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PKEFACE

TO THE THIRD EDITION.

IT has been thought desirable to bring out the third edition

of this work in two volumes, because experience proved

that the previous edition contained more than was suitable

to the wants of the groat majority of students who reach the

standard of Undergraduate Honours in Mathematics.

The reception of the work in the Universities at home and

abroad, has made me desirous of rendering it more deserving

of the favour accorded to it by high class students. Accord-

ingly, I determined to reserve for the second volume the more

advanced portions of the previous work (those dealing with

Non-Coplanar Forces, Attractions, and the Theory of Strain

and Stress), and, while greatly extending these portions, to

introduce such fresh applications of the subject as would in

the work really useful to those, for example, who aim at

ction in the Mathematical Tripos.

With regard to the first volume, little needs to be said. It

is meant for those who attain the standard of Undergraduate

Honours and Scholarships, but do not desire to compete for

higher distinctions. Within this range it will, I think, be

found tolerably complete. A re-arrangement of the order of

treatment in the previous edition has been made. At an early

stage in the shnlrrit's reading I endeavour to make him

familiar with graphic methods both in practice and in theory.
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To this end, attention has been directed to the solution, by

graphic construction, of several classes of equations to which

we are led in seeking for positions of equilibrium equations,

the accurate solution of which would be impossible, and the

approximate solution of which by the ordinary analytical

methods would be attended with great trouble. Experience

has proved to me that this is a most valuable aid in producing

in the mind of the student a knowledge of the nature of

dynamical problems, and an interest which cannot be evoked

by symbols and equations alone.

Indeed, it will be observed that graphic methods figure

more largely in this edition, all through, than in the previous

one notably in the general discussion of Funicular Polygons

in Chapter V. This is a branch of elementary Statics to

which too little attention is paid ; but it is both valuable and

full of elegance.

The second volume opens with a long chapter on Non-

Coplanar Forces, in which I have given an exposition of

Dr. Pall's Theory of Screws, so far as it relates more par-

ticularly to the Statical branch of Dynamics. It will be

observed that, while following Dr. Ball's method of treatment

very closely, I have departed from it in some instances. To

prevent misconception, I may say that my reason for doing

so is simply the fact that students of any branch of science

derive great benefit by looking at it from several different

points of view.

In this chapter the general conditions of equilibrium are

illustrated by examples of the same character as those em-

ployed so largely in the chapters dealing with the Coplanar

Forces my object being to avoid mere generalities in

symbols.
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The chapter on Astatic Equilibrium is founded on a paper

which I published <>n the subject a few years ago. Now that

students of the works of Hamilton, Tait, and Clerk-Maxwu 11

arc .so numerous in the Universities, no apology is necessary

for the treatment of this subject by elementary Quaternions.

The part of this volume dealing with Attractions and

the general theory of Potential in Electricity and Magnetism

lias been much enlarged; and it will be in its present condi-

tion. I hope, a valuable assistance to the student of the great

and enduring works of Thomson and Tait, and Clerk-Maxwell.

Many correspondents have been good enough to send me

corrections of errors in the second edition. My obligation-

on this account are great to Professor Everett and Professor

Schustc-r. whose corrections must have required care and

i'ole. Some American correspondents, also, have kindly

sent eonvctions and suggestions; and among them I must

chieHy thank Mr. F. Franklin of the Johns Hopkins Uni-

ity-

The proof sheets have all been revised by my friend and

colleague Mr. W. G. Gregory, B.A., whose attainments in

I'hvHcs. both practical and theoretical, rendered his critici

of tin- ut Inc.

'HUE M. KINCHIN.

I! I E. COLLEGE, COOPER'S HIM.,

November, 1884.
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A j.. 257. ,,//,, the ,,-flrJg 'pawing over a pulley at' in*,H
n the production through D of the line joining D to

'

of ji iitamrd in a uoay is caneu ius atu.

portion <>!' matter is enlled a

4. Velocity. Suppose a point to move along a ri^ht line in

such a way that it always takes the same time, /,.to travel over

the -aim- Ini^th, .?,
of the line, at whatever points of the line the

"f this length are situated. Then \\e readily say
that the jx-int's 'rate of moving' is the same all ihmu^h, and

this rate we measure l>y the quotient
'

The rate of moving we
I

call the velocity of the moving point. But if the time of mo\

over the length * is not the same all through but depends on the

VOL. I. B
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STATICS,

CHAPTER I.

POSTSCRIPT.

Art. 94, p. 122. The hyperbola always breaks up into two

right lines, and the locus of the pole is consequently a right

line, .vince the line joining 01 to 45 is always parallel to

J34
. The result also follows as the converse of Art. 90.

3. Matter. Matter is something which exists in space, and

ts its presence by such observed qualities as extension,

. and impenetrability.

A limited portion of matter is called a Body, and the quantity
of matter contained in a body is called its Maw. A very small

portion of mutter is called a /',/,/,>/, .

4. Velocity. Suppose a point to move along a ri^-ht line in

such a way that it always takes the same time, /,.t<> travel over

the same length, *, of the line, at whatever points of the line the

extremities of this length are >ituated. Then \\e readily say
that the point's -rate of moving' is the same all through, and

this rate we measure l>y the quotient The rate of moving we
t

call the velocity of the moving point. But if the time of moi

over the length * is not the same all through but depends on the

VOL. I. B
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STATICS,

CHAPTER I.

THE COMPOSITION AND RESOLUTION OF FORCES ACTING IN ONE

PLANE AT A POINT.

1. Definition of Force. Force is an action exerted upon a

lody hi order to change its state either of rest or of moving
i-HI h/ forward in a right line.

This is the definition of Force given by Newton (see Prin-

cipia, Book I, Def. IV).
2. Divisions of the Science. The Science which treats of

the action of Force on bodies is called Dynamics. Of this

science there are two branches : the first treats of the laws to

which forces are subject when they keep bodies at rest, and

this branch is called Statics ; the second treats of the laws to

which the motions of bodies are subject when these motions are

produced by given forces, and this branch is called Ki/n'fict.

3. Matter. Matter is something which exists in space, and

-ts its presence by such observed qualities as extension,

1 impenetrability.

A limited portion of matter is called a Body, and the quantity
of matter contained in a body is called its Mass. A very small

portion of matter is called a /'<///,-/,.

4. Velocity. Suppose a point to move alon^ a ri^ht line in

such u way that it always fakes the same time, /,.t<> travel

the i-ame length, .?,
of the line, at whatever points of the line the

of this length are situated. Then \\e readily say
that the point's 'rate of moving' is the same all through, ami

this rate we measure by the quotient The rate of moving we
t

call the velocity of the moving point. But if the time of m< \

over the length * is not the same all through but depends on the

voi B



2 COMPOSITION AND RESOLUTION OF FORCES. [5.

points of the line between which it is measured, the velocity,

or rate of moving, is clearly not uniform. Nevertheless we

recognise the fact that at each of its positions the moving point
has a particular rate of going. How is this rate to be esti-

mated? Like all rates, it must be measured by a differential

coefficient. Thus, if P and Q are two extremely close positions,

and if is any fixed point on the line of motion, the distance

between and P being called * and the distance OQ being
called * + A$, and if the point has taken the infinitesimal time

A to get from P to Q, we shall be very near the truth in

assuming that its rate of moving has remained uniform in the

passage from P to Q, and the velocity in this interval will, as

above, be the quotient
- The smaller the interval PQ (and
r

therefore the smaller As and A) the more nearly true is the

assumption of uniformity of the rate of moving from P to Q.

Hence if we could find the value of the ratio when both A*
A

and A are indefinitely diminished, we should have the exact

rate of moving at P. But the limit of this ratio is the

ds
differential coefficient -=-

,
which is easily found by the rules of

ttt

the Differential Calculus.

We have thus not only a conception of different rates of

moving, but also a method of estimating these rates numerically
at different points of the path.

5. Criterion of the action of Force. Instead of the motion

of a mere mathematical point, let us consider the motion of a

material particle. How can we tell whether this moving

particle is acted on by force or not ? The answer is unless

the particle is completely at rest, or, failing this, moving with a

uniform velocity in a right line, .it is acted on by some force.

Observe the two distinct characteristics which must be possessed

by the motion of a particle which is not acted on by force the

velocity must be constant in. magnitude and the path must be a

right line.

6. Measure of Force. Suppose a particle to move along a

right line in such a way that in any interval of time, t, there is

the same addition made to its velocity, between whatever epochs
of time the interval t is reckoned. Then the velocity is
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obviously increased at the same rate at every point of the pnth,

and the particle is said to be continuously acted on by a uniform

fr<-,- in the line of motion. The time-rate at which this increase

of velocity takes place is taken as the measure of the force acting
on the particle ;

that is, if the same particle moves along a right

line in such a way that its velocity is increased at a constant

rate which is double the previous rate, it will be continuously
acted upon in the second motion by a force which is double the

previous force.

If the time-rate of increase (or in other words, the acceleration)

of the particle's motion is not uniform, the force acting on it is

not uniform, and its magnitude at any point of the particle's path
is estimated by the rate of increase of the velocity of the particle

at this point.

Since the velocity of one and the same particle is capable of

having all possible rates of increase, all forces may be compared
with each other by means of their effects on a single particle.

7. Ways in which Force is produced. One of the simplest

ways in which a force can be made to act on a particle consists

in attaching a string to the particle and pulling this string so as

to cause the particle to move. If no other force acts on the

particle, and if the string is always pulled in the same right

line, the particle will continue to move in this right line; and

the rate, per unit of time, at which its velocity is being increased

at any point of its path is a measure of the magnitude of the

force with \vhieh the string pulls it; so that if for any finite

time we observed its velocity to remain constant, we should

know that during this time the string ceased to be pulled, and

that no force acted on the particle in this particular interval.

Tin iv are other ways in which forces act on particles, but

the manner in which they act is not in every case known to us.

example, if the particle consists of a small piece of soft iron

and we hold it near the pole of a magnet we shall see it rushing
with continually increased velocity towards the magnet, and it

is therefore by definition acted on by some force towards the

Mb This force can l>e measured, as before, at every point
of the particle's path by the rate, per unit of time, at which it

iiirrs an increase of velocity in the particle; nevertheless it

is quite uncertain how this force i> produced whether it is an

net ion at a distance or a stress in some intervening medium.

B 2
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But whatever its cause may be, we can measure it numerically

by its effect viz., time-rate of increase of velocity produced in a

material particle.

Again, since the velocities of planets towards the sun and of

meteoric stones towards the earth are perpetually accelerated,

the planets are acted upon by forces towards the sun, and the

meteors by forces towards the earth. These forces are called

forces of attraction ; but the nature or precise mode of operation
of this attraction is a matter on which no certainty exists.

8. Linear representation of Forces. Consider a single

material particle. Every velocity which it can have possesses

three characteristics it must have a certain numerical mas-ni-o

tude, it must take place in a certain right line, and it must

take place in a certain sense (from right to left or from left to

right) along this line ; or, in other words, it must have magni-

tude, line of action, and sense.

Now every velocity can be regarded as produced in the

particle by the uniform action of a force for a definite time.

Hence forces are also characterised by magnitude, line of action,

and sense.

Two forces acting on a particle are therefore compared by

specifying the two lines and senses in which they would cause

it to move if each acted separately, and also the magnitudes of

the velocities which they would thus generate in it if they both

acted for the same time on it.

Hence any force may be completely represented by a right
line drawn in the direction and sense in which it would cause a

material particle to move, the length of this line representing,

on any scale, the rate per unit of time at which the force would

generate velocity in the particle. And all other forces may be

compared with this force as to magnitude, direction, and sense

by drawing right lines in the several directions in which they
would produce motion, and taking the lengths of these lines to

represent, on the same scale as before, the rates at which they
would severally generate velocity in one and the same particle.

Forces may also be compared with each other by means of

their effects on different particles. For, let n perfectly equal

particles be placed side by side in a row, (Fig. i) and let each

of them be acted upon uniformly for the same time by a force

which at. the end of this time generates the same velocity,
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f, in each of them. Now if instead of being n separate

particles they were all glued together so as to form a body
of n times the mass of each particle, and if each

of them is still acted on by the same force as

before, this body will, at the end of the time

considered, have the same velocity as each separate

1
(article had, and will be acted upon by times

the force which generated this velocity in the

particle. Comparing a single particle, then, with the body
whose mass is n times the mass of this particle, we see that to

produce the same velocity in two bodies by forces acting on

t hem for the same time, the magnitudes of the forces must be

proportional to the masses to which they are applied.

And hence, generally, if we define momentum as the product of

mass and velocity

The magnitude of a force is proportional to the rate per unit of time

at w/ii<'/t if
f/>

iterates i/ioiiU'nfvni.

The greater the mass on which the force acts, the less the rate

at which it increases the velocity of this mass
;
and the less the

mass, the greater the rate of increase of velocity; the product of

the two being always the same for the same force, w/i.

./.v.Y/v? fn /'-/lie/I '<( /.Y
(Ijijilit'd.

So that if P is -a force which generates velocity at the rate

in a body of mass m, and if P' is a force which genei
</>'

at the rate
'

-
(per unit of time) in a body of mass

ave n>= ~i
'

1). The C. G. S. system. Since the magnitude of a for

1 l.y
the time-rate at which it generates momentum, and

since velocity involve.-, length and time, we see that three

di>tinct things are involved in the measure of force viz., hnytli.

mass, ami film-. The questions then arise, what shall we take

i'nr the unit of length, what for the unit of mass, and what for

the unit of tinir? 1'W the purposes of calculation chiefly in

:y and Magnet i.-m, the system now adopted everywhere
is one in which the < is the unit of length ;

the mass of

water at its temperature of maximum density which would
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fill a cubic centimetre is taken as the unit mass and is called a

gramme ; and one mean solar second is taken as the unit of time.

This system of units is called the "
centimetre-gramme-second

"

system, or, more briefly, the C. Gr. S. system.

Hence a unit velocity is a velocity of one centimetre per

second, and a force which, continuously acting on a gramme
mass, generates in it a velocity of one centimetre per second

every second is the unit force. This unit force is called a dyne.

Roughly, its magnitude is the 7fT
th

part of the weight of the

gramme mass in London.

For the ordinary purposes of commerce, force magnitude is

often expressed in kilogrammes weight a kilogramme being
1000 grammes. In England, where, unfortunately, a complicated

and most absurd system of weights still prevails, force magnitude
would in similar circumstances be expressed in pounds weight.

It must be carefully observed that the weight of a gramme
mass is not a definite thing, because it is different at different

places on the earth, being greater in high latitudes than in low
;

but the gramme mass itself i. e., the quantity of matter called

a gramme is the same everywhere, whether on the earth or in

any part of the universe.

10. Equality of Two Masses. We know by experience that

an elastic string or a metallic spring exerts force when it is

stretched beyond its natural length ;
and we can easily suppose

that whenever the string or spring is stretched to a certain

extent it will exert the same force. Moreover, the magnitude of

this force could be expressed in dynes, by measuring the number

of centimetres per second added every second to the velocity of

our gramme mass of water (converted, for convenience, into ice)

while the string or spring is attached to the mass and pulled at

the given constant stretch
; or, what comes to the same thing,

by measuring the number of centimetres described by this mass

at the end of any number of seconds under the influence of the

pull exerted in a right line by the string or spring. And we
can imagine the stretch so graduated as to enable us to measure

any number of dynes. Thus a force of any magnitude may con-

ceivably be measured by means of its effect on our standard

gramme mass of water ; and this very measurement will enable

us to work with a body other than water say platinum by

enabling us to define what we mean by a gramme mass of the
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new body. How do we know when we have two equal masses,

one of water and the other of platinum? Indeed, before we
answer this question, we must observe that there may be no real

equality between such substances possible at all
; any equality

between them may be only a conventional equality. If all

apparently different kinds of matter could be ultimately resolved

into one simple substance be it hydrogen or anything- else

then a real equality of quantity of matter is possible between

water and platinum, and conceivably either of these substances

could be actually converted into the other. But if there is no

one substratum at the basis of all bodies, it is impossible that

any other than a conventional equality can exist between them.

The convention which is adopted for defining equal masses of

two different kinds of bodies is this

Two masses, one of a substance A and the other of a instance B,
are defined to le equal when the same force produces exactly IIn-

same
effect on both for example, makes them both move over the

same length in the same time, or generates velocity at the same

rate in both.

1 1 . Composition of Velocities. We propose to show how a

particle may be moving with two velocities in two different

directions at the same time. Let a board be placed on a hori-

zontal table
;

l<-t a rectilinear groove,

Kig. 2), be cut in this board, and

1
article be placed at in the

groove. Suppose, for definiteness,

that tin; unit of time is one second.

Let the particle be moved along
tin- groove with a uniform velocity represented by OA, and at

the same time let the board
(i.

e. every point in the board) be

moved along a groove cut in the table with a uniform velocity

represented in magnitude and direction by OS. Over what

point in the table will the particle be found at the end of one

second? Before the motions begin, complete the parallelogram

B.

At the end of a second the particle must be found in the

groove at the point A, and also at the end of the same

time the point A of the groove must be found at the point

of the table vertically under C. Hence this latter point is tin-

position of the particle at the end of a second.
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Let the foot of a perpendicular dropped from the particle on

the table be called the position of the particle referred to the table.

How do we know that the position of the particle referred to the

table has described the right line OC (or rather a line in the

table vertically under OC] ? In this way if we demanded the

position of the particle referred to the table at the end of any
fraction or multiple of a second, we should find that the distance

which it has travelled along OA is to the distance which the

groove has travelled in the direction OB as OA is to AC, and

therefore the positions of the particle referred to the table trace

out a right line vertically under OC.

Consequently the two simultaneous velocities OA and OB
which were impressed on the particle have combined to give it

a single velocity represented in magnitude and direction by OC.

The velocity OC is called the resultant of the velocities OA
and OB, and these latter are called components of the velocity

OC. Hence we arrive at the proposition which is the foundation

of Dynamics :

If a point, 0, move with two coexistent velocities represented in

magnitudes, directions, and senses by two right lines, OA and OB,
it will have a resultant velocity represented in magnitude, direction,

and sense by the diagonal, drawn through 0, of the parallelogram
determined by the lines OA and OB.

This proposition is called by the name of The Parallelogram
Velocities.

12. Composition of Forces. From the Parallelogram of

Velocities, the Parallelogram of Forces follows at once. Since

two simultaneous velocities, OA and OB, of a particle result in a

single velocity, OC, and since these three velocities may be

supposed to be produced by the separate action of three forces all

acting for the same time, it follows that the effect produced on a

particle by the combined action, for the same time, of two forces

maybe produced by the action, for the same time, of a single force

which is therefore called the resultant of the other two forces.

And these forces will be represented in magnitudes, lines of

action and senses by the lines OA, 0_Z?,and OC (Art. 8); hence

If two forces be represented in magnitudes, lines of action, and
senses by two right lines OA and OB, their resultant is represented

in magnitude, line of action, and sense by the diagonal, OC, of the

parallelogram OACB determined by these lines.
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This is the proposition of the Parallelogram of Forces.

Cor. The resultant of two forces acting along the same right
line and in the same sense is equal to their sum

;
and if they act

in different senses, the resultant is equal to their difference.

13. Equilibrium of three Forces. In Fig. 2 produce CO

through to C" so that CO = 0C*. Now imagine that, when

the particle is started along the groove and the board along the

table, the table itself is moved in a groove cut in the floor in the

direction OC with a velocity represented by OC/
. In this case

it is evident that the position of the particle with reference to

the floor is fixed
;
that is, the particle is at rest with regard to

fixed space (the floor being supposed fixed).

Consequently if three forces represented by the lines OA, OB,
and OC act together on the particle, no motion will ensue. In

this case each force it equal and opposite to the -resultant of (/t'-

other two ; for it is obvious that OA is equal and opposite to the

diagonal, through 0, of the parallelogram determined by OB
and 0(f

; and that OB is equal and opposite to the diagonal of

the parallelogram determined by OA and 0(7.

14. Statical point of view. The primary conception of

force is that of a cause of motion in a body or in a material

particle, and the magnitude of any force is estimated by the time-

rate at which it generates momentum (Art. 8). Nevertheless in

Statics it is only the tendency which forces have to produce
motion that is considered. Forces in this branch of Dynnmies
are considered as acting in such ways as to counteract each

other's tendency to produce motion, or as producing a state of

e(|uilibrium in the bodies to which they are applied ; but the

magnitude of each force is estimated none the less with reference

to the amount of momentum which it would actually generate
if it were completely unfettered by the action of other forces.

Forces in Statics are usually expressed as multiples of the

;tht of some standard bc.dy arbitrarily chosen. Thus a force

is said to be a force of 10 kilogrammes if it is just capable of

lifting vertically a body whose weight is equal to that of the

mass of water which at a temperature of about 4C fills a volume

of 10 cubic decimetres. But even here the Newtonian definition

of force, as a cause of ehange of motion, is not discarded but

merely kept in the background. For the weight which is called

a kilogramme is merely a force which generates momentum at a
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certain rate in a body of certain mass
;
and the vertical force

which is just able to raise a body from the ground is a force

which could generate momentum in the body at the same rate

as its weight and in the opposite sense. For practical purposes
this measurement of forces as multiples of a weight is used by

engineers and others
; but, as has been already said in the branch

of Dynamics which treats of Electricity and Magnetism, a different

measure of force is resorted to viz., a measure which is one and

the same all over the earth, and indeed all through the universe.

The mass of a body is something which cannot conceivably

change, whether the body is taken to different parts of the earth

or to different parts of the universe
;
and the force which, acting

uniformly on this mass for a certain time, will at the end of this

time have caused it to move with a certain velocity, must be one

and the same wherever the experiment is tried. Hence the

C. G. S. units are called absolute units. We shall in the sequel

usually speak of force as a multiple of a weight ;
and when, for

example, we speak of a force of 5 kilogrammes, the expression
must be understood to be an abbreviation for " a force whose

magnitude is equal to the weight of 5 kilogrammes." In strict-

ness, a kilogramme is a quantity of matter which is quite distinct

from the weight of this matter. Nevertheless, we may (with the

above caution) use the term kilogramme sometimes to denote a

weight as is the common (though not strictly correct) usage.
15. Force must act upon matter. Although the Newtonian

definition and measure of force render it clear that whenever

force acts it must act on something material, it is not impossible
that beginners may lose sight of this fact and suppose that a

force could, for example, act on a mathematical point. We may
without error speak of forces as acting at a point, but not on it,

if their lines of action pass through the point. Thus in Fig. 2

two forces acting along the lines OA and OB may be spoken of

as two forces acting at the point ;
but their action would be

physically impossible unless it took place on some material body,
such as a particle placed at 0. Wherever force is exhibited there

is evidence of the existence of matter, both acting and acted upon.
16. Proper Representation of Forces. In representing the

resultant of two forces which act together at a point, 0, the

student should be careful to draw the two forces acting from
the point. Thus, if of the two forces, P and Q, one, P, is
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represented as acting from 0, and the other towards 0, we must

produce the line QO to Q', so that

OQ'=OQ; completing, then, the pa-

rallelogram OPRQ', its diagonal, OR,
will represent in magnitude and direc-

tion the resultant of P and Q. The

marking of lines representing forces

with :u-row-heads will serve to exhibit Fig 3 .

the senses of the forces in every case.

17. Resolution of Forces. Having proved the principle of

the Composition of Forces, the principle of the Resolution

of Forces at once follows. If two forces, P and Q, are equiva-
lent to a single force OC/ =R (Fig". 4). ^ is evident that the

single force R acting along OC/ can be replaced by the two

forces P and Q, represented in magnitude and direction by two

adjacent sides of a parallelogram of which 0(7 is the diagonal.
Since an infinite number of parallelograms of each of which OC/

is the diagonal can be constructed, the force R can be resolved

in an infinite number of ways into two other forces. These

forces are ail led components of R.

18. Theorem. It being given that the direction of the

resultant of every two forces is that of the diagonal of their

parallelogram, its magnitude must be represented by this dia-

gonal ; and conversely.
Let it be granted that the resultant of P and Q acts in

the diagonal, OC/ (Fig. 4), of the parallelogram determined

by P and Q. Measure backwards through a line, OR, the

length of which represents the magnitude, R, of the resultant,

stem offerees acting at 0, represented in magnitudes ami

directions by P, Q, and /.'. will evidently be in equilibrium. Each

force is, therefore, equal and opposite to the resultant of the

other two. If, then, we consider P as equal and opposite to

the resultant of Q and R
t

(
t/'', the production of OP,

must lit- the diagonal <>f the

panDelognun determined 1>\

Qand R. Now, since OQP'ft
is a parallelogram, 072= P'Q;
and HnerO/^QCX is a pa nil-

Fig' 4 '

lelogram P%>= OC/
; therefore OR= OO/

. Q. !
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Again, for the converse proposition, let it be granted that .

OR= 00', while 0(7 and OR are not necessarily in one right

line; and let OP* be diagonal of the parallelogram, OQP'R,
determined by OQ and OR

;
then OP is equal in magnitude to

OP/

,
since the resultant of Q and R has a magnitude equal to OP'.

Comparing the triangles OQO
f

and OQP' we have 00'= QP
/

,

QO
f = OPf

,
and OQ common to both; therefore the angle

Q0& = the angle OQP', therefore QP' is parallel to 00'
;
but

QP' is also parallel to OR, therefore OR and 0(7 are in one right

line. Therefore, &c., Q.E.D. K
19. Relations between three Forces in Equilibrium. When

three forces maintain a particle in equilibrium, each force is

equal in magnitude to the resultant of the other two, and acts in

the sense exactly opposite to this resultant. Thus, in Fig. 4,

each of the lines, OP, OQ, and OR, which represent in magni-
tude and direction the forces P, Q, R, is equal and opposite to

the diagonal of the parallelogram determined by the two re-

maining lines.

This enables us to express the relative magnitudes of three

forces in equilibrium by means of the three .angles between

them. For (Fig. 4) the forces P, Q, R are equal in magnitude to

the lines OP, PO', (70, respectively. Now, since the sides of a

plane triangle are to each other as the sines of the opposite

angles, we have

OP : P0/
: 0'0=sin PO'O : sin O'OP : sin OPO.'

Denote by PQ, QR, RP, the angles between the directions

of the forces P and Q, Q and R, R and P, respectively. Then,

evidently,

sin P(70 = sin QO(/= sin QOR = sin QR ;

sin O'OP = sin ROP = sin RP ; sin OPO' = sin POQ = siuPQ.

Hence we have the fundamental relations

P : Q : R = sin QR : sin RP : sin P*Q.

It may, perhaps, assist the

beginner to mark the angle

opposite to each force by the

corresponding small letter (Fig.

5); and then the proportions

between the forces may easily

be remembered in the form

P : Q : R = sin p : sin ^ : sin r. (a)



20.] TRIANGLE OP FORCES. 13

Since the sides of the triangle OP(/ (Fig. 4) are connected by
the equation

oaz = OP2- 2 OP. P& cos opo'+po'2
,

we have evidently

& = P2 + 2PQ cos PQ + Q2
,

an equation which gives the magnitude of the resultant of two

forces in terms of the magnitudes of the two forces and the

angle between their directions, the forces being represented by
two lines, both drawn from the point at which they act, as in

Art. 16. If PQ = 0, the above equation gives R=P + Q,

or the resultant of two coincident forces is equal to the sum

of the forces. If PQ = 77, R = P Q ; or, the resultant of two

forces which act at a point in exactly opposite senses is equal
to the difference of the forces.

20. Theorem. If any one set of forces (P, Q, R) acting

in three <j\r>n directions is in equilibrium, all other sets acting

in eqidli/jfiiiHi
in the same directions are merely multiples of the

*>f(P, Q,R).
For, let the given directions make angles p, q, r, with each

other in pairs, and let the sets (P, Q, R) and (P', Q', Rf] acting
in these directions be separate systems in equilibrium. Then

we have

P : Q : R = sin p : sin q : sin r

and P*: Q': Rf = sin p : sin q : sin r.

Therefore, P : Q : R = F : Q' : R', or y =
-|'

= ?' . Hence

tin- forces P', <J)',
Rf are separately proportional to P, Q, /.',

and then-lore the former set is not essentially distinct from

the latter. This theorem is equivalent to the statement

when we have d< f

any one set of forces in cqi>i/Jj/-iiin/ in

three
<j
iren >///>',//,, ,/.v. //,. /,/>, determined aU tMck sete.

Thus, if we know (see Example 1, p. 18) that three forces

acting along the bisectors of the sides of a triangle drawn from

the oj.j'..>it.' angles, and proportional to the lengths of these

liisi-ctors, arc in e<|uilil>riiiin. \\c know that this is the only set in

equilibrium in these directions.

Again, we may state the result in the following form, which

is known us ihe PUINCII i i. or TIII. Tin \\<;i.i: o. FOKCKS. //'

forces are in i-qnilifiriinn, mul HUH triangle be drawn with, its sides

parallel to the lines of action of the forces, the lengths of these s\d< *
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will represent the magnitudes of the corresponding forces, on some

scale.

21. Principle of the Transmissibility of Force. When a

force acts on a particle, the force will produce the same effect

if it be supposed applied at any point along a string connected

with the particle, the string lying in

the line of action of the force. Thus,

if a force equal to the weight of P
grammes (Fig. 6) act on a particle, 0,

in the direction OA, P may be supposed
to act at A or B at the end of a string

_. , attached to 0. Imagine the particle

to be connected with an indefinitely

thin rigid membrane, abc
;
then any force P acting on may be

supposed to be directly applied at any point of the membrane in

the line of action of P.

This axiom is known as the principle of the transmissibility of

force ; it is one of the fundamental principles of Rational Statics,

and in most treatises on the subject, it constitutes the basis of

the investigation of the conditions of equilibrium. It is essen-

tially necessary to observe that it holds good only for a rigid

body that is, a body whose parts, under all circumstances, must

maintain constant distances from each other. Thus, if we sup-

pose such a body about to be acted on by any set of forces given
in magnitudes and directions, we can say, before the forces are

actually applied at certain points in the body, that the effect will

be the same if these forces are applied at any other points in

their respective lines of action. On the contrary, if the body is

defonnable, we can make no such assertion. Take, for example,
a set of parallel rulers, ABCD (Fig. 7), of which the ruler CD is

fixed, and suppose a force ^to act on the ruler AB, at the point a.

If, previous to the action oftheforce, it were allowable to transfer its

point of application to b, on the fixed

ruler CD, it is clear that the system
would remain at rest. But we know
that the force F, applied at a, will

cause the ruler AB to move until
D b C

-p.
the braces AD and CB are parallel

to the direction of F. However, after

the deformable body has taken up a position of equilibrium under the
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action of (fieforces, each force may be transferred to any point in

its line of action, just as in the case of an indeformable body.
Several other very obvious instances of the inapplicability of

this principle will*doubtless present themselves to the student.

It is essential to observe at the outset that in nature there are

no such things as rigid bodies. For a great many practical

matters there are bodies which may be treated as if they were

ri^id or indeformable; but the fact that the particles of solid

bodies like iron can be thrown into vibration by the application

of even small impulses as is evidenced by the production of

sound from bells and gongs proves that these bodies are not

absolutely rigid.

Bodies which most nearly approximate to the notion of

rigidity are called Natural Solid*. ^

EXAMPLES.

' 1. Find the magnitude of the resultant of two forces of 10

kilogrammes and 8 kilogrammes, which act at an angle of 105

Ans. R = 2^/41- 10 (V^--/2)= 11-06 kilogrammes.
2. Two forces, P and Q, of which P is given, act at an angle of 60;

given the magnitude of their resultant, R, find the magnitude of Q.

<v

From this it appears that R cannot be less than. P; explain
tlii.- n-ult by a figure.
- 3. Two forces, P and Q, inclined at an angle of 120, have a

resultant, R ;
when they are inclined at an angle of 60, the resultant

becomes n times as great as before
;
show that

f' =

J3

ond =
2

4. If two forces, acting at a given angle, be each multiplied l>y the

same number, show that their resultant is also multiplied by this

number am I unrli;mi.rr<l in direction.

- 5. Two forces act at an angle o> ; each force becomes n times as

great as before, and the angle between the forces is reduced to ;

8

i of these latter forces again becomes n times as great as before, and

the angle between them reduced to - It is observed, that in all
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these cases the magnitude of the resultant is unaltered. Show that

_1
,v/9 + 4w2-K= 4 cos M---

J-

6. Two chords, 0.4 and OB, of a circle, represent in magnitude and
direction two forces acting at the point ;

show that if their resultant

passes through the centre of the circle, either the chords are equal or

they contain a right angle.

7. Find the components of a force, P, along two directions making
angles of 30 and 45 with P on opposite sides.

2P
Ans. --= and

8. Show that a force represented in magnitude and direction by the

diameter of a circle may be resolved into two rectangular components

represented by any two rectangular chords of the circle drawn from

the extremity of the diameter.

9. Two rectangular forces, P and PV3, act on a particle lying on

the ground. If P makes an angle of 30 with the horizon, show that

the particle will have no horizontal motion.

10. Three forces equal to P, P+Q, and P Q, act on a particle in

2?r
directions mutually including an angle

-
;

find the magnitude and
direction of their resultant. ^

22. Theorem. The following theorem is of wide application
in the composition of forces :

If two forces acting at a point, 0, are represented in mag-
nitudes and directions by OB
and n . OA, their resultant is

represented in magnitude and

direction by ( + l) OG, the

point G being taken on AB so

that BG = n . AG.

For, produce OA to C so that OC = n . OA. Then the two
forces acting at are represented by OC and OB. Complete
the parallelogram OCRB. Then the diagonal OR is the re-

sultant force.

From C draw CE parallel to AB. Then the triangles CHR
and BGO are equal in all respects, /. HR = OG. Now since

OC = n . OA, it follows that OH = n . OG .'. OR = (n + 1) OG,
which proves the proposition for the magnitude of the resultant.

CTJ CO
Again, -j^

= =
,
/. CE = n . AG, and since CE BG,

we have BG = n . AG.
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As a particular case, the resultant of two forces represented
ov OA and OB passes through the middle point of AB, and is

represented by twice the line joining- to this point.

If the two forces are equal to . OA and m . OB, the resultant

TIC1

it.

passes through the point G determined so that - = - and is
ACr m

represented on the same scale by (m + )
. OG.

For, diminishing the scale to which the forces are drawn in

the ratio of m : 1, the two forces will be represented by OB and

- OA. It then follows, by what precedes, that the resultant
M

B
acts through a point G, such that BG = - AG, and is equal in

magnitude to ( f- l)
. OG. If, now, we revert to the original

scale, this must be multiplied by m, and we have for the resultant

( + ). 06. Q.E. D.

23. Graphic Representation of the Resultant. If several

forces, Plt P2 ,
... act together at a point, their resultant is

found thus : Take the resultant of P
l

and P2 ; compounding this resultant

with P3 ,
we get a new force which is

the resultant of P,, P2 ,
and P3 ;

com-

pounding this force with P4 , we get

the resultant of Pt ,
P2 ,

P3 ,
and P4 ;

and ram-ing <>n this process until all

the forces have been used, we obtain

in magnitude and direction the re-

snltant of the whole system.

I.--! 0^ be the? middle point of the

line /', /',. which joins the extremities of the first two forces.

Then the resultant of P
l
and P

2
is represented in magnitude and

direction l.y 2 . Oglt Compounding the force 2 . Oy l
with P3 ,

ultant, represented in magnitude and direction l>y

3 . Og2 (Art. 15), where
ff2 is a point on yjP3 such that P

3 <?.,
=

2 .ffrfp Again, the n-sultant of 3 . Oy2
and P4 is 4 . Og9t

where

y3
is the point on P4 g.2

such that P4y3
= 3 . g.rfy If there are n

forces acting on 0, and if G is the last point determined as above,

the resultant is represented in magnitude and direction by n . OG.

. The point d. thus determined, is called the Ceniroid of

the points P,, P2 , . . . . Pn .

vol.. I. C
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COR. 1. If the point 0, at which the given forces act, is the

centroid of the extremities of the forces Plt P2 , . . . Pn ,
the

resultant force vanishes, and the point is in equilibrium.

COR. 2. The more advanced student will perceive that if at

the points Plt P2 ,
. . . Pn there be placed equal particles, each of

mass m, and if each of these particles attracts or repels the

particle with a force proportional to m and to the distances

OPlt OP2 , . . . OPn, respectively, the resultant attraction or

repulsion on will be nm . OG, or M . OG, where H= the sum

of the masses and G is their centre of mass.

COR. 3. If the attracting or repelling particles form a con-

tinuous body, of mass M, and the law of attraction or repulsion

is that of the direct distance, the resultant attraction or repulsion

will be M . OG, acting in the line OG, where G is the centre

of mass of the body.
This result is, therefore, seen to be a simple consequence of

the theorem in this Article concerning the resultant of a number

of forces acting on a particle a theorem which was first given

by Leibnitz.

EXAMPLES.

1. Find a point inside a triangle such that if a particle placed at

it be acted on by forces represented by the lines joining it to the

vertices, it will be in equilibrium.
Ans. The intersection of the bisectors of the sides drawn from

the opposite angles.
2. P15 P2 , . . . Pn are points which divide the circumference of a

circle into n equal parts. If a particle, Q, lying on the circumference,

be acted upon by forces represented by QPr QP2 , Q,PW show that

the magnitude of the resultant is constant wherever Q is taken on the

circumference.

It is n . QO, being the centre of the circle.

3. A particle placed at is acted on by forces represented in

magnitudes and directions by the lines, OA t , OAit
. . . OAn ,

which

join to any fixed points, Av A2> . . . An ;
where must be placed

so that the magnitude of the resultant force may be constant 1

Ans. If the resultant is represented by a line of length R, mayD
be placed anywhere on a sphere of radius described round the

centroid of the fixed points as centre.

4. Two forces are represented by two semi-conjugate diameters of

an ellipse ; prove that their resultant is a maximum when the

diameters are equal and so taken as to include an acute angle ;
and

that their resultant is a minimum when they are equal and include an

obtuse angle.
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5. ABCD is a quadrilateral of which A and Care opposite vertices.

Two forces acting at A are represented in magnitudes and directions by
the sides AB and AD', and two forces acting at C are represented in

magnitudes and directions by the sides CB and CD. Prove that the

resultant force is represented in magnitude and direction by four times

tin- line joining the middle points of the diagonals of the quadrilateral.
6. is any point in the plane of a triangle, ABC, and D, E, F are

the middle points of the sides. Show that the system of forces OA,
OB, OC is equivalent to the system OD, OE, OF. (Wolstenholme,,
Book of Mathematical Problems.}

7. If be the centre of the circumscribed circle of a triangle, ABC,
and L the intersection of perpendiculars from the vertices on the sides,

prove that the resultant offerees represented by LA, LB, and LCvriU be

represented in magnitude and direction by 2 LO. (Wolstenholme, ibid.)

If G is the centroid of the triangle, the resultant is 3 . LG (Art. 23) ;

but this, by a well-known theorem in Geometry, is 2 . LO.
8. Show that the resultant of any number of concurrent forces, PJ ,

Pt ,
P

3 , . . . may be found thus: measure off any lengths l
lt

l
t , 1

3 ,
. . .

from their point, 0, of meeting along their respective lines of action
;

place at the ends of these lines particles whose masses are propor-
P P P

tional to -r-1 > 7* i ' -5 let be the centre of gravity of these
'i

^ *

particles ;
then OG is the line of action of the resultant of the given

p
forces, and its magnitude is OG x 2 (Mr. Swift P. Johnston.)

24. Graphic Representation of the Resultant. There is

another mode of exhibiting the resultant of a number of forces

acting on a particle.

When two forces, OA and OS (Fig. 2, p. 7) act at 0, their

resultant is the diagonal of the parallelogram OACB\ or, again,
it may be considered as the third side

of the triangle determined by OA and

AC, the latter line being drawn from f
the extremity of the force OA parallel

to the other force, OH.

Let any number of forces, OA, OB,

OC, 02) (Fig. jo), act at 0. Then

drawing oa (Fig. 1
1) parallel and equal

(or proportional) to OA, and from the extremity a drawing ab

parallel and equal (or proportional, on the same scale) to OB,

the resultant of the forces OA and OB is represented by ob, the

third side of the triangle oab. (Of course the resultant acts at

0, and is parallel to ob}. Ai^ain, drawing be parallel and equal

(or proportional) to OC, the resultant of ob and be is oc. Com-

c 2
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pounding this with cd, which represents OD in the above manner,
we get the resultant of the whole system

represented in magnitude and direction by

od, the last side of the polygon oabcd.

Hence to represent the resultant of any
number of forces acting at a point,

Take any point, o, and draw the sides of
a polygon successively parallel and equal (or

proportional) to the forces acting at 0; then

the last side, or that which is required to
Fig. ii.

close up the polygon, represents in magnitude and direction the re-

sultant of the system.

COR. 1 . If the last vertex, d, of the polygon of forces closed up
into o, the side od would vanish, or the resultant force would vanish

;

that is, the system of forces would be in equilibrium. Hence

If the sides of a closed polygon marked with arrows, which all

go round the polygon IN THE SAME SENSE, represent in magnitudes
and directions theforces which act together on a particle, theseforces

form a system in equilibrium.

COB,. 2. When only three forces act, the preceding Cor. shows

that they will be in equilibrium if they are parallel and pro-

portional to the sides of a triangle which are marked with

arrows all going round the triangle in the same sense.

This proposition has been already enunciated as the Triangle of
Forces.

25.] LAPLACE'S PBOOF OF THE PARALLELOGRAM OF FORCES.

Among purely statical proofs of this fundamental proposition, i.e.

proofs which do not depend on the consideration of velocity, Laplace's

appears to be the most elegant, and as, moreover, it does not involve

the principle of transmissibility, it is thought desirable to include it

in the present treatise,

Let two rectangular forces, P and

Q, represented by the lines OA and

OB (Fig. 12) act at 0, and let R be

the unknown magnitude, and OC the

unknown direction, of their resultant.

It is evident that if P and Q give a

\ , resultant equal to R acting in OC, nP
_. and nQ will give a resultant equal to

nR acting also in OC, because taking

multiples of the forces is the same thing as merely altering the

B\
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scale of magnitude to which they are referred. Conversely,
whatever n may be, nR may be replaced by nP, making an

angle (
= COA), and nQ, making an angle -- 6

(
= COB) with

p
the direction of E. Let n be taken = ~ and draw A'Off per-

pendicular to OC. Then since

E may be replaced by P in 0^ and Q in 0.5,
wz pn

P
-ginOC,, ^f in 0,4';

P0 2

Similarly Q may be replaced by -^5
in 0.5" and

-^
in OC.

Hence the forces P and Q are equivalent to a force

= TT + ^ in OC, a force ^r in 0^', and a force ^3. in 0^.
jfi /i zi .a

But these last are equal and opposite, and therefore they destroy
i other. Hence P and Q are equivalent to a single force

P2 + 2

= ~-
acting in the direction of their resultant

;
therefore

or fl=/* + Q. (1)

Thus we have found the magnitude of the resultant of any two

rectangular forces. We now proceed to find its direction.

If /' and Q are equal, their resultant bisects the angle between

them, and (l) therefore shows that it is represented in magnitude
and direction by the diagonal of their parallelogram.

Let three forces, at right angles to each other, OA, OB, and

OC (Fig. 13) each equal to P, act on a particle ; complete the

cube as in the figure. By what precedes, the resultant of OB
and OC is OF; combining this with

OA, we see that the direction of the

resultant lies in the plane FOA. Simi-

larly, it can be proved to lie in the

plane COD; hence its direction is 00^
the intersection of these planes, or the

diagonal of the cube. Now from (1)

O/-'=P-v/2, and the ivsulhint of the /
three forces is the same as the resultant Fi , 3

of /\AJ along OF and P along OA.

By (1) the magnitude of the resultant is Py/3, and since
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00' = P^/3, we have proved that the diagonal, OC/, of the

parallelogram FOA represents in magnitude and direction the

resultant of two forces P and P*/2.

Suppose now that OA = P, OS = P^/2, and 00= P, and

complete the parallelopiped. We have just proved that the

resultant_of
OB

(
- P^/2) and OC

(
= P) is the diagonal OF

(
= P\/3); and since the resultant of the three forces must

lie in the planes COD and FOA, it must act in the diagonal

0(7. But this resultant is the resultant of P*/3 along OF
and P along OA, and by (1) its magnitude is P\/4, which

is the magnitude of 00', the diagonal of the parallelogram
FOA.

By keeping OA and OC each equal to P, and giving OB the

values P, P*/2, Pv/3, ...P^/m, successively, we prove in this

way that the parallelogram law holds for P and PVm, where

m is any integer. Again, keeping OB = PVm, OC= P, and

making OA = P, P\/2, PV3,...P*/n l,in succession, where

n is an integer, we prove that the law holds for P^/m and P\/n.

Vic-n
shall be equal to any given quantity. Hence the parallelogram
law holds for two rectangular forces which bear to each other

any given ratio.

From this the proposition

follows easily for oblique
forces.

Let OA and OB (Fig. 14)

represent two oblique forces,

,_.---"" P and Q ; complete the par-

allelogram, draw the line mn

through perpendicular to

the diagonal OC, and let fall

the perpendiculars Ap, Am, Bq, and Bn, on OC and mn. By
what we have proved, the force OB (=. Q) can be replaced by
Oq and On, and OA (= P) can be replaced by Op and Om.
But Om is evidently equal and opposite to On, therefore OC is

the line of action of the resultant, and its magnitude = Op + Oq,
which = OC. This proof will be found at greater length in the

first chapter of Moigno's Leqons de Mecanique Analytique.



CHAPTER II.

GENERAL CONDITIONS OF THE EQUILIBRIUM OF A PARTICLE

UNDER THE ACTION OF FORCES IN ONE PLANE.

26.] Absolute Condition of Equilibrium. One condition is

necessary and sufficient for the equilibrium of a particle and

that condition is, that the magnitude of the resultantforce acting

upon it shall be zero. In the case of a body (as distinguished
from a mere particle) the student will afterwards see that this

single condition is not sufficient. The vanishing of the Re-

sultant may be called the absolute condition of the equilibrium of

a particle.

27.] Several Forces. When several forces act upon a particle,

the condition of its equilibrium may be expressed as in Cor. 1
,

p. 18; or as in Cor. 1, p. 20. But in practice, these repre-

sentations would frequently be found clumsy, and we obtain

simpler results by using the principle of the Resolution of

Forces than those given by the principle of Composition. It is

to be observed that forces acting on a particle are to be con-

sidered as forces whose lines of action all pass throuyh one common

28.] Resolution of Forces in given Directions. It has been

proved that a force can be resolved into two others along any
two directions in the same plane. Simplicity is gained by

taking these two directions at right

angles to each other. Thus, let Ox
and Oy be any two lines at right

angles to each other, and P any force

acting at in the plane Oxy. Then,

completing the parallelogram OXPY, F
-

ui> iin<l tin- components, OX and OY,
of the force P along the axes Ox and Oy. Let OX and OY be

denoted simply by A
r
and Y. It is, then, evident that

X = P cos 0,

r=Psin0,
where is the angle which the direction of P makes with Ox.
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In strictness, when we speak of the component of a given
force along a certain line, it is necessary to mention the other

line along which the other component acts. For example, the

force P may have an infinite

number of components along
the same right line Ox. If

the line associated with Ox be

^ Om, and if the parallelogram

A OMPM' be completed, the

component of P along Ox will

be OM, the other component

being OM'. If, again, the resolution of P be effected along Ox

and On, and the parallelogram ONPN' be drawn, the com-

ponent of P along Ox will be ON
;
and it is evident that if at be

the angle between the axes along which P is resolved, the com-

ponent along Ox will be P -.

smco

M
Fig. 16.

In what follows, unless the contrary is expressed, by the

component of a force along any line we shall understand the

rectangular component ; that is, the resolution is supposed to be

made along this line and the line perpendicular to it. It must

be remembered, then, that

The component of a force, P, along a right line is P x cos (angle

between right line and direction of P).

29.] Equations of Equilibrium, or Analytical Conditions.

If several forces, Plt
P2,

P
3 ,

. . . act at 0, each of them

may be replaced by its two

components, one along Ox,

and the other along Oy>

which is perpendicular to

Ox (Fig. 1
7). Thus, the com-

ponents of P1 are P
l cos

15

and Pl sin 61 ; those of P.2

are P2 cos 62 ,
and P2 sin 2,

and these latter are mea-

sured in exactly the same senses as the components of Pl ;
that

is to say, P3 cos 2 is the component of P2 along Ox in the

sense Ox. The component of P2 in the figure is actually in

the sense opposite to Ox, that is, in the sense 0, x\ still,
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the component in the sense Ox is P2 cos 8 , for cos
0._,

is

negative. If the senses Ox and Oy are regarded as the

positive senses, any components which act in the opposite

senses, 0,x and 0, y, would subtract from the positive

components, and must be considered negative. It will be seen

that the negative sign of every component will be perfectly

represented and accounted for by the general expressions, P cos 6

and P sin 6, for the two components. Thus, the figure shows

that both components of P3
are negative, and accordingly both

of the expressions P3 cos 3 and P3 sin 3
are negative, since 3

is

In order that the expressions P cos 6 and P sin may always

represent components in the positive senses Ox and Oy, the angle

Q must be measured from Ox towards the line of action of theforce

in a fxed sense that opposite to watch-hand rotation being

grnerally chosen.

"\Yith this understanding, then, we may say that the com-

ponents of PJ, P
2 ,
P

3
in the direction Ox are Pl cos O

lt

P2 cos 2 ,
and P3 cos 3,

and those in the direction Oy are

P, sin
lt P., sin #,, and P3 sin

3 .

Replacing each of the forces, P
I} Pj, P^ ... by its com-

ponents, we have

P! cos Ol+Pt cos a +P3
cos 8+ ..., or 2 Pcos0, along Ox,

and

P! sin 0j -I-P2 sin 0., + P3 sin 3 + . . ., or 2 P sin 6, along Oy.

If the component, P cos 0, of a force, P, along Ox, be de-

noted by A', and that along Oy by Y, the whole system of forces

is equivalent to tin- two single ton

X
l + .V, + A, + . . ., or 2Z, along Ox,

ami 7,+ Yz + 73 + ..., or 27, along Oy.

Now, since (Art. 25, p. 22) the resultant of two forces, P and

Q, at right angles is v/Pa + Q2
,
the resultant, 72, of the system

of forces P^ Pa , ..., is given by the equation

(1)

For the equilibrium of it is necessary and sufficient that

li = 0. Hence

0. (2)
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Now, this equation cannot be satisfied, so long as SXand
are real quantities, unless

2J= and 27= 0. (3)

These, then, are the two necessary and sufficient conditions for

the equilibrium of the particle, and they are equivalent to the

single condition R = 0. (See Art. 26.)

The equations (3) are equivalent to the following state-

ment :

For the equilibrium of a particle acted on by any number of

forces in one plane, it is necessary and sufficient that the algebraic

sum of the rectangular components of the forces, along each of two

right lines at right angles to each other in the plane of the forces,

should vanish. Since the directions Ox and Oy, along which the

forces are resolved, may be any whatever in their plane, we may
evidently vary the above statement thus the algebraic sum of
the rectangular components of the forces along every right line in

their plane is zero.

It is merely for uniformity of notation that we have mea-

sured e1} 6Z , 3 ,...(Fig. 17),

all in the same sense

that opposite to watch-hand

rotation. In resolving forces

along a line, Ox, it is simpler
in practice to use the acute

angles made by the forces

with the line, and to indicate

negative components by the

sign minus.
Fig. 1 8.

Thus, if (Fig. 1 8) the forces P, P
f

,
P" make acute angles 0, P,

8", with Ox, the sum of the components of the forces along Ox is

P cos Q-P' cos Q'-P" cos 0",

and that along Oy is

P sin 6 +P* sin tf P" sin 6".

The rectangular component of a force along a line is some-

times called the effective component along this line.

COR. A force has no effective component in a direction at

right angles to itself.

30.] Direction of the Resultant. The direction of the re-
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sultant of any number of forces acting in one plane on a particle,

0, is known when its components, 2JE

and 27, along any two directions, Ox
,

and Oy, are known. For, if Ox and Oy
are rectangular, and a be the angle
which the resultant, R, makes with Ox, o 2X
we have, evidently (Fig. 19), Fig. I9<

(4)

and if Ox and Oy include an angle o>,

sing 27
sin( a)

~~
2X

31.] Tension of a String. When a string is employed to

connect two or more particles which are acted on by given

forces, the fibres of the string become subject to a certain pull,

stress, or tension, which, if increased beyond a certain limit, will

cause the string to break. This tension is a force which at any

point of the string may be conceived as acting in either of two

opposite senses, or in both of these senses at once, according to

the nature of the question under discussion. Let us consider,

as a simple example, the case of a string, AB (Fig. 20),

whose weight we may neglect, fixed at the extremity A,

and attached at B to a weight Jr. If, now, we imagine
tin- string to be cut at any point j), and the lower

portion, pB, to be removed, it is clear that the re-

maining portion, pA, will not be in the same state of

stress as before unless we apply at the section /; a force

equal to W, and acting downwards. Again, let the

string he cut a little above pt at q, and suppose the

portion y/ removed. Then the small portion, pq, will BU
nut remain in its place unless an upward force equal to _.

// is applied at the section q. The small portion of the

string included between p and q is then kept at rest by two

equal and opposite forces, each equal to W. Thus, then, if we
consider any portion, pq, as isolated from the rest of the string,
\vr must iv present it as subject to two equal tensions directly

oppugn! t<> , ach other. If we considered the action of the uj.pi-r

portion,/?//, on the lower, pB, we should represent *pB as acted

on by an upward force applied at p ;
and if we consular tlu
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action of the lower on the upper, we must represent pA as acted

on by a downward force applied at the section of separation of

pA and pB. Thus, the action at B of the string on the body W
is an upward force, or tension, equal to W; while the action of

W on the string consists of an equal force in the opposite

direction.

32.] String passing over smooth pegs or surfaces. When
a string whose weight we neglect passes over a smooth peg, or

over any number of smooth surfaces, we shall assume for the

present that the stress of its fibres, or its tension, is the same at

all of its points. Should it, however, be knotted at any of its

points to other strings, we must

regard its continuitj
7 as broken, and

the tension will not be the same in the

two portions which start from a knot.

Thus, if the string pass over two

smooth surfaces, A and B (Fig. 21),

and if it is pulled at one extremity by
a force P, it must be pulled at the

other extremity with an equal force ;

but if, afterHaving the surface A, it is

knotted at C to another string which is

pi 2I pulled with a force equal to R, the

tensions in the portions between C and

A and between C and B are no longer the same, and their

relative magnitudes must be determined by equation (a) of

Chap. I., Art. 19.

33.] Equilibrium of a System of Particles. When several

particles are connected together and form a system, each par-

ticle being acted upon by special forces in addition to the forces

produced upon it by its connection (by strings or rods) with

the other particles, we can consider the equilibrium of any
one particle apart from all the others, provided that we take

account of all the forces which are produced on it ly its connection

with the others, in addition to the specialforces acting upon it.

Thus, in No. 8 of the following examples, we may write down

equations for the equilibrium of the particle N as if it were

entirely disconnected with the other points, A, P, M, J3, if we

represent it as acted on by the force, W, and by the tensions, T2

and Tz,
of the strings by which it is connected with the system.
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34.] Numerical Calculation. When in any instance the

numerical values of forces are assigned, the student will derive

much benefit from the practice of constructing good figu

which, with as much fidelity as is practically attainable, truly

represent the relative magnitudes and directions of the forces.

For this purpose, the first thing to be done is to fix on some

convenient scale of representation. The scale to be adopted will

depend on the magnitudes assigned in each particular case.

Thus, if the student works on " section paper," he may take

one, two, three, or more of the sides of its little squares to re-

present the unit force. If the magnitudes of the forces given

range from, say, 5 to 20 kilogrammes, it will be convenient

enough to take a side of one square to represent 1 kilogramme ;

but if the forces range only from 5 to 10 kilogrammes, two, or

even three, sides may be taken to represent 1 kilogramme ;

for the greater the length which represents the unit force, the

less the error which is likely to occur in the drawing. In fact,

without trigonometrical calculation, the magnitudes of certain

required forces may be found by carefully drawing the forces

that are given, and wdsuriiicj with instruments the lines which

represent the required forces, the results being reliable to the

first place of decimals. Several of the following examples are

suitable to such a method, and the student is recommended to

his calculated results by subsequent measurement.

3.").]
Useful Trigonometrical Theo-

rem. The fallowing theorem will be

found extremely useful in the solution

of a large number of statical pro-

bl.-mS. A - p /

If a right line f'P (Fig. 22) drawn

from the vertex of a triangle, divide

the base into two segments m and ,
or segments which aiv

each other in the ratio /// : //,

(m + n)cot0 = w cot a 7icot/3, (1)

where a and ,-i
are the angles which CP makes with CA and CB

t

and is the an^le which CP makes with the base ///>'.

sin A sin(0 o) / /, A\m- = OT = w(sm0cota cos0).
sin a sin a
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sin B sin (6 + 8)A\soCP = n- -n- -^ = w(s
sin 8 sin 8

Equating these two values of CP, we obtain (l) at once.

The following equation also holds :

)cotO = ncot AmcobB. (2)

sinA sin A m
For, CP m - = m -r~

sin a sin (dA) sin cot A cos d

Similarly CP = . ~ Equating these values of
sin cot 2? + cos

CP, (2) follows at once.

COR. If A and B are two fixed points and C any variable

point, and if the angles CAB and CBA are denoted by and <p,

respectively, any equation of the form

n cot 6 m cot $ = k, (a)

where n, m, and k are constants, will be satisfied if C has any

position on a certain fixed right line viz., a line dividing AB
in P so that AP : BP = m:n, and making with AB an angle

CPB or y, such that

k
coty =

or in other words, any equation of the form (a) denotes a

rectilinear locus as is evident also from the elements of analytic

geometry.

Frequent reference will be made to this result in the sequel.

EXAMPLES.

1. At the point, 0, of intersection of diagonals of a square (Eg. 23),
let two forces of 8 grammes, and 1 2

grammes, act along the diagonals, and
two forces of 10 grammes, and 2

grammes, act perpendicularly to two

sides; required the magnitude and
direction of their resultant.

Resolving the forces along Ox, the

line of action of one of them, the

Fig. 23. component of the force 10 is 10,

that of the force 8 is 8 cos 45, that

of 2 is zero, and that of 12 is 12 cos 45. Hence



35-] EXAMPLES. 31

Similarly, 27 = - + 2 + -l = 2 +

Therefore R= V(lO- 2</2)* + (2 + 10\/2)
8 = -v/312.

Again, if a be the angle made by R with -Ox,

2+10A/2
tan a = - = - = 2i (nearly).

10-2^2 5-V^
2. Three forces, P, Q, R, act on a particle : find the magnitude of

their resultant.

Let the angles opposite P, Q, and R be denoted by p, q, r (Fig. 5,

p. 12). Then resolving all the forces along the direction of P, we get
for their combined component in this direction P+Q cos r+R cosq.

Resolving them perpendicularly to P, the component = Q sin r R
sin q. Hence the square of the resultant = (P + Q cos r+R cos qf +
(Q sinrR sing)

2
. Remembering that p+q+r= 2ir, this is easily

seen to be

3. Verify in the last question that if the three forces are in

equilibrium, the expression given for the resultant vanishes.

When the forces are in equilibrium,

P : Q : R = Binp : sin q : sin r.

Hence the expression for the square of the resultant is proportional to

sin
1
/) + sin?q+ sin'r+ 2 amp sin q cos r+ 2 sin q sin r cos/)+ 2 sin r

sinp cos q.
The last two terms =

2 sin r sin (p + q) = 2sin*r, v p+q= 2irr.
Therefore the above expression is

sin^ + sin'g sin*(p+ q) + 2coB(p+ q) sin/) sing = sin
4
/) + sin*^

1 +cos(p+ q)cos(p q), V 2 f-in
y> sin 7 = cos (p q) cos (p+ q).

Now,
cos (p+ q) cos (p q)=i 1 sin

8
/) sin'^,

.*. the square of the resultant = 0.

4. A heavy particle, (Fig. 24), whose weight is W, is held in

equilibrium by three forces (in addition to its weight)
w

acting horizontally, /"acting in a direction making an angle t with

tii- horizon, and R at right angles
to /'; find the magnitudes of /' and
7i' in terms of the given force 1C.

Resolve all the forces along the

directions <>t /' and R successively.
These directions are chosen rather

than any others, because, since R is

at right angles to F, it will give no
Fj

component along F, and, for the

same reason, F will give no component along J\.
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W
The component along OF is F-\ cost TFsin i.

For equilibrium it is necessary (Art. 29, equations (3)) that this

component shall be zero. Hence

WF -\ cos i TFsin i = 0,
n

.'. F = W (sin i cos i\
V. n '

Again, the sum of the components along OR is

W
JR~-Wcosi sini;n

and this must also be zero. Hence

R = TPYcos i + - sin iV
\ <n. /

The same values would, of course, be found if we had selected any
two other directions for the resolution. Thus, if we resolve all the

forces vertically, or in the direction W, we get

W F&ini-ficoai^ 0;
W

and resolving horizontally, or in the direction of > we getn
W

h FCOBiR sin i 0.
n

Solving these last two equations for R and F, we get the same
values as before.

The advantage of a judicious selection of directions for the resolu-

tion of the forces is now apparent. By resolving at right angles to

one of the unknown forces, we obtained an equation free from that

force
;
whereas when the directions were selected at random, both of

the unknown forces entered into each of our equations, and to find

these forces it was then necessary to solve the equations.

Having selected one direction for resolution, it is not necessary
that the second should be selected at right angles to it

;
for the

student has seen (p. 26) that when a particle is in equilibrium, the

sum of the components of the forces along any direction whatever

must be zero. Hence we might, in the

A
t

M _B present case, have resolved vertically
and along the direction OF, and the

equations thus obtained would have

given the same results as before.

5. One end of a string is attached to

a fixed point, A (Fig. 25); the string,

after passing over a smooth peg, ,

sustains a given weight, P, at its other

Fig. 35. extremity, and to a given point, C, in

the string is knotted a particle of given

weight, W. Find the position of equilibrium of the system.
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Before setting about the solution of statical problems of this kind,

tin- -tudeut will clear the ground before him, and greatly 8im]>lify his

labour by asking himself the following questions:

(a) What lines are there in the figure whose lengths are already
11 ?

(b) What forces are there whose magnitudes are already given, and

what are the forces whose magnitudes are as yet unknown?

(c) What variable or variables in the figure would, if it or they
were known, determine the required position of equilibrium?

Now, in the present case (a), the linear magnitudes which are given
are the lines AB and AC. The entire length of the string is of no

consequence, since it is clear that, once equilibrium is established, P
illicit be suspended from a point at any distance whatever from B.

forces (b) acting at the point C are the weight, W, a tension in the

string CA, and another tension in the string CB. Of these, II' i-

11, and so is the tension in CB, which must, since the peg is

smooth, be equal to P (see Art. 32) ; but there is, as yet, nothing
determined al>out the magnitude of T, the tension in CA. And (c)

the angle, 6, of inclination of the string CA to the horizon would, it

known, at once determine the position of equilibrium. For, if 6 is

known, we draw AC of the given length : then, joining C to B,
the position of the system is completely known. The angle, <J>,

of

inclination of BC to the horizon, would do equally well; and it

is evident that, since either angle suffices, each must be capable of

being expressed in terms of the other, and the given magnitudes in the

qaertum.
Let AB = a, AC = b. Then, for the equilibrium of the point C we

have, by equation (a), p. 12,

To this equation must be joined the relation between 6 and
c/j

by the trcometry of the figure. We have, evidently,

AC. sin ACS = AB.Bmfa
or 6 sin (0 + <j>)

= a sin
</>. (2)

Equation (i) gives
a .-in

</> _ W

or bW
sm<p = - cos 61

a "

Expanding sin (0 + <f>)
in (2), and substituting these values of HI></>

and cos</>, and reducing, \v- have the equation

VOL. I.
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We may obtain this result very simply by employing a Triangle
of Forces. Thus, from M draw a line MQ parallel to BG, meeting
AC in Q. Then MCQ is a triangle of forces for the point C, its sides

l>eing parallel to the three equilibrating forces at C. Hence =

but QM = -nrEC = -cose(a*-2abcos6+ b''}*; and MC = 6sin0;
Al> a

P _ cos (a
2

2 ab cos Q + 6
2

)*
'

~W~ asin0

which is the same as the previous equation for 0.

The student will do well to observe that the coefficients of this

equation are ratios of magnitudes of the same kind. Thus, force and
linear magnitude are quantities of essentially different kinds. It is

true, indeed, that the magnitude of a force may be conventionally

i-epresented by the length of a line, but it is only in comparison with

other forces that any one force can be so represented, and the scale of

representation is arbitrary. Hence cos 6, which is a mere number, if

it is expressed in terms of force, must be expressed as the ratio of one

force to another ; and if it is expressed in terms of linear magnitude,
it must be as the ratio of one line to another. If, for example, the

Pa3

coefficient of cos
39 in (3) being unity, the last term had been -= >

we should have known at once that the result was wrong. For the

numerator and denominator of this expression are not of the same

degree in force
;
neither are they of the same degree in linear magui-

Pa3 a3
tude. Such a term as denotes the product of an area, > by the

reciprocal of a force, -=

Similar remarks as to the homogeneity of our results will be of

frequent occurrence in the sequel. By attention to considerations of

this kind the student will often be able to detect an error in his

work.

6. If, in the last example, the weight W, instead of being knotted

to the string at 0, is suspended from a smooth ring which is at

liberty to slide along the string ACB, find the position of equi-
librium.

In this case, the string PSCA, which passes over a smooth surface

at B, and through the smooth ring, will have its tension constant at

each of its points (Art. 32), and therefore equal to P. Hence,

putting T=-P, and resolving forces vertically for the equilibrium of

C, we have

W-2Psa\Q = 0,

or W
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7. A string, whose weight is neglected, passes over three smooth

pegs, A, B, C, which are in the same horizontal line. From th.-

extremities of tin string are suspended two weights, P and P'
; and

to two given points in it are

knotted two weights, JPand H".

tin; first suspended between A and

S, and the second between B and
C. Find the position of equi-
librium.

In this problem the given quan-
titits arc the suspended weights,
/'. ir, P

f

,
and W, the distances F . ,

AB and BC, and the length of

the portion mBni of the string (Fig. 26).

Evidently the quantities which we wish to determine are the

inclinations, 0, 0, ...
,
of the portions of the string to the horizon.

.15 = a,BC = a, and the length of mBm k. Consider the

equilibrium of the point ra. Since the string PAm passes over a

smooth peg at A, the tension in it = P throughout. If T = tension

in mBm', we have for the equilibrium of ra,

P__ _coe0W" sin (0+ 0)

T cos0

W sin (0+ 0)

Again, for the equilibrium of m,

P_ C080'

JT~ sin(0'+ 0')'
(2)

Equating the two values of T, we have

JFC080 H"C080
/

sn

These are all the equations that can be obtained from statical

considerations. One more filiation is i-rcpim-d to determine the four

unknown quantities, 0, 0, 0', and 0'. This is obtained by expressing
that tin- length of mBm = k. Evidently

Jim = --. > and Jim =

'

sin (0+ 0)
T

sin

These four equations determine 0, 0,
/

, 0', and therefore th

'ii of equilibrium.

D 2
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8. A string, SMNP...A, whose weight is neglected, is suspended
from two fixed points, A and

;
and from given points, M, N, P,

...
,
in the string, are sus-

pended a series of equal par-
ticles, the weight of each

being W. Find the incli-

nations, Ov 6
2 ; 3 ,

...
,
of the

successive portions of the

FW string to the horizon.

Consider the equilibrium
of the point M. This point
is kept in equilibrium bythree

forces, viz., W acting ver-

tically, Tl ,
the tension of the

string MB, and T2,
the tension

of MN.

Fig. 27-

Resolving these forces vertically,

W+ Ta
sin 2 TI sin 0,

=
;

and, resolving horizontally,

TI cos e
1
- TZ cos ez = o.

For the equilibrium of JV, resolving horizontally,

Hence

(1)

or in other words, the horizontal components of the tensions in the

different portions of the string are constant. Let this constant be
denoted by T; then

T T
/Tl __ FTf __ n

COS 0j
2

COS 2

Substituting these values in (1), we have

Similarly,

W
. tan

1
= tan 2 +

W
tan 2

= tan
S + ,

Hence the tangents of the successive inclinations form a series in
Arithmetical Progression. In the figure

W 2W 3W
e
t
= 0, /. tan03= , tan

2
=

, tan 6
l
= .
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If the suspended weights are not equal, it is still true that the

hurixontal components of the tensions are all equal.
The figure formed by the string BMNP...A is called a Funicular

Polygon.

9. To construct the Funicular Polygon, when the horizontal pro-
jections, RQ, Qp, pn, nm, mb, . . .

,
of the successive portions of the

chain are all of constant length, a.

Let Pp = c ; then, since (last example) the tangent of the incli-

nation of PN = 2 . tangent of inclination of PQ, it follows that, Pn
being horizontal, Nn = 2Pp = 2c. Also tan of inclination of MN
= 3 tan of inclination of PQ ;

/. Mm' = 3c.

Hence, taking the middle point, 0, of the horizontal portion, RQ,
as origin, and the horizontal and vertical lines through it as axes of x
and y, the co-ordinates of P are ($a, c) ; those of N are (a, c+ 2c) ;

those of M are (a, c+ 2c+ 3c) ;
and those of the n$* vertex from Q

are evidently

_x
2n+l

The- value of the ordinate, y, of any vertex at once enables us to

dfti-nniiu- thi- vri

It wr eliminate n from the two equations for x and y, we get an

equation which is satisfied by all the vertices indifferently. Tin-

|ti;iti<>n denotes, therefore, a curve passing through all tin- vertices of

tin- polygon. Kliiiiinating n, we get

=--
2as

a"

c
" T*

Tliis denotes a parabola whose axis is the vertical line Oy. The

vertex of the parabola is vertically below at a distance = ^

distances RQ, Qp, pn, . . . , the more nearly does

ill. a- 1'i.lygon coincide with the parabolic curv.

10. To represent graphically the forces in the general case of the

Funicular Polygon.
nil ncr, 1. 1 the vertices of the string or chain be denoted

!,e mmil.er.-. 1, 'J, 3, .... and l.-t tin- forces Pv Pv . . . act at the
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vertices. Let also the tension in the portion of the string (1, 2) be

denoted by TIV &c.

Fig. 29. Fig. 30.

Now, take any point, 0, and from it draw the line tM parallel to the

string (5, 6), and proportional to the tension T^.. From the extremity

of t draw the line, j)& parallel and proportional to the force P
5

. It

follows, then, that since the forces 2'56,
T

ts, and Ps
form a system in

equilibrium at the point (5), the third side, 4&)
of the triangle tw ps ,

t4
is parallel to T^ and proportional to it (Cor. 2, p. 20). In the

same way, drawing 2h parallel and proportional to P
4 , the side tM is

parallel and proportional
to T^ ;

and continuing this construction, the

tensions in the successive portions of the string are all represented by
the lines <M ,

ta , *u>
in the new fi ure

(
FiS- 3)-

The figure (Fig. 30) which represents by its lines, both in magnitudes
and in directions, all the forces of the system in

Fig, 29, is called by Professor J. Clerk Maxwell
a ' Force Diagram

'

of the system. (Transactions'
of the Royal Society of Edinburgh, vol. xxvi.)

When, as in example 8, all the applied forces,

PZ, Ps , . . . are parallel, the Force Diagram of

the system consists of a triangle with lines drawn
from the vertex to different points in the base.

Thus, taking any point, (Fig. 31), and drawing
Ob parallel to MB (Fig. 28), and proportional to

the tension in it
;
and then drawing bm vertical

and proportional to the weight suspended at M,
it follows that Om will be parallel to MN, and

proportional to the tension in it. Similarly for

the rest of the figure. If all the suspended
weights are equal, the lines bm, mn, np, pq, . . .

are all equal, and Fig, 31 at once shows that

the tangents of the successive inclinations of the parts of the chain

are in Arithmetical Progression. This figure also exhibits the con-

stancy of the horizontal components of the tensions Ob, Om, On, . . .
,

these components being all equal to Oq.

11. Weights of 20, 14, 20, 16, 10, and 18 kilogrammes are to be
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suspended from the vertices of a funicular polygon ;
and th-

an- to IK- on vertical lines which aiv. respectively, 3, 2, 2\, 2, and 1

decimetres apart; iind the figure of the polygon, and U!M>. by seal.-

mea.-uivment. tin- tensions in the different portions of the string so

that each one, successively, of the following conditions is satisfied :

(a) The portion of the string between the third and fourth li:

be horizontal, and the portion which is attached to the 20 kilogran.

and to a fixed point to make an angle of - with the vertical.
D

() The extreme portions of the string (those attached to fixed

points) to make each an angle
- with the vertical.
8

(y) The tensions in the portions between the second and third lines

and between the fourth and fifth lines to be each equal to twice the

tension in the portion between the third and fourth BUN.

(5) The extreme tensions to be 60 and 70 kilogrammes respectively.

(<) The vertices on the first and sixth lines to l>e in the

hori/.ontal line, and the v. it. x on the fourth line to be 5 dceim

below that on the first line.

Let Fi<r. 27 represent the polygon, the given vertical lines being those

marked M W. S W. /' H', .... and the fixed ends of the string la-ing B
and A. I 'raw a vertical line; let a be the upper end of this line ;

measure off lengths a
,, a^av a

t
a3 , a,a4 , a4

a
5 , a5

o
e n->pcctively ,

portional to 20, 14, 20, 16, 10, 18. Then the solution consists, in

case, in finding a proper position for the point 0, which is called

the
jinlf.

of the funicular polygon.
Now in (a) the line CA/ 3

is to be horizontal, so that must

where on the hori/ontal line through <ty Also since the line

JIM makes an angle
- with the vertical, the line Oav

must make thi-

angle with the line o ar Hence must lie on another given !

and <) is therefore determined. In every ca-c the actual ]MiMtion of

tin- ! \. M. i-. of course, arbitrary, BO that we may assuin

but not A
,
or nee vtrsd.

Case (y3) is similarly solved. Iii (-/), since the tension- referred to

are l> |'n
- nt.-d on the scale adopted by the lengths < hi ,.

< >ii
(

,

'

\M- mii-t have Oa
t
= 0a

4
= 20dy Now since Oa

s
= On

t ,
the point

nui-t lie on tin- line bi-ii-ctin^ fi't
t ]-\ \<

ndiciilai '1\ : and |

Oat
= 20ay the pole must lie on a circle having for diameter the

line joining the jroint- whieh divide the line a, a, internally and

externally in tin- ratio J : 1. II determined.

In
(fl).

the lengths Oa and Oat are given ;
.'. i^ d. t. imim .

;

(t). let <',, O
lt , .... ('...

be the inclinations (all nieaMired in tin-

ie sense) of the portion- //.I/, J/.V, ... to tin-

Oa a,
= m , 00,0, = 12 , . . . Oa

t
a

t
= M . Tl. if an 01 :

-vhere on the vertical line Ml}', if
//,. y.. yr . . . are the
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distances in decimetres of the successive vertices below this origin, we
have 2/22/1=3 cot

12 ; /3
-
ya
= 2 cot 23 ; 2/4

~
2/8
= 2 cot

34 ;

2/6-2/4
= 2i cot 0*5 5 2/6-2/6

= 4 cot
#56- (!)

