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PREFACE.

IN presenting to the mechanical public this little work, I am

fully aware that I am treading upon well-worn ground, and that

I have devoted time and labor to a subject which is well-nigh

"old as the hills," and likewise, to many, as familiar. It may
also seem to some, who have read more extensively than I have

upon the subject of toothed gearing, that this book contains

nothing new, or original with its author : had such been my

belief, the book would never have been written, much less

published.

In my experience as a mechanical engineer I have sought

often and earnestly, but always in vain, for a terse, compact,

yet complete and comprehensive work on the subject of toothed

gearing. Compelled, therefore, by necessity to gain the requi-

site knowledge from many works, and also from some failures

on my own part, and believing, that, in the crowded field of

technical literature, room yet remained for such a publication.

I decided to write a book on toothed gearing, which should

contain all that I had dug out from so many sources, and ns

much more as my experience and originality had taught me,

yet being concise, terse, and simple enough to suit even "
the

wayfaring man, though a fool." Such were the somewhat

iii
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IV PREFACE.

exalted intentions of the author in writing this book : whether or

not the reality equals the anticipation, is for the reader to judge.

Notwithstanding the apparent tendency to lay aside the old

and simple
"
rules of thumb "

for the surer and better methods,

involving, to a certain extent, a knowledge of algebra and geom-

etry, there are still many mechanics who continue to look with

extreme distrust upon any thing in the shape of a book, because

" books are generally too deep and too theoretical." For this

reason I have given throughout the following pages simple rules,

as well as formulas, for performing each and every operation

necessary in designing and laying out the various kinds of gears.

He who possesses the requisite knowledge of algebra and

geometry for which any man will be the better off may
make use of the formulas in designing the gears he may have

to construct
;
while he whose knowledge of mathematics goes

not beyond the simple rules of arithmetic may obtain precisely

the same results, and do in every way as good work, by using the

corresponding rules. Throughout the book I have used a uni-

form system of notation in order to avoid confusing or burden-

ing the memory of the reader, and the numerous examples will

serve to illustrate sufficiently the application of the various rules

and formulas. In all cases where the contrary is not stated,

forces and weights are taken in pounds, and dimensions in

inches. I have also carefully avoided any use of the metric

system ;
because I believe the good old English inch, foot, and

pound to be accurate enough for the proper construction of

any machine, engine, or thing which can be made by the use

of the metric system. In fact, American and English machin-

ery being the best in the world, I see no reason to doubt the

efficacy of the English system of weights and measures, from

a machinal point of view at least. In writing upon a subject
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so old, and upon which so much has been written from time

to time, it is impossible that I should not, to a certain extent,

have copied the thoughts of others, even though in many cases

they are also honestly my own. I deem it best, therefore, to say

that I have taken the liberty of referring to and quoting such

standard writers as Reuleaux, Camus, Unwin, Haswell, and

others, but never, I believe, without giving them due credit.

In writing the paragraph on "
Special Applications of the Prin-

ciples of Toothed Gearing," I have been greatly assisted by

referring to Mr. Henry T. Brown's valuable little book entitled

"
507 Mechanical Movements," without which the work of col-

lecting the various contrivances explained in this paragraph

would have been indeed laborious. I trust, that, while much

that is printed in this book may be found in other works on

the subject, it also contains much that cannot be found else-

where, and that my earnest desire to make it a simple, compre-

hensive, and convenient companion in the shop and scientific

school, may be in some measure, if not fully, realized.

J. H. C
NEW YORK, Feb. i, 1884.
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TOOTHED GEARING.

I. Introduction. Fundamental Principles.

IN the Science of Machinery, a science of vast conse-

quence to the world, and vital to the wealth and power
of any nation, there is, perhaps, no more important
branch than the transmission of power and motion by
means of toothed gearing ;

for in toothed gearing we
have practically the only means of the all-necessary

transmission. Having been known for thousands of

years, and in practical use for centuries, in reviewing
this subject we should naturally look for many succes-

sive alterations and improvements, even in fundamental

principle ;
but no such result will be found by the most

diligent research. Contrary to the natural and seem-

ingly inevitable course of mechanical contrivances, in

principle toothed gearing stands as an exception to the

well-nigh universally accepted theory of "small begin-

ning and gradual development." Improvement in this

branch of machinal science has been slow and retarded
;

and strangely discordant with the general belief that

first principles are always erroneous, or at least faulty

ones, is the fact that the fundamental principle of

toothed gearing, as it may be expressed to-day, is pre-
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cisely what it was ten centuries ago. The slow-moving
centuries which have witnessed the successive changes
in water-motors from the simple undershot wheel,

driven in mid-stream by the impulsive force of the

river's current, first to the overshot and Poncelet, then

to the turbine and water-engine of the nineteenth cen-

tury, each involving a different, and, in its turn, an

improved, principle can tell of no such advance in

the essential principle of toothed gearing. Throughout
the years which have changed the steam-engine from
an atmospheric-pressure engine to a high-pressure ex-

pansion steam-motor
; throughout the years which have

produced the locomotive-engine, the ocean steamer, the

telegraph, the electric light, the gas-engine, and the

telephone, with all their successive alterations in prin-

Fig. I

/*
&

BA (

ciple and theory, the science of toothed gearing almost

alone has been able to attest, that in one case at least,

if no more, first principles have been sound and per-

fect, so perfect as to stand the test of years without

change or improvement. This principle, most simple,

although the underlying principle of the whole theory
and study of toothed gearing, may be succinctly ex-
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pressed as follows : If two cross-shaped pieces be placed
as in Fig. i, the arms of A being somewhat shorter than

those of B, and the pieces being allowed only the motion

of rotation about their fixed axes, or centres, then, if a

continuous rotary motion in the direction indicated by
the arrow be given to the piece B, a similarly contin-

uous rotary motion in the opposite direction will be

given to the piece A. For the arm a, in contact with

the arm a
1

,
will act as a lever upon it, forcing it down-

ward, and at the same time bringing the arms b and b'

into such relative positions, that a similar action will

take place between them. Thus successively each arm

of the piece B will act upon the corresponding arm of

the piece A, and a continuous rotary motion will be

transmitted from the piece B to the piece A. Simple

Fig.2

and crude as our sketch may appear, and however

childish and primary our statement of this fundamental

principle may seem, a most complete analogy exists

between them and the most smoothly and accurately

running gears of the present day ;
for each one of the

countless scores of accurately profiled teeth, working
so industriously and almost noiselessly in our machine-
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shops and factories, is but the projecting arm of our

cross-shaped pieces, modified in accordance with the

advance in machine manufacture, and shaped to suit

the increased demand for accuracy of transmission.

Since, doubtless, the first gear-wheels were similar to

those represented in our figure, let us examine a little

more minutely their action and the conditions neces-

sary for such action. Let us suppose each wheel to

consist of three long, slender pieces, or arms, crossed

and fixed in such a manner that their ends divide the

circumscribing circles into six equal arcs
;
that is, they

form the diagonals of a regular hexagon (Fig. 2). The
arrows indicate the directions in which the wheels

revolve. Now, in order that the rotary motion be

continuous, it is obvious that contact between the arms

d and d' must not cease until contact is begun between

the following pair of arms, c and c: otherwise the

wheel o would move some distance without moving the

wheel </, and consequently the motion of the wheel o

would be intermittent. It is also necessary that the

arms of o
f

be somewhat shorter than those of o; for if

they were equal (Fig. 3), the arcs xqy and xcfy being

also equal, the arms a and a would come in contact at
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their ends, and rotation would be impossible, or, for a

greater separation, the arm /; would leave the arm //

before the arms a and a
f

had reached their proper posi-

tions, and the wheel o would move on indefinitely with-

out touching the wheel o
1

(Fig. 4).

Fig.4

A glance at Fig. 5 is sufficient to show the impos-

sibility of continuous transmission from o to o
1 when

the arms of o
r

are longer than those of o. Let r be the

(ength of each arm of the wheel o (Fig. 2), and /

the length of each arm of the wheel o'. Let us sup-

pose that contact between the arms c and c' begins at

the moment when contact between d and dr
is just

about to cease. We have then the distance pR, be-

tween the two points of contact equal to /, because
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opR is an equilateral triangle. But we have seen that

r' must be less than r: consequently pR must be less

than r. The distance pR must obviously be greater
than the distance pS, else there would be no contact at

all between the arms c and c' . Since, now, the line/W
is perpendicular to and bisects the arm c, we have

==\/x;2 2 =
y/fr

2 = .866r,

but pR = r' is greater than pS: hence the 'conditions

necessary for uniform transmission from the wheel o to

the wheel o' are, that r' be less than r and greater than

.866r. If there were a wheel of this sort given, to be

used as a driver, and we wished to construct a wheel

Fig. 6

which would gear continuously with it, we would pro-

ceed as follows: From the point /, with a radius less

than r and greater than .866r, say .gr, we describe an

arc cutting the arm c in some point R. Then, with

the same radius, we describe a circle passing through the

points R and/, and draw the diagonals of the regular

inscribed hexagon, of which pR is one side. The end

of the arm o'c (Fig. 6) comes in contact with the arm

oe at the point r, and slides along its surface until the
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arms have assumed the positions o'g and of respective-

ly.
Then the end of the arm oe (now in the position

of} comes in contact with the arm o'c (now o'g) at the

point f, and slides along its surface until the positions

ob and o'b are reached, after which contact between this

pair of arms ceases. That is, during each revolution

the end of the arm o'c rubs along the surface of the arm

oe for the distance cd, and the end of oe rubs along the

surface of o'c for the greater distance ab. The wearing-

surfaces being unequal in the two wheels, the wear will

be unequal, or, in other words, one wheel will wear out

before the other : thus the accuracy of transmission

will soon be destroyed, and the wheels rendered useless.

Such rude contrivances can, of course, be of no practical

use, and are given here, not as practical examples, but

because of their natural primitiveness, and because they

embody principles from which has been built up the

present complete theory of toothed gearing. Whether
or not these primitive gear-wheels were ever used for

actual transmission, is indeed uncertain
;
and aside from

the natural conclusion that the science of toothed gear-

ing, like all other sciences, must have sprung from a

mere germinal conception, and that our simple crossed

pieces were most probably the first tangible form, the

evidence of their real existence is confined to a few

rough old drawings, such as those representing the

ancient Greek and Asiatic norias for hoisting water, in

which crossed pieces of wood precisely similar to our

Fig. i are delineated. Certain it is, however, that if

these crossed pieces were ever in actual use, time soon

effaced the crudeness of their construction, and obliter-

ated the faults which caused their inutility. The num-
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her of arms was greatly increased
;
the arms themselves

changed into pegs, or teeth, projecting at regular inter-

vals from the circumferences of drums or wheels, and

formed with curved profiles, in order to distribute the

wear evenly over the whole surfaces of the teeth, and,

if possible, to diminish the friction between the teeth,

and so also the wear itself (Fig. 7). Since, now, the teeth

Fig.7

of the wheels A and B rub or slide against each other

when in contact, and thus produce friction and wear,

there must be some form of profile, straight or curved,

simple or compound, which, when given to the teeth,

will reduce the friction between them to a minimum,
some form which will be more advantageous for accurate

transmission and uniformity of motion than any other.

It is needless here to state of what vast importance is

this desired form of tooth-profile ;
for the perfection of

almost every machine the most simple and compact, as

well as the most complicated and extensive depends,

to a very great degree, upon the action of its gear-

wheels, and consequently upon the formation of the

tooth-profiles of the gears. The proper formation of
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the tooth-profile must insure, in the words of another,
"a more equable performance of the work in hand, a

diminution of the moving-power wasted by friction, and

hence the accomplishment of more work with the same
amount of power, and a greater durability, and conse-

quently a less cost for repairs in the whole machine."

Recognizing, then, the fact that the subject with which

we are dealing is of more than ordinary importance, we

propose an investigation which aims to present, in as

clear and terse a manner as possible, the method of

reasoning by which the present development of tooth-

profiles has been attained, an investigation from

which have been purposely omitted all the more intri-

cate and tedious mathematical calculations pertaining
to the subject, which have been so laboriously worked

out by other writers and investigators. Far from think-

ing, or even wishing, to disparage the labors of men of

genius and ability who have devoted their time and

energies to the promotion of the purely mathematical

and theoretical part of the great study of toothed gear-

ing, on the contrary, believing their investigations and

calculations to be the foundation upon which have been

built the present more abstruse theories, their investi-

gations have been omitted, because they may be found

in almost any comprehensive work on the subject, and

because it is thought unnecessary to repeat them here.

II. Proper Form of Tooth-Profiles.

Let C and C r

(Fig. 8) be two circles, in contact at

the point a. If the circle C be made to revolve in the

direction indicated by the arrow, the circle Cf
will be

made to revolve in an opposite direction by the friction
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Fig.

between the two circles, supposing, of course, the fric

tion to be great enough to overcome the resistance.

Suppose, now, it is required of the circle C' to perform

work, for example, to lift a weight
W by means of a string wound
around its axle. By varying the

pressure of the circle C upon C' at

the point a of contact, the friction

between the circles may be made

just sufficient for the lifting of the

weight : the friction between the

circles will then be the smallest

possible for the given amount of

work. Also, if the circle C is

driven by a constant and uniform

force, since the resistance and

motion are constant and' uniform,

the weight W will be lifted by a

constant and uniform force, or, in

other words, power and motion

will be uniformly transmitted.

We may therefore conclude, that in order that toothed

wheels may work together most uniformly, with the

least friction and wasted power, and with the greatest

durability, the tooth-profiles must be such that the

driving wheel shall cause the driven wheel to revolve

as if moved by simple contact. If the circle a roll, in

the direction indicated by the arrow, upon the circum-

ference of the circle B (Fig. 9), the point o of the circle

a will assume successively the positions o'
t o", o'", etc.,

the arc p'o being equal to the arc p'o', the arc p"o being

equal to the arc p"o", etc., and the position o of the
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point o corresponding to the position b of the rolling

circle, etc. The point of contact, o, generates during

the rolling the curve o o'o"o'"o""
,
obtained by drawing a

curve through the successive positions of the point o.

This curve, described by a point of the circumference

of circle which rolls upon the circumference of another

circle, is called an epicycloid. In the same manner, if

a circle a roll, in the direction of the arrow, within the

circumference of another circle B (Fig. 10), the point o

on the circumference of the rolling circle will generate

;
the arcs p'o', p"o", and p

m
o'" beingthe curve o o'o"o'"
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respectively equal to the arcs p'o, p"o, and /"'<?, and the

positions 0', o", and o'" of the point o corresponding to

the positions b, c, and d of the rolling circle a. This

curve, described by a point on the circumference of a

circle which rolls ivithin the circumference of another

circle, is called a hypocycloid. In Fig. 9 the motion

of the circle a, relative to the motion of the circle B, is

precisely similar to the motion of the circle C, relative

to the motion of the circle C r

(Fig. 8). For in Fig. 9

equal arcs of the rolling circle are developed, in equal

times, upon the circumference of the circle B ; and the

same is true of the circles C and C' (Fig. 8). Conse-

quently the motion of any point, as o, of the circle a,

with reference to the motion of the corresponding point

o of the circle B (Fig. 9), must be similar to the motion

of the point a of the circle C with reference to the

motion of the corresponding point a of the circle C'

(Fig. 8). But we have shown that the point o of the

circle a (Fig. 9) generates an epicycloid with reference

to the motion of the point o of the

circle B : hence, also, in Fig. 8, the

point a of C generates an epicycloid

with reference to the motion of the

point a of C '. For the same reasons,

the point a of the circle O, revolving

about its fixed centre, and thereby

causing the circle Of

to revolve about

its centre (Fig. 1 1), generates, with reference to the

motion of the point a of the circle Of

,
a hypocycloid.

Let C and C (Fig. 12) be two teeth, contact between

which has just begun, C being the driving, and C' the

driven tooth. It is plain, from what has been said,
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that the motion of the point a of the tooth C', with

reference to the motion of the point a of the tooth

C, is similar to the path described by the point a of

a circle O', which rolls within the circumference of the

circle O. This path, as before explained, is a hypocy-
cloid

;
and consequently, if we give to the portion ab

of the tooth C (called the flank of the tooth) a hypocy-
cloidal form, the profile ab' will slide along it with the

least possible friction. While the point a of the tooth

Cr
slides along the profile ab, the point a of the tooth C

also slides along the profile ab', and generates, with re-

spect to the motion of the point a of the tooth C', the

epicycloid ab', the path described by the point a of

a circle (9", which rolls upon the circumference of the

circle O. If, therefore, we give to the portion ab' of

the tooth C (called the face of the tooth) an epicycloidal

form, the profile ab will slide along it with the least

possible friction. Again : let the teeth of the wheels O
and (7 be in contact at the point / (Fig. 13), and suppose
(J to be the driver. The driving-force of the wheel C?

will be transmitted to the wheel O through the point /,
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and in the direction of AB, the common normal to the

surfaces in contact at the point /. From the centres

O' and O draw the lines O'A and OB, each perpen-

dicular to AB. Let F denote the driving-force of the

wheel O', or the force exerted by the circumference Y,

and F' the force exerted by the point A. From the

principles of the simple lever, we have the propor-

tion F\F' '.'. Hence F' = Since

or Ff =

O'A

the lines O'A and OB are

parallel, the perpendicular
AB will be tangent to two

circles drawn with and

O as centres and O'A and

PB
as radii, and the force

'

of the point A will be

directly transmitted -to the

point B through the line

AB. Let P denote the

force transmitted to the

circumference X. As be-

fore, we shall have the

proportion P\F' \\OB\Oa,

From this we obtain

F:P::OaXOf

A:O'aXOB. From the right
- angled

triangles cOB and cO'A we may write the proportion

A (7: OB\: cO1

\cO, which, multiplied by aOiaC?::

aO : aa, gives OA X Oa : OBX O'a : : cO'X Oa : cOX Va,

and consequently we shall have F\P : \cCfxOa :

cOxO'a. But, for best results, all the force of the

wheel Cf must be transmitted to the wheel O ; also, in
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Fig. 14

order that the wheels may move as simple friction

wheels, the velocities at the circumferences must be

equal. Hence the forces F and P must be equal; and

we will consequently have cO'^aO cOXaO', which

can only be true when the points c and a coincide, and

form one point. We may conclude from this, that the

most advantageous form for the profiles of the teeth is

such that the common normal to the profiles at the

point of contact will pass through the point of inter-

section of the line of centres with the pitch circles X
and F. This point is

called the pitch point.

Suppose, now (Fig. 14),

the pitch circle O and

the rolling or generating
circle O' to be regular

polygons, having each

an infinite number of

sides. As the polygon
O' rolls in the direction

shown by the arrow, the

point A generates an

epicycloid ;
and there is, for an instant, a rotation of the

polygon O' about the point C. The point A, for that

instant, describes an arc of a circle, the centre of which

is the point C, and the radius of which is the line CA.

But, since the radius of a circle is always normal to the

circumference at the point of their intersection, the line

CA is a normal to the epicycloid at the point A : it also

passes through the pitch point C. These two demon-

strations were, we believe, first given by M. Camus in

his " Cours de Mathematiques." By a similar course oi
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reasoning it may be proved that the normal CA' of the

hypocycloid BA' (generated by the point A' of the poly-

gon O", which rolls within the polygon O), at the point

A' passes through the pitch point C. If, now (Fig. 13),

we give to the face of the tooth of O' an epicycloids!

form, and to the flank of the tooth of a hypocycloichJ

form, the point of contact of the teeth will be the point

of contact of two infinitely small circle-arcs, the radii

of which are parallel, coincide to form the common

normal, and pass through the pitch point a. We may
now briefly sum up our arguments in order, and the

conclusions which must be drawn from them. We have

shown (Fig. 8), that, in order that the teeth of wheels

work most uniformly together and with the least detri-

mental friction possible, the action of the driving wheel

upon the driven wheel must be such that the wheels

shall move as if driven by simple contact. We have

also proved (Fig. 12) that this desired action takes

place between the teeth when the faces of the teeth

are given the epicycloidal and the flanks of the teeth the

hypocycloidal form. Further: we have proved (Fig.

13) that the condition necessary for uniform power and

velocity is that the common normal to the teeth in con-

tact, at the point of contact, shall pass through the

pitch point, and (Fig. 14) that this condition is fulfilled

by teeth having epicycloidal faces and hypocycloidal
flanks. From these demonstrations but one logical con-

clusion can be drawn, that teeth having epicycloidal

faces and hypocycloidal flanks fulfil all the conditions

required of gear-teeth, and that the desired form of

tooth-profile has been determined. Roomer, the cele-

brated Danish astronomer and inventor, is said to have



TOOTHED GEARING. I/

been the first to demonstrate the advantages of these

curves for tooth-profiles. But De la Hire, who is

credited with having first discovered, that,
"

if the pro-

files of the teeth of one wheel have an epicycloidal

form, the profiles of the teeth of its fellow will prop-

erly have the form of a hypocycloid the generating

circle of which has the same diameter as that of the

epicycloid forming the teeth of the first wheel,"
* -

Brewster, Young, Buchanan, and Reuleaux have been

the chief promoters of the application.

Our investigation has now given us the required

forms of tooth-profile ;
but since these curves, like all

others, are susceptible of a considerable number of

variations, it remains to determine somewhat more

specifically the conditions upon which their applica-

bility to wheel-teeth depends. In the first place, then,

the amount of curvature, or amount of deviation, of

epicycloidal and hypocycloidal curves from the diameter

of the primitive or pitch circle, which passes through
the pitch point, depends upon the diameter of the gen-

erating circle and upon the diameter of the primitive

circle, or, in other words, upon the ratio of the diame-

ter of the generating circle to that of the primitive

circle. Thus, in Fig. 15, the epicycloids <?, b, and c

were generated by circles having diameters respectively

equal to \, f ,
and \ the diameter of the primitive circle

OO' ; and the hypocycloids a
f

, b', and c' had for generat-

ing circles respectively the same as the epicycloids.

If d denote the diameter of the generating circle, and

D that of the primitive circle, it is plain from the

* Mr. J. I. Hawkins's translation of Camus on the Teeth of Wheels.
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figure, that, as the ratio
jz

becomes smaller, the

tion of the curve from the diametral line Bcf, passing

through the pitch point/, becomes greater. If the diam-

eter of the generating circle of a hypocycloid is equal
to one-half the diameter of the primitive circle, the

curve described will be a straight line coinciding with

the diameter of the primitive circle passing through

Fig. 15

a'.-

the starting position of the generating point. To

prove this, let C' (Fig. 16) be the generating circle, and

C the primitive circle. Let o be the starting position

of the generating point. Since the diameter of C f
is

equal to one-half that of C, the circumference of C'

will be equal to one-half the circumference of C, one-
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half circumference of C r

one-fourth circumference

of C, one-fourth circumference of C r = one-eighth cir-

cumference of C, etc. Then, when the circle C r
rolls

sufficiently, the point A will fall upon the point A'
;

Ao one-fourth circumference of C' =. oA f
=. one-

eighth circumference of C. The diameter AB will then

have the position A'o"
;
the diameter oo" will have the

position A"o
,
at right angles

to A'o"
;
and the point o will

have the position o' on the

diameter oE. Again : when
the circle C' rolls sufficiently,

the point o" will fall upon the d
]

point d ; arc oAo" = one-half

circumference of C' = arc

0./4V one-fourth circumfer-

ence of C. The diameter o"o

will then have the position

do", and the point o will have the position o", still on

the diameter oE. Thus it may be proved, that, for any

position of the generating circle C', the point o will

fall upon the diameter oE, and consequently that diam-

eter is the path of the point ;
or the curve generated

by the point o will coincide with the diameter of the

primitive circle, which passes through the starting

position of the point. If, therefore, we use for the

generating circle of the tooth-profiles one which has

for a diameter one-half that of the primitive circle, the

flanks of the teeth will be simply radial straight lines,

as is sometimes the case in practice.

Fig. 17 shows forms of tooth-profile for different gen-

erating circles. Thus profile \a\ was generated by a
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circle having one-half the diameter of the primitive cir-

cle O(J\ the generating circle of profile 20,2 had for a

diameter three-eighths that of the primitive circle
;
and

the diameter of the generating circle of profile 3^3 was

one-quarter that of OOr

. In profile 3^-3 the inclination

of the faces is so great, that there may be, by the princi-

ples of the inclined plane, a tendency to produce press-

ure upon the axles of the wheels
;

while profile \a\ is a weak form

for teeth, being narrowest at the

base \b, where it should be widest,

because this part of the tooth

bears the greatest strain when in

action. Profile lai is also a bad

form for wear, because the friction

between the face of one tooth of

this form and the flank of another

is much greater than it would be if the face and flank

were more nearly envelopes of each other. Therefore,

for greater strength, less friction and wear, and best

action between the teeth, we should take for the diam-

eter of our generating circle less than one-half and

greater than one-quarter of the diameter of the primi-

tive circle. Generating circles of one-third the diam-

eter of the primitive circle give very good results in

practice.

Let us investigate the subject of profiles further.

Let opp' . . . pvi be a string, wound around the circum-

ference of the circle C, and fastened at the point pvi

(Fig. 1 8). If, now, the string be unwound from the

point o, and held rigid as it unwinds, the end, or point

ot will assume successively the positions </, o"9 </", etc.;
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the line po' being equal to the arc po, p'o" p'o,

p"o"
r

p"o> etc. The curve o o'o"o"
r

. . . ovf
, gener-

ated by a point of a string as it unwinds from the cir-

cumference of a circle, is called an involute to the circle,

or an involute simply. Suppose (Fig. 19) the primi-

Fig.18

01V

tive circle to be a regular polygon, having an infinite

number of sides. As the string bao' unwinds, there

will be, for an instant, a revolution about the point a ;

and the point o' of the string will then generate

a circular arc having its centre in the point a, and

Fig. 19

a radius ao'. Therefore, as was shown in Fig. 14 for

the epicycloid, the involute also fulfils the condition

necessary for uniform power and velocity. For this

reason the involute curve has been, and still is, exten-

sively used for tooth-profiles, the curve forming the
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whole profile, cd (Fig. 20) ;
or the teeth having involute

faces and radial straight flanks,

as in ab. We have now two

kinds of tooth-profile, cycloidal
^ and involute

;
each having, it is

presumable, its advantages and

its disadvantages in practice.

A comparison between the two

is therefore necessary.

III. Comparison. Advantages and Disadvantages of Cycloidal and

Involute Teeth.

Cycloidal teeth have a great advantage over involute

teeth, in that the number of teeth, for wheels of the

same diameter gearing together, may be reduced to

seven, without in any degree interfering with the

uniformity of action. Reuleaux gives the smallest

number of involute teeth necessary for proper action,

eleven. In cycloidal teeth the loss of power and wear

due to friction is not so great as in involute teeth
;

also the effect upon the action of the teeth by wear

is less in cycloidal than in involute teeth, because the

wear is evenly distributed in the former, and the teeth,

even when considerably worn, present more nearly the

original form of profile. Involute teeth, on the other

hand, have the advantage of being easier and cheaper
to construct than the compound profiles of cycloidal

teeth. They are also stronger for the same width on

the pitch circle. Again : the axles of wheels having
involute teeth may be moved slightly from or toward

each other without disturbing the proper action
;
while

a very slight alteration of the distance between the
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axles of cycloiclal gears destroys the accuracy of motion.

Straight flanks are acknowledged by all to be poor

forms, both on account of their weakness, and loss of

work by friction. They should never be used except
for large wheels, where the distance of the centres from

the pitch circles renders them more nearly parallel, and

consequently stronger. The principal objection offered

to involute teeth is, that, especially in small wheels,

the great obliquity of the profiles tends to produce a

pressure upon the journals and bearings, as before

noticed. Considerable difference of opinion exists as

to the truth of this objection, and of late years actual

experiment seems to assert its falsity. The following

experiments were tried by Mr. John I. Hawkins, and

are taken from his English translation of that portion

of M. Camus's " Cours de Mathematiques
"

relating to

the teeth of wheels. Simi- Fi
fl ,2i

lar experiments tried by the N

author of this book, with

wheels carefully sawed out

of black walnut, gave es-

sentially the same results.

The approach noticed by Mr. Hawkins in his Experi-

ment II., however, failed to appear in the experiments
of the author. Having constructed the sectors of two

wheels, each of two feet radius, and each containing

four teeth of the same curve as those shown in Fig. 21,

one of the sectors (No. i) was mounted on a fixed

axis, and the other on an axis so delicately hung, that a

force of even a few grains would cause the axis of the

latter to recede from that of the former in a direct line.

The following experiments were then made:
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EXPERIMENT I.

The teeth of both sectors being engaged their full

depth of an inch and a half, No. i was moved forwards

and backwards a great number of times, without exhib-

iting the least tendency to thrust No. 2 to a greater

distance, notwithstanding the tangent to the surfaces

of the teeth in contact formed an angle of nearly sixteen

degrees with the line of centres. The points of contact

of the teeth at the line of centres were three-quarters of

an inch from the ends of the teeth.

EXPERIMENT II.

The teeth were engaged an inch and a quarter deep :

consequently the ends of the teeth were a quarter of

an inch free from the bottoms of the spaces ;
the

tangent of contact made an angle of nearly seventeen

degrees with the line of centres
;
and the point of con-

tact at the line of centres was five-eighths of an inch

from the ends of the teeth. The sector No.- i, being

repeatedly moved forwards and backwards, sometimes

caused sector No. 2 to approach, but never to recede.

In Experiment I. the approach could not take place,

because the teeth were engaged their full depth.

EXPERIMENT III.

The teeth were engaged one inch deep, leaving half

an inch between the ends of the teeth and the bottoms

of the spaces. The angle of the tangent of contact

with the line of centres was eighteen degrees ;
the

points of contact at the line of centres were half an

inch from the ends of the teeth. On the sector No. i

being moved frequently forwards and backwards, no

motion of the axle of No. 2 appeared,
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EXPERIMENT IV.

The teeth of the sectors were engaged three-quarters
of an inch deep : consequently the ends of the teeth

were three-quarters of an inch free from the bottoms

of the spaces ;
the points of contact of the teeth at

the line of centres were three-eighths of an inch from the

ends of the teeth
;
the angle of the tangent of contact

v,-ith the line of centres was nineteen degrees. The
axle of sector No. 2 neither approached nor receded

on numerous trials made by moving No. i.

EXPERIMENT V.

The teeth were engaged half an inch deep ;
the point

of contact was a quarter of an inch from the ends of

the teeth at the line of centres
;
the ends of the teeth

were one inch from the bottoms of the spaces ;
the

tangent of contact formed an angle of full twenty

degrees with the line of centres. In a great number
of repetitions of this experiment, a slight receding of

sector No. 2 sometimes appeared.

EXPERIMENT VI.

The teeth were engaged a quarter of an inch : the

ends of the teeth, therefore, were one inch and a

quarter from the bottoms of the spaces ;
and the points

of contact, one-eighth of an inch from the ends of the

teeth at the line of centres
;
the angle of the tangent

of contact with the line of centres was rather more
.than twenty-one degrees. In this experiment, which

was repeated very frequently, a tendency to recede

appeared several times, but so slightly as to be of no

practical importance. The quiescent state of the axle

was much oftener manifest than the receding.
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" These experiments," says Mr. Hawkins, "tried

with the most scrupulous attention to every circum-

stance that might affect the results, elicit this important

fact, that the. teeth of wheels in which the tangent of

the surfaces in contact makes a less angle than twenty

degrees with the line of centres, possess no tendency
to cause a separation of their axes : consequently there

can be no strain thrown upon the bearings by such an

obliquity of the tooth." Such an obliquity as twenty

degrees must, unless counteracted by an opposite force,

tend to separate the axes
; and, as suggested by Mr.

Hawkins, this opposite force is most probably the fric-

tion between the teeth, which tends to drag the axes

together with as much force as that tending to separate

them. Of course the friction between teeth sawed out

of wood is greater than in metal teeth
;
but Mr. Haw-

kins cites experiments tried by a Mr. Clement, with

metal wheels lying loosely upon a work-bench, in which

no tendency to separate the axes of the wheels could be

noticed. This very serious objection to involute teeth

having once been fairly removed, then the relative

value of the two kinds of profile must depend upon the

action between the teeth in each case, the amount of

friction and wasted power, and the relative expense and

difficulty of construction. The fact, that, in cycioidal

teeth, less power is lost in overcoming friction than in

involute teeth, seems to be well established, in theory
at least, if, perhaps, not so well in practice ;

but whether

or not the gain in this respect is sufficient to compen-
sate for the additional expense of construction over the

involute system, is still a question which must be finally

settled by practice and actual experiment. In this
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practical age, the value of any one mechanism, com-

pared with that of another, is simply a comparison
between the relative amounts of work to be obtained

from them and the relative costs
;
and that system of

tooth-profiles from which can be obtained "the most

work for the least money
"
must eventually gain the

supremacy. In Fig. 18, while generating the involute

curve, as fast as any portion of the string is unwound,
it is held rigid, and forms a straight line tangent to

the circle at the point of contact
; as, for instance, the

portion p
ivov is tangent to the circle C at the point piv

.

