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PREFACE

THIS book deals with the theory of 'typical means' and its

applications to Dirichlet series and Fourier series. More than

forty years have now passed since
*

typical means' were first

introduced by M. Riesz for the summation of divergent series, and

quite an extensive theory has developed during this period. We
have attempted here to give a systematic account of this develop-

ment. Readers of our account will hardly need to be told how

much we owe to the Cambridge tract by Hardy and Riesz on the

general theory of Dirichlet series.

We wish to acknowledge our indebtedness to Dr. L. S.

Bosanquet, who has read the proofs and helped us to remove

many errors and obscurities. His comments have stimulated us

to improve the text in several places.

K.C.

S. M.

May 1952
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TYPICAL MEANS





FIRST THEOREM OF CONSISTENCY AND
SOME CONVERSE THEOREMS

1.1. Introduction

IN this chapter we define the Riesz means of infinite series.

The Riesz means have a certain type A and a certain order k ;

correspondingly we define the summability (A, k) of series,

which reduces to convergence for k = 0. After establishing some

relations between Riesz means of the same type but of different

orders, we prove that if a series is summable (A,&), k > 0, then it is

also summable (A,fc') for k' >k. This is called the first theorem

of consistency. We then study the converse problem. Knowing
the order of magnitude of the Riesz mean (A, k), we determine the

order of magnitude of the Riesz mean (A, r), r < k. This leads us to

the fundamental theorem of M. Riesz, which imposes order-condi-

tions on the Riesz means (A, k) and (A, 0), and shows that they

imply a restriction on the order of magnitude of the intermediate

Riesz means (A, r) for < r < k. We next use this theorem to prove

Tauberian results. We assume that a series 2an is summable

(A, k), k > 0, and that its terms {an } satisfy some appropriate order-

condition, and deduce that S&n converges. We also define the

notion of absolute summability (A, fc), which generalizes the notioja

of absolute convergence, and prove the analogue of the first

theorem of consistency.
00

DEFINITION OF RIESZ SUMMABILITY. Let 2 an be an infinite
M o

series, and let {An }
be an arbitrary sequence of positive numbers

such that

< A < A! < A2 < ... < Aw -> oo.

We write

A n a + % + + n

and if t > 0, An < t < An+1 , then

Ai(t) 35 An
= a + + an - 2 a, ,
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and for k > 0,

A\(t)~ I (-*>,

We define ^(0 =s A^(t), and if * < / , 4$(*) s for every * > 0.

^A(0 is a discontinuous function, being constant in intervals, while

A\(t) is a continuous function of t for k > in fact, absolutely

continuous in every finite interval if < fc < 1, and differentiable

with continuous derivatives if k > 1. Actually we have

and if A- is an integer, and <

If we write

/7*/r\ r -fr jAr/r \

A\ / A\ />

then Cj[(#) is called the Riesz mean of order k and type A, while

A\(x) is called the Riesz sum of order k and type A associated with

the series San .

DEFINITION 1.11. // lim C\(x) = 5 exists, where s is finite, we say
X-+OD

that an is summable by Riesz means of order k and type A, or

simply , summable (R ; A, k) to the sum s.

DEFINITION 1.12. // C\(x) = 0(1), then San is said to be bounded

DEFINITION 1.13. //J \dC\(x)\ < oo, h > 0, we say that I>an
h

is absolutely summable by Riesz means of order k and type A, or

simply, summable I R ; A, k\ .
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When k = 0, Definitions 1.11 and 1.13 lead to convergence and

absolute convergence respectively.

Since we are only concerned with Riesz; suminability in the

following pages, we omit the
' R '

in the definition, and speak of

summability (A, k) and A, k\ respectively.

1.2. Relations between different Riesz sums
We shall establish here some of the formulae used frequently in

our later sections.

In the first place, we prove certain relations between Riesz sums

of different orders.

If k > 0, I > 0, then

If k > 0, < I < 1, I < k, or I = k and x ^ A w ,
then

(L22)

PROOF OF (1.21).

*
,

a-

{(x
- O^ 1

A\ (t) dt ==k [(x - O
1
- 1

dt { (t
-

u)
k ~ l A A (u) du00

x x

- k
j

A * (u) du [ (x
-

t)
1
" 1

(t
-

w)*-
1

rf

l }<

PROOF OF (1.22).

-1 + 1

r(4 - 1 + 2) _
(1 -/)' di

"b

~f
)'d*J
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By partial integration and differentiation, we obtain (1.22).

We next establish a relation between Riesz sums of different

types. Let /I(<T) be a positive, non-decreasing function of a diverging

to infinity with or, and let us set ^(An )
=

/*m so that

< ^o < Pi < 2 < - - <
and

where

We observe that if t = /(T), then J^(<) = A
ft[ft,(r)]

=
and if co = p(x), then

X

f= i [/*() JM(T)]*~MA(T)/I (T) rft, (1.23)
J
o

on assuming that ft'(r) exists.

13* Finite differences of Riesz sums
We now proceed to establish some formulae on finite differences

which will be of frequent use in the sequel.

If > 0, and F(x) is a function of x
y
and m > is any integer,

we set

k*?F(x)
- v

(
-

1)" (?) F (x + m -vC)', A c F(x) = F(x}\ (1.31)1

A~ :
jF= I (

-
1)" (?) ^ (^

- O 5 A (

i c ^(a?)
- F(x). (1.81)2
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If < a < 1, we set

^F(x) = a f (x + C - t)
a- l

F(t)dt, (1.32)1

X

X

k"_ tF(x) = a f (x
-

t)
a~l

F(t)dt. (1.32)2

*-<

Also, we define

A?
+ a

.F(z) = A? [A? F(x)], (1.33)1

A f F(x) = Al c [A : F(x)]. (1.33)2

It is easily seen that

A c [A
1

? F(x)] = A? [A? ^(s)], (1.34)1

Al c [A c -F(*)]
= A c [A_ c f(a:)]. (1.34)2

We then have, for < m < h, and m an integer,

'm-1
- 1) f f P i,

'__ fit* dt... Ax
m

(tm)dtm . (1.35)2
^ + 1)J J J

*-t 'i-< 'm-l-C

These formulae (1.35) are easily proved by induction. We have also

x+ c m-

1)1
rf<1 -

1

and

= a i (x + C - t)
a ~ 1

A^ A\(t)dt [cf. (1.33)1]

X
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X

X

*+C +c

J
(* + c - ir1*

J
<*<! ...

*m-l

^i -
J
[AT

m
(tm)

-
A\-(x)}dtm 1 . (1 .36)2

Similar to (1.36) we have

* 'ro-l

(1.37)1V ""
I */ J J

and

AmtM*M = : __'._._ f
m+a

J4^~mte)

1)

^^[N-V
(1.37)2

We could conveniently rewrite the above formulae thus :

Ifm is a positive integer, r>0,0<0<l, then we obtain from

(1.36)1 and (1.36)2,

+t t,+ C
( H-l _.

-A?
I

\dt, \dtz ...

f
[AWJ -AM] a. \. 0-38)

f
l 'm-!
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Similarly we obtain from (1.37)1 and (1.37)2,

+ -C r i
** I**

-
1

I A *(X

L *-* i-' m-l-C

1*4* Two lemmas
We now prove two lemmas which play an important part in the

proof of some of our later theorems.

LEMMA 1.41. IfQ<<x,k>0, < Z < 1
, then

1
< max

|
A\+

l

(t)

ao that if A K(t) is real, we have

I + 1) r

T)T(J) J

for some T.

PBOOF. The case I = 1 being trivial, we observe that if < i < 1,

i

(*
~

I)'-*
=

f
"Of

1

t

where

ex(v) (v
-

so that

*

0^)>0,and
f

Ox(v)dv = 1.

00

Hence
f

"
l (t) * w (v

~
t)l
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- A*+ l

(v) 6 dr. (1.41)

Therefore

min A\+
l

(t) < </(f , *) < max ^J
f

LEMMA 1.42. Let cp(x) be a positive, non-decreasing function ofx,

defined for x > 0, and let < f < #, < I < 1, k > 0. TAe/t

^i
+l

(*)
= o [V (x)-\ (1.42)

implies, uniformly in |,

o

PROOF. From (1.41) we have

g

where

> 0,

= o (1),

as x >oo, for every fixed A > 0, and

dv < 1.

These properties of Ox(v), together with the hypothesis (1.42), lead

to (1.43).

1.5* First theorem of cpnsistency
We shall now prove two elementary theorems on Riesz sum-

mability, concerning the relation between different orders of

suminability belonging to the same type. The first theorem in
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this direction says that the power of Riesz summability increases

with the order. Thus we have

THEOREM 1.51. // an is summable (A, k) t k > 0, to the sum c,

then an is also summable (A, A;'), for k' > k, to the same sum.

The proof follows easily from the formula :

t - <L51 >

The above theorem is called the *

first theorem of consistency ',

and it follows therefrom that a convergent series is always

summable (A, k) to the same sum, for every k > 0, whatever the

particular divergent sequence {Aw } may be. By using formula (1.51),

we can also prove

THEOREM 1.52. // W(x) is a positive, non-decreasing function

ofx, then A\(x) = 0[W(x)], k > 0, implies Ak
^(x) = 0[**'-

k
W(x)] 9

k
1

>k.

1,6* Scope of Riesz summability
The scope of a method of summability can be roughly determined

by an examination of the nature of series which are summable by
that method. Thus we should know, first of all, what are the

necessary implications of the statement that a given series is sum-

mable (X,k). Some such knowledge is gained from the following

THEOREM 1.61. // y(x) is a positive non-decreasing function

of x, and if

Ak
(x)

- ex10 = o [>()],* > >

then for AM < x < Anf 19 and < r < k, we have

I ,. -*--} vjfc-f , if r is an integer or
L M-n+ 1

~~ An ) J
> .

? (An) i a.

(An
- A,:,?- J

+

if r is non-integral.
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REMARK. In this section, as in some later sections, we write

Ak
(x) in place of A\(x).

PROOF. We shall assume, without loss of generality, that c = ;

for, if c 7^ 0, we set B(x) = A(x) c, so that Bk
(x)
= Ak

(x) c#*,

and argue with B(x) in place of A (x).

Let h = [fc], where [k] denotes the integral part of k, (h + 1)

= An+1 An ;
let Z be an integer less than or equal to h, or zero ;

let k = h + ft, so that < < 1. Then we have

A?" J*tfJ = o (X^)]. (1-61)

For, if /? > 0,
-

J
(An + C - O^ 1 Ah

(t) dt

on account of the hypothesis on J A

"(
a;

)
an^ Lemma 1.42.

If ft
=

, then & = A, and

= o

CASE (i). Lot r = 0. Setting A for m, and An for ic, and for r in

formula (1.38), we obtain

] d<A
J

, since A(th)
=

[ 9 (*n+l)]

by (1.61). Hence
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CASE (ii). Let r be a positive integer. We prove the result now by
induction. The theorem has already been proved for r = 0.

Assuming it to be true for r 1, we prove that it is true for r. If

then
X

A'(x)
-

A'(ln )
= r

f
A-*(t) dt = o[

- - - (1-63)
J L M-W+1

~~
*>*,)

An

Setting h r for m and Aw for x in (1.38), we obtain

r

The first expression on the right side is 0[<p(Aw+1)] on account

of (1.61) ;
while the second is o [ g?(An+1 ) ]

because of (1.63). Hence

<L64 >

CASE (iii). Let r be non-integral ;
* = [r],r = $ + a,0<a<l;

let p denote the greatest integer less than k, so that if k is non-

integral, p = A, and if k is integral p = & 1. By (1.21) we have

-!

r r

f-i
a) I } J J J

'- *
T(s+ l)F(

say. Now, using the result obtained above in Case (ii), wo obtain

X

) f (
X-ty

l
dt

fc-;r
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and

-

Integrating J, by parts, we obtain

say. Since r - 5 v = (a v) < 0, we may majorize powers of

(x An^i) in J
l 3 by the corresponding powers of (A n ln _i) ;

if we

do this, and apply the result proved in Case (ii), we obtain

j 2
= c (a; )

r
~*(a; O*"""

1
-4"^)^. where c is a constant,

t, < |< A.,,,

by the second mean-value theorem.

Replacing a; by AB in the expression outside the integral sign,

and applying Lemma 1.42 to the integral, we obtain

'- - -' '

Combining results (1.65)-(1.68), we prove the required result.

As a particular case of Theorem 1.61, we obtain the well-known
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THBOBBM 1.62. // %an is summable (A, k) to the sum c, then for

< r < k, and An < x < An+1 , we have

A
1* in +-1

r
I , if r is an integer or zero ;

1 xw ) J
A r

(x)
- caf = .

.r ._** ...i + or
(/M+ i xw )

i/ r is non-integral.

This is obtained by setting y (x)
= #* in Theorem 1.61.

COROLLARY 1.61. //Aw
= n, Theorem 1.62 sAows that if 2an is

summable (n, fc), JAew

an = o (n*), An
= o (n

k
), . . .

, 4r
(z)

= o (x
k
).

COROLLARY 1.62. // An+1
= O^x - An ), or lim infV+J > 1,

&e7fc -4
f
(ir) cxr = o[99(Aw+1 )/A*""

f

].

In particular, under the hypothesis of Corollary 1.62, a summable

series is necessarily convergent. For example, if An = 2n
, then

Biesz
9

s method of summability will sum only convergent series.

1*7* A theorem of M* Riesz

In Theorem 1.62, we assumed that a given series i]aw was

summable (A, k), and deduced therefrom the order of magnitude

of the Riesz sums Ar
(x) for < r < k. More generally, in Theorem

1.61, we proved that if Ak
(x) satisfies a certain order-condition,

then Ar
(x), for < r < k, satisfies another order-condition. In the

following theorem, due to M. Riesz, we assume that both Ak
(x)

and A (x) satisfy certain order-conditions (either of or o type),

and prove that Ar

(x), < r < k, will satisfy an order-condition

related to the given conditions on Ak
(x) and A (x). Thus we have

THEOREM 1.71. Let V(x) and W(x) be two positive non-decreasing

functions ofx defined for x > 0. Let
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Then

(A) |

Ak
(x) \

< W(x) and \A(x)\< V(x)

imply
Ar

(x)\ < c Ur(x)Jor < r < lc,

where c is a constant depending on r and k only, while

(B)

imply

[On. I

Ak
(x)\ < W(x) and A(x) = o [ V(x) ]

A r
(x)

= o [Ur(x)], < r < i,

A k
(x)

= o [W(x)1 and
\ A(x)\ < V(x)

and

(C)

imply

A'(x) -o [Ur(x)lO <r <k.

PROOF OF (A). The hypothesis \A(x)\ < V(x) implies |^4
r

(#)|

< xr

V(x), and so the theorem becomes trivial if

xr < [W/V]
r!k

,
or x <[W/V]

llk
.

We shall therefore assume that we can always determine >
by the equation

x =

CASE (i). < k < 1.

f i r r nAr
(x)

= r
\ (x t)

r

~*A(t)dt = r\ \ + \ \
^= J

l + J2l say.
J L J J J

f (a:
-

t)
r - l

A(t) dt <(x~ )

r
V(x) - Ur(x). (1.71)

J = r f (x
- O

r" fc

(^
-

O*""
1

^^) dt

J
o

= r (x -Y~ k
\(x-t)

k - lA
J

,
< u

in the notation of Lemma 1.41. Hence

(1.72)
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Combining (1.71) and (1.72), we observe that

\A'(x)\< (2r/k + 1) Ur(x).

CASE (ii). k> 1, A = [k], (A+ l)f
== -

,
* = A + /J, <0 < 1.

We shall first prove that the result is true for integral r, by induc-

tion, the case r=0 being trivial. Suppose

A'- 1

(x)
= [Ur_, (x)].

Then , for f <#' < x,

X

A'(x)
-

A'(x') = r \ A r~l

(t) dt

= 0[C/]. (1.73)

Writing h r for m in (1.39), we obtain

-'+' = +
J-j

A17
+ " ^() +

r r r

1

r"""
1

1
l c

\
dt,

\

dtz ... [A'(x)
- J' ( 4.r)]

*A_r
.

L J

The first expression on the right side is 0[W
r

(#)] on account

of the hypothesis on Ak
(x) and Lemma 1.42, while the second is

0[Ur(x)
*~r

], on account of (1.73). Hence

?~'A'(x) = 0[W(x)] + 0[Ur(x) *-*] ,

or

Af

(x)
= O[Ur(x)]. (1.74)

Next let us consider the case where r is non-integral. Let a = [r],

r = s + a, 0<a<l. From (1.74) we then obtain A'(x) = 0(Ut(x)\.

Also

l(*)], if + 1 <*,
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so that

A r

(x)
= A'+*(x) = Oft/J-"^] = 0[Ur(x)],

on account of the result proved in Case (i).