Add these, and observe that ye
is given equal to yr Hence

3 cot
]2+ 2 cot 23+ 2| cot 81+ 2} cot

45+ 4 cot
56
= 0. (2)

Now observing that ot, divides the line a
ft

so that -5 - = --
> we

a^g 78

have (using and
</>

instead of
01
and TT

67),
from Art. 35,

cot
12
=

^g- (78 cot 20 cot <) ;
and similarly cot

2S
= ^ (64 cot

34 cot</>) ;
&c. Substituting these in (2) we have

307 cot 0-379 cot $ 0, (3)

which shows that must lie on a horizontal line dividing ac 6
in the

ratio 379 : 307.

To express the second condition, we have from (1)

y^yl
= 3 cot

12 + 2 cot
23 + 2 cot 0^ = 5

;

which becomes 472 cot 0263 cot
<|>
= 490, (4)

and this shows (Art. 35) that must lie on a right line dividing a
6

in the ratio 263 : 472 and making with it the angle whose cotangent
98=- , i.e., about 56 19'.

The two loci (3) and (4) determine completely.
12. For any given system of vertical lines and weights, show how

to construct a funicular polygon such that two assigned sides of it

shall pass each through a given point.
Ans. Let the given weights at the vertices be wv w2 ,

w
z,

... and the

horizontal distances between the given lines c
12 ,

c
23 ,

c
34 , ... Let any

two sides say that between lines 2 and 3, and that between lines

5 and 6 pass through two points whose distances from any horizon-

tal line are /3 and /3^, and whose distances from the lines 3 and 5,

respectively, are p and p'. Then with the notation of last example,
we have

2/3 /3=.PCOt02s ; 2/4-2/3
= C

34
COt

3i'> 2/5-2/4
= C45 Cot ^45 5

. . ft' j9
= p cot

23+ c34 cot S4 + c
45 cot 45 +p cot

66
. (a)

And as in last example, we have (Art. 35)

(w1 + w2+ ws+ ... )cot023
= (w3 +wt+ ...)cotd (wl+w2 )cot((),

with similar values of cot 31 ,
... so that (a) becomes of the form

Zcot mcot< { /3,

where I and m are given. This shows that the locus of is a right

line, which can be easily drawn. Any funicular, therefore, constructed

from a pole on this line satisfies the given conditions.

13. For any given system of vertical lines and weights, show how
to construct a funicular such that three assigned sides of it shall pass
each through a given point.
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1 4. Suspension Bridge. The number of vertices of the polygon
beinj,' very great, and the suspended weights all equal, the parabola Vlr*
which passes through all the vertices virtually coincides with the chain

forming the polygon, and gives the figure of the Suspension Bridge.
In this bridge the weights suspended from the successive portions of
the chain are the weights
of equal portions of the

flooring. The weight of

the chain it.-elf and the

weights of the sustaining
bars are negligible in com-

parison with the weight
of the flooring and the Fig. 32.

load which it carries.

Fig. 31 may be taken to represent the Force Diagram of the

Suspension Bridge, the vertical line ab, representing the weight of the

flooring, being divided into as many equal parts as there are divisions

of the chain. If these parts are sufficiently numerous, the lines Ob,

Om, On, &c. are parallel to tangents to successive points of the chain.

Let the span, AB, of the bridge = 2 a, and let the height OH = h.

Then, the equation of the parabola referred to horizontal and vertical

axes of y and x, respectively, through (Fig. 32) is

in being a constant
;
and the tangent of the inclination to the vertical

of any portion

_ dy _ 2 m y~
dx~ y

~~

2x
Hence the tangent at the point of support, B, makes with the horizon

ngle whose tangent is \
a I

Therefore, Oq (Fig. 31) being parallel to the tangent at the lowest

point of the 1 1 ridge, and Ob parallel to the tangent at the point B,

tan bOq =
a

Hence. Hiire // represents half the weight of the bridge, and Ob the

terminal ten-inn ot the chain at B,

Terminal tension = -
: =-r = W-

2 sin 60? 4 A
If l>einr the weight of the flooring.

Also, the vertical tension at B = W, and the constant

Hori/.ontal tension = If
4 A

1"). The entire load of a suspension bridge is 1><U><><) kilogrammes.
tlie span i.- Ill metre-, and tin- height is 5 metro : find the tension at

ints of support, and al.-o the tension at the lowe-t point.

>. Terminal ten-ion = 268,208 kilogram i:

Hori/.ontal ten-ion = 256,000
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1 6. If the vertical bars which support the roadway of a suspension

bridge are not at equal horizontal distances, prove that the vertices of

the polygon formed by the chain will still lie on a parabola, provided
that each vertical bar supports half of the adjacent portions of the

roadway.
This follows from the fact that the cotangent of the inclination of

any chord of a parabola to the axis is proportional to the sum of the

ordinates of the extremities of the chord.

17. If R is the resultant of any number of forces, P15
P

a ,
P

3 ,
.....

,

acting in one plane on a particle, prove that

where P
a ,
P

2 means the angle between P^ and P
2 .

(This result is true for non-coplanar forces.)
18. If a particle is in equilibrium under the action of any forces,

prove that the sum of the obliqtte components of the forces along any
right line is zero.

If 2JT and 2 T denote the sums of the components along two lines

inclined at an angle = o>, the square of the resultant is equal to

(2X}*+ 2 (2JT) (2 7) cos o> + (2 F)
2

;

and this = (2X+2F)
2
cos2 ^- + (2X-2F)

2 sin
8

^-.
i

Hence the result follows as in equations (3), p. 26. It is otherwise

evident, since the resultant is the third side of a triangle, two of whose
sides are 2X and 2 T.

19. If in example 7 the weights TF and W, instead of being
knotted to two given points in the string, are attached to two smooth

rings which are capable of sliding freely along the string, determine

the condition and position of equilibrium.

Here, since the string passes freely over and under smooth

surfaces, the tension is constant throughout its length. Now, the

tension in Am is P, and that in Cm' = P'. Hence

P = Pf
.

For the equilibrium of m, we have, resolving vertically,

WW 2Psin0; .-.sin =
p ;

and for the equilibrium of m', W
JT = 2Psin0/

; ..sin0
/ =

20. A heavy particle is attached to one end of a string, the other

end of which is fixed. Find the horizontal force which must be

applied to the particle in order that the string may deviate by a given

angle from the vertical, and find also the tension of the string.

Ans. If F = the horizontal force required, T = tension of string,
W = weight of particle, and = angle of string's deviation,

F= TFtan0, T IF sec 0.
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21. A string ACS (Fig. 25, example 5) has its extremities tied to

two fixed points, A and B
;

to a given point, C, in the string is

knotted a given weight, W. Find the tensions in the portions CA
and CB.

Ans. Since AC and BC are given, the angles CAB and CBA are

also given. If these angles are denoted by 6 and 0', and if T and T
are the tensions in CA and CB,

TTC080' FT cos

~sin(0+
/

) "6^(0 + 00*
22. If (same figure) the extremities A and 5 are fixed, and the

Wright W is that of a smooth, heavy ring at

(7, which is capable of sliding freely along
the string, find the horizontal force which
inii.-t lie applied to the ring C in order that

11 may take a given position of

equilibrium.
Ans. If the angles CAB and CBA are

and
/

, and F = the required force,

0-0'F= TFtan --
Fig. 33-

23. ABCD (Fig. 33) is a system of pegs

forming a square in a vertical plane ;
a string attached to A and B

-i-s through a heavy, smooth ring, R, while another string is

attached to C and R. The ring is kept in equilibrium half way
between //. the middle point of CA, and 0, the centre of the square ;

find the ten-inns in the strings ARB and CR.
Ans. If W= weight of ring, T = tension in ARB, and T tension

in CR,

T- W. T' = W.
16

24. In the last example if the tensions in the two strings are equal,

find the point at which the ring must be placed on Oil.

f)K
Ant. If

'

== x, x is determined by the equation

it ion has only two real roots,

one bet uven ( and 1, and the other be-

id 2.

A string whose weight is neglected

passes over three smooth pegs, A, B, C
;j), iii a vertical plain-, and SU8-

tain> two equal II'. from its ex-

t remit ii .-. Kind the p
and find al>o the magnitude.- of the angles
n. f-i, and y. when the system of pegs is

ikrly to break, the pegs heiiiL' all equally strong,

Fig. 34-
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Ans. If P, Q, and R be the pressures on the pegs A, S, and C, respect-

ively, P = 2 TTcos-j Q = 2 JFcos^> ./? = 2 FFcos^; and since the sum
~ 2

of a, /3, and y is given (= 2
TT),

it follows that in the best arrangement
2 2

a = /3
= y = -7r. For, unless each of the angles = -IT, some one of

TT
the pressures must be > 2 TFcos -> or TF; and if the pegs are of equal

3

strength, it is best under these conditions to have the pressures on
them all equal.

26. The ends of a string are attached to two fixed points, A, B,
in the same horizontal line, at given points, G, D, in the string are

fastened two weights, P and Q ;
find the relation which must hold

between the given magnitudes so that the portion CD of the string

may in the position of rest be horizontal.

Ans. If AB = a
;
BC = I (C being adjacent to B, and D to A

) ;

CD = m
;
DA = n

; then

P(a-m
2

+ P-ri>) = (^(a-rn-P+ n
2
).

27. Three smooth pegs, A, B, C, are fixed in a vertical plane;
three light strings knotted together at a common extremity, 0, have

suspended from their other extremities given weights, P, Q, JR, and
the corresponding strings are passed over the pegs A, B, and C

;
find

the position of equilibrium.

Ans. Construct a triangle whose sides are proportional to the

magnitudes P, Q, R; then the external angles of this triangle are

equal to the angles BOG, COA, AOB
;

so that the point is de-

v termined as the intersection of circular arcs described on BC and CA.

28. If in the last example the knot is replaced by a smooth

ring or negligible weight which is tied to the peg C by a string of

given length, while another string, passing freely through the ring,

passes over the pegs A and B, and has two given weights suspended
from its extremities

;
find the position of equilibrium.

Ans. [The suspended weights must be equal.] Describe an ellipse

having A and B for foci and touching the circle described with C as

centre and CO as radius.

29. If the string in ex. 25 passes over any number of equally strong,
smooth pegs, in the same vertical plane, find the best arrangement.

Ans. If there are n pegs, each of the angles, a, /3, y, 8, . . . must be

_ (n l)ir

n

30. In example 19 calculate the pressures on the pegs A, B, C.

Ans. The squares of the pressures are respectively

P(2P+ TF),| |4P
2+ WW- -v/(4P

a-JF2
)(4P

a-TF2

)},P(2P+ IF').

31. If the strengths of the pegs, A, B, C, in example 25, are propor-
tional to I, m, n, find the best arrangement of the system.
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Ana. The angle a is given by the equation
i+ n*)x

<>-P = 0,

in which x = cos- The angles ft and y are at once found from a.

32. Let J nJ 1
...^

6 (Fig. 35) be any funicular polygon, with weightsP
lt PI, Pa , Pt suspended at

its vertices A
lt
A t ,

A
3 ,
A t) </, _f*i_ *

respectively; draw any line,

a a
& , meeting the verticals

through A
, A

lt ... in the

points a
, rf,, </

a ,...and let

.1 .1 meet these verticals in

A
6 ,
D

l ,D3 ,... Now construct

a new polygon, a a
x
a

s
... a6,

by taking d
1
a

t
= D

1
A

l ;

t/j
a

a
= i J).

2
A

t ; and so on,

n being any number.
Prove that the new poly-

**

j_'on, whose fixed ends are a Fig- 35-

and av will be kejtt in equilibrium by the set of forces P
lt
P

t ,
P

t ,
P

4

applied at its vertices a,, a
2 , Oj, a4.

Altlmutrh this may be readily proved geometrically by principles of

Graphic Statics, the student will do well to establish it by the method
of example 8. He will easily prove that, if a and ft are the incli-

nations of A A
s
and a a

e
to the horizon, O

ol ,
dM ,

... the inclinations

of the sides A A
lt
A

1
A

a ,...,&ud $01 , </>12 ,... those of a Oj, ctja^.-.to the

horizon, we shall have

tan
</>01

tan ft
= -

(tan ,
tan a) ;

tan
</>18

tan ft
= -

(tan O
lt

tan a), &c.

But if T denotes the constant horizontal tension in a funicular

polygon, the conditions of its equilibrium are

tan ,-tan 1
= -

; tan 12
- P= -

; &c.

conditions are satisfied in the polygon o a,, ...a, on the

Hijipn.-itii.il that t lie horizontal tension in it = uT'; and it is axiom at ir

that it internal forces can preserve equilibrium, they will.

Of cour-f all tin- (irdinati-s (and not merely those through the

ii -CM) nt the derived polygon are proportional to the corresponding
onlinates of the original.

33. Slmw that the last example enables us to construct for n

parallel -\-l. -MI ..I' foroei a iuiiicular polygon which shall pax* through
three Lr :vni jioint.-*.

hit inn of this problem for any system of forces will be given in

a subseijii'-nt chapter.)
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34. Given the base, NS (Fig. 36), of a triangle NPS, and also

the sum of the cosines of the base angles, SNP and NSP; let

the curve locus of P be constructed.

Prove that if a particle be placed at any
point of the curve and acted on by two.

forces, one repulsive from N and equal to

and the other attractive towards S

and equal to == > the resultant force is, at

every position of the particle, directed

along the tangent to the curve.

N. R This curve is called the '

Magnetic Curve,' being one of those

in which small iron filings would arrange themselves under the influence

of a fixed magnet whose poles are N and S.

It is to be observed that each little piece of iron is a magnet,

having two poles at its extremities, and that it must therefore set at

the point, P, where it is placed, in the direction of the resultant force

on either of its poles.

35. Prove that the line of action of the resultant force of a magnet
on a magnetic pole at P divides NS externally in the ratio NP3

: SP3
.

36. Iron filings are sprinkled over a sheet of paper on which a magnet
rests ; prove that all those filings which dip towards the same point
on the line of the magnet lie on a circle (neglecting their mutual

actions).



CHAPTER III.

THE EQUILIBRIUM OF A PARTICLE ON PLANE CURVES.

SECTION I.

Smooth Curves.

36.] Smooth surface. When a body is placed in contact with

:i .-in-tin -e, it is evident that, in addition to the given forces acting
on the body, there is a certain force produced by the surface

tin- force, namely, which the surface exerts to prevent the body
from passing through it. This force is called the Reaction of

the surface. Now, the surface being supposed to be rigid, there

is evidently no limit to the mai/nHinlf of the force with which it

is capable of reacting; but the direction of the force depends on

the nature of the surface itself. If the surface be perfectly

smooth, it can react on any body in contact with it only in t In-

direction of the normal to the surface at the point where the

body is in contact with it. Thus (Fig. 37), if a body, Af
t
acted

on by any given -ystem offerees,

be in contact at a point with

a moot/i surface, All, the force

which this surface exerts on the

body takes the direction, ON, of

the normal to the surface at the

point of contact, O, and its mag-
nitude will he such as to destroy
the effect of all the other forces

acting upon M. To the magnitude of the reaction, A', there is

no limit ;
so that if each of the other forces acting on M were

increased 100 times, for example, the surface would react \\ith a

force equal to ico R
;
but the i/irf,-fi,>n of R is strictly limited to

that of the normal. \Ve may therefore state that

Win-n tn;, xuii.nlk //,//,* <!!< in ronttt<-f, th,'\r unitmil rear'

normal tu Ihe surface of con
'
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37.] Example. If P (Fig. 38) is a heavy particle whose weight
is W

y placed on a smooth spherical surface whose vertical diameter

is AS, what is the position of equilibrium ?

Here the forces acting on P are only two

in number namely, its weight, W, and R,

the reaction of the smooth surface. Now,
this reaction takes place in the direction of

the normal, PO, to the sphere at P ;
and

since the particle is in equilibrium under

the action of only two forces, these must be

equal in magnitude, and act in opposite

directions. Hence, since JFacts vertically,

PO must be a vertical line
;
that is, P must

be placed at A, the lowest point of the

sphere, or outside the surface at
,
the

highest point.

Whatever be the smooth surface on which the particle is

placed, it is evident that the points on it at which the particle

will rest are points the normals at which are vertical lines. And,

generally
A particle will rest at those points of a smooth surface at which

the normal coincides with the direction of the resultant of all the

forces acting on the particle.

38.] Normal to a Curve. The normal to a curve at a given

point is not, like the normal to a surface at a given point, a

definite line, but is any line whatever in the plane perpendicular to

the tangent at the point.

Hence, for the equilibrium of a particle placed inside a smooth

tube of any form, the resultant force on the particle need not act

in a given right line, but must act in a given plane namely, the

plane which is normal to the
j

B
^<^^*^

A

Fig- 39-

tube at the point where the

particle is placed. Thus, for

example, let AB (Fig. 39) be

a smooth tube of any form,

and let P be a particle placed inside it. If we imagine a string
attached to P, coming out of the tube through an opening at P,
which is not sufficiently large to allow P to come out, it is

evident that we may pull at P with any force however great
in the plane normal to the tube, and in all directions round P
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ami the equilibrium of the particle will not be disturbed. But
if we incline the string ever so little to the normal plane at P,
motion will ensue along the tube.

39.] Plane Curve. In the present chapter we shall consider

only plane curves, i.e., curves which lie altogether in one plane.

Moreover, when a particle is placed on a curve, and acted on by
given forces, we shall suppose that all the forces act in the plane
of the curve.

Now, it is evident that the only effect which a curve produces
on a particle placed upon it is a normal reaction of some definite

magnitude. If, then, we produce upon the particle, by any other

means, a force identical with this reaction, we may dispense with

the curve altogether. This being so, if we call the reaction of

the curve R, we may suppose the particle acted upon by all the

given forces, and also by a new force equal to R, this latter

acting in the direction of the normal to the curve. Thus, the

case is the same as that treated in the last chapter namely, the

equilibrium of a particle acted upon by any number of forces in

one plane ;
and in writing down the equations of equilibrium, we

shall merely have to include the new force R among all the others.

40.] Graphic Solution of Equations. It often happens that

a position of equilibrium is defined by two angles for which two

(({nations are given. The equation for either variable which

results from eliminating the other may be one of high degree, the

approximate solution of which by the methods of the Theory of

K({ nations would be very troublesome. In such cases it is often

possible, to obtain a solution sufficiently accurate for practical

purposes by constructing curves corresponding to the equations
and taking their points of intersection. For this purpose a box

of mathematical instruments is required.

u illustrations of the method, as well as some examples
of frequent occurrence, are here given, but in numerous instances

of like character, which will present themselves subsequently, the

.student must exercise his ingenuity in obtaining graphic solutions

for himself.

(a) It' ./ and // arc tu<- fixed points a"d /' a variable pointv

\vh"se portion i> defined by the angles /'./// (=0) and PSA
(= r/),

what locus is represented by the equation

acot(0 a) + cot(<f> 0) = c,

where a, b, c, a, /3 are constants?

I
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It will be easily found that it denotes, in general, a conic

circumscribing the triangle ABC, where C is determined by

drawing AC making Z CAB = a, and BC making Z CBA = /3.

But if a cot a + b cot /3 + c = 0, it will be found that the

equation represents a right line, the conic becoming the product

of this line and the line AB itself.

In particular, a cot + 6 cot <=<? denotes a right line, which is

constructed by producing AB to D, so that AB : BD=ba : a
;
and

g
at D drawing the line DC, making the angle CDB = cot"1

r
-^ Qi

(/3)
With the same meanings of 6 and <, construct the locus

represented by the equation
a cos + 6 cos c/> c.

With the points A and B as

centres describe two circles, S and

\ T(Fig. 4o)ofradii -.AS and- . AB,
C (s

respectively. Draw any common
ordinate NI/Q meeting them in L
and N; then the lines AL and BN
intersect in a point, P, on the re-

quired locus
;
for

rig. 4o. AQ + QB = AB,o*
AL . cos 6 + BN. cos < = AB, or

- AB cos 9+ - . ABcos
<j>
= AB,

C C

which is the given equation.

By drawing au indefinite number of lines, such as NQ, perpen-
dicular to AB to cut both circles, we determine as many points

as we choose on the curve, which is represented in the figure by
the thick line.

In the particular case in which a = I the locus is the Magnetic
Curve (p. 46).

(y) To find 6 and < from the equations
a b

.
-

-f- : = c and cos 9 = K cos <f>,

sin Q sin

where a, b, c, k are constants.

Take two points, A and B (Fig. 41), such that AB a + b
;
take

A0= a, OB = b, and draw OD perpendicular to AB
;
with A as

centre and c as radius describe a circle; draw any radius,
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AC, of this circle, meeting 01) in L; inflect BJ equal to LC\
then P, the point of intersection of AC and BJ, is a point on

tin- locus, the an fries Q and
<f> being- ALO and .fr/0, respectively.

The full curve represents half the locus, there being a similar

portion below AS.

Also the equation cos == k cos gives
sin PAB-k . sin PBA, or PB-k . PA,
so that the locus representing this

equation is a circle whose diameter is

the line joining the points which divide

.1/1 internally and externally in the

ratio 1 : k. The values of 6 and
</>

which satisfy both equations are those belonging to the points
of intersection of this circle and the previous curve

(8) To find 6 from the equation

a sin 6 + b cos 6 = c.

AVe may, of course, form a quadratic for either sin0 or cos0, but

when a, b, c are numerically given, this method would often !

very troublesome.

Divide out by a, and put
- = tan a

; multiply by cos a, and

we get c
sm (0 + a) = - cos a.

a

The angle a is known from a table of natural tangents, so that

this la-t equation gives 6 at once.

numerical example, let it be required to find the inclina-

tion of a smooth plane on which a weight of 7-5 kilogrammes e;m

be sustained by an up-plane of 2-4 kilogrammes and a horizontal

3-6 kilogrammes. The equation for
?',

the inclination, is

7-5 sin i 3-6 cos= 2-4.
O

ij

Dividing out by 7.5, and looking in the tables for tan' 1
>

we have

sin /cost tan (25 38' 28") = -32.

Multiplying by cos (25 38' 28"), we have

sin
(/

25 38' 28") = -2884871 = sin (16 46' 3"),

.'. i = 42 24' 31".

K 2.
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EXAMPLES.

1. A heavy particle is placed on a smooth inclined plane, AB
(Fig. 42), and is sustained by a force, F, which acts along AB in the

vertical plane which is at right

angles to AB
;
find F, and also the

pressure on the inclined plane.
The only effect of the inclined

plane is to produce a normal re-

action, R, on the particle. Hence,
if we introduce this force, we

may imagine the plane removed.

Let W be the weight of the par-
4 2 -

ticle, and i the inclination of the

plane to the horizon.

Resolving the forces along AB, we have

F W sin i = 0, or F W sin t
;

and, resolving perpendicularly to AB,
R W cos i = 0, or R = W cos i.

If, for example, the weight of the particle is 4 grammes and the

inclination of the plane 30, there will be a normal pressure of 2 \/ 3

grammes on the plane, and the force F will be 2 grammes.
2. In the previous example, if F act horizontally, find its magni-

tude, and also that of R.

Resolving along AB, and perpendicularly to it, we have, successively,

FcosiW sin i = 0, or F = JFtan i
;

W
Fsin i + WcosiR = 0, .-. R =and

COS I

R

R is therefore in this case greater than it was before, as is sufficiently
evident a priori,

3. If the particle is sustained by a force, F, making a given angle,

6, with the inclined plane, find the mag-
nitude of this force, and of the pressure,
all the forces acting in the same vertical

plane.

Resolving along the plane (Fig. 43),
rrSin t

Fcos JFsin i = 0, or F= -
cose;

and resolving perpendicularly to the plane,

R+ Fsiu9 - Fcosi= 0, /.#= TF^-t^ .

cos

The student will, of course, observe that these values ofF and R could

have been at once obtained, without resolution, by the equation (a),

p. 12.

4. A heavy particle, whose weight is W, is sustained on a smooth
W

inclined plane, by three forces applied to it, each equal to
; one

O
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acts vertically, another horizontally, and the third along the plant

(Fig. 44) ;
find the inclination of the plane.

Since we do not want /?, the pressure on the plane, we shall resolve

forces at right angles to /?, that is, along the plane. Hence

w . w w
r sm t + + cos t n sin i = 0,

3 o o

or 2 sin i = 1 f cost, /. 2sin -cos - = cos9 -- (1)mm
If we reject the factor cos - > for the present, we have

m

which determines the inclination.

Now the expulsion of the factor cos - from equation (1) amounts to

rejecting the solution

cos - = R

Fig. 44-

But in this, as well as in many phy-
sical and geometrical problems, such a

solution ought not to be rejected, unless

it is shown to be irrelevant to the ques-
tion. So long as our equations are

jxrfect interpretations of the physical
or geometrical conditions of the pro-

Mem, no factor can furnish an irrelevant

solution. It is only when an equation expresses more or less than

i- implied in the given conditions that irrelevant factors can pn
themselves. Instances of these factors frequently occur in the opera-
tions of Algebra and Analytic Geometry aa, for example, when we
rationalize an equation by the process of squaring. If, before thi-

process, the square root of a quantity was affected with a minus sign,

this siifn will bt- indifferent in the rationalized result, and this latter,

consequently, expresses more than was contained in the original

equation. Hence it may happen that the result will furnish us not

only with what is relevant, but, in addition, with what is wholly

irrelevant.

In the present instance the equa-

tion cos-= would give the incli-

J
\-

180

nati >t (lie plane = 180, and the

iiiruie would then Income Fig. 45, in

which the particle is placed umler-
Fig. 45.

neatli the plane in such a way that

equilibrium is manifestly impossible. t

-

Hence it appears as if the equation oos = were wholly without

meaning.
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A little reflection, however, will show that it is quite relevant. For

equation (1) is merely the analytical expression of the physical con-

dition that the component of the acting forces along the plane shall be

zero. Now it is not enough for equilibrium that the component along
some one line shall be zero

;
for this, the component along some other

line must vanish as well. Hence our result does not express the com-

plete condition of the particle's equilibrium, but merely a part of that

condition
;
and each of the equations

i 1 i
tan - = -

> and cos - = >22 a

expresses perfectly all the physical conditions contained in (1). For
W

when the inclination is 180, the force which acted along the in-
o

ciined plane becomes a horizontal force opposite to the given hori-

W W
zontal force

-;
and the vertical furnishes no component along the

3 <3

plane. If the normal force could consist of a putt, this position would
be possible.

2
The magnitude of R is - W,

O

5. A heavy particle, P (Fig. 46), is placed inside a smooth parabolic
tube whose axis is vertical, and is acted upon by a horizontal force, F,

equal to \i PM, PM being the ordinate of the point P ;
find the posi-

tion of equilibrium.
Here the forces acting are W, the

weight of the particle, R, the normal
reaction of the tube, and F. We shall

obtain an equation between F and W,
without JR, by resolving along the tan-

gent at P. If 6 = angle between the

tangent at P and the vertical,

W cos = F sin 6 = y.y . sin 0, where

y = PM.
Hence, for the position of equilibrium,

retaining the factor cos 0,

cos (W p.y tan 0)
= 0.

But if the equation of the parabola is y
2 = $mx, tan = Hence

y
the equation is

cos0(TF 2pm) = 0. (1)
This equation of equilibrium can be satisfied in two ways. Firstly,

we can have
cos = 0, (2)

or ~ ' which gives the vertex of the tube as the position of equi-

librium. This position is a priori evident, since the particle would
at the vertex be acted upon only by its weight and the reaction of the

tube, the force F here being = 0.

W

Fig. 46.
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Secondly, the equation will be satisfied if

(3)

Xo\v, this is simply a relation between the constants of the problem,
and gives no value of 6 that is, no definite position of equilibrium.
In fact, if the equation (3) is satisfied, (1) will be satisfied, no niattiT

W
what 6 may be. The result, then, is as follows: if p.

= -
> the par-

2 m
tide will rest in all positions; and if this relation does not hold, the

vertex is the only position.
It is well for the student to observe that /z is here the quotient of

a force by a line, the force being expressed in the same units as those

of W, and the line in the same units as those of PM. For since

we have put /' = p P^f, if Q is a force in the same units as those of

W, and I a line in the same units as those of PAf, it is clear that

the proper representation of F would be something of the form

1 I

6. A heavy particle, resting on a smooth inclined plane, is attached

to a string which, passing over a smooth pulley, sustains another

heavy particle: find the conditions and position of equilibrium.
Let )>" be the weight of the particle on the plane, P that of the

hanging particle, and 6 the inclination of the string to the inclined

plane in the position of equilibrium.
For the equilibrium of the particle on the plane, we have, resolving

along the plane (since the tension of the string = P),

IT sin t = Pcos 0',

IT sin t

.-. cos Q
-p

In order that there may be a position of equilibrium, this value of

cos mu-t be < 1, .-. ir sin i must be < P,

Explain the result when P = W.

7. Three particles, whose masses are

TO,, TO,, TO,, are placed at three points, A,

, (7 (Fig. 47), inside a smooth circular

tube; they attract or repel each other

with forces directly proportional to their

-es and their distances ; find the posi-

tion of equilibrium of the system.
Consider the equilibrium of TO, at A.

It is acted upon by two forces equal to

TO, /lA'and in,.lf, in 1 he direction- Mi
aiid Itant of these must be

normal to the tube at .1. I'-ut (Cor. 2,
Fig. 47.

p. 1 8) the resultant acts towards o, the

re of gravity of m
t
and m s ,

and if

i, the centre, OB = 0(7, Hence
" ^ =

; and, by ng the
; i TO,
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since m, _, .

equilibrium of B, we have -- = = Ihereiore sin x : sin y : sin z
sin z m

3

=
TOJ : wa : wi3 . Also x + y + z = TS

;
therefore x, y, and z are the

angles of a triangle whose sides are proportional to ml}
m

2 ,
and

7/i
3

. These angles being known from some such equations as

cos x = &c., the relative positions of the particles

are at once determined. The centre, 0, of the tube is the centre of

gravity of the particles.
8. Two smooth heavy rings, A and C (Fig. 48), slide on two rods

which are inclined to the horizon at angles i and if
;

a string con-

necting A a<nd C passes through a smooth heavy ring, B. Find the

condition of equilibrium.
Let the weights of A, B, C, be P, W, P', respectively, and let 7?

and R' be the reactions of the rods on A and C. Construct the force-

diagram of the system by drawing Om from an arbitrary origin, 0,

parallel and proportional to Rf
and mn parallel and proportional to

P'
;
then on will be parallel to BC and proportional to the tension in

it. Drawing again np parallel and proportional to W, Op will be

parallel to BA, and represent its tension. Finally, if pq represents

P, Oq will represent R. Since the tension in ABC is constant,

On = Op ;
. . a perpendicular from on mq bisects np. The length

Fig. 48.

of this perpendicular is, on the one hand, (mn+ % np) tan i', and on
the other, (pq + i

np) tan i. Hence, equating these, we have

(P*+ W) tan i' (P+ 1 W ) tan i.

This is a relation between the constants of the problem, and it there-

fore constitutes a condition that equilibrium should be at all possible.
If this condition is fulfilled, there will be an infinite number of posi-
tions of equilibrium. For if 6 is the angle which the string BC makes
with the vertical, we have from the force-diagram

.

tan = ==
. .,

tan i
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and it can be easily proved that if the two rods are taken as axes

of x and y, the locus of B is

xsec(6 i') + ysec(d f)
= / cosec (t + i"),

which is a given right line.

9. Two heavy rings, whose weights are P and Pr

(Fig. 49), rest on
tin- circumference of a smooth vertical circle, and are connected by a

weightless string on which a heavy ring, whose weight is Q, slides

freely. Find the position of equilibrium.

Fig. 49.

Construct the force-diagram. Let 6 and (? be the inclinations of

the radii CA and CA' to the vertical, and let be the inclination

of the portions of the string AB and BA' to the vertical,

force-diagram then gives the statical equations

n*. (1)

> (2)
* & fi

To these must be added the geometrical equation which connects the

length, /, of the string with the radius, a, of the circle.

Since the horizontal projections of the broken lines ACA' and
Afi'.l' are the same, we have

a (sin + t-in (T)
= / sin </>. (3)

K<|uati"n.s (1), (2), and (3) are sufficient to determine the unknown
-
0, tf, ami

</>.

10. A Ixuly, whose weight is 10 kilogrammes, is supported on a

smooth in. -lined plane by a force of 2 kilogrammes acting along the

plane and a horizontal force of 5 kilogrammes ;
find the inclination of

the plane.

An..
*r(|).

11. A heavy body is sustained on a smooth inclined plane (inclina-

tion ) by a force P acting along the plane, and a horizontal force, Q.
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The inclination being halved, and the forces P and Q each halved,
the boiiy is still observed to rest

;
find the ratio of P to Q.

Ans. -= = 2 cos2 --
Q

12. A weight of 10 kilogrammes is to be sustained on a smooth

inclined plane of 25 inclination by a horizontal force of 5 kilogrammes
and a force unknown in magnitude and direction

;
determine this force

in both respects so that there shall be a normal pressure of 2 kilo-

grammes on the plane.
Ans. The force = 9.07 kilogrammes, and it makes an angle of about

1 54' with the normal, having a downward component.

13. Find the inclination of a smooth inclined plane if a weight of

24 kilogrammes resting on it is sustained by a horizontal force of 7

kilogrammes and a force of 16 kilogrammes (of unknown direction),

while the normal pressure is a force of 15 kilogrammes; find also the

unknown direction.

Ans. i = inclination of plane = 53 53'.

= angle made by force with plane = 17 28'.

14. Find the inclination of a smooth inclined plane if a weight of

20 kilogrammes resting on it is sustained by an up-plane force of 5

kilogrammes and a force of 15 kilogrammes ofunknown direction, while

the tiormal pressure is 2 kilogrammes ;
and find the unknown direction.

Ans. * = 4928'; 6 = 47 9'.

15. Find the inclination of a smooth inclined plane if a given

weight, W, resting on it is sustained by a given horizontal force, P,
and a force Q of given magnitude but unknown direction, while the

normal pressure is a given force N
;
find also the unknown direction.

p
Ans. If, for convenience, tan a is put for -==.} we have

cos(t a) =

Fig. 50.

sin ap _ sin /3

sin0 =

16. Two weights, P and Q (Fig. 50), rest

on a smooth double-inclined plane, and are

attached to the extremities of a string
which passes over a smooth peg, 0, at a

point vertically over the intersection of

the planes, the peg and the weights being
in a vertical plane. Find the position of

equilibrium.
Ans. If I the length of the string,

and CO = h, the position of equilibrium
is defined by the equations

cos 6 cos <

which belong to case (y), p. 50.

cos a cos /3

sin Q sn
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17. Two weights, P and Q, connected by a string, rest on the

convex side of a smooth vertical circle. Find the po-ition of equi-
librium, and show that the heavier weight will be higher up on the

circle than the lighter. [The string lies along the circle.]
Ans. If tin- radius of the circle drawn to P make an angle &

with the vertical diameter, / = length of the string, and a = radius of

the circle, the position of equilibrium is defined by the equation

Psin0 = Qsin( 0"),^a /

6 being circular measure.

1 8. Show, by considering the equilibrium of P and Q (in the last

example) as one system, that their centre of gravity lies in tin-

vertical radius of the circle.

19. Two rods are fixed in the same vertical plane at inclinations a and

ft to the horizon
;
two rings, whose weights are P and Q, are con-

nected by a string of given length and placed one on each rod
;
find

the position of equilibrium.
-. If P is placed on the rod of inclination a, the inclination,

6, of the string to the vertical is given by the equation

(P+ Q) cot = P cot /3 Q tan a.

20. Two heavy rings, P and Q, connected directly by a string of given
length, rest on a smooth circular wire fixed in a vertical plane; find

tin pi .MI ion of equilibrium.
>. If 2 a is the angle subtended at the centre of the circle by

the string, the inclination, 0, of the string to the vertical is given by
the equation (P + Q) cot 6 = (P Q) tan a.

21. Two heavy rings, Pand Q, connected directly by an elastic string

whose tension is proportional to its length
1

,
rest on a smooth circular

win- fixed in a \vitical plane; find the position of equilibrium.
Ant. If C is the magnitude of the tension of the string when the

striiiM- I?, Mi-etched to the length ( f the radius of the wire, construct a

triangle whose base and two sides are respectively proportional to

!'<>

/'. Q. Then the base angles of thi> triangle are thow made with
G

il by the radii of tin- wire drawn to the rings.

22. A weight W is attached to a small ring which can slip over a

smooth circular wire fixed in a vertical plane ;
the ring is also tied to

a string which, pa MIL- as a chord of the circle over a fixed peg at

the top of the circle. Mi-tain> a given weight /' : find the po.-itiou of

eipiililn itini and the pre--mv <m the circle.

Ant. If i- the alible made l.y the radius drawn to the ring with

p
the vertical, sin \0 = t ;

and the normal pressure = W.
tr

1 The student will afterwards see that thin would be the came if the natural

length of the string were BO small an to be negligible in the problem.
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23. In the same vertical plane are fixed a smooth rigid circular

wire and a smooth rigid rod
;
a heavy ring A slips along the circle,

and another, B, slips along the rod, these rings being connected by a

string of given length ;
find the position of equilibrium.

Ans. If r = radius of circle
;

I = length of string AB ; p = per-

pendicular from centre of circle on rod
;
P and Q = weights of rings

A and B, respectively; 6 = angle between radius drawn to A and

perpendicular to rod
; <f>

= angle between AB and perpendicular to

rod
;

i = inclination of rod to horizon, then we have
r cos 6+ 1 cos $ =p,

Q cot (6
-

i) + (P+ Q)
cot

(</> + i)
= P cot t.

The second belongs to the rectilinear case (a) of p. 50, so that Q

and $ can be constructed from cases (a) and (/3).

24. Two very small rings, A and B, capable of slipping along the

circumference of a smooth circular wire fixed in a vertical plane,
have weights P and Q suspended from them

;
the rings are attached

to the extremities, A, B, of a string ACB which passes over a peg
fixed at C vertically over the centre of the circle

;
find the position

of equilibrium.
Ans. Let h = height of C above centre of circle

;
I = length, ACB,

of string ; CA = r, CB = /; then we have

~
P+Q

~

P+Q
25. Two weights rest on the convex side of a parabola whose axis is

vertical, and are connected by a string which

passes over a smooth peg at the focus ; show
that equilibrium is impossible unless the

weights are equal.
26. Two weights, Pand Q (Fig. 51), rest on

the concave side of a parabola whose axis is

horizontal, and are connected by a string
which passes over a smooth peg at the focus

F. Find the position of equilibrium.
Ans. Let I = length of the string ;

6 == the

angle which FP makes with the axis
;
4m =

the latus rectum of the parabola ;
then

27. A particle is placed on the convex side of a smooth ellipse, and
is acted upon by two forces, F and Ff

,
towards the foci, and a force,

F", towards the centre. Find the position of equilibrium.
Ans. If r = the distance of the particle from the centre of the

F F
curve; b = semi-axis minor

;
and n = =7 ;

then
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28. A heavy particle, P, is placed on the concave side of a smooth
vertical circle whose lowest point is A and highest point B. If the

particle is acted upon by two forces, in the directions AP and BP,
t-(|ual to pP, and fJulP, respectively, find the position of equi-
librium.

Ana. Let TF= the weight of the particle; = the angle made
with the vertical by the radius to P; a= the radius of the circle; then

29. A particle, P, is acted upon by two forces towards two fixed

M M
points, S and //, these forces being and

jr-p* respectively; prove

that P will rest at all points inside a smooth tube in the form of a

curve whose equation is SP . PH= %?, k being a constant.

30. A particle, P, is placed inside a smooth circular tube, and
'I upon by two forces towards the extremities, A and B, of a fixed

diameter, AB; the forces are respectively proportional to PA and
PR : prove that the particle will rest in all positions.

3 1 . Two weights, P and Q, connected by a string rest on the convex
side of a smooth cycloid. Find the position of equilibrium.

- 1 /<s. If I = the length of the string, and a = radius of generating
circle, the position of equilibrium is defined by the equation

. 0_ Q I

where i- the angle between the vertical and the radius to the point
on the generating circle which corresponds to P.

[The string is supposed to lie along the curve.]

SECTION II.

Rough Curvet.

41.] Friction. The curves and surfaces which we have hitherto

ideivd \\viv supposed to be incapable of offering resistance in

any other than :t normal direction. Such curves and surliices,

h..\\. -t i.nly in the attractions of Rational Statics, and

are not to he found in nature. Kvery surface in nature poOMOefl

a certain decree of routines-;, in virtue oi which it resists the

sliding of other surfaces upon it.

Now, there arc two ways in which a surface may resi-t a

sliding motion. Firstly, it may possess small innjualities which
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act as fixed obstacles to sliding ; and, secondly, there may exist

an adhesion between its substance and that of another body in

contact with it. In virtue of inequalities, the two surfaces get
1

interlocked, and an effort to cause one to slide on the other causes

a strain in each of the surfaces, the force which resists this sliding

being called Friction. Rankine (Applied Mechanics, p. 209) dis-

tinguishes adhesion from friction on the ground that adhesion

between two surfaces is independent of the force by which they
are pressed together, and is analogous to shearing stress, i.e., to

the force (called cohesion) which resists an attempt to divide a

solid by causing one part of it to slide on another.

At the same time he holds (Mechanical Text-Book, p. 153) that

friction is a kind of shearing stress, and this view gives probably
the most real and vivid conception of its nature.

42.] Laws of Friction. Experiments made by Coulomb and

Moriu have established the following laws of friction :

1. The tangential force necessary to establish the beginning
of a sliding motion is a constant fraction of the normal pressure

between the two surfaces in contact.

2. With a given normal pressure, the tangential force neces-

sary to establish the beginning of a sliding motion is independent
of the extent of the surface of contact.

Subsequent experiments have, however, considerably modified

the first of these laws, and shown that it can be regarded only as

an approximation to the truth. If N be the normal pressure

between the bodies, F the force of friction, and /x the constant

ratio of the latter to the former when slipping is about to ensue,

we have F=/j.N. (a)

The fraction
fj.

in this equation is called the coefficient offriction,
and if the first law were true, \i would be strictly constant for

the same pair of bodies, whatever the magnitude of the normal

pressure between them might be. This, however, is not the

case. For great differences of normal pressure there are con-

siderable differences in the value of p. "When the normal pressure

is nearly equal to that which would crush either of the surfaces

in contact, the force of friction increases more rapidly than the

normal pressure. Equation (a) is nevertheless very nearly true

when the differences of normal pressure are not very great, and

in what follows we shall assume this to be the case.

43 ] Causes which Modify the Coefficient of Friction.
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Friction King a force called into play by the mutual action of

two bodies in contact, p. depends on the particular pair of bodies

in contact, and is not a quantity pertaining to any one body by
itself. Moreover, it varies for the same two bodies according as

the state of each body varies. Thus, it is not the same for iron

and dry oak, as for iron and the same piece of oak with a

moistened surface. Neither, again, is it the same for two pieces

of wood when their fibres are parallel as when they are perpen-

dicular. In fact, when great accuracy is required, a special ex-

periment should be made to ascertain the coefficient of friction

between two bodies which in any ease are to act upon and sus-

tain each other. Tables of the coefficient of friction between

bodies in specified states are to be found in most practical treatises

on Statics.

44.] Independence of the Extent of the Surface of Contact.

The second law of Friction may at first sight appear strai,

but a little reflection will remove objections against its truth.

If the total normal pressure between two bodies be N, and the

area of the surface of contact S, the pressure per unit of area

N
(which is called the infautty ofpressure] is -~. If now, while the

normal pressure remains the same as before, the surface of contact

N
is doubled, the pressure per unit of area is only ~, which is just

half as great as before. Hence, though the area over which

friction acts is doubled, the intensity of pressure is halved; and

it is consistent with common sense that the friction per unit of

i should be halved also. Thus, on the whole, the same total

ntial force is required to set up sliding in both eases.

4,").]
Actual Magnitudes of Coefficients of Friction. It is

well that the student should have some idea of the actual magni-
tudes of'e.ieHicients of friction between bodies. 1'W this purpose
he should look at a table of these eocHicients. Practically there

i> no <lerved cncHicieiit much greater than 1. In Kankine's

table the coellicient fur damp clay on damp clay is given as 1,

and that for shingle on gravel is at the most I'll. Most of the

ordinary coefficients ;H-C ! than \.

46.] Other Coefficients of Friction. It is found by experiment
that the friction which resists the beginning of sliding i>

than that which resists its continuance. Again, the resistance
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which is opposed to the rolling of one surface on another is dis-

tinguished by the special name of Rolling Friction, but it would

more properly be called Resistance to Rolling. At present we
shall limit ourselves to the consideration of the friction of the

beginning of motion which is expressed by the equation

52>

47.] Reaction of a Rough Curve or Surface. Let AB
(Fig. 52) be a rough curve or surface; P the position of a

particle on it
;

and suppose the

forces acting on P to be confined

to the plane of the paper. Let

N = PR
y
= the normal resistance of

7 the surface, acting in the normal,

PN, and F= the force of friction,

acting along the tangent, PT.

The resultant of N and F is a

force which we shall call the Total

Resistance of the surface. It is represented in magnitude and

direction by the line PR = R, which is the diagonal of the

parallelogram determined by N and F. We have seen that the

total resistance of a smooth surface is normal ; but this limitation

does not apply to a rough surface. The angle, $, between R and

the normal is given by the equation
F

tan =
-=j'

Hence, </>
will be a maximum when the force of friction bears

the greatest ratio to the normal pressure. -But this greatest

ratio is what we have called the coefficient of friction, p ;
and

this ratio is attained when the particle is just on the point of

slipping along the surface. Therefore the greatest angle by which

the Total Resistance of a rough curve or surface can deviatefrom the

normal is the angle whose tangent is the coefficient offrictionfor the

bodies in contact ; and this deviation is attained when slipping is

about to commence.

48.] Angle of Friction. The angle between the normal and

the total resistance of a rough surface when slipping is about to

take place is called the Angle of Friction. It is sometimes called

the Angle of Repose. We shall throughout denote it by X
;
and

if p. is the coefficient of friction,

tan A. =
p..
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49.] Experimental determination of n. Let 1 P be the posi-

tion of a heavy particle, whose weight is W, on a rough

plane, AB, whose inclination is gra-

dually increased until P is on the

point of slipping down. Consider the

equilibrium of P in these circum-

stances. It is acted upon by two

forces, namely, its weight, IF, and

the total resistance, R, of the plane.

For equilibrium these forces must be

equal and act in opposite senses.

Hence ft aets in a vertical line; and since slipping is about to

take place, the angle between R and the normal, PN, to the

plane must (Art. 47) be equal to A, the angle of friction. But
the angle between the vertical and PN is also equal to the

inclination of the plane to the horizon. Hence f/te Inclinatioii

of a rough plane on which a particle\ acted upon solely by its own

iceig/it, isjust about to slip, is the Angle of Friction.

This result might have been proved by the resolution of f-

Thus, if N be the normal pressure, the force of friction acting

up the plane is y.N, since slipping is about to begin. Ilenee,

resolving forces horizontally for the equilibrium of P,

N sin ipN cos i = 0,

/ bcirig the inclination
;
or tan *' = /*; .*. i = A.

Morin delennincd the coefficient of friction let \\ven 1\v<>

substances by placing one on a fixed horizontal plane made of

tin- other, and thru measuring the least horizontal force which

shnuM !.. applied to the body resting on the plane to cause it to

slide. The ratio of this force to the weight of the body is the

required coefficient of friction.

50.] Limitation of the Total Resistance. As in the ease of

the reH-tanee of a smooth curve or surface, there is no limit to

the n ,i
:
i,iitinle of the total resistance of a rough curve or surface

for the -urfaces with which we arc at present c<m< erncd are

supposed to In- capable o| iiion to any extent

the
.-.lily limitation to which the total : is subject being

one of ', and this limitation i> thus expressed:

1 P ought to be represented in the figure M having tjlal t>Me in oonUct with
the plane. The Htudent will Mmilarly correct all the subsequent figures.

VOL. I. V
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The Total Resistance of a rough curve or surface, though un-

restricted in magnitude, can never make with the normal an angle

greater than the angle offriction corresponding to the two bodies in

contact.

Within this limit, the total resistance can assume any magni-
tude and direction, so that we at once deduce the following

important principle :

If the Total Resistance can maintain

equilibrium, it will do so.

Thus, let P (Fig. 54) be a heavy par-

ticle placed upon a rough plane whose

inclination is less than A, the angle of

friction. Then it is clear that, to keep
P at rest, the total resistance, R, has

only to be equal and opposite to W, the

weight of P.

But drawing PQ, making the angle of friction, A, with the

normal, PN, we see that the direction of R falls within the

prescribed limit
;
and therefore the equilibrium will subsist, no

matter how great W may be, for there is no limit as to the

magnitude of R.

51.] Limiting Equilibrium. A particle acted upon by any
forces and placed upon a rough surface is said to be in limiting

equilibrium when it is in such a position that the total resistance

of the surface makes the angle of friction with the normal. In

such a position if any slight change should occur in the circum-

stances of the particle, in virtue of which the total resistance

would be compelled to make a greater angle with the normal,

equilibrium could subsist no longer ;
for the total resistance can

never be inclined to the normal at an angle greater than the

angle of friction. Or we may put the matter thus. In every
case the equilibrium of a particle restricted to a rough curve

or surface is broken only by some circumstance which compels
the total resistance to make with the normal an angle greater

than the angle of friction. The manner in which this is supposed
to happen depends on the particular problem. For example, let

us enquire into the circumstances of the equilibrium of a heavy

particle, whose weight is W3 on a rough curve, AB (Fig. 55),

whose plane is vertical, the particle being acted upon by a

horizontal force, F.
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r* The problem proposed for solution may be any one of the

three following :

(rt)
Determine the least horizontal

force that will sustain a particle, of

weight Jr, at a given point, P, of a

given rough curve, AB.

(fj)
Determine the point at which a

partii-lc, of weight W, will be just sus-

tained by a given horizontal force, F,

on a given rough curve, AB.

(c) Determine the least coefficient of friction that will allow

a particle, of weight W, to rest at a given point, P. of a curve,

J />'. the particle being acted on by a given horizontal force, /.

If PN be the normal at P, and PR be drawn making the

angle of friction, A, with it, PR will be the direction of the total

resistance, since, by supposition, the particle is about to slip

down. All three problems are solved by the equation

w
-^
= cot($-A),

6 being the inclination of the tangent at P to the horizon.

But the manner in which equilibrium is supposed to be

km is not the same in each of them. If, in the first case,

p
/'< W tan (0 A),

in the second, > \ + i&n~l

(JT?)
t and in the

p
third, A<0 tan"

^...j*
the particle will not rest at P. '\

tin- equilibrium may be broken by

(a) a slight change in some of the acting forces ;

(//)
a slight change in the position of the particle ; or

(f)
a slight change in the nature of the rappoitlllg Mr.

i.e. a diminution of its roughness.
If Ilie

]
Article is in limiting equilibrium (i.e. if the total

akes the angle of friction with the normal to the

j'ortintr surface) it is evident that equilibrium \\ill always be

broken if the third of these changes occurs
;
but it may not be

i 1 11 1 v tit her of the others. Take, for example, a In aw
idr jdarcd on an inclined plane whose inclination to

hori/on is the an^le of friction. It is evident that any change

may be made, either in ita weight or in its position on the

plane, and equilibrium will still subsist; for in neither case is

F 3
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the total resistance (equal and opposite to W) compelled to make
with the normal an angle > A.

In every case of equilibrium it is to be observed that the Force

of Friction (Art. 42) acts in the sense opposite to that in which motion

would ensue if the bodies in contact became gradually smoother.

52.] Friction in non-limiting equilibrium. The beginner is

very prone to assume that, if
fj,

is the coefficient of friction be-

tween two bodies, in every case in which one of these bodies rests

against the other the force of friction is \t.N, where N is the

normal pressure between them. That this is not so he will

easily see by considering the case in which a heavy piece of

metal rests on a horizontal plane of wood, the coefficient of friction

between the metal and the wood being, say, |, and no forces,

other than its weight and the resistance of the plane, acting on

the body. So far from the force of friction being of the

normal pressure, the force of friction is zero, and will come into

existence only when some horizontal force is applied to the body.
The force of friction will always be equal to this horizontal force

and will attain the value \N only when slipping is about to

take place.

The changes both in magnitude and in direction which

the Total Resistance between two rough surfaces in contact

undergoes while equilibrium changes from a state bordering on

motion in one direction to a state bordering on motion in the

opposite direction may be very simply illustrated by solving the

following problem : .

A heavy body of weight W is held on a rough inclined plane
of inclination i by a horizontal force P ; the force P being varied

gradually from

the value required

just to sustain the

body to the value

required just to

drag it up the

plane, it is re-

quired to repre-

sent graphically
the different mag-

Fig. 56.

nitudes and directions of the Total Resistance corresponding to

the successive values of P.
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Let (Fig. 56) be the position of the body, and measure oft'

a vertical line <>\l "to represent the magnitude of //".

Then, for different values of P, the resultant of W and P \\ill

In- represented by lines drawn from and terminating on the

horizontal line If'Jf. The Total Resistance of the plane on tin-

body is, of course, equal and opposite to the resultant of P and /'
.

and it will therefore be represented by a line drawn from to a

horizontal line, l?iR2 ,
drawn at the same distance above as tin-

line //7/is below it.

Let ON be the normal to the plane at 0, and draw the lines

f
'/i\ and OR

Z making the angle, A, of friction \yith the normal at

opposite sides of it. Let these lines be produced to meet the

line //"// in the points r
v
and r

z .

Then for equilibrium the resultant of P and ATmust be re-

presented by some line between Oi\ and Or
2

.

When the resultant of P and //'is Or
lt

the Total Resistance

!' the plane is OJflt and since this makes the angle of friction

with the normal, the body is on the point of slipping down.

When the resultant of P and W is Or2 ,
the Total Resistance is

:m<l the body is on the point of slipping up.

The values of P which will just sustain the body and just
it up are, respectively,

//tan
(/ A) and JTtan(i + A),

as appears at once from the figure or by calculation.

If /' has a value between these limits, the Total Resistance, OH,
will be intermediate between OP, and Olt.2 ,

and the equilibrium
will not be limiting, i.e. the body will not be on the point of

slipping either up or down; and the force of friction, which is

the component of R along the plane, will not be n times the

normal prelim-, except in the two states bordering on motion.

II' /' has the value //' tan t, which is intermediate bet we.

me values, the Total Resistance will be normal to the plnne,

and in this state there will be HOfMW ;/'///-
//// exerted betw

the plane and the body.
Passive Resistances. The force of friction between a

body and a rough surface belongs to a class of forces called

Pa* ',///, r.v, i.e. lone- which come into existence onl\

unt of the action of other forces and which always endeavour

t.. destroy the ell'ect of these other forces. To this class, ind-

belongs also the normal prosun-
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also the resistance of air or any other fluid to a body moving

through it.

And it is an axiom with regard to all passive resistances that if

they can preserve equilibrium they will.

EXAMPLES.

1. A heavy particle is placed on a rough plane inclined to the

horizon at an angle less than the angle of friction
;
find the limits of

the direction of the force required to drag it down.

Let P^V (Fig. 57) be the normal to the inclined plane, and let PQ
be drawn, making the angle NPQ = A, the angle of friction. Now,
the necessary and sufficient condition that equilibrium should exist is,

that the resultant of the weight, W, and the force applied, F, should

fall within the angle NPQ. Hence, producing NP and QP to n
and q, we see that no force applied to P within the angle nPq
will disturb the equilibrium. F must, therefore, be applied within

the angle NPq, and act from P towards
the left of the figure.

2. Two heavy particles, whose weights
are P and Q, rest in limiting equilibrium
on a rough double-inclined plane, and are

connected by a string which passes over

a smooth peg at a point, A (Fig. 58), ver-

tically over the intersection, B, of the two

planes. Find the position of equilibrium.
Let the inclinations of the planes be

a and /3 ;
let the length of the string be

I, and AS = h
;
and let the portions of the string make angles

and
(f>

with the planes.

Suppose that P is on the point of

ascending, and Q of descending. Then,
since the motion of each body is about
to ensue, the total resistances, B and

,

must each make the angle of friction

with the corresponding normal
;

and
since the weight P is about to move

upwards, H must act towards the left of

the normal, while, since Q is about to

move downwards, S must act to the
left of the corresponding normal.

If T is the tension of the string, we
have for the equilibrium of P,

Fig. 57-

KV,

Fig. 58-

cos(0- A)

Again, for the equilibrium of Q,

sin(/3-A)
~ ' '
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Hence, equating the values of T,

sin (a + X) _ sin (/3
-

X)
' '

cos(0-X)
This is the only statical equation connecting the given (plant it it-.

^ e obtain a geometrical equation by expressing that AB and the

length of the string are given. This is, evidently,

Vsm sin <p' ^
Equations (1) and (2) determine the values of and $, and con-

stitute the solution of the problem. These equations can be solved

graphically, (2) giving the curve in case (y) of Art. 40, while (1) gives
a curve of the fourth degree defined thus through B (Fig. 41, p. 51)
draw an indefinite right line, BE, making the angle EBA = X ;

then

P being any point on the curve which represents (1), if AP meets
BE in R, we shall have

RP = k. PB,

where k is a given constant, viz. -?r--. } r. This locus can be
Q em (ft X)

practically constructed with ease thus Draw any indefinite line, />'//,

tlin.uL'li />' : take points M, N, S on this line, in order from B, such

that 11M : MX = 1 : k = BS : SN. Then draw any line ARP through
A meeting BE in 7.' ; draw NR ;

from M draw MF
t and from S draw

until parallel to XR and meeting BE in F and G respectively;
iil>e a circle on FG as diameter; then the line AR intersects

iivle in jxjints on the required curv.-.

/ Solution. Instead of considering the total resistances, 7? and
r two normal resistances, ^and JV", and two forces

of friction. /z.V and fi.V, acting ! ly down the plane a and tip

tin- plane J3. In this case, considering the equilibrium of P, and

resolving forces along and perpendicular to the plane a, we have

...,,
nnd for the equilibrium of Q,

/ '

Eliminating .V. .V, and T from the systems (A) and (B), we
at tlu- same statir.il <

.|u.iti..n as before.

m-tliod of i-on-iderin.Lt total resistances instead of their normal

tangential eonipi m-nis is almost always more simple tli. n the

n of the lutti-r forces.

:5. It in tli- i; n P is given, what are the limits of Q con-

with equilibrium /

If V be so large that it is about to drag P up, its value, #,, will 1*5

i by equation (1),

sin

Vl ~ *
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and if Q be so small that P is about to descend, its value, Q2 ,
will bes--

*

the angles 6 and $ being connected by equation (2).
v
4. A heavy ring is placed on a rough vertical circle

;
find the

limits of its position consistent with equilibrium.
Ans. Draw two diameters making the angle of friction with the

vertical diameter. The ring will rest anywhere on the circumference

between the two upper extremities, or between the two lower extremi-

ties, of these diameters.
V
5. A body whose weight is 20 kilogrammes is just sustained on

a rough inclined plane by a horizontal force of 2 kilogrammes, and a

2
force of 10 kilogrammes along the plane; the coefficient of friction is -

;

5

find the inclination of the plane. , /25 X
Ans. 2tan~1

(

6. A heavy particle is placed on a rough plane whose inclination to

o

the horizon is sin" 1

(
- \ j and is connected by a string passing over a

\5 '

smooth pulley with a particle of equal weight, which hangs freely.

Supposing that motion is on the point of ensuing up the plane, find

the inclination of the string to the plane, the coefficient of friction

being-.

Ans. By resolving forces along the inclined plane, we have, if Q =
inclination of the string to the plane,

i . , i . e e
2- sin 6 = 1 cos 0, or - sin - cos - = sin2 -

5

<L u 2 2 u
a -i

one solution of which is = Q, and the other is tan = -
u i

7. In the second solution of the last question, exhibit the position
of the string, and explain the result.

* 8. A heavy particle acted upon by a force equal in magnitude to its

weight is just about to ascend a rough inclined plane under the

influence of this force
;

find the inclination of the force to the inclined

plane.
Ans. If 6 is the required inclination, A. = angle of friction, and

i = inclination of the plane,

= -
i, and 6 = 2 A + i - ~

^ 2

are possible solutions. (6 is here supposed to be measured from the

IT

upper side of the inclined plane. If - > 2 A + i, the applied force will
2

act towards the under side.)
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0. In the first solution of the last question, what is the magnitude
of the pressure on the plane?

Ans. Zero. Explain this.

1 0. What angle must a given force P make with a rough incline so

that when a weight W is just sustained, the normal pressure squill !/

equal to TH
x ,

sin t u
Ans. cot"1

i cos t

1 1. A weight of 500 kilogrammes can be just sustained on a rough
incline by a horizontal force of 120 kilogrammes, and also (separately)

by an up-plane force of 132-6 kilogrammes ;
find f* and t.

Ans. p = .539; t = 41 51'.

1 2. Two weights rest on a rough double inclined plane, being con-

<1 l>y a cord which passes over a smooth pulley at the vertex of

the double incline; the inclinations of the planes are 48 and 32;
for l>oth the angle of friction is 28

;
if the weight on the first is 560

kilogrammes, and is just on the point of slipping down, calculate the

other weight.
Ans. 221 kilogrammes, nearly.

v 1 3. A heavy body is to be dragged up a rough inclined plane ;

find tlu; direction of the least force that will suffice.

The direction of the force must make the angle of friction

with the plane. This follows at once either by resolution of forces or

by drawing the force-diagram. Viewed in the latter way, the problem
i.- t i .-u one force (the weight) in magnitude and line of action,

and tin- line of action of another (the total resistance), when is their

itant a minimum? Evidently when it is at right angles to tin-

total re.-i.-tance.

N. K This result is often expressed thus: the best angle of tr-

nj> a ;///./// i lt ' lined jdane is the anylc offriction.

1 1 Prove that the horizontal force which will just sustain a heavy
.'le on a rough inclined plane will sustain the particle on the

. pposed smooth, if the inclination is dimini.-hcd by the

friction.

the lead coefficient of friction that will allow of a heavy
body'.-- being jn-t kcj>t from sliding down an inclined

\
plane of given

inclination, the Ixxly (who.-e weight i-
II") being xntlniued by a given

ntal fore.

ITtaat P

Explain .by we get a negative value for the coetlicient of

friction unl' ^ 11' t;m / > /'.

It). It i- ..b-nved iliata Ixxly whopc weight is known to ! HV.:

ju^t si^tained on a rough inclined plane by a lioii/oiital force P, and

that o be ju-t sustained on the same plane by a force (J uji
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the plane ; express the angle of friction in terms of these known
forces.

PW
. Angle of friction = cos"1

17. It is observed that a force, Qlt acting up a rough inclined plane
will just sustain on it a body of weight W, and that a force, <?2 ,

acting up the plane will just drag the same body up ;
find the angle

of friction.
s\ r\

Ans. Angle of friction = sin"1

18. A body is held on a rough inclined plane (i > A) by a force which
acts up the plane ;

this force being varied gradually from the value

required just to sustain the body to the value just required to drag it

up, it is required to represent graphically the different magnitudes
and directions of the Total Resistance.

19. In example 8, p. 56, if the rings A and C are equally rough,
find the condition that there may be a limiting equilibrium in which
each is about to slip down.

Ans. If A is the angle of friction, the required condition is

tan (t-X).

In this case the lines Om and Oq must be drawn making angles
i' A, and i\, respectively, with the line mq.

If the above condition is satisfied, there will be an infinite number
of positions of equilibrium, as in ex. 8, p, 56, those of B all lying on a

certain right line.

20. In the same example, if one of the rings, (?, is in a position of

limiting equilibrium, find the direction of the string, the position of

the other ring, A, and the direction of the total resistance at it.

Ans. The position of the string is determined by the equation

W , W

the + or sign being used according as C is about to slip up or

down. When 6 is known, the position of A is known
;
and the

direction of the total resistance at A is found from the equation.

(~ + P)
tan Oqm = (y + P')tan (t"A).

21. Two small rings, from which hang two weights, P and Q, are

fitted on a rough circular wire fixed in a vertical plane, and are con-

nected directly by a string of given length ;
find the limiting positions

of equilibrium.
With the notation of example 20, p. 59, if P is about to descend,

(P+ Q) cot 6 = Q tan (a + A)
-P tan (a

-
A).
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22. Two weights, F and Q, hang from two Email rings, A and B,
fitted on a rough circular wire fixed in a vertical plane, the rings

iK'in.ir connected by a string passing along the circumference; find the

limits of the portion of equilibrium, supposing no friction between

ring and the wire.

ATM. If 6 be the angle made by the radius to A with the vertical,

7 = the length of the string, and a = the radius of the circle, 6 may
have any value between

l
and 8 ,

these being given by the equations

<?cos(- +V/I

C>8in(-- A)-PsinA
tan a

=---
(?cos(

--
A) + PcosA

A being the angle of friction.

23. If the wire in the last question is in the form of any curve,

show that in the limiting positions of equilibrium the total resistances

and B intersect on the circle passing through A, B, and the point
of intersection of the normals at A and B.

24. Two heavy particles, P and Q (Fig. 59)
rest, one on a rough diameter, AB, of a rough
v. itical circle, and the other on the convex
side of the circle, the particles being con-

i by a string which passes over a smooth

pegatthe upper extremity, B,of thediaim t i .

Find tin- position of equilibrium, the string

^ supposed to be nowhere in contact wit h

rough surface, and the coefficients of F -

ion for P and Q being different.

An*. If a = the inrliiiatinn of AB to the vertical, = inclination

of the radius drawn to Q to \\\>- vnti.al. n coi-Hicinit of friction

bet\\ Ml .1/1. //= coefficient ( .f friction between Q and thr

circle, the limit ini: j^inon.- (' inilibi inin arc given by tlie equations

Q (sin 0, -f IM' cos Ot )
= P (cos a f* sin a),

its wv to,, w, rest on a ronuli

table; r, is cmni.-ctril with i/'
2

1
'

fully -n-t( ln-.l. and w
t

is

iarly coniH cted with if. Find tin- nniirnitnde and direction of

, will move all the part

Ant. For tin- p..-iliility i-t tli.- motion tlie nnv n the lino

w, tot and tlie lin.-
?/-,

11-
, j.rodneed through v>t must lie acute. T

any point, 0, and through it draw O.I ].arallrl
t<. the line

to
/ij/;, ;

from .1 iliaw Ml ].arall.-l
to tin- line . >., and

inflect OB proportional tofXj wt ; draw OB' equal and parallel to AB,
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and draw OC perpendicular to OS' towards AS and proportional to

p.wz
. Then the diagonal through of the rectangle determined by

OC and Off gives the required direction and magnitude of the force

to be applied to wy
26. If in the last example, w^ and w

2 , instead of being connected

with each other, are each connected with w3 ,
find the direction and

magnitude of the least force which, applied to w
s , will move them all.

27. Any number of particles of weights wv w2 ,
w

3 ,
. . . wn ,

lie on a

rough horizontal table, wl
and w

2 being connected by a tight string,

as also w
2
and w3 ,

w
3
and w

4 ,
and so on. Find the magnitude and

direction of the least force which, applied to the last particle, wn ,
will

cause the whole set to move simultaneously, and find the conditions

that such movement shall be possible.
Ans. Take any point 0, and draw OAn parallel to the string w^ w2

and proportional to p-w^, draw OA^ parallel to the string w2 w3
and

inflect A
J2
A

23 proportional to p.wz ;
draw OAM parallel to the string

w
z
wv and inflect J

23 A^ proportional to fj.wt ;
and so on, until the

vertex4n_j, n is reached; then draw A _/* perpendicular to OAn_lin
and proportional to fxw,,. The line OP represents the required force

in magnitude and direction. The lines OA12 , OA^, OAZV . . . represent
the tensions of the strings ;

and for the possibility of the motion the

7T

angles OAn A.23 . OAK A3i , OA^ AK . .. must each be > -
u

28. Two heavy particles, P and Q
(Fig. 60), rest on two rough circular arcs

which have a common vertical tangent at

;
P and Q are connected by a string

which passes over a smooth pulley at
;

find the positions of limiting equilibrium.
Ans. Let 9 and

(/>
be the angles sub-

tended by the arcs OP and OQ at the

centres of the corresponding circles, a and
Fig- 60. ft the radii of the circles, A and e the angles

of friction for P and Q, respectively, and I

the length of the string; then, if P is about to slip down, the

equations
cos (6 + A) _ cos (0 e)~~ ^

d>

cos(-+A) cos(--e)

.
e . # i

and a sin + o sin
-^
= -

s

2 a Z

determine the position of equilibrium. Changing the signs of A and e,

we obtain the position in which Q is about to slip down.

[Instead of particles on the circular arcs, we suppose small rings
from which the weights P and Q are suspended.]

29. A particle rests on a rough curve whose equation is/(x, y] = 0,

and is acted on by forces the sums of whose components along the
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axes of a; and y are X and Y; prove that the particle will rest at all

points on the curve at which

30. Two rings whose weights are P and Q are moveable on a rough
rod inclined to the horizon at an angle i

;
these rings are connected

by a string of given length which passes through and supports a

smooth heavy ring W\ find the greatest distance between P and Q.
Ans. If is the inclination of either portion of the string to the

ical, the greatest distance between the rings is obtained by giving
tan the less of the values

JF+20 W+2P.
^~ jp

t

Q being the upper ring.



CHAPTER IV.

THE PRINCIPLE OF VIRTUAL WORK.

SECTION I.

A Single Particle.

54.] Orthogonal Projection. Let Ox and AB (Fig. 61) be any
two right lines inclined at an

B angle 0. If from the extremities,

A and B, of the right line AB,
two perpendiculars, Aa and Bb,

be let fall on Ox, the line ab is

called the orthogonal projection of

Fig. 61. AB on Ox. If the lines Aa and

J? had been each drawn parallel

to a given line, which is not perpendicular to Ox, ab would be an

oblique projection of AB.
In the case of orthogonal projection it is evident that ab =

AB cos 6.

55.] Projection of a Broken Line. Let ABCD (Fig. 62) be a

zig-zag or broken line. Then it is evident that the projection

(orthogonal or oblique) of the line AD, joining the first and last

0-

Fig. 62. Fig. 63.

points, A and D, is equal to the sum of the projections of the

separate lines, AB, BC, and CD, on any line Ox.

This is also true when the line Ox, on which the projection
takes place, cuts any or all of the lines AB, BC,... between
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the vertices, At , C,..., of the polygon formed by them, as in

Fig. 63.

If the sides of a closed polygon taken in order be marked with

arrows pointing from each vertex to the next one, and if their

projections be marked with arrows flying in the same directions,

then, lines measured from left to right being considered positive,

and lines from right to left negative, we may evidently state this

result as follows :

<>f the projections of the sides of a closedpolygon on any

r'lyht line, allowance being madefor positive and negative projections,

it zero.

56.] Virtual Displacement. Virtual Work. If a point at

(Fig. 64) be conceived as displaced to A, OA may be called the

'
displacement of the point.

OP be the direction of a

force, P, and let AN be drawn per-

licular to it; then ON is the

ction of the virtual displace-

ment along OP, and the product

lie force, P, by the projection,

ic virtual displacement is
_ (

I the virtual work of the force.

\\ < -hall therefore say that

The Yin HA i, WORK of a force is the product of theforce and (fie

aluntj i/s direction of the I ifinal Displacement of its point

If 6 be the angle between the force and the virtual displace-

ment,

Virtual \\nrk = P.ON'- P.OAcOB$ = P COS d.OA.

Now P COB is the projection of the force along the direction of

lacement, and is equal to OM, if PM is perpendicular to

<
/. II ooe we may a!.-o define the virtual work of a force as

follows :

fa force is the pr< -hint displace-

ment of its point
< fion and the projection (or component) of

\n l/i'~ ilircction of this displ

This latter definition is for some purposes more convenient

than the former. It is to be observed that the projection of a

line .//>' (
i !LT. 61), of given length, n in iins unaltered in magni-

tude when AB is moved parallel to itself into any position.
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57.] Theorem. The virtual work of a force is equal to the sum

of the virtual works of its components, rectangular or oblique.

Let a force R, represented by OR

(Fig-. 65), act at 0, and let its com-

ponents be P and Q, represented by
OP and OQ. Let OA be the virtual

displacement of 0, and let its pro-

jections on R, P, and Q, be r, p, and

q, respectively. Then the virtual

works of these forces are R.r, P.p,

Fig. 65. Q.g. Drawn Pm and Rn perpen-

dicular to OA. Then On is the pro-

jection of R in the direction of the displacement, and by the end

of Art. 56,
R . r = OA x On.

Similarly P.p = OA x Om, and Q .q
= OA x mn.

Hence

P.p+Q.q = OA(Om + mn) = OA x On R.r.Q. E. D.

58.] Theorem. The sum of the virtual works of any number of

forces acting at a point is equal to the virtual work of the resultant.

This may be proved by taking the forces two-and-two, and

using the last Theorem, or by making use of the polygon of

forces (see Fig. n, p. 20). The sum of the virtual works of the

forces is equal to the virtual displacement multiplied by the sum
of the projections along it of the sides of the polygon parallel to

the forces (Art. 56). But (Art. 55) the sum of these projections

is equal to the projection of the remaining side of the polygon,
and this side represents the resultant. Therefore, &c.

It follows, then, that

When a system offorces acting at a point is in equilibrium, the

sum of the virtual works of theforces = 0.

For such a system will be represented by a closed polygon, and

(Art. 55) the sum of the projections of the sides of the polygon

along any right line = 0.

59.] Convention of Signs. If the virtual displacement, OA

(Fig. 66). project on the line of the force P in a direction opposite

to that in which P acts, the projection ON is to be considered

negative, and the virtual work is negative. In this case P
will also project on the line of displacement in a direction

opposite to OA.
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In Fig. 65 the virtual displacement, OA, is such as to give

positive projections, Or and Op, along the forces R and P, and

^ ^-x
"7
R

p

..-' o

Fig. 66. Fig. 67.

a negative projection, Oq, along Q. And if in this case the

lengths of Or, Op, and Oq are denoted by r,p, and q, the equation
of virtual work will be R.r = P.pQ.q.

60.] Nature of the Displacement. It must be carefully

observed that the displacement of the particle on which the

>'s act is both VIRTUAL and perfectly ARBITRARY. In the

motion of the particle, treated of in Kinetics, the displacement

is often taken to be that which the particle actually undergoes ;

but in the statical problem of the equilibrium of forces, the

ion between them, expressed in an equation of virtual work,

Is, whatever the displacement may be that is, it holds whether

tin- displacement be an actual or merely an imagined one. Since

with regard to the equilibrium of forces a state of absolute rest

ami a state of uniform motion in a right line are not essentially

ditl'erent, we shall see that the most useful applications of the

,eiple <f Work are made in the case of machines moving uni-

ily. The second characteristic of the displacement, namely
its arbitrarinest, is most important,

as will presently appear.
1

.]
General Equation of Vir-

tual Work. Let several forces, Plt

'>8), act in equilibrium

on a partielr, O. and let OA be any
'mil. displacement

of^. 1 ill perpendiculars,
.

