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PREFACE

THis book deals with the theory of ‘iypical means’ and its
applications to Dirichlet series and Fourier series. More than
forty years have now passed since ‘typical means’ were first
introduced by M. Riesz for the summation of divergent series, and
quite an extensive theory has developed during this period. We
have attempted here to give a systematic account of this develop-
ment. Recaders of our account will hardly need to be told how
much we owe to the Cambridge tract by Hardy and Riesz on the
general theory of Dirichlet series.

We wish to acknowledge our indebtedness to Dr. L. S.
Bosanquet, who has read the proofs and helped us to remove
many errors and obscurities. His comments have stimulated us
to improve the text in several places.

K.C.
S. M.
May 1952
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I

FIRST THEOREM OF CONSISTENCY AND
SOME CONVERSE THEOREMS

1.1. Introduction
In this chapter we define the Riesz means of infinite series.
The Riesz means have a certain type A2 and a certain order k;
correspondingly we define the summability (A, k) of series,
which reduces to convergence for k¥ = 0. After establishing some
relations between Riesz means of the same type but of different
orders, we prove that if a scries is summable (4,k), & > 0, then it is
also summable (4,%") for &' > k. This is called the first theorem
of consistency. We then study the converse problem. Knowing
the order of magnitude of the Ricsz mean (4, k), we determine the
order of magnitude of the Riesz mean (4, r), r < k. This leads us to
the fundamental theorem of M. Riesz, which imposes order-condi-
tions on the Riesz means (4, k) and (4, 0), and shows that they
imply a restriction on the order of magnitude of the intermediate
Riesz means (4, 7) for 0 < r <k. We next use this theorem to prove
Tauberian results. We assume that a series Ya, is summable
(A, k), k > 0, and that its terms {a,} satisfy some appropriate order-
condition, and deduce that Ya, converges. We also define the
notion of absolute summability (A, k), which generalizes the notion
of absolute convergence, and prove the analogue of the first
theorem of consistency.

DeriniTioN oF RiEsz suMMaBILITY. Let Ean be an infinite

n=0
series, and let {1,} be an arbitrary sequence of positive numbers

such that
O<dg<h <A <..<i,— ©.
We write
A, =a,+a, + ... +a,,
and ift > 0, 4, <? < 4,4, then
At)=A,=ay+ ... +a,= ¥ a,,

1,<t
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and fork > 0,
A = 3 (¢ —2A)a,
2, <t

/

=5k J (¢ — )14, (r)dt

- j (¢ — o)dd, (7).

We define 4(t) = Aa(t), and if ¢ < 4,, 45(¢) = O for every k > 0.
A;(t) is a discontinuous function, being constant in intervals, while
AX(t) is a continuous function of ¢ for £ > 0—in fact, absolutely
continuous in every finite interval if 0 <% <1, and differentiable
with continuous derivatives if £ > 1. Actually we have

gi [4Y0)] = kAE-10), & > 1,
and if k is an integer, and ¢ # 4,,
| (%)k 446 = k! Aut) = Tk + 1) As(t).
If we write
Ci(x) = a~F A(x),

then Ci(x) is called the Riesz mean of order k and type A, while
Ak(z) is called the Riesz sum of order k and type A associated with
the series Xa,.

DerinrrioN 1.11. If lim Ck(z) = s exists, where s is finite, we say
T—>©

that Xa, is summable by Riesz means of order k and type A, or
stmply, summable (R ; A, k) to the sum s.

DEFiNrTioN 1.12. If C%(x) = O(1), then Xa, is said to be bounded
(R; 4, k).

DEFINITION 1.13. If{ |dCk(z)| < oo, b > 0, we say that La,

18 absolutely summable by Riesz means of order I: and type A, or
simply, summable | R ; A, k|.
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When k = 0, Definitions 1.11 and 1.13 lead to convergence and
absolute convergenoce respectively.

Since we are only concerned with Riesz summability in the
following pages, we omit the ‘ R’ in the definition, and speak of
summability (4, k) and |4, k| respectively.

1.2. Relations between different Riesz sums

We shall establish here some of the formulae used frequently in
our later sections.

In the first place, we prove certain relations between Riesz sums
of different orders.

If k> 0,1> 0, then

gty TEALFD) [ o .
A @) = ! (@ — ty=1 A (8) dt. (1.21)
Ifk>0 0<l<l Il<korl=kandz # 4, then
bt DR4+I+1) [
A7 (x) = I‘(IE?*IA)]‘”(_ITZ) J (x — 1) ldA’; (t). (1.22)

0
Proor oF (1.21).

j(z —tyt 4k (t,) dt =k

[}

s

(@ - t)~tadt j (¢ — w1 4,(u)du
0

0
=k | A,(w)ydu | (@ — )1 (t —u)fldt
[

r

kTwk) @) j (x — w1 4, (u) du

Tk +1)

I

_ T+ )T 4
= Teiiey) AT @

Proor or (1.22).
k-1 - 1 [ d k—l+1 ]
A= T et @

- _ l d ar
— +11()"F(k ++i)21)‘(1 “y %j(x —0) Ak d, by (1.21).

0
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By partial integration and differentiation, we obtain (1.22).

We next establish a relation between Riesz sums of different
types. Let u(o) be a positive, non-decreasing function of o diverging
to infinity with o, and let us set x(4,) = u,, so that

Oy <y <pg < . .. <p,—oo,
and
Ak@) = X (@ - pp)la, =k J (@ -t A,t)dt,
py < o
where
AP(‘) = 3 ay,
Moy S

We observe that if ¢ = p(t), then 4,(t) = 4,[i(7)] = Aa(7),
and if o = u(x), then

(0]

AXw) =k j(w — 8 A, (¢) dt

=k | [p(®) — p(e)) 7' Au(7) dp(T)

[u(@)—u() 1 Ax(T)n'(v) dz, (1.28)

J
-]

on assuming that u'(t) exists.

1.3. Finite differences of Riesz sums
We now proceed to establish some formulae on finite differences
which will be of frequent use in the sequel.

If{ > 0, and F(2) is a function of z, and m > 0 is any integer,

we set
"l

ATF(z) = —1 (™M F @ +m-—-vE); AY F(z) = F(z); (1.31)1

-»*«()

AT, F(x)= S (=17 M F(@&—r); A, F@) = Fz). (1.81)2
ve=()
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If0 <a <1, weset

z

<+

4
aPx) = a | (@ +¢ — ) 1F(H)de, (1.32)1

| ey B Comy

A* F(z) = a | (x — t)* 1 F(t)de. (1.32)2
) z—{
Also, we define
AT+e P@) = A¢ [A? F()], (1.33)1
A" F e F(x) = A2, [A™, F(z)]. (1.33)2
It is easily seen that
At [AT F@)] = AT [A3 FE), (1.34)1
A° . [A™, F@)] = A", [A%, F(2)]. (1.34)2
We then have, for 0 <m <k, and m an integer,
THC 1 +E tyo1+e
i T +1 . . ; .
AT Ahx) = I‘Th(*—%;’i)l) ' dt, ‘ dt, ... , A-m(t, dt, ,  (1.36)1
z 4 tm—1
z 4 tm—1
m ahn . TR+ [ [ [ h-m ¢ 1.35)2
A", Ali(x) = Fh—m+T) | dt, ‘ dt, ... . Ay-m™¢,)dt,, . (1.35)
z—C t; -t t1—C

These formulae (1.35) are easily proved by induction. We have also

F(h—m +1)
]‘h z+ ¢ tm-l"'c
(h+1) hemyg y_ Ao
F(ii;r"ri+1)j dt, ... J [4t-m¢,)—Ah-™@)] dt,,, (1.36)1
x [7

‘m—1
and
z+{
AT+eANz) —a j (@ + ¢ — o= AT AXe)ds [cf. (1.33)1]
x
1
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_ T@®+1)
Th—m+1)

T+ ¢ t+¢ tm—1t ¢

X [ (x + ¢ —t)ede j dt, ... j [4™¢,) — Ai ™)) dt,,

¢

Cm+a Ah—m(x) + ______

m—1

- Te+1)
I'h —m + 1)
z+ ¢ t,qt+t

X A‘c’[ j dty ... I [4%-m¢,) —Ag—"'(x)]dt,,,]. (1.36)2

z

T'(h - +1)

m+uAh m
¢ @+ v —mD

tm—1
Similar to (1.36) we have
Am Ah 2\ V) rm gh-m
) = pr ey A0
4 "m—-l
dt, .. I [4}p™a) — A0 ™¢)]dt,,  (1.37)1
z—{ m—l 4
and

m+ta gh P(h 1) m+a gh—m
AT = g ) AT —

-1

Tk+1) ¢
P(h —m + 1) [: j dtl e j [Alh—m(z) _A’A‘_m(tm)]dtm:]-

z—{ ty—1—¢

(1.37)2
We could conveniently rewrite the above formulae thus :

If m is a positive integer, r > 0, 0 < g < 1, then we obtain from
(1.36)1 and (1.36)2,

1
cm+ﬁA£(z‘) P(ff;; _: l) A?‘*‘ﬂAa-Hn(x) —

z+{ ti+¢ tm—1t ¢
- A‘Z[ Jdt, Idtz... j [4](¢ts) — Al(=)] dt,,,:l. (1.38)

4 bn—1
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Similarly we obtain from (1.37)1 and (1.37)2,

I'r +1)
m+p 4" [ m+ 5 r+m
(" AN) Tr+m+1) AZEP A, ™M) +
z 4 tm—1
+ A{; [ jdtl J‘dtﬂ oo J. [A;(x) - Az(tm)] d"m]' (1'39)
z-0 -8 tom_1—¢

1.4. Two lemmas
We now prove two lemmas which play an important part in the
proof of some of our later theorems.

LemMa 141, If 0 <¢é <2,k >0,0<! <1),then

&
_ T®k+1+1) % -1 E+1
969 | = pu lfw) @~y dt | < max | 45416 ,
8o that if A,(t) ts real, we have
&
lféf ;5{);}(}; .[A’i(t) (@ —tfldt = A5+ (1), 0 <7 <&,

0

Sfor some <.

Proor. The casel = 1 being trivial, we observe that if 0 <l < 1,
¢
(-t = I 0,(») (v — t)~Ydy,

t

where
_ @& @—n) (§ —»)
(%) THTI =) ’
so that
¢
0,(») > 0, and j 0,(»)dv = 1.
Hence -

¢ §
J- A% (¢) dt I 0,(v)(v —t) v

0 ¢

CT(k +1+ 1)

92 = e 1y 10
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¢

D (R 1Y PR D
Ik + 1) I‘(l)i 6:7) "};(" 1y~ Al(e) de
&

= j A5t(w) 6,(v) dv. (1.41)
0
Therefore

min A¥*(t) < g(&, x) < max AXF(1).

0t é 0<e<é

Lemma 1.42. Let p(x) be a positive, non-decreasing function of z,
defined forx > 0,and let 0 < & <%, 0 <l <1,k >0. Then

A52) = o [p(2)] (1.42)
implies, uniformly in &,

_Tk+14+1)

I3
I(z—t)l‘lAﬁ(t)dt=o[<p(x)]. (1.43)
0

Proor. From (1.41) we have
£

g ) = j AE¥) 0,06) d,
0
where

6,(») > 0,

0,(v) dv = o (1),

Ct— >

as ¢ — oo, for every fixed & > 0, and
¢

j 0,(»)dv < 1.

0
These properties of 0,(»), together with the hypothesis (1.42), lead
to (1.43).

1.5. First theorem of consistency

We shall now prove two elementary theorems on Riesz sum-
mability, concerning the relation between different orders of
summability belonging to the same type. The first theorem in
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this direction says that the power of Riesz summability increases
with the order. Thus we have

Tureorem 1.51. If Ya, is summable (4, k), &k > 0, to the sum c,
then Ya, 18 also summable (A, k'), for k' > k, to the same sum.

The proof follows easily from the formula :
C¥(z) = 7% A% (z)

' —k
=r (]E{%%(g,)—f—k—) j (@ —t)F %=1 ¢k Ck(t) dt.  (1.51)
0
The above theorem is called the °first theorem of consistenoy ’,
and it follows therefrom that a convergent series is always
summable (4, k) to the same sum, for every k& > 0, whatever the
particular divergent sequence {1, } may be. By using formula (1.51),
we can also prove

THEOREM 1.52. If W(x) is a positive, non-decreasing function
of x, then Ai(x) = O[W(x)], k > 0, implies A% (x) = O[2*"* W(x)],
K >k

1.6. Scope of Riesz summability

The scope of a method of summability can be roughly determined
by an examination of the nature of series which are summable by
that method. Thus we should know, first of all, what are the
necessary implications of the statement that a given series is sum-
mable (1,k). Some such knowledge is gained from the following

THEOREM 1.61. If ¢(x) is a positive non-decreasing function
of z, and if
A¥x) — cat = o [px)], &k > O,

then for A, <z < A,.1, and 0 < r < k, we have

A
[ 2 4 "G e ,],ifris an integer or
Rar1 = 4n) zero ;

‘P(}»n) ¢(1n+1)
? [ (An — Ay ] + °[(ln+1 - 2';.)""]’
if r 18 non-tntegral.

A'(x) —ca” =
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ReMARK. In this section, as in some later sections, we write
A¥(z) in place of A%(x).

Proor. We shall assume, without loss of generality, that ¢ = 0;
for, if ¢ % 0, we set B(x) = A(x) — c, so that B(x) = A*¥x) — caF,
and argue with B(z) in place of A4(x).

Let b = [k], where [k] denotes the integral part of &, (A + 1)¢
= Ays1 — An; let I be an integer less than or equal to &, or zero ;
let k =h 4 B,s0that 0 < < 1. Then we have

AP ANR) = 0 [p(hyyy)]. (1.61)

For,if § > 0,
i+
AP Ak (a,) = A} [ J Ay + & — 1Pt AN) dt]

An

=0 [9(Aa+1)]

on account of the hypothesis on 4*(z) and Lemma 1.42.

If =0, thenk = h, and
A1C+p Ah(ln) = AIC Ah(ln) =0 [‘P()'n-f-l)]'

Casg (i). Let r =0. Setting A for m, and A, for z, and 0 for r in
formula (1.38), we obtain
AP AMR,)
Tk +1 ~

L A S B T X

—A@[ jdtl j. dty... J- [4(t) — A(4)] dt,,]

n 4 th1
AR A, : _
= “P(h':i:“l) s smoe A(th) - A(ln)’
= o[ ¢ (An4+1)],
by (1.61). Hence

400 = o ¢ 1255 ] .

Ch+ﬂ A (}'n) —_
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Casg (ii). Let r be a positive integer. We prove the result now by
induction. The theorem has already been proved for » = 0.
Assuming it to be true for r — 1, we prove that it is true for r. If

=100 — o P(Ans1) ]
A (x) =0 (}'n-i-l _ An)k r+l] ’

then

A(x) — A"(A,) —rj ANt dt = o [(z ?(Ansa) ] . (1.63)

n+1 ""}' )k r
lfl

Setting A — r for m and 4, for z in (1.38), we obtain

I+ 1)

A G+ g+

_ A@[ jdtl Jdtz... J [4"(t—y) — 4"(2)] dth-r:l-

n ty Yy —1

prrts gr(ay = DO D Aners ghg )

The first expression on the right side is o[ ¢(4,,,) ] on account
of (1.61) ; while the second is o[ ¢(4,,) ] because of (1.63). Hence

r — q’(lﬂi
Ay =of [, D T, (1.64)

Cask (iii). Let 7 be non-integral; s =[r],r =s8-+a,0<a <1;
let p denote the greatest integer less than k, so that if & is non-
integral, p = h, and if k is integral p = k — 1. By (1.21) we have

I (5 R
A (z) = o 4 1) T(a) ~[(a: §)"t A%t dt
‘ ;'n-l "n x
_ Te+ny J j '
T T(s+ 1) T(a) * i .‘ ]
o ln—-»l ‘n
= J1 + J2 + Ja,

say. Now, using the result obtained above in Case (ii), we obtain

Jy =0 (n,__?(’lwl), ) JT @—ty="-ldt
a

(Apg1 — 4 )P;
_ ‘P(}mﬂ’)d_ "
—0 [(/1 Pusa) ] , (1.65)

k
n+1 ln) r



12 FIRST THEOREM OF CONSISTENCY AND [Cr. I

and

l”-

Jy=o0 ((71:—(”&):)7‘":’) !(x—t)'”“’ ds

n—1
= m..-_?gz”),m :l 1.66
0 [(Z,‘——A”_l)""' * ( . )
Integrating J, by parts, we obtain
p—8
T(r +1) .
J, = S S S _Z _ r—8 VA3+V _
l = T(8+v+1)r(r—s~—v+1)(x n=1) (Aa-1) +
ln—l

_ _N,Il(z“*_l)‘,‘_v A? —fy-r-1
+F(p+1) F(r—p)oj @ &—4 dt

=J1 4+ s (1.67)

say. Since r —s — v = (a — v) < 0, we may majorize powers of
(® — 4,_,) inJ; ; by the corresponding powers of (1, — 4,_,) ; if we
do this, and apply the result proved in Case (ii), we obtain

B=o [ Bty
n~1

Jig=¢ j. (x—ty¥ax—t)¥~?-! AP(t)dt,  where ¢ is a constant,
0

2

"n—l
=e(x—A,_,)* { (x —tf~P-1AP(8)dEt, 0 < & < Ap_y,
¢
by the second mean-value theorem.

Replacing z by 4, in the expression outside the integral sign,
and applying Lemma 1.42 to the integral, we obtain

- P(4)
Jys =0 [(7'-';—1;:7‘;—-_'] . (1.68)

Combining results (1.65)-(1.68), we prove the required result.

As a particular case of Theorem 1.61, we obtain the well-known
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TraEOREM 1.62. If Za, 18 summable (4, k) to the sum c, then for
0<r<kandd, <z < Ai,,,, we have

Ak e . .
ntl___ |, if r is an integer or zero;

(}'n:fl -2 )k r

O[ i :I + [ )Hl ]’
n n 1 n+1

zf r is non-integral.

A'(x) — cx”

This is obtained by setting ¢(z) = * in Theorem 1.61.

CoroLLARY 1.61. If A, = n, Theorem 1.62 shows that if Ya, is
summable (n, k), then

a,=o0o(nf), 4, =0, . . . , A'x) =o(zh).

COROLLARY 1.62. If A,y —O(hy,y —A,), or lim infzzf} > 1,

n

then A"(@) — e = o[ p(Any1)/AE~"].

In particular, under the hypothesis of Corollary 1.62, a summable
series is necessarily convergent. For example, if 4, = 2", then
Riesz’s method of summability will sum only convergent series.

1.7. A theorem of M. Riesz

In Theorem 1.62, we assumed that a given series YXa, was
summable (4, k), and deduced therefrom the order of magnitude
of the Riesz sums A"(x) for 0 <7 < k. More generally, in Theorem
1.61, we proved that if A*(x) satisfies a certain order-condition,
then A'(z), for 0 < r < k, satisfies another order-condition. In the
following theorem, due to M. Riesz, we assume that both A*(x)
and A(x) satisfy certain order-conditions (either of O or o type),
and prove that 4"(z), 0 < r < k, will satisfy an order-condition
related to the given conditions on A*(x) and A(x). Thus we have

THEOREM 1.71. Let V(z) and W(z) be two positive non-decreasing
Sfunctions of x defined for x > 0. Let

U,(x) — [V(x)]l"”: [W(x)]’”‘.
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Then
(A) | A¥x)| < W(x)and | A(z)|< V(z)

tmply
|AT(x)| < c Uyz), for 0 < r <k,

where ¢ 13 a constant depending on r and & only, while

(B) | A¥x)| < W(x)and A@x) = o [V(z)]
imply

A'x) = o [U )], 0 < r <k,
and
()] A¥@) = o [W(z)] and | A(x)| < V(x)
imply

A'(z) = o [Ufx)], 0 < r <k
Proor oF (A). The hypothesis |A(z)| < V(z) implies |A"(z)]
< a' V(x), and so the theorem becomes trivial if
o < [W(V]™, or o <[W/V]'E
We shall therefore assume that we can always determine & > 0

by the equation
x — &= [W() V().

Case (i). 0 <k < 1.

Ar(z) = rf(x Ayt = r[ f n H =J, + J,, say.
0 5

x

Wy =

r j(z —t) LA dt : <@—¢&yV() = Uf). (1.71)

J,=r j (x — ) Fax —t)F~TA@) dt

0
&

=r(x — &)y F J (x—t)F-TA(t) dt, 0 << u <,

= % (e — &) gz, §) — g (@, w)],

in the notation of Lemma 1.41. Hence
Jy| < @rfk) (@ — £ FW () = (2r/k) Uy(z). (1.72)
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Combining (1.71) and (1.72), we observe that
A'@) < (2r/k + 1) U,(z).

Case (ii). k> Lh=[k], h+1)=2—¢k=h+B,0 If<L
We shall first prove that the result is true for integral , by induoc-
tion, the case r=0 being trivial. Suppose

A1 (@) =0[U,_, ().
Then , for & <z’ <z,
A'(x) — A"(z') = 7 j A1 (¢) dt
=0[(x—2)U,_, ()]

= 0 [U,=)]. (1.73)

Writing A — r for m in (1.39), we obtain

Pors ) = 1 ) A ) +

Fh + 1)
z A bhep—1
+ A"_;[ j dt, j dty ... j [4r(@) — 47 (th_,)] dt,,_,].
z—{ 4y=t th_y_1—¢

The first expression on the right side is O[W(x)] on account
of the hypothesis on A*(z) and Lemma 1.42, while the second is
O[U,(z) t¥~"], on account of (1.73). Hence

¢ 4'@) = O[W(@)] + O[U,@) t*'],
or

A'(z) = O[U,(x)]. (1.74)

Next let us consider the case where 7 is non-integral. Let s = [r],
r=8+a,0<a<]1. From (1.74) we then obtain A4°(x) =O[U,(z)].
Also

A Y z) = O[U, ,(x)], ifs + 1 <k,
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so that
A'(z) = A'"(x) = O[U;,~*U34] = O[U,(@)],
on account of the result proved in Case (i).
If, however, s + 1 >k, that is s = A, then A*z) = O[U,(z)], which

together with A*(x) = O[W(z)] yields the required result, on an
application of Case (i).

Proor or (B). Given ¢ > 0, choose z, such that | 4(z)| <& V(2),
forx > z,. Let £ be such that
1k
v — = (W) , (1.75)
Case (i). 0<k<1l If 0<z <¢, then
z & z
A'(z) = rj(x — )Y A@)dt = r [I + j]EJl + J,, say.
0 0
I3

EAR ‘r (@ — 5)'“kj(x — ¢ A(t) dt

u

0 <u ¢,

by the second mcan-value theorem. Thus

W\ rik—-1
| < 2r (617) . W(x) = 2r. &% U (),

on account of (1.75) and the hypothesis on 4*(z). Again
Vel <eV (@) (z — &) = &'~ U(a).
Hence

4@ <yl + 10| < @ + 1) & U@).  (176)

If, however, x > z, > &, we write

T, =

A’(x)=r[j+j]sll+lz,

0 z,
say. As in J,, we have
(3] < &~ U,(z),
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while
| ¢ |
| = ‘ r“. (x—t)y~tA(t) dt ‘
0
< r@x — :vo)"lj | A(t)] dt
0
= o(1),
asx — o0, since r — 1 < 0; hence
A'(z) = o(1) + o[U,(x)] = o[U,(x)].

Case (ii). % > 1. The hypotheses of Theorem (B) necessarily imply
that
A'(z) = O[U,(2)], (1.77)

on account of the previous result, Theorem (A). Actually we have
got to show that
A'(z) = o[U,()].

This we prove by combining Case (i) of the present Theorem (B)
with the previous Theorem (A). For, we have, by Case (i) of (B),
AP(z) = o[Uyx)], 0 <P < 1;
and by (1.77), if 0 <8 <k —1,
A*P(2) = O[Uy 4 4(@)].
Applying Case (i), we deduce that
A'x) =o[U,(@)],0 <y <1+ B,ory <2.
This, together with
A" (@) = O[U,41(2)],
will again lead to
Ax) = o[Uyx)], 0 <8 <3,
and so on, until the result is proved for 0 < » < h = [k]. Thus
A'*x) = o[ Us_ )],

for every small positive &, which, together with the hypothesis on
A¥(z), leads to the required result.
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Proor or (C). Given ¢ > 0, choose z, such that

n
g,2)| =& [0 d0 @] < W
0 I
foraz > xyand 0 <% <, by Lemma 1.42. Determine & such that

Case (i). 0 <k < 1. We write
&

A:'(x) =rbf(x-t)"‘ A(t) dt = rl: i+£ :‘ =J, +J,,

say. First, let us suppose that § > z, ; then
¢

re—ort[e-0ana . o<u<y,

u

|J1|=

by the second mean-value theorem. Now applying Lemma 1.42, we get
y] < (k) (2 — 6 g (6, 2) — g (u, 2)]
< (2r/k) €Y (WVYE-1 e W (x).
= (2r/k) e* U (). (1.78)

Tyl = |r J(x—-t)"‘ A(t) dt|

< (x— &) V()
= &* U, (). (1.79)
From (1.78) and (1.79) we get
| A"(x) < (2r/k + 1) e U,(z).
If ¢ <=z, we write
2, =z

A@) =r [_[+j] =J, +J,,

0 T,

and argue as in Case (i) of Theorem (B).
Case (ii). &> 1. The hypotheses of Theorem (C) necessarily

imply that
A'(x) = O [U/)],
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on account of Theorem (A). Choosing r = k—1, and applying
Case (i) of this Theorem (C), we obtain
A¥x) = o[U, )], k —1<s <k.
Again considering k — 2 < s <k — 1, we obtain
A'x)y=0[U,)], kF—2<s <k-—1;
and we proceed like that until we finally get the result.

CororLLaRY 1.71. If Xa, ts bounded (A, k), then it is either
summable (A, k') for every k' > k, or not at all.

