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PREFACE

The object of this book is, first, to present in a volume of

medium size the fundamental principles and processes and a

few of the multitudinous applications of invariant theory,

with emphasis upon both the nonsymbolical and the symbol-

ical method. Secondly, opportunity has been taken to empha-

size a logical development of this theory as a whole, and to

amalgamate methods of English mathematicians of the latter

part of the nineteenth century— Boole, Cayley, Sylvester,

and their contemporaries— and methods of the continental

school, associated with the names of Aronhold, Clebsch,

Gordan, and Hermite.

The original memoirs on the subject, comprising an ex-

ceedingly large and classical division of pure mathematics,

have been consulted extensively. I have deemed it expe-

dient, however, to give only a few references in the text. The

student in the subject is fortunate in having at his command

two large and meritorious bibliographical reports which give

historical references with much greater completeness than

would be possible in footnotes in a book. These are the

article "Invariantentheorie" in the " Enzyklopaclie der mathe-

matischen Wissenschaften" (I B 2), and W. Fr. Meyers
" Bericht liber den gegenwartigen Stand der Invarianten-

theorie " in the " Jahresbericht der deutschen Mathematiker-

Vereinigung" for 1890-1891.

The first draft of the manuscript of the book was hi the

form of notes for a course of lectures on the theory of inva-

riants, which I have given for several years hi the Graduate

School of the University of Pennsylvania.

The book contains several constructive simplifications of

standard proofs and, in connection with invariants of finite
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iv THE THEOKY OF [NVAKIAISTTS

groups of transformations and the algebraical theory of ter-

nariants, formulations of fundamental algorithms which may,

it is hoped, be of aid to investigators.

While writing I have had at hand and have frequently

consulted the following texts:

Clebsch, Theorie der binaren Formen (187"2).

Clebsch, LindemaNn, Vorlesungen iiber Geometrie (1875).

Dickson, Algebraic Invariants (lull).

Dickson, Madison Colloquium Lectures on Mathematics (1913). 1. In-

variants and the Theory of Numbers.

Ei.i.ioi i. Algebra of Quantics (1895).

F\\ i>i Bruno, Theorie des tonnes binaires (1876).

Gordan, Vorlesungen iiber Lnvariantentheorie (1887).

Gr \< i. and Young, Algebra of Invariants ( L903).

W. Fr. Meyer, Allgemeine Formen und [nvariantentheorie (1909).

W. Fr. Meyer, Apolaritat und rationale Curven (1883).

.Salmon, Lessons Introductory to Modern Higher Algebra (1859; lilt

ed., 1885).

Study, Methoden zur Theorie der ternaren Formen (1889).

(). E. GLENN
Phi ladelphia, Pa.
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THE THEORY OF INVARIANTS

CHAPTER I

THE PRINCIPLES OF INVARIANT THEORY

SECTION 1. THE NATURE OF AN INVARIANT.

ILLUSTRATIONS

We consider a definite entity or system of elements, as the

totality of points in a plane, and suppose that the system is

subjected to a definite kind of a transformation, like the

transformation of the points in a plane by a linear trans-

formation of their coordinates. Invariant theory treats of

the properties of the system which persist, or its elements

which remain unaltered, during- the changes which are im-

posed upon the system by the transformation.

By means of particular illustrations we can bring into

clear relief several defining properties of an invariant.

I. An invariant area. Given a triangle ABO drawn in

the Cartesian plane with a vertex at the origin. Suppose

that the coordinates of A are (xv y-^); those of B (xv y^).

Then the area A is

A = JOi^a - *2#l)'

or, in a convenient notation,

A = \(xy).

Let us transform the system, consisting of all points in the

plane, by the substitutions

x = x^' + ^y\ y = V' + fHSf'-
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The area of the triangle into which A is then carried will be

A'=K^-4#i) = K*y) 5

and by applying the transformations directly to A,

A=(V2"Vl)A '

C
1

)

If we assume that the determinant of the transformation is

lll,i,
-

v '

2> = (X/0=1,
then

A' = A.

Z%ws (Ag area A of the triangle ABC remains unchanged

under a transformation of determinant unity and is an in-

variant of the transforma-

tion. The triangle itself is

not an invariant, but is car-

ried into abC. Tiie area

A is called an absolute in-

variant if D = 1 . If I) =t 1,

all triangles having a vertex

at the origin will have their

areas multiplied by the same

number D' 1 under the trans-

formation. In such a case

A is said to be a relative invariant. The adjoining figure

illustrates the transformation of ^4.(5, (5), -6(4, 6), (7(0, 0) by

means of
x = ^ + y\ y = x' + 2y'

.

II. An invariant ratio. In I the points (elements) of the

transformed system are located by means of two lines of

reference, and consist of the totality of points in a plane. For

;i second illustration we consider the system of all points on

a line EF.

We Locate a point C on this line by referring it to two

fixed points of reference P, Q. Thus C will divide the

segment PQ in a definite ratio. This ratio,

PO/CQ,
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is unique, being positive for points C of internal division and

negative for points of external division. The point is

*. -£ 2 2 £ ,F

said to have for coordinates any pair of numbers (xv x
2

~)

such that „. r>n

x
2

CQ

where X is a multiplier which is constant for a given pair of

reference points P, Q. Let the segment PQ be positive and

equal to /a. Suppose that the point C is represented by the

particular pair (pv p2
~), and let D(qv q2 ) be any other point.

Then we can find a formula for the length of CD. For,

CQ = PO = PQ fi

Pi XPl XPl+2>2 XPl+p2
and D Q _ /x

% M\ + %
Consequently

CD=CQ-DQ = ^^
(3)

(Xq
1 + q2 )(^p 1 +p2 )

Theorem. The anharmonic ratio \ CDEF\ of four points

C(PvPz)' Di(lv &)' E( rv r2>' F(sv «2>' defined by

\CDEF\= CD ' EF
,

^ CF.ED

is an invariant under the general linear transformation

T : x
x
= Xjajj + fxx

x'
2

, x2
= X

2x[ + f*2z2
,
(X/x) =£ 0. (30

In proof we have from (3)

\CDEF\ = (W )(sr^.
(sp) (qr)

But under the transformation (cf. (1)),

(qp~) = (\n)(q'p'\ (4)
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and so on. Also, C, D, E, F are transformed into the points

respectively. Hence

(V)(«r) (s'p'Xq'r')
J '

and therefore the anharmonic ratio is an absolute invariant.

III. An invariant discriminant. A homogeneous quadratic

polynomial,

f= a x2

1
+ 2 a^c^c

% + a
2^,

when equated to zero, is an equation having two roots which

are values of the ratio x
1
/x

2
. According to II we may repre-

sent these two ratios by two points C(pv jt?
2), J)(qv q%) on

the line EF. Thus we may speak of the roots (/>r p2
~),

(qv ?2 ) of /-

These two points coincide if the discriminant of/ vanishes,

and conversely ; that is if

J) = 4(# a
2
— a\) = 0.

If / be transformed by T, the result is a quadratic poly-

nomial in x'v x'v or

Now if the points .C, D coincide, then the two transformed

points C, D' also coincide. For if CD= 0, (3) gives (qp)
= 0. Then (4) gives (q'p'} = 0, since by hypothesis (Xfi) =^0.

Hence, as stated, CD' = 0.

It follows that
1

the discriminant D' of f must vanish as a

consequence of the vanishing of D. Hence

D' = KB.

The constant iTmay be determined by selecting in place

of / the particular quadratic fx
= 2 x

t
x2 for which D = — 4.

Transformingfx
by T we have

/J = -1 X
:Vi + 2(X

1
/Lt
2 + X^zfr + 2 fi^x* ;
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and the discriminant of f[ is D' = — 4(X/u) 2
. Then the sub-

stitution of these particular discriminants gives

-4(V)2 = -4JT,

We may also determine -ST by applying the transformation T
to/ and computing the explicit form of/'. We obtain

a' = « Xf + 2 ajXjA-2 + «
2
X|,

a[ = (IqX^ + ^(X^ + X^) + a
2
X^v (5)

and hence by actual computation,

4(a' a'
2
- at) = 4(XA

2(a «
2
- a?),

or, as above,

D> = (X/i) 2i>.

Therefore the discriminant of/ is a relative invariant of T
(Lagrange 1773) ; and, in fact, the discriminant of f is

always equal to the discriminant of / multiplied by the

square of the determinant of the transformation.

Preliminary Geometrical Definition. If there is

associated with a geometric figure, a quantity which is left

unchanged by a set of transformations of the figure, then this

quantity is called an absolute invariant of the set (Halphen).

In I the set of transformations consists of all linear trans-

formations for which (X/a) = 1. In II and III the set consists

of all for which (X/i) =£ 0.

IV. An invariant geometrical relation. Let the roots of

the quadratic polynomial / be represented by the points

CPvPi)' 0*i' r^)-> and let $ De a second polynomial,

(f)
= b

Q
x\ + 2 b^c

x
x
2 + b

2
x\\

whose roots are represented by (qv q2 ~), (sv s
2), or, in a

briefer notation, by (5-), (s). Assume that the anharmonic

ratio of the four points (/?), (<?), (>), (s), equals minus one,
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(qp)(sr) = _ 1
(sp)(qr)

The point pairsf= 0, $ = are then said to be harmonic

conjugates. We have from (6)

2 h = 2 2VVi?i +
'2 Pi rihQ2 ~ Oir2 t P2ri)('hs

2 + fhsi) = °-

/= O1P2 - ^DOVa - a'2ri)'

Hence

a = p2
r
2, 2a1

= -( p2
r
1 +p )

r
2 ), a2 =p1

rv

h = ?2S2' 2 &
1 = — ( ?2S1 + 'll

S
2 >' &

2 = ?1«1»

and by substitution in (2 A) we obtain

A = a b
2
- 2 fljftj + a

2
b = 0. (7)

That h is a relative invariant under T is evident from (6):

for under the transformation/, <£ become, respectively,

/' = (Ap'i - Ap'i K*'A - X'-A^

Pi = Vi - /*i^2' P-i = -\lh + \Pv
r

'l
= /Vl

— /VV r
2 = — X

2
r
i + X

l
r2'

Hence

Thatis ' h' = (\fiyh.

Therefore the bilinear function It of the coefficients of two

quadratic polynomial*, representing the condition that their

root pairs be harmonic conjugates, is a relative invariant of the

transformation T. It is sometimes called a joint invariant,

or simultaneous invariant of the two polynomials under the

transformation.

V. An invariant polynomial. To the pair of polynomials

/. 4>. let a third quadratic polynomial be adjoined,

y}r = V'i + 2 6V'i-
r
2 + 'Vt>

= (x
x
U
2 — »

2
%l)(a:

l
v2
— X2V1

'•
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Let the points (uv w
2) (_vv v

2), be harmonic conjugate to the

pair (j9), (r); and also to the pair (<?), (s). Then

coh - 2 cA + 6A = °>

1 "t
- ^112 "i

-
2 2

^~

Elimination of the c coefficients gives

(7= »i

•C'o X1X11*2

0. (8)

This polynomial,

0= (a b
1
- a

x
b^x\ + (a b

2
- «

2
6 )a:

1
a-
2 + (a

x
6
2
- aj>{)x%

is the one existent quadratic polynomial whose roots form

a common harmonic conjugate pair, to each of the pairs/,
<f>.

We can prove readily that is an invariant of the trans-

formation T. For we have in addition to the equations (5),

b' = b \j + 2^W + 5
2Xf,

b[ = fyjXj/ij + ^(Xj/Ug + X^) + i
2
X
2
/z
2 , (9)

Also if we solve the transformation equations T for a/j, x'
2
in

terms of 2^, xv we obtain

«i = (X/*) _1(/Vi - A*i«a)> (10)

4 = (x/*) _1(— XgiCj + x^
2).

Hence when /, <£ are transformed by T, (7 becomes

C' =

\ (« Xf -f 2 a^X^+ «
2
X|) [^Xj/ij +^(X^+ X

2^ ) + 6
2
X
2
/z
2]

- (b \\+ 2 JjXjXa+ 6
2Xf ) OqX^j + aiCXj/ig + X^) + a

2
X
2^2 ] }

X(X /
x)-2(^

1
_

/ila-2
)2+-. (11)

When this expression is multiplied out and rearranged as

a polynomial in xv x
2 , it is found to be (X/i) C. That is,

and therefore C is an invariant.
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It is customary to employ the term invariant to signify

a function pf the coefficients of a polynomial, which is left

unchanged, save possibly for a numerical multiple, when the

polynomial is transformed by T. If the invariant function

involves the variables also, it is ordinarily called a covariant.

Thus D in III is a relative invariant, whereas C is a relative

covariant.

The Inverse of a Linear Transformation. The

process (11) of proving by direct computation the invari-

ancy of a function we shall call verifying the invariant or

covariant. The set of transformations (10) used in such a

verification is called the inverse of T and is denoted by T~ l
.

VI. An invariant of three lines. Instead of the Cartesian

coordinates employed in I we may introduce homogeneous

variables (xv xv rr
3) to represent a point P in a plane.

These variables may be regarded as the respective distances

of P from the three sides of a triangle of reference.

Then the equations of three lines in the plane may be written

^11^1 ' ^12*^2 ' ^13X3
= "»

^21"C1 ' ^22"^2 ~>" ^23*^3 = '

aZlXl + aMp9 + a

The eliminant of these,

D =
'ii

'21

'31

"12

22

82

33
l(
3

13

= 0.

l
23

'33

evidently represents the condition that the lines be concur-

rent. For the lines are concurrent if D = 0. Hence we

infer from the geometry that D is an invariant, inasmuch as

the transformed lines of three concurrent lines by the fol-

lowing transformations, S, are concurrent

:

pj + [l^ + V
x
x'^

S: x = Xo^i + ^2^2 + v
2
x
'v ( ^-A^) H- "• (12)

•; + fi3
.v'
2 + v

3
x'r

x
l
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To verify algebraically that D is an invariant we note that

the transformed of

a
i\
x

\ + a
i1
x
1 + ai3X3 (*' = !» 2

'
3)>

by # is

(aaX 1 + ai2\2 + tf
/3

*.
3Vi + Oa/h + a /2^2 + 'Ws)2? + (%y

i

+W + Vs>3 (* = X
>
2

'
3)- ( 13>

Thus the transformed of D is

an\ + tf
12
\
2 + au\ an /j,

1
+ rr

12
/x
2 + a

lsp3

D' = a
21

X.
1 + a22X2 + a

23
X
3 «21/*! + «

22^2 + a23^3

• «31X 1 + «32X2 + «33X3 ^31^1 + «32^2 + a33^3

an v
x
+ a12v2 + auv

z

a
i\
V
l + a

22
V
1 + a

23
y
3

Vl + HlV1 + a
33y3

= (\/J,v)D. (14)

The latter equality holds by virtue of the ordinary law of the

product of two determinants of the third order. Hence D is

an invariant.

VII. A differential invariant. In previous illustrations

the transformations introduced have been of the linear

homogeneous type. Let us next consider a type of trans-

formation which is not linear, and an invariant which repre-

sents the differential of the arc of a plane curve or simply

the distance between two consecutive points (x, «/) and

(x + dx, y + dy} in the (x, y) plane.

We assume the transformation to be given by

x' = X(x, y, a), y' = Y(x, y, a),

where the functions X, Y are two independent continuous

functions of x, y and the parameter a. We assume (a) that

the partial derivatives of these functions exist, and (J) that
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these are continuous. Also (c) we define X, Y to be such

that when a = a

X(x, y, a ) = x, Y(x, y, a ) = y.

Then let an increment 8a be added to a and expand each

function as a power series in 8a by Taylor's theorem. This

gives

»y, ' ^
(15)

y' = Y(x, y, a ) 4- -—^—^—¥ 8a + ....

Since it may happen that some of the partial derivatives of

X, Y may vanish for a = a , assume that the lowest power

of 8a in (15) which has a non-vanishing coefficient is (Sa)*,

and write (8a)* = 8t. Then the transformation, which is in-

finitesimal, becomes

j x = x + £8t,

y' = y + v 8t.

where £, t] are continuous functions of x, y. The effect of

operating /upon the coordinates of a point P is to add infin-

itesimal increments to those coordinates, viz.

8x = |&,

8y = r)8t.

Repeated operations with I produce a continuous motion

of the point P along a definite path in the plane. Such a

motion may be called a stationary streaming in the plane

(Lie).

Let us' now determine the functions £, 77, so that

a = da? + dy2

shall be an invariant under 7.

By means of /, a receives an infinitesimal increment 8cr.

In order that a may be an absolute invariant, we must have

\ 8a- = dxhdx 4- dyhdy = 0,
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or, since differential and variation symbols are permutable,

dxdhx + dydhy = dxd% + dydrj = 0.

Hence

(£xdx + %ydy~)dx + Qqxdx + r)
v
dy)dy = 0.

Thus since dx and dy are independent differentials

That is, £ is free from a: and rj from ?/. Moreover

bij Vxx £j/;/
"•

Hence £ is linear in i/, and tj is linear in x ; and also from

f„ = - ??*<

f = ay + & ?; = — az + 7. (17)

Thus the most general infinitesimal transformation leaving

cr invariant is

I:x' =x + (ay + /3) St, y
l = y + (- arc + 7)^. (18)

Now there is one point in the plane which is left invari-

ant, viz.

x = 7/«, y= — fi/a.

The only exception to this is when a = 0. But the trans-

formation is then completely defined by

x' = x + /38t, y' = y + ySt,

and is an infinitesimal translation parallel to the coordinate

axes. Assuming then that a =£ 0, we transform coordinate

axes so that the origin is moved to the invariant point.

This transformation,

x =x + 7/0, y = y- £/«,

leaves a unaltered, and /becomes

x' =x + «?/&, y' = y — ax8t. (19)

But (19) is simply an infinitesimal rotation around the

origin. We may add that the case a = does not require to

be treated as an exception since an infinitesimal translation
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may be regarded as a rotation around the point at infinity.

Thus,

Theorem. The most general infinitesimal transformation

which leaves a = dx2 + dy2 invariant is an infinitesimal rota-

tion around a definite invariant point in the plane.

We may readily interpret this theorem geometrically by

noting that if a is invariant the motion is that of a rigid

figure. As is well known, any infinitesimal motion of a plane

rigid figure in a plane is equivalent to a rotation around a

unique point in the plane, called the instantaneous center.

The invariant point of I is therefore the instantaneous center

of the infinitesi-

mal rotation.

The adjoining

figure shows the

invariant point

( (?) when the

moving figure is

a rigid rod R one

end of which slides on a circle S, and the other along a

straight line L. This point is the intersection of the radius

produced through one end of the rod with the perpendicular

to L at the other end.

VIII. An arithmetical invariant. Finally let us intro-

duce a transformation of the linear type like

T : xx = X^ + /*!4* x2 = \x
'i
+ /V?'

but one in which the coefficients X, fi are positive integral

residues of a prime number p. Call this transformation Tp
.

We note first that Tp
may be generated by combining the

following three particular transformations :

(5) x
1
= x'v x

%
— \x'v (20)

( Cj X^ = X<p .T
2
= 2^1
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where U A. are any integers reduced modulo p. For (a)

repeated gives

Repeated r times (a) gives, when rt = u (mod jt>),

Then (<?) combined with (d) becomes

Proceeding in this way Tp
may be built up.

where the coefficients are arbitrary variables ; and

g = a x\ + a^xp^ + a;^) + ^4^ v (21 >

and assume p = 3. Then we can prove that g is an arith-

metical covariant ; in other words a covariant modulo 3.

This is accomplished by showing that if / be transformed

by T
z
then g' will be identically congruent to g modulo 3.

When f is transformed by (•<?) we have

That is,

a'
()

= a
2 , a

J
= — av a'

2
= a .

The inverse of (e) is x
2
= xv x'

1
= — x

2
. Hence

g' = a
2
x\ 4- a^x^i 4- ^'

2) + a x\ =g,

and g is invariant, under (<?)•/

Next we may transform/by (a) ; and we obtain

a'
Q
= a , a\ — a t + «

x , #
2
= rt

</
2 + ^ a

i
t + a2-

The inverse of (a) is

wIsa *' .>^ •/-'I •t'-l i/tL-'fy%

Therefore we must have

g' = a (x
1
- tx

2y + (a < + a
x) [(^ - te

2 )
3*

2 + («i - te
2)4]

+ (a *
2 4- 2 a/ + a

2)4 (22)

= « a^ 4- a
x
{x\x

2 + x^x^) + a
2
x\ (mod 3).
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But this congruence follows immediately from the follow-

ing case of Fermat's theorem :

t? = t (mod 3).

Likewise g is invariant with reference to (6). Hence g is

a formal modular covariant of/ under T
z

.

SECTION 2. TERMINOLOGY AND DEFINITIONS. TRANS-
FORMATIONS

We proceed to formulate some definitions upon which

immediate developments depend.

I. An invariant. Suppose that a function of n variables,

/, is subjected to a definite set of transformations upon

those variables. Let there be associated with / some defi-

nite quantity <£ such that when the corresponding quantity

</>' is constructed for the transformed function/' the equality

<f>'=M<f>

holds. Suppose that M depends only upon the transforma-

tions, that is, is free from any relationship with/. Then $
is called an invariant of /under the transformations of the set.

The most extensive subdivision of the theory of invariants

in its present state of development is the theory of invari-

ants of algebraical polynomials under linear transformations.

Other important fields are differential invariants and num-

ber-theoretic invariant theories. In this book we treat, for

the most part, the algebraical invariants.

II. Quantics or forms. A homogeneous polynomial in n

variables xv .r
2

. •••, xn, of order m in those variables is called a

quantic, or form, of order m. Illustrations are

f(xv .r
2 )
= a rf + 3 a vrp-2 + 3 a^c^\ + a

z
x%

J\xv xv xz) = a
20(r

r
!

"+" - aivyc\
x
i ~t" aoiox2 "I" '" ('iorrrr3

+ - (
'oii-

r2-r3
~^~ aW&XZ'

With reference to the number of variables in a quantic it
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is called binary, ternary ; and if there are n variables,

w-ary. Thus f(xv x
2) is a binary cubic form

; f(xv x
2 , x3 ) a

ternary quadratic form. In algebraic invariant theories of

binary forms it is usually most convenient to introduce with

each coefficient a
{
the binomial multiplier ( .

J,
as in f(_zv x

2 ).

When these multipliers are present, a common notation for a

binary form of order m is (Cayley)

/Or »
2)= Oh* av •"> amlzv a-

2)
m = « zf + ma

x
z^-xz

2
-\ .

If the coefficients are written without the binomial numbers,

we abbreviate

f(xv x
2
~)= (a , av ••-, am\xv x

2
~)m = a^zf + a

x
z^z

%
-\ .

The most common notation for a ternary form of order m is

the generalized form of f(xv xv a*
3) above. This is

V l

m

p,<i,r=o [P\q\r

where p, q, r take all positive integral values for which

p + q + r = m. It will be observed that the multipliers

associated with the coefficients are in this case multinomial

numbers. Unless the contrary is stated, we shall in all cases

consider the coefficients a of a form to be arbitrary variables.

As to coordinate representations we may assume (zv z
2 , xs ~),

in a ternary form for instance, to be homogenous coordi-

nates of a point in a plane, and its coefficients apqr to be

homogenous coordinates of planes in Jf-space, where M+ 1

is the number of the «'s. Thus the ternary form is repre-

sented by a point in M dimensional space and by a curve in

a plane.

III. Linear transformations. The transformations to

which the variables in an w-ary form will ordinarily be sub-

jected are the following linear transformations called colline-

ations :
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(23)

zn = Kz\ + PrA H h ^X-

In algebraical theories the only restriction to which these

transformations will be subjected is that the inverse trans-

formation shall exist. That is, that it be possible to solve for

the primed variables in terms of the un-primed variables (cf.

(10)). We have seen in Section 1, V (11), and VIII (22)

that the verification of a covariant and indeed the very exist-

ence of a covariant depends upon the existence of this inverse

transformation.

Theorem. A necessary and sufficient condition in order

that the inverse of (23) may exist is that the determinant or

modulus of the transformation,

\v (iv vv .-., c

M= (Xfiv ••o-) =
\
2 , /i

2
, v2< • •• , a.

^

K< /V *V •") <?n

shall be different from zero.

In proof of this theorem we observe that the minor of any

element, as of jx^ of M equals Hence, solving for a

variable as x'v we obtain

dM BM

and this is a defined result in all instances except when

M = 0, when it is undefined. Hence we must have M =£ 0.

IV. A theorem on the transformed polynomial. Let /'be a

polynomial in xv x
2
of order m,

f(xv x
2} = a

Qxf + ma^~xx^ +(™ )a
2
x?~2

xl + ••• + amz%.
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Let/ be transformed into/' by T (cf . (3j)),

f = a^+ma'jxf-1^ + ••• +r*ja'rx'{
H-r

x'' -\ \-a'mx'™.

We now prove a theorem which gives a short method of

constructing the coefficients a'r in terms of the coefficients

Theorem. TJie coefficients a'r of the transformed form /' are

given by the formulas

f _ \m -r ( d
a' = d \

[^dx
+ ^2 ax~r

(Xr Xa) (r = °' "' m)
"

(23l)

In proof of tliis theorem we note that one form of/' is

/(A.-^ + n-(x'v \
2
x\ + /a^)- But since/ is homogeneous this

may be written

/' = x'{\f{X
l + ^Jx'v X

2 + AvIAi)-

We now expand the right-hand member of this equality by

Taylor's theorem, regarding x'
%
/x'

x
as a parameter,

/'=*; /(\ 1
,\2 ) + :|^^;

)/(X
1
,x

2)

where a\ f a ,
a

/' =f(\v x^x^ + ... h y^)
r

/(\v \)*'r
r4 +

lA^axJ

\m\ o\J
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Comparison of this result with the above form of/' involving

the coefficients a'r gives (23j).

An illustration of this result may be obtained from (5).

Here m = 2, and

a' = a Xf + 2^W + a
2\l=f(\v X

2) =/ ,

ai= a \
1
/A

1
+a

1(\1/*2+\2
/i

1)+ a
2
\
2/*2

=-(/i—)/(\
1, \2), (24)

2Vd\J'

1/ 5 \2

a
2
= a nj + 2 aj/ij^ + a

2/j%
= -[fi—j f(Xv \

2).

V. A group of transformations. If we combine two trans-

formations, as I7 and

mi .
x

\
=

%\x\ "T" Vi&zi

X
2
=

s2"^l '

7?2"^2'

there results

rpmi . #1 = (Xl£l + Pl&M' + (\Vl +^2)4''

'

*2 = (X2?l + t*2%2)Xl + i\V 1+ /V?2 )4'«

This is again a linear transformation and is called the prod-

uct of rand T'. If now we consider \v A
2 ,

/xv fx.2
in T to

be independent continuous variables assuming, say, all real

values, then the number of linear transformations is infinite,

i.e. they form an infinite set, but such that the product of any

two transformations of the set is a third transformation of

the set. Such a set of transformations is said to form a

group. The complete abstract definition of a group is the

following :

Given any set of distinct operations T, T\ T'\ •••, finite or

infinite in number and such that

:

(a) The result of performing successively any two opera-

tions of the set is another definite operation of the set which

depends only upon the component operations and the sequence

in which they are carried out

:

(/?) The inverse of every operation T exists in the set

;
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that is, another operation T~ l such that TT 1
is the identity

or an operation which produces no effect.

This set of operations then forms a group.

The set described above therefore forms an infinite group.

If the transformations of this set have only integral coeffi-

cients consisting of the positive residues of a prime number

p, it will consist of only a finite number of operations and so

will form a finite group.

VI. The induced group. The equalities (24) constitute a

set of linear transformations on the variables a , av a
2

. Like-

wise in the case of formulas (23 x
). These transformations

are said to be induced by the transformations T. If T carries

/into/' and T' carries/' into/", then

\ 3f

Im — r

(r = 0, 1, ..-, m).

This is a set of linear transformations connecting the a"r

directly with a , •••, am . The transformations are induced

by applying T, T' in succession to/ Now the induced trans-

formations (23j) form a group ; for the transformations in-

duced by applying T and T' in succession is identical with

the transformation induced by the product TT' . This is

capable of formal proof. For by (23 x) the result of trans-

forming/by TT' is

\m — r
4 =H= = A'/CX^ + /*!&, Xa^ + /*2|2),

\m

where

A = (X
1
t/

1+ /Ajife) — + (X^!+ fj,2vd
3(X

1| 1
+^2 ) " "

J 3(X
2f 1 +^2 )
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But

*K\tityi& all

Hence

and by the method of (IV) combined with this value of A

"§XlK)'f^-^r%-
u

\m—r
ar ~ \m V dPJ ^\s

But this is identical with (SIj). Hence the induced trans-

formations form a group, as stated. This group will be

called the induced group.

Definition. A quantic or form, as for instance a binary

cubic /, is a function of two distinct sets of variables, e.g.

the variables xv x
2 , and the coefficients « ,

•••, a
3

. It is thus

quaternary in the coefficients and binary in the variables

xv xv We call it a quaternary-binary function. In gen-

eral, if a function F is homogeneous.ana of degree i in one

set of variables and of order coin a second set, and if the first

set contains m variables and the second set n, then F is said

to be an w-ary-w-ary function of degree-order (i, &>). If the

first set of variables is a , •••, am , and the second 2^, •••, xn,

we frequently employ the notation

F=(a , ..., am)\.rv . xny.

VII. Cogrediency. In many invariant theory problems

two sets of variables are brought under consideration simul-
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taneously. If these sets (xv xv • ••, xn), Qyv yv • •-, yn) are

subject to the same scheme of transformations, as (23), they

are said to be cogredient sets of variables.

As an illustration of cogredient sets we first take the

modular binary transformations,

where the coefficients X, /u, are integers reduced modulo ^> as

in Section 1, VIII. We can prove that with reference to

Tp the quantities £f, zf, are cogredient to xv x
% . For all

binomial numbers fA
J,
where £> is a prime, are divisible by

p except
( jj J

and
( )• Hence, raising the equations of Tp to

the ^th power, we have

x\ = Xfa^ + ftfasgf, zg = Xfz;^ + A*!4
P

(mod iO-

But by Fermat's theorem,

X? = X* /*? = ^ (mod />) (t =1,2).
Therefore

x\ = \
xx'l + /a^, 4' = \x'f + AV^sf'

and the cogrediency of x\, x\ with xv x
2
under Tp is proved.

VIII. Theorem. The roots (r«>, r
2
*>), (rf , r2

2
>), •••,

(j(m)^ r(m)^ j? a Hnary form

f=aQ
x'{

1 + ma
l
x'{

l
-

1x
2 + + amx%,

are cogredient to the variables.

To prove this we write

/= (4%2
- tfx^Cvfxi ~ rfx^) - (r^n)x

l
- r<"

!)z
2 ),

and transform/ by T. There results

m
. ,

/' = n [(4% - *•<%>£ + (ffv, - ri'V3)4].

Therefore

rj«> = r£% - rj% ; rf = - (rgVi - r|« /*
2).
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Solving these we have

(X/*)»f> = X/jW + ^w,
(V*)rf = Viw + *Vi

w
.

Thus the r's undergo the same transformation as the x's

(save for a common multiplier (X/*)), and hence are cogredi-

ent to xv xv as stated.

IX. Fundamental postulate. We may state as a funda-

mental postulate of the invariant theory of qualities subject

to linear transformations the following : Any covariant of a

quantic or system of qualities, i.e. any invariant formation

containing the variables xv xv ••• will keep its invariant

property unaffected when the set of elements xv xv ••• is

replaced by any cogredient set.

This postulate asserts, in effect, that the notation for the

variables may be changed in an invariant formation pro-

vided the elements introduced in place of the old variables

are subject to the same transformation as the old variables.

Since invariants may often be regarded as special cases

of covariants, it is desirable to have a term which includes

both types of invariant formations. We shall employ the

word concomitant in this connection.

Binary Concomitants

Since many chapters of this book treat mainly the con-

comitants of binary forms, we now introduce several defini-

tions which appertain in the first instance to the binary

case.

X. Empirical definition. Let

/= a a% + mojaf-1^ + § m(m - l)a
2
x\l

~ 2
xl + — + ama%,

be a binary form of order m. Suppose / is transformed by

T into

/' = «;/« + ma[x[m-% + ••• +<4ro
.
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We construct a polynomial (/> in the variables and coeffi-

cients of /. If this function <£ is such that it needs at most

to be multiplied by a power of the determinant or modulus

of the transformation (A.//.), to be made equal to the same

function of the variables and coefficients of /', then is a

concomitant of / under T. If the order of
(f>

in the vari-

ables xv #
2

is zero,
<f>

is an invariant. Otherwise it is a co-

variant. An example is the discriminant of the binary

quadratic, in Paragraph III of Section 1.

If cf> is a similar invariant formation of the coefficients

of two or more binary forms and of the variables xv x
2 , it is

called a simultaneous v concomitant. Illustrations are h in

Paragraph IV of Section 1, and the simultaneous covariant

C in Paragraph V of Section 1.

We may express the fact of the invariancy of
<f>

in all

these cases by an equation

f =(\fiy<f>,

in which <£' is understood to mean the same function of the

coefficients a' , a'v •••, and of x'v x'
2
that

<f>
is of a , av •••, and

xv xv Or we may write more explicitly

<}>(a' , a'v •••; x'v x'%) = (\f*y4> (a , av •••; xv z
2). (25)

We need only to replace T by (23) and (X/m) by M =
(X/jl <r) in the above to obtain an empirical 'definition of a

concomitant of an w-ary form / under (23). The corre-

sponding equation showing the concomitant relation is

</>(«'; x'v x'v .-., x'n ) =Mk(j>(a; xv xv • •, xn). (26)

An equation such as (25) will be called the invariant rela-

tion corresponding to the invariant
<f>.

XI. Analytical definition.* We shall give a proof in

Chapter II that no essential particularization of the above

* The idea of an analytical definition of invariants is due to Cayley. Intro-

ductory Memoir upon Quantics. Works, Vol. II.
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definition of an invariant
<f>

of a binary form / is imposed by

assuming that </> is homogeneous both in the a's and in the

x's. Assuming this, we define a concomitant
(f)

of / as

follows :

(1) Let <£ be a function of the coefficients and variables

of/, and <j)' the same function of the coefficients and varia-

bles of/'. Assume that it is a function such that

^d^ 2 d\ 1
dfl

1

2
dfl2

(2) Assume that </>' is homogeneous in the sets \v \
2 ;

fiv /*2 , and of order k in each.

Then
<f>

is called a concomitant of/.

We proceed to prove that this definition is equivalent to

the empirical definition above.

Since </>' is homogeneous in the way stated, we have by

Euler's theorem and (1) above

where k is the order of
<f>'

in \v X
2

. Solving these,

Hence

oXj oA
2

Separating the variables and integrating we have

4>' (V)

where (7 is the constant of integration. To determine (7,

let T be particularized to
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Then a[ = a
t
(i = 0, 1, 2, •••, ra), and </>'= <£. Also (Xyti) = 1.

Hence by substitution

and this is the same as (25). If we proceed from

x£>'- ' ("£>' =**'•

we arrive at the same result. Hence the two definitions are

equivalent.

XII. Annihilators. We shall now need to refer back to

Paragraph IV (23
x) and Section 1 (10) and observe that

("£K =(w - r)<+
" ("iX=0' ("!iH-—

' <29)

Hence the operator (/a—
)
applied to <£', regarded as a

function of \v X
2 , /t*j, nv has precisely the same effect as

some other linear differential operator involving only

a[ (i = 0, •••, m) and x'v x'v which would have the effect

(29) when applied to <£' regarded as a function of a'^ x\,

x'
2
alone. Such an operator exists. In fact we can see by

empirical considerations that

rv /d
i &

i s n / 3 • 5 ,
d-x

1
-= ma

1

- +(m -l)a
2
- + .-- + am ^--x1

-
i

(290

is such an operator. We can also derive this operator by an

easy analytical procedure. For,

^ d\)V da' \ d\J^ da',V d\) da'm\



26 THE THEORY OF INVARIANTS

III the same manner we can derive from f X— ]<£' = 0,

Tlie operators (29
x ), (292) are called annihilators (Sylvester).

Since
<f>

is the same function of a
ft

a^, #
2 , that <£' is of a', »j,

rr
2, we have, by dropping primes, the result :

Theorem. A set of necessary and sufficient conditions that

a homogeneous function,
<f>, of the coefficients and variables of a

binary formf should be a concomitant is

In the case of invariants these conditions reduce to Ocf> = 0,

Q<f> = 0. These operators are here written again, for refer-

ence, and in the un-primed variables:

= ma
1
— + (m — l)a

2
— -\ \-am -

,

da da
x

Bam_x

«-» d n & d
il = a —-+2a — H h»w,H -

—

oa
x

l da
2

dam

A simple illustration is obtainable in connection with the

invariant

D
l
= a a

2
— a\ (§ 1, III).

Here m = 2 :

D,D
1
= — 2 a aj -f- 2 a

Q
a

x
= 0, 0D

X
= 2 tf^ — 2 a^ = 0.

It will be noted that this method furnishes a convenient

means of checking the work of computing any invariant.
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SECTION 3. SPECIAL INVARIANT FORMATIONS

We now prove the invariancy of certain types of functions

of frequent occurrence in the algebraic theory of quantics.

I. Jacobians. Letfvf2 , •••,/„ be n homogeneous forms in n

variables xv x
2 ,

•••, xn . The determinant,

J= J2x{i Jlx£ "'•> J'2xn

J nXji J nx£ ' "l J nxn

(30)

in which /._ = -^, etc., is the functional determinant, or

Jacobian of the n forms. We prove that J is invariant when
the forms /,- are transformed by (23), i.e. by

Xi = \iX[ + ^4 + • • • + (TiX'n (i = 1, 2, • • -, 71)

.

(31)

To do this we construct the Jacobian J' of the transformed

quantic/j. We haveJSo&-f6i~),

dx'
2

dx
x
dx'

2
dx

2
dx'

2

+
dxn dx2

But by virtue of the transformations (31) we have in all

cases, identically,

/;=/, (y = l, 2, ...,n). (32)

Hence

dx: dx,
^2

fe
H • + *&. (33)

d.r„
1 "-2

and we obtain similar formulas for the derivatives of f'j with

respect to the other variables. Therefore

J' =
*l/l*

l
+ \*/ls

i
+ r-Wutf /"*i/i*,-+/*s/uiH Mn/lV

*-l/«x ,+W** H H X„/*V /*l/nil + (hfnxt H h /*n/nx„i

'
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But this form of J' corresponds exactly with the formula

for the product of two nth. order determinants, one of which

is J" and the other the modulus M. Hence

j' = (X/4-.o-y;

and J" is a concomitant. It will be observed that the co-

variant in Paragraph V of Section 1 is the Jacobian of /
and

<f>.

II. Hessians. If/ is an w-ary form, the determinant

H= Zl.Il 1 J x,_xS

'1 J

x

l
xn

'i J x2xn

J

x

nx£ J

x

nx£ '"ijx
n xn

(34)

is called the Hessian of /. That H possesses the invariant

property we may prove as follows : Multiply H by M=
(X/jlv ••• <r), and make use of (33). This gives

d_df_ d df d df

dx\ dx
x

dx'
2
da^

'

dx'n dx-^

d_ df_ J^cf_ J_df
dx\ dx

2
dx'

2
dx

2
' dx'„ dx

2
H=

^-n Pn

dx\ dxn dx'
2
dxn

Replacing/ by/' as in (32) and writing

d df d df
ox\ dx-^ dx

l
dx\

we have, after multiplying again by M,

d df

dxL dx„

Mm=
p . . f f .

.

J X
xXf J XnX^ 1 J xnx1

J x,i
2
* . ' z„x

2
'

) J xnxt

J x,x„" .'-r
2
J„* "')J xnxn
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that is to say,

and i?is a concomitant of/.

It is customary, and avoids extraneous numerical factors, to

define the Hessian as the above determinant divided by lfln
n

x (ffl
— 1)". Thus the Hessian covariant of the binary cubic

LUx 111 j% 3 i Q 2 i Q 2 i S

is * A = 2 (35)

= 2(a a
2
— a^)xf + 2(a a

3
— a^i^)x-p^ + 2(a

1
a
3
— a\)x\.

III. Binary resultants. Let/, $ be two binary forms of

respective orders, w, w

;

/= a^ + ma^"" 1^ -f-
••• + ama;^ = H{r (

^
)x

1
— r^a^),

= b
Q
x\ + wi^-^ij H h^2

n = n(4/,^
1
- s (

f .r
2 ).

