn^ A I
^ '

Ui \ U /I_A c olU /v_l

k2 Ck2

Introducing this value of
2
into the equation %= I -3 d/,

writing for d its value as given in (567), and integrating, we shall

obtain the final result,

ac (b
2 k2) C d^= Ki + ^f - 1 . (573)-bk ^(a*-k2

)(b
2-c2

)J [l-e
2 sin2 \] Vl-s^es^X

v

The positive sign to be taken when b > k.

This elliptic integral differs from (553) only in the amplitude.
When the integrals (553) and (573) are complete, the values of

i/r and ^ become identical, as they manifestly ought to be, because
in sec. [122] it was shown that the line of the nodes coincides

with the axis of the centrifugal couple whenever the instantaneous
axis of rotation lies in one of the principal planes of the ellipsoid.



ON TIN: MO i KIN oi' \ KHMD BODY ROUND A FIXED POINT. 221

If we eliminate z and tan# between (511), (541), and

"'ill), we shall get the following relation between
<p
and X,

tan<p tanX= sece; ......
dp sin 2<phence ^= r ^ ; or

<p
and X have opposite signs.

ClX Sin <wX

But these angles differ in their origin by a right angle, since
<p

is

measured from the plane of be, while X is measured from that of

TT .

ac ; subtracting <p
from to make their origins coincide, then

tan <p=cose tan X;

this formula coincides with that given in (39) .

Now, when the ellipsoid is a figure of revolution (a equal to b,

suppose) ,
the invariable cone becomes a right cone of revolution,

whence the angles between its focals vanish, or e=0. Therefore

f is always equal to X ; that is, the amplitudes of the functions are

identical throughout their whole extent, as plainly they ought to

be, because in this case the line of the nodes always coincides with
the axis of the centrifugal couple.

when <p=0, X=0; and when <p=^, X=^.

We may repeat here what has been said in sec. [119], that the

expression

ac(b*-k*) C dX

=*)J[l-<bk V(a
2-#2

)(6
2-c2

) [l-e
2 sin2 X] Vl-sin2 esins X

may be transformed into this other,

tan/3 cosal
J [1

- e2 sin2 X] V 1 - sin2 e sin2 X
J

which represents, as has' been shown in sec. [8] , an arc of the

spherical conic, supplemental to the invariable spherical ellipse.
The relation between ^ and X is given by the following elliptic

integral,

[(a
2-*2

)(6
2-c2

)]*v=
flC(62~*2) f-^

M J [l-e
2 sin2 X] Vl-si

_gbcC dX
* J Vl~

128.] We may now determine the angular velocity round the
instantaneous axis of rotation, and the nutation of this axis, in for-
mulse of great simplicity.
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Since in (568) the time is given in terms of X, we may reverse

the formula and obtain X a function of t
1
. (See note, p. 202) .

t
1 in this equation is no longer the same numerical quantity as t

in sec. [117] ;
for while all the constants in (542) and (568) are

the same, the amplitudes <p
and X are different. Accordingly let

j, :j :: t' : t ; hence j t t=jt'..... (a)

Let X

Then in (186) writing for tan2 its value p2 1, we get

1 (
fl
a+ c8_ff) (^ + ca_F) (= -~ --

Let P
y
and P

/;
be the greatest and least values of P ; then

1 sin2 \ cos2 X
I f! I

v
u

;

or P is a semidiameter of a plane ellipse whose principal semiaxes

are P
;
and Pw .

If fl and Oy are put for the greatest and least angular velocities,

O f fl1 L-** T) > ^ L
-p >ru r

i

we hence get for the angular velocity the very simple expression

m2
0'/ 0; (577)

or the angular velocity varies as the perpendicular on a tangent to

a plane ellipse whose principal semiaxes are proportional to H
and fl'.

In the same way writing and (H)' for the greatest and least

values of 6, the nutation of the instantaneous axis of rotation from
the axis of the plane of the impressed couple, we obtain

tan2 6= tan2 fc) cos2
(j, t} + tan2& sin2 (j, t) . . (578)

This formula may easily be obtained, if we multiply (d) by A2
,

subtract 1 from the first number, and cos2 \-fsin
2 X from the

second.
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CHAPTER XVII.

ON THE SPIRAL DESCRIBED ON A FIXED CONCENTRIC SPHERE BY THE

INSTANTANEOUS AXIS OF ROTATION OF THE BODY.

129.] If it were possible to eliminate \ from the equations

(5(51) and (576), we should have a direct equation between 6 and

,
the polar spherical coordinates of the curve. We cannot do

this; but still we may perceive that as the equations involve the

angle % simply and no trigonometrical function of it, while 6 is

a periodic function involving sines and cosines of arcs which
increase with the time, the curve must be some sort of spiral
described on the surface of the fixed sphere. But although this

direct elimination is in the general case extremely difficult, perhaps
impossible to effect, we may however be enabled successfully to

investigate some of the more important properties of this spiral in

the general case, and to give its polar equation in a particular case

of rotatory motion.

The spiral, analogous to the herpoloid of Poinsot, has two

asymptotic circles on the surface of the sphere.
The angle r which the vector arc 6 of a spherical curve, drawn

from the origin to any point on the curve, makes with a tangent
at that point, is given by the equation

(579)

This is evident, because the sides of the elementary right-angled

triangle on the surface of the sphere are the element of the arc, the

differential of the vector arc 6, and the distance sin 0dy. at that

point between two consecutive meridians.

We may transform this equation into

.
., dy At

tanr=sm0J.^....... (a)

dy k2

Now in (559) it was shown that /r= /e -3, and in (569) that

tit *62c2 tan2
while 563) gives

- =_ --
/vvv' whence

Q0 K sin 6 cos 6 VXYZ

_q*6
2
c* tan2 + (a

2
-**) (&-*) (c

2-*2
)
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Now,, whatever supposition we make with, respect to the magni-
tude of k, some one of the factors X, Y, Z, in (565), must be

essentially positive, and cannot become cipher. In this case Z is

essentially positive. Making X= 0, and Y= 0, successively, we

get

and

but when X=0, or Y=0, tan T= oo, or r is a right angle; hence,
when 9 has either of these values, the spiral touches one or other

of the circles whose spherical radii are the values of tan 6 given
above.

If we make 9 greater or less than the limiting values just given,
either X or Y will become negative, and the value of tan 9 there-

fore imaginary. We may hence infer that the spiral on the surface

of the sphere is confined between two planes parallel to the plane
of the impressed couple, and that it always undulates between
two parallel small circles of the sphere, having its apsides alter-

nately upon them.
Let P

y
and P

tl
be the greatest and least values of P, the perpen-

dicular from the centre of the ellipsoid of moments on the instan-

taneous tangent plane. The area of the spherical belt or zone,
within which the undulations of the spiral are contained, is equal

to27rA(P,-Py/).

130.] It was shown in sec. [108] that the instantaneous axis of

rotation referred to the principal axes of the body generates a cone
of the second degree. We shall now proceed to establish the fol-

lowing remarkable theorem.
The length of the spiral between any two successive apsides is

constant, and equal to a quadrant of the spherical ellipse generated
by the cone of rotation.

Let <r be the arc of this spiral,

(566) (559) and (569) give us (^) =

_ d /v
also u

dt

and

sin2 B
sin2 9[a?b*c'* tan

2 9+ (a
2
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Making the requisite substitutions in the general formula for the

spherical arc, we shall find

/ d*\ -

= K - *in- e ro,- (X-Y-ZV-hK
2 sin 2

f
a2AV Uir 6+ (a'-gX**-**)^-**)]'

VW u'i'c-'lan'y

In (5G5) we found

X= /J
2c2 tan2 e-(b*- k*) (/c

2- c2
) ,

Y = (a
2-

/fc
2
) (/i

2- c2
)
-

<z
2c2 tan2 0,

Z = a*W- tan2 + (a
2- 2

) (b*
- A2

)
.

Substituting these values of X, Y, Z in the preceding formula,

squaring the second member, and adding, we shall find, after some
rather complicated reductions,

We must now reduce this formula to a form suited for integration.
In (564) we made the assumption,

o262c2 tan2 0= (k
2- c2

) [b
z
(a

2- *2
)
cos2 X+ a2 (6

2-
**) sin2 \] .

Let us continue this assumption : reducing we find

.

g0^(*
2-c2

)["
&2 (a

2-*2
)cos

2 X+ a2 (6
2- 2

)sin
2X "1

A2 UV + c^*)~co8 X+ a2 (6
2

-I- c
2- A2

)
sin2\J

' (<

and

8 0__ 262C2_
~A2

[6
2
(a

2+ c2-A2
)co

2 2222 -

Substituting and reducing

__
c2

)

~
~(b*(a* + c2- A*jTxis

12 X + -

(6
2+ c2- /c

2
)
sin2\]

2 '

-j- denotes the velocity of the pole of the instantaneous axis of

rotation along the spiral which it describes. We thus have the

velocity of this point given in terms of X. We shall return to this

expression.
To change the independent variable from t to X.

Multiply the last equation by the equivalent expression given in

(567), namely

tc*k* [(a
2-

/c
2

) (A
2- c2

)
cos2X+ (A

2-
A-
2
) (a

2- c2
)
sin2V

VOL. II. 2 G
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and we shall have

d<r *" A" i" __/____ _J f^ftl^

z2(2+ <?- #) sinSX]
2
[(a

2- 2
)(6

2- c2)cos
2\+ (6

2- /4
2
) v
a2 -c2

)sin
2
A]

'

We shall now proceed to show that this expression may be reduced

to an elliptic integral of the third order and circular form. To

simplify the calculations, write

'

(fjli If^ (13. (3\ \
'

j '<
(582)

(583)

Making these substitutions, dividing by a2 2c2
,
and taking the square

root, we shall obtain

abc \/
2 c2

To integrate this equation, assume

Vtan2 X=Utan2 3> (584)

Introducing the changes arising from this transformation, the

last equation may be reduced to

r (AV-BU)
|~

abc\/k*-cz
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Let us now take the cone described by the instantaneous axis of

rotation, with reference to the principal axes of the body. The

equation is given in (528), namely,

aV- *V+ *2 (P~ *2
)2/

2+ <?(<?
-

k*)a*= ;

and we shall find, writing as before a' and (3? for the principal arcs

of the spherical ellipse the intersection of this cone with a concen-
tric sphere, that

C2(F-C2
)

-
COS2 '= --5

- '-
ror, COS2 P=-

a
-

ror, 7-5
-vT5- -

re-.,
c2

) (6
2+ c2 A:

2
) (<r <r) (a

2 + c2 A:
2
)

2 '_ _~
' L -

If we write 261 for the angle between the focals of this cone, we
know from (e) sec. [8] that its value, in terms of the principal arcs

of the spherical ellipse, is given by the equation

tan2 e'= COs

COS2 a!

Substituting the particular values of these functions just given,
we obtain

a2- c
2
} (b*

-
A*) (* + c 2-

/t
2
)

'

Hence tan2
e' is the parameter.

Let 2r/ be the angle between the circular sections of the same
T , ,. j /ft\ AT. -9i sin2 '

sin'
2
yS'

cone. It was found m (9) that sin2 7/= 9 . ,2 'sin a

or sin rf is the modulus.
Let us compute the value of the first coefficient E.

Making the necessary substitutions, we obtain the resulting
expressions,.

= cos/3'

be V (a
2- c2

) (6
2-

A:
2
) (A

2 - c2
) (a

2+ c2- A2
)

"
cos ' sin a7

'

In like manner we find for the second cpeflBcient F,

F= A/_
'

"(a*-*
8
)(A

2-^) _cosa'_cos/3'
c V a2_-c2

r/
2 + c2 -/t2

~
"sina'

'
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Making all the substitutions just indicated, (585) may be trans-

formed into

A r ! cos/3
' fArc or spiral= . I -

cos a. sin a'J

d<3>

[1 + tan2 </ sin2
<X>] VI sin2 vf sin

3*
cosa' cos/3' r d<3;>

sin a'

a^cos/3'
f

sin
'

J Vl-sism2
?/sin2(I>

(588)

When the body is one of revolution or a= Z>, a'=/3' and the pre-

ceding expression becomes, Arc of spiral sin '

<3>, an arc of a

circle, since e'=0 and ?/=0.
It may be shown by comparing (10) with (41) that if there are

two circular elliptic integrals of the third order with positive and

negative parameters, having the same modulus and amplitude, the

parameters being respectively the square of the tangent of the

semi- focal angle, and the square of the eccentricity of the plane

elliptic base of the cone, the expressions are connected by the

following equation :

cos/3 C d< }

cos sin aJ

~

589)

tan2
e sin2

<p]

cos a cos /3

sn a

3 C d<p

J Y/l sin2 77 si

tan |3 . , f d<p= - - sin 8 \tana J[l-e2
si

sin2
<p

sin2
<p] V 1 sin2 rj sin2

<p

I tan-ir
etan6sin(P COS(

P]
L \/l sin2 17 sin

2
<pJ

>l

If now we introduce this relation into the preceding equation

(588), we shall obtain for the final result,

Arc of spiral = ^7 sin B' \

tana' J[i_ 6
/2 sin2 <j y ! _ sin2^ sin2 <j>

_ 1
re' tan e

1 sin <I> cos 4>~i
j

L v/l-s^^'sin^J J

In sec. [7] it was established that the elliptic integral

tan^^of d(P

J n-<

(590)

tana
sin

[1 e2 sin2
<p] V 1 sin2 77 sin2

<p

is the value of an arc of the spherical ellipse, the principal angles
of whose generating cone are 2 and 2/3, the angle between whose
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circular sections is 2t], and the eccentricity of whose plane elliptic

is e. And it is shown in (44) that

Fig. 34.

,
r e tan e sin <p cos <z> ~i

tan~'
L vl sm2

77sm
2
<pj

is the arc of a great circle touching
the spherical conic, intercepted
between the point of contact and
the foot of the perpendicular arc

from the centre on the tangent
arc.

Make the angle AOD= <p,
draw

the arc Dn a secondary to AB, and

through C draw the tangent arc Cr.

The length of the spiral
= spherical elliptic arc AC + circular

arc CT.

The length of the spiral between any two successive apsides is

7T
found by taking <E> between the limits and . At these limits

A

tangent vanishes, and the expressionbecomes the length of a quadrant
of the ellipse ; hence we obtain this remarkable proposition :

The length of the spiral, described on a fixed concentric sphere,
between any two of its successive apsides, is equal to a quadrant of
the spherical ellipse, described by the pole of the instantaneous axis

of rotation, on an equal concentric sphere which moves with the

body.
If we turn to the relation assumed in (584) between X and 3>

for the purpose of facilitating the integrations, and substitute for

U and V their values in the equation

Vtan2 X=Utan2
3>,

we shall find tan2 3>=^ tan2 \, or tan2$=^2 _

or tan <l>= cos e tan X. This result is identical with the expression
found in (39).

But X and the amplitude <p
used in the investigations in this and

the foregoing chapter, are connected by the relation established in

(575),

tan
<p
= cose tan X.

Hence (591)

131.] Let e, d ,
e" be the semi- focal angles of the invariable cone,

of the cone of rotation, and of the cone of nutation respectively.
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Then

cos*-
g-g 7~2

-
72WA2
-

cos 2

p (a
2

A;
2
) (o

2 c2
)

2 , _cos
2
a' _ 62 (6

2-
k*) (a?

- c2
) (a

2 + c2 - *2
)

.~
cos2 3'

~
a2 a2-F 62 - c2 62 + c2- A2

a

cos2 e"=
3-^/7

=
i2/ 2 . 2 /~2\

frorn
(
n

)
sec - [125].

cos2 j8" A2 (a
2+ c2 A;

2
)

Whence cos e= cose' cose" (592)

Let e" be the eccentricity of the plane base of the cone of nuta-

tion. From (n) sec. [125] we may derive

fan 2 " fan 2 /3" Jf^ffi2 7)2\
110 Ldll Ot ^^ Ldll O ft I W ^^ U

j
(* z^ ~

.

tan2 *" r(
2

A;
2
)

But it was shown in
(i)

sec. [119], that e2 =-
^ 2 _7-2\ ; whence

e= e", or the plane elliptic base of the cone of nutation is similar

to that of the invariable cone.

132.] When the revolving body is very nearly a sphere, as in the

case of the planetary bodies, a, b, c are very nearly equal. In this

case, the ellipse of rotation is indefinitely greater than the ellipse
of nutation, as may thus be shown :

tan2 a' =

,

- . --
tan2 "= v -4V- ^ tan^" =-i y

a e * whence^^ ^^

tana" 62 / (a
2- k9

) (6
2- 2

) tan/3" a2 /(a
2- 2

)(
2-

tan a'

Now, when a, b, c are very nearly equal, k also must nearly be

equal to one of these quantities ; whence as k approaches in mag-
nitude to one of the axes, the above ratio becomes indefinitely
small.

As the length of one undulation of the spiral depends solely on
the magnitude of the principal arcs of the ellipse of rotation, and
is independent of that of nutation

;
it is evident that when the body

approaches in shape to a sphere, several revolutions of the body
must occur between one extreme position of the axis of rotation

and the one immediately following.
When the body is very nearly a sphere, we may approximate to

this number. In this case the ellipses are very nearly circles, and
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the number of revolutions n will be the ratio of their circum-

I'rrruces, or

circumference of circle of rotation_ sin '_tan a'_ N
~ri iv u inference of circle of nutation"" sin a"

~~
tana" L N '

Q
or. in the usual notation, w= '^ nearly, since a= b= k= c

A. L/

nearly.

133.] On the velocity of the pole of the instantaneous axis of
rotation along the spiral.

The velocity V along the spiral is the value ofthe expression 3--.

This value has been found, (f) sec. [130], to be, in terms of X,

2

We shall now proceed to find the maximum and minimum values

of V by the ordinary process of differentiation. For this purpose
differentiating equation (c) of sec. [130] and putting the differ-

ential of I -r-
) equal to 0, we shall obtain

0=^.sin0cos0[Q(sin
2 0-cos20)-2Wcos2

0], . (595)

writing Q for a2

2
. r(a

2 -A2
)(6

2-*2
)(c

2 -/t2n
and W for (a

2 + b*+ c2- *2
) |1 g yc J

In this equation there are four factors, any one of which, equated

to cipher, would satisfy the equation ; either -r-= 0, sin 6= 0,

cos 0=0, or Q(sin
2 0-cos2

6) -2W cos2 0=0.
We shall now proceed to show that they are all inadmissible

except the first.

We cannot have sin 0=0, or cos = 0; or 0=0, or 0=-;
because the magnitude of the angle is confined within certain

limits, given by the equations (557) ; neither can we have

Q(siu
2 cos2 0) 2Wcos2 =

; for if we assume the truth of this

supposition, we shall find, writing ;
for 0,

Q-2W 2(Q-W)tan2 /= ^ , or sec2
;=-i-Q

--
'-. ... (a)

We must now compute the value of this expression.
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Since Q= a2 + 62 + c2- 2k2, and

we get, after some reductions,

/7
2

/)
2^2

ig(Q-W) = a22

- a ; _1_ 9 /72 /-2 i O /72A2 1 (h)
-f- <*c* c ~r ^i* w r \

u
/

Now this expression may be reduced to the symmetrical form

-*2
);

. . . (c)

^)~- (*)

The greatest value of sec Q, which the conditions of the problem
admit, is given by the equation (557),

Let the ratio of these secants be n, we shall find that n is always

greater than 1 : put sec 6f=n sec @,

_ _
sec2

"

or w,^= 2

As the extreme limits of k are a and c, let 2=a2 a2
,

2=e2 + y
2
,

a and y being positive quantities, which are small when compared
with the axes. This expression may now be written

M2

or w is equal to V2 nearly, since the second term may be neglected.
We have therefore

sec 6 = \/2 sec @,

a value of 6 which cannot be admitted, since is the maximum
value of B.

1/3

The only remaining factor is ^- differentiating (564) and
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(I/

= 0, we get
2
(a

2 A2)sin2X=0, an equation \\hirh

is satMied by X=0 or X= ^; but these values of X give 0=&, and
ii

= (-)'
; or, the maximum and minimum velocities of the pole of the

mttantaneotu axis of rotation along the spiral are at its greatest or

/<'<ist (/ifflances from the centre of the spiral, as we might indeed

have anticipated.

Taking the second differential of this expression,

-/t2 (a
2-62

)cos2X,

7T
this is negative when X=0, and positive when \= -~. Therefore

A
IT

the velocity is a maximum whenX=0, and a minimum when X= .

Z
Or the velocity is least at the inner, and greatest at the outer

apside.

CHAPTER XVIII.

134.] We shall now proceed to determine the curves traced ont

by the poles of the principal axes of the body, during the motion,
on an immovable concentric sphere. We shall first investigate the

curve traced out by the axis c of the ellipsoid, or the C spiral, as

for the sake of brevity it may be named.
Let p be the angle between the pole of the impressed couple and

the pole of the axis c. Then the usual formula gives us

Now, p being the angle between k and the axis c of the ellipsoid,

>=T, sinp= -r
, tanp = ;

hence (y-) =rs

/d<?\
2

/
2
/t
2XY

In (51-0) it was shown that
(-rr)

=
2 , 2 4 >

where X=[(i
2

c
2
)^

2
i

In (r>52) we found -^=

Before \ve proceed further, it is proper to show that the curve
VOL. II. 2 H
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has two asymptotic circles
; for, r being the inclination of the vector

arc to the curve at the point of contact,

_-<~~

77"

When X=0, or Y=0, we shall have tan r=oo ,
or T= . . (c)A

The radii of the asymptotic circles may be found by making
X=0 and Y=0,

or
(

2 -yt2)c
2
-(a

2-c2
)^

2=0
;

') ,

and (6
2-c2

)*
2
-(6

2-A2
)c

2= 0.j

Resuming our equations, and making the suggested substitutions

in (a),

a2Z>V / do-V XY + a262 (c
2- z2

)

2
.

ic*k* \dt)
'"

(A
2-*2

)

This expression, by the help of the preceding relations, becomes

c2(a2+62
~

A2)
~

(a2^2"
c2)^ (596)

135.] Let distances a', b1

, c? be assumed along the axes of the

ellipsoid a, b, c, and inversely proportional to these axes, so that

aa! =bb'= cc'= hz . Let v, v', v" be the velocities of the extremities

of these lines respectively. Whence
^(-j:)

will be the velocity of

the extremity of c
j
,

It t I U.U V // / ilU V . / 1 1 U \
"

C/~~

or v"=d( )
= _(_); hence U- I =74

Substituting this value in the last equation, and multiplying by
2
, we find

<rW (a
2 + tf- A2

) -f 2a2
b*c*z*- (a

2 + b*+ c2
)
aWz*.

Writing analogous expressions for the other axes, and introducing
the relations given by the equations of the ellipsoid and sphere, we
shall find, on adding those expressions,

_
A2)< ... (a)
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\\ r have therefore this theorem :

If s trail/ lit lines are taken along the three principal axes of the

body from the centre, and inversely proportional to the square roots

of the moments of inertia round these axes, the sum of the squares of
the velocities of their extremities is constant during the motion.

Let segments equal to R measured from the centre be assumed
on the three principal axes of the body, the sum of the areas

described by the projections of these lines on the plane of the

impressed couple varies as the time.

Let Sc be the area described by the projection of a portion of

the axis of c equal to R on the plane of the impressed couple ;

then the projection of R on this plane is R sin p, and the differ-

ential of the area

dS
ff , -no o dilr ., N

-j = It* sin2 p -p- (b)

Now sin2
/o
= 77T ,

and J-L=

whence .Jrftl- ......... (c)

Inlikemanner ^=
dS dS$Whence + +

or Sa+ SA + S c=R2
/rt + constant...... (d)

Should the lengths R, instead of being equal, be proportional to
the square roots of the moments of inertia round the corresponding
axes, the sum of the areas described by the projections of those

lines, on the plane of the impressed couple, is still proportional to
the time.

N nc2
Let R2=

:=^. W being a constant. Then (b) in the last

article may be changed into the following, ~r- =/ ^ (c
2

z*).

Whence S + S6 + S C=^* (a
2 + A2 + c2 -/t2)f+ constant. . (e)

136.] Let us now resume the general equation, and proceed to
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find the lengths of the spirals traced by the principal axes during
the motion. The equation for the C spiral is, as in (596),

(a
2- k2

) (b*
-

Assume, as in (541),

(a
a-#2

)(6
2 -c2

)
cos2 <p+ (6

2-*2
) (a

2-c2
)
sin2

<p'

and substitute this value of z in (a) ; we shall then have

~Y= -
dtJ a2

-Jfca a-c* sin<

and

a

whence

Let

then

,
'

|^!_A
Vd<p/~C cos2

<p + D sin2
<p cos29 + B sin

and this expression may be transformed into

/do;\ = BC-AD
U<P/~ C(C-D)

A-B V*2 -,
-. (598)

Equations (d) give us

BC-AP= -(a
a

C(C-D) (^

A-B (a
2 - &2)(a

2

A
"

2
(a

2 -yt2
)

(C-D) VA A /. /A-B\ .

V 1

~(~A~/
8m

' C-D
C-D a2_
C ~(A

2 -c2
)(a

2-*2
)'
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Nowe/2=
.,

', -, as in sec. [7] . Substituting the values

of tan a', tan /3' given in (587), we get

e?*=- -= T
; hence e' is the modulus.

a2 (a
2 A2

) A

In (b) sec. [115] it was shown that

c C-D

whence sin2 e is the parameter. Making these substitutions, and

integrating, we obtain the resulting equation,

/c(A;
a-ca

) /(a
2+ 62-c2

) (A
a-*a

)\ f
"V aa(a

a-Aa
)\ (/fc

2-c2
)(6

2 -c2
) /J [l-sisnesin

2
<p] \/l-e'2 sin2 <

As sin2 e is less than e/
2
,
this elliptic integral is of the third order

and logarithmic form. That it is so, may be shown by constructing

/ *
2
\

the expression (l+ri) (l-\
J ; or in this case, in which n sin2 e

/ e'
2 \

and i
2= ^, cos2e (

1 - -=-f- )
= cot2 e (sin

2
e- e'

2
) ;

\ Bra'e/

whence the criterion of sphericity becomes, as in (138),

_ (6
2-

k*)
2
(a

2- c2
) (a

2 + 62- ca
)

a2^2_yt2)( /fc
2_ c2)^__ c2)

..... (g)

This is a quantity essentially negative, whatever be the value we
assign to k between its limits a and c. Hence the polar spiral
described during the motion by the least principal axis, may be
rectified by an elliptic integral of the third order and logarithmic
form.

When the ellipsoid is one of revolution, the elliptic integral may
be reduced from the third order to a circular arc. In this case

a= b, since sine=0, e'= 0.

Adding together the coefficients of the integrals, now become

identical, we get
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137.] Multiply equation (599) by the expression

abc

which depends solely on the moments of inertia of the body. Let
be written for this factor

;
then (599) will become

dcp~

d(P

,. (601)

a26(6
2-c2

) V(
s-*3K**- c8)J [l-sin

2 esin2
<p] V 1 - e'

2 sin2
<p

Now e is the focal angle of the invariable cone, and e1
is the

eccentricity of the plane base of the cone of rotation. Let there

be a cone which shall have the same focal lines as the invariable

cone, and a plane elliptic base similar to that of the cone of rota-

tion. Then, ct
t
and /3; being the principal angles of such a cone, we

shall have, see (19),

tan2 , tan2 /3, , , sin2 a, sin2 /3, .

L-^ -?-i= e'
2
, and-

-'-<,

'= sm2
e, . (a)tan2 a

;
cos2

/3,

or tan2 ,= ~
[ tan2 B,= (b)

whence cos2a/=rirrA2 72(7*2 K> . . . . (c)

a8
(a

8
-A*) ~(tf

By the help of these relations, if we construct the expression
e'
2

-
3- we shall find it to be equal to the coefficient of the elliptic

integral of the first order in the equation (601). In like manner
e 2

if we construct the expression
' cos2 a, we shall obtain the

coefficient of the elliptic integral of the third order in the same

equation. Accordingly (601) may be written,

. i* r a?

tan/3J VI -e 2
sisn

. (602)

cos-'

tan/3 ;
M [l- sin2 e,sin

2
<p] vT-
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138.] When the parameter of the elliptic integral of the third

order is negative and less than the square of the modulus, the

function no longer represents any spherical curve of the second

order. It is possible, however, to construct a spherical curve whose

rectification may be effected by an elliptic integral of the third

order, and logarithmic form.

Let us conceive a spherical curve which shall cut all its spherical
vectors in angles whose cosines shall have a given ratio to the sines

of double the angles which the equal central vectors of a certain

spherical ellipse make with the major arc. Let r be this angle, and

p the distance of the point from the centre of the curve. In the

spherical ellipse, of which the principal arcs are a and /3, let this

vector p make with the major arc the angle ^r. Then, by the law

of the generation of the curve,

cos r =j sin
>|r

cos
-fr
....... (a)

Now, as the spherical radii of the ellipse which are equal to a

7T
and ft respectively, make with the major arc angles and

^,
at

these distances cos r=0, and the curve has therefore apsides at

these distances from the centre.

To find the length of the curve, we must compare the values ofCOST.

cos T=^ sin-^r cos ^ (this relation maybe taken as the definition of

the curve) ; and cos T =( ^- ); j'( ,- \ . g .
--s . j . . . (b)

\da-J \dp J sm2
^r cos2^

while the equation of the spherical ellipse gives

cot2 p= cot2 * cos*^+ cot2 /3siu
2<

\Jr.
. . . (c)

Let
<p
be the eccentric anomaly, as in (c) sec. [8] ; then

tan>/r=- -tan<p: (d)*tana

tan2 ft sin2 <pwhence sm8 >lr= 5 ~ . 9 ,

tan* cos* <p + tan* /o sin* <p

.. . . (e)
tan2

"

a cos2 <p
COS v"

~~
: .

tan2 cos2
<p + tan2 ft sin2

<p* y

Substituting these values of sin ^r, cos
>/r

in (b), we find

.g /do-\
2_ [tan

2 a cos2
ft 4- tan

2
ft sin

2
<p
2
] ....

\dp/
"

tan2 a tan* $ sin2
<p
cos2

<p

* The eccentric anomaly <p in (c) sec. [8] is not the same angle as in (d)
sec. [7].
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Again, as tan2 p=tan
2 cos2

<p + tan2
/3 sin2

<f>,
. . . (g)

/dp \2 (tan
2 - tan2

/3)
2 sin2 p cos2

<p

differentiating,
(^J

= _____

whence, as 7'=y.
a f

d<7V (
tan* a~ tan2 ff)

2
[tan

2 g cos2
(p + tan2 ft sin2

<p]

^
Up/

=

tan2 tan 2
/3 [sec

2 a cos2
<p + sec2 #~sin

2
<p]

2 '

tan2 tan2 /3 sec2 a sec2 /3 . 2 ,.
l\ow _-- f" sin eJL^ wff o - C . Q

- Oil! C VII

tan2 a sec2

making these substitutions, reducing and taking the square root,

the transformed equation becomes

=~
tan/3j Vl-e2 sin2

<p

e2 cos2 a f d(p

tan/3 J [i_ sin2 e sin2 p] \/l e2 sin2 <

As e
2 > sin9 e, this is an elliptic integral of the third order and

logarithmic form.

Now, if we compare this formula with (602), we shall find them

identical, whence we may infer that the length of the spiral
described by the pole of the greatest or the least axis of the ellip-
soid on a fixed sphere (the semidiameter k being the next in the

order of magnitude to such greatest or least axis] will be equal to

the length of the curve there defined as generated on the surface

of a sphere according to a given law.

139.] On the spiral described by the pole of the greater principal
axis, or the A spiral.

In the general equation (596) substitute x for z, and interchange
a and c ; we shall then have

'\2

In (546) we found

(a
2-

A;
2
) (6

2- c2
)
cos2

<p + (6
2-

/fc
2
) (a

2- c2
)
sin2

<p'

Substituting this value of x* in the preceding equation, and
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introducing the value of I-,-) given in (511*), we shall obtain the
\<*f/

resulting equation

a a-

This expression may be reduced in the same way as (597),

omitting the steps for the sake of brevity. The resulting equation
will be found as follows :

a a -
]

*

f df

^] J vi=s?2M

an elliptic integral which is also of the third order and logarithmic
form.

The parameter is the square of the sine of the semifocal angle of

the invariable cone, while the modulus is the sine of the major
principal arc of the cone of rotation.

\Yhen a = b, sine= 0, and the above expression assumes the

form,

(605)

'

I T ^ i

J Vl-s^a'sin2
^

In (58) it was shown that cos a' I T ^ is the alge-

braical representative of 'an arc of the spherical parabola whose

major principal arc a, is given by the equation

. , 1 + COS '
1

,

a' 7T
tan*,= ,= ,; whence + 9 =-,

1 cos ' ' * 2
tan2

or ' and 2
/
are supplemental.

140.] On the spiral described by the mean axis b of the ellipsoid,
or the mean or B spiral.

In the general equation (596), interchanging b and c, also y
and z, we obtain the result

(a)

ii. 2 i
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For z/
2 substitute its value given in (546) ,

___ _-
(
a _ kz

) (6
2- c2

)
cos2

<p+ (6
2- A2

) (a
2- c2

)
sin2

<p'

Introducing the value of
f-r-J

found in (541*), we shall obtain

.

v/6
2^2 \ dip / (a

2- F) (6
2- c2

)
cos2

<p + (6
2- A2

) (a
2- c2

)
sin2

<p

'

Let A= a2
(a

2- it
8
) ,

C= a2-

B

= a2
(a

2- it
8
) ,

C= (a
2- *2

) (6
2- c2U

=
(a

2- c2
) (a

2+ c9-A2
) ,

D= (F- k*) (a
2 -c-2

) ,j

and the preceding equation may be written

1_ idff"\ _A cos2
(p + B si

62 yt
2 \ d<p /

~
d<p /

~
C cos2

<p + D sin2
<p

^
as B > A, this equation may be transformed into

_

'

b Vi2-** D(C-D)

(B-A)
C-D

K (606)

If we now compute the value of the coefficients in this equation
by the help of (c), we shall find, 2e being the focal angle of the
invariable cone, as shown in (b) sec. [115],

c2 (/t
2_ c2)

^
-k*}~

' & being the lesser PrinciPal~B~ (a
2- c2

) (a
2 + c2- k*)

angle of the cone of rotation as in (587). We have also

and

BC-AD_( 2 -yfc2
) (flg + c8 -.
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Making those substitutions, (606) becomes

b (a
2- A2

) (g* + c*-b*)
a" =

[l + tan2ecos?
p] Vl-s

c*b JW^P f d<p

.-sm2
/3'cos

2
<p ;

As the parameter tana e is positive, the elliptic integral of the

third order is of the circular form.

When a= b, tane-=0 and the elliptic integral of the third order

in the preceding equation is reduced to the first. Adding the

above expressions together, and reducing,

/a2+ c2-*2\ ,fa" = I , Y^- )
cos a! \

\ a2- A2 /
) Vl-si

dip

sin2a' cos2
<p

(0

This expression agrees with the one found for the greater spiral,

differing from it only in the amplitude, which is complementary.
We shall now proceed to eliminate from the preceding equation

the interal of the first order. _
Multiply this equation by the factor A /(a*~ ^2)(6

g-gg
).

V 62(a
2
-fc

2 b2
)

Let as before <x
t
and

ft, be the principal semiangles of a cone

whose focals shall coincide with those of the invariable cone, and
the planes of whose circular sections shall make the angles /3' with

the internal axis; then, assuming the equations established in

sec. [8] and (e), we shall have

tan^-tan
2
/?, (a

2-62
) (*

2-c2
)-L -'= tan2 6, tan2e= 7-5

-
57775 7* >

sec2 /^ (a
2 c2 )(6

2 A2
)

and
sin2 a, sin2 8, . c2 (A;

2 c2 )-
? 5 -^=:8ln2 77.=sin

8
/S'= 7

-
i
-

,.\ ., ,
o 7s7>sm2^ (a

2
^(a^ + c2 A2

)

as in (587) ; whence, making the substitutions indicated,

(a*
tan *'=-

by the help of these equations we may show that

cos/3, _ (ag-A*)y(6
2 -c2

Ka*+ c*-Aa
)

^ ^ }

cos
; sinu, v/ (a

2- c2 ) (a
2- b9

) (b*
-

A*) (a
2+ c8- A*)

'

and
*
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Whence (600) may now be written

aa 6S)(6
2 c8)-|* H CQS

*
d

f_\ /I -il _ . !__/

62 ) J cos^sinaj [l+tan
2 ecos2

<p] ,
.

}.
. (608)

cos /3 ;
cos

/
/* cli

/l_ sinsma
/ J \7 1 sin2

77,
cos'

If now we turn to (41) and (47), in which elliptic integrals are

compared, having the same amplitude, but positive and negative

parameters respectively, we shall find them identical with the pre-

ceding equation, which may now therefore be written

c* -i

>

,, tan/3, .
[ dtp

<r' = sm5,l
tan

,

r
'J [1

_ e,
2 cosV! Vl sin2 77.cos2 <z>

L. / T J ' // /$r\C\\
}.

. (609)

_, ret
tan e

t
sin

<p
cos

<p~|

L A/1

'
'

2 2 -I

If we take the complete function, the circular arc vanishes. We
may therefore conclude that the length of the mean or B spiral, or

of the spiral described by the pole of the mean axis b of the ellipsoid,

between any two of its asymptotic positions, is equal to a quadrant

of a spherical ellipse. The cone of which this spherical ellipse is

the base, may with ease be determined. It must have the same
focal lines as the invariable cone ;

and its minor principal arc is

the angle between the cyclic diameters of the ellipsoid ; for the

cyclic semidiameter whose square is a2 + c2 V2 makes with the axis

c an angle the square of whose tangent is

-^ATT; =r . Ill (s) W6 fOUnd

or 2/3,
is the angle between the cyclic diameters of the ellipsoid.

We have thus investigated the equations of the spirals described

on a fixed concentric sphere by the three principal axes of a body,
which we have named the greater, mean, and lesser, or the A, B,
and C spirals. It is not a little remarkable that the rectification

of the greater and lesser spirals must be effected by elliptic inte-

grals of the third order and logarithmic form, while the rectification

of the mean spiral depends on an elliptic integral of the third order

and circular form. It will moreover be evident, on referring to

the preceding sections, that the elliptic integrals which express the

lengths of the spirals described by the instantaneous axis of rota-

tion and the mean principal axis of the body have the same ampli-

tude, and are each of the circular form
;
while the integrals which

determine the spirals described by the greatest and the least prin-
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ripal axes of the body also have the same amplitude, which is com-

plementary to the former, and are of the logarithmic form.

ML] We may determine the maximum and minimum velocities

\\ ith \\ hieh the poles of the priiu-ipal axes of the body describe their

rr^pet -tivc spirals on the fixed concentric sphere. Resuming the

equation of the spirals traced by the principal axes,

differentiating and putting the differential equal to cipher, we get

1 ./*/ 2

It \vas shown in (515) that =
g

This is =0 whenever the position of the axis k renders #=
or y= ; and as k is at its greatest or least distance from the axis

c of the ellipsoid whenever it lies in one of the principal planes,
the velocity of the pole of c on the spiral is the greatest or the

least whenever the axis c is at its greatest or least distance from
the axis k.

The same proof may be applied to determine the extreme velo-

cities of the poles of a and b.

CHAPTER XIX.

142.] There are two particular cases of the general problem
which require separate investigations when the plane of the

impressed couple is at right angles to, or coincides with, the plane
of one of the circular sections of the ellipsoid of moments.
We shall first take the case when the plane of the impressed

couple is at right angles to the plane of one of the circular sections

of the ellipsoid, or k= b. If we introduce this value of k into the

equation of the invariable cone in (527), we shall obtain the follow-

ing equation :

This expression is the equation of the two plane circular sections

of the ellipsoid which intersect in the mean axis b. If, then, to fix

our ideas, we conceive the plane of the impressed couple to be

horizontal, one of the circular sections of the ellipsoid will be ver-

tical during the motion.

To determine in this case the locus of the instantaneous axis of
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rotation in the body. If we write b for k in the equation of the

cone of rotation (528), we get

a2
(a

2-6V2 + c2 (c
2-62

)2
2= 0, .... (b)

the equation of two plane sections of the ellipsoid passing

through the mean axis, and perpendicular to the umbilical dia-

meters of the ellipsoid.
We may perceive therefore that the axis of the impressed couple,

and the instantaneous axis of rotation, describe planes in the body
daring the motion.

To find the greatest elongation of the axis of rotation from the

axis k. This is nothing more than to find the angle which a per-

pendicular from the centre, on a tangent passing through the vertex

of k or b, makes with it, in an ellipse whose semiaxes are a and c.

Now, h being the conjugate diameter to k or b
}
and P the perpen-

dicular on the tangent,

7i2 -+. #2
_ aa _j_ ca^ an(j p^_ ac Let this angle be 3.

Then tan*9== (f^!Kt!=!W. . . . (c)

To determine the time.

In the general equation (540) let k= b, and we shall find

d* fz V62- c2

Assume (a
2-c2

)z
2= c

2
(a

2 -&2
)sin

2
<p,

. . . . (e)

in which
<p

is the angle between k and the mean axis of the ellip-

soid, measured on a circular section of the surface. By this trans-

formation, equation (a) may be changed into

dt a

-c2)Un<p)d<p * \/
2-

It was shown in (c) that tan .& is the maximum value of tan 0.

Hence

j=Kw; the preceding equation, when integrated, will become,
putting C for the constant,

(g)

To determine the value of this constant. Let 8 be the initial
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distance of the pole of k from the axis 6, at the beginning of the
t

motion; then = log tan
75 + C. Subtracting we shall have
li

tan

(h)

Let tan-=m, and the last equation may be written
A

sj= KW, tan ^= we* ', . (610)
IV

e being the base of the Neperian logarithms.
When B is absolutely equal to 0, m also is equal to 0, and <p

is 0,

however large the value we may assign to the time t. But when
B is only very small, m will be a very small quantity, and therefore

t must be very large before its magnitude can have any appreciable
effect on the magnitude of

<p.
Hence the pole of k will diverge

slowly from the mean axis b. When the initial distance B is sup-

posed to be considerable, then m is no longer an indefinitely small

quantity, and a small increase in t will produce a considerable

effect in the magnitude of
<p.

Again, let the axis of the impressed couple, by the motion of

the semicircular section passing through it, be approximated to

indefinitely, by the prolongation of the principal axis b, within a

very small angle B'.

