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PKEFACE

TO THE SECOND EDITION.

THE present edition of this work is, I venture to think, a

considerable improvement on the previous one. With such a

large number of examples, not only were misprints, but

mistakes, more or less trifling, almost inevitable
; but, owing

chiefly to the kindness of correspondents, very few of these

can remain in this edition.

My acknowledgments are, in the first place, due to Mr.

Robert Graham, of Kingstown, who supplied me with a long

list of corrections and some good suggestions. Mr. J. C. Malet

kindly called my attention to some mistakes which I had

overlooked in the chapter on Attractions. In some places

where a better choice of language was possible for the

elucidation of the subject, I have adopted alterations kindly

pointed out by Colonel Chesney.

In the earlier part of the book the examples have been

subjected to a rearrangement, the order of relative difficulty

being better kept in view
;
and some of them which were of

the purely mathematical and fantastic character have been

expunged.

Besides alterations of the above description, four others

deserve special mention.

Firstly, the proof of the parallelogram of forces has been

based entirely on the Newtonian definition of force, and has

M177047



VI PREFACE.

therefore been made to follow from the composition of

velocities.

Secondly, the principal propositions of Graphic Statics (so

far as coplanar forces are concerned) have been introduced.

The subject is a small one and very simple, and I believe

that in the few pages in which I have treated it (see end
IT O \

of Chapter V) the student will find enough to enable him to

read with ease a more elaborate and formal treatise on

graphic methods.

Thirdly, the portion dealing with Electrostatics has been so

enlarged as to contain several propositions of importance

which had been omitted in the previous edition.

Fourthly, and chiefly, a Chapter on Strains and Stresses

has been introduced. So far as English works on Statics, in

general, are concerned, this is an innovation, and a very

important one. In view of the enormous development of

Mathematical Physics, and the wonderful inventions depending

on the small strains and vibrations of natural solids, which

have been made within the last few years, the study of the

equilibrium and motion of bodies as they are, and not as they

exist in abstraction,^ surely a subject of which it is impossible

to exaggerate the importance. We may well ask whether in

this country too much valuable time is not spent in the

discussion of neat mathematical unrealities in the calculation

of the behaviour of impossible bodies under impossible condi-

tions, A certain amount of this is of course necessary for the

study of the fundamental principles of Dynamics; but the

equilibrium and motion of natural solids ought to occupy the

attention of every student of Physics after he has acquired a

sound and firm knowledge of the fundamental propositions

concerning the action of Force. Yet Applied Mechanics, as a
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sequel to, and corrective of, Rational Dynamics, is a subject

the study of which is confined almost exclusively to scientific

students of Engineering.

I am very far indeed from asserting or implying that the

few pages on Strains and Stresses in this work supply ade-

quately this deficiency in our general scientific education.

They are addressed to students who have attained consider-

able proficiency in pure mathematics, and have a reference

much more to the Theories of Light, Magnetism, and Elec-

tricity than to ordinary Applied Mechanics. For students of

lower attainments a short treatise dealing first with plane

elasticity and proceeding thence to strains in three dimensions

would be extremely desirable.

In dealing with the theory of Strains and Stresses and with

the subject of Electrostatics, I have had the benefit of the

invaluable advice and criticism of Mr. Fitzgerald, whose

assistance was always given with the utmost zeal. In two

Chapters of his Elements of Dynamic the late Professor

Clifford gave a discussion of 'Strain-Steps' and 'Strain-

Velocities' marked by all the elegance and simplicity of

treatment which characterised everything he wrote. From

these chapters I have derived considerable assistance; but

their (quaternion) method is, of course, different from that

which I have adopted.

For the view of the theory of Friction presented to the

student in this work, I am almost wholly indebted to

Mr. Jellett, whose method of treating the rational theory of

Friction, both in his Lectures and in his Treatise on the

subject, has invested it with a completeness and precision

which it had not previously attained. Our knowledge

of the laws of Friction has been recently extended by the
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experiments of Professor Osborne Reynolds on rolling friction

(Phil. Trans., vol. 166, pt. i), and by experiments made on an

extensive scale on the London Chatham and Dover Railway

by Captain Douglas Galton (Proceedings of the Institution of

Mechanical Engineers, June and October, 1878).

A reference to these experiments will be useful to the

student.

I have again to thank Mr. Eagles for his very useful and

painstaking assistance in correcting the press and verifying

results.

Mr. Reilly's references to sources of information have been,

as before, of very great value to me
;
and I have to thank

Professor Wolstenholme for continuing his permission to

draw from the inexhaustible store accumulated in his Book

of Mathematical Problems.

COOPEK'S HILL, December, 1879.
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NOTE.
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A ' and insert instead the words ' show that as the point C varies, the position of

the beam being always the same, the magnitudes and lines of action of the

pressure on the axis will be represented by lines drawn from A to a certain right
line parallel to AB

;
and if the position of the beam varies, while AC is always

equal to AS, find the curve whose radii vectores will represent the pressure on
the axis.'



STATICS

CHAPTER I.

THE COMPOSITION AND RESOLUTION OF FORCES ACTING IN ONE

PLANE AT A POINT.

ARTICLE 1.] Definition of Force. Force is an action exerted,

upon a body in order to change its state either of rest or of moving

uniformly forward in a right line.

This is the definition of Force given by Newton (see Prin-

cipia, Book I, Def. IV).

2.] Divisions of the Science. The Science which treats of

the action of Force on bodies is called Dynamics. Of this

science there are two branches : the first treats of the laws to

which forces are subject when they keep bodies at rest, and

this branch is called Statics ; the second treats of the laws to

which the motions of bodies are subject when these motions are

produced by given forces, and this branch is called Kinetics.

3.] Matter. Matter is something which exists in space, and

attests its presence by such observed qualities as extension,

resistance, and impenetrability.

A limited portion of matter is called a Body, and the quantity
of matter contained in a body is called its Mass. A very small

portion of matter is called a Particle.
K

4.] Velocity. Suppose a point to move along a right line in

such a way that it always takes the same time, tf,
to travel over

the same length, s, of the line, in whatever points of the line the

extremities of this length are situated. Then we readily say

that the point's
' rate of moving

'

is the same all through, and

this rate we measure by the quotient
- The rate of moving we

call the velocity of the moving point. But if the time of moving
over the length s is not the same all through but depends on the

* B



2 COMPOSITION AND EESOLUTION OF FORCES.
[5.

points of the line between which it is measured, the velocity,

or rate of moving, is clearly not uniform. Nevertheless we

recognise the fact that at each of its positions the moving point
has a particular rate of going. How is this rate to be esti-

mated? Like all rates, it must be measured by a differential

coefficient. Thus, if P and Q are two extremely close positions,

and if is any fixed point on the line of motion, the distance

between and P being called s and the distance OQ being
called s + A s, and if the point has taken the infinitesimal time

A^ to get from P to Q, we shall t>e very near the truth in

assuming that its rate of moving has remained uniform in the

passage from P to Qj and the velocity in this interval will, as

above, be the quotient
- The smaller the interval PQ (andA '

therefore the smaller A* and A^) the more nearly true is the

assumption of uniformity of the rate of moving from P to Q.

Hence if we could find the value of the ratio when both A s
A

and A are indefinitely diminished, we should have the exact

rate of moving at P. But the limit of this ratio is the

els

differential coefficient > which is easily found by the rules of
dt

the Differential Calculus.

We have thus not only a conception of different rates of

moving, but also a method of estimating these rates numerically
at different points of the path.

5.] Criterion of the Action of Force. Instead of the motion

of a mere mathematical point, let us consider the motion of a

material particle. How can we tell whether this moving

particle is acted on by force or not ? The answer is unless

the particle is completely at rest, or failing this, moving ivith a

uniform velocity in a right line, it is acted on by some force.

Observe the two distinct characters which must be possessed by
the motion of a particle which is not acted on by force the

velocity must be constant in magnitude and the path must be a

right line.

6.] Measure of Force. Suppose a particle to move along a

right line in such a way that in any interval of time, t, there is

the same addition made to its velocity, between whatever epochs
of time the interval t is reckoned. Then the velocity is
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obviously increased at the same rate at every point of the path,

and the particle is said to be continuously acted on by a uniform

force in the line of motion. The rate at which this increase of

velocity takes place is taken as the measure of the force acting
on the particle ;

that is, if the same particle moves along a right
line in such a way that its velocity is increased at a constant

rate which is double the previous rate, it will be continuously
acted upon in the second motion by a force which is double the

previous force.

If the rate of increase (or in other words, the acceleration) of

the particle's motion is not uniform, the force acting on it is not

uniform, and its magnitude at any point of the particle's path is

estimated by the rate of increase of the velocity of the particle

at this point.

Since the velocity of one and the same particle is capable of

having all possible rates of increase, all forces may be compared
with each other by means of their effects on a single particle.

7.] Ways in which Force is produced. One of the simplest

ways in which a force can be made to act on a particle consists

in attaching a string to the particle and pulling this string so as

to cause the particle to move. If no other force acts on the

particle, and if the string is always pulled in the same right

line, the particle will continue to move in this right line ; and

the rate> per unit of time, at which its velocity is being increased

at any point of its path is a measure of the magnitude of the

force with which the string pulls it
;

so that if for any finite

time we observed its velocity to remain constant, we should

know that during this time the string ceased to be pulled, and

that no force acted on the particle in this particular interval.

There are other ways in which forces act on particles, but

the manner in which they act is not in every case known to us.

. For example, if the particle consists of a small piece of soft iron

and we hold it near the pole of a magnet we shall see it rushing
with continually increased velocity towards the magnet, and it

is therefore by definition acted on by some force towards the

magnet. This force can be measured, as before, at every point
of the particle's path by the rate, per unit of time, at which it

produces an increase of velocity in the particle; nevertheless it

is quite uncertain how this force is produced whether it is an

action at a distance or a stress in some intervening medium.

B 7,
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But whatever its cause may be, we can measure it numerically

by its effect viz., rate of increase of velocity produced in a

material particle.

Again, since the velocities of planets towards the sun and of

meteoric stones towards the earth are perpetually accelerated,

the planets are acted upon by forces towards the sun, and the

meteors by forces towards the earth. These forces are called

forces of attraction ; but the nature or precise mode of operation
of this attraction is a matter on which no certainty exists.

8.] Linear Representation of Forces. Consider a single

material particle. Every velocity which it can have possesses

three characteristics it must have a certain numerical magni-

tude, it must take place in a certain right line, and it must

take place in a certain sense (from right to left or from left to

right) along this line
; or, in other words, it must have magni-

tude, line of action, and sense.

Now every velocity can be regarded as produced in the

particle by the uniform action of a force for a definite time.

Hence forces are also characterised by magnitude, line of action,

and sense.

Two forces acting on a particle are therefore compared by

specifying the two lines and senses in which they would cause

it to move if each acted separately, and also the magnitudes of

the velocities which they would thus generate in it if they both

acted for the same time on it.

Hence any force may be completely represented by a right
line drawn in the direction and sense in which it would cause a

material particle to move, the length of this line representing,
on any scale, the rate per unit of time at which the force would

generate velocity in the particle. And all other forces may be

compared with this force as to magnitude, direction, and sense

by drawing right lines in the several directions in which they
would produce motion, and taking the lengths of these lines to

represent, on the same scale as before, the rates at which they
would severally generate velocity in one and the same particle.

Forces may also be compared with each other by means of

their effects on different particles. For, let n perfectly equal

particles be placed side by side in a row
(fig. i), and let each

of them be acted upon uniformly for the same time by a force

which at the end of this time generates the same velocity,
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f> in each of them. Now if instead of being n separate

particles they were all glued together so as to form a body
of n times the mass of each particle, and if each

of them is still acted on by the same force as

before, this body will, at the end of the time

considered, have the same velocity as each separate

particle had, and will be acted upon by n times

the force which generated this velocity in the

particle. Comparing a single particle, then, with the body
whose mass is n times the mass of this particle we see that to

produce the same velocity in two bodies by forces acting on

them for the same time, the magnitudes of the forces must be

proportional to the masses to which they are applied.

And hence, generally, if we define momentum as the product
of mass and velocity

The magnitude of aforce is proportional to the rate per unit of time

at which it generates momentum.

The greater the mass on which the force acts, the less the rate

at which it increases the velocity of this mass ; and the less the

mass, the greater the rate of increase of velocity ;
the product of

the two being always the same for the same force, whatever le

the masses to which it is applied.

So that if P is a force which generates velocity at the rate

-j-
in a body of mass m> and if P' is a force which generates

dt 7 /

velocity at the rate -^- (per unit of time) in a body of mass

m, we have ^_ [vnn \

9.] Composition of Velocities. We propose to show how a

particle may be moving with two velocities in two different

directions at the same time. Let a board be placed on a hori-

zontal table
;
let a rectilinear groove,

OA (fig. 2), be cut in this board, and

let a particle be placed at in the

groove. Suppose, for definiteness,

that the unit of time is one second.

Let the particle be moved along

the groove with "aT uniform velocity represented by OA, and at
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the same time let the board (i.e. every point in the board)

be moved along a groove cut in the table with a uniform velocity

represented in magnitude and direction by OB. Over what

point in the table will the particle be found at the end of one

second? Before the motions begin, complete the parallelogram

OACB.
At the end of a second the particle must be found in the

groove at the point A, and also at the end of the same

time the point A of the groove must be found at the point

of the table vertically under C. Hence this latter point is the

position of the particle at the end of a second.

Let the foot of a perpendicular dropped from the particle on

the table be called the position of the particle referred to the table.

How do we know that the position of the particle referred to the

table has described the right line OC (or rather a line in the

table vertically under OC) ? In this way if we demanded the

position of the particle referred to the table at the end of any
fraction or multiple of a second, we should find that the distance

which it has travelled along OA is to the distance which the

groove has travelled in the direction OB as OA is to AC, and

therefore the positions of the particle referred to the table trace

out a right line vertically under OC.

Consequently the two simultaneous velocities OA and OB
which were impressed on the particle have combined to give it

a single velocity represented in magnitude and direction by OC.

The velocity OC is called the resultant of the velocities OA
and OB, and these latter are called components of the velocity

OC. Hence we arrive at the proposition which is the foundation

of Dynamics :

If a point, 0, move with two coexistent velocities represented in

magnitudes, directions, and senses by two right lines, OA and OB,
it will have a resultant velocity represented in magnitude, direction,

and sense by the diagonal, drawn through 0, of the parallelogram
determined by the lines OA and OB.

This proposition is called by the name of The Parallelogram of
Velocities.

10.] Composition of Forces. From the Parallelogram of

Velocities, the Parallelogram of Forces follows at once. Since

two simultaneous velocities, OA and OB, of a particle result in a

single velocity, OC, and since these three velocities may be
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supposed to be produced by the separate action of three forces all

acting for the same time, it follows that the effect produced on a

particle by the combined action, for the same time, of two forces

may be produced by the action, for the same time, of a single force

which is therefore called the resultant of the other two forces.

And these forces will be represented in magnitudes, lines of

action, and senses by the lines OA, OS, and OC (Art. 8); hence

If two forces be represented in magnitudes, lines of action, and

senses by two right lines OA and OB, their resultant is represented

in magnitude, line of action, and sense by the diagonal, OC, of the

parallelogram OACB determined by these lines.

This is the proposition of the Parallelogram of Forces.

COR. The resultant of two forces acting along the same right
line and in the same sense is equal to their sum ; and if they act

in different senses, the resultant is equal to their difference.

11.] Equilibrium of Three Forces. In fig. 2 produce CO

through to Cf so that CO OC' . Now imagine that, when
the particle is started along the groove and the board along the

table, the table itself is moved in a groove cut in the floor in th ;

direction OC' with a velocity represented by OC'. In this case

it is evident that the position of the particle with reference to

the floor is fixed ; that is, the particle is at rest with regard to

fixed space (the floor being supposed fixed).

Consequently if three forces represented by the lines OA, OB,
and OCf

act together on the particle, no motion will ensue. In

this case each force is equal and opposite to the resultant of the

other two ; for it is obvious that OA is equal and opposite to the

diagonal, through 0, of the parallelogram determined by OB
and OC'; and that OB is equal and opposite to the diagonal of

the parallelogram determined by OA and OC'\

12.] Statical point of view. The primary conception of

force is that of a cause of motion in a body or in a material

particle, and the magnitude of any force is estimated by the rate

at which it generates momentum (Art. 8). Nevertheless in

Statics it is only the tendency which forces have to produce
motion that is considered. Forces in this branch of Dynamics
are considered as acting in such ways as to counteract each

other's tendency to produce motion, or as producing a state of

equilibrium in the bodies to which they are applied ;
but the

magnitude of each force is estimated with reference to the
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amount of momentum which it would actually generate if it

were completely unfettered by the action of other forces.

Forces in Statics are usually expressed as multiples of the

weight of some standard body arbitrarily chosen. Thus a force

is said to be a force of 1 kilogrammes if it is just capable of

lifting vertically a body whose weight is equal to that of the

mass of water which at a temperature of 4
C
C. fills a volume of

10 cubic decimetres. But even here the Newtonian definition

of force, as a cause of change of motion, is not discarded but

merely kept in the background. For the weight which is called

a kilogramme is merely a force which generates momentum at a

certain rate in a body of certain mass
;
and the vertical force

which is just able to raise a body from the ground is a force

which could generate momentum in the body at the same rate

as its weight and in the opposite sense. For practical

purposes this measurement of forces as multiples of a weight is

used by engineers and others
;
but in the very important branch

of Dynamics which treats of Electricity and Magnetism an

absolute measure of force is resorted to i. e. a measure which is

one and the same all over the earth, and indeed all through the

universe. The mass of a body is something which cannot con-

ceivably change, whether the body is taken to different parts of

the earth or to different parts of the universe; and the force

which, acting uniformly on this mass for a certain time (say one

sidereal second), will at the end of this time have caused it to

move with a certain velocity (say one centimetre per second),

must be one and the same wherever the experiment is tried.

The mass selected to define the unit force is a mass equal to that

of the water which, at its temperature of maximum density, fills

one cubic centimetre; and this absolute unit of force is called

a Dyne. Compared with even such a small force as the weight
of a gramme, the dyne is exceedingly small; but in many
problems of Electricity and Magnetism where the forces at play
are very small, the dyne as a unit force is convenient enough.

13.] Force must act upon Matter. Although the Newtonian

definition and measure of force render it clear that whenever

force acts it must act on something material, it is not impossible
that beginners may lose sight of this fact and suppose that a

force could, for example, act on a mathematical point. We may
without error speak of forces as acting at a point, but not on it,
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RESOLUTION OF FORCES. 9

if their lines of action pass through the point. Thus, in
fig-. 3,

two forces acting- along the lines OA and OB may be spoken of

as two forces acting at the point ; but their action would be

physically impossible unless it took place on some material body,
such as a particle placed at 0. Wherever force is exhibited, there

is evidence of the existence of matter, both acting and acted upon.

14.] Proper Representation of Forces. In representing the

resultant of two forces which act together at a point, 0, the

student should be careful to draw the

two forces acting from the point. Q,\_ _ J
Thus, if of the two forces, P and Q,

*xx S x\
one, P, is represented as acting from
0, and the other towards 0, we niust

produce the line QO to Q', so that

OQ'=OQ', completing, then, the pa- Fig. 3.

rallelogram OPRQ', its diagonal, OR,
will represent in magnitude and direction the resultant of

P and Q. The marking of lines representing forces with arrow-

heads will serve to exhibit the senses of the forces in every case.

15.] Resolution of Forces. Having proved the principle of

the Composition of Forces, the principle of the Resolution

of Forces at once follows. If two forces, P and Q, are equiva-

lent to a single force 0(7 = R (fig. 4),
it is evident that the

single force R acting along 00' can be replaced by the two

forces P and Q, represented in magnitude and direction by two

adjacent sides of a parallelogram of which 0(7 is the diagonal.

Since an infinite number of parallelograms, of each of which 0(7

is the diagonal, can be constructed, the force R can be resolved

in an infinite number of ways into two other forces. These

forces are called the components of R.

16.] Theorem. It being given that the direction of the

resultant of every two forces is that of the diagonal of their

parallelogram, its magnitude must be represented by this dia-

gonal ;
and conversely,

Let it be granted that the resultant of P and Q acts in

the diagonal, 0(7
(fig. 4), of the parallelogram determined

by P and Q. Measure backwards through a line, OR, the

length of which represents the magnitude, R, of the resultant.

A system of forces acting at 0, represented in magnitude and

direction by P, Q, and R, will evidently be in equilibrium. Each
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force is, therefore, equal and opposite to the resultant of the

other two. If, then, we consider P as equal and opposite to

the resultant of Q and R,

OP', the production of OP,
must be the diagonal of the

parallelogram determined by

Q and E. Now, since OQP'R
is a parallelogram, OR = P'Q-,

Fig> 4 *

and since OP'Q (/ is a paralle-

logram, P'Q = 00'
; therefore OR = 00'. Q. E. D.

Again, for the converse proposition, let it be granted that

OR =00*, while 00" and OR are not necessarily in one right

line; and let OP' be diagonal of the parallelogram, OQP'R,
determined by OQ and OR; then OP is equal in magnitude to

OP*, since the resultant of Q and R has a magnitude equal to OP'.

Comparing the triangles OQO'and OQP' we have 00'= QP',

QO' = OP', and OQ common to both; therefore the angle

QOO' = the angle OQP', therefore QP' is parallel to 00'-, but

QP' is also parallel to OR, therefore OR and 0(7 are in one right

line. Therefore, &c., Q. E. D.

17.] Relations between Three Forces in Equilibrium. When
three forces maintain a particle in equilibrium, each force is

equal in magnitude to the resultant of the other two, and acts in

the sense exactly opposite to this resultant. Thus, in fig. 4,

each of the lines, OP, OQ, and OR, which represent in magni-
tude and direction the forces P, Q, R, is equal and opposite to

the diagonal of the parallelogram determined by the two re-

maining lines.

This enables us to express the relative magnitudes of three

forces in equilibrium by means of the three angles between

them. For (fig. 4) the forces P, Q, R are equal in magnitude to

the lines OP, PC/, O'O, respectively. Now, since the sides of a

plane triangle are to each other as the sines of the opposite

angles, we have

OP:P(/:0'0=: sin PO'O : sin O'OP : sin OPO/
.

Denote by PQ, QR, RP, the angles between the directions

of the forces P and Q, Q and R, R and P, respectively. Then,

evidently,

sin PO'O = sin Q0(/ = sin QOR = sin QR ;
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sin O'OP = sin ROP = sinRP
;
sin OP(/ = sin POQ = sin

Hence we have the fundamental relations

P : Q : R = sin QR : sin RP : sin

It may, perhaps, assist the

beginner to mark the angle

opposite to each force by the

corresponding small letter (fig.

5) ;
and then the ratios be-

tween the forces may easily be

remembered in the form

P : Q : R = sin p : sin q : sin r. (a)

Since the sides of the triangle OPO'
(fig. 4) are connected by

the equation

OO' 2 = OP 2
-

we have evidently

an equation which gives the magnitude of the resultant of two

forces in terms of the magnitudes of the two forces and the

angle between their directions, the forces being represented by
two lines, both drawn from the point at which they act, as in

Art. 14. If PQ = 0, the above equation gives R = P+ Q,

or the resultant of two coincident forces is equal to the sum

of the forces. If PQ =
TT, R = P Q ; or, the resultant of two

forces which act at a point in exactly opposite senses is equal
to the difference of the forces.

18.] Theorem. If any one set of forces (P, Q, R) acting

in three given directions is in equilibrium, all other sets acting

in equilibrium in the same directions are merely multiples of the

set (P, Q, #).

For, let the given directions make angles p, q, r with each

other in pairs, and let the sets (P, Q, R) and (P', Q', R') acting

in these directions be separate systems in equilibrium. Then

we have
P : Q : R = sin p : sin q : sin r

and P':Q':R'= sinp : sin q\ sin r.

Therefore, P : Q : R = Pr

: Q' : K, or ^ =
^-
= ^ - Hence
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the forces P', ', R' are separately proportional to P, Q, E,
and therefore the former set is not essentially distinct from

the latter. This theorem is equivalent to the statement

when we have determined any one set offerees in equilibrium in

three given directions, we have determined all such sets.

Thus, if we know (see Example 1, p. 16) that three forces

acting along the bisectors of the sides of a triangle drawn from

the opposite angles, and proportional to the lengths of these

bisectors, are in equilibrium, we know that this is the only set in

equilibrium in these directions.

19.] Principle of the Transmissibility of Force. When a

force acts on a particle, the force will produce the same effect

if it be supposed applied at any point along a string connected

with the particle, the string lying in

the line of action of the force. Thus,

if a force of P grammes (fig. 6) act on

a particle, 0, in the direction OA, P
may be supposed to act at A or B at

the end of a string attached to 0.

Imagine the particle to be connected

with an indefinitely thin rigid mem-

brane, aoc
;
then any force P acting on may be supposed to be

directly applied at any point of the membrane in the line of

action of P.

This axiom is known as the principle of the transmissibility of

force ; it is one of the fundamental principles of Rational Statics,

and in most treatises on the subject, it constitutes the basis of

the investigation of the conditions of equilibrium. It is essen-

tially necessary to observe that it holds good only for a rigid

body that is, a body whose parts, under all circumstances, must

maintain constant distances from each other. Thus, if we sup-

pose such a body about to be acted on by any set of forces given
in magnitudes and directions, we can say, before the forces are

actually applied at certain points in the body, that the effect will

be the same if these forces are applied at any other points in

their respective lines of action. On the contrary, if the body is

deformable, we can make no such assertion. Take, for example,
a set of parallel rulers, ABCD (fig. 7), of which the ruler CD is

fixed, and suppose a force F to act on the ruler AB at the point a.

\^previom to the action of theforce, it were allowable to transfer its
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point of application to b, on the fixed ruler CD, it is clear that

the system would remain at rest. But

we know that the force F, applied at

a, will cause the ruler AB to move A

until the braces AD and CB are pa- \ ~"\

rallel to the direction of F. However, ^
--f ^

after the deformable body has taken up -p.

a position of equilibrium under the

action of theforces, each force may be transferred to any point in

its line of action, just as in the case of an indeformable body.
Several other very obvious instances of the inapplicability of

this principle will doubtless present themselves to the student.

It is essential to observe at the outset that in nature there are

no such things as rigid bodies. For a great many practical

matters there are bodies which may be treated as if they were

rigid or indeformable ; but the fact that the particles of solid

bodies like iron can be thrown into vibration by the application

of even small impulses as is evidenced by the production of

sound from bells and gongs proves that these bodies are not

absolutely rigid.

Bodies which most nearly approximate to the notion of

rigidity are called Natural Solids.

EXAMPLES.

1. Find the magnitude of the resultant of two forces of 10

kilogrammes and 8 kilogrammes which act at an angle of 105.

Ans. 72 = 2^/41-10(^6- >/2) = 1 1 -06 kilogrammes.

2. Two forces, P and Q, of which P is given, act at an angle of 60 ;

given the magnitude of their resultant, R, find the magnitude of Q.

nAns. Q=

From this it appears that R cannot be less than --P; explain
this result by a figure.

3. Two forces, P and Q, inclined at an angle of 120, have a

resultant, R ;
when they are inclined at an angle of 60, the resultant

becomes n times as great as before
; show that

R
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4. If two forces, acting at a given angle, be each multiplied by the

same number, show that their resultant is also multiplied by this

number and unchanged in direction. .

5. Two forces act at an angle o>
;
each force becomes n times as

great as before, and the angle between the forces is reduced to -;

each of these latter forces again becomes n times as great as before, and

the angle between them reduced to - It is observed, that in all

these cases the magnitude of the resultant is unaltered. Show that

o> = 4cos-1

(

v "

4 -)

6. Two chords, OA and 0^, of a circle represent in magnitude and
direction two forces acting at the point ;

show that if their resultant

passes through the centre of the circle, either the chords are equal or

they contain a right angle.
7. Find the components of a force, P, along two directions making

angles of 30 and 45 with P on opposite sides.

2P PV~2
Ans. and

1+V3 1 + -/3

8. Show that a force represented in magnitude and direction by the

diameter of a circle may be resolved into two rectangular components
represented by any two rectangular chords of the circle drawn from the

extremity of the diameter.

9. Two rectangular forces, P and P-/3, act on a particle lying on
the ground. If P makes an angle of 30 with the horizon, show that

the particle will have no horizontal motion.

10. Three forces equal to P
}
P + Q, and P Q, act on a particle in

directions mutually including an angle
-

; find the magnitude and
direction of their resultant.

1

20.] Theorem. Tbe following theorem is of wide application
in the composition of forces

If two forces acting at a point, 0, are represented in mag-
nitudes and directions by OB
and n . OA, their resultant is

represented in magnitude and
direction by (-fl) OG, the

Fi g point G being taken on AB so

that BG = n.AG.

For, produce OA to C so that 00'= n . OA. Then the two
forces acting at 0' are represented by OC and OB. Complete
the parallelogram OCRB. Then the diagonal OR is the re-

sultant force.
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From C draw CH parallel to AB. Then the triangles CHR
and EGO are equal in all respects, therefore HR OG. Now
since OC = n.OA, it follows that OH n.OG, therefore OR
( 4-1) OG, which proves the proposition for the magnitude of

the resultant.

CH CO
Again, -^- =-= #, therefore CH=n.AG, and since

(JA.

CH= BG, we have BG = n.AG.
As a particular case, the resultant of two forces represented

by OA and OB passes through the middle point of AB> and is

equal to twice the line joining to this point.

If the two forces are equal to n . OA and m . OB, the resultant

passes through the point G determined so that -^ = > and isAG m
represented on the same scale by (m + n) . OG.

For, diminishing the scale to which the forces are drawn in

the ratio of m : 1, the two forces will be represented by OB and

OA. It then follows, by what precedes, that the resultant

M
acts through a point G, such that BG = -.AG, and is equal in

x WL \

magnitude to
(
- + 1

J
OG. If, now, we revert to the original

scale, this must be multiplied by m, and we have for the

resultant (n+m). OG.- Q. E. D.

21.] Graphic Representation of the Resultant. If several

forces, Px , P2 ,
...act together at a point, their resultant is

found thus : Take the resultant of P
1

and P
2 ; compounding this resultant

with P3 ,
we get a new force which is

the resultant of Ply P2 ,
and P3 ; com-

pounding this force with P4 ,
we get

the resultant of P
x , P2 ,

P3 , and P4 ;

and carrying on this process until all

the forces have been used, we obtain

in magnitude and direction the re-

sultant of the whole system. -p.

Lst
ff^

be the middle point of the

line P
t
P

2 ,
which joins the extremities of the first two forces.

Then the resultant of P
l
and P2 is represented in magnitude and

direction by 2.0^. Compounding the force 2.0^ with P
3 ,
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we get a resultant represented in magnitude and direction by
3 . Og2 (Art. 20), where g2

is a point on ^P3
such that P3 ff2

2.g 1 t/ 2 . Again, the resultant of 3.0^2 and P4 is 4.0^3,
where

g.^ is the point on P4 #2
such that P4 ^3

= 3 .g.2 gy If there are n

forces acting on 0, and if G is the last point determined as above,

the resultant is represented in magnitude and direction by n . OG.

DBF. The point G, thus determined, is called the Centroid of

the points P19 P2 ,
...Pn .

COR. 1. If the point 0, at which the given forces act, is the

centroid of the extremities of the forces P
15
P

2 , ...Pn ,
the

resultant force vanishes, and the point is in equilibrium.

COR. 2. The more advanced student will perceive that if at

the points Plt
P

2 ,
... Pn there be placed equal particles, each of

mass m, and if each of these particles attracts or repels the

particle with a force proportional to m and to the distances

OP15 OP
2 ,...OPW , respectively, the resultant attraction or

repulsion on will be nm.OG, or M.OG, where M = the sum
of the masses and G is their centre of mass.

COR. 3. If the attracting or repelling particles form a con-

tinuous body, of mass M, and the law of attraction or repulsion

is that of the direct distance, the resultant attraction or re-

pulsion will be M . OG, acting in the line OG} where G is the

centre of mass of the body.
This important result is, therefore, seen to be a simple con-

sequence of the theorem in this Article concerning the resultant

of a number of forces acting on a particle a theorem which was

first given by Leibnitz.

EXAMPLES.

1. Find a point inside a triangle such that, if it be acted on by
forces represented by the lines joining it to the vertices, it will be in

equilibrium.
Ans. The intersection of the bisectors of the sides drawn from

the opposite angles.
2. Pv P

2,...Pn are points which divide the circumference of a

circle into n equal parts. If a particle, Q, lying on the circumference,
be acted upon by forces represented by QPl} QP2 ,

... QPn >
show that

the magnitude of the resultant is constant wherever Q is taken on the

circumference. Ans. It is n . QO, being the centre of the circle.

3. A particle placed at is acted on by forces represented in

magnitudes and directions by the lines, OA
l} OA^ ... OA n ,

which

join to any fixed points, Alt A%, ... A n \
where must be placed so

that the magnitude of the resultant force may be constant 1
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Ans. If the resultant is represented by a line of length R, may
TO

be placed anywhere on a sphere of radius described round the

centroid of the fixed points as centre.

4. Two forces are represented by two semi-conjugate diameters of

an ellipse ; prove that their resultant is a maximum when the

diameters are equal and so taken as to include an acute angle; and
that their resultant is a minimum when they are equal and include an
obtuse angle.

5. ABCD is a quadrilateral of which A and C are opposite vertices.

Two forces acting at A are represented in magnitudes and directions by
the sides AB and AD

;
and two forces acting at C are represented in

magnitudes and directions by the sides CB and <7Z). Prove that the

resultant force is represented in magnitude and direction by four times

the line joining the middle points of the diagonals of the quadrilateral.

6. is any point in the plane of a triangle, ABC, and D, E, F are

the middle points of the sides. Show that the system of forces OA,
OS, 00 is equivalent to the system OD, OE, OF. (Wolstenholme,
Book of Mathematical Problems.)

7. If be the centre of the circumscribed circle of a triangle, ABC,
and L the intersection of perpendiculars from the angles on the sides,

prove that the resultant of forces represented by LA , LB, and LC will be

represented in magnitude and direction by 2 LO. (Wolstenholme, ibid.)

If r is the centroid of the triangle, the resultant is 3 .LO (Art. 21);
but this, by a well-known theorem in Geometry, is 2.LO.

22.] Graphic Representation of the Resultant. There is

another mode of exhibiting the resultant of a number of forces

acting on a particle.

When two forces, OA and OB (fig. z, p. 6) act at 0, their

resultant is the diagonal of the parallelogram OACB
; or, again,

it may be considered as the third side

of the triangle determined by OA and

AC, the latter line being drawn from

the extremity of the force OA parallel

to the other force, OB.

Let any number of forces, OA, OB,

OC, OD
(fig. 10), act at 0. Then

drawing oa (fig. n) parallel and equal

(or proportional) to OA, and from the extremity a drawing ab

parallel and equal (or proportional, on the same scale) to OB,
the resultant of the forces OA and OB is represented by ob, the

third side of the triangle oab. (Of course the resultant acts at

0, and is parallel to ob). Again, drawing be parallel and equal

(or proportional) to OC, the resultant of ob and be is oc. Com-
c
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pounding this with cd, which represents OD in the above manner,
we get the resultant of the whole system

represented in magnitude and direction by
od, the last side of the polygon oabcd.

Hence to represent the resultant of any
number of forces acting at a point,

Take any pointy o, and draw the sides of
a polygon successively parallel and equal (or

proportional) to the forces acting at ; then

the last side, or that which is required to

magnitude and direction the re-

Fig. ii.

close up the polygon, represents

sultant of the system.*/ 7

COR. 1 . If the last vertex, d, of the polygon of forces closed

up into o, the side od would vanish, or the resultant force would

vanish
; that is, the system of forces would be in equilibrium.

Hence

If the sides of a closed polygon marked with arrows, which all

go round the polygon IN THE SAME SENSE, represent in magnitude

and direction theforces which act together on a particle, these forces

form a system in equilibrium.

COR. 2. When only three forces act, the preceding Cor. shows

that they will be in equilibrium if they are parallel and pro-

portional to the sides of a triangle which are marked with

arrows all going round the triangle in the same sense.

This proposition is known as the Triangle of Forces.

23.] LAPLACE'S PEOOF OF THE PARALLELOGRAM OF FORCES.

Among purely statical proofs of this fundamental proposition, i.e.

proofs which do not depend on the consideration of velocity, Laplace's

appears to be the most elegant, and as, moreover, it does not involve

the principle of transmissibility, it is thought desirable to include it in

the present treatise.

Let two rectangular forces, P and

Q, represented by the lines OA and

OS (fig. 12) act at 0, and let R be

the unknown magnitude, and OC the

unknown direction, of their resultant.

It is evident that if P and Q give a

resultant equal to R acting in OC, nP
and nQ will give a resultant equal to

nR acting also in OC, because taking

multiples of the forces is the same thing as merely altering the

'A

Fig. 12.



23-] LAPLACE'S PROOF. 19

scale of magnitude to which they are referred. Conversely,
whatever n may be, nit may be replaced by nP, making an

angle (= COA) and nQ, making an angle -$(= COB) with
7J

the direction of R. Let n be taken = ^ and draw A'OB' per-

pendicular to 00. Then, since

22 may be replaced by P in OA and Q in 0.5,
P2 P0

P
-^i

n 0(7 tV-inOA';

O 2

may be replaced by
- in 05' and

-|
in 00.

Hence the forces P and Q are equivalent to a force

= + | in 0(7, a force in OA', and a force in OB*.
Jt -ft XL 1

But these last are equal and opposite, and therefore they destroy
each other. Hence P and O are equivalent to a single force

P2
-f O 2

= --p acting in the direction of their resultant ;
therefore

or R=VP2 + Q
2

. (1)

Thus we have found the magnitude of the resultant of any two

rectangular forces. We now proceed to find its direction.

If P and Q are equal, their resultant bisects the angle between

them, and (l) therefore shows that it is represented in magnitude
and direction by the diagonal of their parallelogram.

Let three forces, at right angles to each other, OA, OB, and

OC (fig. 13) each equal to P, act on a particle ; complete the

cube as in the figure. By what precedes, the resultant of OB
and OC is OF', combining this with

OA, we see that the direction of the

resultant lies in the plane FOA. Simi-

larly, it can be proved to lie in the

plane COD; hence its direction is 0(7, H

the intersection of these planes, or the

diagonal of the cube. Now from (l)viiagujj.aj. UA UJJLC tJuuc. 0.1 uw ixuiii \L j
/:

~

OF= PV2, and the resultant of the

three forces is the same as the resultant F.

z

of P\/2 along OF and P along OA.

By (1) the magnitude of the resultant is P \/!J, and since
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0(7 = P \/3, we have proved that the diagonal, 0(7, of the

parallelogram FOA represents in magnitude and direction the

resultant of two forces P and P\/2.

Suppose now that OA = P, B = P\/2, and 0(7= P, and

complete the parallelepiped. We have just proved that the

resultant of OB
(
= P*>/2) and OC (=P) is the diagonal OF

(=P/v/3); and since the resultant of the three forces must

lie in the planes COD and FOA, it must act in the diagonal

00". But this resultant is the resultant of PA/S along OF
and P along OA, and by (l) its magnitude is P\/l, which

is the magnitude of 00', the diagonal of the parallelogram
FOA.

By keeping OA and OC each equal to P, and giving OB the

values P, P\/2, P\/3, ...P\/m, successively, we prove in this

way that the parallelogram law holds for P and P */m
; hence,

multiplying the forces by Vn, the law holds for P\/n and

P\/mn ; or, replacing mn by ,
the law holds forPVn and P\//f,

where ft and # are any two integers. But the numbers n and

/I
can be varied in such a way that A/ - shall be equal to any

given quantity. Hence the parallelogram law holds for two

rectangular forces which bear to each other any given ratio.

From this the proposition
follows easily for oblique
forces.

Let OA and OB (fig. 14)

represent two oblique forces,

P and Q ; complete the par-

allelogram, draw the line mn

through perpendicular to
Fig> I4 '

the diagonal OC, and let fall

the perpendiculars Ap, Am, Bq, and Bn, on OC and mn. By
what we have proved, the force OB

(
= Q) can be replaced by

Oq and On, and OA
(
= P) can be replaced by Op and Om.

But Om is evidently equal and opposite to On, therefore OC is

the line of action of the resultant, and its magnitude = Op + Oq,
which = OC. This proof will be found at greater length in the

first chapter of Moigno's Legons de Mecanique Analytique.



CHAPTER II.

GENERAL CONDITIONS OF THE EQUILIBRIUM OF A PARTICLE

UNDER THE ACTION OF FORCES IN ONE PLANE.

24.] Absolute Condition of Equilibrium. One condition is

necessary and sufficient for the equilibrium of a particle and

that condition is, that the magnitude of the resultant force acting

upon it shall be zero. In the case of a body (as distinguished
from a mere particle) the student will afterwards see that this

single condition is not sufficient. The vanishing of the Re-

sultant may be called the absolute condition of the equilibrium of

a particle.

25.] Several Forces. When several forces act upon a particle,

the condition of its equilibrium may be expressed as in Cor. 1,

p. 16; or as in Cor. 1, p. 18. But, in practice, these represen-

tations would frequently be found clumsy, and we obtain simpler

results by using the principle of the Resolution of Forces than

those given by the principle of Composition. It is to be observed

that forces acting on a particle are to be considered as forces

whose lines of action all pass through one common point.

26.] Resolution of Forces in given Directions. It has been

proved that a force can be resolved into two others along any
two directions in the same plane. Simplicity is gained by

taking these two directions at right

angles to each other. Thus, let Ox

and Oy be any two lines at right

angles to each other, and P any force

acting at in the plane Oxy. Then,

completing the parallelogram OXPY,
we find the components, OX and OY,
of the force P along the axes Ox and Oy. Let OX and OY be

denoted simply by X and Y. It is, then, evident that

X = P cos 9,

Y = P sin 6,

where 6 is the angle which the direction of P makes with Ox.
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In strictness, when we speak of the component of a given
force along a certain line, it is necessary to mention the other

line along which the other component acts. For example, the

force P may have an infinite

number of components along
the same right line Ox. If

the line associated with Ox be

Om, and if the parallelogram
OMPM' be completed, the

component of P along Ox will

be OM, the other component

X NM
Fig. 1 6.

being OM'. If, again, the resolution of P be effected along Ox

and On, and the parallelogram ONPN' be drawn, the com-

ponent of P along Ox will be ON; and it is evident that if o> be

the angle between the axes along which P is resolved, the coin-

sin
(o> 0)

ponent along Ox will be P

In what follows, unless the contrary is expressed, by the

component of a force along any line we shall understand the

rectangular component ;
that is, the resolution is supposed to be

made along this line and the line perpendicular to it. ^ It must
be remembered, then, that

The component of a force, P, along a right line is P. cos (angle
between right line and direction of P).

27.] Equations of Equilibrium, or Analytical Conditions.

If several forces, P19 P2 ,
P

3 ,

. . .
,
act at 0, each of them

may be replaced by its two

components, one along Ox,

and the other along Oy,

which is perpendicular to

Ox
(fig. 17). Thus, the com-

ponents of P
1
are Px cos X ,

and P! sin
X ;

those of P2

are P2 cos 2 , and P2 sin
2 ,

and these latter are mea-
sured in exactly the same senses as the components of Pl ; that

is to say, P2 cos 2 is the component of P2 along Ox in the

sense Ox. The component of P
2
in the figure is actually in

the sense opposite to Ox, that is, in the sense 0, x ; still,

x,

"9

Fig. i
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the component in the sense Ox is P2 cos02 ,
for cos0

2 is

negative. If the senses Ox and Oy are regarded as the

positive senses, any components which act in the opposite

senses, 0, x and 0, y, would subtract from the positive

components, and must be considered negative. It will be seen

that the negative sign of every component will be perfectly

represented and accounted for by the general expressions, P cos d

and P sin 6, for the two components. Thus, the figure shows

that both components of P3 are negative, and accordingly both

of the expressions P3 cos 3 and P3 sin 3 are negative, since
3 is

In order that the expressions P cos and P sin may always

represent components in the positive senses Ox and Oy, the angle

6 must le measuredfrom Ox towards the line of action of the force

in a fixed sense that opposite to watch-hand rotation being

generally chosen.

With this understanding, then, we may say that the com-

ponents of P15
P2 ,

P3
in the direction Ox are P

1 cos^1 ,

P
2 cos02 ,

and P3 cos03 ,
and those in the direction Oy are

P
1
sin

t ,
P2 sin 2 , and P3

sin 3 .

Replacing each of the forces, P15 P2 , P3 , ...,by its com-

ponents, we have

P
1
cos X+P2 cos

0.a +P3 cos
3 + ..., or 2P cos along Ox,

and

P
l
sin 0!+P2

sin 2 -fP3
sin

3 + ..., or SP sin along Oy.

If the component, P cos 0, of a force, P, along Ox, be de-

noted by X, and that along Oy by J, the whole system of forces

is equivalent to the two single forces,

X
A +X2 +X3+ , . ., or 2X along Ox,

and 1^+72 + 73+..., or SFalong Oy.

Now, since (Art. 23, p. 20) the resultant of two forces, P and

Q, at right angles is \/P2 + Q
2

,
the resultant, R, of the system

of forces P15
P2J ...

,
is given by the equation

(1)

For the equilibrium of it is necessary and sufficient that

R = 0. Hence

(2)
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Now this equation cannot be satisfied, so long as 2X and

are real quantities, unless

2X=Oand2r=0. (3)

These, then, are the two necessary and sufficient conditions for

the equilibrium of the particle, and they are equivalent to the

single condition R = 0. (See Art. 24).

The equations (3) are equivalent to the following state-

ment :

For the equilibrium of a particle acted on by any number of

forces in one plane, it is necessary and sufficient that the algebraic

sum of the rectangular components of the forces, along each of two

right lines at right angles to each other in the plane of the forces,

should vanish. Since the directions Ox and Oy, along which the

forces are resolved, may be any whatever in their plane, we may
evidently vary the above statement thus the algebraic sum of
the rectangular components of the forces along every right line in

their plane is zero.

It is merely for uniformity of notation that we have mea-

sured lt a , 0,p...(fig. 17)
all in the same sense

that opposite to watch-hand

rotation. In resolving forces

along a line, Ox, it is simpler
x in practice to use the acute

angles made by the forces

with the line, and to indicate

negative components by the

sign minus.

Thus, if
(fig.

1 8) the forces P, P', P" make acute angles 0, &,

&", with Ox, the sum of the components of the forces along Ox is

P cos 6-P' cos 0' P" cos <T,

and that along Oy is

P sin B+ P' sin <9'-P" sin Q"'.

The rectangular component of a force along a line is some-

times called the effective component along this line.

COR. A force has no effective component in a direction at

right angles to itself.

28.] Direction of the Besultant. The direction of the re-
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sultant of any number of forces acting in one plane on a particle,

0, is known when its components, 2JP

and 27, along any two directions, Ox *

and Oy, are known. For, if Ox and Oy
are rectangular, and a be the angle
which the resultant, R, makes with Ox,

we have, evidently (fig. 19),

27
Fig. 19.

and if Ox and Oy include an angle o>,

sm a 27
sin

(co a) 2JC

29.] Tension of a String. When a string is employed to

connect two or more particles which are acted on by given

forces, the fibres of the string become subject to a certain pull,

stress, or tension, which, if increased beyond a certain limit, will

cause the string to break. This tension is a force which at any

point of the string may be conceived as acting in either of two

opposite senses, or in both of these senses at once, according to

the nature of the question under discussion. Let us consider,

as a simple example, the case of a string, AB (fig. 20),

whose weight we may neglect, fixed at the extremity A,

and attached at B to a weight W. If, now, we imagine
the string to be cut at any point p, and the lower

portion, pB, to be removed, it is clear that the re-

maining portion, pA, will not be in the same state of

stress as before unless we apply at the section p a force

equal to W
9
and acting downwards. Again, let the

string be cut a little above p, at q, and suppose the

portion qA removed. Then the small portion, pq, will

not remain in its place unless an upward force equal to
-p.W is applied at the section q. The small portion of the

string included between p and q is then kept at rest by two

equal and opposite forces, each equal to W. Thus, then, if we
consider any portion, pq, as isolated from the rest of the string,

we must represent it as subject to two equal tensions directly

opposed to each other. If we considered the action of the upper

portion, pA, on the lower, pB, we should represent pB as acted

on by an upward force applied at p ;
and if we consider the

20.
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action of the lower on the upper, we must represent pA as acted

on by a downward force applied at the section of separation of

pA and j.Z?. Thus, the action at B of the string on the body W
is an upward force, or tension, equal to W\ while the action of

W on the string consists of an equal force in the opposite

direction.

30.] String passing over Smooth Pegs or Surfaces. When
a string whose weight we neglect passes over a smooth peg, or

over any number of smooth surfaces, we shall assume for the

present that the stress of its fibres, or its tension, is the same at

all of its points. Should it, however, be knotted at any of its

points to the other strings, we must

regard its continuity as broken, and

the tension will not be the same in the

two portions which start from a knot.

Thus, if the string pass over two

smooth surfaces. A and B (fig. 21),

and if it is pulled at one extremity by
a force P, it must be pulled at the

other extremity with an equal force ;

but if, after leaving the surface A, it is

knotted at C to another string which is

pulled with a force equal to R, the

tensions in the portions between C and

A and between C and B are no longer the same, and their

relative magnitudes must be determined by equation (a) of

Chap. I, Art. 17.

31.] Equilibrium of a System of Particles. When several

particles are connected together and form a system, each par-
ticle being acted upon by special forces in addition to the forces

produced upon it by its connexion (by strings or rods) with

the other particles, we can consider the equilibrium of any
one particle apart from all the others, provided that we take

account of all the forces which are produced on it by its connexion

with the others, in addition to the specialforces acting upon it.

Thus, in No. 8 of the following examples, we may write down

equations for the equilibrium of the particle N as if it were

entirely disconnected with the other points, A, P, M, B, if we

represent it as acted on by the force, W> and by the tensions, T2

and T
3 ,

of the strings by which it is connected with the system.
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EXAMPLES.

1. At the point, 0, of intersection of diagonals of a square (fig. 22),
let two forces of 8 grammes, and 12

grammes, act along the diagonals, and
two forces of 10 grammes, and 2

grammes, act perpendicularly to two
sides

; required the magnitude and
direction of their resultant.

Resolving the forces along Ox, the

line of action of one of them, the

component of the force 10 is 10,
that of the force 8 is 8 cos 45, that

of 2 is zero, and that of 12 is 12 cos 45.

Fig. 22.

/2
8 I 2

Similarly, 27=- + 2 + -/= =

Hence

8 12

-)^= 10-2/2.

Therefore R = V (10
- 2 /2)

2 + (2 + 10/ 2)
2=

Again, if a be the angle made by R with Ox,

tan a = 2+10/2 _ 1 + 5/2

10-2/2
~~

5-/2
= 2J (nearly).

?, act on a particle : find the magnitude of2. Three forces, P,
their resultant.

Let the angles opposite P, Q, and R be denoted by p, q, r
(fig. 5,

p. n). Then resolving all the forces along the direction of P, we get
for their combined component in this direction P + Q cos r +R cos q.

Resolving them perpendicularly to P, the component = Q sin r R
sin q. Hence the square of the resultant = (P+ Q cos r + R cos Q)

2

+ (Q sin r R sin qf. Remembering that p + q + r = 2ir, this is

easily seen to be

3. Verify in the last question that if the three forces are in

equilibrium, the expression given for the resultant vanishes.

When the forces are in equilibrium,

P : Q : R = sin p : sin q : sin r.

Hence the expression for the square of the resultant is proportional to

sin2

p + sin2 q + sin2 r+ 2 sin p sin q cos r+ 2 sin q sin r cos p
+ 2 sin r sin p cos

<?.

The last two terms =
2 sinrsin (p+ q)

= 2 sin V, v jp+ 2 = 2TT r.

Therefore the above expression is

sin
2

p + sin
2

q sin 2

(p + #) + 2 cos (p+ <?)
sin p sin ^ = sin2

p + sin
2

s(p q),
'
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2Now, cos (p + q) cos (p q)
= I sin2p sin2

therefore the square of the resultant = 0.

4. A heavy particle, (fig. 23), whose weight is W, is held in

equilibrium by three forces (in addition to its weight)

-
acting horizontally, F acting in a direction making an angle i with

the horizon, and R at right angles
to F\ find the magnitudes of F and
B in terms of the given force W.

Resolve all the forces along the

directions of F and R successively.
These directions are chosen rather

,--/''
'^ than any others, because, since R is

"""".
....."""

at right angles to F, it will give no

component along F, and, for the
same reason, F will give no component along R.

W
The component along OF is F -\

-- cos i W sin i.

For equilibrium it is necessary (Art. 27, equations (3)) that this

component shall be zero. Hence

W
F-\-- cos i TFsin i = 0,n

.'. F = Ffsini -costV
V n J

Again, the sum of the components along OR is

WRW cos i-- sin i :

n
and this must also be zero. Hence

R = W (cos i + - sin *V
v '

The same values would, of course, be found if we had selected any
two other directions for the resolution. Thus, if we resolve all the

forces vertically, or in the direction W, we get

W F sin iR cos i =
;

W
and resolving horizontally, or in the direction of ? we get

W
hF cos i R sin i = 0.

n

Solving these last two equations for R and Ft
we get the same

values as before.

The advantage of a judicious selection of directions for the resolu-

tion of the forces is now apparent. By resolving at right angles to

one of the unknown forces, we obtained an equation free from that
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force ;
whereas when the directions were selected at random, both of

the unknown forces entered into each of our equations, and to find

these forces it was then necessary to solve the equations.

Having selected one direction for resolution, it is not necessary
that the second should be selected at right angles to it

; for the
student has seen (p. 24) that when a particle is in equilibrium, the
sum of the components of the forces along any direction whatever
must be zero. Hence we might, in the present case, have resolved

vertically and along the direction OF, and the equations thus obtained
would have given the same results as before.

5. One end of a string is attached to a fixed point, A (fig. 24); the

string, after passing over a smooth peg, B, sustains a given weight, P,
at its other extremity, and to a given

point, C, in the string is knotted a A
T

M B

particle of given weight, W. Find the

position of equilibrium of the system.
Before setting about the solution of

statical problems of this kind, the stu-

dent will clear the ground before him,
and greatly simplify his labour by asking
himself the following questions :

(a) What lines are there in the figure
whose lengths are already given 1

(b) What forces are there whose magnitudes are already given, and
what are the forces whose magnitudes are as yet unknown 1

(c) What variable or variables in the figure would, if it or they
were known, determine the required position of equilibrium ?

Now, in the present case (a), the linear magnitudes which are given
are the lines AB and AC. The entire length of the string is of no

consequence, since it is clear that, once equilibrium is established, P
might be suspended from a point at any distance whatever from B.

The forces (b) acting at the point C are the weight, W, a tension in the

string CA, and another tension in the string CB. Of these, W is

given, and so is the tension in CB, which must, since the peg is

smooth, be equal to P (see Art. 30) ;
but there is, as yet, nothing

determined about the magnitude of T, the tension in CA. And
(c)

the angle, 6, of inclination of the string CA to the horizon would, if

known, at once determine the position of equilibrium. For, if 6 is

known, we draw AC of the given length: then, joining C to ,

the position of the system is completely known. The angle, (j>,
of

inclination of BC to the horizon, would do equally well
; and it

is evident that, since either angle suffices, each must be capable of

being expressed in terms of the other, and the given magnitudes in the

question.
Let AB = a, AC = b. Then, for the equilibrium of the point (7 we

have, by equation (a), p. 1 1,

P _ COS0

W ~
sin (0 + 0)'
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To this equation must be joined the relation between 6 and $ given

by the geometry of the figure. We have, evidently,

AC. sin ACS = AB.sm <,

or b sin (0+ <j>)
= a sin <. (1)

Equation (1) gives
a sin

<f>
W

&COS0
=

P~'

or bW
sin < =

75 cos B,aP

Expanding sin (6 + 0) in
(2), and substituting these values of sin

(f>

and cos <, and reducing, we have the equation

The student will do well to observe that the coefficients of this

equation are ratios of magnitudes of the same kind. Thus, force and
linear magnitude are quantities of essentially different kinds. It is

true, indeed, that the magnitude of a force may be conventionally

represented by the length of a line, but it is only in comparison with

other forces that any one force can be so represented, and the scale of

representation is arbitrary. Hence cos 6, which is a mere number, if

it is expressed in terms of force, must be expressed as the ratio of one

force to another ;
and if it is expressed in terms of linear magnitude,

it must be as the ratio of one line to another. If, for example, the

Pa3

coefficient of cos3 6 in (3) being unity, the last term had been =- >

we should have known at once that the result was wrong. For the

numerator and denominator of this expression are not of the same

degree in force ;
neither are they of the same degree in linear magni-

tude. Such a term as
-=^

denotes the product of an area, > by the

p
reciprocal of a force, -==

Similar remarks as to the homogeneity of our results will be of

frequent occurrence in the sequel. By attention to considerations of

this kind the student will often be able to detect an error in his

work.

6. If, in the last example, the weight W, instead of being knotted

to the string at (7, is suspended from a smooth ring which is at

liberty to slide along the string ACB, find the position of equi-
librium.
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In this case, the string PBCA, which passes over a smooth surface

at B, and through the smooth ring, will have its tension constant at

each of its points (Art. 25), and therefore equal to P. Hence,

putting T = P, and resolving forces vertically for the equilibrium of

C, we have

JT-2Psin0=0,
or W

7. A string, whose weight is neglected, passes over three smooth

pegs, A, B, (7, which are in the same horizontal line. From the
extremities of the string are suspended two weights, P and P'; and
to two given points in it are

knotted two weights, W and W',

the first suspended between A and

B, and the second between B and

C. Find the position of equi-
librium.

In this problem the given quan-
tities are the suspended weights,

Fig. 25.P, W, P', and W, the distances

AB and BC, and the length of

the portion mBm of the string (fig. 25).

Evidently the quantities which we wish to determine are the

inclinations, 0, 0, ...
,
of the portions of the string to the horizon.

Let AB == a, BO = a', and the length of mBm = 1c. Consider the

equilibrium of the point m. Since the string PAm passes over a

smooth peg at A, the tension in it = P throughout. If T =. tension

in mBm', we have for the equilibrium of m,

COS0~
sin (1)

cos~
sin (0 + 0)

Again, for the equilibrium of m',

P' COS 0'

F~'~~sin(0'+ 0'

T cos 6'

(2)

Equating the two values of T, we have

W cos W cos

sn sn (3)

These are all the equations that can be obtained from statical

considerations. One more equation is required to determine the four
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unknown quantities, 0, $, 0', and ('. This is obtained by expressing
that the length of mBmf = k. Evidently

a sin i *> /Bm = -
, 5 and Bm a am

a sin 9

.
-7-.

sin (0'+ <')'

a' sin 0M
*

( 4)sm (0+ <p) sm ((f +<J>')

These four equations determine 0, <, 0', <', and therefore the

position of equilibrium.
8. A string, BMNPA, whose weight is neglected, is suspended

from two fixed points, A and B ;
and from given points, My N, P,

...
,
in the string, are sus-

pended a series of equal par-
ticles whose weight is W.
Find the inclinations, X , 2 ,

3 ,
. . .

,
of the successive por-

tions of the string to the

horizon.

Consider the equilibrium
of the particle M. It is

acted on by three forces, viz.,

W acting vertically, Tlt the

tension of the string MB, and
Tz the tension of MN.Fig. 26.

Resolving these forces vertically,

W+ Tz sin
2
-

TI sin 6
1
=

;

and, resolving horizontally,

TI cos O
t
T

2
cos

2
= 0.

For the equilibrium of N
t resolving horizontally,

(i)

Hence
T

l
cos 0j

= T
z cos

2
= T

3
cos

3
= ...

;

or in other words, the horizontal components of the tensions in the

different portions of the string are constant. Let this constant be

denoted by T\ then
T T

TI = -^, T9 = -, &c .

COS cos 0.,

Substituting these values in (1), we have

)
1
= tan^+ -^.

Similarly,
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Hence the tangents of the successive inclinations form a series in

Arithmetical Progression. In the figure
~W *) PP" ^ ~W

4
= 0, /. tan

3 j tan
2
=

~^-
> tan 6^

= =-

If the suspended weights are not equal, it is still true that the

horizontal components of the tensions are all equal.
The figure formed by the string BMNPA is called the Funicular

Polygon.
y

ROQ.P n m I x

Fig. 27.

9. To construct the Funicular Polygon, when the horizontal pro-

jections, RQ, Qp, pn, nm, mb, . . .
,
of the successive portions of the

chain are all of constant length, a.

Let Pp c
; then, since (last example) the tangent of the incli-

nation of PN= 2 . tangent of inclination of PQ, it follows that, Pn
being horizontal, Nn = 2Pp 2c. Also tan of inclination of MN
= 3 tan of inclination of PQ j

therefore Mm = 3c.

Hence, taking the middle point, 0, of the horizontal portion, RQ,
as origin, and the horizontal and vertical lines through it as axes of x
and y, the co-ordinates of P are (fa, c) ;

those of N are (fa, c + 2c) ;

those ofM are (fa, c+ 2c + 3c); and those of the nth vertex from Q
are evidently _2n+l _n(n+l)

The value of the ordinate, y, of any vertex at once enables us to

determine this vertex.

If we eliminate n from the two equations for x and y, we get an

equation which is satisfied by all the vertices indifferently. This

equation denotes, therefore, a curve passing through all the vertices of

the polygon. Eliminating n, we get

2-^1 L
c 4

This denotes a parabola whose axis is the vertical line Oy. The
A

vertex of the parabola is vertically below at a distance = -

The smaller the distance RQ, Qp, pn, ...
,
the more nearly does

the Funicular Polygon coincide with the parabolic curve.

10. To represent graphically the forces in the general case of the

Funicular Polygon.
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For convenience, let the vertices of the string or chain be denoted

by the numbers 1, 2, 3,..., and let the forces P
2 ,
P

3 ,
... act at the

vertices. Let also the tension in the portion of the string (1, 2) be

denoted by T12 ,
&c.

Fig. 29.

Now, take any point, 0, and from it draw the line t
l2 parallel to the

string (1, 2), and proportional to the tension jP
12

. From the extremity
of t

lz draw the line, pz , parallel and proportional to the force P2 . It

follows, then, that since the forces TVi ,
TZ3 ,

and P
2
form a system in

equilibrium at the point (2), the third side, 23 ,
of the triangle t

l2 , p2 ,

2
23 is parallel to T2S ,

and proportional to it (Cor. 2, p. 18). In the

same way, drawing ^;3 parallel and proportional to P
3 ,

the side t
34

is

parallel and proportional to T
34 ;

and continuing this construction, the

tensions in the successive portions of the string are all represented by
the lines

12 , 23 , 84 ,
... in the new figure (fig. 29).

The figure (fig. 29) which represents by its lines, both in magnitude
and in direction, all the forces of the system in

fig. 28, is called by Professor J. Clerk Maxwell,
a ' Force Diagram

'

of the system. (Transactions

of the Royal Society of Edinburgh, vol. xxvi.)

When, as in example 8, all the applied forces,

P
2J P3 ,

,.. are parallel, the Force Diagram of

the system consists of a triangle with lines drawn
from the vertex to different points in the base.

Thus, taking any point, (fig. 30), and drawing
ob parallel to MB (fig. 2*7), and proportional to

the tension in it
;
and then drawing bm vertical

and proportional to the weight suspended at M,
it follows that om will be parallel to MN, and

proportional to the tension in it. Similarly for

the rest of the figure. If all the suspended

weights are equal, the lines bin, mn, np, pq, ...

*' 3 '

are all equal, and fig. 30 at once shows that

the tangents of the successive inclinations of the parts of the chain

are in Arithmetical Progression. This figure also exhibits the con-

stancy of the horizontal components of the tensions ob
} om, on, ...

these components being all equal to oq.
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11. Suspension Bridge. The number of vertices of the polygon
being very great, and the suspended weights all equal, the parabola
which passes through all the vertices virtually coincides with the chain

forming the polygon, and gives the figure of the Suspension Bridge.
In this bridge the weights suspended from the successive portions of

the chain are the weights
of equal portions of the

flooring. The weight of

the chain itself and the

weights of the sustaining
bars are negligible in com-

parison with the weight
of the flooring and the Fig. 31.

load which it carries.

Fig. 30 may be taken to represent the Force Diagram of the

Suspension Bridge, the vertical line ab, representing the weight of the

flooring, being divided into as many equal parts as there are divisions

of the chain. If these parts are sufficiently numerous, the lines ob,

om, on, &c., are parallel to tangents to successive points of the chain.

Let the span, AB, of the bridge = 2a, and let the height OH = h.

Then, the equation of the parabola referred to horizontal and vertical

axes of y and x, respectively, through (fig. 3 1
)

is

m being a constant
;
and the tangent of the inclination to the vertical

of any portion _ dy __2m _ y~
dx

~~

y
~~

2x
Hence the tangent at the point of support, B, makes with the horizon

. , ,
. 2h

an angle whose tangent is

Therefore, oq (fig. 30) being parallel to the tangent at the lowest

point of the bridge, and ob parallel to the tangent at the point B,

tan boq = --
a

Hence, since bq represents half the weight of the bridge, and ob the

terminal tension of the chain at B,

Terminal tension = - - = W -, >

2 sin boq 4A
W being the weight of the flooring.

Also, the vertical tension at B = \ W, and the constant

Horizontal tension = W4̂h

12. The entire load of a suspension bridge is 160,000 kilograms,
the span is 64 metres, and the height is 5 metres ;

find the tension at

the points of support, and also the tension at the lowest point.

Ans. Terminal tension = 268,208 kilograms.
Horizontal tension = 256,000
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1 3. If the vertical bars which support the roadway of a suspension

bridge are not at equal horizontal distances, prove that the vertices of

the polygon formed by the chain will still lie on a parabola, provided
that each vertical bar supports half of the adjacent portions of the

roadway.
This follows from the fact that the cotangent of the inclination of

any chord of a parabola to the axis is proportional to the sum of the

ordinates of the extremities of the chord.

14. If R is the resultant of any number of forces, Plt
P

2 ,
P

3 , ...,

acting in one plane on a particle, prove that

R* = 2P2+ 2SPX
P

2 cos (PpPa),

where P19
P

2
means the angle between P

1
and P

2 .

(This result is true for non-coplanar forces).

15. If a particle is in equilibrium under the action of any forces,

prove that the sum of the oblique components of the forces along any

right line is zero.

If 2JT and EF denote the sums of the components along two lines

inclined at an angle = co, the square of the resultant is equal to

(SZ)
2 + 2 (2JT) (S 7) cos o)+ (2 F)

2
;

and this =(2X+2F)2
cos2|+(2X-2F)

2 sm 2

|.

Hence the result follows as in equations (3), p. 24. It is otherwise

evident, since the resultant is the third side of a triangle, two of whose

si^esare
SXandSF.

16. If in example 7 the weights W and W, instead of being
knotted to two given points in the string, are attached to two smooth

rings which are capable of sliding freely along the string, determine

the condition and position of equilibrium.

Here, since the string passes freely over and under smooth

surfaces, the tension is constant throughout its length. Now, the

tension in Am is P, and that in CW=P'. Hence

P=P'.

For the equilibrium of m, we have, resolving vertically,

W
TF=2Psin0; .-. sin0= ^;2 -I

and for the equilibrium of m',
W'

TT=2Psm<9'; .-.sin^
2x

17. A heavy particle is attached to one end of a string, the other

end of which is fixed. Find the horizontal force which must be

applied to the particle in order that the string may deviate by a given

angle from the vertical, and find also the tension of the string.

Ans. If F= the horizontal force required, T = tension of string,

W= weight of particle, and 6 == angle of string's deviation,

F= JFtanfl, F= TFsectf.
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18. A string ACB (fig. 24, example 5) has its extremities tied to

two fixed points, A and B
;

to a given point, C, in the string is

knotted a given weight, W. Find the tensions in the portions CA
and CB.

Ans. Since AC and EC are given, the angles CAB and CBA are

also given. If these angles are denoted by 6 and tf', and if T and T'

are the tensions in CA and (72?,

sn
Tfcosfl

19. If (same figure) the extremities A and B are fixed, and the

weight W is that of a smooth heavy ring at

(7, which is capable of sliding freely along
the string, find the horizontal force which
must be applied to the ring C in order that

the system may take a given position of

equilibrium.

Ans. If the angles CAB and CBA are

and tf, and F = the required force,

6 &

Fig. 32-

20. ABCD (fig. 32) is a system of pegs

forming a square in a vertical plane ;
a string attached to A and B

passes through a heavy smooth ring, R, while another string is

attached to C and R. The ring is kept in equilibrium half way
between H, the middle point of CA, and 0, the centre of the square ;

find the tensions in the strings ARB and CR.

Ans. If W= weight of ring, T = tension in ARB, and T'= tension

mCR,

T- T'-= W.
32 16

21. In the last example if the tensions in the two strings are equal,
find the point at which the ring must be placed on OH.

f) 7?

Ans. If = x
>
x is determined by the equation

This equation has only two real roots,

one between and 1, and the other be-

tween 1 and 2.

22. A string whose weight is neglected

passes over three smooth pegs, A>B,G
(fig. 33), in a vertical plane, and sus-

tains two equal weights, W, from its ex-

tremities. Find the pressures on the pegs;
and find also the magnitudes of the angles

a, /3, and y when the system of pegs is

least likely to break, the pegs being all equally strong.

Fig. 33-
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Ans. If P, Q, and R be the pressures on the pegs A,B, and C, respect-

ively, P = 2 W cos ^ Q = 2 JFcos ^ ,72= 2 IF cos ; and since the sum
2 2-2

of a, /3, and y is given (= 27r), it follows that in the best arrangement
2 2

a =
/3
= y = -'7r. For, unless each of the angles == -

TT, some one of

71

the pressures must be >2 TFcos > or TT; and if the pegs are of equal
3

strength, it is best under these conditions, to have the pressures on

them all equal.

23. If the string passes over any number of equally strong smooth

pegs in the same vertical plane, find the best arrangement.

Ans. If there are n pegs, each of the angles, a, /3, y, 8, . . . must be

n
24. In example 14 calculate the pressures on the pegs A, S, C.

Ans. The squares of the pressures are respectively

P(2P+W), i{4P
2 + WW- 2- JF2

)(4P
2- W' 2

), P(2P+W).
25. If the strengths of the pegs, A, B, (7, in example 20, are propor-

tional to Z, ra, n, find the best arrangement of the system.

Ans. The angle a is given by the equation

2mncc3 + (Z
2+m2 + ?i

2

)
tf-1? = 0,

in which x= cos -. The angles /3 and y are at once found from a.

2

26. Let A A
1
...A 5 (fig. 34) be any funicular polygon, with weights

Plt
P

2 ,P3 ,P4 suspended at

its vertices A
I}
A

2 ,
A

3 , A^,

respectively; draw any line,

a
5 , meeting the verticals

through A
, A^, ... in the

points aot dtp d
2 ,...,

and let

A A
5
meet these verticals in

A
, DI ,

D
2 ,

. . . .Now construct

a new polygon, a^cL^ a2
...a

5 ,

by taking d^ ^ = D^ A^
d

2
a

2
= ^D^A 2

- and so on,

n being any number.
Prove that the new poly-

gon, whose fixed ends are a
Q

and a
5
will be kept in equilibrium by the set of forces P

x ,
P

2 ,
P

3 ,
P

4

applied at its vertices a
,
a

2 ,
a

z ,
a.

Although this may be readily proved geometrically by principles of

Graphic Statics, the student will do well to establish it by the method
of example 8. He will easily prove that, if a and /3 are the incli-

nations of A
Q
A

5
and a a

5 to the horizon, 01 ,
#
02 ,... the inclinations
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of the sides A Q
A 1}

A
1
A

t ,
... ,and $01 , <#>12J

... those of a
Q
a
lt a^a^,... to

the horizon, we shall have

tan
</>01 tan/3 = -(tan 01 tan a) ;%

tan $12
tan /3 = -

(tan 12
tan a), &c.

But if T denotes the constant horizontal tension in a* funicular

polygon, the conditions of its equilibrium are

P P
tan

01-tan 12
= -\ tan 12

tan
23
=
^; &c.

These conditions are satisfied in the polygon a av ...a
s
on the

supposition that the horizontal tension in it = nT; and it is axiomatic

that if internal forces can preserve equilibrium, they will.

Of course all the ordinates (and not merely those through the

vertices) of the derived polygon are proportional to the corresponding
ordinates of the original.

27. Show that the last example enables us to construct for a given

parallel system of forces a funicular polygon which shall pass through
three given points.

(A solution of this problem for any system of forces will be given in

a subsequent chapter).

28. Given the base, NS (fig. 35), of a

triangle NFS, and also the sum of the

cosines of the base angles, SNP and NSP ;

let the curve locus of P be constructed.

Prove that if a particle be placed at any
point of the curve and acted on by two

forces, one repulsive from N and equal to

, and the other attractive towards S

and equal to -o2 ' ^e resultant force is, at Fig. 35.

every position of the particle, directed along the tangent to the

curve.

N. B. This curve is called the l

Magnetic Curve,' being one of those

in which small iron filings would arrange themselves under the influence

of a fixed magnet whose poles are N and S.

It is to be observed that each little piece of iron is a magnet,

having two poles at its extremities, and that it must therefore set at

the point, P, where it is placed, in the direction of the resultant force

on either of its poles.

29. Prove that the line of action of the resultant force of a magnet
on a magnetic pole at P divides NS externally in the ratio NP Z

: SP 3
.

30. Iron filings are sprinkled over a sheet of paper on which a magnet
rests

; prove that all those filings which dip towards the same point
on the line of the magnet lie on a circle (neglecting their mutual

actions).



CHAPTER III.

THE EQUILIBRIUM OF A PARTICLE ON PLANE CURVES.

SECTION I.

Smooth Curves.

32.] Smooth Surface. When a body is placed in contact with

a surface, it is evident that, in addition to the given forces acting

on the body, there is a certain force produced by the surface

the force, namely, which the surface exerts to prevent the body
from passing through it. This force is called the Reaction of

the surface. Now, the surface being supposed to be rigid, there

is evidently no limit to the magnitude of the force with which it

is capable of reacting ; but the direction of the force depends on

the nature of the surface itself. If the surface be perfectly

Fmooth, it can react on any body in contact with it only in the

direction of the normal to the surface at the point where the

body is in contact with it. Thus
(fig. 36), if a body, M, acted

on by any given system of forces,

be in contact at a point with

a smooth surface, AB, the force

which this surface exerts on the

body takes the direction, ON, of

the normal to the surface at the

point of contact, 0, and its mag-

Fig. 36. nitude will be such as to destroy
the effect of all the other forces

acting upon M. To the magnitude of the reaction, R, there is

no limit
;

so that if each of the other forces acting on M were

increased 100 times, for example, the surface would react with a

force equal to I oo R
;
but the direction of R is strictly limited to

that of the normal. We may therefore state that

When two smooth bodies are in contact, their mutual reaction is

normal to the surface of contact.
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s

Fig- 37-

33.] Example. If P
(fig. 37) is a heavy particle whose weight

W> placed on a smooth spherical surface whose vertical diameter

is AS, what is the position of equilibrium ?

Here the forces acting on P are only two

in number namely, its weight, W> and R,
the reaction of the smooth surface. Now,
this reaction takes place in the direction of

the normal, PO, to the sphere at P; and

since the particle is in equilibrium under

the action of only two forces, these must be

equal in magnitude, and act in opposite
senses along the same right line. Hence,
since Tracts vertically,PO must be a vertical

line
;
that is, P must be placed at A, the

lowest point of the sphere, or outside the

surface at J5, the highest point.

Whatever be the smooth surface on which the particle is

placed, it is evident that the points on it at which the particle

will rest are points the normals at which are vertical lines. And,

generally
A particle will rest at those points of a smooth surface at which

the normal coincides with the direction of the resultant of all the

forces acting on the particle.

34.] Normal to a Curve. The normal to a curve at a given

point is not, like the normal to a surface at a given point, a

definite line, but is any line whatever in the plane perpendicular to

the tangent at the point.

Hence, for the equilibrium of a particle placed inside a smooth

tube of any form, the resultant force on the particle need not act

in a given right line, but must act in a given plane namely, the

plane which is normal to the

tube at the point where the ^e^^**^ B

particle is placed. Thus, for

example, let AB (fig. 38) be

a smooth tube of any form,

and let P be a particle placed inside it. If we imagine a string

attached to P, coming out of the tube through an opening at P,

which is not sufficiently large to allow P to come out, it is

evident that we may pull at P with any force however great

in the plane normal to the tube, and in all directions round P

Fig. 38.
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and the equilibrium of the particle will not be disturbed. But

if we incline the string- ever so little to the normal plane at P,

motion will ensue along the tube.

35.] Plane Curve. In the present chapter we shall consider

only plane curves, i.e., curves which lie altogether in one plane.

Moreover, when a particle is placed on a curve, and acted on by

given forces, we shall suppose that all the forces act in the plane
of the curve.

Now, it is evident that the only effect which a curve produces
on a particle placed upon it is a normal reaction of some definite

magnitude. If, then, we produce upon the particle, by any other

means, a force identical with this reaction, we may dispense with

the curve altogether. This being so, if we call the reaction of

the curve H, we may suppose the particle acted upon by all the

given forces, and also by a new force equal to R> this latter

acting in the direction of the normal to the curve. Thus, the

case is the same as that treated in the last chapter namely, the

equilibrium of a particle acted upon by any number of forces in

one plane ;
and in writing down the equations of equilibrium,

we shall merely have to include the new force R among all the

others.

EXAMPLES.

1. A heavy particle is placed on a smooth inclined plane, AB
(fig. 39), and is sustained by a force, F, which acts along AB in the

vertical plane which is at right

angles to AB
;

find F, and also

the pressure on the inclined plane.
The only effect of the inclined

plane is to produce a normal re-

action, Ry
on the particle. Hence,

if we Introduce this force, we

may imagine the plane removed.

Let W be the weight of the par-

ticle, and i the inclination of the

plane to the horizon.

Resolving the forces along AB, we have

F Fsin i = 0, or F= TFsin i;

and, resolving perpendicularly to AB,

R W cos i = 0, or R = W cos i.

If, for example, the weight of the particle is 4 grammes and the

inclination of the plane 30, there will be a normal pressure of

grammes on the plane, and the force F will be 2 grammes.
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2. In the previous example, if F act horizontally, find its magni-
tude, and also that of R.

Resolving along AB, and perpendicularly to it, we have, successively,

j^cos i Wsmi = 0, or F=Wi&ni'}

W
and Fsini+ Wcosi R = 0, .-. R .;

cost

R is therefore in this case greater than it was before, as is sufficiently

evident a priori.

3. If the particle is sustained by a force, F, making a given angle,

6, with the inclined plane, find the magni-
tude of this force, and of the pressure, all

the forces acting in the same vertical plane.

Resolving along the plane, (fig. 40),

._ Wsmi
t

'

cos 6
'

and resolving perpendicularly to the plane,

cose

The student will, of course, observe that these values of ^and R could

have been at once obtained, without resolution, by the equation (a),

p. ii.

4. A heavy particle, whose weight is

W, is sustained on a smooth inclined

plane, by three forces applied to it, each

W
equal to ; one acts vertically, another

o

horizontally, and the third along the

plane (fig. 41); find the inclination of

the plane.
Since we do not want R, the pressure

on the plane, we shall resolve forces at right angles to R, that is, along
the plane. Hence

W . W W
sin ^\ 1 cos i JFsm i= 0,

3 o o

or 2suu = 1 +GOSZ, . (1)

If we reject the factor cos for the present, we have
2

which determines the inclination.

The student should observe that we have expelled the factor cos

from equation (1), and this amounts to rejecting the solution

cos - = 0.
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Now in this, as well as in many physical and geometrical problems,
such a solution ought not to be rejected, unless it is shown to be

irrelevant to the question. So long as our equations are perfect

interpretations of the physical or geometrical conditions of the pro-

blem, no factor can furnish an irrelevant solution. It is only when
an equation expresses more or less than is implied in the given con-

ditions that irrelevant factors can present themselves. Instances of

these factors frequently occur in the operations of Algebra and

Analytic Geometry as, for example, when we rationalize an equation

by the process of squaring. If, before this process, the square root of

a quantity was affected with a minus sign, this sign will be indifferent

in the rationalized result, and this latter, consequently, expresses more
than was contained in the original equation. Hence it may happen
that the result will furnish us not only with what is relevant, but, in

addition, with what is wholly irrelevant.

In the present instance the equation cos = would give the incli-
2

nation of the plane = 180, and the figure would then become fig. 42, in

which the particle is placed under-

W 180 neath the plane in such a way that

equilibrium is manifestly impos-
sible.

Hence it appears as if the equa-

tion cos - = were wholly without
Fig. 42.

meaning.
A little reflection, however, will show that it is quite relevant. For

equation (1) is merely the analytical expression of the physical con-

dition that the component of the acting forces along the plane shall be

zero. Now it is not enough for equilibrium that the component along
some one line shall be zero

;
for this, the component along some other

line must vanish as well. Hence our result does not express the com-

plete condition of the particle's equilibrium, but merely a part of that

condition
;
and each of the equations

i 1 i

tan-=-> and cos- = 0,

expresses perfectly all the physical conditions contained in (1). For

when the inclination is 180, the force which acted along the in-
3

clined plane becomes a horizontal force opposite to the given hori-

W W
zontal force ; and the vertical furnishes no component along the

o o

plane.

The magnitude of R is
|
W.

5. A heavy particle, P (fig. 43), is placed inside a smooth parabolic
tube whose axis is vertical, and is acted upon by a horizontal force, F}
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equal p PM, PM being the ordinate of the point P ;
find the position

of equilibrium,
Here the forces acting are TF, the

weight of the particle, R, the normal
reaction of the tube, and F. We shall

obtain an equation between F and TF,

without R, by resolving along the tan-

gent at P. If 9 = angle between the

tangent at P and the vertical,

W cos 9 = F sin 9 = \iy . sin 9, where

2m

Hence, for the position of equilibrium,

retaining the factor cos 9,

cos 6
(Wpy tan 9) = 0.

But if the equation of the parabola is y* = kmx, tan 9 =

the equation is

cos9(W-2fj.m) = 0.

This equation of equilibrium can be satisfied in two ways,
we can have

cos 9=0,

Hence

(i)

Firstly

(2)

or 6 = -
} which gives the vertex of the tube as the position of equi-

2

librium. This position is a priori evident, since the particle would
at the vertex be acted upon only by its weight and the reaction of the

tube, the force F here being = 0.

Secondly, the equation will be satisfied if

TF-2//m = 0. (3)

Now, this is simply a relation between the constants of the problem,
and gives no value of that is, no definite position of equilibrium.
In fact, if the equation (3) is satisfied, (1) will be satisfied, no matter

what 9 may be. In physical language, then, the result is as follows :

W
if

jut
= - the particle will rest in all positions ;

and if this relation
2w*

does not hold, the vertex is the only position.
It is well for the student to observe that

/u,
is here the quotient of

a force by a line, the force being expressed in the same units as those

of W, and the line in the same units as those of PM. For since

we have put F= p PM, if Q is a force in the same units as those of

JF, and I a line in the same units as those of PM, it is clear that

the proper representation of F would be something of the form

Q-j~3 therefore
/LI
=

I I

6. A heavy particle, resting on a smooth inclined plane, is at-

tached to a string which, passing over a smooth pulley, sustains

another heavy particle: find the conditions and position of equi-
librium.
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Let W be the weight of the particle on the plane, P that of the

hanging particle, and the inclination of the string to the inclined

plane in the position of equilibrium.
For the equilibrium of the particle on the plane, we have, resolving

along the plane (since the tension of the string = P),

W sin i P cos 6
;

W sin i

.'. cos 6 =
-p

In order that there may be a position of equilibrium, this value of

cos 6 must be < i, therefore W sin i must be < P.

Explain the result when P = W.

7. Three particles, whose masses are

TWj, w2 ,
m

3 ,
are placed at three points, A,

B, C (fig. 44), inside a smooth circular

tube; they attract or repel each other

with forces directly proportional to their

masses and their distances
;
find the posi-

tion of equilibrium of the system.
Consider the equilibrium of m^ at A.

It is acted upon by two forces equal to

m.2AB and m
3 AC, in the directions AB

and AC. The resultant of these must be

normal to the tube at A. But (Cor. 2, p.

Fig 44>
1 6) the resultant acts towards a, the

centre of mass of m2
and w

3 ,
and if

is the centre, OB = OC. Hence- = -
; and, bv considering the

sin z m
s

equilibrium of -B, we have -a
-=^ Therefore sin x : sin y : sin z

= m
1

: m
2

: w
3

. Also x+ y + z = TT'
} therefore #, y, and z are the

angles of a triangle whose sides are proportional to m
ly
m

2 ,
and

m
3 . These angles being known from some such equations as

cos x = 2 ---
5 &c., the relative positions of the particles

are at once determined. The centre, 0, of the tube is the centre of

mass of the particles.

8. Two smooth heavy rings, A and C (fig. 45), slide on two rods

which are inclined to the horizon at angles i and i'
;
a string con-

necting A and C passes through a smooth heavy ring, B. Find the

condition of equilibrium.
Let the weights of A, B, (7, be P, W, P*, respectively, and let R

and R' be the reactions of the rods on A and C. Construct the force-

diagram of the system by drawing om from an arbitrary origin, 0,

parallel and proportional to Rf, and mn parallel and proportional to

P*
;
then on will be parallel to BC and proportional to the tension in

it. Drawing again np parallel and proportional to W, op will be
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parallel to 13A, and represent its tension. Finally, if pq_ represents

P, oq will represent R. Since the tension in ABC is constant,
on = op\ therefore a perpendicular from on mq bisects np. The

p
r

W
f
P

Fig. 45-

length of this perpendicular is on the one hand (mn + J np) tan i', and
on the other (pq + ^ np} tan i. Hence, equating these, we have

tan ?= (P tent.

This is a relation between the constants of the problem, and it there-

fore constitutes a condition that equilibrium should be at all possible.
If this condition is fulfilled, the position of equilibrium can be obtained

by finding the angle, 0, which the string BC makes with the vertical.

Evidently, from the force-diagram

W+2P'
tan e = tan i .

9. Two heavy rings, whose weights are P and Pf

(fig. 46), rest on
the circumference of a smooth vertical circle, and are connected by a

weightless string on which a heavy ring, whose weight is Q, slides

freely. Find the position of equilibrium.

Fig. 46.

Construct the force-diagram. Let 6 and 0' be the inclinations of

the radii CA and CA' to the vertical, and let
(f)

be the inclination

of the portions of the string AB and BA' to the vertical.
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The force-diagram then gives the statical equations
n n

(i)

(2)
& j

To these must be added the geometrical equation which connects the

length, /, of the string, with the radius, a, of the circle.

Since the horizontal projections of the broken lines ACA' and

ABA' are the same, we have

a (sin B+ sin ^) = I sin <. (3)

Equations (1), (2), and (3) are sufficient to determine the unknown

angles 0, 0', and
</>.

10. A body, whose weight is 10 kilogrammes, is supported on a

smooth inclined plane by a force of 2 kilogrammes acting along the

plane and a horizontal force of 5 kilogrammes ;
find the inclination of

the plane. . _, /3 X
Ans. sin (*)*

11. A heavy body is sustained on a smooth inclined plane (incli-

nation i) by a force P acting along the plane, and a horizontal force,

Q. The inclination being halved, and the forces P and Q each

halved, the body is still observed to rest
;

find the ratio of P to Q.

Ans. 7;
= 2 cos2 -

Q 4

12. Two weights, P and Q (fig. 47), rest

on a smooth double-inclined plane, and are

attached to the extremities of a string
which passes over a smooth peg, 0, at a

point vertically over the intersection of

the planes, the peg and the weights being
in a vertical plane. Find the position of

equilibrium.

Ans. If I the length of the string, and C0=7i, the position of

equilibrium is defined by the equations

sin a _ _ sin /3

cos cos
(f>

cos a cos (3 _ I

sin 6 sin
<j)

h

1 3. Two weights, P and Q, connected by a string, rest on the

convex side of a smooth vertical circle. Find the position of equi-
librium, and show that the heavier weight will be higher up on the

circle than the lighter.

Ans. If the radius of the circle drawn to P make an angle 6

with the vertical diameter, I = length of the string, and a = radius of

the circle, the position of equilibrium is defined by the equation
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being circular measure.

^14. Show, by considering the equilibrium of P and Q (in the last

example) as one system, that their centre of gravity lies in the

vertical radius of the circle.

1 5. Two rods are fixed in the same vertical plane at inclinations a and

J3 to the horizon
;
two rings, whose weights are P and Q, are con-

nected by a string of given length and placed one on each rod
;

find

the position of equilibrium.

Ans. If P is placed on the rod of inclination a, the inclination,

6, of the string to the vertical is given by the equation

(P + 0)cot0 = Pcot/3- Qcota.
16. Two heavy rings, P and Q, connected directly by a string of given

length, rest on a smooth circular wire fixed in a vertical plane ;
find

the position of equilibrium.

Ans. If 2 a is the angle subtended at the centre of the circle by
the string, the inclination, 6, of the string to the vertical is given by
the equation

(P+$)cot0 = (P-#)tan a.

17. Two heavy rings, Pand Q, connected directly by an elastic string
whose tension is proportional to its length *, rest on a smooth circular

wire fixed in a vertical plane ;
find the position of equilibrium.

Ans. If C is the magnitude of the tension of the string when the

string is stretched to the length of the radius of the wire, construct a

triangle whose base and two sides are respectively proportional to

PQ
-fy-

> P, Q. Then the base angles of this triangle are those made with

the vertical by the radii of the wire drawn to the rings.

18. Two weights rest on the convex side of a parabola whose axis is

vertical, and are connected by a string which

passes over a smooth peg at the focus; show
that equilibrium is impossible unless the

weights are equal.
19. Two weights, P and Q (fig. 48), rest on

the concave side of a parabola whose axis is

horizontal, and are connected by a string
which passes over a smooth peg at the focus

F. Find the position of equilibrium.

Ans. Let I= length of the string ;
6 the

angle which FP makes with the axis; 4ra=
the latus rectum of the parabola ;

then

Fig. 48.

* The student will afterwards see that this would be the case if the natural

length of the string were so small as to be negligible in the problem.
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20. A particle is placed on the convex side of a smooth ellipse, and

is acted upon by two forces, F and F'
t
towards the foci, and a force,

F", towards the centre. Find the position of equilibrium.

Ans. If r = the distance of the particle from the centre of the

FF'
curve

;
b = semi-axis minor

;
and n = =; ; then

b

21. A heavy particle, P, is placed on the concave side of a smooth

vertical circle whose lowest point is A and highest point B. If the

particle is acted upon by two forces, in the directions AP and HP,
equal to pBP, and pAP, respectively, find the position of equi-
librium.

Ans. Let W = the weight of the particle ;
6 =: the angle made

with the vertical by the radius to P ;
a = the radius of the circle ;

then

22. A particle, P, is acted upon by two forces towards two fixed

points, S and H, these forces being
- and

,, respectively; prove

that P will rest at all points inside a smooth tube in the form of a

curve whose equation is SP. PH = &2
,
k being a constant.

23. A particle, P, is placed inside a smooth circular tube, and
acted upon by two forces towards the extremities, A and B, of a fixed

diameter, AB ; the forces are respectively proportional to PA and
PS : prove that the particle will rest in all positions.

24. Two weights, P and Q, connected by a string rest on the convex
side of a smooth cycloid. Find the position of equilibrium.

Ans. If I= the length of the string, and a = radius of generating
circle, the position of equilibrium is defined by the equation

where 6 is the angle between the vertical and the radius to the point
on the generating circle which corresponds to P.

25. Two weights, P and Q, rest on the convex side of a smooth vertical

circle, and are connected by a string which passes over a smooth peg
vertically over the centre of the circle; find the position of equi-
librium.

Ans. Let ^= the distance between the peg, B, and the centre of

the circle
;

and < = the angles made with the vertical by the radii

to P and Q, respectively; a and /3
= the angles made with the

tangents to the circle at P and Q by the portions PB and QB of the

string ; I= length of the string ;
then
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cos a cos p

sin^
sin|v

cos a cos /3
'

& cos (0 4- a) = a cos a,

cos
(<j) + fl)

= a cos )8.

SECTION II.

Rough Curves.

36.] Friction. The curves and surfaces which we have hitherto

considered were supposed to be incapable of offering resistance in

any other than a normal direction. Such curves and surfaces,

however, exist only in the abstractions of Rational Statics, and

are not to be found in nature. Every surface is capable of

destroying a certain amount of force in its tangent plane ; or, in.

other words, every surface in nature possesses a certain degree
of roughness, in virtue of which it resists the sliding of other

surfaces upon it.

Now, there are two ways in which a surface may resist a

sliding motion. Firstly, it may possess small inequalities which

act as fixed obstacles to sliding ; and, secondly, there may exist

an adhesion between its substance and that of another body in

contact with it. In virtue of inequalities, the two surfaces get

interlocked, and an effort to cause one to slide on the other causes

a strain in each of the surfaces, the force which resists this sliding

being called Friction. Rankine (Applied Mechanics, p. 209) dis-

tinguishes adhesion from friction on the ground that adhesion

between two surfaces is independent of the force by which they
are pressed together, and is analogous to shearing stress, i.e.) to

the force (called cohesion) which resists an attempt to divide a

solid by causing one part of it to slide on another.

At the same time he holds (Mechanical Text-Book, p. 153) that

friction is a kind of shearing stress, and this view gives

probably the most real and vivid conception of its nature.

37.] Laws of Friction. Experiments made by Coulomb and

Morin have established the following laws of friction :

1. The tangential force necessary to establish the beginning
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of a sliding motion is a constant fraction of the normal pressure

between the two surfaces in contact.

2. With a given normal pressure, the tangential force neces-

sary to establish the beginning of a sliding motion is independent
of the extent of the surface of contact.

Subsequent experiments have, however, considerably modified

the first of these laws, and shown that it can be regarded only as

an approximation to the truth. If It be the normal pressure

between the bodies, F the force of friction, and
JJL

the constant

ratio of the latter to the former when slipping is about to ensue,

we have

F=pR. (a)

The fraction ju in this equation is called the coefficient offriction,
and if the first law were true, /tx

would be strictly constant for

the same pair of bodies, whatever the magnitude of the normal

pressure between them might be. This, however, is not the

case. For great differences of normal pressure there are con-

siderable differences in the value of ju. When the normal pressure

is nearly equal to that which would crush either of the surfaces

in contact, the force of friction increases more rapidly than the

normal pressure. Equation (a) is nevertheless very nearly true

when the differences of normal pressure are not very great, and

in what follows we shall assume this to be the case.

38.] Causes which Modify the Coefficient of Friction.

Friction being a force called into play by the mutual action of

two bodies in contact, /x depends on the particular pair of bodies

in contact, and is not a quantity pertaining to any one body by
itself. Moreover, it varies for the same two bodies according as

the state of each body varies. Thus, it is not the same for iron

and dry oak, as for iron and the same piece of oak with a

moistened surface. Neither, again, is it the same for two pieces

of wood when their fibres are parallel as when they are perpen-
dicular. In fact, when great accuracy is required, a special ex-

periment should be made to ascertain the coefficient of friction

between two bodies which in any case are to act upon and sus-

tain each other. Tables of the coefficient of friction between

bodies in specified states are to be found in most practical treatises

on Statics.

39.] Independence of the Extent of the Surface of Contact.

The second law of Friction may at first sight appear strange ;
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but a little reflection will remove objections against its truth. If

the total normal pressure between two bodies be R, and the sur-

face of contact
,
the pressure per unit of area (which is called

X)

the intensity of pressure) is -=- If now, while the normal pres-

sure remains the same as before, the surface of contact is doubled,
73

the pressure per unit of area is only ^>
which is just half as

2o

great as before. Hence, though the area over which friction acts

is doubled, the intensity of pressure is halved
;
and it is consistent

with common sense that the friction per unit of area should be

halved also. Thus, on the whole, the same total tangential force

is required to set up sliding in both cases.

40.] Actual Magnitudes of Coefficients of Friction. It is

well that the student should have some idea of the actual magni-
tudes of coefficients of friction between bodies. For this purpose
he should look at a table of these coefficients. Practically there

is no observed coefficient much greater than 1. In Rankine's

table the coefficient for damp clay on damp clay is given as 1
,

and that for shingle on gravel is at the most 1.11. Most of the

ordinary coefficients are less than J.

41.] Other Coefficients of Friction. It is found by experiment
that the friction which resists the beginning of sliding is greater

than that which resists its continuance. Again, the resistance

which is opposed to the rolling of one surface on another is dis-

tinguished by the special name of Rolling Friction, but it would

more properly be called Resistance to Rolling. At present we

shall limit ourselves to the consideration of the friction of the

beginning of motion which is ex-

pressed by the equation

F= (J.R.

42.] Reaction of a Bough Curve

or Surface. Let AB (fig. 49) be a

rough curve or surface
;
P the posi-

tion of a particle on it ; and suppose

the forces acting on P to be con-

fined to the plane of the paper. Let

R
l
= the normal resistance of the surface, acting in the normal,

PN, and F = the force of friction, acting along the tangent, PT.
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The resultant of R
l
and F is a force which we shall call the

Total Resistance of the surface. It is represented in magnitude
and direction by the line PR = R, which is the diagonal of the

parallelogram determined by Rl
and F. We have seen that the

total resistance of a smooth surface is normal
;
but this limitation

does not apply to a rough surface. The angle, $, between R and

the normal is given by the equation

F
tan =

^-^i

Hence, < will be a maximum when the force of friction bears

the greatest ratio to the normal pressure. But this greatest

ratio is what we have called the coefficient of friction, p ;
and

this ratio is attained when the particle is just on the point of

slipping along the surface. Therefore the greatest angle ly which

the Total Resistance of a rough curve or surface can deviatefrom the

normal is the angle whose tangent is the coefficient offriction for the

bodies In contact ; and this deviation is attained when slipping is

about to commence.

43.] Angle of Friction. The angle between the normal and

the total resistance of a rough surface when slipping is about to

take place is called the Angle of Friction*. We shall throughout
denote it by A ; and if

/ot
is the coefficient of friction,

tan \ =
IJL.

44.] Experimental Determination

of
fji.

Let P be the position of a heavy

particle, whose weight is W
9
on a

rough plane, AB, whose inclination is

gradually increased until P is on the

point of slipping down. Consider the

equilibrium of P in these circum-

0. stances. It is acted upon by two

forces, namely, its weight, W> and the

total resistance, R, of the plane. For equilibrium these forces

must be equal and act in opposite senses. Hence R acts in a

vertical line
;
and since slipping is about to take place, the angle

between R and the normal, PN, to the plane must (Art. 42) be

equal to A, the angle of friction. But the angle between the

* Sometimes called the Angle of Repose.
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vertical and PN is also equal to the inclination of the plane to

the horizon. Hence the inclination of a rough plane on which a

particle, acted upon solely by its own weight} is just about to slip, is

the Angle of Friction.

This result might have been proved by the resolution of forces.

Thus, if 2t
l be the normal pressure, the force of friction acting

up the plane is pR-^ since slipping is about to begin. Hence,

resolving forces horizontally for the equilibrium of P,

JRi sin i
JJL^ cos i = 0,

i being the inclination ; or tan i =
jot,

therefore i = A.

Morin determined the coefficient of friction between two

substances by placing one on a fixed horizontal plane made of

the other, and then measuring the least horizontal force which

should be applied to the body resting on the plane to cause it to

slide. The ratio of this force to the weight of the body is the

required coefficient of friction.

45.] Limitation of the Total Resistance. As in the case of

the resistance of a smooth curve or surface, there is no limit to

the magnitude of the total resistance of a rough curve or surface

for the surfaces with which we are at present concerned are

supposed to be capable of resisting penetration to any extent

the only limitation to which the total resistance is subject being
one of direction, and this limitation is thus expressed :

The Total Resistance of a rough curve or surface, though un-

restricted in magnitude, can never make with the normal an angle

greater than the angle offriction corresponding to the two bodies in

contact.

Within this limit, the total resistance can assume any magni-
tude and direction, so that we at once deduce the following

important principle :

If the Total Resistance can maintain

equilibrium, it will do so.

Thus, let P
(fig. 51) be a heavy par-

ticle placed upon a rough plane whose

inclination is less than A, the angle of

friction. Then it is clear that, to keep
P at rest, the total resistance, R, has

only to be equal and opposite to W, the

weight of P.

But drawing PQ, making the angle of friction, A, with the
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normal, PN, we see that the direction of R falls within the

prescribed limit ; and therefore the equilibrium will subsist, no

matter how great W may be, for there is no limit as to the

magnitude of R.

46.] Limiting Equilibrium. A particle acted upon by any
forces and placed upon a rough surface is said to be in limiting

equilibrium when it is in such a position that the total resistance

of the surface makes the angle of friction with the normal. In

such a position if any slight change should occur in the circum-

stances of the particle, in virtue of which the total resistance

would be compelled to make a greater angle with the normal,

equilibrium could subsist no longer ;
for the total resistance can

never be inclined to the normal at an angle greater than the

angle of friction. Or we may put the matter thus. In every

case the equilibrium of a particle restricted to a rough curve

or surface is broken only by some circumstance which compels
the total resistance to make with the normal an angle greater

than the angle of friction. The manner in which this is supposed
to happen depends on the particular problem. For example, let

us enquire into the circumstances of the equilibrium of a heavy

particle, whose weight is W
t
on a rough curve, AB (fig. 52),

whose plane is vertical, the particle being acted upon by a

horizontal force, F.

The problem proposed for solution

may be any one of the three follow-

ing :

(a) Determine the least horizontal

force that will sustain a particle, of

weight W> at a given point, P, of a

given rough curve, AB.

(b) Determine the point at which a

52<
particle, of weight W, will be just sus-

tained by a given horizontal force, F, on a given rough curve, AB.

(c)
Determine the least coefficient of friction that will allow

a particle, of weight W, to rest at a given point, P, of a curve,

AB, the particle being acted on by a given horizontal force, F.

If PN be the normal at P, and PR be drawn making the

angle of friction, A, with it, PR will be the direction of the total

resistance, since, by supposition, the particle is about to slip

down. All three problems are solved by the equation
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being the inclination of the tangent at P to the horizon. But

the manner in which equilibrium is supposed to be broken is not

the same in each of them. If, in the first case, F< TFtan (0 A),

in the second, > A + tan" 1

(-~)
> and in the third, A< tan- 1

77F ''

(jy) ,
the particle will not rest at P. Thus the equilibrium may

be broken by

(a) a slight change in some of the acting forces
;

(b) a slight change in the position of the particle ; or,

(c)
a slight change in the nature of the supporting surface,

i.e., a diminution of its roughness.
If the particle is in limiting equilibrium (i.e.,

if the total

resistance makes the angle of friction with the normal to the

supporting surface) it is evident that equilibrium will always be

broken if the third of these changes occurs
;
but it may not be

broken by either of the others. Take, for example, a heavy

particle placed on an inclined plane whose inclination to the

horizon is the angle of friction. It is evident that any change

may be made, either in its weight or in its position on the

plane, and equilibrium will still subsist
;

for in neither case is

the total resistance (equal and opposite to W) compelled to make
with the normal an angle > A.

In every case of equilibrium it is to be observed that the

Force of Friction (Art. 37) acts in the sense opposite to that in

which motion would ensue if the bodies in contact became gradually
smoother.

47.] Friction in non-limiting equilibrium. The beginner is

very prone to assume that, if
ju,

is the coefficient of friction

between two bodies, in every case in which one of these bodies rests

against the other the force of friction is jmP, where R is the

normal pressure between them. That this is not so he will

easily see by considering the case in which a heavy piece of

metal rests on a horizontal plane of wood the coefficient of friction

between the metal and the wood being, say, f, and no forces,

other than its weight and the resistance of the plane, acting on

the body. So far from the force of friction being f of the

normal pressure, the force of friction is zero, and will come into
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existence only when some horizontal force is applied to the body.

The force of friction will always be equal to this horizontal force

and will attain the value fR only when slipping is about to take

place.

The changes both in magnitude and in direction which

the Total Resistance between two rough surfaces in contact

undergoes while equilibrium changes from a state bordering on

motion in one direction to a state bordering on motion in the

opposite direction may be very simply illustrated by solving the

following problem :

A heavy body of weight W is held on a rough inclined plane

of inclination i by a horizontal force P
;
the force P being varied

gradually from the value required just to sustain the body to the

value required just to drag it up the plane, it is required to repre-

sent graphically the different magnitudes and directions of the

Total Resistance corresponding to the successive values of P.

Let (fig. 53)
be the position

of the body, and

measure off a

vertical line OW
to represent the

magnitude of W.

Then, for dif-

ferent values of

P, the resultant of

W and P will be

represented by lines drawn from and terminating on the hori-

zontal line WH. The Total Resistance of the plane on the body
is, of course, equal and opposite to the resultant of P and W, and

it will therefore be represented by a line drawn from to a

horizontal line, R^R^ drawn at the same distance above as the

line WH is below it.

Let ON be the normal to the plane at 0, and draw the lines

OR-L and OR2 making the angle, X, of friction with the normal at

opposite sides of it. Let these lines be produced to meet the line

JTHiiL the points r
x and r

2 .

Then for equilibrium the resultant of P and W must be repre-
sented by some line intermediate between O

x and Or
2

.

When the resultant of P and W is Orv the Total Resistance

53.
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of the plane is ORV and since this makes the angle of friction

with the normal, the body is on the point of slipping down.

When the resultant of P and W is Or
2 ,

the Total Resistance is

OR2) and the body is on the point of slipping up.
The values of P which will just sustain the body and just

drag it up are, respectively,

W tan
(i
-

X) and W tan
(i+ X),

as appears at once from the figure or by calculation.

IfP has a value between these limits, the Total Resistance, OR,
will be intermediate between OE

l
and OR

2 ,
and the equilibrium

will not be limiting, i.e., the body will not be on the point
of slipping either up or down

;
and the force of friction, which

is the component of R along the plane, will not be
//,

times

the normal pressure, except in the two states bordering on

motion.

If P has the value ^Ftan i, which is intermediate between its

extreme values, the Total Resistance will be normal to the plane,

and in this state there will be noforce offriction exerted between

the plane and the body.

48.] Passive Resistances. The force of friction between a

body and a rough surface belongs to a class of forces called

Passive Resistances^ i.e., forces which come into existence only on

account of the action of other forces and which always endeavour

to destroy the effect of these other forces. To this class, indeed,

belongs also the normal pressure between any two bodies, and

also the resistance of air or any other fluid to a body moving

through it.

And it is an axiom with regard to all passive resistances that if

they can preserve equilibrium they will.

EXAMPLES.

1

1. A heavy particle is placed on a rough plane inclined to the

horizon at an angle less than the angle of friction
;
find the limits of

the direction of the force required to drag it down.
Let PN

(fig. 54) be the normal to the inclined plane, and let PQ
be drawn, making the angle NPQ= A, the angle of friction. Now,
the necessary and sufficient condition that equilibrium should exist is,

that the resultant of the weight, W, and the force applied, F, should
fall within the angle NPQ. Hence, producing NP and QP to n
and

q, we see that no force applied to P within the angle nPq
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will disturb the equilibrium. F must, therefore, be applied within

the angle NPq, and act from P towards

the left of the figure.

' 2. Two heavy particles, whose weights
are P and Q, rest in limiting equilibrium
on a rough double-inclined plane, and are

connected by a string which passes over a

smooth peg at a point, A (fig. 55), ver-

tically over the intersection, B, of the two

planes. Find the position of equilibrium.
Let the inclinations of the planes be

a and /3; let the length of the string be
Fig. 54-

Z, and AB = h
;
and let the portions of the string make angles 6

and
tf>
with the planes.

