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PREFACE.

IN the following treatise I have applied the simpler pro-

cesses of Algebra to the discussion of the subject of strains

in single span trusses, and have obtained many formulae for

practical application, sufficiently elucidating this method, I

hope, to render easy the determination of other formulas

adapted to any form of truss that ingenuity may suggest.

Only algebraic processes have been employed, because they

are simpler, more comprehensible, more practical, and more

accurate in practice, than those of the higher mathematics.

Uniformly distributed loads alone have been considered,,

whether full or partial, since it may be possible to load

each part with the load which may be brought upon any

one part; and if we consider the density of the whole load

to equal the maximum density at any point, any other case

can only produce a less strain.

No comparison is made between the different systems

which are given, many of them for the first time, since

practical details of construction aflect -the theoretical economy,

and to fully consider these would be beyond the scope of

the present volume; there are many cases, however, where

the practical difficulties may be ignored, since they are so

nearly equal and a comparison readily made. The change*
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in the form of a truss caused by a want of rigidity, or

temperature, will not affect the values of the formulae. The

discussion of the strains affecting drawbridges, leading directly

to the subject of cantilever trusses, which includes continu-

ous trusses, the Sedley system, and many other important

forms, for which we have no practical formulas, must, with

the subject of arched trusses, be reserved for a future volume.

S. H. S.

NEW TOBK, January, 1878.
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^TL
THE STRENGTirei^RIDGES AND ROOFS.

CHAPTER I.

1. Tru. The term Truss is generally applied in

Engineering to a frame work constructed to transfer

its own weight and a weight imposed upon it to the

supports or abutments on. which it rests, and whose

members are subject to longitudinal strains only.

2. strain. The strains affecting a truss are of but

two kinds; compression or thrusting, and tension or

pulling.

3. Chords. A chord is the outer longitudinal con-

tinuous member of a truss. There are two chords in

a truss
;
an upper and a lower chord.

4. Braces. Braces are the members of a truss con-

necting the chords.

5. Ties. Ties are those braces which are subject to

tension.

6. struts. Struts are those braces which are subject

to compression.

7. Panels. The term panel is now generally applied
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to the divisions of the truss which are formed by the

vertical braces, or by the intersections of the braces with

the chords.

The investigation of strains in trusses may be based

upon the three following laws, given and demonstrated

in elementary works on Mechanics :

8. The L,ever. If a weight be borne ~by a learn or

truss, resting at its extremities upon two supports, these

supports may be considered as reacting mill tivo upward

pressures, whose sum is equal to the weight; and the

weight borne by either support, or the reaction of either

support, is to the whole weight as the distance from the

centre ofgravity of the weight to the farther support, is to

the whole length of the beam or truss.
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fydied by the distance of its centre of gravity from the

other support.

This principle of the lever cannot be affected by any

shape of the beam or by any bracing within a truss.

Ex. LetW= 12 tons, m = 6 feet, and n= 3 feet
;

12X6
"

*?
~

~~~ti+*
== t ns

>

and

12X3
p q

= 4 tons.

9. Resolution of Forces. If three forces acting at

one point balance ; three lines parallel to their directions

will form a triangle whose sides will be proportional to

the forces.

Fig. 2.

Let the lines B, C and D, represent three forces,

either pulling or thrusting, and balancing each other at

A. Draw EF parallel to C to any scale, arid through

E and F, draw EG and FG parallel to B and D.

Then the length of the sides EF, FG, and EG are

proportional to the amounts of the forces, C, B and D.

Again, if C be a force acting at A whose amount and

direction are represented by the line EF ;
EG will rep-
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resent its horizontal component, or force in a horizon-

tal direction, and FG its vertical component or force

in a vertical direction ;
or a force may be resolved into

two components, acting in the lines of and equal to the

two forces which keep it in equilibrium.

Hence, it is evident that if we know either the verti-

cal or horizontal component of an inclined force and its

inclination, we may determine its amount and its other

component ;
or if the force and its inclination be known,

its horizontal and vertical components may be readily

found
;

for in either case we have the angles and one

side of a right-angled triangle.

If three members of a truss or frame meet as at A,

Fig. 2, the strains to which they all are subject are of

the same character, either all compression or all tension.

If two of the three members of a truss meeting at one

point are on the same side of the line of the third, they
are subject to different strains : the outer members, or

those which make the greater angle with each other, hav-

ing the same kind of strain, and the interior member
the opposite strain.

Thus, in Fig. 3, if B be subject to tension, C is likewise

B B

Fig. 3.

subject to tension and D to compression, and if D be

subject to tension, B and C are subject to compression.
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10. The Equality of Moments. The moments of the

forces or strains acting upon a body in equilibrium

which tend to turn it in one direction about a certain

point are equal to the moments of the forces or strains

which tend to turn it in the opposite direction ; the forces

and the point being in the same plane.

The moment of a force at any point is its amount

multiplied by its distance at right angles to its direction

from the point about which the moments are taken. A
force whose line of direction passes through a point

about which moments are taken has no moment at that

point,

In Fig. (1), taking moments about the left support,

we have W, the force acting downward multiplied by ra,

its perpendicular distance, for the moment of the weight

in one direction
;
and S', the reaction of the right sup-

port acting upwards, multiplied by Z,
its perpendicular

distance, for the moment of the force in the opposite

direction : S having no moment. Hence this equation

may be formed,

Wm = S7,

and

Wm
S = ,

as before.

11. In trusses, each member may represent the line

of some force or strain, and to take moments with accu-

racy, it is necessary to select a point in a vertical section

cutting only one member of the truss whose line of

direction does not pass through the point.
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Thus, in Fig. 4, the moments may be taken around

b in the vertical section db, to determine the strain in

cd; because the strains in db and ab> passing through

a b e f

Fig. 4.

,
have no moment, and consequently do not enter the

equation. But if the moments be taken around e be-

tween b and /, the vertical section will cut df and dg,

and the two unknown strains contained in them will

enter the equation and render it indeterminable.
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CHAPTER II.

CASE I.-A SIMPLE TEUSS SUPPORTED AT THE ENDS, AND

LOADED AT THE CENTEE ONLY.

A B C D Eft FaGfrHcI K

M N O P Q eRCSgT xu.Y

Fig. 5.

12. Let w= the weight upon the centre,

I = the length of the truss,

d = the depth of the truss from centre to

centre of the chords,

x and y! = horizontal distances from one abutment

to the vertical braces or ends of a panel,

H and H'= horizontal strains in either chord at the

points co and a/,

V = vertical strains, which affect the braces

only.

The strains caused by any load in the upper chord

of a truss of a single span can evidently be compression

only, while those in the lower chord can be tension only.

13. The Horizontal Strain. In this case the weight

borne by either abutment or the reaction of either

nn

abutment is evidently -Q-. The segment to the right of

a vertical section through 6/j for example, is kept in
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equilibrium by the reaction of the right abutment and

the strains at b and/

Taking moments around / distant x from the right

abutment, we have the reaction of the abutment, ,multi-

plied by a, or ^, for the moment in one direction ;
and

in the opposite direction we have only the strain H at 6,

which, multiplied by its distance, d, gives the moment

TELd.

Whence HcZ = ^,

And, H = f|
.... (2)

14. In Eq. (2) H varies directly as
JE,

and is great-

. I

est, when x is greatest, that
, is, when it is equal to

-^
5

at the abutment becomes zero, and varies at any point

directly as the weight and inversely as the depth.

15. The amount of horizontal compression at the

point &, shown by Eq. (2), is, on the left, the strain in ab
;

and on the right the strain in be and the horizontal com-

ponent of the strain in bg ; and that a strain exists in

the latter may be shown as follows: Take moments

similarly around g, distant x' from the right abutment

and we obtain,

H'-g.
for the compression in be; less than the compression in

o, because x' is less than x.
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Subtracting Eq. (3) from Eq. (2) we have,

H-H' = ^(a-oO, (4)

for the excess of compression in ab over that in be.

This force may be considered as the sole horizontal force

acting at &, for the remainder of the strain or the thrust

at that point in ab balances that in be. We have

therefore a thrust, H H', towards &, which must be

balanced by the strains in bf, and bg, as they are the

only members meeting at b. Therefore, the strain in

bg is (9) compression, and the strain in bf is tension
;

and the horizontal component of the former is equal to

H H', the horizontal force at b, and its vertical com-

ponent is equal to the strain in bf.

16. The Vertical Strain. Let the length of the strut

bg represent the longitudinal strain to which it is subject ;

be will therefore represent its horizontal component, or

the value of H H', and bf its vertical component or the

amount of tension in that tie
;
the latter may then be

obtained from the former by the following proportion :

be :
bf, or x y! : d : :

-^-7 (x of)
: -~-

Whence V = ~,

is the vertical strain in bf&nd the vertical component of

the strain in bg ; and, since it is a constant, the verti-

cal strain in all the braces. It is likewise independent

of the length and depth of the truss, and is equal to the

reaction of the abutment

17. The horizontal component of the strain in the
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struts, (x x'),
is a constant, if the length of the

panels, x - tf is uniform ;
but unlike the vertical strain

is affected by the depth of the truss and by the inclina-

tion of the braces, or the length of the panels.

i8._The longitudinal
strain in the struts 4s readily

determined from the horizontal or vertical component :

from the latter as follows :

w w (bg)
d: fy :: T : "~*T'

a constant if the struts be of uniform length.

19. The tension in any member of the lower chord

is determined similarly to the compression in the upper

chord. Taking moments around 6, we have, as before,

wx
*w

for the tension at/, the whole of which is contained in

/</,
and at g the tension is,

wxf
H' = -Q-T? contained in gfi.

Their difference is an excess of tension in fg which

gives us as before, tension in eg and compression in bg ;

the amounts of which can be determined from the changes

in the amounts of strain in the lower chord as well as

from those in the upper chord.

Hence, the general form of Eq. (2) gives, in the case

supposed, the horizontal strains in the upper chord on

the side towards the centre of the points to which x is

measured, and in the lower chord on the abutment side

of the same points, and x may be measured from either
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end to the weight. It will be noticed that when the

upper ends of the braces are inclined towards the weight

they are struts, when vertical, ties.

20. EXAMPLE : Let Fig. 5 represent a truss sixty feet

long and five feet deep, divided into twelve panels of

uniform length and supporting a weight of eighty tons

at the centre.

Then, w = 80 tons,

I = 60 feet,

d = 5 feet.

x x' = 5 feet, a panel length.

Length of struts = |/5
2 + 5

a = 7.07.

Whence

w (bg)

wV =
-^
= 40 tons, tension in all the ties.

80 X 7.07

2\/5
= 56.56 Tons, compression in all

the struts.

wx _" ~~
80 x = Sx.2X5

The different values of x or distances to the ends of

the panels are, 5, 10, 15, 20, 25, 30.

In the following table the first line gives the values

of x, the second line the amount of strain in tons, and

the third and fourth lines the chord members subjected

to the strains in the same column :

Values of x.
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There is no single member at the centre which takes

all the strain in the upper chord.

CASE II. A SIMPLE TRUSS SUPPORTED AT THE ENDS AND

LOADED AT A POINT BETWEEN THE CENTRE AND ONE

ABUTMENT.

<- m- * -n- ->

A B C DOfl r aGbH cTh K L M
a\l\l\M>l/L/l/i/I71717jg|

M N P QeRf SgT U V

Fig. 6.

31. Let w = the weight upon the truss,

I = the length of the truss,

d = the depth of the truss,

x = the distance of one of the abutments

to any one of the vertical braces or end

of a panel,

p = the horizontal length of a panel,

m = the distance of the weight from the

left abutment,

n = the distance of the weight from the

right abutment,

H and H' = the horizontal strains in the chords,

V = the vertical strain.

By the principles of the lever (8), the reaction of the

right abutment is
,

The segment to the right of a

vertical section through any panel end 6, is held in equi-
librium by the reaction of the right abutment and the

strains at b and/. Taking moments around/, distant x
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from the right abutment, we obtain, by the same reason-

ing as in the previous case,

wmxH = ^r, .... (6)

for the horizontal strain at 6, or the amount of compres-

sion in be. The value of H in this equation varies

directly as #, and is greatest when x is greatest or equal

to n, that is under the weight. If the moments to the

left of w and the reaction of the left abutment be taken

we shall have,

wnxH =T <
7>

& being measured from the left abutment. These equa-

tions also give the tension in the lower chord. If an-

other point be taken in the section through eg, one

panel length nearer the abutment, we shall have,

A value evidently less than the value of H in Eq.

(6), showing that there is in be an excess of compres-

sion over the amount in ch. This excess may, as in the

previous case (15), be considered as the sole horizontal

force at c, and is equal to the horizontal component of

the strain in cf, which strain is (9) tension. The strain

in eg is consequently compression and is equal to the

vertical component of the strain in cf.

Subtracting Eq. (8), from Eq. (6), we have,

<
9)

for the horizontal component of the strain in the tie
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and as it is a constant and independent of any value of

#, for the horizontal component of the strain in any tie

between the weight and the right abutment. Similarly,

is the horizontal component of the strain in the ties

between the weight and the left abutment.

22. Vertical strain. The vertical component may be

obtained from the horizontal component of the strain in

the ties to the right of the weight, by the proportion

used before :

wmp ivm
P :d:: -W :

-T'

Whence, V ss ~~; ..... (10)

is the vertical component of the strain in each of the ties,

and the total compression in each of the struts in the

right segment ;

1 -1 1 TT WJl
And similarly, V : -p ..... rt ]\

is the vertical component of the strain in each of the ties

and the total compression in each of the struts in the

left segment.

23. Hence we obtain this law, equally applicable to

the previous case : The vertical strain in either segment
of a truss loaded at one point only is equal to the reaction

of the abutment on which the segment reste.

2.1. Longitudinal strain. The longitudinal strain in

the inclined braces may be, as before, obtained from this

proportion ;
as the depth of the truss is to the length of
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the brace, so is the vertical reaction of the abutment to

the strain
; or,

the tension in the ties to the right of the weight. And

similarly the tension in the ties to the left of the weight

may be found.

25. EXAMPLE: Let Fig. 6 represent a truss sixty

feet long and four feet deep, divided into twelve panels

of uniform length and supporting a load of sixty tons at

the distance of twenty feet from the left abutment

Here w = 60 Tons,

1= 60 Feet,"

d= 4 "

m = 20 "

n = 40 u

H = wmx 60 X 20 X x = 5 x.
dl 4X60

Substituting the different values of x or the distances

from the right abutment to the panel ends, we obtain the

following strains in the right segment. This table is

arranged as was the previous one.

Values of x.
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substituting the different values of a?,
or the distances

from the left abutments to the panel ends, we have the

following :

Value of x.
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for the horizontal strain under the weight ; and if x in

Eq. (2) be made equal to
-y

we have

H = . . . . (13)

TO.- -Xr

Fig. 7.

In Fig. 7. upon ab, made equal to
Z,

describe a sem-

icircle with a radius equal to
;
then the vertical

Jj

be a .mean proportional between m and n, or

m : cd :: cd : n

Whence mn = (cd)*

Consequently, in a truss, loaded with a single weight,

if the weight be placed at different points, the horizontal

strains resulting therefrom under the load, are to each other

as the squares of the vertical distances at the points where

the weight is placed, between a horizontal line equal in

length to the truss and a semicircle inscribed thereon with

a radius equal to half the length of the truss.

27. The horizontal strain in either of the above cases

between the weight and the abutment decreases at the

panel ends in uniform quantities, and at these points

passes through the inclined braces from one chord to the

other where it neutralizes an equal amount of the oppo-

site strain; or the braces contain all the vertical strain
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and an amount of horizontal strain equal to the total

strain in one chord.

In the first example above, the compression passes

down the struts to the lower chord ;
in the second, the

tension passes up the ties to the upper chord
; hence, in

a truss there is no neutral axis or line in which no hori-

zontalforce exists.

CASE III. A TRUSS UNIFORMLY LOADED THROUGHOUT ITS

LENGTH.

AB DE FGHIKLM
yyyy-& s4d

* g >
Fig. 8.

1 m

28. Let w = the whole weight upon the truss.

I = the length of the truss,

d = the depth of the truss,

x = the distance to the end of a panel from

one abutment.

p the length of a panel.

u = the distance from the same abutment

from which x is measured, equal to

x -, being the distance to the cen-
2

tre of a panel.

H = the horizontal strain.

V = the vertical strain.
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In a truss the load is to be considered as concen-

trated at the ends of the panels, for it is at these points

that the connections are made between the truss and the

members of the bridge which receive the load. A half

panel load is therefore borne by either abutment.

29. Horizontal strain. The weight upon either abut-

10
ment is . The segment to the right of any vertical

ft

section, H/?, is held in equilibrium by the reaction of

the right abutment, the load on km, and the strains at

H and h. Taking moments around Ti distant x from the

right abutment, we have the moment of the right abut-

oy/y

ment, equal to -^-, in one direction, and the load on the
2

segment to the right of Hh multiplied by the distance

of its centre of gravity from h, for the moment in the

opposite direction
;

their difference is the horizontal

strain at H multiplied by its distance d.

The moment of the load on x may be found as follows :

The weight coming directly upon the abutment is half a

panel load, -^-,
its moment is therefore ~~- ; the weight2i 21

upon li has no moment, and the weight upon the rernain-

1JD

der of the segment is evidently y multiplied by x p,
I

x
and the distance of its centre of gravity is ; whence its

2

. w . x x wx wpxmoment is -= (x p) = -^---^-, or the moment
I 2, 21 "2L

r x i ill! ' WX WpX WpX WX*
of the whole load on x is -

-f + -f
- = ; we

_// 2(/ .1 21
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can therefore form, for the horizontal strain, the follow-

ing equation:

TT 7 WX WX*

.T'
" '

IT

Whence H = -
, . . . (14)

(The half panel load resting directly upon the abut-

ment has been generally disregarded in calculating the

strains in trusses as it does not affect the results
;
but it

has here been introduced because the equations are ren-

dered simpler, and w represents thereby the whole load

upon the truss).

Eq. (14) gives the compression in members of the

upper chord, in the form of truss shown on the centre

side of the panel end to which x is measured and the

tension in the lower chord members on the abutment

side of the same point, and is not confined as in the last

preceding case to points between the centre of gravity
of the load and the abutment, but is true for any value

of #, which may be measured from either end.

Differentiating Eq. (14), we shall find that H attains

its maximum value when x =
,
or at the centre

; where,L

substituting
- for x, we have,

wl

Comparing this with Eq. (13) we see, that the horizontal

strain at the centre of a uniformly loaded truss is one

half what it would be if the same load were concentrated

at the centre.



THE STRENGTH OF BRIDGES AND ROOFS. 21

At the abutment H becomes zero.

so. EXAMPLE: Let Fig. 8 represent a truss 110

feet long, 12.5 feet deep, divided into eleven panels of

uniform length, loaded on the lower chord with a load

of fifteen tons per running foot, or a total load of 165

tons.

Here I = 110 feet,

d = 12.5 "

w 165 tons.

Substituting the values of these constants in Eq. (14),

we have,

wx wx 165 x 165 x*
.06

2x12.5 2X12.5X110

Whence the horizontal strains in the chords are as fol-

lows :

Values of x
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or the curve intersects AY at the distance I from A
;

^
2

make x = and H =
-^-y, its maximum value at the

Fig. 9.

vertex of the curve
;
and at any point the distance be-

tween AY and the curve represents the strain in the

truss at that distance from the abutment
; practically this

may be done as follows :

c

Fig. 10.

B

Let AB, Fig. 10, be equal to
Z,

the length of the

truss, and upon its centre, C, erect a perpendicular whose

height is equal to
-g^-, by any scale. Then through ADB

construct a parabola, and the length of any vertical be-

tween AB and ADB by the same scale will give the

horizontal strain in either chord at the distance from

either abutment that the vertical is from A or B.
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32. The Vertical Strain. Taking Eq. (14),

TT wx wof
-0. = TT^T

at the end of any panel distant x from the abutment, the

horizontal strain at the next panel end towards the abut-

ment is, since the distance is x p,

__ w(x-p) w -~~
Subtracting Eq. (16) from Eq. (14) we have,

TT - TT' -- WX -
W

(
X ~P) __

wx*

,

w (x PY~~~~ ~~ "~

Pand since x ~ =

07)

The excess of horizontal strain in the upper chord

thrusting towards the abutment beyond that thrusting

towards the centre and which (9) consequently causes in

a truss of this form compression in the inclined and ten-

sion in the vertical braces. It is therefore at any point

equal to the horizontal component of the strain in the

strut at the same point, whose vertical component is

equal to the tension in the tie which meets it at the up-

per chord. This vertical strain can, as before, be ob-

tained from the proportion,

, wp wpw w ivu
p :W ~W~ ~2~ ~T

--- ~~^
I
10

/
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Whence The vertical strain at any point in a uni-

formly loaded truss is equal to the weight borne ly one

abutment, less the weight betiveen that point and the abut-

ment : the point being measured from the nearest abut-

ment. Eq. (18) varies inversely with the different val-

I w
ues of u, being zero when u = or at the centre, and

'

when u = 0, or at the abutment.

Substituting the values of the constants in the above

example, Eq. (18) becomes,

V = 82.5 15. u,

and the different values of u are, 5, 15, 25, 35, 45,

whence we obtain the following table:

Values of u.
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Values of u.
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vertical strain in ac would equal that in be ; or, in any

case, the vertical strain is constant in the braces between

the iveights. The vertical strain, or the vertical com-

ponent of the strain, in the inclined braces remains the

same, whether the truss be loaded upon the upper or

upon the lower chord, and whatever may be the inclina-

tion of the brace.

35. Therefore, Eq. (18) gives the vertical strain, or

the vertical component of the strain, in the inclined brace,

whose centre is distant ufrom the abutment, and the ver-

tical or total strain in the vertical brace attached to the

unloaded end of the inclined brace.

36. At the centre, as stated before, there is no ver-

tical strain
; or, the vertical strain on either side of the

centre of a uniformly loaded truss, passes to the abut-

ment on that side, and if u in Eq. (18) be made greater

than --, V will have a minus value, whence this rule :

In a vertical equation, whenV has a plus value, the ver-

tical strain given thereby is passing to the abutmentfrom
which u is measured, when a minus value, to the opposite
abutment

37. Eq. (18.)

y = w
___

wu^

is the equation of a straight line referred to rectangular
axes. Let AX, Fig. 12, on which u is measured, and
AY on which the values of V are measured, repre-

sent the axes
; when u =

0, then V = ~
; and make
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7

AB to any scale equal to
-^

when ^ V =
0,

therefore, lay off AC on AX equal to <r, AD equal to I.

Draw DE parallel and equal to AB arid join BE. On

AD, at the distances from A represented by the valuer

B

\

\

Fig. 13.

\

E

of u, erect perpendiculars meeting the line BE, the

lengths of these lines will give, by the same scale by
which AB was measured, the values of V at the differ-

ent points. The lines above AB showing the strains

passing to the left abutment, those below, the strains-

passing to the right abutment.

38. The horizontal and vertical equations given

above show, that where the horizontal strain is greatest

there is no vertical strain, and where the vertical strain

is greatest the horizontal strain is least.
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CASE IV. A TRUSS LOADED FROM ONE ABUTMENT ONLY A
PORTION OF THE LENGTH.

'I/I H/1
.c .iJL-.c

Fig. 13.

39. Let w the whole weight upon the truss uni-

formly distributed, extending from

one abutment a distance equal to

2 m.,

I the length of the truss,

d = the depth
" "

p = the length of a panel,

m = the distance of the centre of gravity

of the load from the loaded abut-

ment,

n = the distance of the centre of gravity
of the load from the unloaded abut-

ment,

y = the length of the unloaded part,

x = the distance of tiny panel end from

the unloaded abutment,
H = the horizontal strain,

V = the vertical strain,

L = the longitudinal inclined brace strain.

40. Horizontal Strain in the Unloaded Part. By the

principles of the lever, (8),^ is the reaction of the

right abutment, and the segment to the right of any
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vertical section at a panel end, gJc, in the unloaded part,

is held in equilibrium by the reaction of the abutment,

and the strains at g and h Taking moments around k

distant x from the unloaded abutment, we have,

H = ,

(20)
cLL

for the strain at
<7,

or similar to the strain in the case of

the truss loaded at one point only, (21). In the lower

chord the tension at k is evidently the same.

41. Vertical Strain in the Unloaded Part. The ver-

tical strain is also plainly or the reaction of the un-
L

loaded abutment, as in the similar case, (21).

42. In the above operations w expresses the weight

of the load upon the truss. It is more convenient and

sometimes necessary that the equation should express

the weight of a full load of uniform density with the

partial load.

Let wr
the weight of a full uniform load of equal

vf
density with the partial load. Then w = 7 (/ y) and

I 11 win w'(l y)*
m~- -gS and /. -y -^-.

43. Horizontal Strain in the Loaded Part. The seg-

ment to the right of any panel end, be, in the loaded

part is held in equilibrium by the reaction of the right

abutment, the load on x y, which is
j(p 2/)>

and tlie

strains at I and c. Taking moments around c distant
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x y
x from the right abutment, we have therefore, ~%~

being the distance from c of the centre of gravity of the

load on x y,

iv
f

(lyVx w'
t

. xy- -

Whence

u/y-yYx w' (x-yY
-2dT ~W~~

is the compression in the upper chord at b.

The same result may be obtained for the tension in

the lower chord, at c.

At a point one panel length nearer the right abut-

ment,

w'(lyY (xp) w'(xpyY~ ~

44. Vertical Strain in the Loaded Part. The vertical

strain may be obtained, as in the previous cases, from

the difference in the horizontal strains at the different

ends of the same panel. Subtracting Eq. (22) from

Eq. (21) we have,

TT TT, _
W'P W'py Wf

pX W'p*
:

~2c/F
~

~dT + ~dT
"W

And since x TT = u

v =
yr j(

u~y)- - -
C23 )

In this equation, the less u y becomes, the greater is

the value of V, and the latter is greatest when u y be-
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comes zero, or in the brace at the end of the load, where

it equals 97^
or ^e reaction of the abutment.

Again, V decreases with any increase of u y, and there

may be a point where V =
;
to find this point, make

V of Eq. (23) equal to zero,

and u =
~~~%r~

is tna distance from the unloaded abut-

ment to the point where there is no vertical strain. To

the right of this point V has a positive value and the

vertical strain passes to the right abutment
;
to the left,

a negative value, and the vertical strain passes to the

other abutment. If Eq. (21) be differentiated to find

the maximum value of II, it will be found to be when

x =
21

or *n tne same panel, in which there is no

vertical strain. Another proof of the rule in (38).

F+v* . w'(ly\
45. In Eq. (23) u cannot equal ^- until ^f-

(u y), or until we have passed an amount of the
I

load equal to that borne by the abutment; hence this

important rule : There is a point in every fully or par-

tially loaded truss where there is no vertical strain, but

where the horizontal strain is greatest, which divides

the load into the two parts borne by the two abutments, the

part on either side of this point being borne by the abut-

ment on that side.
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Therefore, knowing the load borne by either abut-

ment, we have only to pass from the abutment along the

load, full or partial, until we measure an equal weight,

and we reach the point of no vertical strain.

EXAMPLE. If a truss be 50 feet long, and is loaded

from one abutment a distance of 30 feet, at the rate

of 1.5 ton per foot, where is the point of no vertical

strain ?

Here, w' 75 tons,

I = 50 feet,

y = 20 feet,

'(l-yy 75 (5020)'
" " ~W 2X50 2 13.5 tons,

the reaction of the unloaded abutment.

Beginning at the end of the load towards the un-

loaded abutment, which is 20 feet from that abutment,
we must go from the end of the load 9 feet towards the

other end of the truss before we have passed 13.5 tons

and reached the point of no vertical strain. And by the

formula found above

l'+y> 2500+400
2i 100

- 29 feet from the abutment. Ans.

No vertical strain can pass this point which can

exist at one place only in any truss, no matter how loaded.

Each abutment's sliare of the iveight comes directlyfrom
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that part of the load nearest to it ; and vertical strains

in the same truss cannot pass each other.

ABCDEFGHI KLMNOPQRST

wwm
b c d e f g h i k 1

'

Fig. 14.

46. Let Fig. 14 represent a truss 80 feet long, 6

feet deep, divided into 20 uniform panels, and support-

ing on the lower chord a load of 25 tons, extending
from the left abutment to the centre of the truss.

Here, w 25 tons, /. w = 50 tons,

I = 80 feet,

d = 6 feet,

p 4 feet,

y = 40 feet,

Length of inclined braces = 7.2 feet.

The equation for the horizontal strains in the

unloaded part is,

5(te(80-4ir
1-

2x6x80'

Whence the following table of the strains in the chords:

Values of x
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The equation for the horizontal strains in the loaded

part is

w'(xy)' 50a(80 4Q)
9

2dl 2X60X80

Whence the following table:

Values of x.



THE STRENGTH OF BRIDGES AND ROOFS. 35

Whence we form the following table for the tensions in

the ties in the loaded part :

Values of u
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CASE v._A TRUSS SUBJECT TO A UNIFORM CONSTANT

LOAD THROUGHOUT ITS LENGTH, AND A UNIFORM

MOVABLE LOAD.

47. Let w = the weight of the full constant load,

u/ = the weight of the full load whose

weight per lineal foot is the same as

that of the partial load,

I = the length of the truss,

d = the depth
" "

p = the length of a panel,

x = the distance from one abutment to a

panel end,

y = the length of the unloaded part,

H = the horizontal strain,

V = the vertical strain.

48. In the previous cases the weight of the truss

itself has been entirely disregarded ;
but this is the case

of a truss the weight of which is considered, subject to

the action of a rolling load, and is to a certain extent a

combination of the two previous cases. Here it is neces-

sary to obtain the maximum strains only to which each

member of the truss is subject, whether from a full or

partial load.

49. Horizontal Strain*. In Eq. (14) we have,

TT _ U
' ~~
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for the horizontal strain under a full load in either

chord.

In Eq. (21),

w'x(lyY
2dF

for the horizontal strain at the same point from a load

of equal density but covering only a part of the truss,

Eq. (21) will reduce to this form,

' 2d" 2dl 2dl

which is less than Eq. (14) by the quantity

x

or the horizontal strain at any point is greatest under a

full load, no matter how small y may be, or how large a

portion of the truss may be loaded. Hence, where w is

the constant truss load, and w' the weight of a full

rolling load, the equation for the greatest horizontal

strain is

(w'+w)x (w'+w)x*
2dl

5O. Vertical Strain. In Eq. (23) we have,

for the vertical strain at u, from a partial load reaching

from one abutment a distance equal to I y. Let y and

u be measured from the right abutment and confining

this equation to the right of the point of no vertical
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strain, or to its positive values, it is evident that, consid-

ering y for the moment constant, V is greater as u y is

less, and is greatest when u y is least, or when u y
or at the end of the load ; where, therefore,

(26)

Or, the vertical strainfrom a partial load passing in one

direction at any point is greatest when the load extending

from the abutment reaches to that point.