Let T be the future time at which the prolongation of the axis b

shall arrive within a certain small angle 8' of k. Then p= TT B',

and /T= log tan
(-9 77)

+C. As the initial distance of b from k

must be supposed as before to be B,

0=logtan (!)+C,
whence -/T= log

[t

(S\2
) as before ;

then

tan tan

rotanf=e-/r....... (611)
20

In this equation T will be infinite on two suppositions, either

8'
m= 0, or tan iT=0. The former shows that T will be infinite if b

never departs from coincidence with the axis of the impressed
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couple. From the second we may infer that b never can, having
once departed from coincidence with k, again coincide with it.

We may therefore infer that the motion of k in the body will be

as follows. When the coincidence of k with the mean axis is dis-

turbed, and the disturbance takes place along one or other of the

circular sections of the ellipsoid, the axis b at first diverges very

slowly from k, then with greater rapidity until this velocity
reaches a maximum state. The velocity then decreases, so that b,

with a motion continually retarded, approaches indefinitely near

to, without ever absolutely reaching, the axis of the impressed

couple.

143.] To find the value of 6 the angle between the axis of rota-

tion and the axis of the plane of the impressed couple.
In (514) writing b for k, and c

2
(a

2 62)sin
2
<p

for (a
2 c2)^

2
,
we

obtain tan 6= w sin
<p

. Hence B varies from its inferior limit to &

as
<p

varies from 8 to .

tu

It was shown in (510) that the velocity of the pole of the plane
of the impressed couple along the invariable conic was /tan 6.

Writing V for this velocity, V = btcw sin
<p
...... (611*)

/ 2_p2
As tan#= wsin<p, w=

^,
tan2 = ^ ,

w being the angular

velocity, whence o>
2= :

2
[l +w>

2 sin2 <p], or &>= /csec#. . . (612)

To determine the angle ty which the line of the nodes makes
with a fixed line in the plane of the impressed couple.

Resuming the equation (552), putting b for k, and

C2 (a
2 -62

)sin
2
<p

for *2 (a
2-c2

), as in (e) sec. [142], we get

2- 2
)'

in2
*?

c2
(

a W Tlting tan'1

77 TOr -3^-752 *TT,
-on-

bz z* l+tan2
?7cos

which represents the tangent of half the dihedral angle between the

circular sections of the ellipsoid, or half the angle between the

cyclic axes. We also have

T-=-=
, as in (f) sec. [142].

d<p KW sin
<p

Making these substitutions in the equation (552),

/*
2 -c2\f *2d*

>/r=
- Kt +K- _, we find

-^r
= Kt+ tan" 1

[tan 77 ccs <p] + constant. . (613)

To determine this constant.
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At the beginning of the motion let the axis of the plane of the

impressed couple very nearly coincide with the mean axis of the

ellipsoid. Then p is very small, and cos
<p very nearly equal to 1 :

we thus get = tan-'(tan 77) -f C, or C= 77; hence

cos<p) 77. . . (614)

The limits of
<p

are and TT, between which limits the pole of the

impressed couple lies during the motion. Now when <p
= 0,

cos<p=l, and tan" 1

(tan 77 cos <p)= 77. When <p=7r, cos<p= 1,

and tan~' {tan 77 x 1}= 77. Whence

(614*)

writing T for the period in which the semicircle is described

by k.

Thus we perceive that the infinite angle -fy
is made up of two

parts, one of which increases as the time, while the other continually

approximates to a fixed limit 2i), 2rj being the angle between the

cyclic axes of the surface. .

The geometrical interpretation of this formula it is not difficult

to discover. In sec. [119] it was shown that the angle ^ was

made up of two parts, one of which id increases as the time, while

the other may be represented by an arc of the spherical ellipse,

generated by the cone supplemental to the invariable cone. As
the circular sections of this latter coincide in direction with the

circular sections of the ellipsoid, the cyclic axes of this latter surface

will coincide with the focals of the supplemental cone. Hence, as

before mentioned, the whole motion of the body may be repre-
sented by conceiving this supplemental cone to roll without sliding
on the plane of the impressed couple, while this plane revolves

uniformly round its axis. But when the plane, as in this case,

passes through one of thfc cyclic axes of the ellipsoid, this supple-
mental cone degenerates into a plane sector of a circle, the angle
between whose bounding diameters is 2rj. Now, when the plane
of the impressed couple is slightly disturbed from coincidence with

the plane of this circular sector (for when k coincides with b, the

plane of the impressed couple coincides with the principal plane *ac,

which contains the cyclic axes), it will revolve round a straight
line (one of the cyclic axes bounding the circular sector) instead

of rolling upon a conical surface; and this straight line (the cyclic
axis of the ellipsoid, or the focal of the rolling cone) becomes, in

the ultimate state of this cone, the edge of the circular sector.

The plane of an, being disturbed from a state of coincidence with

the plane of the impressed couple, will revolve round one of the

cyclic axes until it approximates indefinitely on its other side to

this plane.
Now if, instead of the cone, we imagine the sector of the circle

VOL. II. 2 K
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to revolve upon the plane, the line of contact with the plane will

no longer advance continuously upon this plane, but per saltum,

starting forward through an angle 2tj at each half-revolution ;
so

that if we imagine a number of semirevolutions to occur, the line

of contact of this sector with the plane would advance through the

angles 2tj, 4*?], &c. From the nature of this motion, however, we
can have but half a revolution, and even that only as a limit. It

follows, therefore, that when half the semicircle is completed, or

when the axis of the plane of the impressed couple comes into the

plane of ac, an angle 77 must at once be added to the angle i/r,
or

that the line of the nodes starts forward through the angle 77.

144.] We shall now investigate the nature of the spiral described

by the pole of the instantaneous axis of rotation in the case when
k= b.

The spherical polar coordinates of this spiral are 6 and %.

They are connected as follows :

CAt
In general X=K^\~^> as snown m (560) : put b for k in the

*J
^

equation (571) which determines u, and we shall have u=b; hence

X= Kt......... (a)

This equation shows that the motion of the radius vector arc

is uniform, being proportional to the time.

It was shown in (610) that ta,u^=mQ
KWt

: writing ^ for ict, we
"A

gettan^=me% and tan0=w>sin<p. "....... (b)
2

These are the equations of the spiral. We must eliminate <p

from these equations.

2 tan
|

As sin
<p
= 2 sin cos ^= 2 tan| cos2^= , we getA Z A & <

l+tan2

|

. 2mwew* a 2w
tan e= ** or tan*"- - (615)

a relation between the variables Q and ^, consequently the equation
of the spiral.

145.] The rhumb line may be denned as the curve described on the

surface of a sphere which cuts all the meridians in a given angle.

Let this constant angle be the complement of <&, then its cotangent
is w, <p

and % being the polar spherical coordinates of the curve ;

therefore

d<p ,, xw sm
<f>
= y

1-........ (a)
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This is the equation of the rhumb line.

Taking the integral of this equation, log tan ^=1

Let the value of
<p

be & when %=0. Then log tan -= C,
9

and tan-=m; hence
A

tan

or tan =we 1

"*-
A

(616)

This is the usual equation of the rhumb line, and is identical with

(610). Hence the polar spiral is a sort of curtated rhumb line.

If a rhumb line be described on the surface of the sphere, its ordi-

nate angle being (- SJ,
and if we shorten its spherical central

vectors
<p
in the constant ratio givenby the equation tan 6= tan & sin

<p,

the extremity of 6 will describe the polar spiral.
Another construction exhibiting the relation between these

spirals may be given.
Let a concentric sphere be described, whose radius OA =tan-&= w.

On this sphere let a rhumb line be constructed, having its pole at A
in the axis of z. Let this rhumb line be orthogonally projected on
the tangent plane to the sphere whose radius is 1, parallel to the

plane of xy. Now, if this plane curve be considered as the gnomonic
projection (i. e. the eye being

supposed at the centre)
'

of a

spherical curve described on
the surface of the outer sphere,
this latter curve will be the

polar spiral, or Q and D are

corresponding points.
This we may thus show. In

this construction we always
have tan = tan & sin

<p.

Now CB= Qn, CB= tan0,
and Qw= tan & sin

<p. Q, and D are therefore the corresponding
points of the rhumb line and of the polar spiral, whose vector arcs

are CD= 0, AQ=p.
It is evident that the polar spiral has an asymptotic circle, whose

radius is sin 3. In the vicinity of the pole, the polar spiral approxi-
mates indefinitelv to the rhumb line.

Fig. 35.
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146.] To find the length of this spiral from the pole to the

asymptotic circle.

/do-\2w ,

dd w cos
tp d^ At _
in2

<p
d/ d<p K

and sin2 #=
; sin2

<p
.

sin2
<p

Introducing these relations, we get

do

dividing by cos2
<p,

and integrating, we shall find

<r=tan- 1

( Vl+^2
tan<p)..... (617)

7T 7T
When

<p
= 0, <r=0, and when <p=-s, <r=

'o-~ ^

We thus find that the length of the polar spiral between the pole
and the asymptotic circle is equal to a quadrant of a great circle of

a sphere, a result in strict accordance with the more general
theorem established in sec. [130].

r
JT

-
When \\ + w^t3m<p= l } or tan<p= cos$, o-= tan-1 (l) or <r= -7-

4

147.] To determine the velocity of the pole along the spiral.

A w-
~dt) \d</ \dt

,
o .. o nr = dV~ - =K (l+w2

) sm2 ^ cos2 ^ :

{ 1 +w2 sin2
<p}

2 sec4 6

~ oa -XT- ,
.

or V= 1__- sm2^, or V=i--^-, since tt7=
*

It may be shown that when k coincides with the greatest or
the least principal axes of the body, the spirals described by the
two other axes are equivalent to circular arcs. But when k coin-

cides with b the mean axis, the lengths of the spirals described by
the greatest and the least principal axes are given by logarithms.

Omitting the investigations (which, though somewhat complicated,
the reader, assuming the principles established in the foregoing
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pages, may supply), the final result will be found as follows

4
pv= q log tan + log (1 +gsec^) ) p and q being constants.

it

148.] When the plane of the impressed moment coincides with

the plane of one of the circular sections of the ellipsoid of moments,
the elliptic integrals which determine the motion may be reduced
from the third order to the first,

In this case 2k is the cyclic axis of the ellipsoid, or the diameter

perpendicular to the plane of one of its circular sections.

Accordingly yo=-p i5+ -o. Substitute this value of k in (i)J K* cr o* c2

and (j) sec. [119], and (553). Reducing, we shall have

b*

-1 / cV2- 2

v x
-?(?=?68

This integral, as the parameter is equal to the modulus, may be
reduced to the first order as follows :

Let 7 as in sec. [20] be the parametral angle of the spherical
1 siny c2 (a

2 62
) , . , ir ,

parabola. Assume ^ : -= 0/ , s(=tan
2
n, 77 being half the

1+smy cr(o
2 c2

)

angle between the circular sections of the ellipsoid. Whence

The preceding equation' may now be written

2sm7 f* d<p

1+sinylr /l-sin7\ . Ij^ f. /l-sin7\ .

1 (- -.

' Ism2
<p \/ 1 I- :

f |tm9JL Vl+smy/
rJ V \l+sm7/

or, as it may be more succinctly written,

=
(1 -tan

2
17) f
J [1[1 tan2 ;8m

2
<p] Vl tan4i;sin

2
<p

If we compare (619) with (62), we shall find that the second

member is equivalent to the following elliptic integral of the first

order,

d^, _, r sin 7 tan/x

cds 2

7 sin2
fj,

L v/l CO
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the amplitudes <f>
and

fj, being connected by Lagrange's for-

mula, tan
(<p /i)=sin7 tan /A, as in (63), or, as it may in this case

be written,

tan<p=
^5-15 Sm A*

(c)

Should we require to reduce the integrals of the third and first

order of the same amplitude, equation (58) will enable us with

ease to do so, by assuming the theorem established in that equa-
tion,

,_ siny f
1 4- sin y

)\A-(i

-f i tan-
1

/2 siny
L . (620)

\l+siny/
'

Hence ^ depends on an integral of the first order, the theorem
it was proposed to establish.

Again, if we substitute the foregoing value of k in (542), which
connects the time with the amplitude q>,

on which immediately
depends the position of the axis k in the body at the end of the

given time, we shall have

b*

Kt

, 2 siny \c2

and as ^ r-^-=
1 + sin y

sin7

dip

,

1

1 + sin y
f dp

\ / /l-sin7
J V U + sin7

(621)
.

sm2
<p

But this elliptic integral, as shown in sec. [25], is the expression
for an arc of a spherical parabola whose parametral angle is 7, the
centre being the pole. In this case the two elliptic functions which
determine the motion are represented by arcs of the same spherical
parabola.
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We may eliminate the latter integral by the equation established

in sec. [25], and the last equation will now become

~i !_n
o

*

i o i oi I >*
fl 6 LT _l 1^

tCt^^dr 7~^ ^ ^ I *V 1 -

The moduli are two successive terms of Lagrange's modular scale.

149.] Thus have we shown in the foregoing investigations how
the properties of elliptic integrals applied to the theory of the

motion of a rigid body round a fixed point have led us to a complete
solution of this celebrated problem, a solution which has enabled us

to place before our eyes, so to speak, the very actual motion of the

revolving body. Yet it is not on such grounds solely that this

treatise has been published. Were the investigations of no other

use than to give strength and clearness to vague and obscure

notions on this confessedly most difficult subject, enough had been

already accomplished by the celebrated geometer whose name is so

deservedly associated with this theory. It is as a method of inves-

tigation that it must rest its claims to the notice of mathematicians,
as a means of giving simple and elegant interpretations of those

definite integrals on the evaluation of which the dynamical state

of a body at any epoch can alone be ascertained. If the author
has to any degree succeeded in accomplishing this, it is because he
has drawn largely upon the properties of lines and surfaces of the

second order, and of those curve lines in which these surfaces

intersect. If he has been enabled to advance any thing new, it is

owing solely to the somewhat unfrequented path he has pursued.
That it was antecedently probable such might lead to undiscovered

truths, no one conversant with the applications of mathematical

conceptions to the discussions of those sciences will deny. To
introduce auxiliary surfaces into the discussions and investigations
of physical science is an idea as luminous as it has been successful.
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CHAPTER XX.

ON TRANSVERSALS.

150.J If through any point O in the plane of a triangle ABC
transversals are drawn from the vertices A, B, C, and meet the

opposite sides in the points A,, B,, C,, the continued products of the

alternate segments of the sides are equal.

Fig. 1.

G C D

Through one of the vertices C let a parallel DG to the opposite
side AB be drawn, and let the transversals AA,, BB, meet it in the

points D, G. Then, by similar triangles, we have

AC,: BC,=DC : CG,

BA, : CA,=AB : DC,

CB, : AB,=CG : AB.

Compounding these proportions together, we shall have

AC, . BA, . CB,=AB, . BC, . C A,.

This product is a maximum when O is the centroid (that is,

the centre of gravity) of the triangle.

151.] If the sides of a triangle ABC are cut by a transversal

C^B,, it divides the sides into segments such that the continued

product of these alternate segments are equal.

Through one of the vertices B draw the straight line BD parallel
to the opposite side AC. Then, by similar triangles, we have

AB,:AC,= BD:BC,, CA, : BA,=CB,: BD, BC,:CB,=BC,: CB,.
VOL. II. 2 L
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Compounding these proportions together, we shall have

AB, . BC, . CA,= AC, . BA, . CB
;
.

These propositions are of very wide and important application.

Thus, from the former proposition (150) it immediately follows (a)

that the bisectors of the angles of a triangle meet in a point, (0)
that the bisectors of the sides of a triangle meet in a point'

35

', (7)
that the lines drawn from the vertices to the points of contact of
the inscribed circle meet in a point, (8) and that the perpendiculars
from the vertices on the opposite sides meet in a point.

If an odd number of the points A ; , B,, C / (that is, either one or

three) are on the sides between the angles, transversals drawn from
the vertices will meet in a point; but if an even number (that is,

either two or none) are so found, then the three points A, B, C will

range in a straight line.

152.] Through a point O in the plane of a triangle ABC, let

straight lines be drawn from the vertices A, B, C, meeting the opposite
sides in the points A,, B y , C, ; then we shall have

AO BO CO OA OB OC
AA + BB + CC-^ ' AA + BB + CC-

We have manifestly, see fig. 1,

AO + OA, BO + OB, ^
AA, BB, CC,

But this may be written

BO m OA OB oc
y_

AA, BB, CC, AA, BB/ CC,~
* These bisectors (J3) are called by French geometers median lines, a term

which we shall adopt and make use of hereafter.
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Let A denote the area of the triangle, and 8
t
,
8

tl
,
B

llt
the areas of

the component triangles whose vertices are at O, and whose bases

are BC, AC, and AB. Then A= S
/
+ S

//+S///
.

Hut
/~\ A /"MJ f\C* S:

JAj_c, !3*u '^i-^iii
'A' BB^A' CC

;
~A'

Hence we have

and therefore

OA OB OC,
"T /~t y^ " "" J-

AO BO CO
AA, BB, CO,

When the point O is assumed outside the triangle, the above

proportions still hold good, but one of the component triangles
must then be taken with a negative sign.

153.] In any triangle ABC, if lines be drawn from the vertices

through a point O to the opposite sides, making with the sides at the

vertices A, B, C the angles a, a, ; /3 ; /3, ; y, y,, then the following rela-

tion will hold good :

sina sin/3 siny=sina / sm/3 / siii7/ (a)

The triangles BAA, CAA, are as their bases BAP CAr But
twice the triangle BAA

;
=BA . AA

; sin, and twice the triangle

^BA, : CArCAA,=

Hence we have

,,
or BA . AA

y
sina : CA.

sin_ =CA >

BA
sin a/ BA CA,

(b)

In like manner .

BC , und =>
CA EC
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Multiplying these expressions together, we obtain

sin a sin B sin 7 BA, .CB..AC.
-
n = = TTT-^ *

' '= 1 by sec. 150 . (c)
sin

,
sm

/3,
sin 7, CA

y
. AB

y
. BC,

154.] From the vertices A, B, C of a triangle, pairs of lines are

drawn, making with the adjacent sides equal angles a, a; ft, (3 ; y, 7.

If the first set of three lines pass through a point O, the second set

will also meet in a point Q.
Let the angles which the lines AO, BO, CO (fig. 4) make at the

vertices A, B, C with the adjacent sides be a, A a ; ft, B ft; 7,

C 7; then the angles which the second set of lines makes at the

same vertices will be A a, a; B ft, ft; 07,7. Now, since

the first set of lines pass through a fixed point O, we shall have, by
sec. [153],

sinasin/3sin7 _ , ,

sin (A- a) sin (B
-

18)
sin (C

-
7)

~

and we must therefore have

sin(A )sin(B /3)sin(C y) _, >
.,.

sina sin /3 sin7

hence the second set of lines must pass through a fixed point Q.

cv

Hence it obviously follows that since the perpendicular drawn
on the opposite side from any vertex of a triangle, and the diameter
of the circumscribing circle passing through this vertex, make equal
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angles with the adjacent sides, if one set of these lines pass through
a point, the other set will also pass through a point. But the dia-

meters of the circumscribing circle drawn through the three angles
of the triangle concur in a point, the centre ; hence also the three

perpendiculars meet in a point. This point, which is of constant

occurrence in the higher geometry, has been called by some geo-
meters the orthocentre. We shall henceforth adopt this term.

The triangle formed by joining the feet of these perpendiculars

may be appropriately called the orthocentric triangle.

155.] Three lines meeting in a point O are drawn from the vertices

of a triangle ABC, and produced to meet the opposite sides in the

points A y ,
B

/?
C

y
. The sides of the triangle AyByC, will meet the

sides of the triangle ABC in three points which range in a straight
line.

Through A draw the straight line Aa parallel to the side BC of

the triangle. Let the corresponding sides of the two triangles

ABC, A
;B,C, meet in the points L, M, N. Then L, M, N will

range in a straight line.

Fig. 5.

In the two triangles LAa and LBA
y ,
we have

LA : LB= Aa : BA,, and Aa : CA,=AB, : CB,.

Hence LA_CA,.AB,
LB~BAr CB;

MB BC..AB.
,
N CA..BC,

In like manner ==.ff.= .' * and Nfnr=T. A Ar/-MC ACy.CB, NA BAy.AC,

Multiplying these expressions together, we obtain

LA.MB.NC rCA.AB.BCn
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But as the three lines meet in a point, the expression between

., , . . .
., LA.MB.NC .

the brackets is equal to unity; hence i^r> TV/TO ISJA
=

'
a tnere ~

fore, by sec. [151], L, M, N range in a straight line.

When the point in which the three lines concur lies outside the

triangle, a slight modification of the same proof will apply.

156.] Iffrom any point P in the plane of a triangle ABC, per-

pendiculars are drawn to meet the opposite sides in the points
A

/}
B

y, C, ;
then we shall have

For

+ PA,
2=

Adding these equations together, the squares on the perpendiculars
cancel each other, and we shall have

AB; + CA;+ BC;= AC;+ BA; + CB;.

Fig. 6.
From this proposition wemay

at once infer, () that the per-

pendiculars through the middle

points of the sides of a triangle
meet in a point, and (ft) that

the perpendiculars from the

angles of a triangle on the

opposite sides meet in a point.
For as the square on each

perpendicular is the difference

between the squares on the ad-

jacent sides of the triangle and A
the squares on the adjacent

c/

segments of the opposite side, the proposition becomes manifest.

157.] From the ends A, B of the base of a triangle ABC, lines

AE, BF, of arbitrary equal lengths, are drawn parallel to the oppo-
site sides of the triangle ; and through E, F lines ED, FD are drawn
parallel to the adjacent sides of the triangle and meeting in D.
Then if AF, BE cut the opposite sides in A

y
and E,, these lines will

intersect in the line DC.

By similar triangles, we have

AE : CB=AB
/

: CB, and AC : BF= CA
y

: BA
/;

but AE = BF
;
hence AC : CB=AB

/
. CA, : CB, . BA/.
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Fig. 7.

C, n

But since the line DC bisects the angle C,

we have AC : CB= AC, : BC,,
therefore AB, . CA, . BC,= AC, . CB, . BA, ;

and therefore the three lines AF, BE, CD meet in a point*.

158.] Prom anypoint O within or without the angle BAG a trans-

versal is drawn cutting the sides of the angle in the points B and C ;

the sum of the reciprocals of the areas of the triangles AOB and
AOC is constant, and independent of the position of the transversal.

For the sum or difference of the triangles, we find

AOCAOB=ABC;
or dividing by the product of the areas of the triangles AOC and

AOB, we shall have

1 1 ABC 2AB.AC. sinA
AOB AOC~AOB.AOC~(AO.AB.sinBAO)(AO.ACsmCAO)

2 sinA
~~AO 2

. sin BAO.sinCAO'

* The following extension of this theorem is due to Mr. W. J. C. Miller, Vice-

Principal of Hudderstield College : From the ends of the base of a triangle

straight lines are drawn in the same or in a different direction parallel to the

opposite sides, and proportional in length to the adjacent sides ; then (1) the

straight lines joining the ends of these parallels with the remote ends of the

base, intersect each other on one of two straight lines which pass through the
vertex of the triangle, and divide the base internally and externally in the

duplicate ratio of the adjacent sides; (2) if the vertical angle is a right angle,
the internal locus is perpendicular to the base

;
and (3) if the parallels are pro-

portional in length to the opposite sides, the locus of the intersections will be a

line from the vertex bisecting the base, or else parallel to the base.

Proofs of those theorems will be found in pages 18, 19 of vol. xxii. of the
mathematical '

Reprints from the Educational Times,' edited by Mr. Miller.



264 ON THF HIGHER GEOMETRY.

which is a constant quantity independent of the positions of the

points B and C that is, of the direction of the transversal.

159.] The method of transversals may also be applied to prove
the following theorem :

At the ends of the base of a triangle perpendiculars to the adjacent
sides are drawn, having the same ratio to these sides ; the lines

joining the ends of these perpendiculars with the opposite corners

of the triangle will meet on the perpendicular drawn from the vertex

to the base.

Fig. 8.

c

C, B
Let AF, BG be perpendicular to AC and BC, having the same

ratio 2m to the sides AC, BC. Join FC and GC. Let CF=2rc.AC,
CG=2ra.BC, the angle ACF=BCG=y. Put AC=6 and BC=,
then the area of the triangle FCB is nab sin (C + <y) ,

and the area

of the triangle AFB is mcb cos A. But these areas are in the pro-

portion of CB, to AB, ; hence

CB. wasin(C+y) CA, nbsin(C+j)
-r-=r'= T-J and similarly TQ-T- pAB

y
me cos A '

BA, me cos B

Therefore
CB

J
.BA

j_gcos B

AB,.CA,-5^A'
But AC

t
=bcos A, and BC

/=acosB; consequently

CB, . BA
;

. AC^AB/ . CA
y

. BC,.
If the ratio be one of equality and the vertical angle C be a right

angle, it follows that the transversals will meet on the perpendicular
in the diagram of Euclid's proof of the Pythagorean theorem (Euc.
I. 47).

In the same way we may establish the following theorems :

1. If on the sides of a triangle similar rectangles be drawn and
the adjacent extremities of these rectangles be joined, the perpendi-
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ciildi-a from the three vertices of the triangle on these lines will meet
in a point.

2. If on the sides of a triangle similar isosceles triangles be drawn,
the lines joining the vertices of these triangles with the opposite ver-

tices of the given triangle will meet in a point.

CHAPTER XXI.

ON HARMONIC AND ANHARMONIC RATIOS.

160.] The principles developed in these methods will be found
of wide application, and most powerful instruments of investigation.
Let any straight line LM (fig. 9) be bisected in N ; and from any
point V let straight lines be drawn through the points L, M, N ;

and let VD be drawn parallel to LM. The four lines VL, VM, VN,
VD form what is called an harmonic pencil.

If any straight line called a transversal be drawn across this

pencil, it will be divided so as to have AC : CB=AD : BD.
Draw aCb parallel to LM or VD; then, since aC=C6, we have

VD_AD VD_BD
r*~ A r*>

mil ^,, ^ /-<(

Fig. 9.

i.

But

consequently

VOL. II.

VD_VD
Ca
~

C6
J

=
,
or AD : BD=AC : HC. . . (a)



266 ON THE HIGHER GEOMETRY.

The points C and D are called Harmonic points with reference

to the line AB.
When the transversal is drawn parallel to one of the rays of the

harmonic pencil, its segments between the remaining three rays of

the pencil are equal. This is evident from the preceding figure.
On this property may be based the development of the properties
of the centres of the conic sections.

161.] Let the line AB, harmonically divided in C and D, be

bisected in O.

A.
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Fig- 11. Ac

267

Multiplying these equations together, we shall have

MA . LB I EC_FA . HB . NC
MC . LA . EB~ FC . HA . NB'

But as the points L, M, N are on a transversal, the first side of

the equation is, by sec. [151], equal to unity, and therefore also the

second side ; hence the straight lines AE, BF, CH must pass through
the same point G.
The point G may be called the pole of the transversal LMN with

respect to the triangle ABC.
Let the segments LH, FM, and EN be bisected in the points

X, Y, Z
; then the points X, Y, Z will range in a straight line.

ZBN'
XB LB"

=
"'MA"' ZC

consequently
XA.ZB.YC (-LA.MC.NBI*
XB . zc . YA~ LLB . MA . NCJ
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But the latter member of this equation is,, by sec. [151] /equal to

unity; therefore

XA.ZB.YC= XB.ZC.YA;
hence the three points X, Y, Z lie in the same straight line.

163.] In a complete quadrilateral ABOCED any diagonal ED is

divided harmonically by the two other diagonals AO and BC in

the points F and/.
DEFINITION.

A complete quadrilateral is that in which all the sides are pro-
duced to meet two by two, as ABOCED in fig. 12.

Fig. 12.

^D

For as FC is a transversal to the triangle AED, we shall have

FE.DC.AB= FD.CA.BE, see sec. [151], . . (a)

and as O is a point in the triangle AED, through which pass the

three lines A/, CE, BD, we shall have, see sec. [150],

DC.AB.E/=CA.BE.D/; (b)

dividing the preceding equation by this latter, we shall have

^-~} or FE : FD=E/: D/. . . . . (c)

Hence the diagonal DE is harmonically divided in F and /.

The line A/ may be called the harmonic conjugate of the point
F ; and FGr is, similarly, the harmonic conjugate of the point A.

164.] If a quadrilateral ABCD be cut by a transversal in the

points X, fjb, v, -or, the continued product of the alternate segments
will be equal, or

. (d)
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Fig. 13.

By comparing the partial triangles, we have

AX : \Tar=sin'Br : sin A, Cv : /Av=sin/z : sinC,

B/i : X//,
= sin X : sin B, DOT : n/= sin v : sin D.

Therefore, compounding these proportions, we have

XCT . ay . \LL . nfv . sin X . sin u, . sin v . sin r

AX.O.B/A .Dor= . . r ^ . r\sm A . sin B . sin C . sm D
In like manner

,,. Xu, . LLV . -GTJ/ . X-BT. sinX . sin u, . sin v . sin tr
ACT. a\.CfA.Dv=~ . r ^R r* T\

sin A . sin B . sin C . sm D

Hence the truth of the proposition, which may be extended to a

polygon of any number of sides as follows :

When it is proved that in a triangle cut by a transversal the

products of the alternate* segments of the sides are equal, we may
extend the proposition to the case of the quadrilateral or to any
other linear polygon.
On one of the sides of the given triangle let another triangle be

constructed, whose sides shall be cut by the given transversal.

Let , $, y be the ratios of the alternate segments of the sides

of the triangle; then ay9y= l. Let 8 and e be the ratios of the
5j

segments of the sides of the newly applied triangle, then = 1 ;

consequently a.j3Se=l.
In like manner the theorem may be extended to a polygon of

any number of sides.

It is obvious that in going round the triangle ABC we proceed
from A to B, from B to C, and from C to A. In the same way in

going round the quadrilateral we proceed from A to B, from B to

C, from C to D, and from D to A ; while in going round the applied

triangle we proceed from C to D, from D to A, and from A to C.
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Hence, if the ratio of the segments of CA be 7, the ratio of the

segments of AC will be .

7
165.] The middle points of the diagonals of a complete quadri-

lateral lie in the same straight line.

Let \, fj,, v be the middle points of these diagonals ; they lie in

a straight line. Since the line BD is harmonically divided in the

points Gr, H, and bisected at A,, we shall have

XGr BG

~~CG2 vl'fp El2

We shall also have

EH S

Multiplying these expressions together, we shall have

BG . CI . EH 2

But the three diagonals constitute a triangle GHI, of which the

line BCE is a transversal. ConsequentlyBG . CI .EH =BH . CG . El,

and therefore \G . /J . j/H=\H . /*G . vl, or \, p, and v range along
a straight line.
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ON ANHARMONIC RATIO.

166.] This theory, the invention of M. Chasles (unquestionably
the greatest geometer of this age, and, perhaps, equal to the best

in any age) ,
is an extension of the principle of harmonic ratio.

The theorem on which this powerful instrument of investigation
is founded maybe traced to the mathematical collections of Pappus*.
This simple relation has been made the basis of a general system of

conies by M. Chasles. Before his day it lay barren of results, until

he developed its properties and gave it the name of anharmonic

ratio, from its analogy to harmonic ratio, a particular case of the

more general relation. There is one signal peculiarity of this

method. If we take any theorem and its dual, as for example
Pascal's and Brianchon's hexagons, the one inscribed in, and the

other circumscribed to, a conic section, or any other like dual

property, and if the one admits of investigation by Cartesian or

protective coordinates, the dual must be treated by tdhgential coor-

dinates, as discussed in the first volume of this work. But the

anharmonic method is alike applicable to each, as we shall show
further on. Another element of the great power of the anhar-

monic method is that its properties are projective.
From a pointViet four fixed lines be drawn, meeting a fifth straight

line variable in position, in the points A, B, C, D. Let these lines

be put VA= a, VB=6, VC= c, VD= d, and let the sines of the

angles between a and c be a, between c and b be 7, between b and
d be fi, and between d and a be 8. Let the sine of the angles
between a and b be (a + y) ,

and that between c and d be (/3 + y), and
let p be the perpendicular from the point V on the range.
Now twice the area of the triangle AVC is

AC.p= acot; therefore AC=

In like manner CB=^ BD=*^, AD=^

p p
Now these six segments of the range may be combined in the

three following distinct groups and no more so that the variable

rays and the common perpendicular/? may be eliminated by division.

CA. DA_ca.<fl>|3

(b)AC^DC_ac.db a/3

AB '

AB CBa6 .cd

AD '

CD~arf.e&~ 78
* See Commandine's translation, Prop. 129. Lib. vii.
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Dividing by a, b, c, d, the three anharmonic ratios become

AC DCm ^.-
1 '* CB

' DB~8' AB '

and fill) ^_
AD

'

CD"
The first of these forms may be easily recollected, as it is the

form of an harmonic pencil. The second has the same arrange-
ment of the rays in the numerator as the first, ca . db, while the

only arrangement possible for the denominator is ab . dc. The
third form is the result of dividing the denominator of the second

by that of the first.

There are in fact six different forms, which may be reduced to

three.

It is not possible to write the four letters a, b, c, d two by two
in more than three ways, namely ab . cd, ac .bd, ad.cb; hence

there can be but three anharmonic arrangements of the segments
of the range.
A peculiar notation may be devised to indicate briefly the several

ratios of the anharmonic range.
Let V be the vertex of the pencil, and A, B, C, D the four points ;

then the ratio

DA
. v/AVr

""~DB may wntten v
( gJtC-

AC DCA ir/v.
^jj-^-pB may be written V(

^J(A-f-D),

AB CB ...^ may be written

The following relations may be easily established.

Hence these six forms may be reduced to three.

If the given pencil of rays be cut by any other transversal, the

ratios of the segments of this latter range will be the same as those

of the former; for the sines of the radial angles remain unchanged.
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If four points A, B, C, D be taken on a range, and through any
point in space four rays be drawn through these four points, the

inharmonic ratio of this pencil will be the same as that of the four

points on the range.
The aiiharmonic ratio of any four points ranged along a straight

line in one figure is equal to the anharmonic ratio of the corre-

sponding pencil on the reciprocal polar of the original figure.

167.] Should the rays a, b, c, d meet the circumference of a
circle in four fixed points, while the vertex V of the pencil moves

along the circumference, the anharmonic ratios of these successive

pencils will continue unchanged, because the sines of the radial

angles (that is, of the angles between the rays) continue unchanged.
When the pencil is turned through a right angle, the anharmonic

ratios continue unchanged, because the sines of the radial angles
are still the same.

If four fixed tangents drawn to a circle be intersected by a fifth

tangent variable in position, the anharmonic ratio of the segments
of this tangent made by the fixed tangents will be constant and

independent of its position.
It may easily be shown that if two fixed tangents are drawn to

a circle, the segment of a third variable tangent intercepted between
them subtends a constant angle at the centre, equal to half the

external angle of the two fixed tangents. Hence the variable

segments of the tangent range to the circle subtend fixed angles at

the centre ;
and consequently their anharmonic ratio is constant.

168.] Iftwo equal anharmonic pencils have a commonray or axis.

the three other pairs of rays will intersect two by two in three points

rani/i' in a straight lint'.

VOL. II. 2 N
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Let the two equal anharmonic pencils OQ, OA, OB, OC and

QO, QA ;,
QB

; , Q,C /
have a common ray or axis OQ, the remaining

three rays will intersect in three points a, ft, y, which range in a

straight line.

Join a and /3, and produce /3 to 8 in the common ray OQ, and
let it meet the fourth rays OC, QC, in the points 7 and y, ;

then
these points must coincide, since the anharmonic ratio of 8/3y
is equal to the anharmonic ratio of S/3yr
When the anharmonic ratios of two straight lines which meet in

a point are equal, the straight lines which join the corresponding
points two hy two will all three meet in a point. Let OABC and

be two equal anharmonic ranges. Join AA,, BB y ,
and let

them meet in V. Then if VC, be drawn, it will pass through C ;

for if it cut OA
y
in some other point D, the anharmonic range

OA/Bp, would be equal to OAjB,!).
169.] If two triangles ABC and AfijC, (fig. 17) have their corre-

sponding vertices on three straight lines which meet in a point O, the

corresponding sides will meet two by two in three points a, ft, 7
which range in a straight line.

Join Oy; then since the pencil OyBAC is cut by the trans-

versal DABy, and also by the transversal DyA^y, the anharmonic
ratios of these two straight lines or ranges are equal ; and as the

pencils CD, CA, CB, C<y and C,!),, C ;
Ap C y

B
y, C/y have a common

ray CC ;,
and their anharmonic ratios are equal, the three remaining

pairs of rays CA, C,AI} CB, C^B/, and AB, A ;
B

y
will meet in the

three points /3, a, y, which range in a straight line.

The triangles ABC, AjBp, are called by PONCELET homologous

triangles ;
the common point in which the three directrix lines meet,
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Fig. 17.

275

the centre of homology ;
and the straight line in which each pair of

sides meet, the homologous axis.

170.] Let two homologous triangles ABC and Afifi, (fig. 17)
have their sides AB, AjB, meeting in y, their sides BC, B /

C
/ meeting

in at, and their sides AC, A,C, meeting in /3; then, if at, (3, y range along
a straight line, the lines joining the points AA,, BB y , CC t

will meet

in a point.
As the pencil OCABy is cut by the two ranges yBAD and

yByAjD,, their anharmonic ratios are equal, and they have besides an

homologous point y, therefore the lines joining the homologous
points AA,, BB,, CC, meet in a point.

It is rather remarkable that when the two triangles are in the

same plane, some such demonstration as that above given is required,
but when the triangles lie in different planes the proposition becomes

self-evident, the triangles constituting the bases of the same pyra-
mid, and their sides will manifestly meet in the line in which the

plane bases intersect that is, in a straight line.

171.] If the opposite sides of a hexagon inscribed in a circle be

produced, they will meet two by two in the same straight line.

Let B and E be the ends (fig. 18) of one of the diagonals of the

hexagon BAFEDC, A and C the angles adjoining to B, and F and
D the angles adjoining A and C.

Then, as these points lie on the circumference of a circle, the an-
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harmonic ratios A(BFED),C(BDEF) will be equal. See sec. [167].
And as the pencil A(BFED) is cut by the transversal LGED, and
the pencil C(BDEF) is cut by the transversal MIEF, the anhar-
monic ratios of these two transversals will be equal. Moreover

Fig. 18.

they have a common or homologous point E; hence the lines joining
the other homologous points will all three meet in the same point,
or the lines joining the points L and M, G and F, I and D, will

meet in the same point N. Hence L, M, N are in the same straight
line.

172.] The diagonals of a hexagon circumscribed to a circle meet in

a point.
Since the four tangents CB, AF, FE, ED (fig. 19) meet the two

tangents AB and CD in the points B and C, A and L, I and N, and
in the points M and D, and as the anharmonic ratios of these two

ranges BAIM and CLND are equal, the anharmonic pencils which

pass through them will be equal. Therefore the anharmonic ratio

of the pencil E (BAIM) will be equal to the anharmonic ratio of the

pencil F(CLDN) ;
and as these pencils have a common ray EF, the

remaining three rays of each pencil will meet two by two in three

points which range in a straight line : that is, EB and FC will meet
in O, EA and FL will meet in A, while EM and FD will meet in D.
Hence the point O must be on the line AD, or the three diagonals
meet in the same point O.
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Fig. 19.

CHAPTER XXII.

DEFINITION.

173.] If from the centre of a circle a perpendicular be drawn on

any straight line in its plane, and if in this perpendicular a point
be taken so that the rectangle contained by its distance from the

centre and the perpendicular shall be equal to the square on the

radius, the point so found and the straight line are called pole and

polar with respect to the circle*.

LEMMA I.

If a chord be drawn in a circle, and any point taken in this chord,
the polar of this point will divide the chord into segments which will

have to each other the same ratio as the segments of this chord made

by the pole.

* Like most of our terms in this important branch of geometry, we owe the

very convenient terms pole and polar to French geometers the former to Serrois,
the latter to Gergonne.
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Let P be the pole taken in the chord AB, and let this chord be

cut in the point Q by the polar TT, of the point P. Then we shall

have

PA_QA
PB~QB'

Fig. 20.

Since PT is a tangent to the circle, we have

PT
2

==PA . PB=PQ . PB +AQ . PB;

and as PTT, is an isosceles triangle,

therefore FT
3

= QT.QT,+ ptf=QA . QB + PQ . QB +PQ . PB,

= PA.QB + PQ.PB.
2

Equating these two values of PT ,
and taking away the common

rectangle PQ . PB, we shall have QA . PB=PA . QB ;

, PA QA
PB

=
QB-

Since PA-PQ=QA and PQ-PB = QB, we have

PA-PQ_QA_PA
PQ-PB~QB~PB j

hence PA, PQ, PB are in harmonical proportion, since the first is

to the third as the difference between the first and the second is to

the difference between the second and the third.
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LEMMA II.

279

Let a point and a straight line be assumed as pole and polar with

reference to a circle. The polar of any point taken in this straight
line will pass through the point assumed as pole.

Fig. 21.

(a). Let the pole Q be taken within the circle. Join OQ, and

produce it to P, so that OQ.OP=R2
; then, by the definition of

pole and polar, the polar- of Q will pass through P and be at right

angles to OQ.
Through Q draw a chord TT,, and tangents TP,, T,P, meeting

in P,; and join PP,. Then, as OQ. OP=OQ .OP, (since each

rectangle is equal to R2
), the triangles OQ.Q and OPP, are similar,

and the angle OQ,Q is equal to the angle OPP,; but OQ,Q is a

right angle, therefore OPP, is a right angle, or the line PP, is the

polar of the point Q.

(/3)
. Let the polar PP, cut the circle. Then, if OP be the per-

pendicular on PP, the distance of the pole of PP, from the centre

R2

18
OP'
From any point P, in the polar PP, let tangents P;

T and P/T, be
drawn to the circle, the line TTP the polar of P,, will pass through
the pole of PPr Let TT, meet the perpendicular OP in the point Q ;

then, as triangles P.OP and QOQ, are similar, P.O . OQ=QO . OP ;

R8

but Pp . OQ,=R2
;
therefore QO . OP=R2 or QO= ; therefore
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the point Q, in which the secant TT
;
cuts the perpendicular OP,

coincides with the pole of the polar PPr

Fig. 22.