It will be well known to students of the higher algebra

that the following symmetric function of the roots (r['\ r|°),

(s[j\ s^)*
1 -^(f* $) *s ca^et^ the resultant of / and <£. Its

vanishing is a necessary and sufficient condition in ordot

that /and cj> should have a common root.

i2( /, 0) = nnOf^ - rfsp )

.

(36)
j=iv=l

To prove that R is a simultaneous invariant of / and <£. it

will be sufficient to recall that the roots (rv r
2),

(sr s
2)

are

cogredient to xv x
2

. Hence when /, (f>
are each transformed

by T, R undergoes the transformation

(\fi)s^ = X/^ + w'W, (Xfi)s^ = Vi y> + WP*, * k>

* Throughout this book the notation for particular algebraical concomitants is

that of Clebsch.
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in which, owing to homogeneity the factors (X/x) on the left

may be disregarded. But under these substitutions,

Hence
i2'(/',^') = (V)mn S(/,<#>),

which proves the invariancy of the resultant.

The most familiar and elegant method of expressing the

resultant of two forms/, cf> in terms of the coefficients of the

forms is by Sylvester's dialytic method of elimination. We
multiply/ by the n quantities rrp 1

, x1~2z
2 , "'> a^

-1
in succes-

sion, and obtain

a^+n~ l + ma^™+n ~ 2x
2 +

anx
m+n—2* + mam_ l

x,{- ixn

2
l +amx\-*x%+\ (37)

Likewise if we multiply <£ by the succession #"i_1
, a^~2xv • ••,

ajjj*
-1

, we have the array

J^4-"- 1 + nb
l
x ,

[
l+n ~ 2x

2 + ••• + bjf-hQ,

Vi^1-1 + ... + n5n _ 1
r

1
4'+n

" 2 + &„^+n-1 . (38)

The eliminant of these two arrays is the resultant of/ and <£,

viz.

R{M)=

A particular case of a resultant is shown in the next para-

graph. The degree of i2(/,</>) in the coefficients of the two

forms is evidently m + n.
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IV. Discriminant of a binary form. The discriminant D
of a binary form / is that function of its coefficients which

when equated to zero furnishes a necessary and sufficient

condition ia order that/= may have a double root. Let

f=f(xv xi) = VT + wwhaf
-1^ + ••• + amx'£,

and let fXi
(xv x

2 ) = ~-, fx,( xv xi)=a' Tnen
'
as is wel1

df
known, a common root of /= 0, -^— = is a double root of

bx
\

/= and conversely. Also

_,/ , df\ df

hence a double root of f=0 is a common root of /= 0,

— = 0, — = 0, and conversely ; or D is equal either to the
dx

1
dx

2

eliminant of /and -^-, or to that of/ and —— • Let the roots
dz

1
dz

2

of fx (xv x
2)=0 be (4°, 4*0(* = 1) "••> m — 1)' those of

fXi
(xv x

2)
= 0, (tp, tg>)(i = 1, ••-, m - 1), and those of/=

be (r{"\ r
2
j))(j = 1, 2, •••, m). Then

4o^=/(4{)
' tfOJW 42))---/(4w_1)

'
sf

_1
0>

KP^fQP* W(f}

> <f) -/(^-^ e _1
0-

Now Of(xv x
2)= x

x ^-, Df(xv ^
2 ^
= -r2^"' where and

H are the annihilators of Section 2, XII. Hence

ai>= 24114^1), tg))/(«^>, 4*) .../«-i\ 4-10=0.

Thus the discriminant satisfies the two differential equations

OB = 0, £ID = and is an invariant. Its degree is 2£m — 1).

An example of a discriminant is the following for the

binary cubic /, taken as the resultant of -^-, -*—

:

ox-l ax
2
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-IR =

2a
x



CHAPTER II

PROPERTIES OF INVARIANTS

SECTION 1. HOMOGENEITY OF A BINARY CONCOMITANT

I. Homogeneity. A binary form of order m

f= a xf + ma
1zf~

1 x
2

-\ h Qmx"2\

is an (m + l)-ary-binary function of degree-order (1, mi).

A concomitant of / is an (w + l)-ary-binary function of de-

gree-order (i, (o). Thus the Hessian of the binary cubic

(Chap. I, § 3, II),

A = 2(a a
2
— af)x% + 2(a a

3
— a

x
a
2
)x

x
x
2 + 2(a

1
a
3
— a|)x|, (44)

is a quaternary-binary function of degree-order (2, 2).

Likewise /+ A is quaternary-binary of degree-order (2, *£),

but non-homogeneous.

An invariant function of degree-order (i, 0) is an invariant

of /. If the degree-order is (0, «), the function is a universal

covariant (Chap. I, § 3, V). Thus a a
2
— a\ of degree-order

(2, 0) is an invariant of the binary quadratic under T,

whereas x\x
2
— x

x
x\ of degree-order (0, p + 1) is a universal

modular covariant of Tp .

Theorem. If C= (a , a^ •••, a ni )\xv x^)m is a concomitant

of /=(a ,
••, am~)(xv x

2 )
m

, its theory as an invariant function

loses no generality if toe assume that it is homogeneous both as

regards the variables xv x
2
and the variables a , •••, am .

Assume for instance that it is non-homogeneous as tozj, x
2

.

Then it must equal a sum of functions which are separately

homogeneous in xv x
2

. Suppose

33
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V .

where (7
;
- = (a , aj, •••, am )i'(xv x

2)tcj(j
= 1, 2, ••-, s') i' -^i.

Suppose now that we wish to verify the covariancy of C,

directly. We will have

a = «, a[, ..., o*(^, 4)« = (\pyo, (45)

in which relation we have an identity if a\ is expressed as the

appropriate linear expression in a , ••., am and the ^ as the

linear expression in xv xv of Chapter I, Section 1 (10). But

we can have

identically in xv xv only provided

Hence (7,- is itself a concomitant, and since it is homogeneous

as to Zj, a:
2 , no generality will be lost by assuming all invariant

functions C homogeneous in xv x
2

.

Next assume C to be homogeneous in xv x
2
but not in the

variables « , av •••, am . Then

c=r
1
+ r

2 + ...+r
(T

,

where T, is homogeneous both in the a's and in the x's. Then
the above process of verification leads to the fact that

r;=0)*r„

and hence C may be assumed homogeneous both as to the as
and the x's ; which was to be proved. The proof applies

equally well to the cases of invariants, covariants, and uni-

versal covariants.

SECTION 2. INDEX, ORDER, DEGREE, WEIGHT

In a covariant relation such as (45) above, k, the power of

the modulus in the relation, shall be called the index of the

concomitant. The numbers i, <o are respectively the degree

and the order of C.
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I. Definition. Let t = a%a\a'
2

• • • a^x^x^~^ be any monomial

expression in the coefficients and variables of a binary m-ief

The degree of r is of course i =p 4- q + r 4 ••• + v. The

number
w = q+2r+3s-\ \- mv 4 fi (46)

is called the weight of t. It equals the sum of all of the sub-

scripts of the letters forming factors of r excluding the factors

x
2

. Thus a
3

is of weight 3 ; a
Q
a\aA of weight 6 ; a\a^c\x\ of

weight 9. Any polynomial whose terms are of the type t

and all of the same weight is said to be an isobaric polynomial.

We can, by a method now to be described, prove a series of

facts concerning the numbers &>, i, k, w.

Consider the form / and a corresponding concomitant

relation

C = (a , Oj, •••, am )
l(^x^ x

2y
= (V) fc(a , av •••, amy(xv x

2Y. (47)

This relation holds true when / is transformed by any linear

transformation

X
x
= X.J2-J -H ^1^2'

x
1
= ^2^ 1

~^~ ^lXT

It will, therefore, certainly hold true when / is transformed

by any particular case of T. It is by means of such particu-

lar transformations that a number of facts will now be proved.

II. Theorem. TJie index k, order a>, and degree i of

satisfy the relation

k = ±(im-a>}. (48)

And this relation is true of invariants, i.e. (48) holds true when

(o=0.

To prove this we transform

/= a x™ + ma^xf-% + ••• + aj%,

by the following special case of T:
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The modulus is now X2
, and a'j= Xma,- (J= 0, •••, rri). Hence

from (47),

(X"a . \mav .... Xmam)*(X- 1z
1

. X" 1.^)"

= X2*(a , op •-., 0*0*11 *„)». (49)

But the concomitant C is homogeneous. Hence, since the

degree-order is (£, co ).

X*»—(a ,
•-. O*0*n a^)" = X2*(a , .... 0*0*11 x

2y.

Hence
2 k = im — co.

III. Theorem. Every concomitant C of f is isobaric and

the weight is given by

iv = \(im + <u), (50)

where (z, co) w £/?<> degree-order of C. and m the order of f.

The relation is true for invariants, i.e. if (0 = 0.

In proof we transform / by the special transformation

Then the modulus is X, and aj= Va,- = 0, 2. •••. in).

Let

be any term of C and t' the corresponding term of C the

transformed of O by (51). Then by (-±7).

Thus
ic — co = k = l( im — co).

or

ic = J(ww + O) ).

Corollary 1. The weight of an invariant equals its

index.

w = Jc = \ im

.

Corollary 2. The degree-order (i. co) of a concomitant

C cannot consist of an even number and an odd number
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except when m is even. Then i may be odd and co even.

But if m is even co cannot be odd.

These corollaries follow directly from (48), (50).

As an illustration, if O is the Hessian of a cubic, (44), we
have

t = 2, co = 2, m = 3,

W = i(2-3 + 2) = 4,

* = £(2 . 3 - 2) = 2.

These facts are otherwise evident (cf. (44), and Chap.

I, §3, II).

Corollary 3. The index k of any concomitant of / is a

positive integer.

For we have
w — co = k,

and evidently the integer w is positive and co 4. w.

SECTION 3. SIMULTANEOUS CONCOMITANTS

We have verified the invariancy of two simultaneous

concomitants. These are the bilinear invariants of two

quadratics (Chap. I, § 1, IV),

rfr = a .r'l + 2 fl^a^a^ + a
2
x|,

4> = <V1 + - VV'2 + hzv
viz. h?=a b

2
— 2 a-fi l

+ a
2
b
Q ,

and the Jacobian C of | and cf> (cf. (8)). For another

illustration we may introduce the Jacobian of cf> and the

Hessian, A, of a binary cubic/. This is (cf. (44))

J*. A = [& («oa3 - a
\
al)- ~ h

\(.
a
«
a
2 - a

°V~\
X'\

+ 2 [b (a
1
a
3
- a\)- b

2
(a a

2
- af)]^

+ [- ^i(«i«3 - aD ~ h(a
o
(h ~ a

\
a
i )>l

and it may be verified as a concomitant of c\> and

f=a 3%+ -.
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The degree-order of J is (3, 2). This might be written

(1 + 2, 2), where by the sum 1 + 2 we indicate that J is of

partial degree 1 in the coefficients of the first form $ and of

partial degree 2 in the coefficients of the second form /.

I. Theorem. Let f (f>, \^, ... be a set of binary forms of

respective orders mv w
2 , m3 ,

• ••. Let C be a simultaneous

concomitant of these forms of degree-order

(i
x
+ i

2 + i3 + • •-, oo).

Then the index and the weight of C are connected with the

numbers m, i, oo bg the relations

k = \(^i
1
m

1
— &)), (52)

w = \{ '2.i
l
m

1 + to),

and these relations hold true for invariants (i.e. when oo = 0).

The method of proof is similar to that employed in the

proofs of the theorems in Section 2. We shall prove in

detail the second formula only. Let

/= a x'^ + -.., $ = Vi" 2 + ••, ^ = c^ + •••, ....

Then a term of will be of the form

r = a^a[m^ ••• bfrbfify ••• x^xf*.

Let the forms be transformed by x
x
= x'v x

2
= \x'

2
. Then aj

= \jah b) = \jbj, ...
(J = 0, •-., ?w

(), and if r' is the term cor-

responding to t in the transformed of O by this particular

transformation, we have

T1 = \r
l+2s1+-+rt+2si

+.~+lt.-o> T _ ^*T _

Hence
xv — oo = k = \{'2i

1
m

1
— &>),

which proves the theorem.

We have for the three simultaneous concomitants men-

tioned above ; from formulas (52)

h C J

k = 2 k = l fc = 3

w = 2 w = 3 w = 5
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SECTION 4. SYMMETRY. FUNDAMENTAL EXISTENCE
THEOREM

We have shown that the binary cubic form has an invari-

ant, its discriminant, of degree 4, and weight 6. This is

(cf. (39))

! R = — (a
Q
a
3
— a^) 2 + -I(a a

2
— «i)(«i«3 — a\)-

I. Symmetry. We may note concerning it that it is

unaltered by the substitution 0v*3Ka
i
a2)' This fact is a

case of a general property of concomitants of a binary form

of order m. Let/= a x^ + •••
; and let be a concomitant,

the invariant relation being

C = «, a'v •••, a'my(x'v 4)w = (\fiy(a ,
• •, amy(xv x2y.

Let the transformation Toff be particularized to

The modulus is — 1. Then a'j = am _ ;>
and

a)
C'= (am, am_v ••-, a

Q
y(xT tc

1)
<-=(-l)A(a ,

•••, amy(xv x
2).

(53)

That is ; any concomitant of even index is unchanged when

the interchanges Qa am)(a 1
am _

1)
••• {x

x
x^) are made, and if

the index be odd, the concomitant changes only in sign.

On account of this property a concomitant of odd index is

called a skew concomitant. There exist no skew invariants

for forms of the first four orders 1, 2, 3, 4. Indeed the

simplest skew invariant of the quintic is quite complicated,

it being of degree 18 and weight 45* (Hermite). The sim-

plest skew covariant of a lower form is the covariant T of a

quartic of (125) (Chap. IV, § 1).

We shall now close this chapter by proving a theorem

that shows that tne number of concomitants of a form is

infinite. We state this fundamental existence theorem of

the subject as follows :

* Faa di Bruno, Walter. Theorie der Binaren Formen, p. 320.
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II. Theorem. Every concomitant K of a covariant Q of a

binary formf is a concomitant off

That this theorem establishes the existence of an infinite

number of concomitants of/ is clear. In fact if/ is a binary

quartic, its Hessian covariant H (Chap. I, § 3) is also a

quartic. The Hessian of H is again a quartic, and is a con-

comitant of / by the present theorem. Thus, simply by

taking successive Hessians we can obtain an infinite number
of covariants of /, all of the fourth order. Similar consider-

ations hold true for other forms.

In proof of the theorem we have

/=a ,- + ...,

(7=(a , ..., amy(xv x
2y = c

Qxf + tae
1
aq-1x

% H ,

where c
i
is of degree i in a ,

•••, am .

Now let / be transformed by T. Then we can show that

this operation induces a linear transformation of (7, and

precisely T. In other words, when/ is transformed, then

C is transformed by the same transformation. For when /
is transformed into/', -0 goes into

C' = (\ny(c x» + (oc^-\r
2 + ...)• '

But when C is transformed directly by T, it goes into a form /

which equals C itself by virtue of the equations of trans-

formation. Hence the form (7, induced by transforming /,

is identical with that obtained by transforming C by T
directly, save for the factor (\ix) k

. Thus hx transformation

of either / or (7,

c 'a^°+(oc'^-^ H = (X/i)*c ry + (o(\/jiyc
1xf~

1
.r
2

-j (54)

is an equality holding true by virtue of the equations of

transformation. Now an invariant relation for K is formed

by forming an invariant function from the coefficients and

variables of the left-hand side of (54) and placing it equal

to (Xfi) K times the same function of the coefficients and

the variables of the right-hand side,
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But .ST' is homogeneous and of degree-order (t, e). Hence

= (VO**
+
"if.

Now cj is the same function of the a' , • ••, aj„ that <?
7

- is of a ,

• ••, am . When the ons and c's in (55) are replaced by
their values in terms of the a's, we have

where, of course, [a , •••, am]
u(xv x

2)
e considered as a func-

tion, is different from (a , • ••, am )
h(xv x

2
~) €

. But (56) is

a covariant relation for a covariant of f. This proves the

theorem./

The proof holds true mutatis mutandis for concomitants of

an w-ary form and for simultaneous concomitants.

The index of iT is

p = i . -1
( im — to) + ^-(i&> — e)

= ]-(Mffl — e),

and its weight,

w = \{iim + e).

Illustration. If /is a binary cubic,

then its Hessian,

A = 2[(rt a
2
— a\)x\ +(a a

g
— a^x^x^ + (a

x
az — af)a|],

is a covariant of/. The Hessian 2 H of A is the discrimi-

nant of A, and it is also twice the discriminant of/,

2 i2 = 4[— (rt a
3
— a

1
a
2 )

2 + 4(« <z
2
_ r(i)(a i

a3
— a|)]-



CHAPTER III

THE PROCESSES OF INVARIANT THEORY

SECTION 1. INVARIANT OPERATORS

We have proved in Chapter II that the system of invari-

ants and covariants of a form or set of forms is infinite.

But up to the present we have demonstrated no methods

whereby the members of such a system may be found. .The

only methods of this nature which we have established are

those given in Section 3 of Chapter I on special invariant

formations, and these are of very limited application. We
shall treat in this chapter the standard known processes for

finding the most important concomitants of a system of

quantics.

I. Polars. In Section 2 of Chapter I some use was made

of the operations X
x

\- X9— ,
/x

x f- /li9 Such opera-

tors may be extensively employed in the construction of in-

variant formations. They are called polar operators.

Theorem. Let f= a^x'[
l

-\- ••• be an n-ary quantic in the

variables xv •••, xn, and cf> a concomitant off, the correspondin; i

invariant relation being

£'=<X, • 0*0*4. •••, <y
= (\fi •- o-)*o , .-0*Oi. •••, xny = 3P<f>. (57)

Then if yv yv •••, yn are cogredient to xv .r
2

, •••, xn , the function

is a concomitant off
42



THE PROCESSES OF INVARIANT THEORY 43

It will be sufficient to prove that

the theorem will then follow directly by the definition of a

covariant. On account of cogrediency we have

x
t = \ix[ + ,iv 2 + ••• + o-fh (59)

Hence
d _ _3_ d^ j9^ d.r

2
3 dxn

bx\ dx
1

d.r[ dx
2

d.i\ dxn dx\

ox
2

dx± d.r
2 dxn

Therefore

3 3 3 a—
7 = o"i h cr

2
1" "' + °"n

—

"

dxn bx
x

dx
2

dxn

3 n rj

#i^7+ ••• + ^'v
-

'
=(Xi^i + W2 + ••• + °"i#Ot-

•J

+ ... +(\nyl+ixny>+ ... + (jny'n)—-

d 3

dx
x

dxn

Hence (58) follows immediately when we operate upon (57)

The function (y— )<£ is called the first polar covariant of

4>, or simply the first polar of
(f).

It is convenient, however,

and avoids adventitious numerical factors, to define as the

polar of cj> the expression [y— )$ times a numerical factor.
V dxj
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We give this more explicit definition in connection with

polars of / itself without loss of generality. Let / be of

order m. Then

\m d
+ Vi

d.r,
J =Jyr

i (61)

the right-hand side being merely an abbreviation of the left-

hand side, is called the rth ?/-polar of /. It is an absolute

covariant of/ by (60).

For illustration, the first polars of

f = a
Q
x-j + 3 a

x
x\x

2 + 3 a^-^c\ + a
z
x\,

9 = a200X\ ~t~ * a
l\0

x
\
X,
i "I" ^020^2 ~^~ ~ ^lOl^l2^ ~^ " ^Oll3^"^ ~^~ a002•r3 ,

are, respectively,

fy
= (ao

x
l + Sa^jarjj + a

2
x^)y

1
+ (a

x
x\ + 2 a

2
x

x
x
2 + a#%)yv

9y
= (^200^1+ ^no2^ "I" ^ioi2^ )^i ~f~ v^no^i "^" aa&&r2 "+" ^011^3)^2

+ (rtjo!^ + #oil
2^+ ^02^3)^3-

Also,

// = (%y\ + 2 «li/l^2 + a2i/|>-r l + («#!+ 2 a29llh + ^i)^-
If ^/ = is the conic C of the adjoining figure, and (j/) =

(jyv yv y^) is the point P, then </y
= is the chord of contact

AB, and is called the polar line of P
and the conic. If P is within the conic,

gy
= joins the imaginary points of

contact of the tangents to C from P.

We now restrict the discussion in the

remainder of this chapter to binary

forms.

We note that if the variables (?/) be

replaced by tJie variables (x) in any polar

of a form f the result is f itself i.e. the original polarized

form. This follows by Euler's theorem on homogeneous

functions, since

*P

^ _d_

dx,
+ x

2—]f=mf. (62)
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In connection with the theorem on the transformed form

of Chapter I, Section 2, we may observe that the coefficients

of the transformedform are given by the polarformulas

a' =f(Xv X
2)=fr (63)

The rth y-polar of f is a doubly binary form in the sets

(jJv #2)' ixv x%) °f degree-order (r, m — r). We may how-

ever polarizef a number of times as to (j/) and then a number

of times as to another cogredient set (z) ;

u \m — r\m — r — sf 3 y/ d ,

This result is a function of three cogredient sets (#), (j/), (z).

Since the polar operator is a linear differential operator, it

is evident that the polar of a sum of a number of forms

equals the sum of the polars of these forms,

(/+ <t> + -V=A' + <#y+ ••••

II. The polar of a product. We now develop a very im-

portant formula giving the polar of the product of two

binary forms in terms of polars of the two forms.

If F(xv #
2) is any binary form in xv x

2
of orderM and (y)

is cogredient to (V), we have by Taylor's theorem, k being

any parameter,

JPOi + %r x
2 + kVi)

-*+(*)*.»+(?)*,* + - +(?)***+ -• w
Let F=f(xv x

2)<f)(xv rr
2), the product of two binary forms

of respective orders w, w. Then the rth polar of this prod-

uct will be the coefficient of kT in the expansion of

f(x x
+ kyv x

2 + %2) x<f>(x1 + kyv x
2 + %2),
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divided by
( . ), by (65). But this expansion equals

+(oW2 + -+("W +
-"

Hence by direct multiplication,

r

or f*

Io)(^KHT)(-i)^1+ -

(66)

This is the required formula.

The sum of the coefficients in the polar of a product is

unity. This follows from the fact (cf. (62)) that if (y)
goes into (x) in the polar of a product it becomes the origi-

nal polarized form.

An illustration of formula (66) is the following

:

Let/=a :rj + -•-, cf> = b xj+ .... Then

20
/* '

r
o)f^ + (t)(iV^ + (i) (IVa

= ifA + UrA + lf!A>-

III. Aronhold's polars. The coefficients of the transformed

binary form are given by

a'r =./>(Ar *sXr = °' —
i
m)-

These are the linear transformations of the induced group

(Chap. I, § 2). Let
<f>

be a second binary form of the same

order as,/,

cf> = b a^4- >nb vv';
> -\r

2 + ....
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Let cf> be transformed by ^into cf>' . Then

Hence the set 6 , bv • ••, bm is cogredient to the set a
Q , av • ••, am ,

under the induced group. It follows immediately by the

theory of Paragraph I that

= 5 t-+ ••• +bm—=[b^-). (67)
da dam \ daj

That is, [b—
j

is an invariant operation. It is called the

Aronhold operator but was first discovered by Boole in 1841.

Operated upon any concomitant of/ it gives a simultaneous

concomitant of/ and
<f>.

If m = 2, let

1= a a
2
— a\.

Then

day \ da
Q

da
x

da
2

This is h (Chap. I, § 1). Also

b— )I=(b - h^- \-b
2
-—)I= a b

2
— 2a

1
b
1 + a

2
b .

2(60J=4(5o
fi
2 -5f),

the discriminant of </>. In general, if yjr is any concomitant

of/,

then

(^J+'-M4^'*/'-^.?^ (68)

are concomitants of/and <£. When r = i, the concomitant is

The other concomitants of the scries, which we call a series

of Aronhold's polars of -v/r, are said to be intermediate to yfr
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and
x->

and of the same type as yjr. The theory of types will

be referred to in the sequel.

All concomitants of a series of Aronhold's polars have the

same index k.

Thus the following series has the index Jc = 2, as may be

verified b}~ applying (52) of Section 3, Chapter II to each

form (/= a^x\ + •••
;

<f>
= b<p% + •••):

H= (a a
2 — «?)•*'? + (#0^3 ~~ a

i
a
'i)
x

\
x2 + (.

a xa8 ~ a%)x%

(b—]ff={a b
2
— 2 a

1
5
1
+a

2
J )a;j+(a 6g+a

3
6 — aj^— a^b^x^

V +(a
1
b
3
-2a

2
b
2 +a8

b
1)xl

l(t>£f&= chh -
h\>*i

+

cV'3 - hh>i** + (.hh - H)4-

IV. Modular polars. Under the group Tp , we have shown,

x\, x\ are cogredient to xv xv Hence the polar operation

^^r + ^r* (69 )

ox
1

dx
2

applied to any algebraic form /, or covariant of /, gives a

formal modular concomitant of/. Thus if

/= a x% + 2 a
x
x^x

2 + a
2
x\,

then,
1 S

3/= a x\ + a
1
(a%x

2 + x
x
x\ ) + «

2
;4-

This is a covariant of/ modulo 3, as has been verified in Chap-

ter I, Section 1. Under the induced modular group a*, of, •••,

afn will be cogredient to « , av •••, am . Hence we have the

modular Aronhold operator

da dam
If m = 2, and

D = a a
2
- of,

then dpZ) = agog - 2 of
+1 + a a| (mod. p).

This is a formal modular invariant modulo p. It is not an
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algebraic invariant ; that is, not invariantive under the group

generated by the transformations T.

We may note in addition that the line

has among its covariants modulo 2, the line and the conic

d
2
l = af

)
x

1
+ a\x

2 + a\xy
8
2
l = atfc\ + a

x
x\ + a

2
x\.

X. Operators derived from the fundamental postulate. The
fundamental postulate on cogrediency (Chap. 1. § -J enables

us to replace the variables in a concomitant by any set of ele-

ments cogredient to the variables, without disturbing the

property of invariance.

Theorem. Under the binary transformations T the differ-

ential operators -— ,
—— are cogredient to the variables.

dx
2

bx
x

From T we have

dx'
1

ldx
1

l bx
2bob

Hence (W)—- = X
1
^— + /iJ —— ),

o fi
,

l
os., \ Ox\J

n d
1

d ( b \- (x
^ox~r^ +**rw

This proves the theorem.

It follows that if <£='(a . .... am y(xv x
2
/" is any invariant

function, i.e. a concomitant of a binary form/, then

ty^...,^_,__j 70

is an invariant operator (Boole). If this operator is operated

upon any covariant of /. it gives a concomitant of /, and
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if operated upon a covariant of any set of forms </, /i, ..., it

gives a simultaneous concomitant of / and the set. This

process is a remarkably prolific one and enables us to construct

a great variety of invariants and covariants of a form or a

set of forms. We shall illustrate it by means of several

examples.

Let / be the binary quartic and let cf> be the form f itself.

Then

J
°dx*

1 da%dx
1

%dx$x\ *Bx
2
Bt\ *dx\

and

h §f ' /— 2(« a
4
— 4 a

i
a
s + 3 ai) = *'

This second degree invariant i represents the condition that

the four roots of the quartic form a self-ajDolar range. If

this process is applied in the case of a form of odd order, the

result vanishes identically.

If ZTis the Hessian of the quartic, then

d4 d4dH= (a a
2
- «f)— - 2(a a

3
- a^)-

dx\
v u 6 l "dx\dx

1

Qi ^4
+ (a^ + 2 a

x
a
z
— 3 a|) — 2(a

x
a
4
— a2a3)

di

And

^2 dJET •/= 6(a a
2
a
4 + 2 a^ag — ajc?

4
— rt a| — «|) = J". (7(h)

This third-degree invariant equated to zero gives the con-

dition that the roots of the quartic form a harmonic range.

If H is the Hessian of the binary cubic /and

then

IdH- g = [6 («ia3 - rtD + hi(a \
ch ~ a

o
as) + k;(

'V'2 - "?)>i
+ [b^a^ - a%) + b^a^ - a a

3 ) + 6
3
(a a

2
- a?)>

2 ;

a linear covariant of the two cubics.
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Bilinear Invariants

If f=a x'l
l + •••is a binary form of order

g = b x™ + ••• another of the same order, then

1

m and

df-g = a bm -
|_

fl^m- + +(-i) :win

(71)+ ... +(-l)m
a„/v

This, the bilinear invariant of / and </, is the simplest joint

invariant of the two forms. If it is equated to zero, it gives

the condition that the two forms be apolar. If m = 2, the

apolarity condition is the same as the condition that the two

quadratics be harmonic conjugates (Chap. I, § 1, IV).

VI. The fundamental operation called transvection. The
most fundamental process of binary invariant theory is a

differential operation called transvection. In fact it will

subsequently appear that all invariants and covariants of a

form or a set of forms can be derived by this process. We
proceed to explain the nature of the process. We first prove

that the following operator Q is an invariant

:

^ _ dx
x

dx
2

—(—

where (j/) is cogredient to (x). In fact by (70),

(72)

D,' =
x,

dx.
+ X,

dx, o.r, ()>';

ty\ dv% tyi ty*

= (\H)CI,

which proves the statement.

Evidently, to produce any result, 12 must be applied to

a doubly binary function. One such type of function is a

y-polar of a binary form. But



52 THE THEORY OF INVARIANTS

Theorem. The result of operating D, upon any y-polar of

a binary formf is zero.

For, iff=a x™+ • ••,

m — r \ dxj

-1 dT+1f (rX,r-l dT+1f

Hence

— rifi
x ••• —

-1 Wo
dx[dx

2 V 1 / " dx-^dx^

and this vanishes by cancellation.

If ft is operated upon another type of doubly binary form,

not a polar, as for instance upon/*?, where/ is a binary form

in xv x
2
and g a binary form in yv yv the result will generally

be a doubly binary invariant formation, not zero.

Definition. If f(x) = a x™ -f- •••is a binary form in (x)

of order m, and gQy) = b y'{ + ••• a binary form in (?/) of order

n, then if yv y2
be changed to xv x

2
respectively in

\m — r \n — r
= nf(x)g(y), (73)

I

m \n

after the differentiations have been performed, the result is

called the rth transvectant (Cayley, 1816) of f(x) and g(x).

This will be abbreviated (/, g~)
T
, following a well-established

notation. We evidently have for a general formula

KJ '
f

\m\n_ ^,
J
\*jBa%"dal dx\dx'

2
s

We give at present only a few illustrations. We note that

the Jacobian of two binary forms is their first transvectant.

Also the Hessian of a form /is its second transvectant. For
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H= ( f f - f2 ^
9/" 1 NOV.' Jt-Tli' X->X« J J',1,/m\m — iy

fl»w — 2

1

2
_ K\"i -) ,f f - 2 f2 _i_ f f \— —~, —^ V./ Xi.XiJ x2 zj *V .i'tij i .' x2x2J xx xx )

As an example of multiple transvection we may write the

following covariant of the cubic/:

Q = (/>(/> /)2
)
1=

(«0«3 ~ 3 «0«1«2 + 2 ai>l

(740
+ 3(« a

1
a
3
— 2 a a| + a\a^)x\x

2

— S(a a
2
a
3
— 2 «2a

3 + aja| )x
1
a^

— (« tf§— 3 rt
1
«
2«3 4- 2 a\)x\.

If/ and ^ are two forms of the same order m, then (/, g)
m

is

their bilinear invariant. By forming multiple transvections,

as was done to obtain Q, we can evidently obtain an un-

limited number of concomitants of a single form or of a set.

SECTION 2. THE ARONHOLD SYMBOLISM. SYMBOLICAL
INVARIANT PROCESSES

I. Symbolical representation. A binary form /, written

in the notation of which

/= a^x\ + 3 a
x
x\x

2 + 3 a%%iX% + a
z
x\

is a particular case, bears a close formal resemblance to a

power of linear form, here the third power. This resem-

blance becomes the more noteworthy when we observe that

the derivative— bears the same formal resemblance to the
dx

1

derivative of the third power of a linear form :

df

dx
x

%(a
Q
x\ + 2 a

x
x

x
x
% + a

2#§).

That is, it resembles three times the square of the linear

form. When we study the question of how far this formal

resemblance may be extended we are led to a completely
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new and strikingly concise formulation of the fundamental

processes of binary invariant theory. Although/ = a x'{' + •••

is not an exact power, we assume the privilege of placing it

equal to the with power of a purely symbolical linear form

a
1
x

1
+ a

2
z
2 , which we abbreviate ax .

This may be done provided we assume that the only defined

combinations of the symbols uv c^, that is, the only combina-

tions which have any definite meaning, are the monomials

of degree m in «r «
2 ;

jin — l
l
l "*2« = a,. ••-. a"' = a,

and. linear combinations of these. Thus a™ + 2 a™~2a% means

a + 2 av But af
-2^ ^s meaningless : an umbral expression

(Sylvester). An expression of the second degree like a a
s

cannot then be represented in terms of a's alone, since

a™ • a™_3
«| = cqm_3a! is undefined. To avoid this difficulty we

give/* a series of symbolical representations,

/=«™ = #? = 7
» = ...,

wherein the symbols («r «
2 ), (/3 : , /32 ), (7l . 72 ),

••• are said to

be equivalent symbols as appertaining to the same form/.

Then

«? =#r -tt = ••• =^ «i"

_1
«
2
=&?- 1

02 =7i""
1

72 = ••• =< ?r ••••

Now a
Q
a
s
becomes (a'l'/3'{'~

;i

@f) and this is a defined combina-

tion of symbols.

In general an expression of degree i in the a's will be repre-

sented by means of i equivalent symbol sets, the symbols of

each set entering the symbolical expressions only to the with

degree ; moreover there will be a series of (equivalent)

symbolical representations of the same expression, as

a a
s = af/3?-

3
/3§ = <WtS =£W S

7i = ""
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Thus the discriminant of

/= <*! = £1 = ••• = a xj + 2 a
x
x

x
x^ + <z

2
z|

D = 4(a a
2
- af) = 4(«f/3§

- a
1
a
2@ 1@2

')

= 2(«?/3§-2«1<y31/32 + «l/3f^
or

2> = 2(«/3)2,

a very concise representation of this invariant.

Conversely, if we wish to know what invariant a given

symbolical expression represents, we proceed thus. Let/ be

the quadratic above, and

g = pi = o-2 = . .. = 6 zf + 2 ^rr^ + Vf,

where /> 4s not equivalent to a. Then to find what

J= (ap^axPx, which evidently contains the symbols in defined

combinations only, represents in terms of the actual coeffi-

cients of the forms, we multiply out and find

J= (<*lP2 - a2Pl)(al
X

l + a
2
X<i)(PlXl + P2X2)

= ( alPlP2 - a
l
a2P\)X\ + ( alPl — alP'DXl

X
2 + ( al

a2p2 - a2plPz)XV

= ia h
\
~ alh)Xl + (aoh - aMX

l
X
2 + (a \

h
2 - a2^\)X2'

This is the Jacobian of/ and g. Note the simple symbolical

form
J= {ap)axpx .

II. Symbolical polars. We shall now investigate the forms

which the standard invariant processes take when expressed

in terms of the above symbolism (Aronhold, 1858).

For polars we have, when/= a'" = yS™ = •••,

Hence

fyr=a%-<-a
r
y . (75)

The transformed form of/ under Twill be

/' = [«!(Vi' + A*i30 + «2(Vi + H^)T
= [(^Xj + «

2
X
2)^ + («x^i + «

2 /i'2)4]'"'
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or /' = (>vi + V-2)
W

= <.rl'"+ ... + r!)oif-rar
ll
x!

i

m- rx'2
r+ ••• +a«4m . (76)

In view of (75) we have here not only the symbolical

representation of the transformed form but a very concise

proof of the fact, proved elsewhere (Chap. I, (29)), that the

transformed coefficients are polars of a' =f (Xr X
2)= a™.

The formula (66) for the polar of a product becomes

1 r

,= s X(m)( n
yT'tfyPr+'ftr; (7?>

,' fm + n\ 7=<\sJ\r—sJ J

where the symbols a, /3 are not as a rule equivalent.

III. Symbolical transvectants. If / = «"' = ax— •"> 9 =
fi% = bl= .-., then p 56

/ 32 d2 \

= («/3)«r 1^r 1
.

Hence the symbolical form for the rth transvectant is

(/, gj = («/3)'-<-^r
r

- (78)

Several properties of transvectants follow easily from this.

Suppose that g = / so that a and /3 are equivalent symbols.

Then obviously we can interchange a and ft in any symbolical

expression without changing the value of that expression.

Also we should remember that (a/3) is a determinant of the

second order, wad. formally

(«/3) =-(/?«).

Suppose now that r is odd, r = 2 k + 1. Then

(ffYM = (a/S) 2*^-2*- 1/^"2*-1 = - (a^) 2^ 1^-^- 1^-2''-1
.

Hence this transvectant, being equal to its own negative,

vanishes. Every odd transvectant of a form with itself vanishes.
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If the symbols are not equivalent, evidently

(/^)r =(-l)r(^/)r
- (79)

Also if C is a constant,

(Cy,</)'=(7(/,<7)'-; (80)

Oi/i + °if-i ^

—

j ^ii/i + ^2^2 + •••)''

= cA(fv 9i)' + Hd£fv 9i)" + ••-
(
81 >

IV. Standard method of transvection. We may derive

transvectants from polars by a simple application of the

fundamental postulate. For, as shown in section 1, if/ =
// »•'" 4- ... — //'"
1

1
' — -r '

/„r =
l£f>

+{l)^te^+
d r
f '

(82)

Now (y) is cogredient to (x). Hence , are cogredient
dx% dx^

to yv y2
. If we replace the y's by tliese derivative symbols

and operate the result, which we abbreviate as df r, upon a

second form g = b"x , we obtain

*fy

aiK -
(

i

) «rla2*r1J
i + ••• +(- 1)

r
«26i <~'^r r

= (a&y<-''&rr
=(f<ffy- (83)

When we compare the square bracket in (82) with a'"
-

'
-

times the square bracket in (83), we see that they differ

precisely in that yv y2
has been replaced by b

2 ,
— bv Hence

we enunciate the following standard method of transvection.

Let / be any symbolical form. It may be simple like / in

this paragraph, or more complicated like (78), or howsoever

complicated. To obtain the rth transvectant of /and Qf= b^

we polarizef r times, change yv y2
into 6

2,
— b

1
respectively in

the result and multiply by bx
~ r

. In view of the formula (77)
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for the polar of a product this is the most desirable method

of finding transvectants.

For illustration, let F be a quartic, F = a% = bL and / its

Hessian
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zv z
2
into bv — bv and multiplying this result by (ab)2axbx ;

|(a6) 2(ao-) (b<r}axbxax

= f(«£>!&

From (85),

i AiWa+ UXor^3
*

jy=*

z; z=6

( a5 )

2a2

X (ab) 2axbx . (86)

= §(^)2(«/3)(«6)(/35)aX + i(«&)
2
(«/3X«&)

2«3&

From (86),

K«/3) oY1Wv+(i)(JWa
s; 3=6

(ab) 2axb 2

= | af(£a) + i «x/3x(«a)
z; z=b

X (a6) 2
( «/3)aA

= 2 («6)
2(a/3)(a5)(/8a)«xaA + f(a6)2(a/3)(aa) («&)&«A

+ %(aby(u/3)(/3b)(aa)axaxbx .

Hence we have in this case

(/, y)
2 = f(a&)

2(a/3)(a&)(/3&)«2aa + l(a^) 2(«/3)(^) 2«2
/
8I

+ |(a£)2
(«/3) («&) (/8a) axaxbx+ f(a&)

2
( «/3) (aa) («6)/3xaA- (87)

V. Formula for the rth transvectant. The most general

formulas for/, g respectively are r

in which

/= <)a^ .J 4»\ g = /3n>/3< 2) ... /3f

,

We can obtain a formula of complete generality for the

transvectant (/, g~)r by applying the operator O directly to

the product//. We have

d2 jj _ >TA
(,j) n(r) fft

Z. 7 J9 — 2-i
a

\ ^2 («)'/p(r)
'

3«l3y2 4 Py

__5
2
_

d:r
23//

,, /?

1 'V A-\v
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Subtracting these we obtain

\m — 1 n — 1 __. ftl

Repetitions of this process, made as follows:

im— 2 iw — 2 fg
, (88)

lead to the conclusion that the rth transvectant of /a'nd g, as

well as the mere result of applying the operator £1 to fg r

times, is a sum of terms each one of which contains the

product of r determinant factors (a/3), m — r factors «x , and

n — r factors fix . We can however write (/, g~) T in a very

simple explicit form. Consider the special case

/=«<1>«<2>«<3), g = &»&$>.

