LIBRARY
OF THE
UNIVERSITY OF CALIFORNIA
Received Gam , 1895 Accession No. 5-8214. Class No.

6428 है

$$
\sin 2 C^{\circ}=\frac{a}{3 \omega} \operatorname{ce(28)\frac {108\cdot \operatorname {mor}}{\frac {6428}{35420}}(16)}
$$

Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

TRIGONOMETRY
 FOR

BEGINNERS

AS FAR AS THE SOLUTION OF TRIANGLES.

58214
Printed 1886.
Second Edition 1887. Third Edition 1888.
Fourth Edition 1889.
Fifth Edition 18 go.

PREFACE.

The present work is an abridgement of the more complete work on Elementary Trigonometry by the same Author. A few of the Articles have been rewritten and the order in one or two cases slightly altered.

At the request of many Teachers a Table of the Logarithms of numbers from 100 to 1000 has been inserted. It will be seen [see Exercises xxxix. and xL .] that many interesting results may be obtained by the help of this Table.

In the second Edition the Chapter on Logarithms was revised.

In the third Edition 100 Easy Miscellaneous Examples were added.

In the fourth Edition a few corrections have been made, and a short Chapter on Triangles and Circles added.

CONTENTS.

CHAP. PAGE
I. On Measurement 1
II. On the Relation between the Circumference of a Circle and its Diameter 5
III. On the Measurement of Angles 8
IV. The Trigonometrical Ratios 18
V. On the Ratios of Certain Angles 26
VI. On the Trigonometrical Ratios of the same Angle 37
VII. On the Use of the Signs + and - 48
VIII. On the Use of + and - in Trigonometry 51
IX. On the Ratios of Two Angles 62
X. On the Ratios of Multiple Angles 72
XI. On Logarithms 76
XII. On the Use of Mathematical Tables 86
XIII. On the Relations between the Sides and Angles of a Trianale 102
XIV. On the Solution of Triangles 111
XV. On the Measurement or Heights and Distances 122
XVI. Triangles and Circles 128
Examples for Exercise 132
Answers to Examples 140
-1

CHAPTER I.

On Measurement.

1. It is usual to say that we have measured any concrete quantity, when we have found out how many times it contains some familiar quantity of the same kind.

We say for example, that we have measured a line, when we have found out how many feet it contains. We say that we have measured a field, when we have found out how many acres or how many square yards it contains.
2. To know the measurement of any quantity then, we must have two things. First, we must have a unit, or standard of reference, of the same kind as the thing measured. Secondly, we must have the measure, or the number of times the thing measured contains the unit, or standard quantity.
3. Hence, the measure of a quantity is the number, and the unit is the concrete quantity, by means of which it is measured.

Example 1. A line contains 261 feet; that is 261 times a foot. Here the measure or number is 261 and the unit a foot.

EXAMPLES. I.

1. What is the measure of 1 mile when a chain of 66 feet is the unit?
2. What is the measure of an acre when a square whose side is 22 yards is the unit?
3. What is the measure of a ton when a weight of 10 stone is the unit?
L. T. B.
4. The length of an Atlantic cable is 2300 miles and the length of the cable from England to France is 21 miles. Express the length of the first in terms of the second as unit.
5. The measure of a certain field is 22 and the unit 1100 square yards: express the area of the field in acres.
6. Find the measure of a miles when b yards is the unit.
7. The measure of a certain distance is a when the unit is c feet. Express the distance in yards.
8. A certain sum of money has for its measures $24,240,960$ when three different coins are units respectively. If the first coin is half a sovereign, what are the others?
9. It is explained in Arithmetic, in the application of square measure, that the measure of the area of a rectangle is found in terms of a square unit, by multiplying together the measures of the sides in terms of the corresponding linear unit.

Example. Find in square feet, the measure of a square surface whose side is 12 feet.

The area is 12×12 square feet $=144 \times 1$ square foot,
\therefore the measure required is 144 .
5. We shall apply this result to Euclid I. 47.

Example 1. The sides containing the right angle of a right-angled triangle are 3 ft . and 4 ft . respectively; find the length of the hypotenuse.

Let x be the number of feet in the hypotenuse.
Then by Euclid I. 47, the square described on the side of x feet $=$ the sum of the squares described on the sides of 3 feet and 4 feet respectively,

$\therefore x^{2}$ square feet $=9$ square feet +16 square feet
" $=25$ square feet,

$$
\therefore x^{2}=25 \text {, }
$$

$$
\therefore x=5 \text {. }
$$

Therefore the length of the hypotenuse is 5 feet.
Example 2. Find the length of the diameter of the square one of whose sides contains a feet.

Let $A B C D$ be the square, so that $A B$ is a feet, and $A D$ is a feet. Let the diameter $B D$ be x feet.
Then the square on $D B=$ the sum of the squares on $D A$ and $A B$.

$$
\begin{aligned}
\therefore x^{2} \text { sq. ft. } & =a^{2} \text { sq. ft. }+a^{2} \text { sq. ft. } \\
\therefore x^{2} & =a^{2}+a^{2}, \\
\therefore x^{2} & =2 a^{2} \\
\therefore x & =\sqrt{ } 2 . a .
\end{aligned}
$$

Thus the required length $\sqrt{ } 2 . a$ feet $=(1 \cdot 4142+\ldots) \times a \mathrm{ft}$.

EXAMPLES. II.

1. Find the length of the hypotenuse of a right-angled triangle whose sides are 6 feet and 8 feet respectively.
2. The hypotenuse of a right-angled triangle is 100 yards and one side is 60 yards : find the length of the other side.
3. One end of a rope 52 feet long is tied to the top of a pole 48 feet high and the other end is fastened to a peg in the ground. If the pole be vertical and the rope tight, find how far the peg is from the foot of the pole.
4. The houses in a certain street are 40 feet high and the street 30 feet wide: find the length of the ladder which will reach from the top of one of the houses to the opposite side of the street.
5. A wall 72 feet high is built at one edge of a moat 54 feet wide; how long must scaling ladders be to reach from the other edge of the moat to the top of the wall?
6. A field is a quarter of a mile long and three-sixteenths of a mile wide: how many cubic yards of gravel would be required to make a path 2 feet wide to join two opposite corners, the depth of the gravel being 2 inches?
7. The sides of a rectangular field are $4 a$ feet and $3 a$ feet respectively. Find the length of its diameter.
8. If the sides of an isosceles triangle be each $13 a$ yards and the base $10 a$ yards, what is the length of the perpendicular drawn from the vertex to the base?
9. Show that the perpendicular drawn from the right angle to the hypotenuse in an isosceles right-angled triangle, each of whose equal sides contains a feet, is $\frac{\sqrt{ } 2}{2} \cdot a \mathrm{ft}$.
10. If the hypotenuse of a right-angled isosceles triangle be a yards, what is the length of each side?
11. Show that the perpendicular drawn from an angular point to the opposite side of an equilateral triangle, each of whose sides contains a feet, is $\frac{\sqrt{ } 3}{2} . a \mathrm{ft}$.
12. If in an equilateral triangle the length of the perpendicular drawn from an angular point to the opposite side be a feet, what is the length of the side of the triangle?
13. Find the ratio of the side of a square inscribed in a circle to the diameter of the circle.
14. Find the distance from the centre of a circle of radius 10 feet, of a chord whose length is 8 feet.
15. Find the length of a chord of a circle of radius a yards, which is distant b feet from the centre.
16. The three sides of a right-angled triangle, whose hypotenuse contains $5 a$ feet, are in arithmetical progression; prove that the other two sides contain $4 a$ feet and $3 a$ feet respectively.

CHAPTER II.

On the Relation between the Circumference of a Circle and its Diameter.
6. The circumference of a circle is a line, and therefore it has length.

We might imagine the circumference of a circle to consist of a flexible wire; if the circular wire were cut at one point and straightened, we should have a straight line of the same length as the circumference of the circle.
7. A polygon is a figure enclosed by any number of straight lines.

A regular polygon has all its sides equal and all its angles equal.

The perimeter of a polygon is the sum of its sides.
8. If we have two circles in which the length of the diameter of the first is greater than the length of the diameter of the second, it is evident that the length of the circumference of the first will be greater than that of the second.

It is in fact true that when the length of one diameter $=$ (any number of) n times that of another diameter the length of the circumference of the one $=$ (the same number of) n times that of the other.
9. Hence when

$$
\text { diameter }=n \times \text { (another diameter }),
$$

then circumference $=n \times$ (the other circumference),
so that the ratio

$$
\frac{\text { length of circumference }}{\text { length of diameter }}
$$

is the same for all circles.
10. The proof of the above statement is given in more advanced works on Trigonometry. For the present the student must accept the following statements.
I. The ratio or number $\frac{\text { circumference }}{\text { diameter }}$ is a certain fixed number.
II. It is an incommensurable number.
III. It is $3 \cdot 14159265+\ldots$
11. When we say that this number is incommensurable we mean that its exact value cannot be stated as an arithmetical fraction.

It also happens that we have no short algebraical expression such as a surd, or combination of surds, which represents it exactly.

So that we have no numerical expression whatever, arithmetical nor algebraical, to represent exactly the ratio of the circumference of a circle to its diameter.

Hence the universal custom has arisen, of denoting its exact value by the letter π.
12. Thus π stands always for the exact value of a certain incommensurable number, whose approximate value is $3 \cdot 14159265$, which number is the ratio of the circumference of any circle to its diameter.

It cannot be too carefully impressed on the student's memory that π stands for this number $3 \cdot 14159265 \ldots \& c$., and for nothing else; just as 180 stands for the number one hundred and eighty, and for nothing else.
13. We may notice that $\frac{22}{7}=3 \cdot 14285 \%$.

So that $\frac{22}{7}$ and π differ by less than a thousandth part of their value.
14. Thus in a circle of radius r $\frac{\text { the circumference }}{2 r}=(3 \cdot 14159256+\ldots)=\pi$,
or the circumference $=\pi \times 2 r=\frac{22}{7} \times 2 r$.
Example 1. The driving wheel of a locomotive engine is 5 ft .6 in . high. What is its circumference?

Here we have a circle whose diameter is $5 \frac{1}{2}$ feet;

$$
\begin{aligned}
\therefore \text { its circumference } & =\pi \times 5 \cdot 5 \text { feet, } \\
& =(3 \cdot 14159 \ldots) \times 5.5 \text { feet }, \\
& =17 \cdot 278 \ldots \text { feet. }
\end{aligned}
$$

The eircumference is 17 ft .3 in . approximately.
Example 2. A piece of wire 1 foot long is bent into the form of a circle; what is the diameter of the circle?

Here the circumference $=1$ foot, that is

$$
\pi \times \text { diameter }=1 \text { foot },
$$

$$
\therefore \text { diameter }=\frac{1 \text { foot }}{\pi}=\frac{r}{2 \pi} \times 1 \text { foot }
$$

$$
=\frac{84}{2} \text { inches }=3 \cdot 8 \text { inches, nearly. }
$$

EXAMPLES. III.

In the answers of the first 12 of the following examples $\frac{22}{7}$ is used - for π.

1. Find the circumference of a circle whose diameter is one yard.
2. Find the circumference of a circle whose radius is 4 feet.
3. Find the circumference of a 48 inch bicycle wheel.
4. The circumference of a circle is 10 feet; find its diameter.
5. What must be the diameter of a locomotive driving wheel, that it may make 220 revolutions per mile?
6. How many revolutions does a 36 inch bicycle wheel make per mile?
7. How many more revolutions per mile does a 50 inch bicycle wheel make than one of 52 inches?
8. A locomotive whose driving wheel is 5 feet high has an instrument to record the number of revolutions made. What number will the instrument record in running 100 miles?
9. If the instrument in Question 8 indicates 3 revolutions per second, how many miles per hour is the engine running?
10. What is the diameter of the driving wheel of a locomotive engine which makes 4 revolutions per second when the engine is going at the rate of 60 miles per hour?
11. The large hand of the Westminster clock is 11 feet long; how many yards per day does its extremity travel? How far does the extremity move in a minute?
12. The diameter of the whispering gallery in St Paul's is 108 feet; what is its circumference?
13. Find the number of inches of wire necessary to construct a figure consisting of a circle with a regular hexagon inscribed in it, one of whose sides is 3 feet.
14. How many inches of wire would be necessary in a figure similar to that in Question 13, if the circumference of the circle were ten feet?
15. Find how many inches of wire are necessary to make a figure consisting of a circle and a square inscribed in it, when each side of the square is 2 feet.
16. Find the length of string necessary to string the handle of a cricket bat; having given the diameter of the handle $=1 \frac{1}{4} \mathrm{in}$., the length of the handle $=12 \mathrm{in}$., the diameter of the string $=\frac{1}{40}$ th of an inch.

CHAPTER III.

On the Measurement of Angles.

15. In elementary Geometry (Euclid I.-VI.) the angles considered are each always less than two right angles.

For example, in speaking of the angle $R O P$ in Euclid we should always mean the angle less than two right angles,

not an angle measured in the opposite direction greater than two right angles.
16. In Trigonometry, by the angle $R O P$ is meant, not the present inclination of the two lines $O R, O P$ but the amount of turning which $O P$ has gone through when, starting from the position $O R$, it has turned about O into the position $O P$.

Example. Suppose a race run round a circular course. The position of any one of the competitors would be known, if we remark that he has described a certain angle about the centre of the course. Thus, if the distance to be run is three times round, the line joining each competitor to the centre would have to describe an angle of 12 right angles.

When we remark that a competitor has described an angle of $6 \frac{3}{3}$ right angles, we record not only his present position, but the total distance he has gone. He would in such a case have gone a little more than one and a half times round the course.
17. Definition. The angle between two lines, $O R, O P$ is the amount of turning about the point O which one of the lines $O P$ has gone through in turning from the position $O R$ into the position $O P$.
18. The angle $R O P$ may be the geometrical representative of an unlimited number of Trigonometrical angles.
(i) The angle $R O P$ may represent the angle less than two right angles as in Euclid.

In this case $O P$ has turned from the position $O R$ into the position $O P$ by turning about O in the direction contrary to that of the hands of a watch.
(ii) The angle $R O P$ may represent the angle described by $O P$ in turning from the position $O R$ into the position $O P$ in the same direction as the hands of a watch.

In the first case it is usual to say that the angle $R O P$ is described in the positive direction, in the second that the angle is described in the negative direction.
(iii) The angle $R O P$ may be the geometrical representation of any of the Trigonometrical angles formed by any number of complete revolutions in the positive or in the negative direction, added to either of the first two angles. (We shall return to this subject in Chapter viil.)

EXAMPLES. IV.

Give a geometrical representation of each of the following angles, the starting line being drawn in each case from the turning point towards the right.

1. +3 right angles. 7. $-10 \frac{1}{3}$ right angles.
2. +5 right angles. 8. +4 right angles.
3. $+4 \frac{1}{2}$ right angles. 9. -4 right angles.
4. $+7 \frac{1}{4}$ right angles. 10. $4 n$ right angles.
5. -1 right angle. \quad 11. $(4 n+2)$ right angles.
6. $10 \frac{2}{3}$ right angles. $\quad 12 .-\left(4 n+\frac{1}{2}\right)$ right angles.
7. There are two methods of measuring angles.
(i) The rectangular measure.
(ii) The circular measure.

Rectangular Measure.

20. Angles are always measured in practice with the right angle (or part of the right angle) as unit.

The reasons why the right angle is chosen for a unit are:
(i) All right angles are equal to one another.
(ii) A right angle is practically easy to draw.
(iii) It is an angle whose size is very familiar.
21. The right angle is a large angle, and it is therefore subdivided for practical purposes.

The right angle is divided into 90 equal parts, each of which is called a degree ; each degree is subdivided into 60 equal parts, each of which is called a minute ; and each minute is again subdivided into 60 equal parts, each of which is called a second.

Instruments used for measuring angles are subdivided accordingly; and the size of an angle is known when, with such an instrument, it has been observed that the angle contains a certain number of degrees, and a certain number of minutes beyond the number of complete degrees, and a certain number of seconds beyond the number of complete minutes.

Thus an angle might be recorded as containing 79 degrees +18 minutes $+36 \cdot 4$ seconds.

Degrees, minutes, and seconds are indicated respectively by the symbols ${ }^{\circ},{ }^{\prime},{ }^{\prime}$, and the above angle would be written $79^{\circ} \quad 18^{\prime} \quad 364^{\prime \prime}$.
22. An angle given in degrees, minutes, and seconds may be expressed as the decimal of a right angle by the usual method.

Example. Express $39^{\circ} 4^{\prime} 27^{\prime \prime}$ as the decimal of a right angle.

$$
60) \underline{27} \text { seconds }
$$

$60) \xrightarrow[4.45 \text { minutes }]{ }$
$9 0 \longdiv { 3 9 \cdot 0 7 4 1 6 6 6 6 \text { etc. degrees } }$
$\cdot 43415740740$ etc. right angles
Answer. - $43415 \dot{7} 40$ of a right angle.
Note. The French proposed to call the 100th part of a right angle a grade (written 3^{8}), the 100th part of a grade a minute (written $3^{\prime \prime}$), the l00th part of a minute a second (written $3^{\prime \prime}$). So that $1 \cdot 437275$ right angles would be read $143^{5} 72^{\prime} 75^{\prime \prime}$. The decimal method of subdividing the right angles has never been used.

*EXAMPLES. V.

Express each of the following angles (i) as the decimal of a right angle, (ii) in grades, minutes, and secouds :

1. $8^{\circ} 15^{\prime} 27^{\prime \prime} . \div 90$
2. $6^{0} 4^{\prime} 30^{\prime \prime}$.
3. $97^{\circ} 5^{\prime} 15^{\prime \prime}$.
4. $16^{0} 14^{\prime} 19^{\prime \prime}$.
5. $132^{\circ} 6^{\prime}$.
6. 49°.

Express in degrees, minutes and seconds,
7. $\cdot 01375$ right angles. $\times 9010 .{ }^{-240025}$ right angles. $\times 4$
8. 0875 right angles. 11. 180115 right angles.
9. $1 \cdot 704535$ right angles.
12. 35 right angles.

On Circular Measure.

23. By the following construction we get an angle of great importance in Trigonometry.

On the circumference of a circle whose centre is 0

let an $\operatorname{arc} R S$ be measured so that its length is equal to the radius of the circle, and let R and S be joined to the centre.
24. We are about to prove (Art. 26) that this angle $R O S$ is a fixed fraction of a right angle, so that all such angles are equal to one another.

We may state the same thing thus-We are about to prove that if we take any number of different circles, and measure on the circumference of each an arc equal in length to its radius, then the angles at the centres of these circles which stand on these ares respectively, will be all of the same size.
25. Definition. The angle which at the centre of a circle stands on an arc equal in length to the radius of the circle is called a Radian.
26. To prove that all Radians are equal to one another.

Since the Radian at the centre of a circle stands on an arc equal in length to the radius,
and an angle of two right angles at the centre of a circle stands on half the circumference,
and since angles at the centre of a circle are to one another as the arcs on which they stand (Euc. VI. 33),

$$
\begin{aligned}
\frac{\text { a radian }}{2 \text { right angles }} & =\frac{\text { radius }}{\text { semi-circumference }} \\
& =\frac{\text { diameter }}{\text { circumference }}=\frac{1}{\pi} .
\end{aligned}
$$

Therefore a radian $=\frac{1}{\pi}$ of 2 right angles,
$=$ a certain fixed fraction of 180°.
27. Thus the radian possesses the qualification most essential in a unit, viz. it is always the same.
28. The reasons why a radian is used as a unit are :
(i) All radians are equal to one another.
(ii) Its use simplifies many formulæ in Theoretical Trigonometry.
29. The system of angular measurement in which a radian is the unit is called Circular Measure.

Therefore the circular measure of an anyle is the number of radians which the angle contains.
30. A radian $=\frac{1}{\pi} \times 2$ right angles,

$$
\begin{aligned}
& =\frac{1}{3.14159 \ldots} \text { of } \cdot 180^{\circ} \text { nearly, } \\
& =57 \cdot 2957 \ldots \ldots \text { degrees. }
\end{aligned}
$$

31. The expression 'The angle θ ' means that θ is a number and some unit of an angle is implied. 'The angle 180 ' implies the unit of angle a degree. When Greek letters are used the unit of angle implied is a radian, thus
the angle $\theta=\theta$ radians,
the angle $\pi=\pi$ radians.
When Roman letters are used the unit implied is a degree, the angle $A=A$ degrees.
32. Just as 30° indicates 30 degrees, so we use a little c to indicate radians, thus

$$
3^{c}=3 \text { radians. }
$$

33. The student cannot too carefully notice, that unless an angle is obviously referred to, the letters $\theta, \phi, \ldots a, \beta, \ldots$ stand for mere numbers.

Thus as we have said above (Art. 12) π stands for a number and a number only, viz. $3 \cdot 14159 \ldots .$. ., but in the expression 'the angle π ' that is 'the angle $3 \cdot 14159 \ldots .$. . there is some unit of angle understood. The unit understood here is a radian, and therefore 'the angle π ' stands for $3 \cdot 14159 \ldots \ldots .^{\circ}$, that is two right angles.

Hence, when an angle is understood, π is a very convenient abbreviation for two right angles.
34. Let D and a be the number of degrees and radians respectively in any angle, then

$$
\frac{D}{180}=\frac{a}{\pi} .
$$

For each fraction is the ratio of the angle to two right nngles.

Example. Find the number of degrees in two radians.
Let D be the number, then

$$
\begin{aligned}
& \frac{D}{180}=\frac{2}{\pi} \\
& \therefore D=\frac{360}{\pi}
\end{aligned}
$$

Note. 2° indicates 2 radians.

EXAMPLES. VI.

I. Express the following angles in rectangular measure.

1. π,
2. $\frac{3 \pi}{4}$.
3. 1^{c}.
4. 3 .
5. $3 \cdot 14159265^{\circ}$ etc.
6. $\frac{2^{\mathrm{c}}}{\pi}$.
7. θ.
8. ${ }^{\circ} 0314159^{\circ}$ etc.
9. 10π.
II. Express the following angles in circular measure.
10. 180°.
11. 360°.
12. 60°.
13. $22 \frac{1}{2}^{\circ}$.
14. ${ }^{10}$.
15. $57 \cdot 295^{0}$ etc.
16. n^{0}.
17. $\frac{90^{\circ}}{\pi}$.
18. A.
*III. Express the following angles in circular measure.
19. $33^{\mathrm{g}} 33^{\prime} 33 \cdot{ }^{\prime \prime \prime}$ 。
20. 50 。
21. $16 \cdot \dot{C}^{8}$.
22. ${ }^{18}$.
23. n^{8}.
24. 25.
1. 10 ".
2. $\frac{200^{\mathrm{g}}}{\pi}$.
3. 100 Cz .
*IV. Find the ratio of
4. 45^{0} to $\frac{3 \pi}{4}$.
5. 60° to 60^{3}.
6. 25^{8} to $22^{\circ} 30^{\prime}$.
7. 24^{g} to 2°.
8. 1.75° to $\frac{100^{0}}{\pi}$.
9. 1^{10} to 1°.
10. Since angles at the centre of a circle are to one another as the ares on which they stand [Euc. VI. 33], therefore $\frac{\text { an angle } R O P}{\text { one radian }}=\frac{\operatorname{arc} R P}{\operatorname{arc} R S}=\frac{\operatorname{arc} R P}{\text { the radius }}$.

Hence the angle $R O P=\frac{\operatorname{arc} R P}{\text { the radius }}$ radians.
So that the circular measure of an angle (at the centre of a circle) is the ratio of its arc to the radius.

Example. Find the number of degrees in the angle subtended by an are 46 ft .9 in . long, at the centre of a circle whose radius is 25 feet.

The angle stands on an arc of $46 \frac{3}{4} \mathrm{ft}$. and the radian, at the centre of the same circle, stands on an arc of $2 \overline{5}$ feet.

$$
\begin{aligned}
\therefore \text { the angle }=\frac{46 \frac{3}{4}}{25} \text { radians, } & =\frac{18}{18} 7 \times \frac{2 \text { right angles }}{\pi}, \\
& =\frac{1878}{18} \times \frac{180^{\circ}}{\pi}=105.8^{\circ} \text { ncar! } .
\end{aligned}
$$

*EXAMPLES. VII.

(In the Answers $\frac{22}{7}$ is used for π.)

1. Find the number of radians in an angle at the centre of a circle of radius 25 feet, which stands on an are of $37 \frac{1}{2}$ feet.
2. Find the number of degrees in an angle at the centre of a circle of radius 10 feet, which stands on an arc of 5π feet.
3. Find the number of right angles in the angle at the centre of a circle of radius $3_{1 / 2}^{2}$ inches, which stands on an arc of 2 feet.
4. Find the length of the arc subtending an angle of $4 \frac{1}{\frac{1}{2}}$ radians at the centre of a circle whose radius is 25 feet.
5. Find the length of an arc of eighty degrees on a circle of 4 feet radius.
6. The angle subtended by the diameter of the Sun at the eye of an observer is 32^{\prime}; find approximately the diameter of the Sun if its distance from the observer be $90,000,000$ miles.
7. A railway train is travelling on a curve of half a mile radius at the rate of 20 miles an hour; through what angle has it turned in 10 seconds?
8. A railway train is travelling on a curve of two-thirds of a mile radius, at the rate of 60 miles an hour ; through what angle has it turned in a quarter of a minute?
9. Find approximately the number of English seconds contained in the angle which subtends an are one mile in length at the centre of a circle whose radius is 4000 miles.
10. If the radius of a circle be 4000 miles, find the length of an are which subtends an angle of $1^{\prime \prime}$ at the centre of the circle.
11. If in a circle whose radius is 12 ft .6 in . an are whose length is 6555 of a foot subtends an angle of 3 degrees, what is the ratio of the diameter of a circle to its circumference?
12. If an arc $1 \cdot 309$ feet long subtend an angle of $7 \frac{1}{2}$ degrees at the centre of a circle whose radius is 10 feet, find the ratio of the circumference of a circle to its diameter.
13. On a circle 80 feet in radius it was found that an angle of $22^{0} 30^{\prime}$ at the centre was subtended by an arc 31 ft .5 in . in length; hence calculate to four decimal places the numerical value of the ratio of the circumference of a circle to its diameter.
14. If the diameter of the moon subtend an angle of 30^{\prime}, at the eye of an observer, and the diameter of the sun an angle of 32^{\prime}, and if the distance of the sun be 375 times the distance of the moon, find the ratio of the diameter of the sun to that of the moon.
15. Find the number of radians in (i.e. the circular measure of) $10^{\prime \prime}$ correct to 3 significant figures. (Use $\frac{35}{1} \frac{5}{3}$ for π.)
16. Find the radius of a globe such that the distance measured upon its surface between two places in the same meridian, whose latitudes differ by $1^{0} 10^{\prime}$, may be one inch.
17. Two circles touch the base of an isosceles triangle at its middle point, one having its centre at, and the other passing through the vertex. If the arc of the greater circle included within the triangle be equal to the arc of the lesser circle without the triangle, find the vertical angle of the triangle.
18. By the construction in Euc. I. 1, prove that the unit of circular measure is less than 60°.
19. On the 31st December the Sun subtends an angle of $32^{\prime} 36^{\prime \prime}$, and on 1st July an angle of $31^{\prime} 32^{\prime \prime}$; find the ratio of the distances of the Sun from the observer on those two days.
20. Show that the measure of the angle at the centre of a circle of radius r, which stands on an arc a, is $\frac{k \cdot a}{r}$, where k depends solely on the unit of angle employed.

Find k when the unit is (i) a radian, (ii) a degree.
21. The difference of two angles is $\frac{1}{9} \pi$ and their sum 56°; find them.
22. Find the number of radians in an angle of n^{\prime}.
23. Express in right angles and in radians the angles
(i) of a regular hexagon,
(ii) of a regular octagon,
(iii) of a regular quindecagon.
24. Taking for unit the angle between the side of a regular quin. decagon and the next side produced, find the measures (i) of a right angle, (ii) of a radian.
25. Find the unit when the sum of the measures of a degree and of the hundredth part of a right angle is 1.
26. What is the unit when the sum of the measures of 9° and of .05 right angles is $\frac{3}{20}$?
27. The measure of b right angles is a, find the measure of c degrees.
28. What is the unit when the sum of the measures of a right angles and of b degrees is c ?
29. The three angles of a triangle have the same measure when the units are $\frac{1}{60}$ of a right angle, $\frac{1}{10}$ of a right angle and a radian respectively; find the measure.
30. The interior angles of an irregular polygon are in A. P.; the least angle is 120°; the common difference is 5°; find the number of sides.

CIIAPTER IV.

The Trigonometrical Ratios.

36. Let ROE be any angle (see the figure in Art. 37). In one of the lines containing the angle take any point P, and from P draw $P M$ perpendicular to the other line $O R$.

Then, in the right-angled triangle $O P M$, formed from the angle $R O E$,
(i) the side MP, which is opposite the angle under consideration, is called the perpendicular;
(ii) the side $O P$, which is opposite the right angle, is called the hypotenuse;
(iii) the third side $O M$, which is adjacent to the right angle and to the angle under consideration, is called the base.

From these three,-perpendicular, hypotenuse, base,we can form three different sets containing two each.

The ratios or fractions formed from these sets, viz.
(i) $\frac{\text { perpendicular }}{\text { hypotenuse }}$,
(ii) $\frac{\text { base }}{\text { hypotenuse }}$,
(iii) $\frac{\text { perpendicular }}{\text { base }}$,
and the ratios formed by inverting each of them, viz. (iv) $\frac{\text { hypotenuse }}{\text { perpendicular }}$, (v) $\frac{\text { hypotenuse }}{\text { base }}$, (vi) $\frac{\text { base }}{\text { perpendicular }}$, will be found to be of great importance in treating of any angle $R O E$. Accordingly to each of these six ratios has been given a separate name (Art. 37).

Note. The student should observe carefully
(i) that each ratio, such as $\frac{\text { perpendicular }}{\text { hypotenuse }}$, is a mere number;
(ii) that, as we shall prove in Art. 83, these ratios remain unchanged as long as the angle remains unchanged;
(iii) that if the angle be altered ever so slightly, there is a consequent alteration in the value of these ratios.
[For, let ROE, ROE' be two angles which are nearly equal;

Let $O P=O P^{\prime}$; then $O M$ is not $=O M^{\prime}$, and therefore the ratios $\frac{O M}{O H}$ and $\frac{O M^{\prime}}{O P^{\prime}}$ are not equal; also $M P$ is not $=M^{\prime} P^{\prime}$ and therefore the ratios $\frac{M P}{O P}$ and $\frac{M^{\prime} P^{\prime}}{O P^{\prime}}$ are not equal.]
(iv) that by giving names to these ratios we are enabled to apply the methods of Algebra to the Geometry of Euclid VI., just as in Chapter I. we applied the methods of Algebra to Euclid I. 47.

The student is recommended to pay careful attention to the following definitions. He should be able to write them out in the exact words in which they are printed.
37. Definition. To define the three principal Trigonometrical Ratios of an angle.

Let $R O E$ be an angle.
In $O E$ one of the lines containing the angle take any point P, and from P draw $P M$ perpendicular to the other line $O R$, or, if necessary, to $R O$ produced.

Then, in the right-angled triangle $O P M$, the side $M P$, which is opposite the angle under consideration, is called the perpendicular.

The side $O P$, which is opposite the right angle, is called the hypotenuse.

The third side $O M$ (which is adjacent to the right angle and to the angle under consideration) is called the base.

Then the ratio
(i) $\frac{M P}{O P}=\frac{\text { perpendicular }}{\text { hypotenuse }}$ is called the sine of the angle ROE.
(ii) $\frac{O M}{O P}=\frac{\text { base }}{\text { hypotenuse }}$
(iii) $\frac{M P}{O M}=\frac{\text { perpendicular }}{\text { base }}$

The order of the letters in $M P, O M$ and $O P$ indicates the direction of the lines and (as will be explained later) is an essential part of the definition.
38. If A stand for the angle ROE, these ratios are called sine A, cosine A and tangent A, and are usually abbreviated thus: $\sin A \cdot \cos A \tan A$
39. There are three other Trigonometrical Ratios, formed by inverting the sine, cosine and tangent respectively, which are called the cosecant, secant, and cotangent respectively.
40. To define the thrce other Trigonometrical Ratios of any angle.

The same construction and figure as in Art. 37 being made, then the ratio

$$
\begin{aligned}
& \text { (iv) } \frac{O P}{M P}=\frac{\text { hypotenuse }}{\text { perpendicular }} \text { is called the cosecant of } \\
& \text { the angle } R O E . \\
& \text { (v) } \frac{O P}{O M}=\frac{\text { hypotenuse }}{\text { base }} \quad " \text { secant } " \\
& \text { (vi) } \frac{O M}{M P}=\frac{\text { base }}{\text { perpendicular }} \quad, \quad \text { cotangent ", }
\end{aligned}
$$

41. Thus if A stand as before for the angle $R O E$, these ratios are called cosecant A, secant A, and cotangent A. They are abbreviated thus,

$$
\operatorname{cosec} A, \quad \sec A, \quad \cot A .
$$

42. From the definition it is clear that

$$
\operatorname{cosec} A=\frac{1}{\sin A}, \quad \sec A=\frac{1}{\cos A}, \quad \cot A=\frac{1}{\tan A}
$$

43. The above definitions apply to an angle of any magnitude. (We shall return to this subject in Chapter VIII.)

For the present the student may confine his attention to angles which are each less than a right angle.
44. The powers of the Trigonometrical Ratios are expressed as follows:

$$
\begin{aligned}
& (\sin A)^{2} \text {, i.e. }\left(\frac{\text { perpendicular }}{\text { hypotenuse }}\right)^{2} \text {, is written } \sin ^{2} A \text {, } \\
& (\cos A)^{3} \text {, i.e. }\left(\frac{\text { base }}{\text { hypotenuse }}\right)^{3} \text {, is written } \cos ^{3} A,
\end{aligned}
$$

and so on.

The student must notice that ' $\sin A$ ' is a single symbol. It is the name of a number, or fraction, belonging to the angle A; and if it be at any time convenient, we may denote $\sin A$ by a single letter, such as s or x. Also $\sin ^{2} A$ is an abbreviation for $(\sin A)^{2}$, that is, for $(\sin A) \times(\sin A)$. Such abbreviations are used because they are convenient.
45. The Trigonometrical Ratios are always the same for the same angle.

Take any angle ROE; let P be any point in $O E$ one of the lines containing the angle, and let $P^{\prime \prime}, P^{\prime \prime}$ be any two points in $O R$ the other line containing the angle. Draw $P M$ perpendicular to $O R$, and $P^{\prime} M^{\prime}, P^{\prime \prime} M^{\prime \prime}$ perpendiculars to $O E$.

Then the three triangles $O M P, O M^{\prime} P^{\prime}, O M^{\prime \prime} P^{\prime \prime}$ each contain a right angle, and they have the angle at O common; therefore their third angles must be equal.

Thus the three triangles are equiangular.
Therefore the ratios $\frac{M P}{O P}, \frac{M^{\prime} P^{\prime}}{O P^{\prime}}, \frac{M^{\prime \prime} P^{\prime \prime}}{O P^{\prime \prime}}$ are all equal.
(Eu. VI. 4.)
But each of these ratios is $\frac{\text { perpendicular }}{\text { hypotenuse }}$ with refereace to the angle at O; that is, they are each $\sin R O E$.

Thus, $\sin R O E$ is the same whatever be the position of the point P on either of the lines containing the angle ROE.

Therefore $\sin R O E$ is always the same.
46. A similar proof holds good for each of the other ratios.
47. Also if two angles are equal, it is clear that the numerical values of their Trigonometrical Ratios will be the same.

We have already shown (Art. 36) that the values of these ratios are different for different angles.

Hence for each particular value of $A, \sin A, \cos A, \tan A$, etc. have definite numerical values.

Example. We shall prove (Art. 54) that
$\sin 30^{\circ}=\frac{1}{2}=\cdot 5, \cos 30^{\circ}=\frac{\sqrt{ } 3}{2}=\cdot 8660 \ldots, \tan 30^{\circ}=\frac{1}{\sqrt{3}}=\cdot 577 \ldots$
48. In the following examples the student should notice
(i) the angle referred to:
(ii) that there is a right angle in the same triangle as the angle referred to:
(iii) the perpendicular, which is opposite the angle referred to, and is perpendicular to one of the lines containing the angle:
(iv) the hypotenuse, which is opposite the right angle:
(v) the base, the third side of the triangle.

Example. In the second figure on the next page, in which $B D A$ is a right angle, find $\sin D B A$ and $\cos D B A$.

In this case
(i) DBA is the angle.
(ii) $B D A$ is a right angle in the same triangle as the angle $D B A$.
(iii) $D A$ is the perpendicular, for it is opposite $D B A$ and is perpendicular to $B D$.
(iv) $B A$ is the hypotenuse.
(v) $B D$ is the base.

Therefore $\sin D B A$, which is $\begin{aligned} & \text { perpendicular } \\ & \text { hypotenuse }\end{aligned},=\frac{D A}{B} \frac{A}{A}$, $\cos D B A$, which is $\frac{\text { base }}{\text { hypotenuse }},=\frac{B D}{B A}$.

EXAMPLES. VIII.

1. Let $A B C$ be any triangle and let $A D$ be drawn perpendicular to $\overline{B C}$. Write down the perpendicular, and the base when the following angles are referred to: (i) the angle $A B D$, (ii) the angle $B A D$, (iii) the angle $A C D$, (iv) the angle $D A C$.

2. Write down the following ratios in the above figure; (i) $\sin B A D$, (ii) $\cos A C D$, (iii) $\tan D A C$, (iv) $\sin A B D$, (v) $\tan B A D$, (vi) $\sin D A C$, (vii) $\cos D C A$, (viii) $\tan D C A$, (ix) $\cos A B D$, (x) $\sin A C D$. 3 3. Let $A C B$ be any angle and let $A B C$ and $B D C$ be right angles; (see next figure). Write down two values for each of the following ratios; (i) $\sin A C B$, (ii) $\cos A C B$, (iii) $\tan A C B$, (iv) $\sin B A C$, (v) $\cos B A C$, (vi) $\tan B A C$.

3. In the accompanying figure $B D C, C B A$ and $E A C$ are right angles. Write down (i) $\sin D B A$, (ii) $\sin B E A$, (iii) $\sin C B D$, (iv) $\cos B A E$, (v) $\cos B A D$, (vi) $\cos C B D$, (vii) $\tan B C D$, (viii) $\tan D B A$, (ix) $\tan B E A$, (x) $\tan C B D$, (xi) $\sin D A B$, (xii) $\sin B A E$.
4. Let $A B C$ be a right-angled triangle such that $A B=5 \mathrm{ft}$., $B C=3 \mathrm{ft}$., then $A C$ will be 4 ft .

Find the sine, cosine and tangent of the angles at A and B respectively.

In the above triangle if A stand for the angle at A and B for the angle at B, show that $\sin ^{2} A+\cos ^{2} A=1$, and that $\sin ^{2} B+\cos ^{2} B=1$.
6. If $A B C$ be any right-angled triangle with a right angle at C, and let A, B, and C stand for the angles at A, B and C respectively, and let a, b and c be the measures of the sides opposite the angles A, B and C respectively.

Show that $\sin A=\frac{a}{c}, \cos A=\frac{b}{c}, \tan A=\frac{a}{b}$.
Show also that $\sin ^{2} A+\cos ^{2} A=1$.
Show also that (i) $a=c \cdot \sin A$, (ii) $b=c \cdot \sin B$, (iii) $a=c \cdot \cos B$, (iv) $b=c \cdot \cos A$, (v) $\sin A=\cos B$, (vi) $\cos A=\sin B$, (vii) $\tan A=\cot B$.
7. The sides of a right-angled triangle are in the ratio 5:12:13. Find the sine, cosine and tangent of each acute angle of the triangle.
8. The sides of a right-angled triangle are in the ratio $1: 2: \sqrt{ } 3$. Find the sine, cosine and tangent of each acute angle of the triangle.
9. Prove that if A be either of the angles of the above two triangles $\sin ^{2} A+\cos ^{2} A=1$.
10. $A B C$ is a right-angled triangle, C being the right angle. $A B$ is 2 ft . and $A C$ is 1 foot; find the length of $B C$, and thence find the value of $\sin A, \cos A$, and $\tan A$.
11. $A B C$ is a right-angled triangle, C being the right angle; $A B=\sqrt{ } 2 \mathrm{ft}$. and $A C=1 \mathrm{ft}$.; prove that $\sin A=\cos A_{0}=\sin B=\cos B$.
12. $A B C$ is a right-angled triangle, C being the right angle; $A C=1 \mathrm{ft}$. and $A B=\sqrt{ } 3$ feet; find $A C$ and $\sin A$ and $\sin B$.

CHAPTER V.

On the Trigonometrical Ratios of certain Angles.
49. The Trigonometrical Ratios of an angle are numerical quantities simply, as their name ratio implies. They are in nearly all cases incommensurable numbers.

Their practical value has been found for all angles between 0 and 90°, which differ by 1^{\prime}; and a list of these values will be found in any volume of Mathematical Tables.

It will be an advantage for the student to see a volume of Mathematical Tables that he may uuderstand what is meant.

It will not be necessary for each student to procure a copy, as in nearly all examples the necessary quotations from the Tables are given.

A well arranged and useful set of Tables is that published by Messrs Chambers, of Edinburgh.
50. The finding the values of these Ratios has involved a large amount of labour; but, as the results have been published in Tables, the finding the Trigonometrical Ratios does not form any part of a student's work, except to exemplify the method employed.
51. The general method of finding Trigonometrical Ratios belongs to a more advanced part of the subject than the present, but there are certain angles whose Ratios can be found in a simple manner.
52. To find the sine, cosine and tangent of an angle of 45°.

When one angle of a right-angled triangle is 45°, that is, the half of a right angle, the third angle must also be 45°. Hence 45° is one angle of an isosceles right-angled triangle.

Let $P O M$ be an isosceles triangle such that $P M O$ is a right angle, and $O M=M P$. Then $P O M=O P M=45^{\circ}$.

Let the measures of $O M$ and of $M P$ each be m. Let the measure of $O P$ be x.

Then

$$
\begin{gathered}
x^{2}=m^{2}+m^{2}=2 m^{2} ; \\
\therefore x=\sqrt{ } 2 . m .
\end{gathered}
$$

Hence, $\sin 45^{\circ}=\sin P O M=\frac{M P}{O P}=\frac{m}{\sqrt{ } 2 \cdot m}=\frac{1}{\sqrt{ } 2}$,

$$
\begin{aligned}
& \cos 45^{\circ}=\cos P O M=\frac{O M}{O P}=\frac{m}{\sqrt{ } 2 \cdot m}=\frac{1}{\sqrt{ } 2} \\
& \tan 45^{\circ}=\tan P O M=\frac{M P}{O M}=\frac{m}{m}=\frac{1}{1}=1 .
\end{aligned}
$$

53. To find the sine, cosine and tangent of 60°.

In an equilateral triangle each of the equal angles is 60°, because they are each one-third of 180°. And if we draw a perpendicular from one of the angular points of the triangle to the opposite side we get a right-angled triangle in which one angle is 60°.