It is evident that if we substitute a sphere for the circle, and a

plane for the polar straight line, we may infer that if any point be
assumed in the plane, the polar plane of this point, taken with

reference to a sphere, will pass through the pole of the polar

plane.

174.] If the external angles of a triangle be bisected, the bisectors

will meet the opposite sides of the triangle in three points , /3, y
which range in a straight line.

Kg. 23.

'C

Let a circle be inscribed in the triangle, and let the points of
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contact A,, B,, C y
be joined. Let the inscribed circle be taken as a

l>ol<iri~in</ circle. Then, as the bisector of the external angle at C
is the

polar of the point c (the middle point of the line AjB,), and as

the side AB is the polar of the point C,, the point y, in which the

side AB meets the bisector of the vertical angle at C, is the pole of

the line C
t
c. In the same way it may be shown that a and b are the

poles of the two other bisectors, while A,a and B,A are the polars
of the points in which these bisectors meet the opposite sides. But
the lines drawn from the angles of a triangle to the middle points
of the opposite sides meet in a point, the centre of gravity or cen-

troid of the triangle. Consequently the centroid of the triangle

AjBjC, is the pole of the straight line a/3y, and the perpendicular from
the centre of the circle on this line will pass through the centroid.

175.] If the opposite sides of a quadrilateral inscribed in a circle

be produced to meet in V, V ; (fig. 24), and the diagonals AD, BC be

Fig. 24.

V

drawn to meet in O, and tangents to the circle be drawn at the point*

A, B, C, D, these tangents will meet two by two on the lines VO, V,O
VOL. II. 2 O
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in the points //., v, m, n, so that the points V /; p., O, v and V, m, O, n

will lie on the straight lines VO and V,O.
Since ABCD is a quadrilateral, the line AB is harmonically

divided in c and V, and the line ab in O and V, and CD in d and V.

See sec. [163] . And again, as ABCD is a quadrilateral inscribed

in a circle, the polar of V will divide harmonically the chords AB
and CD in c and d

; therefore the line cd is the polar of V, and
this line will therefore pass through the poles //,,

v of AB and CD.
Hence the points V/( p, O, v are in the same straight line.

In the same way it may be shown that the points V, n} O, m are

in the same straight line.

Without using poles and polars the proposition may be proved
as follows by the method of transversals :

If we can show that the straight lines V
;/A, A/A, B/A make angles

with the sides of the triangle V ;AB, such that the product of the

sines of the alternate angles may be equal, these lines must meet in

one point //,,
see sec. [153] that is, if

sin /AAV, . sin //,V ;
B . sin /iBA = sin /*Vy

A . sin V
;B/i . sin BA/tt.

Now sin /zBA= sin BA/A, since A//, and B/A are tangents to the circle;

also sin AV,O : sin BVp= V,B . Ac : V
;
A . cB ; and as the angle

V,A/A is equal to the angle ABO, and the angle V ;B/A equal to BAO,
P P

sin V,A/i : sin V,B/A= sin ABO : sin BAO=~ T>
'

: ^-. r- : but
OB . Be OA . Ac

since the angle V /
AO=V

/BO, '^--= ;
'-

,
P and P, being

*jj

the perpendiculars drawn from A and B on the line OV, ;

or sin V .Au, : sin

and sin BV^ : sin AV
y
c=V^ . Be : V,B . Ac.

Hence sinV
yA//, . sin BV^= sin V

yB//, . sin AV^e.

176.] If a quadrilateral be inscribed in a circle, then (a) the square
on the outer diagonal of the complete quadrilateral is equal to the sum

of the squares on the tangents drawn from Us ends to the circle,

(/3)
the diagonal itself is equal to the sum of the tangents drawn

from its middle point, and (y] the circle drawn on this diagonal
as diameter will cut the given circle at right angles.

(a) Since P is the pole of EG (fig. 25), the outer diagonal of the

complete quadrilateral, therefore On . OE= Ow . OG=R2
.

But EG2=EO2

+ GO2-2GO.Om.

, GO
2=GK 2+R2

,
and 2GO.Om=2R2

.

Hence we have EGa= ELa+ GK2
.
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(/3) Let (AM be a tangent drawn to the circle from the middle

point Q of EG.

Then,

therefore

, GO2=GKa

E02=EL2

EQ=GQ=QM.

(y) Since QM is a tangent to one circle and a radius of the

other, the circles must cut orthogonally.
It may also be shown that the squares of the inner diagonals are

to each other as the distances of their middle points from the middle

point Q of the outer diagonal.

177.] The line joining the middle points of the diagonals of a

quadrilateral circumscribing a circle passes through the centre*.

Let a and b be the middle points of the diagonals AC, BD of the

quadrilateral ABCD (fig. 26) circumscribing the circle. Through
B and C draw straight lines BG and CH parallel to the diagonals
AC and BD. Through m and n, the points of contact of the qua-
drilateral, draw the chord mn meeting BG in T, and the line Ba in /.

* Of this theorem, which is duo to Newton, a proof by the method of tan-

gential coordinates will be found in the firet volume <>f this work. p. 40.
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Now since BG, BA, Ba, BC is an harmonic pencil, since AC is

bisected in a and is parallel to BG,the transversal mn is harmonically
divided in / and T ;

therefore the polar of T passes through t
;
and

as moreover T is a point in the chord mn, the polar of T will pass

through B ; therefore Ba is the polar of T. Now producing the

chords pn, qm they will meet in a point Q, the polar of which point,

as it is on the line pn, will pass through C ;
and as it is on the line

qm it will pass through A ; therefore AC is the polar of the point Q ;

and as it has been shown that T'is the pole of the line B, it

will follow that the straight line QT will be the polar of the point
in which AC and B/ intersect that is, the point a, the middle point
of the diagonal AC. In the same way it maybe shown that PH is

the polar of b. Now as BG is parallel to AP, we have

Tn : wP= Bw : nC, and QM : wH= Bw : nC ;

Fig. 26.

Therefore TV : Qw=wP : wH. Hence the triangles QTw and HnP

are similar; therefore QT is parallel to PH. But these lines are
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the polars of the points a and b; the point in which they meet will

therefore be the pole of the line ab. But as they meet at infinity,
the line ab must pass through the centre of the circle.

The same proof will hold when the curve is a conic.

178.] Iffrom any point P (fig. 27) perpendiculars PA,, PB,, PC,
are drawn on the sides of a triangle ABC, a circle through the three

points A,, B,, C, will cut the sides of the triangle in three other points
A

;/ ,
B

y/, C0, such that ifperpendiculars to the sides of the triangle be

drawn through these points, they will also meet in a point P .

C ,* c,

Since AC, . AC,,
= AB, . AB,,, and AC = AC, + C,C,,, while

AB,=AB,,+ B,B,,, we shall have

AC,,
a + AC,, . Cpa-lB?+ AB, . B,B

and AC,
3 - AC, . C,C,,= AB,

a - AB, . B,B, ;

adding these two expressions, we shall have

so also BA,
2 + BA,,

2-
A,A,,

2= BC,
a+ BC,,

a-
C,C,,

2

,

and CF
~~

adding these equals, the squares on the intervals between the feet
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of the perpendiculars mutually cancel, and we shall have

AC; +BA +CB

= AB;+ BO; + cA; + AB,,
2 + BC/ + cA/.

But since PA
y ,
PB

y,
PC

y
are perpendiculars to the sides of the tri-

angle, we shall have, see sec. [156], ,

therefore AC/ +BA/+ CB yy

2=AB
yy

2 + BC yy

2 + CA ;/

2
j

hence the perpendiculars through the points A/y ,
B

/y,
C

;/
meet in a

common point Py
.

The line drawn from A to P is perpendicular to the line B
y,C yy,

which joins the feet of the perpendiculars P,B yy, P,C,y
. For since

AC
;
PB

y
is a quadrilateral that may be inscribed in a circle, the

angle APC
y

is equal to the angle AB
yC,; and as C

y
B

y
B

yy
C

y,
is a

quadrilateral inscribed in a circle, the angle AC,,B yy
is equal to the

angle AB y
C

y
that is, to the angle APC,. Consequently the angle

ASC
y/

is a right angle. Hence, if from the angles of the triangle
ABC lines be drawn to the points P, P

y,
the lines drawn to P will

be perpendicular to the sides of the triangle A,,B y,Cy/,
and the lines

drawn to P
y
will be perpendicular to the sides of the triangle Ay

B C
/t

The lines drawn from any vertex A to the points P, P
y
will

make equal angles with the sides AB and AC*.
For the angle P,AB /y

is equal to the angle Py
C

y,B yy
which is equal

to the angle PB y
C

y,
which has been proved equal to the angle PAC.

179.] The foregoing theorem maybe proved in a simpler way by
the help of the property given in sec. [134].

Let the perpendiculars B
y,Py

and C,,P, be erected at B,y
and C

yy

to meet in P
y

. Then, as AB
yyP,C/y

is a quadrilateral that may be

inscribed in a circle, the angle B y,APy
is equal to the angle By/C,,Py ;

and as C
yB,B,yC,, is a like quadrilateral, the angle AC y,Byy

is equal

* Hence the points P, P, are the foci of an ellipse inscribed in the triangle

ABC, of which O is the centre, and the major axis the diameter of the circle.

Produce P^,, to Q until A
/;Q is equal A /y

P. Join PQ cutting the side of the

triangle in . Join P,P. Then as P, is equal to Q and P = Pa,
P,a+P=PQ=20A J/ ,

or P,a+Pa is constant, being equal to the diameter of

the circle.

We may hence infer that if three tangents to an ellipse be given, and one of

its foci, we can at once construct the ellipse. From the focus draw perpen-
diculars on the three tangents, the circle that passes through the feet of the

perpendiculars will cut the tangents in three other points, through which if per-

pendiculars be drawn, they will meet in the second focus. The major axis of

this ellipse will be the diameter 2R of the circle
;
and the eccentricity will be

PP,
2R'
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to the angle ABjC,; but AC^P, and AB
;
P are right angles; hence

tin; angle B //
C

y/
P

/
is equal to the angle C^P that is, to the angle

C,AP, sinoe ABjPC is also a quadrilateral that may be inscribed in

a circle. Hence the angle B //
AP

/
is equal to the angle CAP,. But

in sec. [154] it is shown that if two sets of lines be drawn from
the angles of a triangle making equal angles with the adjacent
sides, and if one set meet in a point, so likewise the other set will

also meet in a point.

180.] If through a given point P (fig. 28) two secants PAB, PCD
be drawn to a circle, thefirst fixed, the second movable, and iffrom the

points of intersection of this latter with the circle tangents be drawn

meeting the fixed secant in the points M, N, we shall have *

I I "1 X r
~""~

T"4 4 I T~l T~ *PM

Fig. 28.

Through C and D let tangents be drawn meeting in G, and cutting
the fixed secant in the points M, N. Join AD, BC meeting in O,
and AC, BD meeting in V. Then VO will pass through G, the

intersection of the tangents at C and D, and will cut the line AB

This theorem is taken from Maclaurin's Tractattis de lineanim currantm

proprietatibtts gcneralibus, p. 11, a treatise of rare originality and beauty. The
theorem in the text, which is proved for

algebraical
curves of all orders by

a simple application of an elementary principle of the differential calculus,

Maclaurin makes the foundation of a system of geometry of curve lines of singular

elegance.
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in a point Q. Let the line GE be drawn through G parallel to AB
meeting the lines VA, VB in H and F. Then by similar triangles

PM : PC =EG : CE and PC : PA= CE : EH.

Compounding these ratios, PM : PA=EG : EH.
i i TJ^TJ l 1 l^T^

Hence =
PA

'

EG"
In Uke manner WG Uain

PN
=
PB' EG"

But EH=EG+GH and EF=EG-FG;
1 1 rEG + GHl 1 ,

,

therefore = = 1 +=
PA EG '

1 1 rEG-FGI 1 r_ FG1
PN

=PBHsQ ^PB^-EGJ 5

f 1111 JTGH FG1
+ - + + PB_T

But as the line AB is harmonically divided in P and Q,

PA : PB =AQ : BQ=GH : FG; and therefore p^=|;

consequently + J_ +
J^.

This proof, without any modification, will hold for conies.

CHAPTER XXIII.

ON CIRCLES INSCRIBED, EXSCRIBED, AND CIRCUMSCRIBED

TO A TRIANGLE,

When a triangle is given, sixteen circles may be described in con-
nexion with it : one circumscribed to the triangle ; one inscribed
in it ; three touching, each a side and the other two sides produced ;

six passing throiigh the centres of the circles of contact and the ver-

tices of the given triangle taken two by two ;
four through the

centres of the inscribed and exscribed circles taken three by three ;

and, lastly, a sixteenth circle passing through the feet of the perpen-
diculars drawn from the vertices ofthe triangle on the opposite sides.

This may be called the orthocentric circle, as it circumscribes the
orthocentric triangle. It is also known as the nine-point circle.

The other circles will be named as definitions are required.
The four circles which touch the sides of this triangle may with

propriety and brevity be named the circles of contact ; and their

centres may be called the centres of contact.
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181.] Let r, r,,
rn ,

r
nl ,

11 be the radii of the inscribed, exscribed*,
and circumscribed circles ofthe triangleABC, and let to, fl, lp l

lt ,
O

be the centres of these circles, while is the centre of the circle,

whose radius is p, inscribed in the orthocentric triangle. Let the

inscribed circle touch the sides of the triangle in the points B/} A,, F,
and the exscribed circle touch the same sides in the points G, H, F/}

and as BG=BF,, and AH=AF,, BG+AH=BA=c, if a, b, c be
the sides of the triangle opposite to the angles A, B, C. Hence
CG +CH is equal to the perimeter of the triangle, or as CG=CH,
CG or CH is half the perimeter of the triangle; let this semiperi-
meter be denoted by s. And as CA^CB,, GA^HB,; and as

GA
/
=BF

/
+ BFandHB,=AF+AF/,thereforeBF/

+BF=AF+ AF,
or BF=AF; hence BA=GA

/
=HB

/
=c. Therefore BG=*-a,

BA=s b, and CA^* c.

Fig. 29.

Let A be the area of the triangle, then it is well known that

A- / 7 W K\( * f^ ( \

* Not ctcribed, as it is usually written, but extcribtd, in accordance with
the analogy of the pronunciation'of other like words, such as r.rscind, exttrtion,

t.rsert, exsiccate, &c.

VOL. II. 2 P
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We have also r.= . r,,= -
-,

)',,,= (b)
s a sb sc

Therefore r^^/^///=^ w TTT r=A2
. . . . (c)1 "'

s(s a) (s b) (s c)

Taking the reciprocals of (b), we shall have

-=- + + , (d) whence r= ^J^JU .
(
e

)T***^***-7 ^' 7* >* I- 7* /* I- 7* 7*1
1

' n 'in
'

I
'

il

~ '
II' III

~
'I' III

sr ,
j

sr
O **. ft O \\ fI O /I> I* ^ 1 1 1 n i o u ^

r
i
rn riu

therefore 28- a -b=c=

(r
-f- f \~-

/

In like manner =rY^, b=r,,, . . . (g)

and since 4R=
, substituting the foregoing values of a, b, c,

Si

we shall have 4R=^>l ,
+ r,J(r,,,+ r,)(r +,-)_ . . . (h)

But r,r,,r,,,=sV, and s= Jrl
ru -\-r

ll
r
ul +rlll

r
l,
as in (f) ;

hence 4R~d+^+
r

i
rn rn r

iu """ r
/;/

r
i

Now if we develop the numerator and add to both sides

V V V
r= ,

as given in (e) , we shall have

r,+ r
tt
+ rw, ....... (j)

Thus the sum of the radii of the exscribed circles is equal to the

radius of the inscribed circle together with four times the radius

of the circumscribed circle.

sr , sr
Since s a )

and s 6= , we have

sV2

(s a)(s b)=- or s
2

(a + b)s
r

i
r
n

r
i
rn riu
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Finding like expressions for the other sides, and adding,

we obtain 3*2 4s* + bc+ ac + ab= .

r
i
ru rui

But r
t
r

lt
r
tn=s*r', consequently 6c+ ac + 6=s2 + r(r/

+ r
//
+ r

///).

hence 6e'+ac+ ad=s2+4Rr+ r2, (k)

and therefore a2+ 62+ c2=2s2 8Rr-2r2
(1)

These useful theorems may be more simply established by suc-

cessively eliminating (bc+ ca + ab} and (a
2+ A2 + e2

)
between the

formulae 2s= a+ b + c and sr'
2=

(s a)(s b)(s c).

182.] Since 1 +1+ 1=!, see (d) sec. [181],r
i

ru in

squaring

or

_^+ 1_ + J_=^_2|~_L +J_ +_L"j ,

r
,

ru r
,n r Ir,

r
tt
r

llt
r

y// r,J

2 *~ 2
~~

2r* r* r, r.. r,,. rf* " I It III

Now r. + r,.+ r,,.=4R + r and r
l
r..r

lll
r=

I If til I It HI

e 1111 2s2 -8Rr-2r2

therefore -^-\
-

z+ 3+^= 5-, . . . . (a)
r.

But it has been shown, in (1) in the last section, that

f 1111
and therefore ++_+=_ 1^

-..... (b)
r

i
rn r

iu
r ^

Thus the sum of the squares of the reciprocals of the radii of the four
inscribed and exscribed circles to a triangle is equal to the sum of
the squares of the three sides divided by the square of the area of
the triangle.

183.] Let h
t ,
h

tl ,
h

ltl
denote the perpendiculars from the vertices

of a triangle on the opposite sides, then ah,, bhn, ch
tll

are each
1 s a 1 s b

equal to 2sr; and as =-
,

=-
,

r
t

sr r
lt

sr

we have ! +!=^-?_, Qf h
/l + i\ 2

r
i

r
u sr hnf \ri

rJ

In like manner hi H--
)
= 2, and /< (-H

--
)
= 2;

v// rni' \ri
rm'

consequently &te+&Lte+&lMm6. . (
a
)
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184.] The sum of the squares of the sides of a triangle is equal
to twice the sum of the products of each height multiplied by the

distance between the corresponding angle and the orthocentre.

Let h be the altitude corresponding to the angle A ; then the

distance from the vertex A to the orthocentre is 2R cos A, and the

cos A-

product by h is 2RAcos A=4AR , putting A for the area of

___
the triangle; and this may be written 2AR---r--- Finding

like expressions for the other angles, and bearing in mind that

6c=4RA, we get

(a)

In any plane triangle we shall have the relation

a cos A+ 6 cosB + ccos C r

2s R*

For ifp,Pi>Pn denote the perpendiculars from the centre of the cir-

cumscribed circle on the sides of the triangle a, b, c, we have

cosA=4 cosB=, cosC='. (b)
XV xv XV

Hem

The sum of the ratios of each perpendicular from the centre of the

circumscribing circle on a side of the triangle to the perpendicular

from the opposite angle on the same side is equal to unity.

p area COB ,, p p. pn
For \=--TTTS; therefore +/+O=l. . . (d)h area CAB h h, h

t

The sum of the reciprocals of the perpendiculars from the angles

of a triangle on the opposite sides is equal to the reciprocal of the

radius of the inscribed circle.

Let <o be the centre of this circle, then

r_area BwC
h ""area BAG '

finding like expressions for the other terms, and adding, we shall

have

T i "7" ~r T~ == ....... (/h h
t

h
tl

r

If we turn to fig. 29 (p. 289) it will easily be seen that

flft) O^ft)
fi

y/
0>_ ,

C B A^T
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c n,&> b il.M a

and the sum of these ratios is obviously 2.

ON THE TRIGONOMETRICAL RELATIONS OF THE ANGLES OF A TRIANGLE.

185.] In the following propositions the terms sin, cos, tan are

used as brief and familiar expressions to denote certain ratios of

lines connected with a triangle and its inscribed and circumscribed

circles.

A s a A s
Since cot =-

,
and coW= , ..... (a)& i

m
& / i

finding like expressions for the other angles, and adding, we have

,A .
B ,

C sasb sc s
C0t +C0t +COt =

2 2 2

A
,

, B
,

C s s s
and cot^-f cot li + cot

T5-=-H---f- ;

3 r
i

r
,i

r
,n

hence dividing these equations by s, we obtain

r r
i

ru r
,n

Multiplying together the cotangents in (a),

A ,B ^C (s-a)(s-b)(s-c)
we have cot cot cot - = -

a ~>

and
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adding these expressions,
Q

sinA + sinB4sinC=^........ (d)
XV

Multiplying these values,

7*S

(/3) sin A sin B sin C= 52........ (e)

If we square (a) and subtract the values of the squares of the

sines, we shall have

4$
(y) sin A sin B + sin B sin C + sin A sin C=

But a2+ 62 + c2= 2s2- 2r2- 8Rr.

s? _i_ ^2 i 4j^y
Hence sin A sin B + sin B sin C + sin A sin C =

(B)
= A /(s -b}(s-c}

be

. . A . B . C 4?(* a)(s b)(s c) r
Hence 4n .m

]s
.u,

? -^ 2
=fi

. . . (g)

w 1 + cosA=Mir) ;

finding like expressions for cos B and cos C, adding, we shall have

abc

but 2 + 62+ c
2=2*2-2r2

-8Rr, as in
(1) sec. [181] ;

T
hence cos A+ eosB+cosC = l+^p...... (h)

XV

If p, pp ptl
denote the perpendiculars from the centre of the cir-

cumscribed circle on the sides,

j0=Il cos A, j/=R cos B, pn=R cos C.

Hence P+Pi+Pi,=^+ r....... (i)

186.] To prove that a cot A+ b cot B + c cot C= 2(R + r) . (a)

a cosA 2aRcosA 2apacotA.=. r-= o-p . T-= =2p.sm A 2R sin A a

Hence a cot A+ b cot B + c cot C= 2
(p +pt+pj .

But p-i-p l +pll ='R-^r, as shown in (i), last section.
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1 1 \ve square the expression (h) in sec. [185] ,
and put for cos* A its

a2
value 1 -, and like expressions for cos2 B, cos2 C, we shall have

= l+ -3+

putting for a2 4 V2 + e2 its value, and reducing,

__

cosB cos C + cos A cos C 4- cos A cos B=-7^73
-

. . (h)4H

187.] To show that

cos2 A 4- cos
2 B 4 cos2 C=12 cos A cos B cos C. . (a)

Since A+ B-fC=7r, cosC = cos (A+ B);

therefore cos2 C=cos2 A cos2 B 2 cos A cos B sin A sin B

+ 1 cos2 A cos2 B 4- cos
2 A cos2 B,

putting for sin2 A sin2 B in the developed form

its equivalent 1 cos2 A+ cos2 B -f cos
2 A cos2 B.

Hence the expression cos2 A 4- cos2 B 4- cos
2 C now becomes

1+2 cos A cos B (cos A cos B sin A sin B) = 1 2 cos A cos B cos C.

We have also, as shown in (e) section [185],

(l4-cosA)(l+cosB)(l+cosC)=^.
. . (b)

If we multiply together the expressions

(1 + cosA), (1+cosB), (1 4- cos C), we shall have

(1 4- cos A)(l 4- cos B) (1 + cos C) =1 + cos A 4- cos B 4- cos C
*

4- cos A cos B 4- cos B cos C 4- cos A cos C 4- cos A cos B cos C=<

Substituting for (cos A 4- cos B 4- cos C) and

cos A cos B 4- cos B cos C 4- cos A cos C their values

as given in (h) and (i) in section [185], we shall find

*2 -(2R4-r)
2

cos A cos B cos C=- - ..... (j)
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Since co4-A/*<:=3,* V oc

A B C 4-s.sr s

4003-008^08-
= =; . . . . (k)

comparing this expression with (d), sec. [185], we find

ABC
sin A + sin B -f sm 0=4 cos cos -^ cos .

id til til

188.] To show that

tan A+ tan B + tan C=tanA tan B tan C.

Let a
(
and a

lt
be the segments of the side a, made by the per-

pendicular h drawn to it from the vertex A, then

a,a,. ACT
cot B cot C=4V = -re-*

h* h*

vr being the perpendicular from the orthocentre on the side a.

Hence cot B cot C= T-=T Let 8, &,, 8,,
be the component tri-

IL fltt

angles of the original triangle, then

vra=28 and Aa=2A ;

g . *
_|_g

hence cot B cot C + cot C cot A+ cotA cot B= ~^ '-'= 1 .

Multiplying these expressions by tan A tan B tan C,

tan A + tan B -f tan C=tan A tan B tan C. . . (a)

o- *
A /(s-b}(s-c]Since tan ^= A / i

M >
,

& V s(s a)

Again, as

tanftanftan^-^T^iTT^M- <b>222 s \/s(s a)(s b)(s c) s

tan-=Q ""

-v/*(s a)(sb) (s-c)
~~

A B C 4R+ r

(c)

C C, A^ A, B ,
- tan +tan tan =1 ; . . (d)
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for tan-=--., tan^= -; therefore
2 sb 2 sc

tan tan -= =- . Hence results the theorem.22s
2A

189.1 Since A = 2A. h=
,
and therefore

a

I 1 1\ A (bc+ ac+ ab)- -=2A^- -=
(a)

- T -- -

a b c/ abc 2R

$2 -L r2_4R2
To show that ST + CT, + = -^-- . . . . (b)

Let a
; ,
a

y/
be the segments of the side a made by the perpendicular

h from the vertex, -sr the corresponding perpendicular from the

orthocentre; then
,,. A-sr 2Ar

cos B cos C=-7-^=-^= T
oc oc abc

r
(b) sec. [186] gives cos B cosC + cosAcos C -f cosAcosB =

S _J_ ?.2_4R2
Hence & + &,+ &,!=

--^--, as above ;

and therefore
(
h + h,+ h,) ( + vr,+ rw)

=2
(
R + r) . . . (c)

But this quantity denotes the sum of the lines drawn from the

orthocentre to the vertices of the triangle ; and as it may be shown
that the sum of these distances is equal to twice the sum of the

perpendiculars on the sides of the triangle, these perpendiculars

being written

P>Pi>Pii> we shall have, as in (i) sec. [185],

p+pt+ptl
=K + r....... (d)

190.] In any triangle the sum of the reciprocals of the sides of the

six inscribed and exscribed squares is equal to twice the reciprocal

of the radius of the inscribed circle.

Let a be the base and h the height of the triangle, and x the

side of the square inscribed, then x
j

.

Let X) be the side of the square exscribed, then a:
;
= .

112
Hence -H =T. Let y, y.,

and z, z
t
be the sides of the squares

/ '', //

on the other two sides of the triangle, and we shall have

as shown in (e) sec. [184].
VOL. n. 2 Q
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ON TRIANGLES INSCRIBED IN ONE CIRCLE AND CIRCUMSCRIBED
TO ANOTHER.

191. Let the triangle ABC be inscribed in the circle AEBG and
circumscribed to the circle Ycok ; we proceed to find an expression
for the distance between O and w the centres ofthese circles. Let D
be this distance, and let R and r be the radii of the circles

;
then

manifestly (R+ D)(R-D) = Cw . G<o or D2=R2-Co> . Go>.

Through G draw the diameter GOE ; join AG and AE. Since

the triangles Cfoo and AGE are similar, GE . tak= Ca) . GA; but

GE = 2R, and wk = r, while GA = GB = Gw. Consequently
2Rr=Co> . Go>, and therefore

D2=R2-2Rr........ (a)

The value ofD is independent of the sides of the triangle. Hence,
if two circles be described so that the interval between their centres

shall be equal to \/}tf 2Rr, any triangle inscribed in the one may
be circumscribed to the other *.

* Another proof of this theorem may be given. Let two tangents to the

inscribed circle be drawn from the points A and B meeting in C. If C be on the

circumference the proposition is established. But if not let another circle be
described passing through the

points A, B, C, Let R, be the radius of this

circle, its centre will be on the line GE, suppose at O
( ,
and let D

(
be the distance

from O, to &). Let OO, =/*, and let OT) = k
;
then

But D i

2=R
i

2
2R,r ; or, substituting the value of R

; ,

and D2=R2
-2Rr; consequently R+ /*

= V It
2+ \?

which is impossible unless p,=0 ;
or the two centres of the circumscribing circles

must coincide
;
and as they pass through the same points A and B, they must be

identical.
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192.] Let r
t
be the radius of one of the outer circles of contact;

then, making the necessary transformations, it may be shown that

D 2=R2 + 2Rr,........ (a)

If we take like expressions for the other two sides we shall have,

adding them together,

But r
t
+ r

lt + r
tn r=4R, as shown in (j) sec. [181]; hence

D'+ D' + Dj' + D^-iaR*; . . . . (b)

or the sum of the squares of the distances from the centre of the cir-

cumscribed circle to the centres of the four circles of contact is equal
to twelve times the square of the radius of the circumscribed circle.

It may easily be shown that G, the middle point of the arc AB, is

the centre of the circle which passes through A, B, the ends of the

base AB, and through the centres to and fl of the inscribed and
exscribed circles.

193.] If a triangle circumscribe one circle and be inscribed in

another circle, the circles will have a common pole and polar.
Let d be the distance from O the centre of the circumscribing

circle to the common polar, let 8 be the distance between the centre

of the inscribed circle and the common pole, and, as before, let D
be the distance between the centres of tne circles whose radii are

R and r.

Then obviously we shall have

(D + S)</=R
2
, and (rf-D)8=r.

Eliminating 8, we shall find for d, the distance of O from the

common polar,

, (R +r)(B-r)+B(R-2r)r

CHAPTER XXIV

ON THE ORTHOCENTRIC TRIANGLE.

194.] The orthocentric triangle has been defined in sec. [lot] as

the triangle formed by joining the feet of the perpendiculars drawn

from the vertices of a triangle to the opposite sides
;
and these [>er-

pcndiculars, as it has been shown, meet in the orthocentre.

The circle which circumscribes this triangle IIKIV bo called the

orthocentric circle. It has also by PONCELET been named the nun--

point circle, from a property which will be established further on.
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Let A, B, C be the angles of the given triangle, a, b, c the opposite
sides, and R the radius of the circumscribing circle.

The sides of the orthocentric triangle are a cos A, b cos B, c cos C.
Let Ap B ;

, C, be the vertices of the orthocentric triangle opposite
the vertices A, B, C of the given triangle, then the sides of the

triangle A^C, are a cos B, c cos B, and A]Cr Hence

KjC?=a* cos2 B+ c2 cos2 B -2ac cos3 B,

or A^2= cos2B [a
2 + c2- 2ac cos B] .

But the part put within brackets is equal to AC2
or ft* ;

hence A/^
2=AC2

cos2 B, or b,=b cos B...... -
. (a)

We have also 2R= - r . a well-known theorem.
sinA

But the sides of the orthocentric triangle are a cos A, b cos B,
c cos C ; and if Ay,Bp C ;

be the angles of the orthocentric triangle

opposite the sides a cos A, b cos B, c cos C, we shall have

A+2A=7r, or sin Aj= sin 2A= 2 sin A cos A. . . (b)

Hence, if R
y
be the radius of the circle circumscribing the ortho-

centric triangle, we have

OT? _ a cos A._ GCosA a
1

sin A
t

~
2 sin A cosA 2 sin A'

Hence 2R
y^=R, or the diameter of the circle circumscribing the

original triangle is twice that of the circle circumscribing the
orthocentric triangle.

195.] To determine the area of the orthocentric triangle.
In general the area of a triangle A is determined by the equation

ac=4RA, A being the area of the triangle.
In the orthocentric triangle the sides are a cosA, #cosB, ccosC,

and2R
y:=R; hence

abc cos A cos B cos C=4R,Ar

But fo=4RA, and 2R,=R;

hence cos A cos B cos C= L or -^=2 cos A cos B cos C. . (c).-* ZA

Ifperpendiculars be drawn from the vertices of a triangle to the
sides of its orthocentric triangle, they will pass through the centre

of the circle circumscribing the given triangle.
As the perpendiculars drawn from the vertices of the given tri-

angle ABC on its opposite sides bisect the angles of the ortho-
centric triangle, the perpendiculars drawn from any two vertices

of the given triangle, A and B suppose, to the sides of the ortho-
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centric triangle will make equal angles with the side C. Hence

by sec. [154] these lines will meet in a point; and as these three

lines are equal, they must meet in the centre of the circle ABC.
Hence, as the perpendiculars drawn from the vertices of the tri-

angle ABC to the opposite sides determine by their intersection

the orthocentre, so the perpendiculars drawn from the same vertices

to the sides of the orthocentric triangle determine by their inter-

section the centre of the circumscribing circle.

196.] Since the perpendiculars drawn from 0, the orthocentre, to

the sides of the original triangle bisect the angles of the ortho-

centric triangle, @ is the centre of the circle inscribed in it.

To find the value of the radius p of the circle inscribed in the

orthocentric triangle.
Let s

t
be half the sum of the sides of the orthocentric triangle

and A
/
its area, then A

y =s,p. But, as in sec. [194],

2s,
= a cos A -f b cos B + c cos C ; hence 2s,

=^ (ap + bp, + cplt) , (a)

P> Pi> Pn bemg the perpendiculars drawn from the centre O on the

sides of the triangle.

But ap + bpl
+ cp,,=2&; hence p 1

, and s,^ ; . . (b)
Si Xv

therefore p=. But i!=2 cosA cosB cosC, as in (c) sec. [195];

hence p=2Rcos AcosB cosC. (c) We have also =
-r-'> (d)

or the areas of the orthocentric and original triangles are to each
other as the radii of the circles inscribed in the former and circum-
scribed to the latter.

Hence, as (b) gives A= R.?
/}

it follows that the area of a triangle
is equal to the radius of the circumscribed circle, multiplied into the

semiperimeter of its orthocentric triangle.
We have thus an additional theorem for finding the area of a

triangle. This simple expression may be added to those given ill

sec. [181].

197.] To show that

OB _L 9i? 22R+p_2R

The area of the original triangle is the sum of the areas of

the orthocentric triangle and the three component triangles on its

sides ; and twice the area of one of these triangles is be cos2A sin A.
Hence

be cos2 A sin A + ac cos2 B sin B + ab cos2 C sin C + 2A,=2A,
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or be sin A + ac sin B + ab sin C

, fain8 A sin3 B sin3 Cl OA
abc\--1-----

1

-- =2A 2A,.La b c J

But be sin A=acsinB=a6 sinC=2A;

hence 4A

or, as RA
y=Ap,

t j, A fsin
3A sin3 B sin8 Cl

hence 4A+2A,=4RA - H-----
(-

LLa o c J

sin3 C
(a)

198.] Tb determine an expression for the square of the distance

between the centre of the circumscribed circle and the orthocentre, or

an expression for O
2

.

If we take the triangle whose vertices are O, ,
and one of the

vertices, A suppose, of the given triangle, the sides of this new tri-

angle will be 60, R, and 2R cos A, while the angle at A will be
C B. Hence obviously

O@2=R2 + 4R2 cos2 A-4R2
cosAcos(C-B). . . (a)

But A= 7r-(C + B)j hence

Oea=R2
[l-4cosA{cos(C + B) + cos(C-B)}],

or O@2=R2
[l-8cosAcosBcosC]. . . . (b)

In (c) sec. [196] it was shown that p=2R cos A cos B cos C.

Hence O@2 =R2 -4Rp........ (c)

Since -r*=2 cos A cos B cos C, see (c), sec. [195],

(d)

We have also O@2=9R2
-(a

2+ 62+ c2
)
...... (e)

199.] The sum of the squares of the distances of the vertices of a

triangle to the orthocentre, diminished by the square of the distance

of this point from the centre of the circumscribed circle, is equal
to three times the square of the radius of the circumscribing circle.

Since A 2=4R2cos2A, we shall have

A 2+ B 2+ C@>
2=4R2

(cos
2 A+ cos2 B + cos2 C) .

But cos2A+ cos2B + cos2C= l 2cos AcosBcosC, see sec. [187];

and as O02= R2
[1
- 8 cos A cos B cos C],

subtracting,

(a)
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Since p the radius of the circle inscribed in the orthoccntric
triangle is equal to 2R cos A cos B cos C,

Hence, adding twice this expression to the above, we shall have

=5R2
-8Rp. . . . (b)

200.] If p, p t , plp pllf
denote the radii of the circles inscribed and

Described to the orthocentric triangle, and if 22*= a*+ b*+ c2
, we

shall have

_22-4R2 _22-a2 _22-62 Z2-c2

2R ' p >
---

2R~' P -~ZEr> P"'=-MT' ' ^
Since p=2R cos A cos B cos C, as in sec. [196] ,

and 2 cos A cos B cos C= 1 (cos
2 A + cos2 B + cos2 C) ,

p=R [sin
2A + sin2 B + sin2 C- 2] .

But sin2 A= ?L
; substituting, p=

be
Again, since ft

~ cos A sm A,
o

_ OA cosA cosA-2A -

hence

and like expressions for
p,.

and pui may be found.
If we add these expressions

or P+ P/+ Pu+ P///= . ..... (b)

V2_ OTJ2

R

201 .] Since cos2 A -f cos2 B + cos2 C= 1 2 cos A cos B cos C and

p the radius of the circle inscribed in the orthocentric triangle
..

is equal to 211 cos A cos B cos C, see (c) sec. [196] , while cos* AjMfcp

p being the perpendicular from the centre of the circumscribing
circle on one of the sides, then we shall have

202.] Three times the sum of the squares of the distances of the
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centres of the four circles of contact from the centre of the circum-

scribing circle is equal to four times the sum of the squares of the

sides, and four times the square of the distance of the orthocentre

from the centre of the circumscribing circle.

In sec. [192] it has been shown that

o<
2 +on2+ on,

2 + on,,
2= i2R2

,

and O 2=R2
(1 8 cos A cos B cos C), as in sec. [198] ;

but 2 cos A cos B cos C= sin2 A + sin2 B + sin2 C 2 ;

Hence, reducing, O 2=9R2 -
(

2 + 62 + c2
) (a)

Substituting this value of O the proposition is manifest; that is,

. (b)

203.] The squares of the sides of a triangle added to the squares
of the radii of the four exscribed and inscribed circles is equal to

sixteen times the square of the radius of the circumscribing circle.

In (f) sec. [181] it is shown that

2 =4*2
=4(r/ r,,+ r,,ry,/

+ r,r,,,),
. . (a)

and bc + ca-\-ab r
l
ru + r

ll
r

lll
+ r

l
r

lll -\-r(4
!R+ r). . (b)

But 4R+ r=r,+ r,, + r,,,;
...... (c)

hence, subtracting twice (b) from (a), we get

a2 + 62+ c2= 2 (r,
ru+ ru r

ul + r, rlu)
- 2r

(r,+ ru+ r
ltl) ;

and as 4R= r
/
+ rw+ r

/// r, squaring and subtracting,

16R*= r*+ rw
a + r

//y

2 + r8+ fl
2+ 2 + c

a
. . . . (d)

204.] The sum of the squares of the sides of a triangle is equal to

twelve times the square of the radius of the circumscribing circle,
diminished by four times the sum of the squares of the perpendiculars
from its centre on the sides.

For a2+ 62+ c2=4R2
[sin

2 A + sin2 B + sin2 C] ;

hence 2+ b2 + c2= 12R2-4R2
(cos

2 A+ cos2 B + cos2 C),

or

205] In any triangle ^+-+-
, n

.

the letters having the usual signification.

c . a a(sa) 2*2- (a
2+ b2 + c2 )Since -= '-. the first factor is --v ^ ^

'.
r, sr sr
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But 2 a-
(a

9+ 62+ c
2
)
= 2r(4R + r), see (1) sec. [181] ,

while
r,+ rw + r

///
=4R + r, and a-f 6 + c=2*.

Substituting these values we obtain the result.

206.] To determine an expression for GJ, the distance between
the centres of the circles inscribed in the original and orthocentric

triangles.
These centres and a vertex A of the original triangle constitute

the vertices of a triangle whose sides are r cosec ^A, 2R cos A, and

Sa>, while the vertical angle of this triangle is (C B).

^2 4RrcosAcosi(C B) , NHenceo>2=4R2 cos2A+ r2cosecHA-- jf---; (a)
sin ., - v

but cos4(C-B) = c-t-6

sin^A a
'

1)1 _1_ (A _ fl
2

while cos A=-^^--
2bc

Substituthig these values in the original equation, we shall have

0^2=4R2-8Rr+ 6+ flC+ 6c-(a-f6
2+ c2). . . (b)

But it has been shown in (k) and (1) [sec. 181] that

be -f- ac + ab s* + r9 + 4Rr,

and a* -f b
9+ c*= 2s9- 2r9-8Rr .

Hence w3=4Rr+4R2+ 3r2 s*...... (c)

Let fl, np S1
H denote the centres of the exscribed circles ; then,

making the necessary substitutions, we shall find

), >. . (d)

a4-(a
2+ 62+ c8

and as in the preceding formula (b)

Adding these expressions together, and bearing in mind that

r,+rw+rw/ r=4R, see sec. [181],

we shall have

8
). . . (e)

VOL. II. 2 R
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Let the distances of the orthocentre from the vertices of the tri-

angle be A, B, C
;
then we have

A 2=4R2- 2
,
B@2=4R2-62

, C 2

substituting we obtain

n2+a2+n2

/
+@^2

=4(I0
2+B02+c 2

). . . (f)

Since O02=9R2
-(a

2+ 62 + c
2
), see (e) sec. [198],

and 0^2+OH2
+Oll

2+On2=12R2
, see (b) sec. [192],

therefore

=o +oir+on;+on;;+4oe
j

,

Hence the sum of the squares of the distances of the centres of thefour
circles of contact from the orthocentre, exceeds the squares of the dis-

tances of the same points from the centre of the circumscribing circle

by four times the square of the distance between the orthocentre and
the centre of the circumscribing circle.