Here, by the rule of (88),

(fg) 2= K« (1) /Sa) )(«
(2) /3'2))«'

r
3 ) + (a<i>£ (1))(«f3)£(2))42)

+ («(i'/3 (2) )(« (2,
/3

(1)
)«r

3) + (« (1,
/3

(20(« (3)
/3

(1) )a<.2)

+ (a^/^Xa^2')^ + (a(2)
/3

(10(a(1)
/3

(2))433 (89)

+ (a' 2,
/
S (2) )(« (3)

/3
,1))41) + (« (2)^ ( 2 ) )(«'i)/3(i)) u

;;
:»

+ (a(3)^(D)(a(l)^2))^ + («(3)
)

g(l))(a(2)
y
Q(2))-aa)

+ (««>/Sa))(«n )

/8
a))«a) + (« (3,

/3
(2))(« (2)

/3
a))<1)

$ -[2(3,

in which occur only six distinct terms, there being a repetition

of each term. Now consider the general case, and the rth

transvectant. In the first transvectant one term contains

t
l
= (« (1)

/3
(1, )42) ••• 4m)

££
2) ••• /3£

n)
. In the second transvectant

there will be a term u
x
= (« ,1)

/3
(1, )(«

(2)
/3

(2,
)<4

3) ... fif ... arising

from £ltv and another term u
x

arising from fltv where

t
2
=(a^^)a^a'f ••• a (

J
n)/3M/3f ... £<»>. Thus u

x (y = x) and

likewise any selected term occurs just twice in (/,#)
2

. Again

the term v
x
=(a(i )yS(i))(«(2)^(2))("(s)^(S))44) - £*4) —will

occur in (/, ^)
3 as many times as there are ways of permuting

the three superscripts 1, 2, 3 or |3 times. Finally in (/, </)
r
,
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written by (88) in the form (89), each term will be repeated

[r times. We may therefore write (/, g)
r as the following

summation, in which all terms are distinct and equal in

)[r:

•

(« (1>^l>)(a^)
/
3(2)

) ... ra (r)
/8

(,)
)

"I

. 41)42)"-</3<1W ) .--/3 (* J9
\ y^

number to
r J\r

:Trk'

VI. Special cases of operation by fl upon a doubly binary

form, not a product. In a subsequent chapter Gordan's series

will be developed. This series has to do with operation by fl

upon a doubly binary form which is neither a polar nor a

simple product. In this paragraph we consider a few very

special cases of such a doubly binary form and in connection

therewith some results of very frequent application.

We can establish the following formula:

flr(.n/) r = constant = (r + l)(|r) 2
. (91)

In proof (74),

fr-jc-iyf-) * dr
-,

and (xyy = j> ( -V\Xrty[yV'
i=

Hence it follows immediately that

= V([r)2=(r + l)(t)2
.

t'=0

A similar doubly binary form is

F=(ryy&-ji;r
j

-

If the second factor of this is a polar of ^+n ' 2J
, we may

make use of the fact, proved before, that 12 on a polar is zero.
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An easy differentiation gives

£IF = j(m +n- j + V)(xy y-^T%~\
and repetitions of this formula give

s I ? \m + n —j + 1 ..... ... /If i< ;'•

|y — »
|w + » — .7 — e+ 1 \= y)\ti>j

(91.)

This formula holds true if m = w = /, that is, for fl' (xy)j
.

VII. Theorem. Every monomial expression
(f>

which con-

sists entirely of symbolical factors of two types, e.g. determinants

of type («/3) and linear factors of the type ax , and which is a de-

fined expression in terms of the coefficients and variables of a

set of forms f g< ••• is a concomitant of those forms. Con-

versely, every concomitant of the set is a linear combination of

such monomials.

Examples of this theorem are given in (78), (84), (87).

In proof of the first part, let

</,=(«/3K«7 )'...«p^..,

where /= a™; and /3, 7, ••• may or may not be equivalent to

a, depending upon whether or not cf> appertains to a single

form/ or to a set/, g, •••. Transform the form/,, that is, the

set, by T. The transformed of/ is (76)

f = (aKx\ + aM4)m .

Hence on account of the equations of transformation,

4>' = («a& - «m£a)"(<V)V - «m7a)
9 ••• «£/% ....

But
«A/3M -«M/3A = (V)(«/3). (92)

Hence
<!>' = (Xfxy^-ff).

which proves the invariancy of
(f>.

Of course if all factors

of the second type, «T, are missing in cf>, the latter is an in-

variant.

To prove the converse of the theorem let cf> be a concomi-
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tant of the set /, g, ••• and let the corresponding invariant

relation be written

<£(< a'v • ••
5 a£ 4) = (X/A)^(a , ar ... ; a^, £

2).
(93)

Now aj = ttt~3'a^Q' = 0, 1, •••, m). Hence if we substitute

these symbolical forms of the transformed coefficients, the

left-hand side of (93) becomes a summation of the type

^PQx'^xlp = (\fi

)

k
<f>
(a ,

•••
; xv x

2) (oj + o>
2
= &)), (94)

where P is a monomial expression consisting of factors of the

type «A only and Q a monomial whose factors are of the one

type a^. But the inverse of the transformation T (cf. (10))

can be written

j.! _ SV /r.' SA

CX/0 (V)'

where | 2
= — r

2 , £2 = -rr Then (94) becomes

xc- i)^p^ci? =

(

:xa*)*
+-0. o5)

We now operate on both sides of (95) by flfc+lu
, where

n__* *_.

We apply (90) to the left-hand side of the result and (91)

to the right-hand side. The left-hand side accordingly be-

comes a sum of terms each term of which involves neces-

sarily &) + k determinants («/3), («£). In fact, since the

result is evidently still of order co in xv xv there will be in

each term precisely <o determinant factors of type («|) and k

of type («/3). There will be no factors of type aK or £A re-

maining on the left since by (91) the right-hand side becomes

a constant times <£, and (f>
does not involve X, /z. We now

replace, on the left, («|) by its equivalent «x , (/3£) by /3X, etc.

Then (95) gives, after division by the constant on the right^

<f>
= la (a/3) p

( «7)« • • • «J/Sj • • -, (96)

where a is a constant ; which was to be proved.
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This theorem is sometimes called the fundamental theorem

of the symbolical theory since by it any binary invariant

problem may be studied under the Aronhold symbolical

representation.

SECTIOX 3. REDUCTIBILITY. ELEMENTARY COMPLETE
IRREDUCIBLE SYSTEMS

Illustrations of the fundamental theorem proved at the

end of Section 2 will now be given.

I. Illustrations. It will be recalled that in (96) each sym-

bolical letter occurs to the precise degree equal to the order

of the form to which it appertains. Note also that k + &>, the

index plus the order of the concomitant, used in the proof of

the theorem, equals the iveight of the concomitant. This

equals the number of symbolical determinant factors of the

type (MJ3) plus the number of linear factors of the type ux in

any term of cj>. The order a> of the concomitant equals the

number of symbolical factors of the type ax in any term of <£.

The degree of the concomitant equals the number of distinct

symbols a, /3. ••• occurring in its symbolical representation.

Let

be any concomitant formula for a set of forms /= «"\

g = /3". ••-. No generality will be lost in the present dis-

cussion by assuming to be monomial, since each separate

term of a sum of such monomials is a concomitant. In order

to write down all monomial concomitants of the set of a given

degree i we have only to construct all symbolical products
(f>

involving precisely i symbols which fulfill the laws

V + q H + p = m,
(97)

p + r ^ -\- a — n,
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where, as stated above, m is the order of / and equal there-

fore to the degree to which a occurs in <£, w, the order of g,

and so on.

In particular let the set consist of /=a2_
/
g2 merely.

For the concomitant of degree 1 only one symbol may be

used. Hence/= a| itself is the only concomitant of degree

1. If i = 2, we have, for 0,

and from (97)

p + p = p + o- = 2.

Or

p
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system. Note that this system for the quadratic is finite.

In another chapter we shall prove the celebrated Grordan's

theorem that a complete irreducible system of concomitants

exists for every binary form or set of forms and the system

consists always of a finite number of concomitants. All of

the concomitants of the quadratic / above which are not

monomial are reducible, but this is not always the case as it

will be sometimes preferable to select as a member of a com-

plete irreducible system a concomitant which is not mono-

mial (cf. (87)). As a further illustration let the set of

forms be / = a| = /3| = •••, g = a2
. = b 2

r
— • •• ; let i = 2.

Then employing only two symbols and avoiding («/3)
2=|2),

etc.

p + P =]) + <r= 2.

The concomitants from this formula are,

«2«2 —f . g ^ (aa)axax
= J", (art) 2 = h,

J" being the Jacobian, and h the bilinear invariant of/ and <£.

II. Reduction by identities. As will appear subsequently

the standard method of obtaining complete irreducible sys-

tems is by transvection. There are many methods of prov-

ing concomitants reducible more powerful than the one

briefly considered above, and the interchange of equivalent

symbols. One method is reduction by symbolical identities.

Fundamental identity. One of the identities frequently

employed in reduction is one already frequently used in

various connections, viz. formula (92). We write this

axb y
- a

y
bx = (ab) (xy )

.

(98)

Every reduction formula to be introduced in this book, in-

cludirw Grordan's series and Stroh's series, may be derived

directly from (98). For this reason this formula is called

the fundamental reduction formula of binary invariant theory

(cf. Chap. IV).
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If we change y x
to c

2 , >/2
to — cv (98) becomes

(5<?)aa.+(ca)Ja.+ (a6)c
a
. = 0. (99)

Replacing x by c? in (99),

(ad)(bc) 4 (ca)(bd) + (ab)(cd) = 0. (100)

From (99) by squaring,

2(a6)(ac)6xcx = (ai) 2c2 +(ac) 2*2 _(^)2a|. (101)

If o) is an imaginary cube root of unity, and

u
x
= (bc~)ax , u

2
= (ca)b x, u

3
= (ab)ex,

we have

(wj + u2 + w
3) (Wj 4- &)W

2
"+" w2w3)

(

w
i + &)2 '/2 + WM3

)

= (ab'f4 + (fo) 3«| + (cayb% — 3(a6)(6c)(m)az6IcI = 0. (102)

Other identities may be similarly obtained.

In order to show how such identities may be used in per-

forming reductions, let f=a.x =b^.= ••• be the binary cubic

form. Then
A = (/,/)

2 = («W*A,
<?=(/, A) = (ab)%cb)ax4.

- (/> Q) 2 = \{ab)\bc) \_axcl 4- 2 cxcyay
~\

y=d x dx (102.)

= %[{aby(edf(be)axdx + 2(ai) 2(a^)(e^)(6c)(?IcZ:r].

But by the interchanges a~d, b ~ c

(ab)\cd)\be)axdx = (dc)20)*WM,= 0.

By the interchange c ~ d the second term in the square

bracket equals

(a£) 2(^>vU<>0(/'<' ) 4- (ca)(W)],

or, by (100) this equals

{ab~)\cdycxdx
= 0.

Hence (/, $)
2 vanishes.

We may note here the result of the transvection (A, A) 2
;

i2=(A, A) 2 =(a5)2(^)2(«0(^)-
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III. Concomitants of binary cubic. We give below a table

of transvectants for the binary cubic form. It shows which

transvectants are reducible in terms of other concomitants.

It will be inferred from the table that the complete irredu-

cible system for the binary cubic /consists of

/, A, £, R,

one invariant and three covariants, and this is the case as

will be proved later. Not all of the reductions indicated in

this table can be advantageously made by the methods intro-

duced up to the present, but many of them can. All four

of the irreducible concomitants have previously been derived

in this book, in terms of the actual coefficients, but they are

given here for convenient reference

:

/= a
Q
x\ + 3 a

txfx2 + 3 a
2
x

x
x\ + a

z
x\\

A = ~2(ct a
2
— cif)x\ + 2(rt ^

3
— a^a^x^ + 2(aja

3
— a%)x%

(cf.(35)),

Q = (a%a
3
— 3 a

Q
a

x
a
% + 2 af)zf+ 3(a a

1
«
3
— 2 a a| + a^a^)x\x

2

— 3(a a
2
tf
3
— 2 a\a

z + a^a^x-p^ — (# a
3
— 3 a

t
a
2a3 + 2 a%)x%

(ci. (39)),

R =8(« a
2
- af)(a

1
a
s
- a 2,)- 2(a a

3
- a^) 2 (cf. (74 x)).

The symbolical forms are all given in the preceding Paragraph.

TABLE I

First Transv.
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SECTION 4. CONCOMITANTS IN TERMS OF THE ROOTS

Every binary form f = af = b™ = • •• is linearly factorable

in some field of rationality. Suppose

/= (4%j - rFzJQrP*! - »f
)*2>"(>r)

3a - r[
m\~).

Then the coefficients of the form are the elementary sym-

metric functions of the m groups of variables (homogeneous)

%/f>, »#>) 0' = 1, 2, -.., m).

These functions are given by

aj = (- iy 2rprp • • • r[j)r%+1)
• • r%n)

(J = 0, • •
., m) . (103)

The number of terms in 2 evidently equals the number of

distinct terms obtainable from its leading term by permuting

all of its letters after the superscripts are removed. This

number is, then,

N=\m/\j
\

m—j = mO}
-.

I. Theorem. Any concomitant of f is a simultaneous con-

comitant of the linear factors off i.e. of the linear forms

(/•<%), (r (2)x), • ••, (r im)x).

For,
j., =

(
_ i)»(r/(i)a/)(r/(2)a/) ...

(r'(™V), (104)

and
a\ = (- lyZr'^r'™ ... r'^r'^ ••• ^(m)

. (1030

Let
(f>

be a concomitant of/, and let the corresponding in-

variant relation be

0'=(«
f
',, •••, a'my(x'v x'

2y = (\fiy\a , •••,o iOv^)u= (^) i^
When the primed coefficients in cf>' are expressed in terms of

the roots from (103j) and the unprimed coefficients in $ in

this invariant relation are expressed in terms of the roots

from (103), it is evident that
<f>'

is the same function of the

primed r's that $ is of the unprimed r's. This proves the

theorem.
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II. Conversion operators. In this Paragraph much advan-

tage results in connection with formal manipulations by in-

troducing the following notation for the factored form of/:

f =a (

}
) a {}) ••• a'/'K (105)

Here a (

x
j) = a[3

'

)z
1 + a L̂ x

2 (J = 1, •••, ni). The as are related

to the roots (r{}) , r^y) of the previous Paragraph by the

equations

aU) _ ry> j
ao) _ _ r (i) .

that is, the roots are (-Ha.y' )

,
— a[jr) (,/ = l, •••,»»). The

umbral expressions av a
2

are now cogredient to a[J\ «.y>

(Chap. I, § 2, VII, and Chap. Ill, (76)). Hence,

aU) 1_\= aU) JL + «o» J_
da/ da

x
' da

2

is an invariantive operator by the fundamental postulate. In

the same way

and [Dabc ...] = [Ba][I)b-][Dc
]:.

are invariantive operators. If we recall that the only degree

to which any umbral pair av a
2
can occur in a symbolical

concomitant,

</) = 2n&(a&)(ac)...,

off is the precise degree w, it is evident that \_Dabc ...~\ operated

upon
<f>

gives a concomitant which is expressed entirely in

terms of the roots (a^, — a[j) ~) of /. Illustrations follow.

Let 2
<f>

be the discriminant of the quadratic

/=a|=51=...,^ = (aJ)2
.

Then

(a^—)<f> = 2(a<i>&)(>&); [Z)a ]</> = 2(a<i)&)(a<2 ) 5).

Hence
[Dab]<f>=--2(u y a'l )

f. (106)
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This result is therefore some concomitant of f expressed

entirely in terms of the roots of/. It will presently appear

that it is, except for a numerical factor, the invariant <£ it-

self expressed in terms of the roots. Next let <\> be the co-

variant Q of the cubic /= a§ = •••. Then

Q = (aby(ac)bxcl,

l[Z>
a ] Q = (a^b)(a {i)b)Qca^bx4 + (a^b)(a^b)(ca^)bx4

KAd Q = (aa)«(2))(«(2) aa))(ca(3))a(3)c2

+ ( « ( l ) a(3
, )(a f2)«(1))(m(3>)«<2) 6,2 + (a(l)a(2))(a (2)a(8))(ca (8) )aa> e2

+ («(!>« 2))(a C3)ad))(ca (2)
ja(3)c2 + ( a(Da(8))(a(8) a(l))(ca(2))a(2)^

+ (« , i ) « <3\)(a (3) « <20(c« (2V)<
ll c? + O< l3, « (1, )(rt ,2, a (3) )(^' 1

' )42)
<?|

+ («<»««))(a®aa0(ca(1048)^+(«(8)a®)(a(2)a(80(ca(10^1)^
[Dabc] # = _ 252(a(1)a(2)

)
2(aa)a(3))48)242)

1 (107 )

wherein the summation covers the permutations of the

superscripts. This is accordingly a covariant of the cubic

expressed in terms of the roots.

Now it appears from (104) that each coefficient of

/= a% = ••• is of degree m in the «'s of the roots (a!/\ — a[:,y
).

Hence any concomitant of degree i will be of degree im in

these roots. Conversely, any invariant or covariant which is

of degree im in the root letters a will, when expressed in

terms of the coefficients of the form, be of degree i in these

coefficients. This is a property which invariants enjoy in

common with all symmetric functions. Thus [Z)„,,]c/> above

is an invariant of the quadratic of degree 2 and hence it

must be the discriminant cf> itself, since the latter is the

only invariant of / of that degree (cf. § 3). Likewise it

appears from Table I that Q is the only covariant of the

cubic of degree-order (3, 3), and since by the present rule

[I>abc~]Q is of degree-order (3,3), (107) is, aside from a

numerical multiplier, the expression for Q itself in terms of

the roots.
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It will be observed generally that \_Dab ...~\ preserves not

only the degree-order (i, w) of $, but also the weight since

10 = i (im + &)). If then in any case </> happens to be the

only concomitant of/ of that given degree-order (i, «o), the

expression [2>o6 ...]</> is precisely the concomitant
<f>

expressed

in terms of the roots. This rule enables us to derive easily

by the method above the expressions for the irreducible

system of the cubic fin terms of the roots. These are

/= a<%<2)af> ; a*.

A = S(«(i ) a'2))2«(3)2 . (abyaxb x .

Q = 2(a(i )«(2))2(«a) a (3))«<;,)2rt
(2» . (^)2(ac)JiC2.

R = (a (1)« (2>) 2(« (2^<3))2^(3; a(i))2 . (aby(cd)\ac)(bd).

Consider now the explicit form of Q

:

Q = («(l>a^)2(a(l)a(3))a©)2a(2) + (a
(2)a(3))2(a (2)a(l))aa)2a«)

+ (« (3)« ( i )

)
2
(« (3)« (2,)42)2<1) + (« (3)« (2>)2(«^, c

' '

' >< Il2«f
+ (« ( 2)«<l))2^a (2) a(3)) a (3)2aa) + («(l)a(3))2(a (l)a(2)) a (2)2a (3).

It is to be noted that this is symmetric in the two groups of

letters (<*\
j)

, «
2

' )

)- Also each root (value of/) occurs in the

same number of factors as any other root in a term of Q.

Thus in the first term the superscript (1) occurs in three

factors. So also does (2).

III. Principal theorem. We now proceed to prove the

principal theorem of this subject (Cayley).
Definition. In Chapter I, Section 1, II, the length of

the segment joining 0(xv #
2),

and DQyv y^) ; real points,

was shown to be

where \ is the multiplier appertaining to the points of

reference P, Q, and /a is the length of the segment PQ. If

the ratios x
x

: xv yx
: y2

are not real, this formula will not

represent a real segment CD. But in any case if (r[3'\ r^),

(r[k\ r
2
w
) are any two roots of a binary form/= a™, real or
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imaginary, we define the difference of these two roots to be

the number

r>(i> r«) i = XgO^V*')
L J (Xrp + rpX^ + ri*)

We note for immediate use that the expression

II(r) = (Xr[v + r™ )( X/f> + ro)) ... (\r« + r£»>)

is symmetric in the roots. That is, it is a symmetric func-

tion of the two groups of variables (r[3\ r^ }

) (^ = 1, •••, m).

In fact it is the result of substituting (1, —X) for (xv #
2) in

/= (— l)m(> (1).r)(r (2)^) ... (r (m)
:r),

and equals

n(r) = (a -wa
1\+ ••• +(-l)mam\m).

Obviously the reference points P, Q can be selected * so

that (1, — X) is not a root, i.e. so that II (r) =f= 0.

Theorem. Let f be any binary form, then any function

of the two types of differences

[r
(i>r(*g, [r^x] = \ii(r^x)/(\r^. + ^' ) )(X^

1
+ z2),

which is homogenous in both types of differences arid symmetric

in the roots (r[j\ r
2
J'>) (j = 1, •••, m) will, when expressed in

terms of xv x
2
and the coefficients off and made integral by

multiplying by a poiver of II (r) times a power of (X.Tj +x
2
~),

be a concomitant if and only if every one of the products of

differences of which it consists involves all roots (r[ j\ r^ 1
'

)

(values of j) in equal numbers of its factors. Moreover all

concomitants off are functions
(f>

defined in this way. If only

the one type of difference [r0) r (k)
~\ occurs in

<f>,
it is an invari-

ant, if only the type [_r
(j)x], it is an identical covariant,— a

power off itself, and if both types occur,
<f>

is a covariant.

[Cf. theorem in Chap. Ill, § 2, VII.]

* If the transformation T is looked upon as a change of reference points, the

multiplier X undergoes a homographic transformation under T.
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Iii proof of this let the explicit form of the function <b de-

scribed in the theorem be

<£=2t> :

'--VI'-
1 '•• ]**— [r° ajjft^a?]**—,

where

«i + 0i + ••• =«
2 + y

82+ — = ••••

Pi + °"l + "' = /
3
2 + °2 + •" = *"•

and is symmetric in the roots. We are to prove that 6 is

invariantive when and only when each superscript occurs in

the same number of factors as every other superscript in

a term of
<f>.

We note first that if this property holds and

we express the differences in </> in explicit form as defined

above, the terms of 2 will, without further algebraical manip-

ulation, have a common denominator, and this will be of the

form

no-r,\,-1+ ,
2

Hence H(r') u(\z
1 + r

2 y<f>
is a sum of monomials each one of

which is a product of determinants of the two types I r r i,

I r x). But owing to the cogrediency of the roots and

variables these determinants are separately invariant under

T. hence Tl(r )"(\-r
i + ^y4> i-s a concomitant. Next assume

that in it is not true that each superscript occurs the same

number of times in a term as every other superscript. Then

although when the above explicit formulas for differences are

introduced (\x
x
+x^) occurs to the same power v in every de-

nominator in 2. this is not true of a factor of the *

( \r[* — /•., i. Hence the terms of 2 must be reduced to a

common denominator. L^t this common denominator be

n(r)w
(^i + ^2)

P
- Then n <,•,< A,'!- ./-.

2
)'6 is of the form

where not all of the positive integers u
i:

. are zero.
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Nbw$j is invariantive under T. Hence itmust be unaltered

under the special case of T: x
1
= — x^ x2 = x[. From this

r\
' = - r., '. /, /-,- . Hence

0', = V Yl ( X^V'
1 - ^'' )V(>->' V^' )X'-

a V<
:5r)^ •••

( r^xyt •..,

* j

and this is obviously not identical with (p
l
on account of the

presence of the factor II. Hence ^>
1

is not a concomitant.

All parts o( the theorem have now been proved or are self-

evident except that <rfl concomitants of a form are expres-

sible in the manner stated in the theorem. To prove this.

note that any concomitant
<f>

of/, being rational in the coeffi-

cients of /. is symmetric in the roots. To prove that (/> need

involve the roots in the form of differences only, before it is

made integral by multiplication by U.(r ) "( \.r
{

+ .r.
:

>», it is

only necessary to observe that it must remain unaltered

when/' is transformed by the following transformation oi

determinant unity :

•r
i
= x

\ + ''•''•:• x
-i
= r

'r

and functions of determinants (r >, (r { x) are the only

symmetric functions which have this property.

As an illustration o( the theorem consider concomitants of

the quadratic/=(V(1)#)(r(2)#). 'These are of the form

0=2 l'"' V '"
J"'-

1

'"
'-''l"'' I

''''']**•

it

Here owing to homogeneity in the two types o( differences,

rt
l
= (<

-l
= •" : Pi + a

\
~ P-l

""" °8 — '"•

Also due to the fact that each superscript must occur as

many times in a term as ever\ other superscript,

u
l
-f p x

= u, -f trv <c, -\- p.y = <t.
2 -f <t.

:
.

....

Also owing to s\ mmct r\ u, must he even. Heme «
k
=-«.

p* — «* = A and

= ,.; (r (P,.ej)>
)
2;,

;
^. l lV)( r<-V ) , &= (7'
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where O is a numerical multiplier. Now a and /3 may have

any positive integral values including zero. Hence the

concomitants of /consist of the discriminant D= — (r (1V 2)
)
2

,

the form/= (r (1)a;)(r (2)a;) itself, and products of powers of

these two concomitants. In other words we obtain here a

proof that / and D form a complete irreducible system for

the quadratic. We may easily derive the irreducible system

of the cubic by the same method, and it may also be applied

with success to the quartic although the work is there

quite complicated. We shall close this discussion by deter-

mining by this method all of the invariants of a binary cubic

/ = -
(r<%)

(2)z) (r™x) . Here

and

That is,

Hence

= 2 [r(1V(2)
]
a
ft[r(2)r(3)

]
p*[r(3V(1)

]
Y*

k

«* + 7* = «* + &• = &• + 7a-

a* = &• = 7a- = 2 a.

Thus the discriminant R and its powers are the only

invariants.

IV. Hermite"s reciprocity theorem. If a form f — a"! = b'"
r

= ••• of order m has a concomitant of degree n and order &>,

then a form g = a" = ••• °f order n has a concomitant of degree

m and order w.

To prove this theorem let the concomitant of/ be

1= 1k(aby(ac) Q ••• arxb% ••• (> + «+•••= o>),

where the summation extends over all terms of / and k is

numerical. In this the number of distinct symbols a, b, ••• is

n. This expression / if not symmetric in the n letters

a,b,c, ••• can be changed into an equivalent expression in the
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sense that it represents the same concomitant as /, and which

is symmetric. To do this, take a term of Z, as

k(aby(acy ••• arxb% ••-,

and in it permute the equivalent symbols a, &, ••• in all \n

possible ways, add the \n resulting monomial expressions and

divide the sum by \n. Do this for all terms of / and add

the results for all terms. This latter sum is an expression J
equivalent to I and symmetric in the n symbols. Moreover

each symbol occurs to the same degree in every term of J" as

does every other symbol, and this degree is precisely m.

Now let

# = 41)42) ...4»>,

and in a perfectly arbitrary manner make the following re-

placements in J

:

1 , b , c , ••, I

c
(i\ a^\ a (3\ .... a (n

\

The result is an expression in the roots («2
7 \ — a

i
J)
) °f

ffi

Ja = 267(« (1) « (2)
)
p(« (1, « (3,

)
5 ••• 41,r42,s

•••,

which possesses the following properties : It is symmetric

in the roots, and of order &>. In every term each root

(value of O')) occurs in the same number of factors as

every other root. Hence by the principal theorem of this

section Ja is a concomitant of g expressed in terms of the

roots. It is of degree m in the coefficients of g since it is of

degree m in each root. This proves the theorem.

As an illustration of this theorem we may note that a

quartic form / has an invariant J of degree 3 (cf. (70j)) ;

and, reciprocally, a cubic form g has an invariant R of degree

4, viz. the discriminant of g (cf. (39)).
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SECTION 5. GEOMETRICAL INTERPRETATIONS.
INVOLUTION

In Chapter I, Section 1, II, III, it has been shown how the

roots (r['\ r|°) (t' = l, •••, ni) of a binary form

/= (« , av •••, amJxv z
2)
m

may be represented by a range of m points referred to two

fixed points of reference, on a straight line EF. Now the

evanescence of any invariant of / implies, in view of the

theory of invariants in terms of the roots, a definite relation

between the points of this range, and this relation is such

that it holds true likewise for the range obtained from / =
by transforming/ by T. A property of a range /= which

persists for f = is called a projective property. Every

property represented by the vanishing of an invariant I of

f is therefore projective in view of the invariant equation

I(a' , ...)=(\/x)A/(a , ...)•

Any covariant of f equated to zero gives rise to a
'* derived " point range connected in a definite manner with

the range /= 0, and this connecting relation is projective.

The identical evanescence of any covariant implies projec-

tive relations between the points of the original range /=
such that the derived point range obtained by equating the

covariant to zero is absolutely indeterminate. The like

remarks apply to covariants or invariants of two or more

forms, and the point systems represented thereby.

I. Involution. If

/=O , av —Jxv x
2y\ f/

= (b . bv —Jzv z
2
~)m

are two binary forms of the same order, then

/+ ^9 = Oo + *fy><
(h + **r •lxv %)

m
<

where k is a variable parameter, denotes a system of qualities

which are said to form, with f and g, an involution. The
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single infinity of point ranges given by k, taken with the

ranges / = 0, g = are said to form an involution of point

ranges.

In Chapter I, Section 1, V, we proved that a point pair

((V), (v)) can be found harmonically related to any two given

point pairs ((p), (>)), ((?)> (*))• If the latter two pairs

are given by the respective quadratic forms /, g, the pair

((%), (w)) is furnished by the Jacobian Q of /, g. If the

eliminant of three quadratics /, g, h vanishes identically,

then there exists a linear relation

f+kg + lh = 0,

and the pair h = belongs to the involution defined by the

two given pairs.

Theorem. There are, in general, 2(?w — 1) quantics he-

longing to the involutionf+ kg which contain a squared linear

factor, and the set comprising all doable roots of these quantics

is the set of roots of the Jacobian off and g.

In proof of this, we have shown in Chapter I that the dis-

criminant of a form of order m is of degree 2(ra — 1).

Hence the discriminant of f-\- kg is a polynomial in k of

order 2(m — 1). Equated to zero it determines 2(m — 1)

values of k for which/ -f kg has a double root.

We have thus proved that an involution of point ranges

contains 2(m — 1) ranges each of which has a double point.

We can now show that the 2(m — 1) roots of the Jacobian

of/ and g are the double points of the involution. For if

x^u
2
— x^i is a double factor of /+ kg, it is a simple factor

of the two forms

V + k^ li +kX
dx± dx

1
dx

2
dx.

and hence is a simple factor of the &- eliminant of these

forms, which is the Jacobian of /, g. By this, for instance,

the points of the common harmonic pair of two quadratics
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are the double points of the involution denned by those

quadratics. The square of each linear factor of C belongs

to the involution/ + kg.

In case the Jacobian vanishes identically- the range of

double points of the involution becomes indeterminate.

This is to be expected since / is then a multiple of g and the

two fundamental rangesf= 0, g = coincide.

II. Projective properties represented by vanishing covari-

ants. The most elementary irreducible covariants of a single

binary form /= (a , av ••• Jxv #
2)
m are the Hessian H, and

the third-degree covariant T, viz.

H= (/, /)» T= (/, H).

We now give a geometrical interpretation of each of these.

Theorem. A necessary and sufficient condition in order

that the binary form f may be the mth power of a linear form
is that its Hessian H should vanish identically.

If we construct the Hessian determinant of (r
2
x^ — r^)™,

it is found to vanish. Conversely, assume that K= 0.

Since IT is the Jacobian of the two first partial derivatives

-i—, -^-, the equation H= implies a linear relation
dx

x
ox

2
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and by integration

and this proves the theorem.

Theorem. A necessary and sufficient condition in order

that a binary quarticform f= a r\ + ••• should be the product

of two squared linear factors is that its sextic covariant T
should vanish identically.

To give a proof of this we need a result which can be most

easily proved by the methods of the next chapter (cf.

Appendix (29)) e.g. if i and J are -the respective invariants

of/,

i = 2(a a
4
— 4 a

x
a
z + 3 a2,),

J=6

then

A 1 wn

a
1

a
2

a
3

tin tt'o tIt
2 "3

We also observe that the discriminant of / is 2t(z3— 6^2
).

Now write a2 as the square of a linear form, and

/=«&f. = 4=6|=....
Then

But

Hence

= i[Oa )
2
?J + (?«)

2
«J + 4(aa)(?aX2/|a!

= UKaaM + 3( ?a)*«? - 2(«9)2a|]«|.

(«a)%I = (/, a|)2 = l(«
?)2a2,

(?a)2«2
= (/, ^2)2 = i[(«f/)2?

2 + 3(^)2«|].

#= - k»?)
2/ + K^)2»*- ( 108 >

This shows that when .0"= 0,/ is a fourth power since (aq) 2
,

(qq~)
2 are constants.

It now follows immediately that

T=(fH)=l(qq)Xfax)a*.
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Next if / contains two pairs of repeated factors, q
2
. is a

perfect square, (qq*)
2 = 0, and T=0. Conversely, without

assumption that d\ is the square of a linear form, if ^=0,
then

and/ has at least one repeated factor. Let this be ax . Then
from

T=\(qq)Xf,ax )«l=Q,

we have either (<^)
2= 0, when q

2
. is also a perfect square, or

(/, ax ) = 0, when/= a4
x . Hence the condition T= is both

necessary and sufficient.



CHAPTER IV

REDUCTION

SECTION 1. GORDAN'S SERIES. THE QUARTIC

The process of making reductions by means of identities,

illustrated in Chapter III, Section 3, is tedious. But we
may by a generalizing process, prepare such identities in

such a way that the prepared identity will reduce certain

extensive types of concomitants with great facility. Such

a prepared identity is the series of Gordan.

I. Gordan's series. This is derived by rational operations

upon the fundamental identity

«A = «A + O^X^y)*
From the latter we have

«*&; = OA + 0A)O#)]"A-
w O^w)

m , s (109)

Since the left-hand member can represent any doubly binary

form of degree-order (m, n'), we have here an expansion of

such a function as a power series in (xy~). We proceed to

reduce this series to a more advantageous form. We con-

struct the (n — k)th y-polar of

(a»!

, h%y ={ab )

k
a';>-

,:

b
n
r

- k
,

by the formula for the polar of a product (66}. This gives

_ _ (aby "^ f m — k V n — k \ k_h him-k-hin-m+h
" 'm + n ^2k\^i\m-k-h)\n-m + hJ y xx °»

*

n— k J

83
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Subtracting Qab) kay l ~':bx
l ~':

bl-
m from each term under the

summation and remembering that the sum of the numerical

coefficients in the polar of a product is unity we immediately

obtain

~ C " x)y
(m +n-2 k\ & [m-k- h)\n- m + h,

\ n — k J
x a™- k-hb™-k

-hl\-m (a h
r
b>;, -

«'fi
h
x). (ill)

Aside from the factor f , ]
the left-hand member of (111)

is the coefficient of (xyy in (109). Thus this coefficient is

the (n — &)th polar of the kth transvectant of a™ , J", minus

terms which contain the factor (aby+l
(xy~). We now use

(111) as a recursion formula, taking Jc= m, m — 1, •••. This

gives

(aby-\bxbl-»>= (a>», b^pm+1- - —(a- b%)™(xyy (112)
y n — m+

1

y

We now proceed to prove by induction that

(aby+la™- k-l

b>r k - lb^m = a ( af, b«)*&_,

+ «!«. b»x )

k
Zi t_£xy)+ .»

+«w-*-i«, ^)^- ?»(^/)
m-fc

-1
,

where the as are constants. The first steps of the induction

are given by (112). Assuming (113) we prove that the rela-

tion is true when k is replaced by k — 1.

By Taylor's theorem

p-l + £A-2+ ... +| + 1

= t^a-^y- l +th-2a-iy-2+ ... +*1d-i)+*o-
Hence

(«#}- ajft*) = k_1(a&)*(sy)»+^2W^)*-V*+ • "

+ «A_t
-(a6) A-i+1

(^)
A-i+14- 1

*r
1 + -• +f (aJ)(^X 1^-1

.

(114)



REDUCTION 85

Hence (111) may be written

(ab') ka n
J-

kb™-kb,

l-
m= (a™ bnrYyn_k

m—k h

+ 2 2 ^hi(^y~
i+k+lKi

~i~h+i~ i^i~h+i~ i^^(^y-i+
\ (H5)

in which the coefficients Ahi are numerical.

But the terms

Thi=(aby-i+k+la™-k-h+i-xb™-k-h+i-lb^m(r>i-k^ h > 1, e* ^ A)

for all values of A, z are already known by (112), (113) as

linear combinations of polars of transvectants ; the type of

expression whose proof we seek. Hence since (115) is linear

in the Thi its terms can immediately be arranged in a form

which is precisely (113) with k replaced by k — 1. This

proves the statement.

We now substitute from (113) in (109) for all values of k.

The result can obviously be arranged in the form

«£&» = <7 «\ bnxyyn + O
x
(a™, b%$r-i(xy) + ... (116)

+ (7,«, b%yyn-j(xyy+ ... +Om(af, b-y-n_m{xyr.

It remains to determine the coefficients (7,-. By (91 j) of

Chapter III we have, after operating upon both sides of

(116) by Q 1 and then placing y = x,

I m I n \j I
vi -+- n — j + 1

(abya'rjbrj = Gi - a .
, vw«ryflry -

m—j n—j m + n — 2 j + 1

Solving for (?,•, placing the result in (116) (J = 0, 1, •••, m),

and writing the result as a summation,

i=o /w + n-.f + lN

This is Gordan's series.

To put this result in a more useful, and at the same time
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a more general form let us multiply (117) by (aby and

change m. n into m — r, n —r respectively. Thus

(abya%-rb%-r

fm — r\fn — r\

= S / \
J

9 -Lt\ WO*< Wy^-J-r- ("8)
~i fm + n — Ir —j + 1\
j=H

_

If we operate upon this equation by f .r—
J

, (y—
J

, we ob-

tain the respective formulas

(abyaf-rbkJb%-
r-k

fm — r\fn — r — k\

= x / i K ?

.^l o^yo*. J*)ir-^-* ;
(H9)^ / ?» + n — 2 r — j + 1\ " '

V 3

(abya%-r-kaktb%-
r

fm — r — k\fn — r^

= T -^ '? A
:

?—L. (xyVfcG, 6* )^ _ (120)
An + n — 2r—j + 1\

It is now desirable to recall the standard method of transvec-

tion ; replace yx
by cT y2

by — c
x
in (119) and multiply by

cv~n+r+k
, with the result

(aby(bey-r-ka%- rbk<*-n+r+*

fm— r\fn —r — Jc

= T (- *)' /> f
A

o ^ •L 1N ^ a"' ^);+ ''' <£>
n-''-r-*.

(

121)

\ 3 )

Likewise from (120)

(aby(bcy- r(acya™- r-k cv-n+r-k

fm— r— k\fn — r\

= y (-iy ; * J^ * I (.(&%/"* <€)•*-***• (i22
)

"TT fm+n— 2r—y+i\
\ 3 J
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The left-hand member of equation (121) is unaltered in

value except for the factor (— I)"
-
* by the replacements

a~c, m~p, r~n — r—k; and likewise (122) is unaltered

except for the factor (— l)n+k by the replacements a~c,

ra~p, r~w — r. The right-hand members are however

altered in form by these changes. If the changes are made
in (121) and if we write f= b% g = a™, h = eg, a

x
= 0, a

2
=

n — r — Jc, «o = r, we obtain

HI l
l

m+ n — la
s
— j + 1 \

5 J

v~ a\- aNas\

= (-i) a'T 7^ 4— • 1X ((/» 7i)
ai+y

' gT^3',
(
123 )^/w+

j
p-2«

2 -^ + 1\

where we have

«
2 + «

3 > rc, «
3 + a

x > m, «! + «
2 ^J9 ' ( 124

together with a
x
= 0.

If the corresponding changes, given above, are made in

(122) and if we write a
x
= k, a

2
= n — r, a

3
= r, we obtain the

equation (123) again, precisely. Also relations (121^) repro-

duce, but there is the additional restriction «
2 + «

3
= n.

Thus (123) holds true in two categories of cases, viz.

(1) «
1
= with (1242), and (2) «

2 + «
3
= n with (124j).

We write series (123) under the abbreviation

[f 9 A
'

n m p ; a
2 + «

3 >»1 «
3 + «

1
> m, o^ + a

2 >p,

«i «2 a
3

(i) «
1
= 0,

(ii) «j + «
2
= w.