,
on the forces, the

Actions 0/>2 , O//.,, and Op4 ,
are

all p are

negative (Art. 59). Hence the equation of virtual work is

-
/', fy, + I', - "/' . + P, Op, + J\ . Op<-P6 Op, = 0.

VOI O
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If the projections of the displacement be denoted by pl , p^ . . . ,

and if these quantities are supposed to carry their proper signs

with them, this equation becomes, the number of forces being

any whatever,

PI -Pi + P
2 .p2 + Ps .p& + - = 0, (1)

or 2(P.j9) = 0. (2)

62.] General Displacement of a Particle. The most general

displacement of a single particle is a simple motion of translation

from the point, 0, which it occupies, to another point, A. It is

true that in Molecular Dynamics, very small portions of matter

are conceived as capable not only of translations but also of

rotations about axes through themselves. Indeed every portion

of matter, since it must possess extension in space, must be

capable of both kinds of displacement ;
but the second kind does

not belong to our present purpose.

63.] Deduction of the Equations of Equilibrium from the

Equation of Virtual Work. Through draw any two axes, Ox

and Oy, rectangular or oblique, and let a and /3 be the projections

of the virtual displacement, OA, along these axes. Replace the

force Pl by its components, X1 and J
1} along Ox and Oy. Then

(Art. 57)
P

1 .
J?1
= aJ

1 + /3;F1 .

Similarly, Pz'Pz = a-^2

Hence equation (l) of Art. 61 becomes

a (X1 + Z2 + Xs + ...) +_ft(T1 + J2 + J8 + ...)
= 0,

or a2Z+/327=0. (1)

Now a and /3 are perfectly independent of each other. For the

displacement OA may be chosen so as to keep a constant while

varying ft at pleasure, or vice versa. Suppose, then, that /3' and a

are the projections of a new virtual displacement, and we shall

have
a2.Z + /3'27=0. (2)

Subtracting (2) from (1), we have
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\v /3 f? is not = 0, therefore 2Y must =
;
and in the same

l.V = o. Hence we arrive at the equations of resolution of

forces

2J=0, 27= 0,

which were deduced in Chap. II.*

64.] Elementary Virtual Work. In the general equation of

virtual work, for forces acting in equilibrium on a single particle,

namely,

,
+ PI-A + Pa -ft + -.0 = 0, or2(P./>) = 0,

no limitation has been placed upon the magnitude of the virtual

displacement. This equation is true, independently of its

jnitude; but it is generally more convenient to assume the

virtual displacement to be infinitesimal, even in the case of the

equilibrium of a single particle, and it is absolutely necessary to

do so (as will presently be seen) in treating of the equilibrium of

a connected system of particles.

If the virtual displacement is infinitesimal, its projections,

//2,
... , on the several forces acting upon the particle are all

infinitesimal. We shall, therefore, denote these small projections

in future by 8ft, 6/?2 ,
...

,
and the equation of elementary virtual

k will be

P! . 8ft + P2 . bp2 + P3 . 8ft + ... = 0,

or 2P5p = 0.

05.] Case in which the Virtual Work of a Force vanishes.

If a force P act at a point 0, and if the virtual displacement (>A

is at right angles to the direction of P, it is clear that bjj,
the

projection of OA on the direction of P, is equal to zero. Hence,
when IIn' rirfinif ilix/ifm-i /,/fnt is at right

' "f M"' font, Ik*

<-<>rk of (he force = 0, awl the

>ri// )i :fluH

'>rk. Such a virtual dis-

plaeement is always a convenient one

to choose \\! id of

some unkiioun force which acts upon
a

]>:i
r a system. 1 ;ple,

.1 particle. O. <,f weight //', be sus-

tain. ! :h inclined plane ly a Inn-e. /', making an angle

* Theae equations are, of coune, implied in the proof of the principle of

.

r
>8.)

a 2
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d with the plane. If we wish to find the magnitude of P in

terms of W, without bringing the unknown reaction, R, into our

equation, we conceive as receiving a virtual displacement, OA

(the magnitude of which is, in the present case, unlimited), at

right angles to E, that is, along the plane. Drawing Am and

An perpendicular to W and P, respectively, the equation of

virtual work is

W. Om P. On = 0.

But Om = OA . sin i, and On = OA . cos ; therefore

TFsini P cos 6 = 0.

As a second example, let us suppose
that the plane is rough, and that the

particle is on the point of being

dragged up the plane. The normal

resistance will then be replaced by
the total resistance, B, inclined to

the normal at an angle = A, the

angle of friction. Let the virtual

displacement, OA (Fig. 70), now take

place perpendicularly to R. Then the equation of virtual work is

.0n = 0.

But Om = OA . sin (i + A),
and On = OA. cos (A Q) ;

therefore

W . sin (i + \)
- P cos (A-0).

As a third example, let us find the horizontal force which is

necessary to keep a heavy particle in a given position inside a

smooth circular tube (Fig. 71).

Let the virtual displacement,

OA, be an indefinitely small one

= ds, along the tube. Then
since ds is infinitesimal, the pro-

jection of OA on R will be zero.

Also Om = ds . sin 0, and On =
ds . cos d

;
therefore the equation

of virtual work is

Wds . sin 6 + Pds . cos 6 = 0,

or P=JFtan0.Fig. 71.

If the tube is rough, and the particle in limiting equilibrium,

instead of the normal reaction we must draw the total resistance,
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making the angle X with the normal at the right or left hand

side, according as P is the force which just sustains the particle,

or the force which will just drag it up the tube, and take the

virtual displacement, not along the tube, but at right angles to

the total resistance. In this case we obtain

P= JFtan (0 + A).

66]. Condition of Equilibrium of a Particle as determined

by the Principle of Virtual Work. It will now be sufficiently

clear that

For the equilibrium of afree particle acted on by anyforces in one

plane it is necessary and sufficient that the virtual work of the system

offorcesfor every arbitrary displacement whatsoever should vanish.

t, it is necessary that the virtual work should vanish for

every displacement. For the sum of the virtual works of the

forces is equal to the virtual work of their resultant, and if this

sum did not vanish, the resultant force could not vanish, and

therefore the particle could not be in equilibrium.

Secondly, it is sufficient that this sum should vanish for every

di.-plaeement. This sum is equal to the virtual work of the re-

sultant, aiul if this vanishes for all possible displacements, th

.Itant force itself must be zero, and therefore the particle is

at rest. For, if possible, let there be a resultant R, which is not

zero. Then, since the virtual displacement is quite arbitrary, we

may choose it so that it gives a projection = br (which is not

=
0) on the direction of R. Now, since the virtual work of the

system vanishes, we have R6r = 0.

since or is not = 0, R must be = 0, and the particle is,

therefore, at 1

67.] Normals to Curves. The equation of virtual work

furnishes a ready method of drawing normals to certain curves.

For example. to draw a normal at

any >(' an ellipse (Fig. 72)
, particle be placed at inside

a smooth elliptic tulie whose foci

are / and /'. and l.-t it lie kept in

equilibrium l>y two forces, P and

iircctcd towards the j'nci. Let

= r, or = r'. Then by the
- ., .

I the ellipse,

r + r = a constant.
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Hence, proceeding to a close point, A, we have

8r+ 8/=0. (1)

Now the resultant of P and P/
is normal to the curve, and is

destroyed by the normal reaction. Drawing Am and Am' per-

pendicular to P and P/

)
the equation of virtual work is

P. Om-P/ .Om'=0.

But Om = 8r, and Om' = 8/
;
therefore this equation becomes

P.br + P'. 8/ = 0. (2)

Equation (l) gives br = 8r; therefore, substituting in (2),

we have

or the forces towards the foci

must be equal. But the result-

ant of two equal forces bisects

the angle between them.

Hence the normal at any

point of an ellipse bisects the
'F CNF' , v , L f i j--

-p. angle between the local radii

drawn to the point.

Again, the ovals of Cassini are given by the equation

rr' = 2
,

v and / being the distances of a point, 0, on the curve (Fig. 73),
from two fixed points, F and Ff

. If two forces, P and P', act at

towards F and F', their resultant being normal to the curve,
we have for a small virtual displacement along the curve

Pbr + P'b/ = 0. (1)

But, differentiating the equation of the curve,

Hence from (l) and (2)

~P'=r'

Now, if C is the middle point of FF
t
we have

/_ sin F _ sin COF
r
~

sin F'~ sin COF"

mu e P sin COF
Therefore p = -.-^
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But it' O.Vbe the direction of the resultant,

P
P'

~
sinNOF

IK-nee NOF' COF\ and the normal is, therefore, constructed

by joining the point 0, on the curve, to the middle point of the

line joining the foci, F and F'
t
and then drawing the right

line ON BO that LNOF' = LCOF. The line ON is the normal

EXAMPLES.

1. If the equation of a curve is expressed in the form = k,k

In ing a constant, and r, r' the distances of any point on the curve from

two fixed points, A, B, show that the normal to the curve divides AB
inally in the ratio k*: 1, and that the curve is therefore a circle.

rove that the normal to the curve + -75
= -^ divides AB in

the ratio ()"**

3. Give a simple construction for the normal to a Cartesian oval,

whose equation is Ir+ mr = a.

4. The equation of the magnetic curve is cos o> + cos a/ = k

jiiple 34, p. 46). If N and S are the poles, prove that the normal

at a point P is constructed by measuring, on lines perpendicular to

/'.V and PS, lengths proportional to PS* and JP-tV
2
, respectively, and

proceeding as in last Article.

5. The equation of any curve being /(r,/) = 0, prove that if the

ted by measuring constant lengths, Pa and Pb, fr< in

a point J' on the rurve, along the lines PA and PB, the curve must
belom artesian ovals.

[
This follows at once from the integral of the equation

- * = k
'

, ;

integral gives/= </>(r+ r'); therefore all such curves gives
kr + / = const.]

o\v that for curves given by the equation /(to, to')
= 0, a

u-m-tion Himlar to that in the last example (except that the

constant lengths are measured on perpendiculars to PA and PB}
hold whan the equation is

[This follows from the integral of the equation

1 <1f . df . , df'

, ; or nil to / = smco ,-ft
r (ico </o> (u
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for the method of obtaining which integral see Boole's Differential

Equations, p. 328],

7. Apply the result in the last example to construct the normal to

an ellipse at any point.

[The equation of the ellipse is tan - tan =
&.]4 J

The general theorem* of which these are particular cases is

the following : Let the equation of any curve be expressed in

the form

f(r ,
r ,r ,...rn)= 0,

,/, denote the distances of any point, P,

(Fig. 74), on the curve, from a number
of fixed points, Al ,A2 ,A3 ,...An ; then,

if on PA
l ,
PA2 ,

PA3 ,
. . . PAn ,

we mea-

sure off lengths Pal} Pa2i P 3 ,
...Pan

proportional to

df df df df

where r

7
dr

"/
dr

and find G, the centre of gravity of

the points alt a
2 ,

a
3 ,..,an) PG will be

the normal to the curve at P [/is used for shortness instead

The proof of this theorem is exceedingly simple from a statical

point of view. Suppose a number of forces, Plt P2 ,
P3 ,

... Pn ,

to act at P along the lines PA
1 ,
PA2 ,

PA3 ,...PAn ',
then these

forces will have a result normal to the curve if

= 0.

*

'

henceif F, : i,:P,:...P. = f :f :f ,..f ,

dr-L dr2 drz drn

the resultant acts in the direction of the normal. The rest

easily follows by Leibnitz's graphic method of representing the

resultant of any number of concurrent forces (see p. 1 7).

This theorem may be extended to curves given by equations
of the form

/(<>!, a)25 a>
3 ,...a>M)

= 0,

* This theorem is, I believe, due to Tschirnhausen.
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where eo
t, 3 ,

o>3, ...to. are the angles which PA
lf PA t) I

. . . PAn make with a fixed line.

forces Q lt Q t , Q3,...Qn ,
act at P perpendicularly to the

lint* PA^, PA,, PAs,...PAn . Then the virtual work of Ql for

a displacement along the curve is evidently Q^^ta^ Hence the

forces will have a resultant normal to the curve if

,8a>2 + Q3 r3 t<*9 ... + Q n rn 8uH = 0.

<#\ df. df, df.But -^Sttj+^Jw, + /-8o>s...+/-8G>,,= 0;
aa>

1
a<i>2 a>3 aco,

therefore the resultant will be normal if

Q:Q,:Q -...0 ^1-SL:! --:!--.. -L- .

ri ^"i r
2
^wa r

s ^"a r du>n

Consequently, the rule is measure off lengths, P6ly Pb
t , &c.,

,
1 df 1 df

proportional to -~
, > &c.. on lines drawn at P perpen-

rt rfo)
t

rt du> t

dicularly to PAV PA t) &c., in the directions in which the angles

ojj, a),, &c., increase
;

find the centre of gravity of the points, 6
lt

bty &c. ; then the line joining this point to P is the normal to

the curve.

SECTION II.

A System of two Particles.

68.] Projection of a Displaced Line of Constant Length.
Let a lino, All (Fi^. 75), be a

ri-4-lit line \\hirh is displaced into

dose position, A' IT, its length

ming constant. Let 80 be
J

F .

the small angle between AH ami

, and 1. 1 ab be the projection of A'ff on its original position.

Then .//, the projection of the displacement AA', is equal to Bb
t

tlit displacement Jitf, if infinitesimals of a

r order than the first arc neglected.

For, ab = A' If. cos (80)
= A'ff(l

- + ...
)

tee the difl'iTcnr,. l..-t \vft-n ./// and ./'/>"
(c.r

/ B) is of the order

of (80)
2

;
and therefore, rejecting (80)

a
, we have

AB = ab,

Aa = M.
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The result may be thus stated : the difference between AB
and ab is infinitesimal compared with the greatest displacement

in the figure.

69.] Projection of a Displaced String of Constant Length.
Let APB be a string which passes over

a peg at P, and, the length of the

string remaining the same, let the

extremities, A and B, be slightly dis-

placed to A' and B'. Let Aa and Bb
be the projections of the displacements
AA' and BB* on the original portions

of the string (Fig. 76). Then Aa
= Bb.

For Pa = PA', cos aPA' = PA', as

in the last Article.

Also Pb - PB'. Hence, since PA'

Fig. 76- PB, therefore Aa = Bb.

If in the last Article I = the length

of AB, and in the present, I = length of the string, both results

are expressed in the equation

70.] Virtual Work of the Tension of an Inelastic String.

In Fig. 76 suppose the peg to be smooth. Let A and B be two

particles which are acted on by any forces which keep the

system in equilibrium in the position indicated by the figure.

Then if we consider the equilibrium of A alone, we may replace

the string by a force = T (the tension) acting in AP. Con-

sidering then a virtual displacement AA', the tension would

furnish the term

T.Aa, or-T.br,
to A's equation of virtual work, the length PA being denoted by
/. Similarly, considering the equilibrium of B, the tension

would furnish to its equation of virtual work, for the virtual

displacement BBf, the term

-T.Bb, or-T.b/,
/ denoting the length of PB.

If we combine the two equations by addition, the term con-

tributed by the tension will be
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which = 0, since the particles A and B are imagined to be

ultaneously displaced in such a manner that the length of

the connecting string is constant. Hence

fur any small virtual displacement in which the length of a

tinny is unaltered, the virtual work of its tension = 0.

In the same way, if, in Fig. 74, the rod AB, connecting two

particles A and B, be subject to a tension, T, in the direction

of its length, the virtual work of this tension for the displace-

ment A'R will be

T.(Aa-Bb\or-T.bAB,
which = 0, because the length of AB is constant.

Hence The virtual work of the tension of a rod connecting two

points whose mutual distance is unaltered in the virtual displace-

ment is zero.

71.] Typical Expression for the Virtual Work of a Force.

Example. We have seen (Art. 64) that if a force, P, act on

a particle, 0, whose vir-

tual displacement, OA,
has a projection = bp

on the line of action of

the du-i-ction in

which P acts, the virtual

wnrkuf 1
Fig ' 77 '

P.bp.

rally, if p denote the co-ordinate, referred to some fixed

axis, of the point of application of a force, P, who*< >i is

perpendicular to the axis, the virtual work of the force is P. 6p, bp

// supposed to be a positive increment, and the co-ordinate being

measiim/ in tne sense in which P acts.

As an example, let us determine the relation between t\v<>

rhtr-, /' and l
y

(Fig. 77), which rest on two smooth inclined

planes, of inelinatinn* i and /'. Let y and y denote the co-

ordinates of the weight-, referred to a horizontal plane through
0. Then the equation of the virtual work for the system, the

lacements being imagined to be along the planes, is

P.by + P'.b/=0. (1)

(lien- it will l.e observed that the normal reactions do not

r, because the virtual di>plaeements take place at right

angles to them (see Art. 65); and the tension does not en
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since the virtual displacement does not alter the length of the

string (see Art. 70)].

To this must be added the geometrical equation connecting

y and y'. If I be the length of the string, we have, clearly,

sm t sin i

Differentiating this equation, we have

by 8/ /ft
.

-?. + -rA> = 0. (2)
sin i sin i

Hence, from (1) and (2),

P sin i = f sin i',

an equation which is, of course, otherwise evident.

If the weights are connected as in example 16, p. 58, we have

still the equation of virtual work,

PSy+Q5/=0, (3)

y and y denoting the vertical distances of P and Q in the figure

of that example from a horizontal plane through C.

The geometrical equation connecting y and y is, evidently,

\// cosec2a + 2 hy + h* + \//
2 cosec2^ + 2 hy + h* = I. (4)

Differentiating (4), we have

Vy2 cosec2a + 2 hy + fi? V^'
2 cosec2

/3 + 2 hy + JP

Hence, from (3) and (5), we obtain

Vff
2 cosec2a + 2 ^y + A2

_ Q */y'
2 cosec2^3 + 2 hy'+ fi

^

, .

2 2

Equations (4) and (6) are sufficient to determine y and y\ on

which the position of equilibrium depends.

72.] Geometrical Forces. When a particle is compelled to

satisfy some geometrical condition as, for instance, to rest on a

given smooth surface, or to preserve a constant distance from

some other particle this condition is equivalent to the action of

a certain force on the particle. If the particle is compelled to

rest under given forces on a smooth inclined plane, we have seen

that this condition may be removed if we produce, by any

means, a force exactly equal to the normal reaction of the plane

on the particle. In the same way, the connexion of the particle

with another by means of a rigid rod may be severed if we
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produce on the particle the force which is actually impressed
t by the rod.

iweeding from geometrical connexions are sometimes

called Geometrical Forces, and if these forces are actually pro-

duced on the particle by other means, the conditions may be vio-

lated, and the particle considered absolutely free from constraint.

73.] Choice of Virtual Displacements. When two or more

particles constituting a system are connected by rods or strings,

and constrained to rest on given smooth curves or surfaces,

there is an advantage, when seeking for the position of equi-

librium, in choosing such virtual displacements as do not violate

any of these conditions ; because, as we have seen, the tensions of

< ounccting rods or strings, and the reactions of the smooth

curves or surfaces, will, for such virtual displacements, contribute

nothing to the equation of virtual work of the system. Thus

we get rid at once of all such unknown forces. Of course, any

geometrical condition may be violated in a virtual displacement
ic expense of bringing into the equation of virtual work the

-Bonding geometrical force.

iple, if a particle,

_r. 78), is placed on a smooth

ne whose inclination is i, and

we wish to find the horizontal

<

. /'. which will sustain it,

best displacement to choose

is one along the plane, i.e. one

\\liich does not violate the geome-
1 condition, because, if this is ^8- 78>

chosen, the unknown reaction. /t
',

will not appear in the equation of virtual work". But wo shall

still tfet a valid equation if we choose a virtual di -placement,

which does violate the condition. This equation is

R.Or P. Op W. Ow = 0,

Or, Opt
and Ow being the projections of OA on the directions of

.

etively.

On the other hand, it' we wish to determine 7?, without

rniijiinir /', the best virtual displacement to choose is one

at ri^ht angles to P, i.e. a vertical displacement, which does

violate the geometrical condition.
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In the typical expression, Pbp, for the virtual work of a force

the letter 8 has been used to signify that the small displacement
is any whatever ;

but it is usual in the Differential Calculus to

denote small increments of the co-ordinates of a point on a curve

or surface by the letter d, when we pass from the point to an

adjacent one which also lies on the curve or surface. Hence in the

following examples, in which such passage alone is contemplated,

we shall denote small displacements on the curves considered

by this letter.

EXAMPLES.

1. Two heavy particles, P and Pr

(Fig. 79), rest on the concave side

of a smooth vertical circle, and are connected by a string passing over

a smooth peg, A, at the ex-

tremity of the vertical dia-

meter. If the particles are

acted upon by two horizontal

forces, .Fand F', proportional
to the distances, PQ and

P'Q', of the particles from

the vertical diameter, find

the position of equilibrium

by the principle of virtual

work.

Let and & be the angles
which the radii to P and P'
make with the vertical

;
let

%' '9' the weights of the particles
be TFand W'\ the radius of

the circle = a, the length of the string = I, and the forces F and
Ff

=ii. PQ and //. P'Q', respectively. Finally, let the distances PQ
and P'Q' be x and x', and let the vertical distances of P and P'
below the horizontal diameter of the circle be y and y'.

Then, choosing virtual displacements of P and P' along the circle

in such a manner that the length of the connecting string remains

unaltered, we have

Wdy+ W'dy'+ Fdx+ F'dx" 0,

or Wdy+ Wdy -\-\ux . dx+ p.'x'. dx' = 0. (1)

Now y = a cos 0, y = a cos 6*, x = a sin 0, x' = a sin &.

Hence (1) becomes

(
W- /xa cos 6) sin Od$+ (W- p.'a cos fl*)

sin tfdff =0. (2 )

f) ff

^P=2acos- -4P'=2acos-
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Hence the geometrical equation is

6 B
f

I

Differentiating this, we have

d'
Bin-.de + fsin .d0'=0 (4)& Cl

From (2) and (4), we have, therefore,

6 ff

(IP ^acos0)cos- = (TT-puico8^)co8 (5)

The solution of the problem is contained in equations (3) and (5).

2. Two heavy particles, P and P', rest on two smooth curves in a,

;il plane, and are connected by an
Ic string which passes over a

smooth peg, A (Fig. 80), in the same

piano. Prove that in the position of

cijuilihriuii). tin- centre of gravity of the

is at the greatest or least height
above the horizon that, it can occupy con-

',y
with the given conditions.

// ami ?/' denote the vertical dis-

tances of P ami /' from a horizontal line

r through any other fixed 3o

point). Then, the displacement being
made consistently with the geometrical conditions, we-

ir, /y +in/// = o, (i)

IF and FT Ix-in^ the weights of P and /''.

Now, tin- depth of the centre of gravity is

_
W+W

Hence, differentiating (2),

(
II' + H"

) ,ly
= W,t>, + W'dy = ; (3)

:v a in:ixiiiiuin or minimum.
n (3) holds in all positions of the particles, they will n>t

in al! ami their centre of gravity is at a constant height.

the normals at /'ami /'' n il line throULrh .1 in

n and n, prove that in the position of equilibrium

,An An.

a result which is at once evident from the triangle offorces.

1. It" the
j.-iiticle

/' lianu' freely, fiml the curve on which /'' \\ill

rest in all positions of the system.
Ant. A conic having A for focus.
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5. If P and P' rest in all positions, and if the curve on which P'
rests is given, find that on which P rests.

Ans. Let the horizontal line through A he taken as axis of a?,

I = the length of the string, y =f(AP') he the equation of the given

curve, and Wy+ W'y = k; then the equation of the other curve will he

Wy= Jc- Wf(l-r), or r = <J>(y),

where r = AP.

6. A particle is attracted towards two fixed points by two constant

forces : find the curve on which it will rest in all positions.
Ans. A Cartesian oval.

7. A particle is acted upon hy forces emanating from a given
number of fixed points and proportional, respectively, to the distances

of the particle from the fixed points; find (by Virtual Work) the

surface on which the particle will rest in all positions.
Ans. A sphere. [See also p. 18.]

8. Show from p. 88 that the two systems of curves obtained by
varying C and C' in the equations

... = C,

=C",

cut each other orthogonally.

9. A small ring is carried on a smooth wire bent into the shape
of the magnetic curve

;
what is the relation between two forces

directed towards the poles if they keep the ring in equilibrium ?

Ans. If the forces towards N and S are P and P', both attractive

or both repulsive, and if L NFS = <o, while NP = r, SP = /,

P (r
2- r'

2
cos co) +P

f

(r
2- r2 cos

o>)
= 0.

[The student is recommended to solve some of the examples in

pp. 59-61 by the Principle of Virtual Work.]



CHAPTER V.

COMPOSITION AND RESOLUTION OF FORCES ACTING IN ONE

PLANE ON A RIGID BODY.

74.] Resultant of two Parallel Forces. Let two parallel

forces, P and Q (Fig. 81), act at points A and B, in the same

directions, on a rigid body. It is required to find the resultant

of the forces P and Q.

At A and B introduce two equal and opposite forces, F.

The introduction of these forces will not disturb the action

of P and Q, since, the body being
indeformable (see p. 14), the force F

v be supposed to be tran>-

1 to B, at which point it would

be din-oily opposed to the other

force, F. Compound P and F at A
into a single force, R, and compound

^ // into a single force, S.

\ .V be supposed to act

of intersection <>f their

lines of action. At this point let them
resolved into their components,.

/', respectively. The forces F at destroy cadi

i'l the components P and Q are superposed in a right
:illel to their lines of action at A and B. The mayni-

if, therefore, P + Q. To find tin- point, G,

in which it- lin> :i intersects AB, let the extremities of

U; joined. Then the triangle 7'.//.
1

is evidently similar to the triangle d'O.l ; th- =
-^j'

O ~P ( i

Similarly, ,.==''; tl n, --=.'. Hence
r (J

' i I

.1. II



98 COMPOSITION AND KESOLUTION OF FORCES. [75-

The resultant of two parallel forces acting in the same direction

at the extremities of a given line divides this line internally into two

segments in such a way that each segment is inversely proportional

to theforce acting at its extremity.

Suppose, now, that the parallel forces, P and Q, act in

opposite directions. At A and B (Fig. 82), let two equal and

opposite forces, F, be introduced, as

before
;
and let R, the resultant of

P and F, and 8, the resultant of Q
and F, be transferred to 0, their

point of intersection. If at the

forces R and S are decomposed into

their original components, it is clear

that the system will reduce to a

force, P, acting in the direction GO,

parallel to the direction of P and Q,

and a force, Q, acting in the direc-

tion OG. Hence the resultant is a

force = P Q acting in the line GO. To determine the point

G, we~ have, from the similar triangles, PAR and OGA,

P-Q

Fig. 82.

i
, Q OG

also we have - - ,1 t
P GB

therefore -^= -^.P_OG
~F~~GA'

Hence
The resultant of two parallel forces acting in opposite directions

at the extremities of a given line cuts this line externally into two

segments, in such a way that each segment is inversely proportional

to theforce acting at its extremity.

DEF. The segments of a right line, AB, made by a point G in

it or its production, are the distances, GA and GB, of the point

G, from the extremities A and B of the given line, whether G is

on AB, or on AB produced.
In both cases we have the equation

P x GA = Q x GB.

Hence we have, evidently, the theorem

Iffrom a point on the resultant of two parallel forces a right

line be drawn meeting the forces, whether perpendicularly or not,

the products obtained by multiplying each force by its distance from
the resultant, measured along the arbitrary line, are equal.

75.] Composition of Parallel Forces deduced directly
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from that of Concurrent Forces. Let two forces, P and Q
_T. 83). act, in inelined directions, at two

its, A and 7f, of a rigid body. Let

iio point in which their lines of action

. and measure off Om and On pro-

portional to P and Q respectively. Then,

completing the parallelogram Ot/irn, the y
diagonal, Or, represents the resultant of Q
P and Q in magnitude and direction.

Let G be the point in which Or meets

AS. Then we have

P _ Om sinrO

Q mr
~

einrOm

From G let fall perpendiculars, Gp and Gq, on P and Q. Then

sinrO* = -^ ,
and sinrO; =

-^; therefore

L-**L

Again, if R is the resultant of P and Q, we have

R Or _
P

~~
OM

~
BinnOr

'

R perp. from 5 on P
QJP _ * _ /2)

J' perp. from 7yon /'

Now, if P and Q are parallel, 72 becomes parallel to P and Q,

. we shall evidently have =-; hence (1) gives for
''/ ./

parallel forces

_-
ft'A

(2) gives, since 7^ is punilk-l to P and Q,

/.' _ BA BG+GA _ Q"
/'

~
HQ Ji<, P

l'+Q.
on In. l.ls when P and Q act 'n opposite

Construction for the Resultant of two Parallel

Forces. If the lims AT and />'O (Figs. 84 and Hj) represent

ii z
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in magnitudes and lines of action two parallel forces, the student

will easily prove the following construction for the resultant :

B/

/

Fig. 84. Fig. 85.

Draw Q' equal and opposite to Q, and draw PQ', meeting
AS in g. Then measure off AG = Bg. G is a point on the

resultant. Through G draw an indefinite right line parallel to

P and Q, and from A and P draw parallels to PQ' and AB,

respectively. These lines will intercept on the line through G a

length = P + Q = resultant.

77.] Moment of a Force with respect to a Point. Let a

force, P (Fig. 86), act on a rigid body in the plane of the paper,

and let an axis perpendicular to this

plane pass through the body at any

point, 0. It is clear, then, that the

effect of the force will be to turn the

body round this axis, (the axis being

supposed to be fixed,) and the rotatory
effect will depend on two things

firstly, the magnitude of the force, P,

and, secondly, the perpendicular distance, p, of P from 0. If P
passes through 0, it is evident that no rotation of the body
round can take place, whatever be the magnitude of P;
while if P vanishes, no rotation will take place, however great

j) may be. Hence we may regard the product

Fig. 86.

as a representation of the ability of the force to produce rotation

about
;
and to this product the special name Moment has, for

convenience of reference, been given by writers on Statics.

When all the forces under consideration act in one plane, we

may speak of the point, 0, in which the axis of Moments meets

this plane, instead of the axis itself. We shall therefore define

the Moment, with respect to a point, of a force acting on a body
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to be the product of the force and the perpendicular letfall on its

rom the point.

If the unit of force is a pound weight and the unit of length a

foot, the unit of Moment will obviously be afoot-pound.

78.] Moments of different Signs. If two forces tend to

produce rotations of a body in opposite senses round a poinfy

their moments with, respect to this point are affected with opposite

signs. Thus (Fig. 87), the force P
tends to turn the body round in a

e opposite to that of watch-

liaiul rotation, while Q tends to turn

it in the opposite sense. If, then, ( ~'/
'

fi ^^~~j *p

the former rotation is considered

positive, the algebraic sum of the

moments of P and Q round is
FlS-

p and q being the perpendiculars from on P and Q.

Round the point (/ both forces would produce rotation in the

same sense, and therefore the algebraic sum of their moments
with respect to this point is

p.y+Y.
and q being the perpendiculars from (7 on P and Q, re-

spectively.

In future we shall speak simply of the sum of the moments,
tead of the algebraic sum of the moments, of forces with

respect to a point, as we shall suppose the moment of each force

to be affected with its proper sign, in accordance with the rule

given at tin- be,pinnin- of this Article.

71).]
Case of two Equal and Opposite Parallel Forces. It

s I' and Q in Art. 7-1, Fi^. S2, arc equal, the equation

f
'

i

gives GA = GS, or ~~ = 1, an equation which is true only

\vl, at infinity on AB. Also the resultant of the forces

ng equal t<> their ilitlerciice, is equal to zero. Two equal and

parallel forces acting on a rigid body constitute what is

i Couple.

.leil in mie way, a couple is equivalent to a

o acting along a line at infinity. l)li-Tve. liw \vr, that,
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though the force is of zero magnitude, it has an infinitely long
' lever-arm

'
with respect to any point at a finite distance ;

so

that it must not be rejected as something without meaning.
We now proceed to show that, regarding couples in a different

way, they possess remarkable properties.

THEOREM I. Two equal and opposite parallel forces have a

constant moment with respect to all points in their plane. Let

(Fig. 88) be any point in the plane of

two equal and opposite parallel forces,

P, and let fall the perpendiculars Om
and On on their lines of action. Then, if

is inside the lines of action of the

forces, these forces tend to produce rota-

tion round in the same sense, and

therefore the sum of their moments is

equal to

P(0m+0n], or Pxmn.

If the point chosen is 0', the sum of the moments is evidently

P(am0'n), or Pxmn,

which is the same as before.

The perpendicular distance between the two forces of a couple

is called the Arm of the couple.

The Moment of a couple is the product of the arm and one of

the forces.

The Axis of a couple is a right line drawn anywhere perpen-

dicular to the plane of the couple, and in a particular sense, its

length being proportional to the moment of the couple. The

sense of the axis is determined thus : imagine a watch placed

in the plane in which several couples act. Then let the axes of

those couples which tend to produce rotation in the direction

opposed to that of the rotation of the hands be drawn upwards

through the face of the watch, and the axes of those which tend

to produce the contrary rotation be drawn downwards.

THEOREM II. The effect of a couple on a rigid body is not altered

if the arm 6e turned through any angle round one extremity.

Let AC and D (Fig. 89) be a couple whose arm is AB,
and let the arm turn round into the position BA'. At A'

introduce two equal and opposite forces, A'C' and A'C"> each

of which is equal to one of the forces, P}
of the given couple,
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and perpendicular to BA'. At B introduce two equal and op-

BUf and BD", per-

:eiilar to BA', each force hein^r
'

to AQ or P. The effect of

the given couple is, of course, un-

altered by the introduction of these

\.w the forces BDanA BD"
ed by their resultant,

//////' AB.I'
2 P cos -

> or 2 P sin >

which acts in the bisector, BO, of

:ii:le />/>'//'; and the forces

L'C" may be replaced by their resultant, 2Pcos
ABA'

'

COC"

which also acts in the line BO in a sense
2

>sed to the previous resultant. Hence the forces BD,
llh" . .1C, and A'C", are a null system. There remain, then,

s //// and A'C' which form a couple whose arm is /

iie couple of forces P acting at A and B may be replaced

I emiple of forces P acting at the extremities of an arm of

/.' having one extremity common with AB.
; III. T/ic

effect of a couple on a r\<fid l<*l>j u not

tlicl tij itself anywhere in the plane

.md BD,
each r with

,il ami

paraT in the plane of the

. At ./' and If intr

.//'"', four

A'< '.

'

.If ". ////, and

ual tr. /'. This does

i't <>f til'

'

/' and ./'
;iial and ]>arallel. the !

the diagonals oT the panllelogram .//'/

o. supp<'< ( -. Hi-phi.'i- the forces
'

l.y th.'ir n-uit:int. J /'. which acts at O parallel tu

'; and iv; ! A" //'l.y their re-ultant. !

which also acts at in a sense opposite t<> the previoug

reeulta'
r,
and there-

1

B'

D

!
1

BL
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fore the forces BD, AC, B'L", and AC",
constituting^ a^

null

system, may be removed. There remain the forces, AC' and

B'jy, which constitute a couple whose arm is A'K. Therefore, &c.

THEOREM IV. The 'effect of a Couple on a rigid body is not

altered if the Couple is changed into another having the same

moment, the arms of the Couples being in the same line and

having a common extremity.

Let the given couple be AC and BD (Fig. 91), each equal to

BA
P. Produce BA to A so that

-^j,
=

Jj-
> and at A and B in-

troduce equal and opposite forces AC' and AC", BD' and BD",

the magnitude of each of these forces being Q. Now the forces

AC and AC" give a resultant = P Q at B (Art. 74) along

the line BD"
;

and this force

added to BD" gives a force = P
which destroys BD. Hence there

remain the forces AC' and BI/,
which form a couple whose moment
is equal to that of AC and BD,
since (by construction)

BA = Q, . BA'.

Therefore, &c.

THEOREM V. A Couple acting on

a rigid body may be replaced by any
other Couple in the same plane if the

moments of the Couples are the same

in magnitude and sign.

Let P, P and Q, Q (Fig. 92) be

two Couples in the same plane,

having the same moment, and tend-

ing to produce rotation in the same

sense
;

then P, P may be transformed into Q, Q. For, we

can first turn the arm AB round B until it is parallel to B'A'

(Theorem II) ; then we can lengthen it until it becomes equal
to B'A', changing, at the same time, the forces P into forces Q
(Theorem IV) ;

and finally, we can move it into the position
B'A' (Theorem III).

The sign of the moment of a couple is indicated by the sense

in which the axis is drawn, as' has been already explained (p. 102).

Fig. 91

Fig. 92.
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Axes drawn upwards through the face of the watch are then

considered positive, and axes drawn downwards are negative.
From the foregoing Theorems it is clear that the addition of

co-planar couples is effected by adding their axes, regard being
had to the signs of the axes.

. THEOREM VI. Aforce and a couple acting in the same plane on

a rigid body are equivalent to a singleforce.

Let the force be .Fand the couple (P, a) that is, P is the

magnitude of each force in the couple whose arm is a. Then

(Theorem IV) the couple (P, a) the couple (F, -#) Let

this latter be moved until one of its forces acts in the same line

as the given force F, but in the opposite sense. The given
force F will then be destroyed, and there will remain a force F
acting in the same direction as the given one and at a perpen-

dicular distance = -=- from it.F
This Theorem is equivalent to the statement Aforce and a

couple acting in the same plane cannot produce equilibrium.

THEOREM VII. A force acting on a rigid body at any point ./

may be replaced by an equal force acting in the same direction at

any other point B together with a couple whose moment is the

moment of the originalforce about B.

This important proposition is easily demonstrated.

THK< H: i . M VIII. The rex i' Itun/ of any number of Coplanar C/f/<?>>*

i a
<-<>ii],

/< ir/tox? \ equal to the sum (with the proper sign*)

of ///<> i/ioi/tt'/t/x of Ihe ijh'i'H couples.

For, let the component couples have moments L
t
Mt N,... and

let each <>f tin-in U- changed into a couple, having the same right
line ./// (whose length is x) for arm. Then (Theorem IV). Un-

couple // will give rise to a force at A, and an equal force in
W

opposite sense at B. Hence at A we shall have the force

- and an equal and opposite force at B. Thus we

hav. !e whose moment is the product of this force by Un-

arm x ; i.e., its mom -f M + N+ ..., or the sum of the

n jimmeiits.

80.] Geometrical representation of the Moment of a Force

with respect to a Point. Let the line AB (Fig. 93) represent
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a force in magnitude and direction, and let it be required to

represent its moment with respect to a point

0. If p = the perpendicular from on AB,
the moment is AB x p. Now this is double the

area of the triangle AOB. Hence the moment

of aforce with respect to a point is geometrically

represented by double the area of the triangle

whose base is the line representing the force in

F - ., magnitude and line of action, and whose vertex

is the given point.

Draw AO, and from the other extremity, B, of the given force

draw an indefinite right line, BC, parallel to AO. Join A to any

point, C, of this line. Then the area of the triangle AOB the

area of the triangle AOC, since these triangles have the same

base and are between the same parallels. Consequently the

moment of a force represented by AB about = the moment of

a force represented by AC about 0, wherever C"be taken on the

indefinite line through B.

81.] Varignon's Theorem of Moments. The sum of the

moments of two forces with respect to any point in their plane is

equal to the moment of their resultant with respect to the point.

Let AP and AQ (Fig. 94) represent two forces whose resultant

is AR, and let be the point about which moments are taken.

Draw AO, and draw PC and QD parallel to it.

By the last Article the moment of

AP about = the moment ofAC about

0, and the moment of AQ = the

moment of AD; therefore the sum of

the moments of AP and AQ about

= the sum of the moment of AC and

AD about = the moment of the sum
of AC and AD (since AC and AD are

forces acting in the same line) ; but, by equal triangles AC is

evidently = DR
; therefore the sum of the moments = the

moment of AR = the moment of the resultant. Q.E.D.

The student will find no difficulty in considering the case in

which is between AP and AQ, observing that in this case

their moments are opposed, and that in the new figure AH will

be equal to AD^AC.
Of course it follows that the sum of the moments (with their
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proper signs) of any number of co-planar forces with respect to

any point in their plane is equal to the moment of their resultant

with respect to this point ;
for the forces may be replaced in

pairs by their resultants, &c. It also follows that the sum of

the moments of the forces about any point on the line of action

of the resultant is equal to zero.

82.] Varignon's Theorem of Moments for Parallel

Forces. The sum of the moments of two parallel forces about

any point is equal to the moment of their resultant about the

point.

Let the forces be P and Q (Fig. 95) and let be the point

about which moments are to be
O D (

"" "
taken. From let fall perpendicu-
lars OA, OB, and OG on the direc- jx

>f P, Q, and their resultant, 7?,

and let the forces be applied at the

points A, B, and (/Respectively.

Then, moment of

P about = P.OA = P(OG+GA) ;

and moment of Q about = Q.OB = Q(OG-GB) ;

therefore, by addition, the sum of the moments

= (P+ Q). OG + P.GA-Q. GB.

But P. GA = Q. GB ;
therefore the sum of the moments

milar proof holds when P and Q act in opposite directions,

and also when is between the lines of action of P and Q.

Hows that the .tun/ of the moment*
(tcit/i

t/n-ir ///<

of any nmnlii'r of co-p!
' Il<-lforces with respect to a point in

d to the moment of their resultant with respect (v

t In' paint. V
S3.] Centre of Parallel Forces. Theorem. Jf any number of

par" , ... Pn ,(ict in our plunc at- point* Alt

.. .!. tli>-'ir r-xi'lliutl [.asxes thronyh <iji.ni/ /joint if all the

,//<// in the same sense round their jiuints <f a/<j'hca(ion

Ihi-mnjh try bid eoinnnni m,

The point, //,, (Fig. 96), of application of the resultant ofPj
and /' .

lias been determined (Art. 71) by dividing the line

./,./, so that
Aigi />a

!

~
Pi
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on the supposition that the forces Pl
and P2 are parallel, but no

assumption has been made as to

their common direction. Hence

ffl
will be a point on their re-

sultant in whatever direction they

act, and the force at this point

is P-L + Py The point of appli-

cation of the resultant of Pa ,
P2 ,

and P3 ,
is determined by joining

ffl to A3) and dividing it in g^
so that

Pit

Fig. 96.

force at A3 _
force at gl

and the force at g2 is Similarly, the point of

application of the resultant of Plt P2 ,
P3 ,

and P4 , is a point, G,

on
ffz At, such that

and the force at G = P
1 + P2 +P3+P4.

We thus see that the point, G, of application of the resultant

of the system is determined by dividing the lines g^A*,, g^A^.,.
in certain ratios which depend simply on the magnitudes, and

not on the directions, of the forces at Al ,
A2 ,

AS) .... The theorem

is, therefore, evident.

Of course no one point on the line of action of a force which

acts on an indeformable body has a special right to be called the

point of application of the force ; nevertheless, we shall speak of

the point, G, as the point of application of the resultant force,

since, as we have seen, it is a point through which the resultant

of forces equal to Plt P2 ,
. . . always passes, whatever be the

common direction of these forces, provided that each force acts at

a fixed point in the body.
The theorem of this article is true also in the case in which

neither the parallel forces nor their fixed points of application lie

in the same plane.

84.] Centre of Mean Position. Let there be any number
of points, Alf A2 ,

A3 ,
... (Fig. 97), in one plane, and let the

line, Al
AZi be divided at gl

so that
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let yl
A

3
be divided at g.2 ,

so that

109

faffi

let g.^Ai be divided at y3 ,
so that

and so on, until by a final construction we arrive at a point, G.

It is required to express the dis-

tance of G from an arbitrary line,
Al

L, in the plane of the points in

terms of the distances, zlt z2 ,
z3 ,

... AJ>

of Alt A2 ,
A

3 ,
... from this line.*

Draw A^mn parallel to L. Then

Fig. 97.A9n

%+ V
But the distance of

ffl
from L is equal to

*-*) =^T

Calling this distance zl} we have the distance of gt from L

application of this method, we have evidently

since gl
A

3
is divided at g2

in the ratio Continuing the

(1)

(2)

ing the distance of G from L.

This iMjuiition is generally written in the form

in which 2 denotes a summation.

* All this holds if the points A t , A lt ... are not in the same plane and L re-

presents any plane from which their distances are measured.
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The .point G thus arrived at is called The Centre of Mean Posi-

tion of the givenpointsfor the system of multiples % ,
m

2 ,
m

s ,...mn .

The points Alt A%, A3 ,
... remaining the same, and the system

of multiples being altered to pl} p2 ,p3 ,
... the point G arrived at

would, of course, be different. The distance of the new point

would be
2/J

In particular, the distance, z, of the centre of parallel forces

from any plane is given by the equation

z =

EXAMPLES.

1. The centre of mean position of three points, A, B, C, for a

system of equal multiples, is the intersection of the bisectors of the

sides of the triangle A BC drawn from the opposite angles.
1

2. The centre of mean position of three points, A, B, C, for a

system of multiples sin 2 A, sin 2 B, sin 2 C, is the centre of the circle

circumscribed about the triangle ABC.

3. The sides of the triangle being a, b, c, the centre of mean

position of A, B, C, for the system of multiples a, b, c, is the centre

o the inscribed circle.

\. For the system of multiples tan/i, tan.Z?, tan C, the centre of

mean position is the intersection of perpendiculars.

The construction given in this Article for the Centre of Mean
Position of the points Al , A^, A3 ,

... is of course the same when
the points do not all lie in one plane. In the latter case it is

easily seen that if zl} z
2 ,

z
3 , ... denote the distances of the points

from an arbitrary plane, the distance, zs of the centre of mean

position from this plane, for the system of multiples mlt m2 ,
m3 ,

..., is given by the equation
_ _ "2mz

~

~2m'
Centre of Mean Position is a generic term which comprises

under it particular points which must be specially noticed. One,
the Centre of Parallel Forces, has been already mentioned.

Another is the Centre of Mass, called also the Centre of Inertia.

If at the points considered, A^A^A^... there be placed
material particles whose masses are respectively ml} m2 ,

m
s ,

...

we find the centre of mean position of these points for the
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system of multiples w t ,
m.

Z)
ni

3 ,
... we shall arrive at the Centre of

<* of this system of particles. Nothing is here assumed

about the closeness of the points A
l ,
A2 ,

y/3 ,..., or the particles

placed at them, ami the process of arriving at the point G will

be unaltered if these particles constitute a continuous body.
Hence the Centre of ]\[ass of any body is the Centre of Mean
Position- of all the points within it- for a system of multiples pro-

portional to the masses of the infinitely small particles placed at

these points respectively.

A body whose points do not suffer any relative changes of

position will therefore continue to possess the same centre of

mass no matter into what part of the universe the body may be

taken. A different arrangement of its particles, would, of

course, in general alter its centre of mass. The centre of mass

of a rigid body is, then, something which it possesses absolutely,
or apart from all contingency of position in space or relation to

other bodies.

The distance of this point from any plane is given by the

equation last written, in which the sign 2 is to be replaced by
the integral sign y, and the element of mass at a distance z from

the plane denoted by dm. Thus

_fzdm
fdm

Again, if at the points A lt A2t A3 ,... there be placed particles

whose veil/fits are wlt w
2 ,

w3) ... these weights constituting a

system of parallel forces, the centre of these parallel forces is

called the G'/ilrc if Gravity of the given particles.

The ell'rct of altering the position of the body in the most

general manner possible is merely to turn the forces, wl , v>2 ,
w3 , ...

round their lixcd points of application^,^,... through the

angle, and by the last article we see that the resultant of

the ..f the .particles will, in all positions of the body,

pass through a fixed point, G, in the body. The resultant of

all the el. im-ntary weights is equal to their sum, and is called

the wriyht <>!' the bmly. We may, therefore, define the centre of

gravity of a body thus /
s re of gravity of a body /.v that

'*
lhronyh i'-/ii<-/i Basses, in all possible j>xifions

'' /,ml
i/, the r> xi'. //'i ,/t nf the system tfparallelforc&formed by

tlf a; i,//i /.v <f //// niilt'Jini/clii great number of indefinitely smalt

into ic/t'tc/t //;
b<><1y

can be divi<-
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The centre of gravity of a body is, then, the centre of the

particular set of parallel forces which act on its various elements

in virtue of the attraction of the Earth. The existence of such

a point depends on the parallelism of the forces produced by the

Earth on the elements of the body, and this parallelism, again,

depends on the minuteness of the volume of the body in com-

parison with that of the Earth. If the body were carried to the

surface of the Sun, or any other such large attracting mass, the

individual weights of its elementary portions, and therefore its

total weight, would be greater than they are at the Earth's

surface, but the position of the centre of gravity in the body
would remain the same. On the other hand, if the dimensions

of the body were comparable with those of the attracting mass,

the forces of attraction on its elementary portions would not be

a parallel system, and the resultant attraction would not, in

general, pass through any fixed point in the body independently
of the relative positions of the two masses. The term weight of
a body is used to signify the resultant attraction produced on the

body by the Earth, or other planet, on whose surface the body
exists, and it is therefore, unlike mass, a mere contingent

property of the body. If we imagine the body taken out into

space and removed (if possible) from the attractions of all bodies,

the terms weight and centre of gravity would cease to have any

meaning with reference to the body in that position ; while, on

the contrary, it has both its mass and centre of mass perfectly
unaltered. Hence the centre of gravity is essentially distin-

guished from the centre of mass
; although, since weight and

mass are always proportional, when the first point exists, it

coincides with the second.

In considering the equilibrium of a rigid heavy body we represent
its weight as a single force acting vertically through its centre of

gravity.

85.] Conditions of Equilibrium of a Rigid Body acted on

by Forces in One Plane. 1. Let the forces be parallel. Take

any point 0, and draw through it a right line, Oy, parallel to

the forces (Fig. 98). At introduce two forces, P{ and _?/',

each equal to P
lt these new forces being directly opposed to each

other along Oy. Now, Pl and P" form a couple whose moment
is P-

L .pl ,
if pl

is the perpendicular from on the line A^P^.

Introducing, in the same way, two forces, P2

'

and P
2", equal
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to P
2 , directly opposite to each other along Oy, we have P., at

/ replaced by a force P/' acting at along Oy' and a couj>Ic

whose moment is P2 .joa , /?, being y
the perpendicular from on the

line A2
P

2 . The sign is attached

to this couple because the couple

(P/, P2)
tends to produce rotation

in a sense opposite to that in which

the couple (P/', P!) tends to pro-

duce rotation.

Proceeding in this way with all

the forces in the above figure, we Fig. 98.

have the whole system of forces at Al) At ,
A3 ,

lent to a single force,

eqmva-

acting at in the direction Oy, and a couple,

tending to turn the body round in a sense opposite to that

of watch-hand rotation.

In general, denoting the resultant force by R, and the

moment of the resultant couple by G, we have

72 = vP, (1)

G = *(P.p). (2)

Now, by Theorem VI, of Art. 79, a couple and a force in the

e plane are equivalent to a single force, and cannot, there-

ton-, cnnjointly produce equilibrium. Hence, for equilibrium,

the force and the couple must vanish ; or

2P = 0, (3)

ami 2(P./>) = 0; (4)

that is to say, for the equilibrium* of a system of coplanar

parallel forces acting on a body

(a) The turn cfforces must = 0, and

(//)
The sum of the moments of the forces about every point in

their pltint' must = 0.

* The attention of the student IB particularly directed to the remark in

Art. 88.

VOL. i. i
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2. Let the forces act in any directions.

Take any point whatever, 0, (Fig. 99), in the plane of the

forces*. At introduce two opposite forces, P/ and P"
t
each

equal and parallel to Pr Let

P
l
and P/' be considered as

forming
1 a couple. Then P1

at

A
1

is equivalent to Pl acting

at 0, and a couple whose mo-

ment = Pl .j)v Replace P2 at

A.
2
in the same way by P2

"
(or

P2) acting at 0, and a couple

(P2,
P2')

whose moment is

Fig. 99. P2 ./?2. Thus the whole

system of forces will be re-

placed by forces, Plt
P2 , P3 ,

P4 ,..., acting at 0, and a number

of couples whose moments are Pl .p1,P2 . p2 , P3 .^3 ,
P

4 .^4) . . .

(the forces acting as in the above figure). The forces acting

at will have a single resultant, R, and the couples will form a

single couple whose moment, G, is (Theor. VIII, Art. 79) the sum

of the moments of the couples. For equilibrium it is necessary

that each of these should vanish. Hence, for the equilibriumf
of a body acted on by coplanar forces

(a) The resultant which the forces would have if they all acted

together at a point, each in the direction in which it acts on the

given body, must = ; and

(J) The sum of the moments of the forces round every point in

their plane must = 0.

The first of these conditions asserts that there must be no

force in any direction ;
and the second that there must be no

moment round any point. Thus, the conditions of equilibrium
of a rigid body embrace (a) the condition of the equilibrium
of a particle (Art. 26, p. 23); and

(b)
a condition distinctive

of the susceptibility of a body of finite extension to receive a

motion of rotation.

It is to be observed, then, that a system of coplanar forces

acting on a body can be reduced to a single resultant force, R,

acting at any arbitrary point, 0, in the plane of the forces, and

* The point is supposed to be rigidly connected with the body,
t See remark in Art. 88.
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a couple, G, also in this plane ;
and that whatever point, 0, is

chosen, the force R is constant in magnitude and direction,

while the magnitude of the couple G varies with the point

chosen. The force R is called the Resultant of Translation.

Coplanar forces can, of course, always be reduced to a single

;ltant, unless they happen to reduce to a couple, bv Theorem
VI. p. 105. /

EXAMPLE.

AB and DC are two parallel lines 20f decimetres and 16 decimetres

long, respectively, the points A and D being adjacent, and B and C
adjacent ;

these lines are 4 decimetres apart, and the length of AD is

5 decimetres. Find the magnitude and line of action of the resultant

of the following system of forces : 20 kilogrammes acting from

A to B, 26 kilogrammes from B to C, 30 kilogrammes from D to C,
1 .j kilogrammes from D to A, and 25 kilogrammes from A to C.

Ans. Reducing the forces to a single force acting at A, together
with a couple whose moment is the sum of their moments about A,
and taking AB as axis of x and the perpendicular to it through A
as axis of y, we have 2A"= 55-45 kilogrammes, 2y= 17-15 kilo-

grammes, G = 408 kilogramme-decimetres in a counter-clockwise

sense. Hence R = 58-04 kilogrammes = resultant of translation
;

therefore the single resultant = 58-04 kilogrammes, acting along

a line whose distance from A = = 7-03 decimetres, making
v

j- 343 58-04

tau~l

^ = tan"1 with AB, and intersecting AB between A

and 7;.

86.] Analytical Conditions of Equilibrium. Through any

1'i'iiit,
< >. draw two rectangular lines, Y

Ox and Oy, and resolve the force, Pv
_r at A^ into two components,

\\ and
]",, parallel to Ox and Oy.

Now (Art. 81), the moment of P
l

about O is equal to the sum of the

moments of A, and )
,
about 0. jrr. I00

But it' rotation opposite to that of a

watch-hand is considered positive, the moment of )\ about

o i and tho moment of A',
is X

l .yv where x
l andyt

tin- co-ordinates of A
}

referred to the axes Ox and Oy.

the moment of P
l
about is

)", ./-, \\ t/v

Adding together the moments of 1\, I get the total

momt>nt
6' = 2(}>-A. (1)

I 2
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If the sum of the components of the forces along- Ox is

denoted by 2X, and the sum of the components along Oy by
2 7, the resultant of the forces acting at (Fig. ioo)is given by
the equation RZ _ (sJC)

2 + (27)
a

. (2)

Now, since for equilibrium we must have R = 0, and G = 0,

the conditions, analytically expressed, are

2*= 0,27=0, (3)

2(r-J>) = 0. (4)

These, equations are the expressions of the conditions of

Art. 85.

87.] Equation of the Resultant. We have seen (Art. 85),

that a system of coplanar forces is equivalent to a single force,

R, acting at any arbitrary origin, together with a couple, G.

The direction and magnitude of the resultant force, R, will be

the same whatever origin may be chosen, but the couple will

vary with the origin. Now, supposing that the resultant of
the forces does not vanish, the couple and the force R can

(Theorem VI, Art. 79) be replaced by a single force equal to

R
; and the sum of the moments of the forces about any point

on its line of action is equal to zero (Art. 81).

Let
(a, /3)

be the co-ordinates of any point referred to rect-

angular axes through an arbitrary origin, (Fig. 100). Then the

moment of the force, Pj, about this point is evidently

^iv
ri-)-"Xi(yi-/3), or 71 #1

-X
1 y1-a71 + /3J1 .

Taking the sum of the moments of all the forces about the

point, we have G> _ G_ a2T+ psX, (
i
)

G' being the sum of the moments about the point (a, /3).

Since, for any point on the resultant '= 0, the equation of

its line of action is a27 y32JC= G
Equation (l) gives at once the following result The sum of the

moments of a system of coplanar forces about any point, 0, is equal
to the sumof their moments about any other point, (7, plus the moment
about of their resultant of translation^ supposed acting at (7.

88.] Remark on the Conditions of Equilibrium. It must
be carefully borne in mind that the conditions of equilibrium

given in pp. 113 and 114 are sufficient only in the case of in-

deformable bodies. For, having reduced a system of forces to a

resultant of translation, R, acting at an arbitrary point, together
with a couple of moment G, the logical conclusion is that



88.] REMARK ON THE CONDITIONS OF EQUILIBRIUM. 117

IfR = and G = 0, those motions of the system which would

L>- [iTinlucfd hy R and G respectively are thereby destroyed.

Now by a fundamental principle of Kinetics, which we antici-

pate, ifR = there is no resultant linear acceleration of the system
in any direction, or in other words its centre of mass is at rest or

in uniform rectilinear motion ; and if, in addition, G = 0, there is

no resultant angular acceleration about the centre of mass of the

system.

These two things we can conclude from the equations R=Q,
G = for all systems, whether they are gases, liquids, deform-

able frameworks, natural solids, or rigid bodies.

Now the destruction of resultant linear and angular ac-

celeration will, except in the case of rigid bodies, be quite con-

nt with the existence of motions of parts of the system

among themselves, negative momenta cancelling positive. Hence,
whenever a system is capable of altering the relative positions of its

parts, the complete equilibrium of the system will require mare than,

the ranis/tiny of the resultants of translation and rotation of the

forces applied to it. In fact, its internal forces will have to be

taken into account. In rigid bodies the destruction of the

above-mentioned motions will necessitate the destruction of all

motion, and the conditions R = 0, G = are both necessary and

sufficient. In these bodies there is no restriction placed on the

internal forces, so that they are always capable of assuming such

magnitudes and directions as will enable them to destroy the

action of the external forces. On the contrary, in deformable

liodii-s. i hrre are restrictions placed on the internal forces so that

they are not capable of preserving equilibrium against all

ems of external forces. For example, in a freely jointed

framework, the action between bar and bar must consist of a

single force restricted to passing through the joint. This is the

<-n why two equal forces applied in opposite senses in the

' line to two opposite sides of a set of parallel rulers will not

hold t lu-iii in equilibrium, unless tin- rulers are placed in a

certain configuration ;
and it is also the reason why two equal

and directly opposed forces applied to the ends of a string, elastic

or inela>ti. will not hold it in equilibrium, until it has assumed

a certain state.

Hence also the necessity for considering the internal forces

-ares') in Hydrostatics.
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Nevertheless, the conditions of equilibrium of all material

systems whatever natural solids, liquids, gases are completely

expressed by the single principle that when the system has as-

sumed its configuration of equilibrium, then for all imaginable small

derangements of its parts the whole work which would thereby le

done by all the acting forces, external and internal, is zero which

is Lagrange's great principle of Virtual Work. v

89.] Force Polygon and Funicular Polygon. Let there be

any system offerees, Pl ,PZ) P3 ,
P4 ,

P5 , (Fig. 101) acting in one

M
plane on a body. Starting with

any point, 01, draw lines, (01,

12), (12, 23), (23, 34), (34,45),

(45, 56), parallel to the lines of

action of the forces and re-

spectively proportional to them.

The figure formed by these lines,

(01, 12), (12, 23),..., is called

the Force Polygon of the given

system of forces. Now take any
point, 0, and from it draw lines,

01, 012, 23, . . .
,
to the ver-

tices of the force polygon. From any point,/!, on the line of

Fig. 101.
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action of P
l
draw two lines, /i / and/, /> , parallel to the 1 \

01 and 12
;
from the point f.>

in which/: /2 meets P2 draw

/2 /s parallel to 23 and meeting P3 in /3 ;
from /3 draw/3 /4

parallel to 034
;
and so on.

The system of lines f /j /3 /3/4/5/8 parallel to the radii

drawn to the vertices of the force polygon from any point, 0, is

called a Funicular Polygon of the given system of forces.

The point the radii from which to the vertices of the force

polygon determine the funicular is called the Pole correspond in <_
r

to the funicular.

Let any other pole, (7, be chosen, and from an arbitrary

point,//, on Plt let///
'

and//// be drawn parallel to (7 01 and

(7 12, respectively; and let a new funicular, /
'

//.../6', be

constructed.

Then the sides (such as/2/3 and/"//,') of these polygons which

reach between the lines of action of the same two forces are

called corresponding sides.

Since the point ^ may be taken anywhere on Pl it is clear

that for a given pole, 0, we may construct an infinite number of

funiculars of the system, but the corresponding sides of them are

of course parallel. If the force at each vertex of a funicular of

the system is resolved into two components directed along the

two sides of the funicular which meet at this vertex, the

components at the extremities of each side of the funicular are

<jual and opposite. For, suppose P3 resolved into two compo-
nents in/3/2 and/3 /4 ;

then these components are represented

by the lines ~>'.\ O and O :> 1
;
also ifP2 is resolved into components

in /2 /a arul/2/i these will be represented by 023 and 120,

Actively; thus the components in the side/2/3 are equal aid

>ite.

Hence we may formally define a funicular polygon of any

system of forces thus : ./ fmu<'ular polygon of a gir< n
,v;/.vX,

forces is a polygon whose vertices lie one by one on the lines ofa<

rf the given forces, and i* also tuch thai, if theforce act
'/////

ut each

rrrfex i* resolrr,! ;n tn two (oblique) components along tin

fhe polygon /<>//,/</ i,i //// '/^ forces at the ej-frein Hies of
- !: <f the polygon are equal and opposite.

90.] Theorem, 'fhe c -I' any fim
J'n/ii<'i/tar9 of

a given sy*(>
* intersect on a right line, which is parallel

f<> thai joining (he j,r>h'S f t/t<: I'-
j
<irs.
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At the points /2 and /3

'

let two equal forces (each P
2)

be

applied in opposite senses along the line /2 /2'; suppose

them to act away from both of these points, as P2 is represented

in Fig. loi. Considered as acting- on a rigid body, these forces

are in equilibrium. Now let P2 at /2 be resolved into its com-

ponents along /2 /i and /2 /3 . These components will be re-

presented in magnitudes and senses by 012 and 230, respectively.

Similarly, resolve P2 at // along // // and // /3

'

;
and these

components will be represented by 12 0' and (723. These four

components are therefore in equilibrium. Take the sum of their

moments about the point of intersection of the lines /2 /3 and

/2 /a'- Then, since this sum is zero, it follows that the resultant

of the two components (012 and 120') in the lines /2 /j an(i

/i' // must pass through the point of intersection of f2 f3

and /2

"

/3

'

;
but it also passes through the point of intersec-

tion off2 fi and f fi ;
therefore its line of action is the line

joining these two intersections. Now this line of action is

parallel to the line 0(/
; for, two forces represented by 1 2

and 120' give a resultant represented by 00' in magnitude
and sense.

Hence the corresponding sides/lt/2 and ///2^/2/a ^/z'/a'
intersect on a line parallel to 0(7

; similarly the sides/2/3 and

/2'/3',/3/4 and//// intersect on a line parallel to 0(7, which,
of course, must be the same line as before. This line is LM in

the figure.

Favaro (Lezioni di Statica Grqfica, p. 409) gives a purely

geometrical proof of this, depending on the property that if in

two complete quadrangles five pairs of corresponding sides

intersect in five points which all lie on a right line (which may
be a line at

infinity), the point of intersection of the sixth pair
will also lie on this line.

In Fig. 101 produce f\ /2 and //// to meet in JV, suppose ;

and consider the quadrangle formed by the points M, flt //, 2V,

and also that formed by the points 01, 12, 0, (/. The five pairs
of corresponding sides (Mfa 01 0), (Mf^ 01 0'), (/!//, 1201),
(fiN, 120), and (Nfi, 0^12) intersect in points which lie on
the line at infinity ; therefore the remaining pair of sides (MN,
OO'] are parallel.

The general proposition which holds equally for two quad-
rangles in different planes is easily proved from the property
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of two triangles in perspective which will presently be given,

and which is not restricted to two coplanar triangles.

91.] Problem. Given onefunicular ofa given system of coplanar

forces, to construct allfuniculars of the system.

Let the given funicular be / /!/2 /3 ... . Draw any line LM
in the plane of the forces; produce the sides,/ /i,/i/2 > >

f

the given funicular to meet LM; from the point of intersection

of LM and/o/j draw the arbitrary line /Q'//, which meets P
l
in

/i' ; join f{ to the point of intersection of LM and /j /2 ;
this

joining line will meet P2 in//, which is the second vertex of the

new funicular ; join fz

'

to the point of intersection of LM and

/2 /a > this will give f3

'

;
and so on. Hence a new funicular is

formed, and since the lines -Z/J/and/o'// were drawn at random,

an infinite number of funiculars of the system can be described

in this way.

92.] Problem. To construct the Resultant of a given system of

coplanarforces.
On any scale construct a force polygon 01, 12, 23,... of the

given system ;
then the line of action of the resultant must be

parallel to the side (01, 56) which closes the force polygon.
Take any pole, 0, and construct a funicular f fv f2 ... of the

system. Then the resultant must pass through the point of

intersection of the extreme sides,f /j and /6 /6 ,
of the funicular.

For, by resolving each force into components along the two

sides of the funicular which start from the vertex at which the

force may be supposed to act, these components will be mutually

destroyed, with the exception of those in the extreme sides, fQf\
and/5/6 . Hence the whole system of forces is equivalent to two

t'mves acting in these sides, and represented in maynitiult-s on

tho scale adopted by the lines 001 and 056. The line of action

of the resultant therefore passes through the intersection of the

extreme sides and is parallel to the line joining 01 to 56, and

tin- may-nil ude is represented by the length of this joining line,

its sense being of course from 01 to 56.

COR. 1. Whatever be the path described by the pole, the

point of intersection of the extreme sides of the funicular

describes a fixed right line. This is the line of action of the

resultant of the given system of forces.

COR. 2. The point of intersection of any two sides of a



122 COMPOSITION AND RESOLUTION OF FORCES. [93.

funicular describes a fixed right line, when the pole varies in any
manner. Thus the sidesfif2 and/4/5 will always intersect on

the line of action of the resultant of the forces P2 ,
P

3 , P4 .

93.] Graphic Conditions of Equilibrium. When a system of

coplanar forces acting on a rigid body is in equilibrium, the

forces when compounded two and two must finally reduce to two

equal forces of opposite senses acting in the same right line.

Since the resultant is proportional to the line required to close

the force polygon, this line must be zero
;

hence the force

polygon of the system must close up of itself. Again, since the

system is finally reducible to two forces acting in the first

and last sides, f f and f5 /6 ,
of any funicular, these sides

must coincide; or, in other words, the funicular must be

closed.

Hence the conditions of equilibrium are

1 . The Force Polygon of the system must be closed.

2. Any Funicular Polygon of the system must be closed.

COR. 1. If any one funicular of the system is closed, every
funicular of the system is closed.

COR. 2. If the system is equivalent to a couple, the force

polygon is closed, and the first and last sides of all funiculars

are parallel.

94.] Problem. For a given system of coplanar forces find the

locus of the pole of a funicular polygon two of whose sides pass
each through a given point.

Suppose, for example, that the sides/ /i and/4/5 pass each

through a given point. Now these sides intersect on a given
line (Art. 92) viz., the resultant, El23i ,

of P1} P2 ,
P3 ,

and P4 .

If, then,/ /i passes through the given point D, and/4/5 through
G, take any point, S, on ^

1234 and join it to D and G. Then
from the vertices 01 and 45 of the force polygon draw two
lines parallel, respectively, to SD and SG. These lines intersect

in a point 0, which is the pole of a funicular satisfying the

given conditions. The point S being varied, it is easy to see

that the locus of the corresponding pole is a hyperbola. For
if Slt S

2 , 3, S are any four positions of S on the right line

-7?
1234 ,

the anharmonic ratios of the pencils D(Sl
S
2
S3 Si] and

G (Sl Sz S3 S4 )
are equal; and therefore the pencils 01 (0^ 2 3 4)

and 45(0! 2 3 4)
are also equal, which, by a well-known

property, shows that the points lie on a conic (which is a
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hyperbola) passing through both the points 01 and

asymptotes being parallel to the lines DG and I\,

The hyperbola becomes

two right lines in a par-

ticular case.

If the line joining the

points 01 and 45 (Fig. 102)
is parallel to the line 7^.,,,

represented by LS in

figure the hyper-
bola becomes the Hue

joining 01 to 45, together
with a line, 031, parallel Fig. ioa.

to GD.

95.] Problem. To represent the moment of aforce about a point.

Let it be required to repre-

sent the magnitude of the ,M
moment of a force P about a

point (Fig. 103). Draw ab

parallel to P and representing
it on any scale.

Let o be a point taken at a

unit distance from ab
;
draw oa

and nlj. Assume any point, Q,

on the line of action of P, and

draw QM and QL parallel to

oa and ob, respectively. From
<J draw a line, 7/J/, parallel to

/'. Then the length LM
represents the moment of P
about 0. For, the triangles oab and QML arc similar; therefore

if
/>

is the length of the perpendicular from Q on LM, we have

/, I/ <!>>

- = .-. LM= P.p, since ab represents P.
1>

1

Hence LM is the moment on the scale adopted.
If the pole o is at a distance k units from ab, we shall have

',

Fig. 103.

It' the unit force is cr, and the unit length A, the moment of tin

k P
force P about will be LMx m x -

; for ab will obviously be A.
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96.] Problem. To represent the sum ofthe moments ofany system

of coplanarforces about a point.

Let A (Fig-. 101) be the point about which the sum of the

moments of the forces is required.

The sum of their moments = the moment of their resultant

about the point. Let this resultant be constructed by Art. 92,

and let the moment of the resultant be constructed by last Art.

Now the resultant is represented by the line joining 01 to 56

(Fig. 101), and if is a pole assumed at any distance, k, from this

line, we are to draw from any point on the resultant two lines

parallel to 001 and 056, and through A a line parallel to the

resultant, R.

Now the extreme sides, /Q/J and/5/6 ,
of the funicular intersect

in a point on R, and are parallel to the lines 001 and 056. Hence

the intercept made by the extreme sides of the funicular on a line

drawn through the given point A parallel to the resultant will

represent the sum of the moments of theforces about the point.

This intercept multiplied by k will be the sum of moments.

97.] Property of Perspective Triangles. Two triangles, ABC
and A'B'C', are said to be in perspective when their vertices can

be joined in pairs by three right lines which meet in a point. If

the lines joining A to A', B to B', and C to Cf meet in a point,

A and A' are called corresponding vertices, as are also B and B',

C and (7
; and the sides, AB and A'B', &c., which join corre-

sponding vertices in the triangles are called corresponding sides.

The fundamental property of triangles in perspective is that

the points of intersection of corresponding sides lie in one right line.

To prove this projective property it is sufficient to prove it for

the simplest figure into which the two triangles can be projected.
Let the line CC' be projected to infinity. Then AA' and BB'
will become parallel lines

; also the sides AC and BC of the first

triangle will become parallel, as will A'Cf and B'C' of the second.

For the simple figure thus obtained there is no difficulty in

proving the proposition.

To construct a triangle whose three sides shall pass each through
a given point, and whose three vertices shall each lie on one of three

concurrent lines.

Let it be required to construct a triangle whose vertices,

A, B, C, shall lie on three concurrent lines, AO, BO, CO, and
whose sides shall pass through the points a, b, c, (Fig. 104).
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Suppose it done, and let ABC be the triangle. Take any

point, C", on CO, and draw C'a and

C'b meeting BO and AO in ff and A'

respectively.

Then the triangles ABC and A'B'C'

are in perspective, therefore the sides

AB and A'B' intersect in P, a point on

the line ab. Hence P is known, since

it is the intersection of ab with the

line ./'/>' which is constructed by arbi-

trarily assuming C". P being known,

join it to c, and the vertices A and B
are determined, and C follows at once.

Q.E.F.
Fjg-' 04 -

EXAMPLES ON FUNICOLAB POLYGONS.

1. A heavy rod, or beam, is supported horizontally on two smooth

props at its extremities, and loaded with given weights at given points
in its length ;

find the pressure on the props.

Suppose the line a
8 (Fig. 35, p. 45) to be horizontal and to

represent the loaded beam, the loads, Plt
P

2 ,... (including its weight

among them) being applied at the points, <2
t ,

eZ2> ...
,
and let the

pressures at the props a and a
s
be P and P6 . Starting from any

point 01 draw a vertical downward line to represent on any scale tin

force Pj ,
and let this line terminate at the point 12

;
from 12 draw

vi-rtical downward line representing Pt
on the same scale, and let this

line terminate at the point 23
;
from this point draw a vertical down-

\vanl line to the point 34 to represent Ps ;
from 34 draw a vertical

downward line to the point 45 to represent Pt
.

Then from 34 we must draw a vertical upward line to represent
the presMire /'., and this line will terminate at the point 56, which,

however, is at present unknown. The pressure P will, of course, be

represented by the upward line between 56 and 01.

To determine 56, assume any pole, 0, and join this pole to the

points 01, 12, Across the lines of action of the forces acting on the

beam draw the lines A .\ r .!,.!_.,.. parallel to the lines 001, 012, ...
,

and draw the closing line. .1, J
5 ,

of the funicular polygon. Then
the line through parallel to this closing line is that joining to the

required point, 56.

2. A beam is supported horizontally at its extremities on two
vertical prop- and loaded with given weights at given points in \\*

length ; it is required to represent the Bending Moment at nnv point
of the lieani.

/>/. When a beam is in equilibrium under the action of any forces,

the Bending Moment at any point means the sum (with their proper
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signs) of the moments about this point of all those forces which act at

one side (either side will do) of the point.

Suppose a a
6 (Fig. 35, p. 45) to represent the beam, as in last ex-

ample, and let P be the point about which the bending moment is

required. The pressure on the prop a being P ,
the bending moment

at P is the sum of the moments of P
,
Pv and Pz ; and if we con-

struct any funicular of the system this moment will, by Art. 96, be

the intercept on a vertical line through P made by the extreme sides

of the funicular of the forces P ,P^, and Pz . But these extreme sides

are obviously A A
6
and A2

A
s . Hence the bending moment at any

point P is represented by the vertical ordinate, mn, drawn through P,
of any funicular polygon of the system.
Of course, if k is the distance of the pole of the assumed funicular

from the vertical line which serves as the force diagram, the bending
ts

moment will be mn x k x -T-- (See end of Art. 95.)A
3. Of five coplanar forces in equilibrium, given the lines of action of

all, the magnitude of one, and the ratio of the magnitudes of two
others ;

find the magnitudes of all.

Let P
l (Fig. 105) be the force which is completely given, and let

the ratio of P2 to P
s be given.