Eq. (26) will reduce to this form,

V - . -^ ,^ ,
/27 \

'

2 I W { J

The vertical strain at the same point from a full

load of equal density is, Eq. (18),

V - w
'u

T" T*
If u in this equation be less than ~- or when V has

a positive value, it follows, That when a truss is par-

tially but more than half loaded, the load extendingfrom
one abutment, the vertical strain at any point at the end

of the load is greater by
~ than the vertical strain at

the samepointfrom a full load of equal density.
The greatest vertical strain, therefore, in a truss sub-

ject to a rolling load, is the strain at any point from the

constant truss weight added to the strain from the roll-

ing load when it reaches that point and covers the
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greater segment of the truss; hence, adding Eq. (18)

and Eq. (26),

w wuv := "- ~

y being here equal to u, is the vertical strain from the

rolling load w'/and constant load w.

51. In a truss uniformly loaded there is a point of

no vertical strain at the centre, and in a truss partially

loaded, where the truss weight is disregarded, there is

also a point of no vertical strain, distant ^i from the

unloaded abutment (44), but in no case can there be two

points of no vertical strain, for a section of the truss

cannot support a portion of the weight without trans-

mitting it entirely to one or partially to either abut-

ment. This point of no vertical strain can be found

by making Eq. (28)
= 0.

w wu w'(l u)
9

Whence V =
-^ TJ-+- "2^ =

Let wf

aw, eliminate w and we have

,1 u al* 2alu-\-au*
"~

~f
+

21*

Whence,

EXAMPLE. In a truss 200 feet long, whose perma-

nent uniform load is 75 tons, and the weight of its full

load of equal density with the partial load, 150 tons;

how far from the unloaded abutment is the end of the
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partial load when it is at the point of no vertical strain,

or what is the value of u f

Here,
= a = 2.

I = 200

Whence, Z + _ Z 4

= 200 + -- 200 i/i + i = 126.8 ft

That is, when the partial load covers 73.2 feet of the

truss, the end of it is at the point of no vertical

strain. The weight borne by the farther abutment is

equal to the weight of 126.8 feet of the truss, or 47.5

tons. When the truss is unloaded the weight on the

abutment is 37.5 tons. When the load of .75 ton per

foot covers 73.2 feet, by the principles of the lever, 10

tons are added to the weight on the farther abutment.

While the end of the movable load rests at the point of

no vertical strain the weight upon the farther abutment

comes solely from the weight of the truss, and none

from the load upon it

When the end of the load approaches the unloaded

abutment, passing the point referred to of no vertical

strain from the fixed and movable loads, the weight

upon this abutment is increased, but as the load still

covers less than half the truss, the larger portion of

the increased load is borne by the nearer abutment
;
the

point of no vertical strain, therefore, does not remain

stationary, but moves after the end of the load, and

reaches the centre when the load covers the truss.
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52. Counterbracing. It is therefore evident that on

the loaded abutment side of this point there can be no

vertical strain passing to the farther abutment
;
conse-

quently, it is only from this point that it is necessary to

arrange braces to carry the vertical strain to the farther

abutment. The braces between these points on either

side of the centre, and the centre itself, are termed coun-

terbraces, and come into use only under the action of

moving loads.

53. Eq. (18) added to Eq. (26), or

w
21'

may be represented as in Fig. 15.

(30)

F

\
\I-*/r
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to the abutment A ;
these distances being the values of

V in Eq. (18) ;
the positive and negative values being on

the opposite sides of AB.

Next, let the load be brought on at A and extend

from A to I, and let BH, to the same scale as before,

represent 9? >
tne reaction of the abutment B,

and as this is a constant between I and B, draw I G
equal and parallel to BH and join GH. The vertical

distance at any point between LH and EC will give the

vertical strain from the constant and the movable loads

at that point passing to the abutment B and the values

of V in Eq. (30) where y is greater and u less than TT

Let y = BI and let u .=
5-, then at that point, the

centre,

When u becomes greater than
^-,

then V is evidently

W I I/ U 1 W WU .

less than ^ - because -~ -r- is a minus quantity

f\j% *?/)'7/

to be deducted from it. But in the figure, -~ -7-

is represented by the vertical distances between AE and

DE and ^H
-

is represented by the vertical distances

between GH and IB
; and as ^ ^- is a minus quan-

tity to be subtracted from oir 5 then the vertical dis-
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tance between KE and ME is to be deducted from the

vertical distance between KL and ME. Consequently the

vertical distance at any point between KG and KH rep-

resents the vertical strain at that point passing to the

abutment B
;
and by similar reasoning it may be shown

that the vertical strain passing to the abutment A is

represented by the vertical distances between DK and

the two lines FG and GrK. K is the point of no ver-

tical strain.

An examination of Eq. (23) added to Eq. (18), or

, w wu
~"