Since this portion is that which generates the curve,

and upon which alone
a

the curve depends, we

may assume the whole

string to be rigid and

straight, and the re-

sult will be the same, a'

Let oa (Fig. 22) be a
a

.

straight line, which

rolls from right to

left upon the circumference of the circle C. When
the line oa has rolled sufficiently, the point b will fall

upon the point / (the arc op being equal to the line ob),

and the point o will take the position o' . When the

line has rolled sufficiently, the point b' will fall upon
the point /' (the arc p'o being equal to the line b'o\

and the point o will then take the position o". When
the point b" falls upon the point /", the point o will

take the position o"\ etc., and the curve o o'o"o'" thus

generated will be an involute to the circle C. Thus we

have generated an involute by rolling a straight line
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upon the circumference of a circle. But a straight line

is the circumference of a circle the radius of which is

infinitely long; and the curve generated by a point of

a circle which rolls upon the circumference of another

circle is an epicycloid : consequently an involute curve

is simply an epicycloid the generating circle of which

has an infinitely long radius
; or, in other words, the

involute is but a limiting case of the epicycloid. Thus,

without coming to any actual decision as to the relative

mechanical value of these two curves, or rather two

different forms of the same curve, we have, neverthe-

less, the satisfaction of having verified our former con-

clusion, and may still assert that the cycloidal form of

tooth-profile fulfils all the conditions and requirements,

and is therefore the most useful and advantageous.

IV. Practical Methods for laying out Teeth, Exact and

Approximate.

Because of the difficulty with which exact epicycloidal

and hypocycloidal profiles are constructed, approximate
methods are very generally used

;
and they are found to

answer the practical purpose very well. Any one of

the following approximate methods will give very good

results, and will, in ordinary cases, answer as well as the

more difficult and tedious exact methods, also given
here for use in special cases :

METHOD i (exact). Let O (Fig. 23) be the primitive

or pitch circle. Take the diameters of the rolling cir-

cles C and K, each equal to one-third the diameter of the

pitch circle. Strike the circles C', C"
,
C'", etc., which

represent the different positions of the rolling circle (7,

and from the points of tangency, b, b', b"> etc., measure
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off the following arcs : bp' bp, b'p" = b'p, b"p
r"

b"p,

etc. The points /',/",/"', etc., thus found, are points

of the epicycloid which is to form the face of the tooth
;

and the curve pp
r

p" . . . p*
v

, drawn through them, is

the face-profile. For the hypocycloidal flank, after

having struck the circles /, O
f>

',
O'"

y lay off the arcs

da' = dp, d'a" = d'p, etc., from the points of tangency
d, d', etc. The curve pa'a"a'", drawn through the

points a'
t a", a'", thus found, is the hypocycloid which

Fig.23

is to form the flank of the tooth. The other profile,

xyzt
which is similar to the one just found, is found

by starting at the point y (py being the given width

of the tooth at the pitch circle), and rolling the gen-

erating circles in the opposite directions from those

just described. We have now but to limit the tooth

at the top and bottom by circle-arcs, AA and BB, and

the profile is complete.
METHOD 2 (exact}. In Fig. 24 O is the pitch circle,
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Cf and O" the rolling circles, and A the pitch point.

Divide the pitch circle and rolling circles into an equal
number of small parts, equal each to each, as shown in

the figure. Let the point 5 of O' correspond to point 5'

of O, the point e of O" correspond to the point e of O,

etc. From A and 5' as centres, with 5 5' and the chord

A$ respectively as radii, describe arcs intersecting in

the point c ; then from the centres A and 4', with the

radii 4 4' and ^4, describe arcs intersecting at <:', etc.

Fig.24

The points thus found are points of the epicycloid Ac'c.

Similarly, for the hypocycloid, from the points A and

/, with radii e'e and Ae, describe arcs intersecting at

the point /, and thus determine the curve Ap'p. In

these two methods, the closer together the positions

of the rolling circles and the points of division of the

pitch and rolling circles are taken, the more accurate

will be the curves. When either of these methods is

used, the work of laying out the teeth may be greatly

simplified by accurately working out one entire profile



TOOTHED GEARING. 31

upon a smooth piece of wood, and cutting out this

profile for a template with which to trace the profiles

around the pitch circle.

METHOD 3 (approximate}. From the points i', 2', 3',

etc., a', b
f

,
c
f

,
etc. (Fig. 24), as centres, and with the

corresponding chords of the rolling circles as radii,

draw circle-arcs. Thus the radius for centre 5' is A$ t

for centre 3' is A 3, for centre e
f

is Ae, etc. The en-

velope of these arcs, or the curve which is tangent to

them, is very nearly the correct profile of the tooth.

Fig.25

METHOD 4 (approximate). In Fig. 25 let AA be the

pitch circle, and B and C the rolling circles. Let, also, /

be the pitch point, and te and tk the heights of the tooth

above and below the pitch circle. Take /;/ = fte,
and

strike through ;/ the arc ;/;/ concentric with the pitch

circle. Step off on the pitch circle to tu, and from o

as a centre, with the chord n't for a radius, strike an arc

cutting ;/;/ in the point /. Draw po. The point / is a

point of the epicycloid, and po is the normal to the

curve at the point p. Find now, upon the line pol
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the centre for an arc passing through the points / and

/. In the figure, o' is this centre, and o'p is the radius

for the faces of the teeth. The centres for all the faces

are upon the circle aa drawn through o'
t
and concentric

with the pitch circle. Similarly, for the flanks, take

tm | tk, strike the arc mm'
, step off tb = tin', and,

with the centre b and radius bt, strike an arc cutting
mm' in the point x. Draw xb, and find the centre b'

for an arc passing through / and x. The radius for the

flanks is b'x ; and the centres are all upon the circle ddy

drawn through tf, and concentric with the pitch circle.

METHOD 5 (approximate}. Let A (Fig. 26) be the

pitch circle, and a the pitch

point. Draw af tangent to

the pitch circle at the pitch

point, and make it equal to

0.57 the diameter of the roll-

ing circle, or \\ times the

circular pitch of the
'

teeth.

Draw dfe parallel to the

diameter aO, make df = af,

and ef the diameter of the

rolling circle. Draw Od and

O
Oep, and, taking ab = ac

\af, draw bp and gp
r

parallel each to af. The point / of

the intersection of Op and bp is the centre for the flank

ax. Make p'c = eg, and /' is the centre for the face ay.

As before, all the face centres are upon a circle drawn

through /' concentric with the pitch circle, and ali the

flank centres are upon a circle drawn through p.

METHOD 6 (approximate}. Let A (Fig. 27) be the

pitch circle, C and B the rolling circles, and a the pitch
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point. Draw a'c'b and cB'd through the centres of the

rolling circles, each making angles of 30 with the line

of centres. Draw the line

cabf through the points c

and b, and join a' and d
with the centre O. The

points g and f are the

centres for the face bx

and flank cy respectively.

These approximate meth-

ods are from Reuleaux's A'

" Constructeur," and Un-

win's " Elements of Ma-

chine Design," and are as

accurate as any in use at

the present time. When
a set of wheels is to be

constructed so that any
wheel of the set will gear

with any other, the same

generating circles must be

taken for all the teeth of

the set. Sometimes the

generating circle is taken

with a diameter equal to

the radius of the smallest

wheel of the set. The

following are some of the

simpler and rougher meth-

ods of approximation in

use : they are convenient and easy, but give poor re-

sults, and should only be used in rough work. Fig. 28,
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draw ac, making 75 with the line of centres bd, and

make be equal to one-tenth the pitch of the teeth multi-

plied by the cube root of the number of teeth. Take

ab = ^bc : c is the centre for the face bi, and a the centre

for the flank bk. The following values of ba and be give

better results: ba - -
-, and be = o. 1 2p\lNt

in
2N 20

which / represents the pitch, and N the number of

teeth. In Fig. 29, oo is the pitch circle, and bb and aa

the circles which limit the teeth at top and bottom.

Fig.29

The centres for both faces and flanks are taken upon
the pitch circle

;
the flank centre for gk and mn being

in the centre of the tooth width at x, and the face

centre for cd and ef being* in the centre of the space
width at y. Still another rough rule is to take the

centres upon the pitch circle, and take the radius for

the faces equal to one and one-fourth times the pitch,

making the flanks radial straight lines.
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For laying out involute teeth, the exact method is as

follows : Fig. 30, O is the circle of the bottoms of

the teeth, and / the starting-point of the involute, or the

root of the tooth. Lay off the distances pp ', p'p", p"p
f

",

etc., along the circle OO ; draw the tangents /Y, p"a",

etc.
;
and step off p'a arc //, p"ct' = arc />, p'"a'" =

p'"p, etc. The curve a a"a'", etc., drawn through the

points thus found, is the true involute profile. In

the same manner, the profile cf is found, and the tooth

limited in height by the circle bb. Radial straight

flanks are often used in involute teeth
; but, for reasons

already given, they should never be used except for

large wheels, and even then only for rough work.

True involute profiles

may be easily traced by
means of a straight

spring arranged to hold

a pencil, or other mark-

er, at one end, and fas-

tened at the other end

to the circumference of

a wooden circle-segment of the same radius as the bot-

tom or root circle of the teeth of the wheel. Because of

the comparative ease with which true involute profiles

may be traced, approximate or circle arc methods are

not much in use. The following methods, however,

give very close approximations to the true curve, and

are, perhaps, more in use than any others. In Fig. 31 ei

is the working height of the tooth, i.e., the actual height

less the clearance between the end of the tooth of one

wheel and the bottom of the corresponding space of

the other wheel, and im is the actual height. Make
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ea = \ei, and draw ad tangent to the circle A ; make

pd \ad, and / is the centre for the profile bak. A
circle through /, concentric with the circle A, gives
the positions of the centres for all the profiles. The

part kc may be a straight line

tangent to bak at k, since the

profile which engages with

bak does not touch this part

at all. It is better, however,

to round this part, as in kf,

for greater strength and bet-

ter casting. Let O (Fig. 32)

be the pitch circle, c and d
the circles limiting the tooth

at top and bottom (top circle

and root circle], and a

the pitch point. Draw
the straight line ap

through the pitch point,

and making angles of

75 with the line of cen-
V tres

;
draw fp through

the centre /, and per-

pendicular to ap; and p
is the centre for the

profile shown in the fig-

ure. For small teeth,

the centres are often

taken on the pitch circle, and the radius taken equal

to the pitch of the teeth.

Fig.32



TOOTHED GEARING.

V. Rack. Internal Gears.

37

If, in a pair of gear-wheels, we assume the radius of

one of the pitch circles to be infinitely long, this pitch

circle becomes a straight line tangent to the other

pitch circle at the pitch point, and the wheel becomes

a rack. The rolling circles which generate the tooth-

profiles for the rack now roll along a straight line in-

stead of upon and within the circumference of a circle,

and consequently the faces and flanks of the teeth

are no longer epicycloids and hypocycloids, but both are

ordinary cycloids. Fig. 33 represents one of the exact

methods for tracing the teeth. OO is the pitch circle,

Fig. 33

and a the pitch point. The generating circles roll in

the directions indicated by the arrows, and the points

a, a", b
r

, etc., are found as in Fig. 23 ;
the arc/V being

equal to p'a, p"a" p"a, rb" ra, etc. The approxi-

mate methods for cycloidal teeth, explained in the pre-

ceding paragraph, are applicable to the rack, Some of

these we give as examples,
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Fig.34

METHOD 4 (approximate). Let A (Fig. 34) be the

pitch circle, B and C the rolling circles, and / the pitch

point. Let also // and tk be the heights of the tooth

above and below the

pitch circle. Take /;/

=
f//, and draw ;/;/, cut-

ting the rolling circle C
in the point ;/'. Step off

to arc /;/, and from

;^7 o as a centre, with the

chord in' as a radius,

strike an arc cutting ;/;/

in the point /. Draw

po, and on it find the

centre o' for an arc of a

circle passing through the points / and /. It is obvious

that the curvature of the flank will be the same as that

of the face. Therefore, to

find the flank centre, make

o"o"' = o
m

o', draw o"b par-

allel to the pitch circle A,

and make ab = xo': b is

A the flank centre. The

centres for all the flanks

will be on the line o"b,

and all the face centres will

be on the line </;;/, drawn

through the points o' and

bt and parallel to the pitch

circle A.

METHOD 5 (approximate). Fig. 53, A is the pitch cir-

cle, and a the pitch point. Take af=o.$? the diameter

V
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Fig.36

of the rolling circle, and through / draw dfe parallel to

the line of centres. Take ab ac =.
\af, and draw bd

and p'g parallel to AA : d is the flank centre. Make

cp' = eg, and/' is the face centre. Method 6 of the pre-

ceding paragraph is greatly

simplified when applied to

the rack. The lines Odfand

Oga' (Fig. 27) become paral-

lel to the line of centres,

c'd and a'p' (Fig. 36), and

intersect the line cf in the

points d and /, where this

line meets the 3O-degree

lines,* giving these points

as centres for the profiles.

Hence this method, when
used for rack teeth, reduces

to the following : AA is the pitch circle, a the pitch

point, and o and o' the rolling circles. Through the

centres o and o draw the lines a'od and cfo'p', each

making angles of 30 with the line of centres. The

points d and p'', in which these

lines meet the circumferences

of the rolling circles, are the

centres respectively for the

flank p'x, and face dx*.

When involute teeth are

used for a rack, the profiles

FFg.37

\_7

reduce to straight lines, making angles of 75

the pitch circle (Fig. 37). This may be very prettily

* This is true only when the rolling circles are equal.
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demonstrated by means of the approximate method of

Fig. 32 in the preceding paragraph, as follows : Let OO
(Fig. 38) be the pitch circle, a the pitch point, and ap
the 75-degree line. Since the centre of the pitch circle

is infinitely distant from the pitch point, the perpendic-
ular pfy which passes through this centre, will also be

infinitely distant from the pitch point. The radius ap
of the profile will therefore be infinitely great, and the

profile a straight line perpendicular to this radius, and

passing through the pitch point. But since the line ap
makes angles of 75 with

the line of centres, the per-

pendicular ab will make

angles of 75 with the

pitch circle, which is per-
"

pendicular to the line of

centres.

In internal gears, the

curves forming the faces

and flanks of the teeth are

reversed as compared with

external gears ;
that is, the

faces are hypocycloids, and the flanks epicycloids. The

exact method for constructing internal cycloidal teeth

is shown in Fig. 39. O is the pitch circle, a the pitch

point, c' and c the rolling circles, and o" and o' the top

and root circles. Find the profile bad by rolling the

circles, as in Fig. 23 ; find, in similar manner, the profile

gxf (ax being the given width of the tooth at the pitch

circle), and the tooth b'ad'fxg is complete. The ap-

proximate methods given for external cycloidal teeth

are applicable, without change or difference, to internal
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gears, remembering, however, that the faces are hypo-

cycloidal, and the flanks epicycloidal curves. The

Fig. 39

Fig.40

following, for example, is method 5, of the preceding

paragraph applied to internal gear-teeth. The centres

p and /' (Fig. 40), for the

profiles ax and ay respec-

tively, are found as before

explained (see Fig. 26),

the curves drawn, and the o

tooth limited by the top

and root circles O" and

a.

In generating involute

teeth for internal gears,

the primitive circle, upon
which the generating line

rolls, or from which the string unwinds, may be taken

the same as the top circle of the teeth with very good
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results. Thus in Fig. 41, for the exact method, A is

the pitch circle, T and R the top and root circles.

Find the profile ca, as before explained. (See the

preceding section, Fig. 30.) In a similar manner find

the profile de, and the tooth

is complete. The approxi-

mate methods for external

involute teeth may be used

without change for internal

gears. Internal gears were

formerly quite extensively
used

;
but of late years they

have come to be considered

as clumsy contrivances, and

are rarely used except in special mechanisms.

VI. Special Forms. Lantern-Gears. Mixed Gears.

This paragraph has been translated from the French

edition of Professor Reuleaux's valuable work,
" Le

Constructeur." Straight lines are often used for the

profiles of the teeth of gear-wheels, the straight line

forming the flank of the tooth, and a curve the face.

But teeth obtained thus do not gear together with the

necessary exactness, and for this reason ought not to

be used in the construction of ordinary machinery. In

the teeth of clock-work gears, this kind of profile can

be advantageously used
;
because it permits, at the same

time, of the easy cutting-out of the spaces with a file,

and of the use of a small number of teeth. If we take

the diameter of the generating circle greater than a

certain fraction of the radius of the corresponding prim-

itive circle, we obtain teeth which are still of a possible
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execution, but which, in practice, are admissible only
for particular cases. If we ^ake, for the generating

circle, the pitch circle of one ot the wheels, we obtain,

for the profiles of the teeth of the wheel corresponding
to the pitch circle upon which it rolls, epicycloidal arcs,

while for the other wheel the profiles are reduced to

points. It is in this kind of profile that we include

Iantern-gears.

External Lantern Gears (Fig. 42). From the pitch

FIg.42

point a describe a circle having a radius equal to \^ the

pitch. This gives the profile of the rung, or spindle,

corresponding to the point a. The face of the tooth

of the wheel R' is formed by a curve parallel to or

equidistant from the epicycloidal arc ab, generated by

the point a in the rolling of the circle R upon R' (the

arc tb the arc to). The envelope of circles described
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from different points of ah. with a radius equal to that

of the rung, gives the face profile cd: the flank di is a

circle quadrant. The arc of contact coincides with the

circled; its length al, of which the limit / is deter-

mined by the top circle k, ought to be greater than the

pitch, and hence at least i.i times the pitch. This last

value serves to determine the height g and the real

height g
f of the face.

Internal Lantern-Gears (Fig. 43). The following

manner of proceeding is similar to the one just de-

Fig.43

scribed : The portion cd of the tooth-profile is found by
a curve parallel to the hypocycloidal arc ab, generated

by the point a in the rolling of the circle R within the

circle R f

(the arc tb the arc to). The arc of contact

al ought to be taken at least equal to i.i times the

pitch. The flank ci is a radial straight line connected

with the rim of the wheel by a small circle arc.

In Fig. 44 the hollow wheel is the lantern : the face
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cd is parallel to the pericycloidal arc ab, generated by
the point a in the rolling of the circle R f

upon R (the

Fig.44

Plfl,45

arc tb = the arc to). The arc of contact al ought to

be at least i.i times the pitch : the flank ci is a radial

straight line connected

with the rim by a small

circle arc.

Fig. 45 represents a

particular case of Fig.

43. We have R = %R',
and consequently the

number of teeth in R
= J the number of teeth

in R' (N = Nf

).
In

this case, N = 2, and N'

4. The profile cd is

parallel to the straight

line ai
y
to which the hy-

pocycloid reduces (the

arc ab = the arc bi) : al

is the arc of contact. This arc is here necessarily greater

than the pitch : since, however, the straight form of the
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flanks of the teeth of the wheel R' permits the sup-

pression of all play between the teeth, so that the same

rung gears at the same time with two opposite flanks,

the arc of contact may be considered equal to twice

al. Many writers regard this kind of gear as a special

mechanism, since in actual practice the rungs are mov-

able rollers provided with axles. If in Fig. 43 we
consider the radius R' as infinitely long, we obtain the

mechanism of the rack, in which the profiles of the

teeth upon the rack itself afe formed by curves parallel

to ordinary cycloids. If, again, in Fig. 44, we consider

the radius R' as infinitely long, we obtain a very simple

form of rack, which is very often used in preference to

the preceding. Upon the pinion the profiles of the

teeth are formed by curves parallel to an involute to

the pitch circle. Lantern-gears, in cases which require

a certain precision and not very frequent use, offer the

advantage that the rungs can be easily and exactly

described with a pair of compasses. Lantern-racks of

wrought iron are very useful in practice for apparatus

exposed to cold and wet
;
such as for lifting gates, draw-

bridges, etc.

Gear at Two Points (Fig. 46). If we connect togeth-

er two gears at a single point, we obtain a new style

of gear, which allows us to adopt for one of the wheels

a very small number of teeth, and consequently a great

difference in the revolutions of the two wheels, even

though both wheels are quite small. In the figure the

two pitch circles are at the same time the generating
circles of the profiles of the teeth : ac is an epicycloidal

curve (generated by the rolling of R' upon R), which,

for the length of contact al, gears with the point a of
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the wheel R' ; ab is a second epicycloidal curve (gen-

erated by the rolling of R upon R f

), which, for the

length of contact all, gears with the point a of the

wheel R ; ai and ai' are the profiles for the flanks of

the teeth for the wheels R' and R. The small wheel

is used frequently for shrouded wheels. This kind

Fig.46

of gear is frequently met with in cranes and hoisting-

machines.

Mixed Gear (Fig. 47).
- This kind of gear, which

is very convenient for the small pinions of hoisting-

machines, has the advantage of diminishing the space
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at the root of the tooth. This result is due to the use

of radial straight lines for the flanks of the teeth of the

small wheel. In order to obtain a sufficient duration of

engagement, it is convenient to use upon both wheels

the curves which form the faces of the teeth as far as

their points of intersection. In the figure, ac is an arc

of a cycloid, or involute, generated by the rolling of R/

Fig.47

(which here, for a rack, is a straight line) upon R: ai' is

a radial straight line generated by the rolling of the

circle J^upon the inside of R (the radius of W= |
that

of R). The gearing of the profile ac with the point a

takes place for the length of contact all. The cycloidal

arc ab, generated by the rolling of W upon R', gears

with the flank ai' for the length of contact ai.
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VII. Bevel Gears.

The different gears hitherto described are intended

to transmit power from one shaft to another parallel

shaft. If we wish to transmit from one shaft to another

which is not parallel, or which makes an oblique angle

with the first, we must make use of either bevel or

screw gears. A bevel or

conical gear differs from

a cylindrical or spur gear
in that its two pitch cir-

cles (at the two ends of

the teeth) are of differ-

ent diameters, and conse-

quently the ends of any
one tooth are of differ-

ent heights, widths, etc.

The pitch circles of a

pair of bevel wheels limit

frusta of cones, the api-

ces of which meet at the

point of intersection of

the axes of the wheels.

Thus, in Fig. 48, o is the

point of intersection of

the axes ox and oy ; a'b',

ab> a'c
f

,
and ac are the

pitch circles; a'c'ca and a'b'ba, the "pitch frusta;" and

a'do and a'b'o, the "pitch cones." The axes may make

any angle with each other. It should, however, be

remarked that wheels such as are represented in (c)

are seldom used in practice, since the same angle may
be obtained with the wheels shown in (b). To lay out

\



5<D TOOTHED GEARING.

the pitch cones and frusta, we have, then, the following

simple rule : Draw a'c and a'b' (Fig. 48), making with

each other the required angle, and equal respectively to

the diameters of the larger pitch circles of the wheels.

Draw now the axes oy and ox perpendicular to their

respective pitch circle planes. The point of intersec-

tion o determines the cones
;
and the given length a'a

or tfb, the frusta. The ends of bevel teeth lie upon the

Fig.49

surfaces of cones which are supplementary to the pitch

cones, and of which the top and root circles limit frusta.

In Fig. 49, a"cc'a'" and V'dd'b'" represent two teeth ;
ab

and a'b' are the pitch circles
; a'b'o, the pitch cone

;
and

a'b'ba, the pitch frustum. The root circles are a"b
n

and a'"b"'\ and the top circles, cd and c'd'. These

circles limit the frusta cdb"a" and dd r
b'"a'" of the sup-

plementary cones cdo" and c'd'd. The larger of the
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two pitch circles determines the size of the wheel and
the tooth dimensions. For instance, a fifteen-inch bevel

of one inch pitch means a bevel of which the larger

pitch circle is fifteen inches in diameter, and of which
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the pitch of the teeth upon this pitch circle is one

inch.

The teeth of bevels may be either cycloidal or invo-

lute. The latter are, however, more often used, because

they are much easier to construct. Fig. 50 shows a

convenient method for laying out the teeth of bevels :

abo is the pitch cone
; pn and gi are the top circles

;

and ef and kl, the root circles. Produce pc as far as

its intersection with the axis of the wheel, and from

this point o' as a centre, with o'a, o'p, and o'e as radii,

describe the circle-arcs q, /, and ;;/. These are the

virtual pitch, top, and root circles. Find by any of

the preceding methods the centres for the faces and

flanks, regarding a as the pitch point : r and s are the

centre circles for the faces and flanks respectively. The
teeth xyy"x" and it/t"wt are correct in size, and are

drawn to give the pattern-maker his dimensions. Now
project and describe the actual pitch, top, and root

circles q', /', and ;//', also the same circles for the small

end of the tooth (q"t /''
', and ;;/'), and the centre circles

r', /, etc. Set off now x'x'" = xx", y'n = ak', and z'z"

= yy", and find upon the centre circles the centres for

arcs passing through the points xf and y' (face), and y'

and z' (flank). The widths of the small end of the tooth

at the pitch, top, and root circles, are determined by the

lines o"y't
o"x'

',
and 0'V, etc., and the faces and flanks

drawn as above. Draughtsmen sometimes find the

centres for the tooth-profiles upon the actual instead

of upon the virtual pitch circle, as we have done
;
but

the height of the teeth upon the actual pitch circle is

less than the real height, as a glance at Fig. 50 will

show
;
and consequently the widths upon the top and
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root circles are respectively too great and too small,

thus marring the correctness of the drawing. In Fig.

48 (a), the planes of the pitch circles of the two bevels

are at right angles with each other (the angle = 90).

If, now, we gradually increase this angle 6, the wheels

take the form of Fig. 48 (b) ;
and finally, when the

planes become parallel (0 180), become external

cylindrical or spur

gears. If, on the

contrary, we gradu-

ally decrease the an-

gle 0, the bevels take

first the form of Fig.

48 (c), and finally,

when the planes be-

come coincident (6

=
0), become inter-

nal cylindrical gears. Between these latter two cases

(Fig. 48 (c) and internal cylindrical gears) we have two

interesting, if not altogether practicable, cases, the

Fig.52
internal bevel and the disk

wheel. A pair of bevels,

the internal bevel being
in section, is represented
in Fig. 51, and the "disk

wheel" in Fig. 52. The
internal bevel, because of

the difficulties in the way
of its construction, is

never used in practice. It may be constructed, however,

if desired, by the rules already given for internal cylin-

drical and bevel gears. The disk wheel is the least
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difficult of all bevels to construct, and is, although
seldom used, for this reason entitled to a place among
practical gears. The disk wheel and pinion possess
one peculiarity not found in any other bevel; viz., the

ratio of the radius of the pinion to that of the disk

wheel depends upon the angle included between the

axes of the wheels. If we let r and R be the radii of

the pinion and disk wheel, and tf the angle included

between the axes, we shall have the relation -^ = cos tf.

The supplementary cones upon which lie the ends of

the teeth become, for the disk wheel, right cylinders

having diameters equal to those of the pitch circles,

and, when cycloidal teeth are used, the profiles are or-

dinary cycloids, the disk wheel being regarded as (and

is sometimes called) the "bevel rack." In order that

a set of bevel gears shall gear together each to each, it

is necessary, not only that the pitch and kind of tooth

profile be the same, but that the slant height (b'o, Fig.

48) of the pitch cones be the same in all the wheels of

the set. Practice, however, allows a slight variation

from this rule
; and, according to Reuleaux, bevels will

work sufficiently well together if the difference in the

lengths of these slant heights does not exceed five per

cent. Such wheels are called bastard wheels, and are

quite commonly used in cases where there is no neces-

sity for very accurate gear.

VIII. Screw Gears. Worm and Wheel.

Screw gears are cylindrical gears, in which the teeth

are not parallel to the axes of the wheels, but make

oblique angles with them. All the lines of the teeth,
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which in spur gears arc parallel to the axes of the

wheels, are in screw gears parts of helices drawn

around the pitch, top, and root circles. Let Fig. 53

represent two screw gears ; being the angle included

between the axes, and < and
</>'

the angles made by the

teeth with the "middle planes
"
of the wheels, as shown

in the figure. It is plain that the angle aob is equal to

the angle : conse-

quently we have from

the figure, < + <'+
= 1 80. This condi-

tion must be fulfilled,

else the wheels will

not gear properly to-

gether. Another ne-

cessary condition in

screw gears is, that
~~

the pitches of two

gears which work to-

gether, taken normal

to the directions of
the teeth or the nor-

mal pitches, must be

equal. It is more

convenient to lay off the pitches on the pitch circles ;

that is, to lay off the circumferential pitches, instead

of the normal. In Fig. 54, ab represents the normal

pitch, and ae the circumferential. The angle aeb being

equal to <, we have ae = -^ ,
the circumferential

sin <

pitch equal the normal pitch divided by sin <. In order

that the wearing surfaces may be equal, the lengths of
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the teeth of a pair of screw gears should be equal.

The width of face depends upon the length of tooth

and the angle <. Thus, in Fig. 54, / = ec being the

length of the tooth, and I' = dc the width of face, we
have the angle ced =: angle </>,

and consequently /' /

sin <. Suppose (Fig. 53), = 40, and
<f>

60 : hence

<' + 60 + 40 = 1 80, </>'
= 80. If / and / represent

Fig.54 Fig.55

the circumferential pitches, and // the common normal

pitch, we shall have,

sin

and
sin 60 0.866

sin $' sin 80 0.985

Also, for the widths of faces of the two wheels, we shall

have

/' = / sin
</>
= 0.866/, and I" = / sin

<j>' 0.9857.
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If we make 9 = 90, we will have an ordinary spur-
wheel gearing with a screw gear (Fig. 55). In this

*igure, < 90 and = 40 : hence
<f>'

=. 180 -

(90 + 40) = 50. We therefore have, for the circum-

ferential pitches and widths of faces,

=
, p = n

0.766'sm 90 sm 50"

/' = / sin 90 =
/, and /" = / sin 50

= 0.766^.

Let 6 90, that is, the

axes are at right angles
with each other (Fig. 56) :

consequently

<f> -f- 9' = 1 80 90 = 90.

The angles 9, 9', may be

equal or unequal : in the

figure they arc taken equal.

9 = 0' = 91 = 45 .

2

From this,

and I' = I" = I sin 45 ^ 0.7077.* In Fig. 57 the axes

are parallel, or = o : hence
<f> -f- 9' = 180. This sig-

nifies that 9 and 9' are supplementary, 9 = 180 9'.

The inclinations of the teeth across the faces of the

wheels are in opposite directions. We have taken 9' =

60 : hence <A 120, and we have ^'= = -

-sm6o 0.866

* If we make the angle </>
less than the angle of repose, which, for

cast-iron on cast-iron, is about 10, only the wheel /" can be the driver:

the wheel I' then restrains motion in the direction opposite to that in

which it is driven.
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Since the sin. of an angle equals the sin. of its supple

ment, / =/ and /' = /" = / sin < = / sin $ = o.86f

Frg.57

Screw Rack and Pinion. If we make the radius of

one of a pair of screw gears infinitely long (
oo

),
the

Fig.58 Fig.59

I I

wheel becomes a screw rack, and the pair constitutes a

screw rack and pinion, shown in Fig. 58. Let = 45,
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and </>
=

;/

75: hence $ = 180 -
(45 + 75) = 60,

;/ ;/ ;/_ //___~
sTnT'

"~
5^66'

- ' sin *

= 0.9667, and 7" = / sin <' = O.866/.

Fig. 59 represents a spur rack gearing with a screw

pinion, 6 = 45, </>
= 90 : hence <// = 45, / =

S1U tp

7 sin </>'
= 0.7077.

-

= 7' and l
"

Fig. 6 I

\

\
\

We may also have a screw rack gearing with a spur

pinion, by making </>'
= 90 (Fig. 60). Let 45, and

sin 9
=

;/, I' I sin
</>
= 0.7077, and 7" = 7 sin <' = 7.

If we make the radii of both wheels of a pair of

screw gears equal to infinity, the pair becomes two

screw racks gearing together (Fig. 61) ;
and if we make

</>
or <' = 90, we have a spur-rack gearing with a

screw rack (Fig. 62).
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To draw the tooth profiles for a screw gear we pro-

ceed as follows : Having determined the angle < of the

teeth, and the length /, draw the horizontal line xy (Fig.

63). Draw db, making the angle < with xy, and make
it equal in length to /. Drop the lines dc and be per-

pendicular respectively to xy and dc. The line be is the

length of the tooth projected in the plane of the pitch

circle P. Strike, now, the pitch, top, and root circles,

P, /, and r, and make aU = be (a being the pitch point).

Fig. 62
Fig.63

Find the centres for faces

and flanks, as in spur gears,

and draw the profiles through a, b', and f. In con-

structing screw gears, it is advantageous to make the

angles of the teeth equal (<
=

<//).
The circumferen-

tial pitches, and tooth dimensions in the planes of the

pitch circles, as also the face widths, will then be equal,

thus saving calculation and extra work. The friction

between the teeth is also more evenly distributed by
this means.

The motion between two well-constructed screw gears
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Is very regular and uniform. They are therefore useful

in cases where uniformity of motion is requisite ; but,

owing to the friction between the teeth, these gears are

not very durable, and should be used for the transmis-

sion of small powers only, and at comparatively slow

motion. y
Worm and Wheel. The mechanism known as the

worm and wheel, or the worm and worm-wheel, is a

modification of screw

gears with axes at

right angles, the prin-

cipal object of which is

to obtain conveniently
a great difference in Fig. 64

the revolutions of two

shafts. The worm is an

endless screw, and the

worm-wheel a screw

gear (Fig. 64). It is

evident from the fig-

ure, that (the worm being the driver), at each revo-

lution of the worm, the wheel will be moved through
a distance equal to one tooth. Hence, if the wheel

has thirty teeth, the worm will make thirty revo-

lutions while the wheel makes one, or the worm-shaft

will revolve thirty times as fast as the wheel-shaft.

