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PHYSICAL ASTRONOMY.

Astronomy THE object of the philosopher in the investigation
-\s~~~' of nature is to arrange and classify facts and pheno-

mena, with a view to trace the agency of their remote,

or, at least, their proximate causes, and ascend as high
as the imperfection of human means of observation,

and the limited powers of the human intellect will

allow us in the scale of generalization.
To beings endowed with more perfect faculties,

and more comprehensive intelligence than ourselves,
much of that complication we observe in natural

phenomena would disappear : many effects, which
seem to us independent of each other, and linked by
no natural connection, would be in their eyes col-

lateral results of one and the same principle : much,
that to us seems fortuitous would to them appear pre-

disposed and regularly arranged. The laws of nature
would at once be reduced in number and enlarged
in extent

;
and that higher order of generalization

which would consist in classifying together laws of
the same kind, and referring them to others yet more
universal, would exercise their power and constitute

their science. That such would be the case with more

perfect beings, our own experience, limited as it is,

amply shews. The man who has learnt to regard the
fall of a leaf and the precession of the equinoxes as

results equally certain and unavoidable of a law

capable of being stated in three lines, and understood

by a child of ten years old, has made already a con-
siderable step in this way the patient exercise of his

natural reason has stood him in the stead of a sharper
intellect

;
and secrets which an angel might pene-

trate perhaps at a glance, become revealed to man
by the slow, yet sure, effects of persevering thought.
The progress of modern science has done more

than the keenest metaphysical reasoning, and has

given us the most convincing proofs of the agency of
one general and intelligent cause throughout the
whole system of nature. When we see on all sides

phenomena grouping themselves under laws in-

telligible and simply expressed, which are them-
selves subordinate to others, yet more simple and

extensive; when we see every anomaly which threat-
ened destiuction to a theory, becoming, in the pro-
gress of our knowledge, its firmest support ; every
inequality disappearing when viewed from a higher
level

; every exception proving a rule of greater
generality ; all, in short, conveying more and more
towards order and simplicity the more severely we
scrutinize it

; it is impossible not to allow that that
last great step, which unites all the phenomena of
the universe under one general head, and refers them
to one all-pervading agency however inconceivably
remote, and surpassing probably the utmost limits of
the human intellect to comprehend, if explained, would
Still be but the continuation and final completion of a

VOL. in

chain of reasoning whose first links we hold within physical

our grasp the consummation of a process actually Astronomy.

begun the termination of a career into which we are ~V~~-"'

fairly entered.

It is difficult to avoid such contemplations at the

outset of an essay on physical astronomy ; they crowd

upon us
;
and in rejecting them we should reject the

noblest use of the sublimest of sciences. For scarcely
in any are the phenomena presented by nature more
various and more complicated ;

in none is the gene-
ralization so complete, the final result so simple, or

the object more imposing
From what has just been said, it may be gathered

that the object of physical astronomy is to reduce,
under general laws, the motions and phenomena of

the heavenly bodies, and investigate their causes
;
to

trace the history of what has already happened in our

own system, and to ascertain what changes the causes

demonstrably in action (unless interfered with by others

we have no knowledge of,) will superinduce in thecourse

of ages, and thus to appreciate the stability of the pre-
sent order of creation. In a more limited and practical

point of view, the physical astronomer is called on to

furnish formulae deduced from theory for determining
the state of the system at any assigned instant

;
and

adapted for the purposes of the observer, so as to

serve as a basis for the construction of tables ;
and to

descend, by the application of his general principles, to

those more refined inequalities which, owing to their

minuteness, or the length of their periods, would

escape or mislead the observer unassisted by theory.
There is one feature in physical astronomy which

renders it remarkable among the sciences, and has

been the chief, if not the only, source of the per-
fection it has attained. It is this that the funda-

mental law embracing all the minutiae of the pheno-
mena so far as we yet know them, presents itself at

once, on the consideration of broad features and gene-
ral facts, deduced by observations even of a rude and

imperfect kind, in such a form as to require no modifi-

cation, extension, or addition when applied in minute

detail. In other sciences, when an induction of a

moderate extent has led us to the knowledge of a law
which we conceive to be general, the further progress
of our inquiries frequently obliges us either to limit

its extent or modify its expression. To those who are

familiar with the history of chemistry, instances of

this will present themselves at every turn. In physical

optics, the general representation of all the series of

polarised tints and the colours of natural bodies by a
certain universal scale the Cartesian law of refrac-

tion when applied to the extraordinary ray in crystal-
lized media, and even to the ordinary, if the reports
of some recent experiments are to be relied on toge-
ther with innumerable other laws, simple, natural.

4 v



648 PHYSICAL ASTRONOMY.
Astronomy, and resting on extensive inductions, have all been
* /"' either overset, extended, or materially modified by

the progress of the science.

In physical astronomy, however, when taken in that

limited acceptation, which restricts it to the explana-
tion of the planetary motions, our first conclusion is

our last. The law on which all its phenome in

depend, flows naturally and easily from the simplest

among them, as presented by the rudest observation
;

and, in point of fact, such has really been the order

of investigation in this science. The rude supposition
of the uniform revolution of the moon in a circle about

the earth as a centre, led Newton at once to the true

law of gravity, as extending from the earth to its

companion. The uniform circular motions of the

planets about the sun, in times following the progres-
sion assigned by observation in Kepler's rule, con-

firmed the law, and extended its influence to the

boundaries of our system. Every thing more refined

than this the elliptic motions of the planets and
satellites their mutual perturbations the slow

changes of their orbits and motions, denominated
secular variations the deviation of their figures from
the spherical form the oscillatory motions of their

axes, which produce nutation and the precession of

the equinoxes the theory of the tides, both of the

ocean and the atmosphere, have all in succession

been so many trials for life and death in which this

law has been, as it were, pitted against nature
; trials,

whose event no human foresight could predict, and
where it was impossible even to conjecture what
modifications it might be found to need. Even at this

moment, if among the innumerable inequalities of the

lunar or planetary motions any one, however small,
should be discovered decidedly not explicable on the

hypothesis of a force varying as the inverse square of

the distance, that hypothesis must be modified till it

accounts for it. It is hardly necessary to add, how-
ever, that in the present state of science, this is a case

not to be contemplated.
Still, these are refinements. The deviations of the

planetary orbits from circles are small, their devia-

tions from ellipses excessively minute : the lunar orbit

alone presents results of perturbation so large as to

strike us at once with the appearance of irreconcilable

anomalies, but it is only by a refinement of calcula-

tion that we can trace them all to the laws of gravity;
but the motions of comets put the truth and generality
of this law to a severe and rude test, by giving it a
trial under the greatest varieties of distance, position,
and velocity of motion, and instancing its influence

on matter of a rarity almost spiritual, and differing so

utterly from that of which our planet consists, as

scarcely to authorize the admittance of any property
in common.
The above observations have been made in con-

formity with the general language of natural philoso-

phers, and the customary acceptation of the term

physical astronomy, ani are, no doubt, strictly appli-
cable when we confine ourselves to the celestial phe-
nomena of our own immediate system, and the motions
of those larger masses of matter of which planets and
tncir satellites consist. The cautious philosopher
however will still regard it as worthy inquiry, whether,
at enormous distances, like those of the fixed stars, or
at such comparatively microscopic intervals as those
we are ordinarily conversant with on the surface of

our planet, the rigorous law of a force as the inverse Physical

square of the distance may not suffer some modifica- Astronomy

tion. An emanation, like light, traversing in sue- ^~~^~~"^

cession every part of space, may be conceived to go
on without acceleration or retaidation, without loss or

change, to the remotest regions ; but an active and
immediate intercourse carried on between points

infinitely distant, is not only incapable of demonstra-

tion, but, could it be proved, must, I suppose, be
referred to direct spiritual agency. At the same time,
it is worthy attention how strict and indissoluble a
bond gravity establishes between remote objects to

see this in its real light, we must compare it with the
most effectual of our ordinary means of transmitting
power. If the earth and sun were connected by a rod
of cast iron, in one piece, an impulse or pull, however
violent and sudden, applied at the sun, would not

begin to be felt at the earth tiL after a lapse of

eighteen months from the moment of its communi-
cation, while a change in the sun's attraction, such as

might arise from a sudden alteration of its figure or

density, would demonstrably* affect our planet in an
instant of time many thousand times less than the

least interval perceptible to our senses.

The subsistence of sidereal clusters, in which the

compression or crowding of the stars is carried to the

extent we have instances of in many parts of the

heavens, seems hardly compatible with a gravitating
force, unopposed by some principle of conservation,
unless we suppose them in a state rapidly verging to

a catastrophe. On the other hand, with regard to

small distances, we have no distinct proof, that within

a few inches, or even miles, from a material point, the

law of gravity may not begin to deviate appreciably
from the Newtonian law. The experiments of Mask-

elyne and Cavendish, which may perhaps be adduced
as supporting its rigorous application, are far too

gross, and differ too widely in their results, to be

cited in so delicate a matter, besides which, their

results, as applied to such an inquiry, are affected

with an unknown element, the mean density of the

earth. At much closer intervals we are certain of the

existence of attractive and repulsive forces following
a widely different law; and by what imperceptible

gradations these shade into that of gravity, or whe-
ther they are to be regarded as distinct from it in

their nature and origin, is a point whose consideration

seems reserved for a much higher state of science

than we can boast of having yet attained.

But it is quite sufficient for the purposes of physical

astronomy to know, that as far as the motions of the

great masses of matter connected with our system
either in the heavens or on our globe are concerned,
observation and theory present no difference capable
of being made an objection to the strict expression of

Newton's law, and we shall therefore wave all further

discussion of the subject, and proceed to the object of
the present essay, in which the reader will be pre-
sumed acquainted with the generalfacts of astronomy,
with the principles of mechanical philosophy, and so

much of analysis, of the differential and integral cal-

culus, plane and spherical trigonometry, as shall

render it. unnecessary for us to interrupt the general
chain of our reasoning to demonstrate such theorems,
&c. as we shall have occasion to call to our aid.

Laplace, Sytltme du Mondt, p. 28P.



PHYSICAL ASTRONOMY 649

Astronomy SECTION I.

" *~\*~*^ ON THE CIRCULAR AND ELLIPTIC MOTIONS OF THE
PLANETS AND SATELLITES.

By observing the places of the sun, moon, and

planets in the heavens at different times, and mea-

suring; their angular diameters, we have learnt, that,

provided certain excessively small inequalities, to be

hereafter considered, are disregarded, their motions

are all compatible with the supposition of the planets

revolving about the sun in elliptic orbits of small

eccentricity, and having the sun's centre in one focus ;

each orbit lying wholly in a fixed plane peculiar to

itself, and siiehtly inclined to the ecliptic, or plane,
in which the sun appears to revolve about the earth.

We learn, moreover, that if the apparent motion of

the sun be transferred in a contrary direction to the

earth, and the sun be supposed at rest in space, the

motion so assigned to the earth will be such as to

include it in the expression of the same law. The

supposition then, of the sun at rest, and the earth in

motion, being agreeable to this general analogy, and

supported by incontrovertible arguments drawn from

the great magnitude of the former in comparison'with

the latter body, is assumed as a demonstrated truth.

Observation moreover assisted, it is true, by calcula-

tion, but independent of all theory, (i.e. of all reason-

ing from causes,) has taught us the truth of the

following remarkable laws, in which also the earth is

included among the planets.

The areas described about the suns centre by the radius

vector of any one of the planetary orbits (or the line

drawn from the sun to the place of the planet,} are pro-

portional to the times of their description.

F'E- 1- Let S be the sun, and APP' part of the orbit of any
planet. Then, A being assumed as a point of depar-
ture, the area ASP is to the area ASP7

as the time of

the planet's describing the arc AP of its orbit is to

the time of its describing AP'.

The squares of the periodic times of different planets,

Cor of the times of a complete revolution of each about

the sun,} are as the cubes of their mean distances from
the sun, or of the greater semiaxes of their respective

ellipses.

The periodic time of the earth is 365'2564, and that
of Mars 686'9796. The greater semiaxis of the
earth's orbit being 1, that of Mars is 1'523693

;
and

we may easily satisfy ourselves, by executing the

computation, that (365'2564)
2

; (686'9796)
2 ' '

I 3
'

( 1-523693 )
3

.

These three laws, viz. 1st. The elliptic motion of the

planets about the sun as a focus : 2dly. The propor-
tionality of the areas to the times : and 3dly. The law
of the periodic times, which have immortalized the
name of Kepler, and whose discovery, and the manner
of it, afford at once matter of humiliation and triumph
to the human intellect, were all deduced immediately
from observation, as insulated, and, for aught their

discoverer knew, unaccountable facts. It shall now
be our business to demonstrate their mutual depend-
ence, and to shew how the general law of attraction

may be derived from them most simply.
The analogy observed between the motions of the

other planets and of the earth, affords a reasonable

presumption of tneir being masses of matter subject

to the same mechanical laws of rest, impulse, and Physical

resistance, as that of which our own planet consists. Astronomy

Moreover, from what we know of the constitution of "~~v

our own atmosphere, and its rapid diminution of

density as we recede from the earth, we have every
reason to believe, that the immense space in which

their revolutions are performed, is either completely
void, or at least free from any material substance

capable of sensibly resisting or impeding their motions,
or preventing any external impulse they may receive

from acting on them with its full effect Setting out

with these assumptions (the strict truth of which will

be best tried by the conclusions they will lead to,) it

is obvious that as the planets, instead of moving con-

tinually forward in straight lines, as masses of inert

matter would do if projected in space and left to

themselves, are, in fact, constantly deviating from

this rectilinear progression they must be under the

perpetual influence of some agency external to them-

selves, which, (by the second law of motion,) can be

no other than that of a mechanical force acting in a

direction inclined to that in which they move at any
instant.

The enormous distance at which the planets are

from the sun, and their own minuteness, compared
with it, permit us at present to regard them as points ;

and it will be shewn hereafter that this supposition
introduced here merely for simplification, is strictly

legitimate. Let us then consider the motion of a

material point perpetually deflected from a straight line

by the action of an external force
;
and to this end

let us conceive the curve OPQ described by the planet

to be replaced by a polygon of an infinite number of

sides OP, PQ, '&c. and setting out from O, let it

describe the chord OP in the first instant of time d t. Fig. 2,

In an equal subsequent instant it would, if left to

itself, go on describing PR equal to OP, and in the

same straight line. But since we have regarded the

curve as replaced by an elementary polygon, we must

(on the principles of the differential calculus) con-

ceive the deflecting force to act by interrupted impulses
at the angles of that polygon. Let the first impulse
therefore be conceived to take place at P. Then,
since the material point P, in virtue of the motion

inherent in it at P, would have described PR in the

instant d t
; but, in virtue of that motion, combined

with the new motion it receives at P, does actually

describe PQ in the same time, that new motion (by
the composition of motions,) must be such as, alone,

would carry it from P over a space Pf equal and

parallel to RQ ;
and as the change of motion takes

place in the direction in which the moving force acts,

Pf must be the direction of the deflectingforce. Prolong
Pv indefinitely, and take in it any point S

; join OS,

SQ, SR. Then, since OP = PR, the area OSP =
SPR = SPQ, because QR is parallel to PS.

A force may be conceived to tend to any point in

the line of its direction. We see, therefore, that any

point to which the force acting at P tends is charac-

terised by this remarkable property, that the areas

described about it in equal evanescent instants on

either side of P are equal. This property belongs to

every point in the line PcS, but (as is obvious) to

no point situated out of that line ; and any point

possessing this property may be regarded (at least for

that moment) as a point of tendency, or centre of the

force acting on the body at P.

'4 P "2



650 PHYSICAL ASTRONOMY.
Astronomy Now, as we have seen, it is matter of observation

that each planet describes areas proportional to the

times, and consequently equal areas in equal infinitely

small times before and after any given instant, about

a fixed point in the system coincident with the sun's

centre. This point, therefore, possesses at all times

and in all positions of the planets, the property above

demonstrated to belong to a point situated in the

direction of the deflecting force
; or, in other words,

the forces deflecting the planets in their orbits are

invariably directed to the centre of the sun.

The moon, (neglecting periodical inequalities,)

describes about the centre of the earth, and the satel-

lites of Jupiter and Saturn about their respective pri-

maries, areas proportional to the times of their descrip-
tion. The forces, therefore, which deflect them in

their orbits, are directed (small causes of inequality

being neglected) to the centres of the earth, of Jupi-

ter, and of Saturn respectively.

Having ascertained the directions of the forces

which deflect the planets from their rectilinear paths,
and retain them in their orbits, we come now to esti-

mate their intensity, and investigate the laws of their

action. In order to this, we shall find it more simple
to abandon the supposition of the interrupted impul-
sive action of the deflecting force, and consider the

body P as deflected from the tangent PR, and describing
not the chord PQ, but the infinitesimal arc, the force

being supposed to act during the whole time d '.

This time, however, being infinitely small, the forcx

may be regarded as constant; and since the angle
PSQ between its first and last directions is also

evanescent, it must be considered as acting con-

stantly in a direction parallel to PS or QR. If then we
take F to represent the force at P, and g = 32 ft'190S

(or double the space through whicn a heavy body
falls in the first second at the earth's surface,) and

suppose unity to represent the force of gravity, we
shall have by mechanics,

versed sine = (arc)'
2

diameter

and since QR or Pt> is in this case equal to the versed

sine ofPQ, we must have,

Physical

Astronomy

QR =
2-R

:

and, finally, (since d t = 1")

F = R
g

and this is the general expression for the force perpe-
tually urging a body to the centre of a circle. To
reduce it to numbers in the case of the moon, we have

R = 238783m = 39165700 x g (since g = 32ft

'1903)

and = 39165700
g

moreover,
T = 27d'32167= 2360592".

Calculating from which data, we find

F = 0-00028394 =

If, therefore, we know by observation the nature of

the orbit, and the velocity of the body at any point P,

we may thence calculate the magnitude of the deflec-

tion QR produced in any very minute time d t .- and

thus the intensity of the deflecting force will become
known. Let us, for instance, take the case of the

moon
; and, supposing her orbit a circle, with the

earth in the centre, let us inquire the actual magni-
tude of QR, the deflection from the tangent produced
in some extremely minute portion of time as 1", by
the force retaining it in its orbit.

Call the mean radius of the moon's orbit R, her

period (in seconds of mean time) T j then will her

velocity (being equal to the circumference of her

Dibit, divided by the number of seconds in the time

of one revolution,) be represented by , where

TT = 3'
7
4159, &c.

;
and this is the actual length of

the arc described in 1"'. Now, since (neglecting intensity of gravity is diminishtd

higher powers of the arc than the square)

* QR here represents the deflection from the tangtnt, and is

only Iwlf the length of QR in the last figure, which represents the

deflection from the preceding chord prolonged.

So that the force by which the moon is retained in its

orbit, is about 3522 times feebler than that of gravity
at the earth's surface.

When we observe a tendency in all bodies at the

earth's surface to approach or fall towards its centre,
and if hindered from approaching, still to press towards
that point, we express these phenomena, by saying,
that they are attracted towards the earth. At all

moderate elevations above its surface, and in the same

geographical situation this tendency seems invariable
;

but at great elevations, the delicate indications of

modern instruments will detect a decrease in its

energy;* and indeed the gradual enfeebling of attrac-

tion towards any body by an increase of distance, is

not only a natural supposition of itself, but is borne
out by the strong analogy of magnetic and electrical

attractions. At vast elevations then, like that of the

moon, there is reasonable ground to expect a consi-

derable diminution of attraction
;
and if the force by

which the moon be retained in her orbit be nothing
more than this same attraction modified by the remote-
ness of the two bodies, we see that an increase of the

distance to about 60 times the earth's radius from its

centre, is sufficient to weaken it more than 3500 times.

As the distance then from the earth's centre increases,

the attraction diminishes in a much more rapid pro-

gression. What the exact nature of this progression
is, we must satisfy ourselves by other phenomena ;

but even from the rude calculation already made, (in
which every correction has been neglected) we may
perceive, that a law of decrease as the squares of the

distances (the next in simplicity to the distances

themselves,) has a primd facie probability. In fact,

6oJ
: i 2

:: 3000 : i.

Having only one attendant satellite, however, we

At an elevation of a mile above the surface of the earth, tue

; and a pendulum clock.

beating seconds at the level of the sea, would Iose21'8!)8 seconds
a day at this altitude, a quantity not to be overlooked. Any
traveller having leisure, and the proper apparatus, might try the

experiment in the barrack on Mont Corns, or at the Hospice of
St. Bernard.
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Astronomy, have no means of obtaining any further verification of

*>^>-v-v' such a law, in this way ;
but if we regard the earth

as well as the other planets, as so many satellites of

the sun, we have here ample room to satisfy ourselves,

having a progression of no less than eleven distances,

from that of Mercury to that of Uranus, on which to

ground the assumption of a law. And here we have

the advantage of dispensing altogether with numerical

calculation, and substituting in its stead the third law

of Kepler : for if we call R and r the radii of the

circles described by any two planets round the sun,

T and t their periodic times, F and /the forces re-

taining them in their orbits, we have (as a result of

observation,)

which, combined with the equations,

4^ R 4
* TV J ~

which give

we shall find

9

F_

7

R

Thus, then we encounter the same rate of diminu-
tion in the attractive tendencies of each of the planets
towards the sun, which the lunar motions had given
reason to surmise in the case of the earth and rnoon

;

but in the case now under consideration, the verifica-

tion is much more satisfactory, and the numerical

coincidences, when the calculations are gone through,
complete ;

the third law of Kepler, on which the
whole is founded, being almost rigorously exact.
We may now, with great confidence, presume the

inverse proportion of the squares of the distances to

be the law of variation of that force which retains the
bodies of our system in their orbits

;
but previous to

assuming its generality, it will be right to compare
the force retaining the moon in its path round the

earth, and that deflecting the earth in its orbit about
the sun. Calling R, r, the respective radii of the
earth's and moon's orbits, and T, t, their periodic
times, we have still

F R / t \

Now we have

6023799 z
t

365-25638

R 23405 t 27-32167

So that, executing the calculation,

F
-r=2-17399.

The sun then, although more than 380 times the dis-
tance of the moon, exerts a force of more than double
the intensity on the earth compared with the earth's
attraction on the moon. At equal distances, then,
the forces exerted by the sun and earth would be in
the ratio of

2-17399 x ( V : 1 or 328196 : 1.
und Am > ")

This enormous difference in the attractive energies

of the two bodies, must evidently be owing to some Physical

equally striking difference in the bodies themselves
;

Astron y-

and when we consider the immense magnitude of the

sun (in comparison with our planet) we shall not be
at a loss to what cause to assign it. Whatever be the

cause of attraction, we may fairly conclude that, if it

be the result of a force inherent in matter, two equal
and similar bodies (i. e. each containing the same

quantity of attracting matter,) placed close together,
will each attract a third placed at a distance, with

equal forces ;
and both together, with double the force

of either separately, and pursuing the same idea that

328196 such bodies as the earth, if placed close toge-
ther, and forming one mass in the place of the sun,
would attract as the sun actually does : in other

words, that the sun only attracts other bodies with
more energy than the earth, by reason of its being a

greater boiiy, and containing a greater quantity of

attracting j. gravitating matter.

By such icasonings we are led to assume, as a

general law, that similar and equal particles of matter,
however situated in space, attract, or tend to each
other with a force directly proportional to their masses

or quantities of gravitating substance, and inversely

proportional to the squares of their distances from
each other ;

and having arrived at this law by the

steps described, we must now proceed to verify its

rigorous exactness, by applying it in succession to the

phenomena as presented by nature in our system,
which will be the object of the following sections.

SSCTION II.

On the attractions of spherical bodies

The earth, sun, and planets, as well as their satel-

lites, being shewn by observation to be spherical bodies

of great magnitude, it becomes necessary to examine,
in limine, whether the law of attraction above stated

be compatible with this fact in other words, whether
from a knowledge that the gross attractions of the

whole masses follow that law of decrease, we can

argue that the attraction of each elementary molecule
follows the same.

Let BDCE be the attracting sphere, m the body Fig. 3.

attracted, which at present we will suppose to be a

single particle, taking its mass as unity. Suppose
mBAC the axis of the sphere passing through the

molecule m, and let M, M' be two equal and similar

molecules, similarly, but oppositely situated with

respect to the axis. Each of these molecules will

attract m with a force represented by , but the

directions of their attractions not coinciding, we must
resolve them into others, whose effects may directly
assist or counteract each other. Draw MPM' (which
will of course be perpendicular to mAC), and if we

M
take Mm =/, and MP = />, we shall have to re-

present the force of M on m, which, reduced to

the directions m C and PM, give the partial forces

M mP jM MP
X and -^ x ^77,

that is, (if we call AP, x,

M (a x) ,
M '

p
and ,



65-.' PHYSICAL ASTRONOMY.
A-'tronomy. The partial forces of M' are represented by the same

~~--,"~
/

quantities, but the latter of them, acting in the direc-

tion PM' destroys the partial force of M in the oppo-
site direction PM, while the former conspires with
the corresponding force ofM, and doubles its effect, so

that we have
2 (a x) M
~fr

~

for the attraction of this pair of molecules in the direc-

tion m A
;
and the sum of all such pairs throughout

the sphere being found by the ordinary rules of the

integral calculus will express the whole attraction of
the sphere. The simplest way will be to regard the
molecule M as a parallelepiped included, first, between
two consecutive positions of the plane DE perpendi-
cular to the axis A m, separated from each other by
the interval d x

; 2dly. Between two cylindrical sur-

faces, having for their bases the circle MM', whose
radius is PM (=/>) and the same circle in its conse-
cutive position, when its radius varies from p to p+dp;
and 3dly. Between two consecutive positions of the

plane PM m, assumed during its rotation about P m
as an axis. In virtue of this, if we put the angle
FPM = the dimensions of the molecule in a direc-

tion perpendicular to PM will be p d 0, and its dimen-
sions in other two directions being respectively dx
and dp, we have

M = pdp . dO . dx;
so that the whole attraction (A) will be expressed by
the triple integral

>2 (a x) . pdp . d 6 . dx

The variables /), 0, and x, are here independent ;
and it

is therefore indifferent with which we begin, we will

commence with 0, because/ being == V(a x)* + p*
is independent on 0. Thus we have

A =
-J]'

2 (a x) pdp . dx
(0 + Const.)

This integral must be extended only from = o to
=

TT, or over only half the circumference of the
circle MM', otherwise the attraction of each molecule
M, M' (having been grouped in pairs,) would be re-

peated twice over. Then we have

/V 2 IT (a x) dx . pdp
JJ {(a -*)+/,}+

'

If we now perform the integration relative to p re-

garding x as constant, we get

A = A , (a-x)dx .

f
Const. - =]J ( V (a x)

3 + p
3
)

But the integral in this case is to be extended from

P = o to p = PD = Vr* xs
, r being the radius of

the sphere, so that it becomes

represents the mass of the sphere,

(a x

(-*) d . (a
-

x)

.=yw (a- a

"Ml/
1 (')'(')

y V2 a (a x) (a
4 r8 )

=Const. +2 7rz+ - *\ 2 a2
r
1 a*

[

'

31 J

1

This integral must be extended from x = AC = r

to x = AB = + r, when it finally becomes, after all

reductions,

Now, n-r5

21

which being called S, we have

S

-rf'

an equation which shews, that the attraction of the

sphere is expressed by the whole mass, divided by the square
of the distance of its centre from the attracted molecule,
and is therefore precisely the same as if the whole sphere
were condensed into its centre.

The hypothesis, then, which refers the observed
attractions of the great masses composing our system
to the effect of the mutual attraction of their ultimate

molecules, varying according to the same law, has

nothing in it incompatible with mathematical reason-

ing; but it is a very remarkable coincidence that this

should so happen, as the only mathematical laws of
attraction which would lead to a similar conclusion,
are that of nature, and that in which the force is

directly proportional to the distance, or one resulting
from the combination of these two laws.

Let us next examine the case when the attracted

body is also a sphere of sensible magnitude. S and s

being the two spheres, and a the distance of their

centres, it has been shewn that S will attract every
molecule of s with the same force as if it were con-
densed into its centre. Now the mass of a single
molecule having been regarded as unity, S, the mass
of the first sphere will be proportional to, and repre-
sent, the number of molecules it consists of. The
attraction then of s on S will be the same as if the
latter sphere were removed, and in its centre a single
molecule placed, endowed with an attractive energy S
times as great as that of any molecule, such as S

actually consists of. But the attraction of 5 on one
molecule of the last named kind has been shewn to be

, therefore its attraction on S being S times as

forcible, will therefore be represented by
S xs

This expression represents the absolute force with
which the two spheres tend to each other, or the num-
ber of pounds, grains, or other units, which must be

opposed to it in order to hinder their approach. This
in mechanical language, is called the movingforce;
and we therefore see, that the moving force with which
two homogeneous spheres attract each other, is as the

product of their masses directly, and the square of the

distances of their centres inversely.
The moving force then is, of course, the same on

each sphere ;
and in consequence of the equality of

action and re-action, (which always refers to moving
force,) it ought to be so. Were the spheres allowed
to approach each other, however their velocities would

obviously be different, the greater moving slower than
the less. In fact, the accelerating force on any body
being equal to the moving force divided by the mass
moved, we have

accelerating force on S =
c

accelerating force on s = .

a*

Suppose now the two spheres at liberty in space, and
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Astronomy, moving, in consequence of their mutual attraction
v --v and any projectile force. If to both of them we apply

an accelerating force equal to that exerted by s,

but in an opposite direction, or towards S, the sphere
S will be urged by forces destroying each other, and
will therefore either remain at rest, or move uniformly
in a right line : but the sphere s will now be urged

by an accelerating force equal to -
. Now, it is

shown in mechanics, that the application of a common

accelerating force to all the bodies of a system, does not

alter their relative motions. Hence, if we refer the

motions of our spheres, not to a fixed point in space,
but to the centre of one of them S

;
or take that

centre as the origin of our co-ordinates, we must

then put for the accelerating force animating

the other.*

Let us now consider the attractions of spheres not

homogeneous, but composed of concentric strata

varying in density according to any law of the dis-

tance from their centres. There is every reason to

suppose this the actual constitution cf the sun and

planets ;
and it therefore becomes necessary to exa-

mine this case. Now, any stratum of infinitesimal

thickness rf r, may be regarded as the difference of

two spheres s, and s + d s, homogeneous, and of the

same density as the stratum, their radii being r and
r + d r. The attraction of s on a molecule equal to

c
1 placed at a distance a, is -, and that of s + d s is

a*

s + ds

a1

=
; and therefore the same as if the

a2 a* a2

stratum were collected in its centre. As this is true

of every stratum separately, whatever be its density,
and their attractions do not interfere, it will be true

of all together ;
so that, whether the sphere be homo-

geneous, or composed of concentric layers, or strata

of different density, the same property still holds good;
and all we have demonstrated in the case of homoge-
neous spheres, remains true in this.

SECTION III.

Theory of elliptic motion.

We are now enabled to enter on the general theory of
the planetary motions,butwe will still confine ourselves
to a case of comparative simplicity. The vast mass of
the central body of our system, compared with those
which circulate round it, permits us to regard their

motions as influenced by it alone, and to neglect, in

a first approximation, all the minute effects arising
from the mutual attractions of the planets and satel-

lites on each other. The case then we propose to

consider in this section is that of the sun and a single
planet, or a primary and one of its satellites.

*
If, however, we suppose the sphere S forcibly retained in its

place by some external agency not acting on s, the case will be
c

different; and will continue to represent the accelerating

force on S.

consequently the attraction of the stratum is

ds

LetM represent the mass of the sun or central body, Physical

and m that of the planet ; and, fixing the origin of the Astronomy.

co-ordinates in the centre of M, let x, y, z, represent
v "~v~~~"

/

the co-ordinates of m. Also let T be the radius vector,

or line joining the centres of the two bodies
; so that

r2 = x2
+y* + z*, and t the time (in seconds of mean

solar time,) elapsed since any fixed epoch.M
The accelerating force ofM on m is , and that of Fig. 4.

m on M
; and since we regard M as fixed, the latter

quantity must be added to the force animating m, ac-

cording to the observation made in the last section
;

so that the relative accelerating force acting on m in

the direction of the radius vector m M will be

which being resolved into forces in the directions
m P, PQ, QM, of the three co-ordinates, becomes mul-

x y z

tiplied by , , and , respectively, and produces

the partial forces

_ (M + m) x _ (M + OT) y _ (M + m) z

The effect of an accelerating force P acting, during an
instant of time d t, on a body in a direction parallel to

any given axis, that of the x, is to produce a variation
in its velocity in that direction, which is to the varia-
tion gravity on the earth's surface would produce in

the same time, as the force P is to the accelerating
force of gravity which we will represent by unity.
Now gravity producing the variation g . d t in that

time, the variation produced by the force P, will be
P . g d t ; or, if instead of taking one foot, as we have
hitherto done, for the unit of linear measure, we take

g (=32 ft

-190S) for our standard unit, simply Pdt.
But to this the negative sign should be prefixed, as

the force P tends to dimmish the co-ordinate x. Again,

the velocity in the direction x being , its variation

is d -
; we have therefore d - = P d t; or, sup-

d t rl *

-

at

posing R =

and writing for P its value '.

d-
T

dt

similarly,

and

(3)

These equations contain the whole theory of the

planetary motions, neglecting their mutual perturba-

tions ; and if, instead of supposing R = 3
, we

suppose it equal to , the same equations will ex-

press the motion of a point m about a centre of force

M, attracting it with a force represented by any func-

tion <f> (r) of the distance MOT.
If we eliminate R from the two first of these
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v

v -^ by x, and adding, we get

that is,

or

, dx dy
yd --xd - = o

dt dt

y d3 x x c(
2
y _ (y d x x dy)

dt dP
yd*x xd?y _ d't

y dx x dy d t

Each member of this equation being a complete dif-

ferential, because y d*x I d2
y = d . (y dx x dy),

we get by integration

y dx x dy = hdt ; (4)
and similarly,

zdy ydz = h" d t; (6)

If, now, we multiply the first of these three equations
(in which h, h', and h'', represent arbitrary constant

quantities) by z, the second by y, and the third by
x, and add all together, we get

hz-h'y+h"x = o; (7)

which is the equation of a plane passing through the

origin of the co-ordinates. Consequently, the curve

described by the body is one of simple curvature, and
its plane passes through the centre of attraction.

For simplicity, let us suppose the plane of the orbit

to be coincident with that of the x and y, we have
then z = o, and our equations are reduced to

dx
a -r-

d t

y dx xdy = hdt

Fig. 5. The area of the elementary sector M m m', described

by the radius vector M m in the instant d t, is equal to

Mmro'P'-Mm'P'
= MmP Mro'P' + Pmm'P'

xy _ ydx xdy
2 2

If, then, we call A the area described by the radius

vector since the commencement of the time t, we
have ydx x dy = ZdA., and consequently

this equation expresses the proportionality between
the areas and times in Kepler's law ; and since the

process by which it is deduced, is independent of any
particular value of R, R having been eliminated to

obtain it, the analytical demonstration here given
applies generally for all possible laws of central force.

In order next to investigate the nature of the curve

described, we must eliminate t, which will be easiest

done after a transformation of the co-ordinates. Let
then the angle AM m described by the radius vector,
since the origin of the time t, be called 0, and we have

mft = rd0, and the elementary sector m M TO' =

-, ord Ai r-d0, so that
2

Now, since r* = x3 + y*, we have

rdr = xdx + y dy

(9)

so that (putting d s = m m' = Vd x" + d y*)

x d*x + y&y =riPr+dr' ds?.

But ds* dr3 =. m m'1 m' ^
2 = m [i?

= r
2 d 1

whence, x d? x + y tPy = r d? r r1 d 0*.

This premised, since our equations (1) and (2) giro

o =d*x
l

-^tft + Rx- dP
d t

o = d*y- -jtd*t
+ Ry dp

if we multiply the first of them by x, and the second

by y, and add, we have

dtt
(10)

but if we take the logarithmic differential of the equa-
tion hdt = r'

l
dO, and suppose d constant, (which

we are at liberty to do, having as yet taken ao dif-

ferential constant,) we get

So that, making this substitution for , and for

x d2 x + y d2
y, writing its value TO?- r r- d0*, and

r dr for x dx + y dy, we get

o = r d2 r r2 d 0* 2 d r4 + R r
2 d f,

in which we have put for R its value -
, and

for d t,
-

, it becomes

o = r - r -
/r

Put r = , and since dr = -, and d2 r =
a a2

iPu 2du2

-
r- , it becomes

d 2 u M + m

This equation (being the simplest case of an equa-
tion of the second order of a linear form,) is imme-

diately integrable, and gives

u=/cos (0+g)

whence,

,'IS)

M + m
r =

1 +
i /*

rr ' cos ( + s)

f and g being two arbitrary constants.

In any conic section, if we call a the semiaxis

major, a (I e2) the semiparameter, and 0+g the

angle included between the radius r and the vertex

nearest the focus from which r is supposed to take

its origin, we have

~
1 + e cos (0 + g)

Consequently we see that the curve described by the

oody must necessarily be a conic section, having the

body M in the focus, and the relation between the

arbitrary constants
f
, h, and the axis and semipara-



PHYSICAL ASTRONOMY. 655

Astronomy meter of this conic section will be (if we call p the
*

/-
'
semiparameter, or putp = a (1 ee)

/ =
<* (1

- (15)

h = Va (1
- e2 ) (M + m) = Vp (M + m) ; (16)

If we suppose the angle to commence from the

vertex nearest the focus, or from the nearer apside, or

perihelion of the orbit, we have g = o, and

1 + e . cos 1 + e cos
'

If the value ofe be less than unity, the conic section

described is an ellipse, if equal and a infinite, a para-

bola, if greater, and a negative, an hyperbola.
But to complete the theory of the planetary motions,

it is necessary to know, not only the nature of the

orbit, in general, but also whereabouts in it the body
will be at any moment assigned. For this purpose
we must obtain a finite equation involving t, and

either r or 0, or some functions of them. Now, the

equation (9) gives hd t, or

VaTl - ea) (M + m) x d t = r2 d

and substituting for r, its value in equation (17)

a4(l e2)4 d0
dt= .: =L- . TT-. (18)

and

t C =

V M + m (I + e . cos 0)*

OT(! e)f / d0

VM + TO J (1 + . cos 0)*

To integrate this, take another variable , such, that

cos v e
cos0 = -

: (19)

whence,

1 - e

e" . sin v

d

d
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'

with M
;
and M being the same for the whole system,

we have T QC <*T
;

T* OC
3

which is no other than Kepler's third law.

The periodic times of the planets being very exactly

known, we might expect to find in equation (24) the

means of ascertaining the masses of the planets, sup-

posing that of the sun, and any one of them, known.

Thus, if m, m', be the masses of two planets, and T,
T7

, their periodical times, we have

M + m
X ^ ; (2o)

On applying calculation, however, all we learn from

this relation is, that the resulting masses are so small,

as to be incapable of accurate determination by this

method
;

their values, as deduced from it, being

materially affected by the small uncertainties still pre-

vailing as to the lengths of the periods, and by the

mutual perturbations of the sun and planets. There
is a case, however, where it may be used with advan-

tage, viz. in that of a planet accompanied by a satel-

lite. If we call M the sun, and m the planet, and

neglect the mass of the latter in comparison with the

former, and that of the satellite in comparison with

the primary, we have at once

M m /a'V /T

Thus, in the case of the earth, we have

a' _ 60 23799 T _ 365'25638

T~ 23405~~
; T7

~
27-32167

So that, by executing the computations, we find

= 00000304697 =M
1

328196

To find v in terms of t, or to calculate the eccentric

(and thence the true) anomaly at any given instant,

we must resolve the transcendental equation,
n t = v e . sin v

This can only be done in a series; and fortunately,
in the case of the planets, e is so small, that a series

ascending by powers of c will converge sufficiently.

Now we have
p = n t + e . sin v

and, since e is small, and sin v necessarily less than 1,

n t itself expresses the value of v within a limit less

than e, and is therefore a first approximation. Again,
if in sin we write its value for v or (n t + e . sin r) ,

we get
v = n t + e . sin (n t + e . sin D)

So that,

v = n t + e . sin n t

is an approximation carried one step farther, or to the

first power of e. Let this b again substituted for e,

and we have
c = n t + e . sin

{
n t + e . sin n t

}

But (neglecting the squares and higher powers of e)

we have
sin

]
n t + e . sin n t

j

= sin n t + e . sin n t . cos n t

= sin n t -{ sin 2 n t

So that we find

v = nt + e . sin . 1 + -' sin 2 n t (2G)

tion, pushed to the third power of e, and so on, as far Physical
as we please. Astronomy
For numerical calculation, however, the equation

* "v"*
v = n t + e . sin v furnishes the readiest solution

;

as we have only to reduce e into seconds, (taking
57 17' 44"-8 for the arc equal to radius or 1 , or add-

ing the logarithm 5-3144251 to the logarithm of e,

which gives at once that of the number of seconds e

is equal to,) and assuming n t (the given mean ano-

maly) fora first approximation, correct it successively,
as in the following example.

Required Jupiter's eccentric anomaly corresponding
to 53 of mean anomaly.
Here n t = 53

,
and in Jupiter's orbit we have

e = 0-046077 log. . 8-6819374
5-3144251

e = 9916'A6
; log. . 3'9963625

Take v = 53 log sin 53 9'9023486

e . sin v = 2 12' 0" = 7919"'8 ; 3-8987111

v = 55 12 Corrected value, with which re-

suming the process.

log sin v =9'9144221
e. . ..39963625

2 15' 43" = 8143' -0 log 3 9107846
53 = n t

55 15 43. ... Second corrected value.

Another repetition of the very same process gives v =
55 15' 49"' 1, which is true within O"'2.

But even this process, simple as it is, becomes
tedious for the orbit of Mercury, and those of the new
planets, Pallas and Juno, in which the value of e is not

very small
;
and here we must have recourse to the

well known method of trial and error, which may be

applied in this case as follows : Having assumed by
estimation a value of v, (neglecting minutes and

seconds,) by noticing whether the term e . sin v is

additive or subtractive, and increasing or diminishing
n t accordingly : calculate the value of v e . sin v

for that and the next subsequent degree ;
and let the

values so found be called V, and V : should either of

these be exactly equal to the proposed value of n t,

the corresponding value of c will be the truth
;
but as

this will probably never happen, we have only to say,

v-v : v- n t \ : -SGOO" : x = - x (V-
which correction being applied with its proper sign
to the latter of the two assumed values of v, will give
an approximate value. Let the value of v e . sin

be again computed with this value of v, and call the

result V". This will always be found very nearly

equal to n t
;
but if not exactly so, the correction

If we again repeat the process, we get an approxima-

must be computed and applied to the new value, and

so on.

For instance : Let n t 33'2 28' 65", and e

50600"= 14 3' 20''. Here sin nt is negative; so

that e . sin n t is subtractive, and v must he less than

n t. Take then for the two values of v, 325 and

326 respectively, and compute as follows :
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v
'

loge" 47041513 47041513 Astronomy

4-4627426 (nee;) 4-4517130 (neg)
e . sin 325 = 29023"'O = 8 3' 43"'0 e . sin 326 = 28295 2 = - 7 51'35"'2

Hence V = 333 3' 43"'0 V = 333 51' 35"-2

V V = 2S72"-2 V n t = 4960'2

Log 3600 3-5563025

Log 2872-2 3-45821 47

0'0980878

Log 4960-2 3-6954992

Log 6217-1 ........ 37935870
v = 326 6217"'l = 324 16' 23"

Taking this for a new value of v, we find, by another Finally, if we resolve the equation

repetition of the process, /\ _j_ e

V" = 332 28' 49"'6
;

V" - n t = - 5"'4
tan a 6 = V \IT~e

' tan 5

36OO we eet
and,

"
x (V"-0 = + 6"768

G = v + e . sin e + . sin 2 v + &c.
so that v =x 324 16' 29"768 . .

4

4i. v- j .uv. c j A i. wherein, if we write for its value, we shall obtain
which is true to the hundredth of a second ;

and this

case is nearly the worst that can occur in the theory = n t + 2 e . sin n t + e* . sin 2 n t + &c.
of the planets.

4

If we substitute the value of given in equation (26)
To carry these series to the hi her Powers of e> and

in the expression for r, r = a (1
- e . cos v) ; (23), *?

ascertain their law we must have recourse to par-

and develope in powers of e, we obtain r in a series
*lcular theorems for facilitating such developements,

of powers of e, and cosines of n t, and its multiples,
but these will suffice for our present purpose ;

and the

s
reader who wishes to proceed farther in the mvestiga-

r _ a I
j_ e COsn<+ (1 _ cos2n<) _ e3 x&c > tion,will findin the second book of the Mfaanique Celeste,

1 2 )
'

arts. xx. xxi. xxii. every information he can desire.

We shall content ourselves here with merely setting down the formulae, which are as follows :

e2

. 2 . sin 2 n t

(27)

sin

(28)

i; t f c . sin n i T ~-



658 PHYSICAL ASTRONOMY.
Astronomy. SECTION IV.

On the velocitiet of the planetary motions, and the de-

termination a priori of (he elements of their orbits.

The angular velocity of a body is measured by the

angle which it appears to describe in any very small

time to the eye of a spectator. In fact, if we call

the angle, and t the time, we have
dO

Angular velocity about the sun =

Now, by our 9th equation, we have rd9 = hdt,

and, consequently, =
;
that is to say, the angular

velocity in any orbit is inversely as the square of its

distance from the centre ;
and this law is general for

all central forces.

The paracentric velocity is the approach to, 01

recess from, the centre
;

and is measured by .

dr dr <I0

Now, = . , but
dt dO dt

dr

00''

a (I e) . e sin e . sin

a (1 e*) . r"(1 + e . cos O'f

and, consequently,

d T _ he . sin 6 _ / M + m e . sin

dl~a (l-es
)
r>~ V a (T^I8

)

'
~~

'

To complete our knowledge of the body's motion,
we must inquire its linear velocity at any instant.

To this end, ifwe call V the velocity, V = , ds be-

ing the element of the curve. Now, first, we must re-

mark, that if we write for d t its value --'

-,
h

this gives

But y d x i d y

y d x xdy'
(32)

ds expresses the length of a perpendi-

cular dropped, or a tangent to the curvefram the origin

of the co-ordinates. Thus we see, that the velocity is

inversely as the perpendicular so let fall, and directly as
the quantity h, or the area described in a given time.

Moreover, we have d s
2 = d r4 + r* d ff*

; so that,

writing for dr its equal -, or r* dti,

Now, by reason of the equation ra dO = h d t, we have

Again, if we differential the equation (12), we find

=/-/. COS (0+g)
ft ( M + "l\

a

I
-

^ I , (by equation 12)

es / 1 \*
=
P*~ \

~

~p)
' ( b >'

ef
luations 15 > 16 )

p" - 1

writing for u its value . Consequently,

pr

we find

P\r a

because p = a (1 es.) Hence, we finally obtain

(}* (-___L\
\dt)

~

p \T a /

Physical
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or V=(M (33)

On the determination of the elements of the plane-
tary orbits, a priori, there is no occasion to enter into

any very extensive discussion, in a practical point of
view. Since, however, it is a subject generally
touched upon in astronomical works, and is not with-
out its interest, when we consider what changes in

our own system may have taken place, or may yet
take place from the action of violent causes, we shall
devote a part ofour space to its consideration.

Let its suppose, then, a body of a given mass, to be
launched in space from a given point, with a velocity
and direction also given ;

and to be attracted by ano-
ther body, whose mass is also given with a force in-

versely as the square of the distance : it is required
to determine the form, magnitude, and position of the
conic section it will describe.

The plane passing through the attracting body and
the primitive direction of projection will, of course,
be that in which the orbit will lie, there being no
force to draw the body out of this plane. Taking then
the central body for the origin of two co-ordinates,
x and y, lying in this plane, and retaining all the other
denominations of the foregoing pages, and consider-

ing, as the unit of velocity, that with which a body
would describe a space equal to 32' 1908 feet in one
second, we shall have, by (29),

CM +*>(-!. L)
and, consequently,

1 2

(31)a T M + m
Now, by hypothesis, the masses of the central and

revolving body are given : and the distance from the
centre, as well as the velocity with which the latter is

projected. If, then, we suppose the quantities in this

equation to correspond to the point of projection, r is

this distance, and V, M, m, are known
;
so that we

have at once the value of a, the semiaxis major of the
orbit.

This result is a remarkable one. It shews us, that
the major axis of the orbit is independent of the angle
of inclination to the radius at which the original pro-
jection takes place : in other words, that any number
of bodies (of equal, or of exceedingly small magni-
tudes compared with the central one,) launched from
one point with equal velocities, but in any different

directions, will all describe orbits having equal major
axes. Another result, not less curious, follows from
this that they will all describe conic sections of the
same nature, that is, all ellipses, or all parabolas, or
all hyperbolas for the nature of the conic section

depends only on the algebraic sign of its major axis.
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Astronomy. Thus, if a be positive, or if V, the velocity of projec- once having had a common velocity about the sun. Physical
The sroallness of the ruptured mass renders the sup- Astronomy

the orbit will be an position of an explosion less revolting; and we know,
'

at least from observation, that the fragments (if such)
are extremely minute.

If the orbit be a circle, we have r = a, and211=
;
so that, for the velocity in a circle,r a r J

tion, be less than

ellipse. If equal, a will be infinite

(^=o), and

the orbit will be a parabola; but if greater, a is nega-
tive, and the orbit will be an hyperbola

In the two latter cases, the bodies will never return
to their original point of departure, but in the former

they will do so : and since the periodic time depends only
on the major axes and masses, if their masses be either

all equal, or all extremely small, they will all return

in the same time, and a collision will take place ;

after which it is impossible to say what will happen.
If, on the other hand, there exists any sensible propor-
tion between the revolving and central bodies, and

any considerable inequality in their masses, their

periods will be unequal, and each may perform its

orbit undisturbed.

This is supposing their mutual attractions to be

neglected. In fact, however, at the instant of their

departure, these may be incomparably greater than
that of the central body, and will then materially

change their velocities, unless the latter be so great
as speedily to carry them beyond the sphere of their

mutual influence. If a small portion of the earth, for

instance, were suddenly projected from its surface,
the attraction of the earth on it would, at the moment
of its departure, exceed that of the sun in the ratio of
3522 ; 2-17399, or upwards of 1600 ; 1. So that, in

the first instants of its motion, it would move as if

influenced by the earth alone. But this effect would
diminish rapidly ; by the time the projectile had
reached the distance of the moon, the sun's action

would already have a preponderance (as we have seen
in section I,) in the ratio of 2' 17399 '. 1, and it would
depend entirely on the relative velocity of projec-
tion, whether such a space could be described in a
time small enough to escape the influence of the
earth or not.

It has been a matter of some speculation, whether
the small planets between Mars and Jupiter may not
have had their origin in the destruction, by violence, of
some larger mass once revolving in the situation they
now occupy. The very considerable approximation
of their periodic times, which, in the case of Ceres
and Pallas is singularly near (within -,-,',

of the whole

period,) and the equally remarkable fact of the mutual
intersections of their orbits falling all in the same part
of the heavens, (in a general way,) have given rise to

this surmise ; and it has even been conjectured, that
an explosive rupture of a former planet may have
scattered its fragments far and wide over our system,
and produced these singular bodies. There is no limit
to conjecture ;

but if any such event have taken place,
we are forced to conclude, that the mass of the rup-
tured planet must have been very small, or the frag-
ments must have collapsed by their mutual attraction

;

or, at least, their velocities would have been so mate-

rially modified by it, as to obliterate all traces of their

M + m ,. </M + m
we have V2 =

, V= ^ ; that is to say,Vr
the velocity in different circles is in the sub-duplicate
ratio of the sum of the masses, or the absolute force,
as it is sometimes called, directly, and of the radii

inversely. Moreover, if we denote by V the velocity

in a circle of the radius r, or V =
2 1

M + m
, we have

r 2

V2

or a
; V2

; : 2 a r ; a.

Now, if APM be an ellipse, S, H, the foci, AM =
2 a and SP = r, we have HP = 2 a r

; so that

v : v;: VHP : VAR
by which property the velocity in a conic section may
be immediately compared with that in a circle at the
same distance.

Hence, when SP = AC, or at the extremities of

the conjugate axis, the velocity is equal to that in

a circle.

vt

In the parabola, we have = 2, or = V . A/2, so

that in this curve the velocity bears a constant ratio

to that in a circle at the same distance, -v/2 ; 1.

In the hyperbola, HP increases without limit, and
the velocity bears continually a greater and greater
ratio to that in a circle.

As the velocity depends only on the distance and

major axis of the conic section, and not at all on its

form, we may conceive the conjugate axis so dimi-
nished that the conic section shall pass into a straight
line. In this case, the extremity of the axis will coin-

cide with the focus, and the velocity at any distance
r will be that acquired by falling from a distance 2 a
from the centre to the distance r. The expression for

this velocity is therefore still the same with that in the

conic section. Hence,
" The velocity in a conic sec-

tion at any point is that which would be acquired by
falling freely towards the centre, from a distance

equal to the longer axis, to that point." In the para-
bola the longer axis is infinite, and the velocity at any
point is, therefore, that acquired by falling from an
infinite distance. In the hyperbola the axis is nega-
tive, and even an infinite fall is not sufficient to give a

body all the velocity requisite for the description of
this curve.

We have then the following expressions :
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Velocity in a conic section, semiaxis = a, distance =

circle, whose radius is r

r; v = \/(M+ni) (
-

)\ r a /

...V=V/E

-parabola at any distance r,

a (1 e
2
)
= r x (2 )

. sin A2
.and

But a (1 e2 ) is the semiparameter of the conic

section. Moreover, callings the velocity in the curve,
and V that in a circle ; and denoting by n the ratio

(v
\* / r \
1 we have already seen, that f 2 1 = n2.

Hence, we have

a (1
- es) = r x n2

. sin A2
; (36)

and therefore is given, when the angle and distance of

projection are given, and also the velocity. When
the angle of projection varies, other circumstances re-

maining, we see hence that the parameter varies as the

square of its sine.

The eccentricity is easily found ; for we have

) . sin A2

a

;
but since t)

2 = n* V*
XTNow = 2

a M +m
M +m

, we have
TV' = n2, and = 2-ns

;M + m a

2 = n2 . so' that we get by substitution

= A/1 - n 2
(2 - na

) . sin A8

(37)= A/COS A2 + sin A2
(1 n2)

2 '

We see, therefore, that the ratio e of the eccentricity
to the semiaxis, or the figure of the ellipse, or hyper-
bola, depends solely on the angle of projection and
the ratio of the velocity of projection to that in a circle

at the same distance
;
and if this latter ratio remain

the same, the distance may be varied to any extent
without changing the figure of the conic section.

It only remains to determine its position, or the

angle made by the greater axis (or line of apsides)
with the distance SP.

Physical
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(35)

Let us now consider the effect on the form of the

conic section and on the position of its major axis,

arising from a change not in the velocity, but in the

angle of projection, i. e. the angle made with the

radius vector by the direction in which the body is

projected.
APM being any conic section, and S, H, its foci, SY,

SZ, perpendiculars on a tangent at P, the angle of pro-

jection SPy, which we will call A, is equal to HPZ,
and therefore

SY = SP . sin A, and HZ = HP . sin A.

consequently,

SY x HZ = SP . HP . sin A2
;

but, by the property of the conic sections, SY x HZ
= CD2

;
and therefore CD2 = SP . HP . sin A*. Now,

we have SP = r, HP = 2 a r, CD2 = a2 (1
- e2) ;

hence, a2 ( I e*) = r (2 a r) . sin A*

2 (M + m)

Now, if we call ASP, 0, we have

a (1 e2)
"

1 + e . cos 6
'

cos =
;

in which, substituting for e and a (1 e2), their values
before found, we shall obtain

n2 . sin A2
1

(38)cos 6 =
Vcos A2 + (1 n2

)* . sin A2

on which value we may make the same remark as on
that of e, and in both which it will be recollected,

that n2 = M +m

SECTION V.

On certain peculiar cases of the celestial motion ;

viz. when the orbit is of very great, or very small

eccentricity. Of circular and parabolic motion.

The circumstances of circular motion are too sim-

ple to need much consideration. The velocity is

uniform and equal to that which would be acquired
by falling down half the radius with the force at the
circumference continued uniformly. This is evident,
if we recollect that the velocity in a circle, by what

has been just proved, is -, but that acquired

by the action of a constant force F, acting through a

space 5 r, is given by the equation i>
2 = 2F = Frin

(M+m)r M + OT
the present case = = . The perio-

dic time is equal to the circumference divided by this

constant velocity, or to , as we have before
VM + m

shewn by a more general reasoning.
In a conic section of so small an eccentricity that its

square may be neglected, it may be worth while to

recapitulate some of the chief formula?, developed to

the first power. We have then

r = a (1 e . cos 0) ~\

= a (1 e . cos v) >
; (39)= a (I e . cos nt) J

= v e.sinv \0= nt + Ze .sinnt f '

v = n t + e . sin n t ; (41)
n t = 2 e . sin ; (42)
Let us consider the motion in a parabola, and since

in this case we have a = CD , e = ], and/) = a (1 e2),
if we call the perihelion distance D, we have D = % p,
and p = 2 D. Then will the equations (17) and

(18) become
2D D

(43)
1 + cos /

C
cos ^
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dt = (2D)*

-f- m (

dO the resolution of a cubic equation of the form

+ COS I X3 + 3 X = A
Physical

Astronomy.

To integrate the latter, put tan ~ = x, and we have where A =
Z T

VM + m ,

. This cubic, it is easily

=

dO =
which substituted, give

1 X 4

1 X*

1 +I 2

2d
1 -t-^

a

+ m
x

Di

</M + TO

or,

This equation gives tan ,

V 2

(44)

and consequently 0, by

shewn, has but one real root
;
and since the co-effi-

cient of x is an absolute number, and therefore x a
function of A only, its root may be found in any pro-
posed case by a table of single entry. In fact, sup-
pose we have formed such a table, containing the
values of x (or, for greater convenience, of 2 x
arc (tan = a:) or 0) for every value of t on the sup-
position ofD = 1, then will this table serve for all

cases, and for every other value of D
; for we have

only to multiply t by D f-
;
and calling the product

T, look out in the table for the value of correspond-
ing to the time T. A comet, describing a parabola,
whose perihelion distance is 1, will describe 90 of

anomaly from the perihelion in about 109 days.
Hence, the use of the table ofa comet of 109 days given
in works on astronomy, Lalande's Astron. 2d edit.

vol. iii. p. 335; Delambre's Astronomy, vol. iii. p. 434,
from which we extract it as subjoined.

Table of a comet of 109 days.

a
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2dly. Let us now consider the circumstances of the sary to complete the theory of such comets as are Physical

^"V"^ motion of a body in an ellipse of great eccentricity, or known, or may be suspected, to revolve in very elon- Astronomy-

approaching very near to a parabola. This is neces- gated ellipses.

Since e, the ratio of the eccentricity, approaches very near to unity, 1 e must be a very small quan-

tity ; and if we put ft = , we shall have e= -, 1 e= , 1 + e =
, (1 e 2

)
=

now, ifD = the perihelion distance, we have D= a (1 e), consequently
D (1 + e) 2D D

~
2 + e cos 0~ (1+/3) + (1 j3) . cosfl

~
1 + cos 1 cos

2
'

2

D _
\*

D
1 COS 6

and developing this in powers of /3, we obtain

D ( X \ 4 / \ 4
")

n ) -&c.h (45)

which is a very simple expression for the radius vector in the elongated ellipse.

To find the time, we must make the same substitution in the expression,

t , c = O* /'

+ m J (l+e.cos

Now {a . (1
- e) }-f

= *
and since

(1 + e . cos fi)' = + {
1 + /J + (1

-
/3) . cos

4 (1 + cosg 1 cos
~~ "

(i + PY

if we put tan =T, we shallhave-2__- -= d T ;
and the integral will become -

. / j, =^rt^ / V \ */\*TPiJ
whence we get after all substitution,

/27TTM ni /dT(l +
- V M + m

* J (1 + /3..T)
and the part of this under the integral sign being developed in powers of ft, and the whole integrated, we get

' + "-
N/^'K' + D-T'G' +D +TTl'G + r)-*') <>

By the aid of this series, we may express very readily the difference between the true anomaly in a very
eccentric ellipse, and that in a parabola of equal perihelion distance, for, T still expressing the tangent of
half the former true anomaly, and T that of the latter, if we develope according to powers of /3, pursuing the

process only as far as /?*, we get

,

process only as far as /?*, we get

- c =71=1 +

DrA/2 f T)
Now, the time being the same both in the parabola and ellipse, this must equal -

^
T + T~ f

and
VM + m (.

therefore the series within the brackets on both sides must be equal.

,

T> r T> 2rs T ST> 2 T* 3 T'
Let T + = a ;

----- = 6 --------
1
-- = c3'225 88 5 7

T T T J 2T 5 T ST5
.

T 5 3T7
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Astronomy tnen we have A+B/3 + C/3
4 = a;

1 "~V"^ and the first member of this equation, though apparently a function of ft, cannot be really so, as the

second does not contain it. Hence, if we call A the difference between the elliptic and parabolic anomaly,
6 + A e

or suppose the former anomaly + A the latter 0, since T = tan , and ^ = tan , we may

express A, B, and C, thus :

A = a d_a A ,

rf
* a

d0
'

1 d ffi 1 .8
&c.

Physical
s omT

B = b + . H^
d0 1 dff* 1 .-2

P i _ t
i _

~ *->

d0
'

I dff* '1.2

+ &c.

+ &c.

but A itself is required to be expressed in terms of /3 and its powers ; and, consequently we may suppose

A = P/3 + Q/3* + &c.

If then we make these substitutions, our equation becomes

+ b ft + P
YQ

P* + &C -

+ C ft
3 + &C.

whence we obtain by equating the co-efficients of /3 to zero,

da _ da P a d* a db

Now

(1
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Astronomy. In this research, the great difficulties arise from our
~

v
.-' not observing from a fixed station in the centre of

our system. To an observer stationed in the sun, the

elements would offer themselves with comparative
ease.

But the motion and eccentric position of the earth

render the whole affair infinitely more complicated ;

and to analyse the problem, it becomes necessary to

take into consideration the relations between the

heliocentric and geocentric places of a heavenly body.
To this effect, let S be the sun, E the earth, P the

planet, or comet, projected into p upon the ecliptic by
the perpendicular Pp. Let S 7 be the line of equi-

Fi^. 8. noxes, parallel to which draw E 7. Then will

L = 7 S E represent the earth's heliocentric longitude.
/ = -/Sp the planet's heliocentric longitude.
X = 7 Ep the planet's geocentric longitude.
h = PSf> the planet's heliocentric latitude.

ft = PEp its geocentric latitude.

R = the earth's distance from the sun.

r = the planet's distance from the sun.

l>
= the planet's distance from the earth.

d,5= the respective curtate, or projected distances of

the planet from the sun and earth.

It is obvious, then, that we shall have the following
relations :

1st. Pp = r . sin b, also the same Pp= p . sin ft,

so that,

r . sin b = p . sin ft; (49)

= r.cos6 (50)
= p.cosft (51)

3dly. Since the angle PSE of the triangle PSE is

equal to I L, and its sides are R, d, and 5

= Ra + d5 2 R d cos (I L) ; (52)

Lastly producing SE to C, the angle p EC = p E 7
CS i'= \ L, but the angle pE c = 180 p E S,

consequently the equation

<F = 11= + S - 2 R 5 . cos p E S

gives
d = R* + rf* + 2 R S . cos (X L) : (53)

Thus then we have five distinct and independent
relations among the ten quantities L, I, \, &c. Now,
it is evident, that if R and L be given, (or the place
ofE fixed) the geocentric latitude and longitude, ft and

X, will be determined when the place ofP is, but this

is not determined unless I, d, and b, are so. But when
all the five quantities L, R, /, d, b, are given, the five

equations above deduced suffice to determine the

others, and therefore express all the relations subsist-

ing between the heliocentric and geocentric places.
The last may, however, be simplified Sy substituting
for c2 its value given in (52), when the whole becomes
divisible by 2 R, and gives
o = R + . cos (X - L) - d . cos (I L) ; (54)
Another equation (included, of course, in the forego-
ing,) may also be obtained it' we consider, that in the

triangle PSE, we have

r
3 = R + p*

- 2R/> .cosPES
but cos PES = cospES x cos PEp by spherical tri-

gonometry, the plane PEp being at right angles to

pES. Hence, we get (writing
^-

,) or/ . Sec ft for
COS p

P, and cos (X L) for cos p ES
r* = R' + . Sec /3 + 2 R o , cos (X - L) ; (55)

In like manner, eliminating p from (49), it becomes

r . sin 6 = & . tan ft ; (56)

and putting in (54) for d, its value r . cos b,

o=R+ e . cos(X L) r . cos b . cos (I L) (57)

This equation may also be derived independently,
if we drop the perpendicular p q, for we then have

S q = SP . cos PS p . cos p S 9

= r . cos b . cos (I L)
and also

Physical
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= R + S . cos (X L)
which equated, give the equation in question. We
may also derive another, which will be useful in the

sequel, by equating two values of the perpendicular
itself.

pq = Sp .sinpS9
which equated, give

r . cos b . sin (I L) = S . sin (X L) ; (58)

Thus we have reduced the five equations to four,

55, 56, 57, 58, which contain only the radius vector

of the earth, that of the planet, and its curtate

distance from the earth, and the heliocentric and geo-
centric latitudes and longitudes of the two bodies.

The problem of determining the elements of P's

orbit from observation requires these relations to be

combined with the conditions of P's motion and of the

earth's. Now, if we call 8 the longitude of P's

ascending node, and i the inclination of its orbit, we
have, by spherical trigonometry, for the heliocentric

latitude.

tan b tan i . sin (I 8) (59)

Moreover, if we call ir the longitude of the perihelion
on the orbit, the true anomaly, and Y' the angle
3 SA, or the distance of the node from the perihelion
on the orbit, (see fig. 9) we shall have Fig. 9.

cos A S a = tan 8 S a . cot a SA

or tan (IT Q) = cos i . tan ty (60)

and also

sin b = sin i . sin (^ + 0) (61)

these seven equations, of which the four first, 55.

56, 57, 58, express the relations between the helio-

centric and geocentric places of a body any how
situated, the other three,59,6O,61, merely express the

condition of every point in the orbit lying in a plane

passing through the sun. These must be combined
with the dynamical results peculiar to the planetary

motions, viz. 1st. The proportionality of the areas to

the times
; and, 2dly, The nature of the orbit, re-

garded as an ellipse or parabola of unknown position,

form, and magnitude ;
all which are included in the

three equations, 21, 22, 23, or others equivalent, to

them. Thus we have a system of nine equations,

representing, in general, the relations between the

time elapsed since a given epoch, and the observed

geocentric latitude and longitude.
These equations involve, as constant quantities, the

elements of the orbit, t, 8, ir, a, e, E, while the variable

ones, being either given by observation, or expressed
in functions of others that are so, the whole system
of equations may be regarded as expressing a known

(though a very complicated) relation among the ele-

ments
;
and as each observation affords a similar
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\stronomy. relation, it is evident that the complete determination
s-"-v~'' of the latter cannot require more than six observations.

In fact, however, from the peculiar nature of some of

the equations, fewer will suffice, half that number

only being necessary.
The complication of the relations in question pre-

cludes all idea of a direct solution of the problem,
and to apply them to any particular case indirect and

approximative ones have been invented, but with

every assistance from such simplification ; and, after

all the force of analysis has been exercised upon it, it

still remains a very difficult problenij and one which
our limits will by no means permit us to enter upon
in its full extent. In fact, the case of an elliptical
orbit to be determined is one ofvery rare occurrence

;

and we shall therefore content ourselves with pointing
out the course to be pursued to obtain the readiest

approximation to the elements of parabolic motion.
The frequent visits of comets to our system rendtr

this an important case. These singular bodies, with
one or two exceptions, have always been found to

describe parabolas, or ellipses of such extreme eccen-

tricity, as to be undistinguishable from parabolas
within considerable distances on either side their

perihelion.

Preparatory to this research, we must premise the

following remarkable theorem.
In a parabola, if r, r denote any two distances from

the focus, k the chord of the arc they include, and t

the time of a body describing that arc, and g a certain

constant the same for all parabolas, we shall have

g t = (r + / 4- fc)i (r + r
1

fc)* ; (62)

To shew this, let and 0' be the true anomalies cor-

responding to the radii r, r', and t being the time of

describing the intermediate arc, and e the time elapsed
since the perihelion passage to the commencement of
the time t, we have, by (44)

( 0' 1 /
t + =

<7
; tan

1
1 tan

^ ** ** \

where 9 = Consequently, we have
A/.M -j- TO

f / e' .

t = q .

I (tan
- tan

j

1 // ff \^ i \
3\)+ Y((

tan T)-( tan

T))}
Now, by the property of the parabola, we have also

D D

(
cos

ir)*

.

r

0f
And if we put = 0, we shall have

8

_ cos j 0' _ cos (1 0+0)
r
'

A/777
~~

COS i
~

COS i

or, =: cos tan i
. sin

Vrr
whence we get

r )
tan = cosec. <z> < cos . V (63)

f r 1= cosec. < cos , >

I <ST7 1

Similarly, since^ = i 0' 0, we have,

L/l or
/ = cos <* S

' ~ ^
V r Vrr
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and therefore

cos &

I

77)Vrr')
but k being the side of a triangle opposite to the angle
(0' 0) or 2 and r and r1 the sides adjacent, we
have, by trigonometry,

COS = V(r + r)* k*

sin = A/ A;
2

(r r)
2

or, if we put

A/

A'
2 = R and

R = 2 Vr r' . cos and S = 2 Vr r' . sin

R S
cos =- sin =-

2 Vrr'

0' R - 2 r'

-
2 Vrr'

Hence, we obtain

R-2r
;
tan =

6'
tan__ ta.n _ =_ 2 (r + r

1

R)

also

1 +

(R2 + S2
)
- 4 r R + 4 r2

but'R2 + S2 = (r + r'Y
- (/ - r)

2 = 4 r r', so

that we get
/ 0\ 8 1
I COS .

I
= .

V 2 / 4r

and, in consequence,

r + r' - R

D = r. (cos)
0_\*

2

4 r + r' R
Now (r + /- R) (r + r'+ R)= (r + r')

8 - R2 = *
j

so that

D =~ . (r + r' + R)

{0'
~) S

tan tan / =
2 2 j 2

consequently

1!
m.A/2f ff 01 S2

. A/2(r+/ + R)
tan tan > i-==:

-

TO I 4 k . A/M + TO

/

Now, if we put T and T' for tan and tan , we

have T/3 T3 = (T'
- T) (T'

2 + TT + T4
}

and therefore

fpa i

'j"j
v

i

'p'a'i= i +
+ m

" '

I 3 |

The part without the brackets we have already
considered. Let us next examine that within. Now,
if in T2 + XT' + T'2

, we substitute for T and T', their

4 K 2
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,
R + 2 r'

.

v^.~^~. values
;

and -
-, it will become

R3 - 2 R (r -f- /) + 4 (r
2 - r r' + /*)

S*

and substituting this, the quantity within the brackets

becomes

3 s + Ra + 4 (r* r / + /) 2 R (r + rQ

3S*

But Rs + S2 = 4 r /, therefore 3 S2 + R2 = 12 r r'

2 R4 = 2 A2 2 )- + 8 r r' 2 r a
. So that our

expression reduces itself to

3Sa

2

and therefore we have, finally,

6 fc . vM + m

but -v/r + r + R . (r + r> - R) =
= <v/(r + r' + R) . (r + r' - R)^

= fc. Vr + / - R
because (r + r' + R) (r + r' R) = fc. So that

substituting, we get

_ k . Vr + / + R + (r + rQ . ^r + / R .

6 . +

Now R = A/(r + /)* k2
, so that the two radi-

cals in the above expression are of the form

\f a */a* k*

putting a for r + r
/

. Hence the usual rule for

extracting the root of a binomial surd applies to

them, the root being, as it is shewn in all books of

algebra, _ _
Vn + k */a k

first and second ; secondly, from the first and third
;

the three following

o = x(y"z -y1

z') + x' (y 2" -
o = y (z"x

f - z'x') + y' (zx" -

o = z(x"y'
-

x'y") + z' (x y"
-

Now z y' z' y represents the double area of the

projection of the plane triangle included between the

radii, r, r' drawn to the place of the comet at the first

and second observations, and the chord k of the para-
bolic arc joining their extremities on the plane of the

z and y ; similarly, 2 y" z" y represents double the

triangle formed by the projections of the radii r, /'

and the chord k' joining their extremities on the same

plane ;
and if we denote by k" the chord joining the

extremities of the radii T , r", the double of the pro-

jection of the triangle included between r', r", and k"

will be represented by z' y'' z"
y'. If, therefore,

we call the surfaces of these triangles respectively

S, S', S"

Since the projection of each is equal to the surface

multiplied by the cosine of its inclination to the plane
of the z, y, which is the same for all, we shall have the

Consequently, we have

1 (k (Vr +rf+ k + Vr + / - k)) )

r k)
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6 VM+mX t=(r + /+ k)l (r + r
/

k)i ; (62)
which agrees with the proposition as announced, if

we take g = 6 -v^M + m.

The relation just proved to subsist between the

time of describing any parabolic arc, and the rectili-

near distances of its two extremities from each other,

and from the sun, is very useful, as it enables us from

any three of these quantities given, to find the fourth

without knowing either the perihelion distance, or

the position of the perihelion with respect to the arc

described. In an analytical point of view, it is cer-

tainly remarkable for the length and complexity of

the transformations by which it is obtained from the

general principles of parabolic motion. It appears to

admit of no simple demonstration, and that above

given, tedious as it may seem, can hardly be replaced

by one materially shorter.

We shall now proceed to show how this relation

may be rendered available in computing the elements

of a comet's orbit.

Let x, y, z, be the co-ordinates of the comet's place
at the epoch of a first observation, x', y', z, their values

after any time t and x'', y", z'', their values after any
other times t' has elapsed. Let X, Y, Z, X', Y', Z',

and X", Y", Z'', be the corresponding co-ordinates

of the earth's place. (If the plane of l;he ecliptic be

chosen for that of the X and Y, we shall have Z = o,

Z' = o, Z" = o.) Also let

t' - t = t"

then will /" be the time elapsed between the second

and third observations,

Since the comet moves in a plane passing through
the sun, we have

z = a x + b y (64, 1)

z' = ax' + by' (64,2)

z'' = ai" + by'
t

(64,3)
from which, if we eliminate a and b

; first, from the

and lastly, from the second and third
;
we shall get

y"z) + xfl

(y'z -yz')

xz'') + y'' (xz' -zx')

t"y) + z" (x'y-xy')

following equation instead of (65,1),
xS" -iSS' + x"S = o

and similarly,

y S" - / S' + y" S = o

z S" z'S' + z"S = o

(65, 1)

(65,2)

(65,3)

(66,1)

(66, 2)

(66, 3

Now, if we retain the denominations of the fore-

going pages, and assume the line of the equinoxes S y
for the axis of the x, we have

x =w =
= R.cosL + S.cosX;
= R' . cos L' + '

. cos X'
;

= R" . cos L" + "
. cos X''

;

j>

x'
also

y = E e -f p q = R . sin L -j- S . sin X
;

y
f = R' . sin L' + 6' . sin X

;

y" = R" . sin L" + c" . sin X''
;

(67,1)

(67, 2)

(67, 3)

(67, 4)

(67, 5)

(67, 6)
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\stronomy. we have also z = a . tan ft

z' =&' . tan ft'

r" = S" . tan ft

and by the substitution of these values we shall obtain

equations, in which, instead of the co-ordinates x, y, z,

(67, 7) quantities given by the solar tables, or by observation Physical

(07, 8)
!lt tne three assigned instants, so that the only un- Astronomy.

(6" 9}
known quantities contained in these equations are the

v

-~~v"~"''

three curtate distances, S, S', S", and the areas S, S',

S"
;
and by elimination, any one of the three former

may be expressed in terms of the latter. Let this
&c. the curtate distances S, S', S'', will be involved, viz.

process

"

be executed then in succession for each of the

(68, 1)

(68, 2)

o = S" (S . cos X + R . cos L)- S' (&' . cos X' + R' . cos L')

+ S (a" . cos X" + R" . cos L")
o = S" (S . sin X + R . sin L)
- S' (' . sin X' + R' . sin I/)

+ S (" . sin X" + R" . sin L")

o = S" . S. tan/3 S'. S' . tan/3'+S

R, L, X, and ft, and their accented values, are all

n = tan ft . sin (X
v

- tan ft' . sin (X

},J
~l

J

quantities S, &', S", and we shall have the following
results :

(
a. + AR).S"-A'R'.S' + A''R".S = o; (69,1)

BR . S" (
a . (,' + BTl') S' + B''R''S = o

; (69, 2)

CR . S" C'R' . S' + (a .

"
C"R") S = o

; (69, 3)

. tan/3" ; (68,3) where, for brevity's sake, we have made the following
substitutions

"-V) -v

- *) X-|-
X) J+ tan ft" . sin (X' X)

A = tan (3 . sin (L - X")
- tan ft" . sin (L - V

) :

A' = tan ft' . sin (L'
- X") tan ft'' . sin (L' X' ) ;

A" = tan ft' sin (L" - X") - tan ft" . sin (I/'
- X'

) ;

B = tan /3" . sin (L X
)

tan ft

B' = tan ft" . sin (I/ - X
)
- tan ft

B" = tan ft" . sin (L" X
)
- tan ft

sin (L X'') ;

sin (L' - X") ;

sin (L" - X") ;

C = tan ft . sin (L X' ) tan ft' . sin (L X
) ;

C' = tan ft . sin (I/ - X' ) tan ft' . sin (L' X ) ;

C" = tan ft . sin (L" X' )
- tan

,

sin (L" - X
) ;

(70,1)

(70, 2)

(70, 3)

(70, 4)

(70, 5>

(70, 6)

(70, 7)

(70, 8)

(70, 9)

(70, 10)

In these equations, the right hand members are composed entirely of quantities given either by observation,

or by the solar tables
;
and their calculation, though long, is greatly facilitated by the regularity of their com-

position. The values of a, A, B, C, &c. obtained, we have, by (69, 1) (69, 2)

ARS" - A'R'S' + A"R"S

whence we obtain

BRS"- B'R'S' + B''R"S

a S'

-i - .

t,'

'

S"
'

B'

(B'A - BA') . RS" + (B'A" - B"A') R"S

(71)

B'
{
BRS" - B'R'S' + B"R"S

}

So far, we have nothing but rigorous equations, and it does not immediately appear how these can become

serviceable in the question before us
;
but if we consider attentively the composition of the numerator of the

fraction which forms the second term of here statec., >ve shall find that the equation last arrived at, affords
tt

a means of obtaining a first approximation. Let us consider, first, the term AB' BA' :. If we substitute

in this the values of A, B, A', B', in equations (70, 2, 3, 5, 6,) execute all the multiplications, strike out such

terms as mutually destroy each other, and then reduce as much as possible, we shall find for its value

tan ft . {sin (L - X') . sin (L'
-

X") - sin (I/ - X') . sin (L - X")
|^j

+ tan ft' .

{
sin (L X") . sin (L' - X)

- sin (L' X") . sin (L - L) j

>

.+ tan ft'', [sin (L - X) . sin (L' X')
- sin (L'

- X) . sin (L - X') ]
.)

Now, by trigonometry, we have, (since sin A . sin B =
{
cos (A B) cos (A + B) ]

sin (L - X) . sin (L'
-

X') = i cos
{ (L

-
L') - (X - X') }

- i cos
{ (L + I/) - (X + X') }

sin (L'
-

X) . sin (L - X') = 1 cos
{ (L

-
I/> + (X

-
X') }

-
| cos

{
(L +L') - (X + X') }

and subtracting, we find

sin (L - X) . sin (L'
-

X')
- sin (I/

-
X) . sin (L X') =

= cos
{ (L

-
L') - (X

-
X') }

-
| cos

{ (L
-

L') + (X
-

X') }

which another application of the same trigonometrical formula already used converts hack again into

sin (L - L') . sin (X
-

X')

muuay es

{
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Astronomy, a similar transformation applies to the co-efficients of tan ft and tan ft ; so that our expression becomes
11

v
'

r sin (L L') . sin (\f \") . tan ft

AB' BA' = tan/3" X < + sin (L L') . sin (V X
) . tan ft'

I + sin (L - I/) . sin (X X'
) . tan

C tan ft . sin (V
or AB' BA' = sin (L L') . tan ft". J + tan ft' . .sin (V

1+ tan ft" . sin (X
or, if we put 7 = tan ft . sin (X' X") ^

+ tan ft' . sin (X"- X
)
V

; (72)
+ tan/3", sin (X X')J

AB' - BA' = 7 . sin (L - I/) . tan ft" (73, 1)

Now, it is evident that
-y

is a symmetrical function, and is not changed by putting at the same time ft' for ft,
and X' for X, and reciprocally ;

so that, by pursuing a process of reduction exactly similar, we should obtain

Physical

Astronomy*

V'-X")>|V"- X )
J.

X-X')J

Fig. 10.

AB" - BA" = 7 . sin (L -
L") . tan ft"

A'B" - B'A" = 7 . sin (I/
-

L") . tan ft"

and were we to pursue similar processes, combining A and C, B and C, we should get

and

CA'
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and the quantity within the brackets being the difference between two values of the same function at a small
T /_ T//

interval of time is ofthe first order, as is also sin -
, so that B"B' is of the second order. Similarly, we have

+ LB - B' = - 2 . tan ft . tan ft" sin
L ~ L'

.

j
cot ft . cos

T/ _ T " f __ T /

Now, sin--- = n . sin -
, and therefore we have

- X _ cot /3" . cos i _ \\ I

"-BO=ii.tai0 tan/3".sin

T I Q L' _|_
T" xT _ T />*

Let this be reducei. as ;..uch as possible ; and, putting M for- , and (1 + n) . sin(- )
4 \ 4 /

for sin

- T __ T /' v

in (- -
J it wiwill become

R . S x 2 n (1 + n)* . tan /3 . tan /3" . sin
L ~ L/

. s jn
L ~ U

x
2 4

X [sin (L' X) . cot /3 sin (L' X") . cot y3"} x
X

{
sin (M -

X) . cot ft sin (M -
X") . cot /3" j

This is evidently a quantity of the fifth order, the two last factors of it being each the difference of con-
secutive values.

Granting then the hypotheses above employed, viz.

1. The strict circularity and uniformity of the earth's
motion. 2. The proportionality of the rectilinear,
instead of the parabolic, sectors to the times we s-r
that the numerator of the fraction vanishes absolutely,
while the denominator on the same hypotheses does
not strictly vanish, but only reduces itself to a quun-
tity of the fifth order. Hence, we are entitled (at
least in making a first approximation to the elements)
to neglect the traction, and suppose

s , A,

(75)

S'
for

; when we obtain,

and similarly

I/

S
" ~

" '

B' S

"g
7

It is true, from the minuteness of the denominator of
the fraction in (71) the deviation from truth of the

hypotheses assumed becomes magnified. But these

hypotheses themselves are so very nearly correct,
that unless in extremely unfavourable cases the

equations (75) and (76) may safely be employed : and
it will be observed too, that independent of both hypo-
theses, the numerator would be of the fourth order at

least, for if we throw it into the form

consecutive values, and therefore a very small quan-
tity, the first is also.

To apply these equations to the determination of a Fig. 10.

comet's elements, we will first suppose the sectors

P n SF, &c. equal to the plane triangles SPP', &c. or

at least in the same ratio with them. This amounts
t? t &

to substituting ^ _ ^
or

instea(, of the e ations (69j ^ 2, 3,)

(a 8 + AR) x 0" - AH' . ff + A."R"6 = o (78,1)

BR 0" - (a V + B'R') tf + B"R" = o (78,2)

CR *" - C'R' # + (

" - C'R") = o (7 8,3)

which give the values of S, B', S".

Now we get, by the equation (55)

r'- R'2 + S"* sec /3
/s + 2 R'S' . cos (I/-X') ; (79)

whence the value of r is obtained.

,

^ "> "btained, the values of I, S', &c and / may
l 'e correcte'' b

-
v the

Rowing process, let T represent
the

.

tlm
f .

between
t.

he
,

second bservat,on and any
as8

.!
gned ' nSt" nt

;
"

K !'
V ' '' fSfff*^ Tord late8 ilt the first observabon, and ^, y", z", at the

' WC VC

_ ,_
& ^^

,

^ (P if
~ "

' '

-y . tan /

..

. SS" .

=y ~
'

i <J

, /

- &c '

- fcc.

(80' 3)

(80, 4)_ T . T

and similar expressions for z, z". Now, assuming t
the second term is evidently so

;
and since the factor as the independent variable, or dr constant, vve have,

of the first within the brackets is the difference of by (1), (2), (3),
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dr*

dr"

dr*

= - (M + m) .

= - (M

(81, 1,2,3)

The numerical value of M + m is easily found,
since it is the same for the whole solar system except
in so far as the masses of the planets and comets

denoted by TO differ, and these bear so minute a pro-

portion to the mass M of the sun, that they may be

neglected : let T denote the period of any one plane,
as the earth, and o the semi-major axis of its orbit,

then we shall have, by (24)

a3 M + m

so that is a quantity very nearly constant for the

whole planetary system ;
and the period of the earth

being 365d
.2563S4, and the semiaxis of its orbit 1, its

. (S65-256384)
8

value for the earth is , and the same

quantity expresses its value for all the other planets
and comets. Hence we have

M + m = 4 X (3-141592)
4

= 0-0002959122 ;

(365-256384)*

and log (M + w) = 6-4711628

To correct the values of , If, &c. we must correct

the supposition on which they were obtained, of the

proportionality of the rectilinear triangles instead of
the parabolic sectors to the times, or the values of

S, S', S". Now, if c be the inclination of the plane of
the orbit to the plane of the x and y, we have

2 S . cos c = y jf x y
f

2 S' . cos c = yV -
x'y"

2 S" . cos c = y x" - x y"
In the first of these, for y and x write their values as

given in (80, 1) and (80, 3), and we find

2S.COS

But if the
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Astronomy, which, divided member for member, give
' '

sin (I
- L)

tan b = tan p (86)
sin (X L)

and thus the heliocentric latitudes may be computed.
The values of I and 4 known, the same equations

afford a value of r, viz.

r = *.^
sm 4

whence r, /, i" may be found
;
and if these values

agree with those before determined, it will be a proof
of the correctness of the previous work. If V and I"

be greater than I, the comet's motion is direct
;

if less,

retrograde.
The heliocentric longitudes and latitudes thus

obtained at each of the three observations, we easily

obtain the inclination and place of the node. In fact,

(taking the first and last observations, to embrace a

greater arc of the great circle) our equation (40)

gives
tan b = tan i . sin (I a)
tan b" = tan i . sin (I" a)

so that we have

sin (I 63) tan b

sin(/" a)
~

tan b"

which gives

tan 4" (sin / . cos a
= tan 4 (sin I"

or sin a
{
tan 4

= cos a {sin /

and consequently

tan 4 . cos I" tan 4" . cos I

cos I . sin 63)

cos a cos I", sin 63)

cos r cos I . tan b"
\
=

tan 4" sin I" . tan b
}

tan a

and

tan

sin L . tan b" sin If' . tan b
'

tan b

(87)

sin (/
-

3;

If the motion of the comet be direct, the value of a
given by the above equation, will be the longitude of

the ascending node ; but if retrograde, it is evidently
that of the descending ; and to get that of the ascend-

ing node, ISO must be added. The equation (61)
or the corresponding one,

tan (I a) = cos i . tan (^ + 0) (89)

gives the values of Y" + the longitudes on the orbit

reckoned from the node, and these being obtained,

(Y- + 0, Y- + ff, and Y- + ")* the angle G"

between the first and last places of the comet at the

sun becomes known.

If we denote this by 0, we have at once, by the

equation

( /T)
tan = cosec 4 cos \/ > (90)

demonstrated in the foregoing pages (p. 665) the value
of 0, or the distance (on the orbit) of the perihelion
from the place of the first observation

; so that, sub-

tracting the value found, from ty + before deter-

mined, we get Y-, and thence TT, the longitude of the

perihelion on the ecliptic, by the equation (60)

* The reader will not confound 8 here with the same letter before
nsed to denote the time.

It only remains to find the perihelion distance and Physical

time of perihelion passage. The equation of the Astronomy.

parabola

gives the former immediately, r and being known,
and the latter is found as follows. In the table of a

comet of 109 days subjoined, seek the number of days

(by interpolation) corresponding to the anomaly 0,

and call it M, then, by equation (44) we have, (the

perihelion distance of such a comet being unity)

1

and consequently, if T be the time of the perihelion

passage before the first observation,

T = N x D*
If we institute a similar operation for the time T"

of the perihelion passage before the third observation,

we shall find

T" = N" . D*

Now, we ought to have T" T = the interval

between the first and last observations. If this be
found on trial to be the case, it is a proof of the cor-

rectness of the work. The perihelion passage will be

before or after the first observation (in the case of
direct motion) according as the longitude JT of the

perihelion is less or greater than the heliocentric longi-
tude I at the first observation

; the reverse is the case

in retrograde motion.

The chief difficulty in the solution of the problem
of a comet's orbit, consists in the determination of the

distances from the sun and earth, at the moments of
the several observations. Our equations above derived

afford a great variety of means for accomplishing this,

among which we shall only select one, proposed by
Dr. Olbers, which in many cases has particular advan-

tages. It depends on the property already demon-
strated of the chords of the parabolic arcs.

Let k represent the chord of the arc included be-

tween the two extreme places, then we have

or k* = r4 + r"2 2 (xx" + yy" + zz")

In this equation, let the values of x, y, z, x", y", z",

in (67, 1, 2, 3, 4, &c.) in terms of R and B, &c. be
substituted ; and if we put

Cf_ 0^

so that, by (76) c" = m S

we shall have
k~ = r2 + r"3

2 m e2 .

{
cos (X X") + tan ft . tan

ft"}

2 m R K . cos (X" L)
- 2 R" a . cos (X

- L") (91)
- 2 RR" . cos (L - L")

This equation combined with the equation (63)

6 . VM + m . tf = (r + r" + k)l - (r + r" - A:)T

and the two equations

r* = R2 + a* . sec /3
2 + 2 R S . cos (X L)

r"3 = R''2 + r
2 a* . sec ft''* + 2 m R" . cos (X" L)

gives four equations for determining the four unknown

quantities. To resolve them, we must use the well

known rule of false, one of the simplest and most
4 s
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A*tronoa.y. widely useful rules mathematical science affords.
* '~\~~/ Assume a value for S, as near the truth as can be con-

jectured, compute m and thence m S, or &''
,
and having

used these to obtain k, r, and i", substitute these in

the expression for gO'. Call the result A. Assume
then a second value for S, which call A> and execut-

ing the same process, call the result B. Then we
shall have

B A : gt A ; : A s
: x s

where x is the corrected value of S, and hence we get

Mean Time, Paris. h ,

1779. Aug. 30 11 9 42,

Sep. 2 10 36 8,

Sep. 4 10 7 51,

= + (A -) B-A
and substituting this again, and employing that one of
the former values of S which gave a result nearest to

gt for a corresponding value, we shall obtain a yet
nearer approximation, and so on.

It remains to exemplify the method of computation
by an instance. Let us therefore take the following
observations of the comet of 1779, taken at Paris with
a transit and a repeating circle.

Physical

Astronomy,

X = 125 48 39-3

X' = 132 53 48-5

\" = 138 56 31-2

ft = 41 53 52-2

ft' 45 54 48-1

F' = 48 32 27-8

L = 337 29 8-7 R = 1-0087218

I/ = 340 22 26'9 R' = 1 0079991

L" = 342 17 47'8 R"= 1-0074854

The intervals therefore between the first and second, first and third, and second and third observations are

respectively* = 2 976690 days, 0' = 4d
'957049, 6" = l d-9S0350

Consequently, we have by the equations expressing the values of A' and C' reduced into numbers

~ = 1-18408
;
m = ~ = 0-787752

A 6

and substituting this value of m, and the values of X, A", ft, ft'', R, R", we get the following equations, noticing
that g = O' 103212

ra = 1-01752 - 1-71693 . S + 1-80493 . 8*
;

r"* = 1-OIM3 1-45724 . S + 1-41564 .

s

(r
+ r" + k\ /r + r"-

2
-

/
~

\
-

2

These equations are very nearly satisfied by taking S = 071469, whence we find

r = 0-8440; r" = 8346
;

It = 0-1317 ;
o" = m S = G'562998

whence we next deduce the heliocentric longitudes and latitudes at the extreme observations from equations

(85) and (86)
I = 20 37' 40"8 and 6 = 49 26' 23"'l

I'' = 6 45 39 '7 b'' = 49 46 46 '9

Since I" is less than /, the comet's motion is retrograde. Moreover, we have by equations (87) and (88)

& = 100 51' 53"-4
;

i = 49 51' 7"'9

we obtain also, by following the process pointed out in equations (89) and (90) = 12 39' 35' '6, JT = 4
32' 8"'2 for the longitude of the perihelion, and D = 0-830761 for the perihelion distance. Consequently
the time between the first observation and the perihelion passage is

n + tan
3

= + 6-97118 =
+ m

= 6d 23h 18' 30"
30th Aug. 11 9 42

10 28 12 Sept. 6, 1799 = time of perihelion passage.

Of the two solutions given above, the latter only

supposes the orbit to be determined a parabola ;
the

former may be applied to the determination of elliptic

elements, but the latter part of the process from

equation (70) must be varied accordingly ;
but as the

various methods of determining and correcting elliptic
af well as parabolic elements would lead us a great
deal beyond our proposed limits, we must content
ourselves with referring to Mr. Gauss's Theoria Motus

Corporum Celestium, in which the whole subject is

treated with the utmost generality. The reader may

also consult Sir H. Englefield, On Comets; the Mr'ca-

nique Celeste of Laplace, vol. I. c. iv.
; Lagrange,

Mfc. Analytique (the new edition.) The German
scholar will find it well worth his while to consult the

paper of the same eminent writer in the Berlin Ephe-
meris for 1785 ;

and the volume of the same work for

1789, p. 197 ;
the papers of Gauss and Olbers, in the

Monatliche Correspondenz ; as well as the treatise of

the latter, Ueber die leichteste und bequemste Methode den

Bahn tines Cometen zu berechnen.

* The reader is requested to take the numbers in this example upon Mr. Littrow's authority, from whose work the example is taken.
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Astronomy.

PART II. SECTION I.

Or THB PERTURBATION OF THE ELLIPTIC MOTIONS OP THE HEAVENLY BODIES, ARISING FROM THEIR MUTUAL
ATTRACTION

IH the preceding investigations we have supposed only two attracting bodies to exist in space ;
and on

this supposition have succeeded in representing all the phenomena of their motions in finite equations, by the

aid of which their relative situations may be assigned at any past or future moment. The resulting formulae

reduced into tables, and compared with actual observation, manifest an agreement sufficiently complete to

leave no doubt of the correctness of the principles from which they have been deduced, at least, when
observations separated only by moderately long intervals of time are compared together. Yet, on descend-

ing to a more rigorous nicety, and especially on comparing together observations embracing a very long
series of years, it. is found that the results of the calculations, founded on the assumption of elliptic motion

according to the laws above demonstrated, do not represent the observations perfectly. Minute irregu-
larities are still detected, and the planets are found sometimes a little in advance, and sometimes a little

falling short, sometimes a little to the right or left, above or below, their calculated places in their orbits.

Moreover, if the elements of the orbits themselves, as deduced from modern observations, be compared
with those similarly deduced from ancient ones, they will be found not to correspond exactly, but to differ

by small variations, which are however greater, as the observations themselves compared are more distant in

their dates. In a word, though the elliptic theory agrees very nearly with observation
; yet, to make it tally

rigorously with them, it is necessary to introduce modifications of this kind.

1st. The ellipse in which each planet moves, must be conceived to change its eccentricity and position in

space, by exceedingly slow gradations so slow indeed, as to be insensible in a single revolution of the planet,
and only discoverable by a comparison, such as we have described, ot its nature in past and present ages.

2dly . The planet itself is not always found exactly in its place in the ellipse even when so varied ; nor indeed
is it always found in the exact periphery of the ellipse at all. But if we conceive an imaginary point to

describe this ellipse according to the rigorous laws of elliptic motion, the real planet will never be very far

distant from it, but will oscillate or revolve round it like a secondary about its primary in an orbit of extremely
small dimensions, yet according to laws of a very complicated nature, too complicated indeed for observation
alone to unravel.

These variations are much more sensible in the orbit and motions of the moon, where, in fact, they amount
to very considerable quantities. If the moon, for instance, at its greatest northern latitude be observed to pass
over a certain star, it should continue to do so each revolution, if its motion were strictly conformable to the

elliptic hypothesis. So far, however, is this from being the case, that it will be observed to deviate visibly
southward every lunation

;
and after a lapse of nine years and a half, its path, in the same part of the heavens

as to longitude, will pass not less than 10 south of the star
;
after which it will again advance northward, and

in nine years and a half more will once more pass over, or at least very near the star. Deviations like these

must have some positive and decided cause
;

as much so as the elliptic motion itself; and if they are to be
accounted for on the theory of universal attraction, it is manifest that the same mechanical principles applied
in the same way to the case of several bodies abandoned in free space to their mutual attractions, ought 10

lead us to their explanation.
But the mathematical difficulties to be encountered in this research, are of a much higher order than in the

case of two bodies only. There we had no difficulty in integrating the differential equations of the problem.
Here, on the other hand, the equations are too complicated to allow of their integrals being exhibited other-

wise than in series
;
and even then we have no means of ascertaining their laws. Fortunately, however,

ihis is not necessary ;
the enormous preponderance of the sun's mass in our system being such, that the

fractions, representing those of each of the other planets, are small enough to allow of their squares and products

being neglected without any fear of inducing appreciable errors.

It is a well known theorem, which extends to all the applications of mathematical reasoning to natural

phenomena, that when several causes of motion act together, if their effects taken singly are of such an order
of minuteness, that their squares and products may be disregarded, then their joint effect will be the sum of
the effects which would be produced by each acting alone. This principle allows us to regard the disturbance
or perturbation of any one planet produced by the joint action of all the others, as the sum of the effects each
would produce separately; so that we may simplify the investigation by leaving out of consideration all but
a single disturbing planet, and applying the analytical formulae so investigated to each in succession, we shall

thus obtain expressions for the perturbations produced by each ; which, added together, give the total

perturbation.

Investigation of theforces exerted by one body to disturb the orbit of another revolving about a common central body,
and of the differential equations of their motions.

Taking unity for the mass of the central body, and its centre for the origin of the co-ordinates, let m and
m' represent the masses of two revolving bodies, and suppose x, y, z, r to denote the three co-ordinates and
radius vector of the body TO. whose perturbations we would investigate ;

and x , y , z , r', the corresponding
quantities relative to the disturbing body m. Moreover, let \ represent the distance of the two bodies, m, m,

4 s 2
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Astronomy, on each other. Then will the several attractive forces exerted by the bodies of the system on each other be Physical

as follows :
Astronomy.

1st. The sun (or central body) attracts TO and m' with forces represented respectively by and
-jj.

2dly. TO attracts the sun with a force , and it attracts TO' with a force .

7"* X*

Sdly. m' attracts the sun with the force
-^,

and it attracts m with the force-

Fig. 11 These are the forces exerted in the directions of the lines joining the several bodies in the system ;
but to

estimate their effects, they must be reduced to the directions AS, BS, CS, of the three co-ordinates. This

done, we shall find ,, , u c *For the forces acting on the sun,

Force of m =

Force of m'
m'x*

in the direction AS

and similarly,

m y m' u'
and nr- m the direction JBS

r'3

m 2 TO' 2' .

and m the direction CS.

So that the three forces acting on the sun, are respectively
' m x TO' i

Again, the forces acting on m are

In the direction AS.

-(

-(

r3

TO z

70
wV

Force of the sun = +

Force of TO' . .
=

r*

m' (x' x)

In the direction BS
Force of the sun =

Force of TO'.... = -

In the direction CS

Force of the sun = H -
r3

Force of TO'

So that the aggregate forces acting on TO in these directions are

+
7T
~ m '

x3

L.JL ' y'
-

y

r3
'

X3

z 2' - z

TO' (z'
-

-)

53

r
r3 X3

and in the same manner, the forces acting on m' will be found to be respectively

x' x - x1

+ - z - zf

X3
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Astronomy. From these three sets of forces we might determine separately the motions of the sun, of TO. and of m! ; Physical
^ -V- but as we have chosen to suppose the sun at rest, and fix the origin of our co-ordinates in its centre, we must Astronomy

transfer to both m and m' in a contrary direction the forces which act upon it. This done, the forces animating ^~~-s~~>

m in the respective directions AS, BS, CS, will become

(1 + m) .x . (x
1

if

(1 +

(1 + m) . z

f/ y'-y\
\r'> X* /

-y

and if, in these expressions, we exchange the accented letters for the corresponding unaccented ones, and
vice versd, (\ only excepted) we shall evidently have the forces acting on m'.

The first terms of these expressions, as will be observed, are the same as if the mass m' of the disturbing
planet were nothing, or as if there were no such planet ;

the other parts, those multiplied by m', express the

disturbing forces, or the effect of the attraction of m' to derange the orbit of TO from its elliptical form. These,
it will also be observed, consist each of two parts; the one expressing the action of m' on the sun, and the

other its action on m with an opposite sign. It is only therefore in virtue of the difference of the attractions

of m' on the sun, and on m that the orbit of the latter is deranged.
These forces are susceptible of a very simple mode of expression ; and the equations of m's motion in

consequence admit of a very compendious form, if we consider, that owing to the form of the function X,

(92)

which is equal to V(x' x)~
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Astronomy. The joint integration of these six equations would determine the motions of both TO and TO', but their rigorous Physics!

^ integration being impracticable in the present state of analysis, we are driven to have recourse to methods of Astronomr

approximation, of which the principle may be explained as follows :

^ ~v~ '

Suppose A = o to be any equation, or system of equations, susceptible of rigorous integration, and let the

process to be followed for this purpose, consist in deducing in succession from A = o, by any analytical artifices,
or transformations, the equations, or systems of equations,

B = o, C = o, ........ K = o

the last of which, K = o, is integrable by known methods. Now, suppose, instead of A = o, we had pro-
posed the equation A + m' . a o

where m' . a is a minute term of the order of the disturbing forces, m' being an extremely small constant

quantity, and a any assigned function of the co-ordinates. If then we pursue with this equation the very same
process by which B = o was derived from A o, it is clear that we shall obtain an equation which can differ

only from B = o by a quantity which vanishes when m' o, and which therefore must be of the form TO' x b.

So that instead of B = o, we have
B + TO' X b = o

where b is some explicit function of the co-ordinates, their differential co-efficients, and of m', and either

developed, or at least developable in a series of ascending powers of m'. In like manner we may deduce
equations C + m'.c = o; ...... K -f m' . k = o

in the place of the equations C = o, ...................... K = o

In order then to obtain a final equation for the solution of the problem of three bodies, we have only to
follow out any system of processes and transformations which, in the case of two only, would prove successful
in reducing the differential equations to an integrable form.
This may be accomplished in a great variety of ways, as the equations of undisturbed motion are integrable

by a great many different artifices, besides those which we have employed in the former part of this essay ; and
it is therefore necessary to select among them such as lead to final equations best adapted to the nature of the
case under consideration. Now two courses have been adopted by geometers ; the former adapted to the

theory of the planetary, and the latter to that of the lunar perturbations.
In the theory of the planets, the disturbing force is so extremely minute, that its square and higher powers

may be neglected with safety. This simplification being permitted, it becomes practicable (as we shall pre-
sently see) so to conduct the investigation as to make the time, or mean longitude of the disturbed planet our

independent variable, and thus to express the perturbations at once in functions of the time, or of angles pro-
portional to it, a simplification of the utmost moment in the construction of tables. In the more complicated
theory of the moon, in which the part of the perturbations depending on higher powers of the disturbing force
than the first is very conspicuous, it is no longer permitted to neglect them, and the necessity of preserving, as
far as possible, the rigorous expressions of the forces, &c. at least in the difftrcntial equations, obliges us to

employ, not the mean, but the true longitude of the moon for our independent variable, as by this means we
are enabled to arrive at final equations perfectly rigorous, and can thus estimate the influence which the neglect
of small quantities is capable of producing in their integration, with less likelihood of being misled.
The theory of the moon then differs entirely from that of the planets in its treatment. The general prin-

ciples of approximation, however, are the same in both. Both theories, as we shall see, lead to final equations
of the form d* u

-j^-
+ n^u + m' . k o (97)

where na is constant, and k an explicit function of the several co-ordinates, distances, and angles, of the pro-
blem, and m' a very small quantity (which, in the lunar theory, also enters into the composition of k,) of the
order of the disturbing forces. To approximate then to the value of u, we first suppose m = o, and we get
a value of u corresponding to ro' = o, and which we call its elliptic value.

2dly.^
We deduce from this the elliptic values of all the variables which enter into the composition of the

term m' k, in terms of the independent variable t, whether t represent the mean, or the true longitude. These
being substituted in the last term, it will become an explicit function of the independent variable;.

3dly. If we now again integrate the differential equation so prepared, the value of u will consist of two
parts ;

the first will be the same as before, viz. the elliptic value, and the second will be u correction which
must be of the order of disturbing forces, and will express the perturbation of u with a degree of precision
corresponding to their rirst power.

If the same process of substitution be repeated, and the equation again integrated, another set of terms will
be added to the value of , which carry the approximation a step farther, or to the squares of the disturbing
forces : and were the same process continued to infinity, the series of terms so obtained would be a rigorous
analytical expression for u.

The final equation (97) is of the form so well known in analysis, under the name of linear differential equa-
tions, and (as we have observed) almost all the equations on which the planetary motions depend being of this

nature, it will be right to premise some few points relative to their theory, to which to refer hereafter.

It is demonstrated in all works in the differential and integral calculus, and will be so in our article on that

subject, that any linear differential equation of the second order is integrable, provided we can find two, or
even one particular value capable of satisfying it when deprived of its last term. Thus, if

M ' + x " + n = (98)'
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Astronomy, be any such equation, M and N being functions of t, and if a' and u' be any two functions of t which satisfy Physical
^ -

v ^ the equation Astronomy

(P u d u
v 'V '

T7F + M '

Tt
+ N " =

then the complete integral will be

c r
uf + c"u" - uf fd -.- r n 4 f

t,J u'J , . u'
u' d Z,

<">
u

Now, the last term of this, beipg integrated by parts, becomes

, \u" / n d <
2 / n d p x-- ~

Consequently, the complete integral of the equation (98) will be

u = C' u' + C" u" - I u' /'
nd '

3

(100)

M '
to

""

Suppose we have the equation d2 u
-r-r + na a + n = o HOI)
a i^

d2 u
then

'
and d", the particular integrals of - - + n- u = o offer themselves readily, being no other than

sin n t and cos n t
; and if these be substituted in the general expression above given, we get at once

u = C' . cos n t + C" . sin n t

f-
- cos n t I n d < . sin n t sin n t I n d t cos n < >

; (102)

and if n = 1, or in the case of d2 M

dl*

the integral is u = C' . cos t + C" . sin t

+ u + n = o (103)

+ cos t . I n d t . sin < sin t I n d t . cos * (104)

These values of u are rigorous, whatever be the value of n, and independent of any approximation, as

it is easy for the reader to satisfy himself by substituting them in the differential equations from which they
were deduced, when the whole will be found to vanish, independent of any particular value of II, or any sup-
position made as to its magnitude. The equation (1O2) may however be obtained perhaps easier as follows.

(P-u
ijet

tl

- + n4 u = n be multiplied by d f . cos n t and it becomes

d4 u . eos n t + jpudt*. cos n t = I Udf . cos nt

and integrating,

d u . cos n t + n u d t . sin n t = JH d t* . cos n t

If we again multiply this by-- we eet
cos n f

cos n t

Annt dt /n u d t .
- = --rr / II d i . cos n t

(cos n i)
4

(cos n t)*J
d . tan n t {*= - / IT d t . cos n t

n J
and again integrating,

u 1 / /i- = Id. tan n t I II d t . cos n t

cos nt n J J
=

j
tan n t I n d t . cos n t + I n d t . sin n 1 1

by integrating by parts. Hence we have

u = -

|

cos n t I n d t . sin n t sin n t Al d t . cos n t i 1105)
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Astronomy, or, exjrressing the arbitrary constants by C' and C"

Physical
-*. '

u = C' . cos n t + C" . sin n t Astr'onomy

H
|

cos n t tndt.sinnt sinnt/ndt. cos n t
j>

as before.

If n be an explicit function of t, this value of is always assignable, at least by quadratures, and, when-
ever the integrations can be executed, in finite terms. In the lunar and planetary theories, n is always reducible

to a series of sines or cosines of the form (At + B). Let us therefore consider this case more closely.
sin

Now any term of H, such as a x sin (A t + B) will introduce into u the term

cos n t I sin n t . sin (A t + B) d t sin n t I cos n t . sin (A t + B) d 1 1

But we have

sin n t . sin (A t + B) = f {
cos (A n . t + B) cos (A + n . t + B) \

whence

. . ,. , . . sin (A n . t + B) sin (A + n . t + B)
d t . sin n t . sin (A t + B) =

2 (A n) 2 . (A + n)
and similarly,

/A * . i^ cos (A + n . t + B) cos (A - n . t + B)
d t . cos n t . sin (A t + B) = - i -

2 . (A + ) 2 (A n)

So that the term introduced into u will become

cos n t . sin (A n . t + B) + sin n t . cos (A n . t + B)

~~2 n (A - n)

cos n < . sin (A + * + B) sin n t . cos (A + n . t + B)
a .

2 n (A + n)

= a . sin (At + E)\-

_
a . sin (A t + B)

A2 - n3

Similarly, if a . cos (A t + B; were any term of IT, the corresponding term in u would be
A ~~ ?(

II therefore consisting of a series of terms, such as

we shall have
a cos

u = . (

A* na sin
v

-f C . cos n t + C' . sin n t

n = a .

>S

(A t + B) + ct .

C
!

)S

(A' t + B') + &c. (106)
sin sin

=
.

.

C S

(At + B) +
'

.
.

C S

(Aft + B') + &c.
A* na sin

v A s n sm v

C and C' being two arbitrary constants.

cos
Terms of the form a . . (A t + B) being of perpetual occurrence in physical astronomy, it is necessary to

designate them and their several parts by names. The whole term is called an equation, or inequality : the part

(A t + B) within the sign sin or cos is called the argument ; and the co-efficient a, the maximum. The period
of the inequality, or the time (in units of time such as t consists of) which k occupies in passing through all its

tiff)

gradations of magnitude and sign, is equal to , A being expressed in degrees. Hence, the period of an
A

inequality is longer or shorter, according as the co-efficient of the time in its argument is less or greater.
The arguments of all the inequalities in then are the same as those in n, one remarkable case only

excepted, in which A = n
; for, in this case, As n2 = o

;
and the term having (A t + B) for its argument,

changes its form. In fact, since the constants C and C' are arbitrary, we may change them into C

'

_ and C' ^ r respectively, in which case C . cos n t + C' . sin n t will be changed to

C . cos n t + C' . sin n t -

g
. sin (A t + B). Thus u will contain the terms

A. _ ,
sin (A < + B) -

Ae

a

_ B,
sin (n t+ B)



PHYSICALASTRONOMY. 670

Astronomy. sin (A t + B) sin (n t + B) o Physical
_,-., -^ But when A = n, a .

i = and differentiating numerator and denomi- Astronomy
A8 n* o ,^_ ^j

7

,

nator with respect to A, it becomes simply (on making A = n)

. cos (nt + B) (108)

Similarly, it'll contained the term cos (n t + B), this would introduce into u the term

-~
. sin (nt + B) (108)

Terms of this kind form an exception to the law of periodicity observed by all the rest, having t disengaged
from the sign sin or cos. If t represent either the time, or the mean or true longitude, of the disturbed body,

they will represent inequalities, whose maxima go on continually increasing without limit. Such inequalities,

if thev really had an existence in our system, must end in its destruction, or at least in the total subversion of

its present state
;
but we shall see hereafter, that when they do occur, they have their origin, not in the nature

of the differential equations, but in the imperfection of our analysis, and in the inadequate representation of the

perturbations, and are to be got rid of, or rather included in more general expressions, of a periodical nature,

by a more refined investigation than that which led us to them. The nature of this difficulty will be easily
understood from the following reasoning. Suppose that a term, such as a sin (A t + B) should exist in the

Viilue of u, in which A being extremely minute, the period of the inequality denoted by it would be of great

length ; then, whatever might be the value of the co-efficient a, the inequality would still be always confined

within certain limits, and after many ages would return to its former state. Suppose now that our peculiar
mode of arriving at the value of u, led us to this term, not in its real analytical form a . sin (A t + B), but by
the way of its developement in powers of *, a + /3 t + -y

<
a + &c, ;

and that, not at once, but piecemeal, as

it were; a first approximation giving us only the term a, a second adding the term y3 t, and so on. If we

stopped here, it is obvious that we should mistake the nature of this inequality, and that a really periodical

function, from the effect of an imperfect approximation, would appear under the form of one not periodical.
This is what actually takes place in the theory of the problem of three bodies. These terms in the value

of u, when they occur, are not superfluous ; they are essential to its expression, but they lead us to erroneous

conclusions as to the stability of our system and the general laws of its perturbations, unless we keep in view
that they are only parts of series

;
the principal parts, it is true, when we confine ourselves to intervals of

moderate length, but which cease to be so after the lapse of very long times, the rest of the series acquiring

ultimately the preponderance, and compensating the want of periodicity of its first terms.

SECTION II.

General theory if the planetary perturbations depending on their mutual configurations.

OUR first object in the theory of the planets is to transform the differential equations of the disturbed orbit,

so as to obtain final equations in which the radius vector, and true longitude, or those parts of them arising
from the action of the disturbing forces, shall be expressed in terms of the time ;

and to reduce them to the

general form of the linear equation of the second order, whose theory we have just considered. To this end,
Let the equations (94) of m's motion be respectively multiplied by x, y, z, and added together, and we get

d x <P x + d y </'
2

y + d z d'
2 z x dx + y dy + z dz

( ,} O ,1 Q d Q
)+ ro .

- dx + dy + dz
\

( d x dy uz )

The portion within the brackets of the last term is the differential of Q taken on a supposition of the co-ordi-

nates of nt only varying. Let this be represented by the Roman character d, so that

d n dQ dQdQ = -dx + ;dy + dz
dx dy dz

bearing this in mind, and that d Q is only an abbreviated expression for this function, we have by integration

dx* + dy* + dza
Zfi u, /__ -- + - */

in which we must be careful not to confound I d Q with / d Q or Q, d Q being only an incomplete

differential, and the characteristic / denoting an integration relative to t, supposes the variation of the
/

co-ordinates of the disturbing as well as the disturbed body.

Again, if we multiply the same equations (94) by x, y, z, respectively, we shall get

zd*x + yd*y + zd*z fi ,( dQ dQ dQ)
o = + r- in

\
x

7 T- y I- z -
dP r \ d jc dy dz)

VOL. Ill 4 T
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v -** Jt ,t Astronomy.
dr4 + dy + dz* + xa*x + y d*y + z d3 z = % d9

(j* + y* + z) =
we get

dQ
jja ' 1 i l if i I

*
(d <

9 r a J (
dx dy dz $

Now, if we put x = p . cos 0, y = p . sin and z =
/i

. s, or suppose p = the projected radius vector r,

(see fig. 11.) Q the angle it makes with the axis of the x, and s = the tangent of the latitude of m, we have

T dp 1

and similarly, . _ .

or or

Consequently, substituting for x, y, z, these values

dQ dQ dQ f dQ dx dQ dy dQ dz
) dQ

i -f y h 2 =: r
i H r- .

}
= r .

dx dy d z ( d x dr dy dr dz d r ) dr
and it will be observed, that this property is altogether independent of the nature of the function Q, and

belongs to every possible function of the co-ordinates x, y, z, x', y', z'.

Thus we see, that

, / ,
( da da f/Q ) ( / .

2m'/ d Q + m' < x -7 + y TSTT + * -7 ^ = m' . \1 I d Q/ ,
( da da dQ )

n'J
dQ + m>

{
x + y + z

J

=

Hence, if we put Q = 3f d Q + r -
, (1 10)

our differential equation becomes

Let us now suppose that r represents only the elliptic value of r, and x, y, z, Q, the elliptic values of the

co-ordinates, and the value of the function Q, which would arise from writing the elliptic values of x, y, z, x',

if, z , in their expressions ; and let r + in' S r, x + m' S x, y + m' S y, z + m' z, a + m' S Q, &c. represent
the disturbed values of these quantities ; then, if we neglect m'2, we shall get by substitution

. d4 . r- u u, , (d* .r&r n . r &r )
' = i-dF- V7

+
T.
+ "

}-^-
+ --7^- + Q

j

But since r represents the elliptic value of r, the first part of this equation vanishes of itself, and to determine
f> r or r S r, we have the differential equation

' fr i f\

This equation being linear, and of the second order, is immediately integrable by our general formula, equa-
tion (100) provided we can find the two particular integrals

'
and u" of the equation

d9 w
-| = o

d t* r3

but since r, on the supposition of the term Q bearing zero, may be taken for the radius vector on the hypothesis
of elliptic motion, it is obvious that the elliptic values of either x, or y, or z, will satisfy this equation, because

these values are, in fact, no other than what are derived from the integration of equations precisely similar, viz.

d4 z fi

-r^r + -7* = o

df r'

d* :

-r -v y =

dl*

_ , , ,,
d if y d x .T d y h d t .

Consequently, we may take u = x and r y, whence we get u -- -- =- because

on the hypothesis of elliptic motion y dx x dy = hdt, and it is of the elliptic values of x and y that we are

.," x d y y d x h d t e /, f^n\now speaking. Similarly, a d =-=-y-- = --, and the formula (100) gives
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Astronomy, for the cjmplete value of u or r S r. The constants then being included under the integral sign, we have Physical
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y I Q xd t x I Qy d t *~^^*'
rS T= ^L

j^- * ( 113 >

Such is the value of r S r when we consider only the first power of the disturbing force. It would be abso-

lutely exact, but that x and y are only particular values of u on the hypothesis of r having its elliptic value.

If this supposition were not made, we should have if = x+ m' S x and u" = y + m' 8 y ;
and substituting

these values, we should obtain terms in the expression of m' r depending on the square of the disturbing
force, but with these we have no concern.

The perturbation in longitude (m' S 0) is easily obtained when the value of S r is found. In fact, we have

d x9 + d y* + d z2 = d r2 + r2 d d*

whence we get
r*d02 + dr2 2 a u.

, /,
o = ^ - + + 2

m'J
d O (114)

and if we subtract this from the equation (111), we find

r2 d a r d4 r
fi

dtl

If in this we substitute r + m' & r for r and 6 -f- m' 8 for we get, (after obliterating the terms which

destroy each other by reason of the properties of elliptic motion, and those which contain m'*)

Ir^dedSe SrSrde9 r d8 $ r dt r.Kr firSr dQ
-**+ I*

---
Jifi

---
d^- + -^~

- r
-d7->

From this, let the term multiplied by - be eliminated by means of equation (115) and we getU t

2 ra d 6 d S r d2 a r I r . d3 r 3 pr K r dfi~~ ~'dP df
~

And if in this we substitute for- its value given by the equation (112) we obtain, (restoring the

value of Q)

df dr&r + 2rdSr} + ( 3 fdQ + 2 r - ^ . d t*<----' -
'-4-- ('>

but r*d0 = hdt, elliptic values only being considered in the second member of this equation, and conse-

quently integrating, we have

Now, we have h = -v//t a (1 e5), and if \ve put nt for the mean motion of the disturbed planet m, we have

n = A/ so that h = n a2 . V\ e'- ;
and =

jr3 h ft V I - e"

Consequently we get, for the perturbation of the radius vector,

m' a ! cos 6 I r . sin 6 . Q n d t sin I t . cos . Q n d / !

*r- -J- -^-
(120)

fi VI e2

and the formula expressing the perturbation in longitude, will become

' x a m> (^ r d ^ r

no? V\ e*\dt dt

am' ( / d Q // )

H A 2 / r .ndt + 3 II A Q .ndt \ ; (121)
p.
V 1 es I J dr JJ

It only remains to determine the amount of the perturbation in latitude, or the value of z or of s, if we
put z = r S s, in which case S s represents the tangent of the heliocentric latitude of m in its disturbed orbit
above the plane of its elliptic motion. Now, if we treat the equation

d4 z fiz . dQ
o = + 1- m

d t* r3 d z

in the same manner as the equation by which the value of r S r was found, viz. regarding x and y as two

particular integrals of the equation + - = o, and then completing the integration by the general

4 T 2
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/ dQ / dO )
Astronomy

mf a < cos I y . n d t sin . / x . n d t }
v V

'

m' a . =-1-J "-=-S^lf--L (122)
p V\ e*

This is the latitude of TO above its primitive orbit; and if we denote by s its undisturbed latitude above any
fixed plane (as that of the ecliptic) slightly inclined to this orbit, s + S s will be its latitude when subjected
to the action of the disturbing forces.

The equation (121) gives the perturbation in longitude when that of the radius vector is known, and the

latter may be computed from the expression (12O) which is general ;
and considering the complication

of the subject, as simple as can be expected. Its form enables us to compute the amount of perturbation even

in the most difficult cases, as in that of a comet, by the application of the method of quadratures. Meanwhile,
in the theory of the planets, where it is required to develope the value of S r in series of sines and cosines of

arcs depending on the configurations of the disturbed and disturbing planet, it will be found much simpler to

set out immediately from the differential equations for the disturbed radius, and proceed in the manner now to

be explained.
(P it

Since the form of this equation is not precisely that of the equation a
+ s u + n =s o, the co-effi-

u,

cient of the second term instead of being constant, being a variable quantity, we must first endeavour

to transform it by substitution into one of this form. Assuming then that u is such a quantity that its

d4 u

elliptic value shall satisfy the equation + n9 u = o, and its disturbed value (or u + m' S u) the equa-
(i t

lion -- -- + n2 (u + m' c u) + m' n = o, which gives + n2 S u + U = o we must inquire
d t* d i*

first, the relation between r and u ; and secondly, the value of n.
(Pu

A satisfactory relation between r and u is easily found. In fact, since u is to satisfy a
+ n4 u = o, it

must be of the form u = const, cos ( n t + const.). Now the developement of r in terms of the mean

longitude gives, putting for the longitude at the epoch of the commencement of the time t, and ir for

the longitude of the perihelion,
r a

I

1 e . cos (n / + e v) + ea sin* (n t + e ir) + &c.
}

So that, if we take u = e . cos (itt+e TT), we shall have

r = a
{ (1 + e2 )

- u (1
- i e2 )

- u* + &c.
} (123)

This gives at once 8r = a 6 u $ 1 +2u+e4 X &c.
}

= a(l+2e. cos (n t + e
ir) + e* . &c.

}
; (124)

by which, when o u is found, S r may be had at once.

It only remains to discover n. Now, since our equation (111), if we put r1 = and m' <2 / d Q + r

=s m' Q, becomes

d f
* / a

if we multiply by 2 d t>, and integrate, we shall find

= 8 p-ST- - 4 ,' Q d r (126)
a

but because u is a function of r, and therefore of r* or r. we have

>l 11 d u dv

dt
'

d c d t

1 u d4 u / d o \* d a

f^"
~~

du' \ d t )
'

TV dp
fo that d* a d* u ( , 4 fi v

t

d t? dv'\ a

+ ^L(l4-^^-2'Q) +n'u
d v ( V v a )

Now u is a certain function of w (or of r) whose form is determined by the reversion of the series in (123)

d1 u
and is independent of the disturbing forces. But were tnese forces zero, we should have -~r:i

~ + n? u = o.

* This formula, which perhaps is new, and which has stood us in some stead in the explanation of that chapter of the M&anique
Colette, (cap. vi. liv. 2.) which I have adopted for the groundwork of this part of the present essay, may be deduced at once from tht

general theory of linear equations, in my paper O various points of Analysis. Phil. Trans. 1814.
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Astronomy. Hence the portion of the right hand member of the equation just deduced, which does not depend on the Physical
s ~v~~*' disturbing forces, must be identically zero, in virtue of the relation between u and v ; and that it is so, we Astronomy

may assure ourselves by actual substitution. Consequently we must have, when the disturbing forces are v-"-v~"
regarded,

<P u

that is (putting u + m' S u for u, and disregarding terms depending on m'4
)

tPdu
,
du (Pu /_+ n*du = - 2 Q --- 4 / Q d v

dt* dv dtfj

Comparing this with the equation +n*8u + Il = owe have

.

d v d

It is desirable to express this in terms of v. Now, as u is a function of v, v is reciprocally a function of a, and

#v
du 1 <Pu ~du?

d v d v
'

d c- / d v

du
and d3 e

(2.)'\du )

rr
* a-4
d v

d u \ d u

but since v = r-, if for r we put its value in terms of u (123), we get, neglecting higher powers of u than
the first, = a2

(1 2a + &c.) and substituting this in II, and after the differentiations writing for u its

value e . cos (nt + e TT) we get
Q / \ 1

n = ( 1 e . COS (
t + e

ir)
I 2

. COS (2 n t + 2 e - 2 TT)

2 e /
*

/ Q n rl t . sin (n t + e -
a-) {

1 + e . cos (n t + c w) } (128)

and this being the value of II, we find F u from the equation
rl* f II

+ n*8 u + n = o. (129)

SECTION III.

Reduction of the perturbative function Q or 2 /d Q + T to a series of sines and cosines, and investigation
+_/ " ^"

of the perturbations, neglecting the eccentricities ami inclinations of both orbits.

WE have now reduced the investigation of the perturbation to the integration of the linear equation (129)
and we have before seen that this is accomplished without difficulty, when II, the last term, is reducible to
sines and cosines of the independent variable and its multiples. All then that remains to be done to get their
actual expressions, is to execute this reduction. This, however, is by no means a simple process ;

and in an
essay like the present it is not possible to pursue it into all its details : we shall therefore only carry it to a
certain extent necessary for our future reference, and point out the principles by which it may be, if required,
carried farther.

Let us consider then the value of the function O. If we write in it r . cos 0, r . sin 0, / . cos ff and / . sin & for

*, y, ^, y', and neglect zz', z?*, (z z')
s
, which are either of the order of the squares of the disturbing forces,

or of the products of these forces by the mutual inclination of the orbits, and put ff = w, we get
x x' + y y' + ZT? = rr

1
. cos w

* = A/(* -^ + (y- y')* + (z
- zO = vV* - 2 r r

1
. cos w f

"

and r= -7- . cos W
ra 2 r r" . cos w + /*

Let us conceive this function developed in a series of cosines of w, and its positive and negative multiples to
infinity ; then, since the cosines of the negative are equal to those of the positive multiples, we may represent
fl as follows :

= R -f R' . cos ic -f W . COB w + R'" . cos 3 ic + &c.
; (13O\
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and of these alone, depending solely on physical

~~v~~s the peculiar form of Q, let A, A', A", &c. represent the same functions of a and of. Then, if the eccentri Astronomy
cities of the orbits were nothing, we should have

Q = -
. cos to

a"1 \
1 2 a a! . cos to + a"

f i (131)

V" . cos 2 to 4- &c.= A + A' . cos to + A"

Were the eccentricities nothing, the orbits would be circles, and the motion in them uniform. We should

therefore have = n t and ff = n' t, whence w = ff = ( n') t, so that Q in this case would be

expressed in the very simple series

Q = A + A' . cos (n
-

n') t + A" . cos 2 (n n') t + &c. (132)

Moreover, since d Q represents the differential of Q taken on the hypothesis that only the disturbed body
moves, we should then have

dQ dQ dO dQ
d Q = dr 4 d = d0 = ndt .

because, in the case of circular orbits d r = o. Thus we should have

d Q = n d t .
{
A' . sin (n n') t + 2 . A" . sin (2 n 2 n') t + &c.

}

and integrating relative to t

2 = 4- - ; { A' . cos (n n') t + A" . cos 2 (n n') t + &c.
} ; (133)

being an arbitrary constant.

Again, since R, R', R", &c. are explicit functions of r, /, and Q is only so far a function of r, as this symbol
is contained in them, we must have

dQ dR dR'
r = r . 4- r . cos to 4- &c. (134)dr dr dr

and in the case of circular orbits, denoting by , &c. the same functions of a, a' that
;

denote of r, r',
da mt

dQ dA dA'
T = a + a . cos to 4- &c.

d r da da
d A dA'

The values of , , &c. are easily had in functions of a, cf, when those of A, A', &c. are found. Now,da da
to obtain these, we may proceed as follows :

Take c = cos to + V 1 . sin to. Then (by trigonometry) we shall have = cos to V I . sin to ;

now, let us consider the function (cf 2 a of . cos to + a'*)
~* which agrees with the second term of Q if

= . This equals a *' ( 1 <2 . cos to +
( )

I or a -* '
(1 2 a . cos to + a')

- s
putting

But we have
a

1 2 o . COS to + a4 =
(

a

because c + = 2 . cos w. Hence
c

(a" 4- 2 a a' . cos to 4- a")-' = a - * '
. (1 o c)-'. ( 1

. ..

+ &C.

hut c + -- = 2 cos to , c* 4- -j = 2 . cos 2 to, &c. (by trigonometry) ; consequently we have
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(a1 - 2 aa' . cos w + a")-* = o-**
j

1 +
-y-)

. a* + &c.
j

!o

c^o_l_1\ 5 ")_ a -j-
: 1

,
. . a> -)- flee. > . COS to

. cos 2 ; + &c.
( 1.2

In the case before us, where 5 = --, this gives at once
IB

A = - l + * + - + &c
]

(136' 1}

*"'+

&c.otc.

If o be less than unity, these series are convergent ;
but if greater, we have only to throw the expression into

the form a'- 2
'( 1 2-^-. cos to + (-f\ ) previous to developement, and taking a = , instead of ,\a\a/x a o

a will now be less than 1, and we shall have A = ( 1 +
(4-J

"2 + &c.
j

&c.

In the former case, when -7 is less than 1, or the orbit of the disturbed planet is interior to that of the

disturbing, we have
2

.^ + &c -; (137-

'

and so on
;
and similar expressions are also readily obtained in the case when the orbit of the disturbed

planet is the exterior. Thus, when the mean distances of the two planets are given, the values of A, A', &c.

and their differential co-efficients , &c. are reducible to numerical evaluation, and may therefore be
d a

regarded as known quantities. The properties of the series on which they depend, afford many resources for

facilitating their evaluation, and rules for deriving one of these quantities from another, but these we shall not

stay to explain. The reader will find them with every developement in the second book of Laplace's

Mecanique Celeste, art. 49.

These values once determined, we have Q, or 2 /d n + r , expressed as follows :

*J d i"

2g d A f d A' 2 n A' ) . "}Q = _l + a - +
\

a + -
;'(

".ns (n -n')t I
da l da "-"' V (138,1)

(
dA" 2nA") ,. .

, (+ J. a
1 A cos 2 (n n') t+ &c. \(dan n ) J

Such is the value of the perturbative function when the eccentricities and inclinations of the orbits are neg-

lected. Let us, for the present, confine ourselves to this case
; and, writing M, M', M", &c. for the successive

co-efficients, we have

Q = M + M' . cos (n
-

n') t + M" . cos 2 (
-

n') t + &c. (138, 2)

Now the equation (128) gives, when e = o,

Q / 1 \n= = n4 a Q I because n4 = I or,
<z
a V a /

n = n2 a
{
M + M' . cos (n

-
n') t + &c.

}

*o that the differential equation in Ku becomes

o -
d ~

r> "
+ ,t

t u _ ! a [M + M' . cos (n
-

i')
t + &c.} (139)
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x ~v "' n2 a M' n4 a M" Astromm.v.

(n
_ ^ _ nt

. cos (n-n')t-
4(n _^ t _ nt

*( -
')

< - &c.

Consequently, since by equation (124) 6 r = a & u when e = o,

n4 a2 M" * a2 M"- * -M +
(n
_

,).
_ .

cos <
- n ) t - _____ . Cos 2 (n -')< + &c. (140)

The value of S r thus obtained, S is easily got from (131 ); for in this case = o,
d t

where 2 is used to express the sum of all similar terms from i = 1 to i = TO inclusive, and M '

represents
the i* in order of the co-efficients M', M", W", &c. Moreover

/'dQ dA an dM
J r ~ndt = a~. nt + V- -__. smtu,

i (n n') da

i

2 A '

dt I dQ = -2-.nt + _:_2 sin.

a (n

Uniting therefore these several parts, we get

xnt

f 3 a A' 2 a* n rf A' 2 n ( ') i 1

">" Z
)
T--TT, + -7- ;

-- -
7
-- M' ! SID i 10

(t( n) t (n ') d a t
2
(n n')

2 n2
|

Nw, first, since n t represents the mean loni^'.tude of as deduced from observation, the quantity n is

already affected with the whole influence of the planetary perturbation, and consequently the part multiplied
by n t in this expression of the perturbation in longitude, and which, if allowed to remain, would express an
additional perturbation, is superfluous. This famishes the condition

2 dA

which determines the constant g. Moreover, in the latter part of this expression, if we write for M' its value

rfA 2nA'
M' = a .

^
--h

r? n n n'

it will admit reductions, and the value of S will at length be found as follows :

2 n' a'
dA '

_. d a
(,'}

H2 + i
2

(
-

')*) . n2 a A'
2

If these expressions of S r and S be each multiplied by mf
, we have the values of rri S r and TO' 5 the

perturbations of the radius vector and the longitude, i. e. those parts of them which are independent of the
eccentricities of the orbits. These expressions give room for some remarks. The perturbation in longitude
as we observe is wholly periodical and dependent on n single angle w and its multiples. In forming then
a table of the values of m' S Q, the numerical co-efficients being computed, and the value of ra' S

thus reduced to the form p . sin w+ <?.sin2> +&c. we may include the whole of this in one column,
entered under the general argument w, instead of regarding it as consisting of an infinite number of separate
inequalities.
The same remark extends to the periodical part of m' o r, its arguments are the same as in the formula

for m' S 6
;
but besides this, S T includes, as we have seen, a constant part a2 . M or Zga a3

.
--
rf a

which becomes by substituting forg- its value in (141)
1 dA

const, part of n r = - a3
. ,

3 da
and therefore

a3 d A 1 / d A* "2 n A' \
' TT -3---|-n2 aa

. 2 --- I a --1

-- I cos iw ; (143)3 da i
2

(n n')* n2 \ d a n n'J

In the formation of a table of m' 8 r this constant part is of course included with the variable one, but the
effect is remarkable. It appears that the action of the disturbing planet alters the mean distance from the
sun of the disturbed, and, of course, its mean motion and periodical time from what they would have been had
the disturbing planet no existence. At the same time, it will be demonstrated in the following pages, that
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Astroaomy these alterations once produced, are permanent and unchangeable in their quantity by the subsequent Physical
< -v^ actions of the bodies composing the system. Astronomy

The angle w is the difference of longitudes of the two planets, or their heliocentric elongation from each
other. If we call e and e' their epochs, or their actual longitudes at the commencement of the time t, we have

w = n t + c (' t + e')

= n t n' t -if t c'

and this, in fact, is the argument of the perturbations when we neglect the eccentricities and inclinations of
the orbits.

Let us next examine the perturbation in latitude, we have

dQ _ z' z' 2

dz ~7*
~ ~

X3

Hence, it is evident, that if we neglect the inclinations and eccentricities, we have = o, and the plane
d z

of the disturbed orbit does not change.
We have thus determined the effect of the action of a third body on the orbit and motion of in, on the sim-

plest supposition, and our results (to recapitulate them) amount to this.

1st. That the radius vector undergoes a permanent change in its mean value, and, of course, that the period
and mean motion of m are permanently altered.

2d. That the elliptic value of the radius vector receives an accession of terms, of the form

p + q . cos w + r . cos 2 w + s . cos 3 w + &c.

and that of the true longitude, a series of terms of the form

q' . sin w + r' . sin 2 w + / . sin 3 w + &c.

w being the difference of longitudes, or mutual elongation of the planets, from each other.

3dly. That to express the several co-efficients of these formulae in numbers, nothing more is required
than a knowledge of the mass of the disturbing planet, and the mean distances and mean motions of both.

In the cases then where the disturbing planet has satellites, as in those of Jupiter, Saturn, and Uranus, the
mass is known, and the reduction of the formulae to numbers is complete. It is fortunate that these are by
far the most considerable bodies of our system, but proximity to a certain extent supplies the place of intrinsic

energy ; and, in the case of the perturbations of the earth, our uncertainty of the masses of Mars and Venus
leaves us in some degree at a loss. But physical astronomy furnishes us in this dilemma with considerable
aid. Regarding the masses of these planets as unknown quantities, we may calculate in general terms their

effect, either on the places of the other planets at assigned instants, or, on the elements of their orbits them-
selves, which are susceptible of much more accurate determination, by bringing a long series of observations
to bear on them, and comparing the variations in their values after long intervals, as computed by theory,
and as given by observation, we obtain data for the determination of these delicate quantities, so much the
more precise as the variations observed in the elements are greater, or, in other words, as the interval of time
in which they are observed is longer. It is thus that the lapse of ages is necessary to give precision to the
numerical data of our system, and that continual and patient observation must ultimately lead us to the

knowledge of points which elude the direct cognizance of our senses, and defy any investigation but those in

which successive generations of mankind bear a part.
In fact, if we regard the masses of all the planets as unknown quantities, but their mean distances and

periodic times as known ones
;

the latter afford us the means of computing the values of S r and $ in any
assigned case, independent of the value of m , which does not enter into their expressions. Let us therefore

represent by m' o r and m' '

0, the perturbations of the radius vector and longitude produced by the planet m'
;

by m" i" r and m" S" those produced by m", and so on. Then will the true values of these quantities at any
assigned instant be

r + m' I' r + m" e'' r + m" c" r + &c.

& 4- m' S' + m" S" + m'" S'" + &c.

in which r,
'
r, S"'r, &c. and 0, I

1

0, S" 0, &c. are quantities susceptible of calculation from theory. Sup-
pose now that we construct tables of the values of 0, d' 0, c," 0, &c. (or, as we will for a moment write these
latter quantities, 0, 0, ^, &c.) then, at any assigned instant, we have only to take out of these tables the values
of 0, 0, Yo &c.

;
and the true longitude of m will be

+ TO' + m" ^ -r &c. = L
Suppose now we compare this formula with a great multitude of observations, and thus obtain a series of

equations,

m' . 0, 4 m" . YT I
+ m''' . x, + &c. = L, 0,

m- .
3 + m" . Y", + m'" . Xs + &c. = L, - 0,

&c. = &c.

The only unknown quantities in these will be the masses of the disturbing planets m', m", &c. and by resolving
these, we may determine their values, and thus estimate the masses of the planets by the perturbations they
produce.

In this, as in almost all such delicate inquiries, where the quantities to be determined are exceedingly small,
and the observations from which they are to be discovered liable to inaccuracies, bearing a sensible proportion

VOL. in. 4 ti
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Astronomy, to the thing observed, (which in this case is L 0, or the total perturbation arising from the united action Physical
s ~v -' of all the planets,) we are obliged to employ a great many more observations than would be, mathematically Astronom;

speaking, sufficient, if each were perfect, with a view to destroy the errors of observation in the mean result. N-~~v^
The number of disturbing planets in our system at present known does not exceed ten; and it would therefore

appear that ten observations of the longitude of one disturbed planet would enable us to determine the masses
of all the rest

;
and so they would, were the observations mathematically exact, the elements of the orbits

exactly known, and the theory by which the values of 0, ty, %, &c. are computed, complete. But each of

these conditions is far from being fulfilled in the present state of astronomy ;
and if we would use this method

to determine the masses of the planets, we must accumulate many hundreds of observations made, not on one,
but oil all of them, especially on those subject to the greatest perturbations.
The method of treating a series of equations more numerous than the unknown quantities they contain, so

as to give them all their proper influence on the result, and obtain from them a set of values which, though
satisfying neither of them separately, yet when substituted in all of them, shall, on the whole, give more
satisfactory results than any other, depends on the theory of probabilities and may be found in Laplace's
Theorie Analytique des Probabihtes.

If the mass of any one or more of the planets (m') for instance, be regarded as sufficiently known from other

methods, we need only employ this mode for the rest, and regarding the perturbation m' 6' produced by it

as known, place it on the known side of the equation, which will thus become

m" &" + m'" f,'" + &c. = L - m' &'

Thus we may determine for instance, the masses of Mars and Venus, by means ofan extensive series of obser-
vations of the sun's longitude, or (which is the same thing) by employing to that end the perturbations they
produce on the earth. For the masses of Jupiter, Saturn, and Uranus, being known from the periods of their

satellites ;
and those of Mercury, and the four new planets Ceres, Pallas, Juno, and Vesta, being so small, as

to have little or no influence, we have only two unknown quantities (in', m") to determine.
This method is laborious, certainly ;

but considering the perfection of modern observations, the great mul-
titude of them which may be brought to bear upon this point, and the considerable degree of exactness which
the theory of the planetary perturbations has now attained, it is not impossible that it may one day be made
to render the best service in determining the masses even of those planets which have satellites. At all events,
it is highly desirable that it should be applied for that purpose, as its results would lead us to judge how far

the latter method can be depended on in cases like that of Jupiter and Saturn, where the great deviation from
2 77" X Q'T

sphericity of the central body renders the application of the formula t === somewhat liable to error.
vM + m

In fact, this formula is derived on the hypothesis of a force represented by but in the case of spherical

bodies only does the total attraction vary precisely in that ratio*. This alone, however, will not account for

the great difference which Mr. Gauss has lately found between the mass of Jupiter, as obtained from obser-
vations of its satellites, and that deduced from the perturbations of the small planets intermediate between

Jupiter and Mars, so that the subject must be regarded as open to further investigation, should the calcula-

tions of the last named eminent geometer be found to coincide with a more extensive series of observations
of those interesting bodies than the shortness of the time they have been known has hitherto allowed.

SECTION IV.

Of the method of taking into account the effect of the eccentricities of the orbits on the planetary perturbations, and of
the origin of the secular equations of their motions.

WHKN we regard the orbits as elliptical, the whole of the foregoing investigations require modification, the
value of the perturbative function, and, of course, of the perturbations themselves, receiving accessions of
terms depending on the powers and products of the eccentricities. We will here endeavour to explain the
manner in which these terms originate ;

and to a certain (though limited) extent, the course pursued by
geometers in determining their form and value.

The functions fi, / d Q, f , are explicitly given in terms of r, r', and w or 0', and contain noJ a r

other symbols. Hence it arose, that when r, r' were supposed constant, the only cause of the variation of
these functions consisted in that of w

;
and and 0' being in this case each expressed by an arc proportional

to the time, it was sufficient to develope them in cosines and sines of w, to have at once the expression of the
function n in such a form as we required for integrating our equations. When, however, the eccentricities
are introduced, all these facilities are at an end; r,r', and w, are no longer constant quantities and simple
functions of the time, but each of them branches out into a series of powers of the eccentricities, and sines
and cosines of variable arcs.

*
Laplace (Tkeorle dts Satellites de Jupiter, p. 102.) makes the deviation of the attraction of the first, compared with the fourth

satellite from the law of the inverse squares of the distances, only ~7nre of.the whole attraction of the former, supposing Jupiter
homogeneous. In Saturn, the attraction of the ring must cause a much more considerable deviation from tlmPJaw.
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Astronomy. Our object being to reduce Q, &c. to sines and cosines of arcs proportional to the time, or of the form Physical
'

A t + B, it is evident that we must substitute for r, r', and w, their values so expressed, and then develope
Astronomy,

each term of Q to the extent we wish. At present we will confine ourselves to the first powers of the eccen- ~~v~"~

tricities.

Now we have Q = R + R' . cos w + R" . cos 2 w + &c.

in which R, R', R", &c. and w are explicit functions of r, r', &c. and w = Q' putting and O1 for the true

longitudes of the two planets. Now, if we call e, and e', the longitudes at the commencement of the time t,

n I + e and n' t + <' will be their mean longitudes after the lapse of that time, and calling IT and tt
t the longi-

tudes of the perihelion, the mean anomalies will be n t -f- e TT and n' t + c' T/. Hence, the true

anomalies will be (by equation 30),

n t + e ir + 2 e . sin (n t + e ir
) + e"

1 x &c.

n' t + e' IT + 2 tf . sin (n' t + e' ?/) + e4 x &c.

and the true longitudes of course are

( t + e
) + 2 e .sin (n t 4- e IT) + e* x &c.

('< + ') + 2 e
1

. sin (n' t + e' T/) + es X &c.

Hence, if we neglect the eccentricities, we have simply w = (n t
'

t + ') and as R, R', &c. in this

case assume their circular values A, A', &c., the terms of Q not depending on the eccentricities will remain

as before,
A + A' . cos (n t n' t + e e') + A" . cos 2 (n t n' t + e e') + &c.

On the other hand, the terms depending on the eccentricities have their origin,

1st. In the developement of the functions R, R', &c. 5 when, instead of r, /, we put their elliptic values,

r = a + A r, and / = of + A r'

denoting by A r and A / the parts of r, / arising from the eccentricities.

2d. In the substitution of W + A w for w in cos w, cos 2 w, &c. W being the part of to independent of the

eccentricities, or

VV = (n n') . t + (e e')

and A w being the part depending on them, or

A w = 2 e . sin (n t + e
jr) 2 e! . sin (' t + e' TT') + ea X &c. &c.

3rd. In the multiplication of these terms together.
Now, if we still continue to denote by A that variation in Q r, r1

', &c. which arises from the eccentricities, we have

dQ dQ
t

dQ
A Q = A r + T- A / + A w

d r d r d w

in which the differential co-efficients , r> > are to have their circular values. If we would
dr dr dw

d2 Q (A r)
2

pursue the investigation further, we must add to A Q the terms
g

.
-

, &c.

Now, in general, we have

dQ dR dR' dR"
-3 = r- : . cos w + . cos 2 w + &c.
d r d r d r d r

d Q d R d R' d R"
. . , , T^ -

7- . uua w -|
-

7-d/ d/ dr' dr'

the circular values of which are respectively

cos 2 w + &t.

d A'

cosW +~ . cos 2 W + &c. (144, 1)da da' da

47
;t.W-.r

w +4' w + ta
;

<U4- 2 '

and, Jh like manner, the circular value of is
d w

{
1 . A' . sin W + 2 . A" . sin 2 W + 3 . A'" . sin 3 W + &c.

} (144, 3)

The values of A r and A / are given by equation (28) if we substitute merely for n t the expressions n t +
e jr, and n' t + e' T/

; which in this case are the mean anomalies, because the mean longitudes n t, n' t,

and the constants e, e
f
, TT, !/, are reckoned, not from the perihelion of the orbits, as in that equation, but from

the line of the equinoxes. If then we put V = n t + T, V = n' t + t' ir', we have

A r = a e . cos V + e s x &c.
~JA/ = a'e'.cos V + (P X &c. >

j (145)
and A w = 2 e . sin V 2 e' . sin V + e* x &c. J

Substituting therefore in A Q for the differential co-efficients, their circular values in (144, 1, 2, 3,) and for

A r, A /, and A w, the values just now found, it will become
4 u2
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, r

f d A d A' d A"
| PhysicalA Q = - a e . cos V J - + -j . cos VV + -

. cos 2 W + &c.
\ Astronomy.

[ a a a a da } ^ _

- a'e' . cos V'l-44- + 4^T cos VV + 4^T . cos 2 W + &c. ] (146)
( d a' d a' da' J

(2 e . sin V 2 e' . sin V) {
A' . sin VV + 2 A" sm 2 VV + &c.

}

+ e- x &c.

New these series are not precisely in the form we want them
;
the cosines and sines of V and W being multi-

plied together ;
and to disengage them, we must employ the well known trigonometrical formula

cos A . cos B = i
}
cos (A + B) + cos (A B) } (A)

sin A . sin B =
\
pos (A + B) cos (A B) J

By the aid of this, we get

cos V = cos V cos V = cos V
cos V. cos W = i{cos(V + W)+cos(V- W) ] ;

cosV . cos W' = i{cos(V' + W')+cos(V W')}
cos V . cos2 VV = i{ cos (V + 2W) + cos (V-2 W) j ;

cosV . cos2 VV = i[ cos (V + 2W; +cos (V- 2VV) j

&c. = &c. &c. = &c.

sinV.sin W = 1
[
cos (V - VV)-cos(V+ W) } ; sinV'.fin W = |{cos(V- W) - cos (V + VV) ]

sinV.sin2VV=l|cos(V-2W)-cos(V-|-2\V)} ;
sinV . sin2 VV = i[cos (V-2VV) - cos (V + 2 VV) }

&c. = &c. &c. = &c.

Thus we see that A Q (if we confine ourselves to the first powers of the eccentricities) is reducible to a

series of sines and cosines, whose arguments are all comprehended in the forms V + t VV, and V + i VV ;

or, (since cos A = cos A) in the forms i VV + V and iW + V. That is, (since V =nt + t IT, and
W = n t n' t + e e') in the forms

t (n t n' t + e e') + (n t + e ir)

i (n t n' t + e e') + (n't + e' IT')

If we actually execute the substitutions (still, for brevity, preserving the denominations VV and V) we shall

obtain for the value of A Q the following expression
A A

(147)
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\stronomv. becomes (i + k) M . n d t . sin (i W + k V + I V) Physical

'_j ,_- Astronomy.

and the part, of the expression 2 / d A Q arising from this term, will therefore be ^-

M cos ( W + * V + < V) (149)--
L ,,

i (n n') + k n + I n

We see therefore by the foregoing reasoning, that in order to obtain that part of the perturodtive function

which originates in the term 2 / d Q, and depends on the eccentricities, we have only to take the terms of

the expression for A Q (14") in their order, and with their proper signs, and multiply each of them respec-

tively by that value of the fraction

2 (i + k) . n_
i

( ') + k n + I n'

which corresponds to the values of i, k, I, in its argument, represented by i W + k V + I V. For instance,

2 n
the term which has simply V for its argument, must be multiplied by --- = 2, that which has V by o.

Again, the terms, whose respective arguments are W + V, W V, W + V, W V, are to be multiplied,
4 n 2 71

according to this rule, by the respective co-efficients -T, o, 2, and-7 . Similarly, the terms
2 n n n 2 n

which have <2 W + V, 2 W - V, 2 W + V, 2 W V, for their arguments, acquire the co- efficients

6n 2 ra 4n 4 n
and -- r ; and so on.

3 n 2 n'
'

n 2 " 2 n rc'
'

2 n 3 i'

The co-efficients thus acquired by integration depend solely on the ratios of the mean motion.-,, or periodic
times, of the disturbed and disturbing planet, and are of very great importance in the planetary theory.
Were it not for these, the theory of the planetary perturbations would be very simple, as the same treat-

ment, or nearly so, could be applied in every case, and the magnitudes of the several inequalities would go on

diminishing with more or less rapidity, as the arguments contained higher multiples of the mean motions.
But these co-efficients prevent this regular progression of magnitude from taking place, and render it

difficult to foresee without computation whether any assigned inequality may be neglected or not, and im-

possible to argue from its known minuteness in the case of one pair of planets to its probable smalness in

that of another. Thus an inequality, whose maximum we know to be small in the case of Venus disturbed by
the earth, may have a considerable magnitude in that of Jupiter disturbed by Saturn, merely from a relation

subsisting between the periodic times in the latter case which does not in the former. In fact, it is evident
that if the periods should happen to be so related as to render the denominator of any of the foregoing or
similar fractions very small compared to the numerator, the inequality into which it enters as a co-efficient

will, on this account alone, acquire a very great preponderance. Thus, if the period of the disturbed planet

were very nearly half or double that of the disturbing ; the terms, multiplied by
-