7-\~
~~~

TT

I

will give the vertical strains under the truss, and is

easily made, but has no practical value.

Eq. (26), V = is tne equation of a pa-

rabola, and Eq. (27) may be shown as in Fig. 16.

Fig. 16.

Let AB represent the length of the truss, BC and
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AD each ^ and AF and BE each
^-

;
then the vertical

distances between DC and FE represent the strains

from the weight of the truss and of a full load. Through

AE draw a parabola ; the vertical distance to any point

in the parabola may be found from the value of V in

Eq. (26) at that point. Similarly draw the parabola

BF. The vertical distances between HC and the curve

HE represent the vertical strains from the constant load

and the end of the load passing to the abutment B.

When the load passes to the left, the vertical strains to

A are represented by the vertical distances between ID

and the curve IF. Where the curves intersect the line

DC, H and I are the points of no vertical strain.

w'(luY
54. The equation of the moving load, -~f ?

requires some change before it can be practically applied

to determining strains
; because, in its present form, it

assumes that no weight comes directly, that is, without

passing through the braces, upon the next unloaded

panel point. If the load were suspended at each panel

point or end, the equation could be applied without

change ;
but as it comes first upon a girder, or string-

piece, resting upon the panel points, any load in a panel

must affect both ends of the panel.

Let AI (Fig. 17) represent a truss, and A B C D,

&c., the different panel ends
;
and let the load extend

from the abutment A to midway between B and C,then
there are one and a half panel loads upon the truss

;
but

B does not bear a full panel load, and cannot until the
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load extends to C, or B cannot have a full load until C

has a half load
;
so that ~ is greater than the ver-

tical strain in the brace from B towards the farther

abutment, because a part of the strain is in the brace

from C.

ABC DEFGH I

Fig. 17.

Let the vertical distance at any point between AI
and the parabola Abe - - - i represent, as shown above,

the weight borne by the unloaded, or, in this figure, the

right abutment, when the load extends from the left or
<O '

loaded abutment to that point, and the vertical dis-

tances between AI and the smaller similar parabolas

Ab 1 Be' CcZ r
, &c., represent the weights coming upon the

farther panel points B, C, &c.
?
as the load extending

from the left abutment traverses the girders resting

upon these points. When the load extends from A to

B, B& is the weight borne by I, but B6' is the weight

upon B, which is greater than the weight upon the abut-
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ment I
; continuing the load from B towards C, the

vertical distance from the line BC to the parabola Be'

at any point, will represent the strain upon C, when the

load reaches that point, and the vertical distance at the

same point between BC and the parabola be represents

the strain at the same time upon the farther abutment,

I. When the former equals the latter, or when the

curve Be' intersects the curve 5c, all the strain upon I

comes from that portion of the load bearing upon C,

and none from that portion upon B, and the vertical

distance between the two curves, before their intersec-

tion, represents the vertical strain upon I that comes

from the load upon B ; consequently the greatest strain

upon the brace at B towards I is when the vertical dis-

tance between the two parabolas, between A and B, is

greatest. This occurs where a vertical line will inter-

sect the two curves at points where their tangents are

parallel ;
and since the weight on AB is to the whole

load upon AI as the distance AB is to the distance AI,
the horizontal distances of the tangent points referred to

from the panel end and the abutment bear the same pro-

portion to each other.

Let V represent the length of the partial load, and
let it extend from one abutment beyond one panel, to

where the tangents to the two curves at points vertically
above each other are parallel to each other; letp be the

length of a panel, and I the length of the truss
; then,

I :p::l' :

-j
, the distance the load extends into the
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second panel ;
and the length of the load V will there-

fore be

whence, 111 = pi + pZ';

and P =^....... (31)

When the load covers any number, ?i, of panels, the

value of V will be

. . .

Dividing the weight of the whole movable load by the

fnff\i

length of the truss, and multiplying by j^~ ,
we have

p

the weight of the load on r~, whence (8) the reaction

of the unloaded abutment is, in this case,

(33)

But, as explained before, this is greater than the strain

in the braces from the last loaded panel point, because a

certain amount of the load is borne by the panel point

beyond the load. Hence this last weight is to be de-

ducted from Eq. (33).

The distance from the loaded abutment to the far-

thest panel end or point which is under the load is np^

therefore,

npl
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is the distance the load extends beyond on to the partly

loaded panel, and the weight on this distance is,

np*

Of this weight, the part which is borne by the end be-

yond the load, or the end farthest from the loaded abut-

men^ of that panel into which the load extends, is, by

the principles of the lever,

This amount is to be deducted from Eq. (33) to ob-

tain the correct strain upon the brace from the last panel

end under the load, towards the unloaded abutment,

whence,

w' i np*'

w' i rip I* n*pl\

-2?r (i-py )'

w'rfpl

V - ~

is the greatest vertical strain from a partial load, where

n represents the number of panels loaded, towards the

unloaded abutment upon the brace at the last loaded

panel point.

EXAMPLE. Let a truss be 80 feet long, divided into

8 panels, and loaded at the rate of one ton per foot:
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What is tlie greatest vertical strain upon the brace from

the last loaded panel end, when six panels are loaded ?

Here, w
f = 80 tons, ^
I = 80 feet,

p=10 "

n= 6 "

Substituting these values in Eq. (35) we have

80x6 a XlQ a

=

21(1 p)
= =

2 X 80(80-10)
z tons'

/
If in

2(f ti)*, (Z w) had been made equal to 65,

80
we should have cToT^

2 = 26.41 tons for the reaction

of the unloaded abutment.

But as the load extends half way from one panel

end to the other, the unloaded panel end would support

of i of panel load, or 1.25 ton
;
hence

26.41 1.25 = 25.16 tons, would be the greatest

strain upon the brace from the sixth panel end.

npl 6x10x80
In the case supposed, 7

=
QQ IQ

' = 68.57

feet, is the length of the load, and consequently, 29.38

tons is the reaction of the unloaded abutment; and 3.67

tons the weight on the first unloaded panel end, whence,

29.38 3.67 = 25.71 tons,

as before, for the greatest strain on the brace.

When np is greater than -5, or when the load covers

more than half the truss, 977737-7
is passing in the same

4
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direction as the vertical strain at the same point from

the constant truss load, and consequently, Eq. (35) may

be added to Eq. (18), giving

w wu w'np* ,.

for the maximum vertical strain, from both the perma-

nent and the movable loads, in the braces of that panel

whose centre is distant u from the unloaded abutment,

and where n is the number of panel points in I u. A

reference to Fig. (14) will show that n =
P

substituting this value in Eq. (36) we obtain,

an equation giving the same results and containing only

one variable quantity, u.

But when np of Eq. (35) is less than
-^,

then the

vertical strain, ~U1 v, is passing towards the cen-
Zi\l--p)

W WU
tre or in an opposite direction to

^- -y, the vertical

strain from the constant truss weight at the same point,

and the difference between the two is the total vertical

strain at u. The less of these may be considered as

^y wu
neutralizing its amount in the greater; but

-^
"r?

the constant truss strain, also meets the vertical strain

from the first panel point outside the load, or the quan-
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1/tf I WE? \
3

tity, 2~l(y-^; ), Eq. (34), and has been lessened by

, TT w'rip
this amount outside the load. Hence, since

-~TJ ^
4(1 p)

nti nil rti

Eq. (33) and
-g-

-
j-

are each diminished by the same

amount, their difference will remain the same, and we

have

._.- w wu w'rf*

for vertical strains to the farther abutment when the

truss is less than half loaded.

7

Q i, ** * f -.1 "2'Eq. (38) be-
Substituting for n its value-

P
comes

w wuV = 2--T+ 2(H>r
'

"
(89)

the vertical strain to the unloaded abutment when the

load covers less than half the truss affecting the brace at

the last loaded panel end.



52 A TREATISE ON

CHAPTER III.

A SIMPLE TRUSS, WITH INCLINED STRUTS AND VERTICAL

TIES SUBJECT TO THE ACTION" OF A CONSTANT AND A

MOVING LOAD.

ABC DEFGHIKLMNOPQR

jpjab cdef ghiklmnopqr
Ji

Fig. 18.

55. Let w = 150,000 Ibs., the weight of the truss,

, uniformly distributed,

wr = 300,000 Ibs., the weight of the full

moving load, of equal density with

the partial load,

I = 200 feet, the length of the truss,

d = 18.75 feet, the depth of the truss,

p = 12.5 feet, the length of a panel,

x the distance of the end of a panel

from one abutment,

u = the distance of the centre of a panel

from one abutment,

H. V. & L. = the horizontal, vertical, and longi-

tudinal strains.

The moving load upon the lower chord, and the

weight of the truss, may, with sufficient practical ac-
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curacy, be considered as concentrated upon the panel

points of the same chord.

For the horizontal strains which are greatest when

the truss is fully loaded, we have, Eq. (25),

_ (w-\-w')x (w+w')x*H = ~

~2d
~ ~

and substituting the values of the constants,

H _ (150,000 + 30Q,OOQ)fl (150,000 + 300,000)0*

2x18.75

60af.

2x18.75x200

Any value of x in this case gives the compression in the

upper chord on the centre side of the point to which x is

measured, and the tension in the lower chord on the

abutment side; whence we have the following table of

strains :

Values
of x.
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For the maximum vertical strains when the truss is

more than half loaded, we have, (Eq. 37),

w _ wu .

= I" T
and substituting the values of the constants,

150,000 150,000w 300,000(200 u6. 25)
9

~T~ 200 2x200(20012.5)
V:

= 75,000
-- 750w + 4.(193.75 H)*

For the maximum vertical strains when the truss

is less than half loaded, we have, Eq. (39),

w
_

~~

2
"

I %(l-py

Substituting values,

V = 75,000
- 750 + 4.267(193.75

-
u)

8

Beginning with the truss fully loaded, we will con-

sider the load as gradually moved off, making the first

value of u, or the length of the unloaded part, 6.25 feet,

the second value of u, 18.75 feet, and so on from either

end. Whence the following table of tension in the

ties:

Values
of u.
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When the truss is less than half loaded some of the

ties act as counterties, or to carry the weight towards

the centre
;
but the strain thus brought upon them is

less than that to which they are subject when the load

reaches from them to the farther abutment.

The vertical strain multiplied by the length of the

strut and divided by the depth of the truss, or, in this

case, V X 1.202, gives the compression in the struts.

As long as V has a plus value, it indicates a strain to-

wards the unloaded abutment.

The following is a table of the compression in the

struts :

Values of u.
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CHAPTER IV.

TRUSSES WITH VERTICAL STRUTS AND INCLINED TIES SUB-

JECT TO CONSTANT AND TO MOVING LOADS.

CASE I. A SIMPLE TRUSS.

ABCDEFGHIKLMNOPQR

abcdefghi klmnopqrp
WMm/n.

Fig. 19.

57. Let w = 40 tons, the weight of the truss, uni-

formly distributed,

n/ = 80 tons, the weight of a full load of

equal density with the partial load,

I = 80 feet, the length of the truss,

d = 10 feet, the depth of the truss,

p = 5 feet, the length of a panel,

n. Y. L.;

so & u

The load is upon the upper chord, and consequently
the struts have the same vertical strains as the ties to

the lower ends of which they are attached.

58. Horizontal strains. In investigating the hori-

zontal strains, the counterbraces shown in the figure by
the dotted lines may be considered as removed, to pre-
vent confusion in deciding to which side of the panel

points, or ends, the equation of horizontal strain is to be

)

\

~ ^e strams an<^ distances, as before.
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applied ;
as the total horizontal strain at any point is in

that member of the chord on the side of the panel point

on which there is no brace.

Eq. (25),

(w+w')x (
Jti = ?n -

will give the maximum compressions in the upper-chord

members on the nearest abutment sides of the points

to which x is measured, and the maximum tensions in

the lower-chord members on the centre or opposite sides

of the same points.

Substituting the values of the above constants, we

have,

__ (40+80)* (40+80K _
2X10 2X10X80

'

whence the following table :

Values of x.
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whence the following table of compression in the struts

when the truss is more than half loaded. Aa and Rr

each evidently bear half the load, or the whole vertical

strain which comes upon the abutment.

Values of u.
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CASE II. A DOUBLE TRUSS WITH AN EVEN NUMBER OF

PANELS.

ABCDEFGHIKL MNO PQR
\ \ XiXjXi

1
bcde fghik Imnopqr

Fig. 20.

6O. This truss, Fig. 20, is a combination of two

simple trusses, one of which is represented in Fig. 21,

with the counterbraces removed, and which is divided

into panels of uniform length.

E G N R

i 1

Fig. 21.

m

The other simple truss, represented in Fig. 22, also

without the counterbraces, has all the panels of the same

length as in Fig. 21, except the end panels which are of

half the length.

A B D F M Q R

Fig. 22.

The counterbraces are the dotted lines in Fig. 20.

The vertical strains in the simple trusses are entirely

independent of each other, for there is no connection be-

tween their braces. The chords, however, are common,
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and the strains upon them in the double truss are the

sums of the chord strains of the simple trusses.

61. Horizontal strains. The strain in MN, for ex-

ample, in Fig. 20, is the sum of the strain in LN of

Fig. 21, and the strain in MO, of Fig. 22. Hence we

have to determine the strains in the simple trusses, and

add them, to obtain the strains in the double truss.

Each truss may be properly considered as bearing half

the ,weight, and the reaction of either abutment is there-

to

fore -r, upon each of the simple trusses.

Let I = the length of the truss,

d = the depth of the truss,

p = the length of a panel of the double truss,

w = the weight upon the truss, uniformly dis-

tributed,

x = the distance to a panel end from one abut-

ment,

H = the horizontal strain,

V = the vertical strain.

For the simple truss of Fig. 21, we have therefore Eq.
(JM

(14), w being changed to -.'

tt

WX IVX*

This equation will not apply to the other simple truss,

on account of its half panel at the ends. The uniform

simple truss has a full panel load at each panel point,



PO
and a half panel load upon each abutment

;
the other

simple truss has a full panel load at each panel point,

and none upon the abutment. To obtain an equation

w
for the latter, we have j- X d for the moment of the re-

action of the abutment, at any panel point distant xf

from that abutment
;
the load upon the truss between

w
this point and the abutment is

y + (^ P\ p being the

length of the end panel ;
and the distance of its centre

nr* /y)

of gravity is
-^
+ -

;
this is apparent from the figure

of the truss. Whence,

__
wx^ w

/ / x /#'+ P\ _ wx>
: " ' ~~ ~ ~-~-~'

is the compression in the upper chord, and tension in the

lower chord of the truss of Fig. 22 at any point distant

xf from the abutment.

If x in Eq. (40) be equal to MB, in Fig. 22, H will

be the horizontal strain in MO arid km
;
and if a/ of Eq.

(41) be equal to LR in Fig. 21, H' will be the horizon-

tal strain in LN and il.

Hence, the horizontal strain in the upper chord of

the double truss at any panel point, is equal to the hori-

zontal strain in that one of the simple trusses whose

panel end is at the same point, added to the strain at

that panel end of the other simple truss which comes

next towards the centre
;
or H at x in Fig. 20 is equal
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to H at x in one of the simple trusses, added to H' at

x -f- p in the other simple truss.

Making, therefore, xf of Eq. (41) equal to x +p, and

adding the equation so changed to Eq. (40), we have,*

wx wx pwx pw
''

Yd
~~ "M

""W +
43"'

Sr-
'
X42)

For the panel points of the double truss, common

also to simple truss, Fig. 22, the strains at xf are equal

to the strains at xf in one simple truss added to the

strains in the other simple truss at xf+ p, making, there-

fore, x of Eq. (40) equal to x'-{- p, and adding the equa-

tion so changed to Eq. (41), we obtain the same result

as before
;
or Eq. (42) gives the strains in all the mem-

bers of the upper chord on the nearest abutment side of

the panel points to which x is measured.

In the lower chord, the strain at any point of the

double truss is equal to the strain in one simple truss at

the same point added to the strain in the other simple

truss at the next panel point nearer the abutment;

making, therefore, xf
of Eq. (41)

= x f

p, or x of Eq.

(40)
= x p and adding the equation so changed to

the other unchanged, the result from either addition is,

_
wx wx* pwx pw

''
~ " " ~

H
"232"

" "

43'

w w wp*

* The algebraic process, being very simple, is omitted.
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an equation giving the tensions in the lower-chord

members, on the centre sides of the points to which x is

measured.

62. Vertical strains. The simple trusses being en-

tirely independent of each other in their vertical actions,

the equations of their vertical strains are to be deduced

from the simple truss horizontal strains of Eqs. (40) and

(41) as in (32), whence we obtain, from either Eq.

w wu

for the vertical strain from a full load in either simple

truss, u being the distance to the centre of a panel of a

simple truss, and not to the centre of a panel of the com-

pound truss. In the simple truss of Fig. 22, the centre

of the end panel is considered as at the abutment, and

the first value of u for that truss is therefore zero.

63. Vertical Strain* from the Moving Load. The

effect of the moving load upon the panel points of a

compound truss differs from that upon the points of a

single truss, because, in the former case, a panel point

or end of one simple truss can be fully loaded without

the next panel point belonging to the same simple truss

being affected by any portion of the load. So that the

effects of the load in a compound truss are the same as

if the different portions of it, or panel loads, were sus-

pended at the ends of the panels.

Therefore, w' representing the weight of the full

movable load,
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will give the greatest vertical strain from the moving

load, w', upon the simple truss of Fig. 22.

Hence, adding this to Eq. (44),

is the equation of , the vertical strain from the constant

load, w, and the moving load, w', in simple truss Fig. 22.

In the simple truss of Fig. 21, where u' is the distance

from the unloaded abutment to the centre of one of

the panels, -xy- (I
u f

p), as an inspection of the fig-

ure will show, is the load on I u'
; dividing by I and

multiplying by
- ~

,
the distance of its centre of

gravity from the abutment from which the load extends,

and we have,

for the vertical strain upon the truss from the moving
load. Adding this to the equation for the constant load,

we have,

w wu! ii/
\/ | //7 '\2 o \ / t \

9 1 ~*~ A 72 V V ^
/ IP /

" "
(4 I I

for the equation of the vertical strain from the constant

and the moving loads in simple truss Fig. 21.
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64. EXAMPLE. In Fig. 20,

Let w' 160 tons, the weight of the full moving

load,

w 80 tons, the weight of the truss,

I 160 feet, the length of the truss,

d 20 feet, the depth of the truss,

p = 10 feet, the length of a panel,

x = the distance from the abutment to the end

of a panel,

u = distance from the abutment to the centre

of a panel of either of the simple

trusses.

The load is upon the lower chord.

Substituting the values of these constants in Eq.

(42), we have,

p_\ (w'+w}
h
2 j

" p\*"
2 y

"
(w'+w)p*

Sdl
'

(w'+iv)

(160+80)
2x20 v*'

(160+80)10
9

8x20x160

from which we can form the following table of com-

pressions in the members of the upper chord :

(160+80)
2~x 20X160

.0375 (;

Values of x.
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Substituting the values of the constants in Eq. (43),

we have,

H = 6(0-5)
- .0375 (z-5)'+ .9375,

whence we can form the following table of tensions in

the lower chord :

Values
of x.
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quantities by which V is multiplied are the secants of

the angles made by the ties with a vertical line.)

Values of u.
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65. The double truss shown in Fig. 20 has an even

number of panels, and each half of it has also an even

number. If two panels be added, each half of the truss

will then contain an odd number of panels, and simple

truss of Fig. 22 will be uniformly divided, while the ends

of simple truss of Fig. 21 will become similar to the

ends of the other simple truss in the example given.

Each truss, however, will still support one-half the full

load, and the horizontal equations will remain unchanged.

The vertical equations for the moving load, however,

are entirely dependent upon the end panels of the simple

trusses, and equation (45) will apply to that truss which

is divided into uniform panels, that is, terminates with

a panel equal to two panels of the compound truss;

while vertical equation (47) will always apply to that

simple truss whose end panel is equal to one panel of

the compound truss.

66. By referring to the examples given, it will be

seen that the strains in the two chords are equal in

amount between the same inclined braces.

CASE III. A DOUBLE TRUSS CONTAINING AN ODD NUMBER

OF PANELS.

1212121212112121212121
ABCJDEP G HIKLMNOPQRSTUVW

//
abode fghiklmnopqrs tu12121212121121212121

Fig. 23.

u YW
21

<w Let Fig. 23 represent a double truss, the conn-

terbracing shown by the dotted lines, containing an odd

number of panels.
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This truss is also composed of two simple trusses, the

panel points of one being shown by the figures 1,1,1, and

the panel points of the other by the figures 2,2,2. The

two simple trusses will be distinguished as truss No. 1

and truss No. 2, as they are numbered in the Figure.

Simple truss No. 1, having full end panels, may be

considered as bearing the half panel loads resting

directly on the abutments, and has consequently one

panel load more than the other ;
or it supports half the

whole weight and half a panel load
;
while Truss No. 2

supports half the whole weight, less half a panel load.

This is when the truss is fully loaded.

68 Let I = the length of the truss,

d = the depth of the truss,

p = the length of a panel of the double

truss,

w = the weight upon the truss, uniformly

distributed,

x the distances to the panel ends from

one abutment,

H = the horizontal strain,

V = the vertical strain.

69. Horizontal Strain. The weight on simple truss

nn <
\JD

r
f)

No. 1 being -~ + -
,
the reaction of each abutment is

therefore \ re +' jjrj
ancl as tne truss is divided into

uniform panels, the moment of the load on any segment
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whose length is x, is
-^-

5 from which we readily

obtain the equation,

W

whence,

-'+' ....... (48)

is the compression in the upper chord of Simple Truss

No. 1 on the abutment side, from which x is measured,

of the points 1,1,1, &c., and the tension in the lower chord

of the same truss on the centre side of the same points.

The reaction of each abutment upon Simple Truss

No. 2 is J ("5 ~iw~
)

,
ai|d the moment of the load on

any segment whose length is #, is, as in the Simple Truss

of Fig. 22,

wp*\
"

from which we obtain the equation,

EW- *(- ]<S i I

w^ wp
\

/IT*
'

2i)
x ** Nr '.a/

1

whence,

tc^ it^
a

wpx' ivp*
'' ' ' ~ - ~ + -

is the compression in the upper chord of Simple Truss

No. 2 on the side towards that abutment from which ^
is measured, of the points 2,2,2, &c., and the tension in

the lower chord on the centre side of the same points.
It is evident that, here, as in the previous case, in the
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upper chord of the double truss, the compression at any

panel point is the compression at the same point of one

of the simple trusses added to the compression in the

other simple truss at one panel length nearer the centre
;

and similarly in the lower chord of the double truss, the

tension at any panel point is equal to the tension at the

same point of one of the simple trusses, added to the

tension in the other simple truss at one panel length

nearer the abutment.

Therefore, making x r of Eq. (49) equal to x + p, and

adding the equation so changed to Eq. (4.8),
we have,

__ wx wx* wp wpx WP*~'~"' '~~ "~~
w w . .

<
50>

for the compression in the members of the upper chord

on the abutment side of the points 1, 1, &c.

And making x of Eq. (48) equal to x' + p, and add-

ing to (Eq. (49), we have,

_
wxf

ivp wxf*

wpat' wp'"~~' ~~~ ~ '

for the compression in the members of the upper chord

on the abutment side of the points 2, 2, 2, &c.

In these and the subsequent equations x cannot have

a value greater than x-, because the simple trusses are

not symmetrical, as in the previous cases, beyond the

centre.
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Making x' of Eq. (49) equal to x p of Eq. (48),

and adding the two, we have,

_
wx wp wx\ wpx t

wp*
H- = ITT ~TJ ~^jf + 9,77

for the tension in the members of the lower chord of the

double truss on the centre side of the points of Simple

Truss No. 1.

And making x of Eq. (48) equal to x' p of Eq.

(49) and adding the two, we have,

wx' wp wx'""" wpx'

for the tension in the members of the lower chord of the

double truss on the centre side of the points of Simple

Truss No. 2.

70. Let there be an odd number of panels on either

side of the centre panel as in Fig. 24,

2 121211 212 1 2

\

212121121212
Pig. 24.

and numbering the trusses as before, Simple Truss

No. 1 has now a half panel at either end, while the end

panels of Simple Truss No. 2 are uniform with the
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others. Truss No. 1 still supports one panel load more

than Truss No. 2, but the moment of the load on the

segment x is

WX*

whence,

wx wpx wx* wp*
:

" ~'
45" "d?

as the horizontal strain in Simple Truss No. 1.

The moment of the load on segment x' of Simple

wx'9

Truss No. 2 is ---, whence,

_
wx' wx'" wpx' .

~U"~d[~ IdT

Following the same process as before, substituting

and adding, we obtain the same results, that is, Eq. (50)

for compression in the upper chord at the points 1, 1,

&c.
; Eq. (51) for compression in the same chord at the

points 2, 2, &c.
; Eq. (52) for tension in the lower chord

at the points 1, 1, &c., and Eq. (53) for tension in the

same chord at the points 2, 2, &c.

Hence we see that these equations are not affected

by the panels at the ends of the simple trusses, but that

Eqs. (50) and (52) belong to the panel points of that

simple truss whose braces form the centre panel, and

Eqs. (51) and (53) belong to the points of the other

simple truss

71. It will lead to less confusion, therefore, to

measure the points from the centre of the truss, as well
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as render the equations simpler; putting in Eq. (50),

-^ z for x
;

z being the distance from the centre of the

truss to the same point to which x is measured, we have,

wl w ,

for upper-chord compressions at the panel points of

Simple Truss No. 1.

In Eq. (51), putting ^
z' for a?',

we have,

for upper-chord compressions at the panel points of

Simple Truss No. 2.

In Eq. (52), putting z for a?,
we have,

(58>

for lower-chord tensions at the panel points of simple

Truss No. 1.

In Eq. (50), putting
-- z' for x', we have,

for lower-chord tensions at the panel points of Simple

Truss No. 2.

72. Vertical train from the Comtant Load. Under

a uniformly distributed load, the vertical strains in one

simple truss are unaffected by those in the other, and
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the equations are therefore to be deduced, as before,

from the simple-truss horizontal equations. (32)

From Eq. (48) or Eq. (54) we obtain for Simple
Truss ]STo. 1,

w wu wp

From Eq. (49) or Eq. (55), for Simple Truss No. 2,

v = T-iJ-lr (61 >

u and u' being the distances to the centres of the panels

of the simple trusses, and whenever either simple truss

begins with a half panel, u or u' in the equation which

belongs to that truss must be made equal to zero. It

will be noticed that the constant-load vertical equations,

like the compound-truss horizontal equations, are un-

affected by the terminations of the simple trusses
;
but

are determined in their application to either simple truss-

by the position of the braces of that truss at the centre.

73. If the difference in the successive values of u and

u' be constant when these quantities exceed
^-,

each will

then represent the distances to the centres of the panels

of the other simple truss than that for which the equa-

tion in which it is found was obtained. That is, j^f-
of

Eq. jg-
I

, which, when less than ^ is the distance from
' '

one abutment to the centre of any panel point of Simple

Truss
j 2

r becomes, when greater than
g-,

the distance
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from the same abutment to the centre of any panel of

Simple Truss \A-

I

Further, when u or u' becomes greater than
^-,

the

equation to which it belongs gives the vertical strain in

the other simple truss, or that one to the centres of whose

panels it now represents the distances ;
that is Eq. j^ j-

when \
u

l is greater than L gives the vertical strain in

(
u

)
*

Simple Truss No.
j ^ [passing

to the abutment opposite

that from which
]^/(is

measured. For Eq. (60),

w w
/ p

becomes, when u is greater than ~-, and consequently

equal to I u',

or the same as Eq. (61) when u' is measured, as indi-

cated by the minus sign, from the opposite abutment ;

and similarly is Eq. (61) changed.

74. Vertical Strains from the Moving Load. It will

be seen from the plan of the truss, Fig. 23, that the

passing load, before reaching the centre, transmits that

portion of its weight which is borne by the farther abut-

ment through the counterbraces from one of the simple

trusses to the other. One half of one simple truss being
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thus connected with the opposite half of the other, we

have two other simple trusses in this same double truss,

different from the former simple trusses, and in their ver-

tical action under a moving load entirely independent of

each other; they are shown in Figs. 25 and 26.

Q s u wA B D H K M

J\j\
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But if the load extend from the opposite abutment,

or that on which a full panel end cf one of these trusses

rests; then Eq. (45),

will give the reaction of the opposite abutment and the

greatest vertical strain.

These equations depend for their application upon

the length of the end panel of the simple truss upon

which the load enters, and are not affected by the length

of the panel at the other end of this simple truss. And

since either simple truss may have a full or half panel,

as the double truss contains more or less, either of the

moving-load equations may be added to either of the

simple-truss constant-load equations. There is 110 dif-

ficulty, however, in determining how the addition is to

be made in any case.

If the moving load extend from the half panel end

of the trusses of Fig. 25 and Fig. 26, and cover more

w '(l u}*
than half the truss, then it is plain that T

must be added to the equation of that simple truss which

has a full panel end, since it is the braces of this truss

w'n u\*

that transmit the strain -

^^ to the unloaded abut-

ment ; and if the load covers less than half the truss,

wtn u\*

then -
~~rji~~

~ is acting upon the braces of the other

simple truss between the end of the load and the centre

of the truss. Hence we have this simple rule :
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' '

is to be added to the equation of that sim-

ple truss which has full panel ends.

wf

Similarly it may be shown that j \_(l u)* p
2

] is

to be added to the equation of that simple truss which

has half panel ends.

75. Example of the Application of the Vertical Equa-
tions.

In Fig. 23, let I = 210 feet, the length of the truss,

d = 20 feet, the depth of the truss,

p = 10 feet, the length of a panel,

w = 105 tons, the weight of the truss,

wf 210 tons, the weight of a full

movable load.

Since Simple Truss No. 1 has full panel ends, we

have,

for the maximum vertical strains in the braces of this

simple truss, and in the counterbraces of Simple Truss

No. 2.

Substituting the values of the constants in Eq. (62)

we have,

210(210 u)' 105 105 10

4x(210)
a

4
~

2x210^' "2

(210 uY= -
h 26.25 - 0.25 (u

-
5).
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This gives the maximum strains in the struts. For the

tension in the ties, Eq. (62), must be multiplied by 1.414,

the secant of the angle made by the ties with the ver-

ticals ;
whence we can form the following table :

Values
of u.
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truss, and strains come, more or less, upon these counter-

braces, until the opposite halves of the same simple truss

are fully loaded, then the counterbraces are released, and

the moving-load equation is no longer applicable. Hence,

in this case, the greatest strains upon the end braces?

which are when the truss is fully loaded, are to be deter-

mined from the simple-truss constant-load vertical Eqs.

(60) and (61), w of these equations being changed to

w'+ w.

Since Simple Truss No. 2 has half panel ends, we

have,

wr
. w wV :

1(1
-

')'-/] + - - -O'+*>> -
(63)

for the maximum vertical strains in all the braces of this

simple truss, and in the counterbraces of Simple Truss

No. 1.

Substituting the constants in Eq. (63) we have,

105,
,

10\

2x210^-'
"

27'

This gives the maximum strains in the struts
;
for the

strains in the ties, we must multiply Eq. (63) by 1.414,

as before, except for the end ties, when it is multiplied

by 1.118 (the secant of their angle); whence we can

form the following table:
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Values
of u'.
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AB CDEFGHIKLMNOPQRS

abc def ghiklmnop q rat ti F,

21 2 121 212112121 212 12Hi
QUINCY RAILROAD BRIDGE.

Fig. 27.

* Let I = 247 feet, the length of the truss,

d 26 feet, the depth of the truss,

p = 13 feet, the length of a panel,

w = 198,150 Ibs., the weight of the truss,

uniformly distributed.

w' 328,750 Ibs., the weight of the uniform

full movable load.

In this case, the panel points of Simple Truss No. 1, or

the simple truss whose braces form the centre panel, are

K, 1, M, n, O, p, Q, r, S and t, to the right of the centre
;

and to the left, I, k, G, h. E, f, C, d, A and b
;
the re-

maining points are those of Simple Truss No. 2. In

the upper chord, the uniformity of the double truss ex-

tends from A to S, and in the lower chord, from c to s
;

Eqs. (56, 57, 58, 59) will therefore apply between those

points, for the horizontal strains
;
from a to c and from

s to u, the horizontal tension is readily found from the

moment of the reaction of the abutment around A or S.

This tension being greatest under a full load, where

~ is the reaction of the abutment, whence we have,
2

deducting half panel load on the abutment,

* These dimensions and weights are from the' description of the Quincy

Bridge by Mr. T. C. Clarke, C. E.
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wp wp* (w'+w)p __ (w'+~"~
for the strain in a c and s u.

Substituting the values of the constants in Eq. (56),

w being equal to w'+ w, we have,

(328,750+198,150) X 247 328,750+198,150

8x26 2x26x247
13 \" (328,750+198,150)13*

'T/~ 8X26X247
= 623,961 41.023(z 6.5)',

Here, z is the distance from the centre to the panel

points, and as this equation belongs to Simple Truss

No. 1, the different values of z are 6.5, 32.5, 58.5, 84.5,

and the amount of compression, given by the substitu-

tion of these different values of z in the equation, is con-

tained in that member of the upper chord on the abut-

ment side of the points to which z is measured.

Substituting the values of the constants in Eq. (57)

we have,

H = 630,894 --
41.023(2 6.5)' :

z is here the distance from the centre to the panel points

of Simple Truss No. 2, and its values are consequently

19.5, 45.5, 71.5, and 97.5, by the substitution of which,
in the equation, we obtain the compression in the upper-
chord members on the abutment side of the point to

which z is measured.

Eq. (58) becomes

H = 630,894 41.023
(z + 6.5)'.

tension in the lower chord on the centre side of panel
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points of Simple Truss No. 1, values of z being 6.5, 32.5,

58.5, and 84.5
;
and Eq. (59) becomes

H = 653,961 41.023 (z + 6.5)
2

,

tension in the lower chord on the centre side of panel

points of Simple Truss No. 2, the values of z being 19.5

45.5, 71.5, and 97.5.

The strains in the lower chord are the same in

amount as those in the upper chord between the same

inclined braces, and consequently the lower-cord equa-

tions are only needed in this case to obtain the strain in

c d and r s.

From these equations, by the substitution of the dif-

ferent values of z, we can form the following table of

strains in the chords

Values
of z.
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In the figure, the counterbraces needed under the

effects of the moving load are shown by the dotted lines.

In the bridge itself there are counterbraces from every

point in the lower chord, except the points b and t
;

why the reason which compels the insertion of these

superfluous counterbraces is not applicable to these two

points it is impossible to say.

"When the moving load covers part of the truss, Vand

t may be considered as belonging to Simple Truss No. 1,

for the other might be removed jand this one would

support these points.

In which case this simple truss, then, has end panels

of half the length of the others; that is, it has a panel

point distant from the abutment half the length of one of

its panels ;
and being connected with Simple Truss No. 2

at the centre by the counterbraces, the maximum vertical

strain in the braces of the latter, when u is less than
;p

and in the counterbraces of No. 1, when u is greater than

2~,
is, from the moving load,

y = ~(i- uy,

u, as before, being the distance from the abutment to the

centre of the panel in which are the braces whose strains

are to be determined
;
and adding to Eq. (61), we have

for the total vertical strain,

V - d - V -4-
W

i

The part of the moving load borne by the points b and
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t may be considered as belonging to either simple truss
;

since the distance of one of these points is p from the

nearest abutment, when it is loaded, the reaction of

the farther abutment is plainly (8) ~n~' When the

load enters Simple Truss No. 2, which has uniform end

panels, the vertical moving-load strain from it isEq. (45),

wf w lf
f?

-jjr \_(l u'Y >']
> to which add - and constant-load

strain, Eq. (60), and we have,

-tO'-p-] +j-K-, -
(65)

for the total maximum vertical strains in the braces of

No. 1 when u' is less than x-, and in the counterbraces

of No. 2 when greater than
-^

The ambiguity in regard to the load on the points

b and t renders it necessary to provide in one simple

truss for a slight excess of strain. This arises from the