ProoF. By hypothesis, 4*(x) = O(x*). If for some | >k we
1
have A;cz(x) — ¢, that is A'(x) — ¢! = o(a'), then
A¥(x) — ¥ =0 (2¥), k <k’ <I;
for by setting B(z) = A(x) — ¢, we observe, in the light of
Theorem 1.71, that
Bix) = 0 (#*) and BY(x) =o (2)
together imply
B¥(x) =o (), k <k <l
CoroLLARY 1.72. If a series Ya, with bounded partial sums is

summable (A, k) for some k, then it ts summable (4, k) for every
k> 0.

1.8. Tauberian theorems

In this section we aim at obtaining order-relations for A"(x)
with a hypothesis on 4(x) different from the one in Theorem 1.71,
The hypotheses which we consider here are similar to those satisfied
by the so-called slowly increasing or slowly oscillating functions.
We have called these theorems Tauberian, since we are concerned
with deducing the behaviour of A(z) as x — oo.

TaEOREM 1.81. Let W(x) be a positive non-decreasing function
of z, and V(x) any positive function of z, both defined for z > 0.
Then we have the following :

(a) A(x)— Az —t)=0[t"V(x)], 0 <t=O0[{W[V}*+1] » >0,

and
A¥@x) = o [W(2)], k>0,
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together imply
A(x) =0 [Vk/(k+ v) Wi+ y)] .
If further V¥&+v) WYIk+Y) i5 non-decreasing, then
A'(x) =0 [V(k-—r)l(k+ ) Wr+nik+ v)] ,0 <r <k.
(b) A@+t)—A@)=0[t"V()],0<t=0[{W]V}YE+V] y >0,

and
A¥z) = o [W(2)], k > O,

where
1/(k+ »)

W(z')
W ()

together tmply

0 < < H < oo, for 0 < 2’ —-x—-O( )

A(x) = o ( Y+ ) i+ r)).
If further V¥&+») Wrik+) 45 pon-decreasing, then
A7(@) = o [VEDIE+Y rnk+n] | 0 <7 <k
ProoFr oF (a). Leth=[k];k=h + 5,0 < B < 1. Given

¢ > 0, choose
x)s 1/(k+y)

V()
Writing & for m and 0 for » in (1.39), we obtain
Ah+ﬂ Ah(x)
B8 f(z) = 2=t 24\
¢ (= T+ 1)

z Y bh—1

+ A’ic[ J.dtl J J[A(a:) A(t,,)]dt,,]

Xt nte gt
=J;, + Jg (1.81)
say. By the hypothesis on 4¥(x) and Lemma 1.42, we have
Wi <eW(2),

for z sufficiently large. By the hypothesis on A(x), we have
|Jg| < e V(x) i,
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where ¢ > 0 is a constant. Hence
7
e < ooy,

ie. A(x) = o (VHEEN rikty)y (1.82)

If we now apply Theorem 1.71, we obtain
A'(x) = o I'V(k—r)’(k+ ) Wle+nlt+ v)] , 0 <7r <k

Proor or (b). With the same notation as in the proof of (a),
but using the relation

b ALFE AM(x)
e = Sy -
T+ e 4+
- A‘é[ Jdt, jdtz... j. [4r(t,) — A"(x)) dt,,] (1.83)
x t) th_y
(which is obtainable from (1.38)) instead of (1.81), and arguing as
in (a), we get the required result.

It may be noted that the extra hypothesis on W(x) is used
in proving that the first expression on the right of (1.83) is
o[ W(x)].

ReEmaRrks. Theorem 1.81 will remain valid if, in the hypothesis
on A(x), we replace the continuous variable z by the discrete
variable 4,. Thus we have the following

THEOREM 1.82 Let W(z) be a positive non-decreasing funciion of x,
and V(x) any positive function of z, both defined for positive values
of the argument. Then
(@) A(2,)—AA,—1)=0[t"V(4,)], y >0, 0<t=0 [{ W]V }1EED],
and

A¥@) = o[ W(=)], k > 0,
together vmply
A(hy) = o[ V(R P+ (2,) 716+ 7],
Lf further V(x)¥"&+ DWW (2)YE+ D) 4s non-decreasing, then
A'(x) = 0[ V(x)(l--r)l(H "’W(:z:)‘”’)/‘“ y)]’ 0 <r <k
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(b) A(A, +¢)- A(4,)=O[t"V(A,)].y >0,0<t=0[{W/ Pk
and

A) = o[ W@)], 0 < TE)

W(x)

W\ LE+ )
<H<owfor0 <z --x= 0(.17),
imply
A(Z'n) = O[ V()'n )M(’:+ g "/(A"n) vkt 7’)]'
If further V(xy¢+ MW ()Yit+ 9 s mon-decreasing, then
A'(x) = 0[ V(x)(k-r)l(ﬂ y)W(x)(Hr)/(H -/)]_

The following well-known Tauberian theorems are deducible

from Theorem 1.82 (b).

CorOLLARY 1.81. If a, = O[A%4, — 4,_1)],

and
A¥@) = o(x®), k ~ 0,0 <B <adk-+1,
then
Ax) = o(x(ﬂ*'“"')/(""‘”).
Proor. 'The first hypothesis implies, for ¢ = O(4,),
A(ln + t) - A(ln) =0 (l:t)’

and therefore, by Theorem 1.82 (b), we obtain the required result.

CoROLLARY 1.82. Ifp>1,a+ 1 ¢+ 1/p >0,

S la,[PA2(h, — A,_,)'"7 = O(AT@+D+1),
-()

04

and
A¥z) = o(@"), k > 0,0 <B <a +k +1,

then
(at1/p) k +Ble

A(x) = o[:v Tkl ] , Ip + 1/g = 1.

Proor. We have only to observe that the first hypothesis implies,
for t = O(4,),
A(A, + 1) — A(A,) = 07+ 1),
and then apply Theorem 1.82 (b).

Tauberian theorems (O type)

We now replace the two-sided hypotheses on A(x + t) — A(x)
by one-sided hypotheses.
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THEOREM 1.83. Let W(x)and V(x) be as in Theorem 1.81, and let

A¥z) = o[W(z)], k > 0, (1.84)
where 0 < W) <H < o, for 0 <z’ —x = O[{W|V}HE+D]
W(z)
Let
A@) — A@ —t) = O, ["V(@)], y > 0, (1.85)
A +t) — A(x) = O, [t"V(2)], (1.88)
where 0 < t = O [{W/[VVE+Y] Then we have
A(z) == of V(@)*+ P ()7 + 9], (1.87)

Proor. We require formulae (1.81) and (1.83). Using the hypo-
thesis (1.85) in (1.81), we obtain, for ¢ > 0,

Aw) > —¢ —"2#) +0,¢7V),
ic. — A(x) < o VEE+ Ny vite+ 1] (1.88)
Using the hypothesis (1.86) in (1.83), we obtain
A(x) < o VEE+0pvit+ ) (1.89)

Now (1.88) and (1.89) lead to (1.87).

N.B.—Remarks similar to those at the end of Theorem 1.81
apply here as well.

THEOREM 1.84. Lel IV (x) be a positive non-decreasing function
of z, and V(z) be uny positive function of x, both defined for x > 0
and such that, if k > 1 and & = (WV)' there exist constants h,
H and K such that, for ¢ — K¢ <2’ <x |- K%, we have

0<h < ~V ("‘.”_'.)
V(z)
W)

O<h< S <H .
< <W(x) <<

<H < w,

Then
A¥(x) = o W(x)], and A(x) = O, [V(x)] or Ox [ V(2)],

together imply
A'(x) = o[Uy)], 1 <r <L,

where U,(x) is as in Theorem 1.71 and is non-decreasing for r > 1.
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Proor. This theorem follows easily from Theorem 1.83, if we
observe that the hypotheses on A(x) and V(z) imply

Az +t) — Al x) = j A(u)du = O, [tV ()],

x

t <KQ)

Alx) — AYx —t) = j A(u) du = Oy, [tV(2)]

r—t

REMARK. The O-versions of Theorems 1.81-1.84 are also valid,
where O replaces o both in the hypotheses on A¥*(x) and the con-
clusions about A(x).

CorOLLARY 1.83. A series Ya, whose partial sums are positive
(or bounded on one szde) ts summable (A, 1), if @t is summable
(A, k) for any k& >

Converse theorems on summability

We now state conditions under which a summable series is
convergent. Although these results could have been included as
corollaries in previous sections, we have preferred to collect them
here in the order of increasing generality, as these are of special
interest.

Let us set
by =Ana,, B)=34a,, b <o <l

Bw) =3 (@ — ) Aa,, k> 0.
We then have

B(x) — J = ad(®) - 0 A(w) — jA(t)dt,
A"(w A w)  BYw)
of T of ! = oftr

From this last formula we deduce

THEOREM 1.85. A necessary and sufficient condition that a series
Ya, summable or bounded (A, k + 1) should be summable or bounded
(A, k) 1s that BY(w) = o(w**') or O(w**!) respectively.
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CorOLLARY 1.84. If B¥(w) = o(w**}), then Ya,, is either summable
(4, k) or is never summable.

For if Ya, is summable (4,%’ +1) for &’ > k, then it is summable
(A, k'), since B¥(w) = o(w**') implies B¥(w) = o(w*'*') for every
k' > k. Hence ete.

CoroLLARY 1.85. If Xa, 18 summable (4, 1), then a wnecessary
and sufficient condition that Ta, should converge is that B(w) = o(w).

This is a restatement of Corollary 1.84 with & = 0.

f
Turorem 1.86. If ¥ 1,a, = O(4,). Xa, 1s either summable (A,k)
Jor every k > 0, or is never summable.

For if Ya, is summable (4, 1), then BYw) — o(w'*"). This result
together with the hypothesis B(w) = O(w) implies B*(w) = o(w**+?!)
by Theorem 1.71(B). And so the result follows from Corollary 1.84.

THEOREM 1.87. If B(w) = O/ (w), and Xa, is summable or bounded
(A, 1), then Na, is summable or bounded (A, 1).

Summability or boundedness (4, I) implies B'(w) = o(w'*!) or
O(w'*?), which, in conjunction with the hypothesis B(w) = O (w),
implies B'(w) = o(w?) or O(w?). We have now only to use Theo-
rem 1.85.

TAEOREV 1.88. Jf 1, ~w <4, and

r
lim inf min Y a > — ),
w—> < /'lré 1+ n+1

where 0 < @(0) tends to 0 as 6 — 0, then Ya, converges whenever it
is summable (4, k).

We prove the result in two stages: (a). The hypothesis that

lim inf min  [A(t) — A(w)] > — @(d),

@ —> 0 o<t (1+8)o
for fixed 6 > 0, implies B(w) = Oy(w), 8o that by Theorem 1.87
sumnability (4,7) implies summability (4, 1). (8). Summability (4, 1)
and the hypothesis that ¢(d)—0 as § — 0 imply convergence.
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ProOOF OF (a).

T

B(a) — B(w) = JtdA(a) — zA(x) — wd(w) — | A(t)dt

ey By

= w[A(x) — A(w)] + | [A(x) — A(t)]dt.

0]

If o <2 < (1 4 8)w = Aw, we observe that
B(x) — . .
@ = Bl) (1 +5) p0),

lim inf min

w—> v w
and hence
i ot 0 e [ 38 (5) =8 ()]
- (1 +4) 5
3 6 ‘f( ):
which proves (a).
Aliter. That A'(w) — so = o(w) can be seen otherwise from

(1.89) and Theorem 1.84, if we observe that the hypothesis can be
put in the form
A(w +t) - A(w) = 0 [@(0)] =0, (to™"),
for t < ow, O fixed.
Proor orF (8). Let AYw)'o —s. We have the following
formulae:

5 =z 5 o ‘o

[0}

+06 A'x) 1 AYw) ] JA[A(g)——A(w)]dt,

z=(14+0d)w;

£

)4 SH[A(x)—A(t)]dt.

w

Fixing é and letting w — o0, we have

lim sup A(w) <12 s — % + 9(8) = 5 + @(0),

o= 0
lim inf A(w) >s — ¢(9),
w=—p ©

and now letting 6 — 0, we obtain the result.
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TueoreM 1.89. If A, = 0, (A, — 4,_,), then Xa, has bounded
partial sums if it is bounded (4,1). so that it is summable (3. ) for

every k > 0. or never summable. [f further A — 1, then Yu,
n—1
8 convergent whenever it 18 summable.

We have B(w) — X 0 (2, - A,_,) = O,(»). Hence, by Theorem
1.87, ¥a, is summable or bounded (4, 1) according as it is summable
or bounded (4, ).

To prove tarther that A(m) = O(1), we note that

1
Alw) = A(w) I+ B(w)
) m
implies A(w) = 0,(1), since B(w) = O (w); while
x

j [A(t)  A(A,)]dt,

A)l

146 Al(x) A'4,) 1
AA,) = L0 LY L A Al
(%) 0 x da, oa,

;‘n LT = (] +- 5)2'"»
implies A(An) = Oli(l)v Sinc(‘ A(’) - A(Ii”) == 0/ JJ(, - An) An-”f‘
Ap <t <.

Boundedness of A(w) implics summability (4, k) for every £ > 0,
if it is summable at all. On the other hand, the further assumption

that An —» 1 will enable us to prove that
n—1

A(x) — A(w) = 0,(0), @ <& < (1 + 0)w,
which, by Theorem 1.88, will prove all that is required.

REMARK. The same conclusion as in Theorem 1.89 will result
from the following hxypothesis on «,, :

S0 @A, 2, ) = 00,),p > 1.

1.9. Absolute summability

The notion of absolute Riesz summability defined in §1.1 bears
the same relation to ordinary summability as, for instance, absolute
convergence does to ordinary convergence. The preceding sections
show that ordinary summability has been the subject of intensive
study, one consequence of which has been the development of a
satisfactory Tauberian theory ; absolute Riesz summability, however,
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has not received the same degree of attention, and very little
is known about Tauberian conditions which would enable one
to infer absolute convergence from absolute summability. The
analogues of several theorems in the ordinary case have not been
explicitly proved. We therefore have to content ourselves with
proving here only the analogue of the first theorem of consistency.

THEOREM 1.91. If the series Xa, is summable |4, k|, k >> 0, then
it 18 also summable |2, 1| for 1 > k.

Proor. We recall the fact that |4, 0| summability is equivalent
to absolute convergence, and prove the theorem in two parts,
according ask = OorZ > 0.

(@). k=0. We have to prove that _[ |dC%(x) < oo, where we
h

may assume without loss of generality that 0 < & < 4,. If we set
Sl-l (x) == }-: a, ln (.’I‘ - An) l—l,

A <
I

then we have to prove that
I = j V18, ()] dr < oo.
h

However,

A <
0

1 <j x~11 [ Y la,l 4, (x —24,)"! ] da.
h

Interchanging the order of integration and summation, we have

I'< z jlavx ( A" (-’U-——}_") =1 =10y =

o0

\ ;

R ﬁa,,: < 0.

n=0 =
Ay

n=J(

(b). & > 0. Here let us again consider two cases, namely, & > 1
and 0 <k < 1.

(by). 1k >1andl = k+m, we have

£

Sy (@) = CJ Si_q (#) (x—u)" du,

n
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= D ko w .
I'(k) T'(m) ’ >0 y > h, we also obtain

r

v y
jx"“”‘" [8,_1(z)| dz <cjx‘k‘m"dxj [Sp_(uw)] (x—u)""du
3 1 X

and
v z
J.x"“'""ldxj |Sp_1(%)| (x — w)™'du
) )
Y Y
= [ 18w du [erm10 — i
h u
y ©
< I | Sp_1(w)| du jx‘ k-m=1(p _ y)™~ldx.
h u
But
—k-m—1 m—1 _ u_l_k r(k + 1) P(m)
Jx (@ —w""de = CTk+m+1)
so that

le"’“l |8, _1(x)| dx < k].u“l“" | Sp_1(u)| du, (1.91)
R h

which proves the required result.

(by). If0 <k < 1,set

z
I(x) =c J Si—1(u) (x + a — u)" 'du, a > 0.

h
We then have
x x x
Jx"""“l I (x)| de<c J. {8 1(u)] dujv"‘"”"(v%—a-—u)""ldv.
h h u
Now if a — 0, the left side tends to

x

jx"“"”“l | St m—1(2)| de,

n
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and the right side tends to

x

J | Se-1(w) | du Jv"“""—’(v — w)"dv,
‘ h

so that (1.91) holds for I >k > 0.

NOTES ON CHAPTER I

§1.1. The term ‘typical means’ is interchangeable with ‘ Riesz
means ’ except that when we deal with Dirichlet series, as we do in
Chapter III, we use two types of Riesz means (4, k) or (I, k) for the two
types of series Ya,e~** or Ya,l,* and in this context, the word

‘ typical ’ has a special signification.

1t is assumed throughout that the terms of the series ¥a, are real,
unless there is an indication to the contrary. If the terms aro
complex, the real and imaginary parts can be separately discussed.

The letter 4 in (4, k)’ is supposed to refer to the given sequence
{}m}. When A, =n or n?, however, we allow ourselves the liberty of
writing ‘(n, k)’ or ‘(n?, k)’ as the case may be.

For an account of Riesz mecans see G. H. Hardy and M. Riesz,
The general thecry of Dirichlet’s series, Cambridge (1915). We shall
refer to this as the T'ract. See also E. Kogbetlianiz, Sommation des
séries et integrales divergentes par les moyennes arithmetiques et typiques,
Mémorial des sciences mathématiques, Fascicule 51 (1931) and M. Riesz,
Acta Mathematica, 81 (1949), 1-223.

It is possible to define the summability of integrals instead of series.
We suppose that A(f) is a positive and continuous function of ¢, tending
steadily to infinity with ¢, with A(0) = 0, and set

b

4;,0)= [ aw)du= [ a(u)du,
0

A<t

Akt =k _[t A,(s) (¢ — s)* 1 ds.
0
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Then, if t-% A%(#) - c as{ > oo, we say that the integral
[ a(u) du
0
is summable (4, k) to the sum o. This definition may then be applied

to study integrals of the type

[ a(u) e**® du.
0

Absolute Riesz summability was defined first by N. Obrechkoff,
Math. Zeitschrift, 30 (1929), 375-386, on the lines of absolute Cesaro
summability defined earlier by M. Fekete and E. Kogbetliantz,
Math. es Termész. Ert. 29 (1911), 719-726, 32 (1914), 389-425, and
Bull. Sc. Math. (2) 49 (1925), 234-256.

The equivalence between summabhility (, k) and Cesaro summability
of order k, for various values of k, was announced by M. Riesz, Comptes
Rendus, 22 Nov. 1909, 12 June 1911, Proc. London Math. Soc. 22
(1923-24), 418. See R. P. Agnew, Trans. American Math. Soo. 35 (1932),
532-548. An unpublished proof by A. E. Ingham is referred to by
G. H. Hardy in his Divergent series, Oxford (1949), 119. For a
different approach see J. J. Gergen, Duke Math. Journal, 3 (1937),
133-148. For further work on this topic see B. Kuttner, Prec. London
Math. Soc. (2) 45 (1939), 398.

§1.2. Many of the results we prove in this section remain valid if
A, (2) is a function of boundod variation in every finite interval instead
of being a step-function.

Formulae (1.21) and (1.22) are proved in the Tract, pp.27-28. For
formula (1.23) see G. H. Hardy, Proc. London Math. Soc. 15 (1916),
72-88.

§1.3. Finite differences were first introduced into this theory by
H. D. Kloosterman, Jour. London Math. Soc. 15 (1940), 91-96, and
their use was systematized by L. S. Bosanquet, Jour. London Math.
Soc. 18 (1943), 239-248. »

It should be noted that A7 A(x), 0 < a < 1, in our notation would,
in Bosanquet’s notation, be A7 Aq(z)/[(a + 1). Our notation has
been chosen for convenience.

The integrals defining A7 F(t) are assumed to exist.

§1.4. The proof of Lemma 1.41 as given here is different from that
in the T'ract. This proof was communicated to us by Prof. M. Riesz.
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Use is made of this proof in Lemma 1.42 as well. In Lemma 1.42, it will
be sufficient if @(z) possesses the stated property beyond a definite
stage, since we are concerned only with the behaviour at co. Thus
@(z) may be any logarithmico-exponential function. See G. H. Hardy,
Orders of infinity, Cambridge (1910).

Lemma 1.42 remains valid if ‘o’ is replaced by ‘0’ in both (1.42)
and (1.43).

§1.6. The word °consistency’ is mnot considered appropriate
nowadays. Theorem 1.51 proves that Riesz summability is ‘ regular’;
however, we have chosen to keep to the usage in the Tract. The
o-version of Theorem 1.52 is obvious.

§1.6. Theorem 1.61 with = instead of @(z) is proved in the T'ract;
but the more general form in which we have stated it here requires
no special artifice. See Theorems 21 and 22 of the T'ract.

§1.7. Theorem 1.71 may be considered as a convexity theorem in
a certain sense. Convexity theorems were initiated by G. H. Hardy
and J. E. Littlewood, Proc. London Math. Soc. 11(1913), 411-478.
Theorem 1.71 was proved by M. Riesz, Acta Szeged, 1 (1923), 114-126.
It seems to have been obtained independently by K. Ananda-Rau
in a Smith’s Prize Essay (Cambridge, 1918) which was published, in
part, only several years later, Proc. London Math. Soc. 34 (1932),
414-440.

§1.8. For information about Tauberian conditions of various types,
o0, 0, Oy, and Op, see G. H. Hardy, Divergent series, Oxford (1949), 149;
and for definitions of slowly decreasing and slowly oscillating functions,
ibid., 124, 286.

Theorem 1.82(b) is an extension of a theorem of Bosanquet, and
by the same method. See Jour. London Math. Soc. 18 (1943),
239-248. For other theorems of this type, see S. Minakshisundaram
and C. T. Rajagopal, Quarterly Jour. Math. (Oxford), 17 (1946),
1563-161, and Proc. London Math. Soc. 50 (1948), 242-255.

For special cases of Corollary 1.81 see K. Ananda-Rau, Proc. London
Math. Soc. 34 (1932), 414-440, and for the corresponding cases of
Corollary 1.82, see V. Ganapathy Iyer, Annals of Math. 36 (1935),
100-116. The results of Ananda-Rau and of Ganapathy Iyer were
extended by S. Minakshisundaram, Jour. Indian Math. Soc. 2 (1936)
147-156. A further generalization of Ananda-Rau’s result was made
by Bosanquet, loc. cit. Corollaries 1.81 and 1.82 are valid for § > a +
k + 1 as well. Cf. Ananda-Rau, Ganapathy Iyer, and Bosanquet,
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loc. cit. In Corollary 1.82 it should be noted that if a +1 4 1/p <0,
then all the a, vanish, Here we make the convention that A_; =
The hypothesis on a, could also take the form
T @ (A — A7 =047, 8> 0,p > 1,
Ay <Ay <(1+08)Ap,
which is in line with the hypotheses formulated by Otto Szasz,
Trans. American Math. Soc. 39 (1936), 117-130.

For Tauberian theorems of O type on Riesz summability see
S. Minakshisundaram and C. T. Rajagopal, loc. cit. For one-sided
general Tauberian theorems sce, for instance, 8. Bochner and
K. Chandrasekharan, Fourier transforms, Princeton (1949), Th. 92,

In connexion with the Remark at the end of §1.8, see Otto Szasz,
loc. cit.

§1.9. Converse theorems of a comparatively simple kind are known
in the case of absolute Abel summability which J. M. Whittaker defined.
See Proc. Edinburgh Math. Soc. 2 (1930-31),4. For example, J. M. Hyslop
has proved that if Za, is summable|{4|and 3|b,—b,_,|converges,
where b, = na,, then Za, converges absolutely, Jour. Londen Math. Soc.
XII (1937), 180; and A. Zygmund has shown that a lacunary series
which is summable | 4] converges absolutely. See Trans. American
Math. Soc. 55 (1944), 194.

The equivalence of summability |n, k| and |C, k| has been established
by J. M. Hyslop, Proc. Edinburgh Math. Soc. 5 (1937-1938), 46.

Summability |4, k| obviously implies (4, k), but not conversely,
(Ex.1—1+41—1+...). Also, convergence (of a Fourier series at a
point for instance) need not imply absolute Abel summability (sce J. M.
Whittaker, Proc. Edinburgh Math. Soc. 2 (1930-31), 4); nor does
absolute Abel summability necessarily imply convergence (sce
B. N. Prasad, Proc. Edinburgh Math. Soc. 2 (1930-31), 134). Since
absolute Cesaro summability implies absolute Abel summability
(M. Fekete, Proc. Edinburgh Math. Soc. 2 (1933), 132) it follows that
convergence does not necessitate summability |, k| .

Theorem 1.91 is due to N. Obrechkoff, Math. Zeitschrift, 30 (1929),
375-386.
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SECOND THEOREM OF CONSISTENCY

2.1. Introduction

By the first theorem of consistency (Th.1.51), we can say that
a serics which is summable (4, k) is also summable (4, k') for
k" > k; in other words, we can say that the power of Riesz
summability increases with an increase in the order, the type
remaining the same. Now the question arises as to what can be said
about summability (4, k) when the order £ is kept fixed, and the type
A is varied. The general result in this direction, which is called the
second theorem of consistency, is that the power of summability
(A, k) increases when the rate of growth of 2, decreases, the order k
remaining constant. On this topic we have actually a number of
theorems closely related to one another, and it is our object to
present them here.

2.2. An account of the results

The first thecorem bearing on our topic was proved by G. H.
Hardy and M. Riesz. It runs as follows : if a series Ya, is summable
(4, k), where 4, =e"n, then it is also summable (u, k) to the same
sum. In particular, if a series is summable by arithmetic means
(A, =mn), then it is also summable by logarithmic means
(4, = log n) of the same order. Later, Hardy gave a generalization of
this theorem, and using Hardy’s method of proof, A. Zygmund
and K. A. Hirst gave further gencralizations.

Beforc we state Hardy’s theorem, it is necessary to recall the
definition of a logarithmico-exponential function or, briefly,
L-function.

A logarithmico-exponential function f(xr) is a real, one-valued
function of the real variable # defined, for all sufficiently large
values of 2, by a finite combination of the ordinary algebraical
symbols, +, —, X, -, 4/, and the functional symbols, log(...),
¢'"*), operating on z and on real constants.