j or by r
HI ~~ Jl 'fl

~~~ & ft

would become very large, and the length of the period of the inequality represented by it would be propor-
tionally increased, and in the case of exact commensurability would actually become infinite

;
that is to say, the

disturbance would go on to such an extent, as to make a total subversion of the original conditions of the

problem. The physical reason of this is equally obvious. In the case just instanced, the two planets, at every
revolution of the exterior, would be placed in exactly the same circumstances the same disturbing forces
would act in the same manner for a series of ages, and their effects, instead of compensating each other by
mutual opposition, would go on accumulating in the same direction, till their orbits at length became entirely

changed, and the commensurability of their periods at length ceased to subsist. In fact, an equation thus
limited by no period, and affecting both the longitude and radius vector of each orbit always the same way,
is equivalent to an alteration of the mean motion and mean distance

;
and as this would take place in opposite

directions on the two planets, shortening the period of one, and lengthening that of the other, their periods
would continually recede from commensurability ; the magnitude of the inequality in question, as well as the

length of its period, would both acquire finite values, which even then would continually diminish, till reduced
within limits consistent with the stability of the system. It is probably by some such gradations(if we may
hazard a conjecture on a part of the planetary theory so far beyond the reach of analysis or exact reasoning,)
that our system has attained, in the course of almost indefinite ages, its present admirable state of equilibrium,
in which no inequality of enormous magnitude exists

;
and those which have any notable value, can be proved

to be confined within comparatively narrow bounds.

Let us next consider the part of the developement of Q, which arises from the term A ( r
)

. Now,

if we regard only the first powers of the eccentricities, and consequently neglect the squares of A r, &c. we
have ./ rf Q \ rf Q d Q

d r d T

d Q d* Q t/2 O ,/; Q
=

.
A r + r .

- A r + r A r' + r A to
d r d rs dr d r d r d ;i-
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Astronomy. d Q Physical
*-_r- -_- in which the differential co-efficients are to have their circular values, which we may represent by , &c. Astronomy.

Now these are,

da
dA
da d a da

da*

d2 A d2 A' rf
2 A"= a -T - + a -

. cos W + a . cos 2 W + &c.
n ft* ft /i* ft n

d ad a

tPA

d a da7
+ a

I .a

da da'

dA'

. cos W rp \"
a . cos 2 W + &c.

. sin W + 2 . a

da da'

dA"
. sin 2 W + &c.

.(150)

dadW da da

Let these be substituted in the above expression for A (r
J
and the values of A r, A / and A w, given

in (145) be put for them, and we shall have, by a process exactly similar to that gone through for A Q,

/ d Q \ ( ( d A d2 A \ / d A' d* A'\ 1

A
(

r
)
= - a e . cos V . N + a

)
+ ( -j + a -

)
cos W + &c.

\
\ d r / ( \ d a daV\da da 4/ J

-aV.cosV'.l a ,^
A
.+ a ^^ . . cos W + &c. i (151)(dad a' dad a' j

(2 e . sin V 2 e' . sin V')(l a . sin W + 2 . &c.l(da j

which, by the use of the same trigonometrical formulae, and by properly arranging the terms, becomes

di
'/cos V

d aa da

**_.*}co.(W+ V)-

^ A/
3a^A_] Cos( W

d2 A
ti'.aa'--r ; cos V

da da'

da* daj

cos
( W + V)

V) la of 2 a, [cos (
W + V)

2( da da' da)

da da
''l

-
,

/uus is * i s<*
'

. 4 a [cos (2W V)2(da* daj 2( dado7
rial

- &c. - &c. ; (152)

We are now in a condition to express the whole value of A Q, by combining this with the expressions

(147) and (149) and it is evident that our result will be of the following form :

A Q = (Ne cos V + N' J cos V) + O e cos (W + V) + OV cos (W + V) (153)

+ P e cos (W V) + P' tf cos (W - V) + Q e cos (2 W + V) + &c.

and the co-efficients of the several arguments will be

( d3 A d AN = I a* 1- 3 a(da1 da

O = 1 a* 1 7 a
;

A'
,

2( d as 2 n n' da 2 n n' )

N' = - a a' .

d3 A
da da'

dA'
'

d a d a' da da'

(154)

P= -l( a(,.J^-3 a l^ +
2

/a^__i^A't2( dado' da n 2 n do n 2 n jj
The value of A Q being thus obtained, that of II is had by mere substitution. The part of n, independent

of the eccentricities, will remain as in the preceding section, changing only in the several arguments to into

W
;
and if we denote this by n, and by A n the part of II which depends on the eccentricities, the equation

(128) will give
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e ( /' ) A Q PhysicalA II =
\
Q . COS V - 2 / Q n d t . Sin V Astronomya* | ,/ J o-

in which Q and A Q denote, as we have all along supposed, the parts of Q respectively independent, and

dependent, on the eccentricities.

A Q
The value of A n therefore consists of two parts ;

the latter is immediately obtained from the

expression of A Q above found, and is equal to

e ( 1

4j N . cos V + O . cos (W + V) + P . cos (W - V
) + &c. !

_ ^IJN' . cos V + O'. cos (W + V) + P' . cos (W - V) + &c.|
a2

( )

The former depends on Q, and must be determined by substituting for Q its value

Q = M + M' . cos W + M" . cos 2 W + &c.

where M, M', &c. are co-efficients, whose values are assigned in equation (138, 1). This substitution made,
we find

M' M'
Q cos V = M . cos V + --

. cos (W + V) + . cos (W - V) + &c.
2

Q n d t . sin V = - M . cos V
,

M "
',.

cos (W + V) - ^- cos (W - VI - &c.
2 (2 n n) 2 n

So that the part of A IT now in question becomes

[3 M . cos V +
4n ~"

M' . cos (W + V) +
2 " +

,

"
M' . cos (W V) + &c.j

aa
I 4 n 2 '

2 n
)

and the whole value of A n will be as follows
:,

AH =
4{(3M

- N) cos V +
(4

4

".Jg"/
M' -

o)
cos (W + V) + ^^/

"/

M/ -
P)

cos (W-V) + &c. t

- JN' . cos V + O' . cos (W + V) + P' . cos (W - V) + &c.) ; (155)
I J

This found, the integral of the equation g
+ n2 u + II = o will be obtained by the expressions 106,

107, and 108. The parts of o n, S r, and S 0, independent of the eccentricities, have already been found
;
and

calling therefore A S u, A 8 r, and A S 0, those parts of these respective quantities which depend on the

eccentricities, we shall have (since V = n t + e TT, W = (n n') t + (e e') and V = n' t + e' T/)

-
?{-7^r "' v/ t T ' T " "r + V'> +

(.
- ^). - ...

"" (W ' V'> * &c
] < 156)

The perturbation of the radius vector is now easily found
; for, as we have by equation 124,

r = a3M{l+2e.cosV + &c.
J

this gives A8r= a,( At>M-|-2e<5M. cos V
}

whence A Z r is readily obtained. With regard to the perturbation in longitude, or mf S 0, no further diffi-

culty than the length of the substitutions remains to be encountered ;
for the part not depending on the

eccentricities being already obtained, that which depends on them will be had by merely substituting for B r
i

r and Q, the values of A c r, A (r ) and A Q already obtained in the general expression (121).
d r \ d r /
But as this process of substitution and reduction presents no difficulties in principle, requiring only patience

and exactness in performing the numerous combinations of the terms which occur in it, we shall not pursue
it, but content ourselves with observing, that the part of it which depends on the first powers of the eccen-

tricities will, on examination, be found to assume the form

e . a t . cos V + / . 6 t . cos (W + V)
-|

-1- e {A. sin (W + V) + B . sin (W - V
) + C . sin (2W + V) + &c.) V; (157)

+ e
{
A', sin V" + B' . sin (W V) + C'. sin (2 W + V) + &c. }

J

It is here that we first encounter the secular equations of the planetary motions, -in the form of two terms

containing the time t disengaged from the signs sin and cos, and therefore capable of indefinite increase and
diminution. They are multiplied by the eccentricities, and therefore originate from the ellipticity of the
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and in the case of strictly circular orbits, would not exist. Similar terms occur of course Physical

<s y -^ in the value of 8 r, being introduced by the integration of the equation for 6 u. But as the discussion of these Astronomy,

terms is one of the most delicate and difficult points of the planetary theory, we shall not enter upon it till we v
"v~~"

have pointed out the method of taking into account the higher powers of the eccentricities.

SECTION V.

Of the inequalities depending on the squares and higher powers of the eccentricities.

IT is not our intention to enter into any detailed account of this very complicated part of the planetary

theory. Any such attempt would lead us far beyond our proper limits
;
and the reader, who is desirous to

follow it into its minutiae, must consult the original memoirs of Laplace, Lagrange, &c., the Mecanique
Ce"lfste, and other works of a similar nature. In the foregoing sections we have however followed, as nearly
as possible, the course pursued in the last named immortal work, supplying only such steps in the analysis
as cannot be expected to be discovered by the ordinary student, (and they are numerous) and endeavouring

throughout to place the principles of the several processes in as strong a light as possible. In the present

section, the explanation of the principles on which the process of approximation is to be pursued will be

almost our sole object.
Let us resume the consideration of the function Q.

O = R + R' . cos w + R". cos 2 w + R'" . cos 3 w + &c.

When r -f A r, r
1 + A /, and w + A w, are substituted for r, r', w, in this, Q becomes Q + A Q, and we have

A Q = dO A r dO A/ d Q A u>

d
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Astronomy, and so on. Now these series may be regarded as completely developed ;
for the co-efficients of their Physical

""V" * several terms cos W, sin W, &c. are quantities completely given in numbers, when a, a', A, A', A", &c. and Astronomy,
their differential co-efficients are known, by the equations ^-~~V~'

d i d A \ _ d A d2 A d / d A'\ _ d A' d*A'

;7~ j
~

~dT~
+ a

7u*~ ' T^\a
~dTl -^~a~ + a

~Itf'
&c 'da

d

To7
'

(ft

da*

d

dA
da
d A
d a

d2 A
da da'

da

d

~d~7

d3 A

dAa A' \

"
da /

~ d*A'

da d a-,;
&c.

da3 '

,(161)

If, instead of r , we had any other function to develope (such as for instance r* . \, we might
d r \ d2 r d //

treat it exactly in the same way, and should arrive at corresponding series, in which the sines and cosines ofW and its multiples would be combined with co-efficients absolutely constant, and reducible to numbers.

In the values of A Q and A (r
-jr7-\

in (158) and (159) we see therefore that the differential co-efficients

of Q introduce the sines and cosines of W, and its multiples, combined only with given quantities, and not

involving the eccentricities. These latter arise from the factors A r, A r', A w, and their powers. Let us now
*xamine these more nearly. Supposing then, as we have done all along,

V=nt + e-7r; V = '
t + e' - ^

;
W = n t - n' t + - e'

let us take a, ft, &c. as follows :

a' = - a' . cos Va = a . cos V

? = (1 cos 2 V)

7 = ('3 cos 3 V 3 cos V)

etc.

p = 2 sin V

9 = sin 2 V

1 13
r = sin V + - sin 3 V

4 12

fee.

P'= (1 -cos 2V)2

</ = -
(3 cos 3 V 3 cos V)

o

&c.

p' = 2 sin V
' = sin 2 V

4

= _ _1 sin V' +
4

&c.

sin 3 V

Then we shall have, by the equations (28) and (30)

Ar'rs oV + /3V* + <yV3 + &c. V- ; (163)

Au) = (pe+ ge
a + re'-j- &c.) (p' d + <{ e'* + T' e'

3 + &c.). J

whence we obtain

(A r)* = *e* + 2a/3e3 + (/3
2 + 2 a 7) e4 + &c.

A r A / = a a' e e' + a
/3' e e'

2 + /3 a' e2 e
7 + &c.

A r A ic = p <z e* + (p /3 -f 9 a) e3 + &c. p' a e e' &c.

(A to*)
= p* e2 + 2p q e3 + &c. + (p'* e" + 2 p' ^ e'3 + &c.) 2 pp' e e

7 - &c.

and so on
;
and it only remains to substitute these values in the expressions for A Q and Air I .

V d r J

Confining ourselves to A Q, since it is obvious that the process is exactly similar for the other function, we
have, as before, for the part depending on the first powers of the eccentricities,

d Q d Q

which, developed into series of sines and cosines, gives the result obtained in the last section.

The part of A Q depending on the squares of the eccentricities, consists of three terms multiplied respec-
tively by e*, eef, and e'

2
, which originate, 1st. From the terms /3 e*, /JV3

, q e8, and cf ff1, in the simple
powers of A r, A /, A w, and which are therefore affected with the differential co-efficients of the first order

only : 2dly. With the terms a* e*, a'* e'
3
, p* e*, p' e'*, and 2 pp'e </, in (A r)

s
, (A /)*, and (A u>), and

which are consequently affected with differential co-efficients of Q of the second order.

VOL, HI. 4 x
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\stronijtny Sdly. With the terms a p e9,
a' p' e'-, a a' e a', a p' e e', a' p e e', which arise from combinations of A r with Physical

^
v

' A and with A r'. Astronomy.

The aggregate of all these terms, with their proper co-efficients, is

Q d Q \+ 2 o I 4-' I I ITT I '

da *
d W / V da* '

d a d W r d W2

d2 Q
,
d2 Q

d a' d W
~ PP dW*

,f ,
d2 n

,
d2 a

+ CT a
dTda-'- aX dTdW +a/)

e ( / dQ , d n \ / ., d* Q d2 Q
-I < (2 /3 2 o 1 + I of* 2 a o h+

2 H P
da' *dW/^\ 75 P da'dW +P

(164)

d Wa

The co-efficients of e3 , e2 e', e e"1, e'
3
, and of the higher powers and combinations, may in like manner be

easily obtained ;
but the number of terms of which they consist, goes on increasing so rapidly, that they at

length become of extreme complexity.
d O

Let us now consider the nature of the terms into which the expressions for Q and r resolve fhem-

selves by the process of developement, and the manner in which they become modified by the several pro-
cesses of substitution and integration they have to undergo in obtaining the values of Q, IT, S u, & r, and S 0.

It is evident, then, since a, ft, 7, a', ft', &c. are all composed of cosines, and p, q, p', <?',
&c. of sines of V,

V, and their multiples, without W, that any product or combination of these letters, (such as a2, ap, a a',

&c.) is reducible by the trigonometrical formulae so often employed in the foregoing pages into the simple
1 4- cos 2 V

sines or cosines of arcs, of the form k V + I V. Thus, o2 or aa . cos V2 becomes a* .
-

, a p, or

2 a . sin V . cos V becomes a . sin 2 V, a a' or a a' . cos V . cos V is reduced to (cos (V + V) +

cos (V V')), a p' into a . sin (V V) a . sin (V 4- V), and so on. Moreover, it is evident, that when-
ever the combination in question consists only of the letters a, ft, a', ft', &c. or of these combined with any

product of an even dimension, in p, q, p', q', &c., that the terms into which it is resolved will consist entirely

of cosines
;
but when a product of an odd dimension in p, q, p', q',

&c. occurs, then of sines. Now, the

differential co-efficient of Q combined with any such product, will, in the former case, evidently
v e differen-

tiated an even, and in the latter an odd number of times relatively to W
;

so that in the former case it will

represent a series of cosines, and in the latter, of sines of W.

Every term therefore formed by such combination, must be of one or other of the forms

cos iW . cos (k V + I V) and sin i W . sin (kV 1 V)

both which, being further resolved, produce terms comprehended in the form

cos (iW + kV IV)

It is thus demonstrated, that the co-efficients of all the powers of e, e
f
, in the developements of D and

r are generally reducible to series of cosines of arguments, of the form z W + k V + IV ; but there is

a connection between the multiples of V anil V contained in any argument, and the dimension of the power
or product of the eccentricities to which it belongs that we rmist now explain. In fact, it is obvious from

the process above pursued, that if we regard a, a. p, p', as quantities of one dimension
; ft, ft', q, q',

as of two; 7, 7', r, r of three, and so on, the dimension of every term multiplied by e, or </, wi'l be

one; that of the terms multiplied by e^,e^, e'2, will be two, and soon. Now, the expressions of these

quantities in V and V involve, each, the sines or cosines of multiples of V, V, as far as the number expressing
its own dimension ;

and when these come to be combined by multiplication, and then resolved by the usual

formula, it is obvious that the resulting terms of the form cos (k V + I V) and sin (k V + / V) can only
contain such multiples kV and IV of V, V, as together (without regard to their signs) do not exceed the

dimension of the combination from which they arose.

Moreover, since the alternate multiples of V, V are absent in the expressions of a, ft, &c. the same law will

hold good in any combination of them when developed. Hence we may state it as a general law, that

The co-efficient of any power or product of the eccentricities of the dimension n, in the developement of O or r

will consist of a series of cosines, tlte form of whose argument is

iW+ kV IV

in which i may have every possible value from o to infinity,
lut k and 1 are restricted to certain particular values, vi-e.

those which satisfy one or other of the equations

ic + I = n, k + I = n 2, k + I = n 4, &c.

down to k + I 1 , or k + I = o, according as n is odd or even.

Thus, as we have already seen, the parts independent of the eccentricities consist of terms of the form co.
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Astronomy, tW only, and those depending on the first powers involve the arguments Physical
'

v i W + V, iW - V, i W + V, i W - V Astronomy.

and no other. Similarly, in the part dependent on the squares and product of the eccentricities, the arguments
which can occur, are only

|W, iW + 2 V, i W- 2V, iW + V+V, iW + V- V, i W - V + V, i W - V - V, iW + 2V
and iW 2 V, and so on.

Here, it will be observed, we have again the argument i W, which occurred in the part independent on the

eccentricities, and it is easily seen to be a general law, that any particular argument which first occurs combined

with a power or product of the eccentricities ofthe dimension n will occur again, combined with products of the dimensions

.(- 2, ?i + 4, &c. to infinity,
but not with n + 1 , n + 3, &c. For instance, the argument iW + 3 V cannot

occur combined with any dimension of the eccentricities less than the third, and will occur again in the terms

multiplied by the 5th, 7th, &c. dimensions, but not by the 4th, 6th, or any even dimensions.

Since W = n t n't + e - e', V = n t + e ir, and V = n' t + e ir", the argument iW + kV + IV
is equal to (i + k) . n t (i 1) n' t + (i + k) <

(i 1)
e' k IT - I ir

1

If then we would inquire in what terms any proposed combination of n and n', such, for instance, as (fn g n')t

can originate, we have only to put
i + k=f, i-l = g

which give i = f k, i i - g = (f g) k

taking then in succession k = o, k = + 1, k = + 2, &c. we get

i =f, t =/+!, i = /+2,&c.
l=f-g, l=f-g + l, Z=/-g + 2, &c.

For instance, if we would know from what terms the combination (2 n n') t can originate, the corres-

ponding values of i, k, I, are

,,t.i = 9, h = o, I., 2
dly.{<

=
j :
*Z^

lf \=-\ 3dly.{; =
-

J=
*
^ \=~\

So that any of the arguments comprised in the following series,

( W+V-4V; 2V -5V;~ 3V > \ 3 W _ V - 2V; 4W-2V-V; 5 W - 3 V, &c.

will produce the combination in question. Now, the lowest sum of the co-efficients of V, V in these argu-
ments taken without regard to their signs, is 3 : consequently, the combination 2 n i 5 n't will first occur

among the inequalities multiplied by the cubes or products of three dimensions of the eccentricities, and

among them only in such terms as produce the arguments
2 \V _ 3 V, 3W - V - 2 V, 4W - 2 V - V, 5 W - 3 V.

Let us now examine the co-efficients of the several arguments as they occur in the values of Q, n, &c.
d n

The co-efficient of any argument, such as iW + k V + IV in the developement of Q or r will

obviously consist only of combinations of a, a', A, A', A", &c. and their differential co-efficients with a

power or product of e, e', and may therefore be regarded as a given quantity, and its value, with more or less

trouble, numerically computed. Taking A for the general representative of such a combination, M will be a

function of a, a, e, e', and of these only, and

Mcos (W + kV IV)

will be the general form of any term of Q or r .

In the value of Q, the terms of r enter unchanged ;
but since

d W = ndt, dV = ndt, dV = o

the term under consideration will produce in d Q the term M . (i + k) n d t . sin (iW + k V + / V) and

inQ ' the term
,.

2(
ir*

)n
, .Mcos (iW + kV + IV)

(i + k) n + I n

so that Q will contain two species of terms, those whose co-efficients are of the form M, and M
(i + k) n + I n

The value of Q substituted in II (equation 128) will produce terms comprised in one or other of the forms

M.cos (iW + fcV + IV)

,. cos (iW + VV IV).

f
. ,

(i + k) n + In

MT ... M" a. / ,.cos(iWfeV + IV)
(z + k) n + In

M.-( ' k] "*--
r .cos(iW + fV + IV)

\(ik)nln'} {(i/0J'}
4x2
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\sironoray.in the process of integration by which u is derived from n (or in the integration of the equation (J29)) physical^~Y " '

\ . \ Astronomy.
these terms again acquire factors of the form-:

-- or-
{ (i k) n In'

{
n*

{ (i + kj
)
n I n'

}
n*

according as k or IS occurs in the argument ;
and as these forms are obviously not altered in the transition

from & u to dr, the terms of S r will necessarily be included in one of the forms

M.-:--l
---- cos (iW + fc V + IV)

{(i k) n + Zn'}
2 -H2

M.-(l y) "--cos (iW + *V + IV)\' '" 2

\(ik)nln'} {(ik)nl ')"
- 2

M.----- cos (tW + kV + IV)
{(i k)n ln'\ {(ik)nln')*-n*}

M .
-( ' kJ} "'- cos (i W + k V + I \',

{(ik')n In'} {(i k)nlnf} { (i k) n ln')*
-

n*}

Let the several functions of n, n', in the co-efficients of these terms be represented indiscriminately by N,
then will the general form of the terms of S r be M . N . cos (i W + k V + / V).

It remains only to consider the nature of the terms of which K consists. Now these will be,

1st. Those arising from the term 6 r, which are of the form

M V IL N^- * sin (i W + (k k") V + I V)
n a4 v 1 e-

2dly. Those arising from r , whose form is
a t

2 M
{ (J + *) n + I n' ' N=- - sin (i

W + (k k") V + IV)
n a2

/" d Q /V*
3dly. Those arising from / r

'

n ill and // d Q . n dt whose forms are respectively

2aM n 3 r< M (i+k)n- /-iirL/irj iv\- ,. ,
sin (iW + fr V + / V) , and . sin (iW + kV IfV)

and lastly those peculiar terms containing / out of the signs sin and cos which we have already noticed as giving
rise to the secular equations.
The complete enumeration of all the possible varieties of terms which SO may contain, will therefore be

had by putting for N each of the four forms above assigned to it
;
but as those only really differ importantly

in which the denominators of the fractions differ, we need only enumerate the latter quantities ;
which are,

(i k}n In'; { (i k) n t n'
}

a
;

{ (i k) n I n'
[4
_ n'-

; ((i k') n I n') {((ik)n 1 n')
2 - n*

\

{(i V) n In'} { (i + k) n In'} [((i k) n In')*
- n2

}

These then are the various forms of the divisors with which the processes of integration, &c., affect the

inequalities in longitude. They are, as we have already remarked, of the highest importance in the theory
of the planets, by reason of their effect on the numerical values of the maxima of the perturbations to which

they belong. Such is the immense number of terms, or rather of series of terms, branching out in all direc-

tions, of which the perturbations consist, that it is manifestly in vain to attempt to take account of them
all. It is therefore of the highest consequence to have some guiding principle to direct us in our choice of
the terms to be retained or neglected. Were it not for these divisors, we might safely rely on the rapid

convergency of the powers and products of the eccentricities; and reject, without further examination, all in

which their dimension exceeded a certain limit
;
but should there be an approach to commensurability in

the periodic times of the two planets, (as, for instance, should five times the mean motion of the disturbed

planet (5 n' t) be very nearly equal to twice that of the disturbing, (2 n t)) this circumstance will render

some one of their factors (5 n' -2 n) very small. In consequence, all the divisors into which this factor

enters will become very small, and the inequalities affected by them will, in consequence, acquire from
this cause an unnatural magnitude (if we may use such an expression) and must be retained, even though
of such an order as would otherwise authorize their rejection. The terms so affected too, will originate in

a great variety of manners from the developements, and may be affected with various powers of the eccen-

tricities
;
so that their number will necessarily be infinite, and for the purpose of approximation only the most

prominent can be selected.
The equations of the motions of Jnpiter and Saturn, known by the name of the great inequalities of these

planets, were long a difliculty in the way of the theoretical astronomer, and even a stumbling block in the
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Astronomy, way of the Newtonian philosophy. It was observed, on comparing very ancient observations of the oppositions Physical
'

of these planets with more modern ones, that their mean motions had undergone an apparent alteration ;
that of Astronomy.

Saturn appearing to have been retarded, and that of Jupiter accelerated. In other words, that Saturn per-
"

petually lagged behind, and Jupiter as constantly surpassed the places, when they ought to have been, on the

hypothesis of the mean motion, or periodic time, remaining invariable.

We have seen that every inequality of very long period will appear, while on the increase, to affect the

mean motion
;

it is obvious it must, if the latter, as determined by observations comprised within the periods
of its increase, be compared with the result of similar observations made while its value is on the diminu-

tion. Now, the length of the period of any inequality depends on the multiples of the mean motions found

in its argument ;
and it was not difficult for geometers to shew, that, so far as the rirst powers or squares of the

eccentricities were concerned, no inequalities of such very long periods as the case required, could be found

in the motion of either planet. The cubes and higher powers had all along been neglected without fear of

error
;
but Laplace having, from other considerations, ascertained that an acceleration in Jupiter's motion being

supposed, a retardation in Saturn's must follow of course, and that in the very proportion observed
;
and that

therefore the phenomenon was not altogether inconsistent with the laws of gravity, set himself to examine the

terms multiplied by the cubes of the eccentricities. Here he immediately encountered the argument
(5 n t 2 n't + const.) ;

and the mean motion of Jupiter being to that of Saturn nearly in the proportion of 5

to 2, if we suppose n' to correspond to Jupiter's and n to Saturn's motion the co-efficient 5 n 2 n' is very

small, and the corresponding period is found on calculation to amount to 918 years. The resulting

inequality has also 5 n 2 n' for its divisor, and its magnitude is thus increased as well as its period lengthened.
On executing the calculation, the inequalities of both planets were found to be such as would completely
account for the apparent accelerations and retardations observed.

SECTION VI.

Of the variations of the elements nf the planetary orbits, and the secular equations of their motions. Theory of the

major axes, inclinations, nodes, eccentricities, ciiul aphelia.

WE have already taken occasion to observe, that the motions of the planets may be regarded as performed
in ellipses, whose positions and magnitudes are continually, but very slowly, changing, by the effects of the

disturbing forces. These forces are so small, that in a moderate period of time, as for instance, in a single
revolution of a planet, the change is insensible

; and, if we allow for those inequalities which depend on the

configurations of the disturbed and disturbing planets, the theory of which has been exposed in the foregoing
sections, the motion, equated by the application of these corrections, will coincide with almost rigorous exact-

ness with the elliptic theory. But after the expiration of many revolutions of the planet, this exact coinci-

dence will cease to take place, even when its place is corrected for such periodical inequalities. The place so

corrected is found, it is true, in the circumference of an ellipse with the sun in its focus, but it is not an ellipse
of precisely the same form and position as before. Its elements have undergone a change, and this change,
though imperceptible in a single revolution, becomes gradually more and more evident, till at length it is too

remarkable to be overlooked.

Such slow changes are what we understand by the secular variations of the elements of the planet's orbits.

But there is another point of view in which we may consider the subject, which presents peculiar facilities to

the application of mathematical investigation. It consists in referring all the inequalities resulting from

perturbation, to the variation of the elliptic elements, not merely those of long periods, but those which pass
rapidly from their maxima to their minima, and depend on the configurations of the bodies. We are indebted
to Lagrange for this view of the subject, and shall endeavour to give an idea in this section of the luminous

analysis of that great geometer.
If, at the expiration of any instant, the disturbing forces were to cease acting, the planet would go on

describing an exact ellipse, of which the infinitesimal arc described in the last instant would l>e an elementarv

portion. The plane of the ellipse would be that in which this portion arid the sun's centre lie
; its eccentri-

city, position, and magnitude, would all be determined from the position, magnitude, and curvature of this

element, and the laws of elliptic motion. In a word, it would be a real ellipse of curvature to the actual curve
described by the planet, at that particular instant, subjected to the conditions of having its focus in the sun,
and satisfying the other laws of elliptic motion during that moment. The elements of the planet's orbit then,
at any moment, are no other than the elements of this ellipse, and are determined from three consecutive

places of the planet, infinitely near each other. Thus every inequality in its motion will produce a corres-

ponding fluctuation in the elements, which will thus be subject to as many equations, periodical or otherwise,
as the planet's motion itself is affected with.

The periodical terms thus originating in the elements, will, in the course of many revolutions, compensate
each other

;
but if it should happen that terms not periodical should find their way into their values, these

will express secular changes, which it becomes of the utmost importance to investigate.
To determine the ellipse of curvature at any instant, is a matter of no difficulty ;

we have onlv to call to
mind that any one of the constants in its equation may be insulated, and expressed in terms of the co-ordi-
nates and their d'fFerential co-efficients, by the mere operations of differentiating and eliminating; so that,
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Astronomy supposing the co-ordinates and their differential co-efficients given at any instant, any one of the constants Physical

-y-^- may have its value ascertained by simple substitution. But it is not necessary to go through these processes Astronomy.

we may avoid that trouble by recurring to the origin of the ellipse itself. Now all we know of it is, that it
'

satisfies the dynamical relations of the problem, on the supposition of the disturbing forces ceasing to act at

the instant dt. Consequently its equations, however transformed, must be such as to satisfy the differential

equations
d2 x fix

TF + ^ =

dt* T3

<PZ
,

/' Z _ -

d t*

and its elements will be the constants introduced by the integration of these, or known functions of them.

For instance, let us consider its major semiaxis. If we pursue with these the same process of integration

by which equation (109) was obtained, viz. multiply the first by dx, the second by Ay, and the third by dz
and add, and integrate, we find

fi 2 fi d ,r
2 + (/ ?/

2 4- d z2

a
'

r d <
2

n being the arbitrary constant introduced by integration ;
and if we compare this with (33), we shall see

that a is the semiaxis of the ellipse. Thus we know, that all that is necessary to obtain the semiaxis of

the ellipse of curvature at any instant (let the body describe what curve it will) is merely to substitute for

d x d y d z . ,

r,
--

, ,
-

, in the expression
d t d t d t

those values which, in the case proposed, they actually have in virtue of the real motion of the body, such as

the forces in action make it.

Now, in the case of disturbed motion, dx, dy, dz, are given by the equation (94) ;
for if we integrate

,hese after multiplying them respectively by % d x, 2 d y, <Zdz, we find

fVxdx f d O

-d7"*
d Q/

(.- n

dz

consequently adding all together,

/d.r\ 4 /rf'/\
a /dr\ 2 f'Zxdx + 'Zydy + 2zdz . /) d Q

, dQ, dQ
,

,

f 1 + (
-

I = ji / -,
:

'

2 m I (
o x -\ a y -\ d z ]\dt) \dtJ\dt} rj r3 J \ dx dy rl.i )

- 2 m' /d Q

and substituting, we get

a = ?-
, or - = 2 TO' A Q

; (165, 1)

2m'/dQ

The same result will be obtained as follows : If we integrate, as in (109), and instead of adding explicitly
u f*

the arbitrary quantity to complete the integral, regard it as included under the sign / we have

but if a be the major semiaxis of the ellipse of curvature,

jt_
1 n _ d xa + d y* + d

~ ~
a dt"

Hence we get A 8 rf /d Q
a J

If (a) be the major semiaxis at the commenr-ement of the time t, and / d Si be taken, so as to vanish when
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Astronomy, f = o, we have p /*
, //*,, o lifi- O\

Ph
>"
sical

_r- -_- "r*
= ~T~;

--h / U U (lOo. a> Astronom/

In this instance we have had no difficulty in arriving at once at the finite expression for the varied element.

But it is in other cases more commodious to express its momentary variation. Let us therefore denote by the

characteristic S, that peculiar variation by which the ellipse of curvature passes from the form and position it

had during d t to that which it has in the consecutive instant, then S a, S e, S TT, &c. will be the momentary
variations of its semiaxis, eccentricity, perihelion, &c. Moreover, d x, c y, o z, and S r, will represent the

jxcesses of the values of x, y, z, r, in the varied ellipse ; not over what they were in the former instant, but

.)ver what they would have been had that ellipse remained unaltered. But, both in the one case and the other,

he point in the ellipse to which they correspond, coincides with the real place of the planet. Hence the

ines x, y, z, r, are the same in the varied ellipse, in the unvaried, and in the actual curve described
;

so that

d x d y d z
5 r = o, S y = o, S z o, and Z r = . Again, S -

, 6 , S , are the excesses of the values of
d t at d t-

, ,
-

, in the varied ellipse over what they would have been had the ellipse not varied that
d t d t d t

s, had the disturbing force not acted, in the instant consecutive to d t. Their values therefore would

vanish, had the body remained in its former ellipse, and, in general, will be obtained by subtracting

from the values actually assumed by
-

, &c. in the consecutive instant in the curve, what would have been
ct t

assumed by them had the body continued in the same ellipse, or had the disturbing forces ceased to act at the

d x \

end ofd t. Now, in the curve the consecutive value of r is

// t

dt

d x d x d x (
ft-
x , d fi

4- d = ^ r m
dt dt dt 1 r3 dx

because-^- + m' being the force in the curve, we must have d - =
\ \- m' -^-> dt. On

r3 dx d t ( r3 d x )

the other hand, had the disturbing force ceased acting, we should have had simply d - = - d t,

d x d x
ft,

x
so that the consecutive value of would have been merely -j-j

d t.

Hence we have
g _^

d t dx
'

1

,; jo
(166)

d t

and similarly s dy_
d t

d z
S-

dt dz
To explain how the variations so obtained may be employed, let us take aeain the case already treated.

P_
2 n d x* + d y

2 + d z3

a r d~F

If we differentiate this relative to the characteristic S, we get

ft
S a 2

/a,
8 r

r
_ Q f

dx
s
dx dy dy dz dz

}

"\dtdt dt
"

dt
"

dt dt }

in which, putting S r = o, and for S &c., their values above found, we find
((. t

[it a
, ( dfi rfQ rfQ-=+2m'l dx + - dy+-(P

( dx dy d z

6 a is the momentary variation of a in the instant d t, so that this equation may be integrated relative to t,

and we get u. , /
.** m' /dOa J

the same result as before.

Before we proceed farther, we will stop to draw from this expression of the reciprocal axis, a most impor-
tant conclusion. It is this that all the variations to which the major axes of the planetary orbits are sub-

jected by their mutual attraction are periodical and that the mean distances, and consequently the mean
motions of the planets are subject to no secular variations. In fact, when we consider only the first power of the

disturbing forces, we have already proved that the developement of Q is entirely composed of terms of the form

A .cos (iW + kV + IV)
hence / d \V d V

d = A ' + k ' sn

= A.(i+ /,-)
. sin

} (J + t) n t (J
- A n' t + (i + k) c - (t I)

c' - k * I x*
\
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Agronomy, which is always periodic unless i + k = o and i I o, when the argument becomes simply i (ir **) a Physical
" "V"'' constant quantity ;

but in this case the whole term vanishes by the disappearance of its co-efficient. Thus Astronomy,
f*

d Q and, of course, / d Q contains no term multiplied by t, and none but what is periodic j consequently,

u,

is periodic also,
a
This beautiful result, the demonstration of which is of almost elementary simplicity, assures us of the

impossibility of any of the bodies of our system ever leaving it in consequence of the disturbances it may
experience, and secures the general permanence of the whole, by keeping the mean distances and periodic
times perpetually fluctuating between certain limits (very restricted ones) which they can neither exceed nor
fall short of.

Let us next consider the variation in the position of the plane of the disturbed orbit. The equations
(4), (5), and (6), give

dx dy d i d z dy d z= ~-- h = z - - x -> h =
dt dt d t dt

' '

dt y
d t

These quantities in the case of elliptic motion are constant, but in that of disturbed motion they will

equally hold good, if h, h', h", be regarded as variable. Now, either on the one or the other supposition, if

we multiply the first by z, the second by y, and the third by x, and add, we get
hz h'y + h" x = o

which is the same with equation (7). But if we mutiply the first by d z, the second by d y, and the third

by d x, we shall also obtain by addition,

h d z h' d y + h" d x = o

Consequently, even when we regard h h' h" as variable, still the equation h z h' y + h" x = o and its dif-

ferential relative to x, y, z, subsist together, just as if h, h', h" were constant. Hence, it appears, that the

body at the end of the instant d t is still found in the plane represented by h z h' y + h'' x = o, or, that

this plane is the plane in which the elementary arc described in the instant d t, lies. If therefore we call

its inclination to that of the x and y taken as a fixed plane, and ia the longitude of its ascending node, we have

tan = </A2

/t

+ h '*

;
tan *> = h

; p a (1
-

e*) = h* + /" + A"*
; (167)

whence these elements (viz. the inclination, the longitude of the node, and the semiparameter,) are expressed
in terms of h, h', h".

That the equation h d z h' d y + h" dx = o must hold good at the same time with hz h' y + h" x = o

is also evident from this consideration, that although the ellipse, it is true, varies from one instant to

another, yet it must be regarded as invariable, while the body describes each of its elementary portions ;

because, by hypothesis, it is so adjusted that the body shall remain in its circumference during the whole of

the instant d t, and it is not till the consecutive instant that it is necessitated to change its form, &c. to

accommodate itself to the new course taken by the body. The same reasoning holds for any other finite

equation of elliptic motion. Its first differential may be taken, as if the arbitrary constants it involves were

rigorously such. The disturbing forces make no change on x, y, z, r, their consecutive values remain
T + d x, y + d y, z + d z, r + d r, as before, and are common both to the curve and the ellipse, it is fo

the consecutive values of dx, d y, d z, that they differ, these becoming d x + d* x + dx for the curve, ana
dx + d* x for the ellipse.

This premised, we have only to inquire the variations of h, h', h''
;
and to this end, by the equations

(4, 5, 6,) we have

fc = v Ai_ -. *y - i'_- dx .. dz
. .!//_. rf y ... dz

dt

In which, substituting for o

we find

a L
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Astronomy, where (h), (h'), and (h"), represent the primitive values of these respective quantities at the commencement Physical
v -v "' of the time t. Astronomy

As these expressions are rigorous, we may derive from them all the laws which regulate the motion of the ** v~-'

nodes and the inclinations of the planes of the orbits; but as it is only the secular variations which concern

us at present, we shall not regard the periodical parts of the expressions within the brackets under the

integral signs. To develope them, we must consider the orbits as inclined to the plane of the x, y ;
but if we

take the undisturbed orbit of m for this plane, the value of z at any time t will be of the order of the dis-

turbing forces, and z' will be a very small quantity ;
so that z9 , z z', and z'

2
, may be neglected. Hence

* (= Vx* + y
2

-f z2
) and r', will represent with this degree of approximation, their projections on the plane

of the x, y, and we have (calling s the tangent of m's latitude,)

x = r . cos 0, y = r . sin 0, z = r s
; x' = r' . cos 0', y' = r' . sin 0', z' = i* d

If then we recur to the expressions for the disturbing forces m' , &c. in Section I. Part II. we shall find

d d
(170,1)

d x d y

d Q d Q

d Q d Q

d y d z

jv
"

h'

Now, since h z h' y + h" x = o, we have z = j- * H ;- y
n h

h" h'

Suppose then, = p and = q, and let the quantities corresponding to p and q in the orbit of
' be p

/

h n

and q' ; then, if0, 0', be the inclinations of the two orbits to the fixed plane, and w, a/, the longitudes of

their ascending nodes, we shall have tan = A/p* + q*, tan ui = , tan 0' = Vp'* + <f*, tan m' = l^,
t 9

and thus, when p and q are determined, the inclinations and places of the nodes are easily found. We have,
moreover,

z =qy px, z' = q'y' p' x'

z x" x z' = (jf p) x x
1 + q y x' q

1 X y'

z y' y z' = (cf q) y y' p x y' + p' y x"

and if we therefore suppose for a momentM = ,

r 3
A,3

= m' M . (y x' - x y')

dh' "M I rf r' 'I
d t

dh"

-^y-
= m M.{ (/ q)yy

r

pxif + p'yx}

Now, our design being to eliminate h, h', h", from the formulae, and obtain expressions involving only p and

q, from which h, h', h", may be deduced if wanted, we differentiate the equations p = and q = , when
n h

we find

<ip _ _ _1_
/ d h"

rf/t^
d q _ J_

/ d h' dh\
dt h \ dt P dt) dt

''

~

T \.dt
' ~

q dtl

and if we substitute in these, the values of ~, , and , as above found, we shall get

. ---
But if we neglect the squares of the disturbing forces, and the eccentricities and inclinations of the orbits, we

mf m' m'
nave = = -, so that these expressions become

V A/(! + m) (1 es) .a V a

dp (p
f

p) xf tq
f

q) y'
f- = jft'M.ii- ^ M iLJLf ,(171 )v a

VOL. in. 4 Y
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f Physical
ii- = m' M .

^ =^ ^J. x (172) Asironomv.

3

Let us suppose the function (a
9 2 a a' . cos i + a'2)~

T
developed in a series of cosines of w, and its

multiples
S + S' . cos w + S'' . cos 2 w + &c.

then we shall have, by (135)

s = 2/3.5 , ,

3". 5. 7
,

)=
^tef + 2^^ +&c

-}

and if we neglect in the present research, as is allowable, the eccentricities and inclinations, or suppose the

orbits circular and in one plane,

M = -, = (4- - S }- S' . cos (6'
-

e)
- S" . cos 2 (Cf

-
0)
- &c. (174)

a ' X3 \<r 3 /

r = a, / = a', = n t + e, & = n' t + t , & = n t n' t + e e' = W

2/!(/-p)*'- (<?'-</)/] =aa'.2-^-{c
OS (e' +6) -cos^-G)}; (175)

+ a a'.
P ~ ?

{s'" (0' + 0)
- sin (0'

-
0) }

r{ (p'
-

p) x' - (q
1 -

q) y'}
= aa'. ^-^- {cos (tf + 0) + cos (ff

-
0) } (176)

-a a'.
9
~

9
{sin (0' + (?) + sin (0'

-
0)}

Each of these latter quantities is to be combined with M by multiplication, and in resolving each of the pro-
ducts of sines and cosines so originating into simple sines and cosines of sums and differences, it is obvious that

constant terms will arise whenever similar terms are combined, by reason of the property cos A x cos A
cos 2 A + i. Now the only argument common to both factors is 0"

; and, of course, the only terms in

(174) and (175) from whose combination a constant term can originate, are S' . cos (0 0') and a a' .

*
. cos (& 0) . Consequently, if we reject all the periodical terms, and put I = - -

S', we have

J^.I.tf-q); (177,1)
dt

and similarly

); (177, 2)

If we go through a process exactly analogous, so as to obtain differential equations for determining p' and

tf relative to the orbit of mf, we shall find them to be

These four equations, being of the first order, and with constant co-efficients (for the secular variations of

a, cf, and therefore of S' and of x S' or /, which are symmetrical functions of a, a', vanish,) are easily
4

integrated. As they subsist simultaneously among the four variables p, p', q, q', we may integrate them ell

together, if we assume

p = A . sin (g t + k) p' = A' . sin (g t + k)

q = A . cos (g t + k) q
f = A' . cos (g t + k)

for if we substitute these values, we find that the variable part divides off, and there remain the following

equations of condition between the constants A, A', and g,

(A' A) ; (178, 1)
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Astronomy m Physical

v-^^J. g A'= I (A - A') j (178, 2) Astronomy.

In these one of the constants A, A', g, remains indeterminate. Let this be A, then eliminating A.', we get
for determining g,

' V a V
, fr > ...................... (179, 1,2)

TO v a + m v a= o, or g-
=---=7

-
. /

v a a

Now it is evident, that if g and g' be two values of g which satisfy the equations of condition, then A . sin

(g t + k) and B . sin (g' t + k') will each be satisfactory values ofp, and so for the rest ; consequently (the

equations being linear) their sum will be so, and we have

fp = A . sin (g t + k) + B . sin lc' (180, ])

\q A . cos (g t + k) + B . cos tf (180, 2)

(y = A' . sin (g t + k) + B . sin kf (180, 3)

\(f = A' . cos (g t + k) + B . cos k' (ISO, 4)

where A, B, k, k', are four arbitrary constants, and

m / a + m' V a' m V a
g=-I.- - A'=--=. A

5 (181,1,2)
V a of m v a

From these values of p and q, p' and q' it is easy to eliminate sin (g t + k) and cos (g t + k) ;
for if we

multiply (180, 1) by m V a, and (180, 3) by m' V a', and add, noticing that A . m V a + A' . m' V a' = o

by reason of the relation between A and A' (181, 2) we get

m A/ a . p + mf V of . p' = (m V a + m' V a) B . sin kf = constant
; (182)

and similarly,

m V a. q + m? */ a' . q'
= (m V a + m' V a) B . cos k

1 = const.
; (183)

Moreover, we have
tan 2 = p* + q- = ^A

2 + B2
) + 2 AB . cos (g t -r k k') ; (184, 1)

tan <p'
2 =

/>'* + q'*-
=

(A.'
2 + B2

) +2 A'B . cos (g t + k V) ; (184, 2)

Consequently,

m V7". tan 3 + m V~rf . tan 0'
2 = m \/T(A'

2 + B'2 ) + m' /!? (A'
s + B4

)
= constant

; (185)

The arbitrary constants A, B, k, k', may be determined in any particular case, either by comparing the

general expressions for p, p', q, q', with their actual values at any assigned instant as derived from observa-

tion, or from these last derived equations ; for since p
2 + 9* = tan a and = tan ui, we have

p = tan . sin <a
; q = tan . cos ui

; p' = tan 0' . sin u>'
; q' = tan 0' . cos <a'

; (IStj)

Now the equation (180) gives

(p'
- p) = (A'

- A) . sin ( g t + k) ; q'
-

q = (A'
- A) . cos (gt+k)

consequently, if we take t = o, or if we assume for our data, the elements 0, (j)', u>, a/, as they were observed
at the epoch or origin of the time t, we find

'

p tan 0' . sin n/ tan . sin ox
tan k = .

- = - -
; (187)

q q tan 0' . cos / tan . cos ia

Hence A and A' are found
; for, the values of S, S', &c. being known from equations (173), I =- S' is

also known
;
and since by (181, 2)

m V a + m' V a' m' V a' (p' p)
A' A=-- : - .AwegetA=-- -=- ^ ^'-

(188)
ft' vff (m v a + m' v a') sin k

Again, if we divide (182) by (183), we find

,
. m V a . tan . sin u> + m' "S a' . tan 0' . sin u>'

tan k" =-=- -=---
; (189)

TO A/ a . tan . cos <a + m' V a' . tan 0* . cos /

m V a . tan . sin <a + m' *S a' . tan 0' . sin to'

B =- ~-
(190)

(m */~a + m' V a) . sin U
These constants once computed, the laws, periods, and limits of the motions of the planes of both orbits

are known. The period in which the inequalities recur is deducible at once from the value of g. Ifwe express
the time t in Julian years, n, n' represent the mean motions of the planets m, m', in one such year, in parts

4 y 2
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I

Astronomy. f a whole circumference, and n* a3 = 1, that is, Va= , hence g (= I . ( ^ + _!!i_\
j
w;ii be Astror.omy

found as follows : g = > (m n a' + m' n a) . I

and if we call T the whole period, g T = 1 circumference = 1
;
and

7"
"

(m n'a' + 'm n a) . I
'

where . _ a a' ~,~

If n, n'be expressed in seconds, the numerator ofT instead of being unity, must be 360 x 60 x 60"=2196GOO'/
.

The limits of the variations of the inclinations are readily found
;

for it appears from the equations

(184, 1, 2) that their maxima and minima occur when gt + k kf = o and 18O, and have for their cor-

responding values A + B I , A B 1

A' + BJ and A'-B/'
Now, it is obvious from the values of p and q, (180, 1, 2) that A and B are small quantities of the same order

as p, q ; so that the inclinations can never increase or diminish beyond certain very narrow limits This
follows too from the equation (185) ;

for in the present state of our system, tan and tan 0' being extremely

small, the sum m V a , tan s + mf V a . tan 0'
2 is always a very minute quantity ;

and since */ a and */ of

must both be taken positively, (for A/ a = and n is positive for both planets, the motions being both in

the same direction) neither term separately can exceed the value of the constant
;

so that or / must
remain for ever confined to a value not greatly different from what it now has, and the planes of the planetary
orbits must keep for ever oscillating within very confined limits about their mean positions.
With regard to the nodes it is different. These are liable to great changes of place, and may even circu-

late for ever in one direction without returning. In fact, if we would determine the maxima and minima of

their longitudes, we have only to put d to = o, d to' = o ; the roots of which equations, if real, will indicate

the stationary points ; and, if imaginary, will shew that such points do not exist, or that the nodes circulate.

Now we have
d . tan to d p d q dp d q

d o> = = o, or d . tan w = o, (.r = . or q p = o
1 + taniu2 p q

' ' dt dt

in which equation, substituting for and - their values in equations (177, 1, 2) we find

99' 9* + pp' p
2 = o, or pp' + 9 q = p* + q~ ; (193)

in which, substituting forp, p', q, qf, their values (180) we get ultimately

A + B . cos (g t + k k') =o which gives cos (g t + k k) = -
; (194)

Hence, if B7 A (no regard being had to the signs) this will correspond to a real value of t, and the node will

then merely have a libratory motion, advancing and receding alternately ;
if B Z A, they will circulate always

in one direction. In the former case, if we substitute in the value of tan 2
(equation 184, 1) this value of

cos (gt + k k') we shall find tan 0'
2 = Bs A2

;
tan = VB'1 A8

, which gives the inclination cor-

responding to the stationary points of the node. These points are attained when cos (gt+k J/)
=

while the maxima and minima of the inclh -itions happen when cos (gt + k k')
= + 1. The stationary

positions of the node therefore do not correspond either to the maxima and minima of the inclinations, or to

the semi-intervals between them.
If we had considered more than two bodies the results would have been analogous, and we should have

arrived at similar expressions for p and 9 only containing more terms, and analogous equations to those in

182, 183, and 185, viz.

m *J a . p + m' "J n . p' + m" V a" . p" + &c. = const.
~J

tn -/"a". 9 + mf V'a' . q' + m" J~~a" . q" + &c. = const. > , (195)

m V a . tan s + m' */ a' . tan A2 + m" J of' . tan 0"2 + &c. = const.J

Let us apply this theory to an example, and we will take that of the orbits of Jupiter and Saturn, the two

principal planets of our system. If we take for our epoch the year 17OO, we have, by Halley's tables,

a> = 101 5' 6"; = 2= 30' 10"; a = 9'54007

a/ = 97 34' 9''; 0'= 1 197 10'; a = 5'20098

Hence we find the values ofp, pf', q, q', for that epoch, by the equations (186) as follows :

p = 0-04078, 9 = 0-01573 ; p" = OO2283, 9'
= - 0-O0303

whence, having computed /.and assuming m' = and m = , we shall find A, B, k, k' and gas follows :

10l>r 3358
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Astronomy B = 0'02905
;

A = 0'01537 ;
k = 125 15' 40//

,
kf = 103 38' 40'' Physical

v

v
'

and A' = 0-00661, and finally g = 25"-5756 Astronomy.

Hence we obtain, in the case of Saturn,

tan = 0-03287 . Vl + 0-82665 . cos {21 37' t X 25"'5756}
and for Jupiter

tan 0' = 0-O2980 . Vl 0-43290 . cos {21 37' t X 25"'5756}
Also we have B + A = 0-04442 ;

B A = 0-01368, so that the maxima and minima of the inclinations of

Saturn's orbit are 2 32' 40" and 47', and its greatest deviation from the mean state will not exceed 52'

50". In Jupiter's orbit the maximum is 2 2' 30", and the minimum 1 17' 1O", and the greatest deviation

from a mean state 22' 40".

The longitude of the node, ui, has a maximum and a minimum in both orbits, because B 7 A ;
and the

extent of its librations will be, in the case of Jupiter's orbit, 13 9' 4O", and in that of Saturn's, 31 56' 20"
on either side of its mean station, on the plane of the ecliptic supposed immoveable.

The period in which these changes take place, or the whole time in which the inclinations vary from their

greatest to their least values, and the nodes from their greatest to their least longitudes, and back again, is

equal to- = . ,,

= 50673 Julian years; an immense period, and which may serve to give some
*w *vY &O

idea of the extent to which the Newtonian theory, assisted by the refined methods of the modern analysis.
enables us to carry our views of the past and future condition of our system ;

as this, though subject of course

to some subordinate corrections, is perhaps one of the least uncertain of the results of perturbation.
Let us now consider the secular variations of the eccentricities and aphelia. Our first object, agreeable to

the theory of the variation of the arbitrary constants already exposed, must be to obtain such an equation of

the ellipse of curvature as shall be adapted to our purpose, by containing these elements (or convenient func-

tions of them) in a state sufficiently disengaged from the variables x, y, z, and their differentials. Now if we

differentiate the quantities , , , noticing that ra = z2 + y* + z*, we get

x r d x x d r _ r* dx x ,r dr _ r3 dx % x d (r
2
)

d
~7~ r2 r3 r3

_ (r
8

-f y
3 + 2) d x (x d x + y d y + z d z) . x

r

_ y (y dx x dy) + z (z d x x d z)

r3

That is, substituting for y d x x d y and z d x x d z their values h d t, h' d t,

y> j I ? I '-'"- j * v. J .. j I 3 \ / L r "
, i// /" "

^ j ^

/jA = -*,+, d ,
I

, /L\ /
A _ , J

\r / r3 I I \r/\ r3 rr3

\
I dt

,, ... ft x d* x uy oP y ,!>* d* z
Now, in the case of elliptic motion, = -- -

; ^--j-
= --

|-
and -^- = --

, consequently

substituting these, we obtain

, / z\ ,( ,
d y . dz ) ,/y\ , f , d x

,
d z

)
/id ( )

= d
{ h~-- V- }; u.d ( )

= d I h --- h'" -

\r / { dt At ) \r/> { dt d t J

and integrating,

'-:+ "

These equations will serve our purpose, as the arbitrary constants/,/',/", are completely disengaged ; but
before we proceed to employ them, we must determine the values of /,/',/", in terms of the elements, and
uice versn and for this purpose must first eliminate the differential co-efficients, which (from the peculiar
form of the equations) is practicable, by merely multiplying the first by x, the second by y, and the third by
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or, by reason of the equations (4) (5) (6),

,, r = ft + fy + f" z + (/, + h'* + h"*) j (197)

This equation expresses the general property of the conic sections, in virtue of which a line drawn from the

focus to the circumference is always in a given ratio to a perpendicular let fall from that point on the directrix.

If we multiply (196, 1) by h", (196, 2) by h', and (196,3) by h, and take the sum of the results,

(observing that h" x h' y + h z = o) it will be found that all the variable terms will destroy each other,

leaving simply the equation of condition,

h"f- h'f + hf" = o (198)

Suppose X, Y, Z, the co-ordinates of the perihelion. At this point dr = o, orxdx + ydy + zdz=o,
but if for h, h', h", we write their values in (4) (5) (6) we have

At the perihelion therefore, substituting for y d y + z d z, x d x + z d z, x d x + y d y, their equals X d X,
Y d Y, and Z d Z, respectively, these quantities become

d X' + d Y4 + d Z"- X.

- Y.

dt*

d X2 + d Y* + d

d X4 + d Y4 + d Z4

~ Z -- -dp-

Consequently we have, putting
- - = V2

, X2 + Y4 + Z4 = R4

/=X -V'
; /'= Y.-V ; f" = Z _ V ; (200)

Hence it is easy to obtain the following equation,

/ + /* + /"* = R
(^

-
V*)

*

j (201)

Now R is the perihelion distance, R = a (1 e) and V being the velocity at the perihelion, we have, by

(2
1 \

|T I
Hence we get

= R* (JL
- AY = ^15_-L)! = ^ es

\ a K / a

(202)
Moreover we have

/_Y r_z .r __ z

/--x' /-x' -VT^+TF-VX^TY-''
But is the tangent of the longitude of the perihelion, or of the angle which the projection of the perihelion

distance makes with the axis of the x : also, ?r is the longitude of the perihelion reckoned on the orbit
;
and if

its plane is but very little inclined to that of the x, y, this angle differs from its projection on that plane only
by a very small quantity of the second order

;
so that if we disregard, as we have hitherto done in this

research, the squares of the eccentricities, inclinations, and disturbing forces, we have

tan7r= ; (204)

fi ___^^^__
These three equations, viz. tan it = i-, p. e = */f* + /'* + /"*, and hf h'f + h"f o, determine

/,/',/", in terms of the elements of the orbit. The variations of the eccentricities and longitudes of the
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Astronomy, perihelia, e and v, may be immediately determined from those off and/', so that it is to these we shall now Physical
-V ^ turn our attention. Resuming then the equations (196, 1, 2,3) let us differentiate them on the supposition Astronomy.

ff>f>f"> being variable quantities, their variations being such as to express the effect of the disturbing
^ 'v~-/

forces only. To express this we have used the characteristic 8, and we shall continue to do so, to keep the

principle on which the process is founded distinctly in view. No inconvenience can arise from the confusion
of two symbols, S and d, in the same investigation, when we bear in mind that any expression such as Sf
denotes, strictly, the whole amount of the momentary change which the quantity/undergoes while the planet
passes from one elementary portion of its unknown curve to that immediately consecutive to it, while such expres-
sions asdx,dy, &c., denote the changes which x, y, &c. undergo while it passes from one end to the other of
the same elementary portion. In both points of view, the accumulated effects during a finite time are obtained

by the same rules of integration ;
the whole variation off is legitimately expressed by I Sf just as that of x

is by Id x, and when Sfis expressed in terms of d t, the integration must be performed in the usual man-

ner, as on a function of t.

X If Z
We have therefore, since S = o, S = o, =. o

T T T

Substituting therefore for S h, o h' their values in the equations (168) for S
, 6

d t
m'

y d x xd y . zd x x d z

,

d t d y
. y x x y . z x x zm'

respectively; and for /(, h , their values -- -- and-
, we get

(I Z (it (dt

dO dO
) f dQ
+ d z

'

dx + ('^y-ydz)
d
-

d x " ~ } \

da > x m (205, 1)

+ (z d x x d z
) a ?

dQ
dy ""

> \1 X m' (205, 2)

These are the rigorous values of Sf, Sf, and their integrals regarded as functions of t, express the total
variations of these elements produced in that time. But, as we have done in the less complicated theory of
the nodes and inclinations we shall neglect, in developing them, all their periodical terms, at least such as
depend on the configurations of the planets, as well as all terms containing the squares of the disturbing
forces, eccentricities, and inclinations, and take the primitive orbit of m for our fixed plane. This will sim-

plify them greatly j for in this ease z, and are quantities ofthe order of the disturbing forces, and there-

fore, when multiplied by m', may be rejected. Moreover, on this supposition, it is indifferent whether we
reckon the longitudes on the orbit or on the fixed plane, since the difference is of the order z2

; consequently
representing that of m by 0, we have

x =. r . cos 0, y = r . sin
;

whence we find

- --
d dy

Now we have ! = - L^JL = !!^ ..
" . sin fl* - r . sin

d y /3 X3 /i \3

But since X = V r* 2r / . cos (0 0') + r'
2

_ r . cos (0 &) 1

~~/*~
"

T

.
; f2o6)

dt

d _ cos (0 (?) r r' . cos (0 ff)

dr ~^~ ~\T~ (207)
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1
. sin (0 - tf) Physical

, =
pj

r -

^3 (208) Astronomy

dQ 1( dQ . _ dQ _1
(w)__..

dy r [ dr d t

and as we have d y = dr. sin + r d . cos 0, and h d t = r
3 d 0,

e/= {dr.sin + 2rd0. COS0}
-- r2 d - -.s'mO; (210)

In like manner we should have found

/'= +
{
d r. cos 6 2rd0. sin

}^j~ + r3 d
-^-

. cos0; (211)

Now, if we neglect the squares of the eccentricities, we have

r = a{ 1 e . cos (0 ir) },
d r = a e . sin (0 ir) d 0, r'

1 d = n a2 d <,

whence we have
d = n d (1 + 2 e. . cos (0 ir) and d r = n a e d t . sin (0 ir)

and consequently,

3/ = nadt .
- '-

{(2 2e. cos (9 jr)(l +2e.cos0 ^-) . cos + e .sin0 . sin ir} na*d t .
- -

. .
-

. . . ir . j

06* or

which reduced, rejecting e2, becomes

/ = - m' ndt la
(<Z

cos + e . cos IT + ^-
. cos (2 IT) ) + a2

. sin 1 (212)
( ft (/ \, .4 /(IT

In order to find the secular part of the variation off, we must ilevelope this expression, retaining only such
terms as are not periodical. Now, recurring to the notation of Sections 3, 4, 5, Part II. we have

0=n< + e-f2e.sinV=V+7r + 2e.sinV
therefore sin = sin (V + ir) + 2 e . sin V . cos (V + IT)

= sin (V + ir) + e . sin (2 V + ir)
e . sin v

2 cos = 2 cos (V + ir) 4 e . sin V. sin (V + JT)

= 2 cos (V + w) + 2 e cos (2 V + ?r)
2 e . cos IT

3 fi 3 6
. COS (2 ?r)

= -
. COS (2 V -f ?r) ;

-
. COS TT = - -

. COS ?r

2 2 S
'

*

neglecting e2 &c. Again we have

+ a2 A
d r da d r

When this therefore is multiplied by sin 0, the term e . sin TT will combine with the constant term a2

of a4
, and produce as e .

-
. sin ir, and this is the only constant term which can arise from

da da

a2 , because every other term contains W, and therefore both V and V : while the value of sin con-
il a

tains only V, and, of course, V cannot be destroyed by their combination. Again, with respect to

A
, it has been proved, that (regarding only the first powers of the eccentricities,) this is resolvable

into a series of terms of the form A . cos (t W + V), A . cos (iW + V). Now, since A is of the order

of the eccentricities, we may disregard the term of sin multiplied by e, and take it simply equal to sin

(V + *). If we multiply this into the series
~ '

term can produce a constant argument, viz. that

(V + T). If we multiply this into the series 2 A . cos (iW + V) since W = V V + *', only one

; into whichV does not enter, or in which i = o
;
that is, the

term multiplied by cos V. The co-efficient in this term in A is ae , (as appears from (147),
dr d a*

writing
- for Q, and of course , &c. for A, &c.) Hence the term so originating in a* . sin will
AT do, a T

be equal to the constant part of a? e . cos V . sin (V + ir), that is, to --
.

-
. sin . Again

d <z
j 2 d a2

the multiplication of sin (V + ir) with the series 2 A . cos (i W + V) will produce a constant term by the

combination of sin (V + ir) with cos (W + V) = cos (V -f ir ir
1

) . The co-efficient of cos (W + V) in

the developement of A is (a (- 2 ) . Hence tht constant Dart of a2
. sin so

dr 2\dada da/ dr
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e' / d? A' d A' \ Physical

-_^ O originating, will be I a -- - + 2 I X (the constant part of sin (V + TT) . cos (V + ir if\ Astronomy."yuflud d G, / ^ _ ^^.

d2 A'
|

\ad (/)

e ( d A= as . sin ?/' 2 h <t
,da d

Let us next consider the constant terms which can originate from the part multiplied by a . This
d &

dQ dw d O d n dQ
quantity is equal to a . = a = a

, + A . But we havedwdO d w d\V d w

-j-^-
= - A . sin W - 2 A' . sin 2 W &c.

and as all these contain V, and this arc does not enter into any of the terms multiplying in the expres-

sion of Sf, it is obvious that no combination not containing V, can arise in this way, i. e. no constant term

can occur in the part of the developement depending on . With regard to A being already of the

order of the eccentricities, it need only be combined with the first term, 2 cos 0, and this term may be regarded
as equal simply to 2 . cos (V + IT). We have only then to investigate the constant part of

(dQ d*Q d8 Q d2 Q )
2 a . cos (V + ir)

1 A = A r + A / + A w
\

(_
d w dadW d a d W d W2

J

Now A r = a t . sin V, A / = a! d . sin V, A w = 2 e . sin V 2 e' . sin V
d A'

1st. The combination 2 a2 e . cos V . cos (V + ir) . 2 i sin i W
d a

can contain no constant term, because the terms sin V and cos (V + ir) cannot eliminate V from sin i W.

2dly. 2 a of e' . cos (V + IT) , cos V . 2 i sin i W
d a

will contain a constant term, for taking i = 1, cos V' x sin W = 5 sin (W + V) + sin (W V), the

last term of which does not contain V, being equal to + 5 sin (V + ir ir'). The combination now under

consideration, will therefore contain the term

+ a a' e' . 1 .
-

. cos (V + ir) . sin (V + ir
ir')

which, developed, will produce a constant term,

a of . . T . sin n'
2 d J

Lastly, the combination

4 a . cos (V + ir) {
e . sin V - e' . sin V'} . 2 i

2
. A' . cos i W

will produce a constant term
; viz. that arising from

- 4 a e . cos (V -f ir) . sin V x I9 A' . cos W
for sin V . cos W produces a term free from V, viz. | sin (V + ir

IT') which again combined with cos

(V -(- ir) produces
- sin ir'

; so that the complete result of this combination will be

a tf . A' . sin ir
1

Assembling therefore all the constant terms so found, we get

Sf = m' . a n d i . e sin ir \a h -p-r- f (213)
(^

da 2 d a2
)

,f a dA' J dA' a of d* A'}
4- m. andt.er.sm ir' { A' A H . ; ;

( 2da 2do' 4 dada'l
The value of Sf may be derived by a similar process, but without executing the whole process, we may obtain
it more readily by considering the expressions (210) and (211) we then see that / changes to Sf simply by

changing to 90, but leaving r, and -7 unchanged. Now Q, and remain manifestly

unaltered, whatever direction we assume as that from which we reckon the longitudes. Suppose then that
we shift this direction 90, then will each of the angles 0, 6', e, (', ir, ir', be diminished 9O, and this wil 1

.

produce no alteration in T, because ir will remain unchanged. Hence, the effect produced by this change
on Sf will transform it into Sf. The value of Sf therefore will be had at once by changing sin ir and sin r'

into cos ir, and cos ir' in that of Sf; and this will be found to be confirmed by the direct process.

Suppose now we denote the constant co- efficients within the brackets for brevity by / and K, so as to have
vol.. in. 4
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Then it will be observed, that is obviously symmetrical with respect to a, a', because the co-efficient A is

so ;
and the same will be found to hold good with I ; for if we write it as follows,

2 d a ( da

and for A substitute its value given in (137, 1) it will be found that the execution of the operations here

indicated will lead to precisely the same result as those denoted by
- -

j
a'2 j^ : consequently / and K

are both symmetrical functions of a, and a', and do not alter when these elements are mutually transposed.
a a'

With regard to I, it may be easily shewn to be identical with the function S' which we have already

denoted by the same symbol. To see this, we need only write for A and S' their values in (136, 1) and

( 173, 2), and executing on the former series the operations indicated by ~
.
-

( a2 -
J

, ( remembering

that a = ,
= --

;
- =

-)
--

) and multiplying the latter by
-

, the result will be iden-
a d a a d a2 a2

/

tical. We have then

Sf = mf . n a . I d t x e . sin JT + TO' . n a . K d t x e' sin ir >

(z\~\

if= + m' . n a . I d I x e cos it m' .na.Kdt x e' cos ir' ->

Now, if we recur to the values off, f, f", we find

f f h'f ~ h"fJ = tan IT
;

J = sin JT, /" = ;

--
f Jj* + f* h

but h' and h" are of the order of the disturbing forces when we take the plane of m's undisturbed orbit for our

fixed plane; consequently, /'' is so, and therefore Vf + /'* = A//* + /'
2 +/'* = /* e, neglecting the

squares of the disturbing forces. Hence we have/= p. e . cos ir and/' = p. e . sin IT.

In imitation of what we did in the theory of the nodes and inclinations, let q and p represent these quantities;

then d 7 and d p being the momentary variations of 9 and p, will replace Sf and Sf ;
and if in like manner

we put (f and p' for fif e . cos ** and /t' e' . sin tr', the corresponding quantities in the orbit of m', we shall have

(putting =, =, for n a, n' a'
;
and supposing /t

= 1, and /*'=!, which is allowable since the squares of the

Va va
disturbing forces are neglected, and the quantities under consideration are all of the first order of these forces,)

(218, 1, 2, 3, 4)

d t

dt

'

dt
'

Thus we see that the problem of the secular variations of the eccentricities and aphelia, depends, exactly as

in the case of the nodes and inclinations, on the simultaneous integration of four differential equations of the

first order with constant co-efficients. If we compare these, however, with those of (177), we shall observe

that the former research is rather more complicated than the latter, by reason of the two co-efficients, I and K,

which it involves, while the system of equations on which the nodes and inclinations depend, involves only the

first. However, this circumstance does not render the integration more difficult ;
the same substitution suc-

ceeds, and the integrals have a form almost exactly similar
;
we have only to take

p = A . sin (g t + k) + B . sin (h t. + I) ^
q = A.cosfef + k) +B:cos(A< + 0( .

p' = A', sin (gt + k)+ B'. sin (h t + I)
(

q'
= A'. cos (g t + k) + B'. cos (h t + I)}

If these be substituted, the equations will be satisfied, provided the followipg equations hold good between

the constants,
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g A = (/A KA. )
ft B = (IB A B

) Astronomyv a' V a
and

gA.
/ = -=(IA.'- KA.) ftB' = - (IK- KE)V a' J V. A/ a'

It is obvious that the elimination of A' from the first pair, and of B' from the second pair, will lead to

equations of exactly the same form for g and h, which are therefore the two roots of the quadratic,

m V a + m V a' mm'
f-lg - ==-- + ,==(! -

K*) = o (220)V a a' V a a'

and g and ft being found, and A, B, k, I, remaining arbitrary, A' and B' are easily found.

To adapt these values to any particular case, the general values of p, q, p', </, at any assigned epoch, must
be made to coincide with the observed values of e . sin IT, e . cos IT, e' . sin IT

, and e'. cos ?/
;
which condition

will furnish equations to determine all the arbitrary constants.

For example, in the case of Jupiter and Saturn, we shall find on computation g = 21"'9905, h = 3"-5S51 .

A = 0-04877 ;
B = 0-03532 ; A' = 0-01715 ; B' = 0-04321

-,
k = 306 34' 4O"

; I = 210 16' 40'

Now, since p = e . sin ir, and q = e . cos TT, we have

tan TT = -, and e </p
* + ?

s = //Aa + B2 + 2 AB cos
{ (g h) t + k I

\

which gives, by substituting the numbers already found,

e = 0-06021 . A/1 0-95O09 x cos (83 42' 18"-4054 x t)

which is the eccentricity of Saturn's orbit ;
and similarly,

</= 0-04649 . A/1 + O-68592 . cos (83 42' 18"-4054 x t)

for that of Jupiter, after any number t of years since 1700.

The longitudes of their respective aphelia, will also be known by the formulae

A . sin (g- 1 + k) + B . sin (h t + I)~
A . cos (g t + k) + B . cos (A < -h I)

'

A', sin (gt'+ k) + B'. sin (h t + I)=
A>.coS (gt + k)+W. COa (ht + l)'>

and the maxima and minima of these, or their greatest deviations from their mean places will take place, when

g A2 + h B2 + AB (g + h) . cos
{ (g

-
ft)

t + (k
-

1) }
=-. o

that is, when

cos {(g
-

ft)
t + (k- 1)} = - g

(f+
+
h)

h
-> (223)

If this fraction be less than unity, the aphelia will librate, as in the case of the nodes about a mean position,
if not, they move in one direction continually. In the case of Jupiter and Saturn now before us, g A2 + h B2

7 (g + h) AB, so that the aphelia go on for ever in one direction.

The period in which the eccentricities go through all their evolutions, and return to the same state, is

^fiO^ ^?f-O^

represented by -- = -- = 70414 Julian years.

The greatest and least values of the eccentricities are respectively A + B and A' + B', for the two planets ;

and in the case before us

for Saturn, ---- 0-08409 and 0-01345 "1 the maximum of the one corresponding to the minimum of
and for Jupiter, ____ 0'06036 and 0-02606 ) the other planet.

Finally, we may derive relations between the eccentricities, masses, and semiaxes, similar to those obtained
between the inclinations, &c. in equations (182, 183, &c.) for since p* + g

2 = e2 it is easy to see that we
must have

m . e4 V1T+ mf
. e'2 A/7 = m V~a(A* + B2

) + m' A/a7
(A'

2 + B'2) (224)

+ 2 (m A/IT. AB + m' A/17. A'B') .cos
[ (g

-
h) t + (k I) }

Now we have, from the equations of condition,
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V a a' */ acf

Consequently, our equation, on executing the multiplications indicated, and substituting, reduces itself to

m <S~a~. AB + m' -/"a
7

. A' B' = o

so that the equation (224) becomes simply

m e" . </~a~+ m' e'2 V~7 = m VT(AS + Ba
) + m' */~a? (A'

2 + B'2) = constant, (226)

because the major axes are constant ;
and had we considered a greater number of planets than two, we

should, in like manner, have arrived at the equation

me* V~~a + m' if* -/"a
7
+ m" e"* -/"a

7'
-,
u &c.= constant ; (227)

PART III.

OF THE THEORY OF THE MOON.

SECTION I.

Rigorous investigation of the differential equations of the moon's motion, and general expression of the disturbing forces.

THE extreme minuteness of the masses of the planets, as well as their great distance, renders it allowable in

the theory of their perturbations to neglect altogether the squares of the disturbing forces, and affords such

facilities to the whole investigation, as to permit us to express at once the true longitude and radius vector in

explicit functions of the mean longitude or the time. This is not the case in the lunar theory, in which one

of the most remarkable of the inequalities depends for nearly half its value on the square of the disturbing

force, and in which the whole investigation is so delicate, as to render it necessary to abandon the direct

process followed in the planetary theory and ado_pt a route, apparently more circuitous, but possessing advan-

tages of a peculiar kind. It consists in expressing the radius vector and the time or mean longitude in

functions of the true, and thence by the reversion of series deducing the true longitude in terms of the mean.

The advantage of this is, that we are thus enabled to set out from differential equations in which nothing has

been neglected, and consequently have it in our power fully to appreciate the influence of all the terms we

may afterwards neglect in their integration on the final result.

Our directing principle in this investigation will be to follow out, step by step, with the proper modifications,

the same system of transformations, by which the differential equations 1. 2, 3, of undisturbed motion were

converted into (9) and (11) expressing the radius vector and time in terms of 0.

Our first step will consist in the investigation of an equation corresponding to (9) : to this end (as we
have supposed d t constant) multiply the first of the equations (94) by y, and the second by x, and add,

and we get
yiPx xd*y . ( dO d Q
- -- --

and integrating,
y d x x d y <* .. ,L /, 4- MI' / J r H V rl t : (228)

but y dx x dy = p* d 0, so that this equation becomes

ff
-ii- = h +

m'j*T
P d t (829)

if we assume d Q d n

T =
X
~^~~ 9

^. (230,
P

The function T is the measure, and m' . T the quantity, of what, in the lunar theory, is called the tangential

force, or that part of the disturbing force acting on m, which is perpendicular to the direction of the radius vector.

This is evident, if we consider that m' and m' representing the disturbing forces in the directions QP
d y d x

Fig. A. and PM (fig. A) if we resolve these each into the direction K Q perpendicular to QM they will become

respectively ,
x d Q , y d Q

TO' .
. and + m .

p d y pax
so that their aggregate, or the whole tangential force, will have for its expression [the quantity above repre-
sented by Tin equation (23O).

'['he equation (229), if m' were zero, would coincide with (9), and would express the proportionality of tLe
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deranging this proportionality ;
and since

f'p-
d = h (t + const.) + m' i'd tf*T pdt (231)

the term mf I dt I T p dt expresses their total effect after the lapse of the time t ; and we see that this effect

takes place solely in virtue of the tangential force, agreeably to what Newton has advanced in the llth section

of the Principia.
Our next step is to investigate an equation for the disturbed motion, corresponding to (11) in the undis-

turbed. The process we followed in the deduction of (11), it will be remembered, consisted

1st. In making the independent variable.

2dly. In eliminating t and its differentials.

Now, if in the equations (94) instead of supposing d t constant, we regard it as variable, we must change

d1- x ldxd*xdxd*t . d2 y ,- into d- or - --- --
, and so for

*
, &c. This done, let the first of the equations

(94) be multiplied by x, and the second by y ; their sum will be

i- yu> ai
-

tQ -1 7i2
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^ In this equation let = s, or z = p s, so that s ~ tan heliocentric elevation of m above the plane ot the Astronomy.

rand y, = tan m MQ fig. (A). Moreover, let

dQ dQ

V=---
L.J (236)

then will V be the measure, and TO' . V the quantity, of that part of the disturbing force which operates to

increase the gravity of m towards the central body. For if we resolve the forces m' .
- and m'
dx dy

which act in the directions of the co-ordinates x and y into the direction of the distance p, they will become

respectively . x d Q y d Q
+ TO'. . and + TO' . .. . .pax p d y

whose sum is TO' . V.

These substitutions made, and p being put (as in the elliptic theory) equal to , the equation will become

p
when multiplied by ,

_ 2 u \ ri*i] .

)J u3 }'h*{u* u3
'

de \dt
which equation is rigorous, nothing having been neglected in the previous process. But if the squares of the

disturbing forces be neglected, we have = 1 because * or is of the order of the disturbing forces
;

(1 + s )T p

and since, in virtue of this very equation,

*
(1 + tfl

H

.+

the equation becomes

-}

- -77
'~ x &c -

n*

T du 2
ft, S*Td0)

~v?
'

~d~0 WJ ~tf~ I

' (238)

Now ft
= 1 + m, and if we neglect the powers and products of the disturbing forces and the mass m, the

equation becomes
ift n. m' ( V T d u 9. fT,l 01

(239)
'

p. _ m' ( V
_T

du
_2_

f*TA 0\' ~
4
~

~h? { a
~

~u?

'

~d~0 AV 3
)

'

It is on this equation, (or the rigorous equation (237)) that the perturbation of the radius vector is made to

depend in the lunar theory. It remains to derive an equation from which the perturbation in latitude can be
obtained. For this purpose, all that is necessary will be to regard x and y as known, and to employ the third

of our general equations (94) to obtain a value of z, or, which comes to the same, of s, since z = p s, and p is

given by the previous theory.

Now, if in our equation (94) we change the independent variable from t to 6, it becomes

z

but since

dt* p*dO* V; .............. (240)

as appears from equations (233) and (234) ;
if we substitute these, we shall get

T dz\
'. . -T-J- ^

p d }

Now we have z = p i, dz = pds + sdp, ds z p d*s + 2 dp ds + *<P p, whence we find

. P-* ,
dQ

+ p
3

{
~--h TO'. --h m'
r3 dz
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P d 0* p*dO dO d 2

But, by 1,235) we have

pi ( d? p 2d/>2
) Physical

H <
; \ Astronomy

p d 0* { p* p
3

) ,
\

so that, by substitution we obtain,

d z s d p p d s
but dz = pds + sdp; so that ----

f-
= '--

, and we
d o dO dO

this equation ( writing u for \ becomes

h* + 2

and when the square of the disturbing force is neglected,

-%++ sy^-ir+Tf!
Such are the fundamental equations on which the problem of the moon's motion depends. They were first

investigated by Clairaut, in a piece which gained the prize of the Petersburgh Academy for 1750, and have
been deduced by almost every writer since his time, as the groundwork of the lunar theory. The method
we have followed shews how the expressions of the tangential and centripetal disturbing forces peculiar to this

theory, originate in the general equations of the problem of these bodies
;
and thus connects the modern with

the more ancient methods followed by Newton, Clairaut, &c.
Hitherto we have only considered the rigorous equations of the moon's motion. It remains to apply to them

the methods of approximation appropriate to the case, and deduce in succession the equations of the disturbed

motion. The great length to which the details of this complicated process would lead, will preclude our

entering minutely into it. We must content ourselves with leading results and general principles. One great

peculiarity of the lunar theory consists in this that the mass of the disturbing body, instead of being, as in

that of the planets, small in comparison with the disturbed and central bodies, exceeds them both several

hundred thousand times. Its vast distance, however, makes up for this, and renders its disturbing effect

small in comparison with the attraction of the central body. In the foregoing equations then the quantities

TO, and m', are not to be our guides in regulating the orders of the corrections. The very small quantities,
whose powers determine the convergency of our approximations are !Tand V, or rather m' T, and m' V, for m'
never occurs unmultiplied by one or other of these quantities. Let us therefore, first of all, consider the

nature and magnitude of these forces.

,
/

v = "*

(

Expression of the centripetal atUHtbmg force, m'V.

f JL AJL\ ^ (xS + yy'^S
1 1 ^ '

*"'

p d y / p

Now, if we neglect the inclination of the moon's orbit, and take the pline of the ecliptic for our fixed

plane, we have
z = o, 1=0, r = p, r -

p', s o,

and

-= \r* 2 rr1 . cos (0 0') +rs
i

~
i

'
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=
->3

1 -
(
2 cos (0 6') ( J

V, Astronomy.

putting w = 0'
'

, and developing in powers of . Hence, we obtain (writing r for p in the expression

for V) after all reductions,

, _ m' ( I + 3 cos 2 w r 9 cos w + 15 cos 3 > / r \
2

I

Now -n- is the accelerating force exerted by the sun on the earth, whose intensity, as we have shewn in
r 2

Section 1. Part I., is represented by "2'17399 (in its mean state) on the supposition of the earth's attraction on

r 60-23799 1
,

/ r \
2 1

the moon being unity. Also, -j-
.= - - = -

nearly, and (7 I
= ; so that we may safely

(T
\
^

111 T

r]
&c. The constant, or non-periodical parts of m'V is therefore equal to 5 . =

/ r \
3 1 1 1

'

(-7)
x-= nearly- x -.

Let a and o' be the actual mean distances of the moon and sun from the earth, and supposing

"'(7
a will be nearly ^, and the mean effect of the centripetal disturbing force will be

2
indicating a

178'7 r

diminution of the moon's mean gravity, amounting to -j-J-j-th of its whole quantity.
The moon's mean gravity being diminished by the action of the sun, and the velocity remaining nearly the

same, the centrifugal force which would be balanced by the centripetal in a circular orbit without the sun's

ction, will obtain the preponderance when the sun acts and carry the moon farther out
;
thus the disturbing

force has the effect of increasing the distance and periodic time above what they would be in the undis-

turbed orbit.

Let us next consider the tangential disturbing force m' T. Now we have
'

jp ay
, x y y= m ,

-x'

m' ( r fr\*i,\,= T. re l 3 r cos w + I -y I . &c. i . sin w

,T=|-..l.sinS, ;

The tangential force therefore vanishes both in syzigies and quadratures, and is a maximum in octants, or

at 45 of elongation . Now we have seen, that the description of areas would be equable, were it not for this

tangential force. Hence, at the former points, the equable description of areas still holds good ; while, at

the latter, an acceleration or retardation takes place. This, of course, produces an equation in the moon's

longitude, whose period is semimenstrual, as during the first quarter of its synodic revolution, the moon is

continually retarded in its orbit (supposed circular) : at the first quadrature the momentary retardation ceases

and changes to an acceleration and here the effect accumulated through the whole of the quadrant has

reached its maximum. In the next quadrant, the moon is gradually accelerated ;
and at the full moon, its

motion has regained all it had lost, and is restored to its mean state, so that here the equation is nothing, and

to on. This is the origin of that equation of the moon's motion to which astronomers have attached the

naiue of the variation.
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Astronomy

Approximate integration of the equation of the moon's orbit.

IN this inquiry we will commence with the equation (238), in which the square of the disturbing force is

neglected. Now, the obvious mode of beginning the approximation, would be (in analogy with what we did

in the theory of the planets) to substitute for u its undisturbed, or elliptic value, . But, as it is
a (] e2

)

obvious that the more nearly our first approximation approaches the truth, the more rapid will be the conver-

gency of all the succeeding ones, we may take advantage of what observation has taught us respecting the
form of the lunar orbit, and assume, for our first value oft, an expression representing that form, more nearly
than the ellipse. Now, we learn from observation, that during a single revolution, it is true, the orbit does
not deviate materially from an ellipse, but that in a very few revolutions the elliptic radius vector differs

very sensibly from the real one, by reason of the rapid motion of the lunar apsides, which perform a whole
circuit in little more than nine years. Instead then of representing by u the inverse radius vector of a fixed

ellipse, we will give it such a form, in terms of d, as shall express that of an ellipse in motion, and revolving
in its own plane in the direction of the moon's motion, as observation informs us it does.

Let us then take e, such that 1 : 1 c '.'. the moon's motion in longitude to the motion of the apsides,
then will 0(1 c) be the angle described by the apsis, while the moon describes

; and, consequently, sup-
posing (as we may) that the origin of the time t is fixed at the epoch when the apsis coincided with the axis

of the x, we shall have (1 e)
= c for the moon's true anomaly, and in the place of taking

1 + e . cos I + e . cos c ,
u = , we may take u = for our initial value of u.

a (I f)
'

a
(
1 t )

Although the idea of commencing the approximation with this value of u is, it is true, taken from obser-

vation, yet, when once suggested, no matter from what source, we may look on it as a mere analytical arti-

fice; and the truth or falsehood, convenience oi- inconvenience of the assumption will be tried by actual substi-

tution
; when, if we find that it reproduces the original expression with a train of small corrections multiplied

by the disturbing force, or can be made to do so by a proper assumption of the constant c, we may rest assured

that the assumption is (mathematically speaking) a legitimate one, and concern ourselves no farther with the

way in which we arrived at it.

Now, neglecting e2, we have

u = (1 + e . cos c0)
a

whence we get I 1= a3
(1 3 e . cos c 0) ;

= a4 (1 4 e .cos c9)

du ce= . sin c
dO a

and, by substituting this in (238) which is equivalent to

d? u 1
,

u'3 1 + 3 cos 2 w 3 m' u'3 ce .

o = + u + m .
-

. sm c . sin 2 w
d e/

1 IP /i
2 u3 2 2 ft

2 u4 a

3 / u'3

+ I m' sin Zw . d

Now, tfwe neglect the eccentricity of the earth's orbit, a' = , so that ( recollecting that m' . I -
J
=

" =
-179-)

-\ (1+3 cos 2 w) (1 3 e . cos c i

See
2 A2

3 a

a . sin c 9 . sin 2 w (244)

. / ( 1 4 e cos c 0) sin 2 w . d
h* J

The only difficulty now in the way of integrating this, is to express cos 2 w and sin 2 w in terms of 6. Now
we have w = ff

;
and since we neglect the eccentricity of the earth's orbit, 0' is proportional to the time

or ff = n' t; also we have by the equation, hdt = r*dO, or

t - -i- f-^4- = 4- /'<< <> (1
- 2 e . cos c 0) a2 = ~ (0 - -^-

. sin c
hj a2 hj h \ c

Hrrce, since h= / a very -\
n
.zr\y, and the motion of the apsides being slow in comparison with that of

tht n.oon itself, c is nearly unity, at least sufficiently so for a first approximation ; consequently,
VOL,, in. 5 A
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or t = 2 e . sin e

and eliminating t between this and the equation 0' = n' t, we have

and therefore,

- 0' = 6 2 e . sin c
n

ff = 0(l --\ + 2 e . . sinctf
V. r **

/

putting n and n' for the mean motions of the moon and earth. Hence we find, putting = k

cos 2u? = cos 2 (1 k) sin 2 (1 k) . sin! 4 e , sin c I

L '" J

= cos 2 (1 A:) + 2 k c
{
cos (2

- 2 k + c) cos (2 2 k e) } ; V 215)

and similarly,

sin2; = sin 2 (1 fc) + 2 A: e {sin (2 2k + c) sin (2 2 A: c) 0} (246)

It only remains to substitute these values in (244) where it becomes, after reducing all the products of sines

and cosines to simple multiples, and rejecting e2 ,

(Pu IS a \ 3 e
o =

+ a. {A . cos (t 2fr) + Ze . cos (2 2 A: c) + C e cos (2 a A + c) 0}
where A, B, C, are co-efficients easily expressed in functions of k and c. If we integrate this, we get

+ o
j
A', cos (2 2 *) + B' e . cos (2 2 * - c) + C' . e . cos (2

- 2 k + c) }

1 e

Let us now consider the nature of this result. We set out with u =--h cos c for a first assumed
a a

value of u ; and having substituted this, have deduced another value, which ought to be a nearer approxima-
tion, and which ought to coincide with the former, if a = o.

Now, the terms within the brackets being all multiplied by a, vanish as they should do when a = o, and

the two first terms of this expression will coincide with the uncorrected value OX V, provided we take

/;-

and

01

neglecting a4
;
that is, since a =

, c = 0-99580, and I c 0-O042. Hence, according to this view
178'7

of the subject, the progression of the apsides in one revolution of the moon is O042 x 360 , or about 1 31'.

Now, it is remarkable that this progression of the lunar apsides, as determined by a first approximation,
is only half the quantity actually observed

;
and this is the conclusion Newton had arrived at, where, after

going through a process capable of being identified with that now under consideration, he remarks (in the

9th section of the Prindpia,)
"
Apsis lunae est duplo velocior circiter." Every attempt to obtain a nearer

coincidence, by taking into account the higher powers of the eccentricities, the inclination of the moon's
orbit (which is pretty considerable, and materially modifies some of its inequalities'! &c, failed

;
and this

difficulty, which Newton evidently felt, though he had passed it in this apparently negligent manner, a

being at that time beyond his reach, or deferred for farther consideration, became so great a stumbling-block
in the way of succeeding geometers, as to shake their faith in the theory of gravity, till Clairaut shewed that

it would vanish on pushing the process to a second approximation, and that, in fact, the value of c depends,
for nearly half its quantity, on a term containing the square of the disturbing force.

To shew this, we have only to substitute the approximate value of u (248) back into the original equation

<Pv I (m'T du ro'V / d* \ /'m'T )= - + u ~ +
?- TT- 1^ + 2 (T^ + U )J F* rf

'l

=
, or 1 -<? = a.
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_,_ ^_> Supposing now we represent the first assumed value, or (1 + e . cos c 0) by u and by 6 u all the terms

Astronomy.

added by the first approximation, then will the value resulting from a second approximation be had by sub-
*""

stituting u + S u for u in all the part of the above equation within the brackets, and integrating. As we only

require at present to know the terms introduced by this second approximation, let us call them S* u, and the

value of S2 u will be had at once by integrating the equation

T du V
. /d2 a

. . \ /> T

(249)

a3

Now. since ft
2 = a very nearly, and a = m' . , we have

m'

* ( T du \ 3 * f sin 2 to d u
|

A> \tt d 6 )
~~ T "

\ (an)* d }

3 (2 cos 2 w d u sin 2 to d S u sin 2 w d u )= ^ a \-(^^ Sw+
-(a^-ir0-

- 4a
-^ur-dT

Su
}

m' V a 1 + 3 cos 3 to 3 a ( 2 sin 2 u> 1 + 3 cos 2 u> )
i = X = I 6 w + a S u >

A2 u8 2 a (a a)
3 2 a ( (a u)

3
(aw)

4
j

TOT 3 a sin 2

(a w)
4

/ m' T
, /fcos 2 MJ sin 2 to ) ,

5 d0=3a / - Sw 2 a -;- M>d
AS MS

^7 1 (ai/)
4 (au)

5
J

Let these values be substituted in the general equation (249), and it becomes

)

u
\

(P &* u 3(2 cos Zw du sin 2 w d S u sin 2 w cl ti- + * u + -~ Sw + " ' - 4 a -

sin 2 w ] + 3 cos 2

/ (P u \ /*(cos2to, sin 2 w ),+ 6
( ^TST + "

) / i 7
-

TT ^ > 2 a -- S u
[
d

\ dO* JJ (. (au)
4

(au)
s

J

To reduce this equation to the degree of approximation required, let us agree to neglect all terms which
contain a5 multiplied by any power of the eccentricity ;

or in that part ofthe approximation which depends on

the square of the disturbing force, to regard the orbits as circular. We shall have then = a u = 1, and
a

a

supposing S u = .0, where is the sum of any number of terms of the form A . cos i 6, we have

1 A d e l r* s
_,

2 a* /^=-r- I s -. = / _ d = __ / d ehj u* h J u3 h J ^

or since n = - = -

OT a-

/,
c . n t ^ 2 / 0dp

n'

consequently, since w = = t = k.nt, we get

to = (1
-

Ar), anda> = A:.n< = 2fc/0d0
du 1

We have also - = o and = 1
;
so that the equation (260) reduces itself to

d* * u 3 a*
. d 6 k as f> So2=

'sat + S " + ~c
- sm 2 to .

--- +- -sin2oi./0d0+ -
(1 + 3 cos 2

a a / i a

3 a
a"

12 a22 /( /' )
/ Ucos2 w / 0d0 sin 2 to .0>d
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= A.cosB0, -~= AB .sin B 0, = - AB'.cos B
;
I

<j> dO = ,.sin B 0, &c.
o & d tj

and the equation will give, on substitution and reduction,

d* S~ u f6 ft a2 A 3 a* )
o = -

-t- a* u + < . -=r- . A B > sin 2 10 . sin B
d 6*

[ a B 2 a J

3 n* 3a* cos 2 w 1-
(1 + 3. cos 2 KJ) + (B

5
1) . .

- -U.cosB0

or resolving the products of sines and cosines by the formula (A), page 690,

o = - - + Pu H ( J f cos (B 2 + 2 ft) cos (B + 2 2 ft)
u (ft 2 (I D 2 x

3 A a*

H . cos B
2 a

(B -2 + 2ft)0 + cos (B + 2-2ft)0}

That is, assembling together the co-efficients of like terms,

rf
2 & u 3 A o* ( k B 3 Ba

1 2 (ft + B)A o* ( k B 3 Ba
1 2 (ft

T1 B
- T + T +

4TT^)
-
B(B-2 + 2ft)

3 A 2 f A B 3 B* - 1 2 (ft
- B)

-B + T

cos -

3 A a5

H . cos B
2 a

Which equation, integrated, gives

3 A 2
fcosB0 / 2fe 3 - B B* - 1 4 (k + B) \ cos (B 2 +2 A) 0".

<2a '|B'- 1
+
V B"

"

2 2(1 -k)
~
B (B - 2 + 2 /c)/ (B- 2 + 2 A)

2 - 1 I

2* 3 +B B2
1 4 (A B) NCOS (B + 2 2fe)0

IH
2

f
2(1 -if)

~
B (B + 2-2 A)/ (B + 2-24)*-! J

Such is the value of that part of 8s a, which originates in the term A . cos B in the value of o or in the

term . A cos B in u itself. A similar set of terms, having for their arguments respectively,

B' 0, (B'
- 2 + 2 k) 0. (B' + 2 - 2 ft)

and B" 0, (B" - 2 + 2 k) 0, (B" + 2 - 2ft) ;
&c.

will arise from the other terms A' . cos B' 0, A" . cos B" 0, &c. Consequently, by substituting
a a

for B, B', B", &c. the several values which they actually have in the first approximate value ot u (equation

248), or 2 2 k, 2 2 ft c, 2 2 ft + c, we shall obtain the arguments of the several terms in the

second approximation, and so on. These are then as follows :

From c arise the arguments c 0, 2 c

From (2 2 ft) arise the arguments (2 2 k) ;
c

; (4 4 ft)

From (2
- 2 ft c) arise (2-2ft-c)0; c

; (4-4ft-c)0
From (2 2ft + c) arise (2 - 2ft + c) ;

c0
; (4

- 4 ft + c)

Thus we see, 1st. that each term which in the expression of u is multiplied by the first power of the dis-

turbing force a, reproduces itself on a second approx'mation, multiplied by the square of a, and thus the

co-efficient of every term in the general expression of i, consists in fact of an infinite series of powers of a
; for

what takes place at the second approximation will, of course, do so at every succeeding step ; and, in fact,

the very same analysis, and the same resulting formula, may be applied to deduce the terms depending on

a*, o4 , &c., in all of which the same arguments will occur.
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foyOWSj that if we set out, as a first hypothesis, with u = --
( I + e . cos c 6) the process of

Astronomy.

approximation leads us to a value of u, of the form

U =
{
A + B a. + C a* 4- D a- + &C.

}
-

a ft

+ cos c
{
A' a -4- B' a2 -- C' a3 + &c.

}

+ cos (2 2
fe)

6> .

{
A '

a -r Is" a2 + &c.
}

+ cos (4 4 A) 6) .

{B"'
a5 + &c. }

+ cos (2 2 A; + c) {
A" a t Biv a2 + &c.

j

+ cos (2 2 k c) {
A." a }- Bv a2 + &c.

}

+ tic.

We have therefore only to take care that this shall not contradict the original hypothesis, and therefore we
must have

1 = A + B a -|- C a2 + &c. ^- (253)
A

- = A' a. + B' a* + C' a' -| ftc. (254)

These equations established, the two first terms of u agree with the original value, and the remaining ones

are the equations due to the effect of perturbation, not capable of being expressed by the hypothesis of a

revolving ellipse.

The equation (253) expresses a relation between a and h, which we shall consider presently ; the other

(254) gives the value of 1 c, or the velocity of the motion of the lunar apogee. We have already seen

3 e

(248) that the value of A' is -
, and if we break off the equation (254) at the first power of a we

AI fI ( I ~- C )

have also seen that the resulting value of 1 c is J a, amounting to only half the value given by observation.

If we make B successively equal to 2 2 k c and 2 2 k + c in (252), we find for the co-efficients of

the argument c 0, respectively,

1 3a*e f2 + 6k + c - 4k* 4kc .-' (2-2fc-c)*-l 4 (2 k c) )

c4 I

'

2 a l~~ 2 (2 - 2 h c) 2 (1 k) c (2 2 k c) )

and

1 3as e f-2 + 6k- c -4k* + 4kc -c* (2-2fc + c)
2

1 4 (2 k + c)
j

c4 1
'

2a V 2 (2 - 2 /c + c) 2 (1 k)

~
c (2 2 A: + c) }

when B' and C' are the co-efficients of e . cos (2 2 k c) and e . cos (2 2 A: + c) within the

parentheses of equation (248).
Thus our equation (254) carried as far as a?, will become

/2-6Jf + c-4Ar"-4fec c8 (2 2A: c)- 1 4(2 fe-c)\

\ (9-2*-c) 2(1 -k) c(S-*-c)/
1 -c*= a+ -a<W W25*

^ ^2 + 6 fr_ c _4fr + 4 ft c_ c (2-2fe + c)
a-l 4(2-/r + c)\

;

"!? C I ^~7^ ^~; ; C r -

2T2-2A + C) 2 (1
- k) c(2

This equation is to be resolved by approximation, so as to find c ; and as a is a very small quantity, the

2

approximation may be performed easily ;
for we have only to rescind oa, and take c = 1 -- a for a first

approximation = O9957, and then substitute this for c in the co-efficient of a?, which will then become a

given number (B', C', being previously computed, and k being known,) after which, if this co-efficient be

called ft, we have

and, again substituting this for c, we find a nearer approximation, and so on.'

Now, it is a remarkable circumstance, that when this process is executed in numbers, the term

'
. a? thus added to the value of c is found to be very nearly equal to the term -- a introduced by

8 4

the first step of the approximation ;
and on pushing it still farther, the subsequent corrections are found to

be inconsiderable. Now the velocity of the apogee of the lunar orbit is expressed by 1 c, or by

a + - a4 + &c. We have already seen that the value of this, as deduced from a first approximation
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_, _'. (or the part a) came out only half what observation has assigned as its real amount, and that this was Astronomy.^v^ 4

regarded as a great difficulty in the way of the full admission of the Newtonian law of gravity. We now see

the reason of this ;
the remaining half is accounted for by the term - o2

arising from a second approxi-
o

mation ; and the fact, so far from being an objection against gravity, is thus converted into a most cogent

argument in its favour its effects being thus shewn to correspond not merely to general results and first

approximations, but to the refinements and niceties of theory.

SECTION III.

Expression of the moon's mean longitude in terms of the true, and vice versd; and of the variation and evectwn

of the moon.

THE purposes of astronomy require us to know the moon's true longitude and latitude at any assigned
instant, or to know the angle 6 in terms of the time t. For this we must have recourse to the equation.

/* />* d e / d o
t / - . - .... -T- i -- z ---------

Vft* + 2m' i'T P
3 de s V ft* + <>,

If we develope this, and retain only the first power of the disturbing force, we get

because V = a, if the dict '>r^ ; n<r force and square of the eccentricity be neglected. Now, in this for u let us

substitute

= . (1 + e.cosctf) + {A', cos (2 2 A:) + B'e . cos (2 2 A' - c) + C'e.cos (2-2i + c) 0}
a

m / T
,

3 a /'sin 2 w
and for / d its value -

/ . d
h*J u3 2 J (aw)

4

= ?-
jsm 2 ic (1 4 e . cos c 6>) d

= Ai. C{ sin (2
- 2 k)

-
(2
- 2 k) e sin (2

- 2 k + c)
- (2 + 2 k) esin (2

- 2* - c) \ dO

<2 (k

whence we find

s(,_ 2 , + c)e + cos (2
_ 2fc _

or putting = n

n t - . sin c + P a . sin (2 2 k) O + Qae . sin (2 Ik + c) + Roe. sin (2 2 k c)
c

A', B', C', being as in (248)
where

- -
^

2_2^ + c
r '

_ a (A
/ - 2 B')

2_2Ar-c
"

4 (A- 1) (2-2^-c)
'

(2
- 2 A - c)

4
.

In order to have the value of in terms of n t, we must revert this series, and the simplest mode of accom-

plishing this will be to follow the steps by which we resolved the equation n t = v e . sin v in the elliptic

theory (vide page 656, col. 1, equation 26). Putting it therefore into the form
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2 e Physical= n t + . sin c P a sin (2 2 A) (259) Astronomy

Q a e . sin (2 2 K + c)

R a. e . sin (2 2 fc c)

/ appears to be the first approximate value of 9, neglecting e and <i. Let this be substituted in the whole
of the second member, and we get

2 e= n t -\ . sin en t P a . sin (2 2 A:) nt (260)
c

Q a e . sin (2 2 k + c) n t

R a e . sin (2 <2kc)nt
for a second approximation carried as far as the first powers of e and a. If we now substitute this value in

(259) the terms multiplied by e and a only will of course remain ; but in addition to those multiplied by a e,

others will be introduced ;
and if we reject e3 and aa

, and retain only a e, these terms will be, (putting c = 1)

2 P a e . sin (2 2 k) n t . cos c n t

2 P a e (I k) . cos (2 2 k) n t . sin c n t

whose sum, after the usual reductions, is

P(2 k) ae . sin (2 2 k + c) n t Pkae . sin (2 2 fc e) nt

Consequently, if we push the approximation only to such terms, we get

2 e
6 = n t + - -

. sin c n t P a . sin (2 2 k) n t (26 1 )

{Q + (2 k) P} ae . sin (2 2 A: + c) n <

{
R 4- k ?

}
a e . sin (2

- 2 t - e) n t

The variation of the moon is that inequality which is represented by the term P a . sin (2 2 A) n t. The
numerical magnitude of the co-efficient being considerable, (2146' ) it, (as well as the inequality represented

by the term, whose argument is (2 2 k c) n t, which is called the evection, and whose co-efficient is still

greater (4830'') was long observed before its cause was known. If we observe that n t being the mean longi-
tude of the moon k n t will be that of the sun, and if we put ]) for the former, and O for the latter, the

argument of the variation will be 2 ]) 2 O, or simply ]) Q, and its period, half a synodic revolution
of the moon = 14d 765. The argument of the evection is in like manner

2 D - 2 O c

where c is the longitude of the moon's perigee, and its period is nearly that of the variation, a little longer,
however, on account of the progression of the perigee during a revolution of the moon. The term depending
on the argument (2 2 k + c) n t, or 2 ]) 2 O + c, is found on calculation to have its co-efficient very
small, and has no particular name.

In the theory we have now investigated we have been only anxious to simplify and curtail as much as pos-
sible the developements, it being far beyond our design to enter into minutiae on so complicated a problem.
It must suffice to have shewn in rather more than a general way the origin of the principal inequalities, and
traced them from the differential equations to their final expression in the value of the longitude. In so

doing, we have purposely neglected the inclination of the moon's orbit, and its effect both in modifying the

disturbing forces which act in the plane of the orbit, and in altering the longitudes by reducing them from
their actual values to their projections on the plane of the ecliptic, or by .what is called in astronomy, the
" Reduction to the ecliptic." The effect of the inclination, however, will be briefly touched on in the next
section.

SECTION IV

Of the effect of the inclination of the plane of the moon's orbit. Of the motion of the nodes, and the precession of the

equinoxes.

IN determining the effect of the inclination of the lunar orbit to the plane of the ecliptic and the motion of
its nodes, we shall suppose the orbit circular, and neglect the square of the disturbing force, the cube and

higher power of the inclination, and the product of the disturbing force and inclination. Thus our equation
(237) will become simply,

rf 1 m fV 2 /'Td0)

The value of the part depending on the disturbing forces m' Vandm' Tin this equation remains unaltered, if we
neglect as4

;
and therefore the part of u arising from perturbation is not altered when we only push the

approximation to the extent now proposed. The only new terms arising in the value of u from the introduction
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inclination, are those introduced by the term ^ ;
and to obtain them, we have only to Astronomy

integrate the equation
3

neglecting s
4

. Now, in this we must put for s its undisturbed value, which is given by the equation
<P s

+ s = o (making m' = o, in equation 240) und which is

8 = 7. sin (0 N) (263)

where 7 is the tangent of the inclination, and N the longitude of the ascending node. This gives

s _. 1 cos 2 (0 N)

iPu 1

which integrated, gives
1 3 7" ry

2

=
Tg- 75- -rr cos 2 (0 N) (264)

Thus we see that the effect of the inclination is to add to

u = or u = the terms ^ (3 + cos 2 (G N))
n* a 4 n'

Now, in approximating to u, we assumed in the foregoing pages an expression for a first value derived not
a priori from theory, but from the observed motion of the lunar apsis. It is equally a matter of observation,
that the node of the lunar orbit does not remain fixed, but is continually retreating on the ecliptic, in a direc-

tion contrary to the motion of the moon in its orbit. Let us then introduce this modification into our expres-
sion for u above found, and taking for the origin of the time, the moment when the node coincided with the
axis of the x, we have only to write g in place of N, when we get

1 ( 3 7* I

u = J\ 7
s

. cos 2 g > Vi,65)*
(

4 4 J

Let us next investigate the effect of the inclination on that part of u which arises from perturbation. Now
this may be done at once, by merely taking in 250, 251,

u= = ( 7* + 7
s cos 2 g )

' a \ 4 4 /

or 3 7
s

I 7
s

</>
= ---.cos o.O ---cos2g04 a 4 a

3 <V
9

-Y
9

tnat is, supposing in 252, 1st. A = -- , B = o, and 2dly, A = --; and B = 2g
4 a 4 a

The first supposition gives

and the second in like manner introduces into the value of the new arguments cos (2 g 2 + 2 k) and
cos (2 g + 2 2 k) with co-efficients affected with a 7

3
.

These arguments existing in the expression of u will in like manner be introduced into the value of t or

y*dO
- - and thence, by the process of reversion before explained, will arise terms of the form a 7* . sin

g 2+2/c)nt and a 7" . sin (2 g + 2 2 k) n t in the longitude, of which this mention must suffice, as
their co-efficients may easily be calculated from the principles above laid down, and nothing very remarkable
in the lunar theory depends on them. Other terms also will arise from the part of (250) multiplied by
d U . . fir ry

5
- which in this case is not = o as was supposed in (251) but is equal to | sin 2 g 0.

Ai ft

Let us now examine the manner in which the disturbing forces affect the moon's latitude. For this purpose

we must take the equation (241) in which writing for s the expression 7 . sin (gv N), for its value

e 7 cos (g v N) for m' T and m' V their values -^ sin 2 (1 A) and -
-^

(1 + 3 cos 2 (1 k) 0)
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^^~J and for m' its value = ~- =
5^

=
-^- (\ + 3 -

coiw) (see page 718, line 4,) Astr^nomy

a,

or, neglecting the product s x , simply

d Q m'as a
:

= TT- = -r *
d z a 3 a3

we shall find

d* s 3
o = + s + a 7 . g sin 2 (1 k) cos (g N)

-I- s (1 + 3 cos 2 (1
-

k) 0) + as
2

and resolving the products of sines and cosines into simple sines,

d8 * 3 a
o = + s + --o-y {sin (2-2fc+.0-N) + sin (2 -2 k - g . + N) }

-1- a . 7 sin (gO
- N) + -- 07 {sin (2

- 2 A: + .
- N) - sin (2 - 2 A - g . + N) }

4-

T a 7 ' sin (g e ~ N)

+ a
-y (1 + g) . sin (2

- 2 A: + g .
- N)

- a-y (1 -g) . sin(2-2/c-g.0

The integration of this gives

3 a 7
. _ sin (g 6 N) f a 7 sin (2 2 k + g . N) X &c.

2 (g* 1)

+ 07 sin (2 2 i # . + N) X &c.

Now the process of approximation ought necessarily to reproduce the original value 5=7. sin (g& N).

Hence, exactly as in the case of the apogee, we ought to have

,

7
-;x

sin (g
- N) = 7 . sin (g0

- N)

and 3 a 3
g* = 1 + T , ^ = 1 + T

^
Thus we obtain the motion of the node, for g 1 or a expresses the ratio of the retrograde velocity of the

node to that of the moon in its orhit. If we execute the calculation, we find this ratio to be that of 0-0042 : I

(see page 720, line 15 from bottom,) and it is remarkable, that it is exactly the same as a first approximation

gives for the direct motion of the apogee ;
but there is one remarkable difference, that in the present case, this

first approximated value is very near the truth as given by observation, and is little altered by a second

approximation ; whereas, in the other, the repetition of the process doubles the value.

The regression of the moon's nodes is a circumstance in their theory which admits of a very easy and fami-

liar illustration.

The part of the disturbing force which acts in the direction of the z, or which tends to draw the moon out

of the plane of its orbit is m?- = m' . ( ,
---

| . If we wish to know the whole force which
d z \r'3 X3 /

tends to draw the moon in a direction at right angles to the plane of its own orbit, we must assume that

plane for the plane of the x, y ; then will z = o, and

O
, , (\ 1\= m' z [ -J-

I

z \rs \s /

Now w' I -jj.
-

) = --r

-rr- cos ic nearly
--

-^r cos w, and zf being a perpendicular let fall
\r 3 X* / r 4 a* a

from the sun on the plane of the moon's orbit is equal to r' or a multiplied by the sine of the sun's angular
distance from the node (sin (0' N)) and by that of the inclination or by 7. Hence, the expression of this

torce is 3 a
,-- x cos w . sin (ff N) . sin 7

a*

a- is the moon s angular distance from the sun as seen from the earth, and therefore cos w is equal to sine of
VOL. in. 5. B



728 P H Y S I C A L A S T R O N O M Y.

Astronomy. ([ 's dist. from quadratures. So that we have
PbvsicmV

3 a - Astronomy
x sin <[ 's dist. from quadrat. X sin O s dist. from 8 X sin. inclin.

; (268)

for the value of the force in question. Let us now examine how this force tends to produce a motion in

the node. To this end, suppose the moon to set off from its ascending node, and at any point in its orbit

(supposed circular) to describe an infinitely small arc which will be a portion of a great circle seen from the

earth's centre. If the disturbing force at this moment ceased to act, this arc would be a portion of the

undisturbed orbit, and being prolonged backwards would cut the ecliptic in the ascending node, Q, whose

position therefore would be the same at the beginning and end of this infinitesimal instant. To limit our ideas,
let us conceive the moon to be within 90 from the Q, and therefore its motion is from the plane of the

ecliptic. Now, let the disturbing force act, and suppose its direction to be such as to draw the moon
out of its orbit towards the plane of the ecliptic, then will the elementary arc actually described by the
moon in virtue of its own inertia combined with the new impulse given by this force, be less inclined to the

ecliptic than the last described portion ;
and therefore being produced backwards, will cut the ecliptic in a

point behind the former place of the node. This point is the new or consecutive place of the node, which
therefore has retreated on the plane of the ecliptic by the action of the disturbing planet.
On the other hand, had the disturbing force been directed from the plane of the ecliptic, the new path of

the moon would be more inclined than in the preceding instant
;
and therefore, produced backwards, would

cut the ecliptic in a point more/oricarrf than the previous place of the node, so that under these circumstances
the node advances.

Thus we see that when the moon moves from the ecliptic and the force acts to it, the node retreats
;
but

when the force acts from it, the node advances.

Again, let the moon be approaching the ecliptic ; then, if the force act to that plane, it will approach it

more rapidly, and will cut it in a point nearer than the node to which it is approaching. This node (and of
course both) will then move to meet the moon, or in a direction contrary to its motion, i.e. will retre.it

;
and

vice versd, if the force act from the plane, the node advances.

From this analysis of all the cases, we see that whenever the disturbing force tends to elevate the moon
from the plane of the ecliptic, the node advances, and in every other case retreats. Now, it is easily seen, that

the former condition never holds good unless the moon is between the node and the quadrat jres ;
and as the

extent of the angle in which this can happen during a whole revolution of the moon in its orbit, is necessarily
less than two right angles, the preponderant tendency of the node on the average of a whole revolution is always
in favour of its retreat. In fact, when the node is in quadratures, it retreats at every instant of the lunation

;

and in the most unfavourable case, when the node is in syzigies, its retreat is barely counterbalanced by its

advance, and the node only rests for an instant ; the sun being then for a moment in the plane of the

lunar orbit.

The general tendency of the node to recede on the ecliptic is thus clearly made out
;
but we may go further

on these principles, and make the quantity of its recess a matter of calculation. For, let us denote by
K / 1 \

the force expressed in (268). Then, since the lunar gravity ( I draws the moon in the instant of

time d t through the versed sine of an arc = a d >> or through a space equal to -- , the force will
2a a*

(a d 0)*
draw it in the same time through the space K .

--
. The inclination therefore of its new path to its old

will be represented by the infinitely small angle

{a d e]
*

K

add
Let the new elementary portion be prolonged till it meets the ecliptic in Q', Q being the former place of the

node, then we shall have Q S,' for the momentary change of the node's place. Now this is the side of a sphe-

rical triangle opposite to the infinitely small angle K d 0. The included side is the arc of the moon's

orbit between the moon and node, or the moon's distance from its node, while the included angle is /the
inclination. Hence, if we call L the longitude of the node, we shall have, by spherical trigonometry,

sin I

but K = 3 a . sin ( <[ Q) . sin (O Q) . sin I. Hence, we have

d L = 3 a . sin (0 k 0) . sin (k L) . sin (0 L) d

from which differential eqar.tion the relation between Land may be deduced.

If we assume L as constant during one lunation in the second member, we get by integration the whole

change of L in that interval approximately, or the mean motion of the node in a lunation, which we will

call A L
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This is in principle the method followed by Newton in that part of the third book of the Principia, where
he treats of the motion of the moon's node

;
the most elegant and satisfactory instance of the application of

his geometry to the lunar theory.
The precession of the equinoxes is explicable on the same principles as the motion of the moon's

nodes. The centrifugal force at the earth's equation throws out a portion of the matter of which it consists

into the form of an oblate or flattened spheriod ;
and we may conceive this redundant matter, as a spherio-

dical shell investing an inscribed sphere. Suppose now every particle of this shell at liberty to obey any
impulse, unfettered by the others, or conceive it to consist of an infinite number of infinitely small moons :

each of these will describe an orbit, whose nodes have a tendency to recede on the plane of the ecliptic, and

though some (those which happen to lie between their quadratures with the sine and their nodes,) will have
their nodes in a state of advance

;
all the rest, which constitute the greater number, will have theirs in a

state of recess. Conceive now the particles to cohere and form a solid ring, unconnected with the central

globe, the motion of this ring will be a mean among all the motions of its parts, and the nodes of the ring
will in consequence continually recede, with a certain velocity. Now, let the ring adhere to the sphere, then
must all its motion be divided between itself and the whole mass of the earth, which alone has no such ten-

dency. The redundant matter at the equator, however, bears a very small ratio to the whole mass of the

earth
;
so that owing to this cause, the retrogradation is exceedingly diminished in rapidity ; and owing to the

enormous distance of the sun and the smallness of the earth (whose radius being only
- th part of the

distance
;
so that here, a = m' . (

J
= a quantity quite insensible,) is rendered too small to

x Ct s {&tjQ\Jo)

be distinctly perceived.
But the moon also exerts a disturbing force. That luminary is to our imaginary moons, or terrestrial mole-

cules, what the sun is to the moon itself in the theory of the lunar perturbation. If we reduce these principles
to calculation, assuming such a mass and distance of the moon as we know to be near the truth, we shall

find that a retrograde motion of the earth's equator on the ecliptic of about 50" per annum will actually
result. Now this is the very phenomenon known by the name of the precession of the equinoxes ;

and

though its strict theory is much more complicated and difficult than the general view here taken, its accord-
ance with observation is perfect, and affords one of the most refined verifications of that admirable law which
holds the frame of nature in the harmony we are now so well able to appreciate.
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SOUND.
PART I.

OF THE PROPAGATION OF SOUND IN GENERAL.

I. Of the Propagation and Velocity of Sound in Air.

Sound. To explain the nature and production of Sound, the laws of its propagation through the various media which Part I.

v"^^ convey it to our ears, and the manner of its action on those organs ; the modifications of which it ig suscep-
v v^-'

tible in speech, in music, or in inarticulate and unmeaning noises; and the means, natural or artificial, of pro- 1.

during, regulating, or estimating them, are the proper objects of Acoustics.

Every body knows that Sounds are conveyed to our ears from a distance through the air, but it is not equally 3

apparent that they would not reach us as well through a space perfectly void; or, in other words, that the air Sound is

itself is the vehicle, or active agent, by whose operation they are conveyed to us. Such, however, is the case, conveyed to

Shortly after the invention of the air-pump, it was found that the collision of hard bodies in an exhausted receiver us by n>an

produced no appreciable Sound. Hanksbee (Philosophical Transactions, 1705) having suspended a bell in the
of the air-

receiver of an air-pump, found the Sound die away by degrees, as the air was exhausted, and again increase on Diminution

its readmission ;
and when made to sound in a vessel full of air, the Sound was not transmitted through the of Sound in

interval between that and an exterior vessel from which the air had been extracted, though it passed freely when rarefied air.

readmitted. On the otber hand, when the air was condensed in a receiver, the Sound of a suspended bell was

stronger than i natural air, and its intensity increased with the degree of condensation. Roebuck, (Transactions -^
'

c

""e*se

of the Royal Society, Edinburgh, vol. v. p. 34,) when shut up in a cavity excavated in a rock, which served as densed air.

a reservoir of air for an iron foundry in Devonshire to equalize the blast of the bellows, observed the intensity

of Sound to be considerably augmented in the air thus compressed by their action. The same effect has been

experienced in diving-bells. More recently M. Biot has repeated the experiment of the exhausted receiver, with

a much more perfect vacuum than could be procured in Hanksbee's time ; and found the Sound to be quite

imperceptible, even when the ear was held close to the receiver, and all attention paid. (Mbm. d'Arcueil,

vol. ii. p. 97.)
The diminution of the intensity of Sound in a rarefied atmosphere is a familiar phenomenon to those who are 3.

accustomed to ascend very high mountains. The deep silence of those elevated regions has a physical cause, On high

independent of their habitual solitude. Saussure relates, that a pistol fired on the summit of Mont Blanc, pro-
mountains,

duced no greater report than a little Indian cracker (petit petard de Chine) would have done in a room. (Voyage
dans les Alpes, vol. vii. p. 337, 2020.) We have ourselves had occasion to notice the comparatively small

extent to which the voice can be heard, at an altitude of upwards of 13,000 feet on Monte Rosa. Observations

on this point in the elevated passes of the Himalaya Mountains would be interesting. They should be made by
the explosions of a small detonating pistol, loaded with a constant charge, and the distances should be measured ;

for the voice loses much of its force from the diminution of muscular energy in rarefied air, and distances are extrava-

gantly underrated by estimation in such situations. The height, however, to which an atmosphere, or medium

capable of conveying Sound extends, far exceeds any attainable on mountains, by balloons, or even by the lightest

clouds. The great meteor of 17S3 produced a distinct rumbling Sound, although its height above the earth's Extent of

surface was full 50 miles at the time of its explosion. (See Sir Charles Blagden's interesting Paper, Philoso- .

lhe Solln(1-

phical Transactions, 1784.) The Sound produced by the explosion of the meteor of 1719, at an elevation of at ^
least 69 miles, was heard as " the report of a very great cannon, or broadside;" shook the doors and windows

of houses, and threw a looking-glass out of its frame and broke it. (Halley, Philosophical Transactions,

vol. xxx. p. 978.) "These heights are deduced by calculation from observations too unequivocal, and agreeing
too well with each other, to allow of doubt. Scarcely less violent was the Sound caused by the bursting of the

meteor of July 17, 1771, near Paris; the height of which, at the moment of the explosion, is assigned by Le

Roy at 20,598 toises, or about 25 miles. (Mem. Ac.ad. Par. 1771, p. 668.) The report of a meteor, in 1756,

threw down several chimneys at Aix in Provence, and was taken for an earthquake. These instances, and others

which might be adduced, are sufficient to show that Sound can be excited in, and conveyed by, air of an almost

inconceivable tenuity (for such it must be at the heights here spoken of) provided tl^e exciting cause be suffi-

ciently powerful and extensive, neither of which qualities can be regarded as deficient in the case of fire-balls,

such as those of 1719 and 1783, the latter of which was half a mile in diameter, and moved at the rate of 20

miles in a second. It may, however, be contended, and not without some probability, that at these enormous

heights Sound may owe its propagation to some other medium more rare and elastic than air, and extending

beyond the limits of the atmosphere of air and vapour.
Sound is not instantaneously conveyed from the sounding body to the ear. It requires time for its propagation. ,

This is a mattei of the most ordinary observation. We hear the olows of a hammer at a distance, a very sensible

interval of time after WP. see them struck. The report of a gun is always heard later than the flash is seen, and
VOL. iv. & E 717



748 SOUND.
Sound,

the wind
on it.

fi.

the interval is longer the more distant the gun. We estimate the distance of a thunder-storm by the Vngth of

the interval between the lightning and the thunder-clap, which often arrives when we have ceased to expect it.
'

Sounds not j^\e repOrt of the meteor of 1783 was heard at Windsor castle, ten minutes after its disappearance. This is,

iiwanta-
probably, the longest interval yet observed.

A great multitude of experiments have been made <o determine the precise velocity of Sound. The earlier

results differ more than might have been expected, from the influence of several causes not immediately obvious,

Velocity of but chieflv from want of due attention to the influence of the wind. It is evident from the mechanical concus-

Sound. s ion attending loud noises, that Sound consists in a motion of the air itself communicated along it by virtue of

t of its elasticity, as a tremor runs along a stretched rope. If, then, the whole body of the air were moving in a

contrary direction, with the velocity of Sound, it would never make its way against the stream at all ; and, on

the other hand, when the wind blows from the sounding body direct towards the ear, it is equally clear that the

velocity of the wind itself will be added to that of Sound in still air. If a stone be thrown into a still lake, the

waves spread with equal rapidity in all directions, in circles whose centre is the stone. If into a running river,

hey still form circles, but their centre is carried down the stream ; and, in point of fact, the wave arrives oppo-

site to a point of the bank above the place where the stone fell, later than a point at the same distance below

it in proportion to the rapidity of the stream. Hence all experiments on the velocity of Sound ought to be made,

if possible, either in calm weather, or in a direction at right angles to that of the wind.

The assumption of 1300 feet per second for the velocity of Sound by Roberts, (Phil. Trans. 1694,) and the

Various de- inaccurate determinations of Mersenne, Bayle, and Walker, (Phil. Trans. 1698,) which give respectively 1474,
terminations

1200, and 1305 feet, (the latter by a mean of 12 experiments disagreeing no less than 370 feet inter se,~) scarcely
of the velo-

jeserve more mention than the rude guesses of Roberval and Gassendi, which differ by an amount nearly equal

Sound. to the whole quantity to be measured ; the former fixing it at 560 feet, the latter at 1473. The first experiments

which appear to have been made with any degree of care, were those instituted by the Florentine Academy Dd
Cimento. It was observed in these that at a distance equal to 5739 English feet, the Sound of a harquebuss

arrived five seconds after the flash ; and repeating the experiment at half the distance, they found exactly half the

time to be required. This gives, for the velocity of Sound, 1148 feet per second.

Cassini the Elder, Picard, and Roemer, from experiments made at a distance of 1280 toises, as related by

Duhamel in the Hist, de fAcad. Par. assign 1172; while Flamsteed and Halley, from a series of observations

at the Royal Observatory, the origin of the Sound being three miles distant, concluded the velocity to be 1 142 feet

per second.

In a Paper communicated to the Royal Society in 1708, by Dr. Derham, the subject of the velocity of Sound

is investigated more fully and distinctly than had before been done, and with some degree of attention to a

variety of circumstances which appear likely to influence its propagation. These are chiefly

1. The direction and velocity of the wind.

2. The amount of barometric pressure.

3. The temperature of the air through which the sound is conveyed.
4. Its hygrometrical state of moisture and dryness.

5. The actual weather, whether fog, rain, snow, sunshine, &c.

6. The nature of the Sound itself, whether produced by a blow, a gunshot, the voice, a musical instru-

ment ;
its pitch, quality, and intensity.

7. The original direction impressed on the Sound by turning, for instance, the muzzle of a gun one way
or the other.

8. The nature and position of the surface over which the Sound is conveyed ; whether smooth or rough,
horizontal or sloping ;

moist or dry, &c.

To all these circumstances, except the wind, Derham attributes no effect ; and, in fact, none of them, except

the temperature of the air, have been ascertained to exercise any material influence on the velocity ; though

many, indeed all, have a very powerful one on its intensity, or the loudness of the Sound as it reaches the ear

from a given distance. The quantity of aqueous vapour indeed ought (as we shall see) to affect the velocity,

but in a degree only appreciable in the most delicate experiments. Derham concludes, from the whole of his

observations, that Sound is propagated at the rate of 1142 feet per second, agreeing with the result of Flamsteed

and Halley, and with that of the Florentine Academicians; and as the distances of the stations employed were

considerable, in one case amounting to upwards of 12 miles, this determination appears deserving of some

reliance. The temperature, unfortunately, was not registered ; so that the experiment loses much of its value

from the impossibility of applying with certainty the requisite correction.

In 1737-1738, the Academy of Paris directed a reinvestigation of the subject, and Messrs. Cassini de Thury,
Maraldi, and La Caille, who were at that time engaged in the triangulation of France, were charged with the

mentsof the coriduct of the experiments; an account of which, by Cassini, is to be found in the volumes of the Histoire de
"'

VAcad. for the latter year and for 1739. Their observations were carefully made, and the distance of the stations

was considerable, (from 2931 to 16,079 toises.) In these experiments we find the first example of observations

so disposed as to eliminate in some measure the disturbing effect of the wind. To apprehend how this may be

done, let us suppose a current of wind to blow uniformly with any velocity from one station A to another B at

any distance, and at these two stations let shots be fired. The Sound of the shot fired at A will then be accele-

rated, and that of the signal at B will be retarded, in traversing the interval, by equal quantities ; and conse-

quently (since the velocity of Sound is very much greater than that of the most violent wind) the time in which

the Sound runs over the lino A B will be diminished, and that in which it traverses B A increased, by equal

quantities ; so that the mean will be unaffected by the wind's velocity. In fact, supposing V to be the velocity of

Sound, v that of the wind, and S the space described, the velocities of the Sound in the two opposite directions

Part
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1738.
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'

will be V -4- v and V ; and the times of description of the space A B will be and whose ',
"v-"" V + v V ti ^v

mean is equal to , or to ! 1 + (
--j- ) + ( -^r- J -f &c. > , which when v is small with respect to

c
V, reduces itself simply to T-T-. The most violent hurricane moves at a rate less than one-tenth that of Sound ;

so that in the worst case the neglect of the terms depending
1 on the velocity of the wind will entail an error less

than
-rfo

of the whole result, or about 11 feet ;
and under ordinary circumstances such as are likely to be selected

for experiment, their influence is quite inappreciable.
It is evident, however, that any want of uniformity in the rate of the wind will destroy, so far as it goes, the JQ,

precision of the result so obtained; and that, in consequence, if the corresponding signals are not strictly Influence of

simultaneous so as to make the Sound traverse the same identical portion of the aerial current, a great part of the suddengusls

advantage of this mode of experimenting is lost. M. Arago has indeed remarked, that even in that case, if the f wind -

wind be very irregular, and in sudden gusts, it vrill still uli'ect the result
;

to conceive which, we will suppose a

gust of wind to arise suddenly at the station A at the moment of firing the signals both at A and B. The
Sound which proceeds in the direction A B, as it runs quicker than the wind, will leave it behind, and be propa-
gated at every point of A B in still air, before the agitation of the wind has had time to reach it. On the other

hand, the Sound from B will meet the wind ; and, during the latter part of its course, at least, will be propagated
in a moving atmosphere. Still, it will be observed, that it can be only the latter part of its course which can be

thus affected, less, at all events, than one-tenth of the whole space ; and the effect during that tenth being to

retard the Sound by one-tenth at most of that interval, will produce a total effect, not exceeding a hundredth
of the whole time of traversing A B ; and, consequently, will affect the mean of the two deduced velocities by a

quantity not exceeding a two-hundredth part of its value, or about five feet per second. We have already seen

that the neglect of the square and higher powers of the velocity of the wind may in the same extreme case

produce double this amount of error. This, however, is the error produced by a sudden gust equal to the most
violent tornado. In ordinary winds, then, it must be quite inappreciable ;

and the method of simultaneous
observations at opposite stations, provided they be strictly such, may be regarded as completely eliminating the

wind's influence.

In the experiments of Cassini and his colleagues, however, none of these niceties were attended to; a long 11.

interval elapsed between the corresponding observations when obtained ; and, indeed, the greater part of their Cassini's

series was made without any regard to correspondence at all. They conclude the velocity of Sound to be 173 resuU -

toises, or 1106 British feet per second, at the temperature between 4 and 6 Reaum. at which the experiments
were made. The extreme difference of velocities due to a favourable and a contrary wind they found to be about
one-eleventh of the whole, giving -Jj for the ratio of the velocity of the wind to that of Sound as their maximum,
or 50 feet per second. When the correction for the temperature of the air is applied, it will be seen presently
that their result justifies the reliance placed on it by its authors ; being, in fact, within about a yard of
the truth.

Nearly about the same time Bianconi in Italy, and La Condamine at Quito and at Cayenne, instituted a series 12.

of experiments for the same purpose, of which accounts will be found in the Comment. Bonon. ii. p. 365 ; in La Other deter-

Condamine's Introduction Historique, Sfc. 1751, p. 98
;

and in the Mem. Acad. Par. 1745, p. 448. But the minations.

theory of Sound being at that time but imperfectly understood, and the necessary corrections in consequence
being not sufficiently, or not at all attended to, the subject has been regarded as still open to further discussion ;

and accordingly a great number of researches by later experimenters have been instituted, of which the principal
are those by Muller in 1791, (Getting. Gelehrte. Anzeigen, 1791, No. 159 ;) by Espinosa and Bauza, in Chili, in

1794, (Ann. de Chim. vii. 93;) by Benzenberg in 1809, (Gilbert's, Annalen, new series, v. 383;) by Arago,
Bouvard, Matthieu, Prony and Humboldt, and Gay Lussac, in lS22,(Connaiss. des Temps, 1825, p. 361;) by Moll,
Vanbeek, and Kujtenbronwer in Holland, in 1822, (Phil. Trans. 1824, p. 424 :) by Mr. Goldingham, in 1820,
at Madras, (Phil. Trans. 1823, p. 96;) by Dr. Gregory, at Woolwich, in 1823, (Trans, of Cambridge Phil. Soc.

1824 ;)
and by General Myrbaeh and Professor Stampfer, at Saltzburg, (Jahrburh des Polytekn. Institute su

fPien, vol. vii.)

Of these by far the most considerable and circumstantial, as well as in all probability, from the instrumental 13.
means employed and precautions used, the most exact, are those of the Dutch and the Parisian Philosophers. Experi-

Every attention was paid in them (at least in the case of the Dutch experimenters) to obtain signals strictly
ments f

reciprocal, by guns fired at the same instant of time at the two ends of the line of observation ; all those cor-
jj^' ^""

rections depending on Meteorological circumstances which theory points out, and which it will be the object of an(j O f

subsequent parts of this Essay to explain, being carefully applied ; and the distances of the stations being at Arago, Mat-

once considerable, and determined with sufficient exactness by Trigonometrical operations.
tnieu

>
to-

One very material difficulty in the way of former observers (Benzenberg excepted) lay in the want of adequate
means of measuring with precision intervals of time to a minute fraction of a second. This difficulty was obviated M . J
in the experiments of the French Commissioners, by the use of the stop-watch of Breguet, and the chronograph measuring
of Rieussec, a species of watch, one of whose hands performs a revolution per second, and can be made to very small

touch with its extremity the dial-plate, at any instant, and leave there a dot, without interrupting its motion of portions of

rotation, by the sudden pressure of a small lever ; to effect which it carries with it a drop of printer's ink in a time<

peculiar and ingenious species of dotting pen. In the Dutch experiments, a clock with a conical pendulum was
used, capable of determining intervals to the hundredth of a second, by suddenly suspending the motion of the

index, without stopping the clock. By the use of these instruments it was found practicable to ascertain the

5 E 2
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interval between the sight of the flash, and the arrival of the report, of a gun, with such precision as to destroy all

material error in the result which might arise from this cause ; an improvement of great importance, when we

consider that an error of a single tenth of a second in the measure of time is equivalent to 110 feet in that of

distance.

The close agreement of the results of these experiments is a convincing proof of their accuracy. The

French Philosophers state 33T05 met. = 1086'! feet, as the velocity of propagation of Sound in air of the tern

perature of freezing water, while the Dutch experimenters make it 332'05 met. = 1039-42 feet in perfectly dry

air of the same temperature. The latter seems to deserve the preference, if only from the circumstance of the

signals from which it is deduced having been strictly simultaneous, the guns at the two extremities of the line

(nine miles in length) having been fired at the same second of time, while in the former series this exact

coincidence was not obtained.

We subjoin a list of the results arrived at in the various determinations above enumerated, with their dates,

the distances of the stations employed, &c. to bring the whole subject under one view.

TABLE I. Velocity of Sound as determined by various Experiments.

Part I.

Observers* Names.
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Sound within a yard of the truth, and probably within a foot. The reduction to the zero of temperature has been made Part I.

-"~v~~-/ (when not performed by the authors themselves) on the supposition that every additional degree of atmospheric
S-~^/-

temperature, on Fahrenheit's scale, adds 1'14 foot to the velocity, a correction of which the grounds will be Vel c>'y

hereafter explained. (See Art. 68.) ado't^
It may, therefore, be stated in round numbers, that Sound, in dry air and at the freezing temperature, travels ^rTos'u

at the rate of 1090 feet, or 363 yards per second, and that at 62 Fahrenheit (which is the standard temperature feet per
of the British metrical system) it runs over 9000 feet in eight seconds, 12J British standard miles in a minute, second.

or 765 miles in an hour, which is about three-fourths of the diurnal velocity of the Earth's equator.
Hence, in latitude 42J, (42 29' 40",) if a gun be fired at the moment a star passes the meridian of any

APProxi
;

station, the Sound will reach any other station exactly west of it at the precise instant of the same star's arriving rourid"n
on its meridian. bers.

In the experiments of Dr. Gregory, the velocity of the wind was measured by an anemometer, and allowed ] 9,

for. The close agreement of their results with those of the Dutch and French observers, when the smallness of Comparison
the distances is taken into consideration, is a strong proof of the care and accuracy with which they were made. " itl1 tlle

The observations of Mr. Goldingham, or at least his mode of stating and reducing them, has been strongly, but ,

rttl

we think undeservedly, censured in PoggendorfPs Annalen der Physik, 81. Band. s. 490. He takes a mean of 2o'
all the velocities observed daily, in calm weather, during a very long time, by the firing of a morning and Remarks on

evening gun at two stations visible from Madras, and a mean of all the temperatures, pressures, and hygrometer- some of the

readings. All that we have done is to apply the correction for this mean temperature to his mean velocities, as above

if they had been given by a single observation, a course, no doubt, perfectly legitimate, and saving a world of results -

calculation. It is to be lamented that the nature of his hygrometer is not stated, as its indications at present
are perfectly useless. The experiments of Espinosa and Bauza differ so enormously in their result from the

rest, even when reduced to the freezing temperature, that most probably some fundamental mistake, either in

their measurement of the distances, or in the calculations founded on them, must have been committed. Our
authority is the Annales de. Chimie, vol. vii. (N. S.) p. 93.

Derham found that fogs and falling rain, but especially snow, tend powerfully to obstruct the free propagation 21.
of Sound, and that the same effect was likewise produced by a coating of fresh fallen snow on the ground, though Effect of

when glazed and hardened at the surface by freezing it had no such influence. Over water, or a surface of ice,
fogs,&c.

Sound is propagated with remarkable clearness and strength. Dr. Hutton relates, that on a quiet part of the ^
ob

^
truct

Thames, near Chelsea, he could hear a person read distinctly at 140 feet distance, while on the land the same Sound'we)
could only be heard at 76. Lieutenant Fosler, in the third Polar Expedition of Captain Parry, found that he conveyed
could hold a conversation with a man across the harbour of Port Bowen, a distance of 6696 feet, or about a mile over waier

and a quarter. This, however remarkable, falls far short of what is related by Dr. Young on the authority of ?
nd sraooth

Derham, vii. that at Gibraltar the human voice has been heard ten miles, (perhaps across the Strait.) We have
'ce-

not been able to find the original passage either in his Physico-Theology, or in his dissertation De Soni Motu,
in both which very remarkable instances are adduced, of which the following will suffice as specimens.

Guns fired at Carlscroon were heard across the southern extremity of Sweden as far as Denmark ; SO miles, 32
as Derham states from memory, but according to the map at least 120. Distances

Dr. Hearn, a Swedish physician, relates that he heard guns fired at Stockholm, on the occasion of the death at which

of one of the Royal family in 1685, at the distance of 30 Swedish, or 180 British miles. Sounds have

The cannonade of a sea-fight between the English and Dutch, in 1672, was heard across England as far as
been heard -

Shrewsbury, and even in Wales, a distance of upwards of 200 miles from the scene of action.

That Sounds of all pitches, and of every quality, travel with equal speed, we have a convincing proof in the 23.

performance of a rapid piece of music by a band at a distance. Were there the slightest difference of velocity in All sounds

the Sounds of different notes, they could not reach our ears in the same precise order, and at the exact intervals travel with

of time in which they are played, nor would the component notes of a harmony, in which several Sounds of different etl
,

ual

pitch concur, arrive at once. M. Biot caused several airs to be played on a flute at the end of a pipe 951 metres,
V<

or 3120 feet
; long, which were distinctly heard by him at the other end, without the slightest derangement in

the order or intervals of sequence of the high and low notes. (Mem. dArcueil, ii. 422.) A better form of the

experiment would have been to strike two bells of very different pitch one against the other, having removed
their clappers. Both their sounds would (no doubt) arrive together.
A very material difference, however, is observed in the intensity with which Sounds are propagated, or the $4

distances to which they may be heard with equal distinctness according to a great variety of circumstances. Effect ,

Thus, if a Sound be prevented from spreading and losing itself in the air, whether by a pipe, by the vicinity of pipes in

an extensive flat surface, as a wall, or otherwise, it may be conveyed to very great distances with little diminu- conveying
tion of force. This we observe familiarly in speaking pipes conducted from one apartment to another of a Sou '"i-

building. In the experiments already cited of M. Biot, a person being stationed at one end of the enormous
tube above mentioned, (which was a combination of cast iron conduit pipes laid down for the supply of Paris
with water, forming a continuous canal of equal internal diameter throughout, and having two flexures about the
middle of its length) the lowest whisper at one end was distinctly heard at the other, so that, in fact, the only
way not to be heard was not to speak at all. Nay, so faithful was the transmission of every agitation of the

air, whether sonorous, or otherwise, along the pipe, that a pistol fired at one end actually blew out a candle at
the other, and drove out light substances placed there with considerable violence.

At Carisbrook Castle, near Newport, in the Isle of Wight, is a well, 210 feet in depth, and 12 in diameter, 25.
into which if a pin be dropped, it will be distinctly heard to strike the water. The interior is lined with very

Sou
.

nd iu

smooth masonry.
Carisbrooii

It is evident, without entering into any nice theoretical considerations, that a mechanical impulse of whatever ^^Q
nature impressed on any portion of the air or other medium, whether fluid or solid, and thence communicated
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Sound, to the surrounding parts, if allowed to spread in all directions as from a centre, must reach every more distant Parti.

^ v^"1 '
point with an energy continually less and less, because the same quantity of motion is communicated in succes- ^^^v*^

Conveyance s jOn to a larger and larger sphere of inert matter, but if only allowed to spread in certain directions, its diminu-
of Sound

t jon wj |] ke iess rapid in proportion as the quantity of matter successively put in motion increases less rapidly.

Hence a Sound might be expected to be conveyed with less diminution along a wall than in the open air, the

trough or angle between the wall and the ground, in fact, forming two sides of a square pipe, and the divergence
of the Sound in two directions being thereby in great measure prevented. Dr. Hutton relates that p;irt of the

wall of a garden, formerly in the possession of W. Pitt, Esq. of Kingston, in Dorsetshire, conveys a whisper in

this way nearly 200 feet. (Mathematical Dictionary, Article Sound.) It is probably to some such principle that

we must refer a fact mentioned by the last-named author, which at first sight appears surprising enough. He
relates that when a canal of water was laid under the pit floor of the Theatre Del Argentina, at Rome, a

sunrisinsr difference was observed. The voice has since been heard very distinctly when it was before scarcely

distinguishable. It is a general remark that Sounds are well heard in buildings which stand on arches over

water. The cause of this, however, seems to be the echo produced between the water and the arch which unites

with, and reinforces, the original Sound. The Work just referred to contains many curious instances of the kind.

27 When Sound in the course of its propagation meets with an obstacle of sufficient extent and regularity it is

Echos. reflected, producing the phenomenon we call an Echo. A wall, the side of a house, or the surface of a rock,

Their the ceiling, floor, and walls of an apartment, the vaulted roof of a church, all, under proper circumstances, give rise

nature.
to Ecnos more or less audible. The reflected Sound meeting another such obstacle is again reflected, and thus

the Echo may be repeated many times in succession, becoming, however, fainter at each repetition till it dies

away altogether. We shall here set down a tew localities in which Echos, remarkable either for distinctness, or

frequency of repetition, may be heard.

28. An Echo in Woodsiock Park, (Oxfordshire,) repeats 17 syllables by day, and 20 by night, (Plot, Nat. Hist.

Instances of
Oxford, ch. i. p. 7.) One on the banks of the Lago del Lupo, above the fall of Terni, repeats 15.

remarkable
jn jne Abbey Church of St. Alban's is a curious Echo. The tick of a watch may be heard from one end

^

2Q f l^e church to the other. In Gloucester Cathedral, a gallery of an octagonal form conveys a whisper 75 feet

across the nave.

30 An Echo on the north side of Shipley Church, in Sussex, repeats 21 syllables. (Cavallo, citing Plot and

Harris.)

31 In the Cathedral of Girgenti, in Sicily, the slightest whisper is borne with perfect distinctness from the great
Echo in the western door to the cornice behind the high altar, a distance of 250 feet. By a most unlucky coincidence the
Cathedral

precise focus of divergence at the former station was chosen for the place of the confessional. Secrets never
at Girgenti.

;ntentje(i for the public ear thus became known, to the dismay of the confessors, and the scandal of the

people, by the resort of the curious to the opposite point, (which seems to have been discovered accidentally,)

till at length, one listener having had his curiosity somewhat over-gratified by hearing his wife's avowal of

her own infidelity, this tell-tale peculiarity became generally known, and the confessional was removed. (Travels

through Sicily and the Lipari Islands, in the Month of December, 1824. By a Naval Officer. 1 vol. 8vo.

London, 1827.)
32. In the Whispering Gallery of St. Paul's, London, the faintest Sound is faithfully conveyed from one side to

the other <>f the dome, but is not heard at any intermediate point.
33. In the Manfroni Palace at Venice is a square room about 25 feet high, with a concave roof, in which a person

standing in the centre, and stamping gently with his foot on the floor, hears the Sound repeated a great many
times, but as his position deviates from the centre the reflected Sounds grow fainter, and at a short distance

wholly cease. The same phenomenon occurs in the large room of the Library of the Museum at Naples.
34. Southwell (Phil. Trans. 1746, 223.) describes an Echo in an old Palace near Milan, which repeated the

Echo in the
report of a pistol 56, or even 60 times. His description is singularly confused, but the palace is no doubt that

Simonetta Qf Simonetta, mentioned by Addison in his Travels. This was a building with two wings, forming three sides of

a square. The pistol was discharged from a window in one wing, the Sound was returned from a dead wall in

the other wing, and heard from a window in the back front. (Hutton, Art. Echo. Misson, Voy. dllal. ii. 196.)
The Palace still exists, but ear-witnesses have described the phenomenon to us somewhat differently. The Echos
are heard at the window whence the pistol is fired.

35. Beneath the Suspension Bridge across the Menai Strait, in Wales, close to one of the main piers, is a remark.
Echo under ably fine Echo. The Sound of a blow on the pier with a hammer, is returned in succession from each of the

e Menai cross-beams which support the roadway, and from the opposite pier at a distance of 5~6 feet, and, in addi-
ge- tion to this, the Sound is many times repeated between the water and the roadway. The effect is a series of

Sounds which may be thus written ^
'"

*""
|

'

I j

' I|HH>B^^^^J &c. ; the first return

is sharp and strong, from the roadway over head, the rattling which succeeds dies away rapidly, but the single reper-
cussion from the opposite pier is very strong, and is succeeded by a faint palpitation, repeating the Sound at the

rate of 28 times in five seconds, and which therefore corresponds to a distance of 184 feet, or very nearly the

double interval from the roadway to the water. Thus it appears, that in the repercussion between the water and

roadway, that from the latter only affects the ear, the line drawn from the auditor to the water being too oblique
for the Sound to diverge sufficiently in that direction. Another peculiarity deserves especial notice; viz. that

the Echo from the opposite pier is best heard when the auditor stands precisely opposite to the middle of the

breadth of the pier and strikes just on that point. As he deviates to one or the other side the return is

proportionably fainter, and is scarcely heard by him when his station is a little beyond the extreme edge of
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Sound, the pier, though another person stationed (on the same side of the water) at an equal distance from the central Part '

""v"
'

point, so as to have the pier between them, hears it well. Thus, in the reflexion of Sound, there is an evident ^^^^"^

approach to the law of equality between the angles of incidence and reflexion which obtains in that of Light ; and
t|^

u
.

a tendency in the reflected Sound to confine itself to the direction which a ray of Light regularly reflected at the O f incidence

echoing surface would follow, and not to spread into the surrounding air equally in all directions. This expe- and reflex-

rimeut (which we had an opportunity of making, with the assistance of Mr. Babbage, in 1827) might be carried 'on -

much farther under more favourable circumstances ; and, we doubt not, would lead to remarkable confirmations
of the law of interference, and the general analogy between Sound and Light, to which all Optical and Acoustical

phenomena point, and of which we shall have occasion to say more hereafter. (See also our Essay on LIGHT.)
The span of the bridge between the piers is 576 feet, and the breadth of each pier about 30 feet.

The most favourable position for the production of a distinct Echo from plane surfaces is, when the auditor is 36.

placed between two such, exactly halfway. In this situation the Sounds reverberated from both will reach him Situations

at the same instant, and reinforce each other. If nearer to one surface than the other, the one will reach him favo" ra ')le

sooner than the other, and the Echo will be double and confused. If the Echoing surface be concave towards
tu

him, the sounds reflected from its several points will, after reflexion, converge towards him, exactly as

reflected rays of Light do; and he will receive a Sound more intense than if the surface were plane, and the
more so the nearer it approaches to a sphere concentric with himself: the contrary if convex. If the Echo of
a Sound excited at one station be required to be heard most intensely at another, the two stations ought
to be conjugate foci of the reflecting surface, i. e. such that if the reflecting surface were polished, rays of Light
diverging from one would be made after reflection to converge to the other. Hence if a vault be in the form of
a hollow ellipsoid of revolution, and a speaker be placed in one focus, his words will be heard by an auditor in

the other as if his ear were close to the other's lips. The same will hold good if the vault be composed of two

segments of paraboloids, having a common axis, and their concavities turned towards each other ; only in this

case. Sounds excited in the focus of one segment will be collected in the focus of the other, after two reflexions.

An attention to the doctrine of Echos is of some, though we think a rather overrated, importance to the 37.

architect in the construction of buildings intended for public speaking, or music, especially if they be large. In Effect f

small buildings, the velocity of Sound is such that the dimensions of the building are traversed by the reflected
churches

Sound in a time too small to admit of the Echo being distinguished from the principal Sound. In great ones, an(j pu biic

on the other hand, as in Churches, Theatres, and Concert rooms, the Echo is heard after the principal Sound has buildings.
ceased ; and if the building be so constructed as to return several Echos in very different times, the effect will be

unpleasant. It is owing to this that in Cathedrals the service is usually read in a sustained uniform tone, rather
that of singing than speaking, the voice being thus blended in unison with its Echo. A good reader will time his

syllables, if possible, so as to make one fall in with the Echo of the last, which will thus be merged in the louder

Sound, and produce less confusion in his delivery. For music, in apartments of moderate size, all objects which can
obstruct the free reflexion of Sound from the walls, floor, and ceiling are injurious. The Echo is not sensibly
prolonged after the original Sound, and therefore only tends to reinforce it, and is of course highly advantageous.
In large ones, an Echo can only be advantageous in the performance of slow pieces, (as Church music.) The
prolongation of a chord, after the harmony is changed, can be productive of nothing but dissonance. When ten
notes succeed one another in a second, as is often the case in modern music, the longitudinal Echo of a room 55
feet long, will precisely throw the second reverberation of each note on the principal Sound of the following one
wherever the auditor be placed ; which, in most cases, will produce (in so far as it is heard) only discord. Much
mistake seems to be prevalent on this subject. Thus it is said that the form of an orchestra should be para-
bolic, &c. that the rays of Sound should be reflected out in parallel lines to the audience. But even if they were
so, the reflected Sound cannot possibly reach them in the same time with the direct ;

and in Acoustics it is of little

moment in what direction sounds reach the ear, which is not, like the eye, capable of appreciating direction with

any precision, or collecting the rays or waves of Sound to a focus within the ear. It is not possible to place a
whole band in the focus of a parabolic or elliptic orchestra, or a whole audience in that of a corresponding opposite
segment. We may add, too, that an apartment would be worse lighted, were its internal surface a polished
semi-ellipsoid, with a candle in the focus, than if it were of the usual shape, and its walls and ceiling a dead
white. The object to be aimed at in a Concert-room is, not to deafen a favoured few, but to fill the whole
chamber equally with Sound, and yet allow the Echo as little power to disturb the principal Sound, by a lingering
after-twang, as possible. But, whether for music or for oratory, open windows, deep recesses, hangings, or

carpeting, and a numerous audience in woollen clothing, are all unfavourable to good hearing. They are to Sound,
what black spaces in an apartment would be to light ; they return back none, or next to none, of what falls on
them. Their fault is not so much that they reflect it irregularly, as that they do not reflect it at all.

The rolling of thunder has been attributed to Echos among the clouds ; and if it is considered that a cloud is a 38.

collection of particles of water, however minute, yet in a liquid state, and therefore each individually capable of Reverbera-

reflecting Sound, there is no reason why very loud Sounds should not be reverberated confusedly (like bright lights) g nj from
from a cloud. And that such is the case, has been ascertained by direct observation on the Sound of cannon, the clouds'"

Messrs. Arago, Matthien, and Prony, in their experiments on the velocity of Sound, observed, that under a

perfectly clear sky, the explosions of their guns were always heard single and sharp, whereas when the sky was
overcast, or even when a cloud came in sight over any considerable part of the horizon, they were frequently
accompanied with a long continued roll like thunder, and occasionally a double Sound would arrive from a

single shot.

But there is, doubtless, also another cause for the rolling of thunder, as well as for all its sudden and capri- 39.
cious bursts and variations of intensity, of which our knowledge of the velocity of Sound furnishes a perfect Explanation

explanation. To understand this, we must premise that, cteteris paribus, the estimated intensity of a Sound will
rthunder
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Sound. ],e proportional to the quantity of it (if we may so express ourselves) which reaches the ear in a given tirne.

^-s.'- ' Two blows equally loud, at precisely the same distance from the ear, will Sound as one of double the intensity ;

a hundred, struck in an instant of time, will sound as one blow a hundred times more intense than if they followed
in such slow succession that the ear could appreciate them singly. Now let us conceive two equal flashes of

lightning, each four miles long, both beginning at points equidistant from the auditor, but the one running
1

out in a straight line directly away from him ; the other describing an arc of a circle having him in its centre.

Since the velocity of Electricity is incomparably greater than that of Sound, the thunder may be regarded as

originating at one and the same instant in every point of the course of either flash. But it will reach the ear

under very different circumstances in the two cases. In that of the circular flash, the Sound from every point
will arrive at the same instant, and affect the ear as a single explosion of stunning loudness. In that of the

rectilinear flash, on the other hand, the Sound from the nearest point will arrive sooner than from those at a

greater distance; and those from different points will arrive in succession, occupying altogether a time equal to

that required by Sound to run over four miles, or about 20 seconds. Thus the same amount of Sound is in the latter

case distributed uniformly over 20 seconds of time, which in the former arrives at a single burst; of course, it will

have the effect of a long roar, diminishing in intensity as it comes from a greater and greater distance. If

the flash be inclined in direction, the Sound will reach the. ear more compactly, ('. e. in shorter time from its

commencement,) and be proportionally more intense. If (as is almost always the case) the flash be zigzag, and

composed of broken rectilinear and curvilinear portions, some concave, some convex to the ear ; and if, especially,
the principal trunk separates into many branches, each breaking its own way through the air, and each becoming
a separate source of thunder, all the varieties of that awful Sound are easily accounted for.

40. ^e w'" on'y mention one other phenomenon which is accountable for on the same principle. In the eruption
Pnenome- of a volcano it is often remarked, that every ejection of stones, &c. is accompanied with an explosion like

non ob-
artillery when heard at a distance ; but when near, the Sound resembles rather that of a loud and deep sigh,

unaccompanied with any sudden burst. In both cases the cause of Sound is the same, the upward rush and

tions of'vol- displacement f tne a ' r % tne stone ; but where the auditor is near the bottom of the column of Sound, it reaches

cann?. his ear more in detail than when at a distance, and therefore nearly equidistant from all its parts. In fact, let

t = the time taken by the stone to rise to a height x, and let a be the distance of the observer from the bottom

*J (i* -4- x2

of the column, and v the velocity of Sound, then will t -4- = time elapsed from the moment of
v

ejection to that of the Sound of the column at the height x reaching the ear. Hence the whole Sound of the

portion x of the column will arrive in an interval of time represented by t -) . Now, as a
v

increases, x, and therefore t remaining constant, this function diminishes rapidly, and ultimately approaches t as
its limit. Thus the Sound arrives continually more and more condensed. Should any discharge be made
obliquely towards the observer's station, a still greater concentration of the noise will happen, as may be easily
seen by considering that if shot directly towards him, with the velocity of Sound, the report would reach him
from every part of the line strictly at the same moment. Now, as these ejections have been known to rise to a

height of 10,000 feet, in spite of the resistance of the air, their initial velocity must be, at least, equal to that of

Sound. At great distances it is probable that only the Sounds produced by such oblique ejections have intensity
or (as we may express it) body enough to affect the sense.

II. Mathematical Theory of the Propagation of Sound in Air, and other Elastic Fluid Media.

^,
A general notion of the mode in which an impulse communicated to one portion of the air, or other elastic

General no-
^ u ' t'' " s diffused through the surrounding portions, and successively propagated to portions at a greater and

tionofihe greater distance from the original source of the motion, may be obtained by considering the way in which a
communica- tremor runs along a stretched cord, or in which waves excited in the surface of still water dilate themselves
tion of mo-

circularly, and propagate a motion impressed on one point of the surface, in all directions to a distance. In the
former case, conceive a blow given to a point in the middle of the cord, transversely to its length. The point to

media. which the blow is given will be thrown out of the straight line, and a flexure, or angle, will be formed in that

Propagation part. Owing, however, to the inertia of the cord, the displacement of the particles in the first instant will be
of tremors confined to the immediate neighbourhood of the point of impulse; so that the cord will not at once assume the

^etctTed
State rePresented in fiS- *' consisting of two straight portions A B, B C, forming a very obtuse angle ABC;

vord.
but rather that '" % 2 - in which the greater part on either side AD, DC, retain their original position ; and a

Fig. 1. small part DB E, proportioned to the violence and suddenness of the blow, is, as it were, bulged out into an
angular form D B E. The particle at B then is solicited on both sides by the tension of the cord in directions
B D, BE; but these tensions, which in the quiescent state of the string exactly counteracted each other, now
only do so in respect of those parts of each which, when resolved, act in directions parallel to D A, EC respec-
tively. The other resolved portions, perpendicular to these, conspire and urge the point B towards its point of
departure 6. As there is no force to counteract this (the impulse being supposed momentary) B will obey their
solicitation, and approach 6 with an accelerated velocity. But, action and reaction being equal and contrary, the
same force by which the molecule E drags B down, will be exerted on E to drag it up, or out of the line ; so that
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Sound, by the time B has performed half its course towards 6, E will have been raised above the line, and will have part I.

v""'' acquired a velocity capable of carrying it still further in that direction. At this instant the cord will have assumed ^ ^ ^

the fi<rure A D' D B E E' C. At the next moment the forces are reversed, B then tends to drag both D and E
down to the line ; but its own acquired momentum is expended in the effort, and by the time it has reached its

original place in the line, its inertia is destroyed, and it rests there without a tendency to go beyond it on the

other side. Meanwhile, however, D and E have attained their greatest elevation ; and thus (he protuberance
D B E is resolved into two D' D B and BEE' (of less height, however) on either side. In like manner the

particles D and E, in returning to their places, drag up the next adjoining D' and E', and then the next, and so

on ; and thus the summits of the protuberances advance along the line, and correspond in succession to all its

points ; and the visible effect is an undulation, or wave, which runs along the cord with a velocity greater the

greater is the force with which the cord is strained, as it manifestly ought to be, since the rapidity with which each

molecule returns from its displaced situation is greater as the force urging it is so ; and this force is nothing
more than the resolved part of the tension.

In like manner, when a wave is excited in the surface of water, as when by throwing in a stone one portion ^
is violently driven down, and the surrounding part heaped up above its natural level ; this subsides and fills up propagation
the vacuity ; but as its pressure takes place alike on both sides of the ridge, the fluid on the outside of the ridge of waves in

is also pressed on, from below upwards, by the reaction of the fluid stratum which sustains the ridge, and whose sl'U water,

pressure is propagated equally in all directions. Thus the ridge, in subsiding, not only fills up the central

vacancy, but forces up another ridge exterior to it; and this, in subsiding, another, and so on; and thus an

advancing wave is formed ; and the same action taking place on all sides of the centre, the wave can advance
no otherwise than in the direction of radii on all sides diverging therefrom.

It is by no means intended, in what is here said, to give an accurate account of what passes in either of these 43.

cases, (in fact, it is very far from being so, as the reader by a little attention will soon perceive,) but only to give
a first conception of the proposition of motion by undulations or waves.

In this general account of 'he above cases, one thing, however, cannot fail to strike the reader, that the wave 44.
which advances on the surface of water the sinuosity which runs along the stretched cord are neither of A wave not

them things, but forms. They are not moving masses advancing in the direction in which they appear to run, a progress-

but outlines, or figures, which at each instant of time include all the particles of the water or the cord which, it [
vVt>

1

v ' n "

is true, are. moving, but whose motion is in fact transverse to the direction in which the waves advance. But this ad va nc i'n j"
1

is by no means an essential condition. We may generalize this idea of a wave, and conceive it as the form, form.

space, or outline, whether linear or superficial, comprehending all the particles of an undulating body which are

at once in motion, (supposing, for the present, that the motion of each consists of a simple displacement and
return to quiescence, and not in a repetition of several such displacements and returns in succession.)
The waves in a field of standing corn, as a gust of wind passes over it, afford a familiar example of the rela- 45

tion between the motion of the wave, and that of the particles of the waving body comprised within its limits, Example,
and of the mutual independence which may in certain cases subsist between these two motions. The gust in Waves in a

its progress depresses each ear, in its own direction, which, so soon as the pressure is removed, not only re-turns,
'**'''

?'

by its elasticity, to its original upright situation, but by the impetus it has thus acquired, surpasses it, and bends
st

over as much, or nearly as much, on the other side ; and so on alternately, oscillating backwards and forwards
in equal times, but continually through less and less spaces, till it is reduced to rest by the resistance of the

air. Such is the motion of each individual ear ; and as the wind passes over all of them in succession, and
bends each equally, all their motions are so far similar. But they differ in this, that they commence not at once
but successively. Suppose (to fix our ideas) the wind runs over 100 feet in a second, and that the ears stand
one foot asunder, and each makes one complete vibration to and fro in a second. Suppose A (fig. 3) to be the

pig. 3.

furthest point which the wind at any given instant of time has reached, or the last ear which it lias just bent, and
let the action of the wind be regarded as lasting only for a single instant. Then will the next preceding ear B
have already begun to rise from its bent position, the next C will have risen rather more, and the 25th ear G
(since the distance A F is 25 fctt, and consequently since

-^fjj
= j of a second have elapsed since the wind was

at G) will have gone through one-fourth of its complete vibration to and fro, and will have therefore just attained

its upright position ; so that the ears F, E immediately adjacent towards A will not yet have quite recovered their

perpendicularity, but still lean somewhat forwards; while those on the other si.le H, I will have surpassed the

perpendicular, and have begun to sway backwards ; consequently at G the stalks will on both sides be convex
towards G, and the ears in that place will be further asunder than in their state of rest, and will appear as it

were rarefied when viewed by a spectator so distant as to take in a great extent at once. Still further in rear of

the wind, as 50 feet, at L, the 50th ear will have swung backwards as far as possible, and will just have its motion

destroyed. The preceding stalk, K, will still want somewhat of its extreme backward flexure ; the subsequent
one, M, will already have risen a little, and therefore the interval of the ears K, N will be just what it was in the
state of rest. At L, then, the spectator will see the ears at their natural distances from each other. Again the
75th stalk, Q, in rear of the wind will have had time to rise again erect from its backward inclination, three-

fourths of a second having elapsed since its first bending forward. The 74th, P, will not be quite erected ;

the 76th will have surpassed the erect state, and have again begun to lean forward. The stalks then on both
sides of Q will curve towards Q, and their ears will therefore be closer together than in their natural state, and
will appear condensed to the spectator above mentioned. Finally, the 99th, 100th, and 101st ears will be again
in the same relative state as the 49th, 50th, and 51st

; only leaning forwards instead of backwards, and therefore

neither condensed nor rarefied. The field, then, will present to the spectator a series of alternate condensation!*
and rarefactions of the corn ears, separated by intervals in their natural state of density ; and this series will

extend so far in rear of the wind, till the resistance of the air and want of perfect elasticity in the stalks shali

VOL. iv. 5 p
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Sound, have reduced them to rest, and these alternations, by the difference of shading they offer, will become apparent

v v>-x to his sight as dark and bright zones.

46. It matters not, for our present purpose, that, the impulse is, in the case here taken, not propagated mechani-

Velocity of
cally from ear to ear by mutual impulse, but that each moves independently of all the rest. All we want to

illustrate is the distinction between the wave and the moving matter, and the independence of their motions.

The waves here run along with the speed of the wind, whatever that may be ; for it is always the point 25 feet

in rear of the wind that is most rarefied, and that at 75 that is most condensed ; and the interval between the

first and 100th ear, comprehending ear? in every state or phase of their vibrations, is what we term a wave. The

velocity of the wave, then, is, in this case, that of the wind ; and is totally distinct from, and independent of, that

of each or any particular ear. The one is a constant, the other a variable quantity ; the one a general result-

ing phenomenon, the other a particular, individual, mechanical process, going on according to its own laws.

Neither is it of the least consequence whether the excursions of the several stalks from their position of rest

be great or little ; whether the degree of bending, or force of the wind, be great or small, provided its velocity

be constant. In the case of wind, indeed, the force depends on the velocity ; but if we conceive the impulse

Part I.

the wave

distinguish-
ed from that

of its com-

ponent

parts.

the waves.

Various

species of

\v;uos.

4t>.

Sonorous

waves pro-

uagaled in

47.

And inde-

pendent of

their excur-
gjvcn jjy a rj<r|d rod made to sweep across the field, any greater or less degree of flexure might he given, with

*ne"state"of
l^e same velocity, by a mere change of its level ; but the velocity of the wave would still be that of the rod in

rest. every case.

48. But with respect to the breadth of the wave, or the magnitude of that interval which comprises particles in

Breadth of every phase or state of their motion, going and returning, it is otherwise. This is a result depending essentially

on the motions of the particles themselves ;
for we see evidently in the above instance, that this breadth, which

is 100 feet, is equal to the space run over by the wind in a time equal to that of one complete vibration, going
and returning, of each individual ear. Now this time depends only on the elasticity of the stalk, and the weight
of the ear it carries. In general then we may state, that " The breadth of a wave is equal to the space run over

by it in a time equal to that in which any molecule of the waving body performs one complete vibration, going
and returning, through all the phases of its motion." In the case here taken, the motion of the individual mole-

cules is not, as in the former instances, transverse to that of the wave, but parallel to it. It is then hardly to

be termed a form, or an outline. To such a wave, the term pulse is often applied. Whatever be the nature of

the internal motions, however, the general name wave or undulation will equally apply, and will be used in

future indiscriminately for all sorts of propagated impulses. It is not even necessary that the motions of the

constituent particles should be rectilinear, or even lie in one plane. We may suppose the impelling cause to be a

whirlwind. In this case each ear will have a rotatory or twirling motion, or the stalk a conical one, simply, or

in addition to its flexure in a vertical plane ; hut the wave is independent of these particularities.

In the case just described, each particle is supposed to be set in motion by an external cause, and to be unin-

fluenced in its motions by the rest. It is, therefore, not a case of the propagation of motion at all. It is quite
otherwise with Sound, or other similar cases, where every particle of a medium receives its whole motion from

those which were moving before, and transmits it to others previously at rest. The problem to investigate the

general laws of the communication of motion under such circumstances is one of the utmost complexity, and
at present has been only resolved under very restricted conditions ; enough, however, to verify principal facts,

and establish leading points, in the doctrine of Acoustics. We shall be far from attempting to present here any
thing approaching to a sketch of the profound geometrical researches which have been bestowed on this

department of Physics, contenting ourselves with referring the reader for a knowledge of them to the various

Memoirs of Euler, D. Bernouilli, Lagrange, Poisson, &c. See (I.) Recherches sur la Nature et la Propaga-
tion du Son, par L. de Lagrange, Mem. Acad. Turin, i. 247. (2.) Euler, Recherches sitr la Propagation des

Ebranlemens dans un Milieu Elastique, Misci'l. Turin, ii. (3.) Nouvel/es Recherches sur la Propagation du Son,

par M. Lagrange, Miscel. Turin, ii. (4.) Euler, De la Propagation du Son, Mem. Acad. Berlin, 1759, p. 185,

and Supplement, p. 210, and Continuation, p. 241. (5.) Enler, Eclaircissemens plus detaill-s sur la Propagation
du Son et sur tEcho, Mem. Acad. Berlin, 1765, p. 335. (6.) Poisson, Sur (Integration de quelques Equations
Lineaires des Differens Partielles, Mem. de I'Acad. Paris, 1818, p. 121. (7.) Poisson, Sur la Theorie du Son,
Journal de I'Ecole Polytechn. xiii. 319. : while we confine ourselves to just so much developement of the

mathematical analysis of the subject as will suffice for the demonstration of the chief theoretical propositions we
shall have occasion for in the sequel.

Let us then consider, as the simplest case, the propagation of Sound in a straight canal of equal bore through-
Propagation out, filled with air or any other elastic fluid of equable density and elasticity, unacted on by gravity, and of which

ln the transverse section is so small, and the sides so perfectly polished, that we may regard the motions of all

particles in the same section as exactly similar; so that each section shall merely advance and recede in the

pipe, without any lateral change of place of its constituent molecules inter se. Let A B (fig. 4) be such a pipe,
and let any section of it, as A, be agitated by an external cause, with any arbitrary motion, i. e. one whose dura-
tion and extent, and whose velocity at every instant, shall be entirely dependent on the will, or, if we please, the

caprice of an external operator sufficiently powerful to command it ; and let us inquire how any other section

whatever, situated at any assigned distance, x, from A, will move in consequence of this arbitrary motion of A.
Let us then conceive, that, in general, the section or stratum of molecules a abb, whose distance from the

initial place A of the section A is represented by x, shall, after the lapse of any time t, have been transported
into the situation a o. ft ft, at a distance A = y from the same fixed point A. Let x 1

x'', &c. be the distances of
the next consecutive sections from the fixed point A, in their state of rest, and y', y", &K. their distances after

the lapse of the same time t. Then wil. x - x = d x, x"- x'= d x', x'" - x" d x", &c. be the thicknesses (sup-
posed infinitely small) of these strata, or the spaces occupied by them (taking the area of the section for unity)
in their quiescent state, and / y = dy, y"

-
y' dy', y"' y"=dy", &c. the same in their state o<~

50.

air in one

dimension.

Fig. 4.

51.

Analysis of

this caae.
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Sound. motion. Now as these strata were in contact at the origin of the motion, and are held together by the pressure Hart 1.

_-^^ _> of the surrounding fluid, they will remain in contact, and advance and recede along the pipe as one mass, only ^-"V"-'
the space they will occupy at different points of their motion will be variable, according to the degree of conden-

sation or dilatation they may have undergone in virtue of their motion itself. If, for instance, at any moment
the hinder of them dy be in the act of urging forward the next dy', it will be condensed; if retreating, rarefied

in comparison with the state of the preceding one dy'
1
.

Now any stratum of molecules dy' interjacent between two others dy and dy" can only undergo a change 52.

in its velocity when urged by some force, und the only force which can urge it is the difference of pressures it Expression

may experience on its two faces by the difference (if any) of the elasticities of the adjacent strata dy'' and dy.
" ! 'heading

If we can estimate this, the laws of Dynamics will enable us to express the consequent change of motion. To
this end, then, let the elasticity of the air in its quiescent state be represented by E, which is a given quantity,
and is measured by the weight of a column of mercury sustained by it, or by the length of a homogeneous
column of air of the same density, whose weight shall suffice to keep it so compressed, or be equal to that of

the column of mercury in the barometer. Then, since the elasticity of air is inversely as the space it occupies,

(casleris paribus,) the elasticity of the air when occupying the stratum dx : its elasticity when occupying
dx

dy :: dy: dx, and therefore the elasticity when occupying the space dy = E . . Similarly the elasticities

dx' dx"
of the air occupying d y' and d y" will be represented by E .

j-
and E . . Hence the plane separating

j y
d x d x 1

the strata dy and dy' will be pressed forward by the elasticity E . , and backward by E . -7-7- So that

y y

it will, on the whole, be urged forward by E (
-

-. Ithal is, by E d . , the differentials being all on
\dy' dy J dy

the supposition of t, the time being constant, and x andy only variable. Now, if we denote by H the length ofa

homogeneous column of air necessary to counterbalance the elasticity of the quiescent air, and by D its density,
we have H D = its weight = the elasticity E, and dx' . D = the weight of the stratum d x', which, substituting

for D its value, becomes d x' . . Thus, then, the moving force Ed is exerted in urging for-

ward a weight = d x' . , and is therefore equivalent to an accelerating force

'(r)
V. /

=. + H Y4^f. 4&.IT \" / . I

-d*~ '\-jj

regarding d x as constant, or all the strata dx, d x', dx", &c. as originally equal.
Now the distance of the mass thus urged from the fixed point A, at the expiration of the time t, is y

1

. Hence, 53.
if we regard only the motion of the particle d y' (or which comes to the same) of d y, which is in contact with Equation

it, we have by Dynamics
deduced.

= -^ w
where 2g = 9met- 8088 = 32-180 British standard feet and gravity, for the unit of accelerating force, and in

which equation t is expressed in mean solar seconds ;
and all linear quantities, such as H, ae, y, in metres or

feet, according as we take the metre or foot as the unit of linear measure.
This is, in fact, an equation of partial differentials, y being at once a function both of * the original distance 54.

of the stratum d x from the origin of the motion, and of t the time elapsed. In its present form, simple as it .

Limita'ion

appears, it is altogether intractable and incapable of integration. Jn fact, it embraces a class of dynamical
'"

'sound*
problems of very great complexity ; for it is evident that since no hypothesis has been made in any way limiting the
extent of the excursions of the original or subsequent strata from their points of quiescence, this equation must
contain the general expression of all possible motions of elastic fluids in narrow pipes, whether great, as when
urged by pistons or driven by bellows, or small, as are the tremors which cause Sound. In the theory of Sound
we suppose the agitations of each molecule so minute as not to move it sensibly from its point of rest. Expe-
rience confirms this. Sounds transmitted through a smoky or dusty atmosphere cause no visible motion in the
smoke or floating dust, unless the source of Sound be so near as to produce a wind, which, however, is always
insensible at a very moderate distance.

If we introduce this condition, the equation (a) admits of integration ; for the whole amount of motion of each 55.

molecule being extremely minute, their differences for consecutive molecules, or the amount of the rarefactions Simplifica-
, tion of the

and condensations undergone, must be much more so. Hence the value of -. which expresses the ratio of 1
nal e<

l
u ''

dx 'ion.

the condensation of the stratum d y in motion and in rest, may be regarded as equal to unity, and the equation
becomes simply,

(6)

6 r'2
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Sound, which is the equation of Sound regarded as propagated in one dimension, that of length, only ; or, as prevented
v'"--' from spreading laterally by a pipe.
56. The complete integral of this equation is well known to be

Its Integra- r\ s t j\ i ^ / j\ / \

tion y = F (x -$- at) -\- f (x at), (e)

where F and f denote arbitrary functions of the quantities within the parenthesis, and which must be determined

by a consideration of the initial state of the fluid, or by the nature of the motion originally communicated to its

molecules.

57 Let us then suppose, that, at the commencement of the motion, we have impressed on each section of the

Deiermina- fluid, along its whole extent, any arbitrary velocities and condensations, by any means whatever, so as to com-

tion of the prehend in our investigation all possible varieties of initial motion, whether expressible by regular analytical

arbitrary functions, or depending on no regular law whatever. It is manifest that these conditions will be expressed by
functions.

assunl jn rr
arbitrary functions of x, such as (x) and fy (x) for the initial values of the two partial differentials

and , whereof the former represents in all cases the velocity (v) of a particle which would be at the
dt d x

distance x from the origin of the coordinates in the state of equilibrium, and the latter the linear extent (e) of

that particle compared with its original extent, to which its density and elasticity are reciprocally proportional.

Now, differentiating (c) we get for the general values of e and e

v = 4r = {F'O + aO-/'O-0}; (<0
a t

F'(* + + f'(x-at); 00
d x

consequently their initial values, making t = 0, will be

(*)= a. {F< (a) -/'(*)}

y, GO = F' (r) + /' (*).

whence we get immediately

and multiplying by dx and integrating

F (x) = J- /{ a^ (x) + (*) } dx; f (x) = : -/{ V (*)
-

(*)}<* */
& (t -i (I

and thus the forms of the functions F and /become known when those of and ^ are given.

58 The question of the propagation of Sound, however, does not require us to concern ourselves with these

Expression functions, as a knowledge of the actual velocity aud density of any molecule at any instant is sufficient for our

of the state purpose. Substituting then in (d) and (e) for F' and /', the forms corresponding in and ^, we get
of any mole-

ia

U

'.

e

ant
any

t, = =
{ * (* + <>

~ + C* ~ } + 4 { C* + + (* ~ } 5 (ff)

(A)

or, as it may also be written,

v = { (x + a t) + a y- (* + a t) } + { (j;
- a t)

- a y- (x
- a t) } ; (i)

e = { (.r + a t) + a ty (x + a t) }
-

{ (x
- a t)

a -f (x - a t) } . (j)
% a & &

59 These are essentially the same expressions with those given by Euler in his Paper on the Propagation of

Sound, in the Berlin Memoirs for 1759, and by Poissnn in his elaborate Memoir on the Motion of Elastic Fluids

in Pipes, and on the theory of Wind Instruments, and they comprise the whole theory of the linear propagation

of Sound. But before we proceed to the interpretation of their meaning in particular cases, we have a few remarks

to make on their general form.

60. And, first, it is evident, that since the variable quantity x enters into all the terms both of v and c under the

functional characteristics, these quantities, regarded as functions of t, are modified essentially by the value of .r.

Remarks on which may be regarded as a parameter, or constant element in the composition of the functions expressing the

these ex- nature of the motion of any assigned molecule. If only x+ a t, or only x-at, separately entered under the

characteristics, since x + at a (t 4-
)
and x - at = - a( t - --) the variation of x would only vary

\ (I / \ Q> /
the origin of t ; and the motions of all the successive molecules would be performed according to the same

laws, only commencing at a different epoch for each molecule ; but, as both these quantities are involved, that

will not be universally the case. Consequently, in general, it appears that the undulation, or pulse, as it is

oropagated onward, becomes modified essentially in its quality by the distance it has passed over, it is no longer
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Sound, the same sound, i. e. not identical with what would be produced by shifting the initial stratum forward. Its pari I.

-v *'
velocity, intensity, and pitch, it is true, will remain (as we shall see) unaltered ; but its quality, its mode of ^-v-- '

action on the ear, (which must be differently affected by changes in the nature of the impulse made on it,) will

undergo a change. This establishes an essential difference between a Sound wave and such a wave as we took

for an illustration in Art. 45, where every point was in succession agitated by the same identical motion.

Consequently every theory of Sound in which it is assumed that the several particles in a sounding column are fil

all in succession agitated alike, is defective. This is the case with Newton's doctrine of the propagation of Inaccura-

Sound as delivered in the 47th proposition of the 2nd hook of the Principia, and, were there no other objection
ciesiuNew.

against it, would suffice to vitiate the whole. This, and other unsatisfactory points in the celebrated theory 'f"c

S

alluded to, were first distinctly perceived and pointed out by Lagrange, in the first volume of the Turin Miscel-

lanies, and an exact and rigorous investigation substituted in its place, in which the sounding column is regarded
as consisting of a series of finite, insulated particles, mutually repelling each other ; a mode of conception
which leads, by a very complicated analysis, to the same results with that above stated, but which has the advan-

tage of setting in a distinct light the internal mechanism, if we may so term it, by which Sound is propagated,
and to which we therefore willingly refer the reader.

Moreover, since by differentiating the equation (d) we get 62.

^ = a{ F"(* + at) +f"(x -at)},

this will be proportional to the accelerating force acting on the molecule. It is therefore by no means universally

proportional to y x, the distance of the molecule from its point of rest ; and therefore another assumption on

which the Newtonian doctrine of Sound rests, viz. that the motion of each molecule necessarily follows the law of a

vibrating pendulum, is equally destitute of foundation. In fact, Cramer had shown, befoie the examination of

Lagrange, that any other law of molecular motion might be substituted in Newton's enunciation of his

general proposition, and the demonstration would be equally conclusive, and the resulting velocity of Sound the

same.

Let us now descend more into particulars ; and, first, let us suppose the initial state of the fluid to consist in 63,

a general repose of the whole of an infinitely extended column, except a very small portion at A the origin of Case " a

the coordinates, which we will suppose agitated with any arbitrary motion. This is, in fact, the simplest case of
j^jiJa*^

the production of Sound ; the initial disturbance of the air being always confined within extremely small limits turbance.

compared to the distances to which the Sound is propagated. Let us then conceive the initial disturbance to

take place over a minute length 2 a of the column, whose middle we will suppose to be in the origin of the x.

This amounts to supposing <p (x) = 0, and ty (x) = 1, for every value of x not comprised within the limits

x = a and x = -J- a, admitting them to have any arbitrary values between these limits.

If we suppose now t to be less than , and regard at first what happens only on the positive side of KA
&

Propagation

the origin of the .T, since t < we have a t < x a, and therefore x a t > -\- a, and, d, fortiori, n ^\l\

n^
turbance,

x + a t > -f- . consequently for all values of t less than - we have (x a t) = 0, (* -f- a t) = ; a^'"",l^.

Rating sud-

Y- (jc a f) = Y' (* + a t) 1 ! an l therefore for all values of t less than we have v = 0, and e=l.
a

Consequently the molecule at the distance x from the origin of the coordinates, will remain at rest and uncon-

densed, or expanded, so long as t remains less than -- -
; that is, for a time proportional to the distance

CL

from the nearest point of the initial disturbance. But the moment t has attained this limit, (x a f) will have

finite values, and ty (x i a t) values differing from unity, and v and e will consequently have such. The particle

X -\- a

then will begin to move, and to undergo a change of density, and will continue to do so till t . At

this limit we have x - at = - a, x-\-at=2at-a = 2(x+a)-a=:2x + a, and consequently x -f a t >
+ . Hence at this limit we have again (x at ) = {x -(- a t) = 0, and ty (.

x ~~ a = Y' (* + a = 1>

and the motion and condensation of the particle will cease ; and will not be resumed afterwards, because the

supposition t > gives x at < a, and x-\-at>%x-\-a. and, a fortiori, > + a, so that the
a

functions retain their values and 1 from this moment for ever.

Thus we see that the molecule distant by x from the origin of the coordinates will remain at rest for a certain 55
X a 4- * a Velocity of

time I = , will then begin to move, and continue moving, during a time equal to ' Sound uni-
a a a form

=: or till t , and will then return to a state of permanent rest. A similar reasoning will
a a

apply for negative values of x. Hence if we consider any two molecules at distances x, x from A, we see that
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Souna. the more distant will commence and terminate its motion later than the nearer, by an interval of time 1'an I

^^ -^fc--' J __ *^^*V^*

= . This then is the time required for the propagation of the impulse, or Sound, o"er <he intermediate
a

space x1

x, and being proportional to that space, the velocity of propagation must be uniform, and must be

represented by the quantity a (
=

;
= - :

).
Hence it follows that the velocity of Sound is uni-

V L "" L time /

form, is independent of the nature, extent, and intensity of the primitive disturbance, (for the arbitrary func-

expressej ty (/le quantity we have called a, that is >J Zg H-

65. Let us reduce this to numbers, in order to compare theory with observation. To this end, if we call A the

First ap- density of mercury, h the height of the mercury in a barometer exposed to the same pressure as Uie sounding
proximation column, and D the density of the air in it, we have for the height of a homogeneous column of such air capablep
t

rical value.

to its nume- o,- counterbalancing the elasticity of the sounding fluid, the following value

and, calling V the velocity of Sound, we should have

Now, at the freezing temperature, and in a mean state of barometric pressure, we have, according to Biot,

A
A = Omet . 76 ;

2 g = 9m<
*-. 8088 ;

and = 10463 ; so that we obtain, by executing the numerical operations,

V = 279met . 29 = 916*" . 322.

67. The actual value of V obtained by experiment is, as we have seen, 1089.42. The difference, 173 feet, is nearly
Great differ- one-sixth of the whole amount ;

a discrepancy far too great to be attributed to any inaccuracy in the determi-
ence be- nation of the data, which are all of the utmost precision. It is evident, then, that there is something radically
tween the-

insu ffj cjent in the theory, as above delivered ; and, accordingly, Geometers for a long while endeavoured to

pe^imenu*"
account for it on various suppositions. Newton, who, by a singularly happy coincidence, which certainly

on the as- deserves to be called a divination, had, from a theory totally inapplicable in all its points, elicited the correct

sumed hy- expressjon V 2 g-
H above demonstrated, for the velocity of Sound, and who immediately encountered this

se8 '

difficulty on deducing its numerical value, endeavours to account for the deficient 173 feet by supposing the

molecules of the air to be actual spherical solids of a certain diameter, (-j^f of the interval between them,) and

"tiTto

"

^*a' *ne Sound is propagated through them instanter. It is needless to comment on this explanation. Lagrange
accmint treats the whole matter lightly, and seems inclined to attribute the deviation of fact from theory to erroneous

for it. data ; in other words, dissembling the difficulty, which Euler, on the contrary, broadly acknowledged ; and

considered that it might possibly arise from an incorrectness of analysis, in assuming the factor
( )

= 1 in

\dx J
the equation (a) Art 53, previous to integration. The true explanation was reserved for the sagacity of Laplace.
But before we state it, it will be necessary to consider what will be the effect of variations of temperature and

pressure on the velocity, according to the principles already laid down, and the formula arrived at.

68. With regard to an increase of pressure, its effect is to increase the density of the air ; but since at the same
Effect of va- time it increases its elasticity, and in exactly the same ratio; the mass to be moved, and the moving force, are
nations of increased alike, and therefore the accelerating force remains unaltered. The velocity, therefore, ought to undem-o
emperi re

nQ cnange ^y this alteration. On the other hand, an increase of temperature, under a constant pressure, tends

sure'oTthe to dilate the air, and either renders it more elastic in the same space, or more rare with the same elasticity,

velocity of Hence, on a variation of temperature, the moving force remains unaltered, while the mass moved decreases, and
Sound. therefore an acceleration in all the resulting motions must arise. The velocity of Sound then ought to be greater

in warm than in cold air, cteteris paribus. These two conclusions are both amply confirmed by experiment.

They agree too with the formula above stated ; for, if we denote by (A) the mean height of the mercury in the

barometer (0"-.76), and by (D) the density of air under this pressure at the freezing temperature, since, by the

experiments of Gay Lussac, air expands 0'00375 of its volume by every degree centigrade of increase of temper-

ature, its density under the pressure (A) at any other temperature -f T (centig.) will be - -
, and

I + T . 0*00375

under the pressure A it will be X . .

'

Q.no375
= D

'
conse(

luently tne expression (Art. 66 ) for

the velocity becomes

V = \/ 2 g (A) .

^y X (1 + -r . 0-00375).

Now, if we call (V) the velocity under the mean pressure (A), and at the freezing point, this gives

'"<*>
c5T

= y/s
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Sou "d - and therefore V =
( V) . V~] + T . 0-00375 = (V) { I +T . 0-001875 } ,

vJ^-L'
or if T be expressed in degrees of Fahrenheit's scale,

V= (V) { I + T. 0-001042};

which shows, first, that the velocity is independent of the pressure, since h is not contained in its expression ;

and that, secondly, ^ increases by very nearly the 0'001875 part of its whole quantity for every degree centi-

grade, or 4- X U'001875 = 0'001042 for every degree Fahrenheit above the freezing point, that is in feet 1'136,

(see Art. 17.) and decreases by the same quantity for each degree below freezing.
The law of Mariotte, which makes the elastic force of the air proportional to its density, and which has 69.

been employed in estimating the elasticity with which each molecule of the aerial column resists condensation, Laplace's

and transmits it to its neighbour, assumes that the temperature of the whole mass of air is alike, and undergoes
e

^pl

anat 'OB

no change in the act of condensation, and is therefore only true of masses of air which, after compression, are
malv'abm"

of the same temperature as before. But it is an ascertained fact, that air and all elastic gaseous fluids give mentioned.

out heat in the act of compression, i. e. actually become hotter, a part of their latent heat being developed, and

acting to raise their temperature. This is rendered evident in the violent and sudden condensation of air by a Heat deve-

tight-fitting piston in a cylinder closed at the end. The cylinder, if of metal, becomes strongly heated; and if a !
p*d ln

.
a ' r

piece of tinder be enclosed, on withdrawing the piston it is found to have taken fire ; thus proving that a heat,
compression

not merely trifling, but actually that of ignition, has been excited, of at least 1000 of Fahrenheit's scale. Now
when we consider how small the mass of air in such an experiment is, compared with that of the including

vessel, which rapidly carries off the heat generated, it is evident that if air by any cause could be compressed to

the same degree without contact of any other body, a very enormous heat would be generated in it. It would,

therefore, resist the pressure much more than if cold ; and, consequently, would require a much more powerful
force to bring it into that state of condensation than, according to Marriotte's law, would be necessary.

Air, then, when suddenly condensed, and out of contact with conducting bodies, resists pressure more (i. e. 70.

requires a greater force to condense it equally) than when slowly condensed, and the heat developed carried off Influence of

by the contact of massive bodies of its original temperature. In other words, it is under such circumstances 'J"
5 cause '"

more clastic, and our analytical expression for its elasticity must be modified accordingly. In fact, the conrien- y^^f'
sation of the aerial molecules in the production of Sound is precisely performed under the circumstances most Sound.

favourable to give this cause its full influence ; the condensations being so momentary that there is no time for

any heat to escape by radiation ; and the condensed air being in contact with nothing but air, differing infinitesi-

mully from its own temperature ; so that conduction is out of the question. Let us see now how this will affect

the matter in hand.

It was assumed in Art. 35, that the elasticity of the air occupying the space dx, or (E) : its elasticity when 71.

occupying d y : : d y : d x. But, in fact, the varied temperature being taken into account, the latter ratio should Modiflca-

have stood : : dy (1 + o T) : dx (1 -f ar'), where a denotes the coefficient 0-00375, and T and T' the original ^"ysisand
d X d X \ -4- a 7f formulae re-

and altered temperatures in centrigrade degrees. Hence in place of E .
- we must have E . .

-
, quired by it.

that is, E . {1 + a
(T' T) } , for the elasticity of the molecule of air when occupying the space d y,

Ui y

because, the condensations being all along supposed exceedingly small, T' differs from T only by a quantity of the

same order as the condensations ; so that (T' T)* and its higher powers may be neglected.

Now, whatever may be the law according to which the temperature of a mass of air is increased by a sudden 72.

diminution of its volume, it is obvious that for very small condensations, such as those considered in the theory Analysis.

of Sound, the rise of temperature will be proportional to the increase of density ; because, the quantity of latent

heat having sustained only a very minute diminution, by a given extremely small condensation, a repetition of

the same condensation will develope a quantity of heat falling short of the first only by a quantity of the

second order
;

so that, neglecting such quantities, double the condensation will develope double the heat, and so

in proportion. Hence we must have T' T k \l
-- > where k is a constant coefficient, whose magni-

l d x )

tude may become known either by direct experiment, or by the very phenomena under consideration. Substi-

tuting this for i' T, we get, for the elasticity of the condensed molecule,

-. .

dy
And the difference of elasticities on either side of the plane separating the molecules dy and dy', instead of

being, as in (Art. 35.) E . d -y , will be now represented by d { E (I -{- k a) --- A a E } , that is,

ay d y

by
- E(l +ka).d ---.

d y

This differs from the expression originally obtained only by the constant factor (1 + A a). Without, therefore,

going again through all the foregoing analysis, we see at once that the general equations of Sound will be

precisely as before, writing only (1 + k a) , H for H throughout ; and, therefore, if instead of putting, as before,
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II, we put a = ^2gU(l+ku) = ^ 2 g- H . K.

; when K = 1 -I- k a the equation (a) will

/ dy V d'y , dfy
I r )

.
-~ = a' .

-
;\dxjdt' (1 x l

all the other equations will remain
unaltered, and the velocity of Sound on this new hypothesis will be

veiodt

U

y"of expressed by the new value ascribed to a, that is, by
Sound.

v =

/, ~K(l -far)

where a = U'00375.

74. The actual numerical value of the constant coefficient K may be determined, as we have before said, in two
Value of ways; either by direct experiment on the increase of temperature developed in a given volume of air by a give::
K how de- condensation, or by a comparison of the formula to which we have arrived with the known velocity of Sound.

mmable. ^g we nave a ] rea(]y observed, ho.vever, the circumstances under which Sound is propagated are far more favour-

able to the free and full production of the whole effect of the cause in question than those of any experiments in

close vessels. We must not, therefore, be surprised, if the value of K as derived from such experiments should

differ materially from its value deduced from the velocity of Sound ;
nor vice versa, if the observed velocity of

Sound should differ materially from that obtained by calculation, from an experimental value of K. It is suffi-

cient, in a philosophic point of view, to have pointed out a really existing cause, a vera causa, which must act to

increase the velocity, and is fully adequate to do so to the extent observed.
75. We have seen that the numerical value of V neglecting K is equal to 916-322 feet. The observed value on

Determined
t jje c t]ler hand, is 10S9-42. Hence we have the following equation for determining K and k,

from the

s
e

^d
y f

1089-42 = 916-322 x V 1 + k . 000375 = 916-322 X V~K,
' ts"lf-

/"1089'4'2\
!

whence we obtain K =
(

- -
I = 1-4132,

\ 91o'32_/

1
[ /1089-42V 1

and ^O^^tblfrS*)-'}- 110 -26 -

Difficulty of The actual amount of heat given out by a given amount of condensation is not an element very easily or
its direct de-

exactly determinate by direct experiment with thermometers. If a common mercurial thermometer be enclosed
termination.

jn a rece jver> an(j t],e a}r suddenly compressed, the thermometer, it is true, rises ; but the amount of its rise is

evidently far inferior to the actual increase of temperature ; for, first, its mass is enormously greater than that of

the air immediately in contact with it ; secondly, it is brovight into contact successively with an unknown, and, no

doubt, a variable quantity in different experiments, by the effect of circulation ; thirdly, the vessel used carries

off by far the greater part of the heat, and one which we have no means of estimating. It is accordingly found

that by increasing the sensibility of the thermometer, by extending its surface compared to its mass, higher and

higher degrees of temperature are indicated for the same condensation ; and highest of all when the delicate

pyrometer of Breguet is used, which consists of two extremely thin strips of platina and palladium soldered

together over their whole surface, and coiled up in a spiral, which twists and untwists by the different expansions
of the metals constituting its inner and outer face. Still, however, though almost all surface, the materials of

which this instrument consists are so infinitely denser than air, that its indications must fall far short of the

truth.

'6. Another very ingenious method has been practised by Messrs. Clement and Desormes. (Journal de. Physique,
Experiment November, 1919, p. 334.) Suppose we have any quantity of air enclosed in a receiver communicating, first,

'

with an air-pump, by a valvular orifice, (A) ; second, with the upper part of a barometer tube containing tner

srmes. cury, whose height therefore measures the elasticity of the air in the receiver by its depression below the baro-

metric level of the external atmosphere; thirdly, with the external air, by a stopcock, or valve, (B,) so large that

the pressure within may be instantaneously restored to an equilibrium with that without, on opening it. Let

the whole apparatus be at the temperature of the atmosphere, (T,) and suppose the valve (B) open, then will the

internal elasticity, or pressure, (P,) be equal to that without, and also the density (D.) Close the valve B, and

open A, and, by means of the air-pump, exhaust a small portion of the air; and, again closing the valve A, let

the apparatus remain at rest till the whole has attained the temperature r of the atmosphere. In this state let

the internal pressure be observed by the barometer, which call P' ; and D', the density, will, of course, be equal to

P 1

D . , and is therefore known. Now suddenly open the valve B. The external air will rush in and restore

the equilibrium. The moment this is done (which will be known by the cessation of the inward current) let the

valve B be closed. It will then be found that the internal temperature is raised by the condensation thus effected,

and has become T' ; and the increase of temperature T' ^ may be measured by a delicate thermometer, and

that with the more precision the greater the capacity of the receiver. But it will be much more exactly measured

bv the following process, which, in fact, amounts to making the receiver itself an air thermometer. At the

moment of closing the valve the internal pressure is, of course, P. But as the air cools, its elasticity diminishes,

and, being cut off from a fresh supply from without, the mercury w r

ill rise in the barometer tube till the whole
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Sound, of the heat evolved is dissipated. Let the internal pressure, then, be again observed when this state is attained, Parti.

v <~J
-pit **~*^~~

and call it P", then will the corresponding density, or D", be equal to D . . It is required from these data

(P, P', P". being given by observation) to deduce the value of T' T and the coefficient k.

Now, this is easy; for, first, since in the final state of the receiver the density is D" sustaining a pressure P"
77.

therefore,
P P"

P = P" { 1 + a. (T>
-

T) } , whence T' - T =
og)/

-.

Now, secondly, this is the elevation of temperature due to the sudden transition of the air from the density D'
to the density D", by the introduction of that portion of external air which rushed in on opening the valve.

Calling 1 the capacity of the receiver, 1 X D' = D' expresses the quantity of air in it before the valve was opened,
and 1 X D" or D" the quantity after, so that D" D' expresses the quantity of air admitted. Its density before

D"
admission being D, and afterwards D", it had undergone a dilatation equal to 1 -=-, and therefore its tem-

(D"\1 --=7- 1 . On the other hand, the quantity of air

in the receiver before opening the valve was 1 X D' = D', and this quantity having changed its density suddenly

(D'
\

1 --=rj- J
. These two

masses of air, the one cooled by dilatation, the other heated by condensation, became suddenly mixed, and

sum of products of masses and changes of temp.
therefore must have undergone a mean rise ot temperature =--

sum of masses

and, consequently,

mean elevation of temperature = D' + D" D' = D"

D/'-jyf D 1 D-D" ) D" - D'
)
D' JD_ )

D" 1 ~W
'

D j D"
~

t D"
'

D j
'

D" / D'\l, ,D/ D'\ / D'V

D" P" ,
D' P 1 D' F

But we have -=r- =
-p-,

and =: , so that
jy7

=
pF >

and therefore substituting, we find for the value of the above expression, or T' T,

( P" / F \ / F \*1 P" P' f P (P" P') )

If we suppose the changes of pressure sufficiently small to allow of their squares being neglected, the value vhieof*
pii / P' \ P" P' P _ p"

of / - T is reduced to k . f 1
^-

1 = k.
j,

. Equating this to 5^ , the previously
expressed.

|i- pT I K.
-p

. equaling mis to
, tne previously

determined value of T' T, we get

_ 1 P-P"
_P_ P(P-F')

=
7

'

P" - P'
'

P"
'

P" (P" - p')
'

In an experiment of Messrs. Clement and Desormes, on which M. Poisson has grounded his computation of 78.
the theoretical velocity of Sound, the values of P, P', P" were Numerical

P = 0""7665 ; P - P' = 0""01381 ; P - P"= 0--00361 ;

and, consequently, F' - P' = 0-01020 ,

which gives, by the approximate formula,

k a. = 0-3492, and 1 + k a = 1 "3492 ;

whence the velocity, at a mean pressure and freezing temperature, comes out

916 ft"-322--/l-3492= 1064-35,

which falls short of the actually observed velocity only by about 25 feet. If the rigorous value of ka be
employed, the deficiency is rather less, the velocity coming out 1066'2. In this experiment, the time occupied
vol. IT. 5 a



764 SOUND.
Sound, by the intromission of the air was about half a second ;

the whole elevation of temperature, computed from the

formula T' T = = , must have been lfr"321 centig. (= 2'378 Fahr.) M. Poisson has shown (A/males
aP"

de Chim. xxiii. 1823, p. 11) that an absorption of ^ of a degree (cent.) by the receiver, which might very well

happen, would completely reconcile the observed and theoretical velocities. Laplace, calculating on the experi-

ments of Messrs. Welter and Gay Lussac, has, since, obtained a still nearer approximation to the theoretical

velocity, the difference amounting only to about 3 metres. In inquiries of such delicacy, and where the effects

of minute errors of experiment become so much magnified, it seems hardly candid to desire a more perfect

coincidence.

79. Laplace, guided by peculiar theoretical considerations respecting the constitution of gaseous fluids, has been

Another induced to put the foregoing expression for the velocity of Sound under a somewhat different form. Let K denote

mode of the ratio of the specific heat of air under a constant pressure to its specific heat if retained at a constant density ;

expressing tjjat jS) a fraction whose numerator is the quantity of heat requisite to raise a given mass of air 1 in temperature

e deve'
under a constant pressure, (its volume being permitted to increase,) and whose denominator is the quantity

loped heat necessary to raise it 1 in a constant volume, or when so confined as not to dilate. Then will the velocity of

on the velo- Sound be
city of

Part I.

To show this, let Q and q be the quantities of heat above mentioned. It is evident, first, that when forcibly

prevented from expanding, and thereby absorbing heat and rendering it latent, a less quantity of heat will suffice

to raise the temperature of a given mass of air any given quantity, as 1 , than if unconfined. In fact, suppose
it heated 1, and allowed meanwhile to dilate, so that the temperature of the dilated air shall be 1 above its

primitive state, then, if compressed back into its original volume, the whole quantity of heat developed by the

condensation will be employed in raising the temperature still higher. If then the quantity Q of caloric raise

the temperature 1 under a given pressure, it will raise it more than 1 when confined to a given volume, by the

whole amount of temperature due to a compression equal to its dilatation in the former case. Suppose the

initial temperature freezing, then if a = 0'00375, an increase of temperature of 1 cent, will produce, under a

constant pressure, a dilatation = a, and the volume from 1 will become 1 + a. Let the air so dilated and raised

in temperature be compressed back to its former volume, then will its temperature be further increased by A a, k

denoting as before ; so that the quantity of caloric Q will have ultimately produced a rise of temperature

= 1 + k a, under a constant volume ; and therefore a quantity =:
l < ^ only would be required to raise

r\ r\

This demonstration assumes, as an axiom, that theit 1. Hence q = , and 1 +* a = = K.
9

temperature produced by the introduction of the same quantity of caloric is the same, whether it be introduced

into air confined in a given space, or into air allowed to expand freely, and then forcibly compressed back ; which

it evidently is, since the heat given out by the compression must of necessity exactly equal that absorbed and

rendered latent in the act of expansion.

II. Of the Linear Propagation of Sound in Gases and Vapours.

80.

Interpreta-
tion of the

formula in

the case of

gases and

vapours.

The analysis by which we have in the foregoing articles determined the laws and velocity of the propagation
of Sound in air, applies equally, mutatis mutandis, to its propagation in all permanently elastic fluids, and in

vapours, in so far as their properties are the same as those of gases. The formula so often referred to then

V = .K.(1+.T)

expresses the velocity of Sound in all such media, provided for (D) we write instead of the density of atmo-

spheric air that of the gas at the freezing temperature, and under the mean pressure (A). In the case of vapours,
we must suppose in calculating the value of (D) that they follow the law of gases in their condensation, and
that no portion of them undergoes a change of state to a liquid, by reduction to the standard temperature and

pressure. Suppose, then, the specific gravity of atmospheric air to be denoted by s, and that of any gas or vapour
under the same temperature and pressure by s

1

; then if V and V be the velocities of Sound in air, and in the

gas or vapour, we have

= v/ *<*>. T ar), V' =

because (see PNEUMATICS, HEAT) the law of dilatation, or the value of o, is alike in all. Consequently, we have

JL- \/_L 51
V

' ' V j K '
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Sound.

V : V :

whence the ratios of s' : and of K' : K being known, the ratio of the velocities is also known, being, cteteris

paribus, in the inverse subduplicate ratio of the specific gravities.

To compare this with experiment directly is impracticable, as no column of any gas but atmospheric air can

be obtained of sufficient length and purity to determine the velocity of Sound in it by direct measure. Indirectly,

however, the comparison may be performed by comparing the Sounds of one and the same organ-pipe, filled

with the gases to be compared, successively, or by other means of a similar kind, of which more hereafter. (See

INDEX, under the heads Gases, Vapours, Sounds of Pipes.)
The following Table exhibits the Velocities of Sound, as deduced from theory, and compared with experiments

instituted by M. Van Rees, in conjunction with Messrs. Frameyer and Moll.

GM, or Vapour.
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Sound, hydrogen gas is peculiarly indisposed for the conveyance of Sound. He rarefied the air of a receiver in which Part I

N
"N/ -^ a piece of clockwork was enclosed, striking a bell every half minute, 100 times; and then introduced hydrogen ^v-

Singular gaSi when no augmentation whatever of the Sound took place. Yet more
; when the air in the receiver was only

h^droenin
^ exhausted, and the deficiency filled up with hydrogen gas, not only the Sound was not increased, but was

enfeeWing

in

actually diminished so as to become scarcely audible. If this last fact be correctly stated, (which from the high
Sound. character of Mr. Leslie, as an experimenter, we must not doubt,) some peculiar modification of the usual process

by which Sound is propagated must have taken place. It is much to be regretted that the circumstances are

not more fully stated ; the pitch of the bell, in air, in the mixed gases, and in hydrogen alone ;
the dimensions

of the receiver ; the distances at which the Sounds ceased to be heard ; and whether the same effect took place
when bells of different pitch were struck, and when the bell was muffled so as to produce no musical Sound,
are all particulars of essential consequence to enable us to form a judgment of what really took place in this

interesting experiment, which we venture to express a hope will be repeated and varied by its author on a scale

proportioned to its importance. We shall have occasion again to refer to this subject. (See Index, Interference
of Sonorous Vibrations and Propagation of Sound in Mixed Media)

86. When hydrogen is breathed (which may be done for a short time, but not altogether without inconvenience

Effect of and even danger) the voice is singularly affected, being rendered extremely feeble, and at the same time raised

hydrogen on
jn pjtcn _ (Odier, Journal de Physique, vol. xlviii.) This is just what ought to arise from the lungs, larynx, and

wheii'
fauces being filled with an exceedingly rare medium ; but if, as some experimenters relate, the effect subsists

breathed, long after the hydrogen is expired, and the lungs completely cleared of it, this can only be ascribed to some
Musical physiological cause depending on its peculiar action on the organs of the voice. The singular Sounds produced
Sounds ex-

by burning this gas in pipes of proper construction have nothing to do with the propagation of Sound in the gas
1 by the

jtse]f_

ofhydrogen.
The propagation of Sound in vapours offers two distinct cases in which it would at first appear that very

87. different effects should take place. In the first, in which the vapour is subjected to a less compression than what

Propagation is sufficient to reduce a portion of it to the liquid state, experiments have sufficiently proved the identity of the

of Sound io laws which regulate the compression and dilatation of this species of elastic fluids with those which prevail in

vapours. ^e case of ordinary gases ; and, indeed, recent researches have proved that a great number, and rendered it

probable that all the latter, are in fact only vapours of certain liquids capable of sustaining a very much greater
than the ordinary atmospheric pressure ; or, which is the same thing, habitually maintained at a temperature far

above their boiling point. In this state, then, the propagation of Sound in vapours differs in no respect from that

in gases. But when the pressure sustained by the vapour is sufficient to condense a portion of it, as, for instance,

in the upper part of a vessel in which water is kept boiling, and which is therefore full of steam at 212 Fahr., it

would seem, at first sight, that no Sound could be propagated through such a medium ; for, since the slightest

additional pressure is sufficient to reduce a portion of the vapour to the liquid state, it would appear that the

whole effect of an impulse suddenly communicated to any portion of the vapour, urging it towards the adjacent

stratum, would be, not the compression of the whole of such portion into less dimensions, accompanied with

increased elastic force, but the absolute condensation of a small portion into inelastic water, the remainder

retaining precisely the same elasticity as before. Thus the necessary conditions for the propagation of the

impulse are nullified, and it should seem, therefore, that no Sound could be excited in such a case.

But if in vapours, as in gases, the act of compression developes a certain portion of heat, it is evident that this

Experiment may be such as to prevent altogether the mechanical condensation of the compressed vapour, and maintain it in

byBiot
' ts e'astic state even under the increased pressure ; and therefore Sound ought on this supposition to be propa-

gated freely. Thus it appears that we are furnished with an experimentum crucis for deciding on the validity of

the explanation above stated of the excess of the observed above the theoretical velocity of Sound. If the

momentary condensations and dilatations of an elastic fluid do, as supposed in that explanation, give out and

absorb heat, Sound should be freely propagated in a saturated vapour, (i. e. a vapour in contact with liquid, or

under a pressure which it can just sustain.) If not, no Sound can be transmitted by it. The experiment has

been made with care by M. Biot, assisted by Messrs. Berthollet and Laplace, (Mem. dArcueil, ii. 99.) by means

ofa bell suspended in a large glass balloon. When completely exhausted, no Sound was heard on striking the bell ;

but on the admission of a little water it was feebly heard, and as the water and balloon were warmed, became

stronger and stronger. When allowed to cool, the vapour condensed, and the Sound became enfeebled by the

same degrees. When alcohol was used instead of water the Sound was more powerful, and still more so when

ether was introduced, the vapours of these liquids at a given temperature being more dense than that of water.

As in these experiments care was taken to keep the inside of the balloon constantly wet with the liquid, it is

evident that the only condition requisite to be observed, that of maintaining the vapour in the interior, at

its maximum of pressure, was completely fulfilled. The reader is referred to the original Memoir for an

account of the details of this elegant experiment. The reasoning above stated is M. Blot's. We would

Remarks remark, however, on it, that the developement of the latent heat of a vapour on its condensation into a liquid,

thereon. though, no doubt, analogous to, is still in a material point different from, the developement of heat in a gas by
mere compression, unaccompanied with a change of state. If the latent heat of steam at 212 (amounting to

about 94 5) be not conducted away, the steam cannot be condensed into water of 2L2. A portion will be

condensed, but its latent heat will be employed in raising the temperature of the water produced and of the

remaining steam, and thus increasing its elasticity and resistance to the pressure. Thus, the propagation of

Sound in saturated vapour is not incompatible with the reduction of a portion of the vapour to a liquid state at

every condensation caused by the sonorous pulse, and its reconversion into vapour when the condensation goes
off : nor is it to be assumed as proving any thing with respect to gases or vapours under less than their maxi-

mum pressure. The heat developed may (for any thing this experiment proves) come entirely from the liquefied
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portion, and have no existence when no portion is liquefied. We do not make this remark as detracting Part I.

' from the merit of M. Biot's ingenious views, in which, on the contrary, we fully coincide as to their result,
V-~~V"~*'

but as an instance of the circumspection requisite in drawing conclusions in a theory so delicate as that

of the propagation of Sound.

IV. Of the Propagation of Sound through Liquids.

The experiments of Canton, and the more recent ones of Perkins, Oersted, Colladon, and Sturm, have shown 89.

that water, alcohol, ether, and, no doubt, all other liquids, are compressible and elastic,_though requiring a very Liquids

much greater force to produce a given diminution of bulk than air. Water, according to the experiments of c m
P";

ssi-

Perkins, (Phil. Trans. 1820, p. 234.) as computed by Dr. Roget, suffers a condensation of -^.-^g by a pressure el^"
of 100 atmospheres. This result agrees sufficiently well with that of Canton, which gave a condensation of
0-000046 for every atmosphere of pressure, (Phil. Trans. 1764,) and has been since confirmed by Oersted's

researches.

Since water, then, and other liquids have the essential property of elastic media, on which the propagation of 90.

Sound depends, it may be presumed, a priori, that Sounds are capable of being conveyed by them as well as by And there-

the air ; and, indeed, better, by reason of their greater density, pursuant to the same law which obtains in gases.
f re capable

This conclusion is abundantly confirmed by experiment. Hauksbee (Phil. Trans. 1726, 371.) ascertained that
fcon*ey ing

water would transmit a Sound excited in air. Anderon (Phil. Trans. 1748, p. 151.) describes a number of expe-
riments on the hearing of fishes, from which, indeed, he concludes, that they are altogether devoid of this sense.

But a very different conclusion really follows from them. Fishes enclosed in a glass jar appeared (says Anderon) Hearing of

utterly insensible to any Sound excited in the air without them, (if unaccompanied with motion,) but the slightest fishes.

tap with the nail on the edge of the jar, although made in such a situation that the motion could not be seen by
them, immediately disturbed them. This is easily explicable ; and is, in fact, just what ought to happen. The

intensity of Sound excited in aay medium must evidently be proportioned to the energy of the original impulse,
and must therefore be much greater when arising from the direct impact of a solid body on the water, or its con-

taining vessel, than from that of the particles of the air in a sonorous wave, whose momentum is necessarily very small.

As fishes have no external organs of hearing, Sounds must be conveyed to their sensorium by direct propagation,

through the bones of their heads ; and they are probably insensible to, or habitually careless of, those feeble

impulses which are communicated from the air. But that the latter impulses do exist, and are audible by our

ears,Anderon'sPaper furnishes proof enough. He made three people, stripped quite naked, dive at once,and remain
g

,

about two feet below the surface of the water. In this situation he spoke to them as loud as he was able. At c jted in atr

their coming up they repeated his words, but said he spoke very low. He caused the same persons to dive heard under

about 12 feet below the surface, and discharged a gun over them, which they said they heard, but that the noise water,

was scarce perceivable. He further caused a diver to halloo under water, which he did ; and the Sound was
heard, though faintly. A grenade, exploded about nine feet below the surface, gave a prodigious hollow Sound,
with a most violent concussion of the earth around. Lastly, he caused a diver to descend with a bell in his

hand, whose ringing he (the diver) assured him he could hear distinctly at all depths ; adding, also, that he could
hear the rushing of the water through a flood-gate at 20 feet distance from the place he was in.

The Abbe" Nollet having descended to various depths, from 4 to 24 inches, could hear all Sounds made in the 91.

air (as a clock striking, a hunter's horn, the human voice, &c.) distinctly, but faint and attenuated. (Brocklesby,
Nollet's ex

Phil. Trans, 1748, p. 237.) periments.

Franklin, having plunged his head below water, caused a person to strike two stones together beneath the 93.
surface ; and at more than half a mile distance heard the blows distinctly. These instances are sufficient to Franklin's,

show that Sound is audibly conveyed through water as well as through air ; and, indeed, if properly excited,
much better.

A series of experiments on the velocity of Sound in sea-water was instituted by M. Beudant, at Marseilles. 93.
Two observers, with regulated watches, were stationed in boats at a known distance. Each was accompanied Velocity of

by a diver. A bell was struck at stated intervals at one station ; and at the instant of its being heard by the Souud in

diver at the other he made a signal, and the time was noted by the observer in the boat. Of course, time was p
at

^T' ,

lost. The mean result of these observations gives 1500 metres = 4921 feet per second for the velocity. experimentsA more careful and no doubt more exact determination was undertaken and executed in 1826, by M. Colladon, in 94
the Lake of Geneva. After trying various means for the production of the Sound, as the explosion of gunpowder, Colladon

blows on anvils, and bells ; the latter were preferred, as giving the most instantaneous, and, at the same time, and Sturm's

most intense Sound, the blow being struck about a yard below the surface by means of a metallic lever. The ex Pcrimen t

experiments were all made at night, to avoid the interference of extraneous sounds, and for the better observing
of the signals made at each blow by the flash of gunpowder.
To render audible to an observer out of water (in which situation only can any observations worthy of 95.

confidence be made) sgunds excited at a great distance, a very ingenious method was practised by M. Colladon. Method

He found, that although the Sound of the blow was well heard directly above the bell, yet the intensity of the practised by

Sound so propagated into the air diminished with great rapidity as the observer removed from its immediate
cm 'ohea*

neighbourhood, and at two or three hundred yards it could no longer be heard at all. This fact renders it water at"

probable, that the waves of Sound, like those of light, in passing from a denser into a rarer medium, undergo, great dis-

at a certain acuteness of incidence, a total reflexion; (see LIGHT, Art. (184) ;
see also Index to this Article unces.
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Sound. Reflexion of Sound Echo ,) and cease to penetrate the surface, so that the Sound heard beyond that limit is Part I.

v
-v '

merely that which diverges, in the air, from the point immediately above the bell. Acting on this idea, M. Col- ^-v"*
ladon plunged vertically into the water a thin tin cylinder, about three yards long and eight inches in diameter,
closed at the lower end, and open to the air above ; thus forming an artificial surface on which the sonorous
waves, impinging perpendicularly, might enter the air, and be thence propagated freely as from a new origin ;

just as we may look into water at any obliquity by using a hollow tube with a glass plate at the end perpendi-
cular to the axis. This contrivance succeeded completely, and he was enabled by its aid to hear the strokes of a
bell under water at a distance of 2000, 6000, and even 14,000 metres, (about 9 miles,) viz. across the whole
breadth of the lake of Geneva, from Rolle toThonon. A better spot could not have been found, the water being
exceedingly deep, without a trace of any current, and of the most transparent purity. The signals were made
by the inflammation of gunpowder, which being performed by the same blow of the hammer by which the bell

Was struck, all loss of time was effectually avoided. The time was reckoned by a quarter second stop-watch, from
the appearance of the flash to the arrival of the Sound.

96. By the mean of 44 observations on three different days, it appeared that a distance of 13-487 metres was
Result of traversed in 9'295 seconds, the greatest deviation being less than three-tenths of a second. M. Colladon
their expe- assumes 9'4 as the true interval, regarding it as probable that a minute portion of time is

necessarily lost in the
estimation of the interval. The mean temperature of the water, from trials made at both stations, and half way
between, was found to be 8'l cent. (= 46'6 Fahr.) At this temperature, then, the velocity of Sound in the
water of the Lake of Geneva was 1435 metres = 4708 feet per second.

97. To compare this result with theory, we will take the data afforded by the experiments of Messrs. Colladon
Comparison and Sturm on this very water; whose foreign contents, as appears by the analysis of M. Tingry, amount onlywith theory. to ^^ of its wejght, and which may, therefore, be regarded as pure water, (though, of course, saturated with

air.) They state the compressibility, both at this and at the freezing temperature, at 0-0000495 for every atmo-

sphere; i. e. that an increase of pressure of one atmosphere produces a diminution of bulk equal to :

1 '000*000

of the whole, or very nearly one two-hundred-thousandth. But as the atmospheric pressures used in their expe-
riments were not standard ones, but each equal to a column of mercury 0-76 metres long, at a temperature of
10 cent., instead of the compressibility by one standard atmosphere must be equal to

specific gravity of mercury at cent. 1-0018
0-0000495 X r lno

- = 0-0000495 X - - = 0-000049589.
specific gravity of mercury at 10 cent. 1-0000

98. To apply the general analysis by which the velocity of Sound in an elastic medium was deduced (Art. 52.) to

Different this case, we must express the elasticity in a form somewhat different from that before employed in the case of
mode of ex- aerial fluids. Let us then put e for the compressibility of any elastic medium, or, the diminution of bulk it will

1 e sustain by an additional pressure of a single atmosphere; or by immersion to the depth of 0-76 metres (= 29-927

of elasticity.
Incnes ) m mercury of the freezing temperature, (so that in water e = 0-000049589.) Then, if we neglect the

heat disengaged by compression, an infinitesimal column d x of the medium, when compressed into a space

= d y, will exert a resistance on the compressing column equal to one atmosphere x -- . Let A be the
e

area of the section of the sounding column, then will the weight of the particle dx be represented by A.dx X D,
where D is the density of the medium ; and its elastic pressure on the section A, which separates it from the

l_*
preceding particle, will be A X- X (A) A, where (A) = the standard height of mercury in the barometer

and A the density of mercury at the freezing temperature. This, then, is the force mutually exerted between
dx and the particle immediately preceding it. Similarly the force exerted between dx 1 and the particle (dx)

1 _ dy<

immediately preceding it is represented by A x- - X (A) A ; and the difference of these, or the whole

force by which d x is urged forwards, is therefore

WAJAl^ Ad , ,W .**.
e \ dxj) e da''

so that the accelerating force acting on d x is

(A) A_ fy
D

'

or
c 'en* K. Finally, therefore, if, as before, we represent by a the velocity of Sound, we shall have

If we take into consideration the heat developed by compression, we have only to multiply this by the coefn-

/ 2 g (A) A _ / 9-8083 X 0"76 X 13-568
: V eD V ~

0-000049589 x D
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Sound. The specific gravity of the water of the lake at the temperature of the experiment was found to be exactly that Part I.

V~' of distilled water at its maximum density, the trifling expansion due to the excess of temperature being exactly ^-^v*"-'

counterbalanced by the superior density due to the saline contents, so that D = 1. Reducing, then, the value
j^jj"^

to

of a to numbers, we find a = 1428-2 met. (= 4685'6 feet) x ^"iL

As we have seen, the velocity actually observed was 1435 metres. The agreement of this with the coefficient \QQ.

of V K within 7 metres (a space run over by the aqueous pulse in one 200th of a second) is so near, as to autho- Heat deve-

rize the conclusion that in water, at least, the heat developed by compression, and consequent increased resistance

to sudden condensation, is insensible. of Wjter
"

In the course of these experiments, M. Colladon was led to remark some very curious particulars respecting jQl.
the nature, intensity, and duration of Sounds propagated by water. He observed, first, that the Sound of a Curious

bell struck under water, when heard at a distance, has no resemblance to its Sound in air. Instead of a con- phenomena

tinued tone, a short sharp sound is heard, like two knife-blades (messerklingen) struck together. The effect ODserved m

produced by hearing such a short dry sound, at a distance of many miles from its origin, he compares to that of
JimentT

1
'8

seeing, for the first time, very distant objects sharply defined in a telescope. When tried at different distances,

it preserved this character, varying only in intensity, so as to render it impossible to distinguish whether the

sound heard arose from a violent blow at a great distance, or a gentle one near at hand. It was only when
within 200 metres (about a furlong) that the musical tone of the bell was distinguishable after the blow. In air

the contrary takes place, as every one knows ; the shock of the first impulse of the hammer being heard only
in the immediate neighbourhood of the bell, while the continued musical Sound is the only one that affects the

hearing at a distance. The reason of this curious difference will be apparent when we come to speak of Musical

Sounds. (See Index. Musical Sounds. Vibrations of Bodies in different media.)
Another very curious and important observation of M. Colladon, is that of the effect of interposed obstacles. 102.

Sounds in air spread round obstacles with great facility, so that by a hearer situated behind a projecting wall, or Non-diver-

the corner of a building, sounds excited beyond it are heard with little diminution of intensity. But in water genceof the

this was far from being the case. When the tin cylinder, or hearing-pipe, already mentioned, was plunged into gSund
the water, at a place screened from rectilinear communication with the bell by a projecting wall running out from round obsta-

the shore, whose top rose above the water, M. Colladon assures us, that a very remarkable diminution of intensity clesinwatei

in the Sound was perceived, when compared with that heard at a point very near the former, but within reach of

direct communication with the bell
; or, so to speak, out of the acoustic shadow of the wall. Thus the phenomena

of Sound in water approximate in this respect to the rectilinear propagation of light, and may lead us to presume,
that in a medium incomparably more elastic than water, the shadow would be still more perfect and more sharply
defined. A material support is thus afforded to the undulatary doctrine of Light, against one of its earliest and

strongest objections the existence of shadows.

It appears, from these experiments, that the velocity of Sound in water may be correctly computed when its 103.

compressibility is known, without the necessity of having- regard to the heat developed during compression. Velocity of

From all direct experiments hitherto made, it appears that in water, and all other liquids, the quantity of heat Sound in

thus developed is either altogether insensible, or at least very minute ; so that, most probably, the same thing
ttle

.

r

will hold in other liquids. The Memoir of Messrs. Colladon and Sturm, then, which contains a very elaborate

determination of the compressibility of a variety of liquids, will afford the means of computing the velocity of
Sound in them. We, therefore, subjoin a Table of their results, and of such others as we have been able to

collect.
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Sound. A pleasing example of tlie stifling and obstruction of the pulses propagated through a medium, from the effect 1>art

-v ' of ils non-homogeneity, may be seen by filling a tall glass (a Champagne glass, for instance) half full of that
s

.sparkling liquid. As long as its effervescence lasts, and the wine is full of air-bubbles, the glass cannot be
,

made to ring by a stroke on its edge, but gives a dead, puffy, disagreeable Sound. As the effervescence subsides
j

the tone becomes clearer, and when the liquid is perfectly tranquil the glass rings as usual ; but on reexciting the
t j on-

bubbles by agitation, the musical tone again disappears. To understand the reason of this, we must consider

what passes in the communication of vibrations through the liquid from one side of the glass to the other. The

glass anil contained liquid, to give a musical tone, must vibrate regularly in unison as a system ; (see Vibrations

of a System of bodies ;) and it is clear, that if any considerable part of a system be unsusceptible of regular
vibration, the whole must be so. This neat experiment seems to have been originally made by Chladni,

(Acoiutique, 214,) and has been employed by Humboldt, to illustrate by it a natural phenomenon equally
familiar and striking ; we mean, the greater audibility of distant Sounds by night than by day. This he

attributes to the uniformity of temperature in the atmosphere by night, when upward currents o,' air,
Greater

healed by their contact with the earth under the influence of the sun's rays, are no longer continually
a '

mixing the lower with the upper strata, and disturbing the equilibrium of temperature. It is obvious &*t night than

Sound, as well as light, must be obstructed, stifled, and dissipated from its one original direction, by the mixture by day.
of air of different temperatures, (and consequently elasticities;) and thus the same cause which produces that Humboldi's

extreme transparency of the air at night, which astronomers only fully appreciate, renders it also more permeable
e!CP lanaU(in

to Sound. There is no doubt, however, that the universal and dead silence generally prevalent at night renders

our auditory nerves sensible to impressions, which would otherwise escape them. The analogy between Sound
and light is perfect in this as in so many other respects. In the general light of day the stars disappear. In Anolller

the continual hum of noises which is always going on by day, and which reach us from all quarters, and never

leave the ear time to attain complete tranquillitv, those feeble Sounds which catch our attention at night make no

impression. The ear, like the eye, requires long and perfect repose to attain its utmost sensibility.

To a caus<> of the same kind, particularly modified, may possibly be attributable the singular effect of hydrogen 108.

gas when mixed with air, already described, Art. 85, in unfitting it for the free propagation of Sound. Chemists Sounds in

maintain that when gases are mixed, the molecules of each form separate and independent systems, being
"" xe(l

mutually inelastic, and each sustaining a part of the pressure proportional to its own density. They admit,
"3

l.owever, that the molecules of one gas (A) act as obstacles, to obstruct the free motion of those of another (H ;)

and on this principle they explain the slow mixture of two gases in separate vessels communicating by a narrow

aperture. Granting these postulates, let us conceive a pulse excited in a mixture of equal volumes of two gases.
If the velocity of Sound in both be alike, the pulse will run on in each, although independently, yet with the

same speed, and at any instant, and at any point of the medium, the contiguous molecules of both gases will be

moving in the same direction and with the same velocity. They will, therefore, offer no mechanical obstruction to

each other's motion, and Sound will be freely propagated. But if they differ in their specific elasticity, the case

will be altered. Each being non-elastic to the other, two distinct pulses will be propagated, and will run on
uith different velocities ; the molecules of either gas, at different points beginning, and ceasing to be agitated
with the pulsation at different instants. Thus an internal motion, a change of relative position among the

oiisln,,,, 1( , n
molecules of the gas (II) and those of the gas (A) will take place, the one set being obliged to force themselves O f Suund liv

a passage between the other; in which, of course, a portion of their motion will be diverted in all sorts of lateral hydrogen

directions, and will be mutually destroyed. It is evident that the greater the difference of specific elasticities, g ;

|

s mixed

the greater will be the effect of this cause. In hydrogen the velocity of the pulse is nearly three times its velocity
w

."!' *'?
ex "

in, atmospheric air; and, of course, it may be expected in this case to act with great efficacy. In azote and
"

oxygen the velocities are so nearly alike, that very litlle obstruction can arise from its influence ; so that, in so far

as the phenomena of Sound are concerned, atmospheric air may be looked upon as a homogeneous medium.
If saturated with aqueous vapour, at high temperatures, however, it is possible that the effect may become 109.

sensible, and, perhaps, to this cause may be attributed a phenomenon, mentioned by more than one experimenter Duplication

on this branch of Physics, of the occasional duplication of the Sound of a gunshot heard from a great distance, of Sound-

a part of the Sound being transmitted quicker than the rest by aqueous vapour, or even by water in the liquid "j^ved''"''
state suspended in the air. If this be the case. Sounds might be expected to be heard double in thick fogs, or

in a snow-storm. But the remarkable obstruction to Sound caused by fog, and especially by snow, (see Art. 21,)

would, probably, prevent any Sonnd from being heard far enough to permit the interval of the tivo pulses to be

distinguishable. This latter phenomenon, we may here observe, affords another and very satisfactory illustration
fl-ect O r

of the general principle explained in Art. 107. To it we may add the well-known effect of carpeting, or woollen
carpeting,

cloth of any kind, in deadening the Sound of music in an apartment. The intermixture of air and solid fibres &c. in dea-

in the carpets through which the Sound has to pass, deadens the Echo between the ceiling and floor by which dening

the original Sound is swelled.

A phenomenon noticed by every traveller who visits the Solfaterra near Naples, but whose true nature has been no.
much misconceived, is e.isily explicable on this principle. The Solfaterra is an amphitheatre, or extinct crater, Pheno-
surrounded by hills of lava, in a rapid state of decomposition by the action of acid vapours issuing from one menon

principal and many subordinate- vents and cracks. The whole soil of the level at its bottom consists of ibis obser'f (l i

decomposed lava, whose disintegration, however, is not so complete as to reduce it to powder; but leaves it in
Solraterra -

coherent white masses of a very loose friable structure. At a particular spot, a large stone violently thrown

against the soil, is observed to produce a peculiar hollow Sound, as if some great vault were below. Accordingly
it is usually cited as a proof of the existence of some vast cavity below, communicating with the ancient vent of
the volcano, and perhaps with subterraneous fires; while others ascribe it to a reverberation from the surrounding
hills, with which it is nearly concentric ; and others to a variety of causes more or less fanciful. It seems most Kx

i'
!ain'c

'

VOL. iv. 5 H
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probable, however, that the hollow reverberation is nothing more than an assemblage of partial echoes arising
from the reflexion of successive portions of the original impulse in its progress through the soil at the innume-
rable half-coherent surfaces composing it ; were the whole soil a mass of sand, these reflexions would be so

strong and frequent as to destroy the whole impulse in too short an interval to allow of a distinguishable after-

sound. It is a case analogous to that of a strong light thrown into a milky medium, or smoky atmosphere ;

the whole medium appears to shine with a nebulous undefined light. This is to the eye, what such a hollow

Sound is to the ear.

The general principle on which the conveyance of Sound through solids depends, is precisely the same as in

fluids
;
and the same formuhi may be used to express its velocity when the specific elasticity is known. There

are, however, two very important particulars in which they diH'er ; first, the molecules of fluids are capable of

displacement inter se. Those of solids, on the other hand, are subjected to the condition of never changing their

order of arrangement. Secondly, each molecule of a fluid is similarly related to those around it in all directions ;

in solids each molecule has distinct sides, and different relations to space and to the surrounding particles.
Hence arise a multitude of modifying causes, which must necessarily affect the propagation of sonorous pulses
through solids, which have no place in fluids, and modes of vibration become possible in the former, which it is

difficult to conceive in the latter, whose parts have no lateral adhesion. Thus we may conceive pulses propa-
gated in solids, like those of a cord vibrating transversely, in which the motion of each molecule is transverse,
or oblique, to the direction in which the general pulse is advancing. Again, the cohesion of the molecules of

crystallized bodies is different on their different sides, as their greater facility of cleavage in some directions

than in others indisputably proves. They must, in consequence, have unequal elasticities in different directions ;

and thus the velocity of the pulse propagated through a crystallized solid will depend on its direction with

respect to the axes of crystallization. Among uncrystallized solids, too, there are many, such as wood, whale-

bone, &c. which have a fibrous structure, in virtue of which, it is evident, they are very differently adapted to

convey an impulse longitudinally and transversely.

Interruptions of crystalline structure, then, ought to produce an effect on the conveyance of Sound analogous
to that of the mixture of extraneous matter in a medium. The conducting power of wood along the grain is

certainly very surprising. A simple experiment will show it. Let any one apply his ear close to one end of

the longest stick of sound timber, and let an assistant at the other end scratch with the point of a pin, or tap so

lightly with its head as to be inaudible to himself. Every scratch or tap will be distinctly, nay loudly, heard at

the other end, as if close to the head. In general, however, all solids tolerably compact conduct Sound well,

and transmit it rapidly.
Chladni relates an experiment made by Messrs. Herhold and Rafn, in Denmark, where a metallic wire

600 feet long was stretched horizontally. At one end a plate of sonorous metal was suspended, and slightly
struck ; an auditor placed at the other, and holding the wire in his teeth, heard at every blow two distinct

sounds; the first transmitted almost instantaneously by the metal, the other arriving later through the air.

Messrs. Hassenfratz and Gay Lussac made a similar experiment in the quarries :<t Paris; a blow of a hammer
against the rock produced two Sounds, which separated in their progress ; that propagated through the stone

arriving almost instantly, while the Sound conveyed by the air lagged behind. The same thing has been observed

in the blasting of rocks in the deep mines of Cornwall. These experiments were, however, made at intervals

too short to give any numerical estimate of the velocity of transmission of Sound in the iron or stone. The only
direct experiments we have on this subject are those of M. Biot himself, who, assisted by Messrs. Bouvard,
Malus, and Martin, ascertained the interval required for the Sound of a blow on the cast-iron conduit pipe already

spoken of, Art. 24, to traverse measured lengths of it. The pipe consisted of joints of cast iron, each 2'
ra
"'515 =

S'2514 feet long, and connected by flanches with collars of lead covered with tarred cloth interposed, and strongly
screwed home; each collar measured O'

met 14256= 0'
f
'46773. A blow being struck at one end, and heard at the other,

the interval between the arrival of the Sound through the air and through the iron was noted. The length being
known, the time required for the transmission of the aerial Sound became known with great precision, and thence

the time of transmission through the iron became known also. The following is a statement of the results :

Observers' names.
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such reciprocal observations, a very little consideration will show that the exact time required for the Sound's ''art '

*

propagation through the solid may be obtained, independent of any observation of the aerial Sound, as well as
v-"-v"~-/

of the rates of the watches. The agreement of the results obtained by the two methods sufficiently proves that

the result of Messrs. Bouvard and Malus, in the above Table, is too large ; rejecting this for that reason, and
the first on account of the shortness of the pipe, we have, as a mean result, 0' s'275 for the time required to

traverse 951'25 metres, which gives a velocity of 3459'""" 1 = 11090 feet per second for the velocity of Sound
in cast iron at the temperature of the experiment, (11 cent. = 51'8 Fahr.) and neglecting the very small retard-

ation due to the collars, whose united thickness was 5-
me'61= 18'

f
-41 only. This is about 10J times its velocity

Its velocl'y

in air. Chladni assigns 3597 metres for the velocity of Sound in brass. Laplace, calculating on an experiment
"'

of Borda, on the compressibility of brass, makes it 3560'4. According to Chladni, the following are the velo-

cities of Sound in different solids, that in air being taken for unity : tin =
7^,

silver = 9, copper = 12, iron =
17, glass = 17, baked clay (porcelain >) 10. ... 12, woods of various species =11.... 17. The error in the

case of iron throws a doubt on all the rest; unless, perhaps, steel be meant. (Acoust. 219.)
From this determination we may estimate the time it requires to transmit force, whether by pulling, pushing, 115.

or by a blow, to any distance, by means of iron bars or chains. For every 11090 feet of distance the pull, push, Time re-

or blow, will reach its point of action one second after the moment of its first emanation from the first mover. <]
u "'ei1 '"

In all moderate distances, then, the interval is utterly insensible. But were the sun and the earth connected by^' t

jron
an iron bar, no less than 1074 days, or nearly three years, must elapse before a force applied at the sun could reach m(| s |jvtre

the earth. The force actually exerted by their mutual gravity may be proved to require no appreciable time for &c.'

its transmission. How wonderful is this connection !

VI. Of the Divergence and Decay of Sound.

Hitherto we have taken no account of the lateral divergence of Sound, which we have supposed confined by \ \c}
a pipe ; but it is evident that condensation taking place in any section of such a channel will urge the contained Divergence
air laterally against the side of the pipe, as well as forward along its axis

; and, consequently, if the pipe were of Somul

cut off at any point, the Sound would diverge from that point into the surrounding air. Accordingly, when any
from l

[

leir"i

one speaks through along straight tube the voice is heard laterally, as if proceeding from the mouth of a speaker
a

l"'10 '

at the orifice.

In general, a Sound excited in, or impulse communicated to, any portion of the air or other elastic medium, 117
spreads, more or less perfectly, in all directions in space. We say more or less perfectly ; for though there are Unequal
Sounds, as the blow of a hammer, the explosion of gunpowder, &c. which spread equally in all directions, yet divergence

there are others which are far from being in that predicament. For instance, a common tuning-fork (a piece of /
certa'"

steel in the shape represented in fig. 6) being struck sharply, when held by the handle (A) against a substance, p"'^'
is set in vibration, the two branches of the fork alternately approaching to and receding from each other. Each
of them, consequently, sets the air in vibration, and a musical tone is produced. But this Sound is very unequally
audible in different directions. If the axis of the fork, or the line to which it is symmetrical, be held upright
about a foot from the ear, and it be turned round this axis while vibrating, at every quarter revolution the Sound Exemplified
will become so faint as scarcely to be heard, while in the intermediate axes of rotation it is heard clear and strong.

in Sound f

The audible situations lie in lines perpendicular and parallel to the flat faces of the fork, the inaudible at 45 ? *?

inclined to them. This elegant experiment, due originally to Dr. Young, has recently been called into notice

by Weber. (Wellenlehre, 271.)
The non-uniformity of the divergent pulses which constitute certain Sounds is easily demonstrated by con- 118.

sidering what happens when a small disc is moved to and fro in a line perpendicular to its surface. The aerial A Priori

molecules in front of the disc are necessarily in an opposite state of motion from those similarly situated behind c
.

ons'dera-

it. Hence, if we conceive a wave propagated spherically all around it, the vertices of the two hemispheres in

front and behind are in opposite motions with respect to the centre. But with regard to that wave of the sphere
where the vibrating plate prolonged cuts it, there is evidently no reason why its molecules should approach to or

recede from the centre, or, rather, there is as much reason for one as for the other. They will therefore either

remain at rest, or move tangentially ; so that the motion of the whole sounding surface, or wave, will, in this

case, be rather as in fig. 7 than in fig. 8 ; and a corresponding difference, both in the intensity and character F
jg-

1
'

of the Sound heard in different directions, may be fairly expected.
Fl?- '

The mathematical theory of such pulses as these is of the utmost complication and difficulty, depending on ;
'^'

the integration of partial differential equations with four independent variables, viz. the time and the three coor- y i ^L"
dinates of the moving molecules. It is therefore of much too high a nature to have any place in an Essay like Sound' m
the present. We shall merely content ourselves with stating the following as general results in which mathema- free air.

ticians are agreed. 121.
1st. The velocity of propagation of a sonorous pulse is the same, whether we regard it as propagated in one, Lawof (lie

two, or three dimensions, i. e. in a pipe, a lamina, or a mass of air. decay n f

2nd. Sounds propagated in a free mass of air diminish in intensity as they advance further from the sonorous "Tn^
centre, and their energy is in the inverse duplicate ratio of this distance, cateris paribus. Case

~,'

We shall not attempt a proof of these propositions in the general cases, but content ourselves with Illustrating spherical
them in one particular but important case, viz. when the initial impulse is confined to a very small space, undulation

and consists in any small radiant motion of all the particles of a spherical surface in all directions equally from alike on a| i

the centre. sides -

Since the initial wave is spherical, and similar in all its parts, it will evidently retain this property as it dilates 123
b H 2
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Sound, by the progress of the impulse. It", then, it be conceived to be divided into its infinitesimal elements In a Part I.

v x
system of pyramidally disposed plane surfaces, having the common vertex in the centre of the sphere, each of these ~ ~

elements will form the base of one of the pyramids, and its molecules will advance and recede along its axis, aa

the pulse traverses them, without any change of their relative positions, inter se ; so that the whole wave may be

regarded as broken up into partial waves, each advancing as if confined within a pyramidal pipe, independently

of all the rest.

124 Now in any one of these imaginary pipes the pulse will be propagated from layer to layer of the included

Velocity of particles with the same velocity as if the pipe were cylindrical, for the divergence of the sides of the pipe can only

a pulse in cause a lateral extension, and thence a diminished thickness, of the stratum, and will, therefore, alter the velocity

any pyra- of each of its molecules and the extent and law of its motion from what it would be in a cylindrical pipe. But
nuilal pipe. ^ we cons j<jer a row of particles situated in the axis of the pyramid, the propagation of a pulse along them

depends, as we have seen, neither on the velocity nor extent or law of excursion of the individual molecules, but

only on their intrinsic elasticity. The latter, however, is not altered by the shifting of the whole vibrating
1

fibre into

a w'ider or narrower part of the pipe, since, from this cause,(its excursions from its original place beiiu- supposed

infinitely small,) the whole dilates or contracts together, as if by an external compressing or rarefying force.

Now we have seen that a variation in the general density of the medium in which a pulse is propagated from

external pressure makes no change in its velocity. It follows, then, that the pulse will be propagated with equal

velocity along the line of molecules in question, whether the pipe be cylindrical or pyramidal, or, indeed, of any

shape ; and as it runs equally fast in each of the imaginary pyramids into which the sphere is divided, the wave, of

which it is an element, will dilate itself spherically with the uniform velocity of Sound in a straight tube. See also

Euler, Comm. Petrop. 1771, cap. iv. &c., where the general equations for the motions of air in tubes of any figure

are deduced, and the above proposition proved therefrom, in the case of hyperbolic tubes (p. 391) and conical or

pyramidal ones (p. 418.)
125. Let us now conceive a spherical wave by any means excited, such that the whole interval, reckoned along its

Application radius, within which the motion to and fro of the molecules is comprised, shall be equal to 2 a. This, then, will

01 the law of ^e tjle Drea(j th of the wave, and as all its parts dilate equally fast, this will continue to be its breadth throughout
its whole progress. Its surface increases in the ratio of the square of the radius, and, therefore, calling r this

radius, 2 o r8 will represent the quantity of matter in motion at the moment the Sound has reached the distance r

from its origin. Now, as all the air within and beyond the wave is quiescent, the whole impulse, or via viva,

originally communicated to the sphere first set in motion, is successively transferred to all the rest without loss

or increase, (by the general law of the conservation of the vis viva. See MECHANICS.) And since it is distributed

equally over the whole spherical surface, any portion of it, of given magnitude, (that of the aperture of the ear,

for instance,) will receive a part of the whole, proportional to -
, or to . Thus the whole shock or impulse

given to the ear, while the wave passes over it, is as the inverse square of the distance from its origin, and the

absolute velocity of each molecule in any determinate phase of its motion inversely as the distance itself.

1P6. In the theory of Sound, as in that of Light, the intensity of the impression made on our organs is estimated