It is of very great value as an instrument in performing

reductions. We proceed to illustrate this fact by proving

certain transvectants to be reducible.
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Consider (A, Q) of Table I.

(A, <?)= ((A,/),A).

Here n = p = 2, m = 3, and we may take a
x
= 0, a

2
= «g = 1,

giving the series

fA / A]

2 3 2,
,0 1 lj

that is,

((A,/), A)+f ((A,/) 2
, A)°= ((A, A),/) + K(A, A) 2,/)<>.

But (A, A) = 0, (A, /) 2= 0, (A, A) 2 = R.

Hence (A, Q) = ((A, /), A) = \ Rf,

which was to be proved.

Next let/=a™ be any binary, form and _0"=(/,/) 2 its

Hessian. We wish to show that ((/, /) 2
, /)2 is always

reducible and to perform the reduction by Gordan's series.

Here we may employ

7 / r
m m m ,

.0 3 1.

and since (/,/)
2*+1 = 0, this gives at once

m - 1V3\ (m - 1\(3\

2 m — 2\ [2 to - 4

\

i ; v « J

Solving we obtain

((/7) 27) 2 =^ _

2w-6
1

^((/,/)V)°.

((//)4
,/)

m - 3

2(2 m - 5)
?r, (124)

2(2 m — o)

where i = (/, /)
4

.

Hence when ?n > 4 this transvectant is always reducible.
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II. The quartic. By means of Gordan's series all of the

reductions indicated in Table I and the corresponding ones

for the analogous table for the quartic, Table II below, can

be very readily made. Many reductions for forms of higher

order and indeed for a general order can likewise be made

(cf. (124)). It has been shown by Stroh* that certain

classes of transvectants cannot be reduced by this series but

the simplest members of such a class occur for forms of

higher order than the fourth. An example where the

series will fail, due to Stroh, is in connection with the

decimic/= ax°. The transvectant

is not reducible by the series in its original form although

it is a reducible covariant. A series discovered by Stroh will,

theoretically, make all reductions, but it is rather difficult to

apply, and moreover we shall presently develop powerful

methods of reduction which largely obviate the necessity of

its use. Stroll's series is derived by operations upon the

identity (ab)cx -f (bc)ax + (ca)bx = 0.

TABLE II
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This will be proved later in this chapter. Some of this set

have already been derived in terms of the actual coefficients

(cf. (70 x)). They are given below. These are readily

derived by non-symbolical transvection (Chap. Ill) or by

the method of expanding their symbolical expressions and

then expressing the symbols in terms of the actual coeffi-

cients (Chap. Ill, § 2).

/= a x\ + 4 a
1
x\x

2 + 6 a2x%x\ + 4 azxx
x\ + aAx\,

H= 2[(a a
2
- a*)x\ + 2(a a

3
- a

x
a^)x\x

2

+ (a a
4+ 2 rtjtfg— 3 a%)x\x^+ 2(«

1
a
4
— a

2
a
3 ) x-^x\+ (a

2
a
4
— flg)^]

,

T=
(afa3

— 3 a a
t
a
2+ 2 af)x\+ (a^«

4+ 2 a
Q
a

x
a
z
— 9 a a| + 6 a\a

2
}x\x

2

+ 5(a a
1
a
4
— 3 a a

2
a
3 + 2 a\a^)x\x\ + 10(afa4

— a af)x\xl

+ 5( — a a
3
a
4 + t

3 a
x
a
2
a± — 2 a

1
a
3
r)x\x\ (125)

+ (9 a
4
a| — a|a — 2 a^g^ — 6 a|a

2)^ 1
x|

+ (3 a
2
a
3
a
4
— a^f — 2 a|)a;|,

» = 2(a a
4
— 4 a

1
a
3 + 3 a|),

.7= 6

a
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Similar processes give the others. We tabulate the com-

plete totality of such results below. The reader will find it

very instructive to develop these results in detail.

i = (aby,

J= (aby(be)2(ea)*.

Except for numerical factors these may also be written

iT=S(a<l ) «(2))2a(3)2a (4)2
?

Cl) //(2) \2/',/ (l> /y(3)W2) /1,(3)2„(4)3<c\ "« (126)T= 2(a(i ) a<2 )

)
2(a< 1)a (s ))a

z = 2(« ( i ) a (2)
)
2(« <3,«« )

)
2

,

J= 2(a(1) a(2))
2(a(3)a(4)

)
2(a(3) a<1))(a(2)a(4)

).

It should be remarked that the formula (90) for the

general rth trans vectant of Chapter III, Section 2 may be

employed to great advantage in representing concomitants

in terms of the roots.

With reference to the reductions given in Table II we
shall again derive in detail only such as are typical, to show

the power of Gordan's series in performing reductions. The

reduction of (/, Hy has been given above (cf. (124)).

We have

(- t, Hy = ((^;/), sy = (ir, Ty.

Here we employ the series

H f H
4 4 4.

.0 3 1.

This gives

'3\/3\

j=0 * —.?\ j=0 *=Zfo-J
9

V)
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Substitution of the values of the transvectants (.ff,/) r
,

(R, Hy gives

(IT, Tf = ^(-QJH+iJ).

The series for (2
1

, Tf= ((/, iT), T7

)
2

is

/ # T7

4 4 6 ,

2 1,

or

((/, #), 20» + C(/, #)2
,
?T

) = ((/, Z 1

)
1
. #) + -!((/, !F)W>.

But

((/, 5)2, T) = (1 ft 7) = A »(/. ^) = Y2 (#" - 6^2
)-

Hence, making use of the third line in Table II,

(T, Ty = -
yV(*Y

2 + 6 iW - 12 JHf),

which we wished to prove. The reader will find it profit-

able to perform all of the reductions indicated in Table II

by these methods, beginning with the simple cases and pro-

ceeding to the more complicated.

SECTION 2. THEOREMS ON TRANSVECTANTS

We shall now prove a series of very far-reaching theorems

on transvectants.

I. Theorem. Every monomial expression, <£>, in Aronhold

symbolical letters of the type peculiar to the invariant theory,

i.e. involving the two types offactors («£>), ax;

<f>
= II(a&) pO?)« ••• a pJb°c

T
r

...,

is a term of a determinate transvectant.

In proof let us select some definite symbolical letter as a and

in all determinant factors of <j> which involve a set a
1
= — y2 ,

a
2
= yv Then

<f>
may be separated into three factors, i.e.

4>' = PQ(&
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where Q is" an aggregate of factors of the one type b
y ,

Q = b
s

y
c* • ••, and P is a symbolical expression of the same

general type as the original cf) but involving one less sym-

bolical letter,

P = (bc) u(bdy ->.bZel»:

Now PQ does not involve a. It is, moreover, a term of

some polar whose index r is equal to the order of <$ in y.

To obtain the form whose rth polar contains the term PQ it

is only necessary to let y = x in PQ since the latter will

then go back into the original polarized form (Chap. Ill,

§ 1, I). Hence
(f>

is a term of the result of polarizing

(_PQ~) V=X r times, changing y into a and multiplying this

result by a%. Hence by the standard method of transvec-

tion
<f>

is a term of the transvectant

((PQ)y=x,
oT+ey (r+p=m). (127)

For illustration consider

cf, = (a5)2(ac)(ftc)axiJ
.c|.

Placing a ~ y in (a6) 2(ac) we have

<f>'
=- b^ey(bo)bxcl . ax .

Placing y~x in<£' we obtain

<£" = - (be)b^ax .

Thus
<f>

is a term of

In fact the complete transvectant A is

+ A = - ^(bc)(cayaM - i\(bc)(eay(ba~)axblcx

- io{l>c)(ca)(bayaxbxc% - ^\(bc~)(ba) saxc^

and </> is its third term.

Definition, The mechanical rule by which one obtains

the frgiwfovootnrw t (a6)a"i_1 6".t_1 from the product a£b%, consist-

ing of folding one letter from each symbolical form a™, b™
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into a determinant (a5) and diminishing exponents by unity,

is called convolution. Thus one may obtain (a6)2(ac)aa.5|c|

from («6)a|J|c| by convolution.

II. Theorem. (1) The difference between any two terms of a

transvectant is equal to a sum of terms each, of which is a term
m

of a transvectant of lower index of forms obtained from the

forms in the original transvectant by convolution.

I
2 ) The difference between the whole transvectant and one

of its terms is equal to a sum of terms each of which is a term

of a transvectant of lower index of forms obtained from the

originalforms by convolution (Gordan).

In proof of this theorem we consider the process of con-

structing the formula for the general rth transvectant in

Chapter III, Section 5. In particular we examine the

structure of a transvectant-like formula (89). Two terms

of this or of any transvectant are said to be adjacent when
they differ only in the arrangement of the letters in a pair

of symbolical factors. An examination of a formula such as

(89) shows that two terms can be adjacent in any one of

three ways, viz.

:

(1) P(«"' ,

/3
( ',

'

))(«
(A)

/3
a'

,

) and P(«(' )
/3
(W)(a(W^'>),

(2) P(aP>/3&)aW and P(« (/' )

y
8 (^)<'.

(3) Piy /^)/^' 1 and P(a®frk)
)pj\

where P involves symbols from both forms /, g as a rule,

and both types of symbolical factors.

The differences between the adjacent terms are in these

cases respectively

(l).P(« ( ' ,

<t"'
)

)(/3
( '

,

/3
<x

-

)

),

(2) P(« ( <V /' ,

)/3
1/'.

(3) POS^/^'K".

These follow directly from the reduction identities, i.e. from

formulas (99), (100).
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Now, taking /, g to be slightly more comprehensive than

m (89), let

f=Aa<pa®> ...<J)

,

g = B/3™/3™ ••• /3y",

where A and B involve only factors of the first type (7S).

Then formula (90) holds true
;

/ m \ / V), \ ^^m\ n
r

1 \ r Ar

'(« (1)
/Q

(1) )(« (2)
/3

(2)
) ••• (a< r) ir)

) f
'

and the difference between any two adjacent terms of (/, #)
r

is a term in which at least one factor of type (aft) is re-

placed by one of type (««') or of type (/3/3'). There then

remain in the term only r—1 factors of type (a/3). Hence
this difference is a term of a transvectant of lower index of

forms obtained from the original forms/", g by convolution.

For illustration, two adjacent terms of ((a&)2a|6|, cj.)
2 are

(ab)\acyblcl (aby(ac-)(bc)axbxc*.

The difference between these terms, viz. (ab) s(ac)bxc% is a

term of

aabfaj^ C|),

and the first form of this latter transvectant may be obtained

from (ab) 2a2
.b

2
. by convolution.

Now let tv t
2
be any two terms of (/, g)

T
. Then we may

place between tv t
2
a series of terms of (/, <jr)

r such that any

term of the series,

^l' hv ^12' '"
hi' h

is adjacent to those on either side of it. For it is always

possible to obtain t
2
from t

x
by a finite number of inter-

changes of pairs of letters,— a pair being composed either

of two «'s or else of two /3's. But

h-h = (h - hi) + c/n - «a) + - + (hi - *
2)>
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and all differences on the right are differences between

adjacent terms, for which the theorem was proved above.

Thus the part (1) of the theorem is proved for all types of

terms.

Next if t is any term of (/, y)
T
, we have, since the number

of terms of this transvectant is

m\fn
r J\r

(fyY-t = - Zt'-t (128)

Ir

m\(n
r )\r

1

r
m\/n
r j\r

2(f - 0.

and by the first part of the theorem and on account of the form

of the right-hand member of the last formula this is equal to

a linear expression of terms of transvectants of lower index

of forms obtained from/, y by convolution.

III. Theorem. The difference between any transvectant and

one of its terms is a linear combination of transvectants of

lower index of forms obtained from the oriyinal forms by

convolution.

Formula (128) shows that any term equals the transvec-

tant of which it is a term plus terms of transvectants of

lower index. Take one of the latter terms and apply the

same result (128) to it. It equals the transvectant of

index s<r of which it is a term plus terms of transvectant

of index < s of forms obtained from the original forms by

convolution. Repeating these steps we arrive at transvec-

tants of index between forms derived from the original

forms by convolution, and so after not more than r applica-

tions of this process the right-hand side of (128) is reduced

to the type of expression described in the theorem.

Now on account of the Theorem I of this section we may
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go one step farther. As proved there every monomial sym-

bolical expression is a term of a determinate transvectant

one of whose forms is the simple / = af of degree-order

(1, m). Since the only convolution applicable to the form

a™ is the vacuous convolution producing a™ itself, Theorem
III gives the following result :

Let
<f)

be any monomial expression in the symbols of a

single form /, and let some symbol a occur in precisely r

determinant factors. Then
(f>

equals a linear combination

of transvectants of ind&x-< r of a™ and forms obtained from

(PQ) y=x (cf. (127)) by convolution.

For illustration

<j>=(aby(bcya$c*=((abya2bl 4)2 -((«&)%A, 4)
+ 1((^) 4

, 4)°-

It may also be noted that (PQ) y=x and all forms obtained

from it by convolution are of degree one less than the degree

of
<f>

in the coefficients of /. Hence by reasoning induc-

tively from the degrees 1, 2 to the degree i we have the

result :

Theorem. Every concomitant of degree i of a form f is

given by transvectants of the type

where the forms C^ are^'ail concomitants of f of degree i — 1.

(See Chap. Ill, § 2, VII.)

SECTION 3. REDUCTION OE TRANSVECTANT SYSTEMS

We proceed to apply some of these theorems.

I. Reducible transvectants (

C

7
^!, /) y

. The theorem given

in the last paragraph of Section 2 will now be amplified by

a*©the* proof. Suppose that the complete set of irreducible

concomitants of degrees < i of a single form is known. Let

these be

/> 7r 72 > *•' •/*>
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and let it be required* to rind all irreducible concomitants of

degree i. The only concomitant of degree unity is/=a™.
All of degree 2 are given by

(f,fy=(abya>rTb™-r
,

where, of course, r is even. A covariant of degree i is an

aggregate of symbolical products each containing i symbols.

Let C
t
be one of these products, and a one of the symbols.

Then by Section 2 C
t
is a term of a transvectant

where Cf_i is a symbolical monomial containing i — 1 sym-

bols, i.e. of degree i — 1. Hence by Theorem II of Section 2,

where (7$_i is a monomial derived from Ci_\ by convolution.

Now (/$_!, CVi being of degree i — 1 are rational integral

expressions in the irreducible forms /, yv • ••, yk . That is,

they are polynomials in /, yv ••, 7*., the terms of which are

of the type

<k-i=/°7? ••• 7**-

Hence Ct
is a sum of transvectants of the type

Ohr-vfy c/<»),

and since any covariant of/, of degree i is a linear combina-

tion of terms of the type of C& all concomitants of degree i

are expressible in terms of transvectants of the type

(fc-n/X (130)

where </>;_! is a monomial expression in /, 7r •••, yk, of degree

i — 1, as just explained.

In order to find all irreducible concomitants of a stated

degree i we need now to develop a method of finding what

transvectants of (130) are reducible in terms of /, 7r •••, 7*..

With this end in view let
<f>i
_1
= po-* where p, a are also

monomials in/, yv •••, 7^, of degrees < 1— 1. Let p be a
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form of order n
x ; p = p'*, and a = an

x\ Then assume that

j — n2-> ^ie order of a. Hence we have

Then in the ordinary way by the standard method of trans-

vection we have the following

:

= KP(<T,fy+.~. cm)

Hence if p2 now represents (<r, /)•% then pp2
is a term of

(&_i,/y =^2 + MA>i-x,fY (f </). (132)

Evidently p, /a
2
are both covariants of degree < i and hence

are reducible in terms of /, yv •••, yk . Now we have the

right to assume that we are constructing the irreducible con-

comitants of degree i by proceeding from transvectants of a

stated index to those of the next higher index, i.e. we
assume these transvectants to be ordered according to in-

creasing indices. This being true, all of the transvectants

(0i-u /) ; at the stage of the investigation indicated by

(132) will be known in terms of /, yv •••, y* or known to be

irreducible, those that are so, since j' <j- Hence (132)

shows (<pi-i,f) to be reducible since it is a polynomial in

/, yv •••, yk and such concomitants of degree i as are already

known.

The principal conclusion from this discussion therefore is

that irreducible concomitants of degree i are obtained only

from transvectants (<£i_ 1,/y for which no factor of order ^j
occurs in <^>f_1 . Thus for instance if m = 4, (/

2
,/) J is re-

ducible for all values of j since/ 2 contains the factor/ of

order. 4 and/ cannot exceed 4.

We note that if a form y is an invariant it may be omitted

when we form <£,-_!, for if it is present (0,-_i,/y will be re-

ducible by (80).
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II. Fundamental systems of cubic and quartic. Let m=3
(cf. Table I). Then /= a| is the only concomitant of

degree 1. There is one of degree 2, the Hessian (/,/)
2 = A.

Now all forms <£2
of (<£2./y are included in

c/>
2
=/*AS

,

and either « = 2, fi = 0, or a = 0, £= 1. But (/2
,/) ; is re-

ducible for all values of y since/ 2 contains the factor / of

order 3 and j > 3. Hence the only transvectants which

could give irreducible concomitants of degree 3 are

(A,/y o' = i, 2).

But (A,/) 2 = (cf. Table I). In fact the series

[/ / /]
3 3 3

12 1

gives K(//)2
'/)2 = -(a/)2^/)2=-(A,/)2 = 0.

Hence there is one irreducible covariant of degree 3, e.g.

(Xf) = -Q.

Proceeding to the degree -I, there are three possibilities

for
<f>3

in
(<f>y fy. These are <£3 =/3

, /A, Q. Since />3
(/W< (/A,/y (i=l, 2, 3) are all reducible by Section 3, 1.

Of (<>, /y Q' = 1, 2, 3), (Q, /)2 = 0, as has been proved

before (cf. (102)), and ($,/) = iA2 by the Gordan series

(cf. Table I)

[/ A /I
3 2 3

v° ! *,

Hence (Q,f) 3 = — B is the only irreducible case. Next the

degree 5 must be treated. We may have

<k=/*/2A,/&i2,A2.

But R is an invariant, A is of order 2, and Q of order 3.

Hence since y> 3 in (<£4 , f)j the only possibility for an
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irreducible form is (A2
, /y, and this is reducible by the prin-

ciple of I if j < 3. But
y
Ufc^ £*. K*}**-

'

"

(

A

2
, f )« = (S|8£ asy= (8ay(B'a)8'x = (8£ (Sa)

2ax) = 0.

For (S«) 2ax = (A, /) 2= 0, as shown above. Hence there are

no irreducible concomitants of degree 5. It immediately

follows that there are none of degree > 5, either, since
<f>6

in

($&fy is a niore complicated monomial than
4
in the same

forms/, A, Q and all the resulting concomitants have been

proved reducible.

Consequently the complete irreducible system of concom-

itants of /, which may be called the fundamental system

(Salmon) of /is
/, A, Q, E.

Next let us derive the system for the quartic / ; m = 4.

The concomitants of degree 2 are (/,/)
2 =^, (//) 4 = i.

Those of degree 3 are to be found from

{Hjy C/ = l, 2, 3,4).

Of these (/, H) = T, and is irreducible
; (/, Hy = J is irre-

ducible, and, as has been proved, (H,fy = ^if (cf. (124)).

Also from the series

/
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we obtain

((/, H), /y = -((/, H)\fy - ^((/, j?)3,/)2.

But ((/, H)\ff=\i(f,fy=i); and (/, H)* = from

the proof above. Hence

((/,#),/)* = (Ti/)4 = 0.

There are no other irreducible forms since </>4
in (<£4 , /)

y will

be a monomial in/, 5", 7 more complicated than </>3
. Hence

the fundamental system of/ consists of

/ ff, % t, j;

It is worthy of note that this has been completely derived

by the principles of this section together with Gordan's series.

III. Reducible transvectants in general. In the trans-

vectants studied in (I) of this section, e.g. (<k_i, /)', the

second form is simple,/= a™, of the first degree. It is pos-

sible and now desirable to extend those methods of proving

certain transvectants to be reducible to the more general case

where both forms in the transvectants are monomials in other

concomitants of lesser degree.

Consider two systems of binary forms, an (J.) system and

a (i?) s}rstem. Let the forms of these systems be

(yl) : Av A2 , •••, Ak , of orders av a
3 , •••, ak respectively;

and

(i?) : Bv By •••, B
t
, of orders bv b.r • ••, b

t
respectively.

Suppose these forms expressed in the Aronhold symbolism

and let

<f>
= AfA* ••• Jlj», yfr = B\*B** ••• BfK

Then a system (C) is said to be the system derived by trans-

vection from '(A) and (B~) when it includes all terms in all

transvectants of fcfao-type

(<£, yjry (133)
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Evidently the problem of reducibility presents itself for

analysis immediately. For let

$ = per, -^ = pv,

and suppose that,/ can be separated into two integers,

J-Ji+Jv

such that the transvectants

(pi t*y\ (<*< V)*>

both exist and are different from zero. Then the process

employed in proving formula (132) shows directly that

(</>, tyy contains terms which are products of terms of (p, /x) J i

and terms of (<r, v) 1'*-, that is, contains reducible terms.

In order to discover what transvectants of the ( (7) system

contain reducible terms we employ an extension of the

method of Paragraph (I) of this section. This may be

adequately explained in connection with two special systems

(A)=f, (B)=i,

wheref is a cubic and i is a quadratic. Here

(C)=|(<k ^)fU(/*,p>-.

Sincefa must not contain a factor of order "^j, we have

3a— 3 <y<3«; y = 3 a, 3a — 1, 3a — 2.

Also

2/3-2<y<2/3 ; y = 2A2/3-l.

Consistent with these conditions we have

(/, p, (/, p« (/, f)», (f\ p)* (/*, f)» C/2, p)6,

(Z3
, f)

7
, C/

3

,f)
8

, CA t
8
)
9

,
••••

Of these, (f
2
, i

2
)
4 contains terms of the product (/, i)2 (/, i) 2

,

that is, reducible terms. Also (f\ i
3
)
5 is reducible by (/, i) 2

(/, t2)
3

. In the same way (/3
, e

4
)
7

, •••all contain reducible
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terms. Hence the transvectants of ((7) which do not con-

tain reducible terms are six in number, viz.

/, i, (/, i), (J, i)\ (/, fy, (/» {3)6.

The reader will find it very instructive to find for other and

more complicated (A~) and (2?) systems the transvectants of

(C7) which do not contain reducible terms. It will be found

that the irreducible transvectants are in all cases finite in

number. This will be proved as a theorem in the next

chapter.

SECTION 4. SYZYGIES

We can prove that m is a superior limit to the number of

functionally independent invariants and covariants of a

single binary form /= a"! of order m. The totality of in-

dependent relations which can and do subsist among the

quantities

xv xv x'v x'
2 , a'i, cti (i= 0, • •-, m), Xr X

2, fiv /i
2 , M— (\\x)

are m + 4 in number. These are

a^ = < _i
«; (i = 0, • -., m) ; x

1
= XrrJ + nrr'2 , x2

= \x[ + n2
x'
2 ;

31= X^ - X
2^r

When one eliminates from these relations the four variables

\v X
2 , fxv /x

2
there result at most m relations. This is the

maximum number of equations which can exist between

a[, a
t
(i = 0, •••, m), xv x

2 , x'v x
2 , and M. That is, if a greater

number of relations between the latter quantities are as-

sumed, extraneous conditions, not implied in the invariant

problem, are imposed upon the coefficients and variables.

But a concomitant relation

<K«o> •••' a '»' xv 4) = ^<K«(r •"! am> vv *
2)

is an equation in the transformed coefficients and variables,

the untransformed coefficients and variables and M. Hence
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there cannot be more than m algebraically independent con-

comitants as stated.

Now the fundamental system of a cubic contains four con-

comitants which are such that no one of them is a rational

integral function of the remaining three. The present

theory shows, however, that there must be a relation be-

tween the four which will give one as a function of the other

three although this function is not a rational integral func-

tion. Such a relation is called a syzygy (Cayley). Since the

fundamental system of a quartic contains five members these

must also be connected by one syzygy. We shall discover

that the fundamental system of a quintic contains twenty-

three members. The number of syzygies for a form of high

order is accordingly very large. In fact it is possible to de-

duce a complete set of syzygies for such a form in several ways.

There is, for instance, a class of theorems on Jacobians which

furnishes an advantageous method of constructing syzygies.

We proceed to prove these theorems.

I. Theorem. If f, g, h are three binary forms, of respec-

tive orders n, m, p all greater than unity, the iterated Jacobian

((/, g), li) is reducible.

The three series

give the respective results

f 9
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m +p — 1

m + n — z

u -\-p — I

m +p -

o(*»/)Vi

(<7, fc)
2
/.

We add these equations and divide through by 2, noting

that (/, g)=-(g,f), and obtain

n — m
2(,»+n-2)

(134)

This formula constitutes the proof of the theorem. It

may also be proved readily by transvection and the use of

reduction identity (101).

II. Theorem. If e = a";. f=h%, g = c%, h = dq
r are four

binary forms of orders greater than unity, then

(135)

We first prove two new symbolical identities. By an

elementary rule for expanding determinants

Hence

" 1 ".>

— (ad))(bc)(ca).

a\

1

1"2

hA
VI

b\

4

d\ --dJA d\

e
l

- 2 e
2
e
\

g
l

/I -2/a/! fi

= 2(ah)(hc){eaXde)(ef){fd)

(adf O)2 (a/) 2

= (bd)2 (be)2 (bfy
(cdy (cey (c/y

In this identity set <?
1
= —2^, c2=xv f\= —x2, f2

= rr

(136)
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Then (136) gives the identity.

(ad~) 2 (ae)2 a|

2(ab)(de)axbxdxex = (bdf (bef J2 .

d% el

We now have

(e,f)(g, h) = (ab')(cd~)a™-^b n
l
-^c»-'Ld (1

-1

(ac)2 (ar?) 2 a2

=
ia^r^r^r2

(6c)
2

(6(^ 2 5
-

2
-

<?l d%

by (137). Expanding the right-hand side we have formula

(135) immediately.

III. Theorem. The square of a Jacobian J = (/, g) is given

by the formula

-2J* = (ff)Y + (ff, gyp - 2 (/, gYfg. (138)

This follows directly from (135) by the replacements

" fif 9, 9 ' ^&=kg //•

IV. Syzygies for the cubic and quartic forms. In formula

(138) let us make the replacements J= Q, f=f, g = A,

where / is a cubic, A is its Hessian, and Q is the Jacobian

(/, A). Then by Table I

AS'~2^2 + A3 + JR/ 2 =0. (139)

This is the required syzygy connecting the members of the

fundamental system of the cubic.

Next let /, -H", T, i, J be the fundamental system of a

quartic /. Then, since T is a Jacobian, let J= T, f = f,

g = Hm (138), and we have

-2F=F_ 2(/, HyfH+ (H, H )
2/2

.

But by Table II

(fHy = lif, (E,Hy=\(ZJf-iH}.
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Hence we obtain

S = 2 T 2 + H* - i ipH + J Jf3 = 0. ( 140)

This is the syzygy connecting the members of the funda-

mental system of the quartic.

Of the twenty-three members of a system of the quintic

nine are expressible as Jacobians (cf. Table IV, Chap. VI).

If these are combined in pairs and substituted in (135), and

substituted singly in (138), there result 45 syzygies of the type

just derived. For references on this subject the reader may
consult Meyer's " Bericht ueber den gegenwiirtigen Stand

der Invariantentheorie " in the Jahresbericht der Deutschen

Mathematiker-Vereinigung for 1890-91.

V. Syzygies derived from canonical forms. We shall prove

that the binary cubic form,

/= a
Q
x\ + 3 a

x
x^x

2 + 3 a
2
x

x
x\ + a

zx\,

may be reduced to the form,

f=x3 + r3
.

by a linear transformation with non-vanishing modulus. In

general a binary quantic /of order m has m + 1 coefficients.

If it is transformed by

T: x
1
= \rr[ + fi^ x

2
= \x{ + fx2

z'
2 ,

four new quantities \v /jlv X
2

, /x
2
are involved in the coeffi-

cients of/'. Hence no binary form of order m with less

than m — 3 arbitrary coefficients can be the transformed of

a general quantic of order m by a linear transformation.

Any quantic of order m having just m — 3 arbitrary quanti-

ties involved in its coefficients and which can be proved to

be the transformed of the general form / by a linear trans-

formation of non-vanishing modulus is called a canonical

form of/. We proceed to reduce the cubic form / to the

canonical form Xz + Vs
. Assume

f=a ri+ •.. =p1
(z

1+ a
1
x
2y+p2(x1+ a

2
z2y=X3+Y3

. (140!)
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This requires that/ be transformable into its canonical form

by the inverse of the transformations

a -r- 1 1 _ 1 1
o : X. = p\x

x + p\a
1
x
2 , I = p\x

1 + pla2
x
2

.

We must now show that pv p2, av «
2
may actually be de-

termined, and that the determination is unique. Equating

coefficients in (140^ we have

p1 +p2
= a ,

ttiPi + HV% = av
aiPi + a2p2 = av
a\p

1 + a\p
2
= a3 .

Hence the following matrix, M, must be of rank 2

1

(140,)

M=
Of

4

From 31= result

1 a.

4 =o,

a
\

= 0.

Expanding the determinants we have

Pa + (?«! + Ra
2
= 0,

Pa
x + Qa

2 + Ra
3
= 0.

Also, evidently

P + Qa, +Rd} = (i = l, 2).

Therefore our conditions will all be consistent if av «
2
are

determined as the roots, £ x
-s-

1

2, of

\± =
o l '

aj a
2

<^
3
= 0.

ii -fA si

This latter determinant is evidently the Hessian of/, divided

by 2. Thus the complete reduction of/to its canonical form
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is accomplished by solving its Hessian covariant for the

roots av «
2 , and then solving the first two equations of (1402)

for pv p2
. The inverse of S will then transform / into

X3 + Ys
. The determinant of S is

& = (Pl 'Pz) («2~«l)'

and 2) =£ unless the Hessian has equal roots. Thus the

necessary and sufficient condition in order that the canonical

reduction be possible is that the discriminant of the Hessian

(which is also the discriminant, R, of the cubic/) should not

vanish. If R = 0, a canonical form of/ is evidently X-Y.
Among the problems that can be solved by means of the

canonical form are, (a) the determination of the roots of the

cubic/= from

x3+y3 = (X+ Y)(x+<or)(x+^Y^

co being an imaginary cube root of unit}-, and (£) the deter-

mination of the syzygy among the concomitants of / We
now solve problem (£). From Table I, by substituting

a = a
3
= 1, a

1
= a

2
= 0, we have the fundamental system of

the canonical form

:

x 3+r 3
, 2i7, x 3 -r 3

,
-2.

Now we may regard the original form/ to be the transformed

form of X 3 + Y 3 under S. Hence, since the modulus of S
is D, we have the four invariant relations

f=X* + T 3
,

A = 2 D*XY,
Q = DHX S - F 3

),

R = - D« . 2.

It is an easy process to eliminate D, X, Y from these four

equations. The result is the required syzygy

:

PR+ 2 £2 + A3 = 0.
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A general binary qnartic can be reduced to the canonical

form (Cayley)

X 4 + Y*+ QmX 2Y2
;

a ternary cubic to the form (Hesse)

X s + r3 + Z* + 6 mXYZ.

An elegant reduction of the binary quartic to its canonical

form may be obtained by means of the.provectant operators

of Chapter III, § 1, V. We observe that we are to have

identically

/= (a , av .-., a, $ xv x
2Y = X\ + X\ + 6 mX\X%

where Xv X2
are linear in xv x

2 ;

X
x
= a

1
x

1
+ «

2
.r
2 , X2

= /S^j + /32
.r
2

.

Let the quadratic X
t
X

2
be ^ = (A , ^4r A2

\xv .r
2 )

2
. Then

5? XJ = (A ,
Av A&4-* -T-yXf = ° O" = li 2 >-

d.r. 5^!

6 m5? • XfXl = 12 • 2(4 J.^ - A\)mX
x
X^ = 12 X X

X
X

2
.

Equating the coefficients of a;f, sr^, #| in the first equation

above, after operating on both sides by dq, we now have

A a
2
- A

x
a

x
+ A 2

a = \A
,

A a
3
— A

x
a
2 + A2

a
x
= £ \AV

AqU^ — A
x
a
z + ^L

2
«
2
= \^4

2
.

Forming the eliminant of these we have an equation which

determines X, and therefore ra, in terms of the coefficients of

the original quartic/. This eliminant is

X"1 l *2

a
2
- X

0,

or, after expanding it,
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where i, J are the invariants of the quartic / determined in

Chapter III, § 1, V. It follows that the proposed reduction

of f to its canonical form can be made in three ways.

A problem which was studied by Sylvester,* the reduction

of the binaiy sextic to the form

X\ + X\ + X% + 30 tnX\X\X%

has been completely solved very recently by E. K. Wakeford.f

SECTION 5. IIILBERT'S THEOREM

We shall now prove a very extraordinary theorem due to

Hilbert on the reduction of systems of qualities, which is in

many ways closely connected with the theoiy of syzygies.

The proof here given is by Gordan. The original proof of

Hilbert may be consulted in his memoir in the Mathematische

Annalen, volume 36.

I. Theorem. If a homogeneous algebraical function of any

number of variables be formed according to any definite laws,

then, although there mag be an infinite number of functions F
satisfying the conditions laid down, nevertheless a*finite numln r

Fv Fv ••. Fr can always be found so that any other F can be

written in the form

F=A
l
F

1 + A2F2 + ••• +ArFr .

where the As are homogeneous integralfunctions of the variables

but do not necessarily satisfy the conditions for the F's.

An illustration of the theorem is the particular theorem

that the equation of any curve which passes through the in-

tersections of two curves F
x
= 0, F

2
= is of the form

F = A
X
F

X -I- A2F2
= 0.

Here the law according to which the F's are constructed is

that the corresponding curve shall pass through the stated

* Cambridge and Dublin MathematicalJournal, vol. 6 (18ol), p. 293.

t Messenger of Mathematics, vol. 43 (1913-14), p. 25.
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intersections. There are an infinite number of functions sat-

isfying this law, all expressible as above, where Av A 2
are

homogeneous in xv x
2 , :r

3
but do not, as a rule, represent

curves passing through the intersections.

We first prove a lemma on monomials in <n variables.

Lemma. If a monomial xfafy ••• #*«, where the lis are

positive integers, be formed so that the exponents kv • •-, kn

satisfy prescribed conditions, then, although the number of

products satisfying the given conditions may be infinite, never-

theless a finite number of them can be chosen so that every other

is divisible by one at least of this finite number.

To first illustrate this lemma suppose that the prescribed

conditions are

2 Jc, + 3 K - h» - k. = 0,1 2 6 4
(141)

k
1
+ k

4
= k

2 + k
3

.

Then monomials satisfying these conditions are

•t'littjit Ott I ^ rt lXOi( J^ .t (yil ty.l p .( 1 .( p'* •>•' M

and all are divisible by at least one of the set x\x%c±, x
2
x
s
x^.

Now if n = 1, the truth of the lemma is self-evident. For

£fclrof any set of positive powers of one variable are divisible

by that power which has the least exponent. Proving by

induction, assume that the lemma is true for monomials of

n — 1 letters and prove it true for n letters.

Let K= x\'x
2
* ••• xk

n
n be a representative monomial of the set

given by the prescribed conditions and let P = x^x?f ••• x%n be

a specific pxod-uet- of the set. If _ZT is not divisible by P, one

of the numbers k must be less than the corresponding num-

ber a. Let kr < a r . Then kr has one of the series of values

0, 1, 2, .... a
r
- 1.

t4w4-is,- the number of ways that this can occur for a single

exponent is finite and equal to

iVr= a
x + a% + ••• + an .
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The cases are

k
x
equals one of the series 0,1, •••, a

x
— 1; (a

x
cases),

k
2
equals one of the series 0, 1, •••, a

2
— 1 ; (a

2
cases), (142)

etc.

Now let k
r
= m and suppose this to be case number p of (142).

Then the n — 1 remaining exponents kv kv •••, kr_v kr+r • ••,

kn satisfy definite conditions which could be obtained by

making kT = m in the original conditions. Let

Kp
= x\lX% • X™ • • X*n = xfK'v

be a monomial of the system for which kT = m. Then Kp

contains only n — 1 letters and its exponents satisfy definite

conditions which are such that x'"K'p satisfies the original

conditions. Hence by hypothesis a finite number of mono-

mials of the type K
p , say,

exist such that all monomials K'
p
are divisible by at least one

L. Hence Kp
= x"lK'p is divisible by at least one X, and so

by at least one of the monomials

Mp = x?Ly Mf = x?ll .... M#J = a?z'

Also all of the latter set of monomials belong to the orig-

inal system. Thus in the case number p in (142) K is

divisible by one of the monomials

Now suppose that if is not divisible by P. Then one of the

cases (142) certainly arises and so K is always divisible by

one of the pr©4uets

m cist' by P. Hence if the lemma holds true for monomials

in n — 1 letters, it holds true for n letters, and is true univer-

sally.
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We now proceed to the proof of the main theorem. Let

the variables be xv • ••, xn and let F he a typical function of

the system described in the theorem. Construct an auxiliary

system of functions 77 of the same variables under the law

that a function is an 77 function when it can be written in the

form

77 = ZAF (143)

where the A's are integral functions rendering ?/ homoge-

neous, but not otherwise restricted except in that the number

of terms in 77 must be finite.

Evidently the class of 77 functions is closed with respect to

linear operations. That is,

ZBV = BlVl + B,v, + ••• = ZBAF = lA'F

is also an 77 function. Consider now a typical 77 function.

Let its terms be ordered in a normal order. The terms will

be denned to be in normal order if the terms -ef an}' pair, t

S = x?x% • • • a#s T= a^aji • • a£»,

are ordered so that if the exponents a, b of S and T are read

simultaneously from left to right the term first to show an

exponent less than the exponent in the corresponding posi-

tion in the other term occurs farthest to the right. If the

normal order of S, T is (#, T), then T is said to be of lower

rank than S. That is, the terms of 77 are assumed to be

arranged according to descending rank and there is a term

of highest and one of lowest rank. By hypothesis the 77

functions are formed according to definite laws, and hence

their first terms satisfy definite laws relating to their expo-

nents. B}r the lemma just proved we can choose a finite

-n-mnber of r\ functions, 77r 772 , •••, 77^ such that the first term

of any other 77 is divisible by the first term of at least one

of this number. Let the first term of a definite 77 be

divisible by the first term of 77mi and let the quotient be Pv



11(3 THE THEORY OF INVARIANTS

Then n — P
x
rimi is an n function, and its first term is of

lower rank than the first term of ?;. Let this be denoted by

Suppose next that the first term of 77
(1) is divisible by r;m ,

;

thus.

and the first term of v (2)
is of lower rank than that of tj

a)
.

Continuing, we obtain

Then the first terms of the ordered set

77, va >, v®\ ..., V', •••

are in normal order, and since there is a term of lowest rank

in 77 we must have for some value of r

V " = Pr+ lVmr+1 -

That is, we must eventually reach a point where there is no

q function 77
(,

'+1) of the same order as n and whose hist

term is of lower rank than the first term of w (r)
. Hence

V = Pi>U
x
+ PzVm, + • • + Pl+ iVmr+1 ( 144)

and all n's on the right-hand side are members of a definite

finite set

Vr 1h< "•• V
But by the original theorem and (143), every F is itself an

rj function. Hence by (144 )

F= A
X
F

X
+ A F2 + ••• + A rFr. (145)

where Ft (i = l, •••, r) are the F functions involved linearly

in ijv ?72 , •••, np . This proves the theorem.

II. Linear Diophantine equations. If the conditions im-

posed upon the exponents k consist of a set of linear Dio-

phantine equations like (141), the lemma proved above shows

that there exists a set of solutions finite i)i number by mean*
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of which any other solution can be reduced. That is, this fact

follows as an evident corollary.

Let us treat this question in somewhat fuller detail by a

direct analysis of the solutions of equations (141). The
second member of this pair has the solutions
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and if these be substituted in (I) we have

&! = 2 a + 2 1 +2d
k.

2
= 2 a + c + c?

k
3
= 5 a + 3 !* + c + 4 d

&
4
= 5 a + ft + 2 e + 3 d

Therefore the only possible irreducible simultaneous solu-

tions of (111) are
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which corresponds to the irreducible solutions of the pair

(141).