207.] A perpendicular is drawn from the vertex of a triangle on

the opposite side ; a line is drawn bisecting the vertical angle and

meeting the base ; and a circle is inscribed in the triangle. The dis-

tances from the middle point of the base to the foot of the perpen-
dicular, to the point of contact of the inscribed circle, and to the

point where the bisector meets the base, are in geometrical progression.
For these distances are, as may easily be shown,

c2 -62 c-b a(c-b)
~^a~ ~2~~

J

2 c+ b
'

When circles are exscribed to and inscribed in any triangle, each

side, a suppose, is touched in four points in two, F F,, within the

angle A, and in two external to it. The circles, one inscribed, the
other exscribed, which touch the side a within the angle A are on

opposite sides of it ; and their distance is (c b) or^(cb] from M
the middle of a. The side a is touched by the two remaining
exscribed circles on the same side at two points, L and N, outside
the angle A, distant from the angles B, C, by s a ; and the distance
between these two points L and N is 2(s a) +a= c+ b; and the
distance of L and N from the middle point M of a is ^(c + b)

208.] If a, /3, 7 be the median lines of a triangle whose sides are

a, b, c, we shall have the following relations between these lines :

(b)
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By a well known theorem

262 + 2c2-a 2= 4 2........ (c)

Finding analogous values for /3
2 and 7

2
, and adding, we obtain

)
...... (d)

If we square (c) and the other like expressions, and add them,
we shall have

(e)

If we square the expression (d) and subtract (e) from it, we shall

find

16(/3
2
7
2 +aV +*W = 9(6

2c2 + 2
c2 + a2i2 ). . . (f)

209.] If through the points of contact A,, Bp C, of the circle in-

scribed in a given triangle perpendiculars are drawn to meet the cor-

responding median lines in the points I, m, n, we shall have

_L. _L J__2^~
The distance between the middle point of the base and the foot

c2 b*
of the perpendicular on it from the vertex A is --

iia

The distance between the middle point of the base and the pointcb
of contact of the inscribed circle is ^ ;

and their distances are as

h and A/.

Hence A,l : <
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Then, as the median line bisects the triangle ABC, we shall have

a T. /A a\ o c+ bcosA
cam9=0 Bin (A 0), or, as 2=

/

, .

(a)

COS (

b sin A. ,, c+6cosA

Let e be the angle between the median line 2 and the bisector

of the vertical angle A ;
then we have

e= (^A 6], and 2 cos e= (b + c)cos ^A.

Now
sm2^A

'

sm-^A

_ be+ ab + ac (a
2+ 62+ c2

)

. . . . (b)

But as 2s2- 2r2- 8Rr= a2

2 4

Substituting this value of 4Er in the preceding equation, we get

^2= / (a
2+ 62 -|-c

2
)-|(6c+ c+ a6)+r

2
. . . (d)

In the same way, making the necessary substitutions, we shall have

+ ^ (ab + bc- ac) + r,*,
-

(e)

n^c
2=^ (a

2+ b*+ c2
) + (fa+ ca- ai) + rw

Adding these expressions together, we shall have

+r2+ r,
2 + r

/

2+ r
///

2
. (f )

But it has been shown in (d) sec. [203] that

r2+ rf + r
/y

2+r^= 16E 2-
(a

2 + b2 -f c2).

Hence, eliminating, we obtain

|(a
2
4-A

2+ c2). . . (g)

211.] To determine an expression for the distance between the

centroid and the centre of the circumscribing circle.

Taking the triangle whose vertices are O, K, and the middle point

of the base, the sides of this triangle are OK, R cos A, and ^, while

the cosine of the angle opposite to OK is -. Hence we have
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2 A

... (a)
*J 6*

,.
/ fft, _i A2 I /2\

Reducing, we find O/c =R2 - '

(b)9

Comparing this expression with that found for the distance of the
orthocentre from the centre of the circumscribing circle, we shall

have

O = 3O* (c)

212.] The sum of the squares of the twelve lines drawn from the

angles of a triangle to the points of contact of the circles of contact
in the opposite sides is equal to five times the sum of the squares of
the sides of the triangle.

Let the side BC of the triangle be produced to L and N, so that

BL= s a, CN=s a; then it may easily be shown that L and N
are the external points of contact, while the distance between F and
F

y,
the internal points of contact is c b. B ut a+ * a+ s a= c+ b.

Let AM=, where M is the middle point of the side a (see fig. 29) ;

then AL2+AN 2= 2a2+ (c+ 6)
2
, and AF

2+ AF/
5= 2a2+ (c

-
6)

2
;

therefore

Making similar constructions on the other sides
; the sum of the

squares of the twelve lines' will be found equal to

But 4(

Hence the sum of the squares of the twelve lines is equal to

213.] The sum of the squares of the twelve lines drawn from the

middle points of the sides of a triangle to the centres of the circles of
contact, together with the sum of the squares of the sides of the tri-

angle, is equal to twelve times the square of the diameter of the cir-

cumscribing circle.

Let the lines drawn from the middle points of the sides a, b, c

to the centre XI of the exscribed circle opposite the angle A, be

, j3, 7, and that to to the centre of the inscribed circle be S.

Then

2y
9 + ic

9
; . (a)
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adding these expressions, and dividing by 2, we have

But

and

adding these expressions, we obtain

)

j

Writing analogous expressions for the two other centres fl
t
and

we shall have

3(r
*+ r

y/

2 + r
tlf+ r2

) + 3 (a
2 + i2 + c2

)
=

(a
2+ /3

2+ y
2+ S2

)

But r-
2+ r,,

2+ r
w/

2+ r2 + a2+ bz+ c
2= 16R2

, see sec. [203]

Hence, substituting, we find,

214.] The sum of the areas of the four triangles formed byjoining
three by three, thepoints of contact of the circles of contact is constant,
and equal to twice the area of the given triangle.
The area of the triangle formed by joining the three interior

points of contact must be taken with the negative sign.
In the first place let us take the triangle whose vertex is A and

base a, and construct the triangle whose vertices are the points of

contact of the exterior circle of contact with the side a, and b, c

produced. Then twice the area of this triangle is manifestly

s2 sin A (s 6)
2 sinC (s c)

2 sinB fosin A
;

and if we make like constructions for the other angles B and C of

the given triangle,

s2 sin B (s c)
2 sin A (s a)

2 sin C ac sin B,

s2 sin C (s a}* sin B (* 6)
2 sin A ab sin C,

will be twice the areas of the two other triangles.

Let us first combine those terms of which sin A is a factor, or

which may be reduced by obvious substitution to

[4Er + r2]sinA.
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Making like reductions for the other angles B and C, we get for

twice the sum of the areas of the three triangles

(4Rr + r2
) (sin A+ sin B + sin C) .

o

But sin A+ sinB + sinC= see (d) sec. [185].
Jtv

Hence twice the sum of the areas of the three triangles is

r*sNow 4rs is twice the area of the given triangle, and -^- is twice the
Di

area of the triangle whose vertices are the points of internal contact.

215.] In a triangle ABC, let the internal bisectors of the angles
A, B, C meet the opposite sides in the points A/}

B
y ,
Cp and let the

external bisectors of these angles meet the same sides in the points
A

//}
Bw ,

C
/y ; then, if a>b>c, we shall have

BB CC
A,A,, Ipw C,CW

~
8R2

(a+ b + c)

Now c : 6=BA,: CA,, or

but as the angle A y
AAw is a right angle,

A A
cos AA..B = J/=sin AA.B.

.
A

/
A

But sinAA^ : sinA= c : BA
;
.

rm. e / /.\ a sin AA.B
Therefore (c+ b}=-: TT^-^

sin ^A

or, putting for sin AA
;
B its value,

(c+ b) . . A A,,
i-'- sin iA= -r- r".

a V ;/

Finding like expressions for the other two sides, and bearing in

mind that
m

4 sin ^A . sin B . sin ^C= ^5,K
we obtain the theorem.

216.] To find expressions for the sides, angles, and areas of the

excentral triangles, llfln, fl(afl
t , fl/ofl^, fiy/uft.

Since (fig. 31) BF=( a) is the projection of HB, therefore

In like manner we obtain
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o __ ft _L o ^m, /

Therefore HB + BH.=flQ.= . ,* , or the side
sm^B

Let R be the radius of the circle circumscribing the triangle ABC ;

b=2R sin B=4E sin B cos B.

Hence HH,=4BcosB........ (b)

In like manner nn
;/
=4B cos^A, and H

;
fl

//
=4B cos^C.

Hence the semiperimeter S of the excentral triangle is

S=2B(cosA+ cos^B + cosiC)...... (c)

The area of this excentral triangle may be found. For this area

is equal to ^illl/
. 1111^ sin ^ (A+ B) ; or, substituting for these ex-

pressions their values, we have

Area of excentral triangle=8R2 cos A cos B cos C . . (d)
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Since 4cosAcosB.cosC= sinA+ sinB-|- sin C, see sec. [187],
this area is equal to 2R2

(sin A + sin B + sin C) ; but

Hence the area of the excentral triangle is equal to

(e)

This expression coincides with that found for the area of a tri-

angle in sec. [196] ; for ABC is the orthocentric triangle of the

excentral triangle Ofl;
flw,

the radius ofwhose circumscribing circle

is2R.

217.] The area of the excentral triangle is

8R2 cos A cos B cos C,

and the side opposite the angle A is 4R cos A ; hence the perpen-
dicular from the vertex A on the opposite side is

4RcosBcosC......... (a)

The radius p of the circle inscribed in the excentral triangle may
be thus found. Since the radius of the inscribed circle is equal to

the area of the triangle divided by its semiperimeter, therefore

1_ cos ^A+ cos^B -4- cos^C .

P~4R cos A cos B cosC*

218.] To find the values of flm, fi
yo>,

flw . Since the projection
of n&> on the side a is equal to c,

c 2RsinC .,, . ,.~
therefore llw= - -T7== -r-^ =4Rsm*C..... (a)

cos C cos C

In like manner n,a>
=4RsinA and n

//
<u=4R sin B. . (b)

Hence flfy . fl,^ . nnw .Hw .fi/u . n
/y
a>=64R8ac. . (c)

To find the area of the triangle flwH^ The area of twice this

triangle is Oa> . tip sin (A+ C). Hence this area is

8R2 sin ^A sin ^C cos ^B, which may be put under the form

8R2 cos A cos B cos C tan

Finding like expressions for the two other component triangles
of the triangle ftn,Q/y

we shall have for the sum of the three,

8R2cos A cos B cos C[tan B tan ^C + tan

+ tan

VOL. II. 2 8
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But the sum of the terms within the brackets is equal to 1, as

shown in (d) sec. [188] .

219.] The square of the distance between the centres of two of the

exscribed circles of a triangle exceeds the square of the sum of their

radii by the square of the opposite side of the triangle.
Let the exscribed circles be taken which are opposite to the angles

A and C of the given triangle,

sr sr
then we have r,=- and r.,=

s a s c

,, srb
consequently r.+r,,= 7

--
^7
--r =

1 "
(sa)(s c)

or

Let nn,, be the line which joins fl and
fl, ;

then the projection of
liB on the side c is s c, and the projection of Bfl

y
on the side a is

(s a) ; consequently the sum of these projections is b, or

Oil, sin $8 *.

Hence

220.] The sum ofthe squares of the tangents drawnfrom the centres

of the four circles of contact of a triangle, to any circle which passes
through the centre of the circumscribing circle, is equal to three times
the square of the circumscribing diameter.

Let co, fl, 1,,
l

y/
be the centres of the four circles of contact,

and O the centre of the circumscribing circle through which the
diameter HD perpendicular to the base BC passes.

Let Q, be the centre of the arbitrary circle passing through O ;

and draw the lines Qo>, Qfl, Qfl
/3
QH

/p QO, QH, QD, Ho.

Then QfT+ Qo>
2=2QD 2+ 2DC2

, since DC = Deo,

and

But 2QD2+ 2QH 2=4r2 + 4R2
,

and 2DC2+2HC2=8R2
;

therefore

~"-r2)=12R2
.

But these expressions are the squares of the tangents drawn from
the centres of the circles of contact to the circle whose radius is r.

When r 0, or the arbitrary circle vanishes to a point, we get
the theorem established in sec. [192].
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Fig. 32.

315

221.] If the sides of the excentral triangle fmfln be produced,
and circles of contact be drawn touching the sides of this triangle,
and the centres of these new circles of contact bejoined so as to form a
new excentral triangle, and if this process of construction be conti-

nued, the successive excentral triangles will approximate to an equi-
lateral triangle.

Let A, B, C be the angles of the given triangle ; A,, B,, C, the

angles of the first derived triangle, A,,, Bw ,
Cu the angles 01 the

second derived excentral triangle, and so on ; then

Therefore

B,-A,:=(A-B), C,-B,=*(B-C), C,-A,=i(A-C).
Hence the differences between the angles of the first derived ex-

central triangle are one half those between the angles of the original

triangle.

Again as A^i^+ C,), B,= *(C,+ ,A)> C,,= i(A,+B,),

Hence the difference between the angles Aw and Bw is one fourth

of the difference between the angles A and B. The same is true for

the other angles. Hence the successive excentral triangles approxi-
mate to an equilateral triangle.
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CHAPTER XXV.

ON THE NINE-POINT CIRCLE.

DEFINITION.

The circle which passes through the feet of the perpendiculars
drawn from the vertices A, B, C of a given triangle to the opposite
sides has been named the Nine-point circle.

The properties of the Nine-point circle are unquestionably the

most remarkable and elegant in the entire range of plane geo-

metry. Some of the leading properties of this circle were discovered

by PONCELET in the early part of the present century. It is a sin-

gular fact that the theory of the Nine-point circle escaped the notice

not only of the ancient geometers but of modern mathematicians

almost to our own time another proof, were another wanting, how
inexhaustible are the truths of geometry, and how many yet remain
to be brought to light.

222.] The nine-point circle passes through the middle points of the

sides of the triangle ABC.

Fig. 33.

Let the nine-point circle which passes through the points A,, B y, C,
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cut the sides of the given triangle ABC in the points A ;/ ,
B

/y,
Cw.

Join A
/y
C

/r
As AyCyC^A^ is a quadrilateral inscribed in the nine-

point circle, the angle BC
/;
A

/y
is equal to the angle BAyC,, which

is equal to the angle BAG, since AyCyAC is also a quadrilateral that

may be inscribed in a circle. Hence, as the angle BC/y
A

/;
is equal to

the angle BAG, AyyCyy is parallel to AC a side of the given triangle
ABC. In the same way it may be shown that AWB ;/

is parallel to

AB and B
W
CW parallel to BC. But when a triangle inscribed in

another triangle has its sides parallel to those of the latter, it obvi-

ously follows that the vertices of the former will be on the middle

points of the latter.

This is a particular case of a far more general theorem which
will be given further on.

223.] The distances of the orthocentre from the vertices A, B,
C of the given triangle are double the distances of the centre of the

circumscribing circle from the opposite sides a, b, c.

From C draw the diameter COD; then CBD is a right angle.
Join AD, then CAD is a right angle, and therefore AD is parallel
to BBy while A is parallel to BD, each being perpendicular to

BC. ThereforeABD is a parallelogram ;
and therefore A = BD.

But BD is equal to 2A
/yO, since BC=2CA

// ; hence A is equal to

twice A,yO.
Bisect A in -or, and join wA

/y meeting O in v; then, as

yy=w, wv is equal to A
y/v,

and Ov is equal to K.

Now v will be the centre of the nine-point circle. For v is the

intersection of the perpendiculars drawn through the middle points
of AyAyy, ByByy, CyCyy the choYds of the nine-point circle.

Since A is equal to twice AWO, A is equal to twice
Ayy/e, or K

is the centroid of the triangle ABC.
Hence the line which joins the centre of the circle circumscribing

the triangle with its orthocentre passes through the centre of the

nine-point circle and the centroid.

Since Ar is equal and parallel to AWO, OA is equal and parallel

to
Ayy-sr.

But OA is the radius of the circumscribed circle, and Anvr

is the diameter of the nine-point circle ; hence the radius of the

circumscribed circle is equal to the diameter of the nine-point circle.

As the orthocentric or nine-point circle passes through the feet

of the perpendiculars drawn from the vertices of the given triangle
to the opposite sides, through the three middle points of the

sides of this triangle, and through the three middle points of the

lines which join the orthocentre with the opposite vertices A, B, C
of the given triangle, this circle has therefore been called the nine-

point circle.

The angle A of the triangle BAG is equal to the angle BDC ;

"Rf
and BC=CD sin CDB

; hence CD or 2R= -r r .

sin A
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ON THE TRIANGLES WHOSE VERTICES ARE, THREE BY THREE, THE FOUR
CENTRES OF THE THREE EXSCRIBED AND THE INSCRIBED CIRCLE.

224.] () In the given triangle ABC (fig. 34) let a circle be con-
ceived to be inscribed whose centre is o>.

Let n, O y,
flw be the centres of the circles of contact. Join OB,

y ; then, as B&> bisects the internal angle B, and BO bisects the
external angle B, these bisectors Bw and BH meet at right angles,
and therefore OB and Bf^ are in a straight line.

In the same way it may be shown that Hfi
w and

lft,lt
are in a

straight line.

This may be called the principal excentral triangle.
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(|3) There are three other excentral triangles, whose vertices are

il, H,, a), ii
y ,

Q,
tl , a>, and XI, Xl

/;,
o>.

(7) The sides of these three triangles also pass through the ver-

tices of the given triangle ABC.
(8) The circles which circumscribe these four triangles are all

equal.
It is shown in the last section that the diameter of a circle circum-

scribing a triangle is equal to a side of the triangle divided by the

sine of the opposite angle.

But -_ ''^r-=- n -'-jT, since Aa>B is the supplement of the
sin XlX^il,, sm Xlo>Xi

y/

angle AXiBr

(e) The triangle ABC is the orthocentric triangle of the excen-

tral triangle X2X2 X2M ;
and a>, the centre of the circle inscribed in it,

is the orthocentre of the triangle Iiii
y
iiw .

This is evident ;
for AH, BU

/y,
CX2

;
are perpendiculars drawn

from the vertices Xlfl^Xi, of the excentral triangle to the opposite

sides, all passing through the orthocentre o>.

225.] Any one of the four centres of the circles of contact is the

orthocentre of the triangle whose vertices are the other three centres

of the circles of contact.

Thus w is the orthocentre of the triangle XHl^Xl,,,
XI is the ortho-

centre of the triangle Q.
t
<aQ,

lt , Xi,
is the orthocentre of the triangle

QL
tfaQ,, and X2

;/
is the orthocentre of the triangle XlcoXl,.

This is evident from an inspection of the figure.

226.] Since the perpendiculars drawn from the vertices of a tri-

angle on the sides of its orthocentric triangle meet in a point (the

centre), it will follow that

If twelve perpendiculars be drawn to the sides of the triangle ABC
from the four centres of the circles of contact, these perpendiculars
will meet three by three in four points, and these four points will be

the centres of the circles which circumscribe the four excentral tri-

angles.
This follows from sec. [195] ; for the perpendiculars on the sides

of the common orthocentric triangle from the four centres of

the circles of contact make equal angles with the sides of the tri-

angles X1X1X1,,, XleoXl,, flpQ,,,, and Xl
y/toX2, and therefore the product

of their sines taken three by three are equal.

227.] Since the given triangle ABC is the orthocentric triangle
of the triangles XlXl^, XlruXl,, flfoO^, and

XlajXl,,,
the radius of the

circle which circumscribes ABC is one half the radius of the circle

X2Xi
(

X2
/y ,

or its equals Xla)Xl
y , X^aXl,,, and X2

y/
&)Xl.

228.] The nine-point circle ABC bisects all the vectors drawnfrom
the orthocentre to the circumferences of the circles which circumscribe

the given triangles nn;
O

;/, Htufl,, Zlp>flH ,
and Ho)!^.

Let w (fig. 35) be the orthocentre of the nine-point circle ABC
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to the triangle &&,&. Let v be the centre of the nine-point circle ;

Fig. 35.

therefore v is the middle point of the line Oa>, as shown in the pre-

ceding section
;
and as the radius of the circle which circumscribes

the triangle Q&flu is twice that of the nine-point circle ABC,
OT is equal to twice vr ; hence OT is parallel to vr ;

and therefore

toT=TT; consequently cay=jflt ,
o>A= A'7r, Q)C= CC,, o)A,=Afl.

If we take the triangle Hcoil, of which Hw is the orthocentre, and
O

;
the centre of the circle circumscribing it, then, as O

y
M is equal

to twice vjjb
and fl^O, is equal to twice &,,v, the triangles Qltvfj,

and

HyyOjM are similar. Hence fi
/;//.=M/i. Thus the nine-point circle

bisects all the vectors drawn from O
7
the orthocentre to the circum-

ference of the circle which circumscribes the triangle l<al
t
.

229.] The lines drawn from the orthocentres of the four excentral

triangles to the centres ofthe circles which circumscribe these triangles,
allfour pass through the centre of the nine-point circle.

This is evident ; for a>O, ilwOp &c. all pass through v.

230.] If from the centres 1, l
l}

lu of the circles of contact

straight lines be drawn to the middle points of the opposite sides of
the triangle ABC, these lines being produced will meet in a point.
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In fig. 31 let I be the middle point of the side BC. Then the
area of the triangle flBI is equal to that of the triangle HCI.
But twice the area of the triangle fiBI is equal to HI . HB . sin Bill,
and twice the area of the triangle flCI is equal to HI . HC . sin CHI.
Hence HI . OB . sin BOI= OI . OC . sin CHI ; or, dividing by HI,

we shall have

8mBHE_OC_cos/3
sn

Finding like expressions for the centres fl, and l
(l
we shall have

sin Bfll . sin CQ^T, . sin AIl
/
T

//_ cos /3 cos y cos

sin CHI . sin Bn,Iw . sin AO^I," 0037 cos a cos/3

~

But it has been shown in sec. [153] that when three lines are

drawn from the vertices of a triangle, making with each side pairs
of angles so that the continued product of the three sines of the

angles of one triad is equal to the continued product of the three

sines of the angles of the alternate triad, these lines will meet in a

point.

ON THE RADICAL CIRCLES OF A TRIANGLE.

231.] If on the six lines, as diameters, which join, two by two,
the four centres of the circles of contact of a triangle, namely eofl,

wfl,, a>nw , ll,, flfia, nn ;/ ,
six circles be described, it may be shown

that the centres of these circles (see fig. 36) range along the circum-

ference of the circle ABC..

Dividing thesediameters into two sets, thosewhich end in the ortho-

centre o>, and those which end in the centres H, H,, flw of the external

circles of contact, and which may be called the inner and outer

diameters, the centres of the inner radical circles are on the middle

points N, N,, N/y
of the arcs AB, BC, CA, while the centres of the

outer circles are on the points of bisection M,M /f
Mw of the supple-

mental arcs of AB, BC, CA ; so that the six centres of the radical

circles are on the circumference of the circle ABC, and on its tluvr

diameters which are perpendicular to the sides of the triangle ABC.
The sides of the triangle are radical axes of each pair of outer and

inner circles, while the orthocentric perpendiculars are radical axes

of each pair of inner circles.

If from any angle ft of the excentric triangle tangents be dra\vn

to the circles H
y
BA and 1WCA, these tangents will be equal ; for

their squares are manifestly equal to the rectangle Afio>.

It is evident that o> is the radical centre of the three circles.

Since o> is the orthocentre of the triangle ftn,Qw, o>N,=Nnw

and ft)N= NH; therefore N,N is one half of flfl, and parallel to

it. In like manner since flw is the orthocentre of the triangle

,,
nMM=MH, and H

</
M

//
=nM

// ;
therefore MMM is one half

VOL. II. * T
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Fig. 36.

of fin
;
and parallel to it. Hence MMW=NN,. In like manner

NM=N
;
M

y/,
since each is equal to one half O

y/o>,
and NMM^N,

is obviously a rectangle of which the sides are

2RcosiB and 2Rsin^B.

232.] In sec. [216] it has been shown that

and in sec. [217] that

11,6)
=4R sin ^A, Hw&>

= 4Rsin^B, and flea=4R sin i|C. (b)

If we square these expressions and add them, two by two, we
shall have

and
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Therefore the square of a side of a triangle, and the square of the

distance of its orthocentre from the opposite vertex are together equal
to the square of the diameter of the circumscribing circle.

In sec. [216] it has been shown that, if S denote the semiperi-
meter of the excentral triangle,

S= 2R (cos A + cos |B + cos

So also, if S, denote half the sum of the three lines drawn from
the orthocentre &> to the vertices of the excentral triangle,

S,=2R(sm A+ sin iB + sin C) ;

such are the geometrical interpretations of these trigonometrical
expressions.

If we square the expressions in (a) and (b) and add them, we
shall have

^? 16R2
(cos

2 A+ cos2 B + cos

and this expression becomes by reduction 8R(4R + r).

In like manner we have

n/
2+ JV>

2 + Ho?= 8R(4R- r) .

These expressions when added give the result obtained in (c).

Hence the sum of the squares of the sides of the excentral tri-

angle is equal to 8R(4R-f-r), and the sum of the squares of the

lines drawn from these vertices to to is equal to 8R(4R r).

233.] The radical axes of the circles inscribed and exscribed

to any triangle intersect each other, two by two, at right angles, in

the middle points of the sides of the triangle, and are parallel to

the sides of the principal excentral triangle.
Let ABC be any triangle, o>, fi, H,, fln the centres of the

inscribed and exscribed circles; then the twelve circles described

about the component triangles of the complete quadrilaterals lflfi)l u ,

flflcoSl,!,
and fl^afl will intersect four and four in ABC, and

their centres will lie two and two in six points on the circumscribing
circle.

234.] The nine-point circle of a triangle touches the inscribed and
the three exscribed circles.

Let O (fig. 37) be the centre of the circle circumscribing the

triangle ABC, and let v be the centre of the nine-point circle which

passes through D the middle point of AB, and through r the middle

point of PC. Then Dr=R the radius of the circumscribed circle.

Let &) be the centre of the inscribed circle whose radius is r, and
which touches the base AB in the point F. Let Q. be the foot of

the perpendicular CP on AB. Join DG>, and let fall on it the per-
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Fi". 37.

pendicular ru. Let the distance vco between the centres of the

nine-point circle and the inscribed circle be d, and let e be the
/ T\ g

angle between Dv and Dca ; then, since Do>
2= '

-r + r2
,

TJ

2

or, putting k for F^= V (a 5)
2+ 4r2

,

4fi?
2=R2+(-6)2+ 4r2-2

As 2DQ=acosB-6cosA=-^, and DF=,
(a)

-
2c 2

. (b)
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On Dw let fall the perpendicular FX and produce it to meet PQ
in K. Now Q*=FQtan QF/e. But as in (b)

and tanQF=-, substituting

.......
2cr

Let the angle KCG=KHC=0,
then KG=KC sin 0, and KC=2R sin 0,

or KG=2Rsin2 ........ (d)

. ra
2 -

Sm0=

2Rsin2 0= (a-b)* (a-b)*(s-c)
2cr

consequently

2cr

Hence, as GU=KG, C/c=KD, and OT*=R.
This is a new as well as an important property of the circle.

As Du is the projection of DOT or R on the line Do>, and as it is

also the projection of VTK of R and DF on the same straight line, we
shall have

Rcose=Rsin & + $(a b)cosS, (g)

putting 8 for the angle o>DF.

Nowsin8=-r-, cos8= r ,
where k= *J(a A)

2
-|-4r

8
.

Hence 2R/t cos 6=4rR+ (ab)*.
Substituting this value of 2R cos e in (a) , we shall obtain

Reducing, this becomes e?=R r (h)

235.] Let d
t,
dn,

d
in
denote the distances of the centre vof the

nine-point circle from the centres of the exscribed circles ; we shall

then have by making the necessary transformation of the figure,

rf^R+r,, rfw=iR+ rw, d
w/=*R+ rw ;

... (a)

adding these results, we shall have

r
//
+ r

/w
-r. . . . (b)
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Now it has been shown in sec. [192] that if D, D /3 T>,,,
D

/;/
denote

the distances of the centre of the circumscribing circle to the same
four points,

consequently

rf
//,).

. . . (d)

Hence the sum of the squares of the distances of the centre of the

circle circumscribing a triangle to the centres of the inscribed and
exscribed circles divided by the diameter is equal to the sum of the

distances of the centre of the nine-point circle to the same four

points.
Another proof of this important theorem may be given.

236.] Let ABC be the given triangle as before, circumscribed

by the circle whose radius is R, and whose centre is at O. Let F
and F, be the points in which the inscribed and exscribed circles

touch the base AB or c.

Then BF,=,s a, &F=sb.
Let v be the centre of the nine-point circle, and eo that of the

inscribed circle ; join CF,. It may easily be shown that this line

CF
/ or/, will pass through i the extremity of that diameter of the

inscribed circle which passes through F its point of contact with

AB. Let D-BT be the diameter of the nine-point circle
; then, as

OD is equal and parallel to Cr, OC or R is equal and parallel to

D-BT, and as r : DF=2r : FF,, DOT is parallel to CF
y
or to/; , writing

ft
for CF,. Hence the angle OCF/

is equal to the angle j/Do>. Let

this angle as before be e, and let OF, be u ; then,

since AOB is an isosceles triangle, R2
=w*+(s a}(s b). . (a)

But w2=R2+//

2-2R// cose; ..... (b)

consequently

2/,R cos e=/,
2 + (*-)( -b)..... (c)

Let 8 be the angle which CF, or /, makes with AB the base of

the triangle; then, as CF, or/y
is parallel to Da>,

. . . . (d)

But FF,=-, and FQ=^ _!', see (b) sec. [235] ;

o

therefore/, cos 8=- (ab], and consequently
C
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and therefore, substituting for,/] its value in (c),

sk* c2Rcose=--!--(* a}(s b)..... (f)C 8

Now, as before in (a) sec. [234],

4C?2=R2
-|- (a

-
6)

2+ 4r2- 2Ek cos e ;

eliminating cos e between these equations,

But c
-
(s-a)(s-b}=cs-c(a +b}+.8 S

Now =4Rr, and c(a + b)
= c2-2*c;

5

making these substitutions, the equation becomes

4^= (R-2r)
2+ (a-i)

2-? [(a-&)
2+ 4r2] -c*+sc,

c

or 4rf2=(R-2r)2+[(a-) 2-c2
]-- [(a -b)*-c*]- .

c c

Reducing, the final equation becomes as before,

<*=*R-r......... (g)

237.] The demonstration of the case when the exscribed circle

touches the base of the triangle differs but little from the preceding.
Join O the centre of the circumscribing circle with F the point

in which the inscribed circle touches the base ; then, as before,

R2=w2+(s- fl)0-i).

Now as CI meets the circumference of the exscribed circle in

the point I the extremity of the diameter F.H, and as in= HF,
and F

;
D=DF, the line Dfl is parallel to CF or to/, and OC is

parallel to ~Dv as before. Let the angle OCF in the triangle OCF
be put e, then the angle ODi/ in the triangle flDv is TT e, since

the sides of this triangle are parallel to those of the former. Now
in the former triangle, putting u for OF, as in the last section,

M =R2 +/2
-2R/cose,

and R2=w2+ (*
-

a) (s
-

b] .

But in the triangle lDv, putting lv=d,,

(7r-e); (a)
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or writing k, for [( 6)
2 + 4r

/

2
]*, and substituting for cose the

value found above, we shall have

. (b)
s c

vr i 9 . i j.\9 79 j ()(* b)c abcNow 4r,2+ (a 6)
2=/% and i-^-t-=-- $<

5

ile ic=4Rsr. But sr=(s- )cr, : he

Introducing these values we shall have

while ic=4Rsr. But sr=(s- )cr, : hence-= 4Rr,.

or 4d 2=(R + 2r,)
2--

c
V2

.

*

But c*-(a-b}*=(c+ a-b}(c + b-a)

A/ \t i\ j fsc\ . o 4s.s a.sb
=4>(s a)(sb), and (

- )4r
/

2= -;

hence the expression now becomes

4? 4?
(*-)(*-)+>-) (*-), . (c)

or
,

The lines /, f, drawn from the vertex C of the triangle to the

points of contact F, F, in which the exscribed and inscribed circles

touch the base c of the triangle are of much importance. It will

be shown further on that these lines also pass through the extre-

mities of the diameters which pass through the points of contact of

the two focal spheres with the plane of the conic section the foci.

These lines may therefore be called the vertical focals of the conic

section.

Let r and r, be the radii of the inscribed and exscribed circles to

the base c.

Let 4r *+ (a
-

b}*
=

kf, 4r2+ (a
-

b)
2= k2 . Then it may easily

be shown that

f,='-k, and/=^*y
.

C- I/

If we put h and h, for the distances of the vertex C of the triangle
to the other extremities the diameters of the inscribed and exscribed

circles, we shall have
. (s c) , - . s ,

h. -- k, and h=-k..
c c '

Hence also we hsvejO^ssAA,, or the area of the triangle CFF/
is
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equal to the area of the triangle iCI, i and I being the other extre-

mities of the diameters of the inscribed and exscribed circles.

These focal lines/ and/,, passing through F and F/, the bisector

of the vertical angle of the triangle, and the perpendicular from the

vertex on the base of the triangle constitute an harmonic pencil.
The distances F* and F^ from the point * the foot of the bisector

8 S '_ C
of the vertical angle are -

(a b) and -
(a b). Hence the

C C

bisector of the vertical angle divides the distance between F, F,
the focal points of the triangle in the ratio of *:* c; that is (as
s : s c= r

t
:

r), in the ratio of the radii of the exscribed and inscribed

circles.

238.] A trigonometrical proof of this theorem may be given.
As in fig. 37, let O be the centre of the circumscribing circle,

v that of the nine-point circle, and o> the centre of the inscribed

circle; and let va>=d.
Let the angle vDA. be 7, and the angle <0DA be S ; then as DP

is parallel to the diameter 2CO, and the angle COK is equal to the

difference between the angles A and B, we shall have ^TT y=A B.

The radius Dv of the nine-point circle is equal to R ; and

2D<=[(a-&)
a
-r4r

2
]*=A...... (a)

Let e be the angle between the sides of the triangle Dv and Deo,

then e= y B, arid

-8). . . (b)

But as^Tr y=A B, cos7=sin(A B), and siny=cos(A B) ;

hence cos e= cos (A B) sin 8+ sin (A B)cos8..... (c)

Now cot 8=^-, and cot B cot A= -=-- j

2r r r r

therefore 2cot8=cotB cot^A.

.j
2 sin A sin B

:

8ini(A-B)
'

Multiplying this expression by 2sin(A B), we have

2 sin* (A
-
B) tan 8=4 sin A sin B sin i (A

-
B),

or, reducing,

2 siuH(A- B) tan 8=2 sin B srnHA-2 sin A sin^B. (d)

VOL. II.
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Substituting for the squares of these sines their values in terms
of the double angles, we have

cos (A B) sin 8+ sin (A B) cos8= sin8+ (sinA sinB)cos 8.

Now in (c) substituting this latter value for the first, we obtain

i + (a-6)
2
-2IU[sin 8+ (sin A-sin B) cos 8].

a b. z 2r . . . ,, a b
But smo= -T-, smA smB=-^p-,K f-\\

5.and cos 6=

hence, making these substitutions in the preceding equation, we get

d=R-r (e)

239.] A proof of this theorem founded on other principles may
be appropiately here given.

Four circles whose radii are r, r
t, r,,,

r
tll

touch a fifth circle,

whose radius is R, in four points A, B, C, D, all externally or all

internally, or some externally and others internally. To find

a general relation between these five circles and their common

tangents. Let us assume the particular case of one internal and

three external contacts, as in fig. 38. Let O be the centre of the

common circle of contact, and let w, fl, fl,,
lu,

be the centres of

the four circles touching the common circle in the points A, B, C, D.
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Now in any triangle of which the sides are a, b, c, we shall have,
as may easily be shown,

2
-(i-c) ...... (a)

But in the triangle OtuH we shall have

~A~R
3

snce

Let t be the common transverse tangent crcr, to the circles whose
centres are to and fl, then 2 =flo>

2

(Ao>-f Bfl)
2

; consequently

-7= (c)
* /

In like manner BC=-^L, CD=
^L., DA=-^L. (d)

Let T and T, be the common tangents to the opposite circles

whose centres are a> and H as also O, and fl
tl,

AC= == and BD= ; '.

Now as ABCD is a quadrilateral inscribed in a circle, we have,

by Ptolemy's theorem,

AB.CD + BC. AD-AC. BD=0, .... (e)

substituting the preceding values found for these lines, we obtain

tf,,+ ^,/;-TT,=0 (0

Hence we may infer that when this relation holds between the

six common tangents to the four circles, they are all in contact

with a fifth circle.

Now let four circles be inscribed in and exscribed to a triangle.
Then in this case the four circles have three common tangents, the

sides of the triangle, and on each side of the triangle there will be
four points of contact, a point of contact with each of the four

circles, as shown in sec. [207]. The six tangents coalesce two by
two into three tangents. Each side of the triangle will be a direct

tangent to two of the circles and an indirect tangent to the other two.

Let 7, yt, 7;/ , yni
be the four points of contact of the side c with

the four circles. Then, as

ry///= fl ** and y/y^AC^ + BCrt AB=+ e=a+ ,

it will follow that the product of the two tangents in the base

ABor c, touching the four circles is (a b) (a -I- b) =a*b*.
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Therefore the sum of the products of the three sets of coincident

tangents taken two by two, is

\&/

Since this relation holds, the four circles must touch one common
circle; and this circle maybe easily shown to be the nine-point circle.

240.] As the triangle ABC is the nine-point circle not only to
the principal excentral triangle O H, fl

w ,
but also to the other

excentral triangles flwH,, ClfaQ.,,, Oa>n y/,
it follows that the nine-

point circle will be in contact with the sixteen circles which are
exscribed to and inscribed in these four triangles. This relation

may be still further extended, as we now proceed to show.
Let ABC be a triangle inscribed in a circle. Let Oa, O/3,

Oy be the perpendiculars drawn from the centre O on the sides

, b, c, and produced to A^C,, so that O =aA
y, O/3= /3B y,

and

Oy=yC y
. Through the points A, By

C
y
let a circle be described,

Fig. 39.

and a triangle A/
B

/
C

/
inscribed in it. This circle and this triangle

may be called the derivative circle and the derivative triangle of
the former.

Since a. and /3 are the middle points of CB and CA, /3 is the
half of AB ; and as a and ft are the middle points of OA

y
and OB,,

aft is the half of A
y
B

y
. Therefore A

;
B

;
is equal to AB and is also

parallel to it. In the same way it may be shown that the other
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sides of the two triangles are equal and parallel. Hence the cir-

cumscribing circles are equal ; and while O is the centre of the given
circle circumscribing the triangle, its orthocentre is the centre

of the derived circle. Therefore the circles interchange their

centres and orthocentres. The two triangles have the same nine-

point circle, whose centre is at v the middle point of O.
Hence it follows that this nine-point circle touches the thirty-two

circles which are circuminscribed* to the excentral triangles of the

original triangle and its derivative.

241.] If a quadrilateral be inscribed in a circle, the orthocentres

of its four constituent triangles will range on another circle equal to

the former.
LetACBD be the quadrilateral, and let , ; , /p ;//

be the ortho-

centres of the four constituent triangles ABC, DEC, ADB, ACD.
As A and D@

;
are parallel and equal, since each is double of

OQ, therefore @
;
is equal and parallel to AD. In the same way

it may be shown that /// is equal and parallel to AC ; so is /////

equal and parallel to CB, while
/;/

is equal and parallel to BD.
Hence the two quadrilaterals are equal and alike in every respect,

and therefore the circles in which they are inscribed are equal.

Fig. 40.

Since BD is equal and parallel to
,/;,

and D, equal and

parallel to A, therefore B, is equal and parallel to A^, and
is a parallelogram whose diagonals A, and B^ bisect

* A short term to denote circles one circumscribed and one inscribed in the

same triangle.
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each other. Hence the lines joining the corresponding points of

the two quadrilaterals all pass through the same point.

242.] Let the derivative circle be taken, and the four derivative

triangles inscribed in it. Since the four original triangles are

inscribed in the same circle, and have four orthocentres, the deri-

vative group will have only one orthocentre for the four derivative

triangles, and these triangles will be circumscribed each by a distinct

circle. There will be four nine-point circles, whose centres will be
the middle points of the lines joining the common orthocentre with
the four centres of the derived circles.

Hence these four nine-point circles will be in contact with the

hundred and twenty-eight circles of contact, and every vector drawn
from this common orthocentre to the circumferences of these one
hundred and twenty-eight circles of contact will be bisected by one
or other of the four nine-point circles.

CHAPTER XXVI.

ON SOME ELEMENTARY PROPERTIES OP QUADRILATERALS.

243.] () If the middle points of the opposite sides of a quadri-
lateral be joined, their intersection O will lie in the line joining the

middle points of the diagonals, and these three lines will mutually
bisect each other.

Let a, b, c, d be the middle points of the sides of the quadrilateral

ABCD. Then ab is the half of the diagonal AC and parallel to it.

Therefore abed is a parallelogram, and its diagonals ac, bd are
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therefore bisected in O. Since bft and dS are each the half of CD
and parallel to it, b/3= d8, and therefore /3O= 8O.

(|8) The sum of the squares of any two opposite sides of a quadri-
lateral, together with twice the square of the line joining their middle

points is constant ;

that is AB2

(y) Hence also

that is, in any tetrahedron the sum of the squares of the six edges is

equal to four times the squares of the lines joining the middle points
of the opposite edges.

(8) We have also AB2+ BC2+ CD2+DA2=AC2+BD 2

that is, the sum of the squares of the four sides of a quadrilateral is

equal to the sum of the squares of the two diagonals, together with

four times the square of the line joining the middle points of the two

diagonals.

ON QUADRILATERALS INSCRIBED IN ONE CIRCLE AND CIRCUMSCRIBED
ABOUT ANOTHER.

244.] In that very celebrated and highly original work, the '
Traite

desproprietesprojectives' of PoNCELET(pp.260 283) the very elegant

properties of circles inscribed in and circumscribed to the same

quadrilateral are treated with much originality. In fact the dis-

covery of those elegant properties is due to Poncelet. The methods
of investigation, however, which he has used, have not hitherto been
admitted into elementary geometry. As these properties deserve

to be better known, and admit of rigorous geometrical demon-

stration, they should take their place in every treatise of pure

geometry. We shall first, by way of preface, state some of those

properties of quadrilaterals in connexion with circles which are

elementary and have been long known.

() In every quadrilateral inscribed in a circle the sum of the

opposite angles is equal to two right angles.

(/3) In every quadrilateral inscribed in a circle the rectangle under

the segments of one of the diagonals is equal to the rectangle under

the segments of the other.

(y) In every quadrilateral so inscribed the rectangle under the diago-
nals is equal to the sum ofthe rectangles under the twopairs ofopposite
sides, and the diagonals are to each other as the sums of the rectangles
under the sides which terminate in the extremities of these diagonals.

When, moreover, the diagonals of the inscribed quadrilateral are

at right angles we shall have the following properties :

(8) The sum of the squares of thefour sides is double the square

of the diameter.
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(e) The sum of the squares of the four segments of the diagonals
is equal to the square of the diameter ; and

() The sum of the squares of the two diagonals is equal to the

square of the diameter diminished by four times the square of the

distance between the centre and the point in which the diagonals
intersect.