KiT; mi by the shock, impetus, or vis viva, of the impinging molecules, which is as the square of their velocity ; and not
tiie ear esti-

by t |, c i r inertia, which is as the velocity simply. Were the latter the case, there could be no such thing as Sound
J by the

or Light, since the negative inertia of the receding molecules would exactly equal and destroy their positive effect

in their advance. (Fide LIGHT, Art. 578.) We conclude, then, that the intensity of Sound decays, in receding
Law of de-

from j)s orjgi n> as the square of the distance increases. It is exceedingly diflicult to subject this law to satisfac-

g'-

v

j tory experimental tests, and we know of no attempt that has yet been made tor the purpose.

VII. Of the Reflexion and Refraction of Sound, ami ofEchos.

127. As there is no body in nature absolutely hard and inelastic, whenever the particles of a vibrating medium

Reflexion of impinge on the solid or fluid matter which contains or limits it, they will agitate those of the latter with motions

Sound atthe similar to their rwn, but modified by their greater or less density and mobility. A pulse, then, will be propa-
ronfmesof

^a^e(j jn (O t|,e so]|d or fluid according to its own laws, but this will not take place without the propagation back
'

again of a pulse in the original medium, which may be regarded as the reflexion or echo of the first. To under-

stand how this happens, let us consider what takes place when a motion is first impressed on any small stratum,

whose thickness is 2 a (as in Art. 63) of a sounding column, and let its law be as there expressed, i. c. that the

velocity of any one of its particles at the distance x from its middle shall be, at the first instant, represented by

0(,r), and the linear extent of the same molecule, compared with its original length, ore, shall equal ifr(x) where

<p (x) o, and
ijr (x) = 1 from x = oo to ;r = n, and from x= + a\.ox=+cc; while from x = a to

x = -j-
o they may have any arbitrary values.

128. Since t is always positive, if we take x > + o we have, of necessity, x-}-at> + a, and, therefore,

Condiiion (x + a t) = o, and 4/ (x -f a t) = 1, so that the values of c and e in equations (t) (j) become
of the single

- Q -
,

-
0}

ae = -\a
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. which gives ae= a v, or 1 <= . v _ir..-i_^*v^ cc

Again, on the negative side of the x we take x < a, we have, of necessity, x a t < a, and, therefore,

<f>(x at) =0 ; Y' (* = 1 > ano", consequently,

if l ['

-|
a + (> + a + y, (* + a t) j J

>"-

e = i a

t)

and, therefore, in this case, 1 e == .

Gi

} e 1 = expresses the condensation the molecule dx has undergone in its disturbed
dx d x

state. Hence we see, that in each of the two waves into which the primary impulse separates itself, one running
towards the positive, the other towards the negative side of the x, there obtains this condition, viz. that the

condensations of the aerial molecules are proportional to their actual velocities, the fluid being condensed wherever

the molecules are moving from the origin of the first impulse, and dilated when returning to it.

This remarkable relation, which does not of necessity hold good within the limits of the first disturbance, 129.

establishes a distinction equally marked between the initial impulse and the waves freely propagated from it. The "' i his

former is subject to no law, the latter must obey this condition. Any impulse, then, in which this condition is f^
" ob

*.

not satisfied, will immediately divide itself into two pulses running opposite ways, in each of which the condition
^jji'n'ot'du"

in question holds, but so long as this condition obtains, no subdivision of the pulse will take place. This is vide iueli:

easily shown, for if we suppose an initial impulse communicated to any portion (2 a) of the fluid in which this

relation is purposely maintained, such supposition is equivalent to making

which, substituted in (i) and (j), give, for all values of* and t,

p = a a^r (x at)

ae=: Y" (x a t),

in which, whenever x is negative and < a, we have v = and 1 e =
; thus indicating that the molecules

on the negative side of such a primitive disturbance as supposed will remain constantly at rest, in other words,
that the pulse will only be propagated on the positive side.

Whenever, then, in the progress of a pulse through a medium, it receives, by extraneous causes, any modifica- '30.

Ifditturbed

tion which disturbs the condition 1 e = , it will undergo subdivision, and a portion will run backward, or be ^jli^y,
and a part

reflected. Similarly this portion may be again subdivided and undergo partial reflexion, and so on ad iiifinitum,
rlln '''"' k

giving rise to a continual series of repetitions or Echos of the original Sound.

Let us now examine more closely what passes at the junction of two media when the pulse arrives there ; and, 131.

first, in the equations (t) and (j) let us write, instead of (.r) and ^ (x), which are arbitrary, the combinations, General

equally arbitrary, equations of

F(x) - f(x) along pipes

y, (T) = I _J_
**'-J (x'

t
filled with

a different m^

when it is to be observed that F and/ are not the same with the F and /of Art. 57, which we shall have no more
occasion to refer to. If, then, we put s = 1 e, so that s shall represent the infinitely small condensation under-

gone by the molecule d x in its troubled state, those equations will bpcome

as=f(x - at)-Y(x + at) )'

These represent the state of the molecules of the first medium. Similarly, the state of those in the second will,

of necessity, be represented by another system similar in form,

'=/'(*- a'O+F (a +o'0 I

i's'=f(x -
a't)

- '
'

where a' represents the velocity of Sound in the second medium, but the functions /' and F' (which are not here

intended to represent the derived functions or differential coefficients of/ and F, but others quite distinct) are

here no longer arbitrary, because the motion of the particles of the second medium must evidently depend on that

of the first, and on their relative elasticities, densities, &c. Let us see, then, what conditions the nature of the

case, and their mutual action at their point of junction, will enable us to assign for deducing the form? of these

functions from those of / and F, supposed to remain arbitrary.



776 SOUND.
Sound. Now, first, the condition of continuity of the two media requires that the strata in contact should always have Pan I.

'

v "^ a common motion, or that for the value x =r I, corresponding to the place of junction, we should have v = v',
v -v""

132. which gives
Condition of f(l-at) + F(l+ at)=:f'(l - a' t) + F' (I+ a' t); (C).
continuity.

133 Again, they must not only have a common motion, but a common elasticity, at this point. Now, if we call E
Must have a the natural elasticity of the first medium and E' that of the second, the elasticities in the disturbed state will be
common expressed by E (1 + /3s) and E' (1 -j- /3's'), where ft and ft' are constant coefficients depending on the nature of
elasticity at the medi and the heat developed in them by compression, and which would each be unity were no heat so

|;

he

n

l "

developed. Hence we must have E (1 + /3s) = E' (1 + /3s'), and since in the state of equilibrium E = E', we
must also have /3 * = ft' s, that is

p a
or, putting c = x -

p d
- at)-F(l-l- a f)=c {/(Z-a'O-F (/ + '<)}; (D).

134. Suppose the whole extent of both media to be initially at rest (and, therefore, v = v' s = * = 0), for every
value of x, but those comprised within the region of the primitive disturbance (x = + a), supposed very minute
and situated at the origin of the x, we shall have then

f (x) = and F" (x) = from x = I to x =r CD,

and since t is necessarily positive, and also a', therefore

/' (l-\-a'i) = Q and P (I + a' <) = 0.

The equations C and D then become

t) =f'(l - a' t)

and, consequently,

f(l-af) - V(l+af) = c{f(l- al) + F(l+ at)}. (E).

135. Now this equation is equivalent to as = CD ; x being supposed = I, (equation A.) Consequently, whatever
Division of be the motion of the first medium, the existence of a second, in contact with it, establishes at their point of
.he pulse on

j
unctjon a relation between the velocity v and the condensation s of its terminal stratum, which is incompatible

in'gan'oh-"
w'tn ^ie condition as= v, (unless in the very peculiar case where c = 1,) which we have shown to be essential

stacle. to the total propagation of the pulse forward. It will, therefore, divide itself conformably to what was said in

Art. 129, and a portion will run back in the first medium and cause an Echo.

136. In the second medium, on the other hand, we have constantly x > I, and, therefore, x-\-a't>l, so that

But is pro- F (x + a' t)
= 0, and, therefore, the equations (B) give

sTn^te.
</ = V = /'(*-'<); (F.)

'*'

The condition of the single propagation of the pulse onward in this medium c' = aV being therefore satisfied, no
further subdivision of the pulse will take place, and each particle of the second medium will be agitated once and
no more. The reader who would pursue this discussion (a very delicate one) further, is referred to M. Poisson's

Memoir, Sur le Mouvement des Fluides Elastiques dans des Tvyaux Cylindriques, Mem. Acad. Par. 1818, 1819.

See also a very curious Paper by Euler, Sur la Propagation du Son et sur la Formation de. tEcho, Mem. Acad.

Berlin, 1765, p. 355 ; where he shows how an echo may be formed at the open mouth of a tube, by the mere

conditions to be satisfied by the arbitrary functions, and without any reflexion properly so called. It is enough
that the condition as = v should be disturbed (as it will by the sudden breaking off of the pipe) to cause an

echo. See also Weber, Wellenlehre, 276, who shows how this disturbance takes place, owing to the greater
freedom of motion suddenly attained by the particles when the pulse reaches the free air.

,07 If we suppose a plane wave of indefinite extent to fall obliquely on the surface of a second elastic medium, each

Oblique re Particle of this surface may be regarded as being put in agitation by it and becoming a separate and independent

fraction of centre, from which spherical waves originate and are thence propagated in either medium with the velocity
Sound. peculiar to it. Now, if we investigate the surfaces which in either medium are common tangents to all these

spheres, and which, therefore, will be the form of the general or resulting waves in each, we shall find them to be

planes ; that in the medium of incidence being inclined to the surface at an angle equal to that made with it by the

incident wave, and that in the other medium at an angle whose cosine is to the cosine of that made with it by the

incident wave as the velocity of propagation of the wave in the first medium to that in the second. For the
Internal demonstration of these propositions we shall refer to our article on LIGHT, Art. 586. Thus the reflexion and
total refrac refraction of Sound at oblique surfaces obeys the same geometrical laws with those of Light. The observation

of Messrs. Colladnn and Sturm, above cited, Art. 95, shows th^t this analogy extends to the case of oblique
internal reflexion at the surface of a less elastic medium, which, at a certain incidence, becomes total.



PART II.

OF MUSICAL SOUNDS.

I. Of the Nature and Production of Musical Sounds.

EVERV impulse mechanically communicated to the air, or other sonorous medium, is propagated onward by its Part "
'

elasticity as a wave, or pulse ; but, in order that it shall affect the ear as an audible sound, a certain force and
N~ "v""'

suddenness is necessary. Thus the slow waving of the hand through the air is noiseless, but the sudden 138.

displacement and collapse of a portion of that medium by the lash of a whip produces the effect of an explosion.
Perceplion

It is evident that the impression conveyed to the ear will depend entirely on the nature and law of the original

impulse, which being completely arbitrary, both in duration, violence, and character, will account for all the

variety we observe in the continuance, loudntss, and quality of Sounds. The auditory nerves, by a delicacy of

mechanism, of which we can form no conception, appear capable of analyzing every pulsation of the air, and

appreciating immediately the law of motion of the particles in contact with the ear. Hence all the qualities we
distinguish in Sounds grave or acute, smooth, harsh, mellow, and all the nameless and fleeting peculiarities
which constitute the differences between the tones of different musical instruments bells, flutes, cords, &c., and
between the voices of different individuals or different animals.

Every irregular impulse communicated to the air produces what we call a noise, in contradistinction to a 139.

musical Sound. If the impulse be short and single we hear a crack, bounce, or explosion ; yet it is worthy of M*e, as

remark, as a proof the extreme sensibility of the ear, that the most short and sudden noise has its peculiar
d ' s'lng uisl1

character. The crack of a whip, the blow of a hammer on a stone, and the report of a pistol, are perfectly mus
r

j a(

distinguishable from each other. If the impulse be of sensible duration and very irregular we hear a crash, if Sound,

long and interrupted, a rattle or a rumble, according as its parts are less or more continuous, and so for other

varieties of noise.

The ear, like the eye, retains for a moment of time, after the impulse on it has ceased, a perception of excite- 140.

ment. In consequence, if a sudden and short impulse be repeated beyond a certain degree of quickness, the ear Continuous

loses the intervals of silence and the Sound appears continuous. The frequency of repetition necessary for the Sound -

production of a continued Sound from single impulses is, probably, not less than sixteen times in a second,

though the limit would appear to differ in different ears.

If a succession of impulses occur, at exactly equal intervals of time, and if all the impulses be exactly similar ^1-
in duration, intensity, and law, the Sound produced is perfectly uniform and sustained, and has that peculiar and .

Perlotl 'ca l

pleasing character to which we apply the term musical. In musical Sounds there are three principal points ofp^^
8

distinction, the pitch, the intensity, and the quality. Of these, the intensity depends on the violence of the musical

impulses, the quality on their greater or less abruptness, or, generally, on the law which regulates the excursions Sounds,

of the molecules of air originally set in motion. The pitch is determined solely by the frequency of repetition of Pitch,

the impulse, so that all Sounds, whatever be their loudness or quality, in which the elementary impulses occur
with the same frequency, are at once pronounced by the ear to have the same pitch, or to be in unison. It is the

pitch only of musical Sounds whose theory is susceptible of exact reasoning, and on this the whole doctrine of

harmonics is founded. Of their qualities and the molecular agitations on which they depend, we know too little

to subject them to any distinct theoretical discussion.

The means by which a series of equidistant impulses, or, to speak more generally, by which an initial impulse 142.

of a periodical nature (i. e. capable of being represented by a periodical function) can be produced mechanically, Means of

are extremely various. Thus, if a toothed wheel be turned round with uniform velocity, and a steel spring be made producing

to bear against its circumference with a constant pressure, each tooth, as it passes, will receive an equal blow j^],^"
from the spring, and the number of such blows per secqjid will be known, if the velocity of rotation and number
of teeth in the wheel be known.
The late Professor Robison devised an instrument in which a current of air passing through a pipe 143.

was alternately intercepted and permitted to pass by the opening and shutting of a valve or stopcock. When The Sirene.

this was performed with sufficient frequency (which could only be done, we presume, by giving a rapid rotatory
motion to the stopcock by wheelwork) a musical tone was produced, whose pitch became more acute as the

alternations became more frequent. This is precisely the principle of the Sirene of Baron Cagniard de la Tour.

In this elegant instrument the wind of a bellows is emitted through a small aperture, before which revolves

a circular disc, pierced with a certain number of holes arranged in a circle concentric with the axis of rotation,

exactly equidistant from each other, and of the same size, &c. The orifice, through which the air passes, is

so situated, thai each of these holes, during the rotation of the disc, shall pass over it and let through the an, uui

the disc is made to revolve so near the orifice, that in the intervals between the holes it shall act as a cover and

intercept the air. If the holes be pierced obliquely, the action of the current of air alone will set the disc in

motion : if perpendicular to the surface, the disc must be moved by wheelwork, by means of which its velocity of

rotation is easily regulated and the number of impulses may be exactly counted. The Sound produced is clear

and sweet, like the human voice. II, instead of a single aperture for transmitting the air, there be several, so

disposed in a circle of equal dimension with that in which the holes of the disc are situated, that each shall be

777
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Sound. opposite one corresponding hole when at rest, these will all form Sounds of one pitch, and being heard together
>- ^/-~^ will reinforce each other. The Sirene sounds equally when plunged in water, and ted by a current of that fluid, ^

as in air ; thus proving that it is the number of impulses alone, and nothing depending on the nature of the

medium in whicl) the Sound is excited, that influences our appreciation of its pitch.

144. In general, whatever cause produces a succession of equidistant impulses on the ear, causes the sensation of a

Echos from musical Sound, whether such periodicity be a consequence of periodical motions in the origin of the Sound, or of
a series of the mode in which a single impulse is multiplied in its conveyance to the ear. For example, a series of broad palisades
palisades. set ecj^eways j n a ]ine directed from the ear, and equidistant from each other, will reflect the Sound of a blow

struck at the end ofthe line nearest the auditor, producing a succession of echos, which (by reason of the equidistance

/ distance of palisades \
of the palisades) will reach his ear at equal intervals of time, I = 2 X I, and will

\ velocity of Sound /
therefore produce the effect of a number of single impulses originating in one point. Thus a musical note will

be heard whose pitch corresponds to a number of vibrations per second, equal to the quotient of the velocity of

Sound by twice the distance of the palisades.

145. A similar account may be given of the singing Sound of a bullet, or other missile, traversing the air with great
Singing of a rapidity. The bullet being in a state of rapid rotation, and not exactly alike in all its parts, presents, periodically,
bullet. at equal intervals of time and space, some protuberance or roughness first to one side, then to the other. Thus

an interruption to the uniformity of its mode of cutting through the air is periodically produced, and
reaches the ear in longer or shorter equal intervals of time, according as the rectilinear velocity of the bullet

bears a greater or less ratio to the velocity of its rotation about its axis.

145. The echos in a narrow passage, or apartment of regular figure, being regularly repeated at equal very small

Echos in a intervals, always impress the ear with a musical note ; and this is, no doubt, one of the means which blind
chamber.

persons have of judging of the size and shape of any room they happen to be in. But the most ordinary ways
Vibratioi.s

jn w |,jc|j mus ical Sounds are excited and maintained consist in setting in vibration elastic bodies, whether

bodies flexible, as stretched strings, or membranes ; or rigid, as steel springs, bells, glasses, &c. or columns of air of

determinate length enclosed in pipes. All such vibrations consist in a regular alternate motion to and fro of the

particles of the vibrating body, and are performed in strictly equal portions of time. They are, therefore, adapted
to produce musical sounds by communicating that regularly periodic initial impulse to the aerial molecules in

contact with them which such sounds require. We shall, therefore, proceed to consider more particularly the

principal of these modes of production ; but especially, at present, the first and last, being the most simple
cases.

II. Of the. Vibrations of Musical Strings or Cords.

147. If a string, or wire, be stretched between two fixed pins, or supports, and then struck, or drawn a little out

Vibration of of its straight line, and suddenly let go, it will vibrate to and fro, till its own rigidity, and the resistance of the
' ^retched a j ri reduce it to rest ; but if a bow (which is an instrument composed of a bundle of fibres of horse hair, loosely

stretched, and rendered adhesive by rubbing with rosin) be drawn across it, the vibrations are continually renewed,

and may be maintained for any length of time, and a musical Sound is heard corresponding to the rapidity of the

vibration.

148 The mathematical theory of the vibrations of a stretched cord is remarkable, in an historical point of view, as

having given rise to the first general solution of an equation of partial differences ; and led geometers to the

consideration of the nature and management of the arbitrary functions which enter into the integrals of these

equations. Such functions, as we have seen, enter into the general expressions for the motion of the air in Sound ;

and such, as we shall presently show, into that of the molecules of a vibrating cord ; i.nd a long and lively

discussion, on the degree of generality which ought to be attributed to them, soon arose between Euler, D'AIem-

bert, D. Bernoulli, and Lagrange. It is not, however, our intention in this Article to enter into any points of

historical detail, and we shall content ourselves with a reference to the principal Memoirs, &c. on the subject,

which the reader may consult for himself; while we proceed to give such a view of the subject as is consistent

with the present state of knowledge on this delicate point, and sufficient for the purpose we have in hand. See
References.

Taylor, De Motu Nervi Tcnui, Phil. Trans. 1713-26 ; D'Alembert, Mem. Acad. Berl. 1747
; Ditto, 1753; Ditto

Opuscules, torn. i. ; Euler, Mkm. Arad. Berl. 1753; Daniel Bernouilli, Ditto; Liigrange, Miscellanea Taurin.

vol. i. See also Sauveur, Mem. Acad. for 1713, p. 324 : J. Bernouilli, on Vibrating Cords, Pi-trap. Comm. !ii.

13 ; Daniel Bernouilli, Ditto, p. 62; Ditto, on Vibrations of Unequal Cords, Acad. Berl. 1765, p. 81 ; Ditto,

on Vibrations of Compound Cords, N. Comm. Pelropp. xvi. 257 ; Euler, Acad. Berl. 1748, p. 69 ; Ditto, Ditto,

1765, p. 307, 335; Ditto, on Unequal Vibrating Cords, N. Comm. Pttropp. xvii. 381 ; Ditto, 1780, iv. ii. 99.

149. LetM N (fig. 9) be a cord maintained by any means in a const ant state of equal tension throughout, and disturbed

Solution of by any external cause from its rectilinear position, and then left to take Us own form and motion in consequence
the problem Ofi ts tens jon .

its gravity, however, being neglected. Let MABCDN be the figure of the cord after the

"ionsVfT lPse f anv l 'me t from l'le initial disturbance; respecting which we will only suppose that the distance of all

wretched its points from the axis VT (the undisturbed rectilinear position of the cord) is extremely small ;
so that in this

.-.'nl. theory, as in that of the sonorous vibrations of the air, we concern ourselves only with such excursions of the

F'S- 9 -

vibrating molecule as may be considered infinitely minute. Let A B C D be points of the cord infinitely near

each other ; and erecting the ordinates A P, B Q, C K, DS, and drawing A a, B 6, C c, D d, parallel to V T
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Sound,
put V P = x, VQ = x', V R = x", &c. and A P = y, B Q = y', C R = y", &c. Let the tension of the cord at P"t II.

rest be represented by c, which (since the cord is infinitely little disturbed from its position of repose) will also
v"~"v"

be its tension in its disturbed state ; and will in this, as in the former state, be uniform over its whole length,
the curvature being evanescent. The point B of the cord then will be solicited towards the axis by the tension
c applied at B, and acting in the direction B A, and whose resolved value is, therefore,

BA d x' -(- d y*

dy

'\dx 2
.,
d x

neglecting the higher powers of the quantity , which (being the tangent of the inclination of the element
u JC

A B to the axis) is infinitely small. Similarly the point B will be solicited from the axis by the tension c applied
d y

1

at B in the direction B C, whose resolved part in the direction of the ordinate is equal to c
.-T*-J.

The resolved

parts in directions parallel to the axis, being equal and parallel, destroy each other ; consequently, the whole

(d
y

1 d y\ d?y?-
I; or, supposing dx constant, c. dx, tending to increase

(L JC Ct if f Qi OC-

the value of y.

Now the motion of the cord will be the same, whether we regard it as a continuous mass, or compound of 150
detached particles situated at A, B, C, D, &c. and connected by filaments A B, B C, &c. without weight. Thus Its equation

AB + BC BC-fCD derived a"d

at B we may conceive to be placed a weight equal to , at C the weight ~
, and so on, that integrated.

& 'it

is, neglecting {
I

, simply a constant weight d x in each point. This, then, is the mass to be moved by the

d1

y d' y
moving force c dx, and the accelerating force is, therefore, simply c . Hence, calling t the time

d x1 d x*

and regarding d t as constant as well as d x, x and t being independent variables, and putting 2 g 9-
m
"'8088

= 32-
fat

18169, or g = 16'
fe

"090845, we have

d*y _

or, putting 2 gc = af; a = V 2 gc,

d*y _ ,
d* y

dt*
~ a '

dx*
'

This equation is precisely similar to that above obtained for the propagation of Sound along a cylindrical pipe,
and its integral will, of course, be of the same form, viz.

y F (x -f a + f(x a <.)

The determination of the arbitrary functions in this equation will depend on the conditions we may set out from. 151.
Now, first, when the cord is supposed to be of indefinite length, and the part initially disturbed to be compa- Determina-

ratively very small
; and having an indefinite undisturbed portion on either side. In this case, it is evident by

tion of the

the very same reasoning as that of Articles 63 and 64, that a pulse or undulation will run out both ways arbitrary_ J functions.

along the cord from the point of initial disturbance, with a velocity represented by a = "J 2 g c, every molecule
of the cord being once agitated during the time the pulse runs over it, and no more. Moreover, a condition

similar to that which ensures the single propagation of the pulse when once it has proceeded beyond the limits

of the initial disturbance (x = rt a) in the theory of Sound, holds good in the present case ; for we have

- = F ( + a t)
ct x '(*

-
at)

- af'(x-at).

So that on the positive side of the ar, when x > a, and therefore x + a t = a, and F (x -f- a f) and F' (i -)- a t)

d y d y= 0, we shall have -a =

which expresses that the tangent of the obliquity of the cord to the axis in its disturbed state, at any point, is

proportional to the absolute velocity of that point in its motion, or putting = angle B A a,

a . tan = v ;

and when this conditon ceases to hold good, as it does when the pulse encounters an obstacle either fixed
or less movable than the rest of the cord, it will be either wholly reflected, or divide itself into two, one

running back, and producing a species of imperfectly echoed or reflected wave, just as in the theory of Sound.
VOL. iv. 5 I

r
for the sin-

gle pl
.

opa.

gation of a

Wave '

the wavebv
anobstacK
M 'n Soun<l-
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Sound. Since, in the above investigation, c represents & force equal to the tension on the same scale that dx represents
^^V^s a weight equal to that of the element d x, we have

152.
weight of d x : tension :: d x : c.

Velocity
with which Hence c represents the length of a portion of the cord whose weight is equal to the tension, and v 2 g c the
a wave runs ve]ocijy which would be acquired by a body falling freely by gravity through that length. Hence this theorem,

stretched
The velocity f a Pu^ or undulation propagated along a tended cord, z's equal to that which a heavy body would

cord. acquire by falling freely through the length of a portion of the cord whose weight is equal to its tension.

153. Let us next suppose the cord attached at one of its extremities to an immovable point, and let the undulation

Case when be supposed to reach this point, at which suppose x = I, then, whatever be the value of t, y = 0, when x = I.

one extre- go tna( we must have
mity of the pi ft

j ^ *> t f ft n t\
cord is

J t J

fixed- Since at may have any positive value, and since on the positive side of the x (at which we have supposed the

fixed end situated) x < I, therefore I x is in all cases positive, and therefore may be one of the values of a t.

We may substitute, then, I x for a t in this equation, when we get for positive values of x less than I, and for

all negative ones

F(2l-x) +f(x) = 0; or F (2 I- x) = -
f(x). (p)

Now, in general, y = F (x + at) + f(x at).

If, then, we make a t = x-\- ui, where <i> is any quantity between + a and a, at which values of x both f(x)
and F (x) may be supposed to vanish,

y = F(Zx + w)+f(-w),
and if we make a < = 2 / a?+a>, we have

y = F (2 I + a,) + f (2 x - 2 I -
ui),

but by (p) F(2l+ w)= -/(-- a,),

so that for the latter value of t we have

y = /(") + / (2 x - 2 I u).

Now since when t = 0, we have y = F (x) + f(x) and ^ = F' (x) + /' (x) ; ^f = a { F (,r)
-

/' (x) } ,

d x at

all these values must vanish unless x lies between the limits + a and a. Consequently, for all values but

those comprised within such limits, we now have F (i) = andy(j) = 0. From the above equations, then,

supposing x > a, or < a
; and, therefore, F (2 x -f- o>) = 0, and f (2 x 2 I w) = 0, we see that for

values of a t between x -f- and x a, y will have real values
;
and that when a t attains any value between

2 I x + a, and 2 I x a, y will again have real values, the same as the former, only with contrary signs.

Thus the reflected pulse runs back with the same velocity as the direct, and is in all respects similar and equal
to it, only that it lies on the opposite side of the axis. A reasoning precisely similar applies to the case of an

aerial pulse reflected from the bottom of a stopped pipe, supposed perfectly rigid.

154. If tne COI"d De fixed at both ends, the two pulses into whieh the initial pulse has separated itself, will each be

Case when totally reflected, and will run along the whole length, being reflected again at the other end, and thus run
both ends backwards and forwards for ever, at least if we neglect the effect of the stiffness of the cord and resistance
are fixed.

(- tne a j r . cross jng each other at each traverse.

155. Suppose the whole length of the cord to be / -f- f = L, of which I lies on the positive, and I' on the negative
In this case side of the origin of the x. That portion of the subdivided primitive pulse which runs towards the positive side

of the x will describe the length I in a time = ; being then reflected it will describe the whole length I -f- f

vibratory / _1_ 7' II

motion.
j n a time 21

; and being again reflected, it will describe I' in a time , so that after a time
a a

- L 4-
l + 1

'

4- JL
2L

_
I

-
I

~

a a mm
it will reach its first starting point ;

and having been twice inverted by reflexion, will lie now on the same side

of the axis it originally was. Similarly, the negative portion of the original pulse will describe V, I' -J- I, and /,

and reach its starting point after two reflexions in the time

a a a a

the same as the other, and will also have recovered its original situation with respect to the axis. Thus at the

end of this time the two pulses will precisely reunite, and constitute a compound pulse in all respects similar to

the initial impulse. The state of the cord, then, after the lapse of the time , will (abstracting the effects of

resistance, &c.) be precisely what it was at first ; and so again, after the lap^e of time , , &c. the same
a a

state will recur, so that if left to itself it will continue to vibrate for ever.
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Sound. Thus we see that what in an indefinite cord was merely a pulse running along it and never returning, becomes, Part II.

y-"~v^~-' by the reaction of the fixed extremities of a finite one, a regular vibration, in which each molecule repeats its > *^~-s
motion to and fro on either side of the axis, at equal intervals, for ever. In the foregoing reasoning no particular 156.

assumption has been made respecting the value of a. It has not been supposed small with respect to Z, I', Passage

and, consequently, the above conclusion applies equally to the case where the initial disturbance is confined .

m atr
j>

n-

to a minute portion of the cord, and where a large portion, or even its whole length, is disturbed at once. *^jT^j
6

Only in the former case the motions of the individual molecules of the cord will be performed by starts interrupted nent ,ibra-

by intervals of absolute rest in the axis. In the latter there will be no moments of rest but those when the tion.

direction of the motion changes at the extreme points of their excursions.

Hence we conclude that when a stretched cord, whose length =.L, is struck, or forcibly drawn out of its straight 157.

situation into any form and let go, it will continue to vibrate to and fro, and that the time of one complete
Time of "
bration of a

vibration, after which it resumes its initial state, is represented by =
, being equal to the time of a

cor(ja V 2gc
pulse running over double the length of the cord, or to the time in which a body would describe such double

length with the velocity acquired by falling down a height equal to the length of a portion ofthe cord whose weight
is the tension.

Hence the times of vibration of different cords are, as their lengths directly, and the square roots of the tending 158.

forces inversely, and the number of vibrations, data tempore, as the lengths inversely, and the squaje root of the '" different

tensions directly.

The equations which express the conditions arising from the immobility of the ends of the cord so far limit 159.
the arbitrary functions F and f, that when the figure of the cord between its two extremities is given it may be Prolonga-

prolonged beyond them to any extent. To show this, let y, represent the ordinate P, M, of the curve supposed to tion of the

be continued beyond B, one of the fixed extremities, at a distance, B P,, beyond that end equal to B P, the "S"reof tlle

distance from it of the ordinate y, and, for simplicity, suppose I
1 = 0, or let the origin of the x be at the other e i t |ler s;,je

fixed extremity, A, (fig. 10.) Then we have of its fixed

y=F(* + at)+f(X -at). ^T(T'
y l

F (2 L - x + a t) + /(2 L x - a t).

Now the condition of Art. 153, derived from the fixity of the point B, viz.

gives, if we write for x successively x at arid 2 L x a t, the following equations,

F(2L-,r + at) + f(x -
af) = Q,

F (,r + a + /(2 L - a - a t) 0,

whose sum is no other than

y "f* y\ = o, or Vi
= y-

Thus we see that the curve A M B will be continued beyond B by merely reversing it from right to left and

transferring it to the other side of the axis. Again, if we put yt
for the ordinate P

8 M, at a distance = x beyond
C, we have

and F(- x + at)+f(2L. + x at) = ]

On the other hand, the condition of the immobility of the point A gives, as we have seen,

in which, writing successively for x, -\-x-\-at, and x -f- a t, we get

F(x+at)+f(-x-at) = 1

F (
- x -f- a t) +f (x

- a t) = I

and subtracting the sum of these from that of the two former, we find ultimately

y
-

V = 0, or y, = y,

so that the portion of the curve C M8 D is the very same with the first portion A M B. And thus we may go on
as far as we please, repeating the same curve alternately in a direct and reverse position, and the same manifestly
holds good on the other side of the point A.

A very simple consideration will show hat such ought to be the case ; for if we conceive two equal and similar 160.

cords, A M B, B M, C, (fig. 10,) both attached to the same point, B, and vibrating simultaneously, the strain on Origin oi

B, from both their tensions, will be always equal and opposite, provided the curves be so related as above noda '

described, and B, therefore, will be retained in equilibrium, independently of its attachment to any extraneous
g"");

8 '

in

body, so that were it detached, or if the two cords, instead of being fixed to one immovable point, were merely jg j
linked together at B, so as to form one cord of double the length, their vibrations would be the same. A cord may
Some curious and important consequences follow from this. And, first, a cord, although vibrating freely, may have any

yet have any number of points, equally distributed at aliquot parts of its whole length, which never leave the number of

axis, and between which the vibrating portions are equal and similar, and lie alternately above and below the tliem -

5 i 2
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Sound, axis, and in reversed positions as to right and left. Such points of rest are called nodes or nodal points, the Part II.

v-v ' intermediate portions which vibrate are termed bellies or ventral segments.
v--^/"~-

162. Secondly, if a string in the act of vibration be touched in any point so as to reduce that point to rest and retain

Division ofa it in the axis, then if, after the contact, it vibrate at all, it will divide itself into a certain number of ventral parts
vibrating similar and equal to each other and separated by nodes, and each of these will vibrate as if the others had no

>t \se<r
ex 'stence > but instead the nodes were fixed points of attachment. Hence, if L be the whole length of a cord, n the

mentsvibra- number of ventral segments into which it divides itself, and, therefore, n 1, the number of its nodes, the time of

ling simul- 2 L
taneously. one complete vibration (going and returning) will be and the number of vibrations per second will be

n * 2gc,

represented by the reciprocal of this fraction.

163. Experience confirms this. If the string of a violin, or violoncello, while maintained in vibration by the action
Production of the bow, be lightly touched with the finger or a feather exactly in the middle, or at one-third of the length, it

of harmonic w jn not cease to vibrate, but its vibrations will be diminished in extent and increased in frequency, 'and a note
1 s-

will become audible, fainter but much more acute than the original, or, as it is termed, the fundamental note of
the string, and corresponding in the former case to a double, in the latter to a triple rapidity of vibration. The
note heard in the former case being the octave, in the latter the twelfth, above the fundamental tone (See Index,
Musical Internals.) If a small piece of light paper, cut into the form of an inverted V, be set astride on the string,
it will be violently agitated, and, probably, thrown off' when placed in the middle of a ventral segment, while at

a node it will ride quietly as if the string were (as it really is at those points) at perfect rest. The Sounds thus

produced are termed harmonics.

164. But, further, any number of the different modes of vibration, of which a cord is thus susceptible, may be going
Coexistence On simultaneously, or be, as it were, superposed on each other. This is a consequence of the principle in

nodes'of
mechanics of "

tlle superposition of small motions," which, when the excursions of the parts of a system from their

ribration in p'aces of rest are infinitely small, admits of any or all the motions of which, from any causes, they are susceptible,
sacord. to go on at once without interfering with or disturbing each other. In the particular case before us it is easily

shown, for since the general integral of the equation

,
d'y

y

where F andf denote arbitrary functions, we may suppose

F (x) = F, (*) + F, (,) -f F. (*) + &c.

/(*)=/ (*) + /. (*) + /. (*) + &c.

where F,, F* &c., and_/i,/2 , &c., denote functions equally arbitrary, and we get

-0} + &c.

Now each of the expressions within brackets is the integral of an equation exactly similar to the original one.
Therefore, if we put

we shall have y = ^ + yf -f y, + &c .

Thus, if the several particular modes of vibration, y=yl y = yi , &c., be possible, y = y, + y, -j- &c. will also
be possible : the ordinate of the curve into which the cord at any moment forms itself in virtue of the compound
vibration will be the sum (algebraically understood) of the ordinates it would have in virtue of each simple one,
separately: the compound curve will be formed by first constructing on the abscissa, as an axis, any one of the

simple ones, then on that curve, as an abscissa, any other, on the new curve thence arising any other, and so on.

165. Hence it is evident that if we suppose the curve, whose ordinate is y,, to be of the form, fig' 11, (a) having no
Fig. 11. node, and that, whose ordinate is y* to have, for instance, one node, as fig. 11, (6) the corresponding modes of
Curves aris- vibration, when coexisting, will produce a curve, such as (c). On these we may superpose a third mode of

superposi-
vibration

' where the strin divides itself into three ventral segments, as (d), and the result will be a curve, such as

tion of seve- (e )' and so on to anv extent. The reader may exercise himself in tracing the variations of form in these curves
ral coexist- as they go through the several phases of their periodic excursions during one complete period of a vibration of the
ent vibra- whole string as one cord.

Experience again confirms this result of theory. It was long known to musicians that, besides the principal or

Harmonic
f" Iulamental note of a string, an experienced ear could detect in its' Sound when set in Vibration, especially when

Sounds
ver

y "gMy touched in certain points, other notes, related to the fundamental one by fixed laws of harmony, and
heard with which are called, therefore, harmonic sounds. They are the very same which, by the production of distinct nodes,
the funda- may be insulated, as it were, and cleared from the confusing effect of the coexistent Sounds, as in Art. 163.

They are, however, much more distinct in bells, and other sounding bodies, than in strings, in which only delicate
ears can detect them.

167. The inonochord is an instrument well adapted to exhibit these and all other phenomena of vibrating strings.
The mono- It is nothing more than a single string of catgut fixed at one end immovnbly, and at the other strained over a

well-defined edge, which effectually terminates its vibrations, either by a known weight or by screws. A similar
well-defined edge is also interposed between its fixed end and the vibrating portion, and the interval between the
tw:> edges is graduated into aliquot parts, or in any other convenient way, and it is provided with a movable
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Sound, bridge, or piece of wood capable of being
1

placed at any division of the scale, and abutting firmly against the Part II.

j Y -_' string so as to stop its vibrations, and divide it into two of equal or unequal lengths, as the case may be. v
*/-"-'

By the aid of this instrument we may ascertain the number of vibrations which belongs to any assigned musical 108.

note, or which correspond to the notes of any musical instrument, as a piano-forte, &c. For when we have ascer- Applied to

tained the weight of a known length of the catgut, of which the string is formed, and the weight which must be
"^"j^'j,*

applied to stretch the cord, so as to make its fundamental tone coincide with any given note, (as the middle C of
agivennote

V '2 rr C

a piano-forte,) then by the formula we know the nutnner of complete vibrations going and returning, and

by the formula *JL!L the number of oscillations from rest on one side of the axis to rest on the other, that
lj

is, the number of impulses made on the ear per second corresponding to that fundamental tone. To determine

the same for any note sharper, higher, or more acute than the fundamental note, we have only to apply the

bridge, and move it backwards and forwards till the sound of the vibrating part of the string is in unison with lhat

of the note to be compared, of which the ear judges with the greatest precision ;
then if the length of this part,

read off on the divided scale, be called I, the number of its vibrations per second will be to that of the whole

string L : ! L : /, and is therefore known.

of the doctrine of Acoustics in a clear point of view. The contact of a solid obstacle is not the only means f haveVmdde

producing them. If two cords equally tended, and in all other respects similar, but one only half, one third, or of vibration

other aliquot part of the length of the other, be placed side by side, and the shorter be struck or sounded, the in common,

vibration will be communicated to the longer by the intervention of the air, which will thus at once be thrown into

a mode of vibration, in which the whole length is divided into ventral segments, each equal to the shorter string.

To understand how this may happen, let us conceive first two strings of equal length, one at rest the other vibrat-

ing, and let them be placed parallel, and side by side, then the sonorous pulses diverging at any instant from each

point of the moving string, will arrive at once at each corresponding point of the other. The aerial molecules in their

progress, while condensed, will press on the string and give it a very slight motion in their own direction ; in their

retreat they will be followed by the string, whose vibrations by hypothesis are synchronous with their own, but it

will not follow them so fast as they retreat, and it will be, therefore, urged and accelerated by those behind. It

will, however, come to rest, in its furthest point of excursion, at the same time with the aerial molecules, when its

elasticity will begin to urge and accelerate it in the contrary direction. But now also the direction of the motion

of the air has changed, and again conspiring with that of the cord still continues to accelerate it, and so on, till,

after a very great number of repetitions of this process, the cord will be set in full vibration and will become
itself a source of Sound. But its Sound will always be much fainter than that of the original vibrating cord, for

this reason, viz. that its acquired motion is perpetually dissipated, laterally, into the surrounding air, for no cord

is so exactly uniform, or so equally tended in every part of its transverse section, that it can vibrate rigorously in

one plane. Hence it will inevitably begin to rotate, or to describe vibrations whose plane is continually shifting,

(see Art. 177,) and thus it will throw off laterally a great part of the motion it receives from the air; just as a

body exposed to the radiation of a hot fire never acquires a temperature equal to that of the fire, part of the heat

communicated being dissipated by lateral radiation.

Just as a small pull, repeated exactly in the time of its natural swing, will raise a great bell, or a trifling 170.

impulse a heavy pendulum, so the molecules of the air, in a state of sonorous vibration, will impress on any body
Establish.

capable of vibrating in their own time an actual vibratory motion, and if a body be susceptible of a number of
nl

a f

a
-

modes of vibration performed in different times, that made only will be excited which is synchronous withthe aerial
brationby

pulsations. All other motions, though they may be excited for a moment by one pulsation, will be extinguished by sympathy
a subsequent one. Hence, if two cords have any mode of vibration in common, that mode may be excited by illustrated,

sympathy in either of them when the other is sounded, and that only. For example, if the length of one cord be
to that of the other as 2 : 3, and if either be set vibrating, the mode of vibration, corresponding to a division of

the former into two, and of the latter into three ventral segments, will, if it exist in the one, be communicated by
sympathy to the other. Nay, if it do not originally exist, it will, after a while, establish itself; for all accidental

circumstances which may favour such a division have their efftcts, however minute, continually preserved and

accumulated, till at length they become sensible.

In the vibrations of cords, which from their small surface can receive but a trifling impulse from the air, the 171,
Sounds and motions excited by this sort of sympathetic communication are feeble, but in vibrating bodies, which Remarkable

present a large surface, they become very great. It is a pretty well authenticated feat performed by persons of effects of

clear and powerful voice, to break a drinking-glass by singing its proper fundamental note close to it. (See
s^m

[

Chladni, Acoust. 224.) Looking-glasses also are said to have been occasionally broken by music, the excur- tionofvibra
sions of their molecules in the vibra'.ions into which they are thrown being so great as to strain them beyond tion

the limits of their cohesion. 172.

The coincidence of the theory above stated, of the propagation of a wave along a stretched cord, with experi-
Numerical

ment, has been put to careful trial by Weber. (See his Wdlenlehre auf Experimente Gegrundet, 8vo. Leipsig.
c m Panso "

1825, p. 460, a most instructive work.) He stretched a very equal and flexible cotton thread, 51 feet 2 inches theorWith
8

in length, weighing 864 grains, horizontally, by a known weight. The thread was struck at 6 inches from one experiment
end at the instant of letting go a stop-watch of peculiar and delicate construction, marking thirds, (sixtieths of by Weber.
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S.and. seconds,) whose motion was instantaneously arrested when the wave had run a certain number of times over the

V"' length of the string
1 backwards and forwards. The mean of a great many observations, agreeing well with each

other, gave as follows :

Part II.

Tension in

Grains.
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Sound, next as a subdivided string. Let unity represent the time of one complete oscillation from rest to rest of the Part II.

v^^ whole string ; then will the times in which the different phases of the motion now in question are performed
v""v^''

be as follows :

From the position A B C to the straight line AC.... = .

From the position A C to the position A E D, D F C = .

Back to the straight line i-

Back to the original position ABC =
J.

Sum = J + +i + i = 3.

Thus the interval between two consecutive blows made by the string on the bridge is ^ of the time of oscillation

of the string as a whole, from rest on one side of the axis to rest on the other, or of the impulses made by it on
the ear when so vibrating. Hence, the blows on the bridge will be heard as a continued note, (though extremely
harsh and disagreeable,) graver than that of the string vibrating as a whole, by the musical interval called a

fifth. (See Index, Musical Intervals.)

III. Of the Vibrations of a Column of Air of Definite Length.

The general equation representing the motions of the molecules of a tended cord of indefinite length is, as |^g
we have seen, precisely similar in its form, and in that of its complete integral, to that of the particles of air in a

Analogy be-

sounding column. There subsists> of course, a perfect analogy between the two cases, and, mutatis mutandis, all tweenvib-

propositions which arc true of a vibrating cord are also true of a vibrating cylindrical volume of air. ti.msof air

Thus, if such a cylindrical column be enclosed in a pipe, whose length = I + I' = L, stopped at both ends by 'P'PJ
n l

perfectly immovable stoppers, and if we suppose any single impulse communicated to one of its sections at the stretched*

distance / from one of its extremities (A), this will immediately divide itself into two pulses running opposite cord,

ways; they will be totally reflected at the two extremities, the one, after describing the space I before and I' after 179.

reflexion, will meet the other which has described V before and I after reflexion, at a distance = I from the other Transition

extremity B, and produce a compound agitation in the section at that place similar to the primitive disturbance ;

from a P rn "

thence the partial pulses will again diverge, and after each undergoing another reflexion will again unite in their P
ufs

a

e

'e

t'u ,

original point of departure, constituting a repetition of the first impulse, and so on, till the motion is destroyed permanent

by friction and by the imperfect fixity and rigidity of the stoppers, allowing some of it to pass into them and be vibration.

lost at each reflexion.

But if the section first set in motion be maintained in a state of vibration synchronous with the return of the ISO.
reflected pulse, it will unite with and reinforce it at every return, and the result will be a clear and strong musical Effect of H

Sound resulting from the exact combination of the original periodic impulse with all its echos. This will be permanent

transmitted through the pipe to the outer air, and thus dissipated and lost.

For simplicity, let us suppose the section primitively set in vibration and so maintained, to be situated just in "[!*

"'

the middle of the pipe. Then, when once the regular periodic pulsation of the contained air is established, it is \$\
evident that the motion of the column will consist of a constant and regular fluctuation to and fro within the pipe Simplest
of the whole mass, the air being always condensed in one half of the pipe while it is rarefied in the other. The mocle of vi-

greatest excursions from their place will be made by the molecules in the middle, while those at the extremities,
b'atlon of

being constantly abutted against the stoppers, remain unmoved, and the excursions made by each intermediate
piL^iosed

molecule will be greater the nearer it is to the middle. On the other hand, the rarefactions and condensations at both

are greatest at the extremities, and diminish as we approach the middle of the pipe, where there is neither conden- ends.

sation nor rarefaction. The analogy of this ease with the case of the vibrating cord will be evident if we consider Analgy
that the condensation in the former is represented by the angle of inclination of the vibrating curve to its abscissa

in the latter, and that the mode of vibration now contemplated in the aerial molecules is analogous to that of a
[ng^aseofa

cord vibrating as a whole, and having its two halves symmetrical. stretched

In the same way as a vibrating cord is susceptible of division into its several aliquot parts all vibrating simul- cortl -

taneously, so may the aerial column in our stopped pipe vibrate in distinct ventral segments. The manner in !%-

which this may take place will be evident on inspection of figs. 15 and 16, where the arrows denote the directions of Sul)division

the motions of the vibrating molecules, and where we see the immobility of the nodal sections is secured by the
"

Vo'lum

equal and opposite pressures of the molecules on either side of them. At these nodal sections, too, the same by nodei."

thing holds good as at the stopped extremities, their molecules remain constantly at rest while yet they undergo Figs. 15, 16.

greater vicissitudes of compression and dilatation than those in any other parts of the column.

Precisely, too, as in the vibrations of strings, any number of these modes of vibration may go on simultaneously. 183.
Such combined modes may be produced by an expert flute player, by a nice adjustment of the force of his breath

;
Coexistem

at least the octave of any note may be obtained without difficulty, and distinctly heard with the fundamental tone. f several

Half way between two nodes (regarding the stopped ends as nodes) the condensations and rarefactions are
m dei

!

ot

evanescent, and the amplitudes of the molecular excursions are at a maximum. Now at such a point let us
V '

?gj
conceive a narrow ring of the cylindrical pipe in which the vibrating column is contained to be cut away, so as to vibration of

open a free communication with the outer air. There will be no tendency for air to pass in or out, because the air in a pip
air within is constantly, at these points, in its natural state as to density; neither will its motion be impeded, "pen at o

being parallel to the axis of the column and without any lateral bias. The detachment then of such a ring will
end-

no way alter the vibrations of the column, nor, a fortiori, will the opening of a hole in the pipe at this place affect
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Sound. them. Suppose, now, at this hole, a vibrating body placed, whose vibrations are executed in equal times with Part tl.

^"v-^ those in which the excursions to and fro of the included aerial sections are performed in the stopped pipe. They ^-v*
will be communicated to them, and thus the Sound of the pipe will be excited and maintained. Such an aperture
is called an embouchure.

185. But let us now conceive the one half(A) of the pipe entirely removed, and in its place a disc substituted exactly
Case where closing the aperture, and maintained, by some external cause, constantly in a state of vibration, such, that the
the vibra-

performance of one complete vibration, going and returning-, shall exactly occupy as much time as a sonorous

-ited"
6 ""

Pu 'se would take to traverse the whole length of the stopped pipe (A + B), or double that of the open one (B).

vibrating
Its first impulse on the air will be propagated along- the pipe (B) and reflected at the stopped end, and will again

disc. reach the disc just at the moment when the latter is commencing its second impulse. But the" absolute velocity
of the disc in its vibrations being

1

excessively minute compared with that of Sound, the reflected pulse will

undergo a second reflexion at the disc as if it were a fixed stopper. It will, therefore, in its return exactly
coincide and conspire with the second original impulse of the disc, and the same process being repeated on every

impulse, each will be combined with all its echos, and a musical tone will be drawn forth from the pipe vastly

superior to that which the disc vibrating- alone in free air would produce. This is, in fact, the simplest instance

of the resonance of a cavity, of which more hereafter. (See Index, Resonance.} Now, it is manifestly of no

importance whether the pulses reflected from the closed end of the pipe (B) undergo a second reflexion at the disc,

and are so returned back by the pipe, or whether we regard the disc as penetrable by the pulse, (i. e. a mere

imaginary vibrating section,) and suppose the pulse to run on and be reflected at the extremity of the other half

(A) of the bisected pipe (A-j- B), and on its return again to pass freely through the disc and be again reflected

at the stopped extremity of (B). The Sounds produced will be the same, on the principle of the superposition of

vibrations. Thus we see that the fundamental Sound of a pipe open at one end is the same with that of a pipe
closed at both ends, and of double the length.

186. The mode here supposed of exciting and maintaining the vibrations of a column of air in a pipe is easily put in

Mow per- practice. Let any one take a common tuning-fork and on one of its branches fasten with sealing-wax a circular
m

disc of card of the size of a small wafer, or sufficient nearly to cover the aperture of a pipe. The sliding joint of

the upper end of a flute, with the mouth-hole stopped, is very fit for the purpose; it maybe tuned in unison with

the loaded tuning-fork (a C fork) by means of the movable stopper, or the fork may be loaded till the unison is

perfect. If the fork be then set in vibration by a blow on the unloaded branch, and the disc be held close over
Fig. 16. tne mouth of the pipe, as in fig. 16, a note of surprising clearness and strength will be heard. Indeed, a flute

may be made to "speak" perfectly well by holding close to the embouchure a vibrating tuning-fork while the

fingering proper to the note of the fork is at the same time performed. We shall have further occasion to refer

to this point. (Resonance, Index.)
187. But the most usual means of exciting the vibrations of a column of air in a pipe is by blowing into, or rather

Action of a over it, either at its open end or at an orifice made for the purpose at the side, or by introducing a small
reed. current of air into it through an aperture of a peculiar construction called a reed, provided with a "

tongue"
or flexible elastic plate which nearly stops the aperture, and which is alternately forced away by the current of

air and returns by its elasticity, thus producing a continual and regularly periodic series of interruptions to the

uniformity of the stream, and, of course, a Sound in the pipe corresponding to their frequency. Except, however,

the reed be so constructed as to be capable of vibrating in unison, or nearly so, with, at least, one of the moilc^

of vibration of the column of air in the pipe, the Sound of the reed only will be heard, the resonance of the

pipe will not be called into play, and the pipe will not speak; or will speak but feebly and imperfectly, and yield
a false tone.

188. But of reeds more hereafter; (see Index, Reeds ;) at present let us consider what takes place when the vibrations

Excitement of a column of air are excited by blowing over the open end of a pipe or an aperture in its side. To do it effec-

of vibrations
tually the air must be directed in a small current, not into, but across the aperture, as in fig. 18, so as to graze

I the opposite edge. By this means a small portion will be caught and turned aside down the pipe, thus
"

giving a first impulse to the contained air and propagating down it a pulse in which the air is slightly condensed.

Fig. 18. This will be reflected at the end as an echo, and return to the aperture where the condensation goes off, the

section condensed expanding into the free atmosphere. But in so doing, it lifts up, as it were, and for a

moment diverts from its course the impinging current, and thus, while it passes, suspends its impulse on the edge
of the aperture. The moment it has escaped the current resumes its former course, again touches the edge of

the aperture, creates there a condensation, and propagates downwards another condensed pulse, and so on. Thus
the current passing over the aperture is kept in a constant state of fluttering agitation, alternately grazing and

passing free of its edge, at regular intervals, equal to those in which a sonorous pulse can run over twice the

length of the pipe ; or, more generally, in which the condensations and rarefactions recur at its aperture in virtue

of any of the modes of vibration of which the column of air in the pipe is susceptible.
189. In general, wherever there is a communication opened between the column of air in a pipe and the free atmo-

Practical
sphere, that point will become a point of maximum excursion of the vibrating molecules, or the middle of a

betvvee'n'vi-
ventra' segment. In such a point the rarefactions and condensations vanish, the air reducing itself constantly

brations of to an equilibrium of pressure with the free atmosihere with which it is in contact. Hence, if the pipe speak at

air in an all, it will take such a mode of vibration as to satisfy this condition, but, consistently with this, it may divide

open pipe itself into any number of ventral segments. But here there is a point of practical difference between the affections

"stretched

*'

^ a v '*)rat'"g' aerial column and those of a tended cord. The tension of the cord can only be maintained steadily

cord.

*

ln practice, by fixing its two ends ; so that the case of one extremity fixed, the other free, can have no existence

but in imagination, where the cord may be conceived as of indefinite length in one direction, so that the out-

-unning pulses may lose themselves, or, "at least, never return. It is true they might be stifled by wrapping one
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Sounu. end of a very long cord in cotton, but whether, under such circumstances, any mode of producing and maintaining
Part H.

v-^-' an initial periodical impulse sufficiently regular to produce musical Sounds could be found remains to be
v" "v"-"

tried. The nearest approach to the case in question is when one end of a long cord is held in the hand and

agitated while the tension is maintained, as in Art. 173.

In cords with fixed extremities, however, all the ventral segments must, of necessity, be complete, no half 190.

segments can exist. In pipes it is otherwise. The air in a pipe closed at one end vibrates as a half, not the T ' mes and

whole of such a segment. It is owing to this that a pipe open at both ends can yield, if properly excited, a'"? . .

musical Sound. The column of air in it vibrates in the mode represented in fig. 19, where there is a node in the
pipesopen"

middle and each ventral segment is only half a complete one. In general it is easy to represent, in an algebraic a! both ends

formula, the time of vibration, or the number of vibrations per second corresponding to any mode of vibration. V'S- 19-

For, first in a pipe open at both ends let the number of nodes be n, then there will be n 1 complete ventral

segments between them, as in fig. 20, and a moiety of one at each end. If, then, we call L the whole length of F'S- 20-

such a pipe in feet, V the velocity of Sound in feet per second, the length of one complete ventral segment will

be . This length is traversed by a sonorous pulse in a time . rr , and this is the time of vibration of the
n n V

middle section of it to which the Sound corresponds. The pipe, then, vibrating according to this mode, will

V
yield a Sound whose pitch is that of a cord making n . -= vibrations per second ; and the series of tones it can

L
produce is expressed by the following series of numbers of vibrations,

V V V
! -T ; 2 'T ; 3 T' &C '

In the case of a pipe closed at one end, the stopped end must be regarded as a node. (Fig. 21.) Calling the 191,
whole number of nodes, thus included, n, the number of complete ventral segments will be n 1, and one half In pipes

j^ j^
closed at

segment will terminate at the open end. Therefore , or , will be the number of one end -

2 (n 1) + 1 271+1 Fig. 21.

O T

such halves contained in the length L, and will, therefore, be the length of each complete one ; so
& 71 ~(~ 1

that each will make . vibrations in one second, and thus the series of tones such a pipe can yield

will be expressed by the series of vibrations,IV 3V 5V
* --TT. --, - Rrr*

2
'

L '

2
'

L '
2

'

L '
&

Lastly, the number of nodes, including the two stopped ends of a pipe closed at both ends, being n, the 192.
number of segments (all complete) into which it will be divided will be n 1, and the length of each will be In pipes

j U closed at

. ; so that the series of Sounds, of which such a pipe is susceptible, is represented by the series both ends -

of vibrations,

V V V
I -T' 2 -r ; 3

-T' &c -

Taking, therefore, unity for the number of vibrations per second in the fundamental tone, the series of harmonics
will run as follows :

In a pipe stopped at both ends 1, 2, 3, 4, 5, &c

open at both ends 1, 2, 3, 4, 5, &c.

stopped at one end, open at the other. ... 1, 3, 5, 7, 9, &c.

It being recollected, however, that in the last series the fundamental note 1 is an octave lower than in the others,
i.e. performs its vibrations only half as rapidly.
To produce these Sounds by blowing into a pipe, it is only requisite to begin with as gentle a blast as will 193

make the pipe speak, and to augment its force gradually. The fundamental tone will be heard first; and as Method 'o.

the strength of the blast increases, will grow louder, till at length the tone all at once starts up an octave, i. e. exciting

the interval between notes whose vibrations are as 1 : 2. By blowing still harder, the next harmonic, 1 : 3, or tllese dif~

as it is called in Music, the octave of the fifth, or the twelfth of the fundamental tone, is heard ; but no adap- ^e

'

f
tation of the embouchure, or force of the wind, will produce any note intermediate between these. The next vibration
harmonic is 1 : 4, and corresponds to the double octave, or fifteenth of the fundamental tone; and the next, or
1 ; 5, to the seventeenth, or major third above the double octave. (See the explanation of these terms in

Art. 210, et seq.) The next, 1 : 6, corresponds to the nineteenth, or double octave of the fifth, and so on. All the Senes of
notes here enumerated are very readily produced on the flute, without changing the fingering, from the lower C harmonic

or D upwards, by merely varying the force of the blast, and a little humouring the form of the lips and their ( nes of

position with respect to the embouchure. The reader may consult on this subject D. Bernoulli!, Sur le Son et E'pe
or

sur les TOJIS des Tvyaux d'Orgiies, Mem. Acad. Paris, 1762 ; in which the true theory of wind-instruments is
"'*'

VOL. IV. 5 K
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194.
Ration

the action

inonic

sounds.

195.

Sound, first clearly stated, though pointed out by Sauveur, in a Paper published in the Mem. de VAcad. 1701. Also a Part I',

*V*P' Very instructive Paper by Lambert, Observations sur les Fifties, Mem. Acad. Berl. 1775. (See also Euler, De v
Motu Aeris in Titbis Petrop. Comm. xvi. and Lagrange's Memoirs already cited, Mel. de Turin, i. and ii.)

M. Biot, Hv adapting an organ bellows to regulate the blast, and give it the requisite force and uniformity,

succeeded in drawing from a pipe furnished with a proper embouchure, not only these, but also the notes

represented in the harmonic series by 7, 8, 11, and 12, but not 9 or 10, (the reason of which vacancy does not

appear.) Traits de Physique, ii. 126.

The rationale of the continual subdivision of the vibrating column, as the force of the blast increases, is very
obvious. A quick sharp current of air is not so easily driven aside by an external disturbing force ;

and when

ie embou- so driven, returns more rapidly to its original course, than a slow and feeble one. A quick stream, when thrown

chure in ex- into a ripple by an obstacle, undulates more rapidly than a slow one. Consequently, on increasinj; the force of

citing bar- the blast, a period will arrive when the current cannot be diverted from its course and return to it so slowly as is

required for the production of the fundamental note. The next higher harmonic will then he excited, until, the

force of the blast increasing, it becomes once more incapable of sympathizing with the excursions of the aerial

molecules at the embouchure in this mode of vibration, and so on.

If we know the velocity of Sound in the column of air included in a pipe, the length of the pipe, and the

Velocity of mode ofvibration, the number of vibrations may be computed, and vice, versa, if we know the number of vibrations

i",
1

.

con- made in a given pipe, vibrating in a known manner, we may thence compute the velocity of Sound. This

the note"
1

furnishes a ready and simple method of determining the velocity of Sound in any gas or vapour. We have only

sounded by to fill a pipe first with air, and then with the gas or vapour in question ; and having set them vibrating by any
agivcnpipe. proper means, so as to draw forth their fundamental tone, to compare this with a monochord, or with any
Velocity

of mlls ical instrument possessing a regular scale or progression of notes where vibrations are known; and having

s^thence
t'lus ascerta > ne<l the number of vibrations per second performed by a column of each medium, the velocities of

deduced. Sound in the respective cases will be in the direct ratio of their numbers. It is thus that Chladni, and, more

lately, Vanrees, Frameyer, and Moll have ascertained the velocities of Sound in the various media enumerated

in Art. 82.

196. That it is really the air which is the sounding body in a flute, organ-pipe, or other wind-instrument, appears
The column from the fact, that the materials, thickness, or other peculiarities of the pipe, are of no consequence. A pipe of
of air, not

paper an(j one of lead, glass, or wood, provided the dimensions be the same, produce, under similar circum-

the sound'- stances, exactly the same tone as to pitch. If further proof were necessary, the difference of pitch produced by

filling the pipe with different gases would place the point beyond a doubt. If the qualities of the tones produced

by different pipes differ, this is to be attributed to the friction of the air within them, setting in feeble vibration

their own proper materials.

The influence of the size and situation of the embouchure of a pipe, and still more of the manner of exciting
the vibrations of the sections of the aerial column near that place, are very material in determining the pitch of

hure of
tne *one "ttered. Were it possible to excite the aerial column to vibration by setting in motion a single section

a pipe on its of it by a wish, we should obtain, doubtless, Sounds always strictly conformable to the length of the pipe and

pitch. its harmonic subdivisions as above ; but, in fact, the vibrating column of air and the extraneous body (be it

reed, tuning-fork, or stream of air) which sets it in motion exercise on each other a mutual influence ; they vibrate

as a system, (see Index, Vibrations ofa System of Bodies,) and the resulting tone may be made to deviate more
or less from the pure fundamental tone of the pipe, according to the greater or less mass of matter, and the fixity

of the vibrations of the apparatus by which the pipe is made to speak. When, for example, the cause of vibration

is the mere passage of a stream of air over the orifice, whose motions are almost entirely commanded by the

condensations and rarefactions within the pipe, (Art. 194,) but little deviation can take place. Yet, by varying
the inclination of the stream, (as in the case of the flute by turning the mouth-hole more inwards or outwards

with respect to the lips,) and thus giving it a greater or less obliquity to the edge against which it strikes, we

may alter the note very sensibly, as is known to all flute-players, who use this means of humouring the instru-

ment, and playing in tune in keys which would otherwise be insupportable.

198. In the diapason organ-pipe, whether open or stopped, a stream of air is admitted at the vertex of the conical

Diapason lower end, but is prevented from passing through the whole length of the pipe by a plate of metal separating the

organ-pipe. eone from the pipe, and is forced to escape through a narrow slit transverse to the axis of the pipe, in doing
which it strikes against the edge of a thin piece of lead, or other flexible metal. This disposition will be

Fig. 22. understood by inspection of the figure 22, in which B B is the organ-pipe, and bob the conical appendage at its

foot by which the air is admitted. One side of the pipe B L M is flattened and a little bent inwards, and at L
a narrow slit is made, just opposite to the lower edge of which is the plate of metal b b, which has its edge
nearest the orifice a little cut away, so as not quite to fill the whole section of the pipe, but to leave a narrow

slit parallel to the slit FF in the side of the pipe. Through this the air admitted at c escapes, and is directed

in a thin sheet against the upper lip L of the lateral slit
; against which it breaks, as described in Art. 188, and

Its harmo- sets in vibration the column of air contained in the pipe. If the stream of air be too strong the pipe will yield
rics - the octave and harmonic of its fundamental note, forming the series 1, 2, 3, 4, &c. If, on the other hand, the

current of air remaining constant, the breadth of the slit through which the air escapes be diminished, according
to the experiments of MM. Biot and Hamel, harmonics will also be produced, but in the progression 1, 3, 5, 7,

&c. the octaves of the fundamental tone and of all the others being entirely wanting.
199. In reed-pipes, or those in which the vibrations are excited and maintained by passing a current of air into

Reed-pipes. the pjpe through a reed, (Art. 187,) the influence of the reed on the pipe is very great. The most perfect and

pure tone is produced, of course, when the reed and the pipe separately are pitched in unison, but a considerable

latitude in this respect exists
;

and within certain limits, depending on the mass and stiffness of the reed, as

ing body.

197.
Influence

of the em-
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Sound, compared with the dimensions of the pipe, a power of mutual accommodation subsists, and a mean tone is pro- Part II.

V--' duced, less powerful and less pure and pleasing, however, as the pipe is more forced from its natural pitch, until ^ ~-s J

it ceases to sound altogether, and the note produced, if any, is that of the reed alone. In this respect there is,
Mutual

however, a great difference in pipes of different sizes. In large organ-pipes the reed vibrates with nearly the
Jhe "j

e

a jjj
same freedom as in the open air, and will, therefore, apeak when the pipe has ceased to resound; but iif small

piptl

and narrow pipes, as in oboes, and other similar wind-instruments, a much closer correspondence between the

pitches of the reed and pipe is required, or the reed will not vibrate. Messrs. Biot and Hamel adapted to a fig. 23.

glass pipe a reed of the ordinary construction represented in fig. 23, in which the vibrating tongue L (by whose 9oim"' c~

oscillations the opening of the reed at R is alternately opened and closed) could be lengthened or shortened at
reej

pleasure by thrusting in or withdrawing a wire F/", which bears with a slight spring against the tongue at f.
The blast of wind being maintained constant, the reed was made to yield its gravest note, by withdrawing the

wire as far as possible, after which, by pushing it in, the pitch of the reed was gradually raised. It was observed ^nd its

thou that the tone of the pipe grew constantly more acute, but that after a certain point, it began to diminish in manner of

intensity, till at length no Sound could be heard. At this point, the tongue of the reed, being narrowly examined vibrating.

through the glass, was observed to be still in rapid vibration ; but its vibrations were performed entirely in the

air, so as not to strike upon and close the orifice. A constant passage then being left for the air, the vibrations

of the pipe could not be excited. But this state of things continued only so long as the tongue was of that

precise length. The moment the wire was pushed in by the smallest quantity, the Sound sprung forth anew of a

pitch still corresponding with the shortened state of the tongue.
The influence of the air in a pipe on the reed by which it is set in vibration, causes the quality of the tone of 200.

a reed-pipe to depend materially on its figure. Thus it is found that a reed-pipe of the funnel-shaped form, Influence of

fig. 24, composed of two cones, one more divergent than the other, set on the orifice, gives the clearest and most tlle form "'

brilliant tone ; but, on the other hand, if the upper cone be reversed, so as to contract the aperture, fig. 25, the
j,

P'P ""

Sound is .stifled. But when two similar cones, placed base to base, are adapted to the aperture of a long conical
pj,, 2j

pipe, as in fig. 26, the Sound acquires remarkable fullness and force. This belongs, however, to a most intricate Fig. 25.

part of the theory of Sound, the vibrations of masses of air in cavities of any form. Fig- 26.

The quality of the tone produced by reed-pipes will also of course materially depend on the construction of 201.

the reed itself, and the substance of which it is composed. If the vibrating lamina be of metal, and at every
Influence ol

vibration it strikes on a metallic orifice, these blows will be heard, and will give a harsh, rude, and screaming
'jj

character to the Sound. If the edges of the aperture be covered with soft leather, this is much alleviated. Hut
or th

'

e

a '

if, instead of covering the aperture by striking on it, the tongue is so constructed as merely to obstruct it by passing Sound.

backwards and forwards through it at each oscillation, care being taken to make it fit without touching the

edges of the aperture, these blows are avoided altogether ; the tongue cominar in contact with nothing but air

during its whole motion. In consequence, its tone is remarkably soft and pure, and fret; from any harshness.

The invention of this reed is ascribed by Biot to M. Grenie, who has taken out a patent for it ; but, without 202.

erecting a prior claim on the part of Kratzenstein, we may bring forward a very familiar instrument, the Jew's- Grenie's

harp, as offering, at least, an apparent analogy with M. Greni6's reed. The construction of this instrument is so .

r
4? , ,

well known that there is no need to describe it; and though the theory of it be somewhat obscure, there can be
uarp

little doubt that its action is that of a reed which calls into play the resonance of the cavity of the month, and

sympathizes with it in its vibrations, at least in some of their modes. The Jew's-harp is an instrument much
mistaken and unjustly contemned. Nothing can exceed the softness, sweetness, and delicacy of this instrument,
when carefully constructed and well played ;* as might be expected from a reed in which the tongue is perfectly
at liberty. That the instrument itself vibrates in unison with the note it calls forth, is evident from the fact,

that when merely held before the open mouth, or lightly retained between the lips, its Sound is feeble and scarce

audible; but acquires a great accession of force when brought in contact with and firmly held between the teeth ,

the note is still further sustained and reinforced by directing a current of air forcibly through it. It is not here
meant to say, that the great oscillations to and fro of the tongue are commanded by the resonance of the cavity,
or are performed in the same time with its vibrations. On the contrary the spring is far too strong and large to

admit of this. It is more probably by a series of subordinate vibrations going on in the tongue while oscillating,
that the sympathy is established.

The instrument called the German harmonica is a reed, on M. Grenie's principle, consisting of nothing but a 203.

very thin lamina of brass, of the form of an oblong parallelogram fixed by one of its narrow ends in a frame of TheGemian

its own shape, but just so much larger as to allow of its free motion. This instrument vibrates by a blast urged
u '

through it yielding a clear musical tone of a very pleasing character and fixed pitch. If placed at the end of a

pipe it performs the office of a reed, and its tone commands, or is commanded, by the pipe according to circum-

stances, as above explained.
When the action of the embouchure of a pipe is so decided as to be incapable of being, to any sensible extent, 204.

commanded or influenced by the resonance of the pipe ; as, for instance, when the column of air in a stopped Case where

pipe is set in vibration by a tuning-fork furnished with a disc, as described in Art. 119, the pipe will sound, and the P'Pe '

reinforce the Sound of the tuning-fork, but more and more feebly, as the pitch of the latter departs more from b"'"^
6

that of the
pipe.

The experiment is easily made by tuning the upper joint of a flute with the mouth-hole stopped bouchure.

exactly in unison with a fork, and then moving the piston of cork at the end of the pipe to and fro, or loading
the fork with wax, so as to put it more or less out of tune. The fork and aerial column \ibrate as a system, in

which the former has so much the preponderance as to command the latter completely.
We may here notice a very remarkable experiment, which we do not remember to have seen elsewhere 205.

* As we have heard it done by M. Eulenstein.

b&2
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Sound, described, and which shows to what an extent the principle of the superposition of vibrating motions and the Par ' "

;
-s^ - simultaneous coincidence of different modes of vibration in the same vibrating body, must be admitted in

*~~"V1"1

S
emnent'-

k '

Acoustics - If' '"stead of one, two such disked tuning-forks be held over the mouth of a pipe side by side, both

a'do'ubl'e nearly in unison with the pipe, but purposely tuned out of unison with each other, by an interval so small (see
Sound Index, Musical Intervals) as to produce strong beats, (see Index, Beats,) both Sounds at once will be rein-

yielded by forced by the pipe, and the beats will be heard with the same degree of distinctness as if two pipes, each in
one pipe. unison with one of the forks, were sounding side by side. The same column of air, then, at the same time, is

vibrating as a part of two distinct systems, and each series of vibrations, however near coincidence they may be

brought, continues perfectly distinct and absolutely free from any mutual influence. To those who have not tried

the experiment, the fact of a pipe actually out of tune with itself, and yielding two notes in irreconcilable

discord with one another, yet both equally clear and loud, will, at first sight, appear not a little extraordinary.
206. One of the most singular species of pipe is that employed in the organ to imitate the human voice. It is

Vox huma- composed of a very short conical pipe, the base upwards surmounted by a short cylinder, and the pitch is regu-
na organ- lated entirely by the reed. (See fig. 27.) There is a circular ojierculum which half closes the open end of the

FV%7 cylinder, to imitate the lips, the reed performing the part of the larynx, and the pipe itself, of the cavity of the

throat and mouth. (See Index, Voice.) This pipe, when well executed, imitates the human voice extremely
well ; but with a peculiar nasal twang, and somewhat of a screaming tone.

207. Chimney-pipes are those which are closed at the upper end by a cover, through the centre of which a pipe of

Chimney- smaller diameter is passed, as a continuation of the lower one. (Fig. 28.) Their Sound is intermediate between
pipes. those of open and slopped pipes of the same length. Bernonilli (Mem. Acad. Par. 1762) has investigated the
F'S- 28< laws of their vibrations. (See also Biot, Traits de Phya. ii. p. 153.) If we call L and / the lengths of the

greater and smaller pipes respectively, and X that of a pipe closed at one end capable of yielding the same funda-

mental note, n : I, the ratio of their diameters, Bernoulli finds the following equation for determining X,

tan
/ T L \ / 7T l\ 1

I . I X tan I . I = .

\2 X / \ 2 X / n*

This equation holds good when the lower end of the great pipe is closed ; if it be open, the equation is

L-X\ /* f\ 1

IV. Of Musical Intervals, of Harmony, and Temperament.

208. Our appreciation ofthe pitch of a Musical Sound depends, as we have seen, entirely on the number of its vibrations

I nisons. performed in a given time. Two Sounds whose vibrations are performed with equal rapidity, whatever be their

difference in quality or intensity, affect the ear with a sentiment of accordance which we term a Wlixon, and which

irresistibly impresses on us the conviction of a perfect analogy, or similarity between them, which we express by
saying that their pitch is the same, or that they sound the same note. In fact, their impulses on the air, and

on the ear, through its medium, occurring with equal frequency, blend, and form a compound impulse, differing

in quality and intensity from either of its constituents, but not in the frequency of its recurrence ; and, therefore,

the ear will judge of it as of a single note of intermediate quality.

?09 But when two notes not in unison are sounded at once, the ear distinctly perceives both, and (at least with

Musical practice, and some ears more readily than others) can separate them, in idea, and attend to one without the other,

concords But besides this, it receives an impression from them jointly, which it does not acquire when sounded singly, even
and <lis-

jn c ]ose succession, an impression of concord, or dissonance, as the case may be
;
and is irresistibly led to regard

some combinations as peculiarly agreeable and satisfactory, and others as harsh and grating. Now it is inva-

riably found that the former are those, and those only, in which the vibrations of the individual notes are in some

very simple numerical proportion to each other, as 1 to 2, 1 to 3, 1 to 4, 2 to 3, &c., and that the concord is more

satisfactory and more pleasing, the lower the terms of the proportion are, and the less they differ from each other.

While, on the other hand, such notes as vibrate in times bearing no simple numerical ratio to each other, or in

which the times of the ratio are considerable, as 8 : 15, for example, when heard together produce a sense of

discord, and are extremely unpleasant. This simple remark is the natural foundation of all harmony.
210. Next to a unison, in which the vibrations of the two notes are in the ratio of 1 : 1, the most satisfactory concord

The octave.
j s the octave, where the vibrations are as 1 : 2, or one note performs two vibrations to each single one of the

other. The octave approaches in its character to a unison, and indeed two notes so related when played together
can hardly be separated in idea ; and when singly, appear rather as the same note differently modified, than as

Kig. 2S. independent Sounds. The reason of this will be evident on inspecting fig. 29, where the dots in the upper line

represent the periodically recurring impulses on the ear produced by the vibrations of the acuter note, while thos

in the lower represent the same impulses as produced by those of the graver ; as the ear receives these all in the

order they are placed, it wfll be the same thing as if they were produced by two Sounds both of the graver pitch,

but one of a different intensity and quality from the other ; the one having its impulses (represented by : ) the

sum of two separate impulses of the octave Sounds
; the other consisting of the alternate impulses (.) of the

acuter only.
21 1 In like manner the octave of the octave, or the fifteenth, as it is called in Music, which consists of notes whose
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Sound, vibrations are as 1 : 4, is a very agreeable and perfect concord ; as are, indeed, all the scaie of octaves 1 : 8, J^ ^
/- '

1 : 16, &c. they all partake of the peculiar character of the octave, a sense of perfect adjustment or identity. ThTdChil
The next in order is the combinations 1 : 3, where the vibrations of the graver note are trisected by those of

octave) ur

the acuter, as in fig. 30, which gives a concord called the twelfth, a very agreeable one. In this, if we substitute
fifteen th,&c.

for the note 1 its octave 2, we shall have the concord whose vibrations are in the ratio of 2 : 3 ; or, as we shall 212.

call it for brevity, the concord 2 : 3, whose pulsations are represented in fier. 31. This concord is termed the The

fifth, and is a remarkably perfect and agreeable one, even more so than the 'twelfth, which although simpler in
pp

11

^
a numerical estimate, yet from the greater interval between its component notes allows them to be more readily ^ fift(j

distinguished, while the notes of the fifth blend much more perfectly. Fig. 31.

If, instead of substituting for 1 its octave 2, we substitute its double octave 4, we get the concord 4 : 3, or 313
the fourth, which may be regarded as a sort of complement of the fifth, and is also very agreeable. The fourth.

The concords 1:5, 2 : 5, and 4 : 5, especially the latter, in which the tones approach pretty near to each Fig. 32.

other, are all remarkably agreeable. The last is called a major third, and the two former are regarded rather 214.

as varieties of it than as independent concords. The concord 8 : 5 (which is its complement in the same sense ^d
major

as 4 : 3 the fourth is to 2 : 3 the fifth) is called the minor sixth, and is almost equally agreeable with the major ^ '

33

third, to which it is related. The minor

The concord 3 : 5 is called the major sixth, and, as well as its complement 6 : 5, or the minor third, though sixth.

pleasing, is decidedly less satisfactory than the foregoing ; and, as we see by casting our eyes on the figure,
21 5.

the periods of recurrence of their combined pulses in the same order is longer and more complex.

Higher primes than 5 enter into no harmonic ratios. Such combinations, for instance, as 1 : 7, 5 : 7, or 6 : 7, ^JL,"^
are altogether discordant. The same may be said of the more complicated combinations of the lower primes gig.
1, 2, 3, 5. The ear will not endure them, and cannot rest upon them. When sounded, a sense of craving for Discords

a change is produced, and this is not satisfied but by changing one or both of the notes so as to fall as easily as and their

the case will permit into some one of the concords above enumerated. This is called the resolution of a discord ;
resolution.

and such is the constitution of our minds in this respect, that a concord agreeable in itself is rendered doubly
217.

so by being thus approached through a discord. For example, let us take the ratio 5 : 9, which is called a
{j^"^^"

flat seventh, a combination decidedly discordant. If we multiply the terms of this ratio by 5, we get 25 : 45.
tion of the

A small change in one of the notes will reduce this to 27 : 45, or 3 : 5, a major sixth an agreeable concord, discord of

Now this will be done, if, retaining the lower note 5 or 25, we change the upper from 45 to 45 X $4 ! that is to the flat

say, to a note whose vibrations are to its own as 25 : 27. This ratio corresponds to a musical interval called a s ve"th.

semitone. Hence the discord in question will be satisfactorily resolved by holding on its lower note, and making
its upper one descend a semitone..

On the proper alternation of concords and discords the whole of musical composition depends, but though the

principle above stated must be satisfied in the resolution of every discord, there are other rules to be attended to

by which our choice is limited to some modes rather than others ; for example, in the foregoing instance it is

the upper note which must descend a semitone. The ascent of the lower by the same interval, which would

equally change the ratio as above indicated, would offend against other precepts with which we have here

nothing to do.

The interval, as it is called in Music, between the two notes of which any simple concord or discord consists,
'

depends not on the absolute number of vibrations which either makes in a given time, but on their relative pro- JJ"^*
1

^"'
portion. For it is no matter how slowly, or how rapidly, the vibrations take place, provided the order in which

ppml on

e "

their impulses reach the ear be the same. Hence, if the vibrations 4 and 5 produce on the ear the agreeable effect rat ios Of v j_

of a major third; two notes, each an octave higher, or having their vibrations respectively 8 and 10; or in brations, not

general any two having their vibrations in this ratio, will produce the same effect. This is a matter of expe-
"{J^j

1

*^
rience, but the inspection of the figures representing the older of succession of the individual vibrations enables

*

u n b

"

r

e

us to understand its reason.
If we take any note for a fundamental Sound, and tune a string or a pipe so as to vibrate with the degree ot 2

rapidity corresponding to that Sound, and represent by unity the number of vibrations it makes per second ; and
^""P

1

^
if we also tune other strings to make in the same time respectively the numbers of vibrations represented by

() ^

sc

5 A Q
fj

second and

T' T' ~Z' IT' 2; and then sound a11 these strings in succession, beginning with the fundamental note, seventh.

4 o 2 3

we shall perceive that two of the sequences, the first and last, are much wider than the rest, and would admit

the interpolation of a note between each. But it is no longer possible to choose for these interpolated notes

such as will make concordant intervals with any of the rest, or their octaves. But in order to obtain as many
concords as possible in the scale, so as to produce the most harmonious music, they are made to harmonize

with that note which bears the nearest relation to the fundamental one, (for its octave is regarded as a mere

repetition of itself,) i. e. the fifth. The vibrations of a note a fifth higher than the fifth are represented by

), or ; and as this is greater than 2, it lies beyond the octave. We must, therefore, tune our interpo-
2 / 4

g
lated string an octave lower, or to the vibration , and thus we get the second. Again, if we tune another to The second.

the vibration -, or X , it will form, with the fifth of the fundamental note ( Y a major third the

next most harmonious interval on the scale. The note thus interpolate',! is the seventh.



792 SOUND.
Sound. The interpolated scale, with the vibrations of its respective notes, will stand thus : Part II.

^~ Sisns W- <*>' <8>- <4 >- < 5>- (6 >- (7 >- W-
Names of intervals 1st. 2d. 3d. 4th. 5th. 6th. 7th. 8th.

9 5 4 3 5 15
Ratios of v.bration 1. -. -, -, -, -, _, 2.

or multiplying all by 24, to avoid fractions,

24, 27, 30, 32, 36, 40, 45, 48.

Diatonic This is called the natural, or diatonic scale ; when all its notes are sounded in succession, whether upwards
or

downwards, the effect is universally acknowledged to be pleasing. The ear rests with perfect satisfaction on the

fundamental note, and the intervals succeed each other gracefully, with sufficient variety to avoid monotony.

Accordingly all ages and nations have agreed in adopting this scale as the foundation of their music.

222. This scale consists of seven distinct notes, for the eighth being the octave of the first is regarded as a mere
Continua- repetition of it. And if we add to it on both sides the octaves of all its tones above and below, and again the
tion of the octaves of these, and so on, we may continue it indefinitely upwards and downwards. Not that the ear will

!

U
P~. follow these additional tones, to an unlimited extent. When the vibrations are less numerous than about 16 per

downwards, second, the ear loses the impression of a continued Sound ; and perceives, first, a fluttering noise, then a quick
Limits of rattle, then a succession of distinct Sounds capable of being counted. On the other hand, when the frequency
audibility. of the vibrations exceeds a certain limit all sense of pitch is lost ; a shrill squeak, or chirp, only is heard ; and,

what is very remarkable, many individuals, otherwise no way inclined to deafness, are altogether insensible to

certain ears
Vei7 acu *e Sounds, even such as painfully affect others. This singular observation is due to Dr. Wollaston.

(See his Paper on Sounds inaudible to certain ears, Phil. Trans. 1820.) Nothing can be more surprising
than to see two persons, neither of them deaf, the one complaining of the penetrating shrillness of a Sound,
while the other maintains there is no Sound at all. Thus while one person mentioned by Dr. Wollaston could

but just hear a note four octaves above the middle E of the piano-forte, others have a distinct perception of

Sounds full two octaves higher. The chirp of the Sparrow is about the former limit ; the cry of the Bat about

one octave above it ; and that of some insects, probably, more than another octave. Dr. Wollaston's sense of

hearing terminated at six octaves. The whole range of human hearing comprised between the lowest notes of

the organ and the highest known cry of insects, seems to include about nine octaves.

223. It is probable, however, that it is not alone the frequency of the vibrations which renders shrill Sounds inau-

Remark. dible. There is no reason why an impulse, if strong enough singly to affect the ear, should lose its effect if

s

repeated many thousand times in a second. On the contrary such repetition would render the noise intolerable.

go
v

u

e

^*
cu e

But this is not the case with musical Sounds; thc'ir individual impulses would, probably, be quite inaudible

singly, and only impress by repetition. Now, as vibrating bodies have only a certain degree of elasticity,

extreme swiftness of vibration can only take place when their dimensions are very minute, and consequently the

excursions of their molecules from rest, and their absolute velocities, excessively minute also. Thus in proportion
as Sounds are more acute their intensity (which depends wholly on the extent and force of their vibrations)

diminishes. No doubt, if by any mechanism a hundred thousand hard blows per second could be regularly
struck by a hammer on an anvil, at precisely equal intervals, they would be heard as a most deafening shriek ;

but in natural Sounds the impulses lose in intensity more than they gain in number, and thus the Sound grows
feebler and feebler till it ceases to be heard.

224.
" As there is nothing in the nature of the atmosphere (remarks Dr. Wollaston) to prevent the existence

Possible of vibrations incomparably more frequent than any of which we are conscious, we may imagine that animals
limits of ijke tne Gj-yii^ whose powers appear to commence nearly where ours terminate, may have the faculty of hearing

still sharper Sounds, which we do not know to exist ; and that there may be other insects hearing nothing in

different'

"
common with us, but endued with a power of exciting, and a sense which perceives vibrations of the same nature

animals. indeed as those which constitute our ordinary Sounds, but so remote that the animals who perceive them may
be said to possess another sense agreeing with our own solely in the medium by which it is excited." The
same may, no douljt, be true of aquatic animals. The shrimp and the whale may have no Sound in common.

225. By the aid of the ascending and descending series of Sounds in the natural scale thus obtained, pieces of music

Key-note
of
perfect]y pleasing., both in point of harmony and melody, may be played ; and they are said to be in the key of

that which is assumed as the fundamental note of the scale, or whose vibrations are represented by_l.
If such

Its analysis a piece be analyzed, it will be found to consist entirely, or chiefly, of triple and quadruple combinations, or

into chords, chords, such as the following :

226. 1. The common, or fundamental chord, or chord of the tonic, or the 1st, 3d, and 5th, (1, 3, 5,) or the 3d, 5th,
The funda- an(j octave (3, 5, 8) sounded together. This is the most harmonious and satisfactory chord in music, and when
mental or

SOunded the ear is satisfied, and requires nothing further. It is, therefore, more frequently heard than any other ;common .. /, i -.,,.. ,.
chord. an lts continual recurrence in a piece of music determines the key it is played in.

227. 2. The chord of the dominant. The fifth of the key-note is called, by reason of its near relation to the funda-

Chord of mental note, the dominant. The chord in question is the common chord of the dominant, or the notes (2, 5,

the domi- antj 7) sounded together.

"""pno
3. The chord of the subdominant, or the note 4, consisting of the notes 1, 4, 6, being the common chord of 4

p. ', , as a fundamental note.

ihe3iib- 4. The false close, or the combination (1, 3, 6) or (3, 6, 8) which is, in fact, the common chord of the note 6,

dominanf. only with a minor third (6, 8) instead of a major. The term false close arises from this, that a piece of music,

229 frequently before its final termination, (which is always on the fundamental chord,) comes to a momentary close
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Sound. on this chord, which pleases oniy for a short time, but requires the strain to be taken up again and closed as usual Part II.

v '' to give full satisfaction. nTTT"'
5. The discord of the 7th, or (2, 4, 5, 7.) It consists of four notes ; and is, in fact, the common chord of the .

dominant, with the note immediately below it, or the seventh in order above it. The interval, however, between ^g
the notes (4) and (5), or between (5) and the octave of (4) next above it, is represented by the ratio chord (or

discord) of
2 X 4

,

3 16 the seve
'

ntK

3 2 9

or (taking 24 as the number of vibrations in a unit of time corresponding to the note (1)) = 42 . This
3

interval, then, is less than the seventh of the diatonic scale, and is about half-way intermediate between the sixth

and seventh of that scale. It is, therefore, called the flat seventh. (See Arts. 231 and 232.) This discord

resolves itself into the chord (3, 5,' 8 ;) and unless that combination, or one equivalent to it, follows, the ear is

not satisfied. The notes (4) and (5) are the essential ones of this discord, and the others are regarded as

accompaniments. If played together, the ear requires that in the next chord 4 should descend or be succeeded

by (3,) while the note 7 is required to rise or be succeeded by (8.)

With these chords and a few others, such as the chord of the 9th, whose essential notes are 1 and 2, or 1 and 9,
231.

may a great variety of music be played, but it would be found monotonous. The ear requires, in a long piece,
Modulation

a variety of key. The fundamental note occurs so often that it seems to pervade the whole of the composition,
and must therefore be changed. But this change of key, which is called modulation, is not possible without

introducing other notes than those already enumerated. It is true the chord (2, 5, 7) is the perfect fundamental

chord in the key of (5 ;) but the other chords in that key corresponding to those already enumerated cannot be

formed, with the exception of its sub-dominant, which is, in fact, the common chord of 1. Take, for instance,

its dominant. This would be formed, if it could be formed at all, of the notes (2, 4, 6) or (4, 6, 9.) But if we Necessity

come to analyze the intervals of these notes, we find that f intro-

ducing in-

(4) _ 32 (6) _ 40 termediate

(2)"~27
;

(2T~"27"
E teS -

5 3
Now these differ from the ratios and which exist between the notes (3, 1) and (5, 1) of the perfect

common chord. Consequently, if we would play equally well in tune in the key (5) we must introduce these new
ratios ; and, in fact, we ought to have for that purpose notes corresponding to all the ratios39 35 34

2~
x

l~' Y x
7' T :<

3
' &

and similarly for every other key we might choose to play in. But this would require an enormous number of

notes, and would render the generality of musical instruments too complicated. It becomes necessary, then, to

consider how the number may be reduced, and what are the fewest notes that will answer.

3
Let us take for example, as above, the dominant of the note (5.) The number of its vibrations is 36 X , or 333

54, the half of which (because it surpasses the octave of 1) is 27. This is correctly the number corresponding fied*! a

5 1 numerical
to (2.) Now, taking this for a key-note, the major third of (2) has 27 x = 34 for the number of its example.

vibrations in a unit of time. Now in the scale as it stands we have 32 and 36, so that the note in question is

almost just half-way between them, and must therefore be interpolated. It will stand between (4) and (5) on Flats and

the scale, and is denoted in Music by the sign tt sharp, or ^ fiat; thus it is written either as (4) sharp, (4)8, or

as (5) flat, (5) K With regard to the fifth of the new fundamental note (2) its representative number is

This comes so near 40, that the ear hardly perceives the difference ; and though a small error of one vibration Inl

in 80 is introduced by using the note (6) as the dominant of (2,) yet it is not fatal to harmony ; and there is no
tio"

f

of '"'"

necessity for encumbering ourselves with new names of notes, and additional pipes or strings to our instruments ha-monv
for its sake. In practice these errors are modified and subdued by what is called temperament, of which this

is the origin, and of which more presently.

81
The interval - -

being the difference of two notes, one of which is the octave of the perfect sixth of the 233.
TH

fundamental note, and the other arises by reckoning upwards three perfect fifths from the same origin, is called
a comma. The former note is represented by

5 10 / 3 V 27
,
27 10 81

2 x = , the latter by I I =
, and 1 = .

3 3 J
\ 2 / 8 83 80

In like manner, if we would choose any other note for the fundamental one, similar changes will be required,
2^'
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Sound, and no two keys will agree in giving identically the same scale. All, however, will be nearly satisfied by the Pan II.

>
N-

'

interpolation of a new note half-way between each of the larger intervals of the scale, thus '^V*'
Thechr

, 1*1 2*1 4*1 5*1 6*1malic scale.

1, r
}, 2, or

}, 3, 4, or V, 5, or \, 6, orV, 7, 8;
2 t

J 8 J 5 *
J 6 b

J 7M
and the scale so interpolated is called the chromatic scale.

235. Musicians have long been at issue on the most advantageous method of executing this interpolation. If,

tempe- indeed, it were intended to give such a preference to the natural scale 1, 2, 3, 4, &c. as to make it perfect, to the

sacrifice of all the other keys, there would be little difficulty, as a mere bisection of the intervals would,

probably, answer every practical purpose : thus 1 * or 2 ^
might be represented by \/ 1 x -

; 2 * = 3 b
by

9 5~

jr
X

f
and so on ; but as in practice no preference is given to this particular key, (which is denoted in

Music by the letter C,) but, on the contrary, variety is purposely studied, it is found necessary to depart from the

pure and perfect diatonic scale, even in tuning the natural notes; and to do so with the least offence to the ear

is the object of a perfect system of temperament. If the ear absolutely required perfect concords there couln

be no music, or but a very limited and monotonous one. But this is not the case. Perfect harmony is

never heard, and if heard would probably be little valued, except by the most refined ears; and it is thif

fortunate circumstance which renders musical composition, in the exquisite and complicated state in which it

at present exists, possible.
236. In order to judge of the limits, however, to which the ear vill bear a deviation from exact consonance of

musical vibrations, we must first see what takes place when tw notes nearly, but not quite, in unison or concord
are sounded together. Conceive two strings exactly equal and similar, and equally drawn out from the straight
line, to be let go at the same instant ; and suppose one to make 100 vibrations per second, the other 101 ; let

them be placed side by side, and at the same distance from the ear. Their first vibrations will conspire
in producing a Sound-wave of double force, and the impression on the ear will be double. But at the 50th

vibration one has gained half a vibration on the other, so that the motions of the aerial particles, in virtue of

the two coexistent waves emanating from either string, are now not in the same but in opposite directions; and
the two waves being by supposition of equal intensity, they will instead of conspiring exactly destroy each other,

and this will be very nearly the case for several vibrations on either side of the 50th. Consequently, in

approaching the 50th vibration, the joint Sound will be enfeebled ; there will be a moment of perfect silence, and
then the Sound will again increase till the 100th ; when the one string having gained a whole vibration on the

other, the motions of the particles of air in the two waves will again completely conspire, and the Sound will

attain its maximum. The effect on the ear will therefore be that of an intermitting Sound alternately loud and
faint. These alternate reinforcements and subsidences of the Sound are called beats. The nearer the Sounds
of the strings approach to exact unison, the longer is the interval between the beats. If we call n the number
ofvibrations in which one string gains or loses exactly one vibration on the other, and m the number of vibrations

per second made by the quicker, will be the interval between two consecutive beats. When the unison is

m
complete, no beats are heard. On the other hand, when it is very defective they have the effect of a rattle of a

very unpleasant kind. The complete destruction of the beats affords the best means of attaining by trial a

perfect harmony.
237. Beats will likewise be heard when other concords, as fifths, are imperfectly adjusted. Suppose one string to

Beats heard make 201 vibrations, while the other makes 300; then, at and about the 100th of one, and the 150th of the
with all

other, the former will have gained half a vibration, and those vibrations of the one which fall exactly on those

j

Ct
of the other, (see fig. 31,) being performed with contrary motions will destroy each other; those which fall

intermediate only partially. The beats then will be heard, but with less distinctness than in the case of

unisons.

238. This seems the proper place to notice an effect which takes place in perfect concords, and only in those which
Resultant are very perfect, viz. the production of a grave Sound by the mere concurrence of two acute ones. If we examine
Sounds. ^e f,gure 212, which represents the succession of vibrations in a perfect fifth, we shall see that every third of

the one coincides exactly with every second vibration of the other. These coincidences (so delicate is the ear)

are remarked by it, and a Sound is heard, besides the two actually sounded, of a pitch determined only

by the frequency of the precise coincidences ; that is, in this case, a precise octave below the lowest tone of the

concord.
239. In general, if one note makes m vibrations and the other n, while another, of which they may both be regarded

General de- as harmonics, makes one, that one will be the resultant tone, provided m and n be prime to each other; so that
in t\,~ i_

difficulty in determining the resultant of two notes, is to determine of what they are both harmonics.

This will be done by reducing m and n, if fractions, to a common denominator =- and ; then, if m'

and n' have no common factor, will represent the fundamental tone. If, then, m and n be integers, and

without any common factor, the resultant will be represented by 1.
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Hence follows a very curious fact, viz. that if several strings, or pipes, be tuned exactly to be harmonics of one fart If.

of them, or to have their vibrations in the ratios 1, 2, 3, 4, 5, &c., then if they be all, or any number of them, v '

from 'he first onward, sounded together, there will be heard but one note, viz. the fundamental note. For they 240.

are all harmonics of the first note 1 ; and, moreover, if we combine them all two and two, we shall find compa- f^J'"^
ralively but few which will give other resultants, so that these will be lost, us well as the individual Sounds of

th"con
m

the strings, all but the first, in the united effect of all the resultant unit Sounds. But to produce this effect, the course Of ,

strings, or pipes, must be very perfectly tuned to the strict harmonics. The effect can never take place by touching great many,

the keys of a piano-forte corresponding to the harmonic notes, because they are always of necessity tempered.

To return to our temperament. If we count the semitones in the chromatic scale between (1) and (8) we
Th ; ^ca', e

shall find the number of such intervals 12. If, then, we would have a scale exactly similar to itself in all parts, rf ,! j,

and which should admit of our playing equally perfectly in every key, we have only to compute the values of tervals, or

the fractions iso-harmo-

nic scale.

1 = 2, 2^, 2 A, 2* * 2T^, 2,

which may readily be done by logarithms, and we shall find the ratios of the vibrations which will give what

may be termed the scale of equal intervals.

If we examine the chromatic scale, and consider it as appnximatively composed of equal, or nearly equal, 242.

intervals called semitones, the following will be the uumber of semitones in each interval : Syte:n of

In the semitone 1

second or tone 2

minor third 3

major third 4

minor fourth or fourth 5

In the major fifth or fifth 7

minor sixth 8

major sixth 9
flat seventh 10

seventh . . .11

major fourth or minor fifth .... 6 octave 12

If then we reckon upwards from the note (l)by fifths, viz. from (1) to (5), from (5) to (9), (or, which comes to

the same, descending an octave, to (2),) from (2) to (6), from (6) to (10), that is to (10 7), or (3), and so on,

we shall find that after taking twelve such steps as these we shall have fallen upon every note in the scale, and

come back to the fundamental note or its octave. But, since no power of 2 is exactly the same with any power of

g
,

it is evident that no series of steps by perfect fifths can ever bring us to any one of the octaves of the

fundamental note. Were the chromatic scale perfect, twelve fifths should exactly equal seven octaves, and three

major thirds should precisely make one octave. Neither of these, however, can be true of perfect fifths or thirds,

(3
\18 / 5 \ 3

I = 129'74, and 2' = 128, giving a difference of nearly one vibration in 64 and I 1 = T953

instead of 2. Thus, if we reckon upwards by perfect fifths, we surpass the octaves ; if by thirds, we fall continually
below them. In this dilemma it has been proposed to diminish all the fifths equally, making a fifth instead of

3
, to be equal to 2 ' J

; and tuning regularly from the note (1) upwards by such fifths and from the notes

so tuiivd doTciiwards by perfect octaves. This constitutes what has been called the system of equal

temperament
L

It is evident that in this system the notes will all of necessity be represented by powers of 2 ; and that 243.
therefore the scale resulting from this system is identical with that of equal intervals, or the iso-harmonic scale Defect of

described in the last article. Theoretically speaking, it is the simplest that could be devised ; and, practically,
tnis system

(though fastidious ears may profess to be offended by it,) it must produce no contemptible harmony. It has, how-
ever, one radical f'ault.,;it gives all the keys one character. In any other system of temperament some intervals, though
of the same denomination, must differ by a minute quantity from each other ; and this difference falling in one

part of the scale in one key, in another in another, gives a peculiarity of quality to each key, which the ear seizes

and enjoys extremely. This fact, in which, we believe, all practical musicians will agree, is alone sufficient to

prove, that perfect harmony is not necessary for the full enjoyment of music. Most practical musicians seem to

have no fixed or certain system of temperament ; at least very few of them when questioned appear to have

any distinct ideas on the subject.
It is a mistake to suppose, as some have done, that temperament applies only to instruments with keys 244.

and fixed tones. Singers, violin players, and all others who can pass through every gradation of tone, must all Occasional

temper, or they could never keep in tune with each other or with themselves. Any one who should keep on 'empera-

ascending by perfect fifths, and descending by octaves or thirds, would soon find his fundamental pitch grow
ment '

sharper and sharper till he could at last neither sing nor play ; and two violin players accompanying each other,
and arriving at the same note by different intervals, would find a continual want of agreement.

Musical intervals may be numerically represented by the logarithms of the fractions expressing the ratios of 245.
the vibrations of the notes between which the intervals are comprised ; for the interval depending only on this Musical

ratio, and the sum of any two intervals corresponding to the product of their respective ratios, the logarithms
intervals re-

of the latter are the proper measures of the magnitudes of the former. Thus an octave corresponds to a ratio P re!

j

enteJ

of 2 : 1 of the vibrations of its extreme Sounds ; two octaves to the ratio 4 : 1 or 2 J
: 1, three to 8 : 1 or 21

: 1, rj{nl^f
and so on ; so that log. 2, 2. log. 2, 3. log. 2, &c. or any numbers in that proportion, are proper numerical

representatives of these intervals. The intervals of the diatonic scale will, therefore, be represented logarithmically
68 follows

v<ji,. iv. 5 L
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Souna. other cases it would be greater. But in all cases the interval between any note and its sharp is considered to be

j-v-^ equal to that between the same note and its fiat. Assuming this as a principle, a variety of systems of tempera-

ment have been devised for producing the best harmony by a system of 21 fixed Sounds, viz. each note of the
__

seven in the scale, with its sharp and flat, (regarded as different). MB*
The first and most celebrated is that of Huygens. He supposes the octave divided into 31 equal parts. Of

Sou'nds'in

these a whole tone, whether ^ or t, (for he makes all his tones equal,) consists of 5, a limma (or an approximate, the octave.

or tempered value of G) = 3, the interval between each note and its sharp or flat = 2, and the diesis = 1. This 249.

gives the following scale of intervals. Huygens's

(1) (1)8 (2)b (2) (2)8 <S)b (3) (4)b (3)8 (4) (4)3 (5)b (5) (5)8 (6)b (6) (6)8 (7)b (7) (l)b (7)8 (1)
'ys'em -

212 2 12111212 2 ,12212111
and by picking our notes among these, we may obtain a scale approaching extremely near to a perfect diatonic

scale, whichever we may choose for our key-note.
Instead of dividing the octave into 31 equal parts, Dr. Smith proposes to divide it into 50, of which 8 shall con- 250.

stitute a tempered tone, and 5 a limma, or tempered value of 9, and the interval between each note, and its sharp
Dr- Smith's

or flat, shall = 3. This will give the sequence of intervals as below. system.

(1) (1)8 (2)b (2) (2)8 (3) b (3) (4) b (3)8 (4) (4)8 (5) b (5) (5)8 (6) b (6) (6)8 (7) b (7) (1) b (7)8 (1).3233232 1232332332321 2

This scale, he observes, approximates insensibly near to what he terms the system of equal harmony, a system, in

our opinion, uselessly refined, and founded on principles for which the reader is therefore referred to his Work on

Harmonics, (Cambridge, 1749.)
Either system, no doubt, will give very good harmony ; but as on the piano-forte only 12 keys can be admitted, 251.

and as this instrument is now become an essential element in all concerts, and indeed the chief of all, a tempera- Tempera-

ment must be devised which will accommodate itself to that condition. Of the division of the octave into 12
ents

equal parts we have already spoken. Its fifths are all too flat, and its major thirds all too sharp ; and the harmony the piano-
is equally imperfect in all keys. But it has generally been considered preferable to preserve some keys more free ibrte.

from error, partly for variety, and partly because keys with five or six sharps or flats are comparatively little used,
so that these may safely be left more imperfect, (which is called by some throwing the wolf into these keys.)
Dr. Young recommends as a good practical temperament to tune downwards six perfect fifths from the funda-

mental note, and upwards six fifths equally imperfect among themselves. Or, as he observes is more easily

executed, to make the third and fifth of the natural scale per
f
ectly correct, to interpose between their octaves the

second and sixth, so as to make three fifths equally tempered, and to descend from the key-note by seven perfect
fifths, which will complete the scale. (Lectures on Natural Philosophy, vol. i. lect. 33.)
The system called by Dr. Smith that of mean tones, or the vulgar temperament, supposes the octave divided

into five equal tones and two equal limmas, succeeding each other in the order a a
fi a a a /3 instead of Ttd T trQ m^an'

as in the diatonic scale, and such that the third shall be perfect and the fifth tempered a little flat. These con- O r vulgar"

8
'

dilions suffice to determine a and J3, for we have tempera-

5a-f 2/3 = 1 octave = 3 T-f 2t + 20,
meilt

a a =1 third = T -f t,

and consequently a =
; ft := H ;

or, (since r + t = 09691, and T - t 00540,) a = 04845 and /3
= 02938. And since the interval from the

first to the fifth of the scale in this system is = 3a + /3 = 2T-j-2-|-0 , it appears that this is flatter

than a perfect fifth by the quantity \ (r t), or a quarter of a comma. In this system the sharps and flats may
be inserted by bisecting the larger intervals.

Mr. Logier has lately, in a Work of great practical utility and very extensive circulation among musical 253,
students, endeavoured to place the interpolation of the intermediate notes between those of the natural scale on Logier's
d priori grounds, by assuming the flat seventh (7)b as the seventh harmonic of the fundamental note (1), that is system m
to say, the note produced by subdividing into seven equal parts the length of a string whose fundamental tone harraony

is (1), or at least one of the octaves of that note. There is something ingenious in this idea. In the first place
it completes the series of the 10 first harmonics or notes, whose vibrations are multiples by 1, 2, 3, 4, 5, 6, 7,

8, 9, 10, of those of the fundamental tone, which would thus be, in their order, (1), (1), (5), (1), (3), (5), (7)b,
(1), (2), (3), or octaves of these, and thus derives five out of the twelve notes of the octave from one uniform

principle. Again, it gives something like a plausible reason for the prominent importance of the chord of the flat

seventh (see Art. 230.) in music. This chord, in fact, which, if we take (1) for a fundamental note, consists ot

the notes (1), (3), (5), (7)b, becomes in this point of view a perfect concord, consisting entirely of harmonics of

(1), and its pulses will succeed each other on the ear in a cycle comprising four vibrations of the fundamental
tone (1), five of the next (3), six of the next. (5), and seven of the essential note (7)b, as represented in fig. 35.
The succession of pulses in the common chord is also represented in the same figure, and its regularity and

pleasing variety, even to the eye, explains its agreeable effect en the ear. It is for musicians to say, whether

they can make up their minds to regard the discord of the sev.enth in the light of a perfect concord or no. There is

certainly nothing at all discordant in the vulgar sense of the word, i. e. unpleasant in its Sound, and so far it may
be regarded as at least " discordia concors," but so far from possessing the essential character of a concord, that
the ear is satisfied in hearing it, and expects and desires no more ; there is no discord which calls so urgently for

resolution. But, although it be true, that the seventh harmonic of the fundamental note lies between its natural

& L 2
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Sound, seventh and its octave, (it must lie somewhere,) yet, in fact, it is materially too flat a Sound to be used as a good flat

^t^mm-> seventh (7)b. Its actual Sound coincides much more nearly with the (6)8 of Huygens and Smith ; and this

defeat, though it might be tolerated in quick compositions, and especially in piano-forte music where the notes
are not held on, but degrade rapidly in intensity, would be at once felt in a slow piece on the organ. It is

still worse if we derive from it, by a similar process, the intermediate note between (5) and (6), or (6)b, and
thence again (5)b, and complete the chromatic scale of twelve notes by deriving (3)b according to the same

principle from (4), and (2)b from (3)b, according to Mr. Logier's system as laid down by him.* The (2)b
thus derived would hardly be distinguished from (1) natural, or the (5)b from (4) natural, as the following
scale will show, where the fractions represent the ratios of the vibrations of the notes above them to those of the

fundamental tone (1).

(1). (2)b, (2). (3)b, (3), (4), (5)b, (5), (6)b, (6), (7)b, (7), (8).

i. tt. *. *. *. f Mi!- -I tf, f t, V. 2 -

Sevenths, then, tuned on Mr. Logier's principle, will require a much more violent temperament than either fifths

or thirds, either of which might be used as a means of introducing the intermediate notes ; and the system must
in consequence be abandoned, as must every system which professes to render musical arithmetic any thing more
than a matter of convention and approximation.
We annex here, for comparison, a Table of the logarithmic values of the intervals from (1) the fundamental

tone to all the other notes in the several scales of 21, or of 12 notes, according to the different systems and

principles above mentioned.

The numbers marked thus (*) are what would be given by pushing the application of Mr. Logier's principle

through the whole scale, and are inserted only to show the rapid progressive effect of flattening by a series of

untempered harmonic sevenths.

Part il.

Com para-
live Table ol

different

scales of

tempera-
ment, *c

Designation of Note.
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Sound. The last column contains a scale derived by taking the mean of all those in the other columns which differ in part II.

>v
' the principle of their origin, (excepting those in the tenth column, for obvious reasons.) It approaches through

^ ~v J

its whole extent so near to the system of mean tones in col. 6, as to be quite undistinguishable from it ; the 255.

deviation in no case exceeding a single unit, or a fiftieth part of a tone. This system, then, though the most iuarti- Remarks,

ficial, is probably as good as any which the nature of music admits, holding a sort of mean between the advan-

tages and defects of all the rest. Consult on Temperament and on Musical Scales, Salinas, de Musica, (1577 ;)

Zarlino, Dimostrazione Armoniche, and Istituzione Armoniche; Deschales, Cursus Mathematicus de Progressu
Musico ; Sauveur, Mem. Acad. Par. 1700; Smith, Harmonics; Pepusch, Phil. Trans. Lond. 1746; Farey,
Phil. Mag. xxviii. ; Young's Lectures and his Catalogue of Authors in vol. ii.

For one purpose, that of explaining to beginners the notes, intervals, and rules of music, the system of equal 256.

temperament, which supposes the octave divided into 12 equal parts, which in this system only are really semi- Expression

tones, has the advantage of avoiding all discussions and puzzling explanations on the nature of harmony, as it oftheprin-

makes all intervals which are called by the same name strictly alike. Regarding the octave as consisting of
J-'P

3' cnor<ls

12 semitones, and designating its notes in succession, beginning with the fundamental note, by 0, 1, 2, 3, 4, 5, 6, numbers!

1 '

7, 8, 9, 10, 11, 12, &c. it will not be amiss if we write down in this notation the principal scales, chords, &c.

which occur in music.

2, 3

2,

2, 3;

10,

1, 4,
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Sound. 0, 4, 7, 9, 12

4, 7, 9, 12

4, 4, 4. 4

1), 3, 5, 8 1st inversion.

3, 5, 8, 12

3, 3, 3, 3

2d inversion.

"art II.

0,2,

2,

2,

9

9, 12

2, 2

260.

0, 3. 7, 10 3d inversion.

3, 7, 10, 12

3. 3, 3, 3

Original chord again 0, 4, 7, 9

Thus we see that this chord admits of three distinct inversions. In general, a triad admits of three forms, or

one original, and two inversions, a tetrachord of 4, a. pentachord of 5, and so on ; though it may happen, as in

the case of the triad 0, 4, 8, or the tetrachords 0, 2, 6, 8, and 0, 3, 6, 9, that some or all of the inversions

reproduce the original chord.

If we go through the same process for other triads and tetrachords, we get their inversions as follows:

Triads.
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Sound. note added so as to form a dominant seventh, or anticipative sub-dominant, or some other powerful leading p.irt II.

interval, or with either of their component notes, shall decide. This is one mode of conceiving the chord of the -- ~ - ''

minor ninth, which may be either regarded as a chord of the seventh, with the first semitone 1 added, (as in it

first form above,) or as a diminished seventh, 0, 3, 6, 9, with the note 11 added, as in the first inversion, with 8 as

in the second, or with 2 as in the third, either of which makes aflat seventh with one or other of its notes.

The transitions thus produced by means of the tetrachord 0, 3, 6, 9, are peculiarly graceful. It is otherwise 262.

with the equivocal triad 0, 4, 8, which is essentially harsh and unpleasing, (in spite of the perfect harmony Equivocal

which, if we were to leave out the octave and tune its thirds perfect, its members must produce with each other,
cnords -

since it would be in that case an absolute concord.) Whether this chord, or that which we have called the

triple fifth, has ever been, or can be, used in music, we know not, though perhaps, properly handled, it might
become a source of modulation ; which, however, is for practical musicians to consider.

The chord of the sharp sixth 0,2, 6, 8 is also equivocal, arising from a double aliquot division of the octave, 263

and the two last of its inverted forms being therefore merely repetitions of the two first. Like the diminished Relations

seventh, then, it holds the ear in suspense, till the addition of another note decides the course the modulation shall
t^e r'^

take, and the chord so arising is the compound sharp sixth. (Seethe inversions of this latter chord compared with chords and

those of the former.) pentachord!

In like manner the major ninth contains both a ninth and a seventh, though not the other accompaniments of

the seventh. The tetrachord which (for want of another name, we have called the minor added sixth, from its

being a minor concord with a sixth added) is related to this compound ninth in the same way as has just been

pointed out with respect to the chords of the diminished seventh and minor ninth, and to those of the sharp sixth

and compound sharp sixth ; the character of the tetrachord, which is undecided of itself, and admits of more than

one resolution, being determined by the note added in the pentachord so as to form a dominant seventh with some
one or other of its other members.

The chord of the eleventh otters room for a remark analogous to what we have before observed (Art. 262.) 264.

respecting the equivocal triad 0,4, 8. It contains within itself three fifths and a major third; as is obvious if we <
?
llol

j

<J of

take its fifth form 0, 2, 6, 7, 9, and transfer the notes 2, 6, and 9 to the next octave above, when it will become j^j^d
1"1

0, 14, 18, 7, 21, or 0, 7, 14, 18, 21. The notes 0, 7, 14, 21, in this arrangement, make fifths with each other, and

the note 18 forms with 14 a major third ; if, then, the intervals were tuned perfect, their vibrations would succeed

each other in a regular cycle, but if the cycle formed by two perfect thirds, which requires only 25 vibrations

of its highest note, or 16 of its lowest to complete it, is too complex for the ear to relish, the cycle of three perfect

fifths, which requires 27, will already be too complex ; and if we add to this a major third, the ear will lose all

ense of recurrence, and only discord will result.

But to place this in clearer evidence, we need go no further than the chord of the ninth, which, when written 255
thus, 0, 4, 7, 14, manifests a major third, (0, 4,) a fifth, (0, 7,) and a double fifth, (0, 7 + 7,) of the fundamental chords o{

note, and therefore, if tuned perfect, would excite a sense of perfect concord, wtre not the period of recurrence of the ninth

the vibrations too long for the ear to seize ;
and a similar remark applies to the discord of the seventh, which consists an 'I seventh

of a major third, a fifth, and a double fourth, from the fundamental tone (0, 4, 7, 5 + 5.) It may be that the analvsed -

harshness of the triad 0, 4, 8, and of the tetrachord 0, 2, 7, 9, the former consisting, if tuned perfect, of a third

and double third, the latter of a fifth, a double fifth, and a triple fifth, may arise from an imperfect, or obscure,

and therefore unsatisfactory, perception of the cycles of their vibrations by the ear, the former, as before

remarked, occupying 25, and the latter 27, single vibrations of the highest note. But it is time to leave these

speculations.

V. Of the Sonorous Vibrations of Bars, Rods, and Plates

The vibrations of all bodies, if of a proper degree of frequency, and of sufficient force to be communicated
66

through the air, or any other intermedium, to our organs of hearing, produce Sounds whose pitch depends on

their frequency ; and their force and quality on the extent and other mechanical circumstances of the vibrations,

and the nature of the vibrating body. The mathematical investigation of these vibratory motions is altogether

foreign to our purpose. It is a branch, and one of the most intricate and least manageable branches, of

Dynamics, and we shall, therefore, refer our readers for its theory and details to the writings of the various

eminent authors who have discussed it. See Bernoulli!, Com. Petrop. vol. xiii. On the Vibrations of Laminae ;

and Nov. Com. Petrop. vol. xv. : Euler, Com. Petrop. vol. vii., Nov. Com. vol. xvii., and Act. Petrop. vol. iii. Re ferenct,
Sl

On the Vibrations of Plates ; Riccati, Soc. Ital. vol. i. p. 444 ; Lexell, On the Vibrations of Rings, Act. Petrop.
1781 ; Lambert, On the Sounds of Elastic Bodies, N. Act. Helv. vol. i. ; J. Bernoulli!, On the Vibrations of

Rectangular Plates, N. Act. Petrop. 1787
; Biot, On the Vibrations of Surfaces, Mem. Inst. vol. iv.

A solid body may vibrate, either in consequence of its inherent elasticity, by which it tends to return to its own 267
proper figure and state when forcibly deranged, or in consequence of an external tension. To the former sort of Various

vibrations helong those of rods, tuning-forks, plates, rings, bells, gongs, and vessels of all shapes, or generally, ways in

of all solid masses which ring when struck. To the latter, those of vibrating strings and membranes, such as which

the parchment of a drum or tambourin, &c. But, further, a solid may vibrate by its own proper elasticity in
so ' l(is m*T

two very different ways. First, an undulation may be propagated through it, as through an elastic compressible
medium, and, in this case, the waves will consist of alternate strata of condensed and rarefied solid matter,

precisely similar to those of an elastic fluid. If the solid be homogeneous, such as the metals, glass, c., the

<>lasticity being the same in all directions, the waves will be propagated from the centre of disturbance, according
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Sound to exactly the same laws as in a mass of air of the same shape. But if crystallized, this may not be the case, 01

v. ^-~-* the vibrations instead of being in the direction of the propagated wave, may be transverse, or oblique to it, or V

may even not be confined to one plane, but may be performed in circles or ellipses. See Article LIGHT.

.jgg
If a straight rod of glass, or a metal, to be struck at the end in the direction of its length, or rubbed

LongitudV lengthways with a moistened finger, it will yield a musical Sound, which, unless its length be very great, will be

ml vibra- of an extremely acute pitch ; much more so than in the case of a column of air of the same length. The reason
tions of a of this is the greater velocity with which Sound is propagated in solids than in i\ir. Thus the velocity of
straight rod.

propagation in cast-iron being 10J times that in air, a rod of cast-iron so excited will yield for its fundamental

note a Sound identical with that of an organ pipe of - of its length stopped at both ends, or of its length

if open at one end. See III., all the details of which are applicable to the present case. To such vibrations,

how pro-
C'hladni, who first noticed them in long wires, has applied the term longitudinal. (Art. Acad. Erfurt, 1796.) To

duced. produce the harmonics of such a rod or wire he held it lightly at the place of one of its intended nodes between
the finger and thumb, and applied the friction in the middle of one of the vibrating segments. If the rod be of

metal, the friction which he found to succeed, was that of a bit of cloth sprinkled with powdered rosin, if of

glass, the cloth, or the finger, may be moistened and touched with some very fine sand or pumice powder. It

may be observed here, that, generally speaking, a fiddle-bow well rosined is the readiest and most convenient
means of setting solid bodies in vibration. To educe their gravest or fundamental tones, the bow must be

pressed hard and drawn slowly, but for the higher harmonics, a short swift stroke with light pressure is most

proper. In all cases the point intended to be a node must be lightly touched with the finger, and the vibration

must be excited (as above said) in the middle of a ventral segment. Such is the case analysed by Chladni. In

general, however, the vibrations of a cylindrical rod or tube so excited are more complex. See Art. 286, Index,
Art. Longitudinal Vibrations.

2 fig
Hut by far the most usual species of vibration executed by solid bodies is that in which their external form is

Transverse
f rc'b'y changed, and recovered again by their spring. The simplest case is ihut of a rod executing vibrations

vibrationsoi to and fro in a direction transverse to its length. This case has been investigated mathematically by D. Ber-
a rigid rod. nouilli and Euler, as also by Riccati ; (see the list of authors above cited, Art. 266 ;) and their results have been

compared with those of experiment by Chladni, Acovst. sec. 5, and found correct. The cases enumerated by
Chladni are six in number.

Fig. 36. 1. When one end of the rod is firmly fixed in a vice or let into a wall, the other quite free. In this case the
Enumera- curvature assumed by the rod in its vibrations must of necessity have its axis or position of rest for a tangent, as

"'
fi - 36 '

casescases

Fig. 37. 2. One end applied or pressed perpendicularly against an obstacle, the other free. In this case, the excur-

sions of the applied end to and fro are prevented b\ the friction and adhesion to the obstacle, but the axis is not

of necessity a tangent. See fig. 37.

Fig. 38. 3. Both ends free. Fig. 38.

Fig. 39. 4. Both ends applied. Fig. 39

Fig. 40. 5. Both ends fixed. Fig. 40.

Fig 41. 6. One end fixed, the other applied. Fig. 41.

270. All these cases have been examined by Chladni at length. We shall, however, select only the fourth case

Examina- where both ends are applied, because it will afford room for an important remark. In this, then, the several modes
turn of one of vibration corresponding to 1,2, 3, 4, 5 vibrating or ventral segments of the rod will be as in figs. 39, 43, 44.

rigV'sa 43
^* ow tnese are s 'm 'lar to tne curves which would be assumed by a vibrating string under the same circum-

41
"'

stances of subdivision. But the notes produced are very different. For whereas in the case of a string the

vibrations of the successive harmonics are represented by 1, 2, 3, 4, 5, &c. ; in that of a rod they arc represented

by the squares of these numbers 1, 4, 9, 25, &c., which correspond to double the former intervals. In all the other

cases the series is still less simple.

271. This alone suffices to shew the insufficiency of any attempt to establish, as some have wished to do, the whole
Remark on theory of harmony and music on the aliquot subdivision of a vibrating string. Had vibrating rods or steel

ilie origin springs (which yield an exquisite tone) been always used instead of stretched chords, such an idea would never
harmony. nave suggested itself, yet no doubt our notions of harmony would have been what they now are. The same

remark applies still more forcibly to the modes of subdivision of vibrating surfaces, which in many cases have
their harmonics altogether irreducible to any musical scale.

272. A rectangular plate may be regarded as au assemblage of straight rods of equal length, ranged parallel to each

Vibrations other. Supposing such an assemblage all set in vibration similarly and at once, they will retain their parallel
<>f a rectan-

juxtaposition during their vibration, and may, therefore, be supposed to adhere, and form a plate. Consequently,
:

among the possible series of vibrations of a rectangular plate will be found all those of a rigid rod. Accordingly.

simplest
when fixed, (for instance,) by one of its edges in a vice, with its plane parallel to the horizon and strewed over

case. with sand, if it be set in vibration by a fiddle-bow and touched in one of its possible nodes, its subdivisions will

be rendered visible to the eye, by the sand being thrown away from the vibrating 'parts and accumulating on
those at rest. Thus the plate will be crossed transversely by a series of nodal lines marked in sand, and whose
distances from each other and from the ends of the plate may be measured at leisure.

273. But besides these, rectangular plates are susceptible of other modes of subdivision, having two sets of nodal
Other cases, lines, straight or curved, crossing at right angles, or otherwise, and dividing the plate into smaller plates, each

vibrating in its middle, and at rest at its edges, and every two contiguous plates separated by a nodal line

making their simultaneous excursions on contrary sides of their slate of rest.

l!74. To produce these subdivisions, and to render them visible, Uke a rectangular plate (for simplicity we will
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Sound, suppose it a square) of glass, or metal, of an even thickness, not too thick, and holding it firm between the

v' points of the finger and thumb of the left hand, or between two points of a clamp-screw covered with cork or

leather so as not to jar, taking care to keep the pressure confined to as small a space as possible, draw a rosined

bow over the edge, which should be smoothed and a little rounded. If then the point where it is held be the

centre of the plate, and the bow be applied close to one of the angles, sand strewed over it will arrange itself on
the two diameters which divide it into four equal squares as in fig. 44. Each of these, in the act of vibration,

becomes a surface of double curvature, and their motions are conlrary to each other; those marked -f- making
their excursions on one side of the plane of repose, while those marked are on the other. This mode of

vibration corresponds to the gravest tone produced by the plate.

If, the plate being still held in the centre, the bow be applied at the middle of one side, the sand will occupy
the diagonals of the plate, which are the nodal lines corresponding to this mode. In this, as in the former case,

the plate subdivides itself into four equal vibrating segments as in the fig 45, but the tone is different, being a

fifth higher than in the former case, the distribution of the inertia with respect to the elastic power of the plate

being such as to admit a quicker motion.

If the plate be held at a, the intersection of two nodal lines fig. 46, and the bow be still applied at the middle
of one side, or at t!ie angle adjacent to a, the plate will vibrate as there represented. In this subdivision, the four

small squares at the angle and the large one at the centre vibrate on one side, or negatively, while the four in-

termediate oblong rectangles adjacent to the sides vibrate positively.
These instances may serve to show the mode of proceeding in more complicated cases, and with plates cf

other figures. Among these, circular ones hold the chief place both for symmetry and variety. The examples,
fisjs. 47 93, are selected from those described by Chladni, who has determined by experiment the tones

corresponding to each mode of division in plates of a great variety of figures. Of these we shall only give some
examples in the case of a square plate, of which we shall suppose the gravest or fundamental tone to be repre-
sented by 1. This premised, if we regard the plate as subdivided into n X n' rectangles by n nodal lines

parallel to one side, and n' parallel to the other, the notes corresponding will be as in the following Table :

Part II.

Values of n.



PART III.

I. Of the Communication of Vibrations and of the Vibrations of Systems

Sound THE subject of the sonorous vibrations of solids has recently been taken up in a more general and extended Part III.

y_r-^-^ y
point of view by M. Felix Savart, in a series of Memoirs communicated by him to the Royal Academy of Sciences ^-v"--

279. of Paris, and of which copies, or copious extracts, are printed in the Annales de Chimie. We regret that the

Savart's narrow limits which remain to us in this volume, will allow little more than a slight sketch of the contents of the

researches
principal of these most interesting papers, the whole of which are models of experimental research, and indeed,

"", so full of new, curious, and instructive matter, that it is next to impossible either to condense or abstract them; for

which reason we earnestly recommend our readers, who may be led to take an interest in the subject of this Essay,
not to content themselves with the meagre statements here offered, but to procure and study diligently the origi-

nal Memoirs.

280. In order to a regular analysis of this intricate subject, it was first requisite to obtain some certain mode of corn-

Method of municating to any given point of a solid vibrations confined to one plane, and whose period of recurrence, as well

communi- as the plane in which they were performed, and the amplitude of their excursions, could be varied at pleasure. The
caiing a

vibrations of a stretched string set in motion by a fiddle-bow, afford the means of doing this. Such are necessa-

rily confined to the plane in which the motion of the bow is performed, because any vibratory motion out of this

given point plane is prevented, or immediately stifled by the pressure of the bow ; and as the plane of its motion may be

of a solid, varied at pleasure, and the amplitude of excursion may be increased or diminished by a change of pressure, and

velocity of stroke, all the requisite conditions are here obtained. Accordingly, if the vibrating part of such a string

be brought to press on a solid not too massive, or if the end of the string be attached to a point in the solid,

M. Savart has found that the regularly repeated impulses of the string are transferred to the solid with perfect

fidelity.

281. A familiar example of this communication of impulses is found in the violin. In that instrument, fig. 124, the

Vibrations
strings which are stretched from end to end of it, are divided into two uneqal parts by the bridge, A, on which

of a violin tnev ajj press strongly, and at the same time rest in small notches, so as not to slip laterally on it. The portion,

B, of the string which lies towards the handle, C, of the instrument, is free, and is set in vibration by the bow in its

cated to the own plane ; but that on the other side of the bridge, D, is loaded with a mass of horn or whalebone, E, to which all

wood. the other strings are also attached, and which, being only tied to the wood-work, cannot propagate the vibrations

Fig. 124. of any one string sounding separately, by reason of the contradictory and unequal tensions of the other three.

Thus the bridge is in fact acted on only by the vibrations of that part, A B C, of the string which is crossed by the

bow, as if it terminated abruptly at its point of pressure, A. These vibrations constantly lend, therefore, to tilt the

bridge laterally backwards and forwards, and to press up and down alternately the two little prominences or feet,

F G, by which it rests on the belly of the violin. It, therefore, sets the wood of the upper face in a state of regular

vibration, and this again is communicated to the back through a peg set up in the inside of the fiddle, and

^'

hral ' s

d through its sides, called the soul of the fiddle, or its sounding post. In consequence, if the upper surface be

how ob-
'

strewed with sand, it will assume a regular arrangement in nodal lines when the bow is drawn ; and the same sub-

served, division is also observed in the wood of the under surface, if the sounding-post be exactly placed in the centre of

p.
, symmetry of the nodal figures. The experiment can hardly be made, however, with a common fiddle, by reason

to vibrate

*
of the convexity of its surface, on which sand will not rest; but if one be constructed with plane boards, or if,

by commu- abandoning the fiddle, a string be stretched on a strong frame over a bridge, which is made to rest on the centre

mcationwith of a regularly formed plate or disc of metal or wood, strewed with sand, the surface thus set in vibration by the

strings.
string will be seen to divide itself by regular nodal figures.

282. Now M. Savart has observed this remarkable fact, viz. that if the tension or length of the string thus placed in

Joint vibra-
vibratory communication with a plate, be changed, so as to vary the note it speaks, the nodal figures on the plate

lions of a
undergo a corresponding variation, and the plate still vibrates in unison with the string ; or, which is the same

thing, the two, together with the interposed bridge, form a vibrating system, in which, though the vibrations of

y"tem?

S '

the several parts are necessarily very different in their nature and extent, yet they have all the same periods. This

experiment is very important. It shows that the Sounds of such thin plates are not like those of strings confined to

certain fixed harmonics, but, according to the forms oftheir nodal lines, and the proportions of the vibrating areas in

opposite states of excursion, may assume any assigned period ; in other words, given the vibrating plate and the

pitch, a nodal figure may be described on it, which shall correspond to that pitch, and the plate (with more or

less readiness, however) is always susceptible of such a vibration as shall yield that note, and produce that nodal

figure. How far this proposition is general, and with what limitations it is to be understood, we shall soon see.

Meanwhile this remark, it will be observed, furnishes a complete explanation of the effect of sounding-boards in

musical instruments. It is not, as some have supposed, that there ex-ist in them fibres in every state of tension,

some of which are therefore ready to vibrate in unision with any proposed Sound, and, therefore, reinforce it. Such

a cause could at best produce but a very feeble effect. It is the whole, board which vibrates as part of a svstem

804
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So md. with every note, and (as vibrations may be superposed to any extent) the same sounding-board may at once form Parj "'

-^v""^ a part of any number of systems, and vibrate in unison with every note of a chord. Still some modes will always
v ~v~-'

be more difficult than others, and no sounding-board will be perfectly indifferent to all Sounds.
The longitudinal vibrations of a rod of glass, excited by rubbing it with a wet cloth, may also be used to excite 283.

vibrations in a given point of a solid perpendicular to its surface, by applying its end to it, or cementing it to the Longitudinal

nolid by mastic. In this way Chladni applied it to draw forth the Sounds of glass vessels, (which when hemi-
^
lhr tlons u(

spherical, and of sufficient size and even thickness, are remarkably rich and melodious,) in an instrument which he
n] y e() to

called the Euphone, exhibited by him in Paris and Brussels. The principle of'this instrument was at the time con- communi-
cealed ; hut the enigma was subsequently solved hy M.Blanc, who on his part independently made the same remark, ca'e vibra-

and applied it to a similar purpose.
tio" s to

If the solid (a circular glass disc for instance) to which such a vibrating rod or tube is fastened, be of small
chiadni's

comparative dimensions, its vibrations are commanded by those of the rod, and the Sound yielded will be that of Euphont.
the rod alone; and vice versa, if the disc be large, and the rod small, the note sounded will be that of the disc, 284.
which will entirely command the rod ; but in the intermediate cases, both M. Savart and M. Blanc have observed, Mutual in-

the note will be neither that of the disc or the rod separately, but the two will vibrate together as a system, each fl uer)ce of

yielding somewhat to the other. It is a case exactly analogous to that of a reed-pipe, in which the reed and j!
1"

column of air mutually influence each other's note. See Art. 199. This mutual influence of propagated motion, rod con .

by which two periodically recurring impulses affect each other's period, and force themselves into synchronism, nected wit

extends to cases where at first sight it would hardly be suspected. Thus Ellicot observed that two clocks fastened ''

to the same board, or even standing on the same stone pavement, beat constantly together, though when sepa- ^'7
rated their rates were found to differ very considerably ; and Breguet has since made the same remark on

p iaceii near
watches. Thus also two organ-pipes vibrating side by side, if very nearly in unisor, will under certain circum- together.

stances force themselves into exact concord, as has been observed by Hudlestone, (Nicholson's Journal, i. 329.) Of organ-

and lately recalled to notice by some experiments made in Copenhagen. The experiment with the. disked tuning- P'Pes nearl
.

fork and pipe, related in Art. 204., may here again be referred to.

The longitudinal vibrations of a rod have also been used by M. Savart, to communicate vibrations from one 285.
solid to another ; as for instance, from the upper to the under of two circular discs cemented at their centres to Fig. 125.

the two ends of the rod, at right angles to their planes, as at fig. 125. If the two discs be of the same dimen- Vibrations

sions and materials so as to yield, when separately vibrating, the same note, the vibrations of one of them, (the
''om "1"" 1

upper for instance,) excited by a bow, will be exactly imitated by the other, and sand strewed over both will t^gen t̂ (l

arrange itself in precisely the same forms in both discs, and that, into whatever number of vibrating segments that platas by a

immediately excited be made to subdivide itself. But if the discs separately do not agree in their tones, the rod.

system may yield a tone intermediate, and each being differently forced from its natural pitch, the nodal figures on
them will then no longer correspond.
The st-ite of vibration in which the molecules of the connecting rod are thrown in such cases, deserves a nearer 286

examination. For simplicity let us suppose the discs equal, the rod cylindrical, and the vibration of the system State of

such that each disc shall subdivide itself into four quadrantal segments. In this case it is clear that as the form vibration of

assumed at any instant hy the upper disc is undulated or wrinkled, as represented in fig. 12*5, the section of the fhe
connect,

rod in immediate contact with it, and which obeys all its motions, must assume a similar form, and so of all the J^ n j

rest. Thus if we conceive the rod split into infinitesimal columns, parallel to its axis, all the columns in two oppo- f\, j2g.
site quadrants will be ascending, while those in the other two are descending ; and thus the two corresponding
opposite quadrants of the lower plate will be drawn upwards, while the alternate ones are forced downwards,
giving a similar distortion to its figure, and disposing it to a similar vibration only. It will depend on the length
of the rod, and the time taken by an undulation to run over its length, compared with that of a vibration of either

disc, whether the phases of vibration in the two discs shall be the same at the same instant or not. It may
happen that, for instance, the quadrant, D B, of the upper disc shall have completed its downward motion, and

begun to return before .he pulsation propagated through the rod has arrived at the lower disc ; and in that case
the corresponding quadrants of the two discs will be always in opposite phases of their periodic motion. But the

nodal lines will of necessity correspond in both.

When the two discs are unequal, the propagation of the pulses through the rod must of course cease to be 267.

uniform, and each section of it down its whole length will have its own peculiar law of form and motion, which Case where

it is beyond our power to investigate. In that case its molecules must have lateral as well as vertical motions,
th

and its vibrations must be partly longitudinal and partly twisting, in a way easier imagined than described. If
ar

the discs be dissimilar in form as well as unequal in dimension, the vibrations of the connecting rod will of course
be very complicated.

These principles have been applied by M. Savart, and apparently with success, (as appears by the very able 288.

report of M. Biot on his Paper,) to the improvement of violins, and the construction of these delicate instruments M. Savarfs

on scientific and experimental grounds. Every one is aware of the difficulty of procuring perfect violins, and vlolln *-

the enormous prices they bear, so that fixed rules, by which any ordinary artist can with certainty produce an
excellent one, are evidently highly valuable. We long to see M. Savart's construction tried in this country, but
must refer to his Paper (Annales de Chimie, vol. xii. p. 225, &c.) for the details.

It appears from what we have said, that the motions of the molecules of a rod which communicates the vibrations 289.

of one disc to another, or, more generally, which vibrates longitudinally by any exciting cause, are not of necessity Longjtadi

analogous to those ofthe air in a cylindrical pipe, at least not to that simple case of the latter vibrations,which we have
"jonj' f

a~

heretofore considered in our 3d Section. The several transverse sections of such a rod, in the act of vibration, do rod further

not necessarily merely advance and recede longitudinally, but may become curves of double curvature ; in short, examined.

such a rod may be considered as an assemblage of vibrating discs, ranged along a common axis, along which
5 M 2
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Sound, they may, it is true, be also carried backwards and forwards'with a vibratory motion, while at the same time

s^ > their flexure is changing from convex to concave, and vice versa. Now it may happen that a point, or a line,
'

(straight or curved,) in any one of such discs, may be advancing in the direction of the axis in consequence of the

bodily motion of the whole disc, while, in virtue of its flexure in the act of changing its figure, it may be

receding ; and this advance and recess may so balance each other, that the point or line shall be at rest. If

this be true at one instant, it will be so at all instants, because the vibrations have all one period, and follow the

same law of increase and decrease in their phases. Thus we have a nodal point, or a nodal line ; and as each

disc, by reason of the law of continuity, must have a similar one, the assemblage of such lines will mark out

within the rod a nodal surface, dividing it into separate solids whose molecules on either side of such surface are

in opposite phases of their motion.

What is here said of rods, applies of course to solids of any figure and dimension, neither is there the slightest
reason why it should not apply to vibrating masses of air, or any other elastic fluid. Any such mass may be

conceived as cut up into two or more oppositely vibrating portions pervading it according to certain laws.

Where these surfaces out-crop or intersect the external surface of the mass, there will be a nodal Ihie.

Such nodal lines, formed on the surfaces of bodies by the longitudinal vibrations of their molecules, (i. e. by
vibrations parallel to their surfaces,) may be detected and rendered visible to the eye by fine dry sand, or the

powder of Lycoperdon, strewed over them ; and the motions of the particles in the act of forming them will easily

distinguish such vibrations as are executed parallel to the surface (in which, of course, the surface is not thrown

into waves) from such as take place at right angles to it, where the surface itself leaps up and down. In the

latter case, the particles of sand dance, and are violently thrown up and down over the whole extent of the

vibrating portions, till, at length, they are entirely dispersed from them. In the former, they only glide along
close to the surface, and meet and settle on the nodal lines, and that, sometimes, with incredible swiftness.

The reason why they retreat to the nodal lines is easily understood. The amplitude of the excursions of the

vibrating molecules of the surface diminishes as we approach a nodal line. Hence a particle of sand anywhere
situated, if thrown by an advancing vibration towards this line, will not be thrown quite so far back by the sub-

sequent retreating vibration, because its then situation is one less agitated. Thus the motion of each particle of

sand is one of alternate advance towards the node and recess from it, but the advances are always greater
than the recesses. In consequence, it creeps along the surface, and will not rest till it has attained the node.

When a large disc of glass is set vibrating vigorously by a bow, perpendicular to its plane, the grains of sand

will fly up some inches from it and be scattered in all directions. M. Savart has distinguished by the name

tangential vibrations all such motions of the superficial particles of a body as are performed parallel to the sur-

face ; while those executed at right angles to it, in virtue of which the surface itself heaves and sinks, he calls

transverse. ; and to motions compounded of both these, where the surface both swells and falls and shifts laterally

backwards and forwards, he gives the term "
oblique vibrations.'' In this we shall follow him.

This acute experimenter has investigated with great minuteness the tangential vibrations of long flat rods or

rulers of glass, as well as of cylinders and tubes. They are extremely complicated, and offer most singular

na!-tangen- phenomena, some of which we shall now describe. If we take a rectangular lamina of glass 0'"'70 (= 27m-56)
tial vibra-

long, Om '015 (= O in
-59) broad, and 0'

n'0015 (= O in
-06) thick, and holding it by the edges in the middle, between

the finger and thumb with its flat face horizontal, strewed with sand, and, at the same time, set it in longitudinal

vibration, either by rubbing its under side near either end with a bit of wet cloth, by tapping it on the end with

light blows, or by rubbing lengthwise a very small cylinder of glass, cemented on to its end in the middle of its

breadth, and parallel to its length ; in whatever way the vibration be communicated, we shall see the sand on

its upper surface arrange itself in parallel lines, at risrht angles to its longer dimension, and always, in one or the

other of the two systems, represented in figs. 127 and 128. Now it is very remurkable that although the same

one of these two systems will always be produced by the same plate of glass, yet among different pJatcs of the

aboTe dimensions, even though cut from the same, sheet, side by side, one will invariably exhibit one system, and

the other the other, without any visible reason for the difference. Moreover, in the system, fig. 127, the disposi-

tion of ihe nodal lines is unsymmetrical, one of them, a, being nearer to one end, and the closer pair, ff, not being
situated in the middle ; and this too is peculiar to the plate, for wherever it be rubbed, whichever end be struck,

still the line a will always be formed nearest to the same extremity.
Now let the positions of the nodal lines be marked on the upper surface, and then let the plate be turned till

the lower surface becomes the upper, and this being sanded, let the vibrations! again be excited just as before. The
nodal lines will now be formed quite differently, and will fall on the points just intermediate between those of

the other surface ; i. t. on the points of greatest excursion of its vibrating molecules. In a word, if n, n, n, n, &c.

the opposite
in fig. 128, or 130, represent the places of the nodes on the one surface, then will n', n', &c. be those of the

tides. other. Thus all the motions of one half the. thickness of the lamina are exactly contrary to those of the corre-

Kigs. 1129, spending points of the other half. This property, indeed, is general, whatever be the material, length, breadth, or

thickness, of the lamina.

If, the other dimensions remaining, the thickness be increased, the Sound will remain the same, but the numb'r

of nodal lines will be less. This fact alone is sufficient to prove an essential difference between the vibrating por-
tions of such a plate, and the ventral segments of an organ-pipe harmonically subdivided.

If the breadth of a plate ofthe above length be greater than O in '6 the nodal lines cease to be straight, and ranged
across the breadth at right angles to the sides. They pass into curves, and, when the breadth is increased to

Om '04, (= 1'"'57,) they assume the forms in figs. 131, 132, the former representing the lines on the upper, the

latter those on the under surface. If the breadth be enlarged to Om '06, (= 2ln
'36,) the figures on the two facws

will be as in figs. 133, 134. If the dimensions be so varied as to convert the plate into a square, the nodal

figures will assume the forms in figs 135, 136. If the form of the plate pass into the circular or riangular, the
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Sound. same mode of vibration (longitudinal-tangential) being preserved, still the opposite sides of the plates will pre- Part HI.

-^v~-/
gent different nodal figures, as in figs. 137, 138, and 139, 140. -

~y~~^
To examine the longitudinal-tangential vibrations of cylindrical tubes or rods, as sand will not lie on their con- O

vex surfaces, M. Savar*. employed the ingenious artifice used by Sauveur to exhibit the harmonic nodes ofa vibrating p"^^
string. For this purpose the latter set astride on the string a small bit of paper cut into the form of an 140

inverted A. But in this case it is found *o answer better to encircle the vibrating cylinder with a narrow ring of paper, 296.
whose internal diameter is three or four times that of the cylinder, and which, therefore, hangs quite loosely on it. Longitudi-

Jf a cylinder of glass about two metres (6J feet) long be encircled by several such rings, or riders, and, being held nal-tangen-

horizontally by the middle, as lightly as possible, be rubbed in the direction of its length with a wet cloth, (it '!
a

should be very wet,) it will yield a musical Sound, and all the riders will glide rapidly along it to their nearest nodal
cy ii n()cr^

points on the upper surface, where they will rest. Now let all these points be marked, and then let the cylinder be

turned so as to bring the opposite portion of its circumference uppermost and horizontal, and let the vibration be

again excited in the same manner. Then we shall remark the very same phenomenon as in rectangular plates,
viz. that the nodal points on this edge correspond nearly to the middles of the intervals between those of the

opposite one.

If the cylinder, instead of being turned at once half round, be turned only a little at a time, and a.ways in the 297.
same direction, the riders will come to points of rest constantly more and more towards one or the other end of Nodal Imei

the cylinder, according as it is turned to the right or to the left; and if the locus of all the nodal points be traced spirally

by this means, it will be found to be a species of spiral line or screw, making one or more turns round the cylinder "ranged,

according to its length.
But there exist? here a peculiarly bearing an obvious relation to what we have observed already in the case of ggg

rectangular plates. The continuity of this spiral is interrupted near the middle of the cylinder, or rather it stops TWO spiral
short at a point n, on one side of the central point, and recommences at N, a point equidistant on the other side j nodal lines

but in a contrary direction, so as to form on the two moieties of the length of the cylinder a right and a left- running

handed screw. Again, these spirnls are not equally inclined to the axis in all parts of their course. They consist PP slte

of portions alternately much and little inclined, having points of maximum and minimum inclination alternately

atevery 90 of their course round the cylinder, as in fig. 141 ; thus dividing the cylinder into four quadrantal Fig. 141.

portions, which are related to each other in the same manner as the upper and under faces, and the right and left

sides of the vibrating parallelepipeds, examined in Arts. 292. et seq.

It appears then that when a cylinder is set in a state of longitudinal-tangential vibration, it assumes of itself 299.

(by reason no doubt of some casual inequality in its form or structure, giving it a bias one way or the other) four Fourprin-

pnncipal edges, dividing it into quadrantal portions. Of these, two opposite ones (which we will designate by ^*^ ^*

s

the numbers 1 and 3, and call the upper and under edge) are divided by the nodal lines in points rc, n t N, N',, ; Cyrn^ e ,

and 7i
3
n'

t N, N',, where their inclination is a maximum, and the others 2, 4, which we may call the sides,

at n, n'
s N, N',, and n

t
n'

t
N

4
N'

t , where it is a minimum.
What we have said relates to the disposition of the nodal lines on the exterior surface of a tube, or of a solid %QQ

cylinder. In the case of a hollow tube, the nodal lines of the internal surface may be examined by strewing in it Nodal lines

a little fine sand, provided its diameter be so large as not to drive all the sand into a crowded line along the in the in-

bottom. We shall thus detect a spiral in all respects similar to that on the external surface ; only that its coils 'rior of a

run exactly along the intervals of those of the external one. So that in all cases, those points of the internal sur-
cy' llulr 'cal

face are most strongly agitated bj the vibration which correspond to points at rest on the outer, and vice versa.

M. Savart has noticed a very curius phenomenon in this case. At the points of maximum inclination the sand

gathers itself up in a circular heap, and remains at perfect rest; but at those of minimum inclination it forms a

long ellipse, the borders of which keep constantly circulating in one direction; and if instead of sand, a small globe
of ivory or wax be put into the tube ; at these points it remains, it is true, without shifting \isplace, but spins con-

stantly in one direction round a vertical axis, so long as the vibration continues.

We have all along supposed that the state of vibration into which the cylinder or tube is thrown, is that corre- 30i_
sponding to the gravest tone it can yield by vibrations of the kind in question. M. Savart has examined its higher Higher
modes, and has pointed out other peculiarities, but for these we must refer the reader to his Memoir, Ann. de modes of

Chim. vol. xxv. p 236. We will merely remark that in these modes, the threads of the screw break off, and re- vlbra''n

verse their direction at the points of union of the several ventral segments. vision of the

cylinder
into ventral

segments.
II. Of the Cummunication of Vibrationsfrom one Vibrating Body to another.

We have already seen that a rod placed between two discs, one of which is set in vibration, becomes the means 302.
of communicating its vibrations to the other. But it may be announced as a general fact, that whenever a vibrating

General law

body is brought into intimate contact with another, it communicates to it its own vibrations, more or less
of the c<

?
m "

effectually as their union is more perfect. Tins proposition has been carried still further by M. Savart, whose ex- oMbT'
"

periments show that all the particles of the body thus set in vibration by communication are agitated by motions motion"''
not merely similar in their periods, but actually parallel in their directions, to those of the original source of the 303.
motion. Examples will best explain the meaning of this. Fij. 142.

Example 1. Let A, fig 142, be along flat glass ruler or rod, cemented with mastic to the edge of a large bell-
vibrali n'

glass, such as is used for the harmonica, or musical glasses, or a large hemispherical drinking-glass, perpendi-
ofaflat

T
"1

cular t( Us circumference. Let it be very lightly supported in a horizontal position on a bit of cork at C, and cateTfrom
then lev the boll-glass be set in vibration by a bow, at a point opposite the place where the rod meets it. It will bell -glut.
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vibrate transversely, i. e. the motions of its molecules will he perpendicular to its surface; and these motions will

he communicated to the rod, without any change in their direction, whose vibrations will be longitudinal-tan-

gential, as will he rendered evident by strewing its surface with sand, when the nodal lines will be formed as

in Art 292, and, if the apparatus be inverted, and the sand strewed ou the under side of the rod, the nodal lines

will be seen to correspond to the points of greatest excursion on the other side, as in that article.

In this combination the original tone of the bell-glass is altered, and the note produced differs both from that

yielded by it, or by the glass rod vibrating alone. The two vibrate as a system together and, what is singular,

the Sound of the glass is considerably reinforced by the combination.

Example 2. Let A' be a rectangular strip of glass firmly cemented at right angles to another strip, A, across

its breadth. Let the latter be lightly supported on two bits of cork, C, fastened to a wooden piece, B, so as just

to touch A in the places of two of its nodes when vibrating transversely. Then, if A be placed horizontally, and

strewed with sand, and A' be set in longitudinal-tangential vibration, either by nibbing with a wet cloth, or by

any other means, A will vibrate transversely, as will be known by the dancing of the sand and its settling on the

nodes C C'. On the other hand, if A be held vertically, and agitated transversely by a bow, while A' is hori-

zontal and strewed with sand, the latter will indicate longitudinal-tangential vibrations, both by the creeping of

the sand, and by the difference of the nodal figures on its two faces.

Example 3. Let M be a rectangular plate (fig. 144) mounted like A in the last example, but instead of

carrying a simple plate A', let it carry a system of circular discs traversed by a lamina, as in the figure. Then,
if the faces of these discs and of the lamina M be horizontally placed and strewed with sand, and the lamina M
be set in longitudinal-tangential vibration, all the discs will be so too, and the sand will arrange itself in figures

which, on every alternate disc, 1, 3, b, &c. will be of one species, (such as at a for instance,) but on every other,

2, 4, 6, &c. will be of a different species, as b. Now if the whole apparatus be inverted, so as to place the lamina

M uppermost, and let the system of discs hang down, the then upper surfaces of the discs wifl exhibit the same

system of nodal figures, but in the reverse order : . e. the discs 1, 3, 5, &c. will give the figure b, and 2, 4, 6, &c.

the figure a. In this apparatus, if the connecting piece which traverses all the discs be examined, it will be

found to vibrate transversely, while the discs and lamina M vibrate tangentially, and vice versa.

Example 4. Let A be a strong frame of wood of the form [, across the extreme edges of which is stretched a

strong catgut or other chord, and let L L' be a circular disc of glass, or metal, retained between the chord and

back of the frame by the pressure of the former. Then, if the chord be set, in vibration by a bow drawn trans-

versely across it in one steady direction, the Vibrations of the chord will all lie in the plane of the bow, and will

be communicated in the same direction to the disc, which will execute tangential vibrations, each of its molecules

moving to and fro in lines parallel to the bow through the whole extent of the disc. This is easily verified by the

direction in which sand strewed on it creeps. Conceive the whole apparatus placed with the chord vertical, and

projected on the plane of the horizon. If, as in fig. 145, a, F F' be the projection of the bow, the surface of the

disc will be marked with nodal lines parallel to it, the sand there being left, while that in the intermediate spaces

creeps along
1 to the edffes, as marked by the arrows, and runs off. If the projection of the bow FF' be oblique to

the line joining the points of support of the disc, as in fig. 145, c, the nodal line will be curved, as there shown, but

the motion of the molecules of sand going to form it will still be parallel to FF*. Finally, if the bow be drawn

parallel to the line joining the points of support, as in fig. 145, d, the nodal line will be formed of two arcs making
a cusp, but the same law of molecular motion will still hold good, as the arrows indicate.

Example 5. Let LL' be a rectangular lamina fastened at one end into a block, T, and at the other attached to

a chord, c e, stretched parallel to its length, over a bridge, e, and put in vibration by a bow perpendicular to it,

FF'. Then, if the plane of the bow and string coincide with the plane of the surface of the lamina, the latter

will execute tangential vibrations across its breadth, and will exhibit on its upper surface a single nodal line,

n n' nfl
, as in fig. 147, but on its under none, all the sand being driven off'. Now incline the bow to the surface

of the lamina as represented in fig. 146, c, at an angle of about 20, still keeping it perpendicular to the string, and

the nodal line will assume the curvature represented in fig. 148. If the bow be still more inclined, the curve breaks

up, and at 45 of inclination becomes changed into transverse and oblique lines, as in fig. 149 ; and it. is now

observed that the sand not only runs in the direction of the arrows, but also begins to leap, indicating an oblique
vibration of the surface. Lastly, when the bow is inclined 90 to the plane of the lamina, as in fig. IbO, the

vibration becomes altogether transverse, the nodal lines are similarly disposed on both sides of the plate, and the

sand merely leaps up and down till it is danced off the vibrating parts, without any tendency to creep.

Example 6. If a very
' hin membrane be stretched horizontally over the orifice of a circular bowl, as a drinking-

cup. or harmonica-glass, (extremely thin paper wetted and glued to the edges, and then suffered to become

tight by drying, answers very well,) and if fine sand be strewed on it, it becomes a most delicate detector of

aerial vibrations. Suppose now a circular disc of glass held concentrically over it with its plane parallel to that

of the membrane, and set in transverse vibration so as to form any of Chladni's acoustic figures, as for instance

fig. (99). Then will this figure he imitated exactly by the sand on the membrane. Now let the vibrating disc

be shifted laterally, so as no longer ID have its centre vertically over that of the membrane, but keeping its

plane, as well as that of the membrane, horizontal. Still the figures marked out on the latter will be fac-similes of

those on the disc, and that, whatever be the extent of lateral removal, till the vibrations become too much
enfeebled by distance to have any effect at all.

But, in place of shifting the disc laterally, let its plane be inclined to the horizon. Immediately the figures
on the membrane will change though the vibrations of the disc remain unaltered, und the cliange will be the

greater, the greater be the inclination of the plane of the disc to that of the membrane. And when th..-

former plane is perpendicular to the horizon, the nodal figure on the membrane is found to be transformed

into a system of straight lines parallel to the common intersection of the two planes, and the particles of sand

Part HI.
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Sound, instead of dancing, creep in opposite directions to meet in these lines. One of these always passes through the Part III.

^v~* centre, and the whole system is analogous to what would be produced by attaching a cord to the centre of a v^~v~"'
disc, and, having stretched it very obliquely, setting it in vibration by a bow drawn parallel to the surface. In a

word, the vibrations of the membrane are now tangential, and they preserve this character unchanged, however
the disc be now shifted laterally, provided its plane be not turned from the vertical position. If the disc be
made to revolve about its vertical diameter, the nodal lines on the membrane will rotate, following exactly the
motion of the disc.

Nothing can be more decisive or instructive than this experiment. We here see evidently, that the motions of 311
the aerial molecules in every part of a spherical wave, propagated from a vibrating body as a centre, instead Nature of

of diverging like radii in all directions so as to be always perpendicular to the surface of the wave, the aerial

are all parallel to each other; in a word, they are disposed, not as in fig. 8, but as in fig. 7 ;
and thus the.

motions in

hypothesis of Art. 113. is found to he completely verified. Arid the same thing holds good not only in air, but
a *our"i '

in liquids, as the experiments hereafter to be related (due, like all those just cited, to M. Savart) satisfactorily

"'

demonstrate.

This experiment is also remarkable in several other points of view. So long as the Sound of the disc, and its 312
mode of vibration, as well as its inclination to the plane of the membrane, and the tension of the latter, continue Data on

unchanged, the nodal figure on the membrane will continue the same ; but if either of these be varied, the mem- which die

brane will not cease to vibrate, but the figure will be modified accordingly. Let us consider separately the effect
VIDratlons

ofeach of these changes. brate^"
And first, cecteris immvtatis, let the pitch of the Sound whose vibrations, communicated through the air to the

pe-nd.

membrane, excite its motions, be altered, as by loading the disc, or increasing or diminishing its size, (or, if the 313.
Sound be excited by any other cause, as a pipe, the voice, &c., then by varying its pitch by any appropriate First, the

means.) The membrane will still vibiate, differing in this respect from a rigid lamina, which will only vibrate Pitcn of the

by sympathy wiih Sounds corresponding to its own subdivisions. The membrane, he it observed, will vibrate in
Sounc''

sympathy with any Sound, but every particular Sound will mark out on it its own particular nodal figure, and as
the pitch varies the figure varies. Thus if a slow air be played on a flute near it, each note will call up a parti-
cular form, which the next will efface, to establish its own.

Secondly. Suppose the exciting cause be the vibration of a disc, or lamina of any form. I? its mode of vibru- 314
tion be varied so as to change its nodal figures, those on the membrane will vary ; and if the same note be pro- Secondly,
duced by different sabdivisions of different sized discs, the nodal figures on the membrane will be different. the nature

Again, if the tension of the membrane be varied ever so little, most material changes will take place in the
a" ll

.

moc'e

figures it exhibits. If paper be the substance employed, mere hygrometric changes affect it to such a degree, f thVexci"-
that if moistened by breathing on it, and allowed to dry while the exciting Sound is continued, the nodal forms

ing cause,

will be in a constant state of fluctuation, and will not acquire permanence till the paper is so far dried as the state 315.
of the surrounding atmosphere will permit. Indeed, this fluctuation is so troublesome in experiments of this Thirdly,

kind, that to avoid them it is necessary to coat the upper or exposed side of the paper with a thin film of varnish. tne tens'on

Of all substances which can be employed for the exhibition of these beautiful experiments, M. Savart observes, f^*
mem "

by far the best is such a varnished paper stretched on a frame and moistened on the under side. The moisture Effect of
diminishes the cohesion of the fibres, and renders them nearly independent of each other, and indifferent to all hygrome-

impulses. As a proof of this, he observes, that he has frequently obtained, on a circular membrane of paper so tric changes

prepared, a nodal figure composed of no fewer than twenty concentric annul!, which is far beyond what can be
on PaPer

obtained in any other way.
membranes.

In some cases, a very curious and instructive phenomenon is obseived in these experiments. Between the 3jg
nodal lines formed by the coarser and middle-sized grains of sand, others will be occasionally observed, formed

Secondary
only of the very finest dust, of microscopic dimensions. This phenomenon will be seen to greater advantage if a nodal

little dust of Lycoperdon be mixed with the sand. These intermediate lines M. Savart explains, by referring
figure s.

them to different and higher modes of subdivision, coexisting with that by which the principal figure is formed.
The more minute particles are proportionally more resisted by the air than the coarser ones, and are thus pre-
vented from making those great leaps which throw the coarser ones into their nodal arrangement. They, there-

fore, rise and fall with the surface, to which the/ are as it were pinned down. But they are affected by the
minuter waves which have a smaller amplitude of excursion, and occur more frequently, and form their figures
under the influence of these us ifihe greater ones did not exist. These secondary figures often appear as concentric

rings between the primary ones, and not (infrequently the centre of the whole system is occupied by a secondary point.

Figures 151161 are specimens of the nodal figures thus formed on circular membranes. Of these, fig. 161
3^17

shows the modification which is apt to take place when the tension of the membrane is not quite equable. Figs. f,g 151_
162, 163, are figures exhibited by square membranes, and fig. 164 166 by triangular ones. 166.

A very important application of these properties of stretched membranes has been made by M. Savart, by 3 jg
employing surh a one as an instrument for detecting the existence and exploring the extent and limits of conti- Stretched

guous and oppositely vibrating portions of masses of air. For, since such a membrane is thrown into vibration membranes

by all aerial vibrations of a certain force, the fact of the existence or not of a vibratory motion in any point of the employed-

air, of a chamber for instance, or a box, or large organ-pipe, maybe ascertained by observing whether said strewed
to delcct

on it is set in motion, and arranged i'i regular forms, on holding the membrane at that point. Thus ifan organ-pipe t'ibratJons
be made to sound with a constant force, and the exploring membrane be so far removed from it that the mem
brane shall just cease to be agitated visibly, the force of the Sound being increased by a quantity not sensible to

the ear, the sand will recommence its motion. Nay, if two such pipes, placed close together, be made to beat,

(sec Index, Beats,) the membrane will be seen to be agitated at the coincidences, and at rest in the interferences
*f their vibrations. We shall presently return to this part of our subject.
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Anotner highly interesting application of the same properties, is tne view which M. Savart has taken of the Part III.

use of the
" membrana tympani" in the ear. Of all our organs, perhaps, the ear is one of the least understood. v-~v"~-

It is not with it as with the eye, where the known properties of light afford a complete elucidation of the whole

mechanism of vision, and the use of every part of the visual apparatus. In the ear every thing is on the

contrary obscure ; anatomists, it is true, have scrupulously examined its construction, and many theories have

been advanced of the mode in which Sounds are conveyed by it to the auditory nerve, (where of course, as

with the optic nerve in the eye, all inquiry terminates, for to trace the progress of sensation along the nerve to the

brain, and thence to the sentient soul, it is needless to remark, is altogether beyond our reach.) But nothing

certain can be said to be known, though it is to M. Savart that we owe the most rational hypotheses
hitherto proposed.

Fig. 167 represents the auditory apparatus. It consists externally of a wide, conch-shaped opening, K L,
which contracts into a narrow pipe, A B, defended from the entry of dust and insects by hairs, and a

viscous exudation which is slowly secreted, and terminated liy a thin elastic membrane, called the Tympanum,
F, or drum of the ear. Behind this there is a cavity which communicates with the mouth by a small duct called

the Eustachian tube, H G I. If this be stopped, deafness is said to ensue, but, as Dr. Wollaston has shown, only
to Sounds within certain limits of pitch. In the cavity behind the tympanum is placed a mysterious and com-

plicated apparatus, B C P S, represented complete, and on an enlarged scale, in fig.IGS, consisting of four little bones,

of which the first, S C, is called the hammer, and rests with its smaller end in contact with the tympanum, and its

larger on the second bone, B P, called the anvil, between which, and the last, V, called the stirrup, a little round

bone, P, forms a communication. These bones form a kind of chain, and no doubt vibrations excited in the tympa-
num by vibrating air, as in the experiments above detailed, are somehow or other propagated forward through these;

but they are so fur from being essential to hearing, that when the tympanum is destroyed, and the chain in con-

sequence hangs loose, deafness does not follow. The last of this chain of bones, however, is attached to another

membrane, p, which closes the orifice of a very extraordinary system of canals, excavated in the bony substance of

the skull, called the Labyrinth, represented separately in fig. 169, which consists of three semicircular

arcs, (1, 2, 3,) originating and terminating in a common canal, which is prolonged into a spiral cavity (4) called

the cochlea. The whole cavity of the labyrinth is rilled with a liquid, in which are immersed the branches of the

auditory nerve, in which, no doubt, resides the immediate seat of the first impression ofSound, as that of sight does

in the retina. If the membrane which closes the labyrinth be pierced, and this liquid let out, complete and irreme-

diable deafness ensues. It appears from some most extraordinary experiments by M. Flourens on the ears of

birds, (of which, however, the details are too revolting to find a place in any but works on anatomy and

physiology,) that the nerves enclosed in the several canals of the labyrinth, have other uses besides their

services as organs of hearing, and serve, in some unaccountable and mysterious manner, to give to animals

their faculty of balancing themselves on their feet, and directing their motions. On this point we refer the

reader to M. Cuvier's report on M. Flourens's Memoir, Annales de C/iimie, vol. xxxix. p. 104, and of course to

the Memoir itself, whenever and wherever it may appear ; and for other not less interesting and extraordinary
facts of a similar nature, to M. Majendie's Paper on the functions of the two great divisions of the spinal column,

and the influence of the cerebrum and cerebellum on voluntary motion, abstracted by himself in a late volume of

that collection.*

To understand how the vibrations of a disc may be conceived to be communicated by the air to a membrane

in M. Savart's experiments, let us take a simple case, and suppose A B C D to he a horizontal circular disc,

vibrating in that mode which gives a subdivision into four quadrantal segments, A C, C B, B D, DA; and let

abed be an infinitely thin circular membrane placed under it, which we will suppose to be barely coherent so as

From the painful subject of knowledge of the most interesting and practically useful kind, to be purchased only by the extremity of

animal suffering, we turn with gladness to a pleasing duty. We have drawn largely, both in the present Essay, and in our Article on LIGHT,
from the Annales de Ckimie, and we take this on/.y opportunity distinctly to acknowledge our obligations to that most admirably conducted

work. Unlike the crude and undigested scientific matter which suffices (we are ashamed to say it) for the monthly and quarterly amuse-

ment of our own countrymen, whatever is admitted into its pages has at least been taken pains with, and, with few exceptions, has sterling

merit. Indeed, among the original communications which abound in it, there are few which would misbecome the fiist academical

collections ;
and if any thing could diminish our regret at the long suppression of those noble Memoirs which aie destined to adorn future

volumes of that of the Institute, it would be the masterly abstracts of them which from time to lime appear in the Annales, either from the

hands of the authors, or from the reports rendered by the committees appointed to examine them, which latter, indeed, are universally

models of their kind, and have eontriouted, perhaps more than any thing, to the high scientific tone of the French xavani. What author

indeed, but will write his best when he knows that his work, if it have merit, will immediately be reported on by a committee who wil

enter into all its meaning, understand it however profound, and not content with mertty understanding it, pursue the trains of thought to

been often astonished to see with what celerity every thing, even moderately valuable in the scientific publications of this country, finds

its way into their pages. This ought toencouiage our men of science. They have a larger audience, and a wider sympathy than they are,

perhaps, aware of
;
and however disheartening the general diffusion of smatterings of a number of subjects, and the almost equally geneial

indifference to profound knowledge in any, among their own countrymen, may be, they may rest assured that not a fact they may discover,

no' a good experiment they may make, but is instantly repeated, verified, and commented upon, in Germany, and we may add too in Italy.

We wish the obligation were mutual. Here, whole branches of continental discovery are unstudied, and indeed almost unknown even by
name. It is iu vain to conceal the melancholy truth. We are fast dropping behind. In Mathematics we have long since drawn the rein and

given over a hopeless race. In Chemistry the case is not much better. Who can tell us any thing of the Sulfo-salts? Who will explain
to us the laws of Isomorphism? Nay, who among us has even verified Thenard's experiments on the oxygenated Acids Oersted's and

Berzelius's on the radicals of the Earths Balard's and Serrulas's on the combinations of Brome and a hundred other splendid trains of

research in that fascinating science? Nor need we slop here. There are. indeed, few sciences which would not furnish matter lor similar

remark. The causes are at once obvious and deep seated. But this is not the place to discuss them.
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Somd. to be impervious to air, but to have no tension of its own. Its molecules will, therefore, obey implicitly all the Par- 'M.

-^^m^> motions of the aerial ones adjacent to them, and its figure, at any instant, will be that assumed by a stratum of v^~v^-'

the air originally plane, and parallel to A B C D, in consequence of the displacement of its particles by the undu-

lation propagated from all parts of A B C D, as they reach it at once, allowing for the time taken to traverse their

respective distances from it. Let us now consider how a molecule of air, M, placed any where in the plane a eft

perpendicular to the disc, and intersecting it in A B, will be affected. Since the disc vibrates transversely, all

its particles on one side of A B (as towards C) will be at any instant in a precisely opposite phase of their excur-

sion from the corresponding particle on the side towards D, and moving with equal velocity. Therefore, the

undulations propagated simultaneously from both these particles will reach the molecule M in question at once,

(being equidistant from it.) and being (at least in so far as their direction is not modified in their passage, and
at all events as to that part ot them which is at right angles to the plane a /B -/ S) equal, and contrary, destroy
each other, so that in virtue of these the molecule M acquires no transversal vibration. And since the same is

true of every other corresponding pair of molecules into which the two halves A C B and A D B of the vibrating
disc can be divided, the molecule M will not vibrate (or at least not transversely) in virtue of the vibration of the

whole disc. The same is true of every other molecule situated in the plane a eft, and also by a similar reasoning
in the plane ^/eS at right angles to it. There will then be two nodal planes pervading the whole atmosphere, in

which the aerial molecules have no transverse (i. e. vertical) motion. But if we suppose the molecule M situated

anywhere out of these planes the case is otherwise. Suppose it, for instance, situated at/ in the quadrant ceb
of the membrane. This being nearer to each molecule of the quadrant CEB of the disc than to the corresponding
molecules of the others, the influence of the former will predominate, and the molecule f will be agitated by a

transverse motion similar to that of the quadrant of the disc vertically over it. If then the membrane be strewed

with sand, it will be thrown off from the vibrating quadrants, and arranged on two rectangular nodal lines ab,cd
parallel to those of the disc, just as ifh vibrated by its own tension, while yet it is obvious that all the while it

has only obeyed implicitly the motions of the adjacent air.

If, however, the membrane has tension and thickness, this will modify the effects of the direct aerial action, and 33^
that in a way far too complicated for us to enter into here in detail. We may remark, however, that in that case, Effects of

each individual aerial impulse must be regarded as an arbitrary initial disturbance of its state of equilibrium, in tension and

virtue of which it will be thrown into periodic vibrations; and these again will propagate similar vibrations thickness of

back through the air to the disc A B C D ;
and this being constantly repeated the result may be the establishment

(,rjn

'"em~

of a joint resultant periodic vibration, by the destruction of every motion not periodic, from the innumerable

repetitions of the impulses and the consequent infinite superposition of plus and minus excursions. But this

interchange, of course, will be the more energetic the thinner is the interposed lamina of air; for if its thickness be

great, the vibrations excited in the membrane, or semi-rigid disc, abed, (as we will now suppose it,) will be

feeble, and when propagated back through the air will be still further enfeebled so as to aflect the motion of

A B C D but little. In this case then, supposing the two discs to be out of unison with each other, and to have
no common mode of vibration, the disc abed will become the seat of two distinct systems of vibration. The first,

regularly periodical, being that directly communicated by sympathy. The other, the resultant of an indefinite

number of vibrations kept up by means of the tension, in all phases and stages of degradation.

Now, provided the time elapsed since the commencement of the vibrations be long enough to allow of our 323.

regarding the number of previous vibrations as infinite, or which comes to the same, long enough to have allowed General

all traces of the initial vibrations to have been destroyed by resistance, friction, &c., these last will either exactly
tlleorei>'

destroy each other, or, if they leave a residue, that residue will consist in a vibratory motion, having the same
forcerl'v'i

period with the primary impulse. brations.

As this is a proposition of great importance, not only in the theory of Sound, but in many other physical 324.
theories, such as that of the Tides, for example, we must not let it rest on a vague assumption, but demonstrate it Demonstri-

rigorously. Let then t represent the time elapsed since the commencement of the vibrations, t being so large
t 'oa -

that it may be considered as infinite in comparison of the duration of a single vibration. Then if we call T the

time of one complete vibration, or one period of the primary vibrations, the impulse communicated through the

air, or otherwise, to any point of the membrane, or other vibrating body, will at any instant be represented by

some periodic function of the form F( cos 2 it . 1, or F (cos n f) putting ^=- = n, which function may always

be resolved into a series of periodical terms of the form A . cos int, i being an integer, of which each may be
considered as the representative of a single vibratory motion of the simplest kind, whose superposition forms the
actual vibration in question. Consequently, we may content ourselves with considering any one of them as
A . cos n t, since all the rest are subject to the same argument.

Next, let be the time of one complete unforced vibration of the membrane or elastic body in virtue of its 325.

2 T
natural elasticity, and let v = . i, so that a . cos t would denote the general term of a series expressing the

velocity of any one of its molecules in a state of unforced vibration, and let F (t) be a function expressive of the
law of diminution of the vibrating motion by friction, resistance, and imperfect elasticity. So that if t be the time
since a certain velocity V was communicated to it, V . F (t) . cos v t will be its velocity after the expiration of t

as it will then subsist, modified by the elastic forces and mechanical state of the membrane.
Conceive the aerial impulse to act not continuously, but at equal infinitely small intervals of time T, (infinitely 326

small relative not only to t but to T and 0.) Then, first, the impulse A . cos n t, acting durinn- the time T will

produce the velocity A. . T . cos n t.

VOL. IV. 9 N
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Sound. Secondly. The impulse A . cos (n t n T) which acted at the moment immediately preceding, produced in the Pan 1
'

^^ -_i first instance the velocity A . T . cos (re
t n T).

But this, once produced, was immediately modified by the ^^^^'
inherent elasticity of the membrane, and in the subsequent moment became

A . T . cos n (t T) . F (T) . cos v T.

Similarly the impulse A . cos n (t 2 T) acting at the instant preceding this generated the velocity A T . cos

(< 2T), which, in like manner, (being regarded as an arbitrary initial disturbance,) became modified in the time

2 T to A T cos n(t 2 T) . F (2 T) . cos 2 v t. And so on. Thus, the whole accumulated velocity at the instant

t, arising from all the preceding impulses, will be expressed by
A T . { cos nt + cos n (t T) . cos v -r . F (T) -f- cos n (t 2 T) . cos 2 v T . F (2 T) -J- &c. } ,

which series, since the function expressed by F (t) is supposed to decrease constantly as t increases, and since

the whole number of vibrations is supposed so great that the terms of the series F (t), F (2 T), F (3 T), &c. shall

at length become perfectly insensible, may be regarded as continued ad injinitum.
In fact, whatever supposition we may make as to the law of degradation of the motion within the limit of a

327.
single period, it must evidently diminish in geometrical progression in similar phases of successive periods, so

General
tnat W(J must naye

!; of
"

F (T + *) = J . F (T) ; F (T+ 2 0) = <f F (T) Ac.

vibratory rp^ premised t the series in question, by merely changing the arrangement of its terms, and grouping together

"eometric those equidistant from each other by the interval 0, will become resolved into partial series thus,

progression. (cosw
t -\- cos n (t 0) . cos v 6 . F (0) + cos n (t

- 2 0) . cos 2 v . F (2 0) -f- &c. ]

A T . J + cos n (t
-

T) . F (T) + cos n (t
- -r - 0) . cos (v 6

-|- v T) . F (0 -f T) -f- &c.

(+&c. J

But we have, first, F(o)=:l, F (0) = q, F(26)=gf
, &c. ; and, moreover, since v 6 = 2 iir, therefore

cos i>0 1, and cos 2 vO =r 1, &c. Consequently the above expression becomes

f (cos n t + q . cosn (t
-

t) -f- q* . cos n (t
- 2 0) + &c.) 1

A T J -f F (T) . (cos n (t
-

T) + q . cos n (t
- T 0) + q*. &e.) I.

(-f- F (2 T) . (cos n (t- 2 T) + q . cos n (t 2 T - 0} + <f . &c. -f &c.) J

Snmmatlon Now, ech of these series is readily summed, for we havu by well-known trigonometrical fonnulcB

Jal sencs" cos nt + q. cos (n t n G) -j- q* . cos (re t 2 n 6) -j- &c.

1 q . cos nO q . sin n= cos n t . *-
. + sin n t .

;
r~- ..

1 2 g . cos re -f- g 1 - 2q . cosn + q*

Each of the fractions being constant, and independent of t, if we call them M and N, our series will become

|(M

. cos n t + N . sinn + F (T) { M . cos n (t T) -f N . sin n (t
-

T) } 1

+ F(2 T) { M . cos n (t
- 2 T) + N . sin n (t

-
2-r) }

\.

+ &c.

328. Let us now consider the area of a curve whose abscissa, x, is divided into equal elements each equal to r, while

Summation its successive ordinates, y, are represented by (o), (j> (T), (2 T), &c. It is evident that its ureufy dx will be

of the whole equa ] to

%!? T . (o) + T . (T) + T . (2 T) + &c. ;

and, therefore, the sum of this series, from the term -r.0 (o) to T. 0C0). will be equal to the integral^ 0(x) dt,

from x = to x = 6. Thus our series will assume the form of a definite integral, w'z.

A ./." d x . F (x) { M . cos n (t x) + N . sin n (t
-

x) } ,

expressing in the manner now pretty general the limits of the integral by indices attached to the integral sign.

Resolving now the sines and cosines of n(t x), this becomes (T and t being independent of each other)

A . cos n t . fl d x . F (x) { M . cos n x N . sin n r }

A . sin n t f? d x . F (JT) { M . sin n x - N . cos n x } .

Now, whatever be the law of degradation denoted by the function F, it is clear that these definite integrals must

at last reduce themselves to certain constants independent of t, which, if we call P and Q, the whole takes the

simple form
P . cos n t Q . sin n t,

which is a periodic function having the same period as the primary vibrations.*

329. In the limiting case, when the elasticity of the body on which the forced vibrations are impressed is perfect,

Caieofper- and resistance, friction, and every other cause of loss of motion is prevented, F represents a constant, and is

feet elasti- equal to unity. In this case both the constants P and Q in the above expressions vanish, and the whole motion

city of the

iody.
* This demonstration being general, we may here observe, that, on the undulatory theory of light, rays ot one refraugibility

can never

excite by any combination of their own vibrations with those of the bodies they may traverse or impinge on, any resultant rays of a different

refrangibility, at least to long as the exciting light continues in action When it has ceased, the case may be otherwise.
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Sound, of (rtf body, after a great numbci of vibrations have elapsed, is zero. In this case then, the elastic body is Part III.

-~**/s completely incapable of vibrating in sympathy with any other not having a common mode. In all others P ^^v*^-'
and Q have finite values, which will be greater, or less, according to the circumstances of the case.

Thus we see that imperfect elasticity, or other equivalent causes of the gradual loss and dissipation of the 330^

impressed impulses, is the essential condition on which forced vibrations in general depend, and that in General

proportion as a disc or membrane is devoid of tension it should be more readily susceptible of such vibrations : effect of im-

precisely what M. Savart has shown to be really the case in fact.

It may be objected to what is said in Art. 321, that it would follow from that reasoning that the Sound of a
'C

'QQJ
vibrating disc should be inaudible whenever the ear is situated in a plane passing through one of its nodal

object'ons
diameters, and at right angles to the disc. But, in the first place, what is there said applies only to such motions of considered.

the aerial particles as are performed in those planes. But, in fact, a lateral motion, or one parallel to the disc's

surface, must also exist, by reason of the alternate tilting up and down of adjacent ventral segments, which
must give the whole body of air terminated by them a small reciprocating rotatory motion about the nodal line

separating them as an axis. Thus, though the transverse vibrations are here destroyed, the sensation of Sound

may still be excited by tangential ones. And, secondly, though alternate motion were altogether destroyed,
condensations and rarefactions still subsist.

But, in fact, there * observed a difference in the intensity of Sound emanating from vibrating bodies in certain
J.QO

cases, according to their angular position with respect to the line joining them and the ear. We have already phenomena

(Art. 117.) described Dr. Young's remarkable experiment of the tuning-fork. It is precisely a case in point, ofatuning-
and a circumstantial explanation of it will be at once interesting for its own sake, and illustrative of the general fork ex-

argument. Let then A, B, fig. 171, be sections of the two branches of the fork in its state of rest, and since Plained -

when set in vibration they alternately approach to and recede from each other, let us consider them first in their '*>'

state of approach, as at a b. In this state they compress the air between them, and squeeze it out laterally in

the direction of the arrows P, Q, while, at the same instant, the aerial particles adjacent to the flat outward faces

of the two branches, and which of necessity follow their motions, are urged inwards as indicated by the arrows

R S. Thus the four quadrants of the initial circular wave propagated round the fork, are alternately in opposite
states of motion, the molecules at P Q receding from the centre, while those at R, S, approach to it, and Dice

versa, when the branches of the fork having dosed to the utmost begin to open again. In this case the latera
1

air will rush in to fill the gap, while that in contact with the broad faces will be forced outwards. If then we
consider any intermediate point C, about 45 distant from Q and R, this, in virtue of both impulses, will acquire

equal tendencies in opposite directions, and will rest, or at least will acquire only a small tangential motion, in

consequence of the reciprocating eddies of the air round the angles of the branches. That these motions really
do take place as here pointed out, any one may have ocular demonstration by imitating the opening and shutting
of the branches with his hands near the flame of a candle burning steadily, taking care not to mukepitffs of wind
but regular removals of the air to and fro.

One of the most curious and interesting purposes to which M. Savart has applied the properties of 333.

membranes, is to explore the actual state of the air in different parts of a vibrating mass of determinate figure,
Membranes

as to motion or rest. For this purpose, the Sound should be excited and maintained by a constant cause at a U

j 'Ju""

high degree of intensity, especially if the mass of air be large, as in a chamber or gallery ; and to give the
("^rations

membrane the greatest possible sensibility, it ought to be stretched so as to be, naturally, in unison with the note Of masses

sounded, so as to act as a receiver and condenser of the small aerial motions. The greatest purity and intensity of air.

of the Sounds to be employed for this purpose, may be obtained by a harmonica glass, or the bell of a clock,
' nte"

maintained in vibration by a bow; and this may be still further augmented by adapting to it a resonant cavity, (jucedb
Pr

as, for instance, a large cylindrical vase of considerable diameter, closed at one end, and of such dimensions as resonance,

separately to vibrate the same note. (See Art. 338.) The tones thus produced, especially when large harmonica

glasses are used, as M. Savart remarks, are of such intensity, that no ear can long support them, and, at the

same time, of such a rich and mellow quality, that all other musical Sounds appear poor and harsh in

comparison. In order yet more to increase the sensibility of the membrane, the frame on which it is stretched Mode of

should be fitted over the orifice of a similar resonant cavity. For convenience, and lest the tension of the
"sm a

membrane should vary by hygrometric changes, it is proper to have means of varying this at pleasure, a mode of

which is described by M. Savart in the Memoir from which we draw our information. (Annales de Chimie, vol.

sxiv. p. 76.)

Suppose now that, being provided with such an apparatus as here described, we shut ourselves up in an 334.

apartment of regular figure, and free from furniture or projections from the walls, recesses, &c., and place one Vibrations

of our resonant cylinders with its axis horizontal, and the vibrating bell or glass opposite its orifice. In the
f t

h

h

am
a

b

' r

r

"1

direction of its axis place the membrane horizontally, with its proper frame and resonant cylinder below it, and examine"
strew the horizontal surface with saml. If now, first, we place the membrane thus armed very near the source

of the Sound, it will vibrate with great force As we withdraw it, (keeping it still in the line of the axis of the

first resonant cylinder,) its vibrations will diminish gradually, and at length cease, after which (still continuing to

remove it along this line) they will recommence and reach a maximum, at a point when their intensity is nearly

equal to that close to the source of Sound. Removing the membrane yet further, a new point of indifference is

found, and so on till we reach the end of the chamber. If we walk along the same line, keeping the ear in the

plane of the horizontal axis of '/he resonant cylinder, we shall perceive the Sounds to be much louder in the

places where the vibrations of the membrane attain their maxima, than at the intermediate points where they are

at a minimum. At these latter, a very curious phenomenon has been observed by M. Savart. When the auditor

moves his head away from such a point, towards the right, (always supposing it to remain in the line of the axis

above mentioned,) the Sound will appear to come from the right, and if towards the left, it will seem to come
5 N 2
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Sound, from the left, whether the original source of Sound be to the one or the other side. This singular effect shows that Part PI.

V^^v^*'' the aerial molecules on either side of the point of indifference, are in opposite states of motion at any given ^^v""
instant. In making this experiment, the head should be so turned, that the axis of the resonant cylinder

prolonged shall pass through both ears. Suppose, for instance, the Sounding apparatus to be to the observer's

left, and that his head be very near it. The Sound will appear to enter at his left ear. As he removes further

away, so as to pass one of the nodes, it will seem as if the Sound had changed sides, and now came from the

right. When another node is passed, it will appear to have again shifted to the left, and so on.

335. But, if we quit the axis of the cylinder, and carry an exploring membrane, such as already described, about

Spiral
form the apartment, noting all the points where it vibrates most forcibly, allowing ourselves, as it were, to bo led

of the nodal from SpO t to SpO t by j ts indications, we shall trace out in the air of the room a curve of double curvature marking

rectangular
tne max 'ma ' tne excursions of the aerial molecules. If the experiment be made in a gallery, or passage,

chamber, or whose length is its principal dimension, this curve will be found to be a kind of spiral, creeping round the walls,

gallery. floor, and ceiling, obliquely to the axis of the gallery, thus presenting a marked analogy to the disposition of the

nodal lines in a long rod vibrating tangentially, {vide. Art. 313.) ; which are also, it should be remarked, imitated,
with modifications more or less complicated, in square or rectangular rods.

336. A still more remarkable effect was observed by M. Savart, in thus exploring the vibrations of the air in an
Their con- apartment with an open window. The spiral disposition of the vibrating portions was, found to be continued
tinuation out of the window into the open air, the lines of greatest intensity running out in great convolutions which

wimimv nito
seeme(^ ' omw wider, on receding from the window, and could be traced to a great distance from it.

the air. The vibrations of the air in an organ-pipe were explored by M. Savart, by lowering into the pipe, placed

337. vertically with its upper end open, a thin membrane stretched on a light ring, and suspended by a fine silk

Vibrations thread, and strewed with sand. Thus ocular demonstration of the existence of its subdivision into distinct

of air in ventral segments was obtained, the sand remaining undisturbed when the membrane occupied precisely the

pipes ex-
place of a node. By this means, too, the influence of the embouchure on the places of the nodes, a curious and
delicate point in the theory of pipes, which we have not before alluded to, may be subjected to exact

membranes. .
*

, .

J r
, . .

J '

examination. JLhus, tor instance, when the column ot air in the pipe vibrates in the manner described. Art.

190, fig. 19. having two half ventral segments, and one node in the middle, it is found that the node is only

approximately so placed, being always, in fact, nearer to the embouchure than to the open end.

333 It is well known that if we sing near the aperture of a wide-mouthed vessel, some one note (which is in

unison with the air in the vessel) will be reinforced and augmented, and sometimes to a great degree. This is

what is meant by the resonance of the mass of air contained in the cavity of the vessel, or as it may be termed,
the resonance of the cavitv. This has been known from the earliest times. The ancients are said to have

placed large brass jars under the seats of their immense theatres to reinforce (one does not well see how) the

Resonance voices of the actors. Any vessel or cavity may be made to resound by placing opposite its orifice a vibrating
of cavities, body, having a surface large enough to cover the aperture, or at least to set a considerable portion of the aerial

stratum adjacent, to it in regular oscillation, and, at the same time, pitched in unison with the note which the

cavity would of itself yield. The experiment of the disked tuning-fork, in Art. 204, is a case exactly in point.
The pipe which resounds in that experiment, may be pitched precisely in unison with it by its stopper, and in

proportion as it departs from a perfect unison the resonance is feebler. A series of disked tuning forks, or

vibrating steel springs, thus placed over the orifices of pipes carefully tuned, constitutes a very pretty musical instru-

ment, capable of a fine swell and fall according as the discs are brought nearer to, or further from, the orifices

of the pipes, or inclined to their axes, and of remarkable purity and sweetness of tone. A similar adaptation of

resonant cavities to a series of harmonica glasses fixed on a common revolving axis, has been recommended by
M. Savart as the principle of a musical instrument, whose effect, should it be found to answer the expectations his

description of the tones thus drawn forth is calculated to excite, would probably surpass that of all others yet
invented. See Art. 333. The cavities best adapted to this purpose are short cylinders of large diameters with

movable bottoms fitting by tight friction by which they may be tuned.

339. Such cavities may be regarded as short organ-pipes. When the diameter of a pipe is greatly increased in

Resonance proportion to its length, so that it becomes a box, the law of the proportionality of the time of vibration to the
and vibra-

ieng(h ceases to hold good, and the note yielded is flatter than that of a narrow pipe of equal length, and the

b'oiTsha ed
more so tne w ' ('er the pipe. Thus M. Savart found that a cylinder of 4^ inches in length, and 5 in diameter,

cavities. resounded in unison with a narrow pipe 6 inches long, making 1034 vibrations per second. That sagacious
Resonance experimenter has found, that cubical boxes speak with surprising promptitude and facility, and yield Sounds
of cubical

extremely pure, and of a peculiar quality, on which account, and by reason of the little height in which they may
boxes. ^ pufif^ ne recommends them for organ-pipes. A cube of 53 or 54 lines (

=
4^'"-) in the side yields the same

note as a pipe 10 or 11 inches long, and 2 or 2 inches diameter. They may be excited by an embouchure at

one of their lower edges, precisely similar to that of an organ-pipe. But they will also speak if the embouchure
be situated in the middle of the side. M. Savart has also examined the vibrations of a great variety of different-

shaped pipes, boxes, or cavities, for which see Annahs de Chimif, vol. xxix. p. 404.
340. There is yet another remarkable case of vibrations communicated between the different members of a system

(
. iimmuni- of which we have not yet spoken, though offering a good example of the verifioation of the general law of

vibrations
eq lla'i tv of period and parallelism of direction of the vibratory motions of all the molecules ot a system laid

through
down in Art. 302. It is when vibrations are communicated through a liquid. The following expeilments of

liquids. M. Savart will show the mode in which this is accomplished.
341. He took a cylindrical tinned iron vessel whose bottom was placed parallel to the horizon, and having cemented

Exaeriment. to its centre a glass rod, so as to hang perpendicularly down from it, he covered the bottom to the depth of

about an inch and a half with water, on which was floated a thin disc ot varnished wood, covered en its upper
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face with sand. The apparatus thus prepared, he impressed on the glass rod a longitudino-tangential vibration, IVt III.

'

(Art. 296.) which of course became normal when communicated to the bottom of the vessel, and observed the v -

sand on t-he upper face of the disc to be also agitated with normal motions, and to assume nodal figures
(:

according to the laws of that species of motion. To show more clearly the nature of the communication, he J^"'"^!
threw out the water, and supported the wooden disc by a small solid stem perpendicular to its surface, and the brations.

bottom of the vessel, and attached to the centres of both, when it as found that the disc was affected precisely
in the same way as before.

On a vessel of water, whose rim is maintained in a state of normal vibration by a bow drawn perpendicularly 342
across it at any point, let a thin rectangular lamina of wood be floated, having its length parallel to the bow, and its Communi

extremity opposite to the point of the circumference excited. The lamina will be seen (as usual by sand strewed calion of

on its upper face) to execute longitudino-tangential vibrations, and will be crossed by nodal lines at right angles '*Kf't"o*s
to its length. But if, instead of directing the axis or longer edges of the lamina perpendicularly towards the

vibrating point of the side of the vessel, we incline it obliquely to the direction of the vibrations, still the sand
on its upper face will continue to glide in the same direction as before, that is, parallel to the vibrations of ihe

side of the vessel, so that, if the floating lamina be made to revolve slowly in a horizontal plane, the direct ion of
the creeping motion of the sand on its surface will continually vary with respect to the position of its edges, though
constant with regard to the sides of the vessel.

Not only arc the vibrations thus faithfully tranrferred through the water to bodies floating on its urface, hut 343.
even to such as arc totally immersed in it. The experiment is easily made by suspending in such a vessel as Commum-
above described under the water, and not in contact with the sides or bottom, a disc of glass, by means of fine calion ol >

silk threads, and strewing sand on the surface of the water which sinks and spreads evenly on the disc. This
b;a

''?
ns '"

will be observed to be agitated with very decided normal, or tangential motions, according as the former or latter
fire"^^'-"

of the modes of excitement used in the experiments, Arts. 341, 342, is employed; and to arrange itself in nodal mersed.

figures accordingly.
From these and similar experiments it appears that vibratory motions are communicated through liquids 344.

precisely as through gases aud solids, without change of character or direction. This, observes M. Savart, How we

explains how the nerves of hearing, extended throughout the convolutions of the labyrinth and immersed in the J" d 8e .'
th
^

liquid which fills it, transmit to the sensorium, not only the general impression of Sound, but of the direction in c'

which it comes.

These remarkable and striking results all tend to confirm and strengthen the analogy between Sound and Light. 345.
The luniinilerous ether, like air and liquids, transmits vibrations without altering their direction, as the phenomena Further

of polarized light demonstrate. The additional weight of evidence thus thrown into the scale of the nndulatory
an l"si s

theory of light did not escape the penetrating mind of Dr. Young, to whom that theory was so deeply indebted. ^
eluee "

Doubtless the analogy thus ascertained would not have remained idle in his hands, had not death snatched him too [join
from science while in the vigour of his intellect, and when so much might have yet been hoped from him. It has OILightand
been our unprecedentedly unfortunate lot, while composing these Essays on the sister sciences of Light aud Sound, so""d

to have to deplore the loss of nearly all the great modern contributors to their advancement. A Fraiieuhofer, a

Fresnel, a Wollaston, and a Young, names forming an epoch in the history of human knowledge, have been
snatched away in quick and alarming succession, not enfeebled by age or with faculties weakened by disease, but
all in the meridian of their intellectual powers, or in that rich maturity when practice had only familiarized them
with their resources, and perfected them in their use. To Dr. Young the theory of Sound is in many respects
deeply indebted, and it richly repaid the attention he devoted to it by furnishing him with the pregnant idea of
his principle of interferences ;

a principle which has proved the key of all the more abstruse and puzzling properties
of light, and whose establishment would alone have sufficed to place him in the highest rank of scientific

immortality, even were his other almost innumerable claims to such distinction disregarded.

111. Ofthf.roice.

Almost every animal has a voice or cry peculiar to itself, originating in an apparatus destined for that purpose 340
of more or less complexity. The voice is most perfect and varied in man and in birds, which, however, differ

extremely in the degree in which they possess this important gift. In quadrupeds, it is limited to a few uncouth
screams, bcllowings, and other noises, perfectly unmusical in their character, while in many birds it assumes the
form of musical notes of great richness and power, or even of articulate speech. In the human species alone,
and that only in some rare instances, we find the power of imitating with the voice every imaginable kind of
noise, with a perfect resemblance, and of uttering musical tones of a sweetness antl delicacy attainable by no
instrument. But in all, without exception, (unless, perhaps, the chirp of the grasshopper, or cricket, be one,)
the Sounds of the voice are produced by a wind instrument, by the column of air contained in the mouth, throat,
and anterior part of the windpipe, set in vibration by the issue of a stream of air from the lungs through a
membranous slit in a kind of valve placed in the throat. In man and in quadrupeds, this organ is single, but
in birds, as M. Savart has shown, it is double ; a valve of the kind abovementioned being placed at the openinn- of
each of the two great branches into which the trachea first divides itself as it enters the lungs, iust before they
unite into one common windpipe.
The organs of the voice, in man, consist of

1. The thorax, which, by the aid of the diaphragm and the 24 intercostal muscles acting on the lungs within, 347.
anil alternately compressing and dilating them, performs the office of a bellows The thorax.
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Sound. 2. The trachea, a cartilaginous and elastic pipe which terminates in the lungs by an infinity of roots, or P' "I-

-"v^-' bronchiae, and whose upper extremity is formed into a species of head called the larynx situated in the throat,
*" "V"

348. composed of five elastic cartilages, of which the uppermost is called the epiglottis, whose office is to open and
The trachea shut, like a valve, the aperture of the exterior glottis, and which constitutes the orifice of the larynx

JVfl"

5
3. The epiglottis, where it adheres to the larynx, is also united to the tongue, and forms a somewhat concave

The i-
valve, of a parabolic form, whose base is towards the tongue, and which, by its convexity, resists the pressure of

glottis
tne fd ar|d liquids as they pass over it in the act of swallowing.

350. 4. Within the larynx, rather above its middle, between the thyro'id and arytenoi'd cartilages, are two elastic

The glottis, ligaments like the parchment of a drum slit in the middle, and forming an aperture making a right angle with

the exterior glottis, and which is called the interior, or true glottis. This slit, in adults, is about four-fifths of an
inch long, and a twelfth of an inch broad. This aperture is provided with muscles which enlarge and contract

it at pleasure, and otherwise modify the form of the larynx.
351. 5. The tongue, the cavity of the fauces, the lips, teeth, and palate, with its velum pendulum, and the uvula, a

The mouth, pendulous, conical, muscular body, which performs the office of a valve between the throat and nostrils, as well
u a, as, perhaps, the. cavity of the nostrils themselves, are all concerned in modifying the impulse given to the breath

as it issues from the larynx, and producing the various consonants and vowels, according to the different

capacities and shapes of their internal cavity.

352_ In speaking or singing, the glottis, it has been generally supposed, performs the part of a reed. The membranes

Glottis sup-
of which it is composed being kept at a greater or less state of tension by the muscles with which it is provided, and

posed to act its opening expanded or contracted according to the degree of gravity or acuteness of the Sound to be uttered.
as a reed 3u t the tone thus originally produced by the glottis is sustained and reinforced by the c liunn of air in the larynx,

throat, and mouth, whose dimensions and figure are susceptible of great variation by the action of the innumerable
muscles which give motion to this complicated and intricate part of our frame. Thus in a general way we may
conceive how the voice is produced and modified ; but when we would penetrate further into particulars, the

difficulties presented by the organs of the voice are even greater than those which beset the investigation of those

of hearing.
353. One material one has been lately much elucidated by the experimental researches of M. Savart. How, we

Difficulty may naturally ask, can tones of such gravity as we hear produced by the human voice, be excited in so short a
from the column of air as that contained in the throat of a man ? The vibrating column here hard-ly exceeds a few inches

fhTnotes
'n 'en{?

th, yet the notes produced by a bass singer are those which would require a pipe of several feet in length

produced,
sounded in the usual manner. That it is not a mere relaxation of the membrane of the glottis is evident ; the

dropping of the lower jaw, and the effort made in every possible way to increase the dimensions and diminish the

tension of the throat and fauces generally, in singing the lower notes of the scale, sufficiently prove that the note

of the glottis is reinforced in this. case, as in that of acuter Sounds, by the resonance of the cavity in which it

sounds.

354. From M. Savart's experiments it appears that in short pipes, and cavities whose other dimensions bear a

Explained considerable ratio to their length, the tone yielded is rendered much graver when the pipe or cavity is constructed
>yM.Sa- of a flpxjble material capable of being agitated and set in vibration by the air, than when made of more rigid

materials. He constructed a cubic box-pipe with paper stretched on slight square frames (if wood, joined together
at the edges, and made it speak by an embouchure at the edge. He then observed, that so long as the paper
was tightly stretched the Sound yielded by the cube was nearly as acute as it would have been had the whole

been rigid, but that when its tension was diminished by exposing it to moist vapour, or even by wetting it, the

Sound descended in the scale by an interval proportioned to the degree of moisture the paper had imbibed. It

was thus lowered even two whole octaves, when it grew so feeble as to be no longer audible ; but, repeating the

experiment in the still of night, it could yet be heard, and no limit indeed then seemed set to the descent of the

Sound ; and even when no longer audible the vibration of the paper sides could still be made sensible by sand

strewed on them, which arranged itself in nodal lines, for the most part elliptic or circular.

355. The relaxation then, or increase of tension of the soft parts which form the cavity of the mouth and larynx, is

Tension and no doubt a principal cause of the graduation of its tones. Whoever will sing open-mouthed before a looking-
relaxatioii

g]ass w jn not fail to be struck with the extraordinary contraction of the uvula (a small pendulous substance which

and mouth* seems to na"ff down from the roof of the mouth) which takes place in the higher notes. It shrinks up almost into

a point, and every surrounding part seems to partake its tension.

356. We have observed that the glottis has been most generally regarded as performing the functions of a reed,

Savart's ob. especially since the free reed (anche libre) invented by Kratzenstein, and revived by Grenie", (probably without

jee'ions knowledge of Kratzcnstcin's prior invention ; vide Willis, Phil. Trans. Camb. vol. iii.) has been brought into

ned-Me" Peneral no*'ce- This idea is strongly advocated among others by Biot. But M. Savart professes himself dissatis-

act;onof the
^ ed wi'h such an explanation of its use. He remarks, and seemingly with justice, that the essential principle of

glottis. a reed, the periodical opening and closing of the orifice through which the stream of air passes, is wanting in the

glottis. Were the glottis a reed, the edges of the vocal ligaments which form the slit through which the air passes
would require to be almost in contact, and should be alternately forced asunder by the effort of the air, and

brought together by their tension. But on the contrary he lound that the larynx of the dead subject, when left

in its natural state, and gently blown into through the trachea, yielded Sounds approactiing to those of the voice,

although the opening left between the borders of the glottis was as much as one-sixth, or even one-fourth of an

357_ inch across, and more than half an inch long.

M. Savart s The instrument to which M. Savart attributes the greatest analogy to the larynx, is a species of whistle, common

explanation enough as a children's toy or even as a sportsman's call, in the form of a hollow cylinder about three-fourths of

of the voice. an jncn j n diameter, closed at both ends by flat, circular plates, having holes in their centres. The form is not of
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Sound murh importance, it may be made hemispherical, &c. Being held between the teeth and lips, the air is blown Part III.

^-*_j through it, and Sounds are produced which vary in pitch with the force of the blast. If the air be conducted to
v- v '

it through a porte vent, and cautiously graduated, all the Sounds within the compass of a double octave may
readily be obtained from it ; and if great precautions are taken in the management of the wind, tones even yet

graver may be educed, so as to admit, in fact, no limit in this direction.

When we come to investigate the nature of articulate Sounds, and of speech, the difficulties are much greater. 357.

Conrad Amman, in his work on the Voice, first attempted to explain the manner in which the vowels and Amman's

consonants are formed. With regard to the vowels, he regards them as mere modifications of the continued wo
.

rk " ''"

tone produced by the larynx, depending on the configurations of the mouth. Thus to pronounce A (the broad
"

A in Ah
!)

the tongue must be laid flat in the lower jaw, and the mouth opened wide, and lips turned outwards.

Any musical or continued tone produced in the throat will then have the character of the vowel A. If the tongue
be gradually elevated so as to bring its middle nearer the palate, and at the same time thrust forwards, its

extremity approaching the upper teeth, the Sound will deviate from the broad A into a (hate,) e (peep.) These
Sounds therefore (the a in hate, and the e in peep) he calls dental vowels. On the other hand, if, the tongue

remaining as before, the lips be thrust out and drawn together, preserving as great an interior cavity of the

fauces as possible, we shall have the Sounds of the vowels in all, hope, poor, wood. These he calls labial vowels,

&c. These distinctions are to a certain extent correct and reasonable, but they give us no insight into the

question, ffhat it is which constitutes the essential distinction between vowel and vowel, and on what part of the

mechanism of the voice do vowel Sounds depend ?

In 1779, the Imperial Academy of Petersburgh proposed as one of their prize questions, an inquiry into the 35S.

nature of the vowel sounds A E I O U, and the construction of an instrument capable of artificially imitating
Kratzen-

them. The prize was awarded to M. Kratzenstein, whose curious Memoir on the subject the reader may find
s

.

teln
'

s '"'**

in the XXIst volume of the Journal de Physique, p. 358 His principle consisted in the adaptation of a reed in all the*vowels
essential respects similar to Greni^'s, where the tongue passes to and fro through the slit without contact, to a

set of pipes of peculiar forms, some of them very odd ones, and for whose shapes no other reason could be given
than their success on trial. This, however, was a great step. It showed the vowel quality of a Sound to be

something distinct from mere pitch, and susceptible of being produced at pleasure by mechanical artifice.

Pursuing this idea. Mr. Willis has lately entered more extensively into the subject, and, in a Paper recently

printed in the Hid volume of the Transactions of the Cambridge Philosophical Society, has succeeded in educing
all the vowel Sounds by a mere combination of a reed on Kratzenstein's construction with a cylindrical pipe of
variable length, and investigating the laws of their production.

This may be the place to remark the extreme imperfection of our written language in its representation of 359.

vowels and consonants. We have six letters which we call vowels, each of which, however, represents a variety of Remarks on

Sounds quite distinct from each other, and while each encroaches on the functions of the rest, a great many very
w

good simple vowels are represented by binary or even ternary combinations. On the other hand, some single
vowel letters represent true diphthongs, (as the long sound of i in alike, and that of u in rebuke,) consisting of two
distinct simple vowels pronounced in rapid succession, while, again, most of what we call diphthongs are simple
vowels, as bleak, thief, laud, &c. This will render an enumeration of our English elementary Sounds, as they

really exist in our language, no matter how written, not irrelevant. We have therefore assembled in the

following synoptic table sufficient examples of each to render evident their nature, accompanied with occasional

instances of the corresponding Sounds in other languages. The syllables which contain the Sounds intended to

be instanced are printed in italics where words of more than one syllable are instanced.

I (""Rook; Julius; Rude; Poor; Womb; Wound; Oi/vrir, (Fr1 360.
"

\~ Good; Cushion; Cuckoo; Rund, (Germ.); Gusto, (Ital.) Synoptic

2.

'

Spurt ; Assert ; Dirt ; Kirtue ; Dove ; Doable ; Blood. lable of

3. Hole ; Toad.
jjjjjj

1*

All
; Caught ; Organ ; Sought ; Broth ; Broad. Sounds

Hot ; Comical ; Kommen, (Germ.)
5. Hard

; Braten, (Germ.) ; Charlatan, (Fr.)
6. Laugh ; Task.

7. Lamb ;
Fan ; That.

8. Hang ; Bang ; Twang.
9. Hare; Hair; Heir; Were; Pear; Hier, (Fr.) ; LeAren, (Germ.)

10. Lame; Tame; Crane; Faint; Lawman; Meme, (Fr.); Slddchen, (Germ.)
11. Lemon; Dead; Said; Any ; Every ; Friend; Besser (Germ.) i Eloigner, (Fr.)
12. Liuer ; Diminish; Persevere; Believe.

13. Peep ; Leave ; Beliece ; Sieben, (Germ.) ; Coqui\\e. (Fr.)
14. s; sibilus ; cipher ; the last vowel and the first consonant

True Diphthongs.

1. Life; The Sounds No. 5 and No. 13, slurred as rapidly as possible, produce our English i, whv h 361
is a real diphthong. Diphthongs.

2. Brow ; Plough ; Lrtttfen, (Germ.) The vowel Sound No. 5 quickly followed by No. 1

3. Oil ; Kauen, (Germ.) ; No. 4 succeeded by No. 13.

4. Rebuke; Yew; You; No. 13 succeeded by No. 1.

5. Yoke ; No. 13 succeeded by No. 3.

6 Young; Yearn ; Hear; Here
; No. 13 succeeded by No 2 more or less rapidK
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Sound. The consonants present equal confusion. They may be generally arranged in three classes : sharp Sounds, part III.

^ ~v ' flat ones, and indifferent or neutral. The former two having a constant relationship or parallelism to each k -v--

362. other, thus :

Con*"*nU- SHARP CONSONANTS S. sell, cell ; a. (as we will here denote it) shame, sure, schirm, (Germ.) ; 0. thing ;
F

fright, enough, phantom ; K. king, coin, quiver ; T. talk; P papa.

sonants. FLAT CONSONANTS. Z. zenith ; casement ; '. pleasure, jarAm, (French) ; Q. the th in the words the, that,

364. thoii.; V. vile; G. good; D. duke ; B. babe.

ogj NEUTRAL CONSONANTS. L. lily ; M. mamma; N. Nanny; v. hang; to which we may add the nasal N in

X eutra|

'

gnu, JEtna, Dnieper, which, however, is not properly an English Sound. R. rattle; H. hard.

366. COMPOUND CONSONANTS. C, or fa. church, cicerone, (Ital.) and its corresponding flat sound J. or D ". \est,

Compound. gender ; \. extreme, Xerres ; f. exasperate, exalt, Xerxes ; &c. &c.

367. We have here a scale of 13 simple vowels and 21 simple consonants, 33 in all, which are the fewest letters

Remark on with which it is possible to write English. But on the other hand, with the addition of two or three more
*n un' versa '

vowels, and as many consonants, making about 40 characters in all, every known language might probably be
e '

effectually reduced to writing, so as to preserve an exact correspondence between the writing and pronunciation ;

which would be one of the most valuable acquisitions not only to philologists but to mankind, facilitating the

intercourse between nations, and laying the foundation of the first step towards a universal language, one of the

great desiderata at which mankind ought to aim by common consent.

ggg This enumeration will serve to show what are the difficulties which any one must contend with in constructing,

Difficulties wnat has been often attempted, a talking engine. Still the partial success obtained by Kratzenstein, and about

of imitating the same time by Kempelen, who has given a very curious account of his experiments in Mecanismede la Parole,

speech by ought to encourage further trials.

mechanism.
rpQ re turn) however, to Mr. Willis's curious and novel researches. He relates that, having provided an

WIT '
aPParatus consisting of a wind-chest, or reservoir, connected with a pair of double bellows, and opening into a

experiments Por^ven^ having a free reed, on Kratzenstein's, or Greni6*s construction, at its termination, his first object was to

on the verify Kempelen's account of the vowels. He therefore adapted his reed to the bottom of a funnel-shaped circular

vowel cavity, open at top, as in fig. 172, which represents a section of the apparatus, and on making the reed speak,
Sounds. and placing his hand in various positions pointed out by Kempelen within the funnel, he obtained the vowels

Reetition
A (No. 5.), E (No. 10.), I (No. 13.), O(No. 3.), U(No. J.) very distinctly, On using, however, a shallower

of Kempe- cavity these positions became unnecessary, and the hand might, he found, be replaced by a flat board slided over

len's expe- the mouth of the cavity ; and by using a very shallow funnel, as represented in fig. 173, he succeeded in obtaining
rimcnts. the whole series in the order U (No. 1.), O(No. 3.), A (No. 5.), E (No. 10.), I (No. 13.)

Being thus led away from Kempelen's experiment, he proceeded to try the effect of adapting to the reed
370.

cylindrical tubes, whose length could be varied at pleasure by sliding joints. This was easily accomplished by
Mr. Willis's

fix jng die reed with its port-vent into the end of a pretty long horizontal pipe coming off from the wind -chest,

rm'reed ptoes
over which on its outside a tube, open at both ends, was made to slide on leather wrapped round it in the manner

of variable of a piston, and capable of being lengthened, by the attachment of pieces of similar tube of its own length, to

length. any extent. He thus describes the results so obtained. Let abed represent the length of the outer, or

Fig ' 74 -

sounding pipe, projecting beyond the reed, and take a b, be, c d, &c. equal to the length of a stopped pipe in

Vowel
unison with the reed employed, that is equal to half the length of the sonorous wave ofthe reed. If, now, the pipe

Sounds ap-
be drawn out gradually, the tone of the reed, retaining its pitch, first puts on in succession the vowel qualities

pear in re- I E A O U. As the length approaches to a c the same series makes its appearance in an inverted order, as

gular sue-
represented in the diagram, then on passing the length a c in direct order again, and so on in cycles, each cycle.wion and
heing rnerely a repetition of the foregoing, but the vowels becoming less and less distinct in each successive cycle,
and the distance of any given vowel from its respective central points a, c, &c. being the same in all the cycles.

371. If another reed be adapted to the same pipes having a different fundamental Sound or sonorous wave, the
Law of the same phenomena will be produced, only that the central points of the new cycles will now be at a distance from

" f

d
eac^ ot^er emla ' to tf'6 sonorous wave of the new reed, but the distamvs of the several vowel points from the

" "

centres of the respective cycles will be the same as before; so that, generally, if the reed wave ac = '2 a, and the

length of the pipe which first produces any given vowel, from a, bv equal to u, the same vowel will be constantly

reproduced by a pipe whose length]= 2n a i v, n being any whole number.
When the pitch of the reed is high, so that the length a c of its wave is less than twice the distance a U corre-

I

;'

m ' ts

jj|

!"
h spending to any vowel, all the vowels beyond that distance become impossible. If, for instance ac be less than

certain*

"
^ a ^' ')ut reater than 2 a O, the series will never extend so far as U, but on lengthening the pipe indefinitely

vowels be- the succession of vowels I E A O A E I will be repeated. If, in like manner, still higher notes be taken for the
come im- reed, more vowels will be cut off. This, Mr. Willis remarks, is exactly the case with the human voice : female
possible. singers being unable to pronounce U and O on the higher notes of their voices. For example, the proper length

for a pipe to produce O is that which corresponds to the note C" two octaves above the middle C of a piano-forte,
and beyond this note in singing it will be found impossible to pronounce a distinct O

Cylinders of the same length, or more generally cavities of any figure resounding tne same note, give the same
374. vowel when applied to one and the same reed.

lenetb>of
The mllowin tanle is Siven Dv Mr- Willis as expressing the distances from the central points of the cycles at

rowel pipe.
which the several vowels are produced in inches.
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Sound. Neither shall we devote a separate section to the description and explanation af acoustic phenomena which
~-^ss occur in Nature. Many such, indeed, have been sufficiently noticed already. In Art. 23 we have explained

37!). satisfactorily the origin of thunder, and we shall here only remark that the subterraneous thunder which aecom-
Sounduf

panics earthquakes may (at least in some cases) be ascribed to a general cause not very dissimilar, the successive
earthquakes. arrjvaj at tne ear of undulations propagated at the same instant from nearer and remoter points, or if from the

same points, arriving by different routes, through strata of different elasticities.

380. The concise and unblunted propagation of Sound through water, remarked by Messrs. Colladon and Sturm, is

curiously exemplified by the shock of an earthquake felt and heard at ?ea. The sensation is always described as

that of striking on a rock; the Sound as that of grating on a gravelly bottom ; none of the hard, rough Sounds
of the first impulse being at all softened or rounded by the distance.

There is, however, one natural phenomenon so very surprising, and to us, we confess, so utterly inexplicable,

though resting on the authority of ear-witnesses of such credit that it is impossible to disbelieve the facts, that we
cannot forbear inserting a short description of it, with which we shall conclude.

Description
There is a place about three leagues to the North of Tor, in the neighbourhood of Mount Sinai in Arabia

of the place Petraea, called El Nakoiis, (Nakous is the name of a sonorous metal plate used in the Greek convents in the East
called Na- instead of a bell) from musical Sounds of a very singular and surprising character heard there. It has been

visited by very few Europeans, two of whom, however, Mr. Seetzen and Mr. Gray of Oxford, have published accounts

of it, the former in the Monatliche Correspondenz, (Oct. 1812;) the latter in Dr. Brewster's Edinburgh
Philosophical Journal, where also Mr. Seetzen's account of it will be found translated, which is as follows :

" After a quarter of an hour's walking, (from Wody El Nachel?) we reached the foot of a majestic rock of hard

sandstone. The mountain was quite bare, and composed entirely of it. I found inscribed on it several Greek
and Arabic names, and also some Koptic characters, which showed that the place had been visited for centuries.

At noon we reached the part of the mountain called Nakous. There, at the foot of the ridge, we beheld an

isolated peaked rock. Upon two sides this mountain presented two surfaces, so inclined, that the white and

slightly adhering sand which covers it scarcely supports itself, and slides down with the smallest motion, or when
the burning rays of the sun complete the destruction of its feeble cohesion. These two sandy declivities are about

150 feet high. They unite behind the insulated rock, and forming an acute angle, they are covered like the

adjacent surfaces with steep rocks, which are mostly composed of a white and friable free-stone.
" The first Sound was heard an hour and a quarter after noon. We climbed with great difficulty as far as the

sandy declivity, a height of 70 or 80 feet, and stopped under the rocks where the pilgrims are in the habit of

placing themselves to listen. In climbing, I heard the Sound from beneath my knees, and this made me think

that the sliding of the sand was the cause, not the effect, of the sonorous motion. At three o'clock the Sound
was heard louder, and it lasted six minutes, when, having ceased for ten minutes, it began again. It appeared
to me to have the greatest analogy to the humming-top ; it rose and fell like the Sound of the jEolian harp. To
ascertain the truth of my discovery, I climbed with the utmost difficulty to the highest rocks, and I slid down as

fast as I could, and endeavoured, with the help of my hands and feet, to set the sand in motion. This produced
an effect so great, and the sund in rolling under me made so loud a noise, that the earth seemed to tremble, and

I certainly should have been afraid, had 1 been ignorant of the cause.
" But how can the motion of the sand produce so striking an effect, and which is, I believe, produced nowhere

else? Does the rolling layer of sand act like a fiddle-bow, which, on being rubbed upon a plate of glass, raises

and distributes into determinate figures the dust with which the plate is covered ? Does the adherent and fixed

layer of sand perform the part of the plate of glass, and the neighbouring rocks that of the sounding body ?

Philosophers must decide this."

We give here M. Seetzen's account in preference to Mr. Gray's as being the earliest, and in his own words,

preserving even his own conjectures (not the most plausible) on its cause, and we shall be glad if the visits

of future travellers to the spot shall throw further light on this very strange phenomenon.

Slouch, ftb. 3, 1830. J. F. W. HERSCHEL.
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INDEX.

The Numbers refer to the Articles according to the Marginal Number* of the Text.

Sound. Am. The medium of conveying sounds, 2. RurtftdoTcompreued,

SJ_ ,.^ , diminution or increase of sound in, 2. Gives out he;it by cou-

den*aticn, its effect on velocity of sound, 69, 70. In pipes, vibra-

tions of. See Pipe. l'it>rtiti"ii*. communicates vibrations between

solids, and how, 309, 310. Masses of their vibrations explnn-d by

membranes, 318. In an apartment its vibrations and nodal lines,

334.

Alcohol, velocity of sound in its vapour, 82. Propagation of sound

in. 88.

Alphabet, English, its imperfections, 359. Universal, 367.

Analogy between sound and light, 137. See Light.

ANDERON, on hearing of fishes, 90.

ARAOO, his determination of the velocity of sound, 13. His remark

on corresponding observations used for that purpose, 10.

Arbitrary funclinna in the integrals of the equations of sound, 57.

Of vibrating strings, 151.

Atmosphere sounding, its probable extent, 3.

Bat, its cry, 222.

BAVJZA, his determination of the velocity of sound, 12, If).

Beats, 236. Of imperfect concords, 237. Rendered ocularly

visible, 318.

BENZENBEHG, on the velocity of sound, 12. 16.

BERNOUILLI, his theorems respecting chimney-pipes, 207.

BETDANT, his experiments on the propagation of sound in sea-water

93.

BIANCONI. on the velocity of sound, 12. 16.

BIOT, liis experiments on propagation of sound through lung pipes,

23, 24. In steam, 88. In cast iron, 113.

Boards, sounding rationale of their effects, 288.

BOUVARD, determination of the velocity of sound by him and others,

13, 16.

Zfor-shaped cavities. See Resonance.

BOYI.E, his determination of the velocity of sound, 6.

Bullet^ singing of explained, 145.

CAGNARD DE LA TOUR, his sirene, 143.

Cannon used for signals, 9, 13. Cases of double sound from a single

shot, 38.

CANTON, his experiments on the compressibility of water, 89.

Carisbruok well. Remarkable effect of the propagation of sound in

it, 25.

Carpets, their effect in deadening sound in a room, lU9.

CASSINI and others' determination of the velocity of sound, 9.

Cavities. See Resonance, Cube, Box

CIILADNI, his acoustic researches, passim. His experiments on

intensity of sound in gases, 82. 84. On propagation of sound in an

effervescing liquid, 107. His euphone, 283. His researches on

acoustic figures and vibrating surfaces, 272, &c.

Chimney-pipes, 207.

Chords, the chief musical. 225. et seq. 256, 257. Expressed in

chromatic numbers, 256. Inversions of and tables, 259, 260.

Equivocal, 262.

Chromatic scale, 234. Numbers, 256.

CLEMENT and DESORMES, their experiments on heat given out by
condensed air, 76.

Close, false, 228.

Cfouds, reverberation of sound by, 38.

Coexistence of different modes of vibration in strings. 164. In pipes,

183. See Superposition.
COLLADON and STURM, their experiments on the propagation of sound

in water, 94.

Comma, 233.

Communication of vibrations, general law of. 302. Through liquids,

340. Read also II. Part III.

Compressibility of water and other bodies. 103.

Concord*, what. 209. Principal, enumerated, 210 215.

Concourse of sounds, sounds resulting from, 238 240.

CoNHAMtNE, L.\, his experiments on the velocity of sound, 12, If).

Condensation of air, heat given out by increases velocity of sound, 48,

and rarefaction, alternate of air in a pipe, 181. None alan orifice,

Ciini/ition* for determining arbitrary functions in the equations of
sound, 38. Of the undivided propagation uf a pulse, 129 Of conti-
nuity of two media, 132. Of equal elasticity at their junction,
1JJ. "I the single propagation of a wave along a cord 151

Conductors of sound, 112, 113.

Consonants, enumeration of, 362. Their
classification, 363 365

Continuity of a sound produced by successive impulses 140
Cord. See String.

Corresponding observations for determining the
velocity of sound 9

Crystallized media, propagation of a pulse through, 1 1 1. Sava'rt on
their elasticities, 378.

Cubes of air, and cubical cavities, their vibrations, 339.
Curve of a vibrating string, 159. Its prolongation by repetition 159

Arising from superposed vibrations, 165.

Cylind-r, vibrations of, 296. Higher modes of, 301. Nodal lines

in, 297. In interior of a hollow one, 300.

Decay of tound, VI. p. 773. Art. 1 16, et seq. Its law, 121. Of
vibratory motion in geom. progression, 327.

DSRHAM, Dr., his determination of the
velocity of sound, 7. His

researches on sound, id.

DESORMES. See Clement.

Diapason organ-pipe, 198. A musical instrument, see Tuning.
fork.

Diatonic scale, 221.

Diesis, enharmonic, 247.

Diminution of sound in rarefied air or on high mountains, 3.

Diphthongs, English, enumeration of, 361.
Direction of sound, how judged of, 344. Curious case of inis-iudir-
ment of, 334.

Disc, circular, its vibrations and nodes. 277. Excited to vibration by
a coru, o,*7.

Discords, musical, what, 209. 216. Resolution of, 217. Names
and notes of, 260, 261.

Distance at which sounds have been heard, 22. Decay of tound by
See Decay.

Divergence of sound not alike in all directions, 117. From the end
of a pipe, 116.

Divers, their hearing under water, 90. 93.

Dominant, and sub dominant, chords of, 227, 228. Seventh 217
230.

Double sound from a sinole source, 38. Explained, 109. Another
case, 113. Produced by one pipe, 205. By a

reed-pipe, 376.

Ear. its structure, 320.

Earthquakes, sounds heard in, 379.

Echo, how produced, 27. liemarkable ones instanced, 29, et
s*y.

Situations favourable to, 36. In churches and public buildings,
37. Laws of reflection of sound in, 35. 95. See Reflexion.

Partial, at fissures of a solid, 110. From palisades, 144. In a

chamber, 146.

Effervescing liquids, propagation of sound obstructed by, 107.

Eleventh, chord of, 264. Its inversions, 260.

Embouchure of a pipe, 184, 185. 193. Rationale of its action. 194.
Influence of on pitch, 197. Case of a pipe commanded by, 204.
See Pipe.

Enharmonic scale and diesis, 247.

Equation of sound, 55, 56. Of vibrating chords, 150. Of the pro-
pagation of sound along pipes filled with different media, 131.

Equivocal chords, 260, 262.

ESPINOSA, bis determination of the velocity of sound, 12. 16. 20.

EULENSTEIN, his performance on the Jew's harp, 202. Note.

Euphone, a musical instrument of Chladni, 283.

False i-hse, 228

Kftk. See Interval. Chord of triple, 260, 26i

Fishes, their hearing, 90.

Index.
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Scund. FLAMSTKBD, his determinations of the velocity of sound, 6.

.

_
- Flails and sharps in roiisic, 232.

Florentine Academy, their determination oftlie velocity of sound, 6.

FLOSS and WEBIR on reed-pipes, 377.

FLOURENS, his experiments on nerves of the ear, 320.

Flute. See Pipe.

Fog, its effect in obstructing sound, 21.

Forced vibrations, 323. Depend on imperfect elasticity, 330.

Fork, tuning. See Tuning-fork.

Formula for velocity
of sound, 6!>. For effect of temperature and

pressure, 68. For effect of developed heat, 73. Laplace's, for the

velocity, 79. For time of vibration of a string harmonically divided,

162 For velocity of a wave in a string, 157.

FRANKLIN, his experiment on hearing under water, 92.

Functions, arbitrary,
in vibrations of a string, 151. In sound, 57.

Gam, propagation of sound in, 80. 82. In mixed, 108.

GAY LUSSAC'S determination of their expansion, 113.

Geneva, Lake of, experiments on the propagation of sound in, 95.

Girijente, remarkable echo in the cathedral of, 31.

data, velocity of sound in, 82. Compressibility of, 103.

Glasses broken by sounds, 3. 171.

Glottis, 350. Assimilated to a reed, 352. This analogy disputed by
Savart, 356.

Gloucester cathedral, echo in, 29.

GOLDINGHAM, his velocity
of sound, 12. 16. His computations de-

fended, 20.

Grasshopper, pitch of its cry, 224.

GREGORY, Dr., his experiments on velocity of sound, 12. 16. 20.

GRENIE, his reed, 202.

HALLEY, his determination of velocity of sound, 6. His account of

the report of a meteor in 1719, 3.

Harmonics of a string, 163. 166.

Harmonica Glasses, 303. 333. German, 203.

Harmony, IV. Part I. Imperfect, how introduced into music, 232.

Perfect, its origin, 209. Remarks on the origin of harmony, 271.

Harp, Jew's, 202.

HASSKNFRATZ, his experiment'on the conveyance of sound by stone,

113.

HALKSBEE'S experiment on sound in exhausted receiver, 3.

Hearing of fishes, 90. Of sounds under water, 90, 91, 92. Bynight
more delicate than by day, and why, 107. Organs of See F,ar.

Heat given out by condensed air, 69. By water, 100. Its influence

on the velocity of sound, 70, el seq. Its amount, how best deter-

mined, 75, 76. Developed by hydrogen in condensation, 83.

HRRHOLoand KAPN, their experiments on propagation of sound

through wires. 1 13.

Hexachoras, 257.

HUMCOLDT, his explanation of the audibility of sounds by night, 107.

HUYOENS, his system of 21 notes in the octave, 249.

Hydrogen, peculiarities in its transmission of sound, 83. Its effect

in destroying sound when mixed with air, 85. Explanation, 108.

Its singular effects on the voice when breathed, 86.

Jcf, sounds well conveyed over, 21.

Impulses periodic. See Periodic Impulses.

Influence, mutual, of vibrating bodies, 284. Of two clocks, organ-

pipes or strings, 284. Of a reed and pipe, 376, 377.

Insects, their hearing, 224.

Intensity of sound on high mounlains, 2. Law of its decay by dis-

tance, 126. In gases, 84. In hjdrogen, 83. Is as the vis viva

not as the inertia, 126.

Interference of sonorous vibrations, 85.

Interruptions in media, their efTrct in obstructing sound, 105.

Intervals, musical, enumerated, 210 2'JO. On what depend, 219.

Represented by logarithms, '245. Their values, ihiil. Their

sequence in the diatonic scale, 246. Tahle of their values in

various systems of tempered scales, 254.

Inversions of chords, 2W, 260.

Iso-tiarmonic scale, 241.

Inn, cast, velocity of sound in, 1 14. Biot's experiments on, 113.

Jew's harp, 202.

KEMPELEN, his imitation of the voice and the vowel sounds, 36

Key-note, 22ft.

KKATZENSTEIN, his free reed. 202. His researches on articulats

sounds, 357. On the vowels, 3.i8.

KUYTF.MIB jcjwEit and others, their determination of the velocity of

(ound, 13. 16.

labyrinth of the ear, 320.
I. AC-AIM. E and others on the velocity of sound, 6.

language, written, its imperfections as at present existing, 359.

LAPLACE, his explanation of the excess of velocity of sound over
New.on's formula, 69. His own formula, 79.

larynx, 348.

LESLIE on the propagation of sound in hydrogen, 85. 108.

light, its analogy with sound, 35. 38. 102. 105110. 137. 145.
Limits of audibility, 223, 224. 320.

Liquids, propagation of sound through, IV. 89, el s*q. Velocity of
sound in various, 103. Communication of vibrations through, 340,
et seq.

Logarithms used to measure musical intervals, 245.

LOOIEK, MR., his system of harmony, 253.

longitudinal vibrations of a rod, 268. Ufa glass stick used to com-
municate vibrations to solids. 283, et tea. Its state examined.
286. 289.

Lycoperdon, powder of, its use in acoustic experiments, 291.

MALIIS, an experiment of, on the conduction of sound, 113.

MAHALDI, his experiments on the velocity of sound, 9.

MATHIEU, with Bouvard, Araxo, &c., determines velocity of sound, 13.

Membrana tympuni of the ear, its use, 319, 320.

Membranes, theii vibrations, 309, et seq. Used to explore vibrations

of the air, 318. 333. Imperfectly elastic, their vibrations, 321 .

Menai bridge, echo under, 35.

MERSENNE, his determinations of the velocity of sound, 6.

ftleteors, sounds produced by their explosion, 3.

Mixed media, propagation of sound in, 85. 104, et seq.
Modes of vibration of a cord, 163. Of an aerial column, 183.

Modulation, 231.

MOLL, Vaubeek and Kuytenbrouwer's determination of the velocity of

sound. 13. On the velocity of sound in gases, 82.

Mnivirhnril, 167.

Mont H/anc, "1

Monte HUSH, Meebleness of sound observed on, 3.

Mountains, high,J
Musical instruments, new, proposed, 338.
Musical intervals. See Internal.

Musical lountli under water, 101. In general, Part II. I. el seq
See the several heads.

Nnkovs, extraordinary acoustic phenomena of, 380.

Nerves of the ear, tl.eir offices, 320.

NEWTON, his theory of sound examined, 61.

Ninth, chord of, 256. 265. Its inversions 260.

Nodal points of a vibrating string, 1GO. uf an aerial column, 182.

How established, 189.

Nodal lines, their origin, 290. Of tangentially vibrating surfaces,

their peculiar character, 292, 293, Spiral form of in vibrating

cylinders, 298. In hollow cylinders, 300. Of the air in a chamber,

334, 335.

Nodalfigures on vibrating surfaces, 2 74, st srq. Secondary, 316.

Nodal surfaces in a vibrating solid mass, 289.

Noise, how different from musical sound, 139.

NOLLET, ABBE, his experiment on 'hearing under water, 91.

Numbers, chromatic, 256. Diatonic, ibid.

OOIER, his experiments on the effect of hydrogen gas on the voice, 86.

Organ-pipes. See Pipe, Diapason, Vox humana / Kmbouchure, &c.

Palisades, echos from, produce a musical soun< J

,
144.

Pentachords, 257. 2GO. How related to tetrachords, 263.

PEROLLE, his experiments on intensity of sound in gases, 84.

Periodic impulses. How executed. 142. Produce musical sounds,
141.

Phenomena, natural, explained. Thunder, 23. Volcanic

sounds, 24. Sounds in Carisbrook well, 16. Stifling of sound