The common angle A of the teeth is usually taken

such that the worm will drive the wheel, while the

wheel will not drive the worm
;

so that, if at any
time the driving-power is taken off, the gearing will

remain stationary. For this purpose, the angle A. may
be taken from 4^ to 9. If, however, the worm-wheel
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is to be the driver, X must be taken greater than 10.

The pitch radius R' of the worm may be from one to

two times the circumferential pitch.* The tooth-pro-
files of the worm and wheel may be either cycloidal or

involute
; and, in either case, those of the worm are

drawh as for a rack, and those of the wheel as for a

screw gear.

Involute profiles are particularly useful in worms, be-

cause the worm is, at best, difficult to construct, and the

straight 75 profiles of the involute rack very much fa^

cilitate the construction. If we make the radius of the

worm-wheel infinitely long, the wheel becomes a screw

rack, and the mechanism becomes a worm and screw

rack (Fig. 65). We may also have a worm and internal

worm-wheel (Fig. 66), or an internal worm and worm-

wheel. In either of these cases the profiles are drawn

as explained in sections IV. and VIII. As in screw

gears, by placing the axes at oblique angles, we may
have a worm gearing with an ordinary spur wheel, a

Fig.,64a
* If we develop in the straight line ac (Fig.

64 a) the circumference of the pitch circle, and

in the straight line ab the length of one revolu-

tion of the screw, we shall have be the pitch
=

/, and ac = the circumference = 2irR' : hence

This condition must be fulfilled : hence, if we

make R'= 2/,
--

f \, tan A = O.I59X =
0.0795,A

A = 4 33'. If R' = p, ^ i, and tan 1

o. 1 59, A = 9 2'. Inversely, if 7i 1 2,

tan a = 0.213
=

0.159-,, -^=1.34,
R' = $p.
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Fig. 65

spur rack, or an internal spur wheel. It must, however,

not be forgotten that the pitch of the spur gear must

be taken equal to the pitch of the worm multiplied by
cos A. In order to obtain more bearing surface between

the teeth of the worm and

those of the wheel, the bot-

toms of the spaces in the ^
wheel are sometimes cast

in the form of circle-arcs, to

fit the threads or teeth of

the worm (the radius of curvature equals radius of

ends of worm-teeth plus the clearance), and the ends

of the wheel-teeth formed to fit the bottoms of the

spaces in the worm (radius of curvature equals radius of

bottoms of worm-spaces plus the clearance), as shown

Fig.66 Fig.67

in Fig. 67. The figure gives a section through the

centre of the wheel, showing two teeth entire and an

end view of the worm. As with plain screw gears, so

with the worm and wheel, the wear is excessive ; and,

for this reason, only comparatively small powers can be

advantageously transmitted by this mechanism. In
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cases, however, where the gears are not in motion

continuously, as in hoisting-machines, cranes, some

CO

machine tools, etc., worms may be used for the trans-

mission of considerable powers.
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IX. Hyperbolic Gears.*

Hyperbolic, or, more properly, hyperboloidal, gears

are intended to be fixed upon arbors, the axes of which

cross, without intersecting each other. Their primitive

surfaces (surfaces limited by the primitive or pitch cir-

cles) are hyperboloids of revolution, which touch along
a common generatrix. This generatrix may be deter-

mined as follows :

In Fig. 68, which is a projection made normally to

the shortest distance between the axes, let us divide

the angle of inclination of the axes into two other

angles, (3 and ft, in such a manner that the perpendicu-

lars AB and AC, drawn to some point A of the line of

division SA, shall be inversely proportional to the

numbers of revolutions of the wheels, i.e., directly pro-

portional to the diameters. SA is, then, the generatrix

of contact of the two hyperboloids. AB = R' and

AC = R' represent the projections of the radii of two

normal sections through the point A, and we have,

R' _sinff _n
f

_ N^
57

"
siiiT?

~~ ~
N"

n and ;/ being the numbers of revolutions, and N and

N' the numbers of teeth, of the wheels. The real radii,

R and R,, are still to be determined, as also are the

radii SD r and SE = r'. Between these last we

have the relation,

-+COS0
r _ tan p _ n

7
=
tan/?""^

f -h cos

* From Le Constructeur.
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That is, r and r' are in the same relation to each other

as are the two segments AF and AG, which are deter-

mined by the projections of the axes upon the right

line FG, drawn through the point A perpendicular to

the generatrix of contact. Representing by a the

shortest distance between the axes, we have,

i-h-cos<9 i+-'cos<9
r n , r n

and =

n' \n

a n . In V a n' A /n'\
2

i -f 2 cos -f ( , )
i + 2 cos -H

Jn

The radii R and R
l
are the hypothenuses of right-

angled triangles, of which the sides are respectively R
f

and xy = r, Rf and x'y'
= r', and consequently have

the values,

R = y^2 + >'
2 and R, = \A#/

2 + r'2 .

R' and R
t

'
are known from what precedes when we

have given the length SA = !. The angles ft and f?

are determined by the relation

-_ and tan/T=
n A ,.

. + cos v -f- cos

As in bevel gearing, the problem permits of two

solutions, according as the line SA is drawn withir

the angle 0, or within the supplementary angle BSC'

(Fig. 69). These two solutions differ from each other

in the direction of rotation of the driven arbor. One
of these solutions leads to an internal gear, as in bevel

gears ;
but this, to our knowledge, has never been

actually constructed, and it cannot possibly have any
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practical value. When the angle of inclination, 0, is

made equal to 90, we have,

and

'-,-* B -ffir \a I

a n 2
-f- ;/2

'

n* -f
/

It is easily seen, from what precedes, that hyperbolic

gears present a more limited number of solutions than

Fig.69

ordinary screw gears, with which, however, they pre-

sent many analogies. In the latter, for one value of

the angle of inclination of the axes, we can give an

arbitrary value to the angle of inclination of the teeth

of one of the wheels
;
while in hyperbolic gears there is

only one pair of values admissible for the angles of

inclination.

The primitive surfaces of two hyperbolic gears are
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formed by corresponding zones of two hyperboloids of

revolution. When the distance (shortest) between the

axes is small, the zones comprising the circles of the

gorge, of which r and r (Fig. 68) are radii, cannot be

utilized as primitive surfaces, and we must have re-

course to zones somewhat removed from these circles.

These may ordinarily be replaced by simple frusta of

cones, and the construction thus rendered compara-

tively simple. The following examples will serve to

illustrate the preceding formulas and remarks :

Example I. = 40, - = -, a = 4". From the

R' ri R f
i

formula 7 = we have -=-
f
=. - = 0.5 ;

RI n K.
l

2

also we have

r 0.5 4- 00340 _ 1.266

7
=:

2 + cos 40
:=

^66
= 4577

r i 4- 2 cos 40 _ 2.532 =
a i -f 2 x 2 cos 40 -f 4 8.064

r= 1.2559", r' = 2.744".

For the angles ft and fi' we have

o sin 40 0.6428tan ft
:=

2 + cos 40
=
^66-

=

or ^813 5', and jtf
= 40 = 26 55'. For the

distance SA = /= 8" we have

R' = /sin 13 5'
= 8 X 0.226368 = 1.81"

^P/ = 8 X sin 26 55' = 8 x 0.452634 = 3.62".
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Finally,

R =Vi^

and

R, = N/p^
2 + ^74

2 -
4-54".

Example 2. 90, -
(a value which will be

satisfied by the numbers of teeth TV^^ 36 and N' = 20),

and # = 0.8". From the preceding formulas we have

8 1

5
2 4- 9

2 106

and
/ = o.i 86".

We have also tan /? 1.80, or /8
= 60 57', and

consequently /^ = 29 3'. For R = 2" we have the

formula

R' = \JR
2 r* = \2 2 - o.6i

2 = 1.90"

and

9 9

Also for R, we have

Rt = ViTo6
2

-f- oT89
2 = i.08".
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Example^. = 90, = i. As before, tan ft

= '=i or/2=45, = V=i, orr = /. Also

R =. R It and the hyperboloids are congruent.

Example 4. In the particular case where the rela-

tion is numerically equal to cos 0, and the line of

division which determines the angle ft is situated within

the supplementary angle of in such a manner, that, tak-

ing into consideration the sign, we have = cos 0,

one of the primitive surfaces reduces to a cone, and the

other to a hyperboloidal plane. This hyperbolic plane

(or disk) wheel corresponds to the disk wheel in bevel

gears, and can be made to gear with an ordinary bevel

wheel. It offers, however, no practical advantage, since

the disk wheel interferes with the" prolongation of the

arbor of the bevel. For = 60, -- = cos 60,
11 2

T _
we obtain the disk wheel, and have tan ft

-
y/3, ft

= 30,

R=R', R, V^/2 + (i
2

\/4^
2 + a2

. If -were neg-

ative, and less than cos 0, we would obtain a hyperbolic
internal gear ;

but gears of this kind are not at all

practical.

With hyperbolic gears we may obtain, as a limiting

case, the mechanism of a rack and pinion. The rack,

m this case, carries oblique teeth
;
while the pinion is
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Fig.70

formed by the zone corresponding to the circle of the

gorge of a hyperboloid of revolution. But since the

construction of this pinion is much more difficult than

that of a screw gear, the effect of which is equivalent,

it results that the latter should be used in all cases

where this effect is to be produced.
Teeth of Hyperbolic Gears. If we wish to give to the

teeth of hyperbolic gears perfectly accurate forms, we
meet with very serious difficulties in the execution.

We may, however, content ourselves with approximate
forms. In this case, to determine the teeth of a hyper-
bolic gear, we begin by tracing the supplementary cone

of the hyperboloidal zone, which

is to be used as the primitive sur-

face. The apex H of this cone

(Fig. 70) is obtained by drawing
a perpendicular AH to the gen-
eratrix SA, parallel to the plane
of the figure. We then deter-

mine the profiles of the teeth

for the normal pitch p tl upon the

circle of the gorge as if it was

acted upon by a screw-wheel

having a diameter r, and an in-

clination of teeth 90 /?; then

we continue the profiles thus

obtained upon the conical surface HJL, taking care to

increase the dimensions parallel to the circle of division

in the proportion of / to pn (p being the circumfer-

ential pitch), and the lengths in the proportion of K to

r, K representing the length of the generatrix of the

supplementary cone. We repeat the same construction
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for the supplementary cone corresponding to the other

base of the zone, being careful to decrease the values

of / and K. Thus we obtain for each tooth two pro-

files, sufficiently exact, of which the corresponding

points must be joined by straight lines to form the

body of each tooth.

In certain cases a cone frustum may be substituted

for the hyperboloidal zone, upon the condition of prop-

erly determining the apex. To this effect, we revolve

the generatrix SA about the axis HS until the point A
becomes coincident with the point J : the projection

of the generatrix, in this position, determines by its

intersection with HS the desired apex of the cone.

X. Relations between Diameter, Circumference, Pitch, Number of

Teeth, etc. Diametral Pitch. Methods for stepping off the

Pitch.

The circumference of a circle is expressed by the

formula

C= irD, or C= 271-7? (i)

where C is the circumference, D the diameter, R the

radius, and TT the constant 3.14159. From these formu-

las we may write,

c c
/? = -, R=~ (2).

TT' 2?r

Thus, to find the circumference, multiply the diameter

by 3.14159, or the radius by 2 X 3.14159 = 6.28318.

Inversely, to find the diameter, divide the circumfer-

ence by 3.14159: to find the radius, divide the circum-

ference by 6.28318. The simple, old rule, which says,
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This

" To find the circumference of a circle, multiply the

diameter by 22, and divide by 7, to find the diameter,

multiply the circumference by 7, and divide by 22,"

ordinarily answers the purpose well enough. The cir-

cumferential pitcJi or circular pitch (generally called

simply the pitch) of a gear of any kind is the distance

from the centre of one tooth to the centre of an adja-

cent tooth, measured on the pitch circle, or, what is the

same thing, the distance on the pitch circle, which

includes one tooth and one space,

distance, laid off a certain num-

ber of times around the pitch

circle, divides the pitch circle

into a certain number of equal

parts, each containing one tooth :

consequently the circumference

of the pitch circle divided by
the pitch will give the number
of teeth, and the pitch multi-

plied by the number of teeth

will give the circumference of the pitch

formula, N being the number of teeth, and / the pitch,

From formula (i) we may write
, and, from the

6 wD
i N i N

third of formula (3),
- = -^. Hence - = ,

or

N 7T 7T_ = _=^ and - = / (4).
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This ratio of the constant quantity TT 3.14159 to the

circumferential pitch is called the diametral pitch,

because it is equal to the ratio of the number of teeth

to the diameter of the pitch circle. We represent this

diametral pitch by pd. The diametral pitch gives the

number of teeth in a gear wheel per unit (say inch)

of length of the pitch-circle diameter. To illustrate.,

suppose we have a pitch circle of 10" diameter and i

circumferential pitch of 3. 141 59". From formula (i) the

circumference is C * X 10 = 31.41-59", and from for-

mula (3) the number of teeth is N =. =- ^ = 10.

P 3.HI59

Hence, from formula (4), pd = i
;

that is,

there is one tooth in the gear for each inch of length
in the diameter of the pitch circle. In order to distin-

guish the diametral from the circumferential pitch, the

former is often designated as "pitch No. ." Diame-

tral pitch No. i = circumferential pitch of - =. 3.14159",

diametral pitch No. 2 = circumferential pitch of

= i.57079"> etc.

Since the circumference of a circle cannot be meas-

ured exactly (the quantity TT being irrational), it is often

tedious work to step off the circumferential pitch arounc

the pitch circle (especially in large gears), a great many
trials being necessary before the equal division of the

pitch circle is obtained. A formula, by the use of whicl:

this work is simplified, may be obtained as follows : Let

bed (Fig. 72) be a circle, be a circle chord. In the tri

angle abc we have, from trigonometry, the proportior
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sin angle bac \bc\\ sin angle bca : ab.

75

But ab = R, the radius of the circle, and be = I", the

circle chord. Calling the angle bac 6, we have, since

ac = ab = R, the relation,

-
2

angle bca =

Substituting these values in the above proportion, we
obtain

Hence

But

. /i8o -
sin I

-

V 2

/i8o-0\ / 0\
sin f

J
= sin I 90 j

= cos

and, from trigonometry, sin = 2 sin J 6 cos J 0.

These values, substituted in the

last expression for I'
1

', give
Fig.72

sn cos

cos4<9

or

(5).

Suppose, now, the arc be to repre-

sent the pitch laid off on the pitch

circle of a gear. If we represent by N the number of

360
teeth in the gear, we shall have for 6 the value 6 = ,
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1 80
and consequently \ =

-^-.
From this, by substitu-

tion in formula (5), we have for the length of the

chord be,

(6).

Rule. To find the length of the chord subtended

by the pitch arc, multiply the diameter of the pitch

circle by the sine of the angle obtained by dividing

1 80 by the number of teeth.

Example i. Suppose D = 24" andN= 80. Hence
T
0-.O

i o if^L 2 15',- sin 2 15' = 0.03926, and /" = 24
oO

X 0.03926 = 0.942".

Example 2. D = 39!" and the pitch =. p =. 4".

From formula (i) the circumference is C = trD = 124",

and from formula (3) N =. 331. Formula (6)
4

therefore gives I" 39^ sin /L8o!\ 39^ sin 5 48' 23!"
V 31 /

= 392 X 0.1011683 = 3-996// -

Mr. W. C. Unwin, in " Elements of Machine Design,"

gives the following :

" To lay off the Pitch on the Pitch Line. The follow-

ing construction is convenient when the wheel is so

large that it is impossible to find the exact pitch by

stepping round the pitch line. Let the circle (Fig. 73)

be the pitch line. At any point, a, draw the tangent ab.

Make ab equal to the pitch. Take ac equal to \ab.

With centre c and radius cb, draw the arc bd. Then

the arc ad is equal to ab, and is the pitch laid off on the
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pitch line. When the wheel has many teeth, the arc

ad sensibly coincides with its chord
; but, if it has few

teeth, there is an appreciable error in taking the chord

ad equal to the pitch."

Unfortunately neither of these rules gives exactly the

required distance; for, in the first case, the sin f

_J

is usually a number containing six, eight, or even more

decimal places, and consequently the chord be will be

such a number, not capable of exact measurement with

the compasses ; and, in the second case, the pitch

(being the circumference
F| 73

an irrational quantity di-
j>

c a

vided by the number of teeth)

cannot be exactly laid off on

the line ab. Such simple and

easily remembered rules, how-

ever, simplify in some degree
the work of the draughtsman and mechanic, and are

therefore worthy of our notice. An accurately con-

structed ""Tr-rule" (pi-rule), used in connection with the

preceding method, gives very close results. To con-

struct such a rule, have a four-inch circle turned, as

accurately as possible, out of wood or metal. Mark a

point anywhere upon the circumference, and starting

with this point tangent to a straight, true ruler about

14" long, roll the circle along (taking care not to slip or

slide) until the point is again tangent to the ruler. The

distance thus developed upon the ruler is equal to the

circumference of the 4" circle, equals 4?r. Divide

the developed length into four parts : each part is equal

to one TT (pi), and may be divided into halves, quarters,
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eighths, etc., or into tenths and hundredths. The total

distance now marked off is 477, and the divisions are

equal to TT, JTT, JTT, JTT, etc., or
-^TT, and

yJ-^TT. As an

example to illustrate the use of the 7r-rule, suppose
the diameter of a gear to be constructed is 10", and the

number of teeth 100. The circumference of the pitch
circle is IOTT, and the pitch is IOTT divided by 100, or

-^QTT. This, measured on the 7r-rule, and laid off on the

tangent line ab (Fig. 73), will give the arc ad (or chord

ad) as accurately as any method with which we are

acquainted.

XI. Ratios. Velocity. Revolution. Power.

The velocity ratio of two gear wheels is the velocity at

the circumference of one wheel divided by the velocity
at the circumference of the other, both velocities being
taken in terms of the same unit (generally feet per

second), or the ratio of the velocity at the circumference

of one to the velocity at the circumference of the other.

The velocity ratio of two toothed wheels which gear

together is always constant, and equal to unity ;
that is,

the velocity at the circumference of one is equal to the

velocity at the circumference of the other.* To prove

this, let the circles of Fig. 74 represent the pitch circles

of a pair of gear wheels. Suppose R to be the driver,

* When two gear wheels are fixed upon the same shaft, their veloci-

ties are proportional to their diameters or radii. Thus,
let D and D' be the diameters of two such wheels.

The velocities at the circumferences of the wheels are

v = Cn, and v' C'n ; v, v', C, and C f

being the velo-

cities and circumferences. Hence

i/ nzy* jy Rr

- = -

r

_
=:gr

=
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Fi8.74

and r the driven wheel. As the wheels revolve, it is

plain, that, as each tooth of R passes the imaginary line

AB, it carries with it a tooth of the wheel r. Thus

equal numbers of teeth of the two wheels pass the line

AB in equal times. But, since the pitches of the wheels

are equal, equal numbers of teeth must lie on equal
arcs of the two pitch circumferences : therefore, with-

out reference to the relative sizes of the wheels, equal
arcs of their pitch circumferences

pass the line AB in equal times, or,

in other words, the velocities at the

circumferences are equal.

The revolution ratio of two gear
wheels which gear together is the

greater number of revolutions di- \ \
vided by the less, or the ratio of the \
greater number of revolutions to

the less. For example, if one of a

pair of gear wheels makes 100 revo-

lutions per minute and the other 20,

the revolution ratio is ^V" = i>
anc^

we say the wheels are geared 5 to i.

in Fig. 74 that equal numbers of teeth of the wheels R
and r pass the line AB in equal times. Let us suppose
the number of teeth (N) of the wheel R to be 100, and

that (N') of r to be 25. When 25 teeth of-.-/? have

passed the line AB, 25 teeth (all) of r have also passed
the line

;
that is, R has made J of a revolution, and r has

made i entire revolution. When 50 teeth of R have

passed the line AB, 50 teeth of r have also passed the

line, or R has made of a revolution, and r has made
2 entire revolutions. Thus, when 100 teeth of R have

We have proved
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passed AB, or when R has made i entire revolution, r

has made *- = 4 entire revolutions. The revolution

ratio of the pair is therefore -*, the small wheel making

4 revolutions while the large wheel makes i. But the

ratio of the number of teeth of the small wheel (r) to

that of the large wheel (R) is -f^ = ^ : therefore it is

plain that tJie revolution ratio of a pair of toothed wheels

is inversely equal to the ratio of the numbers of teeth of

the wheels. Letting ;/, N, R, D, and C represent the

number of revolutions, number of teeth, radius, diameter,

and circumference respectively, of the smaller wheel,

and ;/, N', R', Df

,
and C the number of revolutions,

etc., of the larger wheel, we have, since the number of

teeth is directly proportional to the radius, diameter, or

circumference,

n N' R D C'

Rule. The number of revolutions of the smaller

wheel is to the number of revolutions of the larger

wheel as the number of teeth, radius, etc., of the

larger wheel are to the number of teeth, radius, etc., of

the smaller wheel.

Example i. Two bevel wheels are to gear together

so that the revolutions per minute are respectively

n = 160 and ;/ = 40. The diameter of the smaller

wheel is D = 8", and the pitch of the teeth, p = $ '. It

is required to find the diameter of the larger wheel (ZX)

and the numbers of teeth (N and N'} of each wheel.

We have here
* = = i From formula (7),

i =^
;/ 40 i I 8

D' = 32". From formula (i), C = * X 8 = 25. i", and,
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from formula (3), N= -~-
50. From formula (7),

2

again, ^
,
or N' = 200.

Example 2. A shop shaft makes 120 revolutions per
minute. From this shaft it is required to gear down
to 8 revolutions per minute. The diameter of the

wheel on the first shaft is 12" . Find other diameters

and the numbers of teeth of each wheel, supposing the

Fig.75

pitch = i". The revolution ratio is 152=11. From
o I

formula (7),
I* = ,

D' 1 80" = 1 5 feet. A wheel

of this size is out of the question : we therefore must

have recourse to a train of wheels such as is repre-

sented in Fig. 75. We may take the revolution ratio

between D and D' \ , and that between D" and D'" \ :

we then have f X f = ^ as the ratio between D and

D'". From formula (7), then, -
t
= 3 = . ZX= 36",

and
n~ = 1 = ^. Taking Z>

/x= D= 12", we have

D"'= 6o". From formula (i), C= * X 12= 37.7, and,
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from formula (3), JV= ^ZiZ =38. Hence, from formula

(7), N'= 1 14, N"= 38, and N"' =. 190.*

In a pair of gears in which N= 25 and IV'= 100

the revolution ratio is , = -. The same
;/ TV 25 i

teeth are therefore in contact once in every revolution

of the larger wheel, or once in every 4 revolutions of

the smaller wheel. Contact taking place so frequently
between the same two teeth, if these teeth happen to

be rough and poor, the wear between them must be

greater than in any other part of the wheels. If, how-

ever, we make N= 26, the revolution ratio is Ye '
3iJ>

practically the same as before, and the two poor teeth

are in contact only once in 13 revolutions of the larger,

or 50 revolutions of the smaller wheel. By means of

this "wear tooth
"
the wear of the wheels may be more

evenly distributed, and the durability of the wheels con-

siderably increased, without seriously interfering with

the revolution ratio of the wheels.

Power Ratio. The power or force of a gear wheel

is the force with which the circumference of the wheel

.turns : it is equal to that force, which, when applied

to the circumference in a direction contrary to that of

rotation, is just sufficient to stop the rotation of the

wheel. The power ratio or force ratio- of two gears
is the greater power divided by the less, or the ratio of

the greater power to the less. The powers of two

wheels which gear together are equal, the power of the

* The gears D' and Z>", being fixed upon the same shaft, of course

make the same number of revolutions per minute, regardless of diameters

or radii.
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Fig.76

driver being transmitted directly to the driven wheel :

in this case, therefore, the power ratio, as the velocity

ratio, is constant, and equal to unity. Let R and R'

(Fig. 76) represent the radii of a pair of gears, and ;'

the radius of a pulley which is fixed upon the axle of R,

and arranged to lift a weight W by means of a string

passing around its circumference. Let the power or

force of the driver R' be denoted by P. This force is

transmitted to R in the direction shown by the arrow.

We may regard the imaginary line ac as a simple lever,

the fulcrum of which is at

b, and the arms of which are

abr and bc=.R, The
force P acts upon the long

arm, and the force W upon
the short arm. By the prin-

ciples of the lever, the mo-

ments of the forces with

reference to the fulcrum

must be equal : hence we
have

W R
Wr = PR, or

-p
= -

(8).

That is, the forces of the wheels R and r are inversely

proportional to their radii. Since the radii R and r are

directly proportional to the velocities of the circumfer-

ences, and the power and velocity of R are equal to the

power and velocity of R r

, we may write,

W PV Wv
LL^L

v
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where V and v are the circumferential velocities of R
and r respectively. From this formula we may write

the following :

Ride. The relative powers of the wheels of a train

of gears are inversely proportional to the circumferen-

tial velocities of the wheels. To find the power of any
wheel of a train of gears when the power of the next

wheel is known, multiply the power of the latter by its

own velocity, and divide by the velocity of the former.

Example i. In a train of gears such as is repre-

sented in Fig. 76, the force of the driver is ^==50
pounds, the velocity of the driver is V=. 10 feet per
second

;
that of the pulley, v= 5 feet per second. Re-

quired the weight W which can be lifted by the pulley.

The force of R is equal to that of the driver, since their

velocities are equal. By the rule,

. force of R' X velocity ofK _
force of R = -

= : ^-~- = force of tf.
velocity of R

From formula (9), or the rule,

___ PV 50 x 10W= = = 100 pounds.*
5

Example 2. In the gear train represented in Fig.

77 the force of the driver R" is P= 500 pounds,
R= R'= 12", r r'= 5". It is required to find the

* The gain in power is obtained by a sacrifice of time
;
for the wheel

y?, having twice the velocity and half the power of the pulley r, can lift

twice as far a weight equal to ^W in the same time, or just as far a

weight equal to W in half the time. The work inherent in these two

wheels is therefore the same : r simply does double work in double time.

If, however, we have only 50 pounds of force at our disposal, we can

lift 100 pounds at one lift only by means of such a train, or a similar

mechanism.
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weight, W, which can be lifted by the pulley r, and the

distance per minute which W can be lifted, supposing
the wheel R' to make 15 revolutions per minute. The

power of R' is equal to that of the driver= P. From
formula (8), P' representing the power of r',

r>f pf n'
i J\ *

~P^V
12=

, Jr= 1 200 pounds.
500 5

This power is transmitted directly to R : hence

W R W
P' ,

W' = 2880 pounds.
1 200 5

R' and r' make the same number of revolutions, being

Fig.77

on the same shaft. From formula (7),
'
and n being

the numbers of revolutions of r
r

and R, we have

r

R 15 12

The circumferential velocity of r, which is the velocity

with which the weight W is lifted, is

2-rrrn

12 12
= 16.36 feet per minute.
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Example 3. Required an expression for the weight
which can be lifted by a train similar to that of Fig. 77,

containing any number of wheels. From Example 2,

P r R f

, PR' A W R ,,, P'R
-
rr= -r or JT = T- and -TV

- or W=-.P r
r

r' P' r r

Substituting in this expression the value of /", just
r> r> r>/

written, we obtain W-=- -7. In the same manner,
rr

for any number of wheels, R, R',
R"

,
R"'

y etc., repre-

senting the radii of the large wheels, and r
y r', r", /", etc.,

f ..
,

.

1J7 PRR'R"R'", etc.
those of the pinions, we obtain W7 _______

rrrr, etc.

, D Wrrr"rm etc.

Inversely, P =

Example 4. We have a shaft which drives a gear
with a force of 250 pounds : we wish with this power to

lift a weight of 1,500 pounds. Required the radii of the

wheels of the necessary train. We can see at a glance

that a simple train, such as Fig. 76, will not be1

practi-

cable, for in this case = -
; and, if r= 6"P r 250 I

(as small as is convenient), R r X 6 36", or the

diameter of our large gear will have to be 6 feet. This

is practically out of the question : we must therefore

use a train with 4 or more wheels. Let us try 4.
r) r> ir>/

From Example 3 we have W= --j. Taking r r'

36 36 250
= 216. We can now assume a value for R, and find

the corresponding value of R r

. Say R=.\2"t then
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In the preceding examples no account has been taken

of the friction of the gear teeth and axles, since they
are given simply to illustrate the use of the rules and

formulas which precede them. The detrimental fric-

tion is, of course, very considerable, even in the best

wheels, and increases rapidly as we increase the num-

ber of wheels in a train : therefore the trains spoken
of in the examples, if actually made and used, would

accomplish considerably less than the examples give

them credit for. Were this not the case, we could,

with the slightest possible amount of power, by means

of a train containing a sufficient number of wheels, per-

form an infinitely great amount of work manifestly,

from a practical point of view at least, an absurdity.

XII. Line of Contact Arc of Contact.

In a pair of toothed wheels, each tooth of one wheel

is in contact, for a certain, definite length of time or

distance of revolution, with a tooth of the other wheel,

and there is always at least one pair of teeth in contact.

Whether or not the same two teeth come into contact

at each revolution depends, as we have already seen,

upon the relative numbers of teeth of the two wheels.

If, during the contact of a pair of teeth, a curve be

drawn through all the successive points of contact, this

curve will represent the entire contact of the teeth.

Such a curve is called the line of contact, and its length

represents the duration of the contact. The line of

contact may be found by drawing different positions of

two teeth while in contact, and drawing a curve through
the points of contact thus determined. This operation

is, however, often a difficult one, because the effect of
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the preceding pair of teeth upon the early contact of

the pair in question cannot easily be taken into consid-

eration, and this effect is very often too important to

be neglected. Reuleaux has pointed out the following

method for determining the line of contact : Let O and

O' (Fig. 78) be the centres of two toothed wheels which

gear together, OpO' the line of centres, and / the pitch

point. From different points along the profile apc
f draw

normal lines intersecting the pitch circle in the points

b, b'
y
b" d r

, etc., and from O as a centre strike circle-

arcs through the points a, a', a", c, etc. We have seen,

that, for uniform velocity ratio, it is necessary that the

common normal to two teeth in contact at the point of

contact shall pass through the pitch point. If, there-

fore, from the pitch point / as a centre, with radii equal

to ab, a'b', a"b", dc, etc., we strike arcs intersecting the
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above-mentioned arcs, the points of intersection will be

points of contact of the teeth, and a curve drawn

through these points will be the line of contact. The
arcs Kp and K'p, taken on the pitch circles, and limited

by the top circles, are called the arcs of approacJi and re-

cess, according to the direction of rotation, and together
form the arc of contact. The length of the arc of con-

tact depends upon the diameters of the pitch circles of

the gears and the height of the teeth between the pitch

and top circles
;
while the length and position of the line

of contact depend not only upon these dimensions, but

also upon the form of the profiles of the teeth and the

number of teeth in contact at one time. In ordinary

gearing, where the height of the teeth between the

pitch and top circles is the same for both wheels, the

arcs of approach and recess are equal, and, in wheels

having cycloidal profiles, the lengths of the line and

arc of contact are, according to Reuleaux, equal. The

length of the arc of contact must be at least equal to

the pitch of the teeth, else there would be less than

one pair of teeth in contact at one time : in ordinary

machine gearing this length varies from i to 2| times

the pitch.

XIII. Strength of Teeth. Rules for determining the Pitch, and

other Tooth Dimensions.

Before taking up the subject of strength of wheel

teeth, our notation for the calculations under this head

must be explained. The total height of the tooth,

i.e., the sum of the heights above and below the pitch

circle, we denote by //
(
= // + //') ;

the breadth of the

tooth on the pitch circle, by b ; and the face width of
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the tooth, by /(see Fig. 79). In calculating the strength
of a wheel tooth, the curved profile is disregarded, as is

also, in ordinary gearing, the influence of the velocity
of the wheel, and the tooth regarded as a simple beam
or semi-girder supported at one end, and having a

weight or force, W, acting at the other end (Fig. 80).

The width b is taken equal to the width of the tooth on

the pitch circle. The safe working-load for a beam

Fig.79 Fig.80

such as is represented in Fig. 80 is expressed by the

formula

W-^W
6k

in which W is the safe working-load, f the greatest

safe working-stress in pounds per square inch for the

material used, and the other quantities the same as in

Fig. 80. It is evident that the width b of the tooth

must be less than half the pitch, else the space would

not be wide enough to admit the tooth of the mate-

wheel
; and, in order that the tooth may be sufficiently

strong when it becomes worn, we take, at the sugges-

tion of Unwin, b Q.^p; p being the circumferential

pitch. Also we may take, as is now generally done,
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// = // + //'= o.4/ + o. ip= o.7/. These values, sub-

stituted in the above formula, give

In this expression W^is the actual load or strain on one

tooth. It is more convenient to use this formula in

terms of the total force, P, transmitted by the wheel.