III. Finiteness of a system of syzygies. A syzygy S
among the members of a fundamental system of concomitants

of a form (cf. (140))/,

Iv Iv ••, ZM , Kv ...

is a polynomial in the i"'s formed according to the law that

it will vanish identically when the J's are expressed ex-

plicity in terms of the coefficients and variables of /. The

totality of syzygies, therefore, is a system of polynomials

(in the invariants _T) to which Hilbert's theorem applies. It

therefore follows at once that there exists a finite number of

syzygies,

1' 2' *" 1 vi

such that any other syzygy 8 is expressible in the form

8= 0& + C
2
S

2 + ••• + V8V . (146)

Moreover the C's, being also polynomials in the Z's are

themselves invariants of/. Hence

Theorem. The number of irreducible syzygies among the

concomitants of a form f is finite, in the sense indicated by

equation (146).

SECTION 6. JORDAN'S LEMMA

Many reduction problems in the theory of forms depend for

their solution upon a lemma due to Jordan which may be

stated as follows :

Lemma. If u
x
+ u

% + u
3
= 0, then any product of powers of

uv u
2 , u3 of order n can be expressed linearly in terms of such

products as contain one exponent equal to or greater than f n.

We shall obtain this result as a special case of a consider-

ably more general result embodied in a theorem on the

representation of a binary form in terms of other binary

forms.
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I. Theorem. If ax, bx, cx ,
••• are r distinct linear forms, and

A, B, O, ••• are binary forms of the respective orders a, /3, 7. •••

where

a + £+7 + ... =n-r + l,

then any binary form f of order n can be expressed in the form

f= a"x
- aA + b

n
x-»B+ 0^ yC+ -..,

and the expression is unique.

As an explicit illustration of this theorem we cite the

case n = 3, r = 2. Then « + /3 = 2, « = /3 = 1.

/= a1(.Pooxi +Povh) + hl (PvFi +Pnx2)- ( 147 )

Since /, a binary cubic, contains four coefficients it is evi-

dent that this relation (147) gives four linear nonhomo-
geneous equations for the determination of the four unknowns

Poo* Pov Pw> Piv Thus the theorem is true for this case pro-

vided the determinant representing the consistency of these

linear equations does not vanish. Let a r
= a

1
x
1 + a x

2 ,

bx = byX-y + b
2
x
2 , and D = a

x
b
2
— a

2
br Then the aforesaid

determinant is

«?
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It is impossible to find r binary forms A, B, C, ••• of orders

a, /?, 7, ••• where
« + /3 + 7+ ... = n — r + 1,

such that, identically,

E= an ~ aA + b%-?B + c'^0+ ••• =0.

In fact suppose that such an identity exists. Then operate

upon both sides of this relation a + 1 times with

A = a
2 z (h t~ O* = <hx\ + a

i
x%>-

Let gx be any form of order n and take a
2
= 0. Then

Aa+
V" = &Oi • ^)

a+Vra_I

where the &'s are numerical. Hence Aa+1g" cannot vanish

identically in case a
2
= 0, and therefore not in the general

case a
2
=£ 0, except when the last n — a coefficients of g" vanish:

that is, unless g% contains an
~ a

as a factor. Hence

where B', C are of orders /3, 7, ••• respectively. Now
Aa+1B is an expression of the same type as E, with r changed

into r — 1 and n into n — a — 1, as is verified by the equation

/3 + 7 + ... = (h — a— 1) — (r— 1) + 1 = ra — r + 1 — a.

Thus if there is no such relation as E=Q for r—1 linear

forms a x , bx , •••, there certainly are none for r linear forms.

But there is no relation for one form (r = 1) save in the

vacuous case (naturally excluded) where A vanishes identi-

cally. Hence by induction the theorem is true for all values

of r.

Now a count of coefficients shows at once that any binary

form /of order n can be expressed linearly in terms of n + 1
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binary forms of the same order. Hence / is expressible in

the form
/= anr

- aA + b''-^B + e%-ty + ....

That the expression is unique is evident. For if two such

were possible, their difference would be an identically vanish-

ing expression of the type i?= 0, and, as just proved, none

such exist. This proves the theorem.

II. Jordan's lemma. Proceeding to the proof of the

lemma, let u
3
= — (w

2 + i/
2 ),

supposing that uv u
2
replace the

variables in the Theorem I just proved. Then w
3

, uv u
2
are

three linear forms and the Theorem I applies with r=3,
a + ft + y = n — 2. Hence any homogeneous expression / in

uv uv u
s
can be expressed in the form

ufr-M + u'r^B + u%- y C,

or, if we make the interchanges

n — a n — ft n — y
X (A v

in the form u\A + u%B + i%C, (148)

where \ + \x + v = 2 n + 2. (149)

Again integers X, /*, v may always be chosen such that (14'.')

is satisfied and

X ^ -| n, \x > | w, v > | n.

Hence Jordan's lemma is proved.

A case of three linear forms ut for which Wj + «
2 + m

3
=

is furnished by the identity

(ab^)cx + (bc)ax + (ca)b x = 0.

If we express A in (118) in terms of uv u
2
by means of

u
x
+ u

2 + u
3
= 0, B in terms of w

2 , w3 , and (7 in terms of ^
3

. ur
we have the conclusion that any product of order n of (^)cx,

(6c)ax , (ca)bx can be expressed linearly in terms of
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(abyc%, (aby'-Hbe)^1-^, (aby^(bcy<»-*a% • •-,

(aby(bcy- xc
A
ra

H-\

(bcya% (bey-^ca)^-^,,, (bcy-%caya^~ 2b% •••,

(bey(ea)*-il
af

tb%-ii
,

(150)

(cayb% (cay~\ab')b^ex,
(eay-%abyb%-2c% •••,

(eay(aby- vbvxc
n
x
- v

,

where X > -§- n, fi > | n, v ^> f w.

It should be carefully noted for future reference that this

monomial of order n in the three expressions (ot6)c f ,
(bc)a^

(ccL)b r is thus expressed linearly in terms of symbolical

products in which there is always present a power of a deter-

minant of type (a5) equal to or greater than %n. The

weight of the coefficient of the leading term of a covariant is

equal to the number of determinant factors of the type (a&)

in its symbolical expression. Therefore (150) shows that if

this weight w of a covariant of/ does not exceed the order of

the form/ all covariants having leading coefficients of weight

w and degree 3 can be expressed linearly in terms of those of

grade not less than | w. The same conclusion is easily shown

to hold for covariants of arbitrary weight.

SECTION 7. GRADE

The process of finding fundamental systems by passing

step by step from those members of one degree to those of the

next higher degree, illustrated in Section 3 of this chapter,

although capable of being applied successfully to the forms

of the first four orders, fails for the higher orders on account

of its complexity. In fact the fundamental system of the

quintic contains an invariant of degree 18 and consequently

there would be at least eighteen successive steps in the process.

As a proof of the flniteness of the fundamental system of a

form of order n the process fails for the same reason. That is,
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it is impossible to tell whether the system will be found after

a finite number of steps or not.

In the next chapter we shall develop an analogous process

in which it is proved that the fundamental s}rstem will result

after a finite number of steps. This is a process of passing

from the members of a given grade to those of the next

higher grade.

I. Definition. The highest index of any determinant factor

of the type («6) in a monomial symbolical concomitant is

called the grade of that concomitant. Thus (a6)4(ac)2
6J<?* is

of grade 4. The terms of covariants (84). (87) are each of

grade 2.

Whereas there is no upper limit to the degree of a con-

comitant of a form /of order n, it is evident that the maximum
grade is n by the theory of the Aronhold symbolism. Hence
if we can find a method of passing from all members of the

fundamental system of/ of one grade to all those of the next

higher grade, this will prove the finiteness of the system,

since there would only be a finite number of steps in this

process. This is the plan of the proof of Gordan's theorem

in the next chapter.

II. Theorem. Every covariant of a single form f of odd

grade 2X — 1 can be transformed into an equivalent covariant of

the next higher even grade 2 X.

We prove, more explicitly, that if a symbolical product

contains a factor (a5) 2A_1 it can be transformed so as to be

expressed in terms of products each containing the factor

(a6) 2A
. Let A be the product. Then by the principles of

Section 2 A is a term of

Hence by Theorem III of Section 2.

-f-^A'((rt^) 2A- 1«r 1 " 2^r l "->A
. <£V. a51

)
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where 7' < 7 and ^> is a concomitant derived from </> by con-

volution, K being numerical. Now the symbols are equiva-

lent. Hence

,], = (aJ) 2*- 1 aj+1
- 2*^+1 - 2* = - (aby^a^-^b^-'^ = 0.

Hence all transvectants on the right-hand side of (151), in

which no convolution in -v/r occurs, vanish. All remaining

terms contain the symbolical factor (a6) 2A
, which was to be

proved.

Definition. A terminology borrowed from the theory

of numbers will now be introduced. A symbolical product,

A, which contains the factor (a5) r
is said to be congruent to

zero modulo (a£) r
;

A = (mod («&)').

Thus the covariant (84)

= ^(a5)2(5a)2a|aa 4- §(ab~)\aa)(ba)axb xax

gives C= ^(ab^2Qaa)(ba)axbxax(mod (6a) 2
).

III. Theorem. Every covariant off = anr=bn
v
= ••• which is

obtainable as a covariant of (/, f)'
u

' = f/i
n
r
ru = Qab)-k

a",~-
kb"--k

(Chap. II, § 4) is congruent to any definite one of its own terms

modulo (ab) 2k+i
.

The form of such a concomitant monomial in the g sym-

bols is A= (g^Yig^y ...gfsfc «...

Proceeding by the method of Section 2 of this chapter change

g 1
into y ; i.e. g\\= yv 9n= — Vv Then A becomes a form of

order 2 n — 4 k in y, viz. a2
/
1-4* = /3'-j'~ik = •••. Moreover

A = (a2

?
-4

*, gi"y-
u'?n-il

' = «-**, (a5) 2X~2
^lT

2*)2w"U
'

by the standard method of transvection. Now this transvec-

tant A is free from y. Hence there are among its terms ex-

pressed in the symbols of /only two types of adjacent terms,

viz. (cf. § 2, II)

(da)(eb)P, (db)(ea)P.
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The difference between A and one of its terms can therefore

be arranged as a succession of differences of adjacent terms

of these two types and since P involves (ab) 2t any such dif-

ference is congruent to zero modulo (a6)2i+1, which proves

the theorem.

IV. Theorem. If n >4 k, any covariant of the covariant

c/
2

r

"-u = {abykan
-2kb^-u

is expressible in the form

2Qhi+W'(*«?(«)^, (152)

where C2k+X represents a covariant of grade 2 k + 1 at least, the

second term being absent (T = 0) if n is odd.

Every covariant of g
2""11

' of a stated degree is expressible

as a linear combination of transvectants of gf~
ik with covari-

ants of the next lower degree (cf. § 2, III). Hence the

theorem will be true if proved for T = (g
2
J'^

k
\ g

2"~ u
'Y< the

covariants of second degree of this form. By the fore-

going theorem ^is congruent to any one of its own terms

mod (aby2M . Hence if we prove the present theorem for a

stated term of T, the conclusion will follow. In order to

select a term from T we first find T by the standard trans-

vection process (cf. Chap. Ill, § 2). We have after writing

s = n— 2 k for brevity, and a^ = arj

a
fsV s \

T= (aby*(cdy*X }Z
~ *'

c £*#£*+*. (ca)Xday-'a*-°. (153)

Now the terms of this expression involving a may be obtained

by polarizing «;
s

t times with respect to y, a — t times with

respect to z. and changing y into c and z into d. Perform-

ing these operations upon a%b% we obtain for T,
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<x I cr
— t

t=0 «=0 »=0

X a™-vbs-'r+w+vc%-tds-'T+t
, (154)

where Ktuv is numerical. Evidently a is even.

We select as a representative term the one for which t = a,

u = v = 0.

This is

<j> = (aby^bcy(cdykanJr
2kbnJr'

2k -'T
c
n
l
r 2*-*d»- 2k

.

Assume n ^ A.k. Then by Section 6,

yfr = ^abyk{bcy{caykanfikln
-'2k-acn

l

-'2k-'T

can be expressed in terms of covariants whose grade is

greater than 2 k unless <r = 2 k = - . Also in the latter case

-<|r is the invariant

yjr = (ab)Xbey(eay2 .

It will be seen at once that n must then be divisible by 4.

Next we transform </> by (cd~)aJ. = (ad')cx —(ac)dx . There-

suit is

t=0 ^ '

(I) Now if a>k, we have from Section 6 that <£ is of grade
n n n

> | • 3 &, i.e. > 2&, or else contains (aJ)\6c)\ca) 2
, i.e.

= 2(72/6+1 + (aby(bcyXcayr. (155)

(II) Suppose then cr^k. Then in <£', since i= 2 k has

been treated under y\r above, we have either

(a) i ^ &,

or (6) 2 k— i> k.

In case (a) (155) follows directly from Section 6. In case

(by the same conclusion follows from the argument in (I).

Hence the theorem is proved.



CHAPTER V

GORDANS THEOREM

We are now in position to prove the celebrated theorem

that every concomitant of a binary form /is expressible as a

rational and integral algebraical function of a definite finite

set of the concomitants of /. Gordan was the first to ac-

complish the proof of this theorem (1868), and for this rea-

son it has been called Gordan's theorem. Unsuccessful

attempts to prove the theorem had been made before Gordan's

proof was announced.

The sequence of introductory lemmas, which are proved

below, is that which was first given by Gordan in his third

proof (cf. Vorlesungen iiber Invariantentheorie, Vol. 2,

part 3).* The proof of the theorem itself is somewhat

simpler than the original proof. This simplification has been

accomplished bjT the theorems resulting from Jordan's lemma,

given in the preceding chapter.

SECTION 1. PROOF OF THE THEOREM

We proceed to the proof of a series of introductory lemmas

followed by the finiteness proof.

I. Lemma 1. If (A) : Av Av •••, Ak is a system of binary

forms of respective orders av aT •••, ak , and (B): Bv B2
. ••,

BP a system of respective orders hv b
2,

••, b
t
. and if

4> = A?A? • • • Ap, ir = B%*B$* -.-B?i

* Cf. Grace and Young ; Algebra of Invariants (1903).

128
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denote any two products for which the as and the fts are all

positive integers (or zero}, then the number of transvectants of

the type of

which do not contain reducible terms is finite.

To prove this, assume that any term of t contains p sym-

bols of the forms A not in second order determinant com-

binations with a symbol of the B forms, and a symbols of the

_5's not in combination with a symbol of the A's. Then
evidently we have for the total number of symbols in this

term, from (A) and (B) respectively,

«1«1 + <ha2 + •" + akak = P+J,
&
1/91 + -&

a/8a + ••• +6jA=o- + y.

To each positive integral solution of the equations (156),

considered as equations in the quantities a, /3, p, <x, /, will

correspond definite products <£, y]r and a definite index j, and

hence a definite transvectant t. But as was proved (Chap.

IV, § 3, III), if the solution corresponding to (<£, -^y is the

sum of those corresponding to (cf>v -^
1)

?i and ($2 , -^
2)S then

t certainly contains reducible terms. In other words trans-

vectants corresponding to reducible solutions contain re-

ducible terms. But the number of irreducible solutions of

(15(3) is finite (Chap. IV, § 5, II). Hence the number of

transvectants of the type t which do not contain reducible

terms is finite. A method of finding the irreducible trans-

vectants was given in Section 3, III of the preceding

chapter.

Definitions. A system of forms (J.) is said to be com-

plete when any expression derived by convolution from a

jiroduct cf> of powers of the forms (^1) is itself a rational

integral function of the forms (^1).

A system (A~) will be called relatively complete for the

modulus G consisting of the product of a number of sym-

bolical determinants when any expression derived by con-
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volution from a product $ is a rational integral function of

the forms (J.) together with terms containing Gr as a factor.

As an illustration of these definitions we may observe that

/= a? = ..., A = (_abyaxbx, Q = {ab)\ca)bxc%

R = (abf{ed)Xac~)(bd)

is a complete system. For it is the fundamental system of

a cubic /, and hence any expression derived by convolution

from a product of powers of these four concomitants is a

rational integral function of/, A, Q, R.

Again / itself forms a system relatively complete mod-

ulo («6) 2
.

Definition. A system (A) is said to be relatively com-

plete for the set of moduli Grv Cr
2 ,

••• when any expression

derived from a product of powers of A forms by convolution

is a rational integral function of A forms together with

terms containing at least one of the moduli Crv GrT ••• as a

factor.

In illustration it can be proved (cf. Chap. IV, § 7, IV)
that in the complete system derived for the quartic

H=(abyalb%

any expression derived by convolution from a power of H
is rational and integral in H and

a
x
= (ab)\ a

2
= (be)\ea)\ah )

2
.

Thus His a system which is relatively complete with regard

to the two moduli

a
x
= (ab)\ a

2
= (be}\eay(aby.

Evidently a complete system is also relatively complete

for any set of moduli. We call such a system absolutely

complete.

Definitions. The system ((7) derived by transvection

from the systems (^4). (i?) contains an infinite number of
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forms. Nevertheless (C) is called a finite system when all

its members are expressible as rational integral algebraic

functions of a finite number of them.

The system (0) is called relatively finite with respect to a set

of moduli Grv 6r2 ,
••• when every form of (C) is expressible

as a rational integral algebraic function of a finite number of

the forms (C) together with terms containing at least one of

the moduli Grr 6r
2 ,

••• as a factor.

The system of all concomitants of a cubic / is absolutely

finite, since every concomitant is expressible rationally and

integrally in terms of /, A, Q, R.

II. Lemma 2. If the systems (A), (J5) are both finite and

complete, then the system (C) derived from them by transec-

tion is finite and complete.

We first prove that the system (C) is finite. Let us first

arrange the transvectants

t =
((f), yfry

in an ordered array

Tv T
2 , .-., Tf, -.., (157)

the process of ordering being defined as follows :

(a) Transvectants are arranged in order of ascending

total degree of the product cf>y}r in the coefficients of the

forms in the two systems (A), (i?).

(5) Transvectants for which the total degree is the same

are arranged in order of ascending indices j ; and further

than this the order is immaterial.

Now let t, t' be any two terms of t. Then

where $ is a form derived by convolution from <£. But by

hypothesis (A), (B) are complete systems. Hence $, i/r are

rational and integral in the forms A, B respectively,

$=F(A), f= G(B).
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Therefore ($, \jr)J can be expressed in terras of transvec-

tants of the type r {i.e. belonging to ((7)) of index less

than j and hence coming before t in the ordered array

(157). But if we assume that the forms of (C) derived from

all transvectants before t can be expressed rationally and

integrally in terms of a finite number of the forms of ((7),

then all C's up to and including those derived from

t = (<£, yjry

can be expressed in terms of

But if t contains a reducible term t = t
x
tv then since tv t

2

must both arise from transvectants before r in the ordered

array no term t need be added and all C's up to and includ-

ing those derived from r are expressible in terms of

C (' ... (
y

Thus in building by this procedure a system of C's in

terms of which all forms of (C) can be expressed we need to

add a new member only when we come to a transvectant in

(157) which contains no reducible term. But the number

of such transvectants in (C) is finite. Hence, a finite num-

ber of C's can be chosen such that every other is a rational

function of these.

The proof that ((7) is finite is now finished, but we may
note that a set of C's in terms of which all others are expres-

sible may be chosen in various ways, since t in the above is

any term of t. Moreover since the difference between any

two terms of t is expressible in terms of transvectants be-

fore t in the ordered array we may choose instead of a

single term t of an irreducible r = ($, y^y, an aggregate of

any number of terms or even the whole transvectant and it

will remain true that every form of (C) can be expressed as
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a rational integral algebraic function of the members of the

finite system so chosen.

We next prove that the finite system constructed as above

is complete.

i^et ^1' ^-/2 1
*""' ^r

be the finite system. Then we are to prove that any ex-

pression X derived by convolution from

is a rational integral algebraic function of Ov • ••, Cr . Assume
that X contains p second-order determinant factors in which

a symbol from an (A) form is in combination with a symbol

belonging to a (2?) form.

Then X is a term of a transvectant (</>, -v/r) p , where
(f>

con-

tains symbols from system (A) only, and -v/r contains symbols

from (B) only. Then
<f>

must be derivable by convolution

from a product
<f>

of the A's and yfr from a product i/r of B
forms. Moreover

and <£, yjr having been derived by convolution from <£, ifr,

respectively, are ultimately so derivable from cf>, ty. But

4> = F(A) t ^= G(B),

and so X is expressed as an aggregate of transvectants of the

type of

t = (</>, \}r )
J

.

But it was proved above that every term of t is a rational

integral function of

Cj, •••, C r .

Hence X is such a function ; which was to be proved.

III. Lemma 3. If a finite system of forms (-4), all the

members of which are covariants of a binary form f includes f
and is relatively complete for the modidus G' ; and if in addi-

tion, a finite system (B) is relatively complete for the modidus
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G and includes one form B
x
whose only determinantal factors

are those constituting G\ then the system (C) derived by

transvection from (A) and (B) is relatively finite and complete

for the modulus G.

In order to illustrate this lemma before proving it let (A)
consist of one form/= a§ = •••, and (i?) of two forms

A =(abyaxbx , B = (ab)Xae')(bd)(cdy.

Then (A) is relatively complete for the modulus G' = (aby.

Also B is absolutely complete, for it is the fundamental

system of the Hessian of f. Hence the lemma states that

((7) should be absolutely complete. This is obvious. For

(C) consists of the fundamental system of the cubic,

/, A, Q, M,

and other covariants of/.

We divide the proof of the lemma into two parts.

Part 1. First, we prove the fact that ifP be an expression

derived by convolution from a power off then any term, t, of

o- = (P, yfrY can be expressed as an aggregate of transvectants

of the type

t =
(<f), ^y,

in which the degree of <f>
is at most equal to the degree of P.

Here
<f>

and yfr are products of powers of forms (A), (B)

respectively, and by the statement of the lemma (A) con-

tains only covariants of/ and includes /itself.

This fact is evident when the degree of P is zero. To
establish an inductive proof we assume it true when the

degree of P is < r and note that

t = (P, fy + 2(P, jrY (%' < I),

and, inasmuch as P and P are derived by convolution from

a J mwer of/,

P = F(A) + G' Y= F (A~) (mod G'),

P= F'(A) + G' Y' = F(A) (mod G').
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Also ^ = ®(B) + GZ = <P(B) (mod G).

Hence t contains terms of three types (a), (ft), (c).

(a) Transvectants of the type (F(A), <E>(5))», the degree

of -F(^4.) being r, the degree of P.

(ft) Transvectants of type (Gr Y, f)\ G' Y being of the

same degree as P.

(e) Terms congruent to zero modulo G.

Now for (a) the fact to be proved is obvious. For (ft),

we note that G' Y can be derived by convolution from B
xf%

where s < r. Hence any term of (6r' Y, yjr)
k can be derived

by convolution from B^-^r and is expressible in the form

2(P',^),

where P' is derived by convolution from /* and is of degree

<r. But by hypothesis every term in these latter transvec-

tants is expressible as an aggregate

= 2(0, fy (modulo #),
inasmuch as

Btf=®(B) (modulo G).

But in this (<£, -fry </> is of degree ^ s < r. Hence

£=2(<£, yjry (mod (7),

and the desired inductive proof is established.

As a corollary to the fact just proved we note that if P
contain the factor G', then any term in

(^ +y
can be expressed in the form

2(0, fy, ( 158 )

where the degree of is less titan that of P.

Part 2. We now present the second part of the proof of

the original lemma, and first to prove that (C) is relatively

finite modulo G.



136 THE THEORY OF INVARIANTS

We postulate that the transvectants of the system (C)
are arranged in an ordered array defined as follows by

(a), (5), ( C).

(a) The transvectants of (C) shall be arranged in order of

ascending degree of (f>yfr, assuming the transvectants to be of

the type t = (</>, -»/r)>.

(5) Those for which the degree of <f>y]r is the same shall be

arranged in order of ascending degree of $.

(c) Transvectants for which both degrees are the same

shall be arranged in order of ascending index j ; and further

than this the ordering is immaterial.

Let t, t' be any two terms of t. Then

t'-t =^^y o'' <./)•

Also by the hypotheses of the lemma

4> = F(A)+G'Y,
^r = <s>(B)+ az.

Hence

t'-t^^QFiA), <t>(B)y + z(a>r, <s>(Byy (mod a).

Now transvectants of the type (F(A~), <£>(B)y belong

before r in the ordered array since j' < j and the degree of

F(A) is the same as that of
<f).

Again (Gr'Y, <$>(Byy' can

by the above corollary (158) be expressed in the form

where the degree of </>' is less than that of Gr'Y and hence

less than that of
(f>.

Consequently t' — t can be written

f -t = 2(4>", f fy + 2(#', fy (mod ay

where the degree of <f>"
is the same as that of

<f>
and where

;' < j, and where the degree of
<f>'

is less than that of </>.

Therefore if all terms of transvectants coming before

T = (<£. yfry
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in the ordered array are expressible rationally and integrally

in terms of

n n nOj, L/
2 , •", *-/

g ,

except for terms congruent to zero modulo Gr, then all terms

of transvectants up to and including r can be so expressed

in terms of

tV C
2 ,

•", Cg, t,

where t is any term of t. As in the proof of lemma 2, if t

contains a reducible term t=t-fiv t does not need to be

added to

P C ... O

since then tv t
2
are terms of transvectants coming before r

in the ordered array. Hence, in building up the system of

Cs in terms of which all forms of ((7) are rationally ex-

pressible modulo Gr, by proceeding from one transvectant r

to the next in the array, we add a new member to the sys-

tem only when we come to a transvectant containing no

reducible term. But the number of such irreducible trans-

vectants in (0~) is finite. Hence (C) is relatively finite

modulo Gr. Note that Cv •••, C
q
may be chosen by select-

ing one term from each irreducible transvectant in (C).

Finally we prove that (C) is relatively complete modulo

6r. Any term X derived by convolution from

is a term of a transvectant (</>, -i^)?, where, as previously, cj>

is derived by convolution from a product of A forms and yfr

from a product of B forms. Then

X = (£, fy + 2(5, ^) p ' p' < p.

That is, X is an aggregate of transvectants ($, ^)
CT

, <£ = P
can be derived by convolution from a power of/, and

-f = 3>(i?) (mod G-).
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Tims, X= 2 (P. ®(B)Y (mod G)
= 2( P, ^)» (mod (7)

= £(<£, -f

)

; (mod 6?)

where <£ is of degree not greater than the degree of P, by

the rirst part of the proof. But all transvectants of the last

type are expressible as rational integral functions of a finite

number of C^'s modulo G. Hence the system ( C) is relatively

complete, as well as finite, modulo G.

Corollary 1. If the system (P) is absolutely complete

then ((7) is absolutely complete.

Corollary 2. If (B) is relatively complete for two

moduli Gv 6r
2
and contains a form whose only determi-

nantal factors are those constituting (r', then the system (C)
is relatively complete for the two moduli Gr G

2
.

IV. Theorem. Tlie system of all concomitants of a binary

formf= anx = ••• of order n is finite.

The proof of this theorem can now be readily accomplished

in view of the theorems in Paragraphs III, IV of Chapter IV,

Section 7, and lemma 3 just proved.

The system consisting of / itself is relatively complete

modulo («5) 2
. It is a finite system also, and hence it satis-

fies the hypotheses regarding (^4) in lemma 3. This system

(^4.) = / may then be used to start an inductive proof con-

cerning systems satisfying lemma 3. That is we assume

that we know a finite system ^4
fc_j which consists entirely of

covariants of f which includes f and which is relatively

complete modulo (a5) 2fc
. Since every covariant of / can be

derived from/ by convolution it is a rational integral func-

tion of the forms in Ak _ l
except for terms involving the

factor (a6)2
*. We then seek to construct a subsidiary finite

system Bk_ x
which includes one form B

x
whose only deter-

minant factors are (ab*)-k = G' , and which is relatively com-

plete modulo (abyk+2 = G. Then the system derived by
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transvection from Ak_ x
and Bk_ x

will be relatively finite and

complete modulo (aby2k+2 . That is, it will be the system Ak .

This procedure, then, will establish completely an inductive

process by which we construct the system concomitants of/
relatively finite and complete modulo (ab )

2k+2 from the set

finite and complete modulo (a5) 2fc
, and since the maximum

grade is n we obtain by a finite number of steps an abso-

lutely finite and complete system of concomitants of/. Thus

the finiteness of the system of all concomitants of /will be

proved.

Now in view of the theorems quoted above the subsidiary

system Bk_i is easily constructed, and is comparatively

simple. We select for the form B
x
of the lemma

Next we set apart for separate consideration the case (<?)

n = 4 k. The remaining cases are (a) w>4 k, and (b) n< 4 k.

(«) By Theorem IV of Section 7 in the preceding chapter

if n>4& any form derived by convolution from a power of

hk is of grade 2k + 1 at least and hence can be transformed

so as to be of grade 2 k + 2 (Chap. IV, §7, II). Hence h k

itself forms a system which is relatively finite and complete

modulo (afoyk+2 and is the system Bk_x
required.

(b) If n<4ik then hk is of order less than n. But in the

problem of constructing fundamental systems we may pro-

ceed from the forms of lower degree to those of the higher.

Hence we may assume that the fundamental system of any

form of order < n. is known. Hence in this case (b) we

know the fundamental system of hk . But by III of Chapter

IV, Section 7 any concomitant of hk is congruent to any one

of this concomitant's own terms modulo (a6) 2fc+1
. Hence if

we select one term from each member of the known funda-

mental system of hk we have a system which is relatively

finite and complete modulo (ab) 2k+2
; that is, the required

system J5
fc_ 1

.
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(c) Next consider the case n = 4 k. Here b}r Section 7. IV
of the preceding chapter the system B^ = h k is relatively

finite and complete with respect to two moduli

G
1
= (al>yk+\ G

2
= (ah) 2k(beyk(eayk

,

and G
2

is an invariant off. Thus by corollary 2 of lemma 3

the system, as Ck , derived by transvection from Ak ^ 1
and

-Bjt-i is relatively finite and complete with respect to the two

moduli Gv G2
. Hence, if Ck represents any form of the

system Ck obtained from a form of Ck by convolution,

Ok = Fl
{Ck)+ G

2
P

X
(mod (ab)^)

.

Here P
1

is a covariant of degree less than the degree of Ok .

Hence P
1
may be derived by convolution from/, and so

P
x
= F

2 ( Ck ) + G
2
P

2
(mod (aby^y

and then P
2

is a covariant of degree less than the degree <>f

Pv By repetitions of this process we finally express Ck as a

polynomial in

G-
2
=(abyk (bcykyea) 2'\

whose coefficients are all covariants of / belonging to Ck ,

together with terms containing G
1
= {ab) 2k+2 as a factor, i.e.

O.-F^CO + a
2
F

2
(Ck ) + GlF3 (Ck ) + - + a

2
Pr (Ck)

(mod G
x

).

Hence if we adjoin G
2
to the system Ck we have a system

Ak which is relatively finite and complete modulo (abyk+2 .

Therefore in all cases (a), (&), (e) we have been able to

construct a system Ak relatively finite and complete modulo

(ai) 2fc+2 from the system Ak _ l
relatively finite and complete

modulo (abyk
. Since A evidently consists of / itself the

required induction is complete.

Finally, consider what the circumstances will be when we
come to the end of the sequence of moduli

(aby. (ab)\ (ab) G
. •••.
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If n is even, n = 2g, the system A
9 _ 1

is relatively finite and

complete modulo (a&) 2» = (ab) n
. The system Bg^ consists

of the invariant (ab) n and hence is absolutely finite and

complete. Hence, since A
g

is absolutely finite and complete,

the irreducible transvectants of A
g
constitute the funda-

mental system of /. Moreover A
g
consists of A

g_ 1
and the

invariant (ab') n
.

If n is odd, n= 2g -f- 1, then Ag_ x
contains / and is rela-

tively finite and complete modulo (ab} 2a
. The system B

g_ A

is here the fundamental system of the quadratic {abyl9axbx
e.g.

Bg^ = {(ab) 2°axbx , (aby^(ac)(bd)(edya
\.

This system is relatively finite and complete modulo (ab) 2o+1
.

But this modulus is zero since the symbols are equivalent.

Hence B
g _ x

is absolutely finite and complete and by lemma
3 Ag will be absolutely finite and complete. Then the set

of irreducible transvectants in A
g

is the fundamental system

of/.

Grordan's theorem has now been proved.

SECTION 2. FUNDAMENTAL SYSTEMS OF THE CUBIC
AND QUARTIC BY THE GORDAN PROCESS

It will now be clear that the proof in the preceding section

not only establishes the existence of a finite fundamental

system of concomitants of a binary form / of order n, but it

also provides an inductive procedure by which this system

may be constructed.

I. System of the cubic. For illustration let n = 3,

/=4 = 53=....

The system A is/ itself. The system i? is the fundamental

system of the single form

ftj = (abyaj)^
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since h
l

is of order less than 3. That is,

B = \(abfaxbx, D\

where D is the discriminant of hr Then A
x

is the system

of transvectants of the type of

T = {f\htl)yy.

But B is absolutely finite and complete. Hence A
x

is also.

Now D belongs to this system, being given by «= /3 = j
= 0, 7 = 1. If j > then t is reducible unless 7=0, since

D is an invariant. Hence, we have to consider which trans-

vectants

r = (/
a
, h\y

are irreducible. But in Chapter IV, Section 3 II, we have

proved that the only one of these transvectants which is ir-

reducible is Q = (/, /jj). Hence, the irreducible members

of A
x
consist of

A, = {/, h v Q, D\,

or in the notation previously introduced,

A1= \f, A, Q, R\.

But B is absolutely complete and finite. Hence these

irreducible forms of A
x
constitute the fundamental system

of/.

II. System of the quartic. Let/= a|= b% — •••. Then

A = \f\. Here B is the single form

\ = (ab)2axbx ,

and B is relatively finite and complete (mod4 («#)*

(
<ib)2(bcy(ca~)2

). The system G
x
of transvectants

is relatively finite and complete (modd (aJ)
4
,
(rt5) 2(fo) 2(cfl0 2

).

In t if _/> 1, t contains a term with the factor (afi) 2(rtc) 2

which is congruent to zero with respect to the two moduli.
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Hence j — 1, and by the theory of reducible transvectants

(Chap. IV, § 3, III)

4a — 4 < / < 4 a,

or a = 1, ft = 1. The members of C
x
which are irreducible

with respect to the two moduli are therefore

/, K (/, *,).

Then ^ = \f, hv (/, 7^), <7= (a6)2(5c)2(^)2
l-

Next 5
t
consists of i = (a6)4 and is absolutely complete.

Hence, writing h
x
= II, (/, A

x
)= I7

, the fundamental system

of/ is

/, H, T, i, J.



CHAPTER VI

FUNDAMENTAL SYSTEMS

In this chapter we shall develop, by the methods and pro-

cesses of preceding chapters, typical fundamental s}Tstems

of concomitants of single forms and of sets of forms.

SECTION 1. SIMULTANEOUS SYSTEMS

In Chapter V, Section 1, II, it has been proved that if a

system of forms (A) is both finite and complete, and a sec-

ond system (i?) is also both finite and complete, then the

system ($) derived from (A) and (i?) by transvection is

finite and complete. In view of Gordan's theorem this

proves that the simultaneous system of any two binary

qualities/, g is finite, and that this simultaneous system may
be found from the respective systems of / and g by trans-

vection. Similarly for a set of n qualities.

I. Linear form and quadratic. The complete system of

two linear forms consists of the two forms themselves and

their eliminant. For a linear form I = l r , and a quadratic

/, we have
(4)= Z, (B)=\t\D\.

Then S consists of the transvectants

S= \(f
aD?, lyyi.

Since D is an invariant S is reducible unless /3 = 0. Also

8<7, and unless 8 = 7, (/", l
yY is reducible by means of the

product

Hence 7 = 8. Again, by

144
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S is reducible if S>2. Hence the fundamental system of /
and Z is

S=\f,D,l, (/, Z),(/, z
2
)
2
!-

When expressed in terms of the actual coefficients these

forms are

l = d(yl\ + &-{£<L
— 'x

=
\r = " ' 1

f= lp\ + 2 Vi^ + hxl = «l = hl = "•

D=2(b b
2 -bl)=(ab)\

(/> = (Vl - Vo>l + (Vl - Vo>2= OO®*'

(/, P) 2 = b
Q
a\ — 2 b

1
a a

1
4- Z>

2
aj) = (al)(aV).

II. Linear form and cubic. If l=lx and /= a% = J| = •••,

then (cf. Table I),

and S = (f
aA^QyJl%lsy.

Since i2 is an invariant e = for an irreducible transvectant.

Also 7] = 8 as in (I). If a =#= then, by the product

(/, pyHr-WQ^ i*-*y-\

S is reducible unless B < 3, and if S < 3 # is reducible by

(/.W-'A^, 1)°;

unless /3 = 7 = 0, a = 1. Thus the fundamental system of /
and Z is

S = \f, A, ft £, Z, (/, 0, (/, Z
2
)
2

, (/, Z
3
)
3

,

(A, Z), (A, Z
2
)
2
, (ft 0, (ft Z

2
)
2
, (ft Z

3
)
3
;.

III. Two quadratics. Let /= a% = <2
; g = Z>

2 = 6'2 = ....

Then

(4) = [/, Djj, (J5) = {<fc D2 |, # = (/°2>f, ^2>|)
e

.

Here /3= 8=0. Also

2«^e^2«-l,
2 7= e>2 7 -l,
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and consistent with these we have the fundamental system

S=\f,g,Dv Dv u\g),(f,g) 2
\.

Written explicitly, these quantities are

f= a x'j + 2 a^x^x^ + a\x\ = aJ = a'} = • •
.,

9 = h/i + - hxix2 + hxl = &$ = U? = •••,

2>
1
= 2(a a2 -«f)= (aa')2,

J=(f,9)

h = (/, </)
2 = «o^2 ~ 2 «A + (hh = (ab )

2
-

IV. Quadratic and cubic. Consider next the simultaneous

system of/= ay. = a'} = • ••, g = b% = 1<J = • ••. In this case

(A)= {/, D\, (B)= \g, A, Q, R\, S = {f
aD\ g°A<>Q°R*y.

In order that S may be irreducible, ft = d = 0. Then in

case 7>2 and £=£0, S= (f% #
aA6Q c

)
Y is reducible by means

of the product

Hence only three types of transvectants can be irreducible
;

(/,A), (/,A)2, (f%g°Q*y.

The first two are, in fact irreducible. Also in the third

type if we take c = 0, the irreducible transvectants given by

(/", g
ay will be those determined in Chapter IV, Section

3, III, and are

/, g, (/, g), (/, g)\ (/*, gy,
(/S, ,,2)6.

If <?>1, we may substitute in our transvectant (/*, g
a Qcy

the svzygv
2=-i(A3 +%2

);

and hence all transvectants with c > 1 are reducible. Tak-

ing a = 0, e = 1 we note that (/, Q) is reducible because it
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is the Jacobian of a Jacobian. Then the only irreducible

cases are

(/, <?)*» C/"i Q)
s

>

Finally if c = 1, a=f= 0, the only irreducible transvectant is

Therefore the fundamental system of a binary cubic and a

binary quadratic consists of the fifteen concomitants given

in Table III below.

TABLE III

Deurf.e
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system Bk_1
is introduced. The system Bk_ l

consists of

covariants of cf> = (ab) 2ha"~ 2kb"~2k . If 2 n — 4 k < n then Bk_ x

consists of the fundamental system of
<f>.

If 2 n — 4 k > h,

-Bi—! consists of $ itself, and if 2 w — 4 k = w, .B^ consists
w n n

of $ and the invariant (a6) 2(fo?) 2(ra) 2
. The system derived

from -Afc.j, -Bi_! by transvection is the system Ak .

I. The quintic. Suppose that w = 5
; /= a| = 6|= ....

Here, the system A is / itself. The system B consists of

the one form H = («5)2a|J|. Hence the system A
x

is the

transvectant system given by

By the standard method of transvection, if y > 2 this trans-

vectant always contains a term of grade 3 and hence, by the

theorem in Chapter IV, it may be transformed so that it

contains a series of terms congruent to zero modulo (aft)4
,

and so it contains reducible terms with respect to this modu-

lus. Moreover (/, J3")2 is reducible for forms of all orders as

was proved by Gordan's series in Section 1 of Chapter IV.

Thus A
1
consists of/, K (f, IT) = T.