If, however, s + I > k
y
that is s = h, then Ah

(x)
= 0[Uh(x)], which

together with Ak
(x)

= OflT^)] yields the required result, on an

application of Case (i).

PBOOF OF (B). Given e > 0, choose XQ such that A(x)\ < e V(x) t

for x > xQ . Let be such that

*-*-
(,>)'"

(i -76>

CASE (i). < k < 1. If < XQ < f ,
then

,4
r
(a;)

= r
\ (x t)

r~ l

A(t)dt r
\ \ + \ \

^= Jl -f /, say.

J
LJ JJ

r(x - f-*
(
-

I)
*-1

dt
, <w < f,

by the second mean-value theorem. Thus

Ji ^ 9r ( -~ i WYi\ 2* pi-**/* rr Ay\
I ^% <6/

\ T/ I
*

\ /
~~" * f\ ft

on account of (1.75) and the hypothesis on A*(x). Again

Hence

\A'(x)\ < JjJ + |J2 < (2r + 1) e
1-^* C7

r(^)- (
L76

)

If, however, x > XQ > f, we write

[Ml-
say. As in J2 , we have
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while

T I (X ~~~ I)

as a; * oo, since r 1 < ;
hence

A'(x) = o(l) + o[Z7,(*)]
= o[Ur(x)].

CASE (ii). A; > 1. The hypotheses of Theorem (B) necessarily imply

that

A'(x) = 0[Ur(x)] y (1.77)

on account of the previous resiilt, Theorem (A). Actually we have

got to show that

A'(x) = o[U,(x)].

This we prove by combining Case (i) of the present Theorem (B)

with the previous Theorem (A). For, we have, by Case (i) of (B),

A'(x) = o[Uft(x)l < ft < I
;

and by (1.77), if <p <k-I,

Applying Case (i), we deduce that

A*(x) = o[U v(x)] t < y < I + ft, or y < 2.

This, together with

will again lead to

A'(x) = o[Ud(x)l <(5 < 3,

and so on, until the result is proved for < r < h = [&]. Thus

A"-(x) = o[Uh_e(x)],

for every small positive , which, together with the hypothesis on

Ak
(x), leads to the required result.
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PROOF OF (C). Given e > 0, choose x such that

[On. I

\g(n>*)\
= k

I
(*-*)*-

1
A(t) dt <e W(x),

fora; > x and < y < x, by Lemma 1.42. Determine such that

1/k

^ J, + J2 ,

CASE (i). < k < 1. We write

Ar

(x)
= r [ (x

-
ty-

1

A(t) dt = r
I f

+
f
1 -Ji

o '-05-'
say. First, let us suppose that > x

;
then

r-k f k-l
11

J 1

u

by the second mean-value theorem. Now applying Lemma 1.42, we get

\J, < (r/k) (x-Y-*\g(,x)-~g(u t x)\

< (2r/k) e^"
1

(W/V)
rlk- 1

. eW(x).

(1.78)ef/* Ur(x).

X

r \(x t)*"~
l

C

x - (Y V(x)

dt

(1.79)

From (1.78) and (1.79) we get

|
A'(x) \

< (2r/k + l)e
rlk Uf(x).

If f <x0> we write

and argue as in Case (i) of Theorem (B).

CASE (ii). k > 1. The hypotheses of Theorem (C) necessarily

imply that

A'(x)=0[U,(x)],
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on account of Theorem (A). Choosing r = k 1, and applying

Case (i) of this Theorem (C), we obtain

A(x) - o[U8(x)], k - 1 < s <k.

Again considering k 2<a <&-!, we obtain

A'(x) = o [Us(x)], k - 2 < s < k - I
;

and we proceed like that until we finally get the result.

COROLLARY 1.71. // a
tt

is bounded (A, k), then it is either

summable (A, k') for every k
f > &, or not at all.

PROOF. By hypothesis, Ak
(x)

= 0(x
k
). If for some 7 > fc we

jf/,\

have --,
' -> c, that is ^4*(#) c#* = o(x

l

), then
a:*

4* - of = o(x
k
'),k<k' <l;

for by setting B(x) A(x) c, we observe, in the light of

Theorem 1.71, that

Bk
(x)

=
(a?) and ff(x) = o (x>)

together imply
Bk

'(x)
= o (x

k
')> k < K < I.

COROLLARY 1.72. If a series Sau with bounded partial sums is

smnmable (A, k) for some k, then it is summable (A, k) for every

k > 0.

1*8* Tauberian theorems

In this section we aim at obtaining order-relations for A r

(x)

with a hypothesis on A (x) different from the one in Theorem 1.71.

The hypotheses which we consider here arc similar to those satisfied

by the so-called slowly increasing or slowly oscillating functions.

We have called these theorems Tauberian, since we are concerned

with deducing the behaviour of A(x) as x > oo.

THEOREM 1.81. Let W(x) be a positive non-decreasing function

of x, and V(x) any positive function of x, both defined for x > 0.

Then we have the following :

(a) A(x)
~ A(x -t) = [t*V(x] ], < t =

[{ W/F}
1/(*+ y)

], y > 0,

and

Ak
(x) =o[W(x)] 9 k>0,
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together imply

A(x) = o [

Iffurther F*/(fc+ y> JF y/<*+ y> {* non-decreasing, then

Ar
(x) = o [F<*-

r)/<*+ y)
ur(y+f)/(*+y>] ,

o < r

(b) 4(* + -
4(a?) = O [*

y
F(*)], < * - O [{ lf/F}

1/(lr+ y)
], y > 0,

together imply

A(x) = (Vkl(k+y)