Ordinarily, more than one pair of teeth are in gear at

once : therefore the whole force transmitted is not sus-

tained by one tooth. The number of teeth in gear at

once varies considerably in different wheels
;
but we

may safely say that no tooth bears more than three-

fourths of the entire force transmitted. We have, then,

J'F !/>, and consequently

flx 0.1296^

Reducing this equation, we obtain

> 0.041 14^/

From this, by transposing,

p pV _

0.04 1 14/ /

or

This formula may be termed the general formula for

determining the pitch. It may be used for any ma-
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terial whatever by substituting for the quantity f its

proper value. From the formula, therefore, we may
write the following :

General Rule. To determine the pitch of a gear
of any material, divide the total force to be transmitted

by the greatest safe working-stress per square inch for

the material of the wheel, multiply the quotient thus

obtained by the ratio of the pitch to the face width,*

extract the square root of this product, and multiply
the result by 4.93.

The degree of safety necessary in calculations for

strength of gear teeth varies with the work to be done

by the. gear, in other words, with the amount of clanger

to be incurred. Thus the degree of safety necessary is

greater when the gear is to be subjected to sudden,

violent shocks than when no such shocks occur, be-

cause the danger of breakage or accident is greater.

This degree of safety we obtain conveniently by vary-

ing the value of the quantity f, taking small Values

when the danger is great, and vice versa.

For ordinary, good cast-iron we may take f= 4,000

pounds when there are sudden, violent shocks upon the

gear, f= 5,000 pounds when only moderate shocks

occur, and /= 10,000 pounds when there is little or

no shock. By substituting these values of f, in turn,

in formula (10), and reducing, we obtain the following

formula for determining the pitch of a cast-iron gear :

*
Ordinarily this ratio is assumed. For example, we may assume

=j

= -

sumed.

-, or y= -3, and determine the pitch for the particular value as-
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For violent shock, / = 0.078^ P x -. (a)

For moderate shock,/ = 0.07

For little or no shock, / = 0.05 P xt P

. To determine the pitch for a cast-iron gear,

multiply the total force to be transmitted by the ratio

of the pitch to the face width, extract the square root of

the product, and multiply the result by 0.078 for violent

shock, 0.07 for moderate shock, or 0.05 for little or no

shock.

In ordinary machine-gearing the face width is very

often taken equal to twice the pitch j/=2/, y -j;

because a greater relative face width does not, in the

same degree, add strength to the tooth, the principal

effect being to increase the stiffness of the tooth. If

we make
y
= i in each of the formulas (u), we obtain

p = 0.078^ X |, / = o.07\//' x J, and / = 0.05^ Px ?.

Reducing these, we have, for the three cases given

above, the formulas

/ = 0.055^

/ = 0.05 ^P

p = 0.035^

(o

(0

(12).

Rule. To determine the pitch for cast-iron gears

when the face width is equal to twice the pitch, multi-
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ply the square root of the total force to be transmitted

by 0.055 f r violent shock, 0.05 for moderate shock, or

0.035 f r little or no shock.

A horsc-poiver, as commonly used, is that force which

will lift a weight of 33,000 pounds one foot high in one

minute, 33,000 foot-pounds. If we let //represent the

horse-power, and v the velocity at the circumference of

the wheel in feet per second, we shall have the expres-

sion,

_ 550^
607; v

This value of P, substituted in formulas (11), gives the

following convenient formulas for the pitch when the

horse-power and the velocity in feet per second, instead

of the force transmitted in pounds, are given :

For violent shock, p = 1&Z\
~~

7 (a )

I j-f -ft

For moderate shock, / = i.64\/
-j

(b)

For little or no shock, p i.i 7y
-

(c)

Rule. To determine the pitch from the horse-

power and velocity in feet per second, multiply the

ratio of the horse-power to the velocity by the ratio of

the pitch to the face width, extract the square root

of the product, and multiply the result by 1.83 for

violent shock, 1.64 for moderate shock, or 1.17 for

little or no shock.

By substituting the above value of P in formulas (12),

we obtain for the pitch, when the face width is not less

than twice the pitch, the formulas :
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For violent shock, p

' Jl
For moderate shock, / = i.iyV/ (b)

For little or no shock, / = 0.8 2V/ (<r)vv

(14)

Rule. To determine the pitch from the horse-

power and velocity in feet per second, when the face

width is equal to twice the pitch, multiply the square
root of the ratio of the horse-power to the velocity by

1.29 for violent shock, 1.17 for moderate shock, or 0.82

for little or no shock.

If we represent by ;/ the number of revolutions per

minute, and by D the diameter of the wheel in inches,

we may obtain, for the velocity in feet per second, the

value,

v =
12 X 60

= 0.00436-Z?.

This value, substituted for v in formulas (13), gives

For violent shock,

For moderate shock, / = 24.84X7 yr- j (b)

I TT L

For little or no shock, / = 1 7-7 2\/ 77- f (0

Rule. To determine the pitch from the horse-

power, diameter, and number of revolutions, divide the

horse-power by the product of the diameter, in inches,

into the number of revolutions per minute, multiply
the quotient by the ratio of the pitch to the face width,
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extract the square root of the product, and multiply the

result by 27.71 for violent shock, 24.84 for moderate

shock, or 17.72 for little or no shock.

By substituting v = o.oo^6Dn for v in formulas (14),

the following formulas for the pitch, when the face

width is equal to twice the pitch, may be obtained :

For violent shock
/ //

, / = I9.54y 2^ (a)

-=- (*)For moderate shock,/ = i7.72y

I~S"
For little or no shock,/ = 1 2.42V/ -=r- (t)

06).

Rule. To determine the pitch from the horse-power,

diameter, and number of revolutions, when the face

width is equal to twice the pitch, divide the horse-

power by the product of the diameter into the number

of revolutions, extract the square root of the quotient,

and multiply the result by 19.54 for violent shock; 17.72

for moderate shock, or 12.42 for little or no shock.

Example I. A cast-steel gear wheel is required

which will transmit a force of 100,000 pounds. The

gear is to be subjected to severe shock. Suppose a

specimen of the steel to be used has been tested, and

the breaking-weight found to be 140,000 pounds per

square inch. We may take, for the greatest safe work-

ing-stress per square inch, / = \ X 140000 = 23333

pounds, say, /=. 23000. If, now, we take ^ = -, for-
/ 4

mula (10) gives,

= 4 .93V/^^X- =
4-93V/T^

= 4-93 X 1.042 = 5.137
^V 23000 4

n.
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For the other dimensions we have

/ = 4/ = 4 X 5.137 = 20.548 inches

h = Q.ip = 0.7 x 5.137 = 3.5959 inches

and
b = 0.46^ = 0.46 x 5.137 = 2.363 inches.

Taking these values to the nearest eighth, sixteenth,

etc., taking care to err only on the safe side, we have

/ = 5 6i inches, /= 2O T
9
g inches, // = 3 if inches, and

b= 2J inches.

Example 2. Required the tooth dimensions for a

wooden cog-wheel to transmit a force of 10,000 pounds,
moderate shock. Let us suppose the cogs to be of

oak, the breaking-strength of which is 15,000 pounds

per square inch. We may safely take

/= \ X 15000 = 2500 pounds.

If
j
= -, formula (10) gives

=
4-93^/

IOOOO I .

X - = 4-93V2 = 4-93 X 1.414 = 6.971 m.

/= 2p = 13.942 inches

h = 0.7^ = 4.8797 inches

and
b = 0.46^ = 3.20666 inches.

In fractions the dimensions are, / = 6\\ inches,

/= i3|-J inches, h = 4^ inches, and d= 3^2 inches.

Example 3. With the data of Example 2, required

the tooth dimensions for a wheel to be subjected to
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little or no shock. In this case we may take

/= i x 15000 = 3750.

As before, formula (10) gives for the pitch,

P = 4 '9 X = 4 *93V/I '333
= 4-93 X 1.154 = 5-689

k = o.7/ = 3.982"

b = 0.46^= 2.617".

Example 4. Required the tooth dimensions for a

cast-iron gear wheel which is to be worked by hand

and crank. Suppose a man can exert by means of the

crank a force of 300 pounds on the wheel. From
formula (12, c) we have, for little or no shock,

p = 0.035^300 = 0.035 x I 7-3 2 = 0-606"

/= 2/= 1.212"

^ = 0.7^ = 0.4242"
and

= 0.46^ = 0.37876".

If, for any reason, it is necessary to make 7=-, we
/ 4

must use formula (u, c), which gives

p = 0.05^300 x J = 0.05 x 8.66 = 0.433".

Hence
/= 4/= 1.732", etc.

Example 5. A cast-iron gear is to have a circumfer-
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ential velocity of 10 feet per second, and is to transmit

a force of 15-horse power, moderate shock. Required

the dimensions of the teeth when -,-=. . From for-
/ 3i

mula (13, b),

p = i.64 x- = 1.64^0.4286 = 1.64x0.6546 = 1.0725

Hence
", etc.

It
j
= -, formula (14, b) gives

p = ItXVxo = '-'f^S
*

= l '^ x x

xo
= 1-43*9"

and
/= 2p = 2.8658", etc.

Example 6. The diameter of a cast-iron gear which

is to transmit 25-horse power, excessive shock, is 30".

Required the dimensions, taking "?= - and the number

of revolutions per minute ;/ = 80. From formula (i6,#),

= 19-54^0.0104 = 19.54 X 0.102 = 2"

/ = 4",etc.

Example J. Required a cast-steel gear which will

safely transmit loo-horse power, excessive shock. The

diameter of the gear is to be 36", and the number of

revolutions per minute 20. From the expressions
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v 0.00436/7/2 and P= - we have, by combining,v

cco/7 550 x 100P = JJ
. _ = - - = 17520 pounds.

0.00436 X 36 X 20

Taking f= 23,000 pounds, as in Example i, and 7= -,
/ 4

formula (10) gives

x 7 = 4.93^0.19 = 4-93 X 0.436 = 2.149"
23000 4

/ = 4/ = 8.596", etc.

As has already been noticed, the ratio ^ is com-

monly taken equal to J ;
that is, the face width equals

twice the circumferential pitch. Formulas (12), (14),

and (16), which have been obtained from formulas (11),

(13), and (15) by substituting for - the value
|, are

therefore much the more often used. The following

tables, obtained from formulas (12), (14), and (16), will

be found convenient :
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TABLE I.

From formula (12, a, b, and c).
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TABLE II.

From formula (14, #, b, and c.)
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TABLE III.

From formula (16, #, <5, and c).
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Example I. Required the pitch of a cast-iron bevel

wheel which will transmit a force of 10,000 pounds,
moderate shock. In Table L, column for moderate

shock, line 17, we find P= 10,000 pounds. In the pitch

column, and directly opposite this value of P, we find

the required pitch, /= 5". Hence /= 2p 10", etc.

Example 2. The force transmitted by a cast-iron

gear under violent shock is 6,000 pounds. Required
the necessary pitch. Table L, column for violent shock,

line 14, gives P= 5,971 pounds ;
and the corresponding

pitch is / 4j". Since this pitch corresponds to a

value of P slightly less than the required one, we may
take for our required pitch /= 4".

Example 3. The pitch of a cast-iron gear subjected
to little or no shock is 2^". Required the force in

pounds which can be safely transmitted by the gear.

In Table L, pitch column, line 6, we find/= 2%'. The
value of P for little or no shock, corresponding to this

pitch, is 4,133 pounds.

Example 4. Required the pitch for a cast-iron gear
which will safely transmit 24-horse power, violent

shock, at a circumferential velocity of 8 feet per sec-

ond. In this case = = 3. In Table II., column
v 8

TT

for violent shock, line 6, we find = 3.04 ;
and the

TT

corresponding pitch (found opposite this value of
V

in the pitch column) is p 2
J".

Example 5. A certain cast-iron gear transmits 75-

horse power. The pitch of the gear is 3|". Required
the circumferential velocity safe for the gear at mod-



TOOTHED GEARING. 1 05

erate shock. We have from Table II., column for
TT

moderate shock, the value 8.95, corresponding to

/=3j. Hence ^^8.95, v =^= 8.38 feet perv 8.95
second.

Example 6. Required the pitch for a cast-iron gear
to transmit safely 5O-horse power, violent shock, at 100

revolutions per minute
;
the diameter of the gear being

16". We have

H 50 i

In Table III., column for violent shock, line 11, we find
TT

- = 0.0321. The corresponding pitch is/= 3^".

The following table will be found very convenient in

converting'decimals into fractions:
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TABLE IV.
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For very high speed gears, we may take, at the sug

gestion of Professor Reuleaux and Mr. W. C. Unwin,

f=- ,
v being the circumferential velocity in feet

Jv
per second. For example, suppose it was required to

determine the pitch of a cast-iron gear, the velocity of

which is 35 feet per second, and the force to be trans-

mitted is 5,000 pounds. We have for our safe working-
stress

. I0000 I0000

From formula (10), taking *-~= -, we have
/ 4

/CQOO I /

-
= 4 '93V 3058

X
4
= 4-93Y0.4088 = 4.93 x 0.639

XIV. Strength of Arms, Rim, Nave, Shafts, etc.

The arms of a gear-wheel being symmetrically placed
with reference to each other and to the rim of the

wheel, we may assume, without demonstration, that

each arm bears an equal share of the total strain upon
the rim : in other words, the strain upon each arm is

equal to the total strain upon the rim divided by the

number of arms in the gear. This is a bending-strain

acting in a direction perpendicular to the axis of the

arm and in the plane of the wheel. The proper strength

for the arms may therefore be calculated similarly to

that of the teeth.

Fig. 8 1 represents a portion of a gear showing one
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arm. R is the radius of the pitch circle in inches
; P,

the total strain upon the rim (the total force transmit-

ted in pounds) ; //, and /;
t respectively, the width (in the

plane of the wheel) and thickness of the arm in inches ;

and ;//, the number of arms.* Denoting by / the

greatest safe working-stress for

the material, the equation for

equilibrium is

P _ fbji?

Fig. 81

We may take, in this case, for

cast-iron,/= 3,000 pounds. Con-

sequently

P
P / 6R

From this, by transposing, we have

which may be easily solved by assuming a value for b l

in terms of //, {
= -, -r= -> etc.),

and finding the
\/t l 2 ft t 4 /

corresponding value of hv
For convenience, we may write formula (17) in the

form of an equation having one unknown quantity,

thus :

(18)

* The dimensions bi and 7/ x are taken at the rim of the wheel, and

tapered, as shown in Fig. 81.
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and find values of the co-efficient x for different values

of b t and /.*

The following table gives values of x for different

values of -^ and / :

h*

TABLE V.

Rule. To determine the width of cast-iron gear
arms in the plane of the wheel, multiply the force

transmitted by the radius of the pitch circle, extract

the cube root of this product, and multiply the result

by the tabular number corresponding to the given values

of ^ and /.

h,

Example i. A cast-iron gear the diameter of which

is 48" transmits a force of 5,000 pounds. Required
the width and thickness of the arms, of which there are

5. If we assume 7
1= -, Table V. gives, for the value

of the co-efficient, x =. o. 1 1 7.

becomes

Hence formula (18)

* This form is given by Umvin in Elements of Machine Design.
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h l
= o.i 171/7^ = o.uysooo x 24 = o.ny' 12000 = 0.117

X 49-324 = 5-77"

or in fractions, from Table IV., //, = 5ff": hence

*, = #, = i X 5-77 = 14425" = i&".

Example 2. A cast-iron 72" gear transmits a force

of 15,000 pounds. Taking n' = 6, and -
-, required

//! 2

the dimensions of the arms. From Table V., x= 0.087 :

hence, from formula (18), we have

h l
= 0.08 7V^# = 0.08 7'V 1 5ooo x 36 = 0.087 X 81.433

= 7-0847" =7*".
For the thickness we have

*, = fa = j x 7.0847 = 3-54235" = 3H"- -

If, instead of rectangular, we have circular cross-

sections for gear arms, and represent the diameter by
dr

, the equation for equilibrium becomes

P _ /x 0.0982^3

?" ~~R~

or, for cast-iron,

P _ 3000 x 0.0982^'*

7~ ^

Reducing and transposing this equation gives

PR
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Rule. To determine the diameter for cast-iron gear
arms having circular cross-sections, multiply the force

transmitted by the pitch radius, divide this product by
the number of arms, extract the cube root of the quo-
tient thus obtained, and multiply the result by 0.15.

Example 3. A cast-iron gear of $6" diameter has

5 arms (circular cross-sections), and transmits a force

of 600 pounds. Required the diameter for the arms.

From formula (19) we have

,, *3/i 8 X 600 R/
-

d =
o.i5y

--- = o.i5V2i6o = 0.15 x 12.927 = 1.939

or, from Table IV., </'= i^".
For elliptical cross-sections, representing by a the

major and by b' the minor axis, the equation for equilib-

rium is

P _ f x 0.0982^2_____ _____

or, for cast-iron,

P _ 3000 X 0.0982^2

Hence, by reducing and transposing, we obtain

PR
0.003397- (20).

Rule. To determine the dimensions for cast-iron

gear arms having elliptical cross-sections, multiply the

force transmitted by the pitch radius, multiply the prod-

uct thus obtained by 0.00339, and divide the result by
the number of arms. This gives the product of the
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minor into the square of the major axis (b'a
2

) : the axes

may then be found as in formula (17).

Example 4. Required the axes for the cross-sections

of the elliptical arms of a cast-iron gear, the diameter

of which is 24". The force transmitted is 800 pounds,

and the number of arms 3. Let us assume a relation

between the cross-section axes, say
'= -. Formula

(20) then gives

a* 800 x 12

or

- = 0.00339

Q-00339 X 800 x 12 X 2 =
3

For arms having flanged cross-sections, such as is

shown in Fig. 82, the equation for equilibrium becomes

'* 4- BhJ
-7 = ^X7/

t
A ujj

Substituting for / its value of 3,000 pounds, and re-

ducing, we obtain, for cast-iron,

P _ 5oo(,,//'
3 4-

*7~ RH'
or

- Bh,t PR
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Example 5. Required the dimensions for the arms

of a 36" cast-iron gear which transmits a force of 800

pounds ;
the arms to be flanged, as in Fig. 82, and to

be 4 in number. Let us assume relations between the

Fig.82 Fig. 83

several unknown quantities in formula (21). Thus,

suppose

h J,
B H'

b,,= h,,=-~.

By substitution the formula becomes

800 X 18

5 * 4
'

H'

Reducing, we have

H'* 20'* _ I 2 iff'* _ $6

5 625 625
'

5*

Hence

5X127
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For the other dimensions,

and

B-tZ. -'-*&*- w&.

Converted into fractions by means of Table IV., the arm
dimensions are H'= 3^2 "> b,,= /i,,= fi", and #~ i T

5
g".

For arms with cross-sections, flanged as in Fig. 83,

the equation for equilibrium is

P___f_ BIT* - b,,h,*

n/
~~

7?
X

6H'
'

= 3,000 in this equation, we have, for cast-iron,

P

(22) *

n!~ RH'
or

b,,h,t PR

Example 6. A 48" cast-iron gear transmits a force

of i ,000 pounds, and has 5 arms, the cross-sections

being flanged as in Fig. 83. Required the arm dimenr
TTf J

sions. Let us take B= t ////= //', and ~\H'.
2 2

These values, substituted in formula (22), give

1000 X 24
H1

5 X 5
*

Reducing, we have

256
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and

= 0.3623" =

The number of arms in a gear-wheel is often deter-

mined, according to the pitch diameter, by the following
table :

For a gear of i J to 3^ feet diameter, 4 arms.

For a gear of 3^ to 5 feet diameter, 5 arms.

For a gear of 5 to 8 feet diameter, 6 arms.

For a gear of 8| to 16 feet diameter, 8 arms.

For a gear of 16 to 25 feet diameter, 10 arms.

Reuleaux gives for the number of arms the formula

(23)

in which ;// is the number of arms, ^V the number of

teeth in the gear, and/ the pitch.*

Ride. To determine the number of arms for a gear-

wheel, extract the square root of the number of teeth

and the fourth root of the pitch, multiply the roots

together and the product by 0.56.

Example 6 a. A gear-wheel has 100 teeth and a

* Small pinions, and sometimes narrow-faced gears, are made without

arms; i.e., having a continuous web cast between the rim and nave.
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pitch of i". Required the number of arms. From for

mula (23)

/ = 0.56^100 V7 = 0.56 X 10 X i = 5.6 or 6.

A convenient formula for the arm dimensions, in

terms of the horse-power transmitted and the revolu-

tions, may be obtained as follows. As explained in

XIII., we have the expressions

v = 0.008 Rn and P=

v being the circumferential velocity in feet per second,

H the horse-power, and n the revolutions per minute.

By combining these we obtain

H

This value of P substituted in formula (17) give's

63000;? R
s i *fr i n s\ tRn SOCK/

or
IT

M,a =i26 , (24).
Tin i

Rule. To determine the quantity bji? (the thick-

ness multiplied by the square of the width) for cast-iron

gear arms, from the horse-power and revolutions, mul-

tiply the horse-power by 126, and divide by the product
of the number of revolutions into the number of arms.

Example 7. A 36" cast-iron gear makes 80 revolu-

tions per minute, and transmits 15 -horse power. Re-
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quired the dimensions of the arms. From the table we
have for the number of arms ;//= 4, and from for-

mula (24)
126 x 15^ =
-8^r

:= s -9 6-

We may now assume b l
= : hence

7/3

Mi2 = = 5-906

h* = ^23.624 = 2.869" = 2J"
and

_/Z r _ 2.869 _ 23"*,---- -
: 0.717

For arms having circular cross-sections we have, as

above,

P= 63000^

which, substituted in formula (19), gives, for the diame-

ter of the arm cross-section,

or
' H

r, (25).

Rule. To determine the diameter for cast-iron gear

arms having circular cross-sections, from the horse-

power and revolutions, divide the horse-power by the

product of the number of revolutions per minute into

the number of arms, extract the cube root of this quo-

tient, and multiply the result by 5.969.

Example 8. The diameter of a cast-iron gear is 48",
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the horse-power transmitted 15, and the number of revo-

lutions per minute 40. Required the diameter for the

circular cross-sections of the arms. From the table,

the number of arms is 5 : hence, from formula (25),

5-969 X 0.4217 = 2.517 = 2ff".

For elliptical cross-sections, of which a and b' are

respectively the major and minor axes, we have, by

substituting in formula (20), the value

/>= 63000 -g,

H R
b'a? = 0.00339 x 63000 =- x >Rn n'

or

*V = 2I3 -57 J? (26) -

Rule. To determine the quantity b'a? (the minor

axis multiplied by the square of the major), for cast-iron

gear arms having elliptical cross-sections, from the

horse-power and revolutions, multiply the horse-power

by 213.57, and divide by the product of the number of

revolutions per minute into the number of arms.

Example 9. A 48" cast-iron gear makes 40 revolu-

tions per minute, and transmits 2O-horse power. Re-

quired the arm dimensions for elliptical cross-sections.

In this case, n'= 4, and hence formula (26) gives
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If we take b'= \a, we shall have

a*
* = -- = 21.357

= ai.357X 2 = 3496"= 3*"
and

For arms having cross-sections flanged, as shown in

Fig. 82, we obtain, by substituting in formula (21) the

value of P determined above,

b.,H'* + Bh,t H R- --- = 63000 -5- X --7H' Rn soo,
or

(27)

which may be solved as explained in Example 5 of this

section.

Similarly, for arms having cross-sections flanged, as

in Fig. 83, we obtain

(28) *

It is often convenient to calculate the dimensions

of the arms from the pitch and radius of the gear.

Formulas for the arm dimensions, in terms of these

quantities, may be obtained as follows :

From formula (12, b) we may write

~"

0.0025
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which, substituted in formula (17), gives

or

?. To determine the quantity bji? (the thick-

ness of the arm multiplied by the square of its width)

from the pitch and radius of the gear, divide the con

tinned product of 0.8 into the square of the pitch into

the radius, by the number of arms.

Example 10. Required the dimensions for the arms

of a gear-wheel, the diameter of which is 24", and the

pitch i". In this case, n^-=.^\ hence, from formula

0.8 X i X 12
<M<2 =- = 2.4.

If we take bl= -^,o

h W*' ~
6
~ OT '

By substituting /> = f- in formulas (19), (20),
0.0025

(21), and (22), the following formulas may be obtained.

For arms having circular cross-sections, of which dr

is

the diameter,

(3o).
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For elliptical cross-sections, a and b' being the major
and minor axes respectively,

(3i).
"i

For cross-sections, as shown in Fig. 82,

Hf

n{

For cross-sections, as shown in Fig. 83,

(32)-

H' (33)-

Example n. Taking the data of Example 10, re-

quired the diameter for arms having circular cross-

sections. Formula (30) gives, by substituting the

numerical data,

= i.ioSVJ= i.i5937"= itt".

Example 12. With the same data, required the

dimensions for arms having elliptical cross-sections.

From formula (31) we have

I X 1 2
tfa2

1.356 = I-356 X 3 = 4.068.
4

Assuming b
f= \a

b'a? = = 4.068

a \/4^o68~X*2 =s 2"

fi'=ia= i".
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Example 13. Using the same data, it is required to

determine the dimensions for flanged arms having cross-

sections, such as shown in Fig. 83.

From formula (33)

b,,h,t 0.8 X i X 12

H'
= 2.4.

Let us take B = ///,= #"' and -= j/f: hence

= h,, = iff' =0.862" =

_. A

and

More often than otherwise, the arms of gear-wheels

are made straight, as in Fig. 81 : sometimes, however,

especially in large gears and in gears subjected to

violent shock and strain, curved arms are preferred, as

tending to stiffen and support the rim better. Also

curved arms, as a general rule, cast better. When

single curved arms are used, they may be constructed

as follows :

After having determined the number of arms by one

of the foregoing rules, and having marked their cen-

tres A, C (Fig. 84), upon the circumference ABC, take

the arc AB= f arc A C, and draw the radial line OB.

From the centre O of the wheel, erect the line OD per-

pendicular to OB, and find upon OD, by trial, the centre
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a for a circular arc passing through the points O and A.

This arc is the axis of the arm. Lay off, as shown in

the figure, // (</, a, or //', according as the cross-

sections are to be rectangular, circular, elliptical, or

flanged*) at the rim, and not less than \h

-//') at the nave. Find

upon OD, by trial, the

centres b and c for the Fig.84

arcs gk and df, which

determine the form of

the arms.

Fig. 85 shows anoth-

er method for drawing
curved arms. Through
the centre o of the wheel

draw the line oA, making 30 with the horizontal.

Draw also the line AB, making 60 with the horizon-

tal. The point B is the centre for the axis oA of the

Fig.85arm. Lay off, as before,

// and
|/r,

and find upon
the line oB the centres

for the arcs df and gk' .

Double curved arms

are sometimes used for

large gears. Fig. 86

shows a simple method ~

for their construction.

Draw the radial line oA, making 30 with the horizon-

tal. Take oc = \oA, and through the point c draw

the line pD, making 60 with the horizontal. Intersect

* The cross-sections of curved arms are generally elliptical, the curved

form giving sufficient stiffness to dispense with flanges, etc.
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the line pD by a horizontal line through the point
A : the points D and / are respectively the centres

for the arcs oc and cA, which together form the axis

Fig.86

of the arm. Lay off the arm widths as shown in the

figure. From the point / as a centre strike the arcs

ab and cf, and find upon the line oD the centres for the

remaining arcs bd and//&'.

Fig.87

Another very similar method for laying out double

curved arms is shown in Fig. 87. Draw the radial line

oA, making 45 with the horizontal. Take oc=.^oA,
and through the point c draw the vertical line pD. In-
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tersect the line pD by the horizontal line Ap. The

points / and D are the centres for the arcs of the axis.

Lay off // and
|//,

as shown in the figure, and proceed,
as in Fig. 86, to strike the arcs ab, ef, bd, and fk

f

.

Rim : For the thickness of the rim in the plane of

the wheel, t (Fig. 87), Reuleaux gives the formula

/=0.12-f0.4/ (34)

in which t is the rim thickness, and/ the pitch.

Rule. To determine the thickness of the rim of a

cast-iron gear-wheel, multiply the pitch by 0.4, and to

this product add o. 12".

Example 14. Required the thickness of rim for a

gear having a pitch of 3^". From formula (34)

/= 0.12 -f 0.4 x 3.5
= 0.12 4- 1.40 = 1.52" = i|".

A simple and not very accurate rule in use in the

shops is to take the rim thickness equal to f the pitch.

Nave : The old formulas for the thickness of the

nave (k, Fig. 85) k\p and k=^d, in which k is

the nave thickness,/ the pitch, and </the diameter of the

eye of the wheel are probably nearly correct, notwith-

standing their simplicity. Unwin gives the formula

* = o.4^ + i (35)

in which/ is the pitch of the teeth, and R the radius of

the wheel.

Ride. To determine the thickness of the nave of a

cast-iron gear wheel, multiply the square of the pitch by
the radius of the wheel, extract the cube root of this

product, multiply the result by 0.4, and add ".
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Example 15. The diameter of a gear is 36" and the

pitch ij". Required the thickness of the nave. From
formula (35) we have

k = o.4'V(i-|)
2 X 18 + 0.5

= 0.4/40-5 + 0.5

= 0.4 x 3.434 + 0.5 = 1.874" = i J".

By the formula k |/, we would have

= 0.75 x 1.5
= 1.125"= if-

Thus, in this case the difference between the results of

the two formulas is J".

For the length of the nave we may use the formula

/'='+! (36)

in which I' is the length of the nave, / the face width of

the teeth, and D the diameter of the gear.

Rule. To determine the nave length of a gear,

divide the diameter of the gear by 30 and to the quo-

tient add the face width of the teeth.

Example 16. The diameter of a gear is 60" and the

face width of the teeth 8". Required the length of

the nave. Formula (36) gives

/' = 8 + |$ = 8 + 2 = 10".

According to Unwin, the length of the nave should

never be less than three times its thickness. He gives,

for the length, the formula /' / 4- o.o6R, which agrees

very nearly with formula (36).
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Fig.88

Shafts : When a shaft is so supported by its bear-

ings as to be subjected to a torsional strain only, as is

almost invariably the case in gear shafts (the bending-

strain, due to the weight of the gear and the pressure

between the gears in the direction of a line joining

their centres, being ordinarily slight enough to be safely

neglected), the calculation of the proper strength for

the shaft may be made as follows :

In Fig. 88, P represents the total force tending to

twist the shaft, i.e., the total

force transmitted by the gear ;

R> the distance from the cen-

tre of the shaft to the point

at which the force acts, i.e.,

the radius of the gear ;
and

d, the diameter of the shaft.

The greatest safe torsional

strain which can be sustained

by the shaft is given by the

expression

_ *?** _

(ZED

in which f is the greatest safe shearing-stress in

pounds per square inch for the material of the shaft.

From this,

PR
- T 9635/

or

,d i. (37).

Rule. To determine the diameter of a gear shaft of

any material, multiply the total force transmitted by
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the gear by the radius of the gear, divide this product

by the greatest safe shearing-stress in pounds per

square inch for the material of the shaft, extract the

cube root of the quotient thus obtained, and multiply

the result by 1.720.

Example 1 7. Required the diameter for an oak

shaft, upon which is a 60" gear transmitting a force of

1,000 pounds, taking /' 500 pounds. From formula

(37),

= 1.720 x 3-915 = 6.734" = 6".

We propose to take, for steel, /' = 12,000 pounds;
for wrought-iron, f = 8,000 pounds ; and, for cast-iron,

/' = 4,000 pounds. These values off are nearly mean
between those used by Stoney, Haswell, and Unwin,
which differ far more than is conducive to any degree
of accuracy. Substituting the above values of f suc-

cessively in formula (37), and reducing, we obtain;

For steel, d = v.v\$PR (38)

For wrought-iron, d = o.o86'V/^ (39)

For cast-iron, d'= 0.108^fPR (40)*

Rule. To determine the diameter for a gear shaft

of steel, wrought or cast iron, multiply the total force

transmitted by the radius of the gear, extract the cube

root of the product, and multiply the result by 0.075 for

steel, 0.086 for wrought-iron, and o. 108 for cast-iron.

Example 18. A 48" gear transmits a force of

100,000 pounds. Required the diameter for a steel
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shaft. From formula (38) we have

d= 0.075^100000 x 24 = 0.075 x 62.145 = 4-66
v = 4ff".

Example 19. Taking the data of Example 18, re-

quired the diameter for a shaft of cast-iron. Formula

(40) gives

d = o.ioSViooooo x 24 = 0.108 X 62.145 = 6.712"= 6|-f".

Formulas for the diameters of gear shafts, in terms of

the horse-power transmitted and the revolutions per

minute, may be obtained as follows :

As before explained, we have the expression

^=63000^

H representing the horse-power, R the radius of the

gear, and ;/ the number of revolutions per minute.

Substituting this value of P in formulas (37), (38), (39),

and (40), and reducing, we obtain the following :

fjr
General formula, d 68.44 y-y/ (4 1 )

.984^-^
For steel, </= 2.984- (42)

For wrought-iron, d
3.422^ (43)

js=
4.297V"For cast-iron, d= 4.297V- (44)
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Rule. To determine the diameter for a gear shaft

of any material, from the horse-power and number of

revolutions per minute, divide the horse-power by the

product of the number of revolutions into the greatest

safe shearing-stress in pounds per square inch for the

material of the shaft, extract the cube root of the quo-

tient thus obtained, and multiply the result by 68.44.

To determine the diameter for a gear shaft of steel,

wrought or cast iron, from the horse-power and number

of revolutions per minute, divide the horse-power by
the number of revolutions, extract the cube root of the

quotient, and multiply the result by 2.984 for steel,

3.422 for wrought-iron, and 4.297 for cast-iron.