fact that the symmetry of the truss is broken at these

points.

Substituting the values of the constants in Eq. (64)

we have,

328,750 198,150 198,150.V =
4-^47T <

247 - U?+ "I-- 1^247 H- 6 - 5
)'

=
1.347(247 ^)'+49,537.5 401.1(^+6.5),

compression in the struts of Simple Truss No. 2, and

vertical component of the tension in the ties. V X 1.414
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gives the longitudinal strain of the latter. Whence we

have the following table of strains in the braces of this

truss :

Values of u.
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fore
;
whence we have the following table of strains in

the braces of this truss :

Values of u.
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CASE IV. A TKIPLE TRUSS CONTAINING AN EVEN NUMBER

OF PANELS.

77. Let Fig. 28 represent a triple truss divided into

an even number of panels.

132132132132123123123123 1

\\
\ X

/
A/

132132132132123123 1231231

Fig. 28.

Let I = the length of the truss,

d = the depth of the truss,

p = the length of a panel,

w = the -weight supported by the truss, uni-

formly distributed,

x, x' x" = the distances from one abutment to the

panel ends,

Zp 9U &C. = X +-- &c -

H & V the horizontal and vertical strains.

78. Horizontal strains. Under the maximum uni-

form load, in which case the horizontal strains are the

greatest, this truss may be considered as divided into

three simple trusses whose vertical strains, or strains

having vertical components, do not in any way affect

each other.



THE STRENGTH OF BRIDGES AND R(

'^^

These simple trusses, with the counterbrac^

T TT T V
c)1

by the dotted lines in Fig. 28 removed, are, Truss

No. 1, Fig. 29, whose braces meet at the centre
;
Truss

Fig. 80.

No. 2, Fig. 30, whose braces come next
;
and Truss

No. 3, Fig. 31.

Fig. 31.

The regular panels of these simple trusses are equal

to three panels of the triple truss in length ; Simple
Truss No. 1 Ls uniform throughout, and having a full

panel length at the end may be - considered as sup-

porting the half panel loads resting upon the abut-

ments. The end panels of Simple Truss No. 2 are

two-thirds, and the end panels of Simple Truss No. 3

one-third the length of their other panels ;
and the sym-

metry of both is broken at the centre.

Under the uniform full load each simple truss bears

w
one-third the weight, or -^ ;

the reaction of each abut-

w
ment upon Simple Truss No. 1, is therefore -T, the
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wof

weight upon a segment of the truss, ^ of
-^r

% being

the distance from the abutment to the panel points of

the truss hence,

wx wx*

is the horizontal strain in the upper and lower chords of

Simple Truss No. 1.

In simple Truss No. 2, the reaction of the abut-

w
ment is -77, the weight upon any segment of the truss is

w
$ of -7(V 2p), (x

r

being the distance from the abutment

to a panel point of this truss, and confined to values Ies3

l
\

than
-gj,

and the distance of the centre of gravity of this

/y* fy\

weight from the point to which x' is measured, is
~t> 4-1n ;

whence we have, for the moment of the load on x',

wx'* wpx' u<p*~ ~
'

5
therefore

>

__
ivx

f wx 1 *

wpx' WP*
~' " "

' ~
Ml

is tlie horizontal strain in the upper and lower chords of

Simple Truss No. 2.

Similarly, in Simple Truss No. 3, the reaction of each

iv w
abutment is

^-,
the load on a/' is 1 of -j(x"p),(x'" being

the distance from the abutment to a panel point of this

truss, and confined to values less than A and the dis-
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tance of its centre of gravity from the point to which a/'

x"
is measured is -~- -f- p, whence we have for the moment

wpx" wp*
01 the load on x

, ^ + ..,
gr-

>

Therefore,

wx" wx"* wpx" wp*~ ~ ~ + "Ml

is the horizontal strain in the upper and lower chords of

Simple Truss No. 3.

These equations give the strains in the simple trusses

on the abutment sides in the upp.er, and on the centre

sides in the lower chord, of the points to which x, x' and

x" are measured
;
the strain in the upper chord of the

triple truss, at any panel point, is the strain in that sim-

ple truss whose panel point is at the same place, added

to the simple-truss strains at the next two panel points

towards the centre
; and, in like manner, the strain in the

lower chord of the triple truss, at any panel point, is the

strain in one simple truss at the same point, added to the

simple-truss strains at the next two panel points towards

the abutment. Hence, to find the compression in the

triple truss at the panel points of Simple Truss No. 1,

we must make x" of Eq. (68) equal to x + p, xf of Eq.

(67) equal to x + 2p, and add the equations so changed

to Eq. (66) ; performing this operation, we obtain,

wx wx9

wp wpx . .

: ~~-~ + ^d- ~dT'

For the compression in the triple truss, at the panel
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points of Simple Truss No. 2, make x of Eq. (66) equal

to x'+p, x'" of Eq. (68) equal to x'+ 2p, and then, add-

ing to Eq. (67), we have,

wx' wx'* wp_ wpx
f

wp* m

~~
"~"

2d
"

dl
' '

For the compression at the panel points of Simple Truss

No. 3, in the triple truss, make xf of Eq. (67) equal to

"+p, x of Eq. (66) equal to x + 2p, and, adding to

Eq. (68), we have,

wx" wx"*
t wp^ wpx"~" "
2d~ dl

'

I?
'

the same as Eq. (69) ; or, but two equations are re-

quired for the upper chord, one, Eq. (69), for the points

of Simple Trusses No. 1 and No. 3, and one, Eq. (70),

for the points of Simple Truss No. 2.

In the lower chord, by a similar process, and substi-

tuting p and 2p for p and 2jp, we obtain one equa-

tion,

.p. _ wx wx9

wp wpx
''^d"~Mr"2d + ~dT' (72)

for the tension in the triple truss at the panel points of

both Simple Trusses, Nos. 1 and 2, and,

_ wx" wx"* wp wpx" wp* ,

2d
'

23T
"

~~2d + ~~3r
"

237

for the tension in the triple truss at the panel points of

Simple Truss No. 3.

These equations, giving the maximum strains in the

chords of the truss of Fig. 28, will remain the same so
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long as the truss contains an even number of panels,

and are not affected by the end panels of the simple

trusses. That is to say, if, in the case supposed, another

panel be added at either end, though Simple truss No. 1

will then support \(w
--~] -\ y-; Simple Truss No. 2,

I I v

the same, and Simple Truss No. 3, %(w
--

T^J, the same
i> /

equations will still apply ;
the trusses being numbered, as

in this case, from the centre. It must be remembered

that the moment of the load on any simple truss is not

affected by the proportion of the full load which it bears,

but depends upon the length of the end panel of that

simple truss. For example, if this truss be lengthened
110 IIOT)

two panels, Simple Truss No. 1 bears
,
but the

6 o

moment of the load upon it is, because its end panel is

one-third the length of its other panels, the same as the

moment of the load upon Simple Truss No. 3, in the

example above, which has a panel of equal length, or,

wx wpx wp

This is because the centre of gravity is affected by the

length of the end panel.

79. Strain in the Second Lower-Chord Members.

In the lower chord, as the equation applies to the abut-

ment end of any member, it is evident that, to obtain

the strain in the second member from the abutment, we

require the simple-truss strain for the point next the

abutment, added only to the simple-truss strain at the
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panel point on the abutment, as the latter is the only

panel point. on the abutment side which may be added

to the former. But making #, in the equation of the

latter simple truss, zero, this strain becomes zero, and

we need, consequently, only the simple-truss strain at

the point one panel length from the abutment. This

strain will differ as the point may belong to the different

simple trusses, and is simply the reaction of the abut-

ment upon that simple truss to which the point referred

to belongs, multiplied by j? and divided by d.

If the point belongs to Simple Truss No. 1, the re-

action of the abutment is always,

whence we have,

__ wp wp*
Si + 63* <

74
>

for the strain in the second or next to end member of

the lower chord.

If the point belongs to Simple Trnss No. 2, the re-

action of the abutment is always,

i wp\
-,("
--

fj,
whence we have,

_ wp

for the strain in the second member. And if the point

belongs to Simple Truss No. 3, the reaction of the abut-

w
ment is always -, whence we have,
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H --- <7K\
6rf'

for the strain in the second member.

There is no strain in the end members of the lower

chord, and the strains in all the other members may be

obtained from the regular equations given above.

If the inclined braces were struts, instead of ties, a

similar process would determine the strains in the cor-

responding members of the upper chord.

NO. Vertical Strains from the Constant Load. The

vertical equations are obtained from the simple-truss

horizontal equations, as in the previous cases, because,

under a full load, the simple-truss braces are uncon-

nected, and act independently of each other, and the

difference in the horizontal strains in any simple truss

at co and at x +3p, or at the two ends of a panel, is the

horizontal component of the strain in the inclined brace

connecting these two points, and, as before, the ver-

tical component may be obtained from the proportion,

Zp:d.
In Simple Truss No. 1, if the end panel be of uni-

form length with the others, or equal to 3p,

TT_ wx~'~~ ~~

is the horizontal strain
;

if the end panel
=

2p, it be-

comes

,_..

''

wx wx9

tup*
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and if the end panel
=

>,
it is

_
wx wx*

' ~~~ " '

from either of which equations we obtain, as before,

v = |_ .... (77,

for the vertical strain from a constant load in Simple

Truss No. 1, u being equal to x +
-j-,

or the distance to

the centre of a panel of the simple truss. Whence we

see that the vertical equation is independent of the pro-

portion of the whole weight which the simple truss may

sustain.

From Eq. (67) we obtain,

for the vertical strain in Simple T^uss No. 2. And

from Eq. (68) we obtain,

V =?->'+ I),
---- (79)

for the vertical strain in Simple Truss No. 3.

In these equations, u, u', and u" represent the distances

from one abutment to the centres of the panels of the three

simple trusses, and in Simple Truss No. 1, the difference

in the different consecutive values of u is uniform, or

equal to 3p ; this is true of u' and u" only to the centre

of the truss, because the simple trusses to which they be-

long are not uniform beyond that point. If, in Eq. (79).
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u" be made greater than
^r,

and the regular increment

in its values be kept the same, 3p, it becomes the dis-

tance to the centre of a panel of Simple Truss No. 2,

and the values ofV will then give the vertical strains in

the latter truss passing to or sustained by the abutment

opposite to that from which u" is measured. This may
be proved by making u" = I u' whence we shall have

the equation of Simple Truss No. 2, with the minus

sign. Similarly, if u' be made greater than x~, we ob-

tain the vertical strain in Simple Truss No. 3 beyond

the centre.

81. Vertical Strains from the Moving Load. Disre-

garding the constant load, if we suppose one end of the

truss to be loaded, and trace the course of the vertical

strain to the other end, we find, in Simple Truss No. 1,

that it follows the braces and counterbraces of that

truss throughout ;
but in the other simple trusses, the

vertical strain at the centre passes through the counter-

braces from one to the other
; or, if we consider a part

less than one-half of either Simple Truss No. 2 or No. 3

as loaded, the farther abutment reacts upon it through

the other simple truss. Hence we have, under the

moving load, two other simple trusses, composed of the

opposite halves of Simple Trusses Nos. 2 arid 3, as

shown in Figs. 32 and 33 one being the other reversed.



100 A TREATISE ON

Fig. 32.

33.

The dotted lines represent the counterbraces.

In the figure, Simple Truss No. 1 has a panel end

equal to 3p. Let u be the distance from one abutment

to the centre of any panel, then ^ of -y-(Z u ~) ,

I 2 /

(w
f

being the weight of the full uniform moving load),

will be the weight upon the panel points of this truss

withfn the space I ^, and u being unloaded, \ (I u

+
-J-j

is the distance of the centre of gravity of this

weight from the loaded abutment, or the abutment from

which the load extends
; dividing by Z,

and multiplying
the above quantities (8) we have,

v = 'i-)-~S

for the reaction of the unloaded abutment and the ver-

tical strain throughout the unloaded part.

Adding Eq. (80) to Eq. (77), we obtain the max-
imum vertical strain in Simple Truss No. 1, from the

moving and the constant loads.

In Fig. 32, which has the left end panel equal to p,
and the right end panel equal to 2p, let u" be the dis-
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tance from the right abutment to the centre of any

panel, and the length of the unloaded portion of the

truss. Then, if the left segment of this truss be loaded,

w' p\
% of-j-(Z

u" +
tt~)

will be the weight upon the panel

points within the distance I ?*", and the distance of

the centre of gravity of this load from the left abutment

fp\

will be \ (I u"
~-]j

whence we have
#

(81)

for the equation of the moving load when the load ex-

tends from the left end of Fig. 32, or the right end of

Fig. 33, or that end of either truss which has an end

panel equal to p, and is to be added, in this case, to the

equation of the simple truss at the unloaded end of this

truss, or to Eq. (79).

In Fig. 33, which has the left end panel equal to 2jp,

and the right end panel equal to p, let u' be the distance

from the right abutment to the centre of any panel, and

the length of the unloaded portion of the truss
; then, if

w'
the left segment of the truss be loaded, \ of

-j-(l
u'

p]~ will be the weight upon the panel points, within

the distance I w', and the distance of the centre of

gravity of this load from the le:

(I u' +
7j- j

,
whence we have,

gravity of this load from the left abutment will be of

-
(82)
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same as Eq. (81), for the equation of the moving load,

when the load extends from left end of Fig. 33 or right

end of Fig. 32, or that end of either truss which has a

panel equal to 2p, and is to be added to the equation of

the simple truss at the unloaded abutment.

It will be seen that, as the triple truss may vary

in the number of its panels, any one may have an end

panel equal to p, 2p, or 3p, and consequently, either of

the equations of the moving load may, in different ex-

amples, apply to either of the simple trusses
;
the appli-

cation depending solely upon the length of the end panel.

The moving-load equation, in any case, is to be added to

the constant>load equation of that simple truss through

whose braces the reaction of the unloaded abutment acts,

to obtain the maximum vertical strain.

S2. Horizontal Equations, with the variable meas-

ured from the Centre of the Truss. In Eq. (69) make

a? = ~-- z, and we have,
6

wl w . wp*.H =
83
-'-

for the compression in the upper chord at the panel

points of Simple Trusses Nos. 1 and 3.

In Eq. 70, make x' =
z', and we have,

......
<
84

>

for the compression in the upper chord at the panel
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points of Simple Truss No. 2, z and z' being measured

from the centre of the truss. By measuring from the

centre of the truss, instead of from the ends, the equa-

tions are simpler and more readily applied.

83. Example.

213213213213212312312312312ABCDEFGHIKLMNO N'M'L'K' I' H' G' F' E' D'C'B' A'

ab c d e f g h i k 1 m n o n' m' Y k' i' h' g' f e'd'c'b'a'M

Fig. 34.

Let Fig. 34 represent a triple truss with an even

number of panels.

Let I = 247 feet, the length of the truss,

d = 26 feet, the depth of the truss,

p = 9.5 feet, the length of a panel,

w = 100 tons, the constant truss weight,

w' = 160 tons, the full movable weight.

The load is upon the lower chord. The simple-

truss panel points are distinguished in the upper chord

by their numbers.

4. Horizontal strains. For the upper-chord com-

pressions we have Eqs. (83 and 84), which, with the

values of the constants given above, are,

260x247 260 260x(9.5)
3

"

2x26x247'8X26 2x26x247 ^

= 310.58
49.4

for the points 1 and 3. And



104 A TREATISE ON

260x247 260

8X26 2X26X247
_ .= 308.75 -

49.4

Whence we can form the following table of strains in

the upper chord.

Values of

2 and z 1
.
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and from Eq. (73), making x" 19, we have the tension

in cd and dV. We can consequently form the fol-

lowing table without further calculation for the lower-

chord tensions :

Strains in Tons.
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The first value of u" in this equation is 4.75, be-

cause the centre of the first panel of this truss, if it were

uniform with the others, would be 4.75 feet back from

the abutment; the other values of u" are the successive

distances from the abutment to the centres of the panels ;

whence we can form the following table of compression

in the struts of this simple truss :

Values
ofw".
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stant load, but in the other simple trusses it is different
;

there, as before explained, the strains in the end braces

are to be obtained from the constant-load equations

alone.

Since Simple Truss No. 2 has an end panel equal to

3^p, we must add Eq. (80) to Simple Truss No. 3 con-

stant-load equation, Eq. (79), for the vertical strains in

all the braces of Simple Truss No. 3, and in the counter-

braces of Simple Truss No. 2, when u" is greater than ^-
;

whence \ve have,

Substituting the values of the constants,

V = -
8

2T[(247
~ U"^~18302

u + 4.75

7.41

16.67

The first value of u" is 4. 75, whence, and the other

values of u", we can form the following table :

Values
of u".
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The end braces from the constant-load equations as

before, w'+ w being put for w.

Multiplying Eq. (86) by the secants of the angles

made by the ties, which for the end tie is 1.24, and for

the others 1.48, we can form the following table :

Values
oiu".
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Values of u f
.
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end strut, two of which are placed back from the edge of

the abutment.

S21S31S21321S2132132 12812 3 12 3 1 s 12 1 2 3 13 3

ABC nXPOHIKT. MNOPQBSTUV W X w'v U T 8 K Q P o' N'M I. K I H'U K K II r B A'

f?Jd e f g h i k Ininopq r s t u vwxw'v'u't' s' r'q'p'o'n'mTk'i'h'g'f'e'd' w\

GREITHAUSEN BRIDGE.

Fig. 35.

This arrangement, shown in the figure, possesses but

slight mechanical advantages, if any, over an end strut

common to the three simple trusses
;
and whatever these

may be, they must quickly disappear when we consider

that any increase of length in a truss adds to the hori-

zontal strain in both chords throughout their lengths,

though the weight remain the same. For, in the

Eq. (15)

TT-
Wl

JtL TT75

H increases directly as /
;
w and d remaining constant,

and in Eq. (14),

_.
_

wx wx~~~~'

H is increased at any point by any increase in the value

of?.

By this elongation of the length of the end panels,

the moment of the reaction of the support upon two of

the simple trusses is increased, but the reaction of the

support itself is unaffected, as well as the moment of the

load upon any segment, x. No general equation can be
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given for a case of this kind, but a special equation

must be obtained for each simple truss that may be

elongated.

w
Let be the reaction of the support upon any simple

truss; then, if this support is at the abutment, at the

distance of x from the abutment, the moment will be

wx
; but if the support be removed backward a distance

7/J

a from the abutment, the moment will be (x + a).

The moment of the load on x remains the same, and we

have for the difference between the two cases a constant,

wet
> this divided by d, the depth of the truss, is an in-

creased amount of strain to be added to the horizontal

equations.

87. Horizontal strain*. The dimensions and weights

of a truss of this bridge are as follows, the latter being

assumed :

I 320 feet, the distance between the abutments,

d = 24 feet, the depth of the truss,

p 8 feet, the length of a panel,

a 2 feet, the length of each of the two small

end panels,

w' 250 tons, the weight of the full moving load,

w = 130 tons, the constant truss weight.

Simple Truss No. 3 is not extended. Simple Truss

No. 2 is extended 2a, its load is ^ + -43- ;
the moment
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iw ivp
of the reaction of its support is therefore (-

-

(x + 2a), and the excess, owing to the elongation of the

wa 2wpa , ^ T ,
.

end panel, is -- + fr~' Simple Truss No. 1 is ex-

nn fWr
t)

tended a ;
its load is

-^
---

;
the moment of its sup-

port is !~--
-} (x+ a), the excess from the lengthened

\ D Ufc /

wo, wpa .

end panel, -77- ~T^T ; adding these two quantities,

and dividing by c, we have,

wa wpa
-2d

+
~6dl

for the increase in the compression in the upper chord,

between the points B and B', and the increase in the

tension in the lower chord, between the points e and e'.

Adding this quantity to Eqs. (83 and 84), and substi-

tuting the values of the constants given above, we have

for the upper-chord strains,

H = 651.14 .02474(2 8)
2

,

for the panel points of Simple Trusses Nos.l and 3, and

H = 649.56 .02474(2 8)
f

,

for the panel points of Simple Truss No. 2.

The strain in A B and A' B r

is most readily obtained

by multiplying the reaction of the support upon Simple
Truss No. 2, given above, by 12, the distance of the last

panel point, and dividing by 24, the depth of the truss.

The strains in the lower chord are taken from the

strains in the upper chord between the same inclined

braces. Hence we form the following table of strains in
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the chords, w + w' being substituted for w in the equa-

tions :

Values of z.
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. Vertical train from the Constant Load. As the

Eqs. (77, 78, and 79) represent the weight at any point

borne by the simple trusses between that point and the

point of no vertical strain, it is evident they are un-

affected by the peculiarity of this case, and apply with-

out change.

89. Vertical Strain from the Moving Load. The ver-

tical strain from the moving load is affected by this

change or elongation of the end panels, as is evident

when we consider the effect upon a lever, loaded at any

other point than the centre, of increasing its length at

either or both ends.

The equation of the moving load, being the reaction

of the unloaded abutment, depends entirely upon the

principles of the lever, and is affected by any arrange-

ment of the simple trusses that alters the position of the

centre of gravity of the load on the segment I u, as

well as by any elongation of the trusses.

Let the load be supposed to enter Simple Truss

No. 1, at the end, then the weight on the segment I u,

u being the distance from the abutment beyond the load

wf

jy\
to the end of the load, is of

~j-(l
^

9 1 5
tne

length of the lever, or Simple Truss No. 1
,
is I H -

2&,

and the distance of the centre of gravity from the sup-

port on which the truss rests at the loaded end is

p]
i(Z u + a-l+a; whence we have for the equation

of the moving load on this truss,
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l- u)
'- + 2a

(l
- u~ ] - (89)

It must be remembered that I is the distance between

the abutments, or points c and c', and not the outside

length of the truss
;
and u the distance from the abut-

ment and not from the end of the truss.

Adding Eq. (88) to Eq. (77), we have the greatest

vertical strain in the truss.

Next, let the load be supposed to enter Simple Truss

No. 2, at the end
;
the load on the segment I u' is J of

ID
1

2?1

-r-(l fc*+2j
^e leilotn ^ tm

'

s truss
?
smce Simple

Truss No. 2 is added to Simple Truss No. 3, at the centre,

is Z+ 2a, and the distance of the centre of gravity from

the end of the truss which is loaded, is ^ (I u
|-

+ 2a, therefore,

- M
'+] '

'
<90)

which is to be added to Eq. (79) for the total vertical

strain. And, lastly, the load on I u" in Simple Truss

No. 3, is of
-j-(l

u" ~
; length of the truss I + 2a

;

and the distance of the centre of gravity, J (I u'+ ] ;

therefore,

to be added to Eq. (78) for the total vertical strain.
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Substituting the values of the constants in Eq. (89),

and Eq. (77) added, we have,

(820 -uy^tu+ 1248
+ 2167 _1^.

2488 96

whence we can form the following table of strains in the

struts of Simple Truss No. 1
;
the load being upon the

lower chord :

Values of u.
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whence we can form the following table of compression
in the struts of Simple Truss No. 3, and counterstruts of

Simple Truss No. 2. The end braces from the constant-

]oad equation.

Values of u'.
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Values
of u".
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CASE V. A TRIPLE TRUSS CONTAINING AN ODD NUMBER

OF PANELS.

90. Let Fig. 36 represent a triple truss composed of

three simple trusses, and containing an odd number of

panels, the counterbraces being shown by the dotted lines.

13213213211231241231

\\
\\

X\l
/

A/
/ 71

132 132132113312313 81

Fig. 36.

Let I the length of the truss,

d = the depth of the truss,

p = the length of a panel,

w = the weight supported by the truss,

x, x' & x 1' = the distances from one abutment to the

panel ends,

U, u' & u" = the distances from one abutment to the

centres of the panels of the simple trusses.

H & V = the horizontal and vertical strains.

The simple trusses composing the triple truss are

numbered, as in the previous case, from the centre,

the panel points belonging to each being shown in the

figure by the numbers.

91. Horizontal strains. Under the maximum uni-

form load, w, the weight on simple Truss No. 1, is
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(w -2j-\ -] ^-,
and the moment around any panel

v
I

v

point of this simple truss of the weight on the segment

x is, as in the previous case where the simple truss had

- wx*
the same end panel, ot

7

whence,

wx wx* wpx'

63""' +

The weight on simple Truss No. 2 is \(w
--~-\

and the moment around any panel point of this simple

(

pwx' wp*\
~W ~Wl>

whence,

_
wx' wx'* wp*
"63" ~6dT + IS"

The weight on Simple Truss No. 3 is \(w r-] ,

and the moment around any panel point of this simple

truss, of the weight on the segment a?", is, as before,

wxfl *

wpx"

whence,

wx" wx'" wpx wp-^ - -
(94)
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These are the horizontal strains in the upper and

lower chords of the simple trusses at their different

panel points. Following the same process which was

pursued in the previous case (77), in adding the simple-

truss equations, we obtain,

wx wx* wp wpx wp
: ~--~ + ~~ ~

Making x = ~-- z, we have,

H = 5 -&-*>' - - -
<
96

>
OU/ &(Juij

for the compression in the upper chord of the triple

truss at the panel points of the Simple Trusses No. 1

and No. 2.

For the panel points of Simple Truss No. 3 we ol>

tain, by the same process,

wl w . wp'

z and z
f

being the distances from the centre of the truss

to the panel points of the respective simple trusses.

For the tension in the lower chord of the compound

truss, in like manner, we obtain,

*

7
_ ov

'
- - - -

<98)

for panel points of Simple Truss No. 1, and

for the panel points of Simple Trusses No. 2 and No. 3.
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These lower-chord equations will not apply to the

second panel from the abutment, as that member is only

within the action of two of the simple trusses, when a?

in one of them equals zero, as explained in (78.)

If the point in the lower chord distant p from the

abutment belongs to Simple Truss No. 1, the reaction

of the abutment upon this truss is always,

w wp
T + ~T

whence,

If the point belong to Simple Truss No. 2, the re-

action of the abutment upon this truss is always,

whence,

And if the point belong to Simple Truss No. 3, the re-

action of the abutment upon this truss is always,

whence,

n ^" ' ~

93. Vertical Strain from a Constant L,oad. Deducing
the equations of the constant vertical strain from the

horizontal equations for the simple trusses, as the ver-
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tical strains in the different simple trusses are independ-

ent of each other, we have,

(103)

for Simple Truss No. 1,

w wu'

~-fi- IT
for Simple Truss No. 2, and

(105)

for Simple Truss No. 3.

93. Vertical Strains from the Moving Load. In this

case, Simple Truss No. 2 is always symmetrical at the

centre, or its opposite halves are united by the counter-

bracing, while one half of Simple Truss No. 1 is con-

nected by the counterbraces with the opposite half of

Simple Truss No. 3. This arrangement, however, does

not affect the equations for the moving load, and Eqs.

(80 and 81) apply in this case as well as in the pre-

vious; their application being governed by the same

principles.

94. Example Let Fig. 37 represent a triple truss*

composed of three simple trusses, and containing an.

odd number of panels ;
loaded on the lower chord.

A B C D E P IKLJCNOPQBST UVWXT
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Let I = 230 feet, the length of the truss,

d = 20 feet, the depth of the truss,

p = 10 feet, the length of a panel,

w' = 230 tons, the weight of the full moving

load,

w = 115 tons, the constant truss weight.

95. Horizontal strains. Substituting these values in

Eqs. (96) and (97), we have, for upper-chord com-

pressions, w being (w'+w),

H = 495.9375 -.0375(z- 10)',

where z is the distance from the centre of the truss to

the panel points of Simple Trusses Nos. 1 and 2, and

H = 503.4375 .0375(2' 10)',

where z' is the distance from the centre of the truss to

the panel point of Simple Truss No. 3.

The lower-chord tensions are the same as the upper-

chord strains between the same inclined braces, arrd we

shall not need the lower-chord equations except for the

third member from the abutment, cd and vw. The

strain in these members is the strain at c or w, which

are points in Simple Truss No. 1, and consequently

given by Eq. (98). As b and x are points in Simple
Truss No. 2, the strain in be and wx is given by Eq.

Whence we have the following table of strains in the

upper and lower chords :
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Values
of 2.
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equation which applies to that simple truss to which the

first is united by the counterbraces at the centre.

Hence, Eq. (103) for Simple Truss No. 1 is to be

added to Eq. (80), whence we have,

Substituting constants,

Whence we can form the following table of compressions

in the struts. The strains in the end braces from the

constant-load equations, as explained before.

Values of u.
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For Simple Truss No. 2 we must add Eq. (104) to

Eq. (81) and we have, ^3R^^
OF TOR

Substituting constants,

((UNIW f^
UsSs^

(230-')'- 25 '

1380
L9 ' 1(

-<P

whence we can form the following table of compression

in the struts :

Values of u '.
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For Simple Truss No. 3, Eq. (103) is to be added

to E(J. (80), whence we have,

Substituting constants,

whence we can form the following table of compression

in the struts. The strains in the end braces from the

constant-load equations, w being changed to w'+ w.

Values of u".
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for the constant-load vertical strains, will be obtained in

any triple truss containing any odd number of panels.

97. A Simple Form of the Moving-Load Equation for

either Simple Tru. It will be noticed that the vertical

equations for the moving loads in this and the previous

case, Eqs. (80), (81), and (82), differ from the form

tt/

~~e~p(l u)\ in the extreme case, only by the quantity

consequently, if this quantity be omitted, the dif-

ference in the result will be immaterial and upon the

safe side, and we shall have but the simple form

wf

-gjT$ u)* to be added to the simple-truss constant-load

equations. Moreover, all confusion will be avoided.

9
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CASE VI. A QUADRUPLE TRUSS CONTAINING AN EVEN NUM-

BER OF PANELS.

98. Let Fig. (38) represent a truss composed of

four simple trusses, and containing an even number of

panels.

2143214321432123412341234123

Fig. 38.

The simple trusses are numbered from the centre, as

in the previous cases, and their different panel points are

shown by the numbers in the figure.

Let I = the length of the truss,

d = the depth of the truss,

p = the length of a panel,

w = the weight,

#, a/, a/', & x'" = distances from one abutment to the

panel ends,

u, u', u", & u'" = the distances to the centres of the

panels of the simple trusses.

H & V = the horizontal and vertical strains.

99. Horizontal strains. Under the full uniform load,

the horizontal strains are the greatest, and are deter-

mined as follows : the result would be the same if the

quadruple truss contained any even number of panels.



THE STRENGTH OF BRIDGES AND ROOFS. 131

In this figure,

w
Simple Truss No. 1 bears T->

" " 2 " + '

4 u
4

- r
Taking moments around the panel points of Simple

Truss No. 1, the moment of the abutment reaction is

Q/JSY* ni\

-,
the load on x is T(# 2p), the distance of its cen-

o i

tre of gravity from the point to which x is measured,

+p, whence we have
2

wx

for the horizontal strains in the upper and lower chords

of this truss.

Taking moments around the panel points of Simple
Truss No. 2, the moment of the abutment reaction is

wx wpx w ,

~8~ ~^~ ~2Z~'
on 1S T^ ^^' e ^JS*ance *

its centre of gravity from the point to which xf
is meas-

x' 3
urea is

~ + --, whence we have,

wx^ pwx' Sp'w
"8J" "8dZ

" W '"83P

for the horizontal strains in the upper and lower chord

of this truss.
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Taking moments around the panel points of Simple

Truss No. 3, the moment of the abutment reaction is

wx"-
,
and the moment of the load on x" is, since this

wx"*
truss has a full panel eiid, --, whence we have,

nm
for the horizontal strains in the upper and lower chords

of this truss.

And taking moments around the panel points of

Simple Truss No. 4, the moment of the abutment reac-

wx'" wpx"
f w .

tion is -- -

g; ,
the load on x"'+is -j(x"

!

3p), the

distance of its centre of gravity from the point to which

x'" is measured is
>
whence we have,

_ wpx'" Zp*w
' ~

It is evident that the compression in the upper chord

of the compound truss, at any point, x, is H at x
y

added to

H"' when a/" = x + p,

and H' "
x' =x+Sp,

Similarly for the compression in the compound truss

at the points x' x" and x'".

Substituting and adding, as before, we obtain,

<us>
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for the compression at the panel points of Simple Trusses

No. 1 and No. 4, and

='-5<-+ -> <- <>

for the compression at the panel points of Simple

Trusses No. 2 and No. 3.

Making x = ^ z, and xf =
^ z', Eq. (113) be-

comes

<
U5

>

where z is the distance from the centre of the truss to

the panel points of Simple Trusses No. 1 and No. 4
;

and Eq. (114) becomes

wl w 3pV p'w^
8j"23/<*- TJ +m <

where z' is the distance from the centre to the panel

points of Simple Trusses No. 2 and No. 3.

In the lower chord of the compound truss the tension

at any point, #, is the simple-truss strain at
a?,

added to

H' when a?' = x p,

H" " a" =*-2p,
and H'" " xm = x - 3p,

and similarly for the points a/, a/
7

,
and #w. Whence

we obtain, changing x and a?' to ^- % and ^- z'
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wl w

for the panel points of Simple Trusses No. 1 and No

2; and

(S+: ^* + + '

for the panel points of Simple Trusses No. 3 and No. 4
;

z and z' being measured from the centre of the truss.

It will be seen from these equations, that in this case

also the horizontal strain in the two chords is the same

between the same inclined members. Hence, in prac-

tice, we shall not need the last two equations. The three

end members of the lower chord are not subject to the

action or the strains of all the four simple trusses, and

consequently Eqs. (117 and 118) are not applicable to*

them. The first, or end member of the lower chord is

subject to the strain of only one simple truss when x is

zero, and consequently the strain is zero; the second

member is subject to the strain of the first member, and

the strain of that simple truss whose point is one panel

length from the abutment, and the third member has the

strain of the second member added to the strain of that

simple truss whose panel point is two panel lengths from

the abutment.

. These strains can be most readily determined from

the vertical equations for the constant load, and are

given below;
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1OO. Vertical Strains from a Constant Load. In this

case, as in the others, the simple trusses are entirely in-

dependent of each other in their vertical action under a

uniform constant load; hence the equations are to be

obtained from the simple-truss horizontal equations ;

whence, by the process previously described, we have,

from Eqs. (109, 110, 111 and 112),

for Simple Truss No. 1,

V ' =
1i-iK'-PV-

- - - -(120)

for Simple Truss No. 2,

8 U '

for Simple Truss No. 3, and

- - - -
(122)

for Simple Truss No. 4.

In which u, u', u", and u" 1 are the distances from the abut-

ment to the centres of the panels of the respective simple

trusses.

1O1. Horizontal Tension in the Lower-Chord End

Members. The strains in these, referred to above, may
be found as follows :
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Let Fig. 39 represent the four end panels in a quad-

ruple truss, and let d be a panel point in Simple Truss

ABODE

de

Fig. 39.

No. 4, and c a panel point in Simple Truss No. 3. The

strain in be is the strain in the latter truss at c added to

that in the former at d.

The reaction of the abutment, or the vertical strain

in Ee, from Simple Truss No. 4 is Eq. (122), where

w=
p, /. V = TT

;
and from moments around D,u'

(123)
<jw

is the tension in the second member, where Simple Truss

No. 4 has a panel point distant p from the abutment.

The vertical reaction of the abutment from Simple
nn

Truss No. 3 is Eq. (121), where u" = 0, whence V
=-g

;

and from moments around C,

wp
~4d'

This added to Eq. (120) gives

(124)

tension in be, or third member of the lower chord, where
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Simple Truss No. 4 has a panel point distant p from the

abutment.

Next, let d be a panel point in Simple Truss No. 3,

and c consequently a panel point in Simple Truss No. 2.

The reaction of the abutment from Simple Truss No. 3
fUO 1WK)

is Eq. (121), where u" = p, whence V = TT + ,

and

-
<
125

>

strain in the second member; and the reaction of the

abutment from Simple Truss No. 2 is Eq. (120), where

TT w wp __ pw pw
u f --

0, whence V =
g-
+

-ry,
and H =

4^7+ %//?
which

added, to Eq. (125) gives

_Zpw Sp'w~'

for the tension in the third member of the lower chord

where Simple Truss No. 3 has a panel point distant p
from the abutment.

Next, let d be a panel point of Simple Truss No. 2,

and c consequently a panel point of Simple Truss No. 1.

The reaction of the abutment from the former is Eq.
'W fJIO

(120), where u' = p, whence V = rr +97? therefore,

pw p*w

is the tension in the second member
;
and the reaction

from Simple Truss No. 1 is Eq. (119), where u = 0,
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whence V = ~ and H=, which, added to Eq. (127),

gives
*

- - -
<
128

>

for the tension in the third member when Simple Truss

No. 2 has a panel point distant p from the abutment.

The remaining case is where d is a panel point of

Simple Truss No. 1, and c of Simple Truss No. 4. The

reaction of the abutment from the former is Eq. (119),

where u = p, whence V = - + rr, and

pw pw""
is the tension in the second member

;
and the reaction

of the abutment from Simple Truss No. 4 is Eq. (122),