by hydrogen gas, 108. Resonant sounds at Solfaterra, 110.

Why very acute sound.-' are at length inaudible, 223. Increased

audibility of sounds by nighl, 107

PICARD, his determination of the velocity of sound. 6.

Pipes, their effect in convejing sounds to great distances, 24. I'yra-

midal, propagation of sound in, 124. Open, vibrations of air in,

184. 186. 187. 193. Open at both ends, 190. Closed at both

ends, 192. Chimney, 207. Harmonics of, 193. Proofs that it

is the air enclosed which sounds, 196. Influence of their forms

on the quality of their sounds, 201. Case of pipes commanded

by their embouchure, 214. Double sound yielded by one, 205.

Pax huaiana, 20fi. Vibrations of air in explored, 337. K"id,.
ItiU '470 ei seq. Lengths of, which yield the vowels, 374.

Indei.
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Sound. Pucn of a musical sound. 141.

Plates, rectangular, tlieir vibrations, 272, 273. Circular, triangular,

and elliptical, 277, ft seq. Set in vibration by communication

witn a string, 281. Joint vibration as a system, 282. Tangential
vibrations ol. 2 (J5.

POISSOK, his computation of the velocity of sound, 78.

Post, sounding of a fiddle, 281.

PRONY, and others, determination of th velocity of sound by,

1.1. 16.

PRIESTLEY, his experiments on intensity of sound in gases, 84.

Propagation of sound, generally, mathematical theory of, 41. In

air of one dimension, 50. Of a single initial disturbance, 64.

Linear in gases and vapours, 80, ct seq. In mixed media, 85. 104,

et seq. In solids, 104, et seq. Not alike in all directions, 117,

118. Of waves along a stretched string, 151.

Pulses, aerial, 49. Propagation of in crystallized media, 111.

Condition of their undivided propagation, 128. Division of by
an obstacle, or change in the propagating medium or mode of

propagation, 129.

Quality of lone of stringed instruments whence arising, 174.

RAFN. See Herhold.

Rarefied air, feebleness of sound in, 2.

Receiver, exhausted, sounds quite inaudible in, 2.

Reeds, 187. 199. Forced vibration of, how peiformed, 199. Free,

of Kratzenstein and Greni6, 202.

Reed-pipes, 199. Mutual influence of reed and
pipe, 376. Willis's

researches of sounds of, 370 376. Weber and Floss on, 377.

Reflexion of sound, 127. Analogous to thai of light, 35. At inter-

nal surface of water, 95. At junction of two media, 105. 127.

Internal total, 137. Ol a wave along a cord by an obstacle, 159.

See Echo.

Refraction of sound oblique, 137.

Resonance of cavities, 186. 338. Of box-shaped cavities, 339.

Resultant sounds, 238, et seq.

RORISON, his invention of an instrument analogous to the sirene,

143.

Roots, conduction of sound through, 1 13.

Roils, longitudinal vibrations of, 292. 296. Spiral form tf nodal

lines in, 297. Communication ol their vibrations to glasses, &c.

303, From one to another, 306.

RoEitvcK, his observations on sound in compressed air, 3.

ROEMF.R, determination of the velocity of sound by, 6.

Rotatory vibrations of a cord, 176.

Saint Allan's church, remarkable echo in. 29.

Saint Paul's church, whispering gallery in, 32.

Sand used to render nodal lines viable, 272. To distinguish nor-

mal from tangential vibrations, 291.

SAUSSURE, his observations on sounds on Mont Blanc, 3.

SAVART, his acoustic discoveries, passim. See the several heads.

Scale, diitonic. 220. Chromatic, 234. Isoharmonic. 241. Of mean

temperament. 242. Table of notes in various ones, 25-1. Major
and minor, 256. Of 21 sounds in the octave, 249, 250.

Secondary nodal lines, 316.

Seventh, 216, 217. 230. Its inversions, 260. Examined, 265.

Flat, its origin according to Logier, 25'i.

Sharps and flats, 232.

Shipley church, remarkable echo at, 30

Silence, at great elevation. 2. B/ night, effect of, 107.

filmonetta palace, remarkable echo in, 34.

Sirene, 143.

Sink. See Intervals. Concords.

Smith, Dr., his system of equal harmony, 260. His scale of 21
sounds in the octave. 250.

Snow, its effect in stifling sound, 21.

Solfuterra, the hollow sounds heard in it explained, 110.

Solids, propagation of sound in, 104. Effect of interrupted struc-

ture in, 105. Ways in which they may vibrate, 287. In what
different from fluids in their relations to sound, 111.

Sountl, (see the general heads,) causes which obstruct its propa-
gation, HI. 85. 105. 108, 109. Analogy of with light, (see LIGHT )

345.

Sounds, inaudible, to certain ears, 222. Very acute, their feeble-

ness, 223. Resultant, 238, 239. At a place called Nakous. 380.
Greater audibility by night than day, 107. At Solfaterra, 110.

Sparrow, pitch of its chirp, 222.

Speech, organs of, 357, et seq. Imitations of by mechanism, 357. 3G8

Spiral form of nodal lines in vibrating cylinders, 297.

Springs, vibrations of, 269.

Stone conducts sound well, Exp. 113.

Strings tended, their vibrations investigated, 149. Propagation of

waves along, 152. How it passes into a periodic vibration. 155.

Communicate their vibrations to solids, 281. 307. Used to excite

regular vibrations in other bodies, 307.

STURM. See Colladon, 94.

Subdivision of a vibrating string into harmonics, 160, et seq. Of a

pipe. 182. Of a vibrating surface, 274, etseq. Oi a cylinoric

solid, 301.

Sun, time required to transmit force from to earth by iron bars,

115.

Superposition of vibrations, 164. Of modes of subdivision, 316.
Of sounds from a pipe, 205, 376.

Sympathy of vibrations of two cords, 169, 170.

System of mean tones, 252. Of harmony, (Logier's,) 253. Of
bodies vibrating in communication, 282, and Part III.

Tables of different assigned velocities of sound in air, 16. In ga<e
and vapours, 82. Of compressibility, 103. Of logarithms of the

musical intervals, 245. Of vowel sounds, 360. Of lengths of

vowel-pipes, 374.

Tangential vibrations, 291. Of rods and rulers, 292. Peculiar

character of nodal lines produced by them, 292. Of broad rectan-

gular plates, 295.

Temperament, IV. Origin of, 235. System of equal, 242. Its

delects, 243. Occasional, 244. Adapted for piano-forte, 251
Dr. Young's system, 251. Vulgar, 252.

Tension of a membrane, its effect on the nodal lines, 315.

Third, major, 214. Minor, 255. See Intervals. Double, chord of,

260, 261.

Thunder, its phenomena explained, 38, 39.

Timber, good conductor of sound, 112.

Time of vibration of a stretched cord, 157.

Transmission of force through bars, 115. Of sound, see Propaga-
tion.

Transverse vibrations of a rod, 269.

Triads, 257. Table of their inversions, 260.

Tuning-fork, unequally audible in different directions, 117. Ex-
plained, 332. Used to excite vibrations in a pipe, 186. Disked.
186. 205.

Tuning a pianoforte, practical easy rules for, 251.

Uvuia, 351. Its tension and relaxation, 355.

f
r

(< i.i ions. See Pulses, Vibrations, Waves.

Unisons, 208.

VANBEEK and olhers, determination of velocity of sound by, 13. 16.

Vapour, propagation of sound in, 80, 82. 87. At their maximum
pressure, 88. Aqueous in air, iis ett'tcl on sound, 109.

Velocity of sound, 4, 5, et seq. Influence of wind on, 5. Various
determinations of, 6, 7. 9. 16. Standard velocity at

freezing tem-

perature, and mean pressure
= 1089 42 leet. Compared with

the earth's diurnal motion, 19. Same for all sounds, 23. Uni-

form, 65. Its analytical expressions, 65. 68. Eflect of heat deve-

loped, 69. Corrections for temperature, &c 68. Numerical
value computed from theory, 78. In sea-water, 93. In fresh

95 In other liquids, 103. In cast iron and solids, 114. In

airs, or gases, 195

f-'r/ocity
of waves running along a tended cord, 152.

Central legments of a string, 162. Of a pipe, 18^ 189.

reflexion of a pulse, 179. Of bars, rods, and plates, V. Part II.

Various modes of in solids, 267. Longitudinal, of a rod, 268.

Transverse, 269. Of plales, see Plates. Communication
of,

Part III. Methods of communicating in any required plane, 280.
Of a fiddle-string how communicated to its support, 281. Of the

sounding-board bow observed. 282. Tangential, 291. How dis-

tinguished, 291. Of long rectangular rods, 292. Normal, 291.

Oblique, and their passage iu'o normal and tangential, 308. Of a

system of rods, discs, &c. 305, 306. Of membranes, 307, et
seq.

Of masses of air, 318. 333. Of an inelastic membrane how pro-
duced, 321. Forced, general theorem respecting, 323. Of air

in a chamber, or gallery, 334. In pipes, explored by a membrane,
337. Their communication through liquids, 340, et seq. Of ir

in cavities with flexible sides, 354.

iolin, Savart's improvements on its construction, 288. Communi-
cation of vibration of strings to the body, 281.

Sound-post ot
281.
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Sound jicf, human, distances at which audible, 21. Organs of, 346.

Mode of its production, 352 357.

Volcanoes, noises heard in their eruptions explained, 40.

f-'owel', enumeration of, 360. Willis, Kratzenstein, and Kempelen'.s
researches on, 369, ttseq.

{'oxhuinami organ-pipe, 206.

Walts, conveyance of sounds along, 26.

WALKER, determination of velocity of sound by, 6.

H'altr, sounds well conveyed over, 21. 26. Compressibility of, 89.

Propagation of sound through, IV. passim. Velocity of sound in,

96. Hearing unuer, 90. Curious phenomena obsened in trans-

mission of sound by, 101. Heat developed by its compression,
100. Non-divergenie of sound from straight line in, 102. Sirsne

sounding in, 143.

Wiirc, in still water how propagated, 42. Wha>, 44. In a field of

corn, 45. Their velocity distinguished (mm that of their mole-

cules, 46. Their breadth, 47. Various species of, 48. Sonorous
how propagated in, 49. Along a cord, 149, &c.

WEHEK, his researches on waves, and on reed-pipes, 171.377, el

passim. His experiment on a tuning-fork, 117.

HW/, Caiisbrook, echo in, 25.

Whispering Gallery. See St. Paul's.

Wn.i.ic, Mr., his researches on the vowel sounds, ,369, ft ley. On
sounds of reed-pipes, 370.

IVind, its influence on the propagation of sound, 9 11.

Wire, a good conductor of soun<l, 113.

WOI.I.ASTON. on the limits of hearing, 222, 320.

Wuud, a good conductor of sound, 1 12.

Woodstock Park, echo in, 28.

Written characters to express sounds, 359.

Yoi'Nc, Dr., his experiments and discoveries pattim. His experi-
ment on the sound of a tuning-fork, 117. Its explanation, 332.

Inde.
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ERRATA IN THE ESSAY ON SOUND

Art.

2,

2,

104,

117,

151,

151,

178,

186,

19.%

209,

212,

219,

223,

224,

235,

236,

238,

Line.

5,

15,

10*

11,

16,

4,

7, and margin,

7,

10,

1,

4,

8,

7,

10,

17,

3,

Correction.

Hauksbee.
Hauksbee.

quick and copious,

positions of the axis.

<c
_|_

a t > .

condition,

column.

fig. 17.

whose,

terms.

combination,

impulses.
the number, extent,

sense r

Error.

Hanksbee,

Hanksbee,
free,

axes,
x -)-

a t =: ,

conditon,

volume,

fig. 16,

where,

times,

combinations,

impulse,
the extent,
Sound sense ?

Nevertheless spiders hear the sound of music. Vide Latreille's anecdote of PelissoD, who
tamed one in the Bastille,

more, most,

vibrations, vibrations of the quicker,

figure figure 31.

ADDITIONAL ERRATA IN THE ESSAY ON LIGHT.
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LIGHT.

PART I.

Of unpolarized Light.

I. INTRODUCTION.

Light. IN this article we propose to give an account of the properties of light ; of the physico-mathematical laws Part I

' which regulate the direction, intensity, state of polarization, colours, and interferences of its rays ; to state the -~~-^-~~
theories which have been advanced for explaining the complicated and splendid phenomena of optics; to

explain the laws of vision, and their application, by the combined ingenuity of the philosopher and the artist, to

the improvement of our sight ; and the examination and measurement of those objects and appearances which,

from their remoteness, minuteness, or refinement, would otherwise elude our senses.

The sight is the most perfect of our senses ; the most various and accurate in the information it affords us ;

and the most delightful in its exercise. Apart from all considerations of utility, the mere perception of light is

in itself a source of enjoyment. Instances are not wanting of individuals debarred from infancy by a natural

defect from the use of their eyes, whose highest enjoyment still consisted in that feeble glimmering a strong
sunshine could excite in their obstructed organs ;

but when to this we join the exact perception of form and

motion, the wonderous richness and variety of colour, and the ubiquity conferred upon us by just impressions of

situation and distance, we are lost in amazement and gratitude.
What are the means and mechanism by which we receive this inestimable benefit ? Curiosity may well prompt

the inquiry, but a more direct interest urges us to pursue it. Knowledge is power ;
and a careful examination of

the means by which we see, not only may, but actually has led us to the discovery of artificial aids by which

this particular sense may be strengthened and improved to a most extraordinary degree ; giving to man at once

the glance of the eagle, and the scrutiny of the insect by which the infirmities of age may be deferred or

remedied nay, by which the sight itself when lost may be restored, and its blessings conferred after long years
of privation and darkness, or on those who from infancy have never seen. But as we proceed in the inquiry
we shall find inducements enough to pursue it from purely intellectual motives. A train of minute adaptation
and wonderful contrivance is disclosed to us, in which are blended the utmost extremes of grandeur and

delicacy ; the one overpowering, the other eluding, our conceptions. In consequence of those peculiar
and singular properties which are found to belong to light in its various states of polarization, it affords

to the philosopher information respecting the intimate constitution of bodies, and the nature of

the material world, totally distinct from the more general impressions of form, colour, distance, &c.

which it conveys to the vulgar. Its notices, it is true, in this respect, are addressed rather to the intellect

than the sense
; but they are not on that account less real, or less to be depended on. Polarized light

is, in the hands of the natural philosopher, not merely a medium of vision ;
it is an instrument by which he

may be almost said to feel the ultimate molecules of natural bodies, to detect the existences and investigate the

nature of powers and properties ascertainable only by this test, and connected with the more important and
intricate inquiries in the study of nature.

The ancients imagined vision to be performed by a kind of emanation proceeding from the eye to the object
seen. Were this the case, no good reason could be shown why objects should not be seen equally well in the

dark. Something more, however, is necessary for seeing than the mere presence of the object. It must be in a

certain state, which we express by saying that it is luminous. Among natural bodies some possess in themselves

the property of exciting in our eyes the sensation of brightness, or light ;
as the sun, the stars, a lamp, red-hot

iron, &c. Such bodies are called self-luminous ; but by far the greater part possess no such property. Such
bodies in the dark remain invisible, though our eyes are turned directly towards them ; and are therefore termed

dark, non-luminous, or opaque, though this word is also used occasionally to express want of transparency. All

Opaque bo- bodies, however, though not luminous of themselves, nor capable of exciting any sensation in our eyes, become.
die. become so on being placed in the presence of a self-luminous body. When a lamp is brought into a dark room, we see,
luminous m not oll|y jne ialnp ) 1^,4 an the other bodies in the room. They are all, so long as the lamp remains, rendered

1* luminous, and are in their turn capable of illuminating others. Thus a sunbeam passing into a darkened room

nous body,
renders luminous, and therefore visible, a sheet of paper on which it falls ; and this, in its turn, will in like

manner illuminate the whole apartment, and render visible every object it contains, so long as it continues to

receive the sunbeam. The moon and planets are opaque bodies ;
but those parts of them on which the sun

shines become for the time luminous, and perform all the offices of self-luminous bodies. Thus we see, that the

communication which we call light, subsists not only between luminous bodies and our eyes, but between
luminous and non-luminous bodies, or between luminous bodies and each other.

2Y*
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Light. Many bodies possess the property of intercepting this peculiar intercourse between luminous bodies and our Part L

t

^~~v~m^ eyes, or other bodies. A screen of metal interposed between the sun and our eyes prevents our seeing it ;
^ -v~~

T. interposed between the sun and a sheet of white paper, or other object, it casts a shadow on such object: i.e.

Opaque bo- renders it non-luminous. By this power of bodies to intercept light, we learn that the communication which
~~

n Hht const'tutes ^ takes place in straight lines. We cannot see through a bent metallic tube, nor perceive the least

glimpse of light through three small holes in as many plates of metal placed one behind the other at a

distance, unless the holes be situated exactly in one straight line. Moreover, the shadows of bodies, when
Light ema-

fairly received on smooth surfaces perpendicular to the line in which the luminous body lies, are similar in

btdaht* figure to the section of the body which produces them, which could not be, except the light were commu-

lines
nicated in straight lines from their edges to the borders of the shadow. We express this property by saying
that light emanates, or radiates, or is propagated from luminous bodies in straight lines ; by which expressions

nothing more is to be understood than the mere fact, without in any way prejudging the question as to the

in all di- intimate nature of this emanation. Moreover, it emanates from them in all directions, for we see them in all

rections, situations of the eye, provided nothing intervene to intercept the light. This is the essential distinction

between luminous bodies and optical images ; from which, as we shall see, light emanates only in certain

directions. Whether it emanates equally in all directions will be considered farther on.

6. Light also radiates from every point (at least from every physical point) of a luminous body. This may,
nd from perhaps, be regarded as a truism ; for those points of a luminous body from which (as from the spots in the
lerypnysi- sun) no light emanates, are, in fact, non-luminous, and the body is only partially so; the figure of the spots is

a luminous'
on 'v seen> because it is also necessarily that of the luminous surface which surrounds them. Still it should

surface. be borne in mind, for reasons which will appear when we come to speak of the formation of images. It is

possible (nay, probable) that a luminous surface, such as that of the flame of a candle, may consist only of an
immense but finite number of luminous points, surrounded by non-luminous spaces ; but it is not ocular

demonstration this idea admits of; and it is sufficient for our purpose that, so far as our senses inform us, every

physical point of a luminous surface is a separate and independent source of light. We may magnify in a

telescope the sun's disc to any extent, and intercept all but the very smallest portions of it, (spots excepted,)

yet the visibility of one part is no way impaired by the exclusion of the rest. In this sense the proposition
is no truism, but an important fact, of which we shall hereafter trace the consequences.

7^ When the sun shines through a small hole, and is received on a white screen behind at a con-

siderable distance, we see a round luminous spot, which enlarges as the screen recedes from the hole. If

we measure the diameter of this image at different distances from the hole, it will be found that (laying
out of the question certain small causes of difference not now in contemplation) the angle subtended by
the spot at the centre of the hole is constant, and equal to the apparent angular diameter of the sun. The
reason of this is obvious

; the light from every point in the sun's disc passes through the hole, and continues

its course in a right line beyond it till it reaches the screen. Thus every point in the sun's disc has a

point corresponding to it in the screen ; and the whole circular spot on the screen is, in fact, an image or

representation of the face of the sun. That this is really the case, is evidently seen by making the expe-
riment in the time of a solar eclipse, when the image on the screen, instead of appearing round, appears
horned, like the sun itself.* In like manner, if a pin-hole in a card be held between a candle and a piece
of white paper in a dark room, an exact representation of the flame, but inverted, will be seen depicted on
the paper, which enlarges as the paper recedes from the hole ; and if in a dark room a white screen be

extended at a few feet from a small round hole, an exact picture of all external objects, of their natural

colours and forms, will be seen traced upon the screen ; moving objects being represented in motion, and

Fig. 6. quiescent ones at rest. (See fig. 6.) To understand this, we must recollect that all objects exposed to light

are luminous ; that from every physical point of them light radiates in all directions, so that every point in

the screen is receiving light at once from every point in the object. The same may be said of the hole ;

but the light that falls on the hole passes through it, and continues its course in straight lines behind.

Thus the hole becomes the vertex of a conoidal solid prolonged both ways, having the object tor its

base at one end, and the screen at the other. The section of this solid by the screen is the picture we see

projected on it, which must manifestly be exactly similar to the object, and inverted, according to the simplest
rules of Geometry.

8. Now if in our screen receiving (suppose) the image of the sun we make another small hole, and behind

it place another screen, the light falling on the space occupied by this hole will pass beyond it, and reach

the other screen; but it is clear that it will no longer dilate itself, after passing through the second hole,

and form another image of the whole sun, but only an image of that very minute portion of the sun which

corresponds to the space occupied in his image on the first screen by the hole made there. The lines

bounding the conoidal surface will'in this case have much less divergency, and, if the holes be small

enough, and very distant from each other, will approach to physical lines, and that the nearer, as the holes

Fig. 7. are smaller and their distance greater. (See fig. 7.) If we conceive the holes reduced to mere physical points,

these lines form what we call rays of light. Mathematically speaking, a ray of light is an infinitesimal

pyramid, having for its vertex a luminous point, and for its base an infinitely small portion of any surface

illuminated by it, and supposed to be filled with the luminous emanation, whatever that may be. This

pyramid, in homogeneous media, and when the course of the ray is not interrupted, has, as we have seen,

* In the eclipse of September 7, 1820, this horned appearance vas very striking in the luminous interstices between the shadows of

small irregular objects, as the leaves of trees. &c. It was noticed by those who had no idea of its cause.
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Jjght. its sides straight line* If cases should occur (as they will) when the course of the light is curved, or sud- Part

v -V ^
denly broken, we may still conceive such a pyramid having curved or broken sides to correspond ; or we ^->,-

may (for brevity's sake) substitute for it a mere mathematical line, straight, curved, or broken, as the case

may be.

9. Light requires time for its propagation. Two spectators at different distances from a luminous object

Velocity of
suddenly disclosed, will not begin to see it at the same mathematical instant of time. The nearer will see

it sooner than the more remote ; in the same way as two persons at unequal distances from a gun hear

the report at different moments. In like manner, if a luminous object be suddenly extinguished, a spectator
will continue to see it for a certain time afterwards, as if it still continued luminous, and this time will be

greater the farther he is from it. The interval in question is, however, so excessively small in such distances

as occur on the earth's surface, as to be absolutely insensible ; but in the immense expanse of the celestial

regions the case is different. The eclipses and emersions of Jupiter's satellites become visible much sooner

(nearly a quarter of an hour) when the earth is at its least distance from Jupiter than when at its greatest.

Light then takes time to travel over space. It has a finite, though immense velocity, viz. 192500 miles per
second ; and this important conclusion, deduced by calculation from the phenomenon just mentioned, and

which, if it stood unsupported, might startle us with its vastness, and incline us to look out for some other

Aberration mode of explanation, receives foil confirmation from another astronomical phenomenon, the aberration of
of light. light, which (without entering into any close examination of the mode in which vision is produced) may be

explained as follows :

10. Let a ray of light from a star S, at such a distance that all rays from it maybe regarded as parallel, be

received on a small screen A, having an extremely minute opening A in its centre ; and let that ray which

Fig 1. passes through the opening be received at any distance A B, on a screen B perpendicular to its direction;
and let B be the point on which it falls, the whole apparatus being supposed at rest. If then we join the

points A, B by an imaginary line, that line will be the direction in which the ray has really travelled, and
will indicate to us the direction of the star ; and the angle between that line and any fixed direction (that
of the plumb-line, for instance) will determine the star's place as referred to that fixed direction. For sim-

plicity, we will suppose this angle nothing, or the star directly vertical ; then the point B on which the ray
falls will be precisely that marked by a plumb-line let fall from A ; and the direction in which we judge the

star to lie will coincide precisely with the direction of gravity. Such will be the case, supposing the earth,

the spectator, and the whole apparatus at rest ; but now suppose them carried along in a horizontal direction

A C, B D, with a uniform and equal velocity, of whose existence they will therefore be perfectly insensible, and
the purnb-line will hang steadily as before, and coincide with the same point of the screen. At the moment
when the ray S A from the star passes through the orifice A, let A, B be the respective places of the orifice,

and the point on the screen vertically below it. When the ray has passed the orifice, it will pursue its course

in the same straight line S A B as before, independent of the motion of the apparatus, and in some certain

(distance
A B \=

;
, ,. ,

= t I will reach the lower screen. But in this time the aperture, screens, and
velocity of light /

plumb-line will have moved away through a space
/ earth's velocity \A a = B 6 I = t x velocity of motion = A B x
V velocity of light/

At the instant, then, that the ray impinges on the lower screen, the -plumb-line will hang, not from A on B, but
from a on b ; and a being the real orifice, and B the real point of incidence of the light on the screen, the

spectator, judging only from these facts, will necessarily be led to regard the ray as having deviated from its

vertical direction, and as inclining from the vertical, in the direction of the earth's motion through an angle whose

A a earth's velocity
tangent is - or

A B velocity of light

'

The eye is such an apparatus. Its retina is the screen on which the light of the star or luminary falls,
and we judge of its place only by the actual point on this screen where the impression is made. The
pupil is the orifice. If, the eye preserving a fixed direction, the whole body be carried to one side with a

velocity commensurate to that of light, before the rays can traverse the space which separates the pupil from
the retina, the latter will have shifted its place ; and the point which receives the impression is no longer
the same which would have received it had the eye and spectator remained at rest

;
and this deviation is the

aberration of light.

Every spectator on the earth participates in the general motion of the whole earth, which in its annual
orbit about the sun is very rapid, and though far from equal to that of light, is by no means insensible,

compared to it. Hence the stars, the sun, and planets, all appear removed from their true places in the
direction in which the earth is moving.

13. This direction is varying every instant, as the earth describes an orbit round the sun. The direction therefore
of the apparent displacement of any star from its true situation continually changes, i. e. the apparent place
describes a small orbit about the true. This phenomenon is that alluded to. It was noticed as a fact by
Bradley, while ignorant of its cause, that the stars appear to describe annually small ellipses in the heavens
of about 40" in diameter. The discovery of the velocity of light by the eclipses of Jupiter's satellites, then

recently made by Roemer, however, soon furnished its explanation. Later observations, especially those of

Brinkley and Struve, have enabled us to assign, with great precision, the numerical amount of this inequality,
and thence to deduce the velocity of light, which by this method comes out 191515 miles per second, differing
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Light, from the former only by a two hundredth part of its whole quantity. This determination is certainly to be Part I.

v
v-^*' preferred.

v y
14. But this is not the only information respecting light which astronomical observations furnish. We learn

Light uni- from them also,
" That the light of the sun, the planets, and all the fixed stars, travels with one and the same

form in its
velocity." Now as we know these bodies to be at different and variable distances from us, we hence conclude

[on '

that the velocity of light is independent of the particular source from which it emanates, and the distance

over which it has travelled before reaching our eye.
15. The velocity of light, therefore, in that free and perhaps void space which intervenes between us and the

planets and fixed stars, cannot be supposed other than uniform ; and the calculations of the eclipses of Jupiter's
satellites, and the places of the distant planets made on this supposition agreeing with observation, prove it ti>

be so. In entering such media as it traverses, when arrived within the limits of the atmospheres of the earth
and other planets, we shall find reason hereafter to conclude that its velocity undergoes a change ; but, at

all events, we have no reason to suppose it to differ in different parts of one and the same homogeneous
medium.

16. The enormous velocity here assigned to light, surprising as it may seem, is among those conclusions which

Velocity of rest on the best evidence that science can afford, and may serve to prepare us for other yet more amazing
light illus- numerical estimates. It is when we attempt to measure the vastness of the phenomena of nature with our

eum ari^
fee^'e scale of units, such as we are conversant with on this our planet, that we become sensible of its insig-

solls
nificance in the system of the universe. Demonstrably true as are the results, they fail to give us distinct con-

ceptions ; we are lost in the immensity of our numbers, and must have recourse to other ways of rendering
them sensible. A cannon ball would require seventeen years at least to reach the sun, supposing its velocity
to continue uniform from the moment of its discharge. Yet light travels over the same space in 7J minutes.
The swiftest bird, at its utmost speed, would require nearly three weeks to make the tour of the earth. Light
performs the same distance in much less time than is required for a single stroke of his wing ; yet its rapidity
is but commensurate to the distances it has to travel. It is demonstrable that light cannot possibly arrive at

our system from the nearest of the fixed stars in less than five years, and telescopes disclose to us objects

probably many thousand times more remote.

But these are considerations which belong rather to astronomy than to the present subject ; and we will,

therefore, return to the consideration of the phenomena of emitted light.

II. Of Photometry.

,. ;. . Of these, one of the most striking is certainly the diminution of the illuminating power of any source of light,

nishes asth'e arising from an increase of its distance. We see very well to read by the light of a candle at a certain distance :

distance of remove the candle twice, or ten times as far, and we can see to read no longer.
us source The numerical estimation of the degrees of intensity of light constitutes that branch of optics which is termed
increases.

Photometry. ($>, fitTpw.)
If light be a material emanation, a something scattered in minute particles in all directions, it is obvious

!nversei

nS

'as
tnat tne same quantity which is diffused over the surface of a sphere concentric with the luminous points, if it

the square
continue its course, will successively be diffused over larger and larger concentric spherical surfaces

; and that its

of the intensity, or the number of rays which fall on a given space, in each will be inversely as the whole surfaces over
distance. which it is diffused ; that is, inversely as the squares of their radii, or of their distances from the source of light.

Without assuming this hypothesis, the same thing may be rendered evident as follows. Let a candle be placed
behind an opaque screen full of small equal and similar holes ;

the light will shine through these, and be inter-

cepted in all other parts, forming a pyramidal bundle of rays, having the candle in the common vertex. If a

sheet of white paper be placed behind this, it will be seen dotted over with small luminous specks, disposed

exactly as the holes in the screen. Suppose the holes so small, their number so great, and the eye so distant

from the paper that it cannot distinguish the individual specks, it will still receive a general impression of bright-

ness ; the paper will appear illuminated, and present a mottled appearance, which, however, will grow more

uniform as the holes are smaller, and closer, and the eye more distant ; and if extremely so, the paper will

appear uniformly bright. Now, if every alternate hole be stopped, the paper will manifestly receive only half

the light, and will therefore be only half as much illuminated, and creteris paribits, the degree of illumination

is proportional to the number of the holes in the screen, or to the number of equally illuminated specks on

its surface, i. e. if the specks be infinitely diminished in size, and infinitely increased in number, to the

number of rays which fall on it from the original source of light.
'9 Let a screen, so pierced with innumerable equal and very small holes in the manner described, be placed

at a given distance (1 yard) from a candle; and in the diverging pyramid of rays behind it place a small

piece of white paper of a given area, (I square inch, for instance,) so as to be entirely included in the pyramid.
It is manifest that the number of rays which fall on it will be fewer as it is placed farther from the screen,

because the whole number which pass the screen are scattered continually over a larger and larger space
Thus were it close to the screen it would receive a number equal to that of the holes in a square inch of the

screen, but at twice the distance (2 yards) from the candle this number will be spread over four square inches

by their divergence, and the paper can therefore receive only a fourth part of that number. If, therefore,

its illumination when close to the screen be represented by I, it will at twice the distance be only, and
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t_j -*_- at D times the assumed unit of distance, its illumination will be , the areas of sections of a pyramid s
IJ

being as the squares of their distances from the vertex.

20. As this reasoning is independent of the number and size of the holes, and therefore of the ratio ot the

sum of their areas to that of the unperforated part of the screen, we may conceive this ratio increased ad

infinitum. The screen then disappears, and the paper is freely illuminated. Hence we conclude that when
a small plane object of given area is freely and perpendicularly exposed to a luminary at different distances,

the quantity of light it receives, or the degree of its illumination, is inversely as the squares of its distance

from the luminary, cateris paribus.

21. If a single candle be placed before a system of holes in a screen, as before, and the rays received on a

Illumination screen at a given distance, (1,) the degree of illumination may be represented by a given quantity, I. Now
proportional jf a second candle be placed immediately behind the other, and close to it, so as to shine through the same
D the num- no ]eS) the illumination of the screen is perceived to be increased, though the number and size of the illu-

tensity of'""
minated points on it be the same. Each point is then said to be more intensely illuminated. Now, (the

the rays; eye being all along supposed so distant, and the illuminated points so small as to produce only a general
sense of brightness, without distinguishing the individual points,) if the one candle be shifted a little sideways,
without altering its distance, the illumination of the paper will not be altered. In this ease the number of

illuminated points is doubled, but each is illuminated with only half the light it had before. The same holds

for any number of candles. Hence we conclude that the illumination of a surface is constant when the

number of rays it receives is inversely as the intensity of each, and that consequently the degree of illumination

is proportional to the number and intensity of the rays jointly.

22. Now if for any number of candles placed side by side we substitute mere physical luminous points, each

and to the of these will be the vertex of a pyramid of rays, and the number of equally illuminated points in the paper,
area of the. anfj therefore illuminations will be proportional to the number of such points. If we conceive the number

atln? of these increased, and their size diminished ad infinitum, so as to form a continuous luminous surface, their

number will be represented by its area. Hence the illumination of the paper will be, ctsteris paribus, as the

area of the illuminating surface, (supposed of uniform brightness.)

2.3. Uniting all these circumstances, we see that when a given object is enlightened by a luminous surface of

General ex- small but sensible size, the degree of its illumination is proportional to the

area of the luminous surface x intensity of its illuminating power

square of the distance of the surface illuminated.

2t. The foregoing reasoning applies only to the case when the luminous disc is a small portion of a spherical

Oblique il- surface concentric with the illuminated object, in which case all its points are equidistant from it, and all the
lumination.

light falls perpendicularly on the object. When the object is exposed obliquely, conceive its surface divided

into equal infinitely small portions, and regard each of them as the base of an oblique pyramid, having its

vertex at any one point of the luminary ; then will the perpendicular section of this pyramid at the same
distance be equal to the base x sine of inclination of the base to the axis, or the element of the illuminated

surface x by the sine of the inclination of the ray. But the number of rays which falls on the base is evidently

equal to those which fall on the section, and being spread over a larger area their effect will be to illuminate it

less intensely in the proportion of the area of the section to that of the base, i. e. in the proportion of the sine of

inclination to radius. But the illumination of the section is equal to the

area of the luminary x intrinsic brightness

(distance)
5

therefore that of the elementary surface equals this fraction multiplied by the sine of the rays' inclination ;

or, calling A the area of the luminary, I its intrinsic brightness, D its distance, and the inclination

of the ray to the illuminated surface
'

will represent the intensity of illumination

25. If L represent the absolute quantity of light emitted by the luminary in a given direction, which may be called

its absolute light, we have L = A x I, provided the surface of the luminary be perpendicular to the given
direction. If not, A must represent the area of the section of a cylindroidal surface bounded by the outline of

the luminary, and having its axis parallel to the given direction ; consequently
'

; represents in this case

the intensity of illumination of the elementary surface.

To illustrate the application of these principles we will resolve the following

PROBLEM.

26. A small white surface is laid horizontally on a table, and illuminated by a candle placed at a g-iven (hori-

zontal) distance : What ought to be the height of the flame, so as to give the greatest possible illumination to the

surface ?

g- 2 Let A be the surface, B C the candle. Put AB = a.AC = D; BC= A/D J a 4
. Then, since the

sin C A B C B \/D s a*
illumination of A is, ceetens panbus, as , or as - = (= F) we have to make this

VOL. IV. 2 Z
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Light, quantity a maximum ; consequently d F = o, or d . F 1J = o, that is,

4 e

/"a-
D = a . \f

- - and B C = 2 = - - = 0.707 X A B.
V 2

27. Definition. The apparent superficial magnitude, or the apparent magnitude of any object, is a portion of a

Apparent spherical surface described about the eye as a centre, with a radius equal to 1, and bounded by an outline

nagnitude being the intersection of this spherical surface with a conoidal surface, having
1 the object for its base and the

defined. eye jor ;ts vertex.

28. Hence the apparent superficial magnitude of a small object is directly as the area of a section (perpendi-
cular to the line of sight) of this conoidal surface, at the place of the object, and inversely as the square of its

distance. If the object be a surface perpendicular to the line of sight, this ratio reduces itself to the area

of the object divided by the square of its distance.

29. Definition. The real intrinsic brightness of a luminous object is the intensity of the light of each physical

Real intrin- point in its surface, or the numerical measure of the degree in which such a point (of given magnitude)
sic bright- would illuminate a given object at a given distance, referred to some standard degree of illumination as a
ness defined. un;t When we speak simply of intrinsic brightness, real intrinsic brightness is meant.

30. Carol. 1. Consequently the degree of illumination of an object exposed perpendicularly to a luminary is as

the apparent magnitude of the luminary and its intrinsic brightness jointly.
31. Carol. 2. Conversely, if these remain the same, the degree of illumination remains the same. For example,

the illumination of direct sunshine is the same as would be produced by a circular portion of the surface

of the sun of one inch in diameter, placed at about 10 feet from the illuminated object, and the rest of the sun

annihilated ; for such a circular portion would have the same apparent superficial magnitude as the sun itself

This will serve to give some idea of the intense brightness of the sun's disc.

32. Definition. The apparent intrinsic brightness of any object, or luminary, is the degree of illumination of

Apparent its image or picture at the bottom of the eye. It is this illumination only by which we judge of brightness.
intrinsic A. luminary may in reality be ever so much brighter than another

;
but if by any cause the illumination of its

brightness. jmage jn tne eye be enfeebled, it will appear no brighter than in proportion to its diminished intensity. Thus
we can gaze steadily at the sun through a dark glass, or the vapours of the horizon.

Definition. The absolute light of a luminary is the sum of the areas of its elementary portions, each multi-
Absolute

plied by its own intrinsic brightness ; or, if every part of the surface be equally bright, simply the area multi-
''

() plied by the intrinsic brightness. It is, therefore, the same quantity as that above represented by L.

Definition. The apparent light of an object is the total quantity of light which enters our eyes from it,

Apparent
however distributed on the retina.

light In common language, when we speak of the brightness of an object of considerable size, we often mean its

defined.
apparent intrinsic brightness. When, however, the object has no sensible size, as a star, we always mean its

3*>-
apparent light, (or, as it might be termed, its apparent absolute brightness,) because, as we cannot distinguish

such an object into parts, we can only be affected by its total light indiscriminately. The same holds good with

all small objects which require attention to distinguish them into parts. Optical writers have occasionally fallen

into much confusion for want of attending to these distinctions.

36. As we recede from a luminary, its apparent light diminishes, from two causes ; first, our eyes, being of a given
Diminution g jze> present a given area to its light, and therefore receive from it a quantity of light inversely as the square of
"' aPI'arent

tne distance ; secondly, in passing through the air, a portion of the light is stopped, and lost from its want of

distance perfect transparency. This, however, we will not now consider. In virtue of the first cause only, then, the

apparent light of a luminary is inversely as the square of its distance, and directly as its absolute light.

37. The apparent intrinsic brightness is equal to the apparent light divided by the area of the picture on the retina

Objects ap- of our eye. But this area is as the apparent superficial magnitude of the luminary, that is, as its real area A
pear equally ^
bright at all divided by the square of its distance D, or as . Moreover, the apparent light, as we have just seen, is as
distances. D 2

A I
where I is the real intrinsic brightness. Consequently the apparent intrinsic brightness is proportional to

- -i- , or simply to I, and is independent on A or D. The apparent intrinsic brightness is, therefore,

the same at all distances, and is simply proportional to the real intrinsic brightness of the object. This con-

In what elusion is usually announced by optical writers by saying, that objects appear equally bright at all distances,

sense to be which must be understood only of apparent intrinsic brightness, and the truth of which supposes also that no loss

understood, of light takes place in the media traversed.

38. The angle of emanation of a ray of light from a luminous surface is the inclination of the ray to the surface at

Angle of the pO in t, from which it emanates.

A question has been agitated among optical philosophers, whether the intensity ot' the light of luminous bodies
5

"39 be the same in all directions ;
or whether, on the other hand, it be not dependent on the angle of emanation.

Euler, in his Reflexions sur les divers degrts de la lumiere du Soliel, $c. Berlin, Me'm. 1750, p. 280, has adopted
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Light, the former principle. Lambert, on the other hand, Photometria, p. 41, contends that the intensity of the light,
fart I.

^ -y^ or density of the rays, issuing- from a luminous surface in any direction is proportional to the*me.of the
v
"^~\^'~-'

Question angle of emanation. If we knew the intimate nature of light, and the real mechanism by which bodies emit

cians^-e's-'

1

an<^ re^ect it, ll might be possible to decide this question a priori. If, for instance, we were assured that

pecting the ''ght emanated strictly and solely from the molecules situated on the external surface of bodies, and that the

dependence emanation from each physical point of the surface were totally uninfluenced by the rest of the molecules of
f the emis- which the body consists, and dispersed itself equally in all directions, then, since every point of a plane surface

o'n "the anMe
'S v*s"3'e to an eye wherever situated above it, and each is supposed to send the same number of rays to the

of emaua- eye m an oblique as in a perpendicular situation, the total light received from a given area of the surface in

tion. the eye ought to be the same at all angles of emanation. But as the apparent magnitude of this area is as

the sine of its inclination to the line of sight, i. e. of its angle of emanation, this light is distributed over a less

apparent area
;
and therefore its intensity, or the apparent brightness of the surface, should be increased in the

inverse ratio of the sine of the angle of emanation. On the other hand, if, as there is every reason to suppose,
light emanates, not strictly from the surfaces of bodies, but from sensible depths within their substance

;
if the

surfaces themselves be not true mathematical planes, but consist of a series of physical points retained in their

places by attractive and repulsive forces, and if the intensity of emanation of each of these points depend in any
way on its relation to the points adjacent, there is no reason, a priori, to suppose the equal emanation of

light in all directions; and to find what its law really is, we must have recourse to direct observation.

Astronomy teaches us that the sun is a sphere. Hence the several par's of its visible disc appear to us
under every possible angle of inclination. Now if we examine the surface of the sun with a telescope, the
circumference certainly does not appear brighter than the centre. But if the hypothesis of equal emanation were
correct, the brightness ought to increase from the centre outwards, and should become infinite at the edges, so
that the disc ought to appear surrounded by an annulus of infinitely greater splendour than the central parts. To
this it may, however, be justly objected, that as the surface of the sun is obviously though generally spherical,
yet full of local irregularities, every minute portion of it may be regarded as presenting every possible variety
of inclination to our eye ; and the brightness of every part being thus an average of all the gradations of which
it is susceptible, should he alike throughout.

40. Bouguer, in his Traite d'Optique, Paris, 1760, p. 90, states himself to have found, by direct comparison, that
the central portions of the disc of the sun are really much more luminous than the borders. A result so extra-

ordinary, however, and so apparently incompatible with all we know of the constitution of the sun and the mode
of emission of light from its surface, would require to be verified by very careful and delicate reexamination. If
found correct, the only way of accounting for it would be to suppose a dense and imperfectly transparent
atmosphere of great extent floating above the luminous clouds which form its visible surface. This is certainly
possible, but our ignorance on the subject renders it unphilosophiral to resort to a body so little within our reach
for the establishment of any fundamental law of emanation. The objection above advanced, it will be observed,
applies with nearly the same force to all surfaces. If we examine a piece of white paper with a magnifier,
we shall find its texture to be in the last degree rough and coarse, presenting no approach to a plane; and
so of all surfaces rough enough to reflect light in all directions.

41 However, as it is only with such luminous surfaces as occur in nature that we have any concern, we must
Surfaces take their properties as we find them ; and, waiving all consideration of what would be the law of emanation
appear from a mathematical surface, it may be stated as a result of observation, that luminous surfaces appear equally

b?[

U

ht
y
at all

br'ght at a!l a"?/ f inclinaiio>l to the line of sight.

angles

d may ^e tried with a surface of red-hot iron ; its apparent intrinsic brightness is not sensibly increased

by inclining it obliquely to the eye.

42. If we take a smooth square bar of iron, or better, of silver, or a polished cylinder of either metal, heated

Experimen- to redness, into a dark room, the cylinder will appear equally bright in the middle of its convexity next the
tal proof of

eye, and at the edges, and cannot be distinguished at all from a flat bar ; and the square bar, when so pre-

na^ion
sented as to have two of its sides at very different angles to the line of sight, will still appear of perfectly
equable brightness, nor can the angle separating the adjacent sides be at all discerned ; and if the whole
bar be turned round on its axis, the motion can only be recognised by an alternating increase and decrease
of its apparent diameter, according as it is seen alternately diagonally and laterally, its appearance being
always that of a flat plate perpendicularly exposed to the eye. These and similar experiments with surfaces

artificially illuminated, which the reader will have no difficulty in imagining and making, as well as those
recorded by Mr. Ritchie in the Edinburgh Philosophical Journal, are sufficient to establish the principle
announced in Article 42, to which (for the reasons already mentioned) the observation of Bou<nier on the

unequal brightness of the sun's disc offers no conclusive objection.
43. Hence it follows, that the surfaces of luminous bodies, at least their ultimate molecules, do not emit light

Law of trie with equal copiousness in all directions; but that, on the contrary, the copiousness of emission, in any direction,
oblique js as (fa sjne Of ffa a7( /e Of emanation from the surface.
emanation * J Jemanation

of light.

PROBLEM.

To determine the intensity of illumination of a small plane surface any how exposed to the rays from a

luminary of any given size, figure, and distance ; the luminary being supposed uniformly bright in every part.
Conceive the surface of the luminary divided into infinitesimal elementary portions, of which let each be
regarded as an oblique section of a pyramid, having for its vertex the centre of the infinitely small illuminated

2z 2
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Light, plane B, fig. 3. Let P Q be any such portion, and let the pyramid B P be continued till it meets the surface Part L

v -YT' f the heavens in p, there projecting the surface PQ into the areola pq, and let the whole luminary C D E F ^ <*
Illumination ke jn |j]je ,,lanner projected into the disc c d ef. Let T Q be a section of the pyramid A P Q, perpendicular

by any*

*
to ' ts ax 's - Then, first, the plane B will be illuminated by the element PQ, just as it would be by a surface

luminary
if Q equally bright, in virtue of the principle just established. Hence P Q is equivalent to an equally bright

investigated, surface IT Q. Again, since the apparent magnitude of TT Q seen from B is the same with that of p q, the area
Fig- 3.

,,-Q is equivalent to an equally bright area p q placed at p q, (Art. 29, 30, 31, Cor. 1, 2.) P Q is, therefore,

equivalent to pq. And since the same holds good of every other elementary portion of the surface, and the total

light received by B is the sum o the lights it receives from all the elements of the luminary, the whole
surface CDEF must be equivalent to its projection cd ef.

45- Hence the illumination of B depends, not at all on the real, but only on the apparent figure and magni-
tude of the luminary; and whatever the luminary be, we may always substitute for it a portion of the visible

heavens, supposed of equal intrinsic brightness, and bounded by the same outline.

46. Thus, instead of the sun, we may suppose a small circle equal in apparent diameter to the sun, and equally
bright ; instead of a luminous rectangle perpendicular to the illuminated plane B, and of infinite height, as

A G H I, fig. 3, we may substitute the spherical sector Z A G, bounded by the two vertical circles Z A,
Z G, and so on.

47. Let then p q, any elementary rectangle infinitely small in both dimensions of the spherical surface, be repre-

sented by rf
4
A, so that / / d s A shall represent the surface cdef itself; then if we put z = the zenith

distance Z p of this portion, its illuminating power on A will be d* A . cos z, and the total illuminating power
of the whole surface A will be

=ff d* A . cosr.

48. Example \ . To find the illuminating power of the sector Z A G confined between any two vertical circles

General for- and the horizon, (fig. 3.) Here, putting for the azimuth of the element d 2
A, if we consider it as terminated

mula for il-
jjy jwo contiguous verticals and two contiguous parallels of altitude, we have d 2 A = d z X dd . sin z. Hence
we have

of a small

plane " L = / Id G d z . sin z . cos z = Cid Odz . sin 2 z = / (0 + C) d z . sin 2 z ;

and extending the integral from 6 = o to = A G, the amplitude of the sector, (whicli we will call a,)

we get

L = I dz. sin 2z = -^ (C cos2z)
& / 2

which extended from Z = o to z = 90 becomes simply L = .

49. Carol. 1. This is a measure of the illuminating power of the sector, on the same scale that that of an infinitely
small area (A) placed at the zenith would be represented by A itself. Because in this case

cos z = o, and / / d 2 A . cos z = A.

50 Carol. 2. On the same scale the illuminating power of the whole hemisphere is B- where v = 3.14159535

51. Example 2. Required the illuminating power of a circular portion of the heavens whose centre is the zenith.

Calling z the zenith distance of any element, and its azimuth, we shall have, as before,

d 2 A = d 6 d z . sin z, and therefore L = / / dtfds.sin z. cos z = I .
- - ir I d z . sin 2 z

extending the integral from o to = 2 v. That is L = ir . (const i cos 2 z) which being made to vanish

when z o becomes L = --
(1 cos 2 z) = JT . (sin z)

8

52. Carol. 3. The illuminating power of a circular luminary, whose centre is in the zenith, is as the square of

the sine of its apparent semidiameter.

53. Example 3. Required the illuminating power of any circular portion of the heavens whatever.

Illumina- Let T K L M be the illuminating circle; conceive it composed of annuli concentric with itself, and of one
ting power of tnem> X Y Z, (fig. 4,) let X x be an infinitesimal parallelogram terminated by contiguous radii S X and

cularVor-
S z, S being the centre.

t"on f

P
an Put Z S = ; S X = *, Z X = Z,

e
<t
u*"y Angle ZSX = 0, S T = r.

bright
.ven. Area d 4 A = Xar, = dx x d0. sin x

..L = //d0da:. sin x . cos z.

but, by spherical trigonometry, cos z = cos a . cos x . + sin a . sin x cos 0.
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VYWBV' Therefore L = / / dx . d<p . sin x I cos a . cos x + sin <z . sin a; . cos 0. > ,_

The first integration performed relative to <p, and extended from = o to = 360, or 2 w, gives

L = / d x . sin x x 2 IT . cos a . cos x.

After which integrating, with respect to x. and extending the integral from x = o to x = S T = r, we find

L = -
(1 cos 2 r) = n- . cos a (sin r)

a
.

This lesult is particularly elegant and remarkable. It shows, that to obtain the illuminating effect of a circular

luminary (of any apparent diameter) at any altitude, on a horizontal plane, we have only to reduce its

illuminating effect when in the zenith, in the ratio of radius to the cosine of the zenith distance, or sine

of the altitude. For other examples, the reader may consult Lambert's Photometria, cap. ii. from which this

is taken.

54. If the illuminating surface be not equally intrinsically bright in every part, if we call I the intrinsic brightness
General ex- of the element d *

A, we shall have

pression
for f*{*

illumination L= // Id'A. COS Z

when the *//
luminary is for jne general formula expressing the illuminating power of the surface A. The moon, Venus and Mercury in

brighT

1
" ^ their phases, the sky during twilight, a white sphere illuminated by the sun, &c. afford examples of this when

throughout, themselves regarded as luminaries.

PROBLEM.

55^ To compare the illumination of a horizontal plane by the sun in the zenith with the illumination it would
have were the whole surface of the heavens of equal brightness with the sun.

By Art. 53 we have L := w . cos a . (sin r)
2

. If, therefore, we call L and L' the two illuminations in

question, we shall have

L : L' : : TT . cos o . (sin Q's semidiam.)
2

: ir . cos o. (sin 90)*
: : (sin 160" :!::!: 46166.

56. The illumination of a plane in contact with the sun's surface is the same as that of a plane on the earth's
Illumination surface illuminated by a whole hemisphere of equal brightness with the sun in the zenith. Hence we see

s
that the illumination of such a plane at the sun's surface would be nearly 50,000 times greater than that of
the earth's surface at noon under the equator. Such would be the effect (in point of light alone) of

bringing the earth's surface in contact with the sun's !

57. For measuring the intensity of any given light, various instruments called Photometers have been contrived,
Photometers many of which have little to recommend them on the score of exactness, and some are essentially defective

in principle, being adapted to measure not the illuminating but the heating power of the rays of light ;

and, therefore, must be regarded as undeserving the name of photometers.
58. We know of no instrument, no contrivance, as yet, by which light alone (as such) can be made to produce

mechanical motion, so as to mark a point upon a scale, or in any way to give a direct reading off of its

intensity, or quantity, at any moment. This obliges us to refer all our estimations of the degrees of bright-
ness at once to our organs of vision, and to judge of their amount by the impression they produce imme-

diately on our sense of sight. But the eye, though sensible to an astonishing range of different degrees of

illumination, is (partly on that very account) but little capable of judging of their relative strength, or even
The eye an of recognising their identity when presented at intervals of time, especially at distant intervals. In this manner

jiXe of
^e Judgment of the eye is as little to be depended on for a measure of light, as that of the hand would be

degrees of f r the weight of a body casually presented. This uncertainty, too, is increased by the nature of the organ
illumination itself, which is in a constant state of fluctuation ; the opening of the pupil, which admits the light, being

continually expanding and contracting by the stimulus of the light itself, and the sensibility of the nerves
which feel the impression varying at every instant. Let any one call to mind the blinding and overpower-
ing effect of a flash of lightning in a dark night, compared with the sensation an equally vivid flash pro-
duces in full daylight. In the one case the eye is painfully affected, and the violent agitation into which
the nerves of the retina are thrown is sensible for many seconds afterwards, in a series of imaginary alter-

nations of light and darkness. By day no such effect is produced, and we trace the course of the flash,
and the zig-zags of its motion with perfect distinctness and tranquillity, and without any of those ideas of

overpowering intensity which previous and subsequent total darkness attach to it.

59. But yet more. When two unequally illuminated objects (surfaces of white paper, for instance) are pre-
sented at once to the sight, though we pronounce immediately on the existence of a difference, and see that

one is brighter than the other, we are quite unable to say what is the proportion between them. Illuminate
half a sheet of paper by the light of one candle, and the other half by that of several ; the difference will

be evident. But if ten different persons are desired, from their appearance only, to guess at the number of
candles shining on each, the probability is that no two will agree. Nay, even the same person at different

times will form different judgments. This throws additional difficulty in the way of photometrical estimations,
and would seem to render this one of the most delicate and difficult departments of optics.
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Light However, the eye, under favourable circumstances, is a tolerably exact judge of the equality of two degrees Part I.

^
v"""*' f illumination seen at once ; and availing ourselves of this, we may by proper management obtain correct -^/-<-

60. information as to the relative intensities of all lights. What these favourable circumstances are, we come now
The eye to consider.

;
. 1st. The degrees of illumination compared must be of moderate intensity. If so bright as to dazzle, or

the
D

equaity
so â 'nt as to stram tne eYe > no correct judgment can be formed.

>f two de- Hence, it is rarely adviseable to compare two luminaries directly with each other. It is generally better to let

grees of il- them shine on a smooth white surface, and judge of the degree in which they illuminate it
;

for it is an obvious
immation, ax iom , That two luminaries are equal in absolute light when, being placed at equal distances from, and in similar

what cir-
situations with respect to, a given smooth white surface, or two equal and precisely similar white surfaces, they

cumstances. illuminate it or them equally.
Axiom in 2nd. The luminaries, or illuminated surfaces compared, must be of equal apparent magnitude, and similar

photometry, figure, and of such small dimensions as to allow of the illumination in every part of each being regarded as
"" the same.

64. 3rd. They must be brought close together, in apparent contact ; the boundary of one cutting upon that of the

other by a well-defined straight line.

65. 4th. They should be viewed at once by the same eye, and not one by one eye, and the other by the other.

66. 5th. All other light but that of the two objects whose illumination is compared should be most carefully
excluded.

67. 6th. The lights which illuminate both surfaces must be of the same colour. Between very differently
coloured illuminations no exact equalization can ever be obtained, and in proportion as they differ our judgment
is uncertain.

68. When all these conditions obtain, we can pronounce very certainly on the equality or inequality of two illu-

minations. When the limit between them cannot be perceived, on passing the eye backwards and forwards

across it, we may be sure that their lights are equal.

gg Bouguer, in his Traite d'Optique, 1760, p. 35, has applied these principles to the measure or rather the

Bouguer's comparison of different degrees of illumination. Two surfaces of white paper, of exactly equal size and re-

principle of flective power, (cut from the same piece in contact,) are illuminated, the one by the light whose illuminating
compan ve

power is to be measured, the other by a light whose intensity can be varied at pleasure by an increase of
'etr^' distance, and can therefore be exactly estimated. The variable light is to be removed, or approached, till the

two surfaces are judged to be equally bright, when, the distances of the luminaries being measured, or otherwise

allowed for, the measure required is ascertained.

70. Mr. Ritchie has lately made a very elegant and simple application of this principle. His photometer consists

Ritchie's of a rectangular box, about an inch and a half or two inches square, open at both ends, of which A B C D
photometer: (^g 5) js a sec tjOn. Jt j s blackened within, to absorb extraneous light. Within, inclined at angles of 45 to

its axis, are placed two rectangular pieces of plane looking-glass F C, F D, cut from one and the same rectan-

gular strip, of twice the length of either, to ensure the exact equality of their reflecting powers, and fastened

so as to meet at F, in the middle of a narrow slit EFG about an inch long, and an eighth of an inch broad,
which is covered with a slip of fine tissue or oiled paper. The rectangular slit should have a slip of blackened

card at F, to prevent the lights reflected from the looking-glasses mingling with each other.

71. Suppose we would compare the illuminating powers of two sources of light (two flames, for instance) PandQ.
its use. They must be placed at such a distance from each other, and from the instrument between them, that the light

from every part of each shall fall on the reflector next it, and be reflected to the corresponding portion of the

paper E F or F G. The instrument is then to be moved nearer to the one or the other, till the paper on either

side of the division F appears equally illuminated. To judge of this, it should be viewed through aprismoidal
box blackened within, one end resting on the upper part A B of the photometer; the other applied quite close

to the eye. When the lights are thus exactly equalized, it is clear that the total illuminating powers of the

luminaries are directly as the squares of their distances from the middle of the instrument.

72. By means of this instrument we are furnished with an easy experimental proof of the decrease of light as the

Experimen- inverse squares of the distances. For if we place four candles at P, and one at Q, (as nearly equal as possible,
ul proof of an(j burning with equal flames,) it is found that the portions E F, G F of the paper will be equally illuminated

tion onriit
wnen tne distances PF, QF are as 2 : 1, and so for any number of candles at each side.

aTthe To render the comparison of the lights more exact, the equalization of the lights should be performed

squares of several times, turning the instrument end for end each time. The mean of the several determinations will then
thedistances Jje very near the truth.

In some cases the looking-glasses are better dispensed with, and a slip of paper pasted over them, so as to^
present two oblique surfaces of white paper inclined at equal angles to the incident light. In this case the

paper stretched over the slit E F G is taken away, and the white surfaces below examined and compared. One

tion. advantage of this disposition is the avoiding of a black interval between the two halves of the slit, which renders

the exact comparison of their illuminations somewhat precarious.

75. If the lights compared be of different colours (as daylight, or moonlight, and candlelight,) their precise

Comparison equalization is impracticable, (art. 67.) The best way of employing the instrument, in this case, is to move
of lights of it till one of the sides of the slit (in spite of the difference of colours) is judged to be decidedly the brighter,
different

anfj tnea to move ;t the other way, till the other becomes decidedly the brighter. The position halfway between
these points is to be taken as the true point of equal illumination.

76. If we would compare the degrees of illumination, or the intrinsic brightnesses of two surfaces, a gi\'en portion
of each must be insulated for examination ; this may be best done by the adaptation of two blackened tubes to
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the openings of the photometer, of equal length, and terminated by orifices of equal area, or subtending equal Part I.

angles at the middle of the instrument. These, of course, cut off equal apparent magnitudes of the bright
'

Comparison surfaceS) the light of which is then to be equalized on the oiled papers of the slit E F, as in the case of

rfbrifhT candles, &c. Bouguer, Traite, p. 31.

nessofillu- Another method of comparing the intensity of the light from two luminaries, which is also very ready and
minated convenient, and possesses in some cases considerable advantages, has been proposed by Count Rumford. (See
surfaces. Phil. Trans., vol. 84, p. 67.) It consists in the equalization of the shadows cast by them on a white surface

' ' illuminated by them both at once. Suppose, for instance, we would compare the illuminating power of two
'

flames L and I of different sizes, or from different combustibles, as of wax and tallow. Before a screen C D of

white paper, in a darkened room, place a blackened cylindrical stick S, and let the flames L I be so placed as

to throw the shadows AB of the stick on the screen, side by side, and with an interval between them about

equal in breadth to either shadow. Moreover the inclination of the rays L S A and I S B to the surface of the

screen must be adjusted to exact equality. The brighter flame must then be removed, or the feebler brought
nearer to the screen, till the two shadows appear of equal intensity, when their distances (or the distance of the

screen) from the lights must be measured, and their total illuminating powers will be in the direct ratio of the

squares of the distances. The rationale of this is obvious, the shadow thrown by each flame is illuminated by
the light of the other. The screen by the sum of the lights. The eye in this case judges of the degrees of defal-

cation of brightness from this sum ; and if these degrees be alike, it is clear that the remaining illuminations must
be equal.

78. This method becomes uncertain when the lights are of considerable size and near the screen, as the penum-
brae of the shadows prevent any fair comparison of the relative intensities of their central portions. It is still

more so, and can hardly be used when the lights differ considerably in colour. Its convenience, however, as an

extemporaneous method, requiring no apparatus but what is always at hand, (as the use of a blackened stick,

though preferable, is not essential,) renders it often useful in the absence of more refined means.

79. It may happen that the lights to be compared are not movable, or not conveniently so. In this case the

When the equalization of the shadows may be performed by inclining the screen at different angles to the directions in

lights to be which it receives the light of each, and noting the angles of inclination of the rays. In this case the illumi-

compared nating powers of the luminaries are as the squares of their distances directly, and the sines of the respective

movable angles of inclination of their rays to the screen inversely.

80 When a ray of light proceeds in empty space, or in a perfectly homogeneous medium, its course, as we have

Modifies- seen, is rectilinear, and its velocity uniform ; but when it encounters an obstacle, or a different medium, it

tions of light undergoes changes or modifications which may be stated as follows :

enumerated. jt j s separate(i into several parts, which pursue different courses, or are otherwise differently modified. One of

these parts is regularly reflected, and pursues, after reflexion, a course wholly exterior to the new medium, or obstacle.

A second and a third portion are regularly refracted, that is, they enter the medium, and there pursue

g2 their course according to the laws of refraction. In many media these portions follow the same course

Regular re- precisely, and perhaps are no way distinguishable from each other. In such media (comprehending most
fraction uncrystallized substances and liquids) the refraction is said to be single In numerous others (for instance

Single and
;n mosi crystallized media) they follow different courses, and also retain different physical characters. In

fraction"

5"
these the refraction is said to be double.

g3 A fourth portion is scattered in all directions, one part being mtromitted into the medium, and distributed

Scattering
over the hemisphere interior to it, while the other is in like manner scattered over the exterior hemi-

sphere. These two portions are those which render visible the surfaces of bodies to eyes situated any how
with respect to them, and are therefore of the utmost importance to vision.

g4 Of those portions which enter the medium, a part more or less considerable is absorbed, stifled, or lost,

Absorption,
without any further change of direction ; and that not at once, but progressively, as they penetrate deeper
and deeper into its substance. In perfectly opaque media, such as the metals, this absorption is total, and
takes place within a space less than we can appreciate ; yet even here we have good reasons for believing
that it does not take place per sallum. In crystallized bodies, those at least which are coloured, this absorp-
tion takes place differently on the two portions into which the regularly refracted ray is divided, according
to laws to be explained when we come to treat of the absorption of light.

85. The regularly refracted portions of a ray of white or solar light are (except in peculiar circumstances)

Separation separated into a multitude of rays of different colours, and otherwise differing in their physical properties,
into colours, eacn of which rays pursues its course afterwards, independently of all the rest, according to the laws of re-
or dispersion gu]ar refraction or reflexion. The laws of this separation, or dispersion, of the coloured rays, and their

physical and sensible properties, form the subject of Chromatics.

86. All those portions which are either regularly reflected, or regularly refracted, undergo, more or less, a
Polarization, modification termed polarization, in virtue of which they present, on their encountering another medium,

different phenomena of reflexion and refraction from those presented by unpolarized light. Generally speaking,

polarized light obeys the same laws of reflexion and refraction as unpolarized, as to the directions which

the several portions, into which it is divided on encountering a new medium, take ; but differs from it in the

relative intensities of those portions, which vary according to the situation in which the surface of the medium
and certain imaginary lines, or axes within it, are presented to the polarized ray.

The rays of light under certain circumstances exercise a mutual influence on each other, increasing, dimi-
loterference n i shing, or modifying each other's effects according to peculiar laws. This mutual influence is called the

interference of the rays of light. We shall proceed to treat of these several modificatious in order ; and first

of the regular reflexion of light.
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3. Of the regular Reflexion of unpolarized Light from Plane Surfaces.

When a ray of light is incident on a smooth-polished surface, a portion of it is regularly reflected, and

pursues its course after reflexion in a right line wholly exterior to the reflecting medium. The direction

and intensity of this portion are the objects of inquiry in this section ; the physical properties acquired by
the ray in the act of reflexion being reserved for examination at a more advanced period. And first, with

regard to the direction of the reflected ray. This is determined by the following laws :

Laws of Reflexion.

Law 1. When the reflecting surface is a plane. At the point on which the ray is incident raise a perpendicular.
The reflected ray will lie in the same plane with this perpendicular, and with the incident ray. It will lie

on the opposite side of the perpendicular, and will make an angle with it equal to that made by the in-

cident ray.
The plane in which the perpendicular to any surface at the point of incidence, and the incident ray, both

lie, is called the plane of incidence.

The angle included between the incident ray and the perpendicular is called the angle of incidence.

The plane in which the reflected ray and perpendicular both lie is called the plane of reflexion ; and the

angle included between the perpendicular and reflected ray is, in like manner, termed the angle of re-

flexion.

Adopting these definitions, the law of reflexion from a plane surface may be announced by saying, that
the plane of reflexion is the same with that of incidence, and the angle of reflexion equal to that of incidence,
but situated on the contrary side of the perpendicular.

Carol. The incident and reflected rays are equally inclined to the surface at the point of incidence.
Law 2. When the surface is a curved one, the course of a ray reflected from any point is the same as if

it were reflected at the same point from a plane, a tangent to the curve surface at that point ; i. e. if a

perpendicular be raised to the curve surface at the point of incidence, the reflected ray will lie in the plane
of incidence, and the angle of reflexion will equal that of incidence.
The demonstration of these laws is a matter of experiment. If we admit a small sunbeam through a

hole in the shutter of a darkened chamber, and receive it on a polished surface of glass, or metal, we may
easily with proper instruments measure the inclinations of the incident and reflected rays to the surface,
which will be found equal. But this method is rude and coarse. A much more delicate verification of this

law is afforded by astronomical observations. It is the practice of astronomers to observe the altitudes of
the stars above the horizon by direct vision ; and, at the same instant, the apparent depression below the
horizon of their images reflected at the surface of Mercury, (which is necessarily exactly horizontal,) and the

depression so observed is always found precisely equal to the altitude, whatever the latter may be, whether great
or small. Now as these observations, when made with large instruments, are susceptible of almost mathe-
matical accuracy, we may regard the law of reflexion, or plane surfaces, as the best established in nature.

Reflexion at a curved surface may be considered as taking place at that infinitely small portion of the

surface which is common to it, and to its tangent plane at the point of incidence ; so that if a perpendicular
to the surface be erected at the point of incidence, the incident and reflected rays will make equal angles with it

on opposite sides.

Proposition. To find the direction of a ray of light after reflexion at any number of plane surfaces, given in

position.
Construction. Since the direction of the ray after reflexion is the same whether it be reflected at the given

surfaces, or at surfaces parallel to them, conceive surfaces parallel to the given ones to pass through any
point C, (fig. 9,) and from C draw the straight lines C P, C P', C P'', &c. respectively perpendicular to these

respective surfaces, and lying wholly exterior to the reflecting media. Draw S C parallel to the ray when
incident on the first surface, and in the plane S C P, and on the opposite side of C P, from the incident ray S C
make the angle PCs/=PCS, then will C </ be the direction of the ray after reflexion at the first surface.

Prolong s'C to S', then S'C will represent the ray at the moment of its incidence on the second surface, whose
normal is C P'. Again, make the angle P'Cs" in the plane S'CP", but on the other side of C P', equal to

the angle S' C P', then will C s1
'

represent the ray at the moment of its reflexion from the second surface, and,

producing s" C to S", S"C will represent it at the moment of its incidence on the third surfiice, whose normal
is C P". Similarly in the plane S" C P" ; but on the other side of C P" make the angle P" C/" = P" C S",
and C s'" will be the direction of the ray at the moment of its quitting the third surface, and so on.

Analysis. About C as a centre conceive a spherical surface described, (fig. 10,) then will the plane
P S s intersect it in a great circle P S S' p, and the plane in which C P, C P" lie, or the plane at right angles
to the two first reflecting planes in another great circle PP'^, and the planes S'Cs" and S Cs" in other great
circles S'PV'and Ska".

Since C P and C P' are given directions, the angle P C P', or the arc PV (which is equal to the inclination

of the two first surfaces to each other) is given. Call this I. Again, since (he direction S C of the incident

ray is given, the angle of incidence, or the first surface P C S (= a) and the angle S P P7

, or the inclination of
the plane of the first reflection to the plane P P' perpendicular to both surfaces (= y/-)

are given. Hence in
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Light, the spherical triangle PF S' we have PF = I ; P S' = 1 80 a,
; and the angle FP S' = ^- ; consequently Tart I.

v~ ' S'F, and therefore 2 S'P' = SV and the angle S S' F are known, as also the angle PFS', and therefore > v
its supplement PPV, which is the angle made by the second reflexion with the plane P F. Again, in the

spherical triangle SSV we have given S S' = 180 2a; SV = 2S'F and the included angle S SV,
whence the third side S s" may be. found, which is the angle between the incident and twice reflected rays.

Similarly, if a third reflexion be
supposed, we have given P' S"= 180 S'F; FP" = I', and the'anHe

S"F P" = S' F P" = PF F' - P F S', whence we may compute S" P" and proceed as before, and so on to

any extent.

Confining ourselves however to the case of two reflexions we have, by spherical trigonometry, putting FS'= 99.
a' = the angle of incidence on the second reflecting surface, P S' P' = ; PF S' = 0, and 180 S s" = D,
the deviation of the ray after the second reflexion, the following equations :

cos a' = cos a . cos I sin o . sin I . cos & BuUBUOm
,
sin I

sin 9 = -
;-. sin

sin =

sin '

sin a

sin

cos D = cos 2 a . cos 2 a! sin 2 a . sin 2 a' . cos

of reflexiou

at two

(A) Planes -

From these equations, any three of the seven quantities a, a', I, 0, 0, \[r,
D being given, the other four may JQQ

be found. It will be observed, that is the angle between the plane of the second reflexion and the principal Values of

section of the two reflecting planes, and the angle between the planes of the first and second reflexion. If the symbols
and D only be sought, must be regarded as merely an auxiliary angle ; but this may not be the case, and
cases may occur in which alone may be sought, or in which it enters as a given quantity, &c. In short,
the foregoing equations contain in themselves all the conditions which can arise in any proposed case of two
reflexions.

Carol. If Y* = o, or if the incident ray coincide with the principal section PC P, i. e. if the two reflexions 101
both take place in the plane perpendicular to the reflecting surfaces, these formulae take a very simple form,
for we then have

= o; = 180; cos ' = cos (a + I)

that is (a + a') = 180 I
; and consequently cos (2 a + 2 a')

= cos (360 2 I) = cos 2 I, or 2 a + 2 a' = 2 I.

But since 6 = o, we have by the last of the equations (A) cos D = cos 2 (a + ') ; consequently D = 2 a + 2 a
= 21. That is to say, the deviation in this case, after two reflexions, is equal to twice the inclination of the

reflecting planes, whatever be the original direction of the ray. This elegant property is the foundation of the bo"* reflet
common sextant and of the reflecting circle, and is commonly regarded as having been first applied to the ions are in

measurement of angles by Hadley, though Newton appears also to have proposed it for the same object,
one plane.

See the explanation of these instruments.

In other cases, however, D, the deviation, is essentially a function of the angles expressing the position of ]02
the incident ray, and can only be obtained from the equations above stated.

Proposition. Given the angles of incidence on the two planes, and the angle made by the plane of the first 103.
reflexion with that of the second ; required the positions of the incident and twice reflected rays, the deviation
of the ray after both reflexions, and the angle included between the reflecting surfaces.

Retaining the same notation, we have given, a, a' 0, required I, D, and 0, y^.

1st, D is given at once, by the last of the general equations, (A.)
2ndly, To find the rest, put x = sin I ; y = sin y- ; and a = sin o' . sin

; put also cos a = c ; sin a = s ;

cos a' = cf ; sin a' = /. We have then xy = a, or y = -
; and the first of the equations (A) then gives

' 4

- < c i _ x * s ^i O a

which, cleared of radicals and reduced, gives

o = x'+ x*{2J 1
(c* s 2

) -2c 2 -2s 2
a*} + (</

2 - c 2
)
5 + 2 a 2 s* (c'

2 4 c 2
) + a' s

and this equation, which, though biquadratic, is of a quadratic form, contains the general solution of the

problem.
Carol. 1. If = 90, or if the planes of the first and second reflexions be at right angles to each other, JQ^

we have simply sin I . sin <!> = sin a' and a = sin of = s'. ?
ase when

the planes
In this case our final equation becomes of the two

= , -
<which, being a complete square, gives x* = 1 c 2

</'.

Now i = sin I, therefore * 8 = 1 cos I 2
, consequently we have the following simple result,

COS I (= c cO = COS n . COS a'.

VOL. IV, 3 A
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Light. Or the cosine of the Inclination of the planes to each other is equal to the product of the cosines of the I'art 1.-^ ^ angles of incidence on each. And, vice versd, if this relation holds good, the planes of the two reflexions will

" v~"

necessarily be at right angles to each other ; for, this relation being supposed, we have of course of = 1 c* c",

and therefore 1 e* c" being put for x" in the general equation, the whole must vanish ; now this substitution

gives a biquadratic of a quadratic form for determining a, which must evidently be satisfied by taking

a = sin a, and consequently = 90.

This elegant property will be useful when we come to treat of the polarization of light.
in=S Carol. -2. In the same case if 6 90, the deviation D is given by the equation

cos D = cos 2 a . cos 2 a',

or, the cosine of the deviation is equal to the product of the cosines of the doubles of the angles of

incidence.

106. Problem. A ray of light is reflected from each of two planes in such a manner that all the angles of inci-

dence and reflexion are equal. Given the inclination of the planes, and the angles of incidence ; required,

first, the deviation ; secondly, the inclination of the planes of the first and second reflexion to each other, and
the angles made by each of these planes with the principal section of the reflecting planes.

Preserving the same notation we have a = a', and therefore by the third of the equations (A) ^ = 0, so

that these equations become

cos a (I + cos I) = sin a . sin I . cos
^-^

sin a . sin 6 = sin I . sin ty \
(a)

cos D = (cos 2 a)* (sin 2 a)
8

. cos

107. The first of these gives (putting for 1 + cos I its value 2 (cos
j

and for sin I its equal 2 . sin . cos
)

cos Y^ = cotan a . cotan , (6)

whence ^ is immediately known. Hence ty is had by the equation

sin I
sin = -- . sin \lr. (c)

sin .

Lastly, if we subtract each member of the third of the equations (a) from 1, divide both sides by 2, and

reduce, we transform it into the following

D
sin = sin 2 a . cos . (rf)

These equations afford ready and direct means of computing ^, 0, and D in succession, from the known
values of a and I ;

the formulae are adapted to logarithmic evaluation, and are in themselves not inelegant.

IV. Of Reflexion from Curved Surfaces.

108 '^'' e re flex 'on f a ray from a curved surface is performed as if it took place at a reflecting plane, a

tangent to the point of incidence. The reflected ray will therefore lie in the plane which contains the

incident ray and the normal or perpendicular at the point of incidence. The general expressions for the

course of the ray after reflexion at surfaces of double curvature being considerably complex, and not likely
to be of great service to us in the sequel, we shall confine ourselves to the particular case of a surface of
revolution (comprehending the cases of a plane, and conoidal surfaces of all kinds) where the plane of
incidence is supposed to pass through the axis of revolution.

109. Proposition. -A ray being incident on any surface of revolution in a plane passing through the axis, to find

General in- the direction of the reflected ray.

>estigation Qp (n <r. H) being a section of the surface by the plane of incidence, QN the axis, QP the incident, and
ofthecourse p r tng re flec te{j raVi which produced if necessary cuts the axis in q. Draw the tangent PT, the ordinate

"

. ancl tne normal PN, which produce to O, and put as follows,

any nine ,

* = Q M ; y = MP; p= -^- ; = the angle M Q P,

nr the angle made by the incident ray with the axis ; then, since the angle of reflexion is equal to that of inci-

dence, we have /rPO = OPQ, and therefore N P q O P Q ; consequently QPT = TPo. Now Qn =
QM-M</=QM PM . tan M P 9
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Light. =_ x y . tan { T PM T P q }

= i - y . tan {TPM -TPQ}
= * -y . tan {TPM-PTM + PQM}
= x - y .Urn {90-iiPTM+PQM}

d y
But by the theory of curves we have tan PTM = = p, consequently PTM = arc tan p = tail

~"
1

/>,
CL X

denoting by tan~~ ' the inverse function of that expressed by tan; and since P Q M = 0, this expression becomes

Q q = x y . cotan
{
2 . tan

~
' p }

dy/ d y \ / 11 \
x y . cotan

{
2 . tan '

I 1 tan ' I - 1 ^a}\ d x / \ x /

PM y
('\
Because tan =

QM
This then is the general expression for the distance between the points in which the incident and reflected rays
cut the axis.

Now, by Trigonometry, we have (A and B being any two quantities)

{2 A )

tan"' tan" 1 B
[

. /2A- (1
- A 2

)= *"*"-'
( (1

_ A .
) + , A

'

that is, since cotan . tan
~ ' = . the cotangent and tangent being reciprocals of each other, simply

1 - A" + 2 AB
2A (1

- A a
) B

d y y
Applying this to the present case, A = = p ; B =

, and therefore the expression above found for Q q

becomes

(1 p*) x + Zpy -\

Q<1 ~ ~ y '

2 P X-(\ - p*)y~ I -General ex-

> (6) pressions

_ (J + Py) (px-y) for the

2 p x - ( 1 _ pi) y )
distance of

the focus

These expressions contain the whole theory of the foci and aberrations of reflecting surfaces.

Carol. 1. To find the angle made by the reflected ray with the axis, which we will call ff.
poinTq

This is the angle P q M, which is the complement of M P q. Now we have found above 110
M P q = 90 2 tan

- ' p + 6. An le maae

by the re-

Hence 0' = 2 . tan
- ' p flected v

and the axis

But tan =
, so that substituting we have

2 p x (1 p
j )v

tan ff = i
' ' y

(C)

(l-p*)jr + *py
'

Carol. -2. A 9 = a' = a + 2
<* +
2px -(1 -

p*~)y
'

111.

In all the foregoing formula; we have supposed the origin of the x placed at Q the radiant point. If we 112
would place it elsewhere, as at A, we have only to write x a, for x throughout. The formulae then become Formula-
on this hypothesis, when the ra-

y diant point

{tan

=
(e) is not in the

origin of the

tan y- 2 y(*-)-(l-P*)y coordinates

^ a, _. 2(J + py) (px-y) i- { (i p*)y "r* /
^

.

2 px (1 p*') y ~ '2 pa
3x2
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Light. If the incident ray be parallel to the axis, we have only to suppose the point Q infinitely distant; or placing. Part I

v*' as in the last article, the origin of the x at a point A at a finite distance, to make a (= AQ) infinite. The '

-v

Formulas
abve expressions then give Q q = co

when the in-

cident rays . 2 p
ire parallel . _ t

tan 0' =
the axis.

1 -
A q = x y .

1 14. Proposition. To represent the incident and reflected rays by their equations.
The equation of any straight line is necessarily of the form Y = a X + /3. Suppose we take A for the

common origin of the coordinates, and, retaining the foregoing notation, representing by T and y the coor-

dinates of the point P in the curve, let X and Y represent those of any point in the incident ray ; and, Q
being the point in which that ray cuts the axis, and A Q = a, it is evident, first, that when X = a, Y = o ;

and secondly, since the ray passes through P, when X = x, Y= y. Hence we have

o = a a + /3, and y = a x -(- ft,

y ffy
whence we get a = -

ft = - -
; (1)

x a i a

therefore, the equation of the incident ray is

or which is the same in a different form,

y
r a

PM y
or, since tan = M Q x a

Y= (X-c). tan<?; (4)

or, again, Y u = (X x) . tan 6. (5)

Similarly for the reflected ray, it is obvious that if we represent its equation by Y = <J X + /3', we shall have

; (6)
-

-,
-__

x a x a!

and consequently

Y = (M\ . (X -
a') = (X - a') . tan tf ; (7)

*~~

Y-y= ?, . (X-j) = (X- *).tan<X; (8)
x a

will be the corresponding forms of the equation of the reflected ray, in which a' and tan ff are given in terms

d y
of x, y, a,, and p = by the equations (g) and (A) or (i).

(I X

1 1\ If the whole figure (fig. 11) be turned about the axis A M, and Q be supposed a radiant point, the rays in the

Fig. 11. whole conical surface generated by the revolution of QP will be concentred after reflexion in one and tl.e

same point q, which will thus become infinitely more illuminated than by any single ray from an elementary
molecule of the surface. The point P will generate an annulus, having M P for its radius ; and q is called the

Focus.
focus of this annulus, and the distance A q the focal distance of the same annulus. This last expression is

commonly understood to mean the distance of q from the vertex, or point where the curve meets the axis,

but we shall use it at present in the more general sense.

1 15 Generally speaking, then, the focus varies as the point P in the reflecting annulus varies, unless in that

particular case where, by the nature of the curve, the function expressing a is constant. Let us examine

117. this case.

Investiga Proposition . To find the curve which will have the same focus for every point in its surface of revolution, or
tion of the on which rays diverging from or converging to any point Q, being incident, shall all after reflexion converge

which re
* or Diverge from one point q.

Sect all the The value of Q q assigned in Art. 109, E q, (6) being made constant, affords the equation
incident

Zpx (1 p 5
) y

= constant = c .
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Light. This equation, cleared of fractions, and putting x for x c, (which is merely shifting the origin ?f the co- part I.

v-'' ordinates to the distance c from their former origin) becomes ._,_

p{x*-y--c*} = (1-p*) xy. (a)

To integrate this equation, assume a new variable z, such that p y = x z, and (multiplying the original equation

by y) we have py (x'- y* c 2
) = xy'

1 x. p* y
3
,

that is xz (x
2

y"
1 c'2) = xy* x 3

z*,

z x 2 zc* + z 2 x 2 z
whence we find y* =

Differentiating this equation we get

1 -t-z

= x* z
1

Zy d y {
= 2 py dx = zx zdx because p = -^-)

d x/

= 2xzdx

that is

or

c a d

1 +z
f>Z \

\dz = o.

(1 + *r j
(6)

This equation may obviously be satisfied in two ways ; the first is, by putting the factor

c
x* = o, or x = +

(!+)

which gives (restoring the value of z, z = \ merely x + py = c; and, eliminating p between this and
x /

the original equation (a) we find, on reduction,

y* + (x - c)
2 = o.

This is, however, (as is clear from the way in which it has been obtained,) only a singular solution of the

differential equation, (see DIFFERENTIAL CALCULUS, singular solutions ;) and as the value of y which results

from it is always imaginary, it affords no curve satisfying the conditions of the problem.
The other way in which the equation (6) can be satisfied, is by putting d z = o, or z = constant. Let The curve a

in all cases

this constant be represented by h ; then, since z = -, we have
a conic

section.

py
x

ydy
x d x

which, integrated, gives y* h ( a'2 x 2
),

a being another constant. This is the general equation to the conic sections, and it is obvious, from the

properties of these curves, that they satisfy the conditions
; because two lines drawn from their foci to any

point in their periphery make equal angles with the tangent at that point, and, consequently, a ray proceeding
from, or converging to, one focus, and reflected at the curve, must necessarily take a direction to or from
the other. But, the foregoing analysis being direct, shows that they possess this property in common with
no other curves.

Thus in the case of the ellipse, all rays, (fig. 12, ) S P, S P', &c. diverging from the focus S will after ng.
reflexion converge to the other focus H, the interior surface of the ellipse being polished ; and all rays Q P, Ellipse.

Q P', &c. converging to S, will after reflexion diverge from H. Fi - I2-

In the hyperbola, (fig. 13,) rays Q P, Q' P, &c. converging to one focus S, and incident on the polished Fig. 13.

convex surface of the curve, will after reflexion converge to the other focus H ; and if diverging from S, 1 19

and reflected on the polished concave surface P P', will after reflexion diverge from H. Hyperbola.

In the case of the parabola, rays parallel to the axis, incident on the interior or concave surface, will all be 120.
reflected to the focus S, fig. 14; and if reflected at the exterior or convex surfaces, will all after reflexion diverge Parabola.

from S. Fig. 14.

Rays converging to, or diverging from, the centre of a sphere will all after reflexion diverge from, or \-)\

converge to, the same centre. Circle.

Let .us now apply our general formula (6) (Art. 109) to some particular cases.
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Light. Pmpntitinn. Let the reflecting surface be a plane, or the curve PC a straight line. Required the focus of Part I.

v v*' reflected rays. s_^ v
^-

122. dy
Focus of a Here we have x = constant = a p = oc , and the general formula becomes simply
plane sur-

face. 2 * V
Qq = a' =-? = 2 T = 2 a.

y
So that the focus of reflected rays is a point on the opposite side of the reflecting plane equally distant from

it with the radiant point ; and as this is independent of y, or of the situation of the point P, we see that all

the rays after reflexion diverge from this point, see fig. 15.

123. Proposition. To find the focus of any annulus of a spherical reflector.

Focus of a Let r be the radius of the sphere, and, if we fix the origin of the coordinates at the radiant point, t'.ie

spheric?.! equation of the generating circle will be
annului.

r*= O- a)"- + i/*

This, differentiated, gives (x a) d x + ;/ d y = o,

d y x a 2 y s r-
consequently p = r^ =--

; 1 p" = =-
.

dx y y
2

Hence, substituting in the general expression (6), we find for the focal distance the following value,

2 a { r* + a (x
-

a) }Qq = r.48 a (g-) ' (a)

which expresses in all cases the distance of the focus of reflected rays from the radiant point.
For optical purposes, however, it is more convenient to know its distance from the centre, or from the

surface.

The distance from the centre (E q, fig. 16,) is

=Qq-QE= 2(*- + r) _ a
2 a x + r*- 2 a*

in which positive values of E q lie to the right of E, or the same way with those of x or of Q q.

Focus for Carol. 1 If we would find the focus of the infinitely small annulus immediately adjoining to the vertex C,
central rays or C' of the reflecting spherical surface, or, as it is termed in Optics, the focus of central rays, we must put
in a sphe- jn the case of the vertex C (when the reflexion takes place on a concave surface) x = a + r, and in the other

case, viz. that where the rays are reflected on the convex surface C', x = a r. The former gives

2 a + r \ 2 a + r

the latter gives the same results, writing only r for r.

124. If we bisect the radii C E and C' E in P and F", and suppose q and of to be the foci of central rays reflected

at C and at C', we shall have F q = r -
(d)&a + r r

a + --

which gives the following useful analogy,

Q F : F E : : E F : F q. (R)

Similarly we have QF* : F'E : : E F' : F' q ; so that the same analogy applies to both cases, and may be

regarded as the fundamental proposition in the theory of the foci for central rays. For it is obvious, that if PC
were any other eurve than a circle, the same must hold good, taking only E the centre of curvature at the

vertex.

125 Carol. 2. If a be infinite, or the incident rays be parallel, we have F q = o, which shows that the fonts of

Principal central parallel rays bisects the radius. This focus, for distinction's sake, is called the principal J'OCM of the

focus. reflector.

126. Definition. Q and q are termed conjugate foci. It is evident that if q be made the radiant point, Q w 11

Conjugate be its focus ; for the rays will pursue the same course backwards.

foci. Carol. 3. Regarding only central ra\s: the conjugate foci move in opposite directions, and coincide at the
1 27 '

centre and surface of the reflector.

For let a vary from x to o> , then Fq will vary as follows : first, while a varies from x to, --, F, q is



LIGHT. 359

Light, positive, and increases from o to co
; that is, as Q moves up to F, q moves through C to infinity. As the Part I.

motion of q continues, Fq then becomes negative; because a is then negative and greater than -
, and a in- Conjugate

foci move

creasing Fq diminishes ; therefore q moves from the right towards F, that is in the opposite direction to Q's
'" PP site

motion ; and when Q is at an infinite distance to the right, q is again at F.

When Q comes to E, a = o . F q = , or q is at E also.

When Q comes to C, a = r, F q = -, or q is at C also.

It appears by the value of E 9, Equation (6), that a spherical reflector A C B, fig. 17, whose chord (or 128.

aperture, as it is termed in Optics) is A B, causes the ray reflected at its exterior annulus A to converge to, or Longitudi-
diverge from, a point q, different from the focus of central rays. Let f be this latter focus, then we shall have nal aberra-

tion, for an)
" r (a + r) r ar* a r aperture.

2 a + r
'

2a(z - a) + r 2 2 a + r

This quantity fq is called the longitudinal aberration of the spherical reflector. If the rays fall on the convex

portion, we need only write r for r.

Proposition. To express approximately the longitudinal aberration of a spherical reflector whose aperture is 129.
inconsiderable with respect to its focal length. Longimdi-

, 2 nal aberrn-

y being the semi-aperture, and x a being equal to * r 2
y

* -- r
, (neglecting y

4
, and higher tion for

" r small

powers of y,) we have apertures.

fq = aberration =
2 a r 4- r 4 - 2 a +r r(2a + r)

4 '

If we put Cf =;
f, we have f= , and, consequently, we may eliminate a, the distance of the 139.

Another

radiant point, and express the aberration in terms of the aperture, radius of curvature, and distance of the focus ^P"*81011

of central rays from C, the vertex of the minor
;

for this gives a =
j*j , which, substituted for a in

the expression (f) gives

aberration = *.* E/2
. (semi-aperture)

2

- P

r3

To express the lateral aberration, or the quantity by which the reflected ray A qg deviates from the axis, at 131.
the focus of central rays, or the value of fg, (fig. 17,) we have Lateral

aberration

2 a (x a)
2 + r* (x 2 a)~

; so that
2 a (T a) +

a x + r

When the aperture is very small, this becomes simply

fff =

2 a(x a)
1 (h)

r . (r + o) (r + 2 a)

When a is infinite, or the incident rays are parallel, we have the following,

fq = longitudinal aberration =

fg = lateral aberration
y

3

132.
Lateral

aberration

for smalt

apertures.

133.

Aberrations

for paralle
1

rays and

small

apertures.

If the rays fall on the convex side of the sphere we must make r negative, which only changes the signs
the aberrations.

of
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V. Of Caustics by Reflexion, or Catacaustia.

134 If rays of light be incident on a medium of any other form than that of a conic Section, having the radiant

point in the focus, they will after reflexion no longer converge to or diverge from any one point, but will be

dispersed according to a law depending on the nature of the reflecting curve ;
the inclination of each reflected

ray to the axis varying according to the point of the curve from which it is reflected, and not being the same
for any two consecutive rays. Of course each lay will intersect that immediately consecutive to it in some point
or other, and the locus of these points of continual intersection will trace out a curve to which the reflected rays

Caustics by will all necessarily be tangents, and which is called a caustic. If these rays fall on another reflecting curve,
reflexion they WJH De again dispersed, and another caustic will originate in the continual intersections of the consecutive

rays of the former, and so on to infinity.
135. Let Q P, Q' P', (fig. 1 8,) be any two contiguous rays incident on consecutive points P, P' of a reflecting curve

Fig. 18. PP', and after reflexion let them pursue the courses PR, P'R'; and since they are not necessarily parallel,

let Y be their point of intersection, then will Y be the point in the caustic Y Y' Y'' corresponding to the

point P in the reflecting curve ;
and ifwe determine the points Y' Y", &c. from the consecutive points P' P'', &c.

in the same manner, the locus of these, or the curve Y Y' ~Y" will be the whole caustic.

136. Since the reflected ray passes through P, whose coordinates are xy, its equation, as we have already seen

Coordinates (Art. 114), is necessarily of the form
of the -tT -r, fv *

caustic in- Y - y = P (X - *)

otfany sup-
If we regard x, y, P as variable, this will represent any one of the reflected rays P R, and the consecutive ray

position of P' R' will be represented by

Y - (3, + rf y) = (P + d P) (X - (* + <* *) )

Now since the point Y in which these two rays intersect is common to both, the coordinates X and Y at this

point are the same for both ; and therefore at this point both these equations coexist, and thereby determine the

values of X and Y, or the situation of the point Y. Now the latter of these equations is nothing more than

the former plus its differential, on the supposition of X and Y remaining constant. Therefore, we have to find

X and Y from the two equations,

-dy = (X-;r)dP-Pd,r,
which gives at once

In these equations we have only to substitute for P its value = tan &, or ^^ -
r ^ j" ; and

(1 p*) (x -a) + Zpy

after executing all the differentiations indicated, or implied, to eliminate x and y by the equations of the curve

and the other conditions to which the quantity a may be subjected, an equation between X and Y will

result which will be the equation of the caustic.

137. Proposition. To determine the caustic when rays diverge from one fixed point in the axis of a pven
Caustic reflecting curve.
when rays jn tn ; s case a j s invariable, and the differentiation of P must be performed on this hypothesis. It will,

>m
therefore, simplify the question if we put a = o ; or suppose the origin of the coordinates in the radiant point,

point.
'n which case

p _ 2px- (\-

d P _ (1 + p*) (y- px)+ 2 q

dx

dp
Where <?

= -/-
(A X

(1 + p*) (px-y)
-*



Light. which substituted, we find

= 2.

LIGHT.

p (p x - yy - q x (x* + y)
+p*) (px-y)-2q(x* +

(px-yy + gy (x* + y"-)

36!

Part I.

(m)

Carol. 1. If the incident rays be parallel, or the radiant point at an infinite distance, we may fix the origin 138.

of the coordinates where we please ; and since in this case the equation of any reflected ray is, by 1 13 equation Caustic for

(/) and 114 equation (8), Parallel

we have P = 2p

Y - y = (X - x) .

P(l +P

i -

putting q for
dp
d x

dx

d'1 y~~

,8)

n -!>-}*

These substitutions made, we get the following values for the coordinates of the caustic,

P P
a

X=x +~ (1 p
s
); Y = yr -J-

. (n)

Carol. 2. In the general case, if we put / = the line Py, or the distance between the point in the curve j3g
and the corresponding point in the caustic we have

/= V (X- jr) + (Y-y)

Which, if we write for X x and Y y, their values above found become

-3-TTF P-J>

Distance

between

correspond-

ing points
in curve

and caustic

/=
or, writing for P its value, and executing the operations,

f _ -
(y px} (i -f-

J
+ y

(y-px)
Carol. 3. In the case of parallel rays, when

140.

dx d -
.p'-L. P_. = P( ]

1 - ;
V 1 + P =

1 - o"

we have f=*
'

Carol. 4. Call c the chord of the circle of curvature passing through the origin of the coordinates, or through 141
the radiant point : then, by the theory of curves,

so that + y) =

and substituting this for q (x* + y
8

), in the general expression for /, we eliminate q, and get

- _ c "Si* + y
j

r c

4 AV

putting

Hence we have

T y c 4 r c

1 <"
(r)

which gives

Hence the following general property. (Smith's Optics, ed. 1738, p. 160.) H*
r ? SSSr^i*^ c

,

on
J
uSate foci of an elementary pencil of rays reflected at anv curve surface at P, fig. 19. fig. 19

Let V PW be the circle of curvature ; (if the curve be a circle, this will be the curve itself.) Let the chords
VOL. IV. Q

'
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Light. PV, PWin the direction of the incident and reflected rays be divided in F, /, so that PF and Pf shall each P"'' I-

v ' be one quarter of the whole chords, and the relation between Q and q will be expressed by the proportion
^ V*

neralGeneral

[
elation

between

elation QF FP : : P/: /,.J J I

; or '. 5. Putting d x = M, we have----o _ _ u> M/ -"*i T v uu-vc;- j. ^*
foci of re- d . d
fleeted rays
incident on d Y d M d P /, d M
* ^ = * + p -^r + M

77-
= p + -jT

j V
Hence it follows that P = ___

;

d X
P therefore is to the caustic, for the coordinates X, Y, what p is to the reflecting curve foi the corresponding
point whose coordinates are x, y.

144. Corel. 6. If we put S for the length of the caustic

Length of _
the caustic = the arc A H K Y, we have d S = ^ d X + d Y !

investigated. _
dx -/I + P" + <*/- M Prfp

A/r+~p*

because df= d . M . v/F+T4 + M.
dl

; but MdP = (P - p) dxV l + P'

so that we have = d/
1

-hd*{ ^1 + P s --^Ln^lH 1
Vi + PJ J

that is, substituting for P its value P x ~ \
~ p ' y-

2py + (1
- p") x

dS = df+dx. ta
and integrating S = constant + / + ^x* + y

1
.

Caustics Hence it follows, that the caustic is always a rectifiable curve, and its

always rec-

t'fiabh. Length AK = QP + Pw + constant )

But Arc A K F = Q C + C F + constant }
^s^^' .ubtnUng

Arc Fy = (QC + CF) - (QP + P Y).

Hence it appears, that the caustic is necessarily a rectifiable curve when the reflecting curve is not itself

transcendental.

145. If the rays PR, P'R', P" R", &c. after reflexion at the curve PFP"fall on another reflector RR'R" and

Fig. 20. are reflected in the directions R S, R' S', R" S", &c. (fig. 20) their continual intersections will form another
caustic Z Z' Z", and so on ad infinitum, which may be determined by a similar analysis. In like manner,
whatever be the law according to which the rays Q P, Q' P', &c. are dispersed, we may conceive each to be a

tangent to a curve which may be regarded as the caustic of another reflecting curve, and so on. Let VV'V"
be this curve. Since PVQ is a tangent to it, if this curve and the curve PP'P" be given, the point Q in

the axis from which the incident ray Q P may be regarded as radiating, is determined in terms of the co-

j^g
ordinates of P, and therefore the quantity a may be eliminated altogether. The manner of doing this is

General shown in the following
relation be- Proposition. To determine the relations between any two consecutive, or, as they may be termed, conjugate
tween two caustics VV'V", YY'Y'', and the intermediate reflecting curve PP'P".

Let V and Y be, as before, any two conjugate points in the caustics, P the reflecting point ; then if we put

infeSate ? and * for the *>ldinates of V

x and y for those of P
curve inves-

ated - X and Y of Y
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Light Since the line P VQ is a tangent to the first curve at V, we must evidently have

and this, combined with the equation between
17
and f, which represents the curve V V V" suffices to determine

17
and f in terms of x, y, or vice versd, x and y in terms of f and

r/.

Again, we have also by Art. 114, equation (2)

and consequently

Thus a is given in terms either of x, y, or of
17, f, whichever we may prefer. It only remains to substitute this

in the value of P.

(1 p
8
) (x a) + 2 py

which thus becomes

gpfr-P-d-y'Xy-,)
(1
- p

1
) (*

-
f) + 2 / (y

-
r/)

and this, being free of a, may be substituted in the equations (k) Art. 136, when X and Y will be at once ob-

tained in terms of x, y, g, i),
the coordinates of the reflecting curve and the preceding caustic.

We shall now proceed to illustrate the theory above delivered by an example or two.

Required the caustic when the reflecting curve is a cycloid, and the incident rays are parallel to each other 147.
and to the axis of the cycloid. Caustic of

d v v~ a cycloid -

The equation of the cycloid is = p =
I

'

t x

taking unity for the radius of the generating circle.

From this we get

(2
- *)

and therefore = 2 x *
;

9

consequently, by the equations (k) of Art. 13o, we shall have

Y = y + p .
-- = y + x A/2 x x 2

whence

_ ,. i /o o f\ O <v ? T r 2 '

=: p -f- : ^5 & 3,) & v &i J> a. ,

d x */2 _ x

Now we have also

42L
= 2(i_,)

But since X = % x x 1
, we have 1 x = ">/ I X, and therefore

dx
= 2 -/l-X

So that we have, finally, = \/ -

d A. '1 A.

which shows that the caustic is itself a cycloid of half the linear dimensions of the reflecting curve. Is itself

To take one other example, let us suppose the reflecting curve a circle, and the radiant point infinitely cycloid,

distant. Here we have (placing the origin of the coordinates in the centre)
3 B 2
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Light. x r* Pan L

v~ * +y = r;p= -v7^r ;9= -(7^oV ^~
Caustic of a consequently, by the equations (k) of Art. 136

2 q 2r*

= y +

Then since (supposing, for brevity, r = 1, which will not affect the result)

4X S =9* 3
12 T" + 4 jr

8

4 Y 2 = 4- 12*'+ 12 ,r
4 -4,r

Adding, 4 (X
s + Y 8

) = 4 - 3 x 2

;
*" = (1

_ X s - Y 2

)
9

So that we get, finally, substituting this value of x' in that of Y, and reducing,

(4X
8 + 4Y'- 1)

3 =27 Y'; (c)

which is the equation of the caustic.

This equation belongs to an epicycloid generated by the revolution of a circle whose radius is that of the

reflecting circle on another concentric with the latter, and whose radius is J that of the reflecting circle.

Fi 21
^'' ^ represents the caustic in this case; QP being the incident ray, and P Y the reflected. It has a cusp
at F, which is the principal focus of rays reflected at the concave surface BCD, and another at F', which is

that of the rays reflected from the convex surface BAD. In the latter case, it is not the rays themselves,
but their prolongations backwards which touch the caustic.

149. Carol. When y is very small, or immediately adjacent to the cusp F, the form of the caustic approaches
indefinitely to that of a semicubical parabola. For, generally,

X = 1 -/I + 3 Y '
4 Y*,

and when Y is very small, neglecting Y 8
in comparison with Y

It is, as we have seen, only in certain very particular cases, when rays proceeding from one point and reflected

at a curve proceed after reflexion all to or from one point. In general they are distributed in the manner

described in Art. 145, 146, being all tangents to the caustic. The density of the rays therefore in any point of the

caustic is infinitely greater than in the space surrounding it, and in the space between the caustic and the re-

flecting curve (PC F Y, fig. 18) is greater than in the space without the caustic Q YF. This is obvious, for

in the latter space only the incident rays occur, while in the former are included all the reflected rays as well

as the incident ones.

jr. This may be easily shown experimentally, in a very satisfactory manner pointed out by Dr. Brewster, by

22' bending a narrow strip of polished steel into any concave form, as in fig. 22, and placing it upright on a sheet

of white paper. If in this state it be exposed to the rays of the sun, holding the plane of the paper so as to

pass nearly but not quite through the sun, the caustic will be seen traced on the paper, and marked by a very

bright well-defined line ; the part within being brighter than that without, and the light graduating away from

the caustic inwards by rapid gradations. If the form of the spring be varied, all the varieties of catacaustics,

with their singular points, cusps, contrary flexures, &c. will be seen beautifully developed. The experiment is

at once amusing and instructive.

The bright line seen on the surface of a drinking-glass full of milk, or, better still, of ink, standing in sunshine,

is a familiar instance of the caustic of a circle just investigated.

152 If the figure 18 be turned round its axis, the reflecting curve will generate a surface of revolution, which, if

supposed polished within or without, as the case may be, will become a mirror. The caustic will also generate

a conoidal surface, to which all the rays reflected by the mirror will be tangents. No mirror, therefore, which

is not formed by the revolution of a conic section having the radiant point in its focus, can converge all the

reflected rays to one point or focus. There will, however, always be one point which receives the reflected rays

in a more dense state than any other. This point is the cusp F, as we shall presently see. The deviation ot

any reflected ray from this point is what is termed its aberration.

Ug The concentration and dispersion of rays by reflecting and refracting surfaces forming the great business of

practical optics, it will be necessary to enter at large into this subject ; and, first, it will be proper to inquire

how far any given reflector will enable us to concentrate the rays which fall on it. To this end let the following

problem be proposed.

154 Proposition. A reflector of any figure, of a given diameter or aperture AB, being proposed, to find the circle

of least aberration, or the place where a screen must be placed to receive all the rays reflected from the surface,

within the least possible circular space (since they cannot be all collected in one point) and the diameter of this

circle.
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Light. A C B (fig. 23) being
1 the mirror, Q the radiant point, G K.fkg the caustic, /the cusp or focus for central Pt I.

v-^-7

rays, q the focus of the extreme rays A q, B q, produce these lines till they cut the caustic in Yy. It is c.ear, *-^-v
then, since all the rays reflected from the portion A C B of the reflector are tangents to points of the caustic R ' 2^-

between K,/and k,f, that they must all pass through the line Yy. Retaining the notation of the foregoing pro-
o o o o

positions, (i. e. supposing Q x =* X ; X y = Y.) Let us put Q L = X, L K = Y, QD = i; D A = y ; and let

o o

P, p represent the values of P and p corresponding to the points K and A of the caustic and reflecting curves.

The equation of the line A K q y will then be

Y-y
Y and X being the coordinates of any point in it. But at the point y, where it cuts the other branch of the

caustic, these coordinates are common to the straight line, and to the caustic. At this point, therefore, the above

equation, and those expressing the nature of the caustic, must subsist together. Now these are the equations
(K) Art. 136, combined with the original equation of the reflecting curve. Eliminating, then, x and y, by the

aid of two of them, and determining the values of X, Y from the rest, the problem is resolved.

Now the same equation which gives the value of y, or xy, must also give that of L K, because K is a point 155.
in both caustic and the line A K y, as well as y. But, moreover, since A K y is a tangent, the point K is a
double point ; therefore the final equation in Y must necessarily have two equal roots, besides the value of Y
sought ; and these being known, the other may be found from a depressed equation.
The method here followed is, apparently, different from that usually employed, which consists in making the

value of y as determined by the intersection of the extreme reflected ray AK y, and any other reflected ray (from P)
a maximum. But the difference is only apparent, for in the latter method we have to make Y as determined

by the two equations (holding good jointly)

Y - y = P (X - x), and Y - y = P (X - x)

a maximum, or d Y = o. Now in this case the former equation gives dX = o also ; and therefore, differen-

tiating the latter, we have dy = (X x)dP Pdx,

whence X - x =
~ P d x

p
and therefore Y y = P .

- - d x.

Now these are nothing more than the equations of Art. 136, expressing the general properties of the caustic ;

so that this consideration of the maximum only leads by a more circuitous route to the same equations as
the method above stated, and is in fact nothing more than a different mode of expressing the caustic.

Let us apply this reasoning to the case when the reflector is spherical. Resuming the equations and 156.
notation of Art. 148, and putting a for the extreme value of y, or the semi-aperture of the mirror, and 6 for cirele of

the corresponding value of x, that of P will be least aber

ration in

2 a b -2al>
s
P]?

eriraI

reflector._
l-p'

"
/ b*-a*

'

l-2o'
Hence the equation (m, 2) Art. 138, of the extreme reflected ray becomes

'-
2

whence we get 2 X = (l +
6 \ a

Assume z, so that Y = a 3 z 3
, z being another unknown quantity, then we have

4 X* = .

{ 1 + (1
- 2 !

) a 2
z 3

}
!
.

JL
~~

CL

Substituting this for 4 X s
, and for Y 8

its value a" z" in the equation of the caustic (r) Art. 148, extracting the

cube root, and reducing, we get the following equation for finding z,

a*z+ (2-4a e

) z=> + (3 a 2 -
3) z +1=0.

Now this, according to the remark in Art. 155, must have two equal roots, viz. when x = b, or Y =r <z
3

,

that is, when z = 1. Hence this equation must necessarily be divisible by (z I)
2

. Performing the divi-

sion we find it is so, and the quotient gives

a'z 4 + 2a 2 z 3 + 3az* + 2 z + 1 = o; (y)

for determining the remaining values of z.
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Light. As this investigation is rigorous, nothing having been omitted or neglected as small, we have here the

^-V*' complete solution of the problem, whatever be the aperture of the mirror. If this be supposed small in

157. comparison with the radius, an approximation to the value of z will be had by t'-e series thence derived,
Case when
me aperture 19 9 1395- ~ a ~ a

and of course since Y = a' ; 3
>

27 675

5r B -
164i

B ~

158. The first term of this series is sufficient for most cases which occur in practice, and gives
Case where

tne aperture a s

is small Y =-- (a)
- G

wnen com-

pared to

radius. or, supposing r the radius of curvature of the reflector,

The lateral aberration corresponding to the semi-aperture a is, by the equation (/), Art. 133, equal to

; ; consequently, in the case of small apertures, the radius of the least circle of aberration is equal to \

of the lateral aberration (at the focus) of the exterior annulus.

3 3
159 Carol. The least circle of aberration is nearer the mirror than its principal focus, by

- f gor - the lon-

3 a
gitudinal aberration = .

-
.

16 r

IgQ To complete the theory of caustics, it only remains to examine the degree of concentration of the reflected

Density'of rays at any assigned point. To this end, let.S (fig. 24) be any point, and through it let PSY<? be drawn
reflected touching the caustic in Y. Then S may be regarded as lying in a conical surface generated by the revo-

raysatany lution of the tangent P Ys^, about the axis; and all the rays in the annulus, generated by the revolution of
oomt mves-

jne e]ement p p7
, will be contained in the hollow conoidal solid formed by the revolution of the figure

FTg

tB

24 PPYq'q about the same axis. Hence at S the rays will be concentrated: first, in a plane parallel to that

of the paper, in the ratio of P P' to S S', or P Y to S Y ; and, secondly, in a plane perpendicular to that of

the paper, or in the ratio of the circumferences of the circles generated by the revolution of P and of S,

that is, in the ratio of these radii PM : ST. On both accounts, therefore, the concentration at S will be

PM PY Po PY
represented by

- - x --^r> or ~ x c v If- therefore, we represent by 1 the density of the
ol ox 0*7 ^ *

rays immediately on their reflexion at P, their density at S corresponding, will be represented by
'

-,
S Y . S q

and this is true, whatever be the situation of S.

161. But there are now several cases to be distinguished. First, when S is situated in any part of the spaces
1st case. K H V, N D W. no such tangent can be drawn to cut the reflector within its aperture A B ; therefore these

spaces receive no rays at all, and the density = o in every point.

162. Secondly, when S is situated anywhere within the spaces A G B, V H F E, E F D W, only one such

2nd case, tangent can be drawn to cut the reflecting curve between A and B. So that in these spaces the density

PY.P<?
is simply represented by g y g

Thirdly, within the spaces KGH and MGDtwo tangents can be drawn from any point S, both touching

3rd cue tne branch F k on the same side of the axis as the point S. If we suppose PI Y, S q t and P, Y8 S q, to be

these tangents, S will receive rays belonging to both these converging conoids, and the density will therefore

be the sum of those belonging to either, or

D = 2IL41L + **,**

Fig. 25. See fig. 25.
164. Fourthly and lastly, within the space FHGD there maybe drawn three tangents 9, S Y, P,, ^SY,?,,

4th case.
an(1 ,,3 s y, P3 ,

all falling within A B, the two first (fig. 26) touching the branch FA; on the same side as S, the
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Light, third on the opposite side. The former belong to cones of rays converging to q l qt, the latter to a cone con- Part I.

""v"**' verging to
q,, but intercepted by S after meeting at q, and again diverging. Hence, in this case, the density will ~v-

Fig. 26.

PY..P?, PYa .P ?a PY3 .Pg,
be expressed by D = + -f- ri .

It would lead into too great complication to attempt developing the actual value of these fractions in terms of Application

the coordinates of S, and we will therefore merely apply them to some remarkable positions of S
lar^ses"

Case 1. S in the axis, beyond the principal focus, or between the mirror and its focus for extreme rays G. Here jgj

(P
F \ 2 Case 1.

- }, which shows that the

density is inversely as the square of the distance of S from the principal focus.

Case 2. S in the axis between the principal focus and the focus for extreme rays G, (i. e. in the line GF.) 166.

Here S q l
=: o, S qt

= o, S q3
= o ;

so that here all the three several component portions of D are infinite, and Case 2.

of course the density is infinitely greater than on the surface of the reflector.

Case 3. S at F. Here not only 89 = 0, but also S Y; therefore at F the density is infinitely greater than 167
in the last case, and is the greatest which exists anywhere. Case 3.

Case 4. S anywhere in the caustic. Here S Y = o, therefore in this case also D is infinite, or the density 168.

infinitely greater than at the surface of the reflector ; and as S approaches F, this is still further multiplied by Case 4.

the diminution of all the values of S q.

Case 5. S anywhere in H zD, the circle of least aberration. At the centre z and the circumference H the 169.

density is infinite. Between these two positions, finite, diminishing to a minimum, and again increasing accord- Case 5.

ing to a law too complicated to be here investigated. It will be observed, that the relations expressed in

these articles (160 169) are general, and not restricted to the case where the reflecting surface is spherical.
In all the foregoing reasoning the point S is supposed to receive the rays perpendicularly. The density of 170.

the rays therefore here intended must be understood to mean, The number of rays not incident on a given par- Illumination

ticular plane surface, but passing through a given infinitely small spherical portion of space, or received upon
of a screen

an infinitely small spherical body at S.
f,

xPose
fl

d '

,J
,

J -11 j. i .1 ..,,., -the reHectet
In cases, however, where the aperture is small, a screen perpendicular to the axis will receive the rays from rays

every point very nearly at a perpendicular incidence ; and hence the above expressions will in this case represent
the intensity of illumination of the several points in such a surface, the screen being, however, supposed to stop
none of the incident light.

For further information respecting caustics, the reader is referred to Tschirnaus, Leipsic acts 1682, and Hist,

de I'Acad., torn. ii. p. 54, 168S; to De la Hire's Traite' des Epicycloides, and Me'm. de I'Acad., vol. x. ; to

Smith's Optics ; Carre", Mem. de I'Acad., 1703
;
J. Bernoulli!, Opera Omnia, vol. iii. p. 464

; VHSpital Analyse
des Infiniment Petits ; Hayes's Fluxions; Petit, Correspondence de I'Ecole Polytechnique, ii. 553; Malus, Journal
de I'Ecole Polytech., vol. vi. ; Gergonne, Annales des Mathematiques, xi. p. 229

; De la Rive, Dissertation sur
les Caustiques, Sfc. ; Sturm, Annales des Math., xvi. ; Gergonne, ditto.

OF THE REGULAR REFRACTION OF LIGHT BY UNCRYSTALIJZED MEDIA.

VI. Of the Refraction of Homogeneous Light at Plane Surfaces.

When a ray of light is incident on the surface of any transparent uncrystallized medium, a portion of it is 171.

reflected ; another portion is dispersed in all directions, and serves to render the surface visible
; and the remainder

enters the medium and pursues its course within it.

In the reflexion of light, the law of reflexion, as far as regards the direction of the reflected ray, is the 172
same for all reflecting media ; the angle of reflexion being equal to that of incidence for all. In refraction,

however, the case is otherwise, and each different medium has its own peculiar Taw of action on light ; some

turning a ray incident at a given angle more out of its course than others. Whatever be the nature of the

refracting medium, the following general laws are found to hold good, and suffices (when the medium is known)
to determine the direction of the refracted ray.

1st. The incident ray, the perpendicular to the surface at the point of incidence, and the refracted ray, all lie [73
in the same plane.

2nd. The incident and refracted rays lie on opposite sides of the perpendicular. j,-^

3rd. Whatever be the inclination of the incident ray to the refracting surface, the sine of the angle included 175
between the incident ray and the perpendicular is to the sine of that included between the refracted ray and the

perpendicular in a constant ratio.

These laws equally hold good for plane and for curved surfaces, and are found to be verified with perfect 17^
precision by the most delicate experiments, and all the phenomena of refracted light to take place in exact con-

formity with the results deduced from them by mathematical reasoning.
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Light Let A C B (fig. 23) be the refracting surface, P C p the perpendicular to it at the point of incidence C, S C

' the incident, and C s the refracted ray. Then we shall have

sin P C S : sin p C * : : p. : 1,

/a being a constant quantity ; that is, constant for the same medium A B, though its value is different for different

media.

178. It is usual, for brevity, to speak of the sine of incidence, and the sine of refraction, instead of the sines of the

angle of incidence, and the angle of refraction.

179. The numerical value of the quantity /t, or of--- in any medium, must be ascertained before
sin of refraction

the law of refraction in that medium can be regarded as perfectly known. This may be done experimentally
by actually measuring the angle of refraction corresponding to any one given angle of incidence, for the value
of the above fraction being thus determined for one incidence holds equally for every other, or by other more

Index of
easy or more renned modes to be described hereafter. This quantity u, is called the index of refraction of the

retracuon.

The medium in which the ray proceeds previous to its incidence on A B is here regarded as a vacuum. If

the medium A B be also a vacuum, it is clear that the ray will not change its course ; so that the angle of inci-

dence will equal that of refraction, and the value of fi will be equal to 1. This is the lowest value of /t, as no
medium has yet been discovered which refracts rays from the perpendicular when incident from a vacuum. The
greatest value of /t yet known is 3, when the refraction is made into chromate of lead ; and between these limits

almost every intermediate gradation has been found to belong to some one or other transparent body. Thus
for air at its ordinary density /t= 1.00028, while for water it is 1.336, for ordinary crown glass 1.535, for flint

glass 1.60, for oil of cassia 1.641, for diamond 2.487, and for the greatest refraction of chromate of lead 3.0.

181. It is a general law in Optics, that the visibility of two points from one another is mutual, whatever be the
Refraction course pursued by the rays which proceed from one to the other. In other words, that if a ray of light pro

ne^turSo
ceedin? from A arrives by any course at B, however often reflected, refracted, &c., a ray can also arrive at A

vacuum
from B by retracing precisely the same course in a contrary direction. It follows from this, that if the ray S C
incident on the exterior surface of a medium A B, (fig. 23,) pursue after refraction the course Cs, then will a

ray sC, incident on the exterior surface of the medium, be refracted out of it in the direction CS, being bent

from the perpendicular. Consequently, since in this case the angle of incidence is the same with the angle of

.... ,. sin incidence 1

refraction in the former case, and vice versd, we shall have here - - = . Thus we see that the
sin refraction /i

index of refraction out of any medium into vacuum is the reciprocal of the index of refraction into the medium
from the vacuum.

Hence it follows, that a ray can be intromitted into any medium from a vacuum at any angle of incidence; for

since sin refr. = sin p ca = . sin P C S, the value of u being greater than 1, the sine of pcs will neces-
r*

sarily be less than that of P C S, and of course less than unity ; so that the angle of refraction can never become

imaginary. Thus, as the angle of incidence PCS increases from o, or as the ray S C becomes more and more

oblique to the surface till it barely grazes it, as at S" C, the refracted ray becomes also more oblique, but much

less rapidly, and never attains a greater obliquity than the situation C /', in which sin p C s" '- = .

fi [i

Limit of the This limiting angle, then, is the maximum angle of refraction from vacuum into the medium, and its value in any
angle of

given medium is found by computing the angle whose sine is the reciprocal of the index of refraction. Thus in
refraction.

water the angle of refraction cannot exceed arc sin ,
or 48 27' 40". In crown glass the limit is

1 .33o

40 39', in flint 38 41', in diamond 23 42', while for the greatest refraction of chromate of lead the limit is so

low as 19 28' 20".

183. Conversely, when a ray is incident on the interior surface of the medium, at any angle less than the limiting
Limit to the ,

possibility an ]e whose sine is , it will be refracted and emerge according to the law laid down in Art. 181. being bent
of a ray's p

any

e5

me-
0m

from the perpendicular. But as the angle of incidence pCs increases, the angle of refraction PCS increases

ilium. more rapidly ;
and when the former angle has reached the limiting value p C s", the transmitted ray emerges in

the direction C S", barely grazing the external surface. If the angle of incidence be still further increased, the

angle of refraction becomes imaginary : for we have sin P C S = fi x sin p C s, and if sin p C s 7 , the sine

When the of P C S must be greater than unity. This shows that the ray cannot emerge ; but it does not inform us what
ray cannot

\jecornes of jt. To ascertain this, we must have recourse to experiment ;
from which we learn, that after this

reflected*

"
^'m ' t ' s Passed, tne ray> instead of being refracted out of the medium, is turned back and totally reflected within

it, making the angle of reflexion p C S'" = p C s"'.
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Lignt. When the ray is incident on the exterior surface of the medium, a portion is reflected (R) and the remainder P"t I.

v""'' (r) refracted. The ratio of R to r is smallest at a perpendicular incidence, and increases regularly till the inci- ^ *''
dence becomes 90 ; but even at extreme obliquities, and when the incident ray just grazes the surface, the

reflexion is never total, or nearly total, a very considerable portion being always intromitted. On the other 7*"
s Teftex ~

hand, when the ray is incident on the interior surface, the reflected portion (R) increases regularly, with a very

moderate rate of increase, till the angle of incidence becomes equal to the critical angle, whose sine is ; when

it suddenly, and, as it were, per saltum, attains the whole amount of the incident light, and the refracted portion

(r) becomes zero. This sudden change from the law of refraction to that of reflexion this breach of continuity,
as it were, is one of the most curious and interesting phenomena in Optics, and (as we shall see hereafter) is

connected with the most important points in the theory of light.
The reflexion thus obtained, being total, far surpasses in brilliancy what can be obtained by any other means ; 185.

from quicksilver, for instance, or from the most highly polished metals. It may be familiarly shown by filling a Experiment

glass (a common drinking-glass) with water, and holding it above the level of the eye, (as in fig. 24, No. 2.) If
|jj^

stratlns

we then look obliquely upwards in the direction E a c, we shall see the whole surface shining like polished silver, re flex |or

with a strong metallic reflexion ;
and any object, as a spoon, A C B, for instance, immersed in it will have its

Fig.24,
immersed part C B reflected on the surface as on a mirror, but with a brightness far superior to what any mirror No. 2.

would afford. This property of internal reflexion is employed to great advantage in the camera lucida, and

might be turned to important uses in other optical instruments, especially in the Newtonian telescope, to obviate

the loss of light in the second reflexion, of which more hereafter.

Some curious consequences follow from this, as to vision under water. An eye placed under perfectly still 186.

water (that of a fish, or of a diver) will see external objects only through a circular aperture (as it were) of Appear-

96 55' 20" in diameter overhead. But all objects down to the horizon will be visible in this space ;
and those

*c

near the horizon much distorted and contracted in dimensions, especially in height. Beyond the limits of this :

ects to a
circle will be seen the bottom of the water, and all subaqueous objects, reflected, and as vividly depicted as by spectator
direct vision. In addition to these peculiarities, the circular space above-mentioned will appear surrounded underwater

with a perpetual rainbow, of faint but delicate colours, the cause of which we shall take occasion to explain
further on. But we need not immerse ourselves in water to see, at least, a part of these phenomena. We
actually live under an ocean of air, a feebly refracting medium, it is true, in comparison with water ; and our
vision of external objects near the horizon is modified accordingly. They are seen distorted from their true

form, and contracted in their vertical dimensions ; thus the sun at setting, instead of appearing circular, assumes Elliptical

an elliptical, or rather compressed figure, the lower half being more flattened than the upper, and this change
of figure is considerable enough to be very evident to even a careless spectator. The spherical form of the

atmosphere, and its decrease of density in the higher regions, however, prevent the rest of the appearances above
described from being seen in it.

If a medium be bounded by parallel plane surfaces, a ray refracted through it will have its final direction 187.
after both refractions the same as before entering the medium. Refraction

Let A B, D F be the parallel surfaces of the medium, and S C E T a ray refracted through it, P C p, Q Eg,
thro 8l'

perpendiculars to the surfaces at C and E, then we have
surfaces

sin S C P : sinp C E (= sin C EQ) : : p : 1
) N^

25
'

and, compounding these proportions,
sin CEQ: sing CT ::!:/.)

sin S C P : sin q E T, and therefore S C P = q E T, and the ray E T is parallel to S C.

This proposition may be proved experimentally, by placing the plane glass of a sextant (unsilvered) before the Experimen-

object-glass of a telescope directed to a distant object, or before the naked eye, and inclining it at any angle to "proe*

the visual ray. The apparent place of the object will be unchanged.
Experiment. Let a plate of glass, or any other transparent medium, be placed parallel to the horizon, and on 188.

it let any transparent fluid be poured, so as to form a compound medium consisting of two media of different Refraction

refractive indices, in contact, and bounded by parallel planes ; and let an object above this combination, a star,
*tthe COIT>-

for instance, be viewed by an eye placed below it, or through a telescope. It will be found to appear precisely
morlsurface

in the same situation as if the media were removed, whatever be the altitude of the object, or star. It follows medrain
from this, that a ray S B (fig. 26, No. 2) incident on such a combination of media, A F and D I, as described, contact.

will emerge in a direction H T parallel to the incident ray S B. Fig. 26,

Proposition. Let there be any two media (No. 1 and 2) whose respective indices of refraction from a No' 2 '

vacuum into each are /t and p!. Then if these media are brought into perfect contact, (such as that of a fluid . *?

with a solid, or of two fluids with one another,) the refraction from either of them (No. 1) into the other (No. 2)

u! from one
will be the same as that from a vacuum into a medium, whose index of refraction is , the index of refrac- medium int

f- another.

tion of the second medium divided by that of the first.

Let D E F (fig. 2fJ, No. 2) be the common surface of the two media, and let them be formed into parallel

plates A F, D I, as in the experiment last described ; then any ray S B incident at any jingle on the surface A C
will emerge at G I in a direction H T parallel to S B. Let B E H be its path within the media, and draw the

perpendiculars P B p, Q E q, R H r, then

VOL. tv 3 c
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sin S B P : sin E B p = sin B E Q : : / : 1

sin R H E = sin 9 E H : sin r H T = sin P B S : : 1 : ,u ,

and, compounding these proportional

sin H E q : sin B E Q : : :V;
sin H E q u

'

Absolute But B E Q is the angle of incidence, and H E 9 that of refraction, at the common surface of the media, con-
and relative sequently the relative index, or index of refraction from the first into the second, is equal to the quotient- of the absolute indices fi', p., of the second and first, or their indices of refraction from vacuum.

190. This demonstration, it is true, holds good only for the case when the angles of incidence and refraction at the
common surface are both less than the limits of the angles of refraction from vacuum into each medium. If

they exceed these limits, the proposition however still holds good, as may be shown by direct measures of the

angles of incidence and retraction in any proposed case. At present, therefore, we must receive it as an experi-
mental truth.

191. Example. Required the ratio of the sine of incidence to that of refraction out of water into flint glass. The
refractive index of flint glass is 1.60, and that of water 1.336, therefore the refractive ratio required is

1.60

-L336-
- L197 '

192. If the index /*
= !, the general law of refraction coincides with that of reflexion. Thus all the cases of

reflexion, as far as the direction of the reflected ray is concerned, are included in those of refraction.

Of the Ordinary Refraction of Light through a System of Plane Surfaces, and of Refraction through Prisms.

193. Definition. In Optics, any medium having two plane surfaces, through which light may be transmitted,
inclined to each other at any angle, is called a prism.

194. Definition. The edge of the prism is the line, real or imaginary, in which the two plane surfaces meet, or would
meet if produced.

195. Definition. The refracting angle of the prism is the angle on which its two plane surfaces are inclined to each
other.

196. Definition. The faces of a prism are the two plane surfaces.

197. Definition. The plane perpendicular to both surfaces, and therefore to the edge of a prism, is called the

principal section of the prism, or of the two surfaces. This expression has been used in this general sense

already, under the head of reflexion.

To determine the direction of a Ray after Refraction through any System of Plane Surfaces.

198. Construction. Since the direction of the ray is the same whether refracted at the given surfaces, or at others

General
parallel to them, conceive surfaces parallel to the given ones, all passing through one point, and from this point,

problem of
but wj,o i ly exterior to the refracting media, let perpendiculars C P, C P', C P", &c. be drawn to each of the

tio

e

n tf^gh surfaces, (fig. '27.) Let S C be the direction of the incident ray. Between C P and C S' draw C S' in the plane

any system I
of plane S C P, so that sill P C S' = . sin P C S, fi being the index of refraction of the first medium from the medium
surfaces. /<

Fig in which the ray originally moved, which we will at present suppose a vacuum, then will S'C be the direction of

the ray after the first refraction. Again, let ft'
= the relative refractive index of the second medium out of the

first, or
ft. fi!

= its absolute refractive index from a vacuum
;
draw C S" in the plane S'C P' so as to make

sin P' C S" = r . sin F C S', then will S" C be the direction of the ray after the second refraction, and so on.

(*

199. General analysis. Let a = S C P the first angle of incidence, a! =. S' C P' the angle of incidence on the

second surface, I = P C P" the inclination of the two first surfaces to each other, and putting, moreover,

= p S' Pf = the angle which the planes of the first and second refraction make with each other.

Y' = S Pf = the angle made by the plane of the first refraction with the principal section of the two first

refracting surfaces.

= S' P* P = the angle made by the plane of the second refraction with the same principal section.

p = PCS' the first, and />'
= P' C S" the second angle of refraction.

D = S C S" the deviation after the second refraction.
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Lignt We have (conceiving S S' S" P P' to be a portion of a spherical surface having C for its centre) in the spherical Part I.

v^' triangle S' P P7

given P S', P V, and the included angle, required S'P'andthe angles PS'P', PP'S'; and,
v

v
'

again, in the triangle S S' S" given S S', S S" and the angle S S' S", required S S'' the deviation. Or, in

symbols, since p and /' arc the angles of refraction corresponding to the angles of incidence a, a 1

, and the indices

of refraction ft, ft',

-
sin a. = n . sin />

cos a'= cos p . cos I + sin p . sin I . cos Y"

sin a' = fif . sin p'

sin a! . sin = sin I . sin Y"

sin a! . sin = sin p . sin Y"

cos D = cos (a
- p) . cos (a' /) sin (a p) . sin (<*' />') . cos 0.

From these equations, which, however, are rather more involved than in the case of reflexion, (Art. 99, 200.

equation A,) we may determine in all circumstances the course of the ray after the second refraction
; and, in like

manner, as in the case of reflexion, of any of the eleven quantities a, a', p, p', fi, [if, I, 6, <j>, Y*, D, any five being
given the remaining six may be found, -md we may then go on to the next refraction, and so on as far as we
please. It is needless to observe, however, that, except in particular cases, the complication of the formula

becomes exceedingly embarrassing when more than two refractions are considered. Such is the general analysis
of the problem ; but the importance of it in optical researches requires an examination in some detail of a variety
of particular cases.

Case 1. When two plane surfaces only are concerned, at both of which the refractions are made in one plane, 201.
viz. that of the principal section of the two planes, or of the prism which they include. Case 1.

Let the ray S C (fig. 28) be incident from vacuum on any refracting surface A C of a prism CAD, in the w !

len
.

both

plane of its principal section ; draw PC perpendicular to that surface, and draw CS' so that sin P C S' : sin
aremade^nPCS : : 1 : , then will S'C be the direction of the refracted ray CD. Again, draw C P' perpendicular to one piane .

A D, and take the angle S" C F, such that sin P' C S'' : sin P' C S' : : 1 : /*', / being the relative index of Fig. 28.

'

refraction from the medium A C D into the medium A D E, then will S" C be parallel to the ray after the second

refraciion; draw, therefore, DE parallel to Sr C, and DE will be the twice refracted ray. As in the general
case, calling S C P, a. ; S' C P, p ;

S' C P', * ; S" C P', p
1

; and P C P', I, &c.

we have

and

The first of these equations gives p when
ft-
and a are known ; the second gives the value of <*' when p is found ;

the third gives // when .' and p' are known ; and the last exhibits the deviation D.
The sign of D is ambiguous. If we regard a deviation from the original direction towards the thicker part of 202.

the prism, or from its edge as positive, which for future use will be most convenient, we must use the lower sign

or take D = p'
I a. ; (6)

but if vice versa, then the upper sign must be used. We shall adhere to the former notation.

Case 2. If, in case 1, we suppose the medium into which the ray emerges to be the same as that from which 203.

j
Case 2.

it originally entered the prism, (a vacuum, for example,) we have fi' = . This is the case of refraction Bothrefrae

fi
tions in one

through an ordinary prism of glass, or any transparent substance. In this case, I is the refracting angle of the tne faces of

prism, fj.
its refractive index, (its absolute refractive index if the prism be placed in vacuo, its relative, if in any a prism in

other medium,) and the system of equations representing the deviation and direction of the refracted ray
vacuo.

becomes

sin a. = i* . sin p ; a.' = 1 + p; sin a! = fi . sin p' \

_ //_ t - - (ff)

sin a. =
ft,

. sin p

sin u1 = I + p

t ' } <c >
PHI // = /LI

. sin a I

tin D =
f
'- a - I /

i

Corol. 1. The deviation may be expressed in another form, which it will be convenient hereafter to refer to 204.

For we have
sin (I + D 4 -i)

= sin p
= /* . sin a 1 =

fi . sin (I 4- f)

= { sin
p

. cos I + cos
p

. sin I }

= yu
|

sin
p

2 sin p
. ( sin J + 2 . cos

p
. cos .sin

j

3 c <2
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,
/ . I \ s

I I Pirt I

cos 1 = 1 2 I sin 1 and sin I = 2 . sin . cos . \ ,,-.

sin a. l>y the first of the equations (c), hence we get (equation d)

sin (I + D + a) = sin a + 2 /i . sin . cos / - - + f
J

: (d)

whence, I and a being given, and
p calculated from the equation sin

/>
= sin a, D is easily had.

205. Carol. 2. If o = o, or if the ray be intromitted perpendicularly into the first surface, we have also p o, ;mfl

the expression (d) becomes simply
sin (I + D) = fi . sin I , (e)

whence also a = sl" <' + D
>-

{ (f)
sin I

Thus we see that if /u . sin I 7 I, or if I, the angle of the prism, be greater than sin" 1

,* the critical angle, or

the least angle of total internal reflexion, the deviation becomes imaginary, and the ray cannot be transmitted

at such an incidence.

206. Carol. 3. The equation (/") affords a direct method of determining by experiment the refractive index of any
1st mode of medium which can be formed into a prism. We have only to measure the angle of the prism, and the deviation

determining of a rav jntromitted perpendicularly to one of its faces. Thus I and D being given by observation, u, is known.

re'fracti
This ' s not> however, the most convenient way ; a better will soon appear.

i>v experi- Definitions. One medium in Optics is said to be denser or rarer than another, according as a ray in passing
ment. from the former into the latter is bent towards or from the perpendicular. When we speak of the refractive

207. density of a medium, we mean that quality by which it turns the ray more or less from its course towards the

perpendicular (from a vacuum,) and whose numerical measure is the quantity ft the index of refraction.

208. Proposition. Given the index of refraction of a prism, to find the limit of its refracting angle, or that which

Limit ot" the if exceeded, no ray can be directly transmitted through both its faces.

refracting This limit is evidently that value of I which just renders the angle of refraction p imaginary for all angles of

angle of a incidence on the first surface, or for all values of a, that is, which renders in all cases
prism.

/t . sin { I +/>} 1 positive,

or, sin (i + p) positive ; that is, (since I + p cannot exceed 90) which renders in all cases I + p
-

sin" 1 (-
) positive. Now p = sin" 1

, and consequently the value of a least favourable to a positive

value of the function under consideration is 90, which makes
/>
= sin -'

(

j,
its greatest negative

value. Consequently, in order that no second refraction shall take place, I must at least be such that I -

2 sin-' f
)

shall be positive; that is, I, the angle of inclination of the faces of the prism to each other,

Angle of a or as it is briefly expressed, the angle of the prism, must be at least twice the maximum angle of internal

prism. incidence.

209. For example, if fi
= 2, 1 must be at least 60. In this case no ray can be transmitted directly through an

equilateral prism of the medium in question.

JIQ Carol. 4. If p. 7 1, or if the prism be denser than the surrounding medium, . sin I is 7 sin I and r,in~ '

(jt,
. sin I) 7 I, so that the value of D (equation (d), Art. 204) is positive, or the ray is bent towards the thicker

part of the prism, (see fig. 29.) If /t ^ 1, or the prism be rarer than the medium, the contrary is the case,

(see fig. 30.)

2ii Problem. The same case being supposed, (that of a prism in vacuo, or in a medium of equal density on

Case of' both sides,) required to find in what direction a ray must be incident on its first surface so as to undergo the least

minimum possible deviation.
deviation. Since D = p a. I ; (c) Art. 203, and by the condition of the minimum, d D = o, we must have

d p = d a.

Now the equations (c) give by differentiation

d . cos a =
ft.
d p . cos p ; d a' = d p ; dp', cos p = ft d a . cos a,

that is dp. cos />'
=

/* d p . cos of = d a .

cos p

* The reader will observe, that by the eipression sin -' is meant what in most books would be expreised by arc sin = .
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,
or

That is, squaring,

j.
_

d a

cos . cos a
; or cos a . cos a = cos a . cos p.

Part

cos p . cos p

(1 sin a 2
) (1 sin a' 2

) = (1
- sin p") (1 sin p'

1

in which, for sin a and sin p' writing their equals, /a
1

. sin p and ft . sin a', we get

1 ft
2

. sin
/>

2
1

ft
?

. sin a'

1 sin p
1 1 sin a' 2

which gives, on reduction, simply sin />
2 = sin re"2

, and therefore
/j
= + a.', that is I + p = I + a', or

a' = I + a'. The upper sign is unsatisfactory, as it would give 1 = 0. The lower therefore must be" taken,

which gives
' =

, whioh satisfies the conditions of the question. We therefore have

4 * ? sin <z =
,* . sin f-ii sin p'

= . sin
( j

.

This state of things is represented in fig. 31, for the case where ft 7 1, or where the prism is denser than the

surrounding medium, and in fig. 32, for that in which it is rarer, or
ft / 1 . In both cases, a, being negative,

indicates that the incident ray must fall on the side of the perpendicular C P, from the edge A of the prism (as
S C). In both cases, the equations p ( P C S') = I (= \ P C P') and a! = P' C S'.

= + | P C P',

indicate that the once refracted ray S' C D bisects the angle P C P', and therefore that the portion of it C D
within the prism makes equal angles with both its faces. In both cases, also, the equality of the angles a and /

(without reference to their signs) shows that the incident and emergent rays make equal angles with the faces

of the prism, and therefore that it is of no consequence on which face the ray is first received.

Carol. 5. In this case, also, we have the actual amount of the deviation

(/)

H iHence also

Fig. 31.

Fig. 32.

D = (f o - I = 2 sin
-

'

(p. . sin
^
- I.

212.

Expression
for the

minimum
deviation.

D =
/i . sin -

.

Carol. 6. In the same case, I being given by direct measurement, and D by observation, of the actual 213.

minimum deviation of a ray refracted through any prism, the value of ft. its index of refraction, is given at Another

once, for we have ode f
.

,
, n determining

s ; n (__ \ the index of

\ 2 ' refraction

ft
= -

y
-

. (g) of a prism

s ;n (M byexperi-
\ 2 I ment.

And this affords the easiest and most exact means of ascertaining the refractive index of any substance

capable of being formed into a prism.

Example. A prism of silicate of lead, consisting of silica and oxide of lead, atom to atom, had its refracting 214.

angle 21 12'. It produced a deviation of 2-3 46' at the minimum in a ray of homogeneous extreme red light : Examp.e.
what was the refractive index for that ray ?

I = 21 12', ~ = 10 36', D = 24 46',
-5_ =

9.59158

9.26470

23'

. / I D v

sin

(T
+ T)
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Light. sin a =

fj.
. sin p ;

a' p + I ; p? . sin
/>'

: sin a' ; S =z a p ;

sin a =
ft', sin p' ; a" == p' 4- I' ; ;*". sin /' = sin a"; & s a

/>' ,- &c. <Skc.

Hence we get (supposing n to represent the number of surfaces)

1
sin p = , sin n

^

sin p' = f
. sin (I + p)

P

sin /'= f . sin (I' + p
1

)

sin ^ <- = -jj . sin (I
("-2: + />

("~ 2
)

whence the series of values p, f, &c. may be continued to the end. Those delei mined, we get a, a', &c. by the

equations a = a; a' =r p + I ;
o" = /+!'; ____ u -D = ^

(-2) + I '"-2J
T

and finally D = {
a + a' + ____ (-D

} {,> + / + ____ ^ i-ij
}

= o + {I + I' + ____ I ("- 2) }p l
"~ }}

.

Now I + I' + ... I <"- 2> is the inclination of the first to the last surface, or the angle (A) of the compound
prism, formed of the assemblage of them all, so that we have in general

D = a + A -/.("-'' (A)

216. Let us now inquire, how a ray must be incident on such a system of surfaces so that its total deviation shall
Cae of be a minimum.
minimum Since d D = o and I, I', &c. are constant, we must have
deviation

to'* ddx=dpt*-,number ot

refractions. i_ ,
out fi . sin p = sin a ^ ( p d p . cos p = d a . cos a

fi . sin p = sin (p 4- I) V < p'dp'. cos
/>'

z= d p . cos (p + I)

&c.

and multiplying all these equations together

H F . . pi"-'), cos. pcosp' cosoC1

-'). -^-^ - = cos a . cos (j> + I) cosO>>
B - 2>+ I C'- 2

))
d a

or simply

ft ft'
. . . . f*

(
~

''. COS /> . COS />'.... COS pC
1 " 1 ' = COS a . COS a' COS a'" '); (j)

this equation, combined with the relations already stated, between the successive values of p and those of a,

afford a solution of the problem ; but the final equations to which it leads are of great complexity and high
dimensions. Thus, in the case of only three refractions, the final equation in sin

p
or sin

p',
&c. rises to the

sixteenth degree ; and though its form is only that of an equation of the eighth, yet there appears no obvious

substitution by which it can be brought lower. The only case where it assumes a tractable form is that of two

surfaces, when the equation (;') which in general may be put under the form

p*^* fiW* (1 sin ? ") (1
- sin f 2

), &c. = (1
-

f
S . sin p") (1

'
. sin p"), &c. (;')

reduces itself by putting sin
?
2 = x, and sin p'* = y,

to (p.
4

/t'
2

1) ft- (/i'
2 -

1) x ,'
a

(*t
a

l)y = 0,

which, combined with the equation ft'
. sin

p'
= sin

(j + I)

or (>/
s
y + x sin I8)

5 = 4
(*'

-
. cos I 2

. x y,

gives a final equation of a quadratic form for determining x or y, and which in the particular case of //* = 1,

or when the second refraction is made into the same medium in which the ray originally moved before its first

incidence, gives the same result we have already found for that case by a similar process. Meanwhile, though
we may not be able to resolve the final equations in the general case, the equation (j) affords a criterion of the

state of minimum deviation which may prove useful in a variety of cases.
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Light. Case 4. When the planes of the first and second refraction are at right angles to each other, required the rela Pan I.

^ ^
'

tions arising from this condition. ' "^ v "*"

In this case we have 6 = 90, cos = 0, sin = 1, so that the general equation (B, 199) becomes 217.
Case when

sin a =
/j.

. sin
p

~\ the plane"
of the firs*

sin a =: p . sin
p'

>and cos a' = cos j . cos I + sin
p

. sin I . cos ty. and second

retraction

sin a' =. sin 1 . sin ty} are at right

The last of these equations, by transposition and squaring, becomes

cos a' 2 2 . cos a' . cos
p

. cos I + cos . cos 1 2 = sin p* . sin I* (1 sin ^)

in which, substituting for sin ^ its value - deduced from the third equation, and reducing as much as pos

sible, we obtain

cos a' 2 . cos
p
2 2 . cos a' . cos

p
. cos I + cos 1 2 = 0,

which, being a complete square, gives simply

cos
p

. cos a' = cos I. (k)

This answers to the equation cos a . cos a! = cos I, obtained, on the same hypothesis, in the case of reflexion

(104) ; for since the latter case is included in the case of refraction, by putting p, = 1 (Art. 192) we have
then a =

p
and cos

p
= cos a.

Corol. 1. If i and i' be the inclinations to the first and second surfaces respectively of that part of the ray 218.
which lies between the surfaces, we have

i = 90 -
f and i' = 90 - a,

so that the equation above found, gives

sin i . sin i' = cos I,

or the product of the sines of the inclination of the ray between the surfaces to either surface is equal to the

cosine of the inclination of the two surfaces. The same relation may be expressed otherw.ise, thus : if we
suppose the ray to pass both ways from within, out of the prism, the product of the cosines of its interior

incidences on the two surfaces is equal to the cosine of their inclination to each other. In this way of stating
it, the case of reflexion is included.

Corol. 2. We have also in the present case gio

. Ai* . sin I 2 sin 2 1 . /V sin I* - sin oa
S'n = V ^_ sira

' * /= 2TV
'

^-sin a 2
~1

sin p = . sin a
;

f>,
v

/* sin

and cos D = cos (a 5) . cos (a' p')

so that a being given, all the rest become known. The last equation corresponds to the equation cos D = cos

2 a . cos 2 a in the case of reflexion.

VII. Of Ordinary Refraction at Curried Surfaces, and of Diacaustics, or Caustics by Refraction.

The refraction at a curved surface being the same as at a plane, a tangent at the point of incidence, if we 220.
know the nature of the surface, we may investigate, by the rules of refraction at plane surfaces, combined with

the relations expressed by the equation of the surface, in all cases, the course of the refracted ray. We shall

confine ourselves to the simple case of a surface of revolution, having the radiant point in the axis.

Proposition. Given a radiant point in the axis of any refracting surface of revolution, required the focus of 221.

any annulus of the surface. General in-

Let C P be the curve, Q the radiant point, Q q N the axis, PM any ordinate, P N a normal, and P q or 9 P vestigation

the direction of the refracted ray, and therefore q the focus of the annulus described by the revolution of P. of the focus

Then if we put p for the re ractive index, and, assuming Q for the origin of the coordinates, put QM = x, "urf^e"^
8

d y
revolution.

M P = y, r "/i* + y\ p ?-, we have Fi8- 33 -

d I

sin QPM =
; cc
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1 Par I.

sin N P M = ; cos N P M =
V

consequently sin N P Q = sin Q P M . cos N P M + sin N P M . cos Q P M
x + py

r. v'l -rp
a>

and therefore sin N P 9 = . sin N P Q =
v l + p*

g
and cosNP9 =-- , if we put Z = J~* r s

(1 + 8
) (x + py) ; (a)

ft r v 1 + .p*

consequently since MP9 = NP9 + NPM, we get

x+py+pZ -p(x + py)+Z
sin M P q =-Vr-f r- ; and cos M P q = --- -

/*r(l + p*) nr(\+p*)

sin M P 9 x + py + p Z
whence tan M Po =- * - -

.

cosMP9 -p(,r

Now we have M q = P M . tan M P q = y . tan M Pg = -J^j
+
/'

>

+
+f

'?
))

i

consequently Q9 = jr+y.tanMP9 = (x+Py).
Y(x'+ pii) -~Z

' (c)

222. Carol. 1. If we put s for the arc C P of the curve, we have, since rdr = xdx + y dy =. dx (.r +

223. Carol. 2. If p = 1, in which case the refraction becomes a reflexion, we have

Z "J r* (1 + p*) (x + py)
1* = y px, writing for r5 its value zj + y

c
; so that the general value above

found for Q 9 reduces itself to

Q9 = 2.

which is the same as that found in (6) Art. 109, in the case of reflexion.

22 1. Carol. 3. If we put P = tan M 9 P = cotan M P q = .

we have P=
~

. W
f + f9+P*

and the equation of the refracted ray, if X and Y be its coordinates, (Q being their origin) will be (since Y lies

on the opposite side of the curve from Q)

225 In the case of parallel rays these expressions become (by putting first x + a for x, and then making a infinite)

(g)

-! -p
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VIII. Of Cawtics by Refraction, or Diacaustics.

The theory of Diacausti ,3 is in all respects analogous to that of Catacaustics already explained. To find the 226.

coordinates X and Y of the point in the diacaustic which corresponds to the point P in the refracting curve, we FlS- 34 -

have only to regard the equation (/) and its differential with respect to x, y, and p alone, as subsisting together,

and we get the necessary equations for determining X and Y in terms of x, y, as in the case of reflexion, and

these are X = x + dx; Y = y
- P . d x ; (i)

the only difference is in the signs and in the value of P, which, instead of the formula (e, Art. 110,) is here

expressed by the more complicated function (e, Art. 223,) and the equation of the diacaustic will be obtained as

before by eliminating all but X, Y from these.

It is, evident, moreover, that if we suppose, as in the theory of Catacaustics, M =
-T-J;

d x ; and put 227.

S for the length of the caustic, and /for the line P y, we shall have, exactly as in that theory,

See Art. 139, 143, 144.

Now we have, substituting for P its value (e),

x + py + pZ'
and consequently the value of d S becomes

andrfS = df+

r

V i +

py+pZ

dS = df = df+ , because (x + py)dx =

and integrating

so that we have, finally, (tig. 34,)

S = const 4- f + - ;

Fig. 34.

arc F y (C F - P y) + (Q C Q P). (/)

In the case of reflexion, /* = !, but at the same time the sign of f is negative, because in this case 228
the reflected ray lies on the same side of the point of incidence with the incident one ; thus both terms of

the formula change their sign, and this expression coincides with that found Art. 144.

In the case of parallel rays, we must use the value of P found in Art. 225, equation (g). Putting 229.

9 = dp
'

' T
and executing the operations, we find, then,

Y lx = *--
p
- S (1 + p')

- 1

fflq

^(1 +y 2)- 1

^g

(m)

230.Carol. If we suppose /*
= x , or the refractive power infinite, the refracted ray will coincide with the

normal, and the caustic will be identical with the evolute ; and it is evident that the expressions (m), when

p = CD , resolve themselves into the well-known values of the coordinates of the evolute.

If the rays incident on the refracting curve do not diverge from one point, but be all tangents to a curve 231.
V V V", (fig. 35,) we must put x a for x in the value of P, (eq. (e) Art. 224 ;) and fix the origin of the

Fig. 35.

coordinates at A, putting A Q = a ; and if, then, we regard a as variable according to any given law, (or

regard x a at once as a given function of x,) and take the differential of P on this supposition, the

equations (i) still hold good, and suffice to define the caustic.

Problem. The radiant point and refractive index of a medium being given, to determine the naUre of
.^^

the curve surface which shall refract all the rays to one point.

Here we are required to find the relation between * and y, so as to make Q q invariable. Let Q q s: c,

and we have

c = (x + py) .

~

This equation gives

where Z = ft (* + y') (1 + ?')
-

(x + p y*).

VOL. IV.

(x + p y) (p (x
-

c)
- y) = Z (x

- c + p y).
3 D
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Light. Squaring both sides, and substituting for Z its value, we get Far. I.

(x + py)*{ (p (r
-

c)
-

y) + (x
- c + py)* }

= (x
- c

which, on executing the operations indicated on the left hand side, becomes totally divisible by 1 + p *, and

reduces itself to

(x + py)* (y* + (x
-

c)
2
)
=

,* (* - c

that is, putting for p its value , multiplying by d a;
2

,
and extracting the square root,

(I X

(x c) dx + y d y- - -

V (x c)
2 + y*

and integrating (each side being a complete differential)

V a;
2

-f y
* = b + ft

. V (x e)* + y
2
, (n)

which is the equation of the curve required, and belongs, generally, to a curve of the fourth order.

233 Carol. 1. About Q, (fig. 36,^ ith any radius Q A, arbitrarily assumed, describe a circle A B D E, then if C P

Fig. 36. be the refracting curve, and we put Q A = 6, we have Q P = V x * + y*, P q "/(x c)
s + y

4
, and the

nature of the curve is expressed by the property

B P = ft . P q, or, B P : P q : : p : I.

234. Carol. 2. If 6 = o, or the circle A B E be infinitely small, we have Q P : P q : :
ft : 1, which is a well known

property of the circle. In fact, in this case we have simply

In this, if we change the origin of the coordinates by writing x +
g ^ c for x, we find

M
The radius of the circle, therefore, is equal to

. _ -i
x Q q, and the distance of its centre from the radiant

2

pio. 3
- point is - X Q 9. Take therefore any circle H P C whose centre is E, (fig. 37,) and two points Q, q,

such that Q E = /* X E C and Q C : C q : :
fi

: 1 . Then if rays diverge from Q, and fall on the surface P H
beyond the centre, they will, after refraction into the medium M, all diverge from q.

9 5 Coral. 3. If p,
= I, the equation (), when freed from radicals, is only of the second degree between x and

y, and therefore belongs to a conic section. On executing the reduction we get

*=('- -) ((4)' ='*-!)')
which shows that the radiant point Q is in one focus and q in the o^rer, which is the same result as that before

found by a different mode of integration.

236. Carol. 4. When Q is infinitely distant, and the rays are parallel, we iiust shift the origin of the coordinates

For parallel from Q to q, by putting c x for x, and afterwards supposing c infinite. This gives

rays the

curve is a V o 2 2 CX + X* + y*
conic

Developing the first term in a descending series, we find
Fig. 38.

(C
_ b)

- X + *\
+
c f~

+ &C. = /.
.

Let c 6 = h, which, since 6 is arbitrary, is equally general, and may represent any finite quantity, then, as c

increases and at length becomes infinite, this equation becomes ultimately

h x =
ft

A/ x* + y*.

Let C P be a conic section, q its focus, and A B its directrix, q M = x, and PM = y, then will Q P = k x

if we take q \ h, and the above equation we see expresses that well known property of a conic section, in

virtue of which QP : Pq in a constant ratio, (fi : 1.)

237 Corol. 5. The curve is an ellipse when Q P 7 P </,
or when the ray is incident from a rarer on a denser

medium, and an hyperbola in the contrary case. If Q P = P q, the curve is a parabola ;
in this case /t

= 1, and
the rays converge to the focus at an infinite distance, i. e. remain parallel.

To "take a single example of the investigation of the diacaustic curve, fiom the general expressions above
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Light, delivered, let the refracting surface be a plane, and we shall have, fixing the origin of the coordinates at the Part I-

v ' radiant point, and supposing the axis of the x perpendicular to the refracting plane A C B,
>

v~~"
Caustic of a

x = constant = Q C = a, p = = CD . Thus we get refracting
surface.

p
V (^ - 1)

Fig. 39 and
and therefore by the equations (f) we get, substituting these values, 40.

Y_
a

Eliminating y from these, we have the equation of the caustic

" + ,.*a*}M

y
3

(
~^~- J

fia

/'/I-/.' _Y y _
\ /t a J

This is the equation of the evolute of a conic section whose centre is C, and focus the radiant point Q. If
ft,

be greater than unity, or the refraction be made into a rarer medium from a denser, the conic section is an

ellipse, (see fig. 39,) and in the contrary case an hyperbola, (fig. 40.)

IX Of the Foci of Spherical Surfaces for Central Rays.

Definitions. The curvature of any spherical surface is the reciprocal of its radius, or a fraction whose nume- 239.

rator is unity and denominator the number of units of any scale of linear measure to which the radius is Curvature

,

J
defined,

equal.
The proximity of one point to another is the reciprocal of their mutual distance, or the quotient of unity by 24C

the number of units of linear measure in that distance.

The focal distance of a spherical surface is the distance from the vertex, of the point to which rays converge, ^241.
or from which rays diverge after refraction or reflexion.

The principal focal distance, or focal length, is the distance from the vertex of the point to which parallel
K

%
and central rays converge, or from which they diverge after refraction or reflexion.

Foca]

'

{h

The power of a surface is the reciprocal of its principal focal distance, or focal length, estimated as in the 343
definitions of curvature and proximity. Power.

Problem. To find the focus of a spherical refracting surface after one refraction, for central rays. 244.

Here, putting a for the distance of the focus of incident rays Q, (fig. 41,) from the centre E, we have General ei-

pressions foi

any annulus

ind these substituted in the general expressions Art. 221, give of a sphe-
rical refract-

y Z = J ^ r 2 x* + (p* r 2 - a s
) y

2
^

ing surface

( r*
|

(J "~7 ff, < J,
^

'

J

ft (ct ^~ x) ~ y f* I

These values of Q q and C q contain the rigorous solution of the problem, whatever be the amplitude (y) of the Focus for

annulus whose focus q is, and we shall accordingly again have recourse to them. At present, however, our central ra

concern being only with central rays, we must put y = 0, when we find x = a r; yZ ftrx = fir(a r)

a

Carol. 1. This latter is the focal distance for central rays. Now, since a r = Q C, this gives the following 245.

proportion,

/..QC-QE:/i.QC::CE:C 9 . (c)

3D2



380 LIGHT.
L.ght. Carol. 2. If we suppose the focus of incident rays infinitely distant, or a ~ x, and take P the place of q for Pa" I-

^-v-
' central rays, on that supposition, F will be the principal focus, and we shall have '*" ' >

246.
Focus for C F =
parallel rays /*

1
'

\ . (d)urliAnstA \va alert ^in/^ I ^ 'whence we also find

CE

? =-!; that is, C E : C F : : /i
- 1 : p }

: E F : : / 1 : 1, and C F : F E : :
/.

: 1 )

>47 These results will be expressed more conveniently for our future reference by adopting a different notation.

Let, then,

R =- = curvature of the surface, and let positive values of r and R correspond to the case

where the centre E lies to the right of the vertex C, or in the direction in which the

rays proceed.

D = (fig. 42) = proximity of the focus of incident rays to the surface, D being regarded as
V C

positive when Q lies to the right of C, as in fig. 42, and as negative when to the left,

as in fig. 41. Then, since Q E = a, and since in the foregoing analysis a is regarded
as positive when Q is to the left of E, we must have (fig. 42) Q E = a, and
QC=QE-rEC = r a, so that

D =- ; a = -- -=- . Let also m = -
:

r a R D it

F = = power of the surface :

C Jp

/ = - = proximity of the focus of refracted rays to the surface.
C q

Positive values of F and / as well as of D and R, being supposed to indicate situations of the points F, f, Q, E,

respectively, to the right of C, or in the direction towards which the light travels. This is, in fact, assuming for

our positive case that of converging rays incident on a convex surface of a denser medium. We shall have, then,

1 1111
T ; : "

-tLL JLl

:

"D
;

:

1T -D' '-

Fundamen- But equation (6) gives =-t l and substituting we shall get
tal equation

C q fir (r - a)
for the foci

of central /= (I m) R + mD. (e)

This equation comprises the whole doctrine of the foci of spherical surfaces for central rays, and may be

regarded as the fundamental equation in their theory.
In the case of parallel rays, we have D = 0, whether the rays be incident from left to right, or from right to

^.

x"
left. In -either case, then, /has the same value, viz. (1 m) . R, and the principal focal distance F in either

:he power
case ' s ^e same> being given by the equation

of <>ny F = (1 -ni) . R, (f)
surface.

which shows, moreover, that the power of any spherical surface is in the direct ratio of its curvature.

249. Hence also we have /= F + m D. (g)

250 ^n *ne case "^ reflex 'on - where /
= 1, or m = 1, these equations become respectively

Kundamen- F = 2R; /= 2 R - D ; /= F - D. (A)
tal expres-
sions for the Such are the expressions for the central foci in the case of a single surface. Let us now consider that of any

""caTe

f

of

C'

system of spherical surfaces.

reflexion" Problem. To find the central focus of any system of spherical surfaces.

251. Let C', C'', C"', &c. be the surfaces. Q' the focus of rays incident on C', Q" that of refracted rays, or the

Central focus of rays incident on C", and so on. Call also R', R", &c. the radii of the first, second, &c. surfaces '. u",

focus of a .

system of ^ their refractive indices, or - into each medium from that immediately preceding, m' =-
, TO"= ,

spherical sin ref p u.'
surfaces in-

&c. Also let D = -v , D" = - &c. and moreover let C'C" = f, C" C'" = I", &c. f, I", &c. being

regarded as positive when C", C"', &c. respectively lie to the right of C', C'', &c. or in the direction in which

the nght travels ;
and if we put C/Q</

= /,
(

-v,

1

Q ,,,
= /", &c. F' = (1

- m') R', F" = (1
- m") R"', &c.

we shall have by (249)

/ = F' + m' D' : /' = F' + m'' D", &c. ; (t)
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but we have also ^art L

c'Q- =
^7

; C"Q" = = c' Q" - c'C", = -r :

and so on ; so that we have, besides, the following relations,

ry _ rv . r" $ D'" = __* - &c ( j")LI - L> , LI -
| _ P, ,. , , _ f"t"

' ' "

and substituting these values of D", D'", &c. in the equations (i), and in each subsequent one, introducing the

values of/', f, &c. obtained from those preceding, we shall obtain explicit values off, f", &c. to the end.

The systems of equations (i) and (./) contain the general solution of the problem, whatever be the intervals 353

between" the surfaces. On executing the operations, however, for general values of f, t", &c. the resulting

expressions are found to become exceedingly complex, nor is there any way of simplifying them, the complication

beino- in the subject, not in the method of treating it. For further information on this point, consult Lagrange,

(Sur la TMorie des Lunettes, Berlin, Acad. 1778.) We shall here only examine the principal cases.

Problem. To find the focal distance of any system of spherical surfaces placed close together. 253.

Here t'' t", &c. all vanish, and the equations (i) and (/) become simply Foci of a

system of

D' = D' ;
D" = /' ;

D"' f", &c. ; spheric^

f = F + m! D' ; /" = F" + m" D", &c. ;

placeo clrst

whence by substitution we obtain :ogether.

/" = F" + TO" F + m m" D'

j-ii>
F'" ^ m'f F" + m"i m"

p' + m"> m" m? D',

which it is easy to continue as far as we please.

Carol. 1. Let the number of surfaces be n, and let M' represent /', or the absolute refractive index out of

vacuum into the first medium; M" = p' p", or the absolute refractive index from vacuum into the second

medium, and so on ; /', ft'
1

, &c. representing only the relative refractive indices from each medium into that

succeeding it. Thus we shall have

M(n)fM - D' + M'F' + M"F"+ ...... M<") F. (fc)

Cor. 2. For parallel rays, in whichever direction incident, we have D 1 =
; and the principal focal length of 255.

the system, which we will call -^}
, is given by the equation

M<"> 0(">=M'F' + M"F'' + ____ MC> F<"'. (0

Cor. 3. Hence it appears that 0<
B
>, the power of the system, or its reciprocal focal length for parallel rays, being 256.

found by the last equation, the focus for any converging or diverging rays is had at once by the equation

M w y;) = M (" J (n) + D'.

For brevity and convenience, let us, however, modify our notation as follows : confining the accented letters 257.

to the several individual surfaces of which the system consists, let the unaccented ones be conceived to relate Fundamen-

to their combined action as a system. Thus, F', F", .... Fw representing the individual powers of the ^
*x
P
re!

respective surfaces; let F, without an accent, denote the resulting power of the system. In this view D' may cel"^"^!
be used indifferently ; accented, as relating to the incidence on the first surface ; or unaccented, as expressing Of any
the proximity of the focus of incident rays to the vertex of the whole system. Similarly, M (n) may be used system of

without an accent, if we regard the total refractive index of the system as that of a ray passing at one refraction spheric

into the last medium. This supposed, the equations (k) and (/) become

MF = M'F' + M"F" + ...... M<"> F ; (m)

M/=MF+D; M(F-/) + D = 0. ()

If the whole system be placed in vacuo, or if the last refraction be made into vacuum, we have M = 1 = M'"', 29b.

and the equations become
F = M'F' + M"F" + ....M FWJ (o)

/=F + D

Definitions. A lens in Optics is a portion of a refracting medium included between two surfaces of revolution 259

whose axes coincide. If the surfaces do not meet, and therefore do not include space, an additional boundary is Lenses de-

required, and this is a cylindrical surface, having its axis coincident with that of the surfaces.
' 5"

The axis of the lens is the common axis of all the bounding surfaces. int species,

Lenses are distinguished (after the nature of their surfaces) into double-convex, with both surfaces convex,

(fig. 44 ;) plano-convex, with one surface plane, the other convex, (fig. 45 ;) concavo-convex, (fig. 46 ;) double-

concave, (fig. 47 ;) plano-concave, (fig. 48 ;) and meniscus, (fig. 49,) in which the concave surface is less curved

than the convex. Also into spherical, (when the surfaces are segments of spheres ;) conoidal, when portions
of ellipsoids, hyperboloids, &o
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Light. These different species are distinguished, algebraically, by the equations of the surfaces, and by the signs of Part I.

_- v _; (heir radii of curvature. In the case of spherical lenses, to which our attention will be chiefly confined, if we <>,-
260. suppose a positive value of the radius of curvature to correspond to a surface whose convexity is turned towards

Species of the left, or towards the incident rays, and a negative to that whose convexity is turned to the right, or from
lenses how

them, ^e shall have the following varieties of denomination :

distinguish-

menisous
~\

("both radii + , as fig. 46, 49, a, or

concavo-convex j (.both radii , as fig. 46, 49, b,

f radius of first surface +, of second infinite, fia:. 45, b,
plano-convex -J

(.radius of first surface infinite, of second , fig. 45, a,

f radius of first surface , of second GO
, fig. 48, b,

plano-concave -i

(.radius of first surface oo , of second +, fig. 48, a,

double-convex : radius of first surface +, of second , fig. 44,

double-concave: radius of first surface , of second +, fig. 47,

the rays being supposed in all cases to pass from left to right.

A compound lens is a lens consisting of several lenses placed close together.
An aplanatic lens is one which refracts all the rays incident on it to one and the same focus.

2gi Problem. To find the power and foci of a single thin lent in vacua.

Focus of a Let R' and R" be the curvatures of its first and second surfaces respectively, ft the refractive index of the

single lens. \

medium of which it consists, m = ; F its power : then we have, since the last refraction is made into vacuum,

but, F'= (1 TO') R', and F" = (1 m") R" ; and as ft
1 = and TO" =

/j,
these become respectively

(p i) ft* and (ft 1) R' 1

, so that the foci of the lens are finally determined by the equations

F = (ft
-

1) (R
1 - R")"

Fundamen- *
talequations. f = F + 1)

262. Carol. 1. The power of a lens is proportional to the difference of the curvatures of the surfaces in a meniscus

Power of a or concavo-convex lens ;
and to their sum, in a double-convex or double-concave.

leus. In plano-convex, or plano-concave lenses, the power is simply as the curvature of the convex or concave

surface.

263. Corol. 2. In double-convex lenses R' is positive and R" negative, so that when
ft > 1, F is positive, or the

rays converge to a focus behind the lens. In plano-convex, R" = and R' is + ; or R' = and R" is

negative, (260) ; hence in both cases F is positive and the rays also converge. In meniscus lenses also,

R'is +, and R", though +, is less than R', (fig. 49 ;) therefore in these, also, the same holds good. In all these
19

cases the focus is said to be real, because the rays actually meet there. In double-concave, plano-concave, or

virtuar"oci concavo-concave lenses, the reverse holds good ;
the focus lies on the opposite side, or towards the incident

rays, and parallel rays, after refraction, diverge from it. In this case, therefore, they never meet, and the focus

is called a virtual focus.

i>54 Corol. 3. If ft be < 1, or the lens be formed of a medium rarer than the ambient medium (which need not be

vacuum, provided the whole system be immersed in it,) ft 1 is negative, and all the above cases are reversed.

In this case convex lenses give virtual, and concave, real foci.

- Corol. 4. For lenses of denser media, the powers of double-convex, plano-convex, and menisci are positive ;

posjt;ve an(j
and those of double plano-concave and concavo-convex lenses, negative ; vice versa for rarer media,

negative

'

Corol. 5. The focus of parallel rays is at the same distance, on whichever side of the lens the rays fall. For

powers. if the lens be turned above, R' becomes R'
r

, and vice versa; but, since they also change their signs, F remains

266. unaltered.

267 Corol. 6. The equation/^ F + D gives df= d D. This shows that the foci of incident and refracted rays

Conjugate move always in the same direction, if the former be supposed to shift its place along the axis ; and, moreover,

foci move in that their proximities to the lens vary by equal increments or decrements for each.

the same Problem. To determine the central foci of any system of lenies placed close together, the lenses being supposed

f!'

n

infinitely thin.

r tral 'foci
The general problem of a system of spherical surfaces contains this as a particular case ; for we may regard

ofa system
the posterior surface of the first lens, and the anterior of the second, as forming a lens of vacuum interposed

of thin lenses between the two lenses, and so for the rest. Thus the system of lenses is resolved into a system of spherical
in contact, surfaces in contact throughout their whole extent ; the alternate media having their refractive indices, or the

alternate values of M, unity. If then we call ft', ft", ft'", &c. the refractive indices of the lenses, we shall have

M=l; M' = ft'; M"=l; M"'=V'; M" = 1, &c.
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The compound power F then will (258, o) be represented by

F = /t'
F 1 + F" + n" F'" + Fiv + /i

1" F" + Fvi +, &c.

But F' = (1
- m>) R' = 4- 0*'

-
1) R'

because m 1 =
;

and m" =
/t.'. Consequently,

,,' F' + F" = (/'
-

1) (R ( - R")
and similarly

pii fin + F" = GU"
-

1) (R"'
- Riv

), &c.

so that we get, finally,

F = 0*'
-

1) (R'
-

R'') + (/*"
-

i) (R'"
- Riv

) + &c.

Now, the several terms of which this consists are (by Art. 261) the respective powers of the individual lenses

of which the system consists, so that if we put (according to the same principle of notation) L', L", L"', &c.

for the powers of the single lenses, and L for their joint power as a system, we have

Part I.

Superposi-
tion of

powers.
Power of a

system of

lenses is the

sum of the

powers of

the compo-
nent indivi-

duals.

L = L' + L" + L'" +, &c. (9)

an equation which shows that the power of any system of lenses is the sum of the powers of the individual lenses

which compose it ; the word sum being taken in its algebraic sense, when any of the lenses has a negative power.
Moreover it is easy to see that we also have/= L + D, as in the case of a single lens.

Reciprocally, we may regard a system of spherical surfaces forming the boundaries of contiguous media (as

in the instance of a hollow lens of glass enclosing water) as cons'sting of distinct lenses, by imagining the

concavity of one medium and the convexity of that in immediate contact with it separated by an infinitely thin

film of vacuum, or of any medium having its surfaces equicurve, as in fig. 50
; and thus a system of any number

() of media, whose surfaces are in contact throughout their whole extent, may be conceived replaced by an equi-

valent system of 2 n 1 lenses, the alternate ones being vacuum, or void of power. This way of considering
the subject has often its use. It, moreover, leads to the result, that the power of any system of spherical

surfaces placed in vacua is the sum of the powers of the several lenses into which it can be resolved, each placed in

vacua and acting alone.

Let us now return to the case of surfaces separated by finite intervals ; and, first, let us inquire the foci of a

system of surfaces separated by intervals so small that their squares may be neglected. In this case the equa-
tions (j), Art. 251, become simply

D'=D; D" = /' + f* 1
1

i D'" = /"+/" 2
i", &c.;

269

Fig. 50.

Power of a

and substituting these values in the equations (i), and retaining the notation of Art. 257, we find

surfaces

expressed.

270.
Foci of a

system of

surfaces se-

parated by
small finite

intervals.

M"F"+ ____ +D

Now in this we are to consider that

/' = F 1 + m'D, /" = F" + m"F' + m'm"D', &c.

and the values of f',f", &c. so expressed, being substituted in the foregoing equation, we find

M/= M 1

F' + M" F" + M'" F"' + &c. . . + D (r)

+ M' (F
1 + m' D)a

if + M" (F" + m" F' + m" m' D) a t" +, &c.

Carol. In the case of two surfaces, supposing M = 1, or in the case of a single lens in vacuo, this gives

CO
1

/= 0* -1) (R' - R") + D + {
-

1) R' + D }
4

1.

For parallel rays, this becomes

271.
Case of a

single lens,

of small Uii

finite thick-

F = G*
-

1) (R' - R") + R' a
. t ; (0

t being here put for t', the interval between the surfaces or total thickness of the lens.

Problem. To determine the foci of a lens, whose thickness t is too considerable to allow of any of its powers
being neglected.

Here we must take the strict formulae

D'=D; D" = _Z_; /'= (1 -mOR' + m'D; and /* = '1 - m") R" + m" D"

373
Focus O

'

f ,.

lens of anj
thickness.

The latter equation gives, on substitution, and recollecting that m' =: = m and m" = /*,

*
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(/.
-

1) (R' - R") + D + - -
{ 0*

-
1) R' + D }

R" t ^ v
f f" r i (M)

1- _{0,_1)R' + D }

and for parallel rays

F == -. ..
, ()

273. Example 1. To determine the foci of a sphere.

Foci of a _

sphere jjere R" = _ R' _ R ;
( = -_-

; and the equations () and (c) become
R

F__^
(2
-

/.) R - 2 D~ -2=7" ("

274. Carol. 1. If /*
= 2, for instance, these values become

f- ^ F-
-P~'

In this case, then, since / and F express the proximities of the foci to the posterior surface of the sphere, w
see that the focus for parallel rays falls on this surface, and that in any other case (as in fig. 51 and 52) q is given

by the proportion Q C : C E : : E H : H q,

275. Carol. 2. Whatever be the value of ft,
the focus for parallel rays after the second refraction bisects the distance

between the posterior surface of the sphere, and the focus after the first refraction.

276. Example 2. To determine the foci of a hemisphere, in the two cases ; first, when the convex, secondly, when
Foci of a the plane surface receives the incident light.

hemisphere. i

In the first case, R' = R ; R" = ; t : therefore we findH

fr-DR+D
/ =-R

'

D
-- '" ~ '

277 In the other case, when the rays fall first on the plane side, R 1 = 0, R" = R, and t = -
, so that

nfr-l)R + D
^R-D

If the thickness of a spherical segment exposed with its convex side to the incident rays be to the radius as
*7o

, and R" = 0, the expressions (M) and (u) becometo u - 1, or if t = -j . -=- = --
r-5,

ft 1 R (1 m) K

In this case the focus for parallel rays falls on the posterior surface of the segment.

279. In general, for any spherical segment, if exposed with its convex side to the rays, R" = 0, and

FOCUS Of /1\T>|T /1\T>
anyspheri- Q.

-
1) R + P f. (f.

-
1) R

cal segmant,
7 ~~^'u+{(>-l)R+D}<' /. + (/* 1) R >

convex side

first. if the plane side be exposed to the rays
Plane side _

280. If R 1 = R iv if the lens be a spherical lamina of equal curvatures, the one convex, the other concav*,

Focus of a

spherical p D + Q -
1) { Qt

- 1) R + D } R t Q.
-

1) R* t

-,-1)R+P '*->- R<
'

curvatures.
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Light. Part I.

X. Of the Aberration of a System of Spherical Surfaces.

Problem. To determine the focus of any annulus of a spherical refracting or reflecting surface 281.

The equations (a) of Art. 244, of the last section, in fact, contain a general solution of this problem ; but Focus of a

the applications of practical Optics require an approximate solution for annuli of small diameter, or in which y
small annu-

is small compared with r. Conceiving y, then, so small that its fourth and higher powers may be neglected, the
SpheriCa]

expressions in the article cited give surface in-

and substituting these in the value of C q, found in the same article, we get for the distance of the focus of

refracted rays from the vertex

p,
- 1 a* (a + ftr)

2a ft a + p r 2 fi (a r) (a /* a + p r)
J

'

r

In conformity, however, with the system of notation adopted in the last section, instead of expressing directly

C q, we will take its reciprocal. As we have hitherto represented the value of this reciprocal for central rays

by f, we will continue to do so ; and for rays incident at the distance y from the vertex, we will represent the

same reciprocal byf+ A f; A f then will be vhat part of/"due to the deviation of the point of incidence from

the vertex. Now, neglecting y*, we have

1

Cq

a ft
a + ft r

pr(r a)

- 1 a" (a

2 r 3
(a
-

r)
3

" \l

Now if we put, as we have hitherto done, /
= -

, r = , a = ---
, and substitute these

in the above, we shall get the value of -
, or of/+ A f, in terms of TO, R, and D; and from this, subtracting

the term independent of y*, which is the value of f, we shall get A /as follows,

A/ = m(l ~*
^-(R-D)' (c)

Definition. The longitudinal aberration, is the distance between the focus for central rays and the focus q of

the annulus, whose semidiameter, or aperture, is y = M P.

The lateral aberration at the focus, is the deviation from the axis of the refracted ray, or the portion fk,
intercepted by the extreme ray, of a perpendicular to the axis drawn through the central focus.

Carol. These aberrations are readily found from the value of A f above given ; for since 09 = 7-, we
j

___ I A f
have A C 9 (= longitudinal aberration) = A f- = --^ ; or, calling to this aberration,

283.

Longitudi-
nal and

aberration

"'

(&o4.

Relation

between

them and

Cq : qk : : y :fk, or : ui : : y.fk,

lateral aberration = /. y . o> = *
. y;

/= (1 m) R + wiD.

(e)

and since

we have fk, or the

where

Thus the whole theory of aberration is made to depend on the value of A / and we come therefore to con-

sider the various cases of this which present themselves.

Case 1. For parallel rays D = ; and, therefore, 285
Case of

parallel r.w.

OL. iv.

lateral aberration = --
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Case of

reflectors.

287.

Aplanatic
foci defined

and inves-

tigated.

COM 2. In reflectors, m p = 1, and Kurt L

R (R-
(-2R-D)*

'

lateral aberration = (R D) 2 y
3
,

Of)

lateral aberration = R- -. (A)

which, for parallel rays, become

In the general case, if we put either D = R, or

771m R (1 + w) D = o, which gives D = ,
_ v_ , _, .

the value of /^ ft al>d therefore of the aberration, vanishes. The former case is that of rays converging to

the centre of curvature, in which, of course, they undergo no refraction. In the latter, the point is the

same with that already determined, Art. 234. It is evident, from what was there demonstrated, that every

spherical surface, C P, has two points Q, q in its axis, so related, that all rays converging to or diverging from

one of them, shall after refraction rigorously converge to or diverge from the other. These points may be called

the aplanatic foci of the surface; and, to distinguish them, Q may be called the aplanatic focus for incident, and

q for refracted rays. To find them in any proposed case, in the axis of any proposed surface C, and on the

concave side of the surface, take X radius.

288.
Aberration

shortens the

focus for

parallel rays

289.
'

Effect of

aberration

in other

cases.

Fig. 54.

290.

291.
Aoerration

of any

system of

spherical
surfaces in

contact.

= (/i+l)X radius C E of the surface, and Cer = { + 1 1

V f- '

Then will Q and q be the aplanatic foci required. In the case of reflexion, when /*
= 1,CQ = C7==0, and

both the aplanatic foci coincide with the vertex of the reflector.

Let us next trace the effect of aberration in lengthening or shortening the focus, for all the varieties of position
of the focus of incident rays; and, first, when D = 0, or for parallel rays, A fis of the same, and therefore u>

of the contrary sign with R, and therefore with F, which is equal to (1 m) . R. Hence it is evident, that the

effect of aberration in this case must be to shorten the focus of exterior rays.

Q in this case is infinitely distant. As it approaches the surface, or as the rays from being parallel become
more and more convergent, or divergent, the aberration diminishes

; but the focus of exterior rays is still always
nearer the surface than that of central, till Q comes up to the aplanatic focus A. for incident rays on the concave,

or to the focus F of parallel rays on the convex side. When Q is at the former of these points, the aberration is

; at the latter, infinite.

When Q is situated anywhere between these points, however, the reverse is the case, and the effect of aberra-

tion is to throw the focus for exterior rays farther from the surface than that for central ones. These results are

easily deduced from the consideration of all the particular cases, and hold good for all varieties of curvature, and
for refracting media of all kinds. In reflectors, the aplanatic foci coincide with the vertex. In these, the focus

for exterior rays is shorter than for interior in every case, except when the radiant point is situated between the

surface and the principal focus on the concave side of the reflecting surface
;
but between these points, longer.

Problem. To determine the aberrations of any system of spherical refracting surfaces placed close together.

Retaining the notation of Art. 257, let us suppose the ray, after passing through the first surface, to be incident

on the second. Its aberration at this will arise from two distinct causes : first, that after traversing the first

surface, instead of converging to or diverging from the focus for central rays, its direction was really to or from

a point in the axis distant from that focus by the total aberration of the first surface ; and. secondly, that being
incident at a distance from the vertex of the second surface, a new aberration will be produced here, which (being,
as well as the other, of small amount) the principles of the differential calculus allow us to regard as independent
of it, and which being computed separately, and added to it, gives the whole aberration of the two surfaces

regarded as a system. The same is true of the small alterations in the values of f, f", &c. produced by the

aberrations. If then we denote by f> f" the change in the value of /", produced by the action of the first

surface, and by i 1

f", that arising immediately from the action of the second, and by A f", the total alteration

produced by both causes, we shall have

A/''= f"+ c'f"

Now, first, to investigate the partial alteration if" arising from the total alteration A/' in the value of/', or

from the. aberration of the first surface, we have

since, in this case,

/" = (1
- m) . R" + m" /', and therefore c /" = m" A /',

D' = D, D" = /', D"' = /", &c.

Again, to discover the partial variation S'f" in /", arising immediately from the action of the second surface,
we have, by the equation (c) at once, putting/' for D", and neglecting y

4
, &c.

*'/" =

fcut we have, by the same equation, also

f" = m" A /'
-

(R" { m" R" - (1 + m")f } y* ;

- _ D)* { m 1 R' - (1 + m') D } y
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Light. Consequently, uniting the two, we have the value of ^ f". Similarly, the value of A f" may be derived from Part !

v~~^ that of A f", by a process exactly the same, and which gives
~-"~v~~

lll
~\;
(R'"

- /")
2
{ 7n'"R'" - (1 + m'") /" } y\

m hl (\
*

and so on. Calling, then, as in Art. 257, M', M ', M"'. . . . M (n) the absolute refracting indices of the several media
into which the successive refractions are made, and putting M ( "' = M, we shall have no difficulty in arriving at

the following general expression, where A /denotes the total effect of aberration on the value of f, the reciprocal General

focal distance of the system,

M' .

m'
(l
~ m>)

<R' - D) 2
{ TO' R' -

(I + m') D }

expression
for A/

M. A/=<
+ M" .

7"" (1
(R" -/')* { m" R" - (I + IB")/' }

+ M"' .

m "'
(1

2

OT '"
)
(R"

1

-/")* { m"
1 R"' - (1 + m"')/"}

+ &c.

Successive

values of/.

in which it will be recollected that

/'=(!- m') R' + m' D

/" = (1
- m") R" + m" (1

- m') R 1 + m' m" D

/'" = (1
- m'") R'" + m 1 "

(1
- m") R" + m" 1

i" (1
-O R' + m 1" m'

1 m 1 D

&c.

and these values being substituted give, if required, an explicit resulting value of A / in terms of the radii and
refractive indices, or their reciprocals, of the surfaces.

If the system of surfaces be placed in vacuo, or the last refraction be made into vacuum, M = 1, and the 292.
second member of the equation (i) exhibits simply the value of A f. In all cases, the aberration <u is given as

before by the equation

"f
> and the lateral aberration is

A/
/

y-

To express the aberration of any infinitely thin lens in vacuo, let the terms of the general equation be denoted 293
respectively by Q', Q", &c., so as to make Aberration

M . A / = { Q
1 + Q" + Q"

1 + , &c. } y . (A)
. .

Then, for the case of a single lens in vacuo, when TO" = -, M' = -r, M" = 1, M = 1, we havem m
A /= Q 1 + Q" ; and putting, for a moment, R' - D = B, R' R" = C, we find

i _ m >

'

thin lens.

Q"=-
2 m

whence Q"=
2m' 3

(C - m'

The expression in brackets, putting for B and C their values, and - for m 1

, will become

--
{ ((2 - ft R' + f. R" - 2 D) (R' - (1+ /.) D) + f. ( 0*- 1) R' -/, R" + D)'}.

If now we multiply out, arranging according to powers of D, and substitute the result, as also the value of m!,

(= ,) and of C, ( = R' - R",) in Q' + Q", or A /,- we get

where
a =

(-2
- 2 R' 2 + (/i + 2 /t

2 - 2 ^ 3
) R 1 R" + n

3 R"*

General

expi
for it.

B = (4 + 3 M - 3 /*
2
) R' + (/ + 3

'i 2 J- 3 ft

R" (0

3E2
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Light. Now it has been shown, (Art. 261,) that (^ 1) (R

1

R") expresses the power of the lens, so that, putting L Part I.

v -v "'' for this, we have v ^*

A/=-^-(a-/3D + -/B"-)3/
2

. (m)

Such then is the general expression for A f, the fundamental quantity, from which the aberration to may be had

in any lens by the equation > = "
.

294 Corol. 1. The aberration of a lens vanishes when D is so related to R', R" and p, as to give

Cases in

of a single

lens can be Now we find, by substitution and reduction,
made to

vanish. P* - 4 a 7 = p* { (R
1 + R )

- - (2 p. + 3 /i
2
) (R

1 - R")
'

}

and unless this quantity be positive, that is, unless

the focus of incident rays cannot be so situated as to render the aberration nothing. But, if the curvatures R'
and R" of the surfaces be such as to satisfy this condition, the value of D may be calculated at once from the

equation (&.)

295. Carol. 2. Whenever, in meniscus or concavo-convex lenses, the difference of the curvatures of the surfaces is

small in comparison with their sum, that is, whenever a moderate focal length is produced by great curvatures,
the aberration admits of being rendered evanescent by properly placing the focus of incident rays. In a lens of

crown glass where fi = 1.52, we have ^2/4 + 3/t
2 = 3.16; therefore the sum of the curvatures must be at least

3.16 times their difference, to satisfy the condition of possibility. In double-convex or double-concave lenses, R'

and R'' having opposite signs, the condition can never be satisfied.

ggg Carol. 3. If a = 0, the aberration vanishes for parallel rays. This condition is, however, only to be satisfied

No known y rea' values of R' and R 1 ' when p. is equal to or less than \, and no such media are known to exist,

medium can Carol. 4. The effect of aberration will be to shorten or lengthen the focus for exterior rays, according ns -the

render the
sign of A /is the same as, or the opposite to, that of/. In particular cases it will, of course, however, depend

aberration on ^ va ] ues of n
j^/ ancj j) which shall take place. The principal case is that of parallel rays, in which

nothing for --.
J

parallel rays
D = 0, and

Ci2J A / = -|1
. L { (2

- 2 p* + p*) R'* + (,u + /.*- 9 & R ; R" + ^ R"*
}

which the

ation an(j t|,e focus Of external rays will be shorter or longer than that of central ones, according as this quantity has

lengthens"^
t 'le same' or opposite sign with L, that is, according as

the focus '

(2 - 2 n* + /,') R'* + GB + 2 n*
- 2 /.') R' R" + /** R'"-

is positive or negative. Now, from what we have already seen in the last corollary, this quantity never can be
rendered negative by any real values of R' and R", unless / be less than . For all other media, therefore,

(comprehending all yet known to exist in nature,) every lens, whatever be the curvatures of its surfaces, has the

exterior focal length for parallel rays shorter than the central.

298. Carol, b. In a glass meniscus, when the radiant point is on the convex side, and the rays diverge, we have

Case of a 4 + 3 ft 3 ft- a positive quantity ; and, R' and R" being both positive, ft is so ; hence (D being negative in

glass this case) the term ft D, and therefore the whole factor a /3 D +-/D 2 is positive; and L being also
meniscus,

positive, A / is so
; and, therefore, w, the aberration, negative. Hence, when Q is beyond F, the focus

for parallel rays incident the other way, the exterior focus is the shorter ; but when between F and C, the

longer.
/ R 1

-I- R'
1 \-

299 Corol. 6. Unless
( -; j- ) > 2 p + 3 /-, no real value of D can render o /3D + -/D

2
negative.

Rule, for a V R - R ^

oVfense'to
^ aPPears ' therefore, that in all double-convex or concave lenses, as well as in all meniscus and concavo-convex

effect'

h

of
ones, in which the sum of the curvatures of the surfaces is greater than J '2 ft + 3 u* times their difference, the

aberration
factor a ft D + f D8

is positive for all values of D, and therefore the aberration u> has in all such lenses the

in lengthen-
s
iff
n opposite to that of L. Hence, for all such lenses, we have the following simple and general rule : the effect

ingorsliort- of aberration will be to throw the focus of exterior rays more TOWARDS the incident light than that of central
' lne

ones, when the lens is of a positive character, or makes parallel rays CONVERGE, but more FROM the incident light

if of a negative, or if it cause parallel rays to DIVERGE.

300 Corol. 7. All other lenses have, as in the case of single surfaces, aplanatic foci, corresponding to the roots of
the equation a ft D + 7 D* = 0. In general there are two such foci of incident and two of refracted rays : and
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Light, rules might easily be laid down for determining in what positions of the radiant point, with respect to these foci Part I.

,/
-^ and the lens, the aberration tends to shorten or lengthen the exterior focus ;

but it is simpler and readier to ^^^^^
have recourse at once to the algebraic expressions.

"ow to

Carol. S. In the case of reflexion, as when rays are reflected between the surfaces of thin lenses of transparent ^J^^,"
media, we have m = m" = &c. = // = u" = &c. = 1 ; M' = 1, M' 1 = 4 1, &c., and M = 4 1, accord-

g^*
8"

ing as the number of reflexions is even or odd ; therefore for n reflexions we have C^ Of le_

flexion be-

f = 2 R' D
")

tween any

f 9 n 9 R' 4. T, f system of

/
'

.
(
A transparent

f" = 2 R" 1 2 R" 4 2 R' D
(

' surfaces.

&c. )

and

[ R'(R'- D)
2

-R" (R" - 2 R' 4 D) 2

4 R'" (R'" - 2 R" 4 2 R' - D) s

-&c.

which formula? serve to determine, in all cases of internal reflexion between spherical surfaces, both the places
of the successive foci and the aberrations.

Carol. 9. If the reflexions take place between equicurve surfaces, having their concavities turned opposite 3T>2.

ways, f, f", &c. are in arithmetical, and therefore their reciprocals, or the focal distances, in harmonic pro-

gression.
Problem. To construct an aplanatic lens, or one which shall refract all rays, for a given refractive index, and 303.

converging to or diverging from any one given point, to or from any other. General

Let Q and q be the points, the former being the focus of incident, the latter of refracted rays. Let /
= index construction

of refraction ; and putting Q q = 2 f, and assuming 6 any arbitrary quantity, construct the curve whose equation
an a

*'
la~

is (n), Art. 232. Let H PC, (fig. 36,) be this curve; and with centre q, and any radius gN less than q P, any p-tg^se"

5

one of the refracted rays describe the circle H N K. Then since the ray Q P, by the nature of the curve H P C,

is after refraction directed to or from
17, and, being incident perpendicularly on the second surface, suffers

there no flexure, it will, if supposed to emerge from the medium, here continue its course to or from q. If then

we suppose the figure C P H N K. to revolve round Qq, it will generate a solid, which, being composed of the

proposed medium, is the lens required. If the rays be parallel, as in fig. 38, the curve H PC, as we have seen, is
Fig. 38.

a conic section, which, if the lens be denser than the ambient medium, is an ellipse. Thus, a glass meniscus lens,

whose anterior convex surface is elliptic, and posterior spherical, having its centre in the focus of rays refracted

by the first surface, is aplanatic.

But, without having recourse to the conic sections, the same thing may, in certain cases, be accomplished by 304.

spherical surfaces only. For if Q and q (fig. 53) be the aplanatic foci of the spherical refracting surface,
(

j'

ase v

and if with the centre q and any radius greater than qC, when the incident rays diverge from Q, as in the lower
of'^"^*.

8

portion of the figure, but less if they converge to Q as in the upper, we describe a circle K L, or k I, and turn the natic lens

whole figure about Q q as an axis, the surfaces C P K L, or cp k I, will generate the aplanatic lens in question, are all

This also follows evidently from the general formula, (z, Art. 29 1,) for if R" = /', the expression of A / for the spherical,

lens becomes simply
1 **|

'

(R
1 - D) { m' R' - (1 4 m') D } y*,

which vanishes when D = R', or when Q is the aplanatic focus of incident rays for the first surface.

147/1' .

More generally, however, the equation a /3 D 4 7 D * = 0, assigns the universal relation between ft, D, R',

R", which constitutes the lens aplanatic. See Cor. 1, Art. 294.

Problem. To assign the most advantageous form for a single lens, or that which, with a given power, has the 306.

least possible aberration for parallel rays.
Most ad-

Since the aberration cannot be rigorously made to vanish for parallel rays, when u > 4 (Art. 296) we have to "ntageous
form for a

A f A f sin-rle lens

make it a minimum. Now ui = -*- = -
^ for parallel rays, or '"' parallel

f- L 8
rays deter-

mined.

to = . ; and, in general, d M = -
{
L rf a rf L

}
2 L

In the present case L is given, therefore we must put d a = 0, which gives

0=2 (2- 2fi* 4/1') R'dR'4 (/+ 2/^-2 /*
3
) (R'd R" 4 R"d R 1

) 4 2 /' R'-'rfR''.

But the condition d L = g-ives dR' = dR" ; so that our equation becomes, on substitution and reduction,

Or= (44 ,u-2/.)R' 4 Gtt42/.')R";
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Light. that is to say
R " 2 /*-/ -4

, >

*R' a p* + ^

In the case of a glass lens, taking p.
= 1.5, this fraction becomes equal to , which shows that the lens

o

must be double-convex, having the curvature of the posterior surface only
- that of the anterior, or its radius

six times as great. Artists sometimes call such a lens a "
crossed lens."

306. Carol. 1. If ft
= 1.6861, as is nearly the case with several of the- precious stones and the more refractive

?ase in
.glasses, R" = ; and the most advantageous figure for collecting all the light in one place is plano-convex,

formes*" Caving ' ts convex side turned to the incident rays.

convex Corol. 2. Calling the aberration of a lens of the best figure ui, we shall have . = --- y
2

. L, for glass
307.

Aberrations whose refractive index is 1.5, and the proportional aberrations of other forms will be as follows:
of various

species of Plano-convex, plane side first (or towards the light) .... 4.2 x u>

mined for Plano-convex, curved surface first .................. 1.081 x <u

parallel rays Double equi-convex, or concave .................. 1.567 x <a

Problem, To investigate a general expression fir the aberration of any system of infinitely thin lenses placed
Aberration dogg togdher in vacuo _

of Tenses*" I""6 general expression for MA/, or, since M = 1 in the case before us, of A /, is

(Q' + Q" + Q"+ Q'
v

-K, &c,) y\

which divides itself into terms originating with the successive lenses in the following manner,

A/= (Q' + Q")y* + (Q'" + Qiv
) y

2 +, &c.

The first of these quantities we have already considered
;

let us now, therefore, examine the constitution of the

rest. Let then ft' be the refractive index of the first lens, /*" of the second, /if'' of the third ; and let of, /3', 7'

represent the values of a, ft, 7 for the first lens, or the expressions in (I, 292,) writing only ft' for/*; also let

a", ft", -/" represent their values for the second lens, or what the same expressions become when ft" is put for ft,

and R'" and Riv

respectively for R' and R", and so on for the rest of the lenses.

309. Now if we consider the values of Q''' and Q iv
, it will be seen that they are composed of the quantities m'",

m", M'", Miv
, R'", R1

',/" and/'", precisely in the same manner that Q' and Q" are of m', m", M 1

. M", R', R",

Dand/'.
Moreover, since by Art. 251 we have

/' = (1 m') R' + m'D

f" = (1
- m") R" + m' 1 f

= (1 -m") R" f m" (!-?') R' + m" m' D

=
(ft 1) (R

r - R") + D, since m =
, m" = p.

= L + D; call this D"; (L is the power of the first lens)

/"'= (1
- m'") R'" + m'" D"

./" = (1 i
i7

) R iT + m"f" = L" -f- D" as before ; (L" is the power of the second lens)

= L + I/ + D ; and so on.

And it is clear that Q'" + Q iv will be the same function of, i. e. similarly composed of, the refractive index and

curvatures of the surfaces of the second lens, and of the quantities D" and /"', that Q' + Q" is of the re-

fractive index and curvatures of the first lens, and of D and /'. It follows, therefore, that the very same

system of reductions which led to the equation

Q
1 + Q" = -

(
_

/J D +
2 ft

being pursued in the case of Q'
' + Q", must lead to the precisely similar equation

Q"' + Q = -i^r (
-

ft" D" + 7" D" s
)

Genera! and so on f r the remaining lenses ;
so that we shall have, ultimately, for the whole system (writing L', D'.

expression for L, D, pi)

A f= _|!
J Jll

(a
' _ e 1 D' + 7' D") + -

L
,',' (" - ft" D" + 7" D" 2

) + &c.
|

; (*)

in which there are as many terms as lenses.
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Cored. For parallel rays, D ; =
; D" = L' ; D'" = L' + L", &c. P I.

tlietefore

-V ' + -^r ("" - ft" L' + 7" L' J
)

~*~^ + -^77T ("' - ft
1 "

(L' + L") + V" (L' + L")') f
'

+ &c.

Although the aberration of a single lens for parallel rays admits of being destroyed only on a certain hypo- 311
thesis of the refractive index, which has no place in nature, yet, by combining two or more lenses, it may be

destroyed in a variety of ways. Thus, in the case of two lenses, the expression (t) being put equal to zero,

gives an equation involving ft
1

, /*", L', L", R', R", R'", R lv
; or (since L' and L" are given in terms of

ft,
u,

1

and R', R", &c. and since /', p" are given quantities) only the four unknown quantities R', R", R'", R'T
. Now

as there are four of these, and only one equation, it may be satisfied in an infinite variety of ways, and the

problem of the destruction of the spherical aberration (as it is termed) becomes indeterminate.

The equation in the case of two lenses for parallel rays is 312.

,

General

= -V
|
(2
- 2 /- + X 3

) R'- + (ft + 2 / - 2 n") R' R" + f'
3 R"

I

; () ZdTnlc
tion of aber

L ' r ration in a

-f- < (2 2 ft"
- + /a,"

3
) R"''2 + (/*'' + 2 it"- 2 fi"

3
) R'" R iv + u" s R iv* < double lens

fi
f/

(
( for parallel

rays.

R'" + U" + 3 M
" ;

) R" ] + ^^' ! 2 + 3 u"
]

This equation, if L' and L", the powers of the separate lenses, be assigned, is of a quadratic form in either 313.
R', R'

1

, R'", or R" ; it will therefore depend on the supposition adopted to limit the problem, whether these Another

quantities admit real corresponding values. Now the equations L' = (' 1) (R' R") and L" = torm of the

(ft" 1) (R'" R iv

) afford the means of eliminating two of them, and the resulting equation (in R' and R"' $
.

ame e1ua

for instance) is

0= L'A^R" -L'R' '

W

and, as the unknown quantities R', R'" are not combined by multiplication, the equation when L' and L" are

given is of an ordinary quadratic form with respect to each. This equation will be of use to us hereafter,
when we come to treat of the theory of refracting telescopes.

If L' and L/' be not given, since either of them is of the first degree in terms of R', R", &c., the equation 3^
() is of the third degree in either of the quantities R', R", &c., or in L', L", if either R" or R iv be elimi-

nated. Now as an equation of the third degree must necessarily have at least one real root, we conclude.

first, that in a double lent, if the curvatures of three of the surfaces be given, that of the fourth may be,

found, so as to destroy the spherical aberration.

Secondly. That if the curvature of one surface of each lens, and the power of either, or that of the two 313
combined, be given, the power of the other may be found so as to destroy the spherical aberration. This is

evident; for, supposing R' and R"' given, and either L' or L", or L' + L", also given, the equation (D)
becomes an ordinary cubic in which L' or L'', as the case may be, is the only unknown quantity, and
therefore necessarily admits a real value.

As examples of aplanatic combinations, we may set down the following cases, in which a lens of glass of 315
the refraction 1.50, and of the best form, having the radii of its surfaces respectively + 5.833 and 35.000

inches, and its focal length 10.000 inches, has its aberration corrected by applying behind it another lens

of similar glass, as in fig. 55. This lens is a meniscus. If its curvatures be determined by the condition of
pjg. 55.

giving the maximum of power to the combination, the radii of its surfaces and its focal length will be as

follows: radius of first surface, = + 2.054 inches ; radius of second surface, = + 8.128; focal length of cor-

recting lens, = + 5.497 ; focal length of the two combined, = + 3.474. On the other hand, if we" deter-

mine the second lens by the condition of the resulting combination, having a focal length as nearly 10.000
as is consistent with perfect aplanaticity, we shall find radius of first surface, = + 3.688 ; radius of second,
= + 6.291 ; focal length of correcting lens, = + 17.829; focal length of the combination, = + 6.407.

The effect of aberration may be very prettily exhibited by covering a large convex lens with a paper 317
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screen full ot small round holes, regularly disposed, and, exposing it to the sun, receiving the converged rays

*^s~^s on a white paper behind the lens, which should be first placed very near it, and then gradually withdrawn. The

pencils which pass through the holes will form spots on the screen, and their disposition will become more and
more unequal over the surface, as the screen is further removed ; those at the circumference becoming crowded

together before the central ones. The manner in which the several spots corresponding- to central rays blend

together into one image at the focus, and those formed by the exterior ones are scattered round it, gives us a

very good idea of the variation of density of the rays in the circle of aberration at or near the principal focus;
and if the white screen be waved rapidly to and fro in the cone of rays, so as to pass over the focus at each

oscillation, the whole cone will be seen as a solid figure in the air, and the place of the circle of least aberra-

tion will become evident to the eye, forming altogether a very pleasing and instructive experiment.

XI. Of the Foci for Oblique Bays, and of the Formation of Images.

318.

Foci of

oblique

pencils.

We have hitherto considered rays as converging to, or diverging from, a single point; but as this is not
the case with luminous bodies of a sensible diameter, we now proceed to examine the cases of refraction at

spherical .surfaces, where more than one radiant point is concerned, or where several pencils are incident at

once on the surface. We shall take for our positive, or fundamentiil case, as we have done all along, that of

converging rays incident on the convex side of a more refractive medium than the ambient one, and derive all

others from it by the changes in the sign and relative magnitudes of R, D, &c.

In fig. 56, then, let Q and Q' be the foci of two pencils of convergent rays incident on the spherical surface

C C', whose centre is E. Draw Q E C, Q' E C', cutting the surface in C and C', and, regarding C E Q as the

axis of the pencil R Q, S Q, T Q, the focus of refracted rays will be found by taking o, such as that , or
Cq

f, shall be equal to (I m) R + m D, (247, e.) Similarly, regarding C'E Q' as the axis of the pencil con-

verging to Q', the focus q' will be had by the equation

- - =f'(\m)R + m D'.

Thus when C'Q' = C Q, C q' will also equal C q, and, in general, when the locus of the point Q is given, that

of q may be found.

319. Definition. The image of an object, in Optics, is the locus of the focus of a pencil of rays diverging from,
Images in or converging to, every point of it, and received on a refracting surface. Thus, supposing C Q' to be a line,

d fin"
or surface > every point of which may be regarded as a focus of incident rays, qqf is its image.

320 Problem. To find the form of the image of a straight line formed by a spherical refracting or reflecting

Form of the surface.

image of a

straight line
Put C E = r ;

Then we have

and therefore

we have, consequently,

I m
C'q>

+

ra

(1 m) a' + m r

ra

,
m r (of r)

(1 TO) a' + m r
'

(1 wi) a' + m r

'

{(I
- m)a' + mr

But, by similar triangles, E q' : E M : : E Q7
: E Q, or

equating these two values we get

a (1 m) a' + m r
a'

r(a- x)

x m r 1 m x

so that eliminating a', by substituting this value for it, we get for a final equation between . and y, or for the

*con
mC

e(
l
uat 'on f tne 'mage

(1 wi)
s
(T

2 + V s
)
= ( I .(ma x)*

\ a /
which belongs to a conic section.

321 Problem. When an oblique pencil is incident on any system of spherical surfaces, to find the focus of

rtfracted rays.
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Take E', (fig. 57,) the centre of the first surface, and let Q' be the focus of incident rays. Join Q' E' and Pn I.

produce it to C', then will C' be the vertex of the surface corresponding to the pencil whose focus is Q' ; and <

^-~>r~-'r
, . Foci of

taklnff .
, oblique

pencils ir -

C' Q"
"

C' E' C'Q' cident on a

system of

Q" will be the focus of retracted ravs. Airain, join Q" and E", the centre of the second surface, produce spherical
" ,. J surfaces.
to C ', and take v: *,

JjI^L _m̂ _~
" "

'

" "
__

C" Q'"
~

C" E"
'

C" Q

and Q'" will be the focus after refraction at the second surface, and so on.

Carol. In the case of an infinitely thin lens, when the obliquity is small, it is evident, from this construction, 322.

that the focus of oblique rays will lie at the same distance from the lens with that of rays convergent to, or

divergent from, a point in the axis at the same distance with the focus of incident rays, but instead of lying in the

axis, will deviate from it.

Definition. The centre of a lens is a point in its axis where a line joining the extremities of two parallel radii 323.

of its two surfaces cuts the axis. Thus, in the various lenses represented in fig. 58, 59, 60, and 61, E' A. and E" B "'

being two parallel radii
; join B A, and produce, if necessary, till it meets the axis in X, and X is the centre.

Carol. 1. The centre is a fixed point ; for, since AE' and B E'' are parallel, we have E'X : E' E" : : A E' : 324.

B E" A E', in which proportion three terms being invariable, the other is so also.

Carol. 2. If C'C", the interval of the surfaces or thickness of the lens, be put equal to t (t being always 325.

positive) and the curvatures be respectively R' and R", we have, for the distance of the centre from the first

surface or for C' X, the following value.

R"
C' \ _ _ /

R' - R"

Carol. 3. If a ray be so incident on a lens that its direction after the first refraction shall pass through its 326.

centre, it will suffer no deviation. This is evident, because its course within the lens will be A B, and the radii Rays
E'A and E''B being parallel, the internal angles of incidence on the surfaces are equal, and, therefore, the throngh the

angles of refraction both ways out of the lens ; consequently the two portions of the ray without the lens are
undeviatel?

parallel
Carol 4 If the thickness of a lens be very small, the ray passing through its centre may be regarded as 337.

undergoing no refraction whatever
;

for the portion A B within the lens being very small, the two portions
exterior to the lens (being parallel) may be regarded as one ray. This is, a fortiori, still nearer the truth when
the obliquity of the ray to the axis is small

; because then the portion A B is very nearly coincident in direction

with either of the two exterior portions.
Carol. 5. Hence, to find the focus of refracted rays in the case of a very thin lens and for a pencil of small 328.

obliquity, take X, the centre of the lens, and the focus will lie in the line Q X, at the same distance from the lens Focus of a

as if the axis of the incident pencil were coincident with that of the lens.
tt'ue'^n'cli

Proposition. When a luminary, or illuminated object, is placed before a double or plano-convex, or meniscus
throughTa

'

lens, at a distance from it greater than its focal length, there will be formed behind the lens an image, similar thin lens.

to the object, but inverted ; and the object and image subtend the same angle at the centre of the lens. 329.
For the pencil of rays which emanates (either by direct radiation or by reflexion) from any point, as P, of tne Fig. 62.

object, will after refraction be all made to converge to a point p behind the lens, or at least very nearly so. ^
inverted

Were the aberration of the lens evanescent, the convergence would be mathematically exact ;
and since, when-

j^^.' s

al

ever thv aperture of the lens and the obliquity of the pencil are small, the aberration is so very minute, that the formed

space over which the rays are spread may be regarded as a physical point, and every physical point in the object behind a

will have a corresponding point in the image. Now, C being the centre of the lens, the line joining Pp passes
convex lena

through C ; and the same being true of the line joining any other corresponding points of the object and image,
it follows, by similar triangles, that the object and image are similar in figure ;

and as the rays cross at C, the

image is inverted, and subtends the same angle p C q at C that the object does on the other side.

If a screen of white paper be placed at qp, this image will be rendered visible as a picture of the object. The 330.

experiment may be tried with any magnifier or spectacle-glass at a window, when the forms of external objects, Camera

the houses, trees, landscape, &c. will be painted on the paper screen with perfect fidelity, forming a miniature of obscura

the utmost delicacy and beauty. This is the principle of the common camera obscura, in which the rays from e*Plalne<i -

external objects are thrown by an inclined looking-glass downwards, and being received on a convex lens, are

brought to their focus on a white horizontal table, in a room where no other light is admitted. On this table

a moving picture of all external objects, in their proper forms, colours, and motions, is seen, infinitely more correct

Hiid beautiful than the most elaborate painting. See fig. 63, in which P is the object, AB the reflector, B C the

lens, and ;; the image on the table D.
If the rays, instead of being received on white paper, be received on a plate of glass emeried on one side, 331.

ihe picture may be seen by an eye placed at the other side of the glass, as well as by one in front of it ; for it is

a property of such roughened transparent surfaces to scatter the rays which fall on them, not only by reflexion

outwards, but by refraction inwards. If the surface be but slightly roughened, however, the picture will appear
much less vivid when looked at obliquely than when the eye is placed immediately behind it; and in this

VOL. iv. 3 F
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Light. latter situation the emeried glass may even be removed altogether, and the image will still be seen, and even more

*Cr* 1'
distinctly as if a real object stood in the place in all respects similar to the picture.

332. We may examine the image on the roughened glass with a magnifying glass, or microscope. It will then

appear as a delicate painting, accommodating itself to all the inequalities of the surface. But if, in the

so examiniiiT it, the rough glass be removed, the painting remains as if suspended m air, and the objects

represents are seen brought nearer to the eye, and enlarged in their dimensions. In short, we have formed

tC

IfTe^lens used to form the image be a concave one, or if a convex reflector be used, as in fig.64 and 65,

the rays, after refraction or reflexion, diverge, not from any actual points in which they cross, but from poi

in which they would cross if produced backwards. There is in this case, then, no real image formed capab

of beino- received en a screen, but what is called a virtual one, visible to the eye if properly situated, either

assisted or aided by a magnifier, and situated on the same side of the lens, or on the contrary side of the refl

with the object, and therefore erect.

oo. The perfection of the image formed by a lens or reflector, its exact re ambiance to the object, and the ,

ness of its parts, will depend on the exact convergence of all the rays of pencils emanating from every physical

point of the object in strict mathematical points, or in as near an approach to such points a- may be

therefore, a lens of considerable diameter be used, especially if the curvatures of its surfaces be improperly chosen

so as to produce much aberration, the image will be confused; for each point of the object will form, not <

point, but a small circular spot in the image, over which the rays are diffused ; and as these spots overlap a

encroach on each other, distinctness is destroyed. For the formation, therefore, of perfect images, the destruc

tion of aberration is the essential condition ;
and whatever imperfections, either in the figures of the reflecting

refractin^ surfaces used, or in the materials of which they are composed, tends to throw the rays aside from their

strict geometrical direction, must, of course, confound the images. Hence, in the formation of optical images,

there are three great points to be attended to : first, perfect polish of the surfaces ; secondly, perfect homogeneity

in the material employed ; thirdly, strict conformity in the figures of the reflecting and refracting surfaces t(

geometrical rules, and the results of analysis.

335 There is one case where the aberrations of all kinds are rigorously destroyed, and HI which the image is perfect.

It is when the rays are reflected at a plane surface. For (fig. 66) if P Q be an object placed before a plane

reflector AB, and if perpendiculars be let fall from every point of the object to the surface, and on the other

points in these be taken at the same distances respectively behind the surface as p q, these points will form It

image. Now we have seen, that all rays from any point P. retlected at A B, will after reflexion diverge strictly

from p its image. Thus, the image is as perfect and free from aberration as the object ;
and will appear, to an

eye placed so as to receive the rays, like a real object placed behind the reflector.

336 Corol. The image formed by a plane reflecting surface is similar and equal to the object, and any correspond-

ing lines in both are equally inclined to the reflecting surface. A common lookmg-glass is the best illustratic

,,7

3

ProposMon. To determine the image of any object formed by a plane refracting surface Let B C be the

surface, PQ the object. From any point Q draw Q C perpendicular to the surface, and, /. being the i

refraction, if we regard the surface as a sphere of infinite radius, we have R its curvature = 0, and the equati.

f = (I -m)R + mD becomes simply f = mD. Now / = ;
D =

-^Q-
; and m = .

this equation, translated into geometrical language, gives C q
~

fi X C Q.

338. In the case represented in the figure, the refraction is made out of a denser medium into
a^

rarer, the object

experiment where a shilling is laid in an empty vessel, and the eye withdrawn till the shilling is hidden by the

edge, but reappears again, as if raised up, when the vessel is filled with water. On the other hand, to an

eve placed under water, external objects would appear farther removed by the effect of refraction.

,00
"

Corol. 1. The image of a straight line PQ in the object is a straight line pqin the image, less inclined

the surface if the refraction be made from a denser into a rarer medium. Thus, if a stick

plunged into water, the immersed portion A Q forms the image Ag less inclined; so that to a spectator in air,

the stick appears broken and bent upwards at A. The appearance is familiar to every one.

340 In refraction at a plane surface, however, the rays do not rigorously diverge from, or converge to, a single

point. Therefore the above result is only approximately correct, and supposes the rays to be incident nearly at

right angles to the surface. And this leads us to the consideration of obl-que vision through refracting surfaces,

or in reflectors of any figure.

341 The eye sees by the rays which enter it, and judges of the existence of an object, by the fact of rays
diverging

Oblique' sensibly from some point in space. If, then, rays diverge rigorously from a point, the eye which receives

vision is irresistibly led to the belief (unless corrected by experience and judgment) of an object being there ; tf

through re- inus jon j s complete, and vision perfect. But if such divergence be only approximate, as when the density of i

fracting or ^.^ ^^ the |n Qne directi(ln is very Inuch greater than in directions adjacent on either bide,

Surface" of vision is still produced, only less distinct, in proportion to the degree of deviation from strict mathematical

ny figure divergence of the rays which produce it. Suppose, now, Q to be a radiant point placed anywhere with respect

Fig- 68. to the refracting or reflecting surface A C B, (fig. 68,) and let A ? F B be the caustic formed by the intersection ol

al! the refracted or reflected rays. Let us suppose an eye placed at E, and from thence draw K q a tangent
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Light to the caustic, which continue to the surface C, and join Q C. Then it is obvious, that any small pencil Q C, Q C Part I-

^ -^ diverging from Q, will form a focus at q (Art. 134, &c.) from which it will afterwards diverge, and fall on the eye
^-~"V ^

at E, nearly as if the rays came from a mathematical point; and from what was said in Art. 161 and 162, it

appears that the density of rays in the cone q E is infinitely greater than in any adjacent cone having the eye for

its base ; so that q will appear as an image of Q, more or less confused, in proportion to the degree of curvature

of the caustic at q; for it is evident, that if the curvature be great, the assumed concentration of any small finite

pencil Q C C' in one mathematical point q, will deviate more from truth than if the caustic approach nearly to a

straight line.

Carol. As the eye shifts its place, the apparent position of an object seen in a reflecting or refracting surface 342.

shifts also, for as E varies, the tangent ~Eq shifts its place on the caustic, and the point of contact q, or the

place of the image shifts.

This doctrine may be illustrated by a very familiar instance. If we look through a surface of still water, not 343.

very deep, but having a level horizontal bottom, the bottom will not appear a plane, but will seem to rise on all Apparent

sides, and approach nearer the surface the more obliquely we look. To explain this, let Q be a point in the figure of the

bottom, and let Q P e be the course of the pencil of rays by which an eye at e sees it (fig. 39) on the visual ray. jj'

The point in the caustic to which e P produced is a tangent, is Y
; and from the form of the caustic D Y B (see Stjii water.

Art. 238) it is obvious, that Y is nearer the surface the more oblique eP is to it. The apparent figure of the Hg. 39.

bottom will therefore be thus determined. From the eye E (fig. 69) draw any line E g- to the point G of the Fig. 69.

surface; and having drawn P Y parallel to E G, touching the branch D Y B of the caustic having Q, vertically
below E for a radiant point in Y, prolong E G to H, making G II = P Y, then will H be the image of the point

Q' in the bottom, belonging to the caustic D' H B' ; and the locus of H, or the apparent form of the bottom,
will be the curve D F H, having a basin-shaped curvature at D, a point of contrary flexure at F, and an

asymptote C G K coinciding with the surface.

But, to return to the case of images formed by rays incident at very small obliquities and nearly central, 344.
the following rules for determining their places, magnitudes, and apparent situations in all cases of spherical Rules for

surfaces, will be convenient to bear in memory, and will need no express demonstration to the reader of the fore- Aiding the

going pages. Sw'faiw
Rule \. Any image formed, or about to be formed, by converging rays, or from which rays diverge, may be 345

regarded as an object.
Rule 2. In spherical reflectors the object and its image lie on the same side of tV principal focus. They move 346.

in contrary directions, and meet at the centre and surface of the reflector. The J'rstance of the image from the Rule foi

principal focus and centre is had by the proportion reflectors.

QF:FE ::EF:F g : : QE : E q,

and the image is erect when the object and surface lie on the same side of the principal focus
; but inverted when

on contrary sides. The relative magnitudes of the object and image (being as their distances from the centre)
are given by the proportion

object : image : : Q F : FE : : distance of the object from the principal focus : focal length of reflector.

Ride 3. In thin lenses, of all species, if Q be the place of the object, q of its image, E the centre of the lens, 34".
F the principal focus of rays incident in a contrary direction, then will the object and image lie on the same, or Rule for

opposite side of the lens, according as the object and lens lie on the same or opposite sides of the principal
'enses -

focus F. In the former case the image is erect, in the latter inverted, with respect to the object. The distance
of the image from the lens, or from the object, is had by the proportions

QF : FE : : QE : Eq; Q F : Q E : : Q E : Q q;

and the magnitude of the object is to that of the image as the distance of the object from F is to the focal length,

or as Q F : F E.

Rule 4. In all combinations of reflectors and lenses, the image formed by one is to be regarded as the object, 34 .

whose image is to be formed by the next, and so on, till we come to the last.

It has been already remarked (Art. 6) that visible objects are distinguished from optical images by this, that 349.

from the former light emanates in all directions, whereas in the latter it emanates only in certain directions.

This is an important limitation in practical optics. A real object can be seen whenever nothing opaque is

interposed between it and the eye. An image can only be seen when the eye is placed in the pencil of rays
which goes to form it, or diverges from it. Thus in the case represented in fig. 62, except the eye be placed
somewhere in the space Dq pll, it will see no part of the image, B 9 D and A/)H being the extreme rays
refracted by the lens from the extremities of the object.
The brightness of an image is, of course, proportional to the quantity of light which is concentrated in each

Brightness

point of it ; and, therefore, supposing no aberration, as the apparent magnitude of the lens or mirror which forms of images.

it, seen from the object x -
. Or, since the area of the object : that of the imaare (distanced

area of image

of object from lens : (distance)
5 of image ; and since the apparent magnitude of the lens seen from the object

(diameter
\ 2

;
I , the brightness or degree or illumination of the imafre is as the anmrpnr

distance from object /
3F2
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Light magnitude of the lens seen from the image, alone, whatever he the distance of the object. Now the apparent

> V ^ magnitude of the lens seen from the image is always much less than a hemisphere. Therefore (even supposing
no light lost by reflection or refraction) the illumination of the image is always much less than that of the object.
This is the case when the image is received on a screen which reflects all the rays, or when viewed by an

eye behind it having a pupil large enough to receive all the rays which have crossed at the image, a fortiori,
then, when the eye does not receive all the rays, must the apparent intrinsic brightness be less than that of the

object. This supposes the object to have a sensible magnitude ; but when both the object and its image are
Images are

physical points, the eye judges only of absolute light ; and the light of the image is therefore proportional to the

brUn^is apparent magnitude of the lens, as seen from the object. In the case of a star, for instance, whose distance is

their objects
constant, the absolute light of the image is simply as the square of the aperture, and this is the reason why stars

can be seen in large telescopes which are too faint to be seen in small ones.

XII. Of the Structure of the Eye, and of Vision.

350. It is by means of optical images that vision is performed, that we see. The eye is an assemblage of lenses
which concentrate the rays emanating from each point of external objects on a delicate tissue of nerves, called
the retina, there forming an image, or exact representation of every object, which is the thing immediately per-
ceived or felt by the retina.

Description Fig. 70 is a section of the human eye through its axis in a horizontal plane. Its figure is, generally speaking,
of the eye. spherical, but considerably more prominent in front. It consists of three principal chambers, filled with media
Fig. 70. of perfect transparency and of refractive powers, diHering sensibly into- se, but none of them greatly different from

Aqueous that of pure water. The first of these media, A, occupying the anterior chamber, is called the aqueous humour,
humour. and consists, in fact, chiefly of pure water, holding a little muriate of soda and gelatine in solution, with a trace

!uion
>mp0

"
* albumen ; the whole not exceeding eight per cent.* Its refractive index, according to the experiments of

Refractive
^. Chossat.t and those of Dr. Brewster and Dr. Gordon,! is almost precisely that of water, viz. 1.337, that of

power.
water being 1.336. The cell in which it is contained is bounded, on its anterior side, by a strong, horny, and

Cornea. delicately transparent coat o, called the cornea, the figure of which, according to the delicate experiments and
Its figure measures of M. Chossat, is an ellipsoid of revolution about the major axis ; this axis, of course, determines the

>" revoTu"
ax^s f the eye; but it is remarkable, that in the eyes of oxen, measured by M. Chossat, its vertex was never

rton found to be coincident with the central point of the aperture of the cornea, but to lie always about 10

(reckoned on the surface) inwardly, or towards the nose, in a horizontal plane. The ratio of the semi-axis
of this ellipse to the excentricity, he determines at 1.3 ; and this being nearly the same with 1.337, the index
of refraction, it is evident, from what was demonstrated in Art. 236, that parallel rays incident on the cornea in

the direction of its axis, will be made to converge to a focus situated behind it, almost with mathematical

exactness, the aberration which would have subsisted, had the external surface a spherical figure, being almost

completely destroyed.
351. The posterior surface of the chamber A of the aqueous humour is limited by the iris /3 7, which is a kind of

Iris. circular opaque screen, or diaphragm, consisting of muscular fibres, by whose contraction or expansion an

aperture in its centre, called the pupil, is diminished or dilated, according to the intensity of the light. In very

strong lights the opening of the pupil is greatly contracted, so as not to exceed twelve hundredths of an inch in

the human eye, while in feebler illuminations it dilates to an opening not exceeding twenty-five hundredths,|| or

double its former diameter. The use of this is evidently to moderate and equalize the illumination of the

image on the retina, which might otherwise injure its sensibility. In animals (as the cat) which see well in

the dark, the pupil is almost totally closed in the daytime, and reduced to a very narrow line ; but in the human

eye, the form of the aperture is always circular. The contraction of the pupil is involuntary, and takes place

by the effect of the stimulus of the light itself; a beautiful piece of self-adjusting mechanism, the play of which

may be easily seen by approaching a candle to the eye while directed to its own image in a looking-glass.

352. Immediately behind the opening of the iris lies the crystalline lens, B, enclosed in its capsule, which forms the

Crystalline, posterior boundary of the chamber A. Its figure is a solid of revolution, having its anterior surface much less

Its figure, curved than the posterior. Both surfaces, according to M. Chossat, are ellipsoids of revolution about their

letifr axes ; but it would seem from his measures, that the axes of the two surfaces are neither exactly coincident

in direction with each other, nor with that of the cornea. This deviation would be fatal to distinct vision

were the crystalline lens very much denser than the others, or were the whole refraction performed by it. This,
Refraction, however, is not the case; for the mean refractive index of this lens is only 1.384, while that of the aqueous
Non-coinci- humour, as we have seen, is 1.337 ; and that of the vitreous C, which occupies the third chamber, is 1.339 ; so

mxes^of its
^at t 'le w'lo 'e amount of bending which the rays undergo at the surface of the crystalline is small, in compa-

turfaces. risen with the inclination of the surface at the point where the bending takes place, and, since near the vertex, a

*
Chenevix, Philosophical Tratunctioni, vol. xciii. p. 195.

t Bulletin tie la Soc. Philomatique, 1818, p. 94.

I Edinburgh Philutophical Journal, vol. i. p. 42.

Sur la Courbiire des Milieux Rtfriiiffens de I'CEil chrz le Banif. dnnalcs df Chim. x. p. 337.

|;
Dr. Young's Lectures on the Mechanism of the Eye, Philotophical Traaiactions, vol. xci.
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Light. material deviation in the direction of the axis can produce but a very minute change in the inclination of the Part I.

Y""" raY to the surface, this cause of error is so weakened in its effect, as, probably, to produce no appreciable
v ~v"~^

aberration. Wrioutto
The crystalline is composed of a much larg-er proportion of albumen and gelatine than the other humours of

vj,jon
the eye, so much so as to be entirely coagulable by the heat of boiling

1 water. It is somewhat denser towards 353
the centre than at the outside. According to Dr. Brewster and Dr. Gordon, the refractive indices of its centre Composi-
middle of its thickness, from the centre to the outside, and the outside itself, are respectively 1.3999, 1.3786, tionofcrys-

and 1.3767, that of pure water being 1.3358. This increase of density is obviously useful in correcting the '"'lne -

aberration, by shortening the focus of rays near the centre, according to the rule laid down in Art. 299 for
(owarc|s

finding the effect of aberration. The effect of the elliptic figure of the surfaces is, however, a matter of pretty cen tre.

complex calculation, and cannot be entered upon in the limits of this essay. Its use is, probably, to correct the

aberration of oblique pencils.
The posterior chamber C of the eye is filled with the vitreous humour, a fluid differing (according to Chenevix) 354.

neither in specific gravity nor in chemical composition in any sensible respect from the aqueous ; and, as we hav

already seen, having a refractive index but very little superior to it.

The refractive density of the crystalline being superior to that of either the aqueous or vitreous humour, the 355_

rays which are incident on it in a state of convergence from the cornea, are made to converge more, and exactly Retina,

in their final focus is the posterior surface of the cell of the vitreous humour covered by the retina d, a network

(as its name imports) of inconceivably delicate nerves, all branching from one great nerve O, called the optic

nerve, which enters the eye obliquely at the inner side of the orbit, next the nose. The retina lines the whole
of the cavity C up to i, where the capsule of the crystalline commences. Its nerves are in contact with, or

immersed in, the pigmenttim nigrum, a very black velvety matter, which covers the choroid membrane g, and
whose office is to absorb and stifle all the light which enters the eye as soon as it has done its office of exciting
the retina

;
thus preventing internal reflexions, and consequent confusion of vision. The whole of these humours

and membranes are contained in a thick tough coat, called the sclerotica, which unites with the cornea, and forms Sclerotica.

what is commonly called the while of the eye.
Such is the structure by which parallel rays, or those emanating from very distant objects, are brought to a 356.

focus on the retina. But as we require to see objects near, as well as at a distance, and as the focus of a lens C- han"e '

or system of lenses for near objects is longer than for distant ones, it is evident that a power of adjustment must
for

U

Eear
reside somewhere in the eye ; by which either the retina can be removed farther from the cornea, and the eye objects.

lengthened in the direction of its axis, or the curvature of the lenses themselves altered so as to give greater

convergency to the rays. We know that such a power exists, and can be called into action by a voluntary effort;

and, evidently, by a muscular action, producing fatigue if long continued, and not capable of being strained

beyond a certain point. Anatomists, however, as well as theoretical opticians, differ as to the mechanism by
which this is effected. Some assert, that the action of the muscles which move the eye in its orbit, called

the recli, or straight
1

muscles, when all contracted at once, producing a pressure on the fluids within, forces

out the cornea, rendering it at once more convex, and more distant from the retina. This opinion, however,
which has been advocated by Dr. Olbers, and even attempted to be made a matter of ocular demonstration by
Ramsden and Sir E. Home, has been combated by Dr. Young, by experiments which show, at least, very

decisively, that the increase of convexity in the cornea has little if any share in producing the effect. An elon-

gation of the whole eye, spherical as it is and full of fluid, to the considerable extent required, is difficult to

conceive as the result of any pressure which could be safely applied, as to give distinct vision at the distance of

three inches from the eye, (the nearest at which ordinary eyes can see well,) the sphere must be reduced to an

ellipsoid, having its axis nearly one-seventh longer than in its natural state ; and the extension of the

sclerotica thus produced, would hardly seem compatible with its great strength and toughness. Another opinion,
which has been defended with considerable success by the excellent philosopher last named, is, that the crystalline
itself is susceptible of a change of figure, and becomes more convex when the eye adapts itself to near distances.

His experiments, on persons deprived of this lens, go far to prove the total want of a power to change the focus

of the eye in such cases, though a certain degree of adaptation is obtained by the contraction of the iris, which,

limiting the diameter of the pencil, diminishes the space on the retina over which imperfectly converged rays are

diffused, and thus, in some measure, obviates the effect of their insufficient convergence. When we consider

that the crystalline lens has actually a regular fibrous structure, (as may be seen familiarly on tearing to

pieces the lens of a boiled fish's eye,) being composed of layers laid over each other like the coats of an

onion, and each layer consisting of an assemblage of fibres proceeding from two poles, like the meridians

of a globe, the axis being that of the eye itself; we have, so far at least, satisfactory evidence of a muscular
structure ; and were it not so, the analogy of pellucid animals, in which no muscular fibres can be discerned,
and which yet possess the power of motion and obedience to the nervous stimulus, though nerves no more
than muscles can be seen in them, would render the idea of a muscular power resident in the crystalline

easily admissible, though nerves have as yet not been traced into it. On the whole, it must be allowed, that the

presumption is strongly in favour of this mechanism, though the other causes already mentioned may, perhaps,

conspire to a certain extent in producing the effect, and though the subject must be regarded as still open
to fuller demonstration. It is the boast of science to have been able to trace so far the refined contrivances

of this most admirable organ ; not its shame to find something still concealed from its scrutiny ; for, how-
ever anatomists may differ on points of structure, or physiologists dispute on modes of action, there is that

in what we do understand of the formation of the eye so similar, and yet so infinitely superior, to a product
of human ingenuity, such thought, such care, such refinement, such advantage taken of the properties of
natural agents used as mere instruments, for accomplishing a given end, as force upon us a conviction of
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Light, deliberate choice and premeditated design, more strongly, perhaps, than any single contrivance to be found, Part

>-"~v~"/ whether in art or nature, and render its study an object of the deepest interest. ^~Y
357. The images of external objects are of course formed inverted on the retina, and may be seen there, by dissect-

Image on j n
gp

off the posterior coats of the eye of a newly-killed animal, and exposing live retina and choroid membrane
the retina

from behind, like the image on a screen of rough glass, mentioned in Art. 331. It is this image, and this only,

diate'obirct
wn 'ch ' s fe^ by the nerves of the retina, on which the rays of light act as a stimulus ; and the impressions

f vision. therein produced are thence conveyed along the optic nerves to the sensorium, in a manner which we must rank at

present among the profounder mysteries of physiology, but which appears to diti'er in no respect from that in

which the impressions of the other senses are transmitted. Thus, a paralysis of the optic nerve produces, while

i it lasts, total blindness, though the eye remains open, and the lenses retain their transparency ;
and some very

curious cases of half blindness have been successfully referred to an affection of one of the nerves without the

other.* On the other hand, while the nerves retain their sensibility, the degree of perfection of vision is exactly
commensurate to that of the image formed on the retina. In cases of cataract, where the crystalline lens loses

its transparency, the light is prevented from reaching the retina, or from reaching it in a proper state of regular

concentration, being stopped, confused, and scattered by the opaque or semi-opaque portions it encounters in its

passage. The image, in consequence, is either altogether obliterated, or rendered dim and indistinct ; and the

progress of blindness is accordingly. If the opaque lens be extracted, the full perception of light returns ; but

one principal instrument for producing the convergence of the rays being removed, the image, instead of being
formed on the retina, is formed considerably behind it, and the rays being received in their unconverged state on

it, produce no regular picture, and therefore no distinct vision. But if we give to the rays, before their entry into

the eye, a certain proper degree of convergence, by the application of a convex lens, so as to render the remain-

ing lenses capable of finally effecting their exact convergence on the retina, restoration of distinct vision is the

immediate result. This is the reason why persons who have undergone the operation for the cataract (which
consists either in totally removing, or in putting out of the way an opaque crystalline) wear spectacles of

comparatively very short focus. Such glasses perform the office of an artificial crystalline. A similar imper-
fection of vision to that produced by the removal of the crystalline, is the ordinary effect of old age, and its

remedy is the same. In aged persons the exterior transparent surface of the eye, called the cornea, loses some-

what of its convexity, and becomes flatter. The power of the eye is therefore diminished, (Art. 248 and 255,)
and a perfect image can no longer be formed on the retina. The deficient power is however supplied by a

convex lens, or spectacle-glass, (Art. 268,) and vision rendered perfect or materially improved.
358

Short-sighted persons have their eyes too convex, and this defect is, like the other, remediable by the use of

proper lenses of an opposite character. There are cases, however, though rare, in which the cornea becomes so

very prominent as to render it impossible to apply conveniently a lens sufficiently concave to counteract its action.

Such cases would be accompanied with irremediable blindness, but for that happy boldness, justifiable only by the

certainty of our knowledge of the true nature and laws of vision, which in such a case has suggested the

opening of the eye and removal of the crystalline lens, though in a perfectly sound state.

359. But these are not the only cases of defective vision arising from the structure of the organ, which are suscep-
Malconfor- tible of remedy. Malconformations of the cornea are much more common than is generally supposed, and few
nutions of eves arCi m fac i t free from them. They may be detected by closing one eye, and directing the other to a very
the cornea.

narroWi well-defined luminous object, not too bright, (the horns of the moon, when a slender crescent, only two

or three days old, are very proper for the purpose,) and turning the head about in yarious directions. The line

will be doubled, tripled, or multiplied, or variously distorted
;
and careful observation of its appearances, under

different circumstances, will lead to a knowledge of the peculiar conformation of the refracting surfaces of the

Remarkable eye which causes them, and may suggest their proper remedy. A remarkable and instructive instance of the

case, sue- kind has recently been adduced by Mr. G. B. Airy, (Transactions of the Cambridge Philosophical Society,)
cessfully ;n tne case of one of n;s own eves . wn ich, from a certain defect in the figure of its lenses, he ascertained to

refract the rays to a nearer focus in a vertical than in a horizontal plane, so as to render the eye utterly useless.

This, it is obvious, would take place if the cornea, instead of being a surface of revolution, (in which the curvature

of all its sections through the axis must be equal,) were of some other form, in which the curvature in a vertical

plane is greater than in a horizontal. It is obvious, that the correction of such a defect could never be accom-

plished by the use of spherical lenses. The strict method, applicable in all such cases, would be to adapt a lens

to the eye, of nearly the same refractive power, and having its surface next the eye an exact intaglio fac-simile

of the irregular cornea, while the external should be exactly spherical of the same general convexity as the cornea

itself; for it is clear, that all the distortions of the rays at the posterior surface of such a lens would be exactly

counteracted by the equal and opposite distortions at the cornea itself.f But the necessity of limiting the cor-

recting lens to such surfaces as can be truly ground in glass, to render it of any real and everyday use, and

which surfaces are only spheres, planes, and cylinders, suggested to Mr. Airy the ingenious idea of a double

concave lens, in which one surface should be spherical, the other cylindrical. The use of the spherical surface

was to correct the general defect of a too convex cornea. That of the cylindrical may be thus explained.

Suppose parallel rays incident on a concave cylindrical surface, A B C D, in a direction perpendicular to its axis,

Fig 71. as in fig. 71, and let S S' P I" Q Q' T T', be any laminar pencil of them contained in a parallelepiped infinitely

* Wollaslon, on Semi -decussation of the Optic Nerves, Philosophical Transiictioits, 1824.

t Should any very bad cases of irregular cornea be found, it is worthy of consideration, whether at least a temporary distinct vision coniil

not be procured, by applying in contact with the surface of the eye some transparent animal jelly contained in a spherical capsule of glass ;
or

whether an actual mould of the cornea might not be Ukeu. r.nd impressed on some transparent medium. The operation would, of course, be

delicate, but certainly less so than that of cutting open a living eye, and taking out its contents.
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I >fl ' thin, and having its sides parallel to the axis. Any of the rays S P, S' P', of this pencil lying- in a plane APS Part I.

~v~~-' perpendicular to the axis, will after refraction converge to, or diverge from, a point X, also in this plane ; and, v^-^^-^
therefore, all the rays incident on P Q, P' Q', will after refraction have for their focus the line X Y, in the caustic

surface A F G D, and the principal focus of the cylinder will be the line F G, whose distance from the vertex

C C' of the surface, or F C, is the same with the focal length of a spherical surface, formed by the revolution of

A B about the axis F C. Thus we see that a cylindrical lens produces no convergency or divergency in parallel

rays, incidental in the plane of its axis ; while it converges or diverges rays in a plane at right angles to the

axis, as a spherical surface of equal curvature would do If then such a cylindrical surface he conjoined with

a spherical one, the focus of the spherical surface will remain unaltered in one plane, but in the other will be

changed to that of a lens formed by it, and a spherical surface of equal curvature with the cylinder. Hence by

properly placing such a cyliudro-spheric lens across the defective eye, its detect will be (approximately, at least)

counteracted. It would be wrong to conclude our account of this interesting application of mathematical

knowledge to the increase of the comforts and improvement of the faculties of its possessor, in other than his

own words. " After some ineffectual applications to different workmen, I at last procured a lens to these

dimensions,* from an artist named Fuller, at Ipswich. It satisfies my wishes in every respect. I can now read

the smallest print at a considerable distance with the left" (the defective)
"
eye as well as with the right. I

have found that vision is most distinct when the cylindrical surface is turned from the eye : and as, when the

lens is distant from the eye, it alters the apparent figure of objects by refracting differently the rays in different

planes, I judged it proper to have the frame of my spectacles made so as to bring the glass pretty close to

the eye. With these precautions, I find that the eye which I once feared would become quite useless, can be
used in almost every respect as well as the other."

Blindness, partial or total, may be caused, not only by the opacity of the crystalline lens, but of any other 360.

part, or by anything extraneous to the materials of which they consist, interposed between the external trans-

parent surface of the cornea and the retina. In all such cases, if the sensibility of the nerve be uninjured, the

restoration of sight is never to be despaired of. In a recent most remarkable case, operated by Mr. Wardrop,
and by him recorded in the Philosophical Transactions for 1826. blindness from infancy, accompanied with

complete obliteration of the pupil, by a contraction of the iris, owing to an unskilful operation, performed at

six months of age, was removed, and perfect sight restored after a lapse of forty-six years, by a simple removal

of the obstruction, by breaking a hole through the closed membrane. The details of this case are in the

highest degree interesting, but we must refer the reader to the volume of the Philosophical Transactions cited for

the account.

As we have two eyes, and a separate image of every external object is formed in each, it may be asked, why do 361.

we not see, double ? and to some, the question has appeared to present, much difficulty. To us it appears, that we Single

might with equal reason ask, why having two hands, and five fingers on each, all endowed with equal sensi-
*lslon WItn