Suppose that P is on the point of

ascendiog, and Q of descending. Then,
since the motion of each body is about

to ensue, the total resistances, R and S,

must each make the angle of friction

with the corresponding normal; and
since the weight P is about to move

upwards, R must act towards the left of

the normal, while, since Q is about to

move downwards, S must act to the

right of the corresponding normal.

If T is the tension of the string, we
have for the equilibrium of P,

T=P
cos(6-\)'

Again, for the equilibrium of Q,

T-n .sin(/3-X)
NJ / 1 , \ \

*

Fig. 55-

Hence, equating the values of T,

p sin(q+ A) _
*cos(0 A)

~
sin(/3-A)

(1)

This is the only statical equation connecting the given quantities.
We obtain a geometrical equation by expressing that AB and the

length of the string are given. This is, evidently,

L/c^lL^
/LI v, _ C, sn (2)

,
and con-

-*
Equations (1) and (2) determine the values of 6 and

stitute the solution of the problem.
Other Solution. Instead of considering the total resistances, R and

S, we may consider two normal resistances, Sl
and Slt

and two forces

of friction, ^Rl
and yLS

l , acting respectively down the plane a and up
the plane /3. In this case, considering the equilibrium of P, and
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resolving forces along and perpendicular to the plane a, we have
P sin a + fJ?! = T cos 0, )

; j

and for the equilibrium of Q,

Eliminating E19 Slt and ^from the systems (A) and
(J?), we arrive

at the same statical equation as before.

The method of considering total resistances instead of their normal
and tangential components is almost always more simple than the

separate consideration of the latter forces.

. 3. If in the last question P is given, what are the limits of Q con-

sistent with equilibrium ?

If Q be so large that it is about to drag P up, its value, Qlt will be

given by equation (1),

o _ sin (a + A) cos
((ft + A) t

'

Bin (/3- A) cos (0- A)'

and if Q be so small that P is about to descend, its value, Qz ,
will be

Q _ i>
sin (a-A) cos

((ft-A) ^ ^CdLi^A
in3 A0 A'

the angles 6 and
(ft being connected by equation (2).

' 4. A heavy ring is placed on a rough vertical circle
;

find the

limits of its position consistent with equilibrium.
Ans. Draw two diameters making the angle of friction with the

vertical diameter. The ring will rest anywhere on the circumference

between the two upper extremities, or between the two lower extremi-

ties, of these diameters.

: 5. A heavy body whose weight is 20 kilogrammes is just sustained on

a rough inclined plane by a horizontal force of 2 kilogrammes, and a
o

force of 10 kilogrammes along the plane ;
the coefficient of friction is -

;

o

find the inclination of the plane. _. ,25
XAns. 2 tan 1

( )

6. A heavy particle is placed on a rough plane whose inclination to

3
the horizon is sin"1

( )
j and is connected by a string passing over a

o

smooth pulley with a particle of equal weight, which hangs freely.

Supposing that motion is on the point of ensuing up the plane, find

the inclination of the string to the plane, the coefficient of friction

being -.

Ans. By resolving forces along the inclined plane, we have, if 6 =
inclination of the string to the plane,

1
/,

1 6 e
* e

- sin 6 = I cos 6, or - sin - cos - = sin2 - j

& 6 A f tt
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6 1
one solution of which is = 0, and the other is tan - = -

&

7. In the second solution of the last question, exhibit the position
of the string, and explain the result.

1 8. A heavy particle acted upon by a force equal in magnitude to its

weight is just about to ascend a rough inclined plane under the

influence of this force
;

find the inclination of the force to the inclined

plane.

Ans. If 6 is the required inclination, A = angle of friction, and

i =. inclination of the plane,

0=-^ i, and 6 = 2\ + i-^& 6i

are possible solutions. (6 is here supposed to be measured from the

upper side of the inclined plane. If - > 2 A + i, the applied force will
2

act towards the under side).

9. In the first solution of the last question, what is the magnitude
of the pressure on the plane ?

Ans. Zero. Explain this.

10. Prove that the horizontal force which will just sustain a heavy

particle on a rough inclined plane will sustain the particle on the

same plane supposed smooth, if the inclination is diminished by the

angle of friction.

1 1 . What is the least coefficient of friction that will allow of a heavy
body's being just kept from sliding down an inclined plane of given
inclination, the body (whose weight is W) being sustained by a given
horizontal force, P ?

Wtzni-P

Explain <& priori, why we get a negative value for the coefficient of

friction unless PFtan i > P.
12. It is observed that a body whose weight is known to be TFcan be

just sustained on a rough inclined plane by a horizontal force P, and
that it can also be just sustained on the same plane by a force Q up
the plane; express the angle of friction in terms of these known
forces.

Ans. Angle of friction = cos""
1

^ , r>2 . ~W2
"

13. It is observed that a force, Qlt acting up a rough inclined plane
will just sustain on it a body of weight JF, and that a force, Q.2 ,

acting up the plane will just drag the same body up ;
find the angle

of friction.

Ans. Angle of friction = sin"1
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14. A body is held on a rough inclined plane (i > X) by a force which
acts up the plane ;

this force being varied gradually from the value

required just to sustain the body to the value just required to drag it

up, it is required to represent graphically the different magnitudes
and directions of the Total Kesistance.

15. In example 8, p. 47, if the rings A and are equally rough,
find the condition that there may be a limiting equilibrium in which
each is about to slip down.

Ans. If A is the angle of friction, the required condition is

(P'+jj tan (i'-\) = (P+^
In this case the lines Om and Oq must be drawn making angles

i' A, and i A, respectively, with the line mq.
16. In the same example, if one of the rings, C, is in a position of

limiting equilibrium, find the direction of the string, the position of

the other ring, A, and the direction of the total resistance at it.

Ans. The position of the string is determined by the equation

the + or sign being used according as C is about to slip up or

down. When 6 is known, the position of A is known
;
and the

direction of the total resistance at A is found from the equation

(^ + P) tan Oqm = (^ + P'
)
tan

(i' A).& &

17. A heavy body is to be dragged up a rough inclined plane : find

the direction of the least force requisite.

Ans. The force must make the angle of friction with the inclined

plane. This follows at once either by resolution of forces, or by
drawing the force-diagram. Viewed in the latter way, the problem is

this : Given one force (the weight) in magnitude and direction, and
the direction of another (the total resistance), when is the resultant

a minimum ? Evidently when it is at right angles to the total

resistance.

N. B. This result is often expressed thus : The best angle of

traction up a rough inclined plane is the angle of friction.

18. Two weights, P and Q, connected by a string, whose weight is

neglected rest on a rough vertical circle, the string being supposed not

to be anywhere in contact with the circle
;

find the limits of the

position of equilibrium.

Ans. If 6 be the angle made by the radius to P with the vertical,

I = the length of the string, and a = the radius of the circle, 6 may
have any value between

l
and

2 ,
these being given by the equations



64 EQUILIBRIUM OF A PARTICLE ON PLANE CURVES. [48.

tan 6
l
=

Q sin (- + A) + P sin A-
j
-

;

Q cos (- + A) + P cos \

$sin(- A)- PsinA

tan
2
=

,

Q cos ( A) + P cos A

A being the angle of friction.

19. Two heavy bodies rest, at points P and Q, on any rough curve

in a vertical plane, and are connected by a string, which is nowhere in

contact with the curve; show that in the limiting positions of equi-
librium the total resistances at P and Q intersect on the circle passing

through P, Q, and the point of intersection

of the normals at P and Q.

20. Two heavy particles, P and Q (fig. 56)

rest, one on a rough diameter, AB, of a rough
vertical circle, and the other on the convex

side of the circle, the particles being con-

nected by a string which passes over a smooth

peg at the upper extremity, B, of the diameter.

Find the position of equilibrium, the string

being supposed to be nowhere in contact with

any rough surface, and the coefficients of

friction for P and Q being different.

Ans. If a = the inclination of AB to the vertical, 6 = inclination

of the radius drawn to Q to the vertical, fj.
= coefficient of friction

between P and AB, n' = coefficient of friction between Q and the

circle, the limiting positions of equilibrium are given by the equations

Q (sin 0j + 1/ cos 6^ = P (cos a /a sin a),

Q (sin 2 fjf cos 2)
= P (cos a + [JL

sin a).

21. AB is the vertical diameter of a rough circular tube, of which
C is the centre; P is a heavy particle placed inside the tube, and
attached to three strings which, passing through a narrow slit in the

inner side of the tube, pass over smooth pegs fastened at A, B, and C.

Find the position of equilibrium.

Ans. If the weight of the particle = W, and the weights sus-

pended over the pegs, A, C, and B = P
lt
P

2 ,
and P

3 , respectively, the

angle 6, which CP makes with the vertical when the particle is about
to slip down, is given by the equation

Fig. 56.

-P
2
sin A-P

3 sin ( + A) = 0;

and by changing the sign of A in this equation we obtain the position
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in which P is about to slip up.
'

Anywhere between these positions the

particle will rest in non-limiting equilibrium.

22. Two heavy particles, P and Q
(fig. 57), rest on two rough circular arcs

which have a common vertical tangent at

; P and Q are connected by a string
which passes over a smooth pulley at

;

find the positions of limiting equilibrium.
Ans. Let & and $ be the angles sub-

tended by the arcs OP and OQ at the

centres of the corresponding circles, a and

6 the radii of the circles, A and the angles
of friction for P and Q, respectively, and I

the length of 'the string ; then, if P is about to slip down, the

equations

Fig. 57-

p cos(0+ A) _ Q
cos (</>e)

coS(|-0

and

determine the position of equilibrium. Changing the signs of A and e,

we obtain the position in which Q is about to slip down.

23. A particle rests on a rough curve whose equation is/ (x, y)
= Q,

and is acted on by forces the sums of whose components along the

axes of x and y are X and Y
; prove that the particle will rest at all

points on the curve at which

1dx
-r~
dy

>cos A.

24. Two rings whose weights are P and Q are moveable on a rough
rod inclined to the horizon at an angle i

;
these rings are connected

by a string of given length which passes through and supports a

smooth heavy ring W';
find the greatest distance between P and Q.

Ans. If 6 is the inclination of either portion of the string to the

vertical, the greatest distance between the rings is obtained by giving
tan 6 the greater of the values

W+2Q
W

Q being the upper ring.

tan (\i),
W+ZP
W



CHAPTER IV.

THE PRINCIPLE OF VIRTUAL WORK,

SECTION I.

A Single Particle.

49.] Orthogonal Projection. Let Ox and AB
(fig. 58) be any

two right lines inclined at an

angle 0. If from the extremities,

A and B, of the right line AB,
two perpendiculars, Aa and Bb,

be let fall on Ox, the line ab is

called the orthogonal projection of

AB on Ox. If the lines Aa and

Bb had been each drawn parallel

to a given line, which is not perpendicular to Ox, ab would be an

oblique projection of AB.
In the case of orthogonal projection it is evident that ab =

AB cos 0.

50.] Projection of a Broken Line. Let ABCD (fig. 59) be a

zig-zag or broken line. Then it is evident that the projection

(orthogonal or oblique) of the line AD, joining the first and last

Fig. 58.

points, A and D, is equal to the sum of the projections of the

separate lines, AB, BC, and CD, on any line Ox.

This is also true when the line Ox, on which the projection

takes place, cuts any or all of the lines AB, BC, . . . between
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the vertices, A, B, C, . . .
,
of the polygon formed by them, as in

fig. 60.

If the sides of a closed polygon taken in order be marked with
arrows pointing from each vertex to the next one, and if their

projections be marked with arrows flying in the same directions,

then, lines measured from left to right being considered positive,
and lines from right to left negative, we may evidently state this

result as follows :

The sum of the projections of the sides of a closedpolygon on any
right line, allowance being madefor positive and negative projections,
is zero.

51.] Virtual Displacement. Virtual Work. If a point at

(fig. 61) be conceived as displaced to A, OA may be called the
virtual displacement of the point. /

Let OP be the direction of a /\''

force, P, and let AN"be drawn per- /'' \
pendicular to it ; then ON is the

projection of the virtual displace-
ment along OP, and the product
of the force, P, by the projection,

ON, of the virtual displacement is Fig- 6l -

called the virtual work of the force. We shall therefore say
that

The VIRTUAL WORK of aforce is the product of theforce and the

projection along its direction of the Virtual Displacement of itspoint

of application.

If 6 be the angle between the force and the virtual displace-

ment,

The Virtual Work = P.ON= P. OA cos6 = P cos 6 . OA.

Now P cos 6 is the projection of the force along the direction of

displacement, and is equal to OM, if PM is perpendicular to

OA. Hence we may also define the virtual work of a force as

follows :

The virtual work of a force is the product of the virtual displace-

ment of its point of application and the projection (or component) of

the force in the direction of this displacement.*/ / J-

This latter definition is for some purposes more convenient

than the former. It is to be observed that the projection of a

line, AB (fig. 58), of given length remains unaltered in magni-
tude when AB is moved parallel to itself into any position.

F 2

d _<
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52.] Theorem. The virtual work of a force is equal to the sum

of the virtual works of its components, rectangular or oblique.

Let a force R, represented by OR

(fig. 62), act at 0, and let its com-

ponents be P and Q, represented by
OP and OQ. Let OA be the virtual

displacement of 0, and let its pro-

jections on R, P, and Q, be r, jo, and

q, respectively. Then the virtual

works of these forces are R. r, P.p,

Q.q. Draw Pm and Rn perpen-

dicular to OA. Then On is the pro-

jection of R in the direction of the displacement, and by the end

of Art. 51, -r, r\ 4 r\R.r = OA x On.

Similarly P .p = OA x Om, and Q . q = OA x mn. Hence

P.p + Q.q = OA(Om+ mn) = OA x On=R.r.Q.E.D.

53.] Theorem. The sum of the virtual works of any number of

forces acting at a point is equal to the virtual work of the resultant.

This may be proved by taking the forces two-and-two; and

using the last Theorem, or by making use of the polygon of

forces (see fig. n, p. 18). The sum of the virtual works of the

forces is equal to the virtual displacement multiplied by the sum
of the projections along it of the sides of the polygon parallel to

the forces (Art. 51). But (Art. 50) the sum of these projections

is equal to the projection of the remaining side of the polygon,
and this side represents the resultant. Therefore, &c.

It follows, then, that

When a system offorces acting at a point is in equilibrium, the

sum of the virtual works of theforces =. 0.

For such a system will be represented by a closed polygon, and

(Art. 50) the sum of the projections of the sides of the polygon

along any right line = 0.

54.] Convention of Signs. If the virtual displacement, OA

(fig. 63), project on the line of the force P in the sense opposite

to that in which P acts, the projection ON is to be considered

negative, and the virtual work is negative. In this case P
will also project on the line of displacement in the sense

opposite to OA.

In fig. 64 the virtual displacement, OA, is such as to give
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positive projections, Or and Op, along the forces R and P, and

a negative projection, Oq, along Q. And if in this case the

R

Fig. 63.

Fig. 64.

lengths of Or, Op, and Oq are denoted by r,jo, and q, the equation

of virtual work will be
~ft r _ p Q ~

55.] Nature of the Displacement. It must be carefully

observed that the displacement of the particle on which the

forces act is both VIRTUAL and perfectly ARBITRARY. In the

motion of a particle, treated of in Kinetics, the displacement
is often taken to be that which the particle actually undergoes ;

but in the statical problem of the equilibrium of forces, the

relation between them, expressed in an equation of virtual work,

holds, whatever the displacement may be that is, it holds whether

the displacement be an actual or merely an imagined one. Since

with regard to the equilibrium of forces a state of absolute rest

and a state of uniform motion in a right line are not essentially

different, we shall see that the most useful applications of the

Principle of Work are made in the case of machines moving uni-

formly. The second characteristic of the displacement namely,
Us arbitrariness is most important,

as will presently appear.

56.] General Equation of Vir-

tual Work. Let several forces, Plt

P
2 , . . . (fig. 65), act in equilibrium

on a particle, 0, and let OA be any

conceived, or virtual, displacement
of 0. Letting fall perpendiculars,

the forces, the
2 ,

on

projections Op2 , Op3 ,
and Op, are

all positive, while Opl
and Op5

are

negative (Art. 54). Hence the equation of virtual work is
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If the projections of the displacement be denoted by plt p^ . . .
,

and if these quantities are supposed to carry their proper signs

with them, this equation becomes, the number of forces being

any whatever,
P1 .p1+P2 .p2+P3 .p,+ ... = J (1)

or 2(P.j?) = 0. (2)

57.] General Displacement of a Particle. The most general

displacement of a single particle is a simple motion of translation

from the point, 0, which it occupies, to another point., A. It is

true that in Molecular Dynamics, very small portions of matter

are conceived as capable not only of translations but also of

rotations about axes through themselves. Indeed every portion

of matter, since it must possess extension in space, must be

capable of both kinds of displacement ; but the second kind does

not belong to our present purpose.

58.] Deduction of the Equations of Equilibrium from the

Equation of Virtual Work. Through draw any two axes, Ox

and Oy, rectangular or oblique, and let a and /3 be the projections

of the virtual displacement, OA> along these axes. Replace the

force PL by its components, X:
and Y

ly along Ox and Oy. Then

(Art. 52)
P

1 .A = aX
1 +

Similarly, ^2-^2 = a^2 +

Hence equation (1) of Art. 56 becomes

or a2X+/3Sr= 0.
(1)

Now a and /3 are perfectly independent of each other. For the

displacement OA may be chosen so as to keep a constant while

varying /3 at pleasure, or vice versa. Suppose, then, that /3' and a

are the projections of a new virtual displacement, and we shall

have

a2X+/3'27= 0.
(2)

Subtracting (2) from (1), we have

Now /3 /3

7
is not = 0, therefore 2T must = ; and in the same
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way 2JT = 0. Hence we arrive at the equations of resolution of

forCeS 2X= 0,27=0,

which were deduced in Chap. II.*

59.] Elementary Virtual Work. In the general equation of

virtual work, for forces acting in equilibrium on a single particle,

namely,
P

1 .jo1 + P2 .j92 +P3 .^3 +... = 0, or 2P.^ = 0,

no limitation has been placed upon the magnitude of the virtual

displacement. This equation is true, independently of its

magnitude ; but it is generally more convenient to assume the

virtual displacement to be infinitesimal, even in the case of the

equilibrium of a single particle, and it is absolutely necessary to

do so (as will presently be seen) in treating of the equilibrium of

a connected system of particles.

If the virtual displacement is infinitesimal, its projections,

_pl9 p2 ,
. . .

,
on the several forces acting upon the particle are all

infinitesimal. We shall, therefore, denote these small projections

in future by bpv bp2 ,
. . .

,
and the equation of elementary virtual

work will be
P

1 .^1 +P2 .6j?2+P3 .5^3 +... = 0,

or SPSj? = 0.

60.] Case in which the Virtual Work of a Force vanishes.

If a force P act at a point 0, and if the virtual displacement OA
is at right angles to the direction of P, it is clear that bp, the

projection of OA on the direction of P, is equal to zero. Hence,
when the virtual displacement is at right

angles to the direction of the force, the

virtual work of the force = 0, and the

force will not enter into the equation

of virtual work. Such a virtual dis-

placement is always a convenient one

to choose when we desire to get rid of

some unknown force which acts upon
a particle or a system. For example,
let a particle, 0, of weight W, be sus-

tained on a smooth inclined plane by a force, P, making an angle

* These equations are, of course, implied in the proof of the principle of virtual

work (Art, 53).
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6 with the plane. If we wish to find the magnitude of P in

terms of W> without bringing the unknown reaction, R, into our

equation, we conceive as receiving a virtual displacement, OA

(the magnitude of which is, in the present case, unlimited), at

right angles to R, that is, along the plane. Drawing Am and

An perpendicular to W and P} respectively, the equation of

virtual work is yr Qm-P. On = 0.

But Om = OA . sin i
y
and On = OA . cos ; therefore

Wsini Pcos0 = 0.

As a second example, let us suppose
that the plane is rough, and that the

particle is on the point of being

dragged up the plane. The normal

resistance will then be replaced by
the total resistance, 21, inclined to

the normal at an angle = A, the

.p. 6 angle of friction. Let the virtual

displacement, OA (fig. 67), now take

place perpendicularly to R. Then the equation of virtual work is

W.0m-P.0n= 0.

But Om = OA. sin
(i+ A), and On = 0.4. cos

(A. 0) ;
therefore

W. sin
(i + A) = P cos (A 0).

As a third example, let us find the horizontal force which is

necessary to keep a heavy particle in a given position inside a

smooth circular tube (fig. 68).

Let the virtual displacement,

OA, be an indefinitely small one

= ds, along the tube. Then

since ds is infinitesimal, the pro-

jection of OA on R will be zero.

Also Om ds . sin 0, and On =
ds.cosO; therefore the equation
of virtual work is

Wds .sin 0+Pds .cos 6 =
,

P = JFtan 0.

\v

Fig. 68. or

If the tube is rough, and the particle in limiting equilibrium,
instead of the normal reaction we must draw the total resistance.
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making the angle A. with the normal at the right or left hand

side, according as P is the force which just sustains the particle,

or the force which will just drag it up the tube, and take the

virtual displacement, not along the tube, but at right angles to

the total resistance. In this case we obtain

P = 7Ftan(<9 + A).

61.J Condition of Equilibrium of a Particle as determined

by the Principle of Virtual Work. It will now be sufficiently

clear that

For the equilibrium of afree particle acted on by anyforces in one

plane it is necessary and sufficient that the virtual work of the system

offorcesfor every arbitrary displacement whatsoever should vanish.

First, it is necessary that the virtual work should vanish for

every displacement. For the sum of the virtual works of the

forces is equal to the virtual work of their resultant, and if this

sum did not vanish, the resultant force could not vanish, and

therefore the particle could not be in equilibrium.

Secondly, it is sufficient that this sum should vanish for every

displacement. This sum is equal to the virtual work of the re-

sultant, and if this vanishes for all possible displacements, the

resultant force itself must be zero, and therefore the particle is

at rest. For, if possible, let there be a resultant R, which is not

zero. Then, since the virtual displacement is quite arbitrary, we

may choose it so that it gives a projection = br (which is not

= 0) on the direction of R. Now, since the virtual work of the

system vanishes, we have Rbr = 0. But since br is not =0, R
must be = 0, and the particle is, therefore, at rest.

62.] Normals to Curves. The

equation of virtual work furnishes

a ready method of drawing nor-

mals to certain curves. For ex-

ample, to draw a normal at any

point, 0, of an ellipse (fig. 69) :

let a particle be placed at inside

a smooth elliptic tube whose foci

are F and F'
t
and let it be kept in FiS- 69-

equilibrium by two forces, P and P*
9
directed towards the foci.

Let OF= r, OF' = /. Then by the property of the ellipse,

r -f / = a constant. ~ A
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Hence, proceeding to a close point, A, we have

3r+ 8/=0. (1)

Now the resultant of P and Pf
is normal to the curve, and is

destroyed by the normal reaction. Drawing Am and Am per-

pendicular to P and P', the equation of virtual work is

P. Om - P'. Om' = 0.

But Om = br, and Om' = 8/; therefore this equation becomes

P.br + P'.br' = 0. (2)

Equation (l) gives 8/= br
; therefore, substituting in (2),

we have P = P'

or the forces towards the foci

must be equal. But the result-

ant of two equal forces bisects

the angle between them.

Hence the normal at any

point of an ellipse bisects the

T-,. angle between the focal radii
!lg. 70-

drawn to the point.

Again, the ovals of Cassini are given by the equation

rr' = &*
9

r and / being the distances of a point, 0, on the curve (fig. 70),

from two fixed points, F and F'. If two forces, P and P', act at

towards F and F', their resultant being normal to the curve,

we have for a small virtual displacement along the curve

P5r +P/
8/ = 0. (1)

But, differentiating the equation of the curve,

rbr + rbr' = 0. (2)
Hence from (l) and (2)

_v
P7

""
r'

Now, if C is the middle point of FI"
t
we have

/ sin F sin COF *

Therefore

r sin F'
'

sin COF'

P sin COF
F~ sin COF'
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But if ON be the direction of the resultant,

P_ _ sin NOF' ^ &Jr> If,

P'
==

sin NOF'

Hence NOF'= COF\ and the normal is, therefore, constructed

by joining the point 0, on the curve, to the middle point of the

line joining the foci, F and I", and then drawing the right

line ON so that L NOF' = L COF. The line ON is the normal

at 0.

EXAMPLES.

T
I . If the equation of a curve is expressed in the form = k, k

being a constant, and r, r the distances of any point on the curve from
two fixed points, A, B, show that the normal to the curve divides AB
externally in the ratio k2

: 1, and that the curve is therefore a circle.

2. Prove that the normal to the curve -f = - divides AB in
rn r n an

the ratio ( )*
+2

-

v r '

3. Give a simple construction for the normal to a Cartesian oval,

whose equation is Ir + mr = a.

4. The equation of the magnetic curve is cos o> + cos a/ = k

(example 28, p. 39). If N and S are the poles, prove that the normal

at a point P is constructed by measuring, on lines perpendicular to

PN and PS, lengths proportional to PS2 and PN2
, respectively, and

proceeding as in last Article.

5. The equation of any curve being / (r, r'}
= 0, prove that if the

normal is constructed by measuring constant lengths, Pa and Pb, from

a point P on the curve, along the lines PA and PB, the curve must

belong to the Cartesian ovals.

[This follows at once from the integral of the equation
- = &-/>;
dr dr

for this integral gives /= <j) (kr -f /) ; therefore all such curves give
kr + r = const.]

6. Show that for curves given by the equation /(co, a/) = 0, a

construction similar to that in the last example (except that the

constant lengths are measured on perpendiculars to PA and PB) will

hold only when the equation is

[This follows from the integral of the equation

df
>rp- = & ~,
do> aco

1 df k df . df . , dftJL-r ^L, or sin o>r- = & sm
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for the method of obtaining which integral see Boole's Differential

Equations, p. 328].

7. Apply the result in the last example to construct the normal to

an ellipse at any point.

[The equation of the ellipse is tan -tan =
k.~\

& 2

The general theorem* of which these are particular cases is

the following : Let the equation of any curve be expressed in

flff v r r\J V 1 > ' 2 5
'
3 5 *) U

5

rni denote the distances of any point, P,

(fig. 71), on the curve, from a number

of fixed points, Alt A2 , A^ ... An ; then,

if on PAlf PA2 ,
PAZ ,

... PAn , we mea-

sure off lengths P%, Pa
2 ,
P#3 ,

... Pan

proportional to

df df df df

the form

where r-

U/T-i ^^"2 3

and find G, the centroid of the

points a
l9

a
2 ,

a3 ,...an ,
PG will be

the normal to the curve at P [/ is used for shortness instead of

The proof of this theorem is exceedingly simple from a statical

point of view. Suppose a number of forces, Plt P2 ,
P3 ,

... Pn ,

to act at P along the lines PA^ PA2 ,
PA

3 ,
... PAn \ then these

forces will have a resultant normal to the curve if

But
df

8*i+^r^2 +-^r = 0;

henceif P
1

: : P
3

: ... Pn =
dr

the resultant acts in the direction of the normal. The rest

easily follows by Leibnitz's graphic method of representing the

resultant of any number of concurrent forces (see p. 15).

This theorem may be extended to curves given by equations
of the form

2 , o>
3 ,

= 0,

* This theorem is, I believe, due to Tschirnhausen. The student will find

another proof of this and the following theorem in Williamson's Differential

Calculus, Art. 193, third edition.
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where u)1} o)
2 ,

o>3 ,
...o>n are the angles which PAlt PA2 ,

PA3 ,

. . . PAn make with a fixed line.

Let forces Q^ Q,2 , Q3) ... Qn ,
act at P perpendicularly to the

lines PAV PA2 , PAB , ...PAn . Then the virtual work of Qt
for

a displacement along the curve is evidently Qi^i^ !- Hence the

forces will have a resultant normal to the curve if

.p df df df df

therefore the resultant will be normal if

i df i df i df i dfQ ' ' ' = * *

Consequently, the rule is measure off lengths, P619 Pb2 , &c.,

"I r!~P "I 7-/*

proportional to - -

-^ >

-^
> &c., on lines drawn at P perpen-

dicularly to PAlt PA2 , &c., in the directions in which the angles

ft>],o>2 ,
^cv increase; find the centroid of the points, bl9 b2)

&c.
;
then the line joining this point to P is the normal to the

curve.

SECTION II.

A System of two Particles.

63.] Projection of a Displaced Line of Constant Length.
Let a line, AB (fig. 72), be a

right line which is displaced into

any close position, A'ff, its length a

remaining constant. Let 80 be

the small angle between AB and

A'ff, and let ab be the projection of A'ff on its original position.

Then Aa, the projection of the displacement AA', is equal to JBb,

the projection of the displacement BB'
t

if infinitesimals of a

higher order than the first are neglected.

For, ab = A'ff. cos (50) = A'V
(l
-

Hence the difference between ab and A'I? (or AB) is of the order

of (50)
2

; and therefore, rejecting (80)
2

,
we have

AB = ab,

.-. Aa, = Bb.
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The result may be thus stated : the difference between AB
and ab is infinitesimal compared with the greatest displacement
in the figure.

64.] Projection of a Displaced String of Constant Length.
Let APB be a string which passes over

a peg at P, and, the length of the

string remaining the same, let the

extremities, A and B, be slightly dis-

placed to A and If. Let Aa and Bb
be the projections of the displacements
AA' and BB' on the original portions
of the string (fig. 73). Then Aa
= Bd.

For Pa = PA', cos aPA = PA', as

in the last Article.

Also Pb=PB'. Hence, since PA'

+ PB'=PA+PB) Pa + Pb = PA +
Fig- 73- ^-^5 therefore Aa = Bb.

If in the last Article I = the length
of AB, and in the present, I = length of the string, both results

are expressed in the equation
= 0.

65.] Virtual Work of the Tension of an Inelastic String.

In fig. 73 suppose the peg to be smooth. Let A and B be two

particles which are acted on by any forces which keep the

system in equilibrium in the position indicated by the figure.

Then if we consider the equilibrium of A alone, we may replace

the string by a force = T (the tension) acting in AP. Con-

sidering then a virtual displacement AA, the tension would

furnish the term

T.Aa, or -T.br,

to the equation of virtual work, the length PA being denoted by
r. Similarly, considering the equilibrium of B, the tension

would furnish to its equation of virtual work, for the virtual

displacement BB', the term

T.S6, or -T.br',

/ denoting the length of PB.

Taking the two equations together, the term contributed by
the tension will be, by addition,

or -T.M
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which = 0, since the particles A and B are imagined to be

simultaneously displaced in such a manner that the length of

the connecting string is constant. Hence

For any small virtual displacement in which the length of a

string is unaltered, the virtual work of its tension = 0.

In the same way, if, in fig. 72, the rod AB, connecting two

particles A and B, be subject to a tension, T, in the direction

of its length, the virtual work of this tension for the displace-

ment A'B' will be

T.(AaBb), or T.bAB,

which = 0, because the length of AB is constant.

Hence The virtual work of the tension of a rod connecting two

points whose mutual distance is unaltered in the virtual displace-

ment is zero.

66.] Typical Expression for the Virtual Work of a Force.

Example. We have seen (Art. 59) that if a force, P, act on

a particle, 0, whose vir-

tual displacement, OA,
has a projection = bp
on the line of action of

P in the sense in which

P acts, the virtual work

of P is P. bp. Fig. 74.

Generally, if p denote the co-ordinate, referred to some fixed

axis, of the point of application of a force, P, the virtual work

of the force is P. ftp, ftp being supposed to be a positive incre-

ment, and the co-ordinate being measured in the sense in which

P acts.

As an example, let us determine the relation between two

weights, P and P7

(fig. 74), which rest on two smooth inclined

planes, of inclinations i and i'. Let y and y' denote the co-

ordinates of the weights, referred to a horizontal plane through
0. Then the equation of virtual work for the system, the

displacement being supposed to be along the planes, is

P.8y + P-.S/=0. (1)

[Here it will be observed that the normal reactions do not

enter, because the virtual displacements take place at right

angles to them (see Art. 60) ;
and the tension does not enter,
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since the virtual displacement does not alter the length of the

string (see Art. 65)].

To this must be added the geometrical equation connecting

y and /. If I be the length of the string, we have, clearly,

sm i sin i

Differentiating this equation, we have

by by i v

"f~ / 0. \^)
sin i sin i

Hence, from (l) and (2),

P sin i = P' sin i'
9

an equation which is, of course, otherwise evident.

If the weights are connected, as in example 1 2, p. 48, we have

still the equation of virtual work,

y and y' denoting the vertical distances of P and Q in the figure

of that example from a horizontal plane through C.

The geometrical equation connecting y and y' is, evidently,

A/y
2 cosec 2a -f 2% + h2 + \//

2 cosec 2
/3 + 2%' -j- #* = /. (4)

Differentiating (4), we have

2 cosec 2
/3 + 2% + ^2

Hence, from (3) and (5), we obtain

p _
2

Equations (4) and (6) are sufficient to determine y and y, on

which the position of equilibrium depends.

67.] Geometrical Forces. When a particle is compelled to

satisfy some geometrical condition as, for instance, to rest on a

given smooth surface, or to preserve a constant distance from

some other particle this condition is equivalent to the action of

a certain force on the particle. If the particle is compelled to

rest under given forces on a smooth inclined plane, we have seen

that this condition may be removed if we produce, by any
means, a force exactly equal to the normal reaction of the plane
on the particle. In the same way, the connexion of the particle

with another by means of a rigid rod may be severed if we
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produce on the particle the force which is actually impressed

upon it by the rod.

Forces proceeding from geometrical connexions are called

Geometrical Forces, and if these forces are actually produced
on the particle by other means, the conditions may be violated,

and the particle considered absolutely free from constraint.

68.] Choice of Virtual Displacements. When two or more

particles constituting a system are connected by rods or strings,

and constrained to rest on given smooth curves or surfaces,

there is an advantage, when seeking for the position of equi-

librium, in choosing such virtual displacements as do not violate

any of these conditions ; because, as we have seen, the tensions of

the connecting rods or strings, and the reactions of the smooth

curves or surfaces, will, for such virtual displacements, contribute

nothing to the equation of virtual work of the system. Thus

we get rid at once of all such unknown forces. Of course, any

geometrical condition may be violated in a virtual displacement
at the expense of bringing into the equation of virtual work the

corresponding geometrical force.

For example, if a particle,

(fig. 75), is placed on a smooth

plane whose inclination is i, and

we wish to find the horizontal

force, P, which will sustain it,

the best displacement to choose is

one along the plane, i. e., one

which does not violate the geome-
trical condition, because, if this is

chosen, the unknown reaction, E}

will not appear in the equation of virtual work. But we shall

still get a valid equation if we choose a virtual displacement,

OA, which does violate the condition. This equation is

72 . Qr-P. Op- W. Ow = 0,

Or, Op, and Ow being the projections of OA on the directions of

R, P, and W, respectively.

On the other hand, if we wish to determine 72, without

determining P, the best virtual displacement to choose is one

at right angles to P, i.e., a vertical displacement which does

violate the geometrical condition.
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In the typical expression, Pdp, for the virtual work of a force,

the letter 8 has been used to signify that the small displacement

is any whatever
;
but it is usual in the Differential Calculus to

denote small increments of the co-ordinates of a point on a curve

or surface by the letter d. Hence in the following examples we

shall denote small displacements on the curves considered by
this letter.

EXAMPLES.

1. Two heavy particles, P and Pf

(fig. 76), rest on the concave side

of a smooth vertical circle, and are connected by a string passing over

a smooth peg, A, at the ex-

A tremity of the vertical dia-

meter. If the particles are

acted upon by two horizontal

forces, F and Ff

, proportional
to the distances, PQ and

P'Q'i of the particles from

the vertical diameter, find

the position of equilibrium

by the principle of virtual

work.

Let 6 and tf be the angles
which the radii to P and Pf

make with the vertical; let

the weights of the particles
be Wand W'\ the radius of

the circle = a, the length of the string = ,
and the forces F and

F'=\*..PQ and /. P'()'> respectively. Finally, let the distances PQ
and Pf

Q
f

be x and of, and let the vertical distances of P and Pf

below the horizontal diameter of the circle be y and y.
Then, choosing virtual displacements of P and Pf

along the circle

in such a manner that the length of the connecting string remains

unaltered, we have

Wdy + W'dy'+ Fdx+ F'dx' = 0,

w
Fig. 76.

or Wdy+W'dy'+ ij.x.dx+ v?x'.dx'=Q. (1)

Now y = a cos 0, y' =. a cos tf
,

x a sin 0, x'= a sin tf.

Hence (1) becomes

0. (2)
A /

Again, AP = 2a cos - , AP' = 2a cos -
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Hence the geometrical equation is

co
'f +COB

|

r

=i- <3>

Differentiating this, we have

6 tf
sin -d0 + sin -.<Ws: 0. (4)

From (2) and (4), we have, therefore,

6 (f

(Wpa cos 6) cos - = (
W \La cos 6') cos (5)

The solution of the problem is contained in equations (3) and (5).

2. Two heavy particles, P and /", rest on two smooth curves in a

vertical plane, and are connected by an
inextensible string which passes over a

smooth peg, A
(fig. 77), in the same

plane. Prove that in the position of

equilibrium, the centre of gravity of the

particles is at the greatest or least height
above the horizon that it can occupy con-

sistently with the given conditions.

Let y and y' denote the vertical dis-

tances of P and P f

from a horizontal line

through A (or through any other fixed Fig. 75*.

point). Then, the displacement being
made consistently with the geometrical conditions, we have

(I)

W and W being the weights of P and P'.

Now, the depth of the centre of gravity is

Wy+W'y'
W+W

Hence, differentiating (2),

(W+W')dy= Wdy+W'dnf=Q<, (3)

and y is therefore a maximum or minimum.
If equation (3) holds in all positions of the particles, they will rest

in all positions, and their centre of gravity is at a constant height.

3. If the normals at P and P* meet the vertical line through A in

n and n', prove that in the position of equilibrium

An An
4. If the particle P hang freely, find the curve on which Pf

will

rest in all positions of the system.

Ans. A conic having A for focus.

G 2,
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5. If P and P7
rest in all positions, and if the curve on which Pf

rests is given, find that on which P rests.

Ans. Let the horizontal line through A be taken as axis of x,

I = the length of the string, y = / (AP'} be the equation of the given

curve, and Wy+ W'y' = k; then the equation of the other curve will be

Wy = k- W'f(l-r\ or r = (y),

where r = AP.

6. A particle is attracted towards two fixed points by two constant

forces : find the curve on which it will rest in all positions.

Ans. A Cartesian oval.

7. A particle is acted upon by forces emanating from a given
number of fixed points and proportional, respectively, to the distances

of the particle from the fixed points ;
find (by Virtual Work) the

surface on which the particle will rest in all positions.

Ans. A sphere. [See also p. 16.]

[The student is recommended to solve some of the examples on

pp. 49 and 50 by the Principle of Virtual "Work.]

pi T : W" ; / J\ P : A ^
T;YC';', A p; A-*!



CHAPTER V.

COMPOSITION AND RESOLUTION OF FORCES ACTING IN ONE
PLANE ON A RIGID BODY.

69.] Resultant of Two Parallel Forces. Let two parallel

forces, P and Q (fig. 78), act at points A and B, in the same di-

rection, on a rigid body. It is required to find the resultant of

the forces P and Q.

At A and B introduce two equal and opposite forces, F.

The introduction of these forces will not disturb the action

of P and Q, since, the body being
indeformable (see p. 12), the force F
at A may be supposed to be trans-

ferred to B, at which point it would

be directly opposed to the other

force, F. Compound P and F at A
into a single force, R, and compound

Q and F at B into a single force, S.

Then let R and S be supposed to act

at 0, the point of intersection of their

lines of action. At this point let them

be resolved into their components,

P, F, and Q, F, respectively. The forces F at destroy each

other, and the components P and Q are superposed in a right

line, OG, parallel to their lines of action at A and B. The magni-

tude of the resultant is, therefore, P + Q. To find the point, G,

in which its line of action intersects AB, let the extremities of

P and R (acting at A) be joined. Then the triangle PAR
~P C}C*

is evidently similar to the triangle GOA] therefore =
-^-j'

OG P GB
Similarly, = -^ ; therefore, by division, =

-^rj
' Hence
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27^ resultant of two parallel forces acting in the same direction

at the extremities of a given line divides this line internally into two

segments in such a way that each segment is inversely proportional

to the force acting at its extremity.

Suppose, now, that the parallel forces, P and Q, act in

opposite directions. At A and B (fig. 79), let two equal and

opposite forces, F, be introduced, as

before ;
and let R, the resultant of

P and F, and 8, the resultant of Q
and Ft be transferred to 0, their

point of intersection. If at the

forces R and 8 are decomposed into

their original components, it is clear

that the system will reduce to a

force, P, acting in the direction GO,

parallel to the direction of P and Q,

and a force, Q, acting in the direc-

tion OG. Hence the resultant is a

force = P Q acting in the line GO. To determine the point

G, we have, from the similar triangles, PAR and OGA
t

P OG Q OG , P GB-5 therefore = .

Fig. 79.

Hence

The resultant of two parallel forces acting in opposite directions

at the extremities of a given line cuts this line externally into two

segments, in such a way that each segment is inversely proportional

to the force acting at its extremity.

DEF. The segments of a right line, AB, made by a point G in

it or its production, are the distances, GA and GB, of the point

G, from the extremities A and B of the given line, whether G is

on AB} or on AB produced.
In both cases we have the equation

PxGA= QxGB.
Hence we have, evidently, the theorem

Iffrom a point on the resultant of two parallel forces a right

line be drawn meeting the forces, whether perpendicularly or not,

the products obtained by multiplying eachforce by its distance from
the resultant, measured along the arbitrary line, are equal.

70.] Composition of Parallel Forces deduced directly
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from that of Concurrent Forces. Let two forces, P and Q
(fig. 80), act, in inclined directions, at two

points, A and JB, of a rigid body. Let o
be the point in which their lines of action

meet, and measure off Om and On equal to

P and Q respectively. Then, completing
the parallelogram Omrn, the diagonal,

Or, represents the resultant of P and Q
B '

in magnitude and direction. Let G be

the point in which Or meets AB. Then
we have

P Om sin rOn

Q

R

Fig. 80.

Q mr sin rOm

From G let fall perpendiculars, Gp and Gq, on P and Q. Then

sin rOn = -^^ > and sin rOm = -~c
; therefore

%
0)

P_

~Q
~

Gp
'

Again, if R is the resultant of P and Q, we have

R Or _smnOm
~P
"

~0m
~

sinnOr'

R _ perp. from Bon P
P

~~

perp. from B on R

Now, if P and Q are parallel, R becomes parallel to P and Q,

and we shall evidently have ~ = -~
;

hence (1) gives for

parallel forces

or, (2)

Q
~~
GA '

and (2) gives, since R is parallel to P and

R BA BG+GA Q,~ + P'

A similar demonstration holds when P and Q act in opposite

directions.

71.] Construction for the Resultant of two Parallel

Forces. If the lines AP and BQ (figs. 81 and 82), represent
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in magnitudes and lines of action two parallel forces, the student

will easily prove the following construction for the resultant :

Fig. 81. Fig. 82.

Draw BQ' equal and opposite to Q, and draw PQ', meeting
AB in g. Then measure off AG = By. G is a point on the

resultant. Through G draw an indefinite right line parallel to

P and Q, and from A and P draw parallels to PQ' and AB,

respectively. These lines will intercept on the line through G a

length = P + Q resultant.

72.] Moment of a Force with respect to a Point. Let a

force, P (fig. 83), act on a rigid body in the plane of the paper,

and let an axis perpendicular to this

plane pass through the body at any

point, 0. It is clear, then, that the

effect of the force will be to turn the

body round this axis, (the axis being

supposed to be fixed,) and the rotatory
effect will depend on two things

firstly, the magnitude of the force, P,

and, secondly, the perpendicular distance, p, of P from 0. If P
passes through 0, it is evident that no rotation of the body
round can take place, whatever be the magnitude of P

;

while if P vanishes, no rotation will take place, however great

p may be. Hence we may regard the product

p.f
as a representation of the power of the force to produce rotation

about
;
and to this product the special name Moment has, for

convenience of reference, been given by writers on Statics.

When all the forces under consideration act in one plane, we

may speak of the point, 0, in which the axis of Moments meets

this plane, instead of the axis itself. We shall therefore define

the Moment, with respect to a point, x>f a force acting on a body

Fig. 83.
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to be the product of the force and the perpendicular let fall on its

line of actionfrom the point.

The unit of force being a pound and the unit of length a foot,

the unit of Moment will obviously be &foot-pound.

73.] Moments of Different Signs. If two forces tend to

produce rotations of a body in opposite senses round a point,

their moments with respect to this point are affected with opposite

signs. Thus
(fig. 84), the force P

tends to turn the body round in a

sense opposite to that of watch-

hand rotation, while Q tends to turn

it in the opposite sense. If, then,

the former rotation is considered

positive, the algebraic sum of the

moments of P and Q round is
t Fig . 84.

P.p-Q.q,

p and q being the perpendiculars from on P and Q.
Round the point 0' both forces would produce rotation in the

same sense, and therefore the algebraic sum of their moments
with respect to this point is

p' and q being the perpendiculars from 0' on P and Q, re-

spectively.

In future we shall speak simply of the sum of the moments,
instead of the algebraic sum of the moments, of forces with

respect to a point, as we shall suppose the moment of each force

to be affected with its proper sign, in accordance with the rule

given at the beginning of this Article.

74.] Case of Two Equal and Opposite Parallel Forces. If

the forces P and Q in Art. 69, fig. 79, are equal, the equation

P x GA = q x GB

gives GA = GB, or
' = 1, an equation which is true only

when G is at infinity on AB. Also the resultant of the forces,

being equal to their difference, is equal to zero. Two equal and

opposite parallel forces acting on a rigid body constitute what is

called a Couple.

THEOREM I. Two equal and opposite parallel forces have a
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constant moment with respect to all points in their plane. Let

(fig. 85), be any point in the plane of

two equal and opposite parallel forces,

P, and let fall the perpendiculars Om
and On on their lines of action. Then, if

is inside the lines of action of the

forces, these forces tend to produce rota-

tion round in the same sense, and

therefore the sum of their moments is

equal to

P(0m+0n), or Pxmn.
If the point chosen is O7

,
the sum of the moments is evidently

P ((/m0
f

n), or Pxmn,
which is the same as before.

The perpendicular distance between the two forces of a couple
is called the Arm of the couple.

The Moment of a couple is the product of the arm and one of

the forces.

The Axis of a couple is a right line drawn anywhere perpen-
dicular to the plane of the couple, and in a particular sense, its

length being proportional to the moment of the couple. The

sense of the axis is determined thus : imagine a watch placed
in the plane in which several couples act. Then let the axes of

those couples which tend to produce rotation in the direction

opposed to that of the rotation of the hands be drawn upwards

through the face of the watch, and the axes of those which tend

to produce the contrary rotation be drawn downwards.

THEOREM II. The effect of a couple

on a rigid body is not altered if the

arm be turned through any angle round

one extremity.

Let AC and BD (fig. 86) be a

couple whose arm is AB, and let the

arm turn round B into the position

BA'. At A' introduce two equal

and opposite forces, AC' and A'C",

each of which is equal to one of the

forces, P, ofthe given couple, and per-

pendicular to BA'. At B introduce two equal and opposite forces,

BI/ and BD", perpendicular to BA', each force being equal to AC
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or P. The effect of the given couple is, of course, unaltered by the

introduction of these forces. Now the forces BD and BD" may be

replaced by their resultant, 2P cos -
> or 2P sin -

>

a 2

which acts in the bisector, BO, of the angle DBD"
;
and the

forces AC and AC" may be replaced by their resultant, 2Pcos

--
, or 2Psin- > which also acts in the line in a

sense opposed to the previous resultant. Hence the forces

BD, BD", AC, and AC") are a null system. There remain, then,

the forces Elf and ACT which form a couple whose arm is BA.
Hence the couple of forces P acting at A and may be replaced

by a couple of forces P acting at the extremities of an arm of

length equal to AB having one extremity common with AB.

THEOREM III. The effect of a couple on a rigid body is not

altered if the arm is moved parallel to itself anywhere in the plane

of the couple.

Let two forces, AC and BD,
each equal to P

(fig. 87), act with

arm AB, and draw ABT equal and

parallel to AB in the plane of the

couple. At A and B' introduce,

perpendicularly to A'J?
t

four

forces AC, AC", fftf, and

,
each equal to P. This does

Fig 87
not alter the effect of the given

couple. Now since AB and A'B' are equal and parallel, the lines

AB' and BA, being the diagonals of the parallelogram ABB'A,
bisect each other in the point 0, suppose. Replace the forces

BD and ACT' by their resultant, 2 P, which acts at parallel to

BD
;
and replace the forces AC and BflP by their resultant, 2P

which also acts at in a sense opposite to the previous
resultant. These two resultants Destroy each other, and there-

fore the forces BD, AC, B'lf', and AC\ constituting a null

system, may be removed. There remain the forces, AC' and

J5'_D', which constitute a couple whose arm is A'B'. Therefore, &c.

THEOREM IV. The effect of a couple on a rigid body is not

altered if the couple is changed into another having the same

moment, the arms of the couples being in the same line and

having a common extremity. .
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Let the given couple be AC and BD
(fig. 88). each equal to

P. Produce BA to A' so that i = -, and at A' and B in-
JoA. Jr

troduce equal and opposite forces AC' and A'C'
',
BIf and

the magnitude of each of these forces being Q. Now the forces

AC and AC" give a

Cl

Fig. 88.

C''

resultant = PQ at B (Art. 69) in the

direction BD" ;
and this force

added to BD" gives a force = P
which destroys BD. Hence there

remain the forces A'(? and BD',

which form a couple whose moment
is equal to that of AC and BD,
since (by construction)

BA= Q.BA'.

Therefore, &c.

THEOREM V. A couple acting on

a rigid body may be replaced by any
other couple in the same plane if the

moments of the couples are the same

in magnitude and sign.

Let P, P and Q, Q (fig 89), be

two couples in the same plane,

having the same moment, and tend-

ing to produce rotation in the same

sense
;

then P, P may be transformed into Q, Q. For, we
can first turn the arm AB round B until it is parallel to B'A'

(Theorem II) ; then we can lengthen it until it becomes equal
to B'A') changing, at the same time, the forces P into forces Q
(Theorem IV) ;

and finally, we can move it into the position

B'A' (Theorem III).

The sign of the moment of a couple is indicated by the sense

in which the axis is drawn, as has been already explained (p. 90).

Axes drawn upwards through the face of the watch are then

considered positive, and axes drawn downwards are negative.

From the foregoing Theorems it is clear that the addition of

co-planar couples is effected by adding their axes, regard being
had to the signs of the axes.

THEOREM VI. A force and a couple acting in the same plane on

a rigid body are equivalent to a singleforce.

Let the force be F and the couple (P, a) that is, P is the
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magnitude of each force in the couple whose arm is a. Then

(Theorem IV) the couple (P, a)
= the couple (F, ^) - Let

this latter be moved until one of its forces acts in the same line

as the given force F, but in the opposite sense. The given
force F will then be destroyed, and there will remain a force F
acting in the same direction as the given one and at a perpen-

dicular distance = -== from it.
Jl

This Theorem is equivalent to the statement A force and a

couple acting in the same plane cannot produce equilibrium.

THEOREM VII. A force acting on a rigid body at any point A
may be replaced by an equal force acting in the same direction at

any other point B together with a couple whose moment is the

moment of the originalforce about B.

This important proposition is easily demonstrated.

THEOREM VIII. The resultant of any member of coplanar couples

is a couple whose moment is equal to the sum (with the proper signs)

of the moments of the given couples.

For, let the component couples have moments Z, M,N9
...

,
and

let each of them be changed into a couple, having the same right
line AB (whose length is #) for arm. Then (Theorem IV), the

couple L will give rise to a force at A, and an equal force in
x

opposite sense at B. Hence at A we shall have the force

~ and an equal and opposite force at B. Thus we
x

have a couple whose moment is the product of this force by the

arm x ; i.e., its moment is L +H+N+ ...
,
or the sum of the

given moments.

75.] Geometrical Representation of the

Moment of a Force with respect to a Point.

Let the line AB (fig. 90) represent a force in

magnitude and direction, and let it be required
to represent its moment with respect to a point
0. If p = the perpendicular from on AB,
the moment is AB x_p. Now this is double the

area of the triangle AOB. Hence the moment of
Flg< 9 '

aforce with respect to a point is geometrically represented by double

the area of the triangle whose base is the line representing
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theforce in magnitude and line of action, and whose vertex is the

given point.

Draw AO, and from the other extremity, B, of the given force

draw an indefinite right line, BC, parallel to AO. Join A to any

point, C, of this line. Then the area of the triangle AOB = the

area of the triangle AOC, since these triangles have the same

base and are between the same parallels. Consequently the

moment of a force represented by AB about = the moment of

a force represented by AC about 0, wherever C be taken on the

indefinite line through B.

76.] Varignon's Theorem of Moments. The sum of the

moments of two forces with respect to any point in their plane is

equal to the moment of their resultant with respect to the point.

Let AP and AQ (fig. 91) represent two forces whose resultant

is AR, and let be the point about which moments are taken.

Draw AO, and draw PC and QD parallel to it.

By the last Article the moment of

AP about = the moment of AC about

0, and the moment of AQ = the

moment of AD
;
therefore the sum of

the moments of AP and AQ about

= the sum of the moments of AC and

9I
AD about = the moment of the sum
of AC and AD (since AC and AD are

forces acting in the same line) ; but, by equal triangles AC is

evidently = DR ; therefore the sum of the moments = the

moment of AR = the moment of the resultant. Q. E. D.

The student will find no difficulty in considering the case in

which is between AP and AQ, observing that in this case

their moments are opposed, and that in the new figure AR will

be equal to .10 -^
Of course it follows that the sum of the moments (with their

proper signs) of any number of co-planar forces with respect to

any point in their plane is equal to the moment of their resultant

with respect to this point ; for the forces may be replaced in

pairs by their resultants, &c. It also follows that the sum of

the moments of the forces about any point on the line of action

of the resultant is equal to zero.

77.] Varignon's Theorem of Moments for Parallel

Forces. The sum of the moments of two parallel forces about
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any point is equal to the moment of their resultant about the

Let the forces be P and Q (fig. 92), and let be the point

about which moments are to be PA
taken. From let fall perpendicu-
lars OA, OB, and OG on the lines of

action of P, Q, and their resultant, It,

and let the forces be applied at the

points A, B, and G, respectively.

Then, moment of FiS- 9 2 -

P about = P.OA = P (OG+ GA) j

and moment of
,

Q about = Q . OB - Q (OG- GB) ;

therefore, by addition, the sum of the moments = (P+ QJ . OG
+P.GA-Q.GB. But P. (L4 = Q . #

; therefore the sum of

the moments = (P+ Q).OG = R. OG.

A similiar proof holds when P and Q act in opposite directions,

and also when is between the lines of action of P and Q.

It follows that the sum of the moments (with their proper signs)

of any number of co-planar parallelforces with respect to a point in

their plane is equal to the moment of their resultant with respect to

the point.

78.] Centre of Parallel Forces. Theorem. If any number of

parallel forces, P15 P2 ,
P

3 ,
... Pn ,

act in one plane at points Alt

A2 ,
A3 ,

... An) their resultant passes through a fixedpoint if all the

forces are turned in the same sense round their points of application

through an arbitrary but common angle.

The point, g^ (fig. 93), of application of the resultant of Pl

and P
2

has been determined

(Art. 69) by dividing the line

A
1
A2 so that

on the supposition that the forces

P
1
and P

2 are parallel, but no as-

sumption has been made as to

their common direction. Hence

ff-L
will be a point on their re-

sultant in whatever direction they act, and the force at this

point is P
l -f P2

. The point of application of the resultant of



96 COMPOSITION AND RESOLUTION OF FORCES. [79-

P
lt
P

2 ,
and P

3 ,
is determined by joining g^ to A

3 ,
and dividing

it in &, so that

ft ft force at Az P3

force at ft j

and the force at ft is P1 -|-P2 + P3 . Similarly, the point of

application of the resultant of Pls P2 ,
P3 ,

and P4 is a point, G,

on ft ^4, such that

and the force at G =
We thus see that the point, G, of application of the resultant

of the system is determined by dividing the lines g^Az , g^A^ ...

in certain ratios which depend simply on the magnitudes, and

not on the directions, of the forces at Alt A2 ,
A3 ,

. . . . The theorem

is, therefore, evident.

Of course no one point on the line of action of a force which

acts on an indeformable body has a special right to be called the

point of application of the force
; nevertheless, we shall speak of

the point, G, as the point of application of the resultant force,

since, as we have seen, it is a point through which the resultant

of forces equal to P15
P2 ,

... always passes, whatever be the

common direction of these forces.

The theorem of this article is true also in the case in which

neither the parallel forces nor their fixed points of application lie

in the same plane.

Aa 79.] Centre of Mean Position.

Let there be any number of points,

A
\>-

Av ^
3 > (% 94), in one

plane, and let the line, .A^A2 ,
be

divided at g^ so thatJ?
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It is required to express the distance of G from an arbitrary

line, Jv, in the plane of the points in terms of the distances, z
l ,

z2 ,
z
3 , ... of A19 A2 , AS, ... from this line*.

Draw A^mn parallel to L. Then

h

^ = --r^r(*2-*i)-

But the distance of gl from L is equal to

m* . .
y/*j

z
l +gl

m=zl+ (^2-%) =

Calling this distance z
lt we have the distance of g2

from L

equal to
/^

4. m
I

; /*n2

tyy*

since ^^3 is divided at ^2 in the ratio-- Continuing the
m^-\-m^

application of this method, we have evidently

... +mn

z being the distance of G from L.

This equation is generally written in the form

in which 2 denotes a summation.

The point G thus arrived at is called The Centre of Mean

Position of the given pointsfor the system of multiples %, m2) m^
....
The points A19 A^ A

3 ,
... remaining the same^ and the system

of multiples being altered to jpj, j02 , _p3 ,
... the point G arrived at

would, of course, be different. The distance of the new point
would be

In particular, the distance, z
9
of the centre of parallel forces

from any plane is given by the equation

* All this holds if the points A l} A 2) ... are not in the same plane and L re-

presents any plane from which their distances are measured.

H
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EXAMPLES.

1. The centre of mean position of three points, A, B, C, for a

system of equal multiples, is the intersection of the bisectors of the

sides of the triangle ABC drawn from the opposite angles.

2. The centre of mean position of three points, A, B, 0, for a

system of multiples sin 2 A, sin 2 B, sin 2 C, is the centre of the circle

circumscribed about the triangle ABC.

3. The sides of the triangle being a, 6, c, the centre of mean

position of A, B, C, for the system of multiples a, b, c, is the centre

of the inscribed circle.

4. For the system of multiples tan .4, tan I?, tan (7, the centre of

mean position is the intersection of perpendiculars.

The construction given in this Article for the Centre of Mean
Position of the points A19 A2 ,

A
3 ,

... is of course the same when
the points do not all lie in one plane. In the latter case it is

easily seen that if zlt z29 z3 , ... denote the distances of the points
from an arbitrary plane, the distance, z, of the centre of mean

position from this plane, for the system of multiples m-^ m2) m3 ,

. . .
,
is given by the equation

2mz
''

^m '

Centre of Mean Position is a generic term which comprises
under it particular points which must be specially noticed. One,
the Centre of Parallel Forces, has been already mentioned.

Another is the Centre of Mass, called also the Centre of Inertia..

If at the points considered, A19 A2) A
3 ,... there be placed

material particles whose masses are respectively %, m
2 ,
m3 ,

...

and we find the centre of mean position of these points for the

system of multiples mlf m2 ,
m

3 ,
. . . we shall arrive at the Centre of

Mass of this system of particles. Nothing is here assumed

about the closeness of the points Alt A2 ,
A

3 , ..., or the particles

placed at them, and the process of arriving at the point G will

be unaltered if these particles constitute a continuous body.
Hence the Centre of Mass of any body is the Centre of Mean
Position of all the points within it for a system of multiples pro-

portional to the masses of the particles placed at these points re-

spectively.

A. body whose points do not suffer any relative changes of

position will therefore continue to possess the same centre of

mass no matter into what part of the universe the body may be
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taken. A different arrangement of its particles, would, of

course, in general alter its centre of mass. The centre of mass
of a rigid body is, then, something which it possesses absolutely,
or apart from all contingency of position in space or relation to

other bodies.

The distance of this point from any plane is given by the

equation last written, in which the sign 2 is to be replaced by
the integral sign f, and the element of mass at a distance z from
the plane denoted by dm. Thus.

_ _ fzdm~
fdm

Again, if at the points Alt AZ9 A3 , ... there be placed particles
whose weights are w^ ,

w2) wS) ... these weights constituting a

system of parallel forces, the centre of these parallel forces is

called the Centre of Gravity of the given particles.

The effect of altering the position of the body in the most

general manner possible is merely to turn the forces, wl9 w2 ,
w

3 ,

... round their fixed points of application,^, A2 ,
... through the

same angle, and by the last article we see that the resultant of

the weights of the particles will, in all positions of the body,

pass through a fixed point, G, in the body. The resultant of

all the elementary weights is equal to their sum, and is called

the weight of the body. We may, therefore, define the centre of

gravity of a body thus The centre of gravity of a body is that

unique point in it through which passes, in all possible positions of
the body, the resultant of the system ofparallel forces formed by the

weights of the indefinitely great number of indefinitely small

particles into which the body can be divided.

The centre of gravity of a body is,, then, the centre of the

particular set of parallel forces which act on its various elements

in virtue of the attraction of the Earth. The existence of such

a point depends on the parallelism of the forces produced by the

Earth on the elements of the body, and this parallelism, again,

depends on the minuteness of the volume of the body in com-

parison with that of the Earth. If the body were carried to the

surface of the Sun, or any other such large attracting mass, the

individual weights of its elementary portions, and therefore its

total weight, would be greater than they are at the Earth's

surface, but the position of the centre of gravity in the body
would remain the same. On the other hand, if the dimensions

H 2
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of the body were comparable with those of the attracting mass,

the forces of attraction on its elementary portions would not be

a parallel system, and the resultant attraction would not, in

general, pass through any fixed point in the body independently

of the relative positions of the two masses. The term weight of

a body is used to signify the resultant attraction produced on the

body by the Earth, or other planet, on whose surface the body

exists, and it is therefore, unlike mass, a mere contingent

property of the body; and the centre of gravity is essentially

distinguished from the centre of mass
; although, since weight

and mass are always proportional, when the first point exists, it

coincides with the second.

In considering the equilibrium of a rigid heavy body we represent

its weight as a single force acting vertically through its centre of

80.] Conditions of Equilibrium of a Rigid Body acted on

by Forces in One Plane. 1. Let the forces be parallel. Take

any point, 0, and draw through it a right line, Oy, parallel to

the forces (fig. 95). At introduce two forces, P/ and P/',

each equal to P19 these new forces being directly opposed to each

other along Oy. Now, P/ and P
x

"

form a couple whose moment is

PI .flit
ifPi is the perpendicular from

on the line A
1
P

x . Introducing, in

the same way, two forces, P2

'
and

P2", equal to P2 , directly opposite to

each other along Oy, we have P2 at

A2 replaced by a force P2

"
acting at

along Oy' and a couple whose

moment is P2 .j)2 , p2 being the

perpendicular from on the line A2P2 . The sign is attached

to this couple because the couple (P/, P2)
tends to produce

rotation in a sense opposite to that in which the couple

(P/', P2 )
tends to produce rotation.

Proceeding in this way with all the forces in the above figure,

we have the whole system of forces at A19 A2) AS) A^ ... equiva-
lent to a single force,

P1-P2+P3
-P4 +,..,

acting at in the direction Oy, and a couple,

95-
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tending to turn the body round in a sense opposite to that

of watch-hand rotation.

In general, denoting the resultant force by 7?, and the

moment of the resultant couple by G, we have

R = ZP, (I)

Now, by Theorem VI, of Art. 74, a couple and a force in the

same plane are equivalent to a single force, and cannot, there-

fore, conjointly produce equilibrium. Hence, for equilibrium,
the force and the couple must vanish; or

2P = 0, (3)

and 2(P.j?) = 0; (4)

that is to say, for the equilibrium* of a system of coplanar

parallel forces acting on a body

(a) The sum offerees must = 0, and

(b) The sum of the moments of the forces about every point in

their plane must = 0.

2. Let the forces act in any directions.

Take any point whatever, 0, (fig. 96), in the plane of the

forces. At introduce two opposite forces, P and P/', each

equal and parallel to Pv Let

Pj and PJ" be considered as

forming a couple. Then Pl at

A
l

is equivalent to Pl acting
at 0, and a couple whose mo-
ment = P

1 . pv Replace P2 at

A
2
in the same way by P2

"
(or

P
2 ) acting at 0, and a couple

(P2 , P/) whose moment is

P
2 .j 2 . Thus the whole Fig. 96.

system of forces will be re-

placed by forces, P15 P2 ,
P

3 , P4 ,..., acting at 0, and a number

of couples whose moments are P1 .jt?1,P2 .jo2 , Pz-P^PfPi)
... (the forces acting as in the above figure). The forces acting

at will have a single resultant, R, and the couples will form a

* The attention of the student is particularly directed to the remark at the

end of this chapter.
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single couple whose moment, G, is (Theor.VIII, Art. 74) the sum

of the moments of the couples. For equilibrium it is necessary

that each of these should vanish. Hence, for the equilibrium
*

of a body acted on by coplanar forces

(a) The resultant which the forces would have if they all acted

together at a point, each in the direction in which it acts on the

given body, must = ; and

(b) The sum of the moments of the forces round every point in

their plane must = 0.

The first of these conditions asserts that there must be no

force in any direction ; and the second that there must be no

moment round any point. Thus, the conditions of equilibrium

of a rigid body embrace the condition (a) of the equilibrium
of a particle (Art. 24, p. 21); and (b) a condition distinctive

of the susceptibility of a body of finite extension to receive a

motion of rotation.

It is to be observed, then, that a system of coplanar forces

acting on a body can be reduced to a single resultant force, R,

acting at any arbitrary point, 0, in the plane of the forces, and

a couple, G, also in this plane ;
and that whatever point, 0, is

chosen, the force R is constant in magnitude and direction,

while the magnitude of the couple G varies with the point
chosen. The force R is called the Resultant of Translation.

81.] Analytical Conditions of Equilibrium. Through any

point, 0, draw two rectangular lines,

Ox and Oy, and resolve the force, Pl ,

acting at A
,
into two components^

X
1
and Y

19 parallel to Ox and Oy.

Now (Art. 76) the moment of Pl

about is equal to the sum of the

_. * moments of X, and Y, about 0.
Fig. 97.

But if rotation opposite to that of a

watch-hand is considered positive, the moment of Y
l about

is Ylt x^ and the moment of X is Y1 .^l ,
where x^ and y^

are the co-ordinates of A referred to the axes Ox and Oy.
Hence the moment of P about is

* See remark at the end of this chapter.
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Adding together the moments of P1? P2 , ...
,
we get the total

moment
G = S(7*-Xy). (1)

If the sum of the components of the forces along Ox is

denoted by 2Jf, and the sum of the components along Oy by
SJ", the resultant of the forces acting at (fig. 96) is given by
the equation

^ 2 = (2JT)
2
+(2r)

2
. (2)

Now, since for equilibrium we must have R 0, and = 0,

the conditions, analytically expressed, are

2X= 0,27=0, (3)

2 (Yx-Xy) = 0. (4)

These equations are the expressions of the conditions of

Art. 80.

82.] Equation of the Resultant. We have seen (Art. 80),

that a system of coplanar forces is equivalent to a single force,

R> acting at any arbitrary origin, together with a couple, G.

The direction and magnitude of the resultant force, R, will be

the same whatever origin may be chosen, but the couple will

vary with the origin. Now, supposing that the resultant of
the forces does not vanish, the couple and the force R can

(Theorem VI, Art. 74) be replaced by a single force equal to

R
;
and the sum of the moments of the forces about any point

on its line of action is equal to zero (Art. 76).

Let
(a, /3)

be the co-ordinates of any point referred to rect-

angular axes through an arbitrary origin, (fig. 97). Then the

moment of the force, P19 about this point, is evidently

Taking the sum of the moments of all the forces about the

point, we have
G'= 0-aSr+0SX, (1)

G' being the sum of the moments about the point (a, jB).

Since, for any point on the resultant G' 0, the equation of

its line of action is

a27-/32X = G.

Equation (1) gives at once the following result The sum

of the moments of a system of coplanar forces about any point, 0,

is equal to the sum of their moments about any other point , (7, plus
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the moment about of their resultant of translation supposed acting

at a.

83.] Force Polygon and Funicular Polygon. Let there be

any system offerees, P15 P2 , P3 ,
P4 ,

P55 (fig. 98) acting in one

Fig. 98.

plane on a body. Starting with any point, 01, draw lines,

(01, 12), (12, 23), (23, 34), (34, 45), (45, 56), parallel to the

lines of action of the forces and respectively proportional to

them. The figure formed by these lines, (01, 12), (12, 23), ... ,

is called the Force Polygon of the given system of forces. Now
take any point, 0, and from it draw lines, 001, 012, 023,..., to

the vertices of the force polygon. From any point, J\ ,
on the line

of action ofPx draw two lines,fifQ and^yj > parallel to the lines
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001 and 012; from the point/2 in which/i/2 meets P
2 , draw

/2 /s parallel to 023 and meeting P3 in/3 ; from/3 draw/3 /4

parallel to 34 ; and so on.

The system of lines / / /2 /3 /4 /5 /6 parallel to the radii

drawn to the vertices of the foree polygon from any point, 0, is

called a Funicular Polygon of the given system of forces.

The point the radii from which to the vertices of the force

polygon determine the funicular is called the Pole corresponding
to the funicular.

Let any other pole, O7

,
be chosen, and from an arbitrary

point,//, on P
15 let///,' and//// be drawn parallel to O'Ol and

0'12, respectively; and let a new funicular, ////...//, be

constructed.

Then the sides (such as/2/3 and////) of these polygons which
reach between the lines of action of the same two forces are

called corresponding sides.

Since the point/ may be taken anywhere on Px it is clear

that for a given pole, 0, we may construct an infinite number of

funiculars of the system,, but the corresponding sides of them are

of course parallel. If the force at each vertex of a funicular of

the system is resolved into two components directed along the

two sides of the funicular which meet at this vertex, the

components at the extremities of each side of the funicular are

equal and opposite. For, suppose P3
resolved into two compo-

nents in/3 /2 and/3/4 ;
^en these components are represented

by the lines 23 Oand 034; also ifP2 is resolved into components
in /2 /3 and/2 /15

these will be represented by 023 and 120,

respectively ; thus the components in the side/2/3 are equal and

opposite.

84.] Theorem. The corresponding sides ofany twofuniculars ofa

given system offorces intersect on a right line> which is parallel to

that joining the poles of the twofuniculars.
At the points /2

and // let two equal forces (each P2)
be

applied in opposite senses along the line /2 //; suppose
them to act away from both of these points, as P2 is represented

in fig. 98. Considered as acting on a rigid body, these forces

are in equilibrium. Now let P2 at/2 be resolved into its com-

ponents along /2 /x
and /2/3 . These components will be re-

presented in magnitudes and senses by 012 and 230, respectively.

Similarly, resolve P2 at// along//// and////; and these
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components will be represented by 12 0' and 0' 23. These four

components are therefore in equilibrium. Take the sum of their

moments about the point of intersection of the lines// and

///'. Then, since this sum is zero, it follows that the resultant

of the two components (012 and 120') in the lines /2/ and

// /' must pass through the point of intersection of / /3

and // /3

'

;
but it also passes through the point of intersec-

tion of/g/! and////; therefore its line of action is the line

joining these two intersections. Now this line of action is

parallel to the line 00'; for, two forces represented by 012
and 120' give a resultant represented by 00" in magnitude
and sense.

Hence the corresponding sides// and///',/ /s and/'//
intersect on a line parallel to 0(7; similarly the sides/2/ and

/2'/3', /.A and/'// intersect on a line parallel to 0(/, which,

of course, must be the same line as before. This line is LM in

the figure.

85.] Problem. Given onefunicular of a given system of coplanar

forces^ to construct allfuniculars of the system.

Let the given funicular be/ /i/ /3
Draw any line LM

in the plane of the forces ; produce the sides, / /,//2 ,
. ..

,
of

the given funicular to meet LM ;
from the point of intersection

of LM and/ / draw the arbitrary line///', which meets P
1
in

/'; join /"to the point of intersection of LM and//; this

joining line will meet P2 in//, which is the second vertex of the

new funicular
; join // to the point of intersection of LM and

//; this will give//; and so on. Hence a new funicular is

formed, and since the lines LM and////were drawn at random,

an infinite number of funiculars of the system can be described

in this way.

86.] Problem. To construct the resultant of a given system of

coplanarforces.

On any scale construct a force polygon 01, 12, 23, ...of the

given system ;
then the line of action of the resultant must be

parallel to the side (01, 56) which closes the force polygon.

Take any pole, 0, and construct a funicular///2 . . .
,
of the

system. Then the resultant must pass through the point of

intersection of the extreme sides,/Q/ and/5 /6 ,
of the funicular.

For, by resolving each force into components along the two
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sides of the funicular which start from the vertex at which the

force may be supposed to act, these components will be mutually

destroyed, with the exception of those in the extreme sides, fQ f
andf&fQ

. Hence the whole system of forces is equivalent to two

forces acting in these sides, and represented in magnitudes on

the scale adopted by the lines 001 and 056. The line of action

of the resultant therefore passes through the intersection of the

extreme sides and is parallel to the line joining 01 to 56, and

the magnitude is represented by the length of this joining line,

its sense being of course from 01 to 56.

COR. 1. Whatever be the path described by the pole, the

point of intersection of the extreme sides of the funicular

describes a fixed right line. This is the line of action of the

resultant of the given system of forces.

COR. 2. The point of intersection of any two sides of a

funicular describes a fixed right line, when the pole varies in any
manner. Thus the sidesf^f^ and/^^ will always intersect on

the line of action of the resultant of the forces P2 ,
P

3 ,
P4 .

87.] Graphic Conditions of Equilibrium. When a system of

coplanar forces acting on a rigid body is in equilibrium, the

forces when compounded two and two must finally reduce to two

equal forces of opposite senses acting in the same right line.

Since the resultant is proportional to the line required to close

the force polygon, this line must be zero; hence the force

polygon of the system must close up of itself. Again, since the

system is finally reducible to two forces acting in the first

and last sides, ff^ and^y^, of any funicular, these sides

must coincide
; or, in other words, the funicular must be

closed.

Hence the conditions of equilibrium are

1. The Force Polygon of the system must be closed.

2. Any Funicular Polygon of the system must be closed.

COR. 1. If any one funicular of the system is closed, every
funicular of the system is closed.

COR. 2. If the system is equivalent to a couple, the force

polygon is closed, and the first and last sides of all funiculars

are parallel.
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88.] Problem. To represent the moment of aforce about a point.

Let it be required to repre-

sent the magnitude of the

moment of a force P about a

point (fig. 99). Draw ab

parallel to P and representing

it on any scale.

Let o be a point taken at a

unit distance from ab ; draw oa

and ob. Assume any point, Q,

on the line of action of P, and

draw QM and QL parallel to

oa and od, respectively. From
draw a line, I/M, parallel to

P. Then the length LM
represents the moment of P

about 0. For, the triangles oab and QML are similiar ; therefore

ifp is the length of the perpendicular from Q, on LM
9
we have

= > therefore LM= P .p ,
since ab represents P.

Hence LM is the moment on the scale adopted.

If the pole o is at a distance k units from ab
}
we shall have

Fig. 99.

89.] Problem. To represent the sum of the moments of any system

of coplanarforces about a point.

Let A (fig. 98) be the point about which the sum of the

moments of the forces is required.

The sum of their moments = the moment of their resultant

about the point. Let this resultant be constructed by Art. 86,

and let the moment of the resultant be constructed by last Art.

Now the resultant is represented by the line joining 01 to 56

(fig. 98), and if is a pole assumed at any distance, ,
from this

line, we are to draw from any point on the resultant, two lines

parallel to 001 and 056, and through A a line parallel to the

resultant, R.

Now the extreme sides,f$fi andj^jfg, of the funicular intersect

in a point on R, and are parallel to the lines 01 and 056. Hence

the intercept made by the extreme sides of the funicular on a line

drawn through the given point A parallel to the resultant will

represent the sum of the moments of theforces about the point.
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This intercept multiplied by k will be the sum of moments.

90.] Property of Perspective Triangles. Two triangles, ABC
and A'B'C', are said to be in perspective when their vertices can

be joined in pairs by three right lines which meet in a point. If

the lines joining A to A', B to B\ and C to Cf meet in a point,

A and A are called corresponding vertices, as are also B and B',

C and C' ; and the sides, AB and A'B', &c., which join corre-

sponding vertices in the triangles are called corresponding sides.

The fundamental property of triangles in perspective is that

the points of intersection of corresponding sides lie in one right line.

To prove this projective property it is sufficient to prove it for

the simplest figure into which the two triangles can be projected.

Let the line CC' be projected to infinity. Then AA' and BB"
will become parallel lines ; also the sides AC and BC of the first

triangle will become parallel, as will A'C' and ffC' of the second.

For the simple figure thus obtained there is no difficulty in

proving the proposition.

To construct a triangle whose three sides shall pass each through
a given point, and whose three vertices shall each lie on one of three

concurrent lines.

Let it be required to construct a

triangle whose vertices, A, B, C, shall

lie on three concurrent lines, AO, BO,
CO, and whose sides shall pass through
the points a, 6, c, (fig. 100). Suppose
it done, and let ABC be the triangle.

Take any point, C, on CO, and draw

C'a and C'b meeting BO and AO in 1?

and A respectively.

Then the triangles ABC and A'B'C*

are in perspective, therefore the sides

AB and A'I? intersect in P, a point on j^ I00 .

the line ab. Hence P is known, since

it is the intersection of ab with the line AB' which is con-

structed by arbitrarily assuming Cf
. P being known, join it

to c, and the vertices A and B are determined, and C follows at

once. Q. E. F.

NOTE. In Art. 88 if the unit of force is CT and the unit of length
7

A, the moment of the force P about will be LMx -or x 7* For db

p A
will obviously be A.
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EXAMPLES.

1. A heavy rod, or beam, is supported horizontally on two smooth

props at its extremities, and loaded with given weights at given points
in its length ;

find the pressure on the props.

Suppose the line a a
5 (fig. 34, p. 38) to be horizontal and to

represent the loaded beam, the loads, Plt P2 ,
... (including its weight

among them) being applied at the points, d
1} d2 , ..., and let the

pressures at the props and a
5
be P and P

5
. Starting from any

point 01 draw a vertical downward line to represent on any scale the

force Plt
and let this line terminate at the point 12

;
from 12 draw a

vertical downward line representing P2
on the same scale, and let this

line terminate at the point 23
;
from this point draw a vertical down-

ward line to the point 34 to represent P3 ;
from 34 draw a vertical

downward line to the point 45 to represent P4 .

Then from 34 we must draw a vertical upward line to represent
the pressure P6 ,

and this line will terminate at the point 56, which,

however, is at present unknown. The pressure PQ will, of course, be

represented by the upward line between 56 and 01.

To determine 56, assume any pole, 0, and join this pole to the

points 01, 12, ... . Across the lines of action of the forces acting on the

beam draw the lines A
A^ )

A
1
A

2) ... parallel to the lines 001, 012, ...
,

and draw the closing line, A A
6 ,

of the funicular polygon. Then
the line through parallel to this closing line is that joining to the

required point, 56.

2. A beam is supported horizontally at its extremities on two
vertical props and loaded with given weights at given points in its

length ;
it is required to represent the Sending Moment at any point

of the beam.

Def. When a beam is in equilibrium under the action of any forces,

the Bending Moment at any point means the sum (with their proper

signs) of the moments about this point of all those forces which act at

one side (either side will do) of the point.

Suppose a
Q
a
5 (fig. 34, p. 38) to represent the beam, as in last ex-

ample, and let P be the point about which the leading moment is

required. The pressure on the prop a being PQ ,
the bending moment

at P is the sum of the moments of P
,
P

lt and P2 ;
and if we con-

struct any funicular of the system this moment will, by Art. 89, be

the intercept on a vertical line through P made by the extreme sides

of the funicular of the forces P
Q ,
P

l ,
and P

2
. But these extreme sides

are obviously A
Q
A

5
and A 2

A
S

. Hence the bending moment at any
point P is represented by the vertical ordinate, mn, drawn through P,
of any funicular polygon of the system.

Of course, if k is the distance of the pole of the assumed funicular

from the vertical line which serves as the force diagram, the bending
iy

moment will be mn x k X -r (See Note, p. 109.)

3. To construct for any system of coplanar forces a funicular

polygon which shall pass through three assigned points.
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EXAMPLES. Ill

Let the given system of forces beP1}
P

2 ,
P

3 ,
P

4 ,
P

5 (fig. 98, p. 104),
and let it be required to construct a funicular polygon which shall pass

through the points D, E, F.

Consider the triangle formed by the sides, / /x , /2 /3 ,
andf5 /6 ,

of the

funicular which pass through the three given points.
The vertex formed by the intersection off /x

and /2 /3
lies on a given

line, P12 , (not drawn in figure) which is the resultant of P
x
and P

2

(Cor. 2, Art. 86); the vertex formed by the intersection of /2 /3
and

/g/6 lies on a given line, P346 ,
which is the resultant of P

3 ,
P4 ,

and P
5 ;

and the vertex formed by the intersection of / /r
and /5 /6

lies on a

given line, ^12345 ,
which is the resultant of P19 P2 ,

P
3 ,
P

4 ,
and P

5
.

Moreover the three lines P
12 ,
P

345 ,
and P

12345 obviously meet in a

point ;
for the resultant of P

lf
... P

5 may, if we please, be constructed

by first finding the resultant of P15 P2 ,
and then finding the resultant

ofP
3,P4,P5

.

Hence the triangle formed by the sides of the funicular which are

to pass through the assigned points is one whose vertices lie on three

concurrent lines and whose sides pass each through a fixed point.
Let this triangle be constructed by Art. 90. Then knowing the force

diagram of the forces and drawing two lines, 01 and 230 say, parallel
to the two sides / /j and /2 /3 ,

the pole is known, and thence the

whole figure.

4. Construct a funicular polygon which shall pass through three

given points, two of which lie on one side of the polygon.

Ans. This side of the polygon is known, and it intersects the side

passing through the remaining point in a point lying on a given line.

Hence the side passing through the remaining point is known, and
hence the pole of the funicular.

5. For a given system of vertical downward forces, Plt P2 ,
... Pn_1?

equilibrated by two extreme vertical upward forces, P ,
Pw ,

let any
funicular polygon be constructed. Prove that the area of this

C
polygon= 5 where C is constant and k the distance of its pole from

k/

the vertical line which is the force diagram of the forces.

(The value of C is obtained by multiplying each force of the system

by half the product of the distances between its line of action and the

lines of action of the extreme forces, and adding all such products

together, and multiplying the result by
- See Note, p. 109.)

6. A uniform beam is supported at its extremities on two vertical

props ;
find the bending moment at any point in it.

Ans. If y is the distance of the point from one extremity, the

bending moment is W ^ '
where W is the weight of the beam.

2 '

7. In the last example, what is the curve of bending moment 1

Ans. A parabola passing through the ends of the beam, its vertex

lying on the vertical line through the middle of the beam at a distance
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- from the beam. (The bending moment at any point is the product
o

of W and the vertical distance of the point from the parabola.)

91.] Astatic Equilibrium. When any number of forces, P1}

P2 ,..., acting at points, A19 A^ ... ,
in a body keep this body in

equilibrium, these forces will not, in general, continue to

preserve equilibrium when the body is displaced in any manner,

each force still retaining its magnitude, direction, and point of

application in the body. If for all displacements of the body the

forces continue to preserve equilibrium, the body is said to be in

astatic equilibrium.

The simplest example of astatic equilibrium is furnished by a

heavy body suspended by a vertical string attached at its centre

of gravity. Here the system of forces consists of the weights
of the particles of the body and the tension of the string ; and

however the body may be displaced about its centre of gravity,
all these forces will retain their individual magnitudes, direc-

tions, and points of application, and the body will remain at rest.

Again, a system of two equal reversed magnets rigidly con-

nected by an axis through their centres is astatic for displace-

ments round this axis.

When a system of forces applied to a body is not in equi-

librium, it happens that in certain cases this system can be

astatically equilibrated by a single applied force ; i. e., in all

displacements which the body can receive, each force acting on

it with invariable magnitude, direction, and point of application,
it may be possible to equilibrate the system by one force of

constant magnitude, direction, and point of application.
It is evident that this is always the case for a system of

parallel forces. A single force equal and opposite to their re-

sultant, applied at their centre, will astatically equilibrate them.
Into the general discussion of astatic equilibrium we do not

enter *. Suffice it to say that a system of (non-coplanar) forces

must in general be astatically equilibrated by three forces
; and

if the forces are all parallel to one plane, by two. When (as in

the present chapter) the forces are all coplanar we shall prove

* On this subject the student may consult Moigno's Statique (Dixieme Le9on),
a memoir by M. Darboux (sur ISEquilibre Astatique), and a paper by the author in
the Proceedings of the London Mathematical Society (vol. ix).
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that for displacements of their points of application in their plane,
the system can be astatically equilibrated by a single force.

In this case it is clear that instead of considering the body to

which they are applied as displaced, we may consider the body
fixed and each force rotated in a fixed sense round its point
of application through a constant angle a motion of translation

of the body or points having obviously no effect on the system
of forces.

We shall now prove that if all the forces in a coplanar system
are rotated in the same sense, through the same angle, in their

plane, round their points of application, their resultant (unaltered
in magnitude, of course) passes through a fixed point in the body.

Let two forces, P and Q, act at two fixed points, A and B,

(fig. 101) in the directions OA and OB, being the point of

intersection of their lines of action; and let the forces be turned

in the same sense round A and B through the same angle, so

that the point of intersection of their new
lines of action is (7. Now, since LOACt

' =
/.OB(y, a circle described through A, B,
and will pass through (/, and the angle

AC/B, between P and Q when they are

turned round, is equal to the original angle,

AOBj between them. Also, the forces being
unaltered in magnitude, it follows that the

angles which the resultant at (/ makes

with them are the same as the angles
which it makes with P and Q at 0. If, then, OC is the

direction of the resultant at 0, (JC must be the direction of this

resultant at (7. Hence, the resultant of P and Q passes through
the fixed point C. In exactly the same way it is proved that

the resultant of three forces passes through a fixed point when

the forces are turned round their fixed points of application

through a constant angle ; and so on for any number of forces.

This point may be called the astatic centre of the system of

forces*.

3 92.] To find the Astatic Centre of a System of Coplanar

Forces. Taking an arbitrary origin and arbitrary axes, the

* Of course it is understood throughout this discussion and in the examples
at the end of this chapter that the displacements of the body or forces are always

supposed to take place in the plane of the forces.

I
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point required lies on the resultant whose equation is (Art. 82)

a2r-/32J- = 0, (1)

(a, (3) being the running co-ordinates.

Now, if the force P15 acting at the point (#1? y^) is turned

round in the plane of xy through an angle co, Xl
becomes Pl cos

(01 + co),
where 6l is the original angle made with the axis of x

by Px ,
or X1

cos co Y
l
sin co

;
Y

l
becomes X

l
sin co + Yl cos o>

;
and

YI&I X\y\ becomes (I^ X\y\) cos co + (Zj x^ + Y\y\) sin co.

Hence, 2X becomes cosco.SX sin co.27, \

2F sin co.2X+ cos co. 2 7, ( (A)
G G cos co -j- T sin co, )

where F=2 (Is+I*.
The equation of the new resultant is, therefore,

(a2r-2X-)cosco + (a2X+2r-r)smco = 0, (2)

and the astatic centre of the system of forces is the intersection

of the lines given by equations (1) and (2). This point may
evidently be determined by (l) and by the equation

a2X+/32r-r= 0. (3)

Hence for the co-ordinates of the astatic centre we have

T2X+
V

If the astatic centre were the origin, a and ft would be each = 0.,

and G would = 0, since the point is on the resultant (Art. 76).
Hence for the centre of the forces we have

= 0, r=0. (5)

If the co-ordinates of A, the point of

application of a force, P (fig. 102), with

respect to rectangular axes, Ox and Oy, are

x and y, the quantity Xx+ Yy is equal to

~M x P (x cos 0+y sin
0), being the angle

which P makes with Ox. Now if OM is

Fig. 102.
Xj and AM is y, it is evident that x cos 6

+y sin 6 = AN, N being the foot of the

perpendicular from on the line of action of P. Denoting AN
by q, we have, then, for the Virial

* This quantity is called by Clausius the Virial of the forces.
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Hence, if'any number of coplanar forces be turned each round a

fixed point of application through an arbitrary but common angle,

there exists a point in the plane of the forces such that both the

Virial and the sum of the moments of theforces about it
t
continue to

vanishfor all displacements.

It is easy to see that if AN be in the sense in which P acts,

the sign of the product Pq will be changed.
The value of F with respect to axes through a point (a, /3)

parallel to Ox and Oy is evidently 2{X(# a)-f Y(y /3)}, or

F a2Z /32Z. Hence the locus of points for which this

quantity = is given by equation (3), which denotes a right line

passing through the astatic centre, and evidently perpendicular
to the resultant.

93.] Theorem. If any number of coplanar forces are in equi-

librium, and if theforces be turned, each round a fixed point, in the

same sense through any common angle, the new system is equivalent

to a couple.

For, from equations (A) Art. 92, it appears that if 2X=
and 2T= before the rotation, they will = after it

;
hence the

new system has no resultant of translation, and it must, there-

fore, be a couple. Now, since by hypothesis (r=0, the axis of

the new couple is, by equations (A), equal to

F sin CD.

We see, then, that the system of forces will remain in equi-

librium, whatever be the angle through which they are turned, if

T= 0.

94.] Remark on the Conditions of Equilibrium. It must

be carefully borne in mind that the conditions of equilibrium

given in Arts. 80 and 81 are sufficient only in the case of in-

deformable bodies. For, having reduced a system of forces to a

resultant of translation, R, acting at an arbitrary point, together
with a couple of moment G, the logical conclusion is that

If R and G = 0, those motions of the system which would

be produced by R and G respectively are thereby destroyed.

Now by a fundamental principle of Kinetics, which we antici-

pate, ifR = there is no resultant linear momentum of the system
in any direction, or in other words its centre of mass is at rest ; and

if, in addition, G = 0, there is no resultant angular momentum
about the centre of mass of the system.

i a
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These two things we can conclude from the equations R = 0,

G for all systems, whether they are gases, liquids, deform -

able frameworks, natural solids, or rigid bodies.

Now the destruction of resultant linear and angular mo-

mentum will, except in the case of rigid bodies, be quite con-

sistent with the existence of motions of parts of the system

among themselves, negative momenta cancelling positive. Hence,

whenever a system is capable of altering the relative positions of its

parts, the complete equilibrium of the system will require more than

the vanishing of the resultants of translation and rotation of the

forces applied to it. In fact, its internal forces will have to be

taken into account. In rigid bodies the destruction of the

above-mentioned motions will necessitate the destruction of all

motion, and the conditions R = 0, G = are both necessary and

sufficient. In these bodies there is no restriction placed on the

internal forces, so that they are always capable of assuming such

magnitudes and directions as will enable them to destroy the

action of the external forces. On the contrary, in deformable

bodies, there are restrictions placed on the internal forces so that

they are not capable of preserving equilibrium against all

systems of external forces. For example, in a freely jointed

framework, the action between bar and bar must consist of a

single force restricted to passing through the joint. This is the

reason why two equal forces applied in opposite senses in the

same line to two opposite sides of a set of parallel rulers will not

hold them in equilibrium, unless the rulers are placed in a

certain configuration ;
and it is also the reason why two equal

and directly opposite forces applied to the ends of a string,

elastic or inelastic will not hold it in equilibrium until it has

assumed a certain state.

Hence also the necessity for considering the internal forces

(pressures) in Hydrostatics.
We shall afterwards enunciate a single principle,* or condition,

of equilibrium which will embrace all systems indiscriminately.

These observations are recommended to the most careful

consideration of the student.

* The Principle of Virtual Work.



94-] EXAMPLES. 117

EXAMPLES.

1. If the sums of the moments of any number of coplanar forces

round three points which are not in a right line are each = 0, the
forces are in equilibrium.

2. If the sums of the moments round three points not in a right
line are equal, the forces are either in equilibrium or equivalent to

a couple.

3. If the sum of the moments of a system of coplanar forces round
three given points are /, m, and n, and if the sides and angles of
the triangle formed by the points are a, b, c, A, B, C, show that the
resultant force is equal to

(I
2a2 + m? 6

2 + n2
c
2 2 Imab cos C-^ 2 mnbc cosA 2 nlca cosB)?

2A

where A is the area of the triangle ABC.

4. If a system of coplanar forces applied at fixed points is in

equilibrium, the co-ordinates of the astatic centre become indeterminate.

Explain this.

Ans. In this case the system must be astatically equilibrated by
two equal and opposite forces (couple).

5. In the last case show how to find an astatically equilibrating

couple for the system.

Ans. Take the astatic centre of any number of the forces, and
also the astatic centre of the remaining forces. These will be the

points of application of the forces of the required couple (whose
moment, of course, varies with the displacement of the body or forces),

and the forces of the couple are equal to the resultants of the two

partial sets.

6. Three forces are applied at the middle points of the sides of a

triangle, ABC, perpendicular to these sides and respectively propor-
tional to them

;
find a couple which will astatically equilibrate them.

Ans. A couple one of whose forces is applied at the middle

point of any one side, AB, and the other applied at the point of

intersection of a parallel to AB drawn through C with the perpen-
dicular to AB at its middle point.

7. When a system of coplanar forces in equilibrium continues in

equilibrium for all displacements in the plane of the forces, show that

the astatic centre of any number of them must be coincident with that

of the remainder.



CHAPTER VI.

THE CONDITIONS OF EQUILIBRIUM OF A RIGID BODY UNDER THE

ACTION OF FORCES IN ONE PLANE DEDUCED FROM THE PRINCIPLE

OF VIRTUAL WORK FOR A SINGLE PARTICLE.

95.] Theorem. If a particle in equilibrium under the action

of any forces be constrained to maintain a fixed distance from a

given fixed point, the force due to the constraint (if any) is

directed towards the fixed point.

Let B be the particle, and A the fixed point. Then the

string or rigid rod which connects B with A may be removed if

we enclose the particle in a smooth circular tube whose centre

is A\ for evidently the preservation of the constancy of the

distance AB receives sufficient expression in this manner. Now,
in order that B may be in equilibrium inside the tube, it is

necessary that the resultant of the forces acting upon it should

be normal to the tube, i. e., directed towards A.

COR. 1. If A and B be two particles in equilibrium, con-

nected by a rigid rod whose weight is neglected, the reactions of

A and B on the rod are two forces equal in magnitude and

opposite in direction.

COR. 2. If any body be in equilibrium under the action of two

forces only, these forces must be equal and opposite in the same

right line.

COR. 3. If a particle in equilibrium under the action of any
forces is constrained to maintain a fixed distance from each of a

number of other particles or points, the forces corresponding to

these constraints are directed in the right lines joining the

particle to each of the other particles or points.

This is evidently true whether the invariable distances are

maintained by straight rigid bars or by crooked bars.

96.] System of Particles Rigidly Connected. Let there be

any number of particles, %, m^ m
3 ,

... (fig. 103), each acted on

by any forces, and connected with the others in such a way that

the figure of the system is invariable.
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Then, by the last Article, the force proceeding from the

connection of m1 and m
2

is in the line % m
2 , which we may

Fig. 103.

imagine to be a rigid bar. Let this force be denoted by T12 .

Similarly, let the forces in the bars m
2 m3 and m

3 m1 be denoted

by 7^3 and T31 , respectively. These internal forces may tend

either to increase the distances between the particles or to

diminish them. In the figure we have supposed the latter to

be the case, but the result will be the same if the former sup-

position is made.

Imagine that the system is slightly displaced so as to

occupy the position abc. Now, it has been already proved

(Art. 65, p. 78) that the equation of virtual work for two

particles rigidly connected will not involve the force due to the

connection ; but, for clearness, we reproduce the proof here.

Let fall the perpendiculars aa
2
and aa

3
on the lines m1 m%

and ml
m

2 ;
6bt

and bb% ,
on m

2
mz and ml

m
2 ; cc^ and cc2 on m.2 m3

and %^3 . Let the sum of the virtual works of the external

forces (not including T
12 and T

ls) acting on % be denoted by

2P8/J, and let 2 Qbq and 272Sr denote similar quantities for m.2

and m3 . Then the equation of virtual work for m1
is evidently

= 0; (1)

that for m9 is

= 0, (2)

and that for m3
is

T^.m.c.-T^.m.^ = 0. (3)

Now (Art. 63, p. 77) ml
a
s
= % 3 ; % 2

= w
3
c2 ;

m
z ^ = m

3
"
r
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Hence, by addition, the internal forces disappear, and the

equation of virtual work for the whole system is

r = 0.

or 2(Pbp + Qbq + Rbr) = 0. (4)

The same result is evidently true, whatever he the number of

particles forming the system ;
and it is well to note Chat we

have been enabled to obtain equation (4) connecting the external

forces acting on the system, by choosing a virtual displacement

compatible with the geometrical conditions of the system, that is,

in the present case, a virtual displacement which allows the

mutual distances of the particles to remain unaltered
; or, again,

such a virtual displacement as might be an actual one; for the

system could actually occupy the position abc.

97.] Elimination of the Internal Forces of a System. By
the Internal Forces of a system it is already sufficiently clear

that we mean forces proceeding from the internal connections of

the parts of the system among themselves. Such forces are

directed from particle to particle, and will contribute nothing to

the equation of virtual work of the system, if in the virtual

displacement the distance between every two particles re-

mains the same as before.

It is evident that if the virtual displacement violates any

geometrical condition of the system, the corresponding internal

force will appear in the equation of virtual work. Thus, if in

fig. 103, the distance ab is not equal to the distance between m
l

and m^ we shall have by addition the term

or T12 . 6
(m-L

m
2),

where 8 (m l
m

2)
denotes the change or variation of the distance

between % and m2 .

And, generally, if any internal force, F9 tend to vary any
internal function,/

1

, in a system, this force will contribute to the

equation of virtual work of the system the term

F.SS,

so that if in the supposed displacement of the system, the

function f is actually altered, the force F will appear in the

equation, but will not appear if/" is unaltered.
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98.] General Equation of Virtual Work for Forces Acting
in One Plane on a Rigid Body*. If the particles m1 ,m.2 ,m3) ...

form a continuous body, on which, forces Plt P2 ,
P

3 ,... act in

one plane at different points A
L , A^ A^, .., of the system

(fig. 104),

Fig. 104.

the condition necessary and sufficient for tlie equilibrium of the

system is that the sum of the virtual works of the forces is equal to

zerofor any and every virtual displacement which violates none of

the geometrical conditions of the system.

For we have seen (Art. 61, p. 73) that the condition necessary

and sufficient for the equilibrium of any one particle
of the

system is the vanishing- of the virtual work of all the forces

acting upon it, the internal forces proceeding from its connection

with the other particles of the system being, of course, included,

as in equations (l), (2), (3) of Art. 96. Expressing thus the

conditions for the equilibrium of all particles of the system, and

adding the results, there remains for the condition of equilibrium
the equation

... = 0, (1)

into which no internal force enters.

Conversely, if the sum of the virtual works of the forces

* We formally confine the discussion for the present to Kigid Bodies, although
it is clear from last Article that what follows is applicable to systems such as

freely articulated bars which, without being rigid systems, satisfy certain geo-
metrical conditions that are not violated in the virtual displacement ;

and it is

equally clear that these conditions may be violated if we include in our equations
the work of internal forces.
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vanishes for every virtual displacement, the system is in equi-
librium.

For, if it is not, it will take a determinate motion, each point
of the system describing a certain line in virtue of its con-

nections with the other points. Now, this motion will be in no

way interfered with if we introduce new connections which

render it the only motion possible for the system. Under the

new circumstances it is clear that if we prevent the motion of

any one point, we prevent the motion of the system. Suppose
the motion of the point A to be stopped by the application of a

force, F, in the direction A'A, A being" the point to which A
moves. Now, equilibrium exists under the action of (a) the

given external forces, (/3)
the newly-introduced geometrical

connections, and (y) the force F\ hence the sum of the virtual

works of these forces for every displacement. Choose that

displacement which the system is supposed actually to undergo
when the force F is not applied at A. Now, by the last Article,

since none of the geometrical conditions
(/3)

are violated by this

displacement, the forces proceeding from them will do no work.

Hence the equation of work is

2Pb<p-F.AA' = 0,

where 2P6jfl denotes the virtual work of the given acting forces.

But, by hypothesis, 2P6^ = for every displacement, and there-

fore for this one; hence fl.AA'=0, i.e., either AA = 0, or

F = 0, either of which signifies that no motion of the system
takes place. Hence the system is in equilibrium.

In
fig. 104, alt azi 3 ,

... are supposed to be virtual positions

of the points of application of the forces Plf P2 ,
P3 ,

....

99.] Remarks on the Equation of Virtual Work. Equation

(I) of last Article, though strictly true in the case of forces

acting on a particle, is not so when these forces are applied at

points in a body of finite extension, or to a system of particles

connected in any manner. In fact, the internal forces of the

system have been eliminated from equations (l), (2), and (3) of

Art. 96, by assuming that m
1
a
3

m
2
b3
= 0. Now, we know

that this quantity is not strictly equal to zero, but equal to an

infinitesimal of the second order, if the angular displacement of

the line m^m^ is regarded as an infinitesimal of the first order.

It is more correct, therefore, to say that for the equilibrium of

a body the virtual work of the applied forces is an infinitesimal of
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Ike second order, if the greatest displacement in the system is re-

garded as an infinitesimal of the first order.

100.] General Displacement of a Rigid Body in One Plane.

Since the general condition of equilibrium of a rigid body re-

quires the vanishing of the virtual work of the acting forces for

every virtual displacement which could be an actual one, it is

evidently necessary to investigate all the kinds of displacement

which such a body could undergo. Now, evidently, the position

of a right line is known, if the positions of any two of its points

are known
;
and also the position of any body is known, if the

positions of any three * of its points which are not in directum

are known. Hence, to investigate the displacements to which a

rigid body may be subject, it is sufficient to determine the

general displacements of a system formed of three points.

In fig. 103 let such a system be m
l
m

2
m

3 ,
and let abc be any

displacement whatever of this system in its own plane. Then

it is clear that if we moved % into the position a, and then got
m

2 into the position b, the remaining point, m.^ would take up
the position c. This follows from Prop. VII of the first book of

Euclid. Now what is necessary to move the line m
l
m

2 into the

position ab ? Two things

(a) The point % must be moved up to a, by a simple motion

of translation ; and

(/3)
When this is done, the line m

l
m

2
must be rotated about

a so as to bring m2
into the position b. This second motion is

called a motion of rotation.

If we suppose that in the first motion (a) the line m^rn^ is

moved parallel to itself, while m^ is moved to a, the subsequent

motion of rotation which brings m
2
into the position b will be

a small one, the position abc being only slightly different from

m
1
m.2my
Hence If a rigid body receives any displacement parallel to a

fixed plane, it may be brought from its old into its new position

by (a) a motion of translation which has the same magnitude and

direction for all its points, and
(/3)

a motion of rotation which has

also the same angular magnitude and sensefor all its points.

Thus, in fig. 105, by the motion of translation common

*
If, as in the present chapter, the displacement is made parallel to one plane,

the positions of two points will suffice.
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Fig. 105.

to all the points, m
1

is carried to a, while m2 is carried to

&', and m
3

to c', the lines

m
l
m

2 ,
m

2 m~, and m^ m3 being
carried parallel to themselves

to ab\ b'c', and ac', respec-

tively. Then, by the motion

of rotation ad' is turned round

to ad, and c is made to co-

incide with c.

101.] Independence of

the Motions of Translation

and Rotation. If we have

a system in the position ab'c'
(fig. 105), it is clear that no

motion of translation will ever bring it into the position abc.

The change is effected by a motion of rotation alone. On the

other hand, no motion of rotation could bring a system, m1
m

2 m%,

into the position ab'c'. This change is effected by a simple

translation common to all the points : hence these motions are

quite independent of each other.

102.] Theorem. All the conditions necessary and sufficientfor
the equilibrium of a rigid body acted on by any forces can be de-

duced from equations of virtual work corresponding either to a

virtual displacement of translation common to all its parts, or to a

virtual displacement of rotation common to all its parts.

For (Art. 98), the condition necessary and sufficient for the

equilibrium of the body is the vanishing of the virtual work

of the applied forces for every virtual displacement ; and (Art. 100)

every virtual displacement is either one of translation, or one of

rotation, or a combination of both. Now (Art. 101), these dis-

placements are indepen-,

dent, and therefore the

supposed condition must

come either from a virtual

displacement of transla-

tion alone, or from one of

rotation alone. Q. E. D.

103.] Virtual Work
Corresponding to a Vir-

tual Motion of Trans-
Fig. 1 06.

lation. Let a rigid body (fig. 106) be in equilibrium under
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the action of any forces in one plane, Plt P2 ,
P3 , ..., and

let the body be imagined to receive a motion of translation

parallel to an arbitrary line, Ox, whereby the points, A
l ,
A2 ,

A
3 ,..., of application of the different forces receive virtual

displacements, A
l
a
1 ,
A

2
a
2 ,
A3

a
3 ,..., all parallel to Ox, and

equal to a. Then (Art. 51, p. 67), the virtual work of the force

P
l is ax projection of P1 along Ox. Let the projection of P

l

along Ox be Xl
: then the virtual work of P^ is aXx . Similarly,

if X
2 ,

-3T
3 ..., be the components of P2 ,

P3 , ...along Ox, the

virtual works of these forces will be aX2 ,
aX

3 ,
. . . . Hence the

equation of virtual work is

or a2X=0. (1)

Consequently, since a is arbitrary, we have

2X=0.
(2)

Hence For the equilibrium of a rigid body it is necessary that

the sum of the components of the acting forces along every arbitrary

right line shall be zero.

This condition is not sufficient, since every virtual displace-

ment of a body is not one of translation alone.

104.] Virtual Work Corresponding to a Motion of Rota-

tion. Let several forces, P15 P2) P3 , ... (fig. 107), act on a body
at points A, A

2 ,
^

3 ,...,and suppose that the body is rotated

through a small angle = co, round an axis perpendicular to the

plane of the forces through an ar-

bitrary point, 0. Then the points

A19 A
2 ,
J3 ,...will describe small

circular arcs, Al
a1) A2

a2) A% a3 ,
. . .

having as their common centre,

and subtending the same angle, o>,

at 0. Let 0! be the angle between

OAl
and the direction of Pr Then,

evidently, the projection of A1 a^ on

the direction of Pl is Jj^.sin r o
y

But A
l
a
1
= co. OA^; therefore the Fig. 107.

virtual work of P
l
is

a)Pl . OA sin 0J.

Ifp tne perpendicular, Oq^ from on the line of action of

P13 this is evidently
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Similarly, the virtual work of P2
is o>P

2 .p2) and that of P3 is

&>P3 .jt?3 . Hence the equation of virtual work is

or 2Pp = 0.