Iffurther F*/(*+ y) Jf y/<*+ y> is non-decreasing, then

/jr/xyA n r y(k-r)/(k+ y) ttr(y+r)l(k+ y)l O ^ rJLji l*v/
~~~ v/ I r rf J ' ^^

PBOOF OF (a). Let h = [fc] ;
A; = ^ + j8, </?<!. Given

e > 0, choose

W(x)er W(x)B "ji/o
c =

L T^Jr J

Writing h for m and for r in (1.39), we obtain

'i '*-i

^ :
I

f <, [,... [
[^(*)

-
^(<)] *

L
-c '-e -c

J

say. By the hypothesis on Ak
(x) and Lemma 1 .42, we have

^^ITC*),
for x sufficiently large. By the hypothesis on A (x), we have
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where c > is a constant. Henco

\A(x)\ <
e
WM+ct*V(x),

i.e. A(x) = o ( F*'<*+
y) W vl(k+ y)

). (1.82)

If we now apply Theorem 1.71, we obtain

Ar
(x)

- O [F<*-">'<*+*> |F<v+ r)/(*.f
y)j ^ < r <;,

PROOF OF (b). With the same notation as in the proof of (a),

but using the relation

-

A? f
|
*!

J
rf*2 ...

|
[A'(th )

- ^ r

(o:)] ^
J

(1.83)

f
l *-!

(which is obtainable from (1.38)) instead of (1.81), and arguing as

in (a), we get the required result.

It may be noted that the extra hypothesis on W(x) is used

in proving that the first expression on the right of (1.83) is

o[W(x)].

REMARKS. Theorem 1.81 will remain valid if, in the hypothesis

on A(x), we replace the continuous variable x by the discrete

variable An . Thus we have the following

THEOREM 1.82 Let W(x) be a positive non-decreasing function ofx,

and V(x) any positive function of x, both defined for positive values

of the argument. Then

(a) A(^)-A(^-t)^0[^V^H)ly>0,0<t^O

and

Ak
(x) = o[W(x)\ k > 0,

together imply

If further V(x)^
k+y)W(x)^

l
'+y) is non-decreasing, tiien

A T
(x) =
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(b) A(ln + t)- yt(An)^0[rF(An )], r >0 (

and
W(r'\

A"(x) = o[W(x)}, < ?&.> <Hx>f0rO<x' -x =
w(x)

imply

^(AJ = o[F(AJ^-^>fF(/J^^'>].

If further V(x)
kl(k+ Y)

W(x)
vi(*+v) is non-decreasing, then

A r
(x)

-
o[F(o:)<*--

r)/(A
*'

i
-

>
'
)

TF(a:)
(y -fr)/(^ y)

].

The following well-known Tauherian theorems are deducible

from Theorem 1.82 (b).

COROLLARY 1.81. // au
--

0[A;(A rt

- - A^)],
awe/

^(a;) = o(^
j

), * ,- 0, <

PROOF. The first hypothesis implies, for t =

and therefore, by Theorem 1.82 (b), we obtain the required result.

COEOLLABY 1.82. // p > 1
,
a + 1 + I /p > 0,

aw/i

> 0, < ft < a + k

[^t
1
/!

1)*!^!
x --fc+T/r I

i/p + i/g
= i.

PROOF. We have only to observe that the first hypothesis implies,

for t =

4(AW + t)
-

and then apply Theorem 1.82(b).

Tauberian theorems (0L type)

We now replace the two-sided hypotheses on A(x t)

by one-sided hypotheses.
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THEOREM 1.83. Let W(x) and V(x) be as in Theorem 1.81, and let

Ak
(x)

= o[W(x)]> k > 0, (1.84)

where < W^ < H < oo, for < x' - x =
O[{ *F/F}

1/(*+y)
].

W(x)
Let

A(x)
- A(x - t)

= 0j [V V(x)], y > 0, (1.85)

A(X + - 4(a) - 0^ p*F(s)], (1.86)

< t -= (9
[{ Wj V]

1/(*+ v)
]. Then we have,

A(x) - o[ F(rc)
t/(*+ y)

Jf
}
''(/'' + y)

]. (1.87)

PROOF. We require formulae (1.81) and (1.83). Using the hypo-

thesis (1.85) in (1.81), we obtain, for e > 0,

A(x) > - e -* + OL (C
y
F),

i.e. -
A(x) < [Vkl(k+^W vl(k

+^}. (1.88)

Using the hypothesis (1.86) in (1.83), we obtain

A(x) < [F*
/ <|i + y) TF y/< l> + y)

J. (1.89)

Now (1.88) and (1.89) lead to (1.87).

N.B. Remarks similar to those at the end of Theorem 1.81

apply here as well.

THEOREM 1.84. Lei I ('(&') be a positive non-decreasing function

of x, and V(x) be any positive function of x, both defined for x >
and such that, if k > 1 and C

~
(TF/F)

1
''*, there exist constants h,

H and K such that, for x K f < x' < x \- K ,
we have

Then
Ak

(x) o[ W(x)l and A(x) - L [ V(x)] or B

together imply

A*(x) = o[Ur(x)l 1 <r <i,

where U
r(x) is as in Theorem 1.71 and is non -decreasing for r > 1.
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PROOF. This theorem follows easily from Theorem 1.83, if wo

observe that the hypotheses on A(x) and V(x) imply
y+t

A\x + t)
- A l

(x)
= f A(u)du =

L [tV(x)],

(t < K
r

A l

(x)
- A l

(x
-

t)
= f A(u) du = L [tV(x)].

JC-t

REMARK. The 0-versions of Theorems 1.81-1.84 are also valid,

where replaces o both in the hypotheses on A k
(x) and the con-

clusions about A(x).

COROLLARY 1.83. A series a
rt
whose partial sums are positive

(or bounded on one side) is summable (A, 1), if it is summable

(A, k) for anyk > 1.

Converse theorems on summability

We now state conditions under which a summable series is

convergent. Although these results oould have been included as

corollaries in previous sections, we have preferred to collect them

here in the order of increasing generality, as these are of special

interest.

Let us set

?*

Bk
(a>) 2 (co

-
A,)* A r a, , k > 0.

We then have
y X

B(x) ~~
B(co) = f t dA(t) -- xA(x) - CD A(OJ)

- f A(t)dt,

Ak
(a>)

From this last formula we deduce

THEOREM 1.85. A necessary and sufficient condition that a series

San summable or bouiided (A,fc -f 1) should be summable or bounded

(A, k) is that Bk
(w) = o(co

k+ l

)
or 0(w

k+l
) respectively.
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COROLLARY 1.84. // Bk
(co)

= 0(a>*+ *), then Iaw is either summable

(A, k) or is never summable.

For if an issummable(A,&' + l) for k' > k, then it is summable

(A, &'), since Bk
(w) = o(co*

+1
) implies J3*'(w) = o(w*'

+1
) for every

Ic > k. Hence etc.

COROLLARY 1.85. // i]an is summable (A, J), tAcw a necessary

and sufficient condition that SaM should converge is that B(OJ) = o(w).

This is a restatement of Corollary 1.84 with k 0.

n

THEOREM 1.86. // I
1

A, av 0(A W ), San is either summable (A, k)

for every k > 0, or is never summable.

For if Xaw is summable (A, Z), then &l

(a>)
-

o(oj
l

'n
). This result

together with the hypothesis jB(ro)
= 0(a>) implies Bk

(a>)
= o^ 4" 1

)

by Theorem 1.71(B). And so the result follows from Corollary 1.84.

THEOREM 1.87. If B(co) = OL ((*))> and Sa n is summable or bounded

^an is summable or bounded (A, 1).

Summability or bonndedness (A, I) implies Bl

(co)
^

o(o>
/ "fl

)
or

O(oo
l+l

), which, in conjunction with the hypothesis B(M) = OL(O))>

implies Bl

(a))
=

o(o>
2

)
or 0(o>

2
). We have now only to use Theo-

rem 1.85.

THEOREM 1.88. // A,, ^ to < A,t+1 ,
am^

r

lim inf min 2 a
r >

co~>oo w<Al + d)i n-fl

where < 9? (5) ^?irf5 ^o r/v (5 >0, Am i]an converges whenever it

is summable (A, k).

We prove the result in two stages: (a). The hypothesis that

lim inf min [A(t) A(O))~\>

for fixed ^ > 0, implies .B(a>)
= Ox(co), so that by Theorem 1.87

summability (A, 1) implies summability (A, 1), (/3). Summability (A, 1)

and the hypothesis that <p(d)-+Q as d >0 imply convergence.
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PEOOF OF (a).
x r

B(x)
~- B(w) =

j

tdA(t) = xA(x) - w A(a>)
-

j

=
a>[A(x)

-
4(w)] + f [4(s)

-

If a> < # < (1 + d)<w = Aco, we observe that

and hence

lim inf rain
"

*.' >~(i
<o-+ oo (t)

lim inf ^> = lim mf
f

V 8
( )

- fl
(-> co -v Leo VAV \

which proves (a).

Aliier. That ^4
l

(co) vo> o(co) can be seen otherwise from

(1.89) and Theorem 1.81, if we observe that the hypothesis can be

put in the form

A(a> +t) -

A(co) = L [<p(d)]
- L (t co-

1

),

for t <, dco, 6 fixed.

PROOF OF (/?). Let ^l^ro) 'o> > s-. We have the following

formulae:

AM - L+* 4!w _ '
fL

o x o a>

'

fda) J

do; oco oco

Fixing i and letting o> K oo, we have

lim sup A(O)) <~i- 5 4~
->oo O O

lim inf A(co) > s q>(d),
CO >GO

and now letting (5 -> 0, we obtain the result.

'

f
[^-

co J
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THEOREM 1.89. // A,/*,,
= L (A l}

A H _,), then Xan has bounded

partial sums if it is bounded (A, 1), so that it is summable (A. k) for

every k > 0, or never summable. If further
n > 1 , Ihe it l'aw

AN- ]

is convergent whenever it is summable.

We have B(M) =-- 2 O
/y (A,,

-
A,? _-,) OL (a>). Hence, by Theorem

1.87, flw is summable or bounded (A, 1) according as it is summable

or bounded (A, I).

To prove farther that A(o) = O(l), we note that

ft) 0>

implies A(w) L(1), since 7?(co)
= L(co)\

A

A,

implies 4(AJ -
/?(1), since ^() - A(i u )

- ^ { (
~ AJ A

rt

- n
h

A w < e < a:.

Boundedness of A(GD) implies summability (A, k) for every k > 0,

if it is summable at all. On the other hand, the further assumption

that > 1 will enable us to prove that
^n-l

A(x) - A(a>) = L(6), a> <x < (1 + ^)co,

which, by Theorem 1.88, will prove all that is required.

REMARK. The same conclusion as in Theorem 1.89 will result

from the following hypothesis on n n :

1' (|a,|
-

a,ma, - -

A,, O'-* = 0(AJ, p > 1.

1*9* Absolute summability
The notion of absolute Riesz summability defined in 1.1 bears

the same relation to ordinary summability as, for instance, absolute

convergence does to ordinary convergence. The preceding sections

show that ordinary summability has been the subject of intensive

study, one consequence of which has been the development of a

satisfactory Tauberian theory; absolute Riesz summability, however,
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has not received the same degree of attention, and very little

is known about Tauberian conditions which would enable one

to infer absolute convergence from absolute summability. The

analogues of several theorems in the ordinary case have not been

explicitly proved. We therefore have to content ourselves with

proving here only the analogue of the first theorem of consistency.

THEOREM 1.91. If the series Ya
tl

is summable |A, & ,
k > 0, then

it is also summable A, {| for I > k.

PROOF. We recall the fact that A, 0| summability is equivalent

to absolute convergence, and prove the theorem in two parts,

according as k = or k > 0.

CO

(a), k = 0. We have to prove that J \dC\(x) < oo, where we
h

may assume without loss of generality that < h < A . If we set

fl
y-i(*)~ * a.M*-^)'- 1

,

A
w

r

then we have to prove that

00

/ = for 7 " 1

\Sl_ l (x)\ dx < oo.

h

However,
CO

1 <
f
ar'- 1

\
1 an /U*-AJ'-'~U*.

J L A *J#* -~J

h
n

Interchanging the order of integration and summation ,
we have

(b). k > 0. Here let us again consider two cases, namely, k > 1

and < k < 1 .

(b^. If A? > 1 and / = k+m, we have

JC.

SI--L (x)
= c I 6\._, () (x-u)

m - l

du,
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where c = v '
, h > 0. If y > h, we also obtain

1 (k) 1 (M)

V y x

f _*-,_! f -k-m-1 f
I x Aj; 1(*^) I

dx ^ c I x dx
\ \Sjf_ ifit)

J J J
/i * h

(x-u)
m-*du

h

and

(x-u)
m~ ldu

d

h

V

t*)
m l

dx.

But

so that

which proves the required result.

(b2). If < k < 1, set

J
,-*--V _ tt

00 OO

f a;-'-
1

18^^)1 dx < k { u~ l~ k 8k^(u) du, (1.91)

(x)
= c 1 ^.^tt) (* + a - wIJ& =

We then have

I x-k-m-\ j^

A h u

Now if a * 0, the left side tends to

1 %~~k~m~~^
1 $ (x\ \ fix

J

u)
m~ l

du, a > 0.
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and the right side tends to

x y

f f -*-m-l ro-I

I

k~lU
i

m
(V
~

U)

so that (1.91) holds for Z > k > 0.

NOTES ON CHAPTER I

1.1. The term *

typical means' is interchangeable with
*

Riesz

means '

except that when we deal with Dirichlet series, as we do in

Chapter III, we use two types of Riesz means (A, k) or (I, k) for the two

types of series %an e~*
n8 or %an ln

~8
,
and in this context, the word

*

typical
'

has a special signification.

It is assumed throughout that the terms of the series aw are real,

unless there is an indication to the contrary. If the terms are

complex, the real and imaginary parts can be separately discussed.

The letter A in '(A, k)' is supposed to refer to the given sequence

{hi}. When An = n or n2
, however, we allow ourselves the liberty of

writing '(n, k)' or '(w
2

, k)' as the case may be.

For an account of Riesz means see G. H. Hardy and M. Riesz,

The general theory of Dirichlet's series, Cambridge (1915). We shall

refer to this as the Tract. See also E. Kogbetliantz, Sommation des

series et integrates divergentes par les moyennes arithmetiques et typiques,

Memorial des sciences mathematiques, Fascicule 51 (1931) and M. Riesz,

Acta Mathematica, 81 (1949), 1-223.

It is possible to define the summability of integrals instead of series.

We suppose that A(2) is a positive and continuous function of t
, tending

steadily to infinity with t, with A(0) = 0, and set

=
J a(u) du = J a(u) du,

o

= k A&) (t
-
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Then, if t~k A\(t)
-> c as t -> oo, we say that the integral

du/ a()

is suramable (A, k) to the sum o. This definition may then be applied
to study integrals of the type

Absolute Riesz summability was defined first by N. Obrechkoff,

Math. Zeitschrift, 30 (1929), 375-386, on the lines of absolute Cesaro

summability defined earlier by M. Fekete and E. Kogbetliantz,
Math, es Termesz. Ert. 29 (1911), 719-726, 32 (1914), 389-425, and

Bull. Sc. Math. (2) 49 (1925), 234-256.

The equivalence between summability (n, k) and Cesaro summability
of order k, for various values of k, was announced by M. Riesz, Comptes

Rendus, 22 Nov. 1909, 12 June 1911, Proc. London Math. Soc. 22

(1923-24), 418. See R. P. Agnew, Trans. American Math. Soo. 35 (1932),

532-548. An unpublished proof by A. E. Ingham is referred to by
G. H. Hardy in his Divergent series, Oxford (1949), 119. For a

different approach see J. J. Gergen, Duke Math. Journal, 3 (1937),

133-148. For further work on this topic see B. Kuttner, Proc. London

Math. Soc. (2) 45 (1939), 398.

1 .2. Many of the results we prove in this section remain valid if

A A (t) is a function of bounded variation in every finite interval instead

of being a step-function.

Formulae (1.21) and (1.22) are proved in the Tract, pp.27-28. For

formula (1.23) see G. H. Hardy, Proc. London Math. Soc. 15 (1916),

72-88.

1.3. Finite differences were first introduced into this theory by
H. D. Kloosterman, Jour. London Math. Soc. 15 (1940), 91-96, and

their use was systematized by L. S. Bosanquet, Jour. London Math.

Soc. 18 (1943), 239-248.

It should be noted that A A(x), < a < 1, in our notation would,

in Bosanquet
J

s notation, be A? A a(x)lT(a +1). Our notation has

been chosen for convenience.

The integrals defining A F(t) are assumed to exist.

1.4. The proof of Lemma 1.41 as given here is different from that

in the Tract. This proof was communicated to us by Prof. M. Riesz.
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Use is made of this proof in Lemma 1.42 as well. In Lemma 1.42, it will

be sufficient if <p(x) possesses the stated property beyond a definite

stage, since we are concerned only with the behaviour at oo. Thus

(p(x) may be any logarithmico-exponential function. See G. H. Hardy,

Orders of infinity, Cambridge (1910).

Lemma 1.42 remains valid if o
'

is replaced by
' '

in both (1.42)

and (1.43).

1.5. The word *

consistency
'

is not considered appropriate

nowadays. Theorem 1.51 proves that Riesz summability is
'

regular
'

;

however, we have chosen to keep to the usage in the Tract. The

o-version of Theorem 1.52 is obvious.

1.6. Theorem 1.61 with x instead of q>(x) is proved in the Tract ;

but the more general form in which we have stated it here requires

no special artifice. See Theorems 21 and 22 of the Tract.

1.7. Theorem 1.71 may be considered as a convexity theorem in

a certain sense. Convexity theorems were initiated by G. H. Hardy
and J. E. Littlewood, Proc. London Math. Soc. 11(1913^, 411-478.

Theorem 1.71 was proved by M. Riesz, Acta Szeged, I (1923), 114-126.

It seems to have been obtained independently by K. Ananda-Rau
in a Smith's Prize Essay (Cambridge, 1918) which was published, in

part, only several years later, Proc. London Math. Soc. 34 (1932),

414-440.

1.8. For information about Tauberian conditions of various types,

o, 0, L and R ,
see G. H. Hardy, Divergent series, Oxford (1949), 149;

and for definitions of slowly decreasing and slowly oscillating functions,

ibid., 124, 286.

Theorem 1.82(b) is an extension of a theorem of Bosanquet, and

by the same method. See Jour. London Math. Soc. 18 (1943),

239-248. For other theorems of this type, see S. Minakshisundaram

and C. T. Rajagopal, Quarterly Jour. Math. (Oxford), 17 (1946),

153-161, and Proc. London Math. Soc. 50 (1948), 242-255.

For special cases of Corollary 1.81 see K. Ananda-Rau, Proc. London

Math. Soc. 34 (1932), 414-440, and for the corresponding cases of

Corollary 1.82, see V. Ganapathy Iyer, Annals of Math. 36 (1935),

100-116. The results of Ananda-Rau and of Ganapathy Iyer were