(77) If circles be described on the three diagonals of a complete qua-
drilateral inscribed in a circle, they will have the same radical axis,
and the orthocentres of the four component triangles of the complete

quadrilateral range on the same straight line.

And with respect to quadrilaterals circumscribed about a circle,
it is easy to show that

(6) The sum of two opposite sides is equal to the sum of the two
others.

(t) In any quadrilateral circumscribed to a circle, the sum of any
two opposite angles is equal to twice the external angle of one of
component quadrilaterals into which the given quadrilateral is divided

by the two chords.

When these chords are at right angles the external angles of the

component quadrilaterals are right angles ; therefore the sum of the

opposite angles of the circumscribing quadrilateral is equal to two

right angles, or the quadrilateral circumscribing the circle may also

be inscribed in a circle.

The proof is very simple, and depends on the equality of the

angles which a chord of a circle makes with the tangents at its

extremities.

245.] If two quadrilaterals are the one inscribed and the other

circumscribed to the same circle, so that the vertices of the inscribed

may be on the points of contact of the circumscribed quadrilateral,

(a) The chords which join the points of contact of the circum-

scribed quadrilateral will be at right angles.

(/3) The diagonals of the two quadrilaterals will cut allfour in the

same point.

(y] The points of concourse of the opposite sides of the two qua-
drilaterals will range allfour on the same straight line; and

(8) The point of intersection of the four diagonals will be the pole

of the straight line which contains the points in which the opposite
sides of the quadrilaterals intersect.

(e) The diagonals EGr and FH of the inscribed quadrilateral
meet the intersection of the lines joining the points of contact of the

circumscribed quadrilateral; and the angles between the former are

bisected by the latter.

We shall now proceed to establish the foregoing theorems,

beginning with the last (e) .

As the angle CBD is equal to the angle CAD, and the angle
BFP equal to AHP, therefore the triangles BFP and APH are
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Fig. 42.

337

similar; therefore BF or BE : BP as AH or AE : AP. Conse-

quently BE : AE =BP : AP, or in the triangle APB the angle APB
is bisected by PE. In the same way it may be shown that the

other angles between the diagonals of the inscribed quadrilateral
are so bisected.

Hence also the chords of contact EG and FH are at right angles.
VOL. ii. 2 x
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246.] The diagonals of the circumscribed quadrilateral will pass

through the pole P.

Through E and G let tangents be drawn intersecting in M, then

M is the pole of EG; in like manner N is the pole of HF; hence
MN is the polar of P. Let EF and GH meet in L

; then, as the

polar of L must pass through P, the point L must be on the line

MN ; and as L is a point in EF, the polar of L must pass through
B ; and as L is a point in GH, the polar of L must pass through D ;

and as L is a point in MN, the polar of L must pass through P.

Hence BPD is a straight line, the diagonal of the circumscribed

quadrilateral ; and it passes through P. In the same way it may be

shown that the other diagonal AC passes through P.

247.] Since the angle EwH is equal to the angle FCG, the half

of EwH is equal to the half of FCG ; hence the triangles AEw and
FCo> are similar. Consequently

AE.FC=FwW2
, ....... (a)

if r be the radius of the inscribed circle.

In like manner BF.DH= r2........
(a,)

Let AE= , BF=5, CG= c, DH= d, . . . . (b)

the radius of the circumscribed circle being R, and r that of the

inscribed circle.

Hence ac=bd=r2......... (c)

We have also AP : AE= sin AEP : sin 1 BPA,

and CP : CG=sin AEP : sin^ BPA.

Let AP= w . AE, and CP=w . CG, writing n for the quotient of

sin AEP divided by sin BPA. . . . (d)

Hence AC=w(AE + CG) or AC=ra( + c). . . . (e)

In like manner BD= n(b + d) ; and therefore

AC : BD= a+ c: b+d....... (f)

But AC.'BD-

or, by Ptolemy's theorem, AC . BD= 4r2+ (a + c) (b + d) , . . (g)

since ac= bd=r'2 .

Multiply this expression by :

pjA
=

7
,

and we shall have

and
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Since AV=na, and CP= nc, \ve have

AC a + c , Q __o / a \2

AFW

Let O be the centre of the circle circumscribing the quadrilateral
D, <o the centre of the inscribed circle, P the common poleand let the straight line Oo>P meet the common polar MN in Q

then we shall have

-_
Oo>

To show this, in the triangle AwP we have

P^2=A^2+AP-SAw . AP . cos PA<u,

and C^2= CA2+A^2-2CA . Ao> cos PAo> ;

hence, eliminating cosPAw, we obtain

_ A p
Po)

2
=Ao)2 + AP2-AP . AC+ (C^

2-A

Now A^i
2=a2+ r*, C^2=c2+ r, AF=a*+ 7 -; hence

4r4
or, reducing, H-P = ....... (j)

From O the centre of the circumscribing circle draw the perpen-
diculars OTT and Or on the diagonals AC and BD ; then TT and T are
the middle points ofAC and BD. Hence,by Newton's theorem given
in page 283, the line TTT passes through o> the centre of the inscribed

circle; and as OP?rT is a quadrilateral that may be inscribed in a circle,

Oo> . PtO = <07T . 0)T....... (k)

Now as the sum of the squares of the four sides of a quadrilateral
is equal to the sum of the squares of the diagonals and four t
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the square of the distance between the middle points of these dia-

gonals, as shown in (S) sec. [243] ,

But 47TT
2= 4ft>7T

2+ 4<UT
2
-f 8o)7T X <0T ,

and SCOTT . o)T= 80a> . Pa>.

Hence (a+ 6)
2 + (6+ c)

2+ (c+ c?)
2+ (d+a)*

since AC +4w^=2(A
2+C), and

Now

and as a2=Al?-r2
, 62=Ik>2-r2

,
c2=O?-r2

,
c?
2=D^2-r2

,

] + 8Oa> . Pa>,

or (a + c)(6+ c?)=4r
s+ 40w.Pa>......

(1)

But in the preceding paragraph it has been shown that

4
-
2 -,
...... (m)

equating these values of (a+ c)(# + d), we obtain the relation

Since r2=Pa> . Q.a>, this expression may be reduced to

1 1 1

Ow Qw~Pft>'

a simple relation between the distances of the centre w of the

inscribed circle from O the centre of the circumscribed circle, and
from P and Q the pole and polar.

248.] To express R the radius of the circumscribing circle in

terms of r the radius of the inscribed circle and p the distance

between the centre of this circle and the common pole.

Let q be the distance between the pole P and the polar MN, and

D the distance between the centres, then we shall have

r*, ....... (a)
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4
and R2= (D +p] (D +p + q}, or, since p+ q =. ,

or

Substituting in this expression the value of D given in (n) , last

section,

r

we finally obtain

The least value of R is when the circles are concentric, or p=0.
In this case R= \/2r.

From these expressions, namely

=r
-l^p!, . . . . (e)* z

it follows that when r and ja are given, D and R are completely
determined, or, however the rectangular chords of the inscribed

circle may vary in position, the centre and radius of the circum-
scribed circle are fixed.

If we eliminate p between the preceding expressions,

r*]*..... (f)

249.] Hence it follows that if through any fixed point in a given
circle two rectangular chords be drawn, and at their extremitiesfour
tangents be drawn constituting a quadrilateral, this quadrilateral

may be inscribed in a circle, and the centre and radius of this circle

will be fixed and independent of the directions in which the rectan-

gular chords may be drawn.

The square of the area of the quadrilateral is equal to

(a + b)(b + c)(c+d)(d+a),

since half the sum of its sides is (a+ b + c+ d).

Multiplying out this expression, bearing in mind that ac=bd=r*,
and dividing by abed, we obtain the very remarkable symmetrical

expression

In every quadrilateral which may be inscribed in one circle and
circumscribed to another the centres of the two circles and the common

point in which the four diagonals intersect are in a straight line.
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In every such quadrilateral the distances from the vertices to the

point of intersection of the diagonals areproportional to the tangents
drawn from these vertices and touching the internal circle.

The diagonals are proportional to the sum of the tangents drawn

from their extremities to the interior circle.

The distance PQ, between the common pole P and its polar MN,
multiplied by the distance between the centres of the inscribed and

circumscribing circles, is equal to the square of the radius of the

inscribed circle.

For if q be this distance, it has been shown that p(p-\-q)=r'* or22 2

<7= and D= 9 9 . Hence D<7=r2
.

p r2 p*

250.] If a quadrilateral be inscribed in a circle, the squares of the

inner diagonals are to each other as the distances of their middle

points from the middle point of the outer diagonal. See sec. [176].
It has been shown in sec. [165] that the middle points of the

three diagonals range in the same straight line.

Fig. 43.

Let ABDC be the inscribed quadrilateral. Let m and n be
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the middle points of the inner diagonals AD and BC. Let M
be the middle point of the outer diagonal. Then M, m, n are in
a straight line. P the intersection of the inner diagonals is the

pole of the outer diagonal EG and O the centre of the circle. Om
and On are perpendicular to the diagonals AD, BC, and they bisect

them.
Since the line AD is bisected in m, and harmonically divided in

P and F, as shown in (d) sec. [161], we have

Dm2=Pm.Fw........ (a)

But Pm= PO sin F, and Fm : Mm= sin Mn : sin F,

x, Mm . sin FMn
or Fm=-; =^---smF

Therefore Dm2=PO .sinFMm .Mm...... (b)

In" like manner Cn2=PO . sin FMn . Mn.

Therefore Dm2
: Cn2=Mm : Mn....... (c)

251.] This property will enable us to give a very simple and

elegant solution of the following celebrated problem : Given a

circle and the lengths of the three diagonals of a quadrilateral to

be inscribed in it, to construct the quadrilateral.
Let 2G, 2G,, 2GW be the lengths of the three diagonals, 2G

being greater than 2G,, and 2GW the outer diagonal ; let y=mn.
Since Mm : Mn = G*: G,

2
,

Mm : Mm-Mn=G* : G*-G,.

But Mm Mn=# ; therefore

Mw=G?^ and Mn=

Let e be the angle OMm ;
then in the triangle OmM

Om2=OM3+Mm2-2OM .Mm cos e. )

We have also (
e
)

Eliminating cos e from these expressions, we get

Mm Mn

Now as the tangent drawn from M to the circle is equal to G
lt)

see sec. [176], and R being the radius of the circle,

........ (0
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But we have found

G2-G 2' ~G2
-G,

2 '

substituting these values in the preceding equation, we get

sr

(g)

(h)

This enables us to express the distance (g) between the middle

points of the inner diagonals in terms of the three diagonals.
Hence the three sides of the triangle Omn are given, and this tri-

angle has its vertex at O ; and hence the diagonals may be drawn
and the quadrilateral constructed.

The circles described on the three diagonals G, G,, G/;
of the

quadrilateral as diameters intersect, two by two, in the same two

points. Their centres, therefore, range along the same straight

line, and have a common radical axis, the common chord. The
distance d between the common chord of any two of the circles

and the centre of one of them is given by the symmetrical formula

G2G 2+G2G/-G/

2G/ ,

GG,GW

If C be the common chord of the three circles,

C2= 2(G
2+ G,

2+ G,
2
)
-G2

G,
2G

y

2
(G-

4+ G,-
4+G/r

4
)

.
(j)

252.] Let the sides of a quadrilateral inscribed in a circle be

cut by a transversal, the continued product of the ratios of the

segments of the sides made by the transversal will be equal.

Fig. 44.

Let L, M, N, P be the points in which the transversal is cut by



ON THE HIGHER GEOMETRY. 546

the sides of the quadrilateral ; from the points A, B, C, D let per-
pendiculars to the transversal be drawn. Let these perpendiculars
be put a, b, c, d. Then we have

AL_a BM_6 CN_c BP_rf
6' CM~c' DN~V AP~*

Hence
AL . BM . CN . DP abed

1. We have also
BL.CM.DN.AP~~6o/a"

AL . BL . BM . CM . CN . DN . DP . AP= [BL . CM . DN . AP]
2

.

Let I, m, n, p be the tangents from the points L, M, N, P.

Then Imnp=BL . CM . DN . AP, or Imnp=AL . BM . CN . DP.
This property may be extended to inscribed regular polygons

of anv number of sides.

ON THE PROPERTIES OF CHORDS DRAWN FROM A POINT IN THB CIR-

CUMFERENCE OF A CIRCLE TO THE ANGLES OF AN INSCRIBED

REGULAR POLYGON OF AN ODD NUMBER OF SIDES.

253.] When the polygon is an equilateral triangle the properties
are obvious and known.
When the polygon is a pentagon. In general let the side of the

polygon be put * ; let the chord which subtends two adjacent sides

of the polygon be t, that which subtends three consecutive sides

be u, and that which subtends four sides be z, &c.

Let the chords drawn from the point P to the angles A, B, C,

D, E, F, G, &c. be a, b, c, d, e, f, g, &c.

VOL. ii. 2 Y
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Then in the case of the pentagon we have

at-i-et=cs,
(a)

Adding these expressions together, and dividing by (s+ t), we have

We shall have also c*=(a + e)(b + d), (c)

and 5c2= (a -\-b-\-d-\-e)* (d)

254.] When the regular polygon is a heptagon, then we shall

have the following twelve equations :

as + cs =bt,
>

au-]-ffu=ds,

bt +ft = du,

cs +es=dt,

at-\-gs=bs,

fft+as=fs,

bu+fs=cu, \

et + bs=du,, ,

=eu, ) (a-\ c + e+g)s=du.

Adding these twelve equations, we shall have

(a 4- c+ e +ff) (s+ 1+ u)

or, dividing by (s + 1 + u),

(b)

or, in other words, the sura of the odd chords drawn from the point
P to the alternate vertices of the heptagon will be equal to the sum
of the even chords.

We have also ds= (a+g) (b+f)(c+ e)', ..... (c)

that is, the cube of the middle chord is equal to the continuedproduct of
the sums of the first and seventh, of the second and sixth, of the third

and fifth.

When the point P is assumed in the middle of the arc AG, then
PD is a diameter 2R, and a=g, b=f, c=e, and therefore

abc=W......... (d)

These properties thus established may be extended to regular

polygons of (2n+ l) sides inscribed in a circle.

Thus let M be the middle chord of a polygon of (2w+ l) sides,

and let C
l
C2 C3 . . . CZn-\, C2n,

C2n+i be the chords drawn from the

point P to the angles of the polygon ; then we shall have

^.,) &c.

When P is the middle point of the arc, M is a diameter 2E, and
the preceding expression becomes



A TREATISE

ON

C O N I C S

CHAPTER XXVII.

DEFINITIONS.

255.] Let a straight line be drawn perpendicular to the plane
of a circle through its centre, and a point in it assumed, through
which a straight line of indefinite length passes, always touching
the circumference of the circle ; the surface thus generated is called

a cone, the perpendicular is called the axis of the cone, and the fixed

point the vertex.

The surface thus generated is divided by the vertex of the cone
into two portions, which may be called the upper and lower sheets

of the cone.

n.

If this surface be cut by a plane, the line in which the cone and
the plane intersect is called a conic section, or in short a conic.

in.

If a sphere be inscribed in this cone touching the plane of the

conic section, the point of contact is called & focus of the conic.

As there may be in general two spheres so inscribed, one touching
the plane of the section above, the other below or one in each sheet

of the cone, both touching the plane of the section on the same
side there are in general two foci in a couic section.

These spheres may be called focal spheres.



348 ON CONICS.

IV.

The straight line which passes through the foci, and is termi-

nated by the surface of the cone, is called the major axis.

v.

The plane drawn through the vertex of the cone and the major
axis of the section, cuts the surface of the cone in two straight

lines, which together with the major axis constitute a triangle,
which may be called the focal triangle, since its plane passes

through the foci.

VI.

The focal spheres touch the surface of the cone in two circles

which may be called the circles of contact.

The planes of these circles are manifestly parallel, since they are

at right angles to the axis of the cone.

VII.

The straight line in which the plane of a circle of contact cuts

the plane of the section is called a directrix.

As there are in general two circles of contact, there are in

general also two directrices, and they are parallel to each other.

VIII.

A plane drawn through the vertex of the cone parallel to the

plane of the section is called the verticalpolarplane; and the straight
line drawn through the vertex of the cone, the polar line of this

vertical plane with respect to this cone, is called the polar axis, and

it meets the plane of the conic section in a point called the centre.

IX.

The straight line in which the vertical polar plane cuts the plane of

the circle of contact is called the dirigent. As there are in general
two circles of contact, there are two dirigents, and they are parallel
to the directrices.

x.

The dirigent is the polar of tfre point in which the polar axis of

the cone meets the plane of the circle of contact with respect to

this circle.

xi.

If a straight line be drawn from the vertex of the cone in the

vertical polar plane, the polar plane of this straight line will pass

through the polar axis of the cone, and is called & polar plane of the

cone.

XII.

When the vertical polar plane lies outsi'de the cone the parallel
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section is called an ellipse ; when it touches the side of the cone the

parallel section is a parabola ; and when the vertical plane cuts the
surface of the cone, the parallel section is an hyperbola.

In this latter case the polar axis will lie outside the cone ; and if

two planes be drawn through this line touching the cone, they will

cut the plane of the hyperbola in two straight lines called asym-
ptotes ; and as the polar axis (the intersection of the tangent planes)
cuts the plane ofthe conic in its centre (see def. vm.), the asymptotes
will meet in the centre of the hyperbola. Moreover, as the polar axis

touches the surface of the cone when the conic is a parabola, the two

tangent planes drawn through it to the cone coincide and become

parallel to the plane of the parabola ; consequently the asymptotes
of the parabola are two straight lines parallel to the axis of the

parabola but at an infinite distance from this axis.

XIII.

The ordinate drawn through the focus of a conic, at right angles
to the major axis, is called the parameter or latus rectum.

XIV.

The radical plane of the focal spheres cuts the plane of the conic

in a straight line called the minor axis.

xv.

Lines drawn from the vertex of the cone to the extremities of the

diameters of the focal spheres which are perpendicular to the plane
of the conic may be called verticalfocals of the conic.

ON THE FOCAL PROPERTIES OP CONICS.

256.] If a sphere be inscribed in a right cone, the curve of contact

is a circle.

Since all tangents drawn from a point to a sphere are equal,
the vertex of the cone may be considered as the centre of a sphere
whose radii are the sides of the cone intercepted between the vertex

and the line of contact with the inscribed sphere. This sphere,

therefore, will intersect the inscribed sphere in the line of contact ;

but two spheres intersect each other in a circle ; hence the line of

contact is a circle.

257.] The plane which passes through the vertex of the cone and
the two foci, passes also through the axis of the cone, and is at right

angles to the plane of the conic.

The radii of the inscribed spheres which pass through the foci

are at right angles to the plane of the conic, since it is a tangent

plane to the focal spheres; but these radii are parallel, sincr tlu-y

are perpendicular to the plane of the conic ;
and therefore the plane
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which passes through them will pass through the centres of the

focal spheres, which are manifestly on the axis of the cone
;
con-

sequently the plane of the focal triangle (see def . v.) will be per-

pendicular to the plane of the conic.

258.] The directrix is perpendicular to the major axis of the

conic.

Since tne plane of the conic and the plane of the circle of contact

are each perpendicular to the plane of the focal triangle, their inter-

section, the directrix (Euclid, XI.) will be perpendicular to the

same plane, and therefore perpendicular to any straight line on it,

and therefore to the major axis.

259.] The distance of any point of a conic from a focus is to its

perpendicular distance from the corresponding directrix in a constant

ratio namely, as the distances of the vertex of the cone from the

Fig. 46.

H.

circumference of the circle of contact andfrom the dirigent the inter-

section of the plane of the latter by the vertical polar plane.
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The inscribed sphere touches the plane of the conic MDANFn
in the point F ; and the cone touches the sphere along the circle of
contact CGQP.
DrawNM parallel to AF, join NF, NV. Draw the vertical plane

VYZ parallel to the plane of the conic, meeting the plane of the
circle of contact in the straight line, the dirigent, YZ. In this

vertical plane draw the line VY parallel to the major axis AF, to

which MN is parallel. Join YQ, and produce it to meet the direc-

trix RX. It must meet the line MN also in the directrix
; for as

YQ is in the plane of the circle of contact, it can meet the plane
of the conic only in their intersection, the directrix EX ; but as

MN is parallel to VY, a plane may pass through VY, VQN, and
NM ; hence NM must meet YQ ;

and as it lies in the plane of the

conic, it can only meet it in the directrix RX.
Now as the triangles M QN and V Y Q are similar,

NQ : NM=VQ : VY. But NQ=NF, since Q and F are points on
the same sphere; therefore NF : NM=VQ : VY=VC : VY, since

VQ is equal to VC. But VC has a constant ratio to VY inde-

pendently of the position of the point N; therefore NM has a

constant ratio to NF.
This is the theorem which has been made by De la Hire, and by

others since his time, the basis of a system of conies in a plane.
Cor. i. When the vertical plane touches the cone, as when the

conic is a parabola, VC=VY, consequently NF= NM.
Cor. ii. When the conic is an ellipse, VY is greater than VC, or

NM is greater than NF ; when VY is equal to VC, NM is equal
to NF ; when VY is less than VC, or when the vertical plane VY
falls within the cone, or NM is less than NF, the conic is an

hyperbola.
The ratio of VC the side of the cone between the vertex and the

circle of contact to the perpendicular VY from the vertex of the

cone on the dirigent YZ is called the eccentricity of the conic, and
is usually denoted by e.

260.] Iffrom any point in a conic a line be drawn to the directrix

parallel to the straight line the intersection of the vertical plane with

the cone, it will be equal to the focal distance of the same point.
Let VP be the intersection of the vertical plane with the cone ;

join PQ ;
and by the same construction and demonstration as the

preceding, NF=NM, since VC= VP.
Hence, Iffrom a point in a conic a line be drawn to the directrix

parallel to the axis of a parabola, or to one of the asymptotes of an

hyperbola, this straight line will be equal to the focal distance of the

same point.

261.] The major axis of a conic is equal to the segment of a ide

of the cone intercepted between the circles of contact.

In the focal triangle ABC the base AB (that is, the major axis
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of the conic) is equal to the segment of the side CB intercepted
between A, and G, the points of contact of the side CB with the

inscribed circles (see fig. 29). But these are great circles of the

focal spheres which touch the plane of the conic in its foci F and Fr
262.] The sum or difference of the focal distances of any point in

a conic the sum, if an ellipse, the difference, if the conic be an

hyperbola is constant, and equal to the portion of the side of the cone

intercepted between the circles of contact (that is, to the major axis}.

Let VQNQ
/
be a side of the cone touching the focal spheres in

the points Q,, Q, and passing through N a point on the conic.

Then, as Q, and F are points on the same sphere, NF= NO, ; so also

NF,=NQy
.

Fig. 47.

Therefore NF+ NF, is equal to QGL,, the portion of a side of the

cone intercepted between the circles of contact.

In the last proposition it was shown that this segment of the side

of the cone is equal to the major axis of the conic. Therefore the

sum of the focal vectors of an ellipse is equal to its major axis.



ON CONICS. 353

In the case of the hyperbola (fig. 48), since NF is equal to NQ
and NF, equal to NQ,, therefore NF, NF is equal to QQ, the

segment of the sideVN of the cone intercepted between the circles

of contact.

Fig. 48.

Cor. i.] The distance between the directrices is equal to that

portion of the major or transverse axis intercepted between the planes

of the circles of contact (see fig. 47) .

The ratio of the major axis of the conic to the distance between
the directrices is as e : 1.

For, in fig. 46, NM : NF=VY : VC ; so also with respect to the

other directrix NM, : NF,=VY : VC.
Therefore NM + NM, : NF+ NF,=VY : VC.
But NM +NM, is the distance between the directrices, and

NF + NF, is equal to AB the major axis; therefore the distance

between the directrices is to the major axis as 1 : e.

Cor. ii.] In the same way it maybe shown that the distance between

the dirigents is equal to the distance between the directrices.

VOL. ii. 2 z
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Cor. iii.] The distance between the foci is equal to the difference
between the sides of the cone terminated in the extremities of the

major axis, namely VB and VA.
For VB-VA=BC-AG=BF-AF=FFr
In the hyperbola we have VB-fVA=FF

; (see fig. 48).

263.] The rectangle under the radii of the focal spheres is equal to

the rectangle under the focal distances of the vertices of the conic.

Let R and R, be the radii of the inscribed spheres, w and fl their

centres. The triangles BoF and HBF
/
are similar, since the angle

o>BF= BnF. Therefore RR,= BF, . BF ; but BF,= AF.
Therefore RR,=AF . BF (see fig. 29).

264.] Planes which intersect in a tangent to a conic and pass

through the centres of the focal spheres are at right angles.
It is evident that the dihedral angle between the plane of the

conic and the tangent plane to the cone which contains the tangent
to the conic is bisected by the plane passing through the tangent
their intersection and the centre of the sphere which touches

these two planes ; for this point is equidistant from the planes of the

section and tangent plane.
In like manner the supplement of this dihedral angle is bisected

by the plane which passes through this tangent and the centre of

the other focal sphere. Hence planes drawn through the centres of

the focal spheres and a tangent to the conic are at right angles.

265.] Ifperpendiculars are drawn from the foci of a conic on a

tangent to the curve, the rectangle under theseperpendiculars is equal
to the rectangle under the radii of thefocal spheres ; that is, PP,= RRr

Let FP (fig. 49) be the perpendicular from the focus F on the

tangent PQ. Join P, and erect the perpendicular PN to the plane
of the conic

;
it is parallel to <oF, and is therefore in the plane PtuF';

and as QP is perpendicular to FP by construction, and to PN, it is

perpendicular to the plane which passes through them that is, to

the plane PNtuF. Consequently the angle FPta is the measure of

the dihedral angle between the plane of the conic and the plane
which passes through the tangent to it and the centre &> of the focal

sphere. Let this angle be w,we shall have, since wFP is a right angle,
R= Ptanr; and as the angle between the plane of the conic and the

plane passing through the tangent QP and the centre fl of the

other focal sphere is the complement of the former, we shall have

R,
=

P, cot r, or RR,=PP .
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Fig. 49.

266.] The locus of the feet ofperpendiculars let fallfrom the foci

of a conic on a tangent to the curve is a circle (see fig. 50).
Since the angle o>PQ is a right angle, see last section, and

the planes o>PQ, HPQ, are at right angles, wPfl is also a right

angle; therefore the sphere described on G>}, the line which joins
the centres of the focal spheres, will pass through the points P, p,
and also through the points A and B, since 12 15o> and o)AH arc

right angles. But the points P, p, A, B are also in a plane, namely
that of the conic. Hence they lie in the intersection of a plane
and a sphere that is, a circle.

Let Am, Bra be the lines in which the plane of the conic intersects

the tangent planes along the sides of the cone VA, VB. Now t hrsr

planes are perpendicular to the focal plane passing through the

axis of the cone, which is also a diametral plane of the sphere whose
diameter is o>ft

; therefore these lines are tangents to the sphere ;

and as they are parallel, the line which joins their points of contact

A, B is a diameter of the circle. The locus of the feet of the per-

pendiculars is therefore a circle whose diameter is the major axis

of the conic.
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Fig. 50.

267.] A tangent to a conic makes equal angles with the focal vector

and the side ofthe conepassing through thepoint of contact (see fig. 51).
In the tangent mM.n, through which the tangent plane VQnMmQ,

passes, assume any point m ; drawm, and mQ, to the point Q where
the side VM of the cone meets the circle of contact CQC/. Then
in the triangles mMQandmMFthe sidewF= mQ,; soalsoMF=MQ;
and Mm is common to the two triangles ; hence these triangles are

equal, and therefore the angles FMw and QMm are equal. In the

same manner the angles FjMra and Q
t
Mn are equal.
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Fig. 51.

357

The angles which the focal vectors make with a tangent to the curve

at the point of contact are equal.
The angle FMm is equal to the angle QMw ;

and the angle Fy
Mn

is equal to the angle Qy
Mw. But the angle QMm is equal to the

angle Q,Mn as they are vertically opposite angles, the angles which
the side of the cone makes with the tangent to the curve. Hence
the angles FMw and F,Mn are equal.

268.] The directrix is the polar of the focus, or the locus of the

intersection of every pair of tangents whose chord of contact passes
through the focus (see fig. 52).

Through VF, the line which joins the vertex V of the cone with

the focus F, let a plane be drawn, cutting the plane of the conic in

the line BAD and the plane of the circle of contact in the points

C,CD. As D is a point in the plane of the conic and in the plane
of the circle of contact, D must be on the directrix.
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Fig. 52.

Now as the two sides of the cone VA, VB and the line AB in

which this plane cuts the plane of the conic constitute a triangle in

which the circle FCC
y
a section of the focal sphere is inscribed, the

lines AC,, VF, and BC will meet in a point. As in the triangles
DAC and DBC the angle at D is common, and the angle DCA is

supplemental to the angle DC ;B,

DA : AC=DB : BC
; ;

but AC=AF, and BC,=BF;
therefore DA : DB=AF : BF, or VB, VF, VA, VD constitute an
harmonic pencil. And as this proof will hold good for any plane
drawn through the focus and the vertex of the cone, it is clear that

the directrix is the polar of the focus.

Cor. Join Da and produce it to m. Then mn is harmonically
divided in D and a

;
and therefore ma : an=mD : T)n. VC and VC,

are tangents to the circle
;
therefore Da is also a tangent.
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269.] If any chord of a conic be drawn and produced to meet the

directrix, and from the corresponding focus two lines be drawn, one
to the intersection of the tangents drawn to the ends of the chord,
the other to the intersection of this chord with the directrix, these

two lines will be at right angles to each other (see fig. 53) .

Let the chord mn meet the directrix DX in the point Y ; draw
the tangents mT, wT meeting in T. Draw the tangent planes
VmT, VwT whose lines of contact with the cone meet the circle of

contact in the points a, c. Join a, c
; also T F, F Y ; the angle

TFY is a right angle.
Join TY, and let a plane be drawn through TY touching the

focal sphere in the point S. As TY is in the plane of the conic

which touches the focal sphere in F, the line SF is the conjugate

Fig. 53.
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polar of the line TY ;
and as Y is a point in the line TY, the polar

plane of the point Y will pass through FS the conjugate polar of

TY ; and as Fe is the conjugate polar of the directrix in which Y is

a point (see fig. 52), the polar plane of Y will also pass through Ye.

Hence the plane which passes through FS andFe is the polar plane

of the point Y. This plane will also pass through the point T ;
for

as the point T is in the intersection of the tangent planes to the

cone VmT and VnT, the polar plane of T will pass through the chord

a c ; and as this chord is in the plane of the circle of contact,, it

must meet the directrix which also lies in the plane of the circle of

contact; for otherwise itwould be parallel to it, and then the directrix

could never meet the secant plane Vmn, contrary to hypothesis.

Therefore the chord ac of the circle of contact meets the directrix

in the point Y ;
therefore the polar plane of T passes through Y ;

therefore T is a point in the plane FSe; and therefore STis a tangent
to the base of the cone whose vertex is at Y, and which touches the

focal sphere in the points FSe. Consequently YST is a right angle.
Now in the triangles YTF and YTS, YF is equal to YS, TF is equal
to TS, and YT is common ; therefore the angle YFT is equal to the

angle YST. But YST is a right angle ;
and therefore YFT is a right

angle.

270.] If a line be drawn from the focus to the pole of a focal

chord, it will be at right angles to it.

For, by the preceding proposition, when the chord mn passes

through F the focus, the point T, the intersection of the tangents
mT, wT will be found on the directrix, and the equal angles mFT,
nFT become right angles.

271.] If a focal chord be drawn perpendicular to the axis, and a

tangent to the curve be drawn at its extremity, it will cut offfrom the

tangent to the vertex of the curve a portion equal to the distance of
the vertex of the curve from the focus (see fig. 54) .

Through F draw the ordinate FP, and through the point P a

tangent meeting in S the vertical tangent Am drawn through A;
AS is equal to AF.
AS : AD= FP : FD ; but FP : FD=VG : VU, as in sec. [259],

and VG : VU=AG : AD. Therefore AS is equal to AG=AF.
Therefore AS : AD=AG : AD

; hence AS=AG=AF.
Letjflbe the semiangle of the cone, and i the inclination of the plane

of the conic to the axis of the cone ; then VC y
=VUcosi=VGcos0;

. VG cos i

consequently = '= '
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Fig. 54.

272.] If two tangents be drawn to a conic, the line connecting
their point of meeting with a focus bisects the angle contained by the

focal vectors drawnfrom thisfocus to thepoints ofcontact (see fig. 55) .

Let Tm, Tw be tangents to the conic at the points m and n, and

meeting in T. JoinTF; thenTF bisects the angle wF. Through Tm,
Tn let tangent planes to the cone be drawn touching it in the sides

Vm, Vtt, and therefore touching the sphere in the points Q and Qr
Join Vt, TQ, and TQ

;
. Then in the triangles TVQ and TVQ,

since VQ=VQ,, TQ=TQ
/ ,
and VT common, the angle VQT is

equal to the angle VQ,T, and their supplements arc therefore equal ;

that is, the angle TQw is equal to the angle TQ,n. Now wF is equal
to wQ, TQ is equal to TF, and Tw is common ;

therefore in the

triangles TmQ. and TmF the angle TQw is equal to the angle TFm.
In the same way the angle TQ^ may be proved equal to the angle
TFw ; consequently the angles TFw and TFn arc equa'.

VOL. II.
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Fig. 55.

273.] Iffrom the intersections X, Y, of the tangents Tm, Tn with

the directrix YDX, focal chords XF, YF be drawn, they will make

equal angles with the focal chord FT.

Since X is the pole of mF, wzFX is a right angle ; and since Y is

the pole of J?n, wFY is a right angle. But the angle TFw is equal
to the angle TFw ; therefore the angle TFX is equal to the angle
TFY.
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274.] Iffrom the intersection of two tangents to a conic, chords be

drawn to the two foci, they will make equal angles with the tangents.
Let Tm, Tn (fig. 56) be the tangents to the conic, meeting in T.

Let the tangent planes VmT, VnT be drawn, touching the cone

along the sides VQwQ,, Vtmw,, and draw TF, TF,. The angles
FTn and F,Tw are equal. Join Fw, Ypn.
Now as TF, is equal to TQ, since they are tangents to the same

sphere, and mF, for the same reason is equal to wQ/, and mT is

common, the triangles TwF, and TwQ, are equal, and therefore

the angle F/Tw is equal to the angle Q/Tm.
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In the same way, as TF is equal to TQ, Fm equal to mQ,, and

Tw common, the angle TmF is equal to the angle TwQ,.

Hence the angles Q/Tm and mTF are together equal to QTQ
/ ;

or, as the angle G/Tm is equal to the angle F/Tm, twipe the angle

F/Tm together with the angle F/TF are equal to the angle G/TQ.
For the same reason twice the angle FTra with the angle F/TF are

equal to the angle uTur But as TQ, is equal to Tu,, TO, equal
to Tu, and QQ, is equal to uu

f ,
the triangles TQ/Q, and Tuu

t
are

equal ;
therefore the angle Q.TQ, is equal to the angle uTu,.

Therefore twice the angle F
y
Tm with the angle F/TF are equal to

twice the angle FTw with the angle F/TF ; taking away the common

angle F/TF, the angle F
y
Tm is equal to the angle FTra.

275.] If two tangents be drawn to a conic, andfrom their inter-

section two lines be drawn to the points where the tangent plane to

the cone drawn through one of the tangents touches the focal spheres,
the angle contained by the two latter lines will be equal to the angle
between the tangents (see fig. 56) *.

The angle 2F/Tm together with the angle F/TF are equal to the

angle QTQr But the angle F/Tm is equal to the angle FTn. Hence
the angles F/Tm+ FTw+ F/TF are together equal to QTQ,.

But the angle between the tangents is made up of the component
angles F/Tm+ FTw+ F/TF. Therefore the angle between the tan-

gents to the conic is equal to the angle QTQr
It is a matter of indifference through which of the tangents to

the conic the tangent plane to the cone be drawn
;

for the angles

QTQ, and uTu, are equal.

276.] If a tangent plane be drawn to the cone, meeting two parallel

tangents to a section of this cone in the points m and n, and touching
the focal spheres in the points Q and G,, the quadrilateral QimQin

may be inscribed in a circle (see fig. 57).

By the last proposition the angle TmN is equal to the angle

QmQ,, and T
;
wN is equal to QraQ, ;

therefore the angles QmQy
and

QnQ,, are together equal to TmN and T^N. But as the tangents
Tm and T,rc are parallel, the sum of the angles TmN and T

y
wN is

equal to two right angles ;
therefore the sum of the angles QmQ;

and QwQ
/
is equal to two right angles, or the quadrilateral QmQ^

may be inscribed in a circle.

Cor.] Since Nm . ~Nn is equal to NQ . NQ
y,
while NO, is equal to

NF, and NQ
y equal to NF

y ,
therefore the rectangle under the seg-

ments of a tangent between its point of contact and its intersections

by two parallel tangents is equal to the rectangle under the focal

chords drawn through the point of contact.

* This is perhaps the most important proposition in the theory of conies

derived from the cone.
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Fig. 57.

365

277.] Iftwofixed tangents be drawn to a conic, and a third tangent
variable in position, the segment of this latter tangent between the

two former will subtend angles at the foci whose sum is constant and

equal to the supplement of the angle contained by the two fixed

tangents (see fig. 58).
Let Tw, Tn be the two fixed tangents touching the conic in the

points m, n. Let *Sr be the variable tangent touching the conic in

S and cutting the fixed tangents in / and r. The tangent fr will

subtend at the foci F, F, angles whose sum is constant, and equal
to the supplement of the angle at T.
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Fig. 58.

The vertex of the cone is omitted from tie figure.

Through tsr let a tangent plane VQtSrGt, to the cone be drawn

touching the focal spheres in the points Q,, Qy, cutting the fixed

tangents to the conic Tm, Tn in the points t, r, and touching the

conic in S. Join tQ, rQ,, tQ.,, rQr By sec. [275] the angle mtS
is equal to the angle QtQ.,, and the angle m-S is equal to the angle
QrQ

v
. Now these two external angles of the triangle Ttr together

with the external angle at T are equal to four right angles ; and the

four angles of the quadrilateral Q/Q/r are also equal to four right

angles. But two of the angles of this quadrilateral QrQy
and Q7d

/

have been shown to be equal to the external angles of the triangle
tTr

',
therefore the remaining two tQ,T and /Q

;
r must be equal to the

external angle at T.

Now, in the triangles tQr and tYr, since tQ, is equal to t~F, and
rQ is equal to rF, since the points Q and F are on the same sphere,
and tr is common, the triangle tQ,r is equal to the triangle tr} and
therefore the angle tQ,r is equal to the angle tFr. The same may
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be shown for the other focus. Hence the angle Q, of the quadri-
lateral is equal to the focal angle at F, and the other angle Q, of
the quadrilateral is equal to the angle at F

y
.

Hence the sum of the angles which tr subtends at the foci is

equal to the supplement of the angle T.

Cor.] When the fixed tangents are parallel, we get the theorem
in sec. [276] .

278.] Two tangents are drawn to a conic ; a perpendicular drawn
to the chord of these tangents from their point of meeting will cut

the major axis in a point which with the two foci and the intersection

of the chord with this axis will be four harmonic points.

Through F the focus of the conic let the diameter of the focal

sphere be drawn meeting its surface in G ;
the focal vertical VG will

meet the major axis in the other focus
,,

see def. xv. Draw

Fig. 59.

the plane Vmnc cutting the focal sphere in a circle zpv, and let

this plane cut the focal diameter FG in O. Let T be the inter-
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section of the tangents Tw, Tn. Then U the vertex of the cone

zfiv\] is on VT, since the tangent planes meet in VT. The polar

plane of the point O is a plane drawn through U parallel to the

plane of the conic. Let this plane meet FG- in Q. Join VQ,

meeting the major axis in <BT. Through T-sr let a line be drawn,

meeting the chord mn in u
;

this line will be at right angles to the

chord mn. Then, as the plane through U parallel to the plane of the

conic is the polar plane of O, QF : FO =QG : GO. Through O let

a plane be drawn parallel to the plane of the conic and cutting the

sphere in the line Os. This line Os will be parallel to the chord mn.
Let this lesser circle be the base of a cone whose vertex is at Q,

on the plane through U parallel to the plane of the conic.

Now the line UQ, which joins the vertices of the cones, is the

harmonic conjugate of the line O*, in which the bases of the two
cones intersect. Hence UQ is at right angles to O*. But UQ is

parallel to Tu, since they are in parallel planes ; and sO is parallel
to the chord mn. Hence mn is at right angles to Tu. Since

GO :OF=GQ : QF, therefore (as the vertical focal VG passes

through F
y)
VF

/} Vc, VF, V-GT constitute an harmonic pencil;
therefore F,c : Fc= F/5i :F-sj.

When mn passes through F, c and r coincide with the chord F,
and TF is perpendicular to the focal chord as shown in sec. [273] .

Hence also it follows that uc bisects the angle F,u, which is one
of the most general theorems in conies, and may be given in the

following form :

If two rectangular axes are drawn in the plane of a conic, so that

the pole of the one may be a point on the other, the lines drawn from
their intersection to the foci will make equal angles with these axes.

279.] If anypoint be assumed in the plane of a conic, and tangents
be drawn from this point to the curve, the rectangle under the focal
distances of this point is equal to the rectangle under the major axis

and a perpendicularfrom this point on a focal chord drawn through
a point of contact divided by the sine of the angle between the tangents,

or TF, . TF=-J^5- (see fig. 56).sinmTn

Since TF=TQ and TF,=TQ,, therefore TF . TF, . sin wTra is the

area of the triangle QTQ, ; but this area is also equal to QQ, (
= 2a)

multiplied by the perpendicular drawn from T to QQ
y

. This perpen-
dicular it may easily be shown is equal to the perpendicular from T
drawn to the focal chord mY.

Cor.] Hence all the perpendiculars let fall from T on the focal

chords are equal. Consequently, if any two points be assumed on a

conic section, and two focal chords be drawn through each, the centre

ofthe circle described touching these four chords will be on the inter-

section of the tangents touching the curve in the two given points.
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Fig. 60.