But the product of a force, P, and the perpendicular, p, let

fall upon it from the point 0, is the moment of the force with

respect to the point 0, or rather with respect to an axis through
O perpendicular to the plane of the figure.

Hence, equation (2) asserts that for equilibrium the sum (with

their proper signs) of the moments of the forces with respect to any

point in their plane is zero.

As regards the signs to be given to the moments, P^p^
P2 p2 ,

... of the forces, we see that

Those forces which tend to rotate the body in the same sense

round the point give virtual work of the same sign, and therefore

have moments of the same sign with respect to 0.

Thus, in fig. 107, the forces P
l
and P2 tend to turn the >ody

round 0, in a sense opposite to that of watch-hand rotation,

while P3 tends to turn it in the opposite sense. Hence, in

the Equation of Moments, as the equation

2Pp=
is called, Pl p and P2 p2 have the same sign, and P

3 p3
has an

opposite sign.

105.] Absolute Conditions for the Equilibrium of a Rigid

Body Acted on by Forces in One Plane. It is now clear that,

as all possible displacements of a rigid body are exhausted in a

motion of translation common to all its parts, and a motion of

rotation common to all its parts, all possible conditions of its

equilibrium under the action of forces acting in one plane are

exhausted in the conditions of Articles 103 and 104, namely
1. The sum of the components of the acting forces along

every arbitrary line in their plane = 0.

2. The sum of the moments of the forces with regard to every

arbitrary point in their plane = 0.

These are the conditions which were deduced in the last

chapter ;
and it is clear that since all possible displacements of

a deformable system are by no means exhausted in motions of

translation and rotation common to all its parts, the equation of

virtual work for such a system does not lead to the above con-

ditions as sufficient.
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106.] Analytical Expression for the Displacement of a

Rigid Body. We have seen (Art. 100) that the displacement of

a rigid body is known from the displacement of any fixed

triangle in it; and that the displacement of such a triangle
consists of a motion of translation common to all its parts, and
a motion of rotation common to all its parts. The displacement
of translation may be that which moves each side of the triangle

parallel to itself until the vertex m
l (fig. 105) comes into the

position a ; or it may be that which moves each side parallel to

itself until the vertex m
2 comes into the position b; or, again,

that which moves the system until the vertex m
3
comes into the

position c. In the first case the magnitude of the motion of

translation is m
1
a

t
in the second, m<2 b, and the third, m3 c.

Now these three quantities are all of different magnitudes.
But after any one of these motions of translation has taken

place, the motion of rotation is constant, since the angles
between the sides of the triangle are invariable. Hence

If a rigid body occupying the position (A) is displaced by a motion

parallel to one plane into the position (B), the body may be brought

from the position (A) to the position (B) by : (a) a variable motion

of translation common to all its parts, whereby any one point, P, of
the body is brought directly from its old to its new position, ; and

(ft)
a subsequent motion of rotation round an axis through per-

pendicular to the plane of motion, the angular magnitude of the

rotation being a constant quantityfor all such axes.

We shall investigate the changes produced in the co-ordinates

of a point by given small motions of translation and rotation.

Let the motion of translation first take place. Then draw any
two rectangular axes, Ox and Oy, through (fig. 108) the new

position of a point 0^ Let the motion of translation 0^0,

common to all parts of the body, be resolved in two components,
a and 6, parallel to Ox and Oy.

Then, if x and y denote the co-

ordinates of a point Qi in the body
with reference to fixed axes drawn

through 1 parallel to Ox and Oy}

these quantities will be increased

by a and b, respectively, by the

motion of translation. To find FiS- lo8 -

how much they will be subsequently altered by an angular
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rotation = o> round 0, let Q describe a small arc of a circle, Qqf

round 0.

Let fall the perpendiculars QM and qm on Ox, and Qp on qm.
It is evident that OM = x and QM = y. Then the increase of y
produced by the rotation = qp, and the increase in x

' = QP.
Now

Qp = Qq.sin QOx = u.OQ.sin QOx = co.Qlf = coy;

and g7?
= Qq.cos QOx = co. OQ.cos QOx = co. OM = &x.

Hence, if bx and 6y denote the changes produced in x and y by
the two motions combined,

bx = fl o>y, (1)

5y = + <o#. (2)

These are the general analytical expressions for the displace-

ments of a particle in the body. (They can obviously be obtained

by differentiating the equations x = r cos Q^y = r sin 6, on the

supposition that alone varies by a quantity 80 = o>, and then

adding a and # to the results.)

107.] Analytical Conditions of Equilibrium. If any forces,

P
l9
P

2 , P3 ,
...

,
act on a rigid body in one plane, the condition

necessary and sufficient for equilibrium is (Art. 98)

P
l a/>1 + P2 ty2 + P8 ty2 +... = 0. (1)

Let Xl and Y1
be components of P

1 along two rectangular axes,

Ox and Oyt
and let ^ and y^ be the co-ordinates of the point at

which P
l
acts. Then (Art. 52, p. 68)

PI*PI = XI*XI+Y^. (2)

Making similar substitutions for P2bp2 ,
P38/?3 ,

. . . , equation

(1) becomes
J

1 8a?
1+J1 8y1 + Z2

8a?
a + r

2 6y2+ ... = 0, (3)

or 2(X8ar+rty) = 0. (4)

Substituting in (4) the values of 8a? and fy given in the last

Article, we have

2 {X(0_ft,y) + Y(b + u>x)}
= 0,

or .2JT+^.2FH-a).2(a?7-^X)= 0, ... (5)

since #, ^, and to are common to all points of the body, and may
be taken outside the sign of summation.

Now the displacements a, b, and o> are completely independent
of each other, and therefore equation (5) requires that
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o,sr=<n
-X = 0)

For, choose another virtual displacement in which a and b are

the same as before and o> different. Then we have

aSX + 1>2Y+ o>' 2 (xY yX] = 0.
(7)

Subtracting (7) from (5),

( ') 2(^7 J/.J)
= 0.

But since a> a/ is not = 0, this equation requires that

2(aJ-.yJ) = 0.

Similarly, by making a alone variable, we prove that 2JT = 0,

and by making b alone variable, 2F = 0.

The three equations (6) constitute the analytical conditions of

equilibrium of the body, and they are the expressions of the two
absolute conditions of Art. 105.

The first two of the equations (6) are called the equations of

translation, and the last is called the equation of moments or

rotation.

108.] Varignon's Theorem of Moments. The moment of the

resultant of two forces with respect to any point in their plane is

equal to the sum of the moments of the forces with respect to this

point.

Let R (fig. 109) be the resultant of two forces, P and Q,

applied at a point A, and let be any point in their plane. Then

the virtual work of R for any

displacement of A = the virtual

work of P + the virtual work of

Q. Let the virtual displace-

ment of A be one of rotation

round 0, through a small angle
= o>. Then, as in Art. 104, the Fig. 109.

virtual work of R is co . R . OA .

sin OAR; but this = o> . R x the perpendicular from on R to x
the moment of R with respect to 0. Similarly, the virtual work

of P = co x moment of P with respect to ; and virtual work

of Q co x moment of Q with respect to 0. Therefore, &c.

Q. E. D.

In precisely the same way, the moment of the resultant of any
number of forces is proved to be equal to the sum of the moments

of the forces separately.
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109.] Particular Case in which the Resultant of Transla-

tion Vanishes. When forces applied to a particle have no

resultant of translation, their whole effect is null. It is not

necessarily so, however, if they are applied to a body of finite

dimensions. For example

If the forces acting upon a rigid body form ly their magnitudes

and lines of action the sides of a closedpolygon taken in order, their

resultant of translation vanishes, and they have a constant moment
/ /

with respect to all points in their plane.

Let forces Plt P2 ,
P

3 ,
... (fig. no) act at points A19 A2 ,

AB ,

... in one plane, in a body and let

these forces be represented in mag-
nitudes and lines of action by the

sides of the polygon formed by their

points of application.

Now since (Art. 50) the sum of

the projections of the sides of this

polygon on any arbitrary line = 0,

the condition of Art. 103 is fulfilled,

and the forces have no resultant of

translation.

Let be any point inside the polygon, and take the sum of

the moments of the forces round it. If the perpendiculars from

on the sides A^A^ A2A3
... be

jt?l5 j 2 ,
... the sum of the

moments will be

Fig. no.

And since P15
P2 ,

... are equal to the sides of the polygon, G is

evidently = 2 . area of polygon. This is a constant for all points

inside the polygon.
Now if we take the sum of the moments round any external

point, (7, we shall have

since P4 turns the body round (/ in a sense opposite to that

in which the other forces turn it. But this sum is equal to

+A

and this is again equal to 2 . area of polygon.
Hence for all points in the plane, the sum of the moments,

is constant.
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110.] Theorem. If a number offorces acting in one plane upon
a rigid body have a constant moment with respect to all points in the

plane, they can have no resultantforce, and must be reducible to a

couple.

For, suppose that they have a resultant = R, then if p is the

perpendicular let fall on E from any point, 0, the sum of the

moments of the forces = E .p (Art. 108). Hence by varying the

position of 0, the sum of the moments varies, which is contrary
to hypothesis. They are reducible to two equal, parallel, and

opposite forces. For their resultant is zero
; hence, compound-

ing them in pairs, they must reduce to two parallel, equal, and

opposite forces forming a couple, or to two such forces directly

opposite to each other in a right line. But in the latter case the

sum of their moments about any point would be zero ; therefore

if this moment is not zero, the forces must reduce to a couple.

111.] Problem. To find the resultant of two parallel forces, P
and Q, acting in the same sense.

Let AB (fig. in) be the shortest distance between P and Q,

and let the forces be supposed to act at A and B. Also let the

reversed resultant, JR, act at

some point, 0, in AB. Since

the forces are in equilibrium,

their virtual work = for every

virtual displacement (Art. 98).

Choose first a virtual displace-

ment of translation along AB.

For this displacement the vir-

tual work of the forces P and
Fig. in.

sQ = 0, therefore the virtual work of E = 0, therefore E

parallel to P and Q. Again, choose a virtual displacement of

rotation about through an angle = o>. The virtual work of P
is then P.uOA, and that of Q is - Q . w OB, while that of E is

zero. Hence
P. OA Q . OB = 0, (1)

OA_QL
'* OB~~P'

Finally, to find the magnitude of E, take a virtual displacement

of translation parallel to the forces. This evidently gives

(2)
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Therefore the resultant of two parallel forces acting in the same

sense is a force parallel to them in the same sense, equal to

their sum, and dividing the line joining their points of application

in the inverse ratio of theforces.

Equation (1) asserts that the moments of two parallel forces

with respect to any point on their resultant are equal and

opposite a result which is, of course, con-

^ tained in equation (1) of Art. 104.

If P and Q act in opposite senses

(fig. 112), the resultant is obtained in

P magnitude and direction by simply chang-

ing the sign of Q.
B Thus (l) becomes

Fig. 112. OA _ Q
OB~~P*

which shows that is on the production of AB at the side of

the greater force ;
and (2) gives

R = P-Q. (4)

In illustration of this chapter some of the examples in the

next are solved by the Principle of Virtual Work.



CHAPTER VII.

APPLICATIONS OF THE CONDITIONS OF EQUILIBRIUM OF A BODY.

112.] Condition of Equilibrium of a Body under the

Action of Two Forces in a Plane. If two forces maintain a

body in equilibrium, they must be equal and opposite in the same right

line.

For, take moments round any point on the line of action of

one of them, P. The sum of the moments must (Art. 104) be

= 0. Hence the other force, Q, must pass through the assumed

point. Again, take any other point on P} and take moments
round it. The sum must be = 0, and Q must, therefore, pass

through this point. Hence P and Q act in the same line. Now
their sum must = (Art. 103). Therefore P and Q are equal
and opposite. Q. E. D.

113.] Condition of Equilibrium of a Body under the

Action of Three Forces in One Plane. If threeforces maintain

a body in equilibrium, their lines of action must meet in a point,

or be parallel.

For, take moments round the point of intersection of two of

them, P and Q. The sum must (Art. 103) = ; therefore, either

the third force, R, is zero, or it passes through the intersection

of P and Q. If R is not = 0, it must pass through this point.

The three forces may then be supposed to act at this point,

and to keep it at rest. Hence, each force must be equal and

opposite to the resultant of the other two ; and if the angles

between them in pairs be
JK>, , r, the forces must satisfy the

conditions T> ^ -n - ta\P : Q : E = sin p : sin q : sin r.
(/3)

If two of them are parallel, the third must be parallel to them

and equal and directly opposed to their resultant.
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EXAMPLES.

^1. Three forces, P, Q, R (fig. 113) act at the middle points of the

sides of a triangular plate, each force being perpendicular and pro-

portional to the side at which it acts. If

the forces all act inwards, or all outwards,

they are in equilibrium. For (a) they

satisfy the first conditions of equilibrium
of three forces, namely, that of meeting in

a point (Art. 113); and
(/3) they are pro-

portional to the sines of the angles between
them in pairs, since

P :Q : R = a:b:c = sin -4 : sin B : sin G
= sin QOR : sin ROP : sin POQ.

They, therefore, satisfy both of the conditions of Art. 113.

In exactly the same way it is proved that if three forces act perpen-

dicularly to the sides of a triangle, and be proportional to them, they
will be in equilibrium, provided that they pass through any common

point, and all act outwards or all inwards.

v 2 . Three forces acting along the perpendiculars of a triangle keep
it at rest ;

find the relations between them.

They satisfy the first condition of equilibrium, namely, that of

meeting in a point. Then if the forces perpendicular to the sides

a, b, c, be P, Q, R, respectively, the relations (/3) of Art. 113 give

P : Q : R = sin A : sin B : sin C = a : b : c,

as might have been concluded from the remark at the end of the last

example.

3. Three forces acting along the bisectors of the angles of a triangle,
all either from or towards the angles, keep it at rest

;
find the relations

between them.

The forces evidently satisfy the condition of meeting in a point.
Let P

} Q, R, be the forces in the bisectors of A, B, C, respectively.
A _i_ 7?

Then the angle between P and Q is easily seen to be TT -

Hence P : Q : R = cos : cos : cos222
4. Three forces acting in the bisectors of the sides of a triangle

drawn from the opposite angles maintain equilibrium ;
find the rela-

tions between them.

They satisfy the first condition.

Let the lengths of the bisectors of the sides a, 6, c
(fig. 114) be

/31} /32 ,
and /33 ,

and let p and q be the perpendiculars from C on
P and Q.

Take moments round C for the equilibrium of the forces. Then

PP = Q* (i)
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(The moments of P and Q with respect to C have opposite signs,
since Q tends to turn the

body round G in the sense of

watch-hand rotation, while P
tends to turn it in the opposite

sense).

Again, pft = q(32) (2)

each side of this equation heing
the area of the triangle. Divide

the sides of (1) by the cor-

responding sides of (2).

Then

Hence

A

or the forces are proportional to the bisectors.

5. At the middle points of the sides of any indeformable polygon

(fig. 115) forces act perpendicularly to the sides, each force being

proportional to the side at whic! tt

acts. If the forces all act inwards

outwards, they form a system

equilibrium.
For (example 1) the resultant of P,

and P
z
is a force acting at the middle

point of AC, perpendicular and pro-

portional to AC. Again, this force

and P
3 may be replaced by a force

acting at the middle point of AD,
perpendicular and proportional to

AD.
Replacing the given forces in this

manner, the result follows by ex-

ample 1. Fig. 115.

6. If from any point perpendiculars be drawn to the sides of a

polygon, and forces act along these perpendiculars, either all inwards

or all outwards, each force being proportional to the side to which it

is perpendicular, the system is in equilibrium.
This follows, exactly as in the last example, by dividing the polygon

into triangles, and attending to the remark at the end of example 1.

7. From any point, 0, inside (or outside) a triangle, ABC (fig. 116),
are let fall perpendiculars, Oa, 0/3, Oy, on the three sides. At the

points a, /3, y, are applied forces P, Q, R, each of which is proportional
and perpendicular to the side at which it acts. The forces are then

all turned round their points of application in the same sense, so

as to make equal angles with the perpendiculars Oa, 0/3, and Oy.
Show that in this latter case the resultant of the system of forces is
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a couple whose moment is proportional to the square root of the area

of the triangle A'B'C', enclosed by their lines of action.

(The forces act all outwards or all inwards).
Let the sides of ABC be a, b, c, and let P = ka, Q = kb, R = kc,

k being a constant coefficient.

Let B be the angle, OaB',
between P and the perpen-

QV
x \ dicular Oa. Then

Replace P by two compo-
nents, one along BC and the

other perpendicular to it.

Similarly, replace Q and R.

Then the perpendicular com-

ponents are ka cos 6, kb cos B,

and kc cos 6 ;
and since they

meet in a point, 0, and are

proportional to the sides at

which they act, they are in

equilibrium (example 1
).

Hence the forces are equi-
valent to three, ka sin B, kb sin B, and kc sin B, acting along the sides

of ABC in cyclical order, and therefore, by Art. 109, their equivalent
is a couple = 2&A sin 6, A denoting the area of the triangle ABC.
(See also Art. 93, p. 115.) Now the triangle A'B'C' is similar to

ABC. For, since the angles OaB and OyB are right, and the angles
OaB' and OyB' are equal, a circle will go round the points OB'aBy.
Hence Z yOa = Z yB'a ;

therefore their supplements, B and B' are

equal. Similarly, A A', and C = C'.

Again, the side A'B'= AB . sin B. For in the circle round

yOB'aB, yB' is a chord making an angle B with a chord yO, and an

angle
- with the perpendicular chord, yB. Therefore
2

yB' =y0.cos6 + yB. sin B. (1)

Similarly, in the circle round yA'OftA ,
we have

yA' = yO.cosQ yA .sintf. (2)

Subtracting (2) from (1) we have

A'B' = (yB + yA) . sin 6 AB . sin B.

Now if A' be the area of A'B'C',

sin 6 = A / -r-

and therefore the moment of the forces = 2&\//AA'.
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C'

8. If the triangle be replaced by a polygon of any number of sides,

prove that the equivalent of the forces is a couple whose moment is

proportional to the square root of the area of the (similar) polygon
enclosed by their lines of action.

9. A triangular plate, ABO (fig. 117), is acted upon at each angle by
forces, along the two sides containing it, r

represented in magnitudes and lines of

action by the distances between the angle
and the feet of the perpendiculars let fall

from the other two angles on these

sides. Find the line of action of the

resultant force.

Let the perpendiculars let fall on the

three sides, a, b, c, from any point, P, .

on the resultant be x, y, z, respectively,
and let A', B', C

f
be the feet of the perpendiculars. Then the force in

AB in the sense AB is AC'BC', or b cos A a cos B. Hence
the moment of this force about P is z (b cos A a cos B), and since

the sum of the moments of all the forces (estimated in cyclical order)
round P is = (Art. 76), we have

Now, one set of values of x, y, and z, which will satisfy this equa-
tion, is, evidently, a, b, c. Hence the resultant passes through the

point the perpendiculars from which on the sides are proportional to

a, b, c. This point is thus found : Let G be the centre of gravity of

the triangle ;
from A draw a line, AG', which makes Z.CAG'= /.BAG,

and from B draw a line, BG', which makes Z CBG' = /.ABG. These
lines intersect in G', the required point.

Again, another set of values of x, y, z, which will satisfy (1), is

cos A, cos j?, cos C ; and the resultant passes through the point whose

perpendiculars on the sides are proportional to these quantities. This

point is the centre of the circumscribed circle.

Hence the line of action of the resultant is known.

10. Show that the resultant of the system of forces in the last

example is

4A /i Ii r

abc

where A is the area of the triangle.

11. Forces P, Q, R act along the sides of a triangle, ABC, and

their resultant passes through the centres of the inscribed and circum-

scribed circles : prove that

P = Q = R
cosB cosC cosCcosA cosAcosB

(Wolstenholme's Book of Mathematical Problems).

12. A heavy beam, AB (fig. 118), rests against a smooth horizontal

plane, CA, and a smooth vertical wall, C, the lower extremity, A,
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being attached to a rope which passes over a smooth pulley at (7,

and sustains a given weight, P.

Find the position of equilibrium,
and the pressures on the plane
and wall.

Let 6 be the inclination of the

beam to the horizon in the posi-
tion of equilibrium; let W=
weight of the beam : and let the

centre of gravity, G, divide the

beam into two portions, A G = a,

and BG = b.

Now, the reactions, R and S,

Fig. 1 1 8. of the wall and plane are nor-

mals to these surfaces
;
and since

they are both unknown, we shall obtain an equation for 6 which will

contain neither of them, by taking moments about 0, their point of

intersection. Hence, since the force P acts on the beam along A C,
and tends to turn it in a sense opposite to that in which W tends

to turn it round 0, we have

P(a + 6) sin 6 Wa cos = 0,

Wa
/. tan#= -

(1)
P(a + b)

Again, resolving forces vertically, we have

R = W.
(2)

And resolving horizontally, S P. (3)

Solution by Virtual Work. Imagine a displacement in which the
ends A and B remain in contact with the planes. Then the virtual

works of R and S are both zero, and the equation of virtual work is

(if y is the height of G above the horizontal plane)

-W.dy-P.d(AO) = 0. (4)

Now y = a sin B, AC = (a 4- b) cos B
;

.'. dy = a cos OdO, d (A 0) (a + 6) sin Od9 ;

and (4) gives Wa cos = P (a + b) sin 0,

which gives the same value of as (1).

13. If the beam rest, as in the last example, against a smooth
vertical and a smooth horizontal plane, and a rope be attached

firmly to the point (7, and to a point in the beam, find the limit to
the position of this latter point consistent with equilibrium.

Let fig. 119 represent the beam in any position, and let m be the
middle point of the beam. Suppose the rope attached to (7, and to
a point, n, in the upper half of the beam. Then the forces acting on
the beam are IF, T (the tension of the rope nC), R, and S. Let
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be the point of intersection of W and T. Now, the resultant of W
and T must, for equilibrium, be

equal and opposite to the re-

sultant of R and S
;
hence the

resultant of It and S must act in

the line Op ;
but this line is not

between the lines of action of T
and W, that is, inside the angle

WpC ;
therefore the resultant

of K and S cannot be equal and

opposite to that of W and T
with such a position of the

rope, and, therefore, equili-
brium is impossible, no matter

_.

what the inclination of the beam may be. Hence, in order that equi-
librium may be possible, the rope must be attached to some point,
such as P, between A and m.

14. In the last example, given the point of attachment of the

rope, find the tension in it.

It is easy to see that if P, the point of attachment, be given, and
also I, the length of the rope, CP, the position of the beam is given.

For, if = L BAG, we have

sin2 0, = Pk
an equation which determines 0.

The angle PCA is also known. Denote it by <. To determine T,
the tension of the rope, without bringing R and S into our equation,
take moments round 0, their intersection. Hence, a and b being the

segments of the beam made by the centre of gravity, we have

= T.OCsmOCP= T. (a + 5) sin (0-0),

To obtain T by the principle of Virtual Work. Choosing a virtual

displacement which keeps A and B in contact with the planes, the

equation of work is

-Wdy-Td(PC)=0, (1)

y denoting the height of G above the horizontal plane.
Now PC 2= BP2 cos2 + AP'2 sin2 0, and this equation will also hold in

the displaced position. Hence we may differentiate it, and then we obtain

PC . d (PC) = -(PB*-PA
2

)
sin 6 cos dQ

sin<9

_PA ss

i?4;rZY3-p

PAz. -

Also y = a sin 0, therefore dy = a cos 6dB] and substituting these values

of dy and d(PC) in (1), we obtain the same value of T as before.
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Note. If = $, T= co. In % this case the rope is attached to

m, the middle point of the beam, and therefore its direction always
passes through 0, the intersection of R and S. Now, it is easy to see

that in this case the conditions of equilibrium are theoretically satis-

fied, because the resultant of T and W acts along T, whose direction

passes through 0. But if $ > B, no value of T can even theoretically

satisfy the conditions (see last example).
15. ABC is any triangle, of which C is the vertex. It is acted on

by the forces CA, CB, and AB. Prove that it will be kept in equi-
librium by a force equal to 2BC, acting parallel to BC, at the middle

point of AB.

16. In example 12, it is clear that two positions of equilibrium of

the beam are a vertical and a horizontal position ; explain why these

positions are not given by the equation (1) which determines the

position of equilibrium.

17. Explain why the proof in example 5 would not hold for a

polygon formed of bars freely jointed together and therefore capable
of turning about the joints.

114.] Action of a Hinge or Joint. Among the internal

forces of a system, the action of a joint is one of frequent
occurrence. If the joint be smooth, the re-

action between two bars or beams connected

by it consists of a single force. For, let PQS
(fig. 120) represent a section of the joint

connecting two beams : then, since their

surfaces are in contact, either throughout the

whole of the circumference or a part of it,

there will be (since the joint is smooth)
normal reactions at the points of contact,

since all these pass through the centre of

the circle, they have a single resultant. Consequently, the

action in this case consists of a single force.

But, if the joint be rough, the reactions at the points of con-

tact will not be normal, that is, their lines of action will not meet

in a point, and, therefore, they may reduce to a

couple, or to a single force. When slipping
is about to ensue at the joint, it is easy to see

that the total resistances at the points of

contact envelop a circle (or rather a cylinder).

For, at any point, P, of contact (fig. 121),

draw PR, making the angle of friction, A,

I2I< with the normal, PC, to the surface of con-

tact. The perpendicular from (7, the centre of the joint, is equal

,Q

P,Q,.... Now,
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to PC', sin A, and is, therefore, constant. Hence, PR envelops a

circle whose radius = PC. sin A.

If PC = a, and ds is the element of the surface of contact at

P, it is evident that the sum of the moments of the reactions

about C is (R being the reaction per unit of surface)

a sin Kf Rds.

As an example, let us consider the equilibrium of two equal
beams which are connected by a joint, C, and rests on a perfectly

smooth cylinder, in a vertical plane at right angles to the axis of

the cylinder.

Firstly, let the joint be rough, and suppose the contact to be

complete all over its surface :

then it is clear that such a

position as that represented in

fig. 122 is a possible position of

equilibrium if the joint is suf-

ficiently rough. Let fig. 120

represent an enlarged view of

the circle which is enveloped

by the total resistances at the

various points of the surface of

w
Fig. 122.

W

S

A

contact at the hinge, C. Then,
if the total resistances at the

lower portion of the joint be considerably greater than those at

the upper portion, it is possible that the resultant of the whole

set may be a horizontal force, R, acting through a point, P,

below the joint.

In the position of equilibrium of the

beams represented in fig. 122 the

weight, Wt
of the beam CD19 and the

normal reaction, S, of the smooth cy-

linder, meet in a point A
19 through

which point the force produced by the

action of the other beam must pass. In

the same way the action of the beam

CDi on CD
2 must pass through the

point A
2 . Hence the resultant action

of each beam on the other must be directed in the line A
1
A2 ;

and we have seen that if the contact along the joint extend

Fig. 123.
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over its surface, this is a possible line of action, though it does

not intersect the joint.

Secondly, let the joint be rough, and let the contact take place

at only one point, -^(fig. 124). Suppose the joint to consist of

a pin, UN, which forms part of

the beam CD2 (fig. 119), and let

this fit loosely into the beam CD, ,

It is clear, then, that the action

between the beams consists of a

single force, J2, acting at N, and

making the angle of friction, A,

with the radius CN, if slipping is
Fig. 124.

about to take place. As before, this force must pass through the

points Alt
A

2 .

In this case, then, the point of contact of the beams is con-

structed by drawing a radius, CN, of the cylindrical axis consti-

tuting the joint, inclined to the horizon (since Al
A.

2
is horizontal)

at the angle of friction.

Thirdly, let the joint be smooth. In this case the beams must

assume such a position that the line A
1
A2 passes through the

centre of the joint ;
and this position is practically the same as

that in the last case, because since the dimensions of the joint are

negligible compared with those of the beams, the line of resist-

ance RN (fig.
1 24) may be supposed to pass through the centre,

C, of the joint.

A similiar explanation is to be given in the case of two equal
beams rigidly connected, and form-

ing one piece, the system resting,

as in the previous example, on a

smooth cylinder. In this case the

beams can take only one position,

which must be a position of equili-

brium, and the action between them
must accommodate itself to the

geometrical necessity of the figure.

(In the following figure the cylinder
is not drawn.) If we consider the

Fig. 125.

equilibrium of one of the beams, CD (fig. 125), by itself, we shall

have to supply to it whatever force is actually produced upon it

by the other beam. Now, if C is the section along which the
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system is considered as divided by the removal of the second

beam, it is clear that the internal forces in the neighbourhood of

B tend to tear the beams apart, if A is below the section C,

while those about C tend to press the beams more closely

together. Hence the action of the second beam on CD consists

of a number of forces whose horizontal components near B act

from left to right, as the force JBF, and whose horizontal com-

ponents near C act from right to left, as the force CF'. If,

therefore, the forces near B are greater than those near C, the

resultant of the whole system will consist of a horizontal force,

AR, acting outside the section CB> so as to pass through the

point, A) of intersection of the weight and the normal reaction

of the cylinder. In this case, then, the action, over a section BC,
between two rigidly connected pieces consists of a force outside

the section
;
which force may, of course, be replaced by one at

any point in the section, together with an accompanying couple

(see Art. 74).

In all cases in which contact over a finite surface takes place
between two bodies, the student must be careful to examine the

nature of the forces exerted between them at the individual points

of contact with a view to ascertaining whether the resultant action of
one on the other consists of a single force at all ; or, if so, whether

it can be assumed to act at any point in the surface of contact or

must be assumed to act wholly outside it.

115.] Geometrico - statical Problems. In many statical

problems which relate to the positions of equilibrium of bodies

the result is independent of the magnitude of some given force,

and such independence can be perceived a priori. Thus, suppose
the question to be What is the limiting inclination to the

horizon of a heavy uniform beam which rests against a rough
vertical and a rough horizontal plane ? In this problem we may,
if we please, assume W> the weight of the beam, and 2a, its

length ; but it is evident a priori that the result cannot involve

either of these quantities. For, if the angle which the beam
makes with the ground be 0, the position of equilibrium will be

denned by some of the trigonometrical functions of 0, such as

sin 6 or tan 6. Now, the trigonometrical function of an angle are

mere numbers, or ratios of quantities of the same kind. Hence,
if the expression for tan 6 (suppose) involveforce, it must involve

the ratio of one force to another force, and if there is only one
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force given in the problem, we have no other force to combine

with it in the form of a ratio or a mere number. Consequently,
the weight of the beam can in no way influence its limiting in-

clination. Precisely similiar remarks hold with regard to the only
linear magnitude in the question, viz., the length of the beam.

There is no other quantity of the same kind with which to

compare it. Therefore, we are enabled to state a priori that the

inclination of the beam to the horizon in its limiting position of

equilibrium depends simply on the coefficients of friction for the

beam and the two rough planes, or that

0=/0*,M').

H and // being these coefficients, andf denoting some (as yet)
unknown function.

Again, suppose the question to be What force applied to one

of the handles of a table drawer will pull the drawer out ? * It

is evident that the answer must be either no force, however

great, will pull it out, or any force, however small, will pull it

out. And the result will depend simply upon the relation

between the coefficient of friction for the drawer and the table,

and the ratio of the side of the drawer to the distance between

the handles. This is evident, because there is no given force in

terms of which the required force could be expressed.

Numerous examples of this class of questions will be given in

the sequel. Such problems, then, in which the result is in-

dependent of a force magnitude, we shall classify as Geometrico-

statical Problems, because, though they involve conceptions

concerning the directions of forces, they do not involve their

magnitudes. In all such problems, once the requisite theorems

concerning the directions of forces are made use of, the result

follows at once from the geometry of the figure ;
and a solution

by the method of resolving forces and taking moments is, in

reality, an illogical process.

116.] Useful Trigonometrical Theorem. In connexion with

the class of geometrico-statical problems, the following theorem

in Plane Trigonometry will be found extremely useful :

If a right line, CP (fig. 126), drawn from the vertex of a

triangle, divide the base into two segments m and n, or segments
which are to each other in the ratio of m to n

t

* The friction of the bottom is neglected.
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(m + n) cotO = mcotan cotjS,

a and ft being the angles which CP
makes with the sides AC and HC, and

6 the angle which CP makes with the

base.

For, if AP = m, and BP = n, Fig. 126.

Also,

sm A sm (0 a) , . . .,= m . = m 7 = m (sm 6 cot a cos 0).
sin a sin a

CP =
sm sin (3

= n (sin Scot ,3+ eos
6).

Hence
^ (sin e cot a cos 0)

= n (sin cot ft + cos 0),

from which (l) follows at once.

We have also the equation

(m + n) cot 6 = ncotAm cot J9.

For,
sin A sin A m

(2)

CP =
sin a sin (0A) sin cot A cos

Similarly, CP = :
-

j-. ;
sinOcot-B + cosB

'

therefore, &c. Q. E. D.

EXAMPLES.

1. A heavy beam rests on two smooth inclined planes whose inter-

section is a horizontal line, the beam

lying in a vertical plane perpendicular
to this line of intersection

;
find the

position of equilibrium and the pres-
sures on the planes.

Let a and b be the segments, ACr
and S6f, of the beam, made by its

centre of gravity, G ;
6 the inclination

of the beam to the horizon, a and /3

the inclinations of the planes, R and
R' the pressures on these planes, re-

spectively, and W the weight of the

beam. Fig. 127.

Then, since the beam is in equilibrium
under the action of only three forces, they must meet in a point, 0.

L
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Now the angles GOA and GOB are equal to a and /3, respectively,

and BGO =
~^-0.

Hence

(a + 6) cot BGO a cot GOA -b cot GOB,

or (a + b) tan0 = a cot a b cot/3, (1)

which determines the position of equilibrium.

Again, by the relations between three forces in equilibrium,

(2)
sm(a

sina

Hence, if T = -
3? the beam will rest in a horizontal position.

b tan ^3

Suppose that a cot a &cot/3 is positive, and that (a + 6) tan /3 < a
cot a 6 cot /3. Then, ct fortiori (a + b) tan < a cotab cot /3, since 0,

the angle made with the horizon by the beam in any such position as

AB, is necessarily </3.

Hence, the only position of equilibrium possible is either one of

continued contact with the plane (/3),
or one of continued contact with

the plane (a). Suppose the first, as in fig. 128. To find in this case

the point through which the resultant pressure of the plane (/3) on the

beam acts, draw AO perpendicular to the

plane (a) ;
then A is the line of action

of the pressure on this plane.
Let AO meet the vertical through G

in 0, and from draw OP perpendicular
to the plane (/3). Evidently, P is the

point at which the resultant pressure of

the plane (ft) acts.

But it may now be shown that, with

Fig. 128. the two inequalities supposed, this position
is impossible. For if AP > a+ b, it will

be impossible ;
that is, if a- - ' >a+ b

; or a tan /3 (cot a

tan (3) > b
;

or a cot a b cot /3 > a tan /3. But, by supposition
a cot a b cot /3 is positive and > (a + b) tan fi, therefore AP>AB, which
is manifestly impossible. Hence the only position of equilibrium in

this case is one of continuous contact with the plane (a). [We have

supposed all through that the end A of the beam is to rest on the

plane (a).] The least inclination of the plane (a) which will allow of

a position of continuous contact with (/3) is found by drawing at B a

perpendicular to the plane (/3)
and joining its point of intersection

with the vertical through G with A. The joining line is the normal
to the plane of least inclination (a).
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2. A uniform heavy beam, AB (fig. 129), rests with one extremity,

A, against the internal surface of a

smooth fixed hemispherical bowl, while

it is supported at some point in its

length by the rim of the bowl; find

the position of equilibrium.
It is a priori evident that the result

must be independent of force, since

the weight of the beam is the only
force that may be supposed to be

given ;
and it is also evident that the

result depends on the only two linear
Fig. 129.

magnitudes which may be supposed to be given viz., the length of

the beam, 2 a, and the radius, r
}
of the bowl.

Draw the three forces which keep the beam in equilibrium. They
are the weight, a reaction at A perpendicular to the surface of contact,

and therefore perpendicular to the bowl, and a reaction at C which for

the same reason is perpendicular to the beam. These must meet in a

point, 0. Let 6 = the inclination of the beam to the horizon =
LACD. Let the line OG meet the semicircle DAC in the point Q.

Then AQ is a horizontal line. Also LQAG = LDGA = 6, therefore

LOAQ =26. Hence AQ = AO cos 20, and also AQ = AQ cos 0',

therefore 2 r cos 2 6 = a cos 0,

or 4r cos
2 acosO 2r = 0.

This equation gives two values of cos 0, one of which supposes the

hemisphere to be completed into a sphere, the end A of the beam to

rest against the upper portion of the sphere, and the action of the

sphere on A to consist of a pull. The student will have no difficulty

in representing this position, or in proving that the reaction at

a .-yy.yvJL ot.'l^ZoC *'**-(<?

3. Find the position of equilibrium of a uniform heavy beam, one

end of which rests against a smooth

vertical plane, and the other against the

internal surface of a given fixed smooth

sphere.
Let the length of the beam, AB, = 2 a,

r = the radius of the sphere, c = the

distance of the centre, C, of the sphere
from the vertical wall, DB ;

also let =
the required inclination of the beam to

the horizon, and $ = the inclination of

the radius CA to the horizon.

The statics ,of the problem is exhausted in drawing the figure so

that the weight of the beam and the two reactions at A and B shall

meet in a point, 0. Geometry then gives

2cot 0GB = cot AOG-cot GOB = cot AOG,
or 2tan0 = tan<. (1)

L 2,

Fig. 130
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Again, the perpendicular distance between A and DB is 2 a cos 0;
but it is also evidently equal to the horizontal projection of CA + the

distance of C from BD
;
that is,

2 a cos = r cos^ + c. (2)

From (1) and (2) a value of 6 can be obtained, and hence the

position of equilibrium.
If the beam rest on the convex surface, the only change in the

equations will be a change of the sign of c in (2).

4. The extremities of a beam rest at two given points against two

given smooth curves in the same vertical plane ;
the beam is to be

sustained by a rope attached to its centre of gravity and to a fixed

point. Determine the position of this point so that the rope may be

the weakest possible.
Let AB

(fig. 131) be the beam, G its centre of gravity, the point
of intersection of the normal reactions of the curves A and B k the

length of the perpendicular from on the line of action of the weight,

W, of the beam
; p the perpendicular from on the line, GP, of

the rope, and T the tension of the

rope.

Then, taking moments about 0,

T.p = W.k,

or T=W--
P

Hence, since W and k are given, T
will be a minimum when p is a

maximum. But the maximum value

of the perpendicular from on a right
line through G is OG; hence the, rope

must assume a direction perpendicular to OG.
5. A heavy uniform trap-door, AB (fig. 132), is moveable about a

hinge-line represented by A
;

and to the

middle point, B, of the opposite edge is

attached a string, BC> the extremity C of the

string being fastened to the point occupied by
B when the door is horizontal. Given the

length of the string, find the magnitude and
direction of the pressure on the hinge line,

and the tension of the string.
Produce the line of the string to meet

the line of action of the weight in a point, 0.

Then, since the door is in equilibrium under
the influence of only three forces, they must
meet in a point. Hence the pressure on the

hinge-line must pass through 0, and since the

plane of the tension, T, and the weight, TF,

intersects the hinge-line at A, the pressure, J?,

must act through A (the hinge being smooth).

Fig. 131.
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To determine T take moments about A . Then, if p = the per-

pendicular from A on BC, ^.p = W.AD. (1)

Let the angle SAO = 2 a, and let AB = 2 a. Then p = 2 a cos a,

AD = a cos 2 a, therefore cos 2 a
~ *

cos a

Again, by the triangle of forces we have

and substituting the above value of T, this gives

E = J WA/4 sin
2 a + sec2 a.

The values of T and R can be at once found in terms of the lengths

AB and BC. Denoting the latter by 21, we have sin a = 5 there-

fore, &c.

6. If in the last example the string, instead of being attached to (7,

pass over a smooth pulley at that point, and sustain a given weight,
find the position of equilibrium, and the pressure on the hinge-line.

Let P be the suspended weight, and 6 = Z.OA B
;
then the position

of equilibrium is defined by the equation

B 1

o-o = 0> (!)
2

P
COS"*

and
6

(2)

Equation (1) gives two positions of equilibrium, and since it shows
/i

that one of the values of cos - is negative, one position corresponds to

a value of 6 greater than 180. Such a position, of course, supposes
the door capable of revolving freely about its hinge-line through four

right angles.
The student will have no difficulty in representing the position cf

the door in this case, or in explaining why no linear magnitude enters

into the equations.

7. A uniform heavy beam, AB, rests

against a smooth peg, P, and against
a smooth vertical wall, AD

;
find the

position of equilibrium and the pressures
on the wall and peg.

This, so far as it relates simply to the

position of equilibrium, is another geo-
metrico-statical problem. We have merely
to draw AB in such a manner that the

vertical through G and the perpendiculars
at A and P to the wall and beam shall

intersect in a common point, 0.

w
Fig. 133.

Let 2 a = the length of the beam, and c= the perpendicular distance
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of the peg from the wall. Then the position must evidently be expressed

as a function of - Let = the inclination of the beam to the vertical.

a

Then AP = > and AO = -7^-3 But AO = AG.ain
;
therefore

sin sin v

CO /

_- = a sin 0,
sm2

' sin0 = (^

Resolving vertically, S. sin = W,

Resolving horizontally, S cos = R,

T> TT7"
Ji rr r

(1)

(2)

(3)

8. A triangular board, BCA (fig. 134), of uniform thickness, rests

on two smooth pegs, P and Q, at a given distance from each other, in

the same horizontal line. Find
A its position of equilibrium.

The position of equilibrium
will evidently be known if

the inclination of AB to the

horizon is known.
Let this inclination be ;

let the angles of the triangle
be denoted by A, B, C ;

let a
= LAMC, which the bisector,

CM, of the base makes with

the base ; let CM = I, and
let PQ = k.

Then, since no force is given except the weight of the board, will

depend simply on A, B, C, I, and k, and the problem is geometrical.
The reactions of the pegs P and Q are perpendicular to AC and BC,

respectively, and they must meet the weight of the board actmg

through its centre of gravity, G, in a point 0. The geometry which

gives the solution will express that

slOoa CO. sin COV= <?.sin CGO. (1)

Fig. 134-

Now, = + 0-o, and COV= COQ- VOQ; but COQ =

QPC (since the quadrilateral QOPC is inscribable in a circle)
= A + ;

and VOQ evidently = B : therefore COV A B + 20. Also

CO is the diameter of the circle round QOPC, a circle in which the

chord PQ subtends at the circumference an angle = C \

co = PQ = *

sin C sin C
2

Then, since CG = I, (1) becomes
8

CO =- ^
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ksm (A-B + 26) = - I sin C. cos (a
-

0),
3 (2)

an equation which determines 9.

9. Two heavy uniform rods, AB and EG (fig. 135), are connected

by a smooth joint at B, and, by means of rings at A and C, are also

connected with two smooth rods, AD and CD, fixed in a vertical

plane. Find the reaction at the joint, the pressures at the rings, and the

inclinations of the rods to the vertical in the position of equilibrium.

Fig. 135- Fig. 136.

Starting from any point, (fig. 136), draw a force diagram of the

system. Let Oa be parallel and proportional to the reaction, J?, at

A
;

let ab represent P, the weight of AB : then bO represents T, the

reaction at B. In the same way let bo and cO represent Q, the

weight of BC, and S the reaction at C. Let a and /3 be the in-

clinations of AD and DO to the horizon, and $ the inclinations of

AB and BC to the vertical.

Then we have (from fig. 136)

sin (a + /3)

sin a

sin(a

Also Tz = P 2 2PEcosa +R2
, which, by the substitution of the

value of R from (1), becomes

Again, 6 = HGB, and evidently (Art, 116),

2 cot = cot AHG- cot GHB
= cot a cota&O (fig. 136).

P 72 cos a P cot /3 cot a .
,

.

Now, cot ;60 = jy-.
= -

p , n ' by equation (1).R sin a P+Q
P(cot a cot/3) + 2^ cot a .

Hence cot = /D , n . V
4

;

and we find a similar expression for cot $.
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10. A board, ABC, (fig. 137), in the shape of a regular polygon
of n sides, rests at one corner, A t against a

smooth vertical wall, AP. the adjacent corner,

B, being attached to ftis wall by a string

whose length is equal to the side of the

polygon. Find the position of equilibrium.

Let be the inclination, BAP, of the side

AB to the vertical
;
and let be the point

in which the lines of action of the normal

pressure at A, the weight of the board, and

the tension of the string meet. Then, to

determine 6, we have

OA =

Fig. 137-

and OA = AG cos OAG = AG sin GAP,

.-. APt&n0 = AG sin GA P.

Now, GAP = GAB +0=^-- + 0',

if" a = the side AB, AP = 2 a cos 0; AG = *.> therefore

or

4sin<9sin-=cos(--0),n ^n *

tan = - cot -
3 n

This equation determines the position of equilibrium.

The pressure at A is evidently equal to cot - > W being the

weight of the board.
rt_

The external angle of the polygon being equal to > the incli-

nations of the successive sides to the vertical are

n n n

and if pm be the perpendicular distance of the

wall, counting B as the first, we have

pm = a

or

n

mir

vertex from the

(m I)TI

sin

Pm =
n . m 2 mir.

( 2COS- 77 COS- )v '

sm-
27T

'

fcfi

11. A heavy plane body, ABO (fig. 138), of any shape, is suspended
from a smooth peg, fixed in a vertical wall, by means of a string of

given length, the extremities of which are attached to two fixed

vU-.e-arj 9 4.
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points, F and
librium.

in the body. Determine the positions of equi-

Let the ellipse Pl
P

2
P

3
be described with foci F and JF", and axis

major equal to the length of the string,
where on this ellipse, suppose at P,

pended from the peg, it is kept in

equilibrium by its own weight
acting vertically through the centre

of gravity, and the two tensions in

P
2
F and P

2
F". But since the peg

is smooth, these tensions are equal,
and their resultant must bisect the

angle FP2 F; its line of action is,

therefore, normal to the ellipse.

And if G is the centre of gravity
of the body, the resultant tension

The peg will then be some-

Now, when the body is sus-

138-

must pass through G, and be equal and opposite to the weight of the

body. Hence the problem is solved by drawing normals from G to

the ellipse, and then hanging the figure from the peg in such a

manner that any one of these normals is vertical. Now, if G is inside

the evolute, four normals can be drawn to the ellipse ;
but it is easy

to see that only three are relevant to the solution if G is inside the

lower half of the evolute (as in fig. 135), or only one if G is inside the

upper half. For the tangents drawn to the lower half of the evolute

belong to the upper half of the ellipse ;
and in order that the strings

should be stretched, it is necessary that the peg should lie somewhere
in the upper half of the ellipse. If GP1} GP2 ,

and GP
3 ,

are the

position innormals drawn from G, the figure must be placed in a

which any one of these lines is vertical.

12. A beam, whose centre of gravity divides it into two segments &~ +

a and 6, is placed inside a smooth sphere ;
find the position of equi- vo^/3

librium.

Ans. Let 6 be the inclination of the beam to the horizon, and 2 a

the angle subtended by the beam at the centre of the sphere ;
then

a b
tan 6 = =- tan a.

a + b

13. A heavy carriage wheel is to be dragged over an obstacle on a

horizontal plane by a horizontal force applied to the centre of the

wheel ;
find the magnitude of the required force.

Ans. Let W be the weight and r the radius of the wheel, h the

height of the obstacle, and F the requisite force: then

F=W
h

14. If it be attempted to drag the wheel over a smooth obstacle by
means of a force whose line of action does not pass through the centre,

what happens? Is the result in last example modified if there is

friction between the wheel and the obstacle 1
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15. A heavy uniform beam, moveable in a vertical plane about a

smooth hinge fixed at one extremity, is to be sustained in a given

position by means of a rope attached to the other extremity ; find,

geometrically, the least value of the pressure on the hinge, and the

corresponding direction of the rope.

Ans. The least pressure on the hinge = JTFsina, W being the

weight of the beam and a its inclination to the vertical. Also if 6 is

the angle made by the rope with the vertical when the pressure is

least
> cot = 2 cot a + tan a.

16. A vertical post, loosely fitted into the ground, is exposed to a

uniform gale of wind
;
a rope of given length is to be attached to the

post and to the ground ;
find how the attachment is to be made, in

order that the rope may be least likely to break.

Ans. If n is the height of the post and if the length of the rope

is < h</2, the rope must make an angle of 45 with the horizon ;
but

if the length is > Ti -s/2, the rope must be attached to the top of the

post. (See example 4.)

17. A heavy beam rests with one extremity placed at the line of

intersection of a smooth horizontal and a smooth inclined plane, the

other extremity being attached to a rope which, passing over a

smooth pulley at a given point in the inclined plane, sustains a given

weight ;
find the position of equilibrium.

Ans, Let 6 be the inclination of the beam, a the inclination of

the plane, and
</>

the inclination of the rope, to the horizon ;
a the

distance of the centre of gravity of beam, b the distance of the pulley,
from the line of intersection of the planes ;

and I the length of the

beam. Then the position of equilibrium is defined by the equations

Wa cos 6 = Pb sin (a <),

b sin (a <) = Z sin (6 + <).

18. A heavy uniform beam, AB, rests with one end, B, against a

smooth inclined plane, while the other end, A, is connected with a

rope which passes over a pulley and supports a given weight ;
find

the position of equilibrium.

Ans. If a, 0, and <, are the inclinations of the plane, beam, and

rope to the horizon, W and P the weight of the beam and the

suspended weight, respectively, the position of equilibrium is defined

by the equations .

x
, .

Pcos
(</> a) = TFsm a,

2 tan 6 = tan < cot a.

The student will easily explain why no linear magnitude enters into

the result.

19. A rectangular board, A BCD, of uniform thickness, is moveable

in a vertical plane about a smooth hinge, P, in the side AD
;
the side

AB is to rest, at a given inclination to the horizon, against a smooth

peg, Q : find the position of this peg when the pressure on the hinge
is equal to the weight of the board.
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Ans. Let be the point of meeting of the forces which keep
the board in equilibrium, and the centre of gravity of the board.

Then QO must bisect the angle POG. Hence from P draw a line,

PO, making the same angle with the side AB as AB makes with the

vertical
;
and from the point, 0, of intersection of this line with the

vertical through G draw a perpendicular, OQ, on AS. This deter-

mines Q.

20. A heavy body of any form is moveable round a smooth axis

perpendicular to the vertical plane passing through the centre of

gravity, and is sustained in a given position by a rope whose weight

may be neglected. If the pressure on the axis bears a constant ratio

to the weight of the body, prove that the direction of the rope must
be a tangent to a conic whose directrix is the vertical line through the

centre of gravity, and focus the point in which the axis of suspension
cuts the above-mentioned vertical plane.

If, in the last example, QO be the direction of the rope, the ratio

7^7777
is given, and the envelope of QO, as the direction PO varies,

is a conic whose focus is P, directrix GO, and eccentricity the given
ratio.

21. In example 19, if the hinge is at the corner A, and the position

of the peg is given, find the magnitude of the pressure on the hinge.

Ans. Let c half the length of the diagonal, a angle between

the diagonal and the side AB, x = the distance of peg from A, ft
=

inclination of AB to the vertical
;
then the pressure on the hinge is

W 2cx sin/3 sin (a + /3) + c
2 sin2

(a + ff)

x

22. In the last example, find the position of the peg when the

pressure on the hinge is a minimum, and the minimum value.

Ans. At the point in AB vertically under the centre of gravity

of the board. The minimum pressure = TFcos /3.

23. A rectangular board of uniform

thickness rests in a vertical plane, with

two of its adjacent sides in contact with

two smooth pegs in the same horizontal

line
;
find the position of equilibrium.

Ans. If P and Q (see fig. 134)
be the two pegs, CA and CB the

sides in contact with P and Q, re-

spectively, a the angle made by the

diagonal CD with CB, 9 the inclination

of this diagonal to the horizon, c half

the length of the diagonal, and I the

distance PQ, the position of equilibrium is given by the equation

Fig. 139-
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24. A triangular board, ABC (fig. 139), of uniform thickness, is

placed with its base on a smooth inclined plane, its vertex being con-

nected with a string which passes over a smooth pulley and sustains

a weight. Find the conditions of equilibrium.

Ans. Assuming the inclination of the plane to be fixed, the

string must take such a direction that the perpendicular let fall on

the plane from the point of intersection of the string with the vertical

line, Gfm through the centre of gravity of the board, falls inside the

base. Hence, if Bp be the perpendicular at the extreme point of the

base, and if the string cannot cross the surface of the board, all

possible directions of the string are included between Cm and Cp.

Again, supposing the string to have a direction, On, consistent with

the possibility of equilibrium, the weight P and the reaction of the

plane are thus found : From n let fall a perpendicular on AB, meeting
it in a point, q, suppose. Then qn is the line of action of the reaction

on the plane : and, resolving along the plane, we have W sin i= P cos 0,

i being the inclination of the plane, and the angle which the string

Cn makes with the plane. This equation determines the magnitude
of P corresponding to the direction, Cn, of the string. If P is a little

greater than the value thus found, the board will begin to slip up,
and if P is less than this value, the board will begin to slip down the

plane.

25. If, in the last example, the string is parallel to the plane, find

the greatest inclination of the plane consistent with equilibrium.

Ans. Tan-^i cot A + cot B).

26. If, in the same example, the string, instead of passing over a

pulley and sustaining a weight, is knotted to a fixed peg, how are the

previous conditions of equilibrium modified 1

Ans. The only condition to be satisfied is that which has

reference to the direction of the string. This direction must be

somewhere between Cm and Cp.

27. A rectangular board is sustained on a smooth inclined plane by
a string attached to its upper corner

;
the string passes over a smooth

pulley and sustains a weight. Find the magnitude of this weight

corresponding to a given direction of the string, and find also the

pressure on the plane.

Ans. Let i be the inclination of the plane, the angle made by
the string with the plane, W the weight of the board, P the suspended

weight, and R the pressure ;
then

COS

cos

28. Show that a rectangular board cannot be sustained on a smooth



Tl6.] EXAMPLES. 157

inclined plane by a string attached to its upper corner, if the in-

clination of the plane is greater than the angle made by the diagonal
of the board with one of the sides perpendicular to the plane.

29. If a rectangular picture be hung from a smooth peg by means
of a string, of length 2 a, attached to two points symmetrically placed
at a distance 2c from each other on the upper side of the frame, show
that the only position of equilibrium is one in which this side is

horizontal if the adjacent side of the frame is greater than

2c2

V^^?'
30. A rod whose centre of gravity is not its middle point is hung

from a smooth peg by means of a string attached to its extremities
;

find the positions of equilibrium.

Ans. There are two positions in which the rod hangs vertically,

and there is a third thus defined : Let F be the extremity of the rod

remote from the centre of gravity, k the distance of the centre of

gravity from the middle point of the rod, 2 a the length of the string,

and 2 c the length of the rod
j
then measure on the string a length FP

from F equal to a (
1 + )

> and place the point P over the peg. This

will define a third position of equilibrium.

31. A smooth hemisphere is fixed on a horizontal plane, with its

convex side turned upwards arid its base lying in the plane. A heavy
uniform beam, AS, rests against the hemisphere, its extremity A

being just out of contact with the horizontal plane. Supposing that

A is attached to a rope which, passing over a smooth pulley placed

vertically over the centre of the hemisphere, sustains a weight, find

the position of equilibrium of the beam, and the requisite magnitude
of the suspended weight.

Ans. Let W be the weight of the beam, 2 a its length, P the

suspended weight, r the radius of the hemisphere, h the height of the

pulley above the plane, 6 and
(f)

the inclinations of the beam and

rope to the horizon
;
then the position of equilibrium is defined by

the equations
r cosec = h cot

</>, (1)

r cosec2 = a (tan $ + cot 0), (2)

which give the single equation for 0,

r (
r_ a sin 6 cos 6)

= ah sin
3
0. ( 3)

(4)-,COB ($6) rz

32. If, in the last example, the position and magnitude of the beam

be given, find the locus of the pulley.

Ans. A right line joining A to the point of intersection of the

reaction of the hemisphere and W.
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33. If, in the same example, the extremity, A, of the beam rest

against the plane, state how the nature of the problem is modified,
and find the position of equilibrium.

Ans. The suspended weight must be given, instead of being a

result of calculation. Equation (1) still holds, but not (2); and the

position of equilibrium is defined by the equation

34. If the fixed hemisphere be replaced by a fixed sphere or

cylinder resting on the plane, and the extremity of the beam rest on
the ground, find the position of equilibrium.

Ans. If h denote the vertical height of the pulley above the

point of contact of the sphere or cylinder with the plane, we have
/i

r cot - = h cot
(/>,

/i

Pr
(
1 + cot -cot 6) cos < = Wa cos 0.

2

35. A heavy regular polygon of any number of sides is attached

to a smooth vertical wall by a string which is fastened to the middle

point of one of its sides
; the plane of the polygon is vertical and

perpendicular to the wall, and one end of the side to which the string
is attached rests against the wall. For a given position of the poly-

gon, find the requisite direction of the string, and show that in all

positions of equilibrium the tension of the string and the pressure on
the wall are constant.

Ans. Let A be the vertex of the polygon in contact with the

wall, G the centre of gravity, the point in which the weight and
the reaction of the wall meet, and M the middle point of the side to

which the string is attached. Then the direction of the string is OM,
and, the quadrilateral GOMA being inscribable in a circle, the angle
between the string and the vertical is constant and equal to half the

angle of the polygon.

36. A square board rests with one corner against a smooth vertical

wall, the adjacent corner being attached to the wall by a string whose

length is equal to the side of the board ; prove geometrically that

the distances of the corners from the wall are proportional to 1, 3,

and 4.

37. One end, A, of a heavy uniform beam rests against a smooth
horizontal plane, and the other end, B, rests against a smooth inclined

plane; a rope attached to B passes over a smooth pulley situated

in the inclined plane, and sustains a given weight ;
find the position

of equilibrium.
Let 6 be the inclination of the beam to the horizon, a the in-

clination of the inclined plane, W the weight of the beam, and P the

suspended weight ;
then the position of equilibrium is defined by the

equation

cos0(TFsma-2P) = 0. (1)
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Hence we draw two conclusions :

(a) If the given quantities satisfy the equation W sin a 2P = 0,
the beam will rest in all positions.

(6) There is one position of equilibrium, namely, that in which
the beam is vertical.

This position requires that both planes be conceived as prolonged
through their line of intersection.

38. Discuss the second position of equilibrium in the last example,
and show that its possibility will depend on the length of the beam,
and also on the inequality W> or < P cosec a.

(N. B. In accounting for this position, the impossible supposition
that the reaction of a plane can consist of a pull must be rejected.)

39. A uniform beam, AB, moveable in a vertical plane about a

smooth horizontal axis fixed at one extremity, A, is attached by means
of a rope BC, whose weight is negligible, to a fixed point C in the

horizontal line through A, such that AB = AC
;
find the pressure on

the axis.

Ans. If = Z.CAB, W= weight of beam, the reaction is



CHAPTER VIII.

EQUILIBRIUM OF A SYSTEM OF SMOOTH BODIES UNDER THE

ACTION OF FORCES IN ONE PLANE.

117.] Action and Reaction. If in any system of bodies,

connected in any manner, A and B are two bodies in contact

between which an action of some kind is exercised; then, what-

ever be the forces with which the body A acts upon the body B,

the very same forces, reversed in directions, will constitute the

action of B on A. Let the whole system of forces acting on A,

excluding those produced by B> be denoted by (P), and let the

forces constituting the action of B on A be denoted by (R) ;

then we may sever the connexion between A and B, provided
that we have other means of producing on A the system of

forces (R). In the same way, if (Q) denote the whole system of

forces acting on B, those constituting the action of A on it

being excluded, the body B may be severed from A provided
that we have the means of producing a system of forces

( R)
on B, (R) denoting a system of forces obtained by reversing
the direction and preserving the magnitude of every force in (R).

For example, the beam CD (fig. 125) may be severed from

the other beam along any section, CB, provided that there be

introduced on CD either the single force R acting through A t

or the complex system of tensile and compressive forces which

act at the section CB. This equality of magnitude and oppo-
siteness of direction of the forces existing between two distinct

bodies in contact, or between ideally severed portions of the

same body, is sometimes spoken of as the principle of the

equality of Action and Reaction ; but it cannot be too strongly

impressed on the student that it is by no means the whole of

the Newtonian principle called by this name; for Newton

specifies several senses in which the terms Action and

Reaction can be taken, and in discussing one of them he has

explicitly anticipated, in great part, the principle of the Con-

servation of Energy as has been pointed out by Thomson and

Tait.
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118.] Examples of Internal Action. The cases which we
shall consider in this chapter are those in which the action

between two portions of a system ideally severed consists of a

single force. The simplest example of such action occurs when
a single point of one body rests against the surface of another,

the bodies being either rough or smooth. If the bodies are

smooth, the action between them consists of a single force

which is normal to the surface of contact (see p. 40) ; and if

rough, the action is still a single force which is not necessarily
normal to this surface. In all cases in which smooth spherical

joints or hinges are concerned, the action exercised on bodies

connected by them consists of a single force passing through
the centre of the joint. When rough joints are used, the action

will generally consist of a single force acting somewhere outside

the joint; or of a force and a couple acting at the joint; or,

possibly, of a couple alone. The tension of a string is also an

instance of internal action, and its nature has been already

explained in Chapter II.

Again, if we ideally separate into two portions, by an arbi-

trary surface, a mass of a perfect fluid in equilibrium, the action

of one portion on the other over a small area of the ideally

separating surface will consist of a single force acting normally
on the area. And we may always treat as a separate body any

portion whatever of a fluid in equilibrium*, provided that we

produce along the surface of this ideally separated portion all the

forces which are actually produced on it ly the fluid with which it

was surrounded. It is by such separate consideration of portions

of a fluid that we arrive at a knowledge of its internal forces or

pressures. For example, if a heavy fluid, whether compressible

or incompressible, of uniform or varying density, be contained in

a vessel, we can prove that the pressure is the same at all points,

P, Q, in the same horizontal plane. For, isolate in imagination
a horizontal cylindrical column of the fluid, having small vertical

and equal areas at P and Q for extremities, from the rest of the

fluid. Then, we may treat the cylinder of fluid PQ as a sepa-

rate body, provided that, in addition to the external force

(gravity) acting on it, we introduce the forces which it actually

* It is usually said that we may, under the above condition, imagine any
portion of the fluid to become solidified ; but this imagined solidification is not

only wholly unnecessary but misleading to the student.

M
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experienced from the surrounding fluid. Now these forces

consist of normal pressures, p and g, on the areas at P and Q,

together with normal pressures all over its curved surface, these

latter being all at right angles to the axis PQ. If now we

resolve horizontally all the forces acting on the cylinder, we get

p q = 0, or p = q.

This demonstration shows, moreover, that in the case of a

heavy viscous or imperfect fluid, the pressures are not necessarily

equal at all points in the same horizontal plane.

For, in this case, the action of the rest of the fluid on PQ
does not necessarily consist of forces normal to its surface, but

of oblique forces. Hence the horizontal component of the

pressure at P is not equal to the horizontal component at Q ;

the difference between them is equal to the sum of the hori-

zontal components of the oblique forces.

The importance of keeping such considerations in view may
be illustrated by the following example from Hydrostatics.

A conical vessel is filled with water through an aperture at

the vertex. From Hydrostatical principles it follows that the

pressure on the base of the cone is equal to the weight of a

cylindrical column of water, standing on the base, and having
a height equal to that of the cone ; that is, the pressure on the

base is much greater than the weight of the water contained

in the cone. Now if we imagine the water to become solidified.,

the curved surface of the cone may be removed, and the pressure

on the base will be equal to the weight of the ice, that is, the

weight of the water in the cone. An apparent discrepancy is

the result. But if we attend to the proviso that in the separate

consideration of the equilibrium of any portion of a system, solid

or fluid, we must produce upon the isolated portion all the forces

which were originally produced upon it by the neighbouring

portions of the solid or fluid, the difficulty disappears. In the

fluid state the liquid in contact with the curved surface of the

cone was pressed normally by a system of varying forces, and

the circumstances of the solidified body will not be the same as

those of the fluid, unless its surface is pressed in precisely the

same way. These pressures have a total vertical component,
which must be added to the weight of the block of ice in order

that we may obtain the true pressure on the base.

The action between two portions of a perfect fluid ideally
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separated by a plane surface of any area always consists of a

single force which is normal to the area ; but the action between

two portions of an elastic solid along a plane section is by no

means so simple; this latter is not generally reducible to a

single force.

119.] Equilibrium of Several Bodies Forming a System.
It will now be clear that when a system is composed of several

bodies in contact with each other, we can consider the whole set

as forming a single body in equilibrium under the action of

given external forces; or we may consider the separate equi-

librium of any one body under the action of given external forces,

and the reactions of the other bodies with which it is in contact.

A few examples of such systems have already been given ; but it

is proposed to devote the present chapter more especially to the

consideration of such questions.

EXAMPLES.

1. Two uniform beams, connected at a common extremity by a

smooth joint, are placed in a vertical plane, their other extremities,

which rest on a smooth horizontal plane, being connected by a light

rope ;
find the tension of the rope and the reaction at the joint.

Let AC and CB (fig. 140) be the beams, W and W their weights,
a and of their inclinations to the horizon, R and Sf the reactions of

the horizontal plane at A and B, and
T the tension of the rope.

If, then, we consider the two beams
v *

as forming one system, the mutual
reaction at and the tension of the

rope will be internal forces of the

system, and will therefore disappear
from, the equations of equilibrium. ,

,

'

The forces on this system are simply
W, W, R and R'.

.Resolving vertically for the equilibrium of the system,

R+K= W+W. (1)

Again, considering the equilibrium of the beam AC, the forces

acting on it are W, R, T, and the unknown reaction at C. This

latter will be eliminated by taking moments about C. Thus we get

272cosa = 2^sina+Tf cos a,

(the length of the beam dividing out), or

R=Titma + \W. (2)

Similarly, taking moments about C for the equilibrium of BC,

JB'srZ'tana'+ .JTr. (3)

M 2,
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By adding (2) and (3), and making use of (1), we get

T= (4)
2 (tan a+ tan a')

Again, let X and T be the horizontal and vertical components of

the reaction at the joint. Then, for the equilibrium of the beam AC,

Hence

W+YR = 0.

W+W~
2 (tan a + tan of)

'

TTtana-TTtana'

and d (-4J5) in (5), we get the same

2 (tan a + tan a")

If we wish to determine T by the principle of virtual work, let y be

the height of the middle point of either beam, and we have

_(JF+ W')dy-Td(AB) = (5)

for an imagined displacement in which the beams are drawn out,

while A and B remain on the ground. If AG = 2 a, BG = 2 a',

y = a sin a, ^5 = 2 a cos a + 2 of cos a'. Therefore

dy = acosada, d(AB) = 2a sinada 2a' sina'da'

sin (a+ a') . / . /= 2 a ?
- da (since from the equation a sin a = a sma we

cos a
have a cos ada = a' cos a'da').

Substituting these values of

value of T as before.

2. Two equal smooth spheres are placed inside a hollow cylinder,

open at both ends, which rests on a horizontal plane j find the least

weight of the cylinder in order that it may not be upset.
Let figure 141 represent a vertical section of the system through

the centres of the spheres. Let P be the weight of the cylinder, a its

radius, W and r the weight and radius

of each sphere, R and R' the reactions

between the cylinder and the spheres
whose centres are and 0', respectively.

Then, the only motion possible for the

cylinder is one of tilting over its edge at

the point A, in which the vertical plane

containing the forces meets it. For, con-

sider the equilibrium of the lower sphere
which rests against the ground at D.

This sphere is in equilibrium under the influence of ff (reversed in

figure), the reaction of the upper sphere, S, acting in the line 00', its

weight, TF, and the reaction of the ground at D. Now, since three of

these forces pass through 0', the reaction of the ground, whether the
latter is rough or smooth, must also pass through (/. Hence, if 9 be
the angle which 00' makes with the horizon, we have for the equi-
librium of the lower sphere, resolving horizontally,

(i)

Fig. 1-41.
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The upper sphere is in equilibrium under the action of R (reversed
in figure), W, and S. Hence for its equilibrium we have in the same

way, .# = #0080; (2)

/. R = R'.
(3)

Again, the cylinder is in equilibrium under the action of R, R', P,
and the reaction of the ground. Resolving horizontally for its equi-
librium, we have the horizontal component of the reaction of the

ground = R Rf = 0. Hence, even if the ground is rough, there is

no tendency to slip, and the only way in which equilibrium can be
broken is by turning round A.

Taking moments, then, about A, the point at which the reaction of

the ground acts, we have for the equilibrium of the cylinder

(4)

(5)

(6)

or ra -

Again, for the equilibrium of the upper sphere, we have

=**. -fu~.+-w

Substituting this value of R in (4), we have

Pa = 2 Wr cos 0.

cos# = arBut evidently

therefore, finally,
t*

3. A heavy beam is moveable in a vertical plane round a smooth

hinge fixed at one extremity; a heavy sphere is attached to the hinge

by a string ;
the two bodies rest in contact ;

find the position of equi-
librium and the internal reactions, there being no friction between the

bodies.

Let
(fig. 142) be the hinge, OA the string by which the sphere

is attached, the inclination of the

string to the vertical, Cm, <f)
the in-

clination of the beam to the vertical,

W the weight and r the radius of the

sphere, I the length of the string, a
the distance between and 6r, the

centre of gravity of the bearia, and P
its weight.

Then, considering the sphere and
beam as one system, this system is

acted on by the given forces W and

P, by the tension of the string, and

by the resistance of the hinge. The
two latter forces will be eliminated by

taking moments about 0. "We have

then

W.0m = P. On,

Fig. 142.
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Om and On being perpendiculars from on the lines of action of W
and P. But Om = (l+r) sin 0, and On = a sin <

;
therefore

W.(l+r)sm0 = P.asmcf). (1)

This is the statical equation connecting and
</> ; the geometrical

equation is

sin COB = -

l+ r
or

(2)

(1) and (2) determine 6 and <, and therefore the position of equili-
brium. If R is the mutual reaction of the sphere and the beam, we
have, by considering the equilibrium of the sphere alone,

Again, if the string is attached to the hinge but not to the beam,
and if X and T are the horizontal and vertical components of the

pressure of the beam on the hinge, we have for the equilibrium of the

beam

Hence, if S is the resultant ofX and F,

sin sin

COS

cos (0 + 0) cos
2 (4)

Evidently acts in the line OD, which joins the hinge to the point
of intersection of P and R.

If the string is attached to the beam, X and T are the components
of the resultant of the tension of the string and the pressure on the

hinge.
4. Two heavy uniform rods are

freely jointed at a common ex-

tremity, and are connected at

their other extremities with two
smooth hinges in the same hori-

zontal line. Kequired the mag-
nitudes and directions of the

pressures on the hinges, and the

mutual reaction between the rods.

Let AC and CB (fig. 143) be

the rods; TFand IF
7
their weights,

-y^ _,. acting through their middle points,

/ and g ;
a and a their inclina-

tions to the horizon
;
R the mutual reaction at C] S and S' the
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pressures on the hinges A and B, G the centre of gravity of the

system of two rods
;
and 6 the inclination of R to the horizon.

Consider the equilibrium of AC alone. It is acted on by three

forces W, R, and S; and since we have drawn the line OC to represent
the direction of R, the direction of S must be Aq, q being the point of

intersection of W and R. By taking moments about A for the equili-
brium of AC, we shall express R in terms of TF, a, and 6

;
and by

taking moments about B for the equilibrium of BC, we shall express
R in terms of W, a?, and 9 ; equating the two values of R thus

obtained, we get a value for tan 6 which is obtained by dividing the

value of Y by that of X in example 1 .

Considering the two rods as one system, this system is acted on by
the three external forces, S, &, and W+ W acting vertically through
G. Hence these must meet in a point, Q.

It is evident that this problem is the same as that in example 1, and
that if the reactions -S and S' are resolved each into a vertical and a

horizontal component, the horizontal components will be equal and

opposite (by considering the two rods as one body and resolving

horizontally). These horizontal components have each the value of

the tension of the rope in example 1, and the vertical components are

the values of R and R'. Thus the problem might be completely solved

analytically.
Geometrical Solution*, The direction of the resistance at the joint C

can be easily determined as follows : from A and B draw two lines to

any point, Z>, on the line QG ;
let AD meet qf\n E, and let BD meet

rg in H. Then the line EH will meet AB in 0, the point through
which the line of resistance at C passes. For, the triangles qrQ and
EHD are such that the lines, Eqt DQ, Hr, joining corresponding
vertices meet in a point (are parallel), therefore, by the well known

property of triangles in perspective (which has been given at p. 109),
the intersections, A, B, 0, of corresponding sides must lie on a

right line. Hence is determined, and therefore OC, the line of

resistance.

The direction of R can also be found thus geometrically :

Since qrO is a transversal cutting the sides of a triangle A QB, we have

AO Aq Or Am np Am np_ _ _ _
v> ^ _ v^ _ . _ y L

OB
~

qQ rB mn pB pB mn

Am gG AC cos a W
= ~ X = ''

But A0 =^
g

,and OB =BC. therefore

sin (a + 0) _ cos a JF
sin(a

/

-0)~^cW''Tr'

from which we get the same value of tan as before.

* This elegant solution was suggested to me by Mr. Henry Reilly.
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5. A sphere and a cone, each resting on a smooth inclined plane,

are placed in contact
;

find the position of equilibrium of the system,

and the reactions of the planes.

Let the sphere rest on the

plane OA (fig. 144) whose in-

clination to the horizon is a, and

the cone on OB who^e inclina-

tion is a'; let W and W be the

weights of the sphere and cone,

R the mutual reaction between

them, S the reaction of the plane
OA on the sphere, T the re-

action of OB on the cone, and
let y be the semivertical angle
of the cone.

For the equilibrium of the

sphere we have

r 1t>4\

R=W

J 44-

COS
, x

a-y)

and for the equilibrium of the cone

R = W.,
sm a -y-
cos y

From (1) and (2) we have

W
cos (a + a

7

y) cosy

(2)

(3)

an equation which, instead of giving a position of equilibrium, gives a
condition to be satisfied in order that equilibrium may be at all

possible.
It is evident that (3) is the only statical equation that can be

obtained without involving the unknown reactions. Hence, if it is

satisfied, every position in which the bodies are placed is one of equili-

brium; and if it is not satisfied, the problem must be radically

changed, and one or other of the two bodies must rest in contact with
both planes. Suppose the cone in contact with both planes.

Here there are only three forces acting on the sphere, and there are

four forces acting on the cone, viz., W9 R, T, and F, the reaction of

the plane OA, which is perpendicular to OA. R must now be

determined from the equilibrium of the sphere. Thus

R= W sin a

cos(a + a
/

y)

To determine F, consider the equilibrium of the cone, and resolve

along OB. Then
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sin a cos y
-]

cosec (a + a').

To determine the magnitude
of T, resolve the forces on the

cone in the direction OA. Then

sin a

sin (a+ a')

The point 'N at which T acts

is obtained by taking moments
about for the equilibrium of

the cone. We thus get

T.ON= W'h (tan y cos a'- - sin a') + Rr cot (-

r being the radius of the sphere, and h the height of the cone.

ON is obtained by substituting in this equation the values of T and
R given above, and it is geometrically evident that the point N lies

between the foot of the perpendicular from P on OB and the foot of

the perpendicular from the intersection of F and W on OB.
If the sphere is in contact with both planes, the discussion proceeds

in a similar manner. R is then determined from the equilibrium of

the cone, T acts in the perpendicular from P on OB, and the re-

actions of the planes on the sphere are easily calculated.

If the weight of the sphere be greater than the value "> S\ c

_

sn a cos. y

given by (3), it is sufficiently clear that the sphere will descend to

contact with the plane
OB

;
whereas if it is less

than this value, the cone

will descend.

If the condition
( 3) is

satisfied, the reaction T
of the plane OB on the

cone is easily found. For,
let the directions of W
and R meet in P

;
then

T must act in the per-

pendicular, PQ, from P
on OB, and

T = r. cos(a
'~ y

).

cosy

Similarly S may be Fig. 146.

found.

6. Two blocks, AC and BO (fig. 146), rest against two fixed
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supports at A and B, and against each other at C\ each is acted on by
a given force (in addition to its weight) ;

find the lines of resistance

at A, B, C.

Ans. Let the resultant of the weight of the block AC and the

force applied to it be the force P
;

let the resultant of the weight of

BC and the force applied to it be Q ;
and let the resultant of P and Q

be R. Draw the line AB
;
take any point, h, on R, and draw Ah and

Bh, meeting P and Q in / and g, respectively. Then the line fg will

intersect AB in 0, the point through which the line of resistance at

passes. Draw OC, and let it meet P in F and Q in 6r. Then AF and

BCr are the lines of resistance at A and B. (See example 4.)

120.] System of Jointed Bars. When a system consists of

a number of rods or bars

articulated, or connected

together by smooth joints,

there will be exerted at the

extremities of each rod cer-

tain forces, or stresses, which

are produced by the con-

necting joints, and the cal-

culation of the directions

and magnitudes of these

stresses forms an important part of Statics as applied to the

construction of framework.

The joint connecting any two bars may be either a portion of

one of the bars or a hinge-pin distinct from both bars, and the

directions of the stresses at the extremities of a bar will depend
on the manner in which, the external forces are applied. Let us

suppose that the joints at B and C (fig. 147), which connect the

bar BC with the neighbouring bars, are distinct from BC itself,

and that the forces applied to the system act at and on the joints.

Then the stresses produced at B and C on the bar BC act along
this bar. For, the only forces* acting on the bar are the re-

actions of the joints B and C, and when two forces keep a body
in equilibrium, they must be equal and opposite. Hence the

stresses must act along BC. Suppose, however, that the forces,

still applied at the joints, act on the extremities of the bar BC
itself, and let fig. 148 represent the bar apart from the joints.

Let the forces applied to it be P and Q. Now the smooth joints

must produce reactions which act on the bar through the centres

* The weight of the bar is supposed to be neglected.
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of the joints (see p. 140). Hence

equilibrium by forces acting at

its extremities, and therefore the

resultant of the forces at B must

be a force acting in the direction

BC or CB, and the resultant of

the forces at C must be a force

acting in the direction CB or

BC. Hence the stresses pro-

duced by the joints cannot act

BC is again kept in

Fig. 148.

along the bar, but must assume some such directions as R and S.

Thus, in any system of articulated bars, when the external forces

are applied at the joints} the stresses will le in the directions of the

oars only when the externalforces act at the joints on pins which

are distinctfrom the bars which they connect.

121.] Theorem. When a system of articulated bars is in

equilibrium under the action of external forces applied at given

points in the bars, the statical condition of the system may be

determined by resolving the force applied to each bar into any
two components acting on the joints at its extremities, and then

representing each joint as in equilibrium under the action of the

components transferred to it together with stresses acting on it

along the directions of the bars which it connects.

Let fig. 149 represent one of the bars detached from the

T

P IF

Fig. 149. Fig. 150.

joints at its extremities, and let fig. 150 represent the joint

which connected the bars AB and BC (fig. 147). If a force F
is applied to BC, it is, of course, allowable to break it up into

any two components, P and Q, acting on the bar. Let P and
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Q act on the bar at its extremities, and let R be the reaction of

the joint at B on the bar, and S that of the joint at C. The

bar is then kept in equilibrium by the forces P and R at B, and

the forces Q and S at C. Hence the resultant of P and R must

be a force, T, along the bar; that is to say, if the forces P and

R act at any point, they produce a resultant T\ or again, if we

reverse the directions of R and jT(as in fig. 150), the forces P
and T are equivalent to R. Now the joint was kept in equi-

librium by the equal and opposite reactions, R and R' (fig. 150)

of the bars BC and AB. But we have just shown that R is

equivalent to the transferred component P of the force F and the

stress T, acting along CB. In the same way, R' may be replaced

by a component of the force K (fig. 147) acting on AB and a

stress acting along AB.

We may, then, replace the external forces, K, F... (fig. 147)
which act on the bars by any system of components passing

through the centres of the joints, and represent two equal and

opposite stresses as acting at the extremities and in the direction

of each bar of the system. But it must be remembered that the

stresses thus calculated (sueh as T, fig. 149) are not the total

stresses at the joints.

The stress in each bar, thus calculated, is the resultant of the

total stress at thejoint and the component of theforce acting on the

bar which has been transferred to the joint.

For example, the stress along the bar AB is the resultant of

the total stress, R, and the component of K which has been

transferred to the joint B.

The external forces, F, K, . . . may be each broken up into two

components passing through the centres of the corresponding

joints in an infinite number of ways. In the calculation of

stresses in framework it is usual to break each of them up into

two parallel forces.

122.] Method of Separation of the Bars. Another method,

which is not really distinct from the preceding, but which is

sometimes convenient in practice, consists in representing the

bars as disjointed from each other, and replacing the stresses by
two rectangular components at their extremities. A single

example will suffice.

Four equal uniform bars, AB, BC, CD, and DE (fig. 151) are
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connected by smooth joints at B, C, and D, and the extremities

A, E are fixed in a horizontal line by smooth joints; it is

required to find the position of equilibrium.

Let a be the common inclination of AB and ED to the

horizon, and ft that of CB and CD.

Let fig. 152 represent the bars AB and BC separated ;
X2 the

stress at C, which is evidently horizontal
;
X1 and Fx

the compo-
nents of the stress at B. These components act on AB in

directions opposite to those in which they act on BC. Finally,

let W be the weight of each bar.

Kesolving vertically for the equilibrium of BC}

ii = r. (i)

Taking moments about C for the equilibrium of BC,

2X1 sin ft+ TFcos ft
= 2Tl cos /3,

or -Xi
= J ^cot ft. (2)

Taking moments about A for the equilibrium of AB>

(W+ 2 Ti) cos a = 2XX sin a,

or, substituting the values of X and Jj from (2) and (1),

tana = 3tan/3. (3)

With this equation must be combined the geometrical equa-

tion which expresses that AE is equal to the sum of the hori-

zontal projections of the bars. If the length of each bar is ,

and the distance AE = c, we have

c = 2 a (cos a + cos /3). (4)

Equations (3) and (4) determine a and /3, and therefore the

position of equilibrium*
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EXAMPLES.

1. A triangular system of bars, AB, SO, and GA, freely jointed at

their extremities, is kept in equilibrium by three forces acting on the

joints ;
determine the stress in each bar.

Since the forces are applied directly to the joints, the stresses will

act along the bars. Let P, Q, R denote the forces applied at A
t B, C,

respectively ;
let the stresses in the sides BG, GA,AB be denoted by

Tlt
T

2 ,
T

s ;
and let the applied forces meet in a point 0.

Then for the equilibrium of the joint G, we have

TiianAGO a.OA .smAOG
b.OB.smBOO'

Therefore
a, b, c, being the sides of the triangle.

But P : Q : R = sin BOG : sin GOA : sin AOB.
Tl _a.OA.Q

a.OAb.OB.c.OG
^1-^2^3- p Q g~

If is the centroid of the triangle, we know (p. 135) that

therefore T :T =
or the stresses are proportional to the sides.

If is the orthocentre (or intersection of perpendiculars),

therefore = OA : OB : OG.

2. A number of bars are jointed together at their extremities and
form a polygon ; each bar is acted upon perpendicularly by a force

proportional to its length, and all these forces emanate from a fixed

point. Find the magnitudes
and directions of the stresses

at the joints.

[This problem and the

following elegant method of

solution are due to Professor

"Wolstenholme.]
Let AB and EC

(fig. 153)
be any two adjacent bars of

the polygon, and let P be the

point from which emanate the

forces, Pp, Pq, ... , acting on
the bars. Then the stresses

at the joints A and B, acting

753.
on AB, must meet in a point,

/;,
on the line of action of the

force Pp. Draw AQ and BQ perpendicular to the stresses in the
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directions Ap and Bp. Now since the sides of the triangle AQB are

perpendicular to three forces which are in equilibrium, and since the
side AB is proportional to the force to which it is perpendicular, the

sides AQ and BQ are proportional to the forces to which they are

perpendicular, that is, to the stresses at A and B, respectively.
Let q be the point in which Bp intersects Pq. Then the forces acting

on the bar BG must act in the directions qB, Pq, and qC. Draw CQ.
In the triangle BQG the sides BQ and BO are perpendicular and

proportional to two of three forces in equilibrium ;
therefore CQ is

perpendicular and proportional to the third, that is, to the stress at 0.

In the same way it can be shown that the stress at any joint is

perpendicular and proportional to the line joining the joint to Q.
This point Q is, therefore, a centre of stress for the system. It may be

shown that the polygon of bars must be inscribable in a circle. For,
since the angles at A and B are right, the quadrilateral ApBQ is

inscribable in a circle whose diameter is pQ. If at the middle point
of AB a perpendicular be drawn to AB, it will pass through the

centre of the circle, and will, therefore, bisect Qp. But this perpen-
dicular is parallel to Pp j therefore it bisects PQ in 0. Also, since

the stresses at A and B are proportional to QA and QB, the same

point Q must be determined by considering BC and the next bar, as

was determined from the bars AB and BG ; consequently the point
must be the same

;
and since it is evident that OB = 00 . . .

,
must

be equally distant from all the vertices of the polygon, that is, the

polygon must be inscribable in a circle.

The centre of stress is therefore constructed by joiningP to the centre

of the circumscribing circle, and producing PO to Q so that PO= OQ.
3. The preceding construction can be extended to the case in which

the forces acting on the polygon are equally inclined, but not perpen-

dicular, to the sides.

Let AB, BC, ... be sides of the polygon, and let forces propor-
tional to the sides act in the lines Pb, PC, ... so that LPbB LPcG
= ... . It is required to prove
that for equilibrium the poly-

gon must be inscribable in a

circle, and to find the centre

of stress. The stresses at A
and B must meet in a point
on the force in Pb. If, then,

we draw at A and B lines,

QA and QB, making with the

directions of the stresses angles

equal to LPbB, we shall have

a triangle, QAB, the sides of

which are each equally inclined

to thecorresponding force; and,
since AB is proportional to

-p.

the force in Pb, it follows that

QA and QB are proportional to the stresses at A and B. It is easy
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to prove that if through A and B any two lines, Ap and Bp, be drawn,

meeting in a point on the right line Pb ; and at A and B lines, AQ
and BQ, be drawn making with Ap and Bp, respectively, angles equal
to PbB, the locus of Q is a right line, ma, making Aa = Bb, and
Z maB = L mbA . Drawing the line Qd, in like manner, by making
Cd = Be and Z QdB = PcC, we obtain the point Q which is the centre

of stress.

Now, since LPcG= Z PbB, it follows that Z 6Pc is the supplement
ofZ B

;
and since Z $a.4 = Z $cB, it also follows that Z a$w = IT B.

Hence the quadrilateral mPnQ is inscribable in a circle, and this

circle must pass through 0, the point of intersection of the perpen-
diculars to AB and BG drawn at their middle points, since LmOn is

also the supplement of B. Hence also

= -ncC, and QO = OP.

Again, the stresses at A and B being proportional to QA and QB,
the same point Q must be determined when BC and the next bar are

considered. Hence the point is the same. But OA = OB
= OG = . . .

; therefore the polygon is inscribable in a circle.

The point P being given, if the angle which the forces through it

make with the corresponding bars varies, the locus of the centre of

stress, Q, is a circle concentric with that round the polygon, its radius

being OP. To construct the centre of stress, then, we describe a

circle round as centre, having radius OP, and draw PQ making the

Z OPQ = the complement of the angle which the forces make with

the bars.

4. A system of heavy bars,

freely articulated, is suspended
from two fixed points, P and Q
(fig. 155); determine the magni-___ tudes and directions of the stresses

at the joints.
FiS- J 5S- Let the bars be denoted by the

numbers 1, 2, 3,..., and let their weights be Wlt W2 ,
TF

3 ,
... . Then

,
transfer JW1

and JW2
to the joint connecting 1 and 2,

which we shall denote by (1, 2). Transfer JTF2 and
TF

3
to the joint (2, 3); \WZ

and JTF4 to (3, 4), &c.

Thus all the forces act at the joints. Let Tlt

T
z ,
T

s ,
... be the tensions acting along the bars 1, 2,

3, ... on the joints, and let
12 , $23 , /S^, ... be the total

stresses at the joints (1, 2), (2, 3), (3, 4), .... For sim-

plicity suppose the bar 2 to be horizontal. Now, con-

struct a force-diagram (fig. 156), by drawing a vertical

line, AD, and measuring off

4B - W*+ W*
F

2 +F- TT
3 +TT4

Fig. 156. ~T~ ~~2~ ~2~
Also take BO parallel to the bar 2 and equal to the tension T2 ,

which is the constant horizontal component of each of the tensions.
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The lines OA, OC, OD, ... will then be parallel to the bars 1, 3,

4, ... and equal to the tensions in them. Hence if a be the in-

clination of 3 to the horizon,

tana,

and in the same way the inclinations of the other bars may be ex-

pressed in terms of the inclination a.

W
Again (Art. 121), the stress S12

is the resultant of 7\ and -*

W
Hence, taking Aa = -, Oa will be equal and parallel to S

1Z
.

a

W. W
Similarly, taking Bb = 2

, and Cc = -> the lines Ob and Oc will

be equal and parallel to the stresses /S^ and
34

. The tangent of

the angle made by S23 with the horizon = = -
; ^ tan a.

J3\J rf o "l ^'3

Similarly for the directions of the other stresses.

If the weights of the bars are all equal, the tangents of the inclina-

tions of the successive bars are tan a, 2 tan a, 3 tan a, ...
,
and the

tangents of the inclinations of the stresses are J tan a, f tan a,

f tan a, , . . .

5. Six equal uniform bars, freely articulated at their extremities,
form a hexagon ABCDEF (fig. 157). The bar
ED is fixed in a horizontal position, and its

middle point is connected by a string with the

middle point of the lowest bar, AB, in such a

manner that the bars hang in the form of a

regular hexagon. Find, by a force-diagram, the

tension of the string and the magnitudes and
directions of the stresses at B and C.

Am. If W is the weight of each bar, the

tension of the string = 3 W] the stress at C is

W /To
horizontal, and =

; the stress at B = W A / > and makes
2VV /Y 12

with the horizon an angle whose tangent = 2 \/3.

6. Prove that the centre of stress for the bar BC is the intersection

of a perpendicular to BC at C with the line joining the middle points
of AB and BG.

7. Three bars, freely articulated, form a triangle ABC, the centre

of whose inscribed circle is 0. Each bar is acted on by a force

passing through 0, proportional to the sine of half the angle subtended

by the bar at 0, and bisecting this angle. Prove that the stress at

A makes with OA an angle whose tangent is

N
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sin

COS
-y-

COS

(This is a direct example of the Theorem of Art. 121.)

8. AB (fig. 158) is a rigid bar whose weight is neglected fixed at

one extremity, A, by a smooth joint ;
CD is

A O another such bar fixed at C by a smooth joint,

which is vertically below A, and jointed to

AB at D. From B a given weight, P, is

suspended ;
find the magnitudes and direc-

tions of the stresses at the joints.

Ans. The stresses at C and D are

AB.CD

Fig. 158.

along CD, and each = P. the
AC. AD'

stress at A is in A 0, being the intersection

of CD produced with the vertical through B, and

AC.AD
9. In example 5, if the bars BC and CD, AF and FE, are

replaced by any bars all equally inclined to the horizon, show that the

stresses at C and F will still be horizontal.

[One simple proof of this is obtained by taking moments about B
for the equilibrium of BC, and about D for the equilibrium of CD.
It follows then that the perpendiculars from B and D on the line of

action of stress at C are equal.]

10. Two uniform heavy bars are freely jointed at a common ex-

tremity, and are fixed at their other extremities to

two smooth joints in a vertical line; find the

stresses at the joints.

Ans. Let G (fig. 159) be the centre of gravity
of the bars, m and n their middle points. It follows,

by taking moments about A and C for the equi-

librium of the bars separately, that the segments of

AC made by the line of action of stress a B are pro-

portional to the weights of the bars. Hence, taking

ng = mG, the stress acts in the line gB. The
stresses at A and C act, therefore, in Ag and Cg.

If W is the weight of AB, the stress at B \ W > and the stress at

aA 9n
A = \W- Hence the stresses at A, B, and C are proportional to

gA, gB, and gC.

11. The regular hexagon of bars in example 5 rests in a vertical

plane, the bar AB being fixed in a horizontal position, and the joints
F and C are connected by a string ;

find the tension of the string, and

the stresses acting on the bar FE at its extremities.

Fig. 159-
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Ans. The tension = TF^/3 (W being the weight of each bar)
.

W /7 /s'
the stress at E = A / ' an(* it makes with FE sin"1

\ A / -
;

2 V V 7

V31
/ o

5 and it makes with -F^ sin"1 * A /
3

:

7V 31
12. Four equal uniform heavy bars, freely jointed together at their

extremities, form a square, ABGD] the joint A is fixed, while the

diagonally opposite joints B and D are connected by a string, and the
whole system rests in a vertical plane, the string being horizontal ;

find the tension of the string and the magnitudes and directions of

the stresses on the bars at A, B, and G.

Ans. The tension =2 IT; the stress at G is horizontal and
= \W j

the stress on the bar BG at B makes with the vertical tan"1

J,

and= W-', the stress on AB at B makes with the vertical tan"1

!,

and= W
; and the stress on AB at A intersects the line BD at

2

a distance |BD from B, and is equal to
-f
W.

13. Six equal uniform bars, freely jointed at their extremities, form
a regular hexagon, ABGDEF] the joint D is connected by strings with
the joints F, A, and

,
and the system hangs in a vertical plane, the

joint D being fixed
;
find the tensions of the strings and the stresses

at the joints.

Ans. If W = weight of each bar, the tensions in the strings DB
and DF are each JFV's, and the tension in DA = 2W. Also, supposing
the strings to be connected with pins distinct from the bars, the

stresses at C and E are vertical and equal to J W, the stresses at B
and F, on the bars AB and AF, are horizontal and equal to \ WV%,
and the stresses at A, on the bars AB and AF, are each equal to

\ WVl. These latter stresses act in the lines drawn from A to the

middle points of the two vertical bars, BG and FE, respectively.

14. Two uniform heavy bars, AB and 0, connected by a smooth

joint at B, rest each on a smooth vertical prop, the props being of the

same height ;
find the position of equilibrium, ABC being horizontal.

Ans. If IF and 2 a are the weight and length of AB, W and 26
the weight and length of BG, c the distance between the props ; then

x, the distance of the middle point of AB from the corresponding

prop, is given by the equation

N 2



CHAPTER IX.

EQUILIBRIUM OF ROUGH BODIES UNDER THE INFLUENCE OF

FORCES IN ONE PLANE.

123.] Criterion of the Existence of Friction. We have

already learned to regard Friction as a passive resistance ; and

every passive resistance comes into existence for the purpose of

stopping some motion. Thus, the normal reaction of a surface

on a body in contact with it comes into existence for the pur-

pose of preventing the body from penetrating the surface at the

point of contact; and if the circumstances of the case were so

arranged that there was no tendency to this penetration, the

magnitude of the force (normal resistance) required to prevent
this motion would be zero.

Friction comes into existence for the purpose of preventing a

certain motion motion in the tangent plane of a body resting

against a rough surface. If the circumstances in any case of

two rough bodies in contact are such that there is no tendency
to slip at their point of contact, the force required to prevent
this motion (friction) will not come into existence.

Generally, in the case of all passive resistances, if there is no

tendency to the displacement which a passive resistance is required

to prevent, thisforce will not come into play.

Hence in many cases of contact between rough bodies the

conditions and circumstances are exactly the same as if the

bodies were smooth
;
and to find whether in the contact of

two bodies friction acts or not imagine that the bodies were

smooth at their point of contact, and if no displacement would result

from this supposition, friction does not come into play at that point.

In illustration of this consider the problem in example 21,

p. 155. How would the circumstances be altered if the peg Q
were rough ?

The peg being rough, let it be imagined to become smooth,
and what motion occurs ? Clearly none, supposing the board to
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be rigid. Hence as there is no tendency of the side AS to slip

over the peg, there is no friction called into play, and the case is

the same as if the peg were smooth. But if the board is not

rigid, the forces acting can bend its fibres and elongate or

contract them
;
and if we imagine the peg to become smooth,

it is possible that (even a very slight) slipping might ensue at

the peg, and as this slipping is prevented by the roughness, the

force of friction really acts in the case, and the pressure on the

hinge is modified by the assumption of smoothness at the peg.

However, even when the board is elastic, it is possible that no

friction is called into play, as will be explained in Art. 130.

Rankine's hint that friction is analogous to shearing stress

has been already pointed out.

124.] The Cone of Friction. The essential characteristic of

a smooth surface is that it is capable of

resisting in a normal direction only. If

two rough surfaces are in contact, their

mutual reaction is not constrained to

assume a direction normal to the sur-

face of contact. Each surface is capable

of offering resistance to the other in any
direction which does not make with the

normal to the surface of contact an angle

exceeding a certain magnitude. Thus
(fig. 160), let two rough

bodies, A and
,
be in contact at any point, P, and let PN be

the normal to the surface of contact.

Let A. denote the greatest angle that the total resistance at P
can make with PN, or, in other words, the greatest obliquity of

the mutual reaction ; then, describing round PN a right cone,

CQD, whose semivertical angle, NPJ), is equal to A, this cone is

called the cone offriction, and the total resistance at P can act

in any direction whatever included within this cone. This

angle A. is what we have called in Chap. Ill the angle offriction,

and its tangent is the coefficient offriction for the two surfaces

considered. For, if R-^ denote the normal pressure between

them at P, and F the force of friction (which acts in the

common tangent plane), it is clear that when the resultant of

R! and F acts along any generator, PD, of the cone, we have
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so that tan X is the greatest ratio of the force of friction to the

normal pressure. This quantity we have called //.

If a rigid weightless rod, M (p. 40), be pressed against a

rough surface at 0, the greatest angle that the rod can make

with the normal is the angle of friction. For, since the rod is

acted on by only two forces, viz., the applied pressure and the

total resistance at 0, these must be equal and opposite, or along
the rod. Hence the greatest obliquity of the rod to the normal

is A.

If the resistance to slipping is not the same in different

azimuths, i. e., if it is different in different planes through the

normal, the value of A. will not be the same in all these planes,

and the cone of friction will not be a right circular cone.

125.] Axiomatic Law of Friction. We have said that the

total resistance of a rigid surface is a force which can assume

any magnitude. This force will in any given case be exerted

by the surface to such an extent as is necessary to preserve equi-

librium, but to no greater extent. It is in its nature a passive

resistance, i.e., one which can be exerted to any extent, but

which will not be exerted beyond the bare requirements of the

case. Within certain limits, also, as we have seen, it can

assume any direction, and in any given case it will, if possible,

assume such a direction as will preserve equilibrium. In fact,

in virtue of its passive nature, we must regard the resistance of

a rough surface as an opposition called into existence by the

action of external forces
; and it seems clear that these forces

will call into play only that amount of opposing force, exact

both in magnitude and in direction, which will just counteract

their own action.

The amount of assumption contained in this principle is

enunciated in the following axiom :

The total resistance which acts at any point of a rough surface

will, if possible, assume such a magnitude and direction as will

preserve equilibrium at that point.

This axiom is sometimes expressed thus : Ifpassive resistances

can give equilibrium, they will.

126.] Remarks on this Axiom. Two important observations

must be made on the principles contained in this axiom.

Firstly, it is important to understand the circumstances which

may render it impossible for the resistances of rough surfaces to
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preserve the equilibrium of a system in any given position.
Suppose that a body, acted on by given external forces, is in
contact with a rough surface at a single point, P. Then, for

equilibrium, it is necessary that the resultant of the given
external forces should pass through P, and that the total re-

sistance at P should be equal and opposite to this resultant.
But if the direction of the resultant makes with the normal
to the surface of contact at P an angle > A, it is impossible that
the total resistance could take the required direction, and equi-
librium cannot subsist.

Again, take the case in which a heavy beam, AB (fig. 161),
rests against a rough horizontal and
an equally rough vertical plane.
Describe round the normals to the

planes at A and B the cones of

friction, and let the sections of

these cones by the plane of the

figure be rAs and pBs. Let G be

the centre of gravity of the beam,
and Fthe vertical line through it.

Then the beam, if in equilibrium, is so under the action of

three forces, namely, the weight through G and the total

resistances at A and B. These three forces must meet in a

point, and if it be possible to find a point in which they can

meet, the resistances will assume proper values. Now, in the

figure it is impossible to find any point on GF, the line of action

of the weight, the lines drawn from which to A and B could be

directions of possible resistance at 'both A and B. For the

portion of GF which is inside the cone of friction at B is

outside the cone of friction at A, and vice versa. Hence, for

equilibrium, there must be some portion of the line GF included in

the space, pqrs, common to both cones offriction.
Unless this condition is satisfied, it is not possible for the

total resistances to give equilibrium,, whatever their magnitudes

may be. A possible position of equilibrium is represented in

fig. 162. For, if from any point on the portion, mn, of GF
which is included in the space common to both cones of friction,

lines be drawn to A and B, these lines are possible directions of

total resistance at A and B
;
and in this case the actual magni-

tudes and directions of the resistances at A and B cannot be

determined by what is called Rational Statics.
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If it be proposed to find the position of limiting equilibrium,

that is, the position in which the beam is bordering on motion,

we must make the vertical through G pass through r, as in

fig. 163.
In this case there is only one point on GV which is inside

both cones of friction, viz., the point r. Hence the total re-

A

Fig. 162. Fig. 163.

sistances act in rA and rJ5, and each makes the limiting angle

(A) with the corresponding normal. Moreover, both resistances

are now determinate. If 6 be the angle made by the beam

with the horizon, we have, from the triangle ArB,

2cotrGB = CQlArGeoiBrG,

or 2 tan 6 = cot A tan A,

which defines the position of limiting equilibrium.

It may, therefore, in certain cases be impossible for the total

resistance at one or more points to preserve equilibrium ;
and

this impossibility is always due to something in the arrangement
of the figure or the external forces which requires the direction

of the resistance to make with the normal to the surface of

contact an angle > the angle of friction.

Again, in the axiom is contained the following important

proposition :

If a body rests against a rough surface at a pointy and if the

equilibrium is about to be broken by some change in the actingforces}

equilibrium at that point will, if possible, be broken by a rolling

instead of a sliding motion.
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For, in this case, the point of the body actually in contact

with the surface would be kept at rest. This part of the axiom

is sometimes stated thus If a body can roll, it will roll, in

preference to slipping. Exactly the same considerations as before

determine the possibility or impossibility of the rolling motion.

Such a motion will always take place if it does not require the

total resistance to make with the normal to the surface of con-

tact an angle > A.

For example, let us discuss the following problem :

A heavy cubical block rests on a rough

horizontalplane, and a string, attached to \

the middle of one of the upper edgespasses

over a smooth pulley, and sustains a

weight which is gradually increased. Find

the nature of the initial motion of the

block, the string and the vertical through

the centre of gravity of the block being in Fig. 164.

the same vertical plane.

Let ABC (fig. 164) be the vertical plane in which all the

forces act
;

CO the line of the string, intersecting the

vertical through the centre of gravity of the block in ; P the

suspended weight, and JFthe weight of the block. (Since the

length of the string is immaterial, no linear magnitude can

enter into the result, therefore the side of the block need not be

known.)
Now in all such cases as this, it is necessary to observe the

following rules :

1. Write down the motions of the system which are geo-

metrically possible.

2. Exclude those which would obviously violate any of the

fundamental rules of Statics.

3. If there remain possible cases of slipping and rolling (or

turning over), solve the problem on the supposition that equi-

librium is broken in the latter way, and if this does not require

too great a value of the angle of friction, equilibrium will be

broken in this way.
In the present case, the following motions are geometrically

possible :

(a) The block may be lifted vertically off the plane.

(/3) It may turn round the edge A.
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(y) It may slide in the direction AS.

(b) It may turn round the edge B.

Now (a) is obviously excluded, because if the block is just out

of contact with the horizontal plane, it is acted on by only two

forces, namely, its own weight and the tension of the string.

But since these cannot be equal and opposite, equilibrium cannot

be broken in this way.

Suppose (/3)
to happen. Then the total resistance of the plane

passes through A and through 0. But it is impossible that

three forces acting in the directions of AO, OC, and OW could

be in equilibrium. Hence
(/3)

is excluded.

The cases (y) and (8) remain. Now in virtue of the principle,

if
(5) is possible, it will happen. Solve, then, on the supposition

that the block turns round B. It is then kept in equilibrium

by its weight, the tension, and the total resistance which must

act in BO. If the L CBO is less than X, the angle of friction,

the block will turn round B
; but if CBO > X, this motion is

impossible, and slipping must take place in the direction AB.

To express this analytically, let be the angle made with the

horizon by the string OC, and let fall from a perpendicular on

BC meeting BC in p. Then

"

Bp BC-Op. tan 2 -tan

Hence if
//, (or tan X) be > -

> the block can turn round

JB, and will do so if P is gradually increased.

The magnitude of P which will just cause the tilting of the

block is found by taking moments about B. We evidently

obtain

P= ITTsec 0.

Suppose that CBO > X, or that p < - Then the in-

crease of P will produce a sliding motion, and we can easily find

the magnitude and point of application of the total resistance of

the plane. Now since CBO > X, the point, M, of application of

the total resistance of the plane, is found by drawing from a

line OH making with the normal to the plane an angle = X.

The point M lies between B and the point in which the vertical

through cuts AB. P can then be determined either by taking
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moments about JHf, or by resolving vertically and horizontally.

Resolving vertically, we have

resolving horizontally,
E sin A = P cos ;

Pcos0 _
' ^ TT-. \ = M, or P=

The direction of the string might be so modified as to render

possible either a sliding in the direction BA or a tilting over A.

Thus, in fig. 165, if the line of the string intersect the line

of action of the weight in a point, 0, below the horizontal plane,

the two motions possible are evidently one of slipping in the

direction AB and one of tilting over the edge A. The latter

will take place if it can. If it does, the total resistance must

act in the line OA, and for this the angle DAE must be < A.

But if DAE is < A, the block will slip in

the direction AB, since the horizontal
/j

component of the tension acts in this ^ ^ |

sense. The condition for tilting over A is

now evidently
1

M >
tan0-2*

The values of P corresponding to both
(

kinds of motion are calculated as before.

127.] Limiting Positions of Equi- $
librium. When a body rests in contact

with any number of rough surfaces at several points, the equi-

librium is said to be limiting if a slight alteration of a definite

kind in the circumstances of the body would cause the equi-

librium to be broken. The slight alteration referred to depends
on the nature of the particular problem of equilibrium. As has

been explained in Art. 46, p. 56, every statical problem relating

to the equilibrium of a body is always one or other of the three

following :

(#) What is the least force that will sustain a body in a given

position on given surfaces, or the greatest force that will allow

it to rest in such a position ?

(b) With given forces and given supporting surfaces, what is

the position of equilibrium such that if this position be slightly

altered, the body will not rest ?
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(<?)
With given forces, what is the least amount of roughness

of the surface or surfaces which will allow the body to rest in a

given position ?

Thus in fig. 164 of the last Article, supposing that the

angle CBO<\, the equilibrium of the block will be limiting
if P = | ^Tsec 6

;
for if P is slightly increased above this value,

the block will turn over B.

Again, in fig. 163 of the same Article, supposing the question

to relate to the position of equilibrium, the beam AB will be in

limiting equilibrium if its inclination to the horizon be
1 2

= tan-1

(- ^-) because if it be slightly lowered below this

position, it will slip.