Let $O P Q$ be an equilateral triangle. Draw $P M$ perpendicular to $O Q$. Then $O Q$ is bisected in M.

Let the measure of $O M$ be m; then that of $O Q$ is $2 m$, and therefore that of $O P$ is $2 m$.

Let the measure of $M P$ be x.
Then

$$
\begin{aligned}
x^{2} & =(2 m)^{2}-m^{2}=4 m^{2}-m^{2}=3 m^{2}, \\
\therefore x & =\sqrt{ } 3 \cdot m .
\end{aligned}
$$

Hence, $\sin 60^{\circ}=\sin P O M=\frac{M P}{O P}=\frac{\sqrt{ } 3 \cdot m}{2 m}=\frac{\sqrt{ } 3}{2}$,

$$
\begin{aligned}
& \cos 60^{\circ}=\cos P O M=\frac{O M}{O P}=\frac{m}{2 m}=\frac{1}{2}, \\
& \tan 60^{\circ}=\tan P O M=\frac{M P}{O M}=\frac{\sqrt{ } 3 \cdot m}{m}=\frac{\sqrt{ } 3}{1}=\sqrt{ } 3 .
\end{aligned}
$$

54. To find the sine, cosine and tangent of 30°.

With the same figure and construction as above we have

Hence, $\sin 30^{\circ}=\sin O P M=\frac{M O}{P^{\prime} O}=\quad \frac{m}{2 m}=\frac{1}{2}$,

$$
\begin{aligned}
& \cos 30^{\circ}=\cos O P M=\frac{P M}{P O}=\frac{\sqrt{ } 3 \cdot m}{2 m}=\frac{\sqrt{ } 3}{2}, \\
& \tan 30^{\circ}=\tan O P M=\frac{M O}{P M}=\frac{m}{\sqrt{ } 3 \cdot m}=\frac{1}{\sqrt{ } 3} .
\end{aligned}
$$

55. To find the sine, cosine and tangent of 0°.

Let $R O P$ be a small angle. Draw PM perpendicular to $O R$, and let $O P$ be always of the same length, so that P lies on a circle whose centre is 0 .

Then if the angle ROP be diminished, we can see that $M P$ is diminished also, and that consequently $\frac{M P}{O P}$, which is $\sin R O P$, is diminished. And, by diminishing the angle ROP sufficiently, we can make MP as small as we please, and therefore we can make \sin ROP smaller than any assignable number however small that number may be.

This is what is meant when it is said that the value to which $\sin R O P$ approaches as the angle is diminished, is 0 . This is expressed by saying, $\sin 0^{0}=0 \ldots \ldots \ldots \ldots \ldots$.

Again, as the angle ROP diminishes, OM approaches $O P$ in length; and $\cos R O P$, which is $\frac{O M}{O P}$, approaches in value to $\frac{O P}{O P}$, i.e. to 1 .

This is expressed by saying, $\quad \cos 0^{\circ}=1 \ldots \ldots \ldots \ldots .$. ii.
Also, $\tan R O P$ is $\frac{M P}{O M}$; and we have seen that $M P$ approaches 0 , while $O M$ does not; $\therefore \tan R O P$ approaches 0 .

This is expressed by saying, $\quad \tan 0^{0}=0 \ldots \ldots \ldots \ldots .$. iii.
56. To find the sine, cosine and tangent of 90°.

Let $R O U$ be a right angle $=90^{\circ}$.
Draw ROP nearly a right angle; draw PM perpendicular to $O R$, and let $O P$ be always of the same length, so that P lies on a circle whose centre is 0 .

Then, as the angle $R O P$ approaches to $R O U$, we can see that $M P$ approaches $O P$, while $O M$ continually diminishes.

Hence when $R O P$ approaches $90^{\circ}, \sin R O P$, which is $\frac{M P}{O P}$, approaches in value to $\frac{O P}{O P}$, that is to $\frac{1}{1}$, i.e. to-1.

Hence we say that $\sin 90^{\circ}=1$ i.

Again, when $R O P$ approaches $90^{\circ}, \cos R O P$, which is $\frac{O M}{O P}$, approaches in value to $\frac{0}{O P}$, that is to 0 .

Hence we say that $\cos 90^{\circ}=0$
ii.

Again, when $R O P$ approaches $90^{\circ}, \tan R O P$ which is $\frac{M P}{O M}$ approaches in value to $\frac{O P}{\text { a quantity which approaches } 0}$.

But in any fraction, whose numerator does not diminish, the smaller the denominator, the greater the value of that fraction; and if the denominator continually diminishes, the value of the fraction continually increases.

Example 1. At a point 100 feet from the foot of a tower, the angle of elevation of the top of the tower is observed to be 60°. Find the height of the top of the tower above the point of observation.

Let O be the point of observation; let P be the top of the tower; let a horizontal line through O meet the foot of the tower at the point M. Then $O M=100$ feet, and the angle $M Q P=60^{\circ}$. Let $M P$ contain x feet.

Then

$$
\begin{aligned}
& \frac{M P}{O M}=\tan M O P=\tan 60^{\circ}=\sqrt{ } 3 \\
& \therefore \frac{x}{100}=\sqrt{ } 3 . \\
& \begin{aligned}
\therefore x & =100 \cdot \sqrt{ } 3=100 \times 1 \cdot 7320 \text { etc. } \\
& =173 \cdot 2 .
\end{aligned}
\end{aligned}
$$

Therefore the required height is $173 \cdot 2$.
Example 2. At a point 100 yds . from the foot of a building, I measure the angle of elevation of the top, and find that it is $23^{\circ} 15^{\prime \prime}$; what is the height of the building?

As in Example 1 let the height be x yards.
Then

$$
\frac{x}{100}=\tan 23^{\circ} 15^{\prime}
$$

From the Table of tangents we find that

$$
\tan 23^{\circ} 15^{\prime}=\cdot 4296339
$$

Hence $x=100 \times \cdot 4296339=42 \cdot 96339$.
The height of the building $=43$ dds. nearly. Ans.

Example 3. A flagstaff, 25 feet high, stands on the top of a cliff; from a point on the seashore the angles of elevation of the highest and lowest points of the flagstaff are observed to be $47^{\circ} 12^{\prime}$ and $45^{\circ} 13^{\prime}$ respectively. Find the height of the cliff.

Let O be the point of observation, $P Q$ the flagstaff.
Let a horizontal line through O meet the vertical line $P Q$ produced in M.

Then $Q P=25$ feet, $M O P=47^{\circ} 12^{\prime}, M O Q=45^{\circ} 13^{\prime}$.
Let $M Q=x$ feet; let $O M=y$ feet.
Then $\frac{M P}{O M I}=\tan 47^{\circ} 12^{\prime}, \therefore \frac{x+25}{y}=\tan 47^{\circ} 12^{\prime}$,
and $\quad \frac{M Q}{O M}=\tan 45^{\circ} 13^{\prime}, \therefore \frac{x}{y}=\tan 45^{\circ} 13^{\prime}$.
Hence, by div́ision,

$$
\therefore \frac{x+25}{x}=\frac{\tan 47^{\circ} 12^{\prime}}{\tan 45^{\circ} 13^{\prime}} .
$$

In the Tables we find that

$$
\begin{gathered}
\tan 47^{\circ} 12^{\prime}=1 \cdot 0799018, \text { and } \tan 45^{\circ} 13^{\prime}=1 \cdot 0075918, \\
\therefore 1+\frac{25}{x}=\frac{1 \cdot 0799018}{1 \cdot 0075918}=1+\frac{.0723100}{1 \cdot 0075918}, \\
\therefore \quad \frac{x}{25}=\frac{1 \cdot 0075918}{\cdot 0723100}=\frac{100759}{7231} . \\
\therefore x=\frac{2518975}{7231}=348 \text { nearly. }
\end{gathered}
$$

Therefore the cliff is 348 feet high.

EXAMPLES X.

Note. The answers are given correct to three significant figures.

1. At a point 179 feet in a horizontal line from the foot of a column, the angle of elevation of the top of the column is observed to be 45°. What is the height of the column?
2. At a point 200 feet from, and on a level with the base of a tower, the angle of elevation of the top of the tower is observed to be 60° : what is the height of the tower?
3. From the top of a vertical cliff, the angle of depression of a point on the shore 150 feet from the base of the cliff, is observed to be 30° : find the height of the cliff.
4. From the top of a tower 117 feet high the angle of depression of the top of a house 37 feet high is observed to be 30° : how far is the top of the house from the tower?
5. A man 6 ft . high stands at a distance of 4 ft .9 in . from a lamp-post, and it is observed that his shadow is 19 ft . long. Find the theight of the lamp.
6. The shadow of a tower in the sunlight is observed to be 100 ft . long, and at the same time the shadow of a lamp-post 9 ft . high is observed to be $3 \sqrt{ } 3 \mathrm{ft}$. long. Find the angle of elevation of the sun, and the height of the tower.
7. From a point P on the bank of a river, just opposite a post Q on the other bank, a man walks at right angles to $P Q$ to a point R so that $P R$ is 100 yards; he then observes the angle $P R Q$ to be $32^{\circ} 17^{\prime}$: find the breadth of the river. $\left(\tan 32^{0} 17^{\prime}=\cdot 6317667\right.$.)
8. I walk 1000 ft a way from a tower and observe the elevation of the top to be $15^{\circ} 30^{\prime}$; what is the height of the tower?
$\left(\tan 15^{\circ} 30^{\prime}=\cdot 2773245.\right)$
9. A fine wire 300 ft . long is attached to the top of a spire and the inclination of the wire to the horizon when held tight is observed to be 40°; find the height of the spire. $\sin 40^{\circ}={ }^{\circ} 6428$.
10. A vertical pole 30 ft . high stands on the bank of a river; at the point on the other bank just opposite the pole the angle of elevation of the top of the pole is 21^{0}; find the breadth of the river. $\left(\cot 21^{0}=2 \cdot 6051\right.$.)
11. A flagstaff 25 feet high stands on the top of a house; from a point on the plain on which the house stands the angles of elevation of the top and bottom of the flagstaff are observed to be 60° and 45° respectively: find the height of the house above the point of observation.
12. From the top of a cliff 100 feet high, the angles of depression of two ships at sea are observed to be 45° and 30° respectively; if the
line joining the ships points directly to the foot of the cliff, find the distance between the ships.
13. A tower 100 feet high stands on the top of a cliff; from a point on the sand at the foot of the cliff the angles of elevation of the top and bottom of the tower are observed to be 75° and 60° respectively; find the height of the cliff. (Tan $75^{\circ}=2+\sqrt{3}$).
14. A man walking along a straight road observes at one milestone a house in a direction making an angle 30° with the road, and that at the next milestone the angle is 60° : how far is the house from the road?
15. A man stands at a point A on the bank $A B$ of a straight river and observes that the line joining A to a post C on the opposite bank makes with $A B$ an angle of 30°. He then goes 400 yards along the bank to B and finds that $B C$ makes with $B A$ an angle of 60°; find the breadth of the river.
16. A building on a square base $A B C D$ has two of its sides, $A B$ and $C D$, parallel to the bank of a river. An observer, standing at E on the other side of the river so that $D A E$ is a straight line, finds that $A B$ subtends at his eye an angle of 45°. Having walked a yards parallel to the bank, he finds that $D E$ subtends an angle whose tangent is $\sqrt{2}$. Show that $D B=a$ yards.
17. From the top of a hill the angles of depression of the top and bottom of a flagstaff 25 feet high at the foot of the hill are observed to be $45^{\circ} 13^{\prime}$ and $47^{\circ} 12^{\prime}$ respectively; find the height of the hill. ($\tan 45^{\circ} 13^{\prime}=1.0075918$. $\tan 47^{\circ} 12^{\prime}=1.0799018$.)
18. From each of two stations, East and West of each other, the altitude of a balloon is observed to be 45°, and its bearings to be respectively N.W. and N.E.: if the stations be 1 mile apart, determine the height of the balloon.
19. The angle of elevation of a balloon from a station due south of it is 60°; and from another station due west of the former and distant a mile from it it is 45°. Find the height of the balloon.
20. An isosceles triangle of wood is placed on the ground in a vertical position facing the sun. If $2 a$ be the base of the triangle, b its height, and 30° the altitude of the sun, find the tangent of half the angle at the apex of the shadow.
21. The length of the shadow of a vertical stick is to the length of the stick as $\sqrt{3}: 1$. If the stick be turned about its lower extremity in a vertical plane, so that the shadow is always in the same direction, find what will be the angle of its inclination to the horizon when the length of the shadow is the same as before.
22. What distance in space is travelled in an hour in consequence of the earth's rotation, by a person situated in latitude C00\% (Earth's radius $=4000$ miles.)

CHAPTER VI.

On the Relations between the Trigonometrical Ratios of One Angle.
63. The following relations are evident from the definitions :
$\operatorname{cosec} \theta=\frac{1}{\sin \theta}, \quad \sec \theta=\frac{1}{\cos \theta}, \quad \cot \theta=\frac{1}{\tan \theta}$.
To prove

$$
\tan \theta=\frac{\sin \theta}{\cos \theta} .
$$

We have $\sin \theta=\frac{\text { perpendicular }}{\text { hypotenuse }}$,
and

$$
\begin{aligned}
\cos \theta & =\frac{\text { base }}{\text { hypotenuse }} ; \\
\therefore \frac{\sin \theta}{\cos \theta} & =\frac{\text { perpendicular }}{\text { base }}=\tan \theta .
\end{aligned}
$$

64. We may prove similarly $\cot \theta=\frac{\cos \theta}{\sin \theta}$.

Or thus, $\quad \cot \theta=\frac{1}{\tan \theta}=\frac{\cos \theta}{\sin \theta}$.
65. To prove that $\cos ^{3} \theta+\sin ^{2} \theta=1$.

Let $R O E$ be any angle θ.

In $O E$ take any point P, and draw $P M$ perpendicular to $O R$. Then with respect to $\theta, M P$ is the perpendicular, $O P$ is the hypotenuse, and $O M$ is the base ;

$$
\therefore \sin ^{2} \theta=\frac{M P^{2}}{O P^{2}}, \quad \cos ^{2} \theta=\frac{O M^{2}}{O P^{2}} .
$$

We have to prove that $\sin ^{2} \theta+\cos ^{2} \theta=1$.
Now

$$
\begin{gathered}
\sin ^{2} \theta+\cos ^{2} \theta=\frac{M P^{2}}{O P^{2}}+\frac{O M^{2}}{O P^{2}} \\
=\frac{M P^{2}+O M^{2}}{O P^{2}}=\frac{O P^{2}}{O P^{2}} \doteq 1, \\
M P^{2}+O M^{2}=O P^{3} .
\end{gathered}
$$

[Euc. I. 47.]
Similarly we may prove that

$$
\begin{aligned}
& 1+\tan ^{2} \theta=\sec ^{2} \theta, \\
& 1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta .
\end{aligned}
$$

and that
66. The following is a List of Formule with which the student must make himself familiar :

$$
\begin{aligned}
\operatorname{cosec} \theta & =\frac{1}{\sin \theta}, \sec \theta=\frac{1}{\cos \theta}, \\
\cot \theta=\frac{1}{\tan \theta}, \tan \theta & =\frac{\sin \theta}{\cos \theta}, \cot \theta=\frac{\cos \theta}{\sin \theta}, \\
\sin ^{2} \theta+\cos ^{2} \theta & =1, \\
\tan ^{2} \theta+1 & =\sec ^{2} \theta, \\
\cot ^{2} \theta+1 & =\operatorname{cosec}^{2} \theta .
\end{aligned}
$$

67. In proving Trigonometrical identities it is often convenient to express the other Trigonometrical Ratios in terms of the sine and cosine.

Example. Prove that $\tan \mathrm{A}+\cot \mathrm{A}=\sec \mathrm{A} . \operatorname{cosec} \mathrm{A}$.
Since

$$
\begin{array}{ll}
\tan A=\frac{\sin A}{\cos A}, & \cot A=\frac{\cos A}{\sin A}, \\
\sec A=\frac{1}{\cos A}, & \operatorname{cosec} A=\frac{1}{\sin A},
\end{array}
$$

we have

$$
\tan A+\cot A=\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}
$$

$$
=\frac{\sin ^{2} A+\cos ^{2} A}{\cos A \cdot \sin A}=\frac{1}{\cos A \cdot \sin A}
$$

[Art. 65.]

$$
=\sec A \cdot \operatorname{cosec} A
$$

68. It is sometimes convenient to express all the Ratios in terms of the sine only; or in terms of the cosine only.

Example i. Prove that $\sin ^{4} \theta+2 \sin ^{2} \theta \cos ^{2} \theta=1-\cos ^{4} \theta$.
By Art. 65, we have $\sin ^{2} \theta=1-\cos ^{2} \theta$, hence

$$
\begin{aligned}
\sin ^{4} \theta+2 \sin ^{2} \theta \cos ^{2} \theta & =\left(1-\cos ^{2} \theta\right)^{2}+2\left(1-\cos ^{2} \theta\right) \times \cos ^{2} \theta \\
& =\left(1-2 \cos ^{2} \theta+\cos ^{4} \theta\right)+\left(2 \cos ^{2} \theta-2 \cos ^{4} \theta\right) \\
& =1-\cos ^{4} \theta . \quad \text { Q. E. D. }
\end{aligned}
$$

Example ii. Express $\sin ^{4} \theta+\cos ^{4} \theta$ in terms of $\cos \theta$.

$$
\begin{aligned}
\sin ^{4} \theta+\cos ^{4} \theta & =\left(1-\cos ^{2} \theta\right)^{2}+\cos ^{4} \theta \\
& =\left(1-2 \cos ^{2} \theta+\cos ^{4} \theta\right)+\cos ^{4} \theta \\
& =1-2 \cos ^{2} \theta+2 \cos ^{4} \theta
\end{aligned}
$$

Note. $(1-\cos \theta)$ is called the versed sine of θ, and is written versin θ.

EXAMPLES. XI.

Prove the following statements.

1. $\cos A \cdot \tan A=\sin A$.
2. $\cot A \cdot \tan A=1$.
3. $\cos A=\sin A \cdot \cot A$.
4. $\sec A \cdot \cot A=\operatorname{cosec} A$.
5. $\operatorname{cosec} A \cdot \tan A=\sec A$.
6. $(\tan A+\cot A) \sin A \cdot \cos A=1$.
7. $(\tan A-\cot A) \sin A \cdot \cos A=\sin ^{2} A-\cos ^{2} A$.
8. $\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A$.
9. $(\sin A+\cos A)^{2}=1+2 \sin A \cdot \cos A$.
10. $(\sin A-\cos A)^{2}=1-2 \sin A \cdot \cos A$.
11. $\cos ^{4} B-\sin ^{4} B=2 \cos ^{2} B-1$.
12. $\left(\sin ^{2} B+\cos ^{2} B\right)^{2}=1$.
13. $\left(\sin ^{2} B-\cos ^{2} B\right)^{2}=1-4 \cos ^{2} B+4 \cos ^{4} D$.
14. $1-\tan ^{4} B=2 \sec ^{2} B-\sec ^{4} B$.
15. $(\sec B-\tan B)(\sec B+\tan B)=1$.
16. $(\operatorname{cosec} \theta-\cot \theta)(\operatorname{cosec} \theta+\cot \theta)=1$.
17. $\sin ^{3} \theta+\cos ^{3} \theta=(\sin \theta+\cos \theta)(1-\sin \theta \cos \theta)$.
18. $\cos ^{3} \theta-\sin ^{3} \theta=(\cos \theta-\sin \theta)(1+\sin \theta \cos \theta)$.
19. $\sin ^{6} \theta+\cos ^{6} \theta=1-3 \sin ^{2} \theta \cdot \cos ^{2} \theta$.
20. $\left(\sin ^{6} \theta-\cos ^{6} \theta\right)=\left(2 \sin ^{2} \theta-1\right)\left(1-\sin ^{2} \theta+\sin ^{4} \theta\right)$.
21. $\frac{\tan A+\tan B}{\cot A+\cot B}=\tan A \cdot \tan B$.
22. $\frac{\cot \alpha+\tan \beta}{\tan \alpha+\cot \beta}=\cot \alpha \cdot \tan \beta$.
23. $\frac{1-\sin A}{1+\sin A}=(\sec A-\tan A)^{2}$.
24. $\frac{1+\cos A}{1-\cos A}=(\operatorname{cosec} A+\cot A)^{2}$.
25. 2 versin $\theta-$ versin $2 \theta=\sin ^{2} \theta$.
26. $\operatorname{versin} \theta(1+\cos \theta)=\sin ^{2} \theta$.

Express in terms of (i) $\cos \theta$, (ii) of $\sin \theta$,
27. $\cos ^{4} \theta-\sin ^{4} \theta$.
28. $\left(\sin ^{2} \theta-\cos ^{2} \theta\right)^{2}$.
29. $1-\tan ^{4} \theta$.
31. $\tan ^{2} \theta+\cot ^{2} \theta$.
33. $1+\cot ^{2} \theta-\operatorname{cosec}^{2} \theta$.
30. $\sin ^{6} \theta+\cos ^{6} \theta$.
32. $1+\cot ^{4} \theta$.
34. $2 \tan ^{4} \theta-4 \sin ^{2} \theta$.
trigonometrical ratios of one angle. 41
69. All the Trigonometrical Ratios of an angle can be expressed in terms of any one of them.

Example 1. To express all the trigonometrical ratios of an angle in terms of the sine.

Let ROE be any angle θ.
We can take P anywhere in the line $O E$; so that we can make one of the lines, $O P, O M$, or $M P$ any length we please.

Let us take $O P$ so that its measure is 1 , and let s be the measure of $M P$; so that $\sin \theta$, which is $\frac{M P}{O P},=\frac{s}{1}$; or, $s=\sin \theta$.

Let x be the measure of $O M$.
Then since

$$
\begin{aligned}
& O M^{2}=O P^{2}-M P^{2}, \\
& \therefore x^{2}=1-8^{2}, \\
& \therefore x=\sqrt{1-s^{2}} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \cos \theta=\frac{O M}{O P}=\frac{\sqrt{1-8^{2}}}{1}=\sqrt{1-\sin ^{2} \theta,} \\
& \tan \theta=\frac{M P}{O M}=\frac{s}{\sqrt{1-8^{2}}}=\frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}},
\end{aligned}
$$

and so on.
Note. The solution of the equation $x^{2}=1-s^{2}$, gives

$$
x= \pm \sqrt{1-s^{2}}
$$

and therefore the ambiguity (\pm) must stand before each of the root symbols in the above. This ambiguity, as will be explained later on, is of great use when the magnitude of the angle is not limited. When we limit A to be less than a right angle we have no use for the negative sign.

Example 2. To express all the other trigonometrical ratios of an angle in terms of the tangent.

In this case $\tan \theta=\frac{M P}{O M}$.
Take P so that the measure of $O M$ is 1 , and let t be the measure of $M P$; so that $\tan \theta$, which is $\frac{M P}{O M}$, $=\frac{t}{1}$; or, $t=\tan \theta$.

Then we can show that the measure of $O P$ is $\sqrt{1+t^{2}}$.
Hence,

$$
\begin{aligned}
& \sin \theta=\frac{M P}{O P}=\frac{t}{\sqrt{1+t^{2}}}=\frac{\tan \theta}{\sqrt{1+\tan ^{2} \theta}}, \\
& \cos \theta=\frac{O M}{O P}=\frac{1}{\sqrt{1+t^{2}}}=\frac{1}{\sqrt{1+\tan ^{2} \theta}},
\end{aligned}
$$

and so on.
70. The same results may be obtained by the use of the formulæ on p. 69.

Example. $\cos ^{2} \theta+\sin ^{2} \theta=1, \quad \therefore \cos ^{2} \theta=1-\sin ^{2} \theta$,

$$
\therefore \cos \theta=\sqrt{1-\sin ^{2} \theta} .
$$

Again

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}}, \text { and so on. }
$$

EXAMPLES. XII.

1. Express all the other Ratios of A in terms of $\cos A$.
2. Express all the other Ratios of A in terms of $\cot A$.
3. Express all the other Ratios of A in terms of $\sec A$.
4. Express all the other Ratios of A in terms of $\operatorname{cosec} A$.
5. Use the formulæ of Art. 66 to express all the other Trigonometrical Ratios of A in terms of $\sin A$.
6. Use the formulæ of Art. 66 to express all the other Trigonometrical Ratios of A in terms of the $\tan A$.
7. Given one of the Trigonometrical Ratios of an angle less than a right angle, we can find all the others.

Since all the Trigonometrical Ratios of an angle can be expressed in terms of any one of them, it is clear that if the numerical value of any one of them be given, the numerical value of all the rest can be found.

Example. Given $\sin \theta=\frac{3}{4}$, find the other Trigonometrical Ratios of θ. Let ROE be the angle θ. Take P on $O E$ so that the measure of $O P$ is 4. Draw $P M$ perpendicular to $O R$.

Then since $\sin \theta=\frac{3}{4}$ (so that $\frac{M P}{O P}=\frac{3}{4}$), and since the measure of $O P$ is 4 , therefore the measure of $M P$ must be 3 .

Let x be the measure of $O M$;
then

$$
\begin{aligned}
O M^{2} & =O P^{2}-M P^{2} \\
\therefore x^{2} & =4^{2}-3^{2}=16-9=7 \\
\therefore x & =\sqrt{ } 7 .
\end{aligned}
$$

Therefore the measure of $O M$ is $\sqrt{ } 7$. Hence,
$\cos \theta=\frac{O M}{O P}=\frac{\sqrt{ } 7}{4}, \quad \tan \theta=\frac{M P}{O M}=\frac{3}{\sqrt{ } 7}=\frac{3 \sqrt{ } 7}{7}, \quad \cot \theta=\frac{\sqrt{ } 7}{3}$.

EXAMPLES. XIII.

1. If $\sin A=\frac{3}{5}$, find $\tan A$ and $\operatorname{cosec} A$.
2. If $\cos B=\frac{1}{3}$, find $\sin B$ and $\cot B$.
3. If $\tan A=\frac{4}{3}$, find $\sin A$ and $\sec A$.
4. If $\sec \theta=4$, find $\cot \theta$ and $\sin \theta$.
5. If $\tan \theta=\sqrt{ } 3$, find $\sin \theta$ and $\cos \theta$.
6. If $\cot \theta=\frac{2}{\sqrt{5}}$, find $\sin \theta$ and $\sec \theta$.
7. If $\sin \theta=\frac{b}{c}$, find $\tan \theta$. 8. If $\tan \theta=a$, find $\sin \theta$ and $\cos \theta$.
8. If $\sec \theta=a$, find $\sin \theta$ and $\cot \theta$.
9. If $\sin \theta=a$, and $\tan \theta=b$, prove that $\left(1-a^{2}\right)\left(1+b^{2}\right)=1$.
10. If $\cos \theta=h$, and $\tan \theta=k$, find the equation connecting h and k.
11. To trace the changes in the magnitude of $\sin \mathrm{A}$ as A increases from 0° to 90°.

Take a line $O R$, of any length ; and describe the quadrant $R P U$ of the circle whose centre is O and radius $O R$.

Draw the right angle $R O U$, cutting the circle in U.
Let $O P$ make any angle $R O P(=A)$ with $O R$; draw $P M$ perpendicular to $O R$.

Then

$$
\sin A=\frac{M P}{O P}
$$

When the angle A is $0^{\circ}, M P$ is zero, and when A is 90°, $M P$ is equal to $O P$; and as A continuously increases from 0° to $90^{\circ}, M P$ increases continuously from zero to $O P$; also $O P$ is always equal to $O R$.

Therefore, when $A=0^{\circ}$, the fraction $\frac{M P}{O P}$ is equal to 0
, 0 ; \quad MP . equal to $\overline{O P}$, that is 0 ; when $A=90^{\circ}$ the fraction $\frac{M P}{O P}$ is equal to OP $\overline{O P}$, that is 1 ; and as A continuously increases from 0° to 90°, the numerator of the fraction $\frac{M P}{O P}$ continuously increases from zero to $O P$, while the denominator is unchanged, and therefore the fraction $\frac{M P}{O P}$, which is $\sin A$, increases continuously from 0 to 1.
73. To trace the changes in the magnitude of $\tan \mathbf{A}$ as A increases from 0° to 90°.

With the same construction and figure as in the last article, we have

$$
\tan A=\frac{M P}{O M I}
$$

When the angle A is $0^{\circ}, M P$ is zero ; when A is 90°, $M P$ is equal to $O P$; and as the angle continuously increases from 0° to $90^{\circ}, M P$ increases continuously from zero to $O P$.

When the angle A is $0^{\circ}, O M$ is equal to $O P$; when A is $90^{\circ}, O M$ is zero ; and as A continuously increases from 0° to $90^{\circ}, O \mathrm{M}$ continuously decreases from $O P$ to zero.

Hence, when A is 0°, the fraction $\frac{M P}{O M}$ is equal to $\frac{0}{O M}$, that is 0 ; when A is 90°, the fraction $\frac{M P}{O M}$ is equal to $\frac{O P}{0}$, that is 'infinity' (see Art. 56); and as A continuously increases from 0° to 90°, the numerator continuously increases from zero to $O P$, while the denominator continuously diminishes from $O P$ to zero; so that the fraction $\frac{M P}{O M}$, which is $\tan A$, continuously increases from 0 until it is greater than any assignable numerical quantity.

EXAMPLES. XIV.

1. Show that as A continuously increases from 0° to $90^{\circ}, \cos A$ continuously diminishes from 1 to 0 .
2. Trace the changes in the magnitude of $\sec \theta$ as θ increases from 0 to $\frac{\pi}{2}$.
3. Trace the changes in the magnitude of $\sin A$ as A diminishes from 90° to 0°.
4. Trace the changes in the magnitude of $\cot \theta$ as θ increases from 0 to $\frac{\pi}{2}$.

On the Solution of Trigonometrical Equations.
74. A Trigonometrical equation is an equation in which there is a letter, such as θ, which stands for an angle of unknown magnitude.

The solution of the equation is the process of finding an angle which, if it be substituted fur θ, satisfies the equation.

Example 1. Solve $\cos \theta=\frac{1}{2}$.
This is a Trigonometrical equation. To solve it we must find some angle such that its cosine is $\frac{1}{2}$.

We know that $\cos 60^{\circ}=\frac{1}{2}$.
Therefore if 60° be put for θ the equation is satisfied.

$$
\therefore \theta=60^{\circ} \text { is a solution of the equation. }
$$

Example 2. Solve $\sin \theta-\operatorname{cosec} \theta+\frac{3}{2}=0$.
The usual method of solution is to express all the Trigonometrical Ratios in terms of one of them.

Thus we put $\frac{1}{\sin \theta}$ for $\operatorname{cosec} \theta$, and we get

$$
\sin \theta-\frac{1}{\sin \theta}+\frac{3}{2}=0 .
$$

This is an equation in which θ, and therefore $\sin \theta$ is unknown. It will be convenient if we put x for $\sin \theta$, and then solve the equation for x as an ordinary algebraical equation. Thus we get
or,

$$
x-\frac{1}{x}+\frac{3}{2}=0,
$$

$$
x^{2}+\frac{3 x}{2}=1 .
$$

Whence

$$
x=-2 \text {, or } x=\frac{1}{2} .
$$

But x stands for $\sin \theta$.
Thus we get $\sin \theta=-2$, or $\sin \theta=\frac{2}{2}$.
The value -2 is inadmissible for $\sin \theta$, for there is no angle whose sine is numerically greater than 1.

$$
\therefore \sin \theta=\frac{1}{2} .
$$

But

$$
\sin 30^{\circ}=\frac{1}{2} .
$$

$$
\therefore \sin \theta=\sin 30^{\circ} \text {. }
$$

Therefore one angle which satisfies this equation for θ is 30°.

EXAMPLES. XV.

Find one angle which satisfies each of the following equations.

1. $\sin \theta=\frac{1}{\sqrt{ }{ }^{2}}$.
2. $2 \cos \theta=\sec \theta$.
3. $4 \cos \theta-3 \sec \theta=0$.
4. $3 \sin \theta-2 \cos ^{2} \theta=0$.
5. $2 \cos \theta=\sqrt{ } 3 \operatorname{cst} \theta$.
6. $\tan \theta+3 \cot \theta=4$.
7. $2 \sin ^{2} \theta+\sqrt{ } 2 \cos \theta=2$.
8. $3 \tan ^{2} \theta-4 \sin ^{2} \theta=1$.
9. $\cos ^{2} \theta-\sqrt{ } 3 \cos \theta+\frac{3}{4}=0$.
10. $4 \sin \theta=\operatorname{cosec} \theta$.
11. $4 \sin \theta-3 \operatorname{cosec} \theta=0$.
12. $3 \tan \theta=\cot \theta$.
13. $\sqrt{2} \sin \theta=\tan \theta$.
14. $\tan \theta=3 \cot \theta$.
15. $\tan \theta+\cot \theta=2$.
16. $2 \cos ^{2} \theta+\sqrt{ } 2 \sin \theta=2$.
17. $2 \sin ^{2} \theta+\sqrt{ } 2 \sin \theta=2$.
18. $\cos ^{2} \theta+2 \sin ^{2} \theta-\frac{5}{2} \sin \theta=0$.

MISCELLANEOUS EXAMPLES. XVI.

1. Prove that $3 \sin 60^{\circ}-4 \sin ^{3} 60^{\circ}=4 \cos ^{3} 30^{\circ}-3 \cos 30^{\circ}$.
2. Prove that $\tan 30^{\circ}\left(1+\cos 30^{\circ}+\cos 60^{\circ}\right)=\sin 30^{\circ}+\sin 60^{\circ}$.
3. If $2 \cos ^{2} \theta-7 \cos \theta+3=0$, show there is only one value of $\cos \theta$.
4. Find $\cos \theta$ from the equation $8 \cos ^{2} \theta-8 \cos \theta+1=0$.
5. Find $\sin \theta$ from the equation $8 \sin ^{2} \theta-10 \sin \theta+3=0$, and prove that one value of θ is $\frac{\pi}{6}$.
6. Find $\tan \theta$ from the equation $12 \tan ^{2} \theta-13 \tan \theta+3=0$.
7. If $3 \cos ^{2} \theta+2 \cdot \sqrt{ } 3 \cdot \cos \theta=54$, show that there is only on θ value of $\cos \theta$, and that one value of θ is $\frac{\pi}{6}$.
8. Prove that the value of $\sin ^{4} \theta+\cos ^{4} \theta+2 \cdot \sin ^{2} \theta \cdot \cos ^{2} \theta$ is always the same.
9. Simplify $\cos ^{4} A+2 \cdot \sin ^{2} A \cdot \cos ^{2} A$.
10. Express $\sin ^{6} A+\cos ^{6} A$ in terms of $\sin ^{2} A$ and powers of $\sin ^{2} A$.
11. Express $1+\tan ^{4} \theta$ in terms of $\cos \theta$ and its powers.
12. Prove that $\frac{\cos A+\cos B}{\sin A-\sin B}+\frac{\sin A+\sin B}{\cos A-\cos B}=0$.
13. Express $(\sec A-\tan A)^{2}$ in terms of $\sin A$.
14. Trace the changes in $\operatorname{cosec} \theta$ as θ increases from 0 to $\frac{1}{2} \pi$.
15. Trace the changes in $\cot \theta$ as θ decreases from $\frac{1}{2} \pi$ to 0 .
16. Solve $2 \sin (\theta+\phi)=\sqrt{ } 3, \quad 2 \cos (\theta-\phi)=\sqrt{ } 3$.

17. The student is probably aware that, in the application of Algebra to Problems concerning distance, we sometimes find that the solution of an equation gives the measure of a distance with the sign - before it.

Example. Let M, N, O be places in a straight line; let the distance from M to N be 3 miles, and the distance from N to O, 3 miles.

One man A starting from M, rides towards O at the rate of 10 miles an hour, while another man B starting simultaneously from N, walks towards O at the rate of 4 miles an hour;

If Q be the point at which they meet, how far is Q beyond O ?
Let P be any point beyond O, and let x be the number of miles in $O P$. We wish to find x, i.e. the measure of $O P$, so that P may coincide with Q, the point at which A overtakes B.

When A arrives at P, he has ridden $6+x$ miles. The time occupied at the rate of 10 miles an hour is $\frac{6+x}{10}$ hours.

When B arrives at P, he has walked $3+x$ miles. The time occupied at the rate of 4 miles an hour is $\frac{3+x}{4}$ hours.

When P is the point at which they meet, these times are equal, so that

$$
\frac{6+x}{10}=\frac{3+x}{4} ; \text { whence } x=-1 .
$$

Thus the required number of miles has the sign - before it ; and we have failed to find a point beyond O at which A overtakes B.
76. Such a result can generally be interpreted by altering the statement of the problem, thus:

Example. Taking the former example, let us alter the question as follows:

If Q be the point at which A overtakes B, how far is Q to the left of O ?

Let P be any point to the left of O, and let x be the number of miles in $O P$.

We wish to find x (i.e. the measure of $O P$), so that P may coincide with Q, the point at which A overtakes B.

When A arrives at P, he has ridden $6-x$ miles.
When B arrives at P, he has walked $3-x$ miles.
Proceeding as before, we get

$$
\frac{6-x}{10}=\frac{3-x}{4} ; \text { whence } x=+1
$$

Therefore if P is to coincide with Q (the point at which A overtakes $B), O P$ must be one mile to the left of O.
77. The consideration of such examples as the above has suggested, that the sign - may be made use of, in the application of Algebra to Geometry, to represent a direction exactly opposite to that represented by the sign + .

Accordingly the following Rule, or Convention, has been made.

RULE. Any straight line $A B$ being given, then
lines drawn parallel to $A B$ in one direction shall be positive; that is, shall be represented algebraically by their measures with the sign + before them:
lines drawn parallel to $B A$ in the opposite direction shall be negative; that is, shall be represented algebraically by their measures with the sign - before them.
78. We may choose for the positive direction in each case that direction which is most convenient.

Example. Let $L R$ be a straight line parallel to the printed lines in the page,

and let the lines drawn in the direction from L to R in the figure, that is, from the left-hand towards the right, be considered positive. Then by the above rule, lines drawn in the direction from R to L, that is, from right to left, must be negative.
79. In naming a line by the letters at its extremities, we can indicate by the order of the letters the direction in which the line is supposed to be drawn.

Example. Let O and P be two points in the line $L R$ as in the figure, and let the measure of the distance between them be a.

Then $O P$, i.e. the line drawn from O to P, which is in the positive direction, is represented algebraically by $+a$.

While $P O$, i.e. the line drawn from P to O, which is in the negative direction, is represented algebruically by $-a$.
80. Hence in using the two letters at its extremities to represent a line, the student will find it advantageous always to pay careful attention to the order of the letters.

Example. Let $L R$ be a straight line parallel to the printed lines in the page.

Let A, B, C, D, E be points in $L R$, such that the measures of $A B$, $B C, C D, D E$, are $1,2,3,4$ respectively.

Find the algebraical representation of

$$
\text { (i) } A C+C B
$$

(ii) $A D+D C-B C$.

(i) The algebraical representation of $A C$ is +3 , the algebraical representation of $C B$ is -2 .
Hence that of $A C+C B$ is $+3-2$; that is, $+1 \not+$.
(ii) The algebraical representation of $A D$ is +6 , that of $D C$ is -3 , and that of $B C$ is +2 .

Therefore that of $A D+D C-B C=6-3-2=+1$.
This is equivalent to that of $A B$.

EXAMPLES. XVII.

In the above figure, find the algebraical representation of

1. $A B+B C+C D$.
2. $B C+C D+D E+E C$.
3. $A D+D B+B E$.
4. $C D+D B+B E$.
5. $A B+B C+C A$.
6. $A D-C D$.
7. $B C-A C+A D-B D$.
8. $C D-B D+B A+A C+C E$.
\dagger By $A C+C B$ (attention being paid to direction), we mean 'Go from A to C and from C to B.' The result is equivalent to starting from A and stopping at B, i.e. equivalent to $A B$.

On the Use of the Signs + and - in Trigonometry. $r,=$ dint. bet. $A \cup A_{1}$
81. In Trigonometry in order conveniently to treat of angles of any magnitude, we proceed as follows.
$\therefore \theta$ We take a fixed point O, called the origin; and a fixed straight line $O R$, called the initial line.

The angle of which we wish to treat is described by a line $O P$, called the revolving line. This line $O P$ starts from the initial line $O R$, and turns about O through an angle $R O P$ of any proposed magnitude into the position $O P$.

82. We have already said in Art. 18
(i) that, when an angle $R O P$ is described by $O P$ turning about O in the direction contrary to that of the hands of a watch, the angle $R O P$ is said to be positive; that is, is represented algebraically by its measure with the sign + before it.
(ii) that, when an angle $R O P$ is described by $O P$ turning about O in the same direction as the hands of a watch, the angle is said to be negative ; that is, is represented algebraically by its measure with tike sign - before it.

Example. $\quad\left(180^{\circ}-A\right)$ indicates
(i) the angle described by $O P$ turning about O from the position $O R$ in the positive direction until it has described an angle of ($180-A$) degrees.

Or, (ii) the angle described by $O P$ turning about O, from the position $O R$, in the positive direction until it has described an angle of 180° (when it has turned into the position $O L$), and then turning back from $O L$ in the negative direction through the angle $-A$ into the position $O P$.

Or, (iii) the angle described by $O P$ turning about O from the position $O R$, in the negative direction through the angle $-A$, and then turning back in the positive direction through the angle 180°, into the position $O P$.

The student should observe that in each of these three ways of regarding the angle $\left(180^{\circ}-A\right)$, the resulting angle $R O P$ is the same.

EXAMPLES. XVIII.

Draw a figure giving the position of the revolving line after it has turned through each of the following angles.

1. 270°.
2. 370°.
3. 425°.
4. 590°.
5. -30°.
6. -330°.
7. -480°.
8. -750°.
9. $\frac{27 \pi}{4}$:
10. $2 n \pi+\frac{\pi}{6}$. 11. $(2 n+1) \pi+\frac{\pi}{3}$.
11. $(2 n+1) \pi-\frac{\pi}{4}$. 13. $2 n \pi-\frac{\pi}{2}$. 14. $(2 n+1) \pi-\frac{\pi}{2}$.

Note. $n \pi$ always stands for a whole number of two rioht ancles
83. It is often convenient to keep the revolving line of the same length.

In this case the point P lies always on the circumference of a circle whose centre is O.

Let this circle cut the lines $L O R, U O D$ in the points L, R, U, D respectively.

The circle $R U L D$ is thus divided at the points R, U, L, D into four Quadrants, of which
$R U$ is called the first Quadrant.
$U L$ is called the second Quadrant.
$L D$ is called the third Quadrant.
$D R$ is called the fourth Quadrant.
Hence we say that, in the figure, the angle $R O P_{1}$ is an angle of the first Quadrant.

$R O P_{2}^{1}$	$"$	$"$	second Quadrant.
$M O P_{s}$	$"$	$"$	third Quadrant.
ROP	$"$	$"$	fourth Quadrant.

84. When we are told that an angle is of some particular Quadrant, say the third, we know that the position in which the revolving line stops is in the third Quadrant. But there is an unlimited number of angles having this same final position of $O P$.