280.] If a sphere be described about that portion of the cone cut

off' by the circle of contact, the semiparameter is a third proportional
to the side of the cone cut off by the sphere, and the tangent from the

focus to this sphere.
Let CwDQQ, be the circle of contact, which is also the common

intersection of the focal sphere with the circumscribing sphere
VPCDT.
Draw the ordinate Fa perpendicular to the axis AB ; through V

and a draw a side of the cone Va meeting the circle of contact in

the point u, touching the focal sphere in n, and meeting the cir-

cumscribed sphere in V and u.

Then Va . au =l?a
a+ FV . F#, since Fa is perpendicular to F* .

NowVa= au+ VM= Fa + VC ; forFa and au are tangents_to
the same

focal sphere. Thereforeau =Fa ; hence (Fa+ VC) Fa= Fa1+ FV. FJT.

VOL. ii. SB
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But FV.F#=FT2
; consequently VC . F=FT2

, or the semipara-
FT2

meter F=^^.
281.] The semiparameter is equal to the perpendicular distance

between the plane of the section and the vertical polar plane, multi-

plied by the tangent of the semiangle of the cone.

Through the focus F let a perpendicular be drawn to the plane
of the conic, meeting the sphere circumscribed to the cone VCD in

the point P. This line passes through S the centre of the focal

sphere ;
and as this point S is on the diameter VS of the circum-

scribed sphere, VPS is a right angle, or VP is the intersection of

the vertical polar plane with this sphere. Consequently FP is the

perpendicular distance between the planes. Now FT2= FS . FP.
But FS r, the radius of the focal sphere ;

and 20 being the vertical

angle of the cone, tan0=; therefore FT2=FP .VC tan 6.

FT2

But in the preceding proposition it was shown that ^L=^T;
therefore L=Ptan 6, writing P for FP.

62
Cor. i.l Since P tan6, and the area of the ellipse is irab, the

a

volume of the cone which stands on the ellipse as base is ^irb
3 cot 6.

Cor. ii.] If a sphere be described with the vertex of the cone as

centre, all the plane sections of this cone which touch this sphere
have equal parameters.

282.] Twice the rectangle under the segments of any focal chord

is equal to the rectangle under this focal chord and the semiparameter.
Let the segments of the focal chord mFn (fig. 61) be/ and/; ,

and
let c be the distance from the vertex of the cone to a point C on the

circle of contact. Through the vertex V of the cone and the focal

chord mn or/+/;
let the plane VamFweV pass, intersecting the

cone in the triangle Vmw and the focal sphere in the circle aFeQ,, of

which the radius is p. From s the centre of the focal sphere draw
the perpendicular sx on VF. The plane through sx perpendicular
to VF will pass through x the centre of the circle made by the above
secant plane whose radius is p.
Now f=m$= ma, fl

=nY= ne, and VC=VGw=c.
The following are well known expressions for the area of the

triangle Nmn circumscribing the circle Q,G
lt
Fa :

Uf+f,+ Wf]*=(f+fi+ JP= i(f+ftP, ... (a)

p being the perpendicular from V the vertex of the cone on the

plane of the conic. But, by similar triangles, VF : p^=st
or p : F#.

F.2?
Hence j=VF .

,
and x is a point on the circumscribing

sphere (see fig. 60).
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Multiplying together the two latter values for the area, and

equating the product with the square of the former, we shall have

Now ja

VF

therefore 2$ = (/+/,) ^.
c

= VF . , while c = VC ; and the semiparameter

fig

,
as in the last section

; consequently 2fft
=: (/+/y) (L).

Fig. 61.

283.] To find the locus of the intersection ofpairs of tangents to

a conic, meeting at a given angle (see fig. 62).
Draw any tangent plane VQmQjE to the cone, and on the line

Q.Q,, equal to the major axis of the conic, and in this tangent plane,
let a segment of a circle be described capable of containing the

given angle. Let a solid be generated by the revolution of this

tangent plane to the cone carrying the circular segment with it as

described in this plane on the chord QQr
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The intersection of this solid (which may be called the cono-

spheroid) with the plane of the conic will be the required locus.

In this curve of intersection assume any point E ;
draw the

tangents Em, Ew to the conic. They will contain the angle niEn.

But this angle is equal to the angle Q,EQ
/ by the theorem estab-

lished in sec. [275] .

It is evident that this solid will consist of two sheets, the one
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described by that segment of the generating circle which contains
the given angle, and which has QQ

y
for its chord ; the other will be

described by the remaining segment of the circle, which contains
the supplement of the given angle. It is plain that the two sheets
of this conospheroid meet in the two circles of contact of the focal

spheres with the cone.

Every plane section of the conospheroid at right angles to the axis

of the cone is a circle.

From the point E draw Er at right angles to the side of the cone
VQQ

;,
and draw rs at right angles to the line VQQ

/
until it meets

the axis of the cone in s. Then, as Er, rs are each at right angles
to the side VQQ,

/
the plane Er* will be perpendicular to the side

of the cone VQ,Qr Therefore the axis of the cone makes a constant

angle with this plane *rE. E is therefore on the surface of a right
cone whose vertex is s and axis *V ; and *E is constant, since

Es
a= *r

2+ Er2
, each of which is constant. Consequently, E being

on the surface of a right cone, and at a constant distance from the

vertex, E must describe a circle at the distance *E from the vertex

of this cone.

The protective equation of the conospheroid may be found from
the genesis of the surface.

Let 6 be the semiangle of the cone, p the perpendicular from the

centre of the generating circle on the chord 2a. Let 2s be the sum
of the radii of the circles of contact. Let the origin of coordinates

be taken on the axis of the cone equidistant from the planes of the

circles of contact ; let the plane perpendicular to this axis be taken

as the plane of xy, and the plane of the focal triangle as the plane
of xz.

Then it will not be difficult to show that the projective equation
of the conospheroid is

#2+ y
9+ z*.- 8s+ aa+ 2p - 2sz tan 2p (a

2
+j

8- sec2 0s*) *. (a)

The volume V of this surface is

V= 2irr [fr*+ **+ *r tan +p* irr cos 0] ;

V
y
and VM being the volumes of the two sheets,

an equation of the fourth degree, as it evidently should be ;

r= Va2
+J9

2 is tne radius of the generating circle.

Since the expression for the difference of the volumes of the two

sheets does not contain 2* the sum of the radii of the circles of

contact, it will follow that this difference will depend on the form
but not on the magnitude of the cone.

284.] We shall now proceed to find the algebraical equation
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of the curve which is the locus of the vertex of a constant angle
whose sides always touch a conic.

It will add to the simplicity of the investigation, and not detract

from its generality, if we assume a right circular cylinder instead

of a cone as the dirigent surface.

The equation of the conospheroid as given in (a) is

xz+ y*+ z*= a2+ s* + 2j
2- 2sz tan 6 2p (a

2+pz- z* sec2 6} *;

but when the cone becomes a cylinder, 20 its vertical angle becomes

0, and s=b, where b is the radius of the base of the circular cylinder.
The equation of the conospheroid now becomes

^ + y
2+ r2=a2+ 62+ 2/>

2 2??(
2+j?

?
2-^2

)^ . . (b)

Let the axis of the conic make the angle <p
with the base of the

cylinder, the axis of Y continuing unchanged. Then we shall have

x =#cos< + ,2' sin< z=xsm< + z cos <.

But as we require only the equation of the curve in which these

surfaces intersect, we must put z
(
=Q ; and then x=oe

t
cos

<p,

z=x
t
sin

(p.

Substituting these values in the preceding equation, bearing in

a a2

mind that cos<p= T, and sin<p=e, we get, since tan2 a= ,,
b p2

4 [aV+ Px*~ 2&2]
= l>

2+ y*
-

(

2 + *2
) ]

2 tan2 . . (c)
*

285.] When the given conic is a parabola, the locus of the vertex

of the constant angle touching the parabola is an hyperbola (fig. 63).
This case may be simply proved by the theorem established in

sec. [279] .

Let p and pt
be the focal distances of any point T outside a conic,

2aP
then ppt

=~
,
where a is the angle between the tangents drawn to

the conic from the point T.

When the curve is a parabola py
=2 = oo .

Hence p=-, ........ (a)sma
where p is the perpendicular from T on the chord Fm.
From the point T let tangents TOT, Tmt

be drawn to the parabola,

containing the angle a.

Let F be the focus of the parabola, and let the angle FmT be

X- Let Tm=t, TP=p, FT=p, the angle AFT=X, and Tc a per-

pendicular to the axis of the parabola. We shall have p
2=Ta . Tb.

* In the 8th volume of the Annales de Mathematiques by GEBGONNE the

problem to find the locus of the vertex of a given angle is solved by PONCELET.
The proof he gives by algebra is complicated and tedious.

DE LA HIRE has also given a solution of this problem. See CHASLES, Aperqu,
p. 125.
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Ta . T6= 1 : sin2 % therefore^ t* sin2 x=T . T*- But

consequently p*=Ta . Tb=f? -ca8
. But Tc=p sin \

and ca being an ordinate of the parabola whose parameter is 4/t,

while j
2= p

2 sin2 , therefore co
a= 4A(& pcosX).

Reducing, we shall find p=- J*
k
^_*=-^

k "
, (b)cosX cos a

Fig. 63.

sec a . cosX 1

If we now compare this expression with the general form of the

focal equation of an hyperbola

ecosX-T

they will be identical if we make e=sec, and

tan (t sin tan8 a (c)

The parabola, and the hyperbola which is the locus ofthe revolving

angle, have the same directrix. For the distance of the focus of an

hyperbola from its directrix is A(e c" 1

) ; putting for A its value

given above, we get for this distance 2k, the same as in the parabola.
is the angle between the asymptotes of the hyperbola.

286.] When the given angle is a right angle, the generating
segments of the tangent circle become semicircles, the two sheets

of the conospheroid coalesce, and it becomes a sphere of which the

circles of contact are lesser circles.

The radius of this sphere may be thus found. Let U be the

radius of this sphere; since GG^Jia, and nP=(R+r),
or *=
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But R r=2atan0, 20 being the vertical angle of the cone.

Therefore $t2= a2 sec2 + 62 .

To find the diameter of the circle AEB, since 1 is the centre of

the sphere described through the two circles of contact it is the

middle point of caQ)
t ; consequently the circle described round the

focal triangle VAB passes through the point fl.

Now 2O/?=R r=2atan 0.

Hence, if t be the radius of this circle,

Cor.] When the section is a parabola, the second circle of contact

recedes to infinity, the sphere becomes the plane of the circle of

contact, CQ,G therefore the locus becomes the intersection of this

plane with the plane of the section, i. e. the directrix.

CHAPTER XXVIII.

ON THE CENTRAL PROPERTIES OF CONIC SECTIONS.

287.] The rectangle under the distances of the vertex of the cone

from the centres of the focal spheres is equal to the rectangle under

the sides of the cone ending in the vertices of the major axis of the

conic.

Fig. 64.
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In fig. 64, since flBw is a right angle, the quadrilateral AtoBH
may be inscribed in a circle. Hence the angle VflB is equal to the

angle caAB, which is equal to VAo>. Therefore the triangles VflB
and VoA are similar

; consequently
Vft . Vo>=VA . VB.

288.] Through C the middlepoint 0/AB the major axis of the conic,
which is the centre by def. xiv., let a plane be drawn at right angles
to the axis of the cone. This plane will cut the cone in a circle.

The line CD in which the planes of this circle and the conic intersect

will be the minor axis of this section.

The square of the common ordinate CD gives CD*=C/i . Cm.
Now since BC= CA, Cn=Aa=VA sin 6.

In like manner Cm=B6=VB sin 6.

Therefore Cn . Cw=VA . VB sin2 0. But by the preceding
theorem VA . VB=VO . Vw ; and therefore

VA . VB sin2 0=Vn sin . Vo> sin 0=Rr.
But Rr=BF,. AF,, or AF . BF, as in sec. [263].
Therefore thesquare ofhalf the minor axis is equal toAF. BF= Rr,

which is equal to ppt ,
as shown in sec. [265] .

289.] The parameter (that is, double the ordinate through a focus)
. 2b*

a

Through F, let a plane be drawn at right angles to the axis of

the cone; then, F,G being^half the ordinate, the intersection|of the

planes of the circle and conic, F
/
G9=

Y,v . F^.

But F,v : C=BF, : BC or ty=^B5=^5.
p A "El

In like manner F^= f
. But AF, . BF,=AF . BF.

A F1 RF"
Therefore F,v. F/*=Cn .Cm .

t
.

Now in the preceding theorem it has been shown that

C.Cm=A, and AF.BF=6;
hence Fl?=F,v. F^=S; therefore 2F.G= .

a* a

290.] The polar axis VO of the cone meets the plane of the conic

in a point C, the centre (see fig. 65) ;
and this point bisects all the dia-

meters of the conic.

Let the verticalpolar plane, see def. viii., cut the plane ofthe circle

of contact abmn in the dirigent XY, and let the polar axis VOC of

this plane meet the plane of the circle of contact in the point O,
and the plane of the conic in C. Now as the dirigent XY and the

pole O are polar and pole with respect to the circle of contact

abmn, any plane which passes through the polar axis VO will cut

VOL. II. 3 C
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the vertical polar plane in the line VU and the cone in the sides

Va, Vb, so that VU, V6, VO, Va constitute an harmonic pencil
in the plane VU6O which cuts the plane of the conic in the dia-

meter BCA ;
and as the plane of the conic is parallel to the vertical

polar plane VXY, VU is parallel to AB. Therefore AB is bisected

inC.
In the same way, let any other line VY be drawn in the vertical

polar plane. Through this line and the polar axis VOC let a plane
be drawn cutting the cone in the lines Vw, Vn, and the plane of

the conic in the diameter MCN. Then as VY, Vm, VO, Vrc con-

stitute an harmonic pencil, and as MN is parallel to VY, MC = CN.
291.] In any conic the rectangles under segments of parallel

chords are proportional to each other.

Through the polar axis VOC (fig. 66) let two planes be drawn

cutting the plane of the conic in the diameters AB, MN, and the

vertical polar plane in the lines VU and VY. Through a and b the

points in which the plane VUO cuts the circle of contact draw the

lines av, bu parallel to the polar axis VOC meeting VU in v and u.

Then we have by similar triangles

AC : Vv=VC : va and Vv : aO=Uv : Ua. (a)
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Fig. 66.

379

Compounding these proportions, we obtain

AC :aO=VC.U :va.Va (b)

In like manner BC .bO=VC . U -.ub.Mb, (c)

and therefore

AC.BC :aO.bO= VC'Uv.\Ju:Va.lJb.va.ub. . (d)

*
By a suitable alteration in

fig. 66 the theorem may as easily be proved when
the point in which the chords meet is outside the cone.
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Uv Vu UV .

Now, by introducing the relations =
~h

==
\rci> preceding

expression becomes

VC2 VU3

AC.BC=aO.iO.=
V02 U.U6'

Let aO . bO = A:
2
,
since O is a fixed point in the plane of the

circle of contact, and let Ua . \Jb=t'2
,

t being the tangent drawn
from U to the circle of contact.

The preceding expression now becomes

(ft

Through V let any other straight line VY be drawn in the ver-

tical polar plane. Through this line VY and the polar axis VC
let another plane be drawn cutting the plane of the conic in the

straight line MCN and the plane of the circle of contact in the

secant Xmn. Then in the same way it may be shown that

and therefore, eliminating the common factors, we find

AC.BC TO2
*
2

MC.NC

(g)

(h)

Through UV let a tangent plane to the cone be drawn cutting
the plane of the circle of contact in the tangent UT, and the plane
of the conic which is parallel to the vertical polar plane in the

tangent to the conic at T. Then the side VT of the cone will make

equal angles with the tangent to the cone at T, and with YU which

is parallel to it. Let this angle be %. Then as a side of the cone

VT is at right angles to the tangent UT, UV sin ^=UT or t. In

like manner YV sin %/=/
Making these substitutions in the preceding expressions, we get

AC.BC_sin2
y/ ({]

MC.NC ~sm2
%'

It has been shown in sec. [267] that the angle which a side of

the cone makes with the tangent to the conic at the point where

the side of the cone meets it is equal to the angle which the focal

vector makes with the tangent at the same point ;
and as AC =BC

and MC=NC, since C is the centre, we may infer that any two

diameters of a conic are to each other inversely as the sines of the

angles which parallel tangents to these diameters make with the focal
vectors passing through the points of contact.

292.] If now through any other point O
y ,
in the plane of the
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circle of contact which is not the pole of the dirigcnt XY, a

straight line be drawn from the vertex, and meeting the plane of
the conic in the point C

;,
and if through this line VC

;
and the

two lines VU, VY in the vertical polar plane be drawn meeting
the plane of the conic in the straight lines A^B, and MjCyN,,
these lines will be parallel to ACB and MCN, since one pair of

planes passes through UV, and the other pair through YV, which
are each parallel to the plane of the conic. The point C /? however,
will not be the middle point of the chords A^B,, M ;

N
/}

since

VU, VB/}
V0

; ,
VA

;
do not constitute an harmonic pencil.

Now repeating the same construction as before, we shall have

comparing this expression with
(i)

in the last section, we see that

A,C, . B,C/=
ACa

f

.

M/VNjC, MC3
*

Thus may the well known relation between the rectangles under
the segments of parallel chords be simply derived from the pro-
perties of the right cone, and from this other that if a straight line

be drawn parallel to a plane, all the planes drawn through this

straight line will cut the plane in parallel straight lines.

293.] Let us assume one of the foregoing rectangles or squares
(since AC=BC and MC= NC) as the square of half the major
axis a2, and let the other square be a

y

2
; then

a2 sin2 *. , ..

-a= --oi as before...... (b)a* sin2 ^
Now when the tangent to the conic is drawn parallel to 2a, the

major axis of the conic, sin 2^= -,, and sin2 ^y=^, p, pt being the
a pp t

focal perpendiculars on the tangent whose focal angle is y,, and p, pt

the focal vectors of the point of contact. Now ppt b\ as shown
b*

in sec. [288]. Hence sin2 ^y
= . Substituting for

PPi
their values, we get

In sec. [276] it has been shown that the rectangle under the

segments of a tangent to a conic, intercepted between two parallel

tangents to the curve, is equal to the rectangle under the focal

vectors of the point of contact. Hence, by the preceding theorem,
the rectangle under the segments of the tangents is equal to the

square of the parallel semidiamcter*.
* This is the theorem which connects the focal and central properties of the

conic factions.
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ON THE HYPERBOLA AND ITS ASYMPTOTES.

294.] In the preceding sections, the vertical polar plane as defined

in def. vni. is drawn outside the cone, while its polar with respect
to this cone, the vertical polar axis, is drawn within the surface of

the cone. We may, however, invert these conditions, and draw
the vertical polar axis OV outside the cone (as in fig. 67).

Fig. 67.

Through this axis let two tangent planes be drawn to the cone

touching it in the sides VD, VE, and cutting the base of the cone

in the line DE. These tangent planes may be called Asymptotic
Planes. The plane of this triangle VDE will be the vertical polar

plane of the axis VO, which meets the tangents DO, EO in the

point O.

Let a plane AGH be drawn parallel to the vertical polar plane.
This plane will cut the cone in an hyperbola ASaBA The polar
axis OV being produced will meet the plane of the hyperbola in a

point C, which, as will be shown, is the centre of the hyperbola ;

and if the asymptotic tangent planes to the cone drawn through the

polar axis OV, and touching the cone along the sides VD, VE, be
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produced, they will cut the plane of the hyperbola in two straight
lines CG, CH meeting in C ; and these lines are called the asym-
ptotes of the hyperbola.

Since the plane of the hyperbola is parallel to the vertical polar
plane VDE, the asymptotic tangent planes to the cone through
VD, VE will cut these planes in parallel straight lines VD, CG and

VE, CH ; or the asymptotes are parallel to the sides of the cone.

Cor. i.] No hyperbola can be cut from a given right cone the

angle between whose asymptotes is greater than the vertical angle
of the cone.

Cor. ii.] All hyperbolas whose planes are parallel will have the
same asymptotic planes ; and therefore the angles between their

several pairs of asymptotes will be equal.

295.] Through the vertical polar axis VO let a plane be drawn

cutting the vertical polar plane in the line VL, the sides of the

cone in the lines YM and VN, and the plane of the hyperbola in

the line ACB. Then as VO, VM, VL, VN is an harmonic pencil,
and the line ACB is parallel to the line YL in the polar plane VDE,
CA=CB, or C the centre bisects all the chords which pass through
it.

Since the asymptotes CG, CH are parallel to the sides of cone

YD, VE, a line TZ drawn from any point T of an asymptote to

the parallel side VZ of the cone and parallel to YC is equal to

VC the distance between the vertex of the cone and the centre of

the hyperbola, since VCTZ is a parallelogram.

290.] Since the plane ofthe hyperbola is parallel to the vertical

polar plane, the straight lines in which these planes are cut by the

asymptotic tangent planes are parallel. As the distance between
the plane of the hyperbola and the vertical polar plane is constant,
the surface of the cone as it enlarges from the vertex will approach
more and more closely to the asymptotes ;

so also, therefore, will

the hyperbola, as it is a curve on the surface of the cone, and whose

plane is at a fixed distance from the side of the cone in which it is

touched by the asymptotic plane.

297.] If a straight line meet the hyperbola and its asymptotes,
the portions of the line between the curve and the asymptotes are equal.

Let the secant meet the hyperbola in the points 11, S, and the

asymptotes in the points Q, P. Through the points <d, P let

tangents QI, PK be drawn to the cone parallel to YC, and touching
the cone in the points I, K on the sides of the cone V K, Y I ). Thru
as VCPK and VCQI are parallelograms, PK is equal to Ql^as each

is equal to VC. But the rectangle QS . QR : 1' K . 1>S = OP : PK a

;

but QI= PK, and therefore QS . QR= 1'K . PS or US = PK.

298.] //' a tangent be drawn to an hyperbola, the portion of it

between the asymptotes will IK- hiscctctl at the ji'iint of contact.

Through A let a tangent TX be drawn, AT = AX.
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From X and T let tangents TZ, XY be drawn to the cone parallel
to VC. They are therefore equal, as each is equal VC. But

AT2
: AX2=TZ2

: XT2
;

and as TZ= XY, AT= AX.
299.] The rectangle under the segments of a secant between the

asymptotes and a point on the curve is constant, and equal to the square

of the parallel tangent between the point of contact and the asymptote.
Let AT be parallel to the secant QSR ; draw tangents to the

cone TZ and QI from T and Q, parallel to VC. These tangents
are equal, each being equal to VC ; hence the rectangle

QS.QR : AT2= QI2 :TZ2
.

But QI= TZ, as each is equal to VC ; therefore QS . QR=AT2
.

Hence also, the rectangles under the segments of any parallel secants

between the asymptotes and points on the curve are equal.

300.] While the vertical polar plane and the vertical polar axis

are interchanging their positions, the former becomes a tangent

plane to the cone, while the polar axis becomes that side of the

cone in which it is touched by the vertical polar plane. Hence
the plane of the conic which is always parallel to the vertical polar

plane, now becomes parallel to a side of the cone; that is, the

section is a parabola : and as the centre of the conic is always on
the polar axis (in this case the side of the cone), the centre of the

parabola will be the point in which the side of the cone will meet
the plane of the parabola, to which it is parallel that is, at infinity.

Again, as the vertical polar axis is the line in which the asym-
ptotic planes intersect, and as these tangent planes merge iuto one

when their line of intersection becomes a side of the cone, the

asymptotic plane spreads out on either side and meets the plane of

the parabola in straight lines parallel to the axis of the conic, but
at an infinite distance from it. Hence the parabola partakes of

the nature of the hyperbola. It has asymptotes; but they are

parallel to its axis at infinity.

CHAPTER XXIX.

ON THE CURVATURE OF THE CONIC SECTIONS DERIVED FROM THE

CURVATURE OF THE RIGHT CONE.

DEFINITION.

The curvature of a surface at a point A, may be defined as the

aggregate of all the curvatures of its sections whose planes pass

through the normal to the surface at the point A.
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LEMMA.

301.] A tangent being drawn to any curved surface, and 11

being the radius of curvature of a normal section drawn through
this tangent, at the point of contact, the radius of curvature of any
other plane section drawn through this tangent is 11 cos i, i being
the angle between the planes. MEUNIER'S theorem.

Let AB be the tangent at the point A, CAOD the normal section,
in the plane of the paper, suppose ;

then the tangent plane to the

Fig. 68.

surface through the tangent AB will be perpendicular to the plane
of the paper, and the curve*d surface on either side of CAD inde-

finitely near to A is perpendicular to the plane of the curve CAOD.
Let 7AS be a section of the surface made by a plane passing through
AB, inclined at an angle i to the plane CAOD. Through at a point
assumed on AB indefinitely near to A let the plane aru be drawn

perpendicular to A B, meeting the normal section in rand the other

section in v. Then wot is a right angle, and the angle var= i.

Let be the radius of curvature of the section yAS. Then

Aa2=2$l . r, and Aaa
=2lT . <xv. But otr=av cos i

; consequently

C=Hcosi (a)

Cor. i.] Hence if through the circle of curvature of the normal

section of the surface, whose plane passes through the tangent Aet, a

sphere be described having its centre coincident with that of the circle

ofcurvature of the normal section, aplane passing through the tangent
Aa will cut the surface in a curve and the sphere in a lesser circle,

such that the latter will be the circle of curvature of theformer at the

point A.
Cor. ii.] If on the normal to a curved surface, as diameter, a sphere

be described passing through the given point A, and if the sections of
the surface and the sphere made by a plane passing through the

VOL. II. 3D
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tangent AB have the same curvature, any other plane passing through
AB will cut the surface and the sphere in sections having the same
curvature.

302.] We shall now proceed to apply this theorem to cones and
conies.

If a tangent AB be drawn to a
p- gy

right cone at a point A, and AC
be drawn in the tangent plane at

right angles to the side of the cone

AV, the radius of curvature of the

normal section passing through AC
is to the radius of curvature of the

normal section passing through AB
at the point A as sin2 VAB : 1 ;

or if C be the radius of curvature

through AC, i& the radius of cur-

vature through AB, and the angle
VAB be Y,

r=$tsm2
X . (a)

Let a plane AVD be drawn

through the axis of the cone, and
a tangent plane to the cone along
the side AV, and let another plane
A'Vmnbe drawn parallel and inde-

finitely near to the former, cutting
the tangent plane AVB in the

straight line A/V, parallel to AV,
the tangents AB, AC in the points
m and n, and the cone in the

hyperbola r, v, U, of which A,V;

is one of the asymptotes. Draw

nr, mv parallel to the normal at

A, and meeting the hyperbola in

T and v; then nr, mv are ultimately equal ; for in the infinitesimal

hyperbola Ut>r, V
y
ra . mv=V

t
n . nr. But ultimately V

/
m= V,w,

as each is ultimately equal to VA. Therefore mv= nr. Now
Am2 = 2iH .mv, andAn

2= 2 C . nr, whileAw
2=Am2

sin2%; consequently

r=ifcsin2 x........ (b)

Hence the radii of curvature of all the normal sections of a cone

at a given point, and whose planes pass through tangents to the cone

at this point, are to each other inversely as the squares of the sines

of the angles which these tangents make with the side of the cone

passing through the given point.

303.] To find the radius of curvature of a conic section at a given
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point on the surface of a cone, whose plane passes through a given
tangent to the cone at this point (fig. 69).

Let A be the given point, AB the given tangent, and VAB=^.
Let the tangent AC be drawn at right angles to VA. Then if

a sphere be described on the normal to the cone touching the

tangent plane at A, it will follow from cor. ii. sec. [301] that if any
common section of the cone and sphere passing through the tangent
AC have the same curvature, every other common section of the

sphere and cone passing through the same tangent AC will have
the same curvature. Let the sphere now be supposed to be inscribed

in the cone, touching the tangent plane at A ;
it is manifest that

the common sections of the cone and sphere passing through the

tangent AC parallel to the base of the cone will have the same cur-

vature at A, as the sections in this case are one and the same circle,

the "
circle of contact

"
of the sphere with the cone ; consequently

the great circle of this sphere whose plane passes through the

tangent AC is the circle of curvature of the normal section of the

cone at A whose plane passes through the tangent AC.

Let VA= /, and let the semiangle of the cone be 0, while r is the

radius of this sphere inscribed in the cone, then r is manifestly

equal to / tan 6.

Consequently, if 11 be the radius of curvature of the normal

section of the cone through AB, H= _?L- (see sec. [302]), and

r=/tan0. Therefore iti sm
,

If now a sphere be described touching the tangent plane VACB

at A, its radius being
l ta

? , every plane passing through the
2sm

tangent AB will cut the cone in a conic section, and the sphere in

a circle, such that the latter will be the circle of curvature of the

former at the point A.

304.] To find the centre of the sphere of curvature for all the

sections of the cone whose planes pass through the tangent to the cone

AD (fig. 70).
Let A be a point on the surface of the cone through which the

tangent AD is drawn. To the tangent plane VAD draw the normal

AO meeting the axis of the cone in O. Through ADO let a plane

be drawn, and in this plane make the angle DAC equal to the

angle VAD. Through the point O draw the line OC parallel to

AD, and meeting the line AC in C. Through the point C draw

CQ at right angles to AC, meeting the line AO in Q. AQ is the

radius of the sphere of curvature.

Since QCA is a right-angled triangle at C, and OC is at rigl.t

angles to AQ, the angle CQA=OCA=CAD=VAD=X . Therefore
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AC=AQ sin

and

and AC sin ^= AO. Therefore AO =AQ sin2 %,

Hence AQ= .

a
^ .

sln X
305.] To find an expression for the radius of curvature of any

conic section whose plane passes through the tangent Tp (fig. 71).
Let ACB be the conic section, Tp the tangent to the cone at the

point T in the plane of the conic. From the vertex of the cone draw
the perpendicular VP to the plane of the conic, and through VP let

a plane be drawn at right angles to the tangent Tp, meeting this tan-

gent in p. Then Vp, T?p are each at right angles to Tp ;
and therefore

the angle V/?P is the inclination of the tangent plane to the cone to

the plane of the conic. Let VT=/, and the angle VTp= %. The sine

of the angle which the plane of the conic makes with the tangent
VP VP

plane is = :
-

. Hence the cosine of the angle which the
\p I sm %

plane of the conic makes with the normal plane passing through
VPAB is :
- . But the radius of curvature of this section is equal to

/ sin ^ *

the radius of curvature of the normal section passing through Tp,

multiplied by the cosine of the angle between the planes, by
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Fig. 71.

MEUNIER'S theorem ; or thg radius of curvature of the conic section

at the point T is -
. Now in sec. [281] it has been

sin* % I sin x
shown that VP tan is the semiparameter. Hence the radius of

curvature is equal to .V
sin X

Now as x is also the angle between the tangent and the focal

vector at the point A,

sin x= -= - But ppt
=

b*, and pp,
= a*, p and pt being the perprn -

P Pi

diculars from the foci on the tangent: therefore siu3 v= _,and*
fl.
3

b* a 3

4L = . Therefore the radius of curvature = -'.-. ... (b)a ab

Cor.] Hence also the radii of curvature of all conic sections

whose planes pass through a given tangent to the cone are, at their

points of contact, as their parameters.
In some treatises on conic sections b

t
is put for the semidiameter

parallel to the tangent, while a
t represents the seraidiaroeter through

the point of contact ; here the notation is reversed.
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DEFINITION.

306.] A normal to a conic, at a given point, may be defined as

the projection, on the plane of the section, of the radius of the

sphere inscribed in the cone, touching the conic at this point.
As the centre of the inscribed sphere is always on the axis of the

cone, and as the projection of any point in the axis of the cone on
the conic is always on its major axis, therefore the foot of the
normal will always be found in the major axis of the conic.

Cor.] The normal is always perpendicular to the tangent to the
cone at the given point; for as AO is perpendicular to AB (see

fig. 69), its projection on any plane passing through AB will be also

perpendicular to AB.
To find an expression for the normal N.
Let N be the normal at the point A, VA=/; then the cosine of

the angle between the normal plane to the cone passing through
VPAB and the plane of the conic is :
-

, as shown in the last
sin "

section ; and the radius of the inscribed sphere is / tan 6 : conse-
VP

quently the normal is /tan Q .

j-
r . Now VP tan 6 is the semi-

parameter (^L), as shown in sec. [281] ; therefore the expression
for the normal becomes

ng
307.] In any conic section the normal is to the radius of curvature

at any given point as the radius of the inscribed sphere is to the radius

of the sphere of curvature at that point.

The radius of curvature of the conic at the given point is . ,. .

sin3 v
(4L)

The normal at the same point is ^1 -. The radius of the spheresm%

of curvature is -^ 5 . The radius of the inscribed sphere is I tan 9.sm %
Hence the proposition is manifest*.

*
Intelligent students of this subject may have been at a loss to understand

why the radius of curvature of a conic section at any point should vary inversely
as the cube of the sine of the angle between the tangent and focal vector at that

point. These quantities do not appear to have any connexion
;
there are other

quantities with which the radius of curvature would seem to be more nearly allied.

But when it is shown that the angle ^ is not only the angle between the tangent
and the focal vector, but that it is also the angle between a side of the cone aqd
the plane of the normal section of curvature whose radius varies inversely as the

square of the sine of this angle, and that the cosine of the angle between the

plane of the conic and the plane of this normal circle of curvature varies also

inversely as sin x> we may thus see how the radius ofcurvature of the conic section

varies as the product of . by -,--
sin x

*

sin X
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DEFINITION.

391

The sphere described on the portion of the axis of the cone
between the centres of the focal spheres as a diameter, may be
called the central sphere.

308.] The distance between the centre of the conic and thefoot ofthe

normal is (a p)e,p being thefocal vector to thefocus F from the point
N to which the normal is drawn, and e the eccentricity of the conic.

Since the centre S of the central sphere is on the axis of the cone,
and the centre v of the normal sphere is also on the same axis, the

projections of these two centres on the major axis of the conic will

give the centre of this conic and the foot of the normal, as shown
in sec. [306] .

Fig. 72.

Thus, in fig. 72, let VC= c be a side of the cone between the

vertexV and the circle of contact ; and as DD,=2a, see sec. [261],

the distance of V to S, the centre of the central sphere, is I 2),\CO80/

6 being the scmiangle of the cone, and t the angle which the axis

of the cone makes with the plane of the conic. This line projected
on the major axis of the conic, becomes

COS Ii:un * , r.- i T
since e *, as shown in sec. [2/1J.

cosa
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In like manner, c+ p being that portion of the side of the cone

to the point N, the distance of the vertex of the cone to the centre

v of the normal sphere will be I
--

I ; and this line projected on
\COS0/

the major axis of the conic will become

I- ) cosi=
\cos#/

Now On is the difference of the projections OP and nP
;
hence

OP-nP= On=(c + a)e (c + p)e=(a- p)e. . . (b)

Cor. i.] The distance between the foot of the normal and the

focus is

ae (ap]e= pe........ (c)

Cor. ii.] The distance of the foot of the normal from the other

focus is pt
e ; therefore the rectangle under these distances is

a*<*......... (d)

309.] The rectangle under the perpendiculars, on the major axis,

from the vertex of the cone and the centre of the central sphere is

equal to the square of half the minor axis.

As the major axis (fig. 72) of the conic is a chord of the central

sphere whose radius is a seed, the perpendicular on the major axis

from this centre will be a tan ;
and p being the perpendicular from

the vertex of the cone on the major axis, the rectangle is

a tan 6 .p a .p tan 6.

fo<z

But p tan =
, as shown in sec. [281] ;

N

therefore the rectangle under the perpendiculars is equal to 62 .

CHAPTER XXX.

ON THE PROPERTIES OF CONFOCAL CONICS DERIVED FROM

THE RIGHT CONE.

310.] The consideration of groups of conies that shall have the

same centre and foci may be based on an extension of the properties

of focal spheres.
If we conceive the radii of the focal spheres inscribed in the cone

to be increased in the same ratio, while the points of contact of the

spheres with the plane of the conic continue the same, and if cir-

cumscribing cones be drawn to each pair of spheres, whose radii
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are R, r : nR, nr : nfi, n
t
r and so on, we shall have as many cones

circumscribing these spheres, which will cut the plane of the original
conic in as many concentric and confocal conies.

DEFINITION.

The point in which the axis of the cone meets the major axis of

the conic may be called the point of axial intersection.

These cones possess some curious properties.

Fig. 73.

VOL. II. 3 E
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(a) The axes of these cones all pass through a fixed point (the

point of axial intersection) on the major axis.

(fi) The vertices of all these cones range along the same perpen-
dicular to the plane of the conic.

(y) The ratio of the distances from the vertex of any one of the

cones to the centres of the inscribed focal spheres is constant.

311.] Let planes be drawn through the axes of these cones, they
will all cut the major axis in the axial point of intersection Q ;

and
P being the foot of the perpendicular drawn from the vertices of
all these cones, we shall have

F,Q : QF= F
;
P : PF;

for VF,, VQ, VF, VP is an harmonic pencil, as shown in sec. [278] .

The angle between the vertical focals VF and VF, may be thus
found.

The tangent of the angle y between the vertical focals may be
found from the expression

tan y=2e tan 0,

being the semiangle of the cone, while B, and r are the radii of
the focal spheres. Let these focal vectors make the angles 8, S

f

O6 tt

with the major axis
; then tan8=, and tan 8

;
= .

tan 8 tan 8. ae(R,r)
or =

But Rr= 62
,
as in sec. [288], and (R-r)=2atan0.

Therefore tan y= 2e tan 6.

312.] If in sec. [278] the chord mn be supposed to pass through
Q, the point of axial intersection, the perpendicular on mn from
the intersection of the tangents drawn at the extremities of this

chord mn will pass through P the foot of the perpendicular from
one of the vertices of the cones.

Hence, if mn be a segment of a common chord to any number of

confocal conies, the intersections of every pair of tangents whose
common chord is mn will meet in the straight line drawn at right

angles to mn through P the foot of the perpendicular to the plane
of the section, the locus of the vertices of all the confocal cones.

More generally, if any number of confocal conies have a
common chord, and if tangents in pairs be drawn to the conies at

the points in which they are met two by two by the common chord,
these tangents will meet in pairs on the straight line passing

through -or at right angles to the common chord. If q be the inter-

section of the common chord mn with the major axis of the conic,
we shall have

F,g : gF=F,w : *rF.

Hence the position of the point w may be ascertained.
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Should the chord mn become a tangent instead of a secant to

one of the confocal conies, the pair of tangents coalesce into one

tangent meeting on the perpendicular.

313.] Hence we may obtain this other theorem established by a

very different method in the first volume, p. 20 : If a secant to a
conic be a tangent to another confocal conic, and tangents be drawn
to the outer conic at the ends of this chord meeting in a point, the

line drawn from this point of intersection to the point of contact of
the inner confocal section will be perpendicular to this secant.

CHAPTER XXXI.

ON SIMILAR CONIC SECTIONS.

DEFINITION.

314.] The sections of a cone made by parallel planes may be
called similar conic sections.

Hence similar conies have the same vertical polar plane and the

same polar axis; and therefore all their centres range along the

same straight line, the polar axis.

Therefore all circles, parabolas, and equilateral hyperbolas are

similar figures ;
for their vertical polar planes are identical.

Hence all similar hyperbolas have the same asymptotes.
In similar and similarly posited conies all parallel diameters,

and homologous lines generally, are in the same ratio, that of the

parameters of the conies.

Through the axis VOQ of the cone let a plane be drawn cutting
the planes of the parallel conies ABCD and abnm in the lines

QA, Oa, which lines are themselves parallel ; hence (fig. 74)

Oa : QA=VO : VQ=VP : VP,=VP.tan0 : VP,tan0.
But VP tan & and VP

(
tan Q are the semiparameters of the two

sections, as shown in sec. [281]. In the same way it may be

shown of any two homologous lines in the similar sections.

315.] In two similar concentric and similarly posited conies two

parallel chords of one are drawn cutting the other; the rectangle
under the segments of the one is equal to the rectangle under the

segments of the other.

Through the opposite cone VA^B^C^D^ let a plane A
II
'B

II
CUDU

be drawn parallel to the plane ABCD and equidistant from the

vertex V. The section of the cone made by this plane will be in

every respect equal snd similar to the section ABCD. Now if we
conceive a cylinder erected on this base, and having its axis coin-

cident with that of the cone, it will meet the plane of the parallel
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Fig. 74.

section in a section equal, similar, and parallel to the given section ;

hence the cylinder will meet the upper sheet of the cone in the

section A^B^C^D^. Through any point A ;
in the cylinder let a

plane be drawn parallel to the given plane ABCD ;
it will cut the

cylinder in a section A^ByCyDy equal and similar to ABCD, and the

cone in a section abmn parallel to the section ABCD, and therefore

similar to it. Hence the sections A/B^D, and abmn of the cylinder
and the cone are similar and concentric. Through C, and D

/? any
two points on the surface of the cylinder and in the plane of the



ON CONIC8. 397

section AjB^D,, let two parallel chords be drawn meeting the
section abmm

t
nn

l
in the points m, n and the points m.nr

Through C, and D /
let two sides of the cylinder be drawn meeting

the cone in the points C, C /y
and D, D/y

. Then, as CC,,, DD ;/
and

Cm, D /
m

/
are parallel secants of the cone,

C,C . C,C tl
: C

lt
m . C

t
n- D,D . D,Dtf

: D,w, . D,n, ;

but as the three common secant planes of the cylinder and cone are

parallel, C,C=D /
D and C/^DjD,,; therefore C,m .

Cfi=Dfn.Dft.
Hence also, if one of the parallel secants of the similar conies

becomes a tangent, this tangent will be bisected at the point of
contact.

It is manifest that the segments of any chord drawn to meet
the similar conies are equal between the sections.

The following properties of right cones and their sections are

worthy of notice.

316.] (a) A tangent to a cone being drawn, there may always be

drawn through it two planes cutting the cone in two sections which
shall have equal parameters.

(/S) The conic of maximum parameter which can be drawn through
a point on the surface of a right cone is that whose plane is at right

angles to the side of the cone passing through the given point, and

having its tangent at this point parallel to the circular base of the

cone.

(y) Through a given point on the surface of a cone there may be

drawn any number of planes cutting the cone in conies having the

same parameter ; and their planes will all touch a right cone, whose

vertex is the given point and whose axis is the side of the original
cone passing through the given point.

(8) The locus of the foci of all the parabolas which can be con-

structed on a given right cone is also a right cone. The locus of the

foci of all equal parabolas on the cone is a circle whose plane is

parallel to that of the base ; and the locus of the foci of all the para-
bolas whose planes are parallel is a straight line passing through the

vertex of the cone. Hence the locus of the foci of all the parabolas
that can be drawn on the cone is the combination of the above named

loci, a cone.
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CHAPTER XXXII.