Hardy’s theorem runs as follows :
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(H,). If (i) the series Xa, is summable (1, k) to the sum s, and
(ii) p ts a logarithmico-exponential function of A tending to + oo
with 4, such that p = O (1%), A > 0 being a constant however large,
then the series Ya, is summable (u, k) to the same sum s.

This theorem not only tells us that the efficiency of Riesz summa-
bility increases when the type decreases (the order remaining
constant), but asserts the equivalence of any two types of summa-
bility, when thosc types are related to each other in a certain
‘regular’ faghion, for example when both arc powers of n.

A. Zygmund has completed Hardy’s thecorem by proving
(Hy). If 2° < u(A) < A, for certain 8, A > 0, then summability
(A, k) and summability (u, k) are equivalent.

The proof of (H,) results from the fact that u (x) which is the
inverse of u (z) [that is, z = j¢ (y) if y = u (x) ], though not necessarily
an L-function, satisfies all the requirements on # which materially
enter into Hardy’s proof of (H,).

(H,) and (H,) are supplemented by
(Hy). If 1 < p(R) < 2% for every & > 0, then the method (u, k) is
more powerful than (4, k).

1(A) = log 4 will serve as an example. Theorems (H,)-(H;) also
give rise to another line of questioning. Suppose that Ya, is not
summable (4, £) but only bounded (4, k) [ef. Defn. 1.12]; in that
case, we cannot a prior: assert that ¥a, is summable by a process
which is more powerful than (4, k) : for example, by (log 4, k). But
if we assume not only (i) that Ya, is bounded (4, k), but also (ii)
that Ya, is summable (4, ) for some >k, then by a theorem of
Zygmund, we can say that Ya, is indeed summable (log 4, k).
Thus we have
(Zy)). If Xa, is bounded (A, ), and summable (4,1), for some l >k,
then Ya, 18 summable (log 4, k).

Now summability (log 4, k) is just one of several methods which
are more powerful than (4, k) ; in fact we stated in Hy that summa-
bility (u, k), where u is any function satisfying the condition

1<p@) <2
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for every 6 > 0, is more powerful than (4, k) ; it is therefore proper
to ask whether we can replace log A in (Z;) by such a function u.
The answer is in the affirmative, and we have

(Z,). If Xa, is bounded (4, k), and summable (A,1), for 0 <k <1,
then Xa, is also summable (u, k), where p = u(A) satisfies the
condition
1<Lpn(@) <2,
for every 8 > 0.
Actually a more general theorem was proved by Zygmund,

namely

(Z3). If Ya, is summable (4, 1), and

o= [( 5]

where ~'u»(,x—)~ > 1,0 <k <l then Ya, is summable (u, k).
x p(x)
The above theorem could also be put in a slightly different form,
namely

(Z,). If Xa, 18 summable (A,1), and

Ak@x) = o [{zyp(@)}*] , k& > 0,
where y(x) 18 an L-function tending to + oo with z, the series Xa, is
summable (u, k), where

[ d
"(””‘exp[jwt(z‘)]’

with the proviso that the last integral diverges as x— co.

The content of theorems (Z,)-(Z,) is this: if a series Ya, is
summable (4, !), and if the function Ck(x) = A%@x)=7* 0 <k <1,
while it does not tend to a finite limit as z—- o0, is however not
very large, then Ya, is indeed summable by a method (u, k) [of a
lower order than that of (4, I), but of a different type] which is
more powerful than (4, %), and whioh is such that the order of
infinity of u(z) depends on that of C%(x).
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On the other hand, let us suppose that Ya, is summable (4, k)
to the sum zero. Then C4(x) = o(1) as x—o0. We may then ask
the question : if the expression C%(z) tends very rapidly to zero,
can we assert that the series ¥a, is indeecd summable by a method
which is less powerful than (4, %), namelyv by a method (u, k) where
w(d) > 28 for every A > 0. The answer to the above question
is furnished by the following theorem.

(43). If, for the series Ta,, we have

s =0 [ ( 1))

where (i) jo (A) satisfies the condition A> < p (A) < e for every
3, A >0, and (ii) g (1) possesses for A > Ay > 0 a sufficient number
of positive derivatives, then Ya, ts summable (u, k).

r,

Theorem (Z;) can be put into a slightly different form :

(7Zg). If, for the series Xa,, we have
Alfw) = o [{ay @)}*],
where p(x) is an L-function and 1]z < p(x) < 1,the serics is summable
i
(u, k), where u (x) = cxp [Itzj(tt)] , provided that a sufficient number
of dertvatives of the [function p(x) ure positive for x > 4.

All the theorems stated so far are concerned with the relationship
between two methods of summability, (4. £) and (u, k), whose
respective types 4 and p are such that u is an L-function of 2
tending to -} co with 4, and subject to appropriate additional restric-
tions. What we make use of is the fact that L-functions have a
vertain regularityv in growth ; it should be possible to axiomatize
the required properties, without assuming that we deal only with
L-functions. K. A. Hirst carried out this idea, as far as Hardy’s
theorem (H,;) is concerned ; Hirst’s thcorem may be stated thus:

(H,). If Xa, is summable (4, k), then it is summable (u, k) to the
same sum, where u = @(1), and @(t) is a function which increases
steadily to + oo with t, and satisfies the following conditions :

b
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(i) when k is an tnteger,
(a) tr [@UtD(t)] dt = 0 (@)}, r=1,2,3,..,k;
0
(ii) when k 18 not an integer,
x

(a) (@) dt =O0{p@)},r=12 ..., h+ 1L h=[F],
[0

and FITHER

(b) @' (t) 1s a monotonic increasing function,
OR

(ey) @' (t) 18 a monotonic decreasing function
and

(ca) Le''(t) = 0 {¢'(0)}.

These conditions on @ are, of course, satisfied by a class of fune-
tions which is larger than that of Z-functions, and hence (H,) is a
gencralization of (H,).

It is thus clear that (H,) and (H,) are the important theorems
of the (H) set, while (Z;) and (Z;) are the important ones of the (Z)
set. In our presentation, we shall try to combine (H;) and (Z,)
into a single result, from which a slightly restricted version of (H,)
also follows ; next, we shall prove (Z;) with like generality.

2.3. Some preliminary lemmas
LemMA 2.31. The n-th derivative of {f(x)}™ is the sum of a
number of terms of the form
e { f@@) }™ {f'(=) } { f (@) } . { f"Aw) .
where c is a constant, r < n, and the a’s are positive integers or zero,
n n
such that ¥ a, =r, ¥ p ua,=n. Further if m is a positive
=1 =1
integer, then r < m.

Lrmma 2.32. If f(x) 18 a positive decreasing function of x, and if
zf'(x) = O { f(x)}, then there exists a constant ¢ > 1 such that
flex)

7@ > 4, for all x > .
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Proor. Clearly J}({%) < 1. Also, by hypothesis, there exists

an %, such that |zf’()/f(x)| <k, forz > 2y, k > 0. Thus

| f(cx) =Dz |f'®)]
‘ = 7@ ,y v <€ <eca,
< B 1_}.(%5’&{_.)‘ k(c — 1), forz >z,

<3 ifc <1+ 12
Lemma 2.33. Let ¢(t) be @ monotonic increasing function, and tp" (t)
== 0{g’(t)}. Then there exists a constant ¢ > 1, such that, if ¢'(t)

s monotonic decreasing, we have 1 > L4 (::)) > 4, for all t > t,; and
?
if ¢'(¢) is monotonic increusing, ¢ > 1 may be chosen such that
2> P S0 fort > 4,
¢'(t)
Proor. The first part follows from Lemma 2.32. To prove the
second part, we choose f(x) = 1/p’(x), so that

x ""P (.'1:) = 0 __!m =0 l
1@ = ey [fp'(x)] e

Hence, for t > t,,

LevMma 2.34. If @(t) s a monotom'c increasing function, and

ﬁ) ¢t
—t

a monotonic function of t, whzch increases or decreases according as

@’ (t) increases or decreases.

@' (t) is monotonic, then , where x 18 fixed and t < z, s

Proor. We have
@) — o) ¢m—wm—w—»wm

di x —t¢ (z —1)°
(x—tm((i)_t()g—‘w.@, <& <z
9'(§) — 9'()
Tz —t

which is positive or negative acoording as ¢’ increases or decreases.
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Lemma 2.35. If ¢ (x) is as in Lemma 2.33, then there exist two
positive constants a, B such that, for all x > x,,
ax ') < plex) — p) < fz (),
ax ') <) — plfc) <fz¢'@).
Proor. Let ¢ > 1 be as in Lemma 2.33. Then ¢(cx) — ¢()
= (c — 1) xp'(n),r <n <cx. If ¢’ is monotonic increasing,
p'@) < o'(n) <p'lcr) <29 (@), >
and if ¢’ is monotonic decreasing.
P'@) =) " ¢'lex) > ¢'@). x>

2.4. The main theorem

We now assume that

@(t) is a positive non-decrensing function of t diverging to + oo,

having N + 1 derivatives, where N is sufficiently large ; (2.41)
@' (t) is monolonic; (2.42)
etV () =0[g'®)], r--1.2,... . N; (2.43)

we also assume that
p(t) is a positive non-decreasing function of 1. (2.44)

THrROREM 2.41.  Suppose that

(a) Al(x) = o[ {x yp()}*], k >
(b) Alx) = o ('), for some | > lc.
Then we have
Al (@) = o[ {p(@)}*] + o[ {z ¢'(@) p(x)}'],
where

o d
Ah(z) = Ablo@) =[A<t) o Lp@ — e 1dt. [of. (1.23)]

We remark that the first theorem of consistency permits
us to suppose, without loss of generality, thatlis an integer in
hypothesis (b).

We also observe that, when ¢’(t) > 0, the condition
trertV(t) = O{e'(t)}, r=0,1,2,...,
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18 more restrictive than Hirst’s condition
t
j.x' lpr+D()! dz = O0{g(t)},r=0.1,2...,
0

which, in turn, is more restrictive than

tre(t) = Olp@t)}. r = 0.1, 2
All the threec conditions are, however, equivalent for L-functions.
7).
o' (@)
deduce Zvgmund's theorem (Z;). If ¢(t) is an L-function such that
@) = O(t?). A ~ 0. then I/p(@) = O(1). and we deduce Hardy’s
theorem (H,).

2.5. Proof of Theorem 2.41

Let h stand for the greatest integer less than £, and D stand for

If y(x)

> 1. where ¢ is an  L-function, then we

the differential operator (;i . Then A*(x) is, except for a constant

factor,
j AN, D (@) - p(t) ] db = j + j =1, + 1y
0 0 s

say, where x; = a/c, ¢ > 1 heing chosen as in Lemma 2.33. We
shall show that

I, = o[ {g@)}¥] + o[{z ¢’(x) p(x)}*], (2.61)
while
1, = o[{z ¢'(x) p(x)}*]. (2.62)

Integrating I, by parts I — h times, we have

I—ZPH J'A’( ).DH [ {o) — @(t)}*] dt

r=ht1
=1,,+1,,, (2.63)
say, where { P,} stand for some constants, and
H, = Ajz) [D"{p(x) — ¢O)}*] (=,
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We now estimate I, ;. By Lemma 2.31, H, is a sum of constant
multiples of expressions of the form
A=) [{p) — @)} {@ @)} {¢7=)}7],
where 8 + 8, + ... +8, =k, 8 >0 are integers for i =1,2,..., and
8 +28 + ...+ rs, =r. Now, by hypothesis (a) and Theorem

1.52, we have

Al(xy) = 0[‘”1 1% (@ }k] = [{ x)} 1; (2.54)
for r » b + 1. Again, using Lemma 2.35, we have, for s Z 0,
{p@) — 9@} = 0 [{z ¢'(@)}']. (2.55)
Next, by the assumptions on ¢, we have
oy 1o , @' (@)t -t
@ @) ... [¢7=) |'r = ['(%Tz.i—; e, :l
2z k-c
_o[ 17 r( k)H ] (2.56)

by Lemma 2.33.
Jombining (2.54), (2.55) and (2.56), we have
H,=o[{ze'@y@}] r >h+ 1, (2.67)
and hence
ILy=o0 [{z ¢'(2) p(@)}]- (2.68)
We next consider I,, which is a sum of constant multiples of
integrals of the form

jAﬁ(t) {p@) — @) }? {@'(t)}™ ... {@“V(@)}2141 dt,
where

Pp+p+t -+ o=k
P +2p+ .+ U+ D)o =1+1,
and p; > 0 are integers. Here we observe, by Lemma 2.35, that, for

0 <t <z,
p(x) > px) — @(t) > p(x) — @(x) > axp’(2).

Thus I,, is & sum of terms of the form

o[ J t {o@ —p®)}? {tp'(t)}"”'dt:\

tl+l-—k+?
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Z

=0 [ J 7271 {p(x) — @(t)}? {9'(0)}*" fi':l

%

0 \:{tr(x)}" j #2-1 g (t) 22 dt] ( >0)

[
2}

0 ‘:{x @'(z)}? jt""‘“ {') 7 dt] (p <0)

K31

= o [{ v@)}” [ 1901 90 dt]

0

= o[{e)}*] (2.59)
since k—p > 1, because I + 1 > 1, and ¢ ¢'(t) =0 {(t)}, by
hypothesis. (2.68) and (2.59) serve to establish (2.51).

We have now to estimate I,, which is a sum of constant multiples
of integrals of the form

x

JAﬁ(t) {p(x) — @)} {@'(®)}o ... {(p("“)(t)}“hﬂ dit, (2.59)1

Ty
where

¢+a+ -+ =k
G +2¢+...+*h+1)g, =+ 1.

In all these integrals except one, we have ¢ > 0. The only case
when ¢ < 0 oocours is when g=k—h—1; this implies that ¢, = h+1
[forgy + .+ @1 =01 + 2+ ... + (B +1)gsy, = h 4 1]. We
then have, using Lemmas 2.33-2.35, the second mean-value theorem,
and Lemma 1.41,

[ 410 @ — oy [P PO g prora

52
= O[{g' () }*"1]. {¢'(@) }"“jAif(t)(uv—t)"”"”‘alt,:wc1 <é <€y <z;

£
1

= O[{e'@}*]. o[{zv@}] =o[{z () p@)}*] (2.69)2
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On the other hand, we have integrals of the type (2.59)1, with
q > 0. If we integrate any of these once more by parts, we have

h+] .
171H’~(1) {o) — oft) }ﬂqo’(t)vl...l +
+ hi 1 J A0 {e@ - 9O} Q'O {9 de

+3e, [A"“ ) {9@) - O} PO O}

=J, +Jy + Js, (2.59)3

say, where ¢, is a constant depending on the 77s and
qg+rn+r,+..=k o+ 2r, + ..o =h 4 2.

We now estimate J,. By hypothesis (a) of Theorem 2.41, and
Theorem 1.52, A*'(z)) = o[2"*! {p(x)}*]. By Lemma 2.35,
{px) — @(@,) }* = O[{z ¢’(*)}?]. By the hypothesis on rp"’

(@' (@) [0 {@ (@)} .. = O[{g (@) et gy 720 ]
— 0[{ }k-—q xl q— h—l]’
by Lemma 2.33. Hence

Jy = o|{x @' (@) p@)} (2.59)4
Again
r I
Jy=o U e o) - ) 20T ’”]
= [j {tp)} e’ O} o) - @)} '(t)dt]

0 [ {ap@)[* w7t g @)} "j%w(w) — @) ') dt:l
=o|{zp@)}* 2 {¢' @)} {g@) -- ¢lx;)}?],  since g > 0,
=o[{zp'(x) (= )}*] (2.69)5

Similarly Jy == o [{zg (@) p(@}*]. (2.59)6

From (2.59)2-(2.59)6 it follows that I, = o [ {wg’(x) w(x }*], and thus
(2.62) is established, which completes the proof of the theorem.
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2.6. An auxiliary theorem
We shall now prove theorem (Z;) in a slightly modified form.
We assume that

@(t) is a positive non-decreusing function of t diverging to + oo.

having N derivatives, where N is sufficiently large ; (2.61)
ePx) >0 forx>1, r=1,2, .., N; (2.62)
¢V () (p@) . -
r ( 18 monotonic and bounded for largex, r =1,2,...,N;
¢ @) \¢'@)
(2.63)
if
p(z)
'p(x) - ’
9'(z)
then
1
— < @) <1 (2.64)
and, for every 6 > 0,
1-48 ’
4 ) P and gr are monotonic decreasing. (2.65)
@ @ '

Before we proceed to prove the theorem, we need the following

Liwma 261, Let &) — PO @ =0 hre 4, <t <. Then &)
‘P( ) — ()’

18 an tncreasing function of t, if P (() 18 « decreasing function.
P

Proor. We have

plz) — ¢(t)] ()

x —t

ny @) — @) o —@' () (x —t) 4 {p) — @(t)}
v woor

In order that &'(¢) > 0, it is necessary and sufficient that
o(t) {tp(x) — o)} —@'(t) (= — 1)

%0 (z — 1) {p(x) — (0]
o'(t) — ¢'(2)

w(x) — o(t)

 E <t <z
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This will be satisfied if

e'(t)  ¢'(h) — @'(t) _ 9"(ta)
') T et) —et) @'t

"

that is, if ?1,- is decreasing.
'4

t<ty <t

THEoREM 2.61. If @(x) and y(x) satisfy conditions (2.61)—(2.65),
and AY@) == o [ {zp(@)}*], k>0,
then
Afx) = o[ {p)}*],
where Ak is defined as in Theorem 2.41.
ProoF. Let k be the greatest integer less than k. Then A%(x) is,

except for a constant factor,

Ty z
U +| ] A30) D {gl@) — 9(0) e, = 1, + 1,
0 T
say, z; = z/c ,¢ > 1. To estimate /;, let us integratc it by parts
once more, 8o that

h+1 t=z,
= (A0 e ge — 901 ] 7 -
- h% J Al () D2 () — @(t) }Fdt
°

=11'1 +Il.2’ S&y.

1, = Z o [x’f“{w(xl)}" {‘P(x) - ¢(xl)}‘ {‘Pl(xl) }!‘ {'P',(xl)}s“---],

where the summation runs over s’s such that
S+ 8,48 +...4 8=k, 8 +28,+3+... +(h+1)s,,=h+1.

Now

x .
q‘;(—‘;)} = glo8 #zy)—lor p2) . p—2i(e—D) 7))/ 92,) T <% <27,
< e~mle— ) P@)i o), (2.66)
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Hence

Iy = Z 0 [5'31”1‘{’l’(f"l)}‘b {p@@)} %fz(_ )}}.’!:2:2:1 ]

S o o (e (ol o)
> o [= v} (e} {ple} %;’;(xl)}m]

- 2ol () ng_;;;;;»)“j |

where k — s > 0. Substituting for y(z,), we obtain

Ly =o [{?’(x)}k ( (xl))kﬁ (x_l_wl_) )h+ ]—k] . (2.67)

p(z) @(x,)
If k is an integer, since ¢ is increasing and k — s > 0, the proof
that 1, ; = o [ {p(x)}*]is obvious. If & is not an integer, the result
follows from (2.66).

Next let us consider I, , .

o[ tr@b [ £ o)t (e opaioopn . |

where s + 8§ + 8, + ... = k, and 8, + 28, + ... = h + 2. Now
z, M1 he2 s

asin I; ;. Now consider I,, which is a sum of multiples of
| 410 (o) = o)} (o'} {90}
Zy
where
s+8 +..=k 8 + 28+ ..=h+ L

We havek — 1 >8 >k — h — 1, and if we set

" . (¢')’l+l
W= () (g )'---»VE?»W-TEF’

then, by (2.63), W/V is monotonic, and applying the second mean-
value theorem, we have
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IA;'(t) [p(@) — o) }* (o' ()" ... dt

T3

’ ¢ Vh+1
= O(1). j At {p(x) — @(t)}* {“g(‘;’i‘)‘Th)jl'z- Lt x <ay <zy <o,
‘rz ’
K e he 1 s e 1) V1+4h
= 0(])' I Ahfi(t) {‘P('T) - (p(t)}(x FrhaD) -G h~]) {(t){h)+l F+x dt

= O[ (o)} "1]. jA"( (qa(i)) m’(%)h““k X
2 __f\—h—1
-{w(%)_}t")mfkﬂ (o'} dt. vy <xy <ay;

x

— 0[{ 1s Binen ]Ah(t) (x — t)e=t- W(t)} 1)% i dt

(cf. Lemma 2.61)

s

Iq

. { }hH ks {‘P( )}k h  p\k-h—1
_0( SRR ) X AN (@ — 11 d,

Ry

Ty STy < X7 <Xy
by (2.65). And now if we use Lemma 1.41, we obtain
I, = o [ {p()}*].

2.7. Absolute summability

Questions analogous to those answered in the foregoing sections
arise also in absolute Riesz summation. One would expect
companion-theorems following (H,)-(H,) and (Z,)-(Z,). But explicit
proof of such analogues is not available, except in the case of (H,)
where we have the following.

(C). If Xa, is summable | 4, k| to the sum s, and u 1s an L-function
of A such that u = O (%), A > 0, then Xa, is summable |y, k|
to the same sum.

The method that has to be employed in such cases, however,
should be clear from the theorems which we have established here.
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NOTES ON CHAPTER II

§2.1. The words ‘consistency ’ and ‘second theorem ’ (cf. Notes
on Chapter I) are not particularly appropriate, but we have chosen to
keep to Hardy’s usage.

§2.2. The theorem of G. H. Hardy and M. Riesz we refer to is
Theorem 17 of the 7Tract. The following theorem is an interesting
companion : if 4, > 0, and Za, 8 summable (4. k), then Za, A% is
summable (I, k), I, = e*v. See p. 33 of the T'ract.

For an account of logarithmico-exponential functions, reference
may be made to G. H. Hardy, Orders of infinity, Cambridge (1910).
According to Hardy’s notation, A% < u(4) means that A%/u(1) =0 as
A= 0.

For Theorem (H,) see G. H. Hardy, Proc. London Math. Soc. (2) 15
(1916), 72-88.

Theorems (H,), (H;), (Z,)-(Z¢) are all contained in a paper by
A. Zygmund, Bull. Acad. Polonaise, A(1925), 265-287.

In this section, unless otherwise specified, u stands for u(A).

For an L-function u(4), the condition that 1 < u(4) < ¢ for every
4 > 0, is equivalent to: !;(%) -0 as x— . See Orders of infimty,
loc. ¢it., Theorems 19, 21.
Zygmund suggests (loc. cit., 268, foot-note 13) that it is perhaps
sufficient to suppose in (Z,;) that lim Za,exp (— 4,0) exists instead of
a—>+0 .

summability (4, ).

While it is obvious that (Z3) follows from (Z,), it is not equally obvious
that (Z,) can be deduced from (Z;), unless u(x) as defined in (Z,) is an
L-function, which is not necessarily the case ; however, the derivatives
of u can be proved to satisfy the required conditions. See Zygmund,
loc. cit., 268.

In (Z;) plainly there is no loss of generality in supposing that the sum
of the series is zero ; if the sum is s # 0, then the hypothesis would be :
Ak(@) = s (x — ) + o[ { u(@)/ ' (@) }].

The relationship of (Z,) to (Z;) is similar to that of (Z,) to (Z,).
For (H,) see K. A. Hirst, Proc. London Math. Soc. (2) 33 (1932),

355-366. Hirst explains the difficulty in replacing his conditions on
@ in (H,) by the less exacting ones : # (" (f) = O{ @(f)} . In this connexion,
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he points out a minor gap in Hardy’s argument, and shows that it
could be suitably amended.

B. Kuttner has recently shown that Hirst’s condition, when k is an
integer, i8 in fact necessary, Jour. London Math. Soc. 26 (1951),
104-111. Dr. Bosanquet informs us that more recently still, Kuttner
has obtained a necessary and sufficient condition for the case k frac-
tional, and that his proof will appear in the Jour. London Math. Soc.
27 (1952).

§2.3. Lemma 2.31 is reproduced from Hirst, loc. cit. But it can also
be found in a text-book like Ch.-J. de la Vallée Poussin’s Cours d'
analyse infinitesimale 1, ed. 5, 89.

Lemmas 2.32 and 2.34 are explicitly proved by Hirst.

§2.4. It is perhaps possible to prove Theorem 2.41 with Hirst’s
conditions on ¢; such a proof, one would expect, will require some
more attention to details and will not need any substantial change in
the argument.

For the behaviour of the derivatives of L-functions see G. H. Hardy,
Orders of wnfinity, loc. cit., 38-39, and Proc. London Math. Soc. 15
(1916), 75.

§2.6. Theorem 2.61 is a slight modification of Theorem Z; of
Zygmund, loc. cit., 272.

§2.7. For Theorem C, see K. Chandrasekharan, Jour. Indian Math.
Soc. (2) (1942), 168-180. The proof given needs drastic revision if & is
non-integral.

That this theorem (and its companions) could be proved in a more
general form, which dispenses with L-functions, will be evident from
the earlier sections.

In conclusion, we may refer to the work of B. Kuttner on the
positivity (instead of convergence) of Riesz means (n®, k), for varying a,
of the Fourier series of a positive function. In his work, unlike in the
theorems of this chapter, there is a distinction in behaviour between
a>2 and a=1. See Jour. London Math. Soc. 18 (1943), 148, and
19 (1944), 77.



III
APPLICATIONS TO DIRICHLET SERIES

3.1. Introduction

I~ this chapter we shall discuss some applications of the results on
Riesz means obtained in the foregoing chapters to the study of
Dirichlet series. It will appear from the applications that Riesz
means furnish an appropriate tool for studying the summability of
Dirichlet series.

We shall deal with two types of series, either of the form
Ya,e~** or Xa,l;*, according to convenience, where {A,} is an
increasing sequence of positive real numbers diverging to + oo,
and I, == ¢’". We shall first prove a few theorems on the abscissae
of summability of Dirichlet series and the functions represented by
them, which will show how summability by typical means helps
in tackling the problem of analytic continuation of functions repre-
sented by Dirichlet series in their half-plane of convergence. We
then prove a few converse theorems on abscissae of summability,
which will show the very close connexion that exists between
certain properties of functions represented by Dirichlet series and
the summability of such series by Riesz means. We next prove
some Tauberian theorems, and conclude the chapter with some
results on the Dirichlet product of summable series.