, , A , TT w pw _ __ pwwhere /"= 0, whenceV - g-^, andH-^
which, added to Eq. (129), gives

for the tension in the third member of the lower chord

when Simple Truss No. 1 has a panel point distantp
from the abutment.

1O2. Vertical Strains from a Moving Load. Let Figs.

40, 41, 42, and 43 represent the different ends of the

four simple trusses. Let the vertical lines show the
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divisions into simple-truss panels, and the points in the

lower chord the panel points of the compound truss.

1 1 1
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I_ u
'^
distance of its centre of gravity from the loaded

end, ~I^, and the greatest vertical strain upon the

simple truss whose panel at the loaded end = 2p, is

v = -^ -') - -
(
132

>
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vertical strain upon the simple truss whose panel end

at the loaded end = 4p is

yj

c3 (/

In this case, Simple Trusses No. 1 and No. 3 are con-

tinuous, and their panels uniform throughout, but one

half of Simple Truss No. 2 is united to the opposite half

of Simple Truss No. 4.

It has been fulty explained how to determine which

moving-load vertical equation is to be added to the

constant-load vertical equation belonging to any simple

truss.

In the truss shown in Fig. 38, Eq. (131) is to be

added to Eq. (122), Eq. (132) to Eq. (119), Eq. (133) to

Eq. (120), and Eq. (134) to Eq. (121.)

103. Example. Let Fig. 44 represent a quadruple
truss containing an even number of panels, and loaded

upon the lower chord.

A B C P E F Q H I K L H N O P Q B Q' P
/ Q' K' M' I/ K ; ' D; C' B' A'

ab c d e f g h i k 1 m n o p q r q' p' o' n' m' 1' k' i' h' s' f e' <V c' b'a'

14321 4321432 1 43212341 23412341234 1

Fig. 44.

Let I = 320 feet, the length of the truss,

d = 27.5 the depth of the truss,

p 10 feet, the length of a panel,

w' 208 tons, the weight of the full uniform

movable load,

- w = 144 tons, the weight of the truss.



142 A TREATISE ON

Values
of z.
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point distant p from the abutment; the other lower-

chord strains being taken from the upper-chord strains

between the same inclined braces
;
w in these equa-

tions being w'+ iv, or 352 tons
;
we have the preceding

table
;
there is no strain in ab and Va! .

1O5. Vertical Strains. Since Simple Truss No. 1 has

a panel end = 4p, Eq. (134) is to be added to Eq. (119)

to obtain the maximum vertical strains in this truss;

Simple Truss No. 2 has a panel end =
3^, therefore

Eq. (133) is to be added to Eq. (122) to obtain the

greatest vertical straihs in No. 4
;
No. 3 has a panel

end = 2p, therefore Eq. (132) is to be added to Eq.

(121); and No. 4 has a panel end =
p, therefore Eq.

(131) is to be added to Eq. (120) to obtain the maxi-

mum vertical strain in Simple Truss No. 2.

Making the variable, in the first case, u, in the second,

u', in the third, u", and in the fourth, u'", substituting

the values above, w of the constant-load equations being

144 tons, and multiplying the vertical strain by secants

of the tie angles, we can form the following table of

strains in the braces. The secants are 1.765, 1.48,

1.236, and 1.063.

Total compression on Aa and AV is 170.5 tons.

The strains in the end braces of those simple trusses

which are uniform beyond the centre, No. 1 and No. 3,

are found from the same equations which give the strains

in the other braces
;
but in the end braces of No. 2 and

No. 4 the strains are determined from the constant-load

portion of the equations, w'-}- w being put for w.
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Values
of u.
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contains, but by the condition whether the number be

odd or even. Hence, it is necessary to determine equa-

tions for this case. It should be remembered that, in

determining equations for any case, the simplest form of

truss may be taken, provided it fulfils the necessary con-

ditions.

Let Fig. 45 represent a quadruple truss containing

an odd number of panels. This, like the other, is

divisible into four simple trusses, numbered, as in the

14.3 214 3 21123412841

Fig. 45.

previous cases, from the centre towards the abutments,

and whose panel points are shown by the numbers.

Let I = the length of the truss,

d = the depth of the truss,

p = the length of a panel of the compound

truss,

w = the maximum weight uniformly dis-

tributed,

#, ocf a/', & x"r
the distances from one abutment to the

panel points of the simple trusses,

w, u', u" &u'"= the distances from the same abutment to

the centres of the simple-truss panels,

H & V = the horizontal and vertical strains.

lor. Horizontal strains. The moment of the load on

a segment of any simple truss in this case is the same as

10
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the moment of the load on the same segment of that sim-

ple truss in the previous case whose end panel is similar.

In this figure,

wp \ wp
Simple Truss No. I bears i (w -y J

+ -p

* " 2
"

i (w ~~7~)'

wp \
3 i(^--f),

u tt 4 "
j'(w ^

whence,

pwx

for Simple Truss No. 1
;

wxf
9

pwxf

for Simple Truss No. 2 ;

.

~Sd~
'

Sdl
'

Sdl
'

2dP
'

\f
'

for Simple Truss No. 3
; and,

waf" wx"f*

Zpwx'" Zp'w
:

"8J "83T'
" "'

for Simple Truss No. 4.

These are the horizontal strains in the upper and

lower chords of the simple trusses. Adding them in the

same manner as in the previous cases we have,
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z being the distance from the centre of the truss, for the

compressions in the upper chord at the panel points of

Simple Trusses No. 1 and No. 3.

wl w

z' being the distance from the centre of the truss, for the

compressions in the upper chord at the panel points of

Simple Truss No. 2, and,

-tL ~^. T ""

z" being the distance from the centre of the truss, for

the compressions in the upper chord at the panel points

of Simple Truss No. 4.

For the tension in the lower chord we obtain,

H = M-
at the panel points of No. 1

;

wl w . . 3m *

at the panel points of No. 2 and No. 4
;
and

at the panel points of No. 3.

ION. Vertical Strains from a Constant Load* From

Eqs. (135, 136, 137, and 138) we have,

for No. 1
;

v-,
for No. 2

;
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for No. 3
;
and

v = ?-("'+ 1,
for No. 4.

IO9. Horizontal Tensions in Lowcr-Cliorcl End Mem-

bers. The strains are obtained as in (99). See Fig.

39, whence,

in the second member
;
and

2>pw ZtfwU =
-Sd -*3T (150)

in the third member, when a panel point of No. 4 is

distant p from the abutment.

in the second member
;
and

- -
(

in the third member, when a panel point of No. 3 is

distantp from the abutment.

_pw Zp*w
-Sd + ~SdT

~ * '
<
153

>

in the second member, and

- - -
<
154>
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in the third member, when a panel point of No. 2 is

distant^? from the abutment. And

pw tyw
z + ~''

in the second member
;
and

"- -8d8dl' (156)

in the third member, when a panel point of No. 1 is

distant p from the abutment.

HO. Vertical Strains from a moving Load. Eqs.

(131), (132), (133) and (134) apply in this case.

None of the simple trusses are continuous, but one

half of No. 1 is connected by the counterbracing with

the opposite half of No. 4, and one half of No. 2 is

similarly connected with the opposite half of No. 3
;

hence care must be exercised in the addition of the

vertical equation, and it is always safest to make a

diagram of the simple trusses, as connected under the

moving load.

ill. Example. Let Fig. 46 represent a quadruple

truss containing an odd number of panels.

Let I = 328 feet, the length of the truss,

d = 32 feet, the depth of the truss,

p = 8 feet, the length of the panel,

wf 328 tons, the weight of the full uniform

movable load,

w = 164 tons, the constant truss load.

The load is upon the lower chord.
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Values
of z.
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112. Horizontal strains. For the upper chord, use

Eqs. (139), (140) and (141) ;
for the lower chord, take

the strains from the upper chord between the same in-

clined braces, and beyond these, for the fourth member,

use Eq. (143), for the third member Eq. (150), and for

the second, Eq. (149) ;
w of these equations being made

equal to w r + /;,
or 492 tons. Hence we can form the

preceding table of strains in the chords.

113. Vertical strains. For the strains in the struts

of Simple Truss No. 1, add Eq. (131) to Eq. (145).

In No. 2 add Eq. (132) to Eq. (146). In No. 3 add

Eq. (133) to Eq. (147), and in No. 4 add Eq. (134) to

Eq. (148). For the ties multiply the vertical strain so

obtained by the secants of the tie angles, which are

1.414, 1.25, 1.118 and 1.0308. The following gives

the strains in the braces :

A n



152 A TEEATISE ON

Values
of u.
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Total compression in Aa and A'a' is 240 tons
;

the strains in the end braces determined as in the pre-

vious cases.

114. Otber Compound Truses. In the same manner

equations may be deduced for any compound truss with

vertical struts and inclined ties composed of any number

of simple trusses, and so many examples have been

given that the process can present no difficulties.

us. simple Forms of Equations. The difference be-

tween the other moving-load equations in the last case

and -^-(l u)" is very slight, and being always on the
oi

safe side, the latter form may be used in practice for all

the simple trusses in this case, and all difficulty in the

addition of equations thereby avoided.
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CHAPTER V.

TRUSSES WITH HORIZONTAL CHORDS, WITH STRUTS

TIES OF EQUAL INCLINATIONS, SUBJECT TO CONSTANT

AND TO MOVING LOADS.

CASE I. A SIMPLE TRUSS.

ABODE FGHI
\/\/X/\/abed e fgh

Fig. 47.

116. Horizontal strains. What is generally termed a

Warren Girder, shown in Fig. 47, is an example of this

description of truss, supporting the load upon the upper

chord. In this case moments may be taken around the

panel points of the upper chord to obtain the tension in

the members of the lower chord vertically beneath these

points, and since the load may be considered as concen-

trated at these points, we have the same conditions

which in (28) gave us Eq. (14),

TT __ WX _ WX*
= ~ ~~

for the maximum horizontal strain. This equation
can be applied only to the lower chord. For the

strain in the upper chord, moments must be taken
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around the panel points in the lower chord, since it is

only at these points that a vertical section can be made

which does not cut more than one- member (having a

moment) subject to a horizontal strain.

Let x' be the horizontal distance from one abutment

to any one of the lower-chord panel points, w the full

uniform load, and p the distance between the points ;

and we can form the equation,

TT/ __ __ n * 7\~~~~ "
(

for the compressions in the members of the upper chord,.

opposite the lower-chord panel points, distant x' from

the abutment.

117. Vertical Strains from a Constant Load. Eq. (14),

which gives the lower-chord tension, gives also the com-

pression in the upper chord at the point to which x is

measured
;
that is, the resultant compression from the

strains in the braces and the chord-member on one side

of the point. Similarly, Eq. (157) gives the tension at

the points in the lower chord. Therefore, if the first be

the strain at F, as it is at the same time in ef, and the

second the strain at f, as it is at the same time in FG,
the difference between the two will be the horizontal

component of the strain in the brace Ff, and its vertical

component may be obtained from the proportion of

a? x': d.

Performing this operation, we have for the difference
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between Eqs. (14) and (157), or the horizontal compo-

nent of the strain in the brace,

<w w , ,\ lx + x'\ .

H _ H' = ,-*)- - - * +

Since p = 2 (a? a?'),
we have from the proportion

above,

and as x = x' + ^,

v= f-T - - -
<i

is the vertical component of the strain in Ff.

If Eq. (14) next represent the strain at G, and be

subtracted from Eq. (157), representing the strain at f,

we shall again obtain

Vw woo'
z^ .

for the vertical component of the strain in fG. This

equation is the same as Eq. (18), x' here being the same

as u, that is the distance from the abutment to midway
between the loaded points.

118. Vertical Strains from the Moving L,oad. As this

case comprises but a single system, one panel point can-

not be fully loaded without a portion of the weight

coming upon the next point, and thus rendering the

conditions similar to those of the case in (54), and con-
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sequently Eq. (37) applies wheji the truss is

than half loaded, and Eq. (39) when less than half loaded.

119. Example.- In Fig. 47,

Let I == 80 feet, the length of the truss,

d = 5 feet, the depth of the truss,

p = 10 feet, the distance between the panel

points, in the same chord.

w' = 80 tons, the weight of the full uniform

movable load,

w 40 tons, the weight of the constant load.

Substituting the values of these constants in Eqs.

(14) and (157), we can form the following table of

horizontal strains :

Values of x.
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when the load covers tyilf and more than half the

truss
;
and Eq. (39),

w wu
Y : : ~~~

-u-

when the load covers less than half the truss.

In these equations u is the distance from the abut-

ment to a point midway between two panel points in

the loaded chord, and the equations give the vertical

components of the strains in the braces between these

two points. As long as Y has a plus value, that brace

whose loaded chord end is nearer to the abutment from

which u is measured is a tie, while that brace whose

unloaded chord end is nearer is a strut.

As the equations are applied to the different ends

of the truss, it will be seen that some of the braces near

the centre act sometimes as struts and sometimes as

ties; these are termed counterbraces. 'Substituting the

values of the constants, and multiplying by 1.414 the

secant of the angle of all the braces,

Values of u.
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CASE H.^ A DOUBLE TRUSS CONTAINING AN EVEN NUMBER

OF PANELS.

AB CDEFGHIK LMNOPQ R

abcde fgh ik lmnopqr|
Fig. 48.

120. Let Fig. 48 represent a truss composed of the

two simple trusses of Figs. (49) and (50). The first

of which will be termed Simple Truss No. 1, since its

braces meet at the centre, and the other Simple Truss

No. 2.

AB D F H K
,
M O QR

i
c e g i n p

Fig. 49.

In these figures those braces which act solely as coun-

terbraces are removed.

ACEG LNPR
a b d f h k

Fig. 50.

In these trusses the vertical strains, or those strains

having vertical components, are entirely independent

of each other
; and, as in the previous cases of com-
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pound trusses, the horizontal strain in the compound

truss is the sum of the strains in the simple trusses.

121. Horizontal Strain**.

Let I = the length of the truss,

d = the depth of the truss,

p = the length of a panel or chord-member.

w = the full weight, uniformly distributed.

ff,
x' &c. = the distance from the abutment to any

panel point.

Each simple truss bears half the load which is upon

the lower chord.

_mz mf_ . . (160)"
'

is the compression in the upper chord opposite to the

loaded points of Simple Truss No. 1, to which x is the

distance, and

'

is the compression in the upper chord opposite to the

loaded points of Simple Truss No. 2, to which x' is the

distance. The value of H in one simple truss at #,

added to the value of H' in the other simple truss at a

point nearer the centre by the value of p, will give the

amount of horizontal strain in the upper chord of the

double truss between x and x +j?, or in that member

of the upper chord which is on the centre side of the

point to which x is measured.
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Making x' of Eq. (161) equal to x +p of Eq. (160),

and adding the two equations, we have,

H -

and making x =
2, we have,

__ i , /1Q\--<f + <163)

Here z is the distance from the centre of the truss to

the abutment end, and z S.
consequently the distance to

A

the centre end of that upper-chord member whose strain

is given, by H.

If x of Eq. (160) be made equal to a' + p of Eq.

(161), and the two equations added, we shall have the

same result, or Eq. (163) will give the compression in

all the members of the upper chord.

In Fig. (49),

is the tension in the lower chord opposite the upper-

chord panel points to which x is measured.

In Fig. 50,

- (165)

is the tension in the lower chord opposite the upper-

chord panel points to which x' is measured.

ll
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The tension in this case, in one simple truss at x,

added to the tension in the other simple truss, when

x, __ x _j_^ wiu give the tension in that member of the

double truss on the centre side of the point to which x

is measured.

Making x' of Eq. (165) equal to x +p, and adding to

Eq. (164), or making x of Eq. (164) equal to x' +p, and

adding to Eq. (165), we obtain,

TT_. wl ^L(z - (166)~""
>

for the tension in any member of the lower chord,

where z ^ is the distance from the centre of the truss

2S

to the centre of the member.

122. Vertical Strains from a Constant L,oad. It will

be seen from the last case that the constant-load vertical

equations may be obtained from the simple-truss hori-

zontal equations, as in the previous cases
;
that is, from

the difference in these horizontal equations applying to

the same chord. In the last case the vertical equation

was obtained from the difference in the horizontal

strains at the two ends of the same brace ;
but it would

be the same had it been obtained from the difference in

the upper-chord equation alone, at two ends of the same

panel. The proportion was : d\ but if we take the

horizontal strains at the two ends of a panel of the

simple truss, their difference is just double the difference
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at the two ends of a brace, because, between two weights

or loaded panel points, the horizontal strains or hori-

zontal components of the strains in the two braces are

equal ;
the proportion will therefore bep : d, whence we

have for either simple truss,

V = _=,. . (167)

in which u is the distance from the abutment to the

centre of any loaded chord-member of the simple

trusses.

123. Vertical Strains from a Moving Load. Under a

moving load the simple trusses present the same cases

as Fig. 21 and Fig. 22
; and Eq. (46) applies to that

simple truss having a full end panel, or in this case to

Fig. 49
;
and Eq. 45 to that simple truss having an end

panel of half the length of its other panels, in this case

to Fig. 50. Each of these is to be added to constant-

load equation (167).

124. Example. Let Fig. 48 represent a truss in which

I = 160 feet, the length of the truss,

d = 20 feet, the depth of the truss,

p = 10 feet, the length of a panel or chord-membe^
w f'= 160 tons, the weight of a full movable load,

w = 80 tons, the constant-truss weight.

The load is upon the lower chord.
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Substituting the values given above in Eqs. (163)

and (166), we form the following table of strains in the

upper and lower chords :

Values of z ?.
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Values of u in

Truss No. 1.
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CASE IIL A DOUBLE TRUSS CONTAINING AN ODD NUMBER

OF PANELS.

121212 1221212121
V V V V V

2121212112121212
Fig. 51.

125. Horizontal Strains. This truss is composed,

like the previous one, of two simple trusses, the panel

points of which are numbered in the figure in the same

manner as before, and the braces which act solely as

counterbraces shown by the dotted lines.

Proceeding in the same manner as before, we obtain

for the horizontal strains in the upper chord,

T wl w ,

where z is the distance from the centre to the panel

points of Simple Truss No. 1 in the upper chord, and

H is the strain in that member on the abutment side of

the point to which z is measured.

H/ = wl_ u^ p\ '_ wjf
(

8d 2dr 2> 8cfl'

where z
f

is the distance from the centre to the panel

points of Simple Truss No. 2 in the upper chord, and

H' is the strain in that member on the abutment side of

the point to which z* is measured.
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In the lower chord,

H _ wl
_

w , p\
'

wp
9

}~
(z

/ (170)

z being the distance to the panel points of No. 1 in the

lower chord, and H the tension in the member on the

centre side of the point to which z is measured
;
and

z being the distance to the panel points of No. 2, and

H' the tension in the member on the centre side of the

point to which z
f

is measured. In all these equations

w is the maximum uniform load, or equal to w 1 + w of

the examples previously given.

126. Vertical Strains from a Constant Load. The

vertical equation for a constant load upon No. 1 is,

V =?-S< 9-
- (m>

and for the constant load upon No. 2,

- - -
<
173>

127. Vertical Strains from a Moving Load. The ver-

tical equations for the moving load are the same as in the

last case, and their application is governed by the same

principles which have been explained in the previous

examples of double trusses. An example of the

application of the equations belonging to this case is

unnecessary.
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CASE IV. A QUADRUPLE TRUSS CONTAINING AN EVEN

NUMBER OF PANELS.

A B C D B F G H I K L M N O P Q R 8 T U V W X Y Z

abcdefgh iklmnopqrs t uvwxyz

128. Omitting the braces which are used solely as

counterbraces, and numbering as before, we have the

four simple trusses shown in Fig. (53).

32143214321 12341234123

J||1432143214321234123412341
Fig. 53.

129. Horizontal Strains. In this figure the weight

borne by each truss is
,
the load being upon the lower

chord.

, By reasoning as in the previous case of a quadruple

truss, we obtain, for the upper chord of Simple Truss

No. 1,

TT _ _~~~~ WX
(174)

x being the distance to a point in the lower chord.

For No. 2,

H, = ^_W; . puns'
'

Sd 8dl
h
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For No. 3,

WX _ _

8d ~Sdl
'

For No. 4,

TTW _ wx" f _ __ ,
x, 7?x~~ ~

An inspection of this compound truss will show that

the compression in any member of the upper chord, QR
for example, is the compression in that simple truss, to

whose point in the lower chord B is opposite, or Simple

Truss No. 1 at a?,
added to the strains in No. 4 at x+ p,

in No. 3 at x + 2p, and in No. 2 at p.

Making these changes in the values of a/, x", and a/",

and then adding the equations, we obtain, after making

.
. (178)

Sdl Vl

z is here the distance from the centre to the panel

points in the upper chord of Simple Truss No. 3, and H
is the strain in the member on the centre side of that

point ; and, similarly, the same equation will apply

when z is made the distance to any panel point in the

upper chord of No. 4.

By a similar process we obtain for the remaining

members of the upper chord,

being the distance from the centre to any upper-
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chord point of No. 1 and No. 2
;
H' being the compres-

sion on the centre side of that point.

In the lower chord,

is the tension in those members on the centre side of the

points in the same chord of Simple Trusses No. 3 and

No. 4, and

Z w \*7'w

is the tension in the members on the centre side of the

points of No. 1 and No. 2.

These equations apply to all except the end members

of both chords
; their strains will be determined from the

vertical equations.

130. Vertical Strains under a Full Load. From the

simple-truss horizontal equations (174), (175), (176),

and (177), we have, for No 1,

For No. 2,

v=
f-fi<

tt'-*>- -
(183)

For No. 3,

And for No. 4,

V=
?-i?(M

'"+^ ' (185)
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131. Horizontal Strains in the end-chord

The strains in the end members of either chord are the

strains in the three simple trusses whose points come

upon and next to the abutment, or, as that truss whose

point is upon the abutment has no moment, the strain is

equivalent to the strains in the two simple trusses whose

points are next to the abutment. This strain is most

easily obtained from the vertical equations, as was done

in (100). Whence we obtain,

-- - . (186)

in the lower chord
; and,

H = *0!L - - - - - (187)Q fJ \ '
' ~ f

Otv

in the upper chord, when No. 4 has a point in the lower

chord distant^? from the abutment.

_ (18g)
8d

'

i in the lower chord
; and,

i in the upper chord, when No. 1 has a lower-chord point

distant p from the abutment.

in the lower chord
; and,
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in the upper chord, when No. 2 has a lower-chord point

distant p from the abutment.

H =^; lyL - (192)
Sd 4dl

'

in the lower chord ; and,

in the upper chord, when No. 3 has a lower-chord point

distant p from the abutment.

132. Vertical Strains from a moving Load. The equa-

tions determined in the case of the quadruple truss with

vertical struts and inclined ties are equally applicable to

this truss, and their application is governed by the same

principles.

133. Example.

In Fig. 52,

Let I = 288 feet, the length of the truss,

d 24 feet, the depth of the truss,

p= 12 feet, the length of a panel or chord-mem-

ber,

u/= 288 tons, the weight of a full movable load,

w = 144 tons, the constant-truss weight.

The load is upon the lower chord.

For the chord-members we use Eqs. (178), (179),

(180), and (181), except for the ends, where Eqs. (186)
and (187) ;

w of these equations being equal to uf + w,
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or 432 tons
;
whence we can form the following

table :

Values of
z of Eqs.
(179) &
(180).
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Substituting the values of the constants, and multi-

plying for the end braces by 1.118, and for all the others

fcy 1.414, we have the following table :

Values of

u in Eq.
(133) &

Eq. (185).
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134. It is not deemed necessary to give further ex-

amples of compound trusses with equally inclined struts

and ties, the principles governing the determination of

equations in any case having been sufficiently illustrated.
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CHAPTER VI.

TRUSSES WITH HORIZONTAL CHORDS AND INCLINED BRACES,

THE TIES HAVING A DIFFERENT INCLINATION FROM THE

STRUTS, SUBJECT TO CONSTANT AND MOVING LOADS.

CASE I. A DOUBLE TRUSS WHOSE UPPER CHORD IS DIVIDED

INTO AN EVEN NUMBER OF PANELS OR MEMBERS.

135. There is but one truss of the character described

in the heading of this chapter in general use, the Post

Truss, Fig. 54, where the struts have a horizontal extent

of half that of the ties, the extent of the latter being

equal to the depth of the truss.

212121212121212121212121212ABCDEFGHI K L M N O N'M'L' K' I' H'G' F'E' D'C' B' A'

fn12121211212121
Fig. 54.

Under the action of the full load the truss may be

resolved into two simple trusses, one of which is shown

in Fig. 55, and termed, as in the previous cases, since its

braces meet at the centre, No. 1.

A B D F H K M M' K' H' F' D' B' AVWWX AAAAAAI
b d f h k m o o' m' k' h' f d' b'a'

Fig. 55.
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The other, shown in Fig. 56, is termed No. 2.

A C E G I L L' I' G' E' C' A'

/VX/WX /VV\/\A/
c eg i 1 n n' 1' i' g' e' c' a' m

Fig.. 56.

In both the counterbraces are removed.

136. Horizontal Strains. Under a full load upon the

lower chord, Simple Truss No. 1, having the panel point

next the abutment, will be considered as bearing the

load which comes directly upon the abutment, and

which, since the point is only half a panel length from

the abutment, is one-fourth a panel load. On the next

to the abutment panel point rests a half panel load from

one side, and a fourth panel load from the other, making

upon it in all three-fourths a panel load.

Let I = the length of the truss,

d = the depth of the truss,

p = the length of a panel or any upper-chord mem-

ber. The load, w, is upon the lower-chord.

Simple Truss No. 1 bears + ,
and No. 2,

2 o

j?
in this example.

2 L

Let os be the distance from the abutment to any

point in the lower chord of No. 1
;
then the moment of

the reaction of the abutment is ----
^-,

the moment

of the load directly upon the abutment, -, of the load

12
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on the next panel point, -^(o? 4jV
an(* on the re"

4' A /

mainder of the truss i of ^(a \ (x ^), whence
fr J / 2i/

we have,

TT WX WX* . pWX . p*W /IC\A\
r I . __ I _ , ._ | I t7\t I

T77 TT/7 >! J7 1^^7 \ /

for the compressions in the upper-chord members oppo-

site the panel points in the lower chord to which x is

measured.

Taking moments around the panel points in the

upper chord of No. 1, distant d from the abutment,

we obtain for the tensions in the lower-chord members

of this simple truss opposite these points,

-rr, _ WX' _ WX
1* pWX p*W /I Q^\~~~"~ ~'~

Prom moments around the lower-chord points of

Simple Truss No. 2, distant x" from the abutment, the

compressions in the upper-chord members opposite

these points are given by

TT// __ p /-.

QgN" " " ~ ~

And for the lower-chord members of the same truss,

x'" being the distance to the upper-chord panel points,

a-,,, _ wx" f wx'"* wpx"
1

n Q7 >.~' ""
1ST

The strain in the members of the upper chord of

the double truss is found by making \
x

\ of Eq. j^f
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equal to
j /,T_ [?

and adding the equation so changed

to Eq. IQ/> ?
whence we have for the compressions in

those members opposite the lower-chord points of No.

1, x having been made equal to z,
m

d m 2 Ml'

And for the compressions in those members opposite

the lower-chord points of No. 2, x'
f

having been made

equal to z',

% and z' being respectively the distances from the centre

of the truss to the lower-chord panel points of Simple

Trusses No. 1 and No. 2.

The tension in the lower chord of the double truss is

ifptt%

and adding the equation so changed to Eq.

whence the strain opposite the upper-chord point of No.

1 is, making x' = --
z,

&

H = S-^<*+)', - - (200)
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and opposite the upper-chord points of No. 2, making

,_ I

''~2

-
(201)

137. Vertical Strains from a full Load. As in the other

compound trusses under a full load, the vertical strains

here, in the simple trusses, are independent of each

other, and may be obtained from the upper-chord sim-

ple-truss horizontal equations, and are,

' - '
<202 >

for No. 1, u being the distance from the abutment to a

point midway between the loaded points of this simple

truss, and

for No. 2, u' being the corresponding distance in this

simple truss.

138. Vertical Strains from a Moving Load. This

truss has one decided peculiarity : the members of the

simple trusses are connected by the counterbraces on

the same side of the centre. Let the point I be loaded
;

then that portion of the weight which is borne by the

right abutment is conveyed thither by the braces,

through the points M, m, N, n, to O
;
from O it may

pass, to o, thence to N' and thence solely through the
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braces of Simple Truss No. 2 to the abutment
;
or from

O it may pass to o', thence to M, and thence solely

through the braces of No. 1 to the abutment
;
or again

from O it may pass partly through o and partly through

o'; but as the greatest strain must be provided for, each

simple truss must be calculated to bear the whole of the

strain which can possibly come upon it.

Let wf

represent, as before, the weight of a full

movable load, and let the partial load extend from one

abutment a distance (I u) less than
;
u in this case

being the distance from the farther abutment to the cen-

tre of a panel of the double truss, the reaction of this

abutment is, since the first panel point can bear only

- -
(204)

This would be the vertical strain from the partial

load in the braces between the end of the load arid the

unloaded abutment, were there no strain from the con-

stant-truss weight.

As this strain, Eq. (204), passes from the end of the

load towards the centre, it meets the constant-truss

strains, Eqs. (202) and (203), passing from the centre,

the less of these neutralizing its amount in the greater ;

and since the moving-load strain passes through the

counterbraces from one simple truss to the other, the

same moving-load strain meets the constant-truss strain
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from both simple trusses, differing in this respect from

its action in the other compound trusses.

Let every panel point, in the figure, from the left

abutment to and including the point m, be fully loaded
;

then Eq. (204), when u is the distance from the right

abutment to a point midway between m and n, is the

portion of the load borne by the right abutment. A
part of this strain at the point 1 meets the constant

strain from Simple Truss No. 2, and the remainder of it

meets the constant strain from No. 1 at m. If u and ur

in the Eqs. (202) and (203) be made greater than 1,

and the difference in their successive values be kept

constant, each represents the distances to the centre of

the lower panels of the other simple truss than that to

which it originally belonged, and V in each equation

has a minus value, indicating a vertical strain passing

from the abutment from which u and &' are measured.

If u of one equation be made equal to u' +p of the^

other, and the equations then added, we shall have,

' - '
<
205

>

for the total amount of constant-truss vertical strain

that meets the strain of Eq. (204) when u' is greater

than
; (had u' of the other equation been changed,&

and the two added, the resulting equation would be the

same).

Eq. (205) has a minus value, consequently the differ-



THE STRENGTH OF BRIDGES AND HOOFS. 183

ence between it and Eq. (204) may be obtained by

adding the two
;
hence

is, as long as it has a plus value, a strain passing to the

abutment from which u is measured. When it has a

minus value it passes to the other abutment and ceases

to be of use, for it indicates a less strain than when the

load extends to the same point from the other abut-

ment.

The value of u' differs from that of u in this man-

ner: Suppose the segment a to m, inclusive, to be

loaded as before, then uf
of the latter part of the equa-

tion is the distance from the right abutment to n, or the

centre of a panel of a simple truss, but u is the distance

from the same abutment to the centre of a panel of the

double truss, in this case, to midway between m and n
;

hence u = u f + ^, and the equation becomes

V: =

!?*-)'- -fj+f-X-
-

(207)

This equation extends from that point where it first

has a plus value to the centre, but no farther. When
the load covers half the truss, the vertical strain to the

unloaded abutment may take one of three courses, as

explained before.

First, suppose it all to pass from the point o to
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N', or o' to N, then since u = --, Eq. (204) becomes
L

Y= wl_.pv .... ma)O O 72 * * *

and this is the vertical strain throughout the braces, of

Simple Truss No. 2; then, as the load passes on, and

the successive points of this simple truss become -loaded,

we have, for the load upon them, within the space

I

- -
(209)

adding this to Eq. (208), we have,

*-&-*+!-&-% - -
<210 >

Again, adding to Eq. (203), we have,

for the total vertical strain, or vertical component of the

strain, in the braces of Simple Truss No. 2, when the

load covers more than half the truss.

When the truss is half loaded, the strain from all

except the point next the centre may pass through the

braces of No. 1 to the unloaded abutment, or all of Eq.

(204), when u = - + p, which is therefore,
L

IT
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The load on the panel points of No. 1, in the space

- -
, IS,

= _ _
16 IT 4Z*

Adding these and Eq. (202), we have,

for the maximum vertical strains in the braces of No. 1.

139. Example. In Fig. 54,

Let I =312 feet, the length of the truss,

d = 24 feet, the depth of the truss,

p = 12 feet, the length of a panel,

w'= 312 tons, the weight of a full movable load,

w = 156 tons, the weight of the truss.

For the horizontal chord strains, we use Eqs. (198),

<199), (200), and (201). Substituting the values of the

above constants, we can form the following table of

strains :
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Values
of 2 in

Eq.
(198).
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brace must be proportioned for the greatest strain which

can come upon it in any case. The vertical strain is to

be multiplied by 1.031 for the struts, and 1.25 for the

ties, these being the secants of their angles. The follow-

ing is a table of the strains in the braces :

Values
of u in

Eq.
(214).
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The ambiguity caused by the arrangement of the

struts at the centre and the counterbraces may be en-

tirely avoided, and the weight divided between the two

simple trusses, by the arrangement shown in the follow-

ing case :

-CASE
'

II. A DOUBLE TEUSS WHOSE UPPEE CHOED IS

DIVIDED INTO AN ODD NUMBEE OF PANELS OE MEM-

BEES.

14O. Let the Post Truss, described in the previous

case, be opened at the centre, so that the upper ends of

the centre struts are one panel length apart, and we

have, adding the ties, the truss shown in Fig. (57).

A BODBJ-OHTKLMNOo' NVl/ K' iVo' F' E'I/ </ uV
1 212121212121221212121212121

121212 121212 12121212121212
b c d e fgh iklinnop o'n'm'l' k'i'h'g'f

'

e'd/c'b'

Fig. 57.

The struts and ties have the same inclinations as in

the previous case.

141. Horizontal Strains. Under the action of a full

uniform load this truss may be resolved, as in previous

cases, into two simple trusses, whose separate panel

points are shown in the figure by the numbers 1, 1, etc.,

and 2, 2, etc.

Let I = the length of the truss,

d = the depth of the truss,

p = the length of a panel,

w = the weight of a full uniform load.
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The load is upon the lower chord. As before, the

quarter panel load, directly upon the abutment, is con-

sidered as belonging to that simple truss which has the

panel point next the abutment. Therefore, in this

example No. 1 bears
--y-,

and No. 2 bears + .

Hence, taking moments around any points of No. 1

in the lower chord, distant x from the abutment, we

obtain for the strain in the upper chord opposite this

point,

_
wx wx* Zp*w

: " H"'
and for the lower chord, opposite any upper-chord panel

point distant x' from the abutment,

.
(216)

From moments around the points of No. 2 we have

for the upper-chord member opposite any lower-chord

point, distant x" from the abutment,

p'w (21?
v

I63P

and for the lower-chord member, opposite any upper-

chord point distant x'" from the abutment,

(218)
4d 4di

" "
Sdt

These are the strains in the chords of the simple

trusses under their separate loads. The strain in the

upper chord of the double truss, opposite any lower-
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chord panel point, is the strain in the upper chord of

the simple truss at the same point added to the strain in

the other simple truss at the next panel point towards

the centre
;
whence we obtain but one equation for the

upper chord :

z being
=

a?,
or the distance from the centre of the

2

truss to the lower-chord panel point, opposite to which

is the member whose strain is given by the equation, and

is, therefore, the distance to the centre of that member.

In the lower chord of the double truss the strain at

any point is the simple-truss strain at that point added

to the other simple-truss strain at the next panel to-

wards the abutment, whence we obtair for any member

of the lower chord;

d being =
a?, or the distance from the centre of

the truss to the centre of any lower-chord member whose

strain is given by the equation.

142. Vertical Strain from a Constant Load. This,

as before, is obtained from the simple-truss horizontal

equations, and is for Simple Truss No. 1,

V=- wu mn
4

"

~2P

where u is the distance from the abutment to any point



THE STRENGTH OF BRIDGES AND ROOFS. 191

midway between the lower-chord points of No. 1
; and

for No. 2 it is,

/
IAS IAJ Cv /c\c\f\\V >

.... (222)~
4- 27

where u' is the distance from the abutment to any point