bility of touch and equal aptitude to discern objects by that sense we do not feel decuple? The answer is the

same in both cases : it is a matter of habit. Habit alone teaches us that the sensations of sight correspond to

any thing external, and to what they correspond. An object (a small globe or wafer suppose) is before us on a
table ; we direct our eyes to it, i. e. we bring its images on both retinae to those parts which habit has ascer-

tained to be the most sensible and best situated for seeing distinctly ; and having always found that in such

circumstances the object producing the sensation is one and the same, the idea of unity in the object becomes

irresistibly associated with the impression. But while looking at the globe, squeeze the upper part of one eye Double

downwards, by pressing on the eyelid with the finger, and thereby forcibly throw the image on another part of vision

the retina of that eye, and double vision is immediately produced, two globes or two wafers being distinctly
art|

ficially

seen, which appear to recede from each other as the pressure is stronger, and approach, and finally blend into pro u

one as it is relieved. The same effect may be produced without pressure, by directing the eyes to a point Another

nearer to, or farther from them than the wafer ; the optic axes in this case being both directed away from the method.

object seen. When the eyes are in a state of perfect rest, their axes are usually parallel, or a little diverging.
In this state all near objects are seen double ; but the slightest effort of attention causes their images to coalesce

immediately. Those who have one eye distorted by a blow, see double, till habit has taught them anew to see

single, though the distortion of the optic axis subsists.

The case is exactly the same with the sense of touch. Lay hands on the globe, and handle it. It is one, 362.

nothing can be more irresistible than this conviction. Place it between the first and second fingers of the right Single

hand in their natural position. The right side of the first and left of the second finger feel opposite convexities ; ^^ felt

but as habit has always taught us that two convexities so felt belong to one and the same spherical surface, we j^JJain cLej
never hesitate or question the identity of the globe, or the unity of the sensation. Now cross the two fingers,

bringing the second over the first, and place the globe on the table in the fork between them, so as to feel the left

side of the globe with the right side of the second finger, and the right with the left of the first. In this state of

things the impression is equally irresistible, that we have two globes in contact with the fingers, especially if the
the eyes be shut, and the fingers placed on it by another person. A pea is a very proper object for this experi-
ment. The illusion is equally strong when the two fore fingers of both hands are crossed, and the pea placed
between them.

So forcible is the power of habit in producing single vision, that it will bring the two images to apparent 353.
coalescence, when the rays which form one of them are really turned far aside from their natural course. To Force of

show this, place a candle at a distance, and look at it with one eye (the left suppose) naked, the other having
hal)it '"

producing

single vision

diu* of the sphencai surface 3$ inches, of the cylindrical 4. illustrated by
experiment.
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Light, before it a prism, with a variable refracting angle, (an instrument to be described hereafter, see INDRX,) and, first, P.irt I

V V /
let the angle be adjusted to zero, then will the prism produce no deviation, and the object will appear single,

v -%
Now vary the prism, so as to produce a deviation of 2 or 3 of the rays in a horizontal plane to the right. The
candle will immediately be seen double, the image deviated by the prism being seen to the left of the other ; but
the slightest motion, such as winking with the ejelids, blends them immediately into one. Again, vary the prism
a few degrees more in the same direction ; the candle will again be doubled, and again rendered single by winking,
and directing the attention more strongly to it ; and thus may the optic axes be, as it were, inveigled to an
inclination of 20 or 30 to each other. In this state of things, if a second candle be placed exactly in the

direction of the deviated image of the first, but so screened, that its rays shall not fall on the left eye, and the

prim be then suddenly removed in the act of winking, the two candles appear as one. If the deviation of the

image seen with the right eye be made to the apparent right, the range within which it is possible to bring them
to coalesce is much more limited, as it is much more usual for us to direct by an effort the optic axes towards,
than from each other. If the deviation be made but a very little out of the horizontal plane, no effort will

enable us to correct it. It is probable that s,,.ae cases of squinting might be cured by some such exercise in

the art of directing the optic axes, if continued perseveringly.
304. Such is, undoubtedly, a sufficient explanation of single vision with two -eyes; yet Dr. Wollaston lias rendered

A further jt probable that a physiological cause has also some share in producing the effect, and that a semi-decussation of

l]na\e
^e Pt 'c nerves takes place immediately on their quitting the brain, half of each nerve going to each eye, the

vision right half of each retina consisting wholly of fibres of one nerve, and the left wholly of the other, so that all

Nervous images of objects out of the optic axis are perceived by one and the same nerve in both eyes, and thus a power-
sympathy, ful sympathy and perfect unison kept up between them, independent of the mere influence of habit. Immediately

in the optic axis, it is probable, that the fibres of both nerves are commingled, and this may account for the

greater acuteness and certainty of vision in this part of the eye.
365. Another point, on which much more discussion has been expended than it deserves, is the fact of our seeing

Erect vision objects erect when their images on the retina are inverted. Erect, means nothing else than having the he^d

tr"
""

fi""tner from the ground, and the feet nearer, than any other part. Now, the earth, and the objects which '

on it, preserve the same relative situation in the picture on the retina that they do in nature. In th*'' ,.ar*-

men, it is true, stand with their heads downwards ; hut then, at the same time, heavy bodies fall upv, a.rus ; and
the mind, or its deputy, the nerve, which is present in every part of the picture, judges only of the relations of its

parts to one another. How these parts are related to external objects, is known only by experience, and judged
of at the instant only by habit.

366. There is one remarkable fact which ought not to escape mention, even in so brief an abstract of the doctrine
Puuctuin of vision as the present, it is, that the spot Q, at which the optic nerve enters the eye, is totally insensible to the
cacum. stimulus of light, for which reason it is called the punctum ceeciim. The reason is obvious : at this point the

nerve is not yet divided into those almost infinitely minute fibres, which are fine enough to be either thrown
into tremors, or otherwise changed in their mechanical, chemical, or other state, by a stimulus so delicate as the

Experiment rays of light. The effect, however, is curious and striking. On a sheet of black paper, or other dark ground,
proving its

place two white wafers, having their centres three inches distant. Vertically above that to the le/l, hold the
Ke '

right eye, at 12 inches from it, and so that when looking down on it, the line joining the two eyes shall be

parallel to that joining the centre of the wafers. In this situation closing the left eye, and looking full with the

right at the wafer perpendicularly below it, this only is seen, the other being completely invisible. But if

remove-'l ever so little from its place, either to the right or left, above or below, it becomes immediately visible,

and starts, as it were, into existence. The distances here set down may perhaps vary slightly in different eyes.

367. I* w 'l' cease to be thought singular, that this fact, of the absolute invisibility of objects in a certain point of

the field of view of each eye, should be one of which not one person in ten thousand is apprized, when we

learn, that it is not extremely uncommon to find persons who have for some time been totally blind with one

eye without being aware of the fact. One instance has i'allen under the knowledge of the writer of these

pages.
368. In the eyes of fishes, the humours being nearly of the refractive density of the medium in which they live, the

Eyes of refraction at the cornea is small, and the work of bringing the rays to a focus on the retina is almost wholly
fishes.

performed by the crystalline. This lens, therefore, in fishes is almost spherical, and of small radius, in compa-
rison with the whole diameter of the eye. Moreover, the destruction of spherical aberration not being producible
in this case by mere refraction at the cornea, the crystalline itself is adapted to execute this necessary part of the

process, which it does by a very great increase of density towards the centre. (Brewster, Treatite on

New Philosophical Instruments, p. 2G8.) The fibrous and coated structure of the crystalline lens is beautifully

shown in the eye of a fish coagulated by boiling.

369 The same scientific principles which enable us to assist natural imperfections of sight, can be employed in

giving additional power to this sense, even in individuals who enjoy it naturally in the greatest perfection. It

being once understood, that the image on the retina is that which we really see, it follows, that if by any means

we can render this image brighter, larger, more distinct than in the natural state of the organ, we shall see objects

brighter than in their natural state, enlarged in dimension, and, therefore, capable of being examined more in

detail, or more sharply defined and clearly outlined. The means which the principles already detailed put in em-

power, for the accomplishment of such ends, are the concentration of more rays than enter the natural eye by

lenses; the enlargement of the image on the retina, by substituting for the object seen an image of it, either

larger than the object itself, or capable of being brought nearer to us ;
and the destruction of aberration, Im-

properly adapting the figure and materials of our instruments to the end proposed.

Proposition. The apparent magnitude of a rectilinear object is measured by the angle subtended by it at
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Light the centre of the eye, or by the linear magnitude of its image on the retina, and is therefore proportional
Part I-

V""^ linear magnitude of object ^p-y-^'

its distance from the eye

The centre of the eye, in its optical sense, is a point nearly in the centre of the pupil in the plane of the iris,

and the image of any ex ernal object P Q, being formed at the bottom of the eye at p q, by rays crossing there, F'?- "2.

pE
must subtend the same angle ;

so that p q = P Q . =;=
X III

Carol. If the object be so distant that the rays from each point of it may be regarded as parallel, the angular
**

diameter of the object is measured by the inclination of rays of its extreme pencils to each other. Whenever,
therefore, the eye sees by parallel, or very nearly parallel, rays, the apparent magnitude of the object seen, is

measured by the inclination of its extreme pencils, and the object itself is referred to an infinite distance, or to the

concave surface of the heavens.

Prop. When a convex lens is placed between the eye and any object, so as to have the object at a distance 372.
from the lens equal to its focal length, it will be distinctly seen by an eye capable of converging parallel rays, and
will appear enlarged beyond its natural size.

Let P Q be the object, C the lens, and E the centre of the eye. Since the object is ;.n the focus of the lens, Fig. 73.

the rays of a pencil diverging from any point P in it, will emerge parallel to P C, and to each other ; they will,

therefore, after refraction in the eye, be brought to converge on the retina to a point p, such that E p is parallel
to P C. Similarly, rays from Q will, after refraction through the lens and eye, converge to

tj;
such that E q is

parallel to Q C. Thus, a distinct image will be formed atp q on the retina, and the apparent angular magnitude
of the object seen through the lens will be the angle q E p. Now this is equal to P C Q, or the angle subtended

by the object at the centre of the lens, and is, therefore, greater than P E Q, or that subtended by it at the centre

of the eye, because the lens is between the eye and object.

Hence, the nearer the eye is to the lens, the less will be the difference between the apparent magnitudes of the 373.

object, as seen with and without the lens interposed. But if the lens be of shorter focus than the least distance at

which the eye can see distinctly, there will be this essential difference between vision with and without the lens,

that in the former case the object is seen distinctly, and well-defined ; while in the latter, or with the naked eye,
it will be indistinct and confused, and the more so the nearer it is brought.

Hence, by the use of a convex lens of short focus, objects may be seen distinct, and magnified to any extent we 374
please : for let L be the power, or reciprocal focal length of the lens, and D the greatest proximity of the object By a con-

to the centre of the eye at which it can be seen distinctly without a lens. Then we shall have L : D : : angle vex lens of

p E q : angle subtended by the object at the proximity D ; and, therefore, : : apparent linear magnitude of sllort focus

objects are

object seen through the lens : apparent linear magnitude at proximity D, with the naked eye. Therefore- is
magml

the ratio of these magnitudes, or, as it is called, the magnifying power of the lens, beyond that of the naked eye, Magnifying
at its greatest proximity. power.

Carol. D being given, the magnifying power is as L, or as (/ 1) (R' R"). This explains the use of the 375.

word power in the foregoing sections. Whatever we have demonstrated of the powers of lenses in the foregoing Magnifying

pages, is true of magnifying powers. Thus the sum of the magnifying powers of two convex lenses is the po er of
,
a

magnifying power of the two combined. If one be concave, its magnifying power is to be regarded as negative, lenses

and instead of their sum we must take their difference.

Prop. To express, generally, the visual angle under which a small object placed at any distance from a lens, 376.
and seen by an eye any how situated, appears, supposing it seen distinctly.

Let P Q, fig. 74, 75, 76, 77, be the object, E the lens, O the eye, and p q the image. Put ^ = D, f/'J7
4

' 7o>

h, Q E q
>

j Visual

=f; _ = e; e being reckoned in the same direction from the centre of the lens that D and/" are. Then angle.

O 1)

the visual angle under which the image is seen is q O p, and we have, therefore, visual angle (= A) = ~ =
**f

But, qp = Q P . -^ = Q P .
- = O . ~r- putting O for Q P the linear magnitude of the Vision.-.r.T. , .

-
.
-

. ~r- eU ti - tj q t, (J J J through

1 1 fe convex

object ; and, moreover, O E E q = -- J
, therefore we have,

lenses.

/ J e

A=0 .

f-e
~

-L + D-e
when L, as all along, represents the power of the lens. Now O . D is the visual angle of the object, as seen

Q P
from the centre of the lens ; therefore, putting O . D, or = (A) we getQ h,

VOL. IV.
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377.

Through
concave.

378.
Inreflectors.

In concave lenses, the images of distant objects are formed erect, and on the same side of the lens with the object.
'

If, therefore, such a lens be held between the eye and distant objects at a sufficient distance from the eye for
1

distinct vision, the objects will be seen erect, and diminished in magnitude. In this case, e is positive, and L/ and

D both negative; therefore L + D e is a negative quantity, greater (without regard to the sign) than e, and,

consequently, A is negative, and less than (A).

In reflectors,/= 2 R D, and, therefore,

379.
General

principles
of tele-

scopes.

380.
Astronomi-

cal tele-

icope.

Fig. 80, 81

381.

Field of

view.

382.

A = (A) . 2R-D-e'

In a convex reflector, e is necessarily negative, at least if the mirror be made of metal, because the eye must be

on the side of the surface towards the incident light ; and, therefore, 2 R e is positive, and
R - D -

will be greater or less than unity, according to the value of 2 R D e. In concave reflectors, R is

negative, and e is also negative for the same reason as in concave ; therefore the sign and magnitude of

A in this, as well as the former case, may vary indefinitely, according to the place of the eye, the image,
and the object. The varieties of these cases are represented in fig. 78 and 79.

If the image, instead of being seen directly by the naked eye, be seen through the medium of another

lens or reflector, so plactd as to cause the pencils diverging primarily from each point of the object, to

emerge finally, either exactly parallel, or within such limits of convergence or divergence as the eye can

accommodate itself to, the object will be seen distinctly, and either larger or smaller than it would be seen by the

unassisted eye, according to the magnitude of the image, and the power of the lens or reflector used to view
it. This is the principle of all telescopes and microscopes. As most eyes can see with parallel rays, they are

so constructed as to make parallel pencils emerge parallel ; and a mechanical adjustment allows such a quantity
of motion of the lenses or reflectors with respect to each other, as to give the rays a sufficient degree of conver-

gence or divergence as may be required.
In the common refracting, or, as it is sometimes called, the astronomical telescope, the image is first

formed by a convex lens, and is viewed through a convex lens, placed at a distance from the other nearly

equal to the sum of their focal lengths. The lens which forms the image is called the object-glass, and that

through which it is viewed, the eye-glass of the telescope. If the latter be concave, the telescope is said to

be of the Galilaean construction, such having been the original arrangement of Galiheo's instruments. The
situation of the lenses, and the course of the rays in these two constructions, are represented in fig. 80 and 81.

In the former construction, let P Q be the object. Draw Q O G through the centres of the object and

eye-glass, and this line will be the axis of the telescope. From R any point in the object draw P O p through
the centre O of the object-glass, and meeting p q, a line through q, the focus of the point Q, perpendicular
to the axis in p, then will p q be the image of P Q. Let P A, P B be tne extreme rays of the pencil diverging
from P, and incident on the object-glass, and they will be refracted to and cross at p. Hence, unless

the diameter of the eye-glass 6 Go be such, that the ray Ap a shall be received on it, the point p will be

seen less illuminated than the point Q in the centre of the object, and if it be so small that the line

Bp produced does not meet it, then none of the rays from P can reach the eye at all. Thus, the field of
view, or angular dimensions of the object seen, is limited by the aperture of the eye-glass. To find its extent,

then, join B 6, A a, opposite extremities of the object and eye-glass, meeting the image in r and p, and the

axis in X, then r p is the whole extent of the image which is seen at all, and the angle p O r, which is

equal to P O R, is the angular extent of the field of view. Now we have AB:a6::OX:GX, and,

therefore, AB + o6:AB::OG:OX, whence we get O X = B a b
' ' ~

O G. But we have, moreover, X q = O q OX; p r = a b . ^-^> and angle r O p = . To express
1 1 ,\ ^9

this algebraically, put

Diameter of object-glass = a,
; Power of object-glass = L

Diameter of eye-glass == /3 ; Power of eye-glass = I.

Then OX =

QX =

a+p
I ftl-aL,

This last is the linear magnitude of the visible portion of the image ;
and it is, as we see, symmetrical

both with respect to the eye-glass and object-glass.
Now from this it is easy to deduce both the field of view and magnifying power of the telescope ; for the

former is equal to the angle subtended by p r, at the centre of the object-glass, and the latter is obtained from

the former, when the angle r Gp subtended at the centre of the eye-glass is obtained. But we have
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/ jv Formulae

rGp I l"
for field of

therefore magnifying power = ' = I view and
r O p LA J magnifying

Hence we see, that the greater the power of the eye-glass is, compared with that of the object-glass, the greater
the magnifying power of the telescope ; or, in other words, the greater the focal length of the object glass com-
pared with that of the eye-glass.
The pencils of rays after refraction at the eye-glass will emerge parallel, and therefore proper for distinct 383.

vision to an eye properly placed to receive them. Now the eye will receive both the extreme rays b R' and a P" Distance
of the pencils diverging from r and p, if it be placed at their point of concourse E ; but since 6 E is parallel to of eve -

f G, and a E to p G, we have

(e), .

pr ftl aL,

If the eye be placed nearer to, or farther off from, the eye-glass than this distance, it will not receive the 384.
extreme rays, and Ihefeld of view, or visible area of the object, will be lessened. In the construction of convex

single eye-pieces, therefore, care must be taken to prolong the tube which carries them, (as in the figure,) so that
when the eye is applied close to its end, it shall still be at this precise distance from the glass.

If the telescope be inverted, and the eye applied behind the object-glass, it is evident that it will remain a 385.
Inversion of

telescope, but its magnifying power will be changed to
;
so that, if it magnified before, it will diminish objects

telesc Pes -

now, and the field of view will be proportionally increased. In this way, beautiful miniature pictures of distant

objects may be seen.

If the telescope, instead of being turned on objects so distant as that the pencils flowing from them may be 386.

regarded as parallel, be directed to near objects, the distance between the object-glass and eye-glass must be Adjust-

lengthened so as to bring the image exactly into the focus of the latter. To accomplish this, the eye-glass is
ments -

generally set in a sliding tube movable by a rack-work, or by hand. The same mechanism serves also to adjust
the telescope for long or short-sighted persons. The former require parallel or slightly divergent rays, the latter

very divergent ; and to obtain the necessary divergence for the latter, the eye-glass must be brought nearer the

object-glass.
The same theory and formula apply to the second, or Galilaean, construction, only recollecting that in this case L, 387.

the power of the eye-glass, is negative. In this case, therefore, the value of G E is negative, or the eye should Galil!e n

be placed between the object-glass and eye-glass ; but, as that is incompatible with the other conditions, in order
telesc Pe-

to get as great a field of view as possible, the eye must be brought as near to jts proper place as possible, and
therefore close to the eye-glass.

In the astronomical telescope objects are seen inverted, in the Galilaean, erect ; for, in the former, the rays 388.
from the extremities of the object have crossed before entering the eye, in the latter, not.

It the object be brought nearer the object-glass, the magnifying power is increased ; because in this case 339.

I
Micro-

(calling D the proximity of the object)
--

expresses the magnifying power, as is easily seen from what has scopes.

been said Art. 382. Thus a telescope used for viewing very near objects becomes a microscope. The ordinary
construction of the compound microscope is nothing more than that of the astronomical telescope modified for
the use it is intended for. The object-glass has in this instrument a much greater power than the eye-glass, so

that, when employed for viewing distant objects, it acts as a telescope inverted, and requires to be greatly

shortened. But for near objects, as D increases, / D diminishes, and the fraction-- may be increased

to any amount, by bringing the object nearer to the object-glass, and at the same time lengthening the interval

between the lenses, which is expressed by -- - + - -. But as this requires two operations, it is
LJ D /

usual to leave the latter distance unaltered, and vary, by a screw or rack-work, only the former. Fig. 82 is a
Fig. 82.

section of such an instrument. It is, however, convenient to have the power of lengthening and shortening the
distance between the glasses, as by this means any magnifying power between the limits corresponding to the
extreme distances may be obtained ; and if a series of object-glasses be so selected, that the greatest power
attainable by one within the limits of the adjustment in question, shall just surpass the least obtainable by the

next, and so on, we may command any power we please. Such a series is usually comprised in a small revolving
plate containing cells, each of which can be brought in succession into the axis of the microscope by a simple
mechanism.

In the reflecting telescope, of the most simple construction, the image is formed by a concave mirror, and 390
viewed by a convex or concave eye-glass, as in refracting telescopes ; but since the head of the observer would

Reflecting

intercept the whole of the incident light in small telescopes, and a great part of it in large ones, the axis of the telescope.
reflector itself is turned a little obliquely, so as to throw the image aside, by which it can be viewed with little or
no loss of light. The inconvenience of this is a little distortion of the image, caused by the obliquity of the rays;
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Gregorian

telescope.

Fig. 84.

393.

Catsegrain-
ian.

but as such telescopes are only used of a great size, and for the purpose of viewing very faint celestial objects,

in which the light diffused by aberration is insensible, little or no inconvenience is found to arise from this cause.

Such is the construction of the telescopes used by Sir William Herschel in his sweeps of the heavens.

To obviate the inconvenience of the stoppage of rays by the head, Newton, the inventor of reflecting tele-

scopes, employed a small mirror, placed obliquely, as in fig. 83, opposite the centre of the large one. Thus

parallel rays PA, P B, emanating from a point in the axis of the telescope, are received, before their meeting, on

a plane mirror C D inclined at 45 to the axis, and thence reflected through a tube projecting from the side of

the telescope to the lens G, and by it refracted to the eye E. It is manifest, that if the image formed by the

mirror A B behind C D be regarded as an object, an image equal and similar to it (Art. 335) will be formed

at F, at an equal distance from the plane mirror ; and this image will be seen through the glass G, just as if it

were formed by an object-glass of the same focal length placed in the prolongation of the axis of the eye-tube,

beyond the small mirror, (supposed away.) Hence the same propositions and formulae will hold good in the

Newtonian telescope, as in the astronomical and Galitean, for the magnifying power, field of vievv, and position
of the eye, substituting only 2 R for L, and 2 R D for L D, and recollecting that R is negative, as the

mirror has its concavity turned towards the light

The Gregorian telescope, instead of a small plain mirror turned obliquely, has a small convex mirror with its

concavity turned towards that of the large one, as in fig. 84 ;
but instead of being placed at a distance from the

large one equal to the sum of the focal lengths, the distance is somewhat greater ; hence the image p q, formed
in the focus of the great mirror, being at a distance from the vertex of the small one greater than its focal length,
another image is formed at a distance, viz. at or near the surface of the great mirror, at r s. In the centre of the

large m'rror there is a hole which lets pass the rays to an eye-lens g-.
The adjustment to parallel or diverging

rays, or for imperfect eyes, is performed by an alteration of the distance between the mirrors made by a screw.

The Cassegrainian construction differs in no respect from the Gregorian, except that the small mirror is convex
and receives the rays before their convergence to form an image. The magnitude of the field, the distance of the

eye and of the mirrors from each other, are easily expressed in these constructions ; the latter being derived from
the former by a mere change of sign in the curvature of the small mirror. Let then R' and R" be the curvatures

of the two mirrors, then in the Gregorian telescope R' is negative and R'' positive ; and if we put t for the

distance between their surfaces, (t being negative, because the second reflecting surface lies towards the incident

light) we shall have for an object whose proximity is D

D'=D; /'= 2R/-D =2R'-D; /"=2R" "". TV _. /'
D";

adopting the formulae and notation of Art. 251. Now these give, by substitution,

2 R' - D 2 R' - D

D"-
l-ff

D' =
1 - t (2 R' - D)

/" = 2 R" -
1 - t (2 R' - D)

2 R" - 2 R' + D - 2 t (2 R' - D) . R"

1 - t (2 R' - D)

This is the reciprocal distance of the second image from the second reflecting surface. If we wish that the image
to be viewed by the eye-lens should fall just on the surface of the large mirror, we have only to put f" =

(because /" is positive, and t negative.) For parallel rays this gives
t

R' R" . <* + (4 R' - 2 R") t - 1 = o ;

394.

whence t may be found when R' and R" are given, or vice versa.

The description of other optical instruments, and of the more refined construction of telescopes, &c. must be
deterred till we are farther advanced in our account of the physical properties of light, and especially of the

different refrangibility of its rays and their colours, which will form the object of the next part.
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Light. JTL

PART II.

CHROMATICS.

I. Of the Dispersion of Light.

HITHERTO we have regarded the refractive index of a medium as a quantity absolutely given and the same for 395
all rays refracted by the medium. In nature, however, the case is otherwise. When a ray of light falls obliquely General

on the surface of a refracting medium, it is not refracted entirely in one direction, but undergoes a separation phenome-

into several rays, and is dispersed over an angle more or less considerable, according to the nature of the medium
"

t

"

^^'
and the obliquity of incidence. Thus if a sunbeam S C be incident on the refracting surface A B, and be

ray jnto

afterwards received on a screen R V, (fig. 85,) it will, instead of a single point on the screen as R, illuminate colours.

a space R V ofa greater extent the greater is the angle of incidence. The ray S C, then, which, before refraction *''g- 85.

was single, is separated into an infinite number of rays C R, CO, C Y, &c. each of which is refracted

differently from all the rest.

The several rays of which the dispersed beam consists, are found to differ essentially from each other, and from 396.

the incident beam, in a most important physical character. They are of different colours. The light of the sun
is white. If a sunbeam be received directly on a piece of paper, it makes on it a white spot ; but if a piece of

white paper (that is, such as by ordinary daylight appears white) be held in the dispersed beam, as RV, the

illuminated portion will be seen to be differently coloured in different parts, according to a regular succession of

lints, which is always the same, whatever be the refracting medium employed.
To make the experiment in the most striking and satisfactory manner, procure a triangular prism of good 397.

flint-glass, and having darkened a room, admit a sunbeam through a small round hole O P in the window Fig. 8fi

shutter. If this be received on a white screen D at a distance, there will be formed a round white spot, or

image of the sun, which will be larger as the paper is farther removed. New in the beam before the screen

place the prism ABC, having one of its angles C downwards and parallel to the horizon, and at right angles
to the direction of the sunbeam, and let the beam fall on one of its sides B C obliquely. It will be refracted

and turned out of its course, and thrown upwards, pursuing the course F G R, and may be received on a screen

E properly placed. But on this screen there will no longer be seen a white round spot, but a long streak, or,

as it is called in Optics, a spectrum R V of most vivid colours, (provided the admitted sunbeam be not too large,
and tha distance of the screen from the prism considerable.) The tint of the lower or least refracted extremity
R is a brilliant red, more full and vivid than can be produced by any other means, or than the colour of any
natural substance. This dies away first into an orange, and this passes by imperceptible gradations into a fine

pale straw-yellow, which is quickly succeeded by a pure and very intense green, which again passes into a blue,
at first of less purity, being mixed with green, but afterwards, as we trace it upwards, deepening to the purest

indigo. Meanwhile, the intensity of the illumination is diminishing, and in the upper portion of the indigo tint

is very feeble, but it is continued still beyond, and the blue acquires a pallid cast of purplish red, a livid hue
more easily seen than described, and which, though not to be exactly matched by any natural colour, approaches
most nearly to that of a fading violet :

"
tinctux viola pallor,"

If the screen on which the spectrum be received have a small hole in it, too small to allow the whole of the 398.

spectrum to pass, but only a very narrow portion of it, as X, (fig. 87,) the portion of the beam which goes to Insulation

form that particular spot X may be received on another screen at any distance behind it, and will there form a ' eaoh

spot d of the very same colour as the part X of the spectrum. Thus if X be placed in the red part of the
co

spectrum the spot d will be red ;
if in the green, green ;

and in the blue, blue. If the eye be placed at d, it

will see through the hole an image of the sun of dazzling brightness ; not, as usually, white, but of the colour

which goes to form the spot X of the spectrum. Thus we see, that the joint action of all the rays is not
essential to the production of the coloured appearance of the spectrum, but that one colour may be insulated
from the rest, and examined separately.

If, instead of receiving the ray X d, transmitted through the hole X, on a screen immediately behind it, it be 399.

intercepted by another prism acb, it will be refracted, and bent from its course, as in Xfgz ; and after this Second

second refraction may be received on a screen e. But it is now observed to be no longer separated into a refraciin

coloured spectrum like the original one R V, of which it formed a part. A single spot x only is seen on the
n fu

U

r
T-

screen, the colour of which is uniform, and precisely that which th<> part X of the s]>ectruin would have had, change of
were it intercepted on the first screen. It appears, then, that the ray which goes to form any single point of the colour

spectrum is not only independent of all the rest, but having been once insulated from them, is no longer
capable of further separation into different colours by a second refraction.

This simple, but instructive experiment, then, makes us acquainted with the following properties of light :
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1. A beam of white light consists of a great and almost infinite variety of rays differing from each other in Part II,

colour and refrangibility.
v^"\~"~l

For the ray S F from any one point of the sun's disc, which if received immediately on the screen would

hf'refran'gi-
nave occu P'ed on'y a s 'n s' e point on it, or (supposing the hole in the screen to have a sensible diameter) only a

bility.

'

space equal to its area, is dilated into a line V R of considerable length, every point of which (speaking
loosely) is illuminated. Now the rays which go to V must necessarily have been more refracted than those

which go to R, which can only have been in virtue of a peculiar quality in the rays themselves, since the

refracting medium is the same for all.

401. 2. White light may be decomposed, analyzed, or separated into its elementary coloured rays by refraction. The
act of such separation is called the dispersion of the coloured rays.

402. 3. Each elementary ray once separated and insulated from the rest, is incapable of further decomposition or

analysis by the same means. For we may place a third, and a fourth, prism in the way of the twice refracted

ray g x, and refract it in any way, or in any plane ; it remains undispersed, and preserves its colour quite
unaltered.

403. 4. The dispersion of the coloured rays takes place in the plane of the refraction ; for it is found that the

spectrum VR is always elongated in this plane. Its breadth is found, on the other hand, by measurement, to be

precisely the same as that of the white image D, (fig. 86,) of the sun, received on a screen at a distance O D
from the hole, equal to O F + F G 4- G R, the whole course of the refracted light, which shows that the beam
has undergone no contraction or dilation by the effect of refraction in a plane perpendicular to the plane of

refraction.

404. To explain all the phenomena of the colours produced by prismatic dispersion, or of the prismatic colours,
Index of as they are called, we need only suppose, with Newton, that each particular ray of light, in undergoing refraction
refraction at the surface of a given medium, has the sine of its angle of incidence to that of refraction in a constant ratio,
regarded as so |ong as t |,e me(lium and the ray are the same ; but that this ratio varies not only, as we have hitherto all alonge '

assumed, with the nature of the medium, but also with that of the ray. In other words, that there are as many
distinct species, or at least varieties of light, as there are distinct illuminated points in the spectrum into which
a single ray of white light is dispersed. This amounts to regarding the quantity /*, for any medium, not as one
and invariable, but as susceptible of all degrees of magnitude between certain limits : one, the least of which,

corresponds to the extreme, or least refracted red ray ; the other, the greatest value of p., to the extreme or

most refracted violet. Each of these varieties separately conforms to the laws of reflexion and refraction we
have already laid down. As in Geometry we may regard a whole family of curves as comprehended under one

equation, by the variation of a constant parameter ; so in Optics we may include under one analysis all the

doctrine of the reflexions, refractions, and other modifications of a ray of white or compound light, by regarding
the refractive index ft as a variable parameter.

405 To apply this, for instance, to the experiment of the prism just related : A single ray of white light being
supposed incident on the first surface, must be regarded as consisting of an infinite number of coincident rays,
of all possible degrees of refrangibility between certain limits, any one of which may be indifferently expressed

by the refractive index fi. Supposing the prism placed so as to receive the incident ray perpendicularly on one

surface, then the deviation will be given by the equation

/ . sin I = siu (I + D)

I being the refracting angle of the prism. D therefore is a function of /t, and if fi vary by the infinitely small

increment t> fi, i. e. if we pass from any one ray in the spectrum to the consecutive ray, D will vary by D,
and the relation between these simultaneous changes will be given by the equation resulting from the differen-

tiation of the above with the characteristic & : thus we get

= D.cos(I + D); 5 D = K fi
_

It is evident, then, that as fi varies, D also varies ; and, therefore, that no two of the refracted and coloured rays
will coincide, but will be spread over an angle, in the plane of refraction, the greater, the greater is the total

variation of fi from one extreme to the other.

406. In order to justify the term analysis, or decomposition, as applied to the separation of a beam of white light

Analysis jnto coloured rays, we must show by experiment that white light may be again produced by the synthesis of these

I^of^wh'"
eUmentary rays - The experiment is easy. Take two prisms A B C, a b c of the same medium, and having

light

* *
eo

,
ua' refracting angles, and lay them very near together, having their edges turned opposite ways, as in fig. 87.

Fig. 87. With this disposition, a parallel beam of white light intromitted into the face A C of the first prism, will emerge
from the face b c of the last, undeviated, and colourless, as if no prisms were in the way. Now the dispersion

having been fully completed by the prism ABC, the rays in passing through the thin lamina of air B C a c must

have existed in their coloured and independent state, and been dispersed in their directions ; but being refracted

by the second prism so as to emerge parallel, the colour is destroyed by the mixture and confusion of the rays.
Fig. 88. fo see more clearly how this tnkes place in fig. 88, let S R and S V be two parallel white rays, incident on the

first prism, and separated by refraction ; the former into the coloured pencil 11 c, the latter into a pencil exactly
similar to V re. Let Re be the least retracted ray of the former pencil, and Vc the most refracted of the

latter. These, of course, must meet : let them meet in c, and precisely at c apply the vertex of the second

prism, having its side ca parallel to C B, but its edge turned in the opposite direction ; then will the rays R C
and V c, each for itself, and independent of the other, be refracted so as to emerge parallel to its original direction
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Light. S R, S V, and the emergent rays will therefore be coincident and superimposed on each other as c. Thus the Part II.

~v~ '
emergent ray ex will contain an extreme red and an extreme violet ray. But it will also contain every inter- v '

mediate variety; for draw c/anywhere between cR and cV. Then, since the angle which of makes with the

surface B C is greater than that made by the extreme violet ray C B, but less than that made by the extreme

red, there must exist some value of it, intermediate between its extreme values, which will give a deviation equal
to the angle between cf and S Y parallel to S R. Consequently, if S Y be a white ray, separated into the

pencil Y v' r by refraction, the coloured ray Y_/"c of that particular refrangibility will fall on c, and be refracted

along cs. Every point then of the surface gfh will send to c a ray of different refrangibility, comprehending all

the values of /i from the greatest to the least. Tims all the coloured elements, though all belonging originally
to different white rays, will, after the second refraction, coincide in the ray cs, and experience proves that so

reunited they form white light. White light, then, is re-composed when all the coloured elements, even though

originally belonging to separate white rays, are united in place and direction.

In the reflexion of light, regarded as a case of refraction, /i has a specific numerical value, and cannot vary 407.

without subverting the fundamental law of reflexion. Thus, there is no dispersion into colours produced by
reflexion, because all the coloured rays after reflexion pursue one and the same course. There is one exception
to this, more apparent than real, when light is reflected from the base of a prism internally, of which more
hereafter.

The recomposition of white from coloured light may be otherwise shown, by passing a small circular beam of 408.
solar light through a prism ABC, (fig. 89,) and receiving the dispersed beam on a lens E D at some distance. Synthesis

If a white screen be held behind the lens, and removed to a proper distance, the whole spectrum will be .'

white

reunited in a spot of white light. The way in which this happens will be evident by considering the figure, in :'*

which TE and TD represent the parallel pencils of rays of any two colours (red and violet, for instance) into

which the incident white beam S T is dispersed. These will be collected after refraction, each in its own proper
focus ;

the former at F, the latter at G ; after which each pencil diverges again, the former in the cone F H, the

latter in G H. If the screen then be held at H, each of these pencils will paint on it a circle of its own colour,
and so of course will all the intermediate ones ; but these circles all coinciding, the circle H will contain all the

rays of the spectrum confounded together, and it is found (with the exception of a trifling coloured fringe about
the edges, arising from a slight overlapping of the several coloured images) to be of a pure whiteness.

That the reunion of all the coloured rays is necessary to produce whiteness, may be shown by intercepting a 409.

portion of the spectrum before it falls on the lens. Thus, if the violet be intercepted, the white will acquire a A" the rav>

tinge of yellow ; if the blue and green be successively stopped, this yellow tinge will grow more and more ruddy, !"

and pass through orange to scarlet and blood red. If, on the other hand, the red end of the spectrum be white.

stopped, and more and more of the less refrangible portion thus successively abstracted from the beam, the white
will pass first into pale and then to vivid green, blue-green, blue, and finally into violet. If the middle

portion of the spectrum be intercepted, the remaining rays, concentrated, j
reduce various shades of purple,

All natural

crimson, or plum-colour, according to the portion by which it is thus rendered deficient from white light; and J^"?
'm '~

by varying the intercepted rays, any variety of colours may be produced ; nor is there any shade of colour in
Combina-

nature which may not thus be exactly imitated, with a brilliancy and richness surpassing that of any artificial tions of the

colouring. prismatic.

Now, if we consider that all these shades are produced on white paper, which receives and reflects to our eyes
whatever light happens to fall on it ; and that the same paper placed successively in the red. green, and blue

portion of the spectrum, will appear indifferently red, or green, or blue, we are naturally enough led to conclude,
that

The colours of natural bodies are not qualities inherent in the bodies themselves, by which they immediately affect 410.
our sense, but are mere cotuequences of that peculiar disposition of the particles of each body, by which it is Colours not

enabled more copiously to reflect the rays of one particular colour, and to transmit, or stifle, or, as it is called in inherent in

Optics, absorb the others.
bodies -

Such is the Newtonian doctrine of the origin of olours. Every phenomenon of optics conspires to prove its 4jj
justice. Perhaps the most direct and satisfactory (

>roof of it is to be found in the simple fact, that every body, proved by
indifferently, whatever be its colour in white light, when exposed in the prismatic spectrum, appears of the colour experiment

appropriate to that part of the spectrum in which it is placed ; but that its tint is incomparably more vivid and
full when laid in a ray of a tint analogous to its hue in white light, than in any other. For example, vermillion

placed in the red rays appears of the most vivid red ; in the orange, orange ;
in the yellow, yellow, but less bright

In the green rays, it is green ; but from the great inaptitude of vermillion to reflect green light, it appears dark
and dull

;
still more so in the blue ; and in the indigo and violet it is almost completely black. On the other

hand, a piece of dark blue paper, or Prussian blue, in the indigo rays has an extraordinary richness and depth of
blue colour. In the green its hue is green, but much less intense ; while in the red rays it is almost entirely
black. Such are the phenomena of pure and intense colours; but bodies of mixed tints, as pink or yellow
paper, or any of the lighter shades of blue, green, brown, &c., when placed in any of the prismatic rays, reflect

them in abundance, and appear, for the time, of the colour of the ray in which they are placed.
Refraction by a prism affords us the means of separating a ray of white light into the rays of different refran- 412.

gibility of which it consists, or of analyzing it. But to make the analysis complete, and to insulate a ray of any Precautions

particular refrangibility in a state of perfect purity, several precautions are required, the chief of which are as '"'"su 11"

follows: 1st. The beam of light to be analyzed must be very small, as nearly as possible approaching to a m" eneit~
mathematical ray; for if A B, aft be a beam of parallel rays of any sensible breadth (fig. 89) incident on the of any;
prism P, the extreme rays A B, a 6 will each be separated by refraction into spectra G B H and g b h : B G, b g Fig. 89.

being the violet, and B H, bh the red rays of each respectively ; and since A B, a b are parallel, therefore C G
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Light. and eg will be so, and also D H and d h. Hence the red ray D H from B will intersect the violet eg from ft,
Parl "

^~^s-~> in some point F behind the prism ; and a screen E F/ placed at F will have the point F illuminated by a red
>> "v-"~<

Small- ray from ft t antj a violet one from b ; and therefore (as is easily seen) by all the rays intermediate between the

ictdent'

6
an<^ v 'o'e*> from points between B and b. F therefore will be white. If the screen be placed nearer the

pencil prism than F, as at K L k I, it is clear that from any point between L and k lines drawn parallel to K C, D L, to

any intermediate direction, will fall between C and c, D and d, &c., respectively; and therefore that every point
between L and k will receive from some point or other of the surface C d of the prism a ray of each colour,

and will therefore be white. Again, any point as x between k and I can receive no violet ray, nor any ray of the

spectrum whose angle of deviation is greater than 180 a b x; for such ray to reach x must come from a part
of the prism below 6, which is contrary to the supposition of a limited beam A B, a b ; but all rays whose

angle of deviation is less than 180 abx, will reach x from some part or other of the surface B D. Hence
the colour of the portion kl of the image on the screen will be white at k, pure red at I, and intermediate

between white and red, or a mixture of the least refrangible rays of the spectrum at any intermediate point ;

and, in the same manner, the portion K L will be white at L, violet at K, and at any intermediate point will have
a colour formed by a mixture of a greater or less portion of the more refrangible end of the spectrum. If the

screen be removed beyond F, as into the situation G s H h, the white portion will disappear, no point between g
and H being capable of receiving any ray whose angle of deviation is between 180 abg and 180 a b H.
We may regard the whole image G h as consisting of an infinite number of spectra formed by every elementary

ray of which the beam A B a b is composed, overlapping each other, so that the end of each in succession projects

beyond that of the foregoing. The fewer, therefore, there are of these overlapping spectra, or the smaller the

breadth of the incident beam, the less will be the mixture of rays so arising, and the purer the colours. Removal
of the screen to a greater distance from the prism, evidently produces the same effect as diminution of the size

of the beam
; for while each colour occupies constantly the same space on the screen (for G g = K k) the whole

spectrum is diffused over a larger space as the screen is removed, by the divergence of its component rays of

different colours, and therefore the individual colours must of necessity be continually more and more separated
from each other.

413. 2ndly. Another source of confusion and want of perfect homogeneity in the colours of the spectrum is the
2nd. Small

angular diameter of the sun or other luminary, even when the aperture through which the beam is admitted is

veivenre of
ever so muc^ diminished. For let S T (fig. 90) be the sun, whose rays are admitted to the prism ABC through

the pencil.
a verY sma" h'e O in a screen placed close to it. The beam will be dilated by refraction into the spectrum v r.

Fig. 90. Now, if we consider only the rays of one particular kind, as the red, and regard all the rest as suppressed, it is

clear that a red image r of the sun will be formed by them alone on the screen ; the rays from every point of

the sun's disc crossing at O, and pursuing (after refraction) different courses. If the prism be placed in its

situation of minimum deviation, which at present we will suppose, this image will be a circle, and it and the sun

will subtend equal angles at O. In like manner, the violet rays (considered apart from the red) will form a

circular violet image of the sun, at r, by reason of their greater refrangibility; and every species of ray, of

intermediate refrangibility, will form, in like manner, a circular image between r and v. The constitution of the

spectrum so arising will therefore be as in fig. 91, a, being an assemblage of images of every possible refrangi-

bility superposed on and overlapping each other. Now, if we diminish the angular diameter of the sun or

luminary, each of these images will be proportionally diminished in size ; but their number, and the whole

extent over which they are spread, will remain the same. They will therefore overlap less and less, (as in

Fig. 91.
fig. 9l ( b, c,-) and if the luminary be conceived reduced to a mere point (as a star) the spectrum will consist of

a line d composed of an infinite number of mathematical points, each of a perfectly pure homogeneous light.

414. There are several ways by which the angular diameter, or the degree of divergence of the incident beam may
Experimen- be diminished. Thus, first, we may admit a sunbeam through a small hole, as A, in a screen, and receive the
tal methods

divergent cone of rays behind it on another screen B, (fig. 7,) at a considerable distance, having another small

homoee-

n 'ng no 'e ^ to ' et Pass > not tne whole, but only a small portion of the sun's image. The beam B C, so transmitted,

neous pris-
w'" manifestly have a degree of divergence less than that of the beam immediately transmitted from A in the

matic rays, proportion of the diameter of the aperture B to the diameter of the sun's image on the screen B.
F
'?- 7 Another and much more commodious method is to substitute for the sun its image formed in the focus
*'* of a convex lens of short focus. This image is of very small dimensions, its diameter being equal to focal

Fig. 92.
length of the lens x sine of sun's angular diameter, (or sine of 30', which is about one 114th part of radius,)

so that a lens of an inch focus concentrates all the rays which fall on it within a circle of about the 114th

of an inch in diameter, which, for this purpose, may be regarded as a physical point. The disposition of the

apparatus is as represented in fig. 92. The rays converged by the lens L to F, afterwards diverge as if they
emanated from an intensely bright luminous point placed at F, and a screen with a small aperture O being

placed at a distance from it, and close behind it the prism ABC, the spectrum r v may be received on a screen

again placed at a considerable distance behind the prism, each of whose points will be illuminated by rays of a

very high degree of purity and homogeneity, and by diminishing the focal length of the lens, and the aperture

O, and increasing the distance F O, or O r, this may be carried to any extent we please. It should, however,

be remarked, that the intensity of the purified ray, and the quantity of homogeneous light so obtained, are

diminished in the same ratio as the purity of the ray is increased.

416. A third method of obtaining a homogeneous beam is to repeat the process of analysis on a ray as nearly

Tig 93 pure as can be conveniently obtained by refraction through a single prism. Thus, in fig. 93, V R, the

spectrum formed by a first refraction at the prism A, is received on a screen which intercepts the whole of

it, except that particular colour we wish to insulate and purify, which is allowed to pass through an aperture
M N ; behind this is placed another prism B, so as to refract this beam a second time. If then the portion
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Light. M N were already perfectly pure, it would pass the second pristn without undergoing any further separation ; Part II.

~-<v-~~> but if there be (as there always will) other rays mixed with it, these will be dilated by the subsequent refraction
*

v-~--

into a second spectrum vr of faint light, with a much brighter portion mn in the midst; and if the rest of the

rays be intercepted, and this portion only allowed to pass through an aperture, the emergent beam mp will be

much more homogeneous than before its incidence on the second prism, and in proportion as the distance be-

tween the second prism and the screen is increased, the purity of the ray obtained will be greater.
Another source of impurity in the prismatic rays is the imperfection of the materials of our ordinary prisms, 417

which are full of strise and veins, which disperse the light irregularly, and thus confound together in the spectrum Imperfec-

rays which properly belong to different parts of it. Those who are not fortunate enough to possess glass prisms tion of

free from this defect (which are very rare, and indeed hardly to be procured for any price) may obviate the in- P r ims

convenience by employing hollow prisms full of water, or, rather, any of the more dispersive oils. A great part i

of the inconvenience arising from a bad prism may, however, be avoided by transmitting the rays as near the

edge of it as possible, so as to diminish the quantity of the material they have to pass through, and therefore

their chance of encountering veins and strife in their passage.
When every care is taken to obtain a pure spectrum ; when the divergence of the incident beam is extremely 418.

small, and its dimensions also greatly reduced ; when the prism is perfect, and the spectrum sufficiently elon- Fixed line*

gated to allow of a minute examination of its several parts, some very extraordinary facts have been observed '" the

respecting its constitution. They were first noticed by Dr. Wollaston, in a Paper published by him in the Phil.
sPectmm -

Trans., 1802 ;
and have since been examined in full detail, and with every delicacy and refinement which

the highest talents and the most unlimited command of instrumental aids could afford, by the admirable and
ever-to-be-lamented Fraunhofer. It does not appear that the latter had any knowledge of Dr. Wollaston's

previous discovery, so that he has, in this respect, the full merit of an independent inventor. The facts are

these : The solar spectrum, in its utmost possible state of purity and tenuity, when received on a white screen,

or when viewed by admitting it at once into the eye, is not an uninterrupted line of light, red at one end and
violet at the other, and shading away by insensible gradations through every intermediate tint from one to the

other, as Newton conceived it to be, and as a cursory view shows it. It is interrupted by intervals absolutely
dark

;
and in those parts where it is luminous, the intensity of the light is extremely irregular and capricious,

and apparently subject to no law, or lo one of the utmost complexity. In consequence, ifwe view a spectrum
formed by a narrow line of light parallel to the refracting edge of the prism, (which affords a considerable

breadth of spectrum without impairing the purity of the colours, being, in fact, an assemblage of infinitely narrow
linear spectra arranged side by side,) instead of a luminous fascia of equable light and graduating colours, it

presents the appearance of a striped riband, being crossed in the direction of its breadth by an infinite multi-

tude of dark, and by some totally black bands, distributed irregularly throughout its whole extent. This irregu-

larity, however, is not a consequence of any casual circumstances. The bauds are constantly in the same parts
of the spectrum, and preserve the same order and relations to each other ; the same proportional breadth and

degree of obscurity, whenever and however they are examined, provided solar light be used, and provided the

prisms employed be composed of the same material : for a difference in the latter particular, though it causes no

change in the number, order, or intensity of the bands, or their places in the spectrum, as referred to the several

colours of which it consists, yet causes a variation in their proportional distances inter se, of which more here-

after. By solar light must be understood, not merely the direct rays of the sun, but any rays which have the

sun for their ultimate origin ; the light of the clouds, or sky, for instance ; of the rainbow ; of the moon, or of

the planets. All these lights, when analyzed by the prism, are found deficient in the identical rays which are

wanting in the solar spectrum ;
and the deficiency is marked by the same phenomenon, viz. by the occurrence of

the same dark bands in the same situations in spectra formed by these several lights. In the light of the stars,

on the other hand, in electric light, and that of flames, though similar bands are observed in their spectra,

yet they are differently disposed ;
and the spectrum of each several star, and each flame, has a system of bands

peculiar to itself, and characteristic of its light, which it preserves unalterably at all times, and under all

circumstances.

Fig. 94 is a representation of the solar spectrum as laid down minutely by Fraunhofer, from micrometrical 419.

measurement, and as formed by a prism of his own incomparable flint glass. Only the great number of small Fij. 94.

bands observed by him (upwards of 500 in number) have been omitted, to avoid confusing the figure. Of these

bands, or, as he terms them,
"

fixed lines" in the spectrum, he 'has selected seven, (those marked B, C, D, E, F,
G, II,) as terms of comparison, or as standard points of reference in the spectrum, on account of their distinct-

ness, and the facility with which they may be recognised. Of these, B lies in the red portion of the spectrum,
near the end ; C is farther advanced in the red ; D lies in the orange, and is a strong double line easily recog-
nised ; E is in the green ; F in the blue ; G in the indigo ; and H in the violet. Besides these, there are

others very remarkable ;
thus 6 is a triple line in the green, between E and F, consisting of three strong lines,

of which two are nearer each other than the third, &c.

The definiteness of these lines, and their fixed position, with respect to the colours of the spectrum, in 420.
other words, the precision of the limits of those degrees of refrangibility which belong to the deficient rays Utility of

of solar light, renders them invaluable in optical inquiries, and enables us to give a precision hitherto unheard 'I
16

&?*&

of to optical measurements, and to place the determination of the refractive powers of media on the several rays t'j"!j a"t<-T
almost on the same footing, with respect to exactness, with astronomical observations. Fraunhofer, in his m inati ns.

various essays, has made excellent use of them in this respect, as we shall soon have occasion to see.

To see these phenomena, we must place the refracting angle of a very perfect prism parallel to a very small 421
linear opening through which a sunbeam is admitted ; or, in place of an opening, we may employ a glass

cylinder, or semi-cylinder of small radius, to bring the rays to a linear focus behind and parallel to it, from
VOL. iv. 3 H
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which the rays diverge, as from a fine luminous line, in the manner described in Art. 41b for a lens. If now the

eye be applied close behind the prism, the line will be seen dilated into a broad coloured band, consisting of the -

prismatic colours in their order ; and if the prism be good, and carefully placed in its situation of minimum
deviation, and of sufficiently large refracting angle to give a broad spectrum, some of the more remarkable of

e
the fixed lines will be seen arranged parallel to the edges of the spectrum, especially the lines D and F, the

former of which appears, in this way of viewing it, to form a separation between the red and the yellow. If

the light of the sun be too bright, so as to dazzle the eye, any narrow line of common daylight (as the slit

between two nearly closed window-shutters) may be substituted. This was the mode in which the fixed lines

were first discovered by Dr. Wollaston.

But it is difficult and requires acute sight to perceive, in this manner, any but the most conspicuous lines.

The reason is, their very small angular breadth ; which, in the largest of them, can scarcely, under any circum-

stances, exceed half a minute, and in the smaller not more than a few seconds. They require, therefore, to be

magnified. This may be done by a telescope interposed between the eye and the prism, in the manner repre-
sented in fig. 95, in which L / is the line of light, from which rays, diverging in all directions, fall on the prism
ABC, are refracted by it, and after refraction are received on the object-glass D of the telescope. This object-

glass, it should be observed, must be of that kind denominated achromatic, to be presently described, (see Index,)
and of which it need only be here said, that it is so constructed as to be capable of bringing rays of all colours to foci

at one and the same distance from the glass. Now, if we consider only rays of any one degree of refrangibility

(the extreme red, for instance) the pencils diverging from every point of L,l will, after refraction at the two
surfaces of the prism, diverge from corresponding points of an image L' I

1

situated in the direction from the

base towards the vertex of the prism. Rays of any greater refrangibility will, after refraction at the prism, diverge
from a linear image L"/" parallel to L'/', but farther from the original line L/. Thus the white line L I will,

after refraction at the prism, have for its image the coloured rectangle L'L"/'/", which will be viewed through
the telescope as if it were a real object. Now every vertical line of this parallelogram will form in the focus of
the object-glass a corresponding vertical image of its own colour ; and the object-glass being achromatic, all

these images are equidistant from it, so that the whole image of the parallelogram L' I" will be a similar coloured

parallelogram, having its plane perpendicular to the axis of the telescope. This will be viewed as a real object

through the eye-glass, and the spectrum will thus be magnified as any other object would be, according to the

power of the telescope, (Art. 382.) With this disposition of the apparatus (which is that employed by Fraun-

hofer) the fixed lines are beautifully exhibited, and (if the prism be perfect) may be magnified to any extent.

The slightest defect of homogeneity in the prism, however, as may be readily imagined, is fatal. With glass

prisms of our manufacture it would be quite useless to attempt the experiment ; and those who would repeat it

in this country should employ prisms of highly refractive liquids, enclosed in hollow prisms of good plate glass
The eye-pieces of telescopes, not being usually achromatic, a slight change of focus is still required, when the

lines in the red and violet portions of the spectrum are to be viewed. This (if an inconvenience) might be
obviated by the use of an achromatic eye-piece.
That an actual image of the spectrum, with its fixed lines, is really formed in the focus of the object-glass,

as described, may be easily shown, by dismounting the telescope, and receiving the rays refracted by the object-

glass on a screen in its focus. This, indeed, affords a peculiarly elegant and satisfactory mode of exhibiting the

phenomena to several persons at once. An achromatic object-glass of considerable focal length (6 feet, for

instance) should be placed at about twice its focal length from the line of light, and (the prism being placed

immediately before the glass) the image will be formed at about the same distance, 12 feet behind it, (f= L +
D ; L = ; D = 7V ; f IT -rV = + -rV) and being received on a screen of white paper or emeried glass

may be examined at leisure, and the distances of the lines from each other, &c. measured on a scale. But by
far the best methods of performing these measurements are those practised by Fraunhofer, viz. the adaptation
of a micrometer to the eye-end of the telescope, (see Micrometer, in a subsequent part of this Article,) for ascer-

taining the distances of the closer lines ; and the giving the axis of the telescope, together with the prism which
is connected with it, a motion of rotation in a horizontal plane, the extent of which is read off by verniers and

microscopes on an accurately graduated circle, in the same way as in astronomical observations. The apparatus

employed by him for this purpose, and which is applicable to a variety of useful purposes in optical researches,

is represented in fig. 96.

The fixed lines in the spectrum do not mark any precise limits between the different colours of which it

consists. According to Dr. Wollaston, (Phil. Trans., 1802,) the spectrum consists of only four colours, red,

green, blue, and violet ; and he considers the narrow line of yellow visible in it in his mode of examination

already described (looking through a prism at a narrow line of light with the naked eye) as arising from a

mixture of red and green. These colours, too, he conceives to be well defined in the spaces they occupy, not

graduating insensibly into each other, and of, sensibly, the same tint throughout their whole extent. We confess

we have never been able quite satisfactorily to verify this last observation, and in the experiments of Fraunhofer,

(which we had the good fortune to witness, as exhibited by himself at Munich,) where, from the perfect distinctness

of the finest lines in the spectrum, all idea of confusion of vision, or intermixture of rays is precluded, the tints

are seen to pass into each other by a perfectly insensible gradation ; and the same thing may be noticed in the

coloured representations of the spectrum published in the first essay of that eminent artist, and executed by
himself with extraordinary pains and fidelity. The existence of a pale straw yellow, not of mere linear breadth,
but occupying a very sensible space in the spectrum, is there very conspicuous, and may also be satisfactorily
shown by other experiments to be hereafter described, when we come to speak of the absorption of light. In

short, (with the exception of the fixed lines, which Newton's instrumental means did not enable him to see,) the

spectrum is, what that illustrious philosopher originally described it, a graduated succession of tints, in which all

Part II.
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I^ight. jne seven colours he enumerates can be distinctly recognised, but shading so far insensibly into each other that a Part II.~"V"'
positive limit between them can be nowhere fixed upon. Whether these colours be really compound or not, whether v v<"''

some other mode of analysis may not effect a separation depending on some other fundamental difference between

the rays than that of the degree of their refrangibility, is quite another question, and will be considered more at

large hereafter. At present it may be enough to remark, that all probability, drawn from everyday experience,
is in favour of this idea, and leads us to believe that orange, green, and violet are mixed colours ; and red,

yellow, and blue, original ones ; the former we everyday see imitated by mixtures of the latter, but never vice

versd. This doctrine has been accordingly maintained by Mayer, in a curious Tract published among his works.

(See the Catalogue of Optical Writers at the end of this Article.) A very different doctrine has, however, been

advanced by Dr. Young, (Lectures on Natural Philosophy, i. 441,) in which he assumes red, green, and violet,

as the fundamental colours. The respective merits of these systems will be considered more at large hereafter.

(See Index, Composition of Colours.)

Media, as we have seen, differ very greatly in their refractive power, or in the degree in which prisms of one and the 425.

same refracting Dingle composed of different substances, deflect the rays of light. This was known to the optical phi-
Med ia

losophers who preceded Newton. This great man, on establishing the general fact, that one and the same medium
jj?

refracts differently the differently coloured rays, might naturally have been led to inquire experimentally whether
power?'"

the amount of this difference of action were the same for all media. He appears to have been misled by an acci-

dental circumstance in the conduct of an experiment, in which the varieties of media in this respect ought to have

struck him,* and in consequence adopted the mistaken idea of a. proportional action of all media on the several homo-

geneous rays. Mr. Hall, a gentleman of Worcestershire, was the first to discover Newton's mistake ; and having
ascertained the fact, of the different dispersive powers of different kinds of glass, applied his discovery successfully
to the construction of an achromatic telescope. His invention, however, was unaccountably suffered to fall into

oblivion, (though it is said that he made several such telescopes, some of which still exist,) and the fact was
re-discovered and re-applied to the same great purpose by Mr. Dollond, a celebrated optician in London, on
the occasion of a discussion raised on the subject by some a priori and paradoxical opinions broached by
Euler.

If a prism of flint glass and one of crown, of equal refracting angles, be presented to two rays of white 426.

light, as A B C, a be, (fig. 97 ;) S C and sc being the incident rays, C R, CV the red and violet rays refracted Differencet

by the flint, and cr, cv those refracted by the crown ; it is observed, first, that the deviation produced in either of disper-

the red or violet ray by the flint glass, >s much greater than that produced by the crown ; secondly, that the angle
si
,"

eV
R C V, over which the coloured rays are dispersed by the flint prism, is also much greater than the angle rev, Fjt'"!/
over which they are dispersed by the crown ; and, thirdly, that the angles R C V, rev, or the angles of disper-

sion, are not to each other as Newton supposed them to be, in the same ratio with the angles of deviation

T C R, tcr, but in a much higher ratio ; the dispersion of the flint prism being much more than in proportion
to.the deviation produced by it. And if, instead of taking the angles of the prism equal, the refracting angle of the

crown prism be so increased as to make the deviation of the red ray equal to that produced by the flint prism,
the deviation of the violet will fall considerably short of such equality. In consequence of this, if the two

prisms be placed close together, with their edges turned opposite ways, as in fig. 98, so
^as

to oppose each other's Fi?- 98>

action, the red ray, being equally refracted in opposite directions, will suffer no deviation
; but the violet ray,

being more refracted by the Hint than by the crown prism, will, on the whole, be bent towards the thicker part
of the flint prism, and thus an uncorrected colour will subsist, though the refraction (for one ray, at least) is

corrected. Vice versd, if the dispersion be corrected, that is, if the refracting angle of the crown prism, acting
in opposition to the flint, be so further increased as to make the difference of the deviations of the red and violet

rays produced by it equal to the difference of their deviations produced by the flint, the deviation produced by
it will now be greater than that produced by the flint ; and the total deviation, produced by both prisms acting

together, will now be in favour of the crown.

By such a combination of two prisms of different media a ray of white light may therefore be turned aside 427.

considerably from its course, without being separated into its elementary coloured rays. It is manifest, that (sup- R?'ract">n

posing the angles of the prisms small, and that both are placed in their positions of minimum deviation) the
Wl'

?
ut s<

deviations to produce this effect must be in the inverse ratio of the dispersive powers of the two media ; for into colours,

supposing p, fi
to be the refractive indices of the prisms for extreme red rays, and/i + S

ft, p! + 8/' for extreme

violet, A and A' their refracting angles, and D and D' their deviations, we have, generally, in the position of
minimum deviation

A A+D A A+D
ft . sin - = sin , whence o /* . sin = \ 6 D . cos

A' A'+ D' A' A' + D'
ft' . sin - = sin o ft . sin = o D . cos -

whence, since the prisms oppose each other,

' He counteracted the refraction of a glass, by a water prism. There ought to have been a residuum of uncorrected colour; but
unluckily, he had mixed sugar of lead with the water to increase its refraction, and the high dispersive power of the salts of lead (of which'
of course, he could not have the least suspicion) thus robbed him of one of the greatest discoveries in physical optics.

3 H2
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A .A'
c

ft . sin c p.. sin -

4(D-DO= -

cos

Putting this equal to zero, we have
&

ft sin 4 A cos J (A + D)_
f>'

'

sin \ A'
=

cosi (\
r+W)'

and, eliminating sin A and sin ~ A' from this, by means of the two original equations from which we set out.

we get
S/t / cos i (A + D) sin J (A' + PQ tan 4 (A

7 + DO
T/

:

~/T
: :

cos 4 (A' + DO
: :

sin i (A + D) tan i (A + D)

Now if we call p, p' the dispersive powers of the media, or the proportional parts of the whole refractions of the

extreme red ray, to which the dispersion is equal, we shall have

so that

3/i Bfi' p *_ ,,
P =- i P i i

and ~^T
~

~T~'~
x

ju 1 ft
'

1 p Iff

' - 1 tan ^ (A' -f DQ _ ft

1 - I sin & A' /I - ft* . (sin 4 A)*

tani(A-fD) u 1 sin i A
' V 1 - X s

. (sin 4 AO 4
'

p'
-

^
'

^-1 tan(A+D)
Such is the strict formula, which, when A and A' are verv small, becomes

-- =
; <. -ce (,-l)A=D, and 0,'-1

428. The formula just obtained, furnishes us with an experimental method of determining the ratio of the dispersive

Dispersive powers of two media. For if we can by any means succeed in forming them into two prisms of such refracting
>werscom- angies> that, when placed in their respective positions of minimum deviation, a well defined bright object, viewed

experiment through both, shall appear well defined and free from colour at its edges ; then, by measuring their angles, and

knowing also from other experiments their refractive indices, the equation (a) gives us immediately the ratio in

question.
429. When we view through a prism any well defined object, either much darker or much lighter than the ground

Coloured against which it is seen projected, as, for instance, a window bar seen against the sky, its edges appear fringed
fringes bor- wj t^ co iours and ill defined. The reason of this may be explained as follows:

i'ec

r

ts

n

feen~ Let A B, fig. 99, be the section of a horizontal bar seen through the prism P held with its refracting edge

through downwards, and first lefc us consider what will be the appearance of the upper edge B of the object. Since we

prisms ex- see by light, and not by darkness, the thing really seen is not the dark object, but the bright ground on which it

plained. stands, or the bright spaces B C, A D above and below. Now the bright space B C above the object being
g illuminated with white light, will, after refraction at the prism, form a succession of coloured images b c, b' c',

b" (/', &c., superposed on and overlapping each other. They are represented in the figure as at different dis-

tances from P, but this is only to keep '.hem distinct. In reality, they must be supposed to lie upon and interfere

with each other. The least refracted 6 c of these is red, and the most refracted b" c'" violet, and any intermediate

one (as b' </) of some intermediate colour, as yellow for instance. Beyond b" no image exists, so that the whole

space below b" will appear dark to an eye situated behind the prism. On the other hand, above 6 the images of

every colour in the spectrum coexist, the bright space b c being supposed to extend indefinitely above B. There-

fore the space above 6 in the refracted image will appear perfectly white. Between 6 and 6" there will be seen,

first, a general diminution of light, as we proceed from 6 towards h", because the number of superposed luminous

images continually decreases
; secondly, an excess in all this part, of the more refrangible rays in the spectrum

above what is necessary to form white light, for beyond b no red image exists, beyond 6' no yellow, and so on ;

the last which projects beyond all, at b", being a pure unmixed violet. Thus the light will not only decrease in

intensity, but by the successive subtraction of more and more of the less refrangible end of the spectrum will

acquire a bluer and bluer tint, deepening to a pure violet, so that the upper edge of the dark object will appear

fringed with a blue border, becoming paler and paler till it dies away into whiteness. The reverse will happen
at the lower edge A. The bright space A D forms, in like manner, a succession of coloured images, a d, a' d',

a'' d', of which the least deviated a d is red. the most a" d" violet, and the intermediate ones of the intermediate

colours. Therefore the point a, which contains only the extreme red, will appear of a sombre red ; a', which

contains all the rays from red to yellow (suppose), of a lively orange red ;
and in proportion as the other images

belonging to the more refrangible end of the spectrum come in, this tendency to an excess of red will be neutralized,

and the portion beyond a'', containing all the colours in their natural proportions, will be purely white. Hence,
the lower edge of the dark object will appear bordered with a red fringe, whose tint fades away into whiteness,

in the same way as the blue fringe which borders the upper edge. These fringes, of course, destroy the dis-

tinctness of the outlines of objects, and render vision through a prism confused. The confusion ceases, and

objects resume their natural well defined outlines, if illuminated with homogeneous light, or if viewed through
coloured glasses which transmit only homogeneous rays.
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Light. The eye can judge pretty well, by practice, of the destruction of colour, and indistinctness in the edges of I""* K-

^-' objects, when prisms are made to act in opposition to one another, as above described ; but (owing
1 to causes V>^-V'~^

presently to be considered) the compensation is never perfect, and there always remains a small fringe of uncor- 430.

rected purple on one side, and green on the other, when the eye is best satisfied ; so that observations of dispersive

powers by this method are liable to a certain extent of error, and, indeed, precision in this department of

optical science is very difficult to obtain.

To determine the dispersive power of a medium, having formed it into a prism, and measured by the goniometer, 431 .

or otherwise, its refracting angle, and ascertained its refractive index, the next step is to find the refracting To deter-

angle of a prism of some standard medium, which shall exactly compensate its dispersion, so as to produce
'ne

'*)*

a refraction as nearly as possible Iree from colour. But as it is impossible to have a series of standard
d 'sPers ' n

< u' t- i- . -i u i f ofamedium
pnsms with every refracting angle which may be requisite, it becomes necessary to devise some means of

varying the refracting angle of one and the same prism by insensible gradations. Many contrivances may
be had recourse to for this. Thus, first, we may use a prism composed of two plates of parallel glass. Prisms with

united by a hinge, or otherwise, and enclosing between them a fluid, which may be prevented from escaping
variable re-

either by capillary attraction, if in very small quantity, or by close-fitting metallic cheeks, forming a wedge-
fracling

shaped vessel, if in larger. This contrivance, however, is liable to a thousand inconveniencies in practice, described

Secondly, we may use two prisms of the same kind of glass, one of which has one of its faces ground into

a convex, and the other into a concave cylinder, of equal curvatures, having their axes parallel to the

refracting edges. These being applied to each other, and one of them being made to revolve round the Another

common axes of the two cylindric surfaces upon the other, the plane faces will evidently be inclined to each construct ' n

other in every possible angle within the limits of the motion, (see fig. 100, a, 6, exhibiting two varieties l? '

of this construction.) The idea, due, we believe, to Boscovich, is ingenious, but the execution difficult, and
liable to great inaccuracies.

The following method succeeds perfectly well, and we have found it very convenient in practice. Take a 432.

prism of good flint glass, whose section is a right angled triangle, ABC, having the angle A about 30 Third con-

or 35, C being the right angle, and whose length is twice the breadth of the side A C ; and, having ground y /^"'
and polished the side A C, and the hypothenuse of the prism to true planes, cut it in half, so as to form 102.

two equal prisms with one face in each a square, and whose refracting angles (A, A') cannot, of course,
be otherwise than exactly equal. Cement the square faces together very carefully with mastic, so that the

edges A, A', shall be on opposite sides of the square surface, which is common to both ; and then, making
the whole solid to revolve round an axis perpendicular to the common surface, and passing through its centre,

grind off all the angles of the squares in the lathe, and the whole will be formed into a cylindrical solid,

with oblique, parallel, elliptical, plane ends, as in fig. 101. Then separate the prisms, (by warming the

cement,) and set each of them in a separate brass mounting, as in fig. 102, so as to have their circular faces

in contact, and capable of revolving freely upon each other about their common centre. The lower one is fixed

in the centre of the divided circle D E, while the mounting of the upper or moveable one carries an arm with an

adjustable vernier reading off to tenths of degrees, or, if necessary, to minutes. The whole apparatus is set in a

swing frame between plates, which grasp the divided plate by a groove in its edge, allowing a motion in its own

plane, and a capability of adjusting it to any required position, so as to admit of the compound prism deviating
an incident ray in every possible plane, and under every possible situation, with respect to the faces of the

prisms. It is evident, that in the position here represented, where the prisms oppose each other, (und at which
the vernier must be set to read off zero,) the refracting angle is rigorously nothing ; and when turned round ISO

3

since the prisms then conspire, their combined angle must be double that f each. In intermediate situations,

the angle between the planes of their exterior faces must, of course, pass through every intermediate state, and

(by spherical trigonometry) it is readily shown, that ifO be the reading off of the vernier, or the angle of rotation

of the prisms on each other from the true zero, the angle of the compound prism will be had by the equation

sin - = sin . sin (A) (b)

where (A) is the refracting angle of each of the simple prisms, and A the angle of the compound one.

To use this instrument, place the prism A', whose dispersive power is to be compared with the medium of 433.

which the standard prism (A) is formed, with its edge downwards and horizontal, before a window, and, selecting How used,

one of the horizontal bars properly situated, fix it so that the refraction of this bar shall be a minimum, or till,

on slightly inclining the prism backwards and forwards, the image of the bar appears stationary. Then take

the standard compound p.-ism, adjust it to zero, and set it vertically on its frame behind the first prism. Move its

index a few degrees from zero, and turn the divided circle in its own plane, till the refraction so produced by the

second prism is contrary to that produced by the first. The colour will be found less than before , continue

this till the colour is nearly compensated, then, by means of the swing motion, and of the motion round the

vertical axis, adjust the apparatus so that two of the window bars, a horizontal and a vertical one, seen through
both prisms, shall appear to make a right angle with each other, (an adjustment, at first, rather puzzling, but

which a little practice renders very easy.) Then complete the compensation of the colour ; verify the position of

the standard prism, (by the same test,) and finally read off the vernier, and the required angle A of the com-

pensating prism is easily calculated by the equation (6). This calculation may be saved by tabulating the values

of A corresponding to those of 0, (the value of (A) being supposed known by previous exact measures,) or, by
graduating the divided circle at once, not into equal parts ol 6, but according to such computed values of A, so

as to read off at once the value of the angle required.



414 L I G H T.

Light. A simpler, perhaps, on the whole, a better, method of comparing the dispersions of two prisms, is one Part II.

^ -Y~ P' proposed and applied extensively by Dr. Brewster, in his ingenious Treatise On New Philosophical Instruments, ^ -v
43 1. a work abounding with curious contrivances and happy adaptations. It consists in varying, not the refracting

Another
angle of the standard prism, but the direction in which its dispersion is performed. It is manifest, that if we

pro osedb
can Pro^uce fr m a u'ne f white light, by means of a standard prism any how disposed, a coloured fringe, in

Dr Brew/ which the colours occupy the same angular breadth as in that produced by a prism of unknown dispersion ;

ster then, the latter, being made to refract this fringe in. a direction perpendicular to its breadth, and opposite to the

order of its colours, must destroy all colour and produce a compensated refraction ; and therefore if the position
of the standard prism which produces such a fringe be known, the dispersion of the other may be calculated.

To accomplish this, let A B be a horizontal luminous line of considerable length, and let it be refracted downwards,
Fig. 103. but obliquely in the direction A a, B 6, by a standard prism whose dispersion is greater than that of the prism to be

measured. Then it will form an oblique spectrum abb' a', ab being the red, and a' 6' the violet; and the angular
breadth of this coloured fringe will beam = a a' x sin inclination of the plane of refraction to the horizon. Now,
let the prism whose dispersion is to be measured be made to refract this coloured band vertically upwards ; then, if

the plane of the first refraction be so inclined to the horizon that the angle subtended by am at the eye shall be just

equal to the angle of dispersion of the other prism, all the colours of the rectangular portion b caf d will be made to

coalesce in the horizontal line A' B', which will appear therefore free from colour, except at its extremities A' B',
where the coloured triangles aca', bdb'vritt produce a red termination A' A" and a blue one B'B"at the

respective ends of the line to which they correspond. Hence, if, the second prism remaining fixed, with its edge
downwards and parallel to the horizon, the other or standard prism be turned gradually round in the plane perpen-
dicular to its principal section, a position must necessarily be found where the twice refracted line A' B' will appear
free from colour both above and below. In this position let it be arrested, and the angle of inclination of its edge
to the horizon read off, its complement is the angle a a' in, which we will call 0. Let us now suppose each

prism adjusted to its position of minimum deviation, and (as it is a matter of indifference which is placed first)

let the prism to be examined or the fixed prism be placed next the object.* Then, D' and D being the total

deviations produced by the fixed and revolving prisms on the extreme red ray, we must have

A' A' + D' A A + D
& D 6 D . sin = o

,-
or K

ft' . sin
j

. sec--- = $
fn . sm . sec---

. sin 0,
8 8

whence we obtain

p' & / /.-I f! p-l tanJ(A + D)

p
' '

If, /.'-I
'

,. ~7^\ tani(A'+D')
'

,

where the angles (A -f- D) and (A' + D') are given by the equations

sin \ (A + D) = p . sin x J A ; sin (A' + D') = /.'
. sin \ A' ;

from which formula, being known, and also the angles anu efractive indices of the two prisms, the ratio ot

their dispersions is found.

435. By tnese, or other similar methods, may the dispersions of any media be compared with those of any other

Absolute taken as a standard. If the media be solid, they must be formed into prisms ; if fluid, they must be enclosed in

dispersive hollow prisms of truly parallel plates of glass, whose angles must be accurately determined, (and one of which
powers,how w jj] serve for anv number of fluids.) But to ascertain directly the dispersion of that standard prism, we must

IstBvmea- Pursue a different course. The first method which obviously presents itself, is to measure the actual length of

suring the the solar spectrum cast by a prism of given refracting angle ; but the light of the spectrum dies away so inde

spectrum on finitely at both ends, and its visible extent varies so enormously with the brightness of the sun, and the more
a screen. or ]ess perfect exclusion of extraneous light, that nothing certain can be concluded from such measures. Yet,

if the brighter rays of the spectrum be destroyed, and the eye defended from all offensive light by a glass which

permits only the extreme red and violet rays to pass, (see Index, Absorption,) some degree of accuracy may be

obtained by this means. A method founded on this principle has been described by the writer of these pages
Fig. 104. in the Transactions of the Royal Society of Edinburgh, vol. ix. as follows : Let A and B be two vertical rect-

tnd.Another
angular slits in a screen placed before an open window, the one being half the length of the other, and at a

known distance from each other. The eye being guarded as above described, let the slits be refracted by the

prism (in its minimum position) from the longer towards the shorter. Then will a red and violet image of

each a, b, and a', b' be seen. Now let the prism be removed from the slits, (or vice versd,) still preserving its

position of minimum deviation, till the violet image of the longer slit exactly falls upon and covers the red

image of the shorter, as in the position a: b of the figure. Then it is obvious, that the distance between the

slits, divided by their distance from the prism, is the sine of the total angle of dispersion, or is equal to 2 D,
and this being known

3D cos & (A + D)
2 sin i A

'

& u.

and therefore , or p, the dispersive power, is obtained.

* Dr. Brewster has chosen a somewhat different position, (Trratite, Sfc. p. 296,) with a view to simplify the formula; j but it doe* n<*

ippear to us that any advantage is gained in that respect by his arrangement.
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Light. But all these methods are only rude approximations, as the great discrepancies of the results hitherto obtained

wv-' by them abundantly prove ; thus, the dispersions of various specimens of flint glass, obtained by the method last

described, come out no less than one-sixth larger than those previously given by Dr. Brewster. The only method

which can really be relied on is that practised by Fraunhofer, (where the media can be procured in a state of sum-

cient purity and quantity for its application ;) and consists in determining, with astronomical precision, by direct

measures, the values of it. for the several points of definite refrangibility in the spectrum, marked, either by the

fixed lines, or by the phenomena of coloured flames or absorbent media. (See Index, Flames Absorption.)

By taking advantage of the properties of the latter, a red ray, of a refrangibility strictly definite, may be

insulated with great facility ;
and as it lies so near the extremity of the spectrum as not to be perceptible till all

the brighter rays are extinguished, it is invaluable as a fixed term in optical researches, arid will always be un-

derstood by us in future, when speaking of the commencement of the spectrum, or the extreme red, even though
a red ray still less refrangible should be capable of being discerned by careful management, and in favourable

circumstances. In like manner, by the simple artifice of putting a little salt into a flame, a yellow ray of a

character perfectly definite is obtained, which, it is very remarkable, occupies precisely the place in the scale of

refrangibility where in the solar spectrum the dark line D occurs, (Art. 4LS, 419.) These, and the fixed lines

there mentioned, leave us at no loss for rays identifiable at all times and in all circumstances, (with a good appa-

ratus,) and enable us to place the doctrine of refractive and dispersive powers on the footing of the most accu-

rate branches of science.

The following table, extracted from Fraunhofer's Essay on the Determination of Refractive and Dispersive

Powers, 8fc. contains the absolute values of the index of refraction fi for the several rays whose places in the

spectrum correspond to the seven lines B, C, D, E, F, G, H, assumed by him as standards (see Art. 419, &c.)

for several different specimens of glass of his own manufacture, and for certain liquids. These values, for dis-

tinction's sake, we may designate by the signs n (B), /t (C), p (D), &c.

Part II.

^"v-
436.

Fraunhofer

Use of the

437

Table of the refractive indices of various glasses and liquids for seven standard rays.
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Light and its other physical properties (so far as they depend on the refrangibility of the ray) determined. Thus Part II.

v -v ' 1.333577 being known to be the retractive index for a ray in water, that ray can be no other than the particular
* v

ray D, whose colour is pale orange-yellow, and which is totally deficient in solar light, and peculiarly abundant

in the light of certain flames. Now let x be the refractive index of any ray whatever for water, or its place in

the water scale. Then it is evident, that its refractive index for any other medium must of necessity be a function

of x, because the value of x determines this and all the other properties of the ray. Hence we must have

between /i
and x some equation which may be generally represented by /*

= F (x) ; F (x) denoting a

function of x.

*39. To determine the form of this function, we must consider, that if A be the very small angle of a prism,

Function of A A + D
refrangibi- and D the deviation produced by it at the minimum, we have p . = --

, or D = (/ 1) A. Hence,
lity.

" *

supposing A the redacting angle constant, the deviation is proportional to fi 1. Now, since in all media, as

well as in water, the deviations observe, at least, the same order, being always least for the red and greatest for

the violet, it follows, that in all media
fi

1 increases as x increases ; so that, supposing x to be the index of

refraction in the water scale for the first visible red ray, or the commencing value of x, and p the index for the

same ray in the other medium, (u, 1) (f* 1), or /t ft
must increase with x x a ;

and since they

vanish together, we may represent the one in a series with indeterminate coefficients, and powers of the other,

thus

/*
- PO = A Cr

- xa) 4- B (x - xj* +C(x-i or + &c. ;

or, which comes to the same thing, a b, c, &c., representing other indeterminate coefficients, (x 1 being

constant,)

4 . Y+ &c . f)

440. The simplest hypothesis we can form respecting the values of a, b, &c. is that which makes a = 1, and 6,

Hypothesis

ion' and all the other coefficients vanish. This gives ^> = .

in all media.
*

We have before used /i to denote what is here signified by p n , viz. the difference between the refractive

6
ft

indices of any ray in the spectrum, and that at its commencement; and we have denoted by the same

quantity which is here expressed by ^_. This then is the expression, in our present notation, of the

f'o
1

Not the law dispersive power of the medium; and the equation now under consideration therefore indicates, lhat, on the

of nature, hypothesis made, the dispersive power of the medium must necessarily be the same with that of water; and

of course (supposing this hypothesis to be founded in the nature of light) all media must have the same dis-

persive power. This, as we have already seen, is not the case.

Nor that of The next simplest hypothesis is that which admits a as an arbitrary constant determined by the nature of the

proportional medium, but still makes b, c, &c. = o. This reduces the equation to

dispersions.

'o

consequently (if fi' and j;
1 be any other corresponding values of ft

and x) we mu: t have also

u' u, x' x /' !* x' x p' P fo
~ *

- a. = a . 2, and therefore
r
_ = a . ;

whence we have ^ _ ^
= a .

^ _ }

.

Hence, if this hypothesis be correct, and ^ x and /, *' be any two pairs of corresponding refractive indices

for rays however situated, the fraction -H must be invariable. The foregoing table, however, shows very
X ~~ X

distinctly that this is far from being the case. Thus, if we take the flint glass, No. 13, the comparison of the

two rays B and C gives for the value of the fraction in question 2.562 ;
and if we compare in like manner the

rays C and D, D and E, E and F, F and G, G and H respectively, we obtain the values 2.871, 3 0,3, 3.1H

3.460, 3 726 ; the great deviation of which from equality, and their regular progression,
leaves no doul

incompatibility of the hypothesis in question, as a general law, with nature. If we institute the same compare

for the other media in the table, we shall find the greatest diversity prevail ; and if, instead of water we a

any other as a standard, the 8ame incompatibility will be found. Thus if the flint Bh-.No.18, be compai

with oil of turpentine, we find for the values of the series of fractions in question, 1.868, 1.844, 1.

1.861, 1.899, which first diminish to a minimum and then increase again, &c.

441 It follows from this, that the proportion which the several coloured spaces (or the interval

&c.) bear to each other in spectra formed by different media, is not the same in all Ihus taking the

ray E for the middle colour, ano* calling all that part of the spectrum which lies on the red side
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Light, and all on the other side the blue portions, the ratio of the spaces occupied by the red and blue in any spectrum

will be represented by the fraction -^
fj. (E) ^ (B)

foregoing table are set down in the following list :

Now the values of this in the several media of the

Flint, No. 23
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Light.

444.

445.
Achromatic

refraction.

446.

Dispersive

powers of

higher
orders.

Tertiary

spectra.

447.

Computa-
tion of their

coefficients.

It is evident from this table, that (generally speaking) the more refractive a medium is, the greater is the

extent of the blue portion of its spectrum compared with the red.

If two prisms of the proper refracting angles, composed of media not very remote from each other in

this list, be made to oppose each other, the secondary spectrum will be small, and the refraction almost perfectly
colourless. Such a combination is said to be achromatic, (a-\(iLifi.a.)

The existence of the secondary spectrum, while it renders the attainment of perfect achromaticity impossible,

by the use of two media only, shows, also, that in a theoretical point of view we are not entitled to neglect the
coefficients 6, c, &c. of the equation (d), Art. 439. The law of nature probably requires the series to be continued
to infinity ; and if, by way of uniting three rays, we employ prisms of three media, tertiary spectra, and after

them still others in succession, would doubtless be found to arise. These, however, will be small in comparison
of each other.

The table (Art. 437) gives us the means of computing the coefficients on which they depend for the

particular media there stated. If we put = P, and = p, and suppose P, P', P//
,

P, p', p'
1

, &c. to be the values of P and p corresponding to the several values of
/* and x set down in the table,

we shall have, for determining a, b, c, &c. in any one of those media, the equations

-f cp &c. F' == ap cp
" 3 &c.

and as many such equations must be used as there are coefficients to determine. Confining ourselves at

present to two, we find P = a p + bp 3
; P' = a p' + b p'*, whence

PP (P'
- b= - Pp'- P'p

p p' (p' p)

and, since it is desirable to select rays as far removed from each other in the spectrum as possible, we shall

take
/i and X from the column n (B) ; and determine P and p by the values in the column / (E), and I", p'

by those under
ft (H). The results will be as follows :

Refracting media.
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Light, and, consequently, by reason of the analogy of the two systems of equations pointed out above,

.'= - Si" l
"

Kft
'

(/)

But, since a1
' = !' + /, we have S p'= S a", so that we finally get

cos p . cos p' sin I S
fi .

cos a'" . cos a" sin 1"
'

c /'

The property expressed by this equation may be thus stated. Conceive the ray to pass both ways outwards

from a point in its course between the two prisms; then, in order that the combination maybe achromatic,

the products of the cosijies of its incidences on the surfaces of each prism must be to each other in the ratio com-

pounded of that of the sines of their respective refracting angles, and the differences of their refractive indices

for red and violet rays ; besides which, they must refract in opposition to each other, or I and I" their refracting

angles must have opposite signs.
The combination of this equation with the system of equations above stated, expressing the conditions of 449.

refraction by the prism, and their relative position with regard to each other (which is included in the equation Progress of

a" = I' + p') suffice, algebraically speaking, to resolve every problem which can occur, of this kind ; but the
JJ'

SPe "

e
final equations are for the most part too involved to allow of direct solution. Nevertheless, the results we

pnsm traced

have arrived at will furnish occasion for remarks of moment ; and, first, since pf is the angle of refraction from

the second surface of the first prism, 3
p'

is the angular breadth of the spectrum produced by it
;

this is, there-

fore, proportional, cizteris paribus, to the product of the secants of the angles of refraction at its two surfaces.

Let us trace the progress of the variation of this, as the incident ray changes its inclination to the first

surface, beginning with the case when it just grazes the surface from the back towards the edge. In this case

a = 90, sin p = , consequently p, and therefore I + p or a!, and therefore / are all finite, and at their

maximum. Hence cos
p

. cos
p'

is finite, and at its minimum ; and therefore 1
5',

or the breadth of the spectrum,
is also finite, but a maximum. As the incident ray becomes more inclined to the surface

p,
and therefore a1 and

j' diminish, and the denominator of 1
p' increases, so that the breadth of the spectrum diminishes, and

reaches a minimum when cos p . cos pf attains its maximum ; that is, when d
p

. tan /> + dp' . tan p' = 0. Now Position of

this equation, substituting and reducing gives, for determining the value of p, and therefore of a, or the inci- least disper-

dence when the spectrum is a minimum, s
'?
n

<j

eter-

mmed.

p.* . sin (I -f- p) . cos (I + 2 p) + sin p = 0. (A)

Hence we see that the position which gives a minimum of breadth to the spectrum is very different from that

which gives a minimum of deviation, being given by the above equation, which is easily resolved by a table of

logarithms, and which shows at once that p must be greater than 45 .

m

After attaining the position so determined, the breadth of the spectrum again increases, and continues to do

so till the rays can be no longer transmitted through the prism. At this limit the emergent ray just grazes the

posterior face of the prism from its thinner towards its thicker part g'
= 90, cos p' = 0. At this limit, therefore,

the dispersion becomes infinite. All these stages are easily traced by turning a prism round its edge between

the eye and a candle ; or, better, between the eye and the narrow slit between two nearly closed window-shutters.

Hence, as the incident ray varies from the position S E (fig. 105) to S' E, and therefore the refracted from *

F G to F' G', the breadth of the spectrum commences at a maximum, but finite value, diminishes to a minimum
O f'

s

g t um
and then increases to infinity. The distribution of the colours in the spectrum, or the breadths of the several at extreme

coloured spaces in any state of the data, will moreover differ according to the values of p, p
1 and sin I; for the incidences,

equation (e), by assigning to S 11 the values which correspond in succession to the intervals between red and Fig. 105.

orange, orange and yellow, yellow and green, &c. will give the corresponding values of 2
p',

or the apparent
breadths of these spaces. Now the denominator cos

p . cos
p'

is an implicit function of
ft,

and therefore varies

when the initial ray is taken in different parts of the spectrum. The variation is trifling when the angles p, p'

are considerable ; but near the limit, when the ray can barely be transmitted, it becomes very great, the spectrum
is violently distorted, and the violet extremity greatly lengthened in proportion to the red. The effect is the

same as if the nature of the medium changed and descended lower in the order of substances in the table

Art. 443.

From what has just been said, we see the possibility of achromatising any prism, however large its refracting 451.

angle, by any other of the same medium, however small may be its angle ; for since, by properly presenting a Achromatic

prism to the incident ray, its dispersion may be increased to infinity ; if made to refract in opposition to another combina-

whose dispersion has any magnitude, however great, it may be made to counteract, or even overcome it. Thus medium'
in fig. 106 the dispersion of the second prism a, of small refracting angle, being increased by the effect of its

Fig. 106.

inclined position, is rendered equal and opposite to that of the prism A, whose refracting angle is large.

When the prisms differ greatly in their angles, however, the second must be very much inclined, so as to 453.

bring it near to the limit of transmission. In this case, its law of dispersion, as just shown, will be greatly Subordinate

disturbed, and rendered totally different from what obtains in the other prisms ; so that perfect achromaticity spectra.

3i2
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Light. cannot be produced ; but when the extreme red and violet rays are united, the green will be too little refracted by Part H.

^ "-v the second prism, and a purple and green spectrum will arise, as in the case of prisms of different media. To N -v^
this spectrum Dr. Brewster (who was the first to place it in evidence) has given the name of a tertiary spectrum ;

but it appears to us, that this term had better be reserved for the spectra mentioned in Art. 446, and those now
in question may be called subordinate spectra.

If a small rectangular object be viewed through such a combination as above described, in which the prism A
is placed in its position of minimum deviation, and achromatised by a second a, whose angle is less than that

of A, but not so small as to introduce this cause of colour, it will appear distorted in figure ; for the sides

parallel to the edges of the prisms will undergo no change in their apparent length, while the breadth of the

rectangle will appear magnified. For the first prism, by reason of its position, does not alter the angular
dimensions of objects seen through it ; but the second changes their angular breadth in the ratio of d p

1"
to

d a", that is (by differentiation) in the ratio of-'--- to unity, a ratio which increases rapidly as the
COS

f
. COS p'

inclination of the prism increases, and p' approaches a right angle.
453. M. Amici has taken advantage of these properties to construct a species of achromatic telescope, which, at

Amici's
first sight, appears very paradoxical, being composed merely of four prisms of the same kind of glass, with

plane surfaces. To understand its construction, conceive a small square object op placed with the side o parallel

to the refracting edges of a pair of prisms so adjusted, and perpendicular to their principal sections, i. e. to the

plane of the paper. Then, after refraction through both, it will be seen by an eye at E, as a real object o' p',

having its length o unaltered, but magnified in breadth. Now, if we add a second pair of prisms, similar to the

first, and similarly disposed with respect to each other, so as to form a second achromatic combination, but

having the plane of their principal sections at right angles to the former, producing a refraction perpendicular to

the plane of the paper, or parallel to the length of the distorted square, this will be in like manner seen as a real

and colourless object, but again distorted, its side o1

p' remaining unaltered, but o' being magnified. Thus, by
the effect of the first distortion, the breadth of the square is magnified, and, by that of the second, its length,

and in the same ratio ; and therefore the final result will be an image undistorted, achromatic, and magnified.
The writer of these pages had the pleasure of witnessing the very good performance of one of these singular

telescopes, magnifying about four times in the hands of its inventor, at Modena, in 1826. It is evident, that, by

superposing several such telescopes on each other, the magnifying power may be increased in geometrical pro-

gression. It is equally clear, that, by using prisms of two different media to form the several binary combina-

tions, the tubordinate spectra may be made to counteract the secondary spectra, arising from the difference in

the scales of dispersion in the two media ; and thus an achromaticity, almost mathematically perfect, might be

obtained. It is worthy of consideration, whether, for the purpose of viewing very bright objects, as the sun,

for instance, this species of telescope might not prove of considerable service. It would have the advantage of

being its own darkening glass, of not bringing the rays to a focus, and therefore of requiring no extraordinary
care in the figuring of the surfaces ; and, in short, of being exempt from all those inconveniencies which oppose
the perfection of telescopes of the usual constructions, as applied to this particular object.

. t j Proposition. To find the conditions of achromaticity when several prisms of different media refract a ray of

Conditions white light, supposing all their refracting angles very small, and the ray to pass nearly at right angles to the

of achrmna- principal section of each.

ticity for The refracting angles being A, A', A", &c., and the refractive indices
ft, /', &c., the several partial deviations

eyeral wij| be D = 0* 1) A ; D' =(/' 1) A', &c.; and their sum, or the total deviation, will be (/* 1) A +
man 'angles (/' 1) A' + (/' 1) A" + &c. In order that the emergent ray may be colourless, this must be the same

for rays of all colours; and its variation, when /*, /, &c. are made to vary, must vanish, or

+ &c. =0.

Now, by equation (rf) of Art. 439, we have 3 p, (or, in the notation of that article, ^ / )

Therefore the above equation gives, when arranged according to powers of 3 x,

=
{
(.

A 0*
- 1) a + A' (jl

-
1) a' + A" (jJ'

-
1) a" + &c.

+
I
A (ft,

-
1) 6 + A' (X -

1) 6' + A" (/ -
1) 6" + &c. :

+ &c.

taking a', V, Sue. to represent the dispersive powers of the various orders for the second prism, a", 6", &c. for

the third, and so on. Hence, in order that this may vanish for all the rays in the spectrum, we must have

(putting, for brevity, /* for p.a, /i!
for / , &c.)
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light. 0-1). A+ (/-I) AV+ (X'- 1) A"a"+ &c. = <n P'rtll.+ &c. = "I

G*
-

1) . A 6 + (/ - 1) A' 6' + (/'
-

1) A" 6* + &c. = I

G*
-

1) . Ac + 0*'
-

1) A' c
1 + C""

- n A" c" + &c. =
f

&C. &C. &C. &C.

:ia>
w

and so on. Generally speaking, the number of these equations being infinite, no finite number of prisms can

satisfy them all ; but if we attempt only to unite as many rays in the spectrum as there are prisms, which is the

greatest approach to achromaticity we can attain, we have as many equations as unknown quantities, minus one,

and the ratios of the angles to each other become known. Thus, to unite two rays two media suffice, and we
can only take into consideration the first order of dispersions, which give

0.- 1) An +(^-1) A' of =0; --= -y^4
--

O')

To unite three rays we have

C -
1) A a + (/ - 1) A' ' + 0*"

-
1) A" a" =

GU
-

1) A6 + O' - 1) A' 6' + GI"
-

1) A" 6" =
whence by elimination

JV p- 1 abf'-ba' A" -l a b' - b a!

~A~
:

X-l
'

a'b"-ba" A /"-!' a"6'-6'V ;

and so on for any number.

In the case of two media, if the quantities 6, c, &c. be not known, the dispersive powers of the first order, 453.

a, a', should be determined, not by comparison of the extreme red and violet rays, which are too little luminous Case of two

to render their strict union a matter of importance ; we should rather endeavour to unite those rays which are me"'a -

at once powerfully illuminating, and differing much in colour, such as the rays D and F. The exact union of Best rays

these will insure the approximate union of all the rest better, on the whole, than if we aimed at uniting the to unite.

extremes of the spectrum, and a far greater concentration of light will be produced. This should be carefully

borne in mind in all experiments on the dispersions of glass to be used in the construction of telescopes.

If we would produce the greatest possible achromaticity by three prisms, the rays to be selected for deter- 454.

mining the values of a, b, a', b 1

, should be C, E, and G ; or, which would, perhaps, be still better, C, P, and a Best rays to

ray half way between D and E ;
but the want of a sufficiently well marked line in that part of the spectrum

u "

throws some slight difficulty in the way of this latter combination, when solar light is used, and would oblige us ^dia.
*

to have recourse to some other method of measurement, of which a variety might be suggested.
In the case of three media, if the numerators and denominators of the expressions (It) vanish, or nearly so, the 455.

solutions become illusory, or at least inapplicable in practice. This happens whenever either of the fractions Cases in

which the

a a a' b b V
,

formula

~T> ~~ii> ir becomes equal to either of the corresponding fractions -T-, -TTT, or -. Hence, to obtain become in-
a a a b' b'

applicable

practicable combinations, it is necessary to employ media which differ as much as possible in their scales of dis-

persive powers, i. e. in which the coloured spaces differ as far as possible from proportionality ; such, for

instance, as flint glass, crown glass, and muriatic acid ; or, still better, oil of cassia, crown glass, and sulphuric
acid, &c.

II. Of the Achromatic Telescope.

In the refracting telescopes described in Art. 380, &c. the different refrangibility of the differently coloured rays 456.

presents an obstacle to the extension of their power beyond very moderate limits. The focus of a lens being
Chromatic

shorter as the refractive index is greater, it follows, that one and the same lens refracts violet rays to a focus
a e"'ati n

nearer to its surface than red. This is easily seen by exposing a lens to the sun's rays, and receiving the con-
e"

verging cone of rays on a paper placed successively at different distances behind it. At any distance nearer to

the lens than its focus for mean rays, the circle on the paper will have a red border, but beyond it a blue one ;

for the cone of red rays whose base is the lens, envelopes that of violet within the focus, its vertex lying beyond
the other, but is enveloped by it without, for the converse reason. Hence, if the paper be held in the focus for

mean rays, or between the vertices of the red and violet cones, these will then form a distinct image, being col-

lected in a point : but the extreme, and all the other intermediate rays, will be diffused over circles of a sensible

magnitude, and form coloured borders, rendering the image indistinct and hazy. This deviation of the several

coloured rays from one focus is called the " chromatic aberration."

The diameter of the least circle within which all the coloured rays are concentrated by a lens supposed free 457.
from spherical aberration is easily found. Thus, in fig. 107, if v be the focus for violet, and r for red rays, nmo Least circle

ofchromaticmv mr aberration.will be the diameter of this circle. Now, by similar triangles, n o r: A B . = , and also n o =* A B . ;
i.

rr
.
a
'.



422 LIGHT
Light. mv

therefore equating these s
"

Cr Cr re
sequently m r = r o .

- = r p . q
-- =- very nearly, since the dispersion is small in

V> T |~ t/ U "- \_/ 7*
~~

7" 17 >&

comparison with the whole refraction. Therefore n o = -
.
-

. Now, / being- the reciprocal focal
*& O T

distance (= L + D =
(/
-

1) (R
1 - R") + D) we have r = - 8 ~ = * ^ (R ~ R )

J J J
u L 1

and C r = , supposing /t to represent the index of refraction for extreme red rays.,-!/>/
L

Hence we get diameter of least circle of chromatic aberration = semi-aperture X .-

f '/I
= semi-aperture x dispersive index x

^- ;

and for parallel rays, when L = f, simply semi-aperture X dispersive index.

458. Carol. Hence the circle of least colour has the same absolute linear magnitude whatever be the focal length of
Use of very the lens, provided the aperture be the same. Now, in the telescope, the magnifying power, or the absolute linear

scope's'

6 "

magnitude of the image viewed by a given eye-glass, increases in the ratio of the focal length of the object-glass,

(382.) Therefore, by increasing the focal length of an object-glass without increasing its aperture, the breadth

of the coloured border round the image of any object diminishes in proportion to the image itself, and thus the

confusion of vision is diminished, and the telescope will possess a proportionally higher magnifying power. In

consequence of this property, before the invention of the achromatic telescope, astronomers were in the habit of

using refracting telescopes of enormous length, even so far as 100 or 150 feet; and Huyghens, in particular,

distinguished himself by the magnitude and excellent workmanship of his glasses, and by the important astrono-

mical discoveries made with them.

459. The achromatic object-glass, however, by enabling us to reduce the length of the telescope within more reason-

Principle of able bounds, has rendered it a vastly more manageable and useful instrument. To conceive its principle, we have
Ae achro-

only to recur to what has already been said in Art. 451 454, respecting achromatic prisms. A lens is nothing

""j

1'10 more than a system of infinitely small prisms arranged in circular zones round a centre, with refracting angles

increasing as their distance from the centre increases, so as to refract all the rays to one point ; and if we can
achromatise each elementary prism, the whole system is achromatic. The equations (i) apply at once to this

view of the structure of a lens. For, suppose R', R" to be the curvatures of the two surfaces of the first lens,
'
its power, and f! its refractive index, then, for a given aperture, or at a given distance from the centre,

R' R", the difference of the curvatures, expresses the angle made by tangents to the surfaces, or the refracting

angle of the elementary prism ; or R' R" = A 1

; and similarly for the other lenses, A'' = R'" R'T
, and so

on, so that the equations become

(ft- 1) (R
1 - R") . a' + (X-l) (R'"-- Rlv

) a" + &c. = &c. ;

General that is simply
e
?
ua'ions L' . a' + L" . a" + L'" . a'" + &c. = '

of achroma-

u<%- L' . V + L" . b" + L'" . b'" + &c. = , .

j

L' . d + L" . c" + L'" . d" + &c. =
&c.

460. These equations afford all the relations necessary to insure achromaticity ; and when satisfied, since they do
Otherwise not contain D, they show that an object-glass which is achromatic for any one distance of the object is so for

deduced. aji distances. It is evident, that the same system of equations may be obtained directly from the expression in

Art. 265 for the joint power of a system of lenses whose individual powers are L', L", &c. For the condition

of achromaticity gives
J L = 0, that is

3 L' + J L" + JL"' + &c. = 0.

But since L' = (jl 1) (R' R") &c. (according to the system of notation there adopted)

J L' = (R'
- R") V = L' .

, ^ ..

But in the equation (d) if we put in succession for/u the values /, /', &c., for/i / respectively, V, J/i",&c.,

and for a, b, &c. the systems of coefficients a', b', &c. ; a", b", &c. ; and suppose
--

y-
= p, we shall have

1
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and therefore Part ".

= L' { a! p + b'p* + &c. } + L" { a"p + b" p* + &c. } + &c.

which, being made to vanish independently of p, gives the very same system of equations as (a.)

To satisfy all these equations at once with any finite number of lenses being impossible, we must rest content 461.

with satisfying as many of the most important as the number of lenses will permit. Thus, if we have two lenses Object glast

of different media, such as flint and crown glass, for instance, one only of them can be satisfied, and this must
J,"

of course be the first, viz.

L'a' + L"a"=0, or - = - --
(b)

which shows that the powers of the lenses must oppose each other, and be to each other inversely (and of course

their focal lengths directly) as the dispersive powers. In such a combination, the values of a', a", the dispersive

powers, however, ought not to be obtained from the relative refractions for the extreme red and violet rays of the

spectrum, (according to the remark in Art. 453,) but rather from the strongest and brightest rays whose colours

are in decided contrast ; such, for instance, as the rays C and F in Fraunhofer's scale.

With three lenses of different media, two of the equations of achromaticity can be satisfied, and the secondary 462.

spectrum corrected, thus we have Object glass

= L' a 1 + L" a" + L'" a!"
I I

L' "
*'" - 6" '"

>

= L' b' + L" 6" + L'" 6'"
[ )

L'" a'b" -b'a"
'

J (."IT
'

a'" b" - 6"V7

and in determining the values of a', b', &c. the rays to be employed should be the brightest yellow for a middle

ray, and a pretty strong red and blue for the extremes. The rays B, E, H are perhaps inferior to C, E, G for

this purpose.
Hence in a double object-glass having a positive focus the least dispersive lens must be of a convex or positive, 463.

and the most so of a negative, or concave character. The order in which they are placed is of no consequence,
as far as achromaticity is concerned.

A single lens, as we have seen, neither admits of the destruction of the spherical, nor chromatic aberration, 464.

(Art. 296 and 457 ;) but if we combine two or more lenses of different media, the equations s, t, u, v of Art. Simulta-

309, 310, 312, and 313, combined with the equations just derived (a), Art. 459, or so many of them as are not
n

t

eou* d

|

incompatible, afford us the means of annihilating both species of aberration at once ; and what is curious, and bot), aberra-
must be regarded as singularly fortunate, the relations afforded by the destruction of the chromatic aberration, tions.

which, at first sight, would appear likely greatly to complicate the inquiry, tend, on the contrary, remarkably
to simplify it, being in fact the very relations the analyst would fix upon to limit his symbols, and give his final

equations the greatest simplicity their nature admits, if left at his disposal. For, it will be remarked, that in the

general equation for the destruction of the spherical aberration, A / = 0, or

= ^- (' -
ft

1 D' + V D' 2
) +~ (a'" + ft" D" + 7" D") + &c. ; (d)

the expressions within the parentheses are all of the second degree when expressed in terms of the curvatures of
the surfaces, and of D' = D the proximity of the radiant point to the first lens ; and as L', L", &c. are respec-

tively of the first degree, in terms of the curvatures, the whole is, in its general form, of the third degree, and
the equation of a cubic form. But the conditions of achromaticity, which assign relations only between L', L",
&c. without involving R', R", &c. enable us to eliminate these quantities and replace them in the above equation,

by giving combinations of a', a", b', b", &c., so that it becomes reduced to a quadratic form, and its treatment

simplified accordingly.
Let us proceed now to develope the equation (d), in which, according to the foregoing remark, when the con- 465.

ditions of achromaticity are introduced, L', L", &c. may be regarded as given quantities ; for, taking L = L' + Determina-

L" + &c. = the power of the compound lens, (which we may suppose given, or, if we please, assume equal to tion of tne

unity,) this, combined with the equations (a), determines the values of L', &c. Thus, in the case of two lenses,
JJJ'J

1^ of

d L wL lenses.

if we put JT for the ratio of the dispersive powers, or TS =. -j- we have L' = , L" = -
; and

a' l , 1 zj

similarly for three or more lenses. Suppose then we represent by /, r", r"', &c. the respective curvatures of the

first, or anterior surfaces of the first, second, third, &c. lens, in order ; the first being that on which the rays first

T i Develope-
fall. Then we have L' = 0*'

-
1) (R' - R") = (jj

-
1) (r

1 -
R",) so that R"= r1 ^ ; and similarly

ment f "

pi 1
J

general

L" equation.
R" = r" _ , &c. We must therefore put in the foregoing expressions

T ' L/
Ri -/ . Rtf ~; _ _ . pw ,Ji . Riv r" &cr , a. r ; , iv r , s\ r .. , U.L.
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Ligh^ Hence by substitution of these in the values of o, ft, &c. (Art. 293) we get

a' = (2 4- X) r'
2

(2 /+ 1) . /* .U r1 + n' .

ft>= (4 + 4 /,') / - (3 /' + 1) .
-

t
L'

y = 2 + 3 /,

and similarly for a.", ft", </', &c. So that, substituting again these expressions, and putting for D" its equal
L' + D', for D'" its equal L' + L" + D', and so on, we have, finally, for the general equation A f = 0, aa

follows :

=
j(y +

l)
LV* +

(-4-
+ 1

)
L"r" s +

(-^
+

l)
L"V" 2 +

&c.J

- 4 I
(l

+ 4- + + ' + L") L"V" + &c.
J

D.<

+
{(4-

+ 3
)

- 4
{0 +

7r)
L' r

+ 3

-1

L"V" + &,

D8
{ (-7-

+ 3
)

- +3 L
)

L/" &c -

466. For brevity, let us represent by X, the terms of this expression, independent of the quantity D ; by Y, the

assemblage of terms multiplied by D'; and by Z, those multiplied by D' 2
, and we shall have

* f y f "V i "V T\ i TJ T\ e >A / = {X + Y.U + Z.D 8
};

467.
The distinc-

tion of aber-

ration an in-

determinate

problem.

Conditions

limiting it

Clairaut's.

and if this vanish the aberration is destroyed. Now, first, if we regard only parallel rays, or suppose D = 0-

this reduces itself to X = 0, so that the condition X = being satisfied, the telescope will be perfect when used

for astronomical purposes, or for viewing objects so distant that D' may be disregarded.
The equation X = is of the second degree in each of the quantities r

1
1", &c., whose number is that of the

lenses. Consequently, this condition alone is not sufficient to fix their values ; and, without assuming some
further relations between them, or some other limitations, the problem is indeterminate, and the aberration may
be destroyed in an infinite variety of ways. Confining ourselves at present to the consideration of two lenses

only, since X = contains only two unknown quantities, one other equation only is required, and we have only
to consider what other condition will be attended with the greatest practical advantages. Clairaut has proposed
to adjust the two lenses so as to have their adjacent surfaces in contact throughout their whole extent, to allow

of their being cemented together, and thus avoid the loss of light by reflection at these surfaces. This certainly
would be a great advantage were it possible so to cement two glasses of large size together, as to bring neither

of them into a state of strain as the cement cools, or otherwise fixes ;
and were it not for the further incon-

venience, that the media being of course differently expansible by heat, every subsequent change of temperature
would necessarily distort their figure, as well as strain their parts, when thus forcibly held together, just as we
see a compound lamina of two differently expansible metals assume a greater or less curvature, according to

the temperature it is exposed to. Meanwhile the condition in question is algebraically expressed by L'= (/i

1

1)

(r> -.
/') ; for jn this case R' = r 1

, and R" = R'" = r", and this being of the first degree only in /, r", affords a

final equation of a quadratic form by elimination with X = 0, which latter, in the case before us of two lenses,

is the same as the equation (), Art. 312, writing only r' for R', and i" for R'".

Part II
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But this condition of Cluiraut's has another and much greater inconvenience, which is, that the resulting ft* N.

quadratic has its roots imaginary, when the refractive and dispersive powers of the glasses are such as are by no s

^>^~"
means unlikely to occur in practice; and without the limits of refraction and dispersion, for which they are real,

"
the resulting curvatures change so rapidly on slight variations of the data, as to make their computation delicate,

bert
.

g

em

and interpolation between them, so as to form a table, very troublesome. D'Alembert, in his Opuscules, torn, iii.,

has proposed a variety of other limitations, such, for instance, as annihilating the spherical aberration for rays

? X S X
of all colours, (which comes to the same as supposing at once X =r and

'

, 3// H--%-
^

/*''
= ^> an<^

which leads to biquadratic equations, and affords no practical advantage,) &c. But, without going into useless

refinements of this kind, the very form of the general equation X + Y.D' +Z.D/i = points out a condition

combining every advantage the case is susceptible of. This consists in putting Y = 0. By this supposition, the

term depending on D' is destroyed, without assuming D'= ; so that the telescope is not only perfect for parallel Another

rays, but admits of as considerable a proximity of the object without losing its aplanatic character, as the proposed.

nature of the case will allow. The term Z . D"2
indeed, or

cannot vanish when two lenses only are used, being composed wholly of given functions of the refractive and

dispersive powers, unless by D' itself vanishing, or by an accidental adjustment of the values of ft', /t", L', &c.

But except the object be brought within a comparatively small distance from the telescope, (such as ten times its

own length,) the square of D' is always so small sis to allow of our disregarding this term, and considering the

instrument as perfectly aplanatic when Y = 0. Now this equation, being of the first degree in /, r", adds no

new algebraic difficulty to the problem, but leads by elimination to a final quadratic ; and, what is of most con-

sequence, for such values of
/uf, p!

1

, and the dispersive ratio CT as occur in practice, the roots of this quadratic
are always real, and the resulting curvatures of all the surfaces are moderate, and well adapted for practice ; more

so, indeed, than in any construction hitherto proposed. They are, moreover, such as to afford remarkable and

peculiar facilities for interpolation, as we shall presently see. These reasons seem to leave no room for hesita-

tion in fixing on the condition Y = 0, as tha which ought to be introduced to limit the problem of the con-

struction of a double object-glass, and to render it, so far as it can be rendered, aplanatic.
This equation, in the case in question, is 469

which is to be combined with (L-), Art. 412, in which R' = / and R'"=: r
1'

. To reduce these to numbers, p' , ft"
^70

and the dispersive ratio CT must first be known. The readiest and most certain way in practice, for the use of

the optician, is to form small object-glasses from specimens of the glasses intended to be employed, and by trial

work them till the combination is as free from colour as possible, by the test usually had recourse to in practice.
This is, to examine with a high magnifying power the image of a well defined white circle, or circular annulus on
a black ground. If its edges are totally free from colour, the adjustment is perfect, but (owing to the secon-

dary spectrum) this will seldom be the case
; and there will generally be seen on the interior edge of the annulus

a faint green, and on the exterior a purplish border, when the telescope is thrown a little out of focus by bringing
the eye-glass too near the object-glass, and vice rend. The reason is, that while the great mass of orange and
blue rays is collected in one focus, the red and violet are converged to a focus farther from, and the green to

one nearer to the object-glass; the refraction of the green rays being in favour of the convex or crown glass, and
of the red and violet (which united form purple) in favour of the flint (see table, Art. 443) or concave lens. The
focal lengths of the lenses are then to be accurately determined, and the ratio of the dispersions (w) will then
be known, being the same with that of the focal lengths (454). The refractive indices will be best ascertained

by direct observation, forming portions of each medium into small prisms. Now, CT being known, if we take

unity for the power of the compound lens, we have L' =. and L" = , so that L' and L" are
] OT 1 as

known, and we have therefore only to substitute their values and those of ft', p,", in the algebraic expressions,
and proceed to eliminate by the usual rules. The following compendious table contains the result of such Dimensions

calculations for the values of p}, ft" and cr therein stated, together with the amount of variation produced by of an ap'a-

varying either of the refractive indices independently of the other, for the sake of interpolation by proportional
naticob

j
ec'-

parts. Fig. 108 is a representation of the resulting object-glass.

VOL. IV. 3 K
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Table for folding the Dimensions of an Aplanatw Object-glass.

Refractive index of crown, or convex lens = /*'
= 1.524.

Refractive index of flint, or concave lens = /*"
= 1.585.

Compound focal length = 10.000.

PirtH.
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First surface.

i in the crown 0.0370

For + 0.004 variation in the flint . . 0.0004

Ught. First surface. Fourth surface. Put II.

v For 0.005 variation in the crown 0.0370 0.5040 v

Total variation from both causes .... 0.0374 0.7053

But the radii in the table are 6.7184 14.5353

Hence the radii interpolated are .... 6.6810 13.8300

If we interpolate, by a process exactly similar, the same two radii for a dispersive ratio 0.60, we shall find,

respectively,
First surface. Fourth surface.

For a variation of 0.005 in the crown 0.0338 0.5524

For a variation of + 0.004 in the flint + 0.0015 0.2264

Total variation 0.0323 0.7788

Radii in table 6.7069 14.2937

Interpolated radii 6.6746 13.5149

Having thus got the radii corresponding; to the actual refractions for the two dispersive ratios 0.55 and 0.60,
it only remains to determine their values for the intermediate ratios 0.567 by proportional parts ; thus

First radius. Fourth radius.

For 0.600 6.6746 13.5149

For 0.550 6.6810 13.8300 0.050 : 0.567 - 0.050 = 0.017 ::- 0.0064 :- 0.0022

0.050 0.017::- 0.3151: -0.1071
Differences +0.050 -0.0064 -0.3151

So that 6.6810 0.0022 = 6.6788, and 13.8300 0. 1071 = 13.7229, are the true radii corresponding to the

given data. Thus we have, for the crown lens, focal length = 4.330 = -=-r, radius of first surface = 6.6788L

=
-f^ , index of refraction = 1.519 =

p.',
whence by the formula L' = (/' 1) (R' R") -=j^ radius of the

other surface is 3.3868. Again, for the flint lens, the focal length = ;/
= 7.635, radius of the

posterior surface = - - = 13.7729, index of refraction
ft,"
= 1.589, whence we find

f
. = 3.3871

iv '
i

for the radius of the other surface. The four radii are thus obtained for a focal length of 10 inches, and multi

plying by 3 we have for the telescope proposed
in. in. in. in.

radius of first surface = + 20.0364; of second, 10.1604; ofthird, - 10.1613; offourth, 41.1687.

Here, then, we see that the radii of the two interior surfaces of the double lens (fig. 108) differ by scarcely 472.
more than a thousandth part of an inch ; so that, should it be thought desirable, they may be cemented together.
This is not merely a casual coincidence, for the particular state of the data ; if we cast our eyes down the

table we shall find this approximate equality of the interior curvatures (those of the second and third surfaces)
maintained in a singular manner throughout the whole extent of the variation of ra. Thus the construction,

here proposed in reality for glasses of the ordinary materials, approaches considerably to that of Clairaut already
mentioned.

In order to put these results to the test of experience, Mr. South procured an achromatic telescope to be 473.
executed on this construction by Mr. Tulley, one of the most eminent of our British artists, which is now
in the possession of J. Moore, Esq. of Lincoln. Its focal length was 45 inches, and aperture 3J, and its per-
formance was found to be fully adequate to the expectation entertained of it, bearing a magnifying power of

300 with perfect distinctness, and separating easily a variety of double stars, &c. A more minute account
of its performance will be found in the Journal of the Royal Institution, No. 26. Should the splendid example
set by Fraunhofer be followed up, and the practice of the optician be in future directed by a rigorous adherence
to theory, grounded on exact measurements of the refractive powers of his glasses on the several coloured rays,
it will become necessary to develope the above table more in detail.

When three media are employed in the construction of object-glasses, it should be our object to obtain as 474
great a difference as possible in their scales of action on the differently coloured rays. Dr. Blair, to whom we Object-
are indebted for the first extensive examination of the dispersive powers of media as a physical character, and glasses of

who first perceived the necessity of destroying the secondary spectrum, and pointed out the means of doing it,
;hree media

is the only one hitherto who has bestowed much pains on this important part of practical optics ; which,

considering the extraordinary success he obtained, and the perfection of the telescopes constructed on his prin-

ciples, is to be regretted. We have no idea, indeed, for the reasons already mentioned, that very large object-
3 K 2
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Light. glasses, enclosing fluids, can ever be rendered available ; but to render glasses of moderate dimensions more

> v^-' perfect, and capable of bearing a higher degree of magnifying power, is hardly less important as an object of

practical utility. His experiments are to be found in the Transactions of the Royal Society of Edinburgh,
1791. We can here do little more than present a brief abstract of them.

475. Dr. Blair having first discovered that the secondary fringes are of unequal breadths, when binary achromatic

Dr. Blair a combinations, having equal total refractions, are formed of different dispersive media, was immediately led to

construction consider, that by employing two such different combinations to act in opposition to each other, if the total
'"

refractions were equal, the ray would emerge of course undeviated, and with its primary spectrum destroyed ;

three media. but a secondary spectrum would remain, equal to the difference of the secondary spectra in the two combina-
tions. Therefore, by a reasoning precisely similar to that which led to the correction of the primary spectrum
itself, (Art. 426 and 427,) if we increase the total refraction of that combination A which, ceeteris paribus, gives
(he leant secondary spectrum, its secondary colour will be increased accordingly, till it becomes equal to that of

the other B ;
so that the emergent beam will be free from the secondary spectra altogether, and will be deviated

on the whole in favour of the combination A. Reasoning on these grounds, Dr. Blair formed a compound, or

binary achromatic convex lens A, (fig. 109,) of two fluids a and b, (two essential oils, such as naphtha and oil

of turpentine, differing considerably in dispersion,) which, when examined alone, was found to have a greater
refractive power on the green rays than on the united red and violet. He also formed a second binary lens B,
of a concave character, and also achromatic, (i. e. having the primary spectrum destroyed,) consisting of the more

dispersive oil (6) and glass, and in which the green rays are also more refracted than the united red and violet,

but in a greater degree in proportion to the whole deviation, than in the other combination ; and in precisely
the same degree was the focal length of this lens increased or its refraction diminished, when compared with

that of the combination A. When, therefore, these two lenses were placed together, as in fig. 109, an excess of

refraction remained in favour of the convex combination ; but the secondary spectra of each being equal and

opposite (by reason of the opposite character of the lenses) were totally destroyed. In fact, he states, that in

a compound lens so constructed, he could discover no colour by the most rigid test ; and thence concluded,
not only the red, violet, and green to be united, but also all the rest of the rays, no outstanding colour of blue

or yellow being discernible. In placing the lenses together, the intermediate plane glasses may be suppressed

altogether, as in fig. 110.

476 It was in the course of these researches that Dr. Blair was led to the knowledge of the possibility of forming
Remarkable binary combinations, having secondary spectra of opposite characters ; that is, in which (the total refraction

property ot'
lying the same way) the order of the colours in the secondary spectra should be inverted. In other words, that

the muriatic wn j]e jn SOme combinations the green rays are more refracted than the united red and violet, in others they are

less so. He found, for instance, that while in most of the highly dispersive media, including metallic solutions,

the green lay among the less refrangible rays of the spectrum, there yet exist media considerably dispersive, in

which the reverse holds good. The muriatic acid, among others, is in this predicament. Hence, in binary
combinations of glass with this acid, the secondary spectrum consists of colours oppositely disposed from that

formed by glass and the oils, or by crown and flint glass. In consequence of this, to form an object-glass of

two binary combinations, as described in the last article, they must both be of convex characters. But this affords

Dr. Blair's no particular advantage. Dr. Blair, however, considered the matter in another and much more important light,

discovery of a.s offering the means of dispensing with a third medium altogether, and producing by a single binary combina-

"l
1

^ tion a refraction absolutely free from secondary colour. To this end he considered, that it appears to depend

ame^scale entirely <"> the chemical nature of the refracting medium, what shall be the order and distribution of the colours

ofdispersion
in the spectrum, as well as what shall be the total refraction and dispersive powers of the medium ; and that

a glass. therefore by varying properly the ingredients of a medium, it may be practicable, without greatly varying the

total refraction and dispersion, still to produce a considerable change in the internal arrangement (if we may
use the phrase) of the spectrum ; and therefore, perhaps, to form a compound medium in which the seven

colours shall occupy spaces regulated by any proposed law, (within certain limits.) Now if a medium could be

so compounded as to have the same scale of dispersions, or the same law of distribution of the colours as crown

glass with a different absolute dispersion, as we have already seen, nothing more would be required for the per-
fection of the double object-glass. The property of the muriatic acid just mentioned puts this in our power.

It is observed, that the presence of a metal (antimony, for instance) in a fluid, while it gives it a high refrac-

tive and dispersive power, at the same time tends to dilate the more refrangible part of the spectrum beyond
its due proportion to the less. On the other hand, the presence of muriatic acid tends to produce a contrary

effect, contracting the more refrangible part and dilating the less, beyond that proportion which they have in

glass. Hence, Dr. Blair was led to conclude, that by mixing muriatic acid with metallic solutions, in proportions

to be determined by experience, a fluid might be obtained with the wished for property ;
and this on trial he

found to be the case. The metals he used were antimony and mercury ;
and to ensure the presence of a sufli-

cient quantity of muriatic acid, he employed them in the state of muriates, in aqueous solution ; or, in the case

of mercury, in a solution of sal ammoniac, which is a compound of ammonia and muriatic acid, and which is

capable of dissolving a considerably greater quantity of corrosive sublimate (muriate, or chloride of mercury)
His double than water alone. By adding liquid muriatic acid to the compound known by the name of butter of antimony,

object- (chloride of antimony,) or sal ammoniac to the mercurial solution, he succeeded completely in obtaining a

|
spectrum in which the rays followed the same law of dispersion as in crown glass, and even in over-correcting

w meaia
the secondary spectrum, so as to place its exact destruction completely in his power. It only remained to form

an object-glass on these principles. Fig. Ill is such an one, in which, though there are two refractions at the

confines of the glass and fluid, yet the chromatic aberration, as Dr. Blair assures us, was totally destroyed, and

the rays of different colours were bent from their rectilinear course with the same equality as in reflexion.
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f sucj, an extent has Dr. Blair carried these interesting experiments, that he assures us he has found it prac-

ticable to construct an object-glass of nine inches focal length, capable of bearing an aperture of three inches, a v

p^"""
thing which assuredly no artist would ever dream of attempting with glass lenses ;

and we cannot close this

account of his labours without joining in a wish expressed on a similar occasion by Dr. Brewster, whose

researches on dispersive powers have so worthily filled up the outline sketched by his predecessor, that this

branch of practical optics may be resumed with the attention it deserves, by artists who have the ready means

of executing the experiments it would require. Could solid media of such properties be discovered, the telescope

would become a new instrument.

These experiments of Dr. Blair lead to the remarkable conclusion, that at the common surface of two media 478.

a white rav may be refracted without separation into its coloured elements. In fact, u, and uf being the refrac- Case of
1 * colourless

live indices of the media for any ray as the extreme red,
- will be their relative refractive index for that ray,

common

an(]
P _?^_ will be the relative index for any other ray. If, then, the refractive and dispersive powers of*^

the media be such that j"
+ ^ = , or / 5/ = / s

/*.
that is- if -*~J

= ~T 5 and if> moreover, this

/* -r-

relation hold good throughout the spectrum, i. e. if the increments of the refractive indices, in proceeding from

the red to the violet end of the spectrum, be proportional to the refractive indices themselves, then the relative

index is the same for all rays, and no dispersion will take place. Now this gives a relation between the disper-

/ / i
^

P u u 1 u,

sive and refractive indices of the two media, viz. = - . -.

-'- = - -
; and, in addition to this

P /* F *

condition, the scale of dispersions must be the same in both media. According as the dispersions differ one way
or the other from this precise adjustment, the violet ray may be either more or less refracted than the red at the

common surface of the two media.

We shall terminate the theory of achromatic object-glasses with a problem of considerable practical import- 479.

ance, as it puts it in our power, having obtained an approximate degree of achromaticity in an object-glass, to Achromatic

complete the destruction of the colour without making any alteration in the focal lengths or curvatures of the object-glass

lenses, by merely placing them at a greater or less distance from one another.

Problem. To express the condition of achromaticity, when the two lenses of a double object-glass are placed
at a distance from each other, (= t.)

Resuming the notation of Art. 251 and 268, we have

/"=L' + D; /" = ' f"
"

]-/ t

and

Now, that the combination may be achromatic, we must have if" ==
; and, since t and D are constant, and

L' and I/' only vary by the variations of
/t', fi" the refractive indices, we have 3 L' = (R' R") 3/i' =

;
I/ = p'L', and similarly

3 L" = p" L", so that substituting we get

Such is the condition of achromaticity. Since it depends on D, it appears that if the lenses of an object- 480.

glass be not close together, it will cease to be achromatic for near objects, however perfectly the colour be cor-

rected for distant ones. The eye therefore cannot be achromatic for objects at all distances, its lenses being
of great thickness compared to their focal lengths; and, therefore, although in contact at their adjacent surfaces,

yet having considerable intervals between others.

For parallel rays the equation becomes 481.

j/'L"(l-<L') 8 = -p'L';

hence, the dispersions and powers of the lenses being given their interval t may be found by the expression

1 d x/_ PL J
"17

(.

i V p
" L"

The condition of achromaticity, were the lenses placed close together, would be, as we have already shown,
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L.gnt p
: J/

-_>v^-. rf-
.

-j-rr
= ! Hence, whenever this fraction is less than unity, that is whenever L", the power of the

concave or flint lens (which we here suppose to be the second) is too great ; or when, as the opticians call it, the

colour is over-corrected, the object-glass may be made achromatic, or their over-correction remedied, without re-

grinding
1 the glasses, merely by separating the lenses ; for in this case the quantity under the radical is less than

unity, a'nd therefore t is positive, a condition without which the rays could not be refracted as we have supposed
them.

4gg Moreover, this affords a practical and very easy means of ascertaining, with the greatest precision, the dis-

persive ratio of the two media. Let a convex lens of crown be purposely a little over-corrected by a
concave of flint, and then let the colour be destroyed by separating the lenses. Measure their focal lengths

( -=-7- and
,, J

and the interval t between them in this state, and we have at once for the value of -a the

dispersive ratio,

III. Of the Absorption or Extinction of Light by uncrystallized Media.

Transparency is the quality by which media allow rays of light freely to pass through their substance, or, it
All m* <

j|

a
may be, between their molecules

; and is said to be more or less perfect, according as a more or less consider-
"able part of the whole light which enters them finds its way through. Among media, consisting of ponderable
matter, we know of none whose transparency is perfect. Whether it be that some of the rays in their passage
encounter bodily the molecules of the media, and are thereby reflected ; or, if this supposition be thought too
coarse and unrefined for the present state of science, be stopped or turned aside by the forces which reside in

the ultimate atoms of bodies, without actual encounter, or otherwise detained or neutralized by them
; certain it

is, that even in the most rare and transparent media, such as air, water, and glass, a beam of light intromitted,
is gradually extinguished, and becomes more and more feeble as it penetrates to a greater depth within them,
and ultimately becomes too faint to affect our organs. Thus, at the tops of very high mountains, a much
greater multitude of stars is visible to the naked eye than on the plains at their feet

;
the weak light of the

smallest of them being too much reduced in its passage through the lower atmospheric strata to affect the sight.

Thus, too, objects cease to be visible at great depths below wate* however free from visible impurities, &c. Dr.
Olbers has even supposed the same to hold good with the imponderable media (if any) of the celestial spaces,
and conceives this to be the cause why so few stars (not more than about five or ten millions) can be seen with
the most powerful telescopes. It is probable that we shall be long without means of confirming or refuting
this singular doctrine.

485. On the other hand, though no body in nature be perfectly, all are to a certain degree, transparent. One of
the densest of metals, gold, may actually be beaten so thin as to allow light to pass through it; and that it passes

through the substance of the metal, not through cracks or holes too small to be detected by the eye, is evident

from the colour of the transmitted light, which is green, even when the incident light is white. The most

opaque of bodies, charcoal, in a different state of aggregation, (as diamond,) is one of the most perfectly trans-

parent ;
and all coloured bodies, however deep their hues, and however seemingly opaque, must necessarily be

rendered visible by rays which have entered their substance ; for if reflected at their surfaces, they would all

appear white alike. Were the colours of bodies strictly superficial, no variation in their thickness could affect

their hue ; but, so far is this from being the case, that all coloured bodies, however intense their tint, become

paler by diminution of thickness. Thus the powders of all coloured bodies, or the streak they leave when
rubbed on substances harder than themselves, have much paler colours than the same bodies in mass.

486. This gradual diminution in the intensity of a transmitted ray in its progress through imperfectly transparent
And all media, is termed its absorption. It is never found to affect equally rays of all colours, some being always absorbed
absorb the jn preference to others; and it is on this preference that the colours of all such media, as seen by transmitted

light, depend. A white ray transmitted through a perfectly transparent medium, ought to contain at its emer-

imequally. ?ence the same proportional quantity of all the coloured rays, because the part reflected at its anterior and

posterior surfaces is colourless ; but, in point of fact, such perfect want of colour in the transmitted beam is

never observed. Media, then, are unequally transparent for the differently coloured rays. Each ray of the

spectrum has, for every different medium in nature, its own peculiar index of transparency, just as the index of

refraction differs for different rays and different media.
The most striking way in which this different absorptive power of one and the same medium on differently

Experiment, coloured rays can be exhibited, is to look through a plain and polished piece of smalt-blue glass, (a rich deep blue,

very common in the arts such as sugar-basins, finger-glasses, &c. are often made of,) at the image of any narrow
line of light (as the crack in a window-shutter of a darkened room) refracted through a prism whose edge is

parallel to the line, and placed in its situation of minimum deviation. If the glass be extremely thin, all the

colours are seen ; but if of moderate thickness (as TV inch) the spectrum will put on a very singular and striking

appearance. It will appear composed of several detached portions separated by broad and perfectly black
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intervals, the rays which correspond to those points in the perfect spectrum being entirely extinguished. If a less Part II.
'

thickness be employed, the intervals, instead of being perfectly dark, are feebly and irregularly illuminated, some ^- v
-

parts of them being less enfeebled than others. If the thickness, on the other hand, be increased, the black

spaces become broader, till at length all the colours intermediate between the extreme red and extreme violet are

totally destroyed.
The simplest hypothesis we can form of the extinction of a beam of homogeneous light in passing through a 488.

homogeneous medium, is, that for every equal thickness of the medium passed through, an equal aliquot part of f 'aw

the rays, which, up to that depth had escaped absorption, is extinguished. Thus, if 1000 red rays fall on and
enter into a certain green glass, and if 100 be extinguished in traversing the first tenth of an inch, there will-

remain 900 which have penetrated so far; and of these one-tenth, or 90, will be extinguished in the next tenth

of an inch, leaving 810, out of which again a tenth, or 81, will be extinguished in traversing the third tenth,

leaving 729, and so on. In other wdYds, the quantity unubsorhed, after the beam has traversed any thickness of
the medium, will diminish in geometrical progression, as t increases in arithmetical. So that if 1 be taken for

the whole number of intromitted rays, and y for the number that escape absorption in traversing an unit of

thickness, y' will represent the number escaping, after traversing any other thickness, = t. This only supposes
that the rays in the act of traversing one_ stratum of a medium acquire no additional facility to penetrate the

remainder. In this doctrine, y is necessarily a fraction smaller than unity, and depending on the nature both of

the ray and the medium. Hence, if C represent the number of equally illuminating rays of the extreme red in

a beam of white light, C' that of the next degree of refranjibilitv, and so on ; the beam of white light will be

represented by C + C' + C" -f- &c. ; and the transmitted be^in, after traversing the thickness t, will be properly
expressed by

C.y< + C'.y" + C".y'" + &c.

Each term representing the intensity of the particular ray to which it corresponds, or its ratio to what it is in the

original white beam.
It is evident from this, that, strictly speaking, total extinction can never take place by any finite thickness of 489.

the medium
; but if the fraction y for any ray be at all small, a moderate increase in the thickness, (which enters

as an exponent,) will reduce the fraction y
' to a quantity perfectly insensible. Thus, in the case taken above,

where a tenth of an inch of green glass destroys one-tenth only of the red rays, a whole inch will allow to pass

/9V*
only l-r^r) , or 304 rays out of a thousand, while ten times that thickness, or 10 inches, will suffer only

9 V00

-r-r-l = 0.0000266, or less than three rays out of 100,000 to pass, which amounts to almost absolute

opacity.
If x be the index of refraction of any ray in the water spectrum, we may regard y as a function of x ; and if on 490.

the line RV, (fig. 11 2,) representing the whole length of the water spectrum, we erect ordinates, Rr, MN,VVequal
L w of ab-

to unity and to each other ; and also other ordinates R r, M P, V v representing the values of y for the rays at ^T^"^^
the corresponding points; the curve rP v, the locus of P, will be, as it were, a type, or geometrical picture of

expressed
the action of the medium on the spectrum, and the straight line R N V will be a similat type of a perfectly by a curve.

transparent medium. Now if this be supposed the case when the thickness of the medium is 1, if we take Fig. 112.

always M F : M P : : M P : M N, and M P" : M P' : : M P' : M P, &c. and so on, the loci of P' P", &c. will be
curves representing the quantities of the rays transmitted by the thicknesses 2, 3, &c. of the medium, and so for

intermediate thicknesses, or for a thickness less than 1, as in the curve % w.
Hence, whatever be the colour of a medium, if its thickness be infinitely diminished, it will transmit all the 491.

rays indifferently ; for when t = 0, y
' = 1 , whatever be y ; and the curve p TT v approaches infinitely near to the

line R'N V. Thus all coloured glasses blown into excessively thin bubbles are colourless, and so is the foam
of coloured liquids.

Again, if there be any, the least, preference given by the medium to the transmission of certain rays beyond 492.

others, the thickness of the medium may be so far increased as to give it any assignable depth of tint ; for if y
be ever so little less than unity, and if between the values of y for different rays there be ever so little difference,
t may be so increased as to make y

' as small as we please, and the ratio of y
' to y"

' as different from unity as

we please.
In very deep coloured media all the values of y are small. If they were equal, the medium would merely 493.

stop light, without colouring the transmitted beam, but no such media are at present known.
If the curve rPv, or the type of an absorbent medium have a maximum in any part of the spectrum, as in the

i

494.

green, for instance, (fig. 113 ;) then, whatever be the proportion in which the other rays enter, by a sufficient
^J

1 * '

n
increase of thickness, that colour will be rendered predominant ; and the ultimate tint of the medium, or the

a'bsoJLj
last ray it is capable of transmitting, will be a pure homogeneous light of that particular refrangibility to which medium.
the maximum ordinate corresponds. Thus green glasses, by an increase of thickness, become greener and Fig. 113.

greener, their type being as in fig. 113; while yellow ones, whose type is as in fig. 114, change their tint by
reduplication, and pass through brown to red.

This change of tint by increase of thickness is no uncommon phenomenon; and though at first sight para- 49").

doxical, yet is a necessary consequence of the doctrine here laid down. If we enclose a pretty strong solution Tint

of sap-green, or, still better, of muriate of chromium in a thin hollow glass wedge, and if we look through the Changes by

edge where it is thinnest, at white paper, or at the white light of the clouds, it appears of a fine green; but if*'
we slide the wedge before the eye gradually so as to look successively through a greater and greater thickness
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Light, of the liquid, the green tint grows livid, and passes through a sort of neutral, brownish hue, to a deep blood- Part II.

< -v ' red. To understand this, we must observe, that the curves expressing the types of different absorbent media v v^1

Case of a admit the most capricious variety of form, and very frequently have several maxima and minima corresponding
green-red to as manv different colours. The green liquids in question have two distinct maxima, as in fig. 1 15 ; the one

Fig 'llS corresponding to the extreme red, the other to the green, but the absolute lengths of the maximum ordinates

are unequal, the red being the greater. But as the extreme red is a very feebly illuminating ray, while on the

other hand the green is vivid, and affects the eye powerfully, the latter at first predominates over the former, and

entirely prevents its becoming sensible ; and it is not till the thickness is so far increased as to leave a very great

preponderance of those obscure red rays, and subdue their rivals, as in the case represented by the lowest of

the dotted curves in the figure, that we become sensible of their influence on the tint. Suppose, for instance.

Numerical to illustrate this by a numerical example, the index of transparency, or value of y, in muriate of chromium, to

illustration, be for extreme red rays, 0.9
;

for the mean red, orange, and yellow, 0.1 : for green, 0.5 ; and for blue, indigo,

and violet, 0.1 each ; and suppose, moreover, in a beam of white light, consisting of 10,000 rays, all equally

illuminative, the proportions corresponding to the different colours to be as follows :
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Ligot preen side by an obscure but not quite black interval. The green was dull and ill defined, but the violet was Hart II.

>,-
> transmitted with very little loss. A double thickness (0.084 inch) obliterated the second red, greatly enfeebled ^ ~v
the yellow, leaving it now sharply divided from the green, which was also extremely enfeebled. The extreme

red, however, retained nearly its whole light, and the violet was very little weakened. When a great many
thicknesses were laid together, the extreme red and extreme violet only passed.

Among transparent media of most ordinary occurrence, we may distinguish, first, those whose type has its 498.

ordinate decreasing regularly, with more or less rapidity from the red to the violet end of the spectrum, or Red media,

which absorb the rays with an energy more or less nearly in some direct ratio of their refrangibility. In red

and scarlet media the absorbent power increases very rapidly, as we proceed from the red to the violet. In

yellow, orange, and brown ones, less so ; but all of them act with great energy on the violet rays, and produce
a total obliteration of them. In consequence of this, by an increase of thickness, all these media finally become
red. Examples: red, scarlet, brown, and yellow glasses; port wine, infusion of saffron, permuriate of iron,

muriate of gold, brandy, India soy, &c.

Among green media, the generality have a single maximum of transmission corresponding to some part of 499.
the green rays, and their hue in consequence becomes more purely green by increase of thickness. Of this Simple

kind are green glasses, green solutions of copper, nickel, &c. They absorb both ends of the spectrum with greenmedia.

great energy ; the red, however, more so, if the tint verges to blue ; the violet, if to yellow. Besides these,

however, are to be remarked media in which the type has two maxima
; such may be termed dichromatic, Dichromatic

having really two distinct colours. In most of these, the green maximum is less than the red ; and the green media.

tint, in consequence, loses purity by increase of thickness, and passes through a livid neutral hue to red, though
this is not always the case. Examples : muriate of chrome, solution of sap-green, manganesiate of potash,
alkaline infusion of the petals of the peonia officinalis and many other red flowers, and mixtures of red and
blue or green media.

Blue media admit of great variety, and are generally dichromatic, having two or even a great many maxima 500
and minima in their types ; but their distinguishing character is a powerful absorption of the more luminous Blue media,

red rays and the green, and a feeble action on the more refrangible part of the spectrum. Among those whose

energy of absorption appears to increase regularly and rapidly from the violet to the red end of the spectrum,
we may place the blue solutions of copper. The best example is the magnificent blue liquid formed by super-

saturating sulphate of copper with carbonate of ammonia. The extreme violet ray seems capable of passing

through almost any thickness of this medium
;
and this property, joined to the unalterable nature of the solution,

and the facility of its preparation, render it of great value in optical researches. A vessel, or tube, of some Insulationof

inches in length, closed at two ends with glass plates, and filled with this liquid, is the best resource for experi- '^
e extreme

ments on the violet rays. Ammonio-oxalate of nickel transmits the blue and extreme red, but stops the violet.
V1 et>

Purple media act by absorbing the middle of the spectrum, and are therefore necessarily always dichromatic, 591
some of them having red and others violet for their ultimate or terminal tint. Example: solution of archil ; purpie

'

purple, plum-coloured, and crimson glasses ; acid and alkaline solutions of cobalt, &c. They may be termed red- media,

purple and violet-purple, according to their terminal tint.

In combinations of media, the ray finally transmitted is the residuum of the action of each. If x, y, z be 502.
the indices of transmissibility of a given ray C in the spectrum for the several media, and r, s, t their thicknesses, Combina-
the transmitted portion of this ray will be C . jf y' z' ; and the residuum of a beam of white light (supposing 'ions of

none lost by reflexion at the surfaces) after undergoing the absorptive action of all the media, will be media.

C .x r
y'z' + C'.x lr

y" z" + &c.

An expression which shows that it is indifferent in what order the media are placed. They may therefore be
mixed, unless a chemical action take place. Thus also, by the same construction as that by which the type I

of the first medium is derived from the straight line representing white light, may another type 2 be derived from

1, and so on
; and thus an endless variety of types will originate, having so many tints corresponding to them.

This circumstance enables us to insulate, in a state of considerable homogeneity, various rays. Thus, by o03.

combining with the smalt-blue glass, already mentioned, any brown or red glass of tolerable fulness and purity
Insulation

of colour, a combination will be formed absolutely impermeable to any but the extreme red ray, and the ofanex -

refrangibility of this is so strictly definite as to allow of its being used as a standard ray in all optical inquiries, ^aelus"^which is the more valuable, as the coloured glasses by which it is insulated are the most common of any which ray.
occur in the shops, and may be had at any glazier's. If to such a combination a green glass be added, a total

stoppage of all light takes place. The same kind of glass, too, enables us to insulate the yellow ray, corres- Insuiatioa

ponding to the maximum Y in the type fig. 117, by combining it with a brown glass to stop out the more, and of tlle

a green to destroy the less, refrangible rays, and by their means the existence of a considerable breadth of yellow ra7-

yellow light, evidently not depending on a mixture, or mutual encroachment of red and green, may be exhibited

in the solar spectrum.
It has been found by Dr. Brewster, that the proportions of the different coloured rays absorbed by media 5 4.

depend on their temperature. The tints of bodies generally deepen by the application of heat, as is known to Alteration ol

all who are familiar with the use of the blow-pipe ; thus minium and red oxide of mercury deepen in their hues
* ^ '

b

v*

by heat till they become almost black, but recover their red colours on cooling. Dr. Brewster has, however, heat,

produced instances, not merely among artificial glasses, but among transparent minerals, where a transition takes

place from red to green on the application of a high temperature ; the original tint being, however, restored on

cooling, and no chemical alteration having been produced in the medium.
The analysis of the spectrum by coloured media presents several circumstances worthy of remark. First, the 50i>

irregular and singular distribution in the dark bands which cross the spectrum, when viewed through such
VOL. iv. 3 t
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L'ght - media as have several maxima of transmission, obviously leads us to refer Fraunhofer's Fixed lines, and the Pari

S""V'' analogous phenomena to be noticed in the light from other sources, to the same cause, whatever it may be,
v""v

which determines the absorption of some ray in preference to others. It is no impossible supposition, that the

deficient rays in the light of the sun and stars may be absorbed in passing through their own atmospheres, or, to

approach still nearer to the origin of the light, we may conceive a ray stifled in the very act of emanation from

a luminous molecule by an intense absorbent power residing in the molecule itself; or, in a word, the same

indisposition in the molecules of an absorbent body to permit the propagation of any particular coloured ray

through, or near them, may constitute an obstacle in limine to the production of the ray from them. At all

events, the phenomena are obviously related, though we may not yet be able to trace the particular nature of

their connection.

506. The next circumstance to be observed is, that when examined through absorbent media all idea of regular

gradation of colour from one end to the other of the spectrum is destroyed. Rays of widely different refrangi-

bility, as the two reds noticed in Art. 497, have absolutely the same colour, and cannot be distinguished. On
the other hand, the transition from pure red to pure yellow, in the case there described, is quite sudden, and the

contrast of colours most striking, while the dark interval which separates them, by properly adjusting the

thickness of the glass, may be rendered very small without any tinge of orange becoming perceptible. What
then, we may ask, is become of the orange ; and how is it, that its place is partly supplied with red on one side,

and yellow on the other ? These phenomena certainly lead us very strongly to believe that the analysis of white

light by the prism is not the only analysis of which it admits, and that the connection between the refrangibility

and colour of a ray is not so absolute as Newton supposed. Colour is a sensation excited by the rays of light,

and since two rays of different refrangibilities are found to excite absolutely the same sensation of colour, there

is no primd facie absurdity in supposing the converse, that two rays capable of exciting sensations of different

colours may have identical indices of refraction. It is evident, that if this be the case, no mere change of

direction by refractions through prisms, &c. could ever separate them ; but should they be differently absorbable

by a medium through which they pass, an analysis of the compound ray would take place by the destruction of

one of its parts. This idea has been advocated by Dr. Brewster, in a Paper published in tile Edinburgh

Philosophical Transactions, vol. ix., and the same consequence appears to follow from other experiments, pub-
lished in the same volume of that collection. According to this doctrine, the spectrum would consist of at least

three distinct spectra of different colours, red, yellow, and blue, over-lapping each other, and each having a

maximum of intensity at those points where the compound spectrum has the strongest and brightest tint of

that colour.

507. It must be confessed, however, that this doctrine is not without its objections ; one of the most formidable of

Cases of which may be drawn from the curious affection of vision occasionally (and not very rarely) met with in certain

persons who individuals, who distinguish only two colours, which (when carefully questioned and examined by presenting to
two

them, not the ordinary compound colours of painters, but optical tints of known composition) are generally
found to be yellow and blue. We have examined with some attention a very eminent optician, whose eyes (or

rather eye, having lost the sight of one by an accident) have this curious peculiarity, and have satisfied ourselves,

contrary to the received opinion, that all the prismatic rays have the power of exciting and affecting them with

the sensation of light, and producing distinct vision, so that the defect arises from no insensibility of the retina

to rays of any particular refrangibility, nor to any colouring matter in the humours of the eye, preventing
certain rays from reaching the retina, (as has been ingeniously supposed,) but from a defect in the sensorium,

by which it is rendered incapable of appreciating exactly those differences between rays on which their colour

depends. The following is the result of a series of trials, in which a succession of optical tints produced by

polarized light, passing through an inclined plate of mica, in a manner hereafter to be described, was submitted

to his judgment. In each case, two uniformly coloured circular spaces placed side by side, and having comple-

mentary tints (i. e. such that the sum of their light shall be white) were presented, and the result of his judguieut
is here given in his own words.
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Light.
Colours according to the judgment of an ordinary eye.
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cation of his system will render it equally applicable to all, and it may be presented as follows. Suppose we
fix on 100 as a standard intensity of each primary colour; or the number of rays of that colour (all supposed

v

equally effective) which falling
1 on a sheet of white paper, or other surface perfectly neutral, (i. e. equally

disposed to reflect all rays) shall produce a full tint of that particular kind, and let us denote by such an

expression as .rR + yY + iB, the tint produced by the incidence of x such rays of primary red, y such rays
of yellow, and 2 such rays of blue on the same surface together. It is obvious then, that the different numerical

values assigned to x. y, 2, from 1 to 100, will give different symbols of tints, whose number will be 100 X
100 x 100 = 1000000, and therefore quite sufficient in point of extent to embrace all the variety of colours

the eye can distinguish. The number of tints recognised as distinct by the Roman artists in Mosaic is said

to exceed 30,000 ; but if we suppose ten times this amount to occur in nature (and it is obvious that these

must be greatly more numerous than the purposes of the painter admit) we are still much within the limits of

our scale. It only remains to examine how far the tints themselves are expressible by the members of the scale

proposed.
And first, then, of whites, greys, and neutral tints. The most perfectly neutral tints, which are, in fact, only

greater and less intensities of whiteness, are those we observe in the clouds in an ordinary cloudy day, with

occasional gleams of sunshine. From the most sombre shadows to the snowy whiteness of those cumulus-

shaped clouds on which the sun immediately shines, we have nothing but a series of whites, or greys, repre-
sented by such combinations as R + Y + B, 2R+2 Y + 2 B, &c. ; orn (R + Y + B) which, for brevity, we may
represent by n W. To be satisfied of this we need only look through a tube blackened on the inside to prevent

surrounding objects influencing our judgments ; and any small portion thus insulated of the darkest clouds

will appear to differ in no respect from a portion similarly insulated of a sheet of white paper more or less

shaded.

The various intensities of pure reds, yellows, and blues are represented by n R, n Y, and n B respectively.

They are rare in nature ; but blood, fresh gilding, or gamboge moistened, and ultramarine may be cited as

examples of them. Scarlets and vivid reds, such as vermilion and minium, are not free from a mixture of

yellow, and even of blue ; for all the primary colours are greatly increased in splendour by a certain mixture

of white, and whenever any primary colour is peculiarly glaring and vivid, we may be sure that it is in some

degree diluted with white. The blue of the sky is white, with a very moderate addition of blue.

The mixture of red and yellow produces all the shades of scarlet, orange, and the deeper browns, when of

feeble intensity. When diluted with white, we have lemon colour, straw colour, clay colour, and all the brighter

browns ; the last-mentioned tints growing duskier and dingier as the coefficients are smaller.

The browns, however, are essentially sombre tints, and produce their effects chiefly by contrast with other

brighter hues in their neighbourhood. To produce a brown, the painter mixes black and yellow, or black and

red, (that is, such impure reds as the generality of red pigments,) or all three ; his object is to stifle light,

and leave only a residuum of colour. There u a brown glass very common in modern ornamental windows.

If examined with a prism, it is found to transmit the red, orange, and yellow rays abundantly, little green, and

no pure blue. The small quantity of blue, then, that its tint does involve, must be that which enters as a

component part of its green, (in this view of the composition of colours,) and its characteristic symbol may
thus be, perhaps, of some such form as 1 R + 9 Y + 1 B ; that is to say, (9 R + 8 Y) + 1 (R + Y + B ) , or an

orange of the character 9 R + 8 Y diluted with one ray of white. It must be confessed, however, that the

composition of brown tints is the least satisfactory of all the applications of Mayer's doctrine. He himself has

passed it unnoticed.

Combinations of red and blue, and their dilutions with white, form all the varieties of crimson, purple, violet,

rose colour, pink, &c. The richer purples are entirely free from yellow. The prismatic violet, when compared
with the indigo, produces a sensible impression of redness, and must therefore be regarded on th ;

,s hypothesis
as consisting of a mixture of blue and red rays.

Blue and yellow, combined, produce green. The green thus arising is vivid and rich ; and, when proper

proportions of the elementary colours are used, no way to be distinguished from the prismatic green. Nothing
can be more striking, and even surprising, than the effect of mixing together a blue and a yellow powder, or

of covering a paper with blue and yellow lines, drawn close together, and alternating with each other. The

elementary tints totally disappear, and cannot even be recalled by the imagination. One of the most marked

facts in favour of the idea of the existence of three primary colours, and of the possibility of an analysis of

white light distinct from that afforded by the prism, is to see the prismatic green thus completely imitated by
a mixture of adjacent rays totally distinct from it, both in refrangibility and colour.

The hypothesis of three primary colours, of which, in different proportions, all the colours of the spectrum
are composed, affords an easy explanation of a phenomenon observed by Newton, viz. that tints no way

distinguishable from each other may be compounded by very different mixtures of the seven colours into which

he divided it. Thus we may regard white light, indifferently, as composed of

b rays of pure red = R 1

c + d rays of orange (c red + d yellow) = O
e rays of pure yellow = Y'

/ + h rays of green (/yellow + h blue) = G'

g + i rays of prismatic blue ( yellow + i blue) = B

k rays of indigo, or pure blue = I 1

t + a rays of violet (I blue + a red) == V

R = a + b + c rays of pure red

rays of pure yellow

"i

> or of <

rays of pure blue J
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Light, and any tint capable of being' represented by x . R + y . Y + z B, may be represented equally well by

m . R' + n . O' + p . Y' + q . G' + r . B' + s . I' + t . V,

provided we assume m, n, p, &c., such as to satisfy the equations

mb+nc+ta = x; n d + p e + q f + rg = y ; q h + r i + s k + tl = z.

From what has been said we shall now proceed to show, that, without departing from Mayer's doctrine, any 518.

other three prismatic rays may still be equally assumed as fundamental colours, and all the rest compounded Dr.

^ s
"Xf

from them, provided we attend only to the predominant tint resulting, and disregard its dilution with white. J^reg

S 's

For instance, Dr. Young has assumed red, green, and violet as his fundamental colours ; and states, as an other prima-

experimental fact in support of this doctrine, that the perfect sensations of yellow and blue may be produced, ry colours,

the former by a mixture of red and green, and the latter by green and violet. (Lectures on Natural Philosophy,

p. 439.) Now, if we mix together yellow and white in the proportion of m yellow + n white, the compound
will produce a perfect sensation of yellow, unless m be small compared to n ; but, assuming white to be

composed as above, this compound is equivalent to

n R red + (m + n) Y yellow + n B blue.

On the other hand, if we mix together P such red rays (each of the intensity 6) and Q such green rays (each

consisting of yellow, of the intensity/, and blue of the intensity A) as are supposed in the foregoing article U

exist in the spectrum, we have a compound of

P . 6 red + Q . /yellow + Q . A blue,

and these will be identical with the former, if we take

7iR=P6,- (m + ) Y=Q/j nB = QA.

Eliminating Q from the two last of these, we get

JL, / JL
n

'

h
'

Y

for the relation between M and N. Now the only conditions to be satisfied are that M shall be positive, and

not much less than N ;
and it is evident that these conditions may be fulfilled an infinite number of ways by a

proper assumption of the ratio of /to A. In the same manner, if we suppose a mixture of M rays primary
blue = B with N rays of white (= R + Y + B) to be equivalent to P rays of prismatic green mixed with Q
of violet, we get the equation

_^L _L JL h Y
n

'''

a B
"

/ B

Suppose, for example, we regard white light as consisting of 20 rays of primary red, 30 of yellow, and 50 519.

of blue, and the several prismatic rays to consist as follows : Numerictl
'Iliutration.

Red 8 rays primary red = A.

Orange 7 red + 7 primary yellow = c + d.

Yellow 8 yellow = e.

Green 10 yellow + 10 primary blue = /-f A.

Blue 6 yellow + 12 primary blue = +'.

Indigo 12 blue = k.

Violet 16 blue + 5 primary red. = / + a.

Then will the union of 15 rays of such red with 30 of such green, produce a compound ray containing
15 X 8 = 120 of primary red, 30 x 10 = 300 of primary yellow, and 30 X 10 = 300 of primary blue; which
are the same as exist in a yellow, consisting of 6 rays of white combined with 4 of primary yellow. In like

manner, if 75 such green rays be combined with 100 such violet, the result will be 100 x 5 = 500 rays of

primary red, + 75 X 10 = 750 of primary yellow, + 75 x 10 -f 100 x 16 = 2350 of primary blue, which

together compose a tint identical with that which would result from the union of 25 rays of white with 22 of

primary blue ; that is to say, a fine lively blue. The numbers assumed above, it must be understood, are

merely taken for the sake of illustration, and are no way intended to represent the true ratios of the differently
coloured rays in the spectrum.
The analogy of the fixed lines in the solar spectrum might lead us to look for similar phenomena in other

sources of light. Accordingly, Fraunhofer has found, that each fixed star has its own particular system of dark
^

and bright spaces in its spectrum ; but the most curious phenomena are those presented by coloured flames, J
16"01

"^*
which produce spectra (when transmitted through a colourless prism) hardly less capricious than those afforded flames

"

oy solar light transmitted through coloured glasses. Dr. Brewster, Mr. Talbot, and others, have examined these
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Light, phenomena with attention ;

but the subject is not exhausted, and promises a wide field of curious research. Part !!.

** -v * The following facts may be easily verified : ^^^^^
521. t- Most combustible bodies consisting of hydrogen and carbon, as tallow, oil, paper, alcohol, &c. when

Flames of first lighted and in a state of feeble and imperfect combustion, give blue flames. These, when examined bv
combusti- the prism, by letting them shine through very narrow slits parallel to its edge, as described in Art. 487, all giveMes burning jnterrupted spectra, consisting, for the most part, of narrow lines of very definite refrangibility, either separated

by broad spaces entirely dark, or much more obscure than the rest. The more prominent rays are, a very narrow
definite yellow, a yellowish green, a vivid emerald green, a faint blue, and a strong and copious violet.

g22 2. In certain cases when the combustion is violent, as in the case of an oil lamp urged by a blow-pipe,

Burning (according to Fraunhofer,) or in the upper part of the flame of a spirit lamp, or when sulphur is thrown into

strongly. a white-hot crucible, a very large quantity of a definite and purely homogeneous yellow light is produced ; and
in the latter case forms nearly the whole of the light. Dr. Brewster has also found the same yellow light to be

produced when spirit of wine, diluted with water and heated, is set on fire ; and has proposed this as a means
of obtaining a supply of homogeneous yellow light for optical experiments.

523. 3. Most saline bodies have the power of imparting a peculiar colour to flames in which they are present,
Flames either in a solid or vaporous state. This may be shown in a manner at once the most familiar and most effi-

cac'ous> by tne following simple process : Take a piece of packthread, or a cotton thread, which (to free it from
saline particles should have been boiled in clean water,) and having wetted it, take up on it a little of the salt

to be examined in fine powder, or in solution. Then dip the wetted end of it into the cup of a burning wax
candle, and apply it to the exterior of the flame, not quite in contact with the luminous part, but so as to be
immersed in the cone of invisible but intensely-heated air which envelopes it. Immediately an irregular sput-
tering combustion of the wax on the thread will take place, and the invisible cone of heat will be rendered

luminous, with that particular coloured light, which characterises the saline matter employed.

524 Thus it will be found that, in general,

The colour Salts of soda give a copious and purely homogeneous yellow.
depends gajts Qf potasn nrive a beautiful pale violet.
chiefly on -,..,., ,1.1 ,.

the base -Salts of lime give a brick red, in whose spectrum a yellow and a bright green line are seen.

Salts of strontia give a magnificent crimson. If analyzed by the prism two definite yellows are seen, one
of which verges strongly to orange,

Salts of magnesia give no colour.

Salts of lithia give a red, (on the authority of Dr. Turner's experiments with the blow-pipe.)
Salts of baryta give a fine pale apple-green. This contrast between the flames of baryta and strontia is

extremely remarkable.

Salts of copper give a superb green, or blue green.
Salt of iron (protoxide) gave while, where the sulphate was used.

Of all salts, the muriates succeed best, from their volatility. The same colours are exhibited also when any of
the salts in question are put (in powder) into the wick of a spirit lamp. If common salt be used, Mr. Talbot
has shown that the light of the flame is an absolutely homogeneous yellow ; and, being at the same time very
copious, this property affords an invaluable resource in optical experiments, from the great ease with which it

is obtained, and its identity at all times. The colours thus communicated by the different bases to flame, afford

in many cases a ready and neat way of detecting extremely minute quantities of them ; but this rather belongs
to Chemistry than to our present subject. The pure earths, when violently heated, as has recently been prac-
tised by Lieutenant Drummond, by directing on small spheres of them the flames of several spirit lamps urged
by oxygen gas, yield from their surfaces lights of extraordinary splendour, which, when examined by prismatic

analysis, are found to possess the peculiar definite rays in excess, which characterise the tints of flames coloured

by them ; so that there can be no doubt that these tints arise from the molecules of the colouring matter reduced
to vapour, and held in a state of violent ignition.
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PART III.

OF THE THEORIES OF LIGHT.

Light. AMONG the theories which philosophers have imagined to account for the phenomena of light, two principally part ni.

v-^^ have commanded attention ;
the one conceived by Newton, and called from his illustrious name, in which light \^.-^~m.

is conceived to consist of excessively minute molecules of matter projected from luminous bodies with the 525.

immense velocity due to light, and acted on by attractive and repulsive forces residing in the bodies on which

they impinge, which turn them aside from their rectilinear course, and reflect and refract them according to

the laws observed. The other hypothesis is that of Huygens, and also called after his name ; which supposes

light to consist, like sound, in undulations, or pulses, propagated through an elastic medium. This medium is

conceived to be of extreme elasticity and tenuity ; such, indeed, that though filling all space, it shall offer no

appreciable resistance to the motions of the planets, comets, &c. capable of disturbing them in their orbits. It

is, moreover, imagined to penetrate all bodies ; but in their interior to exist in a different state of density and

elasticity from those which belong to it in a disengaged state, and hence the refraction and reflexion of light.

These are the only mechanical theories which have been advanced. Others, indeed, have not been wanting ;

such as Professor Oersted's, who, in one of his works, considers light as a succession of electric sparks, or a

series of decompositions and recompositions of an electric fluid filling all space in a neutral or balanced state,

&c. &c. In this part, however, we propose only to give an account of the Newtonian and Huygenian theories,

so far as they apply to the phenomena already described ; and thus prepare ourselves for the remaining more

complex branches of the History of the Properties of Light, which can hardly be understood, or even described,

without a reference to some theoretical views.

I. Of the Newtonian or Corpuscular Theory of Light.

Postulata. 1. That light consists of particles of matter possessed of inertia and endowed with attrac-

tive and repulsive forces, and projected or emitted from all luminous bodies with nearly the same velocity,

about 200,000 miles per second.

2. That these particles differ from each other in the intensity of the attractive and repulsive forces which

reside in them, and in their relations to the other bodies of the material world, and also in their actual masses,

or inertia.

3. That these particles, impinging on the retina, stimulate it and excite vision. The particles whose

inertia is greatest producing the sensation of red, those of least inertia of violet, and those in which it is inter-

mediate the intermediate colours.

4. That the molecules of material bodies, and those of light, exert a mutual action on each other, which

consists in attraction and repulsion, according to some law or function of the distance between them ; that this

law is such as to admit, perhaps, of several alternations, or changes from repulsive to attractive force ; but

that when the distance is below a certain very small limit, it is always attractive up to actual contact ;
and that

beyond this limit resides at least one sphere of repulsion. This repulsive force is that which causes the

reflexion of light at the external surfaces of dense media ; and the interior attraction that which produces the

refraction and interior reflexion of light.

5. That these forces have different absolute values, or intensities, not only for all different material bodies,

but for every different species of the luminous molecules, being of a nature analogous to chemical affinities, or

electric attractions, and that hence arises the different refrangibility of the rays of light.

6. That the motion of a particle of light under the influence of these forces and its own velocity is regu-
lated by the same mechanical laws which govern the motions of ordinary matter, and that therefore each particle

describes a trajectory capable of strict calculation so soon as the forces which act on it are assigned.

7. That the distance between the molecules of material bodies is exceedingly small in comparison with the

extent of their spheres of attraction and repulsion on the particles of light. And
8. That the forces which produce the reflexion and refraction of light are, nevertheless, absolutely insensible

at all measurable or appreciable distances from the molecules which exert them.

9. That every luminous molecule, during the whole of its progress through space, is continually passing

through certain periodically recurring states, called by Newton fits of easy reflexion and easy transmission, in

virtue of which (from whatever cause arising, whether from a rotation of the molecules on their axes, and the

consequent alternate presentation of attractive and repulsive poles, or from any other conceivable cause) they
are more disposed, when in the former states 01 phases of

'

their periods, to obey the influence of the repulsive
or reflective forces of the molecules of a medium ; and when in the latter, of the attractive. This curious and

delicate part of the Newtonian doctrine will be developed more at large hereafter.
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Ijgr.t. It is the 7th and 8th of these assumptions only which render the course pursued by a luminous molecule,

'>art

^^-v -^ under the influence of the reflective or refractive forces, capable of being reduced to mathematical calculation ;

^
527. for it follows immediately from the 8th, that, up to the very moment when such a molecule arrives in physical

contact with the surface of any medium, it is acted on by no sensible force, and therefore not sensibly deviated

from its rectilinear path ; and, on the other hand, as soon as it has penetrated to any sensible depth within the

surface, or among the molecules, by reason of the 7th of the above postulates, it must be equally attracted and

repelled by them in all directions, and therefore will continue to move in a right line, as if under the influence

of no force. It is only, therefore, within that insensible distance on either side the surface, which is measured

by the diameter of the sphere of action of each molecule, that the whole flexure of the ray takes place. Its

trajectory then may be regarded as a kind of hyperbolic curve, in which the right lines described by it, previous
and subsequent to its arrival at the surface, are the infinite branches, and are confounded with the asymptotes,
and the curvilinear portion is concentered as it were in a physical point. Now, in explaining the phenomena
of reflexion and refraction, it is not the nature of this curve that we are called on to investigate. This will

depend on the laws of corpuscular action, and must necessarily be of great complexity. All we have to inquire,
is the direction the ray will ultimately take after incidence, and the final change, if any, in its velocity.

528. Let us, then, consider the motion of a molecule urged to or from the surface of a medium by the united

Motion of a attractions or repulsions of all its particles acting according to any conceivable mathematical law. And, first,

luminous
jj js evident, that supposing the surface mathematically smooth, and the number of attractive or repulsive

ider

U

the Part icles of which it consists, infinite, their total resultant force on the luminous molecule will act in a

influence of direction perpendicular to the surface , and will be insensible at all sensible distances from the surface, provided

any forces, the elementary forces of each molecule decrease with sufficiently great rapidity as the distances increase. This

condition being supposed, let x and y be the coordinates of the molecule at any assigned instant ; the plane of

the x and y being supposed to coincide with that of its trajectory, out of which plane there is evidently no force

to turn it, and which must of course be perpendicular to the surface of the medium in which x is supposed
to lie : y then will be the perpendicular distance of the luminous molecule from this surface, and Y (some
function of y decreasing with extreme rapidity) will represent the force urging it inwards, or towards the surface

when the molecule is without, from when within the medium. Therefore, by the principles of Dynamics, sup-

posing d t to denote the element of the time, we shall have for the equations of the motion

dt* dt*

and hence, multiplying the first by dx, the second by dy, adding and integrating, we get

dx* + rfy* /,,
-r - - +2 / Y d y = constant.

Now, c being the velocity of the molecule, we have t>
4 =

j
, and therefore this equation becomes

/
c* = constant 2 I Y d y.

It is, however, only with the terminal velocity, or that attained by the light after undergoing the total action of

the medium, that we are concerned, and therefore if we put V for its primitive, or initial, and V for its terminal

velocity, we shall have, by extending the integral from the value of y at the commencement of the ray's motion

(y ) to its value at the end (y;),

- V= - 2 fa dy. (6)

Since y and y t
are supposed infinite, and since the function Y decreases by hypothesis with such rapidity as to

become absolutely insensible for all sensible values of y, it is clear that we may take y = + CD for the first

limit of the integral in all cases. With regard to the other, we have now to distinguish two principal

cases :

529. The first is that of reflexion, where the ray, no matter whether before its arrival at the surface, or at reaching
Case of re- it, or even after passing some small distance into the medium, is turned back by the prevalence of the repulsive
tuion. force, and pursues the whole of its course afterwards without the medium. Now in this case if we resolve the

integral /"Y dy into its elements, these, in the approach of the molecule to the surface, may be represented as

follows,

&c . + Y' x - d y + Y" x - d y + Y'" x - dy +&c

But in the recess of the molecule, the values of y increase again by the same steps as they before diminished
and become identical with the former ones; and Y', Y", &c., the values of Y corresponding to the successive

values of y, remain therefore the same, both in size and magnitude ; the corresponding elements of the integral

generated during the recess of the molecule will be then

&c. + Y' x -f d y + Y" x + d y + Y'" x + d y + &c.
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L 1|L So that, combining both, the latter exactly destroy the former, and giveyY d y when extended from one end Par HI-

"-V~"/
to the other of the trajectory. Thus we have, in the case of reflexion,

v "V~~*'

\'t _ Vs = 0, or V = V.

The second case is that in which the whole course of the ray after incidence lies within the medium, or the case 530.

of refraction. Here the values of y before incidence are all positive, and after, all negative; and, moreover, the Case of

change of sign in dy which happened in the case of reflexion, does not here take place. Hencey' Ydy must refraction.

be extended from -\-
oo to oo , and its value will not vanish, but (on account of the rapid decrease of the

function Y) will have some finite value. Now this can only be dependent on the arbitrary quantities which

enter into the composition of Y ;
in other words, on the nature of the medium and the ray, and not at all on the

constants which determine the direction of the ray with respect to the surface, (as its inclination or the position
of the plane of incidence.) Hence we may suppose J"Y dy = \ k V2

, where k is a constant independent of

the direction of the ray, and determined only by its nature and that of the medium, and we shall have

putting v'l -(- k = fi.

Hence we see that both in refraction and reflexion, on this hypothesis, the velocity of the ray after deviation 531.
is the same in whatever direction the ray be incident, viz. in a given ratio to the velocity before incidence, this Law of

'ratio being one of equality in the case of reflexion. velocities.

Let us next consider the direction of the ray after flexure. To this end let = the angle made by its path 55^.
, Direction at

at any moment with the perpendicular to the surface, then will sin =
, putting ds for -v/dar4 -)- dy\ the

'lleray afte*

element of the arc. Now if we integrate the equation r-^-
= once we get = constant = c, and

d t tit

d x = c d t, wherefore sin =
;

. But x = -, therefore sin = . Let therefore n and 0, repre-a s \ a t r>

sent the initial and terminal values of 6, or the angles of incidence and reflexion, or refraction of the rectilinear

oortions of the ray, and we get Coustancy
of ratio of

sin = , and sin 0,
= -L !

^"
f

'""AV V cidence and

. ,. ... refraction.
and dividing one by the other

sin6 V
sin

0,
V

That is to say, the sines of ircidence and refraction, or reflexion, are to each Other in a constant ratio, viz. the
inverse ratio of the velocities of the ray before and after incidence.

Thus we see the Newtonian hypothesis satisfies the fundamental conditions of refraction and reflexion without 533.

entering into any consideration respecting the laws of the refracting and reflecting forces, or even the order of
their superposition. There may be as many alternations of attraction and repulsion as we please, and the
reflected or refracted ray may therefore, prior to its final recess from the surface, make any variety of undulations;
all that is required is the extremely rapid decrease of the function Y expressing the total force before the distance
attains a sensible magnitude.
Hence also, V and V being the velocities before and after incidence, and p the index of refraction, we have 534.

which shows, that when a ray passes from a rarer medium to a denser, its velocity is increased, and vice vend.
Moreover, we have 535_

ys _ ys / V \* 2 /* Y d ll
Refractive

V*
~
\ V~)

~ ~^ ~ '

medfum.
*

Now if we suppose the form of the function Y to be the same for all media, and that they differ in the energy
of action only by reason, first, of a greater density, owing to which more molecules are brought within the

sphere of activity ; and, secondly, by reason of a greater or less affinity, or intensity of action of each molecule,
we may suppose Y to be represented by S . n . (y), where S is the specific gravity, or density, n the intrinsic
refractive energy of the medium, and (y) a function absolutely independent of the peculiarities of the medium,
and the same for all natural bodies. Hence f \ dy=S .n.f <j>(y) d y = S .n . constant because

f (y) ^y taken from y = -j-cctoy= cc win nOw be an absolute numerical constant. We have then,

according to this doctrine,

/* !. V*

S '2 . constant
'

If ft be the refractive index of a given standard ray out of a vacuum, V the velocity of that ray in vacuo is known,
and is also an absolute constant ; so that n, the intrinsic refractive power of the' medium is proportional to

voi. iv. 3 M
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* 1

_^ . .. -- . Such is Newton s idea of the refractive power of a medium as differing from its

specific gravity

efractive index. It rests, however, on a purely hypothetical assumption, that of the similarity of form of the

law of force for all media, respecting which we can be said to know nothing whatever. For a table of its values

for different media, see the Collection of Tables at the end of this Essay.
536. The constancy of the ratio of the sines of incidence and refraction has here been derived by direct integration

Principle of of the fundamental equations. There is, however, another mode of deducing this important law, much more
least action

c jrcujtOus, it is true, in this simple case, but which offers peculiar advantages in the more complicated ones of

double refraction ; and which, therefore we shall here explain, to familiarize the reader beforehand with its

principle and mode of application. It consists in the employment of what is called, in Dynamics, the principle

of least action, in virtue of which the sum of each element of the trajectory described by any moving molecule

multiplied by the velocity of its description (or the integral fv d s) is a minimum when taken between any two
fixed points in the trajectory. The trajectory described by any luminous molecule may be regarded as consisting
of two rectilineal portions, or hyperbolic branches, confounded with their asymptotes, and one curvilinear one
concentrated in a space of insensible magnitude, a physical point. Within this point the whole operation of the

flexure of the ray, however complicated, is performed ; and here the velocity is variable. In the branches it is

uniform. Suppose, then, A and B to be any two fixed points in these, taken as points of departure and arrival

of a ray, and let C be the point in the surface of a reflecting or refracting medium where the flexure takes place,
and suppose A C = S, B C = S' and let a be the excessively minute curvilinear portion of the ray at C, and v

the variable velocity with which it is described, V and V being those with which S and S' are described. Then

may the integral fvd s be resolved into the three portions f\ dS + fv da +_/"V'd S'. Of these the second

is utterly insensible, by reason of the minuteness of a, and the other two, since V and V are constant, become

merely V.S+V. S'.

537. The position of C, then, with respect to A and B, will be determined by the condition V . S + V. S 1 = a

minimum, A and B being supposed fixed, and C any how variable on the surface. Now, in the case before us,

V the velocity of the light before, and V that after incidence, are both, as we showed in Article 529 and 530,

independent of the direction of the incident and reflected or refracted rays, or of the position of C ; and,

therefore, are to be considered as absolute constants in this problem of minima, which is thus reduced to a

simple geometrical question. Given A and B to find C, a point in a given plane, such that V (=r constant) x
A C + V (== constant) x B C shall be a minimum. Nothing is easier than the solution. Put a, b, c, a 1

, b', c
1

for the respective coordinates of A and B, and x, y, o for that of C, taking the given plane for that of the x, y.

Solution of Then __ __ ____
thegeom* V . S + V . S' . = V . */(* -) + (y

-
6) + e* + V . V(x of)* + (w_4') + c

tried pro-

minlrnum is to be a minimum by the variation of x and y, independent of each other. This gives, by differentiation,

' -
*) dx + (&'

- y) dy1 = 0;

and this, since x and y are independent, must vanish, whatever values are assigned to d x and d y, therefore we
must have separately

Jl (_*)+ X- (rf-*) = 0; JL
(6
_ y)+ _|L (6'_y) =0. (d)

These give, respectively,

S' V a - x S' V b 1 - y

IT V a-x '
S 'V b -y

'

by equating which we get

or multiplying out and reducing
6 b' a b' 5 a'

a ^~ QI a "* c

and, consequently,

a a

This equation expresses, that the two portions S and S' of the ray before and after incidence on *.he surface at

C both lie in one plane, and that this plane is perpendicular to the surface, or to the plane of the coordi-

nates x, y.

538 Again, if we resume the equations (d) and putting them under the form

Constancy V' V
of the ratio S' (a

- x) = rr- S (a
1 - *) ; S' (6

-
y) = - -=- (b'

-
y) . S.

of the Mues V
deduced.

gquare and ad(J thenj we gw
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Now if we put for the angle made by the portion S with a perpendicular to the surface, or the angle of inci-

dence of the ray, and Q' for that made by the other S' with the same perpendicular, or the angle of emergence,
we shall have _

sin e = ^^F-f (6
-

ir)
and sin ,, =

^ - *) + V -jOj
m

So that the above equation is equivalent simply to

V
sin = -rrr- . sin fft

which is the same with the result before obtained.

The principle of least action, then, in the case before us, has enabled us to dispense with one integration of 539.

the differential equations expressing the motion of the luminous molecule ; and its applicability to this
purpose Advantages

depends, as we have seen, on the relation between V and V ; the velocities of the light, before and after inci- afforded by

dence, being known. This relation has here been deduced & priori; but had it been merely known, as a
*

{J""e

c

a

l

^t

matter of fact, a conclusion established by experiment, it would not be on that account the less applicable to acti n.

the same purpose, and the laws of refraction and reflexion would be derivable from it by the same process.

There would, however, be this main difference ; that, in the latter case, we should have no occasion to employ
the differential equations at all, and therefore none to enter into any consideration of the forces acting on the

luminous molecule, or their mode of action. The principle of least action establishes, independent of, and

anterior to, all particular suppositions as to the forces which operate the flexure of the ray, (further than that they
are functions of the distances from their origins or centres,) an analytical relation between the velocities before

and after incidence, and the directions of its direct and deviated branches ; a relation nearly as general as

the laws of dynamics themselves, and expressive, in fact, of only the one condition above mentioned. And this

relation, from its form, enables us, whenever the relation of the velocities is known, to determine that of the

directions of the two portions of the ray, and vice versd, without having recourse to the differential equations at

all. In the simple case before us this may seem a needless refinement, the equations being so simple. It is Applicable

otherwise, however, in the theory of double refraction. There the forces in action are altogether unknown, not to other

only in respect of their intensity, but of their directions ; and so far, therefore, from being able in that theory to case$ -

integrate the equations of the ray's motion, we cannot even express them analytically. The principle we are

now considering is, in such a case, all the ground we have to stand upon ; and has been ingeniously and ele-

gantly applied by Laplace, in that theory, to reduce the complicated laws of double refraction under the

dominion of analysis.
In fact, suppose that the velocities of the incident and deviated portions of the rays, instead of being the same 540.

in every direction, varied with the positions of these portions with respect to the surface of the medium, or to Mode of in

any fixed lines or axes in space. Then will V and V, instead of being invariable, be represented by functions application

of the three coordinates of the point C, either rectangular, as x, y, z ; or polar, as 0, 0, and 7 ; and the portions
ln gcneral -

S and S' of the rays intercepted between A and B respectively, and the surface at C, will, in like manner, be

functions of the same coordinates. So that the condition

V . S -f V . S 1 = a minimum

will afford, by differentiation and putting the differential equal to zero, an equation of the form iidx + M<y
4- X d z = 0, or Ld0 + Md0 + Nd<y=:0, as the case may be. The equation of the surface also being
differentiated affords another relation of the same kind ; and these being the only conditions to which the diffe-

rentials dx, dy, dz are subject, we may eliminate one, and put the coefficients of the remaining ones separately

equal to zero. Thus we get two equations between the coordinates, which, combined with that of the surface,

suffice to determine them, i. e. to fix the point C at which the ray A C must meet the surface, in order that, being
there deviated by the action of the medium, it may, after flexure, proceed to B ; and thus the problem of

reflexion or refraction may be resolved in all its generality, so soon as the nature of the functions V, V is

known. But to return to the case of ordinary reflexion and refraction, from which this is a digression.
Let us consider, a little more in detail, what may be conceived to happen to a ray at the confines of the surface 541.

of a medium. We may suppose, then, that there exist a series of laminar spaces, or strata, within which the Course of a

attractive and repulsive action of the molecules of the medium alternately predominate. Of these there may rayj
n tl)e

,

be any number, and either may be exterior to the rest. It is, in fact, the assemblage of these laminae which is
re f)ect jr?

to be regarded as the surface of the medium. Suppose now a ray A a (fig. 119) to be moving towards the and retract-

medium. Its course will be rectilinear up to a, where it first comes within the action of the medium. If the i? medium

first stratum into which it enters be one of attraction, its course will be bent as a b into a curve concave towards
'
race(l

the surface, and its velocity in the direction perpendicular to the surface will be increased. Arrived at ft let the >s'

force change to repulsive ; the trajectory will have at 6 a point of contrary flexure, the portion b c within this

lamina will be convex to the surface, and the velocity towards the surface will be diminished in the whole

progress of the ray througli it, and so for any number of alternations. Let us now suppose, that in passing

through any repulsive lamina, as C, the repulsion should be so strong, or the original velocity of approach to the

surface so small, as that the whole of it shall be destroyed. In this case the ray for a moment will be moving
as at C, parallel to the surface, but the repulsive force continuing its action will turn it back ; and the forces

3 M 2
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now being all equal to what they were before, but acting in a contrary direction with respect to the motion of Part III.

the molecule, it will describe a portion Cd' c' b' a' B similar, and equal to the portion on the other side of C. Wv"**
This is the case of reflexion. But suppose, as in fig. 120, the ray to have such an initial velocity of approach,
or the repulsive forces to be so feeble, compared to the attractive, that before its whole velocity perpendicular ta
the surface is destroyed, it shall have passed through all the strata of attraction and repulsion, and entered
the region where the forces of all the molecules are in equilibrium, as at e. In this case the remainder of its
course will be rectilinear, and wholly within the medium. This is the case of refraction. In both cases, it is

the final course it takes, or the direction of the asymptotic branches a' B or e B, about which only we have any
knowledge ; of the number and nature of the undulations of its course between a and a', or e, we know
nothing.
The whole of this reasoning applies equally to the motion of a luminous molecule at the confines of two

media, as at the surface separating one medium from a vacuum. The molecules of either medium being sup-
posed uniformly distributed, and acting equally in all directions around them, the resultant of all their forces
on the luminous particle must be perpendicular to the common surface, which is all that is required in the

foregoing theory.
In the Corpuscular doctrine, a ray of light is understood to mean a continued succession or stream of mole-

cules, all moving with the same velocity along one right line, and following each other close enough to keep the
retina in a constant state of stimulus, i. e. so fast, that before the impression produced by one can have time to
subside another shall arrive. It appears, by experiment, that to produce a continued sensation of light, it is

sufficient to repeat a momentary flash about 8 or 10 times in a second. If a red-hot coal on the point of a
burning stick be whirled round, so as to describe a circle, and the velocity of rotation be greater than 8 or 10
circumferences per second, the eye can no longer distinguish the place of the luminous point at any instant, and
the whole circle appears equally bright and entire. This shows, evidently, that the sensation excited by the light
falling on any one point of the retina, must remain almost without diminution till the impression is repeated
during the subsequent revolution of the luminary. Now, if uninterrupted vision can be produced by momen-
tary impressions, repeated at intervals so distant as a tenth of a second, it is easy to conceive that the indivi-
dual molecules of light in a ray will not require to follow close on each other to affect our organs with a
continued sense of light. As their velocity is nearly 200,000 miles per second, if they follow each other at
intervals of 1000 miles apart, 200 of them would still reach our retina per second, in every ray. This conside-
ration frees us from all difficulties on the score of their jostling, or disturbing each other in space, and allows of
infinite rays crossing at once through the same point of space without at all interfering witli each other, espe-
cially when we consider the minuteness which must be attributed to them, that (moving with such swiftness)
they should not injure our organs. If a molecule of light weighed but a single grain, its inertia would equal
that of a cannon ball of upwards of 150 pounds weight, moving at the rate of 1000 feet per second. What
then must be their tenuity, when the concentration of millions upon millions of them, by lenses or mirrors, has
never been found to produce the slightest mechanical effect on the most delicately contrived mechanism, in

experiments made expressly to detect it. (See Mr. Bennet's Experiments, Phil Tram. 1792, vol. Ixxxii. p. 87.)
When a ray of light falls on a reflecting or refracting surface, since all its molecules move with equal velocity

and are incident in the same line, it would seem that whatever took place with one should equally happen to
all

; and that, if the first underwent reflexion, all should do so ; while, on the other hand, if one could penetrate
the surface, and pursue its course entirely within the medium, all ought to do the same. This, however, is

contrary to experience ; as whenever a ray of light is incident on the exterior surface of any medium, a part
only is reflected, and the rest enters the medium. No theory can be satisfactory which does not render a good
account of so principal a fact. The Newtonian doctrine accounts for it by the fits of easy reflexion and trans-

mission. To understand this explanation we must recur to the ninth postulate, (Art. 526,) and suppose two
molecules to arrive at the surface under the same incidence, the one in a fit of easy reflexion, the other in one
of easy transmission. The former will then be more affected by the repulsive forces, the latter by the attractive
of the molecules of the medium ; and hence it is evident, that (he one may be reflected under circumstances of
incidence, &c. in which the other will penetrate the surface and be refracted. Now it will depend entirely on
the nature of the medium, and the initial velocity of a luminous molecule towards it, (which is as the cosine of
the angle of incidence,) whether it will require the whole exertion of its repulsive forces, in their most energetic
manner, to destroy that velocity and produce reflexion, or only a part of them. In the former case only such
molecules as arrive in the most favourable disposition to be reflected, or in the most intense phase of a fit of

easy reflexion, can be reflected. In the latter, such as arrive in less favourable dispositions, or in less intense

phases of fits of reflexion, may be reflected ; and if the repulsive forces of the medium be very intense, in

comparison with the attractive ones, or if the obliquity of incidence be so great as to give the molecule a very
small velocity perpendicular to the surface, even those molecules which arrive in the less energetic phases of fits

of easy transmission may still be unable to penetrate the strata of repulsion.
Hence, then, we see that the proportion of the molecules of a ray falling on the surface of a medium in every

possible state or phase of their fits, which undergo reflexion, will depend, first, on the nature of the medium on
whose surface they fall, or if it be the common surface of two, then on both ; secondly, on the angle of incidence.
At great obliquities, the reflexion will be more copious ; but even at the greatest, when the incident ray just
grazes the surface, it by no means follows that every molecule, or even the greater part, must be reflected. Those
which arrive in the most favourable phases of their fits of transmission, will obey the influence of small attrac-

tive forces, in preference to strong repulsive ones ; but it will depend entirely on the nature of the media whether
the former or the latter shall prevail, the fits in the Newtonian doctrine being conceived only to dispose the
luminous molecules, other circumstances being favourable, to reflexion or transmission ; to exalt the forces which
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Light, tend to produce the one and to depress those which act in favour of the other, but not to determine, absolutely. Part III.

* v"1"1* 'ts reflexion or transmission under all circumstances.
^^Tifi""""'

These conclusions are verified by experience. It is observed, that the reflexion from the surfaces of transparent Mo.

(or indeed any) media, becomes sensibly more copious as the angle of incidence increases ;
but at the external

^

n

^_
surface of a single medium is never total, or nearly total. In glass, for instance, even at extreme obliquities, a

,,;ent

Very large portion of the light still enters the glass and undergoes refraction. In opaque media, such as polished

metals, the same holds good ; the reflexion increases in vividness as the incidence increases, but never becomes

total, or nearly so. The only difference is, that here the portion which penetrates the surface is instantly absorbed

and stifled.

The phenomena which take place when light is reflected at the common surface of two media, are such as from

the above theory we might be led to expect, with the addition, however, of some circumstances which lead us to ^^"^
J'mit the generality of our assumptions, and tend to establish a relation between the attractive and repulsive surface O f

forces, to which the refraction and reflexion of light are supposed to be owing. For it is found, that when two two me(iia.

media are placed in perfect contact, (such as that of a fluid with a solid, or of two fluids with one another,) the

intensity of reflexion at their common surface is always less, the nearer the refractive indices of the media approach
to equality ; and when they are exactly equal, reflexion ceases altogether, and the ray pursues its course in the

second medium, unchanged either in direction, velocity, or intensity. It is evident, from this fact, which is

general, that the reflective or refractive forces, in all media of equal refractive densities, follow exactly the same

laws, and are similarly related to one another ; and that in media unequally refractive, the relation between the

reflecting and refracting forces is not arbitrary, but that the one is dependent on the other, and increases and

diminishes with it. This remarkable circumstance renders the supposition made in Art. 535, of the identity of

form of the function Y, or (y) expressing the law of action of the molecules of all bodies on light indif-

ferently, less improbable.
To show experimentally the phenomena in question, take a glass prism, or thin wedge of very small refracting 543.

angle (half a degree, for instance : almost any fragment of plate glass, indeed, will do, as it is seldom the two sides Phenomem
are parallel,) and placing it conveniently with the eye close to it, view the image of a candle reflected from the exhibited

exterior of the face next the eye. This will be seen accompanied at a little distance by another image, reflected

internally from the other face, and the two images will be nearly of equal brightness, if the incidence be not

very great. Now, apply a little water, or a wet finger, or, still better, any black substance wetted, to the pos-
terior face, at the spot where the internal reflexion takes place, and the second image will immediately lose great

part of its brightness. If olive oil be applied instead of water, the defalcation of light will be much greater,
and if the substance applied be pitch, softened by heat, so as to make it adhere, the second image will be totally
obliterated. On the other hand, if we apply substances of a higher refractive power than glass, the second image
again appears. Thus, with oil of cassia it is considerably bright ; with sulphur, it cannot be distinguished from
that reflected at the first surface; and if we apply mercury, or amalgam, (as in a silvered looking-glass,) the

reflexion at the common surface of the glass and metal is much more vivid than that reflected from the glass
alone.

The destruction of leflexion at the common surface of two media of equal refractive powers explains many ^49.

curious phenomena. If we immerse an irregular fragment of a colourless transparent body (as crown glass) in
|

a colourless fluid of precisely equal refractive power, it disappears altogether. In fact, the surface being only on the
'

visible by the rays reflected from it ; destroy this reflexion, and the object must cease to he seen, unless from any foregoing

opacity in its substance reflecting rays from its interior, which is not here contemplated. Hence, if the powder principles.

of any such substance De moistened with a fluid of the same refractive density, all the internal and external

reflexions at the surfaces of the small fragments of which it consists, which, blended and confused, present the

general appearance of a white opaque mass, will be destroyed, and the powder will be rendered perfectly trans- xranspa
.

parent. A familiar instance of this nature is the transparency given to paper by moistening it with water, or, rency of

still better, with oil ; paper is composed of an infinity of minute transparent, or nearly transparent fibres of a oiled paper

ligneous substance, having a refractive power probably not very different from some of the more refractive oils.

Its whiteness is caused by the confused reflexion of the incident rays at all possible angles, both internally and

externally, those which have escaped reflexion at one fibre, undergoing it among those beneath. If moistened
with any liquid, the intensity of these reflexions is weakened, and the more the more nearly its refractive power
approaches to that of the paper itself; so that a considerable number of rays find their way through it, and

emerge at the posterior surface. The transparency acquired by the hydrophane, by immersion in water, is, no
doubt, owing to this cause ; the water filling up the minute pores, and enfeebling the internal reflexion; and
Dr. Brewster, in a very curious and interesting Paper on the tabasheer, (a siliceous concretion found in sugar-
canes, and the lowest in the scale of refracting powers among solids,) has explained on this principle a number
of extraordinary phenomena exhibited on moistening that substance with various liquids, (see Philosophical
Transactions, 1819.)
The reasoning of Art. 529 applies, it is evident, equally to the case when a ray is reflected from the interior 550.

surface of a dense medium placed in air, and when from the exterior. The only difference is, that in the latter Total

case the reflexion is performed by the action of repulsive, and in the former by that of attractive forces. The in 'ern
.

af

course of a ray internally reflected may be conceived, as in fig. 121 and 122 ; and the reflexion may take place
re

in any of the attractive regions, or laminae, whether within or without the true surface, i. e. the last layer of

molecules which constitute the medium. There is one case of internal reflexion, however, too remarkable to be

passed without more particular notice. It is, that when the interior angle of incidence exceeds the limiting

angle whose sine is , (see Art. 183 d seq. ;) and when, as we there stated, as a result of experiment, the
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Light. internal reflexion is total. To see how this happens, let us consider a ray incident exactly at this angle, and

v --
Nl

' in the most intense phase of its fit of transmission. Then will it be refracted ; and, since the angle of refraction

must be just 90, (by reason of the generality of the demonstration of the law of refraction in Art. 529,) it

will emerge, grazing the surface, exactly at the extreme boundary of the outermost region C B, (fig. 123,) where

all sensible action ceases. Its initial velocity under these circumstances in the direction perpendicularly to the

surface, is barely sufficient to carry it up to this extreme limit, where it is quite annihilated. If, then, we
conceive another ray, also incident in the most intense phase of its fit of transmission, but at an anffle more

oblique by an infinitely small quantity, then, since its initial velocity at right angles to the surface is less.it will

be destroyed before it has quite reached this limit, and the ray will therefore begin to move parallel to the

surface, just within the last limit to the sphere of its action.

551. Now the last action which the surface exerts, or that force which extends to the greatest distance from it,

The outer- cannot be otherwise than attractive; for, first, were it repulsive, it is evident that no ray incident externally at
most sphere an extreme incidence, (i. e. approaching indefinitely to 90,) could by possibility escape reflexion ; and, secondly,

necessarily
no rav on tna' supposition could emerge from within the medium, without having at its emergence an obliquity

attractive, to the surface greater than some finite angle, the last action of the medium being in this case to bend it outwards,
both which consequences are contrary to fact. Or we may consider the point thus, Since a ray incident within*
at the limiting angle, emerges, if it emerge at all, parallel to the surface ;

and since every point in the curve

described by it previous to the instant of emergence is nearer to the medium than the line of its ultimate

direction, it is geometrically impossible that the curvature immediately adjacent to the point of emergence should

be otherwise than concave towards the medium ; and must, therefore, of necessity be produced by a force directed

to it, i. e. an attractive one.
552. Hence, the luminous molecule we have been considering, will be within the attractive region at the moment

when its perpendicular motion is destroyed ; it will, therefore, be turned inwards, as at the dotted line fig.

123, and be reflected. A fortiori, therefore, win every molecule incident in a less intense phase of a fit

of transmission, or in one of reflexion, as well as every one incident at a more oblique incidence, i. e. with

a less initial perpendicular velocity, be reflected. Those in which the circumstances are most favourable to

transmission will reach the exterior attractive region, as in fig. 123. Others in which they are less so will be
reflected in some intermediate region, as in fig. 122, while those which are incident at extreme internal obli-

quities, or in the most intense phases of fits of reflexion, will have their courses as represented in fig. 121.
553. The conclusion at which we have arrived in the last Art. that the attractive force of a medium on the molecules,
:l

.

re "
of light extends to a greater distance than the repulsive, is, as we have seen, a necessary consequence of dyna-

!JmiVr"flx-
m 'cal principles ; and so far from being in opposition to Newton's doctrine of reflexion, as has been said, is in

ion from perfect accordance with it. Dr. Brewster has been led to the same conclusion by peculiar considerations

water. grounded on his experiments on the law of polarization, (Phil. Trans., 1815, p. 133,) and has applied it to

explain a curious fact noticed by Bouguer, viz. that although water be much less reflective than glass at small

incidences, yet at great ones (as 87) it is much more so. Now, supposing the light to have undergone the

whole effect of the refracting forces, in both cases before it suffers reflexion, its incidence, when it reaches the

region of the repulsive forces, will have been diminished in the case of glass, to 57 44', but in that of water

only to 61 5', and therefore being incident more obliquely on the water it ought to be more copiously reflected.

Whatever we may think of the validity of this explanation, it is certainly ingenious, and the fact extremely
remarkable, and deserving of all attention.

554. To see the phenomena of total reflexion to the best advantage, lay down a right-angled glass prism on a

Experiment black substance close to a window, with its base horizontal, as in fig. 124, and apply the eye close to the side,

showing the
looking downwards. The base will be seen divided into two portions, by a beautiful coloured arch like a

fT taf

6"1 ramDOW concave to the eye, the portion above the arch being extremely brilliant and vivid, and giving a reflexion

reflexion. f a" external objects no way to be distinguished from reality. On the other hand, the space within the

concavity of the bow is comparatively sombre, the reflexion of the clouds, &c. on that part of the base being
much less vivid. If, instead of placing it on a black body, we hold it in the hand, and place a candle below it,

this will be visible ; but (wherever placed) will always appear in some part of the base within the concavity of

the bow. Fig. 124 represents the course of the rays in this experiment, E being the eye, N G, OF, PD rays
incident through the farther side at various angles of obliquity on the base, and reflected to the eye at E, of

which O F is incident precisely at the limiting angle. It is obvious, that all the rays towards N incident on that

part of the base beyond F being too oblique for transmission will be totally reflected, while those incident

between F and A, being less oblique than is required for total reflexion, will be only partially so, a portion

escaping through the base in the direction D Q. Again, if we place a luminary at any point as L below the

base, it is manifest that to reach the eye, a ray from it must fall between A and F, as L D, and that no ray

falling on any part of the base between B and F can be refracted to E.

555. The coloured arch separating the region of total from that of partial reflexion, is thus explained. For,
Reflected

simplicity, let us suppose the eye within the medium, (to avoid considering the reflexion at the inclined surface
msmatic A C of the prism ;) and, first, considering only the extreme red rays, if we drop a perpendicular from the eye on

the base of the prism, and make this the axis of a cone, the side of which is inclined to the axis at the angle

whose sine is , (or the limiting angle for extreme red rays;) and if we conceive such ravs to emanate in

all directions from the eye, then all which fall without the circular base of this cone will be totally, but those

within only partially reflected. Thus, were there no other than such red rays of this precise refrangibility, the
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lagbt region of partial reflexion would be a circle whose radius = height of the eye above the base X tangent of the P"* in.

angle whose sine is - = = . In like manner, the radius of the circular space, within which only a
p V^- 1

TT TT

partial reflexion of violet rays takes place, is
-

, or- , being less than the value

of the same radius for the red rays. Hence, in the space between the two circles, the violet rays will be totally,

and the red only partially reflected ; and, therefore, the whole of this space will have an excess of violet light.

A similar reasoning holds good for the intermediate rays; and the shading away from the bright space without,

to the comparatively dark one within, will, in consequence, be performed by the abstraction first of the red, next

of the orange rays, and so on through the spectrum, leaving a residual light, which continually deviates more
and more from white, and verges to blue. If now we suppose each ray to be incident in the contrary direction

so as to be reflected to the eye instead of emanating from it, every thing will equally hold good, and the eye
will see a bright space without ; separated from an obscure space within the base of the cone, the transition from
one to the other being not sudden, but marked by a blue border, the colour of which is more lively towards the

Ulterior. Now such is the fact, with one difference, however, that the coloured arch appears slightly tinged
with pink on its convex side. This, as it is incompatible with theory, can be owing, it should seem, to no
cause but contrast ; a most powerful source of illusion in all the phenomena of colours, and of which this is,

perhaps, one of the most striking and curious instances. Newton (Optics, part ii. exp. 16) takes no notice of
this part of the phenomenon, (which was first observed and described by Sir W. Herschel,) though he gives the

same explanation of the rest with that here set down. The effect of refraction at the side B A of the prism
will somewhat modify the figure of the bow, giving it a tendency to a conchoidal form at great obliquities of
the emergent rays.

If the side B C of the prism be covered with black paper, and a bright scattered light be thrown on the base 555
from below, (as from an emeried glass applied with its rough side close to the base,) the converse of the above Transmitted

described phenomena will be seen. A totally black space will be seen beyond F, and a bright one within it. The prismatic

separation being marked by a bow of a vivid red colour, graduating through orange and pale yellow into white, the l)OW -

red being outwards. It is evident that this phenomenon is, in all its parts, complementary to that of the blue

bow seen by reflexion, and therefore requires no more particular explanation. It should be noticed, however, that

in this bow no appearance of blue or violet within its concavity is ever seen ; so that the effect which we
have above attributed to contrast in the reflected bow has nothing corresponding to it in the transmitted one.

The intensity and regularity of reflexion at the external surface of a medium, is found to depend not 5^7.

merely on the nature of the medium, but very essentially on the degree of smoothness and polish of its surface. Reflexion

But it may reasonably be asked, how any regular reflexion can take place on a surface polished by art, when we ^(j^;*"*
recollect that the process of polishing is, in fact, nothing more than grinding down large asperities into smaller

polished
ones by the use of hard gritty powders, which, whatever degree of mechanical comminution we may give them, explained.

are yet vast masses, in comparison with the ultimate molecules of matter, and their action can only be considered
as an irregular tearing up by the roots of every projection which may occur in the surface. So that, in fact, a

surface artificially polished must bear somewhat of the same kind of relation to the surface of a liquid, or a

crystal, that a ploughed field does to the most delicately polished mirror, the work of human hands. Now to

this question the Newtonian doctrine furnishes an answer quite satisfactory. Were the reflexion of light per-
formed by actual impact of its molecules upon those of the reflecting- medium, no regular ordinary reflexion

could ever take place at all, as it would depend entirely on the shape of the molecules, or asperities of the Light net

surface, and the inclinations of their surfaces to the general surface of the medium at the point of incidence, U^,'*^
1"*

what should be the direction ultimately taken by each particular ray. Now these must vary in every possible pact on
manner in uncrystallized bodies, so that in reflexion from the surfaces of these the light would be uniformly scat- bodies.

tered in every direction. On the other hand, in crystallized media, each molecule presenting only a limited

number of strictly plane surfaces, and the corresponding faces of all being mathematically parallel, reflexion

would indeed be regular ; but its direction would be regulated only by that of the incident ray and the position
of certain fixed lines within the crystal ; and would be quite independent of either the smoothness or the

inclination of the polished surfaces of it, whether natural or artificial ; add to which, that instead of the reflected

pencil of rays being single, it would in most cases be multiple. All these consequences are so contrary to fact, But bj

that it is evident we must suppose the distance to which the forces producing reflexion extend much greater *.
rces ***

not only than the size of, or interval between individual molecules, but even greater than the minute inequalities
or furrows in the artificially polished surfaces of media. Granting this, the difficulty vanishes ; for the average
action of many molecules, or many' corrugations, will present an uniformity, while individually they may offer

the greatest diversity. To illustrate this, we need only cast our eyes on fig. 125, where A B represents the

rough surface of a medium, and A C the radius of one of the spheres of attraction, or repulsive activity of a

single molecule A. Conceiving now the summits of all the elevations a, b, c, d to lie in a plane, let spheres be
described with their centres equal to A C. Then their intersections will generate a kind of mamillated surface

a ft ff S, which, however, if the radii of the spheres be at all considerable with respect to the distances of their

centres, will approach exceedingly near to a mathematical plane, infinitely more so than the surface A B need be

supposed. Hence, a ray of light impinging on the medium will come within the sphere of its action not at an

irregular surface, but nearly at a plane one ; and the resultant action of all the molecules in action, supposing
them distributed with uniformity over A B, will be perpendicular to this surface. The same will hold good of
the layer of molecules (however interrupted) immediately under the summits 6, c, d, &c., and ot all the other
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layers into which the whole surface can be divided. So that the essential conditions on which the Newtonian Prt AI.

doctrine of reflexion and refraction reposes, (viz. equality of force at equal distances from the general level of >

the surface, and the perpendicularity of its direction to that level,) still obtain.

559. It is evident that the inequalities in the mamillary surfaces above described will become more considerable as

Oblique their radii are diminished, or as the interval of their centres is greater, and in proportion will the regularity of
regular re- reflexion and refraction be interrupted. Hence too it follows, that the more oblique the incidence of the ray, the

"n
greater may be the roughness of the surface which will give a regular reflexion ; and this is perfectly'con-

tartaces. sonant to fact, as may be easily tried with a piece of emeried glass, which, although so rough as to give ntr

regular image at a perpendicular incidence, will yet give a pretty distinct one at great obliquities. The
reasons are, first, that a very oblique ray will not require to penetrate so far within the sphere of repulsion, to-

have its motion perpendicular to the surface destroyed ; and, secondly, that it cannot pass between two conti-

guous elevations or depressions of the imaginary surface a ft 7 c, but by reason of its obliquity must traverse
several of them, and thus undergo a more regular average exertion of the forces of the medium.

559. Thus the reflexion of light is explained on the Newtonian doctrine. But it may still be asked, how refraction

Regular at a surface artificially polished can ever be regular. In reflexion, the ray never reaches the asperities of the
refraction surface ; it undergoes their average action, equalized by distance, and mutually compensated. In refraction, it

aVfi if*
' s otherwise. Here the rays must actually traverse the surface, and must therefore actually pass through all

polished.
'ts inequalities at every possible angle of obliquity. The answer to this is equally plain. Neither refraction nor
reflexion are performed close to the surface, either wholly, or in great part. The greater part by far of the
flexure of the ray is performed (either internally or externally) at a distance, out of the reach of these irregu-
larities, and by the action of a much more considerable thickness of the medium than is occupied by them.
Their action must be compared to the effect of mountains on the earth's surface in disturbing the general force

of gravity. A stone let fall close to one of them, from a moderate height, follows not the true vertical but the

direction of the deviated plumbline, which is sensibly different. Whereas, if let fall from the moon to the earth's .

centre, it would pass among them, were they greater a thousand fold than they are, without experiencing any
sensible perturbation or change of direction in their neighbourhood.

560. In fact, however, no regular refraction can be obtained from surfaces sensibly rough, at all comparable to the

regularity of their reflexion. This may arise from the impossibility of a refracted ray penetrating the surface

at a sufficient degree of obliquity. It is, however, a remarkable fact, that the regular internal reflexion from a

roughened surface, even at extreme obliquities, is scarcely sensible, even in cases where the external reflexion at

the same obliquities is perfectly regular and copious. This would seem to indicate, that the forces which

operate the external reflexion of a ray exert their energy wholly without the medium.
b61. Whatever be the forces by which bodies reflect and refract light, one thing is certain, that they must be

Intensity of incomparably more energetic than the force of gravity. The attraction of the earth on a particle near its

forcei surface produces a deflexion of only about 16 feet in a secoiv ; and, therefore, in a molecule moving with the

-efractioif
ve'oc ' ty f "ght, would cause a curvature, or change of direction, absolutely insensible in that time. In fact,

we must consider, first, that the time during which the whole action of the medium takes place, is only that

within which light traverses the diameter of the sphere of sensible action of its molecules at the surface. To
allow so much as a thousandth of an inch for this space is beyond all probability, and this interval is tra-

versed by light in the part of a second. Now, if we suppose the deviation produced
1 2,672,000,000,000

by refraction to be 30, (a case which frequently happens,) and to be produced by a uniform force acting

during a whole second; since this is equivalent to a linear deflexion of 200,000 miles X sin 30, or of 100,000
miles = 33,000,000 x 16 feet, such a force must exceed gravity on the earth's surface 33,000,000 times.

But, in fact, the whole effect being produced not in one second, but in the small fraction of it above mentioned,

the intensity of the force operating it (see MECHANICS) must be greater in the ratio of the square of one

second to the square of that fraction ; so that the least improbable supposition we can make gives a mean
force equal to 4,969,126,272 X 10" times that of terrestrial gravity. But in addition to this estimate already
so enormous, we have to consider that gravity on the earth's surface is the resultant attraction of its whole

mass, whereas the force deflecting light is that of only those molecules immediately adjoining to it, and within

the sphere of the deflecting forces. Now a sphere of -rnW of an inch diameter, and of the mean density of

the earth, would exert at its surface a gravitating force only T,W x -r
JT-T

r- of ordinary gra-

vity, so that the actual intensity of the force exerted by the molecules concerned cannot be less than

1000 x earth s diameter
46>352,000,000) times the above enormous number, or upwards of 2 x 10"

1 inch

when compared with the ordinary intensity of the gravitating power of matter. Such are the energies concerned

in the phenomena of light on the Newtonian doctrine. In the undulatory hypothesis, numbers not less immense

will occur; nor is there any mode of conceiving the subject which does not call upon us to admit the exertion

of mechanical forces which may well be termed infinite.

ten Dr. Wollaston has proposed the observation of the angle at which total reflexion first takes place at the

common surface of two media, the index of refraction of one of which is known, as a means of determining
that of the other; and, in the Philosophical Transactions for 1S02, has described an ingenious apparatus which

gives a measure of the index required almost by inspection. If we lay any object under the base of a prisiu



LIGHT. 449

of flint glass with air alone interposed, the internal angle of incidence at which the visual ray begins to be Part HI.

totally reflected, and at which of course the object ceases to be seen by refraction is about 39 10'
; but when v -v -^

the object has been dipped in water, and brought into contact with the glass, it continues visible (while the eye
^

,

w "as-

is depressed) by means of the greater refractive power of the water, as far as 57 of incidence. When any tJJ"d

s

^
e"

kind of oil, or any resinous cement, is interposed, this angle is still greater, according to the refractive power of
determining

the medium employed ;
and by cements that refract more strongly than the glass, the object may be seen through refractive

the prism at whatever angle of incidence it is viewed. All that is requisite, then, to determine the refractive powers-

index of any body less refractive than glass, is to bring the substance to be examined in optical contact with
the base of a prism, and to depress the eye (or increase the angle of incidence) till it ceases to be seen as a

dark spot on the silvery reflexion of the sky on the rest of the base. With fluids and soft solids, or fusible

ones, the requisite contact is easily obtained ;
but with solids, they must be brought to smooth surfaces, and

applied to the base by the intervention of some fluid or cement of higher refractive power than the glass, which

(since the surfaces of the interposed stratum are parallel) will produce no change in the total deviation of a

ray passing through it, and therefore no error in the result. By this method, opaque as well as transparent
substances may be examined, or bodies of unhomogeneous density, as the crystalline lens of the eye. It may
seem paradoxical to speak of the refractive power of an opaque body ; but it will be remembered, that opacity
is merely a consequence of intense absorbent power, and that before a ray can be absorbed, it must enter the

medium, and of course obey the laws of refraction at its surface. By this method, Dr. Wollaston has determined
the refractions of a great variety of bodies ;

but Dr. Brewster remarks, that the method must be liable to some
source of inaccuracy, which renders it unsafe to trust entirely to it in practice. Dr. Young has remarked, that

the index of refraction given by it, belongs in strictness to the extreme red rays.

II. General Statement of the Undulatory Theory of Light.

The undulatory theory, among whose chief supporters we have to number Huygens, Descartes, Hooke, and 563.

Euler, and, in later times, the illustrious names of Young and Fresnel, who have applied it with singular
success and ingenuity to the explanation of those classes of phenomena which present the greatest difficulties

to the Corpuscular doctrine, requires the admission of the following hypotheses or postulata :

1. That an excessively rare, subtle, and elastic medium, or ether, as it is called, fills all space, and pervades Postulata
all material bodies, occupying the intervals between their molecules; and, either by passing freely among them, in 'he

or, by its extreme rarity, offering no resistance to the motions of the earth, the planets, or comets in their orbits,
system p

f

appreciable by the most delicate astronomical observations ; and having inertia, but not gravity.
2. That the molecules of the ether are susceptible of being set in motion by the agitation of the particles of

ponderable matter, and that when any one is thus set in motion it communicates a similar motion to those

adjacent to it ; and thus the motion is propagated further and further in all directions, according to the same
mechanical laws which regulate the propagation of undulations in other elastic media, as air, water, or solids,

according to their respective constitutions.

3. That in the interior of refracting media the ether exists in a state of less elasticity, compared with its

density, than in vacuo, (i. e. in space empty of all other matter ;) and that the more refractive the medium, the

less, relatively speaking, is the elasticity of the ether in its interior.

4. That vibrations communicated to the ether in free space are propagated through refractive media by means
of the ether in their interior, but with a velocity corresponding to its inferior degree of elasticity.

5. That when regular vibratory motions of a proper kind are propagated through the ether, and, passing
through our eyes, reach and agitate the nerves of our retina, they produce in us the sensation of light, in a
manner bearing a more or less close analogy to that in which the vibrations of the air affect our auditory nerves
with that of sound.

6. That as, in the doctrine of sound, the frequency of the aerial pulses, or the number of excursions to and
fro from its point of rest made by each molecule of the air, determines the pitch, or note, so, in the theory of

light, the frequency of the pulses, or number of impulses made on our nerves in a given time by the ethereal

molecules next in contact with them, determines the colour of the light; and that as the absolute extent of the
motion to and fro of the particles of air determine the loudness of the sound, so the amplitude, or extent of the
excursions of the ethereal molecules from their points of rest, determine the brightness or intensity of the

light.

The application of these postulates to the explanation of the phenomena of light, presumes an acquaintance 564.
with the theory of the propagation of motion through elastic media. This we shall assume, referring to our The velo-

article on sound for the demonstration of all the properties and laws of motions so propagated, as we shall city of all

have occasion to employ. One of the principal of these is, that supposing the elastic medium uniform and undulation

homogeneous, all motions of whatever kind are propagated through it in all directions with one and the same
CI

5

uniform velocity, a velocity depending solely on the elasticity of the medium as compared with its inertia, and
bearing no relation to the greatness or smallness, regularity or irregularity of the original disturbance. Thus,
while the intensity of light, like that of sound, diminishes as the distance from its origin increases, its velocity
remains invariable , and thus, too, as sounds of every pitch, so light of every colour, travels with one and the
same velocity, either in vacuo, or in a homogeneous medium.
Now here arises, in limine, a great difficulty; and it must not be dissembled, that it is impossible to look on

VOL. iv. 3 N
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it in any other light than as a most formidable objection to the undulatory doctrine. It will be shown presently
that the deviation of light by refraction is a consequence of the difference of its velocities within and without

v

oraie
the refracting medium, and that when these velocities are given the amount of deviation is also given. Hence

phenomena
li would appear to follow unavoidably, that rays of all colours must be in all cases equally refracted ; and that,

f disper- therefore, there could exist no such phenomenon as dispersion. Dr. Young has attempted to gloss over this

sion. difficulty, by calling in to his assistance the vibrations of the ponderable matter of the refracting medium itself,

as modifying the velocity of the ethereal undulations within it, and that differently according to their frequency,
and thus producing a difference in the velocity of propagation of the different colours ; but to us it appears with
more ingenuity than success. We hold it better to state it at once in its broadest terms, and call on the reader
to suspend his condemnation of the doctrine for what it apparently will not explain, till he has become
acquainted with the immense variety and complication of the phenomena which it will. The fact is, that

neither the corpuscular nor the undulatory, nor any other system which has yet been devised, will furnish that

complete and satisfactory explanation of all the phenomena of light which is desirable. Certain admissions
must be made at every step, as to modes of mechanical action, where we are in total ignorance of the acting
forces ; and we are called on, where reasoning fails us, occasionally for an exercise of faith. Still, ifwe regard
hypotheses and theories as no other way valuable than as means of classifying and grouping together pheno-
mena, and of referring facts to laws which, though possibly empirical, are yet, so far as they are so, correct

representations of nature, and as such must be deducible from real primary laws, whenever they shall be disco-

vered, we cannot but admit their importance. The undulatory system especially is necessarily liable to consi-

derable obscurities ; as the doctrine of the propagation of motion through elastic media is one of the most
abstruse and difficult branches of mathematical inquiry, and we are therefore perpetually driven to indirect and

analogical reasoning, from the utter hopelesness of overcoming the mere mathematical difficulties inherent in

the subject when attacked directly.
566. It is thus that we are encountered at the very outset of its application with another objection, which, in the

Objection eves of Newton, appeared decisive against its admission, but which has since been, in a considerable degree,

jectrti

e overcome. How is it that shadows exist. Sounds make their way freely round a corner, why does not light

propagation
^ so ' A vibration propagated from a centre in an elastic medium, and intercepted by an immovable obstacle

of light having a small orifice, ought to spread itself, it is said, from this orifice beyond the screen as from a new centre,
answered, and fill the space beyond with undulations propagated from it in every direction. Thus, as in Acoustics, the

orifice is heard as a new source of sound ; so, in Optics, it ought to be seen in all directions as a new luminary.
To this the answer is, first, that it is not demonstrable that a vibratory motion communicated to one particle of
an elastic medium is propagated with equal intensity to every surrounding molecule in whatever direction

situated with respect to the line of its motion, though it is with equal rapidity ; and therefore that we have no
reason to presume, a priori, but rather the contrary, that the motions of the vibrating particles at the orifice

should be propagated laterally with equal intensity in all directions ; secondly, that it is not true, in fact, that

sounds are propagated round the corner of an obstacle, with the same intensity as in their original direction, as

any one may convince himself by the following simple experiment. Take a common tuning fork, and, holding
it (when set in vibration) about three or four inches from the ear, with its flat side towards it, when its sound
is distinctly heard, let a strip of card, somewhat longer than the flat of the tuning fork, be interposed, at about
half an inch from the fork. The sound will be almost entirely intercepted by it ;

and if the card be alternately
removed and replaced in pretty quick succession, alternations of sound and silence will be perceived ; proving
that the undulations of the air are by no means propagated with equal intensity by the circuitous route round
the edge of the card, as by the direct one. Indeed any one has only, to be convinced of the fact, to attend to

the sound of a carriage in the act of turning a corner from the street in which he happens to be to an adjoining
one ; to which we may add, that, even when there is no obstacle in the way, sounds are by no means equally
audible in all directions from the sounding body, as any one may convince himself by holding a vibrating tuning
fork, or pitchpipe, near his ear, and turning it quickly on its axis. This last phenomenon was first noticed, we
believe, by Dr. Young, (Phil. Trans., 1802, p. 25,) and since more fully described (in Schweiggers Jahrbuch,

1826) by M. Weber. Now if there be any inequality at all in the intensity of the direct and lateral propa-

gation of undulations in a medium, it must arise from the constitution of the medium, and the proportion of

the amplitude of the excursions of the vibrating particles to their distance from each other ; and may therefore

easily be conceived to differ in any imaginable degree in different media, and there is, at least, no absurdity in sup-

posing the ether so constituted as to admit of comparatively very feeble lateral propagation. Now, thirdly, in point
of fact, light does spread itself in a certain small degree into the shadows of bodies, out of its strict rectilinear

course, giving rise to the phenomena of inflexion or diffraction, of which more presently, and which are com-

pletely accountable for on the undulatory doctrine, and form, in fact, its strongest points. For further informa-

tion on this confessedly abstruse subject, the reader must consult our article on SOUND, and the works cited at

the end of this Essay. It is enough here to show, that the objection which has been urged by Newton and his

followers with such force against the doctrine of undulations, is really not conclusive against it, but founded
rather on inadequate conceptions of the nature of elastic fluids, and the laws of their undulations.

867. Although any kind of impulse, or motions regulated by any law, may be transferred from molecule to

Mode in molecule in an elastic medium, yet in the theory of light it is supposed that only such primary impulses as recur
which the

according to regular periodical laws, at equal intervals of time, and repeated many times in succession, can

it*d*b
a êc^ our organs with the sensation of light. To put in motion the molecules of the nerves of our retina with

ribrmtbni sufficient efficacy, it is necessary that the almost infinitely minute impulse of the adjacent ethereal molecules

of ethe .
should be often and regularly repeated, so as to multiply, and, as it were, concentrate their effect. Thus, as a