Example. 25°; 385° i.e. $360^{\circ}+25^{\circ}$; 745° i.e. $2 \times 360^{\circ}+25^{\circ} ;-335$ i.e. $-360^{\circ}+25^{\circ}$ are each an angle of the first Quadrant, and are all represented geometrically by the same final position of $O P$.
85. Let A be an angle between 0° and 90°, and let n he any whole number, positive or negative.
Then
(i) $2 n \times 180^{\circ}+A$ represents algebraically an angle whose revolving line is in the first Quadrant.
(ii) $2 n \times 180^{\circ}-4$ represents algebraically an angle of the fourth Quadrant.
[For $2 n \times 180^{\circ}$ represents some number n of complete revolutions of $O P$; so that after describing $n \times 360^{\circ}, O P$ is again in the position $O R$.]
(iii) $(2 n+1) \times 180^{\circ}-A$ represents algebraically an angle of the second Quadrant.
(iv) $(2 n+1) \times 180^{\circ}+A$ represents algebraically an angle of the third Quadrant.
[For after describing $(2 n+1) \times 180^{\circ}, O P$ is in the position $O L$.]
The corresponding expressions in circular measure are
(i) $2 n \pi+\theta$;
(ii) $2 n \pi-\theta$;
(iii) $(2 n+1) \pi-\theta$;
(iv) $(2 n+1) \pi+\theta$.

EXAMPLES. XIX.

State in which Quadrant the revolving line will be after describing the following angles:

1. 120°.	2. 340°.	3. 490°.
4. -100°.	5. -350°.	6. -1000°.
7. $\frac{2 \pi}{3}$.	8. $10 \pi+\frac{\pi}{4}$.	9. $9 \pi-\frac{3 \pi}{4}$.
10. $2 n \pi-\frac{\pi}{4}$.	11. $(2 n+1) \pi+\frac{2 \pi}{3}$.	12. $n \pi+\frac{\pi}{6}$.

86. The principal directions of lines with which we are concerned in Trigonometry are as follows;
i. that parallel to the initial line $O R(O R$ is usually drawn from O towards the right hand, parallel to the printed lines in the page ; and $R O$ is produced to L.)
ii. that parallel to the line $D O U$, which is drawn through O at right angles to $L O R$;
iii. that parallel to the revolving line $O P$.

Accordingly we make the following rules:
I. Any line drawn parallel to $L R$ in the direction from left to right is to be positive ; and consequently (Art. 112) any line drawn parallel to $R L$ in the opposite direction, i.e. from right to left, is to be negative.
II. Any line drawn parallel to $D U$ in the direction from D to U, upwards, is to be positive ; and consequently any line drawn parallel to $U D$ in the opposite direction, i.e. downwards, is to be negative.
III. Any line drawn parallel to the revolving line in the direction from O to P is to be positive, and consequently any line drawn in the direction from P to O is to be negative.

Note. The student must notice that the revolving line $O P$ carries its positive direction round with $i t$, so that the line ' $O P$ ' is always positive.
87. We said, in Art. 43, that the definitions of the Trigonometrical Ratios (on pp. 20, 21), apply to angles of any magnitude. We have only to remark that it is generally convenient to take P on the revolving line; that $P M$ is drawn perpendicular to the other line produced if necessary; and that the order of the letters in MP, OP, $O M$ is an essential part of the definition.

The order of the letters P, M, O in the expressions $\frac{M P}{O P}$, ctc., is therefore of great importance.
88. We proceed to show that the Trigonometrical Ratios of an angle vary in Sign according to the Quadrant in which the revolving line of the angle happens to be.

From the definition we have, with the usual letters,
$\sin R O P=\frac{M P}{O P}, \cos R O P=\frac{O M}{U P}, \tan R O P=\frac{M P}{U I I}$.

I. When $O P$ is in the first Quadrant (Fig. I.). $M P$ is positive because from M to P is upwards
(Rule II. p. 55.) $O M$ is positive because from O to M is towards the right,

Hence, if A be any angle of the first Quadrant, $\sin A$, which is $\frac{M P}{O P}$, is positive;
$\cos A$, which is $\frac{O M}{O P}$, is positive; $\tan A$, which is $\frac{M P}{O M}$, is positive.
II. When $O P$ is in the second Quadrant (Fig. ir.).
$M P$ is positive, because from M to P is upwards, $O M$ is negative, because from O to M is towards the left. $O P$ is positive.
Hence, if A be any angle of the second Quadrant, $\sin A$, which is $\frac{M P}{O P}$, is positive ; $\cos A$, which is $\frac{O M}{O P}$, is negative; $\tan A$, which is $\frac{M P}{O M}$, is negative.
III. When $O P$ is in the third Quadrant (Fig. iII.) $M P$ is negative, $O M$ is negative, $O P$ is positive.

So that, if A be any angle of the third Quadrant, $\sin A$ is negative, $\cos A$ is negative, $\tan A$ is positive.
IV. When $O P$ lies in the fourth Quadrant (Fig. iv.) $M P$ is negative, $O M$ is positive, $O P$ is positive.

So that, if A be any angle of the $\overline{\text { fourth }}$ Quadrant, $\sin A$ is negative, $\cos A$ is positive, $\tan A$ is negative.
89. The table given below exhibits the results of the last Article.

Quadrant ...	I.	II.	III.	IV.
Sine	+	+	-	-
Cosine	+	-	-	+
Tangent ...	+	-	+	-

The student should notice that for any particular Quadrant the three signs of sine, cosine, and tangent are unlike their signs for any other Quadrant.

EXAMPLES. XX.

State the sign of the sine, cosine, and tangent of each of the following angles:

60°.	2. 135°.	3. 265°.
4. $275{ }^{\circ}$.-	5. -10°.	6. -91^{0}.
7. -193°.	8. -350°.	9. -1000°.
10. $2 n \pi+\frac{1}{4} \pi$.	11. $2 n \pi+\frac{3}{4} \pi$.	12. $2 n \pi-\frac{1}{6} \pi$.

90. The numerical values through which the Trigonometrical Ratios of the angle $R O P$ pass, as the line $O P$ turns through the first Quadrant, are repeated as $O P$ turns through each of the other Quadrants.

Thus as $O P$ turns through the second Quadrant from U to L, Fig. ir. p. 56 ($O P$ being always of the same length) $M P$ and $O M$ pass through the same succession of numerical values through which they pass, as $O P$ turns through the first Quadrant in the opposite direction from U to R.

Example 1. Find the sine, cosine and tangent of 120°.
120° is an angle of the second Quadrant.
Let the angle $R O P$ be 120° (Fig. ri. p. 56).
Then the angle $P O L=180^{\circ}-120^{\circ}=60^{\circ}$.
Hence, $\sin 120^{\circ}=\frac{M P}{O P}=\sin 60^{\circ}$ numerically, and in the second Quadrant the sine is positive.

Therefore

$$
\begin{equation*}
\sin 120^{\circ}=\frac{\sqrt{ } 3}{2} \tag{i}
\end{equation*}
$$

Again, $\cos 120^{\circ}=\frac{O M}{O P}=\cos 60^{\circ}$ numerically, and in the second Quadrant the cosine is negative.

Therefore

$$
\begin{equation*}
\cos 120^{\circ}=-\frac{1}{2} \tag{ii}
\end{equation*}
$$

Similarly, $\quad \tan 120^{\circ}=-\sqrt{ } 3$
Example 2. Find the sine, cosine and tangent of $22 \mathrm{j}^{\circ}$.
225° is an angle of the third Quadrant.
Let the angle ROP be 225° (Fig. irr. p. 56).
Here the angle $P O L=225^{\circ}-180^{\circ}=45^{\circ}$.
Therefore the Trigonometrical Ratios of $225^{\circ}=$ those of $45^{\circ} n u$ merically; and in the third Quadrant the sine and cosine are each negative and the tangent is positive.

Hence, $\sin 225^{\circ}=-\frac{1}{\sqrt{2}} ; \cos 225^{\circ}=-\frac{1}{\sqrt{2}} ; \tan 225^{\circ}=1$.
91. The cosecant, secant and cotangent of an angle A have the same sign as the sine, cosine, and tangent of A respectively.

EXAMPLES. XXI.

Find the algebraical value of the sine, cosine and tangent of the following angles:

1. 150°.
2. 135°.
3. -240°.
4. 330°
5. -45°.
6. -300°.
7. 225°.
8. -135.
9. 390°.
10. 750°.
11. -840°.
12. 1020°.
13. $2 n \pi+\frac{\pi}{4}$.
14. $(2 n+1) \pi-\frac{\pi}{3}$.
15. $(2 n-1) \pi+\frac{\pi}{6}$.

Find the four smallest angles which satisfy the equations
$\begin{array}{ll}\text { 16. } \sin A=\frac{1}{2} . & \text { 17. } \sin A=\frac{1}{\sqrt{2}} . \quad \text { 18. } \sin A=\frac{\sqrt{ } 3}{2} . \quad \text { 19. } \sin A=-\frac{1}{2} \text {. }\end{array}$
Find four angles between zero and +8 right angles which satisfy the equations
20. $\sin A=\sin 20^{\circ}$. 21. $\sin \theta=-\frac{1}{\sqrt{ } 2}$.
22. $\sin \theta=-\sin \frac{\pi}{7}$.
23. Prove that $30^{\circ}, 150^{\circ},-330^{\circ}, 390^{\circ},-210^{\circ}$ have the same sine.
24. Show that each of the following angles has the same cosine :

$$
-120^{\circ}, 240^{\circ}, 480^{\circ},-480^{\circ} .
$$

25. The angles 60° and -120° have one of the Trigonometrical Ratios the same for both; which of the ratios is it?
26. Can the following angles have any one of their Trigonometrical Ratios the same for all? $-23^{\circ}, 157^{\circ}$ and -157°.
27. Proposition. To trace the changes in the magnitude and sign of $\sin \mathrm{A}$, as A increases from 0° to 360°.

Take the figure and construction of page 56.
As A increases from 0° to $90^{\circ}, M P$ increases from zero to $O P$, and is positive.

Therefore $\sin A$ increases from 0 to 1 and is positive.
As A increases from 90° to 180°, MP decreases from $O P$ to zero, and is positive.

Therefore $\sin A$ decreases from 1 to 0 and is positive.

As A increases from 180° to $270^{\circ}, M P$ increases from zero to $O P$, and is negative.

Therefore $\sin A$ increases numerically from 0 to 1 , and is negative.

As A increases from 270° to $360^{\circ}, M P$ decreases from $O P$ to zero, and is negative.

Therefore $\sin A$ decreases numerically from 1 to 0 and is negative.

*EXAMPLES. XXII.

Trace the changes in sign and magnitude as A increases from 0° to 360° of

1. $\cos A$.
2. $\tan A$.
3. $\cot A$.
4. $\sec A$.
5. $\operatorname{cosec} A$.
6. $1-\sin A$.
7. $\sin ^{2} A$.
8. $\sin A \cdot \cos A$.
9. $\sin A+\cos A$.
10. $\tan A+\cot A$. 11. $\sin A-\cos A$.
11. Def. One angle is said to be the complement of another, when the two angles added together make up a right angle.

Example 1. The complement of A is $\left(90^{\circ}-A\right)$.
Example 2. The complement of 190° is $\left(90^{\circ}-190^{\circ}\right)=-100^{\circ}$. For $190^{\circ}+\left(90^{\circ}-190^{\circ}\right)=90^{\circ}$.
Example 3. The complement of $\frac{5 \pi}{4}$ is $\left(\frac{\pi}{2}-\frac{5 \pi}{4}\right)=-\frac{3 \pi}{4}$.
94. To prove that the sine of an angle A is equal to the cosine of its complement $\left(90^{\circ}-\mathrm{A}\right)$.

Let A be less than 90°, and let $R O P$ be A.
Draw $P M$ perpendicular to $O R$. [See figure, p. 20.]
Then since $P M O=90^{\circ}$, therefore $P O M+O P M=90^{\circ}$, and therefore $O P M=\left(90^{\circ}-A\right)$.

Now, $\sin A=\frac{M P}{O P}=\cos O P M=\cos \left(90^{\circ}-A\right)$. Q.E.D.

EXAMPLES. XXIII.

Find the complements of

1. 30°.	2. 190°.	3. 90°.	4. 350°.		
5. -25°.	6.	-320°.	7.	$\frac{3}{4} \pi$.	8.

Prove by drawing a figure in each case
9. $\sin 70^{\circ}=\cos 20^{\circ}$ 。
11. $\tan 79^{\circ}=\cot 11^{\circ}$.

If A be less than 90°, prove
13. $\cos A=\sin \left(90^{\circ}-A\right)$.
15. $\sec A=\operatorname{cosec}\left(90^{\circ}-A\right)$.
10. $\cos 47^{\circ} 16^{\prime}=\sin 42^{\circ} 44^{\prime}$.
12. $\sec 36^{\circ}=\operatorname{cosec} 54^{\circ}$.

If A, B, C be the angles of a triangle, so that $A+B+C=180^{\circ}$, prove
17. $\cos \frac{1}{2} A=\sin \frac{1}{2}(B+C)$.
18. $\cos \frac{1}{2} B=\sin \frac{1}{2}(A+C)$.
19. $\sin \frac{1}{2} C=\cos \frac{1}{2}(A+B)$.
20. $\sin \frac{1}{2} A=\cos \frac{1}{2}(B+C)$.
95. Def. One angle is said to be the supplement of another when their sum is two right angles.

Thus $\left(180^{\circ}-A\right)$ is the supplement of A.
If A, B, C be the angles of a triangle, $(A+B+C)=180^{\circ}$, so that $(B+C)$ is the supplement of A.
96. To prove that the sine of an angle $=$ the sine of its supplement, when the angle is less than 180°.

Let $R O P$ be the angle A, take $L O P^{\prime}$ also $=A$, then $R O P^{\prime \prime}$ $=\left(180^{\circ}-A\right)$.

Take $O P=O P^{\prime}$ and draw $P M, P^{\prime} M M^{\prime}$ perpendicular to $R O L$, then the triangle $P O M, P^{\prime} O M^{\prime}$ are equal in all respects, since they are equiangular and $O P=O P^{\prime}$.

Hence

$$
\frac{M P}{O P}=\frac{M I^{\prime} P^{\prime}}{O P^{\prime}}
$$

that is, $\quad \sin R O P=\sin R O P^{\prime}$; or, $\sin A=\sin \left(180^{\circ}-A\right)$.

$$
\text { Also } \quad \frac{O M}{O P}=-\frac{O M^{\prime}}{O P^{\prime \prime}} \text {; }
$$

that is, $\cos R O P=-\cos R O P^{\prime}$; or, $\cos A=-\cos \left(180^{\circ}-A\right)$.

EXAMPLES. XXIV.

Prove, drawing a separate figure in each case, that

1. $\sin 60^{\circ}=\sin 120^{\circ}$.
2. $\sin \left(-40^{\circ}\right)=\sin 220^{\circ}$.
3. $\cos \left(-380^{\circ}\right)=-\cos 560^{\circ}$.
4. $\sin 340^{\circ}=\sin \left(-1 C 0^{\circ}\right)$.
5. $\cos 320^{\circ}=-\cos \left(-140^{\circ}\right)$.
6. $\cos 195^{\circ}=-\cos \left(-15^{\circ}\right)$.

If A, B, C be the angles of a triangle, prove
7. $\sin A=\sin (B+C)$.
8. $\sin C=\sin (A+B)$.
9. $\cos B=-\cos (A+C)$.
10. $\cos A=-\cos (C+D)$.

Prove by means of a figure that
11. $\sin (-A)=-\sin A$.
13. $\sin \left(90^{\circ}+A\right)=\cos A$ 。
15. $\tan \left(180^{\circ}+A\right)=\tan A$.
12. $\cos (-A)=\cos A$.
14. $\cos \left(90^{\circ}+A\right)=-\sin A$.

CHAPTER IX.

On the Trigonometrical Ratios of Two Angles.
97. We proceed to establish the following fundamental formulæ:

$$
\left.\begin{array}{l}
\sin (A+B)=\sin A \cdot \cos B+\cos A \cdot \sin B \\
\cos (A+B)=\cos A \cdot \cos B-\sin A \cdot \sin B \\
\sin (A-B)=\sin A \cdot \cos B-\cos A \cdot \sin B \\
\cos (A-B)=\cos A \cdot \cos B+\sin A \cdot \sin B
\end{array}\right\} .
$$

Here, A and B are angles ; so that $(A+B)$ and $(A-B)$ are also angles.

Hence, $\sin (A+B)$ is the sine of an angle, and must not be confounded with $\sin A+\sin B$.
$\operatorname{Sin}(A+B)$ is a single fraction.
$\operatorname{Sin} A+\sin B$ is the sum of two fractions.
The student should notice that the words of the two proofs of Arts. 98, 99 are very nearly the same.
98. To prove that

$$
\sin (A+B)=\sin A \cdot \cos B+\cos A \cdot \sin B
$$

and that
$\cos (A+B)=\cos A \cdot \cos B-\sin A \cdot \sin B$.

Let $R O E$ be the angle A, and $E O F$ the angle B. Then in the figure, $R O F$ is the angle $(A+B)$.

In OF, the line which bounds the compound angle $(A+B)$, take any point P, and from P draw $P M, P N$ at right angles to $O R$ and $O E$ respectively. Draw NH,NK at right angles to $M P$ and $O R$ respectively. Then the angle

$$
N P H=90^{\circ}-H N P=H N O=R O E=A \dagger .
$$

Now
$\sin (A+B)=\sin R O K=\frac{M P}{O P}=\frac{M H+H P}{O P}=\frac{K N}{O P}+\frac{H P}{O P}$

$$
\begin{aligned}
& =\frac{K N \cdot O N}{O N \cdot O P}+H P \cdot N P \\
& =\operatorname{NP} \cdot O P \\
& =\frac{K N}{O N} \cdot \frac{O N}{O P}+\frac{H P}{N P} \cdot \frac{N P}{O P} \\
& =\sin A \cdot \cos B+\cos A \cdot \cos H P N \cdot \sin B .
\end{aligned}
$$

Also

$$
\begin{aligned}
& \cos (A+B)=\cos R O F=\frac{O M}{O P}=\frac{O K-M K}{O P}=\frac{O K}{O P}-\frac{H N}{O P} \\
& \quad O K \cdot O N \\
& \quad{ }^{\circ} O N \cdot O P \\
& =\operatorname{ON} \cdot \frac{H N \cdot N P}{N P \cdot O P}=\frac{O K}{O N} \cdot \frac{O N}{O P}-\frac{H N}{N P} \cdot \frac{N P}{O P} \\
& =\cos R O E \cdot \cos E O F-\sin H P N \cdot \sin E O F \\
& =\cos A \cdot \cos B-\sin A \cdot \sin B .
\end{aligned}
$$

+ Or thus. On $O P$ as diameter describe a circle; this will pass through M and N, because the angles $O M P$ and $O N P$ are right angles; therefore MPN and MON are angles in the same segment; so that the angle $M P N=M O N=A$.

99. To prove that

$$
\sin (A-B)=\sin A \cdot \cos B-\cos A \cdot \sin B,
$$

ancl that $\cos (A-B)=\cos A \cdot \cos B+\sin A \cdot \sin B$.

Let $R O E$ be the angle A, and $F O E$ the angle B. Then in the figure, $R O F$ is the angle $(A-B)$.

In OF, the line which bounds the compound angle $(A-B)$, take any point P, and from P draw $P M, P N$ at right angles to $O R$ and $O E$ respectively. Draw $N H, N K$ at right angles to $M P$ and $O R$ respectively. Then the angle

$$
N P H=90^{\circ}-H N P=H N E=R O E=A \dagger .
$$

Now

$$
\begin{aligned}
\sin & (A-B)=\sin R O H=\frac{M P}{O P}=\frac{M I-P H}{O P}=\frac{K N}{O P}-\frac{P H}{O P} \\
& =\frac{K N \cdot O N}{O N \cdot O P}-\frac{P H \cdot N P}{N P \cdot O P}=\frac{K N}{O N} \cdot \frac{O N}{O P}-\frac{P H}{N P} \cdot \frac{N P}{O P} \\
& =\sin R O E \cdot \cos F O E-\cos H P N \cdot \sin F O E \\
& =\sin A \cdot \cos B-\cos A \cdot \sin B .
\end{aligned}
$$

Also

$$
\begin{aligned}
\cos & (A-B)=\cos R O F=\frac{O M}{O P}=\frac{O K+K M}{O P}=\frac{O K}{O P}+\frac{N I I}{O P} \\
& =\frac{O K \cdot O N}{O N \cdot O P}+\frac{N H \cdot N P}{N P \cdot O P}=\frac{O K}{O N} \cdot \frac{O N}{O P}+\frac{N H}{N P} \cdot \frac{N P}{O P} \\
& =\cos R O E \cdot \cos F O E+\sin H P N \cdot \sin F O E \\
& =\cos A \cdot \cos B+\sin A \cdot \sin B .
\end{aligned}
$$

+ Or thus. On $O P$ as diameter describe a circle, this will pass through M and N, because the angles $O M P$ and $O N P$ are right angles; therefore the angles $M P N$ and MON together make up two right. angles ; so that the angle $H P N=M O N=A$.

Example. Find the value of $\sin 75^{\circ}$.

$$
\begin{aligned}
\sin 75^{\circ} & =\sin \left(45^{\circ}+30^{\circ}\right) \\
& =\sin 45^{\circ} \cdot \cos 30^{\circ}+\cos 45^{\circ} \cdot \sin 30^{\circ} \\
& =\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{2} \\
& =\frac{\sqrt{3}+1}{2 \sqrt{ } 2}=\frac{\sqrt{2}(\sqrt{3}+1)}{4} .
\end{aligned}
$$

EXAMPLES. XXV.

1. Show that $\cos 75^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{2}}$.
2. Show that $\sin 15^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{ } 2}$.
3. Show that $\cos 15^{\circ}=\frac{\sqrt{3}+1}{2 \sqrt{2}}$.
4. Show that $\tan 75^{\circ}=2+\sqrt{3}$.
5. If $\sin A=\frac{4}{8}$ and $\sin B=\frac{3}{6}$, find a value for $\sin (A+B)$ and for $\cos (A-B)$.
6. If $\sin A=\cdot 6$ and $\sin B=\frac{5}{15}$, find a value for $\sin (A+B!$. and for $\cos (A+B)$.
7. When $\sin A=\frac{1}{\sqrt{5}}$ and $\sin B=\frac{1}{\sqrt{10}}$, then one value of $(A+B)$ is 45°.
8. Prove that $\sin 75^{\circ}=\cdot 9659$...
9. Prove that $\sin 15^{\circ}=\cdot 2588$...
10. Prove that $\tan 15^{\circ}=2679 \ldots$
11. It is important that the student should become thoroughly familiar with the formulæ proved on the last two pages, and that he should be able to work examples involving their use.

EXAMPLES. XXVI.

Prove the following statements.

1. $\sin (A+B)+\sin (A-B)=2 \sin A \cdot \cos B$.
2. $\sin (A+B)-\sin (A-B)=2 \cos A \cdot \sin B$.
3. $\cos (A+B)+\cos (A-B)=2 \cos A \cdot \cos B$.
4. $\cos (A-B)-\cos (A+B)=2 \sin A \cdot \sin B$.
5. $\frac{\sin (A+B)+\sin (A-B)}{\cos (A+B)+\cos (A-B)}=\tan A$.
L. т. в.
6. $\tan \alpha+\tan \beta=\frac{\sin (\alpha+\beta)}{\cos \alpha \cdot \cos \beta}$. 7. $\tan \alpha-\tan \beta=\frac{\sin (\alpha-\beta)}{\cos \alpha \cdot \cos \beta}$.
7. $\cot \alpha+\tan \beta=\frac{\cos (\alpha-\beta)}{\sin \alpha \cdot \cos \beta}$.
8. $\cot \alpha-\tan \beta=\frac{\cos (\alpha+\beta)}{\sin \alpha \cdot \cos \beta}$.
9. $\tan \alpha+\cot \beta=\frac{\cos (\alpha-\beta)}{\cos \alpha \cdot \sin \beta}$.
10. $\frac{\tan \theta+\tan \phi}{\tan \theta-\tan \phi}=\frac{\sin (\theta+\phi)}{\sin (\theta-\phi)}$.
11. $\frac{\tan \theta \cdot \tan \phi+1}{1-\tan \theta \cdot \tan \phi}=\frac{\cos (\theta-\phi)}{\cos (\theta+\phi)}$.
12. $\frac{\tan \theta+\cot \phi}{\cot \phi-\tan \theta}=\cos (\theta-\phi) \cdot \sec (\theta+\phi)$.
13. $\frac{\cot \theta+\cot \phi}{\cot \theta-\cot \phi}=-\frac{\sin (\theta+\phi)}{\sin (\theta-\phi)}$.
14. $\frac{\tan \theta \cdot \cot \phi+1}{\tan \theta \cdot \cot \phi-1}=\frac{\sin (\theta+\phi)}{\sin (\theta-\phi)}$.
15. $\frac{1+\cot \gamma \cdot \tan \delta}{\cot \gamma-\tan \delta}=\tan (\gamma+\delta)$. 17. $\frac{1-\cot \gamma \cdot \tan \delta}{\cot \gamma+\tan \delta}=\tan (\gamma-\delta)$.
16. $\frac{\tan \gamma \cdot \cot \delta-1}{\tan \gamma+\cot \delta}=\tan (\gamma-\delta)$. 19. $\frac{\tan \gamma \cdot \cot \delta+1}{\cot \delta-\tan \gamma}=\tan (\gamma+\delta)$.
17. $\frac{\cot \delta-\cot \gamma}{\cot \gamma \cdot \cot \delta+1}=\tan (\gamma-\delta)$.
18. $\tan ^{2} \alpha-\tan ^{2} \beta=\frac{\sin (\alpha+\beta) \cdot \sin (\alpha-\beta)}{\cos ^{2} a \cdot \cos ^{2} \beta}$.
19. $\cot ^{2} \alpha-\tan ^{2} \beta=\frac{\cos (\alpha+\beta) \cdot \cos (\alpha-\beta)}{\sin ^{2} \alpha \cdot \cos ^{2} \beta}$.
20. $\frac{\tan ^{2} \alpha-\tan ^{2} \beta}{1-\tan ^{2} \alpha \cdot \tan ^{2} \beta}=\tan (\alpha+\beta) \cdot \tan (\alpha-\beta)$.
21. $\quad \sin (\alpha+\beta) \cdot \sin (\alpha-\beta)=\sin ^{2} \alpha-\sin ^{2} \beta=\cos ^{2} \beta-\cos ^{2} \alpha$.
22. $\cos (\alpha+\beta) \cdot \cos (\alpha-\beta)=\cos ^{2} \alpha-\sin ^{2} \beta=\cos ^{2} \beta-\sin ^{2} \alpha$.
23. $\sin \left(A-45^{\circ}\right)=\frac{\sin A-\cos A}{\sqrt{ } 2}$.
24. $\sqrt{2} \cdot \sin \left(A+45^{\circ}\right)=\sin A+\cos A$.
25. $\cos A-\sin A=\sqrt{2} \cdot \cos \left(A+45^{\circ}\right)$.
26. $\cos \left(A+45^{\circ}\right)+\sin \left(A-45^{\circ}\right)=0$.
27. $\cos \left(A-45^{\circ}\right)=\sin \left(A+45^{\circ}\right)$.
28. $\sin (\theta+\phi) \cdot \cos \theta-\cos (\theta+\phi) \cdot \sin \theta=\sin \phi$.
29. $\sin (\theta-\phi) \cdot \cos \phi+\cos (\theta-\phi) \cdot \sin \phi=\sin \theta$.
30. $\cos (\theta+\phi) \cdot \cos \theta+\sin (\theta+\phi) \cdot \sin \theta=\cos \phi$.
31. $\frac{\tan (\theta-\phi)+\tan \phi}{1-\tan (\theta-\phi) \cdot \tan \phi}=\tan \theta$.
32.

$$
\frac{\tan (\theta+\phi)-\tan \theta}{1+\tan (\theta+\phi) \cdot \tan \theta}=\tan \phi .
$$

36. $2 \sin \left(\alpha+\frac{\pi}{4}\right) \cdot \cos \left(\beta-\frac{\pi}{4}\right)=\cos (\alpha-\beta)+\sin (\alpha+\beta)$.
37. $2 \sin \left(\frac{\pi}{4}-\alpha\right) \cdot \cos \left(\frac{\pi}{4}+\beta\right)=\cos (\alpha-\beta)-\sin (\alpha+\beta)$.
38. $\cos (\alpha+\beta)+\sin (\alpha-\beta)=2 \sin \left(\frac{\pi}{4}+\alpha\right) \cdot \cos \left(\frac{\pi}{4}+\beta\right)$.
39. $\cos (a+\beta)-\sin (\alpha-\beta)=2 \sin \left(\frac{\pi}{4}-\alpha\right) \cdot \cos \left(\frac{\pi}{4}-\beta\right)$.
40. $\sin n A \cdot \cos A+\cos n A \cdot \sin A=\sin (n+1) A$.
41. $\cos (n-1) A \cdot \cos A-\sin (n-1) A \cdot \sin A=\cos n A$.
42. $\sin n A \cdot \cos (n-1) A-\cos n A \cdot \sin (n-1) A=\sin A$.
43. $\cos (n-1) A \cdot \cos (n+1) A-\sin (n-1) A \cdot \sin (n+1) A=\cos 2 n A$.
44. The following formulæ are important:

$$
\left.\begin{array}{l}
\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \cdot \tan B} \tag{ii}\\
\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \cdot \tan B}
\end{array}\right\}
$$

The proof of the first is given below. The student should prove the second in a similar manner.

Example. To prove $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \cdot \tan B}$.
(i) By using the results of Arts. 98, 99, we have

$$
\tan (A+B)=\frac{\sin (A+B)}{\cos (A+B)}=\frac{\sin A \cdot \cos B+\cos A \cdot \sin B}{\cos A \cdot \cos B-\sin A \cdot \sin B}
$$

Divide the numerator and the denominator of this fraction each by $\cos A \cdot \cos B$, and we get

$$
\begin{aligned}
\tan (A+B) & =\frac{\frac{\sin A \cdot \cos B}{\cos A \cdot \cos B}+\frac{\cos A \cdot \sin B}{\cos A \cdot \cos B}}{\frac{\cos A \cdot \cos B}{\cos A \cdot \cos B}-\frac{\sin A \cdot \sin B}{\cos A \cdot \cos B}} \\
& =\frac{\tan A+\tan B}{1-\tan A \cdot \tan B} .
\end{aligned}
$$

EXAMPLES. XXVII.

1. If $\tan A=\frac{1}{2}$ and $\tan B=\frac{1}{4}$, prove that $\tan (A+B)=\frac{8}{7}$, and $\boldsymbol{\operatorname { t a n }}(A-B)=\frac{2}{3}$.
2. If $\tan A=1$ and $\tan B=\frac{1}{\sqrt{3}}$, prove that $\tan (A+B)=2+\sqrt{ } 3$.
3. Prove that $\tan 15^{\circ}=2-\sqrt{ } 3$.
4. If $\tan A=\frac{5}{8}$ and $\tan B=\frac{1}{15}$, prove that $\tan (A+B)=1$. What is $(A+B)$ in this case?
5. If $\tan A=m$ and $\tan B=\frac{1}{m}$, prove that $\tan (A+B)=\propto$. What is $(A+B)$ in this case?

Prove the following statements:
6. $\cot (A+B)=\frac{\cot A \cdot \cot B-1}{\cot A+\cot B}$.
7. $\cot (A-B)=\frac{\cot A \cdot \cot B+1}{\cot B-\cot A}$.
8. $\cot \left(\theta-\frac{\pi}{4}\right)=\frac{\cot \theta+1}{1-\cot \theta}$.
9. $\frac{\cot \theta-1}{\cot \theta+1}=\cot \left(\theta+\frac{\pi}{4}\right)$.
10. $\tan \left(\theta-\frac{\pi}{4}\right)+\cot \left(\theta+\frac{\pi}{4}\right)=0$.
11. $\cot \left(\theta-\frac{\pi}{4}\right)+\tan \left(\theta+\frac{\pi}{4}\right)=0$.
12. If $\tan \alpha=\frac{m}{m+1}$ and $\tan \beta=\frac{1}{2 m+1}$, prove that $\tan (\alpha+\beta)=1$.
13. $\frac{\tan (n+1) \phi-\tan n \phi}{1+\tan (n+1) \phi \cdot \tan n \phi}=\tan \phi$.
14. $\frac{\tan (n+1) \phi+\tan (1-n) \phi}{1-\tan (n+1) \phi \cdot \tan (1-n) \phi}=\tan 2 \phi$.
15. If $\tan a=m$ and $\tan \beta=n$, prove that

$$
\cos (\alpha+\beta)=\frac{1-m n}{\sqrt{\left(1+m^{2}\right)\left(1+n^{2}\right)}} .
$$

16. If $\tan \alpha=(a+1)$ and $\tan \beta=(a-1)$, then $2 \cot (a-\beta)=a^{2}$.
17. If $\alpha+\beta+\gamma=90^{\circ}$, then $\tan \gamma=\frac{1-\tan \alpha \tan \beta}{\tan \alpha+\tan \beta}$.
18. From pages 63 and 64 we have

$$
\left.\begin{array}{l}
\sin (A+B)=\sin A \cdot \cos B+\cos A \cdot \sin B \\
\sin (A-B)=\sin A \cdot \cos B-\cos A \cdot \sin B \tag{i}\\
\cos (A+B)=\cos A \cdot \cos B-\sin A \cdot \sin B \\
\cos (A-B)=\cos A \cdot \cos B+\sin A \cdot \sin B
\end{array}\right\}
$$

From these by addition and subtraction we get

$$
\left.\begin{array}{l}
\sin (A+B)+\sin (A-B)=2 \sin A \cdot \cos B \\
\sin (A+B)-\sin (A-B)=2 \cos A \cdot \sin B \\
\cos (A+B)+\cos (A-B)=2 \cos A \cdot \cos B \\
\cos (A-B)-\cos (A+B)=2 \sin A \cdot \sin B
\end{array}\right\}
$$

Now put S for $(A+B)$,
and put T for $(A-B)$:
Then $S+T=2 A$, and $S-T=2 B$,
so that $A=\frac{S+T}{2}$, and $B=\frac{S-T}{2}$.
Hence the above results may be written

$$
\left.\begin{array}{rl}
\sin S+\sin T & =2 \sin \frac{S+T}{2} \cdot \cos \frac{S-T}{2} \\
\sin S-\sin T & =2 \cos \frac{S+T}{2} \cdot \sin \frac{S-T}{2} \tag{iii}\\
\cos S+\cos T & =2 \cos \frac{S+T}{2} \cdot \cos \frac{S-T}{2} \\
* \cos T-\cos S & =2 \sin \frac{S+T}{2} \cdot \sin \frac{S-T}{2}
\end{array}\right\}
$$

103. The formulæ (iii) are most important, and the student is recommended to get thoroughly familiar with them in words, as on the next page;

* If A and B are each less than 90°, then S, which is their sum, is greater than T, their difference. Therefore if S be less than $90^{\circ}, \cos S$ is less than $\cos T$; so that $\cos T-\cos S$ is positive.
(1) The sum of the sines of two angles equals twice the sine of half their sum into the cosine of half their difference.
(2) The difference of the sines of two angles equals twice the cosine of half their sum into the sine of half their difference.
(3) The sum of the cosines of two angles equals twice the cosine of half their sum into the cosine of half their difference.
(4) The difference of the tcosines of two angles equals twice the sine of half their sum into the sine of half their difference.
\dagger Norr. The difference of the cosines of two angles is the cosine of the smaller angle - the cosine of the greater angle.

104. It will be convenient to refer to the formulæ (i) as the ' A, B ' formulæ, and to the formulæ (iii) as the ' S, T ' formulæ.

EXAMPLES. XXVIII.

Prove the following statements:

1. $\sin 60^{\circ}+\sin 30^{\circ}=2 \sin 45^{\circ} \cdot \cos 15^{\circ}$.
2. $\sin 60^{\circ}+\sin 20^{\circ}=2 \sin 40^{\circ} \cdot \cos 20^{\circ}$.
3. $\sin 40^{\circ}-\sin 10^{\circ}=2 \cos 25^{\circ} \cdot \sin 15^{\circ}$.
4. $\cos \frac{\pi}{3}+\cos \frac{\pi}{2}=2 \cos \frac{5 \pi}{12} \cdot \cos \frac{\pi}{12}$.
5. $\cos \frac{\pi}{3}-\cos \frac{\pi}{2}=2 \sin \frac{5 \pi}{12} \cdot \sin \frac{\pi}{12}$.
6. $\sin 3 A+\sin 5 A=2 \sin 4 A \cdot \cos A$.
7. $\sin 7 A-\sin 5 A=2 \cos 6 A \cdot \sin A$.
8. $\cos 5 A+\cos 9 A=2 \cos 7 A . \cos 2 A$.
9. $\cos 5 A-\cos 4 A=-2 \sin \frac{9 A}{2} \cdot \sin \frac{A}{2}$.
10. $\cos A-\cos 2 A=2 \sin \frac{3 A}{2} \cdot \sin \frac{A}{2}$.
11. $\frac{\sin 2 \theta+\sin \theta}{\cos \theta+\cos 2 \theta}=\tan \frac{3 \theta}{2}$.
12. $\frac{\sin 2 \theta-\sin \theta}{\cos \theta-\cos 2 \theta}=\cot \frac{3 \theta}{2}$.
13. $\frac{\sin 3 \theta+\sin 2 \theta}{\cos 2 \theta-\cos 3 \theta}=\cot \frac{\theta}{2}$.
14. $\frac{\sin \theta+\sin \phi}{\cos \theta-\cos \phi}=\frac{\cos \theta+\cos \phi}{\sin \phi-\sin \theta}$.
15. $\cos \left(60^{\circ}+A\right)+\cos \left(60^{\circ}-A\right)=\cos A$.
16. $\cos \left(45^{\circ}+A\right)+\cos \left(45^{\circ}-A\right)=\sqrt{ } 2 \cdot \cos A$.
17. $\sin \left(45^{\circ}+A\right)-\sin \left(45^{0}-A\right)=\sqrt{ } 2 \cdot \sin A$.
18. $\cos \left(30^{\circ}-A\right)-\cos \left(30^{\circ}+A\right)=\sin A$.
19. $\frac{\sin \theta-\sin \phi}{\cos \phi-\cos \theta}=\cot \frac{\theta+\phi}{2}$.
20.

$\frac{\sin \theta-\sin \phi}{\sin \theta+\sin \phi}=\cot \left(\frac{\theta+\phi}{2}\right) \cdot \tan \left(\frac{\theta-\phi}{2}\right)$.
105. It is important that the student should be thoroughly familiar with the second set of formulæ on p. 69.

Written as follows, they may be regarded as the inverse of the ' S, T ' formulæ.

x EXAMPLES. XXIX.

Express as the sum or as the difference of two trigonometrical ratios the ten following expressions:

1. $2 \sin \theta \cdot \cos \phi$.
2. $2 \cos \alpha \cdot \cos \beta$
3. $2 \sin 2 \alpha \cdot \cos 3 \beta$.
4. $2 \cos (\alpha+\dot{\beta}) \cdot \cos (\alpha-\beta)$.
5. $2 \sin 3 \theta \cdot \cos 5 \theta$.
6. $2 \cos \frac{3 \theta}{2} \cdot \cos \frac{\theta}{2}$.
7. $\sin 4 \theta \cdot \sin \theta$.
8. $\cos \frac{5 \theta}{2} \cdot \sin \frac{3 \theta}{2}$.
9. $2 \cos 10^{\circ} \cdot \sin 50^{\circ}$.
10. $\cos 45^{\circ} \cdot \sin 15^{\circ}$.
11. Simplify $2 \cos 2 \theta \cdot \cos \theta-2 \sin 4 \theta \cdot \sin \theta$.
12. Simplify $\sin \frac{5 \theta}{2} \cdot \cos \frac{\theta}{2}-\sin \frac{9 \theta}{2} \cdot \cos \frac{3 \theta}{2}$.
$\times 13$. Simplify $\sin 3 \theta+\sin 2 \theta+2 \sin \frac{3 \theta}{2} \cdot \cos \frac{\theta}{2}$.
13. Prove that $\sin \frac{11 \theta}{4} \cdot \sin \frac{\theta}{4}+\sin \frac{7 \theta}{4} \cdot \sin \frac{3 \theta}{4}=\sin 2 \theta \cdot \sin \theta$.

CHAPTER X.

On the Trigonometrical Ratios of Multiple Angles.
106. To express the Trigonometrical Ratios of the angle $2 A$ in terms of those of the angle A.

Since $\sin (A+B)=\sin A \cdot \cos B+\cos A \cdot \sin B ;$
$\therefore \sin (A+A)=\sin A \cdot \cos A+\cos A \cdot \sin A ;$
$\therefore \sin 2 A=2 \sin A \cdot \cos A$
Also, since $\cos (A+B)=\cos A \cdot \cos B-\sin A \cdot \sin B$;

$$
\begin{align*}
\therefore \cos (A+A) & =\cos A \cdot \cos A-\sin A \cdot \sin A ; \\
\therefore \cos 2 A & =\cos ^{2} A-\sin ^{2} A \quad \ldots \ldots \ldots \ldots(2) \tag{2}
\end{align*}
$$

But $1=\cos ^{2} A+\sin ^{2} A ;$
$\therefore 1+\cos 2 A=2 \cos ^{2} A$, and $1-\cos 2 A=2 \sin ^{2} A$. Pubbract.
The last two results are usually written

$$
\begin{align*}
\cos 2 A & =2 \cos ^{2} A-1 \tag{3}\\
\text { and } \cos 2 A & =1-2 \sin ^{2} A \tag{4}
\end{align*}
$$

Again, $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \cdot \tan B} ;$

$$
\begin{align*}
\therefore \tan (A+A) & =\frac{\tan A+\tan A}{1-\tan A \cdot \tan A} \\
\therefore \tan 2 A & =\frac{2 \tan A}{1-\tan ^{\prime 2} A} \cdots \cdots \cdots \tag{5}
\end{align*}
$$

107. These five formulæ are very important,
108. The following result is important,

$$
\frac{\sin 2 A}{1+\cos 2 A}=\frac{2 \sin A \cdot \cos A}{2 \cos ^{2} A}=\tan A .
$$

\times 109. The student must notice that A is any angle, and therefore these formulæ will be true whatever we put for A.

Example. Write $\frac{A}{2}$ instead of A, and we get

$$
\begin{align*}
& \sin A=2 \sin \frac{A}{2} \cdot \cos \frac{A}{2} \tag{1}\\
& \cos A=\cos ^{2} \frac{A}{2}-\sin ^{2} \frac{A}{2} \tag{2}
\end{align*}
$$

and so on.

EXAMPLES. XXX.