extended by S. Minakshisundaram, Jour. Indian Math. Soc. 2 (1936)

147-155. A further generalization of Ananda-Rau's result was made

by Bosanquet, loo. cit. Corollaries 1.81 and 1.82 are valid for /? > o +
k -f 1 as well. Cf. Ananda-Rau, Ganapathy Iyer, and Bosanquet,
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loc. cit. In Corollary 1.82 it should be noted that if a + 1 + l/p < Of

then all the av vanish. Here we make the convention that A_i =0.
The hypothesis on av could also take the form

2 a,* (A,
- A,.,)

1 "* - CO.*"* 1
), 8>0,p>l,

which is in line with the hypotheses formulated by Otto Szasz,

Trans. American Math. Soc. 39 (1936), 117-130.

For Tauberian theorems of L type on Riesz summability see

S. Minakshisundaram and C. T. Rajagopal, loc. cit. For one-sided

general Tauberian theorems see, for instance, S. Bochner and

K. Chandrasekharan, Fourier transforms, Princeton (1949), Th. 92.

In connexion with the Remark at the end of 1.8, see Otto Szasz,

loc. cit.

1.9. Converse theorems of a comparatively simple kind are known
in the case of absolute Abel summability which J. M. Whittaker defined.

See Proc. Edinburgh Math. Soc. 2 (1930-31), 4. For example, J. M. Hyslop
has proved that if Saw is summable

[

A and 21 bn 6n_ x converges,

where bn nan,thenZan converges absolutely, Jour. London Math. Soc.

XII (1937), 180; and A. Zygmund has shown that a lacunary series

which is summable
|

A converges absolutely. See Trans. American

Math. Soc. 55 (1944), 194.

The equivalence of summability \n, k\ and \C,k\ has been established

by J. M. Hyslop, Proc. Edinburgh Math. Soc. 5 (1937-1938), 46.

Summability |
A, &

| obviously implies (A, k), but not conversely,

(Ex. 1 1 + 1 1 + ...). Also, convergence (of a Fourier series at a

point for instance) need not imply absolute Abel summability (see J. M.

Whittaker, Proc. Edinburgh Math. Soc. 2 (1930-31), 4) ;
nor does

absolute Abel summability necessarily imply convergence (see

B. N. Prasad, Proc. Edinburgh Math. Soc. 2 (1930-31), 134). Since

absolute Cesaro summability implies absolute Abel summability

(M. Fekete, Proc. Edinburgh Math. Soc. 2 (1933), 132) it follows that

convergence does not necessitate summability ]
n, k

\

.

Theorem 1.91 is due to N. Obrechkoff, Math. Zeitschrift, 30 (1929),

375-386.
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SECOND THEOREM OF CONSISTENCY

2*1* Introduction

BY the first theorem of consistency (Th.1.51), we can say that

a series which is summable (A, k) is also summable (A, k') for

k' > k
;

in other words, we can say that the power of Riesz

summability increases with an increase in the order, the type

remaining the same. Now the question arises as to what can be said

about summability (A, k) when the order k is kept fixed, and the type

A is varied. The general result in this direction, which is called the

second theorem of consistency, is that the power of summability

(A, k) increases when the rate of growth of An decreases, the order k

remaining constant. On this topic we have actually a number of

theorems closely related to one another, and it is our object to

present them here.

2.2, An account of the results

The first theorem bearing on our topic was proved by G. H.

Hardy and M. Riesz. It runs as follows : if a series S#n is summable

(A, k), where Aw = ^n
, then it is also summable (/*, k) to the same

sum. In particular, if a series is summable by arithmetic means

(An
= n), then it is also summable by logarithmic means

(An
= log n) of the same order. Later, Hardy gave a generalization of

this theorem, and using Hardy's method of proof, A. Zygmund
and K. A. Hirst gave further generalizations.

Before we state Hardy's theorem, it is necessary to recall the

definition of a logarithmico-exponential function or, briefly,

L-function.

A logarithmico-exponential function f(x) is a real, one-valued

function of the real variable x defined, for all sufficiently large

values of x, by a finite combination of the ordinary algebraical

symbols, +, , X,-*-, ^/, and the functional symbols, log(...),

e( "\ operating on x and on real constants.

Hardy's theorem runs as follows :
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(Hj). // (i) the series an is summable (A, k) to the sum s, and

(ii) p is a logarithmico-exponential function of A tending to + oo

with A, such that //
= (A

A
), A > being a constant however large,

then the series #n is summable (fi, k) to the same sum s.

This theorem not only tells us that the efficiency of Riesz summa-

bility increases when the type decreases (the order remaining

constant), but asserts the equivalence of any two types of summa-

bility, when those types are related to each other in a certain
'

regular
'

fashion, for example when both are powers of n.

A. Zygmund has completed Hardy's theorem by proving

(H2 ). // A
d
-< fi (A) -< A

A
, for certain <$, A > 0, then summability

(A, k) and summability (/*, k) are equivalent.

The proof of (H 2 )
results from the fact that

jtt (x) which is the

inverse of// (x) [that is, x ==
ji (y) ify = ju (x) ], though not necessarily

an .//-function, satisfies all the requirements on /i which materially

enter into Hardy's proof of (H^).

(Hj) and (H2 )
are supplemented by

(H3 ). // 1 -< jji (A) -< A
a

, for every 6 > 0, then the method (ju, k) is

more powerful than (A, k).

/(A) log A will serve as an example. Theorems (Hj)-(H3 ) also

give rise to another line of questioning. Suppose that an is not

summable (A, k) but only bounded (A, k) [cf. Defn. 1.12] ;
in that

case, we cannot a priori assert that Yan is summable by a process

which is more powerful than (A, k) : for example, by (log A, k). But

if we assume not only (i) that Xan is bounded (A, k), but also (ii)

that an is summable (A, 1) for some l>k, then by a theorem of

Zygmund, we can say that an is indeed summable (log A, k).

Thus we have

(Zx ). // San is bounded (A, /;), and summable (A, /), for some l>k y

then Yan is summable (log A, k).

Now summability (log A, k) is just one of several methods which

are more powerful than (A, k) ;
in fact we stated in H% that summa-

bility (/*, k), where ^ is any function satisfying the condition
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for every d > 0, is more powerful than (A, k) ;
it is therefore proper

to ask whether we can replace log A in (Zt ) by such a function //.

The answer is in the affirmative, and we have

(Z2 ). // #w is bounded (A, k), and summable (A, 1), for < k < I,

then San is also summable (/^, k), where p /*(A) satisfies the

condition

1 -< ft (A) < A',

/or even/ 6 > 0.

Actually a more general theorem was proved by Zygmund,

namely

(Z3 ). // r<zn is summable (A, Z),

------ > 1, < & < Z, Jftera Tan is summable
(/LI, k).

Xfl (X)

The above theorem could also be put in a slightly different form,

namely

(Z4 ). // an is summable (A, Z),

(a:) i^ an L-function tending to + oo wA a;, /Ae .series San
summable (/i, fc), where

e proviso that the last integral diverges as X+CQ.

The content of theorems (Z 1)-(Z4 )
is this : if a series Xan is

summable (A, Z), and if the function C\(x) = A\(x) x~~
k

, < k < Z,

while it does not tend to a finite limit as x~-+vo, is however not

very large, then an is indeed summable by a method (/*, k) [of a

lower order than that of (A, Z), but of a different type] which is

more powerful than (A, k), and which is such that the order of

infinity of //(#) depends on that of C*(x).
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On the other hand, let us suppose that i/r n is summable (A, k)

to the sum zero. Then C\(x) = o(l) as# >-oo. We may then ask

the question : if the expression C\(x) tends very rapidly to zero,

can we assert that the series Xaw is indeed summable by a method

which is less powerful than (A,&), namely by a method (ft, k) where

/i(A) >- AA for every A > 0. The answer to the above question

is furnished by the following theorem .

(Z :) ). //, for the series Yan ,
we liave

where (i) /t (A) satisfies the condition A A -< ft (A) -< e'
u

/or

^, A > 0, and (ii) /^ (A) possesses for A > A > a sufficient number

of positive derivatives, then ^a n is summable (a, k).

Theorem (Z5 )
can be put into a slightly different, form :

(Zc ). //, for the series l'an ,
we have

where y(x) is an L-function and \jx -< y(x) -< 1, <Af: series is sumwiable

:r

(/^,/j), where n (x)
= exp II--- I , provided that a sufficient number

LJ ^(0 J

o/ derivatives of the function u(x) are positive for x > A
()

.

All the theorems stated so far are concerned with the relationship

between two methods of summability, (/L k) and (a, A), whose

respective types A and /t are such that
t

u is an //-function of A

tending to
|

oo with A, and subject to appropriate additional restric-

tions. What we make use of is the fact that //-functions have a

certain regularity in growth ;
it should be possible to axiomatize

the required properties, without assuming that we deal only with

L-functions. K. A. Hirst carried out this idea, as far as Hardy's

theorem (H 3 )
is concerned

;
Hirst's theorem may be stated thus:

(H4 ). // l"an is summable (A, /.*), then it is summable (/*, k) to the

same sum, where u =
g?(A), and (p(t) is a function which increases

steadily to + oo with t, and satisfies the following conditions :
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(i) when k is an integer,
r

(a) V ?>
('+1

>(OI dt = 0{ v(x)}, r= 1,2,3, ...,fc;

(ii) w^ew i is not an integer,

(a)

X

JV
9P

and EITHER

(b) q>'(t) is a monotonic increasing function,

OR

(Cj) <7
;'W ^ # monotonic decreasing function

and

(c2 ) *?"W = 0{v'W}-

Those conditions on
<p are, of course, satisfied by a class of func-

tions which is larger than that of //-functions, and hence (H4 )
is a

generalization of (Hj).

It is thus clear that (H}) and (H4 )
are the important theorems

of the (H) set, while (Z3 )
and (Z5 )

are the important ones of the (Z)

set. In our presentation, we shall try to combine (H^) and (Z3 )

into a single result, from which a slightly restricted version of (H 4 )

also follows
; next, we shall prove (Z5 ) with like generality.

23* Some preliminary lemmas
LEMMA 2.31. The n-th derivative of {f(x)}

m
is the sum of a

number of terms of the form

where c is a constant, r < n, and the a*s are positive integers or zero,

ft n

such tliat ap = r, Y p ap n. Further if m is a positive
P^I p~i

integer, then r < m.

LEMMA 2.32. If f(x) is a positive decreasing function of x, and if

xf(x)
~

\f(x) }, then there exists a constant c > 1 truth that
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PBOOF. Clearly
J
^--l < 1. Also, by hypothesis, there exists
f(x)

an XQ such that \xf'(x)/f(x) \

< k, for x > #
, k > 0. Thus

x < f < ex,
/(a?) /(a;)

LEMMA 2.33. Ze g?(J) 6e a monotonic increasing function, and t<p"(t)

=
0(9?' (//) }

. jP&eTi ^Aere ea;ito a constant c > 1, mc& JAaJ, i/ y'(^)

is monotonic decreasing, we have 1 > ?-A > , /or aM tf > tQ \
and

(p (t)

if y'(t) is monotonic increasing, c > 1 may be chosen such that

2 > V-
y

' > 1, /or J > J .

PBOOF. The first part follows from Lemma 2.32. To prove the

second part, we choose f(x) = l/(p'(x), so that

Hence, for t > t
,

LEMMA 2.34. // y(t) is a monotonic increasing function, and

. <p(x) &(t) _ . /. , ,

w (t) is monotonic, then ~
-, where x is fixed and t < x, is

x t

a monotonic function of ,
which increases or decreases according as

<p'(t) increases or decreases.

PBOOF. We have

d r<p(x) 9?(t)l <p(%) y(0 (x t) (p'(t)

di[_ x t J (x if

(*
-

*> ^ /(l)
""

(x
~ *

} *' (t)
t < ,

x - t

which is positive or negative according as 9?' increases or decreases.
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LEMMA 2.35. // <p (x) is as in Lemma 2.33, then there exist two

positive constants a, /? such that, for all x > x ,

a x <p'(x) < (p(cx) y(x) < /3 x (p'(x),

a x <p'(x] < <p(x) cp(x/c) < f} x <p'(x).

PROOF. Let c > I be as in Lemma 2.33. Then cp(cx) <p(x)

=
(c 1) xq>'(r]), x < 7] < ex. If g/ is monotonic increasing,

p < /(r/) < ^/(r,r) < 2 /(a) ,
r > .r ,

and if 9^' is monotonic decreasing.

2A* The main theorem

We now assume that

cp(t) is a positive non-decreasing function of t diverging to + oo,

liaving N + 1 derivatives, where N is sufficiently large ; (2.4J)

(p'(t) is monotonic', (2.42)

f^ D
(t)
=

0[(//(0], r - 1, 2, ... , AT
; (2.43)

we also assume that

yj(f) ?\s a positive non-decreasing function of L (2.44)

THEOREM 2.41. Suppose that

(a) A\(x) ==
o[{x y>(x)}

k
], k > ;

(b) -4/(,x)
= o (x

1

), for som,e I > k.

Then we have

A k
v (x)

-
o\{<,p(x)}

k
] + otj^ v '(x) V (x)}

1

],

ivhere

d<- [cf. (1.23)3

We remark that the first theorem of consistency permits

us to suppose, without loss of generality, that I is an integer in

hypothesis (b).

We also observe that, when y'(t) > 0, the condition

=0{/(f)},r = 0, 1, 2,...,
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is more restrictive than Hirst's condition

t

{xr yr+1)
(.r)! dx = 0{<p(t)}, r - 0, ], 2...,

o

which, in turn, is more restrictive than

f<pV(t) = 0[p(0}, r = 0, 1, 2 .....

All the three conditions are, however, equivalent for //-functions.

fp(x)
If w(x] -/:-\ V 1, where w is an //-function, then we

v v ; x y (x)
'

deduce Zygmund's theorem (Z3 ).
If (p(t) is an //-function such that

(p(t)
= 0(^

A
), A > 0, then J/y(.r)

-
(9(1), and we deduce Hardy's

theorem (Hj).

2.5. Proof of Theorem 2.41

Let h stand for the greatest integer less than k, and D stand for

the differential operator . Then A k
f (.r) is, except for a constant

fit
'

factor,

r
i

-K

*(t). J>*
+1

[ \<p(x)
- V (t)\*] dt =

|
+

|
s /, + 72)

.T,

say, where o^
=

xjc, c > 1 l>einjr chosen as in Lemma 2.33. We
shall show that

while

7, ^ o[{o: <p'(x) y(a?)}*]. (2.62)

Integrating /j by parts I h times, we have

'

r*

/,
- 2 p'^ ~

PI
\

r-A-fl

^J1.1+ A. 2. (2-C3)

say, where {Pr }
stand for some constants, and
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We now estimate Jltl . By Lemma 2.31, Hr is a sum of constant

multiples of expressions of the form

where s + s
1 + . + $r = k> ^ > are integers for i = 1, 2, . . ., and

j + 2 a2 + + ? 5
r
= f . Now, by hypothesis (a) and Theorem

J.52, we have

^!<*i) = o[x{ { y^)}*] =--
[ {*' y(*)}*], (2.54)

for r > A + 1. Again, using Lemma 2.35, we have, for s J 0,

{y(a?)
-

p^)}' - [{* /()}']. (2.55)

Next, by the assumptions on 93, we have

[?<*,) I

1'- ['"(*,)l''
- o !^'"^';

(2 -5t"

by Lemma 2.33.

Combining (2.64), (2.55) and (2.56), we have

Hr
= o [{* 9/(z) y(*)}*], r > A + 1, (2.57)

and hence

We next consider I
1 2 which is a sum of constant multiples of

integrals of the form

where

and Pi > are integers. Here we observe, by Lemma 2.35, that, for

<t <xv
<p(x) > <p(x) <p(t) > <p(x)

Thus /
1(2

is a sum of terms of the form

%

o r rw*)
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..[]'

'[{?(*)}* J
(P >0)

(P <)

= o

=
o[{<p(x)}"], (2.59)

since & p > 1, because Z + 1 > 1, and < <p'(t)
~

{ <p(t) }, by

hypothesis. (2.68) and (2.59) serve to establish (2.51).

We have now to estimate 72 , which is a sum of constant multiples

of integrals of the form

where

9,

In all these integrals except one, we have # > 0. The only case

when q < occurs is when q=k h I ; this implies that gx
= A+ 1

[for ?1 + ... +JA+I =?i + 2g2 + ... + (A + l)g* +J
- h + 1].

We
then have, using Lemmas 2.33-2.35, the second mean-value theorem,

and Lemma 1.41,
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On the other hand, we have integrals of the type (2.59)1, with

q > 0. If we integrate any of these once more by parts, we have

(

}"-> V '(t) { V '(t) }'... dt

[<p(x)
-

y(0}
v

\ 9^'Wi'
1

{<?"(()}'*. --dl

H? Jj + J2 + e/g, (2.59)o

say, where Qr is a constant depending on the r's and

^ + r
x + r2 + ... = i, r

l + 2r2 + ...=- A + 2.

We now estimate Jj. By hypothesis (a) of Theorem 2.41, and

Theorem 1.52, 4j
+ 1

(a?,)
=-= o [V

+ 1

(y(^)}*]- By Lemma 2.35,

{$?(#) 9?(^i) }
2 =

[{
x <p'(x)}

Q
]. By the hypothesis on q/

(r)
,

by Lemma 2.33. Hence

J, ~o[{x<p'(x) y(*)}*J. (2.59)4

Again

r r $ m'ift i *i -*(/.+-. I
J s
= o M <"

+1
{ y(0 \

k
{?(*)

- y(0 }"->') ^;,{l/3 +7..
^
J

*i

-=.0 f f
{tv (t)}

k

t-<{<p'(t)}*-<{<p(x) V(t)}<-y(t)dt~]

.T,

>r

av(x)}* *- {y'^)}
4"*

f
i^W -

9>W/'~
1

?>'()

* " "*i. snce ? > .

(2-59)5

Similarly J3
- o [{x<p'(x) y(a;}*]. (2.59)6