ON CONICS IN A PLANE.

317.] Having now, by the help of the right circular cone, estab-

lished the principal properties of its sections by short and simple
demonstrations based on the most elementary principles of the

ancient geometry, it is proper to show how these principles may be

applied to the development of the properties of conies viewed as

curves on a plane. When the cardinal properties of conies have

once been established by the help of the right circular cone, there

is but little difficulty in applying them to the investigation on a

plane of the countless theorems relating to those curves. Geo-
meters have in general ignored their real origin, and have founded

their investigations on some arbitrary definition. It is worthy of

notice that some of the theorems which are most easily and briefly
demonstrated when these curves are taken as sections of a right

cone, can be established only by tedious and complicated methods
when they are treated as plane curves. Of this the focal properties
furnish a striking example. There is, however, a very large class

of theorems to whose solutions neither the right cone nor any other

cone affords any help. I refer to the properties of minor foci and

minor directrices, which will be found discussed at some length in

the first volume of this work (see Vol. I. sec. [288]).
The method of reciprocal polars applied to oblate and prolate

spheroids is the source of innumerable novel properties of conies.

One special application of the method of reciprocal polars to the

prolate or elongated ellipsoid of revolution round its major axis

(see Vol. I. p. 218) enables us to develop to a very great extent

and with much simplicity the properties of surfaces of the second

order whose three axes are unequal. In particular it is shown that

every such surface has four foci and four directrix planes. Every
new method may be a fertile field of new truths.

In sec. [265] it is shown that the rectangle under the focal

perpendiculars p, p, on a tangent drawn to a central conic is

equal to 6". Let P be the perpendicular from the centre on the

same tangent, making the angle X with the major axis. Then,

obviously
P+P,=W (a)

Let p, Pf
be the focal vectors to the same point.

Then p-\-p l=2a, as shown in sec. [262].
Let ^ be the focal tangential angle, then we have

2P=p +p,= (p + /o,)
sin x= 2 sin %.

Hence P= sin^ . (b)
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Since j
= P -f ae cos X, and ^=P oecosX, . . . (c)

62=pp,=P2 2e2 cos2 X.

Therefore P2=a2
(l-e

2 sin2 X)....... (d)

Comparing this expression with (b) we find

cos^=esin\, ....... (e)

a simple relation which connects the focal tangential angle % with
the latitude X.

318.] Since p+p t
= 2a, squaring,

p
2+ 2pp,+ p,

z=4a2
. Now 2pp, 2af, as shown in (b) , sec . [293] ,

while p
2+ p?= 2b?+ 2a2e2 .

Hence, substituting, a
/

2+ i
/

2=a2+ 62....... (a)

Since a?=pp t
and P2*=a2 sin2 ^, fl^P

2= fl
2
p sin ^ . p, sin ^,

or afP*=a
i

ppl
=di

b'
i....... (b)

Hence the areas of parallelograms about the conjugate diameters

of a conic are equal.
Let b*=#2+ y*, then a*b*= a2*2+ y . But a2y

2= a262-6V ;

hence a*b*= a262+ (a* i2>2
, or b*= b9+ eV ; )

and in like manner
fl^

2= a2 e
2
a;
2

. j

319.] The following values of the radius of curvature, and chorda

of curvature passing through the foci and centre, may easily be
derived from the expressions in sees. [303], [304], [305], which
have themselves been deduced from the properties of the right cone.

In sec. [305] it has been shown that

2 b*
and N= :

--
, .... (a)

while P=asin^, and sin^=-...... (b)

From these values we may obtain the following expressions for

the radius of curvature and the normal

aN=^
y , =, sin2 x=N.

If
-fy

and x b6 tne angles which a tangent to the curve makes
with the central and focal vectors,

aa sin4 Y .,.

(d)9 . g
--r ......

a2 sm2 Y o2 cos* ^
2a 9

Hence C, the chord of curvature through the centre is ^-t (c)

while the chord of curvature through the focus is L
. . . (f)
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320.] If a line be drawn from the focus to the pole ofafocal chord,
it will be at right angles to this chord, see sec. [270] .

In the parabola mpn is a right angle.
Since wF=mY, and the angle pm is equal to the angle mYp,

both being right angles, the angle Y^?F is bisected by the tangent

pm. In the same way the angle XjoF is bisected by the tangent pn ;

consequently the angle mpn is a right angle.
Cor. i.] We have also Y/?=Xj9=Fp.
Hence, if from the ends of a focal chord of a parabola perpen-

diculars are drawn to the directrix, the pole of the focal chord will

bisect the portion of the directrix between the feet of the perpen-
diculars.

Fig. 75.

A tangent to a parabola makes equal angles with the focal vector

drawn to the point of contact and with the axis of the curve.

This is evident from an inspection of fig. 75.

321
.]

The focal vector drawn through the intersection of a pair of

tangents to a parabola divides the angle between these tangents into

two, which are respectively equal to the alternate angles which the
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tangents make with the focal vectors passing through the points of
contact.

Let the tangents Tm, Tn to the parabola meet in T ; let F be

Fig. 76.

the focus of the parabola ; and let the tangents meet the axis of the

curve in the points C, C,.

Then the angle wFE is equal to twice the angle mCF, and the

angle FE is equal to twice the angle nC
;
F ; hence, adding, the

angle mFn is equal to twice the angle mTn, or half the angle mF
is equal to the angle wT. Now the line TFG bisects the focal

angle wF; therefore the angle wFG is equal to the anglr /wT/i.

But, being external, it is also equal to the sum of the angles Fw*T
and FTw. Therefore the sum of the angles FwT and FTw is equal
to the sum of the angles l<Tn and FTw ; consequently the angle
FwT is equal to the angle FTn.

Hence, since the angle TF/n is equal to the angle TFn, the two

triangles TFw and TF/i are similar ; therefore tF : TF=TF : nF, or

mF.nF=TF2
.

Hence, in a parabola, the square of the focal vector drawn to the

intersection of a pair of tangents to the curve is equal to the rectangle
under the focal vectors drawn to thepoints ofcontact of these tangents.

322.] The squares of the tangents Tm, Tn (fig. 76) drawn to a

parabola from any point T are in the same ratio as the focal vector*

drawn to the points of contact in, n.

VOL. II. 3 T
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Let FP be a perpendicular drawn from the focus to the tangent

Tm, then the area of the triangle TFm is =^FP . Tm. But if -^
be the angle TFm, the area of this triangle is also FT . Fm . sin^ ;

therefore

FP.Tm
"k^FfTI*.......

But the angle TFn is also equal to ty ;

FP. .Tn ,Mtherefore Sm = .......
Equating these values of sin

>/r, squaring, putting for FP2
and FP,

2

their values k . Fm and k . Fn, we get

fma

_Fm
W~*v

Hence also the chord mn is divided into segments- by the line TF,
which are to each other in the duplicate ratio of the tangents Tm
and Tn.

323.] If a parabola be inscribed in a triangle, the circle which cir-

cumscribes the triangle passes through the focus of the parabola.
This theorem follows immediately from that established in sec.

[277], in which it is shown that, if a conic be inscribed in a triangle,
the sum of the angles subtended at the foci by the base of the tri-

angle is equal to the external vertical angle of the triangle. Now
when the conic becomes a parabola, the remote focal angle vanishes,
and therefore the angle at the near focus, subtended by the base

of the triangle, is equal to the external vertical angle of the triangle;
and therefore a circle may be drawn through the vertices of the

quadrilateral ACBF*.
Since FC3=FA

/
.FB

/ ,
FB2

=FC,.FA,, FA2

=FB,.FC,, . (a)

then, as ACBF is a quadrilateral in a circle,

CB . (FB,FC,)*+ CA . (FC, . FA,)*=AB . (FA, . FB,)*;

consequently by division we obtain finally

CB CA AB

VFA,
Hence the sum of the sides of the circumscribing triangle, each

divided by the square root of the focal vector drawn to its point of
contact with the parabola, is constant.

If we multiply together the expressions in (a), we shall have

FA.FB.FC^FA^.FB^FC, (c)

Hence, when a triangle circumscribes a parabola, the product of the

focal vectors drawn to the vertices of the triangle is equal to the

* This theorem is otherwise established, and very simply, in the first volume,
see sec. [53], by an application of the method of tangential coordinates.
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Fig. 77.

product of the focal vectors drawn to the points of contact of the

sides of the triangle with the parabola.

324.] Since the sums of the rectangles under the adjacent sides

of a quadrilateral inscribed in a circle are as the diagonals which

join the points in which the sides of the rectangles meet, we have

AB . BC . CA=CA . FC . FA +CB . FC . FB-AB . FA . FB.

But FA2= FB, . FC,, FB3= FA, . FB,, and "FC
a= FA,FB(

.

Substituting these values in the preceding equation, we get

AB . BC . CA
VFA,-AB .

[FA,.FB,.FC,]r

325.] The directrices of all the parabolas inscribed in a triangle

pass through the orthocentre of this triangle (see fig. 78) .

From the focus F, on the circumference of the circle, draw the

perpendiculars Fm, Fn, Fr on the sides AC, CB, AB of the ri\vn

triangle. The points m, r, n range along a straight line, whirh is

a tangent to the parabola at its vertex. Produce Fr until rx is

equal to Fr, and through x draw xTt parallel to mm. xZ is the

directrix. Produce rA to meet the directrix in D. Join DF
meeting the circle in Q. Join CQ, FB. Then the angle CQD = the

angle FBC, since CQFB is a quadrilateral in a circle. The angle
QFr=the angle Dar=the angle wrF=the angle FBC, since Fr/B
is a quadrilateral that may be inscribed in a circle. Therefore the

angle DQC is equal to the angle DFx, or F* is parallel to C/.
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Fig. 78.

Therefore CpD is a right angle ;
and therefore ps=pQ,} or s (a point

on the directrix) is the orthocentre.

326.] The inscription of the maximum parabola in a triangle
involves the trisection of an angle (see fig. 79) .

Let ABC be the triangle, and let F be the focus of the maximum
parabola. From F draw the perpendiculars FM, FN, FU on the sides

of the triangle AC, AB, BC ; the lineMNU is a tangent to the para-
bola at its vertex (see preceding theorems) . To this tangent MNU
draw the perpendicular FP; FP will be one fourth of the parameter
of the maximum parabola inscribed in the triangle.
Assume a point Fy

on the circumference of the circle indefinitely
near to F, and from this point draw the perpendiculars FyM,, F;N, to

the sides of the triangle AC, AB. The line M,N y
will be a tangent

to the parabola whose focus is F, ; draw to this tangent the per-

pendicular FyPy. F
y
P

y
is one fourth the parameter of the parabola

drawn indefinitely near to the former ; therefore F;Py=FP; and they
are ultimately parallel, therefore FG the tangent to the circle at F
is parallel to MNU. But as FAMN is a quadrilateral in a circle, the

angle FAB is equal to the angle FMN=GFM. Therefore Fra=FB.
Draw OD parallel to AC, cutting the line Fw in I, then FI=wI ;

therefore FI is equal to the half of FB ;
and therefore the angle

FOI is one half the angle FOB, or the arc BFD is trisected in F.

This question may be taken as a good illustration of the appli-

cation of the method of infinitesimals to the solution of problems
in geometrical maxima and minima.
When the given triangle ABC is isosceles, the angle to be tri-

sected becomes a right angle.
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Fig. 79.

400

327.] By this method of geometrical limits problems which

present great difficulty if treated by algebra or the differential

calculus, may be solved with great simplicity. For example.
To draw the minimum line through a given point within a given

angle (see fig. 80) .

Let BAG be the given angle, O the given point, and BOC the

minimum straight line. Draw the perpendicularAD from A to BC,
and through O draw the line bOc indefinitely near to the line BOC,
meeting the sides of the given angle in the points c, b. Then
as BOC is the minimum line through O, bOc which is indefinitely
near to it, is therefore equal to it. With O as centre draw the

circles whose radii are OC, Ob cutting the lines be and BC in the

points m, n. Then as OC=Om, and Qb=On, cm=Rn. Let a>

be the infinitesimal angle between the minimum lines. Then
Bn=n cot B, and in=OB . a>. Therefore B/i=OB . o> . cot B.

In like manner cw=OC . <u . cot C. Therefore as Bn=cro,

OCtanB=OBtanC

But tan
AD A

i=77fv and

OC tan C
hence 7vu = : 5-OB tauB

AD
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hence

This may be reduced to

OC_KD
OB~CD*
CO + OB CD +DB

(a)

OB CD
ButCO +OB=CD +DB= BC; therefore OB= CD. . . (b)

Hence the minimum line drawn through a point within an angle

may be denned as the line to which if a perpendicular be drawn

from the vertex, the distance between the foot of the perpendicular
and one end of the base shall be equal to the distance between the

yiven point and the other end.

The point D is the intersection of a semicircle, drawn on the

line AO, with a curve of the fourth order.

ON THE ECCENTRIC ANOMALY IN AN ELLIPSE.

328.] Let a circle be described on the major axis of an ellipse
as diameter, and an ordinate ~
PD to the major axis be pro-
duced through the point P to

meet the circle in the point Q.
The radius ofthe circle through
this point makes the angle p
with the major axis. The angle

p is called the eccentric ano-

maly; and the angle X which the

perpendicular from the centre

on the tangent through the point P makes with the major axis is

called the latitude.
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Since #=acos/^ y b sin /A, the semidiameter

(5P2**=**/*+***'* (a)

In like manner
a

y

2=a2 sin2 /A+ &2 cosV, and P^a2 cos2 X+ 2 sin2 X. (b)

Thus P and b
t reciprocate their forms. Since x=acofj,, and

a2 = #, fl=cos/*. In like manner bv= sin/A.
Let d be that semidiameter of the ellipse which coincides with the

eccentric radius OQ, and which makes the angle fj,
with the major

1 cos2 /A sin2 /*
axis, then -^ g ---f g

. But P being the perpendicular on

the tangent through the point P,

1 _x* y
2
_cosV sin2

/!,
, .

P2~a4
"

l

"64
~

a2 62

therefore P=c?, whence this theorem :

The perpendicular from the centre of the ellipse on the tangent

through the point P is equal to the semidiameter which coincides

with OQ, the eccentric radius of the circle.

329.] To find the relation between the angle of the eccentric

anomaly p, and the focal tangential angle %.

omce

Hence

To fin

Since
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CHAPTER XXXIII.

ON ORTHOGONAL PROJECTION.

330.] In orthogonal projection the several points and lines of the

original or projective figure generate another or projected figure on
a plane inclined to the former, the locus of the feet of the perpen-
diculars drawn from every point of the projective to the projected

figure. These terms will be found simple and useful in saving
much circumlocution. The projective figure is cast into its pro-

jected derivative. Thus in a right circular cylinder, the projective

ellipse generates the projected circle on a horizontal plane.
The principles of orthogonal and divergent projection are often

found to be simple yet powerful instruments of investigation,

especially where it may be required to pass from the projective

properties of a circle to those of a conic. Let an ellipse be con-

ceived as an oblique section of a right cylinder standing on a circle

as base. The projective properties of the circle may be at once

transferred without demonstration to the ellipse. For example :

(a) All the radii of a circle are equal; and therefore all the dia-

meters of an ellipse are bisected in the centre.

(/3) The squares which circumscribe a circle are equal, and the

diameters which join the points of contact of the sides of the square
are parallel to the sides ;

hence all parallelograms about conjugate
diameters are equal in area, and the rectangular diameters in a

circle are projected into conjugate diameters in an ellipse.
'

(y) The locus of the angles of a square circumscribed to a circle

is a circle whose radius is to that of the former as ^2 : 1 . Hence
the locus of the vertices ofparallelograms about the conjugate dia-

meters of an ellipse is an ellipse similar to the original ellipse, whose

axes are in the ratio of \/2 : 1.

(8) Since the locus of the intersection of perpendiculars from
the centre of a circle on the chords joining the extremities of dia-

meters at right angles to each other is also a circle, so in an ellipse

the locus of the intersections of lines drawn from the centre to the

middle points of the chords joining the extremities of conjugate dia-

meters is an ellipse similar to the former, and whose area is to that

of the original ellipse as 1 : \/2.

Hence the area of the original ellipse is a mean proportional
between the areas of these loci.

(e) As the area of a square circumscribing a circle is the least of all

circumscribing quadrilaterals, so the parallelogram about the conju-

gate diameters of an ellipse is the least of all circumscribing quadri-
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laterals. As the square is the greatest quadrilateral that may be
inscribed in a circle, so the area of theparallelogramformed byjoint ,,>i

the extremities of conjugate diameters in an ellipse is a maximum.
'

() As the equilateral triangle is the least triangle that can be
circumscribed to a circle, so the triangle whose sides are bisected at
the points of contact is the least triangle that can be circumscribed
to an ellipse.

(4) As the equilateral triangle is the greatest triangle that may be
inscribed in a circle, so the greatest triangle that may be inscribed in
an ellipse is one whose vertex is at the extremity of one conjugate
diameter, and whose base is an ordinate to this diameter bisecting it

between the centre and the remote vertex.

Hence all such triangles are equal in area, and their centres of
gravity coincide with the centre of the ellipse.

(6) In a circle a chord drawn from a point in which two tangents
intersect is divided harmonically by this point and the chord of con-
tact ; so also in a conic.

331.] A perpendicular is drawn from a given point to a given
straight line. The point and line are orthogonally projected on a
given plane into another point and another straight line ; and from
the former a perpendicular is drawn to the latter. The ratio of these

inrpendiculars is independent of the position of the points from which
the perpendiculars are drawn (fig. 82).

Let OA, OB, OC be a set of three rectangular axes in space ;

let BP be the perpendicular from the given point B on the given
line AC ; let this line AC be orthogonally projected into the line

AO inclined to AC by the angle i
;

let BO be the perpendicular
on this line : then the ratio of BP to BO is independent of the posi-
tion of B. Let OQ be the perpendicular from O to the plane ABC
inclined to OC by the angle B.

Now the volume of the rectangular pyramid OACB is one sixth

of the volume OA . OB . OC. But it is also one sixth of the volume
of the triangular base ABC multiplied by OQ.

Therefore OA . OB . OC=OQ . AC . BP.

But OQ=OC cos 6, and OA=AC cost; hence we obtain

T-rr= 7, a ratio independent of the position of the point B.
BP cos i

'

This is a most important theorem. It enables us to pass from

the properties of perpendiculars about a circle to the analogous

properties of perpendiculars about a conic. By the help of this

relation we may give a very simple proof of the following celebrated

theorem of PAPPUS,
" Ad quatuor tineas," as also of many others.

VOL. ii. 3 o
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Fig. 82.

332.] Iffrom any point P, in the circumference of a circle, per-

pendiculars be drawn to the four sides of an inscribed quadrilateral,
the rectangles under each pair ofperpendiculars on the opposite sides

will be equal ; that is (see fig. 83) ,

PA,.PD,=PB,.PC,.

From P let the lines PA, PB, PC, PD be drawn to the four

angles of the quadrilateral, and let R be the radius of the circle.

Then (Euclid, Book VI. Prop. C) we have

PD . PC=2R . PD, and PA . PB=2R . PA
y ;

therefore PA . PB . PC . PD=4R2
PA, . PD,.

In like manner PA . PB . PC . PD=4R2
PB,PC ;

.

Hence PA,. PD,=PB,PC,.
If now we orthogonally project the circle into an ellipse, the

point P will be projected into a point or on the conic ;
the perpen-

diculars PA, -era will have to each other a ratio, the cosine of the

inclination of the side AB to its projection a/3, and so for the other
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sides. Hence the theorem of the "Ad Quatuor tineas," viz. :

If from any point vr in the circumference of a conic perpendiculars
b<> drawn to the sides of an inscribed quadrilateral, the rectangles
under each pair of perpendiculars on the opposite sides will i,

constant ratio.

It is evident that the inclination of the planes will not enter into
the constant ratio, as this relation will be eliminated by division.

Fig. 83.

333.] If tangents be drawn at the vertices of a triangle inscribed

in a circle, and iffrom any point in the circumference of this circle

perpendiculars be drawn to the tangents and to the sides, the product

of the perpendiculars on the tangents will be equal to the product of
the perpendiculars on the sides.

Since PBT and PAQ
y
are similar triangles, we have

PB:PT=PA:PQr

In like manner we have

PA PT
/y
=PB PQ.PT,=PC : PQ,, and PC

Compounding these proportions, we obtain

PT . PT, . PTW
= PQ . PQ, . PQ,r

Hence, if a triangle be inscribed in a conic, and tangents be drawn

to its vertices, and iffrom any point in the conic perpendiculars be

drawn to the three tangents and to the three sid^s, the product of
the perpendiculars on the tangents will have a constant ratio to the

product of the perpendiculars on the sides.
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334.] Iffrom any point in the circumference of a circle perpen-

diculars be drawn to a pair of tangents to the circle, the rectangle
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under these perpendiculars will be equal to the square of the perpen-
dicular drawn from this point to the common chord.

Let PA
; , PB,, PC, be the three perpendiculars. Then by similar

triangles

PB, : PC=PA
/

: PB, and PC, : PB=PA
/

: PC.

Hence PB, . PC,=PA,
2

.

Therefore, iffrom any point in a conic
, perpendiculars be drawn to

a pair of tangents and their chord of contact ; the rectangle under
the perpendiculars on the tangents will have a fixed ratio to the

square of the perpendicular on the chord.

335.] Let a, b, c be the sides of a triangle inscribed in an ellipse

of which the semiaxes are A and B, while the radius of the circle

circumscribing the triangle is R ; let d, d,, dlt
be the semidiameters

parallel to the sides of the triangle a, b, c ; then

Fig. 86.



414 ON CONICS.

Let the ellipse be projected into a circle whose radius is B ;
let

the triangle in the ellipse whose sides are a, b, c be projected into

another inscribed in the circle whose sides are
ex., /3, y ; let the

areas of the projective and projected triangles be S and S
y,
then

S=^, and
8,=^*.

But S : S,
=A

:.
B. . . (b)

Now as the lengths of any two parallel lines on a plane have the

same ratio to one another as their projections on another plane,
and as d is parallel to a, a : a.= d : B, or

da. r ,., , d./B d,,ja= -5~. In like manner 6=^-, and c= -^-.
1 > Da

, ctfty.dd.d,, . abc ES , S A
,

>

Hence abc= -L-^'. But^=M > and
g-=g ; . . (c)

hence RAB=e? . d
t

. dn .

Let /, /,, fn be the three focal chords drawn through any
focus, and parallel to the sides a, b, c of the triangle ABC ;

then from sec. [282] and [291] it follows that c?
2=^. Sub-

A

stituting for d, d,,
d

lt
their values, and writing D for 2R and L for

2B2

A'* D2
L=//,/,,........ (d)

336.] If a circle be described cutting a conic in four points, the

vertices of an inscribed quadrilateral, and from a focus six chords

be drawn parallel to the four sides and two diagonals of the inscribed

quadrilateral, we shall have

This follows obviously from the preceding theorem ; for we may
consider the inscribed quadrilateral with its diagonals as equivalent
to four triangles, to which the construction in the foregoing theorem

being applied, we should have twelve focal chords, three for each

triangle. But each focal chord is once repeated ;
this reduces the

number to six different chords. Hence the theorem may be enun-

ciated as follows :

If a circle meet a conic in four points, the vertices of an inscribed

quadrilateral, and from any focus focal chords be drawn parallel
to the four sides and the two diagonals of this quadrilateral, we
shall have the square of the diameter of the circle multiplied by the

parameter of the conic equal to the square root of the product of the

six focal chords.
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In the preceding theorem the products of the six focal chords,
taken two by two, are equal, or

/I -/2 =/3 ./4, A -/3=/l /4, A -/5=/4 '/6, and /2 ./,=/, ./,. (b)

Fig. 87.

337.] Without having recourse to orthogonal projection, it maybe
shown that the product of three focal chords drawn parallel to the
sides of an inscribed triangle is equal to the product of the para-
meter L of the parabola multiplied by the square of the diameter
D of the circumscribing circle, or

Let ABC be the inscribed triangle, V the vertex, and F the focus.

Let CG be drawn parallel to the axis, meeting the side AB in G,
which makes the angle -fy

with the axis; and let CP==p be the per-

pendicular on the side AB, and the angle ACG be o>.

Let AG=<
Now sin2 v :

therefore
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Hence, multiplying these expressions, we obtain

f 70 4= f,
fa /q asbWn

But D3=-^ =
-

: , and Dp mn;
sin A, sin p, sin i/

therefore LVD* =/, /2/8 a*A*jB*.
But j9=csini/r, and 6sin2 iJr=Lc.

Making these substitutions, we have finally

M*=/i./a ./8........ (b)

338.] //"a come described on the surface of a right cone be ortho-

gonally projected on a plane passing through the vertex at right

angles to the axis of the cone, the vertex of the cone will be a focus

of the projected conic.

Let a, b, e be the semiaxes and eccentricity of the conic drawn
on the surface of the right cone

;
let 6 be the semiangle of the

cone ;
and let /, I,

be the lengths of the sides of the cone between
the vertex of the cone and the ends of the major axis of the given
conic.

Then 4a2=/2+
/,

2-
Sty cos 20; ..... (a)

W-

2ae=(llj), see sec. [262], cor. iii. ; =p tan 0, see sec. [281],

where p is the perpendicular from the vertex of the cone on the

plane of the given conic.

,-,/. T , .
i

. //,sin20 Z/,sin0cos0
The area of the focal triangle gives p=-L-=- = -'

, or

6*=J/,sin*0......... (b)

Then 2a,= (l+ l
t)
sin 0, and b

t=b, since b is parallel to the plane
of projection through the vertex. As A2= II

t
sin2 0, b?= II

\
sin2 0, or

;

2=/sin0 .
/,
sin = VA/VB,. Therefore V is a focus of the pro-

jected curve.

The semiparameter of the projected curve is

*L= 262
211, .sin0

a~(l+ l
l)sinO~ l+ l,

'

and as ef= 3-*-, substituting, e,=j-^..... (d)d i

'
~\~ it

339.] The surface of a right cone bounded by a conic is developed
on a plane passing through the vertex of the cone at right angles to

its axis ; to determine the curve which the conic becomes when the

surface of the cone becomes a plane.
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Let the focal equation of the projected conic be

a n e *\

Pi=
1

(
e cos

, p, being the focal vector. . .
(
a
)

Through the axis of the cone and the focal vector
p, let a plane

be drawn
; it will cut the surface of the cone in a side of the cone *

so that p,=s.sin0. Let 2w sin 0=1; then 2n is a constant.
Let dtp and

dtp,
be the corresponding elementary angles between

two successive values of p, the focal vector of the projected conic,
and * the corresponding vector along the side of the cone, so that

<pt =2n<p; hence the equation of the projected conic

becomes s=
(b)

But cos 2w<p
= cos2 nip sin2 w<p; hence this equation now becomes

1 sin2 w<p cos2
;p

~j J- (c)

This is a species of spiral curve having two apsides at the distances

/ and l
t
from the vertex of the cone, when w<p

= or when n$ir.

7T 7T
In these cases the vector-angle <p= or <p=

2n n
Hence the curve undulates between two concentric asymptotic
circles whose radii are /and 7

y
.

When the conic is a parabola, /,= <, and the equation of the
1 cos2 n<p

locus becomes -=
-j

-.

When the conic is an hyperbola the equation of the locus becomes

1 cos2 w<p sin2 n<p ...

~L ~*~i 7 w
o I 1

1

If we refer to the ninth section of NEWTON'S Principia, we shall

see that the formula above given is the equation for movable orbits

whose apsides recede.

340.] If secant planes be drawn through a horizontal tangent to a

right circular cylinder, the locus .of the foci of the elliptic sections

will be the logocyclic curve (see fig. 88) .

Let AD be the horizontal tangent to the right circular cylinder

ABBjA,. Let AB be the major axis of the ellipse, and let F, F, be

its foci. Let a be the radius of the circular base ;
then it is manifest

that a is half the minor axis of the ellipse. Then, as F is a focus,

we shall have AF. BF=a*.
VOL. II. 3 I!
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Let zx be the ordinates of

the point F, the axes of coor-

dinates being AA ;,
AC ;

and let

i be the inclination of the

secant plane to the circular

base of the cylinder.
Then

Fig. 88.

AB=2seci, AF= V#2

and

BF=2asecz V#9

and

sec i

therefore

X

Substituting these values for

AF and BF, we get

the equation of the logocyclic
curve, substituting y for z, as

shown in sec. [319] of the first B
volume.

'A,

ON DIVERGENT PROJECTION.

341.] In perspective or central or divergent projection (as it may
be called), the projecting lines are no longer parallel as in orthogonal

projection. They radiate from a single point which may be called

the vertex or centre, and so transfer the lines and points of one
surface to those of another. In general, as here, the surfaces are

planes ;
one plane figure is projected into another. This sort of

projection has been named central projection by PONCELET, the

great authority on this subject. This is a simple and powerful
method of investigation, so far as the graphical properties of figures
are concerned. It is more general in its application than orthogonal

projection, in which the vertex or centre of projection is at infinity.

For example, in the application of these methods to conies, only the

properties of the ellipse may be derived from those of the circle by
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orthogonal projection, while divergent projection may be applied
to all conies.

This method of projection rests on the following simple
theorem :

If a straight line be drawn parallel to a given plane, all planes
drawn through this straight line will cut the given plane in parallel
straight lines ; and if a straight line be drawn meeting the given plane
in a point, all planes drawn through this straight line will meet the

given plane in the same point.
Of the several ways in which this method may be applied the

following appears the simplest.

Through the vertex of a right circular cone let a plane be drawn
at right angles to its axis and intersecting one of the plane sections
of this cone in a straight line which may be called the cyclic axis

(while the plane drawn through this axis and the vertex of the cone

may be called the cyclic plane). Any plane drawn through the
axis of the cone will cut the cone in two straight lines, and the

cyclic plane in a straight line ; and these four lines evidently con-
stitute an harmonic pencil.
The figure whose projective properties it is sought to develop

may be drawn on the plane of one of the circular sections of the

cone, the vertex of the cone being the centre of projection.
One or two applications of this method must here suffice.

342.] Let two right cones having the same vertex and axis be

drawn, they will be cut by a plane at right angles to the common
axis in two concentric circles. Let these circles be drawn so that
a square inscribed in the one shall be circumscribed to the other ;

the diagonals of the inscribed square and its chords of contact with
the circle inscribed in it will pass through the common centre of
the two circles ;

and if the square be turned about between the two

circles, it is obvious that its angles will remain on the outer circle,

and its sides remain in contact with the inner circle. If we now
project these circles and tjie square, the circles will become conies

and the square a quadrilateral inscribed in one conic and circum-

scribed to the other. As the opposite sides of the square are

parallel, and the chords joining the points of contact are also

parallel, the projections of these eight lines will meet two by two
in four points along the cyclic axis

;
and this cyclic axis is the polar

of the point in which the common axis of the two cones meets the

plane of the two conies. It is also obvious that any number of

quadrilaterals may be inscribed in the one conic and circumscribed

to the other.
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APPENDIX

TO THE FIEST VOLUME,

WITH NOTES AND CORRECTIONS.

343.] At page xii. of the introduction, reference is made to

a theorem of Euler's connecting by a simple and invariable relation

the numbers denoting the solid angles, faces, and edges of any
polyhedron.
A very elegant and simple demonstration of this curious theorem

which had so long baffled that illustrious geometer Euler, will be
found at page 333 of the XlX.th volume of the Annales Mathema-

tiques of GERGONNE, based on the relations of a group of reticulated

polygons. But the following proof, which some years ago I disco-

vered, will be found still simpler, and requires no knowledge, beyond
that of common arithmetical addition, to understand it.

Let the relation s+fe= 2 be assumed as established for any
one polyhedron, where s denotes the number of solid angles, / the

number of faces, and e the number of edges. From this solid let

a pyramid be removed whose vertex is one of the solid angles of

the polyhedron ; let n be the number of plane angles which

together constitute the solid angle, the vertex of the retrenched

pyramid. Let S, F, and E represent the numbers of the solid

angles, faces, and edges of the new polyhedron made by retrench-

ing the aforesaid pyramid. Now, by the removal of the pyramid
whose vertex is a solid angle of the first polyhedron, we take

away from this figure one solid angle, but we add n solid angles,
the number round the base of the retrenched pyramid ; so that by
the removal of this pyramid we add n 1 solid angles to the ori-

ginal polyhedron, or

Bast+(!).
By this operation we add n new edges, which are the sides of the

polygon that constitute the polygonal base of the pyramid, or
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E =e -f n ; and we evidently add one more face to the original poly-
hedron by removing the pyramid, or F=/+ 1 ; consequently

or

or the same relation exists between the numbers which represent
the solid angles, faces, and edges of the original and derived poly-
hedrons.

We may now assume any simple polyhedron, a cube suppose, in

which the relation s+f e 2= is evident, and by the successive

removal of pyramid after pyramid thus increase the numbers that
denote the solid angles, faces, and edges of the derived polyhedrons,
and still find the same invariable relation,

s +f-e=2.

Cauchy's theorem, which is as follows, may be proved with equal
brevity and simplicity. Let m denote a number of polyhedrons,
agglutinated together like a mass of crystals, and let S, F, E denote
the numbers of the solid angles, faces, and edges of this cluster ot

polyhedrons, we shall have

This is Cauchy's theorem. When there is but one polyhedron,
w=l, and we obtain Euler's theorem.

Let *, /, e denote, as before, the numbers of the solid angles,

faces, and edges of any polyhedron ; then by Euler's theorem we
shall have s+f e= 2. Now if we conceive one of the polygons
which constitute the faces of this polyhedron to have n edges and
n solid angles, the removal of this polygon with its n solid angles
and n edges will make the closed polyhedron an open polyhedron ;

and we shall have the following relation between the numbers that

denote the solid angles, faces, and edges of an open polyhedron,

s+f-e=l.

Let
s,, ft ,

e
t
denote the numbers of the solid angles, faces, and

edges of the open polyhedron thus derived, we shall have s= s
t
+ n,

f=f,+ 1, and e= e,+ n ; substituting these values in Eider's formula,

(*/+ ) + (/,+ !) -(*/ + )
= 2, or

5,+/-<?,= !.

Let us now conceive a closed polyhedron having an open poly-
hedron applied to one of its faces, so as to fit, or, in other words,
so that the projecting edges of the open polyhedron may be applied
to the solid angles of the closed polyhedron; then we shall have, by
Eider's theorem for the closed polyhedron,
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and for the open polyhedron

as just now shown. But if
S,,

F
y,
and E, denote the numbers of

the solid angles, faces, and edges of the compound polyhedron, we
shall have

consequently

or the difference is one more than in the case of the single poly-
hedron.

Consequently for every additional open polyhedron we attach,

the absolute number is increased by unity ;
or if there be m agglu-

tinated polyhedrons,

[Page xiii.]

344.] The opposite sides of a hexagon inscribed in a conic meet,

two by two, in three points which range along a straight line.

Fig. 89.
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Let A, B, C, D, E, F be the vertices of a hexagon inscribed in a

conic, whose opposite sides meet two by two in the three points
G, H, K. These points range along a straight line.

Let the alternate sides of the hexagon be taken as forming a

triangle LMN, whose sides are cut in the points A, B, C, D, and
K, I-

1

by a conic and also by the three transversals BC, DE, and FA.

Through a focus of the conic let chords be drawn /, ft , fn parallel
to the sides of the triangle LMN; then, by a well known theorem,

MA.MB:MF.ME=/ :/
J

NC.ND:NA.NB =/:/,
[ (a)

LE .LF :LD.LC=//: //r )

Multiplying these expressions,

MA.MB.NC.ND.LE.LF=MF.ME.NA.NB.LD.LC. (b)

Since the triangle LMN is cut by the transversals HB, GE, and KA,

HL.NC .MB=HM.NB.LC,
)

GM.ND.LE=GN .LD.ME,
[

. . . (c)

KN.LF .MA=KL .MF.NA. )

Multiplying together these three sets of proportionals, and dividing
the product by the products in (b), we shall have

HL.GM.KN=KL.GN.HM; . . . . (d)

or the three points G, H, K range along the straight line GHK,
which is a transversal to the triangle LMN*.

345.] A hexagon is circumscribed to a conic ; the diagonals which

join the opposite vertices meet in a point.

Through the points A, B, C, D, E, F (see preceding figure) let

tangents be drawn to the conic, meeting in the points a, b, c, d, e, f,
which therefore constitute a hexagon circumscribed to the conic.

Now as a is the pole of the chord AB, the polar of any point in AB
will pass through a. But G is a point on AB ; therefore the polar
of the point G will pass through a. In like manner the polar of

any point in DE will pass through d. But G is also a point on DE ;

therefore the polar of G will pass through d ; therefore ad is the

polar of the point G. So also be is the polar of the point H, and

cf is the polar of the point K. But, as shown above, G, H, K range
along a straight line ; therefore ad, be, cf, the diagonals ofthe circum-

scribed hexagon, meet in a point, the pole of the straight line GHK.
*
This solution was riven in the ' Ladies' Diarv

'

for 1842 under the initial*

J. B. B. C.
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Page 15. SEC. [24].

346.] More generally, let the protective equation of the conic

section, referred to rectangular axes, be

Ax* +A#2 + 2Exy+ 2C#+ 2C
;y-1=0.

Therefore by sec. [22] =^ *
,
v=

1 Cx C,y'

Her (A;+C /

2)^-(B+CC>-(A,C-BC /)

(A^-B2
) + (A^-BCJw+CA^C-BC,

-(B + CC,)g--(AC,-BC)
(AA,-B

2
) + (AC,-BC>+ (A,C- BC,)f

Substituting these values ofx and y in the dual equation x^+yv \,

In the protective equation of the parabola, B
2 AA

y
=:0 j hence

the tangential equation of the parabola has no absolute term.

Page 21. SEC. [32].

347.] Iffrom any point Q,, in the plane of a rectangular polygon,

perpendiculars are drawn to the sides
, if the feet of these perpen-

diculars bejoined two by two, so as to constitute another polygon,
and if the area of this latter polygon be constant, the locus of the

point Q will be a conic section.

Let x and y be the projective coordinates of the point Q, and let

,
v and p v

t
be the tangential coordinates of two successive sides

of the polygon, and let 6 be the angle between them ; then, P and P
y

being the first pair of perpendiculars,

1-fo-uy _\-tp-vty

VFTV2 ' '

VI,
2W'

and

sin 0= r-Z'
v~*v

'

o (see p. 4).
V(

2 + "2
)(

2 + i,,

2
)

V

Hence the area of the first component triangle is

PP sin 9- (l-fr

But j;v and %jut being constants, we may put

A=
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therefore the first component triangle is equal to

In like manner the next component triangle will be equal to

and if the sum of these component triangles be assumed as constant

and equal to C, we shall have a resulting equation of the form

P#2 + Gty
2 + ZRzy + 2S#+ 2Ty= C,

the project!ve equation of a conic section P, Q, R, S, T being
functions of the constants %, ,, v, v,,

&c.

Page 25. SEC. [36].

348.] To find the equation to the envelope of equal chords of a

given ellipse.

Proposed by Mr. A. MARTIN in the Educational Times, No. 4519.

Let (x, y) be a point on the ellipse, and (, v) the tangential coor-

dinates of a tangent passing through this point ; then, eliminating

y between the equations

a*y* + b*ar*=aP ... (a) and x+yv=l, . . . (b)

we shall find (a
2^+ V)#2- 2a2|*+ *(!- 6V)=0. . . (c)

Let x
t
and x

lt
be the roots of this quadratic equation, we have

_aa

* ~"

a y-
consequently (*,-*)*= ^~

In like manner (y,-y,,)
2 =

Let 2c be the chord. Then (^-^)
2+(^-yJ

2=4c2
, . (e)

or a262 (r
2 + u2)[a

2
f
2 + 6V-l]=c2

(a
?^ + 62u2

)

2
. . . (f)

Hence the projective equation of the pedal is

- (g)

Page 40. SEC. [48].

349.] Two parallel tangents are drawn to a conic, and a third

tangent between them, variable in position. This tangent will cut off

segments from the parallel tangents between its intersections with

VOL. ii. '* '
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them and the points of contact, such that the rectangle under these

segments will be constant.

Fig. 90.

Let two tangents to the curve be taken as axes of coordinates,
the axis of Y being one of the fixed tangents to the curve, while

the axis of X is parallel to the diameter conjugate to the two

parallel tangents. Then the tangential equation of the curve

referred to these tangents as axes is, as shown in sec. [48],

l....... (a)

Let the variable tangent cut off from the axes of coordinates

OB= b, OA=a. Then, as this line is a tangent to the curve,

-, j-,
are tangential coordinates, and satisfy the equation (a) . Hence

(/ U

(a) becomes (b)

and as the axis of X is a tangent to the curve, we shall have

/3f+ 7/
= 0, see sec. [19] ;

and as in this case OD= = 7,
we shall

have (c)
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Now BQ=6 7y ; and B
yQ, it may be shown is equal to

it a a

putting for (3 its value y7/.

Hence BQ . B
y
Q

y

= ^
(b yy)(2y a) ; or, multiplying,

BQ . B
y
Q

y
= - 7/

[2/3 + 27/a + 2yb-ab- fly]
.

fl

But 2/3 + 27y
+ 2y6 ci= 0, from (b).

Hence BQ . B
;
Q

y=y7/ (d)

Page 41. SEC. [49].

350.] The tangential equation of the parabola may be obtained
from the projective equation of the curve, 2/

2= 4&r-f 4kz
, as follows.

The equations of transition give, see sec. [22] ,

.. 1 yt
t>=

and xg+ yv=1. Eliminating x and y we get k(%*+ v9
) -f =0.

Page 43. SEC. [50].

351.] A parabola is inscribed in a triangle ABC (fig. 91), touching
the sides of the triangle in the points A, C /

Br The rectangle under
the sides CB, CA of the triangle is equal to the rectangle under the

segments of these sides produced until they touch the parabola;

In sec. [55] it is shown that the tangential equation of the para-
bola, the axes of coordinates being the tangents to the curve, is

ffSv+ h + hf>=Q....... (a)

Let CB= 6, CA= a, and, as these values must satisfy this equation,

seeing that AB is a tangent, we shall have

ff+ hb + h,a=Q........ (b)

The value of CA
y
the tangent to the curve is found by making

t
= in the given equation, which reduces it to ov+ h=0, or

CA,= -j-; in like manner CB
y=-r^.