Proceeding to construct B
x
we note that i = (ab~)^axbx is of

order < 5. Hence B
x
consists of its fundamental system :

B
x
= \i,D],

where B is the discriminant of i. Hence A
2
which is here

the fundamental system of / is the transvectant system

given by

The values a = /3 = y = 8 = T]=Q, e = 1 give B. Since B
is an invariant </> is reducible if i) =f= and e =?= 0. Hence

e= 0.

If /3 > 1, is reducible by means of such products as

(f
aHTy, i)(Hfi-\ i

5"1)"-1
.
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Hence
(i) £=0

. (ii) a = 0, 7 = 0,/3 = l.

By Chapter IV, Section 4, IV,

r2 = - \\<if,fyH*-Kf, HyfH+(H, nyp\.
Hence

T2 = - iff3 (mod (aby).

But if 7 > 1, the substitution of this in </> raises j3 above 1

and hence gives a reducible transvectant. Thus 7 = or

1 (cf. Chap. V (158)).

Thus we need to consider in detail the following sets

only :

(i) a = 1 or 2, /3 = 0, 7 = 0,

(ii) a = 0, /3 = 0, 7 = 1,

(iii) « = 1, /3=0, 7 = 1,

(iv) «=0,/3=l, 7 = 0.

In (i) we are concerned with (/% z
5

)
v

. By the method of

Section 3, Chapter IV,

2S-1^7<2S,
5a — 4 < 7 < 5 «,

and consistent with this pair of relations we have

<./, </i 0. (/.
2
, (/,

*'2
)
3

. c/. vy, (/. *
3
)
5
.

CA *'3
)
6

, (/2
,

*'4
)
7
> CA *'4

)
8

> C/
2

>

*'

5
)
9

^ C/
2
.

*"5
)

10
-

Of these, (/
2
, i3)

6 contains reducible terms from the product

a *'2
)
4
(/,

2
,

and in similar fashion all these transvectants are reducible

except the following eight:

/, i (/, .'), (/,
2

, (/, .1)8 (/, ."2)4, (/, .'3)5, (/2, ,'5)10.

In (ii) we have (2V8). But I7 ^ - (aby(bc)axb*4, and

(T, z) contains the term £= — (aby(bc}(bi)axbxcxix . Again

(6<0(k>A = H(^)2*'2 +(KM - 002
&i]-
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Hence t involves a term having the factor/. The analysis

of the remaining cases proceeds in precisely the same way as

in Cases (i), (ii). In Case (ii) the irreducible transvec-

tants prove to be

(T, i~)\ (r, t*)* (Z *'3
)
6

, CA i*) 8
, (T, f°)»-

Case (iii) gives but one irreducible case, viz. (fT, i
7
)
14

.

In Case (iv) we have

Off, o, (ff, o2
, (#, i^y, (js; ?y, (H, py, (K py.

Table IV contains the complete summary. The fundamen-

tal system of/ consists of the 23 forms given in this table.

TABLE IV

De-
gree
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SECTION 3. RESULTANTS IN ARONHOLD'S SYMBOLS

In order to express the concomitants derived in the preced-

ing section in symbolical form the standard method of

transvection may be employed and gives readily any con-

comitant of that section in explicit symbolical form. We
leave details of this kind to be carried out by the reader.

However, in this section we give a derivation, due to Clebsch,

which gives the symbolical representation of the resultant of

two given forms. In view of the importance of resultants in

invariant theories, this derivation is of fundamental conse-

quence.

I. Resultant of a linear form and an n-ic. The resultant of

two binary forms equated to zero is a necessary and sufficient

condition for a common factor.

Let f= ax,
<f>
= ax = a

x
x^ + a

2
x
2
= 0.

Then x
x

: x
2
= — a

2
: ar Substitution in / evidently gives the

resultant, and in the form

R = (aa) n
.

II. Resultant of a quadratic and an n-ic. Let

= a| =pxqx .

The resultant R = is evidently the condition that / have
either px or qx as a factor. Hence, by I,

R = (ap)n(bq) n
.

Let us express R entirely in terms of a, 5, •••, and cc, /3. ••

symbols.

We have, since a, b are equivalent symbols,

R = i
{
(ap~) n(bq)n + (aq) n(bpy j

.

Let (ap}(bq)= fi, (aq)(bp~) = v, so that
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Iheokem. If n is even, It = £_Z— is rationally and inte-

grally expressible in terms of p
2 = (p.— v) 2 and a = p,v. If

n is odd. (jjb + v)~ lR is so expressible.

In proof write

Sk = fj.

k + (— 1)»-V.
Then B = i S„.

Moreover it follows directly that

&n = O - v )^n-i + V-vSn-o?

Also for w even
S\ =f* — v, *S' = 2,

and for n odd
>S\ = /* + », # = 0.

Now let

= ptfj + cr,S' + zp,S'
2 + 20-^ + z2pS

3 + 22(7,S'
2 + ....

Then we have

ft = P ( s\ + zn) + cr(>v + z&\ + z2n ).

and ^ _ Q + o-g)!^, + aS
_

1 — pz — erg2

Then #„ is the coefficient of zn
~ 2 in the expansion of ft.

Now
1 1

]

az2

|

g¥
1 — /3Z — <TZ2 1— pz (1 — /32l) 2 (1 — pz) 3

= l+pZ + p
2z2 + ph*+ ...

+ (U2/)2+.3 ^2+ 4 /r%3 + ••• )<TZ2

+ ( x

+

hi pz + hi p2z2 + hi p¥>2*4

+
= K + Kx

z + K2
z2 + Kf + -

,
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where

if =l, K
2
= p* + <r, K

i
= p*+3p*cr+^

Kh
= p

h + (A - 1)^-2 + ^-2)(A-3)
ff2pA

_4

g-3)(/*-4)(A-5) S6
1.2-3 p '

But

Cl=\(pS
1 + *8

Q
)+z<rS

1
\\KQ +K1

z +K2
z* + ...

f.

In this, taking the coefficient of z n~ 2
,

2E = Sn = (p&\ + aS )Kn_2 + o-^^n_ 3 .

But,

Hence,
i£ = l\S\Kn _ 1

+ o-*S' ifn_2 f

.

Hence according as n is even or odd we have

O 7? n , n-2 i

^(n— 3) o „_4 ,

uCu— 4)(ft — 5) o n_ fi ,

2 R= p
n + ncrpn 2+^

—

fr
1*"? 4 +^—:—^^ L^pn b + ---,

2 72= O + i/) \p
n~ l + (« - 2)crp»-3 + <>-3)(>- 4)^-5

Q -4)(w-5)(w-6) 3 7 ,

1-2.3 P + U

which was to be proved.

Now if we write

<f>=Pxqx=<x% = /3$= •••»

we have

Pich = av Pi%+Ptfi = 2 a
i
av P&i = a

l-

Then

|t*+v= (ap)(l>q~) + (aq)(bp)

= (a^
2 - «

2PiX5i?2 - %i) + C^i^ - a2<2i)(t>iP2 - hPi)
= 2[a

1
5

1«|
— rt

1
?>
2
«

1
«
2
— rt

2
^

1
«

1
«
2 + «

2^2 0Cf]

= 2(aa)(5a),
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fiv = <r = (ap)(aq)(bp)(bq)

= paqa • 2h9b = («a)2(«^)
2

,

O - „)* =p2 = \{ap-)(bq) - {aqXbp)\ 2= (at>)\pq) 2

= - 2(a6)2
( «/3)

2 = - 2(a?> )
2D.

Let the symbols of be a', a" • ••; /3', /3", ..-,7, .... Then
we can write for the general term of R<

p
n-u ak _ (fJL _ vy-u( fJLv)

k= ( _ Zf*Dr\aby-2*

x (au'y(b/3')%aa") 2(b/3"y ••• (aa'*1

)
2^*")2

= (-2)2 *& k

Ak .

Evidently Ak is itself an invariant. When we substitute this

in 2 R above we write the term for which k = ^ n last- This

term factors. For if

5 = (aa')2(««")2 -(a« )
2

= (6 /
8') 2W') 2 -C^V,

n

then o-
5 = J92 .

Thus when n is even,

n n—

2

n—2 n—

4

22=(-2)y.2^^+<-2>)'~2~2^1
1

M(> -4)(M-o) , m— .-,— .

+ " 1.2.3 ~ C
^ "

(159)

We have also,

p*-2*-V*(>+i/) = 2(-2) 2
"i> -

"A-,

where ^.
fc

is the invariant,

4* = (a6)"- 1-2X (a7 )(i7 ) • (aa')2(W') 2 ••• (aa<*>)2
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In this case,

R=(-2D)~A,+ (n-2)(-2Dp~A
1

+
(n-3)(n-4)

(
_ 2J>)^ (159i)

+ ... -*=1 DA^+A^.
Thus we have the following

:

Theorem. TJie resultant of a form of second order with

another form of even order is ahvays reducible in terms of in-

variants of loiver degree, but in the case of a form of odd order

this is not proved owing to the presence of the term An_v

A few special cases of such resultants will now be given

;

(a), (6), Or), (d).

(a) n = 1 : R = A , A = (aa)2
.

(&) n = 2:R=-DA + B\ A =(aby, B = (aay.

R = - (a/3)2(a6)2 +(aa)2(W2
-

(c) n=3:R=-2DA + Av A = (aby(ay)(by).

i1= (a7)({7)(a«)W2
R= - 2(a^)\aby(ay) (by) + (ay) (by) (aa)\b^f.

(d) n=±:R=2I)2A -4DA
1
+ B2

, A = (aby.

A
1
= (aby(aa)\b/3y.

B = (aay(aa'y.

R= 2 (a/S)\a'/3
fy(aby- 4 («/3)

2
<>6)2<W )W

)

2

+ (a«) 2(a«') 2(^)2
(5/3') 2

.

SECTION 4. FUNDAMENTAL SYSTEMS FOR SPECIAL

GROUPS OF TRANSFORMATIONS

In the last section of Chapter I we have called attention

to the fact that if the group of transformations to which a

form / is subjected is the special group given by the trans-

formations
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_ sin(ft) — a) j sin(&> — /3) ,_ _ sin « . sin /3 ,

sin &) sin &) " sm w sin &) "

then

<^ = .r
2
-f 2 ajj^cos &) + ./•:>

is a universal covariant. Boole was the first to discover

that a simultaneous concomitant of q and any second binary

quantic / is, when regarded as a function of the coefficients

and variables of /, a concomitant of the latter form alone

under the special group. Indeed the fundamental simulta-

neous system of q and / taken in the ordinary way is, from

the other point of view, evidently a fundamental system of/

under the special group. Such a system is Qalled a Boolean

system of/. We proceed to give illustrations of this type

of fundamental system.

I. Boolean system of a linear form. The Boolean system

for a linear form,

is obtained by particularizing the coefficients of/ in Paragraph

I, Section 1 above by the substitution

% h , V
,1, COS ft), 1

Thus this fundamental system is

q = x\ + 2 x
x
x
2
cos ft) + a*

2
,,

a = sin2 ft),

b = (a cos ft) — a
1
)z

1 + (a — a
x
cos &))x

2 ,

e = a2
,
— 2 a^j cos &> + a\.

II. Boolean system of a quadratic. In order to obtain the

corresponding system for a quadratic form we make the

above particularization of the b coefficients in the simulta-

neous system of two quadratics (cf. Section 1, III above).
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Thus we find that the Boolean system of/ is

/ = a
Q
x\ + 2 rtjZjZg 4- a

2
x%,

q = x\ + 2 a^g cos so + a;|,

D = 2(a a
2
- af),

6? = sin2 &),

e = a + a
2
— 2 Oj cos &>,

# = (a cos to — a^ajf + (« — a^)x^c
% + (a

x
— a

2
cos o )x\

III. Formal modular system of a linear form. If the

group of transformations is the finite group formed by all

transformations Tp whose coefficients are the positive residues

of a prime number p then, as was mentioned in Chapter I,

J-J / i ' O \ *^ 9

is a universal covariant. Also one can prove that all other

universal covariants of the group are covariants of L.

Hence the simultaneous system of a linear form I and i,

taken in the algebraic sense as the simultaneous system of a

linear form and a form of order p + 1 will give formal

modular invariant formations of I. We derive below a fun-

damental system of such concomitants for the case p = 3.

Note that some forms of the system are obtained by

polarization. Let/= a x
1 + «^2 ; p = 3. The algebraical

system of/ is /itself. Polarizing this,

D= ( a3—
J / = ahc, + cvkx*

The fundamental system of universal covariants of the group

(is

L= x\x
%
— x

x
x%, Q = x\-\- x\x\ + x\x\ + x\ = ((L, X) 2

, L).

7*3 is
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If we raise both sides of this identity to the with power
we have at once the symbolical representation of the typical

representation of/', in the form

where

B = (rt/f)
m

, B1
=(a f

M)m
- l(a\), B

2
= (a/0»-2(aX)a

,
• ••,

Bm = (a\)'\

Also
(\/x)m = Jm .

Now with fi = (.ry ) we have

by Euler's theorem. Moreover we now have

B = a";. =/, 7^ = of-^oX), B2
= af-Xa\y, •••,

for the associated forms, and

Pi
and

<j>(a , av • ••
; xv z

2)
= — </>(/, - 2?r Bv • •• ; </>r 0).

Pi

Again a further simplification may be had by taking for

</>! the form /itself. Then we have

B
Q =f, B l

=(ab)a»r l
b
nr l = 0. B

2
= (ab}(ac)a^>

-2
b'r

1c
>r\ •••

and the following theorem :

Theorem. If in the leading coefficient of any covariant 9
we make the replacements

a ,
av av «

3 ,

,o/ ( / (l/'riih- lit ii properly chosen power of d>
}

( — f) we h<w> mi

expression for
<f>

as a rational Junction of the set of m associated

forms

9l(=/), B,(= 0), i?
2 , i?

3 ,
....
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For illustration let m = 3, / being a binary cubic. Let
<f>

be the invariant R. Then since

B
2
= (ab)(ac)bxex . axbxcx = ±(abfaxbx4 = £ A ./, Bz =fQ,

where A is the Hessian, and Q the cubic covariant of /, the

typical representation of/ is

If one selects for </> the invariant

-
I R = (a a

3
- fl^) 2- 4(a a

2
- afX^Og - a§),

and substitutes

/~ 2
, 0, 1A/-2

, -(?f- 2/

JS = [(/- 4
^)

2 + ^/-8A3]/6

That IS, _ Rp =CyQ2 + A3_

tiiere results -i ^>g

This is the syzygy connecting the members of the funda-

mental system of the cubic/ (cf. Chap. IV, § 4). Thus the

expression of R in terms of the associated forms leads to a

known syzygy.



CHAPTER VII

COMBINANTS AND RATIONAL CURVES

SECTION 1. COMBINANTS

In recent years marked advances have been made in that

1) ranch of algebraic invariant theory known as the theory of

combinants.

I. Definition. Let/, g, A, ••• be a set of m binary forms of

order n, and suppose that m < n
;

/ = atf% H , g = b
Q
x\ + .-., h = c

Q
x'{ + • •-.

Let

<K% «!>•••; *c ; Xyi x%)

be a simultaneous concomitant of the set. If is such a

function that when/, g, h, • •• are replaced by

the following relation holds :

<£(a
(

'

r «j, •••
; &{,,

...
; cj, •••

; a^, a2)

= (£?£—)*<K«o' «ii •" ' Jc — 5 No-

where

£i< V V fc

S2' ^2' '2'

53" VS' 531

(160)

•rr r
2 ),

(161)

then $ is called a combinant of the set (Sylvester).

We have seen that a covariant of / in the ordinary sense

is an invariant function under two linear groups of trans-

162
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formations. These are the group given by T and the in-

duced group (23j) on the coefficients. A combinant is not

only invariantive under these two groups but also under a

third group given by the relations

4=^1 + ^1 + £ici+ —

*

(162)

As an illustration of a class of combinants we may note

that all transvectants of odd index of/ and g are combinants

of these forms. Indeed

= Qv)(f,gYr+
\

by (79) and (81). Hence (/, #)
2r+1

is a combinant. In-

cluded in the class (163) is the Jacobian of /and g, and the

bilinear invariant of two forms of odd order (Chap. Ill, V).

II. Theorem. Every concomitant, cf), of the set f, g, h, •••

ivhich is annihilated by each one of the complete system of Aron-

holoVs polar operators

\db~r \dc/ V def \ da/
'"

is a combinant of the set.

Observe first that
<f>

is homogeneous, and in consequence

where i
x

is the partial degree of </> in the coefficients a of /
i
2
the degree of

<f>
in the coefficients of g, and so forth.
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Since fa -^U = 0, then fa' -^W = 0. Thus

3(£2« + *?2J + •" +°Vo)

+ (£i«i + i?A+-+«Vi)-
3(f2al + i/

2*l + ••' + o^l) (164)

+ (f!«. + 9A + • • • + «,e n ) f -—- = 0.

M O....^ ^, *£. = 0.

(165)

1
£*«(&«*+ -+<V t) 3£2
+

+ a
xy *£ a(fa*<+---+<y,o =a0 . (166)gw+ ... +cr

2
f'

t
.) 5o-

2

Hence

and generally,

^ \
gs

d£
t

dVt
* da

tr j
= itf (, = ,

(167)

where i is the total degree of <£> in all of the coefficients. In

(167) we have m2 equations given by (s, t=l, ••, ?»). We
select the following m of these and solve them for the deriv-

d<f>'atives-2-, •••

:

«.
36' 3d>' 3(6' n

3
?l

a7
?i

30-j

* ^ + 7?
M + ...+, ^ =

3?i 3?/
1

ao-j
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Solution of these linear equations gives

djP di) dp

Bat we know that

#-=^^1+M (?,/1+ ... + ^' (fel .

Hence

Hence we can separate the variables and integrate:

d<f>' _ . dD
$

~ h 2)'

<f>'
=D>iF(a , ...), (169)

where F is the constant of integration. To determine F,

particularize the relations (162) by taking all coefficients

f, 77, ••• zero except

£1 = ^2= •'• = °V» — 1.

Then a{, = a , aj, = «r • ••, b[ = 6f, etc., and (169) becomes

4> = F.

Hence
<f>' =D^<f>,

which proves the theorem.

It is to be noted that the set (168) may be chosen so that

the differentiations are all taken with respect to ffc , %, ••• in

(168). Then we obtain in like manner

Thus ?\ = L= ••• = im .
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That is, a combinant is such a simultaneous concomitant that

its partial degrees in the coefficients of the several forms are

all equal. This may be proved independently as the

III. Theorem. A combinant is of equal partial degrees in

the coefficients of each form of the set.

We have

Hence

a
if){

h
la)-{

hh
a±)Jb±
da \ Ob

<t>
= Q.

<j>={i
x
-t

2)<£
= 0.

Thus i
x
= i

2
. Similarly i

7
- = ik (y, k = 1, 2, • •-, m).

IV. Theorem. The resultant of two binary forms of the

same order is a combinant.

Let f=f(xv x
2 ), g = g(xv x

2 ).

Suppose the roots of / are (rj", r
2
iy
) (i = l, •••, w), and of g

(sj°, s
2
l)

) (i= 1, ••• n). Then the resultant may be indicated

by

R = g(r?\ r$>)g(r<*\ rf ) ••• g(r["\ r<
2
"
>),

and by

B =/(»(!>, a^O/Oi2', sf) ...f(s["\ 4»»).

Hence

(a£jR = 2f(r^\ r^)g(rf. rf>) - g(r?\ r«»>) = 0,

(*>£\R = ZgCsi", s!V)f(s?\ sf) ••/«>, 4«>) = 0.

Thus 7? is a combinant by Theorem II.

Gordan has shown* that there exists a fundamental combi-

nant of a set of forms. A fundamental combinant is one of

a set which has the property that its fundamental system of

* Mathematische Anrialen, Vol. 5.
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concomitants forms a fundamental system of combinants

of the set of forms. The proof of the Theorem II of this

section really proves also that every combinant is a homo-

geneous function of the determinants of order wi,

K

h

that can be formed from the coefficients of the forms of the

set. This also follows from (162). For the combinant is a

simultaneous invariant of the linear forms

f«* + vh + &k 4- — + <rlk <Jc= 0, 1, •• •, w), (170)

and every such invariant is a function of the determinants

of sets of m such linear forms. Indeed if we make the

substitutions

i = ii*' +&/ + •• + &»*',

V = Vi? + V2V' H \- Vm<r',

in (170) we obtain

K = tiak + yJ>k + Lek +

and these are precisely the equations (162).

For illustration, if the set of #-ics consists of

g = b xj + 2 b^x^ + ^l
any combinant of the set is a function of the three second

order determinants

(a^j — ajJ ), (a b
2
— a

2
6 ), (a^ — a2b{).

Now the Jacobian of/ and g is
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Hence any corabinant is a concomitant of this Jacobian.

In other words J is the fundamental combinant for two

quadratics. The fundamental system of combinants here

consists of J and its discriminant. The latter is also the

resultant of/ and g.

The fundamental system of combinants of two cubics /", g,

is (Gordan)

# = (/,>), = (f,gy, A = (/>, *)», (*, *)* (A, #), (A, *)«.

The fundamental combinants are # and #, the fundamental

system consisting of the invariant and the system of the

quartic # (cf. Table II).

V. Bezout's form of the resultant. Let the forms /, g be

quartics,

f=«<A + a
\
x
\
x2+ '"»

9 = Vi + h$¥% + — •

From/= 0, # = we obtain, by division,

a _ a^f 4- a^x\x
2 + ^ayl + ^4^1

^0 Kxl + *2-rfr2 + Vl2! + ^4

'

rt a;
1 + q^-g _ (?

2:Kf + fl^i^ + aAx%

hxi + V2 hxi + hx i
x
2 + Ml'

tf .r| + q^'^2 + ^2-Yl _ a
3
y

l + ^4^2

^Vl + ^l-
r
l-
r
2 + ^2-r2 ^3X 1 + ^4^2

a x^ + a
x
x\x

2 + a
2
x

x
x\ + fl^aaj _ «4

?> a-f + ^i^iJ'2 + b<ix \
x\ + ^3-rl ^4

Now we clear of fractions in each equation and write

We then form the eliminant of the resulting four homoge-

neous cubic forms. This is the resultant, and it takes the

form
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Poi
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Now Uf = 0, vf = will have a common root if their result-

ant vanishes. Consider this resultant in the Bezout form

R. We then have, by taking

a* = "h"i 4- OmW2
4- auuz

(i= 0, • ••, 4),

Pik = aiuakv ~ a ivaku-

Thus

Pik =(uv) x ( a^ask - a&aK ) + ( uv ).
2

( a3iau - a^)

where(i<v)
1
= w

2
v
3
— ».,?'.

2
. ( ^v)2= M

3
t;
1
— WjVg, (uv}3=u1

v
2
— u2vr

1 1
1 -nee

Pft =
(UV)

1
(MV)

2 ('"');

a 2t

«2ft

«3i

But if we solve w^. = 0, i>x = we obtain

x
1

: x
2

: x
3
= (uv')

1
: ( iiv) 2

: (wv)
3

-

Therefore

Pik = °
•'i

a,

^
2

K «3
(t,A=rO, .... 4),

&
lJfc

a
2fc #3fc

where o- is a constant proportionality factor. We abbreviate

pik = a\xa
i
ak \.

Now substitute these forms of pu. in the resultant R. The
result is a ternary form in xv x

2 , x
s
whose coefficients are

functions of the coefficients of the Rr Moreover the vanish-

ing' of the resulting ternary form is evidently the condition

that u x = 0, vx = intersect on the R±. That is, this ternary

form is the cartesian equation of the rational curve. Similar

results hold true for the Rn as an easy extension shows.

Again every combinant of two forms of the same order is

a function of the determinants

Pik =
a

{
ak

h hk
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Hence the substitution

pik = a
|

xa
{
ak |,

made in any combinant gives a plane curve. This curve is

covariantive under ternary collineations, and is called a co-

variant curve. It is the locus of the intersection of u x = 0,

vx = when these two lines move so as to intersect the

rational curve in two point ranges having the projective

property represented by the vanishing of the combinant in

which the substitutions are made.

II. Covariant curves. For example two cubics

/= « .rf + a
x
x\x2 + ••., g = b

Q
x\ + b^p^ + •••,

have the combinant

K= (a 6
3 - «A)-iOA - a2hi)-

When K= the cubics are said to be apolar. The rational

curve R
z
has, then, the covariant curve

K(x) =
|
xa a

3 \

—
-J |

xa
x
a
2 \

= 0.

This is a straight line. It is the locus of the point (wx, vx~)

when the lines ux =0, vx = move so as to cut R
z
in apolar

point ranges. It is, in fact, the line which contains the three

inflections of M
3 , and a proof of this theorem is given below.

Other theorems on covariant curves may be found in W. Fr.

Meyer's Apolaritat und Rationale Curven (1883). The

process of passing from a binary combinant to a ternary

covariant here illustrated is called a translation principle.

It is easy to demonstrate directly that all curves obtained

from combinants by this principle are covariant curves.

Theorem. The line K(x) = passes through all of the

inflexions of the rational cubic curve M
3

.

To prove this we first show that if g is the cube of one of

the linear factors of/= a (,P

a

(

c

2) a (?\

g = (a[1>x
1
+ <4%2)

3
,
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then the corabinant K vanishes identically. In fact we then

have

and a = a[vafaf, a
x
= So^o*2^, ....

When these are substituted in TTit vanishes identically.

Now assume that ux is tangent to the R
z
at an inflexion

and that vx passes through this inflexion. Then uf is the

cube of one of the linear factors of vf, and hence K(x)
vanishes, as above. Hence K(x) = passes through all

inflexions.

The bilinear invariant of two binary forms /, g of odd

order 2 n + 1 = m is

Km = a
Q
bm - ma

1
bn^.J + (o W»»-2 + ••• + mam-A - amb ,

or

where/= a x1l + ?na
1
x7^~ 1x

2 + ••••

If two lines ux = 0, vx = cut a rational curve Rm of

order m=2«+l in two ranges given by the respective

binary forms

uf, Vf,

of order m, then in order that these ranges may have the

projective property Km = it is necessary and sufficient that

the point (wz, vx ~) trace the line

^oo^tc-iy^r^o

This line contains all points on the Rm where the tangent

has m points in common with the curve at the point of

tangency. The proof of this theorem is a direct extension

of that above for the case m = 3, and is evidently accomplished

with the proof of the following

:
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Theorem. A binary form, f of order m is apolar to each

one of the m, m-th powers of its own linear factors.

Let the quantic be
m

f= a™ = a z? + ... = IlOf^ - r[J\).
j=i

The condition for apolarity of/ with any form g — bf is

(ab)m = a bm - mafi^ +...+(- l)maj = (f, g)
m = 0.

But if g is the perfect m-th power,

g = (r^x
x
— r^x

2)
m = (xrU))

m
,

we have (cf. (88))

which vanishes because (r[j) , r^ }

) is a root of /.

To derive another .type of combinant, let/, g be two binary

quartics,

/= a x\ + ±a
x
x\x

t H . g = b x\ + -ib^fx^ H .

Then the quartic F=f+kg = A x\ + •••, has the coefficient

At
= at + kb

{
(i = 0, 1, -.., 4).

The second degree invariant iF = A A^ — 4A
l
A

3 + SAl of

F now takes the form

B2i
i + Si -k + j-rk2 = iF,

where S is the Aronhold operator

and

i == a a
4
— 4 a

x
a
z + 3 a\.

The discriminant of iF, e.g.,

G = (Siy-2i(S?i),
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is a combinant of the two quartics/, g. Explicitly,

^ = Poi + 1Q PlS ~ S PosPu ~ S PoiPu + 12A^24 - 48 ^12^23-

Applying the translation principle to 6r = Ave have the

covariant curve

(r(./-)= 'VV 2 + "Hi "l"sX \

2 —
l\ a a

3
x

\\
a

l
aAX \~ 11^0*1^11*8^1

+ ||aQa2x |

\a
2
a^x

|

— j-2\ a i
a
2
x

\ \

a
2
a
s
x

\

= 0-

If iF = the qnartic F is said to be self-apolar, and the

curve Gr(x) = has the property that any tangent to it cuts

the BA in a self-apolar range of points.



CHAPTER VITI

SEMINVARIANTS. MODULAR INVARIANTS

SECTION 1. BINARY SEMINVARIANTS

We have already called attention, in Chapter I, Section 1,

VIII, to the fact that a complete group of transformations

may be built up by combination of several particular types

of transformations.

I. Generators of the group of binary collineations. The
infinite group given by the transformations T is obtainable

by combination of the following particular linear transfor-

mations :

t:x
l
= \x, x

2
= ny,

t^.x^x' + vy>, y = y'.,

t
2

: x' = x'v y' = ax[ + x'
2

.

For this succession of three transformations combines into

2^ = 51(1-+ (jv)x\ + \vx'
2,

x
2
— <t\xx\ + /t.r

2 ,

and evidently the four parameters,

\x
2
= /la, X

2
= aft, ixx

= Xf, \
1
= X(l + cry),

are independent. Hence the combination of t, tv t
2

is

T:x
1
= \

l
x[ + fi^, x

2
= \x[ + ix2

x'
2

.

In Section 4 of Chapter VI some attention was given to

fundamental systems of invariants and covariants when a

form is subjected to special groups of transformations Tp .

These are the formal modular concomitants. Booleans are

also of this character. We now develop the theory of in-

175
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variants of a binary form / subject to the special transfor-

mations tr

II. Definition. Any homogeneous, isobaric function of

the coefficients of a binary form f whose coefficients are

arbitrary variables, which is left invariant when / is sub-

jected to the transformation t
x

is called a seminvariant. Any
such function left invariant by t

2
is called an anti-semin-

variant.

In Section 2 of Chapter I it was proved that a necessary

and sufficient condition that a homogeneous function of the

coefficients of a form f of order m be an invariant is that it

be annihilated by

= ma
l h (m — 1)«2 ^ h ••• + '*,,

da
x

da
2

dam

We now prove the following :

III. Theorem. A necessary and sufficient condition in order

that a function i", homogeneous and isobaric in the coefficients

of /=«'", may be a seminvariant of f is that it satisfy the

linear partial differential equation £11= 0.

Transformation of /= a^x™ -\- ma
l
x1^~lx

2 + ••• by t
x
gives

/' =a' x'{' + ma\x'{n
-'

i
.ii -\ , where

a\ = rtj + a v,

a'
2
= a

2 +2 ajy + a
Q
v2 ,

< = am + mam_ x
v + (™W-2*1 + ••• + a V

Hence

—-" — u, —->._a ,
—-« av

—
> — o a

2 , •••, —— — w«m_j.
dy dt> oi' dy oz/
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Now we have

dl(al a'r -..) = dIBa!n
|

BI Ba\
(

3J da'm
Bv da' Bv Ba\ Bv Ba'm Bv

But —^ '*' = is a necessary and sufficient condition in
Bv

order that /(«[>, •••, «4) may be free from v, i.e. in order that

I(a' , •••) may be unaffected when we make v = 0. But when
v = 0, a'j = cij and

/(>(,, -.., a'm) = I(a , ..., am ~).

Hence — = £1' (a' , ...)= is the condition that I(a!^ •••) be

a seminvariant. Dropping primes, ill (a , ...) = is a nec-

essary and sufficient condition that /(a , •••) be a sem-

invariant.

IV. Formation of seminvariants. We may employ the

operator O advantageously in order to construct the sem-

invariants of given degree and weight. For illustration let

the degree be 2 and the weight w. If w is even every sem-

invariant must be of the form

1= a a
lc + \

l
a

l
a w _

l
+ X

2
a
2
a

((,_ 2 + ••• + X^a^.

Then by the preceding theorem

£11= (w + \
1
)a aw_ 1

+((w— l)Xj + 2\
2
)a

1
rtM,_ 2 H— = 0.

Or

w + \
x
= 0, (w - l)Xj + 2 X

2
= 0, O - 2)X

2 + 3 X
3
= 0, ...,

(iw+l)X. w_ 1
+ wX. w = 0.

Solution of these linear equations for \v X
2 ,

••• gives

1= a aw -HJa^.j +( %]a2
a

l0 _ 2
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Thus there is a single seminvariant of degree 2 for every

even weight not exceeding m.

For an odd weight w we would assume

1= ((
o"<r + \a

l
aw-l + •" + ^i(w-l)a|f»-l)%w+l)'

Then £11= gives

w + \ = 0, (w - l)\j+ 2 X
2
= 0, •-.,

i(w + 3)\ i(JC_3 , + Uiv - 1 )Xi(w_1}
= 0, \h ,c_v = 0.

Hence X
x
= X

2
= ••• = Xi

((r_ 1
,= 0, and no seminvariant exists.

Thus the complete set of seminvariants of the second

degree is

A = a%

A
2
= a a

2
— of,

A± = a a
4
— 4 a

x
a^ + 3 a|,

,A
6
= a a

G
— 6 a^g + 15 a

2
aA — 10 a§,

^4
8
= a a

8
— 8 a^ + 28 a

2
a
6
— 56 a

3
«
5 + 35 a\.

The same method may be employed for the seminvariants

of any degree and weight. If the number of linear equa-

tions obtained from £11= for the determination is just

sufficient for the determination of \v X
2 , X3

, ••• and if these

equations are consistent, then there is just one seminvariant

/of the given degree and weight. If the equations are in-

consistent, save for X = X
x
= X = ••• =0, there is no semin-

variant. If the number of linear equations is such that one

can merely express all X's in terms of r independent ones, then

the result of eliminating all possible X's from / is an

expression

1= X^ + X
2
7
2 + ... + X

r
7r

.

In this case there are r linearly independent seminvariants

of the given degree and weight. These may be chosen as
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V. Roberts' theorem. If Q
is the leading coefficient of a

covariant off= a
Q
x'^ -f- ••of order w, and CM is its last coeffi-

cient, then the covariant may be expressed in the forms

OP 0'2 (
y 0"> O

6W + -TT X1
x
2 "I n**! x

\ + ••• H Q
*o, (173)

—7—S
«i' + -

1
fa? % -f •.. +—-j± Xix%

x + Ojjq. (174)
|ft> |G> — 1 |1

Moreover,
Q

is a seminvariant and M an anti-seminvariant.

Let the explicit form of the covariant be

K= C
Q
x?+(j)0

1
a%-%+ ... + C>£.

Then by Chapter I, Section 2, XII,

Cl-x
2
—)K==0.
dx

x

Or

+ o)(n C,,.! - w - 1 CUz)^-1 + (fl (7W - twC^)^ = 0.

Hence the separate coefficients in the latter equation must

vanish, and therefore

O C
ft
= 0,

The first of these shows that C is a seminvariant. Combin-

ing the remaining ones, beginning with the last, we have at

once the determination of the coefficients indicated in (174).
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In a similar manner

{°-*>£)K= >

and this leads to

OC = a>Cv OC
1
= (a) - 1) G>, • ••, 067_i = Om, OC„=0;

&)(o)-l)(G)-2)... (»-t + l)
oV

This gives (173).

It is evident from this remarkable theorem that a co-

variant of a form / is completely and uniquely determined

by its leading coefficient. Thus in view of a converse

theorem in the next paragraph the problem of determining

covariants is really reduced to the one of determining its

seminvariants, and from certain points of view the latter is

a much simpler problem. To give an elementary illustration

let/ be a cubic. Then

ft s ^
i o d 3= 6 a, h 1 a

2 f- a 3
,

and if O is the seminvariant a a
2
— a\ we have

OC = a a
8
- «jrt

2
, O2 C = 2( rtla 3

- a|), O3^ = 0.

Then 2 if is the Hessian of /, and is determined uniquely

VI. Symbolical representation of seminvariants. The sym-

bolical representation of the seminvariant leading coefficient

C of any covariant if of /, i.e.

K=(ab) p(ac)" </>V ••• (r + s + t + = a>),

is easily found. For, this is the coefficient of xx in if, and in

the expansion of

(aby(ac)" ..• (a^ + a^X&i2! + V2)* "•
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the coefficient of x" is evidently the same as the whole ex-

pression K except that a
x
replaces ax , b

x
replaces bx, and so

forth. Hence the seminvariant leader of .ST is

C = (aby(acY ... a$\c\ .... (175)

(r + s + t + ••• a positive number).

In any particular case this may be easily computed in terms

of the actual coefficients of / (cf. Chap. Ill, § 2, I).

Theorem. Every rational integral seminvariant of f may
be represented as a polynomial in expressions of the type (7 ,

with constant coefficients.

For let
<f>

be the seminvariant and

<K«!p —)=<K«0' "0

the seminvariant relation. The transformed of

/ = {a
1
x
l + a

2
x
2)
m

f = [a
x
x[ + (a

x
v + «

2)4]
m

.

If the # , «j, ••• in <£(a , •••) are replaced by their symbolical

equivalents it becomes a polynomial in av «
2 , /3r /32 ,

••• say

F(av «
2 , /3r /32 , •••). Then

= ^T(a
1, «

2 , /Sj, /32 , •••).

Expansion by Taylor's theorem gives

<^+^4 +7i4+ •)2?(ai
' * *• ft

-

-)=o -

Now a necessary and sufficient condition that F should sat-

isfy the linear partial differential relation

by

is
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is that F should involve the letters a^ /32 ,
••• only in the

combinations
(a/3), (ay), (/97), ••••

In fact, treating BF= as a linear equation with constant

coefficients (a
x , /3r ••• being unaltered under ^) we have the

auxiliary equations

da
2 _ d/32 _ dy

2 _ _ dF

«i &i 7i °

Hence F is a function of («/3), (07). ••• with constant coeffi-

cients which may involve the constants av /3V •••. In other

words, since (f>(a )=F(av •••) is rational and integral in the

a's F is a polynomial in these combinations with coefficients

which are algebraical rational expressions in the av ftv •••.

Also every term of such an expression is invariant under tv
i.e. under

a\ = Oj, «2 = a
x
v + «2, •••,

and is of the form

r = («/3)H«7 )
p
'"-«?/3i ..-,

required by the theorem.

We may also prove as follows : Assume that J7
is a func-

tion of (a/3), (a7), (aS), ••• and of any other arbitrary

quantity s. Then

dF dF d(a/3)
,

dF 8( ay)
,

dF ds
a, —— = a, — v + a, —-

—

'-£ + • • • + a, ,

da
%

d(a(3) o«
2

d(ay) d«
2

ds da
2

dF
Q dF dQc/3) B dF d(gy)

, R d_F^s_
Pl

<9/3
2

Pl
d(a/3) d£

2

Pl
d(ay) d/3

2

*" Pl
a* a/3

2

'

etc. , • •

T> f
dF d(a/3) o dF

But a,
v ^ = — «,/?,

,

^(a/S) ^ * ^(a/S)

, _9^_ ac«£)_ s
_dJ^_

*d(«/3) 3/8
a
- + "l/

"
1
3(«^)'
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Hence by summing the above equations we have

Since s is entirely arbitrary we can select it so that 8s =£ 0.

n IT

Then — =0, and F, being free from s, is a function of the
ds

required combinations only.

Theorem. Every seminvariant off of the rational integral

type is the leading coefficient of a covariant off.

It is only required to prove that for the terms T above

w = p + a + ••• is constant, and each index

p, <r, •••

is always a positive integer or zero. For if this be true the

substitution of a r, /3j., ••• for av /3V ••• respectively in the

factors a^fil -..of r
o
and the other terms of F, gives a co-

variant of order a> whose leading coefficient is $(« ,
•••)•

We have

If the degree of </> is i, the number of symbols involved in r
o

is i and its degree in these symbols im. The number of

determinant factors (a/3) ••• is, in general,

w=p
l +p2 + ••• +pm-v ,

and this is the weight of
<f>.

The degree in the symbols con-

tributed to T by the factors (a/3) ...is evidently 2 w, and we

have p, er, •••all positive and

im > 2 w,

that is,

o) = im — 2w >0.

For a more comprehensive proof let

i= "»4 +/3'4+ ""
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Then

Hence, since T is homogeneous in the symbols we have by

Euler's theorem,

(Bd - dB)T =O + co - w)r = a>r
,

(Bd2 - dB2)T = (Bd - dB)dT + d(8d- dB)T = 2(g>- l)dr
o,

( 8d* - rfS*)P = &(> - * + l)^" 1^ (jfe = 1, 2, •••),

But

Also

8T = 0, hence BdkT = k(co-k + l)^*- 1^.

da
{
= da^ai^ = (m— i)aM = Oa

{
(i =0,1, •••, m — 1),

d<f> = -2- da + -^ <Za, + •• + —-^-^am_1
= 0</>.

3a da
x

dam_ x

Hence dkT is of weight w + k.