Finally, if in the same figure we wish the beam to be sus-

tained at any inclination a to the horizon between the equally

rough vertical and horizontal planes, the equilibrium will be

limiting if the angle of friction = > because, if it be less

than this, the beam will slip.

128.] Comparative Safety of Equilibrium of a System at

Different Points. When in a system in equilibrium the direc-

tions of the total resistances at the various points of contact

with rough surfaces are known, we are enabled to say at which

of the points slipping is most likely to happen in case some of

the circumstances should be altered.

This will be rendered clear by the following examples, taken

from Jellett's
"
Theory of Friction," p. 61 :

Two uniform beams, AC and BC, connected at C by a smooth

hinge, are placed, in a vertical plane, with their lower ex-

tremities, A and B, resting on a rough horizontal plane. If

equilibrium be on the point of being broken, determine how this

will happen.

Fig. 143, example 4, p. 166, will represent the beams if the

hinges at A and B are conceived to be removed and these points

rest on the ground. Then, exactly as in that example, the

direction of the mutual resistance at C is determined. Supposing
AC to be the longer beam, it is clear that the angle which the

total resistance, AQ, at A makes with the normal to the surface

of contact (i.e., to the ground) is greater than the angle
which the total resistance BQ makes with the normal at B.
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Now An = Am -\-rnn ;
and if 2 a, 2b, 2c, are the sides BC, CA,

AB, we have
ac a (b cos a + a cos ft)Am = o cos a, mn fG =-r = ^---'

,

a + b a + b

An
a (b cos a -f a cos /3)= b cos a + *-~-'-

a + b

Similarly

therefore

(a2 + 2 ab] cos 8+ bz cos a= i-'----
a+ b

Bn = -7- (cos a cos
/3).

But since AC > BC, cos a > cos /3, therefore An > _Zfo.

Hence the angle AQn >BQn ;
that is, the total resistance at A

makes with the normal at A an angle greater than that made by
the total resistance at B with the normal at B. Consequently,
if any circumstance should continually diminish the angle of

friction (which is supposed to be the same for both beams) the

total resistance at A would be the first to attain its limiting

obliquity to the normal, and slipping would then take place at A
in the direction BA, while the beam BC would turn round B.

We might inquire which of the beams will first slip if they
are drawn out so as to increase the angle C, and the same result

will follow, since for any given position of the beams the direc-

tions of all the resistances are determinate. In each case the

angle AQn must be the first to reach the value \, and therefore

the longer beam, AC, must slip first.

The result may also be expressed

thus in any given position of rest,

equilibrium is more safe at B than

at A.

There are also cases in which

the comparative safety of equi-

librium can be determined, although
the directions of total resistance are

not completely determinate at all

the points at contact. For example
two unequal cylinders rest on the ground at given points, A

Fig. 1 66.
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and B (fig. 166), while a third cylinder rests on them at points

p and q.

Supposing either that there is a gradual diminution of the

coefficient of friction (which is the same at all the points of

contact), or that the lower cylinders are gradually drawn asunder,

determine the nature of the initial motion of the system.

Denote the cylinders by the letters at their centres. Then

the cylinder D is kept in equilibrium by three forces namely,

1st, its weight, which acts through A ; 2nd, the total resistance

of the ground, which also acts through A ; and 3rd, the total

resistance of the cylinder C at p. Now, since the first two forces

act through A, the third must also pass through this point.

Hence the total resistance atp acts in the \me_pA, and therefore

the total resistance of the ground at A must take some inter-

mediate (but unknown) direction, AR. In the same way,, the

total resistance at q is proved to act in the line qB, and the total

resistance of the ground at S must act in some direction, BSt

intermediate to BE and Bq. The resistances in Ap and Bq atp
and q meet in a point, P, on the circumference of the upper

cylinder.

Now the comparative safety of equilibrium at the different

points of contact, A} B, p, q, will depend on the angles made by
the total resistances at these points with the normals to the

surfaces of contact ; and it is manifest that since the angle

DAp >DAR and DpA = DAp, the total resistance at p makes a

greater angle with the normal, DC, to the surface of contact

than that which the total resistance at A makes with the normal

AD. Hence equilibrium is safer at A than atjo. For a similar

reason, equilibrium is safer at B than at q. Consequently the

final comparison is to be made between the pointsp and q. Now
the line pq can be proved by geometry to pass through the point
in which ED intersects BA ; and supposing the radius BE > AD,
this point will be at the left-hand side of the figure. Let a be

the acute angle whichpq makes with the ground. Then, since in

the triangle/*Cq the base angles at p and q are equal, it is easy to

see that LqCW-LpCW^ 2 a, or qCW>pCW. But the angle
which the total resistance at q makes with the normal qC is \qCWy

and the angle which the total resistance at p makes with the

normal pC is \pCW\ therefore if the friction were gradually and

uniformly diminished everywhere, or the cylinders drawn out, the
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resistance at q would reach its limiting obliquity before that at p.
Hence the initial motion will be a slipping of the cylinders C
and E at the point ^, and a motion of rotation at the other points
of contact.

129.] Virtual "Work of the Total Besistance. Suppose one

rough body to roll on another through a small angle whose

magnitude is regarded as an infinitesimal of the first order.

Then, neglecting infinitesimals of a higher order, the point of

the rolling surface in contact with the other surface is at rest

during the displacement that is, the virtual displacement of the

point of application of the total resistance between the two bodies

is zero. Hence for a virtual displacement which consists of a

small rolling motion of one rough body on another, the total

resistance will not enter into the equation of virtual work of

either body. Of course in no case can the mutual action of two

rigid bodies in contact enter into an equation of virtual work for

both bodies.

It is a principle in Kinetics that in a motion of pure rolling

of a body on a rough fixed surface no work is done between any
two positions by the total resistance a principle which the

student will have no difficulty in comprehending, since for each

small motion the work done by this force is imfinitesimal com-

pared with the work done by other forces acting on the body.

130.] Friction as Dependent on Initial Arrangements. In

dealing with natural solids, and not with strictly rigid or

indeformable bodies, the existence or nonexistence of friction

sometimes depends on the way in which a body or system has

been placed in the position which we are considering. This will

be made clear by the following example. A heavy trap door (or

a beam) AJ3, fig. 132, p. 148, moveable about a fixed horizontal

axis at A, has a rope attached at JB, and this rope is also attached

to any fixed point C
; determine the pressure on the axis A.

The line of action of the pressure must, of course, go through

0, the point of meeting of the other two forces, but beyond this

we know nothing about it until we know the nature of the axis.

If the axis is smooth^or if it is rough but so worn that the

contact of the door with it takes place along a single line, the

action between the door and the axis will consist of a force

passing through the axis, as has been amply explained in Art. 114.

But if the axis is rough and contact takes place all round it, the
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line of action of the resultant force is not generally determinate.

However, even in this case this resultant force may pass through
the axis. The axis being rough, let us imagine it to become

smooth, and what motion results ? The rope, being slightly

extensible, would yield a little, and slipping would take place

over a small surface at the axis ; so that the supposition of

smoothness alters the circumstances of the case. But suppose

that (the axis being still rough) the rope has been stretched,

when the door is placed in position, to such an extent that the

moment of its tension about the axis is equal to the moment of

the weight of the door ; then clearly if we imagine the axis to

become smooth, no motion will result no slipping at the axis;

and since the displacement which friction is required to prevent
does not take place, friction does not act, and the case is the

same as if the axis were smooth. The resultant in this case is

therefore determinate.

131.] Friction of a Pivot. Let a cylindrical pivot, ABCD
(fig. 167), on the top of which a given force is applied, revolve

-iH

B
r

1-
-~G

Fig. 167. Fig. 168.

in a closely fitting bearing, EFGH, and let it be required to

calculate the moment of the friction on the base, AB, about the

axis of the pivot. Suppose fig. 168 to represent the base of the

pivot, and let P = the whole normal pressure on the base, which
we shall suppose to be uniformly distributed over the base. Divide

the area AS into a number of narrow circular strips, of which
one is represented in the figure. Let Oa = #, Ob = x+ dx,

OB = r, [JL
= coefficient of friction. Then since the whole

pressure is uniformly distributed, the pressure on the strip whose
P ZPxdx

area is = 2 nxdx is ~ -
2-nxdx, or 5

r2
Hence the sum of the

forces of friction, acting in the directions of the tangents to the
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strip, is
^

But since the tangents to the strip are all at

the same distance from the centre, the moment of friction on the

strip is equal to the sum of the forces of friction multiplied by
the radius, SB, of the strip. Hence the moment of friction over

the whole surface is

f.

2
> or -

(1)

If the base, instead of being a full circle, is a ring, or collar,

whose internal and external radii are r and /
2 ,

the friction per

unit of surface is j and the moment of friction is

2
or -

(2)

132.] Wearing Away of the Step. The piece which supports
a pivot, and in which it revolves, is called a step. When
the pivot revolves, the friction against the step wears away its

own surface and that of the step. The amount of wear at any

point of the step depends on the magnitude of the force of

friction and the relative velocity of the rubbing surfaces at this

point. Thus, suppose that ABC (fig. 169) represents a section

of the step through the axis, 13P, of the pivot, and that Q is any

point of contact of the pivot and step.

Iff is the magnitude of the force of

friction at Q, the wearing at Q in the

direction of the normal will be propor-
tional tof and also to the amount of

rubbing surface which passes over Q in

a unit of time. Supposing the pivot

to revolve round its axis with an angu-
lar velocity co, the point of the pivot in

contact with Q moves in a horizontal

circle with a velocity = CD . QM, or o> .y ; QM, or y, being the

perpendicular from Q on the axis of the pivot.

But the amount of rubbing surface which passes over Q in a

unit of time is evidently proportional to the velocity at Q. Hence

the normal wearing of the surface at Q is proportional to

B

Fig. 169.
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Fig. 170.

If n be the magnitude of the normal pressure per unit of surface

at Q, and // the coefficient of friction, we have/"= ^n.

Hence the normal wearing of the surface at Q is proportional to

a>pny. (a)

133.] Friction of a Conical Pivot. Let ABC (fig. 170)

represent a section of a conical step by
a plane through the axis, BP, of the

pivot, APC being the surface at which

the pivot enters the step.

Supposing that the pressure on the

top of the pivot is uniformly dis-

tributed, it will evidently be uniformly

distributed over the area APC; that

is, there will be a constant normal

pressure, ^, per unit of area on APC.

Now it is impossible to determine by elementary methods the

law of distribution of the pressure on the step. The following

investigation proceeds on the assumption that the normal pres-

sure per unit of area, or as it is properly called, the normal

intensify of pressure, is constant over the surface of contact.

Let n be the constant pressure per unit of surface of the step.

If ds is a small element of the line BC at Q, the distance of

which from BP is y, the corresponding elementary strip of

conical surface is Znyds, and the moment round BP of the

friction on this strip is

or

Putting ds = . . >

sm0
and integrating over the surface of the

step from y to y = PC = r, we have the moment of the

whole friction equal to

3sin0
*

p
If P = the whole pressure on the top of the pivot, n = ^ ,

itr

hence the moment of friction

2/z

3sin0
.Pr.

Comparing this with the result in Art. 131, we see that the
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moment of friction in the case of a conical is greater than in the

case of a cylindrical pivot of equal radius.

134.] The Tractory, or Anti-Friction Curve. In the case

of a conical pivot the wearing away of the step is not uniform at

all points. Hence after a sufficient time the pivot will not be in

perfect contact with its step. If, however, the step has such

a form that the vertical wear is the same at all points, the pivot
will simply sink into the piece which supports it, and remain

always in contact throughout its surface with the step.

We propose to investigate the form of the step in which the

vertical wear will be the same at

all points. Let fig. 171 represent a

section of the step through the axis

of the pivot, and let CQ' be the

vertical wear at C, and Q Q' the ver-

tical wear at Q. Then CCf = QQ't

Q being any point on the curve BC.

Hence the new curve, BQ'C', is

simply the old curve J2QC moved

through a vertical distance GG'

h, suppose.

Now (Art. 132) the normal wear at Q per unit of surface is

Hence, if Qg is normal to the step at Q3

n being the normal pressure per unit of surface on APC, which

we also take to be the normal pressure per unit of surface on

the step.

But =

the curve at Q. Hence

the to

"

or

ds

= a constant,'

dy

or QT = a constant.

Therefore the curve J5 is such that the length of the tangent

terminated by PB, or the axis of a, is constant at all points.

This curve is known as the Tractory. If t = the constant

o 2,
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length of the tangent, and PC the axis of y, we have

ds

or 9V^Sr-*
or

the minus sign being given to the square root, because MQ
diminishes as x increases. Integrating this last equation (by

assuming y = t sin $) we have for the equation of the tractory

The curve approaches PB asymptotically, and the step is formed

by the revolution of the curve round PB. This pivot is known

as Schiele's Anti-friction Pivot.

EXAMPLES *.

1. A uniform rectangular board, ABCD (fig. 172), rests in a

vertical plane against two equally rough pegs, P and Q, in the same
horizontal line, two adjacent sides

of the board being each in contact

with a peg. Find the position of

equilibrium.
Let A be the angle of friction,

the inclination of the side AS to

the horizon in the position of

limiting equilibrium, G the centre

of gravity of the board, PQ = a,

and AG = c.

Then if the board is on the point
of slipping down at Q and up at

P, the total resistances at P and Q
will act in the directions PO and

Fig. 172.

QO, which are inclined at the angle A to the normals at P and Q to

the sides AB and AD, respectively, if 0' (not represented in figure)
be the point of meeting of the normals at P and Q, it is clear that a

circle will pass through the points APO'OQ; and therefore LOAO'
= A. And since A 0' = PQ = a, we have

AO = a cos A, (1)

* Many of the following examples are due to Mr. Jellett, in whose Theory of
Friction will be found several other instructive examples which want of space
compels me to omit.
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Again, since LO'QP = 0, we Lave LQOG = --(A + 0), and

evidently Z$0^ =0, therefore Z^0(7 = - -(A + 20). If /-GAB = a,

it is clear that Z.AGN = -
(0 + a). Now the position of equilibrium

is found by the equation

AO, KmAOG = AG. sinAGN.

Substituting in this equation the value of AO from (1), we have

a cos A. cos (A + 20) = c . cos (a+ 0),

which defines the position of equilibrium.
2. A heavy uniform beam rests against a rough horizontal plane

and against a rough vertical wall, the vertical plane through the beam

being at right angles to the wall and the ground; determine the

greatest weight that can be affixed to it at a given point, so that

equilibrium may be preserved.

(a) If the beam be inclined to the vertical at an angle less than the

angle of friction for the beam and the ground, equilibrium cannot be
broken by attaching a weight, however great, to any point of the

beam.

Let AB (fig. 173) be the beam, its inclination to the horizon, W
its weight, 2 a its length, P the weight suspended from the point Q in

the beam, BQ = x, \ and A' the angles of friction at A and B, re-

spectively.
Draw the lines A and BO, making the angles A and A' with the

normals, An and Bm, at A and B.

Then when the resultant of IF and P passes through 0, equilibrium will

be at its limit. For, if this resultant

acts in a line to the left of V, the >* ^
vertical through 0, it will be possible
to find an infinite number of points
on it such that when joined to A
and B the joining lines will be

possible directions of total resistance

at A and B (see Art. 126).
If the resultant of W and P acts

in a line to the right of OF, there

will be no point on it inside both Fig. 173.

cones of friction, and therefore equi-
librium will be impossible. Hence for limiting equilibrium, we have

by taking moments about O,

W.GV=P.QV,
G being the centre of gravity of the beam.

The lengths GV and QV are easily obtained from the data. We
may observe that if the point Q lies between G and F, equilibrium
can never be broken, however great P may be. For it will then be

impossible by increasing P to bring the resultant of P and W to the

right of V.
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These results follow also from the usual mode of solution of such a

problem.
Let R and S be the normal reactions at A and B, and

/ut
and f/ the

coefficients of friction at these points. Then, resolving horizontally,

S = nR', (2)

resolving vertically, R + p'S = P+ W ', (3)

taking moments about Bt

2 aR (cos 6 ft sin 9)
= (P#+ Wa) cos 0. (4)

P+ JF
From (2) and (3) we have R = -

(5)

and by substituting this value of R in (4), we get

P=Wa

see that BO = 2a
COB

/

(
?
+
^-. and 57=Now it is easy to ^ v^** ~^ w , ,. .

5- ; therefore BV 2a j-? > and (5) may be written
COS U '"

P-w a~BV
>BV-x

from which it appears that if x = B V, the required force is infinite
;

and if x> BV, it is negative, or equilibrium can never be broken by
any downward force.

The second part of the problem follows from (5), because if

p. tan > 1, or, in other words, if the angle nAB < A, the denominator

will be negative. That it is impossible to break equilibrium in this

case is evident from fig. 174. For the point is now at the right
of the vertical wall, and at whatever point along AB the resultant of

P and W acts, it is possible to find points on it which are within both

cones of friction.

A\

A
Fig. 174. 175-

3. Two unequal uniform beams, connected by a light rope attached
to their middle points, rest in a vertical plane, an extremity of each
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beam resting on a rough horizontal plane. If the coefficient of friction

is gradually diminished, which beam will slip first ?

Let the beams be AB and A'B' (fig. 175) and let G and C" be their

centres, and AB>A'B'. Now the beam AB is in equilibrium under

the influence of three forces, viz., its weight, the tension of the rope

CC", and the total resistance at A ;
and since the first two meet in (7,

the third must also pass through this point, that is, the resistance at A
acts along the beam. In the same way the resistance at A' acts along

A'B'\ and by considering the equilibrium of the system, we see that

the vertical through G, the common centre of gravity, must pass

through 0, the point of intersection of the resistances. Now the

angles which these resistances make with the normals at A and B
are equal to mOA and mOA', respectively; and the comparative safety

of the equilibrium at A and B depends on the magnitudes of these

angles. Now mOA'>mOA. For, draw C'q horizontal and Cq
vertical

; then, since CG < C'G, qn < nC\ and & fortiori, pn < nC'.

Am tanmO-4 _ ..

Therefore Am < mA : but Tf = 7-77; therefore, mOA >mOA,mA tan mOA
and if the friction were gradually diminished, the total resistance at

A' would reach its limiting inclination before that at A. Hence the

short beam will slip first.

4. A cylinder is supported on a rough inclined plane by a string

coiled round it in a direction perpendicular to its axis, the string

passing over a smooth pulley and sustaining a weight. Find the

limits to the direction of the string.

Bound A, the point of contact of the cylinder and plane, describe

the cone of friction, the section of which by the plane of the figure is

nAm, the angles nAC and CAm being each = A.

Let OB be any direction of the string, intersecting the vertical

through the centre of the cylinder in 0. Then, so long as is

between the points m and n, equilibrium is

possible, because AO is a possible direction

of total resistance at A. There is, of

course, a particular magnitude of the sus-

pended weight, P, corresponding to the

direction OB of the string, and this magni-
tude is found by taking moments about A.

If is the angle made by the string, OB
with the inclined plane, we have

i being the inclination of the inclined plane.

If, the direction of the string being OB,
P have a value greater or less than this,

W
Fig. 176.

the cylinder will roll up or roll down the plane.

Drawing from m two tangents, mt
l
and mt

2 ,
to the cylinder, we
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have the extreme directions of the string ;
that is, the point at which

the string leaves the cylinder must lie between the points of contact

of mt^ and mt
z ,

on the upper portion of the cylinder ;
for it is evident

that if the string leaves the cylinder at any point outside these limits,

the point in which its line intersects that of W will be vertically

above m, that is, outside the cone of friction.

5. A heavy sphere is placed on a

rough inclined plane at a point P
(fig. 177), and is kept in position by a

heavy rough beam, AB, which is move-

able about a fixed extremity, B, the

coefficient of friction for the sphere and

the beam being the same as that for the

sphere and plane. Supposing that the

friction is gradually diminished at both

points of contact, P and Q, or that the

sphere is pushed further up between the

plane and beam, determine the nature

of the initial motion.

The total resistances at P and Q must meet in some point, 0, on the

vertical through C, the centre of gravity of the sphere. Beyond this,

however, their directions cannot be determined. The comparative

safety of equilibrium at P and Q will depend on the relative magni-
tudes of the angles, GPO and CQO, which the resistances at these

points make with the corresponding normals. Now it is easy. to show

that CQO > CPO ;
for sin CPO = ^ sin COP, and sin CQO =^

Fig. 177.

sin COR, therefore
sin CPO sin COP

but COR > COP, therefore
sin CQO sin COR '

CQO > CPO, and if from any cause the friction is diminished, or the

sphere pushed higher up, slipping must take place at Q and rolling at P.

6. A cylinder is placed on a rough inclined plane, and a light rope
is coiled round it in a plane perpendicular to its axis and containing

its centre of gravity ; this rope,
after passing round the cylinder,
is attached to the middle point,H

(fig. 178), of an edge of a

cubical block whose height is

equal to the diameter of the

cylinder. Supposing the incli-

nation of the plane to be

gradually increased, determine

the manner in which equili-

brium will be broken, the co-

efficient of friction being the

same for the cylinder and plane
as for the cube and plane.Fig. i78 -

The motions which are here geometrically possible are
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(1) The cylinder may roll and the cube may turn over the edge C.

(2) The cylinder may roll and the cube may slip.

(3) The cylinder may slip and the cube may slip.

(4) The cylinder may slip and the cube may turn over.

Now if is the point of intersection of the vertical through the

centre of gravity of the cylinder with the rope, it is evident that

the total resistance at A acts in the line AO. In the same way if

0' is the point of intersection of the vertical through G, the centre

of gravity of the cube, with the line of the rope, the total

resistance of the plane on the cube must pass through 0', and if

D is the point in which the line of action of the weight of the cube

intersects its base, the total resistance must evidently pass through
some point between C and D.

Now this total resistance, wherever it acts, makes with the normal
to the plane an angle greater than BA

;
for tan BA = \ tan i,

i being the inclination of the plane, and the angle which O'D makes
with the normal to the plane = i

; hence the angle made with this

normal by a line joining 0' to any point between G and D is > i, and,
& fortiori, > BA 0. Consequently the cylinder can never slip before

the cube, and cases 3 and 4 are to be rejected. The choice then is

to be made between 1 and 2
;
and (see Art. 126) if the cube can turn

over, it will do so. Hence we solve on the supposition that the

cube turns over C, and if this does not require too great a value of

the coefficient of friction, the cube will turn over.

The problem is to be solved by equating the values of the tension

of the rope derived from the consideration of the equilibrium of the

cylinder and that of the cube.

For the equilibrium of the cylinder take moments about A, and we
have

T JJFsint, (1)

T being the tension of the rope and W the weight of the cylinder.

Again, since by supposition the cube is about to turn round C, the

total resistance of the plane acts through this point. Taking moments
about C for the cube,

T.CH= W. CG sin (?- 1) ,

or T lJT(cosi sint). (2)

Equating the values of T in (1) and (2), we have

_ _

But in order that CO' may be a possible direction of total resistance,

the angle HC(/ must be < A, or tan HCO' < \JL. Now, it is easy to

see that

TT+2TT
*

{ }
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W+2W'
Hence if J , < JJL, equilibrium will be broken by a rolling of

the cylinder and turning over of the cube. If p is less than the

quantity in (4) the cylinder will roll and the cube will slip, and there

is no difficulty in determining the inclination of the plane when this

happens. We may either draw from 0' a line making the angle of

friction, X, with the normal to the plane, and then determine T by
the triangle of forces, or resolve along and perpendicular to the plane
for the equilibrium of the cube. If R is the normal reaction of the

plane on the cube, we find in the latter way
R = JTcos f,

jjiR= W'smi+T;
therefore T = W (p cos i- sin

i).

Equating this to the value given by (1), we have

i&ni=wSw"
which gives the inclination at which the cube slips.

7. Two equal carriage wheels whose centres are connected by a

smooth bar are placed on a rough inclined plane ;
determine whether

the equilibrium of the system will be best preserved by locking the

hind or the fore wheel.

Let C and D
(fig. 1*79) be the centres of the wheels, and first sup-

pose the hind wheel to be locked.

Fig. 179.

Since there is no friction between

the bar CD and the axle at C,

the action of the bar on the

lower wheel consists of a force

through C (see p. 140).
The weight of this wheel also

acts through (7, and therefore

the total resistance at A, which
is the third force keeping the

wheel in equilibrium, must also

act through C.

Let G be the centre of gravity
of the two wheels, and consider

the equilibrium of the system
formed by them. There are

three forces acting on the sys-

tem, viz., its weight through Gf,

the total resistance at A (which
has been proved to act in a line AC), and the total resistance at B.

If, then, is the point of intersection of CA and the vertical through
G, the total resistance at B must act in the line OB.
We shall now determine the inclination at which equilibrium is

broken.

Since the hind wheel slips, the angle DBn = A
;

also let r = the

radius of each wheel, CD = 2 a, and i = the inclination of the plane.
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tan COG _ CG
tan COn

~
~&n

''

tan i a
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or

since Dn = r tan DBn = joir.
The inclination of the plane when equi-

librium is broken is therefore given by the equation

tan i = (I)2a + [JLr

Again, suppose the fore wheel alone to be locked. In this case the

total resistance at B acts in the line BD, and that at A acts in AO', 0'

being the intersection of BD with OG. If i' is the new inclination

at which equilibrium is broken, we have, since LCAO' A,

or

Dm

tan i'=
2a (2)

Now it is clear that i' is greater than i, and that, consequently,

equilibrium will be safer when the fore wheel is locked than when the

hind wheel is locked.

8. A cylinder is supported on a rough inclined plane by a light rope
coiled round it in a plane perpendicular to its axis passing through
its centre of gravity, the rope being attached to a fixed point. Find
the direction of the rope in order that the inclination of the plane may
be the greatest possible.

Let O'B' (fig.
i So) be the line of the rope, and CO* the vertical

through the centre of gravity of the cylinder. Then evidently the

total resistance at A, the point of contact with the plane, must act in

the direction A 0'. If the rope took the direction OB, which is hori-

zontal, the direction of the total resistance would be A 0, and evidently

the angle CAO < CAO'\ or, in other words, the equilibrium of the

Fig. 1 80, Fig. i Si.

cylinder will be farther from its limit when the rope is horizontal than

when it takes any other direction. For a given inclination, i, of the
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plane the angle CAO = > and it is clear that when CAO is equal

to the angle, A, of friction, the inclination of the plane will be at its

greatest. Hence the greatest inclination of the plane = 2 A.

If the coefficient of friction be > 1, the greatest inclination of the

plane will be >
2

j and the figure of limiting equilibrium will be that

represented in fig. 181, in which the angle CAO (= A) is > But

whether the cylinder will stay in this position or not depends on the

initial arrangement. Unless the rope is pulled with such a force as

to cause the resultant of this force and W to act in the line OA, equi-
librium cannot be preserved by the resistance of the plane. In fact,

unless this requisite tension of the rope is produced by pressing and

scraping the cylinder against the plane, it would be possible for the

cylinder to take a motion of and round its centre C which would keep
its surface out of actual contact with the plane ;

and in this case the

plane would not exert any resistance.

9. If in the preceding problem the rope, instead of being attached

to a fixed point, is attached to a weight which hangs freely over a

smooth pulley, find the conditions of equilibrium.
Let O'B' (fig.

1 80) be the direction of the rope, P the suspended

weight, W the weight of the cylinder, i the inclination of the plane,
A the angle of friction, the angle which the rope makes with the

inclined plane.
Then for equilibrium it is necessary that A (/ should be the direction

of total resistance at A, and that the moments of P and W about A
should be equal and opposite. Hence we must have

angle AO'= or < A, (1)

and

2 cos-
(2)

the second condition being equivalent to that obtained by the triangle
of forces for equilibrium at 0'.

If the angle CA(/< A, and P is slightly increased above the value

in (2), the initial motion will evidently be

a rolling up, since moment of P about A >
moment of W about A

;
but if P is slightly

diminished the rolling will be down.

10. A heavy uniform beam, AB (fig. 182),
is to be sustained in a horizontal position,

one end, B, resting on a rough inclined

plane, while the other end, A, is attached

to a light rope which passes over a smooth

pulley and sustains a weight. Find

(a) The limits to the direction of the

rope, and the corresponding limiting values of the suspended weight.

(b) The least weight that will sustain the beam,

Fig. 182.
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Let W be the weight of the beam, P the suspended weight, andBN
the normal to the inclined plane at B. Then if AO be the line

of the rope, intersecting the vertical through the centre of gravity
of the beam in 0, BO must be the direction of the total resistance at

B
; and in order that this may be a possible direction of total

resistance, the angle NBO must be < A, the angle of friction. Hence
the limiting directions of the rope are obtained by drawing BO and
BO' making the angle A with BN on opposite sides. If the rope
takes the direction AO' the beam must be on the point of slipping

up, since the force of friction acts down the inclined plane ;
and if

the direction of the rope is AO, the beam is on the point of slipping
down. The corresponding magnitudes of P are easily determined by
taking moments about B. Let pl

and p^ be the perpendiculars from
B on AO and AO', respectively, a half the length of the beam, and
P

l
and P

2
the corresponding values of P. Then

PI

The values of pl
and p2 can, of course, be easily expressed in terms

of a, A, and i, the inclination of the plane.
If the rope takes a direction intermediate to A and A 0', and ifp

is the length of the perpendicular from B on its direction, we have

P
Hence, if P is a minimum, p must be a maximum, since Wa is given.
Now p will be a maximum when it is equal to AB, that is, when the

rope is vertical. In this case the total resistance at B should also be

vertical
;
but if the inclination of the plane > A, this is impossible.

Hence when i > A, p is a maximum (consistently with the conditions

of the, problem) when the direction of the rope is AO ; and therefore

in this case P
l
is the least value of P.

If i < A, the vertical at B is a possible direction of total resistance,

and therefore AB is an admissible value of p. The corresponding
value of P is therefore J TF.

The student will easily see that if the angle of friction is greater
than the complement of the inclination of the plane, there can be no

limiting equilibrium in which the beam is about to slip up.

11. A cylinder is laid on a rough horizontal plane, and is in contact

with a rough vertical wall
;
a string coiled round it at right angles to

the axis passes over a smooth pulley and sustains a weight which is

gradually increased till equilibrium is broken. Determine the nature

of the initial motion. (Jellett's Theory of Friction, example 21,

p. 214.)
Let W be the weight of the cylinder, P the suspended weight,

the angle made by the string with the horizon, A and A' the angles of

friction at A and B, the points of contact of the cylinder with the
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Fig. 183.

vertical and horizontal planes, and the point in which the line

of the string intersects the vertical

through (7, the centre of gravity of the

cylinder.

Now, in accordance with Article 126,
we first consider what motions are geo-

metrically possible. These are

(1) Boiling round A up the vertical

plane.

(2) Slipping forward at B while con-

tact ceases at A .

(3) Slipping at A and .B simultaneously.
If (1) can happen it will (see Art. 126);

let us suppose, therefore, that the cylinder
is on the point of turning round A and

coming out of contact at B. In this case there are only three forces

keeping the cylinder in equilibrium, namely, W, P, and a total re-

sistance at A. This last force should, for equilibrium, pass through
and act in the direction OA. Now whether the angle OAC is less

or greater than A, this is not a possible line of action of total resistance,

because the plane cannot pull. Hence (1) is physically impossible.

Suppose that (2) happens. Then, as before, there are only three

forces keeping the cylinder in equilibrium, namely, W, P, and the

resistance at B. This last must pass through 0, and must therefore

act vertically. But it is obvious that such a force could not equi-
librate TFand P\ therefore (2) is impossible.

There remains the third case, which alone is possible. To deter-

mine the value of P corresponding to limiting equilibrium, draw the

lines A 0' and BO' making with the normals at A and B the angles,
A and A.', of friction for the cylinder and planes. Then by taking
moments about 0' we easily obtain the value of P, which may also be

obtained by the ordinary equations of resolution of forces. Thus, let

R and Rf
be the normal pressures, and therefore pR and p'R' the

forces of friction, at A and B.

Taking moments about B, we have

(l+f*) = P(l-COS*). (1)

Taking moments about A t

R'(l-lJ.') = W-P(l+sm0). (2)

Resolving horizontally,

fj.'R'-R = Pcose. (3)

Substituting in (3) the values of R and Rf

given in (1) and (2), we
obtain the value of P corresponding to limiting equilibrium.

It will be a useful exercise for the student to vary the position of

the pulley in such a way as to render possible a case of limiting equi-
librium in which the cylinder is about to ascend the vertical plane by
turning round A.

12. A heavy right cone is placed with its base on a rough inclined

plane, the inclination of which is gradually increased; determine
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whether the initial motion of the cone will be one of sliding or

tumbling over.

Let ABC (fig. 184) be the vertical section of the cone through its

axis, CH, and let G be the centre of gravity of the cone. (GH is
J-

CH, as will appear in a subsequent Chapter.)

Then, in accordance with rule 3 of Art. 126,
if it is possible for the cone to turn over the

point A, the cone will do so. Solve, there-

fore, on the supposition that equilibrium is

broken by turning round A. In this case,

the two forces acting on the cone are its

weight and the total resistance of the plane,

which, of course, passes through A
;

and
these forces must be .equal and opposite, i. e., ^g. 184.
the total resistance must act in the vertical

line AG. Now this will be possible only if AG makes with the
normal to the plane an angle less thau the angle of friction, A. Hence
for a tumbling motion AGH<X. But if a = ACH,

Therefore if ft > 4 tan a, the initial motion of the cone will be

tumbling, and if ft < 4 tan a, the initial motion will be sliding, and
this sliding will evidently occur when the inclination of the plane
reaches the value A.

13. A heavy straight rod rests on a rough horizontal plane, and at

one end, perpendicularly to its length and in the horizontal plane, a

force is applied with gradually increasing magnitude. Find the point
about which the rod begins to turn.

(Price's Infinitesimal Calculus, vol. iii, p. 162.)
Let I be its length and suppose it to turn round a point at a

distance z from the other extremity. Then we must equate the
moment of the applied force about this point to the sum of the

moments of the forces of friction acting on the different elements of

the rod. Take an elementary portion of length dx at a distance x
from the point round which the rod turns. The weight of this

portion is dx, and the force of friction on it is ft W -=- This acts
I L

at right angles to the rod. Hence, taking the sum of the moments for

all points at both sides of the turning point, we have *

But P is evidently equal to the sum of the frictions at the end

adjacent to it minus the sum of those at the other end : i. e..
7_ ft,?;

P = ft W = Hence we have

* In this simple case integration is evidently not necessary.
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0, /. *s(l--L)Zj

or the turning point is at a distance -=. from the end at which the

force is applied.
*

14. A rectangular block is placed, with one of its edges horizontal,

on a rough plane, the inclination of which to the horizon is gradually

increased; determine whether the equilibrium of the block will be

broken by a motion of sliding or one of tumbling.

Ans. If a and b are the lengths of the edges which are not

horizontal, b being the length of the edge which is perpendicular to

the inclined plane, the initial motion will be one of tumbling if

f/ > -r- > and of sliding if
JJL < -?

15. A cylinder the section of which perpendicular to the axis is any

given curve is to be placed, with the axis horizontal, on a rough
inclined plane ;

how must it be placed so that it shall be least likely
to slip, the cylinder being in contact with the plane along a single

line?

16. An elliptic cylinder is placed, with its axis horizontal, on a

rough plane inclined to the horizon at an angle less than the angle of

friction
; prove that the cylinder cannot rest if the eccentricity of the

/ 2 sin i
section perpendicular to the axis is less than A / ; r i being
the inclination of the plane.

V

17. A uniform beam rests with its extremities on two rough in-

clined planes whose line of intersection is horizontal, the vertical plane

through the beam being perpendicular to this line
;

find the limiting

position of equilibrium.

Ans. If i, i' be the inclinations of the planes, A, \' the angles of

friction between the beam and the planes, respectively, and the

limiting inclination of the beam to the horizon,

2tan0 = cot (i + X)-cot(i'-\').

Another limiting position will be got by changing the signs of A and A'.

18. A heavy uniform rod rests with its extremities on the interior

of a rough vertical circle
;
find the limiting position of equilibrium.

Ans. If 2 a is the angle subtended at the centre by the rod, and A
the angle of friction, the limiting inclination of the rod to the horizon

is given by the equation

Q
s*n 2 ^

cos 2 A+ cos 2 a

19. A solid triangular prism is placed, with its axis horizontal, on a

rough inclined plane, the inclination of which is gradually increased ;

determine the nature of the initial motion of the prism.
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Ans. If the triangle AEG is the section perpendicular to the axis,

and the side AB is in contact with the plane, A being the lower

vertex, the initial motion will be one of tumbling if

the sides of the triangle being a, b, c, and its area A. If /m is less

than this value, the initial motion will be one of slipping.

20. A frustum of a solid right cone is placed with its base on a

rough inclined plane, the inclination of which is gradually increased
;

determine the nature of the initial motion of the body.

Ans. If the radii of the larger and smaller sections are R and r,

and h is the height of the frustum, the initial motion will be one of

tumbling or slipping according as

r* ^ ^ T

h i

21. An elliptic cylinder rests in limiting equilibrium between a

rough vertical and an equally rough horizontal plane, the axis of the

cylinder being horizontal, and the major axis of the ellipse inclined to

the horizon at an angle of 45, Find the coefficient of friction.

An8 '

e being the eccentricity of the ellipse. (Employ the Theorem of

Art. 116.)

22. The circumstances of the preceding problem remaining the

same, except that the vertical plane is smooth, show that the coefficient

of friction is ^ e
2
(Walton's Mechanical Problems, p. 82).

If the horizontal plane alone is smooth, is it possible for the cylinder
to rest in any position ?

23. A uniform beam, of which one end rests against a rough
vertical wall, is supported by a light rope attached to the other end,
and to a given point in the wall ; find the limiting positions of equili-
brium (Walton, p. 81).

Ans. If the length of the rope be n times the length of the beam,
the inclination of the latter to the wall is given by the equation

(
wa__ ju

2-
l)tan

2 + 4 /A tan + n2_4= 0.

24. In order that both limiting positions may be real, what must be

the limits of n ?

Ans. 2n2 must be > /** + 5 V (^+ 1) 0*
2 + 9), and

25. If n is 2, show that there is but one limiting position ;
and

prove geometrically that if in this case the angle of friction is 60, the

limiting position is horizontal.

P
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26. A heavy uniform beam rests with one end against a rough
horizontal and the other end against an equally rough vertical plane ;

find the least coefficient of friction that will allow the beam to rest in

all positions. Ans. Unity.

27. In the previous question let the centre of gravity of the beam
divide it into two segments, a and b, the latter segment being in

contact with the vertical well ; given the coefficient of friction, /u,

between the beam and the ground, find the least coefficient of friction

between the beam and the wall which will allow the beam to rest in

all positions. a
Ans. -=

pb
28. Two equal beams, AC and CB, are connected by a smooth

hinge at C, and are placed in a vertical plane with their lower

extremities, A and B, resting on a rough horizontal plane ;
from

observing the greatest value of the angle A CB for which equilibrium
is possible, determine the coefficient of friction for the beams and the

plane (Walton's Mechanical Problems, p. 96, second ed.)

Ans. If the greatest value of LACB is /3,

29. Two uniform beams are placed with their lower extremities

resting on a rough horizontal plane, their upper extremities resting

against each other. Show how to cut a plane face from the upper
extremity of one of the beams, in order that slipping may be about to

ensue at their point of contact.

Ans. Determine the line of action of their mutual resistance as in

p. 167 ;
then cut a face inclined to this line at the complement of the

angle of friction.

30. A cylinder is placed on a rough horizontal plane, and a uniform

plank rests with one end on the ground and the other against the

cylinder (the plank being at right angles to the axis of the cylinder).
If the plank is gradually lowered until equilibrium is about to be

broken, show that if the weight of the cylinder exceed that of the

plank the latter will always slip, whatever be the dimensions of the

plank and cylinder. For any position of the plank find the direction

of the reaction of the ground on the cylinder.

Ans. If is the angle made by the plank with the ground,
P = weight of plank, W = weight of cylinder, r = radius of cylinder,
2 a = length of plank, \//-

= angle made with the vertical by the
reaction of the ground on the cylinder,

31. A cylinder placed on a rough plane has a string coiled round it

in a plane at right angles to its axis
;

the string after passing round
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the cylinder is attached to a heavy particle which also rests on the

plane. If the plane is gradually tilted up, determine the nature of the

initial motion.

Ans. The cylinder will roll and the particle slip if both are equally

rough ;
and if i is the inclination of the plane when this happens,

.

"

where W and P are the weights of the cylinder and the particle, //.
the

coefficient of friction, and 2 a the angle between the string and the

inclined plane.

32. A heavy cylinder is laid on a rough inclined plane, its axis being
horizontal

;
a heavy uniform plank rests on the cylinder and against

the inclined plane, the plank being horizontal at right angles to the

axis of the cylinder, and touching the cylinder at its highest point.

Supposing the inclination of the plane to be gradually increased, the

horizontality of the plank being always perserved, determine the

nature of the initial motion of the system and the inclination of the

plane at which equilibrium is broken.

Ans. The plank will slip at its point of contact with the plane, a

rolling motion taking place at the other points of contact in the

system ; and the inclination (t) is given by the equation

where r = radius of cylinder, 2 a = length of plank, W = weight of

cylinder, P = weight of plank, and A. = angle of friction.

33. Two particles A and B, whose weights are denoted by A and J5,

are connected by a string fully stretched, and placed on a rough
horizontal plane, the coefficient of friction for each particle being )u.

A force -P, which is < fx. (A + J5), is applied to A in the direction BA,
and its direction is gradually turned round through an angle 6 in the

plane. Find the nature of the initial motion of the system.

Ans. If P < fJL 4/A
2 + JB

2 and > pA, the particle A alone will

slip, and this happens when sin = If P > //, */A
2+B2

,
both

J"+tiP--J3will slip when cos 6 =- -
34. A heavy rod is placed in any manner resting on two points A

and of a, rough horizontal curve, and a string attached to a point G
of the cord AB is pulled in any direction in the plane of the curve so

that the rod is on the point of motion. Prove that the locus of the

intersection of the lines of action of the frictions at A and B is an arc

of a circle and a part of a straight line
; except when G is the centre

of gravity of the rod, in which case the directions of the frictions will

be always parallel to the string,
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35. A triangular prism, whose section by a vertical plane through its

centre of gravity perpendicular to its edges is ABC, rests with its base

AB on a rough horizontal plane ;
a rope is attached to the middle

point, 0, of its upper edge, and, passing over a fixed pulley in the

horizontal line parallel to, and in the sense of, SA t
is pulled with a

gradually increasing force. Find the nature of the initial motion.

Ans. If AB = c, AC b, and the height of the prism = h, the

prism will tilt over the edge through A if

c + b cos A
M>-^r

-
;

otherwise it will slide.

36. A cubical block is placed on a rough inclined plane and sus-

tained by a rope, parallel to the inclined plane, attached to the middle

point of the upper edge (which is horizontal) ;
the rope lies in the

vertical plane which contains the centre of the cube and is perpen-
dicular to the inclined plane. Show that the greatest inclination of

the plane is
'

37. Two rough inclined planes slope in the same direction and
intersect in a horizontal line. A cylinder placed at their intersection

and touching both all along its length has a rope coiled round it in a

plane through its centre of gravity perpendicular to its axis ; this

rope passes over a fixed pulley and is pulled with gradually increasing
force. Discuss the ways in which equilibrium may be broken by
varying the tension of the rope, finding (with a given position of the

rope)

(a) The condition that must be satisfied in order that equilibrium
should be possible at all

;

(b) The condition that the initial motion should be one of slipping
on both planes ;

(c) The value of the tension of the rope when this slipping takes

place.

38. A heavy uniform circular wheel rests, in a vertical plane,

against the ground at A and is in contact at B with an obstacle of given

height ;
the wheel is to be pulled over the obstacle by means of a rope

(of given direction) attached at a given point to the wheel ;
find

(a) The condition that the initial motion of the wheel shall be a

rolling over the obstacle
;

(b) The condition that the initial motion may be slipping at A
and B.

(c) What ultimately happens when the initial motion is slipping at

A and B.



CHAPTER X.

EQUILIBRIUM OF A RIGID BODY UNDER THE ACTION OF

ANY FORCES.

135.] Resultant of any Number of Forces Applied to a

Material Particle. Let a force, P, represented in magnitude
and direction by 00' (fig. 13, p. 19), act on a particle at 0; let

Ox, Oy, and Oz, be any three rectangular axes drawn through ;

and let the angles, O'Ox, O'Oy, and (/Oz, which the direction of

P makes with the axes of reference be denoted by a, /3, and y,

respectively. From 0' let fall perpendiculars, OF, OH, OD, on

the planes, yz, zx, and xy, respectively, and let the parallelepiped

be completed as in figure. Then the force 00' may be replaced

by the forces OD and OC, by the parallelogram of forces
;
and

OD can again be replaced by OA and OB. Hence the force P is

equivalent to the three forces

P cos a along Ox,

Pcos/3 Oy,

and P cos y Oz.

The converse proposition is also evidently true namely, that

any three forces, OA, OB, OC, along Ox, Oy, Oz (whether these

are mutually rectangular directions or not), give a resultant

represented in magnitude and direction by the diagonal, OO',
of

the parallelepiped determined by the forces.

If several forces, Plt P2 ,
... Pn , act at and make angles

(i0iyi)> (
a 2>/32;7 2 )> (>, y), with the axes, let. each

of them be replaced by its three components along Ox, Oy, Oz ;

and if 2Z, 27, *2Z denote the sums of the components along

the axes, we shall have

... -fPn cosa n ,

... +Pn cos/3n ,
[ (i)

= P
1 cosy 1+P2 cosy 2 + ... +Pw cosy,
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and the whole system of forces will be replaced by the three

forces, 2JT, 2F, and 2Z along the axes of #, y, and z. But

the resultant of three forces in these directions is the diagonal

of the parallelepiped determined by them. Hence, E being the

magnitude of this resultant,

E = V'(2J)
2 + (2J)

2 + (2)
2

, (2)

and if 0, $, \jf,
be the direction-angles of E,

T 1C 5! V ^LF
cos =

-g-
9 cos 4 = -g-

,
cos ^ = -^- (3)

136.] Grapliic Representations of the Resultant. Since

the resultant of any two forces, OA and OB, acting at is

obtained by drawing from A a line, Ad, parallel and equal to

OB, and joining to d, it follows that if a particle is acted on

by n forces, OA
1 ,
OJ2 ,

0^3 , ... OJn ,
the resultant is obtained in

magnitude and direction by drawing A1
a
2 parallel and equal to

OA
2 ,

#
2
#
3 parallel and equal to OA3 , ... an^ an parallel and equal

to OAn ,
and joining to an ; or, in other words, the side Oan

which closes the polygon OAa2 a^... an represents the resultant

in magnitude and direction. "When the sides of the polygon
are not all coplanar, the figure is called a gauche polygon. Thus

the second graphic representation of the resultant of a system
of coplanar forces, which has been given in p. 18, is equally ap-

plicable to non-coplanar forces. Hence, of course, it follows that

a particle acted on by any set of forces which are parallel and

proportional to the sides of a gauche polygon taken in order is

at rest.

Again, since by the parallelogram of forces, the resultant of

OA
l
and OA

2
is 2 . Qg ,

where ff1
is the middle point of A

l
A2 ;

and since the resultant of 20^ and OA
3 is 30^2 ,

where g2
is

determined exactly as in p. 15, it follows that Leibnitz's graphic

representation of the resultant is applicable to non-coplanar
forces.

This result follows also analytically; for if (^15 y1 , z^,

(#25 Hi* z
z)>

" (n>yn> ^n) ^>e ^ne co-ordinates of the extremities

A
l ,

A.
2 ,

... An of the forces acting on the particle, it is clear that

... -f xn = 2# = n . x,

where x, y, z are the co-ordinates of G, the centre of mass of
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equal masses placed at the extremities of the forces. Hence by
equations (

1
)
of Art . 1 3 5,

^
"></"

. X. -

R = n . OG,
?u*w it w

and

which show that the resultant is represented in magnitude and

direction by n . OG.

137.] Transformation of Couples. To what has been given
in Chapter V on the transformation of couples it is necessary
to add a few propositions relating to couples in different planes.

(a) A couple acting on a rigid body may be transferred to any

plane parallel to its own.

Let AB (fig. 185) be the arm of

a couple (P, P) and let A'B' be any
Ph

,

line parallel and equal to AS. At ^
A' introduce two equal and oppo-

p
| p' .----(?""""""

site forces, P and P', parallel to
J-- JI^B

AP, and at B introduce the same I

forces. The introduction of these Pig 1 g5

forces will not disturb the equi-

librium of the body. Draw AB' and A'B, which will bisect each

other at 0. Then the force P at A and the force P' at B' will

give a resultant equal to 2P at
;
and P at B and P' at A' will

give a resultant equal and opposite to this at the same point.

Hence there remain the forces P at A' and P at B'; that is, the

couple (P, P) with arm AB has been moved to any plane parallel

to its own.

From Chapter V it is now clear that the only essential

properties of a couple are (l) the constancy of its moment and

(2) the parallelism of its plane ; or, in other words, the constancy

of the magnitude and direction of Us axis
;
the actual position of

the axis in space is of no consequence, but only its direction
;
two

couples whose axes are of equal length and in the same direction

are absolutely identical.

Hence the axis of a couple is what is called in modern physics

a vector, or directed line of constant magnitude.

(/3)
Convention with regard to the sense of the axis of a couple.

We have already stated that the axis is to be drawn perpen-

dicular to the plane of the couple ;
but since this perpendicular

might be drawn at either side of the plane, an ambiguity arises,
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especially in the case of several couples acting in different planes.

The following convention with regard to the sense in which the

axis is to be drawn, given by Thomson and Tait (Natural Philo-

sophy, p. 1 73), is founded on a similar rule of Ampere's : Hold

a watch with its plane parallel to the plane of the couple. Then,

according as the motion of the hands is contrary to, or along

with, the sense in which the couple tends to turn, draw the

axis of the couple through the face or through the lack of the

watch.

(y) Two couples result in a single couple whose axis is found

from the axes of the component couples by the parallelogram

law.

Let the planes of the

couples intersect in the line

AB
(fig. 186) and the arm of

each be made AB, by moving
each couple in its own plane,

and then suitably altering the

forces of each couple (Art. 74
?

Chap. V). Let P, P be forces

6
of one couple, and Q, Q those

of the other. At B draw*

Bp perpendicular to the plane PABP and proportional to the

moment of the couple (P, P). We may evidently take Bp = P,
since the couples have a common arm. Draw fiq perpendicular
to the plane QABQ and equal to Q.

Now evidently the forces P and Q at B compound a resultant,

R, equal and parallel to the resultant of P and Q at A. Hence

the two couples compound a single couple.

Again, draw Br perpendicular to the plane RABR and equal
to E. Bp, Bq^ and Br are then the axes of the couples (P, P),

(Q, Q)> and (R> #) But it is manifest that the figure Bprq is

merely the figure BPRQ turned round in its own plane through
a right angle. Hence Br is the diagonal of the parallelogram
determined by the axes of the component couples.

Conversely, any couple may be resolved into two couples whose

axes are determined from the axis of the given couple by the

*
According to the convention (/3) the couples in this figure are both negative,

and the axes Bp and Bq should be drawn downwards. This inaccuracy in the

figure was detected too late for correction.
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parallelogram law
;

and as in the case of forces acting at a

point, any couple may be resolved into three couples whose axes

are determined from the axis of the given couple by the parallele-

piped law. All this follows as in Art. 135.

It is well to remark that the axis of a couple represents the

moment of the forces of the couple round a line in space parallel

to the axis.

(5) To find the resultant of any number of couples acting in

any planes on a rigid body.
Let the axes of the couples be all drawn, each in its proper

sense according to the rule
(/3),

at the same point, (fig. 13),

and let each axis be resolved into three components along

rectangular axes Ox, Oy, Oz, drawn through 0. Let L = the

sum of the axes in the direction Ox
;
then L is the axis of the

component of the resultant couple in the plane yz. Let M and

N be the sums of the axes in the directions Oy and Oz, re-

spectively. Then, if G is the resultant axis,

*, (1)

and if A, ju, v are the direction angles of G,

L M N=
,

COS !>=-,

equations which are exactly analogous to (2) and (3) of Art.

135.

The axes of couples are, therefore, compounded and resolved

in the same manner as forces. There is this difference between

forces and couples, that, while any number of couples in any

planes whatever always result in a single couple, any number of

forces cannot, in general, be replaced by a single force, and this

difference results from the veetorial nature of the axis of a

couple.

(e)
A force and a couple acting on a rigid body cannot

produce equilibrium.

For, let the couple be so transferred that one of its forces, P,
acts at a point on the line of action of the force, R. Then R
and P at this point compound a single force which, in general,

does not intersect the other force of the couple. Therefore, &c.

A force and a couple acting in the same plane are, of course,

equivalent to a single force.

138.] Theorem, A force acting on a rigid body in a given
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Fig. 187.

right line can always be replaced by an equal force acting at any
chosen point together with a couple.

Let a force P (fig. 187) act at a point

A, and let be the chosen point. At

introduce two forces, P and P7

, opposite

to each other and each equal and parallel

to P. Then P at A and P' at may be

taken to constitute a couple whose mo-

ment is Pp, p being the perpendicular

from on the line of action of P at A.

There remains, then, the force P at 0; and this force together

with the couple may replace P at A.

Let the axis of this couple be drawn at
;
let x> y, z be the

co-ordinates of A with respect to a rectangular system of axes

drawn through ;
and let a, (3, y, be the angles which the

direction of P makes with the axes of #, y, z
t respectively.

The direction cosines of OA are - >
-

>
-

> where OA = r, and
r r r

it is easy to prove that the direction cosines of the axis of the

couple (which is at once at right angles to OA and to P) are

y cos y z cos /3 z cos a x cosy x cos (3 y cos a

P P P
Hence, the axis of the couple being equal to Pjp, the projections

of the axis on the axes of #, y, and z are

P(^cosy 2 cos
/3), P(zcos a x cosy), P

(OB cos/3 y cos a) ;

but it is clear from
(y), Art. 137, that these are the axes of the

component couples in the planes yz, zx> and xy> into which the

couple Pp can be resolved. Putting P cos a = X, P cos /3
= Y,

P cos y = ,
we see that the three couples are

Zy-Yz, Xz-Zx, Yx-Xy. (l)

The force P at may also be replaced by its three components,

X, T, Z. (2)

There is another way in which the reduction is sometimes effected.

Let P at A he resolved into its three components, JT, Y, Z^ and let

the line of Z meet the plane (ocy) in N, and let Z at .4 be trans-

ferred to N. Let fall Nn perpendicular to Ox; at n introduce two

opposite forces Z" and Z'"
,
each equal and parallel to Z

;
and at

introduce two opposite forces, Z and Z'
',
each equal and parallel to Z.

Now the senses of positive rotation in the planes xy, yz, zx being

r

-
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those indicated by the arrows, the forces Z at N and Z'" at n form a

couple whose moment is

Zy parallel to plane yz ;

and the forces Z? at and Z" at n form a couple whose moment is

Zx parallel to the plane zx ;

and in addition to these there is the force X

Similarly, the force X at A can be re-

placed by X at together with two

couples, Xz and -Xy, parallel to the

planes zee and an/, respectively; and the

force Y at A can be replaced by T at

together with the couples Tx and Yz

parallel to the planes xy and yz.

Hence P at A is replaced by the forces

\

Fig. 1 88.

F, F, Z at and the couples ZyYz, XzZx, and Fa? JTy,

parallel to the planes 3/2, zx, and #?/, respectively.

139.] Parallel Forces. Suppose a rigid body to be acted on

by any number of parallel forces applied at given points in the

body. Take any origin, 0, of co-ordinates, and through it draw

three rectangular axes, that of z being parallel to the common
direction of the forces. Then the force P, acting at (#i,yu *J
may be replaced, as in last Art., by

P
l
at along Oz,

and the couples P\y\ an(l ~P\X\

parallel to the planes yz and zx.

Replacing each force in this manner, the whole system will be

equivalent to a force

Pl4 P2+ ... + PB ,
or 2P at 0,

together with the couple

+PnVn, or

parallel to the plane yz, and the couple

-P^-P^ ... Pn xw or -2P0,

parallel to the plane zx.

These two couples compound a

single couple whose axis is found by

drawing OL = 2Py and OM (in the

negative sense of the axis of y) =
Fig. 189.

and completing the parallelogram OLGM (fig. 189). If OG, the

diagonal is denoted by G,
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and R = 2P,

R being- the resultant force.

140.] Centre of Parallel Forces. Since the resultant of two

parallel forces, Px and P2 , acting at the points A^ and A2 divides

A a P
the line A^A^ in a point g such that -~-

-^> and since by

elementary geometry (see p. 97) the distance of g from any plane
P x -\-P x
~y W~^ J wnere #1 an(l #2 are the distances of A and A2""

from this plane, it follows, by repeating this construction that

the distances, #, y, z, of the centre of parallel forces from the

planes yz, zx, and xy are given by the equations

141.] Conditions of Equilibrium of a System of Parallel

Forces. A system of parallel forces has been reduced (Art. 139)
to a single force, R, and a single couple, G. Now since these

cannot in combination produce equilibrium (e,
Art. 137), we

must have ^ = 0, and G = 0, separately.

Since G cannot be = unless 2P# = and 2Py = 0, the con-

ditions of equilibrium are RQ ( 1 )

2P# = 0, ^Py = 0. (2)

DEF. The moment of a force with respect to a plane to

which it is parallel is the product of the force by its perpen-
dicular distance from the plane.

Hence for the equilibrium of parallel forces The sum of the

forces must vanish, and the sum of their moments with respect to

every plane parallel to them must also vanish.

EXAMPLES.

1. A heavy triangular table, ABC, is supported horizontally on
three vertical props at the vertices

; prove that the pressures on the

props are equal.
Let P, Q, R be the pressures at A, S, C, and let a vertical plane

through A and the centre of gravity of the table cut the side BG in a,
its middle point. For equilibrium the sum of the moments of the

forces P, Q, R, and W (the weight of the table) with respect to this
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plane must = 0. But the moments of P and W are each = 0, since

these forces lie in the plane. Hence the moments of Q and R are

equal and opposite. Now the distance of Q from the plane = Ba .

sinAaB, and the distance of R = Ca. sinAaC; and since Ba = Ca,
these distances are equal. Therefore Q = R ;

and similarly it can be

shown that R = P
; therefore, &c.

2. A heavy triangular plate hangs in a horizontal plane by means
of three vertical strings attached to its vertices

;
at what point in its

area must a given weight be placed so that the system of strings may
be least likely to break 1

At the centre of gravity of the board. For if W= the weight of

the board and P the sustained weight, we have

or the sum of the tensions is constant, wherever P is placed. Hence
if any one is less than J(JF+P), some other must be greater than
this value. It is evident, therefore, that the best arrangement makes
each tension = ^ (W+ P) ;

but this happens (as proved in last

example) when P is placed at the centre of gravity.

3. A heavy elliptic cylinder is sustained in a vertical position by
three props applied at three points on the circumference of its base ;

how should the props be placed in order that the cylinder may be
least likely to be upset 1

Let the base of the cylinder have any form, ABC (fig. 190), and let

Cf be the projection of its centre of gravity on the plane of the base.

Then, if the props are applied at A, B, and (?,

the perpendiculars from G on the sides of the

triangle ABC must be all equal when the

equilibrium is most stable. For, suppose that

the cylinder is about to be upset round the

line AB; then the moment of the force re-

quired to upset it is W.p, where W is the

weight of the cylinder and p the perpendicular
from G on AB. Again, suppose that the

cylinder is about to be upset about AC', then

the moment of the force required to upset it is W. q, where q is the

perpendicular from G on AC. Hence if p and q are unequal, ad-

vantage will be gained by increasing the lesser of them, even though
the greater must be consequently diminished

;
and it follows that the

maximum advantage is gained when p arid q are equal. In the same

way it can be shown that the perpendicular from G on BG must, in

the most advantageous case, be equal to that from G on AB ; and

therefore the perpendiculars from G on the sides ABG must be all

equal.
Hence the problem amounts to inscribing in a given curve a

triangle on the sides of which the perpendiculars from a given point

shall be equal. In the particular case in which the base is an ellipse,

we have to find a circle concentric with the ellipse, such that a

triangle circumscribed to the circle shall be inscribed in the ellipse,
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Now (Salmon's Conic Sections, p. 330, 5th edition), let the ellipse

a2 w2

have for equation ^ + -7^ 1 =0, and the circle #2 + w2 r2 = ;
or b* xz yz

then the discriminant of &(#
2+ 2/

2-r2

) + +
f

1 = is & -1*

)
& + -

*
' k+ *'

and tlie re<iuired condition

being
2 = 4A . 0', we have two values for r, namely, r

x
= ---

and r. =-r The first value alone is admissible, because-- > b,ab a o

and the circle in this case either cuts the ellipse or entirely encloses it.

Since an infinite number of triangles can be inscribed in the ellipse

ab
and circumscribed to the circle of radius --

(Salmon, ibid.), the
a -f~ o

problem is capable of an infinite number of solutions. It is easy to

see that in the cases in which it is possible to have a real system of

in- and circum- scribed triangles for the ellipse and the circle of radius

--) the centre of the ellipse is outside the area of the triangle.a b

This circle is, therefore, irrelevant to our question,

4. A heavy square board, A BCD, of uniform thickness, is hung by
three vertical strings, one of which is attached to a corner, A, of the

board. The plane of the board being horizontal, find the points,
E and F, in the area to which the other two strings should be

attached in order that it may be most difficult to overturn the board

by placing a weight anywhere on it.

It is evident that advantage is gained by taking the points E and
F on the edges of the board.

Assume AE to be the direction of the line joining the points of

application of two of the strings, and suppose that a weight, P, placed
somewhere in the area ABE is on the point of overturning the board

about the line AE. Then the tension of the string at F=
;
and if

W is the weight of the board, acting at G, the weight P required to

upset it is distance of G from AE
fyy ^s_ .

distance of P from AE
Hence the greater the distance of P from AE, the less the requisite
value of P, or, in other words, the more easily will the board be upset.
It is evident, therefore, that the applied weight should be placed at B

;

and in the same way, if the board is to be upset round the lines AF
and FE, the applied weights should be placed at the corners D and C,

respectively.

Again, in the arrangement of greatest advantage, the board is

upset with equal ease round each of the lines AE, AF, and FE. For,
if it be more easily upset round one of these lines than round another,

advantage will be gained by making it a little more stable with

regard to the first. Hence, since the weights placed at B, D, and C
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are all equal, we have

distance of G from AE _ distance of G from AF _ distance of G from EF
distance of B from AE

~~
distance of D from AF~~ distance of C from EF'

The angles EAB and FAD are, therefore, equal, and each = tan" 1

(/2-1).
5. A heavy elliptic table is supported on three vertical props ; how

must they be placed so that it may be most difficult to upset the table

by placing a weight on it ?

Ans. The props must be placed at three points, A, B, C, on the

circumference of the ellipse ;
and if y is the eccentric angle of C, that

of B is f TT+ y, and that of A is ^ir + y. The weight which, most

advantageously applied, will then just upset the table is half its own

weight.

This may be seen as follows. Assuming any
line in the area as the

line joining two props, the least weight that will be required to upset
the table must be placed at the point of contact of a tangent parallel
to the assumed line, since the weight will have maximum leverage at

this point. Also, it must be equally easy to upset the table round
the three lines AB, BO, CA

;
that is, the requisite weights placed at

C", A', B', the points of contact of the tangents, must be all equal.

If, then, x, y, z, be the perpendiculars from the centre on the lines

BC, CA, AB, and P, Q, R the perpendiculars on the parallel tangents,
we must have .

*/

P-x Q-y R-z>

or, if a, /3, y, be the eccentric angles of A, B, C,

a 3 fiy ay
cos - cos c- - cos -

a /3 /3 y ay
1 cos - 1 cos 1 + cos

a negative sign being used in the last, since (y, /3,
a being in ascending

order of magnitude)^- is evidently >- Hence /3
= -7r + y,

2 6 O

a = - TT + y ;
and the weight required to upset the table = W-^

or J . W Any one position of C is, therefore, as good as any other ;

and if C is made the extremity of either axis, the line AB is parallel
to the other at a distance equal to of the first axis from it.

6. A rectangular board is held with its plane horizontal by three

vertical strings attached to three of its corners ;
find the point in its

area at which a weight must be placed so that the tensions of the

strings shall be given multiples of the weight of the board.

Ans. Let W be the weight of the board ; let the strings be

applied at the corners A, B, C ;
let AC = 2 a, AB 2b; and let the

tensions of the strings at A
} B, C be IW, mW, nW, respectively.
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Then the weight must be placed at a point whose distances from AB
and AC are 2nl 2m 1

,

. a and _
-

. o.
1

The magnitude of the weight is, of course, (l+m + n 1) W.

7. A uniform circular lamina is placed with its centre upon a

prop; find at what points on its circumference three weights, wlt
w2J

w
s ,

must be placed that it may remain at rest in a horizontal position

(Walton's Mechanical Problems, p. 7 3).

Ans. The angles which the weights subtend in pairs at the centre

of the lamina are the supplements of the angles of a triangle whose

sides are proportional to the weights.
-

142.] Reduction of a System of Forces acting in any
manner on a Rigid Body. Let any origin, (fig. 188), be

assumed arbitrarily, and let any system of rectangular axes. Ox,

Oy, and Oz, be drawn through it. If, then, forces Pl ,
P2 ,

P
3 ,

...

act on the body at points whose co-ordinates are
( lt yl , %),

(#?2 , y2 ,
z
2) t (%3 , y5 , z

3 ),
... each force can be replaced by three

components acting at along the axes, together with three

couples whose axes coincide with the co-ordinate axes. The

force Plf for example, is equivalent to Xl9 Y19 Z^ at and three

couples, ^1^1^1 ^i, Xl
z
1
Z

lxl ,
and Y1 as

i
X

ly1 . Adding the

components of the forces, and also the axes of the couples, in the

directions Ox, Oy, and Oz, the whole system of forces is equiva-
lent to the force 2X along Ox,

2Y Oy,

and 2Z Oz;

and the system of couples is equivalent to

the couple S (Zy Yz), or L, in the plane yz,

*S,(XzZx\ or Mj zx,

and ^(Yx-Xy\ or N, osy,

(Of course the axes of L, H, N are drawn along the axes of

%, y, and z, respectively).

Hence if E be the magnitude of the resultant of translation,

R=
and if G be the magnitude of the resultant couple,
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y ~v y v y 7
The direction-cosines of R are -=- > -~- > and ^~ ; and those

T K/T -\T
R R R

P n L M , N
or Cr are ~ >

-

r
> and -^

Cr Cr IT

Thus, ^ system offorces acting on a rigid body can be replaced

by a single resultant force acting at an arbitrary origin^ the magni-
tude and direction of thisforce being the same for all origins^ and a

single resultant couple the magnitude and direction of whose axis

are both dependent on the origin chosen.

It has been already remarked (Art. 137) that G is not only
the axis of the resultant couple (corresponding to a resultant

force acting at 0), but also the sum of the moments of the

forces about a line at drawn in the direction of G ; and since

the axes of couples have been proved to follow the parallelepiped

and parallelogram laws, it follows that the sum of the moments

of the forces about this line is greater than the sum of their

moments about any other line at
;
and also that the sum of

the moments of the forces about any other line through is the

resolved part of G in the direction of this line.

Remark. The magnitude and direction of G are constant at

all points along the same right line parallel to R. For R may
be supposed to act at any point in this line, and the vector G

may be moved parallel to itself to the point at which R is

supposed to act.

143.] Poinsot's Central Axis. Any system of forces acting
on a rigid body has been proved to be equivalent to a single

resultant force, R, acting at an arbitrary

origin, 0, and a single resultant couple
G. Let

(j)
be the angle between R

and G, and resolve G into two compo-

nents, OK and On (fig. 191) along and

perpendicular to R, respectively. On

is the axis of a couple in the plane Jo""

R0%, perpendicular to On. Now let Fig. 191.

each force of this couple be made equal _

to R, and the arm, OP*, is consequently equal to -=-
;
that is,

OP=^*. (,)

* The point P should be represented on the production of the line xO through
0, according to the convention of Art. 137. The inaccuracy in the figure waa
detected too late for correction.
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One of these forces may be applied at to destroy the re-

sultant, R, at this point, and there finally remains a resultant

force, R, at P along PT (parallel to OK), together with a couple

whose axis is OK, or G cos <. Denoting OK by K, we have

then K=Gcos<t>. (2)

The axis OK may, of course, be drawn at P along PT [(a),

Art. 137].
Hence the whole system offorces is equivalent to a resultantforce

equal to R acting along the line PT and a couple in a plane per-

pendicular to this line.

The line PT thus determined is called Poinsot's Central Axis.

To construct Poinsot's Central Axis for any system of forces

Reduce theforces to a resultant force, OR, acting at any origin, 0,

and a couple whose axis is OG ; then on a line perpendicular to

the plane of OR and OG measure off a length, OP*, equal to

P ? where
</>

is the angle between OR and OG. A line through

the point P parallel to OR is the required Central Axis.

144.] Theorem. A given system of forces has but one

Central Axis.

This, which is sufficiently evident from the preceding con-

struction, may be proved ex absurdo thus :

Whatever origin be chosen, the resultant force acting at it is

constant both in magnitude and in direction. Now, if it be

possible, let the system of forces be equivalent to a resultant R
acting at and a couple whose axis is OK, and also to a re-

sultant force R acting at 0' and a couple whose axis is O'K', the

lines OK and O'K' being, of course, in the direction of R. Now
it is evident that the force R at and the couple OK should

equilibrate the reversed force R and reversed couple O'K' at (7.

But the couples give a single couple, OK <+, O'K', and the forces

give also a couple which, being in a plane perpendicular to the

first couple, cannot with it produce equilibrium. Therefore, &c.

Since this axis is unique, equation (2) of the last Article shows

that for all origins the quantity G cos 0, or the projection of the

axis of the resultant couple along the direction of the resultantforce
is constant.

145.] Theorem. The sum of the moments of the forces

round Poinsot's Axis is less than the sum of their moments

* The sense of OP is determined by the convention of Art. 137.
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round any other axis of principal moment. (Since for any

origin, 0, the sum of the moments round OG is greater than

the sum of the moments round any other line through (Art.

142), OG is called the Axis of Principal Moment at 0.)

Let Oz (fig. 192) be Poinsot's Axis and OK (= K) the

moment of the forces round it. Let (7 be any point in the

body, and let it be proposed to find the

principal moment at this point. (70

is a line drawn through 0' perpendicular
to Poinsot's Axis. At 0' introduce two

equal and opposite forces, O'R and O'R',

each = R. Then OR and O'R' form a K.'

couple, whose axis, O'n is perpendicular Q
to the plane ROO'R' and equal to /
R . 0(7. Transfer the axis OK to &K'

(Art. 137), and draw the diagonal, O'G,

of the rectangle determined by O'n and

&K'. Then &G(=G) is the axis of

principal moment at (7, and it is evidently > O'K'. Hence

Poinsot's is the least principal moment.

146.] Problem. To find the surface traced out by the axes

of principal moment at points taken along a right line inter-

secting Poinsot's Axis perpendicularly.

Let Ox be the assumed line, and let it be taken as axis of #,

Poinsot's Axis being that of z. Let 007 = #, and let y and z

be the co-ordinates of any point on (7(r. Then if
</>
= the

angle GO'K', we have

z Gn K=
cot<t>

=

Fig. 192.

R .

K
or

an equation which denotes a hyperbolic paraboloid. As the

point (7 moves out from along Ox, the axes revolve towards

the right ; as 0' moves in towards 0, they revolve towards 'the

left; and after coincidence with Poinsot's Axis at 0, they

revolve towards the left. At an infinite distance from the

axis of principal moment is at right angles to Poinsot's Axis.

Let it be proposed to find the surface traced out by the axes of

principal moment at points taken all along an arbitrary curve in a

plane perpendicular to Poinsot's Axis.

qa
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Let Q be any point on the curve whose equation in the plane xy

is/ (#, y) = 0, and let (a, (3)
be the co-ordinates of Q, and the point

in which Poinsot's Axis meets the plane of xy. Then the axis of

principal moment at Q is constructed by drawing QN, in the plane

xy, perpendicular to OQ, taking on QN a length = R. OQ, drawing
at Q a perpendicular to the plane xy equal to K, and constructing the

diagonal of the rectangle determined by these two latter lines. Sup-

pose P to be any point on the axis of principal moment at Q, and let

N be the projection of P on the plane xy. The co-ordinates of P
being x

} y, z, it is clear that

If is the angle made by QN with the axis of x,

a = x + QN cos0

R . OQ cos
==aH

or a = x+~p. (1)

Similarly, ft
= y- -

. a. (2)

Solving these equations for a and p, we have

S R
x+-Tfy* y--f7 xz

fi

Hence, since / (a, /3)
= 0, we have

E R

which is the equation of the surface traced out.

147.] Theorem. A system of forces can be reduced to two

forces in an infinite number of ways. For they can be reduced

to a resultant force, R, acting at any point, together with a

couple. Now the forces of the couple can be made of any mag-
nitude by varying its arm

;
and one of them can be combined

with R. There will then remain the resultant of R and this

force together with the remaining force of the couple. There-

fore, &c.
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148.] Theorem. When a system of forces is reduced to

a pair of forces represented in magnitudes
and lines of action by two right lines, B Q\
the volume of the tetrahedron formed by
these lines is constant, however the re-

duction is made. Q
Let the system of forces be reduced to

P and Q, and let these be supposed to i

act at the extremities, A and B, of the \<$
shortest distance between them. Now to -^

get the force and couple corresponding to

the origin A, introduce at this point two opposite forces, AQ and

AQ', each equal and parallel to Q.

Compounding P and Q we get the resultant force, R ;
and

taking the forces Q at B and Q' at A we get a couple whose axis,

AG, is at right angles to the plane QBAQ* and equal to Q . AB.
Since AB is perpendicular to both P and Q, it is clear that AG
is in the plane QAP and at right angles to AQ.
Now since (Art. 143) G cos = K, we have

Q . AB . sin QAR = K.
p

But sin QAR = -=- . sin PAQ. Hence

P.Q.AB.smPAQ=K.R.
Now the volume of the tetrahedron formed by the lines AP

and BQ
= J area ABQ X perpendicular from P on the plane ABQ ;

= BQ.ABx AP. sin PAQ ;

= $P. Q .AB . smPAQ.
Hence if A denotes the volume of the tetrahedron,

o * *

This theorem has been proved in various ways. For an

elegant demonstration by Mobius, see Crelle's Journal, vol. iv,

p. 179, or Jullien's ProUemes de Mecanique RationneZle, vol. i,

p. 71.
/
149.] Symmetrical Reduction of a System of Forces. A

system of forces can be reduced to two forces equal in magni-

tude, equally inclined at opposite sides to Poinsot's Axis, and

equally distant from this axis.

This is what Thomson and Tait call the Symmetrical Case.
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Suppose the forces replaced by R acting along Poinsot's Axis,

Oz, and a couple, K. Take any point, 0' (fig. 193); draw (70

perpendicular to Oz and produce it to 0" so that (70 = 0(7'.

Let R acting at be replaced by \R acting at (7 and \R acting
at OF'. Also let the forces of the couple act at 0' and (7'

;
for

TP~

this purpose these forces must each be made = > a? being
1 00' .

K 2x
Now the resultant of \R and at 0' is a force

2%

acting towards the right, and the resultant of \R and at 0"

is a force of the same magnitude acting towards the left of the

figure.

If o> is the angle made with Poinsot's Axis by these new
forces at (7 and (7', .^

jtL

tan o> = ^- - - .=^f
tx

If we choose % so that = \/3 R, each of the two symmetrical

forces is equal to R, and they are inclined at an angle of 60 to

Poinsot's Axis.

150.] Analytical Condition for a Single Resultant. We
have just seen that a system of forces acting on a rigid body is,

in general, equivalent to two forces. Let the forces be replaced

by a single resultant force, R, acting at an arbitrary origin, 0,

and a couple G. Now the direction cosines of R referred to axes

Ox, Oy, and Oz, are (Art. 142),

v V "^7
, and ;R

and those of G are

M . N-' and -'

Hence, if $ is the angle beeween G and R,

Now if the resultant couple is in a plane containing R, one of

its forces can be made to destroy R, and there will remain a

single force ; but if G and R are not at right angles to each
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other, the system of forces cannot be equivalent to a single force.

The required condition is, therefore, cos = 0, or

L2X + M2Y+1\72Z= 0, 60
(2)

provided that 2X, 27, and 2.Z do not all vanish
;

for if they do,

R will also vanish, and < will be illusory. In fact, in this case,

since L, M, and N alone exist, the system of forces is equivalent
to a couple.

151.] Theorem. The quantity L^X+ M^Y+N^Z has the

same value for all systems of rectangular axes assumed anywhere
in space.

From (1) of the last Article it = R . G cos $, or R . K, where

A" is Poinsot's moment (Art. 143).

Hence, if this quantity vanishes for any one set of axes, the

force and the axis of the accompanying couple corresponding to

any origin are at right angles.

The value of this quantity can be exhibited in another form

which also shows that it is independent, of any particular set of

axes.

Substituting for L, M, and N the values (Art. 142),

^(Zy Yz), &c., the expression becomes

or, substituting for X19
T

19 Z13 ... in terms of the forces Pl) -..

and their direction-cosines,

[
p

i (fi cos n*i cos &).+Pi (y-2 cos Xa "2 cos ft) + ]

(Px cos a
x+P2 cos a

2 + . .

.) -f &c.....

It is clear at once that the terms Pj
2

,
P

2
2

, ... disappear, and the

products Pj P2 , PI P3 ,
... alone remain.

Collecting the coefficient of Px P2
as a typical term, we have

p
i
P

2 [(*i 2) (
cosA cos y2

-~ cos y\ cos ft)

4 (y\y^ (cos ya cos a
2

cos ax cos y2)

4 (^1^2) (
cos a

i cos ft cos ft cos a
2)].

Now (see Salmon's Geometry of Three Dimensions, p. 31, third

edition, or Frost's Solid Geometry-, p. 39) if (Pj ,
P

2)
denotes the

angle between the directions of the forces Pj and P
2 ,

the
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quantity in brackets = d12 . sin (P19 P2),
dl2 being the shortest

distance between the lines of action of the forces.

Hence

JJ2X+M2Y+NSZ=2P1
P

2 .d12 .sm(Pl,P2 ). (l)

Again (Art. 148) the term involving PjP2 on the right side

of (l) denotes six times the tetrahedron formed by Pj and P2 ;

therefore the quantity on the left side is equal to six times the

sum (with their proper signs) of the - '
tetrahedra which can be

formed out of thepairs oflines representing the nforces PI ,
P

2 ,
. . . P

rt
.

This sum has, of course, no reference to any set of axes, and

hence the necessarily invariant nature of Z2JT-J-M2Y+N2Z.
With regard to the sign to be given to any tetrahedron of the

system, we define that

The moment of aforce with regard to a line is the component of
theforce perpendicular to the line multiplied oy the shortest distance

between the force and the line.

Hence Pa . dn . sin (P15 P2) is the moment of Px about the line

of action of P2
. Now to determine the sign which must be

given to any tetrahedron, let a watch be placed so that the

direction in which either force acts passes perpendicularly from

the back up through the face of the watch. If then the other

force tends to produce rotation in the sense in which the

hands rotate, the tetrahedron is to receive a negative sign, and

if the rotation is the other way, a positive sign.

152.] Conditions of Equilibrium of a Body Acted on by
any Forces. The forces having been reduced to a resultant of

translation, R, acting at any point, together with a corresponding

couple, G; since a force and a couple cannot conjointly produce

equilibrium ( (c), Art. 137) it is necessary that

R = and G = 0.

Substituting the values of R and G given in Art. 142, we see

that these two are equivalent to the following six conditions:

= 0, 2T=0,

which are the analytical expressions of the fact that the forces
must have no component along any line and no moment about any
axis.
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EXAMPLES.

1. "When three forces keep a rigid body in equilibrium, they must
be coplanar and concurrent or parallel.

Let the forces be P, Q, and R. Then the sum of their moments
about every axis is zero. Take any point, p, on P and from it draw
a line meeting Q in the point q, suppose. Then, since two of the

forces have zero moments about this line, the moment of the third

force, R, about it must =
;

that is, this line intersects R, in the

point r, suppose.
Let another line be drawn through p meeting Q in q

f
. Then, as

before, this line must meet R in a point, r'. Now since two points on
each of the lines Q and R lie in the plane of the lines pqr and pq'r ',

the lines Q and R must both lie in this- plane.

Again, drawing any two lines across Q and R, each of these lines

must intersect P
j that is, P has two of its points in the plane of Q

and R, and P, therefore, lies in this plane.

Finally, taking moments about the intersection of Q and R, we see

that P must pass through this point ;
but if any two are parallel, the

third must be parallel to them.

2. A rigid body is acted on by forces represented in magnitudes
and lines of action by the sides of a gauche polygon taken in order

;

prove that the forces are equivalent to a couple, and that the sum of

their moments about any line is represented by double the area of the

projection of the polygon on a plane perpendicular t the line.

Let the forces be represented by the lines AR, BC, OD, ...
(fig. 194),

and let OQ be any axis.

On the axis take any point, 0, and reduce the forces to a resultant, R,
of translation at this point, together with a

couple, G (Art. 142). This is done by in-

troducing at two forces parallel and equal
to AB in opposed directions, two equal and

opposite to EC, &c. Now (Art. 136) the

resultant of translation vanishes, and the

component couples are represented by double

the areas of the triangles OAB, OBG, &c.

If the axes of these couples are drawn at 0,
the sum of the moments of the forces about

OQ will be represented by the sum of the

components of the axes along OQ ;
but this

is the same as double the sum of the projections of the areas of the

triangles on a, plane perpendicular to OQ ;
that is, the moment about

OQ is represented by double the area of the projection of the polygon
on a plane perpendicular to OQ.

Again, since G is the greatest moment round any axis through

(Art. 142), it follows that the axis of the resultant couple is the line

perpendicular to the plane on which the projected area of the polygon
is a maximum.
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3. When the resultant of translation vanishes, the forces will be
in complete equilibrium if the sums of their moments round any three

non-coplanar axes are separately equal to nothing.
For if L be the moment round the axis of x the moment If round

a parallel axis through the point (a, /3, y) is Z + y2 Yfi^Z. Hence
L' = L, M'= M, N'=. N

; and since the moment round an axis

through (a, /3, y) making angles A, /JL,
v with the axes of co-ordinates is

L' cos A + M' cos p + N' cos v, it follows that the moments round all

parallel axes are equal. For the three axes of moments we may take,

therefore, three lines through the origin making angles (\lt /^, v,),

(^2 M-2J ^2)1 anc* (A3 , jx3 ,
v
9) with the axes of co-ordinates. Suppose

then that

L cos Aj +M cos^+N cos v
l
= 0,

L cos A
2 +M cos

fjiz -fW cos r
2
= 0,

and L cos A
s + N cos pz +N cos ^

3
= 0.

These require either that L = M N = 0, or

cosAj,

cosA
2 , cos/z2 ,

cosz> =0.

COSAg, COSjUg,

The latter condition requires that the three axes of moments be in one

plane. If they are not coplanar, we must have L = M = N = 0, i.e.

the forces are in equilibrium.

4. A tetrahedron is acted on by forces applied perpendicularly to

the faces at their respective centroids. If the force applied to

each face is proportional to the area of that face, prove that the

tetrahedron is in equilibrium, the forces being supposed to act all

inwards or all outwards.
Let A, B, C, D, be the vertices of the tetrahedron and denote the

areas of the faces opposite these vertices by^, B1 ,C-L ,
D

I} respectively.

Denote also the angle between the faces A
1
and B

1 by A l
Br Then

evidently A A

A
l
= B

l
cos A

l
B

l + C:
cos A

l
C + Z>

x
cos A

1
D

l ;

or if the forces perpendicular to the faces are denoted by P, Q, R, S,

P-Q. cos PQ-R. cos P*R-S.cos PS= 0,

which shows that there is no resultant force in a direction perpen-
dicular to the face A

l ; similiarly there is no resultant force in direc-

tions perpendicular to the other faces
;

therefore the resultant of

translation vanishes.

To show that there is no resultant couple, let each force be replaced by
three equal forces acting at the angles of the corresponding face. Thus
the force P is to be replaced by three forces each equal to ^ P acting
at the points B, C, D perpendicularly to the face BOD. Let us
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calculate the sum of the moments of the forces about the edge EG.
For this purpose, let the forces \ Q and \ R at D be each resolved in

the direction of the force ^ P at this point, i. e. perpendicularly to the

face BCD. Supposing the forces to act outwards, the components of

J Q and ^ R are ^ Q . cosPQ and ^ R . cos PR
;
therefore the sum

of the moments of the forces at D about EC is proportional to

(A l BI . cos A
l l

Cl . cos^ (7j) p',

r
A

or, again, D^ .
j>,

p' being the perpendicular from D on JBC, and p the perpendicular
from D on the base ABC. But this last expression is three times the

volume of the tetrahedron. In the same way, the sum of the moments
of the forces at A is represented by three times the volume of the

tetrahedron, and as these moments are in opposite senses, the

forces have no moment round the edge C, and similarly no moment
round any of the edges. Hence by the last example they are in

equilibrium.
For another simple method of proof see Collignon's Statique, p. 354.

5. Prove that a solid body of any shape is in equilibrium if it is

acted on throughout its surface by normal forces, each force being

proportional to the superficial element on which it acts.

One very simple method of proof consists in imagining a surface

precisely equal and similiar to that of the given body to be traced out

in a weightless fluid which is subject to any pressure.

6. If a curved surface whose edge is a plane curve is acted on all

over its surface by normal forces, each proportional to the element of

surface on which it acts, prove that these forces have a single resultant

if they all act towards the same side of the surface.

7. Forces perpendicular and proportional to the areas of the faces

act at the centres of the circles circumscribing the faces of a tetra-

hedron
; prove that they are in equilibrium, if they all act inwards or

outwards.

They meet in the centre of the circumscribed sphere. The proposi-
tion is evidently true also for any polyhedron bounded by triangular
faces.

Taking the results of this example and example 4 together, we see

that forces proportional to the areas and perpendicular to them are in

equilibrium if they act at the orthocentres of the triangular faces of

any polyhedron.

8. Find the force necessary to keep a heavy door in a given

position, the hinge line being inclined to the vertical and the hinges
smooth.

Let i be the inclination of the hinge line to the vertical, and a the

given inclination of the plane of the door to the vertical plane con-

taining the hinge line. Then if W is the weight of the door, a the
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distance of its centre of gravity from the hinge line, and the angle
between the normal to the plane of the door and the vertical, the

moment of the weight about the hinge line is

Wa cos 0.

This is the moment of the required force. To
find 0, let lines parallel to the hinge line and the

vertical be drawn through any point, 0, and

through this point let a plane be drawn parallel
to the plane of the door. Round let any
sphere be described; let V and L

(fig. 195) be

the points where these lines meet the sphere ;

DL the circle in which the plane of the door in-

tersects the sphere, and N the point in which the

normal, ON, to the door intersects it. Then VL = i, /. DL V = a,

and NV = 0, and we have from the spherical triangle VDL
sin VD = sin i sin a,

or cos = sin i sin a,

since N is the pole of DL. Hence the moment of the required force is

Wa sin i sin a,

and when its point of application and direction are known, its magni-
tude is therefore known.

9. A beam can turn in every direction about one end which is

fixed; the other end rests on a rough inclined plane. Find the

limiting position of equilibrium. (See Walton's Mechanical Problems,

p. 191, third edition.)
Let AB

(fig. 196) be the beam, A the fixed end, DPH the rough
inclined plane, PH the intersection of this plane with a horizontal

plane through A ,
APD the vertical plane through A perpendicular to

the inclined plane, BD a line parallel to PH, AO a perpendicular
from A on the inclined plane, DQ a perpendicular on the horizontal

plane, i the inclination of the plane, a the angle, ASO, between the

beam and this plane, and
jut

the coefficient of friction.

Now suppose first that the beam is per-

fectly inelastic. Then the end B describes

on the inclined plane a circle whose centre

is 0, and if it is about to slip, the force

of friction assumes a direction perpen-
dicular to OB in the inclined plane. The
extreme position of the beam will be

denoted by the angle, or DOB, between

the plane, A OB, through the beam normal

to the inclined plane and the vertical

plane, AOD.
The forces acting on the beam are its weight, the reaction of the

smooth joint at A, and the total resistance of the inclined plane at B.

This last force we shall consider as composed of a normal reaction, R,

Fig. 196.
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and a force of friction, pR, acting perpendicularly to BO. For the

equilibrium of the beam take moments about a vertical axis through
A. The moment of the normal reaction at B is R sin i x BD, or

R sin i . BO sin 0, or again R sin . AB cos a sin 0. To find the

moment of pR, resolve it into p,Rcos0 along BD and fjiRsin0

parallel to OD ;
and resolve this latter again into a horizontal

component, pR sin0 cosi, and a vertical component, pR sin# sin.
The moment of jut/? is then equal to the sum of the moments of

[JiR cos and pR sin cos i
;
that is, it is equal to

Hence the equation of moments is

72 (sinip cos sin 0)j8Z> = pR cos 0.AQ.
AO

But ^O = ^P + P0 == -T ; + (OD-OP)cosi
sin *

4 B
. sin a

_ t *
cos ^ cos a cosQAB sin a cot i cos ^

smt
= .42? (sin i sin a + cos i cos a cos 9) ;

therefore

(sin ft cos i sin 0) cos a sin =
fj,
cos (sin i sin a + cos i cos a cos 0),

or sin i cos a sin = p cos i cos a + ju sin sin a cos 0,

or tan i tan =
juyl + tan2 + ft tan i tan a,

or finally,

(tan
2

-fi
a
)
tan2

0-2/x tan2 tan a tan + p2
( tan

2
i tan2 a- 1)

= 0. (1)

If there is no horizontal plane through A obstructing the beam, it

will be possible for the end B to describe a complete circle round 0.

Let us inquire the condition that the beam should rest in all possible

positions. For this there must be no limiting position of equilibrium,

or, in other words, the value of in (1) must be imaginary.
The required condition is, then,

tan2

(l+/x
2 tan2 a)<//,

tan

Let us next suppose that the beam is elastic, or that, in virtue of a

compression of the beam, B is not constrained to move in the circle

whose centre is 0. Supposing, then, that the beam has been jammed
against the plane, if the coefficient of friction is gradually diminished,

B will begin to move in some other direction than that perpendicular
to OB, and this direction will be exactly opposite to that in which the

force of friction acts. Now the reaction at A, the total resistance at

B, and the weight of the beam lie in one plane which must, therefore,

be the vertical plane through the learn. The total resistance at B
must, moreover, lie inside or on the cone of friction described round

B. Hence if the position of the beam is such that the vertical plane

through it touches this cone, equilibrium will be at its limit, since the
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line of action of the total resistance is the line of contact of the

vertical plane with the cone.

Let the lines and planes of the figure be projected on a sphere
described about B as centre with arbitrary radius. Then the cone of

friction will appear as a small circle of angular radius, NC (fig. 197)

equal to A, the angle of friction. Let N be

the point in which the normal to the inclined

plane at B meets the sphere; A, the point

representing the beam, and ACV the vertical

plane through the beam touching the cone of

friction. Now the vertical line at B lies in

the vertical plane, ACV, through the beam,
and it makes an angle equal to i with the

normal to the inclined plane. Hence, take a

point V in ACV so that NV = i, and we
have NV, the circle answering to the vertical

plane through B normal to the inclined plane (a plane which is

parallel to the plane APD, fig. 196). In the spherical triangle NVC
we have then

Fig. 197.

or

sin NV . sin N VC = sin NC,

sin i sin 6 = sin A.
;

sin A.

sin0 =
sin i

This second solution suppposes that the only condition to which the

total resistance is subject is that of making with the normal an angle
not greater than the angle of friction. The supposition of perfect

rigidity, on the contrary, restricts the direction of the force of friction

in the inclined plane, making it perpendicular to the line OB.

10. A heavy elastic beam rests on two rough inclined planes whose

intersection is a horizontal line. Show that every position of the

beam may be one of equilibrium if the inclination of each plane is less

than the angle of friction for that plane and the beam.

Let A (fig. 198) be one end of the beam, AN the normal to

the plane on which A rests, and A V the vertical at A . Then if the

beam is sufficiently elastic, it may be jammed against
the planes, and the only condition to which the total

resistances at its ends are subject are the conditions

of making with the normals angles not greater than

the corresponding angles of friction. Hence in the

extreme position in which the end A is about to

slip, the vertical plane through the beam must touch

the cone of friction described round the normal, AN.
But this is manifestly impossible, since the angle A.

is > VAN
;

for the vertical line is included within
the cone, and through this line no plane can be drawn to touch the
cone. There can, therefore, be no limiting equilibrium at either end
in any position of the beam.

Fig. 198.
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11. A particle is acted on by any number of given forces, P1?

P
2 ,

...
; prove that if R is their resultant,

R* = 2(P') + 22(P1
. P

2
cosP>2),

where P
a
P

2
denotes the angle between the directions of P

x and P2
.

12. Prove that a system of forces acting on a rigid body may be

replaced by two equal forces whose lines of action are perpendicular
to each other, and each inclined at an angle of 45 to Poinsot's Axis :

the forces act at the ends of a line bisected by this axis
; the length

2K R
of this line is -=r- > and each force is > R being the resultant of

fi v 2

translation, and K Poinsot's moment.

13. Prove that the distance between the lines of action of the two
forces which equivalently replace a given system of forces is a

minimum when the forces are equal and their directions perpen-
dicular.

14. Prove that the central axis of two forces divide the shortest

distance between them into two parts which are inversely proportional
to' the components of the two forces along the direction of their

resultant.

15. ABCD is a tetrahedron; forces P, Q, R act along the edges

BC, CA, AB in order, and forces P', Q', R' act along AD, ED, CD ;

prove that the condition for a single resultant is

rr
,

QQf
,

ssr _
AB. CD

~

16. A rough heavy body, bounded by a curved surface, rests upon
two others which themselves rest on a rough horizontal plane ;

show
that the three centres of gravity and the four points of contact lie in

one plane.

17. A heavy beam rests on two smooth inclined planes ; show that

their line of intersection must be perpendicular to the beam and

parallel to the horizon.

1 8. Prove that the moment of a force represented by the right line

PQ about a right line AB is six times the tetrahedron ABPQ divided

l>y AB.

19. Three equal heavy spheres hang in contact from a fixed point

by strings of equal length ;
find the weight of a sphere of given radius

which when placed upon the other three will just cause them to

separate.
Ans. If W and a be the weight and radius of each of the three

spheres, W' and r the weight and radius of the superincumbent

sphere, and I the length of each string,

W

20. Three spheres are placed in contact on a rough horizontal
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plane, and a fourth sphere is placed upon them, there being no
friction between the spheres themselves. Show that equilibrium is

impossible.

21. Three equal spheres are placed in contact on a rough horizontal

plane, and a fourth sphere is placed upon them, there being friction

between the spheres themselves. Find the least coefficient of friction

between the spheres which will allow of equilibrium.

Ans. If a is the radius of each of the equal spheres and r that of

the superincumbent sphere, the least value of A, the angle of friction,

is given by the equation

sin 2A = =. ---
-v/3

(The total resistance between the upper sphere and any one of the

lower spheres must be capable of acting through the point of contact

of the latter and the ground.)

22. Three forces whose lines of -action are given, but not their

magnitudes, have a single resultant. Prove that the surface traced

out by the line of action of the resultant is a hyperboloid of one sheet.

(Draw any three lines across the given lines of action. Then the

line of action of the resultant must always intersect these three.)

23. A heavy triangular plate of uniform thickness is suspended
from a fixed point by means of three strings attached to the point
and to the vertices of the plate ; prove that the tension in each string
is proportional to the length of the string.

(Let be the fixed point, A, B, C the vertices of the plate, and G
its centre of gravity. Then G must lie vertically under 0. Take OG
to represent the weight of the plate. Then, by Leibnitz's graphic repre-
sentation [Art. 136], the force OG may be resolved into the forces OA,
OB, OG. But a given force can have only one set of components along
three given concurrent lines. Therefore, &c.)

24. At points on any right line the axes of principal moment of a

given system of forces are drawn
; prove that their extremities trace

out another right line. (Wolstenholme's Problems, p. 387, 2nd

edition.)

(At any point on the given line draw R and G. Take as axes of

x, y, and z the given line, the line OG, and a line at perpendicular
to R and the given line. Then at any point P on the given line at a

distance x from if the axis of principal moment be drawn the

co-ordinates of its extremity will be x, G, and Rx sin a, where a is the

angle which R makes with the given line. Hence the extremities lie

on the line y = G, z = Rx sin a.)

25. Prove that the axes of principal moment at points along any
right line whatever trace out a hyperbolic paraboloid.

(With the same axes as in last example, the surface has for

G .

equation mi =-: %.)J '
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25. Find the condition that a given right line should intersect

Poinsot's axis.

Ans. If the equations of the line are x =.mz +p, y = nz + q, the

required condition is

R[mL + nM+N-\-q(X-mZ}-p(Y-nZ}'\ = K(mX+nY+Z),
where X is used for 2JT, &c.

(It will be found that the equations of Poinsot's axis can be put
into the forms

X KY-MR Y KX-LR,

the origin being anywhere.)

26. The first case considered in example 9 is, equally with the

second, a geometrico-statical problem. Solve it without any mention

of force.

[Express the condition that the vertical through the extremity A
of AB is intersected by a line inclined at angle A. to the normal at B,
this line lying in the plane of the normal and a perpendicular to



CHAPTER XL

CENTROIDS [CENTRES OF GRAVITY].

153.] Centre of Mass. Imagine a body broken up into an

indefinitely great number of infinitesimal elements of mass

(without altering the relative positions of these elements) and

find the mean centre of all the points at which these elements

are placed, the multiple associated with each point being pro-

portional to the element of mass at the point.

Then if the distances of the elements dml9 dm.2) dmz ,
... from

any plane are ^15 z2) 3 ,
...

,
the distance of the mean centre from

the plane is

Z-L
dml -f zz dm* + ... fzdm
- -

j or ^dm1 + dm2 + ... Jam
The point thus arrived at is called the Centre of Mass of the

body ; it is also often called the Centre of Inertia ; and the term

centroid has lately come into use to designate it.

The distance of the centre of mass from any plane is the mean

distance of the body from the plane. If each element of mass is

acted on by a force proportional to the mass of the element, and

these forces form a parallel system ;
and if w is the magnitude

of the force per unit of mass, the distance of the centre of this

parallel system of forces from the plane is

fwzdm fzdm
7 T * Or

jr^j
>

Jwam Jam
since w is a constant. Thus the centre of the parallel system
coincides with the centre of mass. The earth produces such a

parallel system of forces on the elements of a body, and therefore

the point thus arrived at has, until very recently, been universally

called the Centre of Gravity of the body. It is only when we
consider the action of such a parallel system of forces on the

body as the attraction of the earth supplies that the point in

question should bear the particular epithet of Centre of Gravity.
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In numerous questions relating to the body in which the action

of gravity is not considered the centre of mass plays a most

important part ;
and it is a point possessed by the body quite

independently of any force whatever acting upon it. Hence the

latter term is the one most strictly appropriate to the point
determined as above ; and, except when the weight of the body
is concerned, we shall use the terms centroid and centre of mass

instead of centre of gravity.

154.] Theorem of Moments. If any number of masses be

multiplied each by the distance of its centre of mass from any

plane, the sum of the products thus obtained is equal to the

total mass multiplied by the distance of its centre of mass from

the plane.

The centre of mass of any number of finite masses is obtained

in precisely the same manner as the centre of mass of a number

of particles. Thus, if m
l
and m

2 are the masses of two bodies of

any magnitudes, their centre of mass is obtained by dividing the

line joining their respective centres of mass in the ratio m
1

: m.2 ,

just as if two particles of masses m
1
and m.2 were placed at these

points.

Hence the distance, #, of the centre of mass of any number of

finite masses from any plane (that of yz) is given by the equation

_
''

or H. x 2mx, and the theorem at the head of this Article

is merely the expression of this equation.

It is obvious that the formulae which have been given for

the co-ordinates of the centre of mass hold whether the axes le

rectangular or oblique. For in Art. 79, p. 96, on which our

formulae are founded, the distances of the points A19
A

2 ,
... from

the line (or plane) L may be assumed to be measured in any
common direction.

It follows that if any plane be drawn through the centre of

mass of a system of masses, the sum of the products obtained by

multiplying each mass by the distance of its centre of mass from

the plane is zero. If the plane be that of (yz\ and if SB' be the

distance of the centre of mass of the mass m from the plane, this

result is expressed by the equation

^mx'= 0.

Given the centres of mass, g^ and #2 ,
of two masses, m1 and m

2 ,



24:4: CENTROIDS [CENTRES or GRAVITY]. [155.

the centre of mass of the two as one system is a point, (?, on the

line fa g% dividing it in the ratio -~ =
Cr^2 %

Given the centre of mass, G, of a mass M, and also the centre

of mass, fa, of a portion, mlt of the mass, the centre of mass, ^2 ,

of the remainder is a point on the line gG produced through G,

r \ 3 err ff^lA^^^ <?*. fc
'

such that 7^=^
Ggl M m

155.] Density. When a body is of the same constitution-
'

throughout, i. e., when its ultimate particles are undistinguish-

able from each other, and when there is the same number of

them in a given volume wherever this volume is taken in the

body, the body is said to be homogeneous or of uniform density ;

and its density is measured by the quantity of matter contained

in (some selected) unit of volume, But when the particles are

more or less crowded together in one region of the body than in

another, instead of speaking of the density of the body, we must

speak of the density at each particular point. To measure this,

take any very small volume, dv
9
round the point, and let dm be

the quantity of matter contained in it
;
then the limiting value

of the ratio -?- > when dv (and therefore dm) is indefinitely

diminished, is the density of the body at the point considered.

156.] Centre of Mass of a Triangular Lamina of Uniform
Thickness and Density. Let ABC be any triangular lamina of

uniform thickness and density, and let it be divided by an

indefinitely great number of lines parallel to the base BC into

an indefinitely great number of strips. Then the centre of mass

of each strip is its middle point ;
and the middle points of all

the strips lie on the line joining A to the - middle point of BC.
Hence the centre of mass of the lamina lies on this line.

Similarly, the centre of mass lies on the line joining B to the

middle point of CA. It is therefore the intersection of the

Usectors of the sides drawn from the opposite angles.

Again, the centre of mass of a uniform triangular lamina coin-

cides with the centre of mass of three equal particles placed at its

vertices.

For, the centre of mass of the two equal particles at B and C
is the middle point of BC, and the centre of mass of the three
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^ , 2 ,
and #3 ,

the distance of its

lies on the line joining this point to A. Similarly, it lies on the

line joining B to the middle point of CA. Therefore, &c.

If the mass of each particle is m, the centre of mass divides

the line joining A to the middle of BC in the ratio 2 m : m,

or 2:1. Hence the centre of mass of a triangular lamina

of uniform thickness and density lies on the bisector of any side

drawnfrom the opposite angle at the point of trisection (nearest to

the
side) of the bisector.

COR. If the distances (rectangular or oblique) of the "vertices

of a triangle from any plane are i

centre of mass from this plane is
3 <3

157.] Centre of Mass of a Triangular Pyramid of Uniform

Density. Let ABCD (fig. 199) be a triangular pyramid. Now
if any vertex, D} be joined to the centroid, N, of the oppo-
site face, the joining line passes through the centroids of

all triangles in which the pyramid is cut by planes parallel to

this face. For, let abc be a section of the pyramid parallel to

the base ABC. Draw the plane CND containing the lines CD
and DN; this plane bisects the base

AB in H, since (Art. 156) CN bisects

AB. Let the plane CND intersect the

face ABD in the right line HhD, h

being the point in which this line

meets ab. Then since in the triangle

ABD, ad is parallel to AB, and DH
bisects AB, h is the middle point of

ab.

Again, if the line DN meets the

plane abc in n, the points h, n, and c

are in a right line. For these are evidently points common to

the planes CND and abc, and since two planes intersect in a

right line, the points h, n, c are in a right line that is to say,

n is a point on the bisector of the side ab drawn through c.

Similarly, n is a point on the bisector of be drawn through a
;

therefore n is the centroid of the triangle abc (Art. 156).

To find the centre of mass of the pyramid, let it be divided by

planes parallel to ABC into an indefinitely great number of

triangular laminae. Now we have just proved that the centres

of mass of all these laminae lie on the line, DN, joining the

Fig. 199.
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vertex D to the centroid of the opposite base. Similarly, the

centre of mass of the pyramid lies on the line joining the vertex

A to the centroid of the face BCD. It is, therefore, the point,

G, of intersection of lines drawn from any two vertices to the

centroids of the opposite faces. But this is exactly the con-

struction for the centre of mass of a system of four equal

particles placed at the vertices of the pyramid. Hence

The centre of mass of a triangular pyramid coincides with the

centre of mass offour equal particles placed at its vertices.

Also

The centre of mass of a triangular pyramid is one-fourth of the

way up the line joining the centroid of any face to the opposite

vertex.

For, if at the vertices there be placed four equal particles, each

of mass m, their centre of mass is found by joining D to N
and taking-^ = -- = J, therefore GN^GD, or

CrJJ 3 in

NG = \ND.
COE. 1 . The perpendicular distance of the centre of mass of a

triangular pyramid from the base is equal to \ height of

pyramid.
COR. 2. If the distances (rectangular or oblique) of the

e . , r
V

7 1.1. J'
vertices of a pyramid from any plane are selt x^x^ #4 ,

the dis-

tance of the centre of mass from the plane is

158.] Centre of Mass of a Cone of Uniform Density

having any Plane Base. Consider a pyramid whose base is a

polygon of any number of sides. Then, by dividing the base

into triangles we can consider the whole pyramid as composed
of a number of triangular pyramids. Now (Art. 157) the centre

of mass of each of these pyramids lies in a plane whose distance

from the base is one-fourth of the height of the pyramid ;
there-

fore the centre of mass of the whole pyramid lies in this plane
that is, its perpendicular distance from the base is one-fourth of

the height of the pyramid.

Again, dividing the pyramid into an indefinitely great
number of laminae, as in last Art., the centres of mass of these

laminae all lie on the right line joining the vertex to the centroid

of the base. Hence the centre of mass of the whole pyramid
lies on this line

;
and by what we have just proved, it must be
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one-fourth of the way up this line. There is no limit to the

number of sides of the polygon ;
hence they may form a con-

tinuous curve.

Therefore

The centre of mass of a cone whose base is any plane curve what-

ever isfound by joining the centroid of the base to the vertex, and

taking a point one-fourth of the way up this line.

'"

159.] Theorem. If'the mass of each of a system of bodies be

multiplied by the square of the distance of its centre of massfrom a

given point
:

,
the sum of the products thus obtained is least when the

given point is the centre of mass of the system of bodies.

This theorem, which is well known in elementary geometry,
admits of a very simple analytical proof.

Let (#, y, z) be the co-ordinates of the centre of mass, G, of

the system with reference to rectangular axes through any point,

0, and let (#1,^1 j^i), (#2'^2> z
z)>

^e ^ne co-ordinates of the

centres of mass, A13
A

z ^
...

,
of the bodies whose masses are

%, %, .... Then
GA* = (x-xtf+(y-ytf+(z-z^ (i)

Similarly, GA 2 = (*-*2)

2
-f (?-y2)

2+ (z-%)
2
, (2)

Multiplying these equations by %,%,..., and adding, we

have
2 (m . GA2

)
= (x

2
+y* + z2

)
. ^m-2x . ^mx - 2y . 2 my

^z.Zmz+Zm^+f + z2

). (3)

Now (Art. 154),

^mx = #.2#&, ^my = y . 2?#,

Hence (3) becomes

or 2 (m . GA2
)
= 2 (m . OA2

)
-OG 2

. 2m, (4)

from which equation it appears that 2 (m . GA 2
)

is always less

than 2 (m . OA 2

) by the quantity OG2
. ^m.