From (2.59)2-(2.59)6itfollovvsthat/2
=

o[{a;93'(a:) ^(a;}*], and thus

(2.62) is established, which completes the proof of the theorem.
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2.6. An auxiliary theorem
We shall now prove theorem (Z5 )

in a slightly modified form.

We assume that

<p(t) is a positive non-decreasing function of t diverging to -f oo,

having N derivatives, where N is sufficiently large ; (2.61)

<p
(T
\x) > forx > A

,
r = 1, 2, ...

,
N

; (2.62)

__V '

(
.LIJ

) is monotonic and bounded for large #, r ~ 1, 2, . . .
,
JV

;

9? (a?) V 99 (a;) /

(2.63)

and, for every 6 > 0,

-L -< y() < 1
; (2.64)

X

,

-

, ar^ ^~ are monotonic decreasing. (2.65)
97 99 99

Before we proceed to prove the theorem, we need the following

LEMMA 2.61. Let (/)
=

99(2?)

"//\

t an increasing function of t, if
- t's a decreasing function.

<

-
(0

PROOF. We have

t

^ .
__

>

In order that f '(<) > 0, it is necessary and sufficient that

y(t)}
-

g>'(t) (x
-

t)

(x-t) (<p(x)



46 SECOND THEOREM OF CONSISTENCY fCn. II

This will be satisfied if

" -
= v_"(td t <t <t .'' 2 1(

that is, if~ is decreasing.
V

THEOREM 2.61. // y(x) and y(x) satisfy conditions (2.61)-(2.65),

and A\(x) == o
[ {a?y()}*], fc > 0,

jj
-is defined as in Theorem 2.41.

PROOF. Let A be the greatest integer less than k. Then A^x) is,

except for a constant factor,

,
^ /, + /2 ,r f +

[
i A

L J J
o

say, Xj
= x/c , c > 1. To estimate /]( let us integrate it by parts

once more, so that

(U

where the summation runs over s's such that

+

Now

?

<p(x)

(2.66)
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Hence

where k s > 0. Substituting for y(#i), we obtain

If & is an integer, since (p is increasing and k s > 0, the proof

that I
ltl

= o [ {<?(#)}*] is obvious. If fc is not an integer, the result

follows from (2.66).

Next let us consider /
lt 2 .

71|2
-

where 5 + 5
t + ^2 + . . . k, and sl + 2 2 + = A + 2. Now

}*] (2-69)

as in /
lf !

. Now consider /2 ,
which is a sum of multiples of

\<p (W*a ... dt,

where

s + sl + ... = k, sl + 2s2 + ... = h + 1.

We have k 1 >s >k h 1, and if we set

then, by (2.63), W/V is monotonic, and applying the second mean-

value theorem, we have
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: 0(1).
j

A\(t) \<p(x)
- W T -'^i.', .:,,. ', *, <* <!

p ,

0(1). Ak
t(t) \(p(x)

j
,rv

x

(cf. Lemma 2.61)

by (2.65). And now if we use Lemma 1.41, we obtain

72 ^o [{?>(*)}*].

2*7* Absolute summability

Questions analogous to those answered in the foregoing sections

arise also in absolute Riesz summation. One would expect

companion-theorems following (H1)-(H4) and (Z1)-(Z6 ). But explicit

proof of such analogues is not available, except, in the case of (H^)

where we have the following.

(C^. // San is summable
|
A, k

\

to the sum $, and fj,
is an L-function

of A such that p ==
(A

A
), A > 0, then %an is summable \p 9

k

to the same sum.

The method that has to be employed in such cases, however,

should be clear from the theorems which we have established here.
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NOTES ON CHAPTER II

2.1. The words 'consistency' and 'second theorem' (of. Notes

011 Chapter I) are not particularly appropriate, but we have chosen to

keep to Hardy's usage.

2.2. The theorem of G. H. Hardy and M. Riesz we refer to is

Theorem 17 of the Tract. The following theorem is an interesting

(Companion : if A > 0, and San is summable (A, k), then San A~* is

summable (I, k), ln = eV See p. 33 of the Tract.

For an account of logarithmico-exponential functions, reference

may be made to G. H. Hardy, Orders of infinity, Cambridge (1910).

According to Hardy's notation, A* -< ^(A) means that A*/^(A)-*0 as

A-> oo.

For Theorem (Hj) see G. H. Hardy, Proc. London Math. 8oc. (2) 15

(1916), 72-88.

Theorems (H2), (H3 ), (ZjJ-fZ,) are all contained in a paper by
A. Zygmund, Bull Acad. Polonaise, A(1925), 265-287.

Tn this section, unless otherwise specified, //
stands for ^(A).

For an L-function //(A), the condition that 1 -< ^(A) -< A d for every

d > 0, is equivalent to : --;-~\
-> as ;r-v oo. See Orders of infinity,

fJ,(X)

loc. cit., Theorems 19, 21.

Zygmund suggests (loc. cit., 268, foot-note 13) that it is perhaps
sufficient to suppose in (Z 3 )

that lim San exp ( Awcr) exists instead of
rr->-fO

summability (A, I).

While it is obvious that (Z3)
follows from (Z4), it is not equally obvious

that (Z4)
can be deduced from (Z3 ), unless ^(x) as defined in (Z4)

is an

L-function, which is not necessarily the case
; however, the derivatives

of
p,

can be proved to satisfy the required conditions. See Zygmund,
loc. cit., 268.

In (Z5) plainly there is no loss of generality in supposing that the sum
of the series is zero ; if the sum is s ^ 0, then the hypothesis would be :

A\(x)
=

(a?
-

Ao)* + o[{p(z)lp'(x)}*].

The relationship of (Z6)
to (Z5) is similar to that of (Z4) to (Z3 ).

For (H4 )
see K. A. Hirst, Proc. London Math. Soc. (2) 33 (1932),

355-366. Hirst explains the difficulty in replacing his conditions on

(p
in

(
H4 ) by the less exacting ones : tr yW (t)

= ( <p(t) j
. In this connexion,
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he points out a minor gap in Hardy's argument, and shows that it

could be suitably amended.

B. Kuttner has recently shown that Hirst's condition, when k is an

integer, is in fact necessary, Jour. London Math. Soc. 26 (1951),

104-111. Dr. Bosanquet informs us that more recently still, Kuttner

has obtained a necessary and sufficient condition for the case k frac-

tional, and that his proof will appear in the Jour. London Math. Soc.

27 (1952).

2.3. Lemma 2.31 is reproduced from Hirst, loc. cit. But it can also

be found in a text-book like Ch.-J. de la Vallee Poussin's Cottrs d*

analyse infinitesimale I, ed. 5, 89.

Lemmas 2.32 and 2.34 are explicitly proved by Hirst.

2.4. It is perhaps possible to prove Theorem 2.41 with Hirst's

conditions on
99;

such a proof, one would expect, will require some

more attention to details and will not need any substantial change in

the argument.

For the behaviour of the derivatives of L-functions see Q. H. Hardy,
Orders of infinity, lor. cit., 38-39, and Proc. London Math. Soc. 1~>

(1916), 75.

2.6. Theorem 2.61 is a slight modification of Theorem Z 5
of

Zygmund, loc. cit., 272.

2.7. For Theorem Ct see K. Chandrasekharau, Jour. Indian Math.

Soc. (2) (1942), 168-180. The proof given needs drastic revision if k is

non-integral.

That this theorem (and its companions) could be proved in a more

general form, which dispenses with L-functions, will be evident from

the earlier sections.

In conclusion, we may refer to the work of B. Kuttner on the

positivity (instead of convergence) of Riesz means (n
a

, &), for varying a,

of the Fourier series of a positive function. In his work, unlike in the

theorems of this chapter, there is a distinction in behaviour between

a >2 and a= 1. See Jour. London Math. Soc. 18 (1943), 148, and

19 (1944), 77.
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APPLICATIONS TO DIRICHLET SERIES

3.1* Introduction

IN this chapter we shall discuss some applications of the results on

Riesz means obtained in the foregoing chapters to the study of

Dirichlet series. It will appear from the applications that Riesz

means furnish an appropriate tool for studying the suminability of

Dirichlet series.

We shall deal with two types of series, either of the form

^ane~*
n* or an /~*, according to convenience, where {An }

is an

increasing sequence of positive real numbers diverging to + oo,

and ln
=- e*H . We shall first prove a few theorems on the abscissae

of summability of Dirichlet series and the functions represented by

them, which will show how summability by typical means helps

in tackling the problem of analytic continuation of functions repre-

sented by Dirichlet series in their half-plane of convergence. We
then prove a few converse theorems on abscissae of summability,

which will show the very close connexion that exists between

certain properties of functions represented by Dirichlet series and

the summability of such series by Riesz means. We next prove

some Tauberian theorems, and conclude the chapter with some

results on the Dirichlet product of summable series.

3.2* Notations

We introduce here certain notations which will be used in the

rest of this chapter. If an is a given series, and {An }
is an

increasing sequence of positive numbers diverging to + oo, we

denote the Riesz sum of type A and order k of the series 2an by

A\ (a) ), k > 0. In conformity with our notation in 1.1, we have,

if k > 0,

o>

A* (o>) =k f (, - if-
1 AM dt, AM m A,(t) = E a,,

J >,

and if A: > 0, we have
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(co
- tfdAtf).

Correspondingly, Bfo) denotes the Riesz sum of type p and

order k of the series &. We define

A\ (co)
= Y (co h r)

k ~~
l

k rar
. (k > 0)

After applying Abel's method of partial summation to the sum on

the right, whose general term may be considered as the product of

(o>A r)*~'
1
A r and ar ,

we see that

^). [(co t)
k~ l

t] dt (k > 1)

o

Thus if k > 1, we obtain

A\ () = a> A\~* () -
Al(a>). (3.21)

We use s to denote a complex number : s = a + i r, where a and

r are real. Correspondingly we use

Ifk> 1
,
we denote by h the greatest integer less than k ; if < & < 1

,

we define h = 0, and h ~ 1 if k = 0. [&] will denote the integral

part of k. If - stands for the ordinary differential operator, we write
dt

c, Cj, c2 ,
... stand for numerical constants, not necessarily having the

same value in all occurrences.

33* Abelian theorems on abscissae of summability
Given a Dirichlet series awe~

;n* and a method of summation

(A, Jfc),
it is possible that the series is summable by that method for all

values of s, or some values of s, or no value of s. If we know that it is

summable (A, k) for a certain value of s, we would like to know

for what other values of s it is so summable. This section answers
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that question. In the first place, we show that if the series is sum-

mable (A, k) for ss*, then it is summable for all values of s such that

a > a*. It follows from this proposition that there exists a number

ak ,
called the abscissa of summability (A, &), such that the series is

summable (A, k) for cr > ak and not so summable for a < ak >
the

case a = ak being undecidable, in general. The line a ak is called

the line of summability (A, k). The region defined by a > ak is called

the half-plant* of summability (A, &). It may happen of course that

ok
--- + oo or oo. If

(Tj. > 0, we prove an explicit formula

for ok . The line of summability for Dirichlet series reminds one of

the circumference of the circle of convergence for power series ;

the
*

abscissa
'

corresponds to the
'

radius of convergence
' and the

'

half-plane
'

corresponds to the
*

interior of the circle of conver-

gence.' We next show that if a Dirichlet series is summable, then

the sum-function is regular in the half-plane of summability.

Finally we examine the regions of uniform summability ;
we show

on the one hand that the series is uniformly summable in any finite

region for all points of which a > ok + f: > or, , and on the other

hand we show that if the series is summable for a certain s = <$*,

it is uniformly summable in the angular region defined by 6, where

I

am
(6- 5*) < < Ti/2.

We conclude the section with some analogues for Dirichlet series of

the form Saw in~*, associated with summability of type I and

order k.

We start with a formula for the Riesz mean of a Dirichlet series.

LEMMA 3.31. // S6W is a given infinite series, {An }
an increasing

sequence of positive numbers diverging to oo, and s is a complex

number, then for k > 0, we have

X
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X-
1

rfh + 2
\ r(*+ l) f nA + l/A -to/ A*-A+r-2,|, ,x 7 s

\ * I fvi rr 1"\ ^ W e (> ^ +
Z-t \ r J T(k h+r 1) J
r~l

co

+
r-7T-

+

-o; w
~*

f
^J

+1
(0 '"(> - 0* < (3.31)

PROOF.

or* X (a> -A,)*&,-*'

- * - " - -*
,() ~

{ (e-"
- e~ "") (o> -t)> }

dt

= ar* e
'

JBS(a>) +

The second step in this chain of equalities requires Abel's method of

partial summation, and the subsequent steps require repeated

integrations by parts.

By elementary rules of differentiation, however,

(to
-

0*}

(e-*-e) (co
-

I)*-*-
8 +

V-- e~ (co
-

<)*-*+'- +
r JT(k -h + r-1)

r-l

Substituting this in the last formula, we prove the lemma.

THEOREM 3.31. If the series 2awe~
An* is summable (A, k), or bounded

(A, fc), fc > 0, for s = **, a* > 0, Jfcen, /or a > <r*,

)
= o (co*e

wa
). (3.32)
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Conversely, if (3.32) is satisfied for a = a* > 0, then Sane~
A *

is

summable (A, k) for every value of s such that a > a*, to the sum f(s)>

where

(3-33)

PROOF. To prove the first part ofthe theorem, we choose s = s*

and set 6H=ane~
An** in Lemma 3.31. Then the left side of (3.31)

gives Q>~kAk
i(a)), while the right side is the sum of h + 4 terms

each of which is o(e
toa

). For the first term is 0(e
u>a

*) which is

o(e
toa

) for a > a*, since the hypothesis implies that B\(<o) = 0(co
k
).

Tn the second term we have a factor whose modulus is

\e*'*dt < \s*\S'

t

so that the absolute value of the second term will be

c \s*\

< c |5*|(w.e
wa = o(O,

since Bh
A
+ l

(t)^~0(t
hA 1

). The next (h + 2) terms are similarly seen

to be o(e
ma

)
.

To prove the second part of the theorem, we choose bn an

in Lemma 3.31. Of the h + 4 terms that occur on the right side of

(3.31), each of the first (h + 3) terms will be seen to be o(l) as

((J _>. oo, if a > a*, by an argument similar to the above, so

that we finally have

lim o>~* S (co
- A

r)V~V

= lim - co"* 4$
+1

(f)e~
to

(c0
c^oo T(h + 2)

I

O)

w-*
I (o>

-
t)
k
d<p(t), (3.34)

2)
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where
t

(f(t)
= f Ah+1

(u) e-'
u
du.

Since A\(u) = o(u*c'
ta
*) and or* > 0, we have, by the o-version

of Theorem 1.52, A\+
l

(u)
=

o(t/*
+1

e
Mcr

*), so that lim <p(t) exists for
t-+cc

(7 > <r*. Hence the limit on the right of (3.34) also exists, and

sh+z

equals - - lim <p(t). Thus, for a > a*,
J (h -f- 2) /_>oo

lim >-* v (ro-J-V
o/H-2 p-I- ^- l ()^ w'^

(/^ -f" ^/ J

"r<~*

p p

-t) J

A*
(u)du

J
'"'('-)*~*'

From Theorem 3.31 we can easily deduce

THEOREM 3.32. // %ane~** is summable (A, k), or bounded (A. A
1

)^

for s = s*, then the series is summable (A, k) for (ill values of # such

that a > cr*.

Theorem 3.32 and the classical argument associated with

Dedekind's section for a real number yield the following

THEOREM 3.33. There exists a number ak such that the series

^ane~^
g

is summable (A, k) for a > ak and not summable (A, ft)

for a < ak .

We may have ak = oo or + oo. This number ak is called the

abscissa of summability (A, k) of the series Sane""
A

*. It is clear

that ak is a decreasing function of k.
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The line a = ak is called the line of summability (A, k) t
and the

region o > ak is called the half-plane of summability (A, k), We
proceed to give a formula for ak in case ak > 0.

THEOREM 3.34. Let ak be the abscissa of summability (A,&) of

Sawfi-V. //^ > 0, then

r log|-45(io)|ak =- lim sup ? ' ----- ' '

.

,,,_> oo CO

PROOF. Let

rlim sup -
CO

Then

4j(o>)
- o {e

M(a + s)

} 9 e >0,

and hence, by Theorem 3.31, %ane~~*
n *

is summable (A, &) if or > a
fl

.

That is to say, aa > ak . On the other hand, since an e"V is sum-

mable (A, fc) for a > ak , it follows from the first part of Theorem 3.31

that

4*(a,)
- o {"**+>};

that is

rhm sup -
6

^ =i-^ < ^ + e,
ty-^. oo OJ

or aa < ok ,
since e is arbitrary.

Functions represented by Dirichlet series

We now show that the sum of a Dirichlet series, in its half-plane

of summability, is an analytic function whose behaviour for large

values of the argument can be stated with some precision.

THEOREM 3.35. // Sane~ ;/'
8
is summable (A, k) for s s*> and.f(s)

denotes its sum, then, uniformly for a > a* -f e > cr*, we have

f(s)
= o (

r *+'). (3.35)

PROOF. We may assume, without loss of generality, that s* =
so that A\(t) = O(t

k
). For, if we write bn in place of an e~V*

and put s' == s s*, then the series S6W e~"V is summable (A, k)
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We start from the formula (3.33), and estimate the order of f(s)