PI

Fig. 105.

Starting with any point a, draw ab parallel and proportional to P
x ;

then if we draw any two lines be, cd, parallel to the given directions
P

2 , P3 , and bearing to each other the given ratio, the line Id is given.
Suppose be and cd to represent P2 and P3 ;

then let de and ae be drawn
parallel to P4 and P

s
. It thus appears that everything would be

known if any one of the points c, d, e were known.
Now, in order to get a funicular with as many known sides as

possible, choose b for pole; and for further simplification start the
funicular from the (given) point, m, of meeting of P^ and P

2 . We see,
then, that we have to draw np parallel to the given line bd

;
and pq,

which is parallel to be, must pass through the point of meeting of P
l

and P
5 , since (for the closure of the funicular) the last side, which is

parallel to ab, must be parallel to P
l ,

and pass through m. Now the
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points m and n, and therefore^, are known
;
hence pq is known, i.e.,

be is known in direction, /. the point e is known, and hence the force

polygon is completely known.

4. Of four coplanar forces in equilibrium, given the magnitude of

one and the lines of action of all
;

find the magnitudes of all.

5. Show how to resolve a force acting along a given line into three

components acting each along an assigned line.

[Let the given force act in the line L, and let the other assigned
lines be A, ,

C. Join the point of intersection of L andJ to that of

B and (?, and resolve the given force along the joining line and along
.1. Then resolve the first component along B and C.]

G. To construct for any system of coplanar forces a funicular poly-

gon three of whose sides shall pass each through a given point.
Let the given system of forces be P

l ,
P

t ,
P

s ,
P

t ,
P

6 (F ig. i o i
, p. 118),

and let it be required to construct a funicular polygon which shall pass

through the points D, E, F.

Consider the triangle formed by the sides, / /j , /2 /3 ,
and/6 /,, of the

funicular which pass through the three given points.
The vertex formed by the intersection of/ yj and/2 fz lies on a given

line, Rn (not drawn in figure), which is the resultant of P
}
and P2

(Cor. 2, Art. 92) ;
the vertex formed by the intersection of/2 /3

and

ftft
lies on a given line, RM ,

which is the resultant ofP
s ,
P

t , and P6 ;

and the vertex formed by the intersection of/f,^ and /s/6
lies on a

given line, Jiiau ,
which is the resultant of P,, P2 ,

Ps ,
P

4 ,
and P

5
.

Moreover the three lines 7?
12 ,

7?
S45 ,

and ^,K45 obviously meet in a

point ;
for the resultant of Pv ... P

8 may, if we please, be constructed

by ih>t finding the resultant of P
lt
P

3 ,
and then finding the resultant

Hence the triangle formed by the sides of the funicular which are

to pass through the assigned points is one whose vertices lie on three

concurrent lines and whose sides pass each through a fixed point.
Let this triangle be constructed by Art. 97. Then knowing the force

diagram of the forces and drawing two lines, 01 and 23 say, parallel
i<> the two sides / /, and /a /3 ,

the pole is known, and thence the

whole figure.

7. Construct a funicular polygon which shall pass through three

trivi-n points, two of which lie on one side of the polygon.

Ana. This side of the polygon is known, and it intersects the side

passing through the remaining point in a point lying on a given line.

Hence the side passing through the remaining point is known, and
henre the pole of the funicular.

8. For a given system of vertical downward forces, Plt
Pv ... /'_,,

equilibrated by two extreme vertical upward forces, P ,
Pn> let any

funicular polygon be constructed. Prove that the area of this

Q
polygon = > where C is constant and k the distance of its pole from

fc

tin vertical line which is the force diagram of the forces,
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(The value of C is obtained by multiplying each force of the system

by half the product of the distances between its line of action and the

lines of action of the extreme forces, and adding all such products

together, and multiplying the result by See end of Art. 95.)

9. A uniform beam is supported at its extremities on two vertical

props ;
find the bending moment at any point in it.

Ans. If y is the distance of the point from one extremity, the

bending moment is W > where W is the weight of the beam.
mm

10. In the last example what is the curve of bending moment ?

Ans. A parabola passing through the ends of the beam, its vertex

lying on the vertical line through the middle of the beam at a distance

5-
from the beam. (The bending moment at any point is the producto

of W and the vertical distance of the point from the parabola.)

1 1. For any assigned system of forces, construct a funicular polygon
such that if it were actually a string or a system of jointed bars kept
in equilibrium (its two extremities being fixed) by the given forces,

the sum of the squares of the tensions or pressures in its sides would
be a minimum.

[Choose for pole the centroid of the vertices of the force-polygon.]

98.] Astatic Equilibrium. When any number of forces, Pl ,

P2 ,
. . ., acting at points, Al , A2 ,

. . .
,
in a body keep this body in

equilibrium, these forces will not, in general, continue to

preserve equilibrium when the body is displaced in any manner,
each force still retaining its magnitude, direction, and point of

application in the body. If for all displacements of the body the

forces continue to preserve equilibrium, the body is said to be in

astatic equilibrium.
The simplest example of astatic equilibrium is furnished by a

heavy body suspended by a vertical string attached at its centre

of gravity. Here the system of forces consists of the weights
of the particles of the body and the tension of the string ; and
however the body may be displaced about its centre of gravity,
all these forces will retain their individual magnitudes, direc-

tions, and points of application, and the body will remain at rest.

Again, a system of two equal reversed magnets rigidly con-

nected by an axis through their centres is astatic for displace-
ments round this axis.

When a system of forces applied to a body is not in equi-

librium, it happens that in certain cases this system can be
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it
it-ally equilibrated by a single applied force; i.e., in all

displacements which the body can receive, each force acting on

it with invariable magnitude, direction, and point of application,

it may be possible to equilibrate the system by one force of

constant magnitude, direction, and point of application.

It is evident that this is always the case for a system of

parallel forces. A single force equal and opposite to their re-

sultant, applied at their centre, will astatically equilibrate them.

Into the general discussion of astatic equilibrium we do not

at present enter. Suffice it to say that a system of (non-coplanar)
forces must in general be astatically equilibrated by three forces

;

and if the forces arc all parallel to one plane, by two. When (as

in the present chapter) the forces are all coplanar we shall prove
that for displacements of their points of application in their

plane the system can be astatically equilibrated by a single force.

In this case it is clear that instead of considering the body to

which they are applied as displaced, we may consider the body
fixed and each force rotated in a fixed sense round its point
of application through a constant angle a motion of translation

of the body or points having obviously no effect on the system
of forces.

We shall now prove that if all theforces in a coplanar system
are rotated in the tame sense, through the same angle, in their

and their points of application, thnr resultant (unaltered
in magnitude, of course) passe* thromjh a fixed point in the body.

Let two forces, P and Q, act at two fixed points, A and B,

;. 1 06) in the directions OA and OB, being the point of

intersection of their lines of action ;
and let the forces be turned

in the same sense round A and B through the same angle, so

that the point of intersection of their new

lines of action is Of. Now, since /.OAC/=

!'<?, a circle described through A, B,
and O will pa.-s through 0', and the angle
.[<>' H, l.rtuccn /' and (J when they are

turned round, is equal t<> the original angle,

./'/A'. L.-tuci'ii them. Also, the forces bein^

unaltered in magnitude, it follows that the

lei which the resultant at (7 makes

with them are the same as the angles
which it makes with P and Q at 0. If, then, OC is the

K
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direction of the resultant at 0, O'C must be the direction of this

resultant at (/. Hence, the resultant of P and Q passes through
the fixed point C. In exactly the same way it is proved that

the resultant of three forces passes through a fixed point when

the forces are turned round their fixed points of application

through a constant angle ; and so on for any number of forces.

This point may be called the astatic centre of the system of

forces*.

99.] To find the Astatic Centre of a System of Coplanar
Forces. Taking an arbitrary origin and arbitrary axes, the

point required lies on the resultant whose equation is (Art. 87)

a2r-/32X- = 0, (1)

(a, /3) being
1 the running co-ordinates.

Now, if the force P
1 acting at the point (x^ , y-^ is turned

round in the plane of xy through an angle o>, Jfx becomes Pj cos

(0l + w), where
1

is the original angle made with the axis of x

by Pj , or Xl
cos CD ,Yl sin o>

;
Y

v
becomes X

l sin o> + F
x
cos co

;
and

Y
l a;1

X
1^1 becomes (Y^x-^X^y^) cos <a + (Xl

x
l + Yl y^) sin o>.

Hence, 2Z becomes cos o> .2X sin CD . 2 J, \

27 sinto.SX+costo.sr, V (A)
G G cos o) + F sin &>, )

where T = 2 (Xx + Yy). This quantity is called the Virial of the

forces.

The equation of the new resultant is, therefore,

(a2r-/32X- (?) cos a) + (a2X+ /32Y-T] sin co = 0, (2)
and the astatic centre of the system of forces is the intersection

of the lines given by equations (1) and
(2). This point may

evidently be determined by (l) and by the equation

asz+/3sr-r = o. (3)
Hence for the co-ordinates of the astatic centre we have

If the astatic centre were the origin, a and /3 would be each = 0,

and G would = 0, since the point is on the resultant (Art. 81).
Hence for the centre of the forces we have

* Of course it is understood throughout this discussion and in the examples
at the end of this chapter that the displacements of the body or forces are always
supposed to take place in the plane of the forces.
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If the co-ordinates of A, the point of application of a force,

P, (Fig-. 107), with respect to rectangular axes, Ox and Oy, are

x and y, the quantity Xx + Yy is equal to

P (x cos 6+y sin
0),

6 being the angle
which P makes with Ox. Now if OH is

x, and AM is y, it is evident that x cos 6

+ysin0=AN, N being the foot of the

. perpendicular from on the line of action \/
of P. Denoting AN by q, we have, then,

for the Virial

Hence, {/* y number of coplanar forces be turned each /

afxedpoint of application through an arbitrary but common amjl.t .

there exists a ^o'nit in the plane of the forces such that both the

lal and the sum of the moments of the forces about it contiitt

to vanish for all di placements.

It is easy to see that if AN be the sense in which P acts, the

sign of the product Pq will be changed.
The value of F with respect to axes through a point (a, ft)

parallel to Ox and Oy is evidently 2 {X(x a)+ Y(y /3)},
or

r aSvY fiSY. Hence the locus of points for which this quan-

tity vanishes is given by equation (3), which denotes a right
line passing through the astatic centre, and evidently perpen-
dicular to the resultant.

100.] Theorem. If any number of coplanarforces are in etjni/i-

briuni, ami If the forces be turned, each round a jixed point, in the

game sense through any common angle, the new system is equivalent

to a coi<

For, from equations (A) of Art. 99, it appears that if 2.Y =
and 2i } = before the rotation, they will be zero after it; hence

the nc\v s\>tfin lias no resultant of translation, and it must.

therefore, be a couple. Now, since by hypothesis =0, the

of the new couple is by equations (A) equal to

F sin a>.

\\f SIT, then, that the system of forces will remain in e|iu-

librium, whatever l>c the angle through which they are turned, it'

r = o.
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EXAMPLES.

1. If the sums of the moments of any number of coplanar forces

round three points which are not in a right line vanish, the forces

are in equilibrium.

2. If the sums of the moments round three points not in a right

line are equal, the forces are either in equilibrium or equivalent to

a couple.

3. If the sums of the moments of a system of coplanar forces round

three given points, A, B, C, are I, m, n, respectively, prove that the'

resultant is equal to

c
2 2lmab cos 2mnbc cos A 2nlca cos Bfi >

where A = area of triangle ABC, whose sides are a, b, c.

4. If a system of coplanar forces applied at fixed points is in equi-

librium, the co-ordinates of the astatic centre become indeterminate.

Explain this.

Ans. In this case the system must be astatically equilibrated by
two equal and opposite parallel forces.

5. In the last case show how to find an astatically equilibrating

couple for the system.

Ans. Take the astatic centre of any number of the forces, and
also the astatic centre of the remaining forces, These will be the

points of application of the forces of the .required couple (whose
moment, of course, varies with the displacement of the body or

forces), and the forces of the couples are equal to the resultants of

the two partial sets.

6. Three forces are applied at the middle points of the sides of

a triangle, ABC, perpendicular to the sides and proportional to them

respectively; find a couple which will astatically equilibrate them.

Ans. A couple one of whose forces is applied at the middle point
of any one side, AB, and the other applied at the point of intersection

of a parallel to AB drawn through C with the perpendicular to AB
at its middle point.

7. When a system of coplanar forces in equilibrium continues in

equilibrium for all displacements in the plane of the forces, show
that the astatic centre of any number of them must be coincident
with that of the remainder.



CHAPTER VI.

APPLICATIONS OF THE CONDITIONS OF EQUILIBRIUM OF A BODY.

101.] Condition of Equilibrium of a Body under the

Action of two Forces in a Plane. If two forces maintain a

IjuJy in
i'qiii/i/jfiiim^ they must be equal and opposite in the sameriy/it

For, take moments round any point on the line of action of

one of them, P. The sum of the moments must (Art. 85) be

= 0. Hence the other force, Q, must pass through the assumed

point. Again, take any other point on P, and take moments

round it. The sum must be = 0, and Q must, therefore, pass

through this point. Hence P and Q act in the same line. Now
their sum must =0 (Art. 85). Therefore P and Q are equal
and opposite. Q. E. D.

1<>:J.]
Condition of Equilibrium of a Body under the

Action of three Forces in one Plane. If three forces nunnlnui

u Ijmly i,t
r<jni/i/j/-i/<i,

tin lr fines of action must meet in a point .

or be parallel.

take moments round the point of intersection of two of

tin-in, P and Q. The sum must (Art. 85) =0; therefore, either

tlu- third force, Rt
is zero, or it passes through the intersection

of P and Q. If R is not = 0, it must pass through this point.

The time forces may then be supposed to act at this point,

and to keep it at rest. Hence, each force must be equal and

opposite to the resultant of the other two
;
and if the angles

l.ct \\tin them in pairs be/?, , r, the forces must satisfy the

. omlitions P : Q:K= sin;; : sin q : sin r. (ft)

It two of them are parallel, the third must be parallel to them

and equal and directly opposed to their resultant.
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EXAMPLES.

1. Three forces, P, Q, R (Fig. 108), act at the middle points of the

sides of a triangular plate, each force being perpendicular and pro-

portional to the side at which it acts. If

the forces all act inwards, or all outwards,

they are in equilibrium. For (a) they

satisfy the first conditions of equilibrium
of three forces, namely, that of meeting in

a point (Art. 102); and (ft) they are pro-

portional to the sines of the angles between

them in pairs, since

P : Q : R = a : b : c = sin A : sin B : sin C
Io8 ' = sin QQR : sin ROP : sin POQ.

They, therefore, satisfy both of the conditions of Art. 102.

In exactly the same way it is proved that if three forces act perpen-

dicularly to the sides of a triangle, and be proportional to them, they
will be in equilibrium, provided that they pass through any common

point, and all act outwards or all inwards.

2. Three forces acting along the perpendiculars of 'a triangle keep
it at rest

;
find the relations between them,

They satisfy the first condition of equilibrium, namely, that of

meeting in a point. Then if the forces perpendicular to the sides

a, 6, c, P, Q, R, respectively, the relations (ft)
of Art. 102 give

P:Q:R = sin .4 : sin 5: sin C = a: b: c,

as might have been concluded from the remark at the end of the last

example.
'

3. Three forces acting along the bisectors of the angles of a triangle,
all either from or towards the angles, keep it at rest

;
find the relations

between them.

The forces evidently satisfy the condition of meeting in a point.

Let P, Q, R, be the forces in the bisectors of A, B, C, respectively.

Then the angle between P and Q is easily seen to be TT--ABC
Hence P:Q : R = cos - : cos - : cos -

ft i 2

4. Three forces acting in the bisectors of the sides of a triangle
drawn from the opposite angles maintain equilibrium ; find the rela-
tions between them.

They satisfy the first condition.

Let the lengths of the bisectors of the sides a, b, c (Fig. 109) be

fti > ft*> and A,, and let p and q be the perpendiculars from C on

PandQ.
Take moments round C for the equilibrium of the forces. Then

Pp=Qq. (1)



EXAMPLES.

(The moments of P and Q with respect to C have opposite signs,
since Q tends to turn the body round C in the sense of
watch-hand rotation, while P
tends to turn it in the opposite

sense.)

Again, jD/9,
= q&, (2)

h side of this equation being
the area of the triangle. Divide
the sides of (1) by the cor-

responding sides of (2).

'
Then

Hence P : Q : S

or the forces are proportional to the bisectors.

5. At the middle points of the sides of any indeformabU polygon
(Fig. no) forces act perpendicularly to the sides, each force being

proportional to the side at which it

acts. If the forces all act inwards or

outwards, they form a system in

equilibrium.
For (example 1) the resultant of P,

and P
%
is a force acting at the middle

point of AC, perpendicular and pro-
i"iKil to AC. Again, this force

and P
s may be repkced by a force

acting at the middle point of AD,
perpendicular and proportional to

AD.

Replacing the given forces in this

manner, tin- re-ult follows by ex-

ample 1. Fig. no.

6. If from any point perpendiculars be drawn to the sides of a

polygon, and forces act along these perpendiculars, either all inwards

or all outwards, each force being proportional to the side to which it

is perpendicular, the system is in equilibrium.

Tlii.-i follows, exactly as in the last example, by dividing the polygon
into triangles, and attending to the remark at the end of example 1.

~
I'rom any point, 0, inside (or outside) a triangle, ABC (Fig. in),

are let fall perpendiculars, Oa, 0/3, Oy, on the three sides. At tin-

points a, /3, y, an- applied forces P, Q, It, each of which is proportion*]
ami perpendicular to the side at which it acts. The forces are then

all turned round their points of application in the same sense, so

as to make equal angles with the perpendiculars Oa, Oft, and Oy.
Show that in thi.s latter ca-c tin- resultant of the system of forces is
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a couple whose moment is proportional to the square root of the area

of the triangle A'BC', enclosed by their lines of action.

(The forces act all outwards or all inwards.)

Let the sides of ABC be a, b, c, and let P = ka, Q = kb, R kc,

k being a constant coefficient.

Let Q be the angle, OaB',

between P and the perpen-
dicular Oa. Then

= 0{3C'=OyA'.

Replace P by two compo-
nents, one along EC and the

other perpendicular to it.

Similarly, replace Q and R.

Then the perpendicular com-

ponents are ka cos 6, kb cos 0,

and kc cos 6
;
and since they

/ -
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8. If the triangle be replaced by a polygon of any number of sides,

prove that the equivalent of the forces is a couple whose moment is

proportional to the square root of the area of the (similar) polygon
enclosed by their Hues of action.

9. A triangular plate, ABC (Fig. 1 1 2), is acted upon at each angle by
forces, along the two sides containing it,

-nited iii magnitudes and lines of

action by the distances between the angle
and the feet of the perpendiculars let fall

from the other two angles on these

side-. Find the line of action of the

resultant force.

Let the perpendiculars let fall on the

three sides, a, b, c, from any point, P,
the resultant be x, y, z, respectively,

Fig. Ha.

and let A', B', C' be the feet of the perpendiculars. Then the force

in AB in the sense AB is AC' BC\ or b cos A a cos B. Hence
the moment of this force about P is z (b cos A a cos B), and since

the MUM of the moments of all the forces (estimated in cyclical order)
round P is = (Art 81), we have

x(ccosBbcosC}-\-y(acosCccoBA) + z(bcosAacosB)=iO ..(1)

Now, one set of values of x, y, and z, which will satisfy this equa-
tiou, is, evidently, a, 6, c. Hence the resultant passes through the

point the perpendicular! from which on the sides are proportional to

e. Tin- point is thus found : Let G be the centre of gravity of

the triangle ;
from A draw a line, AG\ which makes LCAG' LBAG,

and from J'> draw a line, BG', which makes LGBG' LABG. These
lines intersect in &'', the required point.

Again, another set of values of x, y, c, which will satisfy (1), is

cos A, cos B, cos C; and the resultant passes through the point whose

perpendiculars on the sides are proportional to these quantities. This

point i.- the c< ntre of the circumscribed circle.

'< the line of action of the resultant is known.

10. Show that the resultant of the system of forces in the last

example is

4 A-
abc

-a'&'-ftV- cV,

where A. is the area of the triangle.

11.1
'

Q. It, net along the sides of a triangle, ABC, and
their icMiIUnit passes through the centres of the inscribed and circum-

scribed circles : prove that

P _ Q _ R
COBB COS C CO8 C COBA COB A COB B

(Wolstenholme's Book of Mathematical Problems).

12. A heavy beam, AB (Fig. 1 13), rest* against a smooth horitontal

plane, CA, and a smooth vertical wall, CB, the lower extremity, A,
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l>eing attached to a cord which passes over a smooth pulley at C,

and sustains a given weight, P.

Find the position of equilibrium,
and the pressures on the plane
and wall.

Let 6 be the inclination of the

beam to the horizon in the posi-

tion of equilibrium; let W=
weight of the beam : and let the

centre of gravity, G, divide the

beam into two portions, AG= a,

and BG = b.

Now, the reactions, R and S,

of the wall and plane are nor-

mal to these surfaces; and since

they are both unknown, we shall obtain an equation for 6 which will

contain neither of them, by taking moments about 0, their point of

intersection. Hence, since the force P acts on the beam along AC,
and tends to turn it in a sense opposite to that in which W tends

to turn it round 0, we have

P (a+ 6) sin 6 Wa cos = 0,

Fig, 1 1 3-

Again, resolving forces vertically, we have

R = W. (2)

And resolving horizontally, S = P, (3)
13. If the beam rest, as in the last example, against a smooth

vertical and a smooth horizontal plane, and a cord be attached

firmly to the point C, and to a point in the beam, find the limit to

the position of this latter point consistent with equilibrium.
Let Fig. 114 represent the beam in any position, and let m be the

middle point of the beam. Suppose the cord attached to (?, and to

a point, n, in the upper half of

the beam. Then the forces

acting on the beam are W, T
(the tension of the cord nC),

R, and S. Let p be the point
of intersection of W and T.

Now, the resultant of W and
T must, for equilibrium, be

equal and opposite to the re-

sultant of R and S ;
hence the

resultant ofR and /S'must act in

the line Op; but this line is not

between the lines of action of T
and W, that is, inside the angle WpC ; therefore the resultant ofR and
S cannot be equal and opposite to that of ITand T with such a position
of the cord, and, therefore, equilibrium is impossible, no matter
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wliat the inclination of the beam may be. Hence, in order that equi-
librium may be possible, the cord must be attached to some point,
such as P, between A. and m.

14. In the last example, given the point of attachment of the

cord, find the tension in it.

It is easy to see that if P, the point of attachment, be given, and
also I, the length of the cord, CP, the position of the beam, is given.

For, if e = LBAC, we have

an equation which determines 6,

The angle PCA is also known. Denote it by < To determine T,
the tension of the cord, without bringing R and S into our equation.
take moments round 0, their intersection. Hence, a and b being the

segments of the beam made by the centre of gravity, we have

Wa cos = T . 00 sin OOP = T.(a+ b) sin (0-</>),

'(a + b)sin(d-<t>)'
It will be a good exercise for the student to find R, S, and T by

graphic statics. [See example 4, p. 127.]

Note. If 6 = <, T= oo. In this case the cord is attached to

TO, the middle point of the beam, and therefore its direction always

passes through 0, the intersection of R and S. Now, it is easy to see

that in this case the conditions of equilibrium are theoretically satis-

fied, because the resultant of T and W acts along T, whose direction

passes through 0. But if
</ 0, no value of T can even theoretically

satisfy the conditions (see last example).
1 5. ABC is any triangle, of which G is the vertex. It is acted on

by the forces CA, CB, and AB. Prove that it will be kept in equi-
librium by a force equal to 2BC, acting parallel to BC, at the middle

jM.int of AB.
16. In example 12, it is clear that two positions of equilibrium of

tin- l)eam are a vertical and a horizontal position ; explain why these

positions are not given by the equation (1) which determines the

ion of equilibrium.
17. Kxplain why the proof in example 5 would not hold for a

polygon formed of bars freely jointed together and therefore capable
of turning about the joints.

103. Action of a Hinge or Joint.

Amon<r the- internal forces of a system,
the action of a joint is one of frequent
occurrence. If the joint be smooth, the re-

action between two bars or beams connected

by it consists of a single force. For, let PQS
(Ki\r . n.',) represent a section of the joint

connecting two beams: then, since their

surfaces are in contact, either throughout the whole of the cir-
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cumference or a part of it, there will be (since the joint is

smooth) normal reactions at the points of contact, P, Q,...

Now, since all these pass through the centre of the circle,

they have a single resultant. Consequently, the action in this

case consists of a single force through the centre of the joint.

But, if the joint be rough, the reactions at the points of con-

tact will not be normal, that is, their lines of action will not meet

in a point, and, therefore, they may reduce to a

couple, or to a single force. When slipping

is about to ensue at the joint, it is easy to see

that the total resistances at the points of

contact envelop a circle (or rather a cylinder).

For, at any point, P, of contact (Fig. 116),

draw PR, making the angle of friction, A,

with the normal, PC, to the surface of con-

tact. The perpendicular from C, the centre of the joint, is equal
to PC . sin A, and is, therefore, constant. Hence PR envelops a

circle whose radius = P".sin A.

If PC = a, and ds is the element of the surface of contact at

P) it is evident that the sum of the moments of the reactions

about C is (R being the reaction per unit of surface)

a sin \JRds.

As an example, let us consider the equilibrium of two equal
beams which are connected by a joint, (?, and rest on a perfectly
smooth cylinder in a vertical plane at right angles to the axis of

the cylinder.

Firstly, let the joint be rough, and suppose the contact to be

complete ail over its surface :

then it is clear that such a

position as that represented in

Fig. 1 1 7 is a possible position of

equilibrium if the joint is suf-

ficiently rough. Let Fig. 1 1 8

represent an enlarged view of

the circle which is enveloped

by the total resistances at the

various points of the surface of

contact at the hinge, C. Then,
if the total resistances at the

Fig. 117.

lower portion of the joint be considerably greater than those at
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the upper portion, it is possible that the resultant of the whole

set may be a horizontal force, J?, acting through a point, Pt

below the joint.

In the position of equilibrium of the

beams represented in Fig. 117 the

_rht, W, of the beam CDlt and the

normal reaction, S, of the smooth cy-

linder, meet in a point Alt through
which point the force produced by the

action of the other beam must pass. In

the same way the action of the beam p J*

CZ)j on CD2 must pass through the

point AY Hence the resultant action

of each beam on the other must be directed in the line A* A., :
1 -i

and we have seen that if the contact along the joint extend

over its surface, this is a possible line of action, though it does

not intersect the joint.

Secondly, let the joint be rough, and let the contact take place

at only one point, JV(Fig. 119). Suppose the joint to consist of

a pin, BN, which forms part of

the beam CDZ (Fig. 117), and let

this fit loosely into the beam CDr
It is clear, then, that the action

n the beams consists of a

single force, R, acting at N, and

making the angle of friction, A, .

with tin- radius ('X, if slipping is

about to take place. As before, this force must pass through the

points A\ .

In this case, then, the point of contact of the beams is con-

structed by drawing a radius, CNt
of the cylindrical axis consti-

tuting the joint, inclined to the horizon (since Al A.2 is horizontal)
at the angle of friction.

Thirdly, let the joint be smooth. In this case the beams must

assume such a position that the line A
l
A

2 passes through the

centre of the joint ; and this position is practically the same as

that in tin- hist case, because since the dimensions of the joint are

ineligible compared with those of the beams, the line of resist-

ance 7^V (Fig. 119) may be supposed to pass through the cent if,

C, of the joint.



142 APPLICATION OP THE CONDITIONS OF EQUILIBRIUM. [104.

A similar explanation is to be given in the case of two equal

beams rigidly connected, and forming one piece, the system rest-

ing, as in the previous example, on a

smooth cylinder. In this case the

beams can take only one position,

which must be a position of equili-

brium, and the action between them

must accommodate itself to the

geometrical necessity of the figure.

(In the following figure the cylinder
is not drawn.) If we consider the

equilibrium of one of the beams,
CD (Fig. 120), by itself, we shall

have to supply to it whatever force is actually produced upon it

by the other beam. Now, if BC is the section along which the

system is considered as divided by the removal of the second

beam, it is clear that the internal forces in the neighbourhood of

tend to tear the beams apart, if A is below the section BC,
while those about C tend to press the beams more closely

together. Hence the action of the second beam on CD consists

of a number of forces whose horizontal components near B act

from left to right, as the force BF, and whose horizontal com-

ponents near C act from right to left, as the force CFf
. If,

therefore, the forces near B are greater than those near C, the

resultant of the whole system will consist of a horizontal force,

AR, acting outside the section CB, so as to pass through the

point, A, of intersection of the weight and the normal reaction

of the cylinder. In this case, then, the action, over a section BC,
between two rigidly connected pieces consists of a force outside

the section ; which force may, of course, be replaced by one at

any point in the section, together with an accompanying couple

(see Art. 79).

In all cases in which contact over a finite surface takes place

between two bodies, the student must be careful to examine the

nature of the forces exerted between them at the individual points

ofcontact with a view to ascertaining whether the resultant action of
one on the other consists of a singleforce at all ; or, if so, whether

it can be assumed to act at any point in the surface of contact or

must be assumed to act wholly outside it.

104.] Geometrico - statical Problems. In many statical
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problems which relate to the positions of equilibrium of bod it >

the result is independent of the magnitude of some given force,

and such independence can be perceived a priori. Thus, suppose
the question to be What is the limiting inclination to the

horizon of a heavy uniform beam which rests against a rough
vertical and a rough horizontal plane ? In this problem we may,
if we please, assume W> the weight of the beam, and 2a, its

length ;
but it is evident a priori that the result cannot involve

either of these quantities. For, if the angle which the beam

makes with the ground be 0, the position of equilibrium will be

defined by some of the trigonometrical functions of 6, such as

sin 6 or tan Q. Now, the trigonometrical functions of an angle are

mere numbers, or ratios of quantities of the same kind. Hence,

if the expression for tan (suppose) involve/orc^, it must involve

the ratio of one force to another force, and if there is only one

force given in the problem, we have no other force to combine

with it in the form of a ratio or a mere number. Consequently,
the weight of the beam can in no way influence its limiting in-

clination. Precisely similar remarks hold with regard to the only
ir magnitude in the question, viz., the length of the beam.

There is no other quantity of the same kind with which to

compare it. Therefore, we are enabled to state a priori that the

inclination of the beam to the horizon in its limiting position of

equilibrium depends simply on the coefficients of friction for the

beam and the two rough planes, or that

n and // being these coefficients, and f denoting some (as yet)
unknown function.

n, suppose the question to be What force applied to one

of the handles of a table drawer will pull the drawer out ?
* It

is evident that the answer must be either no force, however

a, will pull it out, or any force, however small, will pull it

out. And the result will depend simply upon the relation

In -tween the coefficient of friction for the drawer and the table,

and the ratio of the side of the drawer to the distance between

the handles. This is evident, because there is no given force in

terms of which the required force could be expressed.

Numerous examples of this class of questions will be given in

* The friction of the bottom ia neglected.
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the sequel. Such problems, then, in which the result is in-

dependent of a force magnitude, we shall classify as Geometrico-

statical Problems, because, though they involve conceptions

concerning the direction* of forces, they do not involve their

magnitudes. In all such problems, once the requisite theorems

concerning the directions of forces are made use of, the result

follows at once from the geometry of the figure ; and a solution

by the method of resolving forces and taking moments is, in

reality, an illogical process.

In connexion with the class of geometrico-statical problems,

the theorem of Art. 35 will be found extremely useful.

EXAMPLES.

1. A heavy beam rests on two smooth inclined planes whose inter-

section is a horizontal line, the beam

lying in a vertical plane perpendicular
to this line of intersection

;
find the

position of equilibrium and the pres-
sures on the planes.

Let a and b be the segments, AG
and BG, of the beam, made by its

centre of gravity, G ;
6 the inclination

of the beam to the horizon, a and ft

the inclinations of the planes, JK and
Rf

the pressures on these planes, re-

spectively, and W the weight of the

Fig- J2i. beam.

Then, since the beam is in equili-
brium under the action of only three forces, they must meet in a point,
0. Now the angles GOA and GOB are equal to a and ft, respectively,

and BGO = ? 0. Hence

(a + b) cot BGO = a cot GOA- b cot GOB,

or (a+ 6)tan0 = a cot a b cot ft,

which determines the position of equilibrium.

Again, by the relations between three forces in equilibrium,

s*w *fi

R'=W
sin(a

(1)

(2)

(3)

Hence, if = = > the beam will rest in a horizontal position.
b tan/3
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Suppose that a cot a b cot ft is positive, and that (a -I- 6) tan/3<
a cot a 6 cot ft. Then, d,fortiori (a + b) tan < o cot a 6 cot ft, since 6,

the angle made with the horizon by the beam in any such position as

AB, is necessarily <ft.

Hence, the only position of equilibrium possible is either one of

continuous contact with the plane (/3),
or one of continuous contact with

the plane (a). Suppose the first, as in Fig. 122. To find in this case

the point through which the resultant pressure of the plane (ft)
on the

beam acts, draw AO perpendicular to the

plane (a) ;
then AO is the line of action

of the pressure on this plane.
Let AO meet the vertical through G

in 0, and from draw OP perpendicular
to the plane (ft). Evidently, P is the

point at which the resultant pressure of

the plane (ft) acts.

But it may now be shown that, with

the two inequalities supposed, this position
is impossible. For if AP > a + b, it will

Fig. 122.

cos ft sin (a + ft)

sin a
> a + b

;
or

or

be impossible ;
that is, if a

a sin /3 cos /3 (cota tanft)>b; or atan/3(cota

a(cota tan/3)>6cot/3 + 6tan/3; or ocota 6 cot /3> (a+ 6) tan /3.

But, by supposition ocota 6 cot ft is positive and >(a + 6)tan/3,
therefore AP>AB, which is manifestly impossible. Hence the only

position of equilibrium in this case is one of continuous contact with

the plane (a). [We have supposed all through that the end A of

the beam is to rest on the plane (a)].
The least inclination- of the

plane (a) which will allow of a position of continuous contact with

(ft) is found by drawing at B a perpendicular to the plane (ft) and

joining its point of intersection with the vertical through G with A.

The joining line is the normal to the plane of least inclination (a).

2. A uniform heavy beam, AB (Fig. 123), rests with one extremity,

A, against the internal surface of a

smooth fixed hemisphere while it is

supported at some point in its length

by the rim of the hemisphere ;
find

the pn-itioii of equilibrium.
It is tl jrriori evident that the result

must be independent of force, since

the weight of the beam is the only
force that may be supposed to be

given ;
and it is also evident that the

result d'-p'-iids on the only two linear

magnitudes which may be supposed to be given viz. the length of

the beam, 2a, and the radiun, r, of the sphere.
Draw the three forces which keep the beam in equilibrium. They

are the weight, a reaction at A perpendicular to the surface of contact,

VOL. I. L

Fig.
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and therefore perpendicular to the sphere, and a reaction at C which for

the same reason is perpendicular to the beam. These must meet in

a point, 0. Let 6 = the inclination of the beam to the horizon =
LAGD. Let the line 00 meet the semicircle DAC in the point Q.

Then AQ is a horizontal line. Also /.QAG = Z.DCA = 6, therefore

IOAQ = 20. Hence AQ AO cos 2 0, and also AQ = AG cos
;

therefore 2r cos 2 = a cos 0,

or 4rcos2 acosfl 2r = 0.

This equation gives two values of cos 0, one of which supposes the

hemisphere to be completed into a sphere, the end A of the beam to

rest against the upper portion of the sphere, and the action of the

sphere on A to consist of a pull. The student will have no difficulty

in representing this position, or in proving that the reaction at

3. Find the position of equilibrium of a uniform heavy beam, one

end of which rests against a smooth
vertical plane, and the other against the

internal surface of a given fixed smooth

sphere.
Let the length of the beam, AB, 2 a,

r = the radius of the sphere, c = the

distance of the centre, C, of the sphere
from the vertical wall, DB ;

also let =
the required inclination of the beam to

124. the horizon, and
</>
= the inclination of

the radius CA to the horizon.

The statics of the problem is exhausted in drawing the figure so
that the weight of the beam and the two reactions at A and B shall
meet in a point, 0. Geometry then gives

2 cot 0GB = cot AOG- cot GOB = cotAOG,
or 2 tan 6 tan <. (1)

Again, the perpendicular distance between A and DB is 2 a cos
;

but it is also evidently equal to the horizontal projection of CA + the
distance of C from BD

; that is,

2acos0 = rcos<|> + c. (2)

From (1) and (2) a value of can be obtained, and hence the

position of equilibrium. [See Example 43, p. 159.]
If the beam rest on the convex surface, the only change in the

equations will be a change of the sign of c in (2).

^

4. The extremities of a beam rest at two given points against two
given smooth curves in the same vertical plane ;

the beam is to be
sustained by a rope attached to its centre of gravity and to a fixed

point. Determine the position of this point so that the rope may be
the weakest possible.



EXAMPLES. 147

Fig. 125.

I.-t AB (Fig 125) be the beam, G its centre of gravity, the point
of intersection of the normal reactions of the curves A and B; k the

length of the perpendicular from on the line of action of the weight,

W, of the beam
; p the perpendicular from on the direction, GP,

of the rope, and T the tension of the

rope.

Then, taking moments about 0,

T.p= W.k,

or T=W-.
P

Hence, since W and k are given, T
will be a minimum when p is a

maximum. But the maximum value

>f the perpendicular from on a right
line through G is OG\ hence the rope
must assume a direction perpendicular to OG.

5. A heavy uniform trap-door, AB (Fig. 126), is moveable about a

hinge-line represented by A
;
and to the

middle point, B, of the opposite edge is

attached a string, BC, the extremity C of the

string being fastened to the point occupied by
B when the door is horizontal. Given the

length of the string, find the magnitude and
ion of the pressure on the hinge-line,

and the tension of the string.
Produce the direction of the string to meet

the direction of the weight in a point, 0.

Then, since the door is in equilibrium under
the influence of only three forces, they must
meet in a point. Hence the pressure on the

line must pass through 0, and since the

plan, nt the tension, T, and the weight, IF,

intersects the hinge-line at A, the pressure, /?,

in n -t act through A (the hinge being smooth).
I determine T take moments about A.

pendicular from A on BC, T.p W . AD.
Let the angle BAC=2a, and let AB = 2 a.

AD a cos 2 a, therefore

r=i jr
a

.

cos a

Again, by the triangle of forces we have

R*= W*+T- 2 TWcoB a
;

and substituting the above value of T, this gives

Fig. 126.

Then. if p = the per-

il)

Then p = 2 a cos a,

R=\ JFv^sin'a + Bec'a.

L 2
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The values of T and R can be at once found in terms of the lengths

A B and EC. Denoting the latter by 2 /, we have sin a =
^

there-

fore, &c.

6. If in the last example the string, instead of being attached to G,

pass over a smooth pulley at that point, and sustain a given weight,

find the position of equilibrium, and the pressure on the hinge-line.

Let P be the suspended weight, and 6 = LGAE ; then the position
of equilibrium is defined by the equation

2 ~ n /i\
COS -~COS ^ 0,

and JR
Z = P*2PWcoa-+ Wz

. (2)O *
'

Equation (1) gives two positions of equilibrium, and since it shows
A

that one of the values of cos is negative, one position corresponds to
a

a value of Q greater than 180. Such a position, of course, supposes
the door capable of revolving freely about its hinge-line through four

right angles.
The student will have no difficulty in representing the position of

the door in this case, or in explaining why no linear magnitude enters

into the equations.
7. A uniform heavy beam, AS, rests

against a smooth peg, P, and against
a smooth vertical wall, AD

;
find the

position of equilibrium and the pressures
on the wall and peg.

This, so far as it relates simply to the

position of equilibrium, is another geo-
metrico-statical problem. Wehave merely
to draw AB in such a manner that the

vertical through 6?and the perpendiculars
Fig. 127. at A and P to the wall and beam shall

intersect in a common point, 0.

Let 2 a the length of the beam, and c= the perpendicular distance
of the peg from the wall. Then the position must evidently be expressedM

as a function of - . Let 6 = the inclination of the beam to the vertical.
Cv

Then AP = , and AO = -^-a EutAO = AG, sin
;
therefore

** =
(::)* 0)

Resolving vertically, S. sin = JF,

*=)* ()
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Resolving horizontally, ScosO = R,

149

(3)

8. A triangular board, ECA (Fig. 128), of uniform thickness, rests

on two smooth pegs, P and Q, at a given distance from each other, in

the same horizontal line. Find

its position of equilibrium.
The position of equilibrium

will evidently be known if

the inclination of AB to the

horizon is known.
Let this inclination be 0;

let the angles of the triangle
!* denoted by A , B, C ;

let a
= LAMC. which the bisector,

CM, of the ba.^e makes with

tin- lw; let CM I, and

let PQ = k.

Then, since no force is given except the weight of the board, 6 will

depend simply on A, B, C, I, and k, and the problem is geometrical.
The reactions of the pegs P and Q are perpendicular to AC and BC,

respectively, and they must meet the weight of the board acting

through its centre of gravity, G, in a point 0. The geometry which

gives the solution will express that

Fig. 1 18.

CO. sin COV-CG. sin CGO. (1)

Now,

LCGO -
|
+ 6 - a, and COV- COQ - VOQ ;

but COQ = QPC

(since the quadrilateral QOPC is inscribable in a circle) = A + 6;

:m<l \'(HJ evi<lmtly= B-0-. therefore COV=A-B + 28. Also

CO is the diameter of the circle round QOPC, a circle in which the

h'-rd PQ subtends at the circumference an angle = C;

co = PQ _ k

sin C

Then, since CG = -
1, (1) becomes

3

k&in(A B+20)= -ZsinC.cos (a-6),
B

(2)

.in equation which determines 0.

9. Two heavy uniform rods, AB and BC (Fig. 129), are connected

by a smooth joint at /?, and, by means of rings at A and C, are also

uected with two smooth rods, AD and CD, fixed in a vertical
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plane. Find the reaction at the joint, the pressures at the rings, and

the inclinations of the rods to the vertical in the position of equi-

librium.

Fig. 129. Fig. 130.

Starting from any point, (Fig. 1 30), draw a force diagram of the

system. Let Oa be parallel and proportional to the reaction, R, at

A ; let ab represent P, the weight of AB : then 10 represents T, the

reaction at B. In the same way let be and cO represent Q, the

weight of BC, and S the reaction at C. Let a and /3 be the in-

clinations of AD and DC to the horizon, 6 and
<f>

the inclinations of

AB and EC to the vertical.

Then we have (from Fig. 130)

sin (a

sin a
r

sin(a + /3)"

Also Tz =P*-2PRcosa + R*, which, by the substitution of the

value of R from (1), becomes

T'sin2
(a + 0) = P2

sin
2a- 2PQ sin a sin /3 cos (a+ /3) + #2

sin2/3. (3)

Again, 6 = HGB, and evidently (Art, 35),

2 cot d = cot AHG cot 67/75

= cot a cotabO (Fig. 130).

XT ,,.P R cos a P cot /3 Q cot a .

Now, cot60 = ^ = g_^_ _, by equation (1).

Hence cot 6 =
(4)

-*rt fl + 2 <? cot a

and we find a similar expression for cot
<f>.

10. A board, ABC,... (Fig. 131), in the shape of a regular polygon
of n sides, rests at one corner, A, against a smooth vertical wall,
AP, the adjacent corner, B, being attached to the wall by a string
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whose length is equal to the side of the polygon. Find the position
of equilibrium.

Let Q be the inclination, BAP, of the side

AB to the vertical
;
and let be the point

in which the lines of action of the normal

pressure at A, the weight of the board, and
tin- tension of the string meet. Then, to

determine 0, we have

OA = AP tan 6,

and OA = AGcoaOAG = AG sin GAP,

and
2 n

if a = the side AB, AP = 2a cos

a
AG = therefore

2 cos GAB'

4 sin sin - = cos(n vn

or
tan 6 = - cot -

3 n

Fig. 131.

Thi> equation determines the position of equilibrium.

W it

The pressure at A is evidently equal to cot - > W being the

weight of the board.

2_.
The external angle of the polygon being equal to t the incli-

71

nations of the successive sides to the vertical are

n n n

and if
;>,

be the perpendicular distance of the mth vertex from the

wall, counting B as the first, we have

27T. 2(m>+)+ + sin (0 + -
it n

or
sin m 2n / m= A

2
-
(2

cos - -- IT-
mu\

COS
)

1 1. A heavy plane body. M>< ( Fig. 132), of any shape, is suspended
from a smooth peg, fixed in a vertical wall, by means of a string of

given length, the extremities of which are attached to two fixed
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points, F and F, in the body. Determine the positions of equi-

librium.

Let the ellipse Pt
P

2
P

3
be described with foci F and F', and axis

major equal to the length of the string. The peg will then be some-

where on this ellipse, suppose at Pa
. Now, when the body is sus-

pended from the peg, it is kept in

equilibrium by its own weight

acting verticallythrough the centre

of gravity, and the two tensions in

PaF and P2
F'. But since the peg

is smooth, these tensions are equal,

and their resultant must bisect the

angle FPZ F'; its line of action is,

therefore, normal to the ellipse.

And if G is the centre of gravity
of the body, the resultant tension

must pass through G, and be equal and opposite to the weight of the

body. Hence the problem is solved by drawing normals from G to

the ellipse, and then hanging the figure from the peg in such a

manner that any one of these normals is vertical. Now, if G is inside

the evolute, four normals can be drawn to the ellipse ;
but it is easy

to see that only three are relevant to the solution if G is inside the

lower half of the evolute (as in Fig 129), or only one if G is inside the

upper half. For the tangents drawn to the lower half of the evolute

belong to the upper half of the ellipse ;
and in order that the strings

should be stretched, it is necessary that the peg should lie somewhere

in the upper half of the ellipse. If GP
1 , GPV and GP3 ,

are the

normals drawn from G, the figure must be placed in a position in

which any one of these lines is vertical.

12. A rod, whose centre of gravity divides it into two segments
a and b, is placed inside a smooth sphere ;

find the position of equi-
librium.

Ans. Let be the inclination of the rod to the horizon, and 2a
the angle subtended by the rod at the centre of the sphere ;

then

n
tan 6 = a b--

a + 6
tan a.

1 3. A heavy carriage wheel is to be dragged over an obstacle on a

horizontal plane by a horizontal force applied to the centre of the

wheel
;
find the magnitude of the required force.

Ans. Let W be the weight and r the radius of the wheel, h the

height of the obstacle, and F the requisite force : then

rh
14. If it be attempted to drag the wheel over a smooth obstacle by

means of a force whose line of action does not pass through the centre,
what happens? Is the result in last example modified if there is

friction between the wheel and the obstacle ?
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15. A heavy uniform beam, moveable in a vertical plane about a
smooth hinge fixed at one extremity, is to be sustained in a given
position by means of a rope attached to the other extremity ; find,

geometrically, the least value of the pressure on the hinge, and the

corresponding direction of the rope.

Ans. The least pressure on the hinge = \ JFsin a, W being the

weight of the beam and a its inclination to the vertical. Also if 6 is

the angle made by the rope with the vertical when the pressure is

least,
cot 6 = 2 cot a + tan a.

16. A vertical post, loosely fitted into the ground, is exposed to a

uniform gale of wind
;
a rope of given length is to be attached to the

post and to the ground ;
find how the attachment is to be made, in

order that the rope may be least likely to break.

Ans. If h is the height of the post and if the length of the rope
is < A\/2, the rope must make an angle of 45 with the horizon

; but

if the length is >/t\/2, the rope must be attached to the top of the

post. (See example 4.)

1 7. A heavy uniform bar, AB, is moveable in a vertical plane round
.1 smooth horizontal axis fixed at A ; to the end B is attached a cord

which, passing over a pulley fixed at C vertically over A sustains a

given weight, P ;
find the position of equilibrium.

Ans. If AS = 2 a, AC = b, weight of bar = W, 6 = inclination

to the vertical,

cos =

18. A heavy beam rests with one extremity placed at the line of

intersection of a smooth horizontal and a smooth inclined plane, the

other extremity being attached to a rope which, passing over a

smooth pulley at a given point in the inclined plane, sustains a given

weight ;
find the position of equilibrium.

Ans. Let be the inclination of the beam, a the inclination of

the plane. ;ui<l
<f)

the inclination of the rope, to the horizon; a the

<1 Malice of the centre of gravity of beam, 6 the distance of the pulley,
from the Hue of intersection of the planes ;

and / the length of the

beam. Then the position of equilibrium is defined by the equations

Wa cos 6 = Pb sin (a <J>),

b sin (a <) = / sin (6 + <f>).

19. A heavy uniform In-am, AB, rests with one end, B, against a

smooth inclined plane, while the other end, A, is connected with a

rope which passes over a pulley and supports a given weight ;
find

the position of equilibrium.

Ans. If a, 0, and
</>,

are the inclinations of the plane, beam, and

rope to the horizon, W and P the weight of the beam and tlie
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suspended weight, respectively, the position of equilibrium is defined

by the equations

Pcos(<t> a) = TPsina,

2tan0 = tan< cot a.

The student will easily explain why no linear magnitude enters into

the result.

20. A heavy uniform circular board is freely moveable in a

vertical plane round a horizontal axis fixed at a point on its cir-

cumference; from two given points A and B on its circumference

two weights, P and Q, respectively, are suspended ;
find the position

of equilibrium.

Ana. If C is the centre, OCO' the diameter through 0, and if

LACO''=a, ^BCO'jB, the required inclination of OC to the

vertical, and W= weight of board,

P sin a Q sin /3
tan0 =

+ JT

21. A rectangular board, ABCD, of uniform thickness, is moveable
in a vertical plane about a smooth hinge, P, in the side AD

;
the side

AB is to rest, at a given inclination to the horizon, against a smooth

peg, Q : find the position of this peg when the pressure on the hinge
is equal to the weight of the board.

Ana. Let be the point of meeting of the forces which keep
the board in equilibrium, and G the centre of gravity of the board.

Then QO must bisect the angle POCf. Hence from P draw a line,

PO, making the same angle with the side AB as AB makes with the

vertical
;
and from the point, 0, of intersection of this line with the

vertical through G draw a perpendicular, OQ, on AB. This deter-

mines Q.

22. Find the position of the peg when the pressure on it is equal
to the weight of the board, the inclination being fixed.

Ans. Let PH be the horizontal line through P meeting AB
in H; produce AH to K so that HK = HP

;
then KP is the direc-

tion of pressure on hinge ; therefore, &c.

23. A heavy body of any form is moveable round a smooth axis

perpendicular to the vertical plane passing through the centre of

gravity, and is sustained in a given position by a rope whose weight
may be neglected. If the pressure on the axis bears a constant ratio
to the weight of the body, prove that the direction of the rope must
be a tangent to a conic whose directrix is the vertical line through the
centre of gravity, and focus the point in which the axis of suspension
cuts the above-mentioned vertical plane.

If, in the last example, QO be the direction of the rope, the ratio
sin POQ .

sin OOG
** ^lven' a envelope of QO, as the direction PO varies,
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is a conic whose focus is P, directrix GO, and eccentricity the given
ratio.

24. In example 21, if the hinge is at the corner A, and the position
of the peg is given, find the magnitude of the pressure on the hinge.

Ans. Let c = half the length of the diagonal, a = angle between
the diagonal and the side AB,x-=- the distance of peg from A, /3 =
inclination of AB to the vertical

;
then the pressure on the hinge is

2 ex sin sin (a + ft) + c*sin 2

(a
If - ........... w

X

25. In the last example, find the position of the peg when the

pressure on the hinge is a minimum, and the minimum value.

Ans. At the point in AB vertically under the centre of gravity
on the board. The minimum pressure = W cos /3.

It is easily seen that if the hinge is anywhere along the side AD,
the pressure on it will be least when the direction of this pressure is

parallel to AB. [By triangle of forces.] Hence the position of the

peg-

26. A rectangular board of uniform

thickness rests in a vertical plane, with

two of its adjacent sides in contact with

two smooth pegs in the same hori-

zontal line
;
find the position of equili-

brium.

Ans. If P and Q (see Fig. 128)
be the two pegs, CA and CB the

sides in contact with P and Q, re-

spectively, a the angle made by the

diagonal CD with CB, the inclination ^ r

of this diagonal to the horizon, c half

the length of the diagonal, and / the distance PQ, the position of

equilibrium is given by the equation

ccos0 = Zcos2(0 a).

27. A triangular board, ABC (Fig. 133), of uniform thickness, is

placed with it- l.ase on a smooth inclined plane, its vertex being con-

nected with a string which passes over a smooth pulley and sustains

a weight. Find the conditions of equilibrium.

Ans. Assuming the inclination of the plane to be fixed, the

string must take such a direction that the perpendicular let fall on

the plane from the point of intersection of the string with the vertical

line, d'm. through the centre of gravity of the board, falls inside the

lia.-e. Hence, if
Jij>

be the perpendicular at the extreme point of the

base, and if the -tiin^ cannot cross the surface of the board, all

possible directions of tlie string are included between Cm and <
'/>.

Again, supposing the string to have a direction. Cn, consistent with

the possibility of equilibrium, the weight P and the reaction of the
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plane are thus found : From n let fall a perpendicular on AS, meeting
it in a point, q, suppose. Then qn is the line of action of the reaction

on the plane : and, resolving along the plane, we have JFsin i = P cos 6,

i being the inclination of the plane, and Q the angle which the string

Cn makes with the plane. This equation determines the magnitude
of P corresponding to the direction, Cn, of the string. If Pis a little

greater than the value thus found, the board will begin to slip up,
and if P is less than this value, the board will begin to slip down the

plane.

28. If in the last example the string is parallel to the plane, find

the greatest inclination of the plane consistent with equilibrium.

Ans. Tan-1

(\ cot A + cot S).

29. If in the same example the string, instead of passing over a

pulley and sustaining a weight, is knotted to a fixed peg. how are the

previous conditions of equilibrium modified?

Ans. The only condition to be satisfied is that which has

reference to the direction of the string. This direction must be

somewhere between Cm and Cp.

30. A rectangular board is sustained on a smooth inclined plane by
a string attached to its upper corner

;
the string passes over a smooth

pulley and sustains a weight. Find the magnitude of this weight

corresponding to a given direction of the string, and find also the

pressure on the plane.

Ans, Let i be the inclination of the plane, 6 the angle made by
the string with the plane, W the weight of the board, P the suspended
weight, and R the pressure ;

then

_ cos(0+ t)

COS0

31. Show that a rectangular board cannot be sustained on a smooth
inclined plane by a string attached to its upper corner, if the in-

clination of the plane is greater than the angle made by the diagonal
of the board with one of the sides perpendicular to the plane.

32. If a rectangular picture be hung from a smooth peg by means
of a string, of length 2a, attached to two points symmetrically placed
at a distance 2c from each other on the upper side of the frame, show
that the only position of equilibrium is one in which this side is

horizontal if the adjacent side of the frame is greater than

2c

</a?^<?'

33. A rod whose centre of gravity is not its middle point is hung
from a smooth peg by means of a string attached to its extremities ;

find the positions of equilibrium.
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Ana. There are two positions in which the rod hangs vertically,
and there is a third thus defined : let F be the extremity of the rod

remote from the centre of gravity, k the distance of the centre of

gravity from the middle point of the rod, 2 a the length of the string,
and 2c the length of the rod

;
then measure on the string a length FP

from F equal to afl + -) and place the point P over the peg. This

will define a third position of equilibrium.

34. A smooth hemisphere is fixed on a horizontal plane, with its

convex side turned upwards and its base lying in the plane. A heavy
uniform beam, AB, rests against the hemisphere, its extremity A.

l>-ing just out of contact with the horizontal plane. Supposing that

A is attached to a rope which, passing over a smooth pulley placed

vertically over the centre of the hemisphere, sustains a weight, find

the position of equilibrium of the beam, and the requisite magnitude
of the suspended weight.

Ana. Let W be the weight of the beam, 2 a its length, P the

suspended weight, r the radius of the hemisphere, h the height of the

pulley above the plane, and
</>

the inclinations of the beam and

rope to the horizon
;
then the position of equilibrium is defined by

the equations a .

r cosec 6 = h cot
</>, (1)

n</> + cot0), (2)

which give the single equation for 0,

. (3)

A|80 P = r_ = w
cos

((ft
-

0) r

35. If, in the last example, the position and magnitude of the

beam be given, find the locus of the pulley.

Ana. A right line joining A to the point of intersection of the

ii of the hfini~j)lirre and W.

36. If, in the same example, the extremity, A, of the beam rest

against the plane, state how the nature of the problem is modified,

ami find tin- portion of equilibrium.

Ana. The suspended weight must be given, instead of being a

;lt of calculation. K<|ii;ition (1) *till holds, but not (2); and the

position of equilibrium is defined by the equation

PA7 cos
8
4>= JFarsm</>.

37. If the fixed hemisphere be replaced by a fixed sphere or

i ylinder resting on the plane, and the extremity of the beam rent on

the ground, find the position of equilibrium.
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Ans. If h denote the vertical height of the pulley above the

point of contact of the sphere or cylinder with the plane, we have
a

r cot - = h cot <,
2

n

Pr (l + cot - cot Q\ cos
</>
= Wa cos 6.

\ & *

38. A heavy regular polygon of any number of sides is attached

to a smooth vertical wall by a string which is fastened to the middle

point of one of its sides; the plane of the polygon is vertical and

perpendicular to the wall, and one end of the side to which the string

is attached rests against the wall. For a given position of the poly-

gon, find the requisite direction of the string, and show that in all

positions of equilibrium the tension of the string and the pressure on

the wall are constant.

Ans. Let A be the vertex of the polygon in contact with the

wall, G the centre of gravity, the point in which the weight and

the reaction of the wall meet, and M the middle point of the side to

which the string is attached. Then the direction of the string is OM,
and, the quadrilateral GOMA being inscribable in a circle, the angle
between the string and the vertical is constant and equal to half the

angle of the polygon.

39. A square board rests with one corner against a smooth vertical

wall, the adjacent corner being attached to the wall by a string whose

length is equal to the side of the board
; prove geometrically that

the distances of the corners from the wall are proportional to 1, 3,

and 4.

40. One end, A, of a heavy uniform beam rests against a smooth

horizontal plane, and the other end, B, rests against a smooth inclined

plane ;
a rope attached to B passes over a smooth pulley situated

in the inclined plane, and sustains a given weight ;
find the position

of equilibrium.
Let 9 be the inclination of the beam to the horizon, a the in-

clination of the inclined plane, W the weight of the beam, and P the

suspended weight ;
then the position of equilibrium is defined by the

equation cos0 (JFsina-2P) = 0. (1)

Hence we draw two conclusions :

(a) If the given quantities satisfy the equation JFsina 2P 0,

the beam will rest in all positions.

(6) There is one position of equilibrium, namely, that in which
the beam is vertical.

This position requires that both planes be conceived as prolonged

through their line of intersection.

41. Discuss the second position of equilibrium in the last example,
and show that its possibility will depend on the length of the beam,
and also on the inequality W> or < P cosec a.
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(N.B. In accounting for this position, the impossible supposition
that the reaction of the plane can consist of a pvJl must be rejected.)

42. A uniform beam, AS, moveable in a vertical plane about a

smooth horizontal axis fixed at one extremity, A, is attached by
means of a rope JBC, whose weight is negligible, to a fixed point, C,
in the horizontal line through A ;

show that as the point C varies,

the position of the beam being always the same, the magnitudes and
liiifs of action of the pressure on the axis will be represented by lines

drawn from A to a certain right line parallel to AS
;
and if the

position of the beam varies, while AC is always equal to AS, find the

curve whose radii vectores will represent the pressure on the axis.

43. Show how to obtain by graphic solution the values of and
from the equations

tan
(/>
= n tan d,

2a cos = r cos $ + c,

of which the equations in Ex. 3, p. 146, are a particular case.

[Draw a right line AS = c
; produce AS to C so that EC =

;n i

round A as centre describe a circle of radius 2 a
;
round S describe

one of radius r; draw any line perpendicular to AC cutting the first

circle in P and the second in Q ; as this line varies trace the locus

of the point of intersection of AP and BQ (a small portion of it will

f-ullice) ;
if this locus cuts the perpendicular to AC drawn at C in the

point M, the angles 6 and
<j>

are MAC and MBC.]



CHAPTER VII.

THE EQUILIBRIUM OF SYSTEMS DEDUCED FROM THE PRINCIPLE O*

VIRTUAL WORK. [COPLANAR FORCES.]

105.] Theorem. If a particle in equilibrium under the action

of any force be constrained to maintain a fixed distance from a

given fixed point, the force due to the constraint (if any) is

directed towards the fixed point.

Let B be the particle, and A the fixed point. Then the

string or rigid rod which connects B with A may be removed if

we enclose the particle in a smooth circular tube whose centre

is A
;

for evidently the preservation of the constancy of the

distance AB receives sufficient expression in this matter. Now,
in order that B may be in equilibrium inside the tube, it is

necessary that the resultant of the forces acting upon it should

be normal to the tube, i. e., directed towards A.

COR. 1. If A and B be two particles in equilibrium, con-

nected by a rigid rod whose weight is neglected, the reactions of

A and B on the rod are two forces equal in magnitude and

opposite in direction.

COR. 2. If any body be in equilibrium under the action of two

forces only, these forces must be equal and opposite in the same

right line.

COR. 3. If a particle in equilibrium under the action of any
forces is constrained to maintain a fixed distance from each of

a number of other particles or points, the forces corresponding to

these constraints are directed in the right lines joining the

particle to each of the other particles or points.

This is evidently true whether the invariable distances are

maintained by straight rigid bars or by crooked bars.

106.] System of Particles rigidly connected. Let there be

any number of particles, ml}
m

2 ,
mz,

. . . (Fig. 1 34), each acted on

by any forces, and connected with the others in such a way that

the figure of the system is invariable.
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Then, by the last Article, the force proceeding from the

connection of m^ and m., is in the line m
l
m

2 ,
which we may

imagine to be a rigid bar. Let this force be denoted by Tn .

Similarly, let the forces in the bars m.2m 3 and m.^m l
be denoted

by T.a and T
sl respectively. These internal forces may tend

either to increase the distances between the particles or to

Fig. 134-

diminish them. In the figure we have supposed the latter to

be the case, but the result will be the same if the former sup-

position is made.

Imagine that the system is slightly displaced so as to

occupy the position abc. Now, it has been already proved

(Art. 70, p. 90) that the equation of virtual work for two

particles rigidly connected will not involve the force due to the

connection ; but, for clearness, we reproduce the proof here.

Let fall the perpendiculars aa.t and aa
3 on the lines m

l
m3

and M
l
m.2 ; bb^ and W3 ,

on m
2
m

3 and m^n.^ cc^ and cc2 on in.,m^

and jn
l
m3 . Let the sum of the virtual works of the external

forces (not including T
l>2

and 7'
13) acting on m

l
be denoted by

2/V,;/, and let 2Qfy and 2.ff8r denote similar quantities for m9

and my Tlu-n the equation of virtual work for m
l
is evidently

2Plp + Tl2 . !,+ T^.M^^O; (1)
that for M

Z
is

*ft-*-%t+V*Jk"B
i (

2
)

and that for ;
3

is

2/2dr-7 -^.1*^ = 0; (3)

Now (Art 68, p. 89)

VOL. i.
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Hence, by addition, the internal forces disappear, and the

equation of virtual work for the whole system is

2Pbp + 2Qbq + 2Rbr = 0,

or 2 (Pbp + Qbq + Rbr) = 0. (4)

The same result is evidently true, whatever be the number of

particles forming the system ;
and it is well to note that we

have been enabled to obtain equation (4) connecting the external

forces acting on the system, by choosing a virtual displacement

compatible with the geometrical conditions of the system^ that is,

in the present case, a virtual displacement which allows the

mutual distances of the particles to remain unaltered ; or, again,

such a virtual displacement as might le an actual one ; for the

system could actually occupy the position abc.

107.] Elimination of the Internal Forces of a System. By
the Internal Forces of a system it is already sufficiently clear

that we mean forces proceeding from the internal connections of

the parts of the system among themselves. Such forces are

directed from particle to particle, and will contribute nothing to

the equation of virtual work of the system, if in the virtual

displacement the distance between every two particles remains

the same as before.

It is evident that if the virtual displacement violates any

geometrical condition of the system, the corresponding internal

force will appear in the equation of virtual work. Thus, if in

Fig. 134 the distance ab is not equal to the distance between %
and m

2 , we shall have by addition the term

or

where 8 (m^m^ denotes the change or variation of the distance

between m
l
and m2

.

And, generally, if any internal force, F, tend to vary any
internal function,/", in a system, this force will contribute to the

equation of virtual work of the system the term

*#
so that if in the supposed displacement of the system, the

function / is actually altered, the force F will appear in the

equation, but will not appear if/ is unaltered.



I08.] VIRTUAL WORK OF FORCES ACTING IN ONE PLANE. 1G3

108.] General Equation of Virtual Work for Forces acting

in one Plane on a Rigid Body*. If the particles rn l} ///.,, /
:! ,...

form a continuous body, on which forces Plt P2 -^ai-" ^ *n

one plane at different points A lt A2 ,
A3 ,... of the system

(Fig. 135),

the condition necessary and sufficient for the equilibrium of the

system is that the mm of the virtual works of the givenforces is equal
to zerofor any and every virtual displacement which violates none of
the geometrical conditions of the system.

For we have seen (Art. 66, p. 85) that the condition necessary
and sufficient for the equilibrium of any one particle of the

system is the vanishing of the virtual work of all the forces

acting upon it, the internal forces proceeding from the connection

with the other particles of the system being, of course, included,

as in equations (1), (2), (3) of Art. 106. Expressing thus the

conditions for the equilibrium of all particles of the system, and

adding the results, there remains for the condition of equilibrium
the equation

P
l tyj + P2 oj)z + P3 oj)3 -f . . . = 0, (1)

into which no internal force enters.

Conversely, if the sum of the virtual works of the forces

* We formally confine the discussion for the jiresent to Kigid Bodies, although
< Ic.-ir from l.i-t Article that what follow* is applicable to nystriii- -noli as

v articulated bars whirh, without 1 < ing rigid nysU-iiiH, satisfy certain geo-

.1 -;il conditions that are not violated in the virtual displacement ; and it is

equally clear that these conditions may be violated if we include in our equations

the work of internal forces.

M 2
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vanishes for every virtual displacement, the system is in equi-

librium.

For, if it is not, it will take a determinate motion, each point

of the system describing a certain line in virtue of its con-

nections with the other points. Now, this motion will be in no

way interfered with if we introduce new connections which

render it the only motion possible for the system. Under the

new circumstances it is clear that if we prevent the motion of

any one point, we prevent the motion of the system. Suppose
the motion of the point A to be stopped by the application of a

force, F, in the direction A'A, A' being the point to which A
moves. Now, equilibrium exists under the action of (a) the

given external forces, (/3)
the newly-introduced geometrical con-

nections, and (y)the force F; hence the sum of the virtual works

of these forces = for every displacement. Choose that dis-

placement which the system is supposed actually to undergo
when the force F is not applied at A. Now, by the last Article,

since none of the geometrical conditions (/3)
are violated by this

displacement, the forces proceeding from them will do no work.

Hence the equation of work is

ZPbp-F.AA' = 0,

where 2P8jo denotes the virtual work of the given acting forces.

But, by hypothesis, 2P6/J = for every displacement, and there-

fore for this one; hence F . AA' = 0, i.e. either AA' 0, or

F= 0, either of which signifies that no motion of the system
takes place. Hence the system is in equilibrium.

In Fig. 135, a
lt a2) 3> ... are supposed to be virtual positions

of the points of application of the forces Plt P2 ,
P3 ,

109.] Remarks on the Equation of Virtual Work. Equation

(l) of last Article, though strictly true in the case of forces

acting on a particle, is not so when these forces are applied at

points in a body of finite extension, or to a system of particles
connected in any manner. In fact, the internal forces of the

system have been eliminated from equations (1), (2), and (3) of

Art. 106, by assuming that m^az
m

2
63 = 0. Now, we know

that this quantity is not strictly equal to zero, but equal to an
infinitesimal of the second order, if the angular displacement of

|he line m^m^ is regarded as an infinitesimal of the first order.

It is more correct, therefore, to say that for the equilibrium of
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a body the virtual work of the applied force* is an infinitesimal of
the second order, if the greatest displacement in the system it re-

garded as an infinitesimal of thefirst order.

110.] General Uniplanar Displacement of a Rigid Body.
Since the general condition of equilibrium of a rigid body re-

quires the vanishing of the virtual work of the acting forces for

every virtual displacement which could be an actual one, it is

evidently necessary to investigate all the kinds of displacement
which such a body could undergo. Now, evidently, the position

of a right line is known, if the positions of any two of its points
are known

;
and also the position of any body is known, if the

positions of any three* of its points which are not in directum
are known. Hence, to investigate the displacements to which

a rigid body may be subject, it is sufficient to determine the

general displacements of a system formed of three points.

In Fig. 134 let such a system be W
1
w

2
w3 ,

and let ale be any

displacement whatever of this system in its own plane. Then

it is clear that if we moved m
1
into the position a, and then got

ni.. into the position b, the remaining point, wz3, would take up
tin- position c. This follows from Prop. VII of the first book of

Euclid. Now what is necessary to move the line m
l
m

2 into the

position ab ? Two things

(a) The point m^ must be moved up to a, by a simple motion

of translation ; and

(ft)
When this is done, the line m^m^ must be rotated about

> as to bring m2 into the position b. This second motion is

called a motion of rotation.

If we suppose that in the first motion (a) the line m
l
mz is

moved parallel to itself, while JH
I

is moved to a, the subsequent
motion of rotation which brings m

2 into the position b will be

a small one, the position ale being only slightly different from

M|MaM <

Hence If a rigid body receives any displacement parallel to a

I
plane, it may be broity/tf from its old info it.* new position

by (a) a motion of tranxhilion which has the same magnitude and

for all its points, and
(/3)

a motion of rotation which has

also the same angular magnitude and sense,for all its points.

*
If, a* in the present chapter, the digplaoement is made parallel to one plane,

the position* of tvo point* will suffice. We use the term uniplanar to signify
' confined to one plane.'
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Thus, in Fig. 136, by the motion of translation common to

all the points, ml is carried to a, while m2 is carried to If, and

ms to c', the lines m^m^
m2
mz ,

and m
1
ms being car-

ried parallel to themselves

to ab', Vd
',
and ac', respec-

tively. Then, by the motion

of rotation ab' is turned round

to ab, and c' is made to co-

incide with c.

111.] Reduction of Dis-

placement to Rotation.

Every uniplanar displace-

ment of a rigid body can be produced by rotation simply. For let

m
1 m.,m 3

be one position, and abc any other position, of the body,

a, b,c being the displaced positions of mlt m2 ,
m

3 , respectively.

Draw a perpendicular to the line m^a at its middle point, and a

perpendicular to m
2
6 at its middle point, and let these two

perpendiculars intersect in /. Then mlm2
m

3
can be brought into

the position ale by a pure rotation round 7. For, comparing
the triangles tnllm2 and alb, we see that, since the three sides

of the one are equal to the three sides of the other, the angles ml
la

and m.2 Ib are equal. Hence, if the body is rotated round /

through the angle % 7 a, so as to bring ml by a circular arc to

a, this rotation will bring m2 to b, and therefore every other

point of the body to its proper displaced position. If the dis-

placed position is very close to the original position, instead of

bisecting m
l
a and m

2
b and erecting perpendiculars, we may

erect these perpendiculars at m^ and m2 to the directions, m^a, m2 6,

of the displacements of mv
and m

2 . In this case the point 7 is

called in Kinematics the Instantaneous Centre of rotation of the

body.
A displacement of translation is one such that the centre of

rotation is at infinity.

112.] Virtual Work corresponding to a Virtual Motion of

Translation. Let a rigid body (Fig. 137) be in equilibrium under
the action of any forces in one plane, Pv P2 ,

P3,
. .

.,
and let the

body be imagined to receive a motion of translation parallel
to an arbitrary line, Ox, whereby the points, Av A2 ,

Az,..., of

application of the different forces receive virtual displacements,
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A
l
al) A2

a
2 , A.ja3) ..., all parallel to Ox, and equal to a. Then

(Art. 56, p. 79), the virtual work of the force P
l

is a x projection
of Pl along Ox. Let the

projection of P
1 along-

^
Ox be X

l
: then the vir-

tual work of P
l

is aXv
Similarly, if X.,, X3 ,...,

be the components of P2 ,

P3,... along Ox, the vir-

tual works of these forces

willbeoJf2 ,aJf3 ,... Hence

the equation of virtual

work is
a(

or

Consequently, since a is arbitrary, we have

F'g- '37-

(1)

(2)
Hence For the equilibrium of a rigid body it i* necessary that

the sum of the components of the acting forces along every arbitrary

right line shall be zero.

This condition is not sufficient, since every virtual displace-

ment of a body is not one of translation alone.

113.] Virtual Work corresponding to a Motion of Rota-

tion. Let several forces, PL ,
P

2 ,
P

3> ... (Fig. 138), acton a body
at points Alt A.,, A.3 ,... t and suppose that the body is rotated

through a small angle = o>, round an axis perpendicular to the

plane of the forces through an ar-

l.itrary point, 0. Then the points

./,. At ,
A3) ... will describe small

circular arcs. ,/,</,, -/_,".;,
A.3 a3 ,...

having as their common centre,

and sulitciuling the same angle o>,

at 0. Let O
l
be the angle lie) \\I-.-M

O./, ainl the direction ofPr Then,

evidently, the projection of A
l
a

l
on

the direction of J\ is ./,//,.
sin 6V

But A
l
a

l
= co. OA

l ;
therefore tin-

virtual work of P, is
t P

l
.OA

l
sin Ov

If
j> v
= the peq>endicular, Oglt

from on the line of action of

PI, this is evidently wP./.

Fig. 138.
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Similarly, the virtual work of P2
is a>P2 .p2 , and that of P3

is

wP3 .jD3
. Hence the equation of virtual work is

or p = 0. (2)

But the product of a force, P, and the perpendicular, p, let

fall upon it from the point 0, is the moment of the force with

respect to the point 0, or rather with respect to an axis through

perpendicular to the plane of the figure.

Hence, equation (2) asserts that for equilibrium the sum (with

their proper signs) of the moments of the forces with respect to any

point in their plane is zero.

As regards the signs to be given to the moments, Pl p l ,
P

2 j02 ,...

of the forces, we see that

Those forces which tend to rotate the body in the same sense

round the point give virtual work of the same sign, and therefore

have moments of the same sign with respect to 0.

Thus, in Fig. 138, the forces P2 and P2 tend to turn the body
round 0, in a sense opposite to that of watch-hand rotation,

while P3
tends to turn it in the opposite sense. Hence, in

the Equation of Moments, as the equation

is called, Pl pi and P2 p.2 have the same sign, and P
3 /?3 has an

opposite sign.

Since (Art. Ill) every uniplanar displacement of a rigid body can

be produced by"a rotation, and since a rotation gives an equation
of virtual work which is simply one of moments round the

corresponding centre of rotation, it is clear that the necessary and

sufficient conditions of equilibrium of a system of coplanar forces

acting on a rigid body are exhausted in the statement the sum
of the moments of the forces round every point in their plane
is zero.