It can be shown that, if rl2 denote the distance between the

centres of mass of the masses % and m2 , and M the sum of all

the masses, M.2(m. GA2
)
= 2 (% m2

r12
2
).

For, let the centre of mass, G, be taken as origin. Then,

denoting the co-ordinates of the points Alt A2 ,... with reference

to G by (a?/, y/, z^),
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m . GA^ = m
l (% + m2 + .

!+.... (5)

Also (Art. 154)
=
=

Squaring each of these last three equations, adding the results

together, and subtracting their sum from (5),
we have

Q 9. 9.

M.2(m.GA2
)
= t

Hence, from (4),

OG = M M*
under which form Lagrange expresses the distance of the centre

of mass of a system of bodies from a given point (see Mecanique

Analytique^ p. 61).

Equation (4) can be employed to prove the well-known ex-

pression for the distance between the centres of the inscribed

and circumscribed circles of a plane triangle, viz.

D being the distance between the centres, and r and E being
their radii, respectively.

(Suppose a system of particles at the vertices, the mass of

each being proportional to the opposite side. Their centre of

mass is the centre of the inscribed circle. The remainder is

left to the student as an exercise.)

EXAMPLES.

^ 1. To find the position of the centre of mass of the frustum of a

pyramid.
Let the frustum be formed by the removal of the pyramid abcD

{%. 199) from the whole pyramid ABCD ; let h and ZTbe the per-

pendicular heights of these pyramids, respectively ;
and let m and M

denote their masses.

Now if the perpendicular distances of the centres of 'mass of the

pyramid ABCD, the pyramid abcD, and the frustum, from the base
ABC be denoted by z

1} 2 ,
and z, respectively, we have (Art. 154)

Mz
l
= mz

z + (M^m)K. (I)

'

Af->ti.

M
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TT ~L

But z
l
= >

2
= - +H h = H f h. Also the masses of the

pyramids are to each other as the cubes of their heights ; therefore

(1) gives

or 4 (#
3 -7i3

)
z = H*-4.Hh 3 + 3/i*

- ff~ h
~~

2 z

Instead of the heights we can use the square roots of the areas of

the bases, to which the heights are proportional. If these areas are

denoted by A and a, we have

_Hh ^ , .~ '

The centre of mass, G'
',
of the frustum obviously lies on the line

Nn (fig. 199) between N and G; and (3) evidently gives

It is clear that the position of the centre of mass of the frustum of

a cone standing on any plane base is also given by these equations.

2. To find the centre of mass of a board of uniform thickness and

density whose figure is that of a quadrilateral.
Let ABCD be the quadrilateral ;

draw the line AC, which divides

the quadrilateral into two triangles ;
let L and M be the centroids of

the triangles ABC and ADC, respectively ;
and let the line LM meet .'

ACinN.
Then the centroid of the quadrilateral is a point, G, on LM such

MG area ABC area ALC perp. from L on A C LN
^ta

LG
=

area ADC
~

area AMC = perp. from MonAC
~
~MN '

*i. r LN
therefore -7-^ = -^-^ , or MC = LN.LM LM
The centre of mass is therefore found by taking a point, Gf, on LM,
such that MG = LN.

Another construction. The student will find little difficulty in

proving the following construction. Draw the diagonals AC and

BD, meeting in the point 0. On AC take a point C', such that

AC'=CO, and on BD take a point B', such that DB'=BO.
Then the centroid of the quadrilateral is the centroid of the triangle

&OQ'.
- 3. From a triangular board of uniform thickness and density the

portion constituting the area of the inscribed circle is removed
; prove
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that the distance of the centre of mass of the remainder from any
side (a) is

A 2s3-37raA

3 as s
2

TTA

A being the area, and s half the sum of the sides, of the board.

4. If a tetrahedron be formed by the centres of mass of any four

masses, prove that each mass is proportional to the tetrahedron

standing on the opposite face and having for vertex the common
centre of mass of the masses.

5. If at the vertices of a triangle there be placed three masses each

of which is proportional to the opposite side of the triangle, prove
that their centre of mass is the centre of the circle inscribed in

the triangle.

6. Prove that the centre of mass of a system of uniform bars

forming a triangle is the centre of the circle inscribed in the triangle
formed by the middle points of the bars.

7. A figure is formed by a right-angled triangle whose sides are

a, b, and c, and the squares constructed on these sides
;

find the

distance of the centroid of this figure from the greatest side (c).

ab
Ans.

3c

8. Prove that the centroid of a trapezium divides the line joining

the middle points of the two parallel sides in the ratio -
j the

lengths of these sides being a and b.

Prove also the following construction for the centroid :

The vertices, in order, being A,B, C,D, and the parallel sides AB
and CD, produce BA to A', and AB to B\ so that AA'= BB'= CD ;

also produce DC to C", and CD to D', so that CCf DD'= AB
;
then

the point of intersection of A'C' and B'D' is the required centroid.

9. A right line passing through a fixed point intersects two fixed

right lines
;
find the locus of the centroid of the triangle formed by

the variable line and the two fixed lines.

Ans. If the co-ordinates of the fixed point with reference to the

two fixed lines as axes are a and b, the locus is the hyperbola

>-b) = ab.

10. If the right line in the last example, instead of passing through
a fixed point, cut off a triangle of constant area, find the locus of the

centroid of the triangle.

Ans. If o> is the angle between the fixed lines, and k 2 the

constant area, the locus is the hyperbola

Qxysin to = 2k 2
.

11. From a sphere of radius R is removed a sphere of radius r, the

distance between their centres being c; find the centre of mass of

the remainder.
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Ans. It is on the line joining their centres, and at a distance

-r- 5 from the centre.

12. Every body has one and only one centre of mass. Hence show
that the lines joining the middle points of the opposite sides of a

quadrilateral bisect each other.

(Consider four equal particles at the vertices.)

13. From the vertices of a given triangle let perpendiculars be

drawn to the opposite sides. Find the distances of the centroid of

the triangle formed by the feet of these perpendiculars from the sides

of the given triangle.

Ans. The distance from the side a is ^ a sin A cos (B C).

14. A thin uniform wire is bent into the form of a triangle ABO,
and particles, of weights, P, Q, K, are placed at the angular points

A, B, C, respectively; prove that if the centre of mass of the particles
coincides with that of the wire,

(Wolstenholme's Book of Mathematical Problems.)

15. Find the centroid of the triangle formed by the points in which

the bisectors of the angles of a given triangle meet the opposite sides.

Ans. If A denote the area of the given triangle, whose sides

are a, b, c, the distance of the centroid from the side a is

B 2a+b+c
(a+ 6)(a-f-c)

'

16. A uniform wire of given length is formed into a triangle of

which one angle is given ;
find the locus of the centre of mass of the

wire referred to the sides containing the given angle as axes.

Ans. If C is the given angle, and 41 the length of the wire, the

locus is the ellipse

C C
(lxyY+2(lccy)(2lxy)$\tf +4^ sin

4 = 0.
2 u

17. If particles be placed at the angular points of a tetrahedron,

proportional respectively to the areas of the opposite faces, their

centre of mass will be the centre of the sphere inscribed in the tetra-

hedron.

(Wolstenholme's Book of Mathematical Problems.)

18. Prove that the centroid of the surface of a tetrahedron is the

centre of the sphere inscribed in the tetrahedron formed by joining
the centroids of the faces.
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SECTION II.

Investigations requiring Integration.

160.] Rule. The general formulae, such as that in Art. 153,

for the co-ordinates of the centre of mass of a quantity of matter

arranged in any manner assume particular forms according as

the matter is arranged in the form of a wire of any shape, an

area or thin lamina of any shape, or a solid. Then, again,

they assume particular forms in each of these cases according

to the manner in which the matter is supposed to be divided

into elementary portions.

Many students are in the habit of remembering a special

formula for each of these numerous cases
;
such a habit, how-

ever, is not only useless but injurious. It is much better to

consider the formula of Art. 153, or the method of p. 97, as

furnishing the following Hule which covers all possible cases :

Divide the given quantity of matter, in any way> into elementary/:/*/ y //' /

portions ; find the position of the centre of mass of each of these

portions ; then multiply the mass of eachportion by the co-ordinate*

of its centre of mass> and take the integral of this product ; and

finally divide this integral by the whole quantity of matter. The

result is the co-ordinate of the centre of mass required.

161.] Centre of Mass of the Arc of a Curve. If the

matter whose centre of mass we desire to find is arranged in

the shape of the arc of any curve, the co-ordinates of its centre

of mass are obtained from the

formula of Art. 153, in which dm
now denotes the mass of an ele-

mentary length of the curve.

Let ds denote the length of an

elementary portion of the curve

contained between two points, P
Fig. 200. an(i Q (

n
g"' 200) ;

let Tc denote the

mean area of a normal section of

the curve between P and Q ;
and let p denote the density of the

matter in the neighbourhood of P and Q. Then, since the

quantity of matter in any space is equal to the product of the

volume and the density, the quantity of matter between P and

Q is kpds.
* The co-ordinates are supposed to be such as are measured parallel to a given

line. The rule would not hold if by co-ordinate were understood polar co-ordinate,
for instance.
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Again, the centre of mass of this element is evidently the

middle point of PQ.
And since to obtain G, the centre of mass of the whole mass,

the co-ordinates of this middle point must be multiplied by the

infinitesimal kpds, the co-ordinates of the centre of mass ofPQ
may be taken to be the same as those of P.

Replacing dm in the general formulae by the linear element

Jcpds, we obtain for the position of the centre of mass of matter

arranged in the form of any curve the equations

__ _ fkpocds
=

fkpds
'

_ fkpyds
"

fkpds
'

fkpzds
~~

fkpds
'

The quantities k and p must be given as functions of the

position of the point P before the integrations can be per-
formed.

EXAMPLES.

1. To find the position of the centroid of a circular arc of uniform
thickness and density.

Let AB be the arc, M its middle point, and the centre of the

circle. Then it is manifest from symmetry that the centroid must lie

on the line OM. Take OM as axis of x. Then since k and p are

constant, we have /Ws
x = '

ri >

fds
x being the co-ordinate of any point, P, in the arc. Let 6 be the

angle POM and a the radius of the circle. Then

x = a cos 0, and ds = adO.

fcos6deHence x a- r la >

fdO
the integration to be extended over the whole arc. Now if the angle
BQA = 2 a, the integration must be taken from 6 = a to = a.

Therefore sin a I

x = a
a

Hence the distance of the centroid of the arc of a circle from the

centre is the product of the radius and the chord of the arc divided by
the length of the arc.

The distance of the centroid of a semicircle from the centre is
TT
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2. Find the centre of mass of a circular arc of uniform section, the

density varying as the length of the arc measured from one extremity.
Let AB be the arc

;
let the density at any point P = JJL. AP, and let

OA be taken as axis of x. Then if 2.AOB = a, and AP = s, we have

Ode
o

a sin a + cos a 1

,
,

- fsyd* h'*
Similarly, y = J " a

j

sin a a cos a= 2a----
a 2

3. One extremity, A, of the arc, AB, of a curve being fixed, while

the other extremity, B, varies, it is required to construct at any point
the tangent to the locus of the centroid of the variable arc AB.

Let AB be a portion of the arc of any curve, and let G be the

centroid of AB. Then if B' be a point on the given curve very close

to B, the centroid of the whole arc AB' is obtained by joining the

centroid, G, of AB to the centroid of BB', and dividing the joining
line inversely as the lengths of AB and BB*. But the centroid of

BB' is its middle point. Hence the centroid of AB' lies on the line

joining G to the middle point of BB'. In the limit, therefore, the

line joining G to its next consecutive position is the line GB, which

is, then, the tangent at G to the locus of G.

4. Find the position of the centroid of the arc of a semi-cardioid.

A ns. The equation of the curve being r = a (I +cos 0), the co-

ordinates of its centroid referred to the axis of the curve and a per-

pendicular line through the cusp as axes of x and y are

4
*= y = -a.

5. Find the equation of the line joining the centroid of the arc of

half a loop of a leinniscate to the double point.

Ans. The axes of x and y being the axis of the curve and a

perpendicular line, the equation of the required line is

6. Find the centroid of the arc of a semi cycloid.

Ans. The axis of x being a tangent at the vertex, and a the

radius of the generating circle,

/
4

s
2

x=(v--)a, y = -a.
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7. Find the distance of the centroid of the catenary

X X

from the axis of x, the curve being divided into two equal portions by
the axis of y.

Ans. If 2 Hs the length of the curve and k the ordinate of its

extremity, the centroid lies on the axis of y at a distance from

the axis of x.
21

8. Find a law of density of a wire of uniform section bent into the

shape of a cycloid so that its centre of mass shall be half way up
its axis.

Ans. If the density varies as. the length of the arc measured

from the vertex, the result will follow.

9. If the density of a cycloidal arc varies as the ?ith power of the

arc measured from the vertex, find the position of the centre of mass

of the curve.

n-\- 1

Ans. On the axis at a distance 2 - a from the vertex, a
n+3

being the radius of the generating circle.

10. One extremity of a circular arc is fixed while the other varies

along the circle
;
trace the locus of the centroids of the varying arcs,

and prove that the algebraic sum of the intercepts of the locus on the

diameter perpendicular to that passing through the fixed extremity of

the arcs is equal to half the radius.

162.] Centroid of a Plane Area. Let APQB (fig. 201) be

any curve whose equation is given, and let it be required to find

the centroid of the area, CABD, of a lamina included between

a given portion, AB, of the

curve, two extreme ordi-

nates, AC and BD, and

the axis of x, the lamina

being supposed of uniform

thickness and density. In

accordance with the rule

of Art. 160, we break up
the area into elementary portions. Suppose that this is done by

taking rectangular strips, such as PQNM, included between two

very close ordinates, PM and QN, and let g be the centre of

mass of this strip.

Let the co-ordinates of P be (x, y) and those of Q (sc + dx,

y -f dy) ;
let p be the density and k the thickness of the lamina.
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Then the mass dm, of the rectangular strip is

kpydx.

Also the co-ordinates of g are
(#+ e,

3
+ *')'

an<^
/

being

extremely small quantities of the same order of magnitude as

dx and dy.

Following the rule of Art. 160, to obtain the abscissa of G,

the centroid of the area, we shall have to take the integral of

the product Jcpy(x + e) dx.

Now fdx is an infinitesimal of the second order, and is there-

fore to be neglected in the integral. Hence if x and y are the

co-ordinates of G, we have evidently, since Jc and p are

constants, _ _ fxydx _ , ffdsc

the integrations extending over the whole area CABD.

EXAMPLES.

1. Find the centroid of the area of a semi-cycloid.

Taking the line joining the extremities of the arc of the whole

curve as axis of x, and a perpendicular through the vertex as axis of

y, the curve is given by the equations

y
/\

Hence ydx = 4a2
cos

4 -
d0, and we have

f"(e + sin 6) cos* -de /""cos
6 -d

Jo 2 Jo ^
* = -

-p o
~~' y = a r

"
/ eos*!<Z0 / cos^d0
Jo 2 Jo 2

fQcos* -dQ }
write it

2

,
or

Now
tfecosnede = -

5 Hence the integral in

377
2 16

question =
16

Again / sin e cos
4 -^0 = 2? /

Jo 2 Jo
sin- cos 5 -rf^ = -

2 A
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97T
2-16

Hence x =

And evidently y = - a.

2. If the ordinates of a given curve, U, be all diminished or

increased in a given ratio and a new curve, 7', thus formed, prove
that the centroid of any portion of V cut off by a right line is

obtained by diminishing or increasing in the same ratio the ordinate

of the centroid of the corresponding portion. of U.

Let one right line parallel to the axis of y meet U and U' in P and
P' respectively, and let another such line meet them in Q and Q'.

Draw the right lines PQ and P'Q'; then these lines cut off cor-

responding portions of the two curves. From any point, M, on U
draw a line parallel to the axis of y meeting the right line PQ in N

t

and U' and P'Q' in M' and N', respectively. Denote the ordinates of

M and N by y and z
',
then it is clear that if k is the number by

which the ordinates of U are multiplied to obtain those of U'
t
the

ordinates of M' and N' are ky and kz, respectively. All these points
have a common abscissa, sc. An ordinate drawn with the abscissa

x+ dx includes with the ordinate MNM'N', the curve U, and the line

PQ a strip of area equal to (y z)dx, while the corresponding strip

of the area of U' cut off by P'Q' is k(yz) dx. Again, the ordinate

of the middle point of the first strip is ---
> and that of the middle

II -\- Z

point of the second strip is k ^
2

Hence if y and y' denote the ordinates of the centroids of the

portions of U and U' cut off by PQ and P'Q', respectively,

-,_T/* a (y'-*V*-
2
fk(y-z)dx

k.y.

Let PQ cut off in all positions a constant area from U; then it is

evident that P'Q' cuts off a constant area from U'. Suppose, more-

over, that in this case the locus of the centroid of the portion of U is

a curve whose equation is
f(x }

= o

then clearly the locus of the centroid of the corresponding portion of

U' of constant area cut off by a right line is the curve

A*, f)
= o.

If the lines PQ and P'Q' are replaced by two curves the second of

which is deduced from the first as U' was from U
t
the same results

evidently follow.

3. Find the centroid of a quadrant of an ellipse.

4a 46
Ans. *=-='
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4. A right line cuts off a constant area from an ellipse j find the

locus of the centroid of the portion cut off.

Ans. An ellipse concentric and coaxal with the given one.

2 2

5. Find the centroid of a quadrant of the curve (-)
3

+(T) = !

2.4.6.8 2a 2. 4. 6. 8 26Am ' X =
3-57779'V 5 V = 37577^*V

(Assume x = a cos3
</>, y = b sin3

<f>.)

6. Find the centroid of any segment of a parabola cut off by a

right line.

Ans. On the diameter conjugate to the given line at a distance

from the curve equal to f of the portion of the diameter intercepted

by the given line.

7. Through a given point, 0, is drawn a fixed right line meeting a

curve in A
; through is also drawn another right line meeting the

curve in P. It is .required to construct at any point the tangent to

the locus described by the centroid of the area AOP as the line OP
varies.

Ans. Let G be the centroid of AOP, and take a point Q on OP
such that OQ = %OP. Then GQ is the tangent to the locus at G.

(See Example 3, p. 254.)

8. Find the centroid of a semi-ellipse cut off by any diameter.

Ans. It is on the diameter conjugate to the given one and at a

4a'
distance from the centre, 2</ being the length of this conjugate

OTT

diameter.

9^ Find the centroid of the area included by a parabola and two

tangents.

Ans. If a and b are the lengths of the tangents (which are taken

a b
as axes 01 x and y),

ac = > y =

x = a cos
4

(f>, y b sin
4

<.)
The particular manner in which

it is advisable to break up the

area whose centroid is required
varies with the nature of the

,

x \ v ^

(The equation of the parabola is (-) + () = 1. Assume

p/- \p* area itself. Thus, let the area be

that included between the axis of

o /A E\ ""*" x an<^ ^W0 curves
>
AC and EC

(fig. 202) whose equations are
Fig. 202.

v
. 4 ^ .

given. In this case the area

may be broken up into thin strips, such as PQP'Q', parallel
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to the axis of x. Let (x, y) be the co-ordinates of P and (af3 y)
those of P'. Then the area of the strip is (of x) dy^ and

the co-ordinates of its centroid are \(x''+#) and y. Hence if

no portion of the area considered is above a parallel to Ox drawn

through C, the co-ordinates of its centroid are given by the

equations

.

f(x'-x)dy
"

f(x'-x)dy

in which the limits ofy are and the ordinate of C. The values

of x
f
and x are of course given in terms of y from the equations

of the two curves.

For example, let it be required to find the centroid of the area in-

cluded between a parabola and a circle described with the vertex of

the parabola as centre and a radius equal to f of its latus rectum.

The centroid is on the axis of the parabola. Let the equation of the

parabola be y
2 = 4 ma?; then the equation of the circle is

and the ordinate of C, their point of intersection, is m \/2.

mjZ

= m2

16 + 27 sin
o

as the student will find without much difficulty.

EXAMPLES.

1. Find the centroid of the area included between the arc of a

semi-cycloid, the circumference of the generating circle, and the line

joining the extremities of the cycloid.

Ans. The common tangent to the circle and cycloid at the vertex

of the latter being taken as axis of x, the vertex being origin, and a

the radius of the generating circle,

37T
2-8 5

2. Find the locus of the centroid of the area of a parabola cut off by
a variable right line drawn through the vertex.

Ans. If 4m is the latus rectum of the parabola, the locus is

another parabola whose equation is y
z = - mx.
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(The student may verify the construction of Example 7, p. 258, for

the tangent to this locus.)

3. Find the centroid of the portion of an ellipse cut off by a line

joining the extremities of the major and minor axes.

Ans. x =-
3 7T-2' y = o3 7T-2

163.] Graphic Construction of the Centroid of a Plane

Area. The following method of determining the centroid of any

plane area is taken from Collignon's 8fatigue, p. 315.
Let APJ3Q be any plane area, and let Ox be any line in its

plane. Then if the distances of the-S---' centroid from Ox and any other line

in the plane are known, the position

of the point is known.

Draw any line, 0V, parallel to Ox

(axis of x] in the plane of the curve,

and let the perpendicular distance

between Ox and 0V be a. Let the

area be broken up into narrow rect-

angular strips, such as PP'Q'Q, by
lines parallel to the axis of x. Then
if PQ = z

9
the area of the strip

= zdy, the distance of PQ from Ox

being y.

Hence the distance, y, of the centroid of the area from Ox is

given by the equation

/, \

o

Fig. 203.

AL being the area of the figure, and the values ofy running from

the ordinate of A to that of R, at which points the tangents are

parallel to Ox. Now take any point, 0, on Ox; draw OQ, and

draw P0/

parallel to OQ. Let the line 00' meet PQ in R.

Then by similar triangles

QR
RP

OR QR OR
'

PQ
~
00/

or, / denoting the length QR,

az'=yz. (2)

Let the locus ofR corresponding to all strips of the given area
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be constructed. It will be a curve, ARB3 passing through the

points A and B.

Substituting the value of yz from (2) in (l), we have

a f z'dy

y=^A*A
in which the limits of y are the same as before. But/V% is

the area, A2 ,
between the curves ARB and AQB. Hence

The distance of the centroid from Ox is therefore known.

Similarly its distance from any other line can be found, and

therefore the position of the point is determined.

If a point S is deduced from R in the same way as that in

which R was deduced from P, and if QS = /', we shall have as

before pz
<uf = Jy=y .

a

If therefore the locus of S is constructed, the area included

between it and AQB multiplied by a 2 will be the value of the

integral fy^zdy extended over the original area.

By the construction of successive curves such as ARB we

represent the values of fy*zdy, fy^zdy, &c., graphically.

An ingenious instrument founded on these principles the

Integrometer of M. Deprez is described by Collignon in the

Annales des fonts et Chaussees for March, 1872.

EXAMPLE.

In finding by this method the centroid of a portion of a parabola
cut off by a double ordinate at a distance h from the vertex, prove that

if the tangent at the vertex and the given double ordiuate are taken as

the lines Ox and O'x', the equation of the curve ARB will be

This curve (both branches being drawn) has a loop between the

values x and x = ^k, and passes through the extremities of the

double ordinate.

164.] Polar Elements of a Plane Area. Let it be required

to find the centroid of a portion of a plane area bounded by a
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portion of any curve, AB (fig. 204), and by two extreme radii

vectores, OA and OB, drawn through a

given point, 0. It is obvious that in

this case it is advisable in applying the

rule of Art. 160 to decompose the area

into triangular strips, such as POQ,
included between two very close radii

vectores. If OP = r, and Z POx = 6,

the element of area, POQ, is equal to

and if the thickness and density of the

lamina are uniform, the centre of mass

of this element is a point g which may be considered as on OP
at a distance f ? from 0.

Hence if Ox is the axis of #, the co-ordinates of g are ultimately

| r cos 0, and r sin 0.

Applying the rule of Art. 160, we then have

a /r
3 cos dB

g = 8 7.2,7/1 ; y =

For example, to find the centroid of a loop of Bernoulli's Lemnis-
cate whose equation is r2 = a2

cos 20.

The axis of the loop being taken as axis of x, the abscissa of the

centroid of the whole loop is evidently the same as that of the half

loop above the axis;

_ _ 2a
QC ^T""

= ^ /** (l-2s3 JQ

Putting sin = j this integral becomes

rf

/ cos
4
<bd(j>,

Jo

3 77

which = 7=.
- - - Therefore

2 A/9 2-4 2

_"
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EXAMPLES.

1. To find the centroid of a given sector of a circle.

Ans. It is on the diameter bisecting the arc, at a distance from
the centre equal to f of the product of the radius and the chord of the

arc divided by the length of the arc.

2. Find the centroid of a portion of an equiangular spiral included

by the initial line and a given radius vector.

Ans. The initial line being taken as axis of #, the equation of the

spiral being r = aeke
,
and a being the angle of the given radius vector,

cos a
=

e a cos a e a sn a

3. "When a = in the preceding question, find the values of x and y,

and explain the result.

4. Find the centroid of the portion of a parabolic area included

between the axis and a radius vector drawn through the focus.

Ans. If 4m is the latus rectum, and t the tangent of half the

angle between the given radius vector and the axis,

_2m 1 i\ . _2m t+t3

: " =: " '

165.] Double Integration. When the density of the lamina

varies from point to point it may be necessary to divide it into

infinitesimal portions of the second order instead of strips

(triangular or rectangular) whose areas are infinitesimals of the

first order.

Thus, suppose that the lamina AOB (fig. 303) is not of uniform

density. Then if we break it up into triangular strips, such as

POQ, the element of mass will be no longer proportional to the

area POQ, or JrW; and, moreover, the centre of mass of the

strip will not be f r distant from 0.

Let a series of circles be described round as centre, the

distance between two successive circles of the series being dr.

These circles will divide the strip POQ into an indefinitely great

number of rectangular elements ;
and if one of these is included

between the circles of radii / and / + d/9
its area will be

r'<tr'd0.
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If p is the density and k the thickness of the lamina at this

element, the element of mass will be

kpr'dr'de.

Also the rectangular co-ordinates of the centre of mass of the

element are ultimately /cos and / sin 0.

Now to find the abscissa of the centre of mass we must

perform the summations f xdm and fdm over the whole area

considered.

The contribution to the first of these summations given by the

strip POQ is evidently

cos

and the contribution to the second is

dO

In each of these latter integrals the values k and p in terms

of / and must be substituted, and the integrations are to be

performed on the supposition that is constant while / runs

from to r.

C
r

The quantity cos0d0 kp/
2dr' will then assume the shape

Jo

$ (f, 0) .cos 9 d9. But since the curve AB is given, r is given
as a function of 0. Hence this quantity assumes the form

f(Q).CQ$QdQ. This is the final shape of the contribution of

the strip POQ. If we wish to find how much is contributed

by all the strips of the area, we must integrate f (6) . cos 0d0
from = AOx to = BOx.

This double process of integration first with regard to r', and

then with regard to is expressed by the symbols of double

integration thus :

fxdm f ( kpr'
z cos Qdr'dQ,

a and ft denoting the angles AOx and BOx.

Hence we obtain

f ftpi* cos Odr'dd f^ I kpr'
2 sin Qdr'dQ

= _ "o- J J *_
p rr > y ~

rp rr

I
/ kpr'dr'dO / /

^a^O /a^O
Let it be required, for example, to find the centroid of the area of

a cardioid in which the density at a point varies as the n^ power of

the distance of the point from the cusp.
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Here p =. /u/
n

,
and k is constant; therefore, the abscissa being the

same for the whole curve as for the half above the axis,

r

o Jo

Integrating first with regard to /, we have

n + 2 ^

r7r

rn+2 d6
r

o
s\ /\

But r=2acos2 --
Substituting this value and putting

- =
(/),

we have

n+3
+ 2) /

r
I

Jo

These definite integrals are well known. Dividing the numerator

. 1.3.5... 2n+3 77

and denominator by--- -
5 we have

2.4.6 ... 2^ + 4 2

'

2f+.6

)

The centroid evidently lies on the axis of symmetry, or y = 0.

EXAMPLES.

1 . Find the centre of mass of a circular sector in which the density
varies as the wth power of the distance from the centre.

ns. n+2 ac
A } where a is the radius of the circle, I the length

vi -\- 3 I

of the arc, and c the length of the chord, of the sector.

2. Find the position of the centre of mass of a circular lamina in

which the density at any point varies as the n^ power of the distance

from a given point on the circumference.

Ans. It is on the diameter passing through the given point at

a distance from this point equal to -
a, a being the radius.
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Methods of double integration are also often employed when
the elements of area are expressed in Cartesian co-ordinates.

In this case, let the element of area at a point P, whose co-

ordinates are (#', y), be a small rectangle included between two

very close lines parallel to the axis of x and two very close lines

parallel to the axis of y. Then the element of area will be

dx'dy'\ and if p and k are the density and thickness of the

lamina at the element, the element of mass,

dm = kpdafdy'.

Also the co-ordinates of the centre of mass of this element are

ultimately x' and if. Hence_. _
'

ffkpdx'dy'
' y ' '

A single example will suffice to illustrate this method.

Let it be required to find the centre of mass of a quadrant of an

ellipse included by the semi-axes, the density at any point being pro-

portional to the product of the co-ordinates of this point.
Here p = p . x'y', and since k is supposed constant,

~. _ y' _ ._ ffx'y'*dx'dy'~
ffx'y'dx'dy'

'
-

ffx'ydx'dy''

Let the integrations be performed first over a strip parallel to the

axis of y. Then we integrate with respect to y', regarding x as

constant, from y'= to y'
'= y, the ordinate of a point on the ellipse.

fx'ydx'Hence x = J / , .

J x yd x

Here we must substitute the value of y in terms of x', and thus

we set _ _-

in which summations the abscissa x' is to receive all values from
to a.

8 8We easily obtain - a and - b for the co-ordinates of the centre of

mass.

Examples may occur in which, although the density of the

lamina varies from point to point, the process of double integra-

tion can be avoided by the judicious selection of an element of

area.

Let it be required to find the centre of mass of a quadrant
of an ellipse in which the density at any point varies as the

distance of the point from the axis major.
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Here by dividing the area into rectangular strips parallel to

the axis major, we obtain infinitesimal elements of the first order

throughout each of which the density is constant. Hence our

equations are
/ O 7

- = ifaPyfy. =2 '
'

Making the usual eccentric angle substitutions for x and ^, we

filld
3 377 .

**-+ y = -b.

166.] Centroid of a Surface of Revolution. Let a plane
curve AB

(fig. 201) revolve round a line Ox (taken as axis of #)

and generate a surface. Then the revolution of the elementary
arc PQ(=ds) generates a portion of surface whose area is

2Tryds; and if p is the density of the matter in this zone and

k its thickness, the element of mass is Znkpyds. Also the centre

of mass of the zone is ultimately the point M, whose abscissa is

x. Hence the centroid of the surface generated (which obviously
lies on the axis of revolution) is at a distance from given by
the equation _ fkpxyds

fkpyds
the integrations being extended over the whole length of the

generating curve.

For example, to find the centroid of the surface of a semi-ellipsoid
of revolution round the minor axis, the density of any zone being

proportional to its distance from the equatoreal plane, and the thick-

ness being constant :

The area of a zone at a distance y from the equatoreal plane being
2 Ttxds, the position of the centroid is given by the equation

fxy^dsV~
fxyds

'

the integration extending over the arc of a quadrant of the generating

ellipse. Using the eccentric angle, we have

x = a cos <, y = b sin
(/>,

ds = *Ja

a and b being the semi-axes of the ellipse.

Hence
I
cos <> sn <>v a sn <> + cos

cos
(f>

sin
</> y a2

sin
2

< + 6
2 cos2 < . d<f>

o

To find the integral in the numerator, put t for sin <, and it

becomes
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where a2
&2 = c

2
. This, again, is equal to

o Jo

which =-i r^+ tft^dt-^ r^+
C JQ C JQ

and this, by making the first integral depend on the second, is easily

proved to be

_
4c 2

Jo

The integral in this expression is one of the elementary forms
in the Integral Calculus. Hence the numerator is

The integral in the denominator is evidently
rf

,
_

:
_

4 / v0 2+ c
2 sin2 (b . d sin2

cf>,

Jo

which is equal to -(a
3

6
3

).
3 c

,

Therefore
8 c(a*-b

3

)

For a sphere of radius a the value of y is easily proved by direct

calculation to be fa; and the student may exercise himself in the

evaluation of indeterminate forms by deducing this from the value of

y given above. (For this purpose it will be advisable to put log

- into the form \ log and expand.)
o GJ c

167.] Centroid of any Portion of a Spherical Surface.

Let dS denote any portion of a spherical surface, and let dl,

denote its projection on any plane passing through, the centre of

the sphere. Then, if this plane be taken as that of xy, and if z

denote the distance of the centroid of the element dS from the

plane, the distance of the centroid of any portion of the spherical

surface from the plane is given by the equation

fzd8 m^

fdS
'

the integration being extended over the whole portion of the

spherical surface considered.
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Now if r is the radius of the sphere, the cosine of the angle
between the tangent plane to the sphere at the element dS and

the plane of xy is -
; therefore

d* = *-d8*
(2)

Hence fzdS rfdl, = /2, 2 denoting the projection of the

whole spherical area considered
; and making this substitution

in (1), we have s

where S is the area of that portion of the sphere whose centroid

is required.

Equation (1) gives, of course, the distance of the centroid of

any surface whose element is dS from the plane of xy ; and it is

clear that if the surface is generated by the motion of a sphere
of constant radius whose centre moves along any curve in the

plane of
asy, the cosine of the angle between the tangent plane

at the element dS and the plane of xy will still be -
> since the

given surface and the generating sphere have the same tangent

plane. Hence equation (2) holds in this case and therefore also

equation (3).

168.] Centroid of any Surface. Let dS denote an element

of any surface, d^ the projection of this element on the plane of

acy, and y the angle between the plane of cry and the tangent

plane to the surface at the element dS. Then if z is the distance

of the centroid of dS from the plane of xy> we have

fzdS

fz sec y .

It is not unusual to suppose the element dS cut off from the

surface in the following manner.

Let m
(fig. 205) be a point in the plane xy whose co-ordinates

are #?', y'\ let mn be drawn parallel to the axis of as and equal to

dx' m

,
let mq be parallel to the axis of y and equal to dnf\ and

complete the rectangle mn_pq. On the base mnpq describe a

prism whose edges, Mm, Nn} Pp, Qq are parallel to the axis of z.

This prism will intercept on the given surface an element,
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MNPQ, which is dS. The rectangular projection, ^2, is then

mnpq whose area is dx'dy'. Substituting this value in the above

equation, we have ffz sec y dx dy
f

the integrations being extended over the whole projection of

the given surface on the plane xy.

It easily follows that the centroid

of the projection (orthogonal or ob-

lique) of any plane area on any plane

is the projection of the centroid of
the area.

Take the plane on which the

given area is projected as the plane
of xy ;

let co be the angle between

this plane and the plane of the

area, and let #, y be co-ordinates

of the centroid of the given area. Then

_ __ fxdS _ fx sec o> . d^
= ~

205>

since CD is the same for all elements. But the co-ordinate of the

centroid of the projection is evidently given by this equation.

Therefore, &c.
; and a similar proof obviously holds for an

oblique projection, because at all points of the given area the

ratio of dS to d^ is constant.

EXAMPLES.

1. A section of a sphere is made by any two parallel planes ; prove
that the centroid of the spherical surface included is midway between
them.

This is very easily proved either by direct calculation or by the

application of the result of last Article. Collignon (Statique, p. 295)
gives an elegant geometrical demonstration which depends on the fact

that if a cylinder is circumscribed to a sphere along any one of its

great circles, the portion of the area of the cylinder included between

any two planes at right angles to its axis is equal to the portion of
the area of the sphere included by these planes. By taking in-

definitely close planes it follows that the spherical area may be
transferred to the cylinder, and the centroid of any portion of a
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cylindrical area cut off by planes perpendicular to the axis is evidently

midway between these planes.

Con. The centroid of the surface of a hemisphere is at a distance

equal to half the radius from the centre.

2. To find the centroid of a spherical triangle.

Let ABC be any spherical triangle, and the centre of the sphere.
Produce the sides AC and AB until they
become quadrants, AE and AD, and draw
the arc DE of a great circle.

"We shall find the distance of the centroid

from the plane EOD, which is perpendicular
to the line OA.

The projection of the area ABC on this

plane is evidently the same as the projection
of the sector, COB. Now if pl

is the per-

pendicular arc from A on the side BC, the Fjg 20g

angle between the planes COB and EOD is

90 jOjj also the area of the sector COB is \ar, a being the length
of the side BC and r the radius of the sphere. Hence if 2 denote

the projection of the area of the triangle on the plane EOD,
2 = \ar smpl ;

and if A, B, C denote the circular measures of the angles of the

triangle, and S its area, $ = ^ (A _|_ 2) + OTT).
Hence, by (3) of last Article, if x denote the distance of the centroid

from the plane, _ 1
a sin pl

It is evident that OB is the distance from of the projection of the

centroid on the line OA. Its projections on the lines OB and 00 are

obtained by writing b and p2 ,
c and ^;3 instead of a and p1

in this

equation.
3. To find the centroid of the surface of a nearly spherical semi-

ellipsoid cut off by the plane of the two greater axes.

Let the axes in order of magnitude be a, 6, c, and let

Now if doc'dy' is the projection on the plane xy (which is the base

of the semi-ellipsoid) of an element of surface, dS, we have

pz
p being the perpendicular from the centre on the tangent plane at

the element, and z the distance of the element from the plane of xy.

Hence, S denoting the surface of the semi-ellipsoid, we have
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Therefore, rejecting all powers of k and k' beyond the second,

Integrating from x'=oc to x'=oc, the co-ordinates of a point on

the circumference of the base being so, y, we have

Expressing x and y in terms of the eccentric angle, and integrating
over the entire circumference, we have

S.z=irabc(l o

Now (Williamson's Integral Calculus),

r /

\ I

sin Odd

sin
2 9 + c

2 cos 2

0)i (6
2
sin

2 + c
2
cos2 0)i

which is easily proved to be 27rc
2

{
1 +

Hence finally, F= -

4. A parabola revolves round its axis; find the centroid of a

portion of the surface between the vertex and a plane perpendicular
to the axis at a distance from the vertex equal to f of the latus

rectum. 29
Ans. Its distance from the vertex = y^ (latus rectum).

5. Find the centroid of the surface generated by the revolution of

a cycloid round its axis.
2 (15 8^

Ans. It is on the axis at a distance
,

^
--a from the

15(37r 4)

vertex, a being the radius of the generating circle.

6. Prove that the centroid of the lateral surface of the frustum of a

right cone or pyramid lies in a plane whose distance from the base is

. ^TT h, where p and p' are the perimeters of the base and upper

section, and h the height of the frustum.

169.] Centre of Mass of a Solid of Revolution. If the

curve AB (fig. 20 1) revolve round Ox, the rectangular area

PQNM will generate a cylindrical volume equal to IT . PM2 .MN,
or Tty

2dx. Hence if the density of the solid is uniform, we have

for the position of its centre of mass (which obviously lies on Ox)

_ j xy clx
w ~^ o ^

"

J
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the integrations being extended over the whole of the area,

CABD, of the revolving curve.

If the density varies, the element of mass may require to be

taken differently. If the density is a function of x alone, i.e.,

if it is the same all over the rectangular strip PQNM, the

volume may be broken up as above, and the element of mass

Hence we shall have, in this case,

_~

Suppose the density to vary as y alone. Then if we take a

small rectangular area, dx dy',
at a point whose co-ordinates are

#', y'> this area will generate an element of volume equal to

2iri/' doc' dy' -,
therefore the element of mass = 2ttpifd&fd^ and

we have
ffpsc'y'dx'dy'~ '

~~

The integrations are to be performed first from y = to/= ^,

the ordinate of a point P on the bounding curve ; and then from

x'= OC to af= OD.

As an example, let the curve AS be a quadrant of a circle of which
OA and OB are diameters, and let it be required to find the centre of

mass of the solid hemisphere generated by the revolution of this

quadrant round OB (taken as axis of x), firstly when the density is

uniform
; secondly when it is constant over a section perpendicular to

OB and proportional to the distance of this section from the centre
;

and thirdly when it is the same at the same distance from OB, and

proportional to this distance.

Firstly, we have x =
2 , Putting x = r cos 0, y = r sin

,

t/ */

where r is the radius of the circle, and integrating between = aud
o

x = -r.
(1)

/ X*'

Secondly, since p = px, we have x = ^ ^-j ' which easily gives
J xy dx

r. (2)

Thirdly, p = py'y
therefore

-

ffy'*dx'dy'
-

ffdx
and the previous substitutions for x and y give
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In this case the double integration might have been avoided

by breaking the area up into rectangles parallel to the axis of x.

The student will do well in such examples as this to check his

results as much as possible by a common-sense view of the

question. Thus, having proved that the distance of the centre

of mass of a homogeneous hemisphere from the centre is f r, it is

clear that when the density of a section is directly proportional

to its distance from the centre, the centre of mass of the

hemisphere must be at a distance from the centre > f r, since the

matter is most dense in the space remote from the centre ; while

in the third case above, since the ordinates of the portion of the

curve near A are greater than those of the portion near B, and

since the density increases with the ordinate, it is evident that

the centre of mass must be nearer to the centre than in the

homogeneous hemisphere.
The most advantageous method of breaking up a mass of

varying density into elements depends entirely on the law of

variation of the density, and while all these methods are em-

braced in the rule of Art. 160, it would be impossible to give

formulae suited to all cases.

Laplace, by assuming the change of the pressure from stratum to

stratum of the earth to be proportional to the change in the square of

the density, proves that if the strata of uniform density are spherical,

the density of a stratum of radius x is given by the equation

a being the radius of the earth, pQ
the density of the centre, and

JJL
a

constant number.

Let it be required to find the centre of mass of a hemisphere whose

density follows this law.

Here the element of mass of uniform density is the stratum in-

cluded between the hemispheres of radii x and x+ doc. Hence

dm =
X . fJLX- sm dx.

Also the distance of the centre of mass of this stratum from the

/yi

centre is- (Example 1, p. 270). Hence, the axis of x being the
2

diameter perpendicular to the base of the hemisphere, the distance of

the centre of mass from the centre is given by the equation
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I

J
vx jx sin ax

o a

(2 u2
) cos u+ 2u sin

JJL
2

== a .
-~--

-.

--
2ju (sinfi /

as will be easily found. "When
ju,
= the hemisphere is of uniform

density, and the student will see that this value of x becomes f ,
in

accordance with our previous result.

EXAMPLES.

1. Find the centre of mass of a hemisphere in which the density is

proportional to the nfo power of the distance from the centre.

Ans. It is at a distance= from the centre, a being the
n-\-4i 2

radius of the hemisphere.

2. Find the centre of mass of a portion of a paraboloid of revolu-

tion cut off by a plane perpendicular to its axis.

Ans. If h is the distance of the plane of section from the vertex,
ff = f h.

3. Find the centre of mass of a semi-ellipsoid of revolution round
the minor axis, the density at any point being proportional to its

distance from the base which is the plane perpendicular to the axis of

revolution.

o

Ans. y = -b, where b is the semi-minor axis.
15

4. An ellipsoid of revolution round the minor axis is cut by a plane

passing through this axis ;
find the centre of mass of the portion

included between one semi-ellipsoid thus cut off and the concentric

hemisphere whose diameter is the minor axis.

Ans. If a and b are the axes major and minor of the generating

ellipse, the required centre of mass is on the major axis at a distance

3 a* + ab + b2

equal to-- = trom the centre.
8 a + b

Verify this result in two obvious cases.

170.] Centre of Mass of any Solid. In the solid take any

point, P, whose co-ordinates are a?, y^ z, and also a close point, Q,

whose co-ordinates are OB -f dx, y + dy, 2-+ dz. Then evidently

the volume of the parallelepiped whose diagonal is PQ and

whose edges are parallel to the axes of co-ordinates is dxdydz ;
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and if p is the density of the body at P the element of mass at

P is pdxdydz.
Hence the co-ordinates of the centre of mass of the solid are

given by the equations

fffpxdxdydz _ _ fffpydxdydz . fffpzdxdydz
=
fffpdxdydz

' y :=

fffpdxdydz
' ''

fffpdxdydz
'

the integrations being extended over the whole solid.

It may not be necessary to take infinitesimal elements of

volume of the third order. From what has preceded, the

student will have learned that the best mode of breaking up the

given mass into elements depends entirely on the law of density

which prevails.

In many cases the symmetry of the solid enables us to simplify

the problem by choosing elements of volume which are in-

finitesimals of ihe first order only.

The various elements of volume which it may be necessary to

take are exemplified in the fol-

lowing problems.
Find the centre of mass of

the eighth part of an ellip-

soid, ABC (fig. 207) included

between its three principal

planes

(1) When the density at

any point is simply a function

of its distance from the prin-

cipal plane BC (plane Q yz).

(2) When the density at

any point is a function of its

distances from the two principal planes AC and BC (planes of xz

ana yz).

(3) When the density at any point is a function of its

distances from the three principal planes.

In the first case, the density will be constant over a section

DH perpendicular to OA. Hence, taking two such sections, DH
and EF, at a distance dx from each other, the density of the

solid between them may be considered uniform, and this portion
of the solid may be taken as the element of mass.

In the second case, the density will be constant throughout a

207.
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portion of the body in which x and y are constant
; that is, along

a perpendicular to the plane AB ; and the element of mass may
be taken as the prism NQnq, the area of whose base is dxdy> and

which intersects the bounding surface in the area NMQP.
In the third case, the density is not the same at any two

points, and the element of mass must be taken a small rect-

angular prism, sir, whose volume is dxdydz.

EXAMPLES.

1. In the problem just discussed find the centre of mass when the

density at any point is proportional to its distance from the plane BG.
Here p px ; also, the equation of the ellipsoid being

the ellipse DH satisfies the equation

9- +

which shows that the axes GH and GD are

- and

respectively. Hence, IG being = dx, the element of mass is

a?

( 1 --^

and since the centre of mass of this element is ultimately a point
whose co-ordinates are

46 / x2

x
>

*~ and

(see Ex. 3, p. 257), we have

and

Sir /" , 15ir/"
,,

/ *(!--
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the value of z being, of course,
-

2. If the density at any point of the ellipsoid is pxy, find the centre

of mass.

Taking a prismatic element of volume NQnq, the element of mass is

z being the height, M.m, of the prism.
The co-ordinates of M being x

} y, z, those of the centre of mass of

this prism are evidently x, y,
- Hence

ffx^yzdxdy ffxy
z
zdxdy _ ffxyz^dxdy

sp y .^ x !L_ >/ 7^-; _^, - - i
<?j

? i '

ffxyzdxdy ffxyzdxdy
2
ffxyzdxdy

The integrations may be performed, first with regard to y, from

2/
= to y= GH ;

and then with regard to x, from x = to x= 0^ .

Now, ffxyzdxdy = c//^ ( 1 - ^-^dxdy;

and, integrating first with regard to y, we have

r

Jo

y
* *

52 3,2 f

o
( ^"^ ^ =T^-^

since from the equation of the ellipse AB, the value GH of y makes

1---~ vanish. Hence
a2 b*

In the same way,

7,2- ra ^2 f=~ x*(l--J dx,
o JQ a

3 7,2

which, by putting x = a cos <p, is easily seen to be- Hence
96

577 , 57T i ... M i ,1 5
ic = a, ana y = o

;
ana it is easily found that z = c.

32 04 o

3. If the density at any point in the solid is proportional to the

product of the co-ordinates of the point, find the centre of mass.

Here, at any point we have p = /x . xyzt and the element of mass

being pocyzdxdydz, we have

_ _ ffftfyzdxdydz
^

fffocyzdxdydz
'

with similar values of y and z. If we first integrate from z = to
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s = mM
(fig. 207}, we shall have the contribution of the prism NQnq

to the summation. Integrating, then, with respect to z, considering
x and y constant, we have

fffx^yzdxdydz = \ff&y (mM)* . dxdy

since M is a point on the bounding surface of the ellipsoid. Let this

latter integration be first performed with respect to y, considering x

constant, from y = to y = Off, and we shall then have the con-

tribution of the mass contained between the sections DH and EF.

Now
(
GH

_^__'i

1161106

fffx*yzdxdydz=
1

^- (V(l- ^dx =
o Jo 105

as easily appears by putting x = a cos $.

It will be found without difficulty that fffxyzdxdydz =

16 16
T

16
Hence x = -a,y = -b, andz = -c.

48

4. Find the centre of mass of the portion of the elliptic paraboloid
a?

2
ty

2 z
2 + = 2 - included between the planes xz and 3/2 and a planeao c

perpendicular to the axis of z at a distance h from the vertex.

160 ~2A 166
a? =

157T V C 15lT

5. At each point, M, in the semi-axis major of an ellipse is drawn

a line perpendicular to the plane of the ellipse, its length being

proportional to the distance of M from the centre
;

the extremity of

this perpendicular is joined to the point P on one quadrant of the

ellipse such that PM is perpendicular to the axis major. Find the

centroid of the volume thus generated.

Ans. If at any distance, x, from the centre the perpendicular to

the plane of the ellipse is kx, and if the axes of x, y, and z are the axes

of the ellipse and a perpendicular to them, we have

& Tika,

6. Through a diameter of the base of a right cone are drawn two

planes cutting the cone in parabolas ;
find the centroid of the volume

of the cone included between these planes and the vertex.
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Ans. It is on the axis at a distance from the vertex equal to f of

height of cone.

7. A plane cuts off a constant volume from an ellipsoid ; find the

locus of the centroid of the portion cut off.

Ans. An ellipsoid similar to the given one, and similarly placed

(see Example 2, p. 257, the theorem of which is equally applicable to

surfaces).

171.] Polar Elements of Mass. Let fig. 208 represent the

portion of the volume of a solid included between its bounding
surface and three rectangular co-ordinate planes. Then the solid

may be broken up into elements in the following manner :

(1) Through the axis of z draw two close planes cutting
the bounding surface in curves zR and zS (called meridians) ;

and let the angles ROx and SOx be denoted by < and
(j) + d<j),

respectively.

(2) Round the axis of z describe two right cones with the

semi-vertical angles zOP
and zOQ, equal to and

6 + dQ, respectively.

(3) With as centre,

describe two close spheres
whose radii, Os and Of, are

equal to r and r + dr, re-

spectively.

These planes, cones, and

spheres will then determine

the small rectangular paral-
2o8<

lelopiped mstq, whose vo-

lume = ms x sq x st.

Now, perpendiculars from m and s on Oz will each be equal to

Os . sin zOs, or r sin 0, and they will include an angle equal to

ROS, or d<$> : therefore ms r sin d<j). Also,

sq=. Os . sin sOq = rdQ
;
and st = dr.

Therefore the volume of the elementary parallelepiped
= r 2

sm6drdOd(f)', and if p is the density of the solid at s, the

element of mass is

pr
2 sin 6dr dO d<f>.

Again, the co-ordinates of the centre of mass of this element are

ultimately the same as those of s
; therefore they are
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r sin cos <, r sin 9 sin $, and y cos 6
;

and for the centre of mass of any finite portion of the solid we
have

- _ fffp /3 s^n2 cos

fff P ^ si

- - cos

the limits of integration being- determined by the figure of

portion of the solid considered.

The angles and
</>

are sometimes called the colatitude and

longitude, respectively.

EXAMPLES.

1. Find the centre of mass of a portion of a solid sphere contained

in a right cone whose vertex is the centre of the sphere, the density of

the solid varying as the wth power of the distance from the centre.

Take the axis of the cone as that of z, and any plane through it as

that from which longitude is measured. Then it is clear that

# = ?/
= 0, and we have

_ //An+3 sin 6 cos dr dS d(j>

fffr
n+* sin

Performing the integration first with respect to r, considering and

constant, from r = to r = a, the radius of the sphere, we have

-_~

Performing the integration now with respect to
</>,

the longitude,
which runs from to 2-7T, we have

_ _ 7i+3 /sin cos Odd~ a

If a i= the semi-vertical angle of the cone, the limits of are and a.

Therefore n + 3 a

2. Find the centre of mass of a prism whose base is a given spherical
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triangle and whose vertex is the centre of the sphere on which the

triangle is described.

Let (fig. 206) be the centre of the sphere, and take 00 as axis of

z. From draw the perpendicular pa
to the base AB, and let R be

the radius of the sphere.
The value of z given as a triple integral may be modified in the

present case.

Let dS denote any small element of area at any point on OP
',
then

the volume of a cone whose base is this element and vertex the centre

of the sphere is J RdS, and the distance of its centre of mass from the

plane of xy is (Art. 158) R cos 0. Hence

_ 3 fcos0dS
~4 fdS

Now cos Q . dS is the projection of the element dS on the plane of

xy ;
therefore the numerator is the projection of the whole area ABC

on this plane, which, as in Example 2, p. 271, is \cR sm^;3
. Hence,

_ 3
~

8

3. A cardioid revolves round its axis
;
find the centre of mass of the

solid generated.

Ans. It is at a distance from the cusp equal to T\ (axis).

172.] Theorems of Pappus. If a plane area revolve through

any angle round a line in its plane,

the volume generated is equal to the

area of the revolving figure multiplied

by the length of the path described by
its centroid.

Let AS (fig. 209) be the revolving

figure, and Ox the line about which

it revolves. Let the area be broken

up into an indefinitely great number

of rectangular strips, such as PQqp,
by lines perpendicular to Ox. Then

the volume generated by this strip in revolving through an

angle co is evidently equal to

27T

or

denoting PM, pM, and MN by ^2 , ylt and due.

denote the whole volume generated,

Hence if V
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Now the distance of the centroid of the strip from Ox is ,

and the area of the strip is (y^^i) d* Hence, denoting these

quantities by y and dA respectively,

V =

=
<*>A.y,

A denoting* the whole revolving
1 area and y the ordinate of its

centroid. Now in revolving through the angle o>, the centroid

of the area describes a circular arc whose length is coy. Hence

the theorem is proved.

If the axis Ox intersects the revolving figure, the theorem still

applies with the convention that the volumes generated by the

portions of the figure at opposite sides of Ox are affected with

opposite signs.

Again if tJie arc of any plane curve revolve through any angle

round a line in its plane, the area of the surface generated is equal

to the length of the revolving arc multiplied by the length of the

path described ly its centroid.

For, the surface generated is

wj yds, or co-Z/.y,

L being the whole length of the revolving arc and y the ordinate

of its centroid. As before, wy is the length of the circular arc

described by the centroid of the revolving arc, and the theorem

is evidently proved.

If the revolving arc intersects the line Ox, the theorem is true,

with the previous convention of signs.

173.] Extension of the Theorems of Pappus. The previous

theorems can be easily extended to the case in which the plane

of the revolving figure, instead of revolving round a fixed line,

rolls without sliding on any developable surface, and the first

theorem will then become

If the plane of any plane area rolls without sliding on a develop-

able surface, the volume generated by the area in moving from one

position to another will be equal to the area of the revolving figure

multiplied by the length of the path described by its centroid.

A similar enunciation gives the second theorem.

These propositions are evidently true, because in an indefinitely
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small motion the figure is revolving round a generating line

of the developable, and for such a small motion the theorem
of Pappus gives the volume generated equal to the area x small

space described by its centroid. Taking the sum of all such

elements of volume from one position of the figure to another,
we have the theorem of this Article.

It is clear also that the theorems hold in the case of a plane
area which moves in such a manner as to be always normal to

the path described by its centroid. For the area may at any
instant be considered as revolving round the line of intersection

of two consecutive normal planes of the curve which the centroid

describes, and the theorems are then directly applicable.

174.] Volume of a Truncated Cylinder or Prism. Let A
and B denote the sections of a cylinder or prism made by any
two planes. Through any line L passing through the centroid,

, of B draw any plane, B',
inclined at an indefinitely small

angle to B. Then G is the centroid of the section B', since this

section is the projection of B made by lines parallel to the

generators of the cylinder or edges of the prism, and since (Art.

168) the centroid of the projection of any plane surface is the

projection of its centroid. Also the area of the section B' differs

from that of B by an infinitestimal of the second order. Hence
the theorems of Pappus apply, and we may consider that the

area B has revolved round the line L through a small angle.
But the space described by its centroid is zero ; therefore the

volume between the sections B and B' on one side of the line

L = the volume between them on the other side
;
in other words,

infinitesimals of the second order being neglected, the volume of

the prism or cylinder contained between the sections A and B is

equal to that contained between the sections A and B'. Allowing
B' to revolve again about L through a small angle, the same

reasoning applies, and we see, finally, that for the sections A and
B may be substituted any two passing through their respective

centroids, and the included volume will be unaltered. Let two

parallel sections each perpendicular to the axis of the prism or

cylinder be substituted, and the included volume will be

&.>&,

where H is the area of either normal section and h the distance

between them.

175.] Equilibrium of a Heavy Body on a Horizontal Plane.
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When an indeformable body rests on a horizontal plane, the

contact taking place at several points, either continuous or not,

it is kept in equilibrium by two forces namely, its own weight
and the reaction of the plane. The condition necessary and

sufficient for the equilibrium of such a body is that these two

forces must be equal and opposite. Now this will be impossible

unless the points of contact of the body with the plane can be so

connected by right lines as to form a polygon within the area of

which the vertical through the centre of gravity of the body
intersects the plane. For, whether the plane be rough or smooth,

resolve all the reactions at the points of contact vertically. Then
it is evident that the resultant of the system of parallel vertical

forces at the points of contact must necessarily fall within some

polygon whose vertices are these points ; therefore, &c.

The student must be careful to observe that this condition,

though necessary in the case of a deformable system, is not

sufficient (see Article 94, p. 115). Thus, in Example 14, p. 179,

it is not true that the deformable system of two bars, AB and

13C, will rest in any position in which their common centre of

gravity falls between the props.

EXAMPLES.

1 . To find the volume and surface of a tore.

(A tore is a surface generated by the revolution of a circle round a

line in its plane.)
Let r be the radius of the circle, and c the distance of its centre

from the axis of revolution. Then the volume of the tore is evidently
TTr2 x 2-7TC, or 27i2cr2

;
and the surface is 2?rr x 2 ire, or 47i

2
cr.

2. A triangle revolves round a line in its plane; find the volume

generated.

Ans. If the distances of the vertices from the lines are x
lt

o?
2 ,
#

3 ,

and A the area of the triangle, the volume = (xi -{-x2 + x
3 ).

3

3. From the Theorems of Pappus deduce the volume and surface of

a frustum of a right cone.

(Consider a trapezium one side of which is perpendicular to the two

parallel sides.)

4. A pack of cards is laid on a table
;

each projects in the direc-

tion of the length of the pack beyond the one below it
;

if each

projects as far as possible, prove that the distances between the
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extremities of the successive cards will form a harmonic progression.

(Walton, p. 183.)

5. A rectangular column is formed by placing a number of smooth
cubical blocks one above another, the base of the column resting on a

horizontal plane ;
all the blocks above the lowest are then twisted in

the same direction about an edge of the column, first the highest, then

the two highest, and so on, in each case as far as is consistent with

equilibrium. Prove that the sum of the sines of the inclinations

of a diagonal of the base of any block to the like diagonals of the
bases of all the blocks above it is equal to the sum of the cosines.

(Walton, ibid.)



CHAPTER XII.

THE PRINCIPLE OP VIRTUAL WORK APPLIED TO ANY SYSTEM

OF BODIES.

176.] Forces Applied to a Particle. It has been shown in

Art. 136, p. 214, that the resultant of any number of forces

applied to a particle may be represented by the side required to

close the polygon of the forces. And whether the polygon
OP

1
P

2
... Pn be plane or gauche, it is clear (as in p. 67) that the

sum of the projections of the sides, taken in order, along any
line OA, is equal to zero.

Let the projections of the sides be denoted by Q19 Q2 , ... Qn .

Then Q: + Q2 + ... -f Qn = 0. Multiplying this by OA, an

arbitrary length along the line OA, we have

Ql .OA+Q2 .OA+...+&. 04 = 0.
vbC *

But if/>! is the projection of OA along 0P15 we have (see p. 67) ~j>

Ql .OA=OPl . Pl.

If, then, the sides 0P13 P1
P2) ... be denoted by P15 P2 ,

...

we have P1 .^1 -fP2 .A + ... +Pn .A =0;
and if the sides represent forces, each term in this equation is

the virtual work of the corresponding force for the displacement
OA. Since the resultant, R, of n 1 of the forces is Pn3 we
have B.r = P1 . Pl +P2 .p2 ...;

and if the displacement is small, this equation is written (as in

P-70 Rbr = P
1 bpl + P^jp2+ .... (1)

In particular, if X, Y, Z denote the rectangular components of

R, we have Rbr = Xbx+Y&y + Ztz.
(2)

177.] Extension to any Number of Connected Particles.

If two particles, m: and m2 ,
are connected by a rigid inextensible

rod, and are in equilibrium under the action of forces, P15 Ql} ...
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applied to m
l
and P2 , Q2 ,

.., applied to m2 , it is evident (as in

p. 1 1 8) that the force arising from the connexion acts in the line

joining % to m2
. If, then, this force be denoted by T, and the

distance between the particles by r, we have for the equilibrium

^r denoting the change in r arising from an arbitrary small

displacement of %. The equation of equilibrium of m2
is

and if in the new positions of% and m2
the distance between them

remains unaltered, 81 r + 82 r = 0. Hence, by adding these equa-

tions, we obtain the equation

P
1 tpl + Ql t>ql + ... +P2^2+Q2^2 + ... = 0, (1)

which is free from the internal force T.

This is exactly the same as the investigation already given for

coplanar forces in Chap. VI. The extension to any number of

particles, that is, to any body, proceeds just as in that chapter,

and the enunciation of the principle of virtual work there

given applies in general without the limitation that the forces

are coplanar.

If in the case of the two particles % and %, considered

above, their new positions are such that the distance between

them is altered by 8r, the equation of virtual work will be

A^i+Qi^i... +PM + Q2 &?2 + ...+nr=0; (2)

and, generally, if the virtual displacement is such that the

internal forces do virtual work, these forces will enter into the

equation of virtual work in exactly the same manner as the

applied forces. The theorem of virtual work may, therefore, be

thus enunciated :

When a material system is in equilibrium under the action of any

external and internal forces',
the sum of the virtual works of the

external and internal forces is equal to zero for any small virtual

displacement whatsoever.

Instead of saying that the total virtual work is zero> we

should in strictness say that it is an indefinitely small quantity

of the second order, the greatest of the displacements being
considered as a small quantity of the first order. This has been

already explained in p. 1 23.

The proof of the converse proposition namely, that when the

virtual work vanishes for all imagined displacements, the system
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is in equilibrium has been already given in p. 122 for coplanar

forces
;
and as the proof obviously holds for non-coplanar forces,

it is unnecessary to reproduce it here.

178.] Displacements along Smooth Surfaces. If any body
or system of connected bodies be in contact with smooth curves

or surfaces, and the system be imagined to receive any small

displacement along these curves or surfaces, it is clear (as in

p. 71) that, since the point of application of each of the geo-
metrical forces (reactions of the curves or surfaces) moves in a

plane at right angles to the corresponding force, these forces

will contribute nothing to the equation of virtual work for such

a displacement.
If any of the bodies of the system are connected by strings or

rods whose lengths are unaltered in the virtual displacement

chosen, the tensions of these strings or rods will not enter into

the equation of virtual work. But, as already explained in

pp. 80 and 1 20, we may choose virtual displacements of the

system which violate the imposed conditions at the expense of

bringing into our equation the corresponding forces.

179.] Kinematical Theorem I. When all the points of a

rigid body move parallel to a plane, the motion may be produced

by a pure rotation round an axis perpendicular to this plane.

DBF. A motion of a body round an axis whereby each point
in the body describes an arc of a circle having its centre on the

axis and its plane perpendicular to it is called a pure rotation.

The position of the body will evidently be known if the

positions of any two points in a plane parallel to the plane of

motion are known.

Let A and B be any two points in such a plane, and suppose
that after the displacement of the body they occupy the positions

A' and ]? (fig. 210). At the middle points of AA' and BB?
erect two perpendiculars^ which meet in I. Then in the triangles

AIB and A'Iff, AI= A'I, BI = B'I, and AB = A'ff\ therefore

the triangle A'IB? is nothing more than AIB turned round the

point / through an angle ATA' or BIB'. Hence the line AB
can be brought into its new position by a pure rotation about /,

and the same is true of every point rigidly connected with A
and B in the plane AIB.

If through / an axis be drawn perpendicular to the plane of

motion, it is evident that the body can be brought into its new
u
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position by a pure rotation about this axis through an angle
= AIA', however complicated the paths along which A and B
have travelled to A' and B'.

When the motion of the body is small, this axis is called the

Instantaneous Axis ; and it is obviously constructed by drawing

two planes normal to the directions of motion of any two points in

the body. The intersection of these planes is the instantaneous

axis.

When the body is a plane figure, the

point /is called the Instantaneous Centre;

and the consideration of this point is of

very extensive use in Kinematics, Statics,

and Geometry.
To construct the instantaneous centre,

at any two points erect perpendiculars to

the directions of motion of these points, and

their intersection is the required point.
Fig. 210.

180.] Kinematical Theorem II. The
motion of a rigid body round a fixed point is at every instant a

pure rotation round an axis.

One point, 0, in the body being fixed, the position of the body
will be known if the positions of any two points, A and B, not in

directum with are known.

Bound let a sphere, forming part of the body or rigidly

connected with it, be described with arbitrary radius, and let A
and B

.(fig. 210) be any two points on the sphere. After the

motion of the body let A' and B' be the positions of A and B.

Imagine the lines AB, A'B', AA', and BB" in this figure to be

arcs of great circles on the sphere instead of right lines. Then,
at the middle points of AA' and BI? draw two great circles

perpendicular to AA' and BB', respectively, and let them meet

in J. In exactly the same way as in the last theorem, we have

the spherical triangles AIB and A'Iff equal ;
that is, the latter

triangle is the former turned round the axis 01 through an

angle AIA' or BIB'. Hence the whole body is brought by
rotation through this angle round the axis 01 from the old to

the new position.

181.] Kinematical Theorem III. If a body has a motion

of translation represented in magnitude and direction by a right

line OA, and at the same time a motion of translation repre-
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sented in magnitude and direction by a right line OB, the

resulting motion of translation is represented in magnitude and

direction by the diagonal, OC, of the parallelogram determined

by OA and OB.

This proposition has been already illustrated in p. 6. It

follows immediately that any motion of translation can be

resolved by the papallelopiped law into three motions along the

axes of x, y, and z, after the manner of forces.

182.]^ Kinematical Theorem IV. If a body receives a

motion of rotation round an axis OA, the rotation being repre-

sented in magnitude by OA, and at the same time a motion of

rotation (of the same sign as the
first)

round an axis OB, the

rotation being represented in magnitude by OB, the resulting

motion is one of rotation round the diagonal, OC, of the paral-

lelogram determined by OA and OB, and is represented in

magnitude by this diagonal.

[The signs of rotations are determined by the rule given in

Art. 137, Chapter X. We shall, for defmiteness, suppose that

when a watch is held with its face perpendicular to AO, so that

OA passes up through the glass, the rotation about OA takes

place in a sense opposite to that of the hands ;
and similarly

for OB.}
Let P be any point on OC, p the perpendicular from P on

OA, q the perpendicular from P on OB, and Jc.OA and Jc.OB

the angular motions round OA and OB, respectively. Then in

virtue of the rotation round OA, P moves upwards from the

plane of the paper through a space equal to Tcp . OA ; and in

virtue of the rotation round OB, P moves downwards from the

plane of the paper through a space equal to kq . OB. Therefore

the whole motion of P upwards is equal to
O A .'03 ,'/ &^~ &

k(p.OA-q.OB}.

But this is obviously zero ; therefore P is at rest, and so is every

point on OC. The motion is, then, a rotation round OC. Let

12 be the angular rotation of the body round OC. Then the

point A moves upwards from the plane of the paper through a

space equal to 12 . OA sin A OC, since OA sin AOC = the per-

pendicular from A on OC. But A in turning round OB moves

through a space equal to k . OB . OA x sin AOB. Hence

12 . OA sin AOC= k.OB.OA sin AOB,
TJ 3
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sm

Therefore the resulting angular velocity is represented by OC,
if the component rotations are represented by OA and OB.

This proposition is known as the 'parallelogram of angular
velocities.' It follows at once that an angular motion about any
axis, OL, may be decomposed into three angular motions about

three axes, Ox, Oy, and Oz. If these latter are rectangular, an

angular motion o> about OL is equivalent to angular motions,

o> cos a, CD cos /3, and o> cos y, of the same sign, round the axes of

no, y, and z, the direction angles of OL being a, ft, y.

183.] General Displacement of a Rigid Body. The position

of every point in a rigid body is known when the positions of

any three points in it are known, provided that these points are

not in one right line. The general displacement of a rigid body
is, therefore, the same as that of a system of three points forming
a triangle.

Let A, B, C be the positions of three points in the body
before the displacement, and A', If, C' the positions occupied

by these points after the displacement. Then the triangle ABC
may be brought into the position ABC' by moving A directly

to A while B and C move parallel to AA' through spaces equal
to AA', and then turning the triangle about A' until B and C
coincide with I? and C'. But (Art. 180) this latter motion is

one of rotation round some axis through A
'

. Hence the general

displacement of a rigid body consists of a motion of translation

which is the samefor all its points, and a motion of rotation round

an axis through an angle which is the samefor all its points,

To find the changes produced in the co-ordinates, x, y, z, of

any point in the body by a general displacement, we may con-

sider the motions of translation and of rotation separately.

Although we shall be concerned only
with small displacements, it is well to

investigate the changes produced in the

co-ordinates of a point by a rotation

through any angle, 6, round an axis

whose position is given.

Let the direction angles of the axis,

OL
(fig. 31 1),

be a, /3, y; let P be the

J)oint (x, y, z) which, after the body has rotated through an angle
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6 round OL, occupies the position Q; let PL
(
= p] be the per-

pendicular from P on OL, and Q r a perpendicular from Q on LP.

Now the/a? of Q is the projection of on the axis of a?
; there-

(^-

fore the change in x is the projection ofPQ along Ox, or the sum

of the projections of Pr and rQ. But Pr = p (l cos 0),
and

u'-u

Again, if the direction angles of^ are A, p, v, since Qr is at

right angles to OL and f~L} the direction cosines of -Qr are

cos cos v cos y cos ju, &c. Hence, if the x of Q is a?',

a

x x =. p sin (cos /3 cos v cos y cos
/x) 2jt? cos A sin 2

(1)
LT 2

But jj cos A is the projection of -PL- along the axis of x, or the

projection of OP the projection o^OL, and since

O.Z/ = a? cos a +y cos /3+ # cos y,

p cos A = x (x cos a+^ cos /3 + cos y) cos a ;

similarly

p cos /x
= y(oc cos a-J-y cos fi+z cos y) cos /3,

pcos v = 2 (#cos a-j-y cos j8+ ^ cos y) cosy.

Substituting these values in (1), we have
a

x' x = sin (z cos /3 y cos y) + 2 sin2 -
[(^?

cos a +y cos /3

^ -f^ cosy) cos a #], (2)

and similar values for the changes in y and z.

If the angular rotation 6 is very small, we have

bay = (z cos /3 y cos y) 0,

g^ = (# cos yz cos a)

g# = (y cos a a? cos

and if the components of the rotation bd along the axes be

denoted by 501} S02 ,
603 ,

these equations give

x

( (3)

/

Of course these equations can be obtained very simply by con-

sidering the separate changes in the co-ordinates produced by
successive rotations 8015 b02 , bOB round the axes of #, y, z> re-

spectively. (See Routes Rigid Dynamics.)
If the components of the motion of translation common to

all points in the body be ba, bb, be, the complete changes in the

co-ordinates for a small displacement will be
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(4)

184.] Deduction of the Six Equations of Equilibrium.

Replacing the virtual work of each force in equation (1) of

Art. 177 by the virtual work of its three components, the

general equation of virtual work becomes

2 (J804- Yby + Zbz) = 0, (1)

and substituting in this equation the values of 8 x, 8^, and bz

given by (4), we have

ba. 2JT+ bb. 27+8*. 2^+8^.2(^-7^)
+ 802 .2(Xz-^)+ 803 .2(7# Xy) 0. (2)

Now, the displacement being quite arbitrary, its components

80, bb, be, 80j, 802 , 803 , are completely independent. Hence

in (2) we may consider all of them zero except one, and the

equation then gives the coefficient of this one equal to zero.

Thus (2) involves the six equations

2Z=0, 27=0, 2^=0,
2 (Zy Tz) = 0, 2 (Xz-Zx) = 0, 2 (YvXy) = 0,

which are the equations of equilibrium before obtained (see

p. 232).

In addition to the following Examples, the student will do

well to solve some of those in p. 179 by the Principle of Work.

EXAMPLES.

1. Four rigid bars, freely jointed together at their extremities,
form a quadrilateral, ABCD

; the

opposite vertices are connected by
strings, AC and BD, in a state of

tension
; compare the tensions of

these strings.
Let the bar AB be considered as

fixed, and let the quadrilateral

undergo any slight deformation.

Then the bars AD and BC will

turn round the points A and J3,

that is, the points D and C will

describe small paths, Dd and Cc,

perpendicular to AD and BC. Hence

(Theorem I) the point, /, of inter-

section of AD and BC is the en-
Fig. 212.

stantaneous centre for the bar CD, and the angles DId
t
and CIc are
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equal. Denote their common value by SO. Then Dd ID . bO, and
Cc = ic.se.

Now, since in the displacement of the system none of the geo-
metrical conditions namely, the constancy of the lengths of the bars

are violated, the stresses of the bars will not enter into the equa-
tion of virtual work. Hence if T and T' denote the tensions of the

strings AC and BD, this equation will be (see p. 78),

T.bAC + T'.bBD = 0. (I)

But bAC = projection of Cc on AC = Oc . sin ACB = 1C . sin A CB
. 80; and similarly bBD = -ID . sin BDA . 80. Hence (1) becomes

T.IC.smACB = T/.ID.smBDA. (2)

1C AC sin CAD

Substituting in (2) we obtain

-
OA . OC

~
OJB.OD' ^ ^^;-JJ % ; ?*

Another solution of this problem (quoted from Euler) will be found
,; 77/*c. o3'<

in Walton's Mechanical Problems, p. 101. = T-.'J&^.O^.C

u/ 2. Four rigid bars, freely jointed at their extremities, form a '77/4C, ~J~, J

quadrilateral, ABCD ; the bars AB and AD are connected by a string, 0/Toc
*"

0%
a a in a state of tension, a being a given point in AB, and a a given
point in AD

;
in the same way, BA and BC are connected by a string

b(3; CB and CD are connected by a string cy ;
and DC and DA by

a string db; find the relation between the tensions of these strings.
If the lengths of the strings a a, 6/3, cy and db are denoted by x, y, z,

and w, and the tensions in them by X, Y, Z, W, the equation of virtual

work for a slight deformation will be

Xbx+ Yby + Zbz+ Wbw = 0. (1)

Now si?

therefore x b x = 2
'

-BD . bBD.AB.AD
Substituting this value of bx, and similar values of by, bx, bw, in

(1), we have

X Aa.Aa Z Cc.Cy

But from the last Example, we have

bBD
bAC~

3 have /*
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.X Aa.Aa Z Cc.Cy^ BD*
hence, finally, (_ . ^ + -_ .

g^-^g) ^-QD
T Bb.Bfi W Dd.Db AC2

~>
'

BA.BC*^' DC.DA* OA.OC'

For a different solution, see "Walton, ibid.

v 3. Six equal heavy beams are freely jointed at their extremities ;

one is fixed on a horizontal plane, and the system lies in a vertical

plane ;
the middle points of the two upper non-horizontal beams are

connected by a rope in a state of tension. Show that the tension

ofthiaropeis

W being the weight of each beam, and the inclination of the non-

horizontal beams to the horizon.

Let x be the length of the rope, y the height of the centre of

gravity of the system, 2 a the length of each beam, and T the tension

of the rope. Then the virtual work of the tension is Tbx (see p. 78),

and the virtual work of the weight of the system is 6Wby. Hence

But x = 2 a (I + cos
0), and y = 2 a sin 0, and the deformation imagined

is one in which the upper horizontal beam moves vertically through
a small space. Hence the values of y and x will be of the same forms

as before, and ^ = _^^^ by==2a cos

Substituting these values of bx and by, we have

4. A body receives a small general displacement parallel to one

plane ;
find the co-ordinates of the instantaneous centre.

If the components of the motion of translation parallel to the axes

of x and y are b a and bb, and the rotation is 6\o, the equations (4)
of Art. 183 give for the displacement of any point whose co-ordinates

are x. y. s * *g# = oa 2/oco,

by = bb-\-fcb().

Now, the displacement of the instantaneous centre is zero j hence,
if (x} y) be its co-ordinates, we have

o* 7 o^

bb ba
x T"' y = ^~'OO) 0(0

A particular case may be noticed. If any body in contact with a
surface receives any small displacement parallel to one plane, the body
still remaining in contact with the surface, the instantaneous centre

lies on the normal to the surface of contact. In the rolling of one

figure on another the point of contact is the instantaneous centre.
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5. A uniform beam, AS (fig. 133, p. 149), rests as a tangent at a

point P against a smooth curve in a vertical plane, one extremity, A,

resting against a smooth vertical plane ;
find the position of equi-

librium, and the nature of the curve so that the beam may rest in

all positions.

Let the weight of the beam through 6r, and the normal reactions

at A and P meet in the point ;
take the vertical line AD as axis

of y ;
and let 2 a = the length of the beam. Then, if x is the abscissa

ryt

of P, we have AO = . n ? and also AO = a sin 0. Hence, equatingsm2 6

these values, oo = asin3
0. (1)

Now, from the equation of the given curve, 6 is known in terms of

* in the form
=/(*?). (2)

From (1) and (2) the value of #, and therefore the position of equi-
librium, can be found.

For example, if the curve be a circle of radius r whose centre is

at a distance c from the vertical plane, we find

a sin
3 + r cos 6 c = 0.

If f = 0, we get the result in Ex. 7, p. 149.
If (1) holds in all positions in which the beam is placed, every

position is one of equilibrium. Now, since tan = ? (1) gives

dy = ^/a?oc* . x~*dx,

and since this equation holds in all positions, we may integrate it.

Hence y + k = (a% x%
)
f

,

or

k being an arbitrary constant.

We may, without loss of generality, assume k = 0, and the curve
will be 222

x^+ y*=. a*.

The equation of virtual work shows that in this case the centre

of gravity of the beam is at a constant height. For if y denote the

ordinate of G, this equation is

way = o,

and since this holds in all positions, we have, by integration, y =
constant.

v 6. Four rigid bars freely jointed at their extremities form a quadri-
lateral ABGD (fig. 213) ; the middle points of the opposite pairs of

bars are connected by strings, mm' and nn', in a state of tension.

Compare the tensions of these strings.
Let I and If be the lengths of the strings mmf and nn', and let the

tensions in them be T and T'
} respectively.
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Then, assuming the quadrilateral to receive any small deformation,

the equation of work will be

Now, it may be left to the student

as an exercise to prove that

that is, r2
Z
2

is constant however
the quadrilateral may be deformed.

Hence
j8 Z_r8r=0; (2)

B and from (1) and (2) we have

a remarkable result, since it shows that one of the tensions must be

negative ;
i. e., if the bars AS and CD are pulled together, equilibrium

will be impossible unless the bars AD and BC are pulled asunder.

It is well to notice an apparent exception to the result (3). The
student will easily prove that if the sides AB and DC are parallel,

equilibrium will be maintained by the single string mm' in any state

of tension, i. e., T' 0, a result which contradicts (3).

The difficulty is easily removed, however, by reverting to (1), which
in the case under consideration is identically satisfied. For, since AB
and CD are parallel, the line mm' passes through/, the instantaneous

centre, and therefore for a slight deformation the point m' moves

perpendicularly to Im', that is, to mm'. Hence bl = 0, and equation

(1) is satisfied by having at once T'= and 8Z = 0. The combination

of (1)
and (2) is therefore irrelevant.

7. A number of bars are freely jointed together at their extremities

and form a polygon ;
each bar is acted on perpendicularly by a force

proportional to its length; all the forces emanate from one point
and all act inwards or all outwards

; prove by virtual work that for

equilibrium the polygon must be inscribable in a circle.

Let the polygon be ADCBEF ...
(fig. 213), of which the vertices

E,F... are not represented in the figure. [AB is not one of the

-bars.]

Choose a virtual displacement in which all the bars except the

three AD, DC, CB remain fixed, and let the extremities A and B be

fixed in the displacement. Then / is the instantaneous centre for

DC. Let be the point from which the forces emanate ;
let m, n,j)

be the feet of perpendiculars from on AD, DC, CB, respectively;
let Q be the foot of the perpendicular from / on DC ; let IQ meet
mO in L and jpO in M\ and let the forces in Om, On, Op be Jc.AD,

k.DC,k.CB.
If AD turns round A through the small angle 6"$, the displacement

of D is AD . b<j> ; and if DC turns round / through 6co, the displace-
ment of D is ID . 6 co. Hence
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AD.bcji = ID.ba>.

Similarly EC . b 6 = 1C . b o>,

if b6 is the angle through which EC turns round B.

Now the equation of virtual work is

k.AD.Am.b<j) + k.DC.In.b<*.co8lnQ-7c.BC.B2).SO = 0;

or, by the first two equations,

Am.ID + DC.nQ-Bp.IC=0. (1)

Now Im.ID=LI.IQ, and Tp . 1C = IQ.IM;
therefore Im . ID-Ip ,IC = LM. IQ. (2)

Adding (2) to (1), we have

AI.ID-BI.IC = LM.IQ-DC.nQ.
But the right side of this equation is zero, since the triangles DCI

and LMO are similar (nQ is the altitude of the latter). Hence the

quadrilateral ADCB is inscribable in a circle
;
and in this circle lie

also the quadrilaterals DCBE, CBEF, ... and therefore the whole

polygon.

8. Six equal heavy bars are freely jointed at their extremities
;
one

bar is fixed in a horizontal position, and the system hangs in a vertical

plane ;
the middle points of each pair of adjacent non-horizontal bars

are connected by two strings in a state of tension. Show by the

principle of work that, if the hexagon is regular in its position of

equilibrium, the tension of each string is three times the weight of

a bar.

9. Four bars whose weights may be neglected are freely articulated

at their extremities and form a quadrilateral, ABCD, in a vertical

plane. The joint A is fixed, while the lateral joints, B and D, rest

each against a smooth vertical plane. A given vertical force being

applied at the joint (7, find the magnitudes of the reactions of the

planes at B and D, and the direction and magnitude of the pressure
on the joint A .

Ans. Let ^be the force applied at C, P and Q the reactions at

B and D, R the pressure at A
;

also let a, ft, y, and 6 be the inclina-

tions of the bars AB, BO, CD, and DA to the horizon, and the

angle made by the direction of R with the horizon. Then we shall

have P Q F
1 + cot a tan f3 1 + cot 6 tan y tan ft + tan y

cot ft + cot y
cot a cot y cot ft cot d

(To get P, choose a displacement of the bars in wnich AD remains

fixed; the intersection of AB and CD will then be the instantaneous

centre.)
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10. Two heavy uniform beams, AC and CB (fig. 140, p. 163), are

connected by a smooth joint at C ;
the beam AC is moveable in a

vertical plane about a smooth joint fixed at A, and the extremity B
of the beam CB is capable of moving along a smooth horizontal groove
whose direction passes through A. It is required to keep the system
in a given position by means of a horizontal force applied at B

;

determine by the principle of work the requisite magnitude of this

force.

Ans. If a and a denote the angles CAB and CBA
;
W and W

the weights of AC and CB; and F the required force,

W+W
"

2 (tan a -I- tan a')*

11. Four bars, freely articulated at their extremities, form a paral-

lelogram, ABCD ;
two forces, each equal to P, act in opposite direc-

tions in the diagonal AC, and two forces, each equal to Q, act similarly
in BD. Find the figure of equilibrium.

Ans. The adjacent sides of the parallelogram being a and b, the

angle between them o>, we have

cos a) =
2ab 1

12. If the forces in Example 7 are each transferred to the middle

point of the bar on which it acts, prove by virtual work that the

polygon must be inscribable for equilibrium.

185.] Lagrangian Meaning of the Virtual Moment of a

Force. We see that in the general equation (2) of virtual work,
each of the displacements, 80, &c., is multiplied by a function of

force which tends to produce this displacement. Thus 8
X
is multi-

plied by the whole moment of the forces round the axis of x,

and the tendency of this moment is to produce a rotation round

the axis; ba is multiplied by the whole component of the forces

along the axis of x, and the tendency of this component is to

produce a motion of translation in this direction. In the same

way, in equation (2) of Art. 177, each force is multiplied by a

variation which it tends to produce. Thus the tendency of the

force Pl is to drag its point of application in its own direction.

IfPI is the distance, OA: ,
of the point, A1 ,

of application of the

force from a fixed point, 0, in the line of action of the force, the

tendency of P
:

is to alter the distance p1) and accordingly the

term P
lbpl appears in the equation of virtual work.

Similarly, the tendency of the internal force T is to alter the

distance, r, between the points % and mz ,
and accordingly the
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term Tbr enters also into the equation. Each of these terms

is, in fact, the elementary work which the corresponding force

tends to do, and which it would do if the system were displaced

or deformed
;
and hence all such terms must appear in a com-

plete equation of virtual work. Hence Lagrange defines the

virtual moment, or virtual work, of a force as the product of the

force and the variation of the function which it tends to alter

(Mecanique Analytique, 5, p. 29 ; 9, p. 33 ; 6, p. 73 ; 26,

p. 126, Bertrand's edition), and in every case he obtains the

general equation of equilibrium of a system by adding together
all such products, whether they belong to the given external

forces, the geometrical forces (reactions of smooth surfaces, or

forces of connexion), or to the internal forces (mutual attractions

or repulsions) of the system.
This method of the solution of statical problems (which is

obviously only the method of virtual work) is one of great

power and generality, and its nature will be rendered more clear

in the sequel.

186.] Equations of Condition may be Replaced by Forces.

Suppose a system of n particles whose co-ordinates are connected

by k equations of condition,

^=0, 4 = 0,... 4=0, (1)

each of these equations being of the form

that is, involving the co-ordinates of all the points in general.

Then the equation of virtual work for the position of equilibrium

of the system is

which, when written at full length, is

(2)

Now if the virtual displacements of the particles were all

independent, this equation would involve the vanishing of the

coefficient of each displacement (see Art. 184); but the displace-

ments of the particles must be such as still to satisfy the equa-

tions (1). Hence the quantities 8#, &c., are connected by the k

equations
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dJj-\ dJj-t dJL/-t

+

(3)

Solving these k equations for any k of the displacements

suppose 8#15 8 #
2 5

... bsn
k and substituting their values in (2),

we obtain an equation connecting the remaining 3n k displace-

ments of the form A *

Now, the remaining quantities, 8#j.+1 , &c.^ are completely

independent, and therefore (see Art. 184) every coefficient in

this equation must = 0. Thus, we obtain 3n k equations

involving the forces, that is, statical equations of condition.

Combining these statical equations with the equations of con-

nexion (1), we have finally 3n equations for the 3n co-ordinates

of the particles. The elimination of the displacements from the

equations can, however, be exhibited in a more symmetrical and

useful form.

Multiply the equations (3) by A15 A
2 ,

...
X^.

in order, these

multipliers being undetermined quantities j then add the equa-
tions together, and finally equate to zero the coefficient of every

displacement in the resulting equation. Thus we shall have the

following 3 n equations :
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JL -t -f- A-i -= -|~ An ~~: "f- . . . "T" AT.~^
== U^

-I-
* A ft m & // /yt ** ft HP

303

+ ...

(5)

If from these equations we eliminate the k undetermined

multipliers, we shall have 2n k statical equations of condition,

as before.

Now this method of elimination has the advantage of dis-

covering the geometrical forces, or forces arising from the con-

nexions, of the system. For, suppose that we suppress the

condition L^ = ;
then the system will begin to move ; but it

may be kept at rest by applying a special force to each particle.

Let the components of the force applied to m
l
be X-f, T/, Z-f,

those of the force applied to m^ X2',
Y2) Z%, and so on for all

the others. The equations of equilibrium of% will then be

similar equations holding for the other particles.

Subtracting each of these from the corresponding equation in

(5),
we have

Hence^ Y ' Y ' 7 ' * *

and
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If, now, all the co-ordinates involved in the equation L^ =
are considered constant except xl9 ylt and zlt this equation will

denote a surface on which the particle m
1
is constrained to lie,

and

dz
l

^
each divided byA - + (~) +

will be the direction cosines of the normal to this surface at

the point (#,_ , yl , ^). It is evident, therefore, that the force

required to keep the particle m at rest, when the condition

LI is suppressed, is a force acting normally to this surface,

its magnitude being ~ ~ ~

:

In the same way the force required to keep m
2

at rest acts

normally to the surface denoted by L^ = when a?
2 , y2) z% are

considered as the only variable co-ordinates in the equation, and

the magnitude of this force is

If the condition I/
2
= were suppressed, it follows in like

manner that forces

should be applied to the particles %, &c., in directions normal

to the surfaces represented by the equation I/2 = when the

sole variables in it are the co-ordinates of %, &c., in succession.

It is easy to see that

sdL* ^ dL, dL, . \

A! (-J+ 8a? + A
gy + A ^

)l

^d%i dy^
' dz *'

is equal to ^ (
cos a . 8^ + cos ^3 . 5^ -f cos y . 8^),

where Fl
is the force of connexion acting on m in virtue of the

condition L^ = 0, and a, (3, y the direction angles of the normal

to the surface denoted by L = when the co-ordinates of m
l

are regarded as the only variables in it.

Now, the multiplier of F
1
in this expression is evidently the

projection of the displacement of % along the normal to this

surface. If this projection be denoted by n, n being the
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length of the normal at the position of ml measured from some
fixed point on the normal, we have

A^^ = F^n,
in which the variation of I/ has reference solely to the par-
ticle m-y.

Now, as the force F^ acts along the normal, and tends

directly to alter its length, or to produce the displacement bn,

we may, in conformity with Lagrangian language, regard the

term X^L-^ as the virtual work of a force tending to vary the

function L^
This is true without regard to the nature of the function L .

It may, then, be a function not pnly of co-ordinates, but of

differential coefficients of co-ordinates. It may, for example,

express the imposed condition of inextensibility in the case of a

string, and then it will take the form

ds = constant ;

or it may express the same condition in the case of a membrane,
or, finally, the incompressibility of a fluid, and then it will be

dxdydz = constant.

Except in the case of continuous systems (such as springs,

membranes, and strings), this method is not a simplification of

the ordinary statical methods. Nevertheless, for the sake of

showing its application in practice, we add a few examples
solved by means of it, deferring its more useful application for

the present.

EXAMPLES.

1 . A number of heavy particles are attached at given intervals to a

weightless string the extremities of which are fixed
; investigate the

circumstances of equilibrium (Funicular Polygon).
Let (a, b) be the co-ordinates of one of the fixed extremities, (o^, y^),

(#2, y2),
... the co-ordinates of the particles taken in order from this

extremity, Z
01 ,

Z
12 ,

... the lengths of the portions of the string between
these points, and Wlt Wz ,

... the weights of the particles.

Then the equations of connexion of the system are

(a -0

Hence the Lagrangian equation of virtual work is

i)

... = 0.
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Equating to zero the coefficients of the several displacements,

Ai( -
l)-Xa (aJl

-
!,)
= 0,

A
2 (xl ^

2)
A

3 (a?2
#

3 )
= 0,

^2-^2 (2/1-2/2) + ^3(2/2-2/3)
= 0,

The first set of these equations evidently give

M^-^i) = ^2(^1-^2) = A
3 (tf2

-#
3)
= ... = T, suppose,

and by substituting in the remaining set,

1 W^
a x

l OC-LXZ T
2/1-2/2 _ 2/2-2/3

j

Wr

i

*Oj
~"""

t/o ^o ~~"
3

But ---
is the tangent of the inclination of the portion Z

01 of the
CL

#7j

string to the horizon. Hence we have

as in p. 32. Also the tension of the string joining (a, b) to (xl1 y^ is

j^- acting from the first point towards the second, and so on for the
^01

other tensions.

2. Deduce by the method of Lagrange the conditions of equilibrium
of a system of three particles forming a rigid triangle, each particle

being acted on by given forces.

Let (a?!, y19 %) be the co-ordinates of one particle, and (Jfj, Tlt Z^
the components of the force acting on it, with similar notation for the

other two particles. Then, if
12 ,

Z
23 ,

I
3l denote the sides of the

triangle, the equations of connexion are

-*)
1 = V,

Hence the Lagrangian equation of equilibrium is

-^
2)

... =0,
^

the undetermined multipliers being A
12 ,

A
23 ,

and A
31 .

Equating to zero the coefficients of the displacements, we have

X
1 + A

12 (#1-ag-A31 (*3 -*i) = 0, (1)

Y
i + ^12 (2/i-2/2)

~ A
3i fe-2/i) = 0, (2)
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^i + Aia (*i
-

a)
~ A

si (V- i)
= 0, (3)

with similar equations for the other particles.

By addition, we have at once

X = or 2JT=0

^ + ^2 + ^3 = 0, or 2^=0,
which are the ordinary equations of translation.

Again, multiplying (1) by yl
and (2) by x19 and subtracting,

r
i
os

l
--T

1 y1
-A

ia foya -.y1
a!

2)-A81 (x^-y^) = 0,

and by taking the similar equations for the other particles, and

adding, we get 2 (Yx Xy) = 0.

Similarly, 2 (Xst
-
Zx} = 0,

and S(y-7*) = 0.

These last three are the equations of moments, and they constitute

with the first three six equations of equilibrium. Now these are all

the conditions that can be obtained among the forces and co-ordinates.

For if n particles be connected by Jc equations of condition, there are

(Art. 186) 3n k final equations. But here n 3, k = 3, therefore

3n k = 6. It is to be observed that the equations of equilibrium of

any rigid body must be the same in number as those for three

particles forming a rigid triangle, because if three points of a rigid body
are determined in position, the position of the body is determined.

3. Show that the equations of equilibrium of a system subject to

given conditions may be expressed as the vanishing of the differential

coefficients of a single function of the co-ordinates of the system.

Suppose that

or 2 (Xdx + Ydy + Zdz\ =dV where V is a function of the co-ordinates

i, 2/i> *p 2 2/2 > *2 Then
> taking

where L^ = 0, Z2
= 0,... are the equations of condition, we shall have

dV dL dL d\ d\

But since the co-ordinates make L
:
= L

2
= , . : = 0,

dV _ dL dL

and comparing with equations (5), we see that the equations of equi-
librium are dU dU dU dU

-= =
0,

-r~ = 0, ... -r = 0, -T = 0, &C.
dx

:
dx

2 dyl dy^

187.] Distinctive Feature of the Lagrangian Method. If

the first method of eliminating the displacements described in

the last article is adopted, we arrive at an equation such as (4)

of that Article, from which the conditions of equilibrium are

x a
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obtained by equating to zero the coefficients of the displace-

ments. But in proceeding thus, we fail to obtain the values of

the internal and geometrical forces of the system. Now these

forces are, as we have seen, intimately related to the undeter-

mined multipliers ;
and as these latter are found from the

Lagrangian equations, it follows that

The method of Lagrange gives not only the conditions of equi-

librium^ but also the internalforces of the system.

A single very elementary example will suffice to render this clear.

Two heavy particles of weights Wl
and W

2
are connected by a rigid

rod, and each particle rests on a smooth inclined plane. The incli-

nations of the planes are ^ and i
2
and their intersection is horizontal ;

find the position of equilibrium and the internal and geometrical forces.

Let the line of intersection of the planes be taken as axis of z, let

the axis of y be vertical and that of x horizontal. Also let (xl y^ zj,

(#2 2/2
z
z)

be the co-ordinates of the particles, and I the length of the

rod connecting them. Then the equations of connexion are

y1
x
1
tsaii

l
= 0,

2
= 0,

Hence the Lagrangian equation of equilibrium is

,
A

2 ,
and T being the undetermined multipliers.

Equating to zero the coefficients of the separate displacements,

j
tan i^ r (x^ x^ = 0,

From the last equation we have z^ z2 = 0, which shows that both

particles must lie in a vertical plane perpendicular to the line of inter-

section of the inclined planes.
If 6 be the inclination of the line joining the particles to the

horizon, the other equations give

(^i+ JF
2)tan0 =

_-

W
l
cos cos ij

1
~

cos(^ d)

W
2
cos 6 cos i

2

2
"
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The student will easily perceive from Art. 186 that rl is the

tension of the rod, and A
x
sec tj and A

2
sec i

z the reactions of the

smooth planes. Thus we have the same values of the inclination of

the rod and of the internal forces as we should have obtained by the

ordinary statical methods.

Suppose now that the equation of virtual work is employed
according to the first method

; that is, let us write

= 0,

and eliminate the displacements without employing undetermined

multipliers. Then we obtain simply the equations

2j-22
= 0,

( JPi+ W^ tan0=W
1
cot i

2
TF

2
cot i

1}

which define the position of equilibrium, without giving the values of

the unknown forces of the system.

V
188.] Potential of a System of Forces. Let there be any

number of particles, m1 ,
m2) ... acted on by forces X19 Ylt Zlt

X2J Y
2 , Z^ ..., and let the co-ordinates of the particles be

0*1 y\ '
z
i)> 0*2 > y* Z2 )> Then, if V be such a function of the

co-ordinates that

*L Y ^L V dV 7
~~ 15

'
1}

we have

or, as it may be written for shortness,

V= ^f(Xdx + Ydy + Zdz\
2 denoting a summation of the integral for all the particles of

the system. The integral may be considered either as indefinite,

or as performed from any fixed position which the system can

geometrically occupy to the position which it occupies at the

moment under consideration. Of course it may happen that the

forces are such that 2 (Xdx+ Ydy+ Zdz) is not the differential of

any function of the forces and co-ordinates
; when it is the

differential of some function, the system belongs to what

Thompson and Tait call Conservative Systems (Nat. Phil.). The

function V which belongs to a conservative system is called the

Potential of the given forces.

189.] Stability and Instability of Equilibrium. When a

body in equilibrium under the action of given forces is slightly
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disturbed from its position, it will not, in general, be in equili-

brium in the new position. Now the effect of the forces in the

new position of the body may be either to drive it back to its

original position, or to deviate it still further from this position.

In the former case the equilibrium is said to be stable, and in the

latter unstable. For example, take a heavy rod, AB, moveable

round a smooth hinge at one end, A. If the rod is placed in a

vertical position it will evidently be in equilibrium ; but if the

end B is vertically above A, a slight disturbance will cause the

rod to fall from this position ;
while ifB is vertically below A, after

a slight disturbance the rod will revert to its original position.

190.] Maximum and Minimum Potential. When a body or

a system of bodies assumes such a position that the potential of

the forces acting on it is a maximum, the body or system is in a

position of stable equilibrium. When, on the contrary, the

position of the system is such that the potential has a minimum

value, the equilibrium is unstable. Here the terms maximum
and minimum are to be understood as they are defined in the

Differential Calculus. The complete proof of this principle is

kinetical, and it will be found at great length in the Mecamque

Analytique (6th section of the Dynamique^ p. 320).
In a very useful particular case, however, a statical proof may

be given.

Suppose a system, subject to certain geometrical conditions,

to be in equilibrium, and suppose, moreover, that, subject to

these conditions, the position of the system is defined by a single

variable.

In general (Art. 186) the Aquations of equilibrium are

^ = 0, 2
= 0, ...^=0,

and 2 (Xbso + Yby -f Zb z)
= 0.

Assuming the forces to have a potential, F, the last equation is

5F=0. (a)

Now if all the co-ordinates, #15 yl9 zl9 ...
,
in conformity with the

geometrical conditions, L 0, . . .
,
are expressible in terms of

a single variable, q, V is simply a function of q, and the statical

equation can be written

' ^ = o.
(ft)

Hence, in the position of equilibrium -= = 0, and there-
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fore V is, in general, either a maximum or a minimum, since

d zV
y-g-

will not, in general, vanish.

Now it has already been explained (Arts. 185 and 186), that

in the equation of equilibrium the coefficient which multiplies

each variation is proportional to a force which tends directly

to produce this variation ;
therefore from

(/3)
we see that 7 is

proportional to a force which tends to produce the displacement
dV

denoted by bq, or, in other words, -= is proportional to a force
do

which tends to increase q ;
and

(/3) shows that in the position of

equilibrium this force must vanish.

Suppose now that, the geometrical equations of condition

being still satisfied, the system receives a small displacement for

dV
which q becomes q + bq. Then if = is denoted by f (q), the

dV %
value of -7 in the new position will beffq + bq) j that is, the

do

force called into play by the displacement is

dV
or -=--h

dq
dV

But, by hypothesis, = 0, therefore the force called into play

is

If this force has the same sign as bq, the force called into play
increases the displacement, and the equilibrium is unstable

;

whereas if the sign of the force is opposite to that of the

displacement, the force destroys the displacement, and the

equilibrium is stable. In the former case -r-^- is positive and V

a minimum, and in the latter -=-^ is negative and V a maximum.

Whether the position of the system depends on a single

variable or on several variables, equation (a) is satisfied in every

position of equilibrium ;
but the vanishing of the first differential

of a function of several variables is not a sufficient condition for

a maximum or minimum value of the function. Hence we
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cannot assert that every position of equilibrium of such a system
is one in which V is either a maximum or minimum. On the

contrary, when the position depends on a single variable*, Fis,

in general, either a maximum or a minimum, and the equilibrium

is, in general, either absolutely stable or absolutely unstable. A
position of equilibrium is said to be absolutely stable when, after

all possible small displacements, the system reverts to its position

of equilibrium ;
and absolutely unstable when, after all possible

small displacements, it deviates still further from that position.

Since maxima and minima values of a function succeed each

other alternately, it is clear that the same is true of the posi-

tions of stable and unstable equilibrium of a system.
r
191.] Maximum or Minimum Height of the Centre of

Gravity. When gravity is the only force acting on a system of

bodies, the potential is simply

^

-W.i,
W denoting the weight of the system, and z the height of its

centre of gravity above any fixed horizontal plane.

For if w
1 be the weight of any one body of the system and %

the height of its centre of gravity above a fixed horizontal plane,

the virtual work of w
1 for a small increment of % will be

(Art. 66, p. 79) -wj.8^.
Hence f 5 V = w-^z^w^z^
But TT.z = w

1
.zl + w2 .z2 + . . . ; therefore 6 V= W. bz, and

7=-W.z.
Now the maximum value of V will occur when z is least

;

hence when the centre of gravity of any system of bodies is in the

lowest position that it can occupy consistently with the geometrical

conditions of the system, that system is in a position of stable equili-

brium; and when its centre ofgravity is in the highest position, the

system is in a position of unstable equilibrium.

Unless the position of the system depends on a single variable,

we cannot assert conversely that a position of equilibrium is one

in which the height of the centre of gravity is either a maximum
or a minimum.

* The system in this case is called by French writers un systbme & liaisons

completes.

t This assumes that none of the geometrical forces required for a position of

equilibrium are infinite ; for the term \8L cannot be assumed to vanish, even

though 8Z = 0, if \ is infinite.
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If any bodies of the system rest on rough curves or surfaces,

the equation of virtual work will involve the reactions of these

curves or surfaces for displacements along them. Hence we
have no longer the equation JT.bz=:0, and the principle of

maximum or minimum height of the centre of gravity does not

hold.

Even when the position depends on one variable, it may
happen that in a position of equilibrium the height of the centre

of gravity is neither a maximum nor a minimum. Take, for

example, the case of a heavy particle placed at a point of in-

flexion on a smooth curve in a vertical plane, the tangent at the

point being horizontal. The particle is evidently in equilibrium,
since for a small displacement Pbz is zero, P being the weight
and z the height of the particle. But z is neither a maximum
nor a minimum, and the equilibrium, accordingly, is stable for a

small displacement along the upper part of the curve, and un-

stable for a displacement along the lower part.

When the connexions of the system are complete (see note,

p. 312) the centre of gravity describes, in all positions of the

system compatible with the given conditions, a curve which is

sometimes very easily found. In the position of equilibrium the

centre of gravity will be the point of contact of a horizontal

tangent to this curve, and in this manner we can most readily

perceive the nature of the equilibrium of the body.
When the connexions of the system are not complete, it may

happen that its centre of gravity is constrained, in all displace-

ments compatible with the connexions, to describe a fixed

surface. In this case the position of equilibrium will be one

in which the tangent plane to this surface at the centre of

gravity is horizontal
;
and if the surface lies entirely below the

tangent plane in the neighbourhood of the point of contact, the

equilibrium will be unstable, as in the case of a curve
;

if the

surface lies above the tangent plane, the equilibrium will be

stable
;
and if the tangent plane intersects the surface in a real

curve in the neighbourhood of contact, the equilibrium will be

stable for some displacements and unstable for others.

192.] Continuous Equilibrium. If in all positions of the

system, compatible with the geometrical conditions, the statical

equation aF=0
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is satisfied, every position is one of equilibrium. Writing- down
this equation in all positions, and adding the equations thus

obtained is evidently the same thing as integrating it. Hence
if all positions of the system are positions of equilibrium, the

applied forces must satisfy the equation

V = constant.

In the particular case of a heavy system under the action of

gravity alone, V is W. z ; therefore if a system be continuously
in equilibrium under the action of gravity, the centre of gravity
of the system for all displacements compatible with the condi-

tions moves in a fixed horizontal plane, or, in other words,

maintains a constant height.

EXAMPLES.

1. A heavy beam, AB (fig. 127, p. 145) rests on two smooth in-

clined planes ;
find the nature of its equilibrium.

It is very easy to prove that if the right line AB moves between
two fixed right lines, OA and OB, the given point G on AB describes

an ellipse whose equation with reference to OA and OB as axes of x
and y is

__
The centre of this ellipse is the point 0. In the position of equi-

librium G is the point of contact of a horizontal tangent to this

ellipse. Now two such tangents can be drawn, one above the inter-

section of the inclined planes and the other below it. There are,

therefore, two positions of equilibrium; that with which we were
concerned in the example of p. 145 is obviously the position in which
G is at a maximum height, and it is, therefore, unstable; the other

requires the planes to be prolonged below their line of intersection,
and as it also requires the reactions of the planes to assume impossible
directions, it is physically impossible. It would, however, be possible
if the planes were replaced by smooth fixed rods to which the

extremities of the beam are attached by rings. The second position
of equilibrium would then be stable.

The impossibility in a certain case of any position of equilibrium,

except one of continuous contact with either plane, which has been

signalized in p. 146, is now easily explained. It occurs when the

point of contact of the horizontal tangent to the ellipse locus of G falls

underneath the plane (a) or the plane (/3),
so that it is not a possible

position of G.

The problem may be solved by a purely analytical method. If z is

the height of the centre of gravity of the beam, it will be easily found
that in the position of equilibrium
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sin a sin /3 cos

dd*
{(a + 6)

2+ (a cot a- b cot /3)
2

}

2. Two given points of a body rest each in contact with two
smooth inclined planes; show that the equilibrium of the body is

unstable.

We know that if two vertices of a given triangle move along two
fixed right lines, the locus of the third vertex is an ellipse whose
centre is the intersection of the given lines.