*

Therefore BA/= - (|
+ b\ and AB/= - (| + a)

.
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Consequently BA,AB ;
=~ (g+ hb + h

ta] -f ab.
/l/li

But the expression between the brackets =0 by the tangential

equation (b) of the parabola; hence CB . CA=BA
/

. AB
y

.

Fig. 91.

If we now take the other two angles successively as the origin
of coordinates we shall have the same property repeated.

Consequently a26V=AB
/

. BA, . BC; . CB
y

. CA, . AC,. . (c)

Page 43. SEC. [50].

352.] A parabola is inscribed in a triangle. The triangle whose

vertices are the three points of contact is twice the area of the given

triangle (see fig. in last section).

Let two of the tangents to the parabola be taken as the axes of

coordinates. The triangle A /
C

/B,=2ABC. Let CB= , CA= ;

since the tangents CA ;
CB

y
are axes of coordinates, the tangential

equation of the parabola is

#u+ A + A,v
=0=V; (a)

and the protective coordinates of the point C, in which the curve is
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touched by the tangent AB is found to be, using the equation* of
transition (as in sec. [22]),

dV dV
dg _ d^

or
(b)

or, putting
- for f and -7 for v, as the point C is on the line AB,

9

Let CA=Y; the value of Y is found by putting =oo in (a).
1

Hence - or Y=-T^, and X= =^.
v h n

t

Now the triangle A^C^CA^-CCjB-CCyA,. . . . (c)

But CAyB^ j-r, putting a. for the sine of the angle of ordination,
/

and n \ n i n. -
i

* ' ' ^
In like manner Y#=-r- (ff + 6h). J

Consequently CA,B,-CC,B,
-CCA,= Jf- (g+ bh -f aAy) + 2oA<r.

/i/i
y

But since- and -7 are tangential coordinates, y + bh+ ah,=Q;

hence the triangle A/B/^=26. But a6 is the area of the triangle

ABC; therefore the triangleA^C, is equal to twice the triangleABC.
Since

CB_ bh , AC,_a-z_ bh

OB AC, AB
y

-bh bh
it Will follow that TrT~= TJ7T TTT^ = -

BA, BC, CA

353.] The tangential equation of a parabola referred to two

tangents as axes of coordinates, see sec. [55] is

g%v-l- h% +^=0= V, (a)

to determine the projective equation of the curve referred to the

same axis.
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dV dV
Since, as in sec. ,j -r-

V . . (b)
v.. dv

(c)

Hence g= ,= . . . . (d)

Substituting these values of and v in the tangential equation
of the parabola (a), we get

0. . . (e)

Page 47. SEC. [55].

354.] A quadrilateral is circumscribed to a parabola. Two of its

sides are fixed, while two are variable in position. These latter

intercept, on the former, segments which are always in a constant

ratio.

Let the tangential equation of the parabola referred to the fixed

sides of the quadrilateral as axes of coordinates be

let a and b, a
t
and b

t
be the tangential coordinates of the two

variable lines ; then we shall have ( since = -, v= -;
j

g \-hb + hfl
= Q and g + hb

t -}-hfif=Q.

Subtract these equations one from the other, the result is

b-b
l=-^(a,-a).

But h and h
t
are constant quantities depending on the equation

of the curve : hence-'- is constant.
a, a

Page 65. SEC. [76].

355.] The projective equation of a surface of the second order,

f(x,y,z)=Q, referred to three rectangular coordinates in space

being

lt

the tangential equation of the same surface referred to the same



APPENDIX TO THE FIRST VOLUME. 431

rectangular axes may be found by eliminating x, y, z between the

following equations, given in this section.

.._-

.- (a)

They may be reduced as follows :

(A

(A, -v=0, [ . (b)

Let us now assume the three formal linear equations

ty-\-ctl
z=d

ir (c)

Comparing the coefficients of these expressions with those of the

preceding equations (b), we shall have

a =A b =
/=B +Cuv, %p-*-C,,l (d)

If we now solve the group of formal equations (c) for x, y, z, we
shall have

/ (*c
-V) + // (*/

c- *c
/)

'

_

z=~

> - (e)

substituting for the nine constants a, A, c, a
/} A,,

cp and o
;; ,

4
;/,

c
tf

their values as derived from (d), we shall have, putting A for

this common denominator,

(0

A=AB2 + A^,2+AWBW
2+AA

/
Aw-2BB /

B
y;

'-AAJC^ (BA-BI
B

I()CI,+ (B^-BB^CJu
2- AA,)CM -f (B^-BBJC-f (BA - B
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We have also, multiplying by ,

(C //
B-A

//
C

/)pu+ (BCj-AA
-

(B
2
-A,A,,)C-(C,,B-A flC,)C&;- (BC,-

(g)

If we now add these expressions together we shall have, since

the triple products of %, v, $ vanish,

= [(B-A,AW) +260^-^0f-Kp

-f [(A^-BBJ + (A/
C

//
-BC

/)C+ (B^-B^C
+ [(A,Aa-B)C+ (BBj-A^C,* (B^B-

In like manner

= [(B^-AAJ +2B J
CC

//-AC/-A //
C2

] v
2

[(AB-B^) +AC //-CB,)C /
+ (BC-B/!w

[(A /y
Bw-BB y) + (A;/C-B,CW)C/+ (B^-

and also

= [(BW-AA,) +28^0,0-A^-AC,

Bearing in mind that

A(
we shall have, making the necessary reductions,
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= [(B
2
-A,AJ

+ [(B
2-AA

/;)

+ [(B rt -AA,)

+ 2[(AB-B,B,,) + (BC-B,,C,,)C+

+ 2[(A,B/-BB,/) + (B,C,-BC)C,+ (A^-
+ 2[(A,,B //-BB,) + (B/^-
+ 2[(A/

A
H-B2)C+

Let X, Y, Z be the project!ve ordinates of the centre of the
surface ; then, as shown in sec. [75] ,

y_(A <
A

/,-B
2
)C4-(BB <

-A
f<
B

f/)C /+(B</
B-A

<
B

j)CH
AB2+ A,B,

2+A
;,B,,

2- AA
/
A

;/
-2BB

J
B

/,

and like values for Y and Z may be found.

When the surface is a paraboloid, as in this case the absolute
term vanishes, we shall have

AB2+A
/
B

/

2+ A
//B/-AA;

A
/,-2BB >

Bw=0. . . (k)

When C 0, 0^=0, Cw=0 or when the origin is at the centre;
the protective equation of the surface becomes

and the tangential equation of the surface referred to the same
axes is

AB2+ A,B,
2 +AWBW

*-AA,Atf

- 2BB
y
BH

. (1)

'Page 133. SEC. [134].

356.] In a system of confocal ellipses the envelope of the normal that

makes with the major axis an angle whose sine is b(a*b*)-lisafuur-
cusped hypocycloid with two opposite cusps at the foci of the system.

Proposed by Mr. J. L. McKenzie, in the Educational Time*, No. 4420.

The tangential equation of the evolute of an ellipse (see sec.

[156]), since a2= 2 + A:
2
, may be transformed into

6*(u
* + ) + yfcV ==/tV; ..... (a)

but it is assumed that the sine of the angle which the normal makes
VOL. II. 3 K
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with the axis is y, and as the normal is parallel to the perpendicular
K

b*
2

from the centre on the tangent, we shall have 73=^5
-

5,
or

A; 5 + V

#2 (|2 + ,,2)
= 22

. (b) ; eliminating i2 between (a) and (b), we shall

have 2 + v2-/t9 V=0=V, ..... (c)

the tangential equation of the quadrantal hypocycloid, as shown in

sec. [131].
The protective equation of this curve may easily be found by the

help of the formula of transition given in sec. [22].

For
2jT=2(*M-l), ^=2(*

2 2
-l);

2^2_ }
hence x= ^-5-, or &2 (1 a?)i

2= l.
/rtr

But (c) gives (

2 2
l)t

2= 2
; eliminating u2 between these

equations,

f3 =ro-J hence Esssjltfft. In like manner -5= X:^.
A2# 2 w"

But
2 + -2=

2
j hence we have ^+y^=A-ff, the protective equation

of the quadrantal hypocycloid.

357.] Let a, b be two conjugate semidiameters of an ellipse, and
x

t , y{
the coordinates referred to them of a variable point in the

curve ; to show that the envelope of a series of ellipses whose semi-

diameters are coincident in direction with a, b, and in magnitude are

mean proportionals between a, xt
and b, yt

is
f-J +(jj =!

Proposed by Mr. W. J. C. Miller, in the Educational Times, No. 4463 *.

If az, and by t
be the squares of the semiaxes of the variable

ellipse, its tangential equation is ar
/P+ 6y/

t
2= l, . . (a)

and the equation of the given ellipse is a2y/

2+ 62^
/

2= a2^ 2, . (b)

Eliminating y, between these equations,

To eliminate x
t> yt

we must manifestly have three equations (a) ,

(b) ,
and the differential of F with respect to x

t ,
or

dF A ,,.
dF x

t V_=0. . . (d) But as -r-=0, -J=
r 4 c.4 , 74 4Tdx

t d^
' a [a

4
|
4+ o y J

* This solution embodies an important principle. It shows how the tangential
method may he extended to those cases in which the envelope is generated by the
successive intersections of curves whose parameters vary according to a given law.



APPENDIX TO THE FIRST VOLUME. 435

Finding a like expression for y t, |'= F^M^^,,-
Substituting these values of x

t
and yt

in (b) , the resulting ex-

pression is

K) 4
+(^)

4=i........ (d)
This is the tangential equation of the curve required.
If we require the projective equation of the same curve, we must

put

V= (a)+(Ai/)
4 -lj. . (e) then =4a4 8

, =46V. . (f)

dV
cfiFBut x

=-Ty
--

jy , see sec. [22]. A like value for y is obvious.

Hence -= 3 3
, or (-\*=tfP.a \/

Finding a like value for y, the projective equation becomes

'+(*)'->
........ w

Page 112. SEC. [119].
yt
2

358.] //"atf each point of an ellipsoid a distance
-p-

be measured

along the normal, P being the perpendicular from the centre on the

tangent plane at thatpoint, the locus of the point so defined is another

ellipsoid, the envelope of which for different values of k is the
"
surface

of centres
"

of the original ellipsoid.

Proposed by Mr. R. F. Scott, B.A., in the Educational Times, No. 4460.

Let the tangential equation of the ellipsoid be

...... (a)

and = y^+^+ f*; hence ^=A V? + *

Let x, y, z be the projective coordinates of the point on the

surface to which the normal is drawn; then ar= ag
,
and the pro-

iection of the line -^ on the axis of X is -^^-- *-=/;*;
V * + * + *

and if x, be the projection of its extremity, we shall have
X

x^a^ k^, since (x a?,)
=&2

f. Consequently =
-y^frg-

In

like manner

USB and ^= ......
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Substituting these values of
, v, % in (a) we shall have

_ -I-
3 A2,. 2 ,.2

i . y/ -
c

" '-

for the projective equation of this surface.

Hence by the formula of transition, p. 68, the tangential equation
of this same surface will be

dV
"We must now eliminate k between this equation and -^=0.

2 + t,9_|_S
This elimination gives k

2=~-
^ -%........ (

e
)

^+P+ ?
Substituting this value of k in the equation V= we shall have

(f)

the tangential equation of the surface of centres as found in

sec. [119].

359.] A given ellipse F is one of a system of concentric similar

and similarly situated ellipses. A line is drawn touching any other

ellipse H of the system ; and the perpendicular distance of the tangent

from the centre is a mean proportional between the semi- major axi

of H, and the semi- minor axis of F. To show that the envelope of
the tangent is the first negative pedal of F, but turned round a right

angle about its centre.

Proposed by Mr. J. L. McKenzie, in the Educational Times:, No. 4368.

The tangential equation of the first negative pedal of

y +6V- 2
Z<
2=0 ...... (a)

is aV + 62f= 262 (f + u2
)

2
: . . . , (b)

see ((3) sec. [163] , The projective equation of the reciprocal polar
of (a) , a being the radius of the polarizing circle, is

and the tangential equation of its first negative pedal is

2
|
2+ 6V= 4

(f+ v2
)

2...... (c)

Let 22 +iV-l=0=V ...... (d)

b.e the tangential equation of the given ellipse, and let

-l=0=W . . . . (e)
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be the tangential equation of one of the concentric and similar

ellipses. But, by the conditions of the question,

)
= l; ........ (f)

eliminating n between this and the preceding equation, we get

a2f+6V= 2 2
(*+ v2

)

2..... (g)

This equation would coincide with (b) were the axes of coordi-
nates turned through a right angle, or if and v were changed
into v and .

If the duplicate ratio of the perpendicular on the tangent to the
linear unit be equal to the ratio of linear similarity of V and W,
the envelope of this tangent is the first negative pedal of the polar
reciprocal of V.

For, by supposition, = as (*-f-t;
8
) ; ...... (h)

eliminating n between (h) and (f) we get

a$* +aV= *#($ + i/
8
)

8
, ..... (i)

which coincides with (g).

360.] Prove that the ellipses

y+ b*x*= tfb*, a2 *?
2 sec4

<p -I- b*y* cosec4
<p
=aV . (U, V)

are so related that the envelope of (V), for different values of
<p,

is

the evolute of (U), and that a point of contact of (V) with its

envelope is the centre of curvature at the point of (U) whose
eccentric angle is

<p.

Proposed by Mr. R. Tucker, in the Educational Times, No. 4240.

Let

a*y
2 +6V o2

6*= =\J, a2*2 sec2
<p + b*y

2 cosec4
<p

a4e4= =V .

dV
Find the value of

<p
from' the equation -, = 0; substitute this value

in V= 0, and we shall have W (?)* + (by)*- (a* 62)*=0; and
this is the protective equation of the evolute of U=0.

(a
2-i2

)cos
3
<p (a'-A

2
)

.

Again, assuming x= -
, and y- r -unrfj (a)

we shall find that these values of x and y satisfy the equations

V=0, W=0. Hence this point is common to the ellipse V=0 and
its evolute W= 0.

Moreover, if x and y be the coordinates of a point on the ellipse

U=0, of which point <p
is the eccentric angle, we shall have

j-= flcos<p, and y= Asin<p; ..... (b)



438 APPENDIX TO THE FIRST VOLUME.

and if we eliminate cos
<p

and sin
<p between (a) and (b) we shah

have

__~
2

' y~'
Hence x and y are the projective coordinates of the centre of
curvature of the point (x, y} .

2. The question may be solved as follows by tangential coor-
dinates :

Let a? 2 + V-l=0 U', ...... (d)

(/72_AV2 f/72_ A2 \ 2

and _^ COs4<^+^ ^ 8in4 ?u
2-l=O^V', . (e)

be the tangential equation of the two ellipses. Then, finding the
dV' a^v2

value of -5 =0. we shall have cos2 <p
= -a-o , .. . Eliminating

d<p a v + g

sin
<p,

cos
<p
from V'=0, we shall have

aV+ A2^-(a2 -i2
)

2^u2=0=W, . . . (f)

which is the tangential equation of the evolute of U= (see
vol. i. p. 115).

sec<p ocosec<p
Assume

f-^CI^'
and VSB

(oTI^ fe)

Now, substituting these assumed values of % and y in the equations
V'=0 and W'=0, we shall find that they satisfy these equations ;

consequently the ellipse V'=0, and its evolute W=0, have a

common tangent.

Let and denote the tangential ordinates along the axis of X,
made by two tangents passing through a point on an ellipse, one
to the ellipse, the other to the evolute, and let

<p
be the eccentric

angle of U'=0 at this point; then

a=cos<p, iu=sin<p, and 0= cos<p= -2 y^, from (a), (h)
G/ ^~

\j

Hence (a
2 i2)=!; consequently the common tangent to

"V'=0 and \V'=0 passes through the point onU'= 0, of which the

eccentric angle is
<p.

If we substitute the values of x, y, ,
v assumed in the equations

(a) and (g), we shall find that they satisfy the dual equation

xg+yv=*l} consequently the common tangent passes through the

common point of the two given ellipses.
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Page 230. SEC. [254].

361.] From this focal property of a surface of the second order

having three unequal axes may be derived this new theorem :

Let two equal semidiameters k be drawn in an ellipse whose semi-

axes are a, b. Assume two points C and D on the major axis, such_
that CO= \/a*-k* and DO= -7-1 ==, O being the centre.

V
Through the point D let two straight lines be drawn parallel to the

equal semidiameters k. From any point Q, on the ellipse let perpen-
diculars P, P, be drawn to these two lines, and a vector R from

P. P 4*a2
Q, to C : we shall have ^.o /= 7o/ a T&: Q> constant ratio.

rlr Ar(flr o*)

Cor. i.] When k=b, the perpendiculars P, P, coincide and

become equal, and the ratio becomes -, the common focal property
C

of the ellipse.

Cor. ii.] When k= a, the point D is at infinity, the lines to which

the perpendiculars from a point on the curve are drawn become the

minor directrices, of which the properties are developed in sec. [288] .

Page 329. SEC. [354] .

The following are the numerical values of sec e, tan e, e, and e~ l
.

sec 6= 1-5430806348 &c., tan e= 1-175201 1936 &c.,

sec e+ tan e=e= 2-7182818284 &c.,

cos e= e-' = 0-3678794411 &c.

Fig. 92.
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Page 313. SEC. [343].

Proposed by the Rev. W. Roberts, M.A., in the Educational Times, No. 1749.

362.] In a right-angled triangle ABC (fig. 92) a straight line is

drawn from the right angle A. to a point D in the line BC, whose

distance from the middle point of BC is one third of the radius of the

circumscribing circle. The line AD is produced to meet the circle

in Q. Through Q, draw the radius QO meeting the side AB in G.

Let the angle ABC be
<p,

and the angle OGB be
i/r ;

then

(sec ^ + tan
i/r)
=

(sectp + tan
<p)

3..... (a)

Let the angle AGIO be 0, AO=r, and QD= nr; hence

3nsinf^--^l= sin(^+ <p),l . . . . (b)

and 9w2= 10+ 6 cos

Eliminating Q, n, and reducing, we find

2 (sec -/r
sec

<f>
tan

-ty
tan

<p)
2

(sec >|r
sec

<p -f tan ijr
tan

<p)
= 1 . (c)

Subtracting from the preceding equation the identical expressions

(sec
2
-/r

tan2
-t/r) (sec

2
<p

tan2
<p)
= l, we find

(sec
2
T/T+ tan2

>/r) (sec
2
p + tan2

<p)
4 sec -^ tan

A/T
sec

<p
tan

<p
) .,.

= sec
i/r

sec
<p + tan ^r tan

<p. j

But in sec. [344], (^), (77), and (7), it is shown that

sec2 T/T -f tan
2
i/r=sec(-/r-

l- /

\Jr'),
2 sec

-^r
tan -^r=tan (

/

^-i
-'^r} )

and sec-^r secip+ tani^ tan<p= sec
(^/r -'-(p).

Substituting these values in the preceding equation (d), it becomes

sec (^-
L<
^) sec(<p-

L
<p) tan(-^r-L^) tan(ip

J
-<p)=sec (

<

^-L
f). (e)

But this formula may be written, as shown in sec. [344],

sec
(>/r

-L
i|r -r <p -T- <p)

=sec (^-^(p),

Or ^r-i-^-r (p-r (p
=

'^r-i-(p.

Transposing and changing -p into -1-

hence sec
i|r +tani^=(sec(p + tan

f>)
3..... (g)

Generally, the following relation exists in parabolic trigono-

metry :

sec
(<p

-1-
<p

. . . to n angles) -f- tan (<p
-1-

<p
. . . to n angles) =

(sec^p -f tan <p)
n

,

THE END OF THE SECOND VOLUME.



A Treatise on some New Geometrical Methods, contain iiiy

Essays on Tangential Coordinates, Pedal Coordhmli'*,

Reciprocal Polars, the Trigonometry of the Pa,-<tbol<t,

Ike Geometrical Origin ofLogarithms, the Geometrical

Properties of Elliptic Integrals, on Rotatory Motion,
the Higher Geometry, and Conies. By J. Booth, LL. I).,

E.R.S., E.R.A.S., &c., Vicar of Stone, Bucking!,.
shire. (In Two Volumes.) Vol. I. with Photographic
Portrait of the Author, 416 pp. and 87 Diagrams.
Medium 8vo. Price 18s. (June 1873.)

The following reviews and notices of the first volume have

appeared :

From the ( Bulletin des Matheinatique.i ,' Paris, June 1873.

" Le developpement du grand principe do la J)ualite geonu'triquo cst

1'idee fondamentale de cet ouvrage. Dans los vingt-deux premiers

chapitres, Fauteur etablit un systeme do coor.lonuees qu'il appelh
loan A-.s taiKjentielles, le correlatif du syatume Lieu connu des coordonnees

cartesiennos, et qu'il base sur une notation algebriqne particuliorc. II

applique sa methode et a la discussion et a la solution de diffcrcnts theo-

remes et problemes, en I'tablissaut dans chaquc cas la correlation des

figures geometriques. Cette theorie est uppllquuc non-soulcraeut aux
courbes et surfaces courbos du second dcgre, mais a celles dea dcgres

superieurs.
" L'autcur devoloppe la thoorio des polaires reciprocjues par 1'applica-

tion des relations metriques, pt plus partiouEexemeni; il dcduit les pro-

prietes des surfaces du second ordro, ayant trois axes in<$gaux, de cellos

des surfaces de revolution. II continue ensuite a appliquer co priucijje

sans exception de dualite universclle do la Trigonometric, et etablit, pour
la parabole, unc trigonometric analogue a celle du cercle. II denionlro

1'origine geometrique des logarithmes et fait voir que, si les nombres nature-Is

sont representes par les rayons vocteurs d'une courbe qu'il nommo coin-he

Lii/uci/clique, les logarithmos correspondants seront rcpresentc's par les arcs

do puraboles .correspondantes. Les principes dc la Trigononic-trio parn-

boliquo servent cnsuitc a otablir de nombreusos relations entrc los arcs de

la ])urribolc ; et 1'autour a soin de signaler les relations eemblablos quo

pnW'iitent les arcs do la chainette et, par suite, les rapports de cette courbo

avcc. la traction.
" Ces quolques mots no donnent qu'un resume succinct d'un important

ouvrage qui est, aiuai que lo declare avoc ruison 1'auteur, eutiercment

original."
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From the ( Standard' of July 21, 1873.

" The mere title of this book will suffice to show that it treats of the

highest and most profound geometrical and mathematical problems, and

that, were we to discuss at length the various abstruse questions with
which Dr. Booth deals, and to follow him through the new methods of

solution of these problems which he proposes, there are but few of our
readers who would care to follow us. "NYe notice the appearance of the

work, however, because, in the first place, it is a very remarkable addi-

tion to mathematical science, and because, in the second place, it suggests
a number of questions of general importance, many of which are touched

upon by the author himself in his introductory remarks. There is a

tendency of the present age to believe that although in the domain of

practical science and invention there is still great progress to be made,

yet that in the region of abstruse scientific problems there is but slight

range open to us, and that, even if there were, it would be altogether
useless to investigate it. Unfortunately, too, the spirit of the age is

entirely utilitarian. In our universities high mathematics are taught
and studied with a view that the learner may obtain high honours, and
so reap the substantial benefits of scholarships and fellowships. Men do
not study these things for their own sake, nor, having once acquired them
for the sake of distinction or pecuniary advantage, do they keep up the

knowledge after leaving the University. It is difficult, however, to say
that any new scientific problems and discussions whatsoever are useless.

The utility may not, indeed, be evident at the time ; but, for example, our

highest astronomical problems could never have been solved had it not

been for the application of mathematical problems hitherto condemned as

useless. The world is, indeed, deeply indebted to men like Dr. Booth

deep and original thinkers and students, men who make but little stir in

the world, who have nothing in common with the gentlemen who love to

place themselves in the front rank, and to sound their own trumpets
before the world upon all occasions, but who are content to live quiet and

retired, seeking neither fame nor profit, but studying laboriously, and

issuing perhaps but one book, conveying to the world the result of a life-

time of unremitting mental toil."

From the
'

Cambridge Chronicle/ August 2, 1873.

" It is upwards of thirty years since the Eev. Jas. Booth published his

first essay on Tangential Coordinates, since which time he has set himself

the task of discovering some method of expressing by common algebra the

properties of reciprocal curves and curved surfaces. Having been suc-

c^ssfuF in the discovery of a simple method and compact notation, he now

gives the public the result of his prolonged labours and researches in this

volume of essays on '

Tangential Coordinates, Pedal Coordinates, Reciprocal

Polars, the Trigonometry of the Parabola, the Geometrical origin of Loga-
rithms, the Geometrical properties of Elliptic Integrals", and other kindred

subjects,' first explaining in the introduction the considerations which led
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to the discovery of his method. With the usual modesty of great mind*
the Ilcv. Jus. Booth apologizes for thus making public the medi 1

of the ' better part of a lifetime,' during which lie has watched
tion that some accomplished mathematician would take up these BI.

ami expand them, producing a treatise from which any student <>i' mode-
rate ability might glean enough to enable him to extend those researched
still further. Xo such mathematical champion having appeared, our
Iciirned author has compiled this volume, containing at length results of

which he has from time to time frequently given abstracts in the Proceed-

ings of learned societies. It would have been difficult to have found a man
better fitted for the task, or one who would bring to bear on the subject
more ability, more original and deep thought, or more careful and untiring
research ; indeed this work is the fruit of a life of laborious study in thy

deepest and highest branches of mathematical science; and those who
deal in abstruse scientific problems will frequently find their path m;tde

comparatively easy by the arduous labours of their pioneer, the Itev. Jas.

Booth."

From the ' Educational Times' August \, 1873.

" This is by far the most interesting of the mathematical works which
have for a long time been brought under our notice. Here we find

gathered up, and placed before us in a connected form, and with singular
clearness and elegance of exposition, the various contributions which Dr.

Booth has, from time to time, made to our mathematical literature, along
with much now matter, which is both valuable and original. The chief

feature of the work is the development of the method of Tangential

Coordinates, which now, in some form or other, constitutes a recognized

portion of the Modern Geometry.
*

" The method of Tangential Coordinates, however, forms but a small

portion of the contents of the elegant volume before us. Indeed, wo do

not remember to have ever met with a mathematical book containing so

great a variety of interesting, novel, and important matter. This will bo

dearly seen from the following brief analysis of the contents of the book.

The first twenty-four chapters of the volume treat of the development of

the principle of duality, as involved in the system of tangential coordi-

nates, applied to space of two and three dimensions. In the twenty-filth

chapter the principle of duality is established geometrically, and then ap-

plied in what we consider one of the most remarkable and original

chapters of the book to the investigation of the properties of surfaces of

the second order having three unequal axes, derived from the corresponding

properties of surfaces of revolution. In chapter xxix. metrical methods

are applied to the discussion of the great principle of duality with

ence to the theory of reciprocal polars. In chapter xxx. the logoc\ die

curve and the geometrical origin of logarithms are discussed ; while in

chapter xxxi. the trigonometry of the parabola is fully investigated, and

the properties of this new branch of mathematical science applied

catenary and tho tractrix. The last chapter is devoted to the discussion of

certain properties of confocal surfaces.



IV

" From this rapid analysis it will he seen that there is much in this

volume that cannot fail to meet the tastes of all geometers. In some

parts of his work, Dr. Booth professes not to he able to find room for

many illustrative examples, as he states that his main object is to lay
down the principles of the various methods discussed, as applied to a few

particular instances, without following out the investigations into all their

details. Yet even in the most sparsely illustrated portions of the work we
find a few judicious examples, most aptly chosen, while in those portions
wherein the author expresses his fears which we cannot but think alto-

gether groundless that examples may be thought to bo unduly multi-

plied, the illustrative exercises are in the highest degree valuable. To the

readers of this' journal these examples will be especially interesting, inas-

much as many of them have appeared in our mathematical columns, and
have there received solutions by methods different, for the most part, from
those given by the author in the volume before us. Occasionally a solu-

tion is quoted entire from our own columns, with appropriate acknowledg-
ment an act of justice to ourselves which, we regret to say, is not always
rendered as, amongst other instances, in Mr. Spottiswoode's investigation
of the Tangential Equation of the Cardioid (p. 142), and the Editor's

method (p. 126) of deriving the projectivo equations of the bicuspcd and

unicusped hypocycloid from the general tangential equation.
" A noteworthy feature of the volume before us and it is one which

we cannot praise too highly is the clear and elegant style in which it is

written. Usually our mathematical books are little more than mere
collections of algebraical symbols, with scarcely two consecutive sentences

of English of any kind beyond what is required to connect them, from one
end to the other. But Dr. Booth possesses a vigorous and forcible style,
and very properly devotes much attention and ample space to the interpre-
tation of the results at which he arrives, and to a lucid exposition of the

principles of the methods of which he treats.
" The work treats of subjects of great interest and importance to mathe-

maticians, develops methods of much power and efficacy in geometrical
research, is written, as wo have already stated, in a remarkably clear and

vigorous style, and what is not by any means one of its least recom-
mendations is one of the best-printed mathematical books that has ever

issued from the English press. The woodcuts, eighty-seven in number,
are admirably engraved, and really serve to illustrate the book, a well-

drawn diagram being introduced wherever it would be of use in enabling
us more easily to follow the demonstrations.

" AVe cannot but express a hope that some of our own contributors

will take up Dr. Booth's methods, and develop and apply them in the

mathematical pages of this journal, and its connected volumes of reprints.
And we hope, too, that Dr. Booth will find, in the reception which mathe-
maticians will accord to this volume, sufficient encouragement to induce

him to carry on soon to its completion the promised second volume, wherein
he proposes,

'
if declining years and failing strength should permit

'

him,
to embody his researches on the geometrical origin and properties of

Elliptic Integrals, and to apply them to the investigation of the free motion
of a rigid body round a fixed point, together with other collateral inquiries.

" In this country we have no ' Minister of Public Instruction,' or
'

Keeper of the Seals,' under whose auspices a costly and unremunerative



mathematical work could be brought out without any ex; the

author; and it would be a subject of regret if, when ;ui 1 ina-

ticiun t.1>kes upon himself some of the duties of tin- aho\ e- incut i<.

tionai-ies, so useful to men of science across the Channel, ami brin^ out. ;:'

<>\vn cost, a work like the one before us, in every way lit to /'.ace

amongst the best French and < ; rnnan treaties, lie *h:>uld. after all hi-

and trouble, be taught by painful experience that, in this country, no

mathematical work has any chance of success unless it belongs to tin- petty
and trivial class of cram-books, drawn up for the use of candidates pre-

paring for some one of the innumerable competitive examinations which

have become the rage of the day. We hope that the volume Dr. Booth

has now given to the world will meet with such a reception as may show
the writer that there are still 'a chosen few' who can appreciate a work
like that before us, of which it is not too much to say, judging from the

instalment we have already received, that it promises to be one of the moat

valuable contributions to mathematical science which has appeared for

many years.
" We have hitherto said nothing about what we regard as one of the

most attractive portions of the book, the excellent Introduction, which

occupies the first twenty-two pages of the volume. The rest of the work

is addressed more exclusively to mathematicians ; but this is a part which

will not bo without interest even to the general reader. We should h

been glad, had our space permitted, to lay this introduction t/ exttnso

before our readers."

From the f

Cambridge Express' October 25, 1873.

" The work consists of separate essays on tangential coordinates, pedal

coordinates, reciprocal polars, the trigonometry of the parabola, the geo-

metrical origin of logarithms, geometrical properties of elliptic integrals,

and other kindred subjects. Most of these are old friends that have ap-

peared long since, cither as pamphlets or in mathematical journals ; but

they have all grown in the interval since we last saw them. Thus the

essay on tangential coordinates is known to most mathematicians us a tract

of :?1J pp., published at IXuhlin in 1840, and entitled ' On the A plication of

a New Analytic Method to the Theory of Curves and Curved Surfaces,'

while here it is presented under its now well-known name of '

Tan;.
r

'

Coordinates,' and occupies, perhaps, over 200 pp. This was one of the

earliest of Dr. Booth's works, and is the one by which ho is best known ; in

fact the method is always associated with his name. In the original tract

of 1840 Dr. .Booth's said that ho feared that '

brevity and compression had

been too much studied in the following essay ;' and here, after an interval

of thirty-three years, we have the essay amplified and expanded to a size

proportional to the value of the method,' and with tho addition of the notes

and examples which have occurred to its author in a period exceedi

average working length of a lifetime. It would not bo easy to give an

idea of the contents of the work without transcribing the titles of the

different chapters, thirty-three in number. The matter in the bo,.;

course, not consecutive," as it is formed by reprinting, with dditta

Booth's original papers : but there is a
'

u-olden thrc:-d
'

which runs through

and connects all the subjects di.-cus -cd in tho volume.



VI

" There is prefixed to the volume, by way of introduction, an interest-

ing essay, written in a spirit which here and there recalls Babbage's
' Decline of Science in England.' Dr. Booth laments the utilitarian spirit
of the age in this country, and points out how all knowledge is subordi-
nated to the grand question of money-making. On this point we cannot
refrain from making the following extract :

" ' Will it pay? is the test of all mental labour. It was very different

in the schools and agorae of that nation we are so prone to hold up for

admiration as exhibiting models of intellectual greatness hitherto un-

equalled. Nor is this exclusive devotion to the adaptation of science to

money-making so universal in other countries as amongst ourselves. Yet
it was not always so. One might appeal to the age of Newton and Locke,
the age of deep thinking and profound learning, in proof of this position.
The causes of this degradation in the objects of intellectual pursuit are

many, and some of them deeply seated. Not the least of these is the

influence which the philosophy of Bacon has exerted on the tone and

tendency of public opinion in this country. No doubt the author of the
' Novum Organon

'

conferred great benefits on mankind by laying down so

clearly the true principles of physical investigation. He has marred this

philosophy, however, by the motives he presents to us for its cultivation,

lie who could propound the maxim, worthy of Epicurus, that the true

object of science is to make men comfortable, had no very exalted con-

ception of the dignity of man's understanding.
" ' It is plain from his tone of thought that the philosophical Chancellor

had a very clear promotion, to use his own phraseolegy, of that emphati-

cally English idea, comfort. There is little doubt that he would have
valued more the invention of an efficient kitchen-range, or an ingenious

corkscrew, than the ideas of Plato or the discoveries of Archimedes.'
" What particularly charms us in the above quotation is the estimate of

Bacon's philosophy, which we are afraid is not very far from the truth.

It is becoming more apparent to the present age that Bacon's views are

very different to those of the savant, and that his philosophy is not in all

respects the magnificent structure it was, till recently, heresy to have any
doubt about.

" No one, however, can fail to read with much interest Dr. Booth's

views on" the subject ; and it must be remembered that they come from
him as from one of the most earnest labourers in the field of education.

If all the time that Dr. Booth devoted to the formation and improvement
of the Society of Arts' schemes of education had been given to his own
pursuits, the volume before us would have been a much larger one.

" A mathematician who republishes his scattered writings collected in

a volume, not only thereby secures whatever posthumous fame is his due,
but also confers a benefit on his science. Their accumulation in the same
volume places the whole in a much higher rank than would belong to the

sum of the parts if separate. It is also to be remembered that in many a

country house, cut off from the great journal literature of mathematics,
the appearance of a book containing original work (not written for

teaching-purposes) is hailed with joy."



BY THE SAME AUTHOR.

Examination the Province of the State. Being
an attempt to show the proper function of the State in

Education. 8vo.
"

. . . . The first suggestion of this system seems to have been in an able

pamphlet, published by the K> v. Dr. Booth, addressed to the Marqub of
Uffliaowne

"
Thonyht* oil National Munition, lij /,/,/ I.i/ti.'lt,,,,. p. 1<).

" Dr. Booth, in his pamphlet,
' Kxamination the Province of the State,' pub-

lished some years ago,laid duwn the general outlines of the system of promoting
education by means of examinations, which now nieut.s with Mich .

acceptance." Daily News,

flow to Learn and What to Learn. Two Lectures

advocating the System of Examinations established by the

Society of Arts, and delivered, the former at Lewes on the

24th of September, and the latter at Hitchin, on the IGth of

October, 1856. Published by the Society of Arts.
"
Among the many pamphlets, speeches, and addresses, with which the press

has this year teemed, on the all-engrossing subject of education, these lectures

by Dr. Booth are far the best in our estimation. They are more liberal and
more comprehensive ; they are marked by sounder sense ; and, what will

still more with most men, they are evidently the production of a man who has

thought much and deeply on the subject of which ne speaks, and who brings to

the aid of a mind at once vigorous and rapacious the benefit of an ext.

experience. Dr. Booth is the Treasurer of the Society of Arts, which has done
more than any other body of men to promote the general improvement and
extend education among the yeoman classes of this country, or ratlier anmn^
those who hold a position in society akin to the ancient yeoman
found in town or country. We have no better name by which we can <li-t '.

them; they are not the very poor; they are not strictly the middle clat^<

they range indefinitely between these two poles of society.
" In the success of so good a cause we feel the deepest sympathy. \\Y i

that these two lectures cannot fail in exciting that sympathy when- it is not now
felt

;
and in that persuasion we recommend them to those who are deeply inter-

ested in the cause of education, and who believe, as we do, that it is the great
and absorbing question of the day." Momimj llrrald.

"
Worthy of the high reputation of the author." Daily New*.

" We should be glad to see these lectures of l>r. Booth MTV exten-ively circu-

lated among the clergy and laity. We agree with much that he says; but what
we

especially
desire to commend as an example is, the very lucid and spirited

style in which his lectures are written." Eiiyluh Ckurckma*.
We recommend to general notice two lectures ],\ lr. James Booth, entitled

How to Leant and ll'/it to Isarn, in which the subj'ect here slightly touched on

is fidly and ably treated." Chambers
1

Journal.

On the Female Education ofthe Industrial Classes.

A Lecture delivered at Wandsworth. 1855.
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Ill One Volume, crown 8vo, price 5s. cloth,

The Lord's Supper, A Feast after Sacrifice.
With Inquiries into the Doctrine of Transubstantiation, and
the Principles of development as applied to the Interpretation
of the Bible. By JAMES BOOTH, LL.D., F.R.S., F.R.A.S., &c.,
Vicar of Stone, Buckinghamshire.

" This is a careful and scholarly attempt at a via media between the merely comme-
morative theory of the Eucharist and the doctrines of Transubstantiation and Con-
substantiation. Dr. Booth evidently regards the former as bald and defective, and both
of the latter as extravagant and superstitious. The nature of the Holy Rite preferred
by the author is the Epuhim Sacrificiule of Mede and Cudworth, answering to the meal
of the Jews after, and upon parts of, their sacrifice. We commend the treatise as a

valuable contribution to this discussion, which never was more rife amongst polemical
divines than at present, and which may grow in heat and range within a few years."

English Churchman, June 9, 1870.
" This volume will well repay perusal. It is the work of a clear thinker and well-

informed man. Dr. Booth is well known to mathematicians as one who is at home in

the most abstruse problems. When we state that, our readers will know they are in the,

hands of a man with powers of continuous thought, who is able to trace his way through
all intricacies and obscureness, if a route be possible to human powers. But the ordi-

nary reader (we mean non-mathematical reader) will observe nothing of the mathema-
tician in our author's manner of handling his present subject. His style and inethod
are distinguished solely by their clearness, simplicity, and orderliness. And the book
consists mainly of quotations from able divines of the past. Quotations from such acute

and learned thinkers as Cudworth, and Waterland, and Mede, wit h ot her divinea of lesser

note, form ihe staple of a large portion of the volume. This remark, however, does not

apply to the latter half of the volume, which-consists of two chapters, the one entitled
' On the Principle of Development as applied to the Interpretation of the Bible,' and the
other ' On Trunsubstantiation,' Taken as a whole, the volume brings together much
that is valuable and suggestive, and in the 7iiain thoroughly sound, on the sacraments,
and specially on the Lord's Supper ; and the doctrine of Trnnsubst-nitiation is handled
as might have been expected by so able and profound a mathematician. The history of

the rise and progress and final result of the doctrine is given briefly, yet truly. It ia

traced to a false philosophy long since buried out of sight and forgotten. It, would be

profitable work for some of the author's co-religionists to read, mark, and inwardly

digest the chapter on Transubstantiation, that not cunningly but clumsily devised fable."

Weekly Iteview, June 18, 1870.
" This is a learned and well-written attempt to establish, in a logical manner, the true

nature of the Lord's Supper, reliance being mainly placed on the brief narratives of the

Gospels and of St. Paul, further elucidated by a reference to the ancient Jewish language,

history, and customs. Dr. Booth's position embraces the view once (he says) almost

universally held in the Church of England,
' That the Lord's Supper is-a Feast upon a

Sacrifice ;' and to set it forth he has combined and expounded the views of such men as

Joseph Mecle, Cudworth, Potter, Warburton, Waterland, Hampden, and others. This

gives to the treatise a somewhat fragmentary air ; but, taken as a whole, it is clearly,

intelligently, and devoutly written, and will doubtless be acceptable to some disciples of

those famous men. On a subject of such subtlety where the widest diversity of opinion
still fiercely prevails it cannot hope to please the many, though it is well worthy of

careful examination. Dr. Booth has studied his subject with care, and brought to hia

diflicut task the fruits of extensive reading." Standard, June 23, 1870.
" Dr. Booth's modest volume is avowedly not so much an original production as an

attempt to recall by selected citations what he thinks the too much neglected learning
of the fathers of thie Church of England. The volume is divided into four chapters, in

the first of which he adduces authorities to prove that the Lord's Supper is not a mere
service of commemoration ;

in the second he adduces authorities to prove that it ought
to be regarded as a feast of thanksgiving, implying a preceding sacrifice

;
in the third

he treats of the principle of development as applied to the interpretation of the Bible ;

and in the fourth he discusses and dismisses the doctrine of transubstantiation, inci-

dentally treating at some length of the influence of the philosophy of Aristotle. The
most original thoughts and illustrations occur in the third chapter, and the reasoning
seems to us most conclusive in the fourth. The quotations have evidently been selected

with thought and care, and evincemuch research ; and the author's own writing is finished

and good.. The volume is the careful production of a thoughtful scholar, though it

conveys the impression to us that the mind of the writer has been somewhat overlaid by
scholastic learning, so as to be in an artificial state, and partially disabled from receiving
in their freshness and simplicity the truths which we conceive to be really revealed in

the scriptures to the human heart." Theological Review, October 1870.
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