in the region a > e. Given a number a such that < a < n/2,

the half-plane defined by the relation a > e can be considered as

the set-union of two regions : the first region is defined by the

relations a > e, am s\ < a < n/2, and the second by the rela-

tions a > ,
a < |am s\ < n/2.

We prove the result for the two regions separately. Formula

(3.33) gives
00

ioi*+i r
: e~ta

dt

= c (sec a)*"
1

' 1 == 0(1) = o (T*
+I

),

in the region |

am #
|

< a < n/2, which actually includes the

first region defined above.

Tn the second region, cosec 0, = |am s\ is finite, and we write

> oo

- ta

say. Since A\(t)
^- 0(&), we have, if & is any positive number,

for to sufficiently large, and

e"
-*

dt

- ^(^^' + I
f
> d^

5 <$ J
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for any fixed co ,
and uniformly in a > 0. Hence we obtain, from

(3.33),

-
0(|*|*) + 0(<5|s!*

+1
), fora > e.

Thus f(s)
= O(|T|*

+I
),

since \s/r\ < cosec a < oo, and the theorem

follows.

THEOREM 3.36. Let ok be the abscissa of summability (A, k) of

^an e~*"*. If D is any finite region for all points of which

a > ak + d > ak ,
the series ^a

t(
e~~*n

*
is uniformly summable (A, k)

throughout D, and its sum represents a branch of an analytic

function regular throughout D. Further, for any non-negative integral

r, EA;X? e ~*"9 w uniformly summable throughout D to the value

(-!)'/<.

PROOF. Uniform summability of an e
*n* follows from

Theorem 3.31, if we observe that the estimates for the h + 4 sum-

mands involved in the proof of that theorem are valid uniformly.

That the sum is analytic follows from Weierstrasa's theorem,

since it is the uniform limit of analytic functions.

To prove the summability of SA,j an e~~* tl

*, we observe that

is summable (A, k), and hence

S(co
- A,/ }.

r
n a

)t
e~* <

>-n<>

for r integral, as can be seen from (3.21). By Theorem 3.31, this

implies that A an e~*n* is summable (A, k) for a >ak + d. Hence,

in D, by termwise differentiation of

/(*)
= lim to~

k I (co
- AJ* an e"***,

(0>00 ^<<W

we get

(
~

l)
f
/(f)W = lim -* S (o>

- An)* A; an e^'.
tt>->o> An<>

Summability in an angle

We shall now prove a theorem which says a little more than

Theorem 3.36 as regards the uniform summability of Saw e~ A>t*.



60 APPLICATIONS TO DIRICHLET SERIES [On. Ill

THEOREM 3.37. // an e~** is summable (A, k) for s = s*,

then it is uniformly summable for all s in the angle defined by

am (s s*) |

< 9 < n/2, where is any fixed positive number less

than a/2. Iff(s) denotes the sum, then f(s) ->/(<**) as s -> s* within

this angle, and f(s)
=

(1) as s > oo in the angle.

PROOF. We may assume without loss of generality that s* = 0,

and that the sum at s = s* is also zero, for if c ^ is the sum of 2 w ,

then (a c) + a
l + a2 + a3 + is a series whose sum is zero,

while the series c + + + ... is uniformly summable in the

angle to the sum c, and we can proceed with the former.

Let us consider formula (3.31) in Lemma 3.31 with&w
=

a,t
.

We observe that

/ V / 1\/' i u \.* f

co
'" 1 (co / w )

ttwe
n --- L l

f ,

where I r is known for each r, from (3.31), and

uniformly in the angle am s\ ^0 < 7r/2, by hypothesis.

co'
1' X

x
I A\+\t) (e~**

- e- "") (co
-

t,)

k~ h
-*dt I

fO

r

<cco-&
|*|

o

<ca>~k sec o

since at e
at < 1. For 1 < r < h + 1, we observe that

J

^A+ (
*)e (c>J

~
l)

^

*:
"2+r C

r

u
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at

</ I o \
r /*"* 1 I J^+ 1 (t\\otatf.\ /\*~A+f 2/J*Cow I -li Ifj 6 ICO fJ CWII

Ji
CO

< c(sec 0)
f
a)"~

k ' ^i
T
^'

(or^)
f er ia

(cw Q*~*
+ r~ 2

d^

CO

< c r ! (sec 0)
r o>-* \ J^L^L\ (m _

^)*-*+r-2 ^

a>

-*
f o (*

+1- r
) (ft)

-
<)*-

= ft>-* o (*
+1- r

) (ft)
-

t)
k-h+'- 2

dt

= 0(1).

Finally

tends uniformly (in the angle) to the convergent integral

f Al
+l

(t) <r* dt,

J
o

since A%
+1

(t)
= o (t

h+l
), and this is equal to

00

J
A\(t) e- dt,

o

and hence the first part of the theorem. To prove that

uniformly as s >0 in the angle, we observe that

=
Vl + 992 , say.

If we choose w such that for t > o>
,
we have |-4*(0| <
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since 6 > is arbitrary. Again

since
'

' < sec 0, and a -> as s -> 0. Since f(s)
= ^ + 9?2 , it

cr

follows that/(*) = 0(1) as s > 0, uniformly.

That f(s)
= 0(1) as 5 > oo in the angle, is included in the

proof of Theorem 3.35. We recall that

=.-0{(seo0)*
+1

} =0(1).

Summability (/, &)

We shall now prove analogous results for Dirichlet series of the

form i"an l~\ where 1 < 1 < Z
x < ... < ln >- oo, with which

summability (J, fc) will be associated. Corresponding to Lemma 3.31,

we have

LEMMA 3.32. If k > 0, then

"* v
(cu
- Zn)X J-* = fl>"*-

f

-4f(o>) + r (
fc + x

) v

to

I

-*

"
T(h+2)

1

A+ 2

X

X
fr'i

^ r 7 iX) r^-^+^-A)

PEOOF. As in Lemma 3.31.

We can also deduce results analogous to Theorems 3.31*3.37.

Without going through the details of the proofs, we state the results

as a single theorem.
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THEOREM 3.38. // Saw is summable (Z, k), k > 0, then Sanif

~*
is

summable (I, k) for a > 0, and in fact uniformly in the angle

am s < a < rc/2, and the sum is given by

k

Further, if ak is the abscissa of summability (I, k), then ok , if positive^

is given by

r log\Ai(o))\ 7ak = lim sup ~~^~L_JLL_ZJ Jc,

eo-oo log eo

It can also be shown that the sum-function is regular in the

half-plane of summability.

We shall now prove a theorem which is a complement to

Theorem 3.36, and whose proof depends on the use of Theorem 3.38.

THEOREM 3.39. Let ak denote the abscissa of summability (A, k)

of the Dirichlet series %ane~*
n*. Then EanAe~

A
*, where p is any

complex number, and X Q
n has its principal value, is summable (X,k)for

a > ak . Further the summability is uniform in any finite region

contained in a > ak + d > ok .

PROOF. The theorem holds if p equals a non-negative integer r

because of Theorem 3.36. In the general case, we may write

p = r s, where Re(s) > 0, and apply Theorem 3.38.

3,4. Abelian theorems on absolute summability
In this section we prove the analogues of the results of the

foregoing section for absolute summability.

LEMMA 3.41. Let k > 0. Then

do)

1 =.

J

0)

(3.41)

foralla)ifk> 1, and for to ^ An if < k < 1.
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PBOOF. The left side of (3.41) can be written as

O> CD

d

[~o>-

fc

[
(o)
-

t)*e-*dA,(t)\ = k co~
k- 1

f (co-J)*"
1
*'"* t dA^(t)

to

fr-_l f - mg jfc-1

J

k -*- :

o

CO

X f A\
+l

(t)D
k+1

[(e-"
- e*) (o>

-
f)*"

1

] dt,

o

by partial integration (h + 1) times. Now

-
h, + r 1)

v

The lemma now follows upon substituting this expression for

in the integrand.

THEOREM 3.41. // Yan e~*n8 is summable (A, k), k > 0, for

s = 5*, then it is summable A, k + 1 |/or eyen/ 5 swc& JAa cr > cr*.

PBOOF. We may assume without loss of generality that s* = 0.

Replacing k by & 1, k > 1, the summability (A, i 1) of 2an

implies, on account of (3.21), that

A\ (o>)
=

o(o>*). (3.42)

To prove the theorem, let us write the expression on the right of
A+3

(3.41) as S 7P , and observe that it is sufficient to prove that

for each p = 1, 2,..., h + 3, and a > 0,

I do) < oo.
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00 00

f l/j I

do> < k f
| A\ (eo)

|

. or*-^-"" dm

65

< oo,

by (3.42). Secondly,

oo oo at

f 7,| doo = c f d(o w-*- 1
f

00 CO

<c f (a-"- 1
d(o f

J
5

- e
) (to

-
<)*~*~

2
(ft

. (01-*)*-*-**

f
I ^J

+1
(<)| . e-* (o>

-
o

>2 l^^wi.e-^r*-
1 *

< oo,

since A$
+l

(t)
=

o(<*
+1

). Finally, for ^> > 0,

CXJ 00 O>

f /,+ ,|
dw < c

f
w-*- 1

<fa>

f
(o
-

<q
< oo,

since -4*+1 (0 = o (t?
+1

), and hence the theorem.

THEOREM 3.42. // San e~*' is summable
\ A, k\ for 8 = $*,

ia summable
\
A,

|
/or aK s wcA <Aai a > a*.
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PROOF. As usual, we may assume that s* = 0, and observe that

summability |
A, k

\

of 2aw is equivalent to saying that

-' 000 < 00,

and, a fortiori
00

__

1'TT"
da) < &' > &

J or +1

Using this instead of (3.42), we may argue as in Theorem 3.41, and

show that
00

\Ip dco < oo, forcr > 0, p = 1, ..., h + 3,

which will prove the theorem for k > 0. If k =fc 0, proof is obvious.

From Theorems 3.41 and 3.42, and from the fact that if San is

summable |A,& it is also summable (A, k), we have the following

THEOREM 3.43. There is a number ok , called the abscissa of summa-

bility |A,&|, such that San e~
A *

is summable
|A, k\ for a > ak >

and not summable
\

A, k
\ for o < ak . Further

The next theorem gives a formula for <?t .

THEOREM 3.44. Let ak be the abscissa of summability \

A, k
\ of

2jCfc6*~
**

. If Wk ^> 0, then

CO

ak = lim sup -
log

J

r*" 1

| A\(t)\ dt
,
k > 0,

->> L^ y J

= lim sup log S or |

.

->oo L A J

PROOF. If k > 0, then by following the. analogy of Theorem 3.34,

and using Lemma 3.41, we prove : (i) if the series is summable
w

, k |
for a = a*, <r* > 0, then f r*" 1

| A\(t) \

dt = , a > a*,
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and (ii) if the conclusion in (i) holds for a = cr*, then the series

is summable
|
A, k\ ,

a > or*. If k = 0, the result is easily

verified,

We conclude this section with two theorems on the absolute

summability of aw l~* without going through the proofs which

run along the lines followed in the case of an e~
An

*.

THEOREM 3.45. // aw Z~' is summable \l,k\ fors = s*> then

it is summable \l 9 k\ for any s such that a > cr* .

THEOREM 3.46. If ok and o\ are the abscissae of summability (Z, k)

and
\l 9 k\ respectively for the series aw l^

8 then

3*5* Relations between the abscissae of summability (A, k)

and summability (l,k)

We now mention the relation between the abscissae of summability

(A,fc)and (l,k)of the Dirichlet series 2an e~
A 8 = 2an Z^

f

,
ln

== e*. It

rests on the following auxiliary theorem.

THEOREM 3.51. // an is summable (A, 4), k > 0, then San e~
Aw<J

,

8 > 0, is summable (I, k).

PROOF. Set

dnS=an e-*n* 9
T = J, W ^-e".

Then

*s S (W-lnfdn

w

= k { (W - T)
1*- 1

DJ(T) dT 9 J>? (T) ES D
l (T)

o

U)

= i
[

(6
W -

c^)*-
1

e* D
u

Further



68 APPLICATIONS TO DIBICHLET SERIES [On. Ill

and hence we observe that

D\(W) - k {(e
m -

e')*-
1
e*dt

[
e~ 9

dA,(u)

o o
co to

= k I e~uSdAM f (e
a -

e')*'
1
e
l
dt

*
w< ^ +1

{ (e<0
~ e

'

)i<r
"

by partial integrations. Now we argue as in 2.5, and prove the

result.

THEOREM 3.52. The lines of summability of the Dirichlet series

Sane~~ An
* = an /n

~*
,
ln
= e*n

,
are the same for the Riesz means of

type K or I.

PROOF. If ak is the abscissa of summability (A, k), and ak
'

that

for (I, k), then ak < ok ', since a series summable (Z, &) is also summable

(A, Jfc). [cf. Th. 2.41 and the Remark in the first paragraph of 2.2].

That ak
' <ak follows from Theorem 3.51.

THEOREM 3.53. Ifak is the abscissa of summability (A, k) of awe~
An*

or of summability (I, k) of San l~*
t
then ak is a convex function of k,

provided that ok > oo. That is, for < k <p < r, we have

(ff
-

&) ar + (r
-

p) QICa <
k

PROOF. In view of Theorem 3.52, it is enough to prove this

theorem for San Z~*. Let us assume that a
r > 0. Then, by

Theorem 3.38, we have

,. log |^l/(co)| /0 ^,
ar
= lim sup 5J _-i! r

, (3.51)
o)~>oo log CO

which implies that

A\(a>)
=

(o)
f+a^ e

), e > 0,

and
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By an appeal to Theorem 1.71, these two estimates together imply
that

A*i(a>)
=

{(y*
+ l

fff<*-*> + tf'-lO)/<r-+l

which, by (3.51), again implies that

p
-----------

j
r A;

Letting e ->0, we get the required result for a r > 0. We then

extend this result to the case ar > M, where M is an arbitrarily

large positive number, by a change of origin (or, by considering

the series S6
/?

ln
~s where bn = an Iff).

3*6* Dirichlet series on the line of summability
In this section we are interested in two types of problem : (i)

summability of order k on the line of summability a = ak ,
and (ii) a

converse of Theorem 3.35. The first is essentially a generalization of

Fatou's theorem on power series, which states that if an + 0, then

i]an z
n

converges at every point of regularit}^ on the unit circle.

We observe that with restrictions on the Rienz sums of order k of

5an and on the behaviour, on the line a ~ ot ,
of the function f(s)

represented by the Dirichlet series, it is possible to deduce summa-

bility of order k of the series, at some points on the line a = ak .

The second type is concerned with the question : if a Dirichlet

series, known to be summable by Riesz means of sufficiently high

order in a half-plane, represents a regular analytic; function which

can be continued beyond that half-plane, can we say that the series

is also summable in the extended region ?

LEMMA 3.61. Let b(t) be integrable in theLebesgue sense over every

finite interval < i < ,
and satisfy the condition

b(t)
= o ($*), >0, (3.61)

as t > oo, 6-0 that the integral

converges for Re(s) > 0, and

F(s) = I e^b(t)dt (3.62)
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is regular in that half-plane. If F(s) is assumed to be regular also

at s = i T
, then, for any non-negative integer r, we have

Jf(x,a>)
= e"** \F(x) e****]

-
(CD
-

t)
r e~ tjr

b(t) dt
dxr L J J

o

- o (ft>*), (3.63)

where x ~
i TO ,

and (3.63) is valid uniformly in any closed interval

on the imaginary axis in which F(s) is regular.

PJBOOF. Let the function F(s) be regular on the closed interval

(x l
= i rv #2

-
i T2 ), T! < T2 ,

of the imaginary axis. Then we

can choose a number a < such that, if 6 is any fixed positive

number, F(s) is regular inside and on the rectangle R formed

by (a + x%, a + x
l9

h + x^ b + x%). We shall show that

can be made as small as we like, uniformly on the boundary of R,

by choosing co large enough, so that the same will be true in the

interior, and then the Lemma will follow easily.

On the boundary of jR, we have the following inequality :

(i )
|

# x
l

\

r .s #21* ^ c a r
,

where c is a constant.

If 6 >Re(s) > and
r/ > 0, there exists a number > =- o> (?/),

such that for co > o> ,

(ii) \H(*,a>)\ <c^co*e-^(T~^- 3
.

For

(*
-

w)
f e-" b (t) dt,

e~ ta
u
k

(t
-

a>Y dt,

for cu > cu
,
CDO being chosen such that

|6(J)| < qt* for t > co
,
on

account of hypothesis (3.61).
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CO

! H(a, (a) \ < n e~
'""

f e- ua
(i + uf u r du

O

on

< 2k
ri
e~ '"

{ (co
k + uk

)
e~'

to ur

71

du

for < a < 6, and (ii) is therefore proved.

For that portion of -B which is to the left of the imaginary axis,

we have the inequalities :

and

VJQ w

"6(0 (co
-

t)
r
dt <co r

f
1
6(0 1 e- fa

dt + f

ro

^ *1 i ^'2>

O
r

|

say, where

and

<

Jl < C ft/,

ra

r,e-'""\ e< "/*(a>-O
f

<

<!.

J

"dt

since a < 0, so that

(iii) H (s, o))\ <c1 a)
r

Combining (i) and (ii), we have, on that part of the boundary of R
which is to the right of the imaginary axis,

\gm(s)\ <cr).
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On the boundary of It which is to the left of the imaginary axis,

we combine (i) and (iii), and obtain

Thus g v)(s)
=-

0(1), uniformly on the boundary of J?, since
r\

is

arbitrary, and hence also uniformly in the interior of R, and in

particular at s i TO ,
if r

x < TO < T 2 .

Hence

- ._ __ n (,.J\
____ !r+Jr+J (> )>

**/1 1

for a; =^ rn ,
which proves the lemma.

THEOREM 3.61. /> b(t) and F(s) be defined as in Lemma 3.61.

Then

(a) the integral

M ' summable by typical means of order k
'

^o ^Ae vaZite F(s) at every

point on the imaginary axis at which it is regular, and uniformly

in every interval in ivhich it is regular, that is

0>

lim -*
f (

-
t)
ke~xt

b(t) dt = F(x),
10^00 J

if F(s) is regular at s = a: = ir
;

(b) for k > k' > 1, we
a>

[
(co

-
tfe-**b(t) dt^o (ai*),

(a,
_ ^'-^e-^-e-^) b(t) dt - o (a>*).

PBOOF. If A is an integer, the theorem follows easily from

Lemma 3.61, if we observe that for s = x we have
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//*
*

er
"

[F(xy
>r

]

=- wk
F(x) + Sf^-'F^aO

= a>*F(x) + o (<*),

and use this in (3.63).

Tf k is not an integer, we choose r = [/,*] in Loinma 3.61, and

8et
(0

If(x 9 co)
--.-. f (co

-

/)**>-"&(/) r//.

u

Then
o>

*"<*' "' - JOTro^) I
^ " (

" - """*

and

) 1 ro

say. Now
/, =-

0(0)*),

by Lemma 3.61, and

5*)
. (ro

--
t)*-

r~ z
dt, by Lemma 3.61

;

o>-l

=
(
w*) 4.

j

o