Hence if we consider a given triangle in the body to be formed by
the centre of gravity and the two points which are in contact with the

planes, we see that the locus of the centre of gravity is an ellipse
whose centre is at the intersection of the inclined planes. Now in the

position of equilibrium the centre of gravity is the point of contact

of a horizontal tangent to this ellipse.

Hence the only possible position of

equilibrium is one in which the height
of the centre of gravity is a maximum ;

therefore the equilibrium is unstable ;

and if, as explained in the last Example,
the point of contact of the tangent falls

underneath either plane, the only po-
sition of equilibrium of the body is one

of continuous contact with one of the

planes. The student will find several

particular examples of this problem in

Walton's Mechanical Problems (pp.

164, &c.), where the solutions are ana-

lytical.

3. A heavy body has two plane surfaces, OP and CQ (fig. 214)
which rest against two smooth fixed pegs, P and Q, the line PQ
making any angle with the horizon; show that the positions of

equilibrium are determined by drawing horizontal tangents to a

Limaon.
The centre of gravity and the pegs must lie in one vertical plane,

which is that of the figure. Since P and Q are fixed points and the

angle at C between the plane faces is constant, the circle described

round the triangle PCQ is fixed in space. Again, let G be the centre

of gravity of the body. Then since CG and CP are lines fixed in the

body, the angle GCP is given ;
and if CG meet the circle in 0, the

point is fixed in space ;
also the distance CG is given.

Hence in all positions of the body i.e., in all positions of C on the

circle the centre of gravity is found by drawing the line OC from
to the circumference of the circle, and taking a constant length, CG,

on this line. The curve deduced in this way from a circle is a

Limaon, which is, therefore, the locus of the centre of gravity.
A particular example has been already discussed in p. 1 50.

4. A heavy plane body of any shape is suspended from a smooth

peg, fixed in a vertical wall, by means of a string of given length, the

Fig. 214.
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extremities of which are attached to two fixed points in the body.
Determine the nature of the equilibrium.

This problem, so far as the positions of equilibrium are concerned,
has been already discussed (Ex. 11, p. 153). We propose here to

show that there are two positions of stable and one position of

unstable equilibrium. In the figure of the Example referred to, the

point of contact of GP
S
with the evolute is between G and P

3 ;
the

point of contact of GP^ is between G and P
x ;

and the point of contact
of GP

2
is on PJJT produced. Now it is easy to see that GP

B
is a line

of maximum length drawn from G to

the ellipse. For, let Q be a point on
the ellipse close to P

3 ,
and let QC be

the normal at Q. Then C is the centre

of curvature, and therefore the point
of contact of GP

3
and the evolute.

2I , Hence CP3
= CQ, therefore GP

3
= GO

+ CQ, which is > GQ, therefore GP
3

> GQ, and GP
S is, therefore, a maximum.

In the same way GPl
is a maximum and GP

2
a minimum distance

of G from the ellipse.

Hence, in the positions of equilibrium, GP:
and GP

3
are maximum

distances of the centre of gravity from the peg. The positions in

which these lines are vertical are, therefore, positions of stable equi-
librium. And since GP2

is a minimum depth of G, the position in

which GP
2
is vertical is one of unstable equilibrium.

5. To find the nature of the equilibrium of the beam in Example 5,

p. 297.
Take any position of the beam (in which, of course, the lines GW,

AR, and PS (p. 149) do not meet in a point). Then, if y is the

ordinate of P, the point of contact of the beam and the curve, referred

to a fixed horizontal axis, the ordinate of G will be

y + (GA-PA)cose,

or y + acosO xcotO.

Denoting this by y, we have

dy dy

dy dy

Hence sin
2
Q -=- = a sin3 + a?.

dv

Differentiating this, and remembering that in the position of equi-

librium~ = 0, we have
au

(1)dv du
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Again, since cot 6 =
-^-

j we have
ax

*
cosec*0

But if p is the radius of curvature of the curve at P,

*
cosec*0 = 5-.ax ax*

rl A 1

Therefore =
-.

-
} and (1) givesdx p sin 6

sin -=-^ = p 3 a sin 6 cos Q
ao

= p-3PO.

Hence, since sin is necessarily positive,
~

> will be positive, and y
therefore a minimum if

p > BPO.

The equilibrium will therefore be stable or unstable according as

p>or <3P0.
To arrive at this result, it would have been sufficient to demon-

strate it for a circle, which is very easily done. The curve in the

neighbourhood of P may be replaced by the circle of curvature at

this point.

6. Prove geometrically that the equilibrium of the beam in

Example 2, p. 147, is stable.

7. Two uniform heavy rods freely jointed together at a common
extremity rest on a smooth parabola whose axis is vertical and vertex

upwards; find the position of equilibrium.

Ans. Let the weights of the rods be P and Q, their lengths 2 a
and 26, and let them make angles and 0, respectively, with the

vertical in the position of equilibrium; then these angles are deter-

mined from the equations

Pa sin3 + (P+ Q) m cot < = 0,

Qb sin3 $ + (P+ Q) m cot = 0,

4m being the latus rectum of the parabola.

[Taking the tangent at the vertex as axis of y, the abscissa of the

point of intersection of two tangents, y = tx and y = t'x r >

t t

is 7 Hence (P+ Q)x = Pa cos + Qb cos(f) + (P + Q)m cot cos(/>.

Then x is to be a max. or min.]

8. A uniform heavy rod, AB, moveable about a smooth hinge fixed

at A
t
has its extremity B connected with a string which, passing over

a smooth pulley at a point C vertically over A, sustains a given weight
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which rests on a smooth inclined plane passing through C. Find the

positions of equilibrium, and the nature of each.

Ans. Let W and 2 a be the weight and length of the rod
;
P the

weight on the plane whose inclination to the horizon is i; 2c the

distance AC, and the inclination of the rod to the vertical. Then,
if (c a) W< 2 PC sine, there will be three positions of equilibrium
defined by the equations

2ac W*
'

The first and last positions are stable and the intermediate one is

unstable.

If (c a) W>2Pc sin i, there is no intermediate position, and the

first and last positions are unstable and stable, respectively.

9. One end of a beam rests against a smooth vertical plane, and the

other on a smooth curve in a vertical plane ;
find the nature of the

curve so that the beam may rest in all positions.

Ans. An ellipse whose axis major is the horizontal line described

by the centre of gravity of the beam, the axis minor lying in the

vertical plane.

10. A uniform heavy rod rests inside a smooth fixed sphere whose

diameter is equal to the length of the rod. In all positions of the rod

its centre of gravity is fixed
;

hence the rod should rest in all

positions ; but, except in the vertical position, it is impossible that

the acting forces can give equilibrium. Explain this.

(See note, p. 313.)

1 1 . A uniform rod rests in all positions with its extremities on two

smooth curves in a vertical plane; given the equation of one, find

that of the other.

Ans. Let the axis of y be vertical, 2 a the length of the rod, h

the constant height of the centre of the rod, and x $ (y) the

equation of one curve
;
then the equation of the other will be

x = (> 2k-
12. Find the general equation of a smooth curve (in a vertical

plane) on which if the ends of a uniform rod are placed, the rod will

rest in all positions.

Ans. If the line described by the centre of gravity is axis of x,

the equation is of the form [$ (y
2

) + x]
2+ y

z
a?, where 2 a = length

of rod, and <f>(y
2

)
is a function which does not change sign with y.

193.] Expansion of the Ab-
scissa and Ordinate of a Curve

in Powers of the Arc. Let A
and B

(fig. 216) be any points on

a curve, and let Am and An be the

tangent and normal at A. Also

let
\l/

be the angle between the normals at A and B, and let
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Am
(
=

x) and Bm
(
=

y] be the co-ordinates of B with reference

to the tangent and normal at A as axes.

Then, by Maclaurin's Theorem we have

$ denoting the arc AB, and
\jfQ) (~r-) > the values of

*//
and

v-a<s /

its differential coefficients at A.

Now
\l/
= 0, and - = -

> where p is the radius of curva-

ture. Hence

p 1 . 2 ^s 1.2.3 ds2

the suffix being omitted, it being understood that p is the radius

of curvature at A.

Again, we have

also rui -_!:, and ^ = I^.

But

(y)
= 1, and

(-J-)
=

;
therefore

(-y^)
= 0, (yf)

= -

and the successive differential coefficients are calculated with

ease.

We thus obtain

194.] Equilibrium of a Heavy Body resting on a Fixed

Rough Surface. Let AD (fig. 217) be a fixed rough surface on

which a heavy body, AC, rests, under the action of gravity, at a

single given point A
;
and let this body receive a slight dis-

placement of rolling on the fixed surface.

We propose to investigate the nature of the equilibrium. The

figure represents a section of the bodies made by the vertical

plane through their common normal, AO, in which the rolling

takes place. We suppose the normal AO to be vertical.
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Then, since in the position of equilibrium the body AC
is acted on by only two forces namely, its own weight and

the total resistance of the fixed surface

its centre of gravity, G, must be

vertically over the point of contact.

Let the point A of the rolling body
come to A', and G to G', the new

point of contact being B, and the

new common normal 0(/. Draw the

vertical line BF, meeting AC/ in V.

Then, if A'7 is >A'G', the weight
of the body acting through G' will

produce a rotation round B which will

send the body back to its original

position; while, if AV is <A'G', the

rotation produced by the weight will

be in the opposite sense, and the body will deviate still further

from its original position. For stability, therefore,

A'7>A'G'. (I)

Let p and p' be the radii of curvature of the curves AD and

AC at A, and let ^ and $' be the angles AOB and A'&B. Then

drawing Bn perpendicular to A0\ we have

AY- A'n+n7= An + Bn coiA'FB-,

but / A'TB = \lr + i/r'j
therefore the condition for stability is

An+ Bn cot (^ + f) > A' G',

or, denoting A'G'(or AG) by k,

Bn > (k
-An) tan (^+ $'). (2)

Now, carrying approximations as far as s
3

,
it will be found

from equation (1) of last Article that

s being the common length of the arcs AB and AB.

Substituting this, and the values of Bn and An from last

Article, in (2), the condition for stability is
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A
+ 2
t

Neglecting all powers of s, the first condition for stability is

, A 1\

P P
f

/

If 7^ > 2__ the equilibrium will be unstable.
P + P

A special case occurs when k = -
? ,

and this is commonly

called the ' neutral
'

case, or the equilibrium is said to be neutral.

We shall, however, call this the critical case.

To find the real nature of the equilibrium in this case, we
revert to the general condition (3), and neglect all powers of s

beyond the first. The condition for stability now is

Hence when k = , ,
the equilibrium will be stable or un-

stable according as
j \

d d

is negative or positive.

The bodies are, however, frequently in contact at vertices, or

points of maximum or minimum curvature, and then

7
1 ,1

d- d~,

and -
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are both zero. Hence the condition (5) fails to determine the

nature of equilibrium. Reverting to the condition (3),
the

terms as far as s2 destroying each other on both sides, we see

that equilibrium will be stable if

or, substituting
-

-,
for 7^, if

.

~d?
*

ds'*
'

/>V
2

and in the contrary case the equilibrium will be unstable.

If the lower surface is concave, instead of convex, to the

upper, the conditions are obtained by changing the sign of p.

Thus, the equilibrium will be stable or unstable, according as

P P

and in the critical case, the equilibrium will be stable or un-

stable, according as

d\ d-
p _p

~ds' ds

is negative or positive ;
and in case of contact at vertices the

condition (6) is to be similarly modified.

If the body rest on a plane surface, p = oo, and the differential

coefficients of are all zero. Hence the limiting value of h for
P

stability is p ;
but if h = p', the equilibrium will be stable or

unstable according as
-p

is positive or negative ; and if the

point of contact is a vertex, equilibrium will be stable or un-

stable, according as \

ds'*

is negative or positive*.

* Different methods of arriving at the conditions for stability have been

published in the Quarterly Journal of Pure and Applied Mathematics by Professor
Curtis (vol. ix, p. 41), and Mr. Routh (vol. xi, p. 102). The kinetical method of
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EXAMPLES.

1. If a cone of the same substance and of equal base with a hemi-

sphere be fixed to the latter, so that their bases coincide, find the

greatest height of the cone in order that the equilibrium may be

stable, when the hemisphere rests symmetrically on a horizontal plane.

(Walton's Mechanical Problems, p. 185.)

Ans. The height of the cone must be < r A/3, r being the radius

of the hemisphere.

2. Prove that any body with a plane base, resting on a fixed rough
spherical surface, will, when the height of its centre of gravity has

the critical value, be in unstable equilibrium.

3. A heavy body whose section in the plane of displacement is a

catenary, resting on a rough horizontal plane, has its centre of gravity
at the critical height ; prove that the equilibrium is really stable.

*4
(The condition (6) reduces in this case to ~ < for stability.)

cts

4. A heavy body in the shape of a paraboloid of revolution, placed
on a rough horizontal plane, has its centre of gravity at the critical

height ;
determine this height, and find the real nature of the equi-

librium.

Ans. The critical height = the radius of curvature of the gene-

rating parabola at the vertex, and the equilibrium is really stable.

5. In the critical case, if both of the conditions (5) and (6) fail,

prove that the equilibrium will be stable or unstable, according as

d P

is negative or positive, the surfaces being convex towards each other.

6. A uniform heavy bar, AB, moveable in a vertical plane round
a fixed smooth axis passing through A has a string attached to the

end B; this string passes over a fixed pulley C vertically over A.
Find the positions of equilibrium, and determine whether they are

stable or unstable.

treatment adopted by the latter is very exhaustive. The method in the text was

employed independently by Professor Wolstenholme and the author.

It may be well to caution the student against the error of replacing the sections,

AD and AC, of the surfaces in contact by their osculating circles at A. For, if

we do this, the condition (5) necessarily disappears, and the application of (6) is

not allowable, since, to the third power of the arc, the value of A'n is not the

same for the circle of curvature as for the curve AC, as at once appears from the

expression for A'n given by equation (3) of last Article. The nature of the

equilibrium, therefore, as determined from the osculating circles is erroneous.

Y 2'
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Ans. Let W= weight of bar, 2 a its length, P = suspended
weight, A = h, L CAB. Then the positions of equilibrium are

given by the equations

= 0, cos =
!
+ (^-|r2)^ and = *.

The first will be stable if - > 5 and then the second (when it

exists) will necessarily be unstable and the third stable. If the second
does not exist, the third will be opposite in nature to the first.

[To find the condition for stability in this problem, take any
position of the bar and calculate the moment of force tending to turn
it round A. IfM = this moment, and $ = Z ACB,

M=Phsm(j)- Wa sin 6. (I)

Also h sin $ = 2 a sin (0+ </>). (2)

Now M = in a position of equilibrium ;
and if -= is positive, a

dQ
slight increase of 6 will call into play a moment tending to restore

equilibrium.
In the position = 0, we have from (2)

dc) 2a

~dO~ h-2a'

Therefore, &c. Of course this might have been solved by Art. 191.]
7. If the equilibrium in the first position is critical, find its real

nature.

Ans. It is really unstable.

In the position = 0, it will be found from (2) that -=- = 0,

_"
'

_ 1
~

"JdOs

(h~2a)
3

8. Determine whether the equilibrium of the beam in example 12,

p. 138, is stable or unstable.

Ans. Unstable. [Either by taking the restoring moment about

0, or by the maximum or minimum value of the potential; the

potential = P (a + b) cos BWa sin
0.]

195.] Definition of Work. If a force actually displaces its

point of application in such a manner that the displacement has

an orthogonal projection along the direction of the force, this

force is said to perform work
;
and if the force is constant during-

the displacement, the product of the force and the projection of
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the displacement along its direction is called the work done by
the force.

Thus, suppose that during the passage of a material particle

along a curve ABD (fig. 218) it is continually acted on by a

force, P, constant in both magnitude and

direction. Then if dp denote the pro-

jection of any elementary arc of the curve

along the direction of P, the work done

by P in this displacement is P. dp-, and

the work done in this passage from A to B
is f

'

Pdp, or P x (the projection of AB
along the direction of P\ since P is con- A

..,.
p

fe '
Fig. 218.

stant during the motion.

Suppose the point D to be such that AD is perpendicular to

the direction of P. Then the whole work done by P on the

particle during the motion from A to D is zero, whatever be the

shape of the path pursued between A and D.
_/ e/ J- J-

When the forces acting on a particle are variable with the

position occupied by it, we have to consider the elementary work

done for a small displacement of the particle ; and to find the

whole work done by the forces during the passage of the particle

from one position to another, this elementary work must be

integrated between the extreme positions considered.

In the most useful application of the principle of work the

forces acting on a given system are functions of the co-ordinates

of their points of application, and do not depend on the velocities

of these points ;
and it is solely with forces of this description

that we shall be concerned.

It must be pointed out, however, that in considering the work

which such forces are capable of doing on a particle or system of

particles while this system is displaced from one position to

another, all conceptions of time are here left out of consideration.

The work which a given system of applied forces performs on a

given material system during the passage of this system by

any route from the position (A) to the position (B) in no way
involves the time or the manner in which the passage is effected.

The different particles of the system may have in one case moved

more or less swiftly than in another from the first to the second

position, and yet the work done by the forces (which are func-

tions of co-ordinates only) is the same in both cases.
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The theorems which have already been given for virtual work

apply evidently to work actually done.

Thus, as in p. 287, we see that for a small actual displace-

ment of a particle occupying the position (#, y, z) the work done

by the force acting onat is

Xdx+Ydy + Zdz,

the components of the force along the axes being X, Y, Z, and the

components of the displacement being dx, dy, dz. The work per-

formed on the particle in moving from one position to another

is then
f(Xdx + Tdy + Zdz),

the force acting on the particle being a function of the co-

ordinates of the particle, and the integration being performed
from the values of the co-ordinates in the first position to their

values in the second.

If there are several particles in the system, each acted on by

given forces, the work performed on the system will be

the integration being performed for each particle from its first

to its second position, and 2 denoting (as in Art. 188), a sum-

mation of this integral for all the particles of the system.
The case of most usual occurrence is that in which the forces

belong to a conservative system (see Art. 188), or, in other

words, when 2 ^dx + Ydy+ Zdz)

is the perfect differential of a function, T
7

,
of the co-ordinates of

the particles acted on.

In this case if dW denote the elementary work done on the

system for a small displacement, we have

and the work done in the passage of the system from one position
to another is given by the equation

r= r-r,,

TO denoting the value of V in the first position.

Since V is a function of co-ordinates only, the value of V F
depends merely on the original and final positions of the material

system, and not at all on the route by which the system has moved

from the one to the other.
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196.] Unit of Work. Since, by definition, work is the product
of a force and a line, the unit of work will be the product of a

unit of force and a unit of length. If the unit of force is a

kilogramme, and the unit of length a metre, the unit of work will

be done when a force of one kilogramme drags its point of applica-

tion through one metre along its line of action. Thus, if a body
whose weight is a kilogramme is lifted vertically through a metre

by a force which just overcomes its weight, this applied force

does a unit of work, which is called a kilogramme-metre. In the

same case the weight of the body does a negative unit of work

(see Art. 54).

[/ 197.] Energy. Potential Work. Energy means capacity

for doing work. This capacity is possessed by a body in motion.

For the velocity of the body might be made use of for causing
the body to ascend vertically against the attraction of the earth,

i.e., to do work against resistance. The exact measure of the

amount of work which a particle weighing w grammes moving
with a velocity of v centimetres per second can do against

Q

resistance before its motion is completely destroyed is

t/

gramme-centimetres, where g is the velocity in centimetres per
second acquired in one second by a body falling vertically in

vacuo.

Work is always done against some resistance. The work which is

done by a force in moving a particle from one position to another

is done against the inertia of the particle, or its resistance to

acceleration. Thus work is the equivalent of energy, and energy
is reconvertible into work at the rate indicated by the expression2-

If a system consists of any number of particles moving
** wv2

in any directions, its total energy is 2 - -
> the summation in-

2y

eluding all the particles, and the different directions of their

velocities being of no account.

This is an anticipation of elementary kinetics, and is here used

only for the purpose of pointing out to the student what work

done on a system is converted into.

The Potential Work of a system of forces in any given con-

figuration of their points of application is the amount of work

which they are capable of doing in moving their points of application

from any chosen confgnration to the given one.
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This chosen configuration is quite arbitrary. Thus, the

quantity of work which the forces applied to a system are

capable of doing- during the passage of the system from one

position to another is (Art. 196)

V V"
'O'

Fand P being the potentials, or certain functions of the co-

ordinates, belonging to the two positions considered ;
and the

two positions may be taken as denned by the values of the func-

tion V belonging to them respectively.

The zero position of the system (that corresponding to F"
)

is

generally chosen in such a way that in any other position,

practically considered, V shall be > F (Thompson and Tait,

Nat. Phil.] ; or, in other words, the zero position of the system is

such that the work done by the acting forces in moving it to

any other position considered in our investigation shall be

positive.

198.] Inclusion of Internal Forces. When any of the bodies

of a system, acted on by given forces, are connected by elastic

rods or strings, or when they mutually attract or repel each

other, as has been already explained (Art. 97), these forces may
or may not be brought into the equation of virtual work, ac-

cording to the nature of the virtual displacement chosen.

In finding the figure of equilibrium of such a system we have

hitherto supposed it known, and determined the requisite con-

ditions accordingly.

We may, however, include in the potential work of the forces

not only the potential work of the external (or applied) forces,

but also that of the internal forces. Thus the total potential

work of the system of forces will be the sum of the works of the

applied and internal forces; and equation (a) of Art. 190 shows

that in the position of equilibrium the variation of the total

potential work of the forces of the system is zero. This principle

will serve to determine the figure of equilibrium of the system
without presupposing it.

199.] Criterion of Stability and Instability. Since in a

position of absolutely stable equilibrium V is a real maximum,
and in a position of absolutely unstable equilibrium V is a real

minimum (Art. 190), it follows that in the former case the

applied and internal forces would do negative work on the
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system if its position were slightly altered ;
and in the latter

they would do positive work.

A configuration of absolutely stable equilibrium is, then, such

that the applied and internal forces cannot do positive work in

any small displacement of the system ;
and a configuration of

absolutely unstable equilibrium is one in which every change of

position involves the doing of positive work.

And in general (see Art. 190) in a position of equilibrium these

forces will do positive work for some displacements and negative

for others.

EXAMPLES.

1. Find the work done in drawing up a Venetian blind.

Ans. Let n be the number of bars, a the interval between
n + 1

them, and W the weight of the blind
;
then the work is jp^

2. A and B are two fixed points which are connected by any curve,

APB; at each point, P, of this curve there acts a force, F, directed

towards a fixed point, 0, the force being a function of the distance OP.
If is the angle between OP and the tangent to the curve at P, and
ds an element of the curve at P, prove thatfF cos Ods taken from A
to B is independent of the curve.

3. Prove that the work done in dragging a heavy body up a rough
inclined plane, without acceleration, by a force parallel to the plane, is

equal to the work done in dragging the body along the base of the

plane (supposed equally rough), together with the work done in lifting

it vertically through the height of the plane.

4. A heavy body is dragged, without acceleration, up a rough in-

clined plane by a force whose line of action always passes through a

fixed point ; prove that the work done in dragging the body through
a given height, h, is

8 -\- W U>

Wh (1 + fj.
cot

i) /ut Wp cos i
(/x+ tan i) log 5

where t is the inclination of plane, p the perpendicular from the fixed

point on the plane, s the initial, and s' the final distance of the body
from the foot of this perpendicular.

MISCELLANEOUS EXAMPLES.

1. Two equal heavy spheres rest inside a hollow right cone, and

against each other
\
the cone (which has no base) rests on a horizontal

plane, the vertex being uppermost ; only one sphere rests in contact

with the ground. Find the least weight of the cone consistent with

equilibrium.
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Ans. Let a vertical plane through the centres of the spheres cut

the cone in a triangle ABC, in which C is the vertex of the cone
;

let

LCAE LCEA = /3 ;
let

<f>
be the angle between the line joining the

centres of the spheres and the side BC'; let r and c be the radii of the

spheres and of the base of the cone, respectively, and W the weight of

each sphere ;
then the least weight of the cone is

t.
p Qtg_ co o

( c
v rcos

2. A heavy triangular lamina, ABC, of uniform thickness and

density, is suspended successively from the vertices A and B
;
show

that if any side in the second position is at right angles to its first

position

(The bisectors of the sides CA and CB drawn from B and A must
be at right angles to each other.)

3. A heavy rod hangs from a fixed smooth pulley by means of a

string attached to its extremities
;

find the tension of the string. (See

Example 30, p. 157.)

Ans. If W is the weight of the rod, the tension

2c

with the notation of the example referred to.

4. A heavy rectangular block is laid on the less steep of two smooth
inclined planes which slope in the same direction and intersect in a

horizontal line, an edge of the block coinciding with the line of inter-

section of the planes. To the middle point of the upper edge is

attached a cord which passes over a smooth pulley and sustains a

weight ;
determine the condition of equilibrium, and supposing that in

any case equilibrium is about to be broken, find how this will happen.
5. A uniform board in the shape of an isosceles triangle rests on

two smooth planes equally inclined to the horizon, the base of the

triangle being horizontal, and the vertex upwards ;
the board is cut

into two equal portions by a plane passing through its vertex ;
find

the inclination of the planes if equilibrium continues to exist.

Ans. If h is the length of the perpendicular from the vertex on the

base, and c the length of the base,

6. A solid right cone rests with its base in contact with two
smooth planes equally inclined to the horizon, the base being hori-

zontal and the vertex upwards ;
find the inclination of the planes such

that if the cone is cut into two equal portions by a plane through the

vertex, the equilibrium of the pieces will not be troubled.

Ans. If h is the height and r the radius of the base of the cone,

(,-I)r.



CHAPTER XIII.

EQUILIBRIUM OF FLEXIBLE STRINGS.

200.] Perfectly Flexible String. A string- is said to be

perfectly flexible when at every point in its length it can be bent

round all lines passing through the point perpendicularly to

the tangent line without the expenditure of work.

From this definition it follows that the internal force, or

mutual action between the particles at each side of any normal

section of such a string, has no component in the plane of the

section
;

this force must, therefore, be entirely normal to the

section
; or, in other words, the internal force in a perfectly

flexible string is at every point directed along the tangent line to

the string.

This internal force we have called the tension of the string,

and, like all internal forces in a system, it is a mutual action

between parts of the system. This has been sufficiently ex-

plained already (p. 25). In the sequel we shall use the term

flexible string as equivalent to perfectly flexible string.

201.] Imperfectly Flexible String. No effort is required

to bend a perfectly flexible string at any point; but if we

attempt to bend an imperfectly flexible string, or a wire, we
encounter a certain amount of resistance according to the degree
of inflexibility or rigidity of the string or wire. If we consider

the nature of the mutual forces existing between the particles

on each side of a normal section of such a body, we shall find

that these forces are not necessarily reducible to a single re-

sultant at all. In the general case of a wire bent and twisted

by the action of any external forces, these internal actions on

the particles at one side of a section may, of course, be reduced

to a single resultant force and a single couple; and the re-

sultant force may be applied at any point in the section, the

couple varying according to the point chosen. All this is
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evident from the general reduction of a system of forces in

Chapter X.

202.] Three Methods of Investigation. There are three

methods by which the equilibrium of a string or wire may be

treated namely,
1. We may isolate an infinitesimal element of the body,

supplying to it at each extremity the action exercised by the

neighbouring portions which are imagined to be removed

(see p. 161).

2. We may apply the general condition that the variation of

the whole potential work of the system of forces, internal as

well as external, is zero (see p. 328).
3. We may consider the equilibrium of any finite portion of

the body, treating it, when the figure of equilibrium has been

assumed (see p. 13), as a rigid body. (See Thomson and Tait,

Nat. Phil.}

We begin by considering the equilibrium of a perfectly

flexible string which suffers no elongation under the action of

the forces which will keep it in equilibrium. Such a body is

called a flexible inextensible string, and it is scarcely necessary
to add that it exists only in the abstractions of Rational Statics.

SECTION I.

Flexible Inextensible Strings.

203.] Tangential and Normal Resolutions. Let A
(fig.

219) represent a flexible inexten-

sible string in equilibrium under

the action of any system of forces

applied continuously throughout
the string. Then the force acting
on a unit mass of matter placed at

any point of the string will, in the
Fdm

general case, be expressed as a

-,. function of the co-ordinates of this
Jb ig. 210.

point and their differential co-

efficients with respect to the arc. Thus, if the co-ordinates of P
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are x, y, z, the force acting on a unit mass placed at P will be

dx

On an element containing dm units of mass the force will be

j f dx x

<t>(x,y,z,-js >...)dm.

We shall denote by F the coefficient of dm in this expression.

Suppose, then, that we consider an element PQ of the string,

whose length is ds, apart from the rest of the string ;
let the

mean density of the element be /, and let a be the area of its

mean section; then the mass of PQ is Jcards, and the external

force acting on it is kvFds.

Now, the element PQ is kept in equilibrium by three forces

namely, the tension (T) at P, the tension (T+dT) at Q, and

the external force (kvFds), which acts at the middle point ofPQ.
These three forces must be coplanar and meet in a point.

Now, the two tensions act along two consecutive tangents to

the string, and as the plane of two consecutive tangents to any
curve in space is the osculating plane, we see that

The resultant applied force at any point of a flexible string acts

in the osculating plane of the string at the point.

If the string is stretched over any smooth surface by means

of two forces applied at its extremities, the only applied force

which is continuously distributed throughout the string is the

reaction of the surface
;

and as this reaction is everywhere
normal to the surface, we see that

A string which is stretched along any smooth surface, and acted

on by no externalforces, except the reaction of the surface and two

terminal tensions, has its osculating plane at every point normal to

the surface.

The string in this case assumes the form of a shortest line, or

geodesic, on the surface.

Let Pt be the tangent and Pn the normal at P
;

let dO be

the angle between the tangents at P and Q ; and let < be the

angle between Fdm and Pt.

Then, resolving along Pt the forces acting on the element, we
have

(T+dT)cosd9 + &<rFcos<t)d's-T= 0;

but cos dO = 1, neglecting (d&f ;
therefore this equation gives
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(IT

-f- +<r^cos0 = 0, (1)
Cvo

which asserts that the rate of variation of the tension per unit

of length along the string is equal to the tangential component
of the applied force per unit of length.

Again, resolving the forces along Pn}
the normal, we have

(T+dT] sin.de -JcvFsiv. $ds = 0,

or since p, the radius of curvature at P, is equal to -=-? >

T
>fc<r.Fsin0 = 0, (2)

which asserts that the curvature of the string at any point is

equal to the normal force per unit of length divided by the

tension.

From (I) we have T= c_j-kffF cog^
where C is an arbitrary constant. Now, cos cf>ds is the pro-

jection of ds on the direction of F. Denoting this projection

by &> T = C-fkvFdf. (3)

But fkvFdf is evidently the potential of the applied forces if

they are a conservative system*. Hence, if V and F denote

the potentials at two points in the string at which the tension

are I7 and T
,
we have T=TQ (7- F ), (4)

or the difference of the tensions at any tivo points is equal to the

difference of the potentials a result which we shall find to be

true also in the case in which the string rests on a smooth

surface.

204.] Cartesian Equations of Equilibrium. Let the force

F acting on the unit mass at any point P whose co-ordinates

are #, y> z be resolved into three components, X, Tt Z, parallel to

three fixed rectangular axes. Then the components acting on

the element PQ are JccrXds, kvYds, kvZds. Also the components
of the tension acting on the extremity P are

dot dy dz
~~ -^

7
' ~~

-* ~~r~ '
*~~

7~ >

ds ds ds

the components of this tension are affected with negative signs,

since, when the element PQ is considered apart, the tension at

* A simple case in which the external forces are not a conservative system will

be presently given. (See Art. 208.)
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P will be directed towards the left-hand side of fig. 219, where

the origin of co-ordinates is supposed to be.

These components of the tension will at any point be functions

of the length of the arc measured from some fixed point, A, of

the string up to the point considered. Thus, if AP =
<?,

we
Sha,l have

ŵo

and the component of the tension at Q is therefore f($ + ds), or

or, agan,

rpdti
d

/rpdx^ ;
&*

(m^' +'''' f '

Hence, for the equilibrium of PQ, resolving forces parallel to

the axis of a?, we have

dx d dx , d? dx ds1

,

as

or, rejecting the terms which cancel, dividing out by ds, and

diminishing ds indefinitely,

(*) +**= 0. (!)

Similarly, y) +^r=0, (2)

(3)

Performing the difierentiations, we obtain

dTdx
+ -T-T + ^O-ZrrO, (4)ds ds

ds 2 ds ds

Multiplying these by -=- >

-j-
j and -=- > respectively, adding,

and remembering that
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dx dy dz d2z _~~^
'

we obtain

dT
'ds

dx ydy dz \
__

da ds ds '

or T= CfJc* (Kdx + 7^+ Z<fe),

which is precisely the same as (3) of last Article.

dT
Eliminating T and -=- from (4), (5), and (6) we have

d^x dx
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eliminating T from equations (l), (2) and (3) in pairs. The curve

is evidently given by equations

B-flcvYds _ C-f kaZds_
dx dy dz

ds ds ds

If at every point of the string

X^ + Yf + Z^ =
,

ds ds ds

or if the appliedforce is at everypoint at right angles to the tangent

to the string^ the tension will be constant throughout, as appears
from (7). This is the case, for example, when a string is

stretched over any smooth surface, and acted on by no force

except the reaction of the surface. Thus we prove the truth of

our assumption in p. 26.

205.] Forces in One Plane. Gravity. When the applied forces

are in one plane, the general equations of equilibrium become

the plane of the forces being that of xy.

Let gravity be the only force acting on the string, except the

terminal forces, or forces applied at the extremities. Then,

taking the axis ofy vertically upwards, and denoting the weight
of the unit mass by g, we have X = 0, Y= g> and the equations

become

The first equation shows that the horizontal component of the

tension is the same at all points of the string (see p. 32).

Denoting this component by r, we have

Hence, from (2)

=Ti ...

ds dx
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or ^ ,

9 ds

fo

(3)

It is to be observed that ha- is the mass per unit length of

the string at the point #, y. This last equation, therefore,

determines the mass per unit of length at any point when the

form of the curve in which the string hangs is given; and,

conversely, it determines the curve in which any string will

hang when the laws of variation of its section and density are

given.

Ify-be denoted by^, and the independent variable changed

from os to y, equation (3) becomes

dp

r di/

~9

206.] The Common Catenary. When the mass of a unit

length of the string is everywhere constant, the form of the

string is that of a curve called

the Catenary. The name Cate-

nary is sometimes employed to

denote the form of a string in

general, whatever be the law of

variation of its density.
In the present case k<r is con-

stant equal to m, suppose. Let
T = mgc, where c is a constant

length. Since at the lowest

point, A (fig. 220), the tension

is horizontal, r is the tension at

A
y
and c is the length of a portion of the string whose weight is

the tension at the lowest point.

From (3) of last Art. we have
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^ dx* dx

V
where e' is an arbitrary constant. Now, taking the axis of y

passing through A, we have a? = 0, and ~-
dx

Hence (f = 0, and the last equation becomes

passing through A, we have a? = 0, and ~- = 0, simultaneously.dx

t+V
nA

where e is the Napierian base. Solving this equation for >

we obtain

and by integration c,- --\
+ e c

)

where c" is an arbitrary constant. Now, taking the origin, 0,

at a distance equal to c below A, we have y = c when x = 0.

This gives c" = 0, and the equation of the catenary referred to

axes chosen as above is

The point of intersection of these particular axes we shall in

the sequel call the origin of the catenary.
We shall next find the length of the arc, AP, measured from

A to any point, P, on the curve. If ds is the element of arc,

ds= Vdx2
4- dy*V* _ 2

1 + 1
(
e c _ e ^ . dxy from (l),

L JL
= \(e

c+ e c
)dx\

no constant being added because s = when x = 0.

z a

(2)
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From (1) and (2) we have

(3)

and from (3) dy_~ y
ds

'

Let PM and PT be the ordinate and tangent at P, and let

fall a perpendicular MT on PT. Then

dy i \

y cos ~ $ ds
9

hence s = PT-, (5)

and since/ = PT2 +MT*, we have from (3) and (5)

c = MT. (6)

Hence, given the catenary to construct its origin and hori-

zontal axis

On the tangent at any point, P, measure off a length, PT, equal

to the arc AP ; at T erect a perpendicular TM to the tangent

meeting the ordinate of P in M; then the horizontal line through

M is the axis of the curve.

In making a proper figure this rule will be found of great use.

The involute of the catenary -which starts from the lowest point is

the Tractory.

To get a point on this involute we measure on the tangent,

PT, at any point, P, a length equal to the arc AP. From (5)

we see, therefore, that T is a point on the involute
;
and since

PT is a normal to the involute, its tangent at T must be TM.

But from (6) TM is constant
;
hence the involute is a curve such

that the length of the tangent between its point of contact and

a fixed right line, Ox, is constant. The involute is, therefore,

a tractory (see p. 195).

The tension at any point of the catenary is equal to the weight

of a portion of the string whose length is equal to the ordinate of

Consider the equilibrium of the portion AP of the string

apart from the rest. This portion is kept in equilibrium by
three forces namely, the tension at P in the direction TP, the

horizontal tension at A in the direction QA, and its weight

acting through its centre of gravity, G. Hence the vertical

through G must pass through Q. Resolving vertically, we have
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TcosTPM=

= mgy, from (5). (7)

COB. It follows from this that if a uniform inextensible string

hangs freely over any two smooth pegs, the vertical portions
which hang over the pegs must each terminate on the horizontal

axis of the catenary.

In the catenary the length of the radius of curvature at any

point is equal to the length of the normal between that point and

the horizontal axis.

By equation (2) of Art. 203, we have

~ = mg sin TPM,
P

which by means of (7) gives p = Tfrpivr'*
^u^ ^is is evidently

sin j-j^jjU.

the length of the normal between P and the axis of x.

It will be readily seen that the differential equation of the
70

catenary can be written in the form c2 ^ = y, and that the area
clots

OAPM= twice the area of the triangle PTM.
It is well to observe that if a weight is suspended from a

given point of a catenary, the continuity of the curve ceases

at that point, and the portions of the string at opposite sides

of the point must be treated as branches of two distinct cate-

naries.

207.] The Catenary of Uniform Strength, If the area of

the normal section of the string at any point is made propor-

tional to the tension at that point, the tendency to break will

be the same at all points, and the curve is therefore called the

Catenary of Uniform Strength.

To find its equation, we have a- = \T, A. being a constant
;

and since T = r -7- > we have
dx

ds
<T = AT -=-

dx

Hence (3) of Art. 205 becomes

,ds^
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or, denoting g\k by- ,
we have

Integrating,

where b is an arbitrary constant. Let the axis of y pass through
the lowest point of curve, i. e. the point at which the tangent
is horizontal. Then # = 0, and we have

dy x
-f-=tan
dx a

Integrating this again,

K. = log COS - + b'.

a a

Let the lowest point be taken as origin. Then '= 0, and we

have, finally, #
y = a log sec -

for the equation of the catenary of uniform strength.

It is easily seen that the curve has two vertical asymptotes,

each at a distance from the lowest point.2

The equation of this curve can be put into a remarkable form.

If p is the radius of curvature at any point, and s the length of

the arc between this and the lowest point,

an equation which can be deduced with no difficulty.

Given the whole weight (IF) of the chain *, and the span (2 6),

determine the section at any point so that there shall be a constant

tension (p) per unit of sectional area at all points.

If A and B are the two points of support (supposed in a hori-

zontal line), b is their common distance from the vertical axis

of the curve. We have, then,

W= Zfkvgds

IJ ft

6 x
sec 2 - dx

* A string hanging from two fixed points under the action of gravity is

frequently called a chain.
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= 2 r tan -
a

Now evidently
- is the tension per unit of sectional area, = p ;

A.

and since g is the weight of a unit volume of the standard

substance, kg is the weight of a unit volume of the material of

the chain. Denote this last hy o>. Then
1 p

o>

T W h ds W J> x
Also, o- = = cot ----j-

= cot - sec -
p p a ax 2p a a

S _
But it is easy to prove that sec - = \ (e a + e a

)

W - --\ 0)

Hence a =
(
e p +e M.cot >

p ^ p
which is the expression for the area of a section at a distance s

along the chain from the middle point.

The student will verify the homogeneity of this equation.

208.] The Parabola of Suspension Bridges. Suppose a

string to be attached to two fixed points, and let each element

of its length be acted on by a force in a constant direction, the

magnitude of the force

being proportional to the

projection of the element

on a line perpendicular to

the direction of the force.

Then it can be shown

geometrically that the

figure of the string is Fig. 221.

that of a parabola.

Let Oy (fig. 221) be the direction opposite to that of the force

on each element; Ox a tangent to the curve, perpendicular to

this direction; P and Q any two points on the string, the

tangents at them being PI
7 and QT; PM and QN perpendiculars

on Ox. Consider the separate equilibrium of the portion PQ.
The forces acting on it are the tensions in the directions TP and

TQ, and the resultant of the parallel forces on the elements of

PQ. This resultant must pass through T, and it also passes

through the middle point of MN> since its constituent forces are

all proportional to the elements of the line MN. Hence drawing
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TV parallel to Oy, and meeting PQ in V, the point V must

bisect the right line PQ.
The curve of equilibrium of the string is therefore such that

a right line drawnfrom the point of intersection of any two tangents

parallel to a fixed direction bisects the chordjoining their points of
contact.

This well known property identifies the curve with a parabola.
If we make use of the equations of equilibrium in Art. 205,

doc
we shall have X = 0, J"=

jut -7- >
//, being the constant. There is

cl/s

no difficulty in arriving at the result just found.

It is to be observed that the acting forces in this case are not

a conservative system. Hence the function T (see Art. 203)
does not exist.

The connexion of this parabola with Suspension Bridges has

been already explained in Chap. II.

209.] String Acted on by a Central Force. When the

lines of action of the forces applied to the various elements of the

string pass all through the same point, the force acting on the

string is said to be central, and this point is called the centre of

force. It is easy to prove that in this case the string must lie

in a plane passing through the centre of force. For (Art. 203)
the osculating plane at every point contains the centre of force ;

and since two consecutive osculating planes have a tangent line

to the string common, these two planes, having in addition a

point (the centre of force) common, must be identical. Hence

the osculating plane is the same at all points ;
or the string

must lie wholly in one plane.

Tofind theform assumed by a string

acted on
~by

a given centralforce.

Let (fig. 222) be the centre

of force (supposed repulsive), PQ
an element of the string whose

equilibrium is considered apart, r

the radius vector OP, the angle
POA between OP and a fixed

initial line, s the length of the arc

AP, and p the perpendicular from on the tangent at P.

Then, for the equilibrium of the element PQ, taking moments
about 0, we have
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moment of tension at P = moment of tension at Q ;

or Tp = Tp + d(Tp},

.'. Tp = h, (1)

where k is a constant *.

Denote the tensions at P and Q by I7 and T+ dT respectively.

Resolve the forces acting on PQ along the tangent at P,
denote kcr by m, and let the central force be mFds. Then this

force passes through the point of intersection of tangents at P
and Q, and the cosine of the angle between its direction and the

tangent at P is -
J- e, where e is indefinitely small. In the

ds

equation of resolution the component of mFds is

so that may be neglected, and we have

dT= -mFdr. (2)

Equations (1) and (2) determine the form of the curve.

If the central force is attractive, the sign of F must be

changed in (2), and the curve of equilibrium will be convex

towards 0.

It is usual in problems concerning central forces to denote r

by-- Making this substitution, and eliminating T from the

above equations, we have

7?* =

But (Williamson's Differential Calculus, Chapter XII),
1

fdu^
f =U+ (d^

'

Hence, denoting by < (&), and f<j> (n) du by fa (u\ an

arbitrary constant being implied in fa (u), we have from (3)

5)
i

+"-it*iW}
i

- w
It is often more convenient to retain a differential equation of

* Of course this proof holds whether the portion PQ is an element of length or

a portion of any length, however great.
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the second order for w*. Differentiating (4) we have, dividing

du
out by -j^

i and remembering that fa''(u)
= <

(#),

1
, / \ / \ /e\

-it = -77- d)j
( u) . a) ( wj. ^oj

(7" #

Now, since the integration of (4) gives u in terms of 0, and

introduces an arbitrary constant in addition to that already

involved in fa (u\ we see that the solution of the problem
involves only two arbitrary constants. But (5) will require

two integrations to express u, and each integration will intro-

duce an arbitrary constant. Hence it appears that in this way
we get three arbitrary constants, instead of two. These three

7 2

are, however, easily connected, since the values of u and
(-j^\

given by the complete integral of (5) must satisfy (4) for all

values of u.

As an example, let it be required to discuss the form of a string of

uniform section and density when the central repulsive force varies

inversely as the square of the distance. In this case m is constant,
and F= fjfu

2
, // being a constant which obviously denotes the magni-

tude of the force on a unit mass of matter placed at the unit distance

from the centre of force.

Hence we have, putting m^jf = jut,

T =
C being a constant. If T

Q
denote the tension at a point A of the

string whose distance from the centre is ? we have, evidently,

=
p. (u + c), suppose.

Hence, '($.*#'*(+#, (6)

which gives, by differentiation,

M u
First suppose that -&<'li and denote 1^- by X2

. Then this

equation becomes fl*u 1 A2

* This method of treating the equilibrium of a string acted on by a central
force is taken from a paper by Professor Townsend in the Quarterly Journal of
Pure and Applied Mathematics, 1874.
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the integral of which is

u= c + A cos A (0 a),

A and a being the constants of integration. Substituting this value

(8)

of u in (6), we have A =- c, and therefore

The value of a is found by putting u = a and = the angle

belonging to the point A.

When = a, = 0, and there is an apse. If the initial line be

taken through the apse, and T
Q and a belong to this point, we havem T

c = - -a =
(
--

1) a, and (8) assumes the simple form
/A JJ.

u=-?+cos\6), (9)

1 +
I

which differs from the focal polar equation of a conic in having the

angle multiplied by a number, A, less than unity.
u2 V?

If > 1, we must put j^
1 = A2

,
and putting pa T

Q
= pc,

equation (6) becomes du*
2 _ f_ ,

2W H "
A2

" ^~~ c
' '

which gives it =~~ c + Ae + Be ~XQ
, (10)

the constants A and jB being connected by the equation AB =

Equation (10) can obviously be written

or

When d = a, there is an apse, and if the initial line be taken

through the apse, we have, in the same manner as before,

If T = 1, both (9) and (11) give w = a, a constant; and the

figure of equilibrium is a circle.
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For the remarkable analogy between the curve of equilibrium
of a flexible string and the orbit of a particle under a given

force, see Professor Townsend's paper, and Thomson and Tait's

Nat. Phil.

210.] Problem. To find the angle between the apsides in a

string which, under the action of a central force, assumes a form

nearly circular.

DEP. An apse is a. point on a curve at which the radius vector

is at right angles to the tangent.
Since the form of the string is nearly circular, u will differ from a

constant value, a, by a small variable quantity, x.

Let, then, u = a + x. In this case fa (u)
= fa (a) + xcj) (a),

neglecting higher powers of x
;

and
(f> (u)

=
(f> (a) + x(j/(a). For

shortness, denote fa (a), (/> (a), and
<f>'(a) by fa, <j>,

and <' respect-

ively. Then (5) of last Art. becomes

^++* =
-^{<Wi

+ (<M>' +</>>} (i)

But if the string were exactly circular, x and
-y-2

would always

=
;
therefore a = ^-~

> or

Hence (1) becomes

The constant a may be chosen as the reciprocal of the radius of

any circle which nearly coincides with the figure of the string ;
but

simplicity is gained by taking it equal to the reciprocal of the radius

of that circle in which the tension at each point is equal to the mean
tension in the string.

Now in a circle of radius - the tension (see (2), Art. 203) is <;

and (2) of last Art. gives T in the curve equal to fa (u), and there-

fore the mean tension = fa. Hence

a<f)
= fa,

and (3) finally becomes d2x atf

d0-^
x =- (4)

If -7 be positive, the value of x in terms of 6 will be exponential,

and the nearly circular form becomes impossible, since the value of u
increases indefinitely with 0.

For the possibility of a nearly circular form - r- must be negative,
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and we have
X = ACOB(/\ / 7f~0~ a)'

du dx
Hence, since at an apse = 0, or ^ = 0, we shall arrive at an apse

whenever

and the difference between two successive values of which satisfy

this equation is

which is, therefore, the angle between the apsides*.

211.] String on Smooth Plane Curve. Consider the case

of an inextensible string- resting on a smooth plane curve under

the action of any forces in the plane of the curve, and let fig. 219

represent this case. Then into the equations of Art. 203 we

have merely to introduce the normal reaction, Eds-\, acting on

the element PQ in the direction nP.

Resolving tangentially, we obtain

dT
-r-+/fco-.Fcos(/> = 0. (1)

Resolving normally,

--&(rFsm(l>-R= 0. (2)
P

These are the most useful resolutions in the case of a string

resting on a curve. Equations of resolution along arbitrary

axes may, of course, be obtained by introducing the components
of R into the general equations of Art. 204.

From (1) we obtain T = Cf&o-Fcos $ds, C being a constant.

But Fcostyds is obviously the virtual work of the force F.

Hence if the acting forces are conservative, and V is their

potential at P, we have, as in Art. 203,

* This investigation is taken from the paper by Professor Townsend previously
referred to.

f The student will observe that in considering the equilibrium of an element

of length ds we represent the reaction of a curve on it by lids, and the applied
force by JcffFds, while we represent the tension by T, and not by Tds. The
reason of this is that the tension depends merely on the cross section of the ele-

ment and not on its length, while the magnitude of the reaction depends evidently
on the length of the element in contact with the curve.
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212.] String on Bough Plane Curve. If the curve in the

preceding Article is rough, and the string in limiting equi-

librium, slipping being about to take place in the direction QP,
we have merely to include among the forces acting on the

element PQ a tangential force pRds, the coefficient of friction

being \L and the normal reaction It ds, as before.

Equations (l) and (2) of last Article now become

dT = 0,

T--^o-jPsindR = 0.

P

213.] String on a Smooth Surface. When a string acted

on by two terminal forces only is stretched over a smooth

surface, we have seen that it assumes the form of a geodesic
on the surface, and that the tension is constant throughout its

length.

The general Cartesian equations of equilibrium are readily

obtained by adding to the components of the given applied
forces the components of the reaction of the surface.

Let R be the magnitude of the normal reaction per unit

of length of the string. Then, the direction angles of the

normal to the surface at the element ds being A, \L, v, the

components of the reaction on this element parallel to the axes

are R cos \ds, R cos ^ds, R cos vds ;
and

(1), (2), (3) of Art. 204

If we multiply these by cos X, cos jm,
and cos v respectively,

and add, we have

z N
cos A +

^-f
cos p, + -^ cos

v) + k<?N+R = 0,

N denoting the normal component of the applied forces measured

in the same sense as R.

Now if co is the angle between the normal to the surface and

the radius of absolute curvature of the string at the point

considered,
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= --coseo,

where p is the length of the radius of curvature of the string.

Hence we have y
E = -cos (DmNf (2)

m being put for her, the mass per unit length of the string at

the point considered.

If we multiplv the above equations by -T- > ? i and > re-
ds ds ds

spectively, and add, we obtain

where S=
X-j-

+
Y-j-+Z-j-

= the component of the applied

force along the tangent to the string.

The integral of this equation, when the applied forces are

conservative, gives, as in Art. 211,

In the particular case in which a uniform inextensible string
rests on a smooth surface under the influence of gravity, this

equation gives T- T mg(yyQ),

mg being the weight of a unit length of the string, and the

axis of y a vertical line. From this it follows that at all points
of the string which are in the same horizontal plane the tension

of the string is the same ; hence the free extremities lie in the

same horizontal plane.

The curve of equilibrium of the string on the surface is

obtained by eliminating T and E from equations (l). If the

equation of the surface is u = 0, the result of eliminating

dx du
5

ds dx

dT A-P-
-^- and K is

-, -

ds dy

dz du

= 0,

in which the value of T must be substituted from (3).

The general results arrived at in Art. 203 can be easily verified

here.
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214.] String on a Rough Surface. If a string, acted on

by no forces, is stretched over a rough surface it need not, as

in the case of a smooth surface, assume the form of a geodesic or

shortest line. One simple case in which it will be a geodesic is

that in which it is about to slip on the surface at every point in

the direction of the tangent to the string at this point.

Consider the equilibrium of an element, PQ, of the string,

whose length is ds> and suppose that it is about to slip in the

direction QP. The element

is acted upon by three forces

namely, a tension T, at P,

a tension T+dT, at Q, and

the total resistance of the

rough surface, which must

pass through the intersection

IT,

Rds

Fig. 223.

of the tangents at P and Q.

It is evident that we may
consider this total resistance

as acting at P, ultimately, since it is of the form R^ds, Rl being

a finite quantity, and if it be assumed to act at
"

any point

between P and Q, its components in any directions will differ

from those of the total resistance supposed to act at P by in-

finitesimals of the order of (ds)
2

. Resolve the total resistance

at P into a normal force, Rds, and a force in the tangent plane,

pRds, fj, being the coefficient of friction between the string and

the surface.

Now the component pRds must act along the tangent at P,

since (see p. 57) slipping is about to take place along this

tangent. Hence the three forces T, T+dT, and y.Rds being all

in the osculating plane of the curve at P, the remaining force,

Rds, must also lie in this plane; that is, the osculating plane at

every point of the curve contains the normal to the surface.

Hence the string assumes the form of a geodesic.

Denoting the angle between the tangents at P and Q by dO,

we have, by resolving along the tangent at P,

dT+fj.Rds=0. (1)

Again, resolving along the normal at P,

TdO-Rds = 0. (2)

From (1) and (2) we have
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rJT

^+^0 = 0, /. T=Ce~>*
9

C being the constant of integration, and the sum of the angles

of contingence, or angles between successive tangents to the

string from any chosen point, A, to the point, P. Let T^ be the

tension at A. Then T = T when =
;
therefore

T=T eri*. (3)

Hence, as the angle through which the string turns increases in

arithmetical, the tension diminishes in geometrical, progression.

The general investigation of the equilibrium of a string on a

rough surface under the action of given forces is a problem of

much difficulty, and in the sequel we shall confine our attention

to the case in which the string assumes the form of a plane
curve on the surface.

When the string lies in one plane, 0, the sum of the angles of

contingence is simply the angle between the tangents at A and P.

Suppose that (the weight of the string being neglected) two

weights, P and Q, are suspended from the extremities of a string

which passes over a fixed rough cylinder whose axis is hori-

zontal, the string lying in a plane perpendicular to this axis
;

it

is required to find the relation between P and Q when the

equilibrium is limiting.

Let A
(fig. 223) be the point at which the portion of the

string next P leaves the cylinder, and B the point at which the

portion next Q leaves it.

Then from (3) by putting T = P and =
TT, we have

Q=Pe~^, (4)

when P is about to overcome Q. If P is on the point of

ascending, the sign of
//,

in this equation is to be changed.
If the string makes a complete revolution and a half round

the cylinder, the value of 6 corresponding to Q is 37i, and we

have in this case Q =Pe"^ir
. The factor e~f*e diminishes very

rapidly as the angle increases, and thus we see how it is that

a small force applied at one extremity of a rope coiled several

times round a fixed rough cylinder can overcome a large force

applied at the other extremity a practical example of which

occurs when the small motion of a ship in harbour is stopped by
a small force applied at the extremity of a rope coiled round a

p
fixed post. For example, if /*

= i, *air = 4 . 8, and Q =

A a
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215.] Work done against Friction for a given Arc of

Slipping. If the string slips through a space bs in the direction

BA, the work done against the friction, pRds, acting on any
element is bs . ^Rds, and the work done against the friction

acting all over the string is bs .f^Rds.
But from (1) of last Article, fyRds = -fdT = T -Tlt

Hence the work done against the friction is

1 being the sum of the angles of contingence between A and B,

or the angle between the tangents at these points if the curve of

the string is a plane curve.

EXAMPLES.

1. A uniform chain of length I hangs over two fixed points, which
are in a horizontal line

;
from its middle point is suspended by one

end another chain of equal thickness and length I'. Supposing each

of the two tangents of the former chain at its middle point to make
an angle with the vertical, to find the distance between the two
fixed points, and to show that can never exceed a certain value.

("Walton's Mechanical Problems, p. 123.)
Let the fixed points be P and Q (fig. 224), EQCPM the string

hanging over them, CD the string of length I' suspended from 6', the

middle point of the first string, and 2d the distance PQ.
Then (Art. 206) the arcs PC and QC belong to the distinct cate-

naries. Suppose the semi-catenary to which PC belongs to be com-

pleted, and let A be its lowest point. Then if the portion AC were

supplied to the string CPM, and the point A fixed, the string CD
and the portion CQR might both be removed, and we should have
the string APM hanging in equilibrium. Hence (Con., Art. 206) PM
terminates on the horizontal axis of this catenary. The same remarks

apply to the portion CQR, and since the two portions CPM and CQR
are exactly similar, it follows RM is the

*\Q
p

y horizontal axis of the catenary AP.
We shall next prove that

Let T be the common tension of the

portions CP and CQ at C. Then re-

solving vertically for the equilibrium of

the point C,

But Tmg. CN (Art. 206), N being
the point in which CD meets the axis.

Hence 2 CN cos =
l'\ but it is evident

from figure 220 that CN cos 6 = AC; therefore A C = J I'.



215.] EXAMPLES. 355

Again, e being the parameter of the catenary, we have c = AG
tan

;
therefore c _.

j f tan 0m (y
Also, denoting $.# by x, being the origin of the catenary, we

have x x

or - = -tane?' e
2 4

?eow
a*

t ,
.'. 2 cot = e v 4 i'

Squaring both sides of this equation, adding 4 to each side, and

taking the square root, we have

which, by addition to the last equation, gives easily

I'

x = - tan B log cot - (2)
J 4

c
x+d x+d

Again, AP = -(e e c
),

, PM" C
f

~
\

2

therefore by addition we have, since CP+PM = \l,

l+ l
f

_
2

Substituting in this equation the values of c and x given by (1) and

(2) ;
and taking logarithms, we have

r i if j. i /i

>' (3)

which is the required distance between P and Q.
Since d cannot be negative, the expression whose logarithm is

taken in (3) must be > 1 . Hence (I+ T) tan \Q>1' tan 6
;
and substi-

tuting for tan0 in terms of tan \0, we find the limiting value of Q

given by the equation Q I I'

2. A uniform chain hangs over two smooth pegs in the same hori-

zontal line, and at a given distance apart; find the length of the chain

when the pressure on each peg is a minimum.
Let P and Q be the pegs, 2 a the distance between them, 21 the

length of the chain, the angle which the tangent to the chain at P
makes with the vertical, PM the portion which hangs over the peg P,
and C the lowest point of the chain.

A a 2,
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Then CP+PM = ee7 (by adding the values of CP and PM), or

, ':'. |
= cei .

-
. (1)

an equation which determines Z in terms of c.

Again, CP = c cot 0, and PM = c cosec 6, therefore by addition

ft
a

tan - =
""

(2)

Now, the pressure on the peg P is the resultant of two equal

tensions, one along PM and the other along the tangent to the chain

at P. Hence, if R denote the pressure, and T the tension at P,

$

2*

fL _fL

Substituting for T the value \rngc (e
c +e c

)>
and for cos- its

value obtained from (2), we have
2a 1

7 IT)

Now, c must be determined so that R is least ;
hence -3

= 0, and

we obtain easily c

for the determination of c in terms of a
; Z is then known from (1).

3. A uniform inextensible string, acted on by gravity and by two
terminal tensions, rests in contact with a smooth curve in a vertical

plane j find the form of this curve so that the pressure which it exerts

on the string may at every point be inversely proportional to the

radius of curvature.

Let vertical and horizontal lines in the plane of the curve be taken
as axes of y and x, respectively, and let the concavity of the curve be

upwards.
Then R being the pressure on a unit of length at any point, and T

the tension at this point, we have, by resolving along the tangent,

dT=mgdy,
mg being the weight of a unit of length of the string. Hence

T=T.+mg(y-yQ\ (1)

T and yQ belonging to one end of the string.

Again, resolving normally,

(dO being the angle between two consecutive tangents), or

-, = A (2)
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k
Let R = -ik being a constant. Then from (1) and (2)

p ds

y\ dx=
Ts> <3 >

denoting the numerator of the left-hand side of the previous equation

by >9 (y~^\ f r simplicity. To integrate (3), put

dx 1
'

(1+p
2
) , dy= = 5 and p = 5-=$-- where = -

ds */l+p* <W dx
P
dy

The equation then becomes pdp dy

jit being the constant introduced by integration.

From this equation we have

which gives by integration

where b is an arbitrary constant. This equation can easily be put
into the form i i

Now, any expression of the form Ae*
x+ Be ^ can be put into the

form C{6
|t(** B) +~M(*+B>

};

for, identifying the two expressions, we have

Hence we have

where e^
a=

6/x.

This is, of course, the equation of a common catenary whose para-

meter is > and whose origin is the point (A, a).

4. A uniform inextensible string, acted on by two terminal

tensions, and any system of conservative forces in one plane, rests in

.contact with a smooth curve in this plane; if at every point the
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pressure against the curve is inversely proportional to the radius of

curvature, then, without any change in the forces, the tension at one

extremity can be so varied that the constraining curve may be re-

moved, and the string will rest in free equilibrium.

For, if V denote the potential of the applied forces at any point, we
have (Art. 211) T = T -

( F F
), (1)

Again, if N denote the normal component of the applied forces at

any point measured towards the convex side of the curve, and JS the

pressure per unit of length at this point,

(2)

k
Suppose that E = Then, from (1) and (2) we have

P

Let us now change the terminal tension T into T
Q Jc, and in-

vestigate the pressure of the curve at the point considered above.

Denoting the new pressure by R', and the new tension by T
f

t
there

being no change in any of the applied forces, we have

T'

T 1? ( V V \

from which R = * (y-^ -N
;

P
but the right-hand side of this equation is zero by (3). Hence there

is no pressure at any point, and the curve is one of free equilibrium.
It is obvious that the last example is a particular case of this.

5, Find the law of variation of the mass per unit of length at each

point of a string acted on by gravity in order that it may hang in the

form of a semicircle whose diameter is horizontal.

Let AB(=2a) be the horizontal diameter, the centre of the

semicircle, P any point on the curve, and the LAOP = 0. Then

taking horizontal and vertical lines through as axes of x and y,

respectively, we have

. n dy dO 1 dx yx = 00000, y sm0, -/- = cot0, - = -- , = sm0 = -
dx dx y ds a

dfy_ 1 de _ a*-~"-'~'
Also, denoting KCT in equation (3) of Art. 205 by w, we have

T a

9 y
which proves that the mass per unit length at any point varies

inversely as the square of the depth of the point below the horizontal
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6. A heavy chain of variable density, suspended from two fixed

points, hangs in the form of a curve whose intrinsic equation is

s =f(0), the lowest point being origin ; prove that the density at any
point will vary inversely as cos2 6 ./' (0). (Wolstenholme's Book of
Mathematical Problems.}
We have here

\MU - \MtU .. i tl/0 // / /1\

r
1 = tan 0, -=- = cos 0, and - - = f (0).

a# as c/0

d 2
^ 1 c?0 1 c?0 c?s 1

Jience ~~

dx* cos2 dx cos2 <& ^x cos
3 6f (0)

'

and equation (3) of Art. 205 gives

m =

7. A string is kept in equilibrium in the form of a closed curve by
the action of a repulsive force tending from a fixed point, and the

density at each point is proportional to the tension
; prove that the

repulsive force at any point is inversely proportional to the chord of

curvature through the centre of force. (Wolstenholme, ibid.) The

equations are (Art. 209), Tp = h, (1)

dT = -mFdr, (2)

Now, m == kv, and by hypothesis k or T, and a- is constant
;
there-

fore we have m = pT, ^ being a constant. Hence from (2)

.. (3)

But from (1), dT = --
-dp, therefore = ---> and we have

from (3) _ 1 dp_ 2
W -t7 * _ J

p dr y
where y is the chord of curvature passing through the pole (see
Williamson's Diff. Cat, p. 293, third ed.).

As a particular case, we may notice that the vertical chord of

curvature at any point of the catenary of uniform strength (under

gravity) is constant, as the student can easily prove otherwise.

8. A heavy inextensible string rests, in limiting equilibrium, on a

rough curve in a vertical plane ;
find the tension at any point.

Let fig. 223 represent the string lying on the curve
;

let a hori-

zontal line above the curve AB be the axis of x, and let the axis of

y be drawn vertically downwards.

Then, if 6 be the angle made by the tangent at any point, P, with

the axis of x, mg the weight of a unit length of the string at P, and

x, y the co-ordinates of P, we get by a tangential resolution (slipping

being on the point of taking place from P to Q),

and by a normal resolution

TdQ Rds + mgdx = 0.
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Eliminating R, we obtain

AT . dx d.

= mg (fj,
cos sin 0) p, (l)

where p is the radius of curvature at P.

This is a linear differential equation of the first order, the solution

of which is (Boole's Differential Equations, p. 39),

T = e*e {C+fmgp (/* cos 0-sin 0)e~*
e
d0}, (2)

C being a constant.

When the curve of constraint is given, p is known in terms of 0,

and the integration may then be performed.
For example, let the string rest on a circle of radius a, one ex-

tremity being at the highest point, and free from tension.

It will be easily found that

f(\JL cos 0-sin 0) e-^dB = --
(2jx sin + (1 -ft

2
)
cos 0},

therefore T= <7^+ L{ 2// Sin0 + (I-fx
2

)cos 0}.

1 jn
2

At the highest point = and T=
;
therefore C = mga 1+ a

*

Hence T=
If the length of the string is that of a quadrant, we have T =

edi

2ft

when =- j and then /u is determined from the equation

9. A, B, C are three unequally rough pegs in a vertical plane ; P
is the greatest weight that can be supported by a weight W when
both are connected by a string (whose weight is neglected) passing
over A, B, and C; Q is the greatest weight that W can support when
the string passes over A and B

; and B is the greatest that W can

support when the string passes over B and C. Find the coefficients

of friction for the pegs.

Let the inclinations of AB and EG to the vertical (measured in the

same sense) be a and /3, respectively; /z, JJL', //' the coefficients of

friction of A, B, G. Then, if the string passes over all the pulleys,
and W hangs from A, it follows from equation (3) of Art. 214, that

the tension, T, in the portion AB is We*a
; and, by the same equation,

the tension, T, in EG is TeM-4
; and, finally, P = TW<?-n. Hence

and the equations are obviously
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1 Of?
from which jm, ju', //' can be found. The value of // is- log--m

10. A heavy uniform chain rests in limiting equilibrium on a rough

cycloidal arc, whose axis is vertical and vertex upwards, one extremity

being at the vertex and the other at the cusp ; prove that

flTT c%

^~ O

(Wolstenholme's Book of Math. Prob.)

11. A uniform inextensible string whose length is I hangs in limit-

ing equilibrium over a fixed rough cylinder of radius a whose axis is

horizontal
;
find the lengths of the portions which hang vertically.

Am.
_^n + 2

? and a value obtained by changing the

sign of /n in this expression.

12. Two equal weights are attached each to the extremity of a

string which hangs over a rough cylinder whose axis is horizontal;
find how much either weight must be increased in order that it may
begin to descend, the weight of the string being neglected.

Ans. The increase of weight = P (e^ 1), where P is common
value of the suspended weights.

13. A string, whose weight is neglected, passes over any number of

equally rough fixed circular pulleys in a vertical plane ;
show that the

ratio of two weights, suspended from the extremities of the string,

which just sustain each other, is the same as if only one pulley were

used.

14. A heavy uniform beam is raoveable in a vertical plane round a

smooth hinge at one extremity, and has the other extremity attached

to a cord which passes over a small rough peg placed vertically over

the hinge, and sustains a given weight ;
find the position of limiting

equilibrium, and the tension of the cord.

Ans. If W weight of beam, P = suspended weight, T the

tension, 2 a = length of beam, 2c = distance of peg from hinge,

6 = inclination of beam to vertical, and $ = inclination of cord to

vertical, the position in which the beam is about to descend is given

by the equations
= a sin (0 </>),
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T = Pe(-
</>),

Wa sin B 2 Tc sin 0.

15. Prove that the area of the normal section at any point in the

catenary of uniform strength is proportional to the radius of curvature.

16. Find the law of variation of the mass per unit of length in

order that a string may hang, under the action of gravity, in a

parabola.

Ans. The mass at any point is proportional to the horizontal

projection of the unit length at the point. (Compare Art. 208.)

17. If a string hangs, under the action of gravity, in the form of an

ellipse whose axis major is horizontal, prove that the mass per unit of

r b3

length at any point is - , , 2
> y being the distance of the point from

the axis major, and If the length of the semi-conjugate diameter cor-

responding to the point.

18. One extremity of a uniform string is attached to a fixed point,
and the string rests partly on a smooth inclined plane ; prove that the

horizontal axis of the catenary determined by the portion which is not

in contact with the plane is the horizontal line drawn through the

extremity which rests on the plane.

19. If, in the last example, i is the inclination of the plane, a the

inclination of the tangent at the fixed extremity, and I the whole

length of the string, prove that the length of the portion on the plane
is Zcosa

(Walton, p. 1 1 9.)
cos * cos

(
a- *)

'

20. Given two smooth pegs in a horizontal line, find the least length
of a uniform heavy string which will rest over them.

Ans. If 2 a is the distance between the pegs, and e the Napierian
base, the least length is ae.

21. A uniform inextensible string assumes the form of a circle

under the influenca of a repulsive force emanating from a point on its

circumference ;
find the law of force.

Ans. It varies inversely as the cube of the distance,

22. A uniform inextensible string is in equilibrium under the

action of a central repulsive force ; prove that at each point of the

string this force oc where p is the perpendicular from the centre

of force on the tangent, and y the chord of curvature passing through
the centre of force.

23. If the curve of equilibrium is an ellipse whose focus is the

centre of force, the force at any point oc -T? where >' is the semi-

conjugate diameter corresponding to the point, and r the focal distance

of the point;
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24. If the string assume the form of an ellipse under the influence

of a repulsive force emanating from the centre, find the law of force.

Ans. The force is directly proportional to the distance, and

inversely proportional to the conjugate diameter.

25. If an inextensible string can assume the same plane figure of

equilibrium under the separate action of any number of forces, it can

assume this figure under their combined action.

(To prove this, suppose the string under the combined action of the

forces to be constrained to a smooth curve of the given figure, and it

will follow that the pressure at every point of this curve varies

inversely as the radius of curvature. The theorem follows, then, from

example 4.)

26. A uniform inextensible string rests against the inner side of a

smooth elliptic wire, and is repelled from the foci and the centre by

the following forces : ~r, and -777 emanating from the foci, and -77-

from the centre, the distances of a point on the string from the foci

being r and /, respectively, its distance from the centre being of, and
the semi-conjugate diameter corresponding to the point being &'. Find
the pressure on the wire at any point.

Ans. If T
Q

is the tension of the string at the extremity of the

minor axis, R = pressure per unit length = -
(The student will easily see from examples 4 and 25, that if the

curve of constraint of a string is a possible curve of free equilibrium
under the action of the given forces, the pressure will, at every point, be
C

> where G is a constant. The result, in this example might, there-

fore, be at once obtained by this principle.

By direct calculation, however, the result is obtained with little

trouble. The equations of equilibrium are

ro

and the first gives, by integration,

--f*"6' = const.).r

The student will do well to apply the principle explained here to

he kinetical examples in Walton, pp. 295, and 259 second edition.
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SECTION II.

Flexible Extensible Strings.

216.] Experimental Law of Extension. The strings which

we now proceed to consider are extensible, i. e. such as have their

lengths increased when they are in a state of tension. For such

strings we shall still assume the property of complete flexibility

as defined in Art. 200.

The law of extension which we proceed to enunciate applies

not only to flexible strings but also to straight bars of iron,

steel, &c.

Let 1 denote the length of any string or straight bar of

uniform section when it is not subject to the action of any
external force. This is called the natural length of the string or

bar. Let a be the area of the normal section, F the magnitude
of the force applied at one extremity in the direction

AB, of the string or bar. Then supposing the extremity
A to be fixed, the force F will produce an extension, BC,
of the body. Denote this extension by x. Then ex-

perience proves thatybr small values of the ratio
j-

in the

case of solid bars there is for the same bar a constant

ratio between this fraction and the quantity ; and

there is the same constancy of ratio in the case of

F
strings, but for some of these latter bodies the value ofj

lg ' 225 '

may be very much greater than for bars.

We have, then, F - x , .

=jfc
7"

J

E being a constant quantity which is called the modulus of

elasticity of the matter of which the string or bar is formed.

Since
j-

is a number, it follows that E is aforce per unit ofsection.

This force is also known as Young'*s modulus, and it is evidently a

measure of the longitudinal rigidity of the substance.

If the law expressed by equation (l) be supposed to hold for

an extension x equal to 1
,
and if the force applied to the body
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p
to produce this extension be called P, we have E =

;
and if or

is a section of unit area, U = P. The modulus of elasticity of

any substance might then be defined as that force which, if

applied at the extremity of a bar of the material of unit section,

would double its length this force being fictitious in the case of

bars or strings for which (1) holds only within extremely narrow

limits.

For bars of iron and steel this equation is true only within

narrow limits called the limits of elasticity while for flexible

strings of such substances as India-rubber its range is much
wider. If the limiting amount of extension has not been

surpassed, the body will, after a time varying with the sub-

stance, retui :i to its original state when the stretching force F
is removed. The law expressed by equation (l) is also true

within narrow limits in the case of a straight bar which is

compressed without bending.
An idea of the magnitude of the modulus of elasticity of a

solid body may be formed from the fact that in the case of iron,

the unit of force being a kilogramme and the unit of area a square

centimetre, E is about 2,000,000. For what are commonly
called elastic strings, E is of course very much smaller than for

bars of iron or steel.

In the case of an elastic string it is usual to put equation (1)

into another form. If I is the length which the string assumes

under a tension T, we have x = I /
,
and

or, as it is usually written,

+ -, (2)

the quantity A being called the modulus of elasticity of the

string.

This quantity is obviously the force which must be applied to

the string to double its length.
The law expressed by (l) or (2) is known as Hooke's Law, from

the name of its discoverer, and is sometimes expressed in the
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form the tension of any elastic string is proportional to its exten-

sion beyond its natural length.

217.] Work done in slowly extending a String or Bar.

If at each instant during the extension of a string or bar the

stretching force applied at the extremity is exactly equal to that

which would keep the body in its state of deformation at this

instant, there is continuous equilibrium between the (gradually

increasing) applied force and the elastic force of the body, and

therefore the total amount of work done by the applied force is

equal to the work done against the internal force.

[The more advanced student will see that this would not be

true if the extension were suddenly produced, so that oscillations

would take place in the body.]
Now if x is the extension of the body at any instant, the cor-

fio-

responding force is
-j- x, and the work done against this force in

. E(T
a further extension dx is -j- xdx. Let a be the final extension ;

4)

then the total work done is

/Jc\ or

the extension being, of course, confined within the limits of

elasticity. Now the applied force which is required to keep the

body in its final state of extension is, by (l) of last Article,

j Hence if the force applied in the final state be denoted
^o

by P, the whole amount of work done is

or half the work which would be done by the final force of

extension in moving its point of application through a space

equal to the final extension.

218.] Equations of Equilibrium of an Extensible String.

Suppose the string to have assumed its figure of equilibrium
under the action of given forces. At any point in the string let

ds be the stretched length of an element whose length before the

action of the forces was dsQ ;
and at this point let m be the mass

of a unit length of density equal to that at the point, the mass

per unit length at the same point in the natural state of the

string being mQ .
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Then since the quantity of matter in the element is unaltered

by stretching,
mds = m

Q ds . (l)
Also by Hooke's law,

+ ) dr (2)

But, the string having assumed its form of equilibrium, we have,

as in the inextensible string,

(a)

Also ds = -/<fo
2 +^2 + d

r

3a
; (4)

and since the nature of the string in its original state is given,

we may assume m to be a given function of the position of the

element dsQ in the string ;
or

mo=f(*o)> (5)

where s is the length of the arc of the original string measured

from some fixed point up to the element dsQ .

Now the general problem of extensible strings may be stated

as follows : an extensible string, the law of variation of whose

density in its natural state is given, is, under given circumstances,

submitted to the action of given forces ; find theform which it will

assume.

To solve this problem it is necessary to find two equations
between a?, y, z, the co-ordinates of any point in the stretched

string ;
and as the equations just given contain, in addition to

these co-ordinates, the quantities m, mQJ s, s
,
and T, these latter

must be eliminated. But from the seven equations above, these

five quantities may theoretically be eliminated, by differentiation

or otherwise, and there will result two independent equations,

which are the equations necessary for the determination of the

curve of equilibrium.
The problem in its general form is one of great difficulty, and

one which it would be practically impossible to solve. We shall,

therefore, in the sequel confine our attention to the case in which
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the string in its natural state is such that m , the mass per unit

length, is constant at all points, and to the case in which the

acting forces are constant.

Let us first consider m constant.

By multiplying the equations (3) by ^-> -y->
and -j- re-

spectively, and adding, we have

+s) = 05 (6)
ds ds j

-2and from (1) and (2) we have m = -2.
. Hence (6) becomes

T
(l + ) dT+m (Xfa+ Ydy+ Zdz) = 0. (7)

Hence by integration,

\ yr 2 /*

-
( 1 + -

) + m I (Xdx+ I dy4 Zdz) const.
2 ^ A. ' J

Denote the integral in this equation by 7, the potential of the

acting forces, and let the constant of integration be A. Then

we have

o,by{2), ^=^0,
from which the relation between s and s is found, and hence the

extension of the string.

Equation (8) is the analogue of (3) of Art. 230. If V is the

potential at a point of the string at which the tension is J",

this equation gives
' +^) = r- r-

(
10)

The equations of the curve of equilibrium are obtained by sub-

stituting the value of T given by (8) in any two of the equations
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which are deduced from the equations (3) by substituting for m
in terms of mQ .

Secondly, suppose that the applied forces, X, J", Z, are constant.

Then the first of equations (3) gives

T
dx _ ^_jyW(^05 (

H
)

A being the constant of integration. The remaining two of

these equations give

T^r = B-YfmQ dsQ ,
T~ = C-ZfmQ

ds . (12)
as ds

Hence, by squaring and adding,
/772 ( i ~\T f,,,^ 3 a \2 i / 7? V /'/vn il

'

\2 i //"* V r/wt /Jo ^2 /I Q\
j. :=: ( // ^i. / winds i -7- ( D ^

J. / Wlc\ CvSn I T I v/ ^ V "2n O/ V /

This equation gives ^ the tension at any point in the

stretched string, in terms of the length of the arc of the un-

stretched string corresponding to this point ; or, in other words,

r =<#,(*). (14)

Hence, from (2) we have

which gives the relation between the stretched and unstretched

lengths of any arc.

The equations of the curve are obtained from (11) and (12) by

substituting for ds in terms of dsQ . Thus we have

Integrating these equations and eliminating s between them in

pairs, we obtain the two equations of the curve.

As an example, let it be proposed to investigate the form of an

elastic string suspended from two fixed points and acted on by gravity,
the string being uniform in its natural state. Taking axes as in

Art. 206, we have

Bb
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UiS wo

rf &y
Hence T = r = m gc, suppose; and T

-^
= B+mQ gs . But

if s be measured from the lowest point,^ = and s = at the

same time. Hence 5 = 0, and we have

dx

from which T =

Hence, putting X = w <7a, we have

CS , . v

(15)

The relation between x and y is obtained by eliminating s from
these equations.
An approximate relation between them may be obtained when the

string is only slightly extensible, i. e. when A. (or a) is very great.
In this case (16) gives

V =
fe/'-

2)l- + (17)

to the second order of the small quantity

Now, writing (15) and (16) in the forms

we know that 77
= ~(e

c +e c
).

s
2

c _o _ fo

Hence 2/-^-=o(eC * e a + e c -e a
)
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fo _o j

by expanding e a and e as far as and denoting by u and v the

c - -- c - _-
quantities (e + e c

)
and - (e

c e c
)

Substituting in this equation the value of s given by (17) in
which it is evident that the term of the second order may be rejected
if we wish to obtain y to this order only in terms of x we obtain
an equation of the form p Q

y = u+^+ *' <18 >

in which P and Q are both functions of x and y.

Now assume v = w -J f-
-

} where A. and a are functions of x
a a*

alone, and substitute this value of y in every term of (18). This will

give us, with a little trouble,

1 1

,

Hence, finally y = u-
-^
+^ ,

to the second order of the small quantity

219.] Extensible String on Smooth Surface. It is clear

that the equations (l) of Art. 213 are applicable to an exten-

sible string-, as are also the results arrived at in that Article

without integration. The result arrived at by integration,

which expresses the tension in terms of the potential, is to be

replaced by equation (10) of Art. 218; and from this equation
it follows that if an extensible string, uniform in its natural

state, rest on any smooth surface under the action of gravity,
the free extremities are in the same horizontal plane.

EXAMPLES.

1. An elastic string, uniform in its natural state, is suspended from
one extremity, which is fixed, and has a given weight attached to the

other
;

find the extension of the string, taking its own weight into

account.

Let W be the weight of the string, P the suspended weight, A the

modulus of elasticity, and m the mass of a unit length of the un-

stretched string. Then the equation of equilibrium is

If Z is the natural length of the string, m^glg = W j therefore this

equation gives by integration

B b 2
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W
T+ s = const,

^o

When 8
9
= 0, T is evidently W+P ; therefore

T
Again, since ds (1 +-T-) ds^, we have

A.

TF

no constant being added because s = when s = 0.

If s = Z
, and is the whole length of the stretched string, we have

'

2. A heavy uniform elastic ring is placed round a smooth vertical

cone ; find how far it will descend.

Let W be the weight of the ring, 2ira its natural length, A its

modulus of elasticity, y the distance of the plane of the ring from the

vertex of the cone in the position of equilibrium, and I the stretched

length in this position. Then if the ring be shoved down through an

indefinitely small vertical distance, by, the equation of work is

T being the tension of the ring. If a is the semi-vertical angle of

the cone, I = 27ty tan a
; hence bl = 2ir tan a . by, and

But, by Hooke's Law,
T
--)A
W

cot a)
i 7TA

3. An elastic string, uniform in its original state, is placed on any
smooth curve and acted on by given forces

;
find its extension.

The tension at any point is determined by the equation

T

or A (1 + )

2

+ 2m f(Xdx+ 7% + &)= const. (1)

Let m f(Xdx+Ydy + Zdz) be denoted by V. Now, take any

point, 0, in the string as the point from which s and s are measured,

and let A be the value of 7 at a free extremity of the string. If one
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extremity is fixed, it will be well to measure s and s from it. Putting
T ds

-T=Q, V=A, and also 1+ = ,

(1) gives (*)' = i + _r). (
2
)

Suppose the curve of constraint to be given by the three equations

*=/iW y=fM *=/8 W-
Then (2) gives fo___

=^-F)~
*"

or, by integration, ^(s, A) = S
Q + $(O, A ), (3)

s and 5 being both measured from 0. Let Z and ?
ft
be the stretched

and original lengths of the portion between and the free extremity
considered. Then we have

4>(1,A) = l + <l>(o9 A). (4)

But A is evidently a function of the co-ordinates of the extremity, and
these co-ordinates are, by supposition, f^l), /2 (Z), f3 (l)',

hence A is a

known function of I, and by substituting its value in (4) we deduce
the value of I.

4. One extremity of an elastic string, originally uniform, is fixed at

the highest point of a smooth cycloid in a vertical plane, the string

lying along the convex side of the curve ;
find the extension produced

by gravity.
If the tangent at the highest point is taken as axis of as, and if

-- is denoted by c, we find easily, for any curve of constraint,
g

as ds
Q

Vc+hy VG
h being the ordinate of the free extremity.

In the cycloid s
2 = Say. Substituting this value of y in the

equation, and integrating, we have

If I be the length from the fixed to the free extremity, and 1 the

natural length of the string,
VA v

Also P = Bah.

These equations combined give

1 = 2 </2ac tan ( /
-

)

5. A heavy particle is attached to one end of an elastic string

whose unstretched length is indefinitely small
;
the particle rests on a
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smooth curve in a vertical plane, and the fixed end of the string is

attached to a point in this curve ;
find the nature of the curve so that

the particle may rest in all positions.

Ans. A cycloid.

6. A heavy elastic string is laid upon a smooth double inclined

plane in such a manner as to remain at rest; find how much the

string is stretched. (Walton, p. 140.)

Ans. If W is the weight, A the modulus of elasticity, and c the

natural length of the string, and a, of the inclinations of the planes to

the horizon, the extension is

W sin a sin a'

2A sin a + sin a'

[For the portion on the plane a let s and s be measured from the

free extremity. Then

W sin a T W sin a

Hence if I is the length of the portion on the plane a, we have

A similar equation holds for the portion on the plane a'. Now the

extension = l+ l' 7 Z'
;
and equating the tensions at the common

summit of the planes, we have 1 sin a = l'
Q
sin a',

-\

/'&C.J
sin a + sin a

7. If the cone in example 2 is replaced by a smooth paraboloid of

revolution, find how far the ring will descend. [By Virtual Work.]

Ans. y =-=- > where 4m = latus rectum of generating

parabola. 4TrmA.

8. An elastic string, uniform in its original state, rests on a rough
inclined plane with its upper extremity fixed

; prove that its extension

will lie between the limits p gjn (t
'

+ 6 )

2c cos e

where i = inclination of plane, e = angle of friction, I = natural

length of string, and c = length of a portion of the string in its

natural state whose weight is the modulus of elasticity. ("Wolsten-
holme's Math. Prob.)

9. A weight P just supports another weight Q by means of a fine

elastic string passing over a rough circular cylinder whose axis is

horizontal
;
A is the modulus of elasticity, and a the radius of the

cylinder ; prove that the extension of the part of the string in contact

with the cylinder is r\ x

-
log^r '

(Wolstenholme, ibid.)
fJ,
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10. Two uniform ladders, freely jointed at a common extremity,
rest in a vertical plane with their other extremities on a rough
horizontal plane, these extremities being connected by an elastic

rope ;
find the greatest angle between them consistent with equi-

librium.

Ans. If a is the length of each ladder, 2 a sin a the natural

length of the rope, 2 6 the greatest angle between the ladders, and A
the modulus of elasticity of the rope,

A (sin 6 sin a)
= TFsin a (p + \ tan 6).

11. A heavy uniform elastic ring is placed horizontally round a

rough right cone whose axis is vertical and vertex upwards, the

stretched ring being uniform; find its extreme positions of equi-
librium.

W
Ans. y = a [I + cot (a+ e)} ,

with notation of Ex. 2.
2 TTA

i

SECTION III.

The Method of Virtual (or Potential) Work

220.] Distinction between the Symbols d and 8. In the

sequel we shall use the symbol d to denote the increment which

any function receives when we pass from a given point P in a

body, which occupies a given position, to any indefinitely near

point Q in the body^ the position of the body being invariable ;

while by the symbol 8 we shall denote the increment which the

function receives as we pass from the point P when the body

occupies a given position to the same point P in the body when
it is displaced, or imagined to be displaced, from this position

to any one indefinitely close to it. This use of the symbol 8

has been already exemplified in the Chapters on Virtual Work.

221.] Commutative Property of d and 8. If V denote any
function of the co-ordinates of a point P in a body, we propose
to show that

This will be rendered plain by a

very simple illustration.

Let P and Q (fig. 226) be two

very close points in a body occu-

pying a given position, and let P'

and Q' be the positions of these

points when the body receives any Fig. 226.

slight displacement. Let Ox be

the axis of #, and let the co-ordinates of P and Q be Or and
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On, those of P* and Q' being O/ and On', measured along

Ox.

Then if x is the co-ordinate of P, dx = rn, and bx = rr.

Also 8
(dos)

= value of ^ in the new position value of dx in

old position = rn rn ;
and d(bx) = value of 8 a? for Q value

of bx for P = #' rr'. But obviously /#' rn = ww' rr'\

therefore b(dx) = ^(8#). From this it follows that if Fis any
function of x, 8 (^F) = d(b7). For, by the elementary princi-

ples of the Differential Calculus 8 (uv)
= ubv +vbu. Now,

d7=
d
^dx,dx

and 8r=-j-dx

The two expressions are^ therefore, identical ; and the same

proof may be applied to show their identity when V is any
function of the co-ordinates.

Again, since by the Differential Calculus

it follows that b/7dx =/8 ( Vdx\

Suppose that any integration in which the element of arc PQ
(fig. 226) is taken as the constant infinitesimal, ds, is performed
over a curve, and let the integral be fVds. Then the change in

the value of this integral when it is found for the same curve in

a displaced position is bfFds. Now the infinitesimal in the new

position of the curve is P'Q', which is equal to PQ; therefore

8 (ds)
= 0,

and IfYds = /8 ( Yds) =/ (8 7) ds,

that is, the change in the value of the integral of a function = the

integral of the change in the function, both integrations being
performed over the same curve, the arc of which is taken as

independent variable.

The same remains true if the integration fVds is performed
over a surface or through a solid, and ds denotes the element of
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superficial area or of volume. Again, since by Differential

Calculus, b- = -
9 > it follows that if ds is constant,

V V2

dx bdiK dbffi

~J
^~

7
~~

7 J

as ds ds

dx dx
7t>

$ d-r- 79 .

, a* as ds d* osc
and = g__ = __

ds* ds ds

and generally 8 -= = -=-V * /Vo** //o>*

EXAMPLE.

Every element of a solid body is multiplied by the product of its

two co-ordinates x and y, and the sum of all such products is taken.

If the body receives a small displacement of rotation round the axis of

z, find the variation of this sum.
The element of mass at any point x, y, z being dm, the sum in

question isfxydm. Now bfxydm = fb (xy) . dm =f(xby+ ybx) dm.
But bx = ybd, by = x8B, if the angular rotation of the body is 80.

Hence the variation = b6f(x
2

y'
i

)dm.

222.] Method of Work Applied to a String. First suppose

the string to be perfectly inextensible. Now if the particles of a

system are dmlt dm2 , ..., and if they have to fulfil conditions

denoted by L^ 0, L2
= 0, . . .

,
the equation of Art. 186 becomes

In the present case the particles are portions dslt ds2 ... of a

string at points (x-^y^ %), (#2,^2^2)5 an<^ eacn nas ^ satisfy the

condition of having its length unaltered in any displacement of

the system. Hence the geometrical equations are

d*! = const., &c.;

and equation (l) becomes

or f(Xbx+ Yby +Zz)dm+fXds = 0, (2)

the number of particles being indefinitely great.

Now, as in Art. 186, we express all the variations in terms of

the variations of the co-ordinates #, ^, z. For this purpose, put

.'. dsbds =
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or s=
ds ds

*
ds

Hence (2) becomes

.., /* . dx , / dx \ f dx . \ /\ ^ /.Now / A d8# = (\--8a?) (A 8#) / Stf-y-fA
J ds ^ ds /!

V ^ y
o J ^ v

by integration by parts, the term(A-r-8#A being the value of

d# . .
*

X -^-8# at one of the limits of integration, i.e. at one extremity
ds -I

of the string; and (\ 8
a?) being its value at the other

., ^ ds '
n

extremity.

Performing similar integrations for the other terms, (3)

becomes

(dx . dy ^ dz . \ ,dx . dy . <fo . \
A Saj+-J+S^ A -6^+ ^+ - 8

ds ^ ds' } I ds

Now, as in the equation of Art. 186, we equated to zero the

coefficients of 8#15 8^, 6^, ... , so here we have to put the

coefficients of 8 a?, 5^, and 82 equal to zero for each particle of the

string; that is, we put the coefficients of these quantities under

the sign of integration equal to zero. Hence we have at all

Zdm--r (A-T-) .^5 = 0,
ds v ds '

which equations are precisely the same as those of Art. 204, since

-y- is the mass per unit length at the corresponding point of
ds

the string. It appears that A in these equations is minus the

tension of the string.

The conditions of equilibrium, then, as expressed in (4),
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consist of two parts namely, terms which, relate to the ex-

tremities of the string (which are the terms outside the sign
of integration), and terms which relate to every intermediate

point in the string (which give the general equations of equi-

librium above).

Equating to zero the terms outside the integral sign, we have

.

Now, if the extremities of the string are fixed, they will be

fixed in the displaced string, and every term of (5) vanishes

since * _ * _ *~ __ s _ * x~ no^ o^i oz: OXQ OI/Q OZQ u.

But if each end is perfectly free, since 8#15 8y1} ... are quite

arbitrary and independent, we must have

A! = and A = 0,

i.e. each terminal tension must be zero.

If the extremity (^1,^1^1) is constrained to lie on a fixed

surface, whose equation is u = 0, we have the displacements of

this extremity connected by the equations

du\^ '

which give by the method of undetermined multipliers,

u\
"

,du^
,du

{

the geometrical meaning of which is that the direction of the

string at this extremity is normal to the surface of constraint.

If the extremity is constrained to a curve whose equations are

n = 0, v = 0, we find in the same way that at this extremity

the direction of the string must be at right angles to the curve.

The method which we have just employed is the second

method of Art. 202, and expresses that the variation of the whole

potential work of the external forces is zero, consistently with the

geometrical condition that the distance between every two indefinitely

close points in the string remains absolutely unchanged in the dis-

placed position. For if V is the potential, or V F
Q (Art. 197),
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the potential work of these forces acting on a unit mass at the

point as, y, z, the potential for the element dm is Fdm, and the

whole potential work is f(V V
) dm,

whose variation is b/Fdm, or fbF.dm, or

/ (
Xbx + Yty + Zb z) dm.

Let us, in the second place, suppose the string to le extensible.

In this case there are no geometrical conditions to be satisfied in

the displacement (or deformation) of the string. Then the

equation of equilibrium will simply express the condition that

in the position of equilibrium the variation of the whole

potential work of applied and internal forces is zero.

Now if we consider any elementary mass, dm, whose length is

ds, and whose internal force (the tension) is T, the work done by
this force for a variation bds of the elementary length is (see

P-7 8) -Tbds.

Adding together the similar terms for all the elementary

masses, the variation of the potential work of the applied and

internal forces is

which differs from (2) only in having T instead of A. Hence
the whole discussion is exactly the same as before, and the

results are those arrived at in Section II.

223.] Equipotential Surfaces. When the applied forces are

a conservative system, whose potential at any point in space is

denoted by V, we have from equation (4) of Art. 203, or equation

(8) of Art. 204, T=K-F, (l)
where K is a constant.

Now, since V= 4> (x, y, z),
a function of the co-ordinates of a

point, the equation V C, (2)

where C is any constant, will denote a surface at every point
of which the potential of the forces has a constant value. More-

over (l) shows that at all points on this surface T has the

constant value K C. Although it may happen that there is

no portion of the string on the surface denoted by (2), still we
shall say that the tension has a constant value on this surface,

since T has an analytical value given by (l) ; and, in the same

sense, we shall speak of the tension at any point whatever in

space, although no part of the string exists at this point.

By attributing different values to C in (2), we get a series of
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surfaces called Equipotential Surfaces. These surfaces are called

by French writers Surfaces de Niveau, or Level Surfaces, from the

part which they play in hydrostatics. Some of the principal

properties of these remarkable surfaces will be given in a

subsequent Chapter.

224.] Property of Minimum. If a uniform inextensible

string, in equilibrium under the action of a given conservative

system offorces, joins two fixed points, A and B, the variation of
the integral fTds
will be zero when we pass from the curve of the string to any in-

definitely close curve which passes through A and J3.

Let us calculate the variation of this integral,

fads = fbT.ds + Tb ds)

Now, from (l) of last Art.,

bT = -bF=
Hence by integration by parts (as in Art. 222), we have

to)-T.*+ds ' "\ds ds

4ds

Now the right-hand side of this equation is zero, since, the

extreme points of the curve being fixed, the coefficients of TQ

and 7\ both vanish, and the coefficients of 8 a?, 8y, bz under the

sign of integration vanish by the general equations of Art. 204,

the mass of a unit length of the string being here taken as

unity. Hence the proposition.

This theorem leads to a remarkable property of the common

catenary. Of all curves of the same length joining two given points

in a vertical plane, the common catenary is that whose centre of

gravity is lowest. For if y be the depth of the centre of gravity
of this curve, whose length is L, we have
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But (Art. 206), T = mgy ; therefore y
-

j ; therefore, by the

theorem of this Article, we have

That y is in this case a minimum in the true sense of the

word does not, of course, appear from this
; the proof that it is

so depends on the criterion for maxima and minima furnished by
the Calculus of Variations, for which see Jellett's Calculus of

Variations^ p. 80. It is there proved, that when the variation of

any integral of the form \

1
Udx vanishes (the limits being

t
Jxo

fixed) the value will be, in general, an algebraic maximum or

dzU
minimum according as -=

^
is continually or continually +

between the limits of integration,
-~

being denoted byjon ,
and

[/being any function of #, y,^1} j 2 ,
,., pn . In the present case

U = y ds = y \/l -\-p^dx, a change of the independent vari-

able from s to x being necessary since it is the limits of x that

are assigned. The application of the criterion is then obvious.



CHAPTER XIV.

SIMPLE MACHINES.

225.] Functions of a Machine. A machine may be defined

either from a statical or from a kinematical point of view.

Regarded statically, it is any instrument ~by
means of which we

may change the direction^ magnitude, and point of application of
a given force ; and regarded kinematically, it is any instrument

ty means of which we may change the direction and velocity of a

given motion.

In Statics it is usual to consider the points or machines to

which forces equilibrating each other are applied as absolutely
motionless ; nevertheless, it appears from our definition of force

(Art 1),
that a system of forces acting at a point will be in equi-

librium when the point has a uniform motion in a right line.

If a particle describes any curve whatever with uniform velocity,

a little reflection will show that at no point of its path can there

be any force in the direction of the tangent or, in other words,

the force acting on it must everywhere be normal to the path.
It follows (see Art. 195), that there is no work done by this

force in the passage of its point of application from any one

position to any other. Extending this a little, we shall so far

anticipate the results of Kinetics as to assume that when the

parts of any machine are each in a state of uniform motion, the

forces applied to the machine are in equilibrium among themselves.

By the extension of the equilibrium of forces to this case, we

comprise both the statical and kinematical definitions of a

machine in the following : a machine is any assemblage of

different pieces whose displacements, resulting from their mode of

connection, depend on each other ly geometrical laws, and whose

object is to transform into mechanical work the result of the action

of given appliedforces. (See Resal, Mecanique Generale, vol. iii,

P-3-)
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It has been already pointed out that in applying the equation
of virtual work to a system of connected bodies, advantage is

gained by choosing such displacements as do not violate any of

the geometrical connections of the system. This principle we
shall use largely in the discussion of machines, and the dis-

placements which we shall choose will be those which the

different parts of a machine actually undergo when it is em-

ployed in doing work. Thus, instead of equations of virtual

work, we shall have equations of actual work
;
and in future we

shall speak of the principle referred to as the Principle of Work.

Since in the motion of a machine the work done by a force

applied to any part of it depends on the magnitude and direction

of the displacement of the point of application of this force, we
see at once the importance of the discussion of the motions pro-

duced in the several parts of a machine by a definite motion

given to some one part. This discussion, which is a problem of

pure geometry, constitutes the Kinematics of Machinery, for

which the student may consult ResaFs Mecanique Generate,

Willis's Principles of Mechanism, or the treatise of B-euleaux.

226.] Moving Forces and Resistances. Every machine is

designed for the purpose of overcoming certain forces which are

called resistances; and the forces which are applied to the

machine to produce this effect are called moving forces. The

distinction between these forces is easily drawn by the Prin-

ciple of Work. For, when the machine is in motion, every

moving force displaces its point of application in its own direc-

tion, while the point of application of a resistance is displaced in

a direction opposite to that of the resistance. A moving force

is, therefore, one whose elementary work is positive, and a re-

sistance one whose elementary work is negative.

A moving force applied to a machine is often (but impro-

perly) called a power. The resistances against which a ma-

chine works are divided into two classes, viz. useful resistances

and wasteful resistances. The former constitute those which the

machine is specially designed to overcome, while the over-

coming of the latter is foreign to its purpose. For example, if

a pulley is employed for the purpose of lifting a weight by
means of a rope, a part of the effort employed is spent in over-

coming the friction between the pulley and its spindle, and

another part is spent in overcoming the rigidity of the rope.
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Friction and rigidity in this case are the wasteful resistances,

and the weight of the body lifted is the useful resistance.

The distinction between the resistances overcome gives also

the distinction between useful work and (so-called) lost work.

Useful work is that which is performed in overcoming useful

resistance, while lost work is that which is spent in overcoming
wasteful resistances.

227.] Efficiency of a Machine. The ratio of the useful work

yielded by a machine to the whole amount of work performed by
it is called its efficiency.

Let W be the work done by the moving forces, Wu the useful

and Wi the lost work, when the machine is moving uniformly.

Then W^W^+W^
and if

rj denote the efficiency of the machine,

r

Since some of the work expended in moving the machine

must be expended in overcoming wasteful resistances, the

efficiency is always less than unity, and the object of all im-

provements in the machine is to bring its efficiency as near

unity as possible.

The counter-efficiency is the reciprocal of the efficiency. If the

useful work to be performed is given, the amount of work to be

expended on the machine is obtained by multiplying the former

by the counter-efficiency.

Let P be the moving force applied at any point of a machine

to perform a given amount, WUJ of useful work ;
let Wt be the

work lost, and let s be the space through which P drives its

point of application in its own direction. Then we have

Ps= WU+WL
Let P be the force which would perform the same amount of

useful work if the wasteful resistances were removed. Then

P,s = JTU .

W P
But

77
= -- =

; hence the efficiency is the ratio of the

force which would drive the machine against a given useful

resistance, if the wasteful resistances were removed, to the force

which is actually required to do so. In many cases this definition

is useful in practice.

c c
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As regards the wasteful resistances in machines, the most

noticeable are friction, the rigidity (or rather imperfect flexi-

bility) of ropes, and the vibrations which are produced in the

various pieces. Of these the first is that with which alone we
shall be concerned. The student who desires information on the

experimental laws of the rigidity of ropes may consult Coxe's

translation of Weisbach's Mechanics of Engineering and of the

Construction of Machines, vol. i, p. 363 (New York, 1872).

228.] Simple Machines. By simple machines are meant the

Lever, the Inclined Plane, the Pulley, the Wheel and Axle, the

Screw, and the Wedge. Of these, the Lever, the Inclined Plane,

and the Pulley may be considered as distinct in principle, while

the others are only combinations of pairs of these three.

229.] The Lever. A lever is a solid bar, straight or curved,

which is constrained to turn round a fixed axis. This fixed axis

is called the fulcrum of the lever.

It is usual to define three kinds of

levers. If the fulcrum is between

the moving force and the resistance

the lever is said to be of the first

kind; if the resistance acts between

the moving force and the fulcrum

/Q ^X (
as in a wheelbarrow, an oar, or a

Fi&- 22 7- pair of nutcrackers), the lever is of

the second kind ; and if the moving
force acts between the fulcrum and the resistance (as in the

construction of the limbs of animals), the lever is of the third kind.

In the last kind the moving force is always greater than the

resistance to be overcome, and levers of the third kind are there-

fore seldom employed.
To find the efficiency of a lever, the wasteful resistance being

friction

Let the moving force, P, be applied at the point A (fig. 227) in the

direction OA perpendicular to the axis, and the useful resistance at B
in the direction OB, also perpendicular to the axis ; let EDF be a

section of the axis on which the lever turns, made by the plane of P
and Q, the contact between the beam and its axis, although it may be

very close, being still such that they can be considered as touching

along a single line when the machine works. In this case (see Art.

114) the reaction of the axis consists of a single force touching the

circle of radius r sin A concentric with EDF, X being the angle of

friction for the lever and its axis; and since this reaction must also pass
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through 0, its direction is obtained by drawing from this point a

tangent to the circle.

Let p and q be the perpendiculars from C, the centre of the axis on
OA and OB respectively, and let <o = / A OB.

Then by moments about C, we have

Pp = Qq + Br sin A;

also R =

(l)

If P
Q
is the value of P when friction is removed,

Substituting 17 for - - in (1), we have

pq (1 97)
= r sin A \/p

2
if+ 2^2 cos co . f] -j- c/

2
,

which gives for the efficiency

__q pq + r* cos co sin2A r sinA \/p
2+ 2pg cos to+ g

2 r2 sin2 to sin
2A

~p'~ ?
2-r2

sin2A

If the coefficient of friction is small, we shall have, approximately,

77
= 1 -- yjp + 2pq cos co + g-

2
.

pq

If P and ^ are parallel, co = 0, and rj
= 1 /ur (- + -)

If the lever is of the second kind, and P and Q parallel, co = TT, and

f]
= 1 /ur (

---
); and for a lever of the third kind, we find easily

in the same circumstances

230.] The Inclined Plane. Let a moving force, P, whose

direction makes an angle with a rough inclined plane, be

employed to drag a weight Q up the plane. Then if A is the

angle of friction and i the inclination of the plane,

-

1 + IJL
tan

1+pcoti
CC 2,
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231.] Fixed and Moveable Pulley. Let a flexible string

pass over a smooth fixed pulley (that is, a pulley whose axis is

fixed in space), and let a weight W he suspended from one ex-

tremity of the string, while a vertical downward force P is

applied at the other extremity. Then to raise W we must have

P = W, and in the uniform working of the machine W is raised

exactly as much as the point of application of P is lowered.

Suppose, on the contrary, that one extremity of the string is

fixed, that the string passes under a moveable pulley from which

W is suspended, and that P acts vertically upward at the other

extremity of the string. Then evidently P = \W\ hence in the

moveable pulley there is a gain in power. But in this case W is

raised only half'as much as the point of application of P ascends.

There is, therefore, a loss in the expedition with which the work

of raising the weight is performed.

232.] Systems of Smooth Pulleys. We shall consider three

different arrangements of pulleys, as exemplifying the Principle

of Virtual Work.

I. In the first system there are two blocks, A and B
(fig. 228), the

upper of which is fixed and the lower moveable.

Each block contains a number of separate pulleys, of

the same diameter usually, each pulley being moveable
round the axis of the block in which it is. (The figure

represents a section of the blocks made by a plane per-

pendicular to their axes, and the circumferences of the

pulleys are projected on this plane.) A single rope

(whose weight is neglected) is attached to the lower
block and passes alternately round the pulleys in the

upper and under blocks. The portion of rope proceed-
ing from one pulley to the next is called a ply. In this

arrangement the tension of the rope is throughout con-

stant and equal to P, the force applied at the free

extremity. The portion of the rope at which the

Fig. 228. moving force, P, is applied, is called the tackle-fall.
Let W be the weight to be lifted, and assume all the

plies to be parallel.

Then if n is the number of plies at the lower block, we shall

obviously have, neglecting the weight of the block,

nP= W.

This result follows also by the principle of work. For if p denote
the length of the tackle-fall, and sc the common length of the plies, we

p+ nx = constant,

/. dp + ndx = 0.
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But Pdp+Wdx = 0,

II. Suppose each pulley to hang from a fixed block by a separate rope.
Let A

(fig. 229) be the fixed pulley, n the number of moveable

pulleys, and x
l ,
x

2 ,
... xn the distances of the cen-

tres of these latter from a horizontal plane through
the centre of A .

Then,^ being the length (AP) of the tackle-fall,

2x
1 -}-p

= const., 2x
2

x
1
= const.

2x
3

x
2
= const. ... 2xn x^^ = const.

Hence 2
nxn+p = const,, therefore

and

III. Let a separate rope pass over each pulley, and let all the ropes
be attached to the weight.

Neglecting the weights of the pulleys and ropes,
we shall have, by resolving vertically for the equili-

21
brium of JF,

the whole number of pulleys being n ;
or

2
W-1

The same result follows by the principle of work.