Example 20. Required the diameter for an oak

gear shaft which transmits a force of zo-horse power,
and makes 40 revolutions per minute. If we take for

the greatest safe shearing-stress for oakf = 500 pounds

per square inch, we shall have, from formula (41),

d = 68.44V
5

/ = 68.44V
3

/
^ = 68.44 X 4r"V 4 * 500 V 2000 1 2.60

= 5432" = 5*" nearly.

Example 21. Taking the data of Example 20, re-

quired the diameters for shafts of steel and wrought-
iron. From formula (42),

</= 2.984^ = 2.984^0^5"= 2.984x0.62996= 1.88"= iff"

for steel. From formula (43),

d= 3422\/H = 3-422 x 0.62996 = 2.1557"= 2-gs"

for wrought-iron.
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Convenient formulas for gear-shaft diameters in terms

of the pitch and radius, may be obtained in the following
manner. From formula (12, b) we have, as before,

0.0025
= 400/

2

which value, substituted in formulas (37), (38), (39), and

(40), gives the following formulas :

General formula, ^=12.673^/^-77- (45)

For steel, d= o.$$$#* (46)

For wrought-iron, <t = o.634V
/

/2^ (47)

For cast-iron, d 0.796^^ (48).

Rule. To determine the diameter of a gear shaft of

any material, from the pitch and radius of the gear, mul-

tiply the square of the pitch by the radius, divide the

product by the greatest safe shearing-stress in pounds

per square inch for the material of the shaft, extract

the cube root of the quotient thus obtained, and mul-

tiply the result by 12.673. To determine the diameter

of a gear shaft of steel, wrought or cast iron, from the

pitch and radius of the gear, multiply the square of

the pitch by the radius, extract the cube root of the

product, and multiply the result by 0.553 for steel, 0.634

for wrought-iron, and 0.796 for cast-iron.*

* The expression P= 4oo/
2

is true only for cast-iron gears : hence the

value of p
z in formulas (45), (46), (47), and (48), must be for a cast-iron

gear.
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Example 22. A cast-iron gear has a diameter ot

12" and a pitch of J'

1

'. Required the diameter for a

brass shaft, supposing f= 3,000 pounds for brass.

From formula (45)

= i2.673'</o.ooo5 = 12.673 X 0.07937= i

Example 23. The diameter of a cast-iron gear is

60" and the pitch 2". Required the diameters for

shafts of steel and wrought-iron. From formula (46)

<^= -553'V4 X 30 = o.553Vi20 = 0.553 X 4-93 2

= 2.727" = 2jr
for steel. From formula (47) we have

</= 0.634^4 X 30 = 0.634 x 4-932 = 3- 7" = 3t"

for wrought-iron.

Gear shafts are most commonly of wrought-iron :

when, however, wrought-iron shafts, in order to give

the necessary strength, become so large as to be in-

convenient, steel shafts are used. Cast-iron shafts are,

as a rule, unreliable and treacherous
; they are there-

fore seldom used, except for the transmission of slight

powers, and in cheap, inferior machinery. The follow-

ing tables, calculated from formulas (38), (39), (42), and

(43), to the nearest ^", will be found very convenient

in designing gear shafts of steel and wrought-iron :
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TABLE VI.
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TABLE VII.
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Example 24. Required the diameter for a wrought-
iron shaft for a 40" gear which transmits a force of

10,000 pounds. In this case

PR = IOOOO X 2O = 2OOOOO

and, from Table VI., the value of d for wrought-iron

corresponding to PR = 200,000 is d = S^"-

Example 25. The diameter of a wrought-iron gear
shaft is 4^". Required the force which the shaft can

safely transmit by means of a 24" gear. From Table

VI. the value of PR corresponding to d 4^" for

wrought-iron is 1 10,000 : hence we will have

I IOOOO I IOOOOp = = = 9167 pounds nearly.

Example 26. A gear transmitting a force of 2O-horse

power makes 200 revolutions per minute. Required the

diameter for a shaft of steel. We have

H 20 I= = = o.ioo
n 200 10

and, from Table VII., the value of d for steel corre-
TT

spending to =o. 100 is d = I |f".

Example 27. A 2" steel shaft transmits a force of

2 5 -horse power. It is required to determine the proper
number of revolutions per minute. From Table VII.

TT

the value of which corresponds to d = 2!' for steel is
;/

TT

= 0.300 : hence we have

H 25= = 0.300n n

or
n = 83^ revolutions per minutt.
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Keys : We may take for the mean width of the key
which fixes the gear upon its shaft S = o.2&/, and, for

the thickness, S' = 0.014^; vS and S' being respectively
the mean width and thickness of the key, and d the

diameter of the shaft. More accurately, according to

Reuleaux,

S= o.i6 +
|

(49)

and

S' = o.i6 + ^ (50).

Rule. To determine the mean width of the fixing-

key, divide the diameter of the shaft by 5, and to the

result add o. 16". To determine the key thickness, di-

vide the diameter of the shaft by 10, and to the result

add o.i 6".

Example 28. Required the mean width and thick-

ness for a fixing-key of sufficient strength for the gear
and shaft given in Example 24. From formula (49) we
have

S= 0.16 + 5 ' 3125 = 0.16 + 1.00625 = 1.16625" = itt"-

From formula (50),

S'= 0.16 + 5 ' 3125 = 0.16 + 0.503125 = 0.663125"= |f".

Weight of Gears : The approximate weight of a

spur-wheel may be calculated by the following formula,

given by Reuleaux. G represents the approximate

weight in pounds, N the number of teeth, and / and /

respectively the pitch and face width :

0.0014^*) (51).
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Rule. To determine the approximate weight of a

spur wheel, add 0.215 times the number of teeth to

0.0014 times the square of the number of teeth, and

multiply the sum by the product of the square of the

pitch into the face width.

Example 29. Required the approximate weight of a

spur wheel having 50 teeth, a pitch of 2", and a face

width of 4j". From formula (51) we have

G = 4j x 2
2

(o.2i5 x 50 -f- 0.0014 x so
2

)

= 18(10.75 + 3-5) = 18 x 14-25 = 256.50 pounds.

When the face width is twice the pitch (/==2/), for-

mula (51) becomes

G = 2/3 (0.2 1 57V+ O.OOI47V
2
)

or

G =/3(o.430^+ 0.0028^) (52).

Rule. To determine the approximate weight of a

spur wheel when the face width is equal to twice the

pitch, add 0.430 times the number of teeth to 0.0028

times the square of the number of teeth, and multiply
the sum by the cube of the pitch.

Example 30. Required the approximate weight of

a spur wheel having 50 teeth, a pitch of 2", and a face

width of 4". From formula (52) we have

G = 2 (0.430 X 50 + 0.0028 X 5Q
2

)
= 8 X 28.50= 228 pounds.

The following table, computed from formula (51),
/"

gives values of for different numbers of teeth :
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TABLE VIII.

Example 31. Required the approximate weight of a

spur wheel having 126 teeth, the pitch being 3" and the

face width f. From Table VIII. the value of ~,

which corresponds to N= 126, is 49.32 : hence

G

7X 3
2

~

(7=49.32 X 7 X 9 = 3107.16 pounds.

To determine the approximate weight of a bevel gear,

proceed as explained in the above example for a spur

wheel, except that the . tabular number must be

multiplied by 0.855.
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Example 32. Required to determine the approxi-

mate weight of a bevel wheel, for which N 48,
/*

p 3", and / = 7". From the table the value of ~
corresponding to ^=48 is 13.55. This multiplied by

0.855 gives 1 1.585 : hence

=11.585
7 X 9

G 11.585 x 7 X 9 = 729.855 pounds.

XV. Recapitulation of Formulas and Rules.

For convenience in designing, the various rules and

formulas developed in the foregoing pages have been

gathered together in the following recapitulation :

NOTATION.

R = radius of the pitch circle.

D = diameter of the pitch circle.

C = circumference of the pitch circle.

TT = constant 3.14159.

/ = circumferential pitch.

pd diametral pitch.

N number of teeth.

I" = length of chord subtending the pitch.

n = number of revolutions per minute.

P = total force transmitted.

W = total force transmitted.

v = circumferential velocity in feet per second.

V = circumferential velocity in feet per second.

/ = greatest safe working-stress in pounds per square inch

for the material.

/ = face width.
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h = total height of teeth.

h' height of teeth below pitch circle.

h" = height of teeth above pitch circle.

b = breadth of teeth at pitch circle.

H = horse-power transmitted.

72/ = number of arms.

Jit
= width of rectangular arms in plane of the pitch circle.

b l
= thickness of rectangular arms.

x variable co-efficient.

d' diameter of circular arms.

//', B, h,,, and b,, = dimensions for Figs. 82 and 83.

a = major axis for elliptical arms.

b' = minor axis for elliptical arms.

/ = thickness of rim.

k = thickness of nave.

/' = length of nave.

d diameter of shaft.

S = mean width of fixing-key.

S' = thickness of fixing-key.

G = approximate weight of spur wheel.

Dimensions are in inches, forces and weights in pounds,

unless otherwise stated.

C=TrD=2irR (l).

Rule. To find the circumference of the pitch circle,

multiply the diameter by 3.14159, or the radius by

6.28318.

Z>=-, R~- (2).
7T 27T

Rule. To find the diameter of the pitch circle, di-

vide the circumference by 3.14159. To find the radius,

divide the circumference by 6.28318.
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C CW=, C=Nj>, P^T (3).

Rule. To find the number of teeth, divide the cir-

cumference by the pitch. To find the circumference,

multiply the number of teeth by the pitch. To find

the pitch, divide the circumference by the number of

teeth.

_N_ir_ _ jr_

Rule. To find the diametral pitch, divide the num-

ber of teeth by the diameter, or divide 3.14159 by the

pitch. To find the pitch, divide 3.14159 by the diame-

tral pitch.

Rule. To find the length of the chord which sub-

tends the pitch, multiply twice the radius by the natural

sine of half the angle limited by the pitch.

(6).

Rule. To find the length of the chord which sub-

tends the pitch, divide 180 by the number of teeth,

take the natural sine of the angle thus obtained, and

multiply by the diameter.

'n'~~N~~R~T>~~~C '""

Rule. The ratio of the numbers of revolutions of a

pair of gears is inversely proportional to the ratio of

their numbers of teeth to the ratio of their radii,

diameters, or circumferences.
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=-
r (8).

Rule. The ratio of the powers of two gears on the

same shaft is inversely proportional to the ratio of their

radii.

(9).
W V PV Wv
- = , W= ) P= -jyP v v V

R^ile. The ratio of the powers of two gears on the

same shaft is inversely proportional to the ratio of their

circumferential velocities.

(10).

Rule. To find the pitch for a gear of any material,

divide the force transmitted by the greatest safe work-

ing-stress in pounds per square inch for the material,

multiply the quotient by the ratio of the pitch to the

face width, extract the square root of the product, and

multiply the result by 4.93.

For cast-iron.*

Violent shock, / = o.oySy/
P x ~ (a)

Moderate shock, / = 0.07 y P X ^ (b)

Little or no shock, / = 0.05 y P x ~ (c)

(ii).

Rule. To find the pitch for a cast-iron gear, multi-

ply the force transmitted by the ratio of the pitch to the

face width, extract the square root of the product, and

* h = o.;/, ti o-4/, h" 0.3^, and b
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multiply the result by 0.078 for violent shock, 0.07 for

moderate shock, or 0.05 for little or no shock.

When / = 2p,

Violent shock, / = 0.055^ (a)

Moderate shock, / = 0.05 ^P (b) (12).

Little or no shock, / = 0.035^ (c)

Rule. To find the pitch for a cast-iron gear when
the face width is twice the pitch, multiply the square

root of the force transmitted by 0.055 for violent shock,

0.05 for moderate shock, or 0.35 for little or no shock.

Violent shock, / = 1.83!
f

/ J-f *h

Moderate shock, / = i.64y
x -, (b}

Little or no shock
c,/=i.i7\/f x 7̂ (<)

(13)

Rule. To find the pitch for a cast-iron gear from

the horse-power transmitted and circumferential velocity

in feet per second, divide the horse-power by the cir-

cumferential velocity, multiply the quotient by the ratio

of the pitch to the face width, extract the square root of

the product, and multiply the result by 1.83 for violent

shock, 1.64 for moderate shock, or 1.17 for little or no

shock.
When / = 2/,

IH
Violent shock, /=i.29y (a)

Moderate shock, / =

Little or no shock, / =

f-
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Rule. To find the pitch for a cast-iron gear, from

the horse-power and velocity, when the face width is

twice the pitch, divide the horse-power by the velocity,

extract the square root of the quotient, and multiply
the result by 1.29 for violent shock, 1.17 for moderate

shock, or 0.82 for little or no shock.

Violent shock, / = sy.yiy
-=- x

j (a)

Moderate shock, p = 24.84^7
- x (V)

Little or no shock, / = I 7-7 2y^ x
/

(c)

(15)

Rule. To find the pitch for a cast-iron gear from

the horse-power and number of revolutions per minute,

divide the horse-power by the product of the diameter

into the number of revolutions, multiply the quotient

by the ratio of the pitch to the face width, extract the

square root of the product, and multiply the result by

27.71 for violent shock, 24.84 for moderate shock, or

17.72 for little or no shock.

When / = 2/,

Violent shock, / = 19.

72\/
Moderate shock, /= 17

Little or no shock, p = 12.42^

H_
Dn
Jf

(16).

Rule. To find the pitch for a cast-iron gear, from

the horse-power and number of revolutions per minute,

when the face width is twice the pitch, divide the horse-
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power by the product of the diameter into the number
of revolutions, extract the square root of the quotient,

and multiply the result by 19.54 for violent shock, 17.72

for moderate shock, or 12.42 for little or no shock.

/,
i
;,

I

a = -^-7 (17).
5oo;//

Rule. To find the quantity^//,
2

(the thickness of

the arm multiplied by the square of the width) for cast-

iron arms, multiply the force transmitted by the radius

of the pitch circle, and divide the product by 500 times

the number of arms.

(18).

Rule. To find the width of the arms in the plane
of the pitch circle, multiply the force transmitted by
the radius of the pitch circle, extract the cube root of

the product, and multiply the result by the tabular

number (in Table V.) corresponding to the required

number of arms and value of -i.

Rule. To find the diameter for cast-iron arms

having circular cross-sections, multiply the force trans-

mitted by the radius of the pitch circle, divide the

product by the number of arms, extract the cube root

of the quotient, and multiply the result by 0.15.

PR
b'a? = 0.00339 7 (20).n l

. To find the quantity of b'a
2
(the minor axis
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of elliptical cross-section multiplied by the square of the

major axis) for cast-iron arms, multiply the force trans-

mitted by the radius of the pitch circle, divide the

product by the number of arms, and multiply the result

by 0.00339.

b,,H's + Bh,t PR
(21)

*
H'

~
500;;,

- b,,h,t PR
soon

(22) f

(23).

Rule. To find the number of arms, extract the

fourth root of the pitch and the square root of the num-
ber of teeth, multiply the two roots together, and the

product by 0.56.

(24).

Rule. To find the quantity bji? (see formula 17)

for cast-iron arms, from the horse-power and number of

revolutions per minute, multiply the horse-power by
1 26, and divide by the product of the number of revolu-

tions into the number of arms.

Rule. To find the diameter for cast-iron arms

having circular cross-sections, from the horse-power and

number of revolutions per minute, divide the horse-

power by the product of the number of revolutions into

* See Fig. 82. t See Fig. 83.
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the number of arms, extract the cube root of the quo-

tient, and multiply the result by 5.969.

TT

t'a* = 2iwj (26).

Rule. To find the quantity b
f

a 2

(see formula 20)

for cast-iron arms, from the horse-power and number of

revolutions per minute, divide the horse-power by the

product of the number of revolutions into the number

of arms, and multiply the quotient by 213.57.

H'
'

nnT

-b,,h,t I26H

.

^A2 =
-^r- (29).

Ride. To find the quantity bji? (see formula 17)

for cast-iron arms, from the pitch, multiply o.S times

the square of the pitch by the radius of the pitch circle,

and divide the product by the number of arms.

(30).

Rule. To find the diameter of cast-iron arms having

circular cross-sections, from the pitch, multiply the

square of the pitch by the radius of the pitch circle,

divide the product by the number of arms, extract the

cube root of the quotient, and multiply the result by

1.105.

* See Fig. 82. t See Fig. 83.
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b'a* = 1.356^ (3')-
"I

Rule. To find the quantity b'a
2

(see formula 20)

from the pitch, multiply the square of the pitch by the

radius of the pitch circle, divide the product by the num-

ber of arms, and multiply the result by 1.356.

(3*)

(33) t

H'

H'

/ = o.i2+o.4/ (34).

Rule. To find the thickness of the rim, add 0.12" to

0.4 times the pitch.

* = o.4V/^ + t (35).

Rule. To find the thickness of the nave, multiply

the square of the pitch by the radius of the pitch circle,

extract the cube root of the product, multiply the root

by 0.4, and to the result add J".

Rule. To find the length of the nave, divide the

diameter of the pitch circle by 30, and to the result add

the face width of the teeth.

(37).

Rule. To find the diameter of a gear shaft of any

* See Fig. 82. t See Fig. 83.
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material, multiply the force transmitted by the radius

of the pitch circle, divide the product by the greatest

safe shearing-stress in pounds per square inch for the

material, extract the cube root of the quotient, and mul-

tiply the result by 1.720.

For steel, d = 0.0751^? (38)

For wrought-iron, d 0.086'^^ (39)

For cast-iron, d o.io8
3

V
'PR (40).

Ride. To find the diameter of a gear shaft, multiply

the force transmitted by the radius of the pitch circle,

extract the cube root of the product, and multiply the

result by 0.075 f r steel, 0.086 for wrought-iron, and

0.108 for cast-iron.

=
68.44^1

, x
(40.

Rule. To find the diameter of a gear shaft of any
material from the horse-power and number of revolu-

tions, divide the horse-power by the product of the

number of revolutions into the greatest safe shearing-

stress in pounds per square inch for the material, ex-

tract the cube root of the quotient, and multiply the

result by 68.44.

fff
For steel, ^=2.984^ (42)

For wrought-iron, d = 3.422^- (43)

3/5"
For cast-iron, ^=4.297^ (44)
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Rule. To find the diameter of a gear shaft from the

horse-power and number of revolutions, divide the horse-

power by the number of revolutions, extract the cube

root of the quotient, and multiply the result by 2.984

for steel, 3.422 for wrought-iron, and 4.297 for cast-iron.

(45).

Ride. To find the diameter of a gear shaft of any
material from the pitch, multiply the square of the pitch

by the radius of the pitch circle, divide the product by
the greatest safe shearing-stress in pounds per square

inch for the material used, extract the cube root of the

quotient, and multiply the result by 12.673.

For steel, d= o.P2R (46)

For wrought-iron, d=o.6i
)$p2R (47)

For cast-iron, dQ.^lp^R (48)

Rule. To find the diameter of a gear shaft from the

pitch, multiply the square of the pitch by the radius of

the pitch circle, extract the cube root of the product,

and multiply the result by 0.553 for steel, 0.634 for

wrought-iron, and 0.796 for cast-iron.

(49)

S'=o.i6 + (50).

Rule. To find the mean width of a fixing-key,

divide the diameter of the shaft by 5, and to the result
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add o. 16". To find the thickness of the key, divide the

diameter of the shaft by ro, and to the result add 0.16".

O.OOI4/V
72

) (si).

Rule. To find the approximate weight of a spin-

wheel, add 0.215 times the number of teeth to 0.0014,

the square of the number of teeth, and multiply the

sum by the product of the face width into the square
of the pitch.

When / = 2p,

G=p* (0.4307V -f 0.00287V2
) (5 2) .

Rule. To find the approximate weight of a spur

wheel when the face width is twice the pitch, add 0.430

times the number of teeth to 0.0028 times the square
of the number of teeth, and multiply the sum by the

cube of the pitch.

XVI. Complete Design of Spur-Wheel, Bevels, Worm, Screw

Gear, etc.

Example I. Required to design and make full work-

ing drawings for a 36" cast-iron spur wheel to transmit

a force of 5,000 pounds, violent shock.

For the pitch we have, from formula (12, a),

p = o.o55\/5ooo = 0.055 X 70-71 = 3-889"

for the face width,

/= 2p= 2 x 3.889= 7.778".

As explained in XIII.
,
we have for the total height
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of the teeth, and heights below and above the pitch

circle,

h = h' + h" = o.4/ -f o.3/ = 0.7 x 3.889 = 2.7223"

^'=0.4 x 3-889= 1.5556"

^"=0.3 x 3.889= 1.1667".

We may take, for the breadth of the teeth on the pitch

circle, b = o.^p= i. 75". From formulas (i) and (3),

for the circumference and number of teeth,

(7=3.14159 x 36 = 113.10
and

113.10 _'IW
From formula (23), the number of arms is

/= 0.56^29 ^3.889 = 0.56 x 5.385 x 1.40 = 4.

If we wish to have elliptical cross-sections for the arms,
we have, from formula (20),

,, qooo x 1 8
b a* = 0.00339 x = 0.00339 X 22500 = 76.275.

4

Taking

*>'="-> ^2 = ^= 76.275;

or, for the major axis of the cross-section,

a = ^152.55 = 5.343"

and, for the minor axis,

'=^=2.6715".
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For the thickness of the rim, from formula (34),

/= 0.12 -f 0.4 x 3.889 = 0.12 4- 1.5556 = 1.6756."

Formula (35) gives, for the thickness of the nave,

k = 0.4V3-889
2 x 18 4- \ = 0.4 x 6.481 -f \ = 3.092".

The length of the nave is, from formula (36),

/' = 7.778 -f f- = 7.778 4- 1.2 = 8.978".

Formula (39) gives, for the diameter of the wrought-iron
shaft,

d 0.086^5000 x 18 = 0.086 x 44.814 = 3.854".

For the mean width and thickness of the fixing-key we
have, from formulas (49) and (50),

s = 0.16 -f
l- = O.i6 4- 0.7708 = 0.9308"

and

s t
= 0.16 4-

^-^ = 0.16 -|- 0.3854 = 0.5454".

We may now recapitulate our dimensions, and by means

of Table IV. convert the decimals into convenient

fractions :

Diameter, D = 36"

Pitch, / = 3^
Face width, / = yff"
Total tooth height, h = 2ff

"

Height below pitch circle, ti = iff"

Height above pitch circle, h" iJ"
Breadth of tooth on pitch circle, b = if"
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Number of teeth, N = 29
Number of arms, n/ = 4

Axes of arm cross-sections, <
7 ,

~

ff,,
(
^ 2F4

Thickness of rim, / =
iff''

Nave length, I' = 8JJ"
Nave thickness, k = 3-^"
Diameter of shaft, d = 3fJ"

Key width, s \%"'

Key thickness, s, = f}".

Fig. 89 shows the working drawings for the above

spur wheel. Fig. (/?)
is a simple horizontal projection of

the gear, showing the pitch, tooth dimensions, thick-

ness of rim and nave, dimensions of arms, number of

teeth, arms, etc. Fig. (c) is a vertical projection taken

from Fig. (b), as shown by the dotted lines, and Fig. (a)

is a sectional, vertical projection taken from Fig. (b) on

the line AB, and showing the face width, nave length,

etc. The profiles were drawn by the method of IV.,

Fig. 26.

Example 2. Required to design and make full work-

ing drawings for a pair of cast-iron bevel wheels to

transmit a force of lO-horse power from a smoothly

running turbine wheel (moderate shock), the smaller

bevel to be fixed upon the 3" shaft of the turbine wheel,

which makes 30 revolutions per minute, the bevel

wheels to be 15" and 30" diameters. The circumfer-

ential velocity of the smaller bevel (as also that of the

larger) is

^o x TT x is ^o x 47.124
v = - = = 2 feet per second nearly.

12 X 60 12 X 60
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ttg.89
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fe)

* The scale of all working drawings should be
, |, i, -rV, TjV, etc. The

scale of -

4
3
U
- is taken here in order to bring the drawings of convenient size.
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For the smaller bevel, from formula (14, b), we have,

therefore, for the pitch,

/= i..i7y
= 1.17 x 2.236 = 2.616".

For the face width,

/= 2 x 2.616 = 5.232".

For the total height of the teeth,

h = 0.7 x 2.616 = 1.8312".

For the heights below and above the pitch circle,

h'
' = 0.4 X 2.616 = 1.0464"

and

#'=0.3 x 2.616 = 0.7848".

Taking, for the breadth of the teeth at the pitch circle,

b = 0.48^, we have

b = 0.48 x 2.616 = 1.25568".

The bevel, being so small, may be made without rim

or arms, i.e., cast solid, as shown in the drawing (Fig.

91, a). From formula (3) the number of teeth is

2.616

For the thickness of the nave, from formula (35),

k = 0.4V2.62
2 x 7i 4- \ = 2".

From formula (36), for the length of the nave, we have

/' = 5.232 -Hi = 5.732"-
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The diameter of the shaft is that of the turbine, or

d= 3". From formulas (49) and (50) the mean width

of the key which fixes the bevel to its shaft is

0.16 + 1 = 0.76"

and the thickness,

= o.i 6 = 0.46".

For the larger bevel the pitch and tooth dimensions

are the same as for the smaller bevel. From formula

(3) the number of teeth is

TTX 30 _ 94.25 _
"

2.616 2.616
~ 3 '

From formula (34) the thickness of the rim is

*= 0.12 -f- 0.4 x 2.616 =s 1.1664".

Formula (23) gives for the number of arms,

ns
'= 0.56^36^2.616 = 4.

For the number of revolutions per minute, we have,

Fig.90
from formula (7), n= 15. For

the flanged cross-sections of the

arms, such as that represented
in Fig. 90, taking b,, equal to the

rim-thickness = 1.1664", ////= i",

and B = //"', we have, from for-

mula (27),

1.1664 X fff
* + H* X i _ 126 X io

H1

15X4



158 TOOTHED GEARING.

or

1.1664^3 + 1 = 21.

Hence

and
B = H f

=4.141".

For the thickness of the nave, from formula (35) we

have _
k = 0.4V2.62

2 X 15 + i = 2.36".

Formula (36) gives, for the length of the. nave,

/'= 5-232+18 = 6.232".

For the diameter of the wrought-iron shaft we have,

from formula (43),

,/= 3.422^4 = 3".

Formulas (49) and (50) give, for the mean width and

thickness of the fixing-key,

j = o.i6 + =0.76"
and

/ = o.i 6 + T
3
o
= 0.46".

Our dimensions in fractions instead of decimals are as

follows :

For smaller bevel.

Diameter, D = 15"

Pitch, / = 2ft"
Face width, / = sjf"
Total height of teeth, h = iff"

Height below pitch circle, h' = i&"
Height above pitch circle, h" f}"
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Breadth on pitch circle,

Number of teeth,

Thickness of nave,

Length of nave,

Diameter of shaft,

Key width,

Key thickness,

For smaller bevel.

b = itf"
N = 18

k = 2"

i' = sir
d = 3"
s = '

For larger bevel.

D = 30-

A = i

Diameter,

Pitch,

Face width,

Total height of teeth,

Height below pitch circle,

Height above pitch circle,

Breadth of teeth at pitch circle, b = iJJ"
Number of teeth, N = 36
Rim thickness, t = iJJ"
Number of arms, /= 4

(ff= 4A"
Arm dimensions. See Fig. 90.

B = 4&"
*- t"
/<= i"

Thickness of nave,

Length of nave,

Diameter of shaft,

Key width,

Key thickness,

/' = 6H"
</ = 3"

* = r
/ = ".

Fig. 91 gives the working drawings, drawn to a scale

of
-f-Q. Fig. (<?) is. a sectional drawing of both bevels

in gear, showing teeth, rim, nave thickness, etc., and at

x the true form of the profiles and true tooth dimen-

sions. Fig. (b) is a partial projection of the smaller
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bevel; and Fig. (r), a projection of the larger bevel,

showing the arms, fixing-key, etc.

Example 3. Required to design, and make complete

working drawings for, a worm and wheel to transmit a
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force of 850 pounds, little or no shock, the wheel to be

12" in diameter. From formula (12, c) we have, for the

pitch,

p = 0.035^850 = 0.035 x 2 9- I 5 = 1.02",

for the heights of the teeth,

h 0.7 x 1.02 = 0.714"

h' = 0.4 x 1.02 = 0.408''

and
h" = 0.3 x 1.02 = 0.306".

The breadth of the teeth at the pitch circle is

b 0.48 x 1.02 = 0.4896".

For the number of teeth in the wheel, from formula (3),

JV=^ = 37 .

1.02

Face width of wheel,

/= 2 x 1.02 = 2.04".