Also since all possible displacements of a deformable system
are by no means exhausted in motions of translation and rotation

common to all its parts, the equation of virtual work for such a

system does not lead to the above conditions as sufficient.

114.] Analytical Expression for the Displacement of a

Rigid Body. We shall now investigate the changes produced
in the co-ordinates of any point in a rigid body by given small

motions of translation and rotation. Let the motion of trans-
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\

Fig. 139.

lation first take place. Then draw any two rectangular axes, Ox
and Oy, through (Fig. 139) the new position of a point Ov
Let the motion of translation OjO, common to all parts of the

body, be resolved in two compo-
nents, a and b, parallel to Ox and

Of.

Then, if x and y denote the co-

ordinates ofa point Q l
in the body

with reference to fixed axes drawn

through O
l parallel to Ox and Oy,

these quantities will be increased

b}" a and b, respectively, by the

motion of translation. To find how much they will be subse-

quently altered by an angular rotation = o> round 0, let Q
describe a small arc of a circle, Qq, round 0.

Let fall the perpendiculars QJ/and qm on Ox, and Qp on qm.
It isevident that OJ/= a? and QM=y. Then theincrease ofy pro-
duced by the rotation = qp, and the increase in a? = Qj). Now

Qp = Qq.sin Q0x = co. OQ.sin QOx = (a.QM= (ay ;

and qp=. Qq. cosQOx = a>.OQ.cos QOx = a>. OM= (ax.

Hence, if bx and by denote the changes produced in x and y by
the two motions combined,

bx = a cay, (l)

by = b + atx. (2)

Tlicse are the general analytical expressions for the displace-

ments of a particle in the body. (They can obviously be obtained

by differentiating the equations x = r cos 0, y = rs\n 0, on the

supposition that 6 alone varies by a quantity 80 = &>, and then

adding a and b to the results.)

115.] Analytical Conditions of Equilibrium. If any forces,

/',.
P

2 ,
P3 ,..., act on a rigid body in one plane, the condition

necessary and sufficient for equilibrium is (Art. 108)

P
1 bp1+Pi bp.2 + P3bp,+ ... = 0. (1)

Let A',
and

)',
1-e components of P

l along two rectangular axes,

Ox and Oy, and let
a?,

and yl
be the co-ordinates of the point at

which P
l
acts. Then (Art. 57, p. 80)

/',ft = Jjtej+r^. (2)
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Making similar substitutions for P2 8/?2 ,
P3 8/>3 ,..., equation (l)

becomes

or 2(X8#+ 78y) = 0. (4)

Substituting in (4) the values of bx and 8y given in the last

Article, we have

since <z, 6, and o> are common to all points of the body, and may
be taken outside the sign of summation.

Now the displacements a, #, and o> are completely independent
of each other, and therefore equation (5) requires that

V TT n v> v
^ \

i/, -~ i

2 (a;7 yX) = Q[

For, choose another virtual displacement in which a and 6 are

the same as before and <o different. Then we have

a2X+027+o/2(07-yX) = 0. (7)

Subtracting (7) from (5),

But since o> o> is not = 0, this equation requires that

Similarly, by making a alone variable, we prove that 2X = 0,

and by making 6 alone variable, 27=0.
The three equations (6) constitute the analytical conditions of

equilibrium of the body.

116.] Varignon's Theorem of Moments. The moment of the

resultant of two forces with respect to any point in their plane is

equal to the sum of the moments of the forces with respect to this

point. The following is the

proof of this proposition by the

principle of Virtual Work.

Let R (Fig. 140) be the re-

sultant of two forces, P and Q,

applied at a point A, and let

be any point in their plane.
Then the virtual work of R for any displacement of A = the

virtual work of P + the virtual work of Q. Let the virtual dis-
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placement of A be one of rotation round 0, through a small

angle = CD. Then, as in Art. 113, the virtual work oRis<a.R. OA.

sin OAR
;
but this = o> .7? x the perpendicular from on 72 = to x

the moment of R with respect to 0. Similarly, the virtual work

of P = co x moment of P with respect to
;
and virtual work

of Q = to x moment of Q with respect to 0. Therefore, &c.

Q.E.D.
In precisely the same way, the moment of the resultant of any

number of forces is proved to be equal to the sum of the moment >

of the forces separately.

117.] Particular case in which the Resultant of Transla-

tion vanishes. When forces applied to a particle have no

resultant of translation, their whole effect is null. It is not

necessarily so, however, if they are applied to a body of finite

dimensions. For example

If the forces acting upon a rigid body form ly their magnitudes
and lines of action the sides of a closed polygon taken in order, their

resultant of translation vanishes, and they have a constant moment

icltlt respect to all points in their plane.

LetforcesPj, P2 ,
-P3> ... (Fig. 141) act at points, A l ,A2 ,

Az ,...

in a body in one plane, and let

these forces be represented in mag-
nitudes and lines of action by the

sides of the polygon formed by their

points of application.

Now since (Art. 55) the sum of

the projections of the sides of this

polygon on any arbitrary line = 0,

the condition of Art. 112 is fulfilled,

and the forces have no resultant of

1 1 unslation.

Let be any point inside the polygon, and take the sum of

the moments of the forces round it. If the perpendiculars from

on the sides ./,./_., .L.l^..., be/?!, J)z ,-.., the sum of the

moments will be

Fig. 141.

+ /'./',+ Pa /?3 + . . . = G, suppose.

And since /',, /',,... are equal to the sides of the polygon, G is

evidently = 2 . area of polygon.
inside the polygon.

This is constant for all points
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Now if we take the sum of the moments round any external

point, (/, we shall have

PI Pi +P2P* + P*Ps P4 ft+P5 ft>

since P4 turns the body round (/ in a sense opposite to that

in which the other forces turn it. But this sum is equal to

2 (A,VAi + A20'AZ + A3
(/A4-A^(/A5 -fA5O'AJ,

and this is again equal to 2 . area of polygon.
Hence for all points in the plane, the sum of the moments, G,

is constant.

118.] Theorem. If a number offorce* acting upon a rigid body
in one plane have a constant moment with respect to all points in the

plane, they can have no resultant force, and must be reducible to

a couple.

For, suppose that they have a resultant = R, then if p is the

perpendicular let fall on R from any point, 0, the sum of the

moments of the forces R.p (Art. 116). Hence by varying- the

position of 0, the sum of the moments varies, which is contrary
to hypothesis. They are reducible to two equal, parallel, and

opposite forces. For their resultant is zero
; hence, compound-

ing them in pairs, they must reduce to two parallel, equal, and

opposite forces forming a couple, or to two such forces directly

opposite to each other in a right line. But in the latter case the

sum of their moments about any point would be zero ; therefore

if this moment is not zero, the forces must reduce to a couple.

119.] Two Parallel Forces. To fnd the resultant of two

parallelforces, P and Q, acting in the same sense.

Let AB (Fig. 142) be the shortest distance between P and Q,
and let the forces be supposed to act at A and B. Also let the

reversed resultant, R, act at

any point, 0, in AB. Since

the forces are in equilibrium,

their virtualwork = for every
virtual displacement (Art. 109).

Choose first a virtual displace-

ment of translation along AB.

Fig. 142. For this displacement the vir-

tual work of the forces P and
Q = 0, therefore the virtual work of R = 0, therefore R is

parallel to P and Q. Again, choose a virtual displacement of
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rotation about through an angle = cu. The virtual work of P
is then P.<a OA, and that of Q is Q.&OS, while that of R is

zero. Hence

P.OA-Q.O=0, (1)

OA__ Q
OS~ P'

Finally, to find the magnitude of R, take a virtual displacement
of translation parallel to the forces. This evidently gives

Z = P+Q. (2)

Therefore the resultant of two parallel forces acting in the same

sense is a force parallel to them in the same sense, equal to

their git ///,
and diridtHy the line joining their points of application

in tlif inverse ratio of tke forces.

Equation (l) asserts that the moments of two parallel forces

with respect to any point on their resultant are equal and

opposite.

If P and Q act in opposite senses o
;

- -R

(Fig. 143), the resultant is obtained in

magnitude and direction by simply chang-

ing the sign of Q.

Thus (l) becomes

which shows that is on the production of AS at the side of

the greater force
;
and (2) gives

R = P-Q. (4)

EXAMPLES.

1. To solve example 12, p. 138, by the principle of Virtual Work.

Imagine a displacement in which the ends A and B remain in con-

tart with tin'
j.
lanes. Then the virtual works of R and S are zero,

and if y is the height of G above the horizontal plane, the equation
of virtual work is

- Wdy-P.d(AO) = 0. (1)

= asin0, AC = (a + 6) cos 0; .'. dy a cos 6 dd, and

Wn
.-. (1) gives Wa cos = P (a + b) sin 6, or tan0= . .
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2. To solve example 13, p. 138, by the principle of Virtual Work.

Choosing a virtual displacement which keeps A and B in contact

with the planes, the equation of work is

-Wdy-T.d(AC) = 0. (1)

Now PC*= BP'cos^O+AP2 sin
2
0, and this equation also holds in the

displaced position. Hence we may differentiate it, and we then obtain

PC . d (PC) = (PB*
-
PA*) sin 6 cos 6d6

=
(a + b)(PBPA)smdcoB0dO

Also y = a sin 0, /. dy = a cos Odd
;

and substituting these values

of d(PC) and dy in (1), we obtain the value of T.

3. Four rigid bars, freely jointed together at their extremities,

form a quadrilateral, ABCD ; the opposite vertices are connected by

strings, AC and D, in a state of

,
(
I tension

; compare the tensions of

/' \ these strings.

\ Let the bar AB be considered as

fixed, and let the quadrilateral

undergo any slight deformation.

Then the bars AD and BC will

turn round the points A and B,
that is, the points D and C will

describe small paths, Dd and Cc,

perpendicular toAD and BC. Hence

(Art. Ill) the point, I, of inter-

section of AD and BC is the in-

Fig. 144. stantaneous centre for the bar CD,
and the angles Did and CIc are

equal. Denote their common value by $0. Then Dd ID . 80, and

Cc = IC.b6.

Now, since in the displacement of the system none of the geo-
metrical conditions namely, the constancy of the lengths of the bars

are violated, the reactions of the bars will not enter into the equa-
tion of virtual work. Hence if T and T* denote the tensions of the

strings AC and BD, this equation will be (see p. 90),

T.bAC+T'.bBD = 0. (1)

But bAC = projection of Cc on AC
= Cc . mnACB = IC.mnACB .80;

and similarly bBD = ID . sinBDA . 80. Hence (1) becomes

T.IC.miACB=r.ID.sm BDA. (2)

IC_ACBinCAD
Again, ________



119.] EXAMPLES. 175

Substituting in (2), we obtain

AC BD
OA.OC OB.OD

Another solution of this problem (quoted from Euler) will be found
in Walton's Mechanical Problems, p. 101.

4. Four rigid bars, freely jointed at their extremities, form a

quadrilateral, ABCD ; the bars AB and AD are connected by a string,
aa in a state of tension, a being a given point in AB, and a a given

point in AD
;

in the same way, BA and BC are connected by a string
l>..1 ; CB and CD are connected by a string cy; and DC and DA by
a string db

;
find the relation between the tensions of these strings.

It' the lengths of the strings aa, 6/3, cy and db are denoted by x, y, z,

and to, and the tensions in them by X, Y, Z, W, the equation of virtual

work for a slight deformation will be

Xbx+ Yby+ Zbz+ Wbw = 0. (1)

Now v?=Aa*+ Aal 2Aa.AacoaA =Aa*+ Aa*

therefore x bx = 2
'

.BD . bBD.
AB . AD

Substituting this value of bx, and similar values of by, bx, bw, in

(1), we have

But from the last Example, we have

o 111) _ BD. OA.OC
t

6AC
=

AC. OB.OD'
, X Aa.Aa Z Cc.Cy \ BD*

hence, finally, (- . ^^-^ ^--^J^) 5J7m
,Y Bb.Bp W Dd.Db^ AC*
V y BA.BC w DC. DA' OA.OC

For a different solution, see Walton, ibid.

\
r.|ii;il hr;ivy beams are freely jointed at their extremiti. > ;

one is fixed on a horizontal plane, and the system lies in a vertical

plain- ; the inidillf points of tin- two HJIJMT non-horizontul beams are
( onn. ct.-d liy a rope in a state of tension. Show that the tension

of this rope is
6TFcot0,

IT being tin- weight of each beam, and 6 the inclination of the non-

horizontal beams to the horizon.
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Let x be the length of the rope, y the height of the centre of

gravity of the system, 2 a the length of each beam, and T the tension

of the rope. Then the virtual work of the tension is Tbx (see p. 90),

and the virtual work of the weight of the system is 6 Wby. Hence

But x = 2 a (1 + cos 0), and y = 2 a sin 0, and the deformation imagined
is one in which the upper horizontal beam moves vertically through
a small space. Hence the values of y and x will be of the same forms

as before, and
bx = 2 a sin 080, by2acos0b6.

Substituting these values of 8x and by, we have

6. A body receives a small general displacement parallel to one

plane ;
find the co-ordinates of the instantaneous centre.

If the components of the motion of translation parallel to the axes

of x and y are 8a and 86, and the rotation is 800, the equations
of Art. 114 give for the displacement of any point whose co-ordinates

are x, y,
bx = 8a yba>

by = 86 + a;8co.

Now, the displacement of the instantaneous centre is zero
; hence,

if (x, y} be its co-ordinates, we have

86 ba
x ~x~' y ~*~'

8co 8 co

A particular case may be noticed. If any body in contact with a

surface receives any small displacement parallel to one plane, the body
still remaining in contact with the surface, the instantaneous centre

lies on the normal to the surface of contact. In the rolling of one

figure on another the point of contact is the instantaneous centre.

7. A uniform beam, AB (Fig. 127, p. 148), rests as a tangent at a

point P against a smooth curve in a vertical plane, one extremity, A,

resting against a smooth vertical plane ;
find the position of equi-

librium, and the nature of the curve so that the beam may rest in

all positions.
Let the weight of the beam through G, and the normal reactions

at A and P meet in the point 0; take the vertical line AD as axis

of y ;
and let 2 a = the length of the beam. Then, if x is the abscissa

of P, we have AO =
-^-^'

and also AO = a sin 0. Hence, equating

these values, o; = asin3
0. (1)

Now, from the equation of the given curve, is known in terms of

x in the form Q f(x\ (2)

From (1) and (2) the value of x, and therefore the position of equi-
librium, can be found.
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For example, if the curve be a circle of radius r whose centre is

at a distance c from the vertical plane, we find

c = 0.

If r = 0, we get the result in Ex. 6, p. 148.

If (1) holds in all positions in which the beam is placed, every
t / /'

is one of equilibrium. Now, since tan = > (1) gives_ dy

dy =
and since this equation holds in all positions, we may integrate it.

Hence y + k = (^ a)*

or x$ + (y + left
= of,

i Ix-ing an arbitrary constant.

We may, without loss of generality, assume k = 0, and the curve

will be

The equation of virtual work shows that in this case the centre

of gravity of the beam is at a constant height. For if y denote the

ordinate of G, this equation is

Wdy=0,
and since this holds in all positions, we have, by integration, y =

int.

8. Four rigid bars freelyjointed at their extremities form a quadri-
lateral ABCD (Fig. 145) ;

the middle points of the opposite pairs of

bars are connected by strings, mm' and nn, in a state of tension.

Compare the tensions of these strings.
; and V be the lengths of the strings mm' and nn, and let the

tensions in them be 7*and Tf

, respectively.
Then, assuming the quadrilateral to receive any small deformation,

Miation of work will be

Now, it may be left to the student / \

as an exercise to prove that / \ -

that is, Z
/9

Z* is constant howt \

the (|iia<lrilateral may !" <liT"rmr<l.

m-ni'=o; (2)

and from (1) and (2) we have

y + f=0, (3)

a remarkable result, since it shows that one of the tensions must be

if in- ; i.e. ii the bars AB and CD are pulled together, equilibrium
will l.e imj". -iMe unless the bars AD and DC are pulled abui.

VOL. I. N
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It is well to notice an apparent exception to the result (3). The

student will easily prove that if the sides AB and DC are parallel,

equilibrium will be maintained by the single string mm' in any state

of tension, i.e. f = 0, a result which contradicts (3).

The difficulty is easily removed, however, by reverting to (1), which

in the case under consideration is identically satisfied. For, since AB
and CD are parallel, the line mm' passes through /, the instantaneous

centre, and therefore for a slight deformation the point m
r
moves

perpendicularly to Im', that is, to mm'. Hence bl = 0, and equation

(1) is satisfied by having at once Te = and bl = 0. The combina-

tion of (1) and (2) is therefore irrelevant.

9. A number of bars are freely jointed together at their extremities

and form a polygon ;
each bar is acted on perpendicularly by a force

proportional to its length ;
all the forces emanate from one point

and all act inwards or all outwards
; prove by the principle of virtual

work that for equilibrium the polygon must be inscribable in a circle.

Let the polygon be ADCBEF... (Fig. 145), of which the vertices

E, F,... are not represented in the figure. [AB is not one of the

Choose a virtual displacement in which all the bars except the

three AD, DC, CB remain fixed, and let the extremities A and B be
fixed in the displacement. Then I is the instantaneous centre for

DC. Let be the point from which, the forces emanate
;

let m, n, p
be the feet of perpendiculars from Q on AD, DC, CB, respectively ;

let Q be the foot of the perpendicular from 7 on DC; let IQ meet
mO in L and pO in M

;
and let the forces in Om, On, Op be k. AD,

k.DC,k. CB.
If AD turns round A through the small angle 8^>, the displacement

of D is AD . 6$ ;
and if DC turns round / through Sco, the displace-

ment of D is ID . 8 a). Hence

Similarly BC . 8 6 = 1C . 8 o>,

if 80 is the angle through which BC turns round B.

Now the equation of virtual work is

k . AD . Am . 8<f>+ k . DC . In . 8o> . cosInQk . BC . Bp . d6 =
;

or, by the first two equations,

Am.ID + DC.nQ-Bp.IC=0. (1)

Now Im.ID = LI.IQ, and Ip.IC- IQ.IM;
therefore Im.ID Ip . 1C = LM . IQ. (2)

Adding (2) to (1), we have

AI.ID-BI. IC-LM. IQ-DC . nQ.

But the right side of this equation is zero, since the triangles DCI
and LMO are similar (nQ is the altitude of the latter). Hence the

quadrilateral ADCB is inscribable in a circle
;
and in this circle lie
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the quadrilaterals DOSE, CBEF,... and therefore the whole

polygon.

10. Six equal heavy bars are freely jointed at their extremities; one
bar is fixed in a horizontal position, and the system hangs in a vertical

plane ;
the middle points of each pair of adjacent non-horizontal bars

. are connected by two strings in a state of tension. Show by the

principle of work that, if the hexagon is regular in its position of

t quilibrium, the tension of each string is three times the weight of

a liar.

1 1 . Four bars whose weights may be neglected are jointed together

by smooth pins and form a quadrilateral, ABCD, in a vertical plane.
The joint A is fixed, while the lateral joints B and D rest each against
a smooth fixed vertical plane. A given vertical force being applied
at the point C, find the magnitudes of the reactions of the planes at

1> and D, and the direction and magnitude of the pressure on the

joint A.

Am. Let F be the force applied at C ;
P and Q the reactions at

B and D
;
R the force on A

;
also let a, /3, y, 8 be the inclinations to

the horizon of the bars AB, BC, CD, DA, and Q the angle made by R
with the horizon. Then we shall have

P
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in the diagonal AC, and two forces, each equal to Q, act similarly in

BD. Find the figure of equilibrium.

Ans. The adjacent sides of the parallelogram being a and b, the

angle between them co, we have

1 4. If the forces in Example 9 are each transferred to the middle

point of the bar on which it acts, prove by virtual work that the

polygon must be inscribable for equilibrium.

15. Four rigid bars jointed together at their extremities form

a plane quadrilateral ABCD ;
forces P, Q, R, S are so applied at the

vertices A, B, C, D, respectively, as to preserve equilibrium ;
show

that the lines of action of the forces must be such that the diagonals
of the quadrilateral which they determine pass through the points of

intersection of the oppqsite sides (DA, CB), and (BA, CD] of the given

quadrilateral.

[This follows at once by the method of Example 3. The result is also

thus expressed by Schell (T/ieorie der Bewegung und der Krdfte,
vol. ii. p. 74) Any two adjacent forces and the side at the ends of

which they act form a triangle which is in perspective with that

formed by the remaining pair and their corresponding side.]

16. Seven equal uniform heavy bars, freely jointed together at

common extremities, form a regular heptagon, ABCDEFG, the system

being suspended vertically from the point A, and the vertices G and D
being connected by a weightless strut, as also the vertices B and E\
find the pressure in each strut.

Ans. Taking a virtual displacement in which the vertices

A, B, C, D, E all remian at rest, and G and F alone move, we find the

pressure to be

where W = weight of each bar.

[The student will see that strings would not do instead of struts.]

17. Two equal bars, OA and OC, are freely jointed at the fixed point

;
four equal bars forming a lozenge, ABCD, are freely jointed at

A,B,C, and D, and the system (called a Peaucdlier's Cell} is held in

equilibrium by two forces applied at B and D. If the force at D is

of constant magnitude in all positions of the cell, as it suffers de-

formation about 0, prove that the force at B will be one varying
inversely as the square of the distance OB. (Mr. G. H. Darwin, Pro-

ceedings of the London Math. Soc., April 8, 1875. See the same

paper for Mr. Darwin's most ingenious mechanical description of the

Equipotential Lines of any number of magnetic poles by means of

Peaucellier's Cells).



CHAPTER VIII.

SIMPLE MACHINES.

120.] Functions of a Machine. A machine may be defined

either from a statical or from a kinematical point of view.

Regarded statically, it is any instrument by means of which we

may change the direction, magnitude, and point of application of
a given force ; and regarded kinematically, it is any inxfrument

ly means of which we may change Ike direction and velocity of a

giren motion.

In Statics it is usual to consider the points or machines to

which forces equilibrating each other are applied as absolutely

>nless; nevertheless, it appears from our definition of force

(Art. 1),
that a system of forces acting at a point will be in equi-

librium when the point has a uniform motion in a right line.

If a particle describes any curve whatever with uniform velocity,

a little reflection will show that at no point of its path can there

!> any force in the direction of the tangent or, in other words,

force acting on it must everywhere be normal to the path.

It follows (see Art. 65), that there is no work done by this

force in the passage of its point of application from any one

: ion to any other. Extending this a little, we shall so far

anticipate the results of Kinetics as to assume that when tke

v of any mac/iin<' are each in a state of uniform motion, (/

fordx djiji/iiil
In !//' ninchine are in equilibrium among themselves.

I5y the extension of the equilibrium of forces to this case, we

comprise l>oth the statical and kinematical definitions of a

machine in the following: a machine is any assemblage of

il[ff'
,-cni j,i>-res whose displacements, rexnlliny from their mode

of connection, depend on each other by gemm-fri'-al laws, and

whose object is to transform into mechanical work (he result of the

n of given t'j
rces. (See Resal, Mccanique General*,

vol. iii, p. 3.)
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It has been already pointed out that in applying the equation

of virtual work to a system of connected bodies, advantage is

gained by choosing such displacements as do not violate any of

the geometrical connections of the system. This principle we

shall use largely in the discussion of machines, and the dis-

placements which we shall choose will be those which the

different parts of a machine actually undergo when it is em-

ployed in doing work. Thus, instead of equations of virtual

work, we shall have equations of actual work
;
and in future we

shall speak of the principle referred to as the Principle of Work.

Since in the motion of a machine the work done by a force

applied to any part of it depends on the magnitude and direction

of the displacement of the point of application of this force, we
see at once the importance of the discussion of the motions pro-

duced in the several parts of a machine by a definite motion

given to some one part. This discussion, which is a problem of

pure geometry, constitutes the Kinematics of Machinery, for

which the student may consult Resal's Mecanique Generate,

Willis's Principles of Mechanism, or the treatise of Reuleaux.

121.] Efforts and Resistances. Every machine is designed
for the purpose of overcoming certain forces which are called

resistances', and the forces which are applied to the machine

to produce this effect are called
efforts. The distinction between

these forces is easily drawn by the Principle of Work. For,

when the machine is in motion, every effort displaces its point of

application in its own direction, while the point of application of

a resistance is displaced in a direction opposite to that of the

resistance. An effort is, therefore, one whose elementary work
is positive, and a resistance one whose elementary work is

negative.

An effort applied to a machine is often (but very impro-

perly) called a power. The resistances against which a ma-
chine works are divided into two classes, viz. useful resistances

and wasteful resistances. The former constitute those which the

machine is specially designed to overcome, while the over-

coming of the latter is foreign to its purpose. For example, if

a pulley is employed for the purpose of lifting a weight by
means of a rope, a part of the effort employed is spent in over-

coming the friction between the pulley and its spindle, and
another part is spent in overcoming the rigidity of the rope.
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Friction and rigidity in this case are the wasteful resistances,

and the weight of the body lifted is the useful resistance.

The distinction between the resistances overcome gives also

the distinction between useful work and (so-called) lost \oork.

Useful work is that which is performed .in overcoming useful

resistance, while lost work is that which is spent in overcoming
wasteful resistances.

122.] Efficiency of a Machine. The ratio of the useful work

yielded by a machine to the whole amount of work performed by
it is called its efficiency.

Let W be the work done by the applied forces, Wu the useful

and Wi the lost work, when the machine is moving uniformly.

Then W=W*+Wt ;

and if
j
denote the efficiency of the machine,

Since some of the work expended in moving the machine

must be expended in overcoming wasteful resistances, the

efficiency is always less than unity, and the object of all im-

provements in the machine is to bring its efficiency as near

unity as possible.

The counter-efficiency is the reciprocal of the efficiency. If the

useful work to be performed is given, the amount of work to be

expended on the machine is obtained by multiplying the former

by the counter-efficiency.

Let P be the effort applied at any point of a machine to

perform a given amount, /f u ,
of useful work; let //'/ be the

\\ork lost, and let * be the space through which P drives its

point of application in its own direction. Then we have

Ps= WU+W{ .

Let P be the force which would perform the same amount of

useful work if the wasteful resistances were removed. Then

pt -r.,
w p

But
77
= " = -

"
;

hence the efficiency is the ratio of the

force which would drive the machine against a given useful

-tance, if the wasteful resistances were removed, to the force

which is actually required to do so. In many cases this

is useful in practice.
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The following consequence regarding efficiency can be at once

proved from the principle of Work. In any machine for raising

a weight, if the friction in the machine is of itself sufficient to

hold the weight suspended, the efficiency is less than . If an

effort P is required to raise the weight, and an effort f to

sustain it, the efficiency is p

As regards the wasteful resistances in machines, the most

noticeable are friction, the rigidity (or rather imperfect flexi-

bility) of ropes, and the vibrations which are produced in the

various pieces. Of these the first is that with which alone we
shall be concerned. The student who desires information on the

experimental laws of the rigidity of ropes may consult Coxe's

translation of Weisbach's Mechanics of Engineering and of tlie

Construction of Machines, vol. i. p. 363 (New York, 1872).

123.] Simple Machines. By simple machines are meant the

Lever, the Inclined Plane, the Pulley, the Wheel and Axle, the

Screw, and the Wedge. Of these, the Lever, the Inclined Plane,

and the Pulley may be considered as distinct in principle, while

the others are only combinations of pairs of these three.

124.] The Lever. A lever is a solid bar, straight or curved,

which is constrained to turn round a fixed axis. This fixed axis

is called the fulcrum of the lever.

It is usual to define three kinds of

levers. If the fulcrum is between

the effort and the resistance the

lever is said to be of the first

kind
;

if the resistance acts be-

-s tween the effort and the fulcrum

/QI P\ (as in a wheelbarrow, an oar, or a

Fig- H6
pair of nutcrackers), the lever is of

the second kind
;
and if the effort

acts between the fulcrum and the resistance (as in the con-

struction of the limbs of animals), the lever is of the third kind.

In the last kind the effort is always greater than the resistance

to be overcome, and levers of the third kind are therefore seldom

employed.
To find tne

efficiency of a lever, the wasteful resistance being
friction

Let the effort P be applied at the pou.t A (Fig. 146) in the
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direction OA perpendicular to the axis, and the useful resistance at B
in the direction OB, also perpendicular to the axis

;
let EOF be a

section of the axis on which the lever turns, made by the plane of P
and Q, the contact between the beam and its axis, although it may be

very close, being still such that they can be considered as touching

along a single line when the machine works. In this case (see Art.

103) the reaction of the axis consists of a single force touching the

cirrle of radius rsiuA. concentric with EDF, \ being the angle of

friction for the lever and its axis
;
and since this reaction must also pass

tli rough 0, its direction is obtained by drawing from this point a

tangent to the circle.

Let p and q be the perpendiculars from (7, the centre of the axis, on

OA and OB, respectively, and let < = Z.AOB.
Tlu-n by moments about C, we have

also R =

.'. Pp = (ty.+ rsinA */P :+ 2PQco8u>+ Q*. (1)

If P is the value of P when friction is removed,

P>p = Qq, .-.
ij
=

=^.
Q

B instituting
-
qfor-p

in (l), we have

pq (1 >;)
= r sin A -v/p

!
7j

s+ 2p? cos o> . T;+ q*,

which gives for the efficiency

q pq+ r'cos u sin* A r sin X Vj?+ 2j)q cos to + q
3

r'siir'cosin'A~

If the coefficient of friction is small, we shall have, approximately,

ur /
-

r]
= 1 V p*+ 2jm cos w + q\W

If P and Q are parallel, at 0, and 77
= 1 /xrf

- + - V
\q pJ

If the lever is of the second kind, and P and Q parallel, o> = ir, and

TJ
= 1

pr[
---

J;
and for a lever of the third kind, we find easily

in the same circumstances

/I K
7,= l-Mr(---).

125.] The Inclined Plane. Let an effort, P, whose direction

makes an angle 9 with a rough inrliiml plane, be employed
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to drag a weight Q up the plane. Then if A. is the angle of

friction and i the inclination of the plane,

cos(0 A)

sin /

^cosfl

1 + fji
tan

1 + fx cot i

126.] Fixed and Moveable Pulley. Let a flexible string

pass over a smooth fxed pulley (that is, a pulley whose axis is

fixed in space), and let a weight W be suspended from one ex-

tremity of the string, while a vertical downward force P is

applied at the other extremity. Then to raise W we must have

P = W, and in the uniform working of the machine W is raised

exactly as much as the point of application of P is lowered.

Suppose, on the contrary, that one extremity of the string is

fixed, that the string passes under a moveable pulley from which

W is suspended, and that P acts vertically upward at the other

extremity of the string. Then evidently P = i W\ hence in the

moveable pulley there is a gain in force. But in this case W is

raised only half as much as the point of application of P ascends.

There is, therefore, a loss in the expedition with which the work

of raising the weight is performed.

127.] Systems of Smooth Pulleys. We shall consider three

different arrangements of pulleys, as exemplifying
the Principle of Virtual Work.

I. In the first system there are two blocks, A and B
(Fig. 147), the upper of which is fixed and the lower

moveable.

Each block contains a number of separate pulleys, of

the same diameter usually, each pulley being moveable

round the axis of the block in which it is. (The figure

represents a section of the blocks made by a plane per-

pendicular to their axes, and the circumferences of the

pulleys are projected on this plane.) A single rope

(whose weight is neglected) is attached to the lower

block and passes alternately round the pulleys in the
Fig- T47- upper and under blocks. The portion of rope proceed-

ing from one pulley to the next is called a ply. In
this arrangement the tension of the rope is throughout constant and

equal to F, the force applied at the free extremity. The portion
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of the rope at which the effort P, is applied, is called the tackle-

f"U.
Let W be the weight to be lifted, and assume all the plies to be

parallel.
Then if n is the number of plies at the lower block, we shall

obviously have, neglecting the weight of the block,

nP = W.

This result follows also by the principle of work. For if p denote

the length of the tackle-fall, and x the common length of the plies, we

have p+ IMX = constant,

.*. dj>+ ndx = 0.

But Pdp+ Wdx = 0,

.: P=- W.
n

\\. Suppose each pulley to hang from a fixed block by a separate

rope:
Let A (Fig. 148) be the fixed pulley, n the number of moveable

pulleys, and
a;,,

x
t ,...xn the distances of the

centres of these latter from a horizontal plane

through the centre of A.

Then,/> being the length (AP) of the tackle-fall,

2*, +p = const., 2a?2 x
l
= const.

2x9 a;
2
= const. ... 2xn x,,_ l

= const.

H>-iice 2*xn + p = const., therefore

2*dxH + dj>
= 0,

:nnl Wdxa + Pdp - 0,

III. I pirate rope pass over each pulley, and let all the ropes
be attached to the weight

Neglecting the weights of the pulleys and ropes,
we shall have, liy resolving vertically for the equili-
brium of II'.

the whole number of pulleys being n
;
or

P.-i-,
2"-l

The same result follows by the principle of work.
Fur it tin- distance of II' t'i<>m a lioi i/mital plane
through tin- rriitiv of the fixed jmllry i.- di-m.ti-d by ,..

//,
and if tlic dirtaiuv.i pf tin- ccntr.> of the pulleys,

counting from the fixed one, are
,,
x
t> ...

,
a;B_l , we have evidently

y+ x
l
= const., y -f xt

2 x
i
= const y -}- xn^ 2 xm^ = const.,

x^ss const.
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Hence, multiplying the second equation by - > the third by ^ 5 &c.,
i 2

and adding, we have 2"~ 1

y +^ = constant. Now the equation of work

is

or

and 2 n1 dy + dp = 0,

. p= y

128.] The Wheel and Axle. This consists of a horizontal

cylinder, I (Fig. 150), moveable round two journals (or small

cylinders projecting from the centres of its

faces), one of which is represented in section at

c; a wheel, a, is rigidly connected with the

cylinder, and the journals rotate in fixed bear-

ings. The machine is, in reality, a rigid com-

bination of two pulleys, a and b, moveable

about a common axis, c\ and its theory is

precisely the same as that of the lever. The

effort, P, is applied at the circumference of

the wheel, and the useful resistance, Q, at the free extremity
of a rope coiled round the axle.

All wasteful resistances being neglected, the relation between

P and Q is pa _ q^
where a = radius of wheel, and 6 = radius of axle.

The friction of the journal (whose radius is
c)

against its bearing being taken into account, the

relation between P and Q is

Fig. 150.

a) being the angle between the directions of P
and Q, exactly as in Art. 124 ; and the efficiency

is the same as that investigated in the Article

on the lever.

Economy of force is attained in the wheel and

axle by diminishing 6, the radius of the axle ;

but in this way the strength of the machine is

diminished. To avoid this disadvantage a Differential Wheel and

Axle is sometimes employed. In this instrument the axle con-

sists of two cylinders of radii 6 and If (Fig. 151), and the rope,

Fig. 151.
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wound round the former in a sense opposite to that of watch-

hand rotation (suppose), leaves it (at the point b in Fig. 150),

and, after passing under a moveable pulley to which the weight
to be raised is attached, is wound in the opposite sense round

the remaining portion (that of radius I')
of the axle. The effort

P is applied, as before, tangentially to the wheel. For the

equilibrium (or uniform motion) of the machine, the tensions of

the rope in Im and I'n are each equal to \ Q ;
and taking moments

round the centre of the journal, c, for the equilibrium (or uniform

motion) of the rigid system consisting of the wheel and axle

alone, we have pa =\Q(b-V).
Thus, by making the difference b I' small, the requisite

effort can be made as small as we please ;
but siuce the amount

of work to be done is constant, this economy of force is accom-

panied by a loss in the time of performing the work. For it is

easily seen that if the wheel turns through an angle 80, the

point of application of P will describe a space a 80, and the

weight will be raised through a space \(b b')bQ) which latter

will be very small if b b' is very small.

129.] The Screw. The screw consists of a right circular

cylinder on the convex circumference

<>t which there is a uniform project-

ing thread, GH (Fig. 153), of a helical

form.

The helix is a curve traced on the

circumference of a cylinder in the

following manner. Take a sheet of

paper on which are drawn two in-

tletinite right lines, AB and AC, and

let the paper be wound round the Fig. 152.

cylinder in such a way that the line

AB coincides with the circumference of the base ;
then the other

line. .If. will appear on the cylinder in the shape f a spiral

curve which is culled the helix. (Fig. 152 represents a projection

of the helix on a plane through the axis of the cylinder.)

A screw with a, r<-<-ltin<jnhir thread (which is that represented

in Fii,
r

. 153) is obtained by making a small rectangular area, <ilinl
t

move so that one side, ab, always coin< i<lc> with a generating

line of the cylinder, the middle point of ab describing the helix

B
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and the plane of the rectangle always passing through the axis

of the cylinder.

If a small triangle is used instead of the rectangle, we should

have a screw with a triangular thread.

Let p and q be two points on the indefinite line AC, and draw

pn perpendicular to AB and qn parallel to it. Then pq becomes

a portion of the arc of the helix, and qn a portion of a section of

the cylinder perpendicular to its axis, pn remaining a straight

line coinciding with a generator of the cylinder.

Hence the relation holding between the sides of the triangle

pqn before the paper was wound round the cylinder will hold

also after the winding. But if the angle between AB and AC
is

i, we have evidently

pn qn . tan i,

pq = qn . sec i.

The thread # works in a block on the inner surface of which

is cut a groove which is the exact counterpart of the thread.

The block in which the groove is cut is often called the nut.

It is clear, then, that if the screw moves in the nut until the

point p of the thread occupies the position q, the axis must move
in its own direction through a space jon, and the angular rotation

Q%
of the screw about its axis is > r being the radius of the

cylinder.

Oft

Hence, if the angle through which the screw turns is

denoted by CD, we have

pn = CD r tan i, pq GO r sec i.

If a) = 2 TT, or if the screw make a complete revolution, any
point on the surface of the screw describes a space 27irtani

parallel to the axis. This is obviously the distance between two

portions of the thread measured on a generator, and is called the

pitch of the screw.

We shall consider the screw as driving a resistance Q applied
in the direction of the axis, and the effort, P, as applied in

a plane perpendicular to the axis, at the extremity of an arm
whose length measured from the centre of the axis is a.

Suppose that the screw rotates through an angle <o. Then
the work done by P is Pa o>, and the work done against Q is

Qr u>tan i.
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If no work is lost against wasteful resistance, we must have

Pa = Qr tan i.

If there is friction between the thread and the groove, let R be

the normal pressure at any point p of the thread (acting towards

the under side of pq in the figure), and p R the friction at this

point. Then, in a small angular motion, 8w, of the screw the

work done against the friction is pR.pq (taking pq as an ele-

mentary portion of the thread), or /i-Krfiwsec*. Hence

2 R denoting the sum of the normal reactions at all points of

the thread.

But, for the equilibrium of the cylinder, resolving along its

axis, we have Q 2 (R cos i y.R sin
i),

or Q = (cos i n sin
i) 272. (a)

Hence, substituting this value of 272 in the previous equation,

Pa = Qrtan (i + \),

\ being the angle of friction.

This result could have been obtained without the principle of

work by combining with (a) the equation of moments round the

axis of the screw. By taking moments round the axis, we have

Pa 2 (R sin i + pR cos
i) r,

or, Pa r (sin i+ p cos
i)
2 72. (8)

Dividing (/3) by (a) we obtain the relation between P and Q.

The efficiency of the screw is evidently

tan /

tan (i + \)

'

which \\ill be a maximum when & = --.
4 2

130.] Prony's Differential Screw. If h denote the pitch

of a screw, the relation between

P and Q when friction is neg-

lected is
pft\_\V\l

2Pira =

therefore economy of force in '

earning a given resistance is Fig- 54-

gained by making // very small.

But it is ini|M,<>il.le to lo this in practice, and to attain the result

desired a differential method is resorted to. Let the screw work
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in two blocks, A and JB (Fig
1

. 154), the first of which is fixed and

the second moveable along- a fixed groove, n. Let h be the pitch

of the thread which works in the block A, and If the pitch of

that which works in the block B. Then one complete revolution

of the screw impresses two opposite motions on the block B
one equal to h in the direction in which the screw advances, and

the other equal to K in the opposite direction. If, then, the

resistance, Q, is driven by this block, we have by the principle

of work

Fig- 155-

and the requisite effort will be diminished by diminishing

h-h'.

131.] The Wedge. The wedge is a triangular prism, usually

isosceles, which is used (as represented in the figure), for the

purpose of separating two bodies, A and B, or parts of the same

body which are kept together by some

considerable force, molecular or other.

The figure represents a section of the

wedge made through the line of action

of the effort, P, perpendicular to the

axis of the wedge. Suppose that the

line of action of P passes through the

vertex of the wedge, and that slipping is

about to take place ;
then the total re-

sistances of the surfaces A and B against

the wedge will make the angle, X, of friction with the normals

at the points, m and n, where they act
;
but these points are

indeterminate themselves.

To find the efficiency of the wedge. Let the wedge be driven

through a vertical space equal to dp, and let 2 a be its vertical

angle. Then the useful work performed is the separation of A
and B in directions normal to the faces of the wedge in contact

with them ;
in other words, the useful work is that done by the

normal components of the total resistances, R. Now the point
m moves vertically down through a space dp, and the projection

of this displacement along the normal at m is evidently

sma.dp.

Hence the work done by the normal components is

2R cos A. sin a dp,
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and the whole work expended is Pdp, Hence

_ 2 7? cos A sin a

But by resolving vertically for the equilibrium of the wedge, we
have P _ o 7? oi'n f

sin a cos A tan a
~

sin (a + A)

Having given the theory of the simplest machines, we proceed
to discuss a few of their most useful forms.

132.] The Balance. The common balance is a lever of the

first kind with two equal arms, from the extremity of each of

which is suspended a scale pan, the

fulcrum being vertically above the

centre of gravity of the beam when the

latter is horizontal. Let (Fig. 156)
be the fulcrum, AB the line joining the

points of attachment of the scale pans Fig. 156.

to the beam, G the centre of gravity of

the beam, and let AB be at right angles to OC, the line joining
the fulcrum to the centre of gravity of the beam. Then, if

AC^CB- a, OC=h,OG = k,W= weight of the beam, and
= the inclination of AB to the horizon when two weights, P

and Q, are placed in the pans, we have for the position of

equilibrium (by moments about 0),

Now, the most important requisites for a good balance are

Sens'difity and Sfnl/ttifi/. The first requires that the beam

should be sensibly deflected from the horizontal position by
tin- smallest difference between the weights P and Q ;

lu-m-c

the sensibility may be measured by the angle of deflection from

the horizontal position caused by a given difference, PQ.
Tin- stability of the balance is measured by the rapidity of the

"..filiation of the beam when it is slightly disturbed, and will be

greater the smaller the time of oscillation. Hence the in-

vestigation of the stability of the balance is a kinetical problem.

For sensibility, tan must be as great as possible for a given

value of P Q. Hence (1) a must be large, (2) A must be

VOL. i. o
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small, (3) W must be small, and (4) k must be small, i.e. the

distance of the fulcrum from the centre of gravity of the beam

must be small. The last condition is obtained in balances in

which great sensibility is desired by making OC an axis along

which a heavy nut moves with a screw motion ; by moving the

nut towards 0, the centre of gravity of the machine can be

made to approach the fulcrum.

The time of a small oscillation can be shown (see Thomson

and Tait, p. 423) to be proportional to the square root of

2Ph+Wk
where K is the radius of gyration of the beam about 0. For

stability this must be small
;

it is evident that, with the

exception of the third condition above, the conditions for sta-

bility are the very reverse of those for sensibility.

133.] Roberval's Balance. Roberval's Balance is an excel-

lent illustration of the principle of work.

Two equal bars, AB and CD (Fig.

157), revolve round axes through their

middle points, H and E, which are

fixed in a vertical support, HN; these

bars are connected by smooth joints to

two equal bars, AC and BD, and to

these latter bars are rigidly attached

two plates or scale pans, P and Q, the

points of attachment being any what-

ever, and one or both of the plates may
.lie towards the vertical support, or away from it (as in Fig. 157).

Suppose P and Q to be the magnitudes of two weights
placed in the pans P and Q, respectively. Then if for any
displacement of the bars round the points H and E, the pans
describe vertical spaces p and q, respectively, we shall have for

equilibrium
Pp-Qq=0.

Now, the bars AC and BD, being always parallel to the fixed

line HE, will be always vertical, and the vertical space through
which one moves up is obviously equal to that through which
the other moves down. Hence p = q, and we have for equi-
librium
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whatever be the lengths of the pans (prov'uld tli>'\r weights are

neglected), whatever be their points of attachment to BD and AC,
and whatever the points in the pans at which P and Q are placed.

If the weights of the pans are taken into account, the same

results follow if they are of equal weight.
If the pan P were replaced by the pan P', and the weight P

placed at P', the other pan, Q, remaining unchanged, and the

weights of the pans being either equal or neglected, equilibrium
would still subsist a result which seems at first sight very

strange.

If the lengths AH and HB, CE and ED are not equal, it is

Tf"D

easy to prove that - = j > and the condition of equilibrium is

M

P.HB = Q.HA.

134.] Balance of Quintenz. This is a compound balance

formed of a combination of several levers, and is used for

weighing very heavy loads. This machine also furnishes an

admirable example of the principle of work.

AB (Fig. 158) is a lever moveable about its fixed extremity, A;
MN is another lever moveable

about a fulcrum, F, fixed at its y. |_
middle point ;

CD is a moveable *

platform, which receives the

load Q, whose weight is to be

found ; this platform is con- H A
1 with the lever MNby a Fig. 158.

rigid vertical bar, DI, articulated

at D and 7
;
and the platform further rests against the lever,

AB, by an edge of contact at a fixed point, II, on the latter
;

finally, the two levers are connected by a rigid vertical bar, BM,
articulated to both.

The weight, P, employed to measure Q is attached to the

upper lever at JV. Let the system receive any slight di^platv-

incnt. then the lever, .//'. will turn round A through an angle

oO, suppose, and the lever MN will turn round /' through an

angle b<t>.

We shall arrange the dimensions of the machine in such a

manner that the platform, CD, may remain horizontal in the

di.-placement. The vertical descent of the point // is evidently

2
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AH. 50, and this is also the vertical descent of the point in the

platform above H.

The vertical descent of the point D is the same as that of /,

and this latter is obviously FI. 5<; hence if the platform

remains horizontal,

Fl.^- AH.bO.

Again, the vertical descent of M is the same as that of B ;

or

Hence from these equations we have

MF _BA
JT

=
AH'

which is the condition for the horizontally of the platform.

Denote -rjj by n. The equation of work is obviously

P x descent ofN= Q x descent of D,

or the result is the same as if Q were suspended from the point

7 of the upper lever.

Loads placed on the platform may all be weighed by means of

a constant weight, P, by merely moving the point of suspension

of this latter along the arm NF; thus, if P is suspended from

the point K between N and F, we shall have

P H

135.] Toothed Wheels. Motion may be transferred from

one point to another and work done by means of a combination

of toothed wheels, each one of which drives the next one in the

series. The discussion of this kind of machinery possesses great

geometrical elegance ;
but the space at our disposal renders it

impossible to do more than give a slight sketch of the simplest
case that in which the axes of the wheels are all parallel.

For the investigation of the proper forms of teeth, the student

is referred to Willis's Principles of Mechanism, Collignon's

Slatique, and Resal's Mecanique Generate.

Fig. 159 represents a toothed wheel, AI} moveable round a

horizontal axis, ad; the effort P, is applied by means of a
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handle, cd, which, when turned, causes the axis ab to rotate in

its bearings at a and b and to turn the wheel A
l -,

this wheel

causes another, 7^, in contact with

it, to rotate round a horizontal axis

which also moves in fixed bearings
at its extremities

;
on this latter

axis is fixed another wheel A2 ,

whose rotation in like manner

turns B., on its axis, which in the

figure is the axis of a cylinder to

which the resistance, Q, is attached.

Suppose that there are n wheels, Al} A2 , ... An ,
whose radii

are alt a.2 ,
... an ,

and n wheels, Blt B2 , ... Bn ,
whose radii are

b
l ,

b.2 , ... bn \
and let be = p^ and the radius of the cylinder

(or wheel) to which Q is attached = q. Then, if o^ ,
is the angle

through which the radius be revolves, the effort being always

applied tangentially to the circle described by its point of appli-

cation, the work expended is

Pp o>! ;

and if CD. is the angle through which, in the same time, the

cylinder rotates, the weight Q will be raised through a distance

gu)nt and the work done against the resistance is

?<>

Supposing then that no work is lost either by the friction of the

axes in their bearings, or by the friction of the teeth against

each other, we must have

when the machine is moving uniformly.

To determine the kinematical relation between <0j and <>., let

the angle through which B
l
turns be o>

2
. Then, since the dis-

tances described by the points of A
l
and B

v
which are in contact

are the same, a
1
talJ

= b
l
o>

2 . Also if to3
is the angle through

which
//_, turns, we have a.. co, = b.,u>y Proceeding in this way,

we have, by multiplying the corresponding sides of these equa-

tions together, </, ".,... a n . o>
l
=

//, lt.,...bn . u n .

Hence from (1) and (2),

P f !,...*'
For the calculation of the work lost by the friction of the teeth

among themselves see Collignon's Sfafigne, p. 468.



CHAPTER IX.

DETERMINATION OF MUTUAL KEACTIONS OF PARTS OF A SYSTEM.

136.] Action and Reaction. If in any system of bodies,

connected in any manner, A and B are two bodies in contact

between which an action of some kind is exercised ; then, what-

ever be the forces with which the body A acts upon the body B,

the very same forces, reversed in directions will constitute the

action of B on A. Let the whole system of forces acting on A,

excluding those produced by B, be denoted by (P), and let the

forces constituting the action of B on A be denoted by (R) ;

then we may sever the connexion between A and B, provided

that we have other means of producing on A the s}
Tstem of

forces (R). In the same way, if (Q) denote the whole system of

forces acting on B, those constituting the action of A on it

being excluded, the body, B, may be severed from A provided

that we have the means of producing a system of forces ( R)
on B, ( R) denoting a system of forces obtained by reversing

the direction and preserving the magnitude of every force in (R).

For example, the beam CD (Fig. 120) may be severed from

the other beam along any section, CB, provided that there be

introduced on CD either the single force R acting through A,

or the complex system of tensile and eompressive forces which

act at the section CB. This equality of magnitude and oppo-
siteness of direction of the forces existing between two distinct

bodies in contact, or between ideally severed portions of the

same body, is sometimes spoken of as the principle of the

equality of Action and Reaction
;
but it cannot be too strongly

impressed on the student that it is by no means the whole of

the Newtonian principle called by this name; for Newton

specifies several senses in which the terms Action and Reac-

tion can be taken, and in discussing one of them he has explicitly

anticipated, in great part, the principle of the Conservation of

Energy as has been pointed out by Thomson and Tait.
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137.] Examples of Internal Action. The cases which we

shall consider in this chapter are those in which the action

between two portions of a system ideally severed consists of a

single force. The simplest example of such action occurs when
a single point of one body rests against the surface of another,

the bodies being either rough or smooth. If the bodies are

smooth, the action between them consists of a single force

which is normal to ike surface of contact (see p. 47); and if'

rough, the action is still a single force which is not necessarily

normal to this surface. In all cases in which smooth spherical

joints or hinges are concerned, the action exercised on bodies

connected by them consists of a single force passing through
the centre of the joint. When rough joints are used, the action

will generally consist of a single force acting somewhere outside

the joint; or of a force and a couple acting at the joint; or,

possibly, of a couple alone. The tension of a string is also an

instance of internal action, and its nature has been already

explained in Chap. II.

Again, if we ideally separate into two portions by an arbi-

trary surface a mass of a perfect fluid in equilibrium, the action

of one portion on the other over a small area of the ideally

rating surface will consist of a single force acting normally
on the area. And we may always treat as a separate body any

Hi whatever of a fluid in equilibrium*, provided that ice

produce along the surface of (Inn ideally separated portion all the

v //////// tir>' arhnilli/ 1
,rodneed on it by t/icjlittd with whic/i if

was surrounded. It is by such separate consideration of portions

of a fluid that we arrive ;it a knowledge of its internal forces or

pressures. For example, if a heavy fluid, whether compressible
or incompressible, of uniform or varying density, be contained in

-sel, we can prove that the pressure is the same at all points,

P, Q, in the same horizontal plane. For, isolate in imagination
a hnri/ontal cylindrical column of the fluid, having small vertical

and equal areas at /' and Q for extremities, from the rest of

the fluid. Then, \\e may treat the cylinder of fluid PQ as a

l.'.dy. provided that, in addition to the external foive

(gravity) aetinir mi it. we introduce the forces whieh it actually

* It is usually said that we may, under the above condition, imagine any por-

tion of the fluid to l>< -.\ tin- imagined tvlulijicativn ia not only

wholly unnecessary but misleading to the student.
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experienced from the surrounding fluid. Now these forces

consist of normal pressures, ;;
and q, on the areas at P and Q,

together with normal pressures all over its curved surface, these

latter being all at right angles to the axis PQ. If now we

resolve horizontally all the forces acting on the cylinder, we get

p-q = 0, or p = q.

This demonstration shows, moreover, that in the case of a

heavy viscous or imperfect fluid, the pressures are not necessarily

equal at all points in the same horizontal plane.

For, in this case, the action of the rest of the fluid on PQ,

does not necessarily consist of forces normal to its surface, but

of oblique forces. Hence the horizontal component of the

pressure at P is not equal to the horizontal component at Q ;

the difference between them is equal to the sum of the hori-

zontal components of the oblique forces.

The importance of keeping such considerations in view may
be illustrated by the following example from Hydrostatics.

A conical vessel is filled with water through an aperture at

the vertex. From Hydrostatical principles it follows that the

pressure on the base of the cone is equal to the weight of a

cylindrical column of water, standing on the base, and having
a height equal to that of the cone

;
that is, the pressure on the

base is much greater than the weight of the water contained

in the cone. Now if we imagine the water to become solidified,

the curved surface of the cone may be removed, and the pressure

on the base will be equal to the weight of the ice, that is, the

weight of the water in the cone. An apparent discrepancy is

the result. But if we attend to the proviso that in the separate

consideration of the equilibrium of any portion of a system, solid

or fluid, we must produce upon the isolated portion all the forces

which were originally produced upon it by the neighbouring

portions of the solid or fluid, the difficulty disappears. In the

fluid state the liquid in contact with the curved surface of the

cone was pressed normally by a system of varying forces, and

the circumstances of the solidified body will not be the same as

those of the fluid, unless its surface is pressed in precisely the

same way. These pressures have a total vertical component,
which must be added to the weight of the block of ice in order

that we may obtain the true pressure on the base.

The action between two portions of a perfect fluid ideally
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M ]>arated by a plane surface of any area always consists of a

single force which is normal to the area; but the action between

two portions of an elastic solid along a plane section is by no

means so simple; the latter is not generally reducible to a

single force.

138.] Equilibrium of several Bodies forming a System.
It will now be clear that when a system is composed of several

bodies in contact with each other, we can consider the whole set

forming a single body in equilibrium under the action of

<jiven external forces ;
or we may consider the separate equi-

librium of any one body under the action of given external forces,

and the reactions of the other bodies with which it is in contact.

A few examples of such systems have already been given ;
but it

is proposed to devote the present chapter more especially to the

consideration of such questions.

EXAMPLES.

1. Two uniform beams, connected at a common extremity by a
smooth joint, are placed in a vertical plane, their other extremities,
which rest on a smooth horizontal plane, being connected by a light

rope ;
find the tension of the rope and the reaction at the joint.

L< t AC and CB (Fig. 160) be the beams, W and W their weights,
a and a their inclinations to the horizon, R and K the reactions of

the horizontal plane at A and B, and
T the tension of the rope.

If, then, we consider the two beams
as forming one system, the mutual
reaction ;it (' and the tension of the

rope will be internal forces of the

n, and will therefore disappear
from tlic equations of equilibrium.

forces on this system are simply, W, W, R and Pf.

Resolving ^vertically for the equilibrium of the system,

X+tf^ W+ II". (1)

Again, considering the equilibrium of the beam AC, the forces

ncting on it are W, R, T, ami tin- unknown reaction nt C. This

latter will IK- eliminated l>y taking moments about C. Thus we get

2/f cos a = 27T

sina+ IT cos a,

(the length of the \H-.\H\ dividing out), or

/.'= rtana + i II'. (2)

Similarly, taking moments about C for the equilibrium of SC,

R'= Ttana'-f \ II". (3)
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By adding (2) and (3), and making use of
(1), we get

. (4\
2 (tan a + tan a')

Again, let X and Y be the horizontal and vertical components of

the reaction at the joint. Then, for the equilibrium of the beam AC,

T-X=0,
W+Y-R=0.

W+W
2 (tan a + tan a')W tan a W tan a'

Hence X =

Y=
2 (tan a+ tan a')

If we wish to determine T by the principle of virtual work, let y be
the height of the middle point of either beam, and we have

_
(w+ W') dy-Td(A) = Q (5)

for an imagined displacement in which the beams are drawn out,
while A and JB remain on the ground. If AC = 2 a, EG 2a,
y = a sin a, AB = 2 a cos a+ 2 a' cos a'. Therefore

dy = a cos ado, d(AE) = 2 a sin ada 2a sin a da
sin (a + a")= 2a

cos a
da

(since from the equation a sin a= a' sin a"we have acosada=a'cosa'da').
Substituting these values of dy and d (AB) in (5), we get the same

value of T as before.

2. Two equal smooth spheres are placed inside a hollow cylinder,

open at both ends, which rests on a horizontal plane ;
find the least

weight of the cylinder in order that it may not be upset.
Let Figure 161 represent a vertical section of the system through

the centres of the spheres. Let P be the weight of the cylinder, a its

radius, W and r the weight and radius

of each sphere, It and R' the reactions

between the cylinder and the spheres
whose centres are and 0', respectively.

Then, the only motion possible for the

cylinder is one of tilting over its edge at

the point A, in which the vertical plane

containing the forces meets it. For, con-

sider the equilibrium of the lower sphere
which rests against the ground at D.

Fig. 161.

This sphere is in equilibrium under the influence of R' (reversed in

Fig.), the reaction of the upper sphere, S, acting in the line 0(/, its

weight, W, and the reaction of the ground at D. Now, since three of

these forces pass through (/, the reaction of the ground, whether the
latter is rough or smooth, must also pass through 0'. Hence, if d
be the angle which 00' makes with the horizon, we have for the

equilibrium of the lower sphere, resolving horizontally,

(1)
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Tin- upper sphere is in equilibrium under the action of R (reversed
in Fig.), W, and S. Hence for its equilibrium we have in the same

way, R = Scos0. (2)

.-. R = K. (3)

Again, the cylinder is in equilibrium under the action of R, R', P,
and the reaction of the ground. Resolving horizontally for its equi-

librium, we have the horizontal component of the reaction of the

ground = RR'= 0. Hence, even if the ground is rough, there is

no tendency to slip, and the only way in which equilibrium can be

broken is by turning round A.

Taking moments, then, about A, the point at which the reaction of

the ground acts, we have for the equilibrium of the cylinder

(4)

(5)

(6)

or Pa = 2Rrsm0.

Again, for the equilibrium of the upper sphere, we have

Substituting this value of R in (4), we have

Pa 2WrcosO.

But evidently

therefore, finally,

COS0 = ar

3. A heavy beam is moveable in a vertical plane round a smooth

hinge fixed at one extremity; a heavy sphere is attached to the hinge
by a cord; the two bodies rest in

contact; find the position of equili-
brium and tin- intt rnal reactions, tli< iv

being no friction between the bodies.

Let (Fig. 162) be the hinge, OA
the cord by which the sphere is at-

tached. tin; inclination of the cord

to tin- vertical, Cm, </>
the inclina-

tion of the beam to the vertical, W
tin- weight and > the radius of the

spin-re, / the length of the cord, a
tlie di-tance between and G, the

centre of gravity of the beam, and /'

its weight.
Then, ron.-idrrin<r the sphere and

1 tea in as one system, this system is

acted mi by the given forces W and /'. by the tension of the cord,
and by the r -i-taiice of the hin^e. The two latter forces will

be eliminated by taking moments about 0. We have then

II'. Om = P .On,

Fig. 162.
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Om and On being perpendiculars from on the directions of W and
P. But Om = (l+ r) sin 0, and On = a sin

</> ;
therefore

IT.
(Z+ r)sin

= P. a sin^>. (1)

This is the statical equation connecting and
<f> ;

the geometrical

equation is r
ci'n nnp

, or
l+ r

'

,-TV (2)

sn

(1) and (2) determine and <>, and therefore the position of equili-
brium. If R is the mutual reaction of the sphere and the beam, we
have, by considering the equilibrium of the sphere alone,

W
coa(0+ <t>)'

Again, if the cord is attached to the hinge but' not to the beam,
and if X and Y are the horizontal and vertical components of the

pressure of the beam on the hinge, we have for the equilibrium of the

_ sin cos
</>

cos (0+ ^)'

sin sin <f>

cos

Hence, if S is the resultant of X and Y,

sn sn
JF 5

(4)

Evidently S acts in the line OD, which joins the hinge to the point
of intersection of P and R.

If the cord is attached to the beam, X and F are the components
of the resultant of the tension of

the cord and the pressure on the

hinge.
4. Two heavy uniform rods are

freely jointed at a common ex-

tremity, and are connected at

their other extremities with two
smooth hinges in the same hori-

zontal line. Required the mag-
nitudes and directions of the

pressures on the hinges, and the

mutual reaction between the rods.

Fig. 163. Let AC and CB (Fig. 163) be

the rods
;
WandW their weights,

acting through their middle points, /and g ;
a and a their inclina-

tions to the horizon
;
R the mutual reaction at C ; S and & the

pressures on the hinges A and B, G the centre of gravity of the

system of two rods ; and the inclination of R to the horizon.
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Consider the equilibrium of AC alone. It is acted on by three

forces W, R, and S
;
and since we have drawn the line OC to represent

the direction of R, the direction of S must be Aq, q being the point of

intersection of JFand R. By taking moments about A for the equili-

brium of AC, we shall express R in terms of W, a, and 6
;
and by

taking moments about B for the equilibrium of BC, we shall express
R in terms of W, a

,
and 6

; equating the two values of R thus

obtained, we get a value for tan 6 which is obtained by dividing the

value of Y by that of A' in Example 1.

Considering the two rods as one system, this system is acted on by
tlu- tlin-e external forces, S, &, and W+ W, acting vertically through
G. Hence these must meet in a point, Q.

It is evident that this problem is the same as that in Example 1
,
and

that if the reactions S and f are resolved each into a vertical and a

horizontal component, the horizontal components will be equal and

opposite (by considering the two rods as one body and resolving

horizontally). These horizontal components have each the value of

the tension of the rope in Example 1, and the vertical components are

the values of 7? and If. Thus the problem might be completely solved

analytically.

Geometrical Solution*. The direction of the resistance at the joint C
can be easily determined as follows : From A and B draw two lines to

any point, D, on the line QG ;
let AD meet qf in E, and let BD meet

rg in II. Then the line EH will meet AB in 0, the point through
which the line of resistance at C passes. For, tin- triangles qrQ and
/,'///> are such that the lines, Eq, DQ, fir, joining corresponding

ices meet in a point (are parallel), therefore, by the well-known

property of triangles in perspective (which has been given at p. 124),
the intersections, A, B, 0, of corresponding sides must lie on a

right line. Hence is determined, and therefore OC, the line of

resistance.

The direction of R can also be found thus geometrically :

Since qrO is a transversal cutting the sides of a triangle AQB, we
have

AO __ Aq Qr _ Am a
j) _ Am np

OB
~

q(J

X
rl'.

~ ^ X
pB

~
JB

X M
_ Am <j<i _ AC cos a

W_~
pB

X
fG

~
JBCcoBa

f'W
But AO = AC *^+9, and B = BC^?^'t therefore

Bin sin it

'

rin(a cos a

Bin(a'-0)

from which we get the same value of tan Q as before.

* This elegant solution wu suggested to me by Mr. Henry Reilly.
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5. A sphere and a cone, each resting on a smooth inclined plane,

are placed in contact ;
find the position of equilibrium of the system,

and the reactions of the planes.
Let the sphere rest on the

plane OA (Fig. 164) whose in-

clination to the horizon is a, and

the cone on OB whose inclina-

tion is a'; let Wand JF'be the

weights of the sphere and cone,

R the mutual reaction between

them, /S'the reaction of the plane
OA on the sphere, T the re-

action of OB on the cone, and
let y be the semivertical angle
of the cone.

For the equilibrium of the
Fig. 164.

sphere we have

= W sin a

cos(a + a'

and for the equilibrium of the cone

From (1) and (2) we have

r sma

cosy

sn a

cos (a + of y) cos y

(1)

(2)

(3)

an equation which, instead of giving a position of equilibrum, gives
a condition to be satisfied in order that equilibrium may be at all

possible.
It is evident that (3) is the only statical equation that can be

obtained without involving the unknown reactions. Hence, if it is

satisfied, every position in which the bodies are placed is one of equi-
librium

;
and if it is not satisfied, the problem must be radically

changed, and one or other of the two bodies must rest in contact with

both planes. Suppose the cone in contact with both planes.
Here there are only three forces acting on the sphere, and there are

four forces acting on the cone, viz. W, R, T, and F, the reaction of

the plane OA, which is perpendicular to OA. R must now be

determined from the equilibrium of the sphere. Thus

R= W
cos (a + a'y)

To determine F, consider the equilibrium of the cone, and resolve

along OB. Then

r TIT/ / -nr Sin a COS y I /xF = [W sin a - W -
,

'
. 1 cosec (a+ a'),

cos (a + a y)
J
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To determine the magnitude of T, resolve the forces on the

.cone in the direction OA. Tlu-n

T = (JF+
sm a

sin (a + a')

The point N at which T acts is obtained by taking moments
about for the equilibrium of the cone. We thus get

T.OX= JP7i(tanycosa'-isin (Q + Rr cot(-
-

4

r being the radius of the sphere, and h the height of the cone.

ON is obtained by substitut-

ing in this equation the values

of Tiiml R given above, and it

is geometrically evident that

the point S lies between the

foot of the perpendicular from

P on OB and the foot of the

perpendicular from the inter-

section of F and W on OB.
If the sphere is in contact

with both planes, the discussion

proceeds in a similar manner. R is then determined from the
. quilibrium of the cone, Tacts in the perpendicular from P on OS,
an<l the reactions of the planes on the sphere are easily calculated.

If the weight of the sphere be greater than the value

ir
, sin a' . cos (a + a' y)

sin a cosy

n

given by (3), it is sufficiently clear that the sphere will descend to

contact with the plane

OB; whereas if it is less

than thi- value, tlif cone

will descend.

If thf condition (3) is

.-.iti.-l'ifd. tin- rf.-irtion T
of the plane OB on tin-

( i.i n is easily found. For,
1ft tin- directions of II"

and 1! im-ft in P- then

T mnt act in tin- per-

j.fiidi.-ulai-. I'Q, from P
on OB, and

Fig. 1 66.cos y

Similarly S may be found.

G. Two blocks, AC and BC (Fig. 167), rest against two fix. d

supports at A and B, and against each other at C ;
each is acted on l>y
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a given force (in addition to its weight) ;
find the lines of resistance

at A, B, C.

Ana. Let the resultant of the weight of the block AC and the

force applied to it be the force P ;
let the resultant of the weight of

BC and the force applied to it be Q ;
and let the resultant of P and Q

be R. Draw the line AB ;
take any point, h, on R, and draw Ah and

h, meeting P and Q in / and g, respectively. Then the line fg will

intersect AB in 0, the point through which the line of resistance at C

passes. Draw OC, and let it meet P in F and Q in G. Then

BG are the lines of resistance at A and B. (See Example 4.)

139.] System of Jointed Bars.

Fig. 167.

When a system consists of

a number of rods or bars

articulated, or connected

together by smooth joints,

there will be exerted at

the extremities of each rod

certain forces, or reactions,

which are produced by the

connecting- joints, and the

calculation of the directions

and magnitudes of these

reactions forms an important part of Statics as applied to the

construction of framework.

The joint connecting any two bars may be either a portion

of one of the bars or a hinge-pin distinct from both bars, and

the directions of the reactions at the extremities of a bar will

depend on the manner in which the external forces are applied.

Let us suppose that the joints at B and C (Fig. 167), which

connect the bar BC with the neighbouring bars, are distinct

from BC itself, and that the forces applied to the system act at

and on the joints. Then the reactions produced at and C on

the bar BC act along this bar. For, the only forces* acting on

the bar are the reactions of the joints B and C, and when two

forces keep a body in equilibrium, they must be equal and

opposite. Hence the reactions must act along BC. Suppose,

however, that the forces, still applied at the joints, act on the

extremities of the bar BC itself, and let Fig. 168 represent the

bar apart from the joints. Let the forces applied to it be P and

Q. Now the smooth joints must produce reactions which act

* The weight of the bar is supposed to be neglected.
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on the bar through the centres of the joints (see p. 140). Hence

BC is again kept in equilibrium by forces acting at its extremi-

tii-s, and therefore the resultant of the forces at B must be a

force acting in the direction BC
or CB, and the resultant of the

forces at C must be a force act- B

ini,' in the direction CB or BC.
Hence the reactions produced

by the joints cannot act along
the bar, but must assume some
such directions as R and S.

Fi8- l68 -

Thus, in any system of articulated bars, when the external forces
are applied at thejoints, the reactions will be in the directions of the

bars only when the external forces act at the joints on pins which

are distinctfrom the Lars which they connect.

140.] Theorem. When a system of articulated bars is in

equilibrium under the action of external forces applied at given

points in the bars, the statical condition of the system may be

determined by resolving the force applied to each bar into any
two components acting on the joints at its extremities, and then

representing each joint as in equilibrium under the action of the

components transferred to it together with reactions acting on

it along the directions of the bars which it connects.

Let Fig. 169 represent one of the bars detached from the

Fig. 169.

joints at its extremities, and let Fig. 170 represent the joint

which connected the bars AB and BC (Fig. 167). If a fore.- /

is applied to BC, it is, of course, allowable to break it up into

any two components, P and Q, acting on the bar. Let P and

Q act on the bar at its extremities, and 1ft A' IK- the reaction of

VOL. 1. P
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the joint at B on the bar, and S that of the joint at C. The

bar is then kept in equilibrium by the forces P and R at B, and

the forces Q and S at C. Hence the resultant of P and R must

be a force, T, along the bar
;
that is to say, if the forces P and

R act at any point, they produce a resultant T; or again, if we

reverse the directions of R and T (as in Fig. 170), the forces P
and T are equivalent to R. Now the joint was kept in equi-

librium by the equal and opposite reactions, R and R' (Fig. 170),

of the bars BC and AB. But we have just shown that R is

equivalent to the transferred component P of the force F and

the reaction T, acting along CB. In the same way, R' may be

replaced by a component of the force K (Fig. 167) acting on AB
and a reaction acting along AB.

We may, then, replace the external forces, K, ^,...(Fig. 167),

which act on the bars by any system of components passing

through the centres of the joints, and represent two equal and

opposite reactions as acting at the extremities and in the direction

of each bar of the system. But it must be remembered that the

reactions thus calculated (such as T, Fig. 169) are not the total

reactions at the joints.

The reaction at tJie end of each bar, thus calculated, is the re-

sultant of the total reaction at the joint and the component of the

force acting on t/ie bar which has been transferred to thejoint.

For example, the reaction along the bar AB is the resultant

of the total reaction, R, and the component of K which has been

transferred to the joint B.

The external forces, F, K, ... may be each broken up into two

components passing through the centres of the corresponding

joints in an infinite number of ways. In the calculation of

reactions in framework it is usual to break each of them up into

two parallel forces.

141.] Triangular Framework, Graphic Calculation. Let

ABC (Fig. 1 71) be a system oftriangular bars connected by smooth

joints; and let given forces, P, Q, R, keeping the system in

equilibrium, be applied at given points to the bars BC, CA, AB,
respectively. It is required to find the reactions at the joints.

The reactions on BC at B and C must, for the equilibrium of

this bar, meet on P. Suppose that they act along aC and aB.

Similarly the reactions on AB at A and B must meet on R.

Suppose that they act in cA and cB. And let the reactions on
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AC act in IA and 1C. Then aBc is a right line, since ' action

and reaction' at B are equal and opposite. Similarly cAb and

1Ca are right lines. Hence abc is a triangle whose sides pass

through three given points, J, B, C, and whose vertices lie on

Fig. 171.

three concurrent lines, P, Q, R. This triangle is therefore found

(Art. 97) by taking any point, r, on R
;

let rA meet Q in q, and

It t rB meet P injo; let pq meet AB in z; join z to <?; then C
:ml f/ in a and i, while bA and aJ? meet 72 in c. We

li:i\v thus found the triangle abc, along whose sides the reac-

tions act.

Let 7*!,
T

2 ,
T
3 ,

be the magnitudes of the reactions at A, Bt
C.

T _ sin CaO
__

06.8\na06 ac _ ac.Ob.R
1 T

9

~
sin 2/aO

"
Oc.smcOa'ai

"
ab.Oc.Q*

tf T m T bc.Oa ca .Ob ab.Oc
Hence r

i
:7'

2 :7'
3
= _

-g-
.

If thr jn-rpendiculars of the triangle abc drawn from tin

Oa QRsinbOc
1 irt-s are/?! ,/?2 , ^3 ,

the actual magnitude of T
l
= i_

20a </*. P. t-Q.*-R
or , where =| (P+Q + /')

C 1

with similar values of /'., and Ty
P 2
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The triangle ale may be regarded as a funicular polygon of

the given forces P, Q, R.

142.] Deformable Polygon of Bars. Let a plane polygon
of n sides be formed by n bars rigidly jointed together at their

extremities, and let n forces, P15 P2 ,...Pn ,
in the plane of the

polygon, be applied, one to each bar at a given point in its length.

Then if the force and funicular polygons of the given forces are

both closed, the figure is in equilibrium. Now let the rigidity

be removed from the joints, and let them become perfectly free.

The system will no longer, in general, remain in equilibrium,

because of the restriction now imposed on the internal force

between bar and bar viz., that it must act through their point
ofjunction (see Art. 103). Let us suppose the polygon to remain

in equilibrium and investigate the condition for this.

Kg. 172.

Fig. 172 represents a polygon of five bars acted upon by
forces -P

1S
P

2 ,
... P5 whose force and funicular polygons are closed.

Consider the separate equilibrium of the bar A51 Alz . It is

acted on by three forces, viz., Px and the reactions at its ex-

tremities. These must meet in a point, c
1 . Similarly the re-

actions at A5l and A^ must meet in a point, c5 ,
on P5 ;

and the

equilibrium of the joint A
51 requires that c^ A5l

c5 should be a

right line, and that the components of Pl
and P5 along it (the

other components of these forces being along c
i
AV2 and c5 A^ ,

respectively) should be equal and opposite. Producing c^ Alz to
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meet P
2 in C.,, and so on all round, we obtain a polygon

<T!
e2 c3 e4 c

5
e
l
which is a funicular of the given forces. Hence

the necessary and sufficient condition of equilibrium of the de-

formable polygon is that It is possible to describe a funicvim-

polygon of tie given forces whose sides all pass, in order, through

the joints of the deformable polygon of bars.