great pendulum may be set in swing by a very minute force often applied at intervals exactly equal to its time
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of oscillation, or as one elastic solid body can be set in vibration by the vibration of another at a distance, Parc '!'

"""V^ propagated through the air, if in exact unison, even so may we conceive the gross fibres of the nerves of the
* ~V~~'

retina to be thrown into motion by the continual repetition of the ethereal pulses ; and such only will be thus

agitated, as from their size, shape, or elasticity are susceptible of vibrating in times exactly equal to those at

which the impulses are repeated. Thus it is easy to conceive how the limits of visible colour may be established ;

for if there be no nervous fibres in unison with vibrations more or less frequent than certain limits, such vibra-

tions, though they reach the retina, will produce no sensation. Thus, too, a single impulse, or an irregularly

repeated one, produces no light ; and thus also may the vibrations excited in the retina continue a sensible

time after the exciting cause has ceased, prolonging the sensation of light (especially of a vivid one) for an
instant in the eye in the manner described, (Art. 543.) We may thus conceive the possibility of other animals,
such as insects, incapable of being affected with any of our colours, and receiving their whole stock of luminous

impressions from a class of vibrations altogether beyond our limits, as Dr. Wollaston has ingeniously imagined
(we may almost say proved) to be the case with their perceptions of sound.
The law of motion of every particle of the ether is regulated by that of the molecule of the luminary from 568.

which it takes its origin ;
and will be regular or irregular, periodical or not, according as that of the original

Motion of "

molecule is so or otherwise. But it is only with motions which may be regarded as infinitely small that we
J',',^',^

are concerned in this theory. The displacement of each particle, either of the ether or of the luminary, is n,ecuia
supposed to be so minute as not to detach it from, or change its order of situation among the neighbouring
ones. Now when we consider only such infinitesimal displacements from the position of equilibrium, it is

evident, that the tension arising from them, or the force by which the displaced molecule is urged, must be

proportional in quantity to its distance from its point of rest, and must tend directly to that point, provided we
suppose the medium equally elastic in all directions. Hence, by the laws of Dynamics, its trajectory must be an

ellipse described in one plane about the point of equilibrium as its centre; or, if one of the axes of the ellipse
vanish, a straight line having that point in its middle, in which it oscillates to and fro, performing all its excur-
sions in the latter case, or its revolutions in the former, whether great or small, in equal times, and following the
law of a vibrating pendulum. We will, for the present, consider the case of rectilinear vibrations as the most

simple, and show hereafter how the more general one may be reduced to it.

Proposition. To define the motion of a vibrating molecule of a luminary, supposing its excursions to and fro 559
to be performed in straight lines. Lawg Of

Putting x for its distance from its point of rest, t for the time elapsed since a given epoch, and v for its rectilinear

velocity, and E for the absolute elastic force, the force urging the molecule to its point of equilibrium will be "brations -

E . x, and will tend to diminish x; hence (supposing gravity to be represented by 32 feet) we must have

dv d*x 2 d* x . d x d x*
Ex, and therefore - - = - 2 E x d x, or, integrating, or c 2 = Ej j j jo j JQ ~~ *-** "* ** ** UI im-ctinitiiiti,

^~
U t (It Ct 6 U t

(a* ,r
2
) where a is the greatest distance of excursion, or the semiamplitude of the vibration. Hence,

_ d x fig
v v E . v a' - x"- , and therefore d < = ^ ; or, integrating, t -+- C =

arc . cos , that is

a

x = a . cos { v'E . (t + C) } ; v = a . ^E . sin { </E (t -f- C) }

Such are the velocity and distance from the middle point of its vibration of the molecule at any instant. If
we call T the whole period in which the molecule has performed one complete evolution, consisting of a

complete excursion to and fro on both sides of its point of equilibrium, we shall have at the commencement of

the motion when v = 0, or x a, a . cos { VE . (t -f- C) }
= a, or (t -f- C) VE =

; and when one quarter

of a period has been performed, or the molecule has arrived at its greatest distance a on the opposite side of

the centre - a = a . cos { VE (t+ \ T + C) } . or Vff . (t + C -f T) = ir, putting * for the semicircum-

ference of a circle whose diameter is 1 . Hence we get by subtraction

"/ E
Hence we may eliminate E, and introduce T instead of it, which will give the equations ^~E= ,

t + C . t + C
x a . cos 2 IT ,

i-
; v = a v E sin 2 IT . ^ ;

which equations express the laws required, and which if the time t be supposed to commence at the moment
when r> = 0, or when the molecule is at the extremity of one of its excursions, become simply

x = a . cos 2 v .
-- v = a V E sin 2 ir . -.

3 N2
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Carol. Hence the excursions of the molecule to and fro will consist of four principal phases, in each of which l'-rt HI-

its motion is similar, but in contrary directions, or on contrary sides of the centre. In the first phase the > -v
molecule is to the right of the centre of motion, and is approaching the centre, or moving from right to left.

In the second, it is to the left of the middle point, and moving from it, or still from right to left. These two

phases we shall term the positive phases. In the third phase the molecule lies on the left side, and its motion is

towards the centre, and from left to right. In the fourth, it is to the right again, receding from the centre, and

moving still from left to right. These we shall term the negative phases of its vibration.

Proposition. To define the rectilinear vibrations of any molecule of the ether, propagated from a luminous

particle vibrating as in the last proposition.
In the propagation of motions through elastic, uniform media, the same or a similar motion to that of any

one molecule is communicated to every other in succession ; but this communication occupies time, and the

motion of a molecule at a distance from the origin of the vibrations does not commence till after the lapse of an

interval of time proportional to that distance, being the time in which the propagated impulse, whether of sound
or light, &c. runs over that distance with a certain uniform velocity due to the intrinsic elasticity of the medium,
and which in the case of light is about 200,000 miles per second ;

in that of sound about 1100 feet. And when
the vibration of the original source of motion has ceased, that of the ethereal molecule does not cease on the

instant, but continues for a time equal to that which elapsed before its commencement. Hence, if we call V the

velocity of light, and D the distance of the molecule from the luminous point, will be the interval between

the commencement of the motion of the latter and of the former ; hence t being the time elapsed at any

instant since the commencement of the first positive phase of the vibration of the luminous point, t

will be the corresponding time in the case of the ethereal molecule. Thus we have, for the equations of the
motions of the former,

t t

x = a . cos 2 TT .
-

; c = b . sin 2 TT - -
; where b = a v E

and in that of the latter

x = a . cos 2 TT

\. T /
v = /3 . sin 2 sr

; where /3 = a V E

a being the seraiamplitude of the vibration, or the extent of the excursion of the ethereal molecule from its

point of rest.

Carol. Hence it is evident that the actual velocity of the molecules of ether may be less in any proportion
than that of light ;

for the maximum value of v depends for its numerical magnitude solely on a, or on the

amplitude of excursion, and on E, and not at all on V the velocity of propagation of the wave.
Coral. 2. If we suppose the luminous molecule to have made, from the commencement of its motion, any

number of vibrations and parts of a vibration in the time t; then if we consider an ethereal molecule at a
distance V . t from it in any direction, (i. e. situated in a spherical surface whose radius is V . t,) this

molecule will be just beginning to be put in motion. If we suppose another spherical surface concentric with
the former, but having its radius less than the former by V . T, which in future we shall call X, every particle
situated in this surface will have just completed one vibration, and be commencing its second, and so on.

The interval between these surfaces will comprehend, arranged in spherical, concentric shells, molecules in

every phase of their vibrations, those in each shell being in the same phase. This assemblage of molecules
is termed a wave, and as the impulse continues to be propagated forwards it is evident that the wave will

continue to increase in radius, and will comprehend in succession all the molecules of the medium 10

infinity.

Definition. The interval between the internal and external surface of a luminous wave is called an undulation,
or a pulse, and its length is evidently = V . T X, or the space run over by light in the time T of one complete
period, or vibration of the luminous molecule. It is therefore proportional to that time.

Hence the lengths of the undulations of differently coloured rays differ inter se. For, by Postulate 6, the

number of vibrations made in any given time by the ethereal particles determines the colour. Now the more
numerous the vibrations are, data tempore, the shorter their duration ;

hence T, which represents this duration,
is less ; and therefore X, or the length of the undulation less for the violet than for the red rays. From
experiments to be presently described, it has been found, that the lengths of the undulations in air, or

the values of X for the different rays, as also the number of times they are repeated in one second, are a*

in the following' table .
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Light, a greater at rest, it will be reflected, and with a momentum which is greater in proportion to the difference in

V -^ size of the balls.

But to render an account of oblique reflexion and refraction, and the other phenomena we shall have to speak
Principles. ojr j t w;]] be necessary jo ]ay down the following principles, which are either self-evident or follow immediately

from the elementary principles of dynamics.
582. 1. When any number of very minute impulses is communicated at once to the particles of any medium, or

Superpo- of any mechanical system under the influence of any forces, the motion of each particle at any instant will be the

small

' SUm ^ a" t'le mot'ons wn'ch it would have at that instant, had each of the impulses been communicated to the

motions system alone, (the word sum being understood in its algebraical sense.)

583. 2. Every vibrating molecule in an elastic medium, whether vibrating by an original impulse, or in consequence
Principle of of an impulse propagated to it from others, may be regarded as a centre of vibration from which a system of
secondary secondary waves emanates in all directions, according to the laws of the propagation of waves in the medium.

Proposition. In the reflexion of light on the undulatory doctrine, the angle of incidence is equal to that of
reflexion.

584. Let A B be a plane surface separating the two media, and S the luminous point propagating a series of
Law of re- spherical waves, of which let A. a be one. So soon as this reaches the surface at A, a partial reflexion will take

LIOU at a
piace ; an(j regarding the point A as a new centre of vibration, spherical waves will begin to be propagated
from it as a centre, one of which proceeds forwards into the reflecting medium, with a velocity greater or less

than that of the incident wave, as the case may be ; the other backwards into the medium of incidence, with a

velocity equal to that of the incident wave. It is only with the latter we are at present concerned. Conceive
now the wave A a to move forward into the position B 6 ; then in the time that it has run over the space P B, the
wave propagated from A will have run back over a distance A d = P B, and the hemisphere whose radius is A d
will

represent
this wave. Between A and B take any point X, and describe the hemispheric surface X c. Then

regarding X as a centre of vibration, its vibrations will not commence till the wave has reached it. It will, there-

fore, begin to vibrate later than A, by the whole time the wave A a takes to run over P Q ; but when once set

in vibration, it propagates backwards a spherical wave with the same velocity, so that when the original wave
has advanced into the situation B 6, the wave from X will have expanded into a hemisphere, whose radius X c
is equal toPB, PQ.orA B. Now this being true of every point X, if we conceive a surface touching all these

hemispheres in d, c, B, this surface will mark the points at which the reflected impulse has just arrived, and
which just begins to move when the original wave has reached B, and will, therefore, be the surface of the
reflected wave. Conceive now the spherical surface 6 B prolonged below the plane A B, as represented by
the dotted line D C B, and the same of the spheres about A and X. Then the spherical surfaces D C B and
C c being both perpendicular to S X C, must touch each other in C, hence the surface touching all the hemi-

spheres about A, X, &c. as centres, below A B is a segment of a sphere having S for a centre, and therefore
the surface B c d or the reflected wave is a segment of a sphere having its centre at s as much below the line

A B as S is above it.

Now to an eye placed at X, the luminous point S will appear in the direction S X perpendicular to the incident

wave, and the eye placed in c will perceive the reflected image of S at * in the direction cs, perpendicular to

the reflected wave ; but cs passes through X, because the spheres c C and B b touch at c. Therefore the ray by
which s is seen at c passes through X. But the surfaces B D, B d being similar and equal, the angle B X c =
B X C = A X S, that is, the angle of incidence is equal to that of reflexion. Q. E. D.

585. Cor. If the reflecting surface be not a plane, the reflected wave will not be spherical ; its form is, however,
ReBexion at easily determined as follows : Suppose the direct wave to have assumed the position B 6. Take any point X in

curved sur- the reflecting surface, and describe the sphere X Q, and with the centre X and radius = B Q, describe another

p
Ces

'.

Qft
sphere. Do this for every point in the surface A B, and the surface which is a common tangent (as B erf) to

'*> all these spheres, is the surface of the reflected wave, because it marks the farthest limit to which the reflected

impulse has reached in all directions at the instant when the direct impulse has reached B. Now take Y
infinitely near to X, and, making the same construction at Y, let c, e be the points in the reflected wave to which
X c and Y e are respectively perpendicular. Draw X r perpendicular to Y e, and X q to S Yg, then, since Y e =
S B - S Y, and X c = S B - S X, we have Ye-Xc,orYr = SX-SY=Yg, andXY being common to

the right angled triangles X Y r, X Y q, the angle r Y X must be equal to X Y q or to S Y A, so that the same
law of reflexion holds good in curve as in plane surfaces.

586 Proposition. To demonstrate the law of refraction in the undulatory system.
Let S, fig. 129, be a luminous point, and let any wave propagated from it reach in succession the points Y,

X, B of any curve surface Y X B of a refracting medium, whereofX and Y are supposed infinitely near each
other. As the wave strikes Y, X, B, each of these points will become centres of undulation, which will be

propagated in the refracting medium with a velocity different from that of light in the medium of incidence, by
reason of their different elasticities, (Postulate 3.) Let V : v

'

'. velocity in the first medium to that in the

second, (a constant ratio by hypothesis,) and, describing the sphere B Q R, take X c = . Q X and Y e =

-=r- . V R, then will X c and Ye represent the spaces run over by the refracted secondary waves propagated

from X and Y respectively, when the direct wave has reached B. Hence, if about X and Y as centres, and with
these radii we describe spheres, and suppose e, c to be points in the curve surface which is a tangent to all such

spheres, it is clear that X cand Yewill be perpendicular to this surface, that is, to the surface of the refracted primary
wave ; hence, X c and Y e will be the directions of the refracted rays at X and Y. Draw X q, Xr perpendiculai
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respectively to YR and Ye, then will Y g = SX-SYandYr = Ye- Xc=
^-

. YR -
-^-
.XQ =

(YR-XQ) =^ {(SR- SY)- (SQ - S X) }
=

^-
. (SX - S Y) = -^

. Yg. Hence we have Y 9 .

Yr " V : v. But since S X, SY are direct rays, and X c, Y e the corresponding refracted ones, therefore

S X Y is the complement of the angle of incidence of S X, and, consequently, Y X q is equal to the angle of

incidence itself, and X Yr will be the complement of the angle of refraction, and therefore Y X r (= 90 -

X Y r) = the angle of refraction of S Y, or, (since the points Y, X are infinitely near each other,) of S X, hence

we have
Y q : X Y ; ; sin incidence : 1,

X Y : Y r '. \ 1 : sin refraction.

And compounding Y^ : Yr '.'. sin incidence : sin refraction. But we proved before, that Y<7 : Yr in the

constant ratio of V : ;
therefore the sine of incidence : that of refraction in the same constant ratio. Q. E. D.

Corollary 1. In the cases both of reflexion and refraction, the undulation is propagated from the luminous point 587.

to any other point in the least possible time. For the surface both of the reflected and refracted waves mark the

extreme limits to which the impulse has been propagated by reflexion or refraction in a given time. The undu-

lation propagated from X (fig. 127) in any other direction thanX e, as, for instance, X <y,
will fall short of the surface

B erf, and the point <y
therefore will have been reached, and passed by the reflected or refracted primary wave in

the situation /3 7 S, before it can be reached by the secondary undulation propagated from X in the direction X 7.

Corollary 2. This property in the undulatory system corresponds to the principle of least action in the 588.

corpuscular doctrine, and may be thus stated generally : Law of

A reflected or refracted ray will always pursue such a course as would be described in the least possible time,
sw| ftest

by a point moving from the point of its departure to that of its arrival, with the velocities corresponding to the pro '

media in which it moves, and the direction of its motion.

It is evident that this is general, and applies to cases where the medium is either of variable elasticity, or has 589.

different elasticities in different directions ; for the ray is by definition a perpendicular to the surface of the wave, Applies

or to a surface, the locus of all the molecules in the medium, which are just attained by the undulation, and just
genera"y-

commencing their vibration, so that the reasoning of Corol. 1, applies equally to all cases.

The properties of foci and Caustics flow with such elegance and simplicity from this doctrine, that it would 590.

be unpardonable not to instance its application to that part of the theory of Optics.

Definition. A focus is a point at which the same wave arrives at the same instant from more than one point svstem
in a surface. Defined.

It is evident, that when this is the case, the ethereal molecules in the focus will be agitated by the united force

of all the undulations which reach them in the same phase at the same instant, and will be proportionally more
violent as the focus is common to a greater number of points, and the light in the focus will be proportionally
more intense.

Proposition. Required to determine the nature of the surface which shall refract all rays from one point 59}

rigorously to one focus. Let F (fig. 129) be the focus, then will every part of a wave propagated from S and

refracted at the surface A B, reach F at the same instant ; therefore time of describing S X with velocity V +
time of describing X F with velocity v is constant for every point in the surface. Or,

S X F X
f-

- = constant, orSX-f-,u.FX= constant, /* being the relative index of refraction.

This equation then defines the nature of the curve sought, and it is easy to perceive its identity with that

expressed by the equation (n) Art. 232, obtained from a direct consideration of the law of refraction, but by a

much more intricate process.
The intensity of the reflected or refracted ray cannot be computed generally in the present very imperfect state 592.

of our knowledge of the theory of waves. M. Poisson, however, in the case of perpendicular incidence, and on Intensity of

the particular hypothesis of the luminous vibrations being performed in the direction of the ray itself, has ^ ray re-

succeeded in investigating the comparative intensities of the incident, reflected, and transmitted rays. His
J^jici

e '

results are as follows : Taking p., ft'
for the absolute refractive indices of the media, he finds (on the supposi-

larly

tion that the intensity of light is as the square of the absolute velocity of the vibrating molecules) :

Intensity of reflected ray : that of incident ; ; {p! /t)
4

: (p! + /i)
4

. Intensity of the intromitted ray : that

of the incident ; ; 4/t
a

: <p. -\- p.')*. Intensity of the ray intromitted from a medium whose refractive index /i

into a parallel plate of one whose refractive index = p!, in contact at its second surface with a third whose refractive

index = p.", reflected at their common surface, and again emergent at the first surface : intensity of the ray

originally incident on the first surface ; ; 16 p? ,u'
s
(/' p.')~ -. (p. + /<,')< . (/ + /u")

2
. And, lastly, the intensity

of the ray transmitted through the parallel plate of the second medium into the third : that of the original

incident ray '.'. 16 ft? /'
8

:
(ft, + /t

1

)
8

. (/*' + ,u.")
2 which (in the case where the third medium is the same as the

first, becomes 16 ft" p.
1 2

: (/-)- p!)
4
.

These results of M. Poisson, so far as they have been hitherto satisfactorily compared with experiment, 593
manifest at least a general accordance, and the undulatory doctrine thus furnishes a plausible explanation of the

connection of the reflecting power of a medium with its refractive index, and of the diminished reflection at the

common surfaces of media in contact. They have been in great measure (it should be observed) anticipated by
Dr. Young, in his Paper on Chromatics, (Encydop. Brit.) by reasoning which M. Poisson terms indirect, but

which, we confess, appears to us by no means to merit the epithet.
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If photometrical experiments enable us to determine the proportion of the reflected to the incident light, we Tart HI.

s<~-' may thence conclude the index *f refraction of the reflecting medium, and that in cases where no other mode
v-~"v" '

594. will apply. Thus, M. Arago having ascertained that about half the incident light is reflected at a perpendicular

;ehve incidence from mercury, we have in this case (
^

J

= \ ; = 5'829 for the refractive index of mer-

indices.
^ /*+/*/ /

curyout of air; and this is perfectly consonant to the general tenor of optico-chemical facts, which assign to the

heavy and especially to the white metals (as indicated in their transparent combinations) enormous refractive
and dispersive powers. This curious and interesting application has not been overlooked by Dr. Young in the

Paper alluded to.

595 To complete the theory of reflexion and refraction on the undulatory hypothesis, it will be necessary to show
what becomes of those oblique portions of the secondary waves, diverging in all directions from every point of

the reflecting or refracting surfaces (as X 7, fig. 127) which do not conspire to form the principal wave. But
to understand this, we must enter on the doctrine of the interference of the rays of light, a doctrine we owe
almost entirely to the ingenuity of Dr. Young, though some of its features may be pretty distinctly traced in the

writings of Hooke, (the most ingenious man, perhaps, of his age,) and though Newton himself occasionally
indulged in speculations bearing a certain relation to it. But the unpursued speculations of Newton, and the

appercus of Hooke, however distinct, must not be put in competition, and, indeed, ought scarcely to be
mentioned with the elegant, simple, and comprehensive theory of Young, a theory which, if not founded in

nature, is certainly one of the happiest fictions that the genius of man has yet invented to group together natural

phenomena, as well as the most fortunate in the support it has unexpectedly received from whole classes of new
phenomena, which at their first discovery seemed in irreconcileable opposition to it. It is, in fact, in all its

applications and details one succession offelicities, insomuch that we may almost be induced to say, if it be not

true, it deserves to be so. The limits of this Essay, we fear, will hardly allow us to do it ju tice.

III. Of the Interference of the Rays of Light.

596. The principle on which this part of the theory of Light depends, is a consequence of that of the "
Superposition

General of small motions" laid down in Art. 583. If two waves arrive at once at the same molecule of the ether, that

pr'nc'p'esof molecule will receive at once both the motions it would have had in virtue of each separately, and its resultant
e
motion will, therefore, be the diagonal of a parallelogram whose sides are the separate ones. If, therefore, the
two component motions agree in direction or very nearly so, the resultant will be very nearly equal to their sum,
and in the same direction. If they very nearly oppose each other, then to their diti'ertnce. Suppose, now, two

vibratory motions consisting of a series of successive undulations in an elastic medium, all similar and equal to

each other, and indefinitely repeated, to arrive at the same point from the same original centre of vibration, but

by different routes (owing to the interposition of obstacles or other causes) exactly, or very nearly in the same
final direction ; and suppose, also, that owing either to a difference in the lengths of the routes, or to a differ-

ence in the velocities with which they are traversed, the time occupied by a wave in arriving by the first route

(A) is less than that of its arriving by the other (B). It is clear, then, that any ethereal molecule placed in any
point common to the two routes A, B, will begin to vibrate in virtue of the undulations propagated along A.
before the moment when the first wave propagated along B reached it. Up, then, to this moment its motions
will be the same as if the waves along B had no existence. But after this moment, its motions will be very
nearly the sum or difference of the motions it would have separately in virtue of the two undulations
each subsisting alone, and the more nearly, the more nearly the two routes of arrival agree in their final

direction.

597. Now it may happen, that the difference of the lengths of the routes or the difference of velocities is such, that

Case of the waves propagated along B shall reach the intersection exactly one-half an undulation behind the others, t. e.

complete later by exactly half the time of a wave running over a space equal to a complete undulation. In that case,
discordance

tjje mo iecuie which in virtue of the vibrations propagated along A would (at any future instant) be in one

phase of its excursions from its point of rest, would, in virtue of those propagated along B, if subsisting
alone, be at the same instant in exactly the opposite phase, i. e. moving with equal velocity in the contrary
direction. (See Art. 570.) Hence, when both systems of vibration coexist the motions will constantly destroy
each other, and the molecule will remain at rest. The same will hold good if the difference of routes or

velocities be such, that the vibrations propagated along B shall reach the intersection of the routes exactly

^, , , &c. of a complete period of undulation after those propagated along A; for the similar phases of vibra-

tion recurring periodically, and being (by hypothesis) continually repeated for an indefinite time, it is no matter
whether the first vibration propagated along B be superimposed on, or interfere with (as it is called) the first, or

any subsequent one propagated along A, provided the difference of their phases be the same.

598. On the other hand it may happen, that the waves propagated along B do not reach the intersection till

Case of exactly one, two, or more whole periods after the corresponding waves propagated along A. In this case, the

complete molecule at the intersection will, at any instant subsequent to the time of arrival of the first wave along B,
>ce - be agitated at once by both vibrations in the same phase, and therefore the velocity and amplitude of its excur-

sions will, instead of being destroyed, be doubled.
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I.u-ht. Lastly, it may happen, that the difference of the times of arrival of the corresponding waves is neither an Part Hi.

. Y^/ exact even, or odd multiple of half a complete period of undulation. In that case, the molecule will vibrate * N.^ ''

with a joint motion, less than double what it would have in virtue of either separately. 599-

An apt illustration of the case of interference here described, may be had by considering the analogous case in goo
the interference of waves on the surface of water. Conceive, for instance, two equally broad canals A and B to illustration

enter two canals at right angles into the side of a reservoir, at both whose apertures, from an origin at a great dis- from waves

tance, a wave arrives at the same instant, and runs along the two canals with equal, uniform velocities. Let their P r Pa a

sides be perfectly smooth, and their breadths everywhere equal, but let them be led, by a gentle curvature, to meet
in a point at some distance, and, the curvature of B being supposed somewhat greater than that of A, let the

distance from their intersection to the reservoir, measured along B, be greater than along A. It is obvious,

that (if we consider only a single wave) the portion of it propagated along A will reach the intersection first,

and after it that propagated along B, so that the water at that point will be agitated by two waves in succession.

But, let the original cause of undulation be continually repeated so as to produce an indefinite series of equal
and similar waves. Then, if the difference of lengths of the two canals be just equal to half the interval between

the summits of two consecutive waves, it is evident that when the summit of any wave propagated along A has

reached the intersection, the depression between two consecutive summits (viz. that corresponding to the wave

propagated along A, and that of the wave immediately preceding it) will arrive at the intersection by the course

B. Thus, in virtue of the wave along A the water will be raised as much above its natural level, as it will be

depressed below it by that along B. Its level will, therefore, be unchanged. Now as the wave propagated

along A passes the intersection, it subsides, from its maximum, by precisely the same gradations as that along
B, passing it with equal velocity, rises, from its minimum, so that the level will be preserved at the point of

intersection, undisturbed so long as the original cause of undulation continues to act regularly. So soon as it

ceases, however, the last half wave which runs along B will have no corresponding portion of a wave along
A to interfere with, and will, therefore, create a single fluctuation at the point of concourse.

In the theory of the interferences of light we may disregard these commencing and terminal, uncompensated 601.

undulations, and parts of undulations, as being so few "in number as to excite no impression on the retina, and Initial anj

consider the interfering rays as of indefinite duration, or as destitute of either beginning or end. termmal vi-

According to the foregoing reasoning then it appears, that if two rays having a common origin, i. e. forming

parts of one and the same system of luminous waves proceeding from a common centre, be conducted by different go2
routes to one point which we will suppose to be situated on a white screen, or on the retina of the eye, they Mutual an-

will there produce a bright point, or the sensation of light, if their difference of routes be an even multiple of the nihilation of

length of half an undulation and a dark one ; or the sense of darkness, if an odd multiple of it; and if inter- two rajs of

mediate, then a feebler or a stronger sense of light, as the difference of routes approximates to one or the other of ''

these limits. That two lights should in any case annihilate each other, and produce darkness, appears a strange

paradox, yet experiment confirms it ; and the fact was observed, and broadly stated by Grimaldi long before any

plausible reason could be given of it.

Having thus obtained a general idea of the nature of interferences, let us now endeavour to subject their 603.

effects to a more strict calculation. To this end it will be necessary to fix with precision the sense of some
words hitherto used rather loosely.

Definition. The phase of an undulation affecting any given molecule of ether at any instant of time, is 604.

numerically expressed by an arc of a circle to radius unity, increasing proportionally to the time commencing Definition*!

at when the molecule is at rest at its greatest positive distance of excursion, and becoming equal to one cir-
e '

cumference when the molecule, after completing the whole of a vibration, returns again to the same state of

(/
| {"* \ / i

{~*

2 TT . I, 2 IT. is the phase of

the undulation at the instant t.

Definition. The amplitude of vibration of a ray or system of waves is the coefficient a, or the maximum 605.

excursion from rest, of each molecule of the ether in its course. Amplitude

Carol. The intensity of a ray of light is as the square of the amplitude of the vibrations of the waves of which
it consists.

Definition. Similar rays, or systems of luminous waves, are- such as have the vibratory motions of the 606.

ethereal molecules which compose them regulated by the same laws, and their vibrations performed in equal
Slmilalr

'')'
s -

times, and the curves or straight lines they describe in virtue of them, similar and similarly situated in space, so

that the motions of any two corresponding molecules in each, shall at every instant of time be parallel to each

other.

Carol. Similar rays have the same colour.

Definition. The origin of a ray, or a system of waves, is the vibrating material centre from which the waves 607.

begin to be propagated, or more generally, a fixed point in its length, at which an ethereal molecule, at an Origin of a

assumed epoch, was in the phase of its undulation. ray-

Carol. Two systems of interfering waves having their origins distant by an exact number of undulations, may 608.

be regarded as having a common origin.

Proposition. To find the origin of a ray, having given the expression for the velocity of one of its vibrating
"09.

molecules.
Tl

!
find lhe

origin ot a

/ i _j_ Q \ ray-

Let a = a . "J E, and let v = a . sin ( 2 ir .
- \ be the expression given for the velocity

VOL. iv. 3 o
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Light, of any assumed molecule (M) at the instant 1. Let V represent the velocity of light, and X the length Pirl "I.

v~^v"~-' of an undulation, and & the distance run over by light in the time 1. Then will 8 = V t and X = VT ^v"*'

and consequently
-- = -. Suppose t> to represent the velocity of a vibrating molecule at the origin of the

ray at the instant t, then will = a . sin ( 2 v .

j
= a . sin ( 2 TT \ But the molecule M moves only

by an impulse communicated to it from the origin, and therefore all its motions are later than those at the origin
by a constant interval equal to the time required for light to run over the distance of M from the origin. Call

D that distance, then -=- is the interval in question, and t -- is the time elapsed at the instant t, since the

S t-\
molecule commenced its periodic motions ; therefore its velocity must = a . sin I 2 w V I, and con-

sequently C = --
, or D = - V C.

Hence we see that the distance of the molecule M from the origin of the ray, is equal to the space described by
Light, in a time represented by the arbitrary constant C, and is therefore given when C is so, and vice versa.

610. Carol, Since V T = X the expression for the velocity becomes

v=a. sin 2 TT .( --
j
= a . sin 2 v{- ---

jand similarly x= a. cos 2 ir f '- .

j

Proposition. To determine the colour, origin, and intensity of a ray resulting from the interference of two
Resu of

s jm iiar rayS) differing in origin and intensity.

fering rays Let a8 and a'* be the intensities of the rays, or a, a 1

their amplitudes of vibration, and take a = a .
V E,

a1 =. a' .
*/ E, then, if we put for the phase of vibration of a molecule M at the instant t which it would be in,

k
in virtue of the first system of waves (A), and -j- k for its phase, in virtue of the other (B), . T will repre-2 7T

sent the time taken by light to run over a space equal to the interval of their origin, and the velocities
and distances from rest which M would have, separately at the instant t, in virtue of the two rays, will be

= a . sin ; vf = a' . sin (0 -f- k), and x = a . cos ; x1
a' . cos (0 -f k).

Therefore, in virtue of the resulting ray, it will have the velocity

v + v1 = a . sin -f- "' sin (" + &) and x+ d = o cos + a' . cos (0 -f- k).

Let the former be put equal to A . sin (0 + B), the possibility of which assumption will be shown by our

being able to determine A and B, so as to satisfy this condition. Then we have

(o -j-
a' . cos K) sin + <*' sin k . cos = A . cos B . sin -(- A . sin B . cos 0,

and equating like terms,

A . cos B = n
-\-

a . cos k ; A . sin B = a' . sin k,

whence we get, dividing one by the other,

a' . sin k a' , sin ka . sill K . , am K /
tan B =

; ; A = -- = V a? - 2 a a' . cos k -f a'

a-f-a . cosAr sin B

and these values being determined, A and B are known, and, therefore, v -f- i/ = A . sin (0 -j- B). Similarly,
if we put x -j- x

1 = A' . cos (0 -j- B') we obtain values of A' and B' precisely similar, writing only a a' for a, a'

respectively.

612. Carol. 1. Hence we conclude, 1st. that the resultant ray is similar to the component ones, and has the same

period, i. e. the same colour.

613. Carol. 2. M. Fresnel has given the following elegant rule for determining the amplitude and origin of the
Fresnel's /

theorem. resultant ray, which follows immediately from the value ofA and the equation sin B = . sin K above found.A
Construct a parallelogram, having its adjacent sides proportional to the amplitudes a, a' of the component rays,
and the angle between them measured by a circular arc to radius unity, equal to the differences of their phases,
then will the diagonal of this parallelogram represent on the same scale the amplitude of the resulting ray,
and the angle included between it, and either side will represent the difference of phases between it and
the ray corresponding ; or, which comes to the same thing, the difference of their origins (when reduced to

space.)
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Light. Carol. 3. Thus in the case of complete discordance, the diagonal of the parallelogram vanishes, and the angle
Part "f-

*-" becomes 180, or half a circumference, corresponding to a difference of origins of half an undulation. In that x '^v^ '

of complete accordance, the angle is 0, or 360, and the origins of the rays coincide, or (which comes to the 614.

same thing) differ by an exact undulation, and the diagonal is double of the side, so that the intensity of the
Cases ol

compound ray is four times that of either ray singly. concord and
Carol. 4. If the origins of two equally intense rays differ by one quarter of an undulation, the resultant discord.

ray will have its amplitude to that of either component one, as ^2 : 1, and, therefore, its intensity double, and 615.

its origin will differ one-eighth of an undulation from that of either. Thus in this particular care, the brightness
Caseoi

of the compound ray is the sum of the brightnesses of the components, and its position exactly intermediate a c , uarter of

between them. an unduU-
Corol. 5. Any ray may be resolved into two, differing in origin and amplitude, by the same rules as govern ''<>

the resolution of forces in Mechanics. 616.

Carol. 6. The sum of the intensities of the component rays exceeds that of the resultant, when their origins
Composi-

differ by less than a quarter of an undulation, falls short of it when the difference is between and J, again
exceeds it when between ^ and

f-,
and so on. For the value of A', above found, gives ray's

'

o4 -j- a"
1 - A2 = 2 a a', cos k ;

617.

now cf, a's , and A2
, represent the intensities of the respective rays whose momenta are a, a 1

, and A. intensities

Carol. 7 In the same manner may any number of similar rays be compounded, and the resultant ray will be of simple

similar to the elementary rays, and vice versa. and com

Let us now consider the interference of waves having the same period (or colour) but in all other respects
pou" d ra5 "

dissimilar.
Generd

The law of vibration of the molecules of the luminous bodies which agitate the ether, restricting their motions
problem of

to ellipses performed in planes, the same will hold good of the motions of each molecule of the ether. Now inter-

every elliptic vibration, or rather revolution, performed under the influence of a force directed to its centre and ferences.

proportional to the distance, is decompostd into three rectilinear vibrations, lying in any three planes at right

angles to each other, each of which separately would be performed by the action of the same force in the same
time, and according to the same laws of velocity, time, and space. Hence, every elliptic vibration may be

expressed by regarding the place of the vibrating molecule at any instant t as determined by three coordinates

T, y, z, such that, being an arc proportional to the time, we shall have

dx
x = a . cos (0 -f- p) ;

- = u = a . sin (0 ~j- p)

(1.) y - b . cos (6 f q)
-

-^-
= v = /i . sin (0 -j- q) } (2.)

z = c . cos (0 -4- r) ;
= w </ . sin (f -J- r)

d t

In fact, if we multiply the first of these equations by an indeterminate I, the second by m, and the third by n
and add, we get

(3); I x -j- my -\-nz = cos { I a . cos p -f- m b . cos q -f- n c . cos r }

sin 6
{ / a . sin p -(- m b . sin q -f- n c . sin r

}

and, therefore, if we determine I, m, n, so that

/ a . cos p -j- m b . cos q -f- n c . cos r = ; / a . sin p -f- in b . sin q -j- n c . sin r =
which (being equations of the first degree only) is always possible, we shall have, independently of 0,

lx-\-my-\-nz = 0; (4,)

and this, being the equation of a plane, shows that the whole curve represented by the above equations lies in

one plane. Again, if we eliminate between the equations, involving x and y only, we have

- 1 x - 1 ycos -- cos
a

or, taking the cosines on both sides,

ind reducing, we get the equation

2
-ir -f COS(P

-
9) = sin (p

~
?)!; (5

which is the equation of an ellipse having the origin of the x and y in its centre, and the same is true mutatis

mutandis of the equations between x and z, and between y and z. Thus the curve represented by the three

equations between x, y, 2, 0, has an ellipse about the centre for its projection on each of the planes at right

angles to each other, and is, of course, itself an ellipse.

3o2
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Light. Suppose now two systems of waves, or two rays coincident in direction, to interfere with each other. If we Part HI.
^ -v-"~s accent the letters of the above expressions to represent corresponding quantities for the second system, we ^ y
619. shall have

X = x -f a? = a . cos (0 -f- p) -f a' . cos (0 -f- p') -^

Y = y + y' = b . cos (0 -j- q) -f- 6' . cos (0 + <]') (6)

Z = z -f z' = c . cos (0 -J- r) -j- c
1

. cos (0 -f /) J

and similarly for the velocities u -f u', v -J- t>', jo -f- M/. In the same manner, then, as we proceeded in the case
of two similar rays, let us suppose

a . cos (0 + f) -j- a' . cos (0 -f p') = A . cos (6 -f- P)
and developing

(a . cos p -j-
' cos p

1

) cos (a . sin p -f a! . sin p') sin 6 = A . cos P . cos A . sin P . sin 0,

whence we get

_ ffl . sin p -f a' . sin p' a . sinp -f- a> sinp' \

a . cosp -f- a' . cosp'
'

sin P > '

(7)

or, A = J of -f- 2 a a' . cos (p
- p

1

) +-a' )

Thus we have X = A . cos (0 -J- P), and, similarly, Y = B . cos (0 -f- Q), and Z = C . cos (0 -f. R), and a process
exactly similar gives us the corresponding expressions for the velocities.

620. Thus we see that the same rules of composition and resolution apply to dissimilar as to similar vibrations.

Composi- Each vibration must first be resolved into three rectilinear vibrations in three fixed planes at right angles to each

resolution
ot'ler - These must be separately compounded to produce new rectilinear vibrations in the coordinate planes,

of vibra-
which together represent the resulting elliptic vibration, and will have the same period as the component ones,

tions gene- By inverting the process, a vibration of this kind may be resolved into any number of others we please, having
rally. the same period.

A great variety of particular cases present themselves, of which we shall examine some of the principal. And
Case of in-

first, when the interfering vibrations are both rectilinear.

ofrectili-
Since the choice of our coordinate planes is arbitrary, let us suppose that of the x, y to be that in which both

near vibra-
*'le vibrations are performed. Of course the resulting one will be performed in the same. Therefore we may

tions put z =i 0, or c = 0, d 0, and content ourselves with making

}; (8)

x = a . cos (0 -f- p) ; y = b . cos (0 -f- p)

x'= a'.cos(0-f-p'); y'=&'.cos(0+y)

; in this case, and X, Y, A, B, P, Q

! = A. cos(0 + P); Y=B.cos(0+Q);

The resul- because - - and r are constant in this case, and X, Y, A, B, P, Q, denoting as in the general case, we have
tant vibra- y y

elliptic. and, by elimination of 0,

\A/\B/ AB
where A, B, P, Q, are determined as in equations, (7.) In the general case, then, the resulting vibration in

elliptic.

622. The ellipse degenerates into a straight line by the diminution of its minor axis when P = Q. Now this gives
Case when tan P = tan Q, or
the resul- a . sin p+ a' . sinp' 6 . sin fl + 6' . siny
tentisrec-

^
,

, ^7= , -hr- ^T
tilinear. a . cosp+ a , cosp' b . cosp -f-o . cosp

which, reduced, takes the form

There are, therefore, two cases, and two only in which the resulting vibration is rectilinear. The first, when

p p
1 =: 0, or when the component vibrations have a common origin, or are in complete accordance; the

/ L I

Case when other, when =
, that is, when they are both performed in one plane, and in the same direction. For if

(I O
their direc-

tions coin- we call mand m 1 the amplitudes, and Y"> V'' tne angles tnev make with the axis of the x, we have

a = m . cos ^ ; b = m . sin ^ ;
a' = m' . cos y/ ; b' m' . sin ^',

so that the above equation is equivalent to tan ty = tan
\fr',

or ^ = Y^'.

623. The latter case we have already fully considered. In the former, we have cos (p p') = 0, and, therefore,

\ = a+ a'; B = 6-f 6'; P-p; Q=p,
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Y 6+6' Pail III.

' and, finally,
= - = tan ; (10) ^v^X a + Case if

which is the tangent of the angle made by the resulting rectilinear vibration with the axis of the x. complete

If we put M for the amplitude of the resulting vibration, we have M . cos = A; M . sin = B ; therefore, accordance

M' . (cos 0*+ sin 0') or M' = A + B'. ^"^
Now, A* = (a -f- a')

8 = (m . COS Y"+ m '

cos YO* vibrations.

B8 = (6 + 6') = (rn . sin y, + m' . sin Y/)
8

Aog^
and, therefore, adding these values together, and reducing and positioo

M' = m*+ 2 m m' . cos (Y"
- f) + m" ; (11) *$L.

Now, Y" Y"' is the angle between the directions of the component vibrations, so that this equation expresses
tlon deter-

that the amplitude of the resultant vibration is in this case also the diagonal of a parallelogram, whose sides
mmed -

are the amplitudes of the component ones ; and it is easily shown, by substituting in tan = -
r the above

Qi
f

Or

values of a -f- a', 6 -+- &', that the diagonal has also the position of the resultant line of vibration.

Carol. 1. Any rectilinear vibration may be resolved into two other rectilinear vibrations, whose amplitudes 625.

are the sides of any parallelogram, of which the amplitude of the original vibration is the diagonal, and which
are in complete accordance, or have a common origin with it.

Carol. 2. Hence any rectilinear vibration may be readily reduced to the directions of two rectangular 626.

coordinates, or, if necessary, into those of three, by the rules of the resolution of forces, and the component
vibrations, however numerous, will be in complete accordance with the resultant.

The ellipse degenerates into a circle when cos (P Q) = 0, or P Q = 90", and, also, A = B. Now the 627.
former condition gives tan P -f- cot Q =r 0, that is Case of

a . sin p -f a' . sin p b . cos p + 6' . cos j/
circular_ !-1------ !-- vibrations.

a . cosp -f- ft cosp' 6 . sin p -j- 6' . sin p'

or reducing

ab + a'b' m* . sin 2 Y" + '8 sin 2
'"-* ' .

'~
' '

a V -\- a' b mm' . sin (Y-

The condition A = B, or A2 = B8
, gives

a3
-f 2 a a' . cos (p

-
p') -f a' = 6 + 2 b b' . cos (p

- p
1

) -f b"

whence we, in like manner, obtain

(a
8 + a' 8

)
-

(6
8 + ft'

8
) wi . cos 2 Y- + " cos 2 Y-'

s(p -^ }
2 a a' - 2 6 V cos (Y-

-
Y-')

and, equating the values of cos (p p'), we find the following relation between a, a, b, b', which must subsist

when the vibrations are circular,

fjL. JL\
(a

*
-f & - a' 8 - ft'

8
)
= 0.

The vanishing of the first factor gives no circular vibration, it being introduced with the negative root of the

equation A8 = B8
, with which we have no concern. The other gives

o -f- 68 = o' -f- 6'8
, or m = m',

which shows that the component vibrations must have equal amplitudes. Now, if for a and b we write their

values m . cos Y" and m . sin Y". and f r a' and b', respectively, m . cos Y*' and m . sin Y1
/, in either of the

expressions for cos (p p'), it will reduce itself to

cos (j) p') = cos (Y" Y") ? or > P P' 180 (^ Y"')-

Hence it appears, that the interference of two equal rectilinear vibrations will produce a resultant circular one,

provided the difference of their phases be equal to the supplement of the angle their directions make with each

other, so that when the molecule is just commencing its motion towards its centre, in virtue of one vibration, it

shall be receding from it at an obtuse angle with this motion, in virtue of the other.

Carol. Hence, if two vibrations have equal amplitudes, but differ in their phases by a quarter of an undula-

tion, their resultant vibration will be circular.

We are now in a condition to explain what becomes of the portions of the secondary waves which diverge 625.

obliquely from the molecules of the primary ones, as alluded to in Art. 595, and to explain the mode in which Fig. 130

those which do not conspire with the primary wave mutually destroy each other. To this end, conceive the sur-

face of any wave A B C to consist of vibratory molecules, all in the same phase of their vibrations. Then will the

motion of any point X (fig. 130) be the same, whether it be regarded as arising from the original motion of S, Mutual

or as the resultant of all the motions propagated to it from all the points of this surface. Conceive the surface destruction

ABC divided into an infinite number of elementary portions, such that the difference of distance of each con-
J

secutive pair from X shall be constant, or = d f, putting the distance of any one from that point = f; and let

A B, B C, CD, &c., and A 6, b c, c d, &c. be finite portions of the surface containing each the same number of
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'-i?"' these elements, and in each of which the corresponding values of/ are exactly half an undulation (^ X) greaterv "v'"*'' than in the preceding, so that (for instance) BX^AX + ^X, CX = BX"-fJX, &c. Then it is evident,
'

that the vibrations which reach X simultaneously from the corresponding portions of any two consecutive ones
as of A B and B C, will be in exactly opposite phases ; and, therefore, were they of equal intensity, and in

precisely the same direction, would interfere with, and destroy each other. Now, first, with regard to their

intensity, this depends on the magnitudes of the elements of the wave A B, from which they are derived, and on
the law of lateral propagation. Of the latter, we know little, a priori ; but all the phenomena of light'indicate
a very rapid diminution of intensity, as the direction in which the secondary undulations are propagated deviates
from that of the primary. With respect to the former, it is evident that the elements in the immediate vicinity
of the perpendicular A X, corresponding to a given increment rf/of the distance from X, are much larger than
those remote from it ; so that all the elements of the portion A B are much larger than those in B C, and these

again than in those of C D, and so on. Thus the motion transmitted to X from any element in A B will be
much greater than that from the corresponding one in B C, and that again greater than that from the element in
C D, and so on. Thus the motion arriving at G, from the whole series of corresponding elements, will be repre-
sented by a series such asA-B + C-D + E F + &c., in which each term is successively greater than
that which follows. Now it is evident that the terms approach with great rapidity to equality ; for if we consider

any two corresponding elements as M, N at a distance from A at all considerable, the angles X M and X N make
with the surface approach exceedingly near to equality, so that the obliquity of the secondary wave to the pri-
mary, and of course its intensity, compared with that of the direct wave, is very nearly alike in both ; and the
elements M, N themselves, at a distance from the perpendicular, approach rapidly to equality, for the elementary
triangles M mo, Mjip are in this case very nearly similar, and have their sides m o, np equal by hypothesis.
Finally, the lines M X, N X approach nearer to each other in direction so as to produce a more complete inter-

ference, as their distance from A is greater.
629. Thus we see that the terms of the series A B + C D-(- &c., at a distance from its commencement,

have on all accounts (viz. their smallness, near approach to equality, and disposition to interfere) an

extremely small influence on its value ; and as the same is true of every set of corresponding elements into
which the portions A B, B C, &c. are divided, it is so of their joint effect, so that the motion of the molecule X is

governed entirely by that of the portion of the wave ABC immediately contiguous to A, the secondary vibrations

propagated from parts at a distance mutually interfering and destroying each others effect.

630. It is obvious, that in the case of refraction or reflexion, we may substitute for the wave A M the

refracting or reflecting surface ;
and for the perpendicular X A the primary refracted ray, when the same things,

mutatis mutandis, will hold good. See M. Fresnel's Paper entitled Explication de la Refraction dans le

Systeme des Ondes, published in the Bulletin de la Societe Philomatique, October, 1821.

g,jj
This is the case when the portion of the wave A B C D whose vibrations are propagated to X is unlimited,

Case of a or at 'east so considerable, that the last term in the series A B + C &c. is very minute compared with the

wave first. But if this be not the case, as, if the whole of a wave except a small part about A be intercepted by an
transmitted obstacle, the case will be very different. It is easy on this supposition to express by an integral the intensity of the
lirough a undulatory motion of X, compared with what it would be on the supposition of no obstacle existing. For this

Jpe'rture
purpose, let d 2 s be the rr -o-nitude of any vibrating element of the surface, / its distance from X = M X, and let

<p (<?) be the function of the a.^'-e made by a laterally-divergent vibration with the direct one, which expresses its

relative intensity, and which is unity when = 0, and diminishes with great rapidity as increases. Then if t

be the time since a given epoch, X = the length of an undulation, S A = a, the phase of a vibration arriving

at X by the route S M X will be 2 TT I I, and the velocity produced in X thereby will be repre-

sented by a . d* s . (0) . sin 2 ir ( -

^
-

j,
so that the whole motion produced will be represented by

f t a + f
// a . d* . (0) . sin 2 v '

the integral being extended to the limits of the aperture.

632. Carol. 1. If but a very small portion of the wave be permitted to pass, as in the case of a ray transmitted

through a very small hole, and received on a distant screen, and (0) are very nearly constant, so that the

motion excited in X is in this case represented by

We shall have occasion to revert to these expressions hereafter.

IV. Of the Colours of Thin Plates.

633. Every one is familiar with the brilliant colours which appear on soap-bubbles ; with the iridescent hues

General produced by heat on polished steel or copper ; with those fringes of beautiful and splendid colours which appear
iccount of

; the cracks of broken glass, or between the laminae of fissile minerals, as Iceland spar, mica, sulphate of
he pheno-

| imei &c jn a[1 tnese, and an infinite variety of cases of the same kind, if the fringes of colour be examined
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Light, with care they will be found to consist of a regular succession of hues, disposed in the same order, and deter- Part III.

v*-' mined, obviously, not by any colour in the medium itself in which they are formed, or on whose surfaces they
^ ^

appear, but solely by its greater or less thickness. Thus a soap-bubble (defended from currents of air by being
placed under a glass) at first appears uniformly white when exposed to the dispersed light of the sky at an open
window

; but, as it grows thinner and thinner by the subsidence of its particles, colours begin to appear at its

top where thinnest, which grow more and more vivid, and (if kept perfectly still) arrange themselves in beautiful

horizontal zones about the highest point as a centre. This point, when reduced to extreme tenuity, becomes
black, or loses its power of reflecting light almost entirely. After which the bubble speedily bursts, its cohesion
at the vertex being no longer sufficient to counteract the lateral attraction of its parts.
But as it is a matter of great delicacy to make regular observations on a thing so fluctuating and unmanage- 634.

able as a soap-bubble, the following method of observing and studying the phenomena is far preferable. Let a Rinss

convex lens, of a very long focus and a good polish, be laid down on a plane glass, or on a concave glass lens formel1 be"

having a curvature somewhat less than the convex surface resting on it
;

so that the two shall touch in but a j,"^",

single point, and so that the interval separating the surfaces in the surrounding parts shall be exceedingly glasses.
small. If the surfaces be very carefully cleaned from dust before placing them together, and the combination be
laid down before an open window in full daylight, the point of contact will be seen as a black spot in the general
reflexion of the sky on the surfaces, surrounded with rings of vivid colours. A glass of 10 or 12 feet focus

laid on a plane glass, will show them very well. If one of shorter focus be used, the eye may be assisted by a

magnifying glass. The following phenomena are now to be attended to :

Phenomenon 1. The colours, whatever glasses be used, provided the incident light be white, always succeed 635.
each other in the very same order ;

that is, beginning with the central black spot, as follows : Order of

First ring, or first order of colours, black, very faint blue, brilliant white, yellow, orange, red. succession

Second ring, or second order, dark purple or rather violet, blue, green, (very imperfect, a yellow-green,)
of

,

th<

vivid yellow, crimson red.

Third ring, or third order, purple, bine, rich grass green, Jine yellow, pink, crimson.

Fourth ring, or fourth order, green, (dull and bluish,) pale yellowish pink, red.

Fifth ring, or fifth order, -pale bluish green, white, pink.
Sixth ring, or sixth order, pale blue-green, pale pink.
Seventh ring, or seventh order, very pale bluish green, very pale pink. After these, the colours become so

faint that they can scarcely be distinguished from white.

On these we may remark, that the green of the third order is the only one which is a pure and full colour, that of 63f>.

the second being hardly perceptible, and of the fourth comparatively dull and verging to apple green ; the yellow
of the second and third order are both good colours, but that of the second is especially rich and splendid ; that of
the first being a fiery tint passing into orange. The blue of the first order is so faint as to be scarce sensible,
that of the second is rich and full, but that of the third much inferior ; the red of the first order hardly deserves
the name, it is a dull brick colour; that of the second is rich and full, as is also that of the third; but they all

verge to crimson, nor does any pure scarlet, or prismatic red, occur in the whole, series.

Phenomenon 2. The breadths of the rings are unequal. They decrease, and the colours become more crowded,
*'

as they recede from the centre. Newton (to whom we owe the accurate description and investigation of their
Breadths'

phenomena) found by measurement the diameters of the darkest (or purple) rings, just when the central black the rings

spot began to appear by pressure, and reckoning it as one of them to be as the square roots of the even numbers and thick-

0, 2, 4, 6, &c.
; and those of the brightest parts, of the several orders of colours, to be as the square roots of the nesses at

odd numbers 1, 3, 5, 7, &c. Now the surfaces in contact being spherical, and their radii of curvature very
wh 'ch they

great in proportion to the diameters of the rings, it follows from this that the intervals between the surfaces at
P

the alternate points of greatest obscurity and illumination are as the natural numbers themselves 0, 1, 2, 3, 4,

&c. The satne measurements, when the radii of curvature of the contact surfaces are known, give the absolute

magnitudes of the intervals in question. In fact, if r and / be the curvatures of two spherical surfaces, a convex
and concave, in contact, and D the diameter of any annulus surrounding their point of contact, the interval of
the surfaces there will be the difference of the versed sines of the two circular arcs having a common chord D.
Now (fig. 130) if A E be the diameter of the convex spherical surface A D, we have EA : A D 1 1 A D : D B

AD- D a D'2
1= r, and in like manner B C = -^ /, so that D 4

(r r1

) = D C, the interval of theA E 8 b 8

surfaces at the point D. Thus Newton found, for the interval of the surfaces at the brightest part of the first

ring, one 178000dth part of an inch ; and this distance, multiplied by the even natural numbers 0, 2, 4, 6, 8, &c.

gives their distance at the black centre and the darkest parts of the purple rings, and by the odd ones 1, 3, 5, &c.

their intervals at the brightest parts.
Phenomenon 3. If the rings be formed between spherical glasses of various curvatures, they will be found to 638.

be larger as the curvatures are smaller, and vice versa ; and if their diameters be measured and compared with Invariable

the radii of the glasses, it will be found, that, provided the eye be similarly placed, the same colour is invariably
relatl " he-

produced at that point, or that distance from the centre where the interval between the surfaces is the same.
Coio s ^

Thus, the white of the first order is invariably produced at a thickness of one 178000th of an inch
;
the purple, thicknesses

which forms the limit of the first and second orders, at twice that thickness. So that there is a constant rela- of plates,

tion between the tint seen and the interval of the surfaces where it appears. Moreover, if the glasses be

distorted by violent and unequal pressure, (as is easily done if thin lenses be used,) the rings lose their

circular figure, and extend themselves towards the part where the irregular pressure is applied, so as to form a

species of level lines each marking out a series of points where the surfaces are equidistant. Thus, too, if a
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Light, cylinder be laid on a plane, the rings pass into straight lines arranged parallel to its line of contact, but following Part II.

~\ - the same law of distance from that line as the rings from their dark centre, and if the glasses be of irregular v_^, ,.
curvature, as bits of window glass, the bands of colour will follow all their inequalities ; yet more, if the

pressure be very cautiously relieved, so as to lift one glass from the other, the central spot will shrink and
disappear, and so on ; each ring in succession contracting to a point, and then vanishing, so as to bring all the
more distant colours successively to the centre, as the glasses recede from absolute contact. From all these

phenomena it is evident, that it is the distance between the surfaces only at any point which determines the
colour seen there.

639. Phenomenon 4. This supposes, however, that we observe them with the eye similarly placed, or at the same
Effect of angle of obliquity. For if the obliquity be changed by elevating or depressing the eye, or the glasses, the

obliquity of diameters (but not the colours) of the rings will change. As the eye is depressed, the rings enlarge ; and the
incidence. same tmt which before corresponded to an interval of the 178000th of an inch, now corresponds to a greater

interval. This distance (-r-nrSv-ir) is determined by measures taken nearly at, and reduced by calculation exactly
to, a perpendicular incidence. At extreme obliquities, however, the diameters of the several rings suffer only a
certain finite dilatation, and Newton's measures led him to the following rule : viz.

" That the interval between
the surfaces at which any proposed tint is produced, is proportional to the secant of an angle whose sine is the

Jirst of 106 arithmetical mean proportionals between the sines of incidence and refraction, into the glass from the

air, or other medium included between the surfaces, beginning with the greater ;" or, in algebraic language, the

relative index of refraction being p.,
and the angle of incidence, and p that of refraction of the ray as it passes

out of the rarer medium into the denser ; then, if t be the interval corresponding to a given tint at the oblique
incidence 0, and T at a perpendicular incidence, we shall have

t = T . sec u where sin u = sin 6 (sin 6 sin p)

but sin p = . sin 0, consequently we have

106 -)

t = T . sec u ; sin u = . sin . = -
. sin 0.

107 107 p

640. To see the rings conveniently at extreme obliquities, a prism maybe used, laid on a convex lens, as in fig. 132.

Fig. 132. If the eye be placed at K, the set of rings formed about the point of contact E will be seen in the direction

Rings seen j H, and as the eye is depressed towards the situation I, where the ray I G intromitted from I would just begin
through a

to sujfer totai reflexion, the rings are seen to dilate to a certain considerable extent. When the eye reaches I,

the upper half of the rings disappears, being apparently cut off by the prismatic iris of Art. 555, which is seen

in that situation, but the black central spot and the lower half of the rings remains ; but when the eye is still

further depressed the rings disappear, and leave the central spot, like an aperture seen in the silvery whiteness

of the total reflexion on the base of the prism, and dilated very sensibly beyond the size of the same spot seen

in the position K H : thus proving, that the want of reflexion on that part of the base extends beyond the limits

of absolute contact of the glasses, and that, therefore, the lower surface interferes with the action of the upper,

, and prevents its reflexion while yet a finite interval (though an excessively minute one) intervenes between

them. Euler has made this an objection to the undulatory theory, but the objection rests on no solid grounds,
as it is very reasonable to conclude, that the change of density or elasticity in the ether within and without a

medium is not absolutely per saltum, but gradual. If so, and if the change take place without the media, the

approach of two media within that limit, within which the condensation of the ether takes place, will alter the

law of refraction from either into the interval separating them.

641. In order, however, to see to the greatest advantage the colours refi""td by a plate of air at great obliquities,

Fringes the following method, first pointed out by Sir William Herschel, may be employed. On a perfectly plane glass

scenwhenaor metallic mirror, before an open window, lay an equilateral prism, having its base next the glass or mirror

prism is

very tn] jy p]anei and looking in at the side AC, fig. 133, the reflected prismatic iris, a, b, c, will be seen as usual

plane "hss
in the direction E F> where a ray from E would just be totally reflected. Within this iris, and arranged parallel

Fig. 133. to it, are seen a number of beautiful coloured fringes, whose number and distances from each other vary with

every change of the pressure ; their breadths dilating as the pressure is increased, and vice versa. They do not

require for their formation, that the surfaces should be exceedingly near, being seen very well when the prism is

separated from the lower surfaces by the thickness of thin tissue paper, or a fine fibre of cotton wool interposed,

but in this case they are exceedingly close and numerous. If the pressure be moderate, they are ne irly equi-

distant, and are lost, as it were, in the blue iris, without growing sensibly broader as they approach it. As the

intervals of the surfaces is diminished, they dilate and descend towards the eye, appearing, as it were, to come

down out of the iris. They do not require for their formation a perfect polish in the lower surface. An emerierf

glass, so rough as to reflect no regular image at any moderate incidence, shows them very well. The experi-

ment is a very easy one, and the phenomena so extremely obvious and beautiful, that it is surprising it should

not have been noticed and described by Newton, especially as it affords an excellent illustration of his law

above stated To understand this, let EH, E K, E L be any rays from E incident at angles somewhat less

than that of total reflexion on the base ; they will therefore be refracted, and, emerging at the base B C, will be

reflected at M N, (the obliquity of the reflexion being so great, that even rough surfaces reflect copiously and

regularly enough for the purpose, Art. 558,) and will pursue the courses HDPp, K F Q 9, LGRr, &c. entering

the prism again at P, Q, R. Reciprocally, then, rays p P, q Q, &c. incident at P, Q, &c. in these directions,
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will entel the eye at E after traversing the interval B C N M, and being reflected at M N, and will affect the eye Tart III.

'

with the colour corresponding to that obliquity and that interval between the surfaces which is proper to each. >
->,

If then we put, as above, for the exterior angle of incidence of the ray D H on the base of the prism, and

take

106 /+ 1 10
sin u = ----

. sin =-~- . sin p = k . sin
107 p.

107

the tint seen in the direction E H will (abstraction made of the dispersion at the surface A C) be the same with

that reflected at a perpendicular incidence, by a plate of air of the thickness T = t . cos = < -/ 1 If . sin/)
4
,

where t = the distance between the surfaces B C, M N. There will, therefore, appear a succession of colours

in the several consecutive situations of the line E II, analogous to those of the coloured rings, (except in so far

as the dispersion of the side A C alters the tints by separating their component rays.)

But the whole series of colours will not be seen, because those which require greater obliquities than that at 642.
which total reflexion takes place, cannot be formed. In fact, the angle, reckoned from the vertical at which a
tint corresponding to a thickness T in the rings would be formed, is given by the equation

sm p = -r

taking /t
= for glass, which it is very nearly. Now, according to this, the central tint, or black of the first

order, which is formed when T = 0, requires that

sin ' = T =

107

which being greater than - shows that this tint lies above the situation of the iris, and cannot therefore be

1

seen. Tlie first visible tint will be that close to the iris, where sin p = which gives

~: ' = 0-079 '

nearly, or
9r

. Hence it appears, that these fringes would be seen, by an eye immersed in the prism, when

the interval between its base and the glass it rests on is more than 12 times that at which clours are formed

13 1
at a perpendicular incidence, t. e. at 12'25 X , or about th of an inch, which is about the thickness

of fine tissue paper. Moreover, from this value of T, we see that the first tint immediately visible below the

iris ascends in the scale of the rings (i. e. belongs to a point nearer their centre) as the value of t diminishes,
or as the prism is pressed closer to the glass ; and this explains why the fringes become more numerous, and

appear to come out of the iris by pressure. With regard to their angular breadth, (still to an eye immersed in the

1 inch

prism.) If we put e = , we have, putting pa , p lt &c. for the values of p, corresponding to the several

orders of visible tints,

very nearly, sin p, = ( 1 0-079 . )
and so on. The sines then of the incidences at which the several

/ \ t /
orders of colours are developed, beginning at the iris, increase in arithmetical progression, so that the fringes must
be disposed in circular arcs parallel to the iris, and their breadths must be nearly equal, and greater the greater
the pressure or the less t is, all which is conformable to observation. The refraction of the side of the prism
between the eye and the base, however, disturbs altogether the succession of colours in the fringes, and
in particular multiplies the number of visible alternations to a gce.at extent, in a manner which will be evi-

dent on consideration. We have been rather more particular in explaining the origin of these fringes, and

referring them to the general phenomena observed by Newton, because up to the present time we believe no
strict analysis of them has been given, as well as on account of the great beauty of the phenomenon itseF. If
we hold the combination up to the light, and look through the base of the prism and the glass plate, so as to

see the transmitted iris of Art. 556, its concavity will, in like manner, be seen fringed with bands of colours of

precisely similar origin. To return now to the rings seen between convex glasses.
Phenomenon 5. If homogeneous light be used to illuminate the glasses, the rings are seen in much greater

VOL. rv. 3 p



466 LIGHT.
Light, number, and the more according to the degree of homogeneity of the light. When this is as perfect as possible,

_. -^- as, ibr instance, when we use the flame of a spirit lamp with a salted wick, as proposed by Mr. Talbot, they are
'

Phenomena
literally innumerable, extending to so great a distance that they become too close to each other to be counted, or

even distinguished by the naked eye, yet still distinct on using a magnifier, but requiring a higher and higher

Tioht" power as they become closer, till we can pursue them no farther, and disappearing from their closeness, and not

from any confusion or running of one into the other. Moreover, they are now no longer composed of various

colours, but are wholly of the colour of the light used as an illumination, being mere alternations of light and

obscurity, and the intervals between them being absolutely black.

644. Phenomenon 6. When the illuminating light is changed from one homogeneous ray to another, as when, for

Contraction instance, the colours of the prismatic spectrum are thrown in succession on the glasses at their point of contact,
of the rings at sucn an angle as to be reflected to the eye, then, the eye remaining at rest, the rings are seen to dilate and

rVranlble
contract m magnitude as the illumination shifts. In red light they are largest, in violet least, and in the inter-

.j

3 "8 '

mediate colours of intermediate size. Newton, by measuring their diameters, ascertained that the interval of

the surfaces or thickness of the plate of air, where the violet ring of any order was seen, is to its thickness,

where the corresponding red ring of the same order is formed, nearly as 9 : 14 ; and, determining by this method,
the thickness of the plate of air where the brightest part of the first ring was formed, when illuminated in suc-

cession by the several rays proceeding from the extreme red to the extreme violet, he ascertained those thick-
thecoloured nesses jo De the halves of the numbers already set down in the second column of the Table, p. 453, expressed in

ring*. x
parts of an inch, and which answer to the values of

-^ , or the lengths of a semiundulation for each ray.

645. This phenomenon may be regarded as an analysis of what takes place when the rings are seen in white light ;

Synthesis of for in that case they may be regarded as formed by the superposition one on the other of sets of rings of all the

the coloured
simple colours, each set having its own peculiar series of diameters. The manner in which this superposition

p.
ngs 'm takes place, or the synthesis of the several orders of colours, may be understood by reference to fig. 134, where

the abscissae or horizontal lines represent the thicknesses of a plate of air between two glasses, supposed to

increase uniformly, and where R R', RR", &c. represent the several thicknesses at which the red, in the system
of rings illuminated by red rings only, vanishes, or at which the darkness between two consecutive red rings is

observed to happen, while R r, Rr', Rr", &c. represent those which the brightness is a maximum. In like

manner, let 0', 0'', &c. be taken equal to the several thicknesses at which the orange vanishes, or at which
the black intervals in the system of orange rings are seen, and so on for the yellow, green, blue, indigo, and

violet rings. So that R R', 0', Y Y', &c. are to each other in the ratio of the numbers in column 2 of

the above Table, (Art. 575.) Then if we describe a set of undulating curves as in the figure, and at

any point, as C in A E, draw a line parallel to AV, cutting all these curves; their several ordinates, or the

portions of this line intercepted between the curves and their abscissae, will represent the intensity of the

light of each colour, sent to the eye by that thickness of the plate of air. Hence, the colour seen at that

thickness will be that resulting from the union of the several simple rays in the proportions represented by their

ordinates.

g4 fi
The figure being laid down by a scale, we may refer to it to identify the colours of particular points. Thus,

Synthesis of ^ Tsi at lne thickness 0, or at A the origin of the tints, all the ordinates vanish, and this point, therefore, is black.

the several As the thickness of the plate of air increases from while yet very small, it is evident, on inspection, that the
orders of ordinates of the several curves increase with unequal rapidities, those for the more refrangible rays more rapidly
colouti. tnan tnose for tne ]ess> go that the first jeeDie ]j

ff
ht wn j ch appears at a very small thickness A 1, will have an

excess of blue rays, constituting the pure but faint blue of the first order, (Art. 635.) At a greater thickness,

however, as A 2, the common ordinate passes nearly through the maxima of all the curves, being a little short of

that of the red, and a little beyond that of the violet. The difference, however, is so small, that the several

colours will all be present nearly in the proportions to constitute whiteness, and being all nearly at their maxi-

mum, the resulting tint will be a brilliant white. This agrees with observation ; the white of the first order

being, in fact, the most luminous of all
; beyond this the violet falls off rapidly, the red increases, and the yellow

is nearly at its maximum, so that at the thickness A3 the white passes into yellow, and at a still greater

thickness, A 4, where the violet, indigo, blue, and green, are all nearly evanescent, the yellow falling otf, and

the orange and red, especially the latter, in considerable abundance, the tint resulting will be a fiery orange,

growing more and more ruddy. At B is the minimum of the yellow, i. e. of the most luminous rays. Here

then will be the most sombre tint. It will consist of very little either of orange, green, blue, or even indigo ;

but a moderate portion of violet and a little red will produce a sombre violet purple, which, since the more re-

frangible rays are here all on the increase, while the less are diminishing, will pass rapidly to a vivid blue, as at

the thickness denoted by A 5. At 6, where the ordinate passes through the maximum of the yellow, there is

almost no red, very little orange, a good deal of green, very little blue, and hardly any indigo or violet Here

then the tint will be yellow verging to green, but the green is diminishing and the orange increasing, so that the

yellow rapidly loses its green tinge, and becomes pure and lively. At 7 the predominant rays are orange and

yellow, being so copious that the little red and violet with which they are mixed does not prevent the tint from

being a rich, high-coloured yellow. At 8 a full orange and copious red are mixed with a good deal of

indigo and a maximum of violet, thus producing a superb crimson. At C we have again a minimum of

yellow ; but there being at the same time a maximum of red and indigo, this point, though dark in com-

parison of that on either side, will still be characterised by a fine ruddy purple. This completes, and as we
see faithfully represents, the second order of colours. At 9, 10 we see the origin of the vivid green of the third

order, in the comparative copiousness of green, yellow, and blue rays at the former point, and of yellow, green,
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and violet at the latter, while the red and orange are almost entirely absent, and thus we may pursue all the Pan III.

> tints in the scale enumerated in Art. 635 with perfect fidelity. ^ v "'

As the thickness increases, however, it is clear that rays differing but little in refrangibility will differ much in 647.

intensity, as the smallest difference in the lengths of the bases of their curves being multiplied by the number of Degradation

times they are repeated, will at length bring about a complete opposition, so that the maximum of one ray will
of tlie l"Ui -

fall at length on a minimum of another differing little in refrangibility, and not at all in colour. Thus, at con-

siderable thicknesses, such as the 10th or 20th order, there will coexist both maxima and minima of every colour;
since each colour, in fact, consists not of rays of one definite refrangibility, but of all gradations of refrangibility
between certain limits. In consequence, the tints, as the thickness increases, will grow less and less pure, and
will at length merge into undistinguishable whiteness, which, however, for this very reason, will be only half as

brilliant as the white of the first order, which contains all the rays at their maximum of intensity.
Phenomenon 1'. Such are the phenomena when a plate of air is included between two surfaces of glass. It is 648

not however as air, but as distance, that it acts ; for in the vacuum of an air-pump the rings are seen without Colours

any sensible alteration. If, however, a much more refracting medium, as water or oil, be interposed, the dia-
r<

j

fle<

meters of the rings are observed to contract, preserving, however, the same colours and the same laws of their S;iferen t

breadths ; and Newton found by exact measurements, that the thicknesses of different media interposed, at which media.

a g-iven tint is seen, are in the inverse ratio of their refractive indices. Thus, the white of the first order being

produced in vacuo or air at the 178000th of an inch, will be produced in water at part of that thickness.

He found, moreover, that the law stated in Art. 639 for the dilatation of the rings by oblique incidence, holds

equally good, whatever be the nature of the interposed medium. Hence it follows, that in dense media the

dilatation at great obliquities is much less than in rare ones, and that in consequence a given thickness will re-

flect a colour much less variable by change of obliquity when the medium has a high refractive power than when
low. Thus, the colours of a soap bubble vary much less by change of incidence than those of a film of air, and
much more, on the other hand, than the iridescent colours on polished steel, which arise from a film of oxide

formed on the heated surface.

Phenomenon 8. Surfaces of glass, or other denser medium enclosing the thin plate of a rarer, are not how- 649.
ever necessary to the production of the colours ; they are equally, and indeed more brilliantly, visible when any Colours -e-

very thin laminae of a denser medium is enclosed in a rarer, as in air, or in vacuo. Thus, soap bubbles, exceed- fleeted by

ingly thin films of mica, &c. exhibit the same succession of colours, arranged in fringes according to the variable f?
aP '>"b "

thickness of the plates. The following very beautiful and satisfactory mode of exhibiting the fringes formed by
es>

plates of glass of a tangible thickness has been imagined by Mr. Talbot. If a bubble of glass be blown so thin

as to burst, and the glass films which result be viewed in a dark room by the light of a spirit lamp with a salted

wick, they will be seen to be completely covered with striae, alternately bright and black, in undulating curves

parallel to each other according to the varying thickness of the film. Where the thickness is tolerably uniform,
the striae are broad ; where it varies rapidly, they become so crowded as to elude the unassisted sight, and

require a microscope to be discerned. If the film of glass producing these fringes be supposed equal to the

thousandth of an inch in thickness, they must correspond to about the 89th order of the rings, and thus serve to

demonstrate the high degree of homogeneity of the light ; for if the slightest difference of refrangibility existed,
its effect multiplied eighty-nine times would become perceptible in a confusion and partial obliteration of the

black intervals. In fact, the thickness of a plate at which alternations of light and darkness or of colour can
no longer be discerned, is the best criterion of the degree of homogeneity of any proposed light, and is, in fact,

a numerical measure of it. This experiment is otherwise instructive, as it shows that the property of light on
which the fringes depend is not restricted to extremely minute thicknesses, but subsists while the light traverses

what may be comparatively termed considerable intervals.

Phenomenon 9. When the glasses between which the reflected rings are formed are held up against the light, 650.
a set of transmitted coloured rings is seen, much fainter, however, than the reflected ones, but consisting of tints Transmitted

complementary to those of the latter, i. e. such as united with them would produce white. Thus the centre is
colours '

white, which is succeeded by a yellowish tinge, passing into obscurity, or black, which is followed by violet and
blue. This completes the series of the first order. Those of the second are white, yellow, red, violet, blue :

of the third, green, yellow, red, bluish green, after which succeed faint alternations of red and bluish green, the

degradation of tints being much more rapid than in the reflected rings.
It was to explain these phenomena that Newton devised his doctrine of the fits of easy reflexion and trans- 651.

mission, mentioned in the 9th postulate of Art. 526. This doctrine we shall now proceed to develope further, and Newton's

apply, as he has done, to the case in question. In addition then to the general hypothesis there assumed, it will exp'anatio*

be necessary to assume as follows :
uf tlle

The intervals at which the fits recur, differ in different rays according to their refrangibilities, being greatest for
thm'plates.

the red and least for violet rays, and for these, and the intermediate rays, in vacuo, and at a perpendicular inci- 652
dence, are represented in fractions of an inch by the halves of the numbers in column 2 of the Table, Art. 575. Laws of

In other media, the lengths of the intervals in the course of a molecule at which its fits recur are shorter, in the fits -

the ratio of the index of refraction of the medium to unity. 653.

At oblique incidences, or when a ray traverses a medium after being intromitted obliquely, (at an angle =r C^A
with the internal perpendicular,) the lengths of the fits are greater than at a perpendicular incidence, in the
ratio of radius to the rectangle between the cosine of 6 and the cosine of an arc ?/, given by the equation

_ 106 p-\- 1

3r2
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Light. Let us now consider what will happen to a luminous molecule, the length of whose fits in any medium is J X, Part III

-v-"'' which, having been intromitted perpendicularly at the first surface, and traversing its thickness (= f), reaches the v^-^^.
655. second. First, then, if we suppose t an exact multiple of J X, it is evident that the molecule will arrive at the

Explanation second surface in precisely the same phase of its fit of transmission as at the first. Of course it is placed in
lh

b "h
8* l^e ver^ same circumstances in every respect, and having been transmitted before must necessarily be so again,

momentous" Thus every ray which enters perpendicularly into such a lamina must pass through it, and cannot be reflected at

light.
its second surface. On the other hand, if the thickness of the lamina be supposed an exact odd multiple of

X, &c. every molecule intromitted at its first surface will on its arrival at the second be in exactly the contrary

phase of its fits, and, having been before in some phase of a fit of transmission, will now be in a similar phase of

a fit of reflexion. It will, therefore, not necessarily be transmitted ; but a reflexion, more or less copious, will

take place at the second surface in this case, according to the nature of the medium and its general action on

light. For it will be remembered, that every molecule in a fit of reflexion is not necessarily reflected. It is

disposed to be so ; but whether it will or no, will depend on the medium it moves in and that on which it

impinges, and on the phase of its fit. Now conceive an eye placed at a distance from a lamina of unequal
thickness, so as to receive rays reflected at a very nearly perpendicular incidence from it. It is evident, that in

virtue of the reflexion from the first surface, which is uniform, it will receive equal quantities of light from every

point. But with regard to the light reflected from the second the case is different ; for in all those parts where

the thickness of the lamina is an exact even multiple of X, none will be reflected, while in all those where it is

an exact odd multiple of - -
, a reflexion will take place ; and since each molecule so reflected retraces the path

by which it arrived, and therefore describes again the same multiple of ; its total path described within the

lamina, when it has reached the first surface again, will be an exact multiple of -
, and therefore it will pene-

trate that surface and reach the eye. In consequence, in virtue of the reflexion at the second surface alone, the.

lamina would appear black in every part where its thickness =: 0, or , or , &c., and bright in those parts

where its thickness = , or , , &c. ad infinitum. In the intermediate thicknesses it would have a
4 44

brightness intermediate between these and absolute obscurity ; so that on the whole, the lamina would appear
marked all over with dark and bright alternating fringes, just as we see it actually does in the experiment
described, (Art. 649.) The uniform reflexion from the first surface superposed on these, will not prevent their

inequality of illumination from being distinctly seen.

656. Hence it is evident, that if we take the abscissa of a curve equal to thickness of the lamina at any point, and

Of the the ordinate proportional to the intensity of the light reflected from the second surface, and returned through the

rings seen fi rs t ) this curve will be an undulating line, such as we have represented in fig. 134, touching the abscissa at equal
by white

distances equal to the length of a whole fit of a ray of the colour in question. Now these distances for rays of

different colours being supposed such as we have assumed in Art. 652, the construction of Art. 645 holds

good, and when white light falls on the lamina, its second surface will reflect a series of colours of the composi-
tion there demonstrated, and such as we actually observe, but diluted with the light uniformly reflected from

every point of the first surface.

If the lamina instead of a vacuum be composed of any refracting medium, the tints will manifestly succeed

each other in a similar series, but the thickness at which they are produced will be to that in a lamina of vacuum,
in the ratio of the lengths of the fits in the two cases, that is, in the proportion of i : the index of refraction of

the medium. Thus the rings seen between two object glasses including air, ought to contract when water, oil,

&c. is admitted between them, as they are found to do, and, by measure, in that precise ratio.

657. At oblique incidences, being the angle of intromission into the lamina, t . sec is the whole path of the ray

Of the rtila- between the first and second surfaces, and since J X . sec 6 . sec u is the length of the fits of the given ray at

tation of the this obliquity, in order that the luminous molecule may arrive at the second surface in the same phase, and

""?*
'

therefore be reflected with equal intensity, it must in this space have passed over the same number of these fits ;

2 t sec
incidences. nence we must have = constant, or t proportional to sec v, which agrees with observation.

X . sec . sec

g5g All the light which is not reflected at the second surface passes through it, and forms the transmitted series of

Of the colours. These, therefore, consist of the whole incident light (= 1) minus that reflected at the first surface,

transmitted (which will be a small fraction, and which we will call a,) minus that reflected at the second surface. Now this

"ngs- last will be a periodical function whose minimum is 0, and its maximum can never exceed a, because the

reflexion at the second surface of a medium cannot be stronger than at the first at a perpendicular incidence.

(2
t\* C / 2 C^\~\

sin -

j
, and thus we have 1 - a

-j

1 -f ( sin
Vj-

for the intensity of this

particular coloured ray in the transmitted series, and a[ sin I in the reflected. Hence it is evident, that

owing to the smallness of a, the difference between the brightest and darkest part of the transmitted series will

be small in comparison with the whole light, and thus the alternations in homogeneous light ought to be (as

they are) much less sensible than iu the reflected rings, and the tints in white light much more pallid and dilute.
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tignt. Thus we see that the Newtonian hypothesis of the fits affords a satisfactory-enough explanation, or rather Part III.

V"""' represents with exactness all the phenomena above described. It has been even asserted, that this doctrine is ^~-^^-~

really not an hypothesis, but nothing more than a pure statement of facts ; for that, first, in point of mere fact, 659.

the second surface of the lamina does send light to the eye, in the bright parts of the fringes, and does not send

it in the dark parts; and, secondly, that this is the same thing with saying that the light which has traversed a

thickness = (2 n -j- 1) is, and that which has traversed 2 n is not susceptible of being reflected. And,

in truth, if only one ray could be regarded as being concerned, and were the light reflected at the first surface

of the lamina altogether out of the question, this way of stating it would be strictly correct. But, if it can be

shown, that, on any other hypothesis of the nature of light, (as the undulatory,) the second link of this argument
is invalid ;

and that though the second surface, like the first, may reflect in every part, without regard to its

thickness, its full average portion of the light that is incident on it ; yet that afterwards, by reason of the

interference of rays reflected from the first surface, such light does not reach the eye (being destroyed in every

point of its course) from those parts where the thickness is an even multiple of -, then it is evident, that the

Newtonian doctrine is something more than a mere aliter statement of facts, and is open to examination as a

theory.
Let us now see, therefore, what account the undulatory theory gives of these phenomena. We will begin, 6fiO.

for a reason which will presently appear, with the transmitted rings. Conceive, then, a ray, the length of Explanation

whose undulations in any medium is X, to be incident perpendicularly on the first surface of a lamina of that of the

medium whose thickness is = t; and (for simplicity) let its surfaces be supposed parallel, then it will be translmtte

^
divided into two portions, the first ( = a) reflected, and the second (= 1 a) intromitted. Let be the phase ""f^"",^

6

of this portion at reaching the second surface. Here it will be again divided into two portions, the one
hypothesis.

reflected back into the medium and equal to(l a) .a, or (a being small) very nearly to <z, and the remainder

(1 a) a (1 a), or nearly 1 2 a, transmitted. These portions, supposing no undulation, or part of an

undulation, gained or lost in the act of transmission or reflexion, will both be in the phase 0. The reflected

portion will again encounter the first surface in the phase -f- 2 it . , will there be again partially reflected,
n

with an intensity equal to a X a r= a', and the portion so reflected will reach the second surface in the phase
2 t

6
-f- 2 ir . -", and will there be transmitted with an intensity = (1 a) . a8

, or nearly = a*. Now, the
\i

reflexions being all perpendicular, this portion will be confounded with the portion 1 2 a transmitted

without any reflexion; and putting = v'l 2 a = 1 a, nearly, and a := */a? = a, a and a' will represent
the amplitudes of vibration of the ethereal molecule at the posterior surface, which each of these rajs tend to

impress on it. Hence, its total excursion from rest will be represented by

that is

(1
-

a) cos O -\-

/ 2<\
cos -}-

a 1

. cos I -\- 2 TT .
-

1,

(

Q t \
-f 2ir .

-^
I.

(2 <\
9 -f 2 JT .

J
- a . cos 0.

The first term of this is independent of t, and represents, in fact, the incident ray in the state in which it would
arrive at the second surface, had no reflexions taken place. The other two .terms represent rays the former of

which evidently is in complete discordance with the latter, and destroys it when t is any odd multiple of , (or of

the half length of one of Newton's fits, a fit being, as we have seen above, equal to half an undulation,) thus

leaving the ray at its emergence of the same intensity as it would have had were the lamina away ; but when t

is any odd multiple of half a fit, then the value of cos l0-\-Zir.--\= cos ; and the emergent raj-

is in this case represented by (1 2 a) . cos 0, being less than the incident ray by twice the light reflected at
the first surface.

Thus if the thickness of the plate be different in different parts, the light transmitted through it to g fi j
the eye will not be uniform, but will have alternate maxima and minima corresponding to the thicknesses Origin of

X 2 X 3 X the'bright
7-, , , &C. and dark444 * i_

rings in ho-

lt we apply to the expression above given, the general formula Art. (613) for the composition of rays in one ""H6"60"

plane, we shall find for the intensity A4 of the ray finally emergent,
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A = (I
-

r)
s + 2 a (I

-
a) . cos 2 * .

-
\

,
Part III.

= 1 - 4 a (1
- a) . sin (-

= 1 - 4 a . sin fz v
j

-2 v

663.
Transmit-

ted tints in

white light

expressed

alge-

braically.

which shows that the several maxima are equal to the incident ray, and the minima to that ray diminished by
four times the light reflected at the first surface. The difference of phase between the simple and composite

emergent ray, or the value of B in the formula cited, is given by the equation,

sin B = . sin f 2 ar .
-

j
= a . sin

(
2 * .

j
, neglecting A,

so that for such media as have not a very high refractive power, this difference is always small. It is, however,

periodical, and differs for different thicknesses.

Suppose now, instead of homogeneous light, white light to lall on the lamina, and let us represent a ray of

such light, as in Art. 488, by C + C'-f- C"-f- &c., or by S (C), C, C', &c. being the intensity of the several

elementary rays of all degrees of refrangibility, then will the transmitted compound twain be represented in tint

and intensity by

C l - 4 a . sin J 7T
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l.
;

ght. . o?, but with the same velocity V till it reaches D, having described a space = BC+CD = 2AB with that Part III

-v~/' velocity. At D it undergoes another partial reflexion, and only a portion = (1 a) (1 a) . a s is transmitted, ^ y -

which sets off from D along the line D I (parallel to B H) with the velocity V, that is, with the same velocity

as the wave along B H. This wave may also be regarded as a plane of indefinite extent perpendicular to D 1,

and therefore parallel to the former. But they are not coincident ; for the former, having the start of the latter,

will have come into a position I H K in advance of the position D L M taken by the latter, and both the waves

moving forwards now with the same velocity V will preserve this distance for ever unaltered. The interval L H
we may term the interval of retardation. To determine it, we have to consider that the space B H is described

by the former wave with a velocity V, while the latter describes B C -j- D with the velocity V, and therefore

= 2<. sec

putting ft.
for the relative index of refraction of the lamina, p for the angle of refraction a A B, and t for the

thickness A a, because V : V ; '. /t : 1.

Again, B L = B D . cos D B L == D B . sin <j) (<j> being the angle of incidence corresponding to p the angle of

refraction,) = 2 a B . sin = 2 t . tan p . sin 0. Therefore the whole interval of retardation is equal to

2 t n
2 t { n . sec p tan o . sin <f> }

= :

(I sin
/>*)
= 2

/t t . cos p

because sin =
ft . sin p.

Thus, in virtue of the two internal reflexions, each wave which before entering the medium was single, will 555
after quitting it be double, being followed at the constant interval 2 /

t . cos p by a feebler wave of the intensity
above determined. The same being true of every wave of the system of which the ray consists, these two

systems (considered as of indefinite duration) will be superposed on, and interfere with each other, according to

the general principles before laid down.

Let X, be the length of an undulation in the lamina, then will
ft,
X represent that of an undulation in the sur- 666.

rounding medium. This is obvious, because the velocity in the latter being to that in the former as
ft

: 1 ; and Undulationi

the same number of undulations being propagated in the same time through a given point in both cases, they
snorter in

must be more crowded, and therefore occupy less space in the one than the other in the ratio of the ^eftl
velocities.

Hence the differences of phases between the interfering systems at any point will equal ,,,.*

interval of retardation 2 t . cos p 2 t<

2ir .- = 2 if .
- = 2 w .

-
, putting tf = t . COS p,

14 n, Ai tor tne

transmitted

and therefore the final resulting wave will be expressed by the equation ray

( / 2 if \ )

X = /
(1
-

a) (1
-

o)
j

cos + a . cos (
-f- 2 ir . I L

which being resolved in'o the fundamental form A . cos (0 -f- B), as before, gives

A' = (1
- a) (1

-
) .

{
1 + 2 a . cos

(2
TT .

1*) -f-
t

j
,

and . J_/ _ 2*"

sin B =
/

y/ 1 + 2 o . cos (2 IT .
^\

Such are the general expressions for the intensity and change of origin of the compound transmitted ray. 668
It is evident, however, that when a and a are small, which they always necessarily are in any but extreme cases, Case of

this value of A" reduces itself by neglecting their powers and products to moderate

ublianiliet.

(1 a -\- a) 4 a . sin ( 2 ir .

which is exactly analogous to the expression in Art. 662, for the case of perpendicular incidence ; and shows,
that with the exception of a very trifling difference in the degree of dilution, the same laws of alternation

in brightness, in homogeneous light, and of tint in white light, must hold good in both cases.

But there is one essential difference. The same tints will arise in the case of oblique incidence at the ....

thickness t, which in that of perpendicular incidence is produced at the thickness t . cos p, because if = t . cos p. Dilatation
Now this is always less than t, and therefore the tint produced at oblique incidences at the given thickness Of theVingi
will be higher in the scale (or correspond to a less thickness) than in perpendicular ; and, consequently, the explained,

rings, or fringes, so seen by transmission should dilate by inclining the lamina to the eye. The law of dilata-

tion evidently, at moderate incidences, coincides nearly with Newton s rule; for this gives, on reduction,

neglecting sin p*,
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670.
Deviation

from New-
ton's rule at

great obli-

quities pro

bably ac-

counted for.

671.

Origin of

the reflected

rings.

672.
Lass of half

in undula-

tion.

sec u sec p 1) . tan p*

673.
Not con-

trary to

dynamical
principles

674.
Nor to the

undulatnrjr
doctrine.

which does not deviate very greatly f om sec p at moderate incidences.

At great incidences the case is different, and the noncoincidence of the results of the undulatory doctrine

with experiment might be drawn into an argument against it, were we sure that the law of refraction at extreme

incidences, and with very thin lamina, does not vary sensibly from that of the proportional sines. This is,

indeed, highly probable, as M. Fresnel has remarked, (Mem. stir la Diffraction, $c.) and as we have before

had occasion to observe. The inquiry into which this would lead, is, however, one of the most delicate and difficult

in physical optics, and the reader must be content with this general notice of a possible explanation of one of the

many difficulties which still beset the undulatory doctrine.

The origin of the reflected rings may be accounted for in a similar way from the partial transmission of the

waves reflected from the second surface back through the first, and their interference with the waves reflected

immediately from the first. The relative intensities of these waves, (in general,) are a and (I a) (1 a) . a;
or, in the case where a and a are both small, nearly in the ratio of a : a, and at a perpendicular incidence, very

nearly in the ratio of equality. Hence their mutual destruction in the case of complete discordance will be much
more complete than in the transmitted rings, and the colours arising, much less dilute than those of the latter,

agreeably to observation.

There is, however, one consideration of importance to be attended to in the application of the undulatory doc-

trine to the reflected rings, which at first sight appears in the light of a powerful argument against its admis-

sibility, viz. that if we apply the same reasoning to the reflected, as we have already done to the transmitted,

rings, we should arrive at the conclusion, that their tints should be precisely the same and in the same order,

beginning with a bright white in the centre ; because here, the path traversed by the ray within the lamina

vanishing, the waves reflected from the two surfaces ought to be in exact accordance, whereas it appears, by
observation, that the reverse is the case, the central spot being black instead of white. It becomes necessary,
then, to suppose, that in this case, half an undulation is lost or gained either by the wave reflected from the first

or second surface. If this hypothesis be made, the phenomena of the reflected rings are completely represented
on the undulatory system, for the compound wave reflected by the joint action of the two surfaces should be

represented by the equation,

x = ^~~a. cos & 4- a) -
a) . cos -f

* -~

and if this be put equal to A . cos (0 -f- B) we get

= a 4- a. (1
-

a) (1 - a) - 2 / aa (I
-

a) (1
- a) . cos z w -

675.

and in the case of a and a both very small

_ f J/ V t

A5 = (^ a- */a)- 4-4. v/ao.sinf 2*-
-j

and at a perpendicular incidence, where t' = t , and where a and a may be supposed equal

/ t V
A2 = 4 a . sin f 2 ir I

Thus we see, that in this case the total intensity of the compound reflected wave 4- tna' of the transmitted

(Art. 662) make up 1, the intensity of the incident wave; and thus, this supposition of the loss or gain of half

an undulation is in no contradiction with the law of the conservation of the vis viva.

In fact, however, if we consider the mode in which the undulations are propagated, at the limit between two

media, we shall see nothing contrary to dynamical principles in the loss of half or any part of an undulation in

the transfer for it cannot be supposed, that the density or elasticity of the ether changes abruptly at the sur-

faces of media, but that there intervenes some very minute stratum in which it is variable. In this stratum,

therefore, the length of an undulation is neither exactly that corresponding to the denser, nor to the rarer

medium, but intermediate, and of a magnitude perpetually varying. Therefore the number of undulations to be

reckoned as added to the phase of the ray in traversing this stratum, will differ from what it would be if one
medium terminated, and the other commenced abruptly. Without knowing the law of density, the limits

between which it undergoes its change, or the exact mode in which the partial reflexion of a wave traversing it

is performed, it is impossible to subject the point to strict calculation, we must rather submit to be taught by
experiment, and content ourselves with such conclusions as we can deduce from observation. In the case

before us, all that observation teaches us is, that there is half an undulation more of difference in the phases of

two rays that have been reflected in the manner last considered, than in those of the two whose interference

forms the transmitted rays. From some curious experiments of Dr. Young, too, we may gather that it is not in

all cases strictly half an undulation of difference to be reckoned, but rather a variable fraction depending on the

nature of the contiguous media.

The formulae of Art. 672 show that it is only in the case of perpendicular incidence that the tints are pure,
and that in all others, and especially at great obliquities, where a and a differ

considerably, there will be a-
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Light. dilution of white light, and this is also agreeable to experience. At a perpendicular incidence, however, the Part III.

"^j"^ minima of each homogeneous colour ought to be absolutely evanescent ; so that if we were to remove the reflec- v pv"^'
lion of the upper surface of an object glass laid down on a plate, (or use a prism, so as to prevent its reaching E*prime-
the eye,) the intervals between the rings in homogeneous light ought to appear absolutely black. In the New-

(""'v

"
e

'

Ionian doctrine this should not be the case, because the light reflected from the upper surface of the lamina of two theories

included air should still remain even in the minima of the rings. This then affords a positive means of deciding
between the two theories. M. Fresnel describes, an experiment made for this purpose, and states the result to

be unequivocally in favour of that of undulations. (Diffraction dela Lumicre, p. 11.)

V. Of the Colours of Thick Plates.

Under certain circumstances rings of colours are formed by plates of transparent media of considerable thick- 676
ness. The circumstances under which they appear, in one principal case, are thus described by Newton, who
first observed them, and who has applied his doctrine of the fits of easy reflexion and transmission to explain
them, with singular ingenuity.

"
Admitting a bright sunbeam through a small hole of one-third of an inch in diameter into a dark room, it Newton's

was received perpendicularly on a concavo-convex glass mirror one quarter of an inch thick, having each surface "Per"

ground to a sphere of six feet in radius, and the back silvered. Then holding a piece of white paper in the In i rror

centre of its concavity, having a small hole in the middle of it to let the sunbeam pass, and after reflexion at

the speculum to repass through it, the hole was observed to be surrounded with four or five coloured concen-

tric rings or irises, just as the rings seen between object-glasses surround their central spot but larger and
more diluted in their colours". ..." If the paper was much more distant from the mirror, or much less than
six feet, the rings became more dilute and gradually vanished.''. ..." The colours of these rings succeeded each

other in the order of those which are seen between two object glasses, not by reflected but by transmitted light,
viz. white, tawny white, black, violet, blue, greenish yellow, yellow, red, purple," &c " The diameters of

these rings preserved the same proportion as those between the object-glasses, the squares of the diameters of

the alternate bright and dark rings, reckoning the central white as a ring of the diameter 0, forming an arith-

metical progression, beginning at 0. And in the case described, the diameter of the bright ring measured

respectively 0, 1-i-l, 2$, 2{i, 3^.". ..." Lastly, in the rings so formed by reflectors of different thicknesses, their

diameters were observed to be reciprocally as the square roots of the thicknesses. If the back of the mirror was

silvered, the rings were only so much the more vivid."

These various phenomena, and a variety of similar ones, some of more, some of less complexity, according to 677
the variation of the distance, and obliquity of the mirror, and the curvature of its surfaces, Newton has

explained very happily, by considering the fits of easy reflexion and transmission of that faint portion of

the light which is irregularly scattered in all directions at the first surface of the glass, and which serves to

render it visible. But for this explanation we must refer to his Optics, as our object here is more particularly
and distinctly to show what account the undulatory doctrine gives of this phenomenon, which has hitherto been

passed over rather cursorily, not without some degree of obscurity.
There is no surface, however perfectly polished, so free from small scratches and inequalities as not to 673.

reflect and transmit, besides those principal rays which obey the regular laws of reflexion and refraction, as Principle of

dependent on the general surface, other, very much feebler, portions scattered in all directions, by which the explanation

surface is rendered visible to an eye anywhere placed, but most copiously in and about the direction of the j",
u "~

regularly reflected and transmitted rays. It is the interference of these portions, scattered at the first surface by SySt

a

c ,n

ry

the ray in passing and repassing through it, nearly in its own direction, that the rings in question are attributed

in the undulatory doctrine.

Let F A D, E B G be the parallel surfaces of any medium exposed perpendicularly to a homogeneous ray 679.

emanating from a luminous point C, and incident at A. The chief portion will pass straight through A, and be Its applica-

reflected back from B to A again. But at A a scattering takes place, and the transmitted ray A B is accom- tion

panied by a diverging cone of faint rays A a, A b, Ac, &c., all which set out from A in the same phase of their g '

undulations with the principal one from which they originate, so that A may be regarded as their common
origin. Take Q, the focus of rays reflected at the second surf-.ce conjugate to A (if the surfaces be plane,
Q and A are equidistant from B) and the cone of scattered rays, with the regularly reflected ray in its axis, will

after reflexion diverge as from Q. Again, when they pass into the air again, if we take q the focus conjugate
to Q of rays refracted at the surface F D, they will after refraction diverge from q, and by the nature of foci on
the unrlulatory hypothesis, the undulations will be propagated in the air as if they had a common origin q
placed in air ; because, after refraction, the waves have the form of spheres diverging from q, and therefore

every portion of their surfaces are equidistant from q ; had they, therefore, really emanated from q, as separate

rays, they must at the moment of such emanation have been all in one phase. Now, when the reflected beam
reaches A a portion of it will again l>e scattered in a cone, having the regularly transmitted ray A G in its axis

;

and the rays A O, A N, A M, &c. of this cone will all have A for their origin, and will be in the same phase at their

departure from A with the ray AG; but this is in the phase it would have had as emanated from q; hence, if

we consider any point M out of the directly transmitted ray A G, it will be reached at once by a wave belonging
to each diverging cone, the one along q M from q and the other along AM from A, and the difference of routes
is equal to q A -(- A M qM. Therefore, when M is very nearly coincident with G, this is very small and at

G vanishes, or the waves are in exact accordance. As M recedes from G it increases, and when it becomes,
VOL. <v. 3 q
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Light. halfan undulation, the waves are in complete discordance and annihilate each other, and so on alternately. There I'* rt "

fore, as this is true of all rays in conical surfaces round A G as an axis, equally inclined with A M, 9 M, if we place
Vs-"^/~-~

a white screen at G, it will appear marked with alternate dark and bright rings round a bright centre. To deter-

mine tneir diameters we need only put </A-j-AM qrMrrre. , or, if we take 9 A = a, A G = r, GM = y,

a -f V ^ -f ^ -

If we resolve this equation neglecting y
2
, we find

(+! )
!

-f y* = n -
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683.
Newton's
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684.

(a+r)

which, on substituting 0, 1, -2, 3, &c. in succession for n, shows that the successive diameters of the alternate dark
and bright rings are in the progression of the square roots of those numbers.

If the thickness of the plate be small compared to the distance of the screen, a will also be small, and the

value of y becomes

y = r.^n.
m

which shows that for rays of a given refrangibility the diameters of the rings are as the distance of the screen

directly, and the square root of the thickness of the plate inversely.

I^astly, the diameter of a ring of the same order in different homogeneous lights, are as the square roots of the

lengths of their undulations. Now, this is the very same law that governs the diameters of the rings formed
between object-glasses. Consequently, if instead of homogeneous we consider white light, we ought to have a

succession of coloured rings whose tints agree precisely with the transmitted series in that experiment.
But the rays so formed, by rays scattered from a single point A, would be too feeble to be visible. If, how-

ever, we suppose the surfaces to be concentric spheres having G in their common centre, as in fig. 137, then

any rays G A, G A' falling on any points whatever of their surfaces will depict, on screens G M, G M' respect-

ively perpendicular to them as G, equal systems of rings having G in their common centre ; and, when the arc

A A' is not very great, the screens may be regarded as coincident (for in that case B M M A =r B M' MA 1

)
and the rings from every point of the surface, exactly superposed on each other, and being thus increased in

intensity in proportion to the area of the exposed surface, become visible.

Now this is exactly Newton's case, for the sun being a luminary of a considerable diameter, the hole in the

centre of the spheres may be regarded as a portion of the sun of that size, actually placed there. Of this,

every indivisible point may be regarded as the origin of a system of waves, and as depicting on the screen its

own set of rings. These, were the hole infinitely small, would be infinitely more clear and pure in their tints

than the transmitted rings between object-glasses, because they are not (as in those rings) diluted with the

great quantity of white light which escapes interference. But owing to the size of the hole, their centres are

not exactly coincident, and therefore their tints mix and dilute each other, and that the more the larger the

hole is.

If c be the thickness of the glass, since Q is the conjugate focus of A, on the surface B whose radius we will

T -+- C 2 T C
call r-fc putting G A = r, we have, by Art. 249, BQ= - -

. c, A Q = -
; and, by Art. 24S

r c

A 9 = a = -

2cr

2 c -
/. (r -j- c)

, taking yu
for the refractive index ; and when c is small compared with r, we get

2c

showing that the diameters of the rings are in this case in the subduplicate ratio of the refractive index of the

glass directly, and of its thickness inversely.
3 2

685 ^ we re(^uce tn ' s va'ue to numbers, taking /
=

, n = 4, r = 6 feet = 7fc inches, and X = = the

2

length of an undulation for yellovr rays

2" r 89000

nearly, we find, for the diameter of the second bright ring in
90000

yellow light, (which corresponds to the brightest part of the same ring in white,)

. 4 = 2-35,

686
Case of

oblique
incidence.

687.
Phenomena
ooserved liy

the Duke of

Chaulnes

And

'

4 90000
which agrees almost precisely with Newton's measure 2f, or 2'375.

When the mirror is inclined to the incident beam the phenomena become more complicated, and have been

elegantly described by Newton, (Optics, book ii. part iv. obs. 10.) In this case, the axes of the two interfering
cones of scattered rays, which are always the incident and reflected rays, are no longer coincident. But the

same principles apply equally to this case in all other respects, and the reader may exercise himself in tracing
their consequences.
The Duke de Chaulnes found similar rings to be exhibited when the surface of the mirror was covered with

a thin film of milk dried on it, so as to make a delicate semitransparent coating, or even when a fine gauze or

muslin was stretched before it; see the account of his experiments in the Mem. Acad. Sci. Paris, 1705
;
and
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Light. Sir William Herschel (Phil. Trans. 1807) describes a pleasing experiment, in which rings were produced by
Part

~~^^~~>
strewing liair powder in the air before a metallic mirror on which a beam of light is incident, and intercepting

1
*

the reflected ray by a screen. The explanation of these phenomena seems, however, to depend on other appli-
j

cations of the general principle, and will be better conceived when we come to speak of the colours produced

by diffraction.

Dr. Brewster, in the Transactions of the Royal Society ofEdinburgh, has described a series of coloured fringes "^
produced by thick plates of parallel glass, which afford an excellent illustration of the laws of periodicity sjj.,s

re

observed by the rays of light in their progress, whether, as in the Newtonian doctrine, we consider them as sub- fr inges seen

jected to alternate fits of easy reflexion and transmission, or, as in the undulatory hypothesis, as passing through in thick

a series of phases of alternately direct and retrograde motions in the particles of ether, in whose vibrations they plates-

consist. We may here remark, once for all, that the explanations which the undulatory doctrine affords of

phenomena of this description, may, for the most part, be translated into the language of the rival hypothesis ;

so as to afford, with more or less plausibility and occasional modifications, a result corresponding with observa-

tion. It is not, therefore, among phenomena of this class that we must look for the means of deciding between
them. We shall adopt, therefore, in the remainder of this essay, the undulatory system, not as being at all

satisfied of its reality as a physical fact, but regarding it as by far the simplest means yet devised of grouping
together, and representing not only all the phenomena explicable by Newton's doctrine, but a vast variety of
other classes of facts to which that doctrine can hardly be applied without great violence, and much additional

hypothesis of a very gratuitous kind.

The fringes in question are seen when two parallel plates of glass of exactly equal thickness (portions of the gag
same plate) are slightly inclined to each other, (at any distance,) and through them both, at nearly a perpen- Described
dicular incidence, a circular luminary of 1 or 2 in diameter (a portion of the sky, for instance) is viewed.

There will in this case be seen, besides the direct image, a series of lateral images reflected between the glasses,
and growing fainter and fainter in succession as they are formed by 2, 4, 6, or more internal reflexion^

;

and of which all but the first is so faint as scarcely to be visible, except in very strong lights. The direct image
is colourless ; but the reflected one is observed to be crossed with fifteen or sixteen beautiful bands of colour,

parallel to the common section of the surfaces of the plates. Their breadth diminishes rapidly as the inclination

of the plates increases. When the plates employed were 0.12J inch in thickness, and inclined at an angle of
1 11' to each other, the breadth of each fringe measured 26' 50", and at all other inclinations their breadth was

inversely as the inclination. At oblique incidences its fringes are seen when the plane of incidence is at right

angles to the principal section of the plates, but are at their maximum of distinctness when parallel to it.

To understand their production, let us call the surfaces of the plates in order, reckoning from that on which 690
the incident light first falls, A, a, B, b; and let us consider a ray, or system of waves emanating from a common Explained.

origin at an infinite distance. Then, when this ray falls on the plates it will at every surface undergo a partial
reflexion, and the remainder will be transmitted ; each of the several portions will be again subdivided when-
e\er it meets either surface. So that either image will, in fact, consist of several emergent rays, parallel in

their final directions, but which have traversed the glasses by very different routes. Thus the direct or principal
image will consist of

1. The chief portion of the whole incident light, refracted at A, at a, at B, and at b, and emergent parallel
to the incident ray, which we will represent by A a B 6.

2. A portion refracted at A, reflected at a, reflected again at A, refracted again at a, at B and at b, and
emergent parallel to the incident beam. This we will denote thus, A a' A' a Bb ; the letters denoting the

surfaces, the accent reflexion, and its absence refraction.

3. A portion which has undergone two similar reflexions in the interior of the second plate, and which in

the same manner may be represented by A a B 6' B' 6.

4. Other portions which have undergone respectively four, six, &c. reflexions to infinity within either of the

plates, and which may be represented by such combinations as A.a' A.' a' A'a B b, A a B 6'B' b' B'i, or, for

brevity, by A (' A')
Q a B b, A a B (6' B')

li

b, &c. ; but these latter portions are too faint to have any sensible
influence on the light of the direct image with which they are confounded.
The first lateral reflected image will consist of four principal portions which have undergone two reflexions ggi

each, viz.

AaB'a'Bi; A a B'a A'a B b; A.aBb'Ba'Bb;

all which will emerge parallel. Besides these there are infinite others, formed by a greater number of reflexions
and by the portions A a' A' a of the incident beam reflected within the first glass; but these are all too faint

materially to affect the image in question, which therefore we may regard as composed solely of the four rays
just enumerated. Now if we cast our eye on the figure, (138,) we see the course pursued by each of these Fie l"s

portions 1, 2, 3, 4 ; and it is evident that the first portion has traversed the thickness twice, and the interval
between the glasses three times, or nearly; neglecting at present all consideration of the inclination of the

plates 2 t -(- 3 i. In like manner, the portion 2 will have traversed 4 t -f- 3 i ; the portion 3, 4 t -f 3 i; and the

portion 4, 6 t -(- 3 i. Hence it appears that the portions 1 and 4 differ in their routes by nearly four times the
thickness of the glass, and can therefore produce no colours ; but the other portions, at a perpendicular inci-

dence, would not differ at all, and at very small inclinations of the plates, and of the incident rav, will only differ

by reason of the small differences of the inclinations at which they traverse their respective thicknesses and
intervals. They will, therefore, interfere so as to produce colour ; and this will be dependent on the interval
or retardation of one ray behind the other, arising from the varying obliquity of the ray which enters the eye
Now when we look at a luminous image of sensible magnitude, the rays by which we see its several points 692

30.2
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are incident in all planes, and at all inclinations. Hence, the image seen will appear of different colours in its Pftrl "'

v_^v^^' different points, and the disposition of these colours will follow the law, whatever it be, which regulates the ^^"v-~~-

Isochro interval of retardation. The colours, therefore, will be arranged in bands, circles, or other forms, according to
matic l.nes the form of the curves arising geometrically from the consideration of equal intervals of retardation prevailing
defined. m every pO jnt of their course. Such curves, now and hereafter, we shall term isochromatic lines, or lines of

equal tint, measuring in all cases the tint numerically by the number of undulations, or parts of an undulation
of mean yellow light to which the interval of retardation is equal.

693. Let us, then, first consider the case when the ray is incident in a plane perpendicular to the common section.

Fig. 139. In this case, fig. 139, let KLMN be a ray formed by the union of two rays SAaBfclKL and SC KFGIIKL,
whose courses through the system are similar to 2 and 3, fig. 138. Draw AD perpendicular to S C, then will

the interval of retardation be equal to

= D C -f (E F - a B) + (F G - I K) + 2 (K H - B b),

the first three terms being performed in air, the last in glass. Now, without entering into a trigonometrical
calculation, it is evident that this will be very small at a perpendicular incidence, and will increase rapidly as

the angle of incidence varies ; and that (the inclination of the plates remaining constant) it will increase by
nearly equal increments, as the incidence varies by equal changes from on either side of the perpendicular.

Therefore, in a direction at right angles to the common section of the surfaces the tints will vary rapidly,

increasing on either side of the perpendicular incidence ;
and at very moderate obliquities on either side,

the interval of retardation will become too great for the production of colour. On the other hand, if we
conceive the rays S A, S C, to be incident in a plane very nearly parallel to the principal section, then will the

points K and G be situated, not, as in the figure, at different distances from P, but at very nearly the same ; so

that (whatever be the incidence) K I will very nearly equal GF, and for the same reason F E will very nearly-

equal aS. Moreover, in this case GK will be very nearly equal to FT, and the angles of internal incidence

will be also very nearly equal, so that H G -f- G K will differ very little from B b + b I, and 1 B will be very

nearly equal to G K, and therefore to I F, so that the point F will almost exactly coincide with B, and the rays
SAaB, SCEF will coincide almost precisely, making D C = ; and these approximate equalities and coin-

cidences will continue for great variations in the angle of incidence, provided the plane of incidence be unaltered.

The interval of retardation, then, will in this case depend very little on the angle of incidence ; so that in a

direction parallel to the common section of the surfaces, the tints will vary but little. Hence it appears that

they will be arranged in the manner described by Dr. Brewster, '-. in fringes parallel to that line. Their

general analytical expression is, however, rather too complex to be .... - .ct down, though very easily investigated
from what has been said.

694. By intercepting the principal transmitted beam in the direct image, and receiving on the eye only those

Fig. 140.
portions of the rays going to form it whose curves are as in fig. 140, or the portions Aa'A'oBA, and

AaB6'B'6, Dr. Brewster succeeded in rendering visible a set of coloured fringes, which in general are diluted

and concealed in the overpowering light of the direct beam. They originate evidently in the interference of

these two rays, whose courses are each represented by 4 t + i, and would therefore be strictly equal were the

plates exactly parallel. Their theory, after what has been said, will be obvious on inspection of the figure, as

well as those of all the rest of the systems of fringes which he has described in that highly curious and inte

resting memoir.
695 M r . Talbot has observed, when viewing films of blown glass in homogeneous yellow light, and even in

common daylight, that when two films are superposed on each other, bright and dark stripes, or coloured bands
ant' fring6 * f irregular forms, are produced between them, though presented by neither separately. These are

obviously referable to the same principle, the interference taking place here between rays respectively twice

reflected within the upper lamina, and once reflected at the upper surface of the lower lamina, or else between

rays one of which is thrice reflected in the mode represented by AaB'a'B'rc A, and the other in that repre-

sented by AaB'a A'o'A, the interval between the glasses being supposed to be exactly equal to the thickness

of the upper one in both cases, a condition which is sure to obtain somewhere when the laminse are curved. A
still more curious and delicate case of the production of similar fringes has been noticed by Professor Amici, to

take place when two of the blue feathers of the wing of the Papilio Idas (a species of butterfly) are laid on
each other in the field of his powerful and exquisite microscopes. These feathers he describes as small plates
of perfect transparency, and uniformly and delicately striated over their whole surface. The fringes in question
are formed between them, and vary in breadth, form, and situation, according to the manner in which the

feathers are superposed. Their origin seems to be independent of the striae however, and is easily understood

on the principles above explained. The same may be said of the colours observed by Mr. Nicholson in combi-
nations of parallel glasses of unequal thickness. Suppose, for instance, that instead of the plates having

exactly equal thicknesses, their thicknesses t, t' differ by a very minute quantity, then the course of the rays
A a1 A' a B b and A a B b' B' 6 will (at a perpendicular incidence) be respectively 3 t -f-

i

'

-\- t
'

;md t + i -j- 3 t',

(supposing the plates strictly parallel,) and the difference of their routes is 2 I 2 f ; so that if this be exceed-

ingly minute, colours will arise, or, if not, may be produced by a slight inclination of the plates to each other,

and so of an infinite variety of cases which may arise.
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VI. Of the Colours of Mired Plates.

The colours hitherto described have been referred to the interference of rays rigorously coincident with each ggg^
other throughout their whole course, after the point where they begin to be superimposed. Such interfering interference

rays, or systems of waves, being united into a point on the retina, that point is agitated by the sum or difference of rays not

of their actions, and the sensation produced is according. But if this coincidence be only approximate, as, if strictly

two systems of waves be propagated from origins so nearly coincident in angular situation from the eye, that
co

their images formed on the retina shall be too close to be distinguishe
%
d by the mind from the image of a single

point, the impressions produced will still be confounded together; or rather, we ought to say, the mechanical

action on one point will be propagated through tSe substance of the retina to the other, and a sensation for

responding to their mean or average effect will bb produced. If, then, the rays concentered on contiguous

points of the retina be in exact discordance, and of equal intensity, a mutual destruction will take place, as if

they fell on one mathematical point ;
if in exact accordance, they will increase each others effects, and so for the

intermediate states.

To apprehend this more fully, we must consider that the impression of light appears to spread on the retina 697.

to a certain extremely minute distance all around the mathematical focus of the rays concentered by the lenses Irradiation.

of the eye. Thus the image of a star is never seen as a point, but as a disc of sensible size, and that the larger
as the light is stronger. Thus, too, the bright part of the new moon is seen, as it were, larger than the faintly

illuminated portion of its disc projecting beyond it as an acorn cup beyond the fruit, &c. This effect is termed

irradiation, and is manifestly the consequence of an organic action such as we have described.

It follows from this, that when waves emanate from origins undistingiiishably near, they may be regarded in 698.

their effects on the eye as emanating from origins strictly in one and the same right lines, the direction of the

joint ray; and the laws of their interferences will be precisely the same, considered in their effect on vision, as if

the lenses of the eye were away, and the retina were a mere screen of white paper, on a single physical point of

which (viz. the point where the images concentered by the lenses wot/Id have fallen) the interfering undulations

propagated simultaneously from the two origins fell, and agitated it with a vibration equal to their resultant.

This premised, we are in a condition to appreciate the explanation afforded by the undulatory doctrine of the 699.

phenomena of mixed plates. They were first noticed (says Dr. Young) by him "
in looking at a candle through two Phenomena

pieces of plate glass with a little moisture between them. He thus observed an appearance of fringes resembling
* "'""

the common colours of thin plates ; pnd upon looking for the fringes by reflexion, found that the new fringes
"

were always in the same direction as the others, but many times larger. By examining the glasses with a

magnifier, he perceived, that wherever the fringes were visible, the moisture was intermixed with portions of air

producing an appearance similar to dew.''
"

It was easy to find two portions of light sufficient for the produc-
tion of these fringes; for the light transmitted through the water moving in it with a velocity different from
that of light passing through the interstices filled only with air, the two portions would interfere with each other

and produce effects of colour according to the general law. The ratio of the velocities in water and air is that

of three to four; the fringes ought therefore to appear where the thickness is six times as great as that which

corresponds to the same colour in the common case of thin plates ; and upon making the experiment with a

plane glass and a lens slightly convex, he found the sixth dark circle actually of the same diameter as the first

in the new fringes. The colours are also easily produced when butter or tallow is substituted for water, and

the rings then become smaller in consequence of the greater refractive density of the oils; but when water is

added so as to fill up the interstices of the oil, the rings are very much enlarged ;
for here the difference ot

velocities in water and in oil is to he considered, and this is much smaller than the difference between air and
water. All these circumstances are sufficient to satisfy us of the truth of the explanation, and is still more
confirmed by the effect of inclining the plates to the direction of the light; for then, instead of dilating like the

colours of thin plates, these rings contract, and this is the obvious consequence of an increase of the lengths
of the paths of the light which now traverses both media obliquely, and the effect is everywhere the same as

that c/ a thicker plate. It must, however, be observed, that the colours are not produced in the whole light
that is transmitted through the media ; a small portion only of each pencil passing through the water contiguous
to the edges of the particle is sufficiently coincident with the light transmitted through the neighbouring portions
of air to produce the necessary interference ; and it is easy to show that a considerable portion of the light that

is beginning to pass through the water will be dissipated laterally by reflexion at its entrance, on account of

the natural concavity of the surface of each portion of the fluid adhering to the two surfaces of the glass, and
that much of the light passing through the air will be scattered by refraction at the second surface. For these

reasons the fringes are seen when the plates are not directly interposed between the eye and the luminous

object." (Young, Phil. Trans. 1802; Account of some Cases of the Production of Colours.) To see the

phenomena to advantage, we may add, it is only necessary to rub up a little froth of soap ami water almost dry
between two plane glasses, and hold them at a distance from the eye between it and a candle, or the reflexion

of the sun on any polished convex object. If two slightly convex glasses, or a plane and a convex one be used,

the colours are seen arranged in rings.
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* ^v^
VII. Of the Colours of Fine Fibres and Striated Surfaces.

If two points supposed capable of reflecting light in all directions (as two infinitely small spheres, &c.) be so
;nce near eac.i other as to appear to the eye as one, and if rays from a common origin reflected from them reach the

fleeted from
eve ' tncv w '" interfere; and if the light be homogeneous, its intensity will vary periodically, with an interval of

point; or retardation corresponding to the difference of their paths ; if white, the colour of the mixed reflected ray will be
lines very the same as if it had been transmitted through a plate of air of a thickness equal to that difference, but deprived

jr each of jts diluting white. Suppose two exceedingly fine cylindrical polished fibres to be placed at right angles to

f\g.'\4]
t'le 'me ^ s '8'h l> and parallel to each other, as in fig. 141, as A B C, a b c ; and let S be a luminous point very
distant with respect to the interval of the fibres, and E the eye, placed so as to receive the reflected rays B K,
6 E, which, by supposition, are near enough to interfere. Then the differences of phases of the rays on the

(S6-f 6E) - (SB + BE) bx + by
retina is evidently equal to 2 TT x = 2 w . , supposing B x and B y\ A,

perpendicular to S 6 and b E. If, then, we suppose I and i to be the angles of incidence of the rays S B, E B
on the plane in which the axes of the two cylinders AC, ac lie, and put B 6 their distance equal to a, we have
for the difference of phases

2 TT . . (sin I + sin i),
\

Hence, if a remain the same, this will vary with the obliquity both of the incident and reflected ray to the plane
of the axes of the fibres

; and, therefore, if that plane be turned about an axis parallel to the fibres, a succession
of colours analogous to the transmitted series of those of their plates, but much more vivid, will be seen, as if

reflected on them.

701. Any extremely fine scratch on a well polished surface may be regarded as havin . concave, cylindrical, or,
Colours of at least, a curved surface capable of reflecting the light equally in all directions; this is evident, for it is visible

' on
in all directions. Two such scratches, then, drawn parallel to each other, and then turned round an axis parallel
to both in the sunshine, ought to affect the eye in succession with a series of colours analogous to those of thin

plates. This is really the ease. Dr. Young found, on examining the lines drawn on glass in Mr. Coventry's
micrometric scales, each of them to consist of two or more finer lines exactly parallel, and at a distance of about
one 10,000th of an inch. Placing the scale so as to reflect the sun's light at a constant angle, and varying the

inclination of the eye, he found the brightest red to be produced at angles whose sines were in the arithmetical

progression 1, 2, 3, 4.

702. In the beautiful specimens of graduation on glass and steel produced by Dr. Wollaston, Mr. Barton, and
O' systems ]yj Fraunhofer, single lines exactly parallel to each other, and distant in some cases not more than one 10,000th

of an inch, and at precisely equal intervals, are drawn with a diamond point. If the eye be applied close to a

paralk-l reflecting or refracting surface so striated, so as to view a distant, small, bright light reflected in it, it will be seen

lines. accompanied with splendid lateral spectra, which evidently originate in this manner. They are arranged in a

straight line passing through the reflected, colourless image, and at right angles to the direction of the striae.

Their angular distances from each other, the succession of their colours, and all their other phenomena, are in

perfect agreement with the above explanation. Their vividness depends on the exact equality of distance

between the parallel lines, which causes the lateral images produced by each pair to coincHe precisely in

distance from the principal image, and thus to pmduce a multiplied effect. If the distance of the lines be

unequal, the images from different pairs, not coinciding, blend their colours, and produce a streak, or ray of

white light. This is the origin of the rays seen darting, as it were, from luminous objects reflected on irregularly

polished surfaces. These colouis may be transferred, by impression from the surface originally graduated, to

sealing wax, or other soft body ; or from steel, by violent pressure, to softer metals. It is in this way that those

beautiful striated buttons and other ornaments are produced, which imitate the splendour and play of colours

of the diamond.
703. Dr. Young has assimilated the colour thus produced when a beam of white light strikes on a succession of

parallel equidistant lines, to the musical tone heard when any sudden sound is echoed in succession by a series

of equidistant bars having flat surfaces situated in a direction perpendicular to the line in which they are arranged,

colours of f r instance, an iron railing. It is evident that such echoes will reach the ear in succession, at precisely equal
striated intervals of time, each being equal to the time taken by sound to traverse twice the space separating the bars ;

surfaces and thus producing on the ear, if the bars be sufficiently numerous, the effect of a musical sound. (Phil. Trans.

musi^a?*
1"

18<^ ' "" f^e The ry of Light and Colours.) This explanation, however, appears to us, we confess, more

tones con- ingenious than satisfactory. The pitch of the musical tone produced by the echoes is independent of the sound

sidertd. echoed, which may be a single blow, or a noise, (i. e. a sound consisting of non-periodic vibrations,) and requires
for its production a number of echoing bars sufficient to prolong the echoes a sensible time. On the other hand,
the light reflected from parallel striae depends for its colour wholly on the incident ray, being red in red light,

yellow in yellow, &c. ; and is produced equally well from two or from twenty, as from a million of such reflecting
lines. The intensity, not the colour, the magnitude, not the frequency of the impression made on the retina by
the reflected ravs, is modified by their interference. We think it necessary to point out this defect in the illus-

tration in question, inasmuch as it has become popular for its ingenuity, and primd facie plausibility ; while, in

reality, it is calculated to give very erroneous impressions of the analogy between sound and light.
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1 icht. A single scratch or furrow in a surface may, as that eminent philosopher has himself remarked, produce colours Pan HI.

y ^ by the interference of the rays reflected from its opposite edges. A spider's thread is often seen to gleam in v > _
the sunshine with the most vivid colours. These may arise either from a similar cause, or from the thread itself 704.
as spun by the animal, consisting

1 of several, agglutinated together, and thus presenting not a cylindrical, but a Colours of

furrowed surface.
fljfcto'i

The phenomena exhibited by light reflected from and refracted through the polished surface of mother of
we

^Q^'
pearl, are, no doubt, referable in great measure to the same principle, so far as they depend on the structure of nlo ,(jer
of the surface. Dr. Brewster has described them in a most curious and interesting Paper, (published in the O f pearl
Phil. Trans. 1814, p. 397;) and a writer in the Edinburgh Philosophical Journal, vol. ii. p. 117, has added
some further particulars illustrative of the curious and artificial structure of this singular body. Every one
knows thut mother of pearl is the internal lining of the shell of a species of oyster. It is composed of extremely
thin lamina? of a tough and elastic, yet at the same time hard and shelly substance, disposed parallel to the

irregular concavity of the interior of the shell. When, therefore, any portion of it is ground and polished on a

plane tool, the artificial surface so produced intersects the natural surfaces of the lamina; in a series of undulating
curves, or level-lines, which are nearer or farther asunder, according to the varying obliquity of the artificial to

the natural surfaces. As these laminae adhere imperfectly to each other, their feather-edges become broken up
by the action of the powders, &c. used in grinding and polishing them, so as to present a series of ridges or

escarpments arranged (when any very small portion of the surface only is considered) nearly parallel to, and

equidistant from each other, which are distinctly seen with a microscope, and which no polishing in the least

degree obliterates or impairs. The light reflected, therefore, or dispersed on their edges, will interfere and

produce coloured appearances in a direction perpendicular to that of the striae. This is, in fact, their situation ;

but the phenomena are modified in a very singular manner by the peculiar form of the edges and hollows,
which results, no doubt, from the crystalline structure of the pearl. That it is the configuration only of the

surface on which they depend, is evident from the remarkable fact, that, like the colours described in Art. 702,

they may be transferred, by impression, to sealing wax, gum, resin, or even metals, with little or no diminution

of their brilliancy ; and the impression so transferred, if examined by the microscope, is found to exhibit a

faithfiil copy of the original striae, though sometimes so minute as hardly to exceed one 3000th of an inch in

their distance from each other. For a particular description of this very curious and beautiful class of pheno-
mena, however, our limits oblige us to refer to the original memoirs already cited, especially as their theory is

still accompanied with some obscurity.

VIII. Of the Diffraction of Light.

When an object is placed in a very small beam of light, or in the cone of rays diverging from an extremely 706.
small point, such as a sunbeam admitted through a small pin-hole into a dark chamber, or, still better, through Fringes

an opening of greater size, behind which a lens of short focus is placed, so as to form an extremely minute and f" e(l e

brilliant image of the sun from which the rays diverge in all directions, its shadow is observed to be bordered '?",
r '"

';

'

externally by a series of coloured fringes which are more distinct the smaller the angular diameter of the bodies in ;i

luminous point, as seen from the object. If this be much increased, the shadow and fringes formed by its small beam
several points, regarded each as an independent luminary, overlap and confuse each other, obliterating the of light.

colours, and producing what is called the penumbra of the object ; but when the luminous point is extremely
minute, the shadow is comparatively sharp, and the fringes extremely well defined.

These fringes (which were first described by Father Grimaldi in a work entitled Physico-Mathesis de Liimine, 707.

Bologna, 16o5, and afterwards more minutely by Newton in the third book of his Optics') surround the shadows of Tlieir

objects of all figures, preserving the same distance from^every part, like the lines along the sea-coast in a map; ^.""^'t?''
only, where the object forms an acute, salient angle, the fringes curve round it ; and where it makes a sharp,

reentering one they cross, and are carried up to the shadow at each side, without interfering or obliterating each
other. In white light three only are to be seen, whose colours, reckoning from the shadow, are black, violet,

deep blue, light blue, green, yellow, red ; blue, yellow, red
; pale blue, pale yellow, pale rtd. In homogeneous

light they are, however, more numerous, and of different breadths, according to the colours of the light, being
narrowest in violet and broadest in red light, as in the coloured rings between glasses ;

and it is by the mutual

superposition of the different sets of fring'es for all the coloured rays that their tints are produced, and their

obliteration after a few of the first orders caused.

The fringes in question are absolutely independent of the nature of the body whose shadow they surround, 708.
and the form of its edge. Neither the density or rarity of the one, nor the sharpness or curvature of the other, Are inde

having the least influence on their breadth, their colours, or their distance from the shadow; thus it is indifferent pendent of

whether they are formed by the edge or back of a razor, by a mass of platina or by a bubble in a plate of glass, ^slin \he
(which, though transparent, yet throws a shadow by dispersing away the light incident on it,) circumstances shadow,
which make it clear that their origin has no connection with the ordinary retractive powers of bodies, or with

any elective attraction or repulsions exerted by them on light ; for such forces cannot be conceived as independent
of the demity of the body exerting them, however minute we might regard the sphere of their action.

To see the fringes in question, they may be received on a smooth, white surface, and examined and measured 709.

thereon by contrivances which readily occur; this was the mode pursued by Newton. M. Fresnel, however, M. Fresnel s

having (to avoid the inconvenience of intercepting the light by the interposition of the observer) received them on an metllod f

crneried glass plate, was enabled, by placing himself behind it, to approach near enough to examine and measure '^fJJ
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"% continued visible, and were indeed much brig-liter and more distinct in the focus of the lens (as if depicted in the s^-^ ~
air) even when the emeried glass was altogether withdrawn ; and this fortunate observation, by enabling' him to
avoid the use of a screen altogether, and to perform all his measurements of their dimensions by the aid of a
micrometer, put it in his power to examine them with a degree of minuteness and precision no other way attain-

able, and fully adequate to the delicacy of the inquiry : for it is manifest that the fringes, being seen as they
would be formed if received on a screen in the focus, may be regarded as any other optical image formed in the
focus of a telescope, viewed with any magnifier, and treated in all respects as such images.

710. Whatever mode of examining them we adopt, however, we shall observe the following facts:
Tlieir phe- Phenomenon 1. That, ctsteris paribm, the distances from each other and from the border of the shadow

t^Th
'

f"m ' n 'snes as the screen on which they are received, or the plane in the focus of the lens in which they are

'li-tances
formed, approaches the border of the opaque body, and ultimately coincides with it, so that they seem to have

inter te.

'

their origin close to the edge of the body.
711. Phenomeno7i 2. That they are not, however, propagated in straight lines from the edge of that body to a

They are distance, but in hyperbolic curves, having their vertices at that edge ; and therefore that it is not one and the

propagated same light which forms one and the same fringe at all distances from the opaque body. To explain this,

lines
conceive the distances of the fringes from each other and from the shadow measured accurately at a great variety
of distances from the edge of the body ; then, were they propagated in straight lines, and were each fringe really
the axis of a pencil of rays emanating from a point at that edge, their intervals and distances from the shadow
ought to be proportional to the distances from the edge of the body; but it is not so, in fact, the former
distances increasing as we recede from the opaque body much more rapidly at first, and less so as we recede,
than according to the law of proportionality ; and if the locus of each fringe be laid down from such measures,

Fig. 142.
'* w'" he found to be an hyperbolic curve having its convexity outwards or from the shadow. Thus in fig. 142
O is the luminous point, A the edge of the body, and G H a screen perpendicular to the straight line O A, C
the border of the visible shadow, and D, E, F the places of the successive minima of the fringes in a line at

right angles to the edge of the shadow. If the screen be brought nearer to the body A as at gh, and if c, d, e, f
be the points corresponding to C D E F, their loci will be the hyperbolas AeC, A d D, &c.

712. It will be noticed also that the border C of the visible shadow is not coincident with B, that of the geometrical
The visible one, which lies in the straight line O A, grazing the edge of the object. The deviation is difficult to perceive in

dUTersVom
'^e shadow of a large body, having nothing to measure from ; but if we examine those of very narrow bodies,

the geome-
as "^ a hair, for instance, in such a beam of light as described, we shall find on measuring the total breadth of

trical one the shadow a full proof of this. This fact was observed by Grimaldi. The limit of the visible shadow also

anuislarger. follows the same law of curvilinear propagation as the fringes. Thus, jNewtou found the shadow of a hair
one 280th of an inch in diameter placed at 12 feet distance from the luminous point, to measure at 4 inches
from the hair

^'T inch, or upwards of 4 diameters of the hair, at two feet, -Jg inch, or 10 diameters; while at 10
feet it measured only ^ inch, or 35 diameters, instead of 120, which it should have done if the rays terminating
the shadow had proceeded in straight lines ; or rather, to speak more correctly, if the shadow were bounded by
straight lines.

To account for these remarkable facts, Newton supposes that the rays passing at different distances from the
Newton s

edges of bodies are turned aside outwards, as if by a repulsive force ; and that those nearest are turned more

thTdeflex-
asitle than lhose more remote . as in fig. 143, where X is a section of the hair, and AD, BE, CF, &c. rays

ion of light,
"hich pass at diflerent distances beside it, and which are turned otf at angles rapidly diminishing as the distance

Ki. Us!" increases in directions D G, E H, FI, &c. It is manifest that the curve W Y Z, to which all these deflected

rays are tangents, and within which none can enter, will be convex outwards ; and its curvature will be greatest
at the vertex VV, and will diminish continually as it recedes from X, being, in fact, the caustic of all the

deflected rays.
714. This will be the boundary of the visible shadow. Tp account for the fringes, he supposes (Optics, book iii.

His account
question 3) that each ray in its passage by the body undergoes several flexures to and fro, as in fig. 144 at a,

b, c ; and that the luminous molecules, of which that ray consists, are thrown oflT at one or other of the points

Fig144.
f contrary flexure, or other determinate points of the serpentine curve described by them according to the

state of their fits in which they there happen to be, or other circumstances; some outwards, as in the directions

a A, b B, cC, rfD, and others we may suppose inwards, as a a, b /3, c 7, &c. With the latter we have here
no concern. The former, it is evident, will give rise to as many such caustics as above described, as there
are deflected rays; and each caustic, when intercepted on a screen at a distance, will depict on it the maximum
of a fringe. The intervals, however, between these caustics, or minima of the fringes, .vill not be totally black ;

because the rays from the other caustics, after crossing on the confines of the shadow, or interior fringes, wi 1

pursue their course, and partially illuminate all the space beyond. Tims the fringes should be less numerous
and the degradation of colour more rapid than in the coloured rings.

715. This theory accounts then perfectly for the curvilinear propagation of the fringes, for their rapid degradation,
Newton's for their apparently originating in the very edge of the body, (since each caustic will actually come up to that
anctrine

edge, as at A, fig. 142,) and for the remarkable brightness of the fringes, especially the first, which really

Kresnel'3
co"tains in itself all the light which would have passed into the region B C between the visible and gcomc-

objeciions
tr ic<il shadows. It should appear, therefore, that M. Fresncl, in the objections he has taken against these points

to it con- of the Newtonian doctrine of inflexion in his excellent work .S'i/r la Diffraction
tit' la Ln/nr're, ( 1, p. 15, 17, 19,)

must have formed a very inadequate conception of the doctrine he opposes, which, if viewed in the light he has
there placed it in, would indeed deserve no other epithet than puerile, and must be looked upon as quite unworthy
of its illustrious author ; and were these the only didicuhii's to be explained, we should certainly not be justified
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in passing a hasty sentence on it. Other objections advanced by the same eminent philosopher, however, are Part III.
'

more serious, and refer to a phenomenon of which the doctrine of deflective forces seems incapable of giving
v v-

any account ; but of which, in justice to Newton we ought to add, it does not appear that he was aware, or

its importance could not fail to have struck him.

Phenomenon 3. All other things remaining the same, let the opaque body A be brought nearer the luminous 716.

point O, (fig. 142.) The fringes then, formed at the same distance as before behind A, are observed to dilate con- Dilatation

siderablyin breadth, preserving, however, the same relative distances from each other, and from the border of the *' tne

shadow. This fact is evidently incompatible with the idea of their being caused by any deflecting force emanating
Ses y

from the opaque body, since it is inconceivable that such a force should depend on the distance the light has
pr0ich of

travelled from another point no way related to the body. the radiant

To explain the diffracted fringes on the undulatory doctrine, Dr. Young conceived the rays passing near the point.

edge of the opaque body to interfere with those reflected very obliquely on its edge, and which in the act of 1l.
reflexion had lost half an undulation, as in the case of the reflected rings. This supposition would, in fact,

D
^ f

oung'J

lead us to conclude the existence of a series of fringes propagated hyperbolically, and perfectly resembling
"

the"

1"

those really existing. M. Fresnel, however, has shown that a minute though decided difference exists between
fringes on

their places, as given by this theory and by direct measurement ; and has, moreover, remarked, that were this the undula-

the true explanation, they could hardly be supposed absolutely independent of the figure of the edge of the tory
.

opaque body, which experience shows they are ;
and that in cases where this edge is extremely sharp, the small Q^""^,,

quantity of light which could be reflected from it would be insufficient to interfere with that passing by it, so as
against"!".

to form fringes so bright as we see them. These objections appear conclusive, especially as the supposition of
a reflexion on the edge of the body is unnecessary, since a more strict application of the undulatory doctrine,

assisted by the principle of interferences, will be found to afford a full and precise explanation of all the facts,

regarding the opaque body as merely an obstacle bounding the waves propagated from the luminous point on
one side.

To show this, let us consider a wave AMP propagated from O, and of which all that part to the right of A 718.

(fig. 145) is intercepted by the opaque body A G; and let us consider a point P in a screen at the distance AB Fresnel's

behind A, as illuminated by the undulations emanating simultaneously from every point of the portion AMF, explanation

according to the theory laid down in Art. 628, et seq. For simplicity, let us consider only the propagation of Flg ' 145>

undulations in one plane. Put A O = a, A B = b, and suppose X = the length of an undulation ; and drawing
P N any line from P to a point near M, put PF=/iNM = s, PB = x; then, supposing P very near to B,

and with centre P radius PM describing the circle Q M, we shall have/= PQ-f- Q N = */ (a-\- !>)*-{- x* a

-f- Q N = b -) (- Q N. Now, Q N is the sum of the versed sines of the arc s to radii O M and P M,
(ft-|-o)

and is therefore equal to ^- +^ = ^(^ + j)
= ^7 ' s* ' s that- finall y>

- 6
I |

~
2 (a+ 6) 2ab

Now, if we recur to the general expression demonstrated in Art. 632, for the motion propagated to P from

any limited portion of a wave, we shall have in this case a . (0)
= 1, because we may regard the obliquity of

all the undulations from the whole of the efficacious part of the surface A M N as very trifling, when P is very
distant from A in comparison with the length of an undulation. And as we are now only considering undu-

lations propagated in one plane, that expression becomes merely V = fds . sin 2 TT I - J V and the cor-

responding expression for the excursions of a vibrating molecule at P will be

X =/</.. cos 2* _-.
If then we put for /"its value, and take

(t
b cf \ /H('

T "x

~
2T(^+Tj/~

' V ~

and consider that in those expressions t and * remain constant, while s only varies, the latter will take the

form

x =
{

cos -Sd v - cos

(f
which shows that the total wave on arriving at P may be regarded as the resultant of two waves X' . cos

and X" . sin 0, aiffering in their origin by a quarter-undulation, and whose amplitudes X' and X" are given by
the expression

the integrals being taken between limits of v corresponding to s = A M, and s =:
-|- t. Consequently,

VOL. iv. 8 R
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Ligll!.

sine*

the limits of v must b*

Part 111.

=~ X V
(a+

2

6)

719.
Rule for

determining
the illumi-

nation of

any point in

the screen.

720.
Maxima
and minima

numerically
estimated.

Hence, to determine the intensity of the light at any point P on the screen, we must first of all calculate

the values of these integrals; and having thus determined X' and X", the square root of the sum of their squares

will represent the amplitude of a single vibration, the resultant of both, (Art. 615;) and the sum of

their squares simply (X'
4
-f- X//a

), the intensity ot' the light, or the sensation produced in the eye.
M. Fresnel, in the work already cited, has given a table of the values of these integrals for limits succes-

sively increasing from up to oo, (at which latter limit each is equal to \, as may readily be proved ;) and, calcu-

lating on this, he finds that the intensity of the light, without the limit of the geometrical shadow, passes

through a series of maxima and minima according to the following table :

Table of the Maxima and Minima for the Exterior Fringes, and of the Corresponding Intensities of the Light

illuminating them.
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Light, their squares, as the incident rays from being parallel become more divergent, being directly as their diver- Part III.

v"""" gence. Thirdly, for equal values of X, a, and 6, x is proportional to v ; so that the breadths of the o Tpral v
_i v _'

fringes are always in the same ratio to each other, and form a progression the same with those of the values of
v in the foregoing table. Lastly, the breadths of the fringes for different coloured rays are as the square roots of

the lengths of their undulations.

The accordance of this theory with experiment, so far as it regards the distances of the fringes from the 725.
shadow and from each other, has been put to a severe test by M. Fresnel, and found perfect. It were to be

wished, however, that he had stated somewhat more precisely the instrumental means by which he determined
the place of the border of the geometrical shadow, from which his measures are all stated to be taken ; and
which, being marked by no phenomenon of maximum or minimum, might be liable to uncertainty if judged of

by the eye alone. This, however, in no way invalidates the accuracy of the final conclusions, as the intervals

between the fringes are distinctly marked, and susceptible of exact measurement. The dilatation of the fringes
on the approach of the luminous point is, perhaps, the strongest fact in favour of the undulatory doctrine, and
in opposition to that of inflection, which has yet been adduced. It seems hardly reconcilable to any received

ideas of the action of corpuscular forces, to suppose the force of deflection exerted by the edge of a body
on a passing ray, to depend on the distance which the ray has passed over before arriving at that edge from
an arbitrarily assumed origin. M. Fresnel has placed this argument in a strong light, in his work already cited.

Besides the exterior fringes above described, there are others formed in certain circumstances within the 726.
shadows of bodies which afford peculiarly apt illustrations of the principle of interferences. The first class of Fringes

phenomena of this kind was noticed by Grimaldi, who found that when a long, narrow body is held in a small observed by

diverging beam of light, the shadow received on a screen at a distance will be marked in the direction of its
" ri ald'

length with alternate streaks or fringes brighter and darker than the rest. These are more or less numerous, narrow

according as the distance of the shadow from the body is smaller or greater in proportion to the breadth of the shadows.

latter. To study the phenomena more minutely, Dr. Young passed a sunbeam through a hole made with a
fine needle in thick paper, and brought into the diverging beam a slip of curd one-thirtieth of an inch in breadth,
and observed its shadow on a white screen at different distances. The shadow was divided by parallel bands,
as above described, but the central line was always white. That these bands originated in the interference of Dr.Young's
the light passing on both sides of the card, Dr. Young demonstrated beyond all controversy, by simply

fun(
|

an'en-

intercepting the light on one side by a screen interposed between the card and the shadow, leaving the rays f*rej,j'e

r '

on the other side to pass freely, in the manner represented in fig. 146, where O is the hole, A B the card, Fig. 146.
E F its shadow, and C D the intercepting body receiving on its margin the margin of the shadow of the edge
B of the body. In this arrangement all the fringes which had before uxisted in the shadow E F immediately
disappeared, although the light inflected on the edge A was allowed to retain its course, and must have

necessarily undergone any modification it was capable of receiving from the proximity of the other edge B.
The same result took place when the intercepting screen was placed as at c d before the edge B of the body,
so as to throw its own shadow on the margin B of the card.

Without entering minutely into the rationale of this phenomenon, which, however, the formula? of the pre- 727.

ceding articles enable us fully to do, by considering the illumination of any point X between E and F as Expla-

arising from the whole wave a A B 6, minus the portion A B, and which M. Fresnel has done at full length,
nation.

and with great success, in his Memoir already so often cited ; we shall content ourselves with showing how
fringes or alternations of colour must originate in such circumstances; in fact, if we join AX, B X, the

difference of routes of the waves arriving at X by the paths O AX, OB X is equal to B X A X. It is

therefore nothing in the middle of the shadow E F, which ought therefore to be illuminated by double the light
deflected into the shadow at that distance by either edge, Art. 722, which will be less as the object is larger,
and the shadow broader. But on either side of the middle B X A X increases ; and when it attains a value

equal to half an undulation, the waves are in complete discordance, and therefore the middle bright portion will

be succeeded by a dark band on either side, and these again by bright ones, and so on.

An elegant variation of this experiment of Dr. Young is afforded by a phenomenon described by Grimaldi. 728.
When a shadow is formed by an object having a rectangular termination ; besides the usual external fringes Grima'.di's

there are two or three alternations of colours, beginning from the line which bisects the angle, disposed, within crested

the shadow on each side of it, in curves which are convex towards the bisecting line, and which converge towards frmSes'

it as they become remote from the angular point. These fringes are the joint effect of the light spreading into

the shadow from each outline of the object, and interfering as above ; and that they are so, is proved by placing
a screen within a few inches of the object, so as to receive only one edge of the shadow, when the whole of the

fringes disappear. If, on the other hand, the rectangular point of the screen be opposed to the point of the

shadow, so as barely to receive the angle of the shadow on its extremity, the fringes will remain undisturbed.

(Young, Experiments and Calculations relating to Physical Optics, Phil. Trans., 1803.)
Such are some of the more remarkable appearances produced within and beyond the shadows of narrow 729.

bodies. Let us next consider the effect of transmitting a beam through a very narrow aperture. And the first J^
e

(

case is when the aperture is circular. Suppose, for instance, we place a sheet of lead, having a small pin-hole through"*

pierced through it, in the diverging cone of rays from the image of the sun, formed by a lens of short focus, and small

in the line joining the centres of the hole and focus prolonged place a convex lens or eye-glass, behind which circular

the eye is applied. The image of the hole will be seen through the lens as a brilliant spot, encircled by rings aperture,

of colours of great vividness, which contract and dilate, and undergo a singular and beautiful alternation of tints,

as the distance of the hole from the luminous point on the one hand, or on the eye-glass on the other, is

changed. When the latter distance is considerable, the central spot is white, and the rings follow nearly the

order of the colours of thin plates. Thus, when the diameter of the hole was about T
'

ff
th of an inch, its distance

3 a2
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Light. (a) from the luminous point about 6 feet 6 inches, and its distance (6) from the eye-lens 24 inches, the series Prt HI.

of colours was observed to be,
'" V"

1st order. White; pale yellow ; yellow; orange; dull red.

2d order,

brilliant.

3rd order.

4th order.

5th order.

6th order.

7th order.

Violet ; blue (broad and pure ;) whitish ; greenish yellow ; fine yellow ; orange red, very full and

Purple ; indigo blue ; greenish blue ; pure, brilliant green ; yellow green ; red.

Good green, but rather sombre and bluish ; bluish white
;

red.

Dull green ; faint bluish white ; faint red.

Very faint green ; very faint red.

A trace of green and red.

When the eye-lens and hole are brought nearer together, the central white spot contracts into a point and

vanishes, and the rings gradually close in upon it in succession, so that the centre assumes in succession the

t
most surprisingly vivid and intense hues. Meanwhile the rings surrounding it undergo great and abrupt changes

and sur-
P

'n 4ne' r tints. The following were the tints observed in an experiment made some years ago, (.July 12, 1819,)

rounding the distance between the eye-glass and luminous point ( + 6) remaining constant, and the hole being gradually
rings. brought nearer to the former.

730.
Table of

colours of

24.00

18.00

13.50

10.00

9.25

9.10

8.75

8.36

8.00

7.75

7.00

6.63

6.00

5.85

5.50

5.00

4.75

4.50

4.00

3.85

3.50

Central Spot.

White

White

Yellow

Very intense orange
Deep orange red

Brilliant blood red

Deep crimson red

Deep purple

Very sombre violet

Intense indigo blue

Pure deep blue

Sky blue

Bluish white

Very pale blue

Greenish white

Yellow

Orange yellow
Scarlet

Red
Blue
Dark blue

Surrounded by

Rings as in the foregoing Article.

The two first rings confused, the red of the 3rd and green of the 4th

orders splendid.
Interior rings much diluted, the 4th and 5th greens and 3rd, 4th and 5th

reds the purest colours.

All the rings are now much diluted.

The rings all very dilute.

The rings all very dilute.

The rings all very dilute.

The rings all very dilute.

A broad yellow ring.

A pale yellow ring.

A rich yellow.
A ring of orange, from which it is separated by a narrow, sombre space.

r Orange red, then a broad space of pale yellow, after which the other rings

I are scarcely visible.

A crimson red ring.

Purple, beyond which yellow verging to orange.

Blue, orange.

Bright blue, orange red, pale yellow, white.

Pale yellow, violet, pale yellow, white.

White, indigo, dull orange, white.

White, yellow, blue, dull red.

Orange, light blue, violet, dull orange.

this case.

731 . The series of tints exhibited by the central spot is, evidently, so far as it goes, that of the reflected rings in the

Frcsnel's colours of thin plates. The surrounding colours are very capricious, and appear subject to no law. They depend,
analysis of indeed, on very complicated and unmanageable analytical expressions, with which we shall not trouble the reader,

but content ourselves with presenting the explanation given by M. Fresnel of the changes of tint of the central spot
in white light, and its alternations of light and total darkness observed by him in an homogeneous illumination.

Let then a and 6 be the distances of a small hole whose radius is r from the luminous point, and a screen

placed behind the hole perpendicularly to the ray passing directly through its centre. Then if we consider any

infinitely narrow annulus of the hole whose radius is z, and breadth d z, this annulus will send to the central

point of the screen a system of waves whose intensity is proportional to the area of the annulus, or 2 <n z dz,
but whose phase of undulation differs from that of the central ray, by reason of the difference of the paths
described by them. Now, calling/ the distance of each point in the annulus from the centre of the screen, we

have/
2 = 6*-f- zs, and, in like manner, iff be the distance of the luminous point from the same annulus,

f* a* -f x*, so that (/ + f) (a -f- 6) the difference of paths, or interval of retardation, is equal to

-{ -| ) = ^-?. Hence, the general expression in Art. 632 for the amplitude of the total wave,
.
2 \ a 6 / -2 ab

incident on the centre of the screen in this particular case, is equivalent to

\t z'(s + &)).

"If"
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or. integiuting, which from the peculiar form of" the differential is in this case easy,

a b__
X =

a-\-b

which, extended from z = to 2 = r, gives

a 6 \

( (t z* (a + 6)\ 1
-< const + cos 2 w . I --- -

I >
(. \T 2ab\ / J

o 6 \ C
.

TT (a + V) r* t / Tr(a+b)r> \ t- _ -
-|

sin
v / . sin 2 TT- +

(
cos--' - 1

)
. cos 2 ir

a+ b (_ a 6 X T- \ X /

This expresses, as we have before remarked in a similar case, (Art. 718,) two partial waves differing by a quarter-

undulation, and expressing it, as in that case, by X = X' . cos -f- x"
sin 9> where =. , we find for the

intensity A* of their resultant

\a + b

To make use of this, however, we must compare it with what would be the direct illumination of the centre 732.

of the screen, if the aperture were infinite, t. e. if the direct light from the luminous point shone full upon it.
|'^"'f

n

^e
To this case, however, neither our formula nor our reasoning are applicable ; for if we make r infinite in this centra i spot

expression, it becomes illusory, and presents no satisfactory sense, and in our reasoning we have neglected to compared
consider the law of diminution of the intensity of the oblique waves, or regarded (0) in Art. 631 as invariable, with the

which in this extreme case is far from the truth. We must, therefore, have recourse to another method. Now,
J^^J'

1"111"

M. Fresnel has demonstrated (and our limits oblige us to take his demonstration for granted) that this total
i?reslle'i>s

illumination is equal to one-fourth of that which the centre of the screen would receive from an opening of theorem.

such a radius, that the difference of routes of a ray passing through the centre, and one diffracted at the circum-

ference, shall be an exact semi-undulation, i. e. in which-~ =
, or r = \/ -

: ;
If then we

2 a b 2 a -f-
o

substitute this for r in the above formula, and put C for the whole illumination, we get, 071 the same scale,

. /6XV
c=+ sm^

and, consequently,

, /3V
In this expression r, a, b are independent of \, and therefore the value of A8 is of the form 4 C

(
sin 2 TT . I 733.

\ \/ The colours

la -L. M r those of the

where B = - - . Hence, if we suppose light of all colours to emanate from the luminous point, the reflected

4 a b
rings.

compound tint produced in the central point of the screen will be represented by S < 4 C . I sin 2 it \ r and

will therefore, by Art. 673, be the same with that reflected by a plate of air whose thickness is B, or -

which increases as b diminishes when a -f- b remains constant. Thus we see the origin of the succession of

colours of the central spot in the Table above recorded, which is the more satisfactory, as that experiment was
made without reference to, and indeed in ignorance of, this elegant application of M. Fresnel's general principles,

the merit of which is due (as he himself states) to M. Poisson.*

Another very curious result of M. Poisson's researches is this, that the centre of the shadow of a very small 734.

circular opaque disc, exposed to light diverging from a single point, is precisely as much illuminated by the Poisson's

diffracted waves as it would be by the direct light, if the disc were altogether removed. We cannot spare room ^
eo

.

r
,?
ln

!
r

for the demonstration of this singular theorem. It has been put to the test of experiment by M. Arago, with
natjon

U

jt5,e
a small metallic disc cemented on a very clear and homogeneous plate of glass, and with full success. centre of a

When the light is transmitted through two equal apertures, placed very near each other, the rings are formed small circii-

about each as in the case of one ; but besides these arise a set of narrower, straight, parallel fringes bisecting
lar shadow.

the interval between their centres, and at right angles to the line joining them. If the apertures be unequal,
"35.

these fringes assume the form of hyperbolas, having the aperture in their common focus. Besides these
JH^j

also two other sets of parallel rectilinear fringes (in the ease of equal apertures) go off in the form of
iiirou g(, two

a St. Andrew's cross from the centre at equal angles with the first set. See figures 147, 148. When the apertures

apertures are more numerous or varied in shape, the variety and beauty of the phenomena are extraordinary ;
v"y near

but of this more presently.
Fi M?"'

M. Fresnel has shown, that when the light from a single luminous point is received on two plane mirrors ^143

The coincidence in the higher orders of colours was, however, ic our experiments less complete, and especially the green of the third

order, which was wanting altogether in some cases.
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very slightly inclined to each other, so as to form two almost contiguous images, if these be viewed with a

lens, there will be seen between them a set of fringes perpendicular to the line joining them. These are

evidently analogous to those produced by the two holes in the experiments last described. The experiment is

^e<icate ? f r >f tne surfaces of the reflectors at the point where they meet be ever so little, the one raised
above or depressed below the other, so as to render the difference of routes of the rays greater than a very few
undulations, no fringes will be seen. But it is valuable, as demonstrating distinctly that the borders of the

inclined to apertures in the preceding experiment have nothing to do with the production of the fringes, the rays being in
each other, this case abandoned entirely to their mutual action after quitting the luminous point. An exactly similar set of

Part III.

Fig. 149.

ct of

a denser"

1*

medium i

Fig. 150.

Displace-

fringes is formed if, instead of two reflectors, we use a glass, plane on one side, and on the other composed of
two planes, forming a very obtuse angle, as in fig. 149. This being interposed between the eye-lens E and the
luminous point S, forms two images S and S' of it

; and the interference of the rays S E and S' E from these

images, forms the fringes in question.
Since the production of the fringes and their places with respect to the images of the luminous point, depends

on the difference of routes of the interfering rays, it is evident, that if, without altering their paths, we alter
'^e re'oc''y f one f them with respect to the other, during the whole or a part of its course, we shall produce
*'le same effect. Now, the velocity of a ray may be changed by changing the medium in which it moves. In the

one of two undulatory system, the velocity of a ray in a rarer medium is greater than in a denser. Hence, if in the path of one
interferin of two interfering rays we interpose a parallel plate of a transparent medium denser than air. (at right angles

to the ray's course,) we shall increase its interval of retardation, or produce the same effect as if its course had
been prolonged. If then a thick plate of a dense medium, such as glass, be interposed in one of the rays
which form visible fringes, they will disappear ; because the interval of retardation will be thus rendered suddenly
equal to a great number of undulations, whereas the production of the fringes requires that the difference of

routes shall be very small. If, however, only a very thin lamina be interposed, they will remain visible, but
shift their places. Thus, in fig. 150, let S A, S B be rays transmitted through the small apertures A, B from the
luminous point S, and received on the screen D C E, these forming a set of fringes of which C, the middle one,
will be white. Let D, E be the dark fringes immediately adjacent on either side ; and things being thus disposed,

j.".

e

n

nt of th* let a thin film of glass or mica G be interposed in one of the rays S A, its thickness being such that the ray in

exnUuneif

'

*raversin& * shall just be retarded half an undulation. Then will the rays A E, B E, which before were in com-
plete discordance, be now in exact accordance, and there will be formed at E a bright fringe instead of a dark
one. On the other hand, the ray AC will now be half an undulation behind BC, instead of in complete
accordance with it, so that at C there will be formed a dark fringe, and so on. In other words, the whole
system of fringes will be formed as before, but will have shifted its place, so as to have its middle in E instead
of in C, z. e. will have moved from the side on which the plate of the dense medium is interposed. It is evident,
that if the plate G be thicker, the same effect will take place in a greater degree.
To make the experiment, however, it must be considered that the refractive power of glass, or indeed of anyMo

^

eof but gaseous media, is so great, that any plate of manageable thickness would suffice to displace the fringes so

he'testof
âr as ' '"row them wholly out of sight. But we shall succeed, if, instead of a single plate G placed over one

experiment
aperture A, we place two plates G, g of very nearly equal thicknesses, (such as will arise from two nearly con-

tiguous fragments of one and the same polished plate,) one over each aperture ; or we may vary the thickness
of the plate traversed by either ray by inclining it, so as to bring it within the requisite limits. This done, the
effect observed is precisely that described ; the fringes shift their placesfrom the thicker plate, without sustaining
any alteration in other respects. This elegant experiment affords a strong indirect argument in favour of the

undulatory system, and in opposition to that of emission, since it proves that the rays of light are retarded in

t 'le ' r Passage through denser media, agreeably to what the undulatory system requires, and contrary to the

conclusions of the corpuscular doctrine.

MM. Arago and Fresnel have taken advantage of this property, to measure the relative refractive powers of
different gases, or of the same in different states of temperature, pressure, hu:i.idity, &c. It is manifest, that if

me o o
an^ considerable portion of the path of one of the interfering rays be made to pass through a tube closed at

determining
'3Otn ends with glass plates, and the other through equal glass plates only, the fringes will be formed as usual.

refractions But if the tube be exhausted, or warmed, or cooled, or filled with a gas of different refractive density, a displace-
of gae*. ment of the fringes will take place, which (if they be received in the focus of a micrometer) may be measured

with the greatest delicacy. Knowing the amount of their displacement, as compared with the breadth of the

fringes, we know the number of undulations gained or lost by one ray on the other ; and hence, knowing the

internal length of the tube, we have the ratio of the refracting power of the medium it contains to that of air.

What renders this method remarkable is, that there is actually no conceivable limit to the precision of which it it

susceptible, since tubes of any length may be employed, and micrometers of any delicacy.

740. The phenomena of diffraction, and those arising from the mutual interference of several very minute pencils
Praunhofer's of rays emanating from a common origin, have been investigated by M. Fraunhofer with great care and extra-

experiments ordinary precision, by the aid of a very delicate apparatus devised and executed by himself.

This apparatus consisted of a repeating, 12-inch theodolite, reading to every 4", carrying, attached to its

terference. horizontal circle, a plane circular disc of six inches in diameter, having its axis precisely coincident with that of

the theodolite, and having its own particular divisions independent of those of the theodolite. In the centre of

this disc was placed vertically a metallic screen, having in it one or more narrow, vertical, rectangular slits, or

other apertures, and so fixed as to have the middle of its aperture, or system of apertures, exactly coincident with

the axis of the instrument. Attached to the great circle of the theodolite, horizontally, was a telescope, having its

object-glass three inches and a half from the centre, and its axis directed exactly to it, and precisely parallel to

the plane of the limb, and provided with a delicate micrometer, whose parallel threads were exactly vertical.

Argument

system

739.

Arago and

method of

His appa-
ratus.
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Light. The instrument being insulated on a support of stone, a beam of solar light was directed by a heliostat, Part III.

-v through a very narrow slit, also exactly vertical, having a breadth of one hundredth of an inch, and distant 463J ^-v-^-'
inches from the centre of the theodolite, so as to fall on the screen, and, being transmitted through its apertures,
to be received into the telescope. It is manifest that the eye-glass of the telescope will here view the fringes, &c.
as they are formed in its focus. The magnifying power of the telescope used by Fraunhofer varied from 30 to

50 times.

M. Fraunhofer first examined the effect produced by the diffraction of the light through a single slit, the 741.

breadth of which he first determined with the greatest precision by means of a micrometer-microscope, with Fringes

which he assures us that he found it practicable to appreciate so minute a quantity as 1 -50,000th of an inch. The
'

slit being then placed on the apparatus, and accurately adjusted before the object-glass of the telescope, which narrow
was directed exactly to the aperture in the heliostat, the image of the latter was formed in its focus, accompanied aperture,

by lateral fringes, which by the effect of the magnifying power were dilated into broad and brilliant prismatic

spectra. The distances of the red ends of these spectra from the middle point, or white central image, were
then measured accurately by means of the micrometer. The result of a great number of experiments with

apertures of all breadths from one-tenth to one-thousandth of an inch, agreed to astonishing precision with each

other, and with the following laws, viz. that (under the circumstances of the experiment,)
1. The, angles of deviation of the diffracted rays, forming similar points of the systems offringes produced

Their laws

by different apertures, are inversely as the breadths of the apertures.
2. That the distances of similar rays (the extreme red,for instance,) from the middle in the several spectra,

s"

constituting the successive fringes, form in each case an arithmetical progression whose difference is equal to its

first term.

3. That calling 7 the breadth of the aperture, in fractions of a Paris inch, the angular distances L', L", L'",

&c. in parts of a circular arc to radius unity, of the extreme red rays in each fringe from the middle line, are

respectively represented by L' = , L" = 2 . , L'"=3 . , &c. where L = 0.0000211, and a similar law
7 7 Tf

holds for all the other coloured rays, different values being assigned to L for each.

This conclusion agrees perfectly with the result of an experiment related by Newton in the Hid Book of his 742.

Optics. He ground two knife edges truly straight, and placed them opposite to each other, so as to be in contact Newton's

at one end, and at the other to be at a small distance, such that the angle included between them was about e
^P'

nrr-

1 54', thus forming a slit whose breadth at their intersection was evanescent, and at 4 inches from that point kn;fe edges

|th of an inch, and in the intermediate points, of course, of every intermediate magnitude. Exposing this in a

sunbeam emanating from a very small hole at 15 feet distance, he received their shadows on a white screen

behind them, and observed that when they were received very near to the knife edges, (as at half an inch,) the

fringes exterior to (he shadow of each edge ran parallel to its border without sensible dilatation, till they met and

joined without crossing, at angles equal to that contained between the knife edges. But when the shadows were

received at a great distance from the knives, the fringes had the form of hyperbolas, having for one asymptote the

shadow of the knife to which they respectively belonged, and for the other a line perpendicular to that bisecting the

angle of the two shadows, each fringe becoming broader and more distinct from the shadow which it bordered, as it

approached the angle. These hyperbolas crossed without interfering, as represented in fig. 151. Their points Fig- 151

of crossing, Newton found, however, not to be at a constant distance from the angle included between the pro-

jections of the knife edges, but to vary in position with the distance from the knives, at which the shadow is

received on the screen ; and hence, he says,
"

I gather that the light which makes the fringes upon the paper, is

not the same light at all distances of the paper from the knives ; but when the paper is held very near the knives,

the fringes are made by light which passes by their edges at a less distance, and is more bent than when the

paper is held at a greater distance from the knives." Newton, however, left these curious researches, which
could hardly have failed to have led in his hands to a complete knowledgeof the principles of diffraction unfinished ;

being, as he says, interrupted in, and unwilling to resume them : doubtless, owing to the chagrin and opposition
his optical discoveries produced to him. An unmeet reward, it must be allowed, for so noble a work, but one of

which, unhappily, the history of Science affords but too many parallels.

The above were the results obtained by M. Fraunhofer when the two edges of the aperture were both in a 743

plane perpendicular to the incident rays ; but when the same effective breadth was procured, by inclining a larger
Case wlleB

aperture obliquely, so as to reduce its actual breadth in the ratio of the cosine of its incidence to radius, or by
Jjj

limiting the incident ray by two opaque edges at different distances from the object-glass of the telescope, the we,^/
"'

phenomena were very different. To accomplish this, two metallic plates were fixed upright on the horizontal different

plate of the theodolite, having their edges exactly vertical, and precisely at opposite extremities of a diameter, distances

Then, by turning the plate round on its axis, the passage allowed to the light between them could be increased or fro th*

diminished at pleasure. The phenomena, then, were as follows. When the opening allowed to the light was
tĥ

e
j" ,

considerable, as 0.02 or 0.04 inch (Paris,) the fringes were exactly similar to those observed when the edges were

equidistant from the object-glass ; but as the opening diminished, they ceased to be symmetrical on both sides of

the middle line, those on the side of that edge of the aperture nearest to the telescope becoming broader than

those on the other, which, on their part, undergo no sensible alteration. As the aperture contracts, this

inequality increases, till at length the dilated fringes begin to disappear in succession, the outermost first,

which they do by suddenly acquiring an extraordinary magnitude, so as to fill the whole field of the telescope,
and thus, as it were, losing themselves. While these are thus vanishing, those on the other side remain quite
unaltered till the last is gone, when they all disappear at once, which happens at the moment that the opening
is reduced to nothing by the two edges covering each other.



LIGHT.
Light. When the aperture placed before the object-glass, instead of being a straight line, was a small, circular hole, P rt I'1 -

v^-^- and the aperture of the heliostat, in like manner, a minute circle, the phenomena of live rings were observed, and ^v^'
744. their diameters could be accurately measured by the micrometer. The results of these measurements led

Case of a M. Fraunhofur to the following laws : 1st, that for apertures of different diameters, the diameters of the rings
small,circu- are inversely as those of the apertures forming them ; 2dly, that the distances from the centre of the maxima
ar aperture. Of extreme red rays (or of rays of any given refrangibility) in the several rings of one and the same system, form

an arithmetical progression, whose difference is somewhat less than its first term. Thus, calling 7 the diameter

of the aperture, and putting L =
-0000214

and t
_ -0000237

)
he found L' = I, L" = I + L, 11" = I + 2 L,

7 7

&c., where L' L", &c. represent the angular semidiametcrs of the several rings expressed in arc of a circle to

radius unity. The near coincidence of the value of L in this case, with that in the case of a linear aperture, and
the small, but decided difference of the values of the first term of the progression in the two cases, are very
remarkable.

745. When the aperture was a very narrow, circular annulus, such as might be traced with a steel point on a gilt

Case of a disc of glass, of whatever diameter, the image was a circular spot, surrounded in like manner by coloured rings,

very narrow, the diameters of which depended nowise on the diameter, but only on the breadth of the annulus, being in fact

(as might be expected) the very same as the intervals between similar opposite fringes, on both sides of the

central line in the image produced by a linear aperture of equal breadth.

746. But the most curious parts of M. Fraunhofer's investigations are those which relate to the interference of rays
Interference transmitted through a great many narrow apertures at once. When these apertures are exactly equal, and
ofmanyrays placed at exactly equal distances from one another, phenomena of a totally different kind from those originating

through
'n a s'n

ff'
e aperture are seen. In his first experiments of this kind he formed a grating of wire, by stretching

gratings
a verv fine w ' re across a frame, in the form of a narrow, rectangular parallelogram, whose shorter sides were
screws tapped in the same die, and therefore precisely similar ; across these screws in the consecutive intervals

between their threads the wires were stretched, and of course could not be otherwise than parallel and equidistant.
The diameter of the wire was 0.002021 Paris inch, the intervals between them each 0.003862, and the grating
consisted of 260 such wires. When this apparatus was placed precisely vertical before the object glass of his

telescope, and illuminated by a narrow line of light 0.01 inch in breadth, also exactly vertical, forming the aper-
ture of the heliostat, the image of this was seen in the telescope, colourless, well defined, and in all respects pre-

cisely as it would have been seen without the interposition of any grate or aperture at all, occupying the centre uf

Spectra of the field, only less bright. On either side of this was a space perfectly dark, after which succeeded a series of

the second prismatic spectra, which he calls spectra of the second class, not consisting of tints melting into each other,
class.

according to the law of the coloured rings, or any similar succession of hues depending on a regular degra-
dation of light, but of perfectly homogeneous colours ; so much so, as to exhibit the same dark lines crossing them
as exist in the purest and best defined prismatic spectrum. In the disposition of things already described, the

first, or nearer spectrum is completely insulated, the space between it and the central image, as well as

between it and the second spectrum, being quite dark. The violet ends of the spectra are inwards, and the red

outwards ; but the violet end of the third spectrum is superposed on the red end of the second, so as in place
of a dark interval to produce a purple space ; and as we proceed farther from the middle, the spectra become
more and more confounded, but not less than thirteen may easily be counted on each side by the aid of a prism
refracting them transversely, so as to separate their overlapping portions.

747. The measurement of the distances of similar points in the several spectra are rendered susceptible of the

Ratio of the utmost precision by means, of the dark lines which cross them. A very remarkable peculiarity of these spectra

must, however, be here noticed, viz. that although the dark lines hold exactly the same places in the order of

them" colours, or, in other words, correspond to precisely the same degrees of refra/igibilily, as in the prismatic spectra
formed by refraction, yet the ratio of the intervals between them, or the breadths of the several coloured spaces,
differ entirely in the two cases. Thus, in the diffracted spectra, the interval between the lines C and D (fig. 94)
is very nearly dou'j'e of that between G and H, while in a spectrum formed by a flint-glass prism of an angle
of 270, the proportion is reversed, and in a water prism of the same angle C D : G H : : 2 : 3.

748. In the diffracted fringes formed by a single aperture, their distances (as we have seen) from the axis depends
Their laws. on]v on the breadth of the aperture, being inversely as that breadth. In the spectra formed by a great number,

their distances from the central image depends neither on the breadths of the apertures nor on the intervals

between them, but on the sum of these quantities, that is, on the distances between the middle points of the

consecutive apertures, (or, in the case before us, on the distances between the axes of the wires.) By a series of

measures performed with the utmost care and precision on wire gratings of a great variety of dimensions,
M. Fraunhofer ascertained the following laws and numerical values.

749. 1. For different gratings, if we call 7 the breadth of each of the interstices through which the light passes, and
i that of each of the opaque intervals between them, the magnitudes of spectra of the same order, and the dis-

tances of similar points in them from the axis, is inversely as the sum -y-f- &.

750. 2. The distances of similar points, (t. e. of similar colours or similar fixed lines,) in the several consecutive

spectra formed by one and the same grating from the axis, constitute an arithmetical progression whose difference

is equal to its first term.

751. 3. For the several refrangibilities corresponding to the fixed lines B, C, D, E, &c. the first term of this pro-

gression is numerically represented by the respective fractions which follow, being the lengths of the arcs, or

their sines to radius unity.
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Ugnt. _ 0.00002541 _ 0.00001945_ __
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These results were all, however, deduced from gratings so coarse as to allow of our regarding the angles of 752.

diffraction as proportional to their sines ; but when extremely fine gratings are employed, the spectra are Case of

formed at great distances from the axis, and the analogy of other similar cases, as well as theory, would lead us extremely

to substitute sin B, sin C, sin D, &c. in the place of B, C, D, &c. This, M. Fraunhofer found by experiment gr

S

yngs
to be really the case. The construction of gratings proper for these delicate purposes, however, was no easy

matter. Those employed by him were nothing more than a system of parallel and equidistant lines ruled on Methods of

plates of glass covered with gold-leaf, or with the thinnest possible film of grease ; by the former of these constructing

methods he found, that the proximity of the lines might be carried to the extent of placing about a thousand in
th

the inch, but when he would draw them still closer, the whole of the gold-leaf was scraped off. When the sur-

face was covered with a film of grease so ihin as to be almost imperceptible to the sight, (although the intervals

were in this case transparent,) no change was produced in the optical phenomena, so far as the spectra were

concerned, only the brightness of the central image being increased. By this means he was enabled to obtain

a system of parallel lines at not more than half the distance from each other that could be produced on gold-

leaf: but beyond this degree of proximity, he found it impossible to carry the ruling of equidistant lines on any
film of grease or varnish. But this being still far short of his wishes, he had recourse to actual engraving with

a diamond point on the surface of the glass itself, and by this means was enabled to rule lines so fine as to be

absolutely invisible under the most powerful compound microscope, and so close that 30,000 of them lie in a

single Paris inch. When so excessively near, however, no accuracy of machinery will ensure that perfect equi-

distance which is essential to the production of the spectra now under consideration, and he found it impossible

to succeed in placing them nearer than 0.0001223, (or about 8200 to the inch,) with such a degree of precision

as to enable him to distinguish the fixed lines in the spectra ; and, if it be considered, that a deviation to the

extent of the hundredth part of the just interval frequently occurring, is sufficient to obliterate these, and that to

produce the spectra in sufficient brightness to affect the eye, some hundreds or even thousands must be ruled,

we shall be enabled to form some conception of the difficulties to be encountered in researches of this kind.

For a detail ofsome of these, and of the methods employed by him to count their number and measure their dis-

tances, we must refer to his original Memoir, (read to the Royal Bavarian Academy of Sciences, June 14, 1823.)

In the course of these researches, M. Fraunhofer met with a very singular and instructive peculiarity in one 753.

of the engraved glass-gratings used by him ; which, although it produced spectra equidistant on either side of The spectra

the axis, jet gave always those on one side a much greater degree of brightness than those on the other, modified by

Attributing this to iheform of the furrows being sharper terminated on one side than on the other, owing either
Jh

*

s ^ '^

to the figure of the diamond point or the manner of its application, he endeavoured to produce a similar struc- the gratings.

ture of the stria? in a film of grease spread on glass, by purposely applying the engraving tool obliquely, and the

attempt proved successful.

When the incident rays from the opening in the heliostat fell obliquely on the grating, it might be supposed 754.

that the phenomena would be the same as those exhibited by a closer grating, having intervals less in proportion Case of

of the cosine of the angle of incidence to radius. But the analogy of the unsymmetrical fringes produced by a inched

single aperture, whose sides lie in a plane oblique to the incident ray, may lead us to expect a different result, u*""^e .

and experiment confirms the surmise ; thus, M. Fraunhofer found, that on inclining a grating, whose intervals
lr;ca'i

(y-J- ) were each equal to 0.0001223 inch, so as to make the angle of incidence 55 with the perpendicular, spectra of

the distance of the first fixed line D from the axis on the one side of the axis was 1 5 6', and on the other no less the second

than 30 33', or more than double.

The facts deduced by M. Fraunhofer in the above detailed researches are certainly extremely curious. The 755,

most interesting and remarkable point about them is the perfect homogeneity of colour in the spectra, indicating Theoretical

a saltus, or breach of continuity, in the law of intensity of each particular coloured ray in the diffracted beam, considera-

For it is obvious, that taking any one refrangibility (that corresponding to the fixed line C, for example,) the tlons -

expression of its intensity in functions of its distance from the axis must be (analytically speaking) of such a

nature as to vanish completely for every value of that distance, excepting for a certain series in arithmetical pro-

gression, or, as it is called, a discontinuous function ; so that the curve representing such value, having the

distance from the axis for its abscissa, must be a series of points arranged above the axis at equal intervals ; or,

at least, a curve of the figure represented in fig. 151, in which certain extremely narrow portions, equidistantly

arranged, start up to considerable distances from the axis, while all the intermediate portions lie so close to that

line as to be confounded with it. The manner in which such a function can be supposed to originate from the

summation of a series of the values offd v . sin
-^-

v
9

and/ d v . cos
-^-

', (Art. 718.) taken successively be-

tween limits corresponding to the boundaries of the several interstices, involves too many complicated consiJe

rations to enter into in this place. M. Fraunhofer, meanwhile, states the following general expression, as the

result of his own investigations founded on the principle of interferences. Let n indicate the order of any

VOL. iv. 3 s
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Fraun-

hofer's

formula.

spectrum, reckoned from the axis ;
e the distance from the middle of one interstice to that of the adjacent one

=
,y _j_ ;

\ the length of an undulation of an homogeneous ray ;
a the angle of incidence of the ray from the

luminous point on the grating ; and y the length of a perpendicular let fall from the micrometer thread of the

telescope, (or from the point in the focus of its object-glass, where that particular homogeneous ray in that

spectrum is found,} on the plane of the grating. Then, if the angular elongation of that ray from the axis be

called ("\ we shall have, in general,

Part III.

cotan tf*i =
-

(e . sin <r + n X)* } . { 4 y* -f e3 - (e . sin a -f n X) }

2 y (t . sin <r
-j- w X)

In this equation, n is to be regarded as + for the spectra which lie on the side of the axis on which the incident

ray makes an obtuse angle with the plane of the grating, and negative for the spectra on the other side. This
formula he states to be rigorous, and independent of any approximation. When y is very great (as it, in fact,

always is,) compared with e and X, this reduces itself simply to

cotan flf"' =_ ^6 (e . sin a -f- n X)
g

or sin
" = e . sin a -{- n X
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e . sin a -f- n X

This formula, applied to M. Fraunhofer's measures of the distances of the same fixed lines in successive spectra
on either side of the axis, in the case of inclined gratings, represents them with perfect exactness. When the

gratings are perpendicular to the ray a = 0, and the equation becomes sin <(lt) = , which is the law before

noticed for symmetrical spectra. And hence, too, it appears that the values of X, or the lengths of the undulations

for the several rays designated by C, D, E, &c., are no other than the numerators of the fractions in Art. 751,

expressed in parts of a Paris inch, which thus become data of the utmost value in the theory of light, from
the great care and precision with which they have been fixed* and for the possibility of identifying them at

all times.

If the unruled surface of the glass grating be covered with black varnish, and the light reflected from the

ruled surface be received in the telescope, the very same phenomena are seen as if the light had been transmitted

through the glass, and the same analytical expression, according to M. Fraunhofer, applies to both cases.

A curious consequence of this expression is, that if f, the distance between the lines, be less than X, and the

light fall perpendicularly on the grating, so that sin a = 0, we shall have sin0 n) > 1, and therefore (X"' imagi-

nary. It appears, therefore, that lines drawn on a surface distant from each other by a less quantity than one

undulation of a ray of light, produce no coloured spectra. Hence, such scratches, or inequalities, on polished
surfaces, have no effect in disturbing the regularity of reflexion or refraction, and produce no dimness or

mistiness in the image ; if less distant from each other than this limit. M. Fraunhofer seems inclined to

conclude further, that an object of less linear magnitude than X can in consequence never be discerned by

microscopes, as consisting of parts : a conclusion which would put a natural limit to the magnifying power of

microscopes, but which we cannot regard as following from the premises.
When the intervals of the parallel interstices are unequal, and disposed with no regularity, the light of the

diffracted spectra of different combinations is confounded together, and a white misty streak at right angles to

the direction of the lines arises ; but when they are regularly unequal, so that the same intervals recur in

regular periods, if we call E (= e'-f- e"
-f- e"' -j- &c.) the interval between any two distant by a whole period,

we shall have, for the law of the lateral spectra, the equation sin flf*' = -pp. And the spectra so formed, are
Ei

still observed to consist of homogeneous light, exhibiting the fixed lines with great distinctness. A very curious,

and, as far as .concerns the practical measurement of the phenomena, useful observation has been made by
M. Fraunhofer on the spectra so formed by these composite gratings, viz. that although they follow the same law

in respect o.f their distances from the axis, yet the successive spectra differ greatly in intensity, some being so

faint as to be scarce perceptible, while the immediately adjacent ones will often be very intense. Owing to

this cause, spectra of the higher orders, which in a simple grating the interval of whose interstices is represented

by E, are confused and obliterated by the encroachment of those adjacent, are often very distinct when formed

by a composite grating, the period of recurrence of whose similar interstices is E = e'
-j-

e" -f-
e'" -f- &c. Thus,

M. Fraunhofer was never able, through a simple grating to see the fixed lines C and F in the spectrum of the

12th order, reckoning from the axis, while in a composite grating, consisting of three systems of lines continually

repeated, whose intervals t', e", e'" were to each other as 25 : 33 : 42, these fixed lines as well as the lines D and

E, were distinctly seen in the 12th spectrum, owing to the almost total disappearance of the 10th and 1 1th. Nay,
even the fixed line E in the 24th spectrum could be seen, and its distance from the axis measured with this

grating.
Such are the extreme cases of the phenomena as produced by a single aperture, and by an infinite, or, at

least, very great number ; but the intermediate steps and gradations by which one set of phenomena pass into the

other, remain to be traced. When a single interstice is left open in a grating, the spectra are formed as described

in Art. 741. These, M. Fraunhofer calls spectra of thefirst class, and their colours are not homogeneous, but

graduate into one another.

When two contiguous interstices are left open, the spectra of the first class appear as before ; but between the

axis and the first spectrum on either side appear other spectra, which M. Fraunhofer terms imperfect spectra of

the second class, their colours being similar to those of the first class, and no fixed lines being visible in them.



LIGHT. 491

Light. When three adjacent interstices are left open, a third set of spectra, or spectra of the third class, are formed Part III.

"v-^-' between the axis and the nearest of the imperfect spectra of the second class. Besides these, no new classes of ~ v '

spectra arise by a further increase of the number of interstices ; but these undergo a series of modifications as Spectra of

the interstices grow more numerous. These are chiefly as follows :
das'

The spectra of the third class grow narrower, and approach the axis, till at last they run together and form
^.g,9

by their union the colourless, well-defined image of the opening of the heliostat in the axis of the whole pheno- Moditica-
menon. By a series of exact measurements, M. Fraunhofer found their breadths to be inversely as the number tionsof

of interstices by which they are produced in the same grating, and inversely as the intervals of the interstices for these spec-

different ones ; and in general, that 7 -f- 6" = e representing this interval, m the number of interstices used, and n tra '""

the order of the spectrum, 6 >J the distance of extremity of the red rays in that spectrum is given by the equation

n 0.0000208 interfering
&"> = X- . rays.

Formula for

As the spectra of the third class contract into the axis, they leave a dark space between it and the first sPectra of

spectrum of the second class. This and the other spectra of that class meanwhile grow continually more vivid and thlr
f

c 'ass -

homogeneous in respect of colour ; till at length, when the number of interfering rays is very much increased, Trans
the fixed lines begin to appear in them, and they acquire the character of perfect spectra of the second class, from jmper

_

M. Fraunhofer next examined the phenomena produced by immersing in media of different refractive powers feet to per-

the gratings used, when he found all the phenomena precisely similar ;
but the distances at which the several fee' spectra

spectra were formed from the axis, to be less than when in air, in the inverse ratio of the refractive indices.

A very beautiful and splendid class of optical phenomena has been investigated and described by M. Fraun-
IRA.

hofer, which arise by substituting for the gratings used in the above experiments very small apertures of regular phenomena

figures, such as circles and squares, either singly or arranged in regular forms, in great numbers ; as, for of gratings

instance, when two equal wire gratings are crossed at right angles. Fig. 151 is a representation of the pheno- immersed

menon produced when the light is received on the object-glass of the telescope through two circular holes of the '" fluids -

diameter 0.02227 inch, placed at a distance of 0.03831 inch centre from centre. Each compartment is a

separate spectrum. In the bands a a, bb we see here plainly the origin and minute structure of the vertical and
f" V g,|

tutlc

crossed fringes described in Art. 735. The appearances vary as the number of apertures is increased, the minute

spectra growing purer and more vivid. That which arises when two equal wire gratings are crossed, is figured apertures

in M. Fraunhofer's work, and is one of the most magnificent phenomena in Optics.
for gratings.

When we look at a bright star through a very good telescope with a low magnifying power, its appearance is 766.

that of a condensed, brilliant mass of light, of which it is impossible to discern the shape for the brightness; Rings seen

and which, let the goodness of the telescope be what it will, is seldom free from some small ragged appendages
al)out

.

tne

or rays. But when we apply a magnifying power from 200 to 300 or 400, the star is then seen (in favourable
telescopes

circumstances of tranquil atmosphere, uniform temperature, &c.) as a perfectly round, well-defined planetary
disc, surrounded by two, three, or more alternately dark and bright rings, which, if examined attentively, are

seen to be slightly coloured at their borders. They succeed each other nearly at equal intervals round the

central disc, and are usually much better seen and more regularly and perfectly formed in refracting than in

reflecting telescopes. The central disc, too, is much larger in the former than in the latter description of

telescope.
These discs were first noticed by Sir William Herschel, who first applied sufficiently high magnifying powers 767.

to telescopes to render them visible. They ;ire not the real bodies of the stars, which are infinitely too remote Spurious

to be ever visible with any magnifiers we can apply ; but spurious, or unreal images, resulting from optical
d 'scs of

causes, which are still to a certain degree obscure. It is evident, indeed, to any one who has entered into
'

what we have said of the law of interferences, and from the explanation given in Art. 590 and 591 of the

formation of foci on the undulatory system, that (supposing the mirror or object-glass rigorously aplanatic) the

focal point in the axis will be agitated with the united undulations, in complete accordance, from every part of
the surface, and must, of course, appear intensely luminous ; but that as we recede from the focus in any
direction in a plane at right angles to the axis, this accordance will no longer take place, but the rays from one
side of the object-glass will begin to interfere with and destroy those from the other, so that at a certain

distance the opposition will be total, and a dark ring will arise, which, for the same reason, will be succeeded

by a bright one, and so on. Thus the origin both of the central disc and the rings is obvious, though to
Explanation

calculate their magnitude from the data may be difficult. But this gives no account of one of the most remark- of the

able peculiarities in this phenomenon, viz. that the apparent size of the disc is different for different stars, being rings on the

uniformly larger the brighter the star. This cannot be a mere illusion of judgment ; because when two unequally
Princ'Ple of

bright stars are seen at once, as in the case of a close double star, so as to be directly compared, the inequality f"ren

"

ces
of their spurious diameters is striking ; nor can it be owing to any real difference in the stars, as the intervention

of a cloud, which reduces their brightness, reduces also their apparent discs till they become mere points. Nor
can it be attributed to irradiation, or propagation of the impression from the point on the retina to a distance, as

in that case the light of the central disc would encroach on the rings, and obliterate them
; unless, indeed, we

suppose the vibrations of the retina to be performed according to the same laws as those of the ether, and to

De capable of interfering with them ;
in which case, the disc and rings seen on the retina will be a resultant

system, originating from the interference of both species of undulations.

Not to enter further, however, on this very delicate question, we shall content ourselves with stating some of ^8.
the phenonena we have observed, as produced by diaphragms, or apertures of various shapes variously applied

P'

to mirrors and object-glasses, and which form no inapt supplement to the curious observations of Fraunhofer on
j."

the effect of very minute apertures, of which they are in some sort the converse. vario>

3 S 2 figure*.
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When the whole aperture of a telescope is limited by a circular diaphragm, whether applied near to, or at a
^_v*w' distance from, the mirror or object-glass, the disc and rings enlarge in the inverse proportion of the diameter of

769. the aperture. When the aperture was much reduced (as to one inch, for a telescope of 7 feet focal length) the
Circular spurious disc was enlarged to a planetary appearance, being well denned, and surrounded by one ring only,
apertures, strong enough to be clearly perceived, and faintly tinged with colour in the following order, reckoning from the

centre of the disc. White, very faint red, black, very faint blue, white, extremely faint red, black. When the

aperture was reduced still farther (as to half an inch) the rings were too faint to be seen, and the disc was enlarged
to a great, size, the graduation of light from its centre to the circumference being now very visible, giving it a

Fig. 152. hazy and cometic appearance, as in fig 152.

770. When annular apertures were used the phenomena were extremely striking, and of great regularity. The
Annular exterior diameter of the annulus being three inches, and the interior l, the appearance of Capella was

res- as in fig. 153, and of the double star Castor, as in 154. As the breadth of the annulus is diminished, the size

of the disc and breadth of the rings diminish also, (contrary to what took place in Fraunhofer's experiments
with extremely narrow annuli, and obviously referring the present phenomena to different principles,) at the same

^j time the number of visible rings increases. Fig. 155, 156, and 157 exhibit the appearance of Capella with
annular apertures of 5.5 inch 5 inch (i. e. whose exterior diameter = 5.5 and interior =: 5) of 0.7 0.5, of

2.2 2.0. In the last case the disc was reduced to a hardly perceptible round point, and the rings were so close

and numerous as scarcely to admit being counted, giving, on an inattentive view, the impression of a mere
circular blot of light. When the breadth of the annulus was reduced to half this quantity, the intervals between
the rings could no longer be discerned. The dimensions of the rings and disc, generally, seem to be proportional

r'-r
to .

r

771. Besides the rings immediately close to the central disc, however, others of much greater diameter and fainter

Another set light, like halos, are seen with annular apertures, which belong (in Fraunhofer's language) to spectra of a
of rings, different class. With a single annulus they are too faint to be distinctly examined, but with an apertureK
'd 159

comPosed of two annuli, as in fig. 158, they are very distinct and striking, presenting the phenomenon in

fig. 159, (in which it is to be understood that light is represented in the engraving by darkness and darkness

by light.)

When the aperture was in the form of an equilateral triangle, the phenomenon was extremely beautiful ; it

Image pro- consisted of a perfectly regular, brilliant, six-rayed star, surrounding a well-defined circular disc of great

triangular*
^r'Sntness- The ravs do not unite to the disc, but are separated from it by a black rinsf. They are very narrow,

aperttire.
an(^ perfectly straight; and appear particularly distinct in consequence of the total destruction of all tfit diffused

light which fills the field when no diaphragm is used ; a remarkable effect, and much more than in the mere

Fig 160 proportion of the light stopped. Fig. 160 is a representation of this elegant appearance. The same arises

when, in place of an equilateral triangle, the aperture is the difference of two concentric, equilateral triangles

similarly situated.

773. As a triangle has but three side' and three angles, it seems singular that a six-rayed star should be produced.
When out Supposing three to arise from the angles, and three from the sides, it might be expected that some sensible
of focus. difference should exist in the alternate rays, marking their different origin. When the telescope is in perfect

focus, however, all the rays are precisely alike ; but if thrown out of focus, their difference of origin becomes

Fi 161 apparent. Fig. 161 represents the phenomenon then seen, in which the alternate branches are seen to consist

of a series of fringes parallel to their length, and the others of small arcs of similar fringes immediately adjacent
to the vertices of the hyperbolas to which they belong, and which consequently cross the rays in a direction

perpendicular to their length. As the telescope is brought better in focus, the hyperbolas approach their asymp-
totes, and are confounded together in undistinguishable proximity ; and thus three rays arise composed of conti-

nuous lines of light, and three intermediate ones composed of an infinite number of discontinuous points placed

infinitely near each other. To represent analytically the intensity of the light in one of these discontinuous rays
would call for the use of functions of a very singular nature and delicate management.

774. The phenomenon just described affords in certain cases a very perfect position-micrometer for astronomical

Application uses. If the diaphragm be turned round, the rays turn with it ; and if a brilliant star (as a Aquilse) have near
to the con-

j t a very smaii one> tne diaphragm may be so placed as to make one of the rays pass through the small star,

a^posi'tion"
which thus remains like a bead threaded on a string, and may be examined at leisure. If then the position of

micrometer, the diaphragm be read off on a graduation properly contrived, the relative situations of the two stars become
known. We have satisfied ourselves by trial of the practicability of this ; and by proper contrivances the

principle may be made available in cases which at first sight appear to present considerable difficulties.

775 When three circular apertures, having their centres at the angles of an equilateral triangle, were used, the

Three image consisted of a bright central disc. Six fainter ones in contact with it, and a system of very faint halo-

circular like rings surrounding the whole as in fig. 162. When, however, three equal and similar annular apertures
apertures, were thus disposed, the appearance when in focus was as in fig. 153, being exactly the same as if two of them

were closed. But when thrown a little out of focus, the difference was perceived. Fig. 163 represents the

Fig. 163.
appearance in this case, each of the apertures then produces its own central disc and system of rings, whose
intersections give rise to the system of intersectional fringes there depicted. As the telescope is brought better

Fig. 164. in focus these disappear, and the phenomenon is as in fig. 164 ; the centres gradually approaching, and the

rings blending till the point of complete coincidence is attained.

7g An aperture in the form of the difference between two concentric squares produced not an eight, but a four

rayed star. The rays, however, were not, as in the case of the triangular aperture, uninterrupted fine lines,

gradually tapering away fro;n the centre to their extremities, but composed of distinct alternating obscure and
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lJgn- bright portions, as represented in %. 165. The portions nearest the central disc (which is circular) were Part IIL

~~\-~m*' composed of bands transverse to the direction of the rays, and tinged with prismatic colour. Similar bands, > -v^*'
no doubt, existed in the more distant portions, which extended to a great length.
An aperture consisting of fifty squares, each of about half an inch in the side, regularly disposed at intervals

pP*_

r

"'^'
so as to leave spaces between them in both directions equal in breadth to the side of each, produced an image rm.
totally different from that described by Fraunhofer as resulting from the crossing of two equal very close Effect of

gratings, though the distribution and shape of the apertures were the same in both cases. It was as repre- very nume-

sented in fig. 166, consisting of a white, round, central disc, surrounded by eight vivid spectra, disposed in the rous S1uar

circumference of a square, beyond which were arranged in the shape of a cross, triple lines of very faint spectra S'
r

'igg

S

extending to a great distance.

When the aperture consisted of numerous equilateral triangles regularly disposed, as in fig. 167, the image 778.

presented the very beautiful phenomenon represented in fig. 168, consisting of a series of circular discs arranged F'g. 167.

in six diverging rays from the central one, and each surrounded with a ring. The central disc was colourless and

bright ;
the rest more and more strongly coloured and elongated into spectra, according to their degree of

remoteness from the centre. These are only a few of the curious and beautiful phenomena depending on the

figures of the apertures of telescopes, which afford a wide field of further inquiry, and one at least as interesting
to tlie artist as to the philosopher.
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PART IV.

OF THE AFFECTIONS OF POLARIZED LIGHT.

I. Of Double Refraction.

779.

Exceptions
to the law

of ordinary j

refraction

Classes of

bodies in

which it

holds.

780.
Double

refraction.

WHEN a ray of light is incident on the surface of a transparent medium, a portion of it is reflected, at an

angle equal to that of incidence, another small portion (-so small, however, that we shall neglect its consi-

deration) is dispersed in all directions, serving to render the surface visible, and the rest enters the medium and
is refracted. The law of refraction, or the rule which regulates the path of this portion within the medium,
has been explained in the preceding parts ; and no exceptions to it, as a general law, have hitherto been noticed.

It is, however, very far from general ; and, in fact, obtains only where the refracting medium belongs to one or

other of the following classes, viz.

Class 1. Gases and vapours.
2. Fluids.

3. Bodies solidified from the fluid state too suddenly to allow of the regular crystalline arrangement of

their particles, such as glass, jellies, &c., gums, resins, &c., being chiefly such as in the act of

cooling pass through the viscous state.

4. Crystallized bodies, having the cube, the regular octohedron, or the rhomboidal dodecahedron for

their primitive form, or which belong to the tessular system of Mohs. A very few exceptions

(probably only apparent ones, arising from our imperfect knowledge of crystallography) exist to

the generality of this class.

The solid bodies belonging to these classes, moreover, cease to belong to them when forcibly compressed or

dilated, either by mechanical violence, or by the unequal action of heat or cold, which brings their particles
into a state of strain, such as in extreme cases to produce their disruption, as is familiarly seen in the cracking
of a piece of glass by heat too suddenly and partially applied. The class of fluids too admits some exceptions,
at least when very minutely considered ; but the deviation from the ordinary law of refraction in these cases is

of so microscopic a kind, that we shall at present neglect to regard it.

All other bodies, comprehending all crystallized media, such as salts, gems, and crystallized minerals, not

belonging to the system above mentioned ; all animal and vegetable bodies in which there is any disposition to

a regular arrangement of molecules, such as horn, mother of pearl, quill, &c. ; and, in general, all solids when
in a state of unequal compression or dilatation, act on the intromitted light according to very different laws,

dividing the refracted portion into two distinct pencils, each of which pursues a rectilinear course so long as it

continues within the medium, according to its own peculiar laws, but without further subdivision. This pheno-
menon is termed double refraction. It is best and most familiarly seen in the mineral termed Iceland spar,
which is, in fact, carbonate of lime in a regular crystalline form. This is generally obtained in oblique parallel-

epipeds, easily reduced by cleavage to regular, obtuse rhomboids, and is not uncommonly met with in a state of

limpid transparency, on which account, as well as by reason of its remarkable optical properties, it easily
attracted attention. Bartholinus, in 1669, appears to have been the first to give any account of its double

refraction, which was afterwards more minutely examined by Huygens, the first proposer of the undulatory

theory of light, whose researches on this phenomenon form an epoch in the history of Physical Optics little if

at all less important than the great discovery of the different refrangibility of the coloured rays by Newton. To
Huygens we owe the discovery of the law of double refraction in this species of medium. Newton, misled by
some inaccurate measurements, (a thing most unusual with him,) proposed a different one ; but the conclusions

of Huygens, long and unaccountably lost sight of, were at length established by unequivocal experiments by
Dr. Wollaston, since which time a new impulse has been given to this department of Optics; and the successive

labours of Laplace. Malus, Brewster, Biot, Arago, and Fresnel present a picture of emulous and successful

research, than which nothing prouder has adorned the annals of physical science since the developement of the

true system of the universe. To enter, however, into the history of these discoveries, or to assign the share of

honour which each illustrious labourer has reaped in this ample field forms no part of our plan. Of the splendid
constellation of great names just enumerated, we admire the living and revere the dead far too warmly and too

deeply to suffer us to sit in judgment on their respective claims to priority in this or that particular discovery ;

to balance the mathematical skill of one against the experimental dexterity of another, or the philosophical

acumen of a third. So long as " one star differs from another in glory,
' so long as there shall exist

varieties, or even incompatibilities of excellence, so long will the admiration of mankind be found sufficient

for all who truly merit it. Waving, then, all reference to the history of the subject, except in the way of inci-

dental remark, or where the necessity of the case renders it unavoidable, we shall present the reader with as
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Light, systematic an account as we are able, of the present state of knowledge with respect to the laws and theory of Part IV.

*~v "' Double Refraction. The Huygenian law having been demonstrated to apply rigorously to the case for which v-~-v~~-/

he himself devised it, as well as to a very large class of other bodies, we shall begin with that class, and proceed
afterwards to consider more complicated cases.

In all crystallized bodies, then, which possess double refraction.it is found that that portion of a ray of 78J.

ordinary light incident on any natural or artificially polished surface which enters the body is separated into two Axes of

equal pencils which pursue rectilinear paths, making with each other an angle not of constant magnitude, but *

varying according to the position which the incident ray holds with respect to the surface, and to certain fixed

lines, or axes within the crystal, and which lines are related in an invariable manner to the planes of cleavage,
or other fixed planes or lines in the primitive form of the crystal. Now, it is found that in every crystal there

is at least one such fixed line, along which if one of these two pencils be transmitted the other is so also, so

that in this case the two pencils coincide, the angle between them vanishing. Moreover, no crystal has yet been

discovered in which more than two such lines exist. These lines are called the optic axes. All double refracting

crystals, then, at present, may be divided into such as have one, and such as have two, optic axes.

When a ray penetrates the surface of a crystal so as to be transmitted undivided along the optic axis; 782.

or when, moving within the crystal along that line, it meets the surface and passes out, whatever be the R>y?

inclination of the surface, its refraction is always performed according to the ordinary law of the propor- "]

tional sines. Thus, in this particular case, the crystal acts precisely as an uncrystallized medium, (some rare axes suffer

instances excepted, of which more hereafter.) ordinary

But in all other cases the law is essentially different, and (for one portion of the divided pencil, at least)
refraction

of a very singular and complicated nature. This we shall first proceed to explain in the simpler case of onl
-L'Rq

crystals with one optic axis. But, first, we must explain somewhat more distinctly, what we mean by w ,

axes and fixed lines within a crystal. Suppose a mass of brickwork, or masonry, of great magnitude, built of mean t by
bricks, all laid parallel to each other. Its exterior form may be what we please ; a cube, a pyramid, or any other axes and

figure. We may cut it (when hardened into a compact mass) into any shape, a sphere, a cone, or cylinder, &c. ;
ncl lines

but the edges of the bricks within it lie still parallel to each other ; and their directions, as well as those of the wlttlin a

diagonals of their surfaces, or of their solid figures, may all be regarded as so many axes, i. e. lines having (so
cr

long as the mass remains at rest) a determinate position, or rather direction in space, no way related to the

exterior surfaces, or linear boundaries of the mass, which may cut across the edges of the bricks in any angles
we please. Whenever, then, we speak of fixed lines, or axes of, or within, a crystal, we always mean directions

in space parallel to each of a system of lines drawn in the several elementary molecules of the crystal, according
to given geometrical laws, and related in a given manner to the sides and angles of the molecules themselves.

We must conceive the axis, then, of a crystallized mass not as a single line having a given place, but as any line

whatever having a given direction in space, i. e. parallel to the axis of each molecule, which is a line having a

determinate place and position within it.

In the remainder of this section, when we speak of the axis or axes of a crystallized mass or surface generally, 784.
we mean the direction of the optic axis or axes of its molecules, or of a crystal similar and similarly situated

to any one of them.

Of the Law of Double Refraction in Crystals with One Optic Axis.

This class of crystals comprises all such as belong to Mohs's rhombohedral system, or which have the acute or 785.
obtuse rhomboid, or regular six-sided prism, for their primitive form, as well as all which belong to his Enumera-

pyramidal system, or whose primitive form is either the octohedron with a square base, the right prism with a tionofcrys-

square base, or the bi-pyramidal dodecahedron. All such crystals Dr. Brewster has shown to have but one
tal* "*V'"S

axis, which is that to which the primitive form is symmetrical, viz. in the rhomboid, the axis of the figure, or ax js fn
line joining the two angles formed by three equal plane angles ;

in the hexagonal prism, the geometrical axis classes,

of the prism ; in the octohedron, or square based prism, a line drawn through the centre of the base at right

angles to it. The cases in accordance with the rule are so numerous, and the exceptions, once believed to be

so, have so often disappeared on the attainment of a more perfect knowledge of the crystalline forms of the

excepted minerals, that when any case of disagreement seems to occur, we are justified in attributing it rather

to our own incorrect determination of this datum, than to want of generality in the rule itself.

In all crystals of this class, one of the two equal pencils into which the refracted ray is divided follows the 786.

ordinary law of Snellius and Descartes, having a constant index of refraction (/*), or invariable ratio of the sine Refraction

of incidence to that of refraction, whatever be the inclination of the surface by which it enters ; so that its
^ t 'le ot

^}~

velocity within the medium, when once entered, is the same in whatever direction it traverses the molecules ; "^ "j

ay
"J

and with respect to this ray the crystal comports itself as an uncrystallized medium. This, then, is called the
crystals.

ordinary pencil.

To understand the law obeyed by the other, or extraordinary portion of the divided pencil, let us consider 737
it as fairly immersed in the medium, and pursuing its course among the molecules. Then its velocity will not, Huygens's
as in the case of the ordinary ray, be the same in whatever direction it traverses them, but will depend on the law for the

angle it makes with the axis ; being a minimum when its path within the crystal is parallel to the axis, and a velocity of

maximum when at right angles to it, or vice versa; and in all intermediate inclinations of an intermediate
th

<-.
extra-

magnitude according to the following law. Let an ellipsoid of revolution, either oblate or prolate, as the case
'n
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may be, be conceived, having its axis ofrevolution coincident in direction with the axis of the crystal, and its polar
to its equatorial radius in the ratio of the minimum and maximum velocities above mentioned, i. e. as the velocity

of a ray moving parallel to that of one perpendicular to the axis. Then in all intermediate positions, the radius

of this spheroid parallel to the ray will represent its velocity on the same scale that its polar and equatorial

radii represent the velocities in their respective directions.

This is the Huygenian law of velocities, in its most simple and general form. It does not at first sight appear
what this has to do with the law of extraordinary refraction ; but the reader who has considered with the requisite

attention what has been said in Art. 539, 540, with prospective reference to this very case, will easily perceive

that, the law of velocity of the ray within the medium once established, it becomes a mere matter of pure

Geometry to deduce from it the law of extraordinary refraction, whether we adopt the Corpuscular theory, and

employ Laplace's principle of least action, as in that Article
;
or whether, preferring the Undulatory hypothesis,

we substitute for this principle the equivalent one of swiftest propagation, as explained in Art. 587, 588. We
should observe, however, that the Huygenian law, as just stated, is worded in conformity with the undulatory

doctrine, in which the velocity in a denser medium is supposed slower than in a rarer. But when we use the

principle of least action, we must invert the use of the word, or, which comes to the same thing, suppose the

the velocity in the medium to be inversely proportional to the radius of the ellipsoid. The results being

necessarily the same in both cases, we shall use at present the language of the Corpuscular system.

Retaining, then, the notation of Art. 540, the law of refraction will be derived from the equation V . S -f V . S
= a minimum, where V is the velocity without, and V that within the medium, and where S and S' are the spaces
described without and within it, in the passage of a ray from point to point. Let a and 6 be the polar and

equatorial semiaxes of the ellipsoid above spoken of, (which we shall call the ellipsoid of double refraction,) and

let n, ft, 7 be the coordinates of the point (A) without the crystal, and a', ft', 7' those of one (B) within it,

through which the ray is supposed to pass, and x, y, z the coordinates of a point in the surface of the crystal, on

which it must be incident, so as to be capable of passing from A to B in the manner required by the law of

extraordinary refraction ; and let be the angle which the interior portion S' makes with the axis of the crystal.

Then will the radius of the spheroid parallel to this portion (by conic sections) be expressed by

Part IV.

ab ab
'

f 6s . sin 0* + <z cos 4

where a is the equatorial, and 6 the polar radius of the spheroid. Now, if we take p to represent the index of

ordinary refraction, since we have, generally, V = , and since, when r = b the extraordinary and ordinary

const
rays coincide, and therefore V =p V, consequently we must have /

V =
, and const = 6 ft V, so that

D

we shall get

790.
Introduc-

tion of the

principle of

least action

cr swiftest

propagation

Fig. 169.

791.

In general, as we have already seen, the condition of least action affords the equation

d{VS + V'S'} = 0,orV.dS + V'./S' + S'. dV' = 0; (2)

But to make use of this, we must express V, S, and S', in terms of variable quantities relating to a point any
how taken in the surface of the crystal. Whether this point be expressed by rectangular or polar coordinates
is no matter: it will be more convenient, however, to use polar. Let, then, C (fig. 169) be the point of inci-

dence of the ray A C on the surface H a O b, and about C as a centre describe a sphere. Let Z C 2 be the per-

pendicular to the surface at C, and let P C^ be the position of the axis of the crystal. The plane Z P H zp O Z
perpendicular to the surface, and passing through the axis, is called the principal section of the surface. Let
Z A a, 2 B b be vertical planes, containing the incident and refracted rays, and join B ;; by the arc of a great
circle. Then it is evident, that this arc will be equal to <.

Suppose, now, the axis of the x to be parallel to H C the projection of the axis of the crystal, and since we may
choose the plane of the x, y, as we please, let it coincide with the refracting surface, so that 2=0. Then

dropping the perpendiculars A M, M m, B N, N n, and putting X = Z P = z p = angle between the axis and

perpendiculars.
as = O a = inclination of the plane of incidence to the principal section.

w7 = O 6 = inclination of plane of refraction to ditto.

6 = angle Z C A = Z A = angle of incidence
ff z C B = z B = angle of refraction.

We shall have as follows:

consequently.

AC =S; AM = 7; C ro = (o
-

*)' ; M m* = (ft
-

and, si

o x :=
7

7 . tan 8 . cos TS ; ft y = 7 . tan <? . sin w ;
S =

similarly,

of - x = 7' . tan ff . cos ra'; /?'
- y = 7' . tan ff . sin rss' ; S' = -

;
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Uebt. Now, differentiating these equations, and considering that d (a x) = d (a
1

x) and d (/3 y) = d (ft
1

y) Part IV.

^V'""*' we get v^^,

d (tan . cos TO) =: . d (tan ff . cos TO') ;

Tf

7'
d (tan . sin TO) = . d (tan 5' . sin TO') ;

which equations, developed and reduced, afford the following,

d 7' /cos 0V d 7'
y . = -

. I
-

I . cos (TO TO') ;
- - = . cos 0* . tan d1

. sin (TO TO') ; \
do & \cos / d TO 7

> (4)
d TO 7' sin (TO' TO) d TO 7' tan ^= . r : = , cos (TO' TO) ;

d ff 7 tan . cos 0'2 d TO'
'

f tan

which are necessary conditions, in order that the point C may remain on the surface.

But since S, S', V may be regarded as functions of ff and TO', which are the polar coordinates we propose to 792.
use as independent variables, we shall have

and, moreover,

7 . sin

COS02

so that, substituting their values in the equation (2,) we get

= -fv .

7 ' S'"
.

.

C cos 0* dff
. -

cos e'-
T

cos 6>'

'

d&

:n which the coefficients of each of the two independent differentials being separately made to vanish, we get

= V . .
-
C 8

. . _ V' . tan ff \
d 7' cos 0* d &

\. (o)
d V 7 sin . cos 0' d

d is1 <y' cos 0* d TO*

In these, substituting the values of --. and - found in equation (4,) we obtain the following
d ff dw

dv h <7)

r ;
= V . sin . sin ff . sin (TO TO') I

d'BT

These are the very same equations with those deduced by Laplace and Malus, by a more abstruse and compli-
cated calculus, from the primary dynamical relations of the problem, and from them it is easy to express, in

general, the law of refraction corresponding to any given law of velocities, for we have only to put them under
the form

d V/
V . sin 6 . cos -a cos zi

7

-f- V . sin . sin TO . sin TO' = V . sin ff cos ff . -r-r,

1 dV
V . sin . cos TO . sin TO* V . sin . sin TO . cos TO* = -r -

-. ;
sin & dw

and multiplying the first by cos TO', and the second by sin TO', and adding, we get

V . sin . cos ro = -
.
- cos ff . cos TO* . -r ; sin ff . cos a' . V ; (b)

sin 1 d TO* d

Mid, again, multiplying the first by sin TO', and the second by cos TO', and adding, we find

V . sin . sin TO = : -. -r. - cos & . sin TO' .
-

;
- sin f

. sin TO* . V; (9)
sin v dvr d 0'

VOL. IV 3T
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Light. Now, the second members of these equations, (whenV the velocity of the extraordinary ray is any function of Fart IV.

V ' the angle it makes with the axis, or of its position within the crystal,) is always explicitly given in terms of ff v v '

and BT% so that, calling P and Q their values so expressed, we have at once

P
tan TO = --

; cos -a = -
; sin ~ ^ P1 + Q2

;

V p -f- Q

so that -a and are directly expressed in terms of TO' and 0'
; and, therefore, the direction in which a ray, moving

anyhow within the crystal will emerge, is known, and vice vend.

793. It only remains to execute these processes in the case before us. To this end (for simplicity) we shall put

V = 1, and suppose (since a and b, the semiaxes of the spheroid, are arbitrary) b = , or p,
= , and put W

for the radical voTcos s + 68 . sin 0S when we shall have

W
., _ aa - 62 cos

Now in the spherical triangle Z B p we have, the side Zp = \
;
Z B = ff, angle p Z B = TO', and sidep B = 0,

therefore, by spherical trigonometry,

cos = cos X . cos 6' -f- sin X . sin ff . cos TO', (1 0)

and differentiating separately with respect to ff and TO',

d . cos

d . cos . /./_/= sin X . sin 0' , sin TO*.

d TO

lii then, we write these values in the partial differences of V in the equations (8) and (S,) they will become

sin .cos -ss=
1
W1

. sin 0'. cos TO' 4- (a? b-) cos [sin X ( 1 - cos w'2
. sin 0'

2

) cos X. sin 0'. cos 0' . cos TO
7

] {ah Vf( )

sin#.sinTO=
\
W4 .sin0'. sin TO

7

(a
9

6
s

) cos [sin X. sin TO', cos TO'. sinO
1* + cos X. sin ff . costf'.sinTO'] >.

a b W(

In these, let b* + (tf 62) cos 0* be put for W, and, bearing in mind that the value of cos is as given in

the equation (10,) we shall see that they will reduce themselves respectively to

sin . cos TO = r-=; ")
&5 sin 0' . cos TO' + (a

s -
b*) . sin X . cos f

a b W L

that is, by reason of (10,)

(a* - 61) . cos X . sin X . cos 0' -f (a
7

. sin X- -f W- . cos X 2
) . cos TO' . sin &

sinO . cos TO =
TTy

and
).. (11)

62 . sin 0' . sin TO'

sin . sin TO =
j-==

794. These equations, conjointly with the equations expressing the value of W in terms of cos 0, and of cos in

terms of & and TO', afford a complete solution of the problem in the case when a ray passes out of a crystal into

air, and suffice to determine both the inclination of the refracted ray to the surface, and the inclination oi" the

plane in which it lies to the principal section.

For brevity, let us put

a . sin X -j- ft
8

. cos X = A; a2 . cosX3 + 6s . sinX = B ; (a
8 - 65) . sinX. cos X = C; (12)

and, dividing the second of the equations (11) by the first, we find

b* . tan 0' . sin TO'

which gives immediately the inclination of the plane of emergence to the principal section, or, as it is sometimes
termed, the azimuth of the emergent ray.
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Light. Reciprocally, if having given the angle of incidence and azimuth of a ray incident externally on the crystal,
Part IV.

we would find the angle of refraction and azimuth of the intromitted ray, we must find & and TO' from the above

equations in terms of and TO. This may be thus accomplished :

Take x = tan & . cos TO', and y = tan ff . sin TO*,

1
then

and, moreover,

a* + y* =. tan 6", and cos ff* =

795.
Given the

path of the

ray without,

required
that within

the
crystal.

tan a =
A I

now, since W* = 6 + (a
1

b') . cos 0,

= cos 0'"
-)
- -r + (a*

- 6s) (cos \ + sin X. . tan 0* . cos TO')')-
v. cos 6* J

the second of the equations (11) becomes, by squaring,

{6
8

~) 6
-IT- + (a

1 - b1
) . (cos X + sin \ . tan 6' . cos TO')>=: (tan 0' . sin TO')',

cos W1 J a*

that is,

o (sin . sin w) { 6 (1 + + y) + (a
-

ft
2
) (cos X + x . sin X)

2
}
= 62 y

2
,

that is, developing

a2
. (sin . sin TO)

2
{ A*2 + 2 C x + B + 62 y

2
}
= 62 y

2
.

62 y Ify C
Now we have A x + C = -, and ,r -.

tan TO A . tan TO A

And, on substitution, this equation will be found to take the form p y
2 + q = 0, and being resolved to give

a2 . sin . sin TO

y tan ff . sin TO' =r

-/A a2
. sin 2

(A . sin TO2 -{- 62 . cos TOS

and substituting this in the value of x, we find

a? If sin 9 . cos TO

(14)

* = tan & . cos TO' =
*/A - a2

. sin 2
{ A . sin TO2 + b2 . cos TO2 }

_

A (15)

These equations are identical with those demonstrated by Malus in his Theorie de la Double Refraction, with some

slight differences of notation only, arising from our having reckoned TO and TO' from the opposite point of the circle.

The values of A, B, and C depend only on a, b, and X, that is, on the peculiar nature of the crystal, which 796.

determines the ratio of the axes of the spheroid of double refraction, and on the inclination of the axis to the Particular

surface on which the ray is incident. The former are constant for one and the same crystal, however the surface
aPP''cat'on>

be placed ;
the latter is constant for any given surface. Hence it appears, that the general law of extraordinary

refraction, when we confine ourselves to the consideration of a surface given in position with respect to the

axis, resolves itself into an infinite variety of particular laws, some of which we shall now consider.

Case 1. X = 0, the surface perpendicular to the axis ; A = 62
; B = a4

;
C = 0, and the equations (14) and 797.

(15) become 1st. When

sin . sin
tan 0' . sm TO = -y- .

t>

; tan f
. cos TO' =

lar to the

surface.

these equations (as well as Equation 13) give TO' = TO, so that in this case the plane of refraction is the same with

that of incidence, and the extraordinary ray is not deviated out of the vertical plane. Hence, we get simply

a* sin
tan 0' - .

o A/ 1 - a*
. sin

(16)

which expresses the law of extraordinary refraction in this case. If = 0, 0' = 0, or the ray incident perpen-
G? 1

dicularly passes unrefracted along the axis. If =. 90, tan & = -
f

Now if we put b and

a = T , this becomes
X

tan 0' = s~ (17)

which, fi and p.' being each greater than unity, is always real, so that the ray can enter the crystal however oblique
its incidence.
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Case 2. When the axis lies in the surface, or \ = 90 ; A = a1
;
B = 6"

; C = 0, and the equations become *""* 'v-

a . sin . sin ra
tan ff . sin -a = (18)2d - when V 1 - sin 6 { a? . sin TO' + 6 . cos TO' }

the axis lies

i
n the ur- 62 sin e . cos TO

tan
-

. cos*= .

,. , ,,, f _, _. , .. _===; (19)

(20)
o2 / /. V

tan is
-jj-

. tan -a = I p 1 . tan OT .

The latter of these equations shows that the extraordinary ray deviates from the plane of incidence. The amount
of this deviation is nothing when the plane of incidence coincides with the principal section, but increases on
either side of it till it attains a certain magnitude, the deviation beingfrom the axis, or the plane of refraction

making a greater angle with the axis than that of incidence. The two planes then approach each other, and
when OT = 90, tan -EJ = cc, tan ro' = cc, and, consequently, is' = 90, or the plane of refraction coincides with

that of incidence.

799. The equations (18) and (19) show that in the present case, the refracted ray does not describe a conical surface
Case of about the perpendicular when the incident one does so, and therefore that the law of refraction varies in every
efraction m different azimuth. Two cases deserve express notice, viz. those in which the plane of incidence*is coincident

pal section
w''^ *ne P"ncipa' section, and when perpendicular to it. In the former, w = and w' = 0, so that we have

62 sin
tan0' =- . .

-- . (21)
a l-^

A remarkable relation holds good in this case between the angles of refraction of the ordinary and extraordinary
ray, their tangents being to each other in a given ratio. In fact, if we find (#') = the angle of refraction for the

ordinary ray, we have sin (0
1

) = . sin =: b . sin 0, and, consequently,

tan 9 = L .
_SJ"_^L- = A . tan (fl) . (M)a V 1 - sm (<O

2 a

In the latter case, when the plane of refraction is at right angles to the axis, CT = TO-' =: 90, and we get

tan tf = a - sm
. sin

- a . sin 0. (23)

V 1 - a5 . sin 6*

800. In this case, therefore, the sine of incidence is in a given ratio to that of refraction, and the extraordinary
Case of re- ,

fraction at
refractiOn is performed according to the same law as the ordinary, only with a different index, viz.

ft',
or .instead

to the prin- j
cipalsec- of ft, or . Hence, if we consider only this particular case, the medium will appear to have two indices of
tion. n

refraction, an ordinary and an extraordinary one.

801. It was by a careful examination of these cases, that Dr. Wollaston was enabled to verify the Huygenian law.
Experimen- fne circumstance last mentioned puts it in our power to determine in the case of any particular crystal the axes of

its spheroid of double refraction. We have only to cut a prism of it, having its refracting angle parallel to the

mining the ax 's- an^ ascertain its indices of refraction according to the principles laid down in the former part of this Essay,

r'
eroid of \ \
ble re- and calling them

ft.
and /, the semiaxes of the spheroid will be respectively and r. Thus, in the instance

fraction. f- f-

of carbonate of lime, which Malus examined with the utmost care, he found the two values of a and b to be

respectively equal to the numbers 0.67417 and 0.60449, having determined
ft'
= 1.4833, and ft

= 1.6543.

(Thkorie. de la Double Refraction, p. 199.)
802. In this arrangement, however, it is not possible to decide simply from the phenomena of refraction, which is

the ordinary, and which the extraordinary ray. There are, however, infallible and easy criteria, as we shall

speedily show. Meanwhile, we may for the present content ourselves with observing, that as a moderate devia-

tion from the exact azimuth OT = 90 imparts to the extraordinary ray a deviation from the plane of incidence

which does not happen to the ordinary one, this may serve for a criterion to distinguish them in certain cases.

803. The square of the velocity of the ordinary ray within the medium is /t
s VJ

, or /t
4
, that is. , and is constant.

Law of the ^ ,. . ,

2

f the extraordinary is V,

s> or _ that ig to say> 2^ + !!L^ (

or, V" = - ( -
. sin

!
.

6* 6" a
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The square of the velocity of the extraordinary ray is therefore (in the corpuscular doctrine) diminished by a quantity Pan IV.

y^^ proportional to the square of the sine of the inclination of the ray within the crystal, to the axis. We say dimin- ^ v '

ished, in the algebraical sense of the word, supposing a > 6, this agrees with common parlance ; but if a < 6, Division of

then it will be increased. This gives rise to the subdivision of the crystallized bodies now treated of into two fT813 '8

classes, which have by some been termed attractive and repulsive : by others, positive and negative, which seems
j v

'

P^'~

preferable, as the former phrases involve theoretical considerations. Positive crystals are, then, such as have a
negative.

less than b, or in which the spheroid of double refraction is prolate. In these the coefficient ( - \

which we call k is positive, and the square of the velocity, or c* -j- k . sin 0', (where = =r velocity of the

ordinary ray within the medium,) is increased by the action of the medium, and is a minimum in the axis. In the

negative class the coefficient k is negative, a > 6, or the spheroid of double refraction is oblate., and the velocity
of the extraordinary ray is a maximum along the axis. In positive crystals, therefore, the index of ordinary
refraction (/i) is less than that of extraordinary ;

in negative, greater. To the former class belong quartz, ice,

zircon, apophyllite, (when uniaxal ;) and to the latter, Iceland spar, tourmaline, beryl, emerald, apatite, &c.

The negative class, as far as our present knowledge extends, far out-numbers the positive among natural and
artificial crystals. They were first distinguished by M. Biot.

In the undulatory doctrine the velocity is the reciprocal of what it is in the corpuscular doctrine, and is 04.
therefore directly as the radius of the spheroid of double refraction. Hence a wave propagated within the Undulationj

crystal from any point will run over in the same time in different directions, distances proportional to the radii propagated

of the spheroid parallel to those directions ; and therefore at any instant the surface of the whole wave will be '"."P
1 -6"

itself a spheroid similar to the spheroid of double refraction. This is Huygens's conception of the subject. It

requires us to regard the crystal, or the ether within the crystal through which the undulation is propagated, as

having different elasticities in different directions. As far as regards the molecules of a solid body there is no

apparent impossibility or improbability in such an idea, but the contrary ; but if we regard the propagation of

the light within the medium to take place by the elasticity of the ether only, we must then suppose its molecules

in crystallized bodies to be in a very different physical state from what they are in free space, and either to be

in some manner connected with the solid particles, (forming atmospheres, for instance, about them,) or as

subjected to laws of mutual action which approximate to those governing the molecules of solid bodies ; and

partaking, themselves, of a regular crystalline arrangement and mutual dependency.
To pursue the particular applications of the general formulae (13,) 14,) and (15) farther, would be far beyond 05.

our limits. The reader who is curious on this very interesting part of Physical Optics, and who wishes to be Malus's'

delighted and instructed by a combination of consummate mathematical skill with sound experimental research, further

which may deservedly be cited as a model of the kind, will find every thing which relates to the subject in its
researclles -

best form in the work, already so often cited, of Malus, Theorie de la Double Refraction, which gained the mathe-

matical prize of the French Institute in 1810. To the theory of the internal reflexion of the extraordinary ray
which offers many remarkable particularities, as there delivered, we must especially refer him, as well as to

his investigation of the foci of lenses formed of doubly refracting crystals, of which we shall here only extract Foci of a

the results, in the single case of a double convex lens having the axis of double refraction in the direction doubly

of the axis of the lens. refracting

Let r, r1 be the radii of the anterior and posterior surfaces of the leiis, both supposed convex.

d = distance of the radiant point in the axis.

a, b = the equatorial and polar radii of the spheroid of double refraction, as above.

D = distance of the conjugate focus behind the lens for extraordinary rays.

A = extraordinary focal length for parallel rays.

F = ordinary focal length for parallel rays.

Then shall we have for the general expression of D,

ePbdrr1

_ - 6 r /
~~~"