Prove the following statements:

1. $2 \operatorname{cosec} 2 A=\sec A . \operatorname{cosec} A$. 2. $\frac{\operatorname{cosec}^{2} A}{\operatorname{cosec}^{2} A-2}=\sec 2 A$.
2. $\frac{2-\sec ^{2} A}{\sec ^{2} A}=\cos 2 A$.
3. $\cot 2 A=\frac{\cot ^{2} A-1}{2 \cot A}$.
4. $\cos ^{2} A\left(1-\tan ^{2} A\right)=\cos 2 A$.
5. $\tan B+\cot B=2 \operatorname{cosec} 2 B$.
6. $\frac{2 \tan B}{1+\tan ^{2} B}=\sin 2 B$.
7. $\frac{1-\tan ^{2} B}{1+\tan ^{2} B}=\cos 2 B$.
${ }^{\times}$9. $\cot B-\tan B=2 \cot 2 B$.
8. $\frac{\cot ^{2} B+1}{\cot ^{2} B-1}=\sec 2 B$.
9. $\left(\sin \frac{\theta}{2}+\cos \frac{\theta}{2}\right)^{2}=1+\sin \theta$.
10. $\cos ^{2} \frac{\theta}{2}\left(1+\tan \frac{\theta}{2}\right)^{2}=1+\sin \theta$.
11. $\sin ^{2} \frac{\theta}{2}\left(\cot \frac{\theta}{2}-1\right)^{2}=1-\sin \theta$.
12. $\left(\frac{\tan \frac{\theta}{2}+1}{\tan \frac{\theta}{2}-1}\right)^{2}=\frac{1+\sin \theta}{1-\sin \theta}$. 16. $\frac{\sin \beta}{1+\cos \beta}=\tan \frac{\beta}{2}$.
13. $\frac{\sin \beta}{1-\cos \beta}=\cot \frac{\beta}{2}$.
14. $\frac{1-\cos \beta}{1+\cos \beta}=\tan ^{2} \frac{\beta}{2}$.
15. $\frac{1+\sec \beta}{\sec \beta}=2 \cos ^{2} \frac{\beta}{2}$.
16. $\operatorname{cosec} \beta-\cot \beta=\tan \frac{\beta}{2}$.
17. $\frac{\cos 2 x}{1+\sin 2 x}=\frac{1-\tan x}{1+\tan x}$.
18. $\frac{\cos x}{1-\sin x}=\frac{1+\tan \frac{x}{2}}{1-\tan \frac{x}{2}}$.
19. $\frac{\cos x}{1+\sin x}=\frac{\cot \frac{x}{2}-1}{\cot \frac{x}{2}+1}$.
20. $\frac{1+\sin x+\cos x}{1+\sin x-\cos x}=\cot \frac{x}{2}$.
<26. $\frac{\cos ^{3} \alpha+\sin ^{3} \alpha}{\cos \alpha+\sin \alpha}=\frac{2-\sin 2 \alpha}{2}$.
21. $\frac{\cos ^{3} \alpha-\sin ^{3} \alpha}{\cos a-\sin \alpha}=\frac{2+\sin 2 \alpha}{2}$. 28. $\cos ^{4} a-\sin ^{4} \alpha=\cos 2 \alpha$.
22. $\cos ^{6} \alpha+\sin ^{6} \alpha=\frac{1+3 \cos ^{2} 2 \alpha}{4}$.
23. $\frac{\cos x}{1-\sin x}=\frac{\cot \frac{x}{2}+1}{\cot \frac{x}{2}-1}$.
24. $\cos ^{6} \alpha-\sin ^{6} \alpha=\frac{\left(3+\cos ^{2} 2 \alpha\right) \cos 2 \alpha}{4}$.
25. $\frac{\sin 3 \beta}{\sin \beta}-\frac{\cos 3 \beta}{\cos \beta}=2$.
26. $\frac{\sin 4 \beta}{\sin 2 \beta}=2 \cos 2 \beta$.
27. $\frac{\cos 3 \beta}{\sin \beta}+\frac{\sin 3 \beta}{\cos \beta}=2 \cot 2 \beta$.
28. $\frac{\sin 5 \beta}{\sin \beta}-\frac{\cos 5 \beta}{\cos \beta}=4 \cos 2 \beta$.
29. $\frac{\sin \frac{5 \pi}{12}}{\sin \frac{\pi}{12}}-\frac{\cos \frac{5 \pi}{12}}{\cos \frac{\pi}{12}}=2 \sqrt{ } 3$.
30. $\tan \left(45^{\circ}+A\right)-\tan \left(45^{\circ}-A\right)=2 \tan 2 A$.
31. $\tan \left(45^{\circ}-A\right)+\cot \left(45^{\circ}-A\right)=2 \sec 2 A$.
32. $\frac{\tan ^{2}\left(45^{\circ}+A\right)-1}{\tan ^{2}\left(45^{\circ}+A\right)+1}=\sin 2 A$.
33. $\frac{\sec A+\tan A}{\sec A-\tan A}=\tan \left(45^{\circ}+\frac{A}{2}\right) \cdot \cot \left(45^{\circ}-\frac{A}{2}\right)$.
34. $\frac{\cos \left(A+45^{\circ}\right)}{\cos \left(A-45^{\circ}\right)}=\sec 2 A-\tan 2 A$.
35. $\tan B=\frac{\sin B+\sin 2 B}{1+\cos B+\cos 2 B}$.
36. $\tan B=\frac{\sin 2 B-\sin B}{1-\cos B+\cos 2 B}$.
37. The following two formulæ should be remembered :

$$
\left.\begin{array}{l}
\sin 3 A=3 \sin A-4 \sin ^{3} A \\
\cos 3 A=4 \cos ^{3} A-3 \cos A
\end{array}\right\} \ldots \ldots \ldots \ldots \text { (vi). }
$$

Note. The similarity of these two results is apt to cause confusion. This may be avoided by observing that the second formula must be true when $A=0^{\circ}$; and then $\cos 3 A=\cos 0^{\circ}=1$. In which case the formula gives $\cos 0^{0}=4 \cos 0^{0}-3 \cos \theta^{\circ}$, or $1=4-3$, which is true.

The first formula may be proved thus:

$$
\begin{aligned}
\sin 3 A & =\sin (2 A+A)=\sin 2 A \cdot \cos A+\cos 2 A \cdot \sin A \\
& =(2 \sin A \cdot \cos A) \cos A+\left(1-2 \sin ^{2} A\right) \sin A \\
& =2 \sin A \cdot \cos ^{2} A+\sin A-2 \sin ^{3} A \\
& =2 \sin A\left(1-\sin ^{2} A\right)+\sin A-2 \sin ^{3} A \\
& =2 \sin A-2 \sin ^{3} A+\sin A-2 \sin ^{3} A \\
& =3 \sin A-4 \sin ^{3} A .
\end{aligned}
$$

The second formula may be proved in a similar manner.
Example. Prove that $\tan 3 A=\frac{3 \tan A-\tan ^{3} A}{1-3 \tan ^{2} A}$.

$$
\begin{aligned}
\tan 3 A & =\tan (2 A+A)=\frac{\tan 2 A+\tan A}{1-\tan 2 A \cdot \tan A} \\
& =\frac{\frac{2 \tan A}{1-\tan ^{2} A}+\tan A}{1-\frac{2 \tan A}{1-\tan ^{2} A} \cdot \tan A}=\frac{2 \tan A+\tan A-\tan ^{3} A}{1-\tan ^{2} A-2 \tan ^{2} A} \\
& =\frac{3 \tan A-\tan ^{3} A}{1-3 \tan ^{2} A} .
\end{aligned}
$$

EXAMPLES. XXXI.

Prove the following statements:

1. $\frac{\sin 3 A}{\sin A}=2 \cos 2 A+1$. 2. $\frac{\cos 3 A}{\cos A}=2 \cos 2 A-1$.
2. $\frac{3 \sin }{\cos } \frac{A-\sin 3 A}{3 A+3 \cos A}=\tan ^{3} A$. 4. $\cot 3 A=\frac{\cot ^{3} A-3 \cot A}{3 \cot ^{2} A-1}$.
3. $\frac{\sin 3 A-\sin A}{\cos 3 A+\cos A}=\tan A$. $\quad \frac{\sin 3 A-\cos 3 A}{\sin A+\cos A}=2 \sin 2 A-1$.
4. $\frac{\sin 3 A+\cos 3 A}{\cos A-\sin A}=2 \sin 2 A+1$.
5. $\frac{1}{\tan 3 A-\tan A}+\frac{1}{\cot A-\cot 3 A}=\cot 2 A$.
6. $\left(\frac{3 \sin A-\sin 3 A}{3 \cos A+\cos 3 A}\right)^{2}=\left(\frac{\sec 2 A-1}{\sec 2 A+1}\right)^{3}$.
7. $\frac{1-\cos 3 A}{1-\cos A}=(1+2 \cos A)^{2}$.

CHAPTER XI.

On Logarithms.

111. In Algebra it is explained
(i) that the multiplication of different powers of the same quantity is effected by adding the indices of those powers;
(ii) that division is effected by subtracting the indices;
(iii) that involution and evolution are respectively effected by the multiplication and division of the indices.
Example 1. Let $m=a^{n}, n=a^{k}$,
then

Example 2. Given that $347=10^{2 \cdot 5403295}$ * and $461=10^{2 \cdot 6637009}$, prove that $347 \times 461=10^{52040304}$.
We have

$$
\begin{aligned}
347 \times 461 & =10^{2 \cdot 54030255} \times 10^{2 \cdot 6637009} \\
& =10^{254503295+26637009} \\
& =10^{520400304} .
\end{aligned}
$$

Q.E.D.

EXAMPLES. XXXII.

1. If $m=a^{h}, n=a^{k}$, express in terms of a, h and k,
(i) $m^{2} \times n^{3}$.
(ii) $m^{4} \div n^{5}$.
(iii) $\sqrt[3]{m^{4} \times n^{5}}$.
(iv) $\left\{\sqrt[4]{m^{5} \times n^{3}}\right\}^{2}$.
2. If $453=10^{2 \cdot 6560982}$ and $650=10^{2 \cdot 8129934}$, find the indices of the powers of 10 which are equal to
(i) 453×650.
(v) $\sqrt{45 \overline{3}} \times \sqrt[6]{650}$.
(ii) $(453)^{4}$.
(iii) $650^{3} \times 453^{2}$.
(iv) $\sqrt[8]{453}$.
3. Express in powers of 2 the numbers, $8,32, \frac{1}{2}, \frac{1}{1^{1}}, \cdot 125,128$.
4. Express in powers of 3 the numbers, $9,81, \frac{1}{3}, \frac{3}{2}, \cdot \frac{1}{1}, \frac{1}{81}$.

* The nnmber 347 lies between 100 and 1000 , i.e. between 10^{2} and 10^{3}. Hence, if there is a power of 10 which is equal to 347 , its index must be greater than 2 and less than 3 , i.e. equal to $2+$ a fraction.

$$
\begin{align*}
& n \div n=a^{h} \div a^{k}=a^{h-k} \tag{ii}\\
& \left.\begin{array}{l}
m^{3}=\left(a^{h}\right)^{3}=a^{3 k}, \\
\sqrt[4]{m}=m^{\frac{3}{4}}=\left(a^{h}\right)^{\frac{2}{4}}=a^{\frac{n}{4}}
\end{array}\right\} \tag{iii}
\end{align*}
$$

112. Suppose that some convenient number (such as 10) having been chosen, we are given a list of the indices of the powers of that number, which are equivalent to every whole number from 1 up to 100000 . Such a list could be used to shorten Arithmetical calculations.

Example 1. Multiply 3759 by 4781 and divide the result by 2690.
Looking in our list we should find $3759=10^{357500233}, 4781=10^{36795187}$, $2690=10^{344987523}$.

Therefore $3759 \times 4781 \div 2690=10^{3.5780723} \times 10^{3 \cdot 7795187} \div 10^{3}$ 2997523 $=10^{38750723+366795187-342297523}=10^{3 \cdot 82483887}$.

The list will give us that $10^{38243887}=6680 \cdot 9$.
Therefore the answer correct to five significant figures is $6680 \cdot 9$.
Example 2. Simplify $3^{6} \times 2^{10} \div \sqrt[3]{17601}$.
The list gives $2=10^{-3010300}, 3=10^{-4771213}$ and $17601=10^{42445373}$.
Thus $3^{6} \times 2^{10} \div \sqrt[8]{17601}=\left(10^{-4771213}\right)^{6} \times\left(10^{-3010300}\right)^{10} \div\left(10^{424555373}\right)^{\frac{1}{3}}$ $=10^{2 \cdot 8827778} \times 10^{30103000} \div 10^{1 \cdot 11157791}=10^{28862778+3 \cdot 0103000-1 \cdot 1115791}=10^{44578487}$.

And from our list we find $10^{4 / 4578487}=28697$, nearly.

EXAMPLES. XXXIII.

Given that $2=10^{-3010300}, 3=10^{47721213}$ and $7=10^{8.550980}$, find the indices of the powers of 10 equivalent to the following numbers.

1. $2^{2}, 3^{2}, 2^{3}, 2 \times 3,2^{4}, 7^{2}$.
2. $14,16,18,24,27,42$.
3. $10,5,15,25,30,35$.
4. $36,40,48,50,200,1000$. 5. $3^{10} \times 7^{10} \div 2^{20}, 2^{12} \times 3^{20} \div 7^{11}$. 6. $\sqrt[3]{21} \times \sqrt[4]{18}, \sqrt[2]{4^{49 \times 4^{5}}} \times \sqrt[8]{3^{4} \times 2^{10}}$.
5. Find approximately the numerical value of $\sqrt[10]{42}$, having given that $10^{\cdot 1623249}=1 \cdot 4532$ nearly.
6. Find approximately the numerical value of $\sqrt[3]{(42)^{4}} \times \sqrt[4]{(42)^{3}}$, having given that $10^{338177}=2408 \cdot 6$.
7. Find the value (i) of $\sqrt[8]{6} \times \sqrt[4]{7} \times \sqrt[5]{9}$, (ii) of $\sqrt{10}^{2} \times 3^{-\frac{5}{4}} \times 7^{\frac{7}{11}}$, having given that $10^{-66150067}=4 \cdot 5868$ and $10^{-0285094}=\cdot 93646$.
8. Find the value of $(67.21)^{\frac{3}{5}} \times(49.62)^{\frac{1}{5}} \times(3.971)^{-\frac{7}{6}}$, having given that $67 \cdot 21=10^{18274339}, 49 \cdot 62=10^{1 \cdot 6956688}, 3 \cdot 971=10^{\text {55888999 }}$ and $10^{\cdot 5071310}$ $=3.9549$.
9. Find the area of a square field whose side is $640 \cdot 12$ feet, having given that $640 \cdot 12=10^{28062814}$ and that $10^{561252288}=40975 \cdot 3$.
10. Find the edge of a solid cube which contains 42601 cubic inches, having given $42601=10^{4 \cdot 6294198}$ and $10^{154333399}=34 \cdot 925$.
11. Find the edge of a solid cube which contains $34 \cdot 701$ cubic inches, having given that $34 \cdot 701=10^{1 \cdot 5403220}$, and $10^{-5134473}=3 \cdot 2617$.
12. Find the volume of the cube the length of one of whose edges is $47 \cdot 931 \mathrm{Jds}$. ; given $47 \cdot 931=10^{1 \cdot 8800165}, 1^{5 \cdot 041895}=110115$.
13. The powers of any other number than 10 might be used in the manner explained above, but 10 is the most convenient number, as will presently appear.
14. This method, in which the indices of the powers of a certain fixed number (such as 10) are made use of, is called the Method of Logarithms.

Indices thus used are called logarithms.

The fixed number whose powers are used is called the base. Hence we have the following definition :

DEF. The logarithm of a number to a given base is the index of that power of the base, which is equal to the given number.

If l be the logarithm of the number n to the base a, then $a^{l}=n$.
115. The notation used is $\log _{a} n=l$.

Here, $\log _{a} n$ is an abbreviation for the words 'the logarithm of the number n to the base $a .{ }^{\prime}$ And this means, as we have explained above, 'the index of that power of a which is equal to the number n.'

Example 1. What is the logarithm of $a^{\frac{3}{2}}$ to the base a ?
That is, what is the index of the power of a which is $a^{\frac{3}{2}}$?
The index is $\frac{3}{2}$; therefore $\frac{3}{2}$ is the required logarithm, or

$$
\log _{a} a^{\frac{3}{2}}=\frac{3}{2} .
$$

Example 2. What is the logarithm of 32 to the base 2 ?
That is, what is the index of the power of 2 which is equal to 32 ?
Now $32=2^{5}, \therefore$ the required index is 5 ; or $\log _{2} 32=5$.
The use of Logarithms is based upon the following propositions:-
I. The logarithm of the product of two numbers is equal to the logarithm of one of the numbers + the logarithm of the other.

For, let $\log _{a} m=x$ and $\log _{a} n=y$, then, $m=a^{x}, n=a^{y}$, $\log _{a}(m \times n)=\log _{a}\left(a^{x} \times a^{y}\right)=\log _{a}\left(a^{x+y}\right)=x+y=\log _{a} n+\log _{a} n$.
II. The logarithm of the quotient of two numbers is the logarithm of the dividend - the logarithm of the divisor.

For, $\log _{a}\left(\frac{m}{n}\right)=\log _{a}\left(\frac{a^{x}}{a^{y}}\right)=\log _{a}\left(a^{x-y}\right)=x-y$ [as above]
III. The logarithm of a number raised to a power k is $⿸$ times the logarithm of the number.

For, $\log _{a}\left(m^{k}\right)=\log _{a}\left\{\left(a^{x}\right)^{k}\right\}=\log _{a}\left(a^{k x}\right)=k x=k$ times $\log _{a} m$.
Examples. Given $\log _{10} 2=\cdot 3010300, \log _{10} 3=\cdot 4771213$, $\log _{10} 7=8450980$, find the values of the following:
(i) $\log _{10} 6=\log _{10}(2 \times 3)=\log _{10} 2+\log _{10} 3$

$$
=\cdot 3010300+\cdot 4771213=\cdot 7781513 .
$$

[by I.]
(ii) $\log _{10} \frac{7}{3}=\log _{10} 7-\log _{10} 3=\cdot 8450980-\cdot 4771213$

$$
=\cdot 3679767 .
$$

[by II.]
(iii) $\log _{10} 3^{5}=5$ times $\log _{10} 3=5 \times 3010300=1 \cdot 5051500$. [by III.]
(iv) $\log _{10} \sqrt[3]{\frac{3 \times 4}{7}}=\log _{10}\left(\frac{3 \times \mathbf{Y}_{4}^{4}}{7}\right)^{\frac{1}{3}}=\frac{1}{3}$ of $\log _{10} \frac{3 \times{ }^{2}}{7}$ [by III.]
$=\frac{1}{3}$ of $(\log 3+\log 4-\log 7)=\frac{1}{3}$ of $\{\cdot 4771213+$ twice $\cdot 30103-\cdot 8450980\}$ $=\frac{1}{3}$ of $\cdot 2340833=\cdot 0780278$.
[by I. and II.]
(v) $\log _{10} 5=\log _{10} \frac{10}{2}=\log _{10} 10-\log _{10} 2=1-\cdot 3010300=\cdot 6989700$.

EXAMPLES. XXXIV.

1. Find the logarithms to the base a of $a^{3}, a^{\frac{10}{3}}, \sqrt[4]{a}, \sqrt[3]{a^{2}}, \frac{1}{a^{\frac{6}{2}}}$.
2. Find the logarithms to the base 2 of $8,64, \frac{1}{2}, \cdot 125, \cdot 015625$, $\sqrt[8]{64}$.
3. Find the logarithms to the base 3 of $9,81, \frac{7}{3}, \frac{7}{27}, \cdot i, \frac{7}{8} \mathrm{r}$.
4. Find the logarithms to base 4 of $8, \sqrt[3]{16}, \sqrt{\cdot 5}, \sqrt[8]{015625}$.
5. Find the value of
$\log _{2} 8, \log _{2} \cdot 5, \log _{3} 243, \log _{5}(\cdot 04), \log _{10} 1000, \log _{10} \cdot 001$.
6. Find the value of $\log _{a} a^{\frac{4}{3}}, \log _{b} \sqrt[3]{b^{2}}, \log _{8} 2, \log _{27} 3, \log _{100} 10$.

If $\log _{10} 2=\cdot 30103, \log _{10} 3=\cdot 4771213, \log _{10} 7=\cdot 845098$, find the values of
7. $\log _{10} 6, \log _{10} 42, \log _{10} 16$. 8. $\log _{10} 49, \log _{10} 36, \log _{10} 63$.
9. $\log _{10} 200, \log _{10} 600, \log _{10} 70$.
10. $\log _{10} 5, \log _{10} 3 \cdot 3 \cdot \log _{10} 50$.
11. $\log _{10} 35, \log _{10} 150, \log _{10} \cdot 2$. 12. $\log _{10} 3 \cdot 5, \log _{10} 7 \cdot 29, \log _{10} \cdot 081$.
13. Given $\log _{10} 2, \log _{10} 3, \log _{10} 7$, find the value (i) of $\sqrt[3]{6} \times \sqrt[4]{7} \times \sqrt[5]{9}$. (ii) of $\sqrt[10]{10} \times 3^{-\frac{6}{6}} \times 7^{\frac{7}{1 r}}$

$$
\left[\cdot 6615067=\log _{10} 4 \cdot 5868 ;-0285094=\log _{10} \cdot 93646\right] .
$$

14. Prove that (i) $\log \{\sqrt[3]{2} \times \sqrt[4]{7} \div \sqrt[5]{9}\}=\frac{1}{3} \log 2+\frac{1}{4} \log 7-\frac{2}{5} \log 2$,

Common Logarithms.

116. That System of Logarithms whose base is 10 , is called the Common System of Logarithms.

In speaking of logarithms hereafter, common logarithms are referred to unless the contrary is expressly stated.

We shall assume that a power of 10 can be found which is practically equivalent to any number.
117. The indices of these powers of 10 , i.e. the Common Logarithms, are in general incommensurable numbers.

Their value for every whole number, from 1 to 100000, has been calculated to 7 significant figures. Thus any calculation made with the aid of logarithms is as exact as the most carefully observed measurement.
118. Now, the greater the index of any power of 10 , the greater will be the numerical value of that power; and the less the index, the less will be the numerical value of the power.

Hence, if one number be less than another, the logarithm of the first will be less than the logarithm of the second.

But the student should notice that logarithms (or indices) are not proportional to the corresponding numbers.

Example. 1000 is less than 10000 ; and the logarithm to base 10 of the first is 3 and of the second is 4 .

But 1000, 10000, 3, 4 are not in proportion.
119. We know from Algebra that $1=10^{\circ}$,

| 10 | $=10^{1}$ | and that | $\cdot 1$ | $=\frac{1}{10}$ |
| ---: | :--- | :--- | ---: | :--- |$=10^{-1} 0$

and so on.
Hence, the logarithm of 1 is 0 .
The (common) logarithm of any number greater than 1 is positive.

The logarithm of any positive number less than 1 is negative.
120. We observe also
that the logarithm of any number between 1 and 10 is a positive decimal fraction;
that the logarithm of any number between 10 and 100 , i. e. between 10^{1} and 10^{2}, is of the form $1+$ a decimal fraction;
that the logarithm of any number between 1000 and 10000 , i.e. between 10^{3} and 10^{4}, is of the form $3+$ a decimal fraction;
and so on.
121. We observe also
that the logarithm of any number between 1 and $\cdot 1$, i.e. between 10° and 10^{-1}, can be written in the form $-1+$ a decimal fraction ;
that the logarithm of any number between $\cdot 1$ and 01 , i.e. between 10^{-1} and 10^{-2}, can be written in the form $-2+$ a decimal fraction; and so on.

Example 1. How many digits are contained in the integral part of the number whose logarithm is $3 \cdot 67192$?

The number is 10^{367192} and this is greater than 10^{3}, i.e. greater than 1000 , and it is less than 10^{4}, i.e. less than 10000 . Therefore the number lies between 1000 and 10000 , and therefore the integral part of it contains 4 figures.

Example 2. Given that $3=10^{4771213}$, find the number of the digits in the integral part of 3^{20}.

We have

$$
3=10^{4771213},
$$

$$
\therefore 3^{20}=\left(10^{-4771213}\right)^{20}=10^{95524260}
$$

Therefore there are 10 digits in the integral part of 3^{20}; for it is greater than 10^{9} and less than 10^{10}.

Example 3. Supposing that the decimal part of the logarithm is to be kept positive, find the integral part of the logarithm of $\cdot 000123 \pm$.

This number is greater than 0001 i.e. than 10^{-4} and less than $\cdot 001$, i.e. than 10^{-3}.

Therefore its logarithm lies between -3 and -4 , and therefore it is $-4+a$ fraction; the integral part is therefore -4 .
L. T. B.

EXAMPLES. XXXV.

Note. The decimal part of a logarithm is to be kept positive.

1. Write down the integral part of the common logarithms of 17601, $361 \cdot 1,4 \cdot 01,723000,29$.
2. Write down the integral part of the common logarithms of $\cdot 04, \cdot 0000612, \cdot 7963, \cdot 001201$. (See Note above.)
3. Write down the integral part of the common logarithms of $7963, \cdot 1,2 \cdot 61,79 \cdot 6341,1 \cdot 0006, \cdot 00000079$.
4. How many digits are there in the integral part of the numbers whose common logarithms are respectively

$$
3 \cdot 461, \cdot 3020300,5 \cdot 4712301,2 \cdot 6710100 ?
$$

5. Give the position of the first significant figure in the numbers whose logarithms are $-2+\cdot 4612310,-1+\cdot 2793400,-6+\cdot 1763241$.
6. Give the position of the first significant figure in the numbers whose common logarithms are $4 \cdot 2990713, \cdot 3040595,2 \cdot 5860244$, $-3+\cdot 1760913,-1+\cdot 3180633, \cdot 4980347$.
7. Given that $2=10^{3010300}$, find the number of digits in the integral part of $8^{10}, 2^{12}, 16^{20}, 2^{100}$.
8. Given that $\log 7=8450980$, find the number of digits in the integral part of $7^{10}, 49^{6}, 343^{\frac{10}{3} 0},\left(\frac{10}{7}\right)^{20},(4 \cdot 9)^{12},(3 \cdot 43)^{10}$.
9. Find the position of the first significant figure in

$$
\sqrt[10]{10} 2,\left(\frac{1}{2}\right)^{10},\left(\frac{10}{7}\right)^{20},(\cdot 02)^{4},(\cdot 49)^{6} .
$$

10. Find the position of the first significant figure in the numerical value of $20^{7},(\cdot 02)^{7},(\cdot 007)^{2},(3.43)^{\frac{1}{10}},(.0343)^{8},(\cdot 0343)^{\frac{1}{10}}$.
11. Prop. To prove that when two numbers expressed in the decimal notation have the same digits (so that they differ only in the position of the decimal point), their logarithms to the base 10 differ only by an integer.

The decimal point in a number is moved by multiplying or dividing the number by some integral power of 10 .

Let the numbers be m and n; then $m=n \times 10^{k}$ when k is a whole number (positive or negative); then

$$
\begin{aligned}
\log m & =\log \left(n \times 10^{k}\right)=\log n+\log 10^{k} \\
& =\log n+k
\end{aligned}
$$

That is $\log m$ and $\log n$ differ by an integer. Q. E. D.
Example i. $\log 1779 \cdot 2=\log \left\{(\underline{1 \cdot 6792}) \times 10^{3}\right\}=\log 1 \cdot 6792+\log 10^{3}$ $=\log 1 \cdot 6792+3$.

Example ii. Given that $\log 1 \cdot 7692=\mathbf{2 4 7 7 7 6}$, find (i) $\log 16792$, (ii) $\log \cdot 0016792$, (iii) $\log 167 \cdot 92$.

Here

$$
\begin{aligned}
\log 16792 & =\log \left(1.6792 \times 10^{4}\right)=4.247776, \\
\log \cdot 0016792 & =\log \left(1.6792 \times 10^{-3}\right)=-3+\cdot 247776, \\
\log 167.92 & =\log \left(1.6792 \times 10^{2}\right)=2.247776
\end{aligned}
$$

123. It is convenient to keep the decimal part of common logarithms always positive, because then the decimal part of the logarithms of any numbers expressed by the same digits will be always the same.
124. The decimal part of a logarithm is called the mantissa.
125. The integral part is called the characteristic.
126. The characteristic of a logarithm can be always obtained by the following rule, which is evident from page 81.

RULE. The characteristic of the logarithm of a number greater than unity is one less than the number of integral figures in that number.

The characteristic of a number less than unity is negative, and (when the number is expressed as a decimal,) is one more than the number of cyphers between the decimal point and the first significant figure to the right of the decimal point.
127. When the characteristic is negative, as for example in the logarithm $-3+\cdot 1760913$, the logarithm is abbreviated thus, $\overline{3} \cdot 1760913$.

Example 1. The characteristics of $36741,36 \cdot 741, \cdot 0036741,3 \cdot 6741$ and 36741 are respectively $4,1,-3,0$, and -1 .

Example 2. Given that the mantissa of the logarithm of 36741 is 5651510 , we can at once write down the logarithm of any number whose digits are 36741 .

Thus

$$
\begin{array}{ll}
\log 3674100 & =6 \cdot 5651510, \\
\log 36741 & =4 \cdot 5651510, \\
\log 367 \cdot 41 & =2 \cdot 5651510, \\
\log \cdot 36741 & =\overline{1} \cdot 5651510, \\
\log \cdot 00036741 & =\overline{4} \cdot 5651510,
\end{array}
$$

and so on.
128. In any set of tables of common logarithms the student will find the mantissa only corresponding to any set of digits.

It would obviously be superfluous to give the characteristic.
129. It is most important to remember to keep the mantissa always positive.

Example. Find the fifth root of 00065061 .
Here $\quad \log _{10} \cdot 00065061=\overline{4} \cdot 8133207$,

$$
\begin{gathered}
\therefore \log _{10}(\cdot 00065061)^{\frac{1}{5}}=\frac{1}{5}(4 \cdot 8133207)=\frac{1}{6}(-4+\cdot 8133207) \\
=\frac{1}{6}(-5+1 \cdot 8133207)=-1+\cdot 3626641=\overline{1} \cdot 3626641, \\
\overline{1} \cdot 3626641=\log \cdot 23050,
\end{gathered}
$$

and
\therefore the fifth root of $\cdot 00065062=\cdot 23050$ nearly.

EXAMPLES. XXXVI.

1. Write down the logarithms of $776 \cdot 43,7 \cdot 7643, \cdot 00077643$ and 776430. (The table gives opposite the numbers 77643, the figures 8901023.)
2. Given that $\log _{10} 59082=4 \cdot 7714552$, write down the logarithms of $5908200,5 \cdot 9082, \cdot 00059082,590 \cdot 82$ and $5908 \cdot 2$.
3. Find the fourth root of $\cdot 0059082$, having given that

$$
\log 5 \cdot 9082=\cdot 7714552 ; 4 \cdot 4428638=\log _{10} 27724 .
$$

4. Find the product of $\cdot 00059082$ and $\cdot 027724$, having given that $\cdot 21431=\log 16380$ (cf. Question 3).
5. Find the 10 th root of 077643 (cf. Question 1), having given that $8890102=\log 7 \cdot 7448$.
6. Find the product of $(\cdot 27724)^{2}$ and $\cdot 077643$. (See Questions 1 and $3 ; 7758288=\log 59680$.)

MISCELLANEOUS EXAMPLES. XXXVII.

1. Find $\log _{2} 8, \log _{5} 1, \log _{8} 2, \log _{7} 1, \log _{32} 128$.
2. Show that the logarithms of all except eight of the numbers from 1 to 30 inclusive, can be calculated in terms of $\log 2, \log 3$ and $\log 7$.
3. Show that the logarithms of the numbers 1 to 10 inclusive may be found in terms of the logarithms of $8,14,21$.
4. The mantissa of the \log of 85762 is 9332949 . Find the \log of $\sqrt[11]{\cdot 0085762}$.
Find how many figures there are in the integral part of ($\$ 5762)^{11}$.
5. Find the product of $47 \cdot 609,476 \cdot 09, \cdot 47609, \cdot 000047609$, having given that $\log 4 \cdot 7609=\cdot 6776891$ and $\cdot 7107564=\log 5 \cdot 1375$.
6. What are the characteristics of the logarithm of 3742 to the bases $3,6,10$ and 12 respectively?
7. Having given that $\log 2=\cdot 3010300, \log 3=\cdot 4771213$ and $\log 7=\cdot 8450980$, solve the following equations:
(i)
$2^{x} \times 3^{4 x}=7^{2}$,
(ii) $3^{2 x}=128 \times 7^{4-x}$,
(iii) $12^{x}=49$,
(iv) $2^{8 x}=21^{4-3 x}$.
8. Given $\log _{10} 7$, find $\log _{7} 490$.
9. Given $\log _{10} 3$, find $\log _{9} 270$.
10. Given $\log _{10} 2$, find $\log _{5} 10$.
11. Given $\log _{8} 9=a, \log _{2} 5=b, \log _{5} 7=c$; find the logs to base 10 of numbers 1 to 7 inclusive.
12. How many positive integers are there whose logarithms to base 2 have 5 for a characteristic?
13. If a be an integer, how many positive integers are there whose logs to base a have 10 for their characteristic?
14. Given $\log 2$ and $\log 7$, find the eleventh root of $(39 \cdot 2)^{2}$.

$$
\log 1 \cdot 9485=\cdot 289688
$$

15. Prove that $7 \log \frac{1}{1} \frac{5}{6}+6 \log \frac{8}{3}+5 \log \frac{2}{5}+\log \frac{32}{26}=\log 3$.
16. Prove that $2 \log a+2 \log a^{2}+2 \log a^{3} \ldots+2 \log a^{n}=n(n+1) \log a$.
17. Prove that $\log _{a} b \cdot \log _{b} a=1$; and that $\log _{a} b \cdot \log _{b} c \cdot \log _{b} a=1$.
18. Prove that $\log _{a} r=\log _{a} b . \log _{b} c . \log _{c} d \ldots \log _{q} r$.
19. Given that the integral part of $(3 \cdot 456)^{100000}$ contains 53856 digits, find $\log 345 \cdot 6$ correct to five places of decimals.
20. Given that the integral part of $(3 \cdot 981)^{100000}$ contains sixty thousand digits, find $\log 39810$ correct to five places of decimals.
21. If the number of births in a year be $\frac{1}{48}$ of the population at the beginning of the year, and the number of deaths $\frac{1}{6} \sigma$, find in what time the population will be doubled.

Given $\log 2, \log 3$, and that $\log 241=2 \cdot 3820170$.
22. Prove that $\log s+\log (s-a)-\log b-\log c=2 \log \sqrt{\frac{s(s-a)}{b c}}$.
23. Prove that $\log \left(a^{2}+x^{2}\right)+\log (a+x)+\log (a-x)=\log \left(a^{4}-x^{4}\right)$.
24. Prove that $\log \sin 4 A=\log 4+\log \sin A+\log \cos A+\log \cos 2 A$.

CHAPTER XII.

On the Use of Mathematical Tables.

130. The Logarithms referred to in this chapter, and in future throughout the book, are Common Logarithms.
131. Books of Mathematical Tables usually give an explanation of their own contents, but there are some points common to all such Tables which we proceed to explain.
132. The student will be supposed to have access to a book containing the following :
(i) A list of the logarithms of all whole numbers from 1 to 99099 , calculated to seven significant figures;
(ii) A list of the numerical values, calculated to seven significant figures, of the Trigonometrical Ratios of all angles, between 0° and 90°, which differ by 1^{\prime};
(iii) A list of the logarithms of these Ratios calculated to seven significant figures.

These will be found in Chambers' Mathematical Tables.
133. We have said that logarithms are in general incommensurable numbers. Their values can therefore only be given approximately.

If the value of any number is given to seven significant figures, then the error (i.e. the difference between the given value and the exact value of the number) is less than a millionth part of the number.

Example. $3 \cdot 141592$ is the value of π correct to seven significant figures. The error is less than 000001 ; for π is less than $3 \cdot 141593$, and greater than $3 \cdot 141592$.

The ratio of 000001 to $3 \cdot 141592$ is equal to $1: 3141592$. The ratio of 000001 to π is less than this; i. e. much less than the ratio of one to one million.
134. An actual measurement of any kind must be made with the greatest care, with the most accurate instruments, by the most skilful observers, if it is to attain to anything like the accuracy represented by 'seven significant figures.'

Therefore the value of any quantity given correct to 'seven significant figures' is exact for all practical purposes.
135. We are given in the Tables the logarithms of all numbers from 1 to 99999 ; that is, of any number having five significant figures.

A Table consisting of the logarithms of all numbers from 1 to 9999999 (i.e. of any number having seven significant figures) would be a hundred times as large.
136. There is however a rule by which, if we are given a complete list of the logarithms of numbers having five significant figures, we can find the logarithms of numbers having six or seven significant figures.

Example. Suppose we require the logarithm of 4:804213.
From the Tables we find

$$
\begin{array}{ll}
\log 4.8042=6816211, & \text { i.e. } 4 \cdot 8042=10 \cdot 8816211 \ldots, \\
\log 4.8043=6816301, & 4.8043=10^{.6816301} \ldots
\end{array}
$$

The number $4 \cdot 804213$ lies between the two numbers $4 \cdot 8042,4.8043$ whose logarithms are found in the Tables, so that the required logarithm must lie between the two given logarithms.

Therefore we suppose that
$\log 4 \cdot 804213=\cdot 6816211+d$, \quad i.e. $4 \cdot 804213=10^{8816211 \cdots+d}$.
137. The RULE is as follows. The differences between three numbers are proportional to the corresponding differences between the logarithms of those numbers, provided that the differences between the numbers are small compared with the numbers.

Example. Thus in the above example $4 \cdot 8042,4 \cdot 8043$ and $4 \cdot 804213$ are three numbers; $\cdot 6816211, \cdot 6816301$ and $\cdot 6816211+d$ are their three logs.

The difference between the first and second numbers is $\cdot 0001$.
The difference between the first and third numbers is 000013 .
The difference between the logarithms of the first and second numbers is 000009 .

The difference between the logarithms of the first and third num. bers is d_{0}

By the Rule these differences are in proportion

$$
\begin{aligned}
\therefore \cdot 0001: \cdot 000013 & =\cdot 000009: d, \\
100: 13 & =\cdot 000009: d ; \\
d & =\cdot 00000117 \ldots
\end{aligned}
$$

or
whence
$\therefore \log 4 \cdot 804213=\cdot 6816211+\cdot 00000117 .$.

$$
=\cdot 68162227=\cdot 6816223 \text { (to seven figures). }
$$

138. We shall refer to the above rule as the Rule of Proportional Differences.

It is often called also 'The Principle of Proportional Parts.'
139. In Art. 197 we said that numbers are not proportional to their Logarithms. Hence the differences of numbers and the corresponding differences of their logarithms cannot be exactly in proportion. The rule is however true for all practical purposes. The proof of the rule belongs to a higher part of the subject than the present.
140. In the above example we said that

$$
6 \cdot 68162227=6 \cdot 6816223 \text {; }
$$

and for this reason. We are retaining only seven significant figures in the decimal part of the logarithm.

If we put $6 \cdot 6816222$ for $6 \cdot 68162227$ the 'error' is greater than 00000007.

If we put 6.6816223 for 6.68162227 the 'error' is less than ${ }^{\circ} 00000003$.

Thus the second error is less than the first.
In such a case, 1 must be added to the last digit which is retained, when the first digit which is neglected is 5 or greater than 5 .
141. We give two more specimen examples.

Example 1. Find the logarithm of $\cdot 004804213$.
We first find as before, by the rule of proportional differences, that

$$
\log 4 \cdot 804213=\cdot 6816223
$$

$\therefore \log \cdot 004804213=\overline{3} \cdot 6816223$.

Example 2. Find the number whose logarithm is $2 \cdot 5354291$.
In the Table we find that
and

$$
\begin{aligned}
& \cdot 5354207=\log 3 \cdot 4310 .(i) . \\
& \cdot 5354334=\log 3 \cdot 4311 \text {......................... (ii). } \\
& \cdot 5354291=\log (3 \cdot 4310+d) \ldots \ldots \text { (iii). }
\end{aligned}
$$

Here we have three logarithms and three numbers.
The difference between the first and second logs is 0000127.
The difference between the first and third logs is $\cdot 0000084$.
The difference between the first and second numbers is 0001 .
The difference between the first and third numbers is d.
By the Rule these four differences are in proportion,

$$
\therefore \cdot 0000127: \cdot 0000084=\cdot 0001: d,
$$

or,

$$
127: 84=0001: d ;
$$

$$
\therefore d=\cdot 0001 \times \frac{84}{127}=\cdot 0000661, \text { etc. }
$$

Therefore from (iii) $\cdot 5354291=\log (3 \cdot 4310+\cdot 0000 \mathrm{G} 0)$

$$
=\log 3 \cdot 431066
$$

Hence,
$2 \cdot 5354291=\log 343 \cdot 1066$,
or, the required number is $343 \cdot 1066$.

EXAMPLES. XXXVIII.

1. Find $\log 7 \cdot 65432$, having given that $\log 7 \cdot 6543=\cdot 8839055$, $\log 7 \cdot 6544=-8839112$.
2. Find $\log 564 \cdot 123$, having given that $\log 5 \cdot 6412=\cdot 7513715$, $\log 5 \cdot 6413=\cdot 7513792$.
3. Find $\log \cdot 0008736416$, having given that $\log 8 \cdot 7364=\cdot 9413325$, $\log 8 \cdot 7365=\cdot 9413375$.
4. Find $\log 6437125$, having given that $\log 6 \cdot 4371=\cdot 8086903$, $\log 6 \cdot 4372=\cdot 8086970$.
5. Find $\log 3 \cdot 72456$, having given that $\log 37245=4 \cdot 5710680$, $\log 37246=4 \cdot 5710796$.
6. Find the number whose logarithm is 5686760 , having given that $\quad \cdot 5686710=\log 3 \cdot 7040, \cdot 5686827=\log 3 \cdot 7041$.
7. Find the number whose logarithm is 4.6602987 , having given that $\quad \cdot 6602962=\log 4 \cdot 5740,6603057=\log 4 \cdot 5741$.
8. Find the number whose logarithm is 6.3966938 , having given that $\quad 3966874=\log 2 \cdot 4928, \quad 3967049=\log 2 \cdot 4929$.
9. Find the number whose logarithm is $\overline{4} \cdot 6431150$, having given that $\quad \cdot 6431071=\log 4 \cdot 3965, \cdot 6431170=\log 4 \cdot 3966$.
10. Find the number whose logarithm is 7550480 , having given that

$$
3 \cdot 7550436=\log 5689 \cdot 1,2 \cdot 7550512=\log 568 \cdot 92
$$

142. On pages 91 to 94 will be found a Table of the Logarithms of all numbers from 100 to 1000.

We proceed to give Examples involving the use of this table.

Example. Find to three significant figures the diagonal of a cube whoses side is $14 \cdot 7$ inches.

Let x be the number of inches in the diagonal,
then

$$
\begin{aligned}
x^{2} & =3 \times(14 \cdot 7)^{2} \\
\therefore x & =\sqrt{ } 3 \times 14 \cdot 7 \\
\therefore \log x & =\frac{1}{2} \log 3+\log 14 \cdot 7 \\
& =\frac{1}{2}(\cdot 47712)+1 \cdot 16732 \text { [from the table.] } \\
& =23856+1 \cdot 16732=1 \cdot 40588=\log 25 \cdot 46 \text { nearly. }
\end{aligned}
$$

Thus the diagonal is $25 \cdot 46$ inches (nearly).
143. By the aid of the rule of proportional parts we can work correctly to four figures by the aid of the table given.