Analytical expression maybe given to this condition by finding

the locus of the pole of a funicular polygon two of whose sides

pass through A
12
and A^, the locus of the pole of a funicular two

of whose sides pass through A.^ and A^ and so on
;
and express-

ing that all these loci intersect in a common point, 0, which is

the pole of the funicular which circumscribes the polygon of bars.

By Art. 94 it is obvious that the locus of the pole of a funicular

which passes through A^ and AV2 is a right line, OL^ (Fig. 1/3),

parallel to the bar A
5l
A

12
. Denote

the length of this bar (to which the

force P
l

is applied) by H l

\ and de-

note the segments, b
v
A l2 and 6

1
A6V

into which jf^ divides it by /*> and

f^
l
\ the first being that adjacent to

the vertex A12 and the second ad-

jacent to A- v Then, in Fig. 173,

taking the line a^an as axis of y, ^
and a parallel to the bar A

51A12

through the point <zw as axis of a?, the equation of OL
l
is

/..'

y= /- AI
'i

where />, is the length of the side a
6l

a
l2

. This line, of course,

divides the line a,
tl

an into two segments in the same ratio as

the segments, l^ and l^\ of the bar A
6l
A

12
made by Pr

If, in the same way, we take the line an a
l2Z

as axis of y, and

a parallel through </,.,
to the bar A12 A& as axis of

,
the equation

of 07/2 will be j (2)

y= V'/'a.
j

where
jit is the length of a

ri
a2V and 1J is the segment, b...t .

of the bar A12 A& adjacent to Aa made by P2 . And similarly

we have the equations of the other line- <>L ,, 0//
4 , Transform-

ing these into equations all referml to a common origin and

axes, and expressing the condition that the co-ordinates of the
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point of intersection of any two must satisfy the equations of all

the rest, we obtain n 3 new conditions ofequilibrium of a deform-

able polygon formed of n bars, each acted on by an assigned force.

The analytical conditions are, however, more rapidly obtained

by the Principle of Virtual Work.

Thus, supposing the system to be in equilibrium, choose a

virtual displacement in which all the vertices except A12
and J23

remain at rest, i.e., let the bars A 51
A

J2
and A3 A23 pivot round

Asl
and J34 , respectively. Remembering that the point of in-

tersection, 7, of A51A12
with ^34^23 (produced) is the instan-

taneous centre for the bar A^A^, we find with no difficulty the

equation

/6
d) sin e

i
sin AX + ftW sin A

lt
sin (02-A23)

p
LW sin A.n sin (0.? + A, 9 ) \ + -~. l.w sin 0, sin A, 9 = 0,*> A> \ ' 1-i/ J *

/(i) ** *5 -1 -

the angles of the polygon being denoted by the letters at the

vertices.

Now P
1
sin

X
is the component of P

l
normal to the bar A5l A12

p
measured outwards from the polygon, and , would be the

v^ '

normal force per unit length if the normal component of P1 were

I W
uniformly distributed along the bar, so that Pl j=r

would be

the total normal force over the segment b
l
A5r Denote this

/(3)

normal force over the segment b
3 A3 ,

measured outwards from

the polygon. Denote it by ^V4
(3) . And, moreover, if <

2 denotes

the angle Ib
2 A23 ,

while v^ denotes the component of P2 per-

pendicular to 7
2 62 measured towards the same side of this line

as that from which 6
2 is measured (i.e., the lower side of 7

2
#
2
in

the Figure), this equation becomes

AT (3)

= 0. (a)

In like case, P3
~ would be the total amount of

sind>9
I * t

The same type of condition is obtained for the three bars

A12 A23 ,
A2Z AU) A5i AIS, and for each of the n 2 systems of three

similarly taken in succession.

Special cases of deformable polygons of bars are treated inde-
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pendently in the examples following-, and the student may verify

the general results typified by (a) in these particular cases.

143.] Polygonal Framework. We shall now consider aframe-
work of bars connected with each other by smooth pins at their

extremities. The framework, moreover, is supposed to contain no

superfluous bars, i.e., it contains just so many as are necessary to

render its figure invariable. The principle of calculating
1 the

reactions of the bars in such a framework in general will be

sufficiently understood from the discussion of the simple frame-

work represented in Fig. 174. The graphic method here used

is that which is usually employed in the calculation of the

reactions in bridges ;
but in such structures the bars are so

Fig. 174.

numerous that the figures of graphic statics which apply to

them are extremely complicated, without, however, involving

any more of principle than is involved in a simple framework

consisting of only a small number of bars.

i 74 n -presents a framework consisting of seven bars kept
in cimililtrium by forces applied at the vertices. These forces

must of course satisfy the two graphic conditions <>f equilibrium!

i.e., their force and funicular polygons must both be closed. Any
three of them support- /' . /',. /'.may be arbitrarily assumed

both in magnitudes ami in directions; and. in addition, \\c may
assume the line of action of Pv Then P

l
and 1\ are completely

determinate, because we can construct the resultant of P3,
P4,

P&

(Art. 92) ; produce the line of action of P2 to meet this resultant ;
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aIK

Fig. 175-

join their point of intersection to the vertex 1, and this will be

the line of action of P
t

. Hence Pj and P2
are both known.

Having thus completely determined the external forces and

drawn their force polygon, a
15

an a
23 34 45 al5 (Fig. 175), we

proceed to represent the equilibrium of each vertex separately.

Each vertex is in equilibrium under the action of the external

force at it and the reactions in the bars which meet in this vertex.

Hence, it is obvious that

^f the external force is com-
'"

''/

.''/" pletely equivalent to these

reactions reversed, and

therefore that it might be

replaced by them in the

force polygon of the ex-

ternal forces. If then we

choose to replace any force

say P4,
which is repre-

sented by #34045 by the reversed reactions of the bars which

meet in the vertex, 4, it is clear that the lines representing P4

and these reactions must, in Fig. 175, form a closed polygon.
Denote this polygon by (P4 , p4). Similarly the lines in Fig. 175,

which represent P5 and the reactions in the bars which meet in

vertex 5 must also form a closed polygon, (P5 , p5), say. And
since one of these reactions viz., that in the bar 45 which joins

the vertices of P4 and P5 belongs also to the previous polygon,

(P4, p4 ), these two polygons must have one side in common.
But in the force polygon of the external forces, the forces P4

and P5 have been drawn consecutively, i.e., they have a point, 45 ,

in common
;
hence the side common to the two polygons must

pass through this point ; or, in other words, through the point
of intersection of any two consecutive forces in diagram 175 must

be drawn a parallel to the bar which connects their vertices in

Fig. 1 74 ; and, moreover, no other line can pass through this

point, because in drawing the polygon (P4 ,/>4) only two forces

are represented at each vertex, so that in this polygon we have

P4 and the reaction in bar 45 at the point a45 ;
and similarly only

two forces are represented at this point in the polygon (P5 , /a5),

viz., the force P5 and the reaction just mentioned.

Hence through each vertex, a
12 , a^, . . .

,
of the force polygon of

the external forces pass three and only three lines.
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Uut, in addition to the vertices fl
12 ,

a.a ,
. . . in Fig. 175 which

correspond to two forces in Fig. 174 and the bar joining their

vertices, there will be other vertices, a
]24 ,

o234 ,
a

l4r> , through each

of which pass also three, and only three, lines, viz., lines parallel

to the bars forming the various triangles into which the frame-

work (Fig. 174) is divided. That is to say, through a 145 will

pass three lines parallel to the sides of the triangle 145 of

Fig. 174. It is easy to see that the line in Fig. 175, which answers

to the bar 45 in Fig. 174, must pass through the point of inter-

section, a
l46)

of the lines answering to the bars 15 and 54

(Fig. 174). For we may replace the force P5 by its two com-

ponents along 51 and 54
; and, imagining these components to

act at the vertices 1 and 4, respectively, suppress altogether the

bars 51 and 54. This would give us two external forces at the

vertex 1
,
and also two external forces at the vertex 4

; but the

two external forces must at each vertex be replaced by one. If

this is done, the external force at the vertex 1 would, in Fig. 175,
be represented in magnitude and sense by the line

145
tf

125
and

the external force at vertex 4 would be represented by the line

a
34
a
i465 these forces would then be consecutive in the force poly-

gon of external forces which would be then a
l45

a
}2 a.K a

34
a
li6

and 14 (Fig. 174) would be the bar joining their vertices in the

framework. But we have just seen that the line answering to

the bar 14 should be drawn through the point, a
145 ,

of intersection

of the two (consecutive) external forces acting at vertices 4 and 1.

Hence, then Through each vertex in Fig. 175 pass three, and
< >

n(>/ tli !><, lines, and these lines answer cither to two congee/

forces and the bar joining their vertices, or to three bars forming a

;//>.'
in fhe framework.

This removes any ambiguity which may arise in the construc-

tion of the diagram representing the reactions in the framework.

Thus, considering the equilibrium of the simplest vertices,

viz., 5 and 3, in Fig. i 74, we determine the reactions, fl^a^, and

a
44 fl, 4 ,.

in the t\\o liars 13 and 45 which belong to the vertex 4.

Then tor the equilibrium of tliis vertex \ve draw (*\u au a
4!>
a\W

hing the pointa^atwhich it is doubtful for amoment whet her

\\e are to draw a parallel to the force in the bar 42 or a parallel

to the force in the l-ar II \vhieh are the tun remaining forces

acting on B. The consideration that the three lines to be drawn

through a
14fi

answer to three 1'ar.s forming a triangle, ami that
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since one of these lines, a45 145 , already answers to bar 45 which

belongs to the triangle 451, decides the question in favour of

the bar 41. Thus the doubt is removed.

The force polygon of the external forces may be drawn in

several different ways. Indeed, if our only object is to find the

resultant of any number of forces acting on a rigid body, the

sides of the force polygon may be drawn parallel to the forces in

any order whatever. But in the calculation of the reactions in

the bars of a framework we must observe the rule that in draw-

ing the force polygon of the external forces no two forces are to

be drawn consecutively unless their vertices are connected by a bar.

In other words, two consecutive forces in the force polygon cor-

respond to two forces at the vertices connected by a bar ; but the

converse does not hold i.e., it is not true that the forces which

act at every two connected vertices of the framework are con-

secutive in the force polygon.
For example, vertices 1 and 4 are connected, but their forces

are not consecutive in Fig. 175.
The force polygon might have been constructed by drawing,

in succession, lines to represent Pv P5 , P4,
P2 ,

P
3. If the

external forces are applied at given points in the bars, and not at

the joints, they may all be replaced by components at the joints, as

explained in Art. 140, and the calculation of the reactions which

would thence result proceeds graphically as explained in this

Article. The true reactions exerted at the extremities of each

bar in the actual case reactions which are not directed along the

bars can then be found as explained in Art. 140.

The student who is desirous of studying the force diagrams of systems
of frameworks, such as those which belong to Engineering and Archi-

tecture, is recommended to study, in the first instance, Levy's Statique

Graphiqw. An excellent work, treating very fully of the theory of

reciprocal figures and their statical applications, is Favaro's Lezioni di

Statica Grajica (Padova, 1877). For great elaboration of the subject
Culmann's Die Grapldsche Statik may be consulted.

144. Method of Separation of the Bars. Another method,
which is often convenient in practice, consists in representing
the bars as disjointed from each other, and replacing the reactions

by rectangular components, parallel to chosen axes, at their ex-

tremities. A single example will suffice. Four equal uniform

bars, AB, BC, CD, and DE (Fig. 176), are connected by smooth

pins at B, C, D, and the extremities, A E, are fixed in a horizontal,
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line by smooth joints ;
it is required to find the position of equi-

librium.

Let a be the common inclination ofAB and ED to the horizon,

and ft that of CB and CD.

Let Fig. 177 represent the bars AB and BC separated ; X. the

reaction at C, which is evidently horizontal ; X and Y
l
the com-

Fig. 176.

ponents of the reaction at B. These components act on AB in

directions opposite to those in which they act on BC. Finally,

let W be the weight of each bar.

Resolving vertically for the equilibrium of BC,

Y,= W. (1)

Taking moments about C for the equilibrium of BC,

2X
1
sin ft + JFcos ft

= 2 Y
v
cos ft,

or *! = 4 JP'cot ft. (2)

Taking moments about A for the equilibrium of AB,

(W+ 2 7,) cos a = 2 X
l
sin a,

or, substituting the values of X
v
and Y

l
from (2) and (l),

tan a = 3 tan ft. (3)

With this equation must be combined the geometrical equa-
tion which expresses that AE is equal to the sum of the hori-

zontal projections of the bars. If the length of each bar is a,

and the distance AE = e, we have

c = 2 a (cos a + cos ft). (4)

K<
I
nations (3) and

(-1)
determine a and ft, and therefore the

position of equilibrium.

Graphically, a and ft can be found from the intersection of a

right line and a magnetic curve.
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EXAMPLES.

1. A triangular system of bars, AS, BC, and CA, freely jointed at

their extremities, is kept in equilibrium by three forces acting on the

joints ;
determine the reactions at the ends of each bar.

Since the forces are applied directly to the joints, the reactions will

act along the bars. Let P, Q, K denote the forces applied at A, B, C

respectively; let the reactions in the sides BC, CA, ABbe denoted by
Tv Tv Ts ;

and let the applied forces meet in a point 0.

Then for the equilibrium of the joint C, we have

T, _ sin AGO _ a.OA.smAOC

T<i

~
sin SCO

~
b.OB.sinBOC1

'

a, b, c being the sides of the triangle.

But P : Q : R = sin BOC : sin COA : sin AOB. Therefore

1\ a.OA.Q'
- = > or

TZ b.OB.p

T -T . T _"OA.l>.OB.c.OC
P

'

Q R
If is the centroid of the triangle, we know (p. 134) that

P : Q : R = OA : OB : OC ;

therefore T
t

: Tz : T3
= a : b : c,

or the reactions are proportional to the sides.

If is the orthocentre (or intersection of perpendiculars),

P:Q: = a:b: c;

therefore T^ : T
z

: T
3
= OA : OB : OC.

2. A number of bars are jointed together at their extremities and
form a polygon ; each bar is acted upon perpendicularly by a force

proportional to its length, and all these forces emanate from a fixed

point. Find the magnitudes and directions of the reactions at the

joints.

[This problem and the following elegant method of solution are due
to Professor Wolstenholme.]

Let AB and BC (Fig. 178) be any two adjacent bars of the polygon,
and let P be the point from which emanate the forces, Pp, Pq, . . .

,

acting on the bars. Then the reactions at the joints A and B, acting
on AB, must meet in a point, p, on the line of action of the force Pp.
Draw AQ and BQ perpendicular to the reactions in the directions A})
and Bp. Now since the sides of the triangle AQB are perpendicular
to three forces which are in equilibrium, and since the side AB is

proportional to the force to which it is perpendicular, the sides AQ
and BQ are proportional to the forces to which they are perpen-
dicular, that is, to the reactions at A and B, respectively.
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Fig. 178.

Let q be the point in which Bp intersects Pq. Then the forces art MILT

on the bar EC must act in the directions qB, Pq, and qC. Draw CQ.
In the triangle BQC the sides JBQ and BC are perpendicular and

proportional to two of three forces in equilibrium ; therefore CQ is

perpendicular and propor-
tional to tin- third, that is,

to the reaction at C. In the

same way it can be shown
that the reaction at any joint
is perpendicular and propor-
tional to the line joining the

joint to Q. This point Q is,

therefore, a reaction centre

for the system. It may be

shown that the polygon of
bars must be inscribable in a

circle. For, since the angles
at A and B are right, the

quadrilateral ApBQ is in-

scribable in a circle whose

diameter is pQ. If at the

middle point of AB a perpendicular be drawn to AB, it will pass

through the centre of the circle, and will, therefore, bisect Qp. But
this perpendicular is parallel to Pp; therefore it bisects PQ in 0.

Also, since the reactions at A and B are proportional to QA and QB,
the same point Q must be determined by considering BC and the next

bar, as was determined from the bars AB and BC
; consequently the

point must be the same
;
and since it is evident that OB OC,... ,

must be equally distant from all the vertices of the polygon, that

is, the polygon must be inscribable in a circle.

The reaction centre is therefore constructed by joining P to the

centre of the circumscribing

circle, and producing PO to

Q, so that PO = OQ.
3. The preceding construe-

tion can be extended to the

case in which the forces acting
on the polygon are equally

inclined, but not perpendicu-
1 H-. t<> the sides.

Let AB, BC,... be rides of

ttit- j>olygon, and let forces

proportional to the sides act

in the lines Pb, Pf, ... BO

that LPbB = LPcC= ...

It is n <|iiir
(1 to prove that Fig. 179.

for equilibrium the polygon
must be inscribable in a circle, and to find the reaction centre. The

reactions at A and B must meet in a point on the force in 7*6. If,
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then, we draw at A and B lines, QA and QB, making with the direc-

tions of the reactions angles equal to PbB, we shall have a triangle,

QAB, the sides of which are each equally inclined to the corresponding
force ; and, since AB is proportional to the force in Pb, it follows that

QA and QB are proportional to the reactions at A and B. It is easy
to prove that if through A and B any two lines, Ap and Bp, be drawn,

meeting in a point on the right line Pb
; and at A and B lines, AQ

and BQ, be drawn making with Ap and p, respectively, angles equal
to PbB, the locus of Q is a right line, ma, making Aa = Bb, and
Z.maB = LimbA . Drawing the line Qd, in like manner, by making
Cd = Be and /.QdB = PcC, we obtain the point Q, which is the reaction

centre.

Now, since /.PcC = LPbB, it follows that ZbPc is the supplement
of LB

;
and since /.QaA /.QdB, it also follows that /.aQn = TT B.

Hence the quadrilateral mPnQ is inscribable in a circle, and this

circle must pass through 0, the point of intersection of the perpen-
diculars to AB and EG drawn at their middle points, since /.mOn is

also the supplement of B. Hence also

LQPO = /.QnO =-ncC, and QO = OP.
e

Again, the reactions at A and B being proportional to QA and QB,
the same point Q must be determined when BC and the next bar are

considered. Hence the point is the same. But

therefore the polygon is inscribable in a circle.

The point P being given, if the angle which the forces through it

make with the corresponding bars varies, the locus of the reaction

centre, Q, is a circle concentric with that round the polygon, its radius

being OP. To construct the reaction centre, then, we describe a
circle round as centre, having radius OP, and draw PQ making the

/.OPQ = the complement of the angle which the forces make with
the bars.

4. A system of heavy bars, freely articulated, is suspended from
two fixed points, P and Q (Fig. 180); determine the magnitudes
and directions of the reactions at the joints.

Let the bars be denoted by the

numbers 1
, 2, 3, . . .

,
and let their

weights be Wlf W
2 ,
W

3 ,
....

Then transfer ^ W t

and ^ IF
2
to

the joint connecting 1 and 2,

which we shall denote by (1, 2).

Transfer \ W2
and \ Ws

to the

Fig. 1 80. joint (2, 3) ;
IF

3
and \ Wt to

(3, 4), &c. Thus all the forces

act at the joints. Let T^ ,
T

2 ,
T

3 , . . . be the tensions acting along the
bars 1, 2, 3,... on the joints, and let Sa ,.Sn ,

S34 ,
... be the total

reactions at the joints (1, 2), (2, 3), (3, 4), .... For simplicity suppose
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the bar 2 to be horizontal. Now, construct a force-diagram (Fig. 181),
by drawing a vertical line, AD, and measuring off

AB =

Also take BO parallel to the bar 2 and equal to

the tension T
t ,

which is the constant horizontal

component of each of the ten.- ions. The lines OA,
OC, OD,... will then be parallel to the bars 1, 3,

4, ... and equal to the tensions in them. Hence,
if a be the inclination of 3 to the horizon,

and in the same way the inclinations of the other Fig. 18 1.

bars may be expressed in terms of the inclination a.

W
Again (Art. 140), the reaction Sa is the resul'ant of T

l
and -

II

Hence, taking A a = ~t Oa will be equal and parallel to Sir
W W

Similarly, taking Bb = - ->&udCc = ?
> the lines Ob and Oc will

m M
be equal and parallel to the reactions Su and Su. The tangent of

the angle made by M with the horizon = _ = ? . tan a.

Similarly for the directions of the other reactions.

If the weights of the bars are all equal, the tangeuts of the inclina-

tions of the successive bars are tan a, 2 tan a, 3 tan a, ... and the

tangents of the inclinations of the reactions are $ tan a, tan a,

tan a,

5. Six equal uniform liars, freely articulated at their extremities,
form a hexagon ABCDEF (Fig. 182). The bar

I-' I) is li\.-d in a horizontal position, and its

middle point is connected by a string with the

middle point of the lowest bar, AB, in such a

manner that the bars hang in the form of a

regular hexagon. Find, by a force-diagram, the

tension of the string and the magnitudes and
ions of the reactions at B and C.

Ant. If Jr is the weight of each bar, t In-

tension of the string = 3 II' ; t he reaction at C is

W
horizontal, and = "/ the reaction at B = IPA / T! and makes

with the horizon an angle whose tangent = 2>/3.

6. Prove that the reaction . Hie liar /!'' is the intersection

of a perpendicular to BC at 6' \\iHi the line joining the middle points
ad BC.

7. Three bar?, freely articulated, form a triangle ABC, the centre
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of whose inscribed circle is 0, Each bar is acted on by a force

passing through 0, proportional to the sine of half the angle subtended

by the bar at 0, and bisecting this angle. Prove that the reaction at

A makes with OA an angle whose tangent is

A
sm-

B C
cos--cos-

(This is a direct example of the Theorem of Art. 1 40.)

8. AB (Fig. 183) is a rigid bar whose weight is neglected fixed at

one extremity, A, by a smooth joint ;
CD is another such bar fixed at

by a smooth joint,which is vertically below A, and jointed to AB at D.
From B a given weight, P, is suspended ;

find the magnitudes and
directions of the reactions at the joints.

Ans. The reactions at C and D are along CD, and each

= P
'

;
the reaction at A is in AO, being the intersection

A\j . AJJ

of CD produced with the vertical through B, and

AC. AD
9. In example 5, if the bars BC and CD, AF and FE, are replaced

... o by any bars all equally inclined to the hori-

zon, show that the reactions at C and ^will
still be horizontal.

[One simple proof of this is obtained by
taking moments about B for the equilibrium
of BC, and about D for the equilibrium
of CD. It follows then that the perpen-
diculars from B and D on the line of action

of the reaction at C are equal.]
Fig. 183.

10. Two uniform heavy bars are freely jointed at a common ex-

tremity, and are fixed at their other extremities to two smooth joints
in a vertical line

;
find the reactions at the joints.

Ans. Let G (Fig. 1 84) be the centre of gravity
of the bars, m and n their middle points. It follows,

by taking moments about A and C for the equi-
librium of the bars separately, that the segments of

AC made by the line of the reaction at B are pro-
portional to the weights of the bars. Hence, taking
ng = mG, the reaction acts in the line gB. The
reactions at A and C act, therefore, in Ag and Cg.

If JFis the weight ofAB, the reaction atB- 1 W-*Fig. 184.

a
and the reaction at A = \ W g~ . Hence the reactions at A, B, and C

gn
are proportional to gA, gB, and gC.
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11. The iVL'ular hexagon of IMII-H in example 5 rests in a vertical

plane, the bar AB being fixed in a horizontal position, and the joints
/'and ''an- connected l>y a string; lind the tension of the string, and
the : acting on the bar FE at its extremities.

Ana. The tension = JF-/3 (
W being the weight of each bar) ;

W /7 /3
the reaction at E - A / -

, and it makes with FE sin"1

} A / -
;

<s V o Y 7

W /ST / 3~
the reaction &iF= A / -r and it makes with FE sin" 1

J\/
1 2. Four equal uniform heavy bars, freely jointed together at their

extremities, form a square, ABCD', the joint A is fixed, while the

diagonally opposite joints B and D are connected by a string, and the
whole system rests in a vertical plane, the string being horizontal ;

lind the tension of the string and the magnitudes and directions of

the reactions on the bars at A, B, and C.

ATM. The tension = 2 IF; the reaction at C is horizontal and
= \ IF"; the reaction on the barBC at B makes with the vertical tan" 1

J,

x/5
and = W-

; the reaction on AB at B makes with the vertical tan" 1

:],

and = H'
; and the reaction on AB at A intersects the liue BD at

t

a distance \BD from B, and is equal to %W.
13. Six equal uniform bars, freely jointed at their extremities, form

a regular hexagon, ABCDEF; the joint D is connected by strings with

the joints /', A, and B, and the system hangs in a vertical plane, the

joint 1) lu-iiii,' fixed; find the tensions of the strings and the reactions

at the joints.

.! nit. If W = weight of each bar, the tensions in the strings DB
and DF are each H'\/3, and the tension in DA = 2 IP. Also, sup-

pi ing the strings to be connected with pins distinct from the bars,

tli.- reactions at Taiid E an- vi-rtical and ci|iial to \ If, the reactions

at Bund F, on the bars ^/? and .!/'. are hori/.ontal and equal to | IK\/3,
and the reactions at A, on the \mnAB and A l-\ are each equal to

\W*r1* These latter reaction'- act in the lines drawn from A to the

middle point.-oi the two veitical bars, BC and FE, respectively.

14. Two uniform heavy liars. All and /If. connected by a smooth

joint at A*, rest e;ich on a smooth vertical prop, the props being of 1 he

Mime height ; lind the po-ition of equilibrium, A/If heiiiLT horizontal.

Ant. If 1C and 'la are the weight and length of All. II" and _'

'

the weight ami length of IK', c the distance between the props ;
then

X, the distance of the middle point of AB from the ,ding

prop, is given \>y the equation

VOL. I.
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15. ABC is an isosceles triangular framework of heavy bars jointed

together at the vertices, the equal sides are A C and BC ;
the extremities

A and CB rest on two smooth vertical pillars of equal height, the

plane of the triangle being vertical ;
a weight P is suspended from

the joint C ;
find the reactions at the joints.

Ans. Let W = weight of AC weight of EC
\
a = /.CAB;

then the reaction on AC at C makes with AC an angle 6 such that

tan 9 = =-. r the horizontal and vertical components of this
2

reaction being, respectively, ^ (P + W) cot a and \ P. The reaction

between the bars AC and AB has for horizontal and vertical com-

ponents, respectively, ^ (P+ JF)cot a and W+ %P.
16. Three uniform bars, AB, BC, CD, freely jointed at B and C,

are attached by smooth hinges to two points A and D in the same
horizontal line, the lengths of AB and CD being equal; a fourth

uniform bar, EF, rests horizontally against AB at E and against CD
at F

;
find the reactions at the joints and hinges.

An*. Let a = /.DAB
;
AB = CD = 2a

; BC=2b; EF=2c;
P = weight ofAB = weight of CD

; Q = weight of BC
;
W = weight

of EF. Then the horizontal component of reaction at A

- -
o

--
sin 2a v2acosa /

vertical component of reaction at A = P + \(Q-\- W) ;
horizontal com-

ponent at B = \ IF tan a (previous horizontal component); vertical

component at B = \Q.



CHAPTER X.

EQUILIBRIUM OP BOUGH BODIES UNDER T1IK INFLUENCE OP

FORCES IN ONE PLANE.

145.] Criterion of the existence of Friction. We have

already learned to regard Friction as a passive resistance
; and

every passive resistance comes into existence for the purpose of

stopping some motion. Thus, the normal reaction of a surface

on a body in contact with it comes into existence for the pur-

pose of preventing the body from penetrating the surface at the

point of contact
; and if the circumstances of the case were so

arranged that there was no tendency to this penetration, the

magnitude of the force (normal resistance) required to prevent
this motion would be zero.

Friction comes into existence for the purpose of preventing a

ain motion motion in the tangent plane of a body resting

against a rough surface. If the circumstances in any case of

t u-o rough bodies in contact are such that there is no tendency
to slip at their point of contact, the force required to prevent
this motion (friction) will not come into existence.

(Iran-ally, in the case of all passive resistances, if there is no

t<
txl-ni-ij In the displacement which a passive resistance is reqi

to prevent, thisforce will not come into pfay.

11- nee in many cases of contact between rough bodies the

conditions and circumstances are exactly the same as if the

bodies were smooth; and to find whether in the contact of

tuo bodies friction ad- or not ////<//////>'
that f/tf Innhf* were

smooth at fln-ir ,,ni,if <y'.-'.///,/,-/,
ami if no displacement would rf*nlt.

tl,ix
xii,

, ffiction does not come ////</
///<///

/// that
],<>'/

u/.

In illustration of this consider the problem in Example 24,

p. 155. How would the circumstances be altered if the peg Q
were rough ?

The peg being rough, let it l>c imagined to become smooth,

and what motion occurs ? Clearly none, supposing the board to
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be rigid. Hence as there is no tendency of the side AS to slip

over the peg, there is no friction called into play, and the case is

the same as if the peg were smooth. .But if the board is not

rigid, the forces acting can bend its fibres and elongate or

contract them
;
and if we imagine the peg to become smooth,

it is possible that (even a very slight) slipping might ensue at

the peg, and as this slipping is prevented by the roughness, the

force of friction really acts in the case, and the pressure on the

hinge is modified by the assumption of smoothness at the peg.

However, even when the board is elastic, it is possible that no

friction is called into play, as will be explained in Art. 152.

Rankine's hint that friction is analogous to shearing stress

has been already pointed out.

146.] The Cone of Friction. The essential characteristic of

a smooth surface is that it is capable of

resisting in a normal direction only. If

two rough surfaces are in contact, their

mutual reaction is not constrained to

assume a direction normal to the sur-

face of contact. Each surface is capable
of offering resistance to the other in any

Fig. 185.
direction which does not make with the

normal to the surface of contact an angle

exceeding a certain magnitude. Thus (Fig. 1 85), let two rough
bodies, A and B, be in contact at any point, P, and let PN be
the normal to the surface of contact.

Let A denote the greatest angle that the total resistance at P
can make with PN, or, in other words, the greatest obliquity of

the mutual reaction
; then, describing round PN a right cone,

CQD, whose semivertical angle, NPD, is equal to A, this cone is

called the cone offriction, and the total resistance at P can act

in any direction whatever included within this cone. This

angle A is what we have called in Chap. Ill the angle offriction,
and its tangent is the coefficient offriction for the two surfaces

considered. For, if E^ denote the normal pressure between
them at P, and F the force of friction (which acts in the

common tangent plane), it is clear that when the resultant of

7?x and F acts along any generator, PD, of the cone, we have
F
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so that tan X is the greatest ratio of the force of friction to the

normal pressure. This quantity we have called /x.

If a rigid weightless rod, M (p. 47), be pressed against a

rough surface at 0, the greatest angle that the rod can make
with the normal is the angle of friction. For, since the rod is

act i'd on hy only two forces, viz., the applied pressure and the total

-tance at 0, these must be equal and opposite, or along the rod.

Hence the greatest obliquity of the rod to the normal is A.

If the resistance to slipping is not the same in different

azimuths, i. e., if it is different in different planes through the

normal, the value of A will not be the same in all these planes,

and the cone of friction will not be a right circular cone.

147. Axiomatic Law of Friction. We have said that the

total resistance of a rigid surface is a force which can assume

any magnitude. This force will in any given case be exerted

by the surface to such an extent as is necessary to preserve equi-

librium, but to no greater extent. It is in its nature a passive

resistance, i.e., one which can be exerted to any extent, but

which will not be exerted beyond the bare requirements of the

case. Within certain limits, also, as we have seen, it can

ime any direction, and in any given case it will, if possible

assume such a direction as will preserve equilibrium. In fact,

in virtue of its passive nature, we must regard the resistance of

a rou^h surface as an opposition called into existence by the

action of external forces ;
and it seems clear that these forces

will call into play only that amount of opposing force, exact

both in magnitude and in direction, which will just counteract

their own action.

The amount of assumption contained in this principle is

enunciated in the following axiom :

The total resistance which act* at any ]><>int of a rough surface

/////, if possible, assume such a maijiniinl,- un<l <1 '/> /i<nt as will

preserve equilibrium at that /

'I'h is axiom is sometimes expressed thus : Tf passive resistances

can give Cf//>
:
/i^/-/in/t, ///<>/ iriff.

148.] Remarks on this Axiom. Two important observations

must be made on the principles contained in this axiom.

Firstly, it is important to understand the circumstances which

may render it impossible for the resistances of rough surface- \<>

the equilibrium of a system in any given position.
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Suppose that a body, acted on by given external forces, is in

contact with a rough surface at a single point, P. Then, for

equilibrium, it is necessary that the resultant of the given

external forces should pass through P, and that the total re-

sistance at P should be equal and opposite to this resultant.

But if the direction of the resultant makes with the normal

to the surface of contact at P an angle > A, it is impossible that

the total resistance could take the required direction, and equi-

librium cannot subsist.

Again, take the case in which a heavy beam, AB (Fig. 1 86),

rests against a rough horizontal and

an equally rough vertical plane.

Describe round the normals to the

planes at A and B the cones of

friction, and let the sections of

these cones by the plane of the

figure be rAs and pBs. Let G be

pi lg6
the centre of gravity of the beam,

and GFthe vertical line through it.

Then the beam, if in equilibrium, is so under the action of

three forces, namely, the weight through G and the total

resistances at A and B. These three forces must meet in a

point, and if it be possible to find a point in which they can

meet, the resistances will assume proper values. Now, in the

figure it is impossible to find any point on GF, the line of action

of the weight, the lines drawn from which to A and B could be

directions of possible resistance at both A and B. For the

portion of GF which is inside the cone of friction at B is

outside the cone of friction at A, and vice versa. Hence, for

equilibrium, there must be some portion of tfie line GF included in

tJie space pqrs, common to both cones offriction.
Unless this condition is satisfied, it is not possible for the

total resistances to give equilibrium, whatever their magnitudes

may be. A possible position of equilibrium is represented in

Fig. 187. For, if from any point on the portion, mn, of GF,
which is included in the space common to both cones of friction,

lines be drawn to A and B, these lines are possible directions of

total resistance at A and B
;
and in this case the actual magni-

tudes and directions of the resistances at A and B cannot be

determined by what is called Rational Statics.
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If it be proposed to find the position of /h//itiny equilibrium,
that is, the position in which the beam is bordering on motion,

Fig. 1 88.

we must make the vertical through G pass through r, as in

Fig. i 88.

In this case there is only one point on GV which is inside

both cones of friction, viz., the point r. Hence the total re-

sistances act in rA and r, and each makes the limiting angle

(A) with the corresponding normal. Moreover, both resistances

are now determinate. If be the angle made by the beam
with the horizon, we have, from the triangle ArB,

2 cot rGB = cot ArG cot BrG,

or 2 tan = cot A tan A,

I-M*

?.

'

which defines the position of limiting equilibrium.

It may, therefore, in certain cases be impossible for the total

-tance at one or more points to preserve equilibrium; and

this impossibility is always due to something in the arrangement
of the figure or the external forces which requires the direction

of the resistance to make with the normal to the surface of

nmtuct an angle > the angle of friction.

Again, in the axiom is contained the following important

proposition :

If a body rests against a rough surface at a point, and if the

/y //////;/////// i* abnt to be broken by some change in the actingforces,

equilibrium at that point will, if possible, be broken by a rolling

instead of a sliding motion.
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For, in this case, the point of the body actually in contact

with the surface would be kept at rest. This part of the axiom

is sometimes stated thus Tf a body can roll, it will roll, in

preference to slipping. Exactly the same considerations as before

determine the possibility or impossibility of the rolling
1 motion.

Such a motion will always take place if it does not require the

total resistance to make with the normal to the surface of con-

tact an angle > A.

For example, let us discuss the following problem :

A heavy cubical block rests on a rough
\

c ^^*( horizontal plane, and a string attached to

the middle of one of the upper edges passes

over a smooth pulley, and sustains a

weight which is gradually increased. Find

B the nature of the initial motion of the

'W block, the string and the vertical through

Fig. 189. the centre of gravity of the Hock being in

the same verticalplane.

Let ABC (Fig-. 189) be the vertical plane in which all the

forces act; CO the line of the string, intersecting the

vertical through the centre of gravity of the block in 0; P the

suspended weight, and W the weight of the block. (Since the

length, of the string is immaterial, no linear magnitude can

enter into the result, therefore the side of the block need not be

known.)
Now in all such cases as this, it is necessary to observe the

following rules :

1. Write down the motions of the system which are geo-

metrically possible.

2. Exclude those which would obviously violate any of the

fundamental rules of Statics.

3. If there remain possible cases of slipping and rolling (or

turning over], solve the problem on the supposition that equi-
librium is broken in the latter way, and if this does not require
too great a value of the angle of friction, equilibrium will be

broken in this way.
In the present case, the following motions are geometrically

possible :

(a) The block may be lifted vertically off the plane.

(/3)
It may turn round the edge A.
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(y) It may slide in the direction AS.

(8) It may turn round the edge B.

Now (a) is obviously excluded, because if the block is just out

of contact with the horizontal plane, it is acted on by only two

forces, namely, its own weight and the tension of the string.

But since these cannot be equal and opposite, equilibrium cannot

be broken in this wav.

Suppose (/3)
to happen. Then the total resistance of the plane

passes through A and through 0. But it is impossible that

three forces acting in the directions of AO, OC, and OW could

be in equilibrium. Hence
(ft)

is excluded.

Tlu- cases (y) and (5) remain. Now in virtue of the principle,

if
(ft)

is possible, it will happen. Solve, then, on the supposition
that the block turns round B. It is then kept in equilibrium

by its weight, the tension, and the total resistance which must

act in BO. If the L CBO is less than A, the angle of friction,

the block will turn round B; but if CBO > A, this motion is

impossible, and slipping must take place in the direction AB.
To express this analytically, let 6 be the angle made with the

horizon by the string OC, and let fall from a perpendicular on

BC meeting BC in p. Then

Op Op \

tan CBO =
7/6'- . tan 2 tan 6

Hence if n (or tan A) be > -
,
the block can turn round

_ ^ inn u

B, and will do so if P is gradually increased.

Tin- magnitude of ]' which \\ill just cause the tilting <>f the

Mock is found by taking moments about B. We evidently
"1)tain

Suppose that CBO > A. or that u< - Then the in-
I tan!

crease of /' will produce a sliding motion, and we can ea-ily find

the magnitude and point of application of the total resistance of

the plane. Now since CBO > A, the point. )/, of application of

the total roi-tance i,f the plane, is found by drawing fr.-m Oa
line f>M making with the normal to tlie plane an angle = A.

The point .I/ lies bet w.-en /.'and the point in which the verti.-ul

through cuts AB. P can then be determined either by taking
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moments about M, or by resolving vertically and horizontally.

Resolving vertically, we have,

R cos A = W Psin0;

resolving horizontally,

R sin A = P cos
;

Pcosfl [iW
,'. : = u. or P =

-.W P sin 6 cos 6 + fj.
sin

The direction of the string might be so modified as to render

possible either a sliding in the direction BA or a tilting over A.

Thus, in Fig. 190, if the line of the string intersect the line

of action of the weight in a point, 0, below the horizontal plane,

the two motions possible are evidently one of slipping in the

direction AS and one of tilting over the edge A. The latter

will take place if it can. If it does, the total resistance must

act in the line OA, and for this the angle DAR must be < A.

But if DAR is > A, the block will slip in

the direction AS, since the horizontal

p component of the tension acts in this

sense. The condition for tilting over A is

now evidently
1

M >
tan 0-2'

The values of P corresponding to both

kinds of motion are calculated as before.

I90> 149.] Limiting Positions of Equi-
librium. When a body rests in contact

with any number of rough surfaces at several points, the equi-

librium is said to be limiting if a slight alteration of a definite

kind in the circumstances of the body would cause the equi-

librium to be broken. The slight alteration referred to depends
on the nature of the particular problem of equilibrium. As has

been explained in Art. 51, p. 67, every statical problem relating
to the equilibrium of a body is always one or other of the three

following :

(a) What is the least force that will sustain a body in a given

position on given surfaces, or the greatest force that will allow

it to rest in such a position ?

(#) With given forces and given supporting surfaces, what is

the position of equilibrium such that if this position be slightly

altered, the body will not rest ?
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(<r)
With given forces, what is the least amount of roughness

of the surface or surfaces which will allow the body to rest in a

given position ?

Thus in Fig. 189 of the last Article, supposing that the

an^-le CBO<\, the equilibrium of the block will be limiting
if P = \ //'sec 6

; for if P is slightly increased above this value,

the block will turn over B.

Again, in Fig. 188 of the same Article, supposing the question
to relate to the position of equilibrium, the beam AE will be

in limiting equilibrium if its inclination to the horizon be

1
>

= tan-1 (- -),
because if it be slightly lowered below this

position, it will slip.

Finally, if in the same figure we wish the beam to be sus-

tained at any inclination a to the horizon between the equally

rough vertical and horizontal planes, the equilibrium will be

limiting if the angle of friction =--, because, if it be less

than this, the beam will slip.

150.] Comparative Safety of Equilibrium of a System at

different Points. When in a system in equilibrium the direc-

tions of the total resistances at the various points of contact

with rough surfaces are known, we are enabled to say at which

of the points slipping is most likely to happen in case some of

the circumstances should be altered.

This will be rendered clear by the following examples, taken

from Jellett's "Theory of Friction," p. 61 :

uniform brains, AC ami C, connected at C by a smooth

hinge, are placed, in a vertical plane, with their lower ex-

t rein i ties, A and E, resting on a rough horizontal plane. If

equilibrium be on the point of being broken, determine how this

will happen.

163, example 4, p. 204, will represent the beams if the

hinges at ./ and II are conceived to be removed and these points
on the ground. Then, exactly as in that example, tin-

direction of the mutual resistance at C ia determined. Suppo^n^
.If to lie the longer beam, it is clear that the angle which the

total reM.-tancc, AQ t
at A makes with the normal to the surface

of contact
(i. e., to the ground) is greater than the angle

which the total resistance J3Q makes with the normal at A
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--, tan AQn _ An
tan Qn Bn

'

Now An=.Am + mn\ and if 2 a, 26, 2c, are the sides BC, CA,

A, we have
ac a(6cosa + a cos 8)Am = b cos a, mn = fG = r = -

,

a+b a+b
a (b cos a + a cos 8}

Similarly

therefore

a + b

_ (U* + 2
ali]

cos a + a 2 cos 8

a + b

~ _ (a
2 + 2 al] cos + b

z cos a
_

jj/lf
- --

.

a + b

AnBn = r (cos a cos 8).
a + b

^

But since AC>BC> cos a>cos/3, therefore An>Bn.
Hence the angle AQ,n>BQ,n; that is, the total resistance at A
makes with the normal at A an angle greater than that made by
the total resistance at B with the normal at B. Consequently,
if any circumstance should continually diminish the angle of

friction (which is supposed to be the same for both beams) the

total resistance at A would be the first to attain its limiting

obliquity to the normal, and slipping would then take place at A
in the direction BA, while the beam BC would turn round B.

We might inquire which of the beams will first slip if they
are drawn out so as to increase the angle C, and the same result

will follow, since for any given position of the beams the direc-

tions of all the resistances are determinate. In each case the

angle AQn must be the first to

reach the value A, and therefore the

longer beam, AC, must slip first..

The result may also be expressed
thus in any given position of rest,

equilibrium is more safe at B than

at A.

There are also cases in which the

comparative safety of equilibrium
can be determined, although the

directions of total resistance are not

completely determinate at all the points at contact. For example
two unequal cylinders rest on the ground at given points, A

Fig. 191.
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and B (Fig. 191), while a third cylinder rests on them at points

ji
and

q.

Supposing- either that there is a gradual diminution of the

coefficient of friction (which is the same at all the points of

contact), or that the lower cylinders are gradually drawn asunder,

mine the nature of the initial motion of the system.
Denote the cylinders by the letters at their centres. Then

the cylinder D is kept in equilibrium by three forces namely,

1st, its weight, which acts through A\ 2nd, the total resistamv

of the ground, which also acts through A; and 3rd, the total

-tance of the cylinder C at p. Now, since the first two forces

act through J. the third must also pass through this point.

Hence the total resistance atjo acts in the \\nepA, and therefore

the total resistance of the ground at // must take some inter-

mediate (but unknown) direction, Alt. In the same way, the

total resistance at q is proved to act in the line qB, and the total

resistance of the ground at B must act in some direction, BS,
intermediate to BE and Bq. The resistances in Ap and Bq at/>

and q meet in a point, P, on the circumference of the upper

cylinder.

Now the comparative safety of equilibrium at the different

points of contact, A, B, p, y, will depend on the angles made by
the total resistances at these points with the normals to the

surfaces of contact ; and it is manifest that since the angle

l).\l> > Jj.lll and DpA = JDAp, the total resistance at p makes a

greater angle with the normal, DC, to the surface of contact

than that \\hieli the total resistance ut A makes with the normal

.//A Hence equilibrium is safer at A than at p. For a similar

11, equilibrium is safer at B than at q. Consequently tho

final comparison is to be made 1> t\\e n the points yj and q. Now
the line /,y can be proved by geometry to pass through the point
in which El) intersects tt.\\ and supposing the radius ///;'>.//>,

thi.~ |>oint will be at the left -hand siile of the figure. Let a be

the acute an^le which y/y make- with the ground. Then, since in

the triangle /,('./
the \<:i- angles at

//
and y are equal, it is easy to

see that . ///_/////:=_>. o,- jCW>pCW. Hut the :,n-le

which the total n >i-tancc at y makes with the normal qCis \qCH .

and the an^le which the total roi.-taiice at/? makes with the

normal jtC\s \pCII \ therefore if the friction \\, re gradually and

uniformly diminished even where, or the cylinders drawn out. the
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resistance at q would reach its limiting obliquity before that at p.

Hence the initial motion will be a slipping of the cylinders C

and E at the point q,
and a motion of rotation at the other points

of contact.

151.] Virtual Work of the Total Resistance. Suppose one

rough body to roll on another through a small angle whose

magnitude is regarded as an infinitesimal of the first order.

Then, neglecting infinitesimals of a higher order, the point of

the rolling surface in contact with the other surface is at rest

during the displacement that is, the virtual displacement of the

point of application of the total resistance between the two bodies

is zero. Hence for a virtual displacement which consists of a

small rolling motion of one rough body on another, the total

resistance will not enter into the equation of virtual work of

either body. Of course in no case can the mutual action of two

rigid bodies in contact enter into an equation of virtual work for

loth bodies.

It is a principle in Kinetics that in a motion of pure rolling

of a body on a rough fixed surface no work is done between any
two positions by the total resistance a principle which the

student will have no difficulty in comprehending, since for each

small motion the work done by this force is infinitesimal com-

pared with the work done by other forces acting on the body.

152.] Friction as dependent on Initial Arrangements. In

dealing with natural solids, and not with strictly rigid or

indeformable bodies, the existence or non-existence of friction

sometimes depends on the way in which a body or system has

been placed in the position which we are considering. This will

be made clear by the following example. A heavy trap door (or

a beam), AB} Fig. 126, p. 147, moveable about a fixed horizontal

axis at A, has a rope attached at .5, and this rope is also attached

to any fixed point C ;
determine the pressure on the axis A.

The line of action of the pressure must, of course, go through

0, the point of meeting of the other two forces, but beyond this

we know nothing about it until we know the nature of the axis.

If the axis is smooth, or if it is rough but so worn that the

contact of the door with it takes place along a single line, the

action between the door and the axis will consist of a force

passing through the axis, as has been amply explained in Art. 104.

But if the axis is rough and contact takes place all round it, the
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line of action of the resultant force is not generally determinate.

However, even in this case this resultant force may pass through
the axis. The axis being rough, let us imagine it to become

smooth, and what motion results? The rope, being slightly

extensible, would yield a little, and slipping would take place

over a small surface at the axis
;

so that the supposition of

smoothness alters the circumstances of the case. But suppose
that (the axis being still rough) the rope has been stretched,

when the door is placed in position, to such an extent that the

moment of its tension about the axis is equal to the moment of

the weight of the door
;
then clearly if we imagine the axis to

become smooth, no motion will result no slipping at the axis
;

and since the displacement which friction is required to prevent
does not take place, friction does not act, and the case is the

same as if the axis were smooth. The resultant in this case is

therefore determinate.

153.] Friction of a Pivot. Let a cylindrical pivot, ABCD
(Fig. 192), on the top of which a given force is applied, revolve

I

Fig. 193. Fig. 193-

in a closely fitting bearing, EFGIf, and let it be required to

calculate the moment of the friction on the base, AJ9, about the

axis of the pivot. Suppose Fig. 193 to represent the base of the

pivot, and let P = the whole normal pressure on the base, which

we shall suppose to be uniformly distributed over the base. Divide

the area AB into a number of narrow circular strips, of which

one is repn-mtcd in the figure. Let Oa = x, Ob = x + <1 r
.

OB = r, n = coefficient of friction. Then since the whole

pressure is uniformly distributed, the pressure on the strip whose

area is = 2 nxdx is = 2 IT as dx, or
- Hence the sum of

irr r

the forces of friction, acting in the directions ofthe tangents to the
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strip, is
** (X

But since the tangents to the strip are all at

the same distance from the centre, the moment of friction on the

strip is equal to the sum of the forces of friction multiplied by
the radius, x, of the strip. Hence the moment of friction over

the whole surface is

/or u.Pr. fl)
f

If the base, instead of being a full circle, is a ring, or collar,

whose internal and external radii are rl and r2 ,
the friction per

unit of surface is j, -
. , and the moment of friction is

/;

7* 2 ^* 4* "

/ J 2\>
r o/^'-S V (

2
)

/ 4* * 4* * I X 4* * /T * *

rx [ft r-i ) r^ r
v

154.] Wearing away of the Step. The piece which supports

a pivot, and in which it revolves, is called a step. When
the pivot revolves, the friction against the step wears away its

own surface and that of the step. The amount of wear at any

point of the step depends on the magnitude of the force of

friction and the relative velocity of the rubbing surfaces at this

point. Thus, suppose that ABC (Fig. 194) represents a section

of the step through the axis, HP, of the pivot, and that Q is any

point of contact of the pivot and step.

If/ is the magnitude of the force of

friction at Q, the wearing at Q in the

direction of the normal will be propor-
tional to / and also to the amount of

rubbing surface which passes over Q in

a unit of time. Supposing the pivot

to revolve round its axis with an angu-
Fig. 194. lar velocity o>, the point of the pivot in

contact with Q moves in a horizontal

circle with a velocity = co . QM, or &> . y ; QM, or y, being the

perpendicular from Q on the axis of the pivot.

But the amount of rubbing surface which passes over Q in a

unit of time is evidently proportional to the velocity at Q. Hence

the normal wearing of the surface at Q is proportional to
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Let ABC (Fig. 195)

Fig- '95-

If u be the magnitude of the normal pressure per unit of sur

>, and IM the coefficient of friction, we have/= /x.
Hence the normal wearing of the surface at Q is proportional to

ta^ny. (a)

155.] Friction of a Conical Pivot.

represent a section of a conical step by
a plane through the axis, BP, of the

pivot, APC being the surface at which

the pivot enters the step.

Supposing that the pressure on the

top of the pivot is uniformly dis-

tributed, it will evidently be uniformly
distributed over the area APC

;
that

is, there will be a constant normal

pressure, n, per unit of area on APC.
Now it is impossible to determine by elementary methods the

law of distribution of the pressure on the step. The following

investigation proceeds on the assumption that the normal pres-

sure per unit of area, or as it is properly called, the normal

it'ity if pressure, is constant over the surface of contact.

Let n be the constant pressure per unit of surface of the step.

If ds is a small element of the line BC at Q, the distance of

which from BP is y, the corresponding elementary strip of

conical surface is 2-nyds, and the moment round BP of the

friction on this strip is

2-nydsxiJLHxy,

or 2pTrny
2 dt.

Putting ds = -
,
and integrating over the surface of the

Dill (/

step from y = to y PC r
t we have the moment of the

whole friction equal to

3 siu

P
If P = the whole pressure on the top of the pivot, n =

^ ;

hence the moment of friction

2M
Pr.~

3 sin 6

Comparing this with the result in Art. 153, we see that the

VOL. I. R



242 EQUILIBRIUM OF ROUGH BODIES.

moment of friction in the case of a conical is greater than in the

case of a cylindrical pivot of equal radius.

156.] The Tractory, or Anti-Friction Curve. In the case

of a conical pivot the wearing away of the step is not uniform at

all points. Hence after a sufficient time the pivot will not be in

perfect contact with its step. If, however, the step has such

a form that the vertical wear is the same at all points, the pivot

will simply sink into the piece which supports it, and remain

always in contact throughout its surface with the step.

We propose to investigate the form of the step in which the

vertical wear will be the same at

all points. Let Fig. 196 represent a

section of the step through the axis

of the pivot, and let CC f
be the

vertical wear at C, and QQ' the ver-

tical wear at Q. Then CC' = QQ',

Q being any point on the curve BC.

Hence the new curve, J3Q' C', is

simply the old curve BQC moved

through a vertical distance CC'
= QQ

/ = h, suppose.

Now (Art. 154) the normal wear at Q per unit of surface is

Hence, if Qq is normal to the step at Q,

n being the normal pressure per unit of surface on APC, which

we also take to be the normal pressure per unit of surface on

the step.

"

cosQ'Qq
the curve at Q. Hence

Qq
sin MTQ ' QT being the tangent to

A =

or

or

ds

dy

ds

= a constant,

QT = a constant.

Therefore the curve BC is such that the length of the tangent
terminated by PS, or the axis of x, is constant at all points-.

This curve is known as the Tractory. If t = the constant
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length of the tangent, and PC is the axis of y, we have

&

or

or

V
= dx,

the minus sign being given to the square root, because 31Q
diminishes as x increases. Integrating this last equation (by

assuming y = t sin
</>)

we have for the equation of the tractory

_ /^z_

7

The curve approaches PB asymptotically, and the step is formed

by the revolution of the curve round PB. This pivot is known
as Schiele'* Anti-friction Pivot.

EXAMPLES *.

1. A uniform rectangular board, ABCD (Fig. 197), rests in a

vertical plane against two equally rough pegs, P and Q, in the same
horizontal line, two adjacent sides

of the board being each in contact

with a peg. Find the position of

limiting equilibrium.
A lie the angle of friction,

the inclination of the side AH to

the horizon in the position of

limiting equilibrium, G the centre

of gravity of the board, PQ = a,

and AG c.

Then if the board is on the point
of slipping down at Q and up at

]'. the total resistances at/* and Q
will act in the direct ions PO and

Fig. 197.

QO, which are in. -lined at the angle X to the normals at P and Q to

the sides /!/? and AD, respectively. If 0' (not represented in Fig.) be

the (mint <>f meeting of the normals at /' and (J, it is clear that a

circle \\ill pass through the point* M'O'OQ; and then-tore LOAO'
= A. And since AO* = PQ = a, we haye

(1)

* Many of the following examples are due to Mr. Jvllett, and are taken from
his Theonj o/J-'ii

K 2
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Again, since /.O'QP = 0, we have LQOG |- (A. + 0), and

evidently, LQOA - 0, therefore LAOG = -(A. + 20). IfZ&4= a,

7T

it is clear that LAGN = -
(0+ a). Now the position of equilibrium

a

is found by the equation

A . sin AOG = AG . sin AGN.

Substituting in this equation the value of AO from (l), we have

acosA.. cos (A + 20) = c . cos(a+ 0),

which defines the position of equilibrium.

2. A heavy uniform beam rests against a rough horizontal plane
and against a rough vertical wall, the vertical plane through the beam

being at right angles to the wall and the ground; determine the

greatest weight that can be affixed to it at a given point, so that

equilibrium may be preserved.
If the beam be inclined to the vertical at an angle less than the

angle of friction for the beam and the ground, equilibrium cannot be

broken by attaching a weight, however great, to any point of the

beam.

Let AB (Fig. 198) be the beam, its inclination to the horizon, W
its weight, 2 a its length, P the weight suspended from the point Q in

the beam, BQ = x, A. and A.' the angles of friction at A and B, re-

spectively.
Draw the lines AO and BO, making the angles A. and A' with the

normals, An and Bm, at A and B.

Thenwhen the resultant of TFandP passes through 0, equilibrium will

be at its limit. For, if this resultant

acts in a line to the left of OF, the

vertical through 0, it will be possible
to find an infinite number of points
on it such that when joined to A
and B the joining lines will be

possible directions of total resistance

at A and B (see Art. 148).
If the resultant of W and P acts

in a line to the right of V, there

Fig. 198. will be no point on it inside both

cones of friction, and therefore equi-
librium will be impossible. Hence for limiting equilibrium, we have

by taking moments about 0,

W. GV=P.QV,
G being the centre of gravity of the beam.
The lengths G V and Q V are easily obtained from the data. We

may observe that if the point Q lies between G and V, equilibrium
can never be broken, however great P may be. For it will then be

impossible by increasing P to bring the resultant of P and W to the

right of OF.



EXAMPLES. 2 if>

These results follow also from the usual mode of solution of such a

problem.
Let R and S be the normal reactions at A and B, and fi and p the

coefficients of friction at these points. Then, resolving horizontally,

S=nR; (2)

ing vertically, R + p'S = P+ JF; (3)

taking moments about Bt

2aR (cos0n sin 0}
= (Px + Wa) cos 0. (4)

P+ W
From (2) and (3) we have R =

(5)

and by substituting this value of R in (4), we get

'-2(l -M tan 0)

2(l-/itan0)-a;(l

Now it is easy to see that BO = 2a
C S

/\
+

*/., and F=
cosA' 1 utanfl cos(A A)

; therefore .5 F = 2 a -5-7 ^77-* and (5) may be written

from which it appears that if x = B F, the required force is infinite
;

and if x>BV, it is negative, or equilibrium can never be broken by
any downward force.

The second part of the problem follows from (5), because if

H tan 6 > 1, or, in other words, if the angle nAB< A, the denominator
will be negative. That it is impossible to break equilibrium in this

case is evid n< from Fig. 199. For the point is now at the right
of the vertical wall, and at whatever point along AB the resultant of

P and IF acts, it is possible to find points on it which are within both
- of friction.

Kg. 199. Fig. aoo.

3. Two unequal uniform beams, connected by a light rope attached

to their middle points, rest in a vertical plane, an extremity of each
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beam resting on a rough horizontal plane. If the coefficient of friction

is gradually diminished, which beam will slip first 1

Let the beams be AB and A'I? (Fig. 200), and let C and C" be their

centres, and AB>A'Bf
. Now the beam AB is in equilibrium under

the influence of three forces, viz., its weight, the tension of the rope

CCf, and the total resistance at A
;
and since the first two meet in C,

the third must also pass through this point, that is, the resistance at A
acts along the beam. In the same way the resistance at A' acts along
A'B'

;
and by considering the equilibrium of the system, we see that

the vertical through G, the common centre of gravity, must pass

through 0, the point of intersection of the resistances. Now the

angles which these resistances make with the normals at A and A'
are equal to mOA and mOA', respectively; and the comparative safety
of the equilibrium at A and A' depends on the magnitudes of these

angles. Now mOA'>mOA. For, draw C'q horizontal and Cc[

vertical; then, since CG<(?G, qn<nC
/
) and ct, fortiori, pn<n(j>.

., , . Am tan mOA .. ..

Therefore Am<mA ;
but r.= 7; therefore, mOA >mOA,mA tanmOA

and if the friction were gradually diminished, the total resistance at

A' would reach its limiting inclination before that at A. Hence the

short beam will slip first.

4. A cylinder is supported on a rough inclined plane by a string
coiled round it in a direction perpendicular to its axis, the string

passing over a smooth pulley and sustaining a weight. Find the

limits to the direction of the string.
Round A, the point of contact of the cylinder and plane, describe

the cone of friction, the section of which by the plane of the figure is

nAm, the angles nAC and CAm being each =A.
Let OB be any direction of the string, intersecting the vertical

through the centre of the cylinder in 0. Then, so long as is

between the points m and , equilibrium is

possible, because JO is a possible direction

of total resistance at A. There ii, of

course, a particular magnitude of the sus-

pended weight, P, corresponding to the

direction OB of the string, and this magni-
tude is found by taking moments about A.

If 6 is the angle made by the string, OB,
with the inclined plane, we have

2cos2 -

i being the inclination of the inclined plane.

If, the direction of the string being OB,
P have a value greater or less than this,

the cylinder will roll up or roll down the plane.

Drawing from m two tangents, mt^ and mt
2 ,

to the cylinder, we
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have the extreme directions of the string; that is, the point at which
the string leaves the cylinder must lie between the points of contact
of mt

t
and mt

t ,
on the upper portion of the cylinder ;

for it is evident
that if the string leaves the cylinder at any point ont-ide these limits,
tin- point in which its line intersects that of W will be vertically
above m, that is, outside the cone of friction.

5. A heavy sphere is placed on a

rough inclined plane at a point P
(Fig. 202), and is kept in position by a

heavy rough beam, A B, which is move-
able about a fixed extremity, B, the

coefficient of friction for the sphere and
the beam being the same as that for the

sphere and plane. Supposing that the

friction is gradually diminished at both

points of contact, P and Q, or that the

sphere is pushed further up between the

plane and beam, determine the nature

of the initial motion.

The total resistances at P and Q must meet in some point, 0, on the

vertical through C, the centre of gravity of the sphere. Beyond this,

however, their directions cannot be determined. The comparative

safety of equilibrium at P and Q will depend on the relative magni-
tudes of the angles, CPO and CQO, which the resistances at these

points make with the corresponding normals. Now it is easy to show
r>f\ r<o

that CQO >CPO ;
for sin CPO = - sin COP, and sin CQO = - x

Fig. 202.

Bin COR, therefore but COR>COP, therefore-

em CQO am COR
CQO > CPO, and if from any cause the friction is diminished, or the

sphere pushed higher up, slipping must take place at Q and rolling at /
'

6. A cylinder is placed on a

rough inclined plane, and a light

rope is coiled round it in a plane

perpendicular to its axis and

containing its centre of gravity ;

this rope, after passing round

the cylinder, is attached to the

middle point, // (Fig. 203), oi';m

edge of a cubical Muck whose

height is equal to the diameter
of the cylinder. Supposing the

inclination of the plane to be

gradually increased, determine

the manner in which equili-
brium will be broken, the. CO-

Flg. 203.

efficient of friction being the same for the cylinder and plane as for

the cube and plane.
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The motions which are here geometrically possible are

(1) The cylinder may roll and the cube may turn over the edge (7.

(2) The cylinder may roll and the cube may slip.

(3) The cylinder may slip and the cube may slip.

(4) The cylinder may slip and the cube may turn over.

Now if is the point of intersection of the vertical through the

centre of gravity of the cylinder with the rope, it is evident that

the total resistance at A acts in the line OA. In the same way if

0' is the point of intersection of the vertical through G, the centre

of gravity of the cube, with the line of the rope, the total

resistance of the plane on the cube must pass through 0', and if

D is the point in which the line of action of the weight of the cube

intersects its base, the total resistance must evidently pass through
some point between C and D.
Now this total resistance, wherever it acts, makes with the normal

to the plane an angle greater than BAO] for tan BAO''= \ tan i,

? being the inclination of the plane, and the angle which O'D makes
with the normal to the plane = i

;
hence the angle made with this

normal by a line joining 0' to any point between C and D is > t, and,
& fortiori, >BAO. Consequently the cylinder can never slip before

the cube, and cases 3 and 4 are to be rejected. The choice then is

to be made between 1 and 2
;
and (see Art 148) if the cube can turn

over, it will do so. Hence we solve on the supposition that the

cube turns over G, and if this does not require too great a value of

the coefficient of friction, the cube will turn over.

The problem is to be solved by equating the values of the tension

of the rope derived from the consideration of the equilibrium of the

cylinder and that of the cube.

For the equilibrium of the cylinder take moments about A, and we
have T=|TFsinz, (1)
T being the tension of the rope and W the weight of the cylinder.

Again, since by supposition the cube is about to turn round C, the

total resistance of the plane acts through this point. Taking moments
about C for the cube,

T.CH= W'.CGsmg-i),4 '

or T = \W (cos t - sin
i). (2)

Equating the values of T in (1) and (2), we have

But in order that CO' may be a possible direction of total resistance,
the angle HCO

f
must be<A, or i&n.HCO'<n. Now, it is easy to

see that ij-tan?

tan//W=-p
_ F+2TT
- * '

JF+ jr
'
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W -f- 2 W
lit nee if

i-jp: ijr
r< /

z
' equilibrium W1N be broken by a rolling of

the cylinder and turning over of the cube. If fi is less llian the

quantity in (4) the cylinder will roll and tin- cube will
.-lip, and tin re

i.- no dithculty in d teimininij the inclination of the plane when this

happi us. We may either draw from 0' a line making the angle of

friction, A. with the normal to the plane, and then determine T by
the triangle of forces, or resolve along and perpendicular to the plane
for tin- equilibrium of the cube. If K is the normal reaction of the

plane on the cube, we find in the latter way
R= TTcost,

HR= W'eini+T;
therefore T = W'(fj.cosi eiu

i).

Equating this to the value given by (1), we have

2/iJT

which gives the inclination at which the cube slips.

7. Two equal carriage wheels whose centres are connected by a

smooth bar are placed on a rough inclined plane ;
determine whether

the equilibrium of the system will be best preserved by locking the

hind or the fore wheel.

Let C and D (Fig. 204) be the centres of the wheels, and first sup-

pose the hind wheel to be locked. Since there is no friction between
the bar CD and the axle at (7,

the action of the bar on the

lower wheel consists of a force

through C (see p. 140).
The weight of this wheel also

acts through C, and therefore

the total resistance at A, which

is the third force keeping the

wheel in equilibrium, must also

act through C.

Let G be the centre of gravity
of the two wheels, and consider

the equilibrium of the system
formed by them. There are

three forces acting on the sys-
tem. vi/., its weight through G,
the total resistance at A (which

Fg. 204.

ii proved to act in a line AC), and the total resistance at B.

If, then, <) is the point of intersection of C.\ and the verli.-.il through
(>'. the total resistance at B must act in the line OB.
We shall now determine the inclination at which equilibrium is

broken.

Since tin- hind wheel dips, the angle DBn = A; also let r = the

radius of each wheel, CD =2 a, and I = the inclination of the plane.
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Then

or

tan COG _ CG
t&nCOn ~Cn'
tan i a

since Dn = r tan DBn = fxr. The inclination of the plane when equi-
librium is broken is therefore given by the equation

(1)

Again, suppose the fore wheel alone to be locked. In this case the

total resistance at B acts in the line SD, and that at A acts in AO', 0'

being the intersection of BD with OG. If i
f
is the new inclination

at which equilibrium is broken, we have, since /.CAO' = A,

t&ni' _ DG _ a

jj.

~ Dm 2 a fir

or tani'=
2 a (2)

Now it is clear that i' is greater than i, and that, consequently,

equilibrium will be safer when the fore wheel is locked than when the

hind wheel is locked.

8. A cylinder is supported on a rough inclined plane by a light rope
coiled round it in a plane perpendicular to its axis passing through
its centre of gravity, the rope being attached to a fixed point. Find
the direction of the rope in order that the inclination of the plane may
be the greatest possible.

Let O'B' (Fig. 205) be the line of the rope, and CO' the vertical

through the centre of gravity of the cylinder. Then evidently the

Fig. 205. Fig. 206.

total resistance at A, the point of contact with the plane, must act in

the direction A(/. If the rope took the direction OS, which is hori-

zontal, the direction of the total resistance would be AO, and evidently
the angle CAO < CAO'

; or, in other words, the equilibrium of the

cylinder will be farther from its limit when the rope is horizontal

than when it takes any other direction. For a given inclination, i,
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of the plane the angle CAO = -)&udi it is clear that when CAO
m

is equal to the angle, A, of friction, the inclination of the plane
will be at its greatest. Hence the greatest inclination of the plane
= 2 A.

If the coefficient of friction be > 1, the greatest inclination of the

7T

plane will be >-> and the figure of limiting equilibrium will be that
_

represented in Fig. 206, in which the angle CAO (
= A) is >-. But

whether the cylinder will stay in this position or not depends on the

initial arrangement. Unless the rope is pulled with such a force as

to cause the resultant of this force and W to act in the line OA, equi-
librium cannot be preserved by the resistance of the plane. In fact,

unless this requisite tension of the rope is produced by pressing and

scraping the cylinder against the plane, it would be possible for the

cylinder to take a motion of and round its centre C which would keep
its surface out of actual contact with the plane ;

and in this case the

plane would not exert any resistance.

9. If in the preceding problem the rope, instead of being attached

to a fixed point, is attached to a weight which hangs freely over a

smooth pulley, find the conditions of equilibrium.
Let O'B' (Fig. 205) be the direction of the rope, P the suspended

weight, W the weight of the cylinder, t the inclination of the plane,
A the angle of friction, Q the angle which the rope makes with the

inclined plane.
Then for equilibrium it is necessary that JO' should be the direction

of total resistance at A, and that the moments of P and W about A
should be equal and opposite. Hence we must have

CAO' = or<\, (I)

and = W- (2)

the second condition being equivalent to that obtained by the triangle
of forces for equilibrium at (/.

If the angle CA(/<\ t
and P is slightly

increased above the value in (2), the initial

motion will evidently be a rolling up, since

moment ofP about A > moment of W about
A ; but if P is slightly diminished the roll-

ing will be down.

10. A heavyuniform beam, /IT? (Fig. 207),
is to be sustained in a horizontal position,
one end, It, resting on a rough im-lim <!

plane, while the otln-r end, A, is attached
Fig. ao;.

to a light rope which pusses over a smooth pulley and sustains a

weight. Find
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(a) The limits to the direction of the rope, and the corresponding

limiting values of the suspended weight.

(6) The least weight that will sustain the beam.

Let W be the weight of the beam, P the suspended weight, and BN
the normal to the inclined plane at B. Then if AO be the line

of the rope, intersecting the vertical through the centre of gravity
of the beam in 0, BO must be the direction of the total resistance at

B
;

and in order that this may be a possible direction of total

resistance, the angle NBO must be < A, the angle of friction. Hence

the limiting directions of the rope are obtained by drawing BO and

BO' making the angle A with BN on opposite sides. If the rope
takes the direction AO' the beam must be on the point of slipping

up, since the force of friction acts d)wn the inclined plane ;
and if

the direction of the rope is AO, the beam is on the point of slipping
down. The corresponding magnitudes of P are easily determined by

taking moments about B. Let pl
and p2

be the perpendiculars from

B on AO and AO', respectively, a half the length of the beam, and

P! and P
2
the corresponding values of P. Then

P
2
= W- .

Pi

The values of pt
and pz can, of course, be easily expressed in terms

of a, A, and i, the inclination of the plane.
If the rope takes a direction intermediate to AO and AO', and if p

is the length of the perpendicular from B on its direction, we have

P=W?.
P

Hence, if P is a minimum, p must be a maximum, since Wa is given.
Now p will be a maximum when it is equal to AB, that is, when the

rope is vertical. In this case the total resistance at B should also be

vertical
;
but if the inclination of the plane > A, this is impossible.

Hence when i>\,p is a maximum (consistently with the conditions

of the problem) when the direction of the rope is AO ;
and therefore

in this case P
1
is the least value of P.

If t<A, the vertical at B is a possible direction of total resistance,

and therefore AB is an admissible value of p. The corresponding
value of P is therefore ^ W.

The student will easily see that if the angle of friction is greater
than the complement of the inclination of the plane, there can be no

limiting equilibrium in which the beam is about to slip up.

11. A cylinder is laid on a rough horizontal plane, and is in contact

with a rough vertical wall
;
a string coiled round it at right angles to

the axis passes over a smooth pulley and sustains a weight which is

gradually increased till equilibrium is broken. Determine the nature

of the initial motion. (Jellett's Theory of Friction, Example 21, p. 21 4.)
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L. t W be the weight of the cylinder, P the suspended weight,
the angle made by the string with the horizon, A and A' the angles of

friction at A and B, the points of contact of the cylindi-r with the

vertical and horizontal planes, and the point in which the line

of the string intersects the vertical

through (7, the centre of gravity of the

cylinder.

Now, in accordance with Article 148,
we first consider what motions are geo-

metrically possible. These are

(1) Rolling round A up the vertical

plane.

(2) Slipping forward at B while con-

tact ceases at A.

(3) Slipping at .4 andB simultaneously.
If (1) can happen it will (see Art. 148);

let us suppose, therefore, that the cylinder
is on the point of turning round A and

Fig. ao8.

coming out of contact at B. In this case there are only three forces

keeping the cylinder in equilibrium, namely, IF, P, and a total re-

sistance at A. This last force should, for equilibrium, pass through
and act in the direction OA. Now whether the angle OAC is less

or greater than A, this is not a possible line of action of total resistance,

because the plane cannot pull. Hence (1) is phy&ically hnpoenUe.
Suppose that (2) happens. Then, as before, there are only three

forces keeping the cylinder in equilibrium, namely, W, P, and the

resistance at B. This last must pass through 0, and must therefore

act vertically. But it is obvious that such a force could not equi-
librate W and P ; therefore (2) is impossible.

There remains the third case, which alone is possible. To deter-

mine the value of P corresponding to limiting equilibrium, draw the

lines A(/ and BO' making with the normals at A and fl the angles,
A and A", of friction for the cylinder and planes. Then by t;>:

moments about 0' we easily obtain the value of P, which may also be

obtained by the ordinary equations of resolution offerees. Thus, let

R and K be the normal pressures, and therefore fi/i und //A" the

forces of friction, at A and B.

Taking moments about B, we have

/?(l+ M)
= JP(l-cos0). (1)

Taking moments about A,

IT(l-p')= W-P(l+rinff). (2)

Resolving horizontally,

n'IT-R=PcoB$. (3)

Substituting in (3) the values of R and K given in (1) and (2), we

obtain the value of P corresponding to limiting equilibrium.
It uill be a useful exercise for the student to vary th- position of

tin- pulley in such a way as to render possible a case of limiting equi-
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librium in which the cylinder is about to ascend the vertical plane by

turning round A.

12. A heavy right cone is placed with its base on a rough inclined

plane, the inclination of which is gradually increased ;
determine

whether the initial motion of the cone will be one of sliding or

tumbling over.

Let ABC (Fig. 209) be the vertical section of the cone through its

axis, OH, and let G be the centre of gravity of the cone. (GH is

CH, as will appear in a subsequent Chapter.)

Then, in accordance with rule 3 of Art. 148,
if it is possible for the cone to turn over the

point A, the cone will do so. Solve, there-

fore, on the supposition that equilibrium is

broken by turning round A. In this case,

the two forces acting on the cone are its

weight and the total resistance of the plane,

which, of course, passes through A; and
these forces must be equal and opposite, i. e.,

the total resistance must act in the vertical

line AG. Now this will be possible only if AG makes with the

normal to the plane an angle less than the angle of friction, A. Hence
for a tumbling motion AGH< X. But if a = AGH,

tanAGH = 4 tan a.

Therefore if pi > 4 tan a, the initial motion of the cone will be

tumbling, and if pi< 4 tan a, the initial motion will be sliding, and

this sliding will evidently occur when the inclination of the plane
reaches the value A.

13. A heavy straight rod rests on a rough horizontal plane, and at

one end, perpendicularly to its length and in the horizontal plane, a

force is applied with gradually increasing magnitude. Find the point
about which the rod begins to turn.