d (r + /) (2 6 - a? - a 6)
- a6 r r 1

'

(r+ /) (1 -6)
'

If the lens be equi-convex, or r = r1

,

a2 b r d a?br

2 (2 6 - a2 - a4
6) d - a* 6 r

'
2 (2 6s - a' - a" 6)

'

F=- A -F=-2F.
2 (1

-
6)

' '

2 6s - a - a* 6
'

In the case of Iceland spar, these last equations become

D = - r . 88,2286 ; F =- r . 0,7642 ; D - F =- F . 114,4546;

and in the case of rock crystal (quartz)

D = - r . 0.9628 ; F = - r . 0,8958 ; D - F = - F.0,0748.

To represent, in general, the course of any extraordinarily refracted ray, Huygens has giving the following
construction, (fig. 170.) Let H E D be the elliptic section of the spheroid of double refraction by the surface,

and R C the incident ray falling on C its centre, and B C K the orthographic projection of the ray R C on the
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811.
Form and

Light, surface. Let H M E be the portion of the spheroid within the crystal, whose axis passes through C, and may be
v ~\ -' anyhow inclined to the surface. Then will the surface of this spheroid be the boundary of the wave propagated
Huygens's from c as a centre, after the lapse of a given time. Draw C O in the plane R K at right angles to R C^ and

s

f

c

ex .
make OK (perpendicular to C K, or parallel to RC) equal *.o the space described by light in the medium

traordinary
exterior to the crystal in the same given time. This will determine the point K in the line B C K. Through K

refraction, draw K T perpendicular to B K, and about K T as an axis let a plane revolve passing through K T, till it touches
Fig. 170. the surface of the spheroid in I. Join C I, and C I is the extraordinary refracted ray.

807. The demonstration of this construction (granting the principle of spheroidal undulations) is evident, if we
Demonstra- consider the manner in which the general wave, a perpendicular to whose surface forms what we term a ray of

the" rind
Iight' ^at least *n sin 'y refractinjr media,) arises from the reunion of all the elementary waves propagated from

pie of^ne-
every Part of tne surface, (Art. 586.) In this construction, if we conceive a plane wave from an

infinitely distant

roidal no- luminary perpendicular to RC to move along RC, every point in the line CK will become in succession, and
dulations. every point in the line C D perpendicular to C K, or parallel to KT simultaneously, a centre of vibration. The

general wave, therefore, will be a surface touching all ellipsoids described about each point of the surface, having
their axes parallel, their generating ellipses similar, and their linear dimensions proportional to the distance of
their centre from the line KT. Of course it can be no other than the tangent plane I KT drawn as above.

808. This then will be the form and position of the general wave within the crystal. Now if we consider only that

very minute portion of it which emanates from C, it is evident that I is the corresponding point in it; and
therefore C I is necessarily the direction of the ray, because I is the point on which that portion of the general
wave transmitted through a very small aperture at C would fall.

809. Thus we see, that in the case of the extraordinary ray, we are no longer to regard the ray as a perpendicular
Oblique to the surface of the wave. It is propagated obliquely to that surface. So soon, however, as the wave emerges

'" into the ambient medium, the usual law of perpendicular propagation is restored,

ordinary

~

To show the identity of the law of extraordinary refraction resulting from this construction with that expressed
810. ty the general equations (13,) (14,) and (15,) we have only to translate it into analytical language. This has

been done by Malus, in his work above referred to ; and the reader may also consult Biot's Traite General de

Physique, for a more elementary exposition of the process, which is one of considerable complexity, for which
reason we shall not embarrass ourselves with it here.

Some very remarkable and important consequences follow from this mode of viewing the subject. It appears
that when a plane wave is incident on a doubly refracting surface, the transmitted extraordinary wave is also

position of plane, and advances with a uniform velocity in a direction oblique to itself. Consequently the velocity is also

cHnar"'

''" uniform in a direction perpendicular to itself. Moreover, its common section with the surface is always parallel to
ray- j Tt or to tne cornmon section of the incident wave with the same surface. Hence, it is evident, that it moves

in the same way as an ordinarily transmitted wave would do, and at any instant has the same position that such
a wave would have, provided the index of refraction in the latter case were properly assumed. The only
difference is, that the motions of the vibrating molecules, of which they respectively consist, are executed in

different planes. Now, when this wave emerges from the medium, it obeys the same laws as on its entry, only
reversed ; so that it still continues a plane wave, and its common section with the surface of emergence remains
unaltered.

Hence it follows, that if we cut a prism of any doubly refracting crystal with one axis, and transmit through
it a ray incident in a plane at right angles to the edge of the prism, the ordinary and extraordinary ray will both

emerge in that plane, and their separation will take place in a plane containing the incident and ordinarily-
refracted ray, and will therefore be, apparently, such as would arise from attributing two ordinary refractive

powers to the medium. It is only when the edge of the prism is oblique to the plane of incidence, that the

extraordinary ray can deviate from the plane containing the incident and ordinarily refracted rays.
We see, then, that in the theory of extraordinary refraction, it is necessary to consider, as distinct, two things,

Velocity of which, in that of ordinary, are one and the same, viz. the velocity of the luminous waves, and the velocity of the

twu>"

OK

and
Ta^s f '**' This distinction will require to be very carefully kept in view hereafter, when we come to treat

of rays of
of the law of refraction in crystals with two axes of double refraction. For this, however, we are not yet

light dis- prepared, as the knowledge of this law presupposes an acquaintance with a multitude of facts relative to the

tinguished. polarization of light, of which we have yet said nothing. It will suffice here to mention, that the whole doctrine

Theory of of double refraction has recently undergone a great revolution
; one, indeed, which may be said to have changed

the face of Physical Optics, in consequence of the researches of M. Fresnel. It had all along been taken for

granted, that in crystals possessed of double refraction, one of the pencils followed the ordinary law of propor-
tional sines. It had, moreover, been ascertained, hy experiments hereafter to be related, that the difference of
the squares of the velocities between the two pencils is in all cases proportional to the product of the sines of
the angles contained between the extraordinary ray (as it was termed) and the two axes, or directions in which
the refraction is single. It was hence concluded, that the velocity of the extraordinary pencil was in all cases

represented by J v* -f- k . sin . sin 0', v being that of the ordinary one, and k a constant depending on the

nature of (he crystal, and <p, 0' the angles in question. This granted, there would be no difficulty in deter-

mining the form of the surface of double curvature, which should be substituted for the Huygenian spheroid;
so as to render the same construction with that described in Art. 806, or the general formula: in Art. 792, appli-
cable to this case. In fact, if we call a the semi-angle between the two axes, and conceive three coordinates x,

y, z, of which JT bisects that angle, the plane of the x, y containing both axes, it is easy to see, by spherical

trigonometry, that we must have

Part IV.
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Light. a . cos a -f- y . sin a
, _ x . cos a y . sin Part IV.

" '

Hence, since r (^ I* -)- y
8

-j- z*) the radius of the surface of the wave, is always equal to

1 1

V ,

v c* + k* . sin . sin 0'

a simple substitution would give at once the equation of its surface as referred to the three coordinates x, y, z ;

namely, = (If
- o4

) (jr
8 + y* + z 2

)
8 + 2

(jr
8 + y'+ z8 ) (u

s -
/t
s *8

. cos a8 - it
2
y' . sin a)

+ &8
(x

8
. cos a -f y* . sin a2

)
2 -

1,

which it would be easy then to transform into functions of r, &, and 0, as required for the application of the

general analytical formulae by the usual substitutions

z = r . sin ; y =: r . sin . sin OT ; x = r . sin . cos w.

The researches of M. Fresnel, however, as before remarked, have destroyed the basis on which this theory
rested, by demonstrating the non-existence of an ordinarily refracted ray in the case of crystals with two axes.

The theory which he has substituted in its place, however, and which it is impossible to regard otherwise than

as one of the finest generalizations of modern science, we must reserve for a more advanced place in this essay.
We shall now proceed to treat

Of the Polarization of Light.

The phenomena which belong to this division of our subject are so singular and various, that to one who has 14.

only studied the subject of Physical Optics under the relations presented in the foregoing pages, it is like enter-

ing into a new world, so splendid as to render it one of the most delightful branches of experimental inquiry ;

and so fertile in the views it lays open of the constitution of natural bodies, and the minuter mechanism of the

universe, as to place it in the very first rank of the physico-mathematical sciences, which it maintains, by the

rigorous application of geometrical reasoning its nature admits and requires. The intricacy as well as variety
of its phenomena, and the unexampled rapidity with which discoveries have succeeded each other in it, have
hitherto prevented the possibility of embodying it satisfactorily in a systematic form ; but, after the rejection of

numberless imperfect generalizations, it seems at length to have acquired that degree of consistency as to enable

us not, indeed, to deduce every phenomenon, by distinct steps, from one general cause but to present them,
at least, in something like a regular succession ; to show a mutual dependence between their several classes,

which is a main step to a complete generalization ; and to dispense with the bewildering detail of an immense
multitude of individual facts, which, having served their purpose in the inductive process, must in future be

considered as having their interest merged in that of the laws from which they flow.

II. General Ideas of the Distinction between Polarized and Unpolarized Light.

In all the properties and affections of light which we have hitherto considered, we have regarded it as 315
presenting the same phenomena of reflexion and transmission, both as respects the direction and intensity of

the reflected or transmitted beam, however it may be presented to the reflecting or refracting surface, provided
the angle of incidence, and the plane in which it lies, be not varied. And this is true of light in the state in

which it is emitted immediately from the sun, or from other self-luminous sources. A ray of such light, incident

at a given angle on a given surface, may be conceived to revolve round an axis coincident with its own direction ;

or, which comes to the same thing, the reflecting or refracting surface may be actually made to revolve round the

ray as an axis, preserving the same relative situation to it in all other respects, and no change in the phenomena
will be perceived. For instance, if in a long cylindrical tube we fix a plate of glass, or any other medium at

any angle of inclination to the axis ; and then, directing the tube to the sun, turn the whole apparatus round on
its axis, the intensity of the reflected or refracted ray will suffer no variation, and its direction (if deviated) will

revolve uniformly round with the apparatus, so that if received on a screen connected invariably with the tube, it

will continue to fall on the very same point in all parts of its rotation. Or we may receive the light from a

piece of white hot iron at any angle on any medium, and its phenomena will be precisely the same, whether the

iron be at rest, or be made to revolve round an axis coincident with the direction of the ray.

But, if instead of employing a ray immediately emitted from a self-luminous source, we subject to the same 816
examination a ray that has undergone some reflexions, refractions, or been in any one of a great variety of Polarized

ways subjected to the action of material bodies, we find this perfect uniformity of result no longer to hold good.
rays have

It is no longer indifferent in what plane, with respect to the ray itself, the reflecting or refracting surface is
act

l
u 'red

presented to it. It seems to have acquired sides ; a right and left, a front and back ; and the intensity, though f^
la"

not the direction of the reflected or transmitted portion, depends materially on the position with respect to these external

space.
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Light, sides, in which the plane of incidence lies, though every thing else remains precisely the same. In this state it is

-V said to be polarized. The difference between a polarized and an ordinary ray of light can hardly be more readily
Illustration, conceived than by assimilating the latter to a cylindrical, and the former to a four-sided prismatic rod, such as a

lath or a ruler, or other long, flat, straight stick. It is evident that the cylinder, if inclined to any surface at a

given angle in a given plane, may be turned round its own axis without altering its relations to the plane, while
those of the prism will vary essentially according to the position of its sides. Let us suppose, for instance, (it
is but a simile, which we do not wish the reader to dwell on for a moment, or to imagine that any analogy is

hereafter intended to be established,) that we had occasion to thrust such a rod into a surface composed of
detached fibres, all lying in one direction, or of scales or laminae arranged parallel to one another, we should
find a much greater facility of penetration on presenting its broad side in the direction of the laminae or fibres,

than transverse to them. A thin sheet may be slipped between the bars of a grating, which would present an

insuperable obstacle to it if presented cross-wise.

817. But, to be more particular, and to give a more clear conception of the marked distinction which exists between

Property of a polarized and an unpolarized. ray. There are many crystallized minerals, which when cut into parallel plates
B tourma- are sufficiently transparent, and let pass abundance of light with perfect regularity, but which, nevertheless, at

other crys-
'ts emergence 's found to have acquired that peculiar modification here in question. One of the most remark-

tais. able of these is the tourmaline. This mineral crystallizes in long prisms, whose primitive form is the obtuse

rhomboid, having its axis parallel to the axis of the prism. The lateral faces of these prisms are frequently so

numerous as to give them an approach to a cylindrical or cylindroidal form. Now if we take one of these

crystals, and slit it (by the aid of a lapidary's wheel) into plates parallel to the axis of the prism of moderate
and uniform thickness, (about -fo of an inch,) which must be well-polished, luminous objects may be seen

through them, as through plates of coloured glass. Let one of these plates be interposed perpendicularly
between the eye and a candle, the latter will be seen with equal distinctness in every position of the axis of the

plate with respect to the horizon, (by the axis of the plate is meant any line in it parallel to the axes of its

molecules, or to the axis of the prism from which it was cut.) And if the plate be turned round on its own
plane, no change will be perceived in the image of the candle. Now, holding this first plate in a fixed position,

(with its axis vertical, for instance,) let a second be interposed between it and the eye, and turned round slowly in

its own plane, and a very remarkable phenomenon will be seen. The candle will appear and disappear alternately
at every quarter revolution of the plate, passing through all gradations of brightness, from a maximum down
to a total, or almost total, evanescence, and then increasing again by the same degrees as it diminished before.

If now we attend to the position of the second plate with respect to the first, we shall find that the maxima of
illumination take place when the axis of the second plate is parallel to that of the first, so that the two plates
have either the same positions with respect to each other that they had in the original crystal, or positions differing

by 180, while the minima, or evanescences of the image, take place exactly 90 from this parallelism, or when
the axes of the two plates are exactly crossed. In tourmalines of a good colour, the stoppage of the light in

this situation is total, and the combined plate (though composed of elements separately very transparent and of

the same colour) is perfectly opake. In others it is only partial ;
but however the specimens be chosen, a very

marked defalcation of light in the crossed position takes place. We shall at present suppose that the specimens

employed possess the property in question in its greatest perfection. Now it is evident that the light which has

passed through the first plate has acquired in so doing a property totally distinct from those of the original light
of the candle. The latter would have penetrated the second plate equally well in all its positions ; the former is

incapable altogether of penetrating it in some positions, while in others it passes through readily, and these

positions correspond to certain sides which the ray has acquired, and which are parallel and perpendicular

respectively to the axis of the first plate. Moreover, these sides once acquired, are retained by the ray in all its

future course, (provided it be not again otherwise modified by contact with other bodies,) for it matters not how

great the distance between the two plates, whether they be in contact or many inches, yards, or miles asunder,
not the least variation is perceived in the phenomenon in question. If the position of the first plate be shifted,

the sides of the transmitted ray shift with it, through an equal angle, and the second will no longer extinguish
it in the position it at first did, but must be brought into a position removed therefrom, by an angle equal to

that through which the first plate has been made to revolve.

818. A great many other crystallized bodies besides the tourmaline possess this curious property, and several in

Selection of
great perfection. The tourmaline, however, is one easily procured, and being exceedingly useful in optical

proper experiments, we would recommend the reader who has any desire to familiarize himself with the practical
es '

manipulations of this branch of optical science, to provide himself with a good pair of corresponding plates of

this mineral, cut and polished as above directed. The colour is a point of great .moment. Those of a blue

or green colour possess the property in question very imperfectly ; the yellow varieties, unless when verging to

greenish brown, are equally improper, the best colour is a hair-brown, or purplish brown, and they may be slit

and polished by any lapidary.

819. But it is not only by such means that the polarization of a pencil of light may be operated, nor is this the only
Various character which distinguishes polarized from ordinary light. We shall, therefore, describe in order, the principal
modes of means by which the polarization of light may be performed, and the assemblage of characters which are inva-

pntanzmg
j-jably found to coexist in a ray when polarized.
The chief modes by which the polarization of light may be eff, cted, are

1st. By reflexion at a proper angle from the surfaces of transparent media.

2d. By transmission through a regularly crystallized medium possessed of the property of double re-

fraction.

3d. By transmission through transparent, uncrystallized plates in sufficient number, and at proper angles.
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Light. 4th. By transmission through a variety of bodies, such as agate, mother-of-pearl, &c. which have an approach
Part IV -

"v*"' to a laminated structure, and an imperfect state of crystallization.
x "y-""'

The characters which are invariably found to coexist in a polarized ray, being the chief of those by which it 820.

may be most easily recognised as polarized, are Characters

1. Incapability of being transmitted by a plate of tourmaline, as above described, when incident perpendicu- "[ze

a

d
p
r

larly on it, in certain positions of the plate ; and ready transmission in others, at right angles to the former.
flight?'

2. Incapability of being reflected by polished transparent media at certain angles of incidence, and in certain

positions of the plane of incidence.

3. Incapabiltiy of undergoing division into two equal pencils by double refraction, in positions of the doubly

refracting bodies, in which a ray of ordinary light would be so divided.

Besides which, there might be enumerated a vast variety of other characters, which, however, it will be better

to regard as properties at once of polarized light, and of the various media which affect it. It cannot fail to be

remarked, that all these characters are of the negative kind, and consist in denying to polarized light properties

which ordinary light possesses, and that they are such as affect the intensity of the ray, not its direction. Thus, Affect the

the direction which a polarized ray will take under any circumstances of the action of media, is never different intensity

from what an unpolarized ray might take, and from what a portion of it at least actually does. For instance, *?
d not the

when an unpolarized ray is separated by double refraction into two equal pencils, a polarized ray will be divided
(h'|

into two unequal ones, one of which may even be altogether evanescent, but their directions are precisely the

same as those of the pencils into which the unpolarized ray is divided. Hence we may lay it down as a

general principle, that the direction taken by a polarized ray, or by the parts into which it may be divided by
any reflexions, refractions, or other modifying causes, may always be determined by the same rules as apply to

unpolarized light ;
but that the relative intensities of these portions differ from those of similar portions of

unpolarized light, according to certain laws which it is the business of the optical inquirer to ascertain.

III. Of the Polarization of Light by Reflerion.

When a ray of direct solar light is received on a plate of polished glass or other medium, a portion more or 821.

less considerable is always reflected. The intensity of this portion depends only on the nature of the medium L'gnt

and on the angle of incidence, being greater as the refractive power of the former is greater, and as the ray falls P' ;lrl d
t>)

more obliquely on the surface. But it is, moreover, found, that at a certain angle of incidence, (which is therefore

called the polarizing anyle,) the reflected ray possesses all the characters above enumerated, and is therefore

polarized.
This remarkable fact was discovered by Malus in 1808, when accidently viewing, through a doubly refracting 822.

prism, the light of the setting sun reflected from the glass windows of the Luxembourg Palace in Paris. On Discovery

turning round the prism, he was surprised to observe a remarkable difference in the intensity of the two images;
y

the -nost refracted alternately surpassing and falling short of the least in brightness, at each quadrant of the

revolution. This phenomenon connecting itself in his mind with similar phenomena produced by rays which had

undergone double refraction, and with which, from the researches he was then engaged in, he was familiar, led

him to investigate the circumstances of the case with all possible attention, and the result was the creation of a

new department of Physical Optics. So true it is, that a thousand indications pass daily before our eyes which

might lead to the most important conclusions. The seeds of great discoveries are everywhere present and

floating around us, but they fall in vain on the \mprepared mind, and germinate only where previous inquiry has

elaborated the soil for their reception, and awakened the attention to a perception of their value.

To make this new property acquired by the reflected ray evident by experiment, let any one lay down a large 823.

plate of glass on a black cloth, on a table before an open window, and placing himself conveniently so as to look Experiment

obliquely at it, let him view the reflected light of the sky, (or, which is better, of the clouds if not too dark,)

from the whole surface, which will thus appear pretty uniformly bright. Then let him close one eye, and apply
before the other a plate of tourmaline, cut as above directed, so as to have its axis in a vertical plane. He will

then observe the surface of the glass, instead of being as before equally illuminated, to have on it, as it were,
an obscure cloud, or a large blot, the middle of which is totally dark. If this be not seen at first, it will come
into view on elevating or depressing the eye. If the inclination of a line drawn from the centre of the dark

spot to the eye be measured, it will be found to make an angle of about 33 with the surface of the glass. If

now, keeping the eye fixed on the spot, the tourmaline plate (which it is convenient to have set in a small

circular frame for such experiments) be turned slowly round in its own plane, the spot will grow less and less

obscure, and when the axis of the tourmaline it parallel to the reflecting surface, (or horizontal,) will have dis-

appeared completely, so as to leave the surface equally illuminated, and, on continuing the rotation of the tourma-

line, will appear and vanish alternately.

It appears from this experiment, that the ray which has been reflected from the surface of the glass at an 824
inclination of 33, or an incidence of 57, has thereby been deprived of its power to penetrate a tourmaline

plate whose axis lies in the plane of incidence. It has therefore acquired the same character, or (so far as this

goes, at least) undergone the same modification as if, instead of being reflected on glass, it had been transmitted

through a tourmaline plate, whose axis was perpendicular to the plane of reflexion.

It has, moreover, acquired all the other enumerated characters of a polarized ray. And, first, it has become

VOL iv. 3 u
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Light. incapable of reflexion at the surface of glass, or other transparent media at certain definite angles, and in Par| Iv -

""""T
1
"""" certain positions of the plane of incidence. To show this experimentally, let a piece of polished glass have one V"'"Y~~~

. of its surfaces roughenetl, and blackened with melted pitch or black varnish, so as to destroy its internal

ThlT'oiT'"'
ren

"

ex '011 ' anc* let tn ' s be ti*ed on a stand, so as to be capable of varying at will the inclination o'f its polished

rized ray
surface to the horizon, and of turning it round a vertical axis in any azimuth. A very convenient stand of this

incapable of kind is figured in fig. 171, consisting of a cylindrical support A sliding in a vertical tube B, attached to a round
a second re- base F like a candlestick, and carrying an arm C, which can be set to any angle of inclination to the horizon by
flenon, &c. means of a stiff shoulder joint D. To this arm the blackened glass E is fixed, having its plane parallel to the

axis of the joint D. Let this apparatus be set on a table, so that the rays reflected from a pretty large plate of

glass G, at an angle of about 57 (of incidence) shall be received on the glass E, which ought to be inclined

with its polished surface looking downwards, and making an angle of about 73 with the horizon, see Art. 842.
Then let the observer apply his eye near the glass E, so as to see the glass G reflected in it, and slowly turn

the stand F round in a horizontal plane, keeping always the reflected image of G in view. He will then

perceive, that at a certain point of the rotation of the stand, the illumination of this image, which in other

situations is very bright, will undergo a rapid diminution, and at last wholly disappear, and (if the glass G be

large enough) the same appearance of a cloud or large dark spot will then be visible upon it. If the inclination

of the arm C D be correct, it will be easy to find such a position by turning the stand a little backwards and
forwards, as shall make the centre of this spot totally black ; if not, bring it to as great a degree of obscurity as

possible by the horizontal motion, then, holding fast the stand, vary a little one way or another the inclination of
the reflector E, and a very complete obscurity will readily be attained.

826. Another, and, for some experimental purposes, a better way of exhibiting the same phenomenon, is to take
Another two metallic or pasteboard tubes, open at both ends, and fitting into each other so as to turn stiffly. Into each
mo

^f
"* of these, at the end remote from their junction, fix with wax, or in a frame, a plate of glass, blackened at the

expe'rimen^
^ack as a'3ove described, so as to make an angle of 33 with the axis of the tube, as represented in fig. 172.

Fig. 172. Then having placed the tube containing one of the plates (A) so that the light from any luminary, reflected at

the plate shall traverse the axis of the tube, fix it there, and the reflected ray will be again reflected at B, and
on its emergence may be received on a screen or on the eye. Now make the tube containing the reflector B
revolve within the other, so that that reflector shall revolve round the ray A B as an axis, preserving the same
inclination. Then will the twice reflected ray revolve with equal angular motion, and describe a conical

surface. But in so doing, it will be observed to vary in intensity, and at two points of the revolution of the tube
B will disappear altogether. Now if we attend to the position of the reflectors at this moment, it will be found
that the planes of thefirst and second reflexion make a right angle.

827. By repeating these experiments with all sorts of reflecting media, and determining by exact measurement the

angles at which the original ray must be incident that polarization shall take place, and those at which a

polarized ray ceases to be reflected, the following laws have been ascertained to hold good, previous to

announcing which a definition will be necessary.
82S. Definition. The plane of polarization of a polarized ray is the plane in which it must have undergone

Plane of reflexion, to have acquired its character of polarization ; or that plane passing through the course of the ray

polarization perpendicular to which it cannot be reflected at the polarizing angle from a transparent medium ; or, again, that

plane in which, if the axis of a tourmaline plate exposed perpendicularly to the ray be situated, no portion of

the ray will be transmitted. Also, a polarized ray is said to be polarized in its plane of polarization, as just
defined.

829. The plane of polarization of any polarized ray is to be considered as one of the sides of the ray which thus,
Sides of a in all its future progress, carries with it certain relations to surrounding fixed space, which must be regarded,
polarized while they continue unchanged, as inherent in the ray itself, and as having no further any relation to the parti-

cular mode in which they originated.

830. The laws of polarization by reflexion are these :

Laws of po- Law 1. All reflecting surfaces are capable of polarizing light if incident at proper angles; only, metallic

larizationby bodies, or bodies of very high refractive powers, appear to do so but imperfectly, the reflected ray not entirely

e^xion. disappearing in circumstances when a perfectly polarized ray would be completely extinguished. Of this more
hereafter.

831. Law 2. Different media differ in the angles of incidence at which they polarize light ;
and it is found, that.

Law 2. these angles may always be determined from the following simple and elegant relation, discovered by Dr. Brewster
Brewster's after a laborious examination of an infinite variety of substances.

The tangent of the polarizing angle for any medium is the index of refraction belonging to that medium.

Thus, the indices of refraction of water, crown-glass, and diamond, being respectively 1.336, 1.535, and 2.487,
their respective polarizing angles will be 53 11', 56 55', and 68 6'. For diamond, however, or bodies of very

high refractive powers, we must understand by the polarizing angle, that angle of incidence at which the reflected

ray approximates most nearly to the character of a ray completely polarized.

832 It follows from this law, that one and the same medium does not polarize all the coloured rays at the same
All the angle, and that therefore the disappearance of the reflected pencil can never be total, except where the incident

colours not ray is homogeneous. This will account in some degree for the want of complete polarization of a white ray,
[lolanzod at reflected at any angle from highly refractive media, which are generally also highly dispersive. Of the reality

dence"

'

^ tne 'act ' ll *s easv * sat 'sfy oneself by a very simple experiment, which we have often made. Receive a sun-

beam on a plane glass, with the back roughened and blackened, at an incidence (6) nearly equal to the

polarizing angle (a,) and let the reflected ray pass into a darkened room, and fall on another similar glass,
which may fce held in the hand, so as to reflect the ray in a plane at right angles to that of the first reflection, and
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Light,
also at an angle (#") nearly equal to the polarizing angle (a

1

) of the second plate. It will be easy to find a Part IV.

~y position where the reflected ray (which must be received on a white screen) very nearly vanishes ; but no adjust-
v v-""/

ment of the angles of incidence & and & will produce a total disappearance. When the disappearance is most P>ved by

nearly total, the reflected light is coloured of a neutral purple ; the yellow, or most luminous rays, being now
e*Pennient-

totally extinguished. In this position, if 6 remain constant, and & the incidence on the second plate be varied
a little on one side or the other of the polarizing angle a', the reflected ray assumes on the one hand a pretty
intense blue-green, and on the other a ruddy plum colour or amethyst red. The several changes of tint,
arisin from variatios of

C 0' < a' ; Reflected ray,
t. < a ; < Intermediate,

/ /)' ^Nfc. fi?
\_ *f^ ** )

f tf _^"* '

I P ^_ (I .^N * 3

= a; 1 ff = a?i
[ \j ^>- fr !
v_ **^ y

( ff<a>;
a. ; < Intermediate,

Ltf>a?i

arising from variations of incidence on both piates, were observed to be as follows :

Strong green.
1st. 0<a;-{ Intermediate, White.

Pale red or amethyst.

Strong blue green.
2d. 6 =. a ; -|

0' = a' ; Neutral purple.

Strong plum colour.

Light greenish blue.

3d. > a ; -{ Intermediate, White.

Strong red, or plum colour.

The rationale of these changes of colour will be more evident when we have announced the following law,
which expresses one of the most general and distinguishing characters of polarized light.
Law 3. When a polarized ray (no matter how it acquired its polarization) is incident on a reflecting surface 833.

of a transparent, or other medium capable of completely polarizing light, in a plane perpendicular to that of the Law 3.

ray's polarization, and at an angle of incidence equal to the polarizing angle of the medium, no portion of the _Non-reflex-

ray will be reflected. If the medium be of such a nature as to be capable only of incompletely polarizing light,
lblllty

a portion will be reflected, but much less intense than if the incident ray were unpolarized. BehTiif
It is evident that this property may be employed to distinguish polarized from common light, as well as that of certain, and

extinction by a plate of tourmaline. It is, however, much less convenient though better adapted for delicate what cases.

inquiries.

The polarizing angle for white light is, in fact, the angle for the most luminous or mean yellow rays ; and 83-i.
when the two reflexions, in planes at right angles to each other, are made at this angle, the yellow rays only Explanation

totally escape reflexion, but a very small portion both of the red and blue end of the spectrum are reflected, and of the

form a feeble purple beam, such as above described. The polarizing angle for red rays being less than for violet, ^"'ast
'"

it is evident that when either 9 or 0' is equal to the polarizing angle for red, it will be less than that of yellow, experiment.
and still less than that of blue and violet rays ; thus, the red disappears most completely from the reflected beam
in those cases when or & are less than a or a', leaving an excess of the green and blue rays, and vice versa in

the converse cases. Thus, too, if be < a, and at the same time ff < a, the colour produced will be a more
intense green than if the incidences deviated opposite ways from the polarizing angles; and it is evident, that
a compensation may arise from the effect of such opposite deviations giving an intermediate white ray, exactly
as we see to have happened.
Some very remarkable consequences follow from the law announced by Dr. Brewster for finding the polarizing 835.

angle, which may be presented in the form of distinct propositions. Thus,

Prop. 1. When a ray is incident on a transparent surface, so that the reflected portion shall be completely 836.
polarized, the reflected and refracted portions make a right angle. For being the angle of incidence, we have Consequen-

tan p = it and p, being the angle of refraction, sin p
'- = = cos 0. Therefore p = 90 - 0, but

!
?
w l P la'

p tan ruation.

being the angle of incidence is also that of reflexion, and p -f- is therefore equal to the supplement of the

angle between the reflected and refracted rays, which is therefore a right angle. Q. E. D.

Prop. 2. When a beam of common light is incident at the polarizing angle on a parallel plate of a transparent 837.
medium, not only the portion reflected at the first surface, but also that reflected internally at the second, and Polarization

the compound reflected ray, consisting of both united, are polarized.
by in

|
ernal

Since sin p = cos 0, and since p is also the angle of incidence on the second surface, we shall have tan p = reflexi011 -

cotan = = =r index of refraction out of the medium. Hence, p is the angle of polarization for rays

'nternally incident, and therefore that portion of the beam which, having penetrated the first surface, falls on the

second, being incident at its polarizing angle, the portion reflected here will also be polarized, and being again
incident on the first surface, in the plane of its polarization, that part of it which is transmitted will (as we shall

see hereafter) suffer no change in its plane of polarization, so that both it and the first reflected ray will come
off polarized in the same plane. Q. E. D.

Carol. 1. Hence, to obtain a stronger polarized ray, we may dispense with roughening or .blackening the 838.

posterior surface, provided we are sure that the surfaces are truly parallel.
If a series of parallel plates be laid one on the other so as to form a pile, the portions reflected from the 639.

several surfaces all come off polarized in the same plane, and by this means a very intense polarized ray may be v^-
obtained. It can never, however, for a reason we shall presently state, contain more than half the incident n inl'^fw

light, whatever be the number of plates employed. polarized

3 U 2 beam.
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Light. For a^reat variety of optical experiments, a pile consisting of ten or a dozen panes of common window-glass
V^'' set in a frame, is of great use and very convenient. Such a pile laid down before an open window affords a
840. dispersed beam, each ray of which is polarized at the proper angle, and of great intensity and very proper for

the exhibition of many of the phenomena hereafter to be described.

Prop. 3. If a ray be completely polarized by reflexion at the surface of one medium, and the reflected ray

completely transmitted or absorbed at that of a second, Required the inclination of the two surfaces to each

other ?

Let a and ' be the polarizing angles of the respective media; then, since the planes of reflexion are at right

angles to each other, and a, a' are the angles of incidence, if we call I the inclination required, we shall have by
Art. 104, cos I = cos a . cos a'. Now, if p, p! be the refractive indices of the media, we have tan o = p,

tan a' =
', and therefore

tan I = v^i + p* _f- pi n'*.

842. Carol. I. If the media be both alike,

tan I =
p, . */2 __

;
or cos I = .

Thus, in the case of crown-glass, /*
= 1.535 and I = 72 40', as in Art. 825.

843. By the help of this law, connecting the angle of polarization with the refractive index, we may easily deduce
Method of the one from the other. This affords a valuable and ready resource in cases to which other methods can hardly
determining jje appijg^ for ascertaining the refractive powers of media, which are either opake, or in such small or irregularly

indices' by
snaPed masses, that they cannot be used as prisms. For ascertaining the angle of polarization, only one

polarization, polished surface, however small, is necessary, and we have only to receive a ray reflected from it on a blackened

glass, or other similar medium of known refractive index, at the polarizing angle, and in a plane perpendicular
to that at which it is reflected by the surface under examination. For this purpose it is convenient to have the

glass plate (or, which is better, a polished plate of obsidian or dark coloured quartz) set in a tube diagonally,
so as to reflect laterally the ray which traverses the axis of the tube. At the other end, the substance to be
examined must be fixed on a revolving axis perpendicular to the axis of the tube, and having its plane adjusted
so as to be parallel to the former, which must then be turned round till the dispersed light of the clouds,
reflected by it, is entirely extinguished by the obsidian plate, and the inclination of the reflecting surface to the

axis of the tube in this situation may be measured by a divided circle, connecting with the axis of rotation. By
this means we may ascertain the polarizing angles, and therefore the refractive indices of the smallest crystals,
or of polished stones, gems, &c., set in such a manner as not to admit of other modes of examination. To
insure a fixed zero point on the graduated circle, the following mode (among many others) may be resorted to.

Let a polished metallic reflector or small piece of looking-glass be permanently attached to the revolving axis, so

that its plane shall be perpendicular to the axis of the tube, when the index of the divided circle marks 0'. This

adjustment being made once for all, let the surface to be examined be attached by wax or otherwise, not to the

axis itself, but to a ring turning stiffly on it. Then, bringing the image of the sun, or any very distant object,

sufficiently bright or well defined, seen in the reflector, to coincide with any other equally well defined, and
also at a great distance, alter the attachment of the substance by pressure on the wax, and by turning round the

ring, till a similar coincidence is obtained when the eye is transferred to it. Then we are assured that the two
surfaces are parallel, and that therefore the reading off on the circle measures the true angle between the axis

of the tube and the perpendicular, or the angle of reflexion, or at least differs from it only by a constant

quantity, which may be ascertained at leisure, and applied as index error. (This mode of bringing a movable
surface to a fixed position with respect to the divisions of an instrument, is applicable to a great variety of

cases, and is at once convenient and delicate.)
844. Dr. Brewster has remarked, that glass surfaces frequently exhibit remarkable, and apparently unaccountable,

Irregular deviations from the general law ; but on minute examination he found that this substance is liable to a superficial
polarization tarnish, or formation of infinitely thin films of a different refractive power from the mass of glass beneath. As

lurfaras*
tne P'ar'zed raY never penetrates the surface, its angle of polarization is determined solely by this film, which

is too thin to admit of any direct measure of its refractive index. When this tarnish has gone to a great extent,

scales of glass detach themselves, as is seen in very old windows, (especially those of stables,) and even in green

glass bottles which have long lain in damp situations, and which acquire a coat actually capable of being mistaken

for gilding.
845. In metallic or adamantine bodies, which polarize light but imperfectly, that angle at which the reflected beam

Action of approaches nearer in its character to those described as of polarized light, is to be taken for the angle of pola-

rization, and from it the refractive power may still be found. The results deduced by this means for metallic

bodies, agree with those obtained from the quantity of light reflected, in assigning very high refractive powers to

them. Thus, for steel the polarizing angle is found to be above 71, and for mercury 76, and their indices of

refraction are, therefore, respectively 2.85 and 4.16. This latter result, indeed, differs greatly from that of Art

594, but the observations are so uncertain, and the angle of greatest polarization so indefinitely marked, (not
to mention the errors to which a determination of the reflective power itself is liable to,) that we cannot

expect coincidence in such determinations. Perhaps 5.0 may be taken as a probable index.

846. The law of polarization announced by Dr. Brewster is general, and applies as well to the polarization of light

at the separating surfaces of two media in contact, as at the external or internal surface of one and the same
medium. He has attempted to deduce from it several theoretical conclusions, as to the extent and mode of

action of the reflecting and refracting forces, for which we must refer the reader to his Paper on the subject

Philosophical Transactions, 1916
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If a ray be reflected at an angle greater or less than the polarizing angle, it is partially polarized, that is to Part IV.

say, when received at the polarizing angle on another reflecting surface, which is made to revolve round the * ~v ~-'

reflected ray without altering its inclination to it, the twice reflected ray never vanishes entirely, but undergoes 847.

alternations of brightness, and passes through states of maxima and minima which are more distinctly marked Partial pola-

according as the angle of the first reflexion approaches more nearly to that of complete polarization. The same rlzatln -

is observed when a ray so partially polarized is received on a tourmaline plate, revolving (as above described)
in its own plane. It never undergoes complete extinction, but the transmitted portion passes through alternate

maxima and minima of intensity, and the approach to complete extinction is the nearer the nearer the angle of

reflexion has been to the polarizing angle. We may conceive a partially polarized ray to consist of two unequally How
intense portions ; one completely polarized, the other not at all. It is evident that the former, periodically passing

conceived,

from evanescence to its total brightness, during the rotation of the tourmaline orreflector, while the latter remains
constant in nil positions, will give rise to the phenomenon in question. And all the other characters of a par-
tially polarized ray agreeing with this explanation, we may receive it as a principle, that when a surface does not

completely polarize a ray, its action is such as to leave a certain portion completely unchanged, and to impress
on the remaining portion the character of complete polarization. Thus we must conceive polarization as a

property or character not susceptible of degree, not capable of existing sometimes in a more, sometimes in a less,

intense state. A single elementary ray is either wholly polarized or not at all. A beam composed of many
coincident rays may be partially polarized, inasmuch as some of its component rays only may be polarized, and
the rest not so. This distinction once understood, however, we shall continue to speak of a ray as wholly or

partially polarized, in conformity with common language. We shall presently, however, obtain clearer notions

on the subject of unpolarized light, and see reason for discarding the term altogether.

If a ray be partially polarized by reflexion, Dr. Brewster has stated that a second reflexion in the same plane 848.

renders this polarization more complete, or diminishes the ratio of the unpolarized to the polarized light in the Polarization

reflected beam ; and that by repeating the reflexion, the ray may be completely polarized, although none of the ty several

angles of reflexion be the polarizing angle. Thus he found, that one reflexion from glass at 56 45' of incidence,
re

two at incidences of 62 30' or at 50 20', three at 65 33' or at 46 30', four at 67 33' or 43 51', and so on,
alike sufficed to operate the complete polarization of the ray finally reflected, provided all the reflexions were

made in one plane. At angles above 82, or below 18, more than 100 reflexions were required to produce

complete polarization.

IV. Of the Laws of Reflexion of Polarized Light.

When polarized light is reflected at any surface, transparent or otherwise, the direction of the reflected portion 849.

is precisely the same as in the case of natural light, the angle of reflexion being equal to that of incidence ; the

laws we are now to consider are those of the intensity of the reflected light, and of the nature of its polarization

after reflexion.

One essential character of a polarized ray is, its insusceptibility of reflexion in a plane at right angles to that 850.

of its polarization when incident at a particular angle, viz. the polarizing angle of the reflecting surface. In Intensity of

this case, the intensity I of the reflected ray is 0. In all other cases it has a certain value, which we are now to
""^j^j

inquire. Let us suppose, then, to begin with the simplest case, that the polarized ray fails on the reflecting rayinc;jent

surface at a constant angle of incidence, equal to its polarizing angle, and that the reflecting surface is turned at the pola-

round the incident ray as an axis, so that the plane of incidence shall make an angle (= a) of any variable mag- rizing angle

nitude with the plane of polarization. It is then observed, as we have seen, that when a = 90 or 270, we have >n any PUne-

1=0, and when a = 0, or 180, I is a maximum. Hence, it is clear that I is a periodic function of a, and the

simplest form which can be assigned to it (since negative values are inadmissible) is I = A . (cos a)
8
. This

value, which was adopted by Malus on no other grounds than those we have stated, is however found to represent

the variation of intensity throughout the quadrant, with as much precision as the nature of photometrical experi-

ments admits, and we must therefore receive it as an empirical law at present, for which any good theory of

polarization ought to be capable of assigning a reason a priori.

A remarkable consequence follows from this law. It is that, so far as the intensity of the reflected ray is

concerned, an ordinary or unpolarized ray may be regarded as composed of two polarized rays, of equal
ri^j^

a "

intensity, having their planes of polarization at right angles to each other. For such a compound ray being equ jvaient

incident on a reflecting surface, as above supposed, if a be the inclination of the plane of polarization of one to two pola-

portion to that of incidence, 90 a will be that of the other, and, therefore, since rized ones.

A . (cos a)'+ A . (cos . 90 - <t)
8 = A, (a)

the reflected ray will be independent of a, and therefore no variation of intensity will be perceived on turning
the reflecting surface round the incident ray as an axis, which is the distinguishing character of unpolarized light.

Any such pair of rays as here described are said to be oppositely polarized.
When the polarized ray is not incident at the polarizing angle, but at any angle of incidence, the law of 852.

intensity of the reflected ray is more complicated. M. Fresnel has stated the following as the general expression Fresnel's

for it. Let the intensity of the incident ray be represented by unity, and calling, as before, a the inclination ofthe
j?*"^*

1 Iaw

plane of incidence to that of primitive polarization, and i the angle of incidence, i' the corresponding angle of
intens ;ty Of

refraction. Then will the intensity of the reflected ray be represented by a reflected

ray
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Light. sin

f
(i-z*) , tan'(i-i

r

) Part IV.
* v '' *

. i / i -/x
COS' a + -

.
. Sill' a. (6) ^-v-^

sin'
(i+ i') tan8 (z + l )

This formula is in some degree empirical, resulting partly from theoretical views, of which more hereafter, and

being not yet verified, or indeed compared with experiment, except in particular cases, by M. Arago, whose

results, so far as they go, are consonant with it.

853. it will be well to examine some of these. And first, then, when a = 90, and i = the polarizing angle of the
Particular reflectjng

. surfacei we have by (835 and 836) i + i' = 90, and therefore tan (j + i') = CD, so that 1 = 0. In

examined.
'nese circumstances, then, the reflected ray is completely extinguished, which agrees with fact.

854. 2dly. When the incidence is perpendicular, we have, in this case, both i and i
1

vanishing, and each term of I

lar'uic'i-

1CU"
tekes tne f rm ~TT- Now at the limit we have (/t being the refractive index) i = ft . i', and very small arcs being

equal to their sines or tangents, we have sin (i i')
~ i' (/ 1) ; sin (i+ ') =*"(/*+ 1), and so for the

tangents. Consequently,

which agrees with the expression deduced by Dr. Young and M. Poisson, (Art. 592,) for the intensity of the

reflected ray in the case of unpolarized light. And if we regard the unpolarized ray as composed of two rays,
each of the same intensity, (= J) polarized in opposite planes, the reason of the coincidence will be evident.

855. 3d. When a 0, or the plane of polarization coincides with the plane of incidence, we have, in general,

sin'O'-Q~
sin' (i + I')'

856. 4th. When a = 90, or when the plane of polarization is at right angles to the plane of incidence,

I = tan
*

<*
"

'">

oo
tan8

(i+ i
1

)

857. 5th. When a = 45,

Intensity of J sin2 (i i') tan2
(t
-

Q~fr= * +
This last is the same result with that which would result from the supposition of two equal rays polarized,
the one in, the other perpendicularly to, the plane of incidence, and each of half the intensity with the incident

beam. It is therefore the general expression for the intensity of a ray of natural or unpolarized light reflected

at an incidence = i from the surface. The expressions in Art. 592 apply only to perpendicular incidences. We
are thus furnished very unexpectedly with a solution of one of the most difficult and delicate problems of experi-
mental Optics. Bouguer is the only one who has made any extensive series of photometrical experiments
on the intensity of light reflected from polished surfaces at various angles, but his results are declared by
M. Arago to be very erroneous, which is not surprising, as the polarization of light was unknown to him, and its

lajws might affect the circumstances of his experiments in a variety of ways.

858. One only need be mentioned, as every optical experimentalist ought to be aware of, and on his guard against
Polarization it, it is that the light of clear, blue sky, is always partially polarized in a plane passing through the sun, and the
of the light part from which the light is received. The polarization is most complete in a small circle, having the sun for
of the sky. jts pO j e> an(j jtg ra<j;us about 78, (according to an experiment not very carefully made.) Now the semi-

supplement of this (which is the polarizing angle) is 51, which coincides nearly with the polarizing angle of

water, (52 45'.) Thus strongly corroborating Newton's theory of the blue colour of the sky, which he conceives

to be the blue of the first order, reflected from particles of water suspended in the air. Dr. Brewster is the first,

we believe, who noticed this curious fact. But to return to our subject.

859. When the incident ray is only partially polarized, we may regard it as consisting of two portions : the one,

Case of a which we shall represent by a, completely polarized in a plane, making the angle n with that of incidence
; the

ray partially /I a\
polarized,

other = 1 a in its natural state, or, if we please, composed of two portions I -
I, one polarized in the

plane of incidence, and one at right angles to it. The intensity of the reflected portion of the former is equal to

sin* (i i'1 tan2
(i i')

cos* a + a . n-5 . sin' o,* * .. __ i / _ i ,/\
** > 9 s 'l\

* ~
I **

,

sin' (i + i ) tan

and that of the latter will be represented by
1 a r si

2 \ sTn
a

(i + i')

'

tan8 (i + i')

therefore, their sum, or the total reflected light, will be

i - i') tan* (i
-

i')

sin* (i i
1

) 1 + a . cos 2 a tan' (i i') 1 a . cos 2

~:~s /'v i ;>\
' "T"

.tan8

The above formulae, it must be observed, apply only to the case of reflexion from the surfaces of uncrystallized
media. The consideration of those where crystallized surfaces are concerned, cannot be introduced in this part
of the subject.
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jght. When the plane of reflexion coincides with that of the primitive polarization of the ray, the polarization is not part

v -^
changed by reflexion. Hence, at a perpendicular incidence it is unchanged. But in other relative situations \^-
of the two planes above-mentioned, the case is different, and it becomes necessary to inquire what change 860.

reflexion produces in the state and plane of polarization of the ray. Now it is found, as we have already seen, Position of

that when the reflection takes place in the plane of primitive polarization, if the incident ray be only partially '^J?
polarized, the reflected one will be more so, in that plane. But if the incident ray be completely polarized, it

Jjf (he re|"

retains this character after reflexion, (except in one remarkable case,) and only the plane of polarization is flected rav.

changed. Now, according to M. Fresnel, the new plane of polarization will make an angle with the plane of

reflexion, represented by /3, such that

cos (i + i')
tan /3 = - ~^r . tan o.

cos (i
- i

1

)

According to this formula, the plane of polarization coincides with the plane of incidence when i-}- i' = 90. Now
this is precisely the case when the ray falls at the polarizing angle on the reflecting surface. If a = 90, or the ray

before incidence be polarized in a plane perpendicular to the plane of incidence, it will continue to be so after

reflexion, since in that case we have tan /3
= CD, or f)

= 90.
The formula has been compared by M. Arago with experiment only in one intermediate case, viz. when 861.

a 45, and the coincidence of the results with experiment at a great variety of incidences, and over a range of

values of /3 from -f 38 to - 44, both in the case of glass and water, is as satisfactory as can be desired. The

particulars of this interesting comparison will be found in Annales de Chimie, xvii. p. 314. It may be

observed also, that these results of M. Fresnel support one another, the latter being concluded from the former

by considerations purely theoretical, so that every verification of the one is also a verification of the other.

When the polarized ray is reflected from a crystallized surface, the intensity of the reflected portion is no 862.

longer the same, but depends on the laws of double refraction, in a manner of which more hereafter. Whether, Reflexion

or how far, the laws above stated hold good for metallic surfaces, remains open to inquiry.

faces.

V. Of the Polarization of Light by ordinary Refraction, and of the Laws of the Refraction of Polarized Light.

When a ray of natural or unpolarized light is transmitted through a plate of glass at a perpendicular incidence, 863.

it exhibits at its emergence no signs of polarization ; but if the plate be inclined to the incident ray, the trans- Polarization

milled ray is found to be partially polarized in a plane at right angles to the plane of refraction, and therefore v refrac -

at right angles to the plane of polarization of the portion of the reflected ray which has undergone that modifi-

cation. The connection between the polarized portions of the reflected and refracted pencils is, nowever, still

more intimate, since M. Arago has shown by a very elegant and ingenious experiment that these portions are Arago'slaw.

always of equal intensity. This law may be stated thus : When an unpolarized ray is partly reflected at, and

partly transmitted through, a transparent surface, the reflected and transmitted pencils contain equal quantities of
polarized light, and their planes ofpolarization are at right angles to each other.

Hence it appears, that the transmitted ray contains a maximum of polarized light, when the light is incident 864.
at the polarizing angle of the medium, and this maximum is equal to the quantity of light the surface is capable
of completely polarizing by reflexion. Now in all media known, this is much less than half the incident light,

consequently the transmitted portion can never be wholly polarized by a single transmission.

When a ray is totally reflected at the inner surface of a medium, there is no transmitted portion, an-1 it is a 865
remarkable coincidence with the above law, that in this case the reflected beam contains no polarized portion
whatever.

With regard to the portion of light which has passed through the surface, and has not acquired polarization, 866.
M. Arago maintains that it remains in the state of natural or totally unpolarized light. Dr. Brewster, on the Polarization

other hand, concludes from his experiments, that, although not polarized, it has undergone a physical change, *>y several

rendering it more largely susceptible of polarization by subsequent transmission at the same angle. The qnes- JjJ^U,"
tion, in a theoretical point of view, is a material one, and apparently very easily decided.' The facility, however, 5jons
is only apparent, and as we have no title to decide it on the grounds of our own experience, we shall content
ourselves with reasoning on the conclusions to which the two doctrines lead. Let 1 be the light incident on the

first surface of a glass plate at the polarizing angle, and, after transmission through both surfaces, let a -f b be the

intensity of the transmitted beam, (and of course 1 a 6 that of the reflected,) and let a be the polarized

portion and 6 the unpolarized. When a -f- b falls on another plate at the same angle, the portion a being pola-
rized in a plane perpendicular to that of incidence, and incident at the polarizing angle, will be totally trans-

mitted, and itsplane of polarization (as may be proved by direct experiment) in this case iindergoet no change.
Hence the portion a will be transmitted (supposing no absorption) undiminished through any number of sub-

sequent plates. With regard to the portion o, if this be to all intents and purposes similar to natural light, it

will be divided by reflexion at the second plate into two
portions,

the first of which = 6 . (1 a b) being
reflected wholly polarized, and the other = 6 (a -f- 6) will be transmitted. Of this, the portion b a will be pola-
rized in a plane at right angles to that of refraction, and will therefore be afterwards transmitted undiminished

through all the subsequent plates. But the portion 6s will be unpolarized light, and will be again divided by
the third plate, and so on. Thus, there will be ultimately transmitted a pencil, consisting of a polarized portion
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v ^ '^ _^ , =: a + 6 <z -j- is a -f- .... 6*"' a sr a .
-

-, and an unpolarized portion = 6", so that no finite number of v _r ^ -i_

plates could ever completely polarize the whole transmitted beam.

867. On the other hand, if the unpolarized portion b of the transmitted beam a + b be more disposed than before,

Dr.^Brew-
as Dr. Brewster conceives, to subsequent polarization, the progression above stated, instead of converging

sier's theory according to the law of a geometric progression, will converge more rapidly, or may even suddenly terminate

polarization'
under certain physical conditions. Now, Dr. Brewster states it as a general law, deduced from his own experi-

Brewsier's ments, that If a peneil of light be incident on a number of uncrystallized plates, inclined at the same or different

general law. angles, but all their surfaces being perpendicular to the plane of the first incidence, the total polarization of the

transmitted pencil will commence when the mm of the tangents of the angles of incidence on each plate is equal
to a certain " constant quantity due to the refractive power of the plates, and the intensity of the incident pencil

"

This last phrase, which makes the number and position of the plates necessary to operate total polarization,

depend on the intensity of the incident light, shows evidently that the total polarization here understood, is not

mathematically, but only approximative^ total. In fact, he states, this constant quantity for crown glass plates,
and for theflame of a wax candle at 10 feet distance, to be equal to the number 41.84. In other words, the
remainder of unpolarized light for this intensity of illumination, becomes insensible. Considered in this light,
we regard Dr. Brewster's experiments as by no means incompatible with the law of decrease indicated by the

geometric progression above-mentioned and the contrary sense which has been put upon this expression by
M. Arago, or his commentator, (Encyciop. Brit. Supp., vol. vi. part 2, Polarization of Light,) appears to us
strained beyond what strict criticism authorizes.

Conceiving, then, as we do, that no decided incompatibility in matter of fact exists between the statements of
these distinguished philosophers, we cannot but regard as most simple, that doctrine which recognises no change
of physical character in the unpolarized portion of either the transmitted or reflected beam. (See Art. 848.)

868. In what has been above said of the polarization of the transmitted ray, we have not taken into consideration
Internal that part of the light reflected at each surface which is reflected back again, and traversing (partially at least) all
reflexions the plates, mixes with the transmitted beam, and, being in an opposite plane, destroys a part of its polarization.

If a pile of parallel glass plates be exposed to a polarized ray, so that the angle of incidence be equal to the

869 polarizing angle, and then turned round the ray as an axis preserving the same inclination, the following pheno-
Phenomena me"a take Place :

of piles of 1. When the plane of incidence is at right angles to that of the raj's polarization, the whole of the incident

platej ex- light is transmitted, (except what is destroyed by absorption within the substance of the glass, or lost by irregular

^arii'li
reflexion from the inequalities in the surface arising from defective polish,) and this holds good whatever be the

lenT'"
number of the plates. The polarization of the transmitted ray is unaltered.

"-Z. As the pile revolves round the incident ray as an axis, a portion of the light is reflected, and this increases

till the plane of incidence is coincident, with the plane of primitive polarization, when the reflected light is a
maximum. Now, M. Arago assures us, that the quantity of polarized light reflected from each plate is greater in

proportion to the intensity of the incident beam than if natural light had been employed ; and the same pro-
portion holding good at each plate, the transmitted ray, however intense it may have been at first, will be
weakened in geometrical progression with the number of plates, and at length will become insensible ; so that

in this situation the pile will present the phenomenon of an opaque body. In this reasoning, the light reflected

backwards and forwards between the plates is neglected ;
but as it is all polarized in the same plane, and as in

this situation the reflexions, however frequent, produce no change in its plane of polarization, all the reflected

rays are in the same predicament ; and, supposing the number of plates very great, the total extinction of the

transmitted light will ultimately (though less rapidly) take place.

870. Hence, a pile of a great number of glass plates inclined at an angle equal to the complement of the polarizing
Phenomena angle (35 x) to a polarized ray ought to present the same phenomenon with a plate of tourmaline cut parallel
of piles of to the axis of its primitive rhomboid, alternately transmitting and extinguishing the whole of the light in the
plates, and

success jve quadrants of its rotation, and being thus either opaque or transparent, according to its position. The

line pUtes analogy, however, cannot fairly be pushed farther, s;> as to deduce from this principle an explanation of the phe-

conipared. nomena of the tourmaline ; for, although it be true that a plate of tourmaline so cut, is composed of lamime
inclined to its surface, these laminae are in optical contact; and, moreover, their position with respect to the

surface is not the same in plates cut in all directions around the axis, because although an infinite number of

plates may be cut containing the axis of a rhomboid in their planes, only three can have the same relation to its

several faces, parallel to which the component laminK must be supposed to lie. Moreover, the phenomena are

not produced, unless the tourmaline be coloured. The analogy between piles of glass plates and lamina; of agate
(of which more presently) is also, we are inclined to think, more apparent than real.

871. A pile of plates such as described above presents, moreover, the same difference of phenomena when exposed
Further to polarized and unpolarized light, that a plate of tourmaline does ;

since in the latter case, supposing the pile
analogy.

sufficiently numerous, one half the incident light is transmitted, completely polarized in a plane perpendicular to

that of incidence.

872. The laws which regulate the polarization of a pencil transmitted by a transparent surface, inclined at any
proposed angle to the incident ray, and in any plane to that of its primitive polarization (supposing it polarized)
remain open to experimental investigation.
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l.iaht. Part IV.

VI. Of the Polarization of Light by Double Refraction.

When a ray of natural light is divided into two by double refraction, in such a manner that the two pencils at 873.
their final emergence remain distinct and susceptible of separate examination, they are both found completely Light poU-

polarized, in different planes, exactly, or nearly, at right angles to each other. To show this, take a pretty
"ze

jj.

b
'
r

thick rhomboid of Iceland spar, and, covering one side of it with a blackened card, or other opaque refjaction
thin substance, having a small pinhole through it, hold it against the direct light of a window or a candle, with oppositely
the covered surface from the eye. Two images of the pinhole will then be seen : one, undeviated from the line in the two

joining the- eye and the real hole, by the ordinarily refracted rays ; and the other, deviating from that line, in a Pf
ncils

plane parallel to the principal section of the surface of incidence, by the extraordinary. These images will

appear, to the naked eye, of equal brightness ; but, if we interpose a plate of tourmaline, (as already described,) roo f

S '"

and turn the latter about in its own plane, they will be rendered unequal, and will appear and vanish alternately thereof,

at every quarter revolution of the tourmaline ; the ordinary image being always at its maximum of brightness,
and the extraordinary one extinct, when the axis of the tourmaline plate is perpendicular to the principal section
of the surface of incidence, and vice vend when parallel to it.

The same thing happens, when, instead of examining the two images through a tourmaline plate, we receive 874.
their light on a glass plate inclined at the polarizing angle to it, and turn this plate round the ordinary ray Experiment
as an axis. The images will appear and disappear alternately, as the reflector performs successive quadrants

va"e(1 -

of its revolution.

Hence, we see that the two pencils are completely and oppositely polarized ; the ordinary pencil in a plane 875.

passing through the axis of the rhomboid ; the extraordinary one in a plane at right angles to it.

The same phenomenon is much better seen by using a. prism of any double refracting crystal, having such a 876.

refracting angle as to give two distinctly separated images of a distant object, (as a candle.) These appear and Another

disappear alternately at quarter revolutions of a tourmaline plate or glass reflector, and are of equal brightness experiment"
at (he intermediate half-quarters.

Double refraction, then, polarizes the two refracted pencils oppositely, into which an unpolarized incident ray 877.

but inclined downwards, against the reflected light from the glass. Then, generally speaking, two images of
t'lfrough

the pinhole will be seen, but of unequal intensities ; and, if we turn round the rhomboid, in the plane of the doubly
covered side, these images will be seen to vary perpetually in their relative brightness, the one increasing to a max- refracting

imum, while the other vanishes entirely, and so on reciprocally. When the principal section of the rhomboid is in
metl 'a -

the plane of reflexion (i. e. of polarization) of the incident ray, the ordinary image is a maximum ; the extra-

ordinary is extinct, and Dice versa when these two planes make a right angle. The experiment may be advan-

tageously varied by using a doubly refracting prism ; and, while looking through it at the polarized image of a

candle, turning it round slowly in the plane bisecting its refracting angle.
This experiment leads us to the following remarkable law, vit. that if a ray, at its incidence on a doubly 878.

refracting surface, be polarized in the plane parallel to the principal section, it will not suffer bifurcation, but Unequal

will pass wholly into the ordinary image ; if, on the other hand, its plane of primitive polarization be perpen-
d
l

' vl
!! ?

^

dicular to the principal section, it will pass entirely into the extraordinary image. In intermediate positions of(, ê w' ên
the plane of primitive polarization, bifurcation takes place, and the ray is unequally divided between the two the two
refracted pencils, in every case except when the plane of primitive polarization makes an angie of 45 with the refracted

principal section. In general, if a be the angle last mentioned, and A the incident light, (supposing none lost Penc 'ls -

by reflexion,) A . cos8 a will be the intensity of the ordinary, and A . sin* a of the extraordinary pencil, their

sum being A.

All these changes and combinations are exhibited in the following remarkable experiment of Huygens, which, 879.

reasoned on by himself and Newton, first gave rise to the conception of a polarity, or distinction of sides, in the Huygens's

rays of light when modified by certain processes. Take two pretty thick rhomboids of Iceland spar, (which
exPerlmeo'

should be very transparent, as they are easily procured,) and lay them down one upon the other, so as to have
their homologous sides parallel, or so that the molecules of each shall have the same relations of situation as if

the two rhomboids were contiguous parts of one larger crystal. They should be laid on a sheet of white paper
having a small, very distinct, and well-defined black spot on it. This spot then will be seen double through the

combined crystals, as if they were one, (a, fig. 173,) and the line joining the images will be parallel to the Fig. 137.

principal section of either. Now, let the upper crystal be turned slowly round in a horizontal plane on the

lower, and two new images will make their appearance between the two first seen, which, at first, are very faint,

as at 6, fig. 173, and form a very elongated rhombus with the two former. They increase, however, in intensity,

while the other pair diminishes, till the angle of rotation of the upper crystal is 45, where the appearance of the

images is as at c. Continuing the rotation, the rhomb approaches to a square, as at d, and the two original images
have become extremely faint

; and when the rotation is just 90, they will have disappeared altogether, leaving
the others diagonally placed, as at e. As the rotation still proceeds, they reappear and increase in brightness, till

the angle of revolution = 90
-\- 45 = 135, when the images are all equal, as at f; after which the original

images still increasing, and the others diminishing, the appearance g is produced, which, on the completion of

a precise half revolution, passes into h by the union of both the original images into one, and the total evanes-

VOL. IT. 3 X
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cence of the other pair. In this oase. only single refraction (apparently) happens ; or, rather, the double refrac- Fart IV

tions of the two rhomboids taking place in opposite directions, and being equal in amount, compensate each v v"*1

other. Unless, however, the rhomboids be of exactly equal thickness, this precise compensation will not take

place, ard the images will remain distinct, though at a minimum of distance. We may express the four images
thus :

O o, the image ordinarily refracted by both rhomboids.

O e, the image refracted ordinarily by the first, and extraordinarily by the second.

E o, the image refracted extraordinarily by the first, and ordinarily by the second.

E e, the image refracted extraoidinarily by both.

Then, if A be the intensity of the incident light, supposing none lost by reflexion or absorption,

O o = J A . cos4 a = ~Ee; Oe=JA. sin2 a = E o,

and the sum of all the four images = A.
The same phenomena (with some unimportant variations) take place when we apply two doubly refracting

prisms one behind the other close to the eye, and view a distant object through them, turning one round on
the other. The rationale of these phenomena follows so evidently from the laws stated in Art. 875 and 878,
that it will not be necessary to enlarge on it.

The property of a double refraction, in virtue of which a polarized ray is unequally divided between the two

images, furnishes us with a most convenient and useful instrument for the detection of polarization in a beam
of light, and for a variety of optical experiments. It is nothing more than a prism of a doubly refracting
medium rendered achromatic by one of glass, or still better, by another prism of the same medium properly
disposed, so as to increase the separation of the two pencils. The former method is simple; and, when large

refracting angles are not wanted, the uncorrected colour in one of the images is so small as not to be trouble-

some. It is most convenient to make the refracting angle such as to produce an angular separation of about 2
between the images. Thus, in fig. 174, let A B C G F be a prism of Iceland spar, cut in such a manner (we
will at present suppose) that the refracting edge C G shall contain the axis of the crystal ; and let it be achro-

matized as much as possible by a prism of glass C D E P G. Then, if Q be a small, colourless, luminous circle

of about a degree or two in apparent diameter, as seen by an eye at O, the interposition of the combined prisms
will divide it into two, Q and 9. Now, if the light of Q be completely unpolarized, these two will remain

exactly of equal intensity while the prism AB C G is turned round in a plane at right angles to the line of vision.

But if any polarity exist in the original light, the two images Q, q will, in turning round the prism, appear alter-

nately more and less bright one than the other ;
and being always seen immediately side by side, the least

inequality, and consequently the least admixture of polarized light in the incident beam, will be detected.

Iceland spar, from its very great double refraction, is commonly used for these prisms ; but it is so soft, and
its structure so lamellar, as to be difficult to polish, and still more so to preserve polished. We have found quartz
and limpid topaz to answer extremely well. The following ingenious mode of rendering available the low double
refraction of the former, due to Dr. Wollaston, is here eminently useful. Let ABCD abed and E FGHefgh
(fig. 175) be two halves of a hexagonal prism of quartz (the form it affects) produced by a section parallel to two of

the sides. In the vertical face A D da draw any line L K parallel to the sides, and therefore to the axis of the prism,

(which is also that of double refraction,) and join C L, ck. Then a plane CL Arc will cut off a prism CLKrfcD,
having L k, D d, or C c, for its refracting edges, either of which is parallel to the axis. Again, in the other half

of the prism join E/"and H g, and cut the prism by a plane passing through these lines ; then, regarding either

portion as a double refracting prism, having for refracting edges the lines E H, fg, these will have the axis of

double refraction perpendicular to their refracting edges ; and, in particular, the axis will lie in the faces HE eh,
or FG gf at right angles to H E or fg. If, then, we take care to make the refracting angle C L D of the

prism C L K d c D equal to that of the edge II E of the prism H E efg h ; and if we make these two prisms
act in opposition to each other, placing the edge H E opposite to D d, and the edge h e opposite to K L

; and

having thus brought the two surfaces D L k d and H E e A in contact, cement them together with mastic, or

Canada balsam, it is evident, that their principal sections will be at right angles to each other; and therefore

only two images will be formed, the whole of the extraordinary ray of the one prism passing into the ordinary

image of the other, and vice vend. Now, to see how this acts to double the separation of the images, let us

conceive m n to be a luminous line viewed through one of the prisms with its edge downwards and horizontal.

It will be separated into two images, e and o, the one more raised than the other. Suppose the ordinary image
to be most refracted. Then, if we interpose the other prism with its edge upwards, both these images will

be refracted downwards
; but the ordinary image o, which was before moat raised, now undergoing extraordinary

refraction, is least depressed, and comes into the position o e, while the extraordinary one e, which was before

least raised is now most depressed, and comes into the situation eo ; and it is evident that (the refracting angles

being equal, and the double refraction of the two prisms the same) the line o e will fall as far short of the ori-

ginal line m n, as eo surpasses it, viz. by a quantity equal to the distance between the two first images o and e ;

so that the distance between the twice refracted images is double that of those which have undergone only one

refraction. We have found this combination extremely advantageous, as quartz takes a very perfect polish, and

from its hardness is not liable to injury from scratches.

Crystals which have no double refraction may be regarded as limits of those which have, or as crystals in

which the two rays are propagated with equal velocity, and therefore undergo no bifurcation ; or, in other words,
in which the images formed coincide. In this case we should expect to find no polarization of the emergent

light, because the two pencils, being polarized at right angles to each other, form together a single ray having
the characters of unpolarized light. This is verified by experiment. The light transmitted by fluor spar, for
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instance, exhibits no signs of polarization, unless so far as the ordinary action of the surface {roes. We are awnre Part IV.

of no experiments indicating how far the action of the surfaces of feebly double refracting crystals may modify v
\- '

their polarizing forces, or rather their effects on a ray which has penetrated below the surface ; or, in other

words, how far piles of crystallized laminae may have an analogous or different action from those of uncrystallized.

Dr. Brewster, indeed, found piles of mica films to polarize light by transmission, like glass piles, but the subject

is open to further inquiry.

VII. Of tfte Colours exhibited by Crystallized Plates when exposed to Polarized Light, and of the Polarized

Rings which surround their Optic Axes.

Qft4
This splendid department of Optics is entirely of modern and, indeed, of recent origin. The first account of the

colours of crystallized plates was communicated by M. Arago to the French Institute in 181 1, since which period,

by the researches of himself, Dr. Brewster, M. Biot, M. Fresnel, and, latterly, also of M. Mitscherlich, and others,

it has acquired a developement placing it among the most important as well as the most complete and systematic
branches of optical knowledge. As might be expected, under such circumstances, as well as from the state of

political relations, and the consequent limited intercourse between Britain and the Continent at the period men-

tioned, an immense variety of results could not but be obtained independently, and simultaneously, or nearly

simultaneously, on both sides of the channel. To the lover of knowledge, for its own sake, the philosopher,
in the strict original sense of the word, this ought to be matter of pure congratulation ;

but to such as are

fond of discussing rival claims, and settling points of scientific precedence, such a rapid succession of interesting
discoveries must, of course, afford a welcome and ample supply of critical points, the seeds of an abundant
harvest of dispute and recrimination. Regarding, as we do, all such discussions, when carried on in a spirit of

rivalry or nationality, as utterly derogatory to the interests and dignity of science, and as little short, indeed, of

sacrilegious profanation of regions which we have always been accustomed to regard only as a delightful and
honourable refuge from the miserable turmoils and contentions of interested life, we shall avoid taking any part
in them

; and, taking up the subject (to the best of our abilities and knowledge) as it is, and avoiding, as far as

possible, all reference to misconceived facts and over-hasty generalizations, which in this as in all other depart-
ments of science, have not failed (like mists at daybreak) to spread a temporary obscurity over a subject

imperfectly understood, shall make it our aim to state, in as condensed a form as is consistent with distinctness,
such general facts and laws as seem well enough established to run no hazard of being overset by further

inquiry, however they may merge hereafter in others yet more general ; a consummation devoutly to be
wished.

The general phenomenon of the coloured appearances to which this section is devoted, may be most readily .

"* 4

and familiarly shown as follows. Place a polished surface of considerable extent (such as a smooth mahogany m'^^ of
table, or, what is much better, a pile of ten or a dozen large panes of glass laid horizontally) close to a

exhibiting

large open window, from which a full and uninterrupted view of the sky is obtained; and having procured a the colours

plate of mica, of moderate thickness, (about a thirtieth of an inch, such as may easily be obtained, being sold of crystal-

in considerable quantity for the manufacture of lanterns,) hold it between the eye and the table, or pile, so as 1"

to receive and transmit the light reflected from the latter as nearly as may be judged at the polarizing angle. ; m jca_

In this situation of things, nothing remarkable will be perceived, however the plate of mica be inclined; but if

instead of the naked eye we look through a tourmaline plate, having its axis vertical, the case will be very different.

When the mica plate is away, the tourmaline will destroy the reflected beam, and the surface of the table, or

pile, will appear dark and non-reflective ; at least in one point, on which we will suppose the eye to be kept
steadfastly fixed. No sooner is the mica interposed, however, than the reflective power of the surface appears to

be suddenly restored
; and on inclining the mica at various angles, and turning it about in its own plane,

positions will readily be found in which it becomes illuminated with the most vivid and magnificent colours,
which shift their tints at the least change of position of the mica, passing rapidly from the most gorgeous reds

to the richest greens, blues, and purples. If the mica plate be held perpendicular to the reflected beam, and
turned about in its own plane, two positions will be found in which all colour and light disappears ; and the

reflected ray is extinguished, as if no mica was interposed. Now, if we draw on the plate with a steel point Two re-

two lines corresponding to the intersection of the mica with a vertical plane passing through the eye in either markable

of these two positions, we shall find that they make an exact right angle. For the moment, let us call these lines sections of

A and B ; and let a plane drawn through the line A, perpendicular to the plate, be called the section A ; and one
,'|

e "yst"'

similarly drawn through the line B, the section B. Then we shall observe further, that when we turn the plate
Irom either of these positions, 45 round, in its own plane, so that the sections A and B shall make angles
of 45 with the plane of reflexion, (i. e. of polarization of the incident ray,) the transmitted light will be a
maximum.

If the thickness of the mica do not exceed
f̂f
th of an inch, it will be coloured in this position ; if materially

886.

greater, colourless
;
and if less, more and more vividly coloured, and with tints following closely the succession ^aw of

.

t'le

of the reflected series of the colours of thin plates, and, like them, rising in the scale, or approaching the b*d t

'"

central tint (black) as the thickness is less. The analogy in this respect, in short, is complete, with the excep- perpendi-
tion of the enormous difference of thickness between the mica plate producing the tints in question, and those cular

required to produce the Newtonian rings. It appears by measures made in the manner hereafter to be described,
incidence,

that the tint exhibited by a plate of mica exposed perpendicularly to the reflected ray, as above described, is

the same with that reflected by a plate of air of T0 gth part of the thickness of the mica employed.
3x2
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Light. If the mica (still exposed perpendicularly to the ray) be turned round in its own plane, the tint does not
'

change, hut only diminishes in intensity as its section A or B approaches the plane of polarization of the inci-
'

dent light. When, however, the plate is not exposed perpendicularly, this invariability no longer obtains ; and
^e c *lan 'es f tmt appear >n the last degree capricious and irreducible to regular laws. In two situations,

s
nowever> 'he phenomena admit a simple view. These are when the sections A and B are both 45 from the

plane of polarization, and the mica plate is inclined backwards and forwards in the plane of one or the other of
these sections. This condition is easily attained by first holding the plate perpendicularly to the reflected ray ;

then turning it in its own plane till the lines A, B are each 45 inclined to the vertical plane, then finally causing
it to revolve about either of these lines as an axis. It will then be seen that when made to revolve round one of
them (as A) or in the plane of the section B. the tint, if white, will continue white at all angles of inclination ;

but if coloured, will descend in the scale of the coloured rings, growing continually less highly coloured, till it passes,
after more or fewer alternations, into white; after which, further inclination of the plate will produce no change.
On the other hand, if made to revolve round B, or in the plane of A, the tints will rise in the scale of the rings ;

and when the mica plate is inclined either way, so as to make the angle of incidence about 35 3', will have
attained its maximum, corresponding to the black spot in the centre of Newton's rings. In this position of the

plate, the reflected beam is totally extinguished by the tourmaline, as if the sections A or B had been vertical.

But if the angle of incidence be still further increased the colours reappear, and descend again in the scale of
the rings, passing through their whole series to final whiteness. We take no notice here of a slight deviation from
the strict succession of the Newtonian colours, which is observed in the higher orders of the tints, as we shall

have more to say respecting it hereafter.

We see, then, that the sections A and B, though agreeing in their characters in the case of a perpendicular
exposure of the mica, yet differ entirely in the phenomena they exhibit at oblique incidences. If the incidence
take place in the plane of the section B, the tint descends, on both sides of the perpendicular, ad infinitum.
While, if the incidence be in the section A, it rises to the central black, which it attains at equal incidences on
either side of the perpendicular (35 3'), and then descends again ad infinitum, or to the composite white at the

other extreme of the scale.

The section A, then, (which, for this reason, we will call the principal section of the mica plate,) is characte-

rised by containing two remarkable lines inclined at equal angles to the surface of the plate, along either of

which, if a polarized ray be incident, its polarization will not be disturbed by the action of the plate. To satisfy
ourselves of this, we have only to fix the mica to the extremity of a tube, so as to have the axis of the tube

inclined at an angle of 35 3' to the perpendicular (or 54 57' to the plate) in the plane of the section A ; then

directing the axis of the tube to the centre of the dark spot, or the reflecting surface, it will be seen to continue

(Jar ii; j an(j remain so while the tube makes a complete revolution on its axis. Now, this could not be if the

mica exercised any disturbing power on the plane of polarization. Hence, we conclude, that the two lines in

question possess this remarkable property, viz. that whatever be the plane of polarization of a ray incident along
either of them, it remains unaltered after transmission. For, although in the experiment above described, the

plane of polarization remained fixed, and that of incidence was made to revolve, it is obvious that the reverse

process would come to the very same thing.

Now, this character belongs to no other lines, however chosen, with respect to the plate. If we fix the plate
on the end of the tube at any other angle, or in any other plane with respect to the axis of the latter, although
two positions in the rotation of the tube will always be found where the disappearance of the transmitted ray
takes place, in no other case but that of the two lines in question will this disappearance be total, or nearly so,

in all points of its revolution.

The refracting index of mica being 1.500, an angle of incidence of 35 3' corresponds to one of refraction =
22 31'. Hence, the position of the lines within the mica corresponding to these external lines is 22J inclined

to the perpendicular, and the angle included between them 45. These, then, are axes within the crystal,

bearing a determinate relation to its molecules. Dr. Brewster has termed them axes of no polarization, a long
name. M. Fresnel, and others, have used the phrase optic axes, to which we shall adhere. As this term has

before been ; pplied to the " axes of no double refraction," we must anticipate so far as to advertise the reader

that these, and the " axes of no polarization," are in all cases identical.

Having, by the criteria above described, determined the principal section, and ascertained the situation of

the optic axes of the mica plate under examination, let the plate be inclined to the polarized beam, so that the

latter shall be transmitted along the optic axes, the principal section A making an angle of 45 with the plane of

polarization ; and let the eye (still armed with the tourmaline plate, with its axis vertical) be applied close to

the mica. A splendid phenomenon will then be seen. The black point corresponding to the direction of the

optic axis will be seen to be surrounded with a set of broad, vivid, coloured rings, of an elliptic, or, at least, oval

form, divided into two unequal portions by a black band somewhat curved, as represented in fig. 176. Thi.

band passes through the pole, or angular situation of the optic axis, about which the rings are formed as a

centre. Its convexity is turned towards the direction of the other axis, and on that side the rings are also

broader. If, now, the other axis be brought into a similar position, a phenomenon exactly similar will be.

seen surrounding its place, as a pole. If the mica plate be very thick, these two systems of rings appear wholly
detached from, and independent of, each other, and the rings themselves are narrow and close ;

but if thin (as a

30th or 40th of an inch) the individual rings are much broader, and especially
so in the interval between the

poles, so as to unite and run together, losing altogether their elliptic appearance, and dilating towards the middle

(or in the direction of a perpendicular to the plate) into a broad coloured space, beyond which the rings are no

longer formed about each pole separately, but assume the form of reentering curves, embracing and including
both poles. Their nature will presently be stated more at large.
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I.i(fht. If preserving the same inclination of the mica plate to the visual ray, it be turned about it as an axis, the Part IV.

-~Y-' b-ack band passing through the pole will shift its place, and revolve as it were on the pole as a centre with double * -v-^-'
the angular velocity, so as to obliterate in succession every part of the rinp-s. When the plate has made 45 893.

of its revolution, so as to bring its principal section into the plane of polarization of the incident beam, this Further

band also coincides in direction with that plane, and is then visibly prolonged, so as to meet that belonging to P ar1

the set of rings about the other pole ; and is crossed at the middle point between the poles by another dark

space perpendicular to it, or in the plane of the section B, presenting the appearance in fig. 177. Fig. 177.

These phenomena, if a tourmaline be not at hand, may be viewed, (somewhat less commodiously, unless the 894.

mica plate be of considerable size,) by using in its place the reflector figured in fig. 170, or by a pile of glass
Other

plates interposed obliquely between the eye and the mica. In this manner of observing them, the colours are
mi

|

?*
j^

surprisingly vivid, no part of the red and violet rays being absorbed more than the rest ;
whereas the tourmalines

[hese phe
.

generally exert a considerable absorbing energy on these rays in preference to the rest, and thus the contrast of nomena ,

colours is materially impaired. On the other hand, however, from the greater homogeneity of the transmitted

light, the rings are more numerous and better defined ; and in this respect the phenomenon is greatly improved

by the use of homogeneous light.

We have taken mica as being a crystallized body very easily obtained of large size, and presenting its axes

readily, and without the necessity of artificial sections. It is thus admirably adapted for obtaining a general

rough view of the phenomena, preparatory to a nicer examination. From the wide interval between its axes,

however, and the considerable breadth of its rings, it is less adapted, when employed as above stated, to give a

clear conception of the complicated changes which the rings undergo, on a variation of circumstances. For
this reason we shall now describe another and much more commodious mode of examining the systems of

polarized rings presented by crystals in general, which has the advantage of bringing the laws of their pheno-
mena so evidently under our eyes as to make their investigation almost a matter of inspection.

It is evident, that when we apply the eye close to, or very near a plate of mica, or other body, and view, 896.

beyond it, a considerable extent of illuminated surface, each point of that surface will be seen by means of a ray General

which has penetrated the plate in a different direction with respect to the axes of its molecules; so that we may principle of

consider the eye as in the centre of a spherical surface from all points of which rays are sent to it, modified
*

wi

s

he

according to the state of primitive polarization, and the influence of the peculiar energies of the medium, corre-
rings.

spending to the direction in which they traverse it, and the thickness of the plate in that direction.

Any means, therefore, by which we can admit into the eye through the plate and tourmaline a cone of rays Periscopic

nearly or completely polarized in one general direction, or according to any regular law, will afford a sight of tourmaline

the rings ;
and therefore exhibit, at a single view, a synopsis, as it were, of the modifications impressed on an aPParatu *

infinite number of rays so polarized traversing the plate in all directions. The property of the tourmaline so

often referred to puts it in our power to perform this in a very elegant and convenient manner, by the aid of the

little apparatus of which fig. 178 is a section. ABCD is a short cylinder of brass tube, the end of which, AC, Fig. 178.

is terminated by a brass plate, having an aperture a b, into which is set a tourmaline plate cut parallel to the

axis: hgik is another similar brass cylinder, provided with a similar aperture and a similar tourmaline plate G,
and fitted into the former so as to allow of the one being freely turned round within the other by the milled edges
B D, hk. A lens H of short focus, set in a proper cell, is screwed on in front of the tourmaline G, so as to

have its focus a little behind its posterior surface, (that next the eye, O.) Between the two surfaces AC, gi
is another short cylinder of thin tube cd, carrying a brass plate with an aperture somewhat narrower than those

in which the tourmalines are set, and on which any crystallized plate F to be examined may be cemented with

a little wax. This, with the cylinder to which it is fixed, is capable of being turned smoothly round within the

cylinder ABCD by means of a small pin e passing through a slit /made in the side, and extended round so

as to occupy about 120 of the circumference ; by which a rotation to that extent may be communicated to the

crystallized plate F in its own plane between the tourmaline plates. The pin e should screw into the ring cd,
that it may be easily detached, and admit the ring and plate to be taken out for the convenience of fixing on it

other crystals at pleasure.
The use of the lens H is to disperse the incident light, and thus equalize the field of view when illuminated 897.

by any source of light, whether natural or artificial, as well as to prevent external objects being distinctly seen Mode of

through it, which would distract the attention and otherwise interfere with the phenomena. The rays converged
a*t'00 cf

by the lens to a focus within the crystallized plate F, afterwards diverge and fall on the eye C\ after traversing rjus

apra
"

the plate in all directions within the limit of the field of view. As by this contrivance they pass through a

very small portion of the crystal, there is the less chance of accidental irregularities in its structure disturbing
the regular formation of the rings, since we have it in our power to select the most uniform portion of a large

crystal. The rays, after passing through the lens, are all polarized by the tourmaline G, in planes parallel to

its axis ; and passing through the eye in this state, if the crystal F be not interposed, the rays will, or will not,

penetrate the second tourmaline, according as its axis is parallel or perpendicular to that of the first. In con-

sequence, when the cylinder carrying the former is turned round within that carrying the latter,, the field of view
is seen alternately bright and dark.

When the crystallized substance F is interposed, provided it be so disposed that one or other of its optic axes ygg
is situated any where in the cone of rays refracted by the lens, so that one of them shall reach the eye by Selection of

traversing the axis, the polarized rings are seen. If both the axes of the crystal (supposing it to have more crystals.

than one) fall within the field, a set of rings will be seen round both, and may be studied at leisure. In order
to bring the whole of their phenomena distinctly under view, it is requisite to select such crystals as have
their axes not much inclined to each other, so as to allow the rings about both to be seen without the necessity
of looking very obliquely into the apparatus. In mica the axes are rather too far removed for this. The- best

crystal we can select for the purpose is nitre.
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Light. Nitre crystallizes in long, six-sided prisms, whose section, perpendicular to their sides, is the regular hexag-on.

Part 'V.

->/ They are generally very much interrupted in their structure ; but by turning over a considerable quantity of v< "****"'

899. the
ordinary saltpetre of the shops, specimens are readily found which have perfectly transparent portions of

some extent. Selecting one of these, cut it with a knife into a plate above a quarter of an inch thick, directly

iarin
across the axis of the prism, and then grind it down on a broad, wet file, till it is reduced to about ^th or Jth inch

and polish-
'n thickness; smooth the surfaces on a wet piece of emeried glass, and polish them on a piece of silk strained

ing it. very tight over a strip of plate glass, and rubbed with a mixture of tallow and colcothar of vitriol. This ope-
ration requires practice. It cannot be effected unless the nitre be applied wet, and rubbed till quite dry,
increasing the rapidity of the friction as the moisture evaporates. It must be performed in gloves, as the vapour
from the fingers, as well as the slightest breatn, dims the polished surface effectually. With these precautions
a perfect vitreous polish is easily obtained. We may here remark, that hardly any two salts can be polished
by the same process. Thus, Rochelle salt must be finished wet on the silk, and instantly transferred to soft

bibulous hnen, and rapidly rubbed dry. Experience alone can teach these peculiarities, and the contrivances

(sometimes very strange ones) it is necessary to resort to for the purpose, of obtaining good polished sections of
soft crystals, especially of those easily soluble in water.

900. The nitre thus polished on both its surfaces (which should be brought as near as possible to exact parallelism)
Rings ex-

; s to be placed on the plate at F
; and the tourmaline plates being then brought to have their axes at right

angles to each other (which position should be marked by an index line on the cylinders) the eye applied at O,
and the whole held up to a clear light, a double system of interrupted rings of the utmost neatness and beauty

Fig. 179. will be seen, as represented in fig. 179. If the crystallized plate be made to revolve in its own plane between
the tourmalines (which both remain unmoved) the phenomena pass through a certain series of changes periodi-

180. caii v> returning, at every 90 of rotation, to their original state. Fig. 180 represents their appearance when the

Fi'f 182
rotation is just commenced; fig. 181, when the angle of rotation is 22J, or 67 ; and fig. 182, when it equals
45. When the tourmalines are also made to revolve on each other, other more complicated appearances are

produced, of which more presently. We shall now, however, suppose them retained in the situation above

mentioned, i.e. with their axes crossed at right angles, and proceed to study the following particulars :

1. The form and situation of the rings.
2. Their magnitudes in the same and different plates.
3. Their colours.

4. The intensity of the illumination in different parts of their periphery.
The situation of the rings is determined by the position of the principal section of the crystal, or by that of

Situation of the optic axes within its substance. These in nitre lie in a plane parallel to the axis of the prisms, and per-"

pendicular to one or other of its sides. It is no unusual thing to find crystals of this salt whose transverse

SL-ction consists of distinct portions, in which the principal sections make angles of 60 with each other ; indi-

cating a composite or macled structure in the crystal itself. These portions are divided from each other by
thin films, which exhibit the most singular phenomena by internal reflexion, on which this is not the place to

enlarge. In an uninterrupted portion, however, the forms of the rings are as represented in the figures above
referred to, their poles subtending at the eye an angle of about 8. Now, it is to be remarked, that as the plate
is turned round between the tourmalines, although the black hyperbolic curves passing through the poles shift

their places upon the coloured lines, and in succession obliterate every part of them ; forming, first, the black

cross in fig. 179, by their union; then breaking up and separating laterally, as in fig. 180, and so on. Yet the

rings themselves retain the same form and disposition about their poles, and, except in point of intensity, remain

perfectly unaltered ; their whole system turning uniformly round as the crystallized plate revolves, so as to

preserve the same relations to the axes of its molecules. Hence we conclude, that the coloured rings are related

to the optic axes of the crystal, according to laws dependent only on the nature of the crystal, and not at all on
external circumstances, such as the plane of polarization of the incident light, &c.

902. The general form of the rings, abstraction made of the black cross, is as represented in fig. 183. If

Form of the we regard them all as varieties of one and the same geometrical curve, arising from the variation of a

rings, parameter in its equation, it will be evident that this equation must, in its most general form, represent a re-

entering symmetrical oval, which at first is uniformly concave, and surrounds both poles, as A
; then flattens at

Fie "lisa

CS
tne s 'c'es > and acquires points of contrary flexure, as B ;

then acquires a multiple point, as C ; after which it

breaks into two conjugate ovals D D, each surrounding one pole. This variation of form, as well as the general

figure of the curves, bears a perfect resemblance to what obtains in the curve well known to geometers under

the name of the lemniscate, whose general equation is

(*
4 + y*+^^ a* (*

a + 4 x*),

when the parameter 6 gradually diminishes from infinity to zero ; 2 a representing the constant distance

between the poles.

903 The apparatus just described affords a ready and very accurate method of comparing the real form of the

Verified by rings with this or any other proposed hypothesis. If fixed against an opening in the shutter of a darkened

enperiment. room, with the lens H outwards, and a beam of solar light be thrown on the latter, parallel to the axis of the

apparatus, the whole system of rings will be seen finely projected against a screen held at a moderate distance

from E. Now, if this screen be of good smooth paper tightly stretched on a frame, the outlines of the several

rings may easily be traced with a pencil on it, and the poles being in like manner marked, we have a faithful

representation of the rings, which may be compared at leisure with a system of lemniscates, or any other curve

graphically constructed, so as to pass through points in them chosen where the tint is most decided. This has
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Light accordingly been done, and it. has been found that lemniscates so constructed coincide throughout their whole Part IV.

~v~~"^ extent, to minute precision, with the outlines of the ring's so traced, the points graphically laid down falling on '_ '

the pencilled outlines. The graphical construction of these curves is rendered easy by (he well-known property
of the lemniscate, in which the rectangle under two lines P A X P' A drawn from the poles to any point A in

the periphery is invariable throughout the whole curve. This is easily sliown from the above equation, and the

value of this constant rectangle in any one curve is represented by a X b.

When we shift from one ring to another, a remains the same, because the poles are the same for all. To 904.

determine the variation of b, let the rings be illuminated with homogeneous light, (or viewed through a red Variation of

glass,) and outlined by projection, as above. Then, if we determine the actual value of alt by measuring the
llle Para

"

lengths of two lines PA, P' A drawn from P, P' to any point of each curve; and, calculating their product, (to arithmetic
which a 6 is equal,) it will be found that this product, and therefore the parameter b, increases in the arithmetical progression

progression 0, 1, 2, 3, 4, fyc. for the several dark intervals of the rings beginning at the pole, and in the progres-
from ring to

sion J, f, f, &c. for the brightest intermediate spaces. To ensure accuracy, the mean of a number of values of ""8-

PA X P'A, at different points of the periphery, may be taken to obviate the effect of any imperfection in the

crystal. ,

This, then, is the law of the magnitudes of the successive rings formed by one and the same plate. But if we 905
determine the value of the same product for plates of nitre similarly cut, but of different thicknesses, or Effect of

of the same reduced in thickness by grinding, it will be found to vary inversely as the thickness of the plate, varying the

ceeteris paribus.
thickness of

The colours of the polarized rings bear a great analogy to those reflected by thin plates of air, and in most
"le

X^'
crystals would be precisely similar to them but for a cause presently to be noticed. In the situation of the i^e coiour
tourmaline plates here supposed (crossed at right angles) they are those of the reflected rings, beginning with a of therins
black centre, at the pole. If examined in the situation of fig. 179, and traced in a line from either pole

cutting across the whole system, at right angles to the line joining the poles, they will almost precisely follow
the Newtonian scale of tints. For the present we will suppose that they do so in all directions. It is evident,

then, that each particular tint (as the bright green of the third order, for instance) will be disposed in the form
of a lemniscate, and will have its own particular value of the product a b. The tint, then, may be said to be

corresponding to, dependent on, or, if we will, measured by a b. In conformity with this language the Numerical

coloured curves have been termed, and not inaptly, iinchromatic. lines. Now, in the colours of thin plates, we mcasure f

have seen that these tints arise from a law of periodicity to which each homogeneous ray is subject ; and that

(without entering at this moment into the cause of such periods) the successive maxima and minima of each par- niatic"!^"
ticular cojoured ray passed through, in the scale of tints, correspond to successive multiples by -, -|, -f, ^, &c. of
the period peculiar to that colour. In the colours of thin plates, the quantity which determines the number. of

periods is the thickness of the plate of air, or other medium traversed ; and the number of times a certain

standard thickness peculiar to each ray is contained therein, determines the number of periods, or parts of a

period, passed through. In the colours, and in the case now under consideration, the number of periods is Law of pe-

proportional to the product (0 x 0') of the distances from either pole, for one and the same thickness of plate, riodicity.

and for different plates to t the thickness, and, therefore, generally, to X #' X t, provided we neglect the
effect of the inclination of the ray in increasing the length of the path of the rays within the crystal, or regard
the whole system of rings as confined within very narrow limits of incidence.

This condition obtains in the case here considered, because of the proximity of the axes in nitre to each other 907.
and to the perpendicular to the surfaces of the plate. But in crystals such as mica, or others where they are Transition

still wider asunder, it is not so
;
and the projection of the isochromatic curves on a plane surface will deviate from mtre

materially from their true form, which ought to be regarded as delineated on a sphere having the eye, or rather a
* '

t

"

point within the crystal, for a centre. In such a case, it might be expected that the usual transition from the whose axes

arc to its sine should take place ;
and that, instead of supposing the tint, or value of a b, to be proportional are farther

simply to 9 x 0' x t, (putting A P, and <?' = AP7

,) we ought to have it proportional to sin x sin ffx asun(^er -

length of the path of the ray within the crystal. Now (putting p for the angle of refraction, and t for the

thickness of the plate) we have t . sec p = length of the ray's path within the crystal. If, then, we put n for

the number of periods corresponding to the tint a b for the ray in question, and suppose h =
, or the

71

unit whose multiples determine the order of the rings, we shall have

a J t General ex-

n = - = -
,- . sin . sin &' . sec p, (a) pression for

h n, the tint

, polarized

and h = . sin 6 . sin 6'. (b)
by any

n . COS p crystallized

plate.

If, then, the suppositions made be correct, we ought to have the function on the right hand side of this last

equation invariable, in whatever direction the ray penetrates the crystallized plate, and whatever be the order of

the tint denoted by n. We shall here relate only one experiment, to show how very precisely the agreement of

this conclusion with fact is sustained.

A ray of light was polarized by reflexion at a plate of perfectly plane glass, and transmitted through a plate 908.

of mica, having its principal section 45 inclined to the plane of primitive polarization, and the mica plate Experiment
made to revolve in the plane of its principal section about an axis at right angles thereto, (or about the axis B, verifying

Art. 885.) In this state of things, if viewed through a tourmaline as above described, or by other more refined
' '
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means presently to be noticed, the succession of tints exhibited by the mica was that of a section of the rings

Plrl 'v -

in fi<r. 182, made by a line drawn through both the poles. To render the observation definite, a red glass was S "V~"" 1 '

interposed so as to reduce the rings to a succession of red and black bands, and the angles of incidence corre-

sponding to the maxima and minima of the several rings very accurately measured. These are set down in

Col. 2 of the following table. Col. 1 contains the values of n, corresponding to the pole, to th first

maximum, 1 to the first minimum, 1 to the second maximum, and so on. The third column contains the

angles of refraction computed for an index 1.500
; the fourth and fifth, those of and ff

; the sixth, those of A

deduced from the above equation, and which ought to be constant. The excesses above the mean are stated

in the last column, and show how very closely that equation represents the fact. The thickness of the mica was

0.023078 inches = t.

Values of n.
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Light. produce the rings, and a broken fragment of plate glass to place near the eye as a reflector, are all the apparatus Part IV.

% required to produce one of the most splendid of optical exhibitions. ^*~-v~~s
If 9 be not very small, the measure of the tint, instead of t . sin 6*, is t . sec p . sin 6*. We have seen that in 912.

uniaxal crystals, sin 0* is proportional to the difference of the squares of the velocities v and v 1 of the ordinary Analogy

and extraordinary ray, or to u'2 t>*. Now, if we denote by r and / the times taken by these wo rays to ^^""J
1'*

traverse the plate, we have v = - and v' = -
;

therefore t . sec . p sin 0* is proportional to
rhecfrin ~>s

and those

/I 1 \ (T + T )(T- TJ ,, produced by
(t . sec />)

3 x (^ -
), that .s, to -

/)a

'
. (< sec /,). fhe law of

y

interference

or (which is the same thing) to (v + v') . v v 1

(T T'). But, neglecting the squares of very small quantities, of

the order t/ v and T T', for such they are in the immediate neighbourhood of the axis, the factors v -f- tf and
v v' are constant ; so that the tint is simply proportional to T T', the difference of times occupied by the two

rays in traversing the plate ; or the interval of retardation of the slower ray on the quicker. This very remark-
able analogy between the tints in question and those arising from the law of interferences, was first perceived

by Dr. Young ; and, assisted by a property of polarized light soon to be mentioned, discovered by Messrs.

Arago and Fresnel, leads to a simple and beautiful explanation of all the phenomena which form the subject of

this section, and of which more in its proper place.
The forms of the rings are such as we have described, only in regular and perfect crystals ; every thing which 913

disturbs this regularity, distorts their form. Some crystals are very liable to such disturbances, either arising Circum-

from an imperfect state of equilibrium, or a state of strain in which the molecules are retained, or to actual sl

interruptions in their structure. Thus, specimens of quartz and beryl are occasionally met with, in which the
j-jj^, t |)e

single axis usually seen is very distinctly separated into two, the rings instead of circles have oval forms, and the r j ngs .

black cross (which in cases of a well developed single axis remains quite unchanged during the rotation of the cry-
stallized plate in its own plane) breaks into curves convex towards each other, but almost in contact at their vertices,

at every quarter revolution. Cases of interruption occur in carbonate of lime very commonly, and in muriacite

perpetually ; and the effects produced by them on the configurations of the rings rank among the most curious

and beautiful of optical phenomena. They have not, however, been anywhere described, and our limits will

not allow us to make this article a vehicle for their description.
The form of the rings being, then, considered, let us next inquire more minutely into their colours. These 914.

being all composite, and arising from the superposition on each other of systems of rings formed by each homo- Colours of

geneous ray, we can obtain a knowledge of their constitution only by examining the rings in homogeneous
the rai

'

s-

light. This is easy, for we have only to illuminate the apparatus described above by homogeneous light of all

degrees of refrangibility from red to violet, by passing a prismatic spectrum from one end to the other over the

illuminating lens H, the eye being applied as usual at O, and observe the changes which take place in the rings,
in passing from one coloured illumination to another; and, if necessary, measure their dimensions. This is

readily done, either by projecting them on a screen in a darkened room, as described in Art. 903, or by detaching
the lens H, fig. 178, and simply looking through the apparatus at a sheet of white paper strongly illuminated

by the rays of a prismatic spectrum, where the rings will appear as if depicted on the paper, and their outlines

easily marked, or their diameters measured. The following are the general facts which may thus be readily
verified.

First, in the case of crystals with a single axis, the rings remain circular, and their centres are coincident for 915.

all the coloured rays, but their dimensions vary. In the generality of such crystals, their diameters for different I".
crystals

refrangibilities follow nearly the law of the Newtonian rings, when viewed in similar illuminations ; their "?
squares (or rather the squares of their sines) being proportional, or nearly so, to the lengths of the fits, or of the Deviations
undulations of the rays forming them. This law, howerer, is very far from universal ; and in certain crystals is from New-

altogether subverted. Thus, in the most common variety of apophyllite, (from Cipit, in the Tyrol, not from ton's scale

Fassa, as is commonly stated,) the diameters of the rings are nearly alike for all colours, those of the green rings
'"

'j

1

?
al'"

being a very little less; those formed by rays at the confines of the blue and indigo exactly equal, and those ^
of violet rays a little greater than the red rings. It is obvious, that were the rings of all colours exactly equal,
the system resulting from their superposition would be simple alternations of perfect black and white, continued
ad infinitum. In the case in question, so near an approach to equality subsists, that the rings in a tourmaline

apparatus appear merely black and white, and are extremely numerous, no less than thirty-five having been

counted, and many of those too close for counting being visible in a thick specimen.
When examined more delicately, colours are, however, distinguished, and are in perfect conformity with the gig

law stated, being for the first four orders as follow :

First order. Black, greenish white, bright white, purplish white, sombre violet blue.

Second order. Violet almost black, pale yellow green, greenish white, white, purplish white, obscure indigo

inclining to purple.
Third order. Sombre violet, tolerable yellow green, yellowisn white, white, pale purple, sombre indigo.
Fourth order. Sombre violet, livid grey, yellow green, pale yellowish white, white, purple, very sombre

indigo, &c.

Carbonate of lime, beryl, ice, and tourmaline (when limpid) are instances of uniaxal crystals, in whose rings
9' 7

the Newtonian scale of tints is almost exactly imitated ; and, consequently, the intervals of retardation of the

ordinary and extraordinary rays of any colour on one another, are proportional to the lengths of their undu-
lations. On the other hand, in the hyposulphate of lime, we are furnished with an instance of more rapid

VOL. iv. 3 Y
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Light, degradation of tints, and therefore of a more rapid variation of the interval just mentioned. The following was Fart IV

v- **s"^/ the scale of colour of the rings observed in this remarkable crystal : v_v_
'hate of

8 "'"
First order ' Black > verv faint sky Dlue - P retty strong sky blue, very light bluish white, white, yellowish

white, bright straw colour, yellow, orange yellow, fine pink, sombre pink.
Second order. Purple, blue, bright greenish blue, splendid green, light green, greenish white, ruddy white,

pink, tine rose red.

Third order. Dull purple, pale blue, g-reen blue, white, pink.
Fourth order. Very pale purple, very light blue, white, almost imperceptible pink.

After which the succession of colours was no longer distinguishable.
918. A degradation still more rapid has been observed in certain rare varieties of uniaxal apophyllite, accompanied

Other re- with remarkable and instructive phenomena. In these, the diameters of the rings (instead of diminishing as the

"""s'of

6 refrangibility of the light of which they are formed increases) increase with great rapidity, and actually become

deviation
'n fin te f r rays of intermediate refrangibility ; after whic'h they again become finite, and continue to contract

up to the violet end of the spectrum, where, however, they are still considerably larger than in the red rays. In

consequence of this singularity, their colours when illuminated with white light furnish examples of a complete
inversion of Newton's scale of tints. The following were the tints exhibited by two varieties of the mineral in

question, in one of which the critical point where the rings become infinite took place in the indigo, and in the
other in the yellow rays. In the former they were

First order. Black, sombre red, orange, yellow, green, greenish blue, sombre and dirty blue.

Second order. Dull purple, pink, ruddy pink, pink yellow, pale yellow (almost white,) bluish green, dull

pale blue.

Third order. Very dilute purple, pale pink, while, very pale blue.

In the latter variety, the tints were
First and only order. Black, sombre indigo, indigo inclining to purple, pale lilac purple, very pale reddish

purple, pale rose red, white, white with a hardly perceptible tinge of green.
919. The doubly refracting energy of a crystal may be not improperly measured by the difference of the squares

Relation of the velocities of an ordinary and extraordinary ray similarly situated with respect to the axes ; but as
between the this difference, for rays variously situated in one and the same crystal, is proportional to sin 6*, or in biaxal

of the rings
crysta ' s to sm " sm ^- the intrinsic double refractive energy of any crystal may be represented by

and the 1-4 7/2

doubly e = . : ; (c)
refractive sln f.ftnW

regarding this henceforth as the definition of this energy, we have, in uniaxal crystals, e = : , and

this will evidently measure the actual amount of separation of two such rays when emergent from the crystal.

t SCO O / SCC O
If in this we put for v and v' their equals

'

- and -
'

-

t , we shall have, after reduction,

vi _ '.> _ v v
>

(i,
i v>) .

_^_n:i
. (C)

t . sec />

In a parallel plate, perpendicular to the axis and in the immediate vicinity of the axis, v' and sec p may
be regarded as constant, and v2 V

1* is proportional to T' T, the interval of retardation of one ray on the

other, to which the tint in white light and the number of periods and parts of a period in homogeneous light

(to which, for brevity, we will continue to extend the term tint) are proportional. We see, then, that in such
cases the intrinsic double refracting energy is directly as the tint polarized, and inversely as sin 0*, and therefore

also inversely as the squares of the diameters of the rings. As the rings increase in magnitude, then, ceeteris

paribus, the double refractive energy diminishes ; and hence a very curious consequence follows, viz. that in the

two cases last mentioned it vanishes altogether for those colours where the rings are infinite ; in other words,
that although the crystal be doubly refractive for all the other coloured rays, there is one particular ray in the

Case of spectrum (viz. the indigo in the former, and the yellow in the latter case) with respect to which its refraction is
sials at

s;ngie< jn jne passage through infinity, there is generally a change of sign. In the instances in question this

tractive, change takes place in the value of e or v* v n, which passes from negative to positive. And the spheroid of

repulsive,
double refraction changes its character accordingly from oblate to prolate, passing through the sphere as its

and neutral, intermediate state. The manner in which this may be recognised, without actually measuring, or even perceiving
its double refraction, will be explained further on.

920. For crystals with two axes we have only, at present, the ground of analogy to go upon in applying the

Application above formula and phraseology to their phenomena. The general fact of an intimate connection of the double
axal

refracting energy with the dimensions of the rings, is indeed easily made out ; for it is a fact easily verified by
experiment, that all crystals, whether with one or two axes, in which the rings or lemnincates formed are of
small magnitude in respect of the thickness of the plate producing them, are powerfully double refractive,
and vice versa ; and that, generally speaking, the separation of the ordinary and extraordinary pencils is, ceetcrix

paribus, greater in proportion as the rings are more close and crowded round their poles. In uniaxal crystals,
in which the laws of double refraction are comparatively simple, there is little difficulty in submitting the point
to the test of direct experiment and exact measurement, and it is found to be completely verified. In biaxal,

however, such precise and direct comparison is more difficult, and calls for a knowledge of the general laws of

double refraction. The analogy, however, supported by the general coincidence above mentioned, is too strong
to be refused

; and, as we advance, will be found to gain strength with every step.
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Liglii. Ill biaxal crystals, similar deviations from exact proportionality between the lengths of the periods of the Part IV.

K~S,~
'

several coloured rays and those of their undulations, or fits, exist ; but their effect in disturbing the colours of ~v-^/
the rings is interfered with, and frequently masked by, another cause, which has no existence in uniaxal crystals, 921.

viz. that the optic axes differ in situation, within one and the same crystal for the differently refrangible Separation

homogeneous rays; and, therefore, that the elementary lemniscates, whose superposition forms the composite
of tlle P l

.

lc

fringes seen in a white illumination, differ not only in magnitude but in the places 'of'their poles and the interval
ferent |v

between them. To make this evident to ocular inspection, take a crystal of Rochelle salt, (tartrate of soda and refrangible

potash,) and having cut it into a plate perpendicular to one of its optic axes, or nearly so, and placed it in a rays in

tourmaline apparatus, let the lens H be illuminated with the rays of a prismatic spectrum, in succession, begin-
h 'axiil

ning with the red and passing gradually to the violet. The eye being all the time fixed on the rings, they will
cr

J'
3ta "

appear for each colour of perfect regularity of form, remarkably well defined, and contracting rapidly in size as

the illumination is made with more refrangible light ;
but in addition to this, it will be observed, that the

whole system appears to shift its place bodily, and advance regularly in one direction as the illumination

changes ; and if it be alternately altered from red to violet, and back again, the pole, with the rings about it,

will also move backwards and forwards, vibrating, as it were, over a considerable space. If homogeneous rays
of two colours be thrown at once on the lens, two sets of rings will be seen, having their centres more or less

distant, and their magnitudes more or less different, according to the difference of refrangibility of the two species
of light employed.

Since the plate in this experiment is supposed to have its surfaces perpendicular to the mean position of the 922.

optic axis, the cause of these appearances cannot be found in a mere apparent displacement of the rings by
All i he axes

refraction at the surface, existing to a greater extent for the violet than the red rays, add to which, that the angle
''e '" '''*

which their poles describe, is neither the same in magnitude nor direction for different crystals. In some, the

optic axes approach each other in violet light, and recede in red ; while in others the reverse is the case. In all, section.

however, so far as we are aware, the optic axes for all the coloured rays lie in one plane, viz. the principal
section of the crystal. This is rendered matter of inspection by cutting any crystal so that both axes shall be

visible in the same plate, and placing it with its principal section in the plane of primitive polarization. In this

state of things the first ring about each pole, as in fig. 179, is seen divided into two halves, and puts on, if

the plate be pretty thick, the appearance of two semi-elliptic spots, one on each side of the principal section.

These spots are observed to be differently coloured at their two extremities <n some crystals the ends of the

spots, as well as the segments of the rings adjacent to them, which are iurned towards each other, being
coloured red, and the other, or more distant ends, with blue ; and in others, the reverse. In some crystals this

coloration is slight, and in a very few, imperceptible ; but in others it is so great, that the spots are drawn
out into long spectra, or tails of red, green, and violet light ; and the ends of the rings are in like manner
distorted and highly coloured, presenting the appearance in fig. 186. This is the case with Rochelle salt, Fig. 186.

above mentioned. If these spectra be examined with coloured glasses, or with homogeneous light, they will be

seen to be composed as in fig. 187, by the superposition of well defined spots of the several simple colours

arranged in lines on each side of the principal section. In the case of Rochelle salt, the angular extent of

these spectra, within the medium, which measures the interval between the optic axes for violet and red rays,
amounts to no less than 10.

Dr. Brewster has given the following list of crystals presenting these phenomena, which he has divided into

two classes, according to his peculiar and ingenious views.

. 187.

^

ster s list of

Class I.

Nitre.

Sulphate of baryta.

Sulphate of strontia.

Phosphate of soda.

Tartrate of potash and soda.

Supertartrate of potash and soda.

Arragonite.
Carbonate of lead. (?)

Sulphato-carbonate of lead.

Class II.

Topaz.
Mica.

Anhydrite.
Native borax.

Sulphate of magnesia.

Undassed.

Chromate of lead.

Muriate of mercury.
Muriate of copper.

Oxynitrate of silver.

Sugar.

Crystallized Cheltenham salts.

Nitrate of mercury.
Nitrate of zinc.

Nitrate of lime.

Snperoxalate of potash.
Oxalic acid.

Sulphate of iron.

Carbonate of lead. (?)

Cymophane.
Felspar
Benzoic acid.

Chromic acid.

Nadelstein (Faroe.)

viations of

u fronl

To which list a great many more might be added. Bicarbonate of ammonia, indeed, is the only biaxal crystal
we have examined in which the optic axes for all colours appear to be strictly coincident. 934

This separation of the axes of different colours explains a remarkable appearance presented by the rings of Phenomena
all biaxal crystals, when placed with their principal section 45 inclined to the plane of polarization of the incident of the vir-

light. It is universally observed that, in traversing the whole system of rings in the plane of the principal
lual Pnl<is

3 y 2 explained.
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Light, (section, the nearest approximation to Newton's scale of colours is obtained by assuming, for the origin of the Prt IV.

V~""V"-' scale, not the poles themselves, but other points (which have been called virtual poles, though improperly) lying
'

'-v
either between or beyond them, according to the crystal examined, and at a distance from them, inva-

riable for each species of crystal, whatever be the thickness of the plate. In consequence, the poles
themselves are not absolutely black, but tinged with colour ; and their tint descends in the scale as the thickness

of the plate increases, and as, in consequence, one, two, or more orders of rings intervene between them and the

points from which the scale originates. These points are observed to lie between the poles in all crystals which
have the blue axes nearer than the red, such as Rochelle salt, borax, mica, sulphate of magnesia, topaz ; and

beyond them for those in which the red axes include a less angle than the blue, as sulphate of baryta, nitre,

arragonite, sugar, hyposulphite of strontia ; and this fact, as well as the constancy of their distance from the

poles when the thickness of the plate is varied, renders their origin evident. In fact, since the violet rings are
smaller than the red, if the centre about which the former are described, instead of being coincident with that

of the latter, be shifted in either direction, carrying its rings with it, some one of the violet rings will necessarily
be brought up to, and fall upon a red ring of the same order

;
and the same holding good with the intermediate

rays, provided the law which determines the separation of the different coloured axes be not very different from
that which regulates the dimensions of the rings of corresponding colours, the point of coincidence of a red
and violet ring of the same order will be nearly that of a red and green, or any intermediate colour. The tint,

then, at this point will be either absolutely black, (if they be dark rings which are thus brought to coincidence,)
or white, if bright ; and from this point the tints will reckon either way with more or less exactness, accord-

ing to the same scale which would have held good had the points of coincidence been the poles themselves.

Should, however, the two laws above mentioned differ very widely, an uncorrected colour will be left at the

point of nearest compensation, just as happens when two prisms whose scales of dispersion are dissimilar are

employed to achromatise each other. To what an extent the disturbance of the Newtonian scale of tints may
be carried by this and the other causes already explained, the reader may see by turning to the table of tints

exhibited by Rochelle salt inPM. Trans. 1820, part i.

925. We come next to consider the law of the intensity of the illumination of the rings in different parts of their

To suppo- periphery ; but this part of their theory will require us to enter more fundamentally into the mode in which their
sitionsasto formation is effected, and to examine what modifications the polarized ray incident on the crystallized plate

undergoes in its passage through it, so as to present phenomena so totally different from those which it would

crystals in have offered without such intervention. It is evident then, first, that since the ray, if not acted on by the plate,

forming the would have been entirely stopped by the second tourmaline, but, when so acted on, is partially transmitted so as

rings. to exhibit coloured appearances of certain regular forms
;

that the crystallized plate must have either destroyed

altogether the polarization of that part of the light which is thereby enabled to penetrate the second tourmaline,

or, if not, must have altered its plane of polarization, so as to allow of a partial transmission. Between these

Doctrine of two suppositions it is not difficult to decide. Were the portion of light which passes through the second tourma-
polarization ]jne an(j forms the rings wholly depolarized, that is, restored to its original state of natural light, since the

re '

remainder, its complement to unity, which continues to be stopped by the tourmaline, retains its state of polariza-
tion unaltered, it is evident, that each ray at leaving the crystallized plate would be composed of two portions,
one unpolarized (= A), the other (= 1 A) polarized. Of these, the half only of the first ( A) would be

transmitted by the second tourmaline. Now, suppose this to be turned round in its own plane through any
angle (= a) from its original position, then the unpolarized portion will continue to be half transmitted; and
the polarized, being now partially also transmitted, (in the ratio of sin

8 a : 1,) will mix with it, so that the

compound beam will be represented by

A + (1 A) . sin* a sin5 a
-)- . cos 2 a.

Now, if we suppose a to pass in succession through the values 0, 45, 90, 135, 180, &c., this will become

respectively J A, J, 1 J A, \, \ A, &c. Hence, at every quarter revolution the tints ought to change from

those of the reflected rings to those of the transmitted, the complements of the former to white light ; and at

every half quarter revolution no rings at all should be seen, but merely an uniformly bright field illuminated

with half the intensity of light which would be seen were the second tourmaline altogether removed.

92fi. But the phenomena which actually take place are very different. At the alternate quadrants, it is true, the

Phenomena complementary rings are produced, and the appearance is as represented in fig. 188. The black cross is seen
ot the com-

changed into a white one ; the dark parts of the rings are become the bright ones ; the green is changed into
lary

red, and the red into green, &c.
;
so that if we were to examine no farther, the fact would appear to agree with

Fig 188. *ne hypothesis. But in the intermediate half quadrants, this agreement no longer subsists. Instead of a uni-

formly illuminated field, a compound set of rings, consisting of eight compartments, alternately occupied by
the primary and complementary set, is seen, presenting the appearance of fig. 191, and which is further described

in Art. 935.

927. The phenomena then are incompatible with the idea of depolarization. It remains to examine what account can

Hypothesis be given of them on the supposition of a change of polarization operated by the plate ; and here we must
of a change remark in Umine, that this cause is what in Newton's language would be termed a vera causa, a cause actually

l"

in existence; for we have already seen that every ray, whether polarized or not, traversing a double refracting

medium in any direction, except precisely along its axis, is resolved into two, polarized in opposite planes. When
the incident ray is polarized, these portions (generally speaking) differ in intensity, and though, owing to the

parallelism of the plate they emerge superposed, their polarization is not the less real, and either of them may be

suppressed, and the other suffered to pass, by receiving them on a tourmaline properly situated. This is so far
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Light. agreeable to the observed fact, when the tourmaline plate next the eye is removed, the rays of which the two sets Part IV.

- y ^ of rings consist, coexist in the transmitted cone of rays whose apex is the eye, but, being complementary to each v
~v- ^

other, produce whiteness. This may be made matter of ocular demonstration, by employing, instead of a Both seis of

tourmaline, which absorbs one image, a doubly refracting achromatic prism, of sufficiently large refracting angle
r'"Ss *ho-,\n

to separate the two pencils by an angle greater than the apparent diameter of the system of rings, when the
a

primary set will appear in one image, and its complementary set in the other ; meanwhile, to return to our tour-

malines, since the two sets of rings seen in the two positions of the posterior tourmaline are complementary, it

follows, that all the rays suppressed in one position are transmitted in that at right angles to it, and vice versa ;

and, as a necessary consequence, that every pair of corresponding rays in the primary and complementary set are

polarized in opposite planes.
The only thing, then, which appears mysterious in the phenomena thus conceived, is the production of colour. 928.

A doubly refracting crystal, which receives a polarized ray of whatever colour, divides it between its two pencils,
M - Blot's

according to a ratio dependent only on the situation of the planes of polarization and of incidence, and of the
do tr

!".

e of

axes of the crystal, and not at all on its refrangibility. How then happens it, that at certain angles of incidence ^la
the red rays pass wholly into one image, and the green or violet into the other, while at other incidences the
reverse takes place : whence, in short, arises the law of periodicity observed. To answer this question, M. Biot

imagined his theory of alternate, or as he terms it movable polarization, according to which, as soon as a pola-
rized ray enters into a thin crystallized lamina, its plane of polarization commences a series of oscillations, or
rather alternate assumptions per saltnm of two different positions, one in its original plane, the other in a plane
making with that plane double the angle which the principal section of the crystal makes with it. These
alternations he supposes to be more frequent for the more refrangible rays, and to recur periodically, like New-
ton's fits of easy reflexion and transmission, at equal intervals all the time the ray is traversing the crystal, which
intervals are shorter the more inclined its path is to the axis or axes. This theory is remarkably ingenious in

its details ; and in its application to the phenomena of the rings, though open (as stated by its author) to certain

obvious criticisms, is yet, we conceive, capable of being regarded as a faithful representation of most of their

leading features. There is, however, one objection against it of too formidable a nature to allow of its being Objection

received unless explained away, if any other can be devised not open to the same or greater. It is, that it requires
agamst '<

us to consider the action of a thin crystal on light as totally different, not merely in degree, but in kind, from
that of a thick one, while yet it marks no limit by which we are to determine where its action as a thin crystal
ceases, and that proper to a thick one commences, nor establishes any gradations by which one mode of action

passes into the other. A thick crystal, as we know, polarizes the rays ultimately emergent from it in two planes,
dependent only on the position of the crystal and that of the ray, while M. Biot's theory makes the position of
the plane of polarization of the incident ray an element in determining their ultimate polarization by n thin one.
Nor are we in this theory to regard as thin crystals arAy films or delicate laminae. A plate of a tenth of -an inch
thick or more may be a thin plate in some cases of feebly polarizing bodies, such as apophyllite, &c.
As the apparatus employed by M. Biot for studying the phenomena of the colours of thin crystallized plates 929.

offers great conveniences for the measurement of the angles at which different tints are produced, and for their M. Blot's

exhibition in their state of greatest purity and contrast, we shall here describe it, and state some of the chief ?
eneral

results at which he has arrived. A (fig. 189) is a plane glass blackened at the posterior surface, or a plate f described
obsidian inclined at the polarizing angle to the axis of a tube A B, so as to reflect along .it a polarized ray ; (if f\s , 189,

greater intensity be required, we may use a pile of glass plates, taking care that they be of truly parallel surfaces, 190.

and placed exactly parallel to each other.) B C is a tube, stiffly movable round A B as an axis, having a

graduated ring at B, read off by a vernier attached to the tube A B, and carrying two arms, G and H, through
which the axis of a swing frame E passes, which can thus be inclined at any angle to the common axis of the

tubes, its inclination, or the angle of incidence of the ray reflected along the axis on the plane of the frame

being read off by an index on the divided lateral circle D. In this frame is an aperture F, in which turns a

circular plate of brass having a hole in its centre, over which is fastened with wax the crystallized plate to be

examined, and which can thus be turned round in its own plane, independently of any motion of the rest of the

apparatus, so as to place its principal section in any azimuth with respect to the plane of incidence. We have
found it convenient to have this part of the apparatus constructed as in fig. 190, where a is the square plate of
the frame

;
6 a divided circle movable in it and read off by an index ; c, d is a circular plate movable within

the divided circle to admit of adjustment, after which it is fastened in its place by a little clamp, so as to turn

with the circle ; this carries in its centre another swinging circle e, moving stiffly on its axis, and having in the

middle an aperture, over which the crystal is cemented, thus giving room for an adjustment of the plane of the

surface of incidence, in case it be not exactly at right angles to the principal section of the crystal, an adjustment
very useful when artificial surfaces are under examination, which it is hardly possible to cut and polish with

perfect precision. It is also convenient for some experiments to have a second frame similar to the first, placed
on the prolongation of the arms G, H. M is a doubly refracting prism, rendered achromatic either by a prism
of flint glass, or, still better, by another prism of the same doubly refracting medium. Two prisms of quartz,

arranged as in Art. 882, are very convenient. Their angles should be such, that when placed at M the two

images of a small aperture P, in a diaphragm near the end of the tube, should appear almost in contact. The
prisms so adjusted are mounted on a stand N, independent of the other apparatus, and capable of being turned
round by an arm K, carrying a vernier, by whose aid the angle of rotation, or position of the plane in which the

double refraction takes place, can be read off on a divided circle L. The prism should be so adjusted in its cell,

that when the vernier reads off zero, the extraordinary image should be extinguished ;
and when 90, the ordinary.

Occasionally a tourmaline plate or a glass reflector may be substituted for the prism.
1o use this apparatus, the crystallized lamina (which we will at present suppose to be a parallel plate of any

930.
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Light, uniaxal crystal, having

1

its axis perpendicular to the plane of the plate,) is to be placed on the swing frame Part IV -

v^-*' across the aperture, and being adjusted so as to have its axis directed precisely along the axis of the tube when
VS~P*V-""*

Use of this the vernier of D reads off zero, which is readily performed by the various adjustments belonging
1 to the frame,

tus> as above described, the instrument is ready for use. The attainment of this condition may be known by turning-
the tube C on the tube A B as an axis, when the extraordinary image of the aperture P, seen through a doubly

1

refracting prism, ought to vanish in the zero position of the vernier K, and not be restored in any part of the

rotation of the tube ;
for it is manifest, that the axis is the only line to which this property belongs, or to which

all the rings are symmetrical. It is then evident, that, however the parts of the apparatus be disposed, 1st, the

reading off of the vernier D will give the angle of incidence on the plate ; 2d, that of the vernier B, the angle
made by the plane of incidence with the plane of primitive polarization ; 3d, that of the vernier c will indicate

the angle included by any assumed section of the crystallized plate perpendicular to its plane with the plane of
incidence ; and, lastly, that the reading of the vernier K will give the angle between the plane of primitive polari-
zation and the principal section of the doubly refracting prism.

Suppose now we adjust the vernier B to zero, it will then be found, that however the plate E be situated, or
Us applica- whatever be the incidence of the ray, only the ordinary image will be seen (being white,) the extraordinary being

phenomena extinguished (or black.) In this case we traverse the system of rings in the direction of the vertical arm of the

of the ring*
black cross, fig. 185, of the primary, and the white one of the complementary set, see fig. 188. The phenomena

of one axit. are the same if we set the vernier B to 90, and then turn the frame E on its axis, thus varying the incidence in

Fig. 188. a plane at right angles to that of primitive polarization, or, which comes to the same thing, traversing the rings

along
1 the horizontal arm of the black and white crosses. In intermediate positions of the vernier B, we traverse

the ring's along
1 a diameter, making an angle with vertical equal to the reading of the vernier. In this case the

two images of P are both visible, and finely coloured ; the extraordinary image presenting the tint of the primary
rings due to the particular angle of incidence indicated by the vernier D ; the ordinary, that of the comple-
mentary system corresponding to the same angle. The colours of the two images are thus seen in circumstances
the most favourable, being finely contrasted and brought side by side, so as to be capable of the nicest comparison.
It is when the vernier D reads 45, or the plane of incidence is 45, inclined to that of primitive polarization,
that the contrast of the two images is at its maximum, the tints in the extraordinary image being then most

vivid, and those in the ordinary free from any mixture of white light. In general, if A represent the light of

the extraordinary image in the position above mentioned, and a the angle read off on the vernier B, in any other

position of the plane of incidence, the two images in this new position (for the same angle of incidence) will be

represented respectively by
A . (sin 2 a)

2
, and 1 - A (sin 2 a)-

that is, by A . (sin 2 a)*, and (cos 2 a)
2 + (1

- A) . (sin 2 a)
J
.

The former of these expressions indicates a ray whose tint is represented by A, and its intensity by (sin 2 a)
2

; the

latter, a complementary tint 1 A of the same intensity, diluted with a quantity of white light, whose intensity
is represented by (cos 2 a)*.

932. These expressions represent with great fidelity the tints of both images, the intensity of the extraordinary, and
Agreement the apparent degree of dilution of the ordinary one ; and since a ray A polarized in a plane making an angle 2 a

the * r~ with the principal section of the doubly refracting prism, would be divided between the extraordinary and ordinary

M* Blot's
'ma

f?
e in tne ratio of (sin 2 o)

s
: (cos 2 )

2
, it follows, that if we regard the pencil at its emergence from the cry-

hypothesis,
stallized plate as composed of two portions, one (= A) polarized in the above named plane, the other (=: 1 A)
preserving

1

its primitive polarization, the two pencils formed by the doubly refracting prism will be composed
as follows :

Extraordinary image. Ordinary image.

1st. From the pencil A A (sin 2 )" A . (cos -2 a)
1

2d. From the pencil (1
- A) 1 - A

Sum A (sin 2 a)
4

1 A + A . cos 2 '

= 1 - A . (sin 2 a)

Office of the which are identical with those above. Thus we see, that the facts are so far perfectly conformable to M. Blot's

doubly hypothesis of movable polarization, and that we are even necessitated to admit it, provided we take it for

"isnTor^ granted, that the rings exist actually formed and superposed in the pencil emergent from the crystallized lamina,

tourmaline. an^ that the office of the doubly refracting prism is merely to analyze the emergent pencil, and separate the two

setsfrom each other. But if the objection mentioned above against that doctrine be really well founded, this

assumption cannot be correct, and we are then driven to conclude, that the doubly refracting prism, or tourma-

line, or glass reflector, interposed between the eye and the crystallized plate, performs a more important office

than merely to separate the tints already formed;' and that, in fact, they are actually produced by its action, the

crystallized plate only preparing the rays for the process they are here finally to undergo.

933. To explain how this may be conceived to happen will form the object of another Section. Meanwhile we will

here only add, that the transition from uniaxal to biaxal crystals is readily made. We have only to consider, that

by varying the angle of incidence, (the line bisecting the angle between the optic axes being supposed perpen-
dicular to the plane of the plate,) we cross the rings in a line passing through their centre of symmetry O, fig. 183,

and makincr an ansrle with their nrincioal diameter PP. eaual to the angle read off on the vernier B, and that

ny turning the plate in its own plane, or varying the angle read off by the vernier c, we in effect make the system

traversed pass through the successive states represented in fig. 179, 180, 181, 182, changing, not the tint, but

the intensity of the extraordinary image.
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Light. When the doubly refracting prism is turned in its cell, the tints grow more dilute, and when placed in an part jy
v ^ azimuth a, that is, when its principal section is placed in the plane of incidence, both images are colourless, but i _

of unequal brightness. This accords with M. Biot's doctrine of movable polarization ;
for if we grant that the 934

pencil A is polarized in a plane making an angle 2 a with that of primitive polarization, it will make, now, an Effect of

angle = a with that of the principal section of the prism, and A . (sin a)- will be that part of the extraordinary turning the

image arising from the pencil A ; on the othei hand, the pencil 1 A retaining its original polarization,
P"*"* '" its

A) . sin a* will be the portion of the extraordinary image produced by it in the new position of the prism,
and the sum, or the whole image, will be simply 1 x sin a8

, which being independent of A, or of the tint,

indicates that the image is colourless. In the same manner it may be shown, that the ordinary image will equal
1 X cos a', and their intensities will, therefore, be to each other as sin o* to cos a", and will be equal at 45 of
azimuth ; all which is conformable to fact.

The motion of the prism in its cell corresponds to a rotation of the posterior tourmaline in its own plane in 935.

the tourmaline apparatus. The general appearance presented by the rings of a single axis, when this rotation is Effect of

not a precise quadrant, is represented in fig. 191, and the succession of changes being as follows : At the first
turm"6

j.'

1"

commencement of the rotation the arms of the black cross appear to dilate ; they grow at the same time fainter, a^"^^
and segments of the complementary rings appear in them, whose bright intervals correspond to the dark ones of each other.

the primary set, their red to the green portions of that set, and vice vend. The junction of the two sets is marked Fig. 191.

by a faint white or undecided tint. As the rotation proceeds, the primary segments contract in extent, and become
more diluted with white, while the secondary extend, and grow more decided ; at the same time the centre of the

system grows gradually bright, and when the rotation has attained 90, the whole has assumed the appearance
in fig. 189. The phenomena are precisely analogous in the rings of biaxal crystals. The least deviation from
exact rectangularity in the tourmalines gives rise to complementary segments in the dark hyperbolic curves

answering to the arms of the black cross, and to a corresponding dilution and contraction of the primary
segments, which at last disappear altogether in the undistinguishable whiteness of a pair of white hyperbolas
precisely similar to the black ones of the primary rings in their perfect state.

Hitherto we have considered the rings as so narrowed by the thickness of the plate, as to be all contracted 936

within a compass round the poles which the eye can take in at once ; but if the thickness be greatly diminished, T'ms P r -

this will no longer be the case ; and, instead of rings of a distinguishable form, we shall see only broad bands
y"

1

}^
of colour extending to great distances from the poles, and even visible when the axes themselves are so much

.,]a{es at

inclined to the surfaces of the plate as to be quite out of sight ; or even when the axes actually lie in the plane great dis-

of the plate. This is the case with the laminae into which sulphate of lime readily splits ; the axes lie in (heir lances from

plane, so that to see the rings in them, we must form artificial surfaces perpendicular to the lamina, a difficult
lhe axes -

and troublesome operation, from the extreme softness and fissile nature of the substance. The phenomena of

the colours of this crystal were early studied, and almost of necessity misconceived, till Dr. Brewster, by
exhibiting the real axes, showed that they form only a particular case of the general phenomenon we have already
dwelt on.

Adhering to the denominations employed in Art. 885 888, let us call the plane containing the two axes, the 937.

section A ; that perpendicular to it, and passing througli the line which bisects the : r lesser included angle, the Phenomena

section B ; and that which similarly passes through the line bisecting their greater included angle, and is perpen- h;

* slnK le

dicular to both the others, the section C. If the crystal have but one axis, the sections A and B pass through it,

and C is at right angles to it. Then if the lamina contains both axes, its plane will be that of the section A, and
the other two sections will intersect it in two lines (B and C) at right angles to each other. Conceive, now, a

polarized ray to pass through such a lamina at a perpendicular incidence. Then if the plane of polarization
coincide with either of the sections B and C, its polarization will be undisturbed, and the whole of the trans-

mitted light will pass into the ordinary image. But if the plate be turned round in its own plane, the extra-

ordinary image will reappear and become a maximum at every 45 of the plate's rotation
;
and if it be suffi-

ciently thin, will exhibit some one of the colours of the rings, and the tints will descend regularly in the scale as

the thickness is increased, the thickness being a measure of the tint, conformably to the general law in Art. 907,
of which this is only a particular case.

When two such plates are laid together, with their sections B and C corresponding, it is evident that they are 938.

in the same relation as if they formed part of one and the same crystal ;
and we might therefore expect to find Phenomena

what really happens, viz. that such a compound plate polarizes the same tint that a single plate equal to the sum
j

of the thicknesses would do. But if they be crossed, i. e. laid so together that the section B of the one shall
pjrpendicu-

coincide with the section C of the other, M. Biot has shown that the tint polarized is that due to the difference |ar jnc j.

of their thicknesses. If, therefore, this difference be exactly nothing, the crossed plates will be exactly neutra- dence.

lized, at least at a perpendicular incidence, and that whatever be their thickness. (To procure two plates of

exactly the same thickness, we have only to choose a clear and truly parallel plate terminated by fresh surfaces of

fissure, and break it across.)

When, however, the incidence is not perpendicular, such a compound plate as described will still exhibit colours 939.

which vary in, apparently, a very irregular manner as the incidence changes, and with different degrees of
I"*??

1161"

rapidity in different planes. The tourmaline apparatus here renders signal service in rendering the law of these
"

tints, at first sight extremely puzzling, a matter of inspection. When such a crossed plate is placed between the

tourmalines, crossed at right angles, it exhibits the singularly beautiful and striking phenomenon represented in

fig. 192, in which the tints are those of the reflected scale of Newton, the origin being in the black cross. If the pia jgg
tourmalines be parallel, the complementary colours are produced with equal regularity, as in fig. 193. If the f ]93

compound crystal be turned round in its own plane, the figures turn with it, but undergo no change other than

an alternation of intensity, being at a maximum of brightness when the arms of the cross are parallel and
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perpendicular to the plane of orig-inal polarization, and vanishing

1

altogether when they make angles of 45 with
v *v~"-' that plane. If the plates be not crossed exactly at right angles, or be not precisely of equal thickness, other

'

phenomena arise which it is easier for the reader to produce for himself than to read a detailed account of. The
same may be said of the very splendid but complicated phenomena produced by crossing two equally thick

plates of biaxal crystals, such as mica, topaz, &c. having the section A at right angles to their surfaces.

940. Regarding, however, at present only the tint produced at a perpendicular incidence, it is found that when any
LAW of number of plates ofone and the same medium, of any thicknesses, are superposed with their homologous sections

ed
corresponding, the tint polarized is that due to the sum of their thicknesses ; but when any one or more of them

perposition
nave their sections B and C at right angles to the homologous sections of the others, the tint is that due to the

of similar sum of the thicknesses of those placed one way, minus the sum of those of the plates placed the other

plates. way. In algebraical language, if we call I, I', t", &c. the thicknesses, and regard as negative those of the plates
laid crosswise, the tint T polarized by the system will be that due to the thickness t -f ^ -f- <" -j- &c.
When the ray is made to traverse a plate of quartz, zircon, carbonate of lime, or any other uniaxal crystal cut so

Law of tmls as (o contain the axis of double refraction, the same law of the tints holds good, the tint T being proportional to

f>ydissf-
t'le th'ckness ' f the plate, and for any given plate we have T = k t, k being a constant depending on the nature

milar plates
f tne p'ate. Now, if several plates of different uniaxal crystals be superposed, of which t, t', &c. are the thick-

nesses, and if a negative value of t be supposed to denote a transverse position of the axis of the plate, the

resultant tint will be represented by

&c.

In this equation, if the plates be all of one substance, k, k', &c. are all alike ;
but if they be different, k is

Opposite to be regarded as a negative quantity for all such crystals as belong to M. Biot's repulsive class, (Art. 803,) such

'totes o
as carb nate f l'me ? an(l positive for all such (quartz, for instance) which belong to his attractive class. Thus,

positive and eacn term in the above equation may change its sign from two causes, either from a change in the nature of the

negative crystal, or from a change of 90 in its azimuth.

crystals. The above is only a particular case of a more general law which maybe thus announced, The lint ultimately
943. produced is proportional to the interval of acceleration or retardation of the ordinary ray on the extraordinary,

General
g^fo iraversing the. whole, system ; the partial acceleration or retardation in each plate being proportional to the

length of thepath described within the plate, multiplied by the square-ofthe sine of the angle which the transmitted

ray makes, internally, with the optic axis of the plate, if it have but one axis, or to the product of the sines of its

inclination to either, if it have two; and this law holds good for all positions of the plates, and all arrange-
ments of them one among the other. Thus (to instance its application) in the case of two similar and equal

plates crossed at right angles ; by the laws of polarization, the ray which, after its transmission through the first

plate is ordinary, is refracted extraordinarily by the second, and vice versd ; thus the two rays, on entering the second

plate exchange velocities ; and, therefore, when finally emergent, since the thickness of the second is equal to

that of the first, the one ray will have lost ground on the other in its second transmission just as much as it

gained it in its first ; and thus the interval of retardation and the tint will be reduced to nothing.
944. From this it appears, that if two uniaxal plates cut at right angles to the axis be superposed, and adjusted

Supcrposi- so as to have their axes precisely coincident, the system of rings will have their diameters diminished if the

plates be both attractive or both repulsive ; but enlarged, if their characters be opposite. The experiment is

right

S

a'm'les
rat'ler delicate ; but if made with care, placing the plates on one another with soft wax, and adjusting their

to tneir surfaces by pressure to the exact position, it succeeded perfectly in the hands of Dr. Brewster.
axes. This affords a means, independent of any measurement of the separation of the ordinary and extraordinary

945. pencils, of ascertaining whether an uniaxal crystal be attractive or repulsive ; for if its rings be dilated by
Method of

combining it with a thin plate of carbonate of lime, cut at right angles to the axis, it is positive ;
if contracted,

wheihe'r'a"
g ne

ff
at' ve - A simpler and readier method still is to fasten on a plate of the substance under examination, so cut

crystal be as to show the rings, a plate of sulphate of lime of moderate thickness, and then, interposing it between the

positive or tourmalines, to turn it about in its own plane. A position will be found where the rings are unaltered. In this

negative. situation the section B or C of the sulphate of lime is in the plane of primitive polarization. If the com-

pound plate be turned 45 from this situation, it will now be observed (if the thicknesses of the two plates be

properly proportioned) that the rings in two opposite quadrants are entirely obliterated ; and that in the other

two they are removed to a much greater distance from the centre, forming segments of larger circles, much closer

together ; and in which the tints, instead of commencing from the centre, commence from a black interval

between two adjacent white rings in the midst of the system, and thence descend in the scale both inwards and
outwards. In this state of things, the position of the sulphate of lime, with respect to the tourmalines,
must be carefully noted; and the crystallized plate being detached, a plate of carbonate of lime, (perpendicular
to its axis,) or of any other known uniaxal crystal, must be substituted for it ; and the sulphate of lime

replaced in the same position. If, then, it be found, that the same two quadrants of the rings are obliterated in

this, as in the former case, and the new set of rings in the other quadrants be also similarly situated, then

the crystal examined is of the same character as the carbonate of lime, or other crystal used as a standard of

comparison ; but if, on the other hand, the quadrants where the rings were obliterated in the former case be

those where the new rings are formed in the latter, then the characters of the two substances are opposite. If

the crystallized plate be too thin, or of too feeble polarizing power to exhibit these phenomena with necessary

distinctness, we must place it in azimuth 45 on the divided apparatus described in a former article (929 ;) and,

fixing conveniently in the polarized beam a very thin plate of sulphate of lime also in azimuth 45, ascertain,

by making the crystal revolve, whether its tints have been raised or depressed in this plane by the action of the

sulphate ; then, removing the crystal, replace it with a standard one, and repeat the observation without touching
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tight. the sulphate. If both crystals have their tints raised, or both depressed, their characters are similar ; it they be Part IV.

V""*1

contrarily affected, dissimilar. An analogous mode of observation applies to biaxal crystals. v^,

VIII. On the Interferences of Polarized Rays.

In repeating the experiments of Dr. Young on the law of interference it occurred to M. Arago, that it 946.

would be worth while to examine whether the state of polarization of the interfering rays would cause any
Origin of

modification in the phenomena. The experiment was easy in the case where both rays had the same polarization,

being, in fact, the ordinary case ; but when the interfering rays were required to have a different state of pola-
rization, it will easily be conceived that it must be a matter of great delicacy and difficulty to superadd this

condition to the others called for by the nature of the case, which requires that the interfering rays should
emanate at the same instant from a common origin, and should have executed the same precise number of
undulations or periods (within a very few units) between their origin and the point where their interference is

observed. For it is not possible to change the state of polarization of a ray without either altering its course,
or transmitting it through some medium in which more or fewer undulations are executed in the same space.
The joint ingenuity of himself and M. Fresnel, who was associated with him in this interesting inquiry, how-
ever, soon found means of obviating the difficulties and delicacies of the subject, and the results of their expe-
riments have been embodied by them in the following laws :

1. That two rays polarized in one and the. same plane act on or interfere with each other just as natural 947.

rays, so that the phenomena of interference in the two species of light are absolutely the same. Laws f '"'

2. That two rays polarized in opposite planes (i. e. at right angles to each other) have no appreciable ^,

rferen
^
e

action on each other, in the very same circumstances where rays of natural light would interfere so as to ii|,t.

destroy each other. 949
3. That two rays primitively polarized in opposite planes may be afterwards reduced to the same plane ofpola- 949

Titation, without acquiring thereby the power of interfering with each other.

4. That two rays polarized in opposite planes, and then reduced to similar states of polarization, interfere 950
like natural rays, provided they belong to a pencil the whole of which was primitively polarized in one and the

tame plane.
5. In the phenomena of interference produced by rays which have undergone double refraction, the place of the 951,

coloured fringes is not alone determined by the difference of routes or velocities, but that in certain circumstances

a difference of half an undulation must be allowed for.
Such are the laws of interference of polarized pencils, as stated by Messrs. Arago and Fresnel. We use in 952.

their enunciation, and indeed throughout the sequel of this part of the doctrine of Light, the language of the

undulatory system, as really the most natural, and adapting itself with the least violence and obscurity to the

facts. The reader may, if he please, substitute that of the corpuscular hypothesis and the Newtonian fits, super-

adding that of a rotation of the luminous molecules about their axes, with M. Biot
;

or simply content himself

with a bare enunciation of facts, and with general terms expressive of the existing conditions of periodicity,
without much trouble, and only a little circumlocution, but with a great sacrifice of clearness of conception.
With respect to the laws themselves, the first is easily verified

; we have only to repeat any of the experiments Experiment
on the interference of rays emanating from a common origin, described in our section on that subject, substi- tal verifica-

tuting polarized instead of natural light, and the results will be precisely similar, and that in whatever plane
tion of "i

the light be polarized. Rays, then, polarized in the same plane, interfere as natural rays under similar
first '**'

circumstances.

The verification of the second law is more difficult and delicate. The conditions of the production of colours 953.

by interference require that the interfering rays should emanate simultaneously from a common origin, or form Difficulties

parts of one and the same wave proceeding therefrom as a centre ; and should have performed, at the point P*
c " lar

-'

where their interference is examined, the same number of undulations in their respective routes, within a very
few units. Now at their leaving their origin they could not be otherwise than in the same state of polarization ;

and as they are required to arrive at the point of interference in opposite states, a change of polarization must
be operated on one or both rays, either by reflexion, transmission, or double refraction, after leaving their origin,
and that without altering, more than by a few undulations, the difference of their routes. Now, when we
consider how minute a quantity an undulation is, it is easy to conceive the delicacy required in adjusting the

parts of any apparatus constructed for this purpose, or the peculiar contrivances which must be resorted to to

render such extreme and almost impracticable nicety unnecessary.
Several ingenious and elegant methods of making the experiment have been devised by the authors last 954.

named, of which we shall content ourselves with stating one or two of the easiest and most satisfactory. And, Verifica-

first, the origin of the interfering rays being the image of the sun at the focus of a small lens, as we shall lion of ttle

suppose it throughout this section, (unless the contrary be expressly said,) it is evident that if we interpose
Mcond law

between the eye and this image a rhomboid of Iceland spar, there will be formed two images separated from
each other by a space which will he greater the thicker is the rhomboid

;
but which will always (unless

extremely thick rhomboids be used) be very small ; so that the single luminous point will now be resolved into

two, very near each other, and which, by the laws of polarization, send to the eye rays polarized in opposite

planes. But in this disposition of things, the condition of near equality of routes is subverted ; for the ordinary
and extraordinary pencils pursue different paths within the crystal, and with very different velocities ; so that

a difference will thus arise in the total number of undulations executed by each, sufficient to destroy all evidence

VOL. iv. 3 z
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Light, of interference by the production of coloured fringes. To obvial ? this diHculty, M. Fresnel sawed in half a P"t IV.

^V""^ rhomboid of Iceland spar, the two halves of which must of necessity have, at their line of separation and its

ex ^riment*
'mme^'ate confines, precisely equal thicknesses. These halves he placed one on the other, only turning one
90 round in azimuth, so as to have their principal sections at right angles. In this state, a pencil enterin"'

bisected them nearly at the intersection of the planes of separation would at its final emergence be divided, not into four,
rhomboid, but into two only, (see Art. 879,) the ray ordinarily refracted in the rirst half having undergone extraordinary

refraction in the second, and vice versd. The two rays, therefore, have exchanged velocities and directions, in
the second transmission ; and, therefore, when emergent, will have described exactly equal paths with equal
velocities in each respectively, and will differ only in their states of polarization, which will be at right angles
to each other. We have here, then, a case in which pencils diverge from two points side by side, and in a
state in all other respects proper for interfering ; nevertheless, when we look for the fringes which ought to
be formed under such circumstances, (and which with natural light would be seen, see Art. 735 and 736,)
none are visible. Their absence, then, must be owing to the opposite state of polarization of the inter-
r
ering rays.

>;>
(

M. Arago, to make the same experiment, employed a process independent of double refraction. Two fine

erlnfents
s" ts wcre ma(^e in a ^'m plate of copper, through which rays from the common origin were transmitted, and

with mica
f rmed fringes (in their natural state) when viewed by an eye lens in the manner described, (Art. 709.) He

piles.
now prepared two piles of pieces of very thin mica, or films of blown glass laid one on the other, fifteen in

number, and then divided this compound plate in half by a sharp instrument, so that the halves, in the imme-
diate neighbourhood of the line of division, could not be otherwise than of almost exactly equal thickness.
These piles, when exposed at an incidence of 30 to a ray, were found to polarize the portion transmitted
almost completely. They were then placed before the slits so as to receive and transmit the rays from the
luminous point at precisely that incidence, and through spots which were very near each otter in the undivided
state of the pile. They were, moreover, so arranged, (being set on revolving frames,) that the plane of
incidence could be varied (and therefore that of polarization) by turning either round in azimuth without alter-

ing its inclination to the ray, or varying the spot through which the ray passed. And it was then found, that
when both piles were placed so as to polarize the rays in parallel planes, as, for instance, when both were
inclined directly downwards, or one directly down and the other directly up the fringes were formed as if the

piles were away; but where one of the piles was turned round the incident ray as an axis through 90, and so

placed as to polarize the rays transmitted by it at right angles to the other, the fringes totally disappeared, nor
could they be restored by inclining either pile a little more or less to the incident ray in the plane of incidence,
the effect of which would be to alter gradually the length of the ray's path within the pile without changing
its polarization, and thus, to compensate any slight inequality which might still subsist in their thicknesses.
In intermediate positions the fringes appeared, but always the more vividly the nearer the planes of polariza-
tion approached to exact parallelism, thus attaining their maximum, and undergoing total obliteration at each

quadrant of the rotation of either pile, (the other being at rest.)

956. A plate of tourmaline carefully worked to exact parallelism, and bisected, would answer equally well with the
Tourmaline transparent piles to polarize the rays ; but the tourmaline should be selected of very homogeneous texture, such
plates sub- are not easy to meet with, though they maybe found; and in this manner the experiment is perfectly easy

the

U

pMe8.

0r
ant* sat 'sfactory- O"e half the tourmaline is fixed over one aperture, the other movable in a cell in its own
plane over the other. The same phenomena will then be observed by turning round the movable tourmaline as
with the oblique pile in the last experiment.
An experiment still more simple, and equally conclusive, is the following, of M. Fresnel. He placed before

. Fresnel's tne sheet of copper (having, as before, two narrow slits in it very near each other) a single thin parallel lamina

ta^eitp^ri-
^ su'phate f Hme. Now, as this body possesses double refraction, each pencil would be divided into two

ment. an ordinary and an extraordinary one which, according as they emanate from the right or left hand slit, we
Analysis of will term R o, Re, and Lo, Le. If natural light be used to illuminate the slits, these pencils will be of equal
the pola- intensity, but those marked e will be polarized oppositely from those marked o. We may then form four *om-
-.zed tints, binations : 1. Ro may interfere with L o ; 2. R e may interfere with Le ; 3. R o with Le; 4. RewithLo.

Now of these, Ro and Lo are similarly polarized, and they have described equal paths with equal velocities;

therefore, supposing them capable of interference, they will give rise to a set of fringes corresponding exactly
to the middle of the line joining the two slits, or, as we may express it, in the axis of the apparatus. The
same may be said of R e and L e. These two sets of fringes will therefore be superposed, and appear as one of

double intensity. Again, Ro may be combined with Le; but as these two rays have traversed the sulphate in

different directions and with different velocities, those rays of each pencil which meet in the axis will differ by
too many undulations to produce colour ; and if the pencils interfere, the place of the fringes will, instead of
the axis, be shifted towards the side where the pencil has the greatest velocity, (Art. 737,) and that the more,
the thicker the lamina of sulphate, so that if taken of a proper thickness, this set of fringes may be removed

entirely out of the reach of the middle set, and should be seen independent of it. In like manner, the pencil
Re may interfere with L o, and give rise to another set of lateral fringes; but as the ray which in the former

combination was the swifter, in this is the slower, this set will lie on the opposite side of the middle set, sup
posing it produced at all ; and thus there should be seen three sets of fringes, one bright, in the middle,
and two fainter on either side. But, in fact, only one set is seen, viz. the middle set. Therefore the combina-
tion of the rays R o and L e, L o and R e, which are polarized oppositely, produce no fringes, i. e. they do not

interfere.

But if we cut the lamina in half, and turn one half a quadrant round in its own plane, these rays are tnen
reduced to the same polarization ; and the rays R o and L o, Re and L c, which in the former case gave rise to
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Light, the central fringes, are now placed in opposite states of polarization ; and it is accordingly found that the central Part IV

w-v '
fringes have disappeared entirely, and that two lateral sets formed respectively by Ro and Le, Re and L o,

\

y-''
have started into existence. Ifwe turn the lamina slowly round, these will gradually fade away, and the central Experiment

reappear and become brighter, and so on alternately ; thus affording a convincing proof of the truth of the van

second of the laws above enunciated.

The experiment related by Messrs. Arago and Fresnel in support of their third law is as follows : Resuming 959.

the arrangement of Art. 955 or 956, and placing the piles or tourmalines so as to polarize the two pencils
Verification

oppositely, let a doubly refracting crystal be placed between the eye and the sheet of copper, with its principal j^J
1 '* thlrd

section 45 inclined to either of the planes of polarization of the interfering rays. Each pencil will then divide

itself by double refraction into two of equal intensity, and polarized in two planes at right angles, one of which

is the principal section itself. We ought, therefore, to expect to see two systems of fringes, one produced by
the interference of the ordinary ray from the right hand aperture (Ro) with that of the left (L o,) and the other

by that of Re with Le; yet no fringes are seen. The experiment may be varied by substituting for the doubly

refracting prism a tourmaline, or pile, with its principal section in azimuth 45. This must reduce to a common

polarization all the rays which traverse it, viz. the half of each pencil, yet no fringes are seen, and therefore no

interference takes place.
The following experiment is adduced in the Memoir cited in support of the fourth and fifth of the above 9dO.

laws. A lamina of sulphate of lime is perpendicularly exposed to a polarized pencil diverging from a minute ExPeri

point, and immediately behind it is placed a plate of brass pierced with two very small holes near together. ^"fVAh*
The principal section of the lamina is to be placed at an angle of 45 with the plane of primitive polarization, fourth and

In consequence, from each of the holes (right, R, and left, L) will emerge a ray composed of two equal rays, fifth laws.

Ro and Re, and Lo, Le oppositely polarized, viz. at angles + 45 and 45 with the plane of primitive

polarization, which we will suppose vertical. In this situation of things a rhomboid of Iceland spar is placed
between the two holes, and the focus of the eye lens employed to view the fringes, with its principal section

vertical, i. e. making again with that of the lamina angles of 45 either way. Each of the four rays then above

mentioned will be divided into two equal rays, an ordinary and an extraordinary, thus giving rise in all to the

eight rays
Roo, Reo ; Loo, Leo; Roe, Ree ; Loe, Lee.

These rays are received on the eye lens, and conveyed into the eye. Let us now examine their respective route

and states of polarization.

First, then, the rays Ro and lie, after quitting the lamina, are parallel; and by reason of the very small 961.

thickness of it, may be regarded as superposed, being undistinguishable from each other ; but they have

described within the lamina different paths by different velocities, so that on emerging they will differ in phase,

by an interval of retardation proportioned to the thickness of the lamina, and which we will call d, so that a,

being the phase of the ray R o, x -f- d will be that of R e. The very same may be said of L o and L e. More-

over^ the two rays of either of these pairs respectively are oppositely polarized, viz. in planes + 45 and 45

from the vertical. This we may represent at once thus :

Ray Phase. Plane of Polarization.

R o x + 45

Re x + d -45
L o x +45

Le x + d - 45

Next, the portions into which either of these rays is subdivided, in traversing the rhomboid, follow in their 962.

passage through it different paths, and have different velocities; but all which are refracted ordinarily have one

common direction and velocity ;
and so of those refracted extraordinarily ; hence, between the ordinary and

extraordinary rays here produced, will arise a difference of phase which we shall call , so that if x be the phase

of any ordinary ray, x -\-
o will be that of the corresponding extraordinary one ; and their planes of polarization

will be opposed, and will form angles respectively
= and 90 with the vertical. Thus the circumstances will

stand thus :

A. B.

|0

Ray. Phase. Plane of Polarization.

Roo X

Reo x + d O
1

Loo x

Leo * + d

Ray. Phase. Plane of Polarization.

Roe x + S 90

Ree x + d + S 90

Loe x + S 90

Lee x -4- d + 6 90

These eight pencils are all equal in intensity, and all those contained in the first set (marked A) will meet in 963.

one part of the field of view, while those marked B (on account of the thickness of the rhomboid, which we

here suppose considerable, so as to produce a sensible, and even a large separation of the ordinary and extra-

ordinary pencils) will meet in another, distant from the point of concourse of (A) by an interval proportional to

the thickness of the rhomboid, and which we will here suppose so large as to throw the fringes (if any) there

produced, entirely out of the way of mixing with those produced at the concourse of A. Let us then consider

separately, the pencils of rays of the parcel A, and see what interferences can take olace. And first, Roo may
a z 2
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combine with Loo, and since their difference of phase is zero, they will interfere in the axis of the apparatus;
^ and their planes of polarization being coincident, there is no reason why fringes should not there be pro-
duced by their concourse. The same holds good of the combination R i- o and L eo, and, consequently, there

will be superposed on each other in the axis two sets of fringes, producing cue of double brilliancy.

Next, Roo may interfere with Leo; but there being a constant difference of phases d in favour of the latter,

the fringes produced by their concourse will lie to the left of the axis, by an interval proportional to the thickness

of the lamina of sulphate, and will be seen separately. Similarly, the concern se of the pencils Reoand Loo will

determine the production of another set of lateral fringes ; but the difference of phases d being in this case in favour

of the right hand pencil, this system will be situated as much to the right of the axis as the other was to the left.

Thus in the ordinary image three sets of fringes ought to be seen, and in the extraordinary, by a similar

reasoning, as many. Now, in fact, this is the case, and the phenomena are seen on making the experiment pre-

cisely as here described. But it is evident that the rays which form the lateral fringes, by their interferences, are

precisely those which, at their leaving the sulphate, had opposite polarizations, but have been afterwards reduced

to similar polarization by the action of the rhomboid.

If instead of a rhomboid of sensible double refraction we substitute a plate of sulphate of lime, or of rock

crystal, so thin as to produce no visible separation of the pencils, the fringes produced by the pencils B will be

superposed on those arising from the interference of the pencils A, and we should expect therefore, instead of six,

to see three sets of fringes, the middle one being still the brightest. But, in fact, we see but one set, and the

lateral fringes vanish altogether. This remarkable result proves that the colours resulting from the concourse of

the rays ordinarily refracted by the rhomboid, are complementary to those resulting from that of the extraordinary
rays

. antj therefore that we must allow half an undulation to be gained or lost when we would pass from one set

to the other, precisely as in the phenomena of the reflected and transmitted colours of thin plates.

One of the most important consequences of these laws, is that they supply the defective link in the chain which
connects the doctrine of undulations with the colours of crystallized laminae as described in the last section. It

had been already remarked (as we have seen) by Dr. Young, that the passage of the ordinary and extraordinary rays
w itn different velocities through the crystallized plate, would give rise to that difference of physical condition of

tne ravs at t'le ' r er ernence which would lead to the production of colours ; but the difficulty remained to explain,
not why colours were produced in certain circumstances, but why they were not produced in all, in short, what
share the polarization of the incident, and the analysis of the emergent rays, had in the production of the phe
nomena.
To see the nature of this difficulty more clearly, imagine a wave proceeding from a distant radiant point

to be incident on a very thin crystallized lamina. It will be subdivided into two, each traversing the plate
jn a different direction and with its own proper velocity, and each of them emerging parallel to its original direc-

tion. The incident wave will, therefore, after emergence be resolved into two parallel to each other, but sepa-
rated by a small interval equal to the interval of retardation. Now the hindmost of these ought, according
to the law of interferences, to interfere with a subsequent wave of the system to which the foremost belongs,
and thus periodical colours should arise on merely looking against the sky through such a lamina without any
other apparatus. Why then are none seen? To this the law of Messrs. Arago and Fresnel afford a satisfactory
answer. The two systems of waves into which the incident system is resolved are oppositely polarized, and

therefore, though all other conditions be satisfied, incapable of interfering.

To understand how the colours of the polarized rings must be conceived to be produced by interference, let us

take the simplest case when a polarized ray, A B, fig. 194, is incident on any thin crystallized plate B, whose

principal section is 45 inclined to the plane of primitive polarization. Let A be the system of waves which
constitutes the incident ray ; then in its passage through the crystallized lamina it will be divided into systems
am* ^ ^ e(

l
ual intensities, polarized in planes + 45 and 45 inclined to that of primitive polarization,

and the one lagging a few undulations behind the other, so as to interfere, as represented in the figure, and con-

stituting the parallel rays C F and D G. Let these now be received on, and transmitted through, a doubly
refracting prism F G H L placed with its principal section in the plane of primitive polarization, or 45 inclined to

that of the crystallized lamina. Then will each of the incident rays be again subdivided, C F into II M and
I P, and D G into KN and L Q, all of equal intensity. Of these, H M and K N emerge parallel, as also K N
and LQ respectively. Now the systems of waves O and E which follow each other at a certain interval d will

continue to do so in both the refracted rays, as if they formed one compound system ; so that each of the pencils
H M K N and I P L Q will consist of a double system of waves O e and E e, O o and E o respectively. The former

pair following each other at the interval d, and the latter at the interval d i undulation, (by reason of the demon-
strated fact, that in passing from the ordinary to the extraordinary system half an undulation must be allowed.
See Art. 966.) Now as each ray of these pairs respectively have similar polarizations, viz. those of the pair
ordinarily refracted (O o and E o) in the plane of the principal section of the prism, and those of the extra-

ordinary pair O e and E e in a plane at right angles to it, there is no reason why interference should not take

place, and the consequence must be, the production of complementary colours in the two pencils finally emergent

corresponding to the intervals of retardation d and d -j- -5-.
which is just what really happens.

Part IV.

Ex lanation
Conceive now another ray incident on B in the direction A B, but polarized in a plane at right angles to that

of tne"com" f tne ray considered in the last paragraph. Then this will undergo precisely the same series of divisions an

plementary subdivisions as the former. But the intervals of retardation will be different ; for its plane of polarization when
tints. incident on B being now related to the plane of ordinary refraction, as that of the other ray at its 'ncidence was
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Lignt. to the extraordinary, and vice, versa, a difference of half an undulation must (as already explained) be admitted part jy
v-^-' in the relative position of the two systems of waves O, E, at their emerg-ence, from this cause, independent of i

the interval of retardation within the plate ; so that if d were the interval in the former case, d ^ X will be the

difference now, and, after passing through the prism, we shall have for the intervals of retardation in the two

binary pencils, instead of d and d + ^ X which they were before, d J X and d. Hence the two pencils
will exchange colours when the polarization of the incident light is varied by a quadrant, and this is also

conformable to fact. If this reasoning be not thought conclusive, the reader is referred forwards to Art. 983
and 984.

Next, let the incident ray be unpolarized. This case, as we have seen Art. 851, is the same with that of a 971,
ray consisting of two equal rays oppositely polarized, and therefore in each pencil will coexist, superposed on Why co-

each other, the primary and complementary colour arising from either portion, which being of equal intensity
lours are not

will neutralize each other's colours and the emergent pencils will be white, and each of half the intensity of the P ro(ll

j

ced b
.Y

incident beams. This then is the reason (on this doctrine) why we see no colours when the light originally J|h
ar

incident on the crystallized plate is unpolarized
Thus, the theory of interferences, modified by tne principles above stated, affords, as we see, an explanation 972.

of the colours of crystallized plates totally distinct from that of movable polarization. The only delicacy in its M. Fresnel's

application to all cases, lies in the determination which of the emergent pencils must be regarded as having its general ruh

interval of retardation increased by half an undulation. M. Fresnel gives the following rule for this essential

point. (Note on M. Arago's Report to the Institute on a Memoir of M. Fresnel relative to the colours of to'allow for

doubly refracting lamina?, Annales de Cfiimie, vol. xvii. p. 80.*) The image whose tint corresponds precisely to the half un-

the difference of routes, is that in which the planes ofpolarization of its constituent pencils after having been sepa-
dulation

rated from each other, are brought together by a contrary motion, while, on the other hand, the. pencils whose
j?

au>ej or

planes ofpolarization are brought to coincidence by a continuance of the same motion by which they were sepa-
rated, produce by their reunion the complementary image. To understand this better, let P C be the plane of F'S- ^S-

primitive polarization projected on that of the paper, to which let us suppose the ray perpendicular, C O that of
the principal section of the crystallized lamina, and C S that of the principal section of the doubly refracting

prism ; then the incident pencil polarized in the plane P P' will after penetrating the lamina be divided into two,
one O polarized in the plane C O, the other E in the plane C E perpendicular to it. Now, C O may always be
so taken as to make an angle not greater than a right angle with C P, and C E so as to have C P between C E
and C O ; so that the plane C P may be conceived to open or unfold itself like the covers of a book, into C O and
C E, one on either side. Again, C S may always be regarded as making an angle not greater than a right angle
with C O, and when the ray O resolves itself into two (O o and O e) by refraction at the prism, its plane of

polarization C O may be conceived to open out into the two C S and C T at right angles to each other, including
C O between them ; and in like manner the ray E will resolve itself into two E o and E e, and its plane of pola-
rization C E will open out into the two C S and C T', having C E between them in the case of fig. 195 (a),
and into C S' and C E in that of fig. 195 (6) ; in the former case C T' is a prolongation of C T, in the latter C S'

is a prolongation of C S. The rays O o and E o then which make up the ordinary pencil, have, in the case of

fig. (<z),
been each brought to a coincident plane of polarization C S by two motions in contrary directions, as

represented by the arrows, and the extraordinary ones O e and E e have been separated and brought back to a

coincident plane by motions continued in the same direction for each respectively. The reverse is the case in

fig. 6. In the case then of fig. a the colours of the ordinary pencil O o -f- E o will be those which correspond

precisely to the difference of routes, and those of the extraordinary one O e + E e will correspond to that differ-

ence plus half an undulation, while in that of fig. 6 the reverse happens. This rule is empirical, i. e. is merely a

result of observation. It is clear that the principle of the conservation of the DM viva in this, as in the colours

of uncrystallized plates, requires that the two images should be complementary to each other, and therefore

half an undulation must be gained or lost by one or the other pencil, but which of the two is to be so modified

we have no me;ms of knowing a priori.
This once determined, however, we have no difficulty in deducing the formulae of intensity and other circum- 973

stances of the phenomena when the azimuth of the crystallized plate is arbitrary, instead of being, as we have

hitherto supposed, limited to 45. The analytical expressions of the intensity of the pencils we must reserve for

our next section.

IX. Of the application of the Undulatory Doctrine to the explanation of the phenomena of Polarized Light
and of Double Refraction.

The phenomena of double refraction and polarization, as exhibited in the experiments of Huygens on Iceland 0,74

spar, were regarded by Newton and his followers as insuperable objections to the undulatory doctrine, inasmuch Newton's
us it appeared to them impossible, by reason of the qiiaqudversum pressure of an elastic fluid, to conceive an objections

undulation as having a different relation to different regions of space, or as possessing sides.
" Are not," says against the

Newton,
"

all hypotheses erroneous in which light is supposed to consist in pressure or motion propagated

* This Memoir was read to tne Institute, Oct. 7, 1816. A Supplement was received Jan. 19,

June 4, 18'21. And while every optical philosopher in Europe has been impatiently expecting ii

unpublished, and is known to us only by meagre notices in a periodical Journal.

,
1818. M. Arago's report on it was read

its appearance for seven years, it lie* a> yet
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Light, through a fluid medium?" ........ "for pressures or motions propagated from a shining body through an uni-

v "v*'' form medium, must be on all sides alike, whereas it appears that the rays of light have different properties in
v

their different sides." ........ " To me, this seems inexplicable, if light be nothing else than pressure or motion

propagated through ether." Opticks, book iii. quest. 28. And, again, quest. 29
;

" Are not rays of light very
small bodies emitted from shining substances?

1'

........ " The unusual refraction of Iceland crystal looks very
much as if it were performed by some kind of attractive virtue lodged in certain sides both of the rays and of the

particles of the crystal.'' ......
"

I do not say this virtue is magnetical. It seems to be of another kind. I only

say, that, whatever it be, it is difficult to conceive how the rays of light, unless they be bodies, can have a per-
manent virtue in two of their sides which is not in their other sides, and this, without any regard to their position
as to the space or medium through which they pass."

975. Although we have no knowledge of the intimate constitution of elastic media, or the manner in which their

Examined, contiguous particles are related to each other and affect each other's motion, yet it is certain that the mode and
laws of the propagation of motion through them by undulation cannot but depend very materially on this con-

nection. The only analogies we have to guide us into any inquiry into these laws, are those of the propagation
of sound in air or water, and of tremors through elastic solids, and along tended chords and surfaces ; and such is

the extreme difficulty of the subject when taken up in a purely mathematical point of view, that we are forced to

have recourse to these analogies, and, dismissing in the present state of science the vain hope of embracing the

whole subje.ct in analytical formulae, suffer ourselves to be instructed by experience, as to what modifications the

peculiar constitution of vibrating media may produce in the propagation of motion through them. Now, when
sound is propagated through air or water, in which the molecules are at least supposed to have no mutual con-

nection but to be capable of moving with equal facility, and to be restored to their places with equal elastic-

forces, in whatever direction they are displaced, and in which, moreover, it is (at least theoretically) taken for

granted, that the motion of any molecule has an equal tendency to set in motion those adjacent to it, in what-

ever direction these may be situated with respect to it; it is difficult to conceive that the motion of a molecule in

the surface of a wave, at some distance from the centre whence the sound emanates, can be performed otherwise

than in the direction of the radius, or at right angles to the surface of the wave; so that in this case the motion
of the vibrating molecules must coincide with the direction of the rays of sound, and there appears, therefore, no
reason why such rays should bear different relations to the different regions of space surrounding them, whether

right or left, above or below; for the ray being regarded as an axis, all parts of the sphere round it are similarly
related to it.

976. But if we conceive a connection of any kind, such as may possibly be established by repulsive and attractive

forces, or magnetic or other polarities subsisting between the molecules of the vibrating medium, the case is

altered. It will no longer then follow of necessity, that the individual motion of each molecule is performed in

the direction in which the general wave advances, but it may be conceived to form any angle with that direction,

even a right angle. A familiar instance of such a mode of propagation may be seen in the wave which runs along
a long stretched cord, struck, shaken,.or otherwise disturbed at one end. The direction of the wave is the length
of the cord, and that of the motion of each molecule lies in a plane perpendicular to it. Now this is precisely the

Fresnel's kind of propagation which M. Fresnel conceives to obtain in the case of light. He supposes the eye to be
theory of affected only by such vibrating motions of the ethereal molecules as are performed in planes perpendicular to the

vibrations
directions of the rays. According to this doctrine, a polarized ray is one in which the vibration is constantly

performed in one plane, owing either to a regular motion originally impressed on the luminous molecule, or to

some subsequent cause acting on the waves themselves, which disposes the planes of vibration of their mole-

cules all one way. An unpolarized ray may be regarded as one in which the plane of vibration is per-

petually varying, or in which the vibrating molecules of the luminary are perpetually shifting their planes of

motion, and in which no cause has subsequently acted to bring the vibrations thus excited in the ether to

coincident planes.

977. The analogy of the tended cord (which appears to have suggested itself to Dr. Young on considering the

Propagation optical properties of biaxal crystals in 1818) will help our conception greatly. Suppose such a cord of indefinite

of light length, stretched horizontally, and one end of it being held in the hand, let it be agitated to and fro with a

.

a

^ motion perpendicular to the length of the cord. Then will a wave or succession of waves be propagated along it,

waves alone an(^ every molecule of the cord will, after the lapse of a time proportional to its distance from the hand, begin
a stretched to describe a line or curve similar and similarly situated to that described by the extremity at which the agitation
cord.

originates. If the original agitation be regularly repeated and constantly confined to one plane, the same will

be true of the motion of each molecule, and the whole extent of the cord will be thrown into the form of an undu-

-.ting curve lying in one plane, so far as the motion has reached. In this case it will represent a polarized ray
or system of waves. If, after a few vibrations in one plane, the extremity be made to execute a few in another,

and then again in another, and so on, so that the plane of vibration shall assume in rapid succession all pos-
sible situations, since each molecule obeys exactly the same law of motion with the extremity, the curve will

consist of portions lying in all possible planes, and since by reason of the propagation of the undulation along it,

every point of it is in succession agitated by the motion of every other, all these varied vibrations will run

through any given point of it, and were a sentient organ like the human retina stationed there, the impression
it would receive would be analogous to that excited in the eye by an unpolarized ray of light.

<;*S. It may be objected to this mode of conceiving the luminiferous undulations, that the molecules of the ether, if

Ohjectsins it be a fluid, such as we have hitherto all along regarded it, cannot be supposed connected in strings, or chains

eons'dertd. [j^g those of a tended cord, but must exist separate and independent of each other. But it is sufficient for our pur-

pose to admit such a degree of lateral adbesion (we hesitate to term it viscosity) as may enable each molecule in

its motion not merely to push before it those whi"H lie directly in the line of its motion, but to drag along
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Light, with it those which lie on either side, in the same direction with itself. Or, acknowledging at once tne 1'art IV.

v^' difficulty, since light is a real phenomenon, we are not to expect it to be produced without a mechanism VN V I/

adequate to so wonderful an effect. We do not hesitate to attribute to the fluids which are imagined to account
for the phenomena of heat, electricity, magnetism, &c. properties altogether repugnant to our ordinary notions

of fluids, and why should we deny ourselves the same latitude when light is to be accounted for. It is true

the properties we must attribute to the ether appear characteristic of a solid than of a fluid, and may be

regarded as reviving the antiquated doctrine of a plenum. But if the phenomena can be thereby accounted

for, i. e. reduced to uniform and general principles, we see no reason why that, or any still wilder doctrine,

should not be admitted, not indeed to all the privileges of a demonstrated fact, but to those of its represen-
tative, or locum tenens, till the real truth shall be discovered. Assuming it, then, with M. Fresnel, as a pos-
tulatum, that the vibrations of the ethereal molecules which constitute light are performed in planes at right

angles to the direction of the ray's progress, let us see what account can be given of the phenomena of

polarized light.

And first, then, of the interference of two polarized rays, whether polarized in the same, or different planes. 979.

The plane of polarization in this doctrine may be assumed to be either that in which the vibrations are executed, Explanatioa

(i. e. a plane passing through the direction of the ray and the line described by each of the vibrating molecules
in its excursion,) or one perpendicular to it, which we please. Reasons, presently to be stated, render the latter interference

preferable, but at present it is a matter of indifference which we assume. Now, in 3, Part III. we have on this

investigated at length, with a view to the present inquiry, the modes of vibration which result from the combi- doctrins.

nation of any assigned vibrations, whether executed in the same or different planes ; and it follows from the

purely mechanical principles there laid down, 1st, That the combination of two vibrations executed in the same

plane, produces a resultant vibration in the same plane, which may be of any degree of intensity from the sum
to the difference of the intensities of its component vibrations, according to the difference of their phases. Now,
each of these systems of vibration represents a polarized ray; so that rays polarized in the same plane ought,
on these principles, to be capable of destroying or reinforcing each other by interference, as we see they do.

But the case is otherwise when the component vibrations are executed in different planes, for in that case it i

obvious that they never can destroy each other completely so as to produce rest. The general case of non-
coincident planes of vibration is analyzed in Art. 618 ; and in Art. 621 we see, that even when each of the

component vibrations is rectilinear, the resultant is elliptic ; so that each molecule of the ether performs
continual gyrations in one direction, and never can be totally quiescent.
Thus we see that the interference of rays similarly polarized, and the non-interference of those dissimilarly, 9SO.

is a necessary consequence of the hypothesis we are considering; and indeed was the phenomenon which first Analogy

suggested it. It may be familiarly explained by the analogy of our tended cord. Conceive such a cord to of lh

have its extremity agitated at equal regular intervals with a vibratory motion performed in one plane, then it ^c

will be thrown, as we have seen, into an undulatory curve, all lying in the same plane. Now, if we superadd
to this motion another, similar and equal, but commencing exactly half an undulation later, it is evident that the

direct motion every molecule would assume, in consequence of the first system, will at every instant be exactly
neutralized by the retrograde motion it would take in virtue of the other ; and, therefore, each molecule will

remain at rest, and the cord itself be quiescent. But if the second system of motions be performed in a plane
at right angles to the first, the effect will evidently only be to distort the figure of the cord into a curve of double

curvature, which, in the general case, will be an elliptic helix, and will pass into the ordinary circular one when
the two component vibrations differ in phase by a quarter of an undulation, or 90. (See Art. 627. Carol.)

In this case the extremity of the cord describes a circle with a continuous motion, and this motion is imi- 981.

tated by each molecule along its whole length. It is easy to make this a matter of experiment ; we have only Case of a

to hold in our hands the end of a long stretched cord, or grasp it firmly in any part of its extent, and work the ro
|
atory o:

part held round and round, with a regular circular motion, and we shall see the cord thrown into a helicoidal ^ on-

curve, each portion of which circulates in imitation of the original source of the motion

But experience shows, not merely that two equal rays polarized at right angles do not destroy each other for 98-2

any assignable difference of origins, but, that whatever be this difference, the intensity of the resultant ray remains Resultant of

absolutely the same. Now this is also a necessary consequence of the theory of transverse vibrations. To show two ra
.v

this, we need only refer to the expressions for A, B, C in equation (7,) Art. 619, resuming at the same time the
[Jar]"e

e

j
y

notation and reasoning of that article. The intensity of the impression made on the eye by any ray being Investigated

proportional to the vis viva, is represented by the sum of the several vires vivee in the three rectangular

directions, or by A2 + B -f- C, that is, by

a*_f- 53 _^_ C2 _|_ a
tt

_|_ j'i _j_ C"L
_^_ 2 a a', cos (p - p') + 2 b b' . cos (q

-
q') -\- -2 c c . cos (r

-
/).

Now if we assume the directions of the coordinates x and y to be those transverse to that of the ray, and the

one in the plane of polarization of one ray, the other in that of the other, at right angles to it, and that of z

in the direction of the ray itself, we have

a' = 0, 6=0 e = 0, d = ;

and therefore the above expression for tbe intensity becomes

A- B-'-f O= a*+ 6' 2
,

whicn is independent of p p', q q\ r r, the difference of phases, and is equal to tile sum 01 tne mteu-
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I jght. sities of the separate rays. And we may remark, by the way, that no other supposable mode of vibration but
^
Part

^v
"V"""*' that in question, in which c and (/, the amplitudes of vibration in the direction of the ray vanish, could produce

"""V~"

the same result. (Fresnel's Considerations Theoriques sitr la Polarization de la Liimiere. Bulletin de Ut

Sociile Philamatique, October, 1824.)

983. Let us now consider what will happen when a ray polarized in any plane is resolved into two polarized
Rationale of in any other two planes at right angles to each other, and these again reduced to two others also at right
the rule for

... . .. _.- ...

Fig. 195. hypothesis assumed) at right angles to the plane of primitive polarization. When this ray is divided into two
others oppositely polarized, the vibrations are of course resolved into two others performed in planes at right

angles to each other. Let C O and C E be the projections of these planes, which are therefore perpendicular
to the planes of polarization of the two new rays respectively. Suppose that at any instant the molecule C of

the primitive ray is moving from C in the direction C P; then this motion, if resolved into two, will give rise

to two motions, one in the direction from C towards O, the other /rom C towards E. If each of these motions)

be again resolved into two, in planes whose projections are S C S' and TCT', at right angles to each other, that

in the direction C O will produce two motions, one in the direction C S, and the other in the direction C T ;

and on the other hand the motion in the direction C E will produce one in the direction C S, and the other (in

the case of fig. 195, a) in the direction CT' opposite to C T. Thus the two resolved motions in the plane S S'

will conspire, but those in the plane TT' will oppose, each other. In the case of fig. 195, b, the reverse will

happen ; the motions in the plane T, T' conspiring, and those in the plane S S' opposing, each other. For sim-

plicity of conception, however, we will confine ourselves to the former case. If, now, we pass from the consi-

deration of the vibrations to that of the rays, it will appear that we have, in fact, resolved the original ray

polarized in the plane P P' into two, polarized in planes perpendicular respectively to C O and C E ; and these

again, finally, each into two, viz. one polarized in the perpendicular to S S', and one perpendicular to TT*.
The two portions polarized perpendicular to S S' form one ray, and those perpendicular to TT' another; but in

the former, the component portions tend to strengthen, in the latter, to destroy each other. Hence, if we
consider the two former portions as having a common origin, we must regard the latter as differing by hah
an undulation.

984. Hitherto we have supposed the second resolution of the rays to take place at the same point C in the course

of the ray as the first, but this may not be the case, and several cases may be imagined ; first, we may suppose
the two portions into which the ray is first resolved to run on in the same line with equal velocities ; and after

describing any given space, to be then resolved, at another point C' (whose projection in the figure will coincide

with C) into the final rays S S' and TT'. It is evident that this will make no difference in ihe result, for the

phases in which each ray arrives at C' will be alike ;
and after the second resolution the conspiring vibrations

in the direction S S' will still he in the same phase, and the opposing ones in the plane TT 1 must still be

regarded as in opposite phases, i. e. as differing by half an undulation. Or, secondly, we may suppose, that,

owing to any cause, the two resolved rays do not travel with equal velocity, (as in the case where the reso-

lution is performed by double refraction.) In this case, if i be the interval of retardation of the one ray on

the other when they arrive at C', i will represent the difference of phases of the two rays at the instant of their

second resolution. Consequently, when resolved, the final ray, whose vibrations are performed in S S', will be

the mm; and that whose vibrations are performed in TT', the difference of two rays, one in a certain phase (0),

the other in the phase -J- i ; or, which is the same thing, the former will be the sum of two components
in the phases and -j- i ; the latter, the sum of two in the phases and -j- i -)- 180, so that still the

difference of half an undulation is to be applied. In the case of fig. 195, 6, if we pursue the same reasoning,
it will appear that this difference still subsists, but must be applied conversely, viz. to the compound ray whose
vibrations are performed in C S.

985. We have here, then, the theoretical origin of the allowance of half an undulation, in those cases where it is

required to account for the polarized tints, Art. 966, and of the rule laid down in Art. 972 for its correct appk-
cation. However arbitrary the assumption may have appeared as there presented, and however singular it

may have seemed to make the affections of a ray at one point of its course dependent on those which it had

at a former instant, we now see that the whole is a direct and very simple consequence of the ordinary elemen-

tary rules for the composition and resolution of motions. It is worthy of notice, that the fact was ascertained

before the theory of transverse vibrations was devised, so that this theory has the merit of affording an a priori

explanation of what had previously all the appearance of a mere gratuitous hypothesis.
986. In conceiving the resolution of a ray into two others polarized in different planes, we may be aided by the

Application analogy of the tended cord, which we have before had occasion to refer to. In fig. 196 let A B be a stretched
ot the ana-

cor(j ) branching at B into the two B C and B D, making a small angle with each other at B, and having either

stretched

*
e1ua' or unequal tensions. Suppose the plane in which the two branches lie to he (for illustration's sake) hori-

cord. zontal, and let the extremity A of the single cord be made to vibrate regularly in a vertical plane ; or, at least

Fig. 196. let the vibrations of the cord, before arriving at B, be reduced to a vertical plane by means of a small polished
vertical guide I K, against which the cord shall press lightly, and on which it may slide freely without friction.

Beyond the point of bifurcation B, and at such a distance that the excursions of the molecule B shall subtend

no sensible angle from them, let two other such polished guiding planes be placed, inclined at different angles
to the horizon, and making a right angle with each other. Suppose now B to make any excursion from its

point of rest, then were the plane E F parallel to I K, the molecule of the branch B C contiguous to E F would

ilide on E F through a space equal to the whole excursion of B
;
but since it is inclined to I K at an angle
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Ujht. (:= 0) a part only ot the motion of B will be employed in causing this molecule to glide on E F, and the iVtIV.

\
s remainder will cause the cord to bend over and press on the obstacle ; but by reason of the minuteness of the v -^

excursions of B, this bending and the resistance of the obstacle and consequent loss of force will be very minute

and may be neglected. Now, since the pressure of the obstacle removes the cord from the position it would
have taken had no obstacle existed, in a direction perpendicular to its surface, it is easy to see that the

amplitude of excursion of the contiguous molecule on the plane E V must be to that of B as cos 6 to radius ;

and, therefore, calling a the amplitude of B's excursions, a . cos will be that of the molecule contiguous
to E F, and of course that of every subsequent molecule of the branch B C. Here the part of B's motion,
which is perpendicular to E F, is not expended or destroyed in bending the cord B C over the obstacle, but

remains in activity, and exerts itself on the branch B D, causing it to glide on the plane G H ; and the ampli-
tude of the excursions of the molecule in contact with this plane will in like manner be represented by a . cos

(inclination of G H to I K,) that is, by a . cos (90 0), or by a . sin 0. The vis viva, then, in each of these

respective planes is represented by a* . cos 0* and a1
. sin G*, whose sum is equal to a2

, the initial vis viva.

If we decompose, in like manner, the maximum velocity a of the ethereal molecule C (fig. 195) in the 987.
direction C P into two in the respective directions C O and C E, we get a . cos and a . sin for the elementary Rationale of

velocities; and since the amplitudes, Cfeteris paribu*, are as the velocities, (Art. 610,) the amplitudes of the Malu
f'

s

component rays will be respectively a . cos and a . sin and their intensities, which are as the squares of the
tens

.

r

J

amplitudes, (Art. 605,) will be n2
. cos (P and as

. sin 0". Now this is the very law propounded by Malus for the the comple-
intensities of the two portions into which a polarized ray is divided by double refraction, and of which the mentary

theory of transverse vibrations gives, as we see, a simple and rational a priori account, thus raising it from rajs.

a mere empirical law to the rank of a legitimate theoretical deduction.

We have not done with the analogy of the tended cord. What we have shown in Art. 986 is independent of 988.
the tensions of the branches into which the cord is divided, and relates only to the amplitudes of their excur- Case of the

sions from rest when thrown into vibration. But the velocity with which the waves, once produced, will be two ~

propagated along either branch depends solely on its tension. Nothing, however, prevents the tensions of the
durations""

two branches from being very different ; for, whatever be the ratio of two forces applied in the directions B C
propagated

and B D, they may be balanced at B by a proper force applied along any other line as B A. Hence the waves with

will run along B C and B D with different velocities. Similarly, if we conceive, that owing to the peculiar
different

constitution of crystallized bodies, and the relation of their particles to the ether which pervades them, its mole-
ve

cules are more easily displaced, or 5'ield to a less force in certain planes than in others ; or, in other words,
that it possesses different elasticities in different directions ; then will the planes of polarization assumed by
the resolved portions of the rays determine the elasticities brought into action, and, by consequence, the

velocities of their propagation. Now we have, in a former section, shown that the bending of a ray at the

confines of a medium depends essentially on its velocity within as compared with that without, by the analytical
relations deduced from the "

principle of swiftest propagation." A difference of velocity, therefore, draws with

it, as a necessary consequence, a diversity t,f path ; and thus the bifurcation, or double refraction of a ray
incident on a crystallized surface, presents no longer any difficulty in theory, provided we can find an

adequate reason for the resolution of its vibrations into two determinate planes at the moment of its entering
Ihe crystal.
Let us take (with M. Fresnel, Annales de Chimie, xvii. p. 179 et seq.) the case of a crystal with one axis.

We may regard this, or rather the ether within it, modified in its action by the molecular forces of the crystal,
Ex

pla"a'j<"i
as an elastic medium in which the elasticity in a direction perpendicular to the axis is different from that in a nomen Of
direction parallel to it, that is, in which the molecules are more easily compressible in the one than in the other double

direction ; but, equally so in all directions perpendicularly to the axis, on whatever side the pressure be applied, refraction

To aid our conceptions in imagining such a property, we may assimilate an uniformly elastic medium to an in
.

cr
>'
stals

assemblage of thin, elastic, hollow, spherical shells in contact; and such a medium as we are considering, to a
wl

.

similar assemblage of oblate or prolate hollow ellipsoids, arranged with all their axes parallel to one common direc-

tion, which is that of the axis of the crystal.* It is evident that the resistance of the spherical assemblage to pressure
must be the same in all directions, but that of the spheroidal must differ according as the pressure is applied

perpendicularly or parallel to the axis. Thus, it is easy to crush an egg by a force applied in the direction

of its shorter diameter, which will yet sustain a violent pressure applied at the extremities of its longer. It is,

moreover, evident, if any molecule of such an assemblage were disturbed, so as to throw it into vibration, that,

provided always the amplitude of its excursions were extremely small compared to the diameter of each ellipsoid,

the immediate tendency of the vibration will be to communicate motion to two strata only of molecules, viz. that

in which the axis and equator of the disturbed molecule lie respectively, since it is only at the poles and equator
that they touch, and therefore only through these points that motion can be communicated from one to the

other. Consequently, any motion communicated to a molecule of such a mass could only be propagated by
vibrations performed in planes parallel and perpendicular to the axis. Hence, if a vibratory motion in any
plane be propagated into such an assemblage of particles from without, it will immediately, on its reaching it,

The idea of spheroidal molfculei in Iceland spar suggested itself to Huygens (raiher fancifully, perhaps) as a means by winch spne-
roidal undulations might be propagated through it, (0/>. Reliq. torn. i. Tructiitus de Lumiue, p. 70, cited by Wollaston, Phil. Tram. cm.

p. 58 ;) and the last-named eminent 1'hilosopher, in the Bakerian Lecti ,e for 1813, has most ingeniously shown how such molecules may be

combined to build up crystals, having the primitive forms and cleavage- of acuie and obtuse rhomboids. It is true, that in all this there is

much hypothesis; and it should be observed, too, that the crystallogriphic stiucture would require oblate spheroids, where in the text we
have employed prelate, and vice versa*. But we intend there only &n analogy, not a theory. It would be easy to devise hypothetical
modes of action where these forms might be reversed if needful.

VOi:, IV 4 A
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l.iijht. he resolved into two, in the planes above named

;
and these, hy reason of the different elasticities, will be

^-~v- '
propagated with different velocities.

990. The reader must not suppose that this is intended for an account of the real mechanism of crystallized bodies.
Bifurcation

j t js merely intended to show that it is not absurd, or contradictory to sound mechanical principles, to assume
of me re- ^^ ^^ ^y ^e tne j r constitution, that vibrations can only be propagated through them by molecular excur-

s 'ons executed in planes parallel and perpendicular to their axes. Assuming, then, that such is the case, the

vibrations of a ray incident on such a crystal will be resolved into two, performed in these respective planes, and

their velocities of propagation being different, the rays so arising will follow different courses when bent by
refraction. Let us first consider that whose vibrations are executed in planes perpendicular to the axis. Since

the crystal is symmetrical with respect to its axis, and equally elastic in all directions perpendicular to it, the

Properties velocity of propagation of this portion will be the same in all directions. Its index of refraction, therefore, will be

oftheordi- constant, and the refraction of this portion will follow the ordinary law. Moreover, its plane of polarization

nary ray. being that perpendicular to which the vibrations are performed, will necessarily pass through the axis, in which

respect it also agrees with the ordinary ray, as actually observed.

991. The extraordinary ray arises from the other resolved portion of the original vibration, which is performed in a

Properties plane parallel to the axis. By the principle of transverse vibrations, it is also performed in a plane per-
oltheextra-

pendicnlar to the ray. If, then, we suppose a plane to pass through the extraordinary ray and the axis, it will

'^'lained'
15

'

cut a P'ane perpendicular to the ray in a straight line, which will be the direction of the vibratory motion. This

direction, then, is inclined to the axis in an angle equal to the complement of that made by the extraordinary

ray with the latter line, and therefore, when the extraordinary ray is parallel to the axis, the line of vibration is

perpendicular to it, and vice versa. In the former case, the elastic force resisting the displacement of the mole-

cules is the same as in the case of the ordinary ray, and therefore the velocities of both rays are equal, and

their directions coincide, and thus along the axis there is no separation of the rays. In the latter, the elasticity

is that parallel to the axis, and therefore differing from the former by the greatest possible quantity. Here, then,

the difference of velocities, and therefore of directions is at its maximum. In intermediate situations of the

extraordinary ray, the elasticity developed is intermediate, and therefore also the velocity and double refraction.

Thus we see, that according to this doctrine the difference of velocities, and consequent separation of the pencils
should be nothing in the axis, and go on increasing till the extraordinary ray is at right angles to it, which is

conformable to fact. Lastly, the plane of polarization of the extraordinary ray being at right angles to the

plane of vibration, must also be at right angles to a plane passing through the ray and the axis, which is also

conformable to fact.

:>92 The theory of M. Fresnel gives then, as we see, at least a plausible account of the phenomena of double

refraction in the case of uniaxal crystals ;
and when we consider the profound mystery which, on every other

hypothesis, was admitted to hang over this part of tha subject, we must allow that this is a great and impor-
tant step. But the same principles are equally applicable to biaxal crystals with proper modifications, and

(which is a strong argument for their reality) lead, when so applied, to conclusions which, though totally at

variance with all that had been taken for granted before, on the grounds of imperfect analogy and insufficient

experiment, have been since verified by accurate and careful experiments, and have thus opened a new
and curious field of optical inquiry Nothing stronger can be said in favour of an hypothesis, than that it

enables us to anticipate the results of experiment, and to predict facts opposed to received notions, and mis-

taken or imperfect experience.

993 But before we enter on this, it may be right to show how the phenomenon on which the theory of movable

Sxplana- polarization is founded, is accounted for by the doctrine of transverse vibrations. According to this theory, as

tion of the soon as a polarized ray enters a crystal, it commences a series of alternate assumptions of one or other of

phenomena two planes of polarization, in the azimuths and 2 i, i being the inclination of the principal section to the

plane of primitive polarization : the plane assumed being in azimuth 0, when the thickness traversed is such
'

as to render the interval of retardation of the ordinary on the extraordinary ray 0, or any whole number ot

undulations, and in azimuth 2 i when it is any whole odd number of semi-undulations. Suppose a ray

polarized in the azimuth to be incident perpendicularly on a crystallized lamina, having its principal sec-

tion in the azimuth i, then it will be resolved into two, the vibrations of which are respectively performed in the

principal section, and perpendicular to it. Consequently, if we represent by unity the amplitude of the original

Case of vibrations, those of the two resolved vibrations will be equal respectively to sin i and cos i. Now, the thick-

compleie ness of the plate being first supposed such as to render the interval of retardation an exact number of undula-
accordance. tions, these rays will emerge from the lamina in exact accordance, and being parallel, the systems of waves of

which they consist will run on together. Being polarized, however, in opposite planes they will neither destroy
each other, nor produce a compound ray equal to their sum, but their resultant must be determined as in

Art. 623. For we have here the case of rectilinear vibrations, in complete accordance, of given amplitudes,
and making a given angle (90,) so that the result there obtained is immediately applicable to this case, and

the resultant vibration will be, first, rectilinear, so that the compound ray will appear wholly polarized in one

plane: and, secondly, its amplitude will be, both in quantity and direction, the diagonal of a parallelogram
whose sides are the amplitudes of the component vibrations. Consequently, it will be identical with that by
whose resolution these were produced, and therefore the resultant, or emergent compound ray will be, in respect

994 both of its polarization and intensity, precisely similar to the original incident one.

Fig.' 197. When the difference of paths within the crystal is an exact odd multiple of half an undulation, the waves at

Case of their egress from the posterior surface will be in complete discordance. But their resultant may still be

o.impletc determined by the same rule, regarding either of the rays as negative, i. e. as having its vibrations executed

; the Oj,pOS jte direction. F' T suppose the molecule C moving in the direction C P, with the velocity C P
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Light, (fig. 197) at the entry of the ray, then the resolved velocities in the planes C O and C E will be repre- Part TV.

v : '

sented in quantity and direction by C O and C E. But at their egress, the vibrations in the direction C E v v '

having gained or lost a half undulation on those in C O, if C O represent the quantity and direction of motion
of the molecule C in that plane, C E' equal and opposite to C E will represent its motion in the other plane,
and this, combined with C O will compose, not the original motion C P, as in the former case, but C Q, making
an equal angle with C O on the other side. The resultant ray, then, instead of being polarized in the plane
of the incident one, (i. e. perpendicular to CP) will be polarized in a plane perpendicular to C Q, makinf
an angle equal to P C Q (= 2 P C O = 2 i) with CO.
When the difference of routes is neither an exact number of whole, or half undulations, the vibrations of 995

the resultant ray (by Art. 621) will no longer be rectilinear, but elliptic ; and in the particular case when the
interval of retardation is a quarter or an odd number of quarter undulations, it will be circular. In this case,
the emergent ray, varying its plane of vibration every instant, will appear wholly depolarized, so as to give
two equal images by double refraction in all positions of the analysing prism.
These several consequences may be rendered strikingly evident by a delicate and curious experiment related 996.

by M. Arago. Let a polarized pencil, emanating from a single radiant point, be incident on a double rhomboid Experiment

of Iceland spar, composed of two halves of one and the same rhomboid, superposed so as to have their principal
exnlbmn8

1

sections at right angles to each other. Then the emergent rays will emanate as if from two points (see Art. 879) e^^f'"
near each other, and polarized in opposite planes. Let these two cones of rays be received on an emeried glass, interference

or in the focus of an eye-lens, so that the glass or field of view shall be illuminated at once by the light of both,
which being oppositely polarized will exhibit no fringes or coloured phenomena, but merely a uniform illumina-
tion ; and let all the light but that which falls on a single very small point of the field of view be stopped by a

plate of metal, with a small hole in it, so as to allow of examining the state of polarization of the compound ray
illuminating this point, separately from all the rest. Then it will be seen, on analysing its light by a tourmaline
or double refracting prism, that, when the spot examined is distant from both radiants by the sa'me number of
undulations, although in fact composed of two rays oppositely polarized, (as may be proved by stopping one of
them, and examining the other singly,) yet it presents the phenomenon of a ray completely polarized in one

plane, which is neither that of the one or the other of its component rays, but the original plane of polarization of
the incident light. Suppose now, by a fine screw we shift gradually the place of the. metal plate so as to bring the
hole a little to one or the other side of its former place. The ray which illuminates it will appear to lose its pola-
rized character as the motion of the plate proceeds, and at length will offer no trace of polarization; continuing the

motion, and bringing in succession other points of the field of view under examination, the light which passes
through the hole will again appear polarized, at first partially, and at length totally ; not, however, as before, in the

plane of primitive polarization, but in a plane making with it twice the angle included between it and the principal
section of the first rhomboid, and so on alternately. Thus we are presented with the singular phenomenon of two

rays polarized in planes at right angles, which produce by their concourse a ray either wholly polarized in one or
the other of two planes, or not polarized at all, according to the difference of routes of the rays before their union.

In 1821, M. Fresnel presented to the Academy of .Sciences of Paris a Memoir, containing the general appli- 997.
cation of the principle of transverse vibrations to the phenomena of double refrae'.ion and polarization as Fresnel's

exhibited in biaxal crystals, which was read in November of that year. A brief report on the experimental ?enera'

parts of this Memoir by the Committee of the Academy appointed to examine it, about half a dozen pages, was j
he

i|?

r ^

published in the Annales tie Chitnie, vol. xx. p. 337, recommending it to be printed as speedily as possible in refraction
the collection of the Mfrnoires des Savans Strangers. We are sorry to observe, that this recommendation
has not yet been acted upon, and that this important Memoir, to the regret and disappointment of men of science

throughout Europe, remains yet unpublished ; though we trust (from the activity recently displayed by the

Academy in the publication of their Memoirs in arrear) this will not long continue to be the case. * An
abstract by the author himself, which appeared in the Bulletin de la Societe Philomatique of 1822, and was

subsequently reprinted in the Annales de Cfiimie, 1825, enables us, however, to present a sketch, though an

imperfect one, of its contents, supplying to the best of our ability the demonstration of the fundamental pro-
positions, and reaping a melancholy gratification from the inadequate tribute, which, in thus introducing for

the first time to the English reader a knowledge of these profound and interesting researches, we are enabled
to pay to departed merit. His saltern accumiilem donis et fungar inani munere. For even at the moment
when we are recording his discoveries, their author has been snatched from science in the midst of his brilliant

career by a premature death, like his hardly less illustrious contemporary, Fraunhofer, the early victim of a

weakly constitution and emaciated frame, unfit receptacles for minds so powerful and active.

M. Fresnel assumes, as a postulatum, that the displacement of a molecule of the vibrating medium in a 998.

crystallized body (whether that medium be the ether, or the crystal itself, or both together, in virtue of some General ex-

mutual action exercised by them on each other,) is resisted by different elastic forces, according to the different P ressron .***

directions in which the displacement takes place. Now it is easy to conceive, that in general the resultant of *rĈ
S

'[

c

a

medium in

* This delay has been productive of a singular consequence, which will suffice to show the small degree of publicity which labours, even vestigated.
the most important, can acquire by the circulation of such notices as those mentioned in the text. So

lately as December 1826, the

Imperial Academy of Sciences of Petersburg proposed as one of their prize questions for the two years 1827 and 1828, the following,
" To

deliver the optical system of waves from all the objections which have (as it appears) with justice, been urged against it, and to apply it to

the polarization and double refraction of light" In the programma announcing this prize, M. Fresnel's researches on the subject are not
alluded to (though his Memoir on Diffraction is noticed,) and it is fair to conclude, were not then known to the Academy. Precisely one
month before the publication of this programma, the Royal Society of London awarded their Rumford Medal to M. Fresnel,

"
for his appli-

cation of the undulatory theory to the phenomena of polarized light, and for his important experimental researches and discoveries in physical
optics." Our readers will be gratified to know, that the valuable mark of this high distinction reacped him a few days before his death

4 A 2
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L.gt. all the molecular forces which act on a displaced molecule, is not necessarily parallel to the direction of its dis- Part IV.

> x -- placements when the partial forces are unsymmetrically related to this direction, but the proposition may be v -v

demonstrated a priori, as follows. Suppose three coordinates x, y, and z, to represent the partial displacements

ofany molecule M in their respective directions, and r (= v x"
1
-j- y* -f- z 9

) the total displacement, making angles

. /3, 7, respectively with the axes of the x, y, z, so that x = r . cos a, y = r . cos /3, z r . cos 7. Now, since in

this theory we assume that the displacements of the molecules are infinitely, or at least extremely small com-

pared with the distances of the molecules inter se, it is evident that whatever be the law of molecular action, the

force resulting from any displacement must (cceteris paribus) be proportional to the linear magnitude of that dis-

placement, and can, therefore, be only of the form r . 0, where is some unknown function of the angles a, ft, 7,

Principle of or their cosines. And, moreover, since such infinitely small displacements, in whatever direction made, neither

partial dis- alter the angular position, nor distance of the displaced molecule among the rest, by any sensible quantity, all

placements. tne; r forces will act on it in its displaced position in the same manner as before. Hence the total force deve-

loped by the simultaneous displacements x, y, z, or by the single displacement r must be equivalent to (or the

statical resultant of) the three which would be developed independently by the several partial displacements

x, y, z. Now the force originating in the partial displacement x alone will result from r by making r = x and

equa' *o a, where a is the same function of 1, 0, 0, that is of cos c, cos f), cos 7. a therefore is a con-

stant depending only on the position of the axes of the x, y, z with respect to the molecules of the crystal.

And when this partial force = a x is resolved into the directions of these several axes, since its direction (what-
ever it be) is determinate, the resolved portions can only be of the form Ax, A' x, A" x, where A, A', A" are in

like manner dependent only on the position of the coordinates x, y, z with respect to the molecules, and not at

all on a, /3, 7, which are arbitrary, and where Ae
-(- A'2 -f- A"'2 = a2

. The same being true of the partial forces

brought into play by the displacements y and z, it follows that the total force arising from the displacement r

must be the resultant of the three forces

f=Ax + By + Cz, f' = A'x+ B'y + C'z, f" = A" x -j- B" y + C" z,

respectively parallel to the axes of the x, y, z, where the coefficients are independent of a, /3, 7, and where, in like

manner, B* + B* + B''2 = 6 ;

, C 8

-j- C'2 -f- C"
2 = c2 . But we have x = r . cos a, y = r . cos ft, z = r . cos 7, so

that if we put

f =. r { A . cos a -f- B . cos ft + C . cos 7 } ,

f =r { A' . cos a -f B' . cos ft + C' . cos 7 } ,

/" = r
{ A", cos a + B". cos /3 -f- C". cos 7 } ,

the resultant of f,f',f" will be the force urging the displaced molecule.

099. New these forces acting in the directions of the coordinates may each be decomposed into two, one in the

Expression direction of the displacement r, and the other at right angles to it in the planes respectively of r and x, r and y,
of the elas- r and z, the sum of the former will be
ticity in any ,, ,,, ,,,,

assigned

' F = /. COS a + /' . COS ^ + /" . COS 7,

"i"
1 '

which is the whole force tending to urge the displaced molecule directly to its position of equilibrium. The latter

will be respectively equal to/, sin , /' . sin ft, and/" . sin 7 ; but as they act, although in one plane, yet not in

the'direc-' *'le same direction, they will not destroy each other, unless they be to each other in the ratio of the sines of the

tion of dis- angles they make with each other's direction. But it is evident, that since a, /3, 7 are arbitrary, this condition

placement, cannot hold good in general, because it furnishes two equations, which, taken in conjunction with the relation

cos a*
_j- Cos /? + cos 7* = 1, suffice to determine a, ft, 7. Hence it follows, that the, displaced molecule is,

except in certain cases, urged by the. elastic forces of the medium obliquely to the direction of its displacement.

1000 Mr. Fresnel next goes on to observe, that in general every elastic medium has three rectangular axes, in the

Axes of

'

direction of which, if a molecule be displaced, the resultant of the molecular forces urging it will act in the

elasticity direction of its displacement. These are the excepted cases just alluded to, and to the axes possessing this pro-
defined and

pertv (which he regards as the true fundamental axes uf the crystal,) he gives the name of Axes of
investigated

To demonstrate this proposition we must observe, that, by mechanics, in order that the resultant of three

rectangular forces//',/" shall make angles ,/3, 7 with their three directions, and therefore be coincident in direc-

tion with r, they must be to each other in the ratio of the cosines of these angles, and therefore we must have the

following equations expressive of this condition,

/ cos a / _ cos a /' _ cos /3

/'
"~

cos/3
'

f"
~

cos 7
'

f'
~

cos 7'

These three equations are in general equivalent to two only, but when combined with the equation

cos a* _)_ cos fp -j- cos 7
s = 1 resulting from the geometrical conditions of the case, they suffice to determine

a, ft, and 7 ; and if we put u, v, w for the cosines of these angles, furnish the following system of equations

which every axis of elasticity must satisfy.