Example. Find $\log 347 \cdot 6$.
From the table $\quad \log 3 \cdot 47=\cdot 54033$
$\log 3 \cdot 48=\cdot 54158$
difference for $\cdot 01=\cdot 0012,5$
\therefore difference for $\cdot 006=\cdot \cdot 00075$
$\therefore \log 347 \cdot 6=2 \cdot 54108$.

EXAMPLES. XXXIX.

Find the values of the following correct to four significant figures:

1. $\sqrt[8]{451}$.
2. $\sqrt[5]{802}$.
3. $(273)^{\frac{4}{5}} \times(234)^{\frac{1}{4}}$.
4. $(451)^{\frac{3}{5}} \times(231)^{\frac{4}{3}}$.
5. $\left(\frac{192 \cdot 5}{84}\right)^{3}$.
6. $\frac{(34 \cdot 79)^{\frac{2}{3}}}{(41 \cdot 25)^{\frac{3}{2}}}$.
7. $\frac{(24 \cdot 76)^{\frac{2}{7}}}{(.0045)^{\frac{3}{2}}}$.
8. $. ~ . ~ .03955 \times(89130)^{\frac{1}{7}}$.
9. $\frac{\frac{3}{2} \sqrt{ }(5 \cdot 2)}{5 \sqrt{ }(11 \cdot 31)} \times\left(\frac{3}{7}\right)^{-\frac{1}{2}}$.
10. $\sqrt[5]{ }\left\{\frac{2 \sqrt{ }(34)}{3 \sqrt{ }(791)}\right\} \cdot$ 11. $\frac{\sqrt[4]{3} 3}{\sqrt[6]{3}}$.
11. $\left(\frac{21^{3} \times 45^{5}}{2^{7} \times 3^{9}}\right)^{\frac{1}{2}}$.

Solve the equations correct to 4 figures.
13. $10^{x}=421$.
14. $\left(\frac{2}{2} \frac{1}{2}\right)^{x}=3$.
15. $\left(\frac{20}{2} 0 \frac{8}{8}\right)^{2 x}=2$.
16. $\left(\frac{2}{2} \frac{2}{6}\right)^{x}=3$.
17. $\log 37^{x+3}=3 \cdot 412$.
18. $x=10 \sqrt[3]{(31 \cdot 2)}$.

TABLE OF THE LOGARITHMS OF ALL

NUMBERS FROM 100 TO 1000.

		No.	Log.	No.		No.		No.	Log.
	000		15	186	26951	22	35983	272	43457
	00	144	1583	187	27184	230	36172	273	6
102	00860	145	16137	188	27416	231	36361	274	43775
103	0128	146	16435	189	27646	232	36549	275	439
10.	OI	147	16732	190	27875	233	36736	276	44091
105	02	148	17026	191	28103	234	36922	277	44248
106	02531	149	173	192	2833	235	37107	278	44404
107	02938	150	17609	193	2855	236	37291	279	44560
108	03342	151	17898	194	28780	237	37475	280	44716
09	03743	${ }^{1} 52$	18184	195	29003	${ }^{2} 3^{8}$	37658	281	44870
110	04139	${ }^{1} 53$	18469	196	2922	239	37840	282	45025
III	04532	${ }^{1} 54$	18752	197	2944	240	38021	283	45179
112	0492	${ }^{1} 55$	19033	198	2966	24	3^{820}	284	45332
113	0530	156	19312	199	29885	242	383	5	45484
114	05690	${ }^{1} 57$	1959	200	30103	243	38	86	45637
115	06070	158	1986	201	30320	$24+$	38739	87	45788
116	06446	159	20140	202	30535	245	38917	288	459.39
11	06819	160	20412	203	30750	246	3909	289	46090
118	07188	161	20683	204	30963	247	39^{2}	9	46240
119	07555	162	2095	205	31175	248	394	291	
120	07918	163	21219	206	31387	249	396	292	46538
121	08279	I_{4}	21484	207	3r 597	250	39795,	293	46687
122	08636	165	217	208	3180	251	399	仡	46835
12	-8991	166	22011	209	32015	252	40	295	46982
124	0934	167	22272	210	3	253	40	296	47129
125	09691	168	2253	211	32428	254	$40+83$	297	47276
12	10037	1	22789	212	3263		40654	298	47422
127	10380	170	23045	213	32838	256	40824	299	47567
128	10721	171	23300	214	33041	${ }^{2} 57$	40993	300	47712
129	1105	172	2355	215	332	258	41162	301	47857
130	11394	173	23805	216	3344	250	41330	302	48001
131	11727	174	24055	217	33	260	41497	303	48144
132	12057	175	24304	218		261	41664	304	48287
133	12385	176	24551	219	34044	262	41830	305	$4{ }^{8} 430$
134	12710	177	24797	220	$3+242$	263	41996	30	48572
135	13033	178	25042	221	34439	26_{4}	4216	307	48714
136	13354	179	25285	222	34635	265	42325	308	
137	$1367{ }^{2}$	180	25527	223	3483	266	42488	309	48996
138	I 3988	181	25768	224			42651	310	49136
139	14301	$18 z$	20007	225	35	268	42813	311	492-6
140	14613	183	26245	226	35411	269	42975	31	49415
141	1492 I	184	26482	227	35602	270	43136	313	49554
142	15229	185	26717	228	35793	271	43297		49693

No.	Log.								
315	49831	361	5575 I	407	60959	453	65610	499	69810
316	49969	362	55871	408	61066	454	65705	500	69897
317	50106	363	55991	409	61172	455	65801	501	69984
318	50243	364	$56: 10$	41	61278	456	65896	502	70070
319	50379	365	56229	4II	61384	457	65992	503	70157
320	50515	366	56348	412	61470	458	66087	504	70243
321	5065 I	367	${ }_{5} 6{ }_{4} 67$	413	${ }_{61595}$	459	66181	505	70329
322	50786	368	56585	414	61700	460	66276	506	70415
323	50920	359	56703	415	61805	461	66370	507	70501
324	51055	370	56820	416	61909	462	$66_{4} 64$	508	70586
325	51188	$3{ }^{7} 1$	56937	417	62014	463	66.58	509	70672
326	51322	372	57054	418	62118	464	66552	510	70757
327	51455	373	57871	419	62221	465	ó6745	51	70842
328	51587	374	57287	420	62325	466	66839	512	70927
329	51720	375	57403	42 I	62428	467	66932	513	71011
330	51851	376	57519	422	62.351	468	67025	514	71096
331	51983	377	57634	423	62634	469	67117	515	71181
332	52114	378	57749	$42+$	62737	470	67210	516	71265
333	52244	379	57864	425	62839	47 t	67302	517	71549
334	52375	380	57978	426	62941	472	67394	518	71433
335	52504	381	58093	427	63043	473	67486	519	71517
336	52634	382	58206	428	63144	474	67578	520	71600
337	52763	383	58320	429	63246	475	67669	521	71684
338	52892	$38+$	$5^{8}+33$	430	63347	476	67761	522	71767
339	53020	385	58546	431	63448	477	67852	523	71850
340	53148	386	58659	432	63548	478	67943	524	71933
341	53275	387	58771	433	63649	479	68034	525	72016
342	53403	388	58883	434	63749	480	68124	5	72099
$3+3$	53529	389	58995	435	63849	481	68215	527	72181
344	53656	39°	59106	436	63949	482	68305	528	72263
345	53782	391	59218	437	64048	483	68395	529	$723+6$
346	53908	392	59329	43^{8}	64147	484	68485	530	72428
347	54033	393	59439	439	64246	$4^{8} 5$	68574	531	72509
348	54158	394	59550	440	64345	486	68664	532	72591
$3+9$	54283	395	59660	441	64444	487	68753	533	72673
350	54407	396	59770	442	64542	488	68842	534	72754
35 I	54531	397	59879	443	64640	489	68931	535	72835
352	54654	398	59988	444	64738	490	69020	536	72916
353	54777	399	60097	445	64836	491	69108	537	72997
354	54900	400	60206	446	64933	492	69197	538	73078 73159
355 356	55023 55145	401 402	60314 60423	447 448	6503 r 65128	493 494	69285	5	73159 73239
356	55145	402	60423 60530	448	65128	494	69373	540	73239 73320
357	55267	403	60530	449	65225	495	69461	541	73320
358	55388	404	60638	450	6532 I	496	69548	542	73400
359	55509	405	60746	451	65418	497	69636	543	73480
360	55630	406	60853	452	65514	498	69723	544	73560

No.		No		No.				No.	og.
			77	6		68			
	7371	59^{2}	77232	638	8048	684	83	730	86332
547	73799	593	77305	639	80550	685	83569	73	86392
548	73878	594	77379	640	80618	686	83632	73	8645 I
549	73957	595	7745^{2}	641	80586	687	83696	733	86510
55°	74036	596	77525	64	80	688	83759	73	\%
551	74115	597	77597	643	8082	68	8382	73	
552	7419	598	77670	644	80889	690	8388	736	86688
553	7427	59	7 7 74	645	80956	691	83948	737	86747
	74351	60	7781	646	81023	69^{2}	84011	738	86806
	$7+429$	601	7588	$6+7$	81090	693		739	86864
55	74507	60	7796	648	81158	694	$8+13$	740	86923
55	745	60	7803	649	8122		$8{ }^{81}{ }^{8} 8$	741	86982
55	74663	60	7810	650	8129	696	84261	742	87040
559	74741	60	781%	651	8135	697	84.323	743	87099
5	7481	60	78247	652	81425	698	84385	74	87157
561	7489	607	78319	653	8149	699	844	74	87216
562	7497	60	${ }^{7} 839$	654	81	700	8	746	87274
563	75051	6	784		81	701	8	747	${ }^{87332}$
564	75128	61	78533	65	8169	702	846	748	87390
565	75205	61	78604	65	8175	703	84696	749	87448
566	75281	612	7867	658	81823	704	84757	750	87506
567	75358	613	7874	659	81889	705	84819	75	
	75	61	788	660	8195	706	8488	752	87622
569	75511	61	78	661	8202	707	84942	753	87680
570	75587		78958	662	8208	708	85003	75	87737
571	75664	61	79029	663	8215	709	85065		87795
572	7574	61	79099	664	82217	710	85126	75	87852
573	7581	61	7916	665	82282	711	85187	75	87910
57	7589	6	79239	666	82	712	8524	758	87967
575	7596	62	79309	667	82	713	85309		88024
57	76042	62	79379	668	82478	714	85370	760	88081
577	7611	623	79449	669	82543		85431		
578	7619	624	7951	670	82607		85491	6	88196
579	7626	62		671	82672	717	85552	76	88252
		626	7965	672		718	85612	764	88309
	76	62		673	82802		85673		
582	76	62	79796	674	8286	720	85733	766	
58	7656	629	79865	6	82930	721	85794		
584	76641	630	79934	676	82995		85854	768	88.536
	76716	631	80003	677	83059	72	85914	769	88593
586	7679	632	80072	678	83123	724	85974	770	88649
	7686	633	$8 \mathrm{SO}_{4}$	679	83189		86034	771	88705
	7693	63		680		726	86094	78	88762
589	77012	635		681			86153	773	88818
590	77085	636	80346	682	83378	72	86213	774	88874

No.	Log.								
775	188930	820	91381	865	93702	910	95904	955	98000
776	88986	821	91434	866	93752	911	95952	956	98046
777	88042	822	91487	867	93802	912	95999	957	98091
778	89098	823	91540	868	93852	913	96047	95^{8}	98137
779	89154	824	91593	869	93902	914	96095	959	98182
780	8)209	825	91645	870	93952	915	96142	960	98227
781	89265	826	91698	871	94002	916	96190	961	9^{8272}
782	89321	827	91751	872	94052	917	96237	962	98318
783	89376	828	91803	873	94101	918	96284	963	98363
784	89432	829	9185	874	94151	919	96332	964	98408
785	89487	830	91908	875	94201	920	96379	965	$9^{8} 453$
786	89542	831	91960	876	94250	921	96426	966	98498
787	89597	832	92012	877	94300	922	96473	967	98543
788	89653	833	92065	878	94349	923	96520	968	98588
789	89708	834	92117	879	94399	924	96567	969	98632
790	89763	835	92169	880	94448	925	96614	970	98677
791	89818	836	92221	88I	94498	926	96661	971	98722
792	89873	837	92273	882	94547	927	96708	972	98767
793	89927	838	92324	883	94.596	928	96754	973	988i I
794	89982	839	92376	884	94645	929	96801	974	${ }_{98856}$
795	90037	${ }^{8} 80$	92428	885	94694	93°	96848	975	98900
796	90091	84 I	92480	886	94743	93 I	96895	976	98945
797	90146	84^{2}	92531	887	94792	932	96941	977	98990
798	90200	${ }_{8} 83$	92583	888	94841	933	96988	978	99034
799	90255	844	92634	889	94880	934	97035	979	99078
800	90309	845	92686	890	94949	935	97081	980	99123
80	90363	846	92737	891	94988	936	97128	981	99167
802	90417	847	92788	892	95036	937	97174	982	99211
803	90472	848	92840	893	95085	938	97220	983	99255
804	90526	849	92891	${ }^{8} 94$	95134	939	97267	984	99300
805	90580	850	92942	895	95182	94°	97313	985	99344
806	90634	851	92993	896	95231	94 I	97359	986	99388
807	90687	852	93044	897	95279	94^{2}	97405	987	99432
808	90741	853	93095	898	95328	943	97451	988	99476
809	90795	854	93146	899	95376	944	97497	989	99520
8 ra	90849	855	93197	900	95424	945	97543	990	99.64
811	90902	856	93247	901	95472	946	97589	991	99607
8 812	90956	857	93298	902	95521	947	97635	99^{2}	99651
813	91009	858	93349	903	95569	948	97681	993	99695
$8{ }^{8} 4$	91062	859	93399	904	95617	949	97727	994	99739
815	91116	860	93450	905	95665	950	97772	995	99782
816	91169	86 I	93500	906	95713	951	97818	996	99826
817 818 818	91222	862	9355 L	907	95761	952	97864	997	99870
818 819	91275	863	93601	908	95809	953	97909	998	99913
819	91328	864	93651	909	95856	954	97955.	999	99957

Example (i). Find the amount at Compound Interest on $£ 1$ for 8 years at 5 per cent.

To find the amount for 1 year we multiply by $\frac{10}{2} \frac{5}{8}$, i.e. by $\frac{2}{2} \frac{1}{8}$.
The amount for 2 years will be $£ \frac{21}{2} \times \frac{21}{2}$ and the amount for 8 years $=\left(\frac{2}{2} \frac{1}{6}\right)^{8}$.

Let x be the required amount in pounds, then

$$
\begin{aligned}
x & =\left(\frac{2}{2} \frac{1}{0}\right)^{8} \\
\therefore \log x & =8(\log 21-\log 20) \\
& =8(1 \cdot 32222-1 \cdot 30103)=8(\cdot 02119) \\
& =\cdot 16852=\log 1 \cdot 474 \ldots
\end{aligned}
$$

Hence, to find the amount at Compound Interest for 8 years at 5 per cent. we multiply the Principal expressed in pounds by $1 \cdot 474+\ldots$

Example (ii). In how many years will the Principal be doubled at 5 per cent. Compound Interest ?

Let x be the number of years, then
hence
$\left(\frac{2}{2} \frac{1}{6}\right)^{x}$ is the amount at the end of x years,
or $\quad x(\log 21-\log 20)=\log 2 \therefore x=\frac{\cdot 30103}{.02119}=\frac{30103}{2119}=14 \cdot 2$.

EXAMPLES. XL.

1. Find the Compound Interest on $£ 100$ for 10 years at 4 per cent.
2. Find the Compound Interest on $£ 1$ for 8 years at 5 per cent.
3. In how many years will a sum of money be doubled at 3 per cent. Compound Interest?
4. In how many years will a sum of money be doubled at 4 per cent. Compound Interest?
5. Find the present value of $£ 100$ to be paid 8 years hence reckoning Compound Interest at 4 per cent.
6. If the number of births in a town are 25 per 1000 and the deaths 20 per 1000 annually, in how many years will the population be doubled?
7. On the birth of an infant $£ 1000$ is invested at Compound Interest in the Funds (3 per cent. payable half-yearly); calculate what it will be worth when the child is 21 years old.
8. In what time will a sum of money treble itself at 3 per cent. Compound Interest payable half-yearly?
9. A sum of 1 shilling lent on condition of 1 penny interest being paid monthly, accumulates at Compound Interest at the same rate for 12 years; what will be then the amount?
10. A man puts by $2 d$. at the end of the second week of the year, $4 d$. at the end of the fourth week, $8 d$. at the end of the sixth week; what sum would be put by for the last fortnight in the year?
11. A train starting from rest has at the end of 1 second velocity -001 ft . per sec. and at the end of each second its velocity is greater by one-third than at the end of the preceding second; find the velocity in miles per hour at the end of 25 seconds.
12. The volume of a sphere is $\frac{4}{3} \pi \times$ (cube of the radius); find the diameter of the sphere which contains a cubic yard.
13. The same Rule of Proportional Differences is used in the case of angles and their Trigonometrical Ratios; and therefore also in the case of angles and the logarithms of their Ratios.

Thus the (small) differences between three angles are assumed to be proportional to the corresponding differences between the sines of those three angles ; also, proportional to the corresponding differences between the logarithms of the sines of those angles.
145. Sines and cosines are always less than unity, as also are the tangents of all angles between 0° and 45°.

The logarithms of these Ratios must therefore have negative characteristics.

To avoid the inconvenience of having to print these negative characteristics, the whole number 10 is added to each logarithm of the Trigonometrical Ratios, before it is set down in the Table.

The numbers thus recorded are called the tabular logarithms of the sine, cosine, etc., of an angle.

They are indicated by the letter ' L .'
Thus L $\sin 31^{\circ} 15^{\prime}$, stands for the tabular logarithm of $\sin 31^{\circ} 15^{\prime}$, and is equal to $\left\{\log \left(\sin 31^{\circ} 15^{\prime}\right)+10\right\}$.

The words logarithmic sine are used as abbreviation for tabular logarithm of the sine.

Thus in the tables we find $L \sin 31^{0} 15^{\prime}=9.7149776$.
Therefore

$$
\log \left(\sin 31^{0} 15^{\prime}\right)=9 \cdot 7149776-10=\overline{1} \cdot 7149776
$$

Example 1. Find $\sin 31^{0} 6^{\prime} 25^{\prime \prime}$.
The Tables give $\sin 30^{\circ} 6^{\prime}=\cdot 5165333 \ldots \ldots$. (i),
$\sin 31^{0} 7^{\prime}=\cdot 5167824 \ldots \ldots \ldots \ldots \ldots \ldots$................
$\sin 31^{0} 7^{\prime} 25^{\prime \prime}=\cdot 5165333+d$
The difference between the first two angles is $60^{\prime \prime}$.
The difference between the first and third angle is $25^{\prime \prime}$.
The differences between the corresponding sines are 0002491 and d.
By the Rule these four differences are in proportion.
Therefore $60^{\prime \prime}: 35^{\prime \prime}={ }^{\circ} 0002491: d$,

$$
\therefore d=\cdot 0002491 \times \frac{25}{6}=\cdot 0001038 .
$$

Hence from (iii) $\sin 31^{\circ} 7^{\prime} 25^{\prime \prime}=\cdot 5165333+\cdot 0001038=\cdot 5166371$.
Example 2. Find the angle whose logarithmic cosine is 9.7858083 .
The table gives

$$
\begin{aligned}
& 9 \cdot 7857611=L \cos 52^{\circ} 22^{\prime} .(i), ~ \\
& 9 \cdot 7859249=L \cos 52^{0} 21^{\prime} \text {.....................(ii). }
\end{aligned}
$$

The cosine diminishes as the angle increases. Hence corresponding to an increase in the angle there is a diminution of the cosine.

Hence, let $\quad 9 \cdot 7858083=L \cos \left(50^{\circ} 22^{\prime}-D\right)$
Subtracting the first tabular logarithm from the second the difference is 0001638 .

Subtracting the first tabular logarithm from the third, the difference is 0000472 .

Subtracting the first angle from the second, the difference is $-60^{\prime \prime}$.
Subtracting the first angle from the third, the difference is $-D$.
By the Rule these four differences are in proportion.
Therefore 0001638 : $\cdot 0000472=-60^{\prime \prime}:-D$.
$\therefore D=60^{\prime \prime} \times \frac{472}{188}=17.3^{\prime \prime}$.
Hence

$$
\begin{aligned}
9 \cdot 7858083 & =L \cos \left(52^{\circ} 22^{\prime}-17^{\prime \prime}\right) \\
& =L \cos 52^{\circ} 21^{\prime} 43^{\prime \prime} .
\end{aligned}
$$

EXAMPLES. XLI.

1. Find $\sin 42^{\circ} 21^{\prime} 30^{\prime \prime}$
aaving given that
$\sin 42^{\circ} 21^{\prime}=\cdot 6736577$
$\sin 42^{\circ} 22^{\prime}={ }^{\circ} 6738727$.
2. Find $\cos 47^{\circ} 38^{\prime} 30^{\prime \prime}$
aaving given that $\quad \cos 47^{\circ} 38^{\prime}=\cdot 6738727$
$\cos 47^{\circ} 39^{\prime}=\cdot 6736577$.
3. Find $\cos 21^{\circ} 27^{\prime} 45^{\prime \prime}$
aaving given that $\quad \cos 21^{\circ} 27^{\prime}=\cdot 9307370$
$\cos 21^{\circ} 28^{\prime}=\cdot 9306306$
L. T. B.
4. Find the angle whose sine is 6666666 having given that $\quad \cdot 6665325=\sin 41^{\circ} 48^{\prime}$ - $6667493=\sin 41^{\circ} 49^{\prime}$.
5. Find the angle whose cosine is 3333333 having given that

$$
\cdot 3332584=\cos 70^{\circ} 32^{\prime}
$$

$\cdot 3335326=\cos 70^{\circ} 31^{\prime}$.
6. Find the angle whose cosine is $\mathbf{2 5}$ having given that

$$
\cdot 2498167=\cos 75^{\circ} 32^{\prime}
$$

$$
\cdot 2500984=\cos 75^{\circ} 31^{\prime}
$$

7. Find $L \sin 45^{\circ} 16^{\prime} 30^{\prime \prime}$ having given that $\quad L \sin 45^{\circ} 16^{\prime}=9 \cdot 8514969$

$$
L \sin 45^{\circ} 17^{\prime}=9 \cdot 8516220
$$

8. Find $L \tan 27^{\circ} 13^{\prime} 45^{\prime \prime}$
having given that $\quad L \tan 27^{\circ} 13^{\prime}=9.7112148$
$L \tan 27^{\circ} 14^{\prime}=9 \cdot 7115254$.
9. Find $L \cot 36^{\circ} 18^{\prime} 20^{\prime \prime}$
having given that $L \cot 36^{\circ} 18^{\prime}=10 \cdot 1339650$
$L \cot 36^{\circ} 19^{\prime}=10 \cdot 1337003$.
10. Find the angle whose Logarithmic tangent is 9.8464028 having given that

$$
\begin{aligned}
& 9 \cdot 8463018=L \tan 35^{\circ} 4^{\prime} \\
& 9 \cdot 8465705=L \tan 35^{\circ} 5^{\prime} .
\end{aligned}
$$

11. Find the angle whose Logarithmic cosine is $9 \cdot 9448230$ having given that

$$
\begin{aligned}
& 9 \cdot 9447862=L \cos 28^{\circ} 17^{\prime} \\
& 9 \cdot 9448541=L \cos 28^{\circ} 16^{\prime} .
\end{aligned}
$$

12. Find the angle whose Logarithmic cosecant is 10.4274623 having given that $10 \cdot 4273638=L \operatorname{cosec} 21^{\circ} 57^{\prime}$ $10 \cdot 4276774=L \operatorname{cosec} 21^{\circ} 56^{\prime}$.
13. Problems in which each of the lines involve contains an exact number of feet, and each angle an exac number of degrees, do not occur in practical work.

As from time to time the skill of observers and of in strument-makers has increased, so also has the number c significant figures by which observations have been recordec

Thus the want was felt of some method by which th labour involved in the multiplication and division of lon numerical quantities could be avoided. In the year 1614 Scotch mathematician, John Napier, Baron of Merchistor proposed his method of 'Logarithms'; i.e. the method o representing numbers by indices; 'which, by reducing t a few days the labour of many months, doubles, as i were, the life of an astronomer, besides freeing him fro the errors and disgust inseparable from long calculations Laplace.
147. We shall now give a few examples of the practical use of logarithms.

Example 1. The sides containing the right angle C in a rightangled triangle $A B C$ contain $3456 \cdot 4 \mathrm{ft}$. and 4543.5 ft . respectively; find the angles of the triangle, and the length of the hypotenuse.

Let a, b, c be the lengths of the sides of the triangle opposite the angles A, B, C respectively. See figure, p. 25.

Then $a=3456 \cdot 4$ feet, $b=4543 \cdot 5$ feet.

$$
\tan A=\frac{a}{b}=\frac{3456 \cdot 4}{4543.5}
$$

In the Tables we find

$$
\log 3456 \cdot 4=3 \cdot 5386240
$$

$$
\log 4543 \cdot 5=3 \cdot 6573905
$$

$$
\therefore \log \frac{a}{b}=\log a-\log b
$$

$$
=3 \cdot 5386240-3 \cdot 6573905
$$

$$
\therefore \log \tan A=\overline{1} \cdot 8812335 .
$$

$$
\therefore L \tan A=9 \cdot 8812335
$$

In the Tables we find

$$
\begin{aligned}
& 9 \cdot 8810522=L \tan 37^{\circ} 15^{\prime} \\
& 9 \cdot 8813144=L \tan 37^{\circ} 16^{\prime} .
\end{aligned}
$$

Whence we find by the Rule of Proportional Differences $9 \cdot 8812335=L \tan 37^{\circ} 15^{\prime} 42^{\prime \prime}$.

$$
\therefore A=37^{0} 15^{\prime} 42^{\prime \prime}
$$

Also $B=\left(90^{\circ}-A\right), \quad \therefore B=52^{\circ} 44^{\prime} 18^{\prime \prime}$,

$$
\frac{c}{a}=\operatorname{cosec} A=\operatorname{cosec} 37^{\circ} 15^{\prime} 42^{\prime \prime}
$$

$\therefore \log c=\log a+\log \operatorname{cosec} 37^{\circ} 15^{\prime} 42^{\prime \prime}$

$$
\begin{aligned}
& =\log a+L \operatorname{cosec} \quad 37^{0} 15^{\prime} 42^{\prime \prime}-10 \\
& =3.5386240+10.2179174-10 \\
& =3.7565414 \\
& =\log 5708.8
\end{aligned}
$$

\therefore the hypotenuse contains 5708.8 feet.
Thus we have found the angles and the third side of the triangle.
148. There are some formulæ which are seldom used in practical work, because they are not adapted to logarithmi calculation. They are those in which powers of quantitie are connected by the signs + or - .

Example. In the above example we might have found the lengtl of the hypotenuse by means of the formula $c^{2}=a^{2}+b^{2}$.

But we should have had to go through the process of calculatin by multiplication the values of a^{2} and b^{2}.

For this reason, a formula which consists entirely o factors is always preferred to one which consists of terms when any of those terms contain any power of the quantitie involved.

If in the above example the lengths of the hypotenuse c and of on side a were given, then the formula $l^{2}=c^{2}-a^{2}=(c-a)(c+a)$ will giv the length of b. For $\log b^{2}=\log \{(c-a)(c+a)\}$,
or,

$$
2 \log b=\log (c-a)+\log (c+a) .
$$

And the values of $(c+a)$ and $(c-a)$ are easily written down fror the given values of c and a.

EXAMPLES. XLII.

In the following questions A, B, C are the angles of a right-angle triangle of which C is a right angle, and a, b, c are the lengths of th sides opposite those angles respectively.

1. Given that $a=1046.7$ yards, $c=1856.2$ yards, $C=90^{\circ}$, find A. $\log 1046 \cdot 7=3 \cdot 0198222, \log 1856 \cdot 2=3 \cdot 2686248$,
$L \sin 34^{0} 19^{\prime}=9 \cdot 7510991$, $L \sin 34^{\circ} 0^{\prime}=9 \cdot 7512842$.
2. Given that $a=843 \cdot 2$ feet, $C=90^{\circ}$, and $A=34^{\circ} 15^{\prime}$, find c. $\log 843 \cdot 2=2 \cdot 9259306, L \operatorname{cosec} 34^{0} 15^{\prime}=10 \cdot 2496421$, $\log 1 \cdot 4982=\cdot 17557$.
3. Given that $a=4845$ yards, $b=4742$ yards, and $C=90$, find A. $\log 4845=3 \cdot 6852938, \log 4742=3 \cdot 6759615$, $L \tan 45^{\circ} 36^{\prime}=10 \cdot 0090965, L \tan 46^{\circ} 37^{\prime}=10 \cdot 0093492$.
4. Given that $c=8762$ feet, $C=90$, and $A=37^{\circ} 10^{\prime}$, find a and b. $\log 8762=3 \cdot 9426032, L \sin 37^{\circ} 10^{\prime}=9 \cdot 7811344$,
$L \cos 37^{\circ} 10^{\prime}=9 \cdot 9013938, \log 5 \cdot 2934=\cdot 72373$, $\log 6 \cdot 9823=-843997$.
5. Given that $b=1694 \cdot 2$ chains, $C=90^{\circ}$, and $A=18^{\circ} 47^{\prime}$, find a. $\log 1694 \cdot 2=3 \cdot 2289647, L \cot 18^{\circ} 47^{\prime}=10 \cdot 4683893$, $\log 5 \cdot 7620=\cdot 76057$.
6. Given that $a=1072$ chains, $c=4849$ chains, and $C=90^{\circ}$, find $\log 5921=3 \cdot 7723951, \log 3777=3 \cdot 5771470$, $\log 4 \cdot 729=\cdot 67477$.
7. Given that $b=841$ feet, $c=3762$ feet, and $C=90^{\circ}$, find a. $\log 4603=3 \cdot 6630410, \log 2921=3 \cdot 4655316$, $\log 3 \cdot 6668=\cdot 56428$.
8. Given that $a=7694^{\circ} 5$ chains, $b=8471$ chains, $C=90^{\circ}$, find A and c.
$\log 7694 \cdot 5=3 \cdot 8861804, \log 8471=3 \cdot 9279347$,
$L \tan 42^{\circ} 15^{\prime}=9 \cdot 95824, L \operatorname{cosec} 42^{0} 15^{\prime}=10^{\circ} \cdot 1723937$,
$\log 1 \cdot 1444=\cdot 05857$.

MISCELLANEOUS EXAMPLES. XLIII.

1. A balloon is at a height of 2500 feet above a plain and its angle of elevation at a point in the plain is $40^{\circ} 35^{\prime}$. How far is the balloon from the point of observation? $L \operatorname{cosec} 40^{\circ} 35^{\prime}=10 \cdot 18672$.
2. A tower standing on a horizontal plain subtends an angle of $37^{\circ} 19^{\prime}$ at a point in the plain distant $369 \cdot 5$ feet from the foot of the tower. Find the height of the tower. $L \tan 37^{\circ} 19^{\prime}=9 \cdot 88210$.
3. The shadow of a tower on a horizontal plain in the sunlight is observed to be $176 \cdot 2$ feet and the elevation of the sun at that moment is $33^{\circ} 12^{\prime}$. Find the height of the tower. $L \tan =9.81583$.
4. From the top of a tower 163.5 feet high by the side of a river the angle of depression of a post on the opposite bank of the river is $29^{\circ} 47^{\prime}$. Find the distance of the post from the foot of the tower. $L \cot 39^{\circ} 47^{\prime}=10 \cdot 67952$.
5. Given $a=673, b=416$ chains, $C=90^{\circ}$, find A and B. $L \tan 58^{\circ} 17^{\prime}=10 \cdot 20900$.
6. Given $a=576, c=873$ chains, $C=90^{\circ}$, find b and A. $L \sin 41^{\circ} 17^{\prime}=9 \cdot 81940, L \cos 41^{\circ} 17^{\prime}=9 \cdot 87590$.
7. From the top of a light-house 112.5 feet high, the angles of depression of two ships, when the line joining the ships points to the foot of the light-house, are $27^{\circ} 18^{\prime}$ and $20^{\circ} 36^{\prime}$ respectively. Find the distance between the ships.
$L \cot 27^{\circ} 18^{\prime}=10 \cdot 28723, L \cot 20^{\circ} 36^{\prime}=10 \cdot 42496$.
8. From the top of a cliff the angles of depression of the top and bottom of a light-house $97 \cdot 25$ feet high are observed to be $23^{\circ} 17^{\prime}$ and $24^{\circ} 19^{\prime}$ respectively. How much higher is the cliff than the light-house? $L \tan 23^{\circ} 17^{\prime}=9 \cdot 63379, L \tan 24^{\circ} 19^{\prime}=6 \cdot 65501$.
9. Find the distance in space travelled in an hour, in consequence of the earth's rotation, by St Paul's Cathedral. (Latitude of London $=51^{\circ} 25^{\prime}$, earth's diameter $=7914$ miles.)

$$
L \cos 51^{\circ} 25^{\prime}=9 \cdot 79494
$$

10. The angle of elevation of a balloon from a station due south of it is $47^{\circ} 18^{\prime}$, and from another station due west of the former and distant 671 feet from it the elevation is $41^{\circ} 14^{\prime}$. Find the height of the balloon.
$\cot 47^{\circ} 18^{\prime}=\cdot 92277, \cot 41^{0} 14^{\prime}=1 \cdot 14095$.

CHAPTER XIII.

On the Relations between the Sides and Angles of a Triangle.
149. The three sides and the three angles of any triangle, are called its six parts.

By the letters A, B, C we shall indicate geometrically, the three angular points of the triangle $A B C$; algebraically, the three angles at those angular points respectively.

By the letters a, b, c we shall indicate the measures of the sides $B C, C A, A B$ opposite the angles A, B, C respectively.
150. I. We know that, $A+B+C=180^{\circ}$. [Euc. I. 32.]
151. Also if A be an angle of a triangle, then A may have any value between 0° and 180°. Hence,
(i) $\sin \mathbf{A}$ must be positive (and less than 1),
(ii) $\cos \mathbf{A}$ may be positive or negative (but must be numerically less than 1),
(iii) $\tan \mathrm{A}$ may have any value whatever, positive or negative.

APPENDIX.

In some Examinations, as for instance that of the 2nd stage, Mathematics, of the South Kensington Science and Art Department, Chapters Ix. and x. of this book (the $A, B ; S, T$; and $2 A$ formulæ) are not required. As, however, the student is required to solve Triangles by the aid of Logarithms he must use [see Arts. 158, 159, 161, 162] the two following propositions. The proofs here given are deduced from Euclid ini.

Prop. I. To prove that

$$
\cos A=2 \cos ^{2} \frac{1}{2} A-1=1-2 \sin ^{2} \frac{1}{2} A
$$

Let $R O P$ be the angle A; with O as centre and any radius $O R$ describe the semicircle $R P L$; join $P L, P R$, and draw $P M$ perpendicular to $L O R$.

Then

$$
\begin{aligned}
P O M=O L P+O P L & =2 O L P, \\
\therefore O L P=\frac{1}{2} P O M & =\frac{1}{2} A .
\end{aligned}
$$

Now, $\cos \dot{A}=\frac{O M}{O P}=\frac{L M-L O}{O P}=\frac{2 L M}{2 O P}-\frac{O P}{O P}$

$$
\begin{align*}
& =2 \cdot \frac{L M}{L P} \cdot \frac{L P}{L R}-1=2 \cos O L P \cdot \cos O L P-1 \\
& =2 \cos ^{2} \frac{1}{2} A-1 \ldots \tag{i}\\
& =2\left(1-\sin ^{2} \frac{1}{2} A\right)-1 \\
& =1-2 \sin ^{2} \frac{1}{2} A \ldots \ldots \ldots \ldots \ldots \tag{ii}
\end{align*}
$$

Nоте. $\sin A=\frac{M P}{O P}=2 \cdot \frac{M P}{L P} \cdot \frac{L P}{2 O P}=2 \cdot \frac{M P}{L P} \cdot \frac{L P}{L R}$

$$
=2 \sin O L P \cdot \cos O L P=2 \sin _{2} \frac{1}{2} A \cdot \cos \frac{1}{2} A .
$$

Prop. II. To proveg that in any triangle $\tan \frac{B-C}{2}=\frac{b-c}{b+c} \cot \frac{A}{2}$.

Let $A B C$ be a triangle of which the angle B is greater than C.

Make the angle $B C D=B$ and produce $B A$ to D.
In the triangle $A C D$ inscribe the circle $L M N$, centre I, touching the sides in L, M, N; join $I L, I M, I N, I A, I C$.

Then $I C M=\frac{1}{2} L C M=\frac{1}{2}(D C B-A C B)=\frac{1}{2}(B-C)$,

$$
I A M=\frac{1}{2} D A C=\frac{1}{2}\left(180^{\circ}-C A B\right)=\left(90^{\circ}-\frac{1}{2} A\right),
$$

$C M=C L=C D-L D=B D-N D=B N=B A+A M$;
$\therefore C M=\frac{1}{2}(C M+B A+A M)=\frac{1}{2}(A C+A B)=\frac{1}{2}(b+c)$,
and

$$
A M=A C-C M=b-\frac{1}{2}(b+c)=\frac{1}{2}(b-c) .
$$

Hence

$$
\frac{\tan \frac{B-C}{2}}{\cot \frac{A}{2}}=\frac{\tan I C M}{\tan \left(90^{\circ}-\frac{1}{2} A\right)}=\frac{\tan I C M}{\tan I A M}
$$

IM

$$
=\frac{C M}{\frac{I M}{A M}}=\frac{A M}{C M}=\frac{\frac{1}{2}(b-c)}{\frac{1}{2}(b+c)}=\frac{b-c}{b+c} \text {. Q.E.D. }
$$

152. Also, if we are given the value of
(i) $\sin \mathrm{A}$, there are two angles, each less than 180°, which have the given positive value for their sine.
(ii) $\cos \mathbf{A}$, or (iii) $\tan \mathbf{A}$, then there is only one value of A, which value can be found from the Tables.
$\times 153 . \frac{A}{2}+\frac{B}{2}+\frac{C}{2}=90^{\circ}$. Therefore $\frac{A}{2}$ is less than 90°, and its Trigonometrical Ratios are all positive. Also, $\frac{A}{2}$ is known, when the value of any one of its ratios is given. Similar remarks of course apply to the angles B and C.

Example 1. To prove $\sin (A+B)=\sin C$.
[Art. 96.]

$$
A+B+C=180^{\circ} ; \therefore A+B=180^{\circ}-C
$$

and

$$
\begin{equation*}
\therefore \sin (A+B)=\sin \left(180^{\circ}-C\right)=\sin C . \tag{p.61.}
\end{equation*}
$$

Example 2. To prove $\sin \frac{A+B}{2}=\cos \frac{C}{2}$.
Now

$$
\frac{A+B+C}{2}=90^{\circ} . \quad \therefore \frac{A+B}{2}=90^{\circ}-\frac{C}{2},
$$

and
$\therefore \sin \frac{A+B}{2}=\sin \left(90^{\circ}-\frac{C}{2}\right)=\cos \frac{C}{2}$.
[Art. 94.]

EXAMPLES. XLIV.

Find A from each of the six following equations, A being an angle of a triangle.
$\begin{array}{lll}\text { 1. } \cos A=\frac{1}{2} & \text { 2. } \cos A=-\frac{1}{2} & \text { 3. } \sin A=\frac{1}{2}\end{array}$
4. $\tan A=-1$.
5. $\sqrt{2} \sin A=1$.
6. $\tan A=-\sqrt{ } 3$.

Prove the following statements, A, B, C being the angles of a triangle.
7. $\sin (A+B+C)=0$.
8. $\cos (A+B+C)=-1$.
9. $\sin \frac{1}{2}(A+B+C)=1$.
10. $\cos \frac{1}{2}(A+B+C)=0$.
11. $\tan (A+B)=-\tan C$.
12. $\cot \frac{1}{2}(B+C)=\tan \frac{1}{2} A$.
13. $\cos (A+B)=-\cos C$.
14. $\cos (A+B-C)=-\cos 2 C$.
15. $\tan A-\cot B=\cos C . \sec A . \operatorname{cosec} B$.
16. $\frac{\sin A-\sin B}{\sin A+\sin B}=\tan \frac{C}{2} \cdot \tan \frac{A-B}{2}$.
17. $\frac{\sin 3 B-\sin 3 C}{\cos 3 C-\cos 3 B}=\tan \frac{3 A}{2}$.
154. II. To prove $a=b \cos C+c \cos B$.

From A, any one of the angular points, draw $A D$ perpendicular to $B C$, or to $B C$ produced if necessary.

There will be three cases. Fig. i. when both B and C are acute angles ; Fig. ii. when one of them (B) is obtuse ; Fig. iii. when one of them (B) is a right angle. Then,

Fig. i. $\quad \frac{C D}{C A}=\cos A C D ;$ or, $C D=b \cos C$,

$$
\text { and } \frac{D B}{A B}=\cos A B D ; \text { or, } D B=c \cos B
$$

$$
\therefore a=C D+D B=b \cos C+c \cos B .
$$

Fig. ii. $\quad \frac{C D}{C A}=\cos A C D$; or, $C D=b \cos C$,

$$
\frac{B D}{A B}=\cos A B D ; \text { or, } B D=c \cos \left(180^{\circ}-B\right) \text {, }
$$

$\therefore a=C D-B D=b \cos C-c \cos \left(180^{\circ}-B\right)$
$=b \cos C+c \cos B$.
Fig. iii. $a=C B=b \cos C$

$$
=b \cos C+c \cos B . \quad\left[\text { For, } \cos B=\cos 90^{\circ}=0 .\right]
$$

Similarly it may be proved that,

$$
b=c \cos A+a \cos C ; c=a \cos B+b \cos A .
$$

155. III. To prove that in any triangle, the sides are proportional to the sines of the opposite angles; or, T'o prove that $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$.

From A, any one of the angular points, draw $A D$ perpendicular to $B C$, or to $B C^{\prime}$ produced if necessary. Then,

Fig. i.

$$
A D=b \sin C ; \text { for, } \frac{A D}{A C}=\sin C[\text { Def. }] ;
$$

$$
\text { also } A D=c \sin B ; \text { for, } \frac{A D}{A B}=\sin B \text {. }
$$

$\therefore b \sin C=c \sin B$;

$$
\text { or, } \frac{b}{\sin B}=\frac{c}{\sin C}
$$

Fig. ii.

$$
\begin{aligned}
A D & =b \sin C \\
\text { and } A D & =c \sin A B D=c \sin \left(180^{\circ}-B\right) . \\
\therefore A D & =c \sin B ;
\end{aligned}
$$

$\therefore b \sin C=c \sin B$;

$$
\text { or, } \frac{b}{\sin B}=\frac{c}{\sin C} .
$$

Fig. iii.

$$
A B=A C \cdot \sin C ; \text { or, } c=b \sin C ;
$$

$$
\therefore \frac{c}{\sin C}=\frac{b}{\sin B}, \quad\left[\text { For } \sin B=\sin 90^{\circ}=1 .\right]
$$

Similarly it may be proved that

$$
\frac{a}{\sin A}=\frac{b}{\sin B}
$$

$$
\therefore \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}, \quad \text { Q.E.D, }
$$

156. IV. To prove that $a^{2}=b^{2}+c^{2}-2 b c \cos A$.

Take one of the angles A. Then of the other two, one must be acute. Let B be an acute angle. From C draw $C F^{\prime}$ perpendicular to $B A$, or to $B A$ produced if necessary.