3.2. Notations

We introduce here certain notations which will be used in the
rest of this chapter. If Ta, is a given series, and {1,} is an
increasing sequence of positive numbers diverging to + o, we
denote the Riesz sum of type 2 and order k of the series Xa, by
A% (w), % > 0. In conformity with our notation in §1.1, we have,
ifk > 0,

A @) =k [ (@ =9 40 d 40 = 430 = T,
0 4

and if £ > 0, we have
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A¥w) = J (0 — 1)} dA0).

Correspondingly, B(t) denotes the Riesz sum of type u# and
order k of the series ¥b,. We define
Ai@)= ¥ (0 — &) 4., (k > 0)

Ar<w
After applying Abel’s method of partial summation to the sum on
the right, whose general term may be considered as the product of
(w—4,)¥"12, and a,, we see that

fi‘j(w) = — ij(t)- gt [(w — &)%) dt (> 1)

0

w

= j(w“t)"‘]t dA,(t). (k >1)
0
Thus if & > 1, we obtain
A% (0) = w A5 (0) — Ak(w). (3.21)
We use s to denote & complex number : 8 = o + ¢ v, where o and
7 are real. Correspondingly we use
89 =0y + 1Tg, 8, = 0y + 17y, ...,8" =0 + i7",
1fk>1, we denote by k the greatest integer less thank ; if 0 <k <1,
we define b = 0, and b = — 1ifk = 0. [k] will denote the integral

part of k. If g‘ stands for the ordinary differential operator, we write

h
= il D= d
dt’ e
¢, Cy, Cy, ... 8tand for numerical constants, not necessarily having the
same value in all occurrences.

3.3. Abelian theorems on abscissae of summability

Given a Dirichlet series Ta,e~*» and a method of summation
(4,k), it is possible that the series is summable by that method for all
values of s, or some values of s, or no value of s. If we know that it is
summable (4, k) for a certain value of s, we would like to know
for what other values of s it is so summable. This section answers
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that question. In the first place, we show that if the series is sum-
mable (4, k) for s=s*, then it is summable for all values of s such that
¢ > o*. It follows from this proposition that there exists a number
oy, called the abscissa of summability (4, k), such that the series is
summable (4, k) for ¢ > o, and not so summable for ¢ < o, the
case ¢ = 0, being undecidable, in general. The line ¢ = o, is called
the line of summability (4, k). The region defined by ¢ > o, is called
the half-plane of summability (4, k). It may happen of course that
6, == + wor — w. Ifg, >0, we prove an explicit formula
for o,. The line of summability for Dirichlet series reminds one of
the circumference of the circle of convergence for power series;
the ‘ abscissa ’ corresponds to the ‘ radius of convergence ’ and the
‘ half-plane ’ corresponds to the ‘interior of the circle of conver-
gence.” We next show that if a Dirichlet series is summable, then
the sum-function is regular in the half-plane of summability.
Finally we examine the regions of uniform summability ; we show
on the one hand that the series is uniformly summable in any finite
region for all points of which o >0, 4 # > 0,, and on the other
hand we show that if the series is summable for a certain s = s*,
it is uniformly summable in the angular region defined by 6, where

am (s — s*) | <0 < m/2.

We conclude the section with some analogues for Dirichlet series of
the form Xa,l,”*, associated with summability of type ! and
order k.

We start with a formula for the Riesz mean of a Dirichlet series.

Lemma 3.31. If Tb, is a given infinite series, {A,} an increasing
sequence of positive mumbers diverging to oo, and s 18 a complex
number, then for k > 0, we have

o F 3 (0 —2A)be " =" 0" Biw) +
Ar€w

®

F(k + 1) w-—k 5 Bli+1(t) (6—1!7“7(,’—- m:) (w _ t)k—-h—.’dt +
0

+ T'(h + 2) T(k—h—1)

w

treFy "
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w

h+4-1
y s (h -+ 2) ]‘(k+1) IBh+l(t) e—tt(w t)k htr—2 g4 +

L r Tk—h+r—1)
+ S j?B"“(t e “(w —t)t dt (3.31)
T + 2) ; ’ B
Proor.

oY (0 — 2,)be?

s
o ke ¥ (0 —A)b o F T (0 — A)b, (e — e

Ap<m A<

w

=w ¥e * Bk(w) — w""b{ B,(t) Zld_t {(e7® —e" ) (w —t)k} di

= o~ Bjlw) +

w

Y
+ I_("(‘h)+ 5 j" BYF(t) D2 (e — e ) (w — t)*} dt

The second step in this chain of equalities requires Abel’s method of
partial summation, and the subsequent steps require repeated
intogrations by parts.

By elementary rules of differentiation, however,

D2 {(em— e ) (w — Bt}

( )h+2 [P(_o(’gj" 1)__ e—ta_e—wa) (w — t)k—h—-:! +

B
h+1

h + 2 (k+1) —t (g — pR—hEr—2
2 ( )(k——h«}—r——f)e (@ —1) +
r=]1

+ 8h+2e-t- (w — t)k] .
Substituting this in the last formula, we prove the lemma.

TaEOREM 3.31. If the series Ta,e*n* is summable (A, k), or bounded
(A, k), k >0, for s = s*, 6* > 0, then, for 6 > o¥*,

A¥(w) = o (w*e*). (3.32)
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Conversely, if (3.32) is satisfied for ¢ = o* > 0, then Ya,e *n* is
summable (4, k) for every value of s such that o > a*, to the sum f(s),
where

<)

SEt1 R ,
8) == e | A%(t) e~ " dt. 3.33

f(s) T 1) .([ i(t) ( )

Proor. To prove the first part of the theorem, we choose § = — g*

and set b,=a,e " in Lemma 3.31. Then the left side of (3.31)
gives w“’*A *(w), while the right side is the sum of A 4 4 terms
each of which is o(e®’). For the first term is O(e“*") which is
o(e“?) for o > o*, since the hypothesis implies that Bk(w) = O(w*).
In the second term we have a factor whose modulus is

“

s* j et dt i < |&*| (w - t)e®",
I

;(,u‘ o (,um' i —

so that the absolute value of the second term will be

< ¢ [s*] m7Fer " j [ B 1Y), (0 — t)* "1 dt
0
< ¢ |8*| w.e”" = o(e”),
since Bit1(t)=0(t"'"). The next (b + 2) terms are similarly seen
to be o(e’).

To prove the second part of the theorem, we choosc b, = a,
in Lemma 3.31. Of the & + 4 terms that occur on the right side of
(3.31), cach of the first (h + 3) terms will be seen to be o(l) as
w — oo, if ¢ > o*, by an argument similar to the above, so
that we finally have

lim o * ¥ (0 — A,)a,e

Ww—> 0 Ar<a
= I "jA () e " (0 —t)Fdt
e F(h ) (e )
lim % —*f( t)yde(t) (3.34)
= — 0 — R .
oo Th+2) " 4

0

)



56 APPLICATIONS TO DIRICHLET SERIES [Cu. IIT

where
¢

o(t) = j AM V() e~ "“du.
0
Since AX(u) = o (v*¢"”*) and o* >0, we have, by the o-version

of Theorem 1.52, A4*(u) = o(u**! "), so that lim ¢(t) exists for
t—

o >>o* Hence the limit on the right of (3.34) also exists, and

ht2
equals Fih L 3) lim ¢(t). Thus, for ¢ > o*,
1—> 0
lim o % ¥ (0 — 2 a,e = Jg’:i fA"“(u) e " du
W= )'T:;"’ ’ " [1(h + 2) F A A '
o re+2 ' o
== . B h=k Ak
Ph-2) P T) TR+ 1) j A I = A du
= . Sh+i ( Ak d i -5 h-—kl
lﬂ(k_+_ l) r(h+l-k)“. 1('“) u-‘.e (t——u) di
Y %

Sk+1 ‘\Al'()— (]
= . Hu)e ™ du.
Nk +1) )

From Theorcm 3.31 we can easily deduce

THEOREM 3.32. If Ya,e™** is summable (1, k), or bounded (1, k),
Jor s = g*, then the series is summable (A, k) for all values of s such
that o > o*.

Theorem 3.32 and the classical argument associated with
Dedekind’s section for a real number yield the following

THEOREM 3.33. There exists a number o, such that the series
Sa,e~ ™ is summable (A, k) for ¢ > o, and not summable (A, k)
Jor ¢ <o, ‘

We may have o, = — o or + co. This number o, is called the
abscissa of summability (A, k) of the series Ta,e~**. It is clear
that o, is a decreasing function of k.
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The line ¢ = g, is called the line of summability (A, k), and the
region ¢ > g, is called the half-plane of summability (4, k). We
proceed to give a formula for o, in case o; > 0.

THEOREM 3.34. Let g, be the abscissa of summability (2,k) of
Sae~ . If o, > 0, then
log IA (w)1

o, = lim sup -
=3 o0

Proor. Let

"
n
Q

lim sup
w—> 00

log | A}()]
w
Then
Ai‘(w) =0 {ew(au-l»s)}’ e >0,

and hence, by Theorem 3.31, Ya,e*** is summable (4, k) ifo > a,.
That is to say, 6, > 0;. On the other hand, since Ya, e~** is sum-
mable (4, k) for ¢ > g, it follows from the first part of Theorem 3.31
that

A¥(w) = o {e*xt};
that is
lim sup logmléﬁ&o )l . + e
w=—> 0 (0]
or ¢, < 0}, since ¢ is arbitrary.
Functions represented by Dirichlet series

We now show that the sum of a Dirichlet series, in its half-plane
of summability, is an analytic function whose behaviour for large
values of the argument can be stated with some precision.

TueoreM 3.35. If Za,e™* is summable (A, k) for s = s*, and f(s)
denotes its sum, then, uniformly for ¢ > o* + ¢ > o*, we have

f(8) = o (|x[¥*Y), (3.36)

Proor. We may assume, without loss of generality, that s* =0
so that A%(t) = O(t*). For, if we write b, in place of a, e **"
and put 8 = s — s*, then the series £b, e~*»* is summable (4, k)
for 8’ =0.
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We start from the formula (3.33), and estimate the order of f(s)
in the region ¢ > ¢. Given a number a such that 0 < a < #/2,
the half-plane defined by the relation ¢ > ¢ can be considered as
the set-union of two regions : the first region is defined by the
relations ¢ > ¢, [am s8] < a < n/2, and the second by the rela-
tions o > ¢, a <|am s| < /2.

We prove the result for the two regions separatelv. Formula
(3.33) gives

k+1 [
J.f(s){ < C — —— J. tk e—la dt
0

. (!_:;l)/r-t-l

= ¢ (scc a)f! = 0(1) = o (%)),
in the region|ams| <l a < m/2, which actually includes the
first region defined above.

In the second region, cosec 0, 6 == |am s, is finite, and we write

jA’;(t) e~ dt = j + J =1, +1,
V] 0 @,

say. Since 4%(t) = O(t"), we have, if d is any positive number,

@
|1, <c J ¥ e~ dt,
(lD“

cd
< st

for w, sufficiently large, and

0
_ Aiw,) e~
8

= 0{1/ s}

4 He‘" aAk)

0
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for any fixed w,, and uniformly in ¢ > 0. Hence we obtain, from
(3.33),
J(8) = O([s") + O {(8]s/o|)**!}
= O(|s[*) + O(8|s/*+1), for o > e.
Thus f(s) = o/ t[**!), since |s/7| < cosec a < oo, and the theorem
follows.

THEOREM 3.36. Let o, be the abscissa of summability (A, k) of
Ya, e~**. If D is any finite region for all points of which
o >0, + 0 > oy, the series Ya, e~*n* is uniformly summable (2, k)
throughout D, and its sum represents a branch of an analytic
Sfunction reqgular throughout D. Further, for any non-negative integral
r, SAla, e is uniformly summable throughout D to the value
(—1)7 f7s).

Proor. Uniform summability of Ya, ¢ ** follows from
Theorem 3.31, if we observe that the estimates for the A + 4 sum-
mands involved in the proof of that theorem are valid uniformly.
That the sum is analytic follows from Weierstrass’s theorem,
since it is the uniform limit of analytic functions.

To prove the summability of Ti! a, e **, we observe that
Ya, e~ tn (D

is summable (4, k), and hence

§-:(w - }‘n)k }'7: a, e in CptoL) U(wr+k)’
ln<w
for r integral, as can be seen from (3.21). By Theorem 3.31, this
implies that $17 a, e~*»* is summable (4, k) for 6 > o, -+ 4. Hence,
in D, by termwise differentiation of

fo)= lim 0™t % (@~ A a e,

W= © 2p<w
we get

(=1 fP) = lim o ¥ (0 —4) A, a,e’n,
w—> 0 in€ow

Summability in an angle
We shall now prove a theorem which says a little more than
Theorem 3.36 as regards the uniform summability of Xa, e~*»*.
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THEOREM 3.37. If Ya,e™?* is summable (A, k) for s = s*,
then it is uniformly summable for all s in the angle defined by
lam (8 — s*)| <0 < =/2, where 0 is any fixed positive number less
than 7|2, If f(s) denotes the sum, then f(s) — f(s*) as 8 — s* within
this angle, and f(s) = O (1) as 8 — oo in the angle.

Proor. We may assume without loss of generality that s* = 0,
and that the sum at s = s* is also zero, for if ¢ # 0is the sum of Ya,,
then (@, — ¢) +a, + a; + az + ... is a series whose sum is zero,
while the series ¢ 4 0 4 0 + ... is uniformly summable in the
angle to the sum ¢, and we can proceed with the former.

Let us consider formula (3.31) in Lemma 3.31 with b, = a,.

We observe that
| 3 h+4
0 Y (0 — A ue = N,
r=1

where 7, is known for each r, from (3.31), and
I, =e o " At () =0 (1),
uniformly in the angle jam s' < 0 < /2, by hypothesis.

_ TRy,
Lol = | pai) P ——1)

[0}

x { ALty (e — e ™) (w0 — by h2de

o
[}]

<coFls] | |AM(@)]. e N — t)Fdt

I Ah+l(t
T

8
<cw” '&" ot. e w — t)f~1dt

’-‘t_—,e c:_._ﬁs

<cw ¥sech I o (t*) (w — ty"dt
0
=o(l),

since ote™® <1. Forl <r <h + 1, we observe that

w

! == ’cs'w"".[ Al () e (0 — )2

Y]
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<c Is‘r J Ah+1 (t)le—-ta(w — t)k-h+'-2dt

< c(sec0) w I [Ah (t)] (ot) e —to (0 — t)k_}H,,_gdt
0

® £+1 (t)l (w

<cr!(sec 05' w"‘j ‘ 5 — g2 g
0

ok j 0 (th+l—r) (w _ t)k——h+r—2dt
0
)

Finally

w

-k j A(t) e (0 — t)idt

sh+2

I =
T T ”
tends uniformly (in the angle) to the convergent integral

M T AMF(t) e~ dt
T+2) ) g ’
since A2*1 (¢) = o (**1), and this is equal to

o) J Ak(t) e dt,

8k+l

and henoe the first part of the theorem. To prove that f(s)—-0
uniformly as s—-0 in the angle, we observe that

gt [ N
—_ Aﬁ —u R
/e I‘(k+l)J AR V(S Y J+H
=@ + P2, 83Y.

If we choose w, such that for ¢ > w,, we have |A4%(t)| < 8¢, then
k+1 H k+1 kE+1
l ' )] f k —ladt <___6 IS] (sec 0) 6 =0 (1)'

T(k+1) 4-1)

|p2| < Dk+1)" **1 =~ T(k+1)

hd)
8
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since 8 > 0 is arbitrary. Again

<
M =5y

=0 (lof*7)
=o(1),

J' | A%(t)|de

since !zl <sec B, and 0 — 0 as s — 0. Since f(s) = ¢; + @,, it

follows that f(s) = o(1) as s — 0, uniformly.

That f(s) = O(1) a8 8 — oo in the angle; is included in the
proof of Theorem 3.35. We recall that

s

1O = ws|

= {(}Si/")k“}
O{ (sec 0+ } = 0(1).

J Ak(t)e ““’dt‘

I

Summability (I, k)

We shall now prove analogous results for Dirichlet series of the
form Ya, 1% where 1 < [, < I, < ... <, — oo, with which
summability (I, k) will be associated. Corresponding to Lemma 3.31,

we have

Lemya 3.32. Ifk >0, then
ot ¥ (o—1)a,l" =04 w) + 'k +1)

[ P(k"’h" 1) F(h+2)
0 -k
—k| gh+1 —8__ =8\ (o __s\e—h—2 w "

X w jA @)t =) (w—t) dt+]’(h+2) X

w

h+2

h+2 INCEZARD k'*}‘l) J AR 1 (o — )R T2y
X z ( ) T'(s) T(k—h+r—1) ) (0=0) '
Proor. Asin Lemma 3.31.

We can also deduce results analogous to Theorems 3.31-3.37.
Without going through the details of the proofs, we state the results

a8 & single theorem,
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THEOREM 3.38. If Xa, ts summable (I, k), k > O, then Za,l* is
summable (I, k) for 0 > 0, and in fact wuniformly in the angle
|am 8| < a <n[2, and the sum is given by

T(s +k+1) j AX(t) t-0-E-1g,

Ik +1)TG) )

Further, if o, is the abscissa of summability (I, k), then o, if positive,
18 given by
» = lim sup - og | 4K cu)[
>0 logw

It can also be shown that the sum-function is regular in the
half-plane of summability.

We shall now prove a theorem which is a complement to
Theorem 3.36, and whose proof depends on the use of Theorem 3.38.

TBEORRM 3.39. Let o, denote the abscissa of summability (A, k)
of the Dirichlet series Ya,e”*». Then Ya,A%e™*", where p is any
complex number, and A has its principal value, is summable (A, k) for
o > 0. Further the summability is uniform in any finite region
contained in 6 > o, + 6 > oy

Proor. The theorem holds if p equals a non-negative integer r
because of Theorem 3.36. In the general case, we may write
p =r—s, where Re(s) > 0, and apply Theorem 3.38.

3.4. Abelian theorems on absolute summability
In this section we prove the analogues of the results of the
foregoing section for absolute summability.

Lemma 3.41. Letk > 0. Then
%[w"‘ S (0 — ln)"] =ko e~ AXw) +

T+ 1) e @ o R
Tra+)Tk—h—1)° z‘;Af{ﬂ(t)(e 6 _ g=98) (0 — ) ~P~2dt +
o1 hry TG+ 1) f Bty g=t6( gy — g b=t 1=
JRyE= P S( r )F(lﬁm i) A4t o =) d,

(3.41)
Jorall o if k > l,and forw # 4,if0 <k <1.
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Proor. The left side of (3.41) can be written as

[}

d —k [ k,—ts —k—1 k—1,—ts
. ) (w—tie®dA,t) | =k w (w—t)—le~*t dA,(2)
o fo-penai] v

= kol AXo) + ko~t1 J (e~ — =) (& — )1 ¢ dA,(t)
0
( _ 1)h+lk w—k—l

— —k-1,—ws fk

X

X j. A HDM [(e7 — e ) (0 — 1] dt,
0

by partial integration (b 4 1) times. Now
Dh+1 [ (e‘-u _ e—ms) (w - t)k—l ]

)h+1 [F o F(k) - (e—w_e— wa) (w _ t)k—h—2 +

—1)
h+1

The lemma now follows upon substituting this expression for D*+!
in the integrand.

THEOREM 3.41. If Ya, e ™ is summable (A, k), k > 0, for
8 = s*, then it is summable |1, k + 1| for every s such that ¢ > o*.

Proor. We may assume without loss of generality that s* = 0.
Replacing & by & — 1, &k > 1, the summability (4, ¥ — 1) of Ya,
implies, on account of (3.21), that

A% (w) = o(w"). (3.42)
To prove the theorem, let us write the expression on the right of
(3.41) as hfsl,, and observe that it is sufficient to prove that
for each ;pp——:-ll, 2,....,h+3,and o > 0,

j|1,,1dw< .
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First,

o o]

J 1| do <k j 1 4E (@) . w~Fte=% dos
< oo,
by (3.42). Secondly,

o]

j [I,) do =c j?dw J I J?fiﬁ“(t) (e —e ™) (w — t)¥ 22t
0

<cjw—k—1 dw | +l( )I | —ts __ —mJ ] (w_t)k—h—zdt

0
r

<c o tdw | [A2HE)] . e (0 — t)F""1 dt

Oty 8 Pl g

0 o

Py

—c [ (a2 e dt[-—-—m—-dw
t

<c | |AFTHt)| et de

< o,
since A%+1(t) = o(t**!). Finally, for p > 0,

J praldo <c j w1 dw [ jfi,’{“(t) et (o — t)F—h+r=2 g
0

@

- . —t k—h+p—2
CJ |AZF(t)| . e dtj @ w)k+1 — dw

¢
©

< o I t-h—-2+pl A-;H-l(t” . e—ta dt
< oo,
since A2*1(t) = o (#**1), and hence the theorem.

THEOREM 3.42. If Za, e is summable |2, k| for 8 = s*, then it
18 summable | A, k| for all 8 such that o > o*.
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Proor. As usual, we may assume that s* = 0, and observe that
summability |4, k| of Xa, is equivalent to saying that

4} (w)
[l < o

and, a fortiorg

I|A w)id < o0,k >k

K+1

Using this instead of (3.42), we may argue as in Theorem 3.41, and
show that

I[I,,}dw < o, forc >0,p=1,...,h+3,

which will prove the theorem for & > 0. Ifk = 0, proof is obvious.

From Theorems 3.41 and 3.42, and from the fact that if Ya, is
summable |4, k| it is also summable (4, k), we have the following

THEOREM 3.43. There is a numberc,, called the abscissa of summa-
bility |A,k|, such that Xa, e~*n* is summable |A, k| for ¢ > T,
and not summable |2, k| for ¢ < T, Further

O > a‘-k-f-l = O'k+1 .

The next theorem gives a formula for 7, .

THEOREM 3.44. Let G, be the abscissa of summability | A,k | of
Sae~ . If G, > 0, then

@~

G, = lim sup [:(}) logjt""1 | A% ()] dt] k>0,
i

and

n—>»ow

o = lim sup 1 log T |a,| |.
A 0

Proor. Ifk > 0, then by following the analogy of Theorem 3.34,
and using Lemma 3.41, we prove: (i) if the series is summable

w

|A, k| for 8 = s*, 0* >0, tshenJ.t“"‘1 | A%@)| dt = o(e™), o > o*,
1
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and (ii) if the oonclusion in (i) holds for ¢ = ¢*, then the series
is summable |4, k|, > o*. If £ = 0, the result is easily
verified.

We conclude this section with two theorems on the absolute
summability of ¥a, [;¢ without going through the proofs which
run along the lines followed in the case of Ya, e *s*,

Turorem 3.45. If Ya,l,” is summable |l k| for s = s*, then
it 18 summable |1, k| for any s such that o > o* .

THEOREM 3.46. If o, and G, are the abscissae of summability (I, k)
and |1, k| respectively for the series Xa, 1, *, then
Oy > 0pi1 = Opyr-

3.5. Relations between the abscissae of summability (1, k)
and summability (I, k)

We now mention the relation between the abscissae of summability
(A, k)and (1, k) of the Dirichlet series Ya, e~ *»* = Xa,l;*, 1, = e*. It
rests on the following auxiliary theorem.

TuroreM 3.51. If Xa, is summable (A, k), k > 0, then Ya,e *n?,
é > 0, ts summable (1, k).

Proor. Set
dy=a,e " T =¢, W=e¢".

Then
DEwy= ¥ (W —1)4d,
In<W
w
= kJ(W — T D(T) dT, D° (T) = D,(T)
0
=k j (e” — Y~ ¢ D, (¢) dt.
0
Tfurther

Ap<w

Diw) = 3 ape = [ e ddy),
0



68 APPLICATIONS TO DIRICHLET SERIES [Ca. III

and hence we observe that

w t

DY W)=k | (e® — &)1 dt ". e~ dA,(u)

I
—_
[\
g
|
U
~
ol
(\)
}
S
IS
LN
>
—_
o~
~

w

= (= 1" J Al (t). DM (v —éYe } dt,

by partial integrations. Now we argue as in § 2.5, and prove the
result.

THEOREM 3.52. T'he lines of summability of the Dirichlet sertes
Sa,e~** = Ya,l,7*,1, = e’ are the same for the Riesz means of
type A or 1.

Proor. If o, is the abscissa of summability (4, k), and o,” that
for (I, k), then o, <o,’, since a series summable (1, k) is also summable
(4, k). [cf. Th. 2.41 and the Remark in the first paragraph of §2.2].
That 0;,” <oy follows from Theorem 3.51.

TrEOREM 3.53. If 0, is the abscissa of summability (A, k) of Ta,e*n
or of summability (I, k) of ¥a,1;®, then o, is a convex function of k,
provided that o), > — . That is, for 0 <k <p <r, we have

(—k)o, + (r —p) o
% < r—k o

Proor. In view of Theorem 3.52, it is enough to prove this

theorem for ¥a,l;*. Let us assume that o, > 0. Then, by

Theorem 3.38, we have

o, = lim sup lﬂg—l—‘é—-—w —r, (3.61)
@—> 0 log w
which implies that
fw) = 0 (@™ r**), & > 0,
and
AYw) = 0 (0**+%*e).
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By an appeal to Theorem 1.71, these two estimates together imply
that
AYw) = O {w?Flordp =0+ or = P =By e}
which, by (3.51), again implies that
, < TPThtalr=p)
r—k

Letting ¢ — 0, we get the required result for o, > 0. We then
extend this result to the case 6, > — M, where M is an arbitrarily
large positive number, by a change of origin (or. by considering
the series Xb, [,~° where b, = a, I¥).
3.6. Dirichlet series on the line of summability

In this section we are interested in two types of problem : (i)
summability of order k on the line of summability ¢ = o), and (ii) a
converse of Theorem 3.35. The first is essentially a generalization of
Fatou's theorem on power series, which states that if a,— 0, then
Ya, 2" converges at every point of regularity on the unit circle.
We observe that with restrictions on the Riesz sums of order & of
Ya, and on the behaviour, on the line ¢ = o;, of the function f(s)
represented by the Dirichlet series, it is possible to deduce summa.-
bility of order & of the series, at some points on the line ¢ = o,.
The second type is concerned with the question : if a Dirichlet
series, known to be summable by Riesz means of sufficiently high
order in a half-plane, represents a regular analytic function which
can be continued beyond that half-plane, can we say that the series
is also summable in the extended region ?