(Au+Bv + Cw)v- (A'u + B'v + C'w)u,

(Au + Bv + Cw)w=(A"u + B"v + C"w)u

(A'u -f B'v+'.C'w) w = (A"u -f B" + C" w) v

M2 + V* -f W
2 = 1.
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Light. Suppose by elimination we have derived from these equations the position of one axis of elasticity, then it will Part IV.

v follow of necessity, that two others must exist, at right angles to it and to each other. To prove this, we 'v-^-v ^
must consider the connection between the partial forces developed by any displacement of the molecule M, and 1001.

the molecular attractions and repulsions of the medium. Let be the action of any molecule d m on M, which we Three exist

suppose to be exerted in the direction of their line of junction, and to be a function of their mutual distance p.
m any cr

Then, if we suppose M displaced by any arbitrary quantities S x, Sy, & z (infinitely small in comparison with p) \D^"IO

'

in the direction of the three coordinates, we have each other.

drj) x y z
and putting =

, and = cos X, cos /, = cos v,

dp p p p

we have 60 = 0'. j . cos X + J y cos
ft + 5 p . cos v

} .

Consequently, since the force of the molecule d m, resolved into the directions of the coordinates, is respectively
equal to

(0 + 50) dm. , (0 + S0)dm.-^., and(0+X0)dwi. ,

P P P

the sum of all these throughout the medium will be the total action on M ; but since in the original position of
the molecule M it is in equilibrio, we have

/0dm. =0, /0dm. 2- =0, and/0 dm. = 0,

so that the whole action of the medium on M in its displaced situation will be, in the three directions General

<T r y ^9 relation

/ d m . 6 0, / dm. 50, / dm.0; between tne

f P f partial elas-

that is, in the direction of the x,
ticities.

' d m . { cos \ X * + cos ft . 5 y + cos v* . S g } ;

$x, &y, $ x, are the partial displacements of M in the directions of the coordinates, and are, therefore, the same
we denoted in Art. 998 by x, y, z. Restoring these denominations, we see that, on this hypothesis, (the most
natural which can be formed respecting the mode of molecular action) the coefficients A, B, C, can be no other
than the following,

A=/0' dm . cosX8
, B f 0' dm. cos A, . cos

,u,
C = /0' dm . cos X. cos v;

and by similar reasoning we find

A' =/0'dm. cos \ .cos/<, B' =/ 0' d m . cos /**, C 1 = /0'dm . cos/t . cos v;

A" = f 0' d m . cos X . cos v, B' =f 0' a m . cos
p, . cos v, C'' =f 0' d m . cos v8

;

and, consequently, the following relations must necessarily subsist between these coefficients

B = A', C = A", C' = B".

^
This premised, suppose we have determined one axis of elasticity of the medium by the foregoing equations. 1002

Since the positions of the axes of the coordinates are arbitrary, we are at liberty to suppose that of the x coin-
cident with the axis so determined, which renders A' = A" 0, and consequently B = and C = 0, and
B" = C', because the relations above demonstrated are general and independent of any particular situation of
the axes. The equations of Art. 1000 then become

One

A v = (B' v + C' w) u, \uw= (B" v + C" w) v,

(B'u + C'w)w = (C'u + C"w)c, WS + KS + w*= 1. of the other

determined,
Now if we put u = 0, or a = 90, the two former of these are satisfied without any i elation supposed between
v and w, so that if we determine these from the two latter only, the whole system will be satisfied. These
(making u = 0) give at once by elimination

1

where m = -
;..

Now since m* is necessarily positive, 4 wi
a + 1 is so, and is > 1 ; therefore =^ 4 m> + 1

is real and < 1, consequently w
1 and *>

! are both positive, and therefore v and w both real, and less than unityHence it follows, that there are necessarily two axes at right angles to the x which satisfy the conditions of axes'
of elasticity, and the opposite signs of v and w show that they are at right angles to each other.

For simplicity, therefore, we will in future suppose the directions of the coordinates to bs coincident with those
of the axes of elasticity, so as to make
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Ligh". A *= a, A' = A" =

; B' = A, B = B" =
; C" = c, C = C' = f)

; Part IV.

~~^<s~~~' then we have by Art. 998 for the partial forces, ^
-,,

.

f a x = a r . cos a, /' = b y = >> r . cos ft, f" c z = c r . cos
-/,

and by 999,

F ~ r { a . cos n? + 6 . cos ft
1

-)- c . cos 7* }

for the whole force urging the molecule M in the direction of the r, generally assumed, in which it will be
observed that

a =
f<t>'

cosX9
rfm, b =f <j>' . cos ^ d m, c =f (f>'

. cos v1 d m.

1004. M. Fresnel next conceives a surface, which he terms the " Surface of Elasticity," constructed according to the
The surface following law : on each of the axes of elasticity, and on every radius r drawn in all directions, take a length

dcfaadhuK? Pr Port 'ona' to tne st|uare root of the elasticity exerted on the displaced molecule by the medium in the direc-

investigated
tion of the radius, or to V F. Then if we call R this length, or the radius vector of the surface of elasticity, we
shall have

R* = { a r . cos a8
-)- b r . cos /3

8 + n r , cos 7* } X const.

Its radius The values of R parallel to the axes are then had by the equation
vector ex-

pressed. R8 = const ar, R! = const x 6 r, R = const x c r

which (for brevity, as we shall have no further occasion to recur to our former denominations) we shall express
simply by a1

, b*, c
8
, so that the equation of the surface of elasticity will be of the form

R* = a2
. cos Xs + 6 . cos Y' -f <? . cos Z,

where X, Y, Z, now stand for a, ft, 7, the angles made by R with the axes of the coordinates.
1005. Le t us now imagine a molecule displaced and allowed to vibrate in the direction of the radius R, and

Velocity retained in that line, or at least let us neglect all that part of its motion which takes place at right angles to

ofpolariza-
tue ra(J'us vector. Then the force of elasticity by which its vibrations are governed will be proportional to R*,

tion of an and the velocity of the luminous wave propagated by means of them, in a direction transverse to them (or at

interior right angles to R) will be proportional to R, so that the surface of elasticity being known, the velocity of a wave
wave deter- transmitted through the medium in a given direction, and with a given plane of polarization will be had at once

as follows. Parallel to the surface of the wave, and at right angles to its plane of polarization draw a straight

line. This will be the direction of the vibrations by which the wave is propagated. Parallel to this line draw a

radius vector to the surface of elasticity, and it will represent the wave's velocity.

1006. The equation of the surface of elasticity, if we put for R, cos X, cos Y, cos Z, their values in terms of three

Equation of coordinates will become
the surface f^t

i !
_|_ -,)*= at xi J* y

t _L <* z*.

of elasticity. .
v

It is, therefore, in general a surface of the fourth order. If we suppose it cut by a plane passing through its

centre, whose equation must therefore in general be of the form mx-\- ny + p z = 0, the curve of intersection

will be a species of oval whose diameters are not necessarily all equal.

1007. Suppose now any molecule set in vibration in this plane, then at any period of its motion it will not be uro-ed

Resolution directly to its point of rest but obliquely, so that it will not describe a straight line, but will circulate in a curve
of an inci- more or less complicated ; its motion in this, however, will always be resolvable into two vibratory rectilinear ones at
dent wave

right angles to each other, one parallel to the greatest, and the other to the least diameter of the section. Each of
these vibratory motions will, by the laws of motion, be performed independently of the other, and therefore the motion

propagated through the crystal will affect every molecule of it in the same way as if two separate and independent
Polarized in rectilinear vibrations (at right angles as above) were propagated through it, with different velocities. Consequently
opposite every system ofwaves propagated from without into the crystal, will necessarily on entering it be resolved into two
planes. propagated with different velocities, and polarized in planes at right angles to each other, viz. those parallel

respectively to the greatest and least diameter of a section of the surface of elasticity parallel to the plane of

either wave. And as every difference in the velocities of two waves propagated parallel to each other through
a medium, gives rise to a corresponding difference in their planes at their emergence from it into another, where

they assume a common velocity, these waves will at their egress no longer be parallel, and the rays which are

perpendicular to them will be inclined to each other, thus producing the phenomena of double refraction
; and it

is evident that the waves at their egress must retain the planes of polarization they received in the crystal,
because any molecule of the exterior medium at the junction of the media will begin to move only in the plane
in which it was displaced by the contiguous molecule in the medium.

1008. This theory then accounts perfectly both for ilte bifurcation of the emergent ray, and the opposite polariza-
tions of the two portions into which it is divided. These portions will coincide in direction, and there will be

no double refraction when the section of the surface of elasticity above mentioned is (if such can ever be the

case) a circle, because all its radii being then equal, the elasticity is the same in all directions, and all vibrations

performed in it will have equal periods, so that in this case the resolution of the incident wave into two no

longer takes place, nor is its plane of polarization changed. Now the section in question becomes a circ'e,

when x* -f- y" + 2* = const =r r*, or when a8
3? -f- 6

s

y
8 + c

8
z = r4 . Combining these with mx + ny +pz = 0,

we get
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Light. r< = rz (j,; + yi _f- z"-),
Part IV.

p' r4 = r1 (/ a;
8 + ^8

y
8 + (wi * + n y)

1
),

and ;>
2 r4 = p* a* z*+ p* b* y* +ti> (mx

and equating these, and considering that the equation thence resulting ought to be verified independently of any

particular values of i, y, we get
r' (m- + p>) = a* 1? + m* c\ Investiga-

tion of the

m n rs = m n c8, optic axes.

r* (p
8 + n-)

= b* p* + n- c
8

.

These equations cannot be satisfied except by supposing either m, n, or p to vanish, or the section in question to

/ V a 1 - If

pass through one or other of the axes. If we suppose m = 0, we have r = a, I I =- , which shows that

\P / c2 a2

) cannot be positive, and of course not real, unless a, the semiaxis of the surface through which the

P/ P
section passes, be that intermediate in length between 6 and c, the other two semiaxes.

It appears then, that the surface of elasticity admits of two circular sections and no more, formed by diametral 1009

71

planes passing through the mean axis of the surface, and (since has two values equal but of opposite signs)

that these sections are both equally inclined to each of the other two axes. The normals to these sections are

the directions of no double refraction, or the optic axes of the crystal. Of these, then, there will be two and two

only, in all crystals which possess three unequal axes of elasticity, and rays propagated along them will suffer

neither double refraction, nor change of polarization.
The position of these axes depends wholly on the values of a, b, c, the semiaxes of the surface of elasticity. 1010.

We have, however, no other measure of the elasticity of the medium than the velocity with which the rays are Dispersion

propagated through it ; and if, as the phenomena of ordinary dispersion indicate, the rays of different colours be of
'')

e axes

propagated in one and the same medium with velocities somewhat different, (an effect which might result from
"J]^''

61"

certain suppositions relative to the extent of the sphere of action of its molecules compared with the lengths of e

an undulation,) the semiaxes a, b, c, which must be taken proportional to the velocities of propagation, must be

supposed to vary a little for waves of different lengths. Now this variation may not be in the same ratio for all

the three semiaxes, and thus a variation in the values of will arise. But is the tangent of the inclination

P P
of the plane of section to the plane of the x y, or of half the angle the two circular sections make with

each other, i. e. the cotangent of half the angle between the optic axes, which will thus vary, and give
rise to that separation of axes of different colours, and their distribution over a certain angle, in the plane
containing any two of the same colour, which observation shows to exist, (Art. 921 and 922.)
The general laws of double refraction flow with great facility from these principles. We have only to

resume the construction and reasoning of Art. 806 and 807, et seq., substituting for the ellipsoid of revolution, Application
which the Huygenian theory assumes as the figure of a wave originating in any molecule of the crystal, the of the Huy-

surface, whatever it be, which, in the general case, terminates a wave so propagated, and investigating the point ge"ian con-

of contact I (fig. 170) of this surface with a plane IKT passing through the line KT drawn as there described.
S
u
ru(

There is this difference, however, in the two cases, or, at least, in the method of treating them, that in the case

theory there stated the form of the wave is made a matter of arbitrary assumption, in the present case it is

to be determined it priori. This will render it necessary to depart in some respects from the course before

adopted. If we know, a priori, the form of the wave, the position of the tangent plane is given ; vice versd,

if we can determine the position of this plane in all cases, a: priori, the figure of the wave, which must be
such as to touch all such planes, under the conditions of the case, becomes known.

Now, in Art. 807, it is shown that the tangent plane is in all cases coincident with the position assumed 1012
within the crystal, by the surface of a plane indefinite wave propagated from an infinitely distant luminary, per- Direction

pendicular to the line of incidence R C. It follows, moreover, from Art. 81 1, that if we know the velocity with "id velocity

which such a plane wave advances within the crystal in a direction perpendicular to its surface, we may
of a P' anl>

calculate its inclination to the surface of incidence by the law of ordinary refraction, assuming an index of
w '

refraction which is to that of the ambient medium as the velocity of the wave before incidence is to its velocity
within the medium perpendicular to its own surface. The reader will here keep in view the distinction noticed

in Art. 813 between the velocity of the wave and that of the ray conveyed by it, whose direction, generally

speaking, is oblique to its surface. Now the velocity of a wave within the medium in any direction is given
by the equation of the surface of elasticity, whose radius vector expresses it in all cases. But it has been

shown, that every vibration impressed on the molecules of the crystal is resolved into two rectilinear ones propa-
gated with velocities proportional to the greatest and least diameters of that section of the surface of elasticity
which is parallel to the plane in which they are performed. Now it is the same thing, (as far as the law of double
refraction is concerned,) whether we regard the bifurcation to take place by the separation of a single exterior

ray into two interior ones, or a single interior into two exterior. We will take the latter case, and suppose the
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Ught. ordinary and extraordinary plane waves to be parallel within the medium. Their velocities may then he IVt rv.

-_ ^-^' investigated as follows : the equation of the surface of elasticity being
"

v

of'lTordi- R4 = a2 x* + b'yi + <* z
8

,

nary and
extraordi- if we take, for the equation of the second plane,
nary plane
wave inves-

z = m * + n y,

and put V for the maximum or minimum radius vector of the surface in the section in question, V will be the

value of R, which makes d R = 0, and therefore will be given by elimination from the following system of

equations
Vs = a -f- y* -f- s\

V = a8 *8 + 64 y* + c2 z!
,

2 = m x -f- V.

and their differentials, regarding V as constant. This elimination, which is complicated enough, must be con-

ducted as follows : first, if among the differential equations we eliminate d x, dy, dz; and for z in the whole

system substitute its value, we shall get, putting p = a8 - 68 ; q = a1
c*

;
r = ft

8 - c
2

;

V = (a
8 + m* c

8

) x" + (b* + n*ct

)y
t +2mnc'x y,

V8 = (1 + m8
) x> + (1 + ?i

s

) y' + 2 m n x y,

= mnq.v' - mnryt + kxy,
where k = p + n* q

- m? r = (1 -f- 7i*) </ (1 -f- wi*) r.-

These, by elimination, give the following, in which

M= fc
8

M it
8 = Vs rv - c

8
) { (I + ?i

s
) k + 2 m' n1

r }
- r k Vs

,

M y
1 = - Vs (V - c8) { (1 + m*) * - 2 m* n2

9 } -f- r q V,

M ,r y = - mra { (1 + s
) 9 + (1 + m4

) r } V* (V*
-

<*) + 2 OT M g r Vs
;

and by equating the square of the last of these to the product of the two first, we find, after all reductions, the

following equation for determining V :

(V* - a*) (V - 68) + m' (V*
- 6) (V - c8) + 2

(V
-

) (V - e
8
) = 0.

1013. The roots of this equation determine the maximum and minimum values of the radius vector in the plane of
General section, and therefore the velocities of ordinary and extraordinary plane waves moving parallel to each other
equation of wjthin the crystal, and these found, the figure of the wave becomes known, from the condition that its surface

ite I**" must always be a tangent to a plane distant by the quantity V from the secant plane whose equation is

from a z ~ m x + n y ; and that, whatever be the values of m and n. Its investigation is therefore reduced to a

point in the purely geometrical problem. Required the equation of a curve surface, which shall touch every plane parallel
medium. to a plane whose equation is z =mx -(- ny ; and distant from it by a quantity V, a function of m and n

given by the above equation, which, being resolved, will be found to lead to the following equation

6" y -(- ^z8
) (** + y'+z*) - a' (b' + c8) x8 - i8 (' +c'-)y>\ _
- c (a

8 + hi) 2" + a8 b" c8
)

~

1014. The surface represented by this equation is, generally speaking, of the fourth order, and consists of two
Nonexist- distinct surfaces, or sheets, (nappes.) One of these, by its contact with the plane in question, determines the
enceofthe direction of the ordinary, and the other of the extraordinary ray. Now, it is important to remark, that this

rtesian
eqUatjOn, so long as particular values are not assigned to a, b, c, is not decomposable into quadratic factors, so

fraction in that neither of the sheets of which it consists is spherical, or ellipsoidal ; and, consequently, neither the ordinary
biaxal nor the extraordinary ray follows either the Cartesian or Huygenian law of refraction. This is a consequence
crystals. too remarkable not to have been put to the test of experiment. Two methods have been put in practice by

M. Fresnel for this purpose. The first consisted in measuring directly the velocities of the two rays in plates of

topaz cut in different directions with respect to their axes by the method explained under the head of inter-

ferences, (Art. 738 and 739.) Since a difference of velocity of the interfering rays displaces the diffracted fringes
as a difference of thickness would do, it is manifest that if, in two plates differently cut, but of precisely the

same thickness, the fringes formed by the ordinary rays are differently displaced when the plates are combined

successively with one and the same equivalent plate of glass, or any other standard medium, their velocity cannot

be the same in both plates ;
and if such difference be observed to take place, both in the fringes formed by the

interference of the ordinary and of the extraordinary rays severally, with a compensated pencil, it is clear that

neither can have a constant velocity. Now the condition of equal thickness is secured by cementing the

two plates edge to edge, and grinding and polishing them together, and carefully examining the surfaces alter

the operation, to be satisfied of their precise continuity, which may be done by the reflected image of a distant

object, and yet more delicately by pressing slightly on them a convex lens of long focus, over their line of

junction. If the coloured rings formed between the surfaces be uninterrupted, we are sure that this condition
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is rigorously satisfied. The experiment so made, M. Fresnel found to confirm the conclusion to which the l '" rl

above theory leads. But in corroboration of this important result, the following method was also used.

In topaz the extraordinary refraction is stronger than the ordinary; so that the ordinary ray, when the 1015.

two are separated by a prism of that medium, may be at once recognised, by being the least deviated.
-^ not '' er tx

M. Fresnel procured two prisms to be cut from one topaz, in both of which the base was parallel to the
''roviMhe

'

cleavage planes, and therefore perpendicular to a line bisecting the angle between the optic axes and to the same.

principal section of the crystal, i. e. to the mean axis of elasticity ; but in one the plane of the refracting
angle was coincident with, and in the other perpendicular to, that section, these being the planes in which the

difference between the velocities of the ordinary ray is the greatest, as is easily seen from what has above been
said. These prisms were cemented side by side, so as to have their bases in one plane and their refracting edg-es
in one straight line

; and were then very carefully ground and polished to plane surfaces, so that the

refracting angles in both could not be otherwise than precisely equal. In this situation the compound prism
ABC, fig. 199, 1, (which is seen in perspective in fig. 199, 2,) whose refracting angle ABC was about 92,
was achromatised by two prisms C B A and D C A of crown glass, in which circumstances a slight, uncompen-
sated refraction remained in favour of the topaz prism. Looking now through the side E B, the whole combi
nation was turned round the refracting edge as an axis, till the image of a distant object, a black line on a
white ground, appeared stationary ; so that, the refracted rays, both ordinary and extraordinary, must have tra-

versed the prisms very nearly parallel to the b:ise, or at right angles to the mean axis, but in the different planes
above mentioned in each. Now it was observed, that the least refracted image of the black line so seen, that
is the ordinary one, was broken at the junction of the two prisms, being more deviated by one than by the

other, while the most refracted or extraordinary image formed a continuous line in both. This latter fact

(whteh, at first sight, would lead us to suspect that the extraordinary image had been mistaken for the ordinary
one) is a consequence of the theory ^bove explained, and is an additional confirmation of it.

When two of the axes of eh.iiicity (as 6 and c, for instance) are equal, the general equation of the surface of 1016.
the wave becomes decomposable into two factors, and may be put under the form Case of

z" - V) \a*x* + b*. (f + 2'-)
- a8

b* } = 0, [

Hch is the product of the equation of a sphere with that of an ellipsoid of revolution. In this case the two
circular sections coincide with the plane of the y z, and the two optic axes with the axis of the x. We have
here then the case of uniaxal crystals, and are thus furnished with an a priori demonstration, both of the Huy-
genian law of elliptic undulations, in the case of the extraordinary wave in such crystals, and of the constancy
of the index of refraction in that of the ordinary. The manner in which this results as a corollary from the

general case is at once elegant and satisfactory.
M. Fresnel gives the following simple construction for the curve surface bounding the wave in the case of 1017.

unequal axes, which establishes an immediate relation between the length and direction of its radii. Conceive Genuine-

an ellipsoid having the same semiaxes a, 6, c ; and having cut it by any diametral plane, draw perpendicular
tlon

,

tlle

t

to this plane from the centre two lines, one equal to the greatest, and the other to the least, radius vector of the
^ij'jp^oid'

"'

section. The loci of the extremities of these perpendiculars will be the surfaces of the ordinary and extraordi-

nary waves , or, in other words, their lengths will be the lengths of the radii of the waves in those directions,
and will therefore measure the velocity of the two rays propagated in those directions, in the same way as the
radii of the Hnygenian ellipsoid are proportional to the velocities of the extraordinary ray in their direction.

Finally, if we divide unity by the squares of the two semiaxes of a diametral section of the ellipsoid, the 1018.

difference of these quotients will be found to be proportional to the product of the sines of the angles which Origin of

the perpendicular to this section makes with the two normals to the planes of the circular sections of the ' le '

ellipsoid. Now, in all the crystals hitherto known, these sections differ very little from the circular sections of of^heTJo"
the surface of elasticity, and may, without sensible error, be supposed to coincide with them

; consequently, the sines.

two normals in question may be taken for this purpose as the optic axes of the crystal. We have thus the

origin of that law, deduced from the phenomena of the coloured lemniscates, which makes the difference of
the squares of the reciprocal velocities proportional :o the product of the sines made by the ray with the optic
axes

; and thus the phenomena of the polarized rings are all made to depend on the same general principles.
Such is the beautiful theory of Fresnel and Young, (for we must not in our regard for one great name forget 1019

the justice due to the other, and to separate them and assign to each his share would be as impracticable as invi-

dious, so intimately are they blended throughout every part of the system ; early, acute, and pregnant suggestion

characterising the one, and maturity of thought, fulness of systematic developement, and decisive experimental
illustration, equally distinguishing the other. If the deduction in succession of phenomena of the greatest variety
and complication from a distinctly stated hypothesis, by strict geometrical reasoning, thr ugh a series of inter-

mediate steps, in which the powers of analysis alone are relied on, and whose length and complexity is such
as to prevent all possibility of foreseeing the conclusions from the premises, be a characteristic of the truth

of the hypothesis, it cannot be denied that it possesses that character in no ordinary degree ; but, however
that may be, as a generalization the reader will now be enabled to judge whether the encomium we passed on
it in a former Article be merited. We can only regret that the necessary limits of this Essay, which is already
extended greatly beyond our original design, forbid our entering farther into its details.

The axes of elasticity are those which M. Fresnel regards as the fundamental axes of a doubly refractive 1020.

medium. The optic axes can in no view of the subject be regarded as such, for several obvious reasons. First, Dr - Brew.

they are seldom symmetrically situated relative to fundamental lines in the crystalline form ; secondly, because
s 'er sl

they vary in position according to the colour of the incident light ; thirdly, because it is found that for one and zjJ
the same coloured illumination, and in the same crystal, their situation varies by a variation of temperature.

VOL. iv 4 B
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Light. This important fact has been lately ascertained by M. Mitscherlich, and we shall presently have occasion to speak

further of it. From all these reasons it follows, that we can regard them only as resultant lints, to which no
a priori properties can be supposed to belong, but which simply satisfy the condition v tf = 0, according to

the laws which regulate the constitutions of the functions v, t/, the velocities of the two rays, in terms of those

quantities which we may regard as fundamental data, and tile situation of the ray within the medium. The axes

of elasticity themselves may, perhaps, be regarded as mere resultants from the equations of Art. 1000, and
determined from other remoter data dependent on the fundamental lines in the crystalline form, and the intensity
and distribution of the molecular forces within it. Accordingly, Dr. Brewster considers the optic axes as the

resultants of others which he terms polarizing axes, and from which he conceives to emanate polarizing forces

producing the phenomena of the rings and of the double refraction and polarization observed. We shall not

here stop to examine into the propriety of these terms. The reader who may have doubts on the subject will,

in what follows, mentally substitute other and more general phrases in their place expressive of relation and

causality, while we proceed to state the assumptions with which he sets out, and the conclusions he very inge-

niously deduces from them.

1021. Postulate 1. A polarizing axis, when single, has the characters of an axis of no double refraction, and is

A single coincident with the axis of the Huygenian spheroid in such crystals as have but one. A positive axis acts

polar-ing as the axis in quartz, &c. may be supposed to do, and a negative, as that of carbonate of lime, &c.
aX

'i' o
Post. 2. The polarizing force of a single axis in any medium is proportional to, and measured by, the tint

.,
. ~.~ developed in the ordinary and extraordinary pencils into which a doubly refracting prism analyzes a polarized

force ra
J''

which has traversed a given thickness of the medium.

1023. Carol. 1. The polarizing force of a single axis in the same medium is as the square of the sine of the angle
made by the ray traversing it internally, with the axis.

1024. Carol. 2. The same force is also inversely as the thickness necessary to be traversed at a given angle to

develope the same or equal tints. This may be regarded as the intrinsic polarizing force or intensity of the axis.

1025. Post. 3. When two axes exist in one medium and operate together, they polarize a tint whose measure (see

Composi- Art. 906) is the diagonal of a parallelogram whose sides measure, on the same scale, the tints which would be
tion of tints polarized by either, separately, and include between them an angle double of the mutual inclination of two pianos

passing through the ray and either axis respectively.

1026
Carol. I, If t and t' be the numerical measures of the tints polarized by either of two axes separately, T that

Formula for Plarized by their joint action, andC the angle between the planes just described, the tint T will be given by the

the com-
equation T" = t

1
-f 2 it' . cos 2 C -f- t\

pound tint.

1027 Carol. 2. If a and b represent the intensities of the axes, and a and ft the angles which the ray makes with

each respectively, we have t = a . sin a2
;

t' = 6 . sin fP, and

T = (a . sin a8
)' + (b . sin /3) + 2 a b . sin a* . sin

ft'- . (1
- 2 . sin C),

=
{ a . sin a' + b . sin ft' }* 4 a b . sin a* . sin /3

s
. sin C*,

or else T4 =
{ a . sin a* - b . sin /3

s

}

2
-j- 4 a b . sin a2 . sin ft' . cos C 2

.

1028. If 7 be the angle contained between the polarizing axes, since n, ft, 7 are the sides of a spherical triangle,
and C the angle included between the sides a and ft, or opposite to 7, we have

cos a . cos ft cos 7
cos C = -

,

sin a . sin ft

and if this be written for cos C in the latter of the expressions above given for T-, we find on reduction

T2 =
{ a . sin a2 -f 6 . sin /3

2
}

s 4 a b { 1 - cos a2 cos ft* cos 7* + 2 . cos a . cos ft . cos 7 }
.

1029. Carol. If the polarizing axes be at right angles to each other, 7 = 90 and cos 7 = 0, and the expression for

the compound tint becomes T* = { a . sin o* + 6 . sin fi- J* 4 a b (sin a* cos /3
2
).

1030 Proposition. Two rectangular polarizing axes, cither both positive or both negative, being given, two ot/iT nien,

orfixed lines, may be found, such that calling and Q1
the angles made with them respectively by a ray traversing

a spherical portion of the medium, the lint polarized shall be proportional to sin . sin (/.*

Resultant Let A C and B C (fig. 199) be the two polarizing axes including a right angle, of which let B C be the more

axes arising powerful. Let O C be a ray penetrating the crystal in that direction; and in a plane P C Q perpendicular to

from the A C B, draw any two lines PC, Q C, making equal angles with B C, either of which we will represent by i.

joint action Tnen jf ft sphere about C as a centre be conceived, it will intersect the planes A C B, P C Q, OCA, O C B,

tang'u'lar''
O C P, O C Q in lines of great circles B A, P B Q, O A, O B, O P, O Q, and we shall have P B = Q B = x,

polarizing OA =
, OB = /3, O P = #, O Q = 0'; and by Spherical Trigonometry, from the triangle O B P, we have

F'g- 199. cos O B P (= sin O B A = sin A O B .

**" A = sin a . sin C, since A B = 90
)

\ sin A B /
cos ft . cos x cos

sin ft . sin x

* M. Biot appears lo have first noticed the fact announced in this proposilion, viz. that Dr. Brewster's hypothesis of polarizing axes lends

to a result mat/iemalicalty identical with his own elegant law of ttie product of tlie sines. He has, however, suppressed his demonstration.

Dr. Brewster's verification of this coincidence of results seems to have been founded on a numerical comparison of Biot's experiments on

sulphate of lime with his own theory.
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Light, and therefore cos =: sin a . sin ft . sin * . sin C cos ft . cos x. Part IV.
~"s^~* and similarly from the triangle O B Q, since O B Q = 90 -f- O B A, we obtain a second relation

^^"V^"*1

-f- cos ff = sin o . sin ft . sin x . sin C -f- cos /3 . cos x ;

and, adding and subtracting, (putting, for brevity's sake, cos Of = p, cos =
<jr,)

p + q = 2 . cos j3 . cos x ; p q = 2 . sin a . sin /3 . sin x . sin C.

These equations express the geometrical relations subsisting between the lines PC, Q C, and the axes AC, BO:
and, if combined with the equations of Art. 1028 and 1029, suffice to eliminate a, /3, and C, and to express
T in terms of x, 0, and ff alone. To execute this, we have by the equations just demonstrateu

f
JL-L3L\ cos /3 ; (

P
~.

q
)
= sin a* . sin /3

s
. sin C2

;

\2 . cos x) \2 . sin*/

and in the latter, putting 1 cos C3 for sin C4
, and for cos C2 its value given by Art. 1028, which, since 7 =

90, becomes simply
sin a8 . sin /3

s
. cos C* = cos a2 . cos /3

J
,

we have (
---

)
r= sin a? . sin /3

s cos a' . cos |3*,

\2 . sin x/
= sin a2 cos /3

9
.

Hence we get, for the values of sin a8 and sin /3
a
,

and, substituting these in the equation of Art. 1029,

T8 = \b H-- - (p + qY + --- (p a)* \
- - (p - o)

f
.

I
4 . cos x i ^ ^

4 . sin x*
w

) sin ^ V^

Such is the general form of the expression for the tint, when referred to arbitrary axes in the manner here sup-

posed, and it is complicated enough ; but if we fix the position of the new axes so as to make sin j;
a = j-

the complication disappears ; we have then --- =
, and-- =

, so that the value ot
4 . stn x* 4 4 . cos *2 4

T* reduces itself to

= 6" (1
_ pt) (1

_ f) b' . sin 0' . sin 0",

restoring the values of p and q, or cos 0' and cos 0, consequently

T = - b . sin . sin tf.

The negative sign is prefixed for the reason stated further on in Art. 1034.

Thus we see that the combined action of the two axes in the manner here supposed, on Dr. Brewster's prin- 103 .

ciples, will give rise to a series of isochromatic lines arranged in the form of sphero-lemniscates about two poles
P, Q, determined by the condition

. / intensity of the feebler axis
sin B P = sin B Q = \/ : ;

intensity ot the stronger

and *he lines C P, C Q so determined have therefore the character of the optic axes in biaxal crystals, and may
be designated with Dr. Brewster by the name of resultant axes. We must be careful, however, not to confound
a resultant with a polarizing axis in this theory.

If the polarizing axes be not of the same denomination, as if one be positive and the other negative, the 1032
value of sin B P becomes imaginary, and the tints cannot be so arranged. But if we suppose the new axes to Combina
tie in this case in the same plane with the polarizing ones, as in fig. 200, all other things remaining, we ti("> of

have here positive

cos O B A = + cos O B Q, and cos O B A = - cos O B P,
with a

negative
cos a cos (3 . cos x cos &' axii.

but cos O B A = --: , and cos O B Q = -
sin p sin /3 . sin x

so that we find cos 0' = p == cos ;3 . cos x -f- cos . sin *.;

4 B 2
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and similarly cos q = cos /3 . cos x cos a . sin i, Part i

whence, by adding and subtracting', we get at once x> v
p -

q j> + n
cos a = ~~-

; cos /3 = 42 . Sill X

which, substituted in the value of T2
, give

P = + 6)
.r

4 cos x* / 4 \sinx8 cos JT/ 2 j

a 6 2 a 6 (sin x8 cos x8
)-4a6 + .

- -
(7,2 + 0)+ i- pa.

sin x2
. cos of sin x* . cos x*

Now, if in this we suppose
-

-j
-- = 0, or tan x1 = --

, it will, on substitution and reduction, take
sin x1 cos x* b

the form

(i-P'H 1 -?') >>' sin 0' . sin 0*

cos X* cos x*

and T = ----

. sin . sin ff
cos r

that is, restoring the value of x, ( since tan x4 = ,-, and therefore cos x1 = --
1, finally,

\ b b a/

T = -
(6 a) . sin . sin 6'.

1033. Thus, in this case also, the isochromatic lines are sphero-lemniscates, and the only difference is that their
Portion of

poles lie now in the plane of the polarizing axes, instead of at right angles to it ;
and that whereas in the

lesuitant _
axes in / fl

tWs case, former case the semi-angle between them (T) was given by the equation sin x = \/ -j-,
that is, cos x =

\/ , in this it is given by the equation cos x = \/ .v o a

1034. Carol. 1. In the case when a = 6, or when the two polarizing axes are of the same denomination and of equal
Cases of the

intensity, we have sin x =1, or x = 90, so that the angle between the resultant axes being 180, they form one
resolution

stra jg.n t line, the lemniscates become circles, and the single resultant axis has now the characters of a polaritinsof a smglo -II i j. ,
.

mis into
axis. Hence, vice versa, a single polarizing axis, in any direction, may be resolved into two others equal in

two. intensity, at right angles to it and to each other, and of an opposite denomination to the resolved axis. This
follows from the negative sign of T, which is prefixed in extracting the square root in Art. 1030 and 1032 ;

because in the case supposed, when the arc A B is 90 the angle C or AO B is necessarily greater than 90, and
2 C the angle of the parallelogram of tints > ISO

;
so that the diagonal will be to be measured backwards

through the angle, or must be a negative quantity.
1035. Carol. 2. Since a single axis is equivalent to two equally intense axes of an opposite character at right angles

Composi- to it and to each other, if we superadd to both another equal axis also of the opposite kind, and in the direction
tion of three Qj- ^ne nrst; t|,is WJH destroy the effect of the first, and therefore the combination of three equal and similar axes

angular arising on the other side at right angles to each other, will be equivalent to none at all. Thus, three equal
xes. rectangular axes of the same character destroy each other's effects. This is Dr. Brewster's account of the want

of polarization and double refraction in crystals whose primitive form is the cube, regular octohedron, &c.,
and whose secondary forms indicate a perfect symmetry in their molecules with respect to three rectangular
axes.

1036. There is no necessity to pursue further the general subjects of this species of composition of axes and of tints.

Indeed, it appears to us that the rule for the parallelogram of tints, as laid down by Dr. Brewster, becomes

inapplicable when a third axis is introduced ; for this obvious reason, that when we would combine the com-

pound tint arising from two of the axes (A, B) with that arising from the action of the third (C,) although the

sides of the new parallelogram which must be constructed are given, (viz. the compound tint T, and the simple
tint t",) yet the wording of the rule leaves us completely at a loss what to consider as its angle, inasmuch as it

assigns no single line which can be combined with the axis C in the manner there required, or which quoad koc

is to be taken as a resultant of the axes A, B. For further information therefore on this subject we shall content

ourselves with referring the reader to his original Paper in the Transactions of the Royal Society, 1818.

X. Of Circular Polarization.

1037. The first phenomena referable to the class of facts to whose consideration this section will be devoted, were

noticed by M. Arago in his Memoir published among those of the Institute for 1811 on the colours of crystal-
lized plates. He observed that when a polarized ray was made to traverse at right angles a plate of rock crysta'
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(quartz) cut perpendicularly to the axis of double refraction, on analyzing the emergent ray by a doubly refracting Part IV.
'

prism, the two images had complementary colours, and that these colours changed when the doubly refracting v >..
'

prism was made to revolve ; so that in the course of a half revolution, the extraordinary image (for example)
Phenomena

which at first was red, became in succession orange, yellow, yellow-green, and violet, after which the same series of
|j',!- t

"
n

tints would of course recur. It is evident that this is just what would take place, supposing the several coloured

rays at their emergence from the rock crystal to be polarized in different planes; and to this conclusion M. Arago
came in a second Paper, subsequently read to the Institute. The subject was resumed by M. Biot, in a Paper
published in the Mem de I'Inst., 1812 ; and his labours were completed in a second extremely interesting Paper
read to that body in September, 1818.

When a polarized ray is made to traverse the axis of Iceland spar, beril, and other uniaxal crystals, we have 1038.

seen that it undergoes no change or modification ; and that when analyzed at its egress by a doubly refracting Rotatory

prism, having its principal section in the plane of primitive polarization, the ordinary image will contain the phenomena

whole ray, or the complementary tints will be white and black. Quartz, however, is an exception to this rule. <luar

A polarized ray transmitted, however precisely, along its axis, is still coloured and subdivided, and that the more

evidently, the thicker is the plate. If we place on a proper apparatus, such as that described in Art. 929 and

figured in fig. 189, a very thin plate of this body, and turn round the analyzing prism M in its cell, till the extra-

ordinary image is at its minimum of brightness, it will in this position have a sombre violet, or purple tinge,
because the yellow or most luminous rays, which are complementary to purple, are now completely extinguished.
Let the angle of rotation of the prism in its cell, measured on the divided circle R, and which in this case will

be small, be noted ; and then let the rock crystal plate be detached, and another cut from the same crystal, but

of twice the thickness, be substituted. The tint of the extraordinary image will no longer be violet
; but if the

prism be made to revolve through an additional equal arc in the same direction, the violet or purple tint will be

restored, and the minimum of brightness attained ; and, in general, if the thickness of the plate (always sup-

posed cut from the same crystal) be greater or less in any ratio, the angle of rotation through which the prism
must be moved in the same direction, to produce a minimum of intensity and a purple tint in the extraordinary

image, is increased or diminished in the same ratio. In consequence, if the plate be sufficiently thick, one or

more circumferences will be required to be traversed; and as only the excesses over whole circumferences can be

read off, this may produce some confusion or doubt, unless we take care to use a succession of thicknesses so

gradually increasing as not to allow of a saltiis of a whole, or a half circumference.

From this experiment we collect, that the plane of polarization of a mean yellow ray which has traversed the 1039.

axis of a quartz plate, has been turned aside from its original position, through an angle proportional to the Rotation

thickness of the plate ; and, therefore, assumes at its egress a position the same as it would have, had it revolved
[

the
.
P'ane

uniformly in one direction, during every instant of the ray's progress through the plate. The same holds good "j^
for all the other homogeneous rays ;

but to prove it, we must abandon the use of white light, and operate with

pure rays of the particular colour we would examine. If we use pure red light, for instance, or defend the eye with

a pure red glass, the same will be observed, only that instead of a violet tint and a minimum of light, we shall

have a total obliteration of the extraordinary pencil when the prism attains ks proper position, thus proving,
what in the former mode of observation might have been doubtful, that the polarization of the emergent ray
is complete.

In examining in this way the quantity by which one and the same plate of quartz turns aside the planes of 1040.

polarization of the different homogeneous rays, M. Biot ascertained that the more refrangible rays are more Law of ro-

energetically acted on than the, less, and have their planes of polarization deviated through a greater arc.
t
?

l

'V
of ''"

According to this eminent philosopher, the constant coefficient, or index, which represents the velocity with coloured
which the plane of polarization may be conceived to revolve, is proportional to the square of the length of an rays,

undulation of the homogeneous ray under consideration ; so that if we call X the length of an undulation, and
t the thickness of the plate, the deviation produced will be equal to k . X* t, k being a certain constant. The

18.414
value of this constant he assigns at - -

lsfi)
,, a

> when t is reckoned in millimetres ; and the following is stated

by him as the numerical amount of the deviations in degrees (sexagesimal) produced by one millimetre of

thickness of rock crystal on the several rays :

Designation of the homogeneous ray.

Arc of rotation cor-

responding to one

millimetre.

Extreme red

Limit of red and orange. . . .

Limit of orange and yellow
Limit of yellow and green. .

Limit of green and blue . . ,

Limit of blue and indigo . . .

Limit of indigo and violet. . .

Extreme violet

17.4964
20.4798
22.313S

30.04(JO

34.5717
376829
44.0827
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In the course of these researches M. Biot was led to the very singular discovery of a constant different sub- Pan IV.

sistinp: in different specimens of rock crystal, in the direction in which this rotation or angular shifting of the
* v~

plane of polarization of a ray traversing them takes place. In some specimens it is observed to be from right
to left, in others from left to right. To conceive this distinction, let the reader take a common cork-screw, and,

holding it with the head towards him, let him turn it in the usual manner, as if to penetrate a cork. The head
will then turn the same way with the plane of polarization of a ray in its progress from the spectator through
a right-handed crystal may be conceived to do. If the thread of the cork-screw were reversed, or what is termed
a left-handed thread, then the motion of the head as the instrument advanced would represent that of the plane
of polarization in a left-handed specimen of rock crystal. It will be observed, that we do not here mean to say
that the plane of polarization does so revolve in the interior of a crystal, but that the ray at its egress presents
the same phenomena as to polarization as if\t had done so. This is necessary, for we shall see presently that

a very different view of the subject may be taken.

In crystals which present this remarkable difference, when cut and polished, and when the external indications

of cryst illinefonn are obliterated, no other difference can be detected. Their hardness, transparency, refractive

and double refractive powers are the same ; and, with the exception of the direction in which it takes place,
their effects in deviating the planes of polarization of the rays which traverse them are alike. Experiments
subsequent to M. Biot's researches have, however, established, as a result of extensive induction, a very curious

connection between this direction and the crystalline forms affected by individual specimens. In the variety of

crystallized quartz, termed by Hauy, Plagiedral, there occur faces which (unlike those in all the more common
varieties) are unsymmetrically related to the axes and apices of the primitive form, whether regarded as the rhomboid
or bipyramidal dodecahedron. Fig. 201 represents such a crystal, in which when the apex A is set upwards,
the faces C, C, C, are observed to lean all in one direction, viz. to the right, with respect to the axis, as if dis-

torted from a symmetrical position by some cause acting from left to right all round the crystal. When the
vertex B is set upwards, the same distortion, and in the same direction, is observed in the plagiedral faces

D, D, D, and crystals of quartz are excessively rare, if they exist at all, in which two plagiedral faces leaning
opposite ways occur. Now it has been ascertained, that in crystals where one or more of these faces, however
minute and even of microscopic dimensions, can be seen, we may thence predict with certainty the direction of

rotation in a plate cut from it, which is always that in which the plagiedral face appears to lean with respect
to an observer regarding it as the reader does the figure, which represents a right-handed crystal. Hence we are

entitled to conclude, that whatever be the cause which determines the direction of rotation, the same has acted in

determining the direction of the plagiedral faces. Other crystallized minerals, as apatite, &c. also present pla-

giedral and unsymmetrical faces
; but, independent of their extreme rarity, they are not possessed of the property

of rotation ; so that at present we are unable to say whether this curious law be general, or to conjecture to what

principles it will hereafter prove to be referable.

When two plates of rock crystal are superposed, if they be both right-handed or both left, their joint rotatory
effect will be the sum of their respective ones, i. e. each ray's plane of polarization will be shifted through an

angle equal to the sum of those through which it would have been shifted by their separate actions. If their

characters be opposite, it will be their difference, i. e. the index of rotation in a right-handed crystal being
regarded as positive, it will be negative in a left-handed one.

The amethyst (and, possibly, also the agate in some cases) presents the very remarkable and curious pheno-
menon of these two species of quartz crystallized together in alternate layers of very minute thickness. Accord-

ingly, when a crystal of amethyst is cut at right angles to the axis, and examined by polarized light transmitted

exactly along the axis, and analyzed as usual, it offers a striped or fringed appearance, as represented in

fig. 202, variegated with different colours, according to the different planes of polarization assumed by the rays

emergent at its several points, and presenting, according to the distribution of its elements, the most beautiful

combinations and contrasts of coloured fasciae and spaces. For a particular account of these phenomena, the

reader is referred to a Paper by Dr. Brewster, (Edinburgh Transactions, vol. xi.) who first observed and publicly
described them, though we have reason to believe them to have been known to others by independent observa-

tion previous to the publication of his very curious and interesting Memoir. The layers may be distinctly seen

cropping out to the surface in a fresh fracture of the mineral, and imparting that peculiar undulated fracture

which is the chief mmeralogical character of this substance by which it is known from ordinary quartz.
But the phenomena of rotation as above described are not confined to quortz. Many liquids, and even

vapours exhibit it, a circumstance which would seem very unexpected, when we consider that in liquids and

gases the molecules must be supposed unrelated to each other by any crystalline arrangement, and independent
of each other ; so that to produce any such phenomena, each individual molecule must be conceived as unsym-
metrically constituted, i. e. as having a right and a left side. M. Biot and Dr. Seebeck appear about the same
time to have made this singular and interesting discovery ; hut the former has analyzed the phenomena with

particular care, and it is from his Memoir above cited that we extract the following statements. The liquids in

which he observed aright-handed rotatory property, according to our sense of the word above explained, in which

the observer is supposed to look in the direction of the ray's motion, are oil of turpentine, oil of laurel, vapour
of turpentine oil, and an alcoholic solution of artificial camphor produced by the action of muriatic acid on oil

of turpentine. The left-handed rotation was observed by him in oil of lemons, syrup of cane sugar, and alco-

holic solution of natural camphor. In all these, the intensity of the action, or the velocity of rotation, was
much inferior to quartz. The following are their indices of rotation, or the arcs of rotation produced by one

millimetre of thickness in the plane of oolurization of a certain homogeneous red ray chosen by M. Biot for a

standard, as calculated from his data.
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' lock crystal + 18.414 Rock crystal - 18.414 v,X-L
Oil of turpentine + .271 Oil of lemon _ 0436
Ditto, another specimen + 251 Concentrated syrup of sugar

- 0.554
Ditto, purified by repeated distillations

-f- 0.2S6
Oil of laurel

Solution of 1753 parts of artificial")

camphor in 17359 of alcohol . . j"

It follows further from M. Riot's researches, that when any two or more liquids are mixed together, or com-
1 046bined with plates of rock crystal, the rotation produced by the compound medium will be always the sum of the Law of

rotations produced by the several simple ones, in thicknesses equal to their actual thicknesses present in the mution ,n
combination the thicknesses in mixed liquids being assumed in the ratio of the volumes of each respectivelv

mixlure '

that calling F the compound thickness, and R the resulting index of rotation, we shall always have'

R. T= r. t +,->.{ + r".t" + &c.

where r, /, &c. are the indices (with their signs) of the elementary i igredients, and t, f, &c. their thicknesses
Thus, when 66 parts by measure of oil of turpentine, having the index + 0.253 are made to act against 38 of
oil of lemon, we have

+ 66 X 0.251 - 38 x 0.436 = 0.002,

so that
(

these thicknesses ought almost exactly to compensate each other
; and such was, in fact the result ot

M. Biots experiment, the whole pencil transmitted being found to retain its primitive polarization without the
least trace of an extraordinary image. Again, when into two tubes of the same bore, but of verv unequal
lengths, equal quantities of oil of turpentine were poured, and the rest of their leng-ths filled with* sulphuric
ether, which has no rotatory property, or in which r = 0, the two compound thicknesses thus differently con-
stituted gave identically the same tints in all positions of the analyzing prism. Thus we see that dilution or
mixture which only separate, without decomposing the molecules, do not alter their rotatory power Nay evenwhen reduced to vapour, M Biot found, that oil of turpentine still preserved its property and peculiar character:
and, had not the explosion of his apparatus prevented accurate measures, would probably enough have been
found to retain the same index of rotation allowing for the change of density. From these circumstances he
concludes that the rotatory power is essentially inherent in the molecules of bodies, and carried with them into
all their combinations. But this is too rapid a generalization ; for neither sugar nor camphor in the solid state
possess this property, though examined for it in the same circumstances as quartz is, by transmittiim- the polanzed ray along their optic axes; and, on the other hand, quartz held in solution by potash, or (as Dr" Brewster
has found) melted by heat, and thus deprived of its crystalline arrangement, manifests no such propert. Thi
obscure part of chemical optics well deserves additional attention.
M. Fresnel's researches have been directed to the rotatory phenomena with the same brilliant success which 1047

has distinguished his other inquiries into the nature of light ; and he has shown that they may be explained by Fresnel's

conceiving the molecules of the ether, which propagate rays along the axis of quartz, or rotatory fluids, instead theor
.V of

of vibrating in straight lines, to revolve uniformly in circles, in the manner explained in Art. 627, (where we circular P-
have shown (Corol.) that such a mode of vibration may subsist, and must arise from the interference of two

larization

rectangular vibrations of equal amplitude, but differing in phase by a quarter undulation,) and bv admitting
that, in virtue of some peculiar mechanism in the molecules of the media in question, such circular vibrations,when performed from right to left, bring into play an elasticity slightly different from that which propag-atesthem forward when performed in the contrary direction. The colours produced by such media he conceives
to originate in the interference of two pencils thus circularly polarized, and lagging the one behind the other
by an interval of retardation proportioned to their difference of velocities.

But to make this last hypothesis admissible, it is incumbent on us to show that the phenomenon which nece- 1048
sarily accompanies a difference of velocities, viz. a bifurcation of the pencil in the act of refraction at oblique Peculiar
surfaces, really takes place. This has accordingly been shown by M. Fresnel, by an experiment which though (1 ub 'e -

of great delicacy, is decisive and satisfactory. From a crystal of quartz he procured to be cut a prism havinn-
fractio"

its refracting angle 150, and its faces equally inclined to the axis ; so that a ray traversing it internally parallel
Produced

to its axis should be incident at equal angles, viz. of 75 on either face. As this is too great to allow of the laHv'ILi
ray's egress, he cemented on the surfaces the two halves of another precisely similar prism cut from another W medit
rock crystal of an opposite rotatory character. Thus in fig. 203, A C B is the first prism, and the side C B of the
second prism CB E being cemented on to C B, this prism is bisected by the plane BD and the half of itD B E transferred to the other side, and cemented with its side B C in contact with A C, thus producing the
achromatic parallelepiped F A BD ; so that if a ray be incident on Q in the direction PQ parallel to the baseA B, i. e. to the axis of the two crystals, it will traverse all three in the direction of the axes of their spheroidsof double refraction ; and, therefore, so far as the Huygenian law of double refraction is concerned ou-ht to
undergo no division. Now it is evident, that if the ray P Q be at its entry into AFC divided into two 'circular! v
polarized in opposite directions, the one (R) moving quicker than the other (I,,) then, at quitting- the surf-iceA C, a bifurcation must take place, the ray R beiri"- fca.,/, and L most refracted. In this state they are incident
on the medium A C B, and now the portions R and L, by reason of the opposite nature of the media exch-ino-P
velocities ; so that R, which at its emergence from the &c-r A C r-f F A C was leant refracted upwards will now
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be most refracted downwards ; and thus the separation of the images will be doubled, and the sarm will take

place at the common face C B. Thus this combination, both from the doubling- of the separation, and the

greatness of the angles of incidence, is peculiarly well adapted to render sensible any bifurcation, or difference

of velocities, however small, which may exist along the axis. Accordingly, with the compound prism, so con-

structed, a double refraction is produced ;
and the two rays are really observed to emerge, making a sensible

m<rle with each other.

But it is, moreover, observed, that though thus separated by a real double refraction, the two pencils have not

acquired the characters which double refraction usually impresses on the ordinary and extraordin-ry ra\s. at

their emergence, but very different ones. In common cases of double refraction the two emerg .-.'iicils are

each wholly polarized in opposite planes, and either of them when examined with a doubly r,. ...cling prisrr

gives two unequal images, one alternately more and less bright than the other, as the prism revues through
successive quadrants. This is not the case with the two pencils produced in the case before ir i

First, Either of them, when examined with a doubly refracting prism, gives constantly tw,
. nagus of equal

intensity, in whatever plane the principal section of the latter be placed. In this respect, then, thqy present the

characters of unpolarized light, and may be regarded as each consisting of two rays polarized at right angles to

each other. But

Secondly, They differ from ordinary, or unpolarized light, in a very remarkable property, which was first

discovered by Fresnel, and is a chief distinctive character of this kind of polarization. Suppose either of thorn

to be incident at right angles on the surface A B of a parallelepiped of crown glass of the refractive index 1.51,

having its angles ABC and ADC each 54J, it will then be totally reflected at the internal surface B C ; and

(if the parallelepiped he long enough) again in the same plane at the opposite surface A D, and will emerge at

length perpendicularly through the surface B C. But the emergent ray, instead of comporting itself as ordinary

light, will now be found to be completely polarized in a plane 45 inclined to that in which the reflections were

made, whatever may have been the position of that plane. If both the pencils be treated in this manner, it will

be found that the one, after its two total reflexions will assume a plane of polarization 45 in azimuth to the right,

and the other 45 to the left of the plane of the reflexions.

Thus we see that the effect of double refraction along the axis of quartz is to impress on either of the emer-

gent pencils opposite polarizations, or modifications, of a nature totally distinct from that given to a ray by

ordinary reflexion, or by double refraction through Iceland spar, &c. ; and, as in the last described experiment,
so long as the ray enters perpendicularly into the first surface of the glass parallelepiped, it is indifferent in what

plane the two reflexions are operated, and since when presented to a doubly refracting prism in any plane indif-

ferently it always divides itself into two equal pencils, it is evident that the ray thus modified h:is no sides, i. e.

no particular relations to certain regions of space ;
and therefore that the epithet circular polarization, apart

from all theoretical considerations, may be naturally applied to this peculiar modification. But the characters

above described are not the only ones belonging to a ray thus modified, for

Thirdly, Such a ray being transmitted through a thin crystallized lamina, and parallel to its axis, is divided

by subsequent double refraction into two rays of complementary colours, thus marking a decided difference

between it and a ray of common light ; while, on the other hand, these colours are not the same with those

which would arise from a ray of light polarized in the usual way and similarly analyzed, but differ from them

by an exact quarter of a tint, either in excess or defect, as the ease may be.

Fourthly, A ray so modified by this peculiar double refraction, when transmitted again along the axis of

rock crystal, or through columns of oil of turpentine, of lemons, &c., and then analyzed by a double

refracting prism, gives rise to no phenomena of colour, differing in this from polarized, and agreeing with

common light.

Another independent mode of impressing on a ray all this assemblage of characters has been discovered by
M. Fresnel. . It consists in inverting the process described in Art. 1049. Thus, into the side CD of the glass

parallelepiped there mentioned, let a common polarized ray be introduced at a perpendicular incidence, the

parallelepiped being so placed that the plane of internal reflexion at the side AD shall be 45 inclined to that

of its primitive polarization. Then, after undergoing two total internal reflexions at G and F, it will emerge at

E deprived of its characters of ordinary polarization and endowed with those of circular, and being no way

distinguishable from one of the pencils produced by double refraction along the axis of rock crystal

It remains to show, however, that the characters here described, as impressed on a ray by transmission along

the axis of rock crystal, are really those which ought to belong to a ray propagated by circular vibrations. And,

first, it follows from Art. 627, that this latter ray is the resultant of two rays polarized at right angles, and dif-

fering in their phases by a quarter undulation. It must, therefore, of necessity possess the first character, vit.

that of division into two equal pencils by double refraction in any plane, for the same reason that unpolarized

light is so divided, the difference of phases having nothing to do with this character.

In the next place, a ray propagated by circular vibrations when incident on rock crystal in the direction of the

axis, will (by hypothesis) be propagated along it by that elasticity which is due to the direction of its rotation,

the wave then will enter the crystal without further subdivision, and there will be no difference of paths, or iute'

tering rays at its emergence ; and, of course, no colours produced on analyzing by double refraction, which is

another of the characters in question.
When a ray propagated by circular vibrations is incident on a crystallized lamina it may be regarded as

composed of two, one polarized in the plane of the principal section, the other at right angles to it, of aqnal

intensity, and differing in phase by a quarter undulation. Each of these will be transmitted unaltered, and

therefore at their emergence and subsequent analysis will comport themselves in respect of their interferences,

just as would do the two portions of a ray primitively polarized in azimuth 45, and divided into two by the
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Light. double refraction of the lamina, provided that a quarter undulation be added to the phase of one of these latter Part IV

-/-"* rays. Now such rays will, as we have shown at length in Art. 969, produce by the interference of their doubly
v v^~ '

refracted portions, the ordinary and extraordinary tints due to the interval of retardation within the crystallize. 1

lamina. Hence, in the present case, the tints produced will be those due to that interval, plus or minus the

quarter of an undulation added to, or subtracted from, the phase of one of the portions ; and, consequently,
"rill differ one-fourth of a tint, or order, from that which would arise from the use of a beam of ordinary polarized

light incident in azimuth 45 on the lamina.

There v-uains but one more character of the rays transmitted along the axis of quartz, which we must show 1056.

to belon
5

';
u ray propagated by circular vibrations, viz. that described in Art. 1049. But in order to this it

Modifica-

will be npcei'.ary to state the result of M. Fresnel's researches on the modifications which light undergoes by "^
total reflex'nn in the interior of transparent bodies. [--ht ),.,

When a ra >larized in any azimuth is incident on a reflecting surface which reflects the whole of the inci- total

dent light, if ve decompose it into two, the one having its vibrations performed parallel, and the other perpen- reflexion,

dicular to the surface, and regard each of these as independent of the other ; it is evident that the reflexion of

these portions will be performed under very different circumstances, the ethereal molecules having in the former
case to glide as it were on the surface, and therefore parallel to the strata in which their density is constant, while

in the latter each molecule in the act of vibration will pass into strata of variable density. The reflexions

therefore will be performed at different depths in the two cases ; and from this cause will arise a difference of

route, and a consequent difference of phase in the reflected portions, so that the total reflected ray will no longer
be capable of being regarded as one having a single origin, but as two of unequal intensities, oppositely pola-

rized, and differing in phase by a quantity depending on the angle of incidence and the refractive power of the

medium. PYom peculiar considerations, of a delicate nature, and depending on a discussion of the imaginary
forms assumed by the general expressions for the intensity of a ray reflected at any angle (Art. 852) when applied
to the case of total reflexion, M. Fresnel has been led to the following expression for the difference of phases (S)
of the two portions in question.

_ 2 ff . (sin Q4 -
Qu

g
-f 1) . (sin i) + 1

G.+l)(8inO<- 1

where fi is the index of refraction, and i the angle of internal incidence. This formula, it is to be observed, is

given by him, not as strictly demonstrated, but merely as highly probable, as an interpretation of the analytical

meaning of the imaginary formula alluded to. The mode of its deduction being, however, independent of

experiment, and entirely a priori, it is clear that if found verified by careful experiment in circumstances

properly varied, it may be received as a physical law, like any other result of the same kind. Now we have

already seen, that in the case of crown glass, where fi =: 1.51 and i = 54^, a polarized ray, having its azimuth

45, reckoned from the plane of total reflexion, has its polarization destroyed, and becomes resolved into a ray

having the other characters of a resultant from two differing 45 in p'hase, by two total reflexions at this angle,

(Art. 1056.) But if in the above formula we make
fi
= 1.51, and i = 54 37', we shall find S = 45, and

2 f = 90, so that the above equation is verified in this case. M. Fresnel also found that the same effect was

produced by three reflexions when the angle of incidence was 69 12', and by four when 74 4"2', both agreeing
with the formula which gives in the former case 5 = ^ 90, and in the latter S = j 90, for the difference of phase

gained or lost by one portion on the other at each reflexion. Similar verifications were obtained by performing
two reflexions at the internal surface of glass, and two at the confines of glass and water at angles of 68 27'.

It appears, then, that when a ray polarized in azimuth 45 undergoes two total reflexions at the angles, and [057
in the manner described, it becomes circularly polarized ; and if vice versd, the two elements of a ray so circu-

Explana-

larly polarized be made to retrace their course, they will reunite into a ray polarized completely in one plane, tion of the

Thus we see, that all the characters of the rays transmitted along the axis of rock crystal agree with those of a rotatory

ray so compounded, and possessing circular polarization. In order, then, to explain the phenomena presented
Phe

by a polarized ray when incident on a plate of this substance cut at right angles to its axis, we must first regard
the ray as resolved into two others (which we will call A and B) of equal intensity ; the one A polarized in a

plane 45 inclined to the right, the other 45 inclined to the left of the vertical, (which, to fix our ideas, we shall

take for the plane of primitive polarization.) Now, since by Art. 615 a ray polarized in any plane may be

regarded as equivalent to two rays each of half its intensity, differing in their phases by a quarter undulation,

let us conceive the ray A as resolved into two, A a polarized in the plane -f- 45, and having its phase
advanced -(-

.1 undulation, and anotlier A b also polarized at -f 45, but having its phase retarded, or ^
undulation, so that A. a and A 6 differ undulation in their phases. Similarly, let B be regarded as

decomposed into Ba polarized at 45, and having its phase + ^undulation, and B6 polarized also at

- 45, but having its phase -J
undulation different from B. Thus will the original ray be resolved

into the four A. a, A. b, B a, B 6. Now, let us combine these two and two in a cross order, then A a

combined with B b will be equal rays, polarized in opposite planes, and differing undulation in their phases,
and will therefore compose one circularly polarized ray, in which the rotation is from right to left. Similarly,
the pair A b. Bo will compound another equally intense circularly polarized ray having its rotation the contrary

way. Now these will (ex hypothesi) be transmitted through the quartz with unequal velocities, and thus an

interval of retardation will arise, and if the surface of egress or ingress be oblique to the axis, a double refrac-

tion will take place ; and two circularly polarized rays will emerge in different directions, as experiments show

they do. Ifperpendicular they will emerge superposed, and will compound one ray. Let us now examine what

will be the character and slate of polarization of this compound ray. To this end conceive a molecule of ether C
to be at once agitated by two circular motions in opposite directions; one in a circle equal and similar to A P in

VOL. iv. 4 c
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Light, the direction A P, the other in a circle equal and similar to B Q, and in the direction B Q, fig. 205. Let A, B Part IV.

*- ~v ' be two molecules setting: l't at once from A, B in these circles with equal velocities, then will the motion of -v
Fig. 206. C at any instant be equal to that compounded of the motions of A and B at that instant. When A comes to P

let B come to Q, then arc A P = B Q, and the motions at P and Q will be each resolved into two, those of which

parallel to C D (a perpendicular to P Q) conspire, while those in the directions P I) and Q D parallel to P Q
oppose, and being' equal destroy each other; thus C will move only in virtue of the sum of the two former, and
its vibrations will therefore be rectilinear, and in the plane C D perpendicular to P D Q. If the thickness of
the plate of quartz were nothing, or such that the interval of retardation were an exact number of undulations,
A, B would lie at opposite extremities of a diameter, and C D the 1 new plane of polarization would be per-

pendicular to AM that diameter, or coincident with the plane of primitive polarization. But if not, the quicker
motion will have pained on the other a part of a circumference. M B, which is to a whole circumference as the

thickness of the plate is to that which would produce a difference of a whole undulation ; and at the emergence
of the two waves into air, after which they circulate with equal velocity, if we suppose the one molecule to be

setting out from A, the other will be setting out, not from M the opposite extremity of the diameter, but from B,
and therefore C D the new plane of polarization (which from what has just been shown must always bisect the

angle A C B) will no longer be coincident with C N the primitive plane of polarization, at right angles to A M,
but will make an angle 1) C N with it equal to half B C M, and therefore proportional to M B, or to the interval

of retardation, i. e. to the thickness of the plate. Thus the system of rays emerging from the rock crystal plate
will compound one ray polarized in one plane, and in the position the original plane would have had, had it revolved

uniformly round the ray as an axis during its passage through the plate. Thus we have a complete and satis-

factory explanation of the apparent rotation of the plane of polarization, as observed by Biot in the case of a

homogeneous ray.

105S. It is observed, that the spectra formed by the double refraction of rock crystal along its axis are very highly and

unequally coloured. The violet rays are most separated, and therefore the difference of velocities of the two rotating

pencils is much greater for violet th n for red rays. Consequently, the apparent velocity of rotation of the

plane of polarization will also be greater for the violet rays in the same proportion, and thus arise all the

phenomena of coloration observed and described by M. Biot. It is scarcely possible to imagine an analysis
of a natural phenomenon more complete, satisfactory, and elegant. With regard to the physical reason

of the difference of velocity in the two circular polarized pencils within the quartz, it is true we remain in the

dark ; but the fact of such difference existing is now shown to be no hypothesis, but a fact demonstrated by
their observed difference of refraction, and by the observed characters of the two emergent rays.

XI. Of the Absorption of Light by Crystallized Media.

1059. Crystallized media, endowed with the property of double refraction, are found to absorb the differently

Absorption coloured rays differently, according to their planes of polarization, and the manner in which these planes are
of polarized presen ted to the axis of the crystal, and also to exert very different absolute absorbing energies on rays of one

double^re-
co'our polarized in different planes. A remarkable instance of this has been already often referred to in the

fracting
case of the brown tourmaline, a plate of which, cut parallel to the axis, absorbs almost entirely all rays polarized

crystals. in the plane of the principal section, and lets pass only such among oppositely polarized rays as go to con-

stitute a brown colour.
'

1060. When such a plate, then, is exposed to natural light, since at the entrance of each ray into its substance it is

Property of resolved into two, one polarized in the plane of the principal section, and one perpendicular to it, the former is

the tour-
absorbed in its progress by the action of the crystal, while the brown portion of the latter escaping absorption,

but retaining at its egress the polarization impressed on it, after traversing the plate, appears with its proper

colour, and wholly polarized in a plane at right angles to the aris. Thus the curious phenomenon of the pola-

Explained. rization of light by transmission through a plate of tourmaline, or other coloured crystal, is explained, or at

least resolved into the more general fact of an absorbing energy varying with the internal position of the plane

of polarization. The crystal, in virtue of its double refractive property, divides the ray into two, and polarizes

them oppositely ; and the unequal absorption of these two portions tubtequently causes the total suppression of

one, and the partial of the other of the portions so separated. Thus we see that the polarized beam obtained

by transmission through a tourmaline must always be of much less than half the intensity of the incident light.

106 1. The destruction of the pencil polarized in the principal section is not, however, sudden ; for if the plate of

Gr.,UuaI tourmaline be very thin, the emerging pencil will only be partially polarized, indicating the existence in it of
destruction

rays belonging to the other pencil. This is best shown by cutting a tourmaline into a prism having its refract-

ordinary
ing edge parallel to the axis, and its angle small, so as to produce a wedge whose thickness increases not too

tay. rapid'y. If we look through this at a distant candle, we shall see only one image, viz. the extraordinary

through the back of the wedge, (if thick enough ;) but :\s tin- eye approaches the edge, the ordinary image appears

at first very faint, but increasing in intensity till, at the very edge, it becomes equal to the other. At the same

time the colour of the latter, which at first was intense, becomes diluted ;
and the images approximate not only

to equality of light, but to similarity of tint. We see by this, too, that in strictness the ordinary pencil is never

completely absorbed by any thickness, however great ; but as it diminishes in geometrical progression as the

thickness increases in arithmetical, the absorption may for ;ill practical purposes be regarded as total at moderate

thicknesses
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Light The indefatigable scrutiny of Dr. BrewsUr, to wlio:n we owe nearly all our knowledge on this subject, has part |v

v"-""-' shown that the same property is possessed in greater or less perfection by the greater number of coloured doubly >__ _
refracting- media; and the expression of the property may be rendered general by considering all doubly refrac- 1062.
tive media as possessing two distinct absorbing powers or two separate scales of absorption for the two pencils, Media pos-
or (adopting the language of III. part 2) as having two distinct types, or curves expressing the law of absorp-

sess t

tion throughout the spectrum. If these types be both straight lines parallel to the abscissa, the crystal will be d ' st

"!r!

colourless. Such are limpid carbonate of lime, quartz, nitre, &c. If they be similar and equal curves, the
pov^ rs

' '

medium, although coloured, will present the same colour, and the same intensity of tint, in common as in pola-
rized light. If dissimilar, or if, although similar, their ordinates are in :i ratio of inequality, the character, in

the former case, and the intensity in the latter, will vary on a variation of the plane of polarization of the inci-

dent beam , so that if a plate cut from such a crystal be exposed to a beam of polarized white light, and turned
round in its own plane, or otherwise inclined to the beam, its colour will change either in hue or depth or

both. Dr. Brewster has remarked such change of colour and the phenomena connected with it in a great

variety of crystals both with one and two axes, of which he has given a list in a most interesting Paper on the
the subject in the Philosophical Ttmuaatimu, 1819, p. 1, which we stronglv recommend to the reader's perusal.
It may be familiarly seen in a prism of smoked quartz of a pretty deep tinge, which held with its axis in the

plane of polarization appears of a purple or amethyst colour, while if held in a direction at right angles to this

position, its colour is a yellow brown.
But in order to analyze the phenomena more exactly, we must examine the two pencils separately. To this 1063

end Dr. Brewster took a rhomboid of yellow carbonate of lime of sufficient thickness to give two distinct images Absorption
of a small circular aperture placed close before it, and illuminated with white light, when he observed that the of the rays

image seen by extraordinary refraction appeared of a deeper colour and ess luminous than the other, being yu 'n tn
.

e two

orange yellow, while the ordinary image was a yellowish v.-hite. He found, moreover, that the difference of Pen
.

cll' ex ~

' J J , J run i ned in
colour was greater as the paths of the refracted rays within the crystal were more inclined to the axis, being crystalswiih
when the rays passed along the axis, and a maximum when at right angles to it. If we denote by and Y, one axis.

the ordinates of the curves, expressing the law of absorption as in Art. 490, for the ordinary and extraordinary

pencil respectively, these will both therefore decrease as we proceed from the red to the violet end of the spectrum,

corresponding to types of the character of that represented in fig. 114; but Y, being smaller, and decreasing
more rapidly than Y . Moreover, since Y = Y. in the axis, and since as we recede from the axis Y,, increases Formutafor

(because the colour of the ordinary pencil becomes whiter and more luminous) while Y, diminishes by the same the light

degrees, (the extraordinary becoming deeper and less bright,) we shall represent both these changes satis- transmieii

factorily by putting
Y - Y (1 -f k . sin 0) ; Y. = Y (1 k . sin J

).

These give Y -f- Y, = 2 Y = constant, or independent of 0, which agrees with an observation of Dr. Brewster,
that in every situation the combined tints of the two images are exactly the same with the natural colour of

the mineral, (which, in this instance, appears to have been alike in all directions.)
In this case, then, the colour of a plate of the crystal of given thickness exposed to natural light will be the 1064.

same, whether the plate be cut parallel or perpendicular to the axis. But Dr. Brewster has observed, thu*. this Cases of

is not always the case, but that great differences occasionally exist in this respect. Thus he found, that in some two distinct

specimens of sapphire the colour when viewed along the axis was deep blue, and when across it yellowish green.
c lours '

In Idocrase an orange-yellow tint is seen along the axis, and a yellowish green across it. Specimens of tour-

maline also are not uncommon in which the tint across the axis is green, while along the axis it is deep red ;

and, in general, this mineral is always much more opaque in the direction of the axis than in any other; so much
so, indeed, that plates of a very moderate thickness cut across the axis are nearly impermeable to light. One of

the most remarkable instances of this kind we have met with is a variety of sub-oxysulphate of iron, whicli

crystallizes in regular hexagonal prisms, and which viewed through two opposite sides of the prism is light

green, but along the axis, a deep blood red, so intense that a thickness of -$ inch allows scarcely any light to

pass. It is obvious, that to such cases the formulae of the last article do not extend. But a slight modifi- Imestiga-

cation will enable us to embrace the phenomena in an analytical expression. For if we take
formulas for

ya
= X. + Y. . sin 0*

; y. = X. + Y. . sin 6* ;
^eas <=

where X , Y , &c. as well as y, , y, represent functions of X (the length of an undulation) being the ordinates

of so many curves, or types of tints, whose relations' are to be determined, we have

y. + y.= (X. + X.) + (Y, + Y,) sin 0*.

Now tliis is the tint which a sphere of the medium of a diameter = 1 will exhibit when viewed by natural light

along a diameter inclined to the axis. If we represent by A and B the ordinates of the types of the tints

it is observed to exhibit in the directions of the axis, and perpendicular to it, we have, when 0=0,

y + y. = A = x + x, ;

and when = 90,
y. + y, = B = (X. + X.) + (Y. + Y.), Expression

whence we have Y, + Y, = B - A ; ^*J
and the tint exhibited by ordinary light at the inclination to the axis, will be represented by transmitted

in common
y, + y. A -f- (B - A) . sin 6*, ii(?ht

= A . cos -f B . sin 0*.

4 c 2
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Light Thus in the case of our sub-oxysulphate of iron, A is the ordinate of the type of a deep blood-red tint, and B P3r< IV

v~ v '
in like manner represents a bright pale green, so that we shall have at any intermediate inclination 9

' -v
tint = (deep red) X cos 0*

-J-- (light green) x sin 0*,

which represents faithfully enough the gradual passage of one hue into the other as the inclination changes.
1065. Suppose now the incident beam polarized in any plane, and let the plane in which the ray and the axis of

When illu- the sphere lie make an angle = a with that plane. Then would cos a- and sin a8
represent the intensities of

"olarizV
31 the ordinary anj extraordinary pencils which superposed make up the emergent beam, were the crystal limpid ;

but in virtue of its absorbent powers, they will be reduced respectively to

y, = cos s
(X, + Y. sin 2

),
and y, = sin a (X, -f- Y. . sin 0'),

so that at their emergence they will no longer make up white light, but a variable tint whose type has for its

ordinate

(X . cos s
-f X. . sin a"-) -(- (Y . cos *

-j- Y. . sin a2 ) . sin 0*,

in which it will be recollected that X. -f X, = A, and Y. -f- Y. = B A.

To determine the individual values of X , &c. however, we must have two more conditions, and these will be
found by considering, first, that in the direction of the axis the tint must be independent of a, which gives
X, . cos a4 -)- X, . sin

s

independent of a, and therefore X,= X,, and either of them = A. To get another
condition, let the tints be noticed which the sphere or crystal exhibits when its axis is perpendicular to the visual

ray ; and, first, coincident with, next, perpendicular to, the plane of polarization, i. e. when a = 0, and a = 90".

These are respectively X. + Y., and X. -f- Y, ;

and calling these a and 6, we have

Y. = a - X. = a - A, Y. = 6 - A.

Hence the final expression for the tint seen in polarized light will be

A + { (a A) . cos a*
-j- (6 A) sin a-

} . sin &',

that'is, A . cos 0* + { a . cos a4 + b . sin '
} . sin O1

,

in which it will be observed that a and 6 are complements of each other to the tint B, because

a + 6 - X. -f Y -f X. + Y, = B, by Art. 1064.

1066. Such is the expression for the apparent hue of crystals with one axis, which exhibit a variable colour in

Dichroism. common or polarized light, according to their position with respect to the incident light. The phenomenon in

question may be generally termed dichroism, though the word has usually been applied only to that particular

case where a marked change in the character of the tint takes place, as from red to green, &c.

1067. The dichroism of biaxal crystals differs in many of its phenomena from those having only one optic axis.

Dichroism If we look through a plate, or into a crystal of any biaxal mineral, having the property in question, illuminated
in biaxal

jjy natural light in such a direction that the visual ray within the crystal shall pass along, and in the immediate

F7
St

206 neighbourhood of, one of the axes, we shall perceive a phenomenon like that represented in fig. 206, consisting

of two similar and equal sombre spaces A B one on either side of the pole P, and of the principal section P 1",

Colours of and if we look along the other axis P' a similar pair of spaces will be seen in its neighbourhood. In the
iolite. mineral called dichroite by Hauy, (on account of the striking difference of its colours in different positions,) or

iolite (from its violet hue) by others,* of which the phenomena have been described by Dr. Brewster in the Paper

already cited, these spaces are of a full blue colour, while the intermediate region towards O, along the line O P C,

Phenomena and the space beyond P towards C are yellowish white. In epidote the sombre spaces are brown, and the region
of epidote. around O and in the principal section green, of a greater or less degree of dilution. In this latter mineral (at

least in some of its more ordinary varieties of crystalline form, viz. in long striated prisms much flattened, and

terminated by dihedral summits placed obliquely, so as to truncate two of the angles of the
prism)

the pheno-
mena are seen without any artificial section, merely by looking in obliquely, across the axis of the prism ; and

the same is true of many other minerals, as, for instance, the axinite, in which the transition of colour is

extremely remarkable and beautiful

1068. The phenomena of dichroism in biaxal, as well as in uniaxal crystals, are evidently related to the optic axes.
Connection an(j depend on the planes of polarization assumed by the intromitted light, during its transit through the crystal
f the phe- ^Q wnose absorptive power it is subjected. Now, if we consider the form and situation of the sombre spaces

wUh'the where the greatest absorptive energy is exerted, we are at once struck by their analogy with those occupied by

polarized the more vividly coloured parts of the rays about the axes in the situation of fig. 179. That figure represents

rings and (Art. 900) the extraordinary set of rings as seen in a crystal whose principal section is in the plane of primitive

P
lic axes

polarization. Fig. 207 represents the ordinary or complementary set as seen around either of the axes, the

pole P, and the principal section being here occupied with white light, and very bright, in consequence of its

containing the whole incident light, while the lateral or coloured portions occupied by the rings are less illu-

minated, the colours originating in an abstraction of certain rays.

Conceive now a number of such sets of coloured rings not all of exactly the same dimensions, nor having

* Mohs, with his usual contemptuous disregard of, or rather hostility to, all ordinary convenience and received usage, chooses to call this

mineral '

pritmatic quartz'' Such a nomenclature mutt ere long work out us own destruction, but while it subsists the nuisance is intolerable.

We cannol but lament, that such a cause should exist to raise up prejudice against a system in many respects so useful and valuable
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Light, precisely the same pole, but very nearly so, to be superposed on one another, then would the colour* be obliterated Part IV.

-~v - and blended into white light by their overlapping, but still the general intensity of the light in the lateral regions ^ -v^-~
would remain much feebler than in the principal section, and the effect would be precisely that of fig. 206, viz. Analogy in

two sombre, cloudy, fan-shaped spaces traversed by a narrow ray of vivid light, opening out from P towards C T"
8?60

.'

of

and O. Such would be the case with a limpid crystal, supposing such a slight degree of confusion of structure i''
as to produce the non-coincidence ofthe rays from all its molecules. In this case, however, neither of the spaces
in question would appear coloured, nor would the phenomena be seen at all without the use of polarized light
and its subsequent analysis. But if we conceive the crystal, instead of limpidity, to possess the property of
double absorption, the suppressed and transmitted portions will be, not white light, but light of the colour of
one or other of the pencils into which it is resolved by double refraction, according to its plane of polarization
and the thickness of the medium it has traversed ; and the analysis of the emergent ray may be regarded as

performed, at least imperfectly by the difference of absorptive powers acting differently on the two pencils. In

support of this it may be noticed, that when we examine the system of rings in the usual way, by polarized
light, in crystals presenting the above phenomenon, they are usually found to be very irregular, several sets

evidently overlapping and interfering with one another, and rendering the non-coincidence of all the axes a
matter of ocular demonstration.

In Art. 931 we investigated the law of intensity ofthe illumination of the polarized rings in different parts of 1069.

their periphery for uniaxal crystals. As what is there said does not apply, however, to biaxal ones, and as the DIGRESSION

present subject has led us to the consideration of the more general case, it will not be irrelevant, if we digress
Theory ol

at this point, in order to show, what modifications the statement there made must receive to embrace the phe- rut$riag
nomena of biaxal crystals. resumed"

M. Biot has stated the general law of polarization in biaxal crystals, from his elaborate researches on that 1070.

subject (Mem. sur les Lois Generates de la Double Refraction et Polarisation, 8fc. Mem. Acad. Sci. 1819) to Biot'sge

be as follows :
neral law

If two planes be drawn through the course of a ray within a crystal and through the two optic axes, and a
planes of

third plane bisecting the angle included between the two former, this will be the plane of polarization if the ray polarization
be an ordinary one but one perpendicular to it if extraordinary. Thus in fig. 209, C P and C P' being the in biaxal

optic axes, and AC a ray penetrating the crystal, if PA, P' A be joined by arcs of circles on the sphere
crystals

H O K A having C for its centre, and the angle PA P' be bisected by the arc AN, the plane AC N bisecting
the dihedral angle between the planes P C A and P' C A is the plane of ordinary polarization, and a plane per-

pendicular to it that of extraordinary. This is the law of fixed polarization, and expresses generally the planes
of polarization assumed by the two rays at their emergence from doubly refracting crystals. It is a consequence
of Fresnel's general theory, (though deducible from it by a train of analytical reasoning far too intricate and
refined to allow of its insertion in a treatise like the present,) and, having been experimentally established long
before that theory was devised, must be looked on as a strong additional proof of its conformity to nature.

The doctrine of movable polarization, however, which, so far as respects the phenomena of the colours and 1071.

intensity of the rings, has been shown by M. Biot in the same excellent paper, to represent with fidelity their Doctrine of

various affections, whether in uniaxal or biaxal crystals, requires the resulting ray to assume at its emergence a movable

plane of polarization alternately coincident with, and making with the primitive plane of polarization twice the poli

angle which the plane of fixed polarization so determined would make; so that if we draw AM (fig. 208) hfaMlcrvs

bisecting the angle PAP', the emergent ray will be affected by subsequent analysis, as if polarized either in the tals.

plane of primitive polarization, or making with it an angle equal to twice C M A, and from this it is easy to Fig. 208.

derive the law of intensity in question, for the ray by which the point A of the rings is formed consists of two Law of

portions, of which (A) is affected by subsequent analysis by a prism of Iceland spar, as if it were polarized in a intensity of

plane making an angle 2 C M A = Y' with the plane of primitive polarization, in which we suppose the principal '*)'
rin"s '"

section ofthe analyzing prism to be placed, and the other, complementary to this (1 A) retains its primitive po jnts 'of

polarization. The portion A then will be divided between the ordinary and extraordinary image in the pro- their peri

portion (cos 2 ^)' : (sin 2 YO 2
, an<l (considering only the latter,) A being its intensity at its emergence from the phery.

crystal, A . (sin 2 Y')
2 will be its intensity in the extraordinary image, or in the primary set of rings, while the

whole of the portion 1 A will pass into the ordinary or complementary set, as in Art. 932, so that we have

only to express this in terms ofthe azimuth ofthe crystallized plate itself, and the direction of the ray within the

crystal. For this purpose, put a = angle C O P = azimuth of the principal section ofthe plate reckoned from

the plane of primitive polarization, 9 = A P, tf = A P', and let us (for simplicity) consider only at present the case

when P and P' are near, as in nitre, so that arcs of circles may be regarded as straight lines, and spherical as plane

triangles, (see Art. 907.) Now if in fig. 208 we put for the angle P N A, or the angle made by the plane of

ordinary polarization with the principal section,we shall have V = C M A = COP + MNO = COP-f-PNA
/PAN2

= a + 0. To find we have only to consider that sin 2 = I =^r= IX sin (P AN = P A P 1

)* ;
but since N A Analyti-

\rJN/ callye*-

P A 2 a pressed.

bisects the angle of the triangle PAP' and cuts the base, P N = P P' X 2 ~3 and
.r A.

(
A. 1 -J- (?

4 aa _ (0 _ 0f\*

{ 4 a2
(0 <?')* }. t <

'___ _
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A more symmetrical value of will, however, be had by expressing the value of sin 2 0, which being equal to !''"' IV.

'

4 . sin s
(1 sin 0*) is immediately given by substitution of the foregoing. If we execute the reductions we v

./
*

shall find that, putting S for - '

'

= half the sum of the sides of the triangle PAP

2 (0 -f- 0') (0 - <0 -/S (S-fl)(S-0') (S
- sTa)

2 </ S (S - 0) (S -
ff) (S - 2 a) . ... ,, , . . D/ .- is the well known expression for the sine ot the angle I A P included

between the sides 0, 0', and therefore calling this angle P, we have

(6> + 0') (0
-

0')
S!n20 =- -$F~ -"nP -

The nature of this expression renders the transition from plane to spherical triangles easy, and we may conclude

consequently, that, in crystals where the axes make any angle 2 a, that if we take

sin (0 + 0') . sin (0
-

0')
sin 2 = s - - sin P,

(sin 2
fl)

a

an(j ^ = a -)- 0, we shall still have the intensity of the extraordinary rings represented by A (sin 2 ^)
2
, and that

of the ordinary by 1 A + A . (cos 2 ^y, that is, 1 - A (sin 2 ^)X tneir sum being, as it ought, unity.

1 07-) The black cross which divides the system of the primary rings, is too remarkable a feature not to require express

Form of the notice. Its form, it is evident, must be determined by the condition that the line M A shall be everywhere perpendi-
folack cross cular to C O D, in whicli circumstances the locus of A will be a curve marking out its central or blackest portion,
in biaxal

>j<ne problem then is reduced to a purely geometrical one, Required a curve P A such that a line drawn from A
crystals in-

D ;sectjng tne angle between lines A P, A P' drawn to two given points P, P', shall always be perpendicular to a

<nven line COD. To resolve this, retaining the former notation, and putting O M = x, M A = y, O A = r,

we have
x . cos a + y . sin N

cosAOP= cos(AOM- n) = -
^-^

=
,

y . cos a x , sin " M
sin A O P = =

,

r r

outtinir N and M for the respective functions in the numerators of the fractions.

Now since PAM is half the angle PAP', it is easy to see that we must have 2 x angle O'AM = PAO - PA O

But,
Cos=-

rg
; cosP'AO=

PO aM
and

consequently we have, first,

sin

2 xy M <S'* + r* -a' rl - _i*L (ff* fin20 AM, o'-T^-
'~ ~

e& I

"
2>*00>

and, secondly,

ci

Now we have further,

yt- = d> + r
' + > a N 3

;

which substi uted in the values of sin 2 O A M and cos 2 O A M above, give the equations

x y . 6 ff = a- . M N,

(y
!

a?) . 6 6' = r4 + a1
(M* N*),

and, eliminating 9 9' from these, we obtain

if (y*
_ Xf) . M N = xy { r4 + a1

(M
8 - N') }.

In this it only remains to substitute for M and N their values y . cos.
- * . sin , and y. sina + c.CMa,

which done, the whole will be found divisible by r\ and will reduce itaetf to the very simple equation
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x y = a . sin u . cos = . sin 2 a.

The black cross then is an hyperbola, passing
1

through the poles P, P', and having the planes of primitive pola- ax<, s

6

a,.e

6

rization, and one perpendicular to it (C D and c d) for its asymptotes, and which as a approaches to 0, or 90, near it is ar

approaches nearer and nearer to its asymptotes, with which it at last coincides in the limiting case, all which hyperbola

particulars are exactly conformable to fact, and may easily be verified by turning a plate of nitre round
between crossed tourmalines. When the inclination of the axes is so considerable, that the rings about
both poles cannot be seen at once, there will arise modifications from the substitutions of the sines, &c. of arcs

for the arcs themselves, which it is not worth while to enter into.

To return now to the phenomena of dichroism. That portion of the light transmitted by a biaxal coloured 1073.
medium which has relation to the optic axes, and which forms the sombre brushes of colour (in fig. 206,) and Empirical
the bright spaces which divide them, have evidently for their analytical expression a function of the form formula

Y.(cos20)'+B.(dn20)'; (a) Zphel
where Y and B are functions of X, and represent the ordinates of the types of two fundamental tints, <j> represent- dichroism

ing as before the angle PNA, fig. 208, or the angle made by the plane of ordinary polarization with the principal
section. But besides this, the phenomena described by Dr. Brewster, as exhibited by the iolite, require us
to admit two other portions, which may be more naturally referred, not to either of the optic axes but to

the line C O (fig. 209) bisecting them, and having for its expression a function of the form a . cos O A* +
6 . sin O A!

. In this mineral, when exposed to common light (or to polarized, provided we place its principal section

at right angles to that of polarization,) the lateral brushes A, B, fig. 206, are blue, and the bright rays which
divide them, passing through the poles P, P'are white, or yellowish white, and so far the phenomena agree with
the expression (a) if we suppose Y to represent a bright yellowish white, and B a blue. But according to that

expression alone, the blue spaces should be continued down to the equator C a b D, fig. 206, and there ought
to be two directions C D and a b in which the mineral viewed transversely to the axis of the prism (which is

perpendicular to the plane C a 6 D) should appear yellow, and two others, m n and p q, in which it should
transmit a blue colour, while in the direction of the axis O it should appear yellow. Now, on the contrary, the

equatorial colour is nearly uniform and pale yellow, while that along the axis O is blue
; and in proceeding

from the equator toward the axis O of the prisrn, the yellow diminishes, and the blue gains strength, whether
we set out from C and D, or from a and b, precisely as would be indicated by the other formula

y . (sin O A)* + 6 . (cos O A)
8
,

y representing a yellow white and 6. a blue tint. If, therefore, we put O A = v, the joint expression

T = (Y . cos 2 <j?+ B . sin 2 0") -f- (y . sin *
-J- 6 . cos v) ; (6)

will be found to represent pretty correctly the variations of colour as far as they can be judged of by the eye.
Thus, at O where v = o, and = 90, we have T = Y -j- b, which may indicate either a yellow, a white, or a

blue, according as we suppose Y or b to be predominant. The fact being, that the tint at O is blue, we must

suppose the latter to express the more decided colour. As we proceed from O along the sections O C, O D,
or O a, O b, in both of which sin 2 = o, we have

T = (Y + y . sin V) -J- b . cos * = (Y + 6) + (y
-

b) . sin S
Now y expressing a yellow white and 6 a strong blue, y b will express a proportionally vivid yellow, and
therefore the blue tint Y + 6 seen along the axis will be diluted with more and more yellow as we approach the

equator; at P P', then, (by a proper assumption of numerical values) it will be rendered nearly neutral, after

which the yellow will predominate, and, at the equator, will remain alone sensible, the expression for T then

becoming T = Y -J- y, at the points C, a, b, D. Let us next consider the case when cos 20 = o, or =: 45,
that is to say, along the axes or most intense lines of the lateral brushes. In this case we have

T = B -(- (y . sin x8 + 6. cos i/
2
)
= (B + 6 . cos v*) -f- y sin v*.

Now if we suppose B and l> to represent blue tints, since (in the case of iolite) the angle between the axes or
PP' = 6250' and O P = 31 25', we have in the immediate vicinity of the pules, (sin i')- = 1

nearly, and
cos ve =f, so that in th? immediate neighbourhood of P the tint of the most intense part of the brushes will be
B + ;j

b + J y, which, on very reasonable suppositions of the numerical values of B, 6 and y will denote a full

and rich blue. But as we approach the equator at m, n, p, q, cos v
a
diminishing and sin v

!

increasing, the sombre
tint B is continually more feebly reinforced by the tint 6 . cos i>* and more strongly counteracted by y . sin *, till

at length it will be overpowered, and the colour in these points, as in C, a, D, A, will be yellow only somewhat
less decided than in the latter, its tint being represented by T = y + B instead n( y + D.

In general, if we put A for the tint transmitted along the axis O of the prisrn, P for that seen along the poles, 1074L for that of the lateral branches at their origin close to the poles, and E for the mean equatorial tint, we shiill Determiiia-
have for determining Y, y, B, b, the equations tion o( the

coefficients

A = Y + 6, 2E = 2y-f-B + Y, <,,,,
p Y _|. y . S i n a* + b . cos a* ; L = B -f- y . sin a* + b . cos a',

en elimination from these, it will appear that there is an equation ~. condition to be satisfied, vu

2 (A - P) = (2 A - 2 E P -f L) . sin a' ; (o)
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Light. and that supposing it satisfied, one of the tints, as y, will (so far as these conditions are concerned) remain Pa" IV.

arbitrary, and the others will be given by the equation v x/-

26 =
in which y must, however, be such as to render Y, B. b real tints, i. e. expressed by positive numbers.

1075. To apply this, for example's sake, to the case of the iolite, let us regard every white ray as consisting of two
Application complementary rays of bright yellow and bright blue of equal efficacy ; and suppose that by observation we

have ascertained its equatorial tint E to be a very pale but strongly luminous yellow white, consisting of 110
suc!i yellow rays, and 99 such blue ones, producing a joint intensity = 209. Moreover, let the tint seen along
the axis of the prism (A) be a blue, of a good colour, but considerably less intensity, represented by 10 such

yellow -f- 20 such blue rays = 30. That seen along the optic axes (P) to be a white represented by 36 yellow

-f- 36 blue = 72, and that of the most intensely coloured portions of the lateral brushes = L to be a stronger
blue than that seen in the axis of the prism, such as may be represented by 28 yellow -f- 66 blue = 94.

These numbers are chosen so as to satisfy the equation of condition, taking a = 30, aud if we substitute them
we shall find

y + y = 1 14 yellow -f- 84 blue ; B -f y = 106 yellow + 1 14 blue ; y - b = 104 yellow + 64 blue,

y remaining indeterminate
;

if we suppose its composition to be m yellow + n blue, we may determine m and
n by the two conditions that b shall (as we have before supposed) represent, a pure blue without any mixture

of yellow, and Y a very pale yellow, such as would result from a mixture of yellow and blue in the ratio of 10
to 9. These conditions are satisfied by taking m = 104 and n = 75 ; so that we have, finally,

Y = 10 yellow + 9 blue ;

y = 104 yellow + 75 blue ;

B = 2 yellow -f- 39 blue ;

6=0 yellow -4- 11 blue ;

1076.
Phenomena
exhibited

1077.

Unequal
ts

^

colours of*

ihe two

pencih-.

and these being taken for the values of the coefficients in the expression (6) Art. 1073, it will be found on trial

to reproduce the tints actually observed. In fact, the extreme equatorial tints being y + Y and y + B, will be

respectively represented by 114 yellow -j- 84 blue, and 106 yellow + 114 blue; the former is a very pale

yellow, but highly luminous, being equivalent to 30 rays of yellow diluted with 168 of white; while the latter is

a blue so pale as to be umlistinguishable fiom white, and also highly luminous, being equivalent to 8 rays of

blue diluted with 212 of white.

The reader will perceive that the formula in question is merely empirical, and that more numerous experi-
ments than we possess will be required to establish or disprove it. It is unfortunately, however, difficult to

mee t with biaxal crystals sufficiently dichromatic for the purposes of decisive experiment, and at the same time

^arSe and transparent enough to admit of being cut into the forms and examined in the directions required,

through a thickness sufficient for a full developement of their colours. Such are indeed hardly less rare than

the most precious gems ; and this circumstance is a great obstacle to the advancement of our knowledge in one
of the most interesting branches of optical inquiry, which that of dichroism certainly deservus to be considered.

Among artificial crystals, however, there is room to suppose that subjects fit for such experiments may be met
with. One remarkable instance of dichroism among these has been mentioned in the sub-oxysulphate of iron.

To this we may add the potash-muriate of palladium, which exhibits along the axis of the four-sided prism in

which it crystallizes a deep red, and in a transverse direction a vivid green. (VVollaston, Phil. Trans. 1804. On
a new metal in Crude Platina.) The curious property of the pnrpurates of ammonia, potash, &c. described by
Dr. Prout, (Phil. Trans. 1808,) which by transmitted light exhibit an intense red, and by reflected, on one

surface, a dull reddish brown, and on another a splendid green, appears referable, not so much to the principles
of dichroism properly so called, as to some peculiar conformation of the green surfaces, producing what may be

best termed a superficial colour, or one analogous to the colour of thin plates, and striated or dotted surfaces.

A remarkable example of such superficial colour, differing from the transmitted tints, is met with in the green
fluor of Alston-moor, which on its surfaces, whether natural or artificial, exhibits, in certain lights, a deep blue

tint, not to be removed by any polishing.
Dr. Brewster has shown that the action of heat often modifies in a very remarkable manner the colour of

doubly refracting crystals, producing a permanent change in the scale of absorption of the crystals as affecting

one of the pencils and not the other. Thus, having selected several crystals of Brazilian topaz which displayed
no change, of colour by exposure to polarized light, (and in which, of course, the types of both absorptions
must have been alike,) and bringing them to a red heat, or even boiling them in olive oil, or mercury, they expe-
rienced a permanent change, and had acquired the property of absorbing polarized light unequally. He then

took a topaz in which one of the pencils was yellow and the other pink ; and by exposing it to a red heat, he

found the extraordinary pencils more powerfully acted on than the ordinary, the yellow colour being discharged

entirely from the one, while only a slight change was produced in the pink tint of the other. This change of colour

in the topaz by heat (though not its intimate nature) is well known to jewellers, who are in the habit of thus

developing in this gem a colour more highly prized. It is remarkable, that while hot the topaz is perfectly colour-

less, and acquires the pink colour gradually in cooling. By the repeated action of very intense heat Dr.

Brewster was never able to modify or remove this permanent pink tint. How far violent compression, slow

application, and abstraction of the heat, or other mollifying circumstances, might prevent its dercloperaent, i:
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Light, would be interesting to examine
; since we cannot help being otherwise struck by the force of the argument Part IV.

->,-"' geologists may draw, from the existence in rocks of a mineral which mere elevation of temperature unaccompanied ^ -\~->
with change of composition, thus irrevocably alters.

One general character of all dichroite bodies is, that when natural light is transmitted through a plate of 1078.

sufficient thickness, in any direction not coincident with one of the optic axes, the emergent beam is wholly or General

partially polarized by reason of the unequal action of the medium on the two pencils, and the consequent sup- *j.
f

pression of one of them. And, in general, whatever cause tends to interfere unequally with their free trans- crvsl;l |s _

mission through a medium, will produce a similar effect. Thus, for example, if the continuity of a doubly Effects oi

refracting medium be interrupted by a film of any uncrystallized substance, since the two pencils by reason ot' ui
>crysta!-

their angular separation are incident on this film at different angles ; and since, moreover, their relative refractive
' ize(

^
lnter

indices, with respect to the medium composing the film, differ, they will undergo partial reflexion at the film in
fi"^'"

5

different proportions, and thus an inequality will arise in the parts transmitted. If the refractive index of the

film be precisely equal to the ordinary refractive index of the crystal (supposed, for simplicity, to be uniaxal)
the ordinary ray, it is evident, will undergo no disturbance or diminution, while the extraordinary will be

changed in direction and diminished in intensity by partial reflexion at its ingress and egress, at every such film

which may exist in the medium. If the films be extremely numerous, and if, moreover, they be not disposed
in planes, but in undulatory or irregular surfaces through the medium, this will make no difference, so far as the

ordinary ray is concerned, which will still pass undisturbed through the system, (except so far as any opacity in

the matter of the films may extinguish a portion of it ;) but the extraordinary ray will be rendered confused,
and dispersed, its egress from the films not being performed (by reason of their curvature) at the same angles
as its ingress, and that irregularly, according to their varying inclination. Hence will arise a phenomenon pre-

Phenomena

cisely such as is presented by the agate, and other irregularly laminated bodies, through plates of which, if a of agate -

luminary be viewed, it is seen distinctly, but as if projected on a curtain of nebulous light ; and if ex-

amined with a tourmaline, or doubly refracting prism, the distinct image, and the nebulous light, are found to

be oppositely polarized. If we examine a piece of agate with a magnifier, the laminated structure and unequal
refraction of the laminae are very apparent ; it appears wholly composed of a set of exceedingly close layers,
not arranged in planes, but in undulating or crinkled lines like a number of figures of 333333 placed close

together. The planes of polarization of the nebulous and distinct image are parallel and perpendicular to

the general direction of the layers, which through any very small portion of the substance is generally pretty
uniform.

But the film interposed may, itself, be crystallized, and inserted between adjacent portions of a regular crystal, 1079.

according to the crystallographic laws which regulate the juxtaposition of the molecules at the common surfaces Action of c

of macled or hemitrope crystals. Let A D E F (fig. 210) be such a plate interrupted by a crystallized lamina crystalllz
.

ed

B C E F, bounded by parallel planes, and let us consider what will happen to a ray S a incident at a. It is
^'j

evident, that were the crystallized lamina away, or were its molecules homologously situated with those of the tv. 210.

portions on either side of it
; in the latter case, we should have an uninterrupted crystal ; in the former, two

prisms disposed with their principal sections parallel, and acting in opposition to each other; in either case, the

emergent ordinary and extraordinary pencils separated by double refraction at the first surface will emerge
parallel to the incident ray, and therefore to each other. But the principal section of the crystallized film being
non-coincident with those of the two prisms ABE, C FG, it will alter the polarization of the portions ab, ac;
and in place of their being, as in the former case, each refracted singly by the second prism CFG, they will now
each be refracted doubly, so that in place of two emergent rays there will now be four. The subdivision of the

ra\s within the interposed lamina may evidently be disregarded, for they will be refracted in passing from the

film into the second prism in the same direction, where contiguous, as they would were an infinitely thin plate of

air interposed. Now, in that case, they would emerge from the film in pairs respectively parallel to the incident

rays ab, ac, and therefore to each other. Hence the refraction at the second prism will be precisely the

same as if the lamina were suppressed, and in its place the rays ab, ac had received at a the polarizations

they acquire by its action. Now, these being in opposite planes, it is evident that each of the rays a b, ac
would undergo both an ordinary and an extraordinary refraction. Let us denote these four emergent pencils
so arising by O O, O E, E O, E E, and suppose a b to be the direction taken by the ordinary refracted portion
of S a, and a c that of the extraordinary. Then, since O O has been refracted ordinarily by the prism CFG,
and was incident on it in the direction of the ordinary ray a b, its direction on emerging will be parallel to S a.

Similarly, E E is refracted extraordinarily, and being incident in the direction 6 c of the extraordinary portion
of S a, it also will emerge parallel to S , and thus the two rays O O, E E will emerge parallel, and their

systems of waves will be superposed. But the portions O E and E O, the one being incident in the ordinary
direction, but refracted extraordinarily, the other incident in the extraordinary direction and refracted ordinarily,
will neither emerge parallel to the original ray S a, nor to each other; and this will give rise to two lateral

images, one on each side of the central or direct image, which will have, moreover, an intensity equal (except
in extreme cases) to the sum of those of the lateral images.

If the film E B C V be very thin, or if either of iis optic axes be nearly coincident with the direction in which 1080.
the light traverses it, the difference of paths and velocities within it will give rise to an interference of the pairs Phenomena

of rays going to form either pencil emergent from the film, and thus will arise the colours of the rings in each of > nter-

image. Those on either side the central one will be consequently tinged with the respective colours of the P e

primary and complementary set of rings ; while the central image, being formed by the precise superposition of Spar
two similar complementary pencils will appear white.

All these phenomena actually occur, and have been described by Dr. Brewster, and explained by him on the

principles here laid down, in certain not uncommon specimens of Iceland spar, which are interrupted by such
VOL iv. 4 D
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Fig. 211.

hemitrope films, passing through the longer diagonals of opposite faces of the primitive rhomb. If we look at

a candle through such an interrupted rhomb, it will be seen accompanied by a pair of lateral images such as '

here described, and exhibiting frequently the complementary tints with great splendour.

If the luminary from which the ray S a issues be small, the lateral images will be separated by a dark interval

from each other and from the central one, but if large they will overlap. If infinite (as where the uniform light
of the sky is viewed) all the images will be superposed. But the field of view will not necessarily be uniform
and white. The c> ntral image will form an intense white screen, or ground, on which will be projected the lateral

ones. Now, if the film be so constituted as to have within the visible field of view of one only of the lateral

images the pole of one of its sets of rings, (which will be the case whenever one of its optic axes is not very-
remote from perpendicularity to the surface of the plate A D, so as to admit of one of the rays O E or E O
traversing the film in the direction of its axis,) that set of rings will not be seen projected centrally on the cor-

responding set complementary to it of the other lateral image, by reason of the angular separation of these two

images. Of course its colours will not be neutralized, and it will be visible per se, though very faint, being
diluted by the whole white light of the central image (O O, E E) and by the whole visible and nearly uniform

portion of the other lateral one (O E.)
This is not the only way in which a crystal perfectly colourless may exhibit its sets of rings by exposure to

common daylight without previous polarization, or without subsequent analysis of the transmitted pencil. The

general mass of the crystallized plate may have one of its optic axes in the direction of the visual ray, as in

fig. 211, and the portion of it C Ddc included between two films B Ccb and DdeE will then form precisely
such a combination as that above described, and will exhibit a set of rings feeble in proportion to the rarity and
minuteness of the films, and the consequently small area of their outeropping surfaces B C, D E. These are not

hypothetical cases. Dr. Brewster states himself to have met with specimens of nitre exhibiting their rings per
se. Such are rare. But in the bicarbonate of potash it is an accident of continual occurrence ; and, indeed,
almost universal. The films in both cases are easily recognised, and their position and that of the system of

rings seen leave no doubt of the correctness of the explanation here given. Such crystals, of which more will

no doubt be hereafter recognised, may be termed idiocydophanous till a better term can be thought of.

XII. On the effects of Heat and Mechanical Violence in modifying the action of Media on Light, and on the

application of the Undulatory Theory to their explanation.

10S3.
General

account of

the phe-
nomena.
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It was ascertained independently, and about the same time by Dr. Seebeck and Dr. Brewster, that when glass,
which in its ordinary state offers none of the phenomena of double refracting media, is heated or cooled

unequally, it loses this character of indifference, and presents phenomena of coloration, &c. analogous, in many
respects, to those exhibited by doubly refracting cnstals. If the heat communicated be below the temperature
at which glass softens, the effect is transient, and vanishes when the glass attains a uniform temperature

throughout its substance, whether by the equable distribution of the caloric throughout its mass, or by its

abstraction in cooling.. But if the temperature communicated be so high as to allow the molecules of the glass
to yield to the mechanical forces of dilatation and contraction produced in the act of cooling and take a new

arrangement, the effect is permanent, and glass plates so prepared have many points of resemblance with crys-

tallized bodies. Dr. Brewster afterwards ascertained, that mechanical compression or dilatation applied to

glass, jellies, gums, and singly refractive crystals (such as fluor spar, &c.) is capable of imparting to them the

same characters. If the medium to which the pressure is applied be perfectly elastic, like glass, the effect, like

that of heat, is transient. But if during the continuance of the compression or dilatation, the particles of the

medium are allowed to take their own arrangement and state of equilibrium, then when the external force is

withdrawn a permanent polarizing character will be found to exist.

As periodical colours are not produced in phenomena of this class without a resolution of the incident light

into two pencils moving with different velocities, and as a difference of velocities is invariably accompanied with

a difference of refraction at inclined surfaces, it might be expected that media thus under the influence of heat

or pressure should become doubly refractive. This has been verified by direct experiment by M. Fresnel, who
has shown that a peculiar species of double refraction is thus produced.
As the unusual heating or cooling of glass and other substances, is well known to produce in the parts

heated or cooled a corresponding inequality of bulk, and thus to bring the parts adjacent into a state of strain in

all respects analogous to that arising from mechanical violence, and as, in fact, the effects of heat in communi-

cating double refraction to glass, whether transient or permanent, are all, as we shall see, (with one very
obscure and doubtful exception) commensurate with the amount of the strain thus transiently or permanently
induced, we have little hesitation in regarding the inequality of temperature as merely the remote, and the

mechanical tension or condensation of the medium as the proximate cause of the phenomena in question, and

are very little disposed to call in the agency of a peculiar crystallizing fluid, endowed with properties analogous to

those of magnetism, electricity, &c., to account for the phenomena, still less to regard media under the influence of

heat or pressure as in any way thereby rendered more crystalline than in their natural state of equilibrium.

In gasiform, or fluid media, no such phenomena are observed to be developed by either heat or pressure; the

reason is obvious, the pressure is equally distributed in all directions, and the elasticity of the ether (on the

undulatory hypothesis) preserves its uniformity.
But in solids the case is different. The molecules cannot shift their places one among the other, and the
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Light. effect of a compression in any direction is, Jlrnt, to urge contiguous particles nearer together in that direction, Part IV.

i ~\ "" and thereby to call into action their repulsive forces, more than in the natural state, to maintain the equilibrium; ^""V""'
secondly, but much more slightly to urge contiguous particles in a direction perpendicular to that of the pressure

M

laterally asunder, by reason of the increase of the oblique repulsive force developed by the approach of the mole-
pre

'

Su r on
cules in the line of pressure to those which lie obliquely to that line. But this action, which in fluids would the mole-

eause a motion of the lateral particles out of the way, in solids is ultimately equilibrated by an increase of the cules of

attractive forces of the adjacent molecules in a line perpendicular to the line of pressure ;
and thus we see that solids -

every external force applied to a solid is accompanied with a condensation of its particles in the direction of the

to ice and a dilatation in a perpendicular direction. It is probable, however, that this latter is extremely minute,
on account of the rapid diminution of the molecular forces by increase of distance, rendering the diagonal action

insensible. But the former may easily be conceived to produce in the ether, in virtue of its connection (what-
ever it be) vith the molecules of refracting media, a difference of elasticity in the two directions in question,

accompanied with all the necessary concomitants of interfering pencils, periodical colours, and double refrac-

tion The effect of dilatation will be the converse of that of compression, the direction of maximum elasticity
in the one case being that of minimum in the other.

These views are in perfect accordance with the experiments described by Brewster and Fresnel on compressed 1087
and dilated glass. According to the former (Phil. Trans. 1816. vol. 106) the effect of pressure on the opposite Effects of

edges of a parallelepiped of glass is to develope in it
" neutrai and "

depolarizing axes," the former parallel compression

and perpendicular to the direction of the pressure, the latter 45 inclined to them ; in other words, a parallelepiped
descri')ecj -

of glass so compressed, will when exposed to a ray polarized in the pi ne parallel or perpendicular to the sides

to which the pressure is applied, produce no change in its polarization and develope no periodical colours, while
if polarized in 45 of azimuth with respect to those sides, it will develope a tint, descending in the scale of the

coloured rinses as the pressure increases.

In this case, if the pressure be uniformly applied over the whole length of each opposite side, the elasticity of the 10S8.

ether in every point of the plate will be uniform in either direction at every point of the plate, being a maximum in Exp'anation

one, and a minimum in that at right angles to it. The incident light therefore if polarized in azimuth will resolve
Jj", .j

un ~

itself into two pencils of unequal intensity (viz. cos a* and sin a 2

) polarized in these two planes, and differing at doctrine

their egress by an interval of retardation proportional to t x (t/ u), where t is the thickness traversed, and
t>' v the difference of velocities of the pencils, which when received on a double refracting prism will (as in the

case of a crystallized plate (Art. 969) give rise to complementary periodical tints in the two images, the extra-

ordinary image vanishing when a = 0, or 90, and the contrast being a maximum at 45. It is, of course,

extremely difficult to give such a perfect equality of pressure, so that we must not be surprised if a perfect

uniformity of tint over the whole surface of the glass should not take place. In the experiment, however,
described by Dr. Brewster (Prop. I. of the Memoir cited) this seems to have been the case.

If we suppose the elasticity of the ether in compressed glass less in the direction of the force applied (and 1089.
where consequently the medium is densest, according to the general law) than in the perpendicular, the contrary
will be the case in dilated. Hence, supposing the forces equal, in two similar plates, the extraordinary waves, or
those whose vibrations are performed in the direction of the pressure, and which are therefore polarized at right

angles to that direction, will advance most rapidly in the former case, the ordinary in the latter. Consequently, if
Opposite

we regard the interval of retardation or the tint, t (v
1

v) as negative in the former case, it will be positive in the effects of

latter; and the tints in the two cases will present the opposite characters of those exhibited by doubly refracting compressor

crystals of the two classes described in Art. 940, et seq. see also Art. 803, as negative and positive, or repulsive *."

and attractive. Two such plates, therefore, placed homologously, or with the directions of the forces coincident,

ought to neutralize each other, and if crossed at right angles should reinforce each other; and in general, if t be
the thickness andf the compressing force applied to any plate (supposing the difference of velocities to be pro-

portional to the force, and regarding dilating forces as negative) we shall have for homologous!) situated plates

T = tint polarized by any number of plates
Law of su-

= (f.t+f.t'+ f" . t" + &C.) perposition

In the case of crossed plates the thicknesses of those placed transversely are tn be regarded as negative, just s in

the case of the superposition of crystallized plates. All these results are conformable to the experiments
of Dr. Brewster.

The phenomena of contracted and dilated glass may most easily and conveniently be produced by bending 1090.
a long parallel plate of glass having its longer edges polished, and passing the light through them across its Tints pro-

breadth. In this case, as in all cases of flexure, the convex surface is in a state of dilatation, and the concave of
<J

uced b
.V

compression, while there exists a certain intermediate line or boundary between these oppositely affected regions f

in which the substance is in its natural state of equilibrium, and on both sides of which neutral line the degree
of strain increases as we recede from it towards either surface. Fig. 212 is a section of such a bent plate, Fig. 212.
much exaggerated, through which light, polarized in a plane 45 inclined to its length, has been passed and

analyzed as usual. The neutral line is marked by a divided black stripe, and the tints on either side of it descend
in Newton's scale, being arranged in stripes disposed according to the lines 11, 22, 33, 44, &c. The tints,

however, on opposite sides of the neutral line have opposite colours, being positive on the side of the dilatation,

or towards the convexity, and negative on the compressed or concave side. In a plate of glass 1.5 inch broad, state of

0.28 thick und six inches long, Dr. Brewster developed seven orders of colours before the glass brok with the strain ascer-

bonding force applied. This experiment affords an exceedingly beautiful illustration of the action of compressing
'ained by

and bending forces on solids, and furnishes ocular evidence of the state of str.'in into which their several parts
tnetints

4o 2
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Light, are brought by external violence. The ingenuity of Dr. Brevvsterlias not overlooked its application to the useful Part IV.

*^~V~-s and important object of ascertaining the state of strain and pressure on the different parts of architectural struc- /-

tures, as stone bridges, timber framings, &c., by the use of glass models actually put together as the buildings
themselves. We must recollect always, however, that the information thus afforded will only be distinct when
the load intended to be sustained is many times the weight of the materials.

1091. If a plate of glass be subjected to several distinct compressions and dilatations in different directions, Dr.

Efl'ects of Brewster finds, that its action will be the same as the combined action of several plates each subjected to one of the
several co- forces employed. Thus a square of glass compressed equally on all its four edges exerts no polarizing action.

If a pressure be applied at a single point of a mass of glass, or rather at two opposite points, it will diverge

1092 from these points in all directions into the mass, and the lines of equal pressure, which are in fact the isochro-

Piessure' niatic lines, must have their form determined in some measure by the figure of the compressing screw or tool at

applied ata its point of contact with the glass, for this figure regulates the form and curvature of the indentation immediately
point. under it. Dr. Brewster has figured several of the curves produced by the application of such pressure to dif-

ferent parts of the same parallelepiped of glass, for which the reader is referred to his Paper, as well as for a

variety of beautiful figures produced by crossing plates differently strained.

1093. M. Biot has observed, that in some instances glass maintained in a state of vibration by the action of a bow
Effects of or otherwise, depolarizes light, i. e. restores the vanished pencil. This is a necessary consequence of the alter-

vibration. nate compressions and dilatations which follow each other in rapid succession in all the vibrating molecules.

Nodal lines (see ACOUSTICS) being exempt from such variations of density ought to be marked by black bands,
and may thus, perhaps, be rendered evident to the eye.

1094. When masses of jelly (especially of isinglass) are pressed betweti. plates they acquire a polarizing action. If

Polarization dilated by proper management, and in that state allowed to dry and harden, the character so impressed,
by com-

according to Dr. Brewster, is permanent when the dilating force is removed ; to explain which, we must consider

jelHes
*nat ^e exler i r coats indurate more rapidly than the interior, and when they have acquired the con-

sistency of a solid, they will be capable of resisting the subsequent contraction of the interior portions and keep-

ing them in a dilated state, even when the original dilating force is removed. That force only served to deter-

mine the figure and dimensions of the exterior crust, and when once that crust is fully formed and indurated, it

becomes capable of maintaining them without the further aid of the cause which gave them rise. The polarizing

power of isinglass thus developed is very great, and even exceeds that of some doubly refractive crystals, such as

beryl ; a plate of isinglass whose thickness is 624 polarizing the tint which would be reflected by a plate of air

whose thickness is unity, while a plate of beryl parallel to the axis, to polarize the same tint, will require a

thickness = 720. Glass compressed, or dilated, by an equal force, would require a thickness (according to

Dr. Brewster) = 12580 to produce the same tint.

1095. We come now to consider the transient effects of unequal temperature below the softening point of glass.
Transient The immediate effect of an increase or diminution of temperature in one point of a piece of glass, is to produce
effects of a mechanical strain on all the surrounding part, which if the difference of temperature is considerable, is of the

hT'softe'tr
utmost violence, and capable of breaking asunder the thickest pieces of glass ; an effect with which every one is

ing point,
familiar. Now, as we know that strain alone developes a polarizing action, the rule of philosophy,

" non plures
causas admitti debere," fyc. which forbids the admission of a second cause when one adequate to the effect is

known to be in action, will hardly justify us in attributing a peculiar action to the caloric, independent of its

power of altering the dimensions of matter.

1096. When a heated iron bar is applied along the edge of a parallelepiped of glass held in a polarized beam,

Case of a analyzed as usual, the vanished image is restored in various degrees of intensity in different parts of the glass,

rectangular The neutral axes are parallel and perpendicular to the heated edge, and the axes in whose azimuth the tint

Plate f

polarized is the strongest, at 45 of inclination. If held in that azimuth, the first effect of the heat is to produce

aVoneedge
a 'me> or> as ** were

>
a wave of white light at the heated edge, which advances gradually upon the glass, driving

before it a dark and undefined wave. Nearly at the same instant, and long before the slightest increase oj tem-

perature can have reached the further extremity of the glass plate, a similar but fainter white wave advances from

the edge opposite to the heated one, driving before it a similar undefined dark wave ; and at no perceptible
interval of time another white fringe appears in a very diluted state about the centre of the plate, advancing

equally towards the heated edge on one side and that most remote on the other, and thus condensing the two

undefined dark waves into two black fringes. The white tints are succeeded by tints of a lower order in the

scale of colour, yellow, red, purple, blue, &c., till at length the whole scale of the colours of thin plates is seen

arranged in four sets of fringes parallel to the heated edge, and having for their origins the black fringes above

mentioned. At the same time, other lateral fringes are produced along the edge perpendicular to the heated one.

Thus in all six sets are seen ; two exterior, viz. those parallel to the heated edge, and outside of the black fringes ;

two interior, in the same direction, but between the black fringes ; and two terminal, along the lateral edges.

Fig. 213. The whole phenomena is as represented in fig. 213. The fringes along the heated edge A B are most distinct

and numerous, those along the opposite, C D, less so, and the interior and terminal fringes least of all.

1097. As glass is an extremely bad conductor of heat, and as culinary heat is propagated through glass entirely by

Action of conduction, it follows, that the sudden application of an elevated temperature to the edge A B must produce a

heat in dilatation in it, not participated in by the rest of the glass. If, therefore, the stratum of molecules A B were

straining detached from the rest of the glass, it would elongate itself so as to project at its two ends beyond the edges

AC, DB. When the heat of this stratum communicated itself to the next, that also would elongate itself, but

in a less degree ; and thus after a very long time, during which the heat had penetrated to the farther extremity

of the glass, its outline would assume the form a C D b, the lines aC, 6 D being certain curves depending on

the law of propagation and the time elapsed. This would be the state of things were the glass plate composed



LIGHT. 565

Light, of discrete strata, each of which could dilate independently of all the rest. And since in each of these (regard 'd PartlV.

-v^-' as infinitely thin) the temperature and strain would be uniform, there would arise no polarizing action. But, in
v

"-v-"1"''

reality, the case is quite different ; every stratum is indissolubly connected along its whole extent with the strata

adjacent, and can neither expand nor contract without forcing them to participate in its change of dimension.

In so far, then, as two adjacent strata participate in the change of temperature they expand together; but when
one is hotter than the other, the former is found to expand few, and the other more than it they were inde-

pendent. Now the strain thus induced on any stratum is not, like the caloric which causes it, confined by the

conducting power of the medium, but propagates itself instantly (with diminished energy) to the strata beyond,

by reason of the mutual action of the molecules.

The general problem, then, to investigate the actual state of strain of any molecule at any moment is one of 1098.
pome complexity, inasmuch as it depends at once on the laws of the slow propagation of heat, and the iristan- State of th

taneous but variable participation of change of figure necessary to establish among the particles a momentary
r'"s rt

equilibrium under the circumstances of temperature at the time
; but, without attempting minutely to analyze *]J

the effects, if we content ourselves with acquiring a general idea how they arise, we shall find little difficulty. Strain

For in fig. 214, if we conceive the stratum A B b a adjacent to the border A B to be dilated by the heat, the rest determined.

of the glass retaining its original temperature ; if this stratum could expand separately, its edges A a, B 6 would F'f>- 2H.

project out beyond the general edges Co, D $ ; and if we regard two terminal strata C A E G, D B F H, as

detached from the interior portion C D j3 a, and free to move by the force applied at their extremities A, B, they
would be raised by the dilatation of the portion A B b a into the situation represented in the figure, turning
round C, D as fulerums, and leaving triangular intervals C a a, D ft/3 vacant, and in these circumstances there

would be no strain on any part of the system. But the cohesion of the glass prevents the formation of these

vacancies, and the bars or levers CAE G, D B F H cannot move into this situation without dragging with them,
and therefore distending the strata of C D /3 . Let PQ be any such stratum, and let it be distended to p q.

Then by its elasticity it will tend to draw the bars C A E G and B D H F together ; and its action will therefore

tend, first, to produce a pressure on the fulerums C, D, urging the points CD together, and therefore bringing
the stratum C D into a state of compression. Secondly, to produce also a pressure on A a, B 6, or a resis'ance

to the dilatation of A B ha, which its increased temperature would naturally produce. It will therefore tend to

compress back the strata of A B 6 a into a smaller length than what would be natural to them in their heated

state, i. e. to bring them also into a relatively compressed state. Thirdly, the tension of p q being sustained at

C, D and A, B, will tend to bend inwards the levers A C G E, B D H F, rendering them concave at the edges
G E, H F, and convex at C A, D B, and thus distending the lines CA, D B, and compressing the strata

adjacent to E G, H F.

From this reasoning it is clear, that the glass, in consequence of these various strains, will assume a figure 1099.
concave on all its edges, but chiefly so at the lateral ones AC, DB, as in fig 215 ; and that the state of strain Production

of its various parts will be as there expressed, all the edges being compressed, but principally A B and C D, and of fringes .if

the interior distended. The limit between the distended and compressed portions parallel to A B must neces-
"j

sarily be marked by neutral lines a b, c d on either side of which the strain will increase, being a maximum in $;.. 215
the middle and on or near the edges. Consequently, it ought to polarize four sets of fringes, having a 6, c d
for their origins, and of which the two external (or those between these lines to the edge) ought to have a

character opposite to those of the internal, the portion of the intromitted pencil polarized parallel to A B being

propagated faster than that parallel to A C in the one case, and slower in the other. This opposition of

characteis is conformable to Dr. Brewster's observations, who states {Phil. Trans, 1816) that the parts of the

glass which exhibit the two exterior sets of fringes (adjacent to the edges A B, CD) have " the structure of"
attractive crystals, while the parts which exhibit the interior and terminal sets have that of repulsive ones;

meaning, of course, in the 1 'nguage of the undulatory doctrine, that the order of velocities of the doubly
refracted pencils is reversed in passing from one region of the glass to the other, for of its actual structure we
can know nothing. That the terminal fringes ought (as observed) to have the same character as the interior is Th<s termi-

a necessary consequence of the above reasoning, for the terminal regions D B, A C are compressed in directions nal fringes.

parallel to their edges, and therefore perpendicular to the direction in which the central portion is distended ;

and we have already seen that compression in one direction is equivalent (so far as the character of the tints

produced is concerned) to distension in that perpendicular to it.

Lastly, the black lines separating the terminal fringes from the interior ones, arise from the combined action 1100.
of the tension of the interior region parallel to A B (fig. 214) exerting itself on any point as q on the inner Ntutrat

border of the terminal portion D B F H, (which we have regarded as an elastic bar, or lever,) and the distension lin es sepa-

of the line D B al?o exerting itself at q, and arising from the convexity given to this line. In virtue of these ratm
j;

adJ*

two forces, every point q in a certain line at a proper distance from the extreme edge H F, will be equally f^",^
distended in opposite directions, and will therefore be in a neutral state, as to polarization, and, of course,

appear black. The terminal fringes are less developed than the rest, because they arise simply from the flexure

of the edges H F, GE, which is an indirect effect of the principal force, and is very small,, (owing to the small

dilatability of glass by heat, and consequent minuteness of the versed sine of the curve into which they are

distorted,) a '
the line of indifference separating them from the others lies near the edges ; for the same reason,

the tension o! the convex line D B being small, and therefore putting itself in equilibrium with that of the

distended column p q at a point 9 near its extremity, where it is evident that the strain parallel to p q must be
much diminished ; the greater portion of the whole tension ofp q being resisted by the spring oflaminae situated

still further from the edge than D B.

If a lamina of glass, uniformly heated, be suddenly cooled at one of its edges, the reverse of all these effects 1101

will arise; the outer column AB6 (fig. 214) will suddenly contract and comptess violently the columns
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Light, beyond a ft, from which no heat has yet been abstracted, and drag inwards the ends of the terminal levers Part IV.

' v -' E A G C, B F II D, which will thus be violently pressed on the parts ft Q and a P as fulcra ; and their action v j- y ~-_-

Phenomena
being thus transmitted to the opposite edge C D will tend to lengthen it, and thus bring it, as well as the edge

"lass rectan
^ ^' ' nto a Distended state - The terminal edges will also be sprung outwards. The strain on every point

u-le cooled w'" be exactly the reverse of what is expressed in fig. 215, and a corresponding inversion of the characters

atone edge, of the tints will take place ; all which is agreeable to Dr. Brewster's observation, (Prop. 14 of the Memoir cited.)
110:2. When a crack takes place in a piece of unequally heated glass, (he directions and intensities of the straining

Effect of a forces in every part, which depend wholly on the cohesion of its molecules, and the continuity of the levers,

springs, &c. into which it may be mentally conceived to be divided, is suddenly altered ; and the fringes are

accordingly observed to take instantly a new arrangement, and assume forms related' to the ligure of that part
of the glass which preserves its continuity. To analyze the modifications arising from variations of external

figure and different applications of the heat, would be to involve ourselves unnecessarily in a wilderness of com-

plexity. One simple case may, however, be noticed, in which the centre of a circular piece of glass is heated.
Each exterior anmilus of this will be placed in a state of distension parallel to its circumference, and will

drcular

a
compress all within it by a force parallel to the radius. The central point will be neutral, being equally confined

p'.ate heated ln a 'l directions, and the annul! adjacent to the centre will in like manner be compressed both radially and
in the circumferentially. The radial strain continues as we recede from the centre, but the circumferential diminishes,
centre. and at length, as already said, changes to a state of distension, and of course passes through a neutral state,

thus giving rise to a black circle and concentric fringes of opposite characters, the whole of which will be inter-

sected by the arms of a black cross parallel and perpendicular to the plane of primitive polarization, and which
of course remains fixed while the plate is turned round in its own plane.

1 103. There is only one experiment of Dr. Brewster which seems hostile to the theory here stated. He made u
Singular

>

partial crack with a red-hot iron in a verv thick piece of glass, and allowed it to close by long standing, which
aftti^t rtl a ."_ _ .J*. .

"^
_

it did, so as to disappear entirely. In this state, the glass, when unequally heated, exhibited the same fringes,
srfect of a

allowed to a<< ^' no crack had existed ; but the moment the crack was opened by a slight heat applied near it, they suddenly
close. changed their figure, and assumed that due to the portion having the crack for a part of its outline. It seems,

however, that a very great adhesive force takes place between the surfaces of glass when thus in optical contact;
and to those who are aware how the free expansion and contraction of dissimilar metallic bars may be com-
manded, and the bars in consequence made to ply on change of temperature by mere forcible juxtaposition,
without soldering, till the difference of expansion has reached a certain point, when they give way with a snap
and regain their state of equilibrium, the anomaly will not appear in the light of a radical objection. (We
think it not improbable, that the musical sounds said to issue at sunrise from Certain statues, may originate in some

pyrometrical action of the kind here alluded to. We have often been amused by a similar effect produced in the

bars of the grate of a Jire place.)

1 104. Such are, in general, the transient effects of a heat below the softening point of glass, unequally distributed

Phenomena through its substance. But if a mass of glass be heated up to, or beyond that point, so as to allow its mole-
ot unan- cules to glide with more or less freedom on one another, and adapt themselves to any form impressed on the
nealed glass mass> all(j ^en suddenly cooled, either by plunging into water, or by exposure to cold air, the heat is abstracted

from its external strata with so much greater rapidity than it can be supplied by conduction from within, that

they become rigid, while the inner portions are still soft and yielding. At this instant, there is therefore no strain

in any part ; but, the abstraction of the heat still going on, the internal parts at length become solid, and tend,
of course, to contract in their dimensions. In this, however, they are prevented by the external cru-t already
formed, which acts as an arch or vault, and keeps them distended, at the same time that these latter portions
themselves are to a certain extent forced to obey the inward tension, and are strained inwards from their figure
of equilibrium. Glass in this state is said to be unannealed. If the cooling has been sudden, and the mass

considerable, it either splits in the act of cooling, or flies to pieces, when cold, spontaneously, or on the slightest
scratch which destroys the continuity of its surface; and the pieces when put together again (which, however,
is seldom practicable, as it usually flies into innumerable fragments, or even to powder, as is familiarly shown

Rupert's in the glass tears called Rupert's drops, which exhibit a very high polarizing energy from their intense strain,

drops. an(j which hurst with a violence amounting to explosion, on the rupture of their long slender tails) are found not

to fit, but to leave a slight vacancy ; thus satisfactorily provinsr the state of unnatural and violent distension in

which its interval parts have been held. The case is precisely analogous to that of a gelatinous substance

allowed to indurate under the influence of dilating forces. (See Art. 1094.)
1105. If the cooling be less sudden, and carefully managed, the glass, though much more brittle than ordinary

Patterns annealed glass, is yet susceptible (with great caution) of being cut and polished ;
and in this state, if polarized

light be passed through it, it exhibits coloured phenomena of astonishing variety and splendour, forming fringes,

square and'
' r ' ses > anc' patterns of exquisite regularity and richness, according to the form and size of the mass, and the

rectangular degree of strain to which it is subjected. In all these cases if the external form be varied, the pattern varies cor-

unannealed respondingly, as it iseasy to perceive it ought; for if any part of t'he exterior crust be removed, that part of the
lle * strain which it sustained will fall on the remainder, and on the new surface produced. Figures 216, 217, and

'^2i

~
218. represent the patterns exhibited b\ a circular, a square, and a rectangular plate of about ^ inch thick,

the two latter being placed so as to ha\e one side parallel to the plane of primitive polarization. Figure 21&1

and 220 represent the patterns shown by the t vo latter in azimuth 45, and fig. 221 that arising from the

crossing of two plates equal and similar to fur. 2:?(), each being in azimuth 45. In all these cases the laws of

superposition of Art. 1089 are observed, when similar points of similar plates are laid together. If symme-
trically, the tints polarized is the same as would be polarized by one plate whose thickness is their sum; if

crosswise, their difference.
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l.'ght. If a square or rectangular plate be turned about in its own plane, from azimuth 0, the arms of tbe black Part IV

-v^""' cross dividing it into four quarters become curved, as in fig. 222, and pass in succession over every part of tho \

disc ; thus showing that the positions of the axes of elasticity of the molecules vary for every different point of 1106.

the plate, and in different parts of it have every possible situation. We shall not here attempt to analyze the Effect oi

mechanical state of the molecules in any case, as it would lead us too far ; but merely mention an experiment
'"

n'j
g
ln

of Dr. Brewster, which is sufficient to show the conformity of our theory of these figures with fact. According undented
to this excellent observer, the fringes parallel to the edge A B of the rectangle (fig. 220) are similar in their plate in its

character to those produced by setting the corresponding edge of a similar plate of annealed gl;iss on a hot iron. < n plane.

Now, in the latter case, the exterior fringes adjacent to A B, C D arise from a compressed state of the columns " ***

parallel to AB; and the interior, from a distended. And, in the unannealed plate the distribution of the forces Relation uf

is almost exactly similar to that described in Art. 1098 and 1099. In fact, such a plate may be likened, in some these phe-

respects, to a frame of wood over which an elastic surface is stretched like a drum. The four sides will all be "omena t

curved inwards by its tension, and they will all be compressed in the direction of their length by the direct ^^jntw
tension, independent of the secondary effect produced by their curvature. The terminal fringes in the articles

i, eated

referred to arise solely from the secondary forces thus developed ; but the analogy between the cases would be annealed

complete, if, instead of supposing the annealed plate heated at one edge only, the heat were applied at all the P la'es.

four simultaneously, by surrounding it with a frame of hot iron. For a farther account of the beautiful and

interesting phenomena produced by unanneuled glass, we must refer the reader to Dr. Brewster's curious Paper
already cited.

M. Fresnel has succeeded in rendering sensible the bifurcation of the pencils produced by glass subjected to 1107.

pressure, by an ingenious combination of prisms having their refracting angles turned opposite ways, and of which
the alternate ones are compressed in planes at right an <les to each other, thus (as in the case of the double
refraction along the axis of quartz) doubling the effect produced.
The effects produced by unequal heat and pressure on crystallized bodies, in altering their relations to light 1108.

transmitted through them, are less sensibly marked than in uncrystallized, being masked by t 'IK more powerful Kffectsof

effects produced by the usual doubly refractive powers. In crystals, however, where these powers are feeble, or unequal

in which they do not exist in any sensible degree, fas in fluor spar, muriate of soda, and other crystals which lle

belong to the tessular system, Dr. Brewster has shown that a polarizing and doubly-refractive action is deve- crvullin I

loped by these causes just as in uncrystallized ones ; and M. Biot, by applying violent pressure to crystallized bodies.

substances while viewing through them their systems of rings in the immediate vicinity of their axes where the

polarizing action is very weak, has sncc eded in producing an evident distortion of the rings from the regularity
of their form, thus rendering it manifest, that it is only the extreme feebleness of the polarizing action so

induced in comparison with the ordinary action of the crystal, which prevents its becoming sensible in all

directions.

In applying what is here said to heat, however, we consider only its indirect action, or that arising from its 1109.

untqual distribution, inducing a strain, and thus resolving itself into pressure, as above shown. But Professor Mitschn--

Mitscherlich in a most interesting series of researches (which we hope, ere long to see embodied in a regular I***
re ~

form, but of which at present only the most meagre and imperfect details have reached us) has shown that the
(^dj]^

5

,,,

"

action of heat on crystallized bodies, even when uniformly distributed, so that the whole mass shall be at one t i n of

and the same temperature, is totally different from what obtains in uncrystallized In the latter (as well as in crystals l>y

crystals of the tessular system) an elevation of temperature, common to the whole mass, produces an equal dila- ''eat.

tation in all directions, the mass merely increases in dimensions, without change of figure. In crystals, however,
not belonging to the tessular system, i. e. whose forms are not symmetrical relative to three rectangular axes,
the dilatation caused by increase of temperature is so far from being the same in all directions, that in some
cases a dilatation in one direction is accompanied with an actual contraction in another.

Of this important fact, (the most important, doubtless, that has yet appeared in pyrometry.) M. Mitscherlich 1110.

has adduced a remarkable and striking instance in the ordinary Iceland spar, (carbonate of lime.) This sub- Pyrometri-

stance when heated, dilates in the direction of the axis of the obtuse rhomboid which is the primitive form of its
"j^f^

crystals, and contracts in every direction at right angles to that axis, so that there must exist an intermediate
lan(i Spar

direction, in which this substance is neither lengthened nor contracted by change of temperature. A necessary
consequence of such inequality of pyrometric action is, that the angles of the primitive form will undergo a

variation, the rhomboid becoming less obtuse as the temperature increases, and this has been ascertained to be
the case by direct measurement; M. Mitscherlich having found, that an elevation of temperature from the

freezing to the boiling point of water puoduced a diminution of 8' 30" in the dihedral angle at the extremities of
the axis of the rhomboid, (Bulletin des Sciences puhlie par la Societe Philomatique de Paris, 1824, p. 40.)
M. Mitscherlich assured himself of the fact in question by direct measurement of a plate of Iceland spar 1111.

parallel to the axis, at different temperatures, by the aid of the "
Spherometer," a delicate species of calibre con- Molle of

trived by M. Biot for measuring the thickness of any laminar solid by the revolution of a screw whose point is ^^
just brought into light contact with the surface, and by which the 10,000th of an inch is readily appreciated and
measured. The experiment is necessarily one of great delicacy, but our readers may assure themselves at least

of the general fact of unequal change of dimension by change of temperature, by a very simple experiment
requiring almost no apparatus. Let a small quantity of the sulphate of potash and copper, (an anhydrous salt Pyrometri-

easily formed by crystallizing together the sulphates of potash and of copper,) be melted in a spoon over a cal property

spirit lamp. The fusion takes place at a heat just below redness, and produces a liquid of a dark green colour.
"

(

.

The heat being withdrawn, it fixes into a solid of a brilliant emerald green colour, and remains solid and anj copper
coherent till the temperature sinks nearly to that of boiling water, when all at once its cohesion is destroyed ; a

commotion takes place throughout the whole mass, beginning from the surface, each molecule, as if animated
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Light. starting up and separating itself from the rest, till, in a few moments, the whole is resolved into a heap of Part IV.

^_
v<

incoherent powder, a result which could evidently not take place, had all the minute and interlaced crystals of "~ v-~

which the congealed salt consisted contracted equally in all directions by the cooling process, as in that case

their juxtaposition would not be disturbed. Phenomena somewhat similar, and referable to the same principles,
liave (if we remember right) been encountered by M. Achard in the fusion of various frits for glasses, &c.

1112 The relation of the optical and crystallographical characters of bodies is so intimate, that no change can be

Double re- supposed to take place in the latter without a corresponding alteration in the former. As the rhomboid of Ice-

fraction of land spar becomes less obtuse by heat, and therefore approximates nearer to the cube, in which the double

crystals ya- refraction is nothing, it might be expected that the power of double refraction should diminish, and this result

has been verified by M. Mitscherlich by direct measurement. More recently, the same distinguished chemist

and philosopher has ascertained the still more remarkable and striking fact, that the ordinary sulphate of lime" a

o(
? or gypsum, which, at common temperatures, has two optic axes in the plane of its lamina?, inclined at 60 to

Milj'liate of each other, undergoes a much greater change by elevation of temperature ; the axes gradually approaching each

lime. other, collapsing into one, and (when yet further heated) actually opening out again in a plane at right angles
to the laminae, thus affording a beautiful exemplification of fresnel's theory of the optic axes as above

explained.
1113 This singular result we cite from memory, having in vain searched for the original source of our information ;

but it might have been expected, from the low temperature at which the chemical constitution of this crystal is

subverted, by the disengagement of its water, that the changes in its optical relations by heat would be much
more striking than in more indestructible bodies. We have not, at this moment, an opportunity of fully verify-

ing the fact ; but we observe, that the tints developed by a plate of sulphate of lime now before us, exposed as

usual to polarized light, rise rapidly in the scale when the plate is moderately warmed by the heat of a candle
held at some distance below it, and sink again when the heat is withdrawn, which, so far as it goes, is in con-

formity with the result above stated. Mica, on the contrary, similarly treated, undergoes no apparent change
in the position of its axes or the size of its rings, though heated nearly to ignition. The subject is in the

highest degree interesting and important, and lays open a new and most extensive field for optical investiga-
tion. It is in excellent hands, and we doubt not will, ere long, form a conspicuous feature in the splendid
series of crystallographical discovery which has already so preeminently distinguished its author

XIII. Of the Use of Properties of Light in affording Characters for determining and identifying Chemical
and Mineral Species, and for investigating the intimate Constitution and Structure of Natural liodies.

1114. Newton, who " looked all nature through," was the first to observe a connection between the refractive powers
Relation of transparent media and their chemical properties. His well known conjecture of the inflammable nature of
between the the diamond, from its high refractive power, so remarkably verified by the subsequent discovery of its one and

ctive
, only chemical constituent, (carbon,) was, perhaps, less remarkable lor its boldness, at a period when Chemistry

chemical" consisted in a mere jargon, in which salt, sulphur, earth, oil, and mercury might be almost indifferently substi-

composition
tuted for one another, than it would have been fifty years later. His divination of the inflammable nature of

ol bodies, one of the constituents of water is at least equally striking as an instance of sagacity, and even more remark-

able, for the important influence which its verification has exercised over the whole science of Chemistry. These
instances suffice to show the value of the refractive index, either taken in conjunction with the specific gravity
of a medium, or separately as a physical character. The refractive indices of a vast variety of bodies have
been ascertained by the labours of Newton and later experimenters, among whom Dr. Brewster and Dr. VVol-

laston have been the largest contributors to our knowledge. They may be grouped together in a general way,
in order of magnitude, as follovvs :

1115
Clans 1. Gases and vapours. Refractive index from 1.000 to 1.002, under ordinary circumstances of pressure

Classing- and temperature.
tion of bo- Class 2. p = 1.05 .... ft

= 1.45. Comprising the condensed gases ; ethereal, spirituous, and aqueous
dies accord-

liquids ; acid, alkaline, and saline solutions, (not metallic.)
mg to their Class 3. Comprising, first, almost all unctuous, fatty, waxy, gummy, and resinous bodies ; camphors, balsams,

densities

6

vegetable and animal inflammables, and all the varieties of hydro-carbon. Secondly, stones and vitreous com-

pounds, in which the alkalis and lighter alkaline earths in combination with silica, alumina, &c. are the predo-
minant ingredients. Thirdly, saline bodies not having the heavy metals, or the metallic acids predominant
ingredients. /*

= 1.40 1.60.

Class 4. Pastes, (glasses with much lead,) an-!, in general, compounds in which lead, silver, mercury, and the

heavy metals, or their oxides abound. Precious stones, simple combustibles in the solid state, including the

metals themselves.

fi
= 1.60 and upwards.

These classes, however, admit of so many exceptions and anomalies, and are themselves so vague and indefinite,

that we shall not attempt to distribute the observed indices under any of them, but rather prefer, for conve-

nience of reference, presenting the whole list in the form of a Table, arranged in order of magnitude, in which
all these classes are mingled indiscriminately a form, in some measure, consecrated by usage.
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Table of Refractive Indices, or Values of /* for Rays of Mean RefTangibility, (unless expressed to the contrary.)

Dr. Wollasioris results, however, are all (according to Dr. Young, Philosophical Transactions, vol. xcii.

p. 370,) to be regarded as belonging to the Extreme Red Rays.

N. B. In this Table the authorities are referred to as follows :

Br. Brewster, Encyclop. Ed., and Treatise on New Philosophical Instruments. Bos. Boscovich.
B. Y. Dr. Young's Calculations of Dr. Brewster's Unreduced Observations. Quarterly Journal, vol. xxii.
Bi. Biot. F. Faraday. Du. Dulong. M. Mains. N.Newton. Fr. Fraunhofer."
W. \v~ollaston, Phil. Trans. He. From our own observation. Eul. Euler the younger.
C. and H., authorities cited by Dr. Young in his Lectures.

Part IV.

1116.
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1.426

Liel.t. Gluten of wheat, dried

Fresh yolk of an egg

Sulphuric acid (S.G. 1.7)
1-429 N.

Ditto ditto (? S. G.)

Ditto

Ditto

Fluor spar

B.Y.
B.Y.

1.430

1.435

1.440

(1.433

11.436

Oil of rhue

Phosphorous acid

(1.433

\ 1.449

1.437

1.441n.
Hydrophosphoric acid, cold

(1.442

[1.446
Spermaceti (melted) < 1.454

Oilof wax 1-452

Oil of wormwood 1.453

Bees wax, melted 1-453

Oil of chamomile 1-457

Ditto 1-476

Oil of lavender 1-457

Ditto 1-467

Ditto 1-475

Alum 1-457

Ditto (S.G. 1.714)
1-458

Ditto 1-488

Tallow (melted)
1-460

White wax (melted)
1-462

(1.467
Oilof poppy | 1483

Sulphate of magnesia (double ? least refraction). . 1.465

I"
1.467

Borax, (S.G. = 1.714) < 1-467

Ll-475

Oil of peppermint

Oil of rosemary . .

(1.
Oil of spermaceti | j .

Ditto

(1.468

1 1.473

(1.469
11.472

1.470

.473
M .469 )

Oil of almonds (1470 1

(M81
11.483

Oil of turpentine, rectified 1.470

Spirit of turpentine, (S. G. 0.874) 1.471

Oil of turpentine 1.475

Ditto 1-476

Ditto (common) 1.476

Ditto 1-482

Ditto . 1-485

Ditto (common) 1.486

Ditto, S. G.= 0.885, (ray E) 1.47835

f
1.467*

1.469

Oil of olives < 1.470

1.4705

.1 1.476

(1.471
1.473

Oil
(1-4

il of bergamot {
j 4

Oil of beech, misprinted ? oil of brick 1.471

Oil of brick, distilled from spermaceti (1471
Oilof juniper 1-473

(1.474
Butter, cold

| 1480

Palmoil 1-475

Oil of rape seed 1-475

Naphtha 1.475

Essence of lemon 1 .476

Uumarabic (S.G.= 1.375) 1476
Oil of dill seed 1-477

Oilof thyme 1-477

Oilolcajeput \IAK
Opal (partly hydrophanous) 1.479

Naples soap 1.479

Oil of mace, melted 1.481

Tie 8. 0. of Newton's specimen was 0.913.

He.
W.
Br.

W.
Br.

Br.

B.Y.
B.Y.
B.Y.

Br.

W.
B.Y.
C.

Br.

B.Y.
Br.

B.Y.
Br.

W.
B.Y.
W.
N.

B.Y.
W.
B.Y.
Br.

B.Y.
Br.

N.
C.

Br.

W.
B.Y.
Br.

B.Y.
Br.

B.Y.

W.

B.Y.
Br.

W.
N.

Br.

B.Y.
W.
C.

B.Y.
He.
Fr.

N.
W.
Br.

He.
B.Y.
Br.

B.Y.
Br.

B.Y.
Br.

Br.

B.Y.
W.
B.Y.
(B.Y.
Br.

N.

Br.

Br.

B.Y.
Br.

Br.

B.Y.
B.Y.

Oil of spearmint |

(1.4

\1.4
Oil of lemon

.481

.496

1.481

.489

Carbonate of potash (?) .................... 1.482

Oil of pennyroyal.......................... 1 .482

Ditto .................................. 1.485

Linseed oil (S. G. 0.932) .................... 1.482

Linseed oil .............................. 1 .485

Ditto .................................. 1.487

Oilof savine.............................. 1.482

_.. , . . (1.4821Oilof juniper ............................
{ 1.491 1

Sulphate of ammonia and magnesia .......... 1.483

Train oil ................................ 1.483

Oil of wormwood ........................ 1.4851

Ditto.................................... 1.4891

fl.4S5
Castor011 ................................

jl.490
Florence oil .............. . ............... 1.485

Oilof thyme ............................ 1.486

Oil of dill seed .......................... 1.487

Oil of feugreek (? fenugreek) ................ 1.487

Ditto .................................. 1.488

( .............. 1.487

, 1.496
Camphor ................

\ .............

l(S.G.= 0996).
.. ,,Oilof hyssop ............................

Windsorsoap ............................ 1.487

Obsidian ................................ 1.488

Iceland spar. .. .weakest refraction ......... 11519

Ditto ........ strongest .................. <

Ditto ........ ordinary index .............. 1 .6543

Ditto ....... extraordinary ............. 1 .4833

Ditto ... ..... (S.G. = 2.72) .............. 1.667

Sulphate of magnesia (? greatest refraction) .... 1.488

Nut oil (perhaps impure) ................. 1 .490

Ditto ................................. 1.507

Oil of castor.............................. 1.490

1.500

1.500

(1.487

Tallow (cold) | j''

Oil of carraway seed (carui seminis) |j'

Oil of marjoram

i

483
,491

(1.490

(1.491

., , (1.491
)il of nutmeg

{ 1.497

M91
1.507

( 1 491
Oil of Angelica H493
Beeswax, cold 1.492

Bees wax 1.507

Ditto 14 Reaum 1.5123

Ditto, melting 1.4503

Ditto, boiling 1.4416

Ditto 1.542

Ditto (white wax, cold) 1.535

Sulphate of iron, greatest refraction 1.494

. . , (1.494
Balsam of sulphur j ,

,g~

Sulphate of potash \
j r,gg

Honey 1.495

Rochelle salt (mean green rays) 1.4985

Ditto (mean red) 1.4929

Ditto (tartrate of potash and soda) 1.515

Treacle 1.500

Yolk of an egg (dry) 1.500

Oil of beech nut 1.500

(1.500
Oil of rhodium i 1 .503

1 1.505

Glass, plate and crown, various specimens :

Ditto English plate
1-500

Ditto French plate
1 504

Ditto English plate (extreme red) 1.5133

Ditto plate 1.514

Br.

B.Y.
Br.

B.Y.
Br.

Br.

B.Y.
N.

W.
B.Y.
Br.

B.Y.

Br.

B.Y.

B.Y.

B.Y.
Br.

B.Y.
B.Y.
B.Y.
Br.

B.Y.
W.
B.Y.
C.

N.
Br.

B.Y.
B.Y.
Br.

W.
B.

W.
Br.

M.
M.
N.
Br.

He.
Br.

Br.

W.
B.Y.
B.Y.
Br.

B.Y.
Br.

B.Y.

W.
B.Y.
Br.

B.Y.
Br.

B.Y.
B.Y.
M.
M.
M.
W.
W.
Br.

B.Y.
Br.

W.
Br.

B.Y.
He.
He.
Br.

W.
B.Y.
Br.

Br.

B.Y.
Br.

W.
W:
He.
Bos.

Part IV.
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Amber

Ditto, (S. G. 1.04)

Resin

Guiacum

Glue, nearly hard

Chalcedony
Comptonite

P'um

1.547

1.556

1.548

l.552

.559

1 .550

1.553

1.553

1 .553

1.559

HyposulphAte of lime (mean red) ........... 1.5611

Ditto, mean yellow green . ................. 1.566

Dragon's blood ........................... 1 .562

fl.565

11.
Horn

.58

Pink, coloured glass ...................... 1 .570

Assafoetida ............................. 1.575

f 1.576

Flint glass (various specimens') .............. \ 1 .578

11.583

Ditto, a prism by Dollond (extreme red) ...... 1.584

Ditto, (extreme red) ..................... 1.585

Ditto, another specimen .................... 1 .586

Ditto .................................. 1.590

Ditto................................... 1-593

Ditto .................................... 1.594

Ditto .................................... 1.596

Ditto, a prism by Dollond (extreme red) ........ 1.601

Ditto ditto, marked
"
heavy," (extreme red) .... 1.602

Ditto, another specimen ....................
1 1 604

Ditto ................................... 1-605

Ditto, Fraunhofer's No. 3 (ray E) .......... 1.6145

Ditto, another variety ...................... 1.616

Ditto ditto ..................... 1-625

Ditto, Fraunhofer's No. 30 (ray E) .......... 1.6374

Ditto ditto No. 23 (ray E) ............ 1.6405

Ditto ditto No.l3(rayE)............ 1.6420

Anhydrite, ordinary index .................. 1.5772

Ditto, extraordinary ...................... 1.6219

(1.578
Gum ammoniac.........................

j j ^92

Hyposulphite of lime, least refraction ........ 1.583

Ditto, greatest ........................... 1 -628

Balsam of styrax ........................ 1 .584

Emerald ...... . ......................... 1.585

f
1.586)

Benzoin ................................
|
to 1.596 )

1.589

Oil of cinnamon ....................... 1 1 -604 1

I to 1.632J

Tortoise shell ........... ................ 1-591
'

1.593

Balsam of Peru ........................... J 1 -597

11.605
1.596

Guiacum ............................... J 1 GOO

\1.619

Beryl .................................. 1.598

(1.60
610

1
1 .627

1 1 .628

Ruby red glass .......................... 1.601

Essential oil of bitter almonds ............... 1.603

Meionite ................................ 1 -606

Purple coloured glass ...................... 1 608

Resin of jalap ............................ 1.008

Hyposulphite of strontia, least refraction ...... 1 .60S

Ditto ditto greatest ........ 1.651

Colourless topaz ........................ ,
1.6102

Bluish topaz (cairngorm) .................. 1.624

Brazilian topaz, ordinary index ............... 1 .6325

Ditto ditto, extraordinary ................ 1.6401

Blue top*t, Aberdeen ...................... 1 .636

Yellow topaz............................. 1.638

Red topaz ............................... 1 .652

Green coloured glass .................... 1.615

Balsam of Tolu.

Sulphate of barvtes, ordinary .............. 1.6201

Ditto, extraordinary ...................... 1.6302

W.
N.
B.Y.
B.Y.
Br.

B.Y.
B.Y.
Br.

Br.

B.Y.
W.
He.
He.
B.Y.
Br.

W.
Br.

B.Y.
Br.

He.
W.
He.

He.

W.
Bos.

Bos.

Bos.

Br.

He.
He.
Br.

Bos.

M.
Fr.

Br.

Bos.

Fr.

Fr.

Fr.

Bi.

Bi.

B.Y.
Br.

He.
He.
Br.

Br.

W.

B.Y.

B.Y.

Br.

B.Y.
Br.

B.Y.
W.
B.Y.
Br.

Br.

W.
B.Y.
B.Y.
Br.

Br.

Br.

Br.

Br.

B Y.

He.
He.

Bi.

Br.

Bi.

Bi.

Br.

Br.

Br.

Br.

B.Y.
Br.

Bi.

M.
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Nitrite of lead (biaxal, ? quadro-nitrite) in six-

__ . sided prisms, ordinary refraction 2.322

Diamond (S. G. = 3.4) 2.439

Ditto 2.470

Ditto (brown coloured) 2.487

Ditto (examined by Rochon) 2 755
(from 204
ito... 2.44

He.

N.
Br.

Br.

Ro.

W.
w.

Chremate of lead

least refraction .

,2.479
) 2.500
1 2.503

(2.974
2.500

Br.

Br.

Br.

Br.

Br.

Br.

Br.

Br

Pa-t IV.

greatest.

Octohedrite

Realgar, artificial 2.349

Red silver ore 2.564

Mercury (probable, see Art. 594) 5.829

In casting our eyes down the foregoing Table, we cannot but be struck with the looseness and vagueness 1117
of those results which refer to bodies whose chemical nature is in any respect indeterminate. The refractive Remarks'ou

indices assigned to the different oils, acids, &c. though no doubt accurately determined for the particular specimens the Table

under examination, are yet, as scientific data, deprived of most of their interest from the impossibility of stating
ofRefracti\e

precisely what was the substance examined. Most of the fixed oils are probably (as appears from the researches
""

of Chevreul) compounds, in very variable proportions of two distinct substances, a solid, concrete matter,

(stearine,) and a liquid, (elaine,) and it is presumeable, that no two specimens of the same oil agree in the

proportions. This is, probably, peculiarly the case with the oil of anise seed, which congeals almost entirely
with a very moderate degree of cold.. An accurate reexamination of the refractive and dispersive powers of

natural bodies of strictly determinate chemical composition, and identifiable nature, though doubtless a

task of great labour and extent, would be a most valuable present to optical science. Fraunhofer's researches

have shown to what a degree of refinement the subject may be carried, as well as the important practical uses

to which it may be applied. The high refractive power of oil of cassia, accompanied by a corresponding

dispersion, has led Dr. Brewster to conceive the existence in it of some peculiar chemical element not yet

cognisable by analysis. The low refractions of the oils of box-wood and ambergris are not less remarkable.

It is among the artificial salts, however, that the widest field is open for the application of precise research, and
one in which a rich harvest of important results would, in all probability, amply repay the trouble of the inves-

tigation, whether considered in an optical, a chemical, or a crystallographical point of view.

The fraction P =
'- 1

where
fi is the refractive index, and s the specific gravity of the medium, expresses 1118.

Table of

(in the doctrine of emission) the intrinsic refractive energy of its molecules, supposing the ultimate atoms of all intrinsic

bodies equally heavy. The following results have been stated by various authors, as its values for todies most Refractive

widely differing in their chemical and mechanical relations.

I. Gases, taking the value nf P for atmospheric air as unity. (From Dial's Precis Elementaire, ii. 224.)

Oxygen 0.86161
Air 1.00000

Carbonic acid 1.00476

Azote 1.03408
Muriatic gas 1.19625

Supercarburetted hydrogen

Carburetted hydrogen. . 2.09270
Ammonia 9.16^51

Hydrogen 6.61436

II. Direct values of P given by thefcrmula.
Those marked Dulong are computed from the refractive indices ot Dulcmg in the last table.

Tabasheer 0.0976 Brewster.

Cryolite 0.2742 Brewster.

Fluor spar 0.3426 Brewster.

Oxygen 0.3799 Tlulong.
f 0.3829 Dulong.

Sulphate of barytes
..| 03979 Newt(fn _

Sulphurous acid gas . . 0.44548 Dulong.
Nitrous gas 0.44911 Dulong.

(0.4528 Dulong.
Air .{0.4530 Biot.

I 0.5208 Newton.
Carbonic acid 0.45372 Dulong.
Azote 0.4734 Dulong,
Chlorine 0.48133 Dulong.
Glass of antimony 0.4864 Newton.
Nitrous oxide 0.5078 Dulong.
Phosgen 0.5188 Dulong.
Selenite 0.5386 Newton.
Carbonic oxide 0.5387 Dulong.
Quartz 0.541 5 Malus.

f 0.5450 Newton.
Rock crystal \ n CKIC r>

(0.6536 Brewster.

Vulgar glass 0.5436 Newton.

Muriatic acid glass .... 0.5514 Dulong.

Sulphuric acid 0.6124 Newton.

,, , 1
0.6424 Malus.

Calcareous spar
| ^ New(on _

Sal gem 0.6477 Newton.

Muriate of soda 1 .'2086 Brewster.

Alum 0.6570 Newton.
Nitric acid 0.6676 Brewster.

Borax 0.6716 Newton.
Niter 0.7079 Newton.

Nitre 1.19B2 Brewsler.

Hydrocyanic acid 0.7366 Dulong.

Ruby 0.7389 Brewster.

Dantzic vitriul,(sul.iron) 0.7551 Newton.
Muriatic ether (vapour) 0.7552 Dulong.
Brazilian topaz 0.7586 Brewster.

Rain water 0.7845 Newton.

Flint glass (mean) 0.7986 Brewster.

Cyanogen 0.8021 Dulong.

Sulphuretted hydrogen . 0.8419 Dulong.
Gum Arabic 0.8574 Newton.

Vapour of sulphuret of

carbon 0.8743

Vapour of sulph. ether. . 0.9 1 38

Protophosphuretted hydr. 0.96SO

Ammonia 1.0032

Rectified spirits of wine 1.0121

Carbonate of potash .. 1.0227

Chromate of lead 1.0436

Olefiantgas 1.0654

*Muriate of ammonia.. 1.1-90

Carburetted hydrogen 1.2201

Camphor I .-2551

Olive oil 1.2607

Linseed oil 1.2819

Beeswax IJ308

Spirit of turpentine .. 1.3222
Amber 13654
Octohedrite 1.3816

Diamond 1 .4566

Realgar 1.6666

Ambergris 1.7000

Mercury (probable) 2.4247

Sulphur 2.2000

Phosphorus 2.8857

Hydrogen 30953

Dulong.

Dulong.
Dulong.

Dulong.
Brewster.

Brewster.

Dulong.
Brewsler.

Dulong.
Newton.
Newton.
Newton.
Malus.

Newion.
Newton.
Brewster.

Newton.
Brewster.

Brewster.

Brewsler.

Brewster.

Dulon<;.Dulong.

The results marked with an asterisk in this table have probably originated in some miscalculation. As 1119.

hydrogen stands highest in this scale, so it is probable that fluorine, should we ever obtain it in an insulated Remarks on

state, would prove the lowest. The optical properties of tabasheer, in all points of view, are strange anomalies, 'his Table,

tf 1

It will be observed, that the function only expresses the intrinsic refractive power on the hypothesis of the

infinite divisibility of m.ilter, and the equal gravitating power of every infinitesimal molecule. But if, as modern

Chemistry indicates, material bodies consist of a finite number ofatoms, differing in their actual weight for every dif-

ferently compounded substance, the intrinsic refractive energy of the atoms ofany given medium will be the product
of the above function by the atomic weight. This will aher totally the order of media from what obtains in the

foregoing table. Thus, the weight of the atom of hjdrogen being the least, and that of mercury one among '.he
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1120.
Table of

Dispersive
Powers.

greatest in the chemical scale, such multiplication will depress the rank of the former, and exalt that of the latter, Part IV.

so as to separate them entirely from the proximity they now hold. A distinction, too, will require to be regarded
'

between compound and simple atoms. But as these considerations are peculiar to the system of emission, we
shall not prosecute them farther in detail

The dispersive powers of bodies afford another very interesting and distinctive chaiacter. Of these, Dr.

Brewster, in his Treatise on New Philosophical Instruments, has given the following extensive table, almost

entirely from his own observation.

TABLE OF DISPERSIVE POWERS.

Column 1 contains the name of the medium; column 2 the value of the function -

S simply, 8
ft being the difference of refractive indices of extreme red and violet rays.

; column 3, that of

Dispersive Powers.
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Light.
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Use of the

polarizing

angle as a

physical
character.

Action of

crystallized
surfaces on

reflected

light.

1124.
Table of

angles be-

tween the

optic axes

of crystals.

of cases to decide between two substances, which might be otherwise confounded together, and inasmuch as it Part IV.

can be measured on any single surface sufficiently polished to give a regular reflexion, thus enabling us to apply
v N^~-

this character to minute fragments, or to specimens set as jewels, or otherwise too precious to be sacrificed ; to

opaque bodies, and to a variety of other cases where a direct measure of the refraction would be impracticable.
It has not escaped the acute and careful observation of Dr. Brewster, that the polarizing angle on the surfaces of

crystallized media is not absolutely the same in all planes of incidence ; and the deviation, though excessively
small when the natural reflexion is used, becomes very sensible, and even enormous, when the reflexion is

weakened by covering the surface with a cement of a refraction approaching that of the medium, so as to allow

only those rays to reach the eye which have penetrated, as it were, to some minute depth, and undergone some

part of the action of the crystal as such. The point is among the most curious and interesting in the doctrine

of reflexion, and we regret that our limits, as well as the obscurity still hanging over it, and which it will

require much elaborate research to dissipate, prevent our devoting a section to it, but we must be content to refer

the reader to an excellent paper on the subject by that Philosopher, Philosophical Transactions, 1819.

The angles included between the optic axes of biaxal crystals is a physical character of the first rank, both
on account of its distinctness, its extent of range, (indifferently over the whole quadrant,) and its immediate and
intimate connection with the state in which the molecules of the crystals subsist, and what may, loosely speaking,
be termed their structure. It is, however, a character by no means easily determined : both axes rarely lying
within one field of view, capable of being examined through natural surfaces, and requiring, in almost all cases,
the production of artificial sections ; at least, this is the only safe way for observations of the tints, for the

angles at which, in a thin parallel plate, the several successive orders of colours are produced in situations

remote from the axes, are for the most part far too vague to lead to any accurate conclusion as to the position of

these lines within the plate, not to speak of the sources of fallacy highly coloured, or dichroite, crystals obviously

present. With these considerations before us, we cannot but be struck with surprise and admiration at the

unwearied assiduity, which could produce, almost unassisted, a table of results so extensive and so valuable as

the following.
Table of the Inclinations of the Optic Axes in various Crystals.

I. UNIAXAL CRYSTALS. Inclination = 0.

Carbonate of lime, (Iceland spar.)
Carbonate of lime and magnesia, (bitter

spar.)
Carbonateof lime and iron, (.brown spar.)
Tourmaline.
Rubellite.

Zircon.

Quartz.
Oxide of Iron.

Corundum.
Sapphire,
Ruby.
Emerald.

Beryl.
Apatite.

Tangslateof zinc.

Titanite.

Boracite.

Hyposulphate of lime.

Negative Class.

Idocrase, (Ve&uvian.)
\Vernerite.

Mica from Kariat.

Phosphate of lead.

Phosphato-arseniate of had.

Hydrate of strontia.

Positive Ctas*.

Apophyllite.
Sulphate of potash and iron.

Superacetate of copper and lime,

Unclax&cd.

Oxysulphate of irok.

Arseniate of potash.
Muriate of lio.e.

Muriate of strontia.

Suhphosphate of potash.

Sulphate of nickel and copper.

Hydrate of magnesia.

II. BIAXAL CRYSTALS.

Names of crystal*.
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Lizht. Among crystals with one axis, Dr. Brewster has enumerated the Idocrase, or Vesuvian, and correctly. Had Part IV.

he noticed, however, in the specimens examined by him the very striking inversion of the tints of Newton's ^ -v
scale exhibited in the rings of that now before us, he would doubtless have made mention of it. We insert here 1125.
the scale of colours exhibited by a plate cut from the specimen in question, fa fine large crystal,) as affording

Remarks,

another remarkable case in addition to that of the hyposulphate of lime, and the several varieties of uniaxal ^erted

apophyllite already mentioned, of such inversion.r J
vesuviar..

Table of the tints exhibited by a plate of Vesuvian, thickness = 0.11035 inch, cut a little obliquely to a perpen-
dicular to the axis.

Angle of

Incidence.
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Light. admit of being determined with sufficient precision, in such very imperfect specimens as are usually subjected to

^^~^~^ examination for the purpose of identification, and a much better course is to make the tint developed at a per-

Polarizing pendicular incidence, by a plate of given thickness in a direction at right angles to both the optic axes, the

powers con-
object of determination. This tint (which we shall term the equatorial tint) may be derived immediately from

observations of tints at any angle, by the formula

Part IV.

character

of media. COS f

t sin . sin ff
'

where N is the tint in question, numerically expressed as usual, and where n is the tint, (also similarly expressed)

developed at an angle of incidence whose corresponding angle of refraction is />, on a plate whose thickness is t,

(expressed in English inches and decimals) and where 6, & are the angles made by the ray in traversing the plate

with the two axes. This value of N is the same with in the equation of Art. 907. The following list of a

very few substances will suffice to show the great range the value of N admits, and its consequent utility as a

physical character, considerations which we hope will induce observers to extend the list itself, as well as to

give it all possible exactness.

UNIAXAL CRYSTALS.
For mean yellow rays.
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Light,
found to consist of a rectangular border enclosing no less than nine several compartments, arranged as in Part IV

^ v _ '
fig. 223, and separated from each other, and from the border, by delicate lines or films as there marked. Each ~~-~^-~~.
of these compartments possesses its own peculiar crystallographic structure, and polarizes its peculiar tints, the
law of symmetry being observed. In some specimens the triangular spaces p q r s were wanting, while in others

they seem to have consisted of two portions, separated by an imaginary prolongation of the line joining their

obtuse angles with the central lozenge.
The terminal plates, the central lozenge, and the minute stripes dividing the compartments from each other

(which are sections of lamina? or films parallel to the axis of the crystal, and running its whole length) consist

of that uniaxal variety, in speaking of which we have used the term leucocyclite, from the whiteness of its rings.
The rectangles R V, S T, (with the exception of the portions occupied by the lozenge and partitions) consist of
a biaxal medium, having its axes 34 inclined to each other, and its optic meridian parallel to the axis of the

prism, and passing through the diagonals R V, S T of these rectangles. The other rectangles are composed
of a similar medium, but with its optic meridian at right angles to the former, or passing through the diagonals
RT, S V.

A still more remarkable and artificial structure has been observed by Dr. Brewster, in a variety of the Faroe 1131.

apophyllites of a greenish white hue. When a complete prism of this variety is exposed to polarized light, with Another

its axis in 45 of azimuth, the light being transmitted perpendicularly through two opposite sides, the pattern
variety-

represented in fig. 224 is seen, in which the central curvilinear area is red, and its complements to the surround- F'g- 224.

ing rectangle green. The squares immediately adjacent on either side in the direction of the axis are also vivid

red in their centres, fading into white, while the rest of the pattern consists in a most brilliant succession of red,

green, and yellow, bands , for a coloured figure of which we must refer the reader to the original most curious

and interesting memoir, (Edinburgh Transactions, vol. ix. part ii.) where, as also in the Edinburgh Philosophical
Journal, vol. i. he will find the phenomena described in full detail.

The sulphate of potash offers another very remarkable example of compound structure. This salt occurs in 1132.

hexagonal prisms, and occasionally in bipyramidal dodecahedrons. But besides these forms it also occurs in Sulphate o(

rhombic prisms of 1 14 and 66. These Dr. Brewster found to have two axes, while the hexagonal prisms have Potash -

but one ; thus affording another instance of dimorphism in addition to those of arragonite, sulphur, &c. On ex-

amining the dodecahedrons, however, he found them to consist of six equilateral triangular prisms, of the biaxal

variety, grouped together, and having their optic meridians all converging to the common axis
; the molecules

being so disposed in each opposite pair of individuals as to make the angle between the opposite faces of either

pyramid (114) equal to the obtuse angle of the rhomboid.

The structure and mode of action of the analcime, described by Dr. Brewster in vol. x. of the Edinburgh Tram- 1 133.

actions, part i. p. 187, are so extremely singular, that it is difficult to say whether it should be regarded as a Analcim*.

grouped crystal, consisting of independent portions adhering together, or as a mass the distribution of the ether in

whose parts is governed by a general and uniform law ; the latter, however, is probably the truth. The form of

this crystal is the icositetrahedron, contained by twenty-four similar and equal trapezia, and may be regarded as

derived from the cube by the truncation of each of its angles by three planes symmetrically related to the edges

including it. If we conceive from the centre of this cube, (in its natural situation with respect to the derived

figure) planes to pass through each of the edges, and through each of the diagonals of the six faces, they will

divide the cube into twenty-four irregular tetrahedra ;
and ofthese, all the faces which pass through edges of the

cube will also pass through edges of the derived figure, while those which pass through diagonals effaces of the

cube will also pass through diagonals of the faces of its derivative, bisecting their obtuse angles. Now it appears
from Dr. Brewster's observations, that all the molecules situated in any part of any one of these planes are devoid

of the power of double refraction and polarization ; and that in proportion as a molecule is distant from all such

planes, its polarizing power is greater. In this respect it differs entirely from all crystals hitherto examined,

every particle of which, wherever situated, so long as they belong to one and the same crystalline system, being

equally endued with the polarizing virtue. Nor is there a closer analogy between the mode of action in question,
and that of unannealed glass and similar bodies ; for in these a change of external form is always accompanied with

a change of the polarizing powers, while in the analcime each particular portion, whether detached from the mass,
or in its natural connection with the adjacent molecules, possess the very same optical properties. The action

too of the portions which possess a polarizing power is not related to axes given only in direction, and passing

through every molecule, but to planes given both in direction and in place, within the mass, (the planes above

mentioned ;) the tint developed at any point of a plate being as the square of the distance from the nearest of such

planes, and the isochromatic lines being, in consequence, straight fringes of colour arranged parallel to the dark

bands marked out by the intersection of such planes with the plate examined. The phenomena described are

accompanied with a sensible double refraction. The reader is referred to the memoir already cited (which is one
of the most interesting to which we can direct his attention) for further details : and to a work understood to be

forthcoming from the pen of the eminent author here and so often before cited, on optical mineralogy, for what
we are sure will prove a treasure of valuable information on every point connected with this important application
of optical science

XIV. On the Colours ofNatural Bodiei.

It was onr intention to have devoted a considerable share ofthese pages to the explanation of such natural 1134
phenomena as depend on optical principles, but the great length to which this essay has already extended, renders

it necessary to confine what we have to say on such subjects within very narrow limits, and to points of promi-
4 p 2
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natural

bodies.

1135
Postulates,

1 1 36.

1137.

1 138.
Cause of

1 139.

Origin of

ur*'

1 140.

Objections,

1141.

Apparent

steptions

1142.
Case of

transparent

nent importance. Among these there is certainly none more entitled to consideration than the phenomena of Part IV.

colour, as exhibited by natural objects, which strike us wherever we turn our eyes, and it is impossible to pass in v v*""'

total silence the theory devised by Newton to account for them ; a theory of extraordinary boldness and subtilty,
16

'n wn'cn o reat difficulties are eluded by elegant refinements, and the appeal to our ignorance on some points is

so dexterously backed by the weight of our knowledge on others, as to silence, if not refute, objections which at

first sight appear conclusive against it. The postulates on which this theory rests are essentially as follows :

1. AH bodies arc- porous ; the pores or intervals vacant of ponderable matter, occupying a very much larger

portion ofthe whole space filled by the body, than the solid particles of which it essentially consists.

2. These solid particles have a certain size (and perhaps figure) essential to them as particles of that particular

medium, and which cannot be changed by any mechanical action, or by any means not involving a change in the

chemical nature or condition of the medium. They are, in short, the ultimate atoms ; to break which, is to destroy
their essence, and resolve them into other forms ofmatter, having other properties.

3. These atoms are perfectly transparent, and equally permeable to light of all refrangibilities, which, having
once passed their surfaces, is in the act of pursuing its course through their substances.

Newton, indeed, makes his atoms only
"

in some measure transparent." But he never refers to this limitation,

and his theory depends essentially on their perfect transparency, as is indeed obvious from his account of opacity,
which is contained in the next postulate.

4. Opacity in natural bodies arises from the multitude of reflexions caused in their internal parts.
jj j s obvious, therefore, that unless we admit a cause of opacity in atoms different from that which, on this

hypothesis, causes it in their aggregates constituting natural bodies, the former cannot be otherwise than abso-

lutely pellucid, since no reflexions can take place where there are no intervals, and no change of medium. Of
the sufficiency of this cause, either in natural bodies or atoms, however, we confess there does appear to us some
room for doubt, as it seems difficult so to conceive these internal reflexions, that the rays subjected to them shall

be all and for ever retained, entangled as it were, and running their rounds from atom to atom, without a possi-

bility of reaching the surface and escaping ; which, were they to do, it is evident that every body so con-

stituted, receiving a beam of light, would in fact only disperse it in all directions in the manner of a self

luminous one.

5. The colours of natural bodies are the colours of thin plates, produced by the same cause which produces them
in thin lamina of air, glass, fyc. viz. the interval between the anterior and posterior surfaces of the atoms, which,
when an odd multiple of half the length of a fit of easy reflexion and transmission for any coloured ray moving
within the medium, obsti u cts its penetration of the second surface, and when an even, ensures it, (see Art. 655.) The
thickness, therefore, of the atoms of a medium, and of the interstices between them, determines the colour they
shall reflect and transmit at a perpendicular incidence. Thus, if the molecules and interstices be less in size

than the interval at which total transmission takes places, or less than that which corresponds to the edge of the

central black spot in the reflected rings, a medium made up of such atoms and interstices will be perfectly trans-

parent. If greater, it will reflect the colour corresponding to its thickness.

It may be objected to this, that all natural colours do not of necessity find a place in the scale of tints of thin

plates, even those of bodies whose chemical composition is uniform ; but to this we may answer, that the colours

reflected from the first layer only of molecules next the surface ought to be pure tints, those from lower layers

having to make their way to the eye through the upper strata, and thus undergoing other analyses, by trans-

missions and reflexions among the incumbent atoms. Besides which, whatever shape, we attribute to the atoms,
it is impossible that all rays shall penetrate them so as to traverse the same thickness of them, unless we regard
them as mere lamina without angles or edges, and of enormous refractive power.* The same answer must be

made to the objection, equally obvious, that the transmitted tint ought to be in all cases complementary to the

reflected one, and that therefore cases like that of leaf gold, opalescent glass, and infusion of lignum nephriti-

cum, all which reflect one tint and transmit another, but in all which this condition is violated, form exceptions
to the theory. But, in reality, the transmitted rays have traversed the whole thickness of the medium, and have

therefore undergone, many more times, the action of its atoms, than those reflected, especially those near the

first surface, to which the brighter part of the reflected colour is due.

The infusion of lignum nephriticum is a very singular case, and its peculiar properties have been explained by
Dr. Young, on the supposition of minute particles of definite magnitude suspended in it. Though very truns-

parent, it yet reflects a bluish green colour, while the light transmitted is yellow or wine-coloured, in this re-

spect offering almost the exact converse of leaf gold. It is, however, no doubt a case of opalescence, and is

exactly imitated by certain yellow glasses, in which a very visible thin film of opalescent matter near the surface

reflects to the eye a bluish green tint, while yet the colour transmitted has the yellow tint belonging to the glass.

The reflexion proceeds from particles which have nothing to do with the transmitted light.

But, in fact, the objection (as appears to us) is not yet fully answered. Transp rent coloured media (clear

liquids in which no floating particles exist,) have no reflected colour. When examined by pouring them into an

opaque vessel, blackened internally and filled to the brim, and when the colourless reflexion from their

upper surface is destroyed by reflexion in an opposite plane at the polarizing angle, it is seen at once that

no light is reflected from within the medium, either near the surface, or at greater depths ; and if this mode of

examination be regarded as objectionable, as perhaps destroying the internal as well as external reflexion, it is

equally satisfactory to observe, that the image of a white object reflected from the surface of a fluid iu a black

opaque vessel is always purely white, whatever be the colour of the reflecting fluid. We are not aware that the

objection so put has been sufficiently considered, or even propounded. To us its weight appears considerame,

Newton appears to nave been fully aware of the necessity of taking this into consideration. Prop. vii. book ii. Opt. versvtfintm.
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Light. and we cannot but believe that some other cause besides mere internal reflexions must interfere to prevent the

v-~'' complementary colour from reaching the eye ; and that absorption, with its kindred phenomenon, or rather its

extreme case, opacity, is not satisfactorily accounted for in this theory, but must rather be admitted as (at pre-

sent,) an ultimate fact, of which the cause is yet to seek.

If this be granted, the colours of all bodies may be distinguished into true, viz., those which arise from rays
u hii-Ji have actually entered their substance and undergone their absorptive action, (as the colours of powders
of transparent coloured media, cinnabar, red lead, Prussian blue, those of flowers, &c.,) and false, or superficial,
or those which originate obviously in the law of interference ; thus, the variable colours of feathers, insects' wings,
striated surfaces, oxidated steel, and a variety of cases to which the Newtonian doctrine strictly applies, for there

is no denying that cases of colour, not merely superficial, do occur, in which the Newtonian doctrine, to say the

least, is highly probable. To instance one or two only. If a few drops of an extremely weak solution of Cases in

nitrate of silver be added to a very dilute solution of hyposulphite of lime, a precipitate is formed of an opales-
which New.

cent whiteness and extreme tenuity. If more of the nitrate be added, the precipitate increases in weight and
g "^^

aggregation, and at the same time changes its colour, becoming first yellow, then yellow brown, then a rich

orange brown, then a purplish brown, and, finally, a deep brown black. The precipitate, meanwhile, continually

acquires density, and, finally, sinks rapidly to the bottom. It is impossible, in this series, not to trace the tints

of the first order of reflected rings, produced by the thickening of the minute particles in the act of aggregation,
but equally impossible not to recognise the agency of a cause totally different, acting to increase the opacity of

the compound by an absorptive action far superior to, and independent of, the action of the particles as thin

plates. The phenomena of Hematine, described by Chevreul and cited by Dr. Brewster, (Encyc. Edin. Optics,

p. 623 ; see also Biot, Traile de Pfiys. torn iv. p. 134, there referred to,) afford too close an approximation to

the series of tints of the second order not to authorize a presumption that the Newtonian theory may apply to

this case also. The diffused light and blue colour of the clear sky, affords another very satisfactory instance.

This blue is, no doubt, a blue of the first order, reflected from minute aqueous particles in tht air. The proof
is, that at 74 distance from the sun, it is completely polarized in a plane passing through the sun s centre.

Another objection, no less obvious, to the Newtonian doctrine, has been successfully answered by Newton 1144
himself. A change of obliquity of incidence, it may be urged, should cause a change of colour, as a plate of Another ob-

given thickness reflects a different tint at oblique and perpendicular incidences. But this variation is less, the jection.

greater the refractive power of the medium ; and as the refractive power increases with the density, that of the Answered -

"dense ultimate atoms of bodies must be exceeding great, so that the tint reflected from them will vary little with

i change of incidence, (art. 669.) The colours of oxidated steel afford an excellent case in point. The refractive

power of this oxide, though great, (2.1), is, doubtless, not to be compared with that of the ultimate atoms of

bodies, yet the tints on the surface of blued steel vary but little with a change of obliquity. We may add, too,

that the colour exhibited by any body of sensible magnitude, is in reality an average of the colours reflected

from all its molecules at all possible incidences, so that no change of incidence ought to be expected to affect it.

Of the extreme tenuity of the ultimate molecules of bodies, Newton seems to have had but an inadequate 1145.
idea, as he supposed that they might be seen through microscopes magnifying three or four thousand times.* Newton's

We have viewed an object without utter indistinctness, through a microscope by Amici, magnifying upwards of ideas of tht

three thousand times in linear measure, and had no suspicion that the object seen was even approaching to slze

,[
tn"

resolution into its primitive molecules. But it should rather seem that Newton regarded his colorific molecules {J^g S

es

as divisible groitpes of atoms of a yet more delicate kind, and yet more densa^ and these again as still furtlier

resolvable till the last stage of indivisibility be reached. M. Biot has given a striking, and, we may almost term

it, picturesque account of this doctrine, in his Traile de. Physique.

XV. Of the Calorific and Chemical Rays of the Solar Spectrum.

It has long been a matter of everyday observation, that solar light exercises a peculiar influence in altering 1146.
the colours of bodies exposed to it, either by deepening or discharging them, even when totally secluded from

air, and that various metallic salts and oxides, especially those of silver, are speedily blackened and reduced

when freely exposed to direct sunshine, or even to the ordinary light of a bright day. Whether these effects

were owing to the heat of the rays, or to some other cause, remained long uninquired. The first step was

* The passage, however, is in the highest tone of a refined philosophy, and, independent of its theoretic bearings, we extract it, as

indicating a scrutinizing spirit of observation far beyond the age he lived in.

" In these descriptions I have been the more particular, because it is not impossible uut that m croscopes may at length be improved to the

discovery of the particles of bodies on which their colours depend, if they are not already in some measure arrived to that degree of perfection.
For if those instruments are or can be so far improved as with sufficient distinctness to represent objects five or six hundred times bigger
than at a foot distance they appear to our naked eyes, I should hope that we might be able to discover some of the greatest of those cor-

puscles. And by one that would magnify three or four thousand times perhaps the) might all be discovered, but those which produce
blackness. In the mean while I see nothing material in this discourse that may rationally he doubted of, excepting this position : That

transparent corpuscles of the same thickness and density with a plate, do exhibit the same colour. And this I would have understood not

without some latitude, as well because those corpuscles may be of irregular figures, and many rays must be obliquely incident on them, and
so have a shorter way through them than the length of their diameters, as because the Btraitness of the medium put in on all sides within

such corpuscles may a litlle alter its motions or other qualities on which the reflection depends. But yet I cannot much suspect the last

because I have observed of some small plates of Muscovy glass which were of an even thickness, that through a microscope they have

.orpusclcs, by reason of their transparency.
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Sir W.
Herschel.

Hitter.

1147.

Calorific,

luminous,
and chemi-

cal rays.

1148.

Light, made by Scheele, who ascertained that muriate of silver is much more powerfully blackened in the violet rays
V""V'/ than in any other part of the spectrum. (Traite de I'Air et du Fen, 66.) The experiments of Sir VV. llerschel,
Discoveries on tne heating power of the several prismatic rays, on the other hand; which appeared in 1800, showed satis-

Sir W factorily that the more refrangible rays possess very little heating power, the calorific effect being at its maxi-
mum for the extreme red rays, and even extending considerably beyond the limits of the spectrum in that

direction. This remarkable discovery, which established the independence of the heating and illuminating
effects of the solar rays, led Professor Ritter, of Jena, in 1801, to examine whether a similar extension beyond
the limits of the visible spectrum might not also have place in the chemical or deoxidating rays, and on exposing
muriate of silver in various points within and without the spectrum, he found the maximum of effect to lie

beyond the visible violet rays, the action being less in the violet itself, still less in the blue, and diminishing
with great rapidity as he proceeded towards the less refrangible end. Dr. Wollaston independently arrived at

the same conclusion.

The solar rays, then, possess at least three distinct powers : those of heating, illuminating, and effecting
chemical combinations or decompositions, and these powers are distributed among the differently refrangible

rays, in such a manner as to show their complete independence on each other. Later experiments have gone a
certain way to add another power to the list that of exciting magnetism. \\ ithout calling in question the

accuracy of the observations which are directed to establish this point, we may be permitted to hope that further

researches will, ere long, explain the causes of failure in those numerous cases where such effects have not been

produced.
The calorific rays appear, from experiments of Berard, to obey the laws of polarization and double refraction,

All obey the like those of light. Those of interference could not be made without excessive difficulty. In the case of the

Uws
e P"Cal cnem 'ca' rays> tne same difficulty is not experienced ; and Dr. Young, and after him, by more delicate means,

M. Arago, have satisfactorily demonstrated that these conform to the same laws of interference, whether po-
Chemical larized or otherwise, that are obeyed by the luminous rays similarly circumstanced. Thus, a set of fringes
rays inter- formed by the interference of two solar pencils with a common origin, being kept very steadily projected for a

'"

long time on one and the same part of a sheet of paper rubbed with muriate of silver, a series of black lines

ones .
became traced on it, the intervals of which were smaller than those of the dark and luminous fringes formed by
homogeneous violet light.

1149. Dr. Wollaston having observed that gum guiacum is turned green by exposure to solar light in contact with

WjllastonV air, took two specimens of paper coloured with a yellow solution of this gum in alcohol, and exposed one of

them to air and sunshine, the other to air in the dark. The former was turned perceptibly green in five minutes,
and the change was complete in a few hours, while the latter was no way discoloured after many months. He
then concentrated the violet rays on paper so coloured, by a lens, and the change was speedily performed, while

in the most luminous there was no change of colo.ir, and, iu the red rays, the green colour was not only not

produced, but when induced by exposure to the violet, Wcjs again destroyed, and the original yellow colour

restored. This seems, however, to have been merely an effect of the heat, as the warmth from the back of a

heated silver spoon discharged the green colour just as effectually.

Mr. Faraday has observed that glass tinged purple with manganese, has its hue much deepened by the

passage of solar light through it, and that two portions of the same plate, one preserved in the dark, the other

exposed freely, after some time differ materially in intensity of colour.

The direct action of solar light, or, possibly, of its heat also, produces otLer chemical effects, such as the

immediate combination of the elements of phosgen, the explosion of an atomic mixture of chlorine and hydrogen,
and other phenomena, all indicative of powers resident in this wonderful agent, of which we have but a very

imperfect notion at present. The green colour of plants, and the brilliant hues of flowers, depend entirely on

it. Tansies which had grown in a coal pit, were found totally destitute either of colour or of their peculiar and

powerful flavour, and the bleaching and sweetening of celery by the exclusion of light, is another familiar in-

stance of the same cause. How far the differently coloured rays are concerned in these effects, has never yet
been accurately investigated, though attempts have been made ; but we hope, from the distinguished ability of

an eminent individual who has recently taken up this most interesting inquiry, that our stock of knowledge will

soon receive material accessions.

We cannot close this Essay without an expression of regret, that the Memoir of Professor Airey, on the

Spherical Aberration of the Eyepieces of Telescopes, just on the point of publication in the Transactions of the

Cambridge Philosophical Sociity, reached us too late to allow of our attempting to condense its valuable con-

tents, and we can only recommend it to the notice of our readers in lieu of, and in preference to, anything we
could ourselves say on that subject. A similar expression of regret applies to the interesting

"
Theory of Sys-

tems of Rays,'' by Professor Hamilton of Dublin, a powerful and elegant piece of analysis, communicated to the

Royal Irish Academy in 1824, and only now in the course of impression, but of which enough has reached us,

by the kindness of its Author, to make us fully sensible of the benefit we might have derived from its perusal at

an earlier period of our undertaking.

observa

1150.
Effect of

.ight on

purple

glass.

1151.
Other ef-

fects of so-

lar light.

1152.

Slough, December 12, 1827. J. F. W. HERSCHEL
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INDEX.
N. B. The Numbers are those of the Articles at they stand on the Margin,

Light. Aberration, of Light, 10. Spherical, for reflected rays, 128.

_- Circle of least, 151. 156. Of a system of surfaces for refracted

rays, 281. 291. Of a thin single Irns. 293. Its comparative
amount in different lenses, 807. Of lenses generally, 29T. Of
a system of thin lenses, SOS. Its effect in lengthening or

shortening focus, 289. General equations for its destruction,

3!2, 313.

Aberration, Chromatic, explaineJ, 456. Circle of least, 457.

Principles of its destruction, 459.

Absorption of Light by uncrystallized media, 481, et seq.; by
crystallized, 1059, et seq.

Achi omaticity, general conditions of, 459.

Achromatic refraction, 427 . 448. Its general conditions, 459. At

common surface of two media, 478. Produced by combina-
tions of one medium, 451.

Achromatic Telescope, theory of, 456, et seq.

Adaptation of the eye to different foci, 356.

Amethyst, its peculiar structure, 1044.

A HICI, his prismatic telescope, 453. His microscopes, 1145.

Amplitude of an undulation, 605.

Analcime, peculiar polarization produced by, 1 183.

Analysis of solar light by the prism, 397. 406. By coloured

glasses, 506. Of the colours of thin plates, 644.

Angle of polarization, 831.

Apertures, waves transmitted through, 631. Phenomena of

diffraction through, 729. Of telescopes, of different forms,
their effect, 768.

Apophyllite, peculiar rings exhibited by it> several varieties, 915.

918. liiaxal, 1130. Variety called Tesselite, its structure,

1130, 1181.

ARAGO, M., his mode of measuring refractive indices, 739. Mia
law of polarization by oblique transmission, 947. His disco-

very of the rotatory phenomena in quartz, 1037. His laws of

interference of polarized rays, 947.

Axes defined, 783. Optic, 889. Differ for differently coloured

rays, 921. Their situations calculated a priori, 1008.

Axes of elasticity, 1000. Polarizing, Brewster's theory of their

composition and resolution, 1020. Of double refraction, 781.

Positive and negative, 1021. 1032.

BIOT, M., his doctrine of movable polarization, 928. His

apparatus described, 929. His researches on the rotatory

phenomena, 1037. 1045. His law of the isochromatic lines

in biaxal crystals, 907. His rule for determining the planes of

polarization within biaxal crystals, 1070.

BLAIR, Dr., his achromatic telescopes with fluid object glasses,

474.

Blindness, its causes and remedies, 360.

Bow, coloured prismatic, 555, 556.

BREWSTER, Dr., his law of polarization by reflection, 831.

Laws of polarization by oblique transmission, 866. His

optical researches and discoveries, passim. His theory of

polarizing axes, 1020.

Brightness, intrinsic and absolute, 29. See Photometry. Of

Images, 349.

Calorific rays of the solar spectrum, 1 147.

Camera obscura, 330.

Cassia, oil of, its remarkable refractive and dispersive powers,
1117.1121. Experiment upon, 1122.

Catacaustics, or Caustics by reflexion, 134, et seq. Their length,

144. Determination of from a given reflecting curve, 137.

Conjugate, 146. Density of rays in, 160.

Caustics by refraction, 226, et seq. Of a plane, 238.

CHAULNES, Due de, phenomena observed by him, 687.

Chemical rays of the spectrum, 1146, el seq.

Chromatics, 395. Chromatic aberration. See Aberration.

Circular polarization, 1037. "iseq. Vibrations, 627.

CLAIRAUT, his condition for construction of achromatic object

glasses, 467.

Coloured rays unequally absorbed by media, 486.
Coloured rings an/I fringes. See Rings and Fringes.
Colours of natural bodies not inherent, 410. Newton's theory

of such colours, 1134, et seq. Of the prismatic spectrum, 424.
Of flames, .521. Of thin plates, 633. Of thick plates, 676.
Of mixed plates, 696. Of fibres and striated surfaces, 700.

Colours, primary, Mayer's hypothesis respecting, 50i>. Young's,
518.

Colours polarized by crystallized plates, 884.

Colours,
periodical, 635, at seq. True and false, 1 1 43.

Composition and resolution of vibrations, 620. Of axes, 1020.

Cord, stretched, analogy between its vibrations and those of the
ether, 977. 980. 986.

Cornea of the eye, 350. Case of malconformation of, remedied,
358, 359.

Crack in a heated glass plate, its effect on the polarized tints,
1102.

Crested fringes observed by Grimaldi, 728.

Cross, black, traversing tin* polarized rings. Its form in uniaial

crystals, 911. In biaxal, 1092.

Crystals, (Jniaxal, enumerated, 785. 1124. Law of double
refraction in, 795. Biaxal, table of the inclinations of their

axes, 1124. Phenomena of the polarized lemniscates ex-
hibited by, 892, et stq. 1069, et seq. General law of double
refraction in, 1011, et seq. Action of heat on, 1 109. Positive
and negative, or attractive and repulsive, 803. 942. How dis-

tinguished, 915.

Crystallised surfaces, their action on reflected light, 1 12S.

Crystalline of the eye, 352.

Deflexion of light. Newton's doctrine of, 713.

Depolarization of light, 925.

Depolarizing axes, 1087.

Deviation of a ray a 'ter any refraction in one plane, 211. Mini-
mum produced by a prism, 216. Of tints from Newton's scale

in the polaiized rings, 915. 1125.

Diacauslics. See Caustics by refraction.

Dichroism, phenomena of, in uniaxal crystals, 1064. In biaxa),
1067. Expressed by an empirical formula, 1075.

Dichromatic media, 499.

Diffraction of light, 706, et seq.

Dilatation of rings at oblique incidences, 639. 6R9. Of the
diffracted fringes by approach of the radiant point, 711. Of
glass, its effect in imparting the polarizing property, 1089. Of

jellies, 1094.

Discs, spurious, of stars, 767.

Dispersion of light, 395, &c.

Dispersive powers of media, 425. Methods of determining them,
428.431. 435. A very precise practical one for object glasses,
483. Table of, 1120. Of higher orders, 446.

Due de Chaulnes, his experiment on coloured rings, 687.

Elastic forces of a medium generally expressed, 998.

Elasticity, &\es of, 1000. Surface of, 1004.

Elliptic, vibrations of ethereal molecules, 621.

Emanation, oblique, law of, 43.

Ether, its vibrations the (hypothetical) cause of light, 56S

Frequency of its pulsations, 575. See Undulations.

Extinction of light, 481. 11 38.

Eye, its structure, 350. Change of focus, S56. Of fishes, 968.

See Vision.

Field of view, 881.

films, interrupting, in crystals, phenomena exhibited by, 1078,
et seq.

Fits of easy reflexion and transmission, 526. 651

Fixed lines in the spectrum described, 418. Their utility in

optical determinations. 420.

Flames, coloured, their phenomena, 590.

Foci, general determination for any curve by reflected rays, 109.

112. In a sphere, laS. 250. Conjugate, 126. General inves-

Index.
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Light. tigalion of, for refracted rays in any curved surface, 221. In

-_ J
spherical surface, 239, el seq. For central rays, (fundamental

equation,) 247. Of a system of spherical surfaces, 258. 257.

Of a system of lenses, 268. Of thick lenses, 272. Of doubly
refractive lenses, 805. For oblique rays, 318, et seq. to 321.

Aplanatic, 287. How conceived in the undulatory system, 590.

FRAUNHIIFER, his experiments on the spectrum, 436. On diffrac-

tion and interference, 740.

FRESNEL, his optical discoveries and researches, passim. His

theory of transverse vibrations, 976. Of the diffracted fringes
in shadows, 718- His theorem for the resultant of two inter-

fering rays. 613. His analysis of the colours seen through a
minute circular aperture, 731. His experiments on the inter-

ference of polarized rays, 954. 957. His laws of reflexion of

polari/.ed light, 852. His theory of double refraction in

uniaxal crystals, 989. In biaxal, 997. His theory of circular

polarization, 1047.

Fringes diffracted, their theory, 718. Their displacement by
interposition of a transparent plate, 737. Exterior, 706. In-

terior, 726. Coloured, seen between a prism and a plane glass,
641. Between thick parallel plates, 688. Bel ween glass films,
695. Produced by healing a glass plate, 1099.

Glass, flint and croim. Refractive and dispersive indices of
their varieties. See Tables, Art. 1 1 1 6. 1 1 20. Heated, pressed,
or bent, its phenomena, 1086. 1090. 1095. Unannealed,
1104.

Heat, its effect in changing colours of bodies, 504. Of crystals,

unequal on the two pencils, 1077. Effects of unequal heat on
glass, 1083. 1095. On crystallized bodies, their forms and
double refractions, 1 109.

Hemitropism, remarkable cases of, detected by polarized light,
\ 1ST, el seq.

Homogeneous light, its properties, 600. Purification, 4 12. In-

sulation, 503. Lengths of undulations for its several species,
576.

Humours of the eye, 350. 354.

HUYQENS, his law of velocity of the extraordinary ray in Iceland

spar, 787. His construction for law of extraordinary refrac-

tion, 806. Extended to biaxal crystals, 1011.

Iceland spar, phenomena of, polarization and double refraction
exhibited by, 879, &c. Dichroism of, 106S. Pyrometrical
properties of, 1110. Interrupted, phenomena of, 1080.

Idiocyclophanous crystals, 1081.

Illumination, formula for its intensity, 44. 47. Of the polarized
rings atdifferent points of their peripheries, 1071.

Images, 319. Form of, 320. Rule to find their places, 344.

Brightness of, 349. Formed within the eye, 357.

Incommensurability of coloured spaces in the spectrum, 441.
Index of refraction, how determined, 206. 213. Wollaston's

method, 562. Fraunhofer's, 436. Arago and Fresnel's, 739.

By polarizing angle, 843. Table of its values, 1 1 16.

Index of transparency, 486.

Inflexion of light, Newton's doctrine of, 71S.

Intensity of light, its law of diminution, 18. Its measure in the

undulatory doctrine, 578. Reflected perpendicularly, calcu-

lated, 592.

Intensity of a polarized beam reflected in any plane, 852. Of
natural lights when so reflected, 857. 592. Of the comple-
mentary pencils produced by double refraction, 873. 987. Of
the polarized rings at any points of their periphery, 107 1.

Interferences of rays, 596, et seq. General investigation of, 618.

Young's fundamental experiment, 726. Of polarized rays, 946,
et leg.

Interrupting films, their phenomena, 1078.

Irradiation, 697.

Isochromatic lines, 906.

Jellies, polarization of light produced by, when dilated or com-
pressed, 1094.

Least action, principle of its use in optical investigations. SS6.
Its general application, 540. Its equivalent in the undulatory
doctrine, 588. Application to the theory of uniaxal crystals.
790.

Lemniscates, polarized, surrounding the axes of biaxal crystals
902. See Rings, Tints, &c.

Lenses, 259. Aplanatic, 304.
"
Crossed," 305.

Liquids, rotatory, phenomena produced by, 1045.

Longitudinal and lateral aberration, 288.

MALUS, his theory of double refraction, 796 805. His discovery
of polarization of light by reflexion, 822.

MAYEII, his hypothesis of three primary colours, .M)9.

Media, dichromatic, 499.

Metals, theiraction in polarizing light by reflexion, 815.

Microscopes, 309. 389.

MtrsCHERLicH, M., his researches on the effects of heat on
crystals, 1 109.

Modifications of light, 80.

Molecules, luminous, their tenuity, 543. Their motion on chang-
ing media investigated, 528.

NEWTON, his theory of light, 526. Doctrine of inflexion and
deflexion, 713. Theory of colours of natural bodies, 1134.
Of the size of their particles, 1145.

Object glass, achromatic, its theory, 459, et seq. General equa-
tion for destroying its aberrations, 465. Aplanatic, its con-

struction, 468. 470, &c. With separated lenses, 479. With
fluid lenses, 474.

Oblique incidence, its effect on the colours of thin plates, 6'9.
657. Pencils, their foci, S2 1.32 8. Reflexion from water, 553.

Opacity, its cause on Newton's doctrine, 1 1S8.

Origin, of a ray in the undulatory doctrine, 607. 609.

Periodical colours, 635, etseq.
Periodicity, law of, 906.
Phase of an undulation, 604.

Photometers, 57. Photometry, 17, etseq.
Piles of transparent plates, their phenomena in polarized light,

869.

Plagiedral quartz, its rotatory phenomena, 1012.
Plane of polarization, 828. Its change by reflexion, 860. Its

apparent rotation in quartz. &c. 1039. Itsoscillations, 928.
Plates, thin, tl.eir colours, 633, etseq. Thick, ditto, 676. Mixed,

ditto, 696. Crystallized, their phenomena, 936. (See Rings.)
Crossed, 9.SS, 9S9. Superposition of. 9 10.

POISSON, M., his theorem for the illumination of the shadow of
a small circular disc, and the colours seen through a minute
aperture, 734. His investigation of the intensity of reflected

light, 592.

Polarization of light generally, 814, et seq Modes of effecting,
819. Characters of a polarized ray, 820. By reflexion, 821,
el seq. Partial, 847. By several reflexions in one plane, 818.

By refraction, 863. By several oblique transmissions, 863.
866. By double refraction, 873. Movable, Biot's doctrine of,
928. Explained on the undulatory doctrine, 993. Its princi-
ples applied to the phenomena of biaxal crystals, 1071.

Circular, its characters, 1049. How effected, 1052. Plane of,
its position in the interior of biaxal crystals, 1070. Of sky
light, 1143.

Polarised rings, surrounding the optic axes of crystals, mode of

viewing, 892, et seq. Their form in general, 902. In uniaxal
crystals, 911. Dependence of their tints on law of interferences,
912. Primary and complementary sets of, 926. Explained on
hypothesis of movable polarization, 931. On undulatory
hypothesis, 969.

Polarizing angle, Brewster's law for determining, 831. Its use as
a physical character, 1 123.

Polarizing energy, a physical character, 1 1 26.
Poles of lemniscates, 902. Virtual, in biaxal crystals, 924.
Power of a lens, 262. Of a system of spherical surfaces, 270.

Magnifying, 374. Superposition of powers, law of in lenses,
268.

Pressure, its effect in communicating the property of polariza-
tion, 1087.

Principle of least action applied to double refraction, 790. Of
swiftest propagation, 588.

Prism, formulae for refraction through, 198, etieq. Of variable

refracting angle, 431, 432. Analysis of light by, 397. Tele-

scopes composed of prisms, 453. Coloured bow seen in, 555.

Propagation of light, 5. Oersted's hypothesis for, 525. Law of

swiftest, 588. Of waves along canals, 600.
Punctum caecum in the eye, 366.

Quartz^ right and left-handed, 1041. Rotatory phenomena in.
1037. Double refraction of along itsaxis, 1048. Plagiedral, iu

phenomena, 1042.

Radiation of light, 5, et seq. Its law, 72. Explained on ondu-

latory doctrine, 578.

Rays, calorific, luminous, and chemical, 1147. Similar and dis-

similar, Mfi. Their origins, 607. Interfering, theirresultam,
611. Polarized, their characters, 820.

Index.
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Light. Reflecting forces, their intensity, 561. Distribution, 550, et seq.

-I
' Reflexion, law of, 88. General formulas for, at plane surfaces, 99.

At curved surfaces, 108, 109. Between any system of spherical
surfaces, 301. Internal total, 184. 550. 554. Modification

impressed on light by two such, 1056. At common surface of

two media, 547. Partial, explained on Newton's principles,
544. Regular at rough or artificially polished surfaces ex-

plained, SST. 558. How conceived in the undulatory doctrine,

581. At the surfaces ofcrystals, 1 1 23. Of polarized light, its

laws, 819, et seq.

Refraction, by uncrystallized media, \l\,ttseq. Its law, 189.

General formulae for, at plane surfaces, 198. Through prisms,
203.211. At curved surfaces, 220, et seq. At common surface

of two media, 189. Colourless, a case of, .478. Regular, at

artificially polished surfaces, explained, 559. Account of in

undulatory theory, 586. 595. 628.

Refraction, double, 779, et seq. By what bodies produced, 780.
Its law in uniaxal crystals, 785. 800. Produced by rock crystal

along its axis, 1018. By compressed and dilated glass, 1107.

In uniaxal crystals, explained on undulatory doctrine, 989. In

biaxa., us general laws, 101 1. 1014. Ordinary and extraordi-

nary, relation of the two pencils, 873.

Refracting forces, their intensity and extent, 561.

Refractive power, intrinsic, 5S5. Table of its values in different

media, 1118. Its connection with their chemical composition,
1114.

Refractive index, how measured, see Index. Table of its values
for different media, 1116. For different homogeneous rays,
437.

Refrangihility of different rays. See Chromatics, Colours, &c.
Resultant of two interfering vibrations, 611. Of rays oppositely

polarized, 982.

Retina, 355. How affected by vibrations of ether, 567.

Rings, coloured, seen between convex glasses, their colours, 635.

Breadths, 6.57. For different homogeneous rays, 644. Their

analysis and synthesis, 644, 645. Transmitted, 658. Ex-

plained on the undulatory theory, 660 On the Newtonian,
655. Seen about the images of stars in telescopes, 766. Seen
about the poles of the optic axes in crystals, 892. 900. Law of

their intensity in different points of their circumference, 1071.

Rotatory phenomena of rock crystal and liquids, 1038. 1040.

Explained on the undulalory doctrine, 1057.

SEEBECK, Dr., his discovery of the rotatory property in liquids,
1045. Of tlie effects of heat in imparting polarization to

glass, 1083.

Sections, principal, of a crystallized plate, 888.

Soap bubbles, colours reflected by, 649.
Solar light, its analysis by the prism, 397. Its peculiar cha-

racters and spectrum, 419.

Spectrum, prismatic, 3d7. Fixed lines in, 418 ; secondary, 442;
tertiary, 446. Its distortion at extreme incidences, 450 ;

subordinate, 452. Of first class, 760 ; of second class, 746
;

of third class, 761.

Spheroid of double refraction in uniaxal crystals, 789. In

biaxal, 1013.

Spherometer, 1111.

Stars, their spurious discs and rings, 766, et seq.
Statues, musical sounds produced by certain, a probable expla-

nation of, 1103.

Strain of solids, ascertained by their polarized tints, 1090. State

of, in unequally heated glass plates, 1098.

Sulphate of copper and potash, a singular property of, 1 1 1 1 . Of
lime, action of heat in altering its optical properties, 1112.

Of potash, singular structure of its crystals, 1 132.

Table of media in their order of action in green light, 443. Of
dispersive powers of first and second order on a water scale,
447. Of the lengths of undulations of the several homoge-
neous rays, 575. 756. Of the maxima and minima of the ex-
terior fringes of shadows, 720. Of colours seen by a person

of defective vision, 507. Of colours seen by diffraction

through a circular hole, 730. Of the dimensions of the
lemniscates in mica, 908. Of crystals whose optic axes differ

for different rays, (Brewsler,)923. Of the angles of rotation of
the several homogeneous rays, 1040. Of refractive indices,

(general,) 1116. Of refractive indices for seven definite rays,
(Fraunhofer,) 437. Of intrinsic refractive powers, 1 1 18. Of
dispersive powers, (general,) 1120. Of angles between the

optic axes of various crystals, 1124. Of polarizing powers,
1126.

Telescopes, 379. Astronomical, 380. Galilean, 380. Hersche-
lian, 390. Newtonian, 391. Prismatic, 453. Achromatic,
(see Achromatic )

Tesselite, its singular structure, 1130, 1131.

Theories of light, Newtonian, 526. Undulatory, 563, et seq.
Thick plates, colours of, 676, et sey. Explained on undulatory

system, 678.

Thin plates, colours of, 633, et seq. Newton's explanation of

them, 651.

Tint, its numerical measure, 906.
Tints of coloured media, vary with a change of thickness, 495.
Of transmitted rings expressed algebraically, 663. 66*. Of
crystallized plates, their law, 886. 906. Their dependence on
the thickness of the plate, 905. Theirdeviation from Newton's
scale, 915. Singular succession of, exhibited by Vesuvian,
1125. Of circular polarization, 1055.

Transparency, on what depending, 1 142. Index of, 486. Of
oiled paper, &c. 549.

Tourmaline, its property of polarized light, 817. Of absorbing
one pencil, 1060.

Type, of the colour of a medium, 490. Instanced in various

cases, 498.

Ultimate tint of an absorptive medium, 494.

Unannealed glass, its optical properties, 1104.
Viuhilatiom of ether, 574. Their lengths for homogeneous rays,
575. 756. Their phases, 604. Amplitudes, 605. Propaga-
tion in spheroidal surfaces, 804.

Undulation, half an, allowance for cases when required, 966'
072.717. Fresnel's rule for, 972. Explained, & priori, 983'

Velocity of liglu 9. IS. Of etherial undulation, 564. Of plane
waves within crystals, 1005. 1012. Of ordinary and extraordi-

nary ray on Huygenian hypothesis, 787. Of luminiferous
waves and of rays, distinguished, 813.

t'esuvian, its remarkable inverted scale of tints, 1125.
Vibrations of ether, rectilinear, their laws, 569. Resultant of
two interfering, 61 1. Their composition and resolution, 620 .

particular cases, 621. Elliptic, 621. Circular, 627.

Vibration, its effect in imparting polarizing power to glass, 109S.

Vision, 350. Single, with two eyes, 861. Double, 361. 363.
Restoration of at an advanced age, 360. Through lenses, &c.
376. Of persons who see only two colours, 507. Oblique
through refracting or reflecting surfaces, 341.
Visual angle, 376.

Water, its indices of refraction for seven definite rays, 437. Its

spectrum, 438.

Waves of light explained, 573. Secondary, 583 ; their mutual
destruction, 628. Transmitted through apertures, 631. Plane,
their velocity and direction in crystals investigated, 1012.

Curved, the general equation of their surface in biaxal crystals,
1013.

WOLLASTON, Dr., his determinations of refractive indices, 1115.
His researches on double refraction of Iceland spar, 780. On
the chemical rays, 1147. Discovery of the fixed lines in the

spectrum, 418.

YOUNG, Dr., his law of interference. See Interferences. His

analogy between the vibrations of ether, and those of a tended

cord, 977. His optical discoveries and investigations,

Index.
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ERRATA ET CORRIGENDA.

'N 3. Tlie reader is requeued to correct in advance the following Errata, and to s'rike out the pa?affe here refcrntr r

/'ir/e. I. 'm". Error. Cm-r rtinn.

811, *'). existences, oxisicm-c.

do. "I, more, most.

317, V. line. sine.

319, 2fi, as the sun's surface, at tin- sun's surface

389. 5 fr.. in holt. - -
|

"

^7- I
3 p\ ? p I. I

399, 17, axis, axes.

400. 15, act. art.

401. 15, PE. PC.
402. 30, R, ROp. P, POp.
do. 3.-. p, Q.
410, 22 from b&tt. dele " see Micrometer, in a subsequent part of tlii.- Artie).-.'

414, 44, dele "
by the writer of these pages."

415, 8 from bott. by water, into water.

420, SO, spectra of distortion, subordinate spectra.

428, 17, secondary, second.

481, S3, -Rr, V v", R R', V V.
do. 36,

' R N V, R' N V.

484, 27, from experiments, from otjier experiments.

.454, 28, P H, 1'Q. ..i A B, I' 15 - P Q, or A B.

461, 11 from bott. two vibrations, two rectangular vibrations.

47fi. 14 from bott. tMe all that relates to the frinjes on the- u n ; .s of the I'n/iil'n Idn*, lip utf founded
on a mistake.

480, 32, limits, limit.

509, 38, fails, falls

521, I, produce. lo produce.

524, margin, Art. 925, polarization, depolarization

588, 22, positive cla.^s. attractive class.

531, Ifi, mid ns (nllcms: With respect to this third law, however.it must be confessed that it appear*
to require a stricter examination, as, if admitted in its full extent, it seems
to controvert the fundamental principles of the doctrine of interference

5M, 19, delft wlint is said about the nodal linos.

5PO. 32 from bott. after disprove il, IHIITI as follows: Instead of the expression (4,) Art. 107.% we
might otherwise assume

T =: (Y . cos 2 f
! + B . sin 2 if') . (y . cos v- + b . sin

'),

and determining the coefficients accordinirly, obtain another expression for the tint.



I'l.lt.- J

//. . ..///. '.v/ .'?>/.
-' .In .-i -i

,l.r I/If . /,;' ,///-,-/. . ///.';/. /*;>-. /.





h i
: ii r, I'hil.- L'

T

-:'.'-, :-/. ../.'.r'.'/./K;',-'. /;//,^.//-///y.v,/// f.//</,r,/r,- .t>/-/





LIGHT.

ful .'i.'l . //'/ ;';V.
ft,/.. 'If. .In.

.':;-.

CM .\

Ka.35
//,/. .'17. .//'/ !."/.

/,. -a.

fy.39.strt.x33.

41

(] I [1 \ )

'

K..&.SAKA3. '*. rt'..'*.





LIGHT. I'lalr I

.'/ciry





L I G II T

//,/ 79 Art. 378
//;/. tfC

1

III .:::!

A

.',i-m,in /,ii,(,Mlf Street





, I G JI T .

A B C I. A

Jini

.

//if.





L I G II T. Plate 7.

//// //.v fiii. ii/ In /i/./

Fifl.
Jiff. Art.

.iff
6.

' \

A*.
V \\

\v

\ A
Fy.i2z.Art.xio. \

D

Fy.K5.Art.3Sj.

t^ *LJ^-^r*sv*J*^-nJ*J^JW*^w^lr^

:/
>/ -.'; l-l- ./..}/,fH 7!r,tSI. I.H.fontl-Stm-t .





L I G H T . Elate <">

//>/. /.;/..///. ti./.'i.

. /'





LIGHT.

/;>/. ia,. 1,1. 7/1.

fy.146sirf.7W.

fig.l-tffJrC.736.

I'i.l. II. '
. Irt.

r'i,i. K3.jirt.7W.

fin./.'.' . ln.770.

"

.In. 7::>.

//./..././//.;;/'

//,/./.;/. //Y./-/V.

'

/Y'f J.3fiL-m. lr





/''!/. i.;i .V":; , In 7-1:'

;n. . hi. ,-,-;-.

L I G II T. Plate 1O

/'/</ l.'xf . //-/. 777.

/iff /,//. .Ill 771.

//;/ in:,.

/it/. Hi:'.

/ill. nil. .///.,--;.

/'/'/ /i'l< . iff .777

*

I I ,.

//// JSS . /// 77a

8





L I G II T

/'/,/. i
;.'>'.

. In., '>,,;;.

//</. /<>/. . ///. -A '.'.

//'</. /,>'.'.. Iff .,!

^

.///.

. . trr. ,i,',i.

T
1!. , ,C

V

-;.'& 1>

ftilili-lir-1,1,1/1: . I, //','/;;/, M,
//,,'.;..

/;-/l,,/,/i,m . (: /,.-,/, v/ /lil<riiH'ln-Hini .





LIGHT

/iii.itm. .li-i H-.-K.

I'l.lll- I-'

* *!//

/'ill ////. . /// .'/:

fii/./KH. .///..<;,'.'.

fill. //-/ .///.

O
VJW

00 G

00 B

,

T

00 V

Fi/f /')<>. ./!'/. !/:!/.





I. i <.-::; .

fit? //;// Jli .ltr-{<>





//;/ :/,- .

L I G H T.

6tJHK.

f'ti/. :'.'.' ./r/.J/nli

////. ;'/'/ .///./A/. r

////. ::/> .-trt.JlOS

f?,. aw











RETURN TO the circulation desk of any

University of California Library

or to the

NORTHERN REGIONAL LIBRARY FACILITY

Bldg. 400, Richmond Field Station

University of California

Richmond, CA 94804-4698

ALL BOOKS MAY BE RECALLED AFTER 7 DAYS
2-month loans may be renewed by calling

(415) 642-6753

1-year loans may be recharged by bringing books

to NRLF
Renewals and recharges may be made 4 days

prior to due date

DUE AS STAMPED BELOW



Lo

VE 17876