There will be three figures according as A is less, greater than, or equal to a right angle. Then,

Fig. i. $\quad B C^{2}=C A^{2}+A B^{2}-2 \cdot B A \cdot F A$;

$$
\text { or, } \begin{aligned}
a^{2} & =b^{2}+c^{2}-2 c \cdot F A \\
& =b^{2}+c^{2}-2 c b \cos A .
\end{aligned}
$$

Fig. ii. $B C^{2}=C A^{2}+A B^{2}+2 \cdot B A \cdot A F$;
$[$ For $F A=b \cdot \cos A$.
[Euc. II. 12]

$$
\text { or, } \begin{aligned}
a^{2} & =b^{2}+c^{2}+2 c b \cos F A C \\
& =b^{2}+c^{2}-2 b c \cos A .
\end{aligned}
$$

Fig. iii. $B C^{2}=C A^{2}+A B^{2}$;

$$
\text { or, } a^{2}=b^{2}+c^{2}-2 b c \cos A . \quad\left[\text { For } \cos A=\cos 90^{\circ}=0 .\right]
$$

Similarly it may be proved that

$$
\begin{aligned}
& b^{2}=c^{2}+a^{2}-2 c a \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C .
\end{aligned}
$$

157. V. Hence,
$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}, \cos B=\frac{c^{2}+a^{2}-b^{2}}{2 c a}, \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$.
158. VI. To prove that $\sin ^{2} \frac{A}{2}=\frac{(a+c-b)(a+b-c)}{4 b c}$.

Since $\cos A=1-2 \sin ^{2} \frac{A}{2}$,
[Art. 109]
and $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$;
[Art. 157]

$$
\begin{aligned}
\therefore 2 \sin ^{2} \frac{A}{2} & =1-\cos A=1-\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& =\frac{2 b c-\left(b^{2}+c^{2}-a^{2}\right)}{2 b c}=\frac{a^{2}-\left(b^{2}-2 b c+c^{2}\right)}{2 b c} \\
& =\frac{a^{2}-(b-c)^{2}}{2 b c}=\frac{\{a-(b-c)\}\{a+(b-c)\}}{2 b c},
\end{aligned}
$$

$$
\therefore \sin ^{2} \frac{A}{2}=\frac{(a+c-b)(a+b-c)}{4 b c} \text { Q.E.D. }
$$

159. To prove that $\cos ^{2} \frac{A}{2}=\frac{(a+b+c)(b+c-a)}{4 b c}$.

Since $\cos A=2 \cos ^{2} \frac{A}{2}-1$;
[Art. 109]
$\therefore 2 \cos ^{2} \frac{A}{2}=1+\cos A=1+\frac{b^{2}+c^{2}-a^{2}}{2 b c}$;
[Art. 157]
$\therefore \cos ^{9} \frac{A}{2}=\frac{(b+c)^{2}-a^{2}}{4 b c}=\frac{(b+c+a)(b+c-a)}{4 b c}$. Q.E.D.
160. VII. Now let s stand for $\frac{a+b+c}{2}$, so that $(a+b+c)=2 s$.
Then, $(b+c-a)=(b+c+a-2 a)=(2 s-2 a)=2(s-a)$, and

$$
(c+a-b)=(c+a+b-2 b)=(2 s-2 b)=2(s-b),
$$ and

$$
(a+b-c)=(a+b+c-2 c)=(2 s-2 c)=2(s-c)
$$

Then the result of Arts. 158, 159 may be written
$\sin ^{2} \frac{A}{2}=\frac{2(s-b) 2(s-c)}{4 b c}$; or, $\sin \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}}$, and $\cos ^{2} \frac{A}{2}=\frac{2 s 2(s-a)}{4 b} ;$ or, $\quad \cos \frac{A}{2}=\sqrt{\frac{s(s-a)}{b c}}$, and so on.

Hence,

$$
\tan \frac{A}{2}=\frac{\sin \frac{A}{2}}{\cos \frac{A}{2}}=\frac{\sqrt{(s-b)(s-c)}}{\sqrt{s(s-a)}}
$$

Example. Write down the corresponding formula for $\sin \frac{B}{2}$, for $\cos \frac{B}{2}$, and for $\tan \frac{B}{2}$.
161. VIII. Again,

$$
\sin A=2 \sin \frac{A}{2} \cdot \cos \frac{A}{2}
$$

[Art. 109]
$\begin{aligned} \therefore \sin A & =2 \sqrt{\frac{(s-b)(s-c)}{b c}} \cdot \sqrt{\frac{s(s-a)}{b c}} \prod_{2}- \\ & =\frac{2}{b c} \sqrt{s(s-a)(s-b)(s-c)}=\frac{\mathrm{S}}{\mathrm{c}} .\end{aligned}$
The letter S usually stands for $\sqrt{s(s-a)(s-b)(s-c)}$, so that the above may be written $\frac{\sin A}{a}=\frac{2 S}{a b c}$.

Similarly,

$$
\frac{\sin B}{b}=\frac{2 S}{a b c}=\frac{\sin C}{c} .
$$

162. IX. To prove that $\frac{b-c}{b+c} \cdot \cot \frac{A}{2}=\tan \frac{B-C}{2}$.

Since $\frac{b}{\sin B}=\frac{c}{\sin C}$, let each of these fractions $=d$.
Then $\quad b=d \sin B$, and $c=d \sin C$.

$$
\begin{aligned}
\therefore \frac{b-c}{b+c} & =\frac{d \sin B-d \sin C}{d \sin B+d \sin C}=\frac{\sin B-\sin C}{\sin B+\sin C} \\
& =\frac{2 \sin \frac{B-C}{2} \cdot \cos \frac{B+C}{2}}{2 \sin \frac{B+C}{2} \cdot \cos \frac{B-C}{2}}=\frac{\tan \frac{B-C}{2}}{\tan \frac{B+C}{2}} \\
& =\frac{\tan \frac{B-C}{2}}{\cot \frac{A}{2}} \cdot\left[\text { Since } \tan \frac{B+C}{2}=\tan \left(90^{\circ}-\frac{A}{2}\right) .\right.
\end{aligned}
$$

$\therefore \frac{b-c}{b+c} \cdot \cot \frac{A}{2}=\frac{\tan \frac{B-C}{2}}{\cot \frac{A}{2}} \cdot \cot \frac{A}{2}=\tan \frac{B-C}{2}$. Q.E.D.

Similarly,
$\frac{c-a}{c+a} \cdot \cot \frac{B}{2}=\tan \frac{C-A}{2}, \frac{a-b}{a+b} \cdot \cot \frac{C}{2}=\tan \frac{A-B}{2}$.
163. The student is advised to make himself thoroughly familiar with the following formulæ:

$$
\begin{equation*}
a=b \cos C+c \cos B \tag{ii}
\end{equation*}
$$

$$
\left.\begin{array}{l}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}[=d]=\frac{a b c}{2 S} . \\
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \ldots \ldots \ldots \ldots \ldots \ldots \\
\sin \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}} \\
\cos \frac{A}{2}=\sqrt{\frac{s(s-a)}{b c}} \tag{vii}
\end{array}\right\} \ldots \ldots \ldots .
$$

$\sin A=\frac{2}{b c} \sqrt{s(s-a)(s-b)(s-c)}=\frac{2 S}{b c}$.
$\tan \frac{B-C}{2}=\frac{b-c}{b+c} \cdot \cot \frac{A}{2}$

EXAMPLES. XLV.

In any triangle $A B C$ prove the following statements:

1. $\frac{\sin A+2 \sin B}{a+2 b}=\frac{\sin C}{c}$.
2. $\frac{\sin ^{2} A-m \cdot \sin ^{2} B}{a^{2}-m \cdot b^{2}}=\frac{\sin ^{2} C}{c^{2}}$.
3. $a \cos A+b \cos B-c \cos C=2 c \cos A \cdot \cos B$.
4. $(a+b) \sin \frac{C}{2}=c \cos \frac{A-B}{2}$.
5. $(b-c) \cos \frac{A}{2}=a \sin \frac{B-C}{2}$.
6. $a \sin (B-C)+b \sin (C-A)+c \sin (A-B)=0$.
7. $\frac{a-b}{c}=\frac{\cos B-\cos A}{1+\cos C}$. 8. $\frac{b+c}{a}=\frac{\cos B+\cos C}{1-\cos A}$.
8. $\sqrt{b c \sin B \cdot \sin C}=\frac{b^{2} \sin C+c^{2} \sin B}{b+c}$.
9. $a+b+c=(b+c) \cos A+(c+a) \cos B+(a+b) \cos C$.
10. $b+c-a=(b+c) \cos A-(c-a) \cos B+(a-b) \cos C$.
11. $\tan A=\frac{a \sin C}{b-a \cos C}$.
12. $\tan B=\frac{a^{2}+b^{2}-c^{2}}{\tan ^{2}-b^{2}+c^{2}}$.
13. $a\left(b^{2}+c^{2}\right) \cos A+b\left(c^{2}+a^{2}\right) \cos B+c\left(a^{2}+b^{2}\right) \cos C=3 a b c$.
14. $a \cos (A+B+C)-b \cos (B+A)-c \cos (A+C)=0$.
15. $\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}$.
16. $b \cos ^{2} \frac{C}{2}+c \cos ^{2} \frac{B}{2}=8 . \quad$ 18. $\tan \frac{B}{2} \cdot \tan \frac{C}{2}=\frac{b+c-a}{b+c+a}$.
17. $\tan \frac{A}{2}(b+c-a)=\tan \frac{B}{2}(c+a-b)$.
18. $c^{2}=(a+b)^{2} \sin ^{2} \frac{C}{2}+(a-b)^{2} \cos ^{2} \frac{C}{2}$.

MISCELLANEOUS EXAMPLES. XLVI.

1. Simplify the formulæ

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}, \quad \cos \frac{1}{2} A=\sqrt{ }\left\{\frac{s(s-a)}{b c}\right\}
$$

in the case of an equilateral triangle.
2. The sides of a triangle are as $2: \sqrt{ } 6: 1+\sqrt{ } 3$, find the angles.
3. The sides of a triangle are as $4,2 \sqrt{ } 2,2(\sqrt{ } 3-1)$, find the angles.
4. Given $C=120^{\circ}, c=\sqrt{ } 19, a=2$, find b.
5. Given $A=60^{\circ}, b=4 \sqrt{ } 7, c=6 \sqrt{ } 7$, find a.
6. Given $A=45^{\circ}, B=60^{\circ}$ and $a=2$, find c.
7. The sides of a triangle are as $7: 8: 13$, find the greatest angle.
8. The sides of a triangle are $1,2, \sqrt{ } 7$, find the greatest angle.
9. The sides of a triangle are as $a: b: \sqrt{ }\left(a^{2}+a b+b^{2}\right)$, find the greatest angle.
10. When $a: b: c$ as $3: 4: 5$, find the greatest and least angles; given $\cos 36^{\circ} 52^{\prime}=8$.
11. If $a=5$ miles, $b=6$ miles, $c=10$ miles, find the greatest angle. [$\cos 49^{\circ} 33^{\prime}=\cdot 65$.]
12. If $a=4, b=5, c=8$, find C; given that $\cos 54^{0} 54^{\prime}=\cdot 575$.
13. $a: b=\sqrt{ } 3: 1$, and $C=30^{\circ}$; find the other angles.
14. Given $C=18^{0}, a=\sqrt{ } 5+1, c=\sqrt{ } 5-1$, find the other angles.
15. If $b=3, C=120^{\circ}, c=\sqrt{ } 13$, find a and the sines of the other angles.
16. Given $A=105^{\circ}, B=45^{\circ}, c=\sqrt{ } 2$, solve the triangle.
17. Given $B=75^{\circ}, C=30^{\circ}, c=\sqrt{ } 8$, solve the triangle.
18. Given $B=45^{\circ}, c=\sqrt{ } 75, b=\sqrt{ } 50$, solve the triangle.
19. Given $B=30^{\circ}, c=150, b=50 \sqrt{3}$, show that of the two triangles which satisfy the data one will be isosceles and the other right-angled. Find the third side in the greatest of these triangles.
20. Are there two triangles in which $B=30^{\circ}, c=150, b=75$?
21. If the angles adjacent to the base of a triangle are $22 \frac{1}{2}^{\circ}$ and $112 \frac{1}{2}$, show that the perpendicular altitude will be half the base.
22. If $a=2, b=4-2 \sqrt{ } 3, c=\sqrt{ } 6(\sqrt{ } 3-1)$, solve the triangle.
23. If $A=9^{\circ}, B=45^{\circ}, b=\sqrt{6}$, find c.
24. Given $B=15^{0}, b=\sqrt{ } 3-1, c=\sqrt{ } 3+1$, solve the triangle.
25. Given $\sin B=25, a=5, b=2 \cdot 5$, find A. Draw a figure to explain the result.
26. Given $C=15^{\circ}, c=4, a=4+\sqrt{ } 48$, solve the triangle.
27. Two sides of a triangle are $3 \sqrt{6}$ yards and $3(\sqrt{ } 3+1)$ yards, and the included angle 45°, solve the triangle.
28. If $C=30^{\circ}, b=100, c=45$, is the triangle ambiguous?
29. Prove that if $A=45^{\circ}$ and $B=60^{\circ}$ then $2 c=a(1+\sqrt{ } 3)$.
30. The cosines of two of the angles of a triangle are $\frac{1}{2}$ and $\frac{3}{6}$, find the ratio of the sides.

CHAPTER XIV.

On the Solution of Triangles.

164. The problem known as the Solution of Triangles may be stated thus: When a sufficient number of the parts of a triangle are given, to find the magnitude of each of the other parts.
165. When three parts of a Triangle (one of which must be a side) are given, the other parts can in general be determined.

There are four cases.

- I. Given three sides.
II. Given one side and two angles.
III. Given two sides and the angle between them.
[Euc. I. 4.]
IV. Given two sides and the angle opposite one of them.
[Compare Euc. vi. 7.]

Case I.

166. Given three sides, a, b, c.
[Euc. I. 8 ; vi. 5.]
We find two of the angles from the formulæ

$$
\begin{aligned}
& \tan \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \\
& \tan \frac{B}{2}=\sqrt{\frac{(s-c)(s-a)}{s(s-b)}}
\end{aligned}
$$

The third angle $C=180-A-B$.
167. In practical work we proceed as follows:

$$
\log \tan \frac{A}{2}=\log \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} ;
$$

or,
$L \tan \frac{A}{2}-10=\frac{1}{2}\{\log (s-b)+\log (s-c)-\log s-\log (s-a)\}$.
Similarly,
$L \tan \frac{B}{2}-10=\frac{1}{2}\{\log (s-c)+\log (s-a)-\log s-\log (s-b)\}$.
168. Either of the formulæ $\sin \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}}$,
$\cos \frac{A}{2}=\sqrt{\frac{s(s-a)}{b c}}$ may also be used as above.
The $\sin \frac{A}{2}$ and the $\cos \frac{A}{2}$ formulæ are either of them as convenient as the $\tan \frac{A}{2}$ formulæ, when one of the angles only is to be found. If all the angles are to be found the tangent formula is convenient, because we can find the L tangents of two half angles from the same four logs, viz. $\log s, \log (s-a)$, $\log (s-b), \log (s-c)$. To find the L sines of two half angles we require the six logarithms, viz. $\log (s-a), \log (s-b)$, $\log (s-c), \log a, \log b, \log c$.

ON THE SOLUTION OF TRIANGLES.
Example. Given $a=275 \cdot 35, b=189 \cdot 28, c=301 \cdot 47$ chains, find A

$$
\begin{aligned}
& \text { and } B \text {. } \\
& \angle D D C=\angle A \\
& \text { radio }=\rho \text {. } \\
& \sin \triangle O C=\operatorname{li} A= \\
& \therefore Q=\frac{\operatorname{ain}}{2 \sin A}=\frac{a v c}{\operatorname{ton} 2 \operatorname{ma} A} \\
& \frac{A}{2}=\sqrt{\frac{(n-j)(a-0)}{2(\alpha-a)}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{T}{2\left(e-a_{2}\right)} \cdot \tan \frac{R}{2}=\frac{S}{2 l-c_{V}} \\
& \tan \frac{v}{2}=\frac{c}{q\left(e^{2}-0\right)} \\
& \sin \frac{A}{2}=\frac{\frac{a t}{4} b}{\cos -\omega} \\
& =\frac{a v}{4 a+(e-a)}
\end{aligned}
$$

trigonometry.
Case I.

* cor-toq arittim

$$
\begin{aligned}
& \Gamma=(-a)(s-a)(2-c) \\
& \tan \frac{1}{2} A=\sqrt{\frac{(-k)(a-c)}{S(S-a)}}=\sqrt{\frac{(s-a)(--b)^{2}}{S(\delta-a)^{2}}} \\
& =\frac{0}{s-a} \\
& u=\sqrt{(2-a)(\alpha-v)(2-c)}
\end{aligned}
$$

Example. Given $a=275 \cdot 35, b=189 \cdot 28, c=301 \cdot 47$ chains, find A and B.

Here, $s=383 \cdot 05, s-a=107 \cdot 70, s-b=193 \cdot 77, s-c=81 \cdot 58$.
Then
$L \tan \frac{A}{2}=10+\frac{1}{2}\{\log 193 \cdot 77+\log 81 \cdot 58-\log 383 \cdot 05-\log 107 \cdot 70\}$

$$
\begin{aligned}
& =10+\frac{1}{2}\{2 \cdot 2872865+1 \cdot 9115837-2 \cdot 5832555-2 \cdot 0322157\} \\
& =9 \cdot 7916995 \quad \text { [from the Tables], }
\end{aligned}
$$

whence $\frac{A}{2}=31^{\circ} 45^{\prime} 28 \cdot 5^{\prime \prime \prime} ; \therefore A=63^{\circ} 30^{\prime} 57^{\prime \prime}$. Again,
$L \tan \frac{B}{2}=10+\frac{1}{2}\{\log 81 \cdot 58+\log 107 \cdot 70-\log 383 \cdot 05-\log 193 \cdot 77\}$
$=9 \cdot 5366287=L \tan 18^{\circ} 59^{\prime} 9 \cdot 8^{\prime \prime} ;$
$\therefore B=37^{\circ} 58^{\prime} 20^{\prime \prime} ; C=180^{\circ}-A-B=78^{\circ} 30^{\prime} 43^{\prime \prime}$.
169. This Case may also be solved by the formula

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

But this formula is not adapted for logarithmic calculation, and therefore is seldom used in practice.

It may sometimes be used with advantage, when the given lengths of a, b, c each contain less than three digits.

Example. Find the greatest angle of the triangle whose sides are 13, 14, 15 .

Let $a=15, b=14, c=13$. Then the greatest angle is A.
Now, $\cos A=\frac{14^{2}+13^{2}-15^{2}}{2 \times 14 \times 13}=\frac{140}{2 \times 14 \times 13}=\frac{5}{13}=\cdot 384615$
$=\cos 67^{\circ} 23^{\prime}$, nearly.
[By the Table of natural cosines.]
\therefore the greatest angle $=67^{\circ} 23^{\prime}$.

EXAMPLES. XLVII.

1. If $a=352 \cdot 25, b=513 \cdot 27, c=482 \cdot 68$ yards, find the angle A, having given $\log 674 \cdot 10=2 \cdot 8287243, \log 321 \cdot 85=2 \cdot 5076535$, $\log 160 \cdot 83=2 \cdot 2063401, \log 191 \cdot 42=2 \cdot 2819873$,
$L \tan 20^{\circ} 38^{\prime}=9 \cdot 5758104, L \tan 20^{\circ} 39^{\prime}=9 \cdot 5761934$.
L. т. B.
2. Find the two largest angles of the triangle whose sides are 484, 376,522 chains, having given that

$$
\begin{aligned}
& \log 6 \cdot 91=\cdot 8394780, \log 3 \cdot 15=\cdot 4983106, \\
& \log 2 \cdot 07=\cdot 3159703, \log 1 \cdot 69=227867,
\end{aligned}
$$

$L \tan 36^{\circ} 46^{\prime} 6^{\prime \prime}=9 \cdot 8734581, L \tan 31^{\circ} 23^{\prime} 9^{\prime \prime}=9 \cdot 7853745$.
3. If $a=5238, b=5662, c=9384$ yards, find the angles A and B, having given

$$
\log 1 \cdot 0142=\cdot 0061236, \log 4 \cdot 904=6905505
$$

$$
\log 4 \cdot 48=6512780, \log 7 \cdot 58=8796692
$$

$$
L \tan 14^{0} 38^{\prime}=9 \cdot 4168099, L \tan 15^{\circ} 57^{\prime}=9 \cdot 4560641,
$$

$$
L \tan 14^{0} 39^{\prime}=9 \cdot 4173265, L \tan 15^{\circ} 58^{\prime}=9 \cdot 4565420 .
$$

4. If $a=4090, b=3850, c=3811$ yards, find A, having given $\log 5 \cdot 8755=\cdot 7690448, \log 3 \cdot 85=\cdot 5854607$, $\log 1 \cdot 7855=\cdot 2517599, \log 3 \cdot 811=\cdot 5810389$, $L \cos 32^{\circ} 15^{\prime}=9 \cdot 9272306, L \cos 32^{\circ} 16^{\prime}=9 \cdot 9271509$.
5. Find the greatest angle in a triangle whose sides are 7 feet, 8 feet, and 9 feet, having given

$$
\log 3=-4771213, L \cos 36^{\circ} 42^{\prime}=9 \cdot 9040529,
$$

$$
\log 1 \cdot 4=\cdot 146128, \quad \text { diff. for } 60^{\prime \prime}=\cdot 0000942
$$

6. Find the smallest angle of the triangle whose sides are 8 feet, 10 feet, and 12 feet, having given that
$\log 2=\cdot 30103, L \sin 20^{\circ} 42^{\prime}=9 \cdot 5483585$, diff. for $60^{\prime \prime}=\cdot 0003342$.
7. If $a: b: c=4: 5: 6$, find C, having given

$$
\log 2=-3010300, \log 3=\cdot 4771213
$$

$L \cos 41^{\circ} 25^{\prime}=9 \cdot 8750142$, diff. for $60^{\prime \prime}=\cdot 0001115$.
8. The sides of a triangle are $2, \sqrt{ } 6$, and $1+\sqrt{ } 3$, find the angles.
9. The sides of a triangle are $2, \sqrt{ } 2$, and $\sqrt{ } 3-1$, find the angles.

Case II.

170. Given one side and two angles, as a, B, C. [Euc. I. 26 ; VI. 4.]
First, $A=180^{\circ}-B-C$; which determines A.
Next,
and,

$$
\frac{b}{\sin B}=\frac{a}{\sin A}, \quad \text { or, } b=\frac{a \cdot \sin B}{\sin A}
$$

$$
\frac{c}{\sin C}=\frac{a}{\sin A},
$$

$$
\text { or, } c=\frac{a \cdot \sin C}{\sin A}
$$

These determine b and c.
171. In practical work we proceed as follows:

Since $b=\frac{a \cdot \sin B}{\sin A}$,
$\therefore \log b=\log \frac{a \cdot \sin B}{\sin A}$
$\therefore \log b=\log a+\log (\sin B)+10-(10+\log \sin A)$,
or, $\log b=\log a+L \sin B-L \sin A$.
Similarly, $\log c=\log a+L \sin C-L \sin A$.
Example. Given that $c=1764 \cdot 3$ feet, $C=18^{\circ} 27^{\prime}$, and $B=66^{\circ} 39^{\prime}$, find b.

From the Tables we find $\log 1764 \cdot 3=3 \cdot 2465724$.
$L \sin 18^{\circ} 27^{\prime}=9 \cdot 5003421, L \sin 66^{\circ} 39^{\prime}=9 \cdot 9628904 ;$

$$
\begin{aligned}
\therefore \log b & =3 \cdot 2465724+9 \cdot 9628904-9 \cdot 5003421 \\
& =3: 7091207=\log 5118 \cdot 2 ; \\
\therefore b & =5118 \cdot 2 \text { feet. }
\end{aligned}
$$

EXAMPLES. XLVIII.

1. If $A=53^{\circ} 24^{\prime}, B=66^{\circ} 27^{\prime}, c=338^{\circ} 65$ yards, find C and a, having given that
$L \sin 53^{0} 24^{\prime}=9 \cdot 9046168, \log 3 \cdot 3865=: 5297511$,
$L \sin 60^{\circ} 9^{\prime}=9 \cdot 9381851, \log 3 \cdot 1346=\cdot 4961821$,
$\log 3 \cdot 1347=\cdot 4961960$
2. If $A=48^{\circ}, B=54^{\circ}$, and $c=38$ inches, find a and b, having given that

$$
\log 38=1 \cdot 5797836, \log 2 \cdot 88704=\cdot 4604527
$$

$$
\log 3 \cdot 14295=\cdot 4973368, \quad L \sin 54^{0}=9 \cdot 9079576,
$$

$$
L \sin 78^{\circ}=9 \cdot 9904044, \quad L \sin 48^{\circ}=9 \cdot 8710735
$$

3. Find c, having given that $a=1000$ yards, $A=50^{\circ}, C=66^{\circ}$, and that

$$
\begin{gathered}
L \sin 50^{\circ}=9 \cdot 8842540, \quad L \sin 66^{\circ}=9 \cdot 9607302 \\
\log 1 \cdot 19255=0764762
\end{gathered}
$$

4. Find b, having given that $B=32^{\circ} 15^{\prime}, C=21^{0} 47^{\prime} 20^{\prime \prime}, a=34$ feet.
$\log 3 \cdot 4=\cdot 531479, L \sin 32^{\circ} 15^{\prime}=9 \cdot 727228$,
$\log 2 \cdot 241=\cdot 350442, L \sin 54^{0} \quad 2^{\prime}=9 \cdot 908141$,
$\log 2 \cdot 242=\cdot 350636, L \sin 54^{0} 3^{\prime}=9 \cdot 908233$.
5. Find a, b, C, having given $A=72^{\circ} 4^{\prime}, B=41^{\circ} 56^{\prime} 18^{\prime \prime}, c=24$ feet.
$\log 2 \cdot 4=\cdot 3802112, L \sin 72^{\circ} 4^{\prime}=9 \cdot 9783702$,
$\log 1 \cdot 755=\cdot 2442771, L \sin 41^{\circ} 56^{\prime} 10^{\prime \prime}=9.8249725$,
$\log 1 \cdot 756=\cdot 2445245, L \sin 41^{0} 56^{\prime} 20^{\prime \prime}=9 \cdot 8249959$,
$\log 2 \cdot 4995=\cdot 3978531, L \sin 65^{\circ} 59^{\prime}=9.9606739$,
$\log 2 \cdot 4996=\cdot 3978701, L \sin 66^{\circ} \quad=9 \cdot 9607302$.

Case III.

172. Given two sides and the included angle, as b, c, A. [Euc. I. 4 ; VI. 6.]
First, $B+C=180^{\circ}-A$. Thus $(B+C)$ is determined.
Next,

$$
\tan \frac{B-C}{2}=\frac{b-c}{b+c} \cot \frac{A}{2} .
$$

Thus $(B-C)$ is determined.
And B and C can be found when the values of $(B+C)$ and $(B-C)$ are known.

Lastly, $\quad \frac{a}{\sin A}=\frac{b}{\sin B}$, or $a=\frac{b \cdot \sin A}{\sin B}$.
Whence a is determined.
173. In practical work we proceed as follows:

Since $\tan \frac{B-C}{2}=\frac{b-c}{b+c} \cot \frac{A}{2}$,
$\therefore \log \left(\tan \frac{B-C}{2}\right)+10$

$$
=\log (b-c)-\log (b+c)+\log \left(\cot \frac{A}{2}\right)+10
$$

or, $L \tan \frac{B-C}{2}=\log (b-c)-\log (b+c)+L \cot \frac{A}{2}$.
Also, since

$$
a=\frac{b \cdot \sin A}{\sin B}
$$

$\therefore \log a=\log b+L \sin A-L \sin B$, as in Case II.
Example. Given $b=456 \cdot 12$ chains, $c=296 \cdot 86$ chains, and $A=74^{\circ} 20^{\prime}$, find the other angles.

Here, $b-c=159 \cdot 26, b+c=752 \cdot 98$.
From the Table we find

$$
\begin{aligned}
& \log 159 \cdot 26=2 \cdot 2021067, \text { and } \log 752 \cdot 98=2 \cdot 8767834, \\
& L \cot 37^{\circ} 10^{\prime}=10 \cdot 1202593 ; \\
& \therefore \quad L \tan \frac{B-C}{2}
\end{aligned}=2 \cdot 2021067-2 \cdot 8767834+10 \cdot 1202593, ~=9 \cdot 4455826=L \tan 15^{\circ} 35^{\prime} 18^{\prime \prime} .
$$

Thus
on the solution of triangles.
174. The formula $a^{2}=b^{2}+c^{2}-2 b c \cos A$ may be used in simple cases.

Example. If $b=35$ feet, $c=21$ feet, and $A=50^{\circ}$, find a, given that Care III.

Q ven represented of \rightarrow * color

Case III.

172. Given two sides and the included angle, as b, c, A. [Euc. I. 4 ; VI. 6.]
173. The formula $a^{2}=b^{2}+c^{2}-2 b c \cos A$ may be used in simple cases.

Example. If $b=35$ feet, $c=21$ feet, and $A=50^{\circ}$, find a, given that $\cos 50^{\circ}=\cdot 643$.

Here

$$
\begin{aligned}
a^{2} & =35^{2}+21^{2}-2 \times 35 \times 21 \times \cos 50^{\circ} ; \\
\therefore \frac{a^{2}}{7^{2}} & =5^{2}+3^{2}-2 \times 5 \times 3 \times \cos 50^{0}, \\
& =25+9-30 \times \cdot 643,=14.71 . \\
\frac{a}{7} & =3.82 \text { nearly; or, } a=26 \cdot 74=\text { about } 26 \frac{9}{4} \text { feet. }
\end{aligned}
$$

EXAMPLES. XLIX.

1. Find B and C, having given that $A=40^{\circ}, b=131, c=72$.

$$
\log 5 \cdot 9=\cdot 7708520, L \cot 20^{\circ} \quad=10 \cdot 4389341
$$

$$
\log 2 \cdot 03=\cdot 3074960, L \tan 38^{\circ} 36^{\prime}=9 \cdot 9021604,
$$

$$
L \tan 38^{\circ} 37^{\prime}=9 \cdot 9024195
$$

2. Find A and B, having given that $a=35$ feet, $b=21$ feet, $C=50^{\circ}$.

$$
\log 2=\cdot 301030, \quad L \tan 28^{\circ} 11^{\prime}=9 \cdot 729020
$$

$L \tan 65^{\circ}=10 \cdot 331327, L \tan 28^{\circ} 12^{\prime}=9 \cdot 72923$ 。
3. If $b=19$ chains, $c=20$ chains, $A=60^{\circ}$, find B and C, having given that $\log 3 \cdot 9=\cdot 591065, L \tan 2^{0} 32^{\prime}=8 \cdot 645853$,
$L \cot 30^{\circ}=10 \cdot 238561, \quad L \tan 2^{0} 33^{\prime}=8 \cdot 648704$.
4. Given that $a=376.375$ chains, $b=251.765$ chains, and $C=78^{\circ} 26^{\prime}$, find A and B.
$L \cot 39^{\circ} 13^{\prime}=10.0882755$,
$\log 1 \cdot 2461=\cdot 0955529, \quad L \tan 13^{0} 39^{\prime}=9 \cdot 3853370$,
$\log 6 \cdot 2814=\cdot 7930565, \quad L \tan 13^{\circ} 40^{\prime}=9 \cdot 3858876$.
5. If $a=135, b=105, C=60^{\circ}$, find A, having given that

$$
\begin{array}{ll}
\log 2=\cdot 3010300, & L \tan 12^{\circ} 12^{\prime}=9 \cdot 3348711, \\
\log 3=\cdot 4771213, & L \tan 12^{\circ} 13^{\prime}=9 \cdot 3354823
\end{array}
$$

6. If $a=21$ chains, $b=20$ chains, $C=60^{\circ}$, find c.
7. Find c in the triangle of Example 5.
8. In a triangle the ratio of two sides is $5: 3$ and the included angle is $76^{\circ} 30^{\prime}$. Find the other angles.

$$
\begin{array}{r}
\log 2=\cdot 3010300, L \cot 35^{\circ} 15^{\prime}=10 \cdot 1507464 \\
L \tan 19^{\circ} 28^{\prime} 50^{\prime \prime}=9 \cdot 5486864 .
\end{array}
$$

Case IV.

175. Given two sides and the angle opposite one of them, as b, c, B. [Omitted in Euc. I. ; Euc. VI. 7.]

First, since $\frac{c}{\sin C}=\frac{b}{\sin B} ; \therefore \sin C=\frac{c \sin B}{b}$.
C must be found from this equation.
When C is known, $\quad A=180^{\circ}-B-C, ~ 子=\frac{b \sin A}{\sin B}$.
Which solves the triangle.
176. We remark, however, that the angle C, found from the trigonometrical equation $\sin C=a$ given quantity, where C is an angle of a triangle, has two values, one less than 90°, and one greater than 90°.
[Art. 152.]
The question arises, Are both these values admissible?
This may be decided as follows:
If B is not less than $90^{\circ}, C$ must be less than 90°; and the smaller value for C only is admissible.

If B is less than 90° we proceed thus.

1. If b is less than $c \sin B$, then $\sin C$, which $=\frac{c \sin B}{b}$, is greater than 1. This is impossible. Therefore if b is less than $c \sin B$, there is no solution whatever.
2. If b is equal to $c \sin B$, then $\sin C=1$, and therefore $C=90^{\circ}$; and there is only one value of C, viz. 90°.
3. If b is greater than $c \sin B$, and less than c, then B is less than C, and C may be obtuse or acute. In this case C may have either of the values found from the equation $\sin C=\frac{c \sin B}{b}$. Hence there are two solutions, and the triangle is said to be ambiguous.
4. If b is equal to or greater than c, then B is equal to or greater than C, so that C must be an acute angle; and the smaller value for C only is admissible.
5. The same results may be obtained geometrically.

Construction. Draw $A B=c$; make the angle $A \cdot B D=$ the given angle B; with centre A and radius $=b$ describe a circle ; draw $A D$ perpendicular to $B D$.

1. If b is less than $c \sin B$, i.e. less than $A D$, the circle will not cut $B D$ at all, and the construction fails. (Fig. r.)
2. If b is equal to $A D$, the circle will touch the line $B D$ in the point D, and the required triangle is the right-angled triangle $A B D$. (Fig. II.)
3. If b is greater than $A D$ and less than $A B$, i.e. than c, the circle will cut the line $B D$ in two points C_{1}, C_{2} each on the same side of B. And we get two triangles $A B C_{1}$, $A B C_{2}$ each satisfying the given condition. (Fig. III.)
4. If b is equal to c, the circle cuts $B D$ in B and in one other point C; if b is greater than c the circle cuts $B D$ in two points, but on opposite sides of B. In either case there is only one triangle satisfying the given condition. (Fig. Iv.)
5. We may also obtain the same results algebraically, from the formula $b^{2}=c^{2}+a^{2}-2 c a \cos B$.

In this b, c, B are given, a is unknown. Write x for a and we get the quadratic equation

$$
x^{2}-2 c \cos B \cdot x=b^{2}-c^{2} .
$$

Whence, $x^{2}-2 c \cos B . x+c^{2} \cos ^{2} B=b^{2}-c^{2}+c^{2} \cos ^{2} B$

$$
=b^{2}-c^{2} \sin ^{2} B ;
$$

$$
\therefore x=c \cos B \pm \sqrt{b^{2}-c^{2} \sin ^{2} B}
$$

Let a_{1}, a_{a} be the two values of x thus obtained, then

$$
\left.\begin{array}{l}
a_{1}=c \cos B+\sqrt{b^{2}-c^{2} \sin ^{2} B} \\
a_{9}=c \cos B-\sqrt{b^{2}-c^{2} \sin ^{2} B}
\end{array}\right\} .
$$

Which of these two solutions is admissible may be decided as follows:

1. When b is less than $c \sin B$, then $\left(b^{2}-c^{2} \sin ^{2} B\right)$ is negative, so that a_{1}, a_{9} are impossible quantities.
2. When b is equal to $c \sin B$, then $\left(b^{2}-c^{2} \sin ^{2} B\right)=0$, and $a_{1}=a_{2}$; thus the two solutions become one.
3. When b is greater than $c \sin B$, then the two values a_{1}, a_{2} are different and positive unless
i.e. unless i.e. unless

$$
\begin{aligned}
\sqrt{b^{2}-c^{2} \sin ^{2} B} \text { is } & >c \cos B, \\
b^{2}-c^{2} \sin ^{2} \tilde{B} & >c^{2} \cos ^{2} B, \\
b^{2} & >c^{2} .
\end{aligned}
$$

4. When b is equal to c, then $a_{9}=0$; if b is greater than c, then a_{9} is negative and is therefore inadmissible. In either of these cases a_{1} is the only available solution.
5. We give two examples. In the first there are two solutions, in the second there is only one.

Example 1. Find A and C, having given that $b=379 \cdot 41$ chains, $c=483 \cdot 74$ chains, and $B=34^{\circ} 11^{\prime}$.

$$
\begin{aligned}
L \sin C & =\log c+L \sin B-\log b \\
& =2 \cdot 686120+9.7496148-2 \cdot 5791088 \\
& =98551180=L \sin 45^{\circ} 45^{\prime} ; \\
\therefore C= & 45^{\circ} 45^{\prime}, \text { or, } 180^{\circ}-45^{\circ} 45^{\prime}=134^{\circ} 15^{\prime} .
\end{aligned}
$$

Since b is less than c, each of these values is admissible.
When $C=45^{\circ} 45^{\prime}$, then $A=100^{\circ} 4^{\prime}$.
When $C=134^{\circ} 15^{\prime}$, then $A=11^{\circ} 34^{\prime}$.

Example 2. Find A and C, when $b=483 \cdot 74$ chains, $c=379 \cdot 14$ chains, and $B=34^{\circ} 11^{\prime}$.

$$
\begin{aligned}
L \sin C & =\log c+L \sin B-\log b \\
& =2 \cdot 5791088+9 \cdot 7496148-2 \cdot 6846120 \\
& =9 \cdot 6441116=L \sin 26^{\circ} 9^{\prime} ; \\
\therefore C & =26^{\circ} 9^{\prime}, \text { or, } 180^{\circ}-26^{\circ} 9^{\prime}=153^{\circ} 51^{\prime} .
\end{aligned}
$$

Since b is greater than c, C must be less than 90°, and the larger value for C is inadmissible.
[It is also clear that $\left(153^{\circ} 51^{\prime}+34^{\circ} 11\right)$ is $>180^{\circ}$].

$$
\therefore C=26^{0} 9^{\prime}, A=119^{\circ} 40^{\prime}
$$

EXAMPLES. I。

1. If $B=40^{\circ}, b=140 \cdot 5$ feet, $a=170 \cdot 6$ feet, find A and C. $\log 1 \cdot 405=\cdot 1476763, L \sin 40^{\circ}=9 \cdot 8080675$, $\log 1 \cdot 706=\cdot 2319790, L \sin 51^{\circ} 18^{\prime}=9 \cdot 8923342$, $L \sin 51^{0} 19^{\prime}=9 \cdot 8924354$.
2. Find B and C, having given that $A=50^{\circ}, b=119$ chains, $a=97$ chains, and that $\log 1 \cdot 19=\cdot 075547, L \sin 50^{\circ}=9 \cdot 884254$,

$$
\log 9 \cdot 7=\cdot 986772, L \sin 70^{\circ}=9.972986,
$$

$$
L \sin 70^{\circ} 1^{\prime}=9 \cdot 973032
$$

3. Find B, C, and c, having given that $A=50^{\circ}, b=97, a=119$ (see Example 2). $\log 1 \cdot 553=\cdot 191169, L \sin 38^{\circ} 38^{\prime} 24^{\prime \prime}=9 \cdot 795479$, $L \sin 88^{\circ} 37^{\prime} 24^{\prime \prime}=9 \cdot 999876$.
4. Find A, having given that $a=24, c=25, C=65^{\circ} 59^{\prime}$, and that

$$
\begin{aligned}
\log 2 \cdot 5=\cdot 3979400, & L \sin 65^{0} 59^{\prime}=9 \cdot 9606739 \\
\log 2 \cdot 4=\cdot 380 \cdot 2112, & L \sin 61^{0} 16^{\prime}=9 \cdot 9429335, \\
& L \sin 61^{0} 17^{\prime}=9 \cdot 9430028 .
\end{aligned}
$$

5. If $a=25, c=24$, and $C=65^{\circ} 59^{\prime}$, find A, B and the greater value of $b . \quad \log 1 \cdot 755=\cdot 2442771, L \sin 72^{\circ} 4^{\prime}=9 \cdot 9783702$,

$$
\log 1 \cdot 756=\cdot 2445245, L \sin 72^{0} 5^{\prime}=9.9784111,
$$

$L \sin 41^{\circ} 56^{\prime} 10^{\prime \prime}=9 \cdot 8249725$,
$L \sin 41^{\circ} 56^{\prime} 26^{\prime \prime}=9 \cdot 8249959$ (see Example 4.)
6. Supposing the data for the solution of a triangle to be as in the three following cases $(\alpha),(\beta),(\gamma)$, point out whether the solution will be ambiguous or not, and find the third side in the obtuse-angled triangle in the ambiguous case:
(a) $A=30^{\circ}, a=125$ feet, $c=250$ feet,
(β) $A=30^{\circ}, a=200$ feet, $c=250$ feet,
($\gamma) ~ A=30^{\circ}, a=200$ feet, $c=125$ feet.
$\log 2=3010300, \quad L \sin 38^{\circ} 41^{\prime}=9 \cdot 7958800$,
$\log 6 \cdot 0389=\cdot 7809578, \quad L \sin \quad 8^{0} 41^{\prime}=9 \cdot 1789001$,
$\log 6 \cdot 0390=\cdot 7809650$.
180. In the following Examples the student must find the necessary logarithms etc. from the Tables.

MISCELLANEOUS EXAMPLES. LI.