LeEMMA 3.61. Let b(t) be inteqrable in the Lebesgue sense over every
Jinite interval 0 Lt < ty, and satisfy the condition
b(t) = o (), L >0, (3.61)
us t— o0, so that the integral

[ e~ b(t)dt
0
converges for Re(s) > 0, and

F(s) = j =" b(t) dt (3.62)
0
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18 regular in that half-plane. If F(8) 1s assumed to be regular also
at s = i1y, then, for any non-negative integer r, we have

(lr "

H(z,w) = e “* oo [F(x) e“”‘] — j(w —t) e b(t)dt
x 0
= 0 ("), (3.63)

where x = i1, and (3.63) is valid uniformly in any closed interval
on the imaginary axis in which F(3) is reqular.

Proor. let the function F(s) be regular on the closed intcrval
(¢, = 61, %y — 17g), Ty < Ty, of the imaginary axis. Then we
can choose a number a < 0 such that, if b is any fixed positive
number, F(s) is regular inside and on thc rectangle R formed
by (@ + 2, @ +2,b + 2, b + x). We shall show that

gw(s) = @ Fews (S — xl)r+k+] (S _ xz)r+k+1 H(s, w)

can be made as small as we like, uniformly on the boundary of R,
by choosing w large enough, so that the same will be true in the
interior, and then the Lemma will follow easily.

On the boundary of R, we have the following inequality :
(]) {S -, ’r+k+1 . ‘8 . :I}2"+k+l < cfo,i’r+k+1,
where c is a constant.

If b >Re(s) > 0and > 0, there exists a number w, — wy(%),
such that for w > w,,
(ii) |H(s, w)| < cnote gk,
For

w

|H(s, w)| = [ (t—ow) e ™b(t)dl |

<n et —w)dt,

]
i

for w > w,, wy being chosen such that |b(t)] < nt* for t > w,y, on
account of hypothesis (3.61).
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Hence

e}

tH(s, w)| <me " j e (w0 + u)f u” du

i

o
< 2L' n e~ ™o (wk + uk) e~ u' du
0
<c 77 (I)k c——um (T-—r—l'— 1 ,
for 0 << ¢ < b, and (ii) is therefore proved.
For that portion of B which is to the left of the imaginary axis,

we have the inequalities :

e 4 {F(s) e} ‘[ <co,

r
ds” )

and

" gy w

l [0 "h(t) (e — t)'dt ‘ <w’f |b(t)| e~"dt + j [b(t)e™"(w —t)"| dt
0 0 @
=1+ 1,
say, where
I, <cow,

and

o

I, <ne ™ J ele=07 ¢k (oy —t)"dt

,

w
< 7 wke—ma 4“ e(w—l)a(w_.{)r(u

< n e o[,
since ¢ < 0, s0 that
(iii) |H (8, o)] < ¢, 0 + ¢y 7 wbe™*? o]~ L,
Combining (i) and (ii), we have, on that part of the boundary of R
which is to the right of the imaginary axis,
9a(8)] <cn.



72 APPLICATIONS TO DIRICHLET SERIES [Ca. 11T

On the boundary of R which is to the left of the imaginary axis,
we combine (i) and (iii), and obtain
o r+E+1
19.0(6)] <[cl (@] +hHlp 2t wlrl g, TEL L ]
= 10.1:'-%1
< ¢ w ¥ foe,nloff

Thus g¢,(s) = o(1), uniformly on the boundary of R, since 7 is
arbitrary, and hence also uniformly in the interior of R, and in
particular at s = i 7, if 7, < 75 < 7,

Hence

|go(@)| 0" ,
H(z, o) = ;“é}"lmﬁr_% g E =0 ("),

for x = 11, which proves the lemma.

THEOREM 3.61. ILet b(t) and F(s) be defined as in Lemma 3.61.
Then

(@) the integral

j e~ b(t)dt
0

is ¢ summable by typical means of order & to the value F(s) at every
point on the imaginary axis at which it is regular, and uniformly
in every interval in which it is regular, that is

w

lim o~ * I (w — t¥e~*b(t) dt = F(z),
0

W= 0
if F(8) is regular at s = & = 17;
(b) fork >k > — 1, we have

(0 — t¥e'2b(t) dt = o (w"),

Oy g

w

(0 — ¥~ —e*%) b(t) dt = o (wF).

Oy

Proor. If k is an integer, the theorem follows easily from
Lemma 3.61, if we observe that for s = x we have
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dk
=

e~ r

l-
(F(z)e”"} = o*F(2) 4 S(A)wk? FO)(z)
1

= w*F(x) + o (0*),
and use this in (3.63).

Tf k is not an integer, we choose r == [I'] in Lemma 3.61, and

set
Bz, ) =- j (w - 1) e™¥b(1) dL.
0
Then
' ) Nk + 1) :r e
Bl — N 1',, f _ f\k—r—1
(z, ») P 1) Tk — 9 ( B'(x, t) (0 —t) dt,
and
B¥x, w) — F(x)o*
= ___TA(.IC_,_+- 1),,, f 7 () ) T |
N+ DT~ 1) { B, ) = F@)} (0 — 0"
w—1 %)
Y] e
0 -1
say. Now

]'-)' = O(wk)a
by Lemma 3.61, and
I, =¢{B " (z,0) -- (0 — 1Y F(x)} +
w—1
-+ ¢y A[ {BT'H (1. 1) — 1 F(x)} (w _ t)k—f—ﬂ it

U
w-—1

= o (0*) + j o(th) . (0 — t)¥ ""2dt, by Lemma 3.61 ;

0

w—1

= o(w¥) + o [w" j (w — t)"""‘zdt] k—r—2< —1,
0
= o (w*).
Combining the estimates for I, and I, we prove part (a) of the theorem.
The proof of (b) runs along the same lines.
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From Lemma 3.61 and Theorem 3.61 we have the following general
result.

THEOREM 3.62. Let g, be the abscissa of summability (A, k) of the
Dirichlet series Ya, e=’n*. If
Ak (w) = o(w¥ e ) I =0, 0, >0, (3.64)
then Ya, ¢ ™ is summable (A, k) at every point on the line o == o, at
which the function represented by the Dirichlet series is regular.
Proor. If f(s) is the function represented by the Dirichlet series,
then we know that

o

shte b4 —ts
J(s) = (h f ‘)) [A,_ e "dt, o > o,.
If we set
F(s) =T(h +2)f()s " 2 b{t) = AM1(t)et
we have

F(s) = [l)(t) e~ 1) (gt
0
Since it follows from (3.64) that b(f) — o (t**!), we can apply
Theorem 3.61. We assume that s # 0, since when s = 0, the
result follows trivially from (3.64) alone. Since F(s) is regular at
all points of ¢ == g, at which f(s) is regular(s # 0), it follows from
Theorem 3.61 that
w™ ! “(w 1Y Lb(t)e~"dt — F(o, + 1 1) = 0(1),
0
or

o " (0 =t e AN (w) dt — F(s) = o(1), (3.66)
0
where s == g, + 17 # 0 is a point of regularity of F(s). Now to
prove that

0FY (0 — A,)a, e ™ — f(s) = o(1),

In<w
we have only to use formula (3.31) in which the first term can
be estimated by using (3.64), the last by using (3.65), and the
others by using Theorem 3.61 (b).
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The assumption that f(s) is regular at a point on the line ¢ = oy,
niay be replaced by the hypothesis that f(s) has boundary-values
on the line ¢ = o0, and is bounded to the right of it. In ss much
as the proof of Theorem 3.62 depends on that of Theorem 3.61,
we shall prove a generalization of Theorem 3.61 only.

THEOREM 3.63. If in Theorem 3.61 the hypothesis that F(s) is regular
on the imaginary axis is replaced by the hypothesis that F(s) has
boundary-values on an interval (i 7, ¢ T,), T, < Ty, of the imaginary
axis, and 18 bounded to the right of that interval, then

[

(i) fork >0, lim o * j (o DFe™bh(t)dt = F(iT),
W= 0
0

Jor almost all © in (1, ty), th particular at all points of continuity ;
(il) and for k=0, 7, < T < Ty,

[+ ]

j. e~ "Tb(t) di

0
converges at the point tt, if F(it) satisfies a Lipschitz condition
or any of the sufficient conditions for the convergence of a Fourier
seres.

Proor. Let z; —i 7, 2,=( 7, and let C denote a smooth curve
starting from z; and ending with z, and lying to the right of the
imaginary axis. Also, for § > 0, let C; denote a similar smooth
curve starting from 6 4 x;, and ending with 6 - x,, which tends
to C as § —0. Then by Cauchy’s theorem,

P Re
; 1 z 1 F(z)
F(s) = -.— L P 3
®) 27 J z2—s + 2w ‘[ z—‘sd
S+x, 06

for any s lying to the right of the line o = 4 and to the left of C,.
Now if 6 — 0, then, by Lebesgue’s theorem on dominated con-
vergence, we have

x

F(s) - —1‘ J ¥ dz + -]- X —Ii(z—)dz

2n1 z— 8 21 )2z —s

= F(s) + Fys), say,
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for any s lying to the right of the imaginary axis and to the left of C.

) w

1"1(3) = — .!_... J' F(z) j et(Z—u)dt J. e~ dt [ [ . F(z
2m
x, 0
= [ e eta
o
say, where
plt) = — - J F(it) e™ dt,
2x

so that @(¢) == o (1) by the well-known Riemaun-Lebesgue lemma.

If we write
t

B(t) = [b(u) du,
h
Bt) j p(u) du,

A(t) = B(t) — @),

we observe that
(e}

Fs) = | e a4,
0
Sinee Fo(s) is regular on the imaginary axis, we can now apply
Theorem 3.61 with b(t) = 4’(t), and conclude that

(¢l

lim o* j e (w — tEdA(t) == Fy(it), 1, <1 <14

w=—> 00
0

The left side is, however, equal to

o j e (0 — 1) b(t) dt — o F I e (0 — 1) plt) dt.
0 0
Since @(#) is in the form of & Fourier integral, the second term can be
tackled as in the theory of Fourier series, and we conclude that it
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tends to F,(z 7) at a point of continuity of F(i z) if k¥ > 0, and if
k = 0 at a point where F(i ) satisfies a Lipschitz condition. Hence

]

lim o7 % ]. e~ (0 — t)* b(t) dt
W~y 00
0

= lim o7* j e (w — t)f p(t) dt + Fy(it)
w—> 0
0
= F,(it) + Fy(i ©) = F(i 7).
We shall now state a theorem on convergence, which cannot be
deduced directly either from Lemma 3.61 or from Theorem 3.61.

THEOREM 3.64. Let Ya, e™*n* converge for o > 0, where it repre-

sents a regular function f(s), and let
Uy = 0(Ay— Ay_y), Ay— 24y y = O(1).

Then Xa, e~ *»* converges at every point on the imaginary axis at which
J(s) 18 regular; and more generally, at any interior pornt of an interval
(2 T4, ¢ Tp) on which f(s) has boundary-values, and to the right of which
f(s) is bounded, provided that the boundary-function satisfies at that
point any of the sufficient conditions for the convergence of a Fourier
series.

Proor. We indicate the proof in the case where f(s) is regular ;
the other cases can be treated as in Theorem 3.63. Let (it,, t7y),
T, < Ty, be a closed interval where f(s) is regular, and let x = 7 7,
7 <7< Ty

Set

H(z, w) = [ z are—lrz — f(2) ]’

1,.<w
g@) = e (s — i7,). (s — i 7o), H(s,w),
and argue as in Lemma 3.61. We easily derive all the inequalities
proved there with & = 0, using the hypothesis on a,. For example,

corresponding to the inequality (ii) in Lemma 3.61, we have

Hs,0)| =] T aye| = of T (4,—4,_;)e ]}
n+1 n+1

=0 ( J edt ) =o(c7le™™), A, <w <Ay
n

10
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so that |g,(w) | =o{e®@ "7} =o(1), since 4, ., — 4, = O(1). (iii) can
be treated similarly.

The above theorems have their analogues, with one exception,
in the case of the Dirichlet series ¥a, !, *. The exception is
Theorem 3.63 in which there was a distinction between the two
cases k == 0 and k£ > 0, with different conditions on the boundary-
behaviour of the function. Here, however, in both cases, we require
the function to satisfy a Lipschitz condition or any of the conditions
sufficient for the convergence of Fourier series. We have closely to
follow the foregoing arguments substituting (not changing the vari-
able!) ¢~ for e=* and % for e”%. We simply state the theorem
in its general form.

THEOREM 3.65. Let o, > 0 be the abscissa of summability (1, k)
of the Dirichlet series Xa, I, and let

A¥w) = o(0**%), k > 0.

Then Xa, 1;* is summable (I, k) at any point of the line o = o, at which
f(s), the sum of the Dirichlet series, is regular; and more generally,
at an interior point of any interval of the line o == o, on which
f(s) has boundary-values, and to the right of which f(s) is bounded,
provided that the boundary-function satisfies at that point any of the
sufficient conditions for the convergence of Fourier series, such as a
Lipschitz condition.

We shall now proceed to prove a class of theorems of the same
nature as the previous one, with this difference: that the hypothesis
on A%(z)is replaced by a hypothesis on the behaviour of f(s) as
s— o0 along lines parallel to the imaginary axis. These results are,
in a sense, converses of Theorem 3.35. The proofs depend on the
explicit expression of the Riesz sums in terms of the function repre-
sented by the Dirichlet series, which is called Perron’s formula.

Lrmma 362, If >0, k>0,

o+i®

- 8-—1:-1 eMds =
21 j
o—1®

Ik + 1), w >0,

0, u <0.
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If 6 > 0,
o+i® 1, u > 0’
__l_j s le¥tds = [%,'IL:O,
2”1’0——-{00 O,u<01
it being understood that the principal value of the integral is taken
ifu=0.
Lemma 3.63. If 0>0,k>0,

o410 _ .
1 X N + 1T e (1= 1/o)f, 0 >1,
2w F(k+l+s) 0.0<o<l.

c—1

Proor. If we write
o]
(1 —a)f = }6‘, Btar,

we have
1

Nk v-—)rﬂ=J.x"1( )"dx—-§ Bt

Tk +1 + ) os‘+r

and if we observe that

1 aj‘r‘ioo o ds [’U_', v > 1’

2w s + bo=1
nza——-iw r O,'I)<1,

where the principal value of the integral is taken in case v = 1,

0 k
we see that the lemma follows by substituting the series ¥ - +
o8 41

in the integrand of the Lemma, and integrating termwise.

Lemma 3.62 will be used for the study of the Dirichlet scries
Ya, e **and Lemma 3.63 for ¥a,!,*. From Lemma 3.62, we deduce

LeMma 3.64. Let Ya,e " be summable (4, k), k >0, for ¢ > a,.
Then for o > o), and ¢ > o*, we have
1 , .
[ +1) 2, B¢ @ = 4
1 o4iw f(
—_ 8 w(l—l‘) d8
2x 1 J (s — '51"‘)"+1 ’
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where f(s) i the sum of the series. The dash indicates that if k = 0,
w == A,, then the last term of the sum has to be multiplied by }.
Proor. Let 1, <w < 4,,;. Set
g(s) = e {f(s) — T a, e~}
0
= e”® h(s),

where h(s) is the sum-function of the summable series

Ay €M+ Loq o eTEmE2 L
This series is summable (u, k), where u, = 4,,,,., for o > o,.

Now

o410 tio
: J W) e*e*0ds 1 g(s) e ds
2mi (s = st T 2 gy J -(s . 35’/{4’1’
u+ioof( ) - g, g—tio
1 s) e® —8* 1
T 2a T — S a6 (o — ),
2w j (s — s*)F+! Tk +1) 120 a,e (w )

by Lemma 3.62, and the result will be proved if we can show that
this is zero.
Let us consider a rectangle R formed by the points
c—tTy,0+1Ty Q+iT,, Q—:T,
where 7', Ty, £2 are large positive numbers. By Cauchy’s theorem,
1 f 95 e~ 4 o,

2w | (s — s*)Ft?
R
that is
0+iT, Q—iT, Q+iT, o+1T,
1 1
omi J = z“;"i[ J + j + J ]
oS4t osiT, 25T, Q%iT,
= Il + 12 + Ia,

say. If we fix T, and 7', and let 2 — oo, we observe that I, — 0,
since the numerator of the integrand is bounded, by Theorem 3.37.

As Q — 00,
©—iTy
I, — —-lw-; J = o(1), as Ty — oo,
27
o—iTy
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since h(s) = o{ |7!¥*1}, by Theorem 3.35. Similarly

lim lim 7I;=0.
T,>® Qo
Hence

o+iw
._ws‘
: 96 e gs o,

271 J (s — s*)Ftl
0 —10
Corresponding to Lemma 3.64 we have
Lemma 3.65. Let Ya, l;* be summable (I, k), k > 0, foro > oy,
and let f(s) denote its sum. Then for ¢ > o, and ¢ > o*, we have

o+1io0

R e : 1 T+ 1)T(8 —8%) 4 4
E Y gl (e — L= o I8 87) ye—e g,
@ lngwan (@ =k 271 _[ f(s)r(k+1+s—s“‘)w

The dash indicates that the last term of the sum has to be multiplied
by 3, if k=0and o =1,.

Proor. The reasoning runs on the same lines as in Lemma 3.64.
We observe that if Ya, [ is summable (I, k), then f a,l;® is
summable (u, k), where u, =1, ... "

From Lemma 3.65 we can deduce theorems on the summability
of the Dirichlet scries. We assume that for sufficiently large values
of o, say ¢ > d, the Dirichlet series is summable by Riesz means
of sufficiently high order, and that the sum-function is regular
in a larger half-plane, say ¢ > #, n < d, and satisfies a condition
like f(s) = O(|s[¥). We then observe that the Dirichlet series is
summable for ¢ > 7 as well. More precisely we have the following

THEOREM 3.66. Let the Dirichlet series Xa, I;° be summable
(1, p), where p s sufficiently large, for ¢ > d, and let the function f(s)
defined by this series be regular for o > n, where n < d. Further,
let f(s) satisfy the condition

J(8) =0(z["), ¥ >0,
uniformly for o >n + ¢, € >0. Then the Dirichlet series is
summable (1, k) for k > k' and o0 > 7.

Proor. Let us suppose that the Dirichlet series is summable
(I,k 4+ m), for ¢ > d, where m is a sufficiently large positive integer.
Then by Lemma 3.65, we have, for ¢ > d, 0 > o*,
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w—k—m 2 (w — l”)k+ma”l;—c‘
l”<w
g+i

_ .1 T(k+m+1)T(s— 8%
_2”ij Tlhtm+1+s—a)/ @

We first observe that in the above formula ¢ > d can be replaced
by ¢ > o* > 7. TFor we have only to apply Cauchy’s theorem
to the rectangle whose sides are 0 =¢, (¢ > ¢* > 7).0 =, (v > d),
7 = — T, and 7 = T, and observe that the integrals on the sides
parallel to the real axis tend to zero as 7',—-co and 7'y — oo, on
account of the hypothesis on f. Next we observe that we can
take m = 0. For we can multiply both sides by «**™, differentiate
with respect to w, and divide by (k + m) «**™ 1 on both sides.
This will lead to a formula with m — 1 in the place of m. We
may perform this process successively m times, observing each time
that we get a convergent integral on the right side. We thus
obtain the formula

= ds.

0 * 3 (0—1)a,l, ™ = ) w*~*" ds,

1 ‘T“’ T(k + 1) T(s—s*)
Inco

S7i | Thtits—sm/0

oc—{o

o >o* > 7. The integral on the right converges absolutely if

k >k, for
['(k+ 1) I'(s — s*) -
H—*E—m.—._._..____—._._.zo kl’
6~ = R e = O™
and f(s) = O(|7[¥'), by hypothesis. Finally we extend the formula
to o < o*. The function H(s — s*) has a pole at s = s* with
residuc 1, so that by another application of Cauchy’s theorem, we

will have, for g <o <o* <n + 1,

a+io
07t 3 (0~ L) a7 — f(s*) = —‘—.J H(s — 8*) f(s) 0" ~*" da.
l,<e® 2n za_m

Using the hypothesis on f(s) and the known order of H(s — s*),
we observe that the right side is O(w®~°") = o(1) since o < o*, which
proves the theorem.

A corresponding theorem for a, e " is also true, which we
proceed to prove.
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TaeorEM 3.67. Let the Dirichlet series Ya,e~*n* be summable
(A, »), where p is sufficiently large, for ¢ > d, and let the function
f(8) defined by the series be regular for o > n where n < d. Further,
let f(s) satisfy the condition

f(s) = O(|zFF), k' >0,

uniformly for o >n + €, ¢ > 0. Then the Dirichlet series is
summable (A, k) for k > k" and o > 7.

Proor. Let us put [, = é'n. Since Ya,e™** is summable (1, p)
for 0 > d, it is also summable (I, p) for ¢ > d, by Theorem 3.51.
So by an application of Theorem 3.66, Ya,e * ( = Yal-*) is
summable (I, k) for ¢ > %, and therefore also summable (4, %) for
¢ > 7, by the second consistency theorem.

We now raise the question: under what further conditions can
one assert summability on the line 0 = ? We state two theorems
similar to Theorem 3.63.

THEOREM 3.68. If tn Theorem 3.67 we further assume that f(s)
has boundary-values on o == 1, and that

f&y=0{Q +|z\F},E >0, 2| >0,

uniformly for o > 7, then Ya,e=** is summable (1, k), k > k', at
every point on the line ¢ = n at which f(s) is continuous in the complex
sense (when the neighbourhood of approach lo the point is on the right
side of the line o = 7).

THEOREM 3.69. If in Theorem 3.68 we further assume that f(s)
has boundary-values on o = 7, and that

fley =0{A+ ="} & >0, [z} >0,
uniformly for o > n, then ¥a,l;* is summable (I, k), k > k', at
every point on the line o = n at which f(s) satisfies a Lipschitz
condition or any of the conditions sufficient for the convergence of a
Fourier series.

Proor oF THEOREM 3.68. Let 2 = 5 + it be any point on the
line 0 = 7, at which f(s) is continuous in the given sense. Then,
from Lemmas 3.62 and 3.64, we have, for ¢ > 5 and k > ¥/,
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1 seemo iy — Yt
(k+1) 7" Y Tk+1)
g+i
1 f(S) _f(x) o(s—z,
i J [=r A

By Lebesgue’s theorem on dominated convergence, we observe that
the above formula is true with o = %, provided we go round the
point ¢ == x along a semi-circle to the right of the line ¢ = 7 with

centre z and radius 7. Thus
n—ir 41w

1 - ' w® 1
AU DRt (x):é}‘i[j * j * j ]
nmio O n'vir
where C denotes the semi-circle with centre x and radius r. Given
e > 0, we determine ¢ such that
|f(s) = f(@)| < &, for|s —z| < 6.

We further choose r=1/w. Then for 1/w < 4, we write

n+ie n+is n4io
=1+ ]
ntio=l  gpie—1 0+
Now
n+io
= o(1) = o(w¥),
n+18
as w —» oo, by the Riemann-Lebesgue lemma, and
n+i8
= O(¢ "),
n+im—1
so that
n+ico
= O(e o).
a+io™]
Similarly
n—io”}
= 0(¢ o").

n—1i0
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Finally
) j ‘ = 0 (¢ w").

[

Since ¢ is arbitrary, the theorem follows.

REMARK. It is clear that the above method can also be used for
the proof of Theorem 3.67.

Theorem 3.69 is similarly proved, by using Lemma 3.65. We have
to ohserve that

oy P+ 1) I(s - s¥)
M= - Tk + 1+ s — ¥

has a simple pole at s == s* with residue 1.

3.7. Some converse theorems on the abscissae of
summability

In this section we are concerned with a class of theorems on the
abscissae of summability, which arc Tauberian in nature. though not
explicitly recognizable as such. Corresponding results for the ordinary
Dirichlet series ¥a, #n~* were first proved by G. H. Hardy and J. E.
Littlewood, and later generalized by K. Ananda-Rau to cover a
larger class of serics,

Using the results of §1.8, we prove inequalities for the abscissae
of summability (I, k) of the Dirichlet series 3a, 1, ~*, where A4,(t) satis-
fies Tauberian hypotheses, and combining them with Theorem 3.66,
we prove Theorem 3.72 which is a complement to Theorem 3.66.
Finally we apply these results to Ya, l,~%, where the growth of
{1,} is restricted, and obtain a generalization of the Schnee-Landau
theorem.

LemMma 3.71. If
Al (w) — cot = o (0**F). =0, (3.71)

then Xa, 1,77 is either summable (I. k), or never summable (I, ) for
any r.

Proor. We assume without loss of generality that ¢ = 0. It
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is obviously enough to show that if $a, I, ~# is summable (I, k 4- m),
m a positive integer, then it is summable (/, k). Now set
by = ap by, ¢ = by 1P = a, 177,
where p is an integer greater than 8. Then
Olw) = Z(w—1)a, 10"

In&o
= 0 (w*1?),
on using (3.71) in Lemma 3.32 with p — g for — s. A4 fortiori
Cl(w) = o (0"*?), (3.72)

for every r > k. But
0{(0)) == z(w - l")r ay, lnp*ﬂ = E(w — ln)r li bn

lngﬂi Inéw
= 2(w - ln)r {w - (w - ln)}p bn
Ln,<w

= o? Bj(w) — po?™! B (0) + ... + (=) Bi*(w),

or
Bj(w) = 0~? Cj(0) +p0 " B{*} (@) — ... +(— )"+ 0" B[**(w).
(3.73)
From (3.72) and (3.73) we observe that
Bi*Hw) = o (™) (3.74)

implies
Bj() = o (o).

That is to say, under the hypothesis of the Lemma, if ¥b, = Xa, [, ?
is summable (I, » -+ 1), then it is summable (I, »). Setting
r=k+m—1%k+m—2,..,k we observe that, if Ya,l, " is
summable (I, & + m), then it is summable (/, k). Hence the Lemma.