For if the distance of W from a horizontal plane

through the centre of the fixed pulley is denoted by
y, and if the distances of the centres of the pulleys,

counting from the fixed one, are x
l ,

x.2 ,
...

,
xn_l}

we
have evidently

y + a?
x
= const., y + x

2
2 x

l
= const. . . .

, y + o?
tt_1

2 xn_2
= const.,

x.n ,
= const.

Fig. 230.

Hence, multiplying the second equation by
- the third by -^

> &c.,

and adding, we have 2
n~ly+p = constant. Now the equation of work

or

and

W
2
n

l
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233.] The Wheel and Axle. This consists of a horizontal

cylinder, I, (fig. 231) moveable round two journals (or small

cylinders projecting from the centres of its

faces), one of which is represented in section at

e; a wheel, <z, is rigidly connected with the

cylinder, and the journals rotate in fixed bear-

ings. The machine is, in reality, a rigid com-

bination of two pulleys, a and b, moveable

about a common axis, c
; and its theory is

Fig. 231. precisely the same as that of the lever. The

moving force, P, is applied at the circumference

of the wheel, and the useful resistance, Q, at the free extremity
of a rope coiled round the axle.

All wasteful resistances being neglected, the relation between

P and Q is pa = q^
where a = radius of wheel, and I = radius of axle.

The friction of the journal (whose radius is c) against its bear-

ing being taken into account, the relation between P and Q is

Pp = Qq + c sinWP2 + 2PQ cos o> + Q2
,

o) being the angle between the directions of P and Q, exactly as

in Art. 229 ; and the efficiency is the same as that investigated
in the Article on the lever.

Economy of power is attained in the wheel and axle by
diminishing b, the radius of the axle ; but in this way the

strength of the machine is diminished. To avoid

this disadvantage a Differential Wheel and Axle is

sometimes employed. In this instrument the

axle consists of two cylinders of radii b and b'

(fig. 232), and the rope, wound round the former

in a sense opposite to that of watch-hand
rotation (suppose), leaves it (at the point b in

fig. 231), and, after passing under a moveable

pulley to which the weight to be raised is at-

tached, is wound in the opposite sense round

Fig. 232. the remaining portion (that of radius
b') of the

axle. The power P is applied, as before, tan-

gentically to the wheel. For the equilibrium (or uniform

motion) of the machine, the tensions of the rope in bm and Vn
are each equal to \ Q ; and taking moments round the centre of
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the journal, c, for the equilibrium (or uniform motion) of the

rigid system consisting of the wheel and axle alone, we have

Thus, by making the difference # V small, the requisite

moving force can be made as small as we please ; but since the

amount of work to be done is constant, this economy of power is

accompanied by a loss in the time of performing the work. For
it is easily seen that if the wheel turns through an angle 80, the

point of application of P will describe a space a$0, and the

weight will be raised through a space i (-&') 80, which latter

will be very small if 6 If is very small.

234.] The Screw. The screw consists of a right circular

cylinder on the convex circumference

of which there is a uniform project-

ing thread, GH (fig. 234), of a helical

form.

The helix is a curve traced on the

circumference of a cylinder in the

following manner. Take a sheet of

paper on which are drawn two in-

definite right lines, AB and AC, and

let the paper be wound round the

cylinder in such a way that the line

AB coincides with the circumference of the base ; then the other

line, AC, will appear on the cylinder in the shape of a spiral

curve which is called the helix. (Fig. 233 represents a projection

of the helix on a plane through the axis of the cylinder.)

A screw with a rectangular thread (which is that represented
in fig. 234) is obtained by making a small rectangular area, abed,

move so that one side, a b, always coincides with a generating
line of the cylinder, the middle point of ab describing the helix,

and the plane of the rectangle always passing through the axis

of the cylinder.

If a small triangle is used instead of the rectangle, we should

have a screw with a triangular thread.

Letp and q be two points on the indefinite line AC, and draw

pn perpendicular to AB and gn parallel to it. Then pq becomes

a portion of the arc of the helix, and qn a portion of a section of

the cylinder perpendicular to its axis,jtm remaining a straight

line coinciding with a generator of the cylinder.

Fig. 233
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Hence the relation holding between the sides of the triangle

pqn before the paper was wound round the cylinder will hold

also after the winding. But if the angle between AB and AC
is i, we have evidently

pn = qn . tan i,

pq = qn . sec i.

The thread GH works in a block on the inner surface of which

is cut a groove which is the exact counterpart of the thread.

The block in which the groove is cut is often called the nut.

It is clear, then, that if the screw moves in the nut until the

point jo of the thread occupies the position q, the axis must move
in its own direction through a space pn> and the angular rotation

of the screw about its axis is > r being the radius of the

cylinder.

Hence, if the angle through which the screw turns is

denoted by o>, we have

pn = or tan i, pq = cor sec i.

If o> = 2-jr, or if the screw make a complete revolution, any

point on the surface of the screw describes a space 27rrtan&

parallel to the axis. This is obviously the distance between two

portions of the thread measured on a generator, and is called the

pitch of the screw.

We shall consider the screw as driving a resistance Q applied
in the direction of the axis, and the moving force, P, as applied

in a plane perpendicular to the axis, at the extremity of an arm
whose length measured from the centre of the axis is a.

Suppose that the screw rotates through an angle w. Then

the work done by P is P#co, and the work done against Q is

Qr<0 tanz.

If no work is lost against wasteful resistance, we must have

Pa Qr tan i.

If there is friction between the thread and the groove, let R be

the normal pressure at any pointp of the thread (acting towards

the under side of pq in the figure), and ^R the friction at this

point. Then, in a small angular motion, 8co, of the screw the

work done against the friction is pR.pq (taking pq as an ele-

mentary portion of the thread), or pErSa sec i. Hence

P5a> = Qrbu tan fc + fir 8 co seci
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denoting the sum of the normal reactions at all points of

the thread.

But, for the equilibrium of the cylinder, resolving along its

axis, we have

Q = 2 (R cosipR sin i),

or Q = (cos ju sini) 27?. (a)

Hence, substituting this value of 272 in the previous equation,

A being the angle of friction.

This result could have been obtained without the principle of

work by combining by (a) the equation of moments round the

axis of the screw. By taking moments round the axis, we have

Pa = 2 (R sin i + fj,R cos
i) r,

or Pa = r (sin i + JJL
cos

i)
2 E. (fi)

Dividing (/3) by (a) we obtain the relation between P and Q.
The efficiency of the screw is evidently

tan i

tan
(i -f- A)

which will be a maximum when i = ---

235.] Prony's Differential Screw. If k denote the pitch

of a screw, the relation between P and Q when friction is

neglected is

therefore economy of force in C3S
overcoming a given resistance is

gained by making h very small.

But it is impossible to do this in Fig. 235.

practice, and to attain the result

desired a differential method is resorted to. Let the screw work

in two blocks, A and B (fig. 235), the first of which is fixed and

the second moveable along a fixed groove, n. Let li be the pitch

of the thread which works in the block A, and Ji
r
the pitch of

that which works in the block B. Then one complete revolution

of the screw impresses two opposite motions on the block B
one equal to h in the direction in which the screw advances, and

the other equal to h' in the opposite direction. If, then, the
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resistance, Q, is driven by this block, we have by the principle

of work 2Pna = Q(h-h')>

and the requisite moving force will be diminished by dimi-

nishing h h'.

236.] The Wedge. The wedge is a triangular prism, usually

isosceles, which is used (as represented in the figure) for the

purpose of separating two bodies, A and JB, or parts of the same

body which are kept together by some

considerable force, molecular or other.

The figure represents a section of the

wedge made through the line of action

of the moving force, P, perpendicular to

the axis of the wedge. Suppose that the

line of action of P passes through the

vertex of the wedge, and that slipping is

about to take place; then the total re-

sistances of the surfaces A and B against
the wedge will make the angle, A, of friction with the normals

at the points, m and n, where they act; but these points are

indeterminate themselves.

To find the efficiency of tlie wedge. Let the wedge be driven

through a vertical space equal to dp, and let 2 a be its vertical

angle. Then the useful work performed is the separation of A
and B in directions normal to the faces of the wedge in contact

with them ; in other words, the useful work is that done by the

normal components of the total resistances, R. Now the point
m moves vertically down through a space dp, and the projection

of this displacement along the normal at m is evidently

Fig. 236.

Hence the work done by the normal components is

2R cos A sin a dp,

and the whole work expended is Pdjp. Hence

2R cos A sin a
r?
= _

But by resolving vertically for the equilibrium of the wedge, we
v P = 2R sin (a + A)

sin a cos A tan a
r?
=

sin (a + A) p + tan a
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Having given the theory of the simplest machines, we proceed

to discuss a few of their most useful forms.

237.] The Balance. The common balance is a lever of the

first kind with two equal arms, from the extremity of each of

which is suspended a scale pan, the

fulcrum being vertically above the

centre of gravity of the beam when the

latter is horizontal. Let (fig. 237)

be the fulcrum, AB the line joining the

points of attachment of the scale pans Fig. 237.

to the beam, G the centre of gravity of

the beam, and let AB be at right angles to OC, the line joining
the fulcrum to the centre of gravity of the beam. Then, if

AC=CB = a, OC = h, OG = Jc, W= weight of the beam, and

= the inclination of AB to the horizon when two weights, P
and Q, are placed in the pans, we have for the position of

equilibrium (by moments about 0),

Now, the most important requisites for a good balance are

Sensibility and Stability. The first requires that the beam

should be sensibly deflected from the horizontal position by
the smallest difference between the weights P and Q ;

hence

the sensibility may be measured by the angle of deflection from

the horizontal position caused by a given difference, P Q.
The stability of the balance is measured by the rapidity of the

oscillation of the beam when it is slightly disturbed, and will be

greater the smaller the time of oscillation. Hence the in-

vestigation of the stability of the balance is a kinetical problem.
For sensibility, tan Q must be as great as possible for a given

value of PQ. Hence (l) a must be large, (2) k must be

small, (3) JFmust be small, and (4) k must be small, i.e. the

distance of the fulcrum from the centre of gravity of the beam
must be small. The last condition is obtained in balances in

which great sensibility is desired by making OC an axis along
which a heavy nut moves with a screw motion

; by moving the

nut towards 0, the centre of gravity of the machine can be
made to approach the fulcrum.

The time of a small oscillation can be shown (see Thomson
and Tait, p. 423) to be proportional to the square root of
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where K is the radius of gyration of the beam about 0. For

stability this must be small
;

it is evident that, with the

exception of the third condition above, the conditions for sta-

bility are the very reverse of those for sensibility.

238.] RobervaFs Balance. Roberval's Balance is an excel-

lent illustration of the principle of work.

Two equal bars, AB and CZ), (fig.

238) revolve round axes through their

middle points, H and E, which are

fixed in a vertical support, HN\ these

bars are connected by smooth joints to

two equal bars, AC and BD, and to

these latter bars are rigidly attached

N two plates or scale pans, P and Q, the

Fi 8 points of attachment being any what-

ever, and one or both of the plates may
lie towards the vertical support, or away from it (as in fig. 238).

Suppose P and Q to be the magnitudes of two weights

placed in the pans P and Q, respectively. Then if for any

displacement of the bars round the points H and E, the pans
describe vertical spaces p and q, respectively, we shall have for

equilibrium Pp-Qq = 0.

Now, the bars AC and BD, being always parallel to the fixed

line HE, will be always vertical, and the vertical space through
which one moves up is obviously equal to that through which

the other moves down. Hence p = q, and we have for equi-
librium p .... Q

whatever be the lengths of the pans {provided their weights are

neglected] ,
whatever be their points of attachment to BD and AC,

and whatever the points in the pans at which P and Q are placed.

If the weights of the pans are taken into account, the same

results follow if they are of equal weight.
If the pan P were replaced by the pan P

/

)
and the weight P

placed at Pf

t the other pan, Q, remaining unchanged, and the

weights of the pans being either equal or neglected, equilibrium
would still subsist a result which seems at first sight very

strange.
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If the lengths AH and HB, CE and ED are not equal, it is

easy to prove that - = 77-7 , and the condition of equilibrium is

M:

239.] Balance of Quintenz. This is a compound balance

formed of a combination of several levers, and is used for

weighing very heavy loads. This machine also furnishes an

admirable example of the principle of work.

AB (fig. 239) is a lever moveable about its fixed extremity, A ;

MN is another lever moveable

about a fulcrum, F, fixed at its N.-
middle point ;

CD is a moveable ^

platform, which receives the

load Q, whose weight is to be

found
;

this platform is con- B
H~~A

nected with the lever MN by a Fig. 239.

rigid vertical bar, DI, articulated

at D and 7; and the platform further rests against the lever,

AB, by an edge of contact at a fixed point, ff, on the latter ;

finally, the two levers are connected by a rigid vertical bar, BM,
articulated to both.

The weight, P, employed to measure Q is attached to the

upper lever at N. Let the system receive any slight displace-

ment, then the lever, AB, will turn round A through an angle
5 0, suppose, and the lever MN will turn round F through an

angle 8$.
"We shall arrange the dimensions of the machine in such a

manner that the platform, CD, may remain horizontal in the

displacement. The vertical descent of the point H is evidently
AH . 6 9, and this is also the vertical descent of the point in the

platform above H.

The vertical descent of the point D is the same as that of /,

and this latter is obviously FI.bQ- hence if the platform
remains horizontal,

Again, the vertical descent of M is the same as that of B
;

or , FM.IQ = AB.be.
Hence from these equations we have

MF _BA
FI

" AH '
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which is the condition for the horizontality of the platform.
7? A

Denote -r= by n. The equation of work is obviously

P x descent ofN= Q x descent of D,

or the result is the same as if Q were suspended from the point
I of the upper lever.

Loads placed on the platform may all be weighed by means of

a constant weight, P, by merely moving the point of suspension
of this latter along the arm NF; thus, if P is suspended from

the point K between N and F
9
we shall have

*

240.] Toothed Wheels. Motion may be transferred from

one point to another and work done by means of a combination

of toothed wheels, each one of which drives the next one in the

series. The discussion of this kind of machinery possesses great

geometrical elegance ;
but the space at our disposal renders it

impossible to do more than give a slight sketch of the simplest
case that in which the axes of the wheels are all parallel.

For the investigation of the proper forms of teeth, the student

is referred to Willis's Principles of Mechanism, Collignon's

Statique, and Resal's Mecanlque Generate.

Fig. 240 represents a toothed wheel, Al9 moveable round a

horizontal axis, ab
-,

the moving
force, P, is applied by means of a

Bi handle, cd> which, when turned,

causes the axis ab to rotate in its

bearings at a and t> and to turn the
2

wheel A
; this wheel causes another,

AJ 19 in contact with it, to rotate

Fig. 240. round a horizontal axis which also

moves in fixed bearings at its ex-

tremities; on this latter axis is fixed another wheeU2 ,
whose

rotation in like manner turns B2 on its axis, which in the figure

is the axis of a cylinder to which the resistance, Q, is attached.

Suppose that there are n wheels, Alt A2 ,
... An ,

whose radii
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are 1} a2 ,
... an) and n wheels, E19 13

2 , ... Bn wliose radii are

^u ^25 ^n an^ k* ^c == J!9
J
and ^e radius of the cylinder (or

wheel) to which Q is attached = q. Then if coj is the angle

through which the radius be revolves, the moving force being

always applied tangentially to the circle described by its point of

application, the work expended is

and if &>M is the angle through which, in the same time, the

cylinder rotates, the weight Q will be raised through a space

g<*>n ,
and the work done against the resistance is

Qg**
Supposing then that no work is lost either by the friction

of the axes in their bearings or by the friction of the teeth

against each other, we must have

Pp^ = Q00),, (1)

when the machine is moving uniformly.

To determine the kinematical relation between coj and o>n ,
let

the angle through which B^ turns be o)
2 . Then since the spaces

described by the points of A1 and B^ which are in contact are

the same, a o)
t
= b o>

2
. Also if co

3
is the angle through which

B
2 turns, we have 2

o)2
= b

2 a>
9

* Proceeding in this way, we
have by multiplying the corresponding sides of these equations

together a^^... an . ^= b^...bn .
tt

.

(2)

Hence from (l) and (2),

Q PW*-ln
P

'

For the calculation of the work lost by the friction of the teeth

among themselves see Collignon's Statique^ p. 468.



CHAPTER XV.

ATTRACTIONS. THEORY OF THE POTENTIAL.

SECTION I.

Solid Distributions of Matter in General.

241.] Universal Law of Attraction. Every particle of matter

m the universe attracts every other particle with a force whose

direction is that of the line joining the two particles, and whose

magnitude is directly proportional to the product of their masses

and inversely proportional to the square of the distance between

them.

This law of universal attraction is a generalization from

experience, verified in its consequences as to the motions of

all bodies in the universe which come within the reach of our

observation.

That two particles of matter universally exercise upon
each other an attractive action denned as above we observe by

experiment ;
and this action is called Gravitation. Over and

above this particular force, they may exert other forces, at-

tractive or repulsive, upon each other, depending on particular

states, transitory or permanent, in which they may exist in

presence of each other. Among forces of the latter class are

magnetic and electric attractions and repulsions, and the mole-

cular forces of natural solids.

At present we are concerned with the bare fact that such an

action as that of gravitation is exercised between two particles,

without attempting to account either for its cause or for its

precise mode of operation that is, without any speculation as

to whether it is really an action at a distance, or an affection of

some medium intervening between them.
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We shall, it is true, investigate in certain cases the conse-

quences which would result if the particles of matter exercised

on each other a force whose magnitude did not follow the

natural law of the inverse square of distance
;
but these cases

must be regarded as mere
f examples of an analytical method, and

not as the expressions of any observed natural phenomena.

242.] Action between Two Particles. Let there be two

particles whose masses are dm and dm', and let r be the distance

between them. Then the attraction of gravitation between

themis
dm. dm'

where
//,

is a constant quantity depending on the unit of force

adopted. Suppose that we take as a unit force that exerted by
two elementary units of mass placed at a unit distance apart ;

then the above expression must be unity when dm, dm', and r

are units. Denote the unit of mass by \m\, the unit of distance

by \cf\,
and the unit of force by [/] ; then the force,/, between

the particles at the distance r is given by the equation

It would be tedious to introduce the unit factor ^=^L intoW2

our equations, and we shall for the future omit it, remembering,
at the same time, that it is implied in our

results, and that the value of every force /^ -x^ ^-^ p

subsequently given must be multiplied by
this unit factor.

243.] Potential due to an Attracting

Solid. Let P be any point at which a
fig. 241.

unit mass is placed ;
M any point in the

solid at which the element of mass is dm
;
and r the distance

PM. Then the force between the particles at P and M is -^ ,

and the virtual work of this force is
^-dr,

since the force

tends to diminish r, and since dr signifies an increment of r.

Hence (Art. 188), if Fis the potential at P,

Dd
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the sign 2 denoting a summation of the integral for all elements

of mass of the solid. This evidently gives

but as the solid consists of an infinite
1 number of elements, the

summation here is an integration, and we have finally

7 =
/am/

'

If in Art. 195 T is the value at infinity of the gravitation

potential of a given mass, T is of course zero, and from that

article we have W -=V

Hence we may define the gravitation potential of a given
mass at any point to be the quantity of work required to move a

unit mass of matterfrom that point to an infinite distance.

If the law of attraction is other than that of nature, let it be

a function of the distance denoted by <f>' (r).
Then the force

between P and Mis
<$>'(r)

. dm, and the virtual work of this force

being <' (r) . dm . dr (supposing the force attractive),

V = I,dmf(t>' (r)dr = ^^(r).dm = /< (r) dm,

<(r) being the integral of $'(r)dr. For example, if the at-

traction is proportional to the #th power of the distance,

=
-=TT/'

For a repulsive force given by the law $> (r)
the virtual work

is <'(r) . dm . dr, and the sign of 7 is simply changed.
In general, then, to get the potential of any system of forces,

write down the expression for their elementary virtual work,

and integrate it (see Mecanique Celeste).

244.] Calculation of the Potential in Special Cases. The

law of attraction considered is that of nature.

(1) Let the attracting solid consist of two particles of masses m
l

and m
2 placed at two points, N and S (fig. 35, p. 39). Then if the

distances NP and SP are denoted by ^ and r
2 ,

F^-1 *-2
, (1)

i
r
2

and if the action of m
l
is repulsive,

F =_^ + 5s. (2)
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(2) Let the attracting solid be a bar of uniform density and small
uniform section. From P (fig. 242) let

fall PO perpendicular to the bar, AB\ let P
s denote the distance of any point M of //j\

the bar from
;

let 6 be the angle PMO, //
\
\

and let p and k be density and section of /' /
the bar. Then the element of mass at M / I \

. r*= kp PM
But

s PO cot 6, /. ds = PO cosec2 0d6, and PM = PO cosec
;

F=-& rP
Jir-B sinO'

the angles PAB and P.5J. being denoted by A and J5. Hence

This may be put into another form. If PA = r, PB = /, and
AB = 2c, we have from trigonometry,

(4)

p. being the semi-axis major of the ellipse described through P, with
A and B for foci.

(3) Let the attracting solid be a spherical shell of uniform density
and small uniform thickness.

First suppose the point P, at

which the value of the potential is

required, to be outside the shell.

Let T and p be the thickness

and density of the shell, its

centre, and M any point on it.

Then if /.MOP= 0, OM = a, and

<f>
is the angle made by the plane

MOP, with a fixed plane through
OP, the element of mass at M is

pro? sin 6d6d<t>i and ifPM= r,

r=

Fig. 243.

by performing the integration in < at once.

D d 2,
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Now, if OP = c, we have

rz = a2 2ac cos0 + c
2
,

/. rdr = ac sin QdO,

27Tpra rPB , 47rpra
2 mass of shell ....

and V = -
/ dr = - =-- (5)

c JPA c c

Secondly, let P be inside the sphere at Pf
. Then we have exactly

as before
2irpr /""* ,

fi
,7= -

/ drkitpTa. (6)

Since P'B-P'A = a+ c-(a-c) = 2c.

It is to be carefully noted that in this case V has the same value at

all points inside the shell.

(4) Let the attracting solid be a sphere of uniform density.

First, suppose P to be outside the sphere. Let the sphere be

broken up into an indefinitely great number of spherical shells, and
since the potential due to each of these is given by (5), we have for

the sphere (whose radius is a),

v _ 4 TT/Oa
3 _ mass of the sphere , .

3c c

Secondly, let P be inside the sphere. Then the potential of the

sphere concentric with the given one, and passing through P, is

4 Trp c
3 4 TTO c

2

> or
; and the potential of the portion included between

O C O

these spheres must be found by dividing it into shells. Let r and dr

be the radius and thickness of one of these shells
;
then the potential

due to it at P is

by (6), and the integral of this from r c to r = a is 2irp (a
2

c
2

).

Adding this to the first portion of V, we have

7= ZTTpa? l^r/oc
2
. (8)o

(5) Let the attracting solid be that inclosed between two concentric

spherical surfaces of given radii, a and a', the density being uniform.

First, let P be completely outside the mass, and suppose a > a.

Then the potential is obviously the given mass divided by c ; or

7=. (9)O C

Secondly, let P be inside the space between the bounding surfaces,

i. e. inside the mass. Then evidently
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Thirdly, let P be inside the surface of radius of. Then

245.] Continuity of the Potential. The gravitation potential

of any attracting solid mass varies in a continuous manner from

point to point in space, whether the points chosen be inside any

portion of the mass or outside it.

For if r be the distance of any element of mass, dm, of the

attracting body from P, the point at which the potential is

/j Let P be taken as origin, and let the
T

position of the element Am be denned by the radius vector, r, and

two angles, 6 and
<j>,

as in p. 280, and let p be the density of the

element. Then Am = pr
2 sin 6 drdO

dcf), and

7 - fffpr sin 6 drdO d$.

This form of 7 shows that even if r is zero, i. e. if P is inside

the mass, the value of the potential is finite, no infinite term

being introduced by the indefinitely close proximity of P to

some of the elements of mass.

Hence the potential varies continuously throughout space, and

diminishes from the vicinity of the attracting mass towards the

space very remote from it in all directions.

246.] Continuity of the First Differential Coefficients of

the Potential. At each point in space the potential of a given
mass has a definite value. Let the co-ordinates of P, a particular

point considered, be x, y, z. Then if #', y', / be the co-ordinates

of the attracting element dm, we have

^ = (*-O2 + (y-/)3+ (*-/)
2

. (1)

And since ,K

[dm dV r. *U fx-x'7 = / > we have -= =
/ dm 7 =

/ 5 dm.
J r dx J dx J r3

Hence

dV Cx-x' dV ./>-/, dV [z-z _ ..= / tr-dm, -j-=^^-^-dm, -r-= I ^-dm. (2)
dx J r 3

dy J r3 dz J r3

The continuity of these expressions can be shown by putting
xx' = r sin 6 cos $, yy'=. r sin sin <, z /= r cos 0, dm =
pr

2 sin Odrdddfa where and $ are the same as in last Article.

Then dV = psm
2
0cos<t>drd0d(t);
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and thus, even when the point P is inside the mass no infinite

term is introduced into any of the differential co-efficients of V.

Each of these differential coefficients varies, therefore, in a con-

tinuous manner throughout space, whether the points at which

their values are calculated are inside the mass or outside it.

It must be carefully observed that this result has been proved
true only when the attracting element of the mass is one of finite

volume. It will be subsequently shown that if the attracting

element is superficial^ i. e. if its volume is zero, the continuity of

some of the first differential coefficients of V ceases.

247.] Discontinuity of its Second Differential Coefficients.

d*(-\
Q . _ [dm , d*V r V, ., ,.

Since V I- > we have -7-5-= / 7-?- w&\ ^he co-ordinates
J r eur J do?

of the point, P, at which the potential is T
7

", being #, y^ z.

Now from (l) of last Art. we find

and since

3 x-x

C<2 fdr** 1 d*r) ,=
J fa (^)

- ^^ dm,

Similarly =-, (2)

If in these expressions we substitute for xx',yy> zz',
and dm, as in last Article, we have

~ =
f(

3 sin2 cos2 <t>-\)^s\nO
CvX J T

hence, when r = 0, i. e. when P is inside the attracting mass,
the expression under the integral sign becomes infinite, and the

value of
-y-g

ceases to be continuous from points inside to points

outside the mass.

Fig. 244 represents the values of V, -r-jand -> when the attract-
dx dxz
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c

ing solid is that contained between two concentric spherical surfaces
whose radii are Oaf and Oa, and the point P occupies positions along a
fixed diameter, Ox, varying from to

infinity. The distance of P from is

here denoted by x, which is therefore

the same as c in case (5) of Art. 244.

The values of V are given by the

ordinates (distances from Ox) of the

continuous curve ABCD, of which the

portion AB is a right line correspond-

ing to the constant potential within

the inner surface.

Fig. 244.

dV
The values of are given by the

doc

ordinates of the continuous curve

Oafbc, of which Oaf corresponds to the constant zero value within the

inner surface.

The values of are given by the ordinates of the discontinuous
doo

curve Oa'nmpq.
From case (5), Art. 244, when P is completely outside the mass we

have ^
a

/
, and when P is inside the shell between

dc2 3c3

the two surfaces

dc2
'

3 c3

By putting c = a in the first of these values we have the value, ap, of

-ry when P comes to the outer surface from the outside
;
and putting

c = a in the second, we have the (negative) value, am, of -=-j when P
conies to this surface from the inside*.

248.] Components of Attraction. The attraction between a

unit mass at P and the element dm at M (fig. 241) is -^- in the

line PM\ and since PM makes with the axis of x an angle whose

cosne s
x x

(the co-ordinates of P and M being x, y, z and

of, y', /, respectively), the component of this attraction parallel

xx'
to the axis # is --r dm. Hence if X be the attraction of the

whole mass parallel to the axis of #,

Cx-x'
J

X dm.

Fig. 244 is from Thomson and Tait's Nat. Phil.
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Similarly, if Y and Z denote the components of attraction

parallel to the axes of y and z,

r.- /'-#*,, *=-/?-o t<f/"f*

r3

Comparing these with the differential coefficients of 7 (Art.

246), we see that

dr dr dr
A = : J I = 7 > A = 7

<fo? dy dz

Now
-y

is the rate of variation of potential at the attracted

point in a direction parallel to the axis of x ; and, this direction

being, of course, arbitrary, we see that the rate of variation of
the potential at any point in any direction is the attraction in this

direction on a unit mass at the point.

If, then, generally, ds is the element of the arc of any curve at

the point P, ^y
~ds

is the attraction along the tangent to this curve at P, 7 being

expressed as a function of s and quantities which do not vary
with s.

If the attraction follows any other law than that of the inverse

square, these results remain true. For if the attraction between

P and M is <'
(r) dm (Art. 243), the component parallel to the

axis of x is
^ x_x

,

^ dr

and we have
dr , d

and similarly for all other components.

249.] Direction of the Resultant Attraction. If R be the

magnitude of the resultant attraction, its direction cosines are

X T Z dr dV dV
-JD > -5- ~w ' or ~J~ ' ~r~ ' ~^~~ ' eac" divided byR R R dx d dz J

Let the value of 7 at the point P be denoted by C
; then, 7

being a function of x, y^ z, the equation
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denotes a surface passing through P, and at each point of this

surface the potential has the constant value C. Now the direc-

tion cosines of the normal to this surface are exactly the same as

those obtained above for R. Hence
At each point in space the resultant attraction on a particle is

normal to the surface ofconstant potential

passing through the point.

Let APS
(fig. 245) be the surface of

uniform potential described through P
for a given attracting mass

;
let PQ be

an element of the normal to this surface

at P ; and let CQD be the surface of Fig. 245.

uniform potential described through Q.

Then if Fis the potential at P, and V that at Q, the resultant

attraction at P in the direction PQ is the limit of the ratio

V'-V

or if the element of normal is denoted by dn, the resultant at-

traction is
(IY

dn

in the direction in which the increments dV and dn are taken

along the normal at P.

As has been already mentioned (Art. 223), surfaces of uniform

potential are also called Level Surfaces, or Surfaces de Niveau,

the appropriateness of this name depending on the fact that no

work is done against the acting forces in displacing a particle in

any manner whatever on such a surface.

250.] Change of Attraction in passing through an Attract-

ing Shell of Small Thickness. It will be proved (see Example 4),

that the attraction of a circular plate of uniform density (p)
and

thickness (/) on a unit mass placed on the perpendicular to the

plate through its centre is 2-TT^p (l cos a),
where a is the

semivertical angle of the cone whose vertex is the attracted

particle and whose base is the plate. Hence, if the particle is

very close to the plate, the attraction will be

since a is sensibly a right angle ;
and this result is independent

of the radius of the plate.
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Let P and Q (fig. 246), be two points on the normal at op-

posite sides of an attracting surface of small

thickness, and consider the separate attrac-

-^ tions of a small circular plate in the vicinity

Fi 6 of P and the remainder of the surface.

The attraction of the latter portion will be

sensibly the same at P as at Q ; and by what precedes, the

attraction of the plate at P will be a force Zirkp in the sense PQ,
and at Q an equal force in the opposite sense. Hence it is

evident that the whole attraction at P is the resultant of the

whole attraction at Q and a force equal to lirkp along the

normal from P towards Q, where k and p are the thickness and

density of the shell at P ; so that if the attraction at Q is zero,

the attraction at P is 1-nJcp.

251.] Lines and Tubes of Force. If the element PQ (fig.

245) be indefinitely prolonged in such a manner as to be at all

its points normal to the level surfaces which it meets, it becomes

what Faraday called a Line of Force, which may therefore be

defined either as a curve intersecting perpendicularly all the

level surfaces, or as a curve at every point of which the resultant

force is directed along the tangent to it.

If a superficial element of the level surface at P is taken, and

lines of force are described along the contour of this element,

these lines form a tubular surface which is called a Tube of Force.

As a simple example let us consider the level surfaces of a uniform

bar (Art. 244).

Since F= Tcp log , if F is constant, ju is constant, or the axis
/x c

major of the ellipse whose foci are the extremities of the bar is

constant. Hence the level surface at P is an ellipsoid of revolution

round AB
;

and since the curve drawn through P cutting at right

angles a series of confocal ellipses in the plane of the figure is a

hyperbola whose foci are A and B, the lines of force are hyperbolas
confocal with the ellipses. Moreover, since the resultant attraction

at P is normal to the ellipse through P, we see that the, attraction of
the bar AB on a particle at P bisects the angle APE.

Again (case (l), Art. 244), the level surfaces of a magnet whose

magnetism is supposed to be concentrated in equal and opposite

quantities at its poles are given by the equation

= const.
r
i r*

They are obviously surfaces of revolution round the magnet bar,



252.] SURFACE-INTEGRAL OP NORMAL ATTRACTION. 411

generated by the plane curve whose equation is the above. One of

these surfaces is a plane bisecting NS perpendicularly, and the lines

of force are the magnetic curves, one of which is represented in p. 39.

252.] Surface-integral of Normal Attraction. Let any
closed surface be described so as to contain an element, dm, of

attracting matter completely inside it, at a point ; and let the

attraction of this element on a unit mass imagined to be placed

at P, any point on the surface, be resolved, either constantly

inwards or constantly outwards, along the normal to the surface

at P and then multiplied by dS, an element of the surface at P.

The integral of this taken all over the closed surface is called the

surface-integral of normal attraction.

To find its value, let OP = r, and let be the angle between

OP and the normal at P measured towards the interior of the

closed surface. Then the normal attraction on a unit mass at P

is 9- cos 0*. Hence the surface-integral of normal attraction

measured outwards from the surface is

'cos d

r,

If a sphere of unit radius is described round 0, and if lines

drawn from to the contour of dS intercept a portion 'of the

surface of this sphere equal to da>, it is well known that

cosOdS = r2 da.

Hence the surface-integral becomes

the integration being performed over the whole sphere since is

completely surrounded by the closed surface. But /Y/o> = surface

of sphere of unit radius = 4 TT
; therefore, the surface-integral is

which is independent of the position of dm.

Hence if n denote the magnitude of the normal attraction of

dm on a unit mass imagined at P,

fndS = 47Tdm;
and if the surface inclose any quantity of attracting matter

whose mass is M
i ,
we have, denoting by N the normal compo-

nent of its attraction on a unit mass imagined at P,

(1)

* Or rather this multiplied by the unit factor, as explained in Art. 242.
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Ifthere is repulsionbetween the mass inside and the unit mass onthe

surface, we b&vefNds = -}-^TrMi , ^being still measured outwards.

We shall now suppose that the element dm is completely
outside the closed surface.

From draw a right line OPQ
meeting the surface in P and Q ;

let

OP = r19 OQ = r
2 ,

t QPa = 19

Z.PQm = 2 ,
Pn and Qm being the

p. 2 ?
normals to the surface at P and Q.

Then, if^ is the element of surface

at P, ^o> the element of surface intercepted on a sphere of unit

radius described round as centre by lines from to the

contour of dS19 and dS2 ,
the corresponding element of surface at

Q, we have COB01 d81
= tfda,

cos 2 ^$2 = r
2
2 da> ;

, cos 9 _
ft cos 0, _ rt

hence r^i r*
iSSj

= Oj but the expression on the
r
2 r

i

left-hand side of this equation, when multiplied by dm, is the

sum of the normal attractions at P and Q, each measured in-

wards and multiplied by the corresponding superficial element.

Hence if any closed surface is described in such a manner as to

include none of the attracting matter

fNdS = 0, (2)
the integration being performed over the whole of the closed

surface. In the figure we have represented a line from as

meeting the surface in two points only ;
but since the surface is

closed, a right line must meet it in an even number of points,

and it is evident that the elements of the integral
considered destroy each other at the points where the

line meets the surface, as in the above figure.

253.] Surface-integral for a Tube of Force. Let

PAQB represent any portion of a tube of force, P and

Q being elements of two level surfaces intercepted by
the tube. Then the atttaction on a unit mass at P is

Fig. 248. normal to the section P, and the attraction on a unit

mass at Q is normal to the section Q, while at every

point, A or
,
on every portion of the lateral surface of the tube

the attraction is wholly tangential to the surface.

Let F be the force at P, IF that at Q, and o> and a/ the areas

of the sections P and Q. Then, supposing that the tube
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contains none of the attracting matter, equation (2) of last

Article gives JFYa -FV= 0, (1)

since the only portions of the closed surface PAQJ3 which con-

tribute elements to the surface-integral of normal attraction are

the sections P and Q.

Hence, at all points in empty space on a given line offorce the

resultant attraction on an imagined unit mass is inversely propor-

tional to the normal sections of the tube offorce at these points.

This simple theorem gives the law of attraction very readily

in certain cases. For example, let the attracting body be a

sphere whose density is the same at the same distance from its

centre. Then the lines of force are obviously right lines drawn

from its centre
;
the tubes are therefore cones whose vertices are

the centre, and since the normal sections of these cones are

directly as the squares of their distances from the centre, the

attraction of the sphere at any external point is inversely

proportional to the square of its distance from the centre.

Again, let the attracting body be an infinite cylinder whose

density is the same at the same distance from its axis. Here

the lines of force are right lines emanating from the axis per-

pendicularly, the tubes become wedges, and the areas of their

normal sections are directly proportional to their distances from

the axis
;

hence the attraction of an infinite cylinder at an

external point is inversely proportional to its distance from the

axis.

Finally, for an infinite attracting plate, the tubes are cylinders
and the attraction is constant at all points in empty space.

These elegant applications of equation (1) are given by
Thomson and Tait (Nat. Phil.).

If the tube of force contain within it a quantity of the

attracting matter whose mass is dq, we have by (1) of last

Article
JFo>-JV= 4 TT dq. (2)

This equation can in like manner be employed to find the re-

sultant force inside a sphere, a cylinder, or a plate.

In the case of a sphere of uniform density, let the tube be

contained between the spheres of radii r and r+dr. Then

dq = p&dr, p being the density at the attracted point, and (2)

becomes
d(F<*)

= lirpudr,

or
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since to is proportional to f2 . Integrating this last equation,

Fr* = -irpr* + C.
4

Now Fis evidently zero at the centre, therefore C = 0, and

.

For a point inside an infinite cylinder at a distance r from the

axis we have, since o> is ultimately a rectangle of breadth pro-

portional to r,

d(Fr)

In general, if the tube is terminated by two level surfaces

whose distance measured along the lines of force forming the

tube is dsj we have dq = pw ds, and (2) gives for the determina-

tion

254.] Equations of Laplace and Poisson. We propose to

prove that if V is the potential of an attracting solid mass on a

unit mass at the point P (#, y, z) we shall have

d 27 d 27 d 2 7

according as there is not or is some of the mass at P. The first

is Laplace's equation and the second Poisson's.

At P draw a small parallelepiped whose edges, measured from

P, are dx, dy, dz, and find the surface-integral of normal at-

traction over the surface of this parallelepiped. The normal

force, N, measured outwards from the surface on the face dy dz

dV
passing through P is

y- dy dz
;

the normal force on the

opposite face is
(
-

f- -^ dx) dy dz
;
and the sum of these two

ftiy \f MX

is
y-g-

&x ty fa- Similarly, the sums contributed, fNdS, by the

d2F d 27
faces dz dx and dx dy are

-=-^-
dx dy dz and

-=-^ dx dy dz. Hence

if there is no mass inside the little parallelepiped we have

ftty ^Y d 27
-j-p

+
-j-2

+
-j-%

=0. If there is mass, equal to pdxdy dz,

we have by equation (l), Art. 252,

d 2F
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In this very simple way we may also find the differential

equation in polar co-ordinates satisfied by V. Take as the

surface over which the normal attraction is integrated the polar

element of volume msqt (fig. 208, p. 280). Let the polar co-

ordinates of the point s be r, 6, $ ; let the normal force on the

face msql>e denoted by R and the area of this face by ^. Then

this face will contribute the term Es
l
to the surface-integral;

and the opposite face (through t)
will contribute Rsl -\

^ *' dr ;

fj I 7? \

therefore these faces give conjointly
~ dr. Let the normal

dr

forces on the faces ms t and tsq be T and S, and the areas of these

faces s
2
and s

3 ; then the first and its opposing face will furnish

the term ^ 2'
dO, and the second and its opposing face

,
, 2 ln jHence dr+ de+-d* = 0, or = -

according as there is not or is mass inside the element of

volume.

-XT T?
AT T IdV 1 dV

Now jft = > r = - -=-r S = :
- -

;

dr r dO r sm d(p

s
l
= r* sin 6 dO d$, s

2
= r sin dr d<$>3 s

2
= r dd dr

;

and the differential coefficients are, of course, all partial.

Hence, if m
i
is put = p r2 sin 6 dr dO d<[>, p being the density at

c',
we have

. A d , 9
dFx d , . dT. 1 d z 7

sm^--(r
2 -r ) + (sm0 ) + -P- - =0,

dr\ dr' d6\ dd' sm ci
2

or =
d 2 d 2 d 2

It is usual to denote the operation -j-^ + -^ + -~- by the
,

T
__ d%2

dy* dz2 J

symbol v.

EXAMPLES.

1. To find the attraction of a magnet on a magnetic particle whose
distance from the centre of the magnet is very great compared with

the length of the magnet.
Let NS (fig. 35, p. 39) be the magnet, and suppose equal and

opposite quantities of magnetism, m and m, to be concentrated at
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its poles N and S, respectively. Then, assuming a quantity \i at any
point Pt

whose distances from N and S are r
l
and r

2 , respectively,

Let be the centre of the magnet,

OP = r,ON = a, an

Then r* = r2- 2 ar sin A + a2
,

OP = r,ON = a, and PON = - -A.

and rejecting ( -) > we have

rj
* r r

. .

Hence r =-s sin A.

If N is the attraction in the direction PO, we have N = --
> or

or

.

sin A.
r

dv
If ^ is the attraction on P perpendicular to PO, we have T = -

}

raA

since the element of a circular arc at P whose centre is is rd A
;

2mjua
.'. ^ = f cos A.

r3

If the direction of the resultant attraction at P makes an angle

- i with OP. we have
2 tan ^ = 2 tan A,

the well-known equation which expresses the magnetic dip (i) in

terms of the magnetic latitude (A), on Biot's hypothesis of terrestrial

magnetism.

2. To find the attraction of a uniform bar on a particle.

First, by the method of potentials. It has been shown (case (2),

Art, 244) that ..,,
. (i)

and also that the resultant attraction acts in the bisector of the angle
APS

(fig. 242).
Let ds be an element of this bisector at P. Then the attraction is

(TV

-j~ ; and from (1)
dV 2Jcpc dp
ds
*

p?-c* ds'
dT

Now if 2<f>
= /.APB, and AP = r, we have ~ = cos <. Also

2/x = r+ r', and since along the bisector, or, in other words, along a

hyperbola through P confocal with the ellipse whose axis major is
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2
ju, r / is constant, we have dr = dr, therefore -3- = - cos <

as ti6'

Hence = =
5- cos </>.

c?s ft
2

tf*
r

Again in the triangle APS, cos $ ==A/ ^
^-

5 by an elementary

formula in trigonometry. Therefore -7- = , ;
and if y is the

perpendicular from P on AB, we have 2cy r/sin2^>; therefore

finally,

which is the resultant attraction.

Secondly, by direct calculation. The attraction of the element kpds
Jcpds kpd\l/

atM on a unit mass at P
(fig. 242) is^^ > or (if

Z J/PO = \^)
>

where PO = y. Eesolve this along and perpendicular to PO, and

denote the components of the resultant attraction in these directions

by Y and X, respectively. Then

Y= / cos \l/d\j/
=

(sin a+ sin j3),

y J-fi y

X= smtid\l/ = (cos/3 cosa),
y J-JB y

where a = Z^P<9, /3
= Z5PO. From these values we have

where

which shows that the direction of R hisects the angle APB.

3. If a circular arc of uniform thickness and density (equal to

those of the bar) is described with P as centre, touching the bar at

and terminated by the lines PA and PB, the attraction of this arc at

P is the same in magnitude and direction as the attraction of the bar

at P.

For, draw PN to a point N on AB very near M, and let PM and

PN meet the circular arc in ra and n respectively. Then the

attraction of the element MN on P is kp ~pM*'
From ^ let fal1^

perpendicular to PN. Then

MQ _MQ.PM _<tnn.PM* _mn.PM*~
sin PMO

~
PO

=
Pm . PO

=
Pm2

Therefore kp ~pjprz
= bp p~i> hence the attraction of the element

E e
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MN of the bar is equal to that of the element mn of the circular arc.

Therefore, &c.

4. To find the attraction of a circular plate of uniform density and
small thickness on a unit mass placed anywhere on an axis through
the centre of the plate perpendicular to its plane.

Let z be the distance of the attracted particle, P, from the centre,

0, of the plate. Divide the plate into an infinitely great number of

circular rings whose common centre is
;

let r be inner radius of one
of these rings, dr its breadth, a the radius of the plate, k its thickness,
and p its density. Then the potential of the ring at P is

2irkprdr _
since each particle of the ring is at a distance Vz*+rz from P.

Hence F= 2-nkp

and the attraction =-- = Zirkptl

Let a be the semi-vertical angle of the cone whose base is the plate
and vertex P. Then z = a cot a, and the attraction is

2 7T&/>(1 cos a).

The same result follows easily by direct calculation. For if is the

angle made with PO by lines drawn from P to the circumference of

the ring of radius r, the attraction of this ring resolved along PO is

2-nkprdr
T- 2 cos

;
but r-=z tan0, therefore this expression=2T7&psm Odd,

the integral of which from = to 6 = a is Zirkp (1 cos a).

5. To find the attraction of the frustum of a right cone on a

particle placed at the vertex of the complete cone.

Let the frustum be divided into an indefinitely great number of

circular plates, each of the thickness, dz. Then since a is the same
for all the plates, and k in the above case is now dz,

rh
whole attraction = 2irp (1 cos a) / dz,

J h'

where h and h' are the distances from P of the faces of the frustum.

Hence the attraction is

27^-^(1 -cos a),

and the attraction depends merely on the thickness, hh', of the

frustum and not its proximity to the attracted particle.
This remarkable proposition is true also in the case of an oblique

cone standing on any plane base whatever, the attracted particle being
at its vertex. To prove this we have merely to show that if two

plates of the same thickness, each parallel to the base, be taken

anywhere in the cone, these plates exert equal attractions at the

vertex.
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Through the vertex, P, draw an infinite number of rays forming a

very slender cone intersecting the two plates in two small similar

elements of surface, dS and dS', at the points M and M', suppose.

Then the attraction of dS on P is --^ > k and p being the thickness
Z

kpdS'
and density of the plate ;

and the attraction of dSf
on P is .

These attractions are in the same line, PMM' \
and since the contours

of the elements dS and dS' are similar curves, -77^ = nil/r,<> ; therefore
ab rM

the attractions of these elements on P are equal. Similarly for all

other corresponding elements of the plates; therefore the plates

attract P equally.
The attraction of any frustum on P depends, then, only on the

number of plates of given small thickness in the frustum, i. e. on the

thickness of the frustum.

6. To find the attraction of a spherical shell of uniform density and

small thickness on an external particle.

The potential has been proved (Art. 244) to be -
> or

. o

F= - Also the attraction measured in the direction in which
c dV

c increases (Art. 248) is > therefore the attraction towards the

dV d
Acentre is -j- > or *vpr<r* -?

It is the same, therefore, as if the mass of the shell were concentrated

at its centre.

Hence also the attraction of the solid contained between two con-

,
mass of solid

centric spherical surfaces is---
7. To find the attraction of a spherical shell on an internal particle.
Since the potential is constant inside the shell, the attraction is

zero. This result is independent of the thickness of the shell. If the

attracting solid is a spherej and the attracted particle, of unit mass, is

inside the sphere at a distance r from the centre, it follows that if a

sphere is described concentric with the given one and passing through
the particle, the portion of the solid included between this sphere and
the surface of the given sphere exerts no attraction on the particle ;

4'Trp'H*
and the attraction of the sphere of radius r is

2
> or

4

that is, the attraction of a sphere on an internal particle varies as the

distance of the particle from the centre.

8. To find the attraction of a circular plate of uniform thickness

and density on a particle in its plane, the law of attraction being that

of the inverse cube of the distance.

E e
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From P, the attracted point, draw two very close radii vectores

intercepting a narrow strip of the plate between them.

Let be the centre of the plate, let

Q be the angle OPA made by one of

the radii vectores, and let 6 + dO be

the angle made by the other, with

OP. Let Q be a point on PA, and

PQ = r. Then the mass of the ele-

ment at Q included between circles of

radii r and r+ dr described with P as

Fig. a49. centre is
kprdrdO,

Jc and p being the thickness and density of the plate.
The attraction of this element on P resolved along PO is

kpdrddJ
V~~ C S ^

hence the resultant attraction is

'drde
COS0,

the integration in r being performed from r = PA to r = PB, and

that in 6 from = sin"1 - to = sin"1 -
> where a is the radius of

c c

the plate and c = OP, the extreme values of corresponding to the

two tangents that can be drawn from P to the circle.

Now denoting PA by r^ and PB by r
2 , and integrating first with

respect to r
a ,

the attraction is

The values of ^ and r
2
are given by the equation

r2 2crcos0 + c2 a2 = 0,

_!_ J_ 2\/a2-c2 sin2

^" =
c
2-a2

Hence the attraction is

where is put for c sin 6.

In this case we might have found the attraction from the Potential.

The latter is easily found by dividing the plate into rings with as

centre. If r is the radius of one of these rings we have V =
= to =

,
and-

doubling the result we have V = nkp I
2 ^ j in which r runs from

Otoa. Hence F=^log
Q>
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But F may also be easily found from the attraction, thus,

_
do

=

c(c
2-a2

)'

Tr irkp . c
2

V= -~-
log -^
-

^ -f const.
J c &

Now, since F= - f , it is clear that at infinity F= 0, or F=
when c = oo . This gives the const. = 0,

9. If Vn and F^ denote the potentials of an attracting mass when
the law of attraction is the n^ and (n 2)& power of the distance,

respectively, prove that
T7

F n-~
d* d 2 d 2

where V + + > the co-ordinates of the attracted particle

being x, y, z.

We have FB =--^r.w+ 1

therefore, as in Art. 246,

and

Adding to this the similar values of -=- and
-r-j

> we have

This equation enables us, generally, to find the potential for the

(n 2)
th power of the distance when that for the nth is known; but

it fails in two most important cases, namely, when n = 1 and when

If the attracting mass is a plate, r2 = (xyff + tyy'y*, and the

result is easily proved to be

In the last example we find the potential of a circular plate for the

inverse third power ; hence we have at once the potentials, and there-

fore the attractions for the inverse fifth, seventh, &c., powers of the

distance.

10. Calculate the attraction of a uniform spherical shell of small

thickness on an external particle when the attraction varies as the n^
power of the distance.

With the notation and figure of case (3), of Art. 244, we have

* This equation, as well as that in Ex. 19, is Mr. Jellett's.
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n+1
9-rrnrn C*

as- p
I (c

2 -2ccos0 +
w+1 Jo

+!

This integral is of the form / x 2
c?a?. Hence

If we wish to find the attraction of a full sphere of radius r, we
observe that T is da, and we integrate this expression from a to to

a = r.

In each case the attraction towards the centre is --=

dc

11. Let there be two distributions of mass denoted by M and M l

';

if at any point in M, where the element of mass is dM, the potential
due to M' is denoted by V, and if at any point in M', where the

element of mass is dM', the potential due to M is denoted by F, we
shall have

/V'dM = fVdM',
the integration (or summation) on the left-hand side being performed

throughout the mass M, and that on the right-hand side through-
out M'.

For the element V-dM of the first integral means that all the

elements of M' are to be multiplied each by the element dM at a

fixed point in M, and each of these products is to be divided by the

distance between dM and the corresponding element chosen in M'
;

nn&fVdM means, therefore, that the elements of the mass M are to

be combined in pairs in all possible ways with the elements of M' and
each product divided by the mutual distance of the two elements in it.

But this is manifestly also the meaning off VdM'.
Of course this is also true if the elements are multiplied by any

function of their mutual distance, and it is also true whatever

elements may be denoted by dM and dM' they, one or both, may be

elements of space, for example.
Hence the mean potential over a spherical surface due to matter

entirely outside the sphere is equal to the potential of this matter at the

centre of the sphere. (Gauss, Papers on Forces varying inversely as

the square of the distance, Taylor's Scientific Memoirs, vol. iii. part x.)
For let mass of uniform density p and small uniform thickness r,

be supposed to be distributed on the sphere ; let dS be an element of

its surface, V the potential at this element of the attracting mass, and
a the radius of the sphere. Then since the potential of a shell at an
external point whose distance from the centre is r

it follows that if dm is an element of the attracting matter
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pT f VdS = 47r
/
ora2/? = 47rpra

2F
,

if F is the potential at the centre of the sphere. Hence

fVdS _"-

which proves the proposition, since f\
r
ds divided by the whole surface

of the sphere is the mean value of the potential over its surface.

12. Given the whole mass of a solid, find its shape so that its

attraction on a particle placed at a given point may be a maximum.
It is clear that the surface of the solid must pass through the

attracted point, and a little consideration shows that the component of
the attraction of any element of the solid along the direction of the

resultant attraction must be constant. Hence the surface of the solid

is one of revolution round the line of action of the resultant, and the

equation of the generating curve is

COS0 1

9 = z- = constant,
r2 a2

the attracted point being pole, and the line of action of the resultant

the initial line. Hence if R be the whole attraction, and / the unit
force (Art. 242),

I

Jo

==!**></,

But the mass, M, of the solid is easily found to be T
4
T 7r/oa

3
;
there -

, p ,48nVJf*fore B=( )./-

The attraction of a sphere of mass M on the particle (placed on its

surface) would be (
-

^- ) /; so that the former exceeds the

latter in the ratio (f)*.
13. Find an approximate value of the potential of any solid mass at

a very distant point.

Let G be the centre of mass of the solid body, P the distant point,

Pf

any point in the mass at which the element of mass is dm. Take

G as origin and GP as axis of x let GP = r, GP' = /, and let the

x of P' be x.

Then F = r *
'

} Vr*-

r'

neglecting all higher powers of - than the second.



424 ATTRACTIONS. THEORY OF THE POTENTIAL. [254.

Now fx'dm = 0, and if we denote by A. and /u the radii of gyration
of the solid about the axes of y and 2, and by k its radius of gyration
about GP, we have

where M = mass of body.

TT v M n ,Hence T = -(l+ -- ^
--

)

But if
yfej,

&
2 ,
&
3
are the principal radii of gyration at G, we have

A2+ fj?+# = y^
2+ &

2
2 + k*

;
therefore

Jf
= 1 '

By differentiating this with respect to x, y, and 3 separately, we find

the components of attraction in the directions of the principal axes at

G on a unit mass at P.

14. If F=/(#, y, z) be a function satisfying Laplace's equation,

VV = 0, show that the function - f ( 5
~

> y)
will also satisfy

it (where r2 = or
J + 2/

2+ 22
).

If is the origin, P the point (#, y, z), Q a point on OP produced

such that #$ = 777,5 the co-ordinates of Q are 3-5 ^ -=- Let
C/jT V f* 7*

OQ = p, let
(f, TJ, Q be the co-ordinates of 0, and let

Then satisfies the equation

But p
2 - = a2 -

; therefore this equation becomes
aa ar

A d . . A dU. 1
ramd , + (sing -+ - = 0.x

The first term being the same as sin -r- (r
z

) , this equation is, by

Art. 254, the equivalent of

_
dx* d*cW =

15. A homogeneous fluid, self-attracting according to the law of

nature, completely fills the space between two spherical non-concentric
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surfaces one of which entirely surrounds the other
;

find the resultant

attraction at any point of the fluid, and also the level surfaces.

Let be the centre of the larger and 0' the centre of the smaller

sphere ;
P any point in the fluid

;
00' = c

;
radius of smaller sphere

= b
;
OP r,0'P = r

f

', p = density of fluid.

To calculate the resultant force at P, imagine that the place of the

smaller sphere is occupied with fluid
;

then the larger is completely

full, and there is a force ^Ttpr in the line PO towards 0. Now let

the effect of the fluid which we have introduced be annulled by com-

bining with the above force the force exercised at P by a repulsive fluid

of same density filling the smaller sphere. This latter force would be

7^
on the scale adopted; and this would act in the line O'P

from 0'.

The resultant of these forces is the resultant force at P. If V
is the potential at P,

r', [Art. 243]
3 o T

2 47TP&
3

.-. F = -- npr*--^- + const.

This value is otherwise evident, since the potential at a point due to

any attracting bodies is the sum of their separate potentials at the

point. If a is the radius of the larger sphere (see p. 404),

2 4-irpb*V = -

The level surfaces are given by the equation

263

r2 H T = const.

16. "Whatever maybe the law of attraction, prove that the attraction

of the smaller of two concentric spheres at a point situated on the surface

of the larger is to the attraction of the larger at a point situated on

the surface of the smaller as the square of the radius of the smaller is

to the square of the radius of the larger.

Draw any radius meeting the surface of the smaller sphere in q and

the surface of the larger in Q. Let /'(r) represent the law of attrac-

tion ;
let a = radius of larger, b = radius of smaller, and be their

centre. Then the attraction at Q of an element of the smaller at the

point xvz is
JV / \

U-
f(r)

along QO, which is taken as axis of x.

Performing the integration with respect to x, considering y and z

constant, the attraction at Q of a thin prismatic bar (parallel to OQ)
of the smaller sphere is
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where r^ and r
2
are the distances from Q of the ends, A and B, of this

bar. Draw OA and OB meeting the surface of the larger sphere in A'
and B'

y respectively ;
then A'B' will be the axis of a prismatic bar of

the larger sphere whose attraction at q is

(y' and s being co-ordinates of A' or B*) since qA' = QA = r
lt
and

qB'=QB = r
2 . But^ = 4 = -

5
therefore-^ = ^; therefore

y z a dydz a?

the attractions of these corresponding bars bear to each other a

constant ratio, and hence taking all such bars for the two spheres, the

proposition is proved.

1 7. From the last proposition prove that the only law of attraction

for which a homogeneous spherical shell of uniform thickness will

exercise no attraction at any internal point is the law of nature.

For if such a shell exercises no internal attraction, it follows that
the matter contained between the surfaces of the two spheres exercises

no attraction at q, however great OQ may be. Hence however great
OQ may be, the attraction of the greater at q is constant

; therefore

the attraction of the less sphere at Q oc -$ Q. E. D.

18. To express the amount of work done by the mutual attractive

forces of the particles of a self-attracting solid when the body changes
from one figure to another.

Let m
lt
m

2 ,
... be any elements of the solid, and r

12 ,
r
13 ,

&c. their

mutual distances. Then in the alteration of the distances between m^
and the other elements the work done on m

l
is

, .Win T??/,, x
or Wi(f(_2 + _J

+...), Qr

where Fj is the potential of the whole mass at the position at m
lt

Hence the work done on m
l
is m

1 (F/
7

F/), where F/' denotes the

potential at m
l
in the final figure of the solid, and F/ the potential in

the initial figure. Similarly the work done on m
2
is m

2 (F2

7/

F/) ;
and

since the term
*

2

2
dr

12
is common to the expressions for the work on

m
1
and the work on m

2
it is clear that whole work is expressed by

l/ ran
this integral extending over the whole solid in its first and second

figures, and the first result being subtracted from the second. This

expression is the potential work of the internal forces of the attracting
solid.

1 9. If Rn and 7?w_2
denote the resultant attractions of a given solid

at a given point when the law of attraction is that of the nth power,
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and that of the (n 2)
th

power, of the distance, respectively, prove that

-(
20. Find the attraction of a circular plate of uniform thickness and

density on an external particle of unit mass in its plane, the law of

attraction being that of the inverse distance.

A ns. The mass of the plate divided by the distance of the particle
from its centre.

21. Prove that if a material lamina attract according to the law of

the inverse distance and if N is its attraction on a unit mass at any
point of a closed curve, measured outwards along the normal, we shall

haVe
fNds = 0, Or = -27im i)

according as there is no mass or mass m
i
inside the closed curve, and

hence that VF = 0, or = 27r/o.

22. Prove that the values of V F calculated for external points and for

internal points do not agree for points on the surface of a solid sphere.

23. Prove that neither Laplace's nor Poisson's equation holds for

points on the bounding surface of an attracting solid.

24. Find the attraction of a uniform hemispherical shell of small

thickness on a unit particle placed at a distance, x, from its centre on
the diameter perpendicular to the plane of the rim of the shell.

Ans. If r is the radius of the shell, p its density, and T its

thickness, the attraction is
-

% (1
--

. )* the unit of force
x V r^ + x2

being that between two units of mass at a unit distance apart.

25. If a number of uniform bars of the same section and density
form any closed polygon with no re-entrant angle, prove that they

produce the same potential (for the law of the inverse square) at any
point inside the polygon as a polygon of bars formed by joining the

feet of the perpendiculars from the given point on the sides of the

given polygon.
Extend this proposition to any curve.

(See Case (2), Art. 244.)

26. If a self-attracting sphere of uniform density and radius a

changes to one of uniform density and radius a', find the amount of

work done by its mutual attractive forces.

Ans. The unit of work being that done when two particles, each

of unit mass and placed at a unit distance apart, are drawn to an
infinite distance apart, the work done will be

!*.->
where M is the mass of the sphere.

27. Two equal uniform bars of given sections and densities are

placed parallel to each other and at right angles to the lines joining
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their extremities
;
find the amount of work done against their mutual

attraction in drawing them a given distance asunder.

Ans. If y is the distance between the bars in any position, I the

length of each, m and m are their masses, and the unit of work is the

same as in last example, the work done in changing the distance from

y^ to y2
will be the difference of the values of the expression

y

when yt
and ya

are successively put for y.

28. The gravitation potential of an attracting mass cannot have a

maximum or minimum value in empty space.

[Let it have a maximum value at A. Then round A, and in-

definitely near it, can be described a closed surface, at every point of

which V is less than it is at A. Therefore if dn is an elementary

length along the normal (measured inwards) to this surface,
dV /**

is positive all over the surface ; but N = -7 ; hence equation (2),

Art. 252 is contradicted.]

29. A particle in equilibrium under the attraction of any system of

masses (for the law of nature) is in unstable equilibrium.

(This follows from last example. See Art. 199. See also Clerk

Maxwell's Electricity and Magnetism, vol. i, p. 139. The Theorem
is known as Earnshaw's.)

30. If a level surface contath none of the attracting mass, the

potential is constant throughout its interior, and equal (of course) to

that on the surface. (Gauss, in Taylor's Scientific Memoirs.) For if

not, it must have either a maximum or minimum value at some point
within. This very simple proof is given by Thompson and Tait, Nat.

Phil.

31. If all the attracting mass lies on or within a level surface on
which the potential is zero, then in all space outside this surface the

potential is constantly zero. (Gauss. )

[If possible, let the potential at any external point, P, be A, which
is > 0. Then, since lines drawn from P to the given level surface

meet it in points of zero potential, it is possible to find a series of

points on these lines at which the potential has a constant value, < A
and = B, suppose. Also since the potential is zero at all points at

infinity, it is evidently possible to describe round P a closed level

surface on which the potential = B, and which includes none of the

mass. This surface is subject to the result of last example, which
contradicts our supposition. Therefore A cannot be > ;

and by
changing the sign of every mass in the system, the supposition that

A is negative may be rejected ;
therefore A = in all external space.]

32. If all the attracting mass lies on or within a level surface, then
in all space outside this surface the potential is less than on the

surface, and has the same sign.
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33. If in any portion of empty space of finite volume the potential
has a constant value, it will have this value throughout all space,
which can be reached without passing through any of the mass.

(Gauss).

SECTION II.

The Attraction of Ellipsoids.

255.] Shell bounded by Similar Surfaces. Let vr'p' and rqp
be two concentric, similar, and similarly situated surfaces whose

normal distance from

each other is at all

points very small. Sup-

pose the space between

these surfaces to be

filled by attracting mat-

ter of uniform density,

and let be an at-

tracted particle in the

interior of the shell. F S- 25-

With as vertex let

any slender cone be described, intercepting on the shell two

frustums whose thicknesses measured along the generator pr of

the cone are pp' and rr'. Then, since by the property of similar,

similarly situated, and concentric surfaces, the intercepts pp' and

and rr' are equal, we see by example 3 of last Article that the

attractions of these frustums on are equal and opposite.

Hence the corresponding frustums of all such cones exert equal
and opposite attractions on

;
and the resultant attraction of

the shell on any internal particle is therefore zero.

Hence, generally, if the law of attraction is that of nature,

every shell of uniform density and small thickness, bounded ly

similar
', similarly situated, and concentric surfaces produces a con-

stant potential at all points in its interior, and exerts, therefore, at

these points no attraction.

The same is true for a solid of uniform density and any thick-

ness bounded by two similar, similarly situated, and concentric

surfaces, since the thicknesses of the frustums intercepted

bet ween its bounding surfaces will still be equal.
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256.] Corresponding Points on Confocal Ellipsoids. Let

rqp and PQ (fig. 250) be two confocal ellipsoids, let the axes of

the first be a', /3', y', and those of the second a, /3, y, let the co-

ordinates of a point p on the first be of, y, /, and those of a

point P on the second x, y, z. Then, if

x _ x' y _ y' z _ /
a
=
Z' J

=
J' X~7'

the points P and p are called corresponding points on the ellip-

soids. Also, let Q and q be two other corresponding points.

Then it is very easy to prove that the distance Pq is equal to the

distance Qp. (Salmon's Geometry of Three Dimensions
-,
Art. 181.)

257.] External Potential of an Ellipsoidal Shell. Let it be

required to find the potential at an external point, P, of a shell

bounded by the similar, similarly situated, and concentric ellip-

soids v/jp' and rqp. Through the point P describe an ellipsoid,

PQ, confocal with rqp, and describe also an ellipsoid, mm, con-

focal with vr'p' and similar to PQ. This latter surface is

completely determinate, since its axes must be pa, fj.fi, py, and

since ^ (a
2
-/3

2
)
must be equal to ju'

2
(a'

2-'2

),
where /xV, //',

/m'y' are the (given) axes of the ellipsoid vr'p' ;
or /u

=
ju', since

a2 /3
2 = a'2 -/3'

2
. Now, let ', r/', f' be the co-ordinates of any

point q on the inner shell, and f, 77, f those of the corresponding

point, Q, on the outer. Then if p is the density of each shell,

the element of mass at p is pd'dr[d', and the potential produced

by this element at P is

But since ^7 = ^, &c., we have
a a ap y

therefore the potential of the element is

apy Pq
and the potential produced at p by an element of mass at Q is

Qp
And since Qp = Pq (Art. 256),

potential at P due to element of mass at q

potential at p due to element of mass at Q
"

a(3y

_ mass of shell rqp~
mass of shell PQ
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Taking all the elements of the inner shell, and all the cor-

responding elements of the outer, and thus exhausting both

shells, we see that

the potential of the inner shell at Q mass of inner shell

the potential of the outer shell at p mass of outer shell

Now since these shells are bounded each by similar surfaces, the

potential of the outer shell is constant at all internal points, and

(in virtue of the continuity of the potential) this potential is the

same as the potential of the outer shell at P.

Hence the potential of an ellipsoidal shell bounded by similar

surfaces is constant at all points on the surface of any ellipsoid

con focal with the surface of the shell that is, the level surfaces

of an ellipsoidal shell are confocal ellipsoids, and its attraction at

any point is therefore normal to the confocal ellipsoid through
the point.

Let Fand V be the potentials of the shells PQ and rqp at

p ' then
r'_ a'^' v.

'~^/
y>

and if #, y, z be the co-ordinates of P, we have

dV ^a'PY dV
,

dx afiy dx

hence the components of the attractions of the two shells in

the same direction are to each other in the ratio of the masses

of the shells. For this reason the calculation of the attraction

of an ellipsoidal shell at an external point is reduced to that

of a shell on its surface.

258.] Attraction of an Ellipsoid at an External Point.

Let ABD
(fig. 250) be a solid homogeneous ellipsoid, and let it

be required to find its attraction on a unit mass placed at P.

Break the ellipsoid up into an infinite number of thin shells

bounded by ellipsoids similar to each other and to the surface

ABD
;

let one of these shells be that between the surfaces v/p'

and rqp. Denote this shell by (s) ;
and describe the ellipsoids

PQ and msn, similar to each other and confocal with the surfaces

of
(s),

as in the preceding Articles. Denote this shell by (<r).

Let the axes of ABD be
, b, c

;
let those of rqp be ka, kb, kc,

and let those of v/p' be (k + dk) a, (k + dk) #, (k + dk} c. Also, let

the axes of the ellipsoid PQ be



432 ATTRACTIONS. THEORY OP THE POTENTIAL. [258.

then, by Art. 257, those of mm will be (k+dk)</aP+\*, (k+ dlc)

V^2 + A2
, (k+dk)*/c* + \*. Now (Art. 250), the attraction of

the shell
(o-)

on a unit mass at P is

where Pn is the normal thickness of the shell at P. This at-

traction acts in the direction of the normal P, whose direction

cosines are
pa

,

py pz

p being the length of the perpendicular from C, the centre of

the ellipsoid ; on the tangent plane at P, and #, y^ z the co-

ordinates of P. Hence the attraction of
(<r)

on P parallel to the

axis of #, in the positive direction, is

p^ (1
.Pn '

Draw the line CP meeting the inner surface of
(a-)

in s.

,
Pn p Ps _

,
Cs axis of msn

Then
PJ

=
cP>

therefore P =* . ^. Bat -^
=^ Q{ pq

k + dk ., Ps dJc , _ pdk= r > therefore -^- = ~
5
an^ Pn = -

Substituting this value in (1), We find the attraction of
(o-)

parallel to the axis of so to be

Multiplying this by the ratio of the mass of
(s)

to that of
(<r),

we have the component of the attraction of
(s). Denoting this

latter by dX} we have
* ,,

Now, by the equation of the surface PQ,
z* f z*

a2 + \2
+

?
5
~rT* 4

Differentiating this, regarding Jc and A as variables, we have

r A^A = dk.

P
2

by the well-known value of the perpendicular from the centre

on the tangent plane of an ellipsoid.

* The curious compensation of errors involved in the usual proof of this is well

noticed by Collignon (Dynamique, p. 403). This simple proof is from Thomson
and Tait.
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Substituting this value of dk in (2), we have

433

To find the limits of A, we observe that when the shell
(s) is

taken at the centre, k =
;
but the axes of

(o-)
must be finite

;

and as they are k+/a? + A2
, &c., the value of A corresponding to

a vanishing shell at the centre is oo. Again, if k = 1, or
(<$)

is

a shell at the surface ABD, we have a2 + A2 = % 2
,
where a

L
is

the semi-axis of the ellipsoid confocal with ABD, and passing

through P. Denote this value of A by Al4 Then, if M be the

mass of the solid ellipsoid ABD, we have

(3)

and in the same way for the other components, Y and Z,

(<)

-
* oo

^ ^iwe have evidently

The expressions for X, Y, Z may be put into other forms

which are useful in practice, by putting

A =

Then X= -

3.% f-=
-^-J:

1

ifidu

where e2 =
_ 2

, and e"2" =

(5)

, the least semi-axis being c.

If the attracted particle is on the surface ABD of the

attracting ellipsoid, the limits of u are and 1, since c
x
= c.

v f
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If the attracted point is inside the ellipsoid, let an ellipsoid be

described through it concentric with and similar to the surface

ABD, and the portion between these two surfaces exerts no

attraction at the point (Art. 254).

Equations (5) show that the components along the principal

axes of the attraction of a homogeneous ellipsoid on a particle

placed anywhere on its surface or inside its mass are of the

forms Ax, By, Cz, (6)

where A, B, C are constant quantities.

EXAMPLES.

1. Find the attraction of a homogeneous ellipsoid of revolution

round the minor axis (oblate spheroid) on a particle placed on its

surface.

Here a = 6, and e = e' in equations (5) ; therefore

3Mx rl u?du

c
3 Jo(l+<M2

'

The integral is most easily found by putting eu = tan 0. We then

find 3Mx. e .

3Mz
,Z --

S-T- (ettm~
l

e)cV

These expressions are of importance in the theory of the figure of the

Earth.

2. A homogeneous fluid mass, self-attracting according to the law
of nature, is acted upon at every element by a force proportional to

the mass of the element and its distance from an axis passing through
the centre of mass of the fluid. Prove that an ellipsoid of revolution

round the axis is a possible figure of equilibrium of the fluid.

Let \LT be the force emanating from the axis on a unit mass at

distance r from the axis. Take the axis as axis of z, and assume the

surface of the fluid to be an ellipsoid of revolution whose axes are

c\/l+e2
, c\/l+e

2
,
c.

Then the x component of force on a unit mass on the surface is

(A +ju) x, where A has the value in example 1. Hence if V is the

potential at the surface

which is zero, since if the potential is not constant over the surface of
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a fluid, there will be a force in the tangent plane causing a flow from
one point to another. Also by differentiating the equation of the

surface, we have

Hence we must have A + p _ 1

~c~ ~IT?'

Substituting the values of A and C from last example, and puttingM = Tic
3
(1 + e

z

) p, where p is the density of the fluid, this equation

gives

Put p = f TCP . q ; then we have

which determines e, the eccentricity, in terms of q ;
and c, the least

axis is known from M, the whole mass of the fluid.

There is a major limit to the value of q in order that equilibrium
in the ellipsoidal form may be possible; but into the discussion of

this, which is somewhat tedious, we do not enter. [See the Mecanique
Celeste, or Besant's Hydromechanics^

3. If from a solid homogeneous ellipsoid there be removed any
complete ellipsoid, find the attraction at a point (a) inside the re-

maining mass, (6) inside the ellipsoidal cavity.
The attraction is to be found by considering the cavity to be filled

with matter of the same density as that of the rest, and then sub-

tracting the results due to the matter which is imagined to fill the

cavity.
Let the axes of the complete ellipsoid be taken as those of reference,

and let the axes of the cavity make angles (a1? /31} y^, (a2 , /32 , y2),

(a3 , /33 , y3 ) with them. Also let the co-ordinates of the attracted

particle with reference to these axes be (#, y, z) and (a/, y', z'\

respectively, and let the components of attraction along these sets of

axes be (X, Y, Z) and (X', 7', Z').

Then X = Ax, T = By, Z= Oz,

where A, B, C are constants
;
and

X'=A'vf, Y'=By, Z'=C'z't

where if the attracted particle is outside the cavity, A', B
f

>
C' are vari-

ables, but if inside, constants.

The whole force parallel to the axis of x on a unit particle is

obviously X-(Z'cos a,+ T cos
2+ Z'cos a

s),

with similar expressions for the components along the axes of y
and z.

If the attracted particle is inside the cavity, the level surface

F f 2
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passing through it is easily found. For, the virtual work of the

attraction of the whole ellipsoid is

Xdx+ Ydy+ Zdz, or \d (Ax* + By
2

and that of the attraction of the small ellipsoid is

Z'daf+Tdtf+Z'ds/, or \d(A'vf* +
Hence the level surfaces inside the cavity are given by the equation

Aa? + By'* + Cz'
i

-A'x*-B'y'*-C'z
z = const.

They are therefore quadrics.
We could in the same way find the effect due to an ellipsoidal mass

which contains in its interior another ellipsoidal mass (or nucleus) of

density different from that of the remainder. If p and // are the

densities of the two portions (p' > p), imagine the whole to consist of

a homogeneous mass of density p, and add the effect due to the

nucleus, supposed of density p'p.
4. Prove that an oblate spheroid of uniform density cannot have its

own surface for one of its level surfaces.

[The condition that its own surface should be a level surface is

tan^e =-5 } which cannot be satisfied by any value of e, except

zero.]
3 + e

'

5. Prove that a prolate spheroid of uniform density cannot have its

own surface for a level surface.

[By putting e = k*/ 1 in the last result, the required condition

becomes !+& 3

which gives by expansion

+... = 3, or .,
O . O t> . i

which is, of course, quite impossible.]
6. Prove that in the spheroid considered in example 2 the re-

sultant attraction at any point on the surface is proportional to the

length of the normal between that point and the axis of revolution.

7. Express gravity on the surface of such a spheroid in terms of

the latitude.

[The latitude of a point on the surface is the angle made with the

plane of the equator by the normal at the point.
If E denotes the value of gravity at the equator, G the value in

latitude A, and e the eccentricity of the generating ellipse,

so that if e is small, the increase of gravity at any point above the

equatoreal value is proportional to sin
2

(latitude).]

8. The components of attraction of a homogeneous ellipsoid at an
internal point (x, y, z) being Ax, By, Gz (as in p. 434), prove that

A+B+ C = 477/0,

where p is the density at the point.
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SECTION III.

Superficial Distributions.

259.] Quantity of Electricity. The student is supposed to

be familiar with the elementary phenomena of electric attractions

and repulsions that is, with certain forces which bodies are

observed to exhibit when they have been rubbed with resin,

catskin, and some other substances. The mode in which these

forces are brought into existence is called the process of electri-

fication, and the bodies which exhibit them are said to be elec-

trified. In the older theories of electricity such bodies were

assumed to have been charged by electrification with a certain

quantity of fluid, the process consisting either of directly com-

municating the fluid to the bodies, or of altering its arrange-
ment within them (if they naturally possessed it themselves) in

such a manner as to render possible the play of electrical forces.

Whether this fluid theory is true or false, there appear to be at

present some strong objections to its adoption. Following the

views of Clerk Maxwell, we shall regard electrification merely as

a state of a body, without speculating more closely as to the

nature of this state.

Suppose that two small electrified bodies of equal surface,

acting in exactly similar circumstances on the same third elec-

trified body, produce exactly equal forces of attraction or of

repulsion on this body; then we say that the two bodies con-

sidered have the same quantity of electricity; and if one of

them attracts, while the other repels the third body, we should

say that they have equal quantities of electricity with opposite

signs. The phenomenal effect of electrification being, then, a

measurable quantity, this state of electrification itself becomes

also a measurable quantity if it is, as we assume it to be, fully

represented by this effect. We have thus attained the notion of

equal quantities of electricity, as equivalent to equal states of

electrification.

A unit quantity of electricity, in electrostatics, will therefore

be that quantity which, when acting on an equal quantity

placed at a unit distance from it, repels the latter with a unit

force the unit force called the dyne, or any other convenient

one.
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260.] Electric Potential. An electrified body exerts force

on other electrified bodies in its neighbourhood ; and, just as in

distributions of matter, the potential at any point in space due

to an electrified body is the amount of work which must be done

against the repulsive force of the body to bring a unit of elec-

tricity from an infinite distance to the point considered. (This

supposes that the proximity of the unit does not modify the

state of electrification of the body a supposition which will be

allowable when the unit is small.)

An electrified body is found by experiment to be capable of

impressing its state of electrification, with more or less success,

on bodies which are put in contact with it, according to the

nature of these bodies ; and bodies which very readily allow this

transference of state are called good conductors, or simply

conductors^ while those which best resist it are called non-

conductors, or dielectrics.

We may speak of 2^flow of electricity >
instead of a transference

of state, if we are careful to avoid including in the expression

any hypothesis of the material nature of electricity.

Where this flow can take place it will take place. It follows,

therefore, that when a conductor is in complete electrical equi-

librium there must be a uniform electric potential throughout its

substance. And from this it follows by Poisson's equation that

when a conductor is in electrical equilibrium, the electricity resides

entirely at the surface. For since V is constant throughout the

mass of the conductor, ^V ;
and therefore p = 0. A distri-

bution throughout the mass could exist only in a non-conductor.

Also the external surface of the conductor itself must be a level

surface of the electricity; for if not, a flow would take place
from a point of high potential on it to one of low potential. In

other words, no electrical force can be exerted anywhere in the

conductor except at its surface of contact with a resisting

(dielectric) medium. This is usually stated thus in an elec-

trified conductor the electricity resides wholly at the surface.

It is to be noted that in all cases the potential of the Earth

is assumed as zero, and that the potential of any body in com-

munication with the Earth by means of a conducting wire is

therefore zero.

261.] Free Charge. Induced Charge. The quantity of

electricity on a conductor is called its charge. A charge may be
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communicated to a body in two ways either by actual contact

with another charged body (such as a piece of glass which has

been rubbed with catskin), or by the influence ,
at a distance, of

such a charged body. In the first case the electricity on the

conductor will be everywhere of one kind viz., the kind which

is on the body touched
;
and in the second the charge will

consist of quantities of positive and negative electricity in two

portions of the surface of the conductor.

262.] Surface Density. The electric density at any point
of a surface is the limiting ratio of the quantity of electricity

within a sphere whose centre is the point to the area of the

surface contained within the sphere when the radius of the

sphere is diminished indefinitely (Clerk Maxwell).
We have already spoken of solid distributions of matter over

a surface, meaning that the thickness of the material stratum is

everywhere very small. If p denotes the density of the matter,

and k its thickness, the quantity on a small unit surface is kp.

If now we imagine p to be increased and k to be diminished

indefinitely, we shall have a truly superficial distribution, in

which the product fcp

becomes the surface density here considered. Although this

mode of conception may assist us in understanding a true

superficial distribution, it is not necessary to imagine that

electrical distribution is really produced in this way. We shall

denote the surface density by <r.

When the density at any point of a body is zero, the body is

said to be in its natural state at that point.

263.] Density at Each Point of a Charged Conductor.

Through the contour of any elementary area, dS, of the surface

of a conductor (or of any level surface on which electricity is

distributed) let a tube of force be described
;
and let P and Q

(fig. 248) be two very close normal sections of this tube, the first

made inside, and the second outside the surface of the conductor.

Then if <r is the surface density on dS, the quantity of electricity

inside this tube is crdS
;
also if the area of the section Q is dS',

and N the normal repulsion on a + unit of electricity just outside

the surface, the surface integral for the tube becomes

NdS* = 477(7^,

the value ofN for the section P being, of course, zero.
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Now, by taking Q sufficiently close to the surface, dSf
can be

made equal to dS, and this equation becomes in the limit

NN= 47TO-, or o- = > (l)

which determines the law of density at each point. Here N

(being supposed repulsive) is of course
j

> where dn is the

element of normal measured outwards.

264.] Torce Exerted by an Electrified Conductor on its

own Electricity, At each point on the surface there is a

certain force produced on a unit quantity of the conductor's

own electricity, which, it must be very carefully observed, is not

7 1
dV

equal to ^
dn

For suppose ABD (fig. 250) to represent the surface of an elec-

trified conductor, and take any very small element of its area at

the point B. The repulsion of the remainder of the surface on

a unit of electricity at B is the same as its repulsion on a unit

just inside or outside B. This latter is 27T0-, as at once appears

by the method of Art. 250. Also the action of the element at

B on itself is zero. Hence the* resultant repulsion of the charge
on a unit quantity at B is 2 TT cr, and it acts in the normal at B ;

and if dS is the area of the small element at B, the quantity on

it is adS'} on which the repulsion, dp, is 2n(T2 dS. Hence

dp = 2TT(T
2
dS, Or ^ = 27T(T

2
,ao

which is the repulsion of the electricity on itself per unit of

surface at a point where the density is a:

This quantity, 2ircr
2

,
is what Sir W. Thomson calls the electric

diminution of air pressure on the surface (Papers on Electrostatics

and Magnetism, p. 254), for the following reason : each element

of surface of an electrified soap-bubble being repelled by the

force 2iro-
2
per unit of surface, the bubble expands, just as it

would do if the air pressure diminished, and, when discharged
it contracts. Hence the electric diminution of air pressure at

any point of a conductor is jya
27T(T

2
,

or >

8 77

N being the electrical repulsion on a unit in the air just outside

the point.
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265.] Theorem. The sections of a tube of force made by
the surfaces of two conductors, which mutually act on each

other, contain equal quantities of opposite

electricities.

Let A and B
(fig. 251) be two portions of

the conductors whose adjacent surfaces, P and

Q, are electrified, and let the tube of force

contain the elements P and Q. Then in the

substance of each conductor, no matter how
thin it may be, F is a constant (Art. 260). Let

the tube be prolonged to any distance in the conductors, and let

it be closed at its extremities. Apply the surface integral of

normal force to this tube, and let the areas cut off at P and Q
be dS and dS*

t
and the surface densities at these points cr and c/.

Now N (Art. 253) is zero all over the surface of the tube ;
hence

which proves the theorem.

If the surfaces are very close together we may take dS = dS',

and then we shall have cr = cr'.

EXAMPLES.

I. To find the quantity of electricity on each of two very close

parallel plates, the potential of each plate being given.
Let F and V be their potentials, and h the distance between them

(or the thickness of the dielectric). Then the surface density at any

point on either is where dn is the element of normal

dV
measured from the point towards the other plate. But -= is sensibly

equal to =
; hence cr = ; and if be the surface of the

h 47T/Z.

plate and Q the quantity of electricity on it,

If one plate communicates with the ground, its potential is zero,

VS
and Q will then be = > where V is the potential of the other. This

case is approximately that of the Leyden Jar.

2. To find the work done by the electric forces in the discharge of

a Leyden Jar.

If one armature is connected with the ground (whose potential is

zero) and the other with a source of electricity whose potential is F,

VS
the charge will be - Now on the armature whose potential is F,
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the potential work of the forces, or energy of the electrification, is

(p. 426) y-rdq, or \Vfdq, or \VQ,
where Q is the whole charge on the armature and dq the elementary

charge at any point. Substituting for V its value in terms of Q, we
have the energy equal to

This is the work done in changing the potential from V to zero ;

or, in other words, the work done in discharging the jar is pro-

portional to the square of its charge.

3. To find the surface density at any point of an ellipsoidal
conductor.

If we regard surface density as the limit of volume-density

(Art. 262) when the thickness is indefinitely diminished, it follows

at once by Art. 258 that, as the normal distance between two very
close concentric, similar, and similarly placed ellipsoids is proportional
to the length of the central perpendicular on the tangent plane,

<r = Ap,

where p is this perpendicular and A a constant.

Now if Q is the whole charge on the ellipsoid, Q = XfydS, where
dS is an element of its surface on which the density of electricity is tr.