From formula (23) the number of arms is

n' = 0.56^37 v/i.02 = 0.56 x 6.08 x 1.005 = 4'

For the thickness and width of the arms* we have,

from formula (17), taking l\ =.
,

h? _ 850 X 6 _ 1275
2

~~

500 x 4
~~~

500

*
Ordinarily so small a gear would be made without arms. For

the purpose of illustrating, however, we use four arms, as given by the

formula.

"of \
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or

*,_VsS-i.7"

= -^ = 0.86".
2

Formula (34) gives, for the thickness of the rim,

/= 0.12 4- 0.408 = 0.528".

From formula (35) the thickness of the nave is

k = 0.4^1.02
2 x 6 + i = 0.4 X 1.841 -f |-

= 1.236".

The length of the nave is, from formula (36),

/'= 2.04 -f- J-g-
= 2.44".

Formula (39) gives, for the diameter of the wrought-iron

shaft of the wheel,

d o.o86'V85o x 6 = 0.086 X 17.29 = 1.48".

From formulas (49) and (50) the width of the fixing-

key is

, = 0.16 + ^? = 0.456"

and the thickness

/ = 0.16+^ = 0.308".

From VIII., taking the radius of the worm equal to

I
\
times the pitch, we have

/r=iix 1.02 = 1.53"

and, for the angle (X) of the teeth,

1.02
tan A = 0.159 = 0.159 X 0.6667 = 0.106
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or X = 6 3 . From formula (39) the shaft diameter for

the worm is

d 0.086^850 x 1.53 = 0.939".

Dimensions.

Diameter of wheel, D 12"

Pitch,

Total height of teeth,

Height below pitch circle, ti -|f

Height above pitch circle,

Breadth of teeth on pitch circle, b = -

Face width, / = 2-fa

Number of teeth on wheel, N = 37
Number of arms on wheel, / = 4

Thickness of rim, / =
-JJ

Width of arms, h, = iff
Thickness of arms, b t

= ff
Thickness of nave, k = iJJ

Length of nave, /' = 2T
Diameter of shaft, d = if

Width of key, s = |J
Thickness of key, / = J{
Radius of worm, R' = i if

Angle of the teeth, A = 6 3

Shaft diameter for worm, d =
-JJ

//

The working drawings, with dimensions, are given in

Fig. 92, of which Fig. (b) x

is a full projection, showing
the arms, rim, nave thickness, tooth dimensions in sec-

tion, angle (A.)
'of inclination of the teeth, etc. Fig. (c) is

a sectional projection of Fig. (b), showing the shape of

the wheel teeth, arm thickness, nave length, etc.
;
and

Fig. (a) is a full projection taken from Fig. (b).
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Example 4. Required to design, and make full work-

ing drawings for, a pair of screw gears to transmit a

force of 2-horse power, little or no shock ;
the larger

gear to be fixed upon a i J" wrought-iron shaft, which

makes 20 revolutions per minute, and the smaller gear
to make 40 revolutions per minute. The angle included

between the two gear shafts to be 60.
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Suppose we take, for the diameter of the smaller

gear, 6": hence, from formula (7), the diameter of the

larger gear is 1 2".

The circumferential velocity is

irDn 37.7 x 20
" =

17*15
=

12x60
== '- 47 feet Per second -

From VIII. we have for the angles of inclination

(< and <') of the teeth, the angle () included between

the axes of the shafts being 60,

< + $ + = 180, </> + <' = 180 - 60 = 120.

If we assume
<f>
= 60, we have,

^= 1 20 -60 =60.*

For the larger wheel the dimensions are calculated as

follows : The pitch, from formula (14, c), is

/ = o.82\/
^ = 0.82^91 = 0.82 x 1.382 = 1.133".

? 1.047

The face width is

/= 2 x 1.133 = 2.266".

The heights of the teeth are

h = 0.7 x 1.133 = 0.793"

^'= 0.4 x 1.133 = -453 2
"

and
A" =0.3 X 1.133 = 0.3399".

* We can assume 90, in which case the gear upon which the

inclination of the teeth is
<j>

= 90 is a spur wheel, and then have

f = 120 90 = 30 for the inclination of the teeth of the other gear.
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For the breadth of the teeth at the pitch circle we may
take

b = o.48/ = 0.48 x 1.133 = 0.54384"-

From formula (3) we have, for the number of teeth,

Ar_ 37-7 _~'

Formula (34) gives, for the rim thickness,

/= 0.12 + (0.4 X I.I33) = 0.573 2 ".

From formula (35), the thickness of the nave is

k = 0.4VI.I33
2 X 6 + i = 0.4V7.70 + \

= 0.4 x i.97-f|= 1.29".

Formula (36) gives, for the nave length,

/' = 2.266 + j#= 2.666".

The fixing-key width and thickness are, from formulas

(49) and (50),

s = 0.16 -f-
- = 0.41"

and

/=o.i6 + = 0.285".

The gear is small enough to be made without arms.

The thickness of the web between the nave and rim

may be calculated from formula (24), by assuming the

gear to have 10 arms, the width of each being one-

tenth the outer circumference of the nave. Thus the
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shaft diameter is 1.2$", and the nave thickness 1.29":

hence the diameter across the nave is

1.25 -f (2 x 1.29) =3.83"

and the circumference 12.052". The width of the

assumed arms is therefore -
'

, or//, = 1.203". For-

mula (24) becomes

b, x i.2O3 2

or

*, = -^ = 0.87".
1.447

For the smaller gear the pitch and tooth dimensions

are the same as for the larger gear, as is also the rim

thickness. The thickness of the nave is, from formula

(35),

k = o.4Vi.i33
2 X 3 + J = o.4V3 .85 i + J

= 0.4 X 1.567 + I = I.I268".

From formula (36) we have, for the length of the nave,

/'= 2.2664- & = 2.466".

From formula (3), for the number of teeth, we have

18.85N= 5.= 17.
i-i33

The diameter of the wrought-iron shaft is, from for-

mula (43),

<t= 3.422^ = 3.422^.050 = 3.422 x 0.368 = 1.2593".
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Formulas (49) and (50) give, for the mean width and

thickness of the fixing-key,

= 0.41186

/= o.i 6 + = 0.28593".

For the thickness of the web between the rim and

nave, the diameter across the nave is

i. 2593 + (2 x 1.1268) = 3.51"

and the circumference 11.03": hence //, i.io". And
formula (24) gives

126 x 2

40 x 10

or

bl X i.io
2 =

b

Dimensions for larger gear.

Diameter, d =12"

Pitch, / = i&"
Face width, / = 2}%'
Total height of teeth, h =

-|J"

Height below pitch circle, h' = ff
"

Height above pitch circle, h" %%
f

Breadth at pitch circle, b = ff
"

Rim thickness, / = ff"
Number of teeth, N = 33
Thickness of web, b l

= |"
Thickness of nave, k = i^/'

Length of nave, /' = 2|f
"
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Dimensions for larger gear.

Diameter of shaft, d = ij"
Width of fixing-key, s

-J-f

"

Thickness of fixing-key, / = %"

Angle of the teeth, < = 60.

Dimensions for smaller gear.

Diameter, D = 6"

Pitch, / = i^"
Face width, / =

2^-J"

Total height of teeth, h = f"
Height below pitch circle, h' ff"

Height above pitch circle, //' = J"
Breadth of teeth, b = ff

"

Rim thickness, / = JJ"
Number of teeth, N = 1 7

Thickness of web, b l
= f"

Thickness of nave, k i"
Length of nave, /' = 2Jf

"

Diameter of shaft, // = iJ"
Width of fixing-key, s =

f
"

Thickness of fixing-key, / = ^"
Angle of the teeth, <' = 60.

The working drawings with marked dimensions are

given in Fig. 92 A. Fig. (a) is a full projection of the

larger gear, showing the pitch, tooth dimensions, rim,

etc. The right half of Fig. (b) is a full projection of

the larger gear, taken from Fig. (a) ;
and the left half

is a sectional projection taken from Fig. (a), showing
the web thickness, etc. Similarly, for the smaller gear,

Fig. (c) is a full projection, and Fig. (d) a full and sec-

tional projection taken from Fig. (c).

Example 5. Required to design, and make complete

working drawings for, a cast-iron internal spur gear and
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pinion which will safely transmit a force of 6,197 pounds

Fig. 92 A

SCALE =

moderate shock, the pinion to be fixed upon a

wrought-iron shaft, the face width to be 2j times the
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pitch, and the revolution ratio 3 to i. From formula

(n, b) we have, for the pitch,

/ = o.o7y 6197 x ~ = 0.07^2478.80 = 0.07x49.8 = 3.486".

For the face width,

/=2^ x 3.486 = 8.715".

The heights are,

h 0.7 x 3.486 = 2.44"

//=o.4 x 3486 = 1.394"
and

#' = 0.3 x 3.486 = 1.046".

Taking the breadth of the teeth equal to 0.45^, we have

= 0.45 x 3486= 1.569".

If we take for the diameter of the pinion 25^", we shall

have for the number of teeth, from formula (3),

80.10

From formula (7) the diameter of the internal gear is

25i X 3 = 76i">

and from formula (3) the number of teeth is

= 69.
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Formula (34) gives, for the rim thickness of the pinion,

/= 0.12 + (0.4 x 3.486) = 1.51".

Since in an internal gear the rim is not supported by
the arms, as in an external gear (see Fig. 93, #), we may
take the rim thickness for the internal gear equal to

2t = 3". From formula (35), the thickness of the nave

for the pinion is

k = o.4
3

v/3.486
2 x 12.75 + \ = 0.4^/12.15 X 12.75 4- }

= 0.4 x 5.371+^=2.6484",

and, for the internal gear,

k = o.4'V3.486
2 x 38.25 + \ = 0.4^12.15 x 38.25 + 1

= 0.4 x 7.746+1= 3.598".

Formula (36) gives for the nave lengths of the pinion
and internal gear respectively,

/' = 8.715 +
2-~ = 8.715 + 0.85 = 9.565"

and

/'= 8.715 +^ = 8.715 + 2.55 = 11.265".

The pinion may be without arms, and the thickness of

the web calculated from formula (29) by assuming the

pinion to have 10 arms, each having a width of one-

tenth the outer circumference of the nave. Thus the

diameter of the shaft is 3.6875", and the nave thickness

2.6484": hence the diameter across the nave is

3.6875 + (2 x 2.6484) = 9",
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and the circumference 28.27". We therefore have

//,
= 2.827"; ancl formula (29) gives

0.80 x 3.486* x 12.715
^X2.82 7

2 =- ^_ ^=12.393,

or

12,393

7-99

For the number of arms for the internal gear, formula

(23) gives

n! = 0.56^ >/3.486 = 0.56 x 8.307 x 1.366 = 6.35,

say ;// 7. If we wish to have elliptical arm cross-

sections, we have from formula (31), taking the minor

axis equal to one-half the major,

03 3.486* x 38.25
*, = - = 1.356

6- ^ * = 90.03.

Hence _
a = V9-3 x 2 = 5.647"

and

*I
= S^47 = 2i8 .

From formula (39), the diameter of the wrought-iron

shaft for the internal gear is

</= o.o86V6i97 X 38.25 = 0.086 X 61.888 = 5.322".

Formulas (49) and (50) give, for the mean width and

thickness of the fixing-key for the pinion,

s = 0.16 + = 0.16 + 0.7375 = 0-8975"

o.i6 +
'

Q
' J = 0.16 + 0.36875 = 0.52875'
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and the same for the internal gear,

* = o.i6 + ^^= 1 .2244"

and

s' = 0.16 + - = 0.6922".

Dimensions for pinion.

Diameter, D = 25!"

Pitch, / = 3fA"
Face width, / = 8f|"
Total height of teeth, h = 2Ty
Height below pitch circle, ti = iff"

Height above pitch circle, h" i^"
Number of teeth, N = 23

Breadth of teeth, b = iTy
Thickness of rim, / = iff"
Thickness of nave, k = 2%%"

Length of nave, /' = 9Ty
Thickness of web, b, = iff"
Diameter of shaft, d = 3^"
Mean width of fixing-key, s = f

"

Thickness of fixing-key, / = |
"

Dimensions for internal gear.

Diameter, D = 76^"

Pitch, / = 3U"
Number of teeth, N = 69
Total height of teeth, h 2TV'
Height below pitch circle, h' = iff''

Height above pitch circle, h" = i$$"
Face width, / = 8ff"
Breadth of teeth, b = i^"
Rim thickness, 2/ = 3"
Nave thickness, k =
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Dimensions for internal gear

Nave length, /' = nJ"
Number of arms,

Major axis of arm cross-sections, a

Minor axis of arm cross-sections, // = 2ff
"

Diameter of shaft, d 5 J"
Width of fixing-key, s = ifa"
Thickness of fixing-key, / = JJ"

Fig. 93 shows the working drawings for the pair of

gears, to the scale of -^ ; Fig. (a) being a full projection
of both gears in position for action, showing the pitch,

tooth dimensions, number of arms, etc., and Fig. (b)

being a sectional projection of both gears, taken from

Fig. (a), on the line xy, showing the shape of the arms

of the larger gear necessary to the proper action of the

pair, etc.

Example 6. Required to design, and make full

working drawings for, a cast-iron rack and pinion to

transmit a force of 1,000 pounds, moderate shock
;
the

pinion to make 20 revolutions per minute, and the rack

(which is to be 9 feet long) to move at the rate of 63 \
feet (762") per minute. From formula (12, b), for the

pitch we have

p = 0.05^1000 =s 0.05 x 31.62 == 1.581".

The face width is, consequently,

/= 2 x 1.581 = 3.162".

For the heights of the teeth,

h 0.7 x 1.581 = 1.1067"

W'= 0.4 x 1.581 = 0.6324"
and

#' = 0.3 x 1.581 = 0.4743".
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Taking the breadth of the teeth equal to 0.48 times the

pitch gives

b = 0.48 x 1.581 = 0.7589".

The circumferential velocity of the pinion (which is equal

to the velocity of the rack) is 762" per minute : hence

the circumference of the pinion must be J
2^=38.i".
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From formula (3), the number of teeth is

and from formula (2), the diameter is

3-I4I59

Formula (34) gives, for the thickness of the rim,

/= 0.12 -f (0.4 x 1.581) = 0.7524",

and, from formula (35), the nave thickness is

k = o.4Vi.58i
2 x 6.0625 + -J

= o.4Vi5.i56 +
= 0.4 x 2.475 + i = M9

The nave length is, from formula (36),

e =-162 = .66".

From formula (39) we have, for the diameter of the

wrought-iron pinion shaft,

d= 0.086AOOO x 6.0625 = o.o86'V6o62.5

= 0.086 X 18.234 = 1.5 f.

Formulas (49) and (50) give, for the width and thickness

of the pinion fixing-key,

* = 0.16 +^ = 0.474"

and

/ 0.16 +
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The pinion is small enough to be made without arms.

For the thickness of the web we have the following.

The diameter across the nave is

1.5 7 + (2 x 1.49) =4-55">

and the circumference is

4.55 x 3.14159=-= 14.294".

Hence //,
= 1.43", and formula (17) becomes

1000 x 6.0621%
bth? = 2.045^, = -

500 x 10

1.2 I 2 S
b l

= 0.599".
2.045

The dimensions, converted into fractions, are as fol-

lows :

Diameter of pinion, D = i2|"

Length of rack, 9'

Pitch, / = iff"

Number of teeth, N = 24

Face width, / = 3&"
Total height of teeth, h = !&"
Height below pitch circle, h' f"

Height above pitch circle, h" f
"

Breadth of teeth, b = ft"
Thickness of rim, / = f

"

Thickness of nave, k i"
Length of nave, /' =
Diameter of shaft, d =;

Width of key, s

Thickness of key, / =
Thickness of web, ,

=
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The working drawings are shown in Fig. 94, drawn
to a scale of T

3
6-,

and dimensions marked. Fig. (a) is a

full projection of the rack and pinion in gear, the rack

being broken in order to save space ; Fig. (c), a full

projection taken from Fig. (a) ;
and Fig. (#), a sectional
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projection of the rack and pinion, taken from Fig. (a),

on the line xy. The cycloidal profiles of the teeth were

drawn by the method given under Fig. 26 for the pinion,

and under Fig. 35 for the rack.

Example 7. Required to design, and make working

drawings for, a cast-iron lantern gear and pinion to

transmit a force of 1,600 pounds, moderate shock, the

revolution ratio of the lantern to the pinion being .

From formula (12, b), for the pitch,

p = 0.05^1600 = 0.05 x 40 = 2".

The total height of the teeth is

h = 0.7 x 2 = 1.4",

and the breadth may be

b = 0.46 x 2 = 0.92".

The face width is

1=2 X 2= 4".

If we take, for the diameter of the lantern, 19^", we
have for the number of teeth, from formula (3),

60.08
;V=- - = 3o

and, from formula (7), the diameter of the pinion is

a*-6r.

The number of teeth for the pinion is

20.02 = 10.
2

Formula (34) gives, for the rim thickness,

/= 0.12 -f- (0.4 x 2) = 0.92".
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Formula (35) gives for the nave thickness, for the lan-

tern,

k = 0.41/2- x 9.5625 + | = 0.4-^38.25 + i

= 0.4 x 3.369 + = 1.8476",
and for the pinion,

k = o.4'V2
2 X 3.1875 -f- 1= o.4'Vi2.75 -h |

= 0.4 x 2.336 + 1 = 1.4344"-

For the nave length of the pinion we have, from for-

mula (36),

and for the lantern,

r- 4 +^ = 4.6375".

The diameter of the pinion shaft, from formula (39), is

</= o.o86Vi6oo x 3.1875 = 0.086^5100

= 0.086 X 17.213 = 1.48",

and the diameter of the lantern shaft,

d o.o86Vi6oo x 9.5625 = o.o86Vi53QO

= 0.086 X 24.826 = 2.135".

For the pinion, the width and thickness of the fixing-

key, from formulas (49) and (50), are

s = 0.164- = 0.456"

and

0.164- = 0.308".
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For the lantern,

s 0.16 + ^12$ = 0.587"
3

and

/= o.i 6 +
2

-^ = 0.3735".

The pinion is small enough to be made without arms.

Formula (23) gives, for the number of arms in the lan-

tern,

n; = 0.56^30 V2 = 0.56 x 5.48 x 1.19 = 4.

For arms having circular cross-sections, formula (19)

gives a diameter of

4 3/1600x0. 562^ 3/rd =0.15^
- v:> *= 0.15^/3825 = 0.15 x 15.64= 2.346".

4

As explained in VI., under Fig. 42, the radius for the

lantern rungs is j$ X 2 = 0.475".

Dimensions for the lantern.

Diameter, D = ipj"

Pitch, / = 2"

Face width, / = 4"*

Radius of rungs, = Jf"
Number of rungs, N = 30
Thickness of rim, / = fj"
Number of arms, / = 4

Diameter of arm cross-section, d
r = 2JJ"

Thickness of nave, k = iff"

Length of nave, /' = 4f"
Diameter of shaft, d = 2^"
Width of fixing-key, j = J|"
Thickness of fixing-key, / = f

"

* See Fig. 95 (c).
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Dimensions for the pinion.

Diameter, D = 6f
"

Pitch, / = 2"

Face width, / = 4"

Total height of teeth, h if"
Breadth of teeth, b = fJ"
Number of teeth, JV 10

Thickness of nave, k i-fr"

Length of nave, /' =
Diameter of shaft, d =
Width of fixing-key, s =
Thickness of fixing-key, / = T

5
/'.

Fig. 95 gives the working drawings of the lantern and

pinion, drawn to a scale of -%- One of the lantern rungs
is shown in section in Fig. (c) in order to show that the

rungs are to be cast on the lantern, instead of being
made separately, and driven into holes along the lantern

rim, as is ordinarily the case. The arrangement of the

rim, etc., is sufficiently explained by the figure. The
teeth of the pinion are drawn according to the explana-

tion given in VI., under Fig. 42.

Example 8. Given the data and dimensions of the

pinion of Example 7, it is required to design an internal

lantern, the revolution ratio of which to the pinion shall

be \ ;
the rungs of the lantern to be of wrought-iron,

and to be driven into holes along the rim.

The radius for the rungs is the same as in Example 7,

as is also the calculated rim thickness. But for an in-

ternal gear we take the rim thickness from ij times to

twice that of an external gear (see Fig. 96, b).

From formula (7), the diameter of the lantern is

D = 6 X 4 = 25J'',
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and, from formula (3), the number of rungs is

.. 80.1N= = 40.

Formula (23) gives, for the number of arms,

n' 0.56^40 \/2 = 0.56 x 6.32 x 1.187 = 5

From formula (19) the diameter for the circular cross-

section of the arms is

.3/1600X12.75 s/ r~=
o.i5y-

- = 0.15^4080 0.15x15.98 = 2.40.
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For the nave thickness, formula (35) gives,

= 0.4^2* x 12.75 +i = 0-4^5 r +4 = 0.4x3.7 -f J = 1.98",

and the nave length is, from formula (36),

/'= 4 +
2 S = 4.8S".

Formula (39) gives, for the diameter of the wrought-iron

lantern shaft,

d o.o86'Vi6oo x 12.75 = o.o86Y20400 = 0.086 X 27.32

= 2.349"-

The width and thickness of the fixing-key are, from for-

mulas (49) and (50),

and

= 0.16 + = 0.395
"

Dimensions for lantern.

"
Diameter, D 25%

Pitch, / = 2"

Face width, / = 4"

Radius of rungs, -Jf
"

Number of rungs, N = 40

Thickness of rim, / =
ff-"

Number of arms, #/ = 5

Diameter of arms, d' = 2\%'
Thickness of nave, k = iff"

Length of nave, /' = 4f|"
Diameter of shaft, d = 2f"
Width of fixing-key, j = JJ"
Thickness of fixing-key, / = |f"
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Dimensions for pinion.

Diameter, D = 6f"

Pitch, / = 2"

Face width, / == 4"
Total height of teeth, h =

i-|f"

Breadth of teeth, = f"
Number of teeth, ^V = 10

Thickness of nave, k = i-&"

Length of nave, /' = 4-^"
Diameter of shaft, // = ifj"
Width of fixing-key, j = f"
Thickness of fixing-key, / = ^".

The working drawings for Example 8 (shown in Fig.

96, drawn to a scale of ^) need but little explanation.

The dimensions are marked on the drawings ;
and the

arrangement of the lantern arms, proportions of the

rim, etc., will be sufficiently explained by a glance at

Fig. (b). The teeth of the pinion were drawn by the

method explained in VI., under Fig. 44.

Example 9. Required to design a train of cast-iron

gears to lift a weight of 8,000 pounds (say, moderate

shock) by means of a drum and cord as outlined in

Fig. 97-
"

The circumferential force of the driving-gear r

is 1,000 pounds, and the diameter of the driver 12". Let

us assume that ten per cent of the driving-force is lost

in overcoming the friction of the gear teeth, shaft bear-

ings, etc. We have, therefore, an effectual force of

10001000X0.10 = 900 pounds, with which to lift

the weight of 8,000 pounds. We must gear our power
from 900 pounds to 8,000 pounds, or, in other words, we
must gear our power up -^o - = 9 times. Since the

powers of the gears are inversely proportional to their
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radii (formula 8), we must gear down our radii 9 times.

We can gear from R to r' 2\ times, and from R f

to

the drum r" 4 times (2\ x 4 = 9). If, therefore, we
take R = 13^", we have
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and, if we take R' 28", we have, for the radius of the

drum,

Fig. 97

The power (or circumferential force) of the gear R is, of

course, that of the driver r, 1,000 pounds;* and from

formula (8) the power of

the gear r
f

(and conse-

quently that of the gear

R') is 1000 X 2\ = 2250

pounds. The total power
of the drum is 2250 X 4
= 9000 pounds. Our ex-

ample is now reduced to

two very simple ones ;

viz., first to design a pair

of gears (r and R) to

transmit a force of 1,000 pounds (moderate shock), the

diameters to be 2r= 1 2", and 2R = 27" ; and, second,

to design a pair of gears (r' and R') to transmit a force

of 2,250 pounds (moderate shock), the diameters being

2r'=i2", and 2R' $6". Let us take them in the

order given. From formula (12, b), the pitch for the

gears r and R is

/ = 0.05^1000 = 0.05 x 31.62 = 1.581"

for the face width,

/= 2 x 1.581 = 3.162".

* We do not take the lost power into account in calculating the

strength of the gears.
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The heights are,

h = 0.7 x 1.581 = 1.1067"

h' 0.4 x 1.581 = 0.6324"
and

h" = 0.3 x 1.581 = 0.4743".

Taking the breadth of the teeth equal to 0.45^ gives

b = 0.45 x 1.581 = 0.7115".

From formula (3), the number of teeth for r is

^=37^9
1.581

and for R,

Formula (34) gives, for the rim thickness,

/= 0.12 4- (0.4 x 1.581) = 0.7524".

The gear r is without arms. For the gear R the num-

ber of arms, from formula (23), is

/ = 0.56^54 Vi.sSi = 0.56 X 7.348 x 1. 121 = 5.

For elliptical cross-sections, taking b' = -, formula (20)

gives
a* 1000 X 13.5

b'a* = ~ = 0.00339
-- = 9-153

or

a = Vi8.so6 = 2.636"
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Formula (35) gives, for the nave thickness for r,

k = o.4Vi.58i
a x 6 + J = o.4Vi5 + |

= 0.4 x 2.466 4- \ 1.486"
and for R,

k = o.4Vi.58i
2 X 13.5 4- i = 0.4Y/33-744 + I

= 0.4 X 3.231 + = 1.794",

From formula (36), the nave length for r is

/'= 3.162 4-t = 3.562",
and for J?,

/' =3.1624-1$ = 4-062".

The diameter of the shaft for r is, from formula (39),

d 0.086^1000 x 6 = 0.086 x 18.17 = 1.5626"

and for R,

d 0.086^1000 x 13.5 = 0.086 x 23.81 = 2.0477".

Formulas (49) and (50) give, for the width and thick-

ness of the fixing-key for r,

1.^626
s = 0.16 H = 0.4725"

and

/= 0.16 +^^ = 0.3163",

and for R,

,= . l6 +^ =
and

/= 0.164-^^
= 0.3648".

For the thickness of the web between the nave and
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rim of the gear r, the calculations are as follows. The
diameter across the nave is equal to

d+ 2k = 1.5626 4- (2 X 1.486) = 4.535"

and the circumference is 14.2$". Supposing the gear to

have 10 arms, each having a width of one-tenth the

nave circumference, we have

Formula (17) therefore gives, for the web thickness,

1000 x 6
bji* 2.03/>, =

500 x 10

or
1000 x 6

b l
= = 0.591".

500 X 10 X 2.03

For the second pair of gears, r
f

and R f

,
formula (12, b)

gives a pitch of

/ = o.o5V
/

l2~50 = 0.05 x 47434 = 2.3717"-

The face width is

/= 2 x 2.3717 = 4.7434".

For the heights of the teeth we have

h = 0.7 x 2.3717 = 1.6602"

/&'= 0.4 x 2.3717 = 0.9487"
and

A" =0.3 x 2.3717 = 0.7115".

The breadth of the teeth at the pitch circle is

^ = 0.45 x 2.3717= 1.0673".
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From formula (3), the number of teeth for r
1
is

and for R't

N= 115^3 =
2-3717

The small gear r
f
is without arms. From formula (23),

the number of arms for R f

is

/= 0.56^74 V2.37I7 = 0.56 x 8.60 x 1.241 = 6.

For elliptical cross-sections, taking tf = -, formula (20)

gives
7, ,

3
2250 X 28

** = ~ = 0.00339
- 5-_- - =

35.60,

or

a = ^71.20 = 4.1447"
and

j,_ 4.H47 = 2
,/

2

The thickness of the rim is, from formula (34),

/= 0.12 -h (0.4 x 2.3717) = 1.0687".

Formula (35) gives, for the nave thickness for /,

k = 0.4/2.37
2 x 6 -f \ = 0.4^33.701 +

= 0.4 x 3.23 +|= 1.792"
and for the gear R

f

,

k = o.4V2.3 7
2 x 28 + = 0.4^157.273 + J

= 0.4 x 5.398 + 1= 2.6592".

From formula (36), the nave length for r' is

/'= 4.7434 -f if = 5.1434",



TOOTHED GEARING. 193

and for R\
/'= 4-7434 4-18 = 6.61".

For the shaft diameter for /-', formula (39) gives

d = 0.086^2250 x 6 =0.086^13500 = 0.086 x 23.81 = 2.048"

and for R'
t

//= 0.086^2250 x 28 =0.086 v 63000 = 0.086 x 39.79 = 3.42 1 9".

For the width and thickness of the fixing-key for r'

formulas (49) and (50) give

,r = o.i6 + - -
0.5696''

and

/= o.i 6 + ^^ = 0.3648",

and for R't

and

10

For the web thickness for ;-', as before, the nave

diameter is

d + 2k = 2.048 + (2 x 1.792) = 5.63",

and the circumference is 17.69": hence

10

From formula (17),

2250 x 6
i i 3- J 3 i

^00 x I0

or

500 x 10 x 3.13
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Dimensions for gear r.

Diameter, D = 12"

Pitch, / = ifj"
Face width, / = 3^"
Total height of teeth, h =

i-fa"

Height below pitch circle, h' J|"

Height above pitch circle, h" = if"
Breadth of teeth on pitch circle, b = if"
Number of teeth, N = 24

Rim thickness, / = -"

Nave thickness, k = ifj"
Nave length, /' = 3yV
Shaft diameter, d = r^-"
Width of fixing-key, s = ^f

"

Thickness of fixing-key, / = -$"
Thickness of web, b, = \\

"

Dimensions for gear R.

Diameter, D = 27"

Pitch, p = ifj"
Face width, / = 33%"
Total height of teeth, h i^"
Height below pitch circle, h' |-J"

Height above pitch circle, h" = tt"
Breadth of teeth on pitch circle, b = f|"
Number of teeth, N = 54
Rim thickness, / = f"
Number of arms, n/ = 5

Major axis of cross-sections, a = 2^"
Minor axis of cross-sections, b' = iA"
Nave thickness, =

ifj-"

Nave length, /' = 4Ty
Shaft diameter, d = 2-^"
Width of fixing-key, s = |f"
Thickness of fixing-key, / = fJ"
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Dimensions for gear r'.

Diameter, D = 12"

Pitch, / = 2f"
Face width, / = 4j"
Total height of teeth, h = if|"

Height below pitch circle, h' fJ"

Height above pitch circle, h" = jj"
Breadth of teeth on pitch circle, ^ = i^"
Number of teeth, N = 16

Rim thickness, t = i^V'
Nave thickness, / = ifJ"
Nave length, /' = 5^:"
Shaft diameter, d = 2^"
Width of fixing-key, j = fj"
Thickness of fixing-key, / = ff"
Thickness of web, b^ f}'

r

Dimensions for gear /?'.

Diameter, Z> = 56"

Pitch, / = 2|"

Face width, / = 4j"
Total height of teeth, h ifj"

Height below pitch circle, # = fJ"

Height above pitch circle, //' = ^}"
Breadth of teeth on pitch circle, b i^"
Number of teeth, N = 74

Rim thickness, / = i^r"

Number of arms, n{ 6

Major axis for cross-sections, a 4^"
Minor axis for cross-sections, b' =

2-faf'

Nave thickness, k 2%%"

Nave length, /' = 6}|"
Shaft diameter, d =
Width of fixing-key, s

Thickness of fixing-key, / =
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The working drawings for the train are given in

Fig. 98, drawn to a scale of g
3
^. Fig. (a) is a full projec-

tion of the whole train, showing the pairs in gear ; and

Fig. (6) is a sectional projection of the whole train, taken
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from Fig. (a), on the line AB, The double curved arms

of the large ($6") gear were drawn by the method ex-

plained in XIV., under Fig. 87. It may be remarked

here that very often, perhaps in the majority of cases,

in order to save calculation and work, the pitches for all

the gears of a train are taken the same. Obviously,
when such is the case, the common pitch must be taken

equal to that of the gear which transmits the greatest

force
;
in the last example, that of the gear R

f

(or r'

which transmits the same force). Suppose the driving-

gear r to make 120 revolutions per minute
; then, from

formula (7), the number of revolutions per minute made

by R is 120 X Jf 53^. The gear r'
y being fixed to

the same shaft, makes the same number of revolutions

as R ; and the number of revolutions per minute of R f

,

and consequently of the drum r"
,
is 53^ X \\ 11.43.

The diameter of the drum is 14", and its circumference

43.98" : hence the circumferential velocity of the drum,

or the velocity with which the weight will be lifted, is

43.98 X H.43 _
4 , i8g feet per minute

XVII. Special Applications of the Principles of Toothed Gearing.

In the foregoing pages the subject of toothed gearing
has been treated in so far as it relates to ordinary ma-

chinery only. The simple, uniform, rotary motion of

the spur wheel, bevel, or screw gear, the continuous

rectilinear movement of the rack these are met with

daily in almost every shop and factory. But there are

many special cases in which these simple, uniform mo-

tions are not sufficient. According to the work which

is to be performed, we need, in one case, an intermittent
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rotary or rectilinear motion
;
in another, a gradually in-

creasing or decreasing speed ; and, in another, a recip-

rocating movement. These variations must be obtained

from the uniformly rotating shop-shaft ;
and there arc

few fields in which the ingenuity of man has had wider

scope, or produced more variety and beauty of mechan-

ism, than in that of special gear-contrivances. Some of

the more useful and common of these many special

mechanisms will be found explained in the following

pages.
Fig.99

(i) Spur Gearing. Fig. 99 represents a pair of

"square" or "rectangular" gears, the object of which

is to obtain a varying speed for the driven gear <f from

the uniform rotary motion of the driver c. As explained

in XL, we have the expression,

n R . Rn
,
=

TT, or n = -&-,

in which R and n are the radius and number of revolu-

tions of the driver, and R r

and ;/ the same for the

driven gear. From this last expression it is plain, that,

if we increase R ',
we decrease the value of ;/; if we
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decrease R f

, we increase ;/; if we increase R, we in-

crease ;/; and, if we decrease R, we decrease .'... In

Fig. 99, while the gears are in the position shown, the

greatest radius of the driver gears with the smallest;

radius of the driven gear : the speed of the driven gear

is, therefore, then at its maximum. As the gears revolve

in the directions indicated by the arrows, the radius of

the driver gradually decreases, and that of the driven

gear gradually increases, until the points x and a' are in

contact. The speed of the driven gear, therefore, grad-

Fig.lOO

ually decreases during this eighth of a revolution.

From the moment of contact between the points x and

a', the reverse action takes place, and the speed of the

driven gear gradually increases until the points b and k

are in contact. Thus, during the entire revolution, the

driven gear continues to alternate from a gradually

decreasing to a gradually increasing speed, and vice

versa. In order that rectangular gears shall work

properly together, it is necessary, first, that the pitch

peripheries of the two gears be equal in length, and,

second, that the sum of the radii of each pair of points
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(points which come into contact with each other) on the

two pitch peripheries be equal to the distance between

the centres of the gears. These two conditions sug-

gest the method for finding the pitch periphery (or

pitch line) of a rectangular gear which shall properly

gear with a given driver, shown in Fig. 100, which is as

follows. O is the given driver. Since the smallest

radius of the driver gears with the greatest radius of

the driven gear, and the sum of these two radii is equal

to the distance between the centres, make aO
r = R, and

O' is the centre for the required gear. Divide the peri-

phery of O into a number of small parts, ai, 12, 23, etc.
;

and from the point O as a centre, and Oi, 6>2, O$, etc.,

as radii, strike arcs cutting the line of centres in the

points b, c, d, etc. With the centre O' and radii Of

b, O'c,

O'd, etc., strike circle arcs, and lay off the arcs ax, xy,

yz, etc., equal respectively to ai, 12, 23, etc., taking

care that the points x, y, z., etc., fall upon the corre-

sponding arcs, of which the point O' is the centre
;
so

on, until the entire required pitch line is determined

by the points thus found. As may be at once seen by

comparing Figs. 99 and 100, the shape of the driven

periphery depends upon the amount of curvature of the
" corners

"
of the driver. Thus, for very slightly curved

corners, the driven periphery becomes more nearly star

shaped, as in Fig. 100. If we take the radius of curva-

ture for the corners (b'd', Fig.99 ) equal to b'c, the gear

peripheries become equal and similar, and the gears

square, with rounded corners.

Fig. 101 represents a pair of "triangular" gears, the

object of which is to obtain an alternating, varying