1. Find A when $a=374 \cdot 5, b=576 \cdot 2, c=759 \cdot 3$ feet.
2. Find B when $a=4001, b=9760, c=7942$ yards.
3. Find C when $a=8761 \cdot 2, b=7643, c=4693 \cdot 8$ chains.
4. Find B when $A=86^{\circ} 19^{\prime}, b=4930, c=5471$ chains.
5. Find C when $B=32^{\circ} 58^{\prime}, c=1873 \cdot 5, a=764 \cdot 2$ chains.
6. Find c when $C=108^{\circ} 27^{\prime}, a=36541, b=89170$ feet.
7. Find c when $B=74^{\circ} 10^{\prime}, C=62^{\circ} 45^{\prime}, b=3720$ yards.
8. Find b when $B=100^{\circ} 19^{\prime}, C=44^{\circ} 59^{\prime}, a=1000$ chains.
9. Find a when $B=123^{\circ} 7^{\prime} 20^{\prime \prime}, C=15^{\circ} 9^{\prime}, c=9964$ yards.

Find the other two angles in the six following triangles.
10. $C=100^{\circ} 37^{\prime}, b=1450, c=6374$ chains.
11. $C=52^{\circ} 10^{\prime}, b=643, c=872$ chains.
12. $A=76^{\circ} 2^{\prime} 30^{\prime \prime}, b=1000, a=2000$ chains.
13. $C=54^{\circ} 23^{\prime}, b=873 \cdot 4, c=752 \cdot 8$ feet.
14. $C=18^{\circ} 21^{\prime}, b=674 \cdot 5, c=269 \cdot 7$ chains.
15. $A=29^{\circ} 11^{\prime} 43^{\prime \prime}, b=7934, a=4379$ feet.
16. The difference between the angles at the base of a triangle is $17^{\circ} 48^{\prime}$, and the sides subtending those angles are 105.25 feet and 76.75 feet; find the third angle.
17. If $b: c=4: 5, a=1000$ yards and $A=37^{\circ} 19^{\prime}$, find b.

The student will find some Examples of Solution of Triangles without the aid of logarithms, in an Appendix.

CHAPTER XV.

On the Measurement of Heights and Distances.
181. We have said (Art. 58) that the measurement, with scientific accuracy, of a line of any considerable length involves a long and difficult process.

On the other hand, sometimes it is required to find the direction of a line that it may point to an object which is not visible from the point from which the line is drawn. As, for example, when a tunnel has to be constructed.

By the aid of the Solution of Triangles
we can find the length of the distance between points which are inaccessible ;
we can calculate the magnitude of angles which cannot be practically observed;
we can find the relative heights of distant and inaccessible points.

The method on which the Trigonometrical Survey of a country is conducted affords the following illustration.
182. To find the distance between two distant objects.

Two convenient positions A and B, on a level plain as far apart as possible, having been selected, the distance between A and B is measured with the greatest possible care. This line $A B$ is called the base line. (In the survey of England, the base line is on Salisbury Plain, and is about 36,578 feet long.)

Next, the two distant objects, P and Q (church spires, for instance), visible from A and B, are chosen.

The angles $P A B, P B A$ are observed. Then by Case II. Chapter xiv, the lengths of the lines $P A, P B$ are calculated.

Again, the angles $Q A B, Q B A$ are observed; and by Case II. the lengths of $Q A$ and $Q B$ are calculated.

Thus the lengths of $P A$ and $Q A$ are found.
The angle $P A Q$ is observed; and then by Case III. the length of $P Q$ is calculated.
183. Thus the distance between two points P and Q has been found. The points P and Q are not necessarily accessible; the only condition being that P and Q must be visible from both A and B.
184. In practice, the points P and Q will generally be accessible, and then the line $P Q$, whose length has been calculated, may be used as a new base to find other distances.
185. To find the height of a distant object above the point of observation.

Let B be the point of observation; P the distant object. From B measure a base line $B A$ of any convenient length, in any convenient direction; observe the angles $P A B, P B A$, and by Case II. calculate the length of $B P$. Next observe at B the 'angle of elevation' of P; that is, the angle which the line $B P$ makes with the horizontal line $B M, M$ being the point in which the vertical line through P cuts the horizontal plane through B.

Then $P M$, which is the vertical height of P above B can be calculated, for $P M=B P \cdot \sin M B P$.

Example 1. The distance between a church spire \mathbf{A} and a milestone B is known to be $1764 \cdot 3$ feet; C is a distant spire. The angle CAB is $94^{\circ} 54^{\prime}$, and the angle CBA is $66^{\circ} 39^{\prime}$. Find the distance of C from A .
$A B C$ is a triangle, and we know one side c and two angles (A and $B)$, and therefore it can be solved by Case II.

The angle $A C B=180^{\circ}-94^{\circ} 54^{\prime}-66^{\circ} 39^{\prime}$

$$
=18^{0} 27^{\circ} .
$$

Therefore the triangle is the same as that solved on page 115. Therefore $A C=5118 \cdot 2$ feet.

Example 2. If the spire C in the last Example stands on a hill, and the angle of elevation of its highest point is observed at A to be $4^{0} 19^{\prime}$; find how much higher C is than A .

The required height $x=A C \cdot \sin 4^{0} 19^{\prime}$ and $A C$ is $5118 \cdot 2$ feet,

$$
\begin{aligned}
\therefore \log x & =\log \left(A C \cdot \sin 4^{0} 19^{\prime}\right) \\
& =\log 5118 \cdot 2+L \sin 4^{0} 19^{\prime}-10 \\
& =3 \cdot 7091173+8 \cdot 8766150-10 \\
& =2 \cdot 5857323=\log 385 \cdot 24 . \\
x & =385 \mathrm{ft} .3 \mathrm{in} . \text { nearly. }
\end{aligned}
$$

EXAMPLES. LII.

(Exercises x. and xuifr. consist of easy Examples on this subject.)

1. Two straight roads inclined to one another at an angle of 60°, lead from a town A to two villages B and $C ; B$ on one road distant 30 miles from A, and C on the other road distant 15 miles from A. Find the distance from B to C. Ans. 25.98 m .
2. Two ships leave harbour together, one sailing N.E. at the rate of $7 \frac{1}{2}$ miles an hour and the other sailing North at the rate of 10 miles an hour. Prove that the distance between the ships after an hour and a half is 10.6 miles.
3. A and B are two consecutive milestones on a straight road and C is a distant spire. The angles $A B C$ and $B A C$ are observed to be 120° and 45° respectively. Show that the distance of the spire from A is 3.346 miles.
4. If the spire C in the last question stands on a hill, and its angle of elevation at A is 15°, show that it is $\delta \delta 6$ of a mile higher than A.
5. If in Question (3) there is another spire D such that the angles $D B A$ and $D A B$ are 45° and 90° respectively and the angle $D A C$ is 45°; prove that the distance from C to D is $2 \frac{3}{4}$ miles very nearly.
6. A and B are two consecutive milestones on a straight road, and C is the chimney of a house visible from both A and B. The angles $C A B$ and $C B A$ are observed to be $36^{\circ} 18^{\prime}$ and $120^{\circ} 27^{\prime}$ respectively. Show that C is 2639.5 yards from B,

$$
\begin{array}{lr}
\log 1760=3 \cdot 2455127 & L \sin 36^{0} 18^{\prime}=9 \cdot 7723314 \\
\log 2639 \cdot 5=3 \cdot 42152 & L \operatorname{cosec} 23^{0} 15^{\prime}=10 \cdot 4036846 .
\end{array}
$$

7. A and B are two points on opposite sides of a mountain, and C is a place visible from both A and B. It is ascertained that C is distant 1794 feet and 3140 feet from A and B respectively and the angle $A C B$ is $58^{\circ} 17^{\prime}$. Show that the angle which the line pointing from A to B makes with $A C$ is $86^{\circ} 55^{\prime} 49^{\prime \prime}$,

$$
\begin{array}{ll}
\log 1346=3 \cdot 1290451 & L \text { cot } 29^{0} 8^{\prime} 30^{\prime \prime}=10 \cdot 2537194 \\
\log 4934=3 \cdot 6931991 & L \tan 26^{\circ} 4^{\prime} 19^{\prime \prime}=9 \cdot 6895654 .
\end{array}
$$

8. A and B are two hill-tops 34920 feet apart, and C is the top of a distant hill. The angles $C A B$ and $C B A$ are observed to be $61^{\circ} 53^{\prime}$ and $76^{\circ} 49^{\prime}$ respectively. Prove that the distance from A to C is 51515 feet,

$$
\begin{array}{ll}
\log 34920=4 \cdot 5130742 & L \sin 76^{0} 49^{\prime}=9 \cdot 9884008 \\
\log 51515=4 \cdot 71193 & L \operatorname{cosec} 41^{\circ} 18^{\prime}=10 \cdot 1804552 .
\end{array}
$$

9. From two stations A and B on shore, 3742 yards apart, a ship C is observed at sea. The angles $B A C, A B C$ are simultaneously observed to be $72^{\circ} 34^{\prime}$ and $81^{\circ} 41^{\prime}$ respectively. Prove that the distance from A to the ship is 8522.7 yards,

$$
\begin{array}{rr}
\log 3742=3 \cdot 5731038 & L \sin 81^{0} 41^{\prime}=9 \cdot 9954087 \\
\log 8522 \cdot 7=3 \cdot 9005774 & L \operatorname{cosec} 25^{\circ} 45^{\prime}=10 \cdot 3620649 .
\end{array}
$$

10. The distance between two mountain peaks is known to be 4970 yards, and the angle of elevation of one of them when seen from the other is $9^{\circ} 14^{\prime}$. How much higher is the first than the second? $\operatorname{Sin} 9^{0} 14^{\prime}=\cdot 1604555$. Ans. 797.5 yards.
11. Two straight railways intersect at an angle of 60°. From their point of intersection two trains start, one on each line, one at the rate of 40 miles an hour. Find the rate of the second train that at the end of an hour they may be 35 miles apart. Ans. Either 25 or 15 miles an hour. (Art. 264.)
12. A and B are two positions on opposite sides of a mountain; C is a point visible from A and $B ; A C$ and $B C$ are 10 miles and 8 miles respectively, and the angle $B C A$ is 60°. Prove that the distance between A and B is $9 \cdot 165$ miles.
13. In the last question, if the angle of elevation of C at A is 8^{0}, and at B is $2^{\circ} 48^{\prime} 24^{\prime \prime}$: show that the height of A above B is one mile very nearly.

$$
\sin 8^{\circ}=1391731 \sin 2^{\circ} 48^{\prime} 24^{\prime \prime}=0489664 .
$$

14. Show that the angles which a tunnel going through the mountain from A to B, in Questions 12 and 13, would make (i), with the horizon, (ii) with the line joining A and C, are respectively $6^{0} 16^{\prime}$ and $49^{\circ} 6^{\prime} 24^{\prime \prime}$.

$$
\sin 6^{\circ} 16^{\prime}=\cdot 1091 ; \tan 10^{\circ} 53^{\prime} 36^{\prime \prime}=\cdot 192450
$$

15. A and B are consecutive milestones on a straight road; C is the top of a distant mountain. At A the angle $C A B$ is observed to be $38^{\circ} 19^{\prime}$; at B the angle $C B A$ is observed to be $132^{\circ} 42^{\prime}$, and the angle of elevation of C at B is $10^{\circ} 15^{\prime}$. Show that the top of the mountain is $1243 \cdot 5$ yards higher than B.

$$
\begin{array}{rlr}
L \sin 38^{\circ} 19^{\prime}=9 \cdot 7923968 & \log 1760=3 \cdot 2455127 \\
L \operatorname{cosec} 8^{\circ} 59^{\prime}=10 \cdot 8064659 & \log 1243 \cdot 5=3 \cdot 09465 \\
L \sin 10^{\circ} 15^{\prime}=9 \cdot 2502822 .
\end{array}
$$

16. A base line $A B, 1000$ feet long, is measured along the straight bank of a river; C is an object on the opposite bank; the angles $B A C$ and $C B A$ are observed to be $65^{\circ} 37^{\prime}$ and $53^{\circ} 4^{\prime}$ respectively.

Prove that the perpendicular breadth of the river at C is 829.87 fect; having given

$$
\begin{aligned}
L \sin 65^{\circ} 37^{\prime}=9 \cdot 9594248, & L \sin 53^{0} 4^{\prime}=9 \cdot 9027289 \\
L \operatorname{cosec} 61^{0} 19^{\prime}=10 \cdot 0568589, & \log 8 \cdot 2987=.91901
\end{aligned}
$$

MISCELLANEOUS EXAMPLES. LIII.

1. A man walking along a straight road at the rate of three miles an hour sees, in front of him at an elevation of 60° a balloon which is travelling horizontally in the same direction at the rate of six miles an hour; ten minutes after he observes that the elevation is 30°. Prove that the height of the balloon above the road is $440 \sqrt{ } 3$ yards.
2. A person standing at a point A, due south of a tower built on a horizontal plain, observes the altitude of the tower to be 60°. He then walks to a point B due west from A and observes the altitude to be 45°, and then at the point C in $A B$ produced he observes the altitude to be 30°. Prove that $A B=B C$.
3. The angle of elevation of a balloon, which is ascending uniformly and vertically, when it is one mile high is observed to be $35^{\circ} 20 ; 20$ minutes later the elevation is observed to be $55^{\circ} 40^{\prime}$. How fast is the balloon moving?
$A n s .3\left(\sin 20^{\circ} 20^{\prime}\right)\left(\sec 55^{\circ} 40\right)\left(\operatorname{cosec} 35^{\circ} 20^{\prime}\right)$ miles per hour.
4. The angular elevation of a tower at a place A due south of it is 30°; and at a place B due west of A, and at a distance a from it, the elevation is 18°; show that the height of the tower is

$$
a\{2+2 \sqrt{ } 5\}^{-\frac{1}{2}}
$$

5. The angular elevation of the top of a steeple at a place due south of it is 45°, and at another place due west of the former station and distant a feet from it the elevation is 15^{0}; show that the height of the steeple is $\frac{a}{2}\left(3^{\frac{1}{4}}-3^{-\frac{1}{4}}\right)$ feet.
6. A tower stands at the foot of an inclined plane whose inclination to the horizon is 9°; a line is measured up the incline from the foot of the tower of 100 feet in length. At the upper extremity of this line the tower subtends an angle of 54°. Find the height of the tower. Ans. $114 \cdot 4 \mathrm{ft}$.
7. The altitude of a certain rock is observed to be 47°, and after walking 1000 feet towards the rock, up a slope inclined at an angle of 32° to the horizon, the observer finds that the altitude is 77°. Prove that the vertical height of the rock above the first point of observation is $1034 \mathrm{ft} . \quad \operatorname{Sin} 47^{\circ}=\cdot 73135$.
8. At the top of a chimney 150 feet high standing at one corner of a triangular yard, the angle subtended by the adjacent sides of the yard are 30° and 45° respectively; while that subtended by the opposite side is 30°. Show that the lengths of the sides are 150 ft . 86.6 ft . and 106 ft . respectively.

CHAPTER XVI.

On Triangles and Circles.

186. To find the Area of a I'riangle.

The area of the triangle $A B C$ is denoted by Δ.

Through A draw $H K$ parallel to $B C$, and through $A B C$ draw lines $A D, B K, C H$ perpendicular to $B C$.

The area of the triangle $A B C$ is half that of the rectangular parallelogram $B C H K$
[Euc. 1. 41].
Therefore $\Delta=\frac{B C \cdot C H}{2}=\frac{B C \cdot D A}{2}$

$$
\begin{equation*}
=\frac{a \cdot b \sin C}{2} . \tag{i}
\end{equation*}
$$

But $\quad \sin C=\frac{2}{a b} \cdot \sqrt{s(s-a)(s-b)(s-c)}$;

$$
\begin{equation*}
\therefore \Delta=\sqrt{s(s-a)(s-b)(s-c)}=S \tag{ii}
\end{equation*}
$$

187. To find the Radius of the Circumscribing Circle.

Let a circle $A A^{\prime} C B$ be described about the triangle $A B C$. Let R stand for its radius. Let O be its centre. Join $B O$, and produce it to cut the circumference in A^{\prime}. Join $A^{\prime} C$.

Then, Fig. 1. the angles $B A C, B A^{\prime} C$ in the same segment are equal ; Fig. ir. the angles $B A C, B A^{\prime} C$ are supplementary; also the angle $B C A^{\prime}$ in a semicircle is a right angle.

Fig. 1.

Fig. II.

Therefore $\frac{C B}{A^{\prime} B}=\sin C A^{\prime} B=\sin C A B=\sin A$,
or,

$$
\frac{a}{2 R}=\sin A ;
$$

$$
\therefore 2 R=\frac{a}{\sin A} \text {. }
$$

188. Similarly, it may be proved that

$$
2 R=\frac{b}{\sin B} ; \text { and that } 2 R=\frac{c}{\sin C} .
$$

Hence,

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R .
$$

Thus d, the value of each of these fractions, is the diameter of the circumscribing circle.
189. To find the radius of the Inscribed Circle.

Let D, E, F be the points in which the circle inscribed in the triangle $A B C$ touches the sides. Let I be the centre of the circle ; let r be its radius. Then $I D=I E=I F=r$.

The area of the triangle $A B C$

$$
=\text { area of } I B C+\text { area of } I C A+\text { area of } I A B .
$$

And the area of the triangle $I B C=\frac{1}{2} I D . B C=\frac{1}{2} r . a$,

$$
\begin{aligned}
\therefore \text { area of } A B C & =\frac{1}{2} I D \cdot B C+\frac{1}{2} I E \cdot C A+\frac{1}{2} I F \cdot A B \\
& =\frac{1}{2} r a+\frac{1}{2} r b+\frac{1}{2} r c ; \\
\Delta & =\frac{1}{2} r(a+b+c)=\frac{1}{2} r \cdot 2 s=r s . \\
\therefore \quad r & =\frac{\Delta}{s}=\frac{S}{s} .
\end{aligned}
$$

or,
190. A circle which touches one of the sides of a triangle and the other two sides produced is called an Escribed Circle of the triangle.
191. To find the radius of an Escribed Circle.

Let an escribed circle touch the side $B C$ and the sides $A C, A B$ produced in the points D_{1}, E_{1}, F_{1} respectively. Let I_{1} be its centre, r_{1} its radius. Then

$$
I_{1} D_{1}=I_{1} E_{1}=I_{1} F_{1}=r_{1} .
$$

The area of the triangle $A B C$

$$
=\text { area of } A B I_{1} C-\text { area of } I_{1} B C,
$$

$=$ area of $I_{1} C A+$ area of $I_{1} A B-$ area of $I_{1} B C$,
or

$$
\begin{aligned}
\Delta & =\frac{1}{2} I_{1} E_{1} \cdot C A+\frac{1}{2} I_{1} F_{1} \cdot A B-\frac{1}{2} I_{1} D_{1} \cdot B C \\
& =\frac{1}{2} r_{1} b+\frac{1}{2} r_{1} c-\frac{1}{2} r_{1} a \\
& =\frac{1}{2} r_{1}(b+c-a)=\frac{1}{2} r_{1}(2 s-2 a)=r_{1}(s-a) . \\
\therefore r_{1} & =\frac{\Delta}{s-a}=\frac{S}{s-a} .
\end{aligned}
$$

192. Similarly if r_{8} and r_{3} be the radii of the other two escribed circles of the triangle $A B C$, then

$$
r_{2}=\frac{S}{s-b} ; r_{3}=\frac{S}{s-c}
$$

EXAMPLES. LIV.

(1) Find the area of the triangle $A B C$ when
(i) $a=4, \quad b=10$ feet, $C=30^{\circ}$.
(ii) $b=5, \quad c=20$ inches, $A=60^{\circ}$.
(iii) $c=66_{3}^{2}, a=15$ yards, $b=17^{\circ} 14^{\prime}\left[\sin 17^{0} 14^{\prime}=\cdot 29626\right]$.
(iv) $a=13, b=14, c=15$ chains.
(v) $a=10$, the perpendicular from A on $B C=20$ feet.
(vi) $a=625, b=505, c=904$ yards.
(2) Find the Radii of the Inscribed and each of the Escribed Circles of the triangle $A B C$ when $a=13, b=14, c=15$ feet.
(3) Show that the triangles in which (i) $a=2, A=60^{\circ}$; (ii) $b=\frac{2}{3} \cdot \sqrt{3}, B=30^{\circ}$ can be inscribed in the same circle.
(4) Prove that $R=\frac{a b c}{4 \bar{S}}$; find R in the triangle of (2).
(5) Prove that if a series of triangles of equal perimeter are described about the same circle, they are equal in area.
(6) If $A=60^{\circ}, a=\sqrt{ } 3, b=\sqrt{ } 2$, prove that the area $=\frac{1}{4}(3+\sqrt{ } 3)$.
(7) Prove that each of the following expressions represents the area of the triangle $A B C$:
(i) $\frac{a b c}{4 R}$.
(iii) $r s$
(v) $\frac{1}{2} a^{2} \sin B \cdot \sin C \cdot \operatorname{cosec} A$. (vi) $r a \operatorname{cosec} \frac{1}{2} A \cos \frac{1}{2} B \cos \frac{1}{2} C$.
(vii) $\left(r r_{1} r_{2} r_{3}\right)^{\frac{1}{2}}$.

Prove the following statements:
(8) If a, b, c are in A.P., then $a c=6 r R$.
(9) The area of the greatest triangle, two of whose sides are 50 and 60 feet, is 1500 sq. feet.
(10) If the altitude of an isosceles triangle is equal to the base, R is five-eighths of the base.

EXAMPLES FOR EXERCISE. LV.

1. Define the terms sine, cotangent; and prove that if A be any angle, $\quad \sin ^{2} A+\cos ^{2} A=1$.

If $\tan A=\frac{3}{4}$, find $\sin A$ and $\cos A$.
2. Find the sine, cosine and tangent of 30°.

In a triangle $A B C$ the angle C is a right angle, the angle A is 60°, and the length of the perpendicular let fall from C on $A B$ is 20 feet; find the length of $A B$.
3. Prove geometrically that $\cos \left(180^{\circ}-A\right)=-\cos A$.

Find A if $2 \sin A=\tan A$.
4. Prove
(1) $\sin (A+B) \cdot \sin (A-B)=\sin ^{2} A-\sin ^{2} B$;
(2) $\frac{\sin A+\sin B}{\sin A-\sin B}=\frac{\tan \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)}$.
5. Prove that

$$
\cos ^{2} A-\cos A \cos \left(60^{\circ}+A\right)+\sin ^{2}\left(30^{\circ}-A\right)=\frac{8}{4} .
$$

6. Find the greatest side of the triangle of which one side is 2183 feet and the adjacent angles are $78^{\circ} 14^{\prime}$ and $71^{\circ} 24^{\prime}$.

$$
\log 2183=3 \cdot 3390537, \quad \log 42274=4 \cdot 6260733,
$$

$L \sin 7 \delta^{\circ} 14^{\prime}=9 \cdot 9907766$,
$\log 42275=4 \cdot 6260836$.
$L \sin 30^{\circ} 22^{\prime}=9 \cdot 7037486$,
7. Express the other trigonometrical ratios in terms of the cosine.
8. Prove

$$
\begin{aligned}
\sin (180+A) & =-\sin A ; \\
\tan (90+A) & =-\cot A .
\end{aligned}
$$

9. Write down the sines of all the angles which are multiples of 30° and less than 360°.
10. Prove

$$
\tan ^{2} A=\frac{1-\cos 2 A}{1+\cos 2 A} .
$$

11. If $\tan A+\sec A=2$, prove that $\sin A=\frac{3}{6}$, when A is less than 90°.

If $\sin A=\frac{s}{5}$, prove that $\tan A+\sec A=3$, when A is less than 90°.
12. The length of the greatest side of a triangle is $1035 \cdot 43$ feet, and the three angles are $44^{\circ}, 66^{\circ}$, and 70°. Solve the triangle, having given

$$
\begin{aligned}
& L \sin 44^{0}=9 \cdot 8417713, \\
& L \sin 70^{\circ}=9 \cdot 9729858, \\
& \log 765432=5 \cdot 8839067 \text {, } \\
& L \sin 66^{\circ}=9 \cdot 9607302, \\
& \log 1035 \cdot 43=3 \cdot 0151212 \text {, } \\
& \log 10066=4 \cdot 0028656 \text {. }
\end{aligned}
$$

13. Express the other trigonometrical ratios in terms of the cotangent.
14. Prove that $\cos \left(180^{\circ}-A\right)=-\cos A$; $\operatorname{cosec}\left(180^{\circ}+A\right)=-\operatorname{cosec} A$.
15. Write down the tangents of all the angles which are multiples of 30° and less than 360°.
16. If $\tan A+\sec A=3$, prove that $\sin A=\frac{4}{6}$, when A is less than 90°.

If $\sin A=\frac{3}{8}$, prove that $\tan A+\sec A=2$, when A is less than 90°.
17. Find the sines of the three angles of the triangle whose sides are 193, 194, and 195 feet.
18. Investigate the following formulæ:
(2) $\cos \theta-\cos (\theta+\delta)=\sin \theta \sin \delta\left(1+\cot \theta \tan \frac{1}{2} \delta\right)$.
19. Define the secant of an angle.

Prove the formula $\frac{1}{\sec ^{2} \alpha}+\frac{1}{\operatorname{cosec}^{2} A}=1$.
If $\sin A=\frac{1}{3}$, find $\sec A$.
20. Find the logarithms of $\sqrt{ }(32)$ and of 03125 to the base $\sqrt[8]{2}$.
21. Express the sine, cosine, and tangent of each of the angles $1962^{\circ}, 2376^{\circ}, 2844^{\circ}$, in terms of the trigonometrical functions of angles lying between 0 and 45°.
22. Prove the formula to express the cosine of the sum of two angles in terms of the sines and cosines of those angles.

Express $\cos 5 \alpha$ in terms of $\cos \alpha$.
23. Find solutions of the equations
(i) $\sec \theta \operatorname{cosec} \theta-\cot \theta=\sqrt{ } 3$;
(ii) $\sin 2 \theta-\sin \theta=\cos 2 \theta+\cos \theta$.
24. A ring 10 inches in diameter is suspended from a point 1 foot above its centre by six equal strings attached to its circumference at equal intervals; find the cosine of the angle between two consecutive strings.
25. Define 1^{0}. Assuming that $\frac{22}{7}$ is the circular measure of two right angles, express the angle A^{0} in circular measure.

Find the number of degrees in the angle whose circular measure is $\cdot 1$.
26. Find the trigonometrical ratios of the angle whose cosine is $\frac{3}{8}$.
27. Prove that
(1) $\cos \left(180^{\circ}+A\right)=\cos \left(180^{\circ}-A\right)$;
(2) $\tan \left(90^{\circ}+A\right)=\cot \left(180^{\circ}-A\right)$.
28. Prove $\sin x(2 \cos x-1)=2 \sin \frac{x}{2} \cos \frac{3 x}{2}$.
29. Express $\log _{10} 5 \cdot 832, \log _{10} \sqrt[8]{(35)}$ and $\log _{10} \cdot 3048$ in terms of $\log _{10} 2, \log _{10} 3, \log _{10} 7$.
30. If the angle opposite the side a be 60°, and if b, c be the remaining sides of the triangle, prove that

$$
(a+b+c)(b+c-a)=3 b c
$$

31. Assuming $\frac{2,2}{7}$ to be the circular measure of two right angles, express in degrees the angle whose circular measure is θ. Find the number of degrees in an angle whose circular measure is $\frac{1}{3}$.
32. Shew from the definitions of the trigonometrical function that $\sin ^{2} A+\cot ^{2} A+\cos ^{2} A=\operatorname{cosec}^{2} A$.

Prove that

$$
\frac{\tan A+\sec A+1}{\tan A+\sec A-1}=\frac{\sec A+1}{\tan A}
$$

33. Prove
34. Find the logarithms of $\sqrt{ }(27)$ and $\cdot 037$ to the base $\sqrt[8]{3}$.
35. If $(\sin A+\sin B+\sin C)(\sin A+\sin B-\sin C)=3 \sin A \sin B$, and $A+B+C=180^{\circ}$, prove that $C=60^{\circ}$.
36. Given $A=18^{\circ}, B=144^{\circ}$, and $b=1$, solve the triangle.
37. Give the trigonometrical definition of an angle.

What angle does the minute-hand of a clock describe between twelve o'clock and 20 minutes to four?
38. Express the cosine and the tangent of an angle in terms of the sine.

The angle A is greater than 90° but less than 180°, and $\sin A=\frac{1}{3}$. Find $\cos A$.
39. Find all the values of θ between 0 and 2π for which

$$
\cos \theta+\cos 2 \theta=0 .
$$

40. If in a triangle $a \cos A=b \cos B$, the triangle will be either isosceles or right-angled.
41. The sides are 1 foot and $\sqrt{3}$ feet respectively, and the angle opposite to the shorter side is 30°; solve the triangle.
42. The sides of a triangle are $2,3,4$. Find the greatest angle, having given

$$
\begin{array}{rr}
\log 2= & \cdot 3010300, \\
\log 3= & \cdot 4771213, \\
L \tan 52^{0} \cdot 15^{\prime}=10 \cdot 1111004, \\
L \tan 52^{0} \cdot 14^{\prime}=10 \cdot 1108395,
\end{array}
$$

43. Distinguish between Euclid's definition of an angle and the trigonometrical definition.

What angle does the minute-hand of a clock describe between halfpast four and a quarter-past six?
44. Express the sine and the cosine of an angle in terms of the tangent.

The angle A is greater than 180° but less than 270°, and $\tan A=\frac{1}{2}$. Find $\sin d$.
45. Prove (i) $\sin 2 A=\frac{2 \cot A}{1+\cot ^{2} A}$.
(ii) Show that if $A+B+C=90^{\circ}$, $\sin 2 A+\sin 2 B+\sin 2 C=4 \cos A \cos B \cos C$.
46. Find all the values of θ between 0 and 2π for which

$$
\sin \theta+\sin 2 \theta=0 \text {. }
$$

47. If in a triangle $b \cos A=a \cos B$, show that the triangle is isosceles.
48. The sides are 1 foot and $\sqrt{2}$ feet respectively, and the anglo opposite to the shorter side is 30°; solve the triangle.
49. Express in degrees, minutes, etc. (1) the angle whose circular measure is $\frac{1}{20} \pi$; (2) the angle whose circular measure is 5.

If the angle subtended at the centre of a circle by the side of a regular heptagon be the unit of angular measurement, by what number is an angle of 45° represented?
50. Prove that

$$
\left(\sin 30^{\circ}+\cos 30^{\circ}\right)\left(\sin 120^{\circ}+\cos 120^{\circ}\right)=\sin 30^{\circ} .
$$

51. Prove the formulæ:
(1) $\cos ^{2}(\alpha+\beta)-\sin ^{2} \alpha=\cos \beta \cos (2 \alpha+\beta)$;
(2) $1+\cot a \cot \frac{1}{2} \alpha=\operatorname{cosec} a \cot \frac{1}{2} \alpha$.
52. Find solutions of the equations:
(1) $5 \tan ^{2} x-\sec ^{2} x=11$;
(2) $\sin 5 \theta-\sin 3 \theta=\sqrt{ } 2 \cdot \cos 4 \theta$.
53. Two sides of a triangle are 10 feet and 15 feet in length, and the angle between them is 30°. What is its area?
54. Given that

$$
\sin 40^{\circ} 29^{\prime}=0.6492268, \quad \sin 40^{\circ} 30^{\prime}=0.6494480,
$$

find the angle whose sine is 0.6493000 .
55. Express in circular measure (1) 10 , (2) $\frac{7}{6}$ of a right angle. If the angle subtended at the centre of a circle by the side of a regular pentagon be the unit of angular measurement, by what number is a right angle represented?
56. If $\sec a=7$, find $\tan a$ and $\operatorname{cosec} a$.
57. Prove the formule :
(1) $\cos ^{2}(\alpha-\beta)-\sin ^{2}(\alpha+\beta)=\cos 2 a \cos 2 \beta$;
(2) $1+\tan \alpha \tan \frac{1}{2} \alpha=\sec \alpha$.
58. Find solutions of the equations:
(1) $5 \tan ^{2} x+\sec ^{2} x=7$; (2) $\cos 5 \theta+\cos 3 \theta=\sqrt{ } 2 \cdot \cos 40$.
59. The lengths of the sides of a triangle are $\mathbf{3}$ feet, 5 feet, and 6 feet. What is its area?
60. Given that
$\sin 38^{\circ} 25^{\prime}=0.6213757, \quad \sin 38^{\circ} 26^{\prime}=0 \cdot 6216036$,
find the angle whose sine is $(0 \cdot 6215000)$.
61. Which is greater, 76^{8} or $1 \cdot 2^{\circ}$? [Art. 32.]
62. Determine geometrically $\cos 30^{\circ}$ and $\cos 45^{\circ}$.

If $\sin A$ be the arithmetic mean between $\sin B$ and $\cos B$, then $\cos 2 A=\cos ^{2}\left(B+45^{\circ}\right)$.
63. Establish the following relations:
(1) $\tan ^{2} A-\sin ^{2} A=\tan ^{2} A \sin ^{2} A$;
(2) $\cot A-\cot 2 A=\operatorname{cosec} 2 A$;
(3) $\frac{\sin (x+3 y)+\sin (3 x+y)}{\sin 2 x+\sin 2 y}=2 \cos (x+y)$.
64. Express $\log _{10} \sqrt{ }(28), \log _{10} 3 \cdot 888, \log _{10} \cdot 1742 \dot{2}$ in terms of $\log _{10} 3$, $\log _{10} 5, \log _{10} 7$.
65. Prove that $\sin (A+B)=\sin A \cos B+\cos A \sin B$, and deduce the expression for $\cos (A+B)$.

Show that
$\sin A \cos (B+C)-\sin B \cos (A+C)=\sin (A-B) \cos C$.
66. One side of a triangular lawn is 102 feet long, its inclinations to the other sides being $70^{\circ} 30^{\prime}, 78^{\circ} 10^{\prime}$ respectively. Determine the other sides and the area. $L \sin 70^{\circ} 30^{\prime}=9 \cdot 974, \log 102=2 \cdot 009, L \sin$ $78^{\circ} 10^{\prime}=9 \cdot 990, \quad \log 185=2 \cdot 267, \quad L \sin 31^{\circ} 20^{\prime}=9 \cdot 716, \quad \log 192=2 \cdot 283$, $\log 2=301, \log 9234=3 \cdot 965$.
67. Which is greater, 126° or the angle whose circular measure is 2.3?
68. Establish the following relations:
(1) $\cot ^{2} A-\cos ^{2} A=\cot ^{2} A \cos ^{2} A$;
(2) $\tan A+\cot 2 A=\operatorname{cosec} 2 A$;
(3) $\frac{\cos (x-3 y)-\cos (3 x-y)}{\sin 2 x+\sin 2 y}=2 \sin (x-y)$.
69. Given $\log _{10} 2=\cdot 3010300, \log _{10} 9=\cdot \cdot 9542425$; find without using tables, $\log _{10} 5, \log _{10} 6, \log _{10} \cdot 0216$ and $\log _{10} \mathbb{S}^{5}(\cdot 375)$.
70. Prove that $\sin 30^{\circ}+\sin 120^{\circ}=\sqrt{ } 2 \cos 15^{\circ}$.
71. Establish the identities:

$$
\begin{equation*}
1+\cos A+\sin A=\sqrt{2(1+\cos A)(1+\sin A)} ; \tag{1}
\end{equation*}
$$

(2)

$$
\operatorname{cosec} 2 A=\frac{\operatorname{cosec}^{2} A}{2 \sqrt{\operatorname{cosec}^{2} A-1}} ;
$$

(3) $\sin \frac{2 \pi}{7}+\sin \frac{4 \pi}{7}-\sin \frac{6 \pi}{7}=4 \sin \frac{\pi}{7} \sin \frac{3 \pi}{7} \sin \frac{5 \pi}{7}$.
72. The sides of a triangular lawn are 102, 185, and 192 feet in length, the smallest angle being approximately $31^{0} 20^{\prime}$. Find its other angles and its area.

$$
\begin{array}{lr}
\log 102=2 \cdot 009, & L \sin 31^{0} 20^{\prime}=9 \cdot 716, \\
\log 185=2 \cdot 267, & L \sin 70^{\circ} 30^{\prime}=9 \cdot 974, \\
\log 192=2 \cdot 283, & L \sin 78^{\circ} 10^{\prime}=9 \cdot 990, \\
\log 2==301, \log 9234=3 \cdot 965 .
\end{array}
$$

73. If the circumference of a circle be divided into five parts in arithmetical progression, the greatest part being six times the least, express in radians the angle each subtends at the centre.
74. Define the sine of an angle, wording your definition so as to include angles of any magnitude.

Prove that and

$$
\begin{aligned}
& \sin \left(90^{\circ}+A\right)=\cos A \\
& \cos \left(90^{\circ}+A\right)=-\sin A,
\end{aligned}
$$ and by means of these deduce the formulæ

$$
\sin \left(180^{\circ}+A\right)=-\sin A, \quad \cos \left(180^{\circ}+A\right)=-\cos A
$$

75. Prove the formulæ:
(1) $\cot ^{2} A=\operatorname{cosec}^{2} A-1$;
(2) $\cot ^{4} A+\cot ^{2} A=\operatorname{cosec}^{4} A-\operatorname{cosec}^{2} A$.

Verify (2) when $A=30^{\circ}$.
76. Evaluate to 4 significant figures by the aid of the table of logarithms

$$
\frac{7 \cdot 891}{.0345} \times \sqrt[7]{(\cdot 008931)}
$$

77. If $\sin B$ be the geometric mean between $\sin A$ and $\cos A$, then $\cos 2 B=2 \cos ^{2}\left(A+45^{\circ}\right)$.
78. The lengths of two of the sides of a triangle are 1 foot and $\sqrt{ } 2$ feet respectively, the angle opposite the shorter side is 30°. Prove that there are two triangles which satisfy these conditions; find their angles, and show that their areas are in the ratio $\sqrt{ } 3+1: \sqrt{ } 3-1$.
79. If the circumference of a circle be divided into six parts in arithmetical progression, the greatest being six times the least, express in radians the angle each subtends at the centre.
80. Define the tangent of an angle, wording your definition so as to include angles of any magnitude.

Prove that $\tan \left(90^{\circ}+A\right)=-\cot A$, and by means of this formula deduce the formula $\tan \left(180^{\circ}+A\right)=\tan A$.
81. Compute by means of tables the value of

$$
\frac{6 \cdot 12}{\cdot 4131} \times \sqrt[5]{54 \cdot 17}
$$

82. Prove that $\cos (A+B)=\cos A \cos B-\sin A \sin B$, and deduce the expression for $\sin (A+B)$.

Show that $\cos A \cos (B+C)-\cos B \cos (A+C)=\sin (A-B) \sin C$.
83. Establish the identities:
(1) $1+\cos A-\sin A=\sqrt{2(1+\cos A)(1-\sin A)}$;
(2) $\sec 2 A=\frac{\sec ^{2} A}{2-\sec ^{2} A}$;
(3) $\cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{6 \pi}{7}+4 \cos \frac{\pi}{7} \cos \frac{3 \pi}{7} \cos \frac{5 \pi}{7}+1=0$.
84. Two adjacent sides of a parallelogram 5 in . and 3 in . long respectively, include an angle of 60°. Find the lengths of the two diagonals and the area of the figure.
85. Investigate the following formulæ:
(1) $\sin \frac{3 A}{2}=(1+2 \cos A) \sin \frac{1}{2} A$;
(2) $\sin (\theta+\delta)-\sin \theta=\cos \theta \sin \delta\left(1-\tan \theta \tan \frac{1}{2} \delta\right)$.
86. Prove that
(1) $\sin 10^{\circ} \div \sin 50^{\circ}=\sin 70^{\circ}$;
(2) $\sqrt{ } 3+\tan 40^{\circ}+\tan 80^{\circ}=\sqrt{ } 3 \tan 40^{\circ} \tan 80^{\circ}$;
(3) if $A+B+C=180^{\circ}$,

$$
\frac{\sin A-\sin B \cos C}{\cos B}=\frac{\sin B-\sin A \cos C}{\cos A} .
$$

87. Prove by means of the logarithmic table that

$$
\frac{1}{73^{-\frac{1}{7}}}=1.846 \text { nearly. }
$$

88. The length of one side of a triangle is $1006 \cdot 62$ feet and the adjacent angles are 44° and 70°. Solve the triangle, having given
$L \sin 44^{\circ}=9 \cdot 8417713$,
$L \sin 66^{\circ}=9 \cdot 9607302$,
$\log 7654321=6 \cdot 8839067$,
$L \sin 70^{\circ}=9.9729858$,
$\log 1006 \cdot 62=3 \cdot 0028656$,
$\log 103543=5 \cdot 0151212$.
89. Find the length of the are of a circle whose radius is 8 feet which subtends at the centre an angle of 50°, having given

$$
\pi=3 \cdot 1416
$$

90. Prove that $\sin A=-\sin \left(A-180^{\circ}\right)$.

Find the sines of 30° and 2010°.
91. Given that the integral part of $(3 \cdot 1622)^{100000}$ contains fifty thousand digits, find $\log _{10} 31622$ to five places of decimals.
92. Prove that
(1) $\cos ^{2} A+\cos ^{2} B-2 \cos A \cos B \cos (A+B)=\sin ^{2}(A+B)$;
(2) $\cos ^{2} A+\sin ^{2} A \cos 2 B=\cos ^{2} B+\sin ^{2} B \cos 2 A$.
93. Prove that in any triangle

$$
a^{2} \cos 2 B+b^{2} \cos 2 A=a^{2}+b^{2}-4 a b \sin A \sin B
$$

94. If $a=123, B=29^{\circ} 17^{\prime}, C=135^{\circ}$, find c, having given

$$
\begin{array}{cc}
\log 123=2 \cdot 0899051, & \log 2=\cdot 3010300 \\
\log 3211= & 4 \cdot 5066403, \\
L \sin 15^{\circ} 43^{\prime}=9 \cdot 4327777
\end{array}
$$

95. Define the unit of circular measure, and prove that it is an invariable angle.

If an arc of 12 feet subtend at the centre of a circle an angle of 50°, what is the radius of the circle, π being equal to $3 \cdot 1416$?
96. Express the cosine and cotangent in terms of the cosecant.

If $\cot A+\operatorname{cosec} A=5$, find $\cos A$.
97. Given that the integral part of $(3.981)^{100000}$ contains sixty thousand digits, calculate $\log _{10} 39810$ correct to 5 places of decimals.
98. Prove that
(1) $\sin ^{2} A+\sin ^{2} B+2 \sin A \sin B \cos (A+B)=\sin ^{2}(A+B)$;
(2) $\sin ^{2} A-\cos ^{2} A \cos 2 B=\sin ^{2} B-\cos ^{2} B \cos 2 A$.
99. On the birth of an infant $£ 1500$ is invested so that it may accumulate at Compound Interest (3 per cent. per annum payable half-yearly) during the child's minority; calculate by logarithms the amount at the end of 21 years.
100. Prove that in any triangle

$$
\frac{\cos 2 A}{a^{2}}-\frac{\cos 2 B}{b^{2}}=\frac{1}{a^{2}}-\frac{1}{b^{2}} .
$$

ANSWERS TO THE EXAMPLES.