= 0(0,*) +o fco*
f

(01 -~t)
k~ r - 2

dt I ,fc- r ~2<-l,

Combining the estimates for/j and/2 ,
we prove part (a) of the theorem.

The proof of (b) runs along the same lines.
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From Lemma 3.6] and Theorem I]. 61 we have the following general

result.

THEOREM 3.62. Let ak be the abscissa of summability (A, k) of the

J) /rich let series Yan e~*
n
*. If

A\ (a>)
- o (a)

k
e
M(J

'<) ,
k > 0, ak > 0, (3.64)

then %an e
A"* is summable (A, k) at every point on the line a ak at

which the function represented by the Dirichlet series is regular.

PROOF. Iff(s) is the function represented b}^ the 'Dirichlet series,

then we know that

If we set
M/\ rvz i o \ /*F [$ )

-~
I ( tit ~\~ *-i\ \

we have

/() =

Since it follows from (3.64) that b(t)
=- o (*"

fj
)> we can aPPbr

Theorem 3.61. We assume that s 7^ 0, since when 5 = 0, the

result follows trivially from (3.64) alone. Since F(s) is regular at

all points of a -- ak at which /(.?) is regular(s 7^ 0), it follows from

Theorem 3.61 that

or

?l

I (co

f
(3.65)

where 6* = ak + ir ^ is a point of regularity of F(s). Now to

prove that

co~k (01
- An)* n 6-^

we have only to use formula (3.31) in which the first term can

be estimated by using (3.64), the last by using (3.65), and the

others by using Theorem 3.61 (b).
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The assumption that/(s) is regular at a point on the line a -= ak ,

may be replaced by the hypothesis that f(s) has boundary-values

on the line a = ak ,
and is bounded to the right of it. In as much

as the proof of Theorem 3.62 depends on that of Theorem 3.6 J,

Me shall prove a generalization of Theorem 3.61 only.

THEOREM 3.63. If in Theorem 3.61 the hypothesis that F(s) is regular

on the imaginary axis is replaced by the hypothesis that. F(s) has

boundary-values on an interval (i T^ I r 2 ), r, < r 2 , of the imaginary

axis, and is hounded to the right of that interval, then

(O

(i) for > 0, lim ro
*'

[ (w // (~ ttr b (t) dt
- F (i r) ,

U>->00 J

for almost all T in (rv T2 ), in particular at all points of continuity ;

(ii) and for k 0, r^ < r < T2 ,

00

\e~ iir

b(t)dt

converges at the point it, if F(ir) satisfies a Lipschitz condition

or any of the sufficient conditions for the convergence of a Fourier

series.

PROOF. Let x
1

i r
iy x% ^ / r 2 ,

and let C denote a smooth curve

starting from x
1
and ending with x% and lying to the right of the

imaginary axis. Also, for ^ > 0, let Cd denote a similar smooth

curve starting from d + x
l
and ending with d + x^ which tends

to C as d >0. Then by Cauchy's theorem,

2ni J zs
or

'6

for any s lying to the right of the line a 6 and to the left of Cd .

Now if d -> 0, then, by Lebesgue's theorem on dominated con-

vergence, we have

2 7i i ] z s 2
x

^ F^s) + F,(s) t say,
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for any s lying to the right of the imaginary axis and to the left of C.

Xi oo co an

FM ~ -
2 ni |

'W
1

e"*~" dt =
|

e~"*
| [

-
2ni *<>

nay, where

p
r

'

9(i)
~ ~

2n J

FM eMM
>

* T
2

so that (p(t) o(l) by the well-known Riemaim-Lebesgue lemma.

If we write

J

b(u) du,

=
<p(u) du,

o

-
0(0,

observe that

F^s) - I e~u dA(t).

Since ^\(s) is regular on the imaginary axis, we can now apply

Theorem 3.61 with b(t)
=

A'(t), arid conclude that

<o

lim co-*
f
e- at (w

-
0* dA(t) =-= Fz(i T), TJ < T < T,.

tu >oo J

The left side is, however, equal to

a>-*
f
e~

itr

(co
-

0* 6(0 dt-a>
~

;>

f

e'^ (>
-

if <p(t) dt.

o o

Since y (i) is in the form of a Fourier integral, the second term can be

tackled as in the theory of Fourier series, and we conclude that it
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tends to F^i r) at a point of continuity of F(i T) if k > 0, and if

]c = at a point where F(i r) satisfies a Lipschitz condition. Hence
to

lim co-* f e-*T
(co
-

t)
k
b(t) dt

>->oo J

== lim co-* 1 e- itr

(co
-~ itr

O) >00

We shall now state a theorem on convergence, which cannot be

deduced directly either from Lemma 3.61 or from Theorem 3.61.

THEOREM 3.64. Let an e~An*
converge for G > 0, where it repre-

sents a regular function f(s), and let

a, = <>(*,, -*_,), A, -*_! = 0(1).

T%er S&n e~^w* converges at every point on the imaginary axis at which

f(s) is regular; and more generally ,
at any interior point of an interval

(it i, i T2 )
on whichf(s) has boundary-values, and to the right of which

f(s) is bounded, provided that the boundary-function satisfies at that

point any of the sufficient conditions for the convergence of a Fourier

series.

PROOF. We indicate the proof in the case where f(s) is regular ;

the other oases can be treated as in Theorem 3.63. Let (I'TJ, T2 ),

r
l < r2 ,

be a closed interval where f(s) is regular, and let x = i r,

T I < r < T2 .

Set

H(x 9 a>)
= \_2are-*"-f(z)l

A
f <co

gt(a>)
= e

mf
(s
- i TJ). (s

- i T2). H(s 9 co),

and argue as in Lemma 3.61. We easily derive all the inequalities

proved there with Jc = 0, using the hypothesis on an . For example,

corresponding to the inequality (ii) in Lemma 3.61, we have

H(8,a>)\ =
w-l-l

CO

=
( J

e- = o tr- e~, < co

10



78 APPLICATIONS TO DIRICHLET SERIES [CH. Ill

so that \g,(a)) \

-
o{e

(<0"^a
}
=

o(l), since Aw+1
- An = 0(1). (in) can

be treated similarly.

The above theorems have their analogues, with one exception,

in the case of the Dirichlet series an l~* . The exception is

Theorem 3.63 in which there was a distinction between the two

cases k -- and k > 0, with different conditions on the boundary-

behaviour of the function. Here, however, in both cases, we require

the function to satisfy a Lipschitz condition or any of the conditions

sufficient for the convergence of Fourier series. We have closely to

follow the foregoing arguments substituting (not changing the vari-

able !)"* for e~~
t9 and oj ak for e otak

. We simply state the theorem

in its general form.

THEOREM 3.65. Let ak > be the abscissa of summability (I, k)

of the Dirichlet series 2aw l~
s

,
and let

)
=

o(ft>
fc4-

*), k >0.

Then a
tl l^

8
is summable (I, k) at any point of the line a = ak at which

f(s), the sum of the Dirichlet series, is regular; and more generally,

at an interior point of any interval of the line a ak on which

f(s) has boundary-values, and to the right of which f(s) is bounded,

provided that the boundary-function satisfies at that point any of the

sufficient conditions for the convergence of Fourier series, such as a

Lipschitz condition .

We shall now proceed to prove a class of theorems of the same

nature as the previous one, with this difference : that the hypothesis

on A\(x) is replaced by a hypothesis on the behaviour of f(s) as

s >oo along lines parallel to the imaginary axis. These results are,

in a sense, converses of Theorem 3.35. The proofs depend on the

explicit expression of the Riesz sums in terms of the function repre-

sented by the Dirichlet series, which is called Perron's formula.

LEMMA 3.62. If a > 0, k > 0,

a+io uk
lT(k + 1), u > 0,

0, u < 0.
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// a > 0,

79

o+too-
\

-
31 I J

- 1
e
ul ds =

a ico

1, u > 0,

i u = 0,

0, i* < 0,

i being understood that the principal value of the integral is taken

if u = 0.

LEMMA 3.63. // a > 0, k > 0,

r /i i L,\k ^ -I

l i/*),>i,

<T too

PROOF. If we write

+ 1 + s)

(1
-

a;)*
= v

0, < v < 1.

we have

T(k +

and if we observe that

i

r +~s)

=
J

** (1
~

'

00 TDJfc

S r

o s + r

a+ i

-
f\ni J

v8 ds
v~ r

,
v > 1,

J, ^ = 1,

0, v < 1,

where the principal value of the integral is taken in case v = 1,

00
J3*

we see that the lemma follows by substituting the series S . -

r ~

o s +r
in the integrand of the Lemma, and integrating termwise.

Lemma 3.62 will be used for the study of the Dirichlet scries

2an e~ An*and Lemma 3.63 for Yan l~
8

. From Lemma 3.62, we deduce

LEMMA 3.64. Let Yan e~*n
*
be summable (A, k), k > 0, for a > ak .

Then for a > ak and a > a*, we have

a-f i

= *
f

/(^)"
27Ti J (i^lt

a too
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where f(s) is the sum of the series. The dash indicates that if k = 0,

ro = hny then the last term of the sum has to be multiplied by |.

PKOOF. Let Am < co < Am i
. Set

= e< h(s) 9

where h(s) is the sum-function of the summable series

This series is summable
(JLI, k), where //w

= &m+ n+i for a > ak .

Now
o+ * <7+ ioo' *~* } ds If aWe""* <fo

flf~ioo a iao

__ 1 /(5 )
e

_
* V /r g-^n

8*
f/y 3 \ fc

2 n i j , ('
-*^-4- 1 ^ /7

by Lemma 3.62, and the result will be proved if we can show that

this is zero.

Let us consider a rectangle R formed by the points

a - i T
19 a + i T2 , Q + i T^ Q - i Tl9

where Tv T^ Q are large positive numbers. By Cauchy's theorem,

that is

a-iTl

say. If we fix Tl and T%, and let Q ~> oo, we observe that /2 > 0,

since the numerator of the integrand is bounded, by Theorem 3.37.

As Q ** oo,

=
0(1)> as
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since h(s)
=

o{ rl*"1
" 1

}, by Theorem 3.35. Similarly

lim lim 73
= 0.

Hence

L {* ff(*) e
~ m*

ds =.

^
I __

jjj

V
Jj. _^_ J

^^ V
2

Corresponding to Lemma 3.64 we have

LEMMA 3.65. Let Yan l~
8
be summable (I, k), k > 0, for a > ak ,

and let f(s) denote its sum. Then for a > ak and a > a*, we have

o
1 f

2 n i }

n
m+l

+ 1+S-S*)
a ico

The dash indicates that the last term of the sum has to be multiplied

by J, ifk Q and co ln .

PROOF. The reasoning runs on the same lines as in Lemma 3.64.

00

We observe that if ^an l~
s

is summable (I, k), then

summable (/-*, k), where
ju,n lm+ n+i.

From Lemma 3.65 we can deduce theorems on the summability

of the Dirichlet scries. We assume that for sufficiently large values

of a, say a > d, the Dirichlet series is summable by Riesz means

of sufficiently high order, and that the sum-function is regular

in a larger half-plane, say a > ^, r\ < d
y
and satisfies a condition

like f(s)
= 0( s

k
). We then observe that the Dirichlet series is

summable for a > Y\
as well. More precisely we have the following

THEOREM 3.66. Let the Dirichlet series San l~* be summable

(I, p), where p is sufficiently large, for a > d, and let the function f(s)

defined by this series be regular for a > 77, where
rj < d. Further,

let f(s) satisfy the condition

uniformly for cr>^ + e, e>0. Then the Dirichlet series is

summable (Z, k) for k > Ic and a > TJ.

PROOF. Let us suppose that the Dirichlet series is summable

(I,
k + ra), for a > d, where m is a sufficiently large positive integer.

Then by Lemma 3.65, we have, for a > d, a > a*,
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0+ioo -*

We first observe that in the above formula a > d can be replaced

by a > a* > r\.
For we have only to apply Cauchy's theorem

to the rectangle whose sides are a c, (c > a* > ??), a v, (v > d),

T _. __ y
i
an(j T _. y

2 an(j observe that the integrals on the sides

parallel to the real axis tend to zero as 2\ >-oo and r2
-

ex), on

account of the hypothesis on /. Next we observe that we can

take m = 0. For we can multiply both sides by a)
k+m

,
differentiate

with respect to o>, and divide by (k -f m) co
k+m~ 1 on both sides.

This will lead to a formula with m 1 in the place of m. We

may perform this process successively m times, observing each time

that we get a convergent integral on the right side. We thus

obtain the formula

I

or > or* > ??.
The integral on the right converges absolutely if

k > k', for

and/() = 0( |T (*'), by hypothesis. Finally we extend the formula

to a < cr*. The function H(s s*) has a pole at s s* with

residue 1, so that by another application of Cauchy's theorem, we

will have, for
r\ < a < a* < r\ + 1,

or-riw

= X

-.
f
//(-

2 ^ t J

Using the hypothesis on f(s) and the known order of H(s 5*),

we observe that the right side is 0(co
a
~*) = o(l) since a < a*, which

proves the theorem.

A corresponding theorem for an e~*** is also true, which we

proceed to prove.
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THEOREM 3.67. Let the Dirichlet series ane~
A * be summable

(A, p), where p is sufficiently large, for a > d, and let the function

f(s) defined by the series be regular for a > 77
where

r\ < d. Further,

let f(s) satisfy the condition

uniformly for a ^ r\ + > > 0. Then the Dirichlet series is

summable (A, k) for k > k' and a > r\.

PROOF. Let us put ln
= e\ Since Xawe~~

An* is summable (A, p)

for a > d, it is also summable (Z, p) for a > d, by Theorem 3.51.

So by an application of Theorem 3.66, Sane~
An*

(
==

Y<tJ~
s

)
is

summable (I, k) for a > 77,
and therefore also summable (A, i) for

or > 17, by the second consistency theorem.

We now raise the question : under what farther conditions can

one assert summability on the line a = 77 ? Wo state two theorems

similar to Theorem 3.63.

THEOREM 3.68. // in Theorem 3.67 we further assume that f(s)

has boundary-values on a =
77 ,

and that

f(s)
= 0{(l +\ r \)

k
'},k' >0, ,T| >0,

uniformly for a > 77, Aew i]ane"
An* i5 summahle (A, &), i > jfc', ^

every point on the line a
r\

at which f(s) is continuous in the complex

sense (when the neighbourhood of approach to the point is on the right

side of the line o ~ rj).

THEOREM 3.69. // in Theorem 3.66 we further assume that f(s)

has boundary-values on a =
77, and that

f(s)
= 0{(l-r r f},k' >0, r\ > 0,

uniformly for o > 17, then 2anZ~* is summable (I, k), k > k'
,
at

every point on the line a =
r]

at which f(s) satisfies a Lipschitz

condition or any of the conditions sufficient for the convergence of a

Fourier series.

PROOF OF THEOREM 3.68. Let x = 77 + ir be any point on the

line a =
77,

at which f(s) is continuous in the given sense. Then,

from Lemmas 3.62 and 3.64, we have, for a > rj
and k > k',
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n~~
"

i~\ J v*''

a-\- too

_ j r /()-/(*) ^.
2 J ~(5~^

By Lebesgue's theorem on dominated convergence, we observe that

the above formula is true with a =
77, provided we go round the

point s # along a semi-circle to the right of the line a =
r\
with

centre x and radius r. Thus

C
; -f-

where (7 denotes the semi-circle with centre x and radius r. Given

e > 0, we determine <5 such that

\f(s) f(x)
|

< s
,
for 5 #| < 5.

We further choose r=l/<y. Then for 1/co < <5, we write

r; -f i oo
ry + 18 t? + i oo

f
-

f + f

J.-i J. -i J
'

Now

|
=

(1)
= ()*) ,

as co > oo, by the Riemann-Lebesgue lemma, and

r

so that

^ftOO

f = 0{e co*).

. 1

r?+ io

Similarly

ry-iro""
1

f = 0(8 to*).
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Finally
i r i

=
(e co'"").

c

Since e is arbitrary, the theorem follows.

REMARK. It is clear that the above method can also be used for

the proof of Theorem 3.67.

Theorem 3.69 is similarly proved, by using Lemma 3.65. We have

to observe that

1 + s - s*)

has a simple pole at s s* with residue 1 .

3*7* Some converse theorems on the abscissae of

summability
In this section we are concerned with a. class of theorems on the

abscissae of summability ,
which are Tauberian in nature, though not

explicitly recognizable as such . Corresponding results for the ordinary

Dirichlet series *an n~
8 were first proved by G. H. Hardy and J. E.

Littlewood, and latei generalized by K. Ananda-Rau to cover a

larger class of series.

Using the results of 1.8, we prove inequalities for the abscissae

of summability (Z, k) of the Pirichlet series SaM /n~~*, where A t(t) satis-

fies Tauberian hypotheses, and combining them with Theorem 3.66,

we prove Theorem 3.72 which is a complement to Theorem 3.66.

Finally we apply these results to %an ln
~8

, where the growth of

|7n }
is restricted, and obtain a generalization of the Schnee-Landau

theorem.

LEMMA 3.71. //

Af(co)
- ca>k - o (co*

4
^), ft > 0, (3.71)

then 2aw ln
~~

ft is either summable (L k), or never summable (I, r) for

any r.

PROOF. We assume without loss of generality that c 0. It
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is obviously enough to show that if ^an ln
~

ft
is summable (I, k + m),

m a positive integer, then it is summable (/, k). Now set

bn
= *nl-'.C. = bnV = *V-f

.

where p is an integer greater than ft. Then

- o (*+"),

on using (3.71) in Lemma 3.32 with^ ft
for s. A fortiori

CJ(m) = o ('+), (3.72)

for every r > k. But

*<<

or

(3.73)

From (3.72) and (3.73) we observe that

Bl
+1

((o)
= oK+1

) (3.74)

implies

flf(c)
= oK).