speed from the uniformly rotating driver, as in rec-



TOOTHED GEARING. 20 T

tangular gears. Triangular gears give fewer changes
of speed per revolution than rectangular gears. In

Fig. 101, C being the driver and C the driven gear, the

speed of the latter is at its minimum when the gears
are in the positions shown in the figure. Since, from

these positions, the radius of the driver gradually in-

creases, and that of the driven gear decreases, as far

as the points b and b
r

,
the speed of the driven gear

will gradually increase until the points b and b' are in

contact, or for one-sixth of an entire revolution. The

reverse action will then take place until the points c

and c' are in contact, and so on. Thus while, in rec-

tangular gears, each gradually increasing or decreasing

period takes place during one-eighth of a revolution, in

triangular gears each of these periods occupies one-

sixth of a revolution ;
that is, in rectangular gears there

are eight alternately increasing and decreasing periods

in one entire revolution of the driven gear, and in trian-

gular gearing there are but six.

In "elliptical" gears (shown in Fig. 102) we have

still another means of obtaining the same result, with

the difference, that, in elliptical gears, each period of
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gradually increasing and decreasing speed takes place

during one-fourth of a revolution : in other words,

there are but four periods of increasing and decreasing

Fig. 102

speed during one entire revolution of the driver. To
construct the pitch lines of triangular and elliptical

gears, we proceed as already explained, under Fig. 100,

for rectangular gears. Fig. 103 represents a pair of

Fig. 103

"scroll" gears ;
c being the driver, and c the driven

gear. From the positions shown in the figure (in which

the greatest radius of the driver gears with the smallest

radius of the driven gear), as the gears revolve in the
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directions indicated by the arrows, the radius of the

driver gradually and uniformly decreases, while that of

the driven gear gradually and uniformly increases. The

speed of the driven gear is therefore at its maximum
when the gears are in the positions shown, and gradu-

ally and uniformly decreases during the entire revolu-

tion. The moment before the positions shown in the

figure are reached, the smallest radius of the driver

gears with the greatest radius of the driven gear : the

speed of the latter is then at its minimum, and sud-

denly (as the gears assume the positions in the figure)

Fig, 104

changes to its maximum. To construct the pitch lines

for a pair of scroll gears, proceed as follows. Con-

struct the square 1234 (Fig. 104), each side of which

is equal to one-fourth the distance <?/, which determines

the rapidity of variation in the speed of the driven gear.

Produce the sides of the square, as shown in the figure.

From the point I as a centre, and a radius \a, strike

the arc ab ; with the point 2 as a centre, and 2b as a

radius, strike the arc be; with centre 3, and radius 3^,

strike the arc cd ; and with centre 4, and radius 4</,

strike the arc df. These four arcs together form the

pitch line of the driver, the axis of which is at the cen-
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tre x of the square 1234. Make aC'=fx, and C r

is

the centre for the driven pitch line
;
after which pro-

ceed to find points, and construct the pitch line ab'c'd'

as explained, for rectangular gears, under Fig. 100.

The mechanism represented in Fig. 105 is known as
" sector

"
gears, and the object is to obtain a series of

Fig. 105

different uniform speeds. In the figure, C is the driver,

and C' the driven gear. As long as the arcs ab and ab'

are in gear, the speed of the driven gear is the same.

When the arcs cd and cd' come into gear, the speed of

the driven gear becomes slower, but remains the same

throughout the gearing of these two arcs. Similarly,

when the arcs ef and e'f come into gear, the speed of

the driven gear becomes still slower, but uniform during

the gearing of these arcs. Thus, during each revolu-

tion, the driven gear has three periods of uniform speed,

each differing from the others. In order that sector

gears shall work properly together, it is necessary that

the arcs which gear together be equal in length (ab= ab',

cd c'd', etc.), and that the sum of the arc lengths upon
one gear be equal to the sum of the arc lengths upon the

other (ab+ cd+ef= ab'+ c'd'+ e'f). Also the sum of
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the radii of each two arcs which gear together must be

equal to the distance between the centres of the gears.

Sector gears are somewhat difficult to construct, be-

cause considerable care must be taken that no two

sectors of the driver gear at the same time with the

driven gear. To illustrate, suppose (Fig. 105) that the

arcs ab and ab' gear together at the same time as do

the arcs ef and e'f'\ that is, that the last few teeth of

ab gear with the driven gear at the moment when the

first few teeth of efdo the same. The driver will then

strive to drive the driven gear at its maximum and

minimum speeds at the same time, an attempt which

must obviously result in a fracture. In the figure, the

arc </ ceases to gear with the. driven gear at the mo-

ment when the arc ab begins to gear. Thus each arc

of the driver must escape gear just in time for its suc-

cessor to begin gear, and yet leave between these events

no appreciable interval to disturb the uniformity of mo-

tion. Fig. 106 represents a peculiar kind of spur wheel

and pinion. The wheel has two sets of teeth, one set

being on each side
;
and the teeth of the two sets alter-

nating in position, as shown in the figure. The pinion

consists of two heart-cams, so arranged that each gears,

in turn, with one set of teeth of the spur wheel. By
this means a very slow motion is obtained for the spur

wheel, which is moved through a distance of two teeth

at each revolution of the cam-pinion. In the figure, the

cam a leaves the tooth a' some time before the cam /;

comes into contact with the tooth b
f

: during this time,

therefore, the spur wheel remains motionless, or, in

other words, the motion of the spur wheel is intermit-

tent. The length of time during which the driven gear
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remains motionless depends upon the shape of the cams.

Thus, if we give to the cam b the shape indicated by
the dotted outline, the cam will engage sooner with the

tooth //: consequently the period of rest will be shorter,

and the period of motion longer. Also, if the cams
differ from each other in shape, the periods of rest pre-

Fig. 106 Fig. 107

ceding the engagement of the two cams will be of

different lengths, and the motion of the driven gear
will be rendered still more variable. Fig. 107 repre-

sents the device known as "
stepped

"
gears. This ar-

rangement is used when very heavy powers are to be

transmitted, and is met with sometimes in large and

powerful machine tools. In the figure, each of the

shafts c and / bears three spur wheels
; the pitches,

diameters, etc., being equal, and the three gears being

keyed firmly to the shaft. The gears are so fixed upon
the shaft that their teeth are arranged in steps along the

combined face, as shown in the figure ; i.e., each gear is

turned round upon the shaft slightly farther than the
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Fig. (08

preceding one, so that instead of there being, say, \\
teeth gearing with the driver at one time, as is the case

in a pair of ordinary spur wheels, there are 3 X i \ = 4j.
The strain is thus divided among three gears, and
the contrivance is capable of transmitting three times

the power which can be transmitted by one pair of the

gears. The device represented in Fig. 108 consists of a

mutilated spur driver c, a spur pinion /, and a mutilated

internal gear d; the gears c and d are fixed upon the

same shaft. The mutilated

spur wheel c drives the pinion
c in the direction shown by
the arrow, until the point a

is reached, when the gear c

ceases to be the driver, and

the mutilated internal gear
takes its place. This drives

the pinion c in a contrary

direction, until the point k

is reached, when c again be-

comes the driver, and again
reverses the direction of rotation of the pinion. The

gear c being small in diameter, and the gear d large,

the former drives the pinion c' at a slow speed, and the

latter gives to it a high speed. The mechanism is there-

fore useful where a slow forward motion and a quick

return are needed, as in the planer, and other machine

tools.

The arrangement represented in Fig. 109, which con-

sists of two spur wheels and a mutilated spur driver, is

intended to give to the spur wheels c' and d an alter-

nating, intermittent motion. The driver c, rotating in
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Fig.109

the direction indicated by the arrow, drives the spur

wheel c in the direction shown, until the tooth x comes

into gear. From that moment the driver acts upon the

spur-wheel d, which it drives in the same

direction as that given to the gear d
'

,

When the tooth x comes into contact

with the gear d, the driver ceases to act

upon this gear, and returns to the gear /.

Thus the intermittent motions of the

two spur wheels are made to alternate
;

the gear cf remaining at rest while the

gear d is in motion, and contrariwise.

In Fig. i JO the mutilated driving pin-

ion engages alternately with the racks /

and d, which it drives, at the same speed,

in opposite directions. The two racks

being rigidly fixed to one frame, a recip-

rocating rectilinear motion is given to

the frame ; the forward and return mo-

tions being the same in velocity.

If the two racks are mutilated and the pinion entire,

as in Fig. 1 1 1, the mutilations being alternately situated

Fig.no on the two racks, a con-

^ tinuous rectilinear mo-

& ^\\ tion of the rack frame

\A will give to the pinion

J J
an alternating rotary

yj motion
;
the speeds of

S advance and return mo-

tion being the same. If the rack mutilations are of

different lengths, the motion of the pinion will be vari-

able ; the pinion moving over a greater distance when
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engaging with a long toothed part, and a less distance

when engaging with a part of the rack containing a few

teeth only. Fig. 1 12 represents a device for obtaining a

uniform rectilinear motion in one direction, and a sudden

return motion. The mutilated pinion, rotating continu-

ously in the direction shown by the arrow, imparts a

downward motion to the rack until the toothless part of

the pinion is reached. The rack, being then free, is lifted

quickly into its original position by means of the weight

Wj cord and pulley K. This arrangement is sometimes

used on special auto-mat- Fig. in

ic drills, in which case

the rack is fixed upon a

frame within which the

drill spindle works. The

spindle bears a raised

ring, which fits into an

annular depression within the frame. This allows the

spindle to revolve freely, still enables the pinion and

rack to give to the spindle the rectilinear motion neces-

sary for the feed
;
and at the proper time the weight

returns the spindle to its original position in readiness

to repeat the desired operation.

In Fig. 113 the mutilated driver C acts upon the

gear C', driving it uniformly in the direction shown by
the arrow, until the toothless parts are opposite each

other, when, the gear C' being free, the weight W falls,

and quickly carries the gear C' into such a position that

the driver again gears with it ; and the same action

again takes place. Thus a variable rotary motion is

imparted to the driven gear, slow when the driver

acts upon it, and fast when it is acted upon by the

/A/WV\J
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weight W. If we change the numbers of teeth, so that,

when the teeth of the driver and driven gear cease con-

tact, the weight has the position W (the directions of

rotation being the same as in the figure), the weight, in

falling, will carry the gear C' in a direction contrary to

that imparted by the driver, and the motion of the driven

gear will be an alternating or oscillating one, made up
of a slow forward and a quick return movement.

Fig. 1 12 Fig. 113

(2) Bevel Gearing. Under the head of special appli-

cations of bevel gearing we propose to include some

pairs of gears which are not, strictly speaking, bevel

gears, since the teeth are not "bevelled," but which

resemble bevels in that their shafts are not parallel, but

form either oblique or right angles with each other.

An example of such a pair is seen in Fig. 114. The

gear C is an ordinary spur wheel, and ^'what is termed

a "crown gear." The teeth of the latter gear are made

so thin that their sides are practically parallel, and
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Fi g .ii4

hence gear with the spur wheel, notwithstanding the

fact that their side lines all intersect at the centre of

the pitch circle. Because

of the necessarily thin teeth

of the crown gear, such a

pair as is shown in the

figure can be used only for

the transmission of very

slight powers. They are

very seldom seen in prac-

tice, except in models,

mathematical instruments,

and such like.

Fig. 115 represents a

crown gear, C', which en-

gages with a wide-faced spur driver, C. The shaft of the

crown gear is set eccentrically, instead of in the centre

of the gear : hence a variable motion is given to it by

Fig, 115

the uniform rotary motion of the driver. The motion

of the crown gear is fast when the gears are in the posi-

tions shown in the figure, and gradually decreases until

the largest radius comes into gear, when the reverse
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action takes place for the remaining half-revolution.

The face width, ab, of the driver, must be at least equal
to the difference between the greatest and smallest

inner radii of the crown gear plus the thickness of the

crown gear teeth, xy.

Fig. 1 1 6 represents a contrivance for obtaining three

different uniform rotary motions for the shaft C' from

a uniformly revolving shaft C, the two shafts being at

Fig. 116 Fig.117

right angles with each other. The wheel C has three

sets of projecting pins, arranged in circles of different

diameters, as shown in the figure. The pitches (dis-

tance between the centres of two adjacent pins) of all

the circles are equal. The gear C' has a slotted face,

the slots being slightly larger than the pins of the wheel

C, and equally distant from each other. By sliding the

gear C' along its shaft, it may be made to engage at

will with either of the three circles of the wheel C, thus

obtaining a quick or slow motion as may be required.
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Fig. 117, which represents a device for giving two
different velocities to the same shaft, consists of a

driving bevel c> and two driven bevels c and d, of differ-

ent diameters, and running on the same shaft. The
bevel d, being smaller than the bevel c', is driven at a

greater speed, and in a direction contrary to that of /.

The bevel c is fixed to a collar or hollow shaft, g, which
fits over the shaft k, thus allowing it to revolve in a con-

trary direction. If the driving bevel c is mutilated, and

Fig. 118

the bevels c' and d fixed to the shaft k, an alternating

rotary motion will be given to the shaft, the alternations

being at different speeds. The same result may be

obtained for the shaft c by mutilating the gears c' and d
so that the toothed part of one is opposite the toothless

part of the other, and making the bevel c the driven

gear.

Fig. 118 represents a method of obtaining an alter*

nating rotary motion from a uniformly rotating shaft,

the driving and driven shafts being at right angles with
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Fig. 119

each other. The mutilated driving bevel c drives the

shaft c'd alternately in opposite directions, according as

it gears with the bevel c' or d. The speeds of the for-

ward and return motions are the same, since the bevels

/and d are of the same diameter. This contrivance

was once used to give the reciprocating motion to

planer-beds; a thread on the

shaft c'd, which worked in a

female thread in the bed, pro-

ducing the rectilinear motion.

The arrangement soon fell

into disuse, for the reason that

as much time was required for

the return as for the forward

motion, a waste which is now

obviated by the more modern

"quick return."

The device represented in

Fig. 119 is intended to trans-

mit a gradually increasing speed to a shaft from the

uniform rotary motion of a shaft at right or oblique

angles. The scroll bevel C is the driver, and the ordi-

nary bevel C the driven gear. Starting with the small-

est radius of the scroll bevel (at the point a) in gear with

the driven bevel, and rotating in the direction indicated

by the arrow, the radius gradually and steadily increases

until the bevels assume the positions shown in the

figure : consequently the speed of the driven bevel

gradually and steadily increases during the entire revo-

lution. The toothed part of the scroll bevel may be

carried farther than in the figure, as indicated by the

dotted lines, and the described action thus made to take
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place during more than one revolution. The shaft of

the driven bevel carries a feather, which allows the

bevel to slide along it without interfering with the ro-

tary motion. In the figure, when the described action

begins, the driven bevel C is in its highest position on

the shaft
; and, as during the rotation the radius of the

driving bevel increases, the former bevel is forced down-

ward upon its shaft until the positions shown in the

figure are reached. If the scroll bevel be made to rotate

in a direction opposite to that indicated in the figure,

it is plain that the teeth, not being prevented from so

Fig.120

doing by the converging of their lines, will lift out of

gear as the radius decreases, and thus destroy the

action.

Fig. 1 20 represents a peculiar kind of bevel gear,

more properly a pair of right-angle gears. The driving

gear C bears upon its circumference small rollers, which

gear into curved projections, or grooves, in the face of

the driven gear C't and, by rolling down these curves,

give to the driven gear a rotary motion at right angles

with that of the driver. The motion of the driven gear

depends upon the shape of the projections. If these

are curved, the curves being more oblique to the verti'
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cal at the bottoms than at the tops, as in the figure, the

motion of the driven gear will be variable, slow when
each roller of the driver gears with the upper part of a

projection, and gradually faster as the roller progresses
downward. If, instead of being curved, the profiles of

the projections are straight lines, the motion of the

driven gear will be nearly uniform.

The motions described under Fig. 113 may be trans-

mitted from one shaft to another at right or oblique

Fig. 121

angles, by using mutilated bevels in place of the spur

gears shown in that figure. Fig. 121 represents an ar-

rangement of bevels known as the "
mangle wheel" and

pinion, the object of which is to obtain an alternating

rotary motion for the mangle wheel C f

. This wheel

has teeth upon both sides, one side only being shown in

the figure. As the driving bevel C rotates, it drives the

mangle wheel in the direction indicated by the arrow,

until the opening ef is reached. At this point the guide
a comes into contact with the shaft of the driver, which
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it forces downward through the opening, and into such

a position, that the driver gears with the teeth on the

other side of the mangle wheel. The latter is then

driven in an opposite direction, until the opening cf is

again reached, when the guide b lifts the driver up

through the opening into gear with the first-mentioned

side of the mangle wheel. This operation is repeated

indefinitely; the mangle wheel making one entire revo-

lution alternately in each direction. The shaft of the

driving bevel carries a universal joint, x, which allows

Fig. 122

it enough freedom of motion to fall and rise through
the opening in the mangle wheel.

Fig. 122 represents an arrangement of bevel gears,

the object of which is to produce a double or half

speed ;
the three bevel gears having the same diameter.

The bevel c is rigidly fixed (so that it cannot rotate) to

the bed of the mechanism, and the shaft ab runs loosely

through it. The bevel c
r

runs loose upon the shaft ab,

which carries a short, right-angle shaft, cf. Upon this

right-angle shaft the bevel d runs loose. If, now, a

rotary motion be given to the shaft ab, the right-angle
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shaft ef, and with it the bevel d, will be made to revolve

in a vertical plane about the axis ab. The bevel d will

also, by its gearing with the fixed bevel c, be made to

rotate upon its own axis, ef. Since the bevels c and d
are of the same diameter, the speeds of these two rota-

tions will be the same : therefore the bevel d will trans-

mit to the bevel c' the effect of two speeds, each equal

to that of the shaft ab. And, since the speeds are in

the same direction, the bevel c' will be made to rotate

about the shaft ab with a speed equal to twice that of

the shaft
;

that is, while the shaft ab makes one entire

revolution in a given direction, the bevel c' will make

two revolutions in the same direction. If the bevel c'

be made the driver, its rotary motion will transmit to

the bevel d a rotary motion about its axis ef, and, by
means of the fixed bevel c, also a revolving motion in

a vertical plane about the axis ab. The bevels having

equal diameters, half the speed of the driver is trans-

mitted in the rotation of the bevel d about its axis ef,

and half in the vertical rotation about the axis ab ; that

is, the shaft ab will be made to rotate with a speed

equal to one-half that of the driver : while the driver c'

makes two entire revolutions in a given direction, the

shaft ab will make one revolution in the same direction.

The relative speeds of the shaft ab and the bevel c may
be varied by changing the relative diameters of the

bevels.

(3) Screw Gearing. Fig. 123 represents a very com-

mon mode of transforming uniform rotary into uniform

rectilinear motion. The threaded shaft ab, rotating

upon its axis, and restrained from other motion by the

collars xy and fg, works in a female thread in the piece
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Fig. (23

r, thus giving to the latter piece a rectilinear motion

upon the slides k, k. By reversing the direction of rota-

tion of the shaft ab, the

direction of the motion of

the piece C will also be

changed. This device is

seen in the leading-screws
of lathes, in the arrange-

ment for feeding the tool

holders in planing ma-

chines, drills, etc.

In Fig. 1 24 the cylinder C has right and left spiral

grooves cut in its surface, as shown in the figure. The

Fi g .i24

Fig. 125

tooth k of the slide / fits

into the grooves. Upon
giving to the cylinder a

rotary motion about its axis

ab (supposing the tooth k <

to be working in the right-

hand groove), the slide / is made to move along the

frame d, upon which it rests, until the end of the groove

is reached, when the tooth runs into

the left-hand groove, and the slide f
returns in the opposite direction.

Thus a reciprocating rectilinear mo-

tion is obtained from the uniform

rotary motion of the cylinder.

In Fig. 125 a uniform rotary motion

of the pulley C gives to the slide /
a reciprocating rectilinear motion

along the frame d, by means of the zigzag groove upon
the pulley surface, in which the tooth k of the slide
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works. By giving to the groove in the surface of the

pulley the proper shape, the motion of the slide f may
be made uniform, variable, or intermittent.

Fig. 126 represents a device for transforming uniform

rotary motion into two rectilinear motions in opposite

Fjg . 126 directions. The shaft

ab, which carries the

right and left screw-

threads shown in the

figure, rotates within

its bearing O. The

right and left screws

work in female screws within the pieces C and C' :

consequently these pieces are driven in contrary direc-

tions, approaching each other, or receding from each

other, according to the direction of rotation of the shaft

ab. This arrangement is

used in presses of .various

kinds, the arms indicated

by the dotted lines being
drawn together at their

tops by the action of the

screws, and the point x

being forced slowly down-

ward with great force and

steadiness. The arrange-

ment of worm wheels rep-

resented in Fig. 127 is

intended to produce two uniform rotary motions in oppo-

site directions. The right and left worms on the shaft

ab cause the worm wheels C and C' to rotate in opposite

directions when the shaft is given a rotary motion. The

Fig. 127
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Fig. 129

same effect may be obtained with one worm, by gearing

with it two worm wheels, C and d, on opposite sides of

the shaft, as indicated by the dotted circle.

Fig. 128 represents a peculiar example of screw gear-

ing. The disk C carries upon its side
Fig.i28

an elevated spiral, as shown in the

figure. This spiral gears with an ordi-

nary spur gear Cf

,
the shaft of which

is at right angles with that of the disk.

At each revolution of the disk C, the

constantly changing radius of the spi-

ral causes the spur gear to rotate for

a distance equal to one tooth
;
the pitch / of the spiral

being equal to the pitch of the spur gear. By gearing

with the spiral two spur gears (the

second is indicated in the figure by
the dotted lines), motion may be

transmitted from the spiral to two

shafts at right angles with each

other. In a like manner the spiral

may be made to drive several spur

gears at once, the shafts making

oblique angles with each other.

In Fig. 129 we have represented a
" side

" worm wheel C', and worm.

The former carries upon its side pro-

jections or teeth, as shown in the fig-

ure
;
and the worm on the shaft ab

t

gearing with these teeth, causes the

wheel C' to rotate uniformly, the ac-

tion being similar to that of an ordinary worm and wheel.

By gearing with the worm two side worm wheels (the

second being indicated in the figure by the dotted circle
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d\ the teeth being on the sides of the wheels which

face towards each other, two uniform rotary motions in

opposite directions may be obtained, as in Fig. 127.

The motions described under Fig. 113 may be obtained

for shafts at right angles with each other by substitut-

ing for the mutilated spur gears a worm and mutilated

worm wheel.

Fig. 130 represents a kind of worm and worm wheel

sometimes used to transmit very heavy powers. The

Pig.,30 primitive surface cdef, of the

worm, instead of being a right

cylinder, as in ordinary worms,
is a solid of revolution gener-

ated by the revolution of the

circle arc cf about the axis ab.

The object of this is to obtain

a contact of several teeth at

one time. In the figure* seven

teeth of the worm are in gear
at the same time with the teeth

of the worm wheel, and each

tooth sustains an equal share

of the transmitted strain. In Fig. 127 only two teeth

of the worm are in gear at one time with the teeth of the

driven wheel C. If, therefore, we have to transmit such

a force that the strain on the teeth is 10,000 pounds, for

example, each tooth of the worm in Fig. 127 will sustain

a strain of -i.Q-.2-0 _ pounds ;
while under similar

circumstances each tooth of the worm in Fig. 130 will

sustain a strain of -1M.Q.& z= 1,430 pounds : in other

words, the latter worm is capable of transmitting | = 3|
times the force of the former worm with the same strain

upon each tooth.



APPENDIX.

THE present tendency among mechanical men in favor

of the use of the diametral instead of the older and more

widely known circumferential pitch, together with the

increasing importance of cut gears (in the construction

of which the diametral pitch seems to be especially con-

venient), has induced the author to devote an appendix
to the brief discussion of the relative values of the two

kinds of pitch, to a brief explanation of the method of

constructing cut gears, and to the working-out of simple

rules and formulas, by means of which all the necessary
calculations may be made without the use of the circum-

ferential pitch. From X we have the expression

pd = -, in which pd and / represent respectively the
/

diametral and circumferential pitch, and TT the irrational

constant 3.14159-}-. The following table gives values

for the diametral pitch, for different circumferential

pitches, in inches. A glance at the table will show, that,

in the list of most common circumferential pitches, not

one corresponds to a diametral pitch of whole numbers,

or even exact eighths, sixteenths, thirty-seconds, etc.

In fact, the diametral pitch can be a whole number only
223
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when the corresponding circumferential pitch is an exact

divisor of the irrational constant TT, a condition which

is not at all likely to be fulfilled.

For this reason, in all gears which have to be laid out,

as cast gears, in the construction of which the pitch

must be stepped off around the pitch circumference in

the drawings and pattern, the circumferential pitch

only can be conveniently used. In such cases, even if

we have given the diametral pitch, we must practically

find the circumferential pitch before we can properly
divide our pitch circumference, and lay out the teeth.

At this point of the construction, the important ques-

tions are,
" How many teeth is the gear to have?" and

" How much space on the pitch circle does each tooth

need?" We care as little how many teeth there are per
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inch of diameter as how many teeth there may be per

pound of metal. In performing the calculations neces-

sary to the laying-out of gears, the diametral pitch offers

no advantages over the circumferential. Thus, to ob-

tain the number of teeth with the latter pitch, we divide

the pitch circumference (an irrational quantity) by the

pitch ;
while in using the former pitch the case is no

better, for, to find the number of teeth in the gear, we
must multiply the pitch diameter by the diametral pitch

(itself an irrational quantity). Again : the rules and

formulas for the tooth dimensions at present in use in

the shops are in terms of the circumferential pitch, for

example, the formulas /= 2/, or /= 2\p, h = o.?/, etc.,

given in the preceding pages, and, while using the

diametral pitch, we must either obtain the circumferen-

tial pitch in order to find our tooth dimensions, or devise

and introduce new rules and formulas in terms of the

diametral pitch. The author having taken the pains to

ask a considerable number (68) of draughtsmen and

pattern-makers in the States of Jtfew York, Pennsylvania,

New Jersey, and Connecticut, their preferences, finds

that a very large majority (61 to 7) of those spoken to

favor the use of the old circumferential pitch. This

would seem to indicate, that, while the same theorists

who are striving to force upon the American mechanic

the French metric system are clamoring for an absolute

discontinuance of the use of the old pitch, the practical

mechanic, who does the measuring and constructing,

goes steadily on with his work, looking neither to the

right for a "centimeter," nor to the left for a "diametral

pitch."

But while, according to the opinion and experience of



226 TOOTHED GEARING.

the author, the diametral pitch is of no practical use in

cast gears, it cannot be reasonably disputed, that, in the

construction of cut gears, this pitch has, indeed, advan-

tages over the circumferential, and for this reason

deserves the attention and respect of every intelligent

mechanic.

In the construction of cut gears the wheels are first

cast without teeth, the entire thickness of the rim being
its own thickness when finished plus the height of the

teeth (t -f- //). The spaces between the teeth are then

cut out by means of revolving circular cutters, the

blades of the cutters being as nearly. as possible the

shape of the required spaces. In order to properly con-

struct cut gears, a shop must be provided with different

sets of cutters, corresponding to the different pitches

and diameters of gears. The principle of the gear-cutter

series may be illustrated as follows. Suppose we wish

to construct a set of cutters for a No. i pitch.. The
extreme variation in the shape of the cutters must obvi-

ously be between the cutter for the gear having the

greatest diameter (the rack) and that for the gear having
the smallest diameter (say the pinion having eleven

teeth). Between these two we must have a sufficient

number of cutters to cut No. I teeth for a gear of any
diameter without serious error. Similarly, for each other

necessary pitch, we must have a set of cutters composed
of a sufficient number to make our errors unimportant.
Of course the greater number of cutters we have in each

set, the more accurate will be our work. Thus, if we
have a cutter of each pitch for a gear of eleven teeth,

another for a gear of twelve teeth, another for thirteen

teeth, and so on, our gears will be theoretically accurate.
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But gear-cutters are expensive tools, and it is therefore