Then
(/'
m-w+T = 0.

For this is of weight im + 1 whereas the greatest possible

weight of an expression of degree i is im, the weight of a'm .

Now assume <o to be negative. Then dim
~ lcT = because

Bdim
-W+1T = (im - w + 1) [a> - (im - w + 1)+ l]dim-tT = 0.

Next ^im-"- 1r = because

Bdim-'rT = (m - w) [a> - (iw - w) + l]rf'
m- !r-T = 0.

Proceeding in this way we obtain T = 0, contrary to hy-

pothesis. Hence the theorem is proved.

VII. Systems of binary seminvariants. If the binary form

f = a
()
x™ 4- ma-ffi~

xx% + ••• be transformed by

#1 = .Fj + v%2? 2*2 = "*V
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there will result,

/' = Off + mC^-% +h)c2
x^-2x'^ + • . . + 2

™,

in which

C{ = a v { + ia^- 1 +
( o)<V

i-2 + ••• + ^-iy + «i- ( 176 )

Since £IC = fl« = 0, Q
is a seminvariant. Under what cir-

cumstances will all of the coefficients Qi
(i = 0, •••, m) be

semin variants ? If C
x

is a seminvariant

£10-^ = D,(a v + aj) = a
o
ni> + a = 0.

That is, £lv = — 1. We proceed to show that if this condi-

tion is satisfied fl O
t
= for all values of i.

Assume D,v = — 1 and operate upon C
t
by H. The result

is capable of simplification by-

Hit5 = 8i/
-1
fiy = — 8v*~\

and is

0(7
<=-»vM-(i)(<- 1)«i*

,M (**)(*-r)fl^-ta -1—

-

- Ww +
(j) «o^'

_1
+ 2

(2)V~
2 + '

"

+(r + \)(r + IH*^1 + - + *Vi-

But

f * V , n *(* — 1) ••• (* — r + !)(% — r) fi\,. .

(

v
r+i/r+i>=— —p—-—-=yo-o.

Hence II (7,- = 0.

Now one value of v for which £lv = — 1 is v = l • If / be

transformed by

"^l — 1 2' 2 — 2'

then Cj = 0, and all of the remaining coefficients C
{
are sem-

invariants. Moreover, in the result of the transformation,
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r
{= a 1

'
1

{ = aj_1«j — (
J
)ao~

2
«i-i lh +11 )«o~3a*-2ai ~~ '

"

+ ( - l)^jWfl^ + ( - ly- 1^ - 1 )a*

This gives the explicit form of the seminvariants. The trans-

formed form itself may now be written

f> — F r'"' 4- f

m
\ 2 r ''«-2 r '2 i [™1 ^ 3 r'»-3r'3 _|_ ... _l_ ^ '" r 'm

J — L <Fi + \-2)y l - wfa J 2 + p*-i 2 •

Theorem. Every seminvariant of f is expressible ration-

ally in terms of ro , T2 , T 3 ,
••• , r,„. 0/<f obtains this expression

r% replacing a
x
by 0, a by T , and ciff^ 0, 1) oy —J- *Vi the

original form of the seminvariant. Except for a power of

r
o
= « in the denominator the seminvariant is rational and

integral in the T'

i
(i = 0, 2, •••, m) (Cayley).

In order to prove this theorem we need only note that/'

is the transformed form of / under a transformation of de-

terminant unity and that the seminvariant, as S, is invarian-

tive under this transformation. Hence

S
(
T* °' £"' Pi' -' T^l)

=^ ^' a* -' a"^ (177)
^ 1 1 i /

which proves the theorem.

For illustration consider the seminvariant

S = a a
4
— 4 fljflg -f- 3 a|.

This becomes

s=-^(3ri + r4),r
o

CI-

AS' = a a
4
— 4 rtjrtg + 3 a\

= —, [3( <r
o
a
2
_ a?)

2+ (4a4
— 4 «da i

a
3 + 6v^ _ % *!)]

«0
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This is an identity. If the coefficients appertain to the

binary quartic the equation becomes (cf. (125))

Again if we take for *S' the cubic invariant J of the quartic

we obtain

H=

ir

ir

a?
3

or

1 a sJ-
6 "(r x

2
1

4
x

2
x 3'

Combining the two results for i and J" we have

rr = i a2iT — 3 T3 — i «3,/_l rs _i_ T21
2
1

4 2 "0tx 2 ° x
2
—

6 "O"
7 + x

2 ^ x 3*

Now 2 T
2

is the sem in variant leading coefficient of the

Hessian J3"of the quartic/, and F
3

is the leader of the co-

variant T. In view of Roberts' theorem we may expect the

several covariants of / to satisfy the same identity as their

seminvariant leaders. Substituting | H for T
2 , T for T

3 ,

and/ for a , the last equation gives

if3 + lf3J+ 2T2 ~}
2 if*H= 0,

which is the known syzygy (cf. (140)).

SECTION 2. TERNARY SEMINVARIANTS

We treat next the seminvariants of ternary forms. Let

the ternary quantic of order m be

^ I

m
l
\

|

"'2
|

"'3

When this is transformed by ternary collineations,

x
x
= XjZj + /"i-*^ + v

i
x3">

V: x
2 = \

2
x\ +/a

2
x2 + v

2
xv

x
3
= \x[ + fx3

x[ + v
3
x!,, (Xfiv}^ 0,
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it becomes/', where the new coefficients a' are of order m in

the Vs, /x's, and vs. This form / may be represented sym-
bolically by

/= a™ = (a^ + a
2
r
2 + a

3
.r
3 )
m

.

The transformed form is then (cf. (76))

/' = (aKx\ + a %̂ + a
t,4)

m
(178)

Then we have

// n"h/i'"-'/i"l a

Now let

d\ d d d

Then, evidently (cf. (75) and (23^)

\m ( d Y'V d Y" 3

W2 — W
2
— w

&

(179)

This shows that the leading coefficient of the transformed

form is a™, i.e. the form / itself with (x) replaced by (X),

and that the general coefficient results from the double

ternary polarization of a™ as indicated by (179).

Definition. Let <£ be a rational, integral, homogeneous

function of the coefficients of/, and <}>' the same function of

the coefficients of /'. Then if for any operator (a4 ^— \

( \—
],

•••, say for (

X

— J, the relation

is true,
<f>

is called a semin variant of/.
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The reader should compare this definition with the ana-

lytical definition of an invariant, of Chapter I, Section 2, XL

I. Annihilators. A consequence of this definition is that

a seminvariant satisfies a linear partial differential equation,

or annihilator, analogous to £1 in the binary theory.

For,

dfij da'„m \ dp J da' \

da'

d/A

MLJ\ da'w™

and
da'oom \ dP f

1
' * —

1
K q- )

a\ xaM
2 <*

v
3 — mi

aK ' «V
2 «„ 3 — w

2
ami+1 ^.j OTg

.

Hence

V ^ $ 5«W3 (180)

Now since the operator

2J
W2<+lmjs-l«ns n /

7/ij "'»l'»2m3

annihilates </>' then the following operator, which is ordinarily

indicated by fl^^, is an annihilator of
<f>.

°*» = T»VWl hh-I ms n Ol + ™2 + ™3 = ™). (181 )

The explicit form of a ternary cubic is

f~ ^300^1 "^ ^ a2102*i-r2 "t" " a\2fP\X2 "^ a030r2 ~^ " a
W>l
X
l
X
Z

In this particular case

#j -^ «j *j

^x,i. = «300 J" 1" ^ «
2io 77 f" 3 «120 T" H a201

*<%„
21"a«

120 •««» ""Sam

°"021 u '<012
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This operator is the one which is analogous to £1 in the

binary theory. From f n— !(/>', by like processes, one obtains

the analogue of 0, e.g. £l x^. Similarly 12^, O^, O^, fi^

may all be derived. An independent set of these six opera-

tors characterize full invariants in the ternary theory, in the

same sense that H, characterize binary invariants. For

such we may choose the cyclic set £lXlxtt A/V>v ^ r .

tjy

Now let the ternary m-\c form

+ m(am_101xf-
1 +(»» - l)am_211

3-'

1

"-2
.r
2

-\ \- ,/„„, n ./-.r
-'

)./
3

+
,

be transformed by the following substitutions of determinant

unity

:

a~ = asL (183)

Then the transformed form/' lacks the terms x'/'^Kii, .r["'~\r'.,.

The coefficients of the remaining terms are semin variants.

We shall illustrate this merely. Let m = 2,

f= a
20Qp1 + 2 «no-ri-

r
2 + rt

o2o-
r
2 + * aioia;i

a;3 "^ "" aon2:
2
a;3 + a(mX3'

Then

^200.'
= ^200^1 ' (a020a200

— aho)X2" "*" -v'oila200
—

'
r
Hil''llo ^-r2*r3

It is easy to show that all coefficients of/' are annihilated by

a .

Likewise if the ternary cubic be transformed by

x
\ — x

l
x
2 ' 3'

a300 "300
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and the result indicated by ag
00
/' = A

3Qtfc'f + 3 ^vp\ x% + '"'

we have

^300 = 4)0' (184 >

^-210 = ^'

-^•120
= rt300V rt

300
a
l20
— a210/'

-^030 = " a
210

~" ° a210^120a300 "^ a
030a300'

^201 = ^'

^•111 = a30oCa300aill
— a210rt

201 )'

^021 — rt
30((

a
021
— a

300
a201al20

— Z rt210rt
lll

rt
300

"+" -1 a
210a201'

^•102 = a300v a300a 102
— a20l)'1

^012 = a
300

a012
— a

300
a
102

a
210
— " a300a20la lll + ^ ^Ol^lO1

^003 = ^ a
201
— a

300
a
20l

a
l02

"^" a003a300*

These are all seminvariants of the cubic. It will be noted

that the vanishing of a complete set of seminvariants of this

type gives a (redundant) set of sufficient conditions that the

form be a perfect with power. All seminvariants of / are

expressible rationally in terms of the .A's, since /' is the

transformed of/by a transformation of determinant unity.

II. Symmetric functions of groups of letters. If we mul-

tiply together the three linear factors of

"
(afx

1
+ afx2 + afz3),

the result is a ternary cubic form (a 3-line), /= #300#i + •••.

The coefficients of this quantic are

am = Sa^afof = a^afaf,

«2io = 2«pct[2>ag> = a^afaf + a™a™af + a^afaf,

«120 = ^^a^a™ = a[va^af + a™afaf + a^afaf ,

am = 2a
2
i>«

2
2)a|3) = «<i>«<2>

rt <3>,

%>i = ^«i
1,

«i
2'43) = «l

1,

«l
2,

«f + c^afaf + a!/]afaf,
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am = I,aWaU>af = a™al®af + «<!>««» ««$) + «(i)a <.2>a (3>
t

a
102
= lu^'u^af = a'^ufaf + 41)42)48) + aa ^(2)43^

a
0i2
= Sa^af43) = a^^afaf + ^'af«f + 4 1,42>43 ',

a
003
= 2a(i)«(2)aC3) ==aa)«(2)ac3).

These functions 2 are all unaltered by those interchanges of

letters which have the effect of permuting the linear factors

of/ among themselves. Any function of the a\j) having this

property is called a symmetric function of the three groups

of three homogeneous letters,

04", 41), «a>),

(«<2\ «f, 42>),

(af), 43), aC3)).

In general, a symmetric function of m groups of three homo-

geneous letters, «r «
2

. «
3

. i.e. of the groups

7l
(4i\ 41), 41)),

72 (42\ «
2
2\ 42)),

is such a function as is left unaltered by all of the permuta-

tions of the letters a which have the effect of permuting the

groups 7r 72 , •••, ym among themselves: at least by such per-

mutations. This is evidently such a function as is left un-

changed by all permutations of the superscripts of the «'s.

A symmetric function of m groups of the three letters

uv «
2 , «3 , every term of which involves as a factor one each

of the symbols a(1)
, « (2\ •••, « ( "° is called an elementary sym-

metric function. Thus the set of functions a3W a
2l0 , ••• above

is the complete set of elementary symmetric functions of

three groups of three homogeneous variables. The non-

homogeneous elementary symmetric functions are obtained

from these by replacing the symbols 41}
> a3

2)
> a3

3) eacn by

unity.
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The number iV of elementary symmetric functions of m
groups of two non-homogeneous variables «ro , ,

, <V_i,i,o? •••

is, by the analogy with the coefficients of a linearly factorable

ternary form of order m,

N.= m + m + (m - 1) + (m - 2) + ... +2 + 1 = 1 m (m + 3).

The N equations aiik
= 2, regarded as equations in the 2 m

unknowns a[r) , a (

2
s)

(r, 8=1, •••, m), can, theoretically, be com-

bined so as to eliminate these 2 m unknowns. The result of

this elimination will be a set of

\ m(m + 3) — 2 m = \ m(m — 1)

equations of condition connecting the quantities am0 oi

am_110 ,
••• only. If these a's are considered to be coefficients

of the general ternary form / of order m, whose leading co-

efficient a
003

is unity, the \m(m — 1) equations of condition

constitute a set of necessary and sufficient conditions in order

that/ may be linearly factorable.

Analogously to the circumstances in the binary case, it is

true as a theorem that any symmetric function of m groups

of two non-homogeneous variables is rationally and integrally

expressible in terms of the elementary symmetric functions.

Tables giving these expressions for all functions of weights

1 to 6 inclusive were published by Junker * in 1897.

III. Semi-discriminants. We shall now derive a class of

seminvariants whose vanishing gives a set of conditions in

order that the ternary form /of order m may be the product

of m linear forms.

The present method leads to a set of conditional relations

containing the exact minimum number \m(m— 1) ; that is,

it leads to a set of \m(m — 1) independent seminvariants of

the form, whose simultaneous vanishing gives necessary and

sufficient conditions for the factorability. We shall call

these seminvariants semi-discriminants of the form. They

* Wiener Denksehriften for 1897.
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are all of the same degree 2 m — 1 ; and are readily formed

for any order m as .simultaneous invariants of a certain set of

binary qualities related to the original ternary form.

If a polynomial,f3m) of order ra, and homogeneous in three

variables (xv xv x
3
~) is factorable into linear factors, its terms

in (xv £
2) must furnish the (xv x

2
~) terms of those factors.

Call these terms collectively a[£, and the terms linear in x
3

collectively x
3
a™r

~~ l
. Then if the factors of the former were

known, and were distinct, say

<= «ooii< Tfx\
- *!%)+ n ofo.

the second would give by rational means the terms in x
3
re-

quired to complete the several factors. For we could find

rationally the numerators of the partial fractions in the

decomposition of a'{'~^ /«'",., viz.

m

m _l 11 r
2 m

a \r — i=\ "V* a
i

and the factors of the complete form will be, of course,

rPx-, — ri^x,
{

l)x
2 + a

{
x
3

(»asl, 2, ..-, m).

Further, the coefficients of all other terms in fSm are rational

integral functions of the r (i) on the one hand, and of the at

on the other, symmetrical in the sets (r£\ — r['\ a,). We
shall show in general that all these coefficients in the case

of any linearly factorable form are rationally expressible in

terras of those occurring in a'^, a'f/K Hence will follow the

important theorem,

Theorem. If a ternaryformfSm is decomposable into linear

factors, all its coefficients, after certain - m, are expressible

rot tonally in terms of those 2 m coefficients. That is, in the

space ivhose coordinates are all the coefficients of ternary forms

of order m, the forms composed of linear factors fill a rational

spread of 2 m dimensions.
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We shall thus obtain the explicit form of the general

ternary quantic which is factorable into linear factors.

Moreover, in case f3m is not factorable a similar development

will give the theorem,

Theorem. Every ternary formf3m , for which the discrimi-

nant D of afr does not vanish, can be expressed as the sum of

the product of m distinct linear forms, plus the square of an

arbitrarily chosen linear form, multiplied by a " satellite " form

of order m — 2 whose coefficients are, except for the factor D~l
,

integral rational seminvariants of the original form f3m .

A Class of Ternary Seminvariants

Let us write the general ternary quantic in homogeneous

variables as follows :

J 'Am
= a0x "T" &\x #3 + #2.r #3 "f" •" *+" ^mfr^S '

where

oJT* = (hP^~* + a^r*"1^ + a^-^xl + •.. + aim^x^
(i = 0, 1, 2, •••, m).

Then write

,m-l sim-l
«r; «iir ^ «*

2ml rL&)x~ —"''

TTrr'«r _ r<*>r ^ *
=1 2 * * 2

11 V2 X
l

r
l
X2>*

(n _ r(p r(2) ... r (»0\ .

and we have in consequence, assuming that D =£ 0, and

writing

hn

«0r<*>
~

'da'n

u te^ ..1= ,. (<>,,,=,<w
5<rl -W« .

-T '
a
0r(lc)

—
_ -

c
1 J-'l—'l I -'2—' 2

the results

«* = r^fl^,/«6« = - K*Xr»/C*>- (185)

Hence also

a''™' =-?!i_<i'«} (186)

^2
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The discriminant of agj. can be expressed in the following

form

:

m
^> = II*>/a00(- 1)

ini(m-1)
. d87)

,y=i

and therefore

r2 ah.a-)
a
0ra)%r(2)

'" (V(*-i) (Va-+i)
••• a

0r(m)
(188)

a
00
(- l)J'»(«-"i)

and in like manner we get
m

n«x- = <%&%£ ••' aiS/(- l)im(m
-l)

i>. (189)

The numerator of the right-hand member of this last equal-

ity is evidently the resultant (say Rm) of afx and af~ l
.

Consider next the two differential operators

1 *) *)

A
l = ^«00T~ + (m ~ 1 ) a01 5 + ••• + <hm-\•

\--- - / " 01 i '
' vm — i. i i

<3a
10

dan da^^

a 3 , / in d , . dA
2 = 7wa0jB

- hO-l)a m-i7 1 l-fl01
-—

;

3alOT_! 3alm _ 2 da
10

and particularly their effect when applied to a"].
-1

. We get

(cf. (186))
Cfl

/ 2

and from these relations we deduce the following :

ATI a
A

*
Rm - a vSW^5l^ nan

or, from (185)

^&l =2a1a2
••• am _iH

m)
. (192)

(_ ]\im(TO-l) J 2)
" "

In (191) the symmetric function 2 is to be read with refer-

ence to the r's, the superscripts of the r's replacing the sub-

scripts usual in a symmetric function. Let us now operate

with A
2
on both members of (191). This gives

.—. 7—z—— — Mnn^
f 1 \*m(jn-l) 1 1 /) u0 n'm n 'm .. n 'm V r (m-\) ,.(»i)
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Let SA represent an elementary symmetric function of the

two groups of homogeneous variables rv r
2
which involves

h distinct letters of each group, viz. r[
m~i+l\j = 1, 2, • ••, h).

Then we have

^*Rm - = 2[(- 1)^ ... am^2
r['»-Vr<>» >]. (193)

(_i)i»(»-i)|i|2i)

We are now in position to prove by induction the follow

ing fundamental formula :

A£~'~'&R«

( _ l)*m<m-D
|

w _ 8 _ ^j) (194)

= 2[(- l)^ ••• «5
2m_/>f

+1Vf+2) ... r
[

s+l)r (

2
s+M) ••• r<"°]

(s = 0, 1, •••, m; t ass 0, 1, •••, m — s),

where the outer summation covers all subscripts from 1 to

wV superscripts of the r's counting as subscripts in the sym-

metric function. Representing by Jm_s_^ t
the left-hand

member of this equality we have from (190)

A 7" -Sir n(+l \'"\' 2
'

a
i,.(*-D

iltf/ m_s_t, t—*\K X J ,m ,m -fa

r (s) \
V ^(1)^(2) . .

~(s) 11_V ~<s+l) .. ~(s+t) r (s+t+l) ... r (m) ),A
' 2 '2 '2 («)»»—*' 1 '1 2 '2 I

^*2 '

This equals
2(-iy+V2

•••«*-!#

where # is a symmetric function each term of which involves

t -\- 1 letters ^ and m — s — t letters r
2

. The number of

terms in an elementary symmetric function of any number

of groups of homogeneous variables equals the number of

permutations of the letters occurring in any one term when

the subscripts (here superscripts) are removed. Hence the

number of terms in SM_4
is

\m — s

in &
and the number of terms in S is

(m — s -f 1 ) |
m — s/ ! 1

1

m — s — t

.
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But the number of terms in

^m—s+lK' l 'l '1 r
2 '2 )

is

m — s + l /[m — s — t \t + 1 .

Hence

£ = (£ + l)2m_,+1 ,

and so

£ 1 LV 1
-
1 '*1

<JC
2

••' «*-i— OT-jr— lJ*

This result, with (193), completes the inductive proof of

formula (194).

Now the functions Jm-s-t,t
are evidently simultaneous in-

variants of the binary forms <r , ajf, a£\ ajpi. We shall

show in the next paragraph that the expressions

/„,_,_,, < = Dast
- DJm_s_u t (* = 2, 3, »

., w ; £ = 0, 1, .... w - «)

are, in reality, seminvariants of the form/.),,, as a whole.

Structure of a Ternary Form

The structure of the right-hand member of the equality

(194) shows at once that the general (factorable or non-fac-

torable) quantic fSm{D =£ 0) can be reduced to the following

form :

111 '" W>—«?

/* =n (r* )x
i
- r^+ «*> +s 2 ( a *< - J'"-s- 1 - *>

**~*~% •

*=i .=,- *=o
(195)

This gives explicitly the "satellite" form of f:im . with coeffi-

cients expressed rationally in terms of the coefficients of/3m .

It may be written

- iym(m-l)

\

m — 8 — t \tj
Df*m-2 =X Xl 1***' ~ r_-\\h

J
2

m III — V

= XXI»>-s-t, l
z,rs~'4-

(
i96

)
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Now the coefficients Im_s _ ut are seminvariants of f3m . To
fix ideas let m=S and write the usual set of ternary operators,

<H)0
5«01 3«02 5«10 5«11 5«20

0^=3%,—-+ 2a
01
—-+ a

02
~—+ 2a

10
-— '+au-—+ «20-—

,

5^
01

5a
02

da
03 5au a«

12
^9a

21

da
so

da
20

da
10

Ll
da

21
"
l dan

m
da

12

etc.

Then I
1Q

is annihilated by £1.^ but not by flr^, ^ x
is anni-

hilated by D,Xl& but not by il.Vl , and J
00

is annihilated by

Ha:^ but not by n^
3

.ri . In general Im_s_ut fails of annihilation

when operated upon by a general operator H r .

r . which con-

tains a partial derivative with respect to a
st

. We have now
proved the second theorem.

The Semi-discriminants

A necessary and sufficient condition that f3m should de-

generate into the product of m distinct linear factors is that

/t*m-2 should vanish identically. Hence, since the number of

coefficients in fxm_2 is \ m(m — 1), these equated to zero give

a minimum set of conditions in order that/3m should be fac-

torable in the manner stated. As previously indicated we
refer to these seminvariants as a set of semi-discriminants of

the form/3m . They are

^' " (-l^™-»\t \m-8-t[t=0, 1, -., m-sj ( }

They are obviously independent since each one contains a

coefficient (a8t) not contained in any other. They are free

from adventitious factors, and each one is of degree 2m — 1.
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In the case where m = 2 we have

*±ac
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In the notation of (197) the semin variants in this table are

^10=-Z>a20 + AA'
J
01
= Da21 + A2

i2
3 ,

where D is the discriminant of

and M
3
the resultant of a and

/3 = a
10
a? + anxx

x
2 + «

12
a|.

Corresponding results for the case m = 4 are the following :

where

H = a
02
— " rt

0l
a
03 +-'--' a00a04'

" 1
= " '

ft
ol
a
04 ~t~ ^ ' *00ao3 "I" " ^02

—
' ^ ^00*02^04 ~ ^ ^01^02*03

'

«10 a
ll

rt
12

a
13 ° °

aw an an a
1B

a
10

an a
12

a
18

fyl^lO-

a

00
a
ll

a
02
a
10
— a00^12 a

03
<r
l0
—

a

00
a
l3 ^04^10 ^ ^

a
00

a
01

a
02

a
03

a
04

U

a
Q0

a
Q1

a
02 a

03
a
04

the other members of the set being obtained by operating

upon R
A
with powers of Av A 2

:

da
10

d(hi da
12

oa
13

a i
d 9 9 9

A
2
= 4 a

04
-— + 3 a

03
—

- + 2 a
02
-— + % 5—

»

according to the formula

T - , r> A{~^A2i?4 (s = 2, 3, 4; f=0, 1, ...,

1*-^*- a*U U~s-t\t 4-«Y

i?
4
=
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1 V. Invariants of /n-lines. The factors of a";v being assumed

distinct we can always solve Im_s_L( = for asl, the result be-

ing obviously rational in the coefficients occurring in «,',"., a"*"1 .

This proves the first theorem of III as far as the case I> =£ U is

concerned. Moreover by carrying the resulting values of

a8t (s = 2, 3, •••, m ; ^ = 0, 1, • ••, m — s) back into f3m we get

the general form of a ternary quantic which is factorable into

linear forms. In the result <',. a"* 1 are perfectly general

(the former, however, subject to the negative condition

J)=£0), whereas
\m—j f? A'"—)'-i\ /?

( _ \\hm(m-l)J)am-j = L±L__J±mxm-j _j_ ^l ^2Jt "' j.>;

W — / — 1 1

+

\

m-J
= ^-h± +

(,/ = 2. 3, -.., m}'.

Thus the ternary form representing a group of m straight

lines in the plane, or in other words the form representing

an m-line is, explicitly,

7/i m—j \m—i—j\i J?
_l j)-\( _ i\i»«(»«-DyVoV ^ 2 m

3f-^-
j
zi,. (198)

j=2 i=0 ' ^ '-

This form, regarded as a linearly factorable form, possesses

an invariant theory, closely analogous to the theory of binary

invariants in terms of the roots.

If we write a$x = .?:;/„,
t

,,. a'},. = .rVXn ,,, (%, = 1). and assume

that the roots of l^ = are — rv — rT — r
3 , then the factored

form of the three-line will be, by the partial fraction method

of III (185),
3

/= ]^[ ( «1 + >V2 - h-rJ l'o-r)'

i = l

Hence the invariant representing the condition that the 3-line

/ should be a pencil of lines is

1 r
x h-rjli

Q= 1 r„ h- Jl'o-

h r, /,',

o-r,
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This will be symmetric in the quantities rv r
2 , r

3, after it is

divided by Vi2, where R = (r
x
— r

2)
2
( r2

— r
3)

2(r
3
— t^) 2 is

the discriminant of the binary cubic a%x . Expressing the

symmetric function Qx
= Q/y/M in terms of the coefficients

of «$_,., we have

(J1 — I «
01
«
13

aoi*02a ll
"^" l a

00
a
03

tt
ll
— " a

0l
a
03
a
l0 "I" * a

02
rt
10

This is the simplest full invariant of an m-linef.

D rt (/
02

rt12*

SECTION 3. MODULAR INVARIANTS AND COVARIANTS

Heretofore, in connection with illustrations of invariants

and covariants under the finite modular linear group repre-

sented by T
p , we have assumed that the coefficients of the

forms were arbitrary variables. We may, however, in con-

nection with the formal modular concomitants of the linear

form given in Chapter VI, or of any form / taken simulta-

neously with L and Q, regard the coefficients of/ to be them-

selves parameters which represent positive residues of the

prime number p. Let / be such a modular form, and

quadratic,

/= a^x\ + 2 a
t
x
t
x^ + a

2
x2-

Let jo =3. In a fundamental system of formal invariants

and covariants modulo 3 of / we may now reduce all expo-

nents of the coefficients below 3 by Fermat's theorem,

af = a
{
(mod 3) (i=0, 1, 2).

The number of individuals in a fundamental system of / is,

on account of these reductions, less than the number in the

case where the a's are arbitrary variables. We call the in-

variants and covariants of /, where the a's are integral,

modular concomitants (Dickson). The theory of modular

invariants and covariants has been extensively developed.
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In particular the finiteness of the totality of this type of con-

comitants for any form or system of forms has been proved.

The proof that the concomitants of a quantic, of the formal

modular type, constitute a finite, complete system has, on the

contrary, not been accomplished up to the present (December,

1914). The most advantageous method for evolving funda-

mental systems of modular invariants is one discovered by

Dickson depending essentially upon the separation of the

totality of forms/' with particular integral coefficients modulo

p into classes such that all forms in a class are permuted

among themselves by the transformations of the modular

group given by Tp * The presentation of the elements of

this modern theory is beyond the scope of this book. We
shall, however, derive by the transvection process the funda-

mental system of modular concomitants of the quadratic

form /, modulo 3. We have by transvection the following

results (cf. Appendix, 48, p. 241):

TABLE VI

Notation
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Much use will be made, in this proof, of the reducible in-

variant

1= (og - 1)0/2 _ l)(a| _ i) = q
2 + A2 _ 1 (mod 3^

In fact the linearly independent invariants of /are

1, A, I, q, A2
. (f)

Proceeding to the proposed proof, we require the sernin-

variants of/. These are the invariants under

x
x
= x[ + x'

2, x2
= x'

2
(mod 3).

These transformations replace /by/', where

a' = a , a\ = a + a
x , a

2
= a — «j + a

2
(mod 3). (£)

Hence, as may be verified easily, the following functions are

all seminvariants

:

a , «$, a A, a A2
, «2A, 5 = (

a

2 - l)ar (s)

Theorem. Any modular seminvariant is a linear homo-

geneous function of the eleven linearly independent seminvari-

ants (z), (s).

For, after subtracting constant multiples of these eleven,

it remains only to consider a seminvariant

S = a-^a^a^ + o^jfl^ + a
s
a

i
+ «4«f«l + cc^afa^ + «

6
a2 + /8a2, + 7a

2 ,

in which «r «
2

are linear expressions in a2
, a , 1 ; and

«
3 , •••, «

6
are linear expressions in a , 1 ; while the coefficients

of these linear functions and /3, 7 are constants independent

of a , av a
2

. In the increment to S under the above induced

transformations (f) on the a's the coefficient of a
x
a\ is — « a

4 ,

whence «
4
= 0. Then that of a\a

2
is 0^=0; then that of

a
r
a
2

is /3 — « «
5

, whence /3 = «
5
= ; then that of a\ is

— «
2
= ; then that of a

1
is — 7 — « «

6
. whence 7 = «

6
= 0.

Now 8 = a
3
av whose increment is «

3
« , whence «

3 =
Hence the theorem is proved.

Any polynomial in A, I, q, a
{V
B is congruent to a linear
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function of the eleven seminvariants (i), (s) by means of

the relations

(mod 3),
(A) lA = Iq = la =lB= qA = qB = a B = 0,

AB = B, «2A2 = A2 + a%A - A.

a
Qq = a*A2- a% B*=A(1- a$)\

together with ajj = a , A3 = A (mod 3).

Now we may readily show that any covariant, K. of order

6t is of the form P + X(7, where C is a covariant of order

6 t — 4 and P is a polynomial in the eight concomitants in

the above table omitting

/

4
. For the leading coefficient of a

modular covariant is a modular seminvariant. And if t is

odd the covariants
//•'. /£', G™, 0" 0' an invariant)

have as coefficients of #*

a z, i, .8, A + «2
,

respectively. The linear combinations of the latter give all

of the seminvariants (*), (s). Hence if we subtract from K
the properly chosen linear combination the term in x\ cancels

and the result has the factor xr But the only covariants

having x
2
as a factor are multiples of L. Next let t be even.

Then

/*, A/ 3
', iQf*-*, QC*-\ i

x
QK (f

=
\ *'

f- )
Vtj = Z A, A2

, q.J

have as coefficients of .r*\'

a2
, a2A, a i, B, iv

Lemma. If the order co of a covariant C of a binary

quadratic form modulo 3 is not divisible by 3, its leading

coefficient &1

is a linear homogeneous function of the semin-

variants (i), (s), other than 1, /, q.

In proof of this lemma we have under the transformation
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For a covariant C the final sum equals

where a' ,
••• are given by the above induced transformation

on the as. Hence

S'
1
-S

1
= a>S(mod 3).

Now write S
t
= ka\a\a\ + t (t of degree < 6),

and apply the induced transformations. We have

S[ = ka^a
Q + a

1 )
2(a — a

x
4- «

2 )
2 + £'

= kaf^a^r + a\ + a
x
a
2 + a\a^) + £',

where r is of degree 3 and t' of degree < 6. Hence

a»S= &(a r + a2
af + a%a

1
a^) + t' — t (mod 3).

Since &> is prime to 3, S is of degree < 6. Hence # does not

contain the term a%a\a\, which occurs in 2" but not in any

other seminvariant (T), (s). Next if S = 1 + a, where a is a

function of a , av a
2
without a constant term, IC is a covari-

ant C with <S"= J. Finally let S=q+ a
1
+ a^ + «

3
A2 + ^

where t is a constant and the «
f
are functions of a . Then

by (A)
qS= I-A2 + 1 +«!?,

which has the term a\a\a\ (from I). The lemma is now
completely proved.

Now consider covariants C of order o> = 6 t + 2. For £

odd, the covariants

have as coefficients of x\

a2, a , A2 — a2A + a§, « A + a
o' ^

respectively. Linear combinations of products of these by

invariants give the sem invariants (s) and A, A2
. Hence, by

the lemma, C=P + LG\ where P is a polynomial in the
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covariants of the table omitting

/

4. For t even the co-

variants

fQ^PQ'-K C2 Q<, Otf

have a , a2,, A + afr B as coefficients of x".

Taking up next covariants of order &> = 6 1 + 4, the

coefficients of a-" in

are, respectively, a , a$, B, A — a2A. Linear combinations

of their products by invariants give all sera in variants not

containing 1, /, q. Hence the eight concomitants of the

table form a fundamental system of modular concomitants

of/ (modulo 3). They are connected by the following

syzygies :

fCx
ee 2(A2 + A)i, /<72 ee (1 + A)/

4 ) d
G\ - 0\ = (A + l)2/2 C7 1 —jgT

4
= A £ J

v

No one of these eight concomitants is a rational integral

function of the remaining seven. To prove this we find

their expressions for five special sets of values of « , av a
2

(in fact, those giving the non-equivalent
(
fs under the group

of transformations of determinant unity modulo 3):



CHAPTER IX

INVARIANTS OF TERNARY FORMS

In this chapter we shall discuss the invariant theory of the

general ternary form

/= a™ = b';> = ••-.

Contrary to what is a leading characteristic of binary forms,

the ternary/ is not linearly factorable, unless indeed it is

the quantic (198) of the preceding chapter. Thus / repre-

sents a plane curve and not a collection of linear forms.

This fact adds both richness and complexity to the invariant

theory of f. The symbolical theory is in some ways less

adequate for the ternary case. Nevertheless this method

has enabled investigators to develop an extensive theory

of plane curves with remarkable freedom from formal

difficulties.*

SECTION 1. SYMBOLICAL THEORY

As in Section 2 of Chapter VIII, let

f(x) =a% = Vl + a
2
x
% + a

3
.r
3
)'" = 6™

Then the transformed of / under the collineations V (Chap.

VIII) is

/' = (a Ax[ + a/.
2 + a

v
x'
zy\ (199)

I. Polars and transvectants. If (>jv i/
2 , ?/3) is a set co-

gredient to the set (xv .r
2

, .r
3 ), then the (y) polars of / are

(cf. (61))

fvk = a£-*a* (k = 0, 1, •••, m). (200)

* Clebscb, Lindemann, Vorlesungea iiber Geometrie.

209
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If the point (</) is on the curve /= 0, the equation of the

tangent at (//) is

ata%-
1 = 0. (201)

The expression

d.r.

d

dx

Im — 1 \n — 1 \p — 1 q

hi \n \p fyi ^y-i

dz
x

dz
2

_d_

dx
s

dz

(202)

is sometimes called the first transvectant of /(#), <K20> ^(V),

and is abbreviated (/, (f),
-v/r). If

/O) = a™ = a'™ = -.. 4>(z) = bnx = b'?= ..., ^(*) = «Jf =# = -

then, as is easily verified,

(/, </>, y\r) = {abc)a"r l

b'r
{ e"- x

.

This is the Jacobian of the three forms. The rth trans-

vectant is

(/, 0, i/r)'' = (abcya";-'b'J.-
reP- r (r = 0, 1, ...). (203)

For r = 2 and/=$ = i/r this is called the Hessian curve.

Thus

( /, /,/ ,2 _
( abcyay-W-h-*-'

2 =

is the equation of the Hessian. It was proved in Chapter I

that Jacobians are concomitants. A repetition of that proof

under the present notation shows that transvectants are like-

wise concomitants. In fact the determinant A in (202) is

itself an invariant operator, and

A' =(\pv)A.

Illustration. As an example of the brevity of proof which

the symbolical notation affords for some theorems we may
prove that the Hessian curve of/ = is the locus of all points

whose polar conies are degenerate into two straight lines.
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If g = ax = /3§ = ••• = %M>-r i
+ ••• is a conic, its second trans-

vectant is its discriminant, and equals

(a/37)2 = (2± ai/3273
)2 = 6

200 a no a Ml

^110 a020 a
011

a
l01

a
011

a
002

,

etc. If (a/87)2 = the conic is asince a\ = /3j = ••• = a

2-line.

Now the polar conic of/ is

P = a%a$-2 = aX'"
-2 = '"•>

and the second transvectant of this is

(P, P, P) 2 = ( aa'a")
2a™-2a'™-2

a'J
m-2

. (204)

But this is the Hessian of / in (v/) variables. Hence if ( g)
is on the Hessian the polar conic degenerates, and conversely.

Every symbolical monomial expression <$> consisting of fac-

tors of the two types (abc), ax is a concomitant. In fact if

4> = (abcy(abdy ••• axb% •••,

then

4>' =
«A
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may be obtained by polarization : That is, by a process analo-

gous to that employed in the standard method of transvec-

tion in the binary case. Let

(bc')
1
= b

2
c
3
-b

3
c
2

. (bc)
2
= b

3
c
x
- b

x
c
3 , (be)

s
= b^

2
- b

2
cy (205)

Then
am = (abc). (206)

Hence T may be obtained by polarizing ax
l r times, changing

i/i into (£><?); and multiplying the result by bx
~ r

cx
- r

. Thus

(a$bx, cx , dx ~) 2 = -
i)(i)^«A + (i)(o)

a
'
5

-r

= ^(acd)(bcd^)axcx + ^{acd) 2bxcu

Before proceeding to further illustrations we need to show

that there exists for all ternary collineations a universal co-

variant. It will follow from this that a complete fundamental

system for a single ternary form is in reality a simultaneous

system of the form itself and a definite universal covariant.

We introduce these facts in the next paragraph.

II. Contragrediency. Two sets of variables (xv xv £
3),

(uv uv w
3) are said to be contragredient when they are sub-

ject to the following schemes of transformation respectively :

ajj = \
x
x[ + ix

x
x'
2 + v

x
x'
3

V : x2 = \
2
x[ + yu

2.ro + p
2
x'
3

x
3
= \

3
x[ + fiB

a
2̂ + v

3
x
3

U
\
~ ^l"l + ^2 "2 + \sM3

A : ?4 = ^lW l + ^2 ?<
2 + ^3W3

u'
z
= vlUl + v

2
u
2 + v

3
u
3

.

Theorem. A necessary and sufficient condition in order

that (x) may be contragredient to (u) is that

u
t
.= u

l
x

1
+ u

2
x
2 + u

3
x
3

shoidd be a universal covariant.
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If we transform ux by V and use A this theorem is at once

evident.

It follows, as stated above, that the fundamental system

of a form / under V, A is a simultaneous system of / and ux
(cf. Chap. VI, § 4).

The reason that u r = u
1
x

1
+ u

2
x
2
does not figure in the cor-

responding way in the binary theory is that cogrediency is

equivalent to contragrediency in the binary case and ux is

equivalent to (xy) = x
xy%

— x
2yv which does figure very

prominently in the binary theory. To show that cogredi-

ency and contragrediency are here equivalent we may solve

u[ = XjWj + \
2
w
2

u'
2
= ^u

x + /*2
m
2,

we find

— O^O^i = X
2
w
2 + fi2 (

— m£),

(\^)w
2
= \y2 + /x

:
(- u'j),

which proves that yx
= + uv y2

= — u
x
are cogredient to xv

xY Then ux becomes (j/:r)(cf. Chap. 1, § 3, V).

We now prove the principal theorem of the symbolic

theory which shows that the present symbolical notation

is sufficient to represent completely the totality of ternary

concomitants.