I. 1. 80. 2. $10.3 .16 . \quad$ 4. $109 \frac{1}{21}$. \quad 5. 5 acres. 6. $\frac{1760 a}{b}$. 7. $\frac{a \cdot c}{3} y \mathrm{ds} . \quad$ 8. A shilling and a three-penny piece.
II. 1. 10 ft . 2. 80 yds 3. 20 ft . 4. 50 ft. 5. 90 ft. 6. $20 \frac{1}{2} \frac{0}{7}$ nearly. 7. $5 a$ feet. \quad 8. $12 a$ yards. 10. $\frac{\sqrt{ } 2}{2} a$ yards. \quad 12. $\frac{2 \sqrt{ } 3}{3} a$ feet. 13. $1: \sqrt{ } 2$. 14. $\sqrt{ } \overline{84} \mathrm{ft}$. 15. $2 \sqrt{9 a^{2}-b^{2}} \mathrm{ft}$.
III. 1. $3 \frac{1}{7} \mathrm{yds}$ 2. $2 \frac{5}{\frac{1}{7}} \mathrm{ft}$. 3. $150 \frac{8}{7} \mathrm{in}$ 4. $3_{\mathrm{T} \frac{7}{\mathrm{I}} \mathrm{ft}}$. 5. $7 \frac{7}{\mathrm{~T}} \mathrm{ft}$. 6. 560 . 7. $1.5 \frac{1}{2}$ nearly. 8. 33600 . 9. $32 \frac{1}{4}$. 10. 7 ft . 11. $553 \frac{1}{7}, 13.8 \mathrm{in}$. 12. $339 \frac{3}{7} \mathrm{ft}$. 13. 443 in . 14. 235 in . 15. 203 in . 16. 1886 in .
V. 1. - 09175 of a right angle $=98^{\prime} 17^{\prime} 50^{\prime \prime}$.
2. $\cdot 0675 \quad " \quad=6{ }^{8} 75^{\prime}$.
3. $1.07875 \quad, \quad=107^{8} 87^{\prime} 50^{\prime \prime}$.
4. -180429012345679 $=184^{4} 29^{\prime \prime}$, etc.
5. $1 \cdot 46 \dot{7} \quad, \quad=146^{8} 77^{\prime} 77 \cdot \dot{7}^{\prime \prime}$ 。
6. $\cdot 5 \dot{4} \quad " \quad=5484444 \cdot \dot{4}^{\prime \prime}$.
7. $1^{0} 14^{\prime} 15^{\prime \prime}$.
8. $7^{0} 52^{\prime} 30^{\prime \prime}$.
9. $153^{\circ} 24^{\prime} 29 \cdot 34^{\prime \prime}$.
10. $21^{\circ} 36^{\prime} 8 \cdot 1^{\prime \prime}$. 11. $16^{\circ} 12^{\prime} 37 \cdot 26^{\prime \prime}$.
12. $31^{\circ} 30^{\prime}$.
VI. I. (1) 2 right angles or 180°. (2) $\frac{3}{2}$ of a right angle.
(3) $\frac{2}{\pi}$ right angles.
(4) $\frac{6}{\pi}$ right angles.
(5) 2 right angles.
(6) $\frac{4}{\pi^{2}}$ right angles.
(7) $\frac{2 \theta}{\pi}$ right angles.
(8) 002 of a right angle.
(9) 20 right angles.
II. (1) π.
(2) 2π.
(3) $\frac{\pi}{3}$.
(4) $\frac{\pi}{8}$.
(5) $\frac{\pi}{180}$.
(6) 1^{1}.
(7) $\frac{n}{180} \pi$.
(8) $\frac{1}{2}$.
(9) $\frac{A \pi}{180}$.
III. (1) $\frac{\pi}{6}$.
(2) $\frac{\pi}{4}$.
(3) $\frac{\pi}{12}$.
(4) $\frac{\pi}{200}$.
(5) $\frac{\pi}{20000}$.
(6) $\frac{\pi}{200000}$.
(7) $\frac{n \pi}{200}$.
(8) 1^{10} (9) 5π.
IV. (1) $\frac{1}{3}$.
(2) $\frac{10}{9}$.
(3) 1.
(4) $\frac{50}{3 \pi}$.
(5) $\frac{63}{25}$.
(6) $\frac{\pi}{180}$.
VII. 1. $\frac{8}{2}$. 2. $90 . \quad$ 3. $4 \frac{4}{\frac{5}{6} .}$ 4. $112 \frac{1}{2} \mathrm{ft}$. 5. $5 \frac{3}{6} \frac{7}{3} \mathrm{ft}$. 6. 838000 miles. 7. $\frac{7}{6}$ radian $=6{ }_{1}^{4} \frac{4}{1}$ degrees. 8. $21 \frac{21}{21}$ degrees. 9. $511_{\mathrm{rr}}{ }^{\text {² }}$ ". 10. about 34 yds. 11. $1: 3 \cdot 1416$. 12. $3 \cdot 1416$.
 17. $\frac{\pi}{2}$ i. e. a right angle. 19. $473: 489$.
20. (i) $k=1$, (ii) $k=\frac{180}{\pi} . \quad$ 21. $380,18^{\circ} . \quad$ 22. $\frac{n \pi}{10800}{ }^{\circ}$. 23. (i) $120^{\circ}, 133 \cdot 3^{\mathrm{B}}, \frac{2 \pi}{3}$, (ii) $135^{0}, 150^{\mathrm{g}}, \frac{3 \pi}{4}$, (iii) $156^{\circ}, 173 \cdot \dot{3}^{\mathrm{k}}, \frac{13 \pi}{15}$. 24. (i) $3 \frac{3}{4}$, (ii) $\frac{15}{2 \pi}$. $25 . \frac{13}{1} \frac{20}{8}$. \quad 26. a right angle. 27. $\frac{a c}{90 \hat{b}}$. 28. $\frac{9 a+10 b}{10 c}$ degrees. $29 . \frac{1800 \pi}{19 \pi+1800} . \quad$ 30. 9 or 16. VIII. 1. (i) $D A, B D$. (ii) $D B, A D$. (iii) $D A, C D$. (iv) $D C, A D$.
2. (i) $\frac{D B}{A B}$.
(ii) $\frac{D C}{C A}$. (iii) $\frac{C D}{A D}$.
(iv) $\frac{D A}{B A}$.
(v) $\frac{D B}{A D}$.
$\begin{array}{llll}\text { (vi) } \frac{D C}{A C} & \text { (vii) } \frac{C D}{C A} & \text { (viii) } \frac{D A}{C D} & \text { (ix) } \frac{B D}{B A}\end{array}$ (x) $\frac{D A}{C A}$.
3. (i) $\frac{D B}{C B}, \frac{B A}{C A}$.
(ii) $\frac{C D}{C B}, \frac{C B}{C A}$.
(iii) $\frac{D B}{C D}, \frac{B A}{C B}$.
(iv) $\frac{D B}{A B}, \frac{B C}{A C}$.
(v) $\frac{A D}{A B}, \frac{A B}{A C}$.
(vi) $\frac{D B}{A D}, \frac{B C}{A B}$.
4. (i) $\frac{D A}{B A}$.
(ii) $\frac{B A}{E A}$ or $\frac{A C}{E C}$.
(iii) $\frac{D C}{B C}$.
(iv) $\frac{A B}{A E}$.
$\begin{array}{lll}\text { (v) } \frac{A D}{A B} \text { or } \frac{A B}{A C} & \text { (vi) } \frac{B D}{B C} & \text { (vii) } \frac{D B}{C D} \text {, or } \frac{B A}{C B} \text {, or } \frac{A E}{C A}\end{array}$
(viii) $\frac{D A}{B D}$.
(ix) $\frac{B A}{E B}$ or $\frac{A C}{E A}$.
(x) $\frac{D C}{B D}$.
(xi) $\frac{D B}{A B}$ or $\frac{B C}{A C}$.
(xii) $\frac{B E}{A E}$.
5. $\sin A=\frac{3}{6}, \cos A=\frac{4}{6}, \tan A=\frac{3}{4} ; \sin B=\frac{4}{6}, \cos B=\frac{3}{6}, \tan B=\frac{4}{5}$.
7. Of the smaller angle, the sine $=\frac{5}{15}$, cosine $=\frac{12}{3}$, tangent $=\frac{1_{2}}{5}$. Of the larger angle, the sine $=\frac{1}{1} \frac{1}{3}$, cosine $=\frac{6}{15}$, tangent $=\frac{12}{6}$.
8. Of the smaller angle, the sine $=\frac{1}{2}, \operatorname{cosine}=\frac{\sqrt{3}}{2}$, tangent $=\frac{1}{\sqrt{3}}$. Of the larger angle, the sine $=\frac{1}{2} \sqrt{ } 3$, cosine $=\frac{1}{2}$, tangent $=\sqrt{ } 3$.
10. $B c=\sqrt{ } 3 ; \sin A=\frac{1}{2} \sqrt{ } 3, \cos A=\frac{1}{2}, \tan A=\sqrt{ } 3$.
12. $A C=\sqrt{ } 2 ; \sin A=\sqrt{\frac{2}{3}}, \sin B=\frac{1}{\sqrt{ } 3}$.
X. 1. 179 ft . 2. 346 ft . $3.86 \cdot 6 \mathrm{ft}$. 4. $138 \cdot 5 \mathrm{ft}$.
5. $7 \frac{1}{2} \mathrm{ft}$. 6. $60^{\circ}, 173 \mathrm{ft}$. 7. $63 \cdot 17 \mathrm{yds}$. 8. $277 \cdot 3 \mathrm{ft}$.
9. $192 \cdot 8 \mathrm{ft}$. 10. 78 ft . $11.34 \cdot 15 \mathrm{ft}$.
12. 73.2 ft . \quad 13. $86 \cdot 6 \mathrm{ft}$. 14. $\cdot 866$ miles $=1524 \mathrm{yds}$.
15. $-173 \cdot 2 \mathrm{yds}$. 17. 373 ft . 18. 3733 ft .
$\begin{array}{lll}\text { 19. } \frac{1}{2} \sqrt{ } 6 \text { miles }=6465 \mathrm{ft} \text {. } & \text { 20. } \frac{\sqrt{ } 3 \cdot a}{3 b} & \text { 21. } 30^{\circ} \text {. }\end{array}$ 22. About $523 \cdot 6$ miles.
XI. 27. $2 \cos ^{2} \theta-1,1-2 \sin ^{2} \theta$. 28. $\left(1-2 \cos ^{2} \theta\right)^{2},\left(2 \sin ^{2} \theta-1\right)^{2}$. 29. $\frac{2 \cos ^{2} \theta-1}{\cos ^{4} \theta}, \frac{1-2 \sin ^{2} \theta}{\left(1-\sin ^{2} \theta\right)^{2}}$.
30. $1-3 \cos ^{2} \theta\left(1-\cos ^{2} \theta\right), 1-3 \sin ^{2} \theta\left(1-\sin ^{2} \theta\right)$.
31. $\frac{1-2 \cos ^{2} \theta+2 \cos ^{4} \theta}{\cos ^{2} \theta\left(1-\cos ^{2} \theta\right)}, \frac{1-2 \sin ^{2} \theta+2 \sin ^{4} \theta}{\sin ^{2} \theta\left(1-\sin ^{2} \theta\right)}$.
32. $\frac{1-2 \cos ^{2} \theta+2 \cos ^{4} \theta}{\left(1-\cos ^{2} \theta\right)^{2}}, \frac{1-2 \sin ^{2} \theta+2 \sin ^{4} \theta}{\sin ^{4} \theta}$.
33. 0.
34. $\frac{2\left(1-\cos ^{2} \theta\right)\left(1-\cos ^{2} \theta-2 \cos ^{4} \theta\right)}{\cos ^{4} \theta}, \frac{2 \sin ^{2} \theta\left(5 \sin ^{2} \theta-2-2 \sin ^{4} \theta\right)}{\left(1-\sin ^{2} \theta\right)^{2}}$.
XII. 1. $\sin A=\sqrt{1-\cos ^{2} A}, \tan A=\frac{\sqrt{1-\cos ^{2} A}}{\cos A}$,
$\cot A=\frac{\cos A}{\sqrt{1-\cos ^{2} A}}, \sec A=\frac{1}{\cos A}, \operatorname{cosec} A=\frac{1}{\sqrt{1-\cos ^{2} A}}$.
2. $\sin A=\frac{1}{\sqrt{1+\cot ^{2} A}}, \cos A=\frac{\cot A}{\sqrt{1+\cot ^{2} A}}, \tan A=\frac{1}{\cot A}$, $\sec A=\frac{\sqrt{1+\cot ^{2} A}}{\cot A}, \operatorname{cosec} A=\sqrt{1+\cot ^{2} A}$.
3. $\sin A=\frac{\sqrt{\sec ^{2} A-1}}{\sec A}, \cos A=\frac{1}{\sec A}, \tan A=\sqrt{\sec ^{2} A-1}$,

$$
\cot A=\frac{1}{\sqrt{\sec ^{2} A-1}}, \operatorname{cosec} A=\frac{\sec A}{\sqrt{\sec ^{2} A-1}}
$$

4. $\sin A=\frac{1}{\operatorname{cosec} A}, \cos A=\frac{\sqrt{\operatorname{cosec}^{2} A-1}}{\operatorname{cosec} A}, \tan A=\frac{1}{\sqrt{\operatorname{cosec}^{2} A-1}}$, $\cot A=\sqrt{\operatorname{cosec}^{2} A-1}, \sec A=\frac{\operatorname{cosec} A}{\sqrt{\operatorname{cosec}^{2} A-1}}$.
5. $\cos A=\sqrt{1-\sin ^{2} A}, \tan A=\frac{\sin A}{\sqrt{1-\sin ^{2} A}}, \cot A=\frac{\sqrt{1-\sin ^{2} A}}{\sin A}$, $\sec A=\frac{1}{\sqrt{1-\sin ^{2} A}}, \operatorname{cosec} A=\frac{1}{\sin A}$.
6. $\sin A=\frac{\tan A}{\sqrt{1+\tan ^{2} A}}, \cos A=\frac{1}{\sqrt{1+\tan ^{2} A}}, \cot A=\frac{1}{\tan A}$, $\sec A=\sqrt{1+\tan ^{2} A}, \operatorname{cosec} A=\frac{\sqrt{1+\tan ^{2} A}}{\tan A}$.
XIII. 1. $\frac{8}{4}, \frac{5}{8} . \quad$ 2. $\frac{2 \sqrt{2}}{3}, \frac{1}{2 \sqrt{2}}$. \quad 3. $\frac{4}{6}, \frac{5}{3}$.
7. $\frac{1}{\sqrt{15}}, \frac{\sqrt{15}}{4} . \quad$ 5. $\frac{\sqrt{3}}{2}, \frac{1}{2} . \quad$ 6. $\frac{\sqrt{5}}{3}, \frac{5}{2} . \quad$ 7. $\frac{b}{\sqrt{c^{2}-b^{2}}}$.
8. $\frac{a}{\sqrt{a^{2}+1}}, \frac{1}{\sqrt{a^{2}+1}}, \quad$ 9. $\frac{\sqrt{a^{2}-1}}{a}, \frac{1}{\sqrt{a^{2}-1}}$.
9. $h^{2}\left(1+k^{2}\right)=1$.
XIV. 2. $\sec \theta$ increases continuously from 1 to ∞.
10. $\sin A$ diminishes continuously from 1 to 0 .
11. $\cot \theta$ diminishes continuously from ∞ to 0 .
XV. 1. 45°. 2. 30^{0}. 3. 45°. 4. 60°. 5. 30°. 6. 30°. 7. 30^{0}. 8. 0^{0}, or 45°. 9. 90°, or 60°. 10. 60°. 11. 45°. 12. 45°. 13. 90°, or 45°. 14. 45°. 15. 45°. 16. 45°. 17. 30°. 18. 30°.
XVI. 3. The value 3 is inadmissible. 4. $1(2 \pm \sqrt{2})$.
12. $\frac{3}{4}$, or $\frac{1}{2}$. 6. $\frac{8}{4}$, or $\frac{1}{3}$. 7. The value $-\frac{2}{3}(7 \sqrt{3})$ is inadmissible.
13. $1-\sin ^{4} A$. 10. $1-3 \sin ^{2} \theta+3 \sin ^{4} \theta$.
14. $\frac{1-2 \cos ^{2} \theta+2 \cos ^{4} \theta}{\cos ^{4} \theta}$. 13. $\frac{1-\sin A}{1+\sin A}$.
15. $\operatorname{cosec} \theta$ decreases continuously from ∞ to 1 .
16. $\cot \theta$ increases continuously from 0 to ∞.
17. $\theta=\frac{1}{4} \pi, \phi=\frac{1}{2} \pi$.
$\begin{array}{llllllll}\text { XVII. } 1 . & +6 . & \text { 2. } & 0 . & 3 . & +2 . & \text { 4. } & +3 . \\ 5 . & +10 . & \text { 6. } & 0 . & 7 . & +7 . & 8 . & +7 .\end{array}$
XIX. 1. The second. 2. The fourth. 3. The second.
18. The third.
19. The fourth.
20. The first.
21. The second. 8. The first.
22. The first.
23. The fourth. 11. The fourth.
24. The first, if n be even, the third, if n be odd.
XX. 1.,+ , +. $2 . \quad+,-,-$ 3.,,--+ .
4.,,-+- 5. -, +, -. 6. -, - , +.
7.,,+-- 8.,+ , , +. $9 .+,+,+$.
10.,,+++ 11.,,+--1 12. -, +, -.
XXI. 1. $+\frac{1}{2},-\frac{\sqrt{ } 3}{2},-\frac{1}{\sqrt{ } 3}$.
25. $+\frac{1}{\sqrt{ } 2},-\frac{1}{\sqrt{ } 2},-1$.
26. $+\frac{\sqrt{ } 3}{2},-\frac{1}{2},-\sqrt{ } 3$.
27. $-\frac{1}{2},+\frac{\sqrt{3}}{2},-\frac{1}{\sqrt{3}}$.
28. $-\frac{1}{\sqrt{ }{ }^{2}},+\frac{1}{\sqrt{ }{ }^{2}},-1$.
29. $-\frac{\sqrt{ } 3}{2},+\frac{1}{2},+\sqrt{ } 3$.
30. $-\frac{1}{\sqrt{ }{ }^{2}},-\frac{1}{\sqrt{ }{ }^{2}},+1$.
31. $-\frac{1}{\sqrt{ } 2},-\frac{1}{\sqrt{ } 2},+1$.
32. $+\frac{1}{2},+\frac{\sqrt{3}}{2},+\frac{1}{\sqrt{3}}$.
33. $+\frac{1}{2},+\frac{\sqrt{ } 3}{2},+\frac{1}{\sqrt{ } 3}$.
34. $-\frac{\sqrt{ } 3}{2},-\frac{1}{2},+\sqrt{ } 3$.
35. $-\frac{\sqrt{ } 3}{2},+\frac{1}{2},-\sqrt{ } 3$.
36. $+\frac{1}{\sqrt{ }{ }^{2}},+\frac{1}{\sqrt{ } 2},+1$.
37. $\frac{\sqrt{ } 3}{2},-\frac{1}{2},-\sqrt{ } 3$.
38. $-\frac{1}{2},-\frac{\sqrt{ } 3}{2},+\frac{1}{\sqrt{ } 3}$.
39. $30^{\circ}, 150^{\circ},-210^{\circ},-330^{\circ}$.
40. $45^{\circ}, 135^{\circ},-225^{\circ},-315^{\circ}$.
41. $60^{\circ}, 120^{\circ},-240,-300^{\circ}$.
42. $-30^{\circ},-150^{\circ}, 210^{\circ}, 330^{\circ}$.
43. $20^{\circ}, 160^{\circ}, 380^{\circ}, 520^{\circ}$.
44. $\frac{5}{4} \pi, \frac{7}{6} \pi, \frac{13}{4} \pi, \frac{15}{4} \pi$. $22 . \frac{8}{7} \pi, \frac{13}{7} \pi, \frac{22}{7} \pi, \frac{27}{7} \pi$. \quad 25. The \tan. 26. No.

XXIX. 1. $\sin (\theta+\phi)+\sin (\theta-\phi)$.
45. $\sin (2 \alpha+3 \beta)+\sin (2 \alpha-3 \beta)$.
46. $\cos (\alpha-\beta)+\cos (\alpha+\beta)$.
47. $\sin 8 \theta-\sin 2 \theta$. 6. $\cos \theta+\cos 2 \theta$.
48. $\cos 2 \alpha+\cos 2 \beta$.
49. $\frac{1}{2}(\sin 4 \theta-\sin \theta) . \quad$ 9. $\sin 60^{\circ}+\sin 40^{\circ}$.
50. $\frac{1}{2}\left(\sin 60^{\circ}-\sin 30^{\circ}\right)$.
51. $-\cos 4 \theta \sin 2 \theta$.
52. $2 \cos 3 \theta \cos 2 \theta$.
53. $4 \cos ^{2} \frac{\theta}{2} \sin 2 \theta$.
XXXII. 1. (i) $a^{2 h+3 k}$.
(ii) $a^{4 h-5 k} . \quad$ (iii) $a^{\frac{4 h}{3}+\frac{5 k}{3}}$. (iv) $a^{\frac{5 h}{2}+\frac{3 k}{2}}$.
54. (i) $5 \cdot 4690116$. (ii) $10 \cdot 6243928$. (iii) $13 \cdot 7509366$. (iv) 8853661 .
(v) $1 \cdot 7968680$. (vi) $8 \cdot 9699598$. (vii) $2 \cdot 7345058$.
55. $2^{3}, 2^{5}, 2^{-1}, 2^{-4}, 2^{-3}, 2^{7}$. 4. $3^{2}, 3^{4}, 3^{-1}, 3^{-3}, 3^{-2}, 3^{-4}$.
XXXIII. 1. $\cdot 60206, \cdot 9542426, \cdot 90309, \cdot 7781513,1 \cdot 20412$, $1 \cdot 690196$. 2. $1 \cdot 146128,1 \cdot 20412,1 \cdot 2552726,1 \cdot 3802113,1 \cdot 4313630$, $1 \cdot 6232493$. 3. $1, \cdot 69897,1 \cdot 1760913,1 \cdot 39794,1 \cdot 4771213,1 \cdot 5440680$. 4. $1 \cdot 5563026,1 \cdot 60206,1 \cdot 6812413,1 \cdot 69897,2 \cdot 30103,3$.
56. $7 \cdot 201593,3 \cdot 858708$. 6. $\quad 7545579,2 \cdot 989843$. 7. $1 \cdot 4532$.
57. $2408 \cdot 6$. 9. (i) $4 \cdot 5868$. (ii) 93646 . 10. $3 \cdot 9549$.
58. $40975 \cdot 3 \mathrm{sq}$. ft. $12.34 \cdot 925 \mathrm{in}$. 13. $3 \cdot 2617 \mathrm{in}$.
59. 110115 cub. yds.
XXXIV. 1. $3, \frac{10}{3}, \frac{4}{4}, \frac{2}{3},-\frac{5}{2} . \quad$ 2. $3,6,-1,-3,-6,2$.
60. $2,4,-1,-3,-2,-4$. 4 . $\frac{3}{2}, \frac{2}{3},-\frac{1}{4},-1$.
61. $3,-1,5,-2,3,-3$. 6. $\frac{4}{3}, \frac{2}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{2}$.
62. $\cdot 7781513,1 \cdot 6232493,1 \cdot 20412$.
63. $1 \cdot 6901960,1 \cdot 5563026,1 \cdot 7993406$.
64. $2 \cdot 30103,2 \cdot 7781513,1 \cdot 845098$. 10 . $\cdot 69897,5228787,1 \cdot 69897$.
65. $1 \cdot 544068,2 \cdot 1760913,-1+\cdot 30103$.
66. $\cdot 5440680, \cdot 8627278,-2+\cdot 9084852$.
XXXV. 1. 4, 2, 0, 5, 1.
67. $-2,-5,-1,-3$.
68. $3,-1,0,1,0,-7$.
69. $4,1,6,3$.
70. the second decimal place, the first dec. pl., the sixth dec. pl.
71. ten thousands, units, hundreds, third dec. pl., first dec. pl., units.
72. $10,4,25,31$.
73. $9,11,85,4,9,6$.
74. units, fourth dec. pl., thousands, seventh dec. pl., second dec. pl.
75. tenth integral pl., twelfth dec. pl., fifth dec. pl., units, twelfth dec. pl., first dec. pl.
XXXVI. 1. $2 \cdot 8901023, \cdot 8901023, \overline{4} \cdot 8901023,5 \cdot 8901023$.
76. $6 \cdot 7714552, \cdot 7714552, \overline{4} \cdot 7714552,2 \cdot 7714552,3 \cdot 7714552$.
77. $\cdot 27724 . . .4$. $00001638 . . . \quad$ 5. $77443 . . . \quad$ 6. $0059 C 8 . .$.
L. т. B.
XXXVII. 1. $3,0, \frac{1}{3}, 0, \frac{7}{5}$. 5. 51375.
78. (i) $x=\frac{2 \log 7}{\log 2+4 \log 3}$.
(iii) $x=\frac{2 \log 7}{2 \log 2+\log 3}$.
79. $\overline{1} \cdot 8121177,55$.
80. $7,4,3,3$.
(ii) $x=\frac{7 \log 2+4 \log 7}{2 \log 3+\log 7}$.
(iv) $x=\frac{4(\log 3+\log 7)}{8 \log 2+3(\log 3+\log 7)^{\circ}}$.
81. $2+\frac{1}{\log _{10} 7}$.
82. $\frac{3}{2}+\frac{1}{\log _{10} 3}$.
83. $\frac{1}{1-\log _{10} 2}$.
84. $0, \frac{1}{b+1}, \frac{3 a}{2 b+2}, \frac{2}{b+1}, \frac{b}{b+1}, \frac{3 a+2}{2 b+2}, \frac{b c}{b+1}$.
85. $63-31=32$. 13. $\left(a^{11}-a^{10}\right)$ integers. 14. 1.9485 nearly.
86. $2 \cdot 53855.20 .4 \cdot 59999$ 21. 167 years.
XXXVIII. 1. 8839066 . 2. $2 \cdot 7513738$. 3. $\overline{4} \cdot 9413333$.
87. 6•8086920. 5. 5710750 . 6. $3 \cdot 70404$. 7. $45740 \cdot 26$. 8. 2492837. 9. $\cdot 000439658$. 10. $5 \cdot 689158$.
XXXIX. 1. $7 \cdot 669$. 2. $3 \cdot 809$. 3. $47 \cdot 32 . \quad$ 4. 55460 . 5. 12.03. 6. $\cdot 04023 . \quad$ 7. 8287. 8. 1165. 9. 3107. 10. 6731. 11. $1 \cdot 096$. 12. $823 \cdot 6$. 13. $2 \cdot 624$. 14. $22 \cdot 51$. 15. $23 \cdot 28$. 16. $28 \cdot 01$. 17. $-\cdot 8243.18 .1407$.
XL. 1. £48. 2. $£ \cdot 477=9 s .6 \frac{1}{2} d$. 3. $23 \cdot 4$. 4. $17 \cdot 7$. 5. £73.07. 6. 140 years. 7. £1869. 8. $36 \cdot 9$ years.
88. £5066 about.
89. 0679 miles per hour. 10. 1 bout $67,100,000$ pence.
XLI. 1. 6737652 .
90. $\cdot 6737652$ 3. 9306572 .
91. $41^{\circ} 48^{\prime} 37^{\prime \prime}$ 。
92. $70^{\circ} 31^{\prime} 43 \cdot 6^{\prime \prime}$.
93. $75^{\circ} 31^{\prime} 21^{\prime \prime}$.
94. $9 \cdot 8515594$.
95. $9 \cdot 7114477$.
96. $10 \cdot 1338768$.
97. $35^{\circ} 4^{\prime} 23^{\prime \prime}$.
98. $28^{\circ} 16^{\prime} 27 \cdot 5^{\prime \prime} .12 . \quad 21^{0} 56^{\prime} 41^{\prime \prime}$.

KILII. 1. $34^{0} 19^{\prime} 31 \cdot 8^{\prime \prime}$. 2. $1498 \cdot 2 \mathrm{ft}$. 3. $45^{0} 36^{\prime} 56^{\prime \prime}$. 4. $5293 \cdot 4 \mathrm{ft}$., $6982 \cdot 3 \mathrm{ft}$. 5. $576 \cdot 2$ chains. 6. 4729 chains. 7. 3666.8 feet. 8. $42^{0} 15^{\prime}, 11444$ chains.
XLIII. 1. 3843 ft . 2. $281 \cdot 7 \mathrm{ft}$. 3. 115 ft .
4. 286 ft . 5. $58^{\circ} 17^{\prime}, 31^{0} 42^{\prime}$. 6. 656 chains, $41^{0} 17^{\prime}$.
7. $81 \mathrm{ft} . \quad$ 8. $1942 \mathrm{ft} . \quad$ 9. 646.7 miles. $10.1000 \mathrm{ft}_{\mathrm{o}}$
XLIV. 1. $60^{\circ} . \quad$ 2. 120°. \quad 3. $30^{\circ} . \quad$ 4. 135°. 5. 45°. 6. 120°.
XLVI. 1. $\cos A=\frac{1}{2}, \cos \frac{1}{2} A=\frac{1}{2} \sqrt{ } 3$. 2. $45^{\circ}, 60^{\circ}, 75^{\circ}$. 3. $135^{0}, 30^{0}, 15^{0}$. 4. 3. 5. 14. 6. $1+\sqrt{ } 3$. 7. 120°. 8. 120°. 9. 120°. 10. $90^{\circ}, 36^{\circ} 52^{\prime}$. 11. $130^{\circ} 27^{\prime}$. 12. $125^{\circ} 6^{\prime}$. 13. 120°. 14. $A=54^{0}$ or $126^{\circ}, B=108^{\circ}$ or 36°. 15. $a=1$. 16. $C=30^{\circ}, a=\sqrt{ } 3+1, b=2$. 17. $A=75^{\circ}, a=b=\sqrt{ } 3+1$. 18. $C=60^{\circ}$ or 120°. 19. 100 $\sqrt{3}$. 20. No.
22. $A=105^{\circ}, C=60^{\circ}, B=15^{\circ}$. 23. $\frac{1}{2} \sqrt{ } 3(\sqrt{ } 5+1) . \quad 24 . ~ A=90^{\circ}$ or $60^{\circ}, C=75^{\circ}$ or $105^{\circ}, a=2 \sqrt{ } 2$ or $\sqrt{ } 6$. 25. 30° or 150°.
26. $A=45^{\circ}$ or $135^{\circ}, B=30^{\circ}$ or $120^{\circ}, b=\sqrt{ } 2(1+\sqrt{ } 3)$ or $\sqrt{6}(1+\sqrt{ } 3)$. 27. $60^{\circ}, 75^{\circ}, 6 \mathrm{yds}$. 28 . It is impossible. $30.15: 8 \sqrt{ } 3: 4 \sqrt{ } 5+6$.
XLVII. 1. $41^{\circ} 16^{\prime} 51 \cdot 5^{\prime \prime}$. 2. $73^{\circ} 32^{\prime} 12^{\prime \prime}, 62^{\circ} 46^{\prime} 18^{\prime \prime}$. 3. $29^{\circ} 17^{\prime} 16^{\prime \prime}, 31^{0} 55^{\prime} 31^{\prime \prime}$. 4. $64^{\circ} 31^{\prime} 58^{\prime \prime}$. 5. $73^{\circ}, 23^{\prime} 54 \cdot 4^{\prime \prime}$. 6. $41^{\circ} 24^{\prime} 34 \cdot 6^{\prime \prime}$. 7. $82^{\circ} 49^{\prime} 9^{\prime \prime}$. 8. $75^{\circ}, 60^{\circ}, 45^{\circ}$. 9. $135^{\circ}, 30^{\circ}, 15^{\circ}$.
XLVIII. 1. $313 \cdot 46$ yds. 2. $28 \cdot 87 \mathrm{in}$., $31 \cdot 43$ in. $3.1192 \cdot 55 \mathrm{yds}$. 4. $22 \cdot 415 \mathrm{ft}$. 5. $24 \cdot 995=25 \mathrm{ft}$. nearly, $17 \cdot 559 \mathrm{ft}$., $65^{\circ} 59^{\prime} 42^{\prime \prime}$.
XLIX. 1. $10^{\circ} 36^{\prime} 30^{\prime \prime}, 31^{\circ} 23^{\prime} 30^{\prime \prime} . \quad$ 2. $93^{0} 11^{\prime} 49^{\prime \prime}, 36^{\circ} 48^{\prime} 11^{\prime \prime}$. 3. $57^{\prime \prime} 27^{\prime} 25^{\circ} 4^{\prime \prime}, 62^{\circ} 32^{\prime} 34 \cdot 6^{\prime \prime}$. 4. $64^{0} 26^{\prime} 47^{\prime \prime}, 37^{\circ}, 7^{\prime}, 13^{\prime \prime}$. 5. $72^{\circ} 12^{\prime} 59^{\prime \prime}$. 6. $20 \cdot 5$ chains. 7. $122 \cdot 7$. 8. $71^{\circ} 13^{\prime} 50^{\prime \prime}, 32^{\circ} 16^{\prime} 10^{\prime \prime}$.
L. 1. $A=51^{\circ} 18^{\prime} 21^{\prime \prime}, C=88^{\circ} 41^{\prime} 39^{\prime \prime}$; or $A=128^{\circ} 41^{\prime} 39^{\prime \prime}, C=11^{\circ} 18^{\prime} 21^{\prime \prime}$.
2. $B=70^{\circ} 0^{\prime} 56^{\prime \prime}, C=599^{\circ} 59^{\prime} 4^{\prime \prime}$; or $B=109^{\circ} 59^{\prime} 4^{\prime \prime}, C=20^{\circ} 0^{\prime} 56^{\prime \prime}$.
3. $B=38^{\circ} 38^{\prime} 24^{\prime \prime}, C=91^{\circ} 21^{\prime} 36^{\prime \prime}, c=155 \cdot 3$. 4. $61^{\circ} 16^{\prime} 10^{\prime \prime}$.
5. $A=72^{\circ} 4^{\prime} 48^{\prime \prime}, B=41^{\circ} 56^{\prime} 12^{\prime \prime}$; or $A=107^{\circ} 55^{\prime} 12^{\prime \prime}$,
$B=6^{\circ} 5^{\prime} 48^{\prime \prime}, b=17 \cdot 56$. 6. β is ambiguous; $60 \cdot 3893 \mathrm{ft}$.
LI. The angles are given correct to the nearest second.

1. $28^{\circ} 35^{\prime} 39^{\prime \prime} . \quad$ 2. $104^{\circ} 44^{\prime} 39^{\prime \prime} . \quad$ 3. $32^{\circ} 20^{\prime} 48^{\prime \prime}$.
2. $43^{\circ} 40^{\prime} . \quad$ 5. $128^{\circ} 23^{\prime} 13^{\prime \prime} . \quad$ 6. 106531 ft .
3. $3437 \cdot 6 \mathrm{yds} \quad$ 8. $1728 \cdot 2$ chains. 9. 25376 yds .
4. $A=66^{\circ} 27^{\prime} 48^{\prime \prime}, B=12^{\circ} 55^{\prime} 12^{\prime \prime}$. 11. $A=92^{\circ} 12^{\prime} 53^{\prime \prime}, B=35^{\circ} 37^{\prime} 7^{\prime \prime}$. 12. $B=29^{\circ} 1^{\prime} 40^{\prime \prime}, C=74^{\circ} 55^{\prime} 50^{\prime \prime}$. 13. $B=70^{\circ} 35^{\prime} 24^{\prime \prime}$; or $109^{\circ} 24^{\prime} 36^{\prime \prime}$. 14. $B=51^{\circ} 56^{\prime} 17^{\prime \prime}$; or $128^{0} 3^{\prime} 43^{\prime \prime} . \quad 15 . B=62^{\circ} 6^{\prime} 10^{\prime \prime}$; or $117^{\circ} 53^{\prime} 50^{\prime \prime}$. 16. Very nearly 90°. 17. $1319 \cdot 6 \mathrm{yds}$.
LV. 1. $\sin A=\frac{3}{6}, \cos A=\frac{1}{6}$.
5. $A=n \times 180^{\circ}$; or, $n 360^{\circ} \pm 60^{\circ}$.
6. $30^{\circ}, 60^{\circ}, 90^{\circ}, 120^{\circ}$, etc. have for sine $\frac{1}{2}, \sqrt{\frac{3}{2}}, 1, \sqrt{\frac{3}{2}}, \frac{1}{2}, 0,-\frac{1}{2}$, $-\sqrt{\frac{3}{2}}-1,-\sqrt{\frac{3}{2}},-\frac{1}{2}$ respectively.
7. The other sides are $765 \cdot 4321 \mathrm{ft}$.; $1006 \cdot 6 \mathrm{ft}$.
8. $30^{\circ}, 60^{\circ}, 90^{\circ}$, etc. have for $\tan \frac{1}{3} \sqrt{ } 3, \sqrt{ } 3, \infty,-\sqrt{ } 3,-\frac{1}{3} \sqrt{ } 3,0$, $\frac{1}{3} \sqrt{ } 3, \infty,-\sqrt{3},-\frac{1}{3} \sqrt{ } 3$ respectively.
9. $\frac{168}{193}, \frac{168}{195}, \frac{32592}{193 \times 195}$. 19. $\sec A=\frac{3}{4} \sqrt{ } 2$. 20. (i) $\frac{15}{2}$; (ii) -15 .
10. $+\sin 18^{\circ},-\cos 18^{\circ},-\tan 18^{\circ} ;-\sin 30^{\circ},-\cos 36^{\circ},+\tan 36^{\circ}$;
$-\sin 36^{\circ},+\cos 36^{\circ},-\tan 36^{\circ}$. 22. $\cos 5 a=16 \cos ^{5} a-20 \cos ^{3} a+5 \cos \alpha$.
11. (i) $0, n \pi, \frac{1}{3} \pi$; (ii) $\cos \theta=\frac{1}{2}$, or, $\sin \left(\theta-45^{\circ}\right)=\frac{1}{\sqrt{2}}$.
12. $\frac{1}{28} \sqrt{ } 651=\cdot 981 \ldots \quad$ 25. $\frac{11}{830} A$ radians; $5 \cdot 72965^{\circ}$.
13. sine, $\frac{4}{8} ; \tan , \frac{4}{3} ; \cot , \frac{3}{4} ; \operatorname{cosec}, \frac{5}{4} ;$ sec, $\frac{5}{3}$.
14. (i) $6 \log _{10} 3+3 \log _{10} 2-3$;
(ii) $\frac{1}{3}\left\{\log _{10} 7+1-\log _{10} 2\right\}$;
(iii) $3 \log _{10} 7+3 \log _{10} 2-2 \log _{10} 3-2$. 31. $\frac{{ }^{83}, ~}{12} \theta$ deg.; $19 \cdot 09854^{\circ}$.
15. $\frac{3}{2} ;-9$. 36. $C=18^{\circ}, a=c=2 \div \sqrt{ }(10-2 \sqrt{ } 5)$.
16. -1320° 38. $-\frac{2}{3} \sqrt{ } 2 . \quad$ 39. π; $\frac{1}{3} \pi ; \frac{5}{3} \pi$.
17. 1 foot, $120^{\circ}, 30^{\circ}$; or 2 feet, $60^{\circ}, 90^{\circ}$. 42. $104^{\circ} 2839^{\prime \prime}$.
18. -630°. 44. $-\frac{7}{8} \sqrt{ } 5 . \quad$ 46. $0 ; \pi ; \frac{2}{3} \pi ; \frac{4}{3} \pi$.
19. $\frac{1}{2}\{\sqrt{ } 6 \pm \sqrt{ } 2\}$ and $15^{0}, 135^{\circ}$; or, $105^{\circ}, 45^{\circ}$.
20. $9^{0} ; 286^{\circ} .28^{\prime} .41 \cdot 16^{\prime \prime}$; 광.
21. (i) $n \pi \pm \frac{1}{3} \pi$.
(ii) $\frac{1}{2} n \pi \pm \frac{1}{8} \pi$, or $n \pi+(-1)^{n} \frac{1}{4} \pi$.
22. $37 \frac{1}{2}$ sq. ft.
23. $40^{\circ} .29^{\prime} \cdot 19 \cdot 85^{\prime \prime}$.
24. $\operatorname{mo}^{\frac{1}{8} 80} \pi ; \frac{1}{10} \pi ; \frac{5}{4}$. 56. $\tan a=4 \sqrt{ } 3, \operatorname{cosec} \alpha=\frac{5}{12} \sqrt{3}$.
25. (i) $n \pi \pm \frac{1}{4} \pi$. (ii) $\frac{1}{2} n \pi \pm \frac{1}{8} \pi$; or, $2 n \pi \pm \frac{1}{4} \pi$.
26. $2 \sqrt{ } 14 \mathrm{sq}$. ft.
27. $38^{\circ} .25^{\prime} \cdot 32 \cdot 725^{\prime \prime}$.
28. $1 \cdot 2$ radians $=76 \cdot 39416 \mathrm{~b}$.
29. (i) $1-\log _{10} 5+\frac{1}{2} \log _{10} 7 ; 1-4 \log _{10} 5+5 \log _{10} 3$;

$$
2-5 \log _{10} 5-2 \log _{10} 3+2 \log _{10} 7
$$

66. 192 ft ., 185 ft . and 9234 sq . ft.
67. $2 \cdot 3$ radians $=131 \cdot 779926^{\circ}$.
68. $\cdot 6989700 ; \cdot 7781513 ; \overline{2} \cdot 3344538 ; \overline{1} \cdot 9148063$.
69. $78^{\circ} 10^{\prime}, 70^{\circ} 30^{\prime}, 9234 \mathrm{sq}$. ft.
70. $\frac{4}{3} \pi ; \frac{9}{35} \pi ; \frac{14}{3} \pi ; \frac{1}{5} \pi \frac{9}{5} \pi ; \frac{24}{3} \pi$. 76. 116.6.
71. $135^{\circ}, 15^{\circ}$; or $45^{\circ}, 105^{\circ}$. 79. $\frac{2}{21} \pi ; \frac{4}{21} \pi ; \frac{8}{21} \pi ; \frac{8}{21} \pi ; \frac{10}{2} \pi ; \frac{12}{2} \pi$.
72. $32 \cdot 92 \ldots \quad 84 . \quad 7$ ft.; $\sqrt{ } 19 \mathrm{ft}$.; $\frac{15}{4} \sqrt{ } 3$ sq. ft.
73. $1035 \cdot 43 \mathrm{ft}$; 765.4321 ft ; 66°. 89. 6.981 feet.
74. $\frac{1}{2} ;-\frac{1}{2}$. 91. $4 \cdot 49999$. 94. $3210 \cdot 793$. 95. $13 \cdot 751 \mathrm{ft}$.
75. $\frac{12}{12}$. 97. $4.59999 . \quad$ 99. $£ 2803$ nearly.
$8=1$

-

$$
1
$$

 保

 \qquad
 \qquad

 I-

 \qquad

 \qquad
 $$
=
$$

$$
\frac{1}{2}
$$

$$
.
$$

4
\because

UNIVERSITY OF CALIFORNIA LIBRARY

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

Stal 970

 MAR 241976 APR 81919 aCT 111920 feb \&ill lyzlMais 10 i921 JAN 111922

MAR 4 1955LU foghate25xut!

(s)