midway between the lower-chord points of No. 2.

143. Vertical Strains from a Moving Load. If we

consider the truss as half loaded, it will be seen from

the figure that the portion of the weight borne by the

unloaded abutment, excepting that upon the central

panel point, passes from the end of the load to that

abutment solely through the braces of Simple Truss No.

2. If less than half the truss be loaded, the load ex-

tending from one end, the weight borne by the unloaded

abutment passes by means of the counterbraces from

one simple truss to the other until it reaches the centre,

beyond which it is confined to No. 2, as before.

In the case of a less than half load, the conditions

are similar to the previously-described Post Truss, and

Eq. (204),

gives the vertical strain passing to the abutment from

which u is measured, the minimum value of u being

+
"Ip

and w'

being the weight of the full load.

To this strain must be added the equation of the con-
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1221)

(222)'

V added to Eq. -L91 [A \ I & & JL \'"
J \ J

when
j jj'

i is made equal to
j Jj,

+
jj j

. Whence,

and since u' + ^- of this equation is the distance to the
ft

same point as u of Eq. (204), we have, adding these

equations,

- -
(224)

It must be borne in mind that ^, in this equation, is

the distance from the abutment to the centre of a panel

of the double truss, and that its least value is + ,
2i JL

and that the equation is only needed as long as V has a

plus value.

When the load extends from one abutment beyond
the centre, we have for the strains on the braces of No.

2, the strain of Eq. (204), when u =-+?-, or,

8 4r

Then, as the successive points of No. 2 become

loaded, we have, for the proportion of weight passing
to the unloaded abutment from which u' is measured,



THE STRENGTH OF BRIDGES AND HOOFS. 193

which is to be added to Eq. (225), and to the constant-

truss strain of No. 2, Eq. (222)j and we have,

for the maximum strain upon the braces of No. 2, in

that panel whose centre is distant u' from the abutment.

Until the moving load, extending from one abut-

ment, reaches the central panel point, no vertical strain

from it comes upon the braces of No. 1 in the unloaded

half
;
the greatest strain upon these braces from the cen-

tral point is when it has a panel load upon it. As the

successive points towards the unloaded abutment come

under the load, we have for the proportion of weight

borne by this abutment and the greatest vertical strain

from the movable load in the panel of No. 1 to which

u is measured,

and adding this to Eq. (221), we have,

<228)

for the maximum strain in No. 1.

There is a portion of the load on No. 1, between the

centre and the end of the load, that passes to the other

abutment, or the one from which the load extends, the

strain of which is taken back to the centre by the coun-

terbraces.

13
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144. Example. In Fig. (57),

Let I = 324 feet, the length of the truss,

d = 24 feet, the depth of the truss,

p = 12 feet, the length of a panel,

w' = 324 tons, the weight of a full movable load,

w = 162 tons, the weight of the uniform permanent

load.

145. Horizontal Strains. Substitute the values of the

constants in Eqs. (219) and (220), w of these equations

being w' + W, or 486 tons, and we have the following

table of strains :

Values of

z in Eq.
(219).
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n>
140. Vertical strain. Substitute the values oF^tte""

constants in Eqs. (228), (226), and (224), and multiplying

the results by 1.25 for the ties, and 1.031 for the struts,

we have the following table of strains in the braces :

Values of u
in Eq. (224).
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Total compression on the end struts, 238.5 tons.

The compression on Nn and N'n' is greater in the

second equation than in the first.

147. This system of bracing, like the others, may be

extended to compound trusses containing any number

of simple trusses, for which equations may be similarly

found.
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CHAPTER VII.

INCLINED TRUSSES OR RAFTERS.

148. The same principles govern the investigation

of strains in inclined as in horizontal trusses, and mo-

ments are to be taken and equations formed in the same

manner.

The inclined truss thrusts horizontally as well as

vertically against its abutments or walls, or the latter

may be considered as having a horizontal reaction in-

ward as well as a vertical reaction upward.

Fig. 68.

149. Horizontal Reaction. Let AB and AC, Fig.

58, represent a pair of inclined trusses or rafters, joined

together at the apex and to the walls by one chord only.

Let I = the horizontal distance, BC, between the walls,

V = the length of each rafter,

h = the height of the apex, A, above the walls,

w = the whole weight, uniformly distributed over

the two rafters.
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The rafter to the right of A is kept in equilibrium by

the vertical reaction of the wall, ,
the weight on the

rafter, ,
and the inward reaction of the wall

; hence,

taking moments around A, we have for the moment of

the latter, the difference between the moments of the

other forces, or,

vH=, .....
(229 )

is the horizontal reaction of either wall.

Taking moments around D, in the line of the tops

of the walls, it will be found that the horizontal thrust

at A is the same.

15O. Had the rafters been joined by both chords at

A, it would be impossible to determine the proportion

of strain to which each chord would then become sub-

ject. In such a case one rafter could not bear an equal

or certain fixed proportion of strain to the other unless

the mechanical construction possessed a theoretical pre-

cision almost unattainable in practice; and even were

this done, the different expansions and contractions of

the two chords would immediately affect the amount of

strain upon each.

All ambiguity of strains in trusses must, where prac-

ticable, be avoided, and we shall therefore consider the

rafters as joined together by one chord only.
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151. The proportion between the Horizontal and Ver-

tical Reactions of the Wall. T& find the proportion

between the horizontal and vertical reactions of the wall,

we have,

wl
9
W .. 7 I

W :

2"

: T

Draw, in Fig. 58, the vertical line BE =
A, and the

horizontal line EF . If BE represent the amount
4

of vertical reaction, or, then EF will represent the
z

horizontal reaction, and this proportion will hold good
for any value of w, great or small.

The resultant force of BE and EF is represented by
the line BF. This line gives the direction and amount

of thrust of the rafter, and BE and EF are the vertical

and horizontal components of this thrust.

It will be noticed that the resultant thrust is not in

the line of the rafter, and that its direction depends on

the inclination of the rafter and not on w.

152. Longitudinal Reaction. Instead of horizontal

and vertical components, this thrust of the rafter, repre-

sented by the line BF, may be resolved into two other

components, one shown by BA in the line of the rafter,

and the other by GF at right angles to it. The first of

these we shall term the Longitudinal Reaction, and the

other the Transverse Reaction, the value of the former

being found as follows : Produce the lines EF and BG
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until they meet at I, and from F draw FG parallel to

BI
;
therefore FI = FE = -, and the triangle FGI is

4

similar to the triangle ADB, and

V : L :: L : L. = the length of GI.
2 4 Sf

Then,

I, Jr
"

"M/ M/l/

O

and,

_ __/7/ 3 _ ^2\

iM?"2A"4AFl "IF" "4?'

T _ wl' wA"" "'

is the longitudinal reaction of the wall or abutment.

153. Transverse Reaction. The transverse reaction

is found by a similar process.

and

or,

l':h:: L : ~- = the distance GF,
4 41

7 . hi .. w . wl
'

4?
"

2"
*

8F ;

=

gp.
- - '- - -

(231)

is the transverse reaction of the wall.
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154. Trus strains. Let Fig. 59 represent a pair of

rafters,

Fig. 59.

or inclined trusses, joined to each other and to the wall

by the upper chord, and divided into uniform panels by

the braces.

Let w the weight, uniformly distributed over the

two rafters.

I = the distance between the walls or lower

ends of the rafters.

I' = the length of each rafter between the points

of its connection.

h the height of the apex above the supports,

or the height of one end of a rafter above

the other.

d = the depth of the rafters, or the distance

between the chords at right angles to the

lengths.

cc = the distance along the upper chord to any

panel point from the point where it is

joined to the abutment.

L the longitudinal chord strain.

T = the transverse strain.

The weight is considered as concentrated at the
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upper-chord panel points the abutment bearing half a

panel load.

155. Longitudinal strain*. If we take moments

around any panel point in the upper chord distant x

from the wall, the moment of the longitudinal strain in

the lower chord, in the same transverse section, is Lx^ ;

and it is equal to the moment of the transverse reaction

of the abutment, less the moment of the transverse com-

ponent of the load on x : the longitudinal reaction of

the abutment, and the longitudinal component of the

weight on #, passing through the point about which mo-

ments are taken, have no moment.

The weight on x is - X #
;
and if it be represented

ftv

by the line ab in Fig. 59, be will be its transverse, and

ac its longitudinal component, and the triangle abc will

be similar to the triangle ACD ;
hence we obtain the

former component from the proportion

7, .
I .. wx .

wlx
'

2"

" W '

"IF'

and its moment is - -" X ^ ;
whence we can form

4^ 2 8^

the equation

for the longitudinal tension in the lower chord opposite

any panel point distant x from the wall.

Taking moments around a point in the lower chord

in the same transverse section, the moment of the trans-
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verse reaction of the wall and the load on x are the same

as in the other chord. In this case the conditions, so far

as the moment of the load on x is considered, are the

same as those which in (28) gave Eq. (14).

We have, therefore, Eq. (232) for the upper and

lower chord strains, and making x = z, we obtain,

wl wlz

where z is the distance from the centre of the upper
chord to the different panel points.

This strain, Eq. (233), is from the transverse reac-

tion of the abutment
;
but other strains from the longi-

tudinal component of the weight upon the rafter, and

the longitudinal reaction of the abutment, affect the

upper chord.

In considering the effect of these strains it will be

noticed that, though the weight on x is -, a half-panel
&l

load rests directly on the abutment, and consequently that

~wi(
x cH w^ express the true amount of the load be-

Zi LI

tween the panel point to which x is measured and the

abutment. The moment of its longitudinal component

is r(# ,
and the moment of the longitudinal

reaction is, from Eq. (230), f
_ + l

~}d. whence
'

\ 4h 41' i
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and

is the compression from the longitudinal strains which

are confined to the upper chord
;
and for this chord is

to be added to Eq. (233) ; bearing in mind that Eq.

(234) applies throughout the truss to the member on the

abutment or lower side of the point to which x is meas-

ured, and Eq. (233) to the member, as will be seen here-

after, on the side on which there is no inclined brace, of

the point to which z is measured
;
the equations have

been separated to avoid confusion from this cause.

Eq. (232) is greatest when x =
,
or at the centre,

2

when it becomes

and decreases both ways to the ends, where it becomes

zero.

Eq. (234) varies inversely as
a?, and is, consequently,

greatest at the abutment and least at the apex ;
its dif-

ference between any two points distant p apart, that is,

any two contiguous members, is, it will be seen by sub-

tracting Eq. (234) at x from Eq. (234) when x is made

a?

+JP||^
or the longitudinal component of a panel

load. It therefore receives no strains from the braces,
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nor transmits any to them, but is confined wholly to the

upper chord.

156. Transverse Strains. As Eq. (232) increases as

we pass from either end towards the centre of the rafter,

this change of strain must affect the braces, and as Eq.

(232) is similar to the horizontal equations for the hori-

zontal trusses, the braces, it will be seen, will depend

upon their inclinations for their character of struts and

ties
;
that is, if they are alternately transverse and diag-

onal, the latter will be ties when their upper or outer

ends are inclined towards the ends of the rafter, and the

former, struts
;
the reverse being also true. Similarly

to the other trusses, the difference in the different values

of Eq. (232) at the two ends of a panel is the longi-

tudinal component of the strain in the tie of that panel.

(Longitudinal, in this chapter, refers exclusively to line

of direction of the chord).

The difference in the values of Eq. (232) at x and at

# jp, is,

and from the proportion,

w
P(cD P\- w -. w (x P\

8 wr rj 8? w^ 2 j

and making u = x P or the distance from the end to

the centre of a panel, we have,

T _ wl win , /OQ v'-' - - ' '
(236)
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This strain becomes zero when u =
,
and increases

towards either end
;
but when u becomes greater than

?-, T has a minus value, indicating a strain passing to the

opposite end to that from which u is measured.

157. At either end of the rafter,

T =
f
.

- -
(237)

At the upper end, where x = ?, Eq. (232) becomes

zero, and Eq. (234), putting I' for x 2-, becomes

Hence we have two strains at the apex, one, Eq.

{238), thrusting upward and against the other rafter
;

the other thrusting downward and also against the other

rafter. The horizontal component of Eq. (238) is found
from the proportion,

I' L " ^ UJh
.
wi'__ whl

'2
"
4/T 4T

:

M~~~8F~
;

and of Eq. (237) from the proportion,

I' h " w^
" :

8T'

adding, we have,

___ wl whl wU wl~
' -

<239 >

total horizontal strain at the apex.
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The vertical component of Eq. (238) is from the pro-

portion, t: h ::

J*
-^ :

-
J*',

a thrust upward.

The vertical component of Eq. (237) is from the pro-

-,. I id wl*
porhon, /:__::_:__,

-,
. Z

2

7/a 7 wl
f* w wh*

and since -=J -
AP,
_ = ___,

a thrust downward, equal in amount to the other and

neutralizing it, leaving only a horizontal strain at the

apex.

158. Example. Let Fig. 59 represent a pair of rafter

trusses
;

Let I = 150 feet, the distance between the lower ends

of the rafters,

I' 80 feet, the length of either rafter,

li 27.84 feet, the height of the apex above the

wall,

p = 5 feet, the length of a panel,

d= 2.5 feet, the transverse depth of either truss,

w 20 tons, the weight, distributed uniformly over

the trusses.

159. Longitudinal Strains. For the upper-chord

strains substitute values in Eq. (233), the first value of

z being zero, and in Eq. (234), and add the strains so

found
;
for the lower chord use only Eq. (233), the first

value of z being 5. In the table of chord-strains below,

the strains for the upper chord, from the two equations,

are given separately and then added.
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Values of

zin Eq.
(238).
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16O. Tranvere strains. The load being concentrated

upon the upper-chord points, the strut belongs to that

point to which u is measured; Eq. (236) gives the

strains in the struts, and multiplied by 2.236, the secant

of the angle made by the ties with the struts, gives the

strains in the ties
; whence, by substituting the values

given above, we can form the following table :

Values of u.
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The moment of the weight on the segment x' is in

and its transverse component is given by the proportion,

// . I
. . wxr

. wp* .
wlvc

, wlp* m

therefore Eq. (232) for the upper chord becomes

L = - !^1__^L
8dl' Ml" 8rff"

a' being the distances to the lower-chord points.

In this case vertical equation (236) applies without

change, u being the distance to the centre of any upper-

chord panel member. The struts and ties are distin-

guished by their inclinations, and are the same as in

the same truss placed horizontally.
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CHAPTER VIII.

TRIANGULAR TRUSSES.

162. Triangular Trusses are those in which one

horizontal chord forms the base of an isosceles triangle,

the remaining two sides acting as the other chord, with

braces between. They are generally used to support

roofs, but also possess many advantages for bridge pur-

poses.

163. Let AB and BC, Fig. 60, represent two rafters

whose thrust at their supports is taken by the hori-

zontal chord BC, and connected to the chord by braces,

omitted in the figure.

ABC is a triangular truss, AB and AC acting as

one chord, the strains in which will be termed the longi-

tudinal strains.
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164. Longitudinal Strains.

Let w = the weight, uniformly distributed over the

chord struts, AB and BC,
I = the horizontal distance between the abutments,

B and C,

I' the length of either chord strut,

d = the height of the apex above the abutments,

or the depth of the truss at the centre,

x = the horizontal distance from one of the abut-

ments to any point between that abutment

and the centre,

H = the horizontal strain in the horizontal chord,

L = the longitudinal strain in the chord struts,

V = the vertical strain, or vertical component of the

strain affecting the braces.

Disregarding for the present the braces, and taking
moments around #, in a vertical section cutting no in-

clined brace, distant x from the abutment C, that part

of AC to the right of ab is kept in equilibrium by the

reaction of the right abutment, ,
the load on 5c,

~
~,

and the longitudinal strain at /.

Hence L, the longitudinal strain at 6, multiplied by

ac, the distance from a at right angles to its direction;

or,

2 2i

From similar triangles,

I' : d :: x : ac, or ac=.
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Substituting, we have,

dx _

T 2

T dx wx
ij ___ =

and

53 aar

From the shape of this truss it is evident that the

maximum value of x is
,
and that its limits are zero

and
;
when it is zero,

the longitudinal strain at the abutment, whose vertical

component, found from the proportion I' : c, is
;
or

2i

at the abutment the chord strut contains the whole verti-

cal strain. When x =
,

L = ...... (243,

and its horizontal component, from the proportion

I . wl

165. Horizontal strains. Taking moments around
fr,

those of the load on be and the reaction of the abutment

remain the same as above, and we have for the strain

and : d :: x :

^- ,
the distance ah.

2 I
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Substituting, we have,

H2dx wx wsc*
zz:

~T T "2P

and

TT <Wl WX
<
244

>

'This strain, like the longitudinal, is greatest at the

abutment, where x = 0, and

(245)

and least at the centre, where x = , and,
ft

or it equals the strain in a horizontal truss at the centre,

and increases from that point to the abutment, where it

is double that amount.

166. Vertical strains. H of Eq. (244) being the hor-

izontal strain at a
;

ny __ wl wot

~U "15'

will be the horizontal strain at the point d, distant a/

from the same abutment. The strain at d is evidently

greater than that at a
; subtracting,

is the difference ;
this may be caused by a tie from d to

5, with a strut from I to a, which would add to the ten-
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sion at d
;
or a strut from a to c, with a vertical tie cc,

which would neutralize a certain amount of tension at a.

Let the latter case be supposed ; then, since -(so x')4d

is the horizontal component of the compression in ac, its

vertical component is found from the proportion ad : dc,

Hence,

V =
*|p

.....
(247)

is the vertical component of the strain in the brace ac.

Now, if the truss be divided into panels of uniform

horizontal length, braced as in Fig. (62), with inclined

struts and vertical ties, and the weight considered as

concentrated at the upper panel points, it will still per-

fectly fulfil the conditions on which the above equations

have been based
;
and Eq. (247) is the vertical compo-

nent of the strain in that strut whose upper end is dis-

tant x horizontally from the abutment. It will .be

noticed that Eq. (247), or the vertical strain in the

braces, increases from zero at the abutment, where

nt\ I

x = 0, to at the centre, where x = .

Attention must be directed to the difference between

the equations of the triangular and of the horizontal

trusses.

The tension in any vertical tie is plainly the vertical

strain in that strut to whose lower end it is attached,
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except the centre tie, which receives the vertical strain

from two struts.

167. Example. In Fig. (61),

b c d e f g h

Fig. 61.

Let w = 50 tons, whole weight,

I = 100 feet, the length of the truss,

I' = 51.4 feet, the length of the chord struts,

d = 12.5 feet, the height of the truss at the

centre,

p 10 feet, the horizontal length of a panel.

From Eqs. (241) and (244) we have the following

table of the longitudinal and horizontal strains :

Values of #.
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same, multiplying the vertical strain by the secant of the

angle of the strut and a vertical.

Values of x.
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having the same vertical strain as that strut. If the

weight and dimensions of Fig. (62) be assumed the same

as those of Fig. (61), we have- the following table of

longitudinal and horizontal strains :

Values
of x.
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the horizontal chord, and generalJy the truss will be in-

verted, in which case the longitudinal and horizontal

strains will remain the same in amount, though changed
in character

;
the vertical equation will also remain the

same.

We shall now consider the effects of movable loads

to which the truss is subject when used as a bridge. Let

the truss, Fig. (62) inverted, be partially, but more than

half loaded, let the load extend from the left abutment

to a point distant u. from the right abutment, and let w'

= the weight of a full load of uniform density with the

partial load. By the principles of the lever, (I u,)*
2ti

is the reaction of the right abutment. Taking moments

around a point in the chord tie, or the lower chord,

distant x horizontally from the right abutment, x being

less than M, we have for the strain in the horizontal

chord,

I

and,

a constant for the entire distance u.

In the same manner for the tension in the lower

chord,

and

l-u)\ .... (250)
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also a constant, or, the compression in the upper chord

and the tension in the lower chord are the same from

the end of the partial load to the abutment. Conse-

quently no strain comes upon the braces between the end

of the load and the abutment, when the partial load cov-

ers more than half the truss.

Eq. (249) may be put in this form :

, R = d_wu
(l _u_\

Under a full load, the least horizontal strain through-

out the above distance, &, would be at the end of u

therefore, putting x= u, Eq. (244) becomes,

TT Wl WU
I I

t \
..

evidently greater than the strain from a partial load at

the same place. Similarly, it may be shown that the

longitudinal strain is greatest under a full load.

The above Eqs., (249) and (250), are true for any

value of u, while x does not exceed ; that is, when the

load covers less than half the truss, Eq. (249) is the

horizontal, and Eq. (250) the longitudinal strain from

the abutment to the centre, and being constant, do not

cause any strain in the braces between those points.

Let Fig. (63) represent a truss less than half loaded.
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Let x represent the distance from the right abutment

to a point between the centre of the truss and the end

of the load, being therefore greater than, but less than
2

u
; then,

2 I

the vertical distance between the chords! And from

moments around &,

-).
i

and

Hwx\== =-

is the horizontal strain in the upper chord between the

centre and the end of the load, and increases from the

centre, where it is the same as Eq. (249), as x increases,

to the end of the load, where x = u, and it becomes,

a strain very evidently, by comparison with Eq. (244),

less than the strain at the same point under a full load.

This decrease in the value of H, as we pass from the

centre, requires ties inclined as in full load, that is, as in

Fig. (64), or struts with the opposite inclination. The

less than half load requires the same braces as a full

load.

Let

TT __WX(l U)*

12
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be the compression at a, and

-o-, _~̂

x')

be the compression at c, then

TT, _ TT _ W(Z U)(X X')

4d(l x)(l
-

x')

is the horizontal component of the strain in ic, and this

component is to the vertical component as ac is to db
;

or,

2^ g).. H H/ .fKZ-*)'
~r s^-^y

greatest when a/ is greatest, or when it equals #, in which

case we have,

for the vertical strain in the braces at the end of a less

than half load.

The equation of the vertical strain at the same point
'

from a full load is, Eq. (247),

-y- _ WX
~2l'

but in this case x is the distance from the left abutment,

or I u
;
that is, the vertical strain in the braces from

the less than half load is equal to the vertical strain at

the same point from a full load.

^n _ uy
Again, i - L

?
the reaction of the right abut-

2Sv

ment, is less than -J - 2
;
or the vertical strain in the
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braces at the end of the load is greater than the reaction

of the unloaded abutment. This seeming contradiction,

that the braces between the centre and the end of the

load bear a grea/ter weight than the abutment, can be

readily explained.

In this case, and as H was determined,

wl'u

the tension in the chord tie under the end of the load,

and

. 7 wl'u

the vertical component of this longitudinal strain. This

strain is passing towards the loaded end of the truss, or,

in the present example, towards the left abutment. Sub-

tracting this from the vertical strain in the brace, since

it passes in the opposite direction,

w

the reaction of the right abutment, or the excess of ver-

tical strain in the braces is neutralized by an excess of

equal amount in the chord tie.

It is next necessary to ascertain the bracing required

Fig. 64.

under a partial but greater than half load. In Fig. 64,
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let u equal the length of the unloaded part, as before,

and x the distance from the abutment to a point under

the load
;
then from moments around d we have,

and

in which H increases as x decreases
;
this increase re-

quires ties inclined as in a full load, or as in Fig. (65) ;

that is, as far as the centre, where H reaches its least

value; beyond, H increases to the farther abutment,

requiring ties with the opposite inclination.

At any point, 5, from moments around c,

H'= "z-*-
Whence,

H'-H= a-a-
xx'

and, as before,

w wu* x x '

xx' ) '21

a strain passing in the same direction, and requiring the

same kind of brace, but less by~ than the vertical

strain from a full load of equal density.

Hence we see that in every case the strains from the

full load are the greatest, and that no braces are required
for a partial load except those needed under a full load.
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CASE I. A SIMPLE TRIANGULAR TRUSS WITH VERTICAL

STRUTS AND INCLINED TIES.

170. Example In Fig. 65,

ABCDEFGH I KLMNOPQR

Let I = 200 feet, the length of the truss,

d = 20 feet, the depth of the truss at the centre,

p = 12.5 the length of a panel,

w = 200 tons, the weight supported by the truss

when fully loaded.

The horizontal strains in the upper chord are ob-

tained from Eq. (244), and the longitudinal strains in

the lower-chord ties, from Eq. (241), whence the follow-

ing table :

Values of x.
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Eq. (247) gives the vertical strain in the ties, x being

the distance to the abutment end of any tie
; whence,

from the proportion of the vertical to the longitudinal,

we obtain the tensions in the ties.

The vertical strain in any strut distant x from the

abutment, is a panel load, or
-^,

added to the vertical

strain in the tie on the abutment side of the strut, or

-_ when xf = x p ; substituting and adding, we have,

is the compression in any strut distant x from the abut-

ment.

Whence the following table of strains in the braces :

Values of x.
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CASE II. A DOUBLE TRUSS WITH VERTICAL STRUTS AND
INCLINED TIES.

1212121212121212121212121
A B CD E P G H T K L M N W L' K' I' H' G' F'E' D' 0' B' A'

Fig. 66.

. This truss, like the preceding double trusses,

may be divided into two simple trusses whose braces act

independently of each other. The simple truss which

has a full panel at the end will be designated as No. 1,

the other as No. 2
;
their separate panel points are num-

bered in the figure. Each truss bears half the load.

Let I = the length of the truss,

d = the depth at the centre,

p = the length of a panel measured horizontally,

w = the weight, uniformly distributed.

ira. Horizontal strains. Simple Truss No. 1 has the

half-panel load resting directly upon the abutment, and

has also a full panel at the end, hence the horizontal

strain in the upper chord from this simple truss is

TT_ivl"

83'

Simple Truss No. 2 has a full panel load a half

(simple truss) panel length from the abutment, and its

horizontal strain is similar to Eq. (162),
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In the compound truss, the strain at any point in the

upper or horizontal chord is the strain in one simple

truss at the same point added to the strain in the other

simple truss at the next panel towards the abutment.

Hence, making x' of Eq. (256)
= x _p,

and adding to

Eq. (255), we have for the horizontal chord strain at

any panel point of Simple Truss No. 1,

wpx

And making x of Eq. (255)
= x' p, and adding to

Eq. (256), we have for the horizontal chord strain at

any panel point of Simple Truss No. 2,

173. Vertical Strains in the Braces. From Eq. (255)

the vertical component of the strain in any tie of Simple

Truss No. 1 is, where x is the horizontal distance to the

lower end of the tie,

V =
Hjj.

- - -
(259)

The vertical strain in any strut is the vertical strain

in that tie to which the upper end of the strut is at-

tached, and one panel load, or
;

if a? be the horizontal
i

distance of the strut from the abutment, the strain in it

is ^ + Eq. (259) at x 2p, or

(- 2,)=+ -
(260)
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From Eq. (256) the vertical component of the strain

in any tie of Simple Truss No. 2 is, where x' is the hor-

izontal distance from the abutment to the lower end of

the tie,

The vertical strain in any strut is, as before, the

vertical strain in that tie to which the upper end of the

strut is attached and one panel load
;
or when xf is the

horizontal distance of the strut from the abutment, the

compression in it is,

_ wx_ wp w , ,

U 21
r

''

174. Longitudinal strains. Taking moments around

any panel point in the horizontal chord of Simple Truss

No. 1, we obtain,

wl' wVx

And for Simp'e Truss No. 2,

Making X? = x + p, and adding Eqs. (263) and (264),

we have for the longitudinal strain in the chord ties of

the compound truss at the panel points of Simple Truss

No. 1,

T _wV wl'x _ wl'px (265}
~2d~~

"
'

13



230 A TEEATISE ON

Next making x = x' + />, and adding Eqs. (263)

and (264), we obtain, for the longitudinal strain in the

compound truss at the panel points of Simple Truss

No. 2,

T / __ w^ wl'trf _ wVp wl'p*
= ~ ~" " "~ "

175. Example. Let Fig. (66) represent a triangular

truss of the character described, in which

I = 240 feet, the length of the truss,

V = 123.69 feet, the length of each section of the

lower chord,

d = 30 feet, the depth of the truss at the centre,

p = 10 feet, the horizontal length of a panel,

w = 300 tons, the full uniform load.

The equations obtained above will apply to and give

the strains in every member of the truss, except the two

central horizontal chord-members. A part of the hori-

zontal strain which the equation gives as belonging to

them is taken by the inclined strut. The amount of

horizontal strain in this strut may be obtained from its

vertical strain by the proportion of the vertical to the

horizontal extent of the strut. It is then to be deducted

from the amount of strain obtained from the equation

applicable to the horizontal member.

This change is owing to the uniformity of the truss

(on which the equations were based) being broken by the

inclination of the strut.

The following table gives the strains in the horizon-

tal chord members :
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Values of x in

Eq. (257).
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The following table gives the strains in the braces

Values of x in

Eq. (259).
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i

CASE III. A DOUBJJE TRUSS WITH INCLINED STBUTS AND

TIES.

A B C D E F Q H I K L M N M' I/ K' I' H' G> F' E' D'C' B' A'12121212 12121212121212121

Fig. 67.

. This truss may be divided and numbered as in

the last case.

Let I = the length of the truss,

V = the length of each half of the lower chord,

d = the depth at the centre,

p = the horizontal length of a panel,

w = the maximum weight, uniformly distributed.

ITT. Horizontal strains. The moments of the load

on any segment of the simple trusses are the same as in

Case II., Chap. V. Hence, taking moments around any

panel point of Simple Truss No. 1, in the lower chord,

distant horizontally x from the nearest abutment, we

have

-rr %dx _ WX WX* lVp*

~T T~ "ir "ir
whence

8d 8d 8dx

Similarly, from moments of Simple Truss No. 2, we

have

H' =
si-lr

' ' ' '
-<268)
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The strain in the upper or horizontal chord on the

abutment side of the point to which x is measured equals

the strain at #, added to the strain at x 1

',
when x' = x

-p ; therefore, making x' = x p, and adding Eqs.

(268) and (267), we have

H = trf_0? + ^_tP: 269U 4d
h

8cZ Ux

Again, making x = x' p, and then adding the

equations, we obtain for the horizontal strain in the

members on the abutment side of the point to which of

is measured,

H'= ^'-i-!?- WP*
Id"' d 8d

~~

*d(tf p)

178. Longitudinal Strains. Taking moments around

any panel point of No. 1, in the horizontal chord, we

have

T dx wx wx*

T'
:

T" "IT'

whence

T wl' wl'x

the tension in the lower chord.

And for No. 2,

T, = u>1>
I

42
" ' r

Make x' = x p, and adding, we have

Wl' wl'X . /07Q\
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for the strain in any lower chord member whose centre

end is opposite any upper-chord panel point of No. 1,

distant x from the abutment.

Make x = x' p, add, and we have

*r7A\- (274)

for any lower-chord member whose centre end is oppo-

site, or vertically beneath, a panel point of No. 2 distant

x 1 from the abutment.

179. Vertical strains. Let Fig. (68) represent a seg-

ment of Simple Truss No. 1
;

then from moments around d,

(275>

and from moments around e,

H' = g-^. .... (276)
oCu oCl

Their difference,

is the horizontal component of the compression in bd.
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Its vertical component, from the proportion p or

/ 2c?a? .

x x : j- ,
is

- - . - -
(277)

for the vertical component of the strain in the struts of

No. 1, x being the horizontal distance to their lower

ends.

From moments around e,

From moments around f,

TT, __wl wx' wp*

Subtracting, we obtain, as before,

v _ wxf wp~

ir "n 1

for the vertical component of the strain in the ties of

No. 1, a/ being the horizontal distance to their lower

ends.

For Simple Truss No. 2, by a similar process we ob-

tain

(280)

for the vertical component of the strain in the struts, x

being the horizontal distance to their lower ends
;
and

Y wx'

"U
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for the vertical component of the strain in the ties, a/

being the horizontal distance of their lower ends.

ISO. Example. Let Fig. 67 represent a truss in which

I = 240 feet, the length of the truss,

I' = 123.69 feet, the length of each section of the

lower chord,

d = 30 feet, the depth of the truss at the centre,

p = 10 feet, the horizontal extent of a panel,

w= 300 tons, the full uniform load.

Substituting these values in the above equations, we

obtain the following table of strains for the different

values of a; and x r

:

Strains in

Tons.
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The following is a table of the strains in the braces :

Strains in

Tons.
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CHAPTER IX.

BOW-STRING TRUSSES.

181. A Bow-String Truss has one curved and one

straight chord, the former meeting the latter at the

abutments, and conveying to it the whole of its hori-

zontal thrust, so that the reaction of the abutment is

entirely vertical. The curved chord may be of any

curvature, and on this depends to a great extent the

amount of strain to which it will be subject. The chords

are also connected by braces.

182. Parabolic Bow-String T.ruses. Let Fig. 69,

ADB represent the chords of a Parabolic Bow-String

Truss, the braces being removed, whose arc, ADB, is

the segment of a parabola, with the vertex at D. Let

the chord AB receive the whole horizontal thrust of the
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arc, so that the abutments, A and B, receive only a

downward vertical thrust from the truss and its load.

Let I = the length of the horizontal chord, AB,
d = the depth of the truss at the centre, DC, being

always the versed sine of the arc,

<w = the weight, uniformly distributed per unit of

the horizontal chord, AB,
X = the horizontal distance of any point from one

abutment,

y = the vertical distance between the chord and

arc at #,

L = the longitudinal strain in the arc,

H= the horizontal strain in the chord,

V == the vertical strain or vertical component of a

strain.

183. Longitudinal strains. Disregarding the braces,

and taking moments around any point, a, distant x from

the abutment B, in a vertical plane cutting no inclined

braces, we have

)
t

. .
(281,

being the moment of the reaction of the abutment,

and the moment of the load on x. The strain L at
21

6 is a thrust in the line of the tangent at that point ;
let

If be that tangent, then ae is its perpendicular distance

from a, and L X (ac) is the moment of the longitudinal

strain at b.
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Let D be the origin of the axes to which the parabola

is referred, and we have from the equation of the para-

bola,
f- = 2nd,

I*
or 2ft, the parameter,

=
-.

4d

Again, from the equation of the parabola,

^ ^_y xn x\ m m m C282")

and

11 QClXy/ X) /OQQ\y -

^
- (2%6)

The angle abc being equal to the angle bfe, in the

similar triangles abc and bef,

fb : be :: ab : ac,

or let ^ = tangent fb, and we have

t : - % :: y : ac;

whence

I

,2"
^

ac =

Substituting this, and- the value of x (lx) of Eq
(282) in Eq. (281), we have

(I .

I
-- x) y

T J__ w

16
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whence,

,
-... (284)

for the longitudinal strain in the arc at any point distant

co horizontally from the abutment. Moving from any

point towards the nearest abutment, ,
the tangent, in-

creases more rapidly than a?,
and consequently the

tt

longitudinal strain becomes the greatest at the abut-

ment
; moving from the abutment the strain decreases

until we reach the centre, where t=
c

--
#, when

2

L-g.- - - - - -
(285,

In the case of a truss of this form, the limits of x

are and
Z,

since the uniformity of the truss is not

broken as in the triangular truss.

184. Horizontal Strains. Taking moments around

the point 6, we have for the strain in the horizontal

chord,
WX WX* WX

Substituting the value of x(l x) in Eq. (282) we

obtain

and

H = *. .-. - -
(286)
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a uniform strain throughout the chord and equal to the