But fpdS is obviously three times the volume of the ellipsoid, or

4 TT a b c, its axes being a, b, c. Hence

4. To find the surface density at any point of an electrified circular

plate.
We have at any point on the ellipsoid

C
2

C
2

ty
2 2

C
2

i/
2 2 2

9"
~~~ G

\ 5" "^" TT "^ 4~)
^ ^

\ sT~f~T2/1 ^
a* 6* c*

' a2
cr

'

s

Put c = 0, and we have - = A / 1 ~
fr' so that tne surface-

p V a* &
density at any point of a charged elliptical plate is

and by putting a = 6, we have for a circular plate of radius a,

Q
(7 =

47T

r being the distance of the point from the centre of the plate. (For
this method see Thomson's Papers on Electrostatics, &c., p. 179.)

5. Inside a conductor are placed any fixed electrical masses, dqlt

dq2 ,
...

,
at various points ; prove that the charge induced on the
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inner surface of the conductor is equal and of opposite sign to the sum
of the inducing masses.

Let any closed surface be described in the body of the conductor

between its inner and outer surfaces, and take the surface integral of

normal force over this surface. The force at every point in the body
of the conductor is necessarily zero (Art. 260) ; hence (Art. 252)M

i
=

;
i. e. the sum of the charge on the internal surface and the

inducing mass, dq^ + dq2+ dg3+ . . .
,

is zero. These electrical masses

may obviously be themselves charges on insulated conductors.

If the conductor was in its natural state before the introduction of

the inducing mass, and if there are no inducing masses outside, there

will be a charge on the outer surface equal and opposite to that on
the inner, and therefore equal to the inducing mass. This was dis-

covered experimentally by Faraday.
6. An insulated conductor receives a given free charge of elec-

tricity; determine the law of distribution on the surface.

Ans. The charge spreads into an indefinitely thin layer bounded

by surfaces similar to each other and to the surface of the conductor

(so that the force at any internal point is zero).

7. Inside a hollow insulated conductor are placed any fixed electrical

masses, and outside it any other system of electrical masses; show
that however the outside masses may be arranged or varied, the total

charge on the inner surface must be equal to the sum of the internal

masses and of opposite sign. (Prove as in example 5.)

8. Is the result in last example modified if the conductor initially

possesses a free charge 1

Ans. No; because by example 6 the internal effect of this

charge will be null.

266.] Green's Equation. Let V and T be any finite and
continuous functions of the co-ordinates of a point in space, and

let V stand, as usual, for the operation -=-5- + - - + -
; then

dx2
dy

2 dz 2

we shall have

rrr^Tri CjjdY 7e r,dudr dudr dUdr^ 7

/
UV7du> =

/ U-j-dS- /( + -. +_)<$,> ta\

J J dn J \dx dx dy dy dz dz'

where the integral on the left-hand side and the second integral
on the right-hand side are taken throughout the whole of the

space inside any closed surface, the element of volume of this

space being denoted by da
;
and the first integral on the right-

hand side extends over the whole superficies of the given closed

surface, the elementary length of whose normal measured out-

wards is dn. For d< = dxdydz, and

frr fff
J
UvYd

=JJj
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Integrate U
'

-^ dxdydz with respect to #, considering y and

z as constant, the extreme values of x belonging to the two (or

any even number of) points, pl and p2 ,
in

which the surface is intersected by the

line along which y and z are constant.

The contribution to the integral on the

left-hand side made by a long and slender

parallelepiped parallel to the axis of SB will
Fig. 252. f i

then be

dY dV - dUdY
,

,

where the suffixes denote the values of the quantities in brackets

at the points p2 and pv
Now if dS

2
is the element of surface cut off by the parallele-

piped at p2 ,
and if A

2
is the angle (represented by dotted line)

made with the axis of a? by the normal measured outwards at j?2 ,

cos A
2 . dS2

= dydz.

Similarly, if dS
1
and X

1 (measured in the same sense as A
2)

denote these quantities at p^_ ,

cos A
x . dSi = dydz.

Hence (l) becomes

7 -WVK/ i\.w"~f i
|

i v>
i \sw VM//^ I ^~Cvytv& j

Z Z Cvtfc 1

and hence

'^S^ = /"^ cos ^-^/'//??*4r^ (
2
)

A denoting the angle made by the normal at any point with the

axis of x.

In the same way, if // and v are the angles made by the

normal with the axes ofy and z, we have

rrrd
zr _ r AV rrrdUdr . , .

U^du =
/ U-j-cospdS- 1 l-j r dxdydz} (3)J dy

2 J dy JJJ dy dy

Adding (2), (3), and (4) together, we obtain the equation (a).

COR. Writing down the value of fFVUdv, and subtracting
the result from

(a),
we obtain
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a remarkable and very useful equation in which the volume

integral on the left-hand side is changed into the surface

integral on the right.

267.] Case of Green's Equation. In (a) of last Article let V
be the potential of an attracting mass and let U = V. Then we

have, since V77
~ =

4-77/5 at every point inside the volume where

there is mass (and V V at points where there is no mass),

= fr M-
J an

where 72
2
is put for (-7-) + (-7 ) + (-7) ,

the square of the
v dx '

\oy''
^ dz '

resultant force on a unit mass at the element cl CD of volume.

Hence fR*d = \ V ^~ dS+4v f 7P du, (A)J J Cln J

an equation which will be found useful.

268.] THEOREM* If on a conductor
,
removedfrom the influence of

all electricity except its own, the total quantity of electricity is zero,

the only possible distribution of the electricity is one in which the

density is zero at all points i.e. the conductor must be in its

natural state.

For if the conductor be not in its natural state, it will have

a potential V different from zero
;
and it will be possible to

describe round it and completely enclosing it a surface on which

the potential has a constant value #, less than V suppose. (For
on lines drawn in all possible directions from any point on the

conductor we can find points at which the potential = a.) Denote

this surface by A, and apply the equation (A) of last Article to

the surface of A and the volume enclosed by it.

This equation becomes

since wherever inside the surface A there is mass, the potential is

constant the mass existing only on the surface of the conductor.

= charge on the conductor =
;
and

f^-ds=- (ms
J dn J

(N being the electrical repulsion on a unit of+ electricity)
= 4:r x charge on conductor = 0. Hence fl&d<& = 0, i.e.

E = at every point inside the surface A
; but since at each
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p
point on the conductor the density = > at each point the

density is zero, i. e. the conductor is in its natural state.

In the same way it can be proved that in a system of insulated

conductors placed in given positions, if the total charge on each

of them is zero, the only possible distribution is one in which

each conductor is in its natural state.

For if possible let there be a distribution in which the poten-
tials on the conductors are, in order of descending magnitudes,
VL9 T29 Fg, ... . Then it is evidently possible to describe round

the conductor whose potential is /^ a closed surface which will

not meet any of the other conductors and on which the potential

has a constant value, a, < Flt
and > F

2 . Applying equation (A)
to this surface and its enclosed volume, we have

s.fl f^-dS+ivF! fpdu.
J dn J

Now fpdu> = 0, by hypothesis ; therefore, as before, E 0,

and the first conductor is in its natural state. Proceed to the

second, &c.

269.] THEOREM. A charge of given amount can be distributed

in only one way on a given conductor which is removed from the

influence of all other electricity.

For, if it be possible, let the same quantity be distributed in

two different ways, and let o- and </ be the densities at the same

point in the two distributions. Reverse the density at every

point in the second distribution, and superimpose this reversed

on the first distribution. We have now a conductor charged
with zero quantity ; therefore by last Article the density at

every point is zero
;

i. e. a- = <r' at every point. Hence there is

only one distribution of the given charge.

COR. The charge on a conductor removed from all influence

cannot consist of positive electricity in some places and negative

in others.

For one possible distribution of a charge of given amount is a

distribution in which the electricity is of the same sign at all

points ;
and by this Article this is the only distribution.

In the same way it can be shown that charges of given
amounts can be distributed in only one way on any number of

conductors having any fixed relative positions.
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270.] Capacity of a Conductor. If a given conductor has a,free

charge, the ratio of the amount of the charge to the potential pro-

duced by it on the surface is constant, whatever be the amount of the

charge.

For, let a given charge be divided into any number of equal

parts, and let each part be spread over the surface separately.

Then the law of density or distribution is the same for each

part; each part produces the same potential (last Article); and

since the total potential at any point is the sum of the separate

potentials and the total charge the sum of the separate parts, the

potential is proportional to the charge. The ratio of the charge,

Q, to the potential, Tt
which it produces on the surface is called

the capacity of the conductor. If we denote the capacity by C,

we have Q = CV.

The capacity may otherwise be denned as the quantity of elec-

tricity required to charge the conductor to unit potential.

It is evident that the capacity of a conductor depends on its

relative position with respect to other conductors, whether

electrified or not; for even on those which are unelectrified

charges will be produced by induction.

Faraday found that the quantity of electricity imparted to a

conductor in order to raise its potential from zero to a given
amount depends on the medium in which the conductor is im-

mersed. If the medium is a liquid, a greater charge will be

required to produce a given potential than if the dielectric is

air
;
and generally, the ratio of the charges required to raise a given

conductor from zero to the same potential when the conductor is

placed in any medium and when it is placed in air is called the

Specific Inductive Capacity of that medium.

The specific inductive capacity is usually denoted by K; so

that if C is the capacity of a conductor placed in given circum-

stances in air, KG is its capacity when placed in the same

circumstances in the medium in question ;
and the charge, Q,

necessary to raise the potential from to V
9

is given by the

equation Q = KG. V.

In calculating the capacities of conductors we tacitly suppose
them to be placed in air.
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EXAMPLES.

1. Find the capacity of a thin circular plate freely electrified at

both sides.

By example 4, p. 442, the quantity on a ring concentric with the

plate and contained between a circle of radius r and one of radius

r+ dr is = = Now since the potential is constant all over

the surface, it suffices to find its value at the centre. The potential

produced at the centre by the above ring is Doubling

this (since there is a similar ring at the other surface of the plate) we
have

dr -nO

Hence C =
7T

2. An insulated solid sphere, A, having a given charge, Q, is

surrounded by an insulated concentric spherical shell, B, having a

charge Q' ;
find the difference of the potentials on the sphere and

shell.

Let a be the radius of the sphere and 6 that of the shell. Then
the whole charge of the sphere will be on its surface, and there will

be two charges in the shell one on its inner surface and one on its

outer surface. The one on its inner surface is produced by the in-

duction of the charged sphere, and this charge will be Q in amount,

by example 5, p. 443 ;
and since the amounts of opposite kinds of

electricity separated in the body of a conductor by induction are

necessarily equal, the amount of the outer charge on the shell must
be <?'-#.
To find the potential on the sphere, we have only to find its value

at the centre. The charge on the sphere will produce potential
'- at

the centre, and the charge on the shell will produce 7 > or -
>

at the centre. Hence if F be the potential on the sphere,

To find the potential produced in the shell, consider the potentials

produced by the sphere and by the shell itself separately. The

charge on the sphere produces (p. 404) potential -j-
at all points
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distant b from the centre
;
and 1

the potential on the shell by U,

Q'
distant b from the centre

;
and the charge Q' produces -JT- Denoting

Hence V-U = 0()> or Q = --(V-U).

If the shell is in metallic connection with the earth, U 0, and

the capacity of the system will be --- which increases as b a

diminishes. By this arrangement the charge accumulated may be

very great. Such a compound instrument is called a condenser.

The capacity of an insulated sphere removed from all conductors is

equal to its radius.

3. To find the capacity of a very long thin cylinder or wire.

Except near the ends, the density of the electrification will be

sensibly constant, and since the potential everywhere inside is

constant, we have only to find its value at the middle point of the

axis. Take a section of the wire normal to its axis at a distance x
from the middle point, and another section at a distance x + dx.

Then the quantity of electricity on the surface between these sections

is 2TTprdx, where r = radius of wire and p = density of electrification.

The potential of this at the middle point is = Hence if I is

the length of the wire, rL
= 4:7tpr

2

/o

This = 4 npr log j if r is very small compared with I. Now

Q=27tprl, ^ c _

Hence if r is exceedingly small in comparison with I, G will be

small, and if the wire is used to connect two electrified conductors,
the charge on the wire may be neglected.

4. Find the capacity of a condenser consisting of a very long

cylinder of radius r surrounded by another of radius R, the two being

separated by a given dielectric.

Ans. K- s where K is the specific inductive capacity of

the dielectric. [This is the case of a cable.]

271.] Case of Green's Equation. Let V be the potential of

a system of masses, M, M' (fig. 253), and let U= -
> where r

Gg
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denotes the distance of any point from a fixed point, 0.

Suppose, moreover, for simplicity,

that S is a level surface of the

system of masses and that it in-

cludes M' in its interior, while M is

outside it.

First, let be outside the space

included by S.

Then it is easy to prove that

V - =
;
and since in all parts of the space internal to S

we have V7 = 0, except in those parts occupied by M', in

which VF = 47rp, where p is the density of M' at each point,
the equation (/3)

of Art. 266 gives

(y)

dn denoting the element of normal at each point of the surface

8 measured outwards.

, M_ r
dn

Now dS=
3-
cos OdS, where is the angle made by the

normal at any point on S with the line joining this point to ;

and exactly as in Art. 252, for an external point, the integral of

this expression taken over the surface vanishes.

Hence (y) gives for an external point

Secondly, let be a point in the interior of S. In this case

the distance, r, of a point in the volume from becomes zero,

and we cannot assert that V =
;
but this difficulty is avoided

by surrounding with an infinitely small spherical surface, and

taking as the volume through which the integration is per-

formed that contained between the given surface 8 and the

surface of this sphere. In this way ceases to be a point

within the volume considered, and consequently V is always

= 0. We shall, however, have to perform the surface integra-
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tion on the right-hand side of (y) over the surface of this small

sphere (on which we may consider the potential of the system as

constant) as well as over S. Equation (y) now becomes

Fpdu fldV, {\dV' , w r
7CI ,\,w_47r

/
= - dS+ I --dS'Vl d8F'J T7^0jJ r J r dn J r' dri J dn J dn'

where V is the potential of the whole system, M and M'y at 0,

and dSf
an element of surface of the small sphere, whose radius

is /. Now, dS' = r'
2
ds, where ds is the element of surface of a

sphere of unit radius cut off by a cone whose base is d& and

vertex
; or, in other words, d& is of the form /2 sin

(Art. 171). Hence, since / is indefinitely small, / -/-j-fdS' =Q ;

i J T (tin

(r'
and V] -j-rdS'

4*7', since dn is evidently d/. We have,

then>
"

dn

Coda 1
or _/>^, i

n^r _ r>
J r 4irJ r dn

At the point denote the potential of the external mass, M, by

7 and that of the inside mass M', by J^. Then obviously /

J T
is 7^ ;

and this equation becomes, since V = J^+7,

_
r dn

while (6) becomes \ f\dV
* ; ^-

EXAMPLES.

1. Any mass contained within one of its level surfaces may be

distributed, according to a simple law, over this surface as a thin

shell so as to produce the same effect as the given mass at all points
outside the level surface.

Let the mass Mf
alone exist. Suppose that matter is distributed

over 8 so that kp, the product of the density and thickness, or the

surface density, if the distribution is truly superficial, at any point is

equal to
I dV

4-7T dn
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Then the potential of this distribution at an external point, 0, is

F

-dS.i_
r

dv_
471V r dn

But, by (f)
of this Article, this is equal to F;, the potential of M' at 0.

Again, the whole quantity of matter on the surface is

1

but, remembering that dn is here measured outwards, this is equal to

M' (Art. 252).

2. In the same case the superficial distribution which replaces M'

produces constant potential at all points inside the surface.

This at once follows from (e), since Ve
= 0, there being no external

mass. The constant internal potential is, therefore, the same as that

on the surface.

3. Instead of the system, M, M', of which one portion, M'
,

is

internal, and the other external, to a given level surface, S, of the

system, may be substituted a distribution on the surface itself, with
these results :

(1) The effect at all points outside S is the same as that ofM1

'.

(2) The effect at all points inside S is equal and opposite to that of

M. Let kp, or for an infinitely thin distribution, the surface density,

o-, be (Art. 263). Then these results follow at once from (e)

and (f), p. 451. In this case also the mass of the distribution

4. Let M and M' be two quantities, q and g', of opposite
electricities concentrated at two points, / and /', and S their zero

potential surface. Then, since the level surfaces are given by the

equation ^-
, = const.,

r r

tne surface of zero potential is a sphere whose centre and radius are

thus found : divide the line //' internally at A so that -^-r = -^- j

10 q
I A q

and produce //' to G so that - = -^ ; then G is the centre and CA

the radius of the sphere.
The distribution on this sphere which will produce the effect of I'

at all external points and of / at all internal points is got by taking
the surface density, o-, at any point P on the surface equal to

- times the resultant of the forces T' acting from / to P, and

q
-TTfi-i

' acting from P to I'.
TT)T'

Now this resultant, N, = y|^- //p ,?
since it acts in PC ; and

sin J. Jr(^
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-JL.^^i. This is the re-

sultant measured inwards
;
hence by Art. 263,

_

IP*' iv.cr*
so that the density varies inversely as the cube of the distance from 7.

It is easily proved that CI . CT = CA 2
,
which shows that / and /'

are inverse points with regard to the sphere.
5. When a con-

ductor envelops elec-

trical charges and also

has electrical charges
outside it, show that

the internal charges

together with the in-

duced charge on the

inner surface of the

conductor form a sys-
tem in equilibrium by
itself, producing no
action at any external

point ;
and also that Fig. 254.

the external charges

together with the induced charge on the outer surface of the con-

ductor form a system in equilibrium by itself, producing no action at

any internal point.
Let A and B

(fig. 254) be the outer and inner surfaces of a con-

ductor; let S be any closed surface drawn in the body of the

conductor
;
and let the finely-dotted lines at the outside of the outer

and the inside of the inner surface represent the induced charges

existing on these surfaces.

The internal mass here consists of the given internal charges and the

induced charge on the inner surface. Employ the equation (f), p. 451.
Now all through the body of the conductor the resultant force = 0,

therefore all over the surface S we have = 0, therefore (f) gives

no,
that is, the given internal charges and the induced charge on the inner

surface give a constant zero potential at all external points, and there-

fore a zero force at all such points. Hence at external points the

action of this internal system is null. Of course this system produces
zero potential at all points in the body of the conductor also

;
for the

surface S can be taken as close as we please to the inner surface of the

conductor, and all points in the body of the conductor will be external

to S. Employ now equation (e). It refers to points internal to S,

and it gives Ve
= V,

i. e.
?
at all internal points the external charges together with th 3 in-
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ground.

duced charge on the outer surface of the conductor produce a constant

potential which is equal to that in the body of the conductor, and by
what we have just proved this latter is entirely due to the external

masses.

The conductor is therefore an Electrical Screen which protects

charges (or other smaller charged conductors) inside it from the dis-

turbing action of external electricity.
This explains why delicate electrical instruments are protected from

external disturbance by screens of wire gauze connected with the

[If the conductor is connected with the ground, the constant

potential inside due to the external elec-

tricity will be zero.]

6. Calculate the surface-tension of an
electrified soap-bubble.
When a membrane is acted on by

255. forces of any kind, there will be along

every line traced on the membrane a

tendency of the two portions separated

by this line to tear away from each other
;
in other words, one of these

portions exercises on the other a set of internal forces along the line

of separation.
In the neighbourhood of any point P of the membrane (fig. 255)

consider a very small rectangular portion, ABCD, of the membrane
isolated from the remainder. Then there will be forces exerted on its

sides at their middle points, m, m', n, n, by the removed portion.
These forces will, if the rectangle ABCD is chosen, at random, be

oblique to its sides ; but we shall afterwards see that it is always

possible to choose the rectangle at P so that these forces are at right

angles to the sides on which they act. Suppose this done. The amount
of force exerted on AB is, of course, proportional to the length AB]
so that if

tfj
is the amount exerted on AB per unit of length, the force

at m in the sense rnf m is ^x AB. Similarly, if t
2 is the force per unit

of length on AD, the force on AD is t
2 x AD. The quantities ^ and

t^

are called the surface-tensions at P perpendicular to AB and AD.
For the equilibrium of the rectangle resolve forces along the normal

to its plane at P. Then, exactly as in Art. 203, if r^ and r
2
are the

radii of curvature of the curves mm,' and nn', and N the amount of

external normal force exerted at P per unit area, we have

or J.v =- +-
<f
\

r
2

In a soap-bubble ^ and t
2 are evidently equal, and this equation

becomes
2 *

where t is its surface-tension and r its radius.
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Now in an electrified bubble N consists of two parts one an excess

of air pressure inside over the air pressure outside, and the other the

repulsion of the electricity on itself (Art. 264). Denote by p the

intensity of the excess of air pressure and by cr the electrical density at

P, and we have (see Art. 264),

7. A spherical soap-bubble is electrified in such a manner that the

internal pressure remains constant ;
find the relation between the

densities of electrification when its volume has become n and m times

its original value.

(Mr. Orchard, in the Educational Times.)
The external pressure presumably remaining constant, there will be

a constant excess of pressure, p. Equate the work done by this

pressure in enlarging the volume to the potential work of the electri-

fication. Now if v is the volume of the bubble at any instant, the

work done by the pressure in altering the volume by dv is pdv. Hence
if 11 = original volume, the work done in the first electrification must
be p(nl)Q.
But if V is the potential of this electrification and Q the charge,

the energy of the electrification is (p. 442) \ VQ ;
and evidently

V= 5 if r is the radius of the bubble. Also if cr is the density,

But

Similarly, ^> (ra 1
)
= Qrrni cr

/2
.

if cr' is the density of the second electrification,

m (n 1)

n (m-l)
8. In the interior of a hollow conductor are placed given electrical

charges, there being no external charges. Show that the induced

charge on the outside of the outer surface consists of only one kind of

electricity.

dV
[-y- has the same sign at all points on the surface. See ex. 32, p. 428.]

9. A spherical soap-bubble is electrified in such a manner that it is

just in equilibrium when the pressures of the external and internal air

are equal. Calculate the surface-tension in terms of the potential.

(Mr. Orchard, Educational Times.)

72
Ans. t =



456 ATTRACTIONS. THEORY OF THE POTENTIAL. [272.

10. Find the law according to which a given uniform attracting bar

may be distributed over any one of its level surfaces so as to produce
the same attraction at all points outside the surface.

11. An electrified point I is placed in front of a given spherical
conductor which is connected with the ground ;

find the density of

the charge induced on the sphere at any point.

[In example 4 it is evident that if c[ could be replaced by the

superficial distribution on the sphere, this distribution could be re-

placed by an electrified point at I' whose charge is equal to that on
the sphere ;

and the law of density is that given in example 4.]

272.] Electric Images. The theory which has been illus-

trated in these examples, and which is founded on equations (e)

and
(f) of last Article, is Sir William Thomson's theory of

Electric Images. If an electrified point, /, is held outside any
conductor connected with the earth by a wire (so as to have zero

potential) there will be induced on the conductor a certain charge
of opposite electricity, the effect of which at all points outside

the conductor is the same as that of an imagined electrified

point, I', inside the conductor ;
and the effect of which at all

points inside is equal and opposite to that of /.

If there is a continuous series of external points forming an

electrified body, M, there will be a continuous series of imagined
internal points forming an oppositely electrified body, Mf

; the

latter is called the electric image of the former body in the con-

ductor, and the distribution on the surface exerts at all external

points the same effect as would be produced if this distribution

were actually replaced by the image M'.

Mr. W. D. Niven has treated the subject of Electric Images
on the basis of the secondary solution of Laplace's equation

(ex. 14, p. 424). See the Proceedings of the London Mathematical

Society, Dec. 1876.



CHAPTER XVI.

ANALYSIS OF STRAINS AND STRESSES.

273.] Definitions of Strain and Stress. When a natural

solid (such as iron, wood, &c.), or any material medium, is not

acted upon by any external forces,, its particles assume certain

determinate distances from each other, and the body is then said

to be in its natural state* But when forces act on it either at its

surface or throughout its mass, or when any disturbance is pro-

pagated through its interior, these natural distances between

its particles suffer alteration, and the body is said to be in a state

of strain. Thus a fluid exerting pressure, a medium propagating

sound, and the luminiferous ether when it is propagating light

are instances of a body in a state of strain.

The change of the natural distances between the particles is

always attended by the production of internal forces, or, as they
are called, internal stresses, or simply stresses ;

and these stresses

will depend, as we shall see, both on the nature of the body and

on the nature of the strain in any case.

SECTION I.

Analysis of Small Strains.

274.] Displacements of a Rigid Body. It has been already

pointed out (Chap. X) that the general motion of a rigid body
consists of a motion of translation which is the same for all its

particles, together with a rotation round an axis through an

angle which is the same for all its particles. These displacements
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do not alter the distance between any two particles of the body,
and they are therefore unaccompanied by the development of

stress in its interior. Stress results only from the alteration

of distances between pairs of particles, and hence in treating of

strains and stresses all displacements, whether of translation or

of rotation, which are impressed, with common magnitude, upon
all particles of the body, may be discarded; and again any such

common displacement may be freely introduced if it is found

convenient for the discussion.

275.] Changes in Relative Co-ordinates. Let a system of

rectangular axes, Ox, Oy, Oz, (fig. 256) be fixed in space ;

through any point, P, in the natural solid under consideration

let Px, Py, Pz be

drawn parallel to

the fixed axes. Let

the particle at P be

displaced to P', and

suppose that the co-

ordinates (#, y, z) of

P referred to the

axes through are

increased by small

quantities, u, v, w,

Fig. 256. respectively. The

co-ordinates of P/

are therefore x + u,y + v
9
z + w. Now these displacements u, v, w

depend on the position of the point P, i. e., they are functions of

its co-ordinates depending on the law according to which the

strain is produced. We have then, when the kind of strain is

specified, some such equations as

=/2 ( y> 4 w =
wheref\>f%>/?, are symbols of functionality.

Let Q be a particle very near P, and let its co-ordinates with

reference to the axes drawn through P be (f, 77, f). Then the

displacements of Q parallel to the axes are obviously

that is, by Taylor's Theorem,
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..du du .du ,.dv dv .dv
u + (-r + ^T- + f~r ' ^+ CT~ + ^T~ + f ^~d# dy dz dx dy dz

..dw dw .dw
w + ~r + *1 -7- + C~r*dx dy dz

Suppose Q to come to Qf by displacement. Then in consider-

ing the nature of the strain in the neighbourhood of P, we may,

by last Article, impress on every particle of the body a motion of

translation represented in magnitude and sense by P'P, so that

P' will be brought back to P without in any way interfering

with the strain of the solid. By drawing Q'Q" equal and

parallel to P'P, the particle which was originally at Q may now
be considered to be at Q"; and a similar process is to be repeated

for all other particles. The part of the strain, therefore, due to

the alteration of the distance between P and Q will depend on

the co-ordinates of Q" with reference to Pa?, Py, Pz. These co-

ordinates are, of course, the excesses of those of Q' over those of

P'} and therefore the relative co-ordinates of Q" are

.. , du\ du du dv , dv\ .dv

.. dw dw . / div\^+^ +c (
1 + ^) ;

in other words, the changes, Af, Ar;, A in f, 77,
are

.. jlu du .du ..dv dv dv
Af =fy- +^7- +C^~; Ar

?
= f +77^- +(^~;dx dy dz dx dy dz

i/ y

.dw dw .dw , ^A*-s +1VE+*ar (a)

COR. 1 . All particles near P which in the natural state lie in

one plane will after strain also lie in one plane. For if the co-

ordinates of Q" are denoted by ', rf, f, we have

., .. / du\ du ,.du ...

f =^ 1 + &) +"^ +^"'=-' f = -'

which equations, being linear, give , rj, linearly in terms of

', ij', f . Remembering- that > -=- > ... are all small, these
dx

,

$ du
equations give f = f

'

+ small quantities of the order of
-^

&c.
;

y
clx

so that in any terms multiplied by j- ...
'

may be put for ,

6ft??

?;' for rj, and
'
for f



460 ANALYSIS OF STRAINS AND STRESSES. [276.

Hence we have, to the order of accuracy adopted,

f ,-,(, du\ r du du

dz

Therefore if all the points (, 77, () lies in the plane

all the points (', 77', C
7

)
will also lie in a plane. That is, every

plane curve is strained into a plane curve in a different plane.

COR. 2. All particles near P which in the natural state lie in

one right line will after strain also lie in one right line. For if

we have

=Q and A'-\-B'n +&+& = 0,

we shall have
', 77', f, also satisfying two linear equations.

COR. 3. Two parallel right lines in the natural state are changed
into two parallel right lines (ivith

a different direction) in the

strained state.

For one of the two lines being given by the equations

the other will be given by two equations in which the terms D
and J/ alone are altered. But by substituting for f, 77, f their

values in terms of f, rj', f, the values of D and D' do not in-

fluence the direction cosines of the line into which any one is

converted by strain.

276
] Elongation in any Direction. DEF. Supposing P and Q

to be, as before, two particles in the natural state of the body,
the elongation in the direction PQ is defined as the ratio of the

change produced by strain in the distance between these same

particles to the original distance between them. Hence the

elongation in the direction PQ is > or > if p denotes

PQ, and Ap the change in p.

Now 2 =
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or if we substitute for Af, A 17, and Af their values from last

Article,

Let the cosines of the angles made by PQ with P#, Py, P^ be

I, m, , respectively, let

= a. = o, = c,
dx '

dy dz

du dv dv dw dw du

and denote the elongation by e
; then the last equation gives

e = al 2 + /ft
2

-I- en
2 + 2 lms

s + 2 m^5j + 2 w&a .
(
1
)

The elongation in any direction may be graphically represented
as follows :

Construct at P the quadric surface whose equation referred to

the spatially fixed axes Px, Py, Pz is

^+^ +^ + 2*3^ + 2^^+2*2^=^ (2)

where Tc is any constant linear magnitude. If r is the length of

the line PQ intercepted by this surface, we have

r2 (al
2 + lm 2 + en2 + 2 Ims

3 + 2 mns
l + 2 nls

2)
= k*

;

e = ^-> (3)

or the elongation in any direction varies Inversely as the square of
the radius vector of the Elongation Quadric in this direction, if we

agree to call the above surface the Elongation Quadric.

It is possible, however, that equation (2) may fail to represent
the elongation in all directions. For there may be contraction

(negative elongation) in some directions, and then (2) will repre-

sent a hyperbolic surface, the radii of which will give as in (3)

the elongations, while the contractions must be given by con-

structing the surface

-^2
, (4)
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sc

Fig. 257.

which is the hyperboloid conjugate to that which gives the

elongations.

Unless, then, all

lines are contracted or

all lines elongated,

there will really be

two quadrics required,

one to represent elon-

gations and the other

to represent contrac-

tions.

For example, consider the simple case in which the strain is

made by drawing out all lines perpendicular to the plane yz in

the same proportion, and contracting all lines perpendicular to

the plane xz in the same proportion ;
so that

u ax> v = by, w = 0.

Then the elongation is given by the equation e = al 2 bm 2
.

Now this expression is negative when bm2 > al\ and if we con-

struct a surface whose equation is a 2
brf = 0, i. e., two planes

through the axis of z, this surface will form the boundary between

lines which are elongated and lines which are contracted. The

elongations are given by the radii of the surface a 2
br)

2 = k2
,

a hyperbolic cylinder, the section of which by the plane xy is

represented in fig. 257 by the curve (DAC, 1/A'Cf) ; and the

contractions by the conjugate surface brfa 2 = &2
,
which is

represented by (DBC\ I/B'C) ; the planes of no elongation or

contraction being the asymptotic planes, DD', CC', of these

surfaces.

All lines through P along which the elongation is the same

lie on a cone whose equation is easily found from (l). For,

putting e (I
2 + m2

-f- n
2

)
for e, we have

(a e)
I
2+ (b e)

m2 + (c e)
n2+ 2 S3 Im+ 2 S

1
mn + 2 S2 nl = ;

and if f, 77, f are the co-ordinates of any point on the line

(I, m, n), we have I : m : n = f :
77

: f; therefore this equation gives

(a-O^ + C*-*)?
2 + (*-) ^ + 2*3^ + 2^1,^+2*2^=0,

which, if e is constant, denotes a cone whose vertex is P. This

is called the cone of equal elongation. If is taken = 0, we get
a cone of no elongation, and it is evidently (when real) the



ELONGATION IN ANY DIEECTION. 463

asymptotic cone both of the Elongation Quadric and of the

Compression Quadric.

COR. I . The elongations in the directions of the axes of #, y^ z

.. 7 , du dv dw
are, respectively > a, 0, c, or -=- ? -y- ,

- .

dx dy dz

COR. 2. The elongation is the same along all parallel lines in

the neighbourhood of P. For if R is any point very near P,
the value of e along a direction

(I, m, n) at R is got by using the

values of a, b, c, s^ ?2 ,
s
3
at E in equation (I). But these values

at R differ from the values at P by infinitesimals of the second

order. Therefore, &c.

COR. 3. Any small parallelogram or parallelopiped in the natural

state in the neighbourhood of P is changed into another parallelo-

gram or parallelopiped l)y
the strain.

For (Cor. 3_, Art. 275) any two parallel lines are strained into

two parallel lines, and (Cor. 2, Art. 276) they are equally elon-

gated. Therefore, &c.

COR. 4. A small circle very near P in any plane is strained into

an ellipse in a different plane.

For, let AQB (fig. 258) be a circle in the natural state; let

OA and OB be any two rectangular radii, Q any point on the

circle, and QM and QN perpendiculars on OA and OB. Let
the lines OA and OB become oa and ob (in a different plane) by
the strain, and let Q become

q. The circle will become a u

curve in the plane of oa and ob
/

N\^(
by Cor. 1, Art. 275. Also if f

|
\\A

qm and qn are drawn parallel V J
to ob and oa, the lines QM
and QN will become qm and Fig. 258.

qn ;
for M must become some

point on oa (Cor. 2, Art. 275), and OB and QM must become

parallel lines (Cor. 3, Art. 275).

Again, if c is the elongation along OA,

oa =
(1 +e) OA and om = (l + e)

OM ;

OH_OmL ,

'*

'OA
~=

Oa
'

ON on
similarly = '
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OM*
,

ON2__ + __ = 1}

, p omZ
,

on*

therefore $ + "Ta = *>
002 0$ 2

which shows that the curve on which q lies is an ellipse having
the lines oa and ob for conjugate semi-diameters.

Hence every pair of rectangular radii of a circle is strained

into a pair of semi-conjugate diameters of an ellipse ;
and since

among these latter there is one rectangular pair (the axes of the

ellipse), it follows that some two rectangular diameters of the circle

are strained into two rectangular lines. Hence in every plane near

P can always be found two rectangular lines which are strained

into two rectangular lines.

COR. 5. Any two small cqplanar artas in the natural state are

strained into two coplanar areas having the same ratio to each other

as the unstrained areas.

For let CAB and C'A'B' be any two elementary rectangles in

the same plane near P such that AB is parallel to AB' and AC
parallel to A'C'. Then by Cor. 3 these will be strained into two

parallelograms, cab and ca'b', such that ab is parallel to a'U and

ac to ac'.

area cab ac x ab
Hence 7-777 = -7-7 TF/

area c ab ac x ab

Let be the elongation in the direction AB and e' that in the

direction AC-, then

ab = (l+c) AB, a'b' = (1 + e)
A'ff

;

ac = (1 + e') AC, a'c = (1+ e')
AC'

;

area, cad ACxAB area, CAB
therefore

area (fa'If
~

AC' x AB' area C'AB'

Now, whatever be the two areas, they can each be broken up
into an infinitely great number of small parallel rectangular

strips, and the ratios of the strained areas of these strips being
the same as those of the unstrained, the whole strained areas

are to each other as the unstrained ones.

COR. 6. Every small sphere in the natural state is strained into

a small ellipsoid. This is evident from Cor. 4, since the sphere,

being a surface every section of which is a circle, must alter into
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a surface every section of which is an ellipse. Nevertheless for

clearness we may re-

peat the proof of that

Cor. Let OA, OB, OG
be any three rect-

angular semi - dia-

meters of the sphere,

Q any point on the

sphere, QR a line

parallel to OC ter- Fig. 259,

minated by the plane

OAB, and EM, RN parallels to OB and OA. Let the lines OA,

OB, OC be strained into oa, ob, oc, and Q to q. Then, by Cor. 3,

Art. 276, QR, RM, and RN will be strained into qr, rm, and rn

which are parallels to oc, ob, and oa terminated by the planes

oab, oac, and obc. Also by Cor. 2,

om OMoa om

similarly,

But

therefore

on_
ON qr __ QR

ob
==
US' ~oc"~OC'

OM2 ON2
QR* _
~fi7v *J

om" on" at*
, I l_ JL

oa' ob2 oc-

which shows that the surface on which q lies is an ellipsoid

having- oa, ob, oc for a system of conjugate semi-diameters.

Hence every rectangular set of radii of a sphere in the natural

state is strained into a system of conjugate semi-diameters of the

ellipsoid into which the sphere is changed ; and it follows that

there is one rectangular set which is strained into a rectangular

set and altered in directions, the latter being the axes of the

ellipsoid into which the sphere is strained.

Con. 7. Any two small volumes in the natural state are strained

into two small volumes which bear the same ratio to each other as

the unstrained volumes. The proof of this proceeds exactly as in

Cor. 5.

277.] Lines of no Rotation. Let us enquire whether, with

the given strain, it is possible to find a particle Q, in the natural

state of the body, such that its displaced position, Q'
7

,
shall be

Hh
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on the line PQ. If this is so, all particles (near P) on the line

PQ will retain the same direction with respect to P; i.e., the

line PQ will not suffer rotation by the strain.

^x du\ du du

The direction cosines ofPQ"are p
^

> ... ,

and those of PQ are r, ... . Hence if these are the same,

/ du\ du pdu
\ dx' dy dz

PQ" PQ
'

with two similar equations. Now PQ"= (1 + ) PQ; hence

/du \ , du du
(

e )c~l *H C = QJ

with two similar equations ;
or if I, m, n be the direction cosines

of PQ, a line of no rotation,

, /du \ du du

dv dv

,dw dw ,dw \- \-m-j-+n(- e) == 0. ,
dx dy \dz '

(i)

By eliminating ^, m, n from these equations, we obtain the

cubic equation for e,

du du du

Jz

dv

dx dy

dx dz

dw

= 0, (2)

which gives necessarily one real value of e and may give three

real values.

Hence in the small general strain of an elastic solid there is at

every point at least one line of no rotation.

278.] Change of Inclination of Two Lines. In the unstrained

state let there be two points, Qa
and Q2 , very near P, and let

be the angle between the lines PQ l
and PQ2 . We propose to find

the angle between the lines into which these are strained. Let

(f i ^i ti) and
( 2 rj 2 f2) be the co-ordinates of Q and Q2

wifh
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reference to Pa, Py, Pz (fig. 256) ; and supposing that the strained

positions of Q1
and Q2 are Qi" and Q2", whose co-ordinates are

V faO* we have
>
bv Art- 275 >

du . du .. dv .. dv

dw dw

Hence neglecting squares and products of a, b, . . , ,
-=

, . . . 3 we
ay

have &'/+ 77/r//+ d'C/= fi f2+ ft i? a+ fi ^

If <^'is the angle between PQ/'and

P&'.PQ,"
so that if 6X and 2 are the elongations in the directions PQl and

PQ2 ,
and

(I1
m

l
n

1), (I2
m

2 n2)
the direction cosines of the lines

and PQ2 ,
the above equation gives

i) (l + f 2)
COS ^= COS H" 2

(
a h

or dividing out by (l + 6j) (1 + e2),

cos ^
x= cos

</)(! 1 2) + 2 (a

+ 2s
3 (^ w2 + /

2 %) -f 2^ (% ^
2 + ^2 %) + 2^

2 (j 2̂ + n
2y , (1)

the products of the elongations and the small quantities a, b, ...

5
3 ,.,. being rejected. The change in the cosine of the angle

between any two rectangular lines is got by putting = -

Denoting this change by 2 5, we have

\-c% n
2 +

COR. 1 . The quantities 2s3 , 2^ ,
2*2 are, respectively, the cosines

of the angles between the strained positions of the axes of (a?, y\
(y, z), (z, x}.

H h 2
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COR. 2. The result at the end of Cor. 6, Art. 276, easily follows

from the value of cos
<f>'

in (l). For if
(/>
= - and also </>'=

-
>

2 2

the directions of the lines PQ1
and PQ2

are connected by the

equation

-f s l m + 1

or

($2 /i + *i%+ <%)#2 = 0,

which shows that PQX
and PQ2 are conjugate diameters of the

quadric fl fa+^H-^ + 2 8 ft + 2 1i,f+2*2 rf = ^,

^ being any constant.

COE. 3. 7^<? quantities b-\-c, c-\-a, a + b are, respectively, the

areal dilatations, that is, the ratios of increase of small areas to

their original values in the planes ofyz, zee, xy.

For since all small areas near P in the plane yz are altered in

the same ratio, to determine this ratio we may take a small

rectangle with lengths m and n along Py and Pz. The sides of

this become (Cor. 1, Art. 276) (l+V)m and (1 -f c)n, and, the

cosine of the angle between them becoming sl9 the sine of this

angle is 1 to the order of accuracy adopted. Hence the new

area is
(l +fl)(i +<?), or mn + (6 + c)mn;

or if A and A' are the unstrained and strained areas,

_^
- = b + c areal dilatation.
A.

Similarly for dilatations in the other planes.

COR. 4. The quantity a + b + c is the cubical dilatation, that is,

the ratio of the increase of any small volume at P to the unstrained

magnitude of this volume*

For since all small volumes near P are increased in the same

ratio (Cor. 7, Art. 276), to determine this ratio we may take a

small and rectangular parallelepiped with edges m, n, p aloDg
the axes Px, Py, Pz. These edges become (l+a)m, (l-\-b)n,

(l + c)p, respectively, and the sines of the angles between them
are each 1

,
to the order adopted. Hence the strained volume is

(1 -M) (l +b) (1 +c)mnp, or mnp + (a + b + c) mnp ;

so that if V and V are the unstrained and strained volumes,

V V
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COE. 5. We conclude at once that, whatever system of rect-

angular lines be drawn through P, the sum, a+ b + c, of the elonga-
tions along them is constant.

For the ratio in which any volume is increased cannot depend
on any particular set of axes of reference. This also follows from

the value of e given in Art. 276.

279. Problem. Given the components of a strain with reference

to one set of rectangular axes, to find the components of the same

strain with reference to any other set of rectangular axes.

The components with reference to a set of axes, P#, Py, P#,

, . / du du dv \

being , b, c, 2s3 , 2^, 2*
2 ,(or ~, ...,_ + _,...J }

we wish to

find them with reference to a set, Px, P/, P/, whose direction

cosines are
(/, m, n), (/',

m'
', n'), (I", m", #"), respectively.

The value of
-j,

is simply the elongation in the direction

(1. m, n). Hence

a'= al 2 + bm2 +cn2 + 2<s3 Im + 2*x
mn + 2s

2 nl,

with exactly similar values of V and c'.

du dv' . . , ..

Again, -=-7 -f -7-7 is simply the cosine of the angle between the
dy dx

strained positions of the two lines P#',Py ; hence, by (2) of last Art.,

(Imf+ I'm) -f ?! (m n'+ m'n)

with exactly similar values of $/ and s2'.

Two strains having reference to two distinct sets of axes

are equivalent when each produces the other
;
and either may be

substituted for the other.

280.] The Strain Ellipsoid. It has been already proved

(Cor. 6, Art. 276) that a small sphere in the unstrained state of

the body is converted by the strain into an ellipsoid. This

latter surface is called the Strain Ellipsoid of the given strain.

We here exhibit its deduction analytically.

Let the point Q (fig. 256) be any point on a sphere of radius r

and centre P. Then, P#, Py, Pz being axes of co-ordinates,

It is required to find the surface traced out by Q", the strained

position of Q, as the latter varies on the surface of the sphere.

The co-ordinates of Q" being, as in Art. 275,
7

, rf, f,
we have

by squaring and adding equations (l), p. 460,
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or -
'

which is a quadric, and necessarily an ellipsoid since a sphere

must be strained into a closed surface. As we have been using

f rj ( to denote running co-ordinates, we may without confusion

write the equation of the strain ellipsoid

-if*=0. (2)

281.] Principal Axes and Principal Elongations of a Strain.

The principal axes of a strain at any point P are those three rect-

angular lines (Cor. 6, Art. 276} which become by the strain the axes

of the strain ellipsoid ; and since in general the direction of a

line is altered by the strain, the principal axes of the strain are,

in general, rotated by the strain about the point P.

The principal elongations of a strain at any point P are the

elongations along the principal axes. We shall denote these by
e\t &2> e

8*

COR. If the axes of co-ordinates at P are taken in the direc-

tions of the axes of the strain ellipsoid, the quantities sl9 s2 ,
and

s
3
are all zero, as is evident from (2) of last Art., and the equation

of this ellipsoid will be

(t-'i)H(i-*)ii'+(i-Of
i-if* = o. (a)

282.] Pure Strain. A strain is said to be pure when the

lines at P which become the axes of the strain ellipsoid are

unaltered in their directions by the strain.

283.] Conditions for a Pure Strain. Since a, b, c, ... are

infinitesimals of the first order, it follows from the value of e

given by equation (1), p. 461, that the elongation along the

direction PQ" (fig. 256, p. 458) may be taken as equal to the

elongation along the direction PQ ; so that if e is the elongation
in the direction of any radius vector of the strain ellipsoid, we
have /

1
. x

p = r(l + ),

where p is the length of this radius vector and /the radius of the

sphere which becomes by strain the strain ellipsoid.
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Hence if the axes of this ellipsoid are a, ft, y, we have

(itf) I s
3 .ms2 . n = \t, -\

s3 . l+(\ ft)
m sl . n = \m, >

s
2 .l s-L.m+ C^ c)n \n

;
)

Now if I, m, n are the direction cosines of any axis, it is well

known (see Salmon's Geometry of Three Dimensions, or Frost's

Solid Geometry) that

... ,. ,^
^

the three values (A1} A2 , A3)
of A obtained from these equations

being such that the equation of the ellipsoid referred to its own
axes would be ~

2
r2

2

r2

Hence \
1
= =%e1 ;

A
2 =i-d?2 ;

A
3
= | <?3 .

Therefore if e stands for any one of the principal elongations,

eD ez> e
s>
^e equations (l) become, for the direction of any axis,

= 0,

(2)

a<)l+s3 m + s
2
n = 0,-\

3 l+(b )m + s
1
n = 0, >

2 l+sl
m + (c e) n = Q.)

Now if there are three unrotated lines, they are given by

equations (l),
Art. 277

;
and if the same lines are determined by

(2), we must have

du dv du dw dv dw

dj
=

fa
= '~

S3 ' Tz^Tx"'*^ Tz^Ty^
8^

and the conditions for pure strain are that the displacements

uy v, w satisfy the equations

du dv du dw _ dv dw _ , .

dy dx
~

'

dz dx
"

'

dz dy

These are the well-known conditions that the expression

in which u, v, w are functions of x, y, z, should be the perfect

differential of a single function, <
(#, y, z).

When this function

exists, i. e., when the strain is pure, it is called the Displacement

Potential of the strain.

Hence the components, Af, Ar/, A of the strain (given in

Art. 275) become when the strain is pure
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i. e., the coefficient of rj in A is the same as the coefficient of f
in Ar;, &c.; and this is the distinguishing character of a pure

strain. A pure strain is also called an irrotational strain.

The values of the principal elongations of a strain are the

roots of the cubic equation

ac, s
3 ,

s2
= 0,

(

284.] Theorem. Every strain can le resolved into a pure strain

and a rotation. By a rotation here is meant such a displacement
as a rigid body undergoes in turning round an axis, and we propose
to show that the general small strain at any point P of a body,

may be produced by two operations, viz., first holding fixed

in directions the principal axes of the strain and straining the

body to a certain extent, and then rotating it as a rigid body
about a certain axis.

It has been shown (p. 293) that if a rigid body receives small

angular displacements 8^, 80 2 ,
b0

3
round three fixed rectangular

axes, the displacements of the co-ordinates, 17,
of any point

in it are /* & /j 5/3 %. A / s Q x/a t $. A /i\
C C/o 77 C/q ,

c I/o C (/-I
,

77
(j-\ c t/o.

( 1 I

(Such a displacement has, of course, no displacement potential;
for if these displacements are denoted by u

y v, w, we have

du dv , . ,

-j j2 equal to 280
3
and not equal to zero.)

Now the component, Af, of the displacement of Q along the

axis Px is (Art. 275),

and this
A 1 /f̂ ^ N . , ,du . dw^ fc . , t du dw*

Hence, with the same values of *
1?

*
2 ,

s3 as before, we have
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A comparison with (l) shows that the portions in brackets in

these expressions denote rotations, as of a rigid body, about the

axes through the small angles

which are equivalent to a rotation through v^^)2
4- (S02)

2 + (^s)
2

about one line (p. 292) ; while the portions of Af, A??, Af out-

side the brackets denote a pure strain by Art. 283.

If the axes of reference, Px, Py, Pz, are chosen in the direc-

tions of the principal axes, the pure portion of the strain will be

expressed by A ._ ^ A7?
_ ^ r?j

A^
_
^ ^

i.e., the pure strain is produced simply by multiplying the co-

ordinates of every particle by the numbers l-f<?13 l-j-<?2 >
1 + ^s-

A simple elongation of a body in a direction perpendicular to any

plane means the drawing out from the plane of every particle

through a distance proportional to the perpendicular from the

particle on the plane, so that those particles farthest from the

plane in the natural state are most drawn away, but all in the

same proportion to their original distances from it.

By this Article we see that every small strain at a point P can

be produced by three successive simple elongations followed by a

rotation, as of a rigid body, about an axis through P.

285.] Significations of s
l ,

s2 ,
s3 . Let the axes Px and Py

become by strain Px" and

Py", fig. 260. (Of course it is

supposed, as in Art. 275, that

P is brought back to its ori-

ginal position after the strain.)

All particles in the plane of

Px and Py originally are in

the
(different) plane of Px" Fig. 26 .

and Py" after the strain
; and

if A is a particle on the axis of y and AB a line parallel to
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Px, the line of particles AB will become (Cor. 3, Art. 275) a

line of particles A"B" parallel to Px". Let fall a perpendicular,

A"p} from A" on Pa/'. Then the particle (A") which was at A
has advanced in front of P parallel to the line Px" through the

distance Pp. Now Pp PA"cos a?"P/'= 2PA". SB (Cor. 1,

Art. 278); andP^"= (l +b)PA ;
therefore Pp = 2(l+d)s3 .PA;

or, neglecting the product bs
3 ,

Pp _
T> A 3*rA.

Hence the quantity 2 s3 is the rate (per unit of distance be-

tween the two lines) at which particles on any line AB parallel to

Px have slid beyond the corresponding particles on Px. Evi-

dently it is also the rate at which sliding has taken place

between particles on Py and lines parallel to Py.
Or again, imagine a little parallelepiped at P having its edges

along the lines Pa?, Py, Pz. Then 2s3 is the rate at which the

face parallel to that in the plane xz has slid in front of the

latter ; or the rate at which the face parallel to the plane yz has

slid in front of the face in the plane yz.

Similarly for the values of ^ and s
2 .

DBF. When a plane is held fixed in a body and all planes in

the body parallel to it are slid in the same direction and sense

parallel to the fixed plane, each through a distance proportional
to its distance from the fixed plane, the strain so produced is

called a shearing strain.

Those planes which are nearest to the fixed plane are least dis-

placed, and those which are farthest from it are most displaced.

The ratio of the distance through which any plane has slid to

its distance from the fixed plane is called the amount of the shear.

Hence the quantities 2s
,
2s

2 ,
2s

3
are the small shears of the axes

of {y,z), (z} x), (%>&) respectively, at the point P.

From fig. 260 it is clear that the change in the cosine of the

angle between any two lines at right angles in the natural state

is the shear in their plane of lines parallel to either.

286.] Shearing Strain. The two fundamental kinds of strain

of what are called isotropic bodies
(i. e., bodies whose constitution

is the same at all points and in all directions round every point)
are Cubical Dilatation and Shearing Strain. We propose, therefore,

to consider this latter more particularly here.
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Confining our attention to a shear, 2s
3 ,

of the two rectangular

lines Ox and Oy, the elongation quadric would be

2*
3 ^ = 2

,

the axes of co-ordinates being the lines Ox and Oy.

But this equation denotes a hyperbola in the plane xy referred

to its asymptotes ;
and if we alter the axes of co-ordinates to the

axes of the curve, the equation referred to them will be

A comparison with the general equation of the elongation

quadric shows that this equation denotes an elongation s3 (half

the shear) of the body along one axis of the curve accompanied

by an elongation s
3 (i.e., an equal compression) of the sub-

stance along the other axis.

Hence the shearing strain of a body can be produced by a simple

elongation (equal to hat/ the shear) along one line and a simple

compression of equal amount along a perpendicular line.

We have been considering small displacements; but let us

now consider an elongation of any amount along a line Ox, and

an equal compression

along a perpendicular Q.

Oy (fig. 261). Sup-

pose that all lines im

the body parallel to

Ox are increased in

the ratio a: 1, and

that all lines parallel

to Oy are diminished

in the ratio 1 : a
;

and consider displace-

ments in the plane

xy. There will, of

B"'

Fig. 261.

course, be similar displacements in all planes parallel to xy. The

displacement of the point may be impressed in reversed direction

on all points, so that may be considered as at rest.

Draw OA, of any length, making the angle AOx = tan~ 1
a.

From A let fall An perpendicular to Oy. Then An becomes

elongated by the strain parallel to Ox into a . An ;
but

a.An nO', therefore by this strain A is drawn out to a, Aa

being parallel to Ox, and a a point on the bisector, Oa, of the
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angle xOy. From a draw am perpendicular to Ox. Then, by

the strain parallel to Oy, am becomes shortened into Now

if we draw OA' making with Ox an angle equal to AOy, this line

will meet am in a point, A', such that A'm = Hence after

the two strains A will come to A'
;
and we see that OA' is equal

in length to OA, and that they are both equally inclined to the

bisector of the angle xOy.
In the same way if OB be drawn making LBOx'

'

tan- 1
**,

the length of OB will be unaltered, the point B will come to J?,

and the lines OB and OBf
are equally inclined to the bisector of

the angle x'Oy. Also OA is perpendicular to OB'. Hence, since

parallel lines are all altered in the same ratio, all lines parallel to

OA are unaltered in length, and all lines parallel to OB are

unaltered in length.

Imagine a plane through OA perpendicular to the plane of the

paper, and let any curve whatever be traced out in this plane.

The curve will remain perfectly undistorted after the strain.

For all lines perpendicular to the plane of the paper obviously
remain so and are unaltered in length, and all lines parallel to

the plane of the paper remain parallel to this plane, while of

these latter those which are parallel to OA remain unaltered in

length. Hence ordinates and abscissae of the above-named curve

parallel to OA and to a normal to the plane of the paper remain

perpendicular to each other and unaltered in length. The curve,

therefore, as regards magnitude and shape remains exactly as it

was ; its plane only is altered (to the plane through OA per-

pendicular to the paper).
It follows, of course, that all lines, whatever be their directions,

in the plane through OA perpendicular to the paper remain un-

altered in length.

Similarly all lines in the plane through OB and the normal

to the paper remain unaltered in magnitude ;
and all figures in

this plane also remain undistorted.

The planes through the normal to the paper and the lines OA
and OB are called the planes of no distortion.

Suppose that we impress on the body a common motion of

rotation about the normal to the paper at so as to bring OA'

into coincidence with OA. This motion will, of course, be un-
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accompanied by any strain (Art. 274). Then OB' will come to

0-5"," and BB" is perpendicular to OB and parallel to OA, as is

very easily seen.

Draw BQ parallel to OA. Then since the length of BQ
remains unaltered, Q will come to Q", a point such that

B"Q"=BQ. Hence all particles in the line Q are slid

parallel to AO through a space BB". Now ifp is the length of

the perpendicular from B on OA,

BB" _ _l
as is easily found. P a

Consequently in this strain if the undistorted plane OA is held

fixed, every plane', BQ, parallel to it is slid parallel to it through a

space proportional to the perpendicular distance between J3Q and
OA

;
and this is the usual way of representing a shearing strain.

Of course the strain may otherwise be produced (neglecting
the effect of mere rotation common to all points) by holding fast

the other undistorted plane, OB, and sliding all planes parallel
to it.

The plane (ocy) perpendicular to the two planes of no distortion

is called the plane of the shear ; and the lines
(
One and Oy) which

bisect, in the plane of the shear, the angles between the planes
of no distortion are called the axes of the shear.

Since a sphere described about as centre becomes an ellip-

soid, and since there are two sections of an ellipsoid which are

circles, the planes of these sections must be OA' and OB', the

strained positions of the planes of no distortion.

The quantity, a j which is the fractional sliding per unit

of distance between the parallel planes is called the amount of the

shear.

If the strain is small, a = 1 + s, where s is a small quan-

tity; and - = lSj nearly, so that the amount of the shear

= 14-* (1 s)
= 2s, which agrees with the analytical result

at the beginning of this Article.

The expression for the displacement in a shearing strain can

be simplified by taking the fixed plane as that of xy and the axis

of x in the direction of the sliding. Then

u = 2 sy, v = 0, w =
;
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so that a shear is a homogeneous strain, but not a pure one

(Art. 283).

287.] Traction and Torsion. Suppose a cylindrical bar of

an isotropic body to have its base held fixed while the bar is

pulled in the direction of its length. Then each particle of the

bar will be displaced in a direction parallel to the axis through a

distance proportional to the natural distance of the particle from

the fixed base
;
and in addition, the particle will be displaced

towards the axis through a distance proportional to its natural

distance from the axis. That is, at each point there will be

uniform elongation and uniform contraction. Hence if the axis

of the bar is taken as that of z
t
and the axes of x "and y are in

the plane of the fixed base,

u = ax, v = ay, w = cz

will express the displacements of any point, the quantities a and

c being constant throughout the bar. This is the case of Traction.

Suppose that, the base being still held fixed, the free extremity
is twisted round through any angle (measured by the angle

through which any diameter of the section revolves) ;
then every

other normal section of the bar will turn through an angle pro-

portional to the distance, z, of this section from the fixed base.

If I =. length of bar, a = angle through which its free end is

twisted, every point in the section considered will be twisted

through an angle a
j

Hence the displacements of a point as, y

in this section are (the twisting taking place from axis of x
towards axis of y)

azy azx
u =

j- , v = , w = 0.
I C

This strain is called Torsion.

288.] Lines of Flow and Vortex Lines. Just as a Line of

Force has been defined (p. 410) as a curve at every point of

which the resultant force of attraction of a system is directed

along the tangent, so a Line of Flow is defined to be a curve at

every point of which the resultant displacement of the particle

existing there is directed along the tangent.

Again, we have seen that the whole strain at any point can be

produced by a pure strain together with a rotation round an

axis through the point. A curve such that at every point of it
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the rotation corresponding to that point takes place round the

tangent is called a Vortex Line.

In analogy with a Tube of Force, we have a Tube of Flow. If

through points constituting the contour of any area we draw
Lines of Flow, these lines form a surface called a

Tube of Flow. Similarly if through the points

constituting the contour of any area we draw

Vortex Lines, these lines will make a surface

which may be called a Vortex Tube.

When the normal section of the Vortex Tube is

everywhere very small, it is called a Vortex Fila-

ment. Such a filament, AB, is represented in

figure 262. Fi - 262.

289.] Equipotential Surfaces. When the strain at every

point is irrotational, the quantity udx+ vdy + wdz is a perfect
differential of a function

<J> (x, y, z). Describe in the body a

series of surfaces the equation of any one of which is

<t>(a>,y,z)=C. (1)

Then by giving C a series of different values we shall have a

series of surfaces, exactly analogous to the equipotential surfaces

of an attracting mass (Chap. XV) ;
and these equipotential

surfaces of strain will be related to the lines of flow exactly as

the equipotential surfaces of attraction are to the lines of force
;

that is, at every point the line of flow is perpendicular to the

equipotential surface. For the direction cosines of the normal
to the surface (l) at any point (#, y, z) are proportional to

d(j> d$ d(f) .

~

'
~~

'
~~

'
1 * e '

)
u

>
V

'
W ' U) Vy w "ein> *"e com"

ponents of the displacement, are of course proportional to the

direction cosines of the line of flow. Therefore, &c.

The potential function of any small strain being <, we see

that
-j-

is the displacement parallel to the axis of x
; and since

the axis of x may be in any direction, the displacement in any
direction is the rate of variation, per unit of length, of potential
in this direction.

It follows that the resultant displacement (which is perpen-

dicular to the surface
</>
= C

)
is

-j-
> where n denotes length
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measured along the normal to the surface, and the displacement
is measured in the same sense as n.

Let two very close equipotential surfaces, < = C19 <f>
= C2 ,

be

described. Denote these by fa and fa. Then at all points on

fa the resultant displacement is inversely proportional to the

normal distance at this point between the surfaces fa and fa.

For if at any point on the surface fa the normal distance

between it and </> is A n. the displacement is - or
An An

But for all points considered fa fa = C
2 C = a constant

;

therefore the displacement varies inversely as A n.

290.] Circulation. Suppose any curve, AB, to be traced out

in the body, and let the displacement of each particle, P, on the

curve between A and B be resolved along the tangent to the

curve at P (the resolution taking place between A and B in a

sense opposite to that of watch-hand rotation); then the sum
obtained between A and B by multiplying this resolved part of

displacement by the element, ds> of the curve at P and adding
all such products, is called the circulation between A and B.

Hence, by definition, the circulation from B to A is equal and

opposite to the circulation from A to B.

The components of the displacement parallel to the axes

being, as before, it>, v, w, and the direction cosines of the tangent

,, . .
dx dy dz ..

to the curve at P being -^ , ~> -=-t the circulation is&
ds ds ds

dx dy dz\ ,

+v ie<ls or

the integral being taken from A to B.

Supposing that there is no rotation, or, in other words, that

there is a displacement potential which has a value fa at A and

fa at B, the circulation from A to B is fa fa ;
it therefore

depends merely on the co-ordinates of A and B, and not at all

on the curve between them, along which it is taken.

If the curve is closed, B coincides with A, and the circulation

is zero, it being still supposed that the strain is irrotational. If

A and B are any two points on an equipotential surface, the

circulation along any path from one to the other is zero.

We now proceed to consider the case in which rotation exists,

and to prove the following fundamental theorem :

The circulation round any small plane curve described round any
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point, P, in the body is equal to twice the product of the area

of the curve and the component of rotation at P perpendicular to

the plane of the curve.

Let Q (fig. 263) be any point on the

small curve whose plane is taken as that

of xy\ denote the components of the

displacement of P by u, v, w
;
and the

co-ordinates of Q, with reference to P by
f, r/. Then the displacements of Q
parallel to the axes are

^
du du

t
dv dv

dx dy dx dy

Fig. 263.

.dw dw

dx dy

and the component of these along the tangent at Q is

,. du dud , ..dv didr

When this is multiplied by ds and integrated, we shall have

(since u, v, -=- > ... are constant for all points on the curve)

du dv dv du r .

ufdq-\-vfd"n-}- /^~f~ /^?^ J?~^~ J d*] ~^~ ~j~JT]d*a)
dx dy dx dy

of which all the integrals except the last two vanish, since the

curve is closed. Now fdrj = area of curve = A] and fi)d
= A, since the two integrations are carried round at the same

time from x to y. Hence the circulation = A (-=
---

=-)\ j

= 2A . dd3 ,

(p. 473) d6
B being the rotation round axis of z at P, i. e.,

perpendicular to the plane of the curve.

Suppose that any surface, plane 01

curved, bounded by any curve, ABCD,
(fig. 264) is traced out in the body
and that at each point on this surface

we take the component of rotation

round the normal to the surface,

multiply this component by the ele-

ment of superficial area at the point,
and take the sum of all such products.
This sum is called the surface-integral

of normal rotation. The normal must
be supposed to be drawn away from the same side of the surface

i i

Fig. 264.
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at every point, and the rotation is supposed to take place oppo-
site to that of the hands of a watch held so that the normal

passes up through its face.

It is very easy to prove that this surface-integral of rotation is

equal to one half the circulation round the edge> ABCD, of the

surface. For, let the surface be broken up into an indefinitely

great number of little plane areas. Then the sum of the circu-

lations round these areas is twice the surface integral of rotation

(by what has just been proved). But the circulations in the

common portions of every two contiguous areas are directly

opposed, and therefore mutually destructive, as is seen by
drawing any two such little areas, a and #, apart ;

hence the

circulation exists only along lines which do not form common

parts of contiguous areas, i.e., along the edge which bounds the

surface.

If the surface has no bounding edge, i.e., if it is a closed

surface, the surface-integral of rotation over it is zero.

If the surface, without being closed, is such that at every

point of it the rotation takes place about a tangent line to the

surface, the circulation round its bounding edge is zero. Such a

surface is that of a vortex filament (fig. 262, p. 479)
or that represented in fig. 265, which consists of a

vortex tube whose ends are any two irregular

curves whatever. The sum of the circulations

round the terminal sections D and E of this tube,

estimated in the cyclical order indicated round the

Fig. 265. contour in fig. 264, is zero, i.e., the circulations^

estimated as represented by the arrows in fig. 262,

round any two sections whatever of a vortex tube are equal ; or, in

other words, the circulation round any section, normal or

oblique, plane or tortuous, of a vortex tube is constant.

EXAMPLES.

1. Prove analytically that the shear of any two rectangular lines

intersecting at any point is equal to the difference between the

elongations along the internal and external bisectors of the angle
between them.

Let the axes of co-ordinates be the principal axes of the strain at

the point. Then the value of s given in equation (2), Art. 278, becomes

s = ej,l'+ e
z
mm'+ es nn',

the direction-cosines of the lines being (I, m, n) and
(/', m', n'), and
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the shear 2s. Now the direction-cosines of one bisector are I I',

mm', n n, each divided by the square root of the sum of the

squares of these quantities, i. e., by >/2, since the lines are rectan-

gular j
and the direction cosines of the other bisector are I -f l'

t

m + m', n + n, each divided by \/2. Let e and e' be the elongations

along these bisectors. Then, by Art. 276,

therefore c' = 2 (^ IV -f- e2mmf + e
s nn'),

or e' e = 2s,

which proves the proposition.

2. Find the pair of rectangular lines in a given plane for which the

shear is greatest.
In any plane the elongation is greatest along one axis of the conic

in which this plane cuts the Elongation Quadric, and least along the

other. Therefore the difference of elongation along two rectangular
lines is greatest for this pair; and therefore, by last example, the

shear of the two rectangular lines of whose angle these axes are the

external and internal bisectors is greatest.
Hence the shear in a given plane is greatest for two lines making

angles of 45 with the axes of the conic in which the given plane cuts

the Elongation Quadric.
The magnitude of the shear for any two rectangular lines in the

plane is easily found and represented by a curve.

Let the axes of x and y be taken in the given plane and coincident

with the axes of the section of the Elongation Quadric in the plane.
Then s

s
must = for these axes. Also let one of two lines along

which we wish to find the shear make an angle 6 with the axis of x.

Then in the expression for s (Art. 278) we have 7
X
= cos 0, ml

= sin 0,

1
2
= sin 6, m

z
= cos 0, n = n

2
=

;
therefore

s = I (b a) sin 20,

or 2 s = (b a) sin 20 = shear,

which of course shows that the shear is a maximum along lines

bisecting the angles between the axes of the section. The curve

whose polar equation is r = (b a) sin 2 6 consists of four loops, one

in each quadrant, and its radius-vector gives the shear for any

directions, denoted by and - + 6.
2

It follows that the two rectangular lines whose shear is absolutely
the greatest at a point in the body are those in the plane of the

greatest and least axes of the Elongation Quadric (or of the Strain

Ellipsoid) and making angles of 45 with them, and that their shear

is e
s

ev if we assume ely e
z ,

e
3
to be in ascending order of magnitude.

3. Prove that a simple elongation in any direction is equivalent to

a uniform cubical dilatation together with two shears, each having the

given direction for one axis, the other axes being at right angles to it

and to each other.

li %
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Consider a cube whose three edges at the point are Ox, Oy, Oz,
and suppose the given simple elongation, e, to take place along Ox.
We may consider this as Je + * + J* along Ox, and we may suppose
an elongation Je along Oy together with an elongation Je (or a

contraction) in the sense of yO ;
and similarly Je and ^e in Oz.

Now ^ e along Ox, Oy, and Oz (and of course along all lines parallel to

these) constitutes (p. 468) a cubical dilatation e
; while -Jc along Ox

and ^c along Oy constitute (Art. 286) a shear, whose amount is |

(Art. 286). Therefore, &c.

4. Eesolve a simple elongation e in a given direction into its

components with reference to three rectangular axes.

Am. If the direction-cosines of the direction of elongation with
reference to the three axes are I, m, n, the elongations and shears to

which e is equivalent are

el 2
,
em 2

,
enz

,
2 elm, 2mn, 2enl.

For, if f, 17, f be the co-ordinates of any point before strain, the

length of the perpendicular from this point on the plane through the

origin perpendicular to the direction
(I, m, n) is Zf+mrj + wf ;

and
the point (f, 77, f) is drawn out along this perpendicular through a

distance e(l + mri + n). The projection of this distance along the

axis of x is tl(l-\-mr}4-nC) : hence the strained co-ordinates

(f, if, O, are

rf =

Comparing these values of ', if, with those given at p. 459,
we see that

el
2 = a, cm2 = b, en2 =

c, eZm = s
3 ,

emn = s
1 ,

enl = s.2 ,

which are the required components of the elongation with reference

to the axes.

5. Find the condition that, in the general small strain, there should

be two planes of no elongation.

Ans.
a, s

3 ,
s

<2

s
3 , b, Sj

= 0. Hence one of the principal elongations
?
2 , ^ G

must be zero (see p. 472).
6. Given two small strains, (a, b, c, 2s

1}
2s

2 ,
2ss), (a, b', c'

, 2s/,

2s/, 2s
3'),

find the resulting elongation quadric and strain ellipsoid.

Ans. In the previous equations of these surfaces put a + a for

a, <fec., s
3+ s

3'for s
3 , &c.

7. Eesolve a shear, 2s, of two given rectangular lines into its

components along three given rectangular axes.

Ans. If the direction-cosines of the two given lines with

reference to the given axes are
(/, m, n), (Z', m', n'), the components

are

2s#', 28mm, 2snn't 2s(lm' + l'm), 2s(mn'+ m'n\ 2s(rd'+ ril).

8. Fiud the conditions that a strain whose components with
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reference to three given rectangular axes are given should be equiva-
lent to a shear.

Ans. = and a + b + c = 0.

The first of these expresses that the product of the three principal

elongations is zero, and the second that their sum (the cubical dila-

tation) is zero. Hence the principal elongations are of the forms

,-, 0.

9. Given the components of strain with reference to the principal
axes of the strain, find the components of the same strain with

reference to any set of rectangular axes.

Ans.
79 9 97. 7^9 '2 t '2 7^2 ^'2 I ^2

7/7// / // / ff nff ft i ff
s
l
-=^e

l
ll +e2

mm +e3
nn ,

s
2
= e

1
tt +e2

mm -\-e3 nn ,

s
3
=

e^ll' -\- e^mm' -\- e3 nn' .

10. Find the Vortex Lines in the case of Torsion.

Ans. The rotations at any point are

Hence the differential equations of the Vortex Lines are

doc dy dz

"^T~~l/~~ ~Yz
The Vortex Lines are therefore the intersections of = c, and

x
x*z = c

2
. The vortex line at any point lies in the plane through this

point and the axis about which the torsion takes place.

11. When the small strain (a, b, c, 2s
1}

2s2 ,
2s

3)
is equivalent to a

shear, find the magnitude of the shear.

Ans. If 2s is the shear, s = Vs* + s
2
2 + s

3
2
-t \ (a

2 + bz + c2 ). To

get this equate the components in example 7 to a, 5, c, 2s3 ,
... Squaring

and adding the last three we have

or s-
therefore the rest follows from the first three.

12. Prove that torsion is equivalent to shear at each point, and find

its amount.

Ans. Let P be the point considered, PO the perpendicular

(of length r) from P on the axis of torsion, and let the strain be

expressed as in Art. 287; then the amount of the shear is
-y-

and

the strain is a shear of the line drawn through P parallel to the axis

of torsion and a line perpendicular to this one and to PO.
13. Find the areal dilatation on a plane the direction-cosines of whose

normal are I, m, n.

Ans. a + b + c (aP + bm* + en2+ 2 Ims
3
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SECTION II.

Analysis of Stresses.

291.] Intensity of a Stress. If a force whose magnitude is

P acts over an area S in such a way that there is all over the

area the same force on the same amount of area, the force is said

to be uniformly distributed over the area; and the intensity of

p
force on the area is --> i.e., the rate at which the force is

o

distributed per unit of area. Thus the atmospheric pressure on

any area at the surface of the earth is roughly i5lbs. on every

square inch, and if the unit of force is a pound weight and the

unit of length an inch, the intensity of atmospheric pressure is

represented by the number 15.

If force acts over an area in such a way that there is not the

same amount exerted on the same area everywhere, the distri-

bution is not uniform ; and in this case we can speak only of the

intensity of force at each particular point. If about any point we
describe a very small area, ds, on which we may assume the

distribution of force to be constant, and if dF is the amount of

force on it, the intensity of force at the point selected is

An instance of this occurs when the area pressed is any non-

horizontal area in a heavy liquid. The intensity of pressure at

points in the upper part of the area is less than the intensity at

points in the lower part.

292.] Stress at a Point. At any point, P, of the body
consider a small plane surface of area ds and any position. This

may be regarded as separating the part (A) of the body at one

side of it from the part (H) at the other side. Then the

particles in this element plane, when the body is strained in any
manner, are subject to certain forces proceeding from the

particles at the side (A) and resulting from the elongation or

contraction of the natural distances. The resultant of these

forces is called the stress on the side (A) of the element plane.
The particles in the element plane are also subject to forces

proceeding from particles at the side (B) of the plane ;
and the
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resultant of these latter is, of course, a stress equal and opposite

to the first-mentioned stress.

The resultant stress (on either side of the element plane)

divided by the area, ds, is the intensity of stress on the plane ;

and the resultant stress may be either normal to the plane,

oblique to it, or in it.

If at the same point P we consider a small plane surface of

the same area as before, but of different position, the resultant

stress on it will, generally speaking, be different both in magni-
tude and in direction from the previous stress. In the case of a

perfect fluid body the magnitude of the stress is constant and its

direction is normal to the element plane, whatever be the

position of the latter at the point P.

Hence in the case of a strained body the term ' stress at a

point
'

has no definite meaning until we specify the element

plane on which the stress acts.

293.] Equilibrium of an Element. At any point,

(fig. 13, p. 19) whose co-ordinates with reference to three

fixed rectangular axes are (x, y, z) let a very small rectangular

parallelepiped of the substance be separated in imagination from

the rest of the body by means of element planes perpendicular to

the fixed axes; and through draw the lines Ox, Oy, Oz

parallel to the fixed axes. We may then, if we actually produce
on the faces of this element the stresses which are produced on

them by the neighbouring portions of the body, consider the

equilibrium of the element apart from the remainder *. Let

the stress per unit of area on the face BOCF have for com-

ponents along Ox, Oy, Oz the values Px ,
P
y ,
Pz , respectively;

let the corresponding components for the plane AOCH be

Qx> Q v , Qz> and let those for the face AOBD be Rx ,
R

y ,
R

z .

The stress on each face may be supposed to be applied at the

middle point of the face, and each component is supposed to be

measured in the positive sense of the corresponding axis.

Let OA doc, OB = dy, OC = dz. Now these component

* In considering the equilibrium of an element of a fluid body it is customary
to say that we consider it as solidified and acted on by the stresses (pressures)
which the fluid exerts on its surface. This solidification is however wholly
unnecessary and misleading if, indeed, it is not actually wrong. The element
while regarded as forming part of the body is not solidified, but is kept in its

condition by the very forces which, by supposition, are produced on it by other
means. If these forces were by themselves sufficient in the one case, they must
be so in the other .without the aid of solidification.
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stresses are all functions of the position of 3 i. e., each of them

is some function of (#, y, z).
And the co-ordinates of A are

(0 + <fo, y, z); so that if Pa =f(x, y> *), the Px for the face

DAHtf \$f(x+dx, y, z), i. e., it is Px+ -j- dx, neglecting (dx)
2 '

&c. This component is, of course, directed in the sense AO,
since the stresses produced on the faces BOCF and DAH(/ by
the portions of the body removed are opposed. Hence the

components of intensity of stress on DAHC/ are

Similarly for the components of intensity of stress on the

faces DBFtf and HCF(/. To get the whole amount of stress

in any direction on any face, the intensity in this direction

must, of course, be multiplied by the area of the face. Let us

calculate the whole amount of stress parallel to Ox exerted on

the parallelepiped. The face BOCF will contribute Px xdydz,
while the opposite face, HALO*, will contribute (Px -\

=-^- dx)
**

z
;

and the sum of these is - - x dxdydz. The face
ax

AOCH will give a stress Qx x dzdx parallel to Ox, and the oppo-

site face will give (Qx + -j^dy}dzdx; and the sum of these

do y
is j^dxdydz; similarly, the faces AOBD and HCFO' will

77?

give j^ dxdydz. Hence the whole stress force acting on

the element in the direction Ox is

* ax ay az

Some external force (gravity, or other) may also act on each

element of the body. Such a force will always be proportional

to the quantity of matter in the element. Suppose p to be

density of the body at
; then, approximately, the quantity of

matter in the parallelepiped is p dxdydz. Let the components of

the external force which is felt at along the axes of x, y, z be

X, Y, Z, per unit of mass. Then the component of the external

force along Ox exerted on the element is pXdxdydz. Equating
to zero the sum of the components along Ox of all forces exerted

on the element, we have
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dP dQ dRm _"~"~''- PA -

dqz dR.

the last two equations being
1 obtained by resolving forces along

the axes ofy and z.

In a strained medium in which the stress on every plane is

normal the equations of equilibrium are

dP dQ dR
d^
= pX>

fy
=pr> ^ = pZ'

since the tangential components Py , Pz , Qx ,
... are zero; and if,

in addition, as in a perfect fluid, the intensity of stress is the

same on all element planes at a given point, P Q = R, and

these equations become the well-known hydrostatical equations

dP dP dP
-= = pJL -y- = pi, -=- =

p/J.dx dy dz

For any kind of body we obtain another valuable set of

equations by expressing the equilibrium of the moments of the

forces acting on the parallelepiped. For example, take moments
about the line joining the middle points of the opposite faces

-BOC^and DAHV. The external force* acting on the parallele-

piped may be considered to act at its middle point; it will

therefore contribute nothing to the moments about the axis

chosen. Neither will the stresses on the faces BOGF and

DAIIC/, since these stresses act at the middle points of the

faces. Of the stresses on the faces AOCH and DBFO' the

* It is important for the student to distinguish two species of external force

acting on any body. There may be external forces which act only at particular

points on its surface as, for example, when a beam rests against the ground and

against a wall, the reactions of the ground and wall and there may be external

forces which affect every element inside the body as, in the same case, the
attraction of the earth which produces a force (the weight) on each element of the
beam. The latter are called continuous forces. Thus a strained body may be
affected by both the above beam, if slightly flexible, will be bent. The forces

(per unit of mass), X, Y, Z, in equations (1) belong exclusively to the second
kind. Forces of the first kind do not enter into these equations ; they are like

the terminal tensions of a string, and are required for determining the values of

constants which occur in the integrals of the differential equations (1) of equili-
brium.
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components ^xdxdz and (Q z + -j^dy]dxdz, which are

parallel to Oz will alone contribute moments. The moment of

the first is Qz x dxdz x > or \ Q zdxdydz, and the moment (in

the same sense) of the second is (Q z + -~dy)dxdzx -j-> or

ay &

\Q zdxdy dz, neglecting the term dx(dyfdz. The sum of these

moments is Q zdx dy dz.

Again, of the stresses on the faces AOBD and HCFO' the

components, Ry x dxdy and (Ry -f
~~

dz)dxdy, will alone con-

tribute
;
and the sum of their moments is R

y dxdydz, which is

obviously in the sense opposite to that of the previous moment.

Hence equating the sum of these moments to zero,

Similarly, P
y
= Qx ,

I

(
2
)

which are obtained by taking moments about the lines joining
the middle points of the faces (AOBD, HCFtf] and (AOCH,
DBFO'), respectively.

The stress (per unit of area) on the face BOCF can be resolved

into two, viz., one normal to the face and the other in the face.

The first is Px ,
and the second (which is the shearing force on

the face) is P^ + P*. Equations (2) obviously assert that if

we take any two element planes at right angles to each other at

any point of the body, the component along the normal to the

second of the stress per unit area on the first is equal to the com-

ponent along the normal to the first of the stress per unit area on

the second. We shall now see that this very important result is

true for two element planes inclined at any angle to each other.

To save a multiplicity of symbols, use N^ for Px ,
N2 for Q y ,

JV3 for Rn , T3 for P
y and QX9 T2 for Pz and Rx , ^ for Q z and E,\

N standing for normal and T for tangential intensity of stress.

Consider now the equilibrium of a tetrahedral element of the

body included between the plane ABC
(fig. 13, p. 19), and the

planes BOG, AOC, AOB. Let the components along Ox, Oy, Oz
of the stress per unit area on the triangular face ABC be P, Q, R\
and let the direction-cosines of the perpendicular on this plane
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be /, m, n. Resolve along Ox the forces acting- on the tetrahedral

element. The face BOG will contribute N^ x BOG (where BOG
means the area of the face) ;

the face AOC will contribute

T
3 xAOC; the face AOB will contribute T

2 xAOB; the face

ABC will contribute P x ABC
;

and the external force

pXx%0A.OB.OC. Hence

P x ABC = JVi x BOC+ T3 x AOC+ T2 xAOB
+%pX*OA.OB.OC.

Divide out by ABC.

BOC AOC AOB OA.OB.OC .

Therefore P = IJ\\ + mT3 + nT2 + %pXxl. OA.

But by taking all dimensions of the element very small, the

term ^pX. OA proceeding from the external force, ultimately

vanishes, and we have accurately

Similarly, Q = lT
3 +mN2+ nTlt (3)

by resolving along % and Oz. These very important equations

give us the intensity of stress in magnitude and direction on any

assigned element plane when the stresses on three rectangular

element planes are known
; they are, in fact, the composition and

resolution of stress.

Any one of these equations (3) suffices for the proof of the im-

portant general theorem of projection already referred to. For P
is the projection, along the, normal to the element plane BOC, of

the intensity of stress on the element plane ABC, and

is the projection, along the normal to the latter plane, of the

intensity of stress on the former. This theorem is true therefore

for any two element planes at a point.

Remark. The components of stress on an element plane at the

bounding surface of the body are to be equated to the com-

ponents of the external force applied to the surface at the

element.

COR. It follows immediately from this theorem of the projec-

tions of two stresses that if there is at a point in the body any

plane on which the stress is zero, the lines of action of the stresses

on all other planes at this point lie in this plane of zero stress.
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A^r,

When the stress on an element plane, -GT, exercised by the part,

A, of the body on one side of it consists of a force whose com-

ponent normal to tsr is directed from this plane towards the part

A, the stress on ta is called tension
;
and when the normal com-

ponent is directed from A to OT, it is called pressure. All fluid

stress is pressure. In general at every point inside a strained

body there will be some planes on which the stress is pressure,

and others on which the stress is tension.

It may assist the student to understand the nature of the

action of stress on an element plane
if we draw a figure representing the

equilibrium of these stresses on an

element of the body. Thus if we
take the elementary parallelepiped
OCf (fig. 13, p. 19) to be a cube,

and also take (as we may) the stress

on any face as acting at its middle

point, the forces in the plane of xy

may be represented as in fig. 266,
which is that of a section of the

cube through its centre and parallel to the plane of xy. If there

were no stresses on planes parallel to %y> this figure would com-

pletely represent the equilibrium of the cubical element. (Since
the faces have been all taken as equal in area, the intensities of

stresses are proportional to the stresses acting on them.)
It is evident, of course, that when the stresses on any three

planes at a point (rectangular or not) are

known, the stress on every plane at this

point can be found both in magnitude
and in line of action. For we may con-

sider the equilibrium of the tetrahedral

element contained by the assumed plane
and the three given ones, and the re-

quired force will be equal and opposite
to the resultant of three given forces.

Let it, for example, be given that the

stress at any point P is a shearing stress in each of two rect-

angular planes, there being no stress on planes perpendicular to

both of them. Suppose that all planes in the neighbourhood of

P which are perpendicular to the plane of the paper and parallel

Fig. 267.
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to CD
(fig-. 267) are subject to a shearing stress, and that all

planes parallel to AD and perpendicular to the paper are also

subject to shearing
1

stress, and that planes parallel to the paper
are not subject to stress. The intensities of these shearing
stresses are obviously equal (either by what precedes, or by con-

sidering the equilibrium of a small prism whose base is the square
ABCD and whose edges are perpendicular to the paper. The

equality of moments round an axis through P perpendicular to

the figure gives the equality of the intensities of these shears).

Let their common intensity be S, and suppose them represented

by the arrows.

Draw the plane AC, and consider the equilibrium of the

portion ABC of the body (or rather of a little right prism whose

base is ACB). It is kept in equilibrium by the forces 8 acting
in the lines DC and DA and by the stress on the face AC. This

last must (since it may be supposed to act at the middle point of

AC) act in the line PD from P to D. If h is the height of the

prism, the areas of its faces are h x AC, h x CD, h x DA ;
so that

the forces acting in DC and DA are Sxhx DC and Sx%x DA ;

and their resultant, F, which is equal and opposite to the stress

on AC, is given by the equation

h2 x DC2+ S*xtf
F

i. e., the intensity of stress on the face AC is equal to the intensity

of the shearing stress on each of the other two faces ; moreover,

the stress on AC is normal to AC. This stress is the action of

the portion of the body at the right-hand side of AC on the

particles in the plane AC, and since it acts in the sense PD, it

is a pressure. Hence if the portion of the body at the right-hand
side of AC, or of any plane parallel to it and near it be removed,

a pressure of intensity S must be applied to the plane in the

sense PD. The action of the part of the body at the left-hand

side of AC, or of any parallel to and near it, consists, of course, of

a pressure in the opposite sense
;

so that if we draw two element

planes HI and JK parallel to AC and consider the portions of the

body at the right of the first and at the left of the second as

removed, two pressures (indicated by the arrows pointing to B
and D) must be applied to the portion of the body contained be-

tween these planes.



494 ANALYSIS OF STRAINS AND STRESSES. [294.

Similarly, by drawing BD and considering the equilibrium of

the prism standing on the base BCD, we see that the action of

the portion of the body at the lower side ofBD on the particles in

this face consists of a normal stress of intensity 8 directed in the

sense CP, i. e., towards the parts considered as removed ;
in other

words, this stress is a tension. Consequently if we isolate in

imagination a small prism of the body standing on the square

HIJK, we regard it as acted on by two pressures on its faces HI
and JKj and by two tensions on its faces // and KH.
The state of stress of the body at P may just as well be

produced by applying normal stress (pressure), of the same

intensity as the shearing stress, to all planes parallel to AC and

near it, and normal stress (tension), of same intensity, to all

planes parallel to BD and near it ; in other words, we may sub-

stitute this state of stress for the shearing stress.
e/ e/ *7

Hence a shearing stress on two rectangular planes at any point

produces equal normal stresses of opposite signs (pressure and

tension) and of intensities equal to * that of the shearing stress on

the two planes which Used the angles between them.

This result follows, of course, from equations (3) by taking
the lines from P perpendicular to CD and BC as axes of x and

y, and putting N = 0, N2
= 0, N3

= 0, 7\ = 0, T2
= 0, T3

= S,

I = m = =, n=0. From these equations also we deduce the
V2

magnitude and line of action of the stress on any plane near P.

The student will do well, however, to deduce from the figure

the stress on any plane through (or near) P perpendicular to the

figure.

294.] Problem. Given the condition of stress of a body at any

point in it with reference to one set of rectangular planes, to find
the condition of stress at the same point with reference to any other

set of rectangular planes.

Let the given stresses at a point 0, on three rectangular

planes of aoyt yz> zx, be N19 N2 ,
N

3 ,
T1} T2 ,

T3 , as in last Article.

Then the components along the axes of #, y, z of the stress per
unit area on an element plane at the point the direction-cosines

of whose normal are I, m} n are given by equations (3) of last

* Compare with the corresponding result in the case of shearing strain. The
shearing strain may be replaced by two simple elongations, the magnitude of each

being Jtalf that of the shear. (See p. 447.)
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Article. The resolved part, T, of this stress along any line

whose direction-cosines are A, /u, v is \P-\- pQ+ vR; i.e.,

T l\N
1 + miJiN2+ nifN3 + (l^-^m\)T5 + (mv+ n^')T1

+ (n\ + lv}T2 . (1)
If the line along- which the stress is resolved is the normal to

the element plane itself, the component, N, is IP +mQ+nlt;
i.e., N=l2N1 + m2N.2 + n2

Ns+2lmT3 +2mnT1 + 2nlT
2 . (2)

Let it be required to find the intensities of stress on three

other rectangular element planes at whose normals are Ox',

Oy ', Oz'', and let the direction-cosines of these normals with

respect to Ox, Oy, Oz be
(I, m, n), (/', m', n'\ (I", m", n"), re-

spectively. Denote the components of the intensity of stress on

the plane // by N{ along Ox', T3

'

along Oy, and T
2 along #/;

the components of the intensity of stress on the plane z'x by T3

'

along Oaf, N2 along O/, and T along Oz'; and those of the

intensity of stress on the plane x'y' by T
2 along Oof, T{ along

0/, and NB

'

along Oaf.

Then N{ is given by (2) ; N2

'
is obtained by using (I',

w!
', n')

for
(I, m, n) in (2) ; N9

'

by using (I",
m"

', n") for
(J, m, n) in (2) ;

T; by using (r,< n') for (A, M , r) in (l) ; T{ by using (r, m , n"}
for

(A, /LI, v) in (l) ;
and T-[ by using (^, ^

7

, n') for
(/, w, ),

and

(I", m", n") for (A, M ,
v
)
in

(l).

It will be seen from this that in transforming from one set of

rectangular axes Ox, Oy, Oz to another, the quantities N^,N2i JV3 ,

T
3 ,
Tl9 T2 transform like x2

, y
z

,
z2

, xy, yz, zx.

The system of stress, thus calculated, on the new planes may
be substituted for the original system of stress the two systems

are, in other words, perfectly equivalent, and either will produce
the other.

295.] Cone of Shearing Stress. The expression (2) for the

normal component of intensity of stress on a plane may for all

values of
I, m, n

(i. e., for all element planes at the point con-

sidered) retain a positive value. In this case the normal com-

ponent of stress is a tension on all planes. Or the expression may
be negative for all planes, and then the normal stress will be

pressure all round. Or, finally, it may be positive for some

directions and negative for others. It will then be zero for

some directions
; i. e., there will be planes on which the stress is

entirely tangential. The directions of the normals to these

planes are given by the equation
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nz + 2T3 lm-\-2T1 mn+2T2 nl= 0,

and therefore the normals trace out the cone

fl
1a? + N<

t^ +N3 z
2
-t-2T3 SE/y+2T1yz+2T2 za! = 0, (l)

the planes themselves tracing out the cone whose generators are

perpendicular to the generators of this cone. This latter cone,

when it exists, is called the Cone of Shearing Stress.

296.] Principal Planes of a Stress. The angle between the

direction of stress and the plane on which it acts depends on the

plane chosen. Let us try whether, with any given stress, it is

possible to find a plane on which the stress is normal.

If F is the resultant stress on a plane the direction-cosines of

whose normal are
(I, m, n), and if F acts in the normal, P = IF,

Q = mF, R = nFj and equations (3) of Art. 293 become

= IF,

\ = mF, (1)

and these give, by elimination of the direction-cosines, the cubic

Xi-Z T3 , T,
T
3 , N,-F, 21

Nt-P
= 0,

toil1

or -
-T

3")F-(N1
N

2N3-N1 T^-N,1 T/-N3 T^+2T1
T
2
T
3)
= 0.

This equation, as is well known, gives three real values of F,

and equations (l) will give the direction-cosines of the planes

subject to these normal stresses. The coefficients of this equation

have, as is also well known, the same values, no matter what
three rectangular planes are taken as those of reference.

All theorems, therefore, concerning stress may be simplified

by supposing that we have selected as planes of reference the

three on which the stresses are normal. These are called the

principal planes of the stress at the point considered. Let the

stresses on them (per unit area, of course) be denoted by A, 12, C.

The equations (l) which determine the planes and magnitudes
of the principal stresses show that these planes are the principal

planes of the quadric

N^n* +N2f +N^ -f 2 T.,xy+ 2 T^z + 2 T2zx =/, (2)

f being any constant force magnitude.
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The equation of the tangent plane to this quadric at the point

#', /, / is

Let a normal be drawn to any element plane at the point, 0,

considered, and let r be the length of this normal from to the

surface of this quadric. Then by putting Ir, mr, nr for af, #', z',

the tangent plane at the extremity of this normal is (by the

values of P3 Q, R in p. 491)

*
(3)

The direction cosines of the perpendicular from on thisPOT?
plane are -= >

-
>

-^
> where F is the resultant stress (per unit

area) on the element plane ; and these show that the resultant

stress acts in this perpendicular. Again, if p is the length of

the perpendicular from on the plane (3), we have

F=-?-, (4)
pr

the value of the resultant stress.

If the axes of the quadric (2) are taken as those of co-

ordinates, we have

JVi =A,Nt
= B, N3

= C,T1 =T2
=T

3 =0;
and the quadric has for equation

The cone traced out by the normals to the planes of shearing
stress is obviously the asymptotic cone of the quadric (2) ;

and if

this cone is real its reciprocal cone (the cone of shearing stress)

will separate the planes on which the stress is pressure from

those on which it is tension. When the cone is imaginary, all

planes at the point will be subject to stress of one kind either

pressure or tension.

When the cone is real, the quadric (2) must be accompanied

by another whose equation is obtained by merely changing f
to /", as has been explained in the analogous case of strain

(p. 461).
Another graphic mode of connecting the stress on a plane

with the position of the plane is this. Let the principal planes
be taken as the co-ordinate planes ;

then the components of the

Kk
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intensity of stress on any plane (l} m, n) are by equations (3),

Q = mS
9 (5)

R = nC
P2 O2 H2

Hence
2 + ~ + -^ = 1. Of coarse P, Q, .# are the co-

A Jj C

ordinates of the extremity of the line representing the intensity

of stress on the plane (I, m, n).
Hence the extremities of lines

representing in magnitude and direction the intensities of stresses

on all planes at lie oh the ellipsoid

x2 v2 z2

^ +
j?

+ C*=
1

> (
6
)

whose semi-axes are in magnitudes and directions the principal

intensities of stress at 0.

If a tangent plane be drawn to this ellipsoid parallel to the

plane whose stress is considered, the length of the perpendicular

from the centre on the tangent plane represents the magnitude
of the intensity of stress, as is obvious by squaring and adding
the sides of equations (5).

The ellipsoid (6) may for shortness be called the Stress

Ellipsoid.

In proving general properties of stress simplicity is, of course,

gained by taking the principal axes of the stresses as those of

reference. Thus, with these axes, the cone of shearing stress is

and that traced out by the normals to planes of shearing stress

is Ax* -f By* -f Cz
2 = 0; so that for the reality of these cones

(i.e.

for the existence of planes subject wholly to shearing stress) the

principal stresses must consist either of one tension and two

pressures, or two tensions and one pressure. With any system
of axes the equation of the cone of shearing stress is

= 0.

x y z

297.] Work done in Strain. We propose to investigate the

work done in the strain of any small volume of the body.
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About the point P (fig. 256, p. 458) let any small closed surface

be drawn in the natural state of the body. Let ds be any
element of this surface, and let the direction cosines of the

normal to this element, measured outwards, be I, m, n. Then
the components of intensity of stress (resulting* from strain) on

the element plane ds being P, Q, R, and the final displacements
of the mean point of the element being (see Art. 275) Af, Ar/, A
the work done in the displacement of the element will be (see

Art. 217, p. 366)

Hence the work done in the strain of the volume contained in

the whole surface is

Substituting for P its value (p. 491), the term Pds becomes

But if do-
lt do-2 , do-% are the projections of ds on the planes of

yz t zx, and xy, respectively, Ids = dcrl9 mds = da2 ,
nds = do--

;

so that the work done becomes

The intensities of stress Nl9 N2 ,
... may be considered as con-

stant over the surface and taken outside the integral signs. Also

substituting for Af, A
17,
A f their values (Art. 275), we have

u du ,.du\ .,

du C du

Now, the surface being closed, f^dcr^ = da> = volume enclosed

by surface
;
and fr)d(T1

= ffd^ = 0, since, the normal being

always drawn outwards, the elementary projections da^ on one

side of the plane yz must be given a sign opposite to the sign of

those on the other side.

In this way we have also

filda-2 =f(d(TQ
= d<*', fd(T2

= fd<r3
= ... = 0.

Hence the work of straining the element of volume considered

is

where a, b, c, 2s1} 2^2 ,
2s

3 are, as usual, the simple elongations
K k 2
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and shears of the strain. If we use the principal elongations
and stresses, the work is

EXAMPLES.

1. To resolve a shearing stress of intensity S, which is exerted on
two given rectangular planes at any point into its components with
reference to any three rectangular planes at the point.

Let (fig. 13, p. 19) be the point, and suppose that the stress

on all planes parallel to BOCF is a shearing stress of intensity S, and
that the stress on all planes parallel to AOCH is also a shearing
stress of (necessarily) the same intensity (see p. 493), while there is

no stress on planes parallel to AOBD.
Let the direction-cosines of the normals, OA, OB, 00, to these

planes with reference to three rectangular axes of x, y, z, be (I, m, n),

(I', m', n'), (I", m"> n"\ Then for the system of planes on which the

stresses are given we have N^= NJ = N3
'= 0, and also T^= T

z
'= 0,

since there is no stress on AOBD. Therefore if P', Q', R' are the

components along OA, OB, OC of the intensity of stress on a plane
whose direction-cosines with respect to these lines are A, p, v, we have

Hence the components along OA, OB, 00 of the intensity stress on
the plane yz are p, = ^ Q

, = ^ R, = Q .

and Ni is the sum of the components of these along the axis of a? ;

therefore N, = IP'+ I'tf+ l"R' = 2 II'S.

Also T
3
= mPf+ m'Q + m"R' = (lm'+ I'm) S,

T
2
= nP'+ n'Q' + ri'R? = (In' + I'n) S ;

and hence the components of the given shearing stress are

2 ITS, Zmm'S, 2nn'S, (lm'+ rm)8, (ln'+l'ri)S, (mn'+ m'n) S.

(Compare with the resolution of a shearing strain, p. 484.)
2. Two normal stresses on two rectangular planes are combined

with two shearing stresses on the same planes j find the principal

planes and intensities of the resultant stress.

Let fig. 266, p. 492, represent the normal stresses N
1
and N

2 acting
on planes at right angles to each other and to the plane of the paper,
and combined with shearing stresses, T3 ,

or S, in these planes. (Of
course the figure represents the equilibrium of an element of the body.)
Since there is no stress on any plane parallel to the plane of the paper,
the stress on every plane lies in the plane of the paper (p. 491).
Then T

3
= S, N^

= T^ = T
2
=

; and the principal planes are

obviously perpendicular to the plane of the paper. Let the normal to
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any plane perpendicular to the paper make an angle 6 with the direc-

tion of N! . Then the components of stress on this plane are

For a principal plane P = F . cos 0, Q = F . sin 0, where F is a

principal stress. Hence

m0 = 0,

S.cos0+ (N2 F) . sin 6 = 0.

From these equations we find the two principal intensities of stress

and the directions of the principal planes are given by the equation

tan 20= 2

_5
.

3. If the stress on a plane is wholly a shearing stress, prove that its

line of action is the line of contact of the plane with the cone of

shearing stress, and find its magnitude.
Since P = IA, Q = mB, R = nC, a point whose co-ordinates are

x2 v2 z2

P, ft R will lie on the cone T + -%- + -77
= 0, if A P +Bm2+ Cn2 = 0;

^1 Jj /

that is, the extremity of the line representing the intensity of stress

will lie on the cone of shearing stress if the stress is wholly shearing.

Therefore, &c. Since the magnitudes of all stress intensities are repre-
3? y2 z2

sented by the radii vectores of the ellipsoid + -|- -f- = 1, the
A. Jj C

intensities of shearing stress will be represented by the radii vectores

of this ellipsoid measured along the edges of the cone of shearing
stress.

4. If at any point in a body the principal stresses consist of two

tensions of intensities A and B (A>B) and a pressure of intensity C,

prove that the maximum intensity of shearing stress is */AC, and
find the plane on which it is exerted.

5. If at any point in a body the principal stresses consist of a

tension of intensity A and two pressures of intensities B and C (B > (7),

prove that the maximum intensity of shearing stress is VAB, and find

the plane on which it- is exerted.

Ans. l.=

6. Find the conditions that a stress whose components with respect
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to any three rectangular axes are given should produce shearing stress

on two planes only, and these rectangular.NTT1V
1

a
3> ^2TN*

3 >
"

2Ans. + , ^
2 ,

= 0, and N
t -{-N2+N3

= 0; the first

TV T
19

N
expresses that the product of the three principal stresses = 0, and the

second that their sum =
;

so that one principal stress must be zero

and the other two a tension and a pressure of equal intensities.,

7. Given the components of the stress with reference to the

principal axes of the stress, find the components of the same stress

with reference to any set of rectangular axes.

,= A IT+ B.m'm" + Cn'n", T,= A II" +Emm"+ Gnu",

SECTION III.

Expression of Stress in terms of Strain.

298.] Coefficients of Elasticity. The strain at any point

depends, in the first instance, on the nine quantities

du du du dv dv dv dw dw dw

dx dy dz dx dy dz dx dy
'

dz

Now the strain being small, we may evidently assume that if

these components of strain are all increased in the same ratio,

the stress components which correspond to them will all be

increased in the same ratio. Hence each of the six stress com-

ponents, NI, N2,N^ T-^ T
2 ,
T3) is a linear function of the nine

strain components ;
so that we have, for example,

, r du du du dv dv dv dw
*M = *i -5 h C9 1 H ^q -^ h <L -; f- * -? h CR I- c- -r-l

dsg *dy
3
dz

4 dx 5

dy
6 dz 7 dx

dw dw
+ C

Q -T:. '

with similar values of N
2 , &c. In this way we should have

fifty-four distinct coefficients, cl9 c
2 ,

. . . , expressing the stress in

terms of the strain.

A first reduction in this number is obvious
;

for in the strain

,, du , dv . .. . . _ du dr
the terms -7- and -- always so together in the lorm - r T- >

dy dx dy dx
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which is a shear
;
and similarly we have two other pairs, which

are also shears. Hence, as the strain really involves only six

components, #, #, c, 2^, 2<5
2 ,

2s3 ,
each stress component is a linear

function of only six quantities ; and there are therefore only thirty-

six distinct coefficients.

There is a further reduction of this number to twenty-one in all

cases of strain, irrespective of the nature of the strained body a

reduction which is thus made by Green (see the Mathematical

Papers of the late George Green, pp. 249, &c.).

The work done in bringing a body from any one state of strain

to any other must be simply a function of the quantities which

define the magnitudes of the two strains
; i. e., it cannot depend

on the order or nature of the series of states of strain, through
which the body may pass from the first state to the second j

in

other words, the stresses must be a conservative system (see

p 309). For, if this were not the case, we might bring the body
from a state (A) to a state (B) through a certain series of states

by the expenditure of a certain amount, 'W
t
of work, and then

(by constraint, implying no expenditure of work) make it return

from (B) to (A) through another series of states, and in this

series we might receive from the stresses an amount, W+ W, of

work done against external resistances. Each cycle of changes
would therefore create an amount of work, and perpetual motion

would be possible. The reasoning would be conclusive were it

not for the fact (well pointed out and explained by Thomson

and Tait, Nat. Phil.) that compression (as a rule) generates heat

and extension (as a rule) causes a loss of heat; and this alteration

of temperature at every moment affects the elasticity of the body,

and therefore the stresses. Hence even when the body is at two

different times in the same state of strain, the stresses may not

be the same in these states
;

and the above reasoning for the

existence of a potential of stress falls to the ground.

If, however, the states of strain are produced slowly, so that

the temperature may be sensibly constant, the stresses will

always be the same in the same state of strain ; and the work

done in strain will be simply a function of the strain.

By p. 499, the work done in the very small strain

(da, ... d*lt ...)

of an element of volume da is
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and if
<J> (a, b, c, sl} s

2 ,
sa) is the potential of the strain per unit

of volume, this work mus-t be

-
db

Hence Ai=2^, N,= 2^ , ... T1
= ^ , ..

da db ds1

Since N
lt . . . are linear functions of #, ... , </>

is obviously a homo-|

geneous quadratic function of the six components of strain, and

it has therefore twenty-one distinct coefficients, which are those

entering into the values of the components of stress.

For the particular case of Isotropic Bodies (p. 474) these

coefficients reduce to two, as has been differently shown by
Green, Lame, and Kankine. Green's method consists essentially

in so determining the constants in $ that it shall be sym-
metrical all round each of three axes as it must be for iso-

tropic, as distinguished from crystalline, bodies.

299.] Method of Cauchy. This simple method consists in

assuming that at every point in a strained isotropic body the

principal axes of the strain coincide with the principal axes of

the stress. Here then we have

i=*2 =*8 =0, ^ = ^=^=0.
Also we can assume

A = (\ + 2
tj)el + \e

2 -\-\e3,

where \ and
ju,

are constants; for e2 and e% must evidently have

the same coefficient in the value of A, since the body is elastically

symmetric with regard to the axes of y and z (and, of course,

with regard to all axes) and the plane on which N^ acts is also

symmetrically placed with respect to them. Thus

A = A0 + 2/Z*!, \

.=A0-f2 M *
2 ,

V
(1)

C = A0+2/xtf3 ,
)

where 6 =
1+ 2+6?3 = the cubical dilatation, and elt e

2 ,
e
3 are the

principal elongations.

It is required to express the components, N11N2,N5 ^
Tv T2 ,T.At

of the stress at the point considered in the body with reference

to three rectangular axes at the point arid the corresponding

components of the strain. Let
(I, m, n\ &c., be the direction-

cosines of the new axes with reference to the principal axes of

strain and stress. Then by multiplying both sides of equations
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(l) by I
2

,
m2

,
n2

, respectively, and adding, we have by example

7, p. 502, and example 9, p. 485,

Similarly JVi
= \0 + 2 pa.

(2)

And by multiplying the sides of equations (I) by I'l",

and adding, we have by the same examples

Similarly, T
:
=

(3)

300.] Method of Thomson and Tait. If a spherical portion

of an isotropic body be subject to pressure of uniform intensity all

over its surface, it must in yielding retain its spherical form, i.e.

it experiences no distortion* And if a cube of it be subject to

shearing stresses in the planes of its faces, it must, for a small

strain, undergo distortion (into the shape of a slightly oblique

parallelepiped) without alteration of volume, and the amount of

this distortion (defined as in Art. 286) must be the same no

matter to what side of any face the shearing stress is parallel.

Consequently the elastic quality of a completely isotropic

body depends on two, and only two, constants which are the

same throughout its mass viz., its resistance to dilatation (or

compression) and its resistance to distortion.

Resistance to Dilatation. To find this constant, let a uniform

tension (or pressure) of intensity N be applied all over the

surface of any portion of the body and let it produce a small

dilatation (or compression) of this portion, the amount of this

dilatation being (defined as in Cor. 4, Art. 278) ;
then the re-

sistance to change of volume is

N_
T'

This resistance (since is a number) is aforce per unit of area.

Resistance to Distortion. To find this constant, let a shearing
stress of intensity 8 be applied to any pair of parallel planes*

and let the amount of the shear (defined as in Art. 286), be

denoted by 2 s ; then the resistance, to distortion is

2̂s'

This resistance (since s is a number) is aforce per unit of area.
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Denote these two coefficients respectively by k and //.

The values of the shearing- stresses, T19 T2 ,
T

3 , in terms of the

shears (given in equations (3) of last Art.) follow at once.

To find the stresses called into play by a simple elongation, a,

along the axis of x, resolve this elongation exactly as in example
3, p. 483, into a cubical dilatation a together with two shears.

Now, by our above definition, the dilatation will cause a normal

intensity of stress equal to ka on each face of a cubical

element whose edges coincide with Ox, Oy} and Oz at the

point 0.

Consider the elongation ^a along Ox

and the accompanying contraction %a
\H along Oz. These give shears each equal

!/
|\*

to \a on the planes OCHD inclined at

X
j

"X angles of 45 to Ox and Oz; and these

*^
- ..... shears will, by the above definition, give

pj 2g8
rise to shearing stresses each of intensity

ju# on these planes. Again, by p. 493,

these shearing stresses will give rise to normal stresses each of in-

tensity \\j.a on planes parallel to 0/Tand CD
;
and it is obvious

that the normal stress on the plane OH (or rather the plane

through OH perpendicular to the paper) produced by the portion

of the body to the right of OH will be tension, i. e., it will be in

the sense Ox ; while on the plane CD (or Ox) the normal stress

produced by the portion of the body at the upper side of the

figure will be pressure, i. e., it will be in the sense zO.

Similarly by considering* the other shear (that which consists of

elongation J a along Ox and contraction \ a along Oy) we have a

further normal tension equal to fx# on the plane perpendicular

to Ox-, and normal pressure f /u# on the plane perpendicular to

Oy. Hence the elongation a gives normal stresses

on the planes perpendicular to Ox, Oy, Oz, respectively.

Similarly the elongation & (which is along Oy) gives normal

stresses
(A-| M), (* + *M), (*-!)*

in the same directions
;
and the remaining elongation, c3 gives

(k-Sfic, (k-lp)c,
Hence we have
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J\i
= \K-ii-

and N2
= (k f/x)0-h2ju#, V (A)

where 6 = a+ & + c = the cubical dilatation.

EXAMPLES.

1. To express Young's modulus in terms of the resistances to

dilatation and distortion.

Let a bar of the body be subject to traction, as in Art. 287.

Then we have N
s
= (k f jut) (c 2a) + 2/xc ;

N
t
= N

2
=. (k fju)

(c 2 a) 2fJ,a. But the intensity of the elongating stress is -/V
3 ,

and

the elongation (per unit of length) is c
;

therefore if E = Young's
modulus, \r

JSss-J.
C

Also since there is no force on the sides of the bar

;,
and -

3 = (k
c

When a bar is elongated, it thus appears that there is lateral con-

traction (a) in all directions perpendicular to the axis of the bar, and

the ratio of this to the elongation (c) is

2. One end of a bar of isotropic material is held fixed, and the

bar hangs vertically ;
find its elongation caused by its weight.

Let AB be the bar in its natural state, P a point in AB at a

distance z from A
;

let A'B represent the elongated bar, and let P'

be the displaced position of P.

Then the intensity of stress on a normal section at P'= E -=-,

where E is Young's modulus. But if co is the area of the section at

weight of length PB W l-z
P

,
the intensity of stress = --

'- = --=- > where
0) 60 /

W and I are the weight and length of the bar.

r dw W l-z
Hence J'

-=- =--r-
dz o) I

where C is a constant. Now the value of w for the fixed end is zero,
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therefore 0=0; and the value of w for the free end, Bt
is the

amount of elongation. Hence, putting z = I,

Wl
amount of elongation = ^

&Ja<0

It is immaterial whether o> means the section of the bar A'B' or the

section of A B, since these areas differ by a small quantity of the first

order.

3. To find stresses produced at any point in a circular cylinder
which undergoes torsion round its axis.

With the notation of p. 478, we have by Art. 299.

The torsion may be produced either by fixing one end of the

cylinder and applying a couple to the other end, or by applying two

equal and opposite couples to the ends, each of which is free. By
considering the equilibrium of a portion of the cylinder between one

end and a section made at any point, 0, (fig. 269) on the axis perpen-

dicularly to the axis, we see that the stress system exerted over this

section by the remaining portion of the cylinder must be a couple

equal in amount to the applied couple, (F, F).
Let the fixed axes of x and y at be

Ox and Oy, and let P be a point in the

section whose co-ordinates are x and y.

Then the above values of the intensities of

stress show that on the element area dS at

P the two components of stress on the

lower side of dS are
^- ydS

in the direction

Ox, and~ xdS in the direction yO. The
I

sum of their moments about Oz is

p> 2g
"-

(x* -f- 2/
2

) dS in a sense opposite to that

of the applied couple. Hence if the mo-

ment of this couple is denoted by T,

--y

where r =OP, and the integration is extended over the whole area of

the section at 0. Now fr^dS is the moment of inertia, 7, of the

section about Oz. Therefore

Let j 5 which is the rate of twist per unit length of the cylinder be
I

denoted by r, and we have ^Tf = T. ()
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Fig. 270.

If the cylinder is solid (having no hollow part), / = The

result in equation (a) is known as Coulomb's Law.

4. To show that Coulomb's Law cannot apply to a non-circular

cylinder when it is acted on only by twisting couples at its ex-

tremities.

In order that the law of torsion strain expressed by the equations

u = ryz, v = TXZ, w =
may hold we shall show that force must be applied over the bounding
surface of the cylinder parallel to its axis.

Let fig. 270 represent a section of the cylin-

der perpendicular to its axis, the axis passing

through ;
let P be a point on the bounding

surface, PT the tangent to the section, and

OQ a perpendicular to PT. Let OQ be

taken as axis of x, the axis of z being the

axis of the cylinder ;
and let us calculate the

stress on an element plane which touches the

bounding surface at P. We have for this plane ? = 1, w = 0, n = 0;
and equations (3) p. 491 give (by last example)

P = 0, Q = 0, R = ~/*ry = -fir . PQ ;

i.e., the stress on this plane is proportional to PQ, and there must be

an applied force to balance this stress, since there is none of the

material of the cylinder at the right-hand side of the plane. (See

Remark, p. 491.)
5. Let there be a straight solid

bar or beam subject to a slight

bending strain such that the fibres

(meanfibres) which lie in a certain

plane, although bent, are not elon-

gated, and that the elongation (posi-
tive or negative) along every other

fibre is proportional to its (positive
or negative) distance from this

plane, the bending of all fibres

taking place parallel to a single

plane which cuts the normal section

of the bar perpendicularly. It is

required to find for any normal
section the sum of the moments,
round the line in which it inter-

sects the plane of the mean fibres, of the stresses which are exerted at

the section by the strained fibres.

Suppose that after the bending any one section, AHB (fig. 271), is

brought by a motion as of a rigid body (Art. 274) back to its old

position, and let a neighbouring section then occupy the position

A'H'B'. Let HH'
t
cc' be two of the mean fibres which reach across

from one of the sections to the other. Then the original distance

Fig. 271.
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between the sections is HH' or cc. Let this be denoted by ds. If

PPf
is any other fibre reaching across, Pn and P'n the perpendiculars

from P and P' on the right lines cH and c'H', the elongation along

PP' (i.e.
-

j )
is proportional to Pn. Let the planes of the

sections AHB and A'H'B' intersect in a line OL, let p denote the

length of the radius of

(cc
7
or nn'), and Pn = y.

curvature (cO)
Then evidently

PP' p + y

of the bent mean fibres

nn p

PP'-nn _ y
nn' p

which is the elongation along PP'. For fibres at the lower side of

cZT, there is contraction, or negative elongation, and for these y is

reckoned as negative.

Now, by Hooke's Law, if we consider a small prism whose sides are

the fibres emanating from points on a very small area, dcr, at the

point P, the longitudinal stress of this prism is (p. 364)

The moment of this force about cH is da; therefore the sum of

Tji

these moments all over the section AHB is --fy*d<r, or

El

y
where / is the Moment of Inertia of the section AHB about the line cH.

Remark. If the end of a beam merely rests against a fixed surface,
there will be no Bending Moment at this end, and p = oo at it.

But if the end is tangentially fixed there will be a Bending Moment
at it, and its curvature will not be zero.

6. A uniform slightly elastic

g__ / beam rests, in non-limiting
equilibrium, with one end on

the ground and the other

against a vertical wall, the ver-

tical plane through the beam

being at right angles to the

wall; find the form of the

mean fibre of the beam. Let

^(fig. 272) be the beam; GN
the vertical through its centre

of gravity, #; R and S the

reactions of the ground and
wall

; </>
the angle made by R

with the vertical
;
a the angle

which the tangent to the beam at A makes with the horizon
;
h and

\'W

2 7 2 -
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k the distances, Ax and Bx, of the extremities from the line of

intersection of the ground and wall.

Let P be any point in the beam, at which we shall calculate the

Bending Moment, i.e., the sum of the moments of all the forces acting
on the beam between P and A

;
let the horizontal and vertical lines

through A be taken as axes of x and y ;
let Q be any point between

P and A
;

let the co-ordinates of P and Q be (x, y) and (a/, y'),

respectively; let the original length of the beam be /, and its

weight W.
W

Then the weight of an element of length, ds', at Q is ds
',
and the

V

moment of this force tending to produce curvature at P round a line

(such as cH in fig. 271) perpendicular to the plane of the figure is

Also the moment of R about this axis is

Hence if p is the radius of curvature of the mean fibre at P, we

= R (x cos
(j> y sin $) j-f(xaf) ds', (1)

P

the integration being performed from A to P.

If P is taken very close to A, the Bending Moment on the right
side of (1) is zero, therefore p at A = oo

, i.e., A is a point of

inflexion ;
and B is also a point of inflexion for a similar reason.

Assume y = x iana +a^+a^+a^ ...
t (2)

where 3 ,
a
4 ,

a
B ,

... are all very small quantities; there being no

&y
term in x2

since y-^
= 0(p=oo)at^l.

From (2),
we find

= sec a + sin a (3a3
#2 + 4a

4
x3 + 5#

5
#4 + . . .

)
u/x

j 2

Now i = -- X- and if we ne lect Products of asj 4~

we shall have - - cos
3

a(6a3#+ 12a4

Also

sin a .

f*(x-x') -^-f -dx \x* sec a + Ja3
sin a .

Jo "

Making these substitutions in (1),
and equating to zero the
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coefficient of every power of x, we have

_ R sin $ (cot (j)
tan

a)a
*

~
fi PJ 7 Pn 3 n

'

E1 cos3 a

JF

while a
5 ,

a
6 ,

... are of the order
^ and may be neglected.

C?
2W

Also at the extremity B, -=-^ must be zero
; therefore

and the equation of the mean fibre is

W
y = x tan a+ x sec a.

By putting k and A for y and #, this equation gives

tan a = Wh3

sec4 a.

Putting sec a = in the same term, we get

= -

where V is used for -//k
2 + A*.

Substituting this value of a in the equation of the mean fibre, we
have

k irr4

3C-2^3 + C
4
),

which is the equation of the mean fibre, to the first power of=
It will be easily found that -4iV, the abscissa of the centre of gravity

of the beam, is A

7. A rigid bar is supported nearly horizontally on three given
vertical props which are slightly elastic ;

to determine the pressures
on these props.

Suppose that the props are fixed

.__
* c

. in the ground at D, E, and F
(fig. 273), and that their extremities

were originallly a, 6, c, which are

in a horizontal line; but that

when the shrinking has taken place,

their extremities, A, B, (7, lie in a

Fig. 273.

let the pressures on them at A,

the centre of gravity of the bar and W its weight.

line slightly inclined to the horizon.

j^ ^eir original lengths be p, q, r,

so that Aa = 6>, Bb = bq, Cc =dr;
and be P, Q, and R

;
let G be
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Then we have

B-R.GC=Q, (1)

the second being obtained by moments about G,
Now if the areas of the normal sections of the props are a, /3, y, we

have (Art. 216) p V *P Q F *V * F **= & 3 = Mi > = ti > (2)a p p q y r

supposing that Young's modulus is the same for all.

Again, we must express the fact that ABC is a right line. Drawing
through C a parallel to abc, we have

bp-br _ AC

b^-br~BC'
. /. BC . bp-AC. bq + AB. br = 0, (3)

or
, by(2), t^^^^jr-a (4)

The three equations (1) and (4) determine P, Q, R.

8. A heavy rigid slab is supported nearly horizontally on four given
vertical props ;

to determine the pressures on these props.
Let the extremities, A, B, C, D, of the props when the shrinking

has taken place be represented in fig. 212, p. 294; let the original

lengths of the props be p, q, r, s ; let the perpendiculars from A and
C on the diagonal ED be p' and /; let those from B and D on AC be

(f and /; let the perpendiculars from G, the centre of gravity of the

slab, on AC arid BD be x and y ; let P, Q, R, S be the pressures on
the props, whose sections are a, /3, y, 8, respectively; and let JF=
weight of slab. Then we have obviously the statical equations

P+Q +R +S= W, Pp'-RS-Wx=Q, Qq'-Ss'+Wy = Q, (1)

\G is supposed to lie within the area AOD] the two latter being
equations of moments round BD and AC.
We must now express the fact that A, B, C, D lie in one plane.
To do this we shall calculate the vertical descent, b , of the point

from the descents of A and C and also from those of B and D. Just
as in last example, we have

bp-br __A_ p'+ r'
f _ r'bp +p'br

a^a7
"

~oc
" ~7~ +/

(2)

P_ Q , _ 7? o-o /o\"
' ' V+ ^"

o- -T i */
Similarly gf

q +s

xl , r'&p+p'br s'bq + q'bs
therefore .

~ = / 7--
p'+ r' /+/

Also, as before, = E , &c., therefore (2) becomes
a p

The four equations (1) and (3) determine the pressures.

Ll
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9. When the external forces have a potential (for the law of

inverse square), prove that the cubical dilatation satisfies the equation

and that each component (u) of displacement satisfies the equation

V2w = 0,

d* d* d*
where V= T- + -71+ ^~z

*

dx* dy
z dz*

These results follow easily. For if X, 7, Z in equations (1),

p. 489, are -^-j -=-> -3-5 and if VF= 0, we obtain V0 = by
dec dy dz

differentiating the first of these with respect to x, the second with

respect to y, the third with respect to z, and adding, using the values

of tflt T3 , &c., given in equations (2) and (3) of p. 505.

10. If 7= is the equation of the surface of any solid subject to

strain, but having no superficial stress prove that at all points on the

surface, ^ 0,

where U, = -y- > U2
= -=- U

3
= -,- ; and that the stresses on all

ax ay dz

planes passing any point on the surface lie in the tangent plane at

this point.

11. Investigate an expression, in terms of stress alone, for the

work done in the small strain of a body.
It has been shown (p. 500) that the work done in the strain of an

element, dca, of volume is %(Ae1 + J3e
z+ Ce

3)da>. Now in equations

(A) p. 507, using the principal stresses A, B, C for Nlt Nz ,
N

3 ,
and

du dv dw
the principal strains elt e

2 ,
e
3
for -=- -r-> -=- we have A+B+C' =

3kO
;
and multiplying them by A, B, C and adding, we have

Therefore if A + B + C = S, and AB +BC+ CA = 2,

where E is Young's modulus. Hence the whole work of deformation

the integration being extended throughout the whole body.
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If we do not employ the principal stresses and strains, but those

having reference to a given set of axes, the same expression gives the

work, and S will stand for

and 2 for N
This expression for the work of deformation is Clapeyroris Theorem.

(See Lame's Lemons sur L'jZlasticite, p. 83.)

12. Find the work done in the uniform compression of a body.

Ans. If P is the intensity of external pressure exerted all over

the surface, V the original volume and V' the final volume, the work
is \P(V-V).

[In a uniform compression u = ax
t
v = ay, w=- az'

)
and of

V V
course 6 = The principal stresses are equal at all points,

and each =
JP.]

13. Prove that, although the volume of a solid body may not have

changed during a small strain, there is work done in its deformation,
and find an expression for this work.

Ans. The work = ~ f(N*+N* +N*+ 2 F* + 2TJ+ 2 T*) da>,

or - /
(^.

2 + J5
2 + (7

2

)
c?co if we express it in terms of the principal

stresses at each point ;
and this cannot possibly vanish unless all the

components of internal stress vanish. (Lame", p. 85.)

[Assuming no change of volume at any element,

0=0, therefore Ni+N9+Na
.= 0.

In a fluid the stresses are all of the same kind (pressures) therefore

the work = if =
0.]

14. If throughout a body there is only one principal stress (A),
which is constant, prove that the work of deformation is

VA*

TT
where V is its volume. (Lame*, p. 83.)

15. A weight is placed on an ordinary rectangular table which rests

on the ground; calculate the pressures on the four legs, supposing
that the legs may be treated as rigid in comparison with the ground.

Ans. If the adjacent sides at any corner A are 6 and a, and if x
and y are the distances from these sides, respectively, of the point of

application of the resultant of the sustained weight and the weight of

the table, the pressure on the leg through A is

where W = sum of sustained weight and weight of table.
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16. Prove that a circular cylinder can be subject to the strain

u = ryz, v = TZX, w = cxy,

(its axis being axis of z) provided that surface stress parallel to the axis

is supplied.

17. Determine the components of strain as quadratic functions of

the co-ordinates so that at all points we shall have

and show that such strain will require the application of external

surface stress.

[Assume u px+ qy + rz+ \ (ax* + If -f cz* + 2fyz+ 2gzx+ 2 Tixy\
with similar values of v and w

;
then let the equations be satisfied at

all points, i. e., equate to zero the coefficient of each variable.]
18. Construct a diagram of the work done in slowly extending a

cylindrical bar.

[On the axis of x measure off from the origin a length, OA, equal to

Z
05
the natural length of the bar; at A draw a line making with the axis

J?fT

of x an angle whose tangent is the numerical value of (see p. 364).
^o

The ordinate, PM, of this line at any point, P, will represent the force

which produces a length in OM in the bar; and the area of the

triangle APM represents the work of extension. The result in p. 366
is graphically evident.]

19. A slightly elastic beam rests horizontally at any number of points

against fixed vertical props, and is loaded uniformly between each

successive pair of props. Prove that ifM
lt
Mv M3 denote the bending

moments at three successive points, A lt
A

2 ,
A

3 ,
of support, we shall have

8

where a = A^A^ b = A
Z
A

S ,
w = load per unit length throughout

A^A Z ,
w' = load per unit length in A

2
A

3
.

[The Bending Moment at any point = El
-=-J

> since, -j- being
dx^ dx

everywhere small, we may neglect its square.
This is known as TJie Equation of Three Moments^
[The four following examples were communicated to the Author by

the Rev. Professor Townsend.]
20. A horizontal beam, supported at both ends, being loaded with

any number of isolated weights, if the bending moments be equal at

any pair of contiguous weights, P and Q, they are equal throughout
the entire interval PQ.

21. A uniform load, PQ, is moved along a horizontal beam sup-

ported at both ends, A and B
; prove that at a given point, 0, in the

beam the bending moment will be greatest when PQ occupies such a

... ,, . OP OA
position that^ = .
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22. A uniform beam is tangentially faced at both extremities A
and B, D is its point of greatest deflection, C is the foot of the

perpendicular from D on AB
;
X is any point in the line AB

;
a

perpendicular to AB at X meets the bent beam in T and the circular

arc through A, D, B in Z.

Prove that _XZ*
~-~CD'

23. A uniform beam is supported by four equidistant props, two of

which are terminal
; prove that the two points of inflexion of its

middle segment lie on the horizontal line of the props.

MISCELLANEOUS EXAMPLES.

1 . Let the magnetic curves of a magnet be described, and suppose
electric currents to run in wires coinciding with the curves.

Prove that if C is the strength of the current in any wire and k the

constant sum of cosines (see p. 39) corresponding to it, the force which
it will exert on either pole of the magnet is proportional to

[Hence the curve which cuts the magnet perpendicularly exerts the

maximum force.]

2. If the walls of a room and an insulated electrified body inside it

are at the same potential, prove that no electrical effects (attractions
or repulsions) will be observed in the room.

3. A uniform beam, AB, is supported horizontally at two points, C
and D, in its length, C being adjacent to A and D to B. Prove that

if two circles be described with C and D for centres and CA and DB
for radii, respectively, the two points of inflexion of the beam are the

two limiting points of the coaxal system determined by the circles.

(Rev. Professor Townsend).
4. A force, R, given in magnitude, line of action, and sense, is

resolved into two components, P, Q, which are subject solely to the

condition of passing each through a given point ; find a relation (in-

volving only given quantities) between P, Q, and R.

5. Two equal bars, OA and 00, are freely jointed at the fixed point

;
four equal bars forming a lozenge, ABCD, are freely jointed at

A, B, C, and D, and the system (called a Peaucelliers Cell) is held in

equilibrium by two forces applied at B and D. If the force at D is

of constant magnitude in all positions of the cell, as it suffers defor-

mation about 0, prove that the force at B will be one varying in-

versely as the square of the distance OB. (Mr. G. H. Darwin, Pro-

ceedings of the London Math. Soc., April 8, 1875. See the same

paper for Mr. Darwin's most ingenious mechanical description of the

M m
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Equipotential Lines of any number of magnetic poles by means of

Peaucellier's Cells).

6. A given system of forces is to be reduced to two inclined at the

angle a
; prove that the shortest distance between their lines of action

cannot be less than -=r-cot- (Wolstenholme's Book of Math. Prob.,
JK i

p. 387, second ed.)
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