(Price's Infinitesimal Calculus, vol. iii. p. 162.)
Let I be its length, and suppose it to turn round a point at a

distance z from the other extremity. Then we must equate the

moment of the applied force about this point to the sum of the

moments of the forces of friction acting on the different elements of

the rod. Take an elementary portion of length dx at a distance aj

from the point round which the rod turns. The weight of this

portion is dx, and the force of friction on it is p. W This acts
I I

at right angles to the rod. Hence taking the sum of the moments for

all points at both sides of the turning point, we have*

* In this simple case integration is evidently not necessary.
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But P is evidently equal to the sum of the frictions at the end

adjacent to it minus the sum of those at the other end
; i. e.,

7_ o -v

P = p W - Hence we have

*- =, .. z = -~-
or the turning point is at a distance j= from the end at which the

force is applied.
*

14. A rectangular block is placed, with one of its edges horizontal,
on a roush plane, the inclination of which to the horizon is gradually
increased

; determine whether the equilibrium of the block will be
broken by a motion of sliding or one of tumbling.

Ans. If a and b are the lengths of the edges which are not

horizontal, b being the length of the edge which is perpendicular to

the inclined plane, the initial motion will be one of tumbling if

/i > 7 > and of sliding if /i< y.

15. A cylinder, the section of which perpendicular to the axis is any
given curve, is to be placed, with the axis horizontal, on a rough
inclined plane ;

how must it be placed so that it shall be least likely
to slip, the cylinder being in contact with the plane along a single
line?

16. An elliptic cylinder is placed, with its axis horizontal, on a

rough plane inclined to the horizon at an angle less than the angle of

friction
; prove that the cylinder cannot rest if the eccentricity of the

s-ivtion perpendicular to the axis is less than A / -
. t being

the inclination of the plane.
V

1 7. A uniform beam rests with its extremities on two rough in-

dined planes \vho-e line of intersection is horizontal, the vertical plane

throng!) the lieam lieing perpendicular to this line; find the limiting
pi).-iti'ii of equilibrium.

Ans. If t, t"be the inclinations of the planes, A, A' the angles of

fiirt ion between the beam and the planes, respectively, and tin-

limiting inclination of the beam to the horizon,

2 tan 6 = cot (t + A)
- cot (t

-
A').

Another limiting position will be got by changing the signs of A and A'.

18. A heavy uniform rod rests with its extremities on the interior

of a rough vertical circle
;

find the li in it ing position of equilibrium.

Ans. If 2 a is the angle subtended at the centre by the rod, and A

the angle of friction, the limiting inclination of the rod to the horizon

is given by the equation
sin2A

cos 2A + COB 2a
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19. A solid triangular prism is placed, with its axis horizontal, on a

rough inclined plane, the inclination of which is gradually increased
;

determine the nature of the initial motion of the prism.

Ans. If the triangle ABC is the section perpendicular to the axis,

and the side AB is in contact with the plane, A being the lower

vertex, the initial motion will be one of tumbling if

the sides of the triangle being a, b, c, and its area A. If
p. is less

than this value, the initial motion will be one of slipping.

20. A frustum of a solid right cone is placed with its base on a

rough inclined plane, the inclination of which is gradually increased
;

determine the nature of the initial motion of the body.

Ans. If the radii of the larger and smaller sections are /? and r,

and h is the height of the frustum, the initial motion will be one of

tumbling or slipping according as

21. An elliptic cylinder rests in limiting equilibrium between a

rough vertical and an equally rough horizontal plane, the axis of the

cylinder being horizontal, and the major axis of the ellipse inclined to

the horizon at an angle of 45. Find the coefficient of friction.

\/l + 2e2-e4-!
Ans. 11

=-- --
>

e being the eccentricity of the ellipse. (Employ the Theorem of

Art. 35.)

22. The circumstances of the preceding problem remaining the

pame, except that the vertical plane is smooth, show that the coefficient

of friction is e
2

(Walton's Mechanical Problems, p. 82).
If the horizontal plane alone is smooth, is it possible for the cylinder

to rest in any position 1

23. A uniform beam, of which one end rests against a rough
vertical wall, is supported by a light rope attached to the other end,
and to a given point in the wall

;
find the limiting positions of equili-

brium (Walton, p. 81).

Ans. If the length of the rope be n times the length of the beam,
the inclination of the latter to the wall is given by the equation

+ w2-4 = 0.

24. In order that both limiting positions may be real, what must be

the limits of n?

Ans. 2 ?i
2 must be > fx

2+ 5- ^(\J?+ l)(|u
2
+9), and
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25. If n is 2, show that there is but one limiting position ;
and

prove geometrically that if in this case the angle of friction is 60, the

limiting position is horizontal.

26. A ladder, AB, 15 feet long, rests against the ground at A and

against an equally rough vertical wall at B
;
to a point D in the ladder

at a distance of 10 feet from A is attached a rope which, passing over
a pulley at the intersection of the vertical plane and the ground, sus-

tains a weight equal to half that of the ladder
;
the centre of gravity,

G, of the ladder is 6 feet from A
;
the coefficients of friction are each

equal to J ;
find the limiting inclination of the ladder.

Ans. tan-1|.

27. A heavy uniform beam rests with one end against a rough
horizontal and the other end against an equally rough vertical plane;
find the least coefficient of friction that will allow the beam to rest in

all positions. ^ns . Unity.

28. In the previous question let the centre of gravity of the beam
divide it into two segments, a and b, the latter segment being in

contact with the vertical wall
; given the coefficient of friction, /,

between the beam and the ground, find the least coefficient of friction

between the beam and the wall which will allow the beam to rest in

all positions. a
Ana. ;

p.b

29. Two equal beams, AC and CB, are connected by a smooth

hinge at C, and are placed in a vertical plane with their lower

extremities, A and B, resting on a rough horizontal plane ;
from

observing the greatest value of the angle ACB for which equilibrium
is possible, determine the coefficient of friction for the beams and the

plane (Walton's Alec/utnical Problems, p. 96, second ed.).

Ans. If the greatest value of LACB is /3,

30. Two uniform beams are placed with their lower extremities

resting on a rough horizontal plane, their upper extremities resting

against each other. Show how to cut a plane face from the upper
extremity of one of the beams, in order that slipping may be about to

ensue at their point of contact.

Aiis. Determine the line of action of their mutual resistance as in

p. 205
;
then cut a face inclined to this line at the complement of the

angle of friction.

.'51. A cylinder is placed on a rough horizontal plane, and a uniform

plank iv.-ts with one end on the ground and the other against the

cylinder (the ]>lank being at right angles to the axis of the cylinder).
It the plunk i.- L'ladually lowered until equilibrium i- :il>out to IKS

broken. >ho\v that .-lipping will t;ike place only at the point of contact

of the plank and cylinder, whatever be their dimensions. For any

VOL. I. 8



258 EQUILIBRIUM OF ROUGH BODIES. [156.

position of the plaiik find the direction of the reaction of the ground

on the cylinder.

Ant. If 6 is the angle made by the plank with the ground,

P = weight of plank, W = weight of cylinder, r = radius of cylinder,

2 a = length of plank, ^ = angle made with the vertical by the

reaction of the ground on the clyinder,

2W

32. A cylinder placed on a rough plane has a string coiled round it

in a plane at right angles to its axis
;
the string after passing round

the cylinder is attached to a heavy particle which also rests on the

plane. If the plane is gradually tilted up, determine the nature of the

initial motion.

Ans. The cylinder will roll and the particle slip if both are equally

rough ;
and if t is the inclination of the plane when this happens,

2uPcos2a
tan i =

JFcos 2 a + 2P cos
2a + p. Ifsin 2 a

where W and P are the weights of the cylinder and the particle, p. the

coefficient of friction, and 2 a the .engle between the string and the

inclined plane.

33. A heavy cylinder is laid on a rough inclined plane, its axis being
horizontal

;
a heavy uniform plank rests on the cylinder and against

the inclined plane, the plank being horizontal at right angles to the

axis of the cylinder, and touching the cylinder at its highest point.

Supposing the inclination of the plane to be gradually increased, the

horizontality of the plank being always preserved, determine the

nature of the initial motion of the system and the inclination of the

plane at which equilibrium is broken.

Ans. The plank will slip at its point of contact with the plane, a

rolling motion taking place at the other points of contact in the

system ;
and the inclination (i) is given by the equation

(-cot- -l)[Pcot Jtan(A-i)-TF] = P+ W,
Ct Z Z

where r = radius of cylinder, 2a = length of plank, W= weight of

cylinder, P = weight of plank, arid X = angle of friction.

34. Two particles, A and B, whose weights are denoted by A and B,
are connected by a string fully stretched, and placed on a rough
horizontal plane, the coefficient of friction for each particle being //..

A force P, which is </z (A + B), is applied to A in the direction BA,
and its direction is gradually turned round through an angle in the

plane. Find the nature of the initial motion of the system.

Am. If P<p. ^A^+B1

and>p.A, the particle A alone will
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uA _
slip, and this happens when sin 6 = -- If P > pi/A^+ B*, both

P*+H*(&-A*)
will slip when cos 6 = - ^--

35. A heavy rod is placed in any manner resting on two points A
and B of a rough horizontal curve, and a string attached to a point C
of the chord AB is pulled in any direction in the plane of the curve so

that the rod is on the point of motion. Prove that the locus of the

intersection of the lines of action of the frictions at A and B is an arc

of a circle and a part of a straight line
; except when C is the centre

of gravity of the rod, in which case the directions of the frictions will

be always parallel to the string.

36. A triangular prism, whose section by a vertical plane through its

centre of gravity perpendicular to its edges is ABC, rests with its base

AB on a rough horizontal plane ;
a rope is attached to the middle

point, C, of its upper edge, and, passing over a fixed pulley in the

horizontal line parallel to, and in the sense of, BA, is pulled with a

gradually increasing force. Find the nature of the initial motion.

Ana. If AB = c, AC = 6, and the height of the prism = h, the

prism will tilt over the edge through A if

c+ bcosA
">

3*
'

otherwise it will slide.

37. A cubical block is placed on a rough inclined plane and sus-

tainrd by a rope, parallel to the inclined plane, attached to the middle

point of the upper edge (which is horizontal); the rope lies in the

vertical plane which contains the centre of the cube and is perpen-
dicular to the inclined plane. Shew that the greatest inclination of

the plane is

38. Two rough inclined planes slope in the same direction and
intersect in a bori/ontal line. A cylinder placed at their intersection

and touching both all along its length has a rope coiled round it in a

plane through its centre of gravity perpendicular to its axis; this

rope passes over a fixed pulley and is pulled with gradually increasing
force. Discuss the way.- in which equilibrium may be broken by

ing the tension of the rope, finding (with a given position of the

rope)
-

(a) The condition that must be satisfied in order that equilibrium
i-li.nild be possible at all;

(6) The condition that tin- initial motion should be one of slipping
on both planes ;

(c) The value of the tension of the rope when this slipping takes

place.

8 2
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39. A heavy uniform circular wheel rests, in a vertical plane,

against the ground at A and is in contact at B with an obstacle of given

height ;
the wheel is to be pulled over the obstacle by means of a rope

(of given direction) attached at a given point to the wheel
;
find

(a) The condition that the initial motion of the wheel shall be a

rolling over the obstacle ;

(b) The condition that the initial motion may be slipping at A
and B.

(c) What ultimately happens when the initial motion is slipping at

A and B.



CHAPTER XL

CENTKOIDS [CENTRES ov GBAVITY].

SECTION I.

Investigations which do not involve Integration.

157.] Centre of Mass. Imagine a body broken up into an

indefinitely great number of infinitesimal elements of mass

(without altering the relative positions of these elements) and
find the mean centre of all the points at which these elements

are placed, the multiple associated with each point being pro-

portional to the element of mass at the point.

Then if the distances of the elements din,, <hi>.,. dm.,,. ,. from
1 ' 4 * o *

any plane are Cj, z^, ?3 , ..., the distance of the mean centre from

the plane is z dm. + z^lm,+ ... fzdm
^-7

-
> or

*
.,

dm^ + um.L + ... Jam
The point thus arrived at is called the Centre of Mass of the

body : it is also often called the Centre of Inertia
;
and the term

r, ,i/r'i,l has lately come into use to designate it.

The distance of the centre of mass from any plane is the mean
distance of the body from the plane. If each element of mass is

acted on by a force proportional to the mass of the element, and

these forces form a parallel system; and if w is the magnitude
of the force per unit of mass, the distance of the centre of this

parallel system offerees from the plane is

ficzilui f:<!>"

firili/i fit ,,l

e w is a constant. Thus the centre of the parallel system
coini i<lrs \\ith the centre of mass. The earth produces such a

panllel system of forces on the elements of a body, and therefore

the point thus arrived at ha- been universally called : r of

Gravity of the body. [See remarks, p. 1
12.] It is only when \\

consider the action of such a parallel system of forces on the

body as the attraction of the earth supplies that the point in

4 ion should bear the particular epithet of Centre of Gravity.
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In numerous questions relating to the body, in which the action

of gravity is not considered, the centre of mass plays a most

important part ;
and it is a point possessed by the body quite

independently of any force whatever acting upon it. Hence the

latter term is the one most strictly appropriate to the point

determined as above; and, except when the weight of the body
is concerned, we shall use the terms centroid and centre of mass

instead of centre of gravity.

158.] Theorem of Moments. If any number of masses be

multiplied each by the distance of its centre of mass from any

plane, the sum of the products thus obtained is equal to the

total mass multiplied by the distance of its centre of mass from

the plane.

The centre of mass of any number of finite masses is obtained

in precisely the same manner as the centre of mass of a number

of particles. Thus, if m^ and m2 are the masses of two bodies of

any magnitudes, their centre of mass is obtained by dividing the

line joining their respective centres of mass in the ratio ml : m^
just as if two particles of masses m

l aud m2 were placed at these

points.

Hence the distance, x, of the centre of mass of any number of

finite masses from any plane (that of yz] is given by the equation

x =
2m

or M. x = 2mx, and the theorem at the head of this Article

is merely the expression of this equation.
It is obvious that the formulae which have been given for

the co-ordinates of the centre of mass hold whether the axes be

rectangular or oblique. For in Art. 84, p. 109, on which our

formulae are founded, the distances of the points Alt A2 ,.., from

the line (or plane) L may be assumed to be measured in any
common direction.

It follows that if any plane be drawn through the centre of

mass of a system of masses, the sum of the products obtained by
multiplying each mass by the distance of its centre of mass from
the plane is zero. If the plane be that of (yz}, and if x' be the

distance of the centre of mass of the mass m from the plane, this

result is expressed by the equation
2mx' 0.

Given the centres of mass, yl and <?2 ,
of two masses, m l

and m
2 ,
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the centre of mass of the two as one system is a point, G, on the

line
ff l y.2 dividing it in the ratio - =

Given the centre of mass, G, of a mass M, and also the centre

of mass, fflt of a portion, m ly of the mass, the centre of mass, g2 ,

of the remainder is a point on the line g^G produced through G,

such that?^ =^
159.] Density. AVhen a body is of the same constitution

throughout, i. e., when its ultimate particles are undistinguish-
able from each other, and when there is the same number of

them in a given volume wherever this volume is taken in the

body, the body is said to be homogeneous or of uniform density ;

and its density is measured by the quantity of matter contained

in (some selected) unit of volume. But when the particles are

more or less crowded together in one region of the body than in

another, instead of speaking of the density of the body, we must

speak of the density at each particular point. To measure this,

take any very small volume, dv, round the point, and let dm be

the quantity of matter contained in it
;
then the limiting value

of the ratio .-, when dv (and therefore dm) is indefinitely

diminished, is the ilfnaify of the body at the point considered.

160.] Centre of Mass of a Triangular Lamina of Uniform

Thickness and Density. Let ABC be any triangular lamina of

uniform thickness and density, and let it be divided by an

indefinitely great number of lines parallel to the base BC into

an indefinitely great number of strips. Then the centre of mass

of each strip is its middle point; and the middle points of all

the strips lie on the line joining A to the middle point of BC.

Hence the centre of mass of the lamina lies on this line.

Similarly, the centre of mass lies on the lin-- joining B to the

middle point of CA. It is therefore // '-lion of the

bisectors of the xi <//>.<< drawnfrom the opjmniti- angles.

Again, /' ass of a uniform triangular lamina coin-

l< the centre of mass of three equal particles placed at it*

es.

I'or, the centre of mass of the two c|iial partirles at B and C
is the middle point of BC, and the centre of mass of the three
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lies on the line joining this point to A. Similarly, it lies on the

line joining B to the middle point of CA. Therefore, &c.

If the mass of each particle is m, the centre of mass divides

the line joining A to the middle of BC in the ratio 2m :m,

or 2:1. Hence the centre of mass of a triangular lamina of

uniform thickness and density lies on the bisector of any side drawn

from the opposite angle at the point of trisection (nearest to the side)

of the bisector.

Con. If the distances (rectangular or oblique) of the vertices

of a triangle from any plane are #,, x2 , and a?3 ,
the distance of its

centre of mass from this plane is -
8

161.] Centre of Mass of a Triangular Pyramid of Uniform

Density. Let ABCD (Fig. 210) be a triangular pyramid. Now
if any vertex, D, be joined to the centroid, N, of the oppo-
site face, the joining line passes through the centroids of

all triangles in which the pyramid is cut by planes parallel to

this face. For, let abc be a section of the pyramid parallel to

the base, ABC. Draw the plane CND containing the lines CD
and DN; this plane bisects the base

AB in //, since (Art. 160) CN bisects

AB. Let the plane CND intersect the

face ABD in the right line HhD, h

being the point in which this line

meets ab. Then since in the triangle

ABD, ab is parallel to AB, and DH
bisects AB, h is the middle point of

ab.

Again, if the line DN meets the

plane abc in n, the points h, n, and c

are in a right line. For these are evidently points common to

the planes CND and abc, and since two planes intersect in a

right line, the points h, n, c are in a right line that is to say,
n is a point on the bisector of the side ab drawn through c.

Similarly, n is a point on the bisector of be drawn through a ;

therefore n is the centroid of the triangle abc (Art. 160).
To find the centre of mass of the pyramid, let it be divided by

planes parallel to ABC into an indefinitely great number of

triangular laminae. Now we have just proved that the centres
of mass of all these lamina? lie on the line, DN, joining the

Fig. 210.
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vertex D to the centroid of the opposite base. Similarly, the

centre of mass of the pyramid lies on the line joining the vertex

A to the centroid of the face BCD. It is, therefore, the point,

G, of intersection of lines drawn from any two vertices to the

centroids of the opposite faces. But this is exactly the con-

struction for the centre of mass of a system of four equal

particles placed at the vertices of the pyramid. Hence
Tin' tr/itre of mass of a triangular pyramid coincides with tin'

a-nfre of mags offour equalparticles placed at its vertices.

Also

The centre of mass of a triangular pyramid is one-fourth of the

way up the Inn- joining the centroid of any face to the opposite

n-rtex.

For, if at the vertices there be placed four equal particles, each

of mass m, their centre of mass is found by joining 1) to N
and taking

- -
$, therefore GN =- \GD. or3 GD 3m

COR. 1. IL\\G perpendicular distance of the centre of mass of a

triangular pyramid from the base is equal to i height of

pyramid.

COR. 2. If the distances (rectangular or oblique) of the

vertices of a pyramid from any plane are a;,,
ar
2 , ar

3 ,
#4 ,

the dis-

tance of the centre of mass from the plane is --------
4

162.] Centre of Mass of a Cone of Uniform Density

having any Plane Base. Consider a pyramid whose base is a

polygon of any number of sides. Then, by dividing the base

int<> triangles \\e can consider the whole pyramid as composed
of a number of triangular pyramids. Now (Art. 161) the centre

of mass of each of these pyramids lies in a plane whose distance

from the base is one-fourth of the height of the pyramid ; there-

fore the centre of mass of tin- whole pyramid lies in this plane
that is, it-

i.i'Sfti'itil'n-iilnr distance from the base is one-fourth of

the height of the pyramid.

Again, dividing the pyramid into an indefinitely great
number of lamina-, as in last Art., the centres of mass of these

lamina- all lie on the right line joining the vertex to the centroid

of the base. Ibn , the emtre of mass of the whole pyramid
lies on this line; and by what we have just proved, it must be
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one-fourth of the way up this line. There is no limit to the

number of sides of the polygon ;
hence they may form a con-

tinuous curve.

Therefore

The centre of mass of a cone wJiose base is any plane curve what-

ever isfound by joining the centroid of the base to the vertex, and

taking a point one-fourth of the way up this line.

163.] Theorem. If the mass of each of a system of bodies be

multiplied by the square of the distance of its centre of mass from a

given point, the sum of the products thus obtained is least when the

given point u the centre of mass of the system of bodies.

This theorem, which is well known in elementary geometry,
admits of a very simple analytical proof.

Let (#, y, z) be the co-ordinates of the centre of mass, G, of

the system with reference to rectangular axes through any point,

0, and let (a^, ylt z^} (x2 , yz ,
22), ..., be the co-ordinates of the

centres of mass, Alt A2 ,..., of the bodies whose masses are

*, ,i2 ,.... Then

GA
l
2 = (x-xl )

2 + (j-y1)
2 + (z-zl }

2
. (1)

Similarly, GA. 2 = (*-*2)
2 + (^-.?2)

2 + (2-*2)
2

, (2)

Multiplying these equations by mlt m2 ,..., and adding, we
have

2 (m . GAz
)
=

(x
2 +f + z2

)
. 2m 2 x . *Lmx- 2y . *2my

-+p
2z.2mz + 2m(a?+y

2 +z 2
). (3)

Now (Art. i&f),

2ww? = #.27, 2my = p.2.m, Smz = z .'S.m.

Hence (3) becomes

2 (m . GA2
)
= ^m (x* +/ + z2

)
-

(x* +f + z2
)

. 2w,

or 2(m.GA
2
)
= 2(m.OA2)-OG2

.2m, (4)

from which equation it appears that 2 (m . GA2
)

is always less

than 2 (m . OA 2
) by the quantity OG2

. 2*.
It can be shown that, if r

12 denote the distance between the

centres of mass of the masses m
l
and m2 ,

and M the sum of all

the masses, M. 2^ > GA^ = 2^^^
For, let the centre of mass, G, be taken as origin. Then,

denoting the co-ordinates of the points Alt A2) .,. with reference

to G by (a^ ft', */),(*,',*', <),...,
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...)(xl'*+yl

'* + z
l

'2
)

. .
.)

2 +y2

'2 + *./
2
)+ .... (5)

Also (Art. 158)
=

=

Squaring
1 each of these last three equations, adding the results

together, and subtracting their sum from (5), we have

M.2(m. GA2
)
=

Hence, from (4),

/Z(-V TT r

under which form Lagrange expresses the distance of the centre

of mass of a system of bodies from a given point (see Mecaniqve

Analytique, p. 61).

Equation (4) can be employed to prove the well-known ex-

pression for the distance between the centres of the inscribed

and circumscribed circles of a plane triangle, viz. :

D2 = W-2Rr,
D being the distance between the centres, and r and R being
their radii, respectively.

(Suppose a system of particles at the vertices, the mass of

each being proportional to the opposite side. Their centre of

mass is the centre of the inscribed circle. The remainder is left

to the student as an exercise.)

EXAMPLES.

1. To find the position of the centre of mass of the frustum of a

lid.

I.-t tin- frustum IP., jnrmnl liy tin- removal of the ]>ynnni<l abcD

(Fig. 210) fnun the whole pyramid .\BCD\ let h and // be the JH r-

pendii iilar heights of these pyramids, respectively; and let m and M
denote tin ir masses.

Now if the perpendicular distances of the centres of mass of the

pyramid A/K'/>. the pyramid '</>. and the frustum. 1'mm the 1)080

ABC !>< d. imtrd hy c,
. :.. ai. lively, we have (Art. 158)

m)z. (1)
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But z = > *. = - + H h = II ^h. Also the masses of the
4 4

pyramids are to each other as the cubes of their heights ;
therefore

(1) gives 7/4
*L

or 4 (II
3- A3

)
z = W-
= (H- h)*(H* + 2Hh+3 h*)

(H-K)
4 * *

Instead of the heights we can use the square roots of the areas of

the bases, to which the heights are proportional. If these areas are

denoted by A and a, we have

H h A + 2</Aa + 3a
% ^T- . f o )

A+^Aa+ a

The centre of mass, G', of the frustum obviously lies on the line Nn
(Fig. 210) between J^and G; and (3) evidently gives

.

4 A+ */Aa + a

It is clear that the position of the centre of mass of the frustum of

a cone standing on any plane base is also given by these equations.

2. To find the centre of mass of a board of uniform thickness and

density whose figure is that of a quadrilateral.
Let ABCD be the quadrilateral ;

draw the line AC, which divides

the quadrilateral into two triangles ;
let L and M be the centroids of

the triangles ABC and ADC, respectively ;
and let the line LAI meet

ACinN.
Then the centroid of the quadrilateral is a point, G, on LM such

MG area ABC &re&ALC perp. fromZ on AC LN
that - = - = _ = _ = -

LG areaADC are&AMC perp. fromM on AG MN
MG LN

therefore - = __ , or MG = LN.LM LM
The centre of mass is therefore found by taking a point, G, on LM,
such that MG = LN.

Another construction. The student will find little difficulty in

proving the following construction. Draw the diagonals AC and
BD, meeting in the point 0. On AC take a point (7, such that
AC' = CO, and on BD take a point B', such that DB' = BO.
Then the centroid of the quadrilateral is the centroid of the triangle--

3. From a triangular board of uniform thickness and density the

portion constituting the area of the inscribed circle is removed
; prove
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that the distance of the centre of mass of the remainder from any
side (a) is

A 2s3 37raA

3a ** TiA

A being the area, and a half the sum of the sides, of the board.

4. If a tetrahedron be formed by the centres of mass of any four

masses, prove that each mass is porportional to the tetrahedron

standing on the opposite face and having for vertex the common
centre of mass of the masses.

5. If at the vertices of a triangle there be placed three masses each

of which is proportional to the opposite side of the triangle, prove
that their centre of mass is the centre of the circle inscribed in

the triangle.

6. Prove that the centre of mass of a system of uniform bars

forming a triangle is the centre of the circle inscribed in the triangle
formed by the middle points of the bars.

7. A figure is formed by a right-angled triangle whose sides are

a, b, and c, and the squares constructed on these sides
;
find the

distance of the centroid of this figure from the greatest side
(c).

ob 3c8 5o6

3~c'

8. Prove that the centroid of a trapezium divides the line joining

the middle points of the two parallel sides in the ratio -
7> the

lengths of these sides being a and b.

Prove also the following construction for the centroid :

Tin- vertices, in order, being A, B, C, D, and the parallel sides AB
and CD, produce BA to A', and A B to B', so that AA' = BB" = CD ;

al.M, produce DC to C', and CD to //, so that C(f DD' AB
;
then

the point of intersection of A'C? and B'D' is the required centroid.

9. A right line passing through a fixed point intersects two fixed

right lines
;

find the locus of the centroid of the triangle formed by
the variable line and the two fixed lines.

Ans. If the co-ordinates of the fixed point with reference to the

two fixed lines as axes are a and 6, the locus is the hyperbola

(3ar a)(3y 6)
= ob.

10. If the rifrht line in the last example, instead of passing through
;i lixrd point, cutoff a triangle of constant area, find the locus of the

ivntroid of tin- triangle.

Ans. If to is the angle between the fixed lines, and * the constant

area, the locus is tin- hjperboh
/sinco = 2 P.

11. From a sphere of radius R is removed a sphere of radius r, the

distance between their centres being c; find the nut re of mass of

the remainder.
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Ans. It is on the line joining their centres, and at a distance

from the centre.
a3-**

12. Every body has one and only one centre of mass. Hence show

that the lines joining the middle points of the opposite sides of a

quadrilateral bisect each other.

(Consider four equal particles at the vertices.)

13. From the vertices of a given triangle let perpendiculars be

drawn to the opposite sides. Find the distances of the centroid of

the triangle formed by the feet of these perpendiculars from the sides

of the given triangle.

Ans. The distance from the side a is a sin A cos (BC).
14. A thin uniform wire is bent into the form of a triangle ABC,

and particles of weights, P, Q, R, are placed at the angular points

A, B, C, respectively; prove that if the centre of mass of the particles

coincides with that of the wire,

(Wolstenholme's Book of Mathematical Problems.)

1 5. Find the centroid of the triangle formed by the points in which

the bisectors of the angles of a given triangle meet the opposite sides.

Ans. If A denote the area of the given triangle, whose sides

are a, b, c, the distance of the centroid from the side a is

2a+b+c

16. A uniform wire of given length is formed into a triangle of

which one angle is given ;
find the locus of the centre of mass of the

wire referred to the sides containing the given angle as axes.

Ans. If C is the given angle, and 4/ the length of the wire, the

locus is the ellipse

C C
t - = 0.

17. If particles be placed at the angular points of a tetrahedron,

proportional respectively to the areas of the opposite faces, their

centre of mass will be the centre of the sphere inscribed in the tetra-

hedron.

(Wolstenholme's Book of Mathematical Problems.)

18. Prove that the centroid of the surface of a tetrahedron is the

centre of the sphere inscribed in the tetrahedron formed by joining
the centroids of the faces.

19. If 2,, z
2 ,

2S ,
z
4 , are the distances (rectangular or oblique) of the

vertices of any quadrilateral area from a plane, and the distance of

the point of intersection of its diagonals from the plane, the distance

of its centroid from the plane is
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SECTION II.

I/irestigations requiring Integration.

164.] Rule. The general formulae, such as that in Art. 157,

for the co-ordinates of the centre of mass of a quantity of matter

arranged in any manner assume particular forms according as

the matter is arranged in the form of a wire of any shape, an

area or thin himina of any shape, or a solid. Then, again,

they assume particular forms in each of these cases according
to the manner in which the matter is supposed to be divided

into elementary portions.

Many students are in the habit of remembering a special

formula for each of these numerous cases
;
such a habit, how-

ever, is not only useless but injurious. It is much better to

consider the formula of Art. 157, or the method of p. 109, as

furnishing the following Rule which covers all possible cases:

Divide the given quantify of matter
',

in any way, info elementary

portions ; Jind the position of the centre of mass of each of these

portions; then multiply the mass of each portion by the co-ordinate*

of its centre of mass, and take the integral of this product ; and

jiiniffy dicide /7//-Y integral ly the ichole quantity of matter. The

result is the co-ordinate of the centre of mass required.

165.] Centre of Mass of the Arc of a Curve. If the

matter whose centre of mass we -desire to find is arranged in

the shape of the arc of any curve, the co-ordinates of its centre

of mass are obtained from the formula of Art. 157, in which

dm now denotes the mass of an elementary length of the curve.

Let ds denote the length of an elementary portion of the curve

contained between two points, P
and Q ( Fig. 211); let k denote

the m ;ui an-a of a section of 1 la-

curve between P and Q ;
and let p

<lcm.tr the density of the matter

in the neighbourhood of P and Q.

Then, since the quantity of matter

in any space is eqiuil t<> the product

of the volume and the density, the quantity of matter between

P and Q is

* The co-ordinate* are supposed to be such aa are measured parallel to a given
line. The rule would not hold if by co-ordinate were understood polar co-ordinate
t"<>r instance.
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Again, the centre of mass of this element is evidently the

middle point of PQ.
And since to obtain G, the centre of mass of the whole mass,

the co-ordinates of this middle point must be multiplied by the

infinitesimal kpds, the co-ordinates of the centre of mass of PQ
may be taken to be the same as those of P.

Replacing dm in the general formulae by the linear element

kpd*, we obtain for the position of the centre of mass of matter

arranged in the form of any curve the equations

fkpxds=

9
Jkpds

fkpzds

fkpds
The quantities k and p must be given as functions of the

position of the point P before the integrations can be per-

formed.

EXAMPLES.

1. To find the position of the centroid of a circular arc of uniform

thickness and density.
Let AB be the arc, M its middle point, and the centre of the

circle. Then it is manifest from symmetry that the centroid must He

on the line OM. Take OH as axis of x. Then, since k and p are

constant, we have fxdsM /_"
/*'

x being the co-ordinate of any point, P, in the arc. Let be the

angle POM and a the radius of the circle. Then

x acos0, and ds = add.
Hence

/*cos0e20
/vt ft t/,_______ _ .

fde
'

the integration to be extended over the whole arc. Now if the angle
BOA = 2 a, the integration must be taken from = a to = a.

Therefore sin a
x = a

a

Hence the distance of the centroid of the arc of a circle from the

centre is the product of the radius and the chord of the arc divided by
the length of the arc.

P
The distance of the centroid of a semicircle from the centre is

IT
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2. Find the centre of mass of a circular arc of uniform section, the

density varying as the length of the arc measured from one extremity.
I B be the arc

;
let the density at any point P = p . AP, and let

OA be taken as axis of x. Then if LAOS = a, and AP = 8, we have

S d

a sin a + cosaI

o- -i i

sn a a cos a

3. One extremity, A, of the arc, AS, of a curve being fixed, while

the other extremity, B, varies, it is required to construct at any point
the tangent to the locus of the centroid of the variable arc AB.

Let AB be a portion of the arc of any curve, and let G be the

centroid of AB. Then if B' be a point on the given curve very close

to B, the centroid of the whole arc ABf

is obtained by joining the

centroid, G, of AB to the centroid of BB', and dividing the joining
line inversely as the lengths of AB and BB'. But the centroid of

BB' is its middle point. Hence the centroid of AB' lies on the line

joining G to the middle point SB*. In the limit, therefore, the

line joining G to its next consecutive position is the line GB, which

is, then, the tangent at G to the locus of G.

4. Find the position of the centroid of the arc of a semi -cardioid.

Ana. The equation of the curve being r = a(l+cos0), the co-

ordinates of its centroid referred to the axis of the curve and a per-

pendicular line through the cusp as axes of x and y are

5. Find the equation of the line joining the centroid of the arc of

half a loop of a lemniacate to the double point.

Ans. The axes of x and y being the axis of the curve and a

perpendicular line, the equation of the required line is

6. Find the centroid of the arc of a semi-cycloid.

Ana. The axis of x being a tangent at the vertex, and a the

radius of the generating circle,

4 2
jc = (7T--)a, y -

3

VOL. I.
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7. Find the distance of the centroid of the catenary

from the axis of x, the curve being divided into two equal portions by
the axis of y.

Ans. If 21 is the length of the curve and k the ordinate of its

extremity, the centroid lies on the axis of y at a distance - from

the axis of x.

8. Find a law of density of a wire of uniform section bent into the

shape of a cycloid so that its centre of mass shall be half way up
its axis.

Ans. If the density varies as the length of the arc measured

from the vertex, the result will follow.

9. If the density of a cycloidal arc varies as the wth power of the

arc measured from the vertex, find the position of the centre of mass
of the curve.

n + 1
Ans. On the axis at a distance 2 - a from the vertex, a

n+3
being the radius of the generating circle.

10. One extremity of a circular arc is fixed while the other varies

along the circle ; trace the locus of the centroids of the varying arcs,

and prove that the algebraic sum of the intercepts of the locus on the

diameter perpendicular to that passing through the fixed extremity of

the arcs is equal to half the radius.

166.] Centroid of a Plane Area. Let APQS (Fig. 212) be

any curve whose equation is given, and let it be required to find

the centroid of the area, CAJ3D, of a lamina included between

a given portion, AS, of the

curve, two extreme ordi-

nates, AC and D, and
G- . a \B the axis of x, the lamina

being supposed of uniform

C MN ~~5 F thickness and density. In

Fig 212. accordance with the rule

of Art 164, we break up
the area into elementary portions. Suppose that this is done by
taking rectangular strips, such as PQNM, included between two

very close ordinates, PM and QN, and let g be the centre of
mass of this strip.

Let the co-ordinates of P be
(x, y) and those of Q (x + dx,M

;
let p be the density and k the thickness of the lamina.
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Then the mass, dm, of the rectangular strip is

kpydx.

Also the co-ordinates of g are (x + f, 7; +*')' and t' being\ ^ /

extremely small quantities of the same order of magnitude as

dx and dy.

Following the rule of Art. 164, to obtain the abscissa of G
t

the centroid of the area, we shall have to take the integral of

the product kpy (x + t) dx.

Now (.dx is an infinitesimal of the second order, and is there-

fore to be neglected in the integral. Hence if x and y are the

co-ordinates of G, we have evidently, since k and p are

constants, fxydx
-_- ~ix
fydx

*
/yd*

the integrations extending over the whole area CABD.

EXAMPLES.

1 . Find the centroid of the area of a semi-cycloid.

Taking the line joining the extremities of the arc of the whode

curve as axis of x, and a perpendicular through the vertex as axis of

y, the curve is given by the equations

x a (0 + sin 0),

a

Hence ydx = 4a2
cos* - d0, and we have

2

x = a

/* d r o
I (0 + sin0)cos

4^0 /
cos6 -dO

Jo f_ _ _ Jo *

[' *dO I *-d()'
Jo

' '

2 A
*

2

r* e
To find

/ 0cos
4 - d0, write it

Jo 2

i r* i r* /3 i
- i

0(1 +cos0)
8
c?0, or I 0( -f-2 coa + cos 20

4 /o 4 Jo ^ 2 '

sinnd + cosnd ,_Now y 6 cos n0a0 = Hence the integral in

37T-16
ion =

Id

fw fw Q
Again, /

sin d cos4 -dO = 2> /
tin

J9 * JQ

Q 2
cost- dO = -

4

T 2
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97r-16
Hence x = --- a.

loTT

And evidently y=-a.

2. If the ordinates of a given curve, U, be all diminished or in-

creased in a given ratio and a new curve, Uf
, thus formed, prove

that the centroid of any portion of U' cut off by a right line is

obtained by diminishing or increasing in the same ratio the ordinate

of the centroid of the corresponding portion of U.

Let one line parallel to the axis of y meet U and U' in P and
Pf

respectively, and let another such line meet them in Q and Qf.

Draw the right lines PQ and P'Qf ;
then these lines cut off cor-

responding portions of the two curves. From any point, M, on U
draw a line parallel to the axis of y meeting the right line PQ in N,
and U' and P'Q' in Mf and N', respectively. Denote the ordinates

of M and N by y and z
;
then it is clear that if k is the number by

which the ordinates of U are multiplied to obtain those of U', the

ordinates of M' and IP are ky and kz, respectively. All these points
have a common abscissa, x. An ordinate drawn with the abscissa

x+ dx includes with the ordinate MNM'N', the curve U, and the

line PQ a strip of area equal to (yz)dx, while the corresponding
strip of the area of V cut off by P'ty is k(yz)dx. Again, the

nj JL.
jgj

ordinate of the middle point of the first strip is and that of

,^

the middle point of the second strip is k^-
2

Hence if y and y denote the ordinates of the centroids of the

portions of U and U' cut off by PQ and P'Qf, respectively,

*
fk(y-z)dx

= Jc. y.
Let PQ cut off in all positions a constant area from U\ then it is

evident that P'Q' cuts off a constant area from IT. Suppose, more-
over, that in this case the locus of the centroid of the portion of (7 is

a curve whose equation is fix y\
_ Q .

then clearly the locus of the centroid of the corresponding portion of
U'of constant area cut off by a right line is the curve

/(*,f)=o.
If the lines PQ and P'Q' are replaced by two curves, the second of
which is deduced from the first as U' was from U, the same results

evidently follow.

3. Find the centroid of a quadrant of an ellipse.
4<z 46

Ana. x = y = .
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4. A right line cuts off a constant area from an ellipse ;
find the

locus of the centroid of the portion cut off.

Ans. An ellipse concentric and coaxal with the given one.

oc ?y

5. Find the centroid of a quadrant of the curve ( -) + (?) = 1-

,_ _2.4.6.8 2a _2.4.6.8 26

-3.5.7.9'1T ; y -3.5.7.9*7'
(Assume x = acoss

</>, ?/
= 6sin3

$.)

6. Find the centroid of any segment of a parabola cut off by a

right line.

Ant. On the diameter conjugate to the given line at a distance

from the curve equal to of the portion of the diameter intercepted

by the given line.

7. Through a given point, 0, is drawn a fixed right line meeting
a curve in A ; through is also drawn another right line meeting
the curve in P. It is required to construct at any point the tangent
to the locus described by the centroid of the area AOP as the line

OP varies.

Ana. Let G be the centroid of AOP, and take a point Q on OP
such that OQ = |OP. Then GQ is the tengent to the locus at G.

(See Example 3, p. 273.)

8. Find the centroid of a semi-ellipse cut off by any diameter.

Ana. It is on the diameter conjugate to the given one and at a

distance from the centre, 2 a' being the length of this conjugate
Sir

diameter.

9. Find the centroid of the area included by a parabola and two

tangents.
Ans. If a and b are the lengths of the tangents (which are taken

j \ - a b
as axes of x and y\ x= -, y = -

5 5 i i

X ?/ *

(The equation of the parabola is(-) + (?) = 1- Assume

x = a cos
4

<f>, y = b sin
4

<.)

The particular manner in which

it is advisable to break up the

area whose centroid is required

varies with the nature of the

arc;i itself. Thus, let the area be

that included between the axis of

x and two curves, AC and BC ~o~

(Fig. 213), whose equations are
Fig. a 13.

given. In this case the area

may be broken up into thin strips, such as PQP'Q,', parallel
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to the axis of x. Let (x, y) be the co-ordinates of P and (#', y]

those of P. Then the area of the strip is (x'x)dy, and

the co-ordinates of its centroid are \ (x + x) and y. Hence if

no portion of the area considered is above a parallel to Ox drawn

through (?, the co-ordinates of its centroid are given by the

equations

fy(x-x}dy

in which the limits ofy are and the ordinate of C. The values

of x' and x are of course given in terms of y from the equations

of the two curves.

For example, let it be required to find the centroid of the area

included between a parabola and a circle described with the vertex

of the parabola as centre and a radius equal to f of its latus rectum.

The centroid is on the axis of the parabola. Let the equation of the

parabola be y
a = 4 mx

;
then the equation of the circle is x2 + y

2 = \n& ;

and the ordinate of C, their point of intersection, is m</2.

36m

16 + 27 sin-1

as the student will find without much difficulty.

EXAMPLES.

1. Find the centroid of the area included between the arc of a

semi-cycloid, the circumference of the generating circle, and the line

joining the extremities of the cycloid.

Ans. The common tangent to the circle and cycloid at the vertex
of the latter being taken as axis of x, the vertex being origin, and a
the radius of the generating circle

Sir2 8 5
* =^_a; y = -a.

2. Find the locus of the centroid of the area of a parabola cut off

by a variable right line drawn through the vertex.

Ans. If 4m is the latus rectum of the parabola, the locus is

another parabola whose equation is ^= - mx.
2
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(The student may verify the construction of Example 7, p. 277, for

the tangent to this locus.)

3. Find the centroid of the portion of an ellipse cut off by a line

joining the extremities of the major and minor axes.

_ _ 2 a _ 2 b

-3*7r~^2
; *-8'i=2'

167.] Graphic Construction of the Centroid of a Plane

Area. The following method of determining the centroid of any

plane area is taken from Collignon's Statique, p. 315.

Let APBQ be any plane area, and let Ox be any line in its

plane. Then, if the distances of the

cvntroid from Ox and any other line

in the plane are known, the position

of the point is known.

Draw any line, 0V, parallel to Ox

(axis of x] in the plane of the curve,

and let the perpendicular distance

between Ox and 0V be a. Let the

area be broken up into narrow rect-

angular strips, such as PP'Q'Q, by
lines parallel to the axis of x. Then

if PQ z, the area of the strip

=
;<ly, the distance of PQ from Ox

being y.

Hence the distance, y, of the ceutroid of the area from Ox
is given by the equation

o

Fig- 214-

_~ 0)

A
l being the area of the figure, and the values ofy running from

the ordinate of A to that of B, at which points the tangents are

parallel to Ox. Now take any point, 0, on Ox\ draw OQ, and

draw PCX parallel to OQ. Let the line OO meet PQ in R.

Then by similar triangles

OR

or, z' denoting the length QR,

az' = yz. (2)

Let the locus ofR corresponding to all strips of the given an ;i
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be constructed. It will be a curve, ARE, passing through the

points . / and />'.

Substituting the value ofyz from (2) in (1), we have

afz'dy
y -5

"i

in which the limits of y are the same as before. 'Rnkfz'dy is

the area, Az ,
between the curves ARE and AQS. Hence

The distance of the centroid from Ox is therefore known.

Similarly its distance from any other line can be found, and

therefore the position of the point is determined.

If a point S is deduced from R in the same way as that in

which R was deduced from P, and if QS = z'\ we shall have as

before

If therefore the locus of S is constructed, the area included

between it and AQ multiplied by a2 will be the value of the

integral fy^zdy extended over the original area.

By the construction of successive curves such as ARE we

represent the values offyz
zdy, fy*zdy, &c., graphically.

An ingenious instrument founded on these principles the

Integrometer of M. Deprez is described by Collignon in the

Annales des Fonts et Chanssees for March, 1872.

EXAMPLE.

In finding by this method the centroid of a portion of a parabola
cut off by a double ordinate at a distance h from the vertex, prove
that if the tangent at the vertex and the given double ordinate are

taken as the lines Ox and 0V, the equation of the curve ARE will be

AY = 4mx (h-2xf.

This curve (both branches being drawn) has a loop between the
values x = and x = \ h, and passes through the extremities of the
double ordinate.

1C8.] Polar Elements of a Plane Area. Let it be required
to find the centroid of a portion of a plane area bounded by a
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portion of any curve, AS (Fig. 215), and by two extreme radii

vectores, OA and OB, drawn through a given point, 0. It is

obvious that in this case it is advisable

in applying the rule of Art. 164 to

decompose the area into triangular

strips, such as POQ, included be-

tween two very close radii vectores.

If OP r, and LPOx = 0, the ele-

ment of area, POQ, is equal to

and if the thickness and density of the

lamina are uniform, the centre of mass

of this element is a point g which

may be considered as on OP at a distance $ r from 0.

Hence if Ox is the axis of x, the co-ordinates of g are ultimately

r cos 0, and r sin 0.

Applying the rule of Art. 164, we then have

. _ a /r
3 cos0fi?0 __ a

; ^
For example, to find the centroid of a loop of Bernoulli's Lemnis-

cate whose equation is r2 = a* cos 20.

The axis of the loop being taken as axis of x, the abscissa of the

centroid of the whole loop is evidently the same as that of the half

loop above the axis ;

rl

/ COS* 20 COB 0<Z0
: Jo_ 2a,

cos 2 Odd

4 Tf
:= / (1 2 sin

2

0)
a . (2 sin 0.

3 jo

Putting sin = this integral becomes

4a ff
I cos*

3 v2 Jo

4a 1 .3 -n .

which = -r ;* Therefore
i . 4 <

va

4-/2
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EXAMPLES.

x
l. To find the centroid of a given sector of a circle.

Ans. It is on the diameter bisecting the arc, at a distance from

the centre equal to | of the product of the radius and the chord of the

arc divided by the length of the arc.

2. Find the centroid of a portion of an equiangular spiral included

by the initial line and a given radius vector.

Ans. The initial line being taken as axis of x, the equation of the

spiral being r = ae^ 8
, and a being the angle of the given radius vector,

4&a e3* a sina+3&e3 *a cosa 3k
=

3. When a = in the preceding question, find the values of x
and y, and explain the result.

4. Find the centroid of the portion of a parabolic area included

between the axis and a radius vector drawn through the focus.

Ans. If 4m is the latus rectum, and t the tangent of half the

angle between the given radius vector and the axis,

__2m 1 \t* __2m t + \t
3

~3~ThK ; ^~ :

~ir'i+i?"

169.] Double Integration. "When the density of the lamina

varies from point to point it may be necessary to divide it into

infinitesimal portions of the second order instead of strips

(triangular or rectangular) whose areas are infinitesimals of the

first order.

Thus, suppose that the lamina AOB (Fig. 215) is not ofuniform

density. Then if we break it up into triangular strips, such as

POQ, the element of mass will be no longer proportional to the

area POQ or \r*dQ ; and, moreover, the centre of mass of the

strip will not be r distant from 0.

Let a series of circles be described round as centre, the

distance between two successive circles of the series being d/.

These circles will divide the strip POQ into an indefinitely great
number of rectangular elements ; and if one of these is included

between the circles of radii / and / -f dr
r

,
its area will be

rdr'dd.
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If p is the density and k the thickness of the lamina at this

element, the element of mass will be

kprdr'dd.
Also the rectangular co-ordinates of the centre of mass of the

element are ultimately /cos 6 and /sin 6.

Now to find the abscissa of the centre of mass we must

perform the summations fxdm andyWwz over the whole area

considered.

The contribution to the first of these summations given by the

^trip POQ is evidently r

cos 6 def k?r^d/\
Jo

and the contribution to the second is

df kpr'dr'.
Jo

In each of these latter integrals the values k and p in terms

of / and 6 must be substituted, and the integrations are to be

performed on the supposition that 6 is constant while / runs

from to r.

ff
The quantity cos 6dO kpr'

zd/ will then assume the shape
Jo

(p(r, 0).cos Odd. But since the curve AB is given, r is given
as a function of 6, Hence this quantity assumes the form

f(0).cosOdd. This is the final shape of the contribution of

the strip POQ. If we wish to find how much is contributed

by all the strips of the area, we must integrate / (6) . cos OdO

from Q-AOx\jQQ = BOx.
This double process of integration first with regard to r', and

then with regard to d is expressed by the symbols of double

integration thus:

dQ,

/* =
r/.

r

a and /3 denoting the angles AOx and BOx.
Hence we obtain

r/ tpr" coa6dr'd0 kpi* sin 6d/dO
_ Jo.

nr
> y -

r? rr

kp/d/de j I kp/d/dd

Let it be required, for example, to find the centroid of the area of

a cardinid in which the- d nsity at a point varies as the nft* power of

the distance of the point from the cusp.



284 CENTROIDS [CENTRES OP GRAVITY]. [169.

Here p = J*r'", and k is constant ; therefore, the abscissa being the

same for the whole curve as for the half above the axis,

n>-'

o *^ o
2/ ^^^^r

o o

Integrating first with regard to /, we have

n+ 2

71+3

/
Jo

f"r
n

Jo
a

But r = 2acos*-' Substituting this value and putting ^ =</>,

we have

2(n+ 2) g
w+3

r
/
Jo

r

/
Jo

These definite integrals are well known. Dividing the numerator

, l:3.5...2n+3 TT
and denominator by - ---- -

> we have
2 . 4.6...2w+4 2

_2(n+ 2) f (2n+ 5)(2n+7) 2n+5{
n+3

' a

= (n+2)(2n=

(n+3)(n + 4)

*'

The centroid evidently lies on the axis of symmetry, or y = 0.

EXAMPLES.

1. Find the centre of mass of a circular sector in which the density
varies as the n'h power of the distance from the centre.

Ans. - -:-> where a is the radius of the circle, Z the length
71 + 6 I

of the arc, and c the length of the chord, of the sector.

2. Find the position of the centre of mass of a circular lamina in

which the density at any point varies as the TI*^ power of the distance

from a given point on the circumference.

Ans. It is on the diameter passing through the given point at

a distance from this point equal to a, a being the radius.



169.] DOUBLE INTEGRATION. EXAMPLES. 285

Methods of double integration are also often employed when
the elements of area are expressed in Cartesian co-ordinates.

In this case, let the element of area at a point P, whose co-

ordinates are (x',y), be a small rectangle included between two

very close lines parallel to the axis of x and two very close lines

parallel to the axis of y. Then the element of area will be

dx'dif\ and if p and k are the density and thickness of the

lamina at the element, the element of mass,

dm = kpdx'dy.
Also the co-ordinates of the centre of mass of this element are

ultimately x' and y'. Hence

_ffkpx'dx
f

dy' . __ffkpy'dx'dy'~
ffkp dx'dy'

'

ffkpdx'dy*
'

A single example will suffice to illustrate this method.

Let it be required to find the centre of mass of a quadrant of an

ellipse included by the semi-axes, the density at any point being pro-

portional to the product of the co-ordinates of this point.
Here p = fi . x'y', and since k is supposed constant,

ffx'y'dx'dy' _ Sfxy*dxdy'=

ffx'y'dx'dy'
J y==

ffx'y'dx'ly''

Let the integrations be performed first over a strip parallel to the

axis of y. Then we integrate with respect to y', regarding x' as

constant, from y'= to y'= y, the ordinate of a point on the ellipse.

"
*

Here we must substitute the value of y in terms of x'
t
and thus

e get fxft
(a

t-yfr)dx"X ~ '

in which summations the abscissa x' is to receive all values from

to a.

8 8
We easily obtain a and b for the co-ordinates of the centre of

muss.

Examples may occur in which, although the density of the

lamina varies from point to point, the process of double integra-

tion can be avoided by the judicious selection of an element of

area.

Let it be required to find the centre of mass of a quadrant

of an ellipse in which the density at any point varies as the

distance of the point from the axis major.
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Here, by dividing the area into rectangular strips parallel to

the axis major, we obtain infinitesimal elements of the first order

throughout each of which the density is constant. Hence our

equations are
_ ^ fx*ydy m

_ _ fxfdy
fxydy'

y ~fxydy'

Making the usual eccentric angle substitutions for x and y, we

3 37r

170.] Centroid of a Surface of Revolution. Let a plane
curve AB (Fig. 212) revolve round a line Ox (taken as axis of

a?)

and generate a surface. Then the revolution of the elementary
arc PQ (=^/#) generates a portion of surface whose area is

2 TTyds; and if p is the density of the matter in this zone and

k its thickness, the element of mass is 2itkpyds. Also the centre

of mass of the zone is ultimately the point M, whose abscissa is

x. Hence the centroid of the surface generated (which obviously

lies on the axis of revolution) is at a distance from given by
the equation _fkpxyds

fkpy ds

the integrations being extended over the whole length of the

generating curve.

For example, to find the centroid of the surface of a semi-ellipsoid
of revolution round the minor axis, the density of any zone being

proportional to its distance from the equatoreal plane, and the thick-

ness being constant :

The area of a zone at a distance y from the equatoreal plane being
2-rrxds, the position of the centroid is given by the equation

_ _ fxy^ds

fxyds
'

the integration extending over the arc of a quadrant of the generating

ellipse. Using the eccentric angle, we have

x = a cos
<|>, y = b sin

<f>,
ds = */a? sin2 < + 6

2
cos

2

<|>
. d<f),

a and b being the semi-axes of the ellipse.

Hence C? .-
/ cos(/>sin

2

</> v a2 sin2
< + 6

2
cos2<.(<

y = b^--
ri ._
/ cos

(/>
sin $ V a2

sin2 <p+ b2cos
2
$ . d(p

Jo

To find the integral in the numerator, put t for sin <, and it

becomes
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r?Vb*+ *Pdt,
Jo

where aa 6*= e*. This, again, is equal to

which

and this, by making the first integral depend on the second, is easily

proved to be

The integral in this expression is one of the elementary forms
in the Integral Calculus. Hence the numerator is

The integral in the denominator is evidently

/f_
\l -v/6*+ c

2 sin
2

</>.
risi

Jo

which is equal to
t (a

3 6s
).

an, f

For a sphere of radius a the value of y is easily proved by direct

calculation to be | a ;
and the student may exercise himself in the

evaluation of indeterminate forms by deducing this from the value

of y given above. (For this purpose it will be advisable to put

log into the form 1 log- and expand.)
o a c

171.] Centroid of any Portion of a Spherical Surface.

Let tlX denote any portion of a spherical surface, and let rf2

denote its projection on any plane passing through the ceritr.

the sphere. Then, if this plane be taken as that of jy, and if
-

dcjx.tr tin- distance of the centroid of the element dS from the

jihinc, the distance of the cent mid of any portion of tin- spherical

surface from the plane is given by the equation

the integration being extended over the whole portion of the

spherical surface considered.
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Now if r is the radius of the sphere, the cosine of the angle

between the tangent plane to the sphere at the element dS and
&

the plane of xy is -
; therefore

d2 = - dS. (2)
r

Henceyzd= r/W2=r2, 2 denoting the projection of the

whole spherical area considered; and making this substitution

in (1),
we have 2

*=r$, (3)

where S is the area of that portion of the sphere whose centroid

is required.

Equation (l) -gives, of course, the distance of the centroid of

any surface whose element is dS from the plane of xy ;
and it is

clear that if the surface is generated by the motion of a sphere

of constant radius whose centre moves along any curve in the

plane of xy, the cosine of the angle between the tangent plane
^j

at the element dS and the plane of xy will still be -
,

since the

given surface and the generating sphere have the same tangent

plane. Hence equation (2) holds in this case and therefore also

equation (3).

172.] Centroid of any Surface. Let dS denote an element

of any surface, d the projection of this element on the plane of

xy, and y the angle between the plane of xy and the tangent

plane to the surface at the element dS. Then, if z is the distance

of the centroid of dS from the plane of xy, we have

_fzdS
~~

fdS'

It is not unusual to suppose the element dS cut off from the

surface in the following manner.

Let m (Fig. 216) be a point in the plane xy whose co-ordinates

are x', tf ; let mn be drawn parallel to the axis of x and equal to

dx'
;
let mq be parallel to the axis of y and equal to dy

f

;
and

complete the rectangle mnpq. On the base mnpq describe a

prism whose edges, Mm, Nn, Pp, Qq, are parallel to the axis of z.

This prism will intercept on the given surface an element,
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A1NPQ, which is dS. The rectangular projection, rf2, is then

whose area is dx' dy'. Substituting this value in the above

. , f/zsec-yt/j' <///

equation, we have z =^m . / , />

JJ sec y fix dy

the integrations being extended over the whole projection of

the given surface on the plane xy.

It easily follows that the cent-raid

of the projection (orthogonal or ob-

t'u{ne) ofany plane area on any plane
is the projection of the centroid of
the area.

Take the plane on which the

given area is projected as the plane
of xy ;

let o> be the angle between

this plane and the plane of the

area, and let x, y be co-ordinates

of the centroid of the given area. Then

Fig. 216.

x = fxdS
fdS

''

ysecw.fi?2

fxd'S.

since o> is the same for all elements. But the co-ordinate of the

centroid of the projection is evidently given by this equation.

Therefore, &c. ; and a similar proof obviously holds for an

oblique projection, because at all points of the given area the

ratio of diS to </2 is constant.

EXAMPLES.

1 . A section of a sphere is made by any two parallel planes ; prove
tliiit tin- centniid of tat spherical surface included is midway between
tin-in.

This is very easily proved either by direct calculation or by the

iijij.lii
-;ition of the result of last Article. Collignon (Statique, p. 295)

- an elegant geometrical demonstration which depends on the fact

that if a cylinder is circumscribed to a sphere along any one of its

great circles, the portion of the arm of tin- cylinder included between

any two planes at right angles to its axis is equal to the portion of

the area of the sphere included l>y the.-e pianos. By taking in-

definitely close planes it follows that tin- ^plierical area may be

transferred to the cylinder, and the ceutroid of any portion of a

VOL. I. U
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cylindrical area cut off by planes perpendicular to the axis is evidently

midway between these planes.

COR. The centroid of the surface of a hemisphere is at a distance

equal to half the radius from the centre.

The author is indebted to Mr. J. Rendel Harris, of Clare Hall, for

the following application of this result to find the centre of mass of a

solid hemisphere. Suppose AB to be the diameter of the solid hemi-

sphere, its centre, OE the perpendicular to the plane base at

meeting the surface of the hemisphere at E
;
draw the tangent plane,

CD, at E, the points C and D being on the perpendiculars at B and A
to the base AB.

Divide the solid hemisphere into an infinite number of their con-

centric hemispherical shells, and replace each shell by a cylinder of the

same thickness, having the plane base of this shell for its base, and the

radius of this shell for its length. In this way the solid hemisphere
will be replaced by the solid which is obtained by cutting out of the

cylinder ABCD, which surrounds the surface of the given hemisphere,
the cone COD. Hence, if r is the radius of the hemisphere, and z

the distance of the centre of mass of the given solid hemisphere from 0,

z =
fTrr

3

= fr.

2. To find the centroid of a spherical triangle.
Let ABC be any spherical triangle, and the centre of the sphere.

Produce the sides AC and AB until they
become quadrants, AE and AD, and draw
the arc DE of a great circle.

We shall find the distance of the centroid
from the plane EOD, which is perpendicular
to the line OA.

The projection of the area ABC on this

plane is evidently the same as the projection
of the sector, COB. Now ifp1

is the per-
217. pendicular arc from A on the side BC, the

angle between the planes COB and EOD is

90 p t ; also the area of the sector COB is \ar, a being the length
of the side BC and r the radius of the sphere. Hence if 2 denote
the projection of the area of the triangle on the plane EOD,

2 =
and if A, B, C denote the circular measures of the angles of the

triangle, and S its area, S =
Hence, by (3) of last Article, if a? denote the distance of the centroid
from the plane,
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It is evident that x is the distance from of the projection of the

cvntroid on the line OA. Its projections on the lines OB and OC are

obtained by writing 6 and pt ,
c and j>s , instead of a and plt in this

equation.

3. To find the centroid of the surface of a nearly spherical semi-

ellipsoid cut off by the plane of the two greater axes.

Let the axes in order of magnitude be a, b, c, and let

Now if dx dy' is the projection on the plane xy (which is the base

of the semi-ellipsoid) of an element of surface, dS, we have

JM

p being perpendicular from the centre on the tangent plane at

the element, and z the distance of the element from the plane of xy.

Hence, S denoting the surface of the semi-ellipsoid, we have

1 x'' y'' # 1 . *V' i'V'.
Again, -=-f+^ +7=- (I--,--- -),

Therefore, rejecting all powers of k and k' beyond the second,

Integrating from x-=x to x' = x, the co-ordinates of a point on
the circumference of the base being x, y, we have

Expressing x and y in terms of the eccentric angle, and integrating
over the fnt in- circumference, we have

W i J/-1

Now (Williamson's Integral Calculus),

r

*****{J% (ft

8
sin1 + c

8 cos8 0)4 (a
8 sin

8 + c8 cos8 0)*

/f
sin ddd

(a
8 sin

8 + c" cos8 0)1 (6
s
sin* + c

8 cos8 0)*

which is easily proved to be 2 TTC*
{
I + (/t*+ A' 8

)}.

/* f 2 ^
Hence finally,

= -
j

1 .(*' + *'*)
i ( 24

U 2
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4. A parabola revolves round its axis; find the centroid of a

portion of the surface between the vertex and a plane perpendicular
to the axis at a distance from the vertex equal to of the latus

rectum. 29
Ana. Its distance from the vertex = ^ (latus rectum).

5. Find the centroid of the surface generated by the revolution of

a cycloid round its axis. 2 (15 778)
Am. It is on the axis at a distance ^75 r\.a from the

lo {6ir 'tj

vertex, a being the radius of the generating circle.

6. Prove that the centroid of the lateral surface of the frustum of a

right cone or pyramid lies in a plane whose distance from the base is

^
. h, where p and p' are the perimeters of the base and upper

3(P+P)
section, and h the height of the frustum.

173.] Centre of Mass of a Solid of Revolution. If the

curve AS (Fig. 312) revolve round Ox, the rectangular area

PQNM will generate a cylindrical volume equal to TT . PM* . MN,
or ity^dx. Hence if the density of the solid is uniform, we have

for the position of its centre of mass (which obviously lies on Ox)

fxy2 dx
r* _.". _

**
.

ffdx
the integrations being extended over the whole of the area

CABD, of the revolving curve.

If the density varies, the element of mass may require to be

taken differently. If the density is a function of x alone, i.e.

if it is the same all over the rectangular strip PQNM, the

volume may be broken up as above, and the element of mass
= -np^dx. Hence we shall have, in this case,

- _

Suppose the density to vary as y alone. Then if we take a

small rectangular area, dx dy'> at a point whose co-ordinates are

of, y', this area will generate an element of volume equal to

2 ity'dx' df ; therefore the element of mass = Siipy* dx dy' and
wehave

ffrfy'Mdj
ffpy'dx'dy'

The integrations are to be performed first from /= to/= y,
the ordinate of a point P on the bounding curve

;
and then from

af= OCtox = OD.
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As an example, let the curve AB be a quadrant of a circle of which
OA and OB are diaineU-r.s and let it be required to find the centre

of mass of the solid hemisphere generated by the revolution of ilii^

quadrant round OB (taken as axis of x) ; firstly, when the density is

uniform
; secondly, when it is constant over a section perpendicular to

OB and proportional to the distance of this section from the centiv ;

and thirdly, when it is the same at the same distance from OB, and

proportional to this distance.

Firstly, we have x ^V. Putting x == r cos 0, y r sin 6,

where r is the radius of the circle, and integrating between = and

0=-, we have x = -r. (1)2 o

/x^
Secondly, since p = px, we have x=

3
> which easily gives

Thirdly, p =py', therefore

_ ffx'y'*dx'dy' _fxy*dx~
' ~ '

and the previous substitutions for x and y give

*-"' <3>

In this case the double integration might have been avoided

by breaking the area up into rectangles parallel to the axis of x.

The student will do well in such examples as this to check his

results as much as possible by a common-sense view of the

question. Thus, having proved that the distance of the centre

of mass of a homogeneous hemisphere from the centre is f r, it is

dear that when the density of a section is directly proportional

to its distance from the centre, the centre of mass of the

hemisphere must be at a distance from the centre > f r, since the

matter is most dense in the space remote from the centre
;
while

in the third case above, since the ordinates of the portion of the

curve near A are greater than those of the portion near B, and

since the density increases with the ordinate, it is evident that

the centre of mass must be nearer to the centre than in the

homogeneous hemisphere.
The most advantageous method of breaking up a mass of

varying density into elements depends entirely on the law of

variation of the density, and while all these methods are em-
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braced in the rule of Art. 164, it would be impossible to give

formulae suited to all cases.

Laplace, by assuming the change of the pressure from stratum to

stratum of the earth to be proportional to the change in the square of

the density, proves that if the strata of uniform density are spherical,

the density of a stratum of radius x is given by the equation

. U-x
sin

_Po a
p

^ ^
>

p. x

a being the radius of the earth, />
the density at the centre, and

fj.
a

constant number.

Let it be required to find the centre of mass of a hemisphere whose

density follows this law.

Here the element of mass of uniform density is the stratum in-

cluded between the hemispheres of radii x and x+ dx. Hence

dm = 2 Tip y?dx

x . ux ,= 2 Trap,,
- sin ax.
H a

Also the distance of the centre of mass of this stratum from the

98

centre is (Example 1, p. 289). Hence, the axis of x being the
2

diameter perpendicular to the base of the hemisphere, the distance of

the centre of mass from the centre is given by the equation

C
I or sin

a

- *x sin dx
o

(2 f/,

2

) cosfi + 2|usin/^ 2
- a i . _.

y

2
fj. (sin fj. /j.

cos
p.)

as will be easily found. When /x=0 the hemisphere is of uniform

density, and the student will see that this value of x becomes fa, in

accordance with our previous result.

EXAMPLES.

1. Find the centre of mass of a hemisphere in which the density is

proportional to the nth power of the distance from the centre.

Ans. It is at a distance = - from the centre, a being the
w+ 4 2

radius of the hemisphere.
2. Find the centre of mass of a portion of a paraboloid of revolu-

tion cut off by a plane perpendicular to its axis.
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Ans. If h is the distance of the plane of section from the vertex,

i= |A.

3. Find the centre of mass of a semi-ellipsoid of revolution round
the minor axis, the density at any point being proportional to its

distance from the base which is the plane perpendicular to the axis of

revolution.

g
Ana. y = -

b, where b is the semi-minor axis.
15

4. An ellipsoid of revolution round the minor axis is cut by a plane

passing through this axis
;

find the centre of mass of the portion
included between one semi-ellipsoid thus cut off and the concentric

hemisphere whose diameter is the minor axis.

Ans. If a and b are the axes major and minor of the generating

ellipse, the required centre of mass is on the major axia at a distance

3
equal to - --

j from the centre.

Verify this result in two obvious cases.

171.] Centre of Mass of any Solid. In the solid take any

point, P, whose co-ordinates are x, y, z, and also a close point, Q,

whose co-ordinates are x + d#, y + dy, z + dz. Then evidently
the volume of the parallelepiped whose diagonal is PQ and

whose edges are parallel to the axes of co-ordinates is dxdydz\
and if p is the density of the body at P the element of mass at

P is pdjcdydz.

Hence the co-ordinates of the centre of mass of the solid are

given by the equations

_fffpx.dxdydz __fffpydxdydz fffpzdxdydz=
fffpdxdydz

' y~
fffpdxdydz

'
~

fffpdxdydz
'

tin- integrations being extended over the whole solid.

It may not be necessary to take infinitesimal elements of

volume of the third order. From what has preceded, the

student will have learned that the best mode of breaking up the

given mass into elements depends entirely on the law of density

which prevails.

In many cases the symmetry of the solid enables us to simplify

the problem by choosing elements of volume which are in-

finitesimals of t\M first order only.

The various elements of volume which it may be necessary to

take are exemplified in the following problems.
Find the centre of mass of the eighth part of an ellipsoid, ABC

(Fig. 218), included between its three principal planes
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(1) When the density at any point is simply a function of its

distance from the principal plane BC (plane of yz).

(2) When the density at any point is a function of its

distances from the two principal planes AC and BC (planes of xz

and yz).

(3) When the density at any point is a function of its

distances from the three prin-

cipal planes.

In the first case, the den-

sity will be constant over a

section DH perpendicular to

OA. Hence, taking two such

sections, DH and EF, at a

distance dx from each other,

the density of the solid between

them may be considered uni-

form, and this portion of the
Fig. 218.

' r ,11
solid may be taken as the ele-

ment of mass.

In the second case, the density will be constant throughout a

portion of the body in which x and y are constant ; that is, along
a perpendicular to the plane AB ;

and the element of mass may
be taken as the prism NQnq, the area of whose base is dxdy, and

which intersects the bounding surface in the area NMQP.
In the third case, the density is not the same at any two

points, and the element of mass must be taken at a small rect-

angular prism, sir, whose volume is dxdydz.

EXAMPLES.

1. In the problem just discussed, find the centre of mass when
the density at any point is proportional to its distance from the

plane BC.
Here p = \ix ; also, the equation of the ellipsoid being

the ellipse DH satisfies the equation

*
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which shows that the axes Gil and GD are

b

respectively. Hence, IG being = dx, the element of mass is

and since the centre of mass of this element is ultimately a point
whose co-ordinates are

46 /*
*

j 4c A *

'3^V -?' and 3^V "a*

(see Ex. 3, p. 276), we have

/JO_

\ (Lr

46 Jo
~

v
* ^} 166

and
r -r

2

/ *(l--
Jo a

the value of z being, of course,
IOTT

2. If the density at any point of the ellipsoid is pxy, find the centre

of mass.

Taking a prismatic element of volume NQnq, the element of mass is

fjixyz dxdy,

z being the height, Mm, of the prism.

The co-ordinates of M being x, y, z, those of the centre of mass of

this prism are evidently x, y,
- Hence
m

- _ ffy?yzdxdy - _ ffxifzdxdy f/~ ' ~ ' ~
*

ffxyz dxdy
~

ffxyz dxdy
~

*
ffxyzdxdy

The integrations may be performed, first with regard to y, from

y = to y = Glf; and then with regard to x, from x = to x = OA.

y* .2

Now

and, integrating first with regard to y, we have

c" /,
^ A*/ ft2

/,

Jo ^-y-fr)*-^1 -
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since from the equation of the ellipse AB, the value GH of y makes

jj 7
J

1 --r TT vanish. Hence
a* 6

/,/. , j
ffxyzdxdy =

In the same way,
62c Ta x2 $

^jz dx dy = /
K2

(l
-

-5-) <fo,
a Jo

which, by putting x = a cos <, is easily seen to be Hence

cc = a, and y = 6
;
and it is easily found that z = -

c.

' O A

3. If the density at any point in the solid is proportional to the

product of the co-ordinates of the point, find the centre of mass.

Here, at any point, we have p = p. . xyz, and the element of mass

being pxyzdxdydz, we have

fffx
1

yzdxdydz

with similar values of y and z. If we first integrate from z = to

z = mM (Fig. 218), we shall have the contribution of the prism NQnq
to the summation. Integrating, then, with respect to 2, considering
x and y constant, we have

fffx^yzdxdydz = \ffx*y(mM}*.dxdy

since M is a point on the bounding surface of the ellipsoid. Let this

latter integration be first performed with respect to y, considering x

constant, from y = to y = GH, and we shall then have the con-

tribution of the mass contained between the sections DH and EF.

Now

Hence fffa?yzdxdydz=z-l je
2
(l ^)

2
<a? = >

8 jo <*

as easily appears by putting x == a cos
</>.

It will be found without difficulty that fffxyzdxdydz = -

Hence x = a, y = b, and ~z = c.

4. Find the centre of mass of the portion of the elliptic paraboloid

~2~ + "Tg =2 included between the planes xz and yz and a plane

perpendicular to the axis of z at a distance h from the vertex.
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16a /2A 166 /2~A 2,
Ana. a:= A/ , y = - A / z = -h.

157T V c 15ir V c

5. At each point, M, in the semi-axis major of an ellipse, is drawn
a line perpendicular to the plane of the ellipse, its length being

proportional to the distance of M from the centre
;
the extremity of

this perpendicular is joined to the point P on one quadrant of the

ellipse such that PM is perpendicular to the axis major. Find the

centroid of the volume thus generated.

Ana. If at any distance, x, from the centre the perpendicular to

the plane of the ellipse is kx, and if the axes of x, y, and z are the axes

of the ellipse and a perpendicular to them, we have

3ira b

16
= -> 2 =

16

6. Through a diameter of the base of a right cone are drawn two

planes cutting the cone in parabolas ;
find the centroid of the volume

of the cone included between these planes and the vertex.

Ans. It is on the axis at a distance from the vertex equal to f of

height of cone.

7. A plane cuts off a constant volume from an ellipsoid ;
find the

locus of the centroid of the portion cut off.

Ans. An ellipsoid similar to the given one, and similarly placed

(see Example 2, p. 276, the theorem of which is equally applicable to

surfaces).

175.] Polar Elements of Mass. Let Fig. 219 represent the

portion of the volume of a solid included between its bounding
surface and three rectan-

gular co-ordinate planes.

Then the solid may be

broken up into elements in

tin- following manner :

(l) Through the axis of

c draw two close planes

cutting the bounding sur-

face in curves zR and zS

(called meridians) ;
and let

Fig. 219.
the angles ROx and SOx be

denoted by </>
and

respectively.

(2) Round the axis of z describe two right cones with tin-

si-mi vertical angles zOP and zOQ, equal to and + dO,

respectively.
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(3) With as centre, describe two close spheres whose radii,

Oa and Ol^ are equal to r and r + dr, respectively.

These planes, cones, and spheres will then determine the small

rectangular parallelepiped mstq, whose volume = msxsyx. st.

Now, perpendiculars from m and s on Oz will each be equal to

Os . sin zOs, or r sin 0, and they will include an angle equal to

EOS, or d(j>'t therefore ms = r sin dd<f>. Also,

sq = Os . sin sOq = rdd
;
and st = dr.

Therefore the volume of the elementary parallelepiped
= r2 sin dr dd d<f> ;

and if p is the density of the solid at s, the

element of mass is
p ri^ e $r ^Q^

Again, the co-ordinates of the centre of mass of this element are

ultimately the same as those of s
\ therefore they are

r sin cos
</>,

r sin 6 sin <, and r cos ;

and for the centre of mass of any finite portion of the solid we
have

_ _ fffp r* sin2 cos ft dr d6 d<j>_

- _

fffpr2
sin6drdOd<j>

drdddfy

the limits of integration being determined by the figure of

portion of the solid considered.