longitudinal strain in the arc at the centre
;
and since

it is subject to no increase nor decrease throughout its

lengthy there can be no horizontal strain in the braces,

or no inclined braces are required under a uniform load.

The load may rest upon the arc, or be suspended from

it by ties, and still fulfil the conditions upon which the

equations are based.

i5. In practice the arc is composed of a number of

straight members, whose points of intersection are in the

curve. In Fig. 70, let the arc be divided into a number

Fig. 70.

of short straight members by the division of the truss

into an even number of panels of equal horizontal

length, and let the load be considered as concentrated in

equal amounts at the panel points. Then the moments

of the abutment reaction, and of the load on the segment

x remain the same
;
but L, the longitudinal strain, is

now in the line of the arc member, instead of in the line

of the tangent to the curve at the point x. The value

of y, in Eq. (283), remains the same, because x is always

measured to the panel ends, at which points the truss

intersects the curve of the parabola.



244 A TREATISE ON

In Fig. 70 let moments be taken around a
; then, as

before,

-,
and from similar triangles,

bg : gh :: y : ac.

Let gh =p, the horizontal length of a panel, and p
r

equal the length of the chord member bg ; whence, sub-

stituting the value of y, Eq. (283), we have

,
4:dx(l x)

p':p:: --L-J.:ac,

whence,

ac =

then,

#)_ wx(l
-

x) u

y~ ~~2T

whence

An equation in which we have but one variable p',

and entirely independent of the values of #, and which

shows that the longitudinal strain in any arc member is

to the horizontal chord strain as the length of that mem-

ber is to its horizontal extent.

The horizontal chord strain is not affected by the

division of the truss into panels.

In Fig. (70) the truss is divided into an even num-

ber of panels, and
cZ, the depth of the truss at the centre,



THE STRENGTH OF BRIDGES AND ROOFS. 245

is also the distance of the vertex of the parabola above

the horizontal chord, or the versed size of the arc. If,

however, the truss be divided into an odd number of

panels, then d, in all the previous equations, is no longer

the depth of the truss at the centre, because, at that

point, the curve passes outside the truss. Hence it will

be seen that d is the versed sine of the arc, and not

always the depth of the truss.

186. The Horizontal Component of the Longitudinal

or Arc Strain. The horizontal component of the longi

tudinal strain in any member is from the proportion

wlp' wl
f)

1
: f) :: _ L : _,

Sdp Sd
'

a constant throughout the arc, and equal to the horizon-

tal strain in the lower chord.

1*7. The Vertical Component of the Longitudinal

strain. Let y be the vertical distance of the upper end

of an arc member, and y' the vertical distance of the

lower end of the same member above the lower chord.

Then subtracting from the value of y, Eq. (283), at #,

the value of y' at x p, we have, after reduction,

. . (288)

the vertical extent of any arc member whose centre end

is distant x from the nearest abutment, and from the

proportion of its length to this vertical extent, we have

/ .

-

. . wlp' . Y _ w __ wx , wp~~ ""
"2"" T "

2J

the vertical component of the strain in the arc member.
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Whence it will be seen that the strain in each arc

member is the resultant of all the vertical strain or

weight that comes upon the truss between it and the

centre, the whole weight concentrated upon its own cen-

tre end included, and the constant horizontal chord

strain.

188. Strains from a Partial Load Longitudinal

strains. Let wf

represent the weight of a full uniform

load of equal density with the partial load, and let the

load extend from one abutment a distance equal to I u\

(let the truss be divided as before into panels of equal

horizontal length, and let u be measured to the centre of

a panel). From the principles of the lever, -
'

' is
21

the vertical reaction of the unloaded abutment
; then,

taking moments around a point in the horizontal chord

in the unloaded part, x being less than w, we have,

But

ao = ~
~zy

.
- - - -(290)

x)

an equation evidently greatest when x is greatest, or ap-

proaches u, or at the end of the load. If I x be made-

= I u,
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less than Eq. (285), or at any point the longitudinal

strain from a partial load is less than the strain from

the full load.

19. Horizontal Strains from a Partial Load. If mo-

ments be taken around any panel point in the arc in the

unloaded part, x being less than w,

and by substituting value of y, Eq. (283),

TT =
(292)

Sd(l
-

x)
'

which is also greatest at the end of the load, and, at any

point, less than the strain from a full load.

If either this strain, or L, the longitudinal strain, be

taken at any point under the load, it will be found to be

less than the strain at the same point from a full load.

Eq. (292) varies with the different values of #, and

consequently its changes must be taken or caused by
inclined braces.

Let abed, Fig. (71), represent a panel in the un-
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loaded part of a parabolic bow-string truss, and let x be

the distance from the right or unloaded abutment to d,

and x 1 the distance from the same abutment to c
; then,

Sd(l
-

x)

is the horizontal strain at
cZ,

and

H , = u/(l uY

is the strain at c%

; now, since the horizontal chord is

subject to tension, and the strain at c is greater than the

strain at c?,
cb is a tie, and ac and bd struts.

19O. Vertical Strains in the Braces from the Partial

Load. The horizontal component of the strain in be is

consequently H' H, and its vertical component may
be found from the proportion

cd : bd, or, y : x' x.

Subtracting H/ H, and putting for y its value,

Eq. (283), we have,

x) .. w'(l uY(x
f

x) ., .

f

In the case of a simple truss, or truss with but one

system of braces, it was shown (54) that the reaction

of the unloaded abutment does not equal the true amount

of vertical strain in the brace at the end of the load, but

that it is given by (Eq. 35),
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In Fig. (71) xf

is the horizontal distance from the

abutment towards which the tie leans to the horizontal

chord end of the tie, and x the horizontal distance from

the same abutment to the arc end of the same tie.

Therefore n, in Eq. (35), that is, the number of loaded

panel points in
(I u) of Eq. (293), is equal to

I x
-,

, ... ,. w'np* iv'(l uY
,
and subst,tutmg -L_ for--L in

Eq. (293), in place of w
2

,
its value just given, and for

a?',

its value, x + p, we have,

V = w'(l xpYx = w'(l xp)x
21(1 p)(l

- x p) 21(1 p)

for the greatest vertical strain in any tie whose arc end

is distant #, measured horizontally, from the abutment

towards which the tie leans
;
which strain results solely

from the moving load.

Under the effects of the moving load the vertical

braces act as struts, and the greatest strain upon any
one bd, for example, in Fig. (71) is when the panel

point d is outside of the load, or when the tie cb is sub-

ject to its greatest tension. Then the strain in bd is

equal to the vertical component of the strain in de, which

may be determined from Eq. (293), x' and x being the

distances to d andy! But (54) the panel point c cannot

be fully loaded without a certain portion of the load

coming upon the point d, which can cause no strain in

bd; hence, as before, we must substitute - * T for

p)
'

,., -, and a/ being the distance of the vertical brace
9 ,.,
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from the abutment, n = ^^, x = a/ ^?, whence

_

is the compression in the vertical brace distant xr from

the abutment, from the moving load w'.

From this is to be deducted the tension caused by

the permanent load.

CASE I. A SINGLE TRUSS, WITH VERTICAL AND INCLINED

BRACES.

191. Example I. Upper Chord Arched. In Fig. (72),

tr

bcdefghiklmnopqrstu

Let I = 200 feet, the length of the truss,

.d = 25 feet, the depth of the truss at the centre,

p = 10 feet, the length of a panel,

w' = 200 tons, the weight of the full movable

load,

w = 100 tons, the permanent truss weight.

Eq. (286), by substituting the values of the con-

stants, becomes

H = - = 30 tons
'

the maximum tension throughout the length of the

horizontal chord.
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Similarly Eq. (285) becomes

L = 30jp'.

Substituting the different values of p', or the lengths

of the different arc-members, we can form the following

table of strains in the upper or arched chord. The

length of any arc-member is evidently the square root of

the sum of the squares of the horizontal length of the

panel and of the difference in height of the two ends of

the arc-member.

Values of p'.
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When the truss is fully loaded, all the weight, except

that of the arc, is borne by the vertical braces
;

if we

assume that the weight of the arc, or the weight imme-

diately upon it, is one-third of the permanent truss load,

then, when the truss is fully loaded, -f-
-- is the

V OU

amount of tension upon each vertical brace. Substitu-

ting the values above, we have,

200XW 2X100X10 = 13 . 33 tons?
200 __ 3 X 200

for the maximum tension in each vertical brace.

The tension from the permanent truss load is
^-,

ol

or 3.33 tons, which is to be deducted from the compres-

sion caused by the moving load. The vertical differ from

the inclined braces in one respect : those of the latter,

leaning in one direction, are affected only when the load

is moving in the direction in which their arc ends are

inclined
;
while the former are subject to strains from a

load in either direction, and the greatest compression

upon them is when the load covers more than half the

truss ;
or when #', in Eq. (295), does not exceed .

Substituting the values of the constants in Eq. (295)

it becomes

380(200 - x')
'

whence, deducting the constant tension of 3.33 tons, we
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have the following table of maximum compressions in

the vertical braces :

Values of x'.
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Values of x.



THE STRENGTH OF BRIDGES AND ROOFS. 255

192. Example II. The Lower Chord Arched In

Fig. (73), ABCDEFGH IK

d e f g

Fig. 73.

Let I 90 feet, the length of the truss,

d = 8.1 feet, the versed sine of the arc,

p = 10 feet, the length of a panel,

w' = 90 tons, the weight of the full uniform

movable load.

w = 45 tons, the weight of the permanent truss

load.

The inversion of the arc results in many practical

advantages ;
the longer chord becomes subject to ten-

sion, the shorter to compression, and the vertical braces

to only one kind of strain, while the transverse bracing,

to prevent flexure in the truss, does not interfere with

the necessary headway.

For the compression in the horizontal chord we have

Eq. (285),

H = -j=187.5 tons.
Sd

For the tension in the arc we have Eq. (286),

L = 18.Y5/,

whence the following table for the different values of p' :

Values of p'.
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It will be readily seen that Eq. (293) becomes in this

case,

_w'x'(l uY
: (296)

where of is the distance, measured horizontally, from the

abutment to the arc, or farthest end of the inclined tie.

Making the change required, as explained in (54) for

simple trusses, n of Eq. (35), the number of loaded panel

points in I u. is equal to
,
anda^o?' p. whence

P
Eq. (296) becomes

__ w\l a?')V
(297)

Substituting the values given above, we have,

y _ (90 - g?')V

16000 1600?''

Multiplying the vertical strains obtained for the dif-

ferent values of x' by the secants of the angles, we form

the following table of maximum tension in the ties.

Values of x.
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we have for the compression upon the vertical struts

from the truss fully loaded, ^ +^ = 13.33 tons.
I ol

The greatest compression upon these struts from the

maximum moving load is when the ties to whose upper

ends -they are attached are subject to the greatest ten-

sion. This is given by Eq. (297), but the difference be-

tween this equation and Eq. (296) is also borne by the

struts
;
hence Eq. (296) gives the total compression in

the struts from the moving load. In this equation x is

the distance from the abutment to the strut, cc' = x

and u = x + ^-. Substituting these values, we have,
2

V =
180(90

~

The greatest compression upon any strut is when x

of this equation is less than : that is, when the truss is

2t

more than half loaded. Addin 3.33 tons to the above,

we have the following table :

Values of a'.
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CASE II. A COMPOUND TRUSS, WITH VERTICAL AND IN

CLINED BRACES.

i93.-In Fig. (74),

'g
b c d e f t?h ik 1 m n o pq r s t u t' s' r' q' p' o'n'm' 1' k' i' h' g' f

'
e' d' c" b

12312312312312312313213213213213213 21

Fig. 74.

Let Z 152 metres, the length of the truss,

d = 20 metres, the depth of the truss at the

centre,

p = 4 metres, the length of a panel, or distance

between the vertical braces,

w' = 500 tons, the maximum movable load,

w = 500 tons, the permanent truss weight.

Under the full load this truss does not differ from

the previous cases, and Eqs. (286) and (287) give the

chord strains-. Therefore,

H =^_ 1000X152 =9
Sd 8 X 20

is the tension throuhout the horizontal chord
;
and

Sdp

Multiplying by the different values of p', or lengths

of the arc-members, we have the following table of com-

pressions in the arc :
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Values of p' .
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tensions in the inclined ties in either of these simple

trusses when
W ' ~~ U

' of that equation representing the
2il

unloaded abutment reaction in a simple truss is changed

to the amount of .the abutment reaction upon each of

these simple trusses.

In Simple Truss No. 1, which has a panel point next

the abutment, the reaction of the farther abutment is

,
as explained before. Eq. (293) therefore

becomes

(298)

In this equation x is the distance to the arc end of

the tie (from the abutment towards which the tie in-

clines), co' to the chord end, and equal to x + 3p, and u

is equal to x +~. Substituting these values, Eq. (298)

may be reduced to this form :

'
<299)

Inserting the constants in this equation we obtain

for the different values of x the vertical components of

the tensions in the inclined braces, which, multiplied by

their secants, give the following table :
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Values of x.
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Tne greatest compression upon these braces is, as

explained before, when they are outside the load ex-^

tending from one abutment and covering the next panel

point of the simple truss to which they belong.

This strain is given by Eq. (298), where, if x' be the

distance from the unloaded abutment to any vertical

brace, x = a/ 3p, and u = x'+ --. Substituting these
2

values, Eq. (298) becomes,

w'\(lx' r

Y = (300)

Subtracting the tension from the permanent weight from

this equation, we obtain
*

the table below of the maxi-

mum compressions. This equation is greater when x' is

greater than
,
or when the load covers less than half

tu

the truss, and for any value of a/ greater than 124, or

less than 28, the compression from the moving load is

less than the constant tension.

Values of x.
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that abutment from which the load extends, it will be

seen that that equation which applies to the inclined

braces from the points numbered 2 in the figure when

the load is moving from the left to the right, also applies

to the inclined braces from the points numbered 3 when

the load moves in the opposite direction. Substituting

values in Eq. (299), and multiplying by the secants of

the tie angles, we have the following table :

Values of x.
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the right, or that simple truss whose panel point is 3p
from the abutment, Eq. (293) becomes,

v = (301)

As before, x is the distance from the abutment to

the arc end of the tie, u = x + and x' = x + 3p ;

2

whence Eq. (301) reduces to,....
(302)_

When the load is moving to the right this equation

applies to the inclined braces from the points numbered

3, and to the inclined braces from the points numbered 2

when the load moves in the opposite direction.

Substituting values in Eq. (302), and multiplying by
the secants of the tie angles, we have the following table :

Values of x.
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The vertical braces at the points numbered 2 are

subject to different strains as the load moves to .the right

or left. The same is true of the vertical braces at the

points numbered 3. The maximum compression upon
one system of points, when the load is moving in one

direction, is the same as that upon the other when it is

moving in the opposite direction. If the load be mov-

ing to the right, the maximum compression is upon the

verticals at the points 2, 2, etc.
;
and if to the left, upon

the verticals at the points 3, 3, etc., by Eq. (300), from

which we form the following table, the permanent load

upon the horizontal chord being deducted.

Values of x.
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CASE III. A SIMPLE TRUSS, WITH ALL THE BRACES IN-

CLINED, AND HAVING EQUAL HORIZONTAL EXTENT.

194. It is only when the intensity of the load is

uniform horizontally upon the arc, or concentrated, or

suspended by vertical ties in equal amounts, at points

equidistant horizontally, that the strain in the hori-

zontal chord is uniform throughout its length, and

the strain in any arc-member is equal to the hori-

zontal strain divided by the uniform panel length and

multiplied by the length of that arc-member. This

is evident when we consider that a brace can transmit

only a longitudinal strain, and that consequently the

strain in an inclined brace must have a horizontal as

well as a vertical component.

The proportion of these components to each other

depends on the inclination of the brace. If each brace

in Fig. (75) be assumed to support a half panel load,

then the horizontal component of its strain varies with

the inclination of the brace, and the strain in the hori-

zontal chord cannot remain uniform. If the horizontal

components be equal in all the braces, then each brace

cannot support the same amount of weight.

A BCDEFGHIKLMN

Fig. 75.

195. Let Fig. (75) represent a Bow-String Truss,
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with a single system of inclined braces of uniform hori-

zontal extent, the lower chord-points being in the curve

of a parabola, as before
;

Let I = the horizontal length of the truss,

d the versed sine of the curve at the centre,

p = the length of the panels on the horizontal

chord,

p'
= the length of an arc-member,

w = the maximum load, permanent and movable,,

x = the horizontal distance of any panel point

from one abutment
;

y = the vertical distance of any lower or arc

chord panel point from the horizontal

chord.

In the investigation of the chord strains w will be

considered as concentrated at the horizontal chord panel

points.

196. Horizontal Chord Strains. Taking moments

around any panel point in the arc, distant x from the

abutment, we have,

-rr _ wx __
wx1

_ tup*
y ~~ T '

~2f" ~8P

^ + Sr being the moment of the load on the segment
2& SI

#, and since y - ^ -, we have,
I/

H = ?^__^l- - -
(303)

Sd
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for the strain in any horizontal chord-member whose

centre is distant x from the abutment.

197. Longitudinal Arc strains. If moments be taken

around any point in the horizontal chord, distant a? from

the abutment,

' '
(304)

y
f and y being the vertical distances of the two ends of

the arc-member opposite the point x from the horizontal

chord. Since y' is measured at x + ^,
and y at x ^,

^ 2

ar

a;'
--

r

Substituting this in Eq. (304) we obtain,

wl
, wlp'

for the strain in any arc-member whose centre is distant

horizontally x from the abutment.

198. Vertical Strains in tbe Braces from a Full Load.

Let Eq. (303) represent the strain in any horizontal

chord-member, and let



THE STRENGTH OF BRIDGES AND ROOFS. 269

represent the strain in the next member towards the

centre of the. truss, x' being equal to x +p, and confined

to value less than .

u

Since this strain increases from the abutment to-

wards the centre, the difference must cause the same

kind of strain in the braces whose arc ends are inclined

towards that abutment from which x is measured, that

there is in the horizontal chord
;
in this case compres-

sion, since this chord is uppermost.

The difference between the two strains is

_ H =

Its vertical component is, from the proportion,

p.
2 Z

2

_ wp\x'(l-x')(l

a quantity always less
than^-,

or one-fourth of a panel

load
;
hence the other brace is also subject to compres-

sion.

Had the vertical component of the difference in the

horizontal strains been a panel load, it would prove the

other brace to be subject to tension, or to no strain.
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In Fig. 76, representing a segment from the right of

the centre of a truss similar to Fig. (75), let the vertical

section db be distant x from the right abutment, and the

vertical section ca be distant x from the same abutment ;

Fig. 76.

then Eq. (306) will represent the excess of horizontal

strain in eb over that in ea, and Eq. (307) will represent

the vertical strain, or the vertical component of the

strain, of which Eq. (306) is the horizontal component.
But this does not prove that there is a greater amount

of vertical strain in eb than in ea, for they have

different inclinations. From this vertical strain, how-

ever, may be determined the proportion of the panel

load upon e, borne by ea or eb.

Deduct from ^, or the load upon the point e, the

weight, Eq. (307), borne by the excess of horizontal

strain in eb, and, of the remainder, let V = the amount

borne by ea
;
and V, that borne by eb

;
then the hori-

zontal components of the compressions in ea and eb, of

which V and V are the vertical components, are equal.

Let H equal this horizontal component, uniting with V
or V, then

H y/ P . t

and
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3-3 -

and since V'+V= IS -
I lx'(l

-
x')

Substituting the value of V, Eq. (308),

=v
y

Substituting the values of y' and y,

V

tt) _wp_wp\x'(lx')x(lx)~"

which may be reduced to,

V = ^ 4- wpx'(laf) /QAQX
"

>

The vertical component of the strain in that brace

whose arc end is farthest from the abutment from which

a? is measured, a/ being the distance to the arc end and

x = x' -p. Since, in Eq. (309), //
X'(

is less than
,
V' is greater than -2L or, under a full

^ Zi

load, the weight upon that brace whose arc end is nearer

the centre is greater than the weight upon the other

brace from the same horizontal chord point. This equa-

tion is necessary for the strain upon the braces from the

permanent load.
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The vertical strain upon the other brace from the

same point in the horizontal chord is most readily deter-

mined by subtracting Eq. (309) from

199. Vertical Strains in the Braces from a movable

Load. In Fig. (76) let the load extend from the left abut-

ment, so that the point e is not loaded. Then, since the

chord can take no portion of the vertical strain, it fol-

lows that the vertical component of the strain in one of

the braces, ae or be, is equal to that in the other, or V
in ae = V in be

;
but since the inclinations of the braces

differ, the horizontal components of their strains must

differ also, and the sum of these horizontal components

equals the difference in the horizontal strains in the

chord-membersfe and eg. If a be distant
a?',

and b be

distant x from the right and unloaded abutment, then

w
\
~

'- being the reaction of that abutment, wf

being
2t(j

weight of the full movable load,

is the strain in
jfe,

and

-rr _ WX(l~

the strain in eg.

The vertical components of the strains in ae and be

are to their horizontal components as the vertical extents
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of these braces are to their horizontal extents, the latter

being -\ hence, y' : - :: V : ^, the horizontal com-
2 & 2>y

ponent of the strain in ae, and y : : :V :
_,

the hori-

zontal component of the strain in be.

Therefore,

Vp . YP _ 'YKy+y') - H , _ H

2/y
and

.

Substitute for ?/' and y their values as given in Eq.

(283), and we have, omitting _, since it is common to
V

all the members of the equation,

*xx'(d x),

and sincep = x' x

. ^ w'(l u . m

is the vertical component of the strain in either ae or

Je, and is greatest when (I u)
9

is greatest, or when the

load extends from the abutment opposite to that from

which x' x, and u are measured, and fullv loads the
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panel point next these two braces
;

in this case the

panel pointy!

The longitudinal strains in ab and be have a result-

ant at &, which passes in the direction of the end of the

truss resting on the (in this case right) abutment. For

let y, the vertical depth at 5, represent the vertical abut-

ment reaction, then V : H :: y : cc; or,

w(l-*-u)* . w(l uY .. 4d%(l x)

~W~~
'

Sd(l
-

x)

'

~J~

Therefore the amount only, and not the direction of this

resultant, is affected by the weight of the load. The

relative proportions of the components of this strain

borne by ab and be consequently remain the same, even

when the point e is loaded. Hence Eq. (310) will deter-

mine the strain infa when /"is loaded, as well as in ae

and be; and the greatest compression in /a, and tension

in ae, are when the point f is loaded.

To apply the equation, since it is a single truss,

must be substituted (54) for
W

'(
1~ UY . and

since x' = x + p, n = - >
E(

l- (
31

) becomes =

w'(Z~ a? ^)o?(a?+ l>)

l-p - x}+P (l
-

for the vertical component of the

( tension when the arc is above, ) r , .

greatest \ \ from a movable
[compression when the arc is below, J
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load in any brace whose arc and nearest end is distant x

from the abutment. To this strain must be added the

strain from the permanent load, which is Eq. (309),
I

or,

wpx"(l x')

w f

being equal to x +jp, this becomes

V = ^P. 4-

p -

In this equation w represents the weight of the per-

manent truss load, and this equation, added to Eq.

(311), gives the total maximum vertical strain in those

braces to which Eq. (311) applies.

? v_ P
-g

Making x x'p, n -? Eq. (310), be-

comes

y =_ _ , (313)
rf) p(l+pj\

s .,
, -i /.i (compression)

tor the vertical component of the greatest 1 >

(tension )

i , T ( above ) p . _ . , .

when the arc is -1 f, from a movable load in any
(below)

brace whose arc and farthest end is distant x' from the

abutment. From this must be subtracted Eq. (309),

giving the strain from the permanent load in which x ia

to be made equal to x' p.
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200. Example. In Fig. (75),

Let I = 120 feet, the length of the truss,

d = 14.4 feet, the versed sine of the curve of the

lower chord,

p = 10 feet, the horizontal distance between the

panel points,

w' = 120 tons, the weight of the full movable

load,

w = 48 tons, the permanent truss weight.

Substituting values in Eq. (303), w being changed
to w' + w, we can form the following table of strains in

the horizontal chord :

Values of x.
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The strain in the first, or end member, is found from

the strain in the horizontal end member, dividing by 5

its horizontal extent, and multiplying by 5.5 its length.

Supposing one-half of the permanent truss weight to

be borne directly by the arc, w of Eq. (309) is equal to

24 tons
;
we have from Eqs. (311) and (312) the follow-

ing table of compression in the braces, the vertical strain

being multiplied by the secant of the brace angle.

Values of x.
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Similarly from Eqs. (313) and (309), we obtain the

following table of tensions in the braces ;

Values of x.
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CASE IV. A DOUBLE TRUSS, WITH ALL THE BRACES IN-

CLINED, AND HAVING EQUAL HORIZONTAL EXTENT.

201. Let Fig. (77) represent a bow-string parabolic

Truss, containing two systems of braces, which permit

E
I K L M N O p Q R

B

JH bcdefgkiklmnopqrstu ||j

Fig. 77.

the division of the truss into two simple trusses, whose

chords are common, but whose braces act independently

of each. Let Fig. (78) represent one of these trusses,

designated as Simple Truss No. 1, and Fig. (79) the

other, designated as Simple Truss No. 2.

202. Let I = the horizontal length of the truss,

d = the versed sine of the curve,
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p = the horizontal length of the panels of

the double truss,

p' = the length of an arc member,

w = the maximum load, uniformly distrib-

uted,

x = the horizontal distance of any panel

point from one abutment,

y = 77- ?
the vertical distance be-

I/

tween the chords at any panel

point x.

2O3. Horizontal Chord Strain*. Each truss bears

one-half the load, and the half panel load at each abut-

ment is taken as belonging to No. 2. Taking moments

around a point in the arc chord of No. 1. Fig. (80),

distant x from the abutment,

TT 4<fo(7 x) __ wx _ wx*

~~T~ T IP

is the tension in the lower, or horizontal chord, between

the points b and u. But outside of these points, or be-

tween them and the abutment, this equation will not

apply, because there is no panel point in the upper chord

of this truss. The manner of determining the strain in

the end member will be shown hereafter.
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Taking moments around the upper chord panel

points of No. 2, we have,

TT/ dx(l x) wx woe wp
~7~ T ' '

IT
"

"IP
whence,

w *
1

(315)-"

IQd
"

I6dx(l x)
'

is the tension throughout the horizontal chord of No. 2.

Adding these equations, (314) and (315), we have,

- - - (316>

for the strain in the horizontal chord of the double truss,

Fig. (77) in which x is the horizontal distance to the

upper chord points of Truss No. 2, which is the same as

to the lower chord points of No. 1, and gives the strains

in the members on both sides of these points. That is,

since the strain in No. 1 is constant, the strain in the

double truss only changes as we pass the points of No. 2.

For the horizontal strain in the end member take

moments about T or C, the first upper chord panel

points of Simple Truss No. 1, and we have

H z = X 2j*

The moment of the load on the first lower chord

panel point of this simple truss at u or b does not affect

the equation for the strain in the member on the abut-

ment side of either of these points. Since x = 2p, this

equation becomes,

..... (817>
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Add this to Eq. (315), which extends throughout the

horizontal chord, and making x =p, we have,

H= WP1
-J-

I6d
' "

16d(l p)

for the strain in the end member of the horizontal

chord.

2O4. Longitudinal Arc Strains. Taking moments

around the horizontal chord points of Simple Truss No.

1, we obtain

T p 4:dx(l x) _ wx wx*
, wp*

p'~ ~T~ T U' H'
whence,

L - [
wl

4-"

is the compression in all the arc members of Simple
Truss No. 1, except the member at either end

;
to

which, from the manner of taking the moments, the

equation is not applicable.

Taking moments around the horizontal chord panel

points of Simple Truss No. 2, we obtain,

-j-
p oc % _ wx wx

P'

~
r T"

'

IP
whence,

is the strain in all, except, as before, the end members

of the arc of No. 2.

Adding Eqs. (319) and (320) we have

wl .
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The compression in the upper chord members of the

double truss : here x is the distance to the lower or hori-

zontal chord panel points of No. 1, and for each value

of x there are two values of p
f

,
the lengths of the twa

members meeting at that point.

The compression in the end arc member has a hori-

zontal component equal to the strain in the horizontal

end member, or Eq. (318) X ^-, or

= ( - -_wlp"L = - -_ 4-" r_ _ _ -
ftj I6d(l --jp) 1M(1 - 2p)jp'

is the strain in the end member.

The horizontal component of the strain in the end

members of No. 1, that is, from A to C and from T to

V, is given by Eq. (317), and in the second members o

Truss No. 2 is given by Eq. (320) ; adding these equa-

tions, and multiplying by ?-, we obtain

2O5. Vertical Strains in the Braces from a Full Load.

In Simple Truss No. 1 it has been shown that the

strain in the horizontal chord is, with the exception of

the member at either end, uniform throughout that

chord. The horizontal components of the strains in any

two braces of this simple truss, meeting- at the same

horizontal chord point, are therefore equal. Let h =,

the horizontal component of the strain in either of the

braces meeting at o in Fig. (78); let v =, the vertical
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component of the strain in the brace to the point P, and

v f

=, the vertical component of the strain in the brace

to the point N; then these two vertical components,

v' + v =
,
or the weight upon the point o.

Since

p : y:\h : v:.h =

and

V

Then ,=*-, and*= *t
/ y y

f

and

Substituting for y' and y their values,
'

x '

I

and =, we have,

for the vertical component of the strain in that brace

whose arc end leans from the abutment from which od is

measured, x being = a/
2j9. The vertical component

of the strain in the other brace from the same point is

^P Eq. (324). It will be observed that, since
L
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x'(l x') + x(l x) is less than
2o?'(Z x') when x 1

is

not greater than ; Eq. (324) is greater than -^2, or,
'2 21

the brace leaning towards the centre supports more than

half a panel load.

In Simple Truss No. 2 we have the same case which

was explained in (193), and to which, consequently,

Eq. (309) will apply.

2O6. Vertical Strains in the Braces from a Moving
i.oad. A comparison of these Simple Trusses with

Case (III) will show that the vertical strains, or vertical

components of the strains in -the braces, are similar;

and that Eq. (310) representing twice the reaction of the

abutment from which x is measured, multiplied by
I'x

, (x being the distance from the
x'(l x') + x(l x)'

abutment whose reaction is taken to the arc end of any

brace leaning towards the same abutment, x 1

being
= x+ 2p, and u being

=
#,) will give the maximum

tension in that brace.

Hence, in Simple Truss No. 1, the reaction of the

abutment from a partial load, found as in the horizontal

trusses, being,
> -

'-, Eq. (310) becomes,

v=

x)
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This being tension, the tension from the constant truss

weight is to be added to it.

The greatest compression in the braces of the same

simple truss is, as has been explained in the previous

case, given by Eq. (310), u being = x' and x = x' 2p,

whence Eq. (310) becomes

aQV(a' 2p)

-*)]

-
(326)

x' being the horizontal distance from the unloaded abut-

ment to the arc end of the brace leaning from that abut-

ment
;
and since the strain is compression, it is necessary

to deduct from it the strain from the constant load.

In Simple Truss No. 2, by a similar process of rea-

soning, Eq. (310) becomes changed to

V = ~
/3271'

f

for the tension in those braces whose arc ends are dis-

tant x horizontally from the abutment towards which

they lean.

And for the compression in those braces whose arc

ends are distant x' horizontally from the abutment from

which they lean, Eq. (310) becomes changed to

y= wl(l-K'V-p*-\x'(x'-2p) ,

?\x'(l + 2p x)p(l+ 2p)]
'

To Eq. (327) is to be added the constant truss load,
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Eq. (324) ;
and from Eq. (328) is to be subtracted the

constant truss load to attain the maximum result.

207. Example In Fig. (77),

Let I = 200 feet, the length of the truss,

d= 25 feet, the depth of the truss at the cen-

tre, and the versed sine of the curve,

p = 10 feet, the horizontal distance between

the panel points,

w =: 100 tons, the permanent truss weight,

two-thirds of which is supported by

the braces,

v/ = 200 tons, the weight of the full movable

load.

From Eq. (318) for the end member, and Eq. (316)

for the other members, we obtain the following table of

strains in the horizontal chord, w of these equations being

the maximum load, 300 tons :

Values of x.
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Values of x.
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Values of

x&x'.
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208. By similar processes equations may be prepared

for Parabolic Bow String Trusses containing any num-

ber of Simple Trusses, or single systems of bracing.

2O9. How String Trusses, with Arcs of any Curva-

ture. It is only when y, or the vertical distance between

the arc and the horizontal chord at any point, bears

some ratio to the horizontal distance of that point from

the abutment, that we can express the former in terms

of the latter, as in the Parabolic Bow String. This can

be done when the curve can be referred to rectangular

axes, as is the case with the circle, ellipse, and many
others. But in these cases the equations become more

intricate, and it is better that they should contain two

variables than to be rendered liable to error by their

prolixity.

The following equations will apply to any Bow

String Truss, as they are entirely independent of the

curvature of the arc.

210. Let I = the length of the truss,

p = the horizontal length of a panel.

p' = the length of any arc member,

w = the weight, maximum and uniform,

upon the truss,

x = the horizontal distance of any panel

point from one abutment,

y = the vertical distance between the chords

at x
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211. Horizontal strains. From moments around any

panel point in the arc of Fig. (80), we

c

Fig. 80.

have for the tension in the horizontal chord,

whence,

H= ^__^_ . . . . /329)
2y 2ly

'

and at any other point #',

H' =
'

- -
wx '*

C330)
2p~

" "

2h/'

If H' be greater than H, then the horizontal chord

end of the inclined brace between the two points x' and

x must be distant x', x' and the arc end distant x from the

abutment. That is, if the horizontal strain at c be

greater than the horizontal strain at d, a brace is neces-

sary from c to 6. If, on the contrary, the strain be

greater at d, then the brace must be from a to d. The

vertical components of the strains in these braces, neces-

sary to ascertain the effects of the constant load, may be

obtained, as has been shown before, from the difference

in the horizontal strains.

212. Longitudinal Arc Strains. From moments

around any point in the horizontal chord we have,
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Eqs. (329) and (331) apply to the members of the

chords on that side of any point to which x is measured,

on which, under a full load, no brace is in action.

213. Vertical Strains in the Braces from a Moving-

Load. Under a partial load, extending from one abut-

ment a distance I u, at any point, a?,
outside the load,

co and u being measured from the same abutment, and

w' being the weight of a full load of equal density with

the partial load, the strain in the lower chord will be,

H - w'

and at the next panel point #',

H' = W'V-?
Ya>

'. .... (333)

Subtracting

H - H' - ^ ^W afy) .
(334)

y >j

Let x' x p, then

H - H' = w'V-Y(*y'-*y+py\ (885)1

is the difference in the horizontal strains at two consecu-

tive panel points outside, and consequently the horizon-

tal component of the strain in the brace. If y' be the

vertical extent of this brace between x and x jp,

p being its horizontal extent, we have from the propor-

tion

T
. ,, . .H- F' Y - -- (336)
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for the vertical component of the strain in any inclined

brace between the panel points cc and x p.

This equation must be changed, as has been done in

the previous cases to suit different systems of bracing ;

'

' - be altered to represent the reaction of the un-

loaded abutment of the simple truss to which it is to be

applied, and p is always to represent the horizontal

length of a simple truss panel. Examples of the appli-

cation of these equations are considered unnecessary.