important to reduce the number to the minimum which

can be used without making the errors so great as to do

practical harm. Mr. George B. Grant, in an article pub-
lished some months ago in the "American Machinist,"

points out the fact, that, since the extreme variation in

the shape of the cutters is less for fine than for coarse

pitches, the number of cutters necessary for the same

degree of accuracy is less in the former than in the

latter. He gives for the proper number of cutters in

the different sets the following table :

For a 1 6 pitch or finer, 6 cutters

For an 8 to 1 6 pitch, 1 2 cutters

For a 4 to 8 pitch, 24 cutters

For a 2 to 4 pitch, 48 cutters.

If we substitute for the circumferential pitch, / in

formula (10), its value in terms of the diametral pitch,

L v 3-i4i59\'

\
p =j*=-*r)

we shall have

or

From this, by transposing, we have,

or

"* (')
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Rule. To find the diametral pitch for a gear of

any material, divide the greatest safe working-stress in

pounds per square inch for the material used by the

force transmitted, multiply the quotient by the assumed
ratio of the face width to the circumferential pitch, ex-

tract the square root of the product thus obtained, and

multiply the result by 0.637.

By substituting

.
* = 3^4159

P
Pd pd

in formulas (12, a
t b, c\ we obtain,

, = 3.14.59 yj?
pd p.t

and

From these, by transposing, we have,

_ 3.14159. /i

*-*=
and

^3- I4i594/i* :

0.035 \ p

or, reducing the three last found equations;, we have,
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For violent shock, pd= ST- 12\ ~p (a )

i

For moderate shock, pd 62.83^ -p (b)

i

For little or no shock, pd = 89. 76V/ (c)

Formulas (12, a, b, c) were determined upon the

condition that the face width equals twice the circumfer-

ential pitch : hence substituting/ = in the expression
Pd

l2p gives,
27T 6.283

After determining the diametral pitch pd from formula

(2), the face width must not be taken less than .

Pd
Ride. To determine the diametral pitch for a cast-

iron gear, when / = -II, extract the square root of

Pd
the reciprocal of the force transmitted, and multiply

the result by 57.12 for violent shock, 62.83 for moder-

ate shock, or 89.76 for little or no shock.

The above value of the circumferential in terms of the

diametral pitch, substituted in formulas (14, a, b, c), gives

^-'W?pd

* = 3-I4'59 = Lx-i/fl
Pd Pd

'

V V

and

Pd Pd

3.14159 =
0.82^.
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By transposing,

and

or, reducing, we have,

For violent shock, pd = 2.435X7 -^ (a)
f 77

For moderate shock, /?= 2.685X7^ (^)

For little or no shock, pd = 3-83 iy -73. (<:)

(3).

As before, the condition / ^ -^- must be fulfilled.

/^
Rule. To determine the diametral pitch for a cast-

iron gear from the horse-power and circumferential

velocity in feet per second, when / =
, divide the

Pd

velocity by the horse-power, extract the square root of

the quotient, and multiply the result by 2.435 f r v^-

lent shock, 2.685 f r moderate shock, or 3.831 for little

or no shock.

In a similar manner, by substituting p =. in formulas
Pd

(16, a, b, c), we obtain,
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H

and

pd

Transposing and reducing these three equations, as with

the preceding, we have

For violent shock, pd = o.i6i\/-^ (a)-_

For moderate shock, pd = o. 1 7 yV -^
.//

For little or no shock,/^ = 0.253^^

(4).

?. To determine the diametral pitch for a cast-

iron gear from the horse-power and number of revolu-

tfans per minute, when / = -
^, multiply the diameter

Pd
of the gear by the number of revolutions, divide thc

product by the horse-power, extract the square root of

the quotient thus obtained, and multiply the result by
o. 161 for violent shock, 0.177 for moderate shock, or

0.253 for little or no shock.

Example i. Required the diametral pitch for a steel

gear which will transmit a force of 30,000 pounds, as-

suming -=13; the greatest safe working-stress per
P
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square inch being 20,000 pounds. From formula (i)

we have,

/-= 0.637^2 = 0.637 x 1.41 -0.898.
2OOOO

Example 2. Required the diametral pitch for a cast-

iron gear to transmit a force of 900 pounds, moderate

shock. From formula (2, b) we have,

/~7~ 62.83
pd 62.83V/

~ = = 2-9-
^V 900 30

Hence

/= 6.283 = 6.283 = ,/

pd
~

2.09

Example 3. The horse-power to be transmitted by
a cast-iron gear is 10, moderate shock, and the circum-

ferential velocity 5 feet per second. Required the

diametral pitch. Formula (3, b) gives

'-90

Arms : If, in formula (23), we substitute for/ its value

of ,
we will have

pd

Extracting the fourth root of * in this equation gives

x i.

or _
I

~~"
*/T' ' V ft. \JJ*
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Rule. To determine the number of arms in a gear,

extract the square root of the number of teeth and the

fourth root of the reciprocal of the diametral pitch ;

multiply these two roots together, and their product by
0.746.

From the expression / = t-^ we may obtain, by
Pd

squaring both sides, p
2 = 5-A This, substituted in

Pd
formula (29), gives

- 'S x 9.86965;?

or

Rule. To determine the quantity bji? (the thick-

ness of the arm multiplied by the square of the width),

divide the radius of the gear by the product of the

square of the diametral pitch into the number of arms,

and multiply the quotient by 7.896.

By substituting/
2 =

,
in formula (30), we ob-

tain,

d' =
1.105^/9.86965^-,

which reduces to

Rule. To determine the diameter for arms having
circular cross-sections, divide the radius of the gear by
the product of the square of the diametral pitch into the

number of arms, extract the cube root of the quotient,

and multiply the result by 2.37.
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In a similar manner we may obtain from formulas

(31), (32), and (33), the expressions,

D
b'a* = 1.356 X

9.86965--^-,

b,,H'* + ,,3 7?

-7T- 0.8x9.86965,
and

BH'* - b,,h,t R-- = o.8x 9.86965
/

,

which reduce respectively to the following :

and
BH'* - b.,hj

Rim, Nave, etc. : The total rim thickness before the

spaces between the teeth are cut out is equal to / + // -

If we add together formula (34) and the expression for

the total height of the teeth, // = o.//, we shall have,

and, by substituting for/ its value of

= 0:12

Pd

0-7 X 3.14159

pd Pd

* See Fig. 82. t See Fig. 83.
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Or, calling the total thickness of the rim /, and reducing,

we obtain

(i,)..

Rule. To determine the total thickness of the rim

(the height of the teeth plus the true rim thickness),

divide 3.46 by the diametral pitch, and to the quotient

add o.i 2".

The expression p2
^-^, substituted in formula

Pd
(35)i Sives

,3/9.8696= 4V /~ + = 4 X.86965^ R^~

or

* =
.858^|

+ i (12).

Rule. To determine the thickness of the nave,

divide the radius of the gear by the square of the di-

ametral pitch, extract the cube root of the quotient,

multiply the root by 0.858, and to the result add J inch.

For the length of the nave we have formula (36),

which is,

Formula (45) becomes, on substituting for p* its value

in terms of the diametral pitch,

which reduces to
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Rule. To determine the diameter of a gear shaft of

any material, divide the radius of the gear by the prod-
uct of the square of the diametral pitch into the greatest

safe shearing-stress in pounds per square inch for the

material of the shaft, extract the cube root of the prod-

uct thus obtained, and multiply the result by 27.184.

Similarly we may obtain from formulas (46), (47), and

(48) the equations,

8/ R
^=0-553^9-86965

</=
0.634^9-86965^

and _
^=0.796^9.86965^.

From which, by reducing, we obtain the following :

For steel, ^=
i.i86y-2 (15)

For wrought-iron, d = i-36y (16)

/-ft
For cast-iron, ^=1.707^7-

Pd

Rule. To determine the diameter of a gear shaft,

divide the radius of the gear by the square of the diame-

tral pitch, extract the cube root of the quotient, and

multiply the result by 1.186 for steel, 1.36 for wrought-

iron, or 1.707 for cast-iron.

The formulas for the mean width and thickness of
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the fixing-key are, as before explained for formulas (49)

and (50),

S=o.i6 + (18)

and

S>=o.i6+*
Q (19).

Example 4. Required to design a 24" cut gear-wheel

(of cast-iron) which will safely transmit a force of 1,000

pounds, moderate shock.

From formula (2, b) we have, for the diametral pitch,

/ i 62.83
pd 6 2.83V/

- ~ ==
~^~
= 2 verY nearly.V 1000 31.62

The face width is consequently

For the number of teeth in the gear we have the ex-

pression, N = pdD= 2 x 24 = 48.

Therefore formula (5) gives, for the number of arms,

n' 0.746^48 Vj = 0.746 X 6.928 X -- = 4.

If we wish to have rectangular cross-sections for our

arms, and take the thickness equal to one-half the width,

formula (6) gives

hf 7-896 X 12
O !/J ,

2 = ---- =- .

2 4X4
Hence

h, = ^ 1 1.844 = 2.28"

and
2.28 "
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From formula (11) we have, for the total thickness of

the rim,

/' = 0.12 + - = 0.12 + 1.73 = 1.85".

he thickness of the nave is, from formula (12),

k = 0.858^- + | = 0.858 x 1.44 + | = 1.736"

and the length, from formula (13), is

/' = 3.14 + |-J
= 3.94".

Formula (16) gives, for the diameter of the wrought-
iron shaft,

d= 1.36?^- = 1.36 x 1.44 = 1.96", say 2".

Formulas (18) and (19) give, for the mean width and

thickness of the fixing-key,

5=0.16+ f =0.56"
and

5' =0.16+^ = 0.36".

The following table will be found convenient in

constructing cut gears of cast-iron. To illustrate its

application, suppose we have to construct a cut gear
which will transmit a force of 4,000 pounds, moderate

shock. We find in the table, column for moderate

shock, P = 3,948 pounds, which corresponds to a No. I

diametral pitch. We also find in the table the face

width of 6.28", and the total rim thickness of 3.58".
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A.

Actual pitch, 52.

Angle of repose, 57.

Arc of approach, 89.

of contact, 44, 89.

of recess, 89.

Arms, circular sections, no.

curved, 122.

elliptical sections, HI.

flanged sections, 112.

methods for drawing, 122.

number of, 115.

rectangular sections, 108.

straight, 122.

strength of, 107.

B.

Bastard gears, 54.

Bevel gears, 49.

angle of shafts of, 49.

design of, 154.

drawings of, 160.

internal, 53.

method for drawing, 52.

mutilated, 213.

scroll, 214.

Bevel rack, 54.

Breadth of teeth, 89, 97.

Breaking-weight, 96.

C.

Cam-pinion, 206.

Circle, generating, 15, 20, 33.

of centres, 32.

of the gorge, 68.

pitch, 15, 17,49.

primitive, 17, 19.

rolling, ii, 28, 31.

root, 36.

top, 36.

Circumference, 72.

Circumferential pitch, 73.

Conditions for minimum friction, icx

for uniform velocity, 1 5.

Cone, pitch, 49.

supplementary, 50.

Constant TT, 72.

Crown gears, 210. .

Cycloid, 37.

Cycloidal teeth, 22.

Cylindrical gears, 49, 54.

D.

Decimals, table of, 106.

Design of bevel gears, 154.

of gear train, 186.

of internal lantern, 183.

of internal spur gear, 169.

of 1-antern gear, 180.
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Design of rack and pinion, 175.

of screw gears, 164.

of spur gear, 151.

of worm and wheel, 160.

Diameter, 72.

Diametral formulas, arms, 232.

cutters, 227.

nave, 234.

rim, 234.

shafts, 235.

Diametral pitch, 74.

Dimensions for bevel gears, 158.

for gear train, 194.

for internal lantern, 185.

for internal spur gear,

174.

for lantern gear, 182.

for rack and pinion, 178.

for screw gears, 168.

for spur gear, 153.

for worm and wheel,

163.

Disk wheel, 53.

Drawings of bevel gears, 160.

of gear train, 196.

of internal lantern, 187.

of internal spur gear, 176.

of lantern gear, 184.

of rack and pinion, 179.

of screw gears, 170.

of spur gear, 1 55.

of worm and wheel, 164.

E.

Elliptical gears, 201.

Epicycloid, u, 17.

Epicycloidal faces, 13, 16.

Examples, arms, 109-120.

bevel gears, 154.

diameter, 80.

face width, 97-100.

gear train, 186.

Examples, hyperbolic gears, 68.

internal "lantern, 183.

internal spur gear, 169.

keys, 136.

lantern gear, 180.

nave, 126.

number of teeth, 80.

pitch, 74, 96-100.

pitch, diametral, 74.

power, 84.

rack and pinion, 175.

revolutions, 81.

rim, 125.

screw gears, 164.

shafts, 128-135.

spur gear, 151.

velocity, 84.

weight of gears, 137.

worm and wheel, 160.

Experiments v/ith involute teeth, 24.

F.

Face, epicycloidal, 13, 16,

involute, 22.

width, 89-93.

Flank, hypocycloidal, 13, 16.

radial, 19, 48.

straight, 19, 48.

Formulas for arms, circular, no, 117,

1 20.

for arms, elliptical, in,

118, 121.

for arms, flanged, 112, 114,

119, 121.

for arms, rectangular, 108,

116, 120.

for chord of the pitch, 75.

for circumference, 72.

for diameter, 72.

for diametral pitch, 73.

for fixing-keys, 136.

for nave kugth, 126.
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Formulas for nave thickness, 125.

for number of arms, 115.

for number of revolutions,

80.

for number of teeth, 73.

for pitch, from force trans-

mitted, 91-93-

for pitch, from horse-pow-

er, 94-96.

for pitch, from revolu-

tions, 95.

for power, 83.

for radius, 72.

for rim, 125.

for shafts, 127-131.

for velocity, 83.

for weight of gears, 136.

Fractions, table of, 106.

Friction, minimum, 10.

Fundamental principle, 2.

G.

Gears, bastard, 54.

bevel, 49.

cast, 224.

crown, 210.

cut, 226.

cylindrical, 54.

elliptical, 201.

high-speed, 107.

hyperbolic, 65.

internal, 40, 169.

lantern, 43.

mangle, 216.

mixed, 47.

mutilated, 208, 214.

pin, 212.

rectangular, 198.

screw, 54.

scroll, 202.

sector, 204.

spur, 49.

Gears, square, 198.

stepped, 206.

triangular, 200.

Gear at two points, 46.

Generating circle, 15, 17, 33.

Generating of epicycloid, n.

of hypocycloid, i:

of involute, 21.

H.

Height of teeth, 90.

working, 35.

High-speed gears, 107.

Horse-power, 94.

Hyperbolic gears, 65.

Hypocycloid, 12, 18.

Hypocycloidal flanks, 13, 16.

I.

Infinite radius, 28, 37.

Intermittent motion, 205.

Internal bevels, 53.

lantern gears, 44.

spur gears, 169.

worm wheel, 62.

Introduction, i.

Involute, 21.

faces, 22.

profiles, 21.

Irregular motion, 208.

K.

Keys, formulas for, 136.

rules for, 136.

L.

Lantern gears, 43.

internal, 44.

Line of contact, 87.

M.

Mangle wbel,
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Method for drawing bevels, 52.

for drawing curved arms,

122.

for drawing cycloidal pro-

files, 28, 31.

for drawing involute pro-

files, 35.

for stepping off the pitch,

76.

Minimum friction, 10.

Mixed gears, 47.

Motion, intermittent, 205.

irregular, 208.

quick return, 207.

reciprocating, 208.

rectilinear, 197.

rotary, 3, 198.

\ uniform, 10.

variable, 212.

N.

Nave, 125.

Notation, 139.

Number of arms, 1 1 5.

of revolutions, 80.

of teeth, 73.

P.

Pcricycloid, 45.

Pin wheel, 212.

Pi-rule, 77.

Pitch, actual, 52.

circle, 15, 17, 49.

circumferential, 73.

cone, 49.

diametral, 74.

frusta, 49.

point, 15.

virtual, 52.

Plane wheel, 53.

Power ratio, 82.

Primitive circle, 17, 19.

Primitive gear wheel, 4, 7.

Profiles, cycloidal, 37.

epicycloidal, 13.

hypocycloidal, 13.

involute, 21.

Q-

Quick return motion, 207.

R.

Rack, 37.

Radius, 72.

infinite, 28, 37.

Ratio, power, 82.

revolution, 79.

velocity, 78.

Recapitulation, 139.

Reciprocating motion, 208.

Rectilinear motion, 197.

Rolling circle, n.

Root circle, 36.

Rotary motion, 3, 198.

Rules for arms, circular, in, 117.

for arms, elliptical, in, 118.

for arms, rectangular, 109.

for circumference, 72.

for diameter, 72.

for fixing-keys, 136.

for nave length, 126.

for nave thickness, 125.

for number of arms, 115.

for number of revolutions, So.

for number of teeth, 73.

for pitch, from force transmit-

ted, 92, 93.

for pitch, from horse-power,

94, 95-

for pitch, from revolutions,

95,96.
for power, 84.

for radius, 72.

for rim, 125.
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Rules for shafts, 127, 130.

for weight of gears, 136.

S.

Safe shearing-stress, 127.

working-stress, 90.

Screw gears, 54.

rack, 58.

Scroll gears, 202.

Sector gears, 204.

Shafts, cast-iron, 132.

formulas for, 127, 131.

rules for, 127, 131.

steel, 132.

tables for, 133.

wrought-iron, 132.

Special forms, 45.

Spur gears, 49.

Square gears, 198.

Stepped gears, 206.

Straight flanks, 19, 48.

Strength of arms, 107.

of keys, 136.

of nave, 125.

of rim, 125.

of shafts, 127.

of teeth, 89.

Supplementary angle, 66.

cones, 50.

T.

Tables for arm widths, 109.

for decimals and fractions,

106.

for diametral pitches, 224.

Tables for number of arms, 1 1 5.

for number of gear cutters,

227.

for pitch, 101.

for shaft diameters, 133.

for weight of gears, 138.

Teeth, cast, 224.

cut, 226.

cycloidal, 22.

involute, 22.

of bevels, 52.

of hyperbolic gears, 71.

of screw gears, 60.

Top circle, 36.

Train of gears, 81, 186.

Triangular gears, 200.

U.

Uniform motion, 10.

velocity, 15.

V.

Variable motion, 212.

Velocity ratio, 78.

Virtual pitch, 52.

W.
Wear on teeth, 8, 63.

Weight of gears, 136.

Working height, 35.

stress, 90.

Worm, internal, 62.

and rack, 62.

and wheel, 61.
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The Transition Curve 16mo, morocco, 1 50

Davis's Elevation and Stadia Tables Small 8vo, 1 00

Dredge's Penn. Railroad Construction, etc. Large 4to,

half morocco, $10; paper, 5 00
* Drinker's Tunnelling 4to, half morocco, 25 00

Eissler's Explosives Nitroglycerine and Dynamite 8vo, 4 00

Frizell's Water Power 8vo, 5 00

Folwell's Sewerage 8vo, 3 00
"

Water-supply Engineering 8vo, 4 00

Fowler's Coffer-dam Process for Piers . . 8vo. 2 50

Fuertes's Water Filtration Works 12mo, 2 50

Gerhard's Sanitary House Inspection 12mo, 1 00

Godwin's Railroad Engineer's Field-book 16mo, morocco, 2 50

Goodrich's Economic Disposal of Towns' Refuse Demy 8vo, 3 50

Gore's Elements of Geodesy Svo, 2 50

Hazlehurst's Towers and Tanks for Cities and Towns Svo, 2 50

Howard's Transition Curve Field-book 16mo, morocco, 1 50

Howe's Retaining Walls (New Edition.) 12mo, 1 25

Hudson's Excavation Tables. Vol. II r 8vo, 1 00

Button's Mechanical Engineering of Power Plants Svo, 5 00
" Heat and Heat Engines Svo, 500

Johnson's Materials of Construction Svo, 6 00
"

Theory and Practice of Surveying Small Svo, 4 00

Kent's Mechanical Engineer's Pocket-book 16mo, morocco, 5 00

Kiersted's Sewage Disposal 12mo, 1 25

Mahan's Civil Engineering. (Wood.) Svo, 5 00

Merriman and Brook's Handbook for Surveyors 16mo, nior., 2 00

Merriman's Precise Surveying and Geodesy Svo, 2 50
"

Sanitary Engineering Svo, 2 00

Nagle's Manual for Railroad Engineers .16mo, morocco, 3 00

Ogdeu's Sewer Design 12mo, 2 00

Pattou's Civil Engineering ,8vo, half morocco, 7 50

Foundations Svo, 500
Philbrick's Field Manual for Engineers 16mo, morocco, 3 00

Pratt and Aldeu's Street-railway Road-beds 8vo, 2 00

Rockwell's Roads and Pavements in France 12mo, 1 25

Schuyler's Reservoirs for Irrigation Large Svo, 5 00

Searles's Field Engineering = 16mo, morocco, 3 00
" Railroad Spiral 16mo, morocco, 1 50

Siebert and Biggin's Modern Stone Cutting and Masonry. . .Svo, 1 50

Smart's Engineering Laboratory Practice 12mo, 2 50

Smith's Wire Manufacture and Uses Small 4to, 3 00

Spalding's Roads and Pavements 12mo, 2 00
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Spalding's Hydraulic Ceineut I2mo, $'2 00

Taylor's Prismoidal Formulas aud Earthwork 8vo, 1 50

Tim rstoil's Materials of Construction 8vo, 5 00

Tillson's Street Pavements and Paving Materials 8vo, 4 00

* Trautwiue's Civil Engineer's Pocket-book 16mo, morocco, 5 00

* ' Cross-section Sheet, 25

* ' ' Excavations and Embankments 8vo, 2 00

* "
Laying Out Curves 12uio, morocco, 2 50

Ttirneaure and Kussell s Public Water-supplies 8vo, 5 00

Waddell's De Pontibus (A Pocket-book for Bridge Engineers).

16mo, morocco, 3 00

Wait's Engineering and Architectural Jurisprudence 8vo, 6 00

Sheep, 6 50
" Law of Field Operati in Engineering, etc 8vo, 5 00

Sheep, 5 50

Warren's Stereotomy Stone-cutting 8vo, 2 50

Webb's Engineering Instruments. New Edition. 16mo, morocco, 1 25
" Railroad Construction 8vo, 4 00

Wegmann's Construction of Masonry Dams 4to, 5 00

Wellington's Location of Railways. Small 8vo, 5 00

Wheeler's Civil Engineering 8vo, 4 00

Wilson's Topographical Surveying 8vo, 3 50

Wolff's Windmill as a Prime Mover 8vo, 3 00

HYDRAULICS.

(See also ENGINEEKING, p. 7.)

Bazin's Experiments upon the Contraction of the Liquid Vein.

(Trautwiue.) 8vo, 2 00

Bovey 's Treatise on Hydraulics 8vo, 4 00

Church's Mechanics of Engineering, Solids, and Fluids. . . .8vo, 6 00

Coffin's Graphical Solution of Hydraulic Problems 12mo, 2 50

Fen-el's Treatise on the Winds, Cyclones, and Tornadoes. . .8vo, 4 00

Folwel'i's Water Supply Engineering 8vo, 4 00

Frizell's Water-power 8vo, 5 00

Fuertes s Water and Public Health 12mo, 1 50

Water Filtration Works 12ino ? 2 50

Ganguillet & Kutter's Flow of Water. (Hering & Trautwine.)

8vo, 4 00

Hazeu's Filtration of Public Water Supply 8vo, 3 00

Hazlehurst s Towers and Tanks for Cities aud Towns 8vo, 2 50

Herschel's 115 Experiments 8vo, 2 00

Kiersted s Sewage Disposal 12mo, 1 25

Mason s Water Supply 8vo. 5 00
" Examination of Water , 12mo, 1 25

Merrimau's Treatise on Hydraulics. 8vo, 4 00
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Kichols's Water Supply (Chemical aud Sanitary) 8vo, $2 50

Schuyler's Reservoirs for Irrigation Large 8vo, 5 00

Turneaure and Russell's Public Water-supplies 8vo, 5 00

Wegmaun's Water Supply of the City of New York 4to, 10 00

Weisbach's Hydraulics. (Du Bois.) 8vo, 5 00

Whipple's Microscopy of Drinking Water 8vo, 3 50

Wilson's Irrigation Engineering ... .8vo, 4 00
"

Hydraulic and Placer Mining 12mo, 2 00

Wolff's Windmill as a Prime Mover 8vo, 3 00

Wood's Theory of Turbines 8vo, 2 50

LAW.

Davis's Elements of Law 8vo, 2 50
' '

Treatise on Military Law 8vo, 7 00

Sheep, 7 50

Manual for Courts-martial 16mo, morocco, 1 50

Wait's Engineering and Architectural Jurisprudence 8vo, 6 00

Sheep, 6 50
" Law of Contracts 8vo, 300
" Law of Operations Preliminary to Construction in En-

gineering and Architecture 8vo, 5 00

Sheep, 5 50

Winthrop's Abridgment of Military Law 12mo, 2 50

MANUFACTURES.

Allen's Tables for Iron Analysis 8vo, 3 00

Beaumont's Woollen and Worsted Manufacture 12mo, 1 50

Bolland's Encyclopaedia of Founding Terms 12mo. 3 00
" The Iron Founder 12mo, 250

Supplement 12mo, 250
Eissler's Explosives, Nitroglycerine and Dynamite 8vo, 4 00

Ford s Boiler Making for Boiler Makers 18mo, 1 00

Metcalfe's Cost of Manufactures 8vo, 5 00

Metcalf 's Steel A Manual for Steel Users 12mo, 2 00
*
Reisig's Guide to Piece Dyeing 8vo, 25 00

Spencer's Sugar Manufacturer's Handbook . . . .16rno, morocco, 2 00

Handbook for Chemists of Beet Sugar Houses.

16mo, morocco, 3 00

Thurston's Manual of Steam Boilers 8vo, 5 00

Walke's Lectures on Explosives 8vo, 4 00

W est's American Foundry Practice 12mo, 2 50

Moulder's Text book 12mo. 2 50

Wiechmaun's Sugar Analysis Small 8vo, 2 50

Woodbury's Fire Protection of Mills 8vo, 2 50
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MATERIALS OF ENGINEERING.

(See also ENGINEERING, p. 7.)

Baker's Masonry Construction 8vo, $5 00

Bovey's Strength of Materials 8vo, 7 50

Burr's Elasticity and Resistance of Materials 8vo, 5 00

By rue's Highway Construction 8vo, 5 00

Church's Mechanics of Engineering Solids and Fluids 8vo, 6 00

Du Bois's Stresses iu Framed Structures Siiiull 4to, 10 00

Johnson's Materials of Construction 8vo, 6 00

Lanza's Applied Mechanics 3vo, 7 50

Marteus's Testing Materials. (Heuning.) 2 vols., 8vo, 7 50

Merrill's Stones for Building and Decoration 8vo, 5 00

Merriman's Mechanics of Materials 8vo, 4 00
"

Strength of Materials 12mo, 1 00

Pattou's Treatise on Foundations 8vo, 5 00

Rockwell's Roads and Pavements in France 12mo, 1 25

Spalding's Roads and Pavements 12mo, 2 00

Thurstou's Materials of Construction , 8vo, 5 00

Materials of Engineering 3 vols.
, 8vo, 8 00

Vol. I.
,
Non-metallic 8vo, 2 00

Vol. II., Iron and Steel 8vo, 3 50

Vol. III., Alloys, Brasses, and Bronzes 8vo, 2 50

Wood's Resistance of Materials 8vo, 2 00

MATHEMATICS.

Baker's Elliptic Functions 8vo, 1 50

*Bass's Differential Calculus 12mo, 4 00

Briggs's Plane Analytical Geometry 12mo, 1 00

Chapman's Theory of Equations 12mo, 1 50

Comptou's Logarithmic Computations 12mo, 1 50

Davis's Introduction to the Logic of Algebra 8vo, 1 50

Halsted's Elements of Geometry Svo, 1 75
"

Synthetic Geometry 8vo, 1 50

Johnson's Curve Tracing 12mo, 1 00
" Differential Equations Ordinary and Partial.

Small Svo, 3 50
"

Integral Calculus 12mo, 150
" "

Unabridged. Small Svo. (In press.)
" Least Squares , 12mo, 1 50

*Ludlow's Logarithmic and Other Tables. (Bass.) Svo, 2 00
* "

Trigonometry with Tables. (Bass.) Svo, 300
*Mahan's Descriptive Geometry (Stone Cutting) Svo, 1 50

Merrimaii and Woodward's Higher Mathematics. Svo, 5 00
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Merriinan's Method of Least Squares 8vo, $2 00

Rice and Johnson's Differential and Integral Calculus,

2 vols. in 1, small 8vo, 2 50
"

Differential Calculus Small 8vo, 3 00
"

Abridgment of Differential Calculus.

Small 8vo, 1 50

Totten's Metrology 8vo, 2 50

Warren's Descriptive Geometry 2 vols., 8vo, 3 50
"

Drafting Instruments .12mo, 1 25
" Free-hand Drawing 12mo, 100
" Linear Perspective 12mo, 100
"

Primary Geometry 12mo, 75

Plane Problems 12mo, 1 25
" Problems and Theorems 8vo, 2 50
"

Projection Drawing 12mo, 1 50

Wood's Co-ordinate Geometry 8vo, 2 00
"

Trigonometry 12mo, 1 00

Woolf's Descriptive Geometry Large 8vo, 3 00

MECHANICS-MACHINERY.

(See also ENGINEERING, p. 7.)

Baldwin's Steam Heating for Buildings .12mo, 2 50

Barr's Kinematics of Machinery 8vo, 2 50

Benjamin's Wrinkles and Eecipes 12ino, 2 00

Chordal's Letters to Mechanics 12mo, 2 00

Church's Mechanics of Engineering 8vo, 6 00
" Notes and Examples in Mechanics 8vo, 2 00

Crehore's Mechanics of the Girder 8vo, 5 00

Cromwell's Belts and Pulleys 12mo, 1 50

Toothed Gearing 12mo, 1 50

Compton's First Lessons in Metal Working 12mo, 1 50

Compton and De Groodt's Speed Lathe 12mo, 1 50

Dana's Elementary Mechanics 12mo, 1 50

Dingey's Machinery Pattern Making .12mo, 2 00
*
Dredge's Trans. Exhibits Building, World Exposition.

Large 4to, half morocco, 5 00

Du Bois's Mechanics. Yol. I., Kinematics 8vo, 3 50
" " Vol. II., Statics 8vo, 400
" " Vol. III., Kinetics 8vo, 350

Fitzgerald's Boston Machinist 18mo, 1 00

Flather's Dynamometers 12mo, 2 00

Rope Driving 12mo, 200
Hall's Car Lubrication 12mo, 1 00

HoMy's Saw Filing 18mo, 75
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* Johnson's Theoretical Mechanics. An Elementary Treatise.

12mo, $3 00

Jones's Machine Design. Part I., Kinematics 8vo, 1 50
" Part II., Strength and Proportion of

Machine Parts 8vo, 3 00

Lanza's Applied Mechanics 8vo, 7 50

MacCord's Kinematics 8vo, 5 00

Merrimau's Mechanics of Materials 8vo, 4 00

Metcalfe's Cost of Manufactures 8vo, 5 00

*Michie's Analytical Mechanics 8vo, 4 00

Richards's Compressed Air 12mo, 1 50

Robinson's Principles of Mechanism 8vo, 3 00

Smith's Press-working of Metals 8vo, H 00

Thurston's Friction and Lost Work 8vo, 3 00

The Animal as a Machine 12mo, 1 00

Warren's Machine Construction 2 vols., 8vo, 7 50

Weisbaclrs Hydraulics and Hydraulic Motors. (Du Bois.)..8vo, 5 00

Mechanics of Engineering. Vol. III., Part I.,

Sec. I. (Klein.) 8vo, 500
Weisbach's Mechanics of Engineering. Vol. III., Part I.,

Sec. II. (Klein.) 8vo, 5 00

Weisbach's Steam Engines. (Du Bois.) 8vo, 500
Wood's Analytical Mechanics 8vo, 3 00

"
Elementary Mechanics 12mo, 125

" "
Supplement and Key 12ino, 1 25

METALLURGY.

Allen's Tables for Iron Analysis 8vo, 3 00

Egleston's Gold and Mercury Large 8vo, 7 50

Metallurgy of Silver Large 8vo, 7 50
* Kerl's Metallurgy Steel, Fuel, etc 8vo, 15 00

Kunhardt's Ore Dressing in Europe 8vo, 1 50

Metcalf's Steel A Manual for Steel Users 12mo, 2 00

O'Driscoll's Treatment of Gold Ores 8vo, 2 00

Thurston's Iron and Steel 8vo, 3 50

Alloys 8vo, 250
Wilson's Cyanide Processes '. 12mo, 1 50

MINERALOGY AND MINING.

Barringer's Minerals of Commercial Value Oblong morocco, 2 50

Beard's Ventilation of Mines 12mo, 2 50

Boyd's Resources of South Western Virginia 8vo, 3 00

Map of South Western Virginia Pocket-book form, 2 00

Brush and Penfield's Determinative Mineralogy. New Ed. 8vo, 4 00
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Chester's Catalogue of Minerals 8vo, $1 25

Paper, 50
"

Dictionary of the Names of Minerals .8vo, 3 00

Dana's American Localities of Minerals Large 8vo, 1 00
"

Descriptive Mineralogy. (E.S.) Large 8vo. half morocco, 12 50
"

First Appendix to System of Mineralogy. . . .Large 8vo, 1 00
"

Mineralogy and Petrography. (J. D.) 12mo, 2 00
" Minerals and How to Study Them. (E. S.).. 12mo, 1 50
" Text-book of Mineralogy. (E. S.).. .New Edition. 8vo, 400

* Drinker's Tunnelling, Explosives, Compounds, and Rock Drills.

4to, half morocco, 25 00

Egleston's Catalogue of Minerals and Synonyms 8vo, 2 50

Eissler's Explosives Nitroglycerine and Dynamite 8vo, 4 00

Hussak's Rock forming Minerals. (Smith.) Small 8vo, 2 00

Ihlseng's Manual of Mining . . 8vo, 4 00

Kunhardt's Ore Dressing in Europe 8vo, 1 50

O'Driscoll's Treatment of Gold Ores 8vo, 2 00
* Penfield's Record of Mineral Tests Paper, 8vo, 50

Rosenbusch's Microscopical Physiography of Minerals and
Rocks. (Idduigs.) 8vo, 500

Sawyer's Accidents in Mines Large 8vo, 7 00

Stockbridge's Rocks and Soils 8vo, 2 50

*Tillman's Important Minerals and Rocks 8vo, 2 00

"Walke's Lectures on Explosives 8vo, 4 00

Williams's Lithology 8vo, 3 00

Wilson's Mine Ventilation 12mo, 125

Hydraulic and Placer Mining ...... 12mo, 2 50

STEAM AND ELECTRICAL ENGINES, BOILERS, Etc.

(See also ENGINEERING, p. 7.)

Baldwin's Steam Heating for Buildings 12mo 2 50

Clerk's Gas Engine Small 8vo, 4 00

Ford's Boiler Making for Boiler Makers 18mo, 1 00

Hemenway's Indicator Practice 12mo, 2 00

Kent's Steam-boiler Economy , .'. 8vo, 4 00

Kneass's Practice and Theory of the Injector 8vo, 1 50

MacCord's Slide Valve 8vo, 2 00

Meyer's Modern Locomotive Construction 4to, 10 00

Peabody and Miller's Steam-boilers 8vo, 4 00

Peabody's Tables of Saturated Steam 8vo, 1 00
"

Thermodynamics of the Steam Engine 8vo, 5 00

Valve Gears for the Steam Engine 8vo, 250
" Manual of the Steam-engine Indicator 12mo, 1 50

Fray's Twenty Years with the Indicator , , , .Large 8vo, 2 50
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Pupin and Ostcrberg's Thermodynamics 12mo, $1 25

Reagan's Steam and Electric Locomotives . .12mo, 2 00

Rontgen's Thermodynamics. (Du Bois. ) 8vo, 5 00

Sinclair's Locomotive Running 12mo, 2 00

Snow 's Steam-boiler Practice 8vo. 3 00

Thurston's Boiler Explosions 12mo, 1 50

Engine and Boiler Trials 8vo, 500
" Manual of the Steam Engine. Part I., Structure

and Theory 8vo, 6 00

Manual of the Steam Engine. Part II., Design,

Construction, and Operation 8vo, 6 00

2 parts, 10 00
"

Philosophy of the Steam Engine 12mo, 75
"

Reflection, on the Motive Power of Heat. (Caruot.)

12mo, 1 50

Stationary Steam Engines 8vo, 2 50
" Steam-boiler Construction and Operation 8vo, 5 00

Spangler's Valve Gears 8vo, 2 50

Notes on Thermodynamics 12mo, 1 00

Weisbach's Steam Engine. (Du Bois.) 8vo
;

500
Whitham's Steam-engine Design.., .-, 8vo, 5 00

Wilson's Steam Boilers. (Flather.) 12mo, 250
Wood's Thermodynamics, Heat Motors, etc 8vo, 4 00

TABLES, WEIGHTS, AND MEASURES.

Adrian ce's Laboratory Calculations 12nio, 1 25

Allen's Tables for Iron Analysis , . .8vo, 3 00

Bixby's Graphical Computing Tables Sheet, 25

Cornptou's Logarithms 12mo, 1 50

Crandall's Railway and Earthwork Tables 8vo, 1 50

Davis's Elevation and Stadia Tables Small 8vo, 1 00

Fisher's Table of Cubic Yards Cardboard, 25

Hudson's Excavation Tables. Vol. II 8vo, 1 00

Johnson's Stadia and Earthwork Tables 8vo, 1 25

Ludlow's Logarithmic and Other Tables. (Bass.) 12mo, 2 00

Totten's Metrology 8vo, 2 50

VENTILATION.

Baldwin's Steam Heating 12rno, 2 50

Beard's Ventilation of Mines. 12mo, 2 50

Carpenter's Heating and Ventilating of Buildings 8vo, 3 00

Gerhard's Sanitary House Inspection 12mo, 1 00

Wilson's Mine Ventilation 12mo, I 25
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MISCELLANEOUS PUBLICATIONS.

Alcott's Gems, Sentiment, Language Gilt edges, $5 00

Emmou's Geological Guide-book of the Rocky Mountains. .8vo, 1 50

Ferrel' s Treatise ou the Winds 8vo, 4 00

Haines's Addresses Delivered before the Am. Ry. Assn. ..12mo, 2 50

Mott's The Fallacy of the Present Theory of Sound. .Sq. 16mo, 1 00

Richards's Cost of Living 12mo, 1 00

Ricketts's History of Rensselaer Polytechnic Institute 8vo, 3 00

Rotherham's The New Testament Critically Emphasized.

12mo, 1 50
" The Emphasized New Test. A new translation.

Large 8vo, 2 00

Totten's An Important Question in Metrology 8vo, 2 50

HEBREW AND CHALDEE TEXT-BOOKS.

FOR SCHOOLS AND THEOLOGICAL SEMINARIES.

Gesenius's Hebrew and Chaldee Lexicon to Old Testament.

(Tregelles.) Small 4to, half morocco, 5 00

Green's Elementary Hebrew Grammar 12mo, 1 25
" Grammar of the Hebrew Language (New Edition). 8vo, 3 00
" Hebrew Chrestomathy 8vo, 2 00

Letteris's Hebrew Bible (Massoretic Notes in English).

8vo, arabesque, 2 25

MEDICAL.

Hammarsten's Physiological Chemistry. (Mandel.) 8vo, 4 00

Mott's Composition, Digestibility, and Nutritive Value of Food.

Large mounted chart, 1 25

Ruddiman's Incompatibilities in Prescriptions 8vo, 2 00

Steel's Treatise on the Diseases of the Dog 8vo, 3 50

WoodhulPs Military Hygiene 16mo, 1 50

Worcester's Small Hospitals Establishment and Maintenance,

including Atkinson's Suggestions for Hospital Archi-

tecture 12mo, 1 25









ALL BOOKS MAY BE RECALLED AFTER 7 DAYS
1 -month loans may be renewed by calling 642-3405
6-month loans may be recharged by bringing books to Circulation

Desk
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