REMARK. The Lemma is valid even if §# is complex with a
non-negative real part.

THEOREM 3.71. 1If o, denotes the abscissa of summability (1, r) of
the Dirichlet series Ta, 1, 6, < + o0, and if
4,0, +0)—-4,2,)=0@"1", p>00<t=0(1,), (3.175)
then, either o, < a - u, in which case
o <@ TR =P+ ko,
r-bn
oro, > a + u,in which caseo, =o0,,0 <k <r,

, 0 <k <,
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Proor. Let y be real and y > a,. Setb, =a,l,”". SinceIb,
is summable (I, 7). we may write

Bj(w) = co” + o(w"), (3.76)
where ¢ is the sum of the series. Further, (3.75) implics
By(l, + 1) — B(l,) = O 1,~7) (3.77)
if t = 0(1,,), for
ln+t
Bl(ln + I) - Bl(ln) = b a, lp~y == .[ w dAl(u)
1y <lp<in+t D
= (lu + t)~‘;' {Al(ln + ’) - Al(l’n)} +
Iptt
[0 A - A} au
n

=o',
if ¢ - O(,). Now (3.76) and (3.77) imply, by Theorem 1.82,
B{“'((u) — et == O{wk+(r—k) (atp— y),‘(r+/4)}_ (3.78)
ifa+4pu-—y >0,0<k<r. Now (378) implics, by Lemma

3.71, that
}:b lm/f {,},__:(u-}-u—y)(r—l)»o
nin

r+ p
issummable (I, k) since it is summable (I, 7). Since 30, I;# =3¥a, ;77"
we observe that
o <y 4+~ (a+u)(r — k) +yk+p)
T+ u

As y can be any number > o,, the first part of the theorem follows.

To prove the second part, we obscrve that if y > « + u, then
v, I, ¥ is convergent if it is summable (I, 7), for (3.77) implies
B (1, +t — B (l,) =~ 0@ 1,7 "), t = 0(,),
which, together with (3.76), implies, by Theorem 1.82,
B, () — ¢ = o(1).
CoroLLaRY 3.71. If a, = O{l5 1, — 1))},
and if o, denotes the abscissa of summalility (I, r) of the Dirichlet
series Ya, 1%, then
(a + 1) (r — k) + ok + 1) 0 <k <r
r+1
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We have only to put ¢ == 1 in Theorem 3.71, and observe that
g, <0y <a-+ 1.
n
JOROLLARY 3.72. If ¥ [a,P 17 (I, — 1,,)" 7 = O{},P+9*11,
v=0
where p > 1, a +1 + 1/p >0, then for 0 <k <,
(@+1)(r—k)+o, (k+1—1/p)
r+1—1/p
The hypothesis in this corollary implies (3.75) with 1 — 1/p
for u, a + 1/p for a, and 0y, < a - 1.

o, <

We can combine Theorem 3.66 and Theorem 3.71, and obtain

THEOREM 3.72. If
A(l, + 1) — A1) = O 1), u > 0,0 < t == 0(,), (3.75)

if the Dirichlet series Xa,l,;* is summable (I, p), where p is suffi-
ciently large, for sufficiently large values of o, and if the function f(s)
represented by the Dirichlet scries is regular for o > 9, 1 << a + pu,
satisfying the condition
fls) = Oz, r >0,
uniformly for o >n + €, € > 0, then Xa,l;* is summable (I, k) for
Sletp) =8 +nk+w

o - - . O‘Tk *<7'-
r 4t

Proor. If " > r, then by Theorem 3.66, Ya,l,* is summable
(I, 7") for ¢ > u, and hence o, <#. where o, is the abscissa of
summability (I, ') of Za,l,;*. We can now apply Theorem 3.71,
and deduce that ¥a, [;* is summable (I, k) for
o> @Tm) 0 =) + gk +p)

r' +u )
If we let ' — r, we obtain the theorem.

CoRrOLLARY 3.73. If, instead of (3.75), we have
A, = O{ZZ (ln - ln-l)}’
in Theorem 3.12, with n < a + 1, then Ta,l,;* is summable (I, k) for

o> @+ —k+nk-+1)
r+1

9O<k <7
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CorOLLARY 3.74. If, instead of (3.75), we have

n

e, =1 = 0{L T p > 1 a1 4 1p =0,

v=0
in Theorem 3.72, with n < a + 1, then Za,l;* is summable (I, k) for
a>( )(r—k)+n(/»+1—1{}?_) , 0 <k <7
r+1-—1/p
We conclude this section with a few results on the summability
of the Dirichlet series Xa, 7;°, where the increase of [, is res-

tricted.

Turorem 3.73. Let
l

O, h >0,
lu - lnfl ( ll) '
and let a, = O()) for every & > 0, so that Ya, I;* is absolutely

convergent for o > h. Further let the function represented by the
Dirichlet series Xa, l,* be regular in the region ¢ > n (y <h),
satisfying the condition

fls) = 0( T, 7 0,

uniformly in ¢ > 9. Then Xa, I, l * 18 summable (I, k) for

Proor. This follows easily from Corollary 3.73 on putting
a -+ 1= 6 + h, and then letting 6 — 0.

It is clear that we can have more general conditions on a,, as
in Theorem 3.72 or Theorem 3.73.

THEOREM 3.74. If o, denotes the abscissa of summability (1. 7)
of the Dirichlet series Ya, 1,

l
== =0 (lt_)), h>0,

n ln-l

¢ and

"o

l
then
o, — 0, <h(r—Fk), 0<k <r

Proor. Let y > o, and set b, = a,l,”?. Since ¥b, is summable

@),
Bw) = o[ {1,,1/(.s1 — 1) "], (by Theorem 1.62)

= o () = o (™),
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where l, <w < l,,,. Hence, by Theorem 1.71, since Bj(w) = O(w’),

Bi(w) = o (o} ++ 1),

which implies by Lemma 3.71 that Za, l,” 7"~ js summable
(I, k) if it is summable. But it is summable (I, 7), since y + b (r — k)
>y >0, Henceo, <y +h (r—=Fk),ore,—o, <h(r—k),
if we let y — o,.

(‘orROLLARY 3.75. If L[, — I,_,) = O _,) for every 6 > 0,
then oy = o,. for every L > 0.

3.8. Tauberian theorems

In this section we are concerned with a class of problems exten-
sively studied by G. H. Hardy and J. E. Littlewood, generalizing the
classical theorem of Tauber on power serics. Tauber’s theorem states
that if a power series Ya, 2" converges for [« < 1, and the sum-
function tends to a limit ¢, as a2 — 1 — 0, and if na, = o(1), then
Ya, converges to c. Weare concerned with gencralizing this result
to the Dirichlet scries Ya, e **. We assume that this series con-
verges for ¢ > 0, and that its sum f(s) tends to a finite limit as s — 0
along the positive real axis. We observe that ¥a, then converges,
if a, satisfies any of the Tauberian conditions in §1.8.

TurorREM 3.81. Let Ya, e~*° converge for o > 0 to the sum f(a),
and let f(+ 0) exist. Then a necessary and sufficient condition that
lim A(w) should exist is that

W= o

Al(w) = _[tdA,_(t) = o(w). (3.81)
l]

Proor. The necessity of the condition follows from the identity

o 'AYw) = A (w) — 0! ] A,(t) dt == A)(w) — o~ A}(w). (3.82)

0
For if im A,(w) exists, then 4,(w) and w~! 4}(w) converge to the
W=p ©

same limit, and their difference tends to zero.
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To prove the sufficiency, we set

Ciw) = 0 A} (w) = J “Q‘ ) dt; (3.83)
0

filo) = a[ Cit)e 'dt = o j w* f(u) du,  (3.84)1
0 u

where

w o

fw) = Ya, e =u j A,(t) e dt = u® JA‘(t) e~ dt. (3.84)2
0 0
Now since f(+4- 0) exists, it follows from (3.84) that f,( -+ 0) also exists
and

Sil +0) =J(+ 0).
Further

fi(e) = | Cit) e~ "dt

t
e~ *dt j w24 (u)du

0

w24 (u) e~ du. (3.85)

I

f
Q
St g S——8 St——3

Therefore, from (3.83) and (3.85),

o

Ci<w)—f1(o)=jr2A'i(t) jt s At) e dt

(=1

_ [ 24N (1 — e di— jrzgg(t) et dt

0
= Il —Iz,
say. Now
1, = O[UJA—}_U); t! dt:] = olo w),
0

1, -':»()[J t'e "‘dt:] =0 {(ow) e 7.

[
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Choosing w ¢ = 1, we observe that

Oi(@) — fi(o) = o
which proves that Ya, is summable (4, 1). The convergence of
Ya, now follows from (3.81) and (3.82).

THEOREM 3.82. If f( 4 0) exists, and if Yua, has non-negative
partial sums, i.e. A,(t) > 0, then Xa, is summadle (4, 1) to the sum
f(40),i.e. 0 ! AYw) —f(+ 0)as » — 0.

Proor. We prove the theorem in two stages: («). If f(4 0)
exists, and if A4,(t) > 0, then Ya, is summable (4, k) for sufficiently
large values of k. (). If 4,(t) > 0, and if Ja, is summable (4, k),
k > 1, then Ya, is summable (4, 1).

Proor orF (a). Now
f(@) = Ya, e "’ = ¢ J e~ A,(t) di,
0

and since

lim f(o) == f(+ 0)

o—>0
exists, we observe that

lim f(m o) == f(+ 0), m > 0,
630

that is,

o

limajAA(t)c wot gy .| (0 - fi+ ())J il (3.86)

a—>0 m
0

From (3.86) we note that if P,(x) is a polynominal in x of degree =,
then

lim o J P (e~ Ay(t) e “dt — f(+ 0) j P, (e~ e tdt. (3.87)
a0 !

We next note that by an appeal to Weierstrass’s theorem on the
approximation of continuous functions by polynomials, we can
replace the polynomial P,(z) in (3.87) by a function ¢(z) continuous
in0 <2 <1. Thus given any positive number &, we can find
polynomials P, (x) and @, (r) such that

(l)m(q’) \9’(1) < (‘5)
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and
) — Qn(x) <e, P,(x) — ¢(z) <e.
So, A4,(t) being non-negative,

oo

a [ Qule=) A(t) e="dt <o

0

p(e™") &= A,(t) dt

<o | P,(e™) e~ A,(t) dt.

Ol 8 Cl—3 8

If we let ¢ — 0, we observe that the last integral tends to

0 o

f(+0) jme-‘) e~tdt < f(+ 0) jw-‘) et di + e f(+ 0),

while the first tends to

F(+0) ij(e-‘) e=dt > [ (+0) jw(r‘) e~tdt — & f(+ 0).
0 0
In other words,

f(+0) [jw(e—t) e~tdt — ¢ :| < 1@ o JA‘(t) (p(e‘”') e—° dt
0

Y a—0

</ +0)[ [<p<e-‘) e-‘dt+e]
0

Since ¢ is arbitrary, we obtain

©

lim ¢ [Al(t) ple=M e dt = f(+ O)j(p(e“‘) e~tdt. (3.88)
0 0

00

On putting ¢ = 1/w, where w -+ oo, and

[ (@ = loga~)1, fore”! <z <1,
¢(z) = { 0, for 0 <z <e L

(3.88) leads to summability (4, k), ¥ > 1, which completes the
proof of (a).

Proor or (B). This is Corollary 1.83.
12



94 APPLICATIONS TO DIRICHLET SERIES [Cu. IIT

CoroLLARY 3.81. If f(+ 0) exists, and if A;(t) = O,(1), then
Ya, ts summable (A, 1). If, however, A;(t) = O(1), then Xa, is
summable (A, k) for every k > 0.

THEOREM 3.83. If f (4 0) exists, and if
Y 4,a, =0y (2,), ie A} (w) = 0 (w),
0
then Ya, is summable (1, 1), i.e.
o1 A} (0) = f(+ 0),
as w — oo.
Proor. From (3.82) and (3.84) we deduce that

10 = s =a [ (40 =4O ) et J A gy
0 0
= ),

o(1

as o — 0. Hence, if

then

But the left side is, by (3.82),

(24

w™! j {Ady—t 14 (1)} dt = 0! [A}(w) — |1 AL () dt]
0

ct—g

where Cli(t) =t~ ! A} (t). Thus

w

w! J td Ci(t) = o(1). (3.89)2

]
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Now (3.89)2 and the fact, implied by (3.89)1, that
fi60) = o [ Gl e ai—1(+ 0)
0
as ¢ — 0, imply, by Theorem 3.81, that
lim C}(w)= lim {co‘1 Al (w)} = f(+4 0),

w—> 0 W—> 0

which proves the theorem.

THEOREM 3.84. If f(+ 0) exists, and if
lim inf  min {4,(}) — 4;(w)} > — @(8) — 0, as6 — 0,

w—> © w<t<(l+d)w

then Ya, converges, i.e. lim A,(w) exists.
w—> 0

Proor. The theorem is proved in two stages: (a). The
hypothesis on a, or 4,(t) implies 4}(w) = O,(w), and hence by
Theorem 3.83, w™'4j(w) tends to a limit as w — . (B). The
hypothesis on A4, (t) also implies that if ®~! A} (w) tends to a limit,
then A4;(w) tends to the same limit as w — co.

Proor oF (a). See Theorem 1.88(a).

Proor orF (). See Theorem 1.88(8).
CoroLLARY 3.82. If 4,a, = O (4, — 4,_1), Tlf’t — 1, and
n—1
f( + 0) exusts, then Ya, converges.

Proor. The hypothesis of this Corollary implies the hypo-
thesis of Theorem 3.84, as we have already remarked in the
proof of Theorem 1.89.

THeorREM 3.85. If A, a, =0, — A,_,), and if f(+ 0) exists,
then Xa, converges.

The proof of this theorem is similar to that of Theorem 3.84,
except that we use Corollary 1.81 (with a == — 1, f =) instead
of Theorem 1.88 (8).

3.9. Dirichlet product of summable series

If we associate summability by Riesz means of type 4 with

the series Ya,, and of type u with ¥b,, we may form the sequence
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of numbers »,, which are numbers 2, 4- 4, arranged in increasing
order of magnitude, and associate summability by Riesz means of
type » with the series Yc, where
Cp = Y a,b,
Ap+ pg=vn

We define Yc, as the Dirichlet product of Ya, and ¥b,. This
definition suggests itself naturally because the formal product of
Sa, e **and Tb, e~ “m* may be written as Xc, e, If 1, = u, =n,
the Dirichlet product is precisely the Cauchy product.

It is the aim of this section to discuss the relationship between
the orders of summapbility, ordinary or absolute, of the series Ya,,
¥b, and their Dirichlet product ¥c,. We first prove a few formulae
for the Riesz means of the Dirichlet product, which we state as
lemmas, then a few theorems generalizing known theorems on the
convergence of the Cauchy product, and finally add a few results
of & Tauberian character.

LemMa 3.91. If k >0, >0, then

w

ittty . T E+T+2) o, %
Cr++1 () P(k+l)P(l+l).[B”(w 0 A0 dt. (3.91)

0

Proor. If we consider the expression on the right of (3.91),
we observe that the term a, occurs in A% (¢) if 4, <¢, with the
cocfficient (¢ — 2,)*, while the term b, occurs in B/ (w — ¢) with the
cocfficient (w — ¢ — p,), if p, <w — ¢, so that the term a, b, will
occur on the right side, if 4, + 4, < w, with the coefficient

0~

Te+1+2

GENTeD | ¢ et
= (0 — Ay — s+,

This is the coefficient of a,, b, in the expression on the left of (3.91)

and hence the lemma.

Lemma 3.92. If k >0,1 >0, then
(i) for k=0,1 >0,
Clw)= X a, B, (0 —4,), (3.92)1

ipgo
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and
(ii) for k> 0,1 >0,
k41 k*‘l'*‘l) I .
O+ () = P@£ 1) (0 — t) d A% (1)
_ ka+l+1 1 ik
N + 1) T4 I: tyt=r Ak @ty dt +

+ IB;(w — 1) t‘lAA(t)dt:]. (3.92)2
0
Proor. Case (i) is easily seen as follows.
Cllw)y= % (w—4,—n)a, b= Z%a,. ¥ (w0—24,—pn)'b,
1p+;tq<w lpgw ,:qgw—lp
= X a,Bl(w—2,).
/ y <D
Case (ii) is proved as follows : by Case (i),
CHl (w) = I a, BE (0 — A))
Yp<o

= J BEtl(w — t) dA,2)
0
_PE+1+1) 3 e
k) T+ )~0 d A,(t) l(w t—u)*"'B, (u) du,
by (L.21);
_ Pk +1 j“_l) ¢ ( _ k-1 Rl _
R ES d A1) j(x 1)~ B! (0 — ) dz

CTE AL g o
= P TG+ 1)6 B (0w — ) dxb[(x 11 dA,(2)

TG LAY fae
Tk + 1) T + )IB (@ — =) ddi).

The second part of (3.92)2 follows upon substituting
@—tf =z {tx—tf 14 (@ —t)f}
in the formula immediately preceding the last.
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Lemma 3.93. If k>0, 1 >0, then

'k +17)
Tk +1)TC + 1)

GEH () = kjﬁ@—ﬁdmw+
0

+ zjéf,(w — t) dAk(t) ] (3.93)

forallwifk +1 > 1, and forw # 4, + pifk +1 < 1.

Proor.
Citlw)= T (0—2a—pu)*"" 0+ u)ayb,
/lp+pq<w
= I (0—A,—p)""1Aa,.b+ T (0—RA,—p)t " la,.ub,
Iptm<o Yptug<o

The first term in this formula is
= X b . T (0—4i —p)t"1i,a,

Hg<w J.,,gw Hq

= I b Ao —p) = J A% w — t) d B,(t).
0

I‘qsw

Now, if @ — t 5 4,

A (0 —t) = ;.,,35,_1 (@—t—2A, )14 a,
k) T'() 3p<o-t

w—t

Ay, J (@ —t—a)~ (& — 4,0 " du

e+ _
F(k) F(l) V([ (CD —t— "E ).ngz (x — Ap)k 1 Ap a, dx
w-—-t
F(k N1 gk
(k) P(l) j (w —t — )~ Aj(x) de.

Hence

w

jfi’j“(w — 1) dB,(¢)

0
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- II:(%G)JIF‘(:;I 4B,(1) T(‘“ —t — )~ Aj(z) dx
];‘((],:);(% j: dB,(t) j”(y F-1 A% (@ — y) dy
;%igjgw°“wdﬁ?y~w”d&m

=r%%%%ﬂﬁmwwumM

o

A similar argument applies to the second term of the formula,.

Using the above formulae, we shall deduce & number of theorems
on the summability of the Dirichlet product of two summable
series.

Trrorem 3.91. If Ya, ts bounded (A, k), k& > 0, and summable
(A k'), k' >k, and b, is summable (u, 1), L >0, then Tc, is summable
(v, B+ 1+ 1). The sum of Ic, is equal to the product of the sums
of Xa, and Xb,, .

Proor. Let
4 () = O(e®), (3.94)
A¥ () = aw® + o(0*), ¥’ >k >0, (3.95)
and
Bl(w) = bw' + o(w’), 1 > 0. (3.96)
Then by (3.91),
T'E+1+2)

kE+i+1 _ S\ ey k l .
Crtitl(p) = Tk + 1) T¢ 1 1) }; A45(t) B, (w — 1) dt

— b AR+ Ttk +1+2)
PAT O T

X jA"(t) — ) —blw —t)} dt
0
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= ab o***1 4 o(w**!+T) + J OF) . o(w — t)dt
0

= ab w*+1+1 4 o(wt+itl),
by (3.94), (3.95) and (3.96), which proves the theorem.

CoroLLARY 3.91. If Ya, 18 summable (A, k), k& > 0, and Ib, is
summable (u, 1), 1 > 0, then Yc, is summable (v, k + 1 + 1).

CoroLrLarY 3.92. If Ya,, Zb, and Ic, are summable by Riesz
means of sufficiently high order and of type A, u and v respectively,
and if their sums are a, b and c, then ¢ == ab.

In view of Corollary 3.92, we shall not explicitly state, in the
following theorems, that the sum of the product series is equal to
the product of the sums, but it shall remain implicit.

TreorEM 3.92. If Ya, ts summable |4, k|, k >0, and 3b, is
summable | u, 1|, 1 >0, then Xc, is summable | v,k + 1|.

Proor. We will consider three cases: (i) £ > 0, I > 0,
(i) k=0, 1>0,ork>01=0,and (ili) #=0,1=0.

CasE (i). k>0, I > 0. We have to show that

@

[12 {omror0)} < o,
0
which is the same thing as saying

N ’k+l
j@ﬁﬁﬁdw<w (3.97)

Now, by (3.93), for o # 4, + u,,

Cv'k+1(w) =¢ j fi’,{ (0 — t) dBl(t) + c2jgl(w — 1) dAk(t)
0

=cl[]:./if(w—— dt J l()dt]+
0
%[T' j% : w—nm]

0 0

=1, +1; 4+ 1I; + 1, say.
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Now

ol

dw

(w —1) :Bi(_t) di

(=2} o
‘-w"‘"“ i dw = ¢ w”k“l“]jg
0 0

t
©

<c jrk*l | Ak(t) | de
< oo.

Here we have used the fact that if Ya, is summable |p, 1], it
is summable (u, I).

Again

w "

Jw“"‘"l"‘ ) dw = ¢ j‘w'k ”"dw”Aﬁ(t)B’(w ) (w ——t)“dt}

n
0
ro- ¢ Bl (w —1)!
< J. ’ 4’2“)‘ dt j(:)k‘ +_Ii_1_((;:) dw
t
L (18w —1)]
<\~6Jvt k IJ‘Jg(t)ldtJ(ﬁ_;i)l¥f dw
0 ¢

Similarly we show that
J'w”"‘"‘l | dow
0

and

-]

o =1, i de

o
are finite, which will prove (3.97) for Case (i).

Caseg (ii). k=0,1>0,0rl=0,k>0.
13
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Let £ - 0. We proceed as in Case (i) and observe that expre-
ssions corresponding to I,, I, will be obtained as sums and not as
integrals, with a single sum corresponding to /3 + 1,. Thusifk =0,
>0, and w # Ay + g

Ot w) = T (0 — Ay — 1)1 (A, + 1) ayb,

AptHg<o
X (=dy—p) T hpa, bt Y (0 =2y p)' T e, pby

Aptrg<w ytHgso
The first sum on the right is

= X . X (0= 2 — ),

ApKw pq\w

iy Ly [ B 1 e )]

)l’(\“

= -[1 + 12;
and the second is
= Y q, 1;’;(0) — Ap) =1,

}.psw
say. Now [, I, and I3 can be treated as in Case (i). The proof is
similar if 7 = 0, &k > 0.

CaSE (iii). k=1 = 0. "This case is simply the familiar result
that if Ya, and b, arc absolutely convergent, then Xc, is absolutely
convergent.

THEOREM 3.93. If Xa, is summable A, k|, k =0, and Xb, is
summable (u, 1), 1 >0, then Tc, 18 summable (v, k + ).

Proor. We consider two cases: ()£ > 0, I > 0, and (ii) £ = 0,
! > 0, and assume that b is the sum of ¥b, and a that of Xa,.

Case (i). By (3.92)2,

by — T +1+1)

k
e+ D) TC+ D) —Hddit)

. Te+1+1
FE+1)TC+1)

[ Biw —t) — b(w — t)* ] dA%(t) +

[
0]
FME+1+1)

TEFD TR

j ( — 1Y dAK().
0
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The second expression on the right is abw®**' - o(w**?). So it
is enough to show that the first is o(w**!). Now if we set
@(w — t) = Bl(w — t) — b(w — 1)}, then the first integral, without
the constant factor, is

o

[ #0 0 das00
0
Ay [ A
:J¢(w ~t)—1—~dt+Jtp( )-—iwdt,lfk>0,
0 0

=I, +1,

say, where

(o}

I, = | o(w — &) . O@*~") dt = o(w**+').

2

0

We write I, as I, + 1,,, where

(2] [0

11.1=I»I1.2=J’

Y gy

and m, is to be fixed presently. Given ¢ > 0, we can choose w, 80
that for v > w,,

J [ff(_‘)_l dt < e,
et

wy

since Ya, is summable |4, k!, and then

[0

I, = O(CUkH)j

[

lfiﬁm

T dt = O(e * ).

P -
[ Ak
Also I, = o{(0 — w,)'} j- ]—A—;‘Ql— dt == o(o') = o(w**').
0
Combining the estimates for I,, I,, and I,, we have, since ¢ is
arbitrary,
C,H’(w) =ab . oft! + o(w”'),
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under tbhe assumptionk 4- I > 0,k > 0.
Case (ii). If k= 0, we start with (3.92)1.
CH(w) = CYw) = Xa, B{w — 1,)

Zpsw

=b ¥ (w—AVa,+ ¥ a,{Blo—2,)—bwo—4i,)}

ip<o <o
b, Alw)+ T a, {Bio —4,) —b (o — i)}
p<o
The first expression on the right is abw’ } o(w’), while the second
is seen to be o(w') by splitting it as we did for I, before.

The next three theorems arc of a Tauberian nature.

THEOREM 3.94. Let Ya, be summable (A, k), k > 0, and Xb,
summable (u, 1), 1 > 0, and let

[12450 201 = ooy, [ 1m0,
0 0

Then Xc, is summable (v, k -+ 1).

Proor. If k>0, [ > 0, the above conditions can be written as

J ]/ff{(t)[ dt = O(w**?), J ]ﬁ,f(t){ dt = Olw'™);
0 0
while if & == 0, [ == 0, the same conditions will become
Y |44, = Ow), ¥ |u,b,|=0).