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CHAPTER X.

LENTICULAR TRUSSES.

214. The form of this peculiar truss, known also as

the Pauli System, is shown in the following figure :

M N

It is composed of two equal parabolic arcs for chords

meeting at the ends, and braced with vertical and in-

clined braces. It is not capable of supporting any

greater weight than a Bow String Truss of equal depth

and length, and practically possesses many disad-

vantages.

215. Longitudinal Chord Strains. In Fig. (82)

Let I= the length of the truss,

d= the depth of the truss at the centre,

p= the horizontal length of a panel,
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p
f= the length of any arc member,

x = the horizontal distance of any vertical

brace from the abutment,

y= the depth of the truss at any point #,

w = the weight upon the truss uniformly

distributed.

Fig. 82.

Taking moments around a in the lower chord distant

horizontal x from the abutment B, we have,

(337)

The versed sine of either arc is
,
therefore Eq. (283)

ft

the vertical height of any panel point in the upper chord

above the abutments is,

x)
(338)

and the vertical depth of any panel point in the lower

chord below the abutment in the same vertical section is

also L_"H_L
J
whence the vertical depth of the truss
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at any panel point distant x from the abutment is, as in

the case of the Parabolic Bow String Truss,

From similar triangles,

of : oblige : 6c,

or substituting the values of these quantities,

whence,

/. x)
afi 1 :,?:

f_ x)p
af "

fff

Substituting this value in Eq. (337), we obtain

Equally true for either chord, and containing but one

variable p'.

216. Vertical Strain in the Vertical Braces. The

depth of the truss at any panel end, a&, distant x from

the abutment, is ^
'

;
at the next panel end to-

i

wards this abutment, ce, where the distance is a? p, it

^

Subtracting these quantities, we have

t

for the difference in the depths of the truss at the two
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ends of a panel, or in the lengths of ab and ce. Half

of this quantity is consequently the vertical extent of

each chord member of this panelj or b is vertically one-

half of this distance above c, and a vertically one-half

the same beneath e. Since be : bg, so is the longitudinal

strain in be to its vertical component, we have,

.. wlp' . y = w wx wp
"Sdp' ~4~ ~2l~~4r

Its horizontal component is a constant -, the lower

chord member in the same panel has the same vertical

component. Hence each arc or chord member supports

one-half the weight that comes upon the truss between

its end towards the centre and the centre, and one-fourth

of a panel load
;
and the horizontal component remain-

ing uniform, there is no strain upon the inclined braces.

If
a?,

in Eq. (341), be made =# p, we shall obtain the

vertical component of the strain in the next chord mem-

ber towards the abutment, and if this be subtracted from

Eq. (341), with x unchanged, the remainder is -^, a con-
21

stant. Therefore, at each panel point, as we pass from

the centre towards the abutment, there is an increase in

the weight borne by each chord of half a panel load
;
or

each chord bears half the load
;
and if the whole load

come first upon one chord, only one-half of it is taken

by that chord, while the other half is transmitted by the

vertical braces to the other chord
; hence, when the truss

is fully loaded, each brace is subject to a strain of .
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217. Vertical Strains in the Braces from a Moving
Load. It is evident that as the two chords have, at the

two ends of any panel, the satne difference in their verti-

cal distances, as there is in the case of the Parabolic Bow

String, they can take no more of the vertical strain from

the moving load. Taking moments around any panel

point in either chord distant x from the abutment, x and

u being measured from the same abutment and x being

less than u
;
l u being the length of a partial load,

and w' being the weight of a full load of equal density

with the partial load, the strain in either chord is,

whence

.... (342)

For simplicity take the horizontal component of this

strain, which is

A strain increasing with x or greatest at the end of the

load. At x'

Subtracting,

is the horizontal component of the strain in the inclined
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brace whose ends are distant x and a/ from the abut-

ment towards which the brace leans ( ), or in ac.

The vertical extent of this brace is one-half of ce, the

depth of the truss at xr and one-half of ba the depth at

a?,
its horizontal extent isp ;

hence

. x) 2dx (I x) .. w'(l u)*(x x) .~

x p being substituted for x\ for the vertical compo-
nent of the strain in any inclined brace from the moving

load, when the lower end of the brace is distant x hori-

zontally from the abutment towards which it leans.

This strain is evidently greatest when the load extends

from the opposite abutment to that from which x is

measured, and covers the panel point, distant x from the

abutment. This being a simple truss,
w ~

-,
the re-

JHV

action of the unloaded abutment must be changed for

the reasons explained in (54) to - ^ and since nr
21(1 p)

the number of loaded panels in I -
u^ equals

x
this

P
w>n_ /\ a

quantity becomes A---L
Substituting this in Eq.

2l/\L p}

(345) we obtain

_ w'(l x
- -

for the maximum vertical component of the strain in
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any inclined brace whose lower end is distant x from

the abutment towards which it leans.

This strain* is evidently always tension, and it pro-

duces compression in the vertical brace to whose upper

end it is attached. This compression is greatest when

the tension in the inclined brace is greatest, or when the

load extends from one abutment and covers the next

panel point to this brace.

Referring to Fig. (82), let the load extend from the

abutment A so that the point h is loaded and a outside

the load. It is evident that the vertical strains in the

chord member ib and the inclined brace hb, compression

in the former and tension in the latter, produce all the

vertical strain that may exist in the chord member be

and the vertical brace ba
;
or the vertical strain in ib

and hb equals the vertical strain in ba and be
; hence, if

we subtract the vertical strain in be from the sum of the

strains in ib and bh< we have for the remainder the ver-

tical strain in ba. Let V, Eq. (345), be the vertical

strain in $>, x being the horizontal distance from the

abutment B to point h. From moments around A,

-)y .... (347)

the reaction of the abutment being L ~L- the ver

tical component of this from the proportion of its length

to its vertical extent,
O.J^/7 O I ,vA ..//7 Aa~7

/:

. . .
(348)

4fc ( 6 ZCj
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Adding Eqs. (345) and (348), we have,

4P i-x (i-x}(i-x+py i-x

which readily reduces to

(350)

for the total vertical strain coming upon the point r

and taken by the members Ic and ba. If x of Eq. (348)

be changed to x p, we shall have for the vertical

strain in &c

Subtract Eq. (351) from Eq. (350) and

is the remainder and the strain in ba. In this equation

the reaction of the abutment
W \~> must be changed

to _^
n P an(J since x is the distance to the panel

point beyond the vertical brace to which the equation

refers, let it be changed to x' +jp, so that x' shall be the

distance to the brace. Then, since n =---
-, mak-

P
ing these changes, Eq. (352) becomes

W'(i^x'-Pyx' (353)

2l(l-~p)(l-x')'

The vertical braces are subject to the action of the
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load moving in either direction, or* a strain may come

upon them from either of the ties attached to their upper

ends. The greatest strain is when the load covers more

than half the truss, or when xf
does not exceed . If the

2i

roadway be upon the upper chord the proportion of the

compression from the constant load must be added to

Eq. (353). If upon the lower chord the tension from

the constant load must be deducted.

218. Example. In Fig. (81),

Let I = 350 feet, the length of the truss,

d = 49 feet, the depth of the truss at the

centre,

p = 25 feet, the horizontal length of a panel,

w' = 350 tons, the weight of the full movable

load,

w = 175 tons, the constant truss weight.' O

Substituting values in Eq. (339) we have the follow-

ing table of chord strains, w of this equation being the

maximum load, 525 tons :

Values of p.'
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Substituting values in Eq. (346), and multiplying

the vertical strain by the secants of the inclined brace

angles, we may form the following table :

Values of x.
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tension of one-fourth of a panel load from the constant

load, or
-^y,

and one-half of a panel load of the moving
461

load, or - hence, y + - C = 15.625 tons is the
ZL 46 2il

maximum tension in the vertical braces.

Substituting values in Eq. (353), and deducting from

the results the constant load tension of^= 3.125, the

following table of maximum compressions in the verti-

cal braces may be formed :

Values of x.
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CHAPTER XI.

THE KUILENBERG TRUSS.

219. The plan of this truss is shown in Fig. (83).

Fig. 83.

For trusses of this character, having the upper chord

arched, but not meeting the lower and horizontal chord

at the abutments, equations may be prepared, containing

but one variable, as in the previous cases
;
but in this

case to express the depth of the truss at any point in

terms of the distance of that point from the abutment,

would give a long and somewhat intricate equation.

For this reason, and to give an example of the manner

in which any form of truss may be analyzed, and its

strains determined, only the simplest forms of equations

will be used.

220. Let I = 152 metres, the distance between the

abutments,

d = 20 metres, the depth of the truss at the

centre,
20
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p = 4 metres, the length of a panel,

n = 1.2 metres, the distance on the abut-

ment between the end posts,

*w' 500 tons, the full movable load,

w = 500 tons, the constant truss weight,

uniformly distributed,

x = the horizontal distance of a panel point

from the abutment not from the

end of the truss,

y the vertical depth of the truss at x.

The truss extends beyond the abutment at either end

a certain distance = 2^, ab = be = n. The upper chord

is the arc of a circle whose diameter = 493.33 metres,

and the length of the end post
= 8 metres.

221. Horizontal Strains.-^-Under the full load, in

which case the chord strains are greatest, this truss, like

the trusses with horizontal chords, may be divided into

three simple trusses,

No. 1. Fig. (84).

d g k n q t w t' q' n' k

* These weights are assumed.
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\

No. 2 Fig. (85).

M p s v v S
'

F'
C'

m P s v v' s' p' m' i' f c
'

Fig. 85.

No. 3. Fig. (86).

o i

B

e h i o r u u' r' o' i' h' e'

Fig. 86.

Simple Truss No. 1 bears (w -r- ^), (w, for con-
O 6 '

venience, expressing the full load and the truss weight),

therefore the moment of the reaction of the abutment

upon it is at any point #, since its end post is 2n beyond

the abutment,

and the moment of the load on x is,

1 Iwx
, wpx _ wp*\~~' ~ '

Hence H, the horizontal component of the compression

in the upper chord, or the tension in the lower chord is,

TT _ wx WX* . wp* . wn . wpn'
y ^

"6"' ~Ql'
~" ~

;

whence,

H = ~(lx - of + 2p' + 2^ + 2pn). (354)
bly
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Substituting values given above, w being 1000 tons,

H _ 1254(152 -x) +406.4] .

Whence the following table of chord strains in Simple
Truss No. 1 :

Values of x.
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ic x9

+px).

Substituting values, w being put for (w
f

(355)

whence the following table of chord strains in Simple

Truss No. 2 :

Values of x.
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.

bly

substituting values,

; (356)

whence the following table of chord strains in Simple
Truss No. 3 :

Values of x.
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the end of the truss, in a vertical column
; opposite to

and in line with each point, place the strain extending

from that point to the next point towards the centre of

the same simple truss
;
then at any point the sum of the

simple truss strain at that point, and the two strains

immediately above it, is the total strain in that member

of the upper chord whose abutment end is at the point

referred to. Similarly of the lower chord tensions, thus :

Upper Chord
Panel

Points.
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Multiplying the horizontal components of the com-

pressions in the upper chord by the length of the mem-

ber, and dividing by the horizontal length of the panels,

we obtain the following table of upper chord compres-

sions :

AB&
A'B'
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222. Vertical Strains from the Permanent Load.

The above tables show that under a full load the chord

strains increase from the abutments to the centre, and

consequently the vertical braces are struts and the in-

clined braces ties. The figures of the Simple Trusses,

(84), (85), and (86), show all the braces needed under a

full or constant uniform load. If the truss supports

only its own weight, w, the strains in the chords will be

only one-half those given in the tables, since w is one-

half of w' + w
;
and the horizontal component of the

strain in any brace (Kn, of Simple Truss No. 1, for

example), from the constant load, w, will be the difference

between the horizontal components of the strains in GK
and KN, or, what is the same, between the strains in kn

and nq ;
hence Sp : y : : H H' : V, or the horizontal

extent of any brace is to its vertical extent as the hori-

zontal component of the strain in that brace is to its ver-

tical component. And the compression from the same

load in any vertical brace is equal to the vertical strain

in the tie which meets that brace at the lower chord,

less a panel weight of that load, 4.J-, the load being con-
V

sidered as concentrated at the lower chord panel points.

In this manner the following tables of the strains in

the vertical struts and of the vertical components of the

tensions in the inclined ties from the permanent load w
are formed :
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SIMPLE TRUSS No. 1.

Strains in

Tons.
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SIMPLE TRUSS No. 3.

Strains in

Tons.
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Taking moments around any panel point of this

truss outside the load, x and u being measured from the

same abutment, we have,

ViaH = - - - - -
(358)

y

for the tension in the lower chord and the horizontal

component of the compression in the upper chord. And

at the next panel point of the same truss towards the

abutment from which x is measured,

. . .
(359)

tf

Subtracting Eq. (359) from Eq. (358;

H-H' = IXi^=l^-^, . (360)
yy

is the horizontal component of the brace which extends

from x to x 3p, and which, since the horizontal strain

increases towards the end of the load, is a tie, if the

upper end inclines towards the abutment from which x

is measured. The vertical extent of this tie is y', its

horizontal extent is 3p; hence, multiplying Eq. (360) by

y', the vertical extent of this tie, and dividing by its

horizontal extent, 3p, we obtain

) + l} . . . (361)

for the vertical component of the strain in any inclined

brace, outside the load, from a moving load, whose lower

chord end is distant x from the unloaded abutment,

whose vertical extent is y', y being the vertical height
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of the truss at x. Substituting for V its value given by

Eq (357), we have

4

Substituting the values given above, this becomes

~4.8tt4-785.2)j0(y'-y) -

286.0032 ( 12

The greatest strain from this equation upon any in-

clined tie is when the load covers the point to which x

is measured, or when u = x -^-, and this strain is

L

greater than the strain from the full load.

To this strain from the moving load is to be added

the strain from the constant load so long as the two are

acting upon the same abutment
;
but when x of Eq.

(363) becomes greater than
,
then the strains in the

2

same panel are acting in opposite directions, and one

neutralizes its amount in the other. While Eq. (363),

with x greater than
,

is greater than the constant load
2i

vertical strain, in the same panel in which the brace

from x to x 3p is, a tie whose upper end inclines to-

wards the abutment from which x is measured is needed

to support the difference in these vertical strains.

In the following table the constant load vertical

strains taken from the table for Simple Truss No. 1 are

placed with the plus sign, as we proceed from either end

towards the centre and beyond with the minus sign.
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This is upon the same reasoning given before. The sum

is the strain in the inclined brace.

Values
of u.
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load permanent and movable, -i i ^- = 26.32 tons,
D

we obtain the compression in the vertical braces con-

nected with the lower ends of the ties, as follows :

Strains in Tons.
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of these two trusses, I + n, and multiplying by

(/'
u + )+ n, the distance of the centre of gravity

2t 2i'

of the load from the loaded abutment, we have

for the reaction of the unloaded abutment upon Simple

Truss No. 2 when u is less than
,
and upon No. 3

2t

when u is greater than .

Substituting values in Eq. (364), we obtain by the

same process of reasoning as in the case of Simple Truss

No. 1,

for the vertical component of the strain, from the mov-

ing load, in any brace of Simple Truss No. 2 whose

lower chord end is distant x from the abutment towards

which the brace leans, while x does not exceed ,
and

ft

beyond that point in the counterbraces of Simple Truss

No. 3 having similar inclinations.

In the following table the strains from the moving
load are from Eq. (365) ;

the strains from the constant

load are from the table given before for Simple Truss

No. 2
;
to the centre and beyond that, where they be-

come minus, from Simple Truss No. 3.
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abutment end of Simple Truss No. 2, or from right end

of Fig. (87), by similar reasoning we obtain

(366>

.

for the reaction of the unloaded abutment, and substi-

tuting values,

-
279.4368

for the vertical component of the strain from the moving

load in any inclined brace of Simple Truss No. 3 whose

lower chord end is distant x from the abutment towards

which the brace leans, while x does not exceed
,
and

beyond that point in the counterbraces of Simple Truss

No. 2, having similar inclinations.

The following table is prepared as were the previous

two of the inclined brace strains :

Values

of

u.
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The compression in Ps and P's', since there are no

ties, Sp and S'p' is 2.47 tons. Beyond w = 98, counter-

bracing is unnecessary.

Whence the compression in the vertical braces is as

follows :

Strains in Tons.
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them by the secants of the angles the braces make with

a vertical line, to obtain the longitudinal strains. Per-

forming this operation we may form the following table :

Strains in

Tons.
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CHAPTER XII.

THE BOLLMAN AND FINK TRUSSES.

224. These trusses take their names from the design-

ers, and, strictly speaking, do not come within the

definition of a truss, as given in the opening chapter.

Each may be considered, however, as composed of a

number of simple triangular trusses, and the determina-

tion of the strains affecting them presents no difficulty.

CASE I. THE BOLLMAN TRUSS.

225. The Boiiman Truss. Let Fig. (88) represent a

truss in which the only chord, AB, is horizontal, and in

bcdefghikl

which the inclined braces meet the chord at its ends

only. It is evident that the strain affecting this chord

is compression, and that it is uniform throughout the

length of the chord, for no brace whose strain has a
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horizontal component meets the chord except at its ends,

and that it is greatest when the truss is fully loaded.

226. Horizontal Strains.

Let I = the length of the truss,

d = the depth of the truss, or the length of

the vertical braces,

p = the length of a panel, or the distance

between the vertical braces,

w = the maximum uniform weight, both

fixed and movable.

Taking moments around a point in the centre of

truss, and in the line of the lower ends of the vertical

braces, the strains in the inclined braces crossing the

centre may be disregarded, as their amounts in opposite

directions exactly balance each other, and we have,

therefore,

is the strain in the horizontal chord.

227. Tertical Strains in the Vertical Brace. The

vertical braces are struts, and each one can only support

the maximum panel load, for no brace connects with its

upper end to bring any greater vertical strain upon it ;

hence its greatest strain is when it is fully loaded either

from a full truss load or from a moving load
; therefore

.....
(367)

is the maximum strain in each vertical brace.
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228. Tertical Strains in the Inclined Braces. Each

vertical brace, with the inclined braces attached to its

lower end, is, with the horizontal chord, a simple trian-

gular truss.

Let x be the distance of a vertical strut from one

abutment
;

then by the principles of the lever, since

^ is the load upon the strut,
^ _i- I x (I x)

I I

= ^-f, ....
(368)

is the reaction of that abutment from which x is mea-

sured upon the inclined brace from the lower end of the

strut to which x is measured, and consequently the ver-

tical component of the strain, which is tension, in that

inclined brace. Similarly,

V =
f-, (369)

is the vertical component of the strain in the other in-

clined brace from the same strut. One equation only,

however, is needed.

Dividing these equations by c?, the depth of the

truss, or the vertical extent of the inclined tie, and mul-

tiplying by the length of the tie itself, we obtain the

longitudinal strain.

229. Example. In Fig. (88),

Let I = 160 feet, the length of the truss or chord,

d = 15 feet, the depth of the truss,

p = 10 feet, the length of a panel,

w = 240 tons, the full weight of the truss and

of the load.
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Therefore -- = 24Qxl6 = 320 tons, compression
Sd 8x15

-

JLbU
throuhout the horizontal chord. And - =

^=15 tons, compression in each vertical strut
;
and

wp
~T

_~ c~~
32*

Substituting values of #, dividing by d, and multi-

plying by the lengths of the ties, we have the following

table of tensions in the ties :

Values of x.
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230. A Truss Containing an odd number

This truss may be divided into an odd number of panels

or chord members, in which case, by taking moments as

before, we obtain for the chord strain,

(370)
TT _ __

~Sd Sdl

The strains in the braces are found from the same

equations as in the previous case.

231. In practice, in the Bollinan Truss, there are

two light rods from the bottom of each truss to the tops

of the next on either side, and a horizontal rod connect-

ing the lower ends of the struts.

CASE II. THE FINK TRUSS.

232. The Fink Truss. In this truss, shown in Fig.

(89), as in the Bollman, the single chord is subject to

compression, the vertical braces are struts, and the in-

clined braces ties.

A B c D Q K

1 m

Pig. 89.

233. Vertical strains. The struts attached to the

chord at the points B, D, F, H, K, M, O, and Q, or the

alternate struts beginning with those next the abutments,

each bear one panel load, since, as no brace meets them
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or is connected with them at the chord, they can receive

no weight or strain except from the load immediately

upon them. The braces from their lower ends having

equal inclinations receive equal amounts of vertical

strain
;
or

Let I the length of the truss,

p = the length of a panel,

w = the uniform maximum load,

then -- is the weight upon each of these struts, and
V

- the vertical component of the tension in each of the
2 If

ties from their lower ends, or in all the ties in the truss

having a horizontal extent ofp, or a panel length.

The struts from the points C, G, L, and P, have, in

in addition to the panel load upon them, a half panel

load from each of the inclined braces which meet them

at the chord, and consequently are subject to a vertical

strain of --
;
the inclined braces from their lower ends

V

therefore have each a vertical strain
-,
and a horizon-

tal extent of two panel lengths, or 2p ; whence we form

this rule.

The vertical component of the strain in any tie equals

half the panel loads in its horizontal extent
;
thus nE,

has a horizontal extent of four panels, the vertical com-

ponent of its strain is therefore
;
iR has a horizon-

V

tal extent of eight panels, the vertical component of its
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strain is therefore j- ;
or let n = number of panels in

the horizontal extent of a tie, then -~- is the vertical

component of the strain in that tie, and this divided by
the depth of the truss, and multiplied by the length of

the tie, will give the longitudinal strain.

Evidently ^--
is the compression in the strut to

whose lower end the tie, having a horizontal extent of nr

is attached.

234. Horizontal Strains. The strain in the chord

from any tie having a horizontal extent of p, or the

horizontal component of the strain in that tie, is

:: _

21 2dl

From the ties whose horizontal extent =

From the ties whose horizontal extent = 4

d:4p ::**.:*?&
v Cui

and from those whose horizontal extent =

d :

I dl

It is evident that all these strains affect each member

of the chord, and that, therefore,

wp* ^wp , Swp*, ,~
'

~~

23T ~W '

~~dT ~~dT dl
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is the uniform compression throughout the chord of a

Fink Truss, containing sixteen panels.

It will be noticed that general equations are not

given for this truss, but special equations are determined

for a truss divided, as shown in the figure ;
and for a

truss containing a different number of panels a different

horizontal equation must be prepared. It will also be

noticed that the greatest strains are from the full load.

235. Example. In Fig. (89),

Let I = 160 feet, the length of the truss,

d = 15 feet, the depth of the truss,

p = 10 feet, the length of a panel,

w = 240 tons, the maximum uniform load.

Hence

= 42JX240X10X10 -

dl 15x160

compression throughout the upper chord.

For the struts,
= 15 n, whence,

I

Values of n.
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For the tension in the ties, --, divided by d and
MV

multiplied by their lengths, we have,

Values of n.
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CHAPTER XIII.

RESISTANCE OF MATERIALS TO COMPRESSION AND TENSION.

I. COMPRESSION.

236. Mr. Eaton Hodgkinson, to whom we are

almost wholly indebted for our knowledge of the

strength of pillars and struts, divides them into three

classes :

1. Short pillars, whose lengths, compared with their

diameters, is so short that they yield by crushing alone.

2. Medium, or short flexible pillars, whose lengths,

compared with their diameters, is such that they fail

partly by flexure or bending, and partly by crushing.

3. Long flexible pillars, whose lengths are so great,

compared with their diameters, that they fail by flexure

or bending, like a girder subject to a transverse strain,

the breaking weight being much less than the crushing

weight.

237. Formulae for the Strength of Pillars Empirical.

The formulae for the resistance of long pillars to

flexure or bending are generally based upon the formulae

for the resistance of a girder supported at both ends and

subject to a transverse weight or pressure, although the
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latter are not altogether satisfactory, nor do they entirely

conform to the results of experiment.

The girder and the long pillar both yield from flex-

ure, but there is a difference in the conditions of the two

which will materially affect the formulas for the resist-

ance of the latter to the flexure derived from their

resemblance. A girder, supported at both ends, and

subject to a transverse pressure or weight, has its great-

est longitudinal strain concentrated at one point, the

compression on one side being equal to the tension on

the opposite, and has no longitudinal strain at the ends
;

but a loaded pillar or strut must sustain, in some part

of any transverse section, throughout its whole length,

an amount of compression equal to the weight imposed

upon it. If the line of this weight coincide with the

axis of the pillar, failure will result from crushing,

unaffected by the length, and there is no resemblance to

the girder ;
and if, as is generally true of long pillars,

this coincidence does not exist, the conditions of a girder

are not immediately fulfilled, for the line of pressure

may be nearer one side, so that the compression upon

that side may be greater than upon the other, where the

compression may be slight, or where there may actually

be no strain. This may be true even with a slight bend-

ing of the pillar. But flexure soon produces tension in

the convex side of the pillar, and this tension may
resemble that in a loaded girder; that is, it may be

greatest at one point and diminish in a certain ratio

from that point towards the ends. It must diminish or
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vanish at some point, because it cannot exist at the ends,

and it cannot vanish without neutralizing, or being neu-

tralized by, an equal amount of compression ;
hence it

either lessens the compression in the concave side, or

when tension exists in a pillar, there is present an

amount of compression equal to the weight imposed and

to the tension. Therefore it would seem that a long

pillar, yielding by flexure, would more nearly resemble

a girder bending under a uniform load, and subject to

two equal and opposite thrusts at its ends.

In the absence of sufficient experiment our only re-

course is to such formulas, and their modifications or

adaptations to different forms, empirical though they be,

as have generally been adopted with safety, using such

as are adapted to truss struts and chord sections, each

section being considered as a separate pillar.

23. Short Wooden Pillar*. The crushing weight of

American yellow pine is given by Prof. Rarikine as

5,400 pounds per square inch, and of oak as 6,700.

These quantities seem small, but there is no doubt that

the crushing weight of white pine, given by some

American authors as 10,000 pounds per square inch, is

too great. The extreme safe working load for wooden

pillars may be put at 800 pounds per square inch for

permanent structures
;
for temporary purposes this load

may be exceeded. Eondolet found that wooden pillars

do not yield by flexure until their length exceeds ten

times their smallest diameter. The load of 800 pounds

per square inch, however, may be carried until the
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length so exceeds the diameter that the formula for

flexure, given beyond, gives a less weight, which is when

the length is about 29 J times the diameter.

239. Long Wooden Pillars. Prof. Rankine gives

this formula for the working strength of long rectangu-

lar wooden pillars :

300,000M
'

whereW is the safe working strain in pounds,

b is the breadth in inches,

d is the depth, or least lateral dimension, in

inches,

I is the length in inches.

Example What is the safe working strain for a

wooden pillar 10 feet long, 4 inches deep, and 5 inches

in breadth ?

Here, W = = 6667 pounds.

240. Square Wooden Pillars. " Of rectangular

wooden pillars, it was proved experimentally, that the

pillar of greatest strength, where the length and quantity

of material is the same, is a square." Hodgkinson.

241. Solid Pillars of different Transverse Sections.

"
It appears that the strength of (long) circular, square,

and triangular pillars of the same quality, weight, and

length vary as 55.299, 51.537, and 61.056, the last being

the strongest" HodgMnson.
22
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Or if the strength of a long, round pillar be 100,

that of a square solid pillar will be 93, and that of a

triangular solid pillar 110, the pillars being of equal

length and transverse section.

241. The crushing strain of cast-iron is 85,000

pounds per square inch.

242. The Load for Cast-iron Solid Pillars. The

formula for solid round cast-iron pillars, whose lengths

exceeds 30 times their diameters, deduced from Hodg-

kinson, is

w _ 6500 d , .W ---
jus

> (
372)

in whichW is the safe working load in pounds,

c?,
the diameter in inches,

Z, the length in feet.

Tables of the powers of d 3 -5 and I
lt68 are given at the

end of the chapter.

Example. What is the safe weight for a solid pillar

of cast-iron 10 feet long and 3 inches in diameter?

Taking the values of 10 1<63 and 3 3 -5 from the tables, we

have

w 6500x46.765

42.658

243. The Load for Cast-iron Hollow Pillars.
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in which W, d, and I have the same meaning as before,

and d' is the diameter of the inside of the pillar in

inches.

244. The Load for Cast-Iron Rectangular Pillars.

For square solid pillars,

s ....
(374)

For square hollow pillars,

For rectangular solid pillars,

W =^. ....
(3,6)

For rectangular hollow pillars,

in which "W and I have the same meaning as before
;

d is the outside of the square, or the least side of the

rectangle in inches
;

d' the inside of the square, or least

inner side of the rectangle in inches
; 6, the greater

outer, and b' the greater inner dimensions of the rec-

tangle.

Example. What is the safe working load for a cast-

iron rectangular pillar 15 feet long, 8x12 inches out-

side measurement, and with sides half an inch in thick-

ness?



340 A TREATISE ON

Here &' = 11, and d' = 7, whence, taking the powers

from the tables,

W = 9232 (12 X 181.02 11 X 129.64) = g339()
82.6093

245. The Load for Solid Triangular at Iron Pil-

lar. The formula for a solid cast-iron pillar of equi-

lateral transverse section is

^
)
.... (378)

d being the side in inches.

246. The Safe Working L,oad for Cast Iron Pillars.

In the preceding formulae for cast-iron the safe working

load has been put at one-fifth of the breaking weight.

Mr. Francis has put it at one-fifth, Navier at one-fifth,

while Mr. Stoney puts it at one-fifth where there is no

vibration, one-sixth where there is a moderate vibration,

and one-tenth where the pillar is subject to a heavy jar.

247. Cast Iron Pillars of other Forms. A cast-iron

pillar of the + form is very weak to bear a strain, less

than one-half of the strength of a hollow cylindrical

pillar of equal weight and length ;
a pillar of the

| |

form is stronger than the preceding, but weaker than

the hollow cylindrical. The proportions are as follows,

the weights and lengths being equal :

Hollow Bound, - - - 1000

+ form, - - - - - - 443

form, ...... 746
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248. Equality in the Thickness of Hollow Pillars not

important. Mr. Hodgkinson remarks that,
" where

there is an inequality in the thickness of hollow pillars

it does not produce much diminution of strength." Mr.

Stoney adds :
" In practice, neither the excess nor the

want of thickness should exceed twenty-five per cent, of

the average thickness. If, for instance, a hollow pillar

is specified to be one inch in thickness, then in no place

should the metal be less than three-quarters of an inch,

nor more than one and a quarter inch thick.

249 " In all the pillars with rounded ends, those

with increased middles were stronger than uniform

pillars of the same weight, the increase being about one-

seventh of the weight borne by the former." Hodg-
Jcinson. They were solid cast-iron pillars.

25O. Formulae for medium Pillars. The above for-

mulae apply to all pillars whose lengths exceed thirty

times their external diameters (for cast-iron and timber,

and sixty diameters for wrought iron). For pillars

shorter than this they give too great a weight, and for

such Mr. Hodgkinson has modified his formulae, from

which we have,

'- <379)

whereW = the safe working load in pounds,

W = the safe working load in pounds, derived

from the formulae given above for long

pillars,
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c = the crushing weight of the pillar ;
that is, the

crushing weight per square inch of the

material, multiplied by the sectional area

in inches.

251. In hollow cast-iron pillars Mr. Hodgkinson
found that no additional strength was obtained by en-

larging the diameter at the middle. Solid square pillars
" do not break in a direction parallel to their sides, but

to their diagonals nearly." Hodgkinson.

252. wrought iron. Mr. Hodgkinson gives the

crushing weight of wrought iron as 35,800 pounds per

square inch, being much less than that of cast-iron;

hence a short cast-iron pillar can resist a much greater

crushing strain than wrought-iron. But, as Mr. Stoney

remarks, the strength of very long pillars depends not

on the strength of the material, but on its stiffness arid

capability of resisting flexure
; hence,

"
although a short

pillar of cast-iron will bear a much greater weight than

a similar pillar of wrought-iron, yet a very long wrought-

iron pillar will support a greater weight than a similar

one of cast-iron, as the co-efficiency of elasticity is con-

siderably higher than that of cast-iron."

253. Long Solid Wrought Iron Pillars. The formula

for the safe working load of solid wrought-iron pillars

'

w= 24967^ .... (380)
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The working load being put at one-fourth the breaking

weight ; W, e#, and I having tfre same meaning as before.

254. Hollow Wrought iron Pillars. The strength per

square inch of hollow wrought-irou pillars seem to de-

pend greatly upon a ratio between the thickness of the

plate and the diameter of the pillar, though this ratio is

not satisfactorily known. Prof. Rankine says :
" The

ultimate resistance of a square wrought-iron pillar, when

the thickness of the plate is not less than one-thirtieth the

diameter or side of the pillar, is 27,000 pounds per square

inch." The strongest form of a hollow rectangular

pillar is where the chief part of the material is concen-

trated at the angles.

255. Relative Strength of Long Pillars. Putting the

strength of a long cast-iron at 1,000, the strength of

similar pillars of other materials was found by Mr.

Hodgkinson to be :

Cast-iron, 1,000

Wrought-iron, .--- 1,745

Cast-steel,
..... 2,518

Oak, ....... 109

Pine, - 79

Hence, from the formulae for cast-iron, the strength

of similar pillars of other materials may be found.
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II. TENSION.

256. No formula is required for tension, since the

strength of any member of a truss subject to a tensile

strain varies directly as its weakest transverse section,

and is unaffected by the length ;
hence we need only to

know the tearing weight of different materials and the

safe working load.

The safe working tension for timber may be put at

900 pounds per square inch of the smallest transverse

section.

Cast-iron is not suited for tension
;

its tearing

weight is 15,680 pounds per square inch, and its safe

working load should not exceed one-sixth of this.

The tensile strength of wrought-iron is 54,000

pounds per square inch
;

its safe working load should

not exceed one-fourth of this.
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TABLE I. POWERS OF LENGTHS, OR Z
1 -63

.

1-M 1.
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TABLE III. POWERS OF DIAMETERS, OR

I 2 -5 1









THIS BOOK IS DUE ON THE LAST DATE
STAMPED BELOW

AN INITIAL FINE OF 25 CENTS
WILL BE ASSESSED FOR FAILURE TO RETURN
THIS BOOK ON THE DATE DUE. THE PENALTY
WILL INCREASE TO SO CENTS ON THE FOURTH
DAY AND TO $I.OO ON THE SEVENTH DAY
OVERDUE.

LD 21-100m-7,'40 (6936s,'



T<S-

THE UNIVERSITY OF CALIFORNIA LIBRARY