III. Theorem. Every invariant formation of the ordinary

rational integral type, of a ternary quantic

TT\ \

m
f=am

>

|fafaK
a»'-rf2«4 (2n% = w) '

can be represented symbolically by three types offactors, viz.

(ata), (abti), a x,

together with the universal covariant ux.

We first prove two lemmas.
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Lemma 1. The following1 formula is true :

A"D"=

d

3\j
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A"D» = V ( ,-7-j^—)\\h\h\h)
2
\h + h+ »8+ l

= ij ciw)
2

i

w+i = ki»)
8
(w + i >

2
(w + 2 >- (2°8)

This is evidently a numerical constant (7=^0, which was
to be proved (cf. (91)).

Lemma 2. If P is a product of m factors of type aA , n of

type /8M , and jo of type 7„, then A fcP is a sum of a number of

monomials, each monomial of which contains k factors of

type («/37), m — k factors of type aK , n — k of type /8 , and

p — k of type 7^.

This is easily proved. Let P = AB (7, where

Then

a3P

(> = 7
(i)
7 (2) ... 7 <p).

^£ (7

J)

7i

r = l,

8= 1, n

Writing down the six such terms from AP and taking the

sum we have

Ai^C'^'V").^^ (209)
r,s,t "A M/x l v

which proves the lemma for k= 1, inasmuch as — has
«r

m — 1 factors ; and so forth. The result for AkP now fol-

lows by induction, by operating on both members of equation

(209) by A, and noting that (a (r)
/3

(s)

y
(t)

) is a constant as far

as operations by A are concerned.

Let us now represent a concomitant of / by <£(a, #), and
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suppose that it does not contain the variables (w), and that

the corresponding invariant relation is

<£(a', x\ -•^= (\fj,vy<]>(a, x, •••)• (210)

The inverse of the transformation F"is

x[ = (X/xz/)- 1 ICfiv)^ + O^V2 + OuOrfZv]

etc. Or, if we consider (z) to be the point of intersection of

two lines

v*= i\x
x
+ v

2
x
2 + y

3
.r
3 ,

wx = ivvi\ + w
2
x
2 + it'

B
x
s ,

we have
x

1
:x

2
:x

3
= (yw\ : (yw\ : (w)

3
.

Substitution with these in x'v ••• and rearrangement of the

terms gives for the inverse of V

r-i •To =

_ VplV v — VvWn
(Xfiv)

v vit\ — VKWV

(Xfiv)

(Xixv)

We now proceed as if we were verifying the invariancy of

(/>, substituting from V' 1 for x'v x
2 , x'

3
on the left-hand side of

(210), and replacing a'm m b}r its symbolical equivalent

a^a™*a™3 (cf. (199)). Suppose that the order of
<f>

is o>.

Then after performing these substitutions and multiplying

both sides of (210) by (X/ii/) ' we have

<K<laJNC», V*P>* ~ *W, •••) = CV"0**" <£(a, x, ...),

and every term of the left-hand member of this must contain

w + (o factors with each suffix, since the terms of the right-

hand member do. Now operate on both sides by A. Each

term of the result on the left contains one determinant factor

by lemma 2, and in addition iv + w — 1 factors with each
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suffix. There will be three types of these determinant fac-

tors e.g.

(afo), (avw~) = ax,
(abv).

The first two of these are of the form required by the

theorem. The determinant (a5v) must have resulted by

operating A upon a term containing axb lx
vv and evidently

such a term will also contain the factor w^ or else W\. Let

the term in question be

Then the left-hand side of the equation must also contain

the term
— Rakby.vILwv ,

and operation of A upon this gives

— M^abw^v^,

and upon the sum gives

R^abvyw^ — (abviyvy^.

Now the first identity of (212) gives

(abvywp — (abw")Vn = (bviv^a^. — {avw^b^ = b^a^ — b^dj..

Hence the sum of the two terms under consideration is

B>(J>x<*>* — &/»«*)»

and this contains in addition to factors with a suffix /m only

factors of the required type a r . Thus only the two required

types of symbolical factors occur in the result of operating

by A.

Suppose now that we operate by Aw+0i upon both members

of the invariant equation. The result upon the right-hand

side is a constant times the concomitant <£(«, x) by lemma
1. On the left there will be no terms with X, /x, v suffixes,

since there are none on the right. Hence by dividing

through by a constant we have (p(a, x) expressed as a sum

of terms each of which consists of symbolical factors of only

two types viz.

(abe), «.,.,
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which was to be proved. Also evidently there are precisely

o) factors ax in each term, and w of type (abc), and a> = if

(f>
is an invariant.

The complete theorem now follows from the fact that any

invariant formation of / is a simultaneous concomitant of f
and ux . That is, the only new type of factor which can be

introduced by adjoining ux is the third required type (abu).

IV. Reduction identities. We now give a set of identi-

ties which may be used in performing reductions. These

ma}r all be derived from

ax bx (

a
y

Oy Cy

a, b, c,

= (abc)(xyz), (211)

as a fundamental identity (cf. Chap. Ill, § 3, II). We let

uv w
2 , u3

be the coordinates of the line joining the points

(x) = (xv xv x
s ), O) = (yr yv j/g). Then

u
x

: u
2

: u
3
= (xy)

x
: (xy\ : (xy\.

Elementary changes in (211) give

(bed)ax — (cdd)bx + ( dab)ex — (abc)dx = 0,

(bcu)ax — (cua)bj. + (uab)c r
— (abc)u r = 0, (212)

(abc)(def) - (dab)(cef) + (cda)(bef) - (bcd)(aef) = 0.

Also we have
a,.bv — aj) r = (abu)i

, A \ (
213 )

Pawb — vbwa = (abx).

In the latter case (x) is the intersection of the lines v, w.

To illustrate the use of these we can show that if

/= a r
= ••• is a quadratic, and D its discriminant, then

(abc)(abd)c rdx = ^ Df.

In fact, by squaring the first identity of (212) and inter-

changing the symbols, which are now all equivalent, this

result follows immediately since (abe)2 = D.
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SECTION 2. TRANSVECTANT SYSTEMS

I. Transvectants from polars. We now develop a stand-

ard transvection process for ternary forms.

Theorem. Every monomial ternary concomitant of f=

<f)
= (abc) p(abd) q ••• (bcd) r ••• (abu) s(bcuy • •• aa • ••,

is a term of a generalized transvectant obtained by polarization

from a concomitant <£ x of lower degree than cf>.

Let us delete from cf> the factor a%, and in the result

change a into v, where v is cogredient to u. This result

will contain factors of the three types (bcv), (bed), (buv),

together with factors of type b r . But (uv) is cogredient to

x. Hence the operation of changing (uv) into x is invari-

antive and (buv) becomes bx . Next change v into u. Then
we have a product ^ of three and only three types, i.e.

(6cw), (bed), bx,

f
f>1
= (bcd) a

.-• (bcuY ••• b yxc\ ....

Now <^>
l

does not contain the symbol a. Hence it is of

lower degree than cf>. Let the order of </> be <o, and its class

fi. Suppose that in
<f>

there are i determinant factors con-

taining both a and w, and k which contain a but not u.

Then
<r + i + k = m.

Also the order of <$>x
is

(1,l==(o-{-2i + k— m,

and its class

(Uj = fx — i + k.

We now polarize $>x
by operating [v— ) (#7-) upon it and

dividing out the appropriate constants. If in the resulting
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polar we substitute v = a, y=(au) and multiply by a^~i~ k

we obtain the transvectant (generalized)

T =
((f)v «',", ?4)

A
' \ (214)

The concomitant
<f>

is a term of t

For the transvectant t thus defined k + i is called the

index. In any ternary concomitant of order a> and class /a

the number a> + fi is called the grade.

Definition. The mechanical rule by which one obtains

from a concomitant

C = A.<X\xClo,x '" a r.ralua2u "' asui

any one of the three types of concomitants

Cj = A^a^a^a^a^,. • •• a rraUta2u
••• asu ,

C
2 = Aa

lai
a2r ••• o>rx(h,u(hu '" asw>

C3
= A^a^a^a^ • •• a,,,.«

4tt
... a

sil ,

is called convolution. In this ai a , indicates the expression

^ll^ll ~^~ a
i2
a
12 "I" a l3

CC13"

Note the possibility that one a might be a-, or one a might

be u.

II. Theorem. 7%e difference between any two terms of a

transvectant t equals reducible terms whose factors are concom-

itants of lower grade than t, plus a sum of terms each term

of which is a term of a transvectant r of index < k + t,

In this,
<f) l

is of lower grade than
(f> x

and is obtainable from the

latter by convolution.

Let ^>j be the concomitant above, where A involves

neither u nor x. Then, with X numerical, we have the polar

= A1a lya2y
... aivai+lx • •• arJ.alv

... akvak+lu ••• asu . (215)
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Now in the ith. polar of a simple product like

two terms are said to be adjacent when they differ only in

that one has a factor of type 7^7^ whereas in the other this

factor is replaced by 7/,/y,,,- Consider two terms, tv t
2
of P.

Suppose that these differ only in that avvaKUa fl
yajx in t

x
is re-

placed in t
2
by ar, u^KV<ihxajij • Then £j — t

2
is of the form

^i
— t

2 = Bya^a^a^aj^. — ami^K vahxajy)'

We now add and subtract a term and obtain

h-h= B l
a
m'
a

<ii(.
ah,Aj.r-ahraJy ) + ahxajy(anvuKU- ctmaltl

)'] . (216)

Each parenthesis in (216) represents the difference between

two adjacent terms of a polar of a simple product, and we

have by (213)

t
x
- t

2
= B^yx^a^a^a^ + JS(aKaI)

(wv))a
/(J

.a,> . (217)

The corresponding terms in t are obtained by the replace-

ments v = «, y = («m). They are the terms of

8= — i?'((aw)(a
;i
o,):c)aai) ocKM — JB'((aM)aKan

)(a
J
aw)aAx ,

or, since

{(au)(ahaj*)x) = (aaha^)ux — (ahaJu')ax ,

of

S = B'XaAa/w)<V<W*.r - ^'(%«/a)«WW*r
+ B'{a

n
aK(au))(Kajau')ahx ,

where B becomes B' under the replacements v = a, y ={au).

The middle term of this form of S is evidently reducible,

and each factor is of lower grade than t. By the method

given under Theorem I the first and last terms of S are re-

spectively terms of the transvectants

r
1
=(B

1
(ahaju')amiaKU , a™, w^1)*'*-1

*

t
2
= (B^a av

x)ajxahx , a?, <+1 )*
_1

' i+1
-

The middle term is a term of

t
3
=(- B^a^u^a^ a™, MJT

1)*+1,i
-1

• ux .
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In each of these B
1

is what B becomes when v = u, y = x
;

and the first form in each transvectant is evidently obtained

from u
,(f) 1

= Oux hy convolution. Also each is of lower grade

than <j>v
Again if the terms in the parentheses in form (216) of

any difference t
x
— t

2
are not adjacent, we can by adding and

subtracting terms reduce these parentheses each to the form *

[0 1
-t

2) + (t
2
-t

3 )+ ...(t^-t/)], (218)

where every difference is a difference between adjacent terms,

of a simple polar. Applying the results above to these dif-

ferences T,- — Ti+1 the complete theorem follows.

As a corollary it follows that the difference between the

whole transvectant t and any one of its terms equals a sum
of terms each of which is a term of a transvectant of a"1 with

a form ^ of lower grade than <j>v obtained by convolution

from the latter. For if

T = I^Tj -f V
2
T
2 + ••• + VTTT + •••

where the vs are numerical, then rr is a term of t. Also

since our transvectant t is obtained by polarization, 1v
{
= 1.

Hence
T - Tr

= V
l (j l

- Tr) + V
2
(T

2
- Tr ) + •••,

and each parenthesis is a difference between two terms of t.

The corollary is therefore proved.

Since the power of ux entering t is determinate from the

indices k, i we may write r in the shorter form

The theorem and corollary just proved furnish a method

of deriving the fundamental system of invariant formations

of a single form/= a% by passing from the full set of a given

degree * — 1, assumed known, to all those of the fundamental

*Isserlis. On the ordering of terms of polars etc. Proc London Math.

Socielp. ser. 2, Vol.6 (1908).
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system, of degree i. For suppose that all of those members
of the fundamental system of degrees < i — 1 have been

previously determined. Then by forming products of their

powers we can build all invariant formations of degree i — 1.

Let the latter be arranged in an ordered succession

in order of ascending grade. Form the transvectants of

these with a™, t
?
-=(<£ 0)

, a™) k,i
. If r

i
contains a single term

which is reducible in terms of forms of lower degree or in

terms of transvectants rjt j' <j, then t
;
- may, by the theorem

and corollary, be neglected in constructing the members of

the fundamental system of degree i. That is, in this con-

struction we need only retain one term from each trans-

vectant which contains no reducible terms. This process of

constructing a fundamental system by passing from degree

to degree is tedious for all systems excepting that for a

single ternary quadratic form. A method which is equiva-

lent but makes no use of the transvectant operation above

described, and the resulting simplifications, has been applied

by Gordan in the derivation of the fundamental system of a

ternary cubic form. The method of Gordan was also suc-

cessfully applied by Baker to the system of two and of three

conies. We give below a derivation of the system for a

single conic and a summary of Gordan's system for a ternary

cubic (Table VII).

III. Fundamental systems for ternary quadratic and cubic.

Let/= drx = 6| = ••• . The only form of degree one is / it-

self. It leads to the transvectants

(a% £2)0.1 = (abu)axbt = 0, (a2
, J2 )

' 2 = («6m)2 = L.

Thus the only irreducible formation of degree 2 is L. The

totality of degree 2 is, in ascending order as to grade,
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All terms of (/
2
,
/)* * are evidently reducible, i.e. contain

terms reducible by means of powers of /and L. Also

{(abuf, cl)1'°= (abc)(abu)cx

= ^(abc^\_(abu)cx + (beu)ax + (caii)b r
~\ = ^(abcyux,

((abu)2
, ciy-»=(abcy=D.

Hence the only irreducible formation of the third degree is

D. Passing" to degree four, we need only consider trans-

vectants offL with/. Moreover the only possibility for an

irreducible case is evidently

(/L,/) 1 ' 1 = (abd^(abu)<lcdu)cx

= ^(abu)Qcdu^\_(abd)cx 4- (bcd)ax + (dca)bx -f {acb~)dx ~\ = 0.

All transvectants of degree > 4 are therefore of the form

CW/)*«(t' + *<8),

and hence are reducible. Thus the fundamental system

off is

wx, /, Z, D.

The explicit form of D was given in § 1. A symmetrical

form of L in terms of the actual coefficients of the conic is

the bordered discriminant

*200 a
ll0

a
l01

U
l

hl<)
rt
020

a
011 U

2

Z
101

a
011

a002 U
3

itj W
2

Mg

To verify that i equals this determinant we may expand

(a5w)2 and express the symbols in terms of the coefficients.

We next give a table showing Gordan's fundamental

system for the ternary cubic. There are thirty-four in-

dividuals in this system. In the table, i indicates the

degree.

The reader will find it instructive to derive by the
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methods just shown in the case of the quadratic, the forms

in this table of the first three or four desrrees.

TABLE VII

i
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in which A, B are free from (x) and (w). A transvectant

of </>, and -v/r of four indices, the most general possible, may
be delined as follows: Polarize

(f)
by the following operator,

wherein e,-, t
;
-, -cr,, v

{
= or 1, and

2e = i, St = j\ So- = &, 2v = ? ; i + j ^ r, k -+- / ^ s.

Substitute in the resulting polar

(a) 3#>=/8p . (i? = l, 2, .-, 0,

(*) V? = (J>J*) (^ = 1,2, ...,./),

(0 «<»-ft, Q> = 1, 2, ...,*),

(d) Vf=(^) (^ = 1,2, ...,?),

and multiply each term of the result by the bx,
yS„ factors not

affected in it. The resulting concomitant t we call the

transvectant of </> and -v/r of index
(

t, A and write

An example is

+ fl^«{
! ("i'

)l")+":y(i1("lJ2"')-

If, now, we introduce in place of $ successively products of

forms of the fundamental system of a conic, i.e. of

/= a% L = «2 = ( a'a"u)2, D = (aaV) 2
,

and for -\|r products of forms of the fundamental system of a

second conic,

g = b% L< = £2 = (b'b"u)\ I)' = (bb'h")\

we will obtain all concomitants of/and g. The fundamental

simultaneous system of/, # will be included in the set of
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transvectants which contain no reducible terms, and these

we may readily select by inspection. They are 17 in num-
ber and are as follows :

3> =OI, i!)8; g = (ahu)\

<7j = (a% 5^)0, x _ (abu)a,.b r ,

122 — \~& A-Wo.O — P"1

o
2 = 01, ^)o',o = a

fi
aA,

3
= («2, 62)0, o = abaubx,

-"112 = \atti
bx)% o

= abi

C
b
= («£,

62/32)o
;

o = ab(apx)bxl2u,

6̂ = («& ^Doio =^W JA.
(7

7
= (a2«2, J|)0,i = «6(a6w)^.« tt ,

6r

8
= (a2.<4 £2)1, o = a^(a/3a;)a ;

.aM ,

# = (/£, ^01; i
= apab(a@x)axbx,

r = (/£, ^')1; o
= a^b(abu)aur3w

K
x
= (fL, gL' )i;

} = dfi(abu)au(a/3x)bx,

K2 - (/-£> ^02; 1 = ab(abu)l3u(afix}ax ,

K
3
= (/L, #i7)i; J = afiab(abu)(afix).

The last three of these are evidently reducible by the simple

identity

(abu)(afix') = \a^ bp /3U

|

a, 6 r mx
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The remaining 14 are irreducible. Thus the fundamental

system for two ternary quadrics consists of 20 forms. They
are, four invariants i), D', Auv A122 ; four covariants /, g,

F, G-; four contravariants Z, L\ 4>, F; eight mixed con-

comitants Q
i
(i = \, •••, 8).

SECTION 3. CLEBSCH'S TRANSLATION PRINCIPLE

Suppose that (?/), (z) are any two points on an arbitrary

line which intersects the curve /= a™ = 0. Then

u
x

: w
2

: u
3
= Q/z )j : (yz\ : (yz\

are contragredient to the ar's. If (x~) is an arbitrary point

on the line we may write

x
\ = 7?i#i + 7hzv -r

2 = VitJz + ltfv »3 = V1I/3 + VoJv

and then (_rjv ?;2) may be regarded as the coordinates of a

representative point (x) on the line with (y), (z) as the two

reference points. Then a,, becomes

and the (?;) coordinates of the m points in which the line

intersects the curve /= are the in roots of

9 = 9" = OVh + a zih )
m = ( byVl + h zih )

m = ....

Now this is a binary form in symbolical notation, and the

notation differs from the notation of a binary form h = a'"

= (a
1
x

1
-\- a

2
x^) m = ... only in this, that av a

2
are replaced by

a„, az respectively. Any invariant,

I
x
= 1k(aby(acy •-.,

of h has corresponding to it an invariant i"of g,

1= 1h(a
y
bz
— a zby)

p(« y
t\ - « zeyy ••-.
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If /= then the line cuts the curve/= «'" = in m points

which have the projective property given by I
x
— 0. But

(cf. (213)),

(a
y
b z
— a2by ) = (abu').

Hence,

Theorem. If in any invariant I
1
= *2k(ab) p(ac) q ••• of a

binary form h = a"1 = (^a
l
x

1
+ «

2
^
2 )

m= ••• we replace each second

order determinant (a&) by the third order determinant (a6w),

and so o?i, the resulting line equation represents the envelope of

the line u v when it moves so as to intersect the curve f= a'" =
(a^ + a%x

2 + ^zxz)
m — *w m points having the projective

property I
x
= 0.

By making the corresponding changes in the symbolical

form of a simultaneous invariant I of any number of binary

forms we obtain the envelope of ux when the latter moves so

as to cut the corresponding number of curves in a point

range which constantly possesses the projective property

/= 0. Also this translation principle is applicable in the

same way to covariants of the binary forms.

For illustration the discriminant of a binary quadratic

h = a2 = b2 = ••• is D=(ab~)%. Hence the line equation of

the conic /= a| = (a^x^ + a
2
x
2 + a

3
x
3)

2= ••• = is

L=(abu) 2 =0.

For this is the envelope of ux when the latter moves so as to

touch /= 0, i.e. so that D= for the range in which ux cuts

/=0.
The discriminant of the binary cubic h = (a

1
x

1
+ a

2
x
2
)s

= J1= ••• is

B = (aby(ac~)(bd)(cdy.

Hence the line equation of the general cubic curve/=
4= ... is (cf. Table VII)

p
ti

u
= L= (abu) 2(acu)(bdu}(cdu')2= 0.
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We have shown in Chapter I that the degree i of the dis-

criminant of a binary form of order m is 2(ra — 1). Hence

its index, and so the number of symbolical determinants of

type (a£>) in each term of its symbolical representation, is

k = \ im = m(m — 1).

It follows immediately that the degree of the line equation,

i.e. the class of a plane curve of order m is, in general,

m(m — 1).

Two binary forms h
x
= a™ = a!™ = •••, h

2
= b'" = •••, of the

same order have the bilinear invariant

I=(ab)m .

If 1= the forms are said to be apolar (cf. Chap. Ill,

(71)); in the case m = 2, harmonic. Hence (abu)m = is

the envelope of ux = when the latter moves so as to inter-

sect two curves/= a™ = 0, g = b™ = 0, in apolar point ranges.



APPENDIX

EXERCISES AND THEOREMS

1. Verify that 7= a a4
— 4aja3 +3 a! is an invariant of the

binary quartic

/= a^x\ + 4 0^X2 + 6 a^fa-f + 4 a^xl + u4£2>

for which /'=(X^Z

2. Show the invariancy of

«i(«o#i + a^) — (^(a!^ + a2x2),

for the simultaneous transformation of the forms

/= a x
L + a

y
x2 ,

g=a aZ + 2 a^x^ + a.x\.

Give also a verification for the covariant C of Chap. I, § 1, V,

and for J^ ± of Chap. II, § 3.

3. Compute the Hessian of the binary quintic form

/= cttfxl + 5 a^x., + • • •.

The result is

\ H= (a a2
— af)xl + 3(a a3

— a
v
a 2)xlx2 + 3(a a 4 + a^ — 2 al)^^

-f-(a a5 + 7 c^ — 8 o^a^a^el + 3(0^5 + a2a\ — 2 af)^!
+3(a 2a 5

— a3tt4)«1^ +(a3a5
— a\)x\.

4. Prove that the infinitesimal transformation of 3-space which

leaves the differential element,

(j = dx 1 + dyj + dz2
,

invariant, is an infinitesimal twist or screw motion around a

determinate invariant line in space. (A solution of this problem

is given in Lie's Geometrie der Beiiihrungstransformationen.

§ 3, p. 206.)

231
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5. The function

q = a 2a2 + a o| + a a°i + afa2
— a§ — a%

is a formal invariant modulo 3 of the binary quadratic

/= c/oXj + 2 a^Xo + a^of (Dickson).

6. The function a a3 + a
x
a2 is a formal invariant modulo 2 of

the binary cubic form.

7. Prove that a necessary and sufficient condition in order that

a binary form / of order m may be the mth power of a linear

form is that the Hessian covariant of/ should vanish identically.

8. Show that the set of conditions obtained by equating to

zero the 2 m — 3 coefficients of the Hessian of exercise 7 is re-

dundant, and that only m — 1 of these conditions are independent.

9. Prove that the discriminant of the product of two binary

forms equals the product of their discriminants times the square

of their resultant.

10. Assuming (y) not cogredient to (x), show that the bilinear

form
/= %aikx{yk = ctu^i + a12x:y2 + (hv^i + <h&&2,

has an invariant under the transformations

a?i = «,& + &&, *2 = yi£ + 8&,

Vi = ChVi + fan !h = 7iV\ +^
in the extended sense indicated by the invariant relation

aii «2i

«12 a 22
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which needs, at most, to be multiplied by a function ^ of the

coefficients in the transformations T, in order to be made equal

to the same function of the coefficients and variables of /', is a

concomitant of/.

Show in the case where
<f>

is homogeneous that ^ must reduce

to a power of the modulus, and hence the above definition is

equivalent to the one of Chap. I, § 2. (A proof of this theorem

is given in Grace and Young, Algebra of Invariants, Chapter II.)

13. Prove by means of a particular case of the general linear

transformation on p variables that any p-ary form of order ra,

whose term in ccf is lacking, can always have this term restored

by a suitably chosen linear transformation.

14. An invariant cj> of a set of binary quantics

/i = «o«T H ,U = Mi + •"» /s = V? + •• •,

satisfies the differential equations

m* =(a ~+ 2 aJ- +" + ™«,»-.r + h~ + 2&i^
\ octy oa 2 oam oOj do2

+ - + c A+ ...V = o,

o<h J

20<£ =(ma i
—- + O - l)<h—- + ••• + am - + nb

l
—-

+ (n - 1)62J- + ». +&J- + -V = 0.

3&i c)c y

The covariants of the set satisfy

SO - a?2— )4> = 0,
dxj

SO-a^Wo.
5ic2y

15. Verify the fact of annihilation of the invariant

J= 6

«0 «1 «2

a
x

a2 a3

a2 «3 a4

of the binary quartic, by the operators O and O.
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16. Prove by the annihilators that every invariant of degree 3

of the binary quartie is a constant times J.

(Suggestion. Assume the invariant with literal coefficients and operate

by fi and O.

)

17. Show that the covariant J^ A of Chap. II, § 3 is annihilated

by the operators

SQ-afcA, so-**
ax

x
ox2

18. Find an invariant of respective partial degrees 1 and 2, in

the coefficients of a binary quadratic and a binary cubic.

The result is

7= OoC&^s - &!)— a
1 (6„63

- 6i&2)+a2(& &2
- bf).

19. Determine the index of /in the preceding exercise. State

the circumstances concerning the symmetry of a simultaneous

invariant.

20. No covariant of degree 2 has a leading coefficient of odd

weight.

21. Find the third polar of the product f • g, where / is a

binary quadratic and g is a cubic.

The result is

Uti)+ = Tv(f9y3 + §fV9Vi + Sfytiv)-

22. Compute the fourth transvectant of the binary quintic /
with itself.

The result is

(ft f)* = 2(«o«4 — 4 a
{
a3 + 3 af)xl + 2(a a b

- 3 a
x
a A + 2 a^x^

+2(a1afi
— 4 a2a4 + 3 a§)«|.

23. If F=<rr!/icI ,
prow
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24. Express the covariant

Q=(ab)\cb)ciax

of the binary cubic in terms of the coefficients of the cubic by ex-

panding the symbolical Q and expressing the symbol combina-
tions in terms of the actual coefficients. (Cf. Table I.)

25. Express the covariant +j = ((/,/)\ ff of a binary quintic

in terms of the symbols.

The result is

_ j =(aby(bcy-(eayaxbxcx = - {ab)Xac)(bc)^x .

26. Let <£ be any symbolical concomitant of a single form /,

of degree i in the coefficients and therefore involving i equivalent

symbols. To fix ideas, let
<f>

be a monomial. Suppose that the

i symbols are temporarily assumed non-equivalent. Then
<f>,

when expressed in terms of the coefficients, will become a simul-

taneous concomitant fa of i forms of the same degree as /, e.g.

f= a x™ -f- mc^xl'^x., + •••,

/i = b xy + mb^-^Xz + -..,

/»_i = l<p% + m,lvv';' % +
Also <^ will be linear in the coefficients of each /, and will reduce

to c/> again when we set b
i
= = l- = a,-, that is, when the symbols

are again made equivalent. Let us consider the result of operat-

ing with

oaQ oa
x

oam \ oaj

upon fa This will equal the result of operating upon fa, the

equivalent of 8, and then making the changes

6. = ... = I. = a
s (j = 0, •», m).

Now owing to the law for differentiating a product the result

of operating —- upon
<f>

is the same as operating

±+±+...+±
Sa, db. W,
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upon fa and then making the changes b = ••• = I = a. Hence the

operator which is equivalent to 8 in the above sense is

*-(*fi)
+W>- +

te
When 8j is operated upon fa it produces i concomitants the first of

which is fa with the a's replaced by the />'s, the second is fa with

the 6's replaced by the />'s, and so on. It follows that if we write

< = Pv>% 4- mpiO^^Xi + •••,

and
4>=(aby(ac)'.:a<>M-~,

we have for 8<£ the sum of i symbolical concomitants in the first

of which the symbol a is replaced by w, in the second the symbol

b by 7r and so forth.

For illustration if
<f>

is the covariant Q of the cubic,

Q = (ab)\cb)clax,

then

8Q =(tt&)2(c6)c>, +(air)\cTr)c\ax + (a6) 2(7r&)ir
2ax .

Again the operator 8 and the transvectant operator O are

evidently permutable. Let g, h be two covariants of /and show

from this fact that

%, hy=(Bg, hy+(g,8hy.

27. Assume

a = (/,/)
2 = W«A =4

Q = (/, (/, /)
2
)= (<*K*» = (a&)*(c&)c»aa = %

B = (A, A) 2 = (aby(cdy(ac)(bd),

and write

Then from the results in the last paragraph (26) and those in

Table I of Chapter III, prove the following for the Aronhold

polar operator 8 =( Q— ]

:
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¥=Q,
SA = 2(aQ) 2ax& = 2(/, Q)

2 = 0,

*Q = 2(/, (/, QY) +(Q, A)= - 1 72/,

Si?= 4(A, (/ Q)
2

)
2 = 0.

28. Demonstrate by means of Hermite's reciprocity theorem
that there is a single invariant or no invariant of degree 3 of a

binary quantic of order ra according as ra is or is not a multiple

of 4 (Cayley).

29. If /is a quartic, prove by Gordan's series that the Hessian

of the Hessian of the Hessian is reducible as follows

:

(OH, H)\ (H, Hyy = - ^vjf+ 1//^-^-3
).

Adduce general conclusions concerning the reducibility of the

Hessian of the Hessian of a form of order m.

30. Prove by Gordan's series,

(a») !j) 2={^ Tv(^n
where i = (/, /)

4
, and / is a sextic. Deduce corresponding facts

for other values of the order ra.

31. If /is the binary quartic

/=<** = &*= c*=...,

show by means of the elementary symbolical identities alone that

(ab)\acfbyx = J/, (aby.

(Suggestion. Square the identity

2(ab)(ac)bz cz =(ab) 2c
2
x +{ac)%l -(6c) 2a|.)

32. Derive the fundamental system of concomitants of the

canonical quartic

X 4+F4+6raX 2r 2
,

by particularizing the a coefficients in Table II.

33. Derive the syzygy of the concomitants of a quartic by

means of the canonical form and its invariants and covariants.
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34. Obtain the typical representation and the associated forms

of a binary quartic, and derive by means of these the syzygy for

the quartic.

The result for the typical representation is

f '/(y)=? + 3 Hfrf + 4 Ttr? + Q if* - | IP)rf.

To find the syzygy, employ the invariant J.

35. Demonstrate that the Jacobian of three ternary forms of

order m is a combinant.

36. Prove with the aid of exercise 26 above that

(/, </,)*+* =(aa)'r+1
a:-°-^a'r 2r~1

is a combinant of /= a" and <£ = a".

37. Prove that Q =(ab)(bc)(ca)axb Jcx and all covariants of Q
are combinants of the three cubics a\, bl, c& (Gordan >.

38. Let / and g be two binary forms of order m. Suppose
that

<f>
is any invariant of degree i of a quantic of order m.

Then the invariant
<f>

constructed for the form vuf+ v/j will be a

binary form F
t
of order i in the variables vu v.; . Prove that any

invariant of F
{
is a combinant of/, g. (Cf. Salmon, Lessons Intro-

ductory to Modern Higher Algebra, Fourth edition, p. 211.)

39. Prove that the Cartesian equation of the rational plane

cubic curve

x, = ajl + a aitt2 + .- + a l3B (i= 1, 2, 3),

is

K'o 1 K^O 2*M ^*0 3*^
I

$(#!, x2 , x3) = \a a 2x\ |a o 3 .x"] + [aiO^x'l la^icl =0.

|a a 3x| la^scl |«2«3#|

40. Show that a binary quintic has two and only two linearly

independent sei inn variants of degree five and weight five.

The result, obtained by the annihilator theory, is

\(afa5
— 5 aft

a
l
a

i + 10 al<i\a3 — 10 a a%a 2 + 4 a|)

+ /u.(a a2
— «i)(tt

2a3
— 3 acai02 + 2 af).

41. Demonstrate that the number of linearly independent

semin variants of weight w and degree i of a binary form of order

m is equal to

(iv ; i, rn)— (w — 1 ; i, m),
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where (w ; i, m) denotes the number of different partitions of the

number w into i or fewer numbers, none exceeding m. (A proof

of this theorem is given in Chapter VII of Elliotts' Algebra of

Qualities.)

42. If/= a™ = b™ = — is a ternary form of order m, show that

(/, /)«• -'* = (abuy- h
a'>>-

2k
b'r

2k
.

Prove also

<« /)0'

"

/y -

'

-?2^miC
~ 2

*X"
-' *)w

X (a6w)2*-r(&cw)*-,'(acw)*a
™~<"2fc&

2'
_,+<~2*c?~r~*-

43. Derive all of the invariant formations of degrees 1, 2, 3, 4

of the ternary cubic, as given in Table VII, by the process of pass-

ing by transvection from those of one degree to those of the next

higher degree.

44. We have shown that the seminvariant leading coefficient of

the binary covariant of/= a™,

<f>
= (aby(ac)« — aj$?*»,

is

<£ = (a6) p(ac)«.-«f6f •••.

If we replace a
v
by ax, 6 X

by bx , etc. in
<f>Q and leave a2 , b2 ,

•••

unchanged, the factor (ab) becomes

(a l
x

l + a2x2)b2
— (b^ -f- b2x2)a2

= (ab)xv

At the same time the actual coefficient ar = a™~ ra r

2 of / becomes

\m — r Qrf
cC- ra2 =

[m daS

Hence, except for a multiplier which is a power of xu a binary

covariant may be derived from its leading coefficient <£ by re-

placing in <£ , a , a1; —, am respectively by

f 1.K 1 d 2f _

\m—r drf
_

1 d'"f
t

m dx2 m{m — 1) d.rf
|
m dx2

'
| m da™

Illustrate this by the covariant Hessian of a quartic.
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45. Prove that any ternary concomitant of /= a™ can be de-

duced from its leading coefficient (save for a power of ux) by re-

placing, in the coefficient, a by

mm--
(Cf. Forsyth, Amer. Journal of Math., 1889.)

46. Derive a syzygy between the simultaneous concomitants of

two binary quadratic forms /, g (Chap. VI).

The result is

-2J\, = Dx? + D2r-2hfg,

where J12 is the Jacobian of the two forms, h their bilinear in-

variant, and Du D2 the respective discriminants of/ and g.

47. Compute the transvectant

of the ternary cubic

^ |3/= a s
x = bl = V

.
,_ *T , ,

.

flWafaflEg,

\z\i\l

in terms of its coefficients apqT (p + g-)-r = 3).

The result for £(/, /)
0, - is given in the table below. Note that

this mixed concomitant may also be obtained by applying

Clebsch's translation principle to the Hessian of a binary cubic.

4>q
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a-hi%





„„„, . \jrictut; :

definition, 23 of binary concomitant, 123

systems, 144-161 of ternary concomitant. 220

universal, 32 Group :

Cubic binary :
of transformations, 18

fundamental system, 68, 100, 141 the induced group, 19
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25

28

29

31

33

37

39

45

52

In (12); for % read jt

For c/cs., read 9/3xa
'

In the subscript of the

second element of the

first row read x.^ for x
2

For i n" (n — 1)" read

i»i»(m-l)» . . .

For A , A m read a , am
For (2, 2) read (2. 3) .

For w = w read w =§ w .

Kead (Jr Xo)u for (x15 ./•.,)

For a'=/^,„ read a,;=/
0jU

For (- l)
r read (- 1)* .

ERRATA



INDEX

Absolute covariants, 2, 42

Algebraically complete systems, see

fundamental systems
Anharmonic ratio, 3
Annihilators :

binary, 25
ternary, 189

Anti-seminvariants, 176, 179
Apolarity, 51, 173
Arithmetical invariants, 12, 32, 48,

157
Aronhold's polar operators, 46
Associated forms, 158

Bezout's resultant, 168

Bilinear invariants, 51

Boolean concomitants

:

of a linear form, 156

of a quadratic, 157

Canonical forms :

binary cubic, 108

binary quartic, 111

binary sextic, 112

ternary cubic, 111

Class of ternary form, 230
Classes in modular theory, 204
Cogrediency, 20
Combinants, 162

Complete systems :

absolutely, 129

relatively, 130 _
Conic, system of, 224 ^,
Contragrediency, 212
Contravariants, 228
Conversion operators, 70

Convolution, 93, 220
Coordinates, 15

Covariant curves, 171

Covariants :

definition, 23
systems, 144-161

universal, 32
Cubic, binary :

fundamental system, 68, 100, 141

Cubic, binary :

canonical form, 108
syzygy, 107, 110, 161

Cubic, ternary :

fundamental system, 225
canonical form, 111

semi-discriminants, 193

Degree, 20
Determinant, symbolical, 55, 170
Differential equation :

satisfied by combinants, 163
(see also annihilators)

Differential invariant, 9

Diophantine equations, 116
Discriminant, 4, 31

Eliminant, 30
End coefficients, 179
Euler's theorem, 44
Existence theorem, 40

Factors of forms, 69, 191

Fermat's theorem, 14, 21

Finiteness

:

algebraical concomitants, 66
formal-modular concomitants,

204
modular concomitants, 204

Formal modular concomitants, 12,

157

Fundamental systems, 144, 161, 204,

223, 225

Geometry of point ranges, 78

Gordan's proof of Hilbert's theorem,
112

Gordan's series, 83
Gordan's theorem, 128

Grade

:

of binary concomitant, 123

of ternary concomitant. 220

Group :

of transformations, 18

the induced group, 19

243
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Harmonically conjugate, 6
Hermite's reciprocity theorem, 76
Hesse's canonical form, 111

Hessians, 28
Hilbert's theorem, 112

Identities, fundamental

:

binary, 66
ternary, 218

Index, 34
Induced group, 19
Inflexion points, 171
Intermediate concomitants, 47
Invariant area, 1

Invariants

:

fundamental systems, 144-161
modular, 203
formal modular, 157, 204

Involution, 78
Irreducible systems, see fundamental

systems
Isobarism, 35

Jacobians, 27

Jordan's lemma, 119

Line equation :

of conic, 223
of cubic, 229
of form of order m, 230

Linear transformations, 15
Linearly independent seminvariants,

178, 205.

Mixed concomitants, 228
Modular

:

concomitants, 203
forms, 203
transformation, 12

Operators
{see annihilators)

conversion, 70
Aronhold, 46

Parametric representation, 169
Partitions, 238
Polars, 42
Projective properties, 78

Quadratic, 65
Quadric, 225
Quartic, 89

Quaternary form, 33
Quintic, 147

Range of points, 78
Rational curves, 169
Reciprocity, Hermite's law, 76
Reduction, 64, 83
Representation, typical, 159
Resultants, 29, 166, 168
Resultants in Aronhold's symbols,

151
Robert's theorem, 179
Roots, concomitants in terms of, 69

Semi-discriminants, 193
Seminvariants :

algebraic, 175
modular, 205

Sextic, canonical form of, 112
Simultaneous concomitants, 23
Skew concomitants, 39
Standard method of transvection:

binary, 67
ternary, 219

Stroh's series, 89
Symbolical theory :

binary, 53
ternary, 209

Symmetric functions :

binary, 69
ternary, 191

Symmetry, 39
Syzygies :

algebraic, 104
modular, 208

Tables :

I. Concomitants of binary cubic,

68
II. Concomitants of binary quar-

tic, 89
III. System of quadratic and

cubic, 147

IV. System of quintic, 150
V. Semi-discriminants of ter-

nary cubic, 200
VI. Modular system of quad-

ratic, 204
VII. System of ternary cubic,

225
Ternary qualities

:

symbolical theory, 209
transvection, 219
fundamental systems, 223, 225
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Transformations, non-linear, 9

(see linear transformations)
Transformed form :

binary, 16

ternary, 187

Translation principle

:

Clebsch's, 228
Meyer's, 169

Transvectants, binary

:

Definition, 51

Theorems on, 92

Transvectants, ternary :

Definition, 209, 219
Theorems on, 220

Types, 48
Typical representation, 159

Uniqueness of canonical reduction,
109, 112

Universal covariants, 32, 212

Weight, 34
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