Ay<ow gL

Summability of Ya, and b, implies

Al w) = o(w* ), (3.98)1
B Hw) = o(w'*?), (3.98)2
for )
A¥ N w) = o di(w) — AiH (),
or

0 A 0) = 0 Ai(o) - 07! A (@) = o(1);
and similarly for B*1(w). Now by Corollary 3.91, Zc, is summable
(v,k + 1+ 1), and hence, to prove summability (v, k + 1), it is
enough to show that
ékaH(w) — o(wk-}-l+l).
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But, by integrating (3.93) by parts, we sce that

Cxt () = ¢, JB,f(w — 1) dAEN(t) + o [Asj(m —tyd B
0 0
= Il + 12,

say. Now

I, =¢b [(m — t} dAETY(t)

.
0

+ ¢ [ {Bi(w — 1) = b(w — 1)} dAf+(1)
0
= 11,1 + I], 2
say, where
I, =cpb. AEH1+1(g) = o (@ HI*Y),

by (3.98) and the first consistency theorem. Also

I,’2 : jo(w — t)l, ]dz‘i’,{“(t)l — o(w“”’]),
0
by hypothesis. Heunce I;=o(w* ! '), Similarly we prove Iy=o(a®*'! 1),

and hence the theorem.

CoroLLARY 3.93. If Ya, and 3b, are convergent, and if
)‘na’n =0 (}’n - )'n—l) and /l'nbr; =0 (‘un T My
convergent.

). then e, s
This reduces to the case k == [ == 0 of Theorcm 3.94.
THEOREM 3.95. Let Ya, und ¥b, be summable (1, k), k > 0, and
(4, 1), 1 >0, respectively, and let [ |[dA%(t)| = O(w*+'),k>0. Then
0
Y, is bounded (v, k + 1) and summable (v, k 41+ &) for every € > 0.

Proor. By Corollary 3.91, Zc, is summable (v, + I + 1), and
by Corollary 1.71 it follows that Sc, is summable (v, k 41 + ¢) if we
prove that Yc, is bounded (v, k + ).
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Now we first observe that if £ > 0, and if

(2]
"

dAETD)] = O(tt)),

then

o

t= A A ()] = O(wh), (3.99)

.
0

by partial integration. Next, from (3.92)2, we can write

" 3

C¥l ) —= ¢’ [ Bl )t TAk@)ydt + " [ Bl(e» - 1) tdAET(8).
0 0
Each of the cxpressions on the right is seen to be O(w*'') on

account of the hypothesis and (3.99).

THEOREM 3.96. If Sa, and ¥b, are summable (4, k), k = 0, and

(u, 1), 1 > 0, respectively, and if [ldA5HN() = o(w* ), b > 0.
0

then ¥c, 18 summable (v, k - 1).
Proof is as in Theorem 3.95, except that we have to usc the
analogous formula for (3.99) with o instead of O on the right.

NOTES ON CHAPTER 111

§3.1.  For an introductory study of Dirichlet series of the form
Sa, n=*see E. C. Titchmarsh, The theory of functions, ed. 2, Oxford
(1939).

§3.2. If 0 <k < 1, the function J’;(w) exists except for w == A,
and is integrable, and the formula (3.21) may be written in the form

5 j Aty dt = o AE () — A ()
0
for all values of & > 0.
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§3.3. It is well to notice the essential difference between the region
of convergence of a power series and that of a Dirichlet series. The
circle of convergence of a power series passes through the singularity
nearest to the centre. For a Dirichlet series there is not necessarily
any singularity on the line of convergence. See, for instance, Titch-
marsh, loe. cit., 294.

Most of the results of this section on the summability of Dirichlet
series can he found in the Tract.

In connexion with Theorem 3.31 sce G. L. lsaacs, Jowr. London
Math. Soc. 26 (1951), 285-290. Our attenticn was called to this at
the stage of proof-correction,

§3.4. Ahsolute summability of Dirichlet series was discussed by
N. Obrechkoff, Math. Zeitschrift, 30 (1929), 375-386. He has also shown
that for o > aj, + ¢, f(s) = Ot F).

It should be noted that in Theorcm 3.42, if £~ 0, the conclusion
is valid for ¢ > o*.

As Dr. Bosanquet points out, Theorem 3.42 is false with ¢ = o*
(but Theorem 3.45 is true !), e.g. Zn~1e* is summable |n, 1| (by
Theorem 3.46, for instance) but EZn—1! is not summable [#, 1!. In
a paper which is soon to appear he is stressing this point,

For theorem 3.44 sce Obrechkoff, loe. cit.

Theorem 3.46 was provcd by L. S. Bosanquet, Jour. London Math.
Soc. 23 (1948), 35-38. He points out that the less delicate result
of Theorem 3.41 could also he obtained by replacing «=7-9 by ¢—o¢
throughout his proof.

The inequality

G — 0p = lim sup log n
n—>o og ln
was proved for integral k& by L. S. Bosanquet, Jour. London
Math. Soc. 22 (1947), 190-195. Dr. Bosanquet informs us that
M. C. Austin has proved it for all values of k > 0 except possibly onc,
and that his proof will appear in the Jour. London Math. Soc. 27
(1952).

§3.5. 1t is possible that the results of this section have their analogues
for absolute summability, but we are not aware of any literature on
the subject.

§3.6. For Lemma 3.62 see E. T. Whittaker and G. N, Watson,
A course of modern analysis, ed. 4, Cambridge (1927), 238, and
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E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen,
Leipzig (1909), 342. Theorems 3.61-3.63 were proved by M. Riesz,
Acta Szeged, 2 (1924), 18-31. In connexion with Theorem 3.62 see
A. C. Offord, Proc. London Math. Soc. 37 (1934), 147-160.

Theorem 3.64 is a variant of a result due to M. Riesz, Acta Mathe-
matica, 40 (1916), 349-361. The conditions on a, could take the form:
an =0 (1) and a, =0 (Ay — A4,—1). See also A. E. Ingham, Proc.
London Math. Soc. 38 (1935), 463.

The statement that f(s) has boundary-values on ¢ = # should be
understood to mean that f(s) has a unique limit as s tends to any point
on the line ¢ = # from the right. The boundary-function is the
function defined on the line ¢ -~ 7 by means of the houndary-values.

Theorems 3.66 is Theorem 41 of the Tract. It is due to M. Riesz,
Comptes Rendus, 5 July 1909. Theorems 3.68 and 3.69 are the modified
versions of Theorems 42 and 43 of the T'ract.

§3.7. Historically, G. H. Hardy and J. E. Littlewood were the first
to prove analogous results for the Dirichlet series Za, n—%, see Proc.
London Math. Soc. 11 (1912), 411-478. They were later generalized
by K. Ananda-Rau, Proc. London Math. Soc. 34 (1932), 414-440.

1f in Theorems 3.71, 3.72, we replace the discrete variable I, in the
hypothesis (3.75) by a continuous variable w, then it can be shown that
6, < a + u. TFor we may assume that a 4 x % 0, and counsider the
cases: (i) a -4 p >0, and (ii) e+ ¢ < 0. In (i) we note, by a
familiar argument (cf. p. 26, line 7), that 4,(t) = O(t***#), which implies
the desired conclusion. (ii) can then be proved by considering the
geries Tby, by = a, L,?, a -+ u + p > 0, and then applying (i).

Corollaries 3.71, 3.73, 3.75 and Theorcms 3.73, 3.74 are due to
Ananda-Rau, loc. cit. Theorem 3.73 is a generalization of the
Schnee-Landau theorem. Sec W. Schnee, Acta Mathematica, 35
(1911), 357-398. Corollary 3.75 is obtained from Theorem 3.74 by
letting A — 0. In this Corollary it may further be verified that
0, = 0,. See K. Ananda-Rauy, loc. cit., Theorem 13.

Corollaries 3.72, 3.74 are due to V. Ganapathy Iyer, Annals of Math.
36 (1935), 100-116. For an alternative hypothesis on a, in thesc
corollaries see Notes on §1.8. Here again we assume that I_; = 0.

§3.8. For Tauberian theorems on power series sce G. H. Hardy,
Divergent series, Oxford (1949), 148-175. For an account of
Tauberian theorems on Dirichlet series see O. Szasz, Trans. American
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Math. Soc. 39 (1936), 117-130. For generalizations of theorems of this
section, where f(o) is assumed to tend to infinity like a logarithmico-
exponential function, see J. Karamata, Journal fir reine und ang.
Math. 164 (1931), 27-39.

§3.9. For a discussion of various kinds of multiplication of series
see G. H. Hardy, loc. cit., 227-246.

There should be no confusion between the C¥(w) defined here as
the Riesz sum of Zc,, and the C%(z) defined in §1.1 as the Riesz mean
of Za,.

It should be borne in mind that when ‘inner integrals’ arise from
the inversion of a repeated Stieltjes integral, they are in general
Lebesgue-Stieltjes integrals existing almost everywhere.

Theorems 3.91, 3.92 and 3.93 are generalizations of the theorems
of Abel, Cauchy and Mertens for the Cauchy product of convergent
series. As an application of Theorem 3.91 we may observe the following :
Let a, be a positive monotone null sequence and let 4, =a, + ... +an.
Then X( — 1)»—1 4, is summable (n, 1) to the sum 4 Z( — 1)*~1 a,, for
the former series is the Cauchy product of Z( — 1)#~1 and Z( — 1)»-1 a,,.

Corollary 3.93 is Theorem 58 of the T'ract. The conclusions of Theo-
rems 3.95 and 3.96 hold if Zb, is bounded (u, I) and summable (g, ')
for some I’ > 1. These two theorems may fail for £ = 0. The Cauchy
product of Za, =3X(—)»-1 1/n and b, = Z( —)*~1 (log logn)-1 is
3(—)»1e¢, where c, =32 (n— v)a}og logy ~ Io {golgomg—n — 00, and hence
cannot have bounded partial sums. This shows that Theorem 3.95
may fail for £ = 0. Similarly, to show that Theorem 3.96 need
not be true for k¥ = 0, we observe that the Cauchy product of
Z(—1)»=1(n logn)—! and X( — 1)»—1 (log log »)~1 cannot converge.
In Theorem 3.95, if k=0, a part of the conclusion, namely sum-
mability (v, k + I + &) for every positive &, can be proved, since the

hypothesis on Zf is true for every k > 0, if it is true for k = 0.

It is an interesting and important problem to determine the abscissac
of summability, ordinary or absolute, of the Dirichlet series Xc, e—"n*
knowing those of Za, e~ and b, e~#ns. Except for one result, namely
Theorem 59 of the T'ract, no progress has been made in this direction.

14



v
APPLICATIONS TO FOURIER SERIES

4.1. Introduction

In this chapter we shall be concerned with the application of
Riesz means to the study of the summability of Fourier series.
We shall deal with multiple series summed over spheres, and
demonstrate that such a method of summation makes it possible
for us to utilize results on Fourier series for proving a olassical
identity in the theory of lattice points, and several of its
generalized versions.

We first prove a formula, due to S. Bochner, for the Riesz mean
of a Fourier series in k variables (¢ > 1), and use the formula to
prove that if a function is continuous at a point, its Fourier series
is summable at that point by Riesz means of a certain order ¢
which depends on the number k. We then impose a further condition
on the order of magnitude of the Fourier coefficients, and deduce
summability of order less than 6, including convergence. We
next consider the summability of series derived from Fourier series
by repeated application of Laplace’s differential operator. For the
summability of such series at a given point, we impose on the
function a hypothesis in the nature of differentiability in a neighbour-
hood of the point in question. Here again we obtain further results
of a Tauberian nature by restricting the order of magnitude of the
Fourier coefficients, one of which is applicable to the study of
summations over lattice points. We then prove analogous results
on absolute summability. We conclude the chapter by stating
conditions which are necessary and sufficient for the summability,
ordinary or absolute, of a Fourier series at a given point.

4.2. Spherical means

Let f(x) = f(»,...,5;) be a function of the Lebesgue class L,,
periodic with period 27z in each of the k variables. We write the
Fourier series of f(x) as follows :

-]
f(x) ~ E v 2 a"““ﬂke‘(’lxﬁl-f...+n‘.:rk),
-®
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where

n

1 I jf(x) e~ imat ety | do,.

Ayt = (‘mb
-0 -7

We write
A,@) = D b, g emmtet, (4.21)
”%+...+n§-n
with the convention that 4, (x) = 0 if » cannot be represented as
the sum of k squares. We now define the n-th spherical partial sum

of the Fourier series as
8,(2) = T 4,).
r=0

Our object will be to study the Riesz means of the series ¥ 4,(x).
Accordingly we define, for 6 > 0,

S}:(,’l}) == (1 — 1?’_% + ‘-1-2-2+ ng)" a”r"nkei(nlzl-i-...-*-nkxk)
nitotnt < R
S30- n) A
r=0
g 2\ 8—1
= %‘ZJ‘ (1 - %2«) S(u) w du, (4.22)
where

S(R) = S}(x) = 8,(x).
We next define, for any fixed x and for 0 < ¢ < oo, the spherical
mean [, (t) of the function f(z) as follows :

I'(k/2)

£ = [ ottt +etpaoe, wa

where o is the sphere £2+...+£2=1, and do isits (k — 1)- dimensional
volume-element. Ifk =1, we define f,(t) = 4{ f(x + 1) + f(x —¢)}.

Considered as a function of the single variable ¢, f,(¢) exists for
almost all ¢ > 0, and is integrable in every finite ¢-interval.

We shall now state two lemmas governing the behaviour of f(t),
which follow directly from the behaviour of f(z).
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LemMma 4.21. If f(x) € Ly, and 18 periodic with period 27t in each
variable, we have

J!fx(er)ls"“ds = o(1) as e—0, (4.24)
0

and
¢

j | f.(8) | ¥~ 1ds = O(t*) as t— 0. (4.25)
0
Proor. The conclusions will result from the inequality

b
[1t@isas < ... [ i@ ao,..am,
2
where Q is the spherical shell with radii @ and b, and centre z.
Lemma 4.22. Let f(z), fl(z), f%(x),...be a sequence of periodic
functions, with period 27, belonging to the Lebesgue class Ly, and let

'lini j‘ j |f (@) — f"(x)| da,...dz, =0
K

uniformly in all unit spheres E. Then, uniformly in x,
1

tim [ 1£(6) — 260}~ 1ds =, (4.26)
r—>®
0
and, given ¢ > 0, and t, > 0, there exists r, such that, for t > t, and

r > 1, we have
t

[ i8to) = fry 1 as < e (8.21)
0
Proor. (4.26) is an immediate consequence of our hypothesis.

(4.27) is proved as follows :
t

j \fuls) — Fils)|¢*1ds <j J f@) — f(@)|dzy...dz,,  (4.28)
0 2
where (, is a sphere with centre # and radius ¢. Since this sphere
can be covered by a finite number of unit spheres whose total volume
is ct¥, where ¢ is & numerical constant independent of ¢, and since
f'(x) approximates to f(z) as r—-co uniformly in all such spheres,
the right side of (4.28) is less than &t*.
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4.3. Bessel functions
If J,(t) denotes the Bessel function of the first kind and of order
u, we have, for y > — 1,

_(tYS (o) :
We define
V() = _‘]_ﬂtff) . (4.32)

It is known that
o(t*), as t—-0,
J,(t) = (4.33)

O(t=1), as t— 0.

The following formulae, which arc well known, will be required
in the sequel.

xr

2;4-1—1—;.

= . 2 _ g2\ —u—1y2u+1
Viok) = xj(x YreE Y R)y , (4.34)
fory >u>—1. Ifv > u + 1 > 0, then

o

j J@t) I nt) o,

tv—-ﬂ—l
0
n# 1 n2 yv—u—1 0
_ | T = ) (17 0)  0<n<a,
0, ifn >w. (4.35)
d
i [V,,(x)] =—z V, . ,@). (4.36)

)

j SO 4 T
) p-rtt 2y — u/2 + 1)
4.4. A formula of S. Bochner
Our object is to establish a formula which expresses the
Riesz mean Sp(x) defined in (4.22) in terms of the spherical mean
f(t) defined in (4.23), for any fixed z. This formula of Bochner,

0<pu<v+32 (437
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which may be viewed as a generalization of the classical integral
of Fejér, is as follows :

Six) = ¢, R"[f,(t) 1V, ue(tR) dt, 6 > 3 (k — 1), (4.41)
0

where ¢; = 20-¥2+1 T8 4 1) {T'(k/2)} *

We shall first prove the formula, as a lemma, in the special case
where f(z) is an exponential polynomial. In the general case where
f(x) € L;, we shall make use of the fact that there exists a
sequence of exponential polynomials {f"(z)} approximating to
f(x) in L;-norm, in the space of (z), and show that this approxima-
tion allows us to extend the formula to arbitrary f(x) € L,.

Lemma 4.41. Formula (4.41) holds when f(x) is an exponential
polynomial, for every 6 > 0.

Proor. If
g(x) — i(n,zl+...+nkzk)’

its spherical mean g,(¢) is given by
0:0) = 25 DET(k2) Viy_nyp (121) it toisd),
where, as before, we have n = n? + ... + nZ.
Hence the spherical mean of the exponential polynomial
F@) = D b,y et (4.42)
is given by
f(t) = Z ba,..n ernt kD) Yo o (012 1). 26— D2 T(E)2),

Hence we have

o, j 28) B0 Vypun (B) de
0

ngy [ Tain (20) Jgsum (RY) BER=
- r > (k—2)/2 (8+k/2)
Ce z:bﬂl---"k ¢ ’Wj 7 &2
0

ﬂ nd
= 2 Hnt™(1 = )

n<k2
by (4.35), which proves the lemma.
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TaroreM 4.41. For any f(x) defined as in § 4.2, we have

S4(z) = o j REE-1 L) Vy,re (RY db, (4.43)
0
provided that & > (k — 1)/2.

Proor. There exists a sequence of exponential polynomials
{ff@?}, r=1,2, .., such that

lim j @) — f(@)| day...dm, =0
E

uniformly in all unit spheres E. This implics that

}{:I:o b:tl I anl...ﬂk’ (4'44)
where b} . is defined as in (4.42). Let the Ricsz mean corres-
ponding to f’(x) be denoted by

n\* Tz
Shlw; f1) = 22(1 _‘E?;;) by, g €517 5 (4.45)
n<R

then we have already seen, in Lemma 4.41, that

S5 s ) = 0 B [ #71 1100) Vapu OR) dt
0
Keeping R fixed, we let r—- oo, and show that

]

lim 8%(z; f) = lime R"J.t"”lf;(t) Visire (ER) dt
r—> 0 r—> 0
0

(4.46)

oG

=c R"Jt"‘lf,(t) Vosue (LR) dt
0
uniformly in x. This is seen as follows. Let

© 1

R [ 0~ 201 Ven @B e = [ + [ =14 1
0 1

0

say. Using relations (4.26) and (4.33), we obtain

L=0 (j L0 — S0 #71dt) = o),
0
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©

and

£ = Fi)] £ )

I 2 = 0
1
jt ~ki2-172 d¢) = o(1),
1
as 7 — oo, since, for an arbitrary ¢ > 0, we have, for t > ¢, and
r > To,
¢
o) = [ 1) — 0] 47 ds < o,
0
by (4.27). This establishes (4.46). Thus, for each 7, the function
83 (xz; f7) is periodic, and the sequence converges uniformly in z
as r — oo ; therefore the limit-function is again periodic, and its
Fourier series is the formal limit of the right side of (4.45). Using
(4.44), we sce that the limit-function has the Fourier series
8
iInjz; .
n;zz (1 - —E2) ny..m © A
therefore
lim 8z ;f") = Si(),

n— o

and this, in conjunction with (4.46), yields the formula (4.43).

4.5. Summability theorems

We shall now prove a few results on the summability and
convergence of multiple Fourier series by making use of Bochner’s
formula. Before doing so, we wish to observe that if the order
of summability is sufficiently high, then the summability of the
series at a point z depends only on the behaviour of the function in
a neighbourhood of that point.

Lemma 4.51. If 5 > 0 and 6 > (k — 1)/2, then
R* J =1 £(8) V siap2(tR) dt = o(1),

n
as R — oo, uniformly for all z.
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Proor. We have, on using (4.33),

o o

o , I 1 et
! R¥ j.tk_lf:r(t) Voirp(tR) dti =0 [ Ro:m;r/’zj "tmie{fl()i/‘)z"l' dt]

1y n

© t
1 ar ,
= [ Ro’z?il'ii/'zj t'a;(‘zm)?z] - F) =

[ #1501,

7 0

1
=0 (R‘a:’(,g;‘mg) = o(l),

by (4.25), which proves the lemna.
Combining this lemma with formula (4.41), we obtain

THEOREM 4.51. Riesz summability (n, 8) for 6 > (k — 1)/2 is a
“local property’ for multiple Fourier series summed spherically.

Because of Theorem 4.51, we can state several simple conditions
for summability of order & when & cxceeds 4(k — 1); one such
condition is embodied in the following

TaroreEM 4.52. If f.(t)—last-—>0, for a fixzed x, or more
generally, if

t

lim ¢ [s"‘l [f(8) — I ds =0,
t—0 J

then
lim Sp@x) =1, § > (k — 1)/2.

R— o
Proor. On account of (4.37), we may assume that [ = 0
without loss of generality. Choose 1 > 0 arbitrarily, and dofine
F(t) a3 in Lemma 4.51. In view of Lemma 4.51, we have only to
prove that ’
7
I B[ B0 VoptR) = o),
0

as R -— . This follows from the fact that
1/R 1/R

I, T:l: J :] = 0 [:R" J =l f ()] de :I by (4.33);

0
= o(1), a8 B — oo,



118 APPLICATIONS TO FOURIER SERIES [Cu. IV

Iy [ | ] =0 [Rk | #r s aryomers dt]
1/

1/R

”n
— - 6+k/2—1/2
=0 l:R j t6+kl2+1/2]

1/R

7

8 4kE-12 F@)y F@)dt
- 04 k/2—-1/2 \
=0 ( L ) I (idﬁfl?/ﬂl/z)lllc_f— j RT3

1/R
= o(1),

as R— o0, if § > (b — 1)/2.

and

The hypothesis on f in the foregoing theorem is in the nature
of & restriction on its continuity, in the neighbourhood of a fixed
point, and the conclusion is the summability of the Fourier series for
8 > (k — 1)/2. If we impose another hypothesis on the order of the
Fourier coefficients (or, what is the same, on the partial sums), it
should be possible to reduce the order of summability by the use
of Theorem 1.81, and, in special cases, to derive ordinary con-
vergence. Actually we shall see that it is possible to tie up the two
hypotheses in such a way that when the continuity-condition on
the function is strengthened, the order-condition on the Fourier
coefficients is correspondingly weakened, the two together yielding
summability of order y where 0 <y < (k—1)/2. We need two
preliminary lemmas.

LeMMA 4.52. If r(n) denotes the number of lattice points on the
spherex? + ... + a2 = n, then

r(n) = O (W**-1%%) ¢ > 0.
Further

Ryx) = ¥ rn) = a2 {D(k/2 + 1)} ' o¥2 4 O@F2-HE+D),

nge

Lemma 4.53. If at a point ,
) —1=0(%,6 >0
then
Six) ~1=0(R™%,0 >0+ (k — 1)/2.
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Proor. As before, we may assume that I = 0. We have

SH6) = & | B0 Vs pa R

0
1/R n

[[ 4 [ +f].—.~1, N AR A

0 R %

say. Asin Lemma 4.51, we obtain

1 S
1= 0 (o) = OR8> (k- 1)12 40,

Again
I, =0 (R,
using the hypothesis on f,(t), while

7
I, =0 |: “ ¥ 0124 (1) :‘ =0 (R,
n
ford > 0 + (k — 1)/2.

THEOREM 4.53. If at a point x, we have

Sy —1=0("0 >0, (4.51)
and
Wy = O (0 4o +m) 7, (4.52)
where
a=(k/2) — {0 +B)/ (6 —B)}, f >0,6>%(k~1)+0,
then Sfx) — 1 =0 (1).

Proowr. Hypothesis (4.51) implies, in virtue of Lemma 4.53, that
Spx) — 1l =0 (R, (4.53)
for 6 > 0and é > (k — 1)/2 + 0. Again, fort = O(R),
S{(R A+ - SR < ¥ [4,@)]

R<n<R+t

== X lanl...nkI
R<n<H+!
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—O[Y {0 + . 7D
=0 ( Y rin) n“‘)

R<n R+t
R+t
:0( [dommﬂ
R
Ot R, (454)

by partial integration and an application of the second part of
Lemma 4.52.

Now by applying Theorem .81 we deduce that

2 o-p (5 )4 p(-0)- "l ogy
, A i Lo ' 2 2
SW)Jxo[R”‘ 202 ]

for 0 -2 B < 4. The exponent of R will be zero if

0 —B)(k/2 —a) =30 (1 + p),
which will certainly hold if

kA )
2 20— p)

REMARKs. (i). In(4.51) and (4.52) the 0 and O can be interchanged.

(ii). The result holds for 0 = 0 because, in that case, Theorem 4.52
will take the place of Lemma 4.53.

(iii). Given any 6 > 0, for a = k/2 — 0/2y. where y is some
number exceeding (A - 1)/2 4 6, we have ordinary convergence at z.

(iv). If 0 = 0 and a =£k/2, then too we have convergence at .