The angles 6 and $ are sometimes called the colatitude and

longitude, respectively.

EXAMPLES.

1. Find the centre of mass of a portion of a solid sphere contained
in a right cone whose vertex is the centre of the sphere, the density
of the solid varying as the nth power of the distance from the centre.

Take the axis of the cone as that of z, and any plane through it as
that from which longitude is measured. Then if is clear that
x = y = 0, and we have

- _ //A"+3
sinfl cos edrded(j>

Performing the integration first with respect to
**, considering and

<j>

constant, from r = to r = a, the radius of the sphere, we have

f/sm0coseddd(f>
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Performing the integration now with respect to <, the longitude,
which runs from to 2 IT, we have

If a = the semi-vertical angle of the cone, the limits of 6 are and a.

Therefore
n+ 4 2

-; (1 + cos a).x

2. Find the centre of mass of a prism whose base is a given spherical

triangle and whose vertex is the centre of the sphere on which the

triangle is described.

Let (Fig. 2 1 7) be the centre of the sphere, and take 00 as axis of

x. From C draw the perpendicular p3
to the base AB, and let ft be

the radius of the sphere.
The value of z given as a triple integral may be modified in the

present case.

Let dS denote any small element of area at any point on CP ;
then

the volume of a cone whose base is this element and vertex the centre

of the sphere is ^ RdS, and the distance of its centre of mass from the

plane of xy is (Art. 162) 7?cos0. Hence

3
=

Now cos Q . dS is the projection of the element dS on the plane of

xy ;
therefore the numerator is the projection of the whole area ABC

on this plane, which, as in Example 2, p. 290, is %cR sin ps . Hence,

3 csin^j,

3. A cardioid revolves round its axis
;
find the centre of mass of the

solid generated.

Ans. It is at a distance from the cusp equal to
'|- (axis).

176.] Theorems of Pappus. If a plane area revolve through

any angle round a line in its plane,

the volume generated is equal to the

area of the revolving figure multiplied

Li/ ffic IcmjUi of the path described by
its centro'ul.

LetAB (Fig. 220) be the revolving

figure, and Ox the line, about which

it revolves. Let the area be broken

u]> into an indefinitely great number MN
of rectangular strips, Mich as PQqp,
by lines perpendicular to Ox. Then the volume generated by
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this strip in revolving through an angle co is evidently equal to

or

denoting PM, pM, and MN by yz , ylt and dx. Hence if V
denote the whole volume generated,

7= \
/ti J At

Now the distance of the centroid of the strip from Ox is ;

and the area of the strip is (yz yi)dx. Hence, denoting these

quantities byjf and dA respectively,

7 = ufydA
co A . y,

A denoting the whole revolving area and y the ordinate of its

centroid. Now in revolving through the angle o>, the centroid

of the area describes a circular arc whose length is uy. Hence
the theorem is proved.

If the axis Ox intersects the revolving figure, the theorem

still applies with the convention that the volumes generated by
the portions of the figure at opposite sides of Ox are affected

with opposite signs.

Again, if the arc of any plane curve revolve through any angle

round a line in its plane, the area of the surface generated is equal
to the length of the revolving arc multiplied by the length of the

path described by its centroid.

For, the surface generated is

<*fyfo, or L y,

L being the whole length of the revolving arc and y the ordinate

of its centroid. As befo/e, <ay is the length of the circular arc

described by the centroid of the revolving arc, and the theorem

is evidently proved.
If the revolving arc intersects the line Ox, the theorem is true,

with the previous convention of signs.

177.] Extension of the Theorems of Pappus. The previous
theorems can be easily extended to the case in which the plane
of the revolving figure, instead of revolving round a fixed line,

rolls without sliding on any developable surface, and the first

theorem will then become
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If the plane of any plane area rolls without sliding on a develop-
able surface, the volume generated by the area in moving from one

position to another will be equal to the area of the revolving Jigure

mul/ijj/it'd by the length, of the path, described by its centroid.

A similar enunciation gives the second theorem.

These propositions are evidently true, because in an indefinitely
small motion the figure is revolving round a generating line of

the developable, and for such a small motion the- theorem of

Pappus gives the volume generated equal to the area x small

space described by its centroid. Taking the sum of all such

elements of volume from one position of the figure to another,

we have the theorem of this Article.

It is clear also that the theorems hold in the case of a plane
area which moves in such a manner as to be always normal to

the path described by its centroid. For the area may at any
instant be considered as revolving round the line of intersection

of two consecutive normal planes of the curve which the centroid

describes, and the theorems are then directly applicable.

] 78.] Volume of a Truncated Cylinder or Prism. Let A
and B denote the sections of a cylinder or prism made by any
two planes. Through any line L passing through the eentroid,

(?, of B draw any plane, J?, inclined at any angle to B. Then
G is the centroid of the section ff, since this section is the

projection of B made by lines parallel to the generators of the

cylinder or edges of the prism, and since (Art. 172) the cen-

troid of the projection of any plane surface is the projection of its

centroid. Also, the volume between the sections 7^ and Bf
on one

side of the line L = the volume between them on the other side,

as we see by breaking up the area B into an infinite number of

infinitely small elements of area, and constructing slender prisms
on each one, dS

t
of these elements, the prisms being terminated

by Jf'. It'// is the perpendicular on L from the middle of dS, and

y angle between the j>lanes JB, B", the volume of the correspond-

ing prism = tan y . yd >' : therefore the total volume between the

plant- /', /" is tan yfydS, which = 0, because L passes through
the centroid of the area B. In other words, the volume of the

prism or cylinder contained between the sections A and B is

-<|ual to that contained between the sections A and B*. Allowing
Bf

to revolve again about L through any angle, the same reason-

ing applies, and we see, finally, that for the sections A and B
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may be substituted any two passing- through their respective cen-

troids, and the included volume will be unaltered. Let two

parallel sections, each perpendicular to the axis of the prism or

cylinder, be substituted, and the included volume will be ii . h,

where il is the area of either normal section and h the distance

between them.

179.] Equilibrium of a Heavy Body on a Horizontal Plane.

When an indeformable body rests on a horizontal plane, the

contact taking place at several points, either continuous or not,

it is kept in equilibrium by two forces namely, its own weight
and the reaction of the plane. The condition necessary and

sufficient for the equilibrium of such a body is that these two

forces must be equal and opposite. Now this will be impossible

unless the points of contact of the body with the plane can be so

connected by right lines as to form a polygon within the area of

which the vertical through the centre of gravity of the body
intersects the plane. For, whether the plane be rough or smooth,
resolve all the reactions at the points of contact vertically. Then

it is evident that the resultant of the system of parallel vertical

forces at the points of contact must necessarily fall within some

polygon whose vertices are these points ; therefore, &c.

The student must be careful to observe that this condition,

though necessary in the case of a deformable system, is not

sufficient (see Article 88, p. 117). Thus, in Example 14, p. 225,

it is not true that the deformable system of two bars, AB and

BC, will rest in any position in which their common centre of

gravity falls between the props.

EXAMPLES.

1. To find the volume and surface of a tore.

(A tore is a surface generated by the revolution of a circle round a

line in its plane.)
Let r be the radius of the circle, and c the distance of its centre

from the axis of revolution. Then the volume of the tore is evidently
irr

2
x2'7rc, or 2-7r

2 cr2
;
and the surface is 27rrx2-7rc, or 47T

2
cr.

2. A triangle revolves round a line in its plane ;
find the volume

generated.

Ans. If the distances of the vertices from the lines are a^, o?
2 ,
x3 ,

and A the area of the triangle, the volume r= (x^+ a;a+ a;3).
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3. From the Theorems of Pappus deduce the volume and surface of

u frustum of a right cone.

(Consider a trapezium one side of which is perpendicular to the

two parallel sides.)

4. A pack of cards is laid on a table
; each projects in the direc-

tion of the length of the pack beyond the one below it
;

if each

projects as far as possible, prove that the distances between the

mitu-s of the successive cards will form a harmonic progression.

(Walton, p. 183.)

5. A rectangular column is formed by placing a number of smooth
cubical blocks one above another, the base of the column resting on a

horizontal plane ;
all the blocks above the lowest are then turned in

the same direction about an edge of the column, first the highest, then

the two highest, and so on, in each case as far as is consistent with

equilibrium. Prove that the sum of the sines of the inclinations

of a diagonal of the base of any block to the like diagonals of the

bases of all the blocks above it is equal to the sum of the cosines.

(Walton, ibid.)

VOL. I.



CHAPTER XII.

EQUILIBRIUM OF FLEXIBLE STRINGS.

180.] Perfectly Flexible String. A string- is said to be

perfectly flexible when at every point in its length it can be bent

round all lines passing- through the point perpendicularly to

the tange.nt line without the expenditure of work.

From this definition it follows that the internal force, or

mutual action between the particles at each side of any normal

section of such a string, has no component in the plane of the

section
;
this force must, therefore, be entirely normal to the

section ; or, in other words, the internal force in a perfectly

flexible string is at every point directed along the tangent line to

the string.

This internal force we have called the tension of the string,

and, like all internal forces in a system, it is a mutual action

between parts of the system. This has been sufficiently ex-

plained already (p. 27). In the sequel we shall use the term

flexible string as equivalent to perfectly flexible string.

181.] Imperfectly Flexible String. No effort is required
to bend a perfectly flexible string at any point; but if we

attempt to bend an imperfectly flexible string, or a wire, we

encounter a certain amount of resistance according to the degree
of inflexibility or rigidity of a string or wire. If we consider

the nature of the mutual forces existing between the particles

on each side of a normal section of such a body, we shall find

that these forces are not necessarily reducible to a single re-

sultant at all. In the general case of a wire bent and twisted

by the action of any external forces, these internal actions on

the particles at one side of a section may, of course, be reduced

to a single resultant force and a single couple; and the re-

sultant force may be applied at any point in the section, the

couple varying according to the point chosen. All this will be

evident from the general reduction of a system of forces in

Chapter XIV.
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182.] Three Methods of Investigation. There are three

methods by which the equilibrium of a string or wire may be

d namely,
1. We may isolate an infinitesimal element of the body,

supplying
1 to it at each extremity the action exercised by the

neighbouring portions which are imagined to be removed

(see p. 199).

2. We may apply the general condition that for any system
of imagined small displacements -involving, of course, in general,

slight extensions of the elements of the string the whole work

of the system of forces, internal as well as external, is zero (see

p. 118).

3. We may consider the equilibrium of any finite portion of

the body, treating it, when the figure of equilibrium has been

assumed (see p. 14), as a rigid b<><!>/.

(See Thomson and Tait, Nat. Phil.)

We begin by considering the equilibrium of a perfectly

flexible string which suffers no elongation under the action of

the forces which will keep it in equilibrium. Such a body is

called a flexible inextensible string, and it is scarcely necessary

to add that it exists only in the abstractions of Rational Statics.

SECTION I.

Flexible Inexiensible Strings.

\ 183.] Tangential and NoiwHlesolutions. Let AB (Fig.

221) represent a flexible inexteWwle string in equilibrium under

flu- notion of any system of coplanar forces applied continuously

throughout the string. Then the force acting on a unit mass

of matt IT placed at any point of the string will, in the general

case, IT expressed as a function of the co-ordinates of this point
and their differential coefficients with res-prct to the arc. Thus,

if the co-ordinates of Pare (x,y), the plane of the string and

forces being taken as that of xy, the external force exerted per

unit mass at P will be of the form
</>(.r,//),

and therefore the

fon 1 on dm units of mass at P will be

<j>(xty)dm, or F.dm.

x 2
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Suppose then that we consider the equilibrium of the element

PQ of the string apart from the rest of the string- : Let the

mean density of the element be k, let a be the area of its mean

section, and ds its length. Then the mass of the element is k crds,

and the external force acting on it is

kaF.ds-,

and, in addition, it is acted upon by two tensions, T and T+ dT,

along the tangents at its extrem-

ities P and Q. These three forces

must, of course, meet in a point.

Let Pt and Pn be the tangent

and normal at P
',

let dO be the

(very small) angle between the

tangent -*&&. P and that at Q ;

and let
<f>

be the angle between

Fdm and Pt. Then, resolving

forces along the tangent for the

equilibrium of PQ,

(T+ dT) cos dO+ k aFcos $dsT=Q;
but coed$= 1, neglecting (dO)

2
;
therefore this equation gives

dT
0, (1)

Fclr

Fig. 231.

which means that the rate of variation of the tension per unit

length at any point is numerically equal to the tangential

component of the external force per unit length.

Again, resolving along the normal, (Tf A^v*^

(T+ dT) sin
J^^Fsmfds

=
;

.or since
/>,

the radius of curvature at P, is equal to -^ ,

dd

T ' "'
=0, (2)

which means that the curvature of the string at any point is

equal to the normal external force per unit length divided by
the tension at the point.

184.] Equations of Equilibrium. Let the external force, F}

per unit mass at P be resolved into two components, X and F,

parallel to any pair of fixed rectangular axes. Then the com-

ponents of force acting on the element PQ parallel to the axea
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are k<rXds and krrYds. Also the components of the tension

acting at the end P are

,
<!>' ,., <It/-7'-, -JL^-d* ds

each measured in the positive sense of the corresponding- axi-.

The components of tension at Pare affected with negative signs,

since, when the element PQ is considered apart from the rest

of the string, the tensions at P and Q will manifestly give

components along the axis of a? in opposite senses; and similarly

along the axis ofy.
These components of tension at any point will be functions

of the position of the point on the string, i.e. functions of the

length of the string measured up to the point considered from

any origin-point, A, on the string-. If the length of the string

AP = s, we shall therefore have

TT,=^'
and the component of the tension at Q is therefore/(s + ds), or

or, again, T + (!).*+(!). + ....
at at \ ds' ds* \ as' 1.2

Hence for the equilibrium of the element PQ, resolving forces

parallel to the axis of x,

....
at ds ^ ds' ds

<>r, rejecting the two terms which cancel, dividing out by ffx, and

thru tlimini>hing ds indefinitely,

S im i.ar!y (r) + ^y=0. (,)

> are the general equations of equilibrium of the string.

The value of T may be deducnl in various ways from these

(([nations. Thus, performing the differentiations,

\
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Multiply (3) and (4) by -^ and^ respectively, and add;

fdx~^ /dy\
2

i

then, remembering that, since (-) + () =
1, we have by

dx d2x
differentiation,

_-
_,- + _^ =.

itfollowsthat ^+/U(J^+7^)=0;- (5)
as v as as'

.-. T= C-fk<r(Xdx + Ydy), (6)

which is precisely the same as (1) of last Article.

Another expression for T can be deduced from (l) and (2).

They give by integration

(7)
ds

T^-=B-fk<rYds. (8)
as

Squaring and adding, we have

T 2 = (A-f/c<rXds)
2
+(B-fk<rYds)* t (9)

A and B being the constants of integration, which must be

determined by a knowledge of the tension at some particular

points.

Again, by multiplying (3) and (4) by -yy and -^> respect-

ively, and adding, we obtain

T ,vd2x 2

-+k<rX -

which is the same as (2) of Art. 183, since the direction-cosines

CM t* Ci II

of the radius of curvature are p -=-=- ' P -r-s
ds2 ds2

The curve formed by the string is found by eliminating T from

(7) and (8) ; hence its equation is

(A-fkvXds) $- -(B-fka Yds) ^ = 0.
ds d/s

If the external force at every point of the string is normal to

its direction, the tension is constant throughout, as at once

appears from (5) ;
for X + Y~ is the tangential component of

ds ds
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the external force. This is the case when, for example, Un-

string is stretched over any smooth curve, and acted on by no

force except the reaction of the curve and two terminal tensions

(which must be equal). Thus we have proved the truth of our

assumption in Art. 32.

185.] String under Action of Gravity. Let gravity be the

only force acting on the string, except the terminal forces, or

forces applied at the extremities. Then, taking the axis of y
vertically upwards, and denoting the weight of the unit mass by

g, we have X= 0, }" = gt
and the equations (l) and (2) of last

The first equation shows that the horizontal component of the

tension is the same at all points of the string (see p. 36).

Denoting this component by T, we have

-dx _ _,_ ds

ds
~

dx

Hence, from (2), (j~^ k(rg,

_
r dx2

or k(T= ; (3)
g ds^

dx

It is to be observed that ka is the mass per unit length of

the string at the point x, y. This last equation, therefore,

determines the mass per unit of length at any point when the

form of the curve in which the string hangs is given ; and,

conversely, it determines the curve in which any string will

hang when the laws of variation of its section and density are

given.

If -- be denoted by/j, and the independent variable changedUX

from xtoy, equation (3) becomes

dp
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186.] The Common Catenary. When the mass of a unit

length of the string is everywhere constant, the form of the

string is that of a curve called

the Catenary. The name Cate-

nary is sometimes employed to

denote the form of a string in

general, whatever be the law of

variation of its density.

In the present case k <r is con-

stant equal to m, suppose. Let

T = mac, where c is a constant
o x

length. Since at the lowest

point, A (Fig. 222), the tension

is horizontal, T is the tension at A, and c is the length of a portion

of the string whose weight is the tension at the lowest point.

From (3) of last Article we have

1clz 2

V >+(%)'

or
dx

Integrating, log [ ;/ + A / *+( TV ~\

~ ~
"*" c

'

)

where c' is an arbitrary constant. Now, taking the axis of y

passing through A, we have as = 0, and --
0, simultaneously.

Hence c = 0, and the last equation becomes

dy

where e is the Napierian base. Solving this equation

we obtain
-j-
= \(e

c e~ c \

x -
and by integration y = -

(e
c + e c

) + c",
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where c" is an arbitrary constant. Now, taking the origin, 0,

at a distance equal to c below A
y
we have y = c when x = 0.

This gives e"= 0, and the equation of the catenary referred to

axes chosen as above is

* _*
v = - (e 4- e~^\y

2 V /

y = c cosh -
(

1
)

The point of intersection of these particular axes we shall in

the sequel call the origin of the catenary.

We shall next find the length of the arc, AP, measured from

A to any point, P, on the curve. If ds is the element of arc,

<fc =

-\
2

') . dx, from (1),

c , - - -s
'*' 8 = -

2 (
eC - e 0> r

X
s=c sinh - > (2)

c

no constant being added because * = when x = 0.

From (l) and (2) we have

/ = *2 + c2
, (3)

and from (3) s y
-
(IS

Let PM and PT be the ordinate and tangent at P, and let

fall a perpendicular MT on PT. Then

; (4)

hence = PT; (5)

and since f PT* + MT2
,
we have from (3) and (5)

c = MT. (G)

H< nee, given the catenary to construct its origin and hori-

zontal axis

On the tangent at any poi tnre off a lenglh, PTt equal
to the arc AP ; at T erect a per, the tangent
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meeting the ordinale ofP in H ; then the horizontal line through

M is the axis of the curve.

In making a proper figure this rule will be found of great use.

The involute of the catenary which startsfrom the lowest point is

the Tractory.

To get a point on this involute we measure on the tangent,

PT, at any point, P, a length equal to the arc AP. From (5)

we see, therefore, that T is a point on the involute
;
and since

PT is a normal to the involute, its tangent at T must be TH.

But from (G) TM is constant; hence the involute is a curve such

that the length of the tangent between its point of contact and

a fixed right line, Ox, is constant. The involute is, therefore,

a tractory (see p. 242).

The tension at any point of the catenary is equal to the weight

of a portion of the string whose length is equal to the ordinate of
the point.

Consider the equilibrium of the portion AP of the string

apart from the rest. This portion is kept in equilibrium by
three forces namely, the tension at P in the direction TP, the

horizontal tension at A in the direction QA, and its weight

acting through its centre of gravity, G. Hence the vertical

through G must pass through Q. Resolving vertically, we have

T cos TPM = mgs ;

9
cos TPH

= mgy, from (5). (7)

Con. It follows from this that if a uniform inextensible string

hangs freely over any .two smooth pegs, the vertical portions
which hang over the pegs must each terminate on the horizontal

axis of the catenary.

In the catenary the length of the radius of curvature at any

point is equal to the length of the normal between that point and

the horizontal axis.

By equation (2) of Art. 183, we have

T- = mg sin TPM,

which by means of (7) gives p = ^ ; but this is evidently
8111 Jf J*L

the length of the normal between P and the axis of x.
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It will be readily seen that the differential equation of the

(I-//

r.itenary can be written in the form c2
-rj-j

= y, and that the area

OAPM = twice the area of the triangle PTM.
It is well to observe that if a weight is suspended from a

given point of a catenary, the continuity of the curve ceases

at that point, and the portions of the string at- opposite sides

of the point must be treated as branches of two distinct cate-

nari

187.] The Catenary of Uniform Strength. If the area of

the normal section of the string at any point is made propor-

tional to the tension at that point, the tendency to break will

be the same at all points, and the curve is therefore called the

Catenary of Uniform Strength.

To find its equation, we have a = \T, A being a constant ;

and since T = T -=- > we have
dx

Hence (3) of Art. 185 becomes

or, denoting g A k by
-

,
we have

1

_v
~
a

dx'

Crating, tan" 1 MM = - + b,
^ax' a

\\licrc h is an arbitrary constant. Let the axis ofy pass through
tin- lowest point of curve, i.e. the point at which the tangent
is horizontal. Then b = 0, and we have

dy as
tnn _tan -

a

Integrating this again,

y so= log cos -
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Let the lowest point be taken as origin. Then V 0, and we
3S

have, finally, y a log- sec -
Gf

for the equation of the catenary of uniform strength.

It is easily seen that the curve has two vertical asymptotes,

each at a distance from the lowest point.

The equation of this curve can be put into a remarkable form*.

If p is the radius of curvature at any point, and s the length of

the arc between this and the lowest point,

an equation which can be deduced with no difficulty.

Given the whole weight (W) of the chain ^, and the span (26),

determine the section at any point so that there shall be a constant

tension (p) per unit of sectional area at all points.

If A and are the two points of support (supposed in a hori-

zontal line), b is their common distance from the vertical axis

of the curve. We have, then,

W- 2fkvgds

sec 2 - dx
o &

= 2 r tan -
a

Now, evidently,- is the tension per unit of sectional area, =p;A
and since g is the weight per unit volume of the standard sub-

stance, kg is the weight per unit volume of the chain. Denote

this last by w. Then
j ^

kgh
~

w

T W L l ds W .b x
Also a- = = cot - -7- = cot - sec -

p p a ax 2p a a

*\
But it is easy to prove that sec - = \(e

a + e ).
a >

ws
Hence W , -j p ^ J

uw
&

( e + e ) cot t

4J9
^ ' p

* First noticed, I believe, in the first edition of this work.
+ A string hanging from two fixed points under the action of gravity is

frequently called a chain.
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which is the expression for the area of a section at a distance

* along the chain from the middle point.

The student may verify the homogeneity of this equation.

188.] Catenary of Uniform Strength in General. The force

per unit mass at any point of a string having any components X,

) . if the section, <r, at this point is proportional to T, the tension

at the point, the catenary will be of uniform strength. If then

we put a = jjiT, where y. is a constant
(of

the nature -), into

(3) and (4) of Art. 184, we have

vN dT dx
*

JT) + = 0,

,

ds as

for the catenary of uniform strength, whose equation is found

by eliminating T from these equations. This is done by simple

division, and we have

d zx dy d z
y dxf/ds* d9 ds2 ds ^ ds ds '

Remembering that, if < is the angle made by the tangent with

the axis of a?, we have

dx dii dg
-j- cos $,

-~- = sm <, p = -7- >

ds ds d<>

this equation is --
P

\\hcn- ^'is the normal force per unit mass measured along the

normal in the sense of p ;
and this equation could have been

at once obtained from (2) of Art. 1 83.

Consider the particular case in which the applied force has

a constant direction at all points in the string ; and take this

direction as that of the axis of y. Hence

dt . (I ,di/-. ,,-,dsr=r
' nnd r -

where Yf
is the force per unit mass at the point (a?, y). Com-

ji.uiii^ llir-i- with the Aquations for a string of constant section

acted on by parallel forces whose intensity is Y at the point

(*^)) wc st'c that the two curves will be- the same provided that

)
' 1 VI ^ J *

u ds
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Thus, if T = g
(

^- > for which law (see next Article) a uniform
Cl>8

catenary would hang in a parabola, the catenary of uniform

strength is the common catenary.

189.] The Parabola of Suspension Bridges. Suppose a

string to be attached to two fixed points, and let each element

of its length be acted on by a force in a constant direction, the

magnitude of the force

being proportional to the

projection of the element

on a line perpendicular to

the direction of the force.

^ Then it can be shown

geometrically that the
FlS- 223<

figure of the string is

that of a parabola.

Let Oy (Fig. 223) be the direction opposite to that of the force

on each element ;
Ox a tangent to the curve, perpendicular to

this direction ;
P and Q any two points on the string, the

tangents at them being PT and QT; PJfand QNperpendiculars

on Ox. Consider the separate equilibrium of the portion PQ.
The forces acting on it are the tensions in the directions TP and

TQ, and the resultant of the parallel forces on the elements of

PQ. This resultant must pass through T, and it also passes

through the middle point of MN, since its constituent forces are

all proportional to the elements of the line MN. Hence, drawing
TV parallel to Oy, and meeting PQ in F, the point V must

bisect the right line PQ,.

The curve of equilibrium of the string is -therefore such that

a right line drawnfrom the point of intersection of any tivo tangents

parallel to a fixed direction bisects the chord joining their points of

contact.

This well-known property identifies the curve with a parabola.

If we make use of the equations of equilibrium in Art. 184,
/7/M

we shall have X=0, Y=z p > p being a constant. There is
Cv8

no difficulty in arriving at the result just found.

It is to be observed that the acting forces in this case are not

a conservative system. Hence the function V (see sequel) does

not exist.
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The connexion of this parabola with Suspension Bridges has

been already explained in Chap. II.

190.] String acted on by a Central Force. When the

lines of action of the forces applied to the various elements of the

string- pass all through the same point, the force acting on the

string is said to be central, and this point is called the centre of

force. It is easy to prove that in this case the string must lie in

a plane passing through the centre offeree. For (Art. 183) the

plane of the tangents at P and Q must contain the centre of force
;

and since two consecutive osculating planes have a tangent line

to the string common, these two planes, having in addition a

point (the centre of force) common, must be identical. Hence

the osculating plane is the same at all points ;
or the string

must lie wholly in one plane.

Tojind theform assumed by a string

<>n by a given centralforce.
Let (Fig. 224) be the centre

of force (supposed repulsive), PQ
an element of the string whose

equilibrium is considered apart, r

the radius vector OP, d the angle /
POA between OP and a fixed Fig 324
initial line, * the length of the arc

AP, and
// the perpendicular from on the tangent at P.

Then, for the equilibrium of the element PQ, taking moments

about 0, we have

moment of tension at P = moment of tension at Q ;

or p
... Tp=h, (1)

where h is a constant*.

Denote the tensions at P and Q by T and T+ dT respectively.

Resolve the forces acting on PQ along the tangent at P,
denote kv by m, and let the central force be mFd*. Then this

force passes through the point of intersection of tangents at P
and Q, and the cosine of the angle between its direction and the

tangent at P is j- + e, where e is indefinitely small. In the
it*

* ( )f course this proof hold* whether the portion PQ is an element of length or

portion of any length, however great.
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equation of resolution the component of mFds is

dr \

so that e may be neglected, and we have

dT=-mFdr. (2)

Equations (l) and (2) determine the form of the curve.

If the central force is attractive, the sign of F must be

changed in (2),
and the curve of equilibrium will be convex

towards 0.

It is usual in problems concerning central forces to denote r

by
- Making this substitution, and eliminating T from the
it/

above equations, we have

^dn = hd(-). (3)U2 V
J9

y

But (Williamson's Differential Calculus, Chap. XII),

1
fdu^

z

7= "+(;)

Hence,
'

denoting ^- by <
(u), and f$(u) du by fa (u),

an
tf

arbitrary constant being implied in fa (u), we have from (3)

It is often more convenient to retain a differential equation of

the second order for u* . Differentiating (4) we have, dividing

out by > and remembering that fa' (u)
=

</> (u),

1

-yfcW-fW-
Now, since the integration of (4) gives u in terms of 6, and

introduces an arbitrary constant in addition to that already
involved in fa (uj, we see that the solution of the problem
involves only two arbitrary constants. But (5) will require
two integrations to express u, and each integration will intro-

duce an arbitrary constant. Hence it appears that in this way

* This method of treating the equilibrium of a string acted on by a central
force is taken from a paper by Professor Townsend in the Quarterly Journal

of Pure and Applied Mathematics, 1874.
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\\e get three arbitrary constants, instead of two. These three

are, however, easily connected, since the values of u and
( -TT)

given by the complete integral of (5) must satisfy (4) for all

values of u.

As an example, let it be required to discuss the form of a string
of uniform section and density when the central repulsive force varies

inversely as, the square of the distance. In this case m is constant,

ami F = \i

f u2
, \i! being a constant which obviously denotes the magni-

tude of the force on a unit mass of matter placed at the unit distance

from the centre of force.

Hence we have, putting myf = n,

C being a constant. If T denote the tension at a point A of tin-

string whose distance from the centre is - we have, evidently,

=
p. (u + c), suppose.

-

+

which gives, by differentiation,

du - ua

Hence, () +u= (u + c)

2
, (6)

u2 u2

First, suppose that T? < li and denote 1 by A2
. Then this

equation becomes M
_i_x8/

* ~ ^
-\ A

^?+ * (u -

~^~ c)-

the integral of which is

1 A8

u =
,

c+ A COB\(0 a),

A and a being the constants of integration. Substituting this value

VT A*
ii (6), we have A =

-^ c, and therefore
A

(8)

The value of a is found by putting u = a and =. the ar.glo

belonging to the point .1.

du
d = a, j:

= 0. and there is an apse. If the initial line be
du

VOL. I.
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taken through the apse, and T and a belong to this point, we have

(9)

T h
c = - a = ( l)a, and (8) assumes the simple form

fJL >

1 + yk

wliich differs from the focal polar equation of a conic in having the

angle multiplied by a number, A, less than unity.

u2 M2

If -- >1, we must put v= 1 = A2
,
and putting p.a F

Q
=

p.c,
h 't>

equation (6) becomes du 2 u2W +w7 =
tf (w

-
c)2'

1
i \2

which gives u = -~-c + Ae**+ e-**, (10)

the constants A and 5 being connected by the equation

Equation (10) can obviously be written

or

When = a, there is an apse, and if the initial line be taken

through the apse, we have, in the same manner as before,

(11)
n

If
j-
=

1, both (9) and (11) give u = a, a constant; and the

figure of equilibrium is a circle.

For the remarkable analogy between the curve of equilibrium
of a flexible string and the orbit of a particle under a given

force, see Professor Townsend's Paper, and Thomson and Tait's

Nat. Phil.

191.] Problem. To find the angle between the apsides in a

string which, under the action of a central force, assumes a form

nearly circular.

DBF. An apse is a point on a curve at which the radius vector

is at right angles to the tangent.
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Since the form of the string is nearly circular, u will differ from a

constant value, a, by a small variable quantity, x.

Let, then, u = a + x. In this case fa (tt)
=

<^ 1 (a) + x
<f> (a),

neglecting higher powers of x; and <f>(u)
=

<f>(a) + x<j)'(a). For

shortness, denote fa (a), </> (a), and
</>'(a) by $!,$, and <' respect-

ively. Then (5) of hist Art. becomes

d'*x 1
'

(1)

But if the string were exactly circular, x and - r. would alwaysdo

=
; therefore a = -nnr > or

h>

Hence (1) becomes

The constant a may be chosen as the reciprocal of the radius of

any circle which nearly coincides with the figure of the string ; but

simplicity is gained by taking it equal to the reciprocal of the radius

of that circle in which the tension at each point is equal to the mean
tension in the string.

Now in a circle of radius - the tension (see (2), Art. 183) is a 0;

and (2) of last Art. gives T in the curve equal to fa (u), and there-

fore the mean tension =
</>r Hence

</>
= <&>

and (3) finally becomes d?x a(f/

If - - be positive, the value of x in terms of 6 will be exponential,

in id tlu- nearly circular form becomes impossible, since the value of u
IM-S imlriinitrly with Q.

Km ilu- possibility of a nearly circular form - must be negative.
;ui(l we have *P

x=

Ilei t an apse ,
= o, or

'

o, we shall arrive at an apse
whenever

:30-a)=o,
Y 2
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and the difference between two successive values of d which satisfy

this equation is

which is, therefore, the angle between the apsides*.

192.] String on Smooth Plane Curve. Consider the case

of an inextensible string- resting on a smooth plane curve under

the action of any forces in the plane of the curve, and let Fig. 221

represent this case. Then into the equations of Art. 183 we

have merely to introduce the normal reaction, Rds^, acting on

the element PQ in the direction nP.

Resolving tangentially, we obtain

dT
v- + <r.Fcos4> = 0. (1)

Resolving normally,

T
-

yfco-^sin</) R 0. (2)

These are the most useful resolutions in the case of a string

resting on a curve. Equations of resolution along arbitrary
axes may, of course, be obtained by introducing- the components
of R into the general equations of Art. 184.

From (l) we obtain T= Cf&vFcos <f> ds, C being a constant ;

and if we denote the general integral fk aF cos
<$>

ds by F, its

value when the co-ordinates of A are substituted in V being
F

, while T is the tension at A, we have

T=T -(7-ro).

We shall refer to Fas the potential of the external forces at P.

193.] String on Rough Plane Curve. If the curve in the

preceding Article is rough, and the string in limiting equi-

librium, slipping being about to take place in the direction QP,
we have merely to include among the forces acting on the

* This investigation is taken from the paper by Professor Townsend previously
referred to.

t The student will observe that in considering the equilibrium of an element
of length ds we represent the reaction of a curve on it by Rds, and the applied
force by lea Fds, while we represent the tension by T, and not by Tds. The
reason of this is that the tension depends merely on the cross section of the
element and not on its length, while the magnitude of the reaction depends
evidently on the length of the element in contact with the curve.
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element PQ a tangential force pltds, the coefficient of friction

being p. and the normal reaction lids, as before.

Equations (1) and (2) of last Article now become

dT
+ ka /'cos

</> + \L 11 = 0, 0)

(2)
r

It will be observed that the components of reaction, Eds and

,
are in the figure represented as acting at P. In strictness,

of course, they do not act

at /'; but in the limit the

same equations will be ob-

tained, no matter at what

point between P and Q we

represent them as acting.

Consider the simple case

in which there is no external

force continuously applied

throughout the string, or F= 0. Then these equations become
'

I i- -* (3)

Hence
dT

C being the constant of integration, and 9 the angle between the

tangent at the point P and the tangent at some origin point, A,

on the string. If T is the tension at A, we have T= T when
6 = 0; therefore T = T e~*6. (5)

I [nice, a- the angle through which the string turns increases in

arithmetical progression, the tension decreases in geometrical

progression.

Suppose that (the weight of the string being neglected) two

wfi-_rhts, /' and Q, are suspended from the extremities of a string

which passes over a fixed rough cylinder whose axis is hori-

zontal, the string lying in a plane perpendicular to this axis
;

it

is iMjuiml to find the relation between P and Q when the

equilibrium is limiting.

Let A (Fig. 225) be the point nt which the portion of the

string next /' l.a\ - the cylinder, and B the point at which the

portion next Q leaves it.
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Then from (5), by putting T = P and 6 = TT, we have

Q = P*- 1

", (4)

when P is about to overcome Q. If P is on the point of

ascending, the sign of p in this equation is to be changed.

If the string makes a complete revolution and a half round

the cylinder, the value of 6 corresponding to Q, is Sir, and we

have in this case Q = Pe~'dfiir. The factor e~*6 diminishes very

rapidly as the angle increases, and thus we see how it is that

a small force applied at one extremity of a rope coiled several

times round a fixed rough cylinder can overcome a large force

applied at the other extremity a practical example of which

occurs when the small motion of a ship in harbour is stopped by
a small force applied at the extremity of a rope coiled round a

p
fixed post. For example, if p = \, e** = 4 . 8, and Q = 4.8

EXAMPLES.

1. A uniform chain of length I hangs over two fixed points, which
are in a horizontal line

;
from its middle point is suspended by one

end another chain of equal thickness and length V'. Supposing each

of the two tangents of the former chain at its middle point to make
an angle 6 with the vertical, to find the distance between the two
fixed points, and to show that 6 can never exceed a certain value.

(Walton's Mechanical Problems, p. 123.)
Let the fixed points be P and Q (Fig. 226), RQCPM the string

hanging over them, CD the string of length V suspended from C, the

middle point of the first string, and 2d the distance PQ.
Then (Art. 186) the arcs PC and QC

belong to two distinct catenaries. Sup-
pose the semi-catenary to which PC
belongs to be completed, and let A be its

lowest point. Then if the portion AC
were supplied to the string CPM, and
the point A fixed, the string CD and the

portion CQR might both be removed,
and we should have the string APM
hanging in equilibrium. Hence (Con.,
Art. 186) PM terminates on the hori-

zontal axis of this catenary. The same
remarks apply to the portion CQR, and
since the two portions CPM and CQR

are exactly similar, it follows RM is the horizontal axis of the

catenary AP.

We shall next prove that AC = J CD -.
a

M
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Let T be the common tension of the portions CP and CQ at C.

Then resolving vertically for the equilibrium of the point C,

But T= mg.CN (Art. 186), N being the point in which CD meets
the axis. Hence 2CN cosd = I'; but it is evident from Fig. 222 that

CN cos 6 = AC; therefore AC = \f.

Again, c being the parameter of the catenary, we have c = AC X
tan 0; therefore

c =Ktan0. (1)

Also, denoting ON by x, being the origin of the catenary, we
have

r-,fI
,

or - = -tan

-n-cot0 --^cot0
.-. 2cot0 = e<' e ''

Squaring both sides of this equation, adding 4 to each side, and

taking the square root, we have

', _*,*,
2cosec0 = e' +e '

;

which, by addition to the last equation, gives easily

I' Q
x = ^ tan log cot - (2)u fi

jf4d x+d

Again, AP = ^(e~-e~~),
x+d x+d

and
~

therefore by addition we have, since CP+PM = %l,

i+r '-^

-2-
= "' '

Substituting in this equation the values of c and x given by (1) and

(2) ;
and taking logarithms, we have

M.r*Mfc.<?.$, 0)

wliich is the required distance between P and Q.
Since d cannot be negative, the expression whose logarithm is

taken in (3) must be > 1. Hence
(I + 1')

tun 6 > I' tan d
;
and tubtti-

t ut ing for tan0 in terms of tan$0, we find the limiting value of

given by the equation /_ I'
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2. A uniform chain hangs over two smooth pegs in the same hori-

zontal line, and at a given distance apart ;
find the length of the chain

when the pressure on each peg is a minimum.

Let P and Q be the pegs, 2 a the distance between them, 21 the

length of the chain, 6 the angle which the tangent to the chain at P
makes with the vertical, PM the portion which hangs over the peg P,

and C the lowest point of the chain.

a

Then CP+PM = ce^ (by adding the values of CP and PM}, or

an equation which determines I in terms of c.

Again, CP = c cot 0, and PM = c cosec 0, therefore by addition

tan|
= e". (2)

Now, the pressure on the peg P is the resultant of two equal
tensions, one along PM and the other along the tangent to the chain

at P. Hence, if R denote the pressure, and T the tension at P,

R - 2^008 1.6

!L _ A

Substituting for T the value \rngc (e
c +e c

),
and for cos- its

m

value obtained from (2), we have
a .

(3)

/7 J?

Now, c must be determined so that H is least
;
hence ..- = 0, and

we obtain easily
rfc

2a

e< = , (4)a c

for the determination of c in terms of a
;

I is then known from (1).

3. A uniform inextensible string, acted on by gravity and by two
terminal tensions, rests in contact with a smooth curve in a vertical

plane ;
find the form of this curve so that the pressure which it exerts

on the string may at every point be inversely proportional to the
radius of curvature.

Let vertical and horizontal lines in the plane of the curve be taken
as axes of y and x, respectively, and let the concavity of the curve be

upwards.
Then R being the pressure per unit of length at any point, and T

the tension at this point, we have, by resolving along the tangent,

dT = mgdy,
mg being the weight of a unit of length of the string. Hence

T= T
9 + mg(y-y9), (1)

T and y belonging to one end of the string.
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Again, resolving normally,

Td0-mgdx = 2td*,

(d6 being the angle between two consecutive tangents), or

.

Let R = -> k being a constant. Then from (1) and (2)

T -k+ mg(y-y ) _ dx

p ds*

y A dx
or - = , (3)

p da

il noting the numerator of the left-hand side of the previous equation

l.y utg(y \), for simplicity. To integrate (3)r put

dx 1 (!+/>*)' -dy
-=- = 7= =r j and p=- - where p = -y-
ds */\ j. -I* (//> ox

^J
'^

Tlie equation then becomes , , = ~~-
j

1+23 y-A

l>eing the constant introduced by integration.
From this equation we have

dy

^
which gives by integration

win-re 6 is an arbitrary constant. This equation can easily be put
into the form ;. i "

Now, any expression of the form Ae** + Be~"* can be put into the

form C{e
M(* +a) + e~'4(j:

"
l
'
a)
};

lor, identifying the two expressions, we have

C = VAJ, and " a =

Hence we have y A = J>V-f* + f~
e

where >"=
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This is, of course, the equation of a common catenary whose para-

meter is -> and whose origin is the point (A, a).

4. A uniform inextensible string, acted on by two terminal ten-

sions, and any system of conservative forces in one plane, rests in

contact with a smooth curve in this plane ;
if at every point the

pressure against the curve is inversely proportional to the radius of

curvature, then, without any change in the forces, the tension at one

extremity can be so varied that the constraining curve may be re-

moved, and the string will rest in free equilibrium.

For, if V denote the potential of the applied forces at any point, we
have (Art. 192) T=T -(V-V9), (1)

Again, if N denote the normal component of applied forces at

any point measured towards the convex side of the curve, and R the

pressure per unit of length at this point,

- = R+ N. (2)
P

k
Suppose that R = - Then, from (1) and (2) we have

T ~ k~( V~ V
>-N=<). (3)

P

Let us now change the terminal tension T into T k, and in-

vestigate the pressure of the curve at the point considered above.

Denoting the new pressure by R', and the new tension by Tf
,
there

being no change in any of the applied forces, we have

from which K= *--- O _N .

P

but the right-hand side of this equation is zero by (3). Hence there

is no pressure at any point, and the curve is one of free equilibrium.
It is obvious that the last example is a particular case of this.

5. Find the law of variation of the mass per unit of length at each

point of a string acted on by gravity in order that it may hang in the

form of a semicircle whose diameter is horizontal.

Let AB (= 2a) be the horizontal diameter, the centre of the

semicircle, P any point on the curve, and the LAOP = 6. Then,

taking horizontal and vertical lines through as axes of x and y,

respectively, we have

as= a.cos0, 3,
= asin0, ^= -cot0, ^= -1, J?= -ax ax y as

Hence ^ = J_.^ = _
2

.

dy? sin2 dx *
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Also, denoting ka in equation (3) of Art. 185 by m, we have

T a
TO = - = >

9 tf

which proves that the mass per unit length at any point varies

inversely as the square of the depth of the point below the horizontal

dianu

6. A heavy chain of variable density, suspended from two fixed

points, hangs in the form of a curve whose intrinsic equation is

s =/(#), the lowest point being origin ; prove that the density at any
point will vary inversely as cos* 0./'(#). (Wolsteiiholine's Book of
Mnf/iematical Problems.)
We have here

dx da
and =

d?y 1 dO 1 dOds 1
fiPTlPfi *"** - , _ -^

i, _ __ -

da*
~

cos*0 dx
~

cos'0 ds dx
~

cos
3 Of (0)

'

and equation (3) of Art. 185 gives

_ T-

7. A string is kept in equilibrium in the form of a closed curve by
the action of a repulsive force tending from a fixed point, and the

density at each point is proportional to the tension
; prove that the

repulsive force at any point is inversely proportional to the chord of

curvature through the centre of force. (Wolstenholme, ibid.) The

equations are (Art. 190), Tvli (1)

dT- -mFdr. (2)

Now, m = k(r, and by hypothesis k oc T, and cr is constant; there-

fore we have m = p T, p. being a constant. Hence from (2)

(3)

But from (1), dT= -*dp, therefore -^- = ---> and we have
F * P

from (3) 1 dp 2
uf = - = -

p dr y

where y is the chord of curvature passing through the pole (see
Williamson's Diff. Cal., p. 296, fourth (!.).

As a particular case, we may notice that the vertical chord of

curvature at any point of the catenary of uniform strength (under

gravity) is constant, as the student can easily prove othrrwi-f.

8. A heavy inextensible string rests, in limiting equilibrium, on a

rough curve in a vertical plane ;
find the tension at any
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Let Fig. 225 represent the string lying on the
1

curve; let a hori-

zontal line above the curve AB be the axis of cc, and let the axis

of y be drawn vertically downwards.

Then, if 6 be the angle made by the tangent at any point, P, with

the axis of x, mg the weight of a unit length of the string at P, and

x, y the co-ordinates of P, we get by a tangential resolution (slipping

being on the point of taking place from P to Q),

dT \iRds-\-mgdy = ;

and by a normal resolution

TdQ-Rds+ mgdx = 0.

Eliminating /?, we obtain

dT . dx d.

= mg (n cos 6 sin 0) p, (1)

where p is the radius of curvature at P.
This is a linear differential equation of the first order, the solution

of which is (Boole's Differential Equations, p. 39),

T=e l*
{C+fmgp(fj.coB6-&m6)e-

li9

d9\, (2)

C being a constant.

\Yhen the curve of constraint is given, p is known in terms of 0,

and the integration may then be performed.
For example, let the string rest on a circle of radius a, one ex-

tremity being at the highest point, and free from tension.

It will be easily found that

f(p cos 0- sin ff)e~'"d6=
-
1

therefore T = Ce"
6
+ -., {

2p sin 6+ (1
-

/x
2

)
cos Q

} .

1 u2

At the highest point 0=0 and T=
;
therefore C = mga --^

Hence ^

If the length of the string is that of a quadrant, we have 3T=
7T

when = -
> and then p. is determined from the equation

f"T

e 2 =

9. A, , C are three unequally rough pegs in a vertical plane ;
P

is the greatest weight that can be supported by a weight W when
both are connected by a string (whose weight is neglected) passing
over A, B, and C; Q is the greatest weight that W can support when
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the string passes over A and B
; and R is the greatest that W can

MI
1

1port when the string passes over B and C. Find the coefficients

of friction for the pegs.
Let tlu- inclinations of AB and BC to the vertical (measured in the

same sense) be a and ft, respectively ; p, //, p." the coefficients of

friction of A, B, C. Then, if the string passes over all the pegs
ami IT hangs from A, it follows from equation (5) of Art. 193, that

the tension, T, in the portion AB is We*
1

*', and by the same equation,

the tension, T, in BC is Te^- a)
-, and, finally, P = T'e^^. Hence

P =
and the equations are obviously

1 OR
from which

JJL, //, ft" can be found. The value of p.' is - log
-
T̂ ij-r

it "W
10. A heavy uniform chain rests in limiting equilibrium on a rough

cycloidal arc, whose axis is vertical and vertex upwards, one extremity

being at the vertex and the other at the cusp; prove that

^ 3
e a _ .

~l+f*
a

(Wolstenholme's Book of Math. Prob.)

11. A uniform inextensible string whose length is I hangs in limit-

ing equilibrium over a fixed rough cylinder of radius a whose axis is

horizontal
;

find the lengths of the portions which hang vertically.

Ans. -
y -f- a

> and a value obtained by changing the

sign of
IJL

in this expression.

12. Two equal weights are attached each to the extremity of a

string which hangs over a rough cylinder whose axis is horizontal
;

liml how much either weight must be increased in order that it may
begin to descend, the weight of the string being neglected.

Ana. The increase of weight = P (e^' 1), where P is common
value of the suspended weights.

13. A string, whose weight is neglected, passes over any number of

equally rough fivl circular pulleys in H vertical ji!;mc : sliow that the

ratio of two weights, su-peiKletl fn-m the cxt remit irs of the string,
which just fcuh-taiu each othr. is the same as if only one pulley were

med.
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14. A heavy uniform beam is moveable in a vertical plane round a

smooth hinge at one extremity, and has the other extremity attached

to a cord which passes over a small rough peg placed vertically over

the hinge, and sustains a given weight ;
find the position of limiting

equilibrium, and the tension of the cord.

Ana. If W= weight of beam, P = suspended weight, T the

tension, 2a = length of beam, 2c = distance of peg from hinge,

= inclination of beam to vertical, and $ = inclination of cord to

vertical, the position in which the beam is about to descend is given

by the equations
c sin = a sin (0 <),

T =

15. A telegraph is constructed of No. 8 iron wire, which weighs
7-3 Ibs. per 100 feet; the distance between the posts is 150 feet, and

the wire sags 1 foot in the middle ; show that it is screwed up to a

tension of about 820 Ibs.

1 6. Prove that the area of the normal section at any point in the

catenary of uniform strength is proportional to the radius of curvature.

17. Find the law of variation of the mass per unit of length in

order that a string may hang, under the action of gravity, in a

parabola.

Ans. The mass at any point is proportional to the horizontal

projection of the unit length at the point. (Compare Art. 189.)

18. If a string hangs under the action of gravity, in the form of an

ellipse whose axis major is horizontal, prove that the mass per unit of

T b3

length at any point is - , 2 y being the distance of the point from
*/ y

the axis major, and b' the length of the. semi-conjugate diameter cor-

responding to the point.

19. One extremity of a uniform string is attached to a fixed point,
and the string rests partly on a smooth inclined plane ; prove that the

horizontal axis of the catenary determined by the portion which is not

in contact with the plane is the horizontal line drawn through the

extremity which rests on the plane.

20. If, in the last example, i is the inclination of the plane, a the

inclination of the tangent at the fixed extremity, and I the whole

length of the string, prove that the length of the portion on the

plane is Z cos a

(Walton, p. 1 19.)
cos f cos (a

-
1)

21. Given two smooth pegs in a horizontal line, find the least length
of a uniform heavy string which will rest over them.

Ans. If 2a is the distance between the pegs, and e the Napierian
base, the least length is ae.
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22. A uniform inextensible string assumes the form of a circle

under the influence of a repulsive force emanating from a point on its

circumference ;
find the law of force.

Ans. It varies inversely as the cube of the distance.

23. A uniform inextensible string is in equilibrium under the

action of a central repulsive force ; prove that at each point of the

string this force oc > where/; is the perpendicular from the centre

of force on the tangent, and y the chord of curvature passing through
the centre of force.

24. If the curve of equilibrium is an ellipse whose focus is the

centre of force, the force at any point oc -v> > where b' is the semi-

conjugate diameter corresponding to the point, and r the focal distance

of the point.

25. If the string assume the form of an ellipse under the influence

of a repulsive force emanating from the centre, find the law of force.

Ans. The force is directly proportional to the distance, and

inversely proportional to the conjugate diameter.

26. If an inextensible string can assume the same plane figure of

equilibrium under the separate action of any number of forces, it can

assume this figure under their combined action.

(To prove this, suppose the string under the combined action of the

forces to be constrained to a smooth curve of the given figure, and it

will follow that the pressure at every point of this curve varies

inversely as the radius of curvature. The theorem follows, then, from

example 4.)

27. A uniform inextensible string rests against the inner side of a

smooth elliptic wire, and is repelled from the foci and the centre by

the following forces :
-~ and ^r, emanating from the foci, and -
ro r b o

from the centre, the distances of a point on the string from the foci

being r and /, respectively, its distance from the centre being a', and

the semi-conjugate diameter corresponding to the point being b'. Find
the pressure on the wire at any point.

Ant. If T is the tension of the string at the extremity of the

minor axis, R = pressure per unit length = -

(The student will easily see from Examples 4 and 26, th.-it if t In-

curve of constraint of a string is a possible curve of free equilibrium
under the action of the given forces, the pressure will, at every point, be

Q
) where C is a constant. The result, in this example, might, there-

fore, be at once obtained by this principle.
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By direct calculation, however, the result is obtained with little

trouble. The equations of equilibrium are

tlT+ dr+-,dr+ da' = 0,
ro r o b

and the first gives, by integration,

T- * A/ -'-^ A/ -,-fi"6' = const.)
a V r a y r

The student will do well to apply the principle explained here to

the kinetical examples in Walton, pp. 295 and 299, second edition.

28. A uniform heavy inextensible string rests partly on a rough
horizontal table, and partly over a smooth pulley, B, fixed at a given

height, h, above the edge of the table, a portion, BC, of the string

hanging vertically from the pulley and past the edge of the table ;

find the length of the hanging portion, BC, so that its weight may
just suffice to drag the string off the table, the string and pulley

lying in the same vertical plane.

ATM. If I = whole length of string, p = coefficient of friction,

and x = length which hangs below the edge of the table,

[p(l- h)-(l +M)*]
2 = A2 + 2hx,

one value only of x being admissible.

SECTION II.

Flexible Extensible Strings.

194. Experimental Law of Extension. The strings which
we now proceed to consider are extensible, i.e. such as have their

lengths increased when they are in a state of tension. For such

strings we shall still assume the property of complete flexibility
as defined in Art. 180.

The law of extension which we proceed to enunciate applies
not only to flexible strings but also to straight bars of iron,

steel, &c.

Let 1 denote the length of any string or straight bar of
uniform section when it is not subject to the action of any
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external force. This is called the natural length of the string or

bar. Let a be the area of the normal section, F the magnitude
of the force applied at one extremity in the direction

AS, of the string or bar. Then supposing the extremity
A to be fixed, the force /'will produce an extension, BC,
of the body. Denote this extension by a?. Then ex-

OS

periment proves that^br small values of the ratio
y-in the
'o

case of solid bars there is for the same bar a constant

F
ratio between this fraction and the quantity ; and

there is the same constancy of ratio in the case of

strings, but for some of these latter bodies the value of

-j- may be very much greater than for bars. Fig ' " 7 "

\Ve have, then, w
=-> (1)

a 1Q

E being a constant quantity which is called the modulus of

elasticity of the matter of which the string or bar is formed.

SB

Since
j-

is a number, it follows that E is aforce per unit of sectional

area. This force is also known as Young's modulus, and it is

evidently a measure of the longitudinal rigidity of the substance.

If the law expressed by equation (l) be supposed to hold for

an extension x equal to /, and if the force applied to the body
p

to produce this extension be called P, we have E =
;
and if <r

<T

is a section of unit area, E = P. The modulus of elasticity of

any substance might then be defined as that force which, if

applied at the extremity of a bar of the material of unit section,

would double its length this force being fictitious in the case of

bars c.r strings fur \\hich (l) holds only within extremely narrow

limits.

For bars of iron and steel this equation is true only within

narrow limits called f/if limits
<>f fla*ficif// while for flexible

strings of such substances as India-rubber its range is much
wider. It' the limiting amount of extension has not been

surpassed, the body will. after a time varying with the sub-

stance, return to its original state when the stretehing force /'

VOL. i. z
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is removed. The law expressed by equation (1) is also true

within narrow limits in the case of a straight bar which is

rt>///jtrf*st'tl
without bending.

An idea of the magnitude of the modulus of elasticity of a

solid body may be formed from the fact that in the case of iron,

the unit of force being a kilogramme and the unit of area a square

centimetre, E is about 2,000,000. For what are commonly
called elastic strings, E is of course very much smaller than for

bars of iron or steel.

In the case of an elastic string it is usual to put equation (1)

into another form. If / is the length which the string assumes

under a tension T, we have x = I 1Q ,
and

or, as it is usually written,

the quantity A being called the modulus of elasticity of the

string.

This quantity is obviously the force which must be applied to

the string to double its length.

The law expressed by (1) or (2) is known as Hooke's Law, from

the name of its discoverer, and is sometimes expressed in the

form f/te tension of any elastic string is proportional to its exten-

sion beyond its natural length.

195.] Work done in slowly extending a String or Bar.

If at each instant during the extension of a string or bar the

stretching force applied at the extremity is exactly equal to that

which would keep the body in its state of deformation at this

instant, there is continuous equilibrium between the (gradually

increasing) applied force and the elastic force of the body, and

therefore the total amount of work done by the applied force is

equal to the work done against the internal force.

[The more advanced student will see that this would not be

true if the extension were suddenly produced, so that oscillations

would take place in the body.]
Now if x is the extension of the body at any instant, the cor-
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r-

responding force is
-j- x, and the work done against this force in

E<r
a further extension dx is -j- xdx. Let a be the final extension ;

f
o

then the total work done is

a"" T71 TJ*
Jj (T l'i (Td~

-j- xdx, or
j

>

'.> 2 1Q

the extension being, of course, confined within the limits of

elasticity. Now the applied force which is required to keep the

body in its final state of extension is, by (l) of last Article,

j
Hence if the force applied in the final state be denoted

'

by P, the whole amount of work done is

\Pa,

or half the work which would be done by the final force of

extension in moving its point of application through a space

equal to the final extension.

196.] Equations of Equilibrium of an Extensible String.

Suppose the string to have assumed its figure of equilibrium under

the action of the given forces. At any point of the string let

il* be the stretched length of an element whose natural length
\\a> /A,,; and at this point let m be the mass per unit length.

the mass ju-r unit length at the same point in the natural state

of the string bein-

Then, since the mass of the element <h is the same after as

before stretching,
wd* = >//'/". (1)

Also by Ilooke's law
/Tt

Pmt, the string having assumed its form of equilibrium, we h;

as for the inextensible strii

(3)

Also dt= JdtP + df', (4)

and since the nature of the string in its original state is HIJ>]>

7 2.
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to be specified, we shall have MO given as a function of the

position of the element dsQ in the natural state
;
or

mo =/(*o) (
5
)

where # is the length of the arc of the original string measured

from some origin point on it.

Now the general problem of extensible strings may be stated

as follows : An extensible string, the law of variation of whose

density in its natural state is given, is, under given circumstances,

submitted to the action ofgivenforces ; find theform which it will

assume.

To solve this problem, it is necessary to find an equation

between x and y, the co-ordinates of any point in the stretched

string; and as the equations just given contain, in addition

to these co-ordinates, the quantities m, mQ , s, SQ) and T, these

must be eliminated. But from the six equations above, these

five quantities may theoretically be eliminated, by differentiation

or otherwise, and there will result a single equation between

x and y, which is that of the curve of equilibrium.

The problem in its general form is one which it would often

be practically impossible to solve. We shall therefore in the

sequel consider only two cases viz. that in which m is the

same throughout the string, and that in which the external

forces are constant. Consider mQ constant.

Multiplying the left-hand sides of equations (3) by y- and ~ >

and adding, dT , ,- + a(X- + Y) = 0; (6)

while from (l) and (2) we have

J
Hence (6) becomes A.

(l +~) dT+ m (Xdx + Ydy) = 0. (7)

Integrating,

A T *

2
+
y) + mQf(Xdx + Ydy} = const. = A.

Denoting, as in Art. 192, the general integral by Vt

l('+)
2

=^. (8)
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from which the relation between * and # is found, and hence

the extension of the string
1

. Equation (8) is the analogue of

that of Art. 192. If V is the potential of the external forces at

a point at which the tension is T*, we have

-)=r'-F. (10)

The equation of the curve of equilibrium is obtained by sub-

stituting- the value of T given by (8) in either of the equations

(3) suppose in the equation

Secondly, suppose that the applied forces X, Y are constant,

fir
Then from (3) T

'-?-
= A-X/n dsot (11)

(( S

A being
1 a constant of integration. Similarly

<I . (12)
-

Hence T2 = (A-Xfm^th^ + (B- Yfm d*
)*, (13)

which gives T7

as a function of #
, i.e. the tension at any point

in the stretched string in terms of the length of the arc of

the unstretched string measured up to the corresponding point.

In other words, f _ ^ (^ (! 4)

Therefore from (2)

which gives the relation between the stretched and unstretchnl

lengths of any portion. The equation of the curve of equi-

librium is obtained from (11) and (12) thus:

Similarly tly
= (B-YfmQ dsJ)\\ +

I A <f> (
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Integrating these equations and eliminating s between them,
we obtain the equation of the curve.

As an example, let it be proposed to investigate the form of an
elastic string suspended from two fixed points and acted on by gravity,
the string being uniform in its natural state. Taking axes as in

Art. 186, we have,

<*>=

Hence T = r = m gc, suppose; and T -'
,- = J}+m gs . But

dy
8

if s be measured from the lowest point,
- = and v = at the

(Ls

same time. Hence B = 0, and we have

ds

w dy -

from which T m y -/c
2+ 2

; therefore

re c
dx = -

A, .y/
2 j. oc
z+ s,

Hence, putting A = m ya, we have

x = +clogi5,
'

(15)

The relation between x and y is obtained by eliminating * from
these equations.
An approximate relation between them may be obtained when the

stnng is only slightly extensible, i.e. when A (or a) is very ereat
In this case (16) gives

to the second order of the small quantity -.

Now, writing (15) and (16) in the forms
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c i -i
now that n=-(e c +e c

)
'2

8* C - -'-* - *
y- - = (*'

a + c - a
)

o _fo i

by expanding e a and tf as far as
,
and denoting by u and <p the

til

c - -- c
* --

quantities
-

(e
c + e c

)
and ~(e

c e c
)A 2

Stib.-titutin.u' in this equation the value of given by (17) iii

which it is evident that the term of the second order may be rejected
it' we wish to obtain y to this order only in terms of x we obtain
an equation of the form p O

in which P and Q are both functions of x and
<j.

\ MNow assume y = u H---1
-- where A and u. ai*e functions of x

a o2

;ilone. and substitute this value of y in every term of (18). Thi* will

u.-, with u little trouble,

A = --o2
,
and /A

= -we2
.

w* ?>u^

y u~^ +
2a^

ti> the second order of the small quantity

197.] Extensible String on Smooth Curve. It is clear

that the equations (1) and (2) of Art. 191 an- applicable to an

nsible string
1

,
as are also those of Article 193 for a rough

curve. The result arrived at by integration, which expresses
llic tension in terms of the potential, is to be replaced by equa-
tion (10) of Art. 196; and from this equation it follows that

if an extensible string, uniform in its natural state, rest on

any smooth surface under the action of gravity, the free ex-

tremities arc in the same horizontal plane.
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EXAMPLES.

1. An elastic string, uniform in its natural state, is suspended from

one extremity, which is fixed, and- has a given weight attached to the

other ;
find the extension of the string, taking its own weight into

account.

Let W be the weight of the string, P the suspended weight, A the

modulus of elasticity, and m the mass of a unit length of the un-

stretched string. Then the equation of equilibrium is

dT+m (jd8 = 0.

If 1 is the natural length of the string, mugl = W
;
therefore this

equation given by integration

W
T+ s = const.

'o

When 8 = 0, T is evidently W+ P ;
therefore

T= W+P-~s .

T
Again, since ds = (1 + )

<
>
we "ave

W+P W_
~T~ AZ/'

'

W+P TT

no constant being added because s = when # = 0.

If .<? = Z
,
and I is the whole length of the stretched string, we have

2. A heavy uniform elastic ring is placed round a smooth vertical

cone
;
find how far it will descend.

Let W be the weight of the ring, 2-rra its natural length, A its

modulus of elasticity, y the distance of the plane of the ring from the

vertex of the cone in the position of equilibrium, and I the stretched

length in this position. Then if the ring be shoved down through an

indefinitely small vertical distance, by, the equation of work is

T being the tension of the ring. If a is the semi-vertical angle of

the cone, I = 2iry tan a
; hence 81 = 2-n tan a . by, and

277^ tan a = W.
But, by Hooke's Law,

T
yiana = a(l+ );

W
.'. y a cot a (1 + -cot a).
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3. An elastic string, uniform in its original state. i> placed on any
smooth curve and acted on by given forces

;
find its extension.

The tension at any point is determined by the equation

(1 -f )dT+m (Xdx+ Ydy) = 0,

or A (1 + ) + 2m
Qf(Xdx+ Ydy) = const .

( 1
)A

Let m f(Xdx+ Ydy) be denoted by V. Now take any point,

0, in the string as the point from which s and 8 are measured,

and let A be the value of Tat a free extremity of the string. If one

extremity is fixed, it will be well to measure s and * from it. Putting

T ds
T = 0, T = .4, and also 1 + = . ,

A rf
e

(1) gives ( )

a = 1 + -^-(yt-F). (2)X A

Suppose the curve of constraint to be given by the two equations

Then (2) gives <fc

or, by integration, $^ A) = 8
9+ <j> (o, A), (3)

s and * being both measured from 0. Let I and 1 be the stretched

and original lengths of the portion between and the free extremity
considered. Then we have

4>(l,A) = l.+ 4>(o,A). (4)

Pint A is evidently a function of the co-ordinates of the extremity.
and these co-ordinates are, by supposition, /, (/), f.2(l) ;

hence A is a

known function of I, and by substituting its value in (4) we deduce
tin- value of/.

4. One extremity of an elastic string, originally uniform, is fixed at

the highest point of a smooth cycloid in a vertical plane, the string

lying along the convex side of the curve
;

find the extension produced

liy iri'avity.

It the tangent at the highest point is taken as axis of x, and if

is denoted by c, we find easily, for any curve of constraint,

da '/.-

/Vc+hy Vc
h being the ordinate of the free extremity.

In the cycloid a
2 = Bay. Substituting this value of y in the

equation, and integrating, we have
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It' / l>e the length from the fixed to the free extremity, and 1 the

uutural length of the string,

I = 2 </2 a(c + h) sin ( A) *

Also P = 8aA.

These equations combined give

2

5. A heavy particle is attached to one end of an elastic string

whose unst retched length is indefinitely small ;
the particle rests on a

smooth curve in a vertical plane, and the fixed end of the string is

attached to a point in this curve ;
find the nature of the curve so that

the particle may rest in all positions. Ans. A cycloid.

6. A heavy elastic string is laid upon a smooth double inclined

1
plane in such a manner as to remain at rest

;
find how much the

string is stretched. (Walton, p. 140.)

Ans. If W is the weight, A the modulus of elasticity, and c the

natural length of the string, and a, a' the inclinations of the planes to

the horizon, the extension is

W sin a sin a'--
-.

-
;
-

fC.
2 A sin a + sin a

[For the portion on the plane a let s and * be measured from the

free extremity. Then

IT sin a T. TFsina .
,T = -

;
and ds =(! + )

<fc = (1 + - -)<*,.C A AC

Hence if 2 is the length of the portion on the plane a, we have

l-~

A similar equation holds for the portion on the plane a'. Now the

extension = 2+ ^ Z Z'
; and equating the tensions at the common

summit of the planes, we have Z sin a = Z' sin a',

c sin a'
.'. \ ^ . 7 , &c.]sm a -f sin a

7. If the cone in example 2 is replaced by a smooth paraboloid of

revolution, find how far the ring will descend. [By Virtual Work.]

Ans. y =-=- , where 4m = latus rectum of generating

parabola. 4 TimA

8. An elastic string, uniform in its original state, rests on a rough
inclined plane with its upper extremity fixed

; prove that its extension

will lie between the limits
/2 gjn /^+ e

\

2c cose
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where (' = inclination of plane. = angle of friction, I = natural

length of .-tring. and c= length of a portion of the string in its

natural htate who-e weight is the modulus of elasticity. (Wol^trn-
holnieV .]fnt/i. Prob.)

9. A weight P just supports another weight Q by means of a fine

ela>tic -tring passing over a rough circular cylinder whose axis is

Imri/ontal ; A is the modulus of elasticity, and a the radius of the

cylinder; pn>\v that the extension of the part of the string in contact

with the, cylinder is a O + \~ 18 ~n i
'

(Wolsteuholme, ibid.)

10. Two uniform ladders, connected by a smooth axis at a common

extremity. iv.-t in a vertical j)lane with their other extremities, which
art- connected liy an elastic rope, on a rough horizontal plane; find

.'eatc-st angle between them consistent with equilibrium.

A us. If a is the length of each ladder, 2 a sin a the natural

length of the rope, 26 the greatest angle between the ladders, and A
the modulus of elasticity of the rope,

A (sin Q sin a) = W sin a (p+ tan 0).

1 1. A heavy uniform elastic ring is placed horizontally round a right
whose axis is vertical and vertex upwards, the stretched ring

1'eing also uniform
;
find its extreme positions of equilibrium.

( W 1

y = a
]

1 + cot (a + e)f- with notation of Ex. 2.
( 2ir\ '}

12. A heavy elastic string, uniform in its natural state, is placed
round a smooth fixed circular cylinder whose axis is horizontal, and
is just out of contact with the lowest point of the cylinder ;

deter-

mine the tension at any point.

Am. Let r = radius of cylinder, p = weight per unit length of

.-tring in it.- natural state, A = modulus of elasticity, and 6 = inclina-

tion of any radiu- to the vertical
;
then the tension at the end of this

radius is given by the equation.

.

A A
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Action and reaction, 1 98.

Anti-friction curve, 242.

Anti-friction pivot, 243.

Apsides of nearly circular string, under

central force, 322.

Astatic equilibrium, 128.

Astatic centre, 130.

Axiomatic law of friction, 229.

Balance, 193.

Balance, Roberval's, 194.

Balance, Quintenz's, 195.

Bending moment of horizontal beam,

125.

C.G.S system of units, 5.

Carriage, equilibrium of, on rough in-

cline, 249.

Cartesian Oval, normal to, 87.

nary, common, 311.

Catenary of uniform strength, 315, 317.

Centre of parallel forces, 107.

of mean position, 108.

of mass, and gravity, in.
of mass, co-ordinates of, 261.

of mass of curved wire, 271.

of mass of solid of revolution, 292.

of mass of any solid, 295.

of mass of any solid in polar co-ordi-

nates, 300.

id of system of points, 1 7.

of plane area, 274.

of plane area found by Integrometer,

279.

of surface of revolution, 286.

of spherical surface, 287, 289.

of any curved surface, 288.

( irdes, inscribed and circumscribed, of

a triangle, 267.

Components of forces, 24.

Cone of friction, 228.

on rough incline, 254.

frustum of, on rough incline, 256.

centre of mass of, 265.

Cotangent formula, 29.

Couples, definition of, 101.

Couples, transformation of, 102, 103, &c.

Couple and force, equivalent to a force,

105.

Counter-efficiency of a machine, 183.

Density, definition of, 263.

Differential wheel and axle, 188

Displacement of a rigid body, 169.

Dyne, absolute force unit, 6.

Efficiency of a machine, 183.

Effort, definition of, 182.

Equilibrium, of a particle, equations of,

35-

of a rigid body, analytical conditions

of, 1 1 6.

of a rigid body and a deforinable

system compared, 117.

graphic conditions of, 122.

of three force*, 133.

comparative safety of, 235.

Force, measure of, 3, 4.

Force Diagram, definition of, 38.

Forces in equilibrium displaced by

rotation, equivalent to couple, 131.

Framework, triangular, 210.

Framework, polygonal, 215.

ion, laws of, &c., 62.

angle of, 63.

in non-limiting- equilibrium, 68.

criterion of existence of, 227.

cone of, 228.
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Funii'iiUr polygon, 37.

general definition of, 119.

successive deduction of, for parallel

forces, 45.

successive deduction of, for any co-

planar forces, 1 1 8.

given one to find all, 1 31.

to draw one through three points, 127.

Geometrico-statical problems, 142.

Graphic representation of resultant,

by Leibnitz, 1 7.

representation of resultant by force

polygon, 19.

solution of equations, 49.

Hinge, action of, on a body, 139.

Homogeneity, attention to, 36.

Hooke's Law for extension, 337.

Instantaneous centre, 166.

Instantaneous centre, use of, 1 74

Internal forces of a system, 162.

Internal forces, examples of, 199.

Joint, smooth, action of, 139.

Joint, rough, 140, 141.

Laplace's proof of parallelogram of

forces, 20.

Lever, equilibrium of, 184.

Limiting equilibrium, definition of, 66.

Magnetic curve, 46.

Magnetic curve, normal to, 87.

Masses, equality of, 6.

Momentum, 5.

Moment of a force, loo.

Moment of a force, geometrical repre-
sentation of, 105, 1 23.

Moment, resultant for coplanar forces,

124.

Moments, Varignon's theorem of, 106.

Moments of mass, theorem of, 262.

Morin's determination of coefficient of

friction, 65.

Normals to curves, 85.

Tschirnhausen's theorem on, 88.

another theorem on, 89.

Pappus, theorems of, 301.

Pappus, theorems of, extension of, 302.

Parallelogram of forces, 8.

Parallel forces, composition of, 95, 172.

construction for resultant of, 99.

centre of, 107.

equilibrium of, 113.

Passive resistances, 69, 2 29.

Peaucellier's Cell, 180.

Perspective triangles, property of, 1 24.

Pivot, friction of, 239.

Pole of a funicular polygon, 119.

Pole of a funicular polygon, locus of in

particular case, 122.

Polygon offerees, 20, 118.

Polygon indeformable, equilibrium of,

*35-

Polygon of jointed bars, equilibrium of,

212.

Potential of forces, 324.

Prism, equilibrium of, on rough incline,

256.

Projection, orthogonal, 78.

Prony's differential screw, 191.

Pulleys, systems of, 186.

Pyramid, centre of mass of, 264.

Pyramid, frustum of, centre of mass of,

268.

Quadrilateral area, centroidof, 268, 270.

Reaction of a smooth surface, 47.

of a rough surface, 64.

of jointed bars, 208.

of jointed bars, analytical calculation

of, 218.

centre of system of jointed bars, 221.

Resistance, total, of a rough surface,

64.

line of, at a joint, 205.

line of, between two blocks, 207.

Resultant of coplanar forces, equation

of, 1 1 6.

Resultant ofcoplanar forces, constructed

by funicular polygon, 121.

Screw, equilibrium of, 189.

Screw, Prony's differential, 191.

Spherical triangle, centroid of, 290.

String, flexible, definition of, 306.

equations of equilibrium of, 308.

under central force, 319.
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String, flexible, on curves rough and

smooth, 324.

extensible, equilibrium of, 339.

Suspension Bridge, 41 .

Suspension Bridge, parabola of, 318.

Tension of a string, nature of, 27.

Tore, definition of, 304.

Toothed wheels, 196.

Total resistance of a rough surface,64.

limitation of, 65.

virtual work of, 238.

Traction, best direction of, up rough

incline, 73.

Tractory, or, anti-friction curve, 242.

Tractory, relation of to catenary, 314.

Translation, resultant of, vanishing in

particular case, 171.

Transniiiwibility of force, 14.

Trapdoor, equilibrium of, 147.

Triangle of forces, 13.

Triangular lamina, centre of mass of,

263.

Truncated cylinder or prism, volume

of, 303-

Uniplanar displacement of a rigid body,

165.

Varignon's theprein of moments, 106,

170.

Velocities, composition of, 7.

Virial, 130.

Virtual Work, definition of, 79.

of resultant and components, So.

equation of, for a particle, 8 1 .

vanishing of, 83.

of tension of inelastic string, 90.

typical expression for, 91.

equation of, for system of particles,

161.

for rigid body, 163.

Wedge, 192,

Wheel and Axle, 188.

Work done in extension, 338.

Young's Modulus, 337.
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