4.6. Derived Fourier series

In this section we shall consider the summability of series
obtained by successively applying the Laplacian to a given
Fourier series. We shall actually prove a generalization of
Theorem 4.52. The proof is based on the idea that we can
differentiate Bochner’s formula.
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Conforming to the notation z = (z,....,2;), we set
@) =4 + . +22]"

We shall say that f(x) = f(x,.....x;) has a zero at the point x if

lim !E?"‘j }}f(x] &, o E)NAELLAE -0,
N )
E¢
where £, denotes the k-dimensional sphere of radius |&| with the
origin as centre. If ¢ is a non-negative integer. we shall sayv that
f(x) has a q-fold zero at x, if
lim [&!°% [ J!f(;v + &)L ETdE L dE, -0,
& =0 J
Fg
If we write the spherical mean of | f(x)| as f',,(t) then this condition
amounts to saving that

£

lim ,‘k\" F k—-1-g Il —
im e F() =1-dt — 0,

THEOREM 4.61. For every point x at which

€

lim ¢~ jf,,(t) 1=t =0,
e->0
0
we have
lim AZ Sp@x) =0, 6 >2q + (k — 1)/2,

R—>w

where q is @ non-negative integer, and

. a.! aZ~r]
,__(-.a;lé—- “é“z?) :

Proor. We have

«w

i) = ¢ R* jm B1V,,0n (LR) dt.
(1]

Set
¢, R*1 17,0 ((R) = H, (R).
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Then
84) — RI J,f(x + &) f’%ﬁ‘f’ dé, ..z,
= j Jf(é) H"U"_Ew B) ge,..ae,.  (a.61)

—

Now, by a change of variable, we sec that

[c2]

RJ jf(s) prHs ( ?”.;‘g,f_‘ﬁ). de,...dg, (4.62)
- RJ... jf(q LE) A [ Elf{fe)]dcl E. (4.63)
Further
: O(REVF20) [ as |1 -0,
At H-"%i@ = (4.64)
14 O(|§[+~#~*R~1~*), as |§|— o,

for some & > 0, since for a function f(x,,...,z,) whose value depends
only on the radius|xz| = r, we have

& (k—1)d ]v
« == — —— - [—
azf [drz.* rdr f

and we have then only to use (4.36) and (4.33). Using (4.64) in (4.63),
we easily obtain

o Hs(|§|R f
!R j If<x+ £) A? ._w‘;,{}tll_) .8y (4.65)
1/R © -
ol mn [oeray e [ F0 )

0O 1/R
= I 1 + I 2
say. We shall show that (4.65) is finite for each fixed R, and tends to

zero as R — oo, provided that 6 > (k — 1)/2 + 2¢q. For
1/R

|1,| =0 [R* Jf,(t) 12 dt:‘

0
= o(1), a8 R — oo,
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and
"

I, - |: J + j] =1y A Iy,
/R 7
say, where # is chosen so small that in the interval (0, %) the hypo-
thesis on f,(t) operates. Now

- Ll -
— Fe)y" F()

VR

where

for 1/ -2t <7n. Hence
12,1 = O(l),

as B — oco. In [,, we use (4.25) with fl(t) in place of f,(t), and by
an argument similar to the one employed in Lemma 4.51, prove
that

1,5 =o0(1), a8 B— oo.

Hence (4.62) is finite for cach R, and from (4.61) we sce that it
is equal to A? Sf(x). We have further proved that this tends to
zero a8 R —- oo for & > (I - 1),2 4 2¢, which completes the proof
of the theorcem.

We shall now show that given any function f(z) € L, which is
periodic, if it is differentiable in a neighbourhood of a given point,
we oan then subtract an exponential polynomial from it such that
the difference has all its derivatives equal to zero at the point near
which differentiability is assumed. We need the following

Lrmma 4.61. If k >1, 0 <n < o, and if the numbers a

"l"'"’
are arbitrarily given for 0 <n; <n, 0 <7y, < 7,...,0 < n, <,
then there exists an exponential polynomial

" "

P,,...%) = X .. I €. €™F
ry=0 rE=0
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such that
ot tng P)
PR = q .
(axl”l...axk"k 2= (0) Ny... 0]

Proor. 1If arbitrary numbers b, 0<mnnj=1,..k,

e R
are given, then there exists an ordinary polynomial
n N

Q(yl""’yk):: X ... X ds,...sky{l"'ylgk

8,=0 8.=0

<anl+...+qu)
gz Tk ) )
oy 0yt Jy- et

namely the one with d gl o =0 . Now the transformation
Ny g 1 k Ry kg

such that

Y€ 1y = T ]
transforms a P(xr) into o ¢(y) and conversely, under prescrvation
of n, and for assigned values of «, , this leads to values
bn]m,,‘ . and inversely from the b's to the a’s. and hence the lemma.

REMaRk. By a suitable change of co-ordinates. it can be seen
that the lemma holds at any point #, not necessarily the origin.

THEOREM 4.62. If f(x) (defined as in §4.2) has continuous deriva-
lives of total order < 2qin a neighbourhood of the point & -~ x,, then
at that point we have

lim [ASS{(@) — ALf@)] = 0

R— o
Jor 0 > (k—1)/2 -+ 2q.

Proor. The conolusion is trivial when f(2) is an exponential
polynomial P(z). In the general case, on account of Lemma 4.61,
we may write f(x) = P(x) + ¢(z), where for ¢(z) all partial deriva-
tives of total order < 2g are zero at the point z = x,. But ¢(x)
has also continuous derivatives of order 2¢ in & neighbourhood
of z, therefore it satisfies the condition of Theorem 4.61, from which
the conclusion follows.

We shall next prove a theorem where the hypotheses are of
a composite nature, consisting of ‘local’ differentiability of the
function as in Theorem 4.62, and a restriction on the order of magni-
tude of the Fourier coefficients.
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THEOREM 4.63. If A, = O(n°), then at a point z in a neighbour-
hood of which f(x) possesses partial deritvatives of all orders, the series
Y A,n"* is summable (n, d), for 6 > 0and 6 > 2a + 1 + 2h.

Proor. By Theorem 4.62, we find that ¥A4,»%is summable
(n, 6) for 6 > (k — 1)/2 + 2q, where ¢ is a non-negative integer.
Since 4,77 = O (n**9), it follows from Corollary 3.71 that 4 n* is
summable (n, ) for > 0, and

(@ +q+1) (6 —n)
—h> ,
g—8=> s¥1
or
(@—h) (8 +1)
> — =71 7,
7 atg+1

Since 6 may be any number greater than (k — 1)/2 4 2g, this implies

that any

k—1)/2}(@a+1+h)+h+29(at+}+h)
a+gq+1 -

is admissible. Given k, a, h, since ¢ may be chosen as large as we

please, the theorem is true for n > 2a + 1 + 2 A.

7>

4.7. Summations over lattice points
Let
7e(n) = z 1
n%+...+n§—n
for integral values of =, ; representations of » which differ only
in sign or order being counted as distinct. Let
Ryz) = Y ryn),

n<r
the dash denoting that the last term should be replaced by % r,.(z)
if z is an integer. It is well known that R,(z) can be represented as
a series of Bessel functions. In the case k = 2, the following
identity is classical :

L

Ryw) = nzx — 22 z ram) J, (22 ‘L(-”—’Q]. (4.71)

n1/2

n=1

For general [, the scries representing I?k(a:) is no longer
convergent but summable. Thus it is known that the series
2 n(n) Jye[ 27 v/ (na)] n=*" (4.72)
16



126 APPLICATIONS TO FOURIER SERIES [Cu. IV

is summable (n, 8) for § > (k — 3)/2, and not summable for
6 = (k — 3)/2. We shall show that the above expansion is a
(spherical) multiple Fourier Series of a simple function at the origin,
and then apply the foregoing theorems to study its summability.
For this, we need the following lemmas.

LemMa 4.71. For f > — 1, let
k B

[&2 —(E x,z)] Jif Tat < €2,
1

0,if Taf > £

g(xl»"" xk) =

Let

@

f@yez) =3 .. Tgle, + ot + 1) (4.73)

pp=—
where {p,} are integers. Then f(x,,..., %) is a periodic function
with period 1 in each variable, which belongs to L, and its Fourier
coefficients are given by

. _ EPHE2 TV(B 4 1) n—ﬁJﬁH/z (2r&+/n) (4.74)

[/ = T B M. A
Nyee Nk (n? + . + n%)ﬁ/z+k/4

and
_ DB A 1)
O,....0 = TE +1+k2

Proor. We have

1/2

—2niZnjz;
aﬂx...nk = j"' Jf(xl’---’ xk)e d.’tl...dxk

-1/2

= I j g(®@,eees Z) e_z’".z”jz"dar:1 o dzy

¢
= (2n)k/2j (&% — BPE1V, o, (2t4/n)dL.
0
We now obtain the required result if we use (4.34).

We observe that the function in (4.73) is differentiable in a
neighbourhood of the origin, and its Fourier series is therefore
summable (n, 8) for > (k—1)/2 at the origin. We can writedown the
series by using (4.74), and by an appeal to Theorem 4.52, obtain
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THEOREM 4.71. If £2 is non-integral,
T (&% — 0 r(n)
n<é

. n \®VE+e p(n) Jp 4 (2REA/0)
shmleata> (o) T |

n<R2

This theorem does not yield the identity (4.71) for k = 2, because
the series on the right has been proved to be only summable (n, 3) for
0 > 3. We can, however, obtain a result which does yield the
identity as a special case, if we appeal to Theorem 4.63, by noting
that

r(n) = O{n®-DR+e}

as in Lemma 4.52.

THEOREM 4.72. If &2 is non-integral, then
T n(n) Jyjerp (27 & /n)0
18 summable (n, ) forn >0 and 1 < 3/4 —k/2 + /2,8 > — 1.
Proor. If £% is non-integral, the function f(z,,...,x,) defined

in (4.73) is infinitely differentiable in a neighbourhood of the origin,

and its Fourier coefficients satisfy the condition
A "= O{n(k- 2)/2+ s-—k/4—ﬁ/2-—1/4}

= O{n(k—5)/4-—ﬂ/2+ e} ,

m the notation of (4.21). Applying Theorem 4.63 now, we find that
Z 7(n) Jrjgis (2 7 & V/R)0P

nFATPE

is summable (n,%) for n > (¢ — 3)/2 — B 4 2 p. Setting
Il =p —k/4 — B/2, we observe that Tr(n)y .42 = & 4/n) o' is
summable (n, ) for n > 21 4+ &k — 3/2.

4.8. Absolute summability

In this section we shall consider the analogues, for absolute
summability, of some of the foregoing theorems. If we aim at
summability |n, 8| for 8 > (k — 1)/2 at a point 2, we have to
impose conditions on f,(¢) in the entire interval 0 < ¢ < co; if we
consider the case 6 > (k + 1)/2, however, we can prove that
summability |, 8 | is a local property.
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THEOREM 4.81. For a fixed z, if we have

[ 1201 = o,

0

then .
f |d83@)| = 0Q1), for & > (k — 1)/2.
PROOF. Se:ting p(u) = w1V, 0, 5(w),
and vi(u) = f p(v) dv,

0
we find, for § > (¢ — 1)/2, that
p) =0w™'"%), &>0, (4.81)

as 4 — 0. Now

¢ Si() = R j P(R)f(1) dt = jf,w dy, (tR)
0 0

©

[ rowen ] - [wem ao

0

so that, by (4.37),

@

6, [82@) — £+ )] = — | dfuct)
= — [ ar0
0
R

w(u) du

t y(ut) du

Ol by CC——

= — |du
8
the last step being justified by (4.81) and the hypothesis on f(t).
Substituting for y, we get

] -4 @©

cj |dS3(x)| < J'“'k_l du I jﬁvd+kl2 (ut) df(t) l
0

0

ty(ul) df(1),  (4.82)

Oty g



$4.8] APPLICATIONS TO FOURIER SERIES 129

<Ju" 1 duj B Vyne s ()] |40
0

=j 1 df.()] . ju"" | Vijaro (ud)| du,
(1]

0
which is justified since > (k — 1)/2 (in view of (4.33) ).

If

I = J.uk-l‘ Vk/2+o(ut)‘ du
0

=[I+T]EII+I2,
1t
I, =0 [6‘. u"“du] = 0(t™%),

say, we have

and
I;=0 [gm—ﬁl;cl/z J “”2'6"3/2”1“] = 0(t™),
1/t
so that
I=0(@",
and hence

fldsg(x)l =0 [ fldfz(t)i:l =

0

ReMARk. The integral f(df,(t) |should be interpreted as

,%ojldfz«

We next prove the analogue for the ¢-th Laplacian of 8j3(z),
where ¢ is a non-negative integer, as before.
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THEOREM 4.82. If

ldf,()|t=* = 0(1),

Sty g

then

.

jde Az 82) = 0(1),
0

for 8 > (k — 1)/2 + 24.

Proor. As in the proof of Theorem 4.61, we use the relation

ALSH@) = R[ jf(a: +£)A?H‘i’(51lfal——f” dt,...dE, .
We write )
AE (I&-'R)k._l P(IE|R)’
and
&1 P('S) == Q(-S'),
so that

@

AL Si@) = R j £.00) QUR) de.
0

Using the estimate

Q@) = O(s™%~*71), e > 0,
as s — oo, which is obtained from (4.64), and proceeding as in
(4.82), we obtain

o0

j |dg AL 82@) | < j 5| df,(e)| j |QeR)| dR
0 0 0
- 0[ j e-mdf,(s)l] — o),
0

[ |Q@R)|dR = O(s=51),
0

@

since
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which can be seen as follows :

1/s 1/s
[1eumiar - oU o R"“‘*’“dR] . O(s-%-1)
0 0

and

|1eemiar -0 [ [ oo dR:l _ %),
1/‘ 1/‘
on account of the estimate (4.64).

A remark similar to the one made at the end of the previous
theorem applies here as well. We shall next prove that summability
In, 6| of a sufficiently high order is a local property.

THEOREM 4.83. Riesz summability |n, 6| for 6 > (k + 1)/2 is
a ‘local’ property for Fourier series.
Proor. Let

C2TR2 1) [
fir) = W!t" £, (¢) dt.

Integrating Bochner’s formula, given in (4.43), by parts once, and
using the fact that f1(r) = O(r¥), as r— 0, we obtain
820) = 6B [ B4 Vi R) d

0
©

— o R¥+? j BH1Y0) Vspn(R) d,
0

provided that § > (k — 1)/2. In the same manner as in (4.82), we
show that

j|dsg(x)| — j iR | R+ j #+2Y, ., (ER) dfN(E) ‘
0

=de;Rk+x[j+f];

= J dR|I, + I,|, say. (4.83)
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We show that
‘(IlzldR < oo, for 6 > (k + 1)/2. (4.84)
We first observe that
2150} = {ah0 + a0}

using this in Iy, we have

Iy = ¢, R¥* | 411 (1) Viporoyq(tR) dt

:t——-ﬁs

+ ey R j BH11(0) Vi osa(tR) di
n

= IZ,I + 12,2,
say. Now
1 [ a
112,21 = 0 (Rd—l—k/2+3/2) J td-l_k/2+3/2
n
1
=0 (m) (4.85)
if 8 > (k + 1)/2, since f1(t) = O(1) as t — + . And
1
5| =0 ( -Rjtitﬂz“;'ﬂé)’ (4.86)

if 6 > (k + 1)/2, as in the proof of Lemma 4.51. (4.85) and (4.86)
prove (4.84); if the latter is used in (4.83), we see that a necessary
and sufficient condition for the validity of [|dS]|= 0 (1) is
that |1, |dR = O (1), which proves the theorem.

4.9. Necessary and sufficient conditions for summability
In the foregoing sections we have considered various conditions
which are sufficient for the summability (ordinary or absolute) of a
Fourier series at a given point. It is possible similarly to prove
that certain conditions are necessary for the summability of & Fourier
series at a given point. To demonstrate this, we consider the spherical
mean f,(t) as the mean of order zero, and define spherical means
of higher order in analogy with Riesz means of series. We then
prove that if the Fourier series is summable to a sum [ at a point,
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then the spherical mean, of some order, of the function tends to
l as t—-0. We prove the converse proposition by a slight extension
of Theorem 4.52. Combining the two, we state a necessary and
sufficient condition for the summability of the series at a point.
We next prove the analogue for absolute summability.

We define

r

1 R .
@, (1) == 21'—1"1‘*@4) J (r* — P11 () db, p > 0,
0

_ 22T @a,p(r)
fz,p(r) == W . r[_;“g’;;:—.j s

fz, 0(1') = fx(r)’ as ill §42
It is easily verified that

p >0,

1 r 2\
Tl = v J F — eyip, O d,  (491)

if p + ¢ > 1, and hence it follows that
,

N k)2 o e Lite it
fI, P+ ll('r) = P(p+k/(2p; F(q)/r2;-+3))+k_2— j (rz_,tl) ltll h ljx,p(t) dt'

(4.92)
It is easy to see that

Jen(®) = 0(1) (4.93)

forp > 1,ast— 0. For

t/z 1)1 =0 |: ;7 J wk~! § ./..r, o(w)] du:’

0
= 0(1),
by (4.2). Using this in formula (4.92), we obtain (4.93).

We now generalize Bochner’s formula (4.43), so as to admit
spherical means of order greater than zero.

THrOREM 4.91. If p is a positive integer, then

PG

Sp(r) = ey B :"j HEE A, o) Voypiun(R) dt,  (4.94)
0
provided that 8 > p + (k — 3)/2. If p =0, we require 6 > (k — 1)/2.
17
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Proor. We have only to integrate by parts, (p — 1) times, the
right side of the formula

S3(@) = ¢, R j F, o(0) VopenltR) di,
0

each time using
t

() G piall) = ja%, (5) d,
[1]
@) £, = 0(), asin (4.93), and

(iii) di:c [Vix)] = — 2V ,4, (=), a8 in (4.36).

From Theorem 4.91 we deduce the following
THEOREM 4.92. If, at a point x, we have
lim f,, () = 1,
t->0
for a non-negative integer p, then at that point
lim Sjx) =18 >p+ (k — 1))2.

R—>c

The proof of this theorem follows from Theorem 4.91, in the

same manner as the proof of Theorem 4.52 follows from that of
Theorem 4.41.

Again we have a result on absolute summability.

THEOREM 4.93. If

0

[ 4. ,01= o,

Jor a non-negative integer p, then
e

[ lasi@) - 0.6 > p + 6~ e
0
The proof of this theorem follows from that of Theorem 4.91,

in the same manner as the proof of Theorem 4.81 follows from
that of Theorem 4.41.

We now proceed to state some converse theorems. For this
purpose we first need a formula which is a ‘ converse ’ of (4.94).
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THEOREM 4.94. Ifp > 1,and 6 > (k — 1)/2, then
f:r,p(y) = Cs?/””j Slg(x) R2+1 VorarepR)dR.  (4.95)
0
Proor. From the definition of 8 as

z 8
Sp(@) = Z(l ~-1%2) A@),n <R <n+1,

r=0

and the estimate for r,(n) in Lemma 4.52, it follows that
Sj(x) = o(R¥), as R — o,

if we note that the Fourier coefficients of a function in L, tend to
zero. Hence the integral

I = yz"*zj R¥+180(x) V,(Ry) dR (4.96)

0
converges for y > 24 + 3/2. Hence, using formula (4.94) in the
case p = 0, we get
@

26+ 2

I=cy

ey

ROV, (By) R 871 £,0) Vo atR) d
0

tFR=0=1 f o(t) di j REEHONI=7 ] p(ER) T (Y R) AR,
0
as the double integral is absolutely convergent. Hence, by (4.35),
v
%

I = gémj‘k”fz.o(t) (y* — 37— 2=k2=1 gy

/—26—2

<<

1

'§i*°
ob———,s <

0
= c5fz,p (y)’
where p =y — 6 —k/2, y > 24 + 3/2,8 > (k — 1)/2, which proves
the theorem.
Remark. Here p need not be an integer.

Using formula (4.95), we now prove some converse theorems.

TueorEM 4.95. If Sh(x)—las R— o, then f, ,(y) —1 as y —0,
provided that
p> max {1, y — (k — 3)/2}.
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Proor. We may assume that [ = 0, without loss of generality,
on account of (4.37). If y > (k — 1)/2, we choose § = y; if
y < (k — 1)/2, we choose & = (k — 1)/2 + 0, 6 > 0. With this
choice of 8, we make use of formula (4.95). We may write the
integral I from the previous theorem as

w

I."Cy%!—?[j +j] =1+ 1,
0

w

say, and obtain

wy
J. (@ |
o [P el |

0
= o(1),
as y — 0, and

Il =0 [ y2a+2J R+ Vp+6+k/2(?/R){dR:|

=U ~,l"+}:+”‘ 2)| dz]

"o
== o(1),

if p>6 — (k — 8)/2. Thus I == o(1), for p > max {1,y — (k— 3)/2},

and the theorem is proved.

Analogously we obtain

THEOREM 4.96. If
[]dslg(x)l = 0(1),
0

then

o

j \df, (1) = O(1),

0

for p > max {1,6 — (k — 3)/2}.

Proor. We have only to use the formula in Theorem 4.95, and
adopt the same argument as in Theorem 4.81.

Combining Theorems 4.92 and 4.95, we obtain
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THEOREM 4.97. A necessary and sufficient condition that a
multiple Fourier series of a function f(x) should be summable at a
point x is that the spherical mean f,,(t). of some order p. of the
Junction should have a finite limit as t — 0.

Combining Theorems 4.93 and 4.96, we obtain

THEOREM 4.98. A mnecessary and sufficient condition that the
multiple Fourier series of a function f(x) should be absolutely summable
at a point x is that the spherical mean f,,(t) should satisfy the
condition

j \df,,,(6)] = 0(1)

for some p.

NOTES ON CHAPTER 1V

§4.1. Throughout this chapter we confine attention to the spherical
summation of multiple Fourier series, since it affords a good illustra-
tion of the use of typical means, and facilitates a unified treatment.

The literature that exists in th~ case & = 1 is so vast that, for the
sake of convenicence, we give only the most obvious references. Fuller
information can be obtained from the references contained in the
papers cited hereunder, and from A. Zygmund, Trigonometrical series,
Warsaw (1935).

§4.2. TFor the spherical summation of multiple Fourier series and
integrals see S. Bochner, Trans. American Math. Soc. 40 (1936),
175-207.

§4.3. For the properties of Bessel functions see G. N. Watson,
A treatise onm Bessel functions, Cambridge (1922). In particular, for
(4.34) see p. 372, and for (4.37) see p. 392. For (4.35) sce E. C. Titchmarsh,
Introduction to the theory of Fourier integrals, Oxford (1937), 183.

§4.4. For formula (4.41) see S. Bochner, loc. cit. For an alternative
approach see S. Minakshisundaram, American Jour. Math. 71 (1949),
60-66. For further -generalizations see K. Chandrasekharan, Proc.
London Math. Soc. 50 (1948), 210-229. Also see S. Bochner and
K. Chandrasekharan, American Jour. Math. 71 (1949), 50-59.
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§4.5. Theorem 4.52 ceases to hold if é = (¢ — 1)/2, and this value of
4 istherefore called the critical exponent. If%Z >1, 8. Bochner has shown
(loc. cit., 193) that there exists a periodic and Lebesgue-integrable
function f(z) which vanishes in a neighbourhood of the origin,
such that lim sup 8% "% (0) = 0. For further information on the
critical case see S. Bochner and K. Chandrasekharan, Annals of
Math. 49 (1948). 966-978.

For Lemma 4.52 sce A. Walfisz, Math. Zeitschrift, 19 (1924),
300-307.

For Lemma 4.53 see K. Chandrasekharan, Proc. London Math. Soc.
50 (1048), 219. For the original version of Theorem 4.53 with
p =0, k = 2, sce K. Chandrasekharan and S. Minakshisundaram, Duke
Math. Journal 14 (1947), 731-753.

If £ = 1, Theorem 4.51 is true for ¢ == (¢ —1)/2 since convergence
is known to be a ‘local’ property for ordinary Fourier series. See
B. Riemann, Ges. Werke, Aufl. 2, Leipzig (1892), 227.271. Theorem
4.52 yields, in the casc k == 1, a generalization of Fejér's theorem, sec
G. H. Hardy, Proc. London Math. Soc. 12 (1913), 365-372. For the
case k = 1 of Lemma 4.53 see N. Obhrechkofl, Bull. Soc. Math. 62
(1934), 84-109.

§4.6. For the summability of derived (multiple) Fourier Series
see S. Bochner, Annals of Math. 37 (1936), 345-356. For Lemma 4.61
and Theorems 4.62 and 4.63 see S. Bochner and K. Chandrasekharan,
Acta Szeged, X1II B (1950), 1-15.

For the formula for the Laplacian of a radial {function, used in the
proof of Theorem 4.61, sec R. Courant and D. Hilbert, Methoden der
mathematischen Physik, 11, Berlin (1937), 227.

§4.7. For litcerature pertaining to summations over lattice points
see S. Bochner and K. Chandrasekharan, Quarterly Jour. Math.
(Oxford) 19 (1948), 238-248, (2) (1950), 80 and Acta Szeged, loc. cit.

§4.8. For Theorems 4.81 and 4.83 on the absolute summability of
Fourier series see K. Chandrasekharan, Proc. London Math. Soc. 50
(1948), 223-229. Theorem 4.82 is due to appear in a paper by
S. Bochner and K. Chandrasekharan.

The case k£ = 1 of Theorcm 4.81 is due to L. S. Bosanquet, Jour.
London Math. Soc. 11 (1936), 11-15. Theorem 4.83 has been proved
to be ‘ best-possible’ if £ = 1 by L. 8. Bosanquet and H. Kestelman,
Proc. Lendon Math. Soc. 45 (1939), 88-97.
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§4.9. For a definition of the higher spherical means, and for
Theorems 4.91-4.98, see K. Chandrasekharan, Proc. London Math. Soc.
50 (1948), 210-229. Theorems 4.91-4.93 are valid without the res-
triction that p is integral.

It is clear that if f, ,(£)—> 0, as ¢ > 0, then f, () > 0, as t -0, forg > p
(cf. first theorem of consistency). In the proof of Theorem 4.94,
we use the Riemann-Lebesgue lemma for several variables. Sec
S. Bochner and K. Chandrasekharan, Fourier transforms, Princeton
(1949), 57.

For Theorem 4.92 in the case k¥ = 1, 0 < p <C 1, see G. H. Hardy
and J. E. Littlewood, Proc. Cambridge Phil. Soc. 23 (1927), 681-684.
For the casek = 1,p > 0, of Theorems 4.92 and 4.95 see I.. 8. Bosanquet,
Proc. London Math. Soc. 31 (1930), 144-164; R. E. A. C. Paley, Proc.
Cambridge Phil. Soc. 26 (1930), 173-203; S. Verblunsky, ibid., 152-157.
For Theorems 4.93 and 4.96 in the case &k = 1 see L. S. Bosanquet,
Proc. London Math. Soc. 41 (1936), 517-528. For the case & == 1 of
Theorem 4.97, which effects a solution of the ‘summability problem’
for Fourier series, see G. H. Hardy and J. E. Littlewood, Math.
Zeitschrift, 19 (1924), 67-96, and for the corresponding case of
Theorem 4.98 see L. S. Bosanquet and J. M. Hyslop, Math. Zeitschrift,
42 (1937), 489-512.
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