That is to say, under the hypothesis of the Lemma, if %b n ^ ^a tl l,~
?

is summable (I, r -f- 1), then it is summable (/, r). Setting

r = k + m ~-l,k + m 2
t

... 9 k, we observe that, if a
/4
Zn

~~
/J is

summable (Z, fc + m), then it is summable (/, k). Hence the Lemma.

REMARK. The Lemma is valid even if ft
is complex with a

non-negative real part.

THEOREM 3.71. IJ or denotes the abscissa of summability (Z, r) of

the Dirichlet series 2an ln"\ a
r < + oo, and if

A
t (ln + t)-A l (ln)

= (^ Zn ), /* > 0, < t ~ 0(ln), (3.75)

^Ae?i, either a
r < a ^- /,, in w^AicA case

< L-^AiJji^^jt+jOf, < fc < ff
r -\- V

or af > a + /*, in wAicA ca^e a
k
=

ciy, < & < r.
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PROOF. Let y be real arid y > ar . Set bn
= an 1H

~ v
. Since S&

is summable (I, r), we may write

J5[(fo)
= co/ + o(ft>

r

), (3.76)

wliere r is the sum of the series. Further, (3.75) implies

+ t)
-

,(!)
= 0(f ln

~ v
) (3.77)

=
I

"'

w ,

if/ = 0(/J. Now (3.76) and (3.77) imply, by Theorem 1.82,

J3f(oi)
- ceo* - o{oi*

+(r - w ((l+//
-^r

+">} , (3.78)

if a + [i y > 0, <A: < r. Now (3.78) implies, by Lemma

3.71, that

is summable (I, k) since it is summable (I, r). Since Sfr,, ^7^ ^a ^7
r-/?

we obsor\re that

^ (a + A) (r
-

*)--

r + /e

As y can be any number > or r ,
the first part of the theorem follows.

To prove the second part, we observe that if y > a + /^, then

v,a
fl
l~ v is convergent if it is summable (?, r), for (3.77) implies

which, together with (3.76), implies, by Theorem 1.82,

COROLLARY 3.71. // an = 0{l
a
n (ln

- ln^)} 9

and if af denotes the abscissa of summability (Z, r) of the Dirichlet

series an Z~*, then

a/, < ,0 < k < T.

r + 1
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We have only to put //
=-- 1 in Theorem 3.71, and observe that

o
r < cr < a + 1.

COROLLARY 3.72. // S a,\*
I* (l v

-
Z,^)

1 '*

where p > 1, a + 1 f 1/p > 0, then for < k < r,

< (a_ ^(Lzj^ ?dM: x r ^
* ^ "

r + 1 i/>

The hypothesis in this corollary implies (3.75) with 1 1/p

for //,
a + 1/p for a, and <r < a -j- 1.

We can combine Theorem 3.66 and Theorem 3.71, and obtain

THEOREM 3.72. //

A^ + t) A
t(ln )

=~ 0(t
u
ID, [* > 0, < t = 0(ln ), (3.75)

if the Dirichlet series San Z~* is summable (I, p), where p is suffi-

ciently large, for sufficiently large values of a, and if the function f(s)

represented by the Dirichlet series is regular for a ^> ?/, 7; < a -\- //,

satisfying the condition

f(8)~0(\r\'),r >0,

uniformly for cr > ry + e, e > 0, then ^an l~'
8
is summable (I, k) for

(a + //) (r k) + rj (k + [*>} c\ ^ i <
r + ft

PROOF. If r' > r, then by Theorem 3.66, i]aw Z;t

"*
is summable

(I, r') for a > r),
and hence a,, <??, where ar

' is the abscissa of

summability (/, r') of ^an l~\ We can now apply Theorem 3.71,

and deduce that San ^7* is summable (Z, fc) for

^ (a + //) (/
-

4) + r/ (fc + /O

If we let r' ~> r, we obtain the theorem.

COROLLARY 3.73. //, instead of (3.75), we have

in Theorem 3.72, with
r\ < a + 1, &e/i San ^* is summable (I, k) for

a > (aJ^lHr -^H-^-fj)
> Q < , < r

r + 1
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COROLLARY 3.74. //, instead of (3.75), we, have

in Theorem 3.72, with
17 < a + 1, then %an l~ 8

is summable (/, k) for

(f*
\ 1 \ IM 1f\ 1 10 //' _1_ 1 1 \fY\\LL ~)~ ill/ A/ 1 |" // I A/ ~y~ X J. / fj i j

^> _ A. X ic/
?
o < A* < r.

We conclude this section with a few results on the summability

of the Dirichlet series S^ /,7
s

, Avhere the increase of L, is res-n a it

tricted.

THEOREM 3.73. Let

e^ an = 0(l
6

n ) for every 6 > 0, so that %an l~
s

is absolutely

convergent for a > h. Further let the function represented by the

Dirichlet series 2aM l~
t

*
be regular in the region a > rj (rj < h),

satisfying the condition

uniformly in a > r\.
Then ^an l n

~*
is summable (I, k) for

PROOF. This follows easily from Corollary 3.73 on putting

a -f- 1 = <5 + A, and then letting 6 > 0.

It is clear that we can have more general conditions on an ,
as

in Theorem 3.72 or Theorem 3.73.

THEOREM 3.74. // a
r
denotes the abscissa of sumwability (L r)

of the Diriclilet series San Z,7*, and

V- =o (;_,), *>."~

<r
/t
, a

r < ^ (r &), < k < r.

PROOF. Let y > ar and set bn
= aw/M

~ y
. Since S6n is summable

r),

*,() - o
[ { I^i/P^!

- U }

r

], (by Theorem 1.62)

- o (l
h
n
r
)
- o (co

hr
),



90 APPLICATIONS TO D1KICHLET SEK1EH [CH. Ill

where ln <CD < iw+1 . Hence, by Theorem 1.71, since #J(o>)
= 0(o>

f
),

J3f(c)
- o(o>*

+ *
<'-*>),

which implies by Lemma 3.71 that an ln
~~ v~ h (r

~ k) is summable

(/, k) if it is summable. But it is summable (/, r),
since y -\- h(r k)

> y > ar . Hence ak < y -f h (r fc), or
#,.

(T
r < h (r &),

if we let y f a
r .

COROLLARY 3.75. 7/ /,/(/>t

-
/w-1 )

- O^J^!) /or werj/ fi > 0,

r = cr
7i
.. /or erery k > 0.

3*8* Tauberian theorems

In this section we are concerned with a class of problems exten-

sively studied by G. H. Hardy amlJ. E. Littlewood, generalizing the

classical theorem of Tauber on power series. Tauber's theorem states

that if a power series %an x
n

converges for x\ < 1, and the sum-

function tends to a limit c, as x f 1 0, and if na
ti
=

o(l), then

Ean converges to c. We are concerned with generalizing this result

to the Dirichlet series ^an e"^
(9

. We assume that this series con-

verges for o > 0, and that its suin/(s) tends to a finite limit as s >

along the positive real axis. We observe that %an then converges,

if an satisfies any of the Tauberian conditions in 1.8.

THEOREM 3.81. Let San c~
A a

converge for o > to the sum f(a),

and. let /( + 0) exist. Then a iwcwfiary and sufficient condition that

lim A((D) should exist is that

A\(m) = 1 dA,(t) = o(>). (3.81)

PROOF. The necessity of the condition follows from the identity

^(t) dt - A^to)
- co" 1

Al((o). (3.82)

o

For if lim A^O)) exists, then ^A(co) and w" 1

A\(a>) converge to the
0>-f 00

same limit, and their difference tends to zero.
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To prove the sufficiency, we set

w

C\(<o)
= ar^Kw) = dt; (3.83)

f f

J\(o)
= a Cl(t)e~

at
dt = a u~~ f(u) du, (3.84)1

a

where
oo ey

f r

/() = 2aw e~ A M = w ^1A(0 e" w/
c/t - t*

2
JiJ(<) e~ ld

dt. (3.84)2

o o

Now since /(+ 0) exists, it follows from (3.84) that /3 ( f 0) also exists

and

f^ + 0) ==/( + 0).

Further

= <r [e-^dt {u-*A\(u)du

oo

- f- 2
I}()e-

aw
dtt. (3.85)

Therefore, from (3.83) and (3.85),
CO 00

^(w)-/!^)^ fr 2
Ji()cft

say. Now

r
f -,

.

, i
1=1

L
ff

J

! A(<M T 01

oo

o r 'e 'rf< = o {(o
L J J

llJtt)
:n:;-
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Choosing w a = 1, we observe that

which proves that l'an is summable (A, 1). The convergence of

lan now follows from (3.81) and (3.82).

THEOREM 3.82. ///( + 0) exists., and if ^a tl
has non-negative

partial sums, i.e. A^(t) > 0, then Saw is summable (A, 1) to the sum

f(+ 0), i.e. a)"
l

A\(o>) ->,/'(+ 0) as co ~> oo.

PROOF. We prove the theorem in two stages : (a). If /(+ 0)

exists, and if A^(t) > 0, then San is summable (A, k) for sufficiently

large values of k. (ft). If AA(t) > 0, and if S M is summable (A, k),

k > 1, then 2aw is summable (A, 1).

PROOF OF (a). Now
GO

fW-^'--<>l'-
t *M*>

and since

liin /(or) -/(+(>)
0-4-0

exists, we observe that

lim/(mcr) ---=/(+ 0), m > 0,
o-M)

that is,

CO C/

lima
f
J A(Oe

M0i
dt---

l

/(+ o)
- /(+ 0) \<r

Mt
dt. (3.86)

a~>o J m '

J

From (3.86) we note that if Pn (x) is a polynominal inx of degree ?i,

then
CO r/

lim a Pn(e"
a/

)
-4 A(0 "'* --"/(+ )

Pn ("') ^~ f * (
3 -87

)

a-0 J J

We next note that by an appeal to Weierstrass's theorem on the

approximation of continuous functions by polynomials, we can

I'eplace the polynomial Pn (x) in (3.87) by a function 99(0;) continuous

in < < 1. Thus given any positive number , we can find

polynomials Pn (x) and Qm (x) such that
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and

So, AM) being non-negative,
oo oo

f
0Je-*) 4A(0 e-*ctt < a f <p(e-

ff

<) e- ff<

dt

o

oo

< a Pn(e~
at

)
e""* AM) dt.

j
o

If we let a > 0, we observe that the last integral tends to

OO 00

/(+ 0)
|p.(e-')

e- (
<fc < /(+ 0)

1
9>(e-<) e"' d< + e /(+ 0),

while the first tends to

oo oo

f( + 0) f Qm(O e-'ctt >/( + 0) L(e-) e-'cft - e /(+ 0).

o o

In other words,
OO 00

a_l
_, "1 -. f

(p(e )
e dt e \ < lim cr A^i)^)(eT ^er dt

J 5^o J

00

Since s is arbitrary, we obtain

00 00

lim a \AM) <p(*"*) e'^dt = /(+ 0) f <p(e~') e~ l
dt. (3.88)

a-^O J J

On putting or = 1/co, where o> --
> oo, and

/ \ __ 1(1 loga:""
1

)*^
1

, for e""
1 < a: < 1,

(3.88) leads to summability (A, fc), Jfc > 1, which completes the

proof of (a).

PROOF OF (ft). This is Corollary 1.83.

12
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COROLLARY 3.81. Iff( + 0) exists, and if A^t) = L (l), then

an is summable (A, 1). //, however, A^(t) = 0(1), then %an is

summable (A, Jc) for every k > 0.

THEOREM 3.83. /// (+ 0) exists, and if

)
= L (a>),

o

an is summable (A, 1), i.e.

co-
1

4J (a>) ->/(+ 0),

as a) > oo.

PROOF. From (3.82) and (3.84) we deduce that

/(*) -fi(o) = *
J (^^(0

-
-f )

e- l
dt =

J

A
\@

e~dt

= o(l), (3.89)1

as a -> 0. Hence, if

then

as a ^ 0, and by Theorem 3.82,

.-jr.,

But the left side is, by (3.82),

dt =-. a,
- 1

O)

Jr
1 4

o

where C?J(0
=-. r '

,4] (f). Thus
w

Co"
1

\tdC\(t)^o(l). (3.89)2

u
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Now (3.89)2 and the fact, implied by (3.89)1, that

as ff >-0, imply, by Theorem 3.81, that

lim C5(o>)
= Hm {a)"

1

A\ (a>)}
= /(+ 0),

CO > 00 <H--> 00

which proves the theorem.

THEOREM 3.84. ///(+ 0) exists, and if

lim inf min (A K(t) A^OJ)} > <p(d) ~> 0, as 6 -> 0,
a> >>oo to<t<(l~\-d)a>

then an converges, i.e. lim A A (co) exists.

<X)->00

PROOF. The theorem is proved in two stages : (a). The

hypothesis on an or A A (t) implies Al(co) = L(co), and hence by
Theorem 3.83, co~

J

ylj(co) tends to a limit as o> -> oo. (/?). The

hypothesis on A^(t) also implies that if co" 1

A\ (co) tends to a limit,

then AI(O)) tends to the same limit as co > oo.

PROOF OF (a). See Theorem 1.88(a).

PROOF OF (j8). See Theorem 1.88(/9).

COROLLARY 3.82. // An an = L (An Aw-1 ),

n- ~> 1, and
"n-l

f( + 0) exists, then I>an converges.

PROOF. The hypothesis of this Corollary implies the hypo-

thesis of Theorem 3.84, as we have already remarked in the

proof of Theorem 1.89.

THEOREM 3.85. // An an = 0(Kn /U^), and if f(+ 0) exists,

then San converges.

The proof of this theorem is similar to that of Theorem 3.84,

except that we use Corollary 1.81 (with a 1, ft
=

k) instead

of Theorem 1.88(0).

3.9 Dirichlet product of summable series

If we associate summability by Riesz means of type A with

the series an ,
and of type p with 6n ,

we may form the sequence
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of numbers vnt which are numbers Ap 4 [tq arranged in increasing

order of magnitude, and associate summability by Riesz means of

type v with the series 2cw where

cn
= S Op br

*p+t*q- vn

We define i]cn as the Dirichlet product of an and S6W . This

definition suggests itself naturally because the formal product of

2an e~~ Xn
' and 6n e~^

n8 may be written as cn 6~"n*. If An = ftn
= n,

the Dirichlet product is precisely the Cauchy product.

It is the aim of this section to discuss the relationship between

the orders of summability, ordinary or absolute, of the series S n ,

6n and their Dirichlet product Scn . We first prove a few formulae

for the Riesz means of the Dirichlet product, which we state as

lemmas, then a few theorems generalizing known theorems on the

convergence of the Cauchy product, and finally add a few results

of a Tauberian character.

LEMMA 3.91. // k > 0, I > 0, then

PROOF. If we consider the expression on the right of (3.91),

we observe that the term ap occurs in A\ (t) if A^ < t, with the

coefficient (t A,p )

k
,
while the term b

q
occurs in B^ (a) t) with the

coefficient (co t pq )

1

,
if [iq < co t, so that the term ap b

q
will

occur on the right side, if Xp + JLIQ < co, with the coefficient

T(k

=
(co
-

A,
-

This is the coefficient of ap b
q
in the expression on the left of (3.91)

and hence the lemma.

LEMMA 3.92. // k > 0, I > 0, then

(i) for k = 0, I > 0,C= S o> # (o>
-

JJ, (3.92)1
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and

(ii) for k > 0, / > 0,

-

o

PROOF. Case (i) is easily seen as follows.

[ (co)
= S (>-*,- A*,)

1

P 6,
= Sap .

^+ /<<7^
ft)

AJJ<O> /

= I ap Bl(a>-lpY
*
r <.

Case (ii) is proved as follows : by Case (i),

* +l
(w) = S a, 5+< (w

-
A,)

to

i IB^CD -t)t~
l

Al(t)dt\. (3.92)2
-*

+ z -f i) r r k-i i

by (1.21);
a) at

+ I + 1) r r / 1 /

dA)(t) (x tf
l

S^ (at

o t

*) dx

T(k + 1) T(l +

The second part of (3.92)2 follows upon substituting

(x
-

t)
k ~ l = x- 1

{ t(x
-

t)
k~ l + (x- t)

k

in the formula immediately preceding the last.
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LEMMA 3.93. // k > 0, I > 0, then

-

|.
(3.

J
(3.93)

for all co ifk + I > 1, and for co ^ ^p -} fit ifk + I < 1.

PROOF.

b
q

= 2 (a>-ip-p,f
+l- 1

l,af .b
t

Ap+ ^<to

The first term in this formula is

= 26, I^'(> -/*,)
= A$

+l
(a> -t)d

^<u> J

Now, if (o t T Aj,,

i*+/ (-)= S
> t

S A^e^ (co t x)
l ~ l

(x Aj/"
1 dx

h

Hence



3.9] APPLICATIONS TO DIRICHLET SERIES 99

O) OK t

A similar argument applies to the second term of the formula.

Using the above formulae, we shall deduce a number of theorems

on the summability of the Dirichlet product of two summable

series.

THEOREM 3.91. // an is bounded (A, k), k > 0, and summable

(A, k'), k
r > k, and 6n is summable (/*, I), I > 0, then cw is summable

(v y
k + I + 1). The sum of Scn is equal to the product of the sums

of Sa,n and S6n .

PROOF. Let

Al(co) = 0(co
k
), (3.94)

A\(a>) = aa)k
'

+ o(co
k
'), k' > k > 0, (3.95)

and

Bl(co)
= 6o>

z + o(a)
1

), I > . (3.96)

Then by (3.91),

x A\(t)
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=- ab f 0(t) . o(a)
-

t)
l
dt

s

by (3.94), (3.95) and (3.96), which proves the theorem.

COROLLARY 3.91. // San is summable (A, k), k > 0, and

summable (//, 1), I > 0, then cn is summable (v, k + I 4 1).

COROLLARY 3.92. // aw ,
6n cwd cw are summable by Riesz

means of sufficiently high order and of type A, // and v respectively,

and if their sums are a, b and c, then c = ab.

In view of Corollary 3.92, we shall not explicitly state, in the

following theorems, that the sum of the product series is equal to

the product of the sums, but it shall remain implicit.

THEOREM 3.92. // San is summable
\
A, k

,
k > 0, and > is

summable //, I
\

,
I > 0, then cn is summable

\
v, k + I .

PROOF. We will consider three cases : (i) k > 0, I > 0,

(ii) k = 0, I > 0, or k > 0, I = 0, and (iii) fe =- 0, Z = 0.

CASE (i). k > 0, I > 0. We have to show that
CO

[\d{ eo-*-> Cv
k+ l

(a>) oo,

which is the same thing as saying
uu

I CO

Now, by (3.93), for o> ^ Kv + /*,
CO

)
=

Cl
J
A\(m- t) dB

l

fl (t)

CU

f Bl
-

t) dA\(t)

-t dt
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CO OO in

f

a)-*-'- 1

;/,
i dm = c,

f

co-*-'- 1

1 f
J*(o>

- B
>'

da)

on oo

< c f Ji(<)| dt { (co
-

t)
l

t

oo

(rk- l

\A\(t)\dt

dw

<c

< 00.

Here we have used the fact that if & is summable |/,

is summable
(//,, Z).

|,
it

00 OO

f w-*-*- 1

|/2
: c/co --- c I G>-*

-*- 1

J J

dco

,},"
: oo

Similarly we show that

< oo.

J

'

|f^
-

'-_/_ i

and

are finite, which will prove (3.97) for Case (i).

CASE (ii). k = 0, I > 0, or I = 0, k > 0.

13
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Lot k 0. We proceed as in Case (i) and observe that expre-

ssions corresponding to 7
3 ,
72 will be obtained as sums and not as

integrals, with a single sum corresponding to 73 +/4 . Thus if k 0,

/ > 0, and co ^ A
p + pq

,

co - AP
-

ftj-* (^ + p )
ap bq

Ap +pq*&

The first sum on the right is

- X Ap a, .-- -

1

f > -

A,) 4 7i
;!(co

-
A,) ]

Ap<o CO /p L J

and the second is

say. Now /
1? 7 2 and 73 can be treated as in Case (i). The proof is

similar if I = 0, ft > 0.

CASE (iii). k =- Z = 0. This case is simply the familiar result

that if i]aw and H6W are absolutely convergent, then Scn is absolutely

convergent.

THEOREM 3.93. If i]aw is summable |A, &| ,
A; > 0, a/^rf 1]6M i

xummable (/i, Z), Z > 0, <Aen Scw is summable (v, fc + Z).

PROOF. We consider two cases: (i) k > 0, Z > 0, and (ii) k = 0,

I > 0, and assume that 6 is the sum of 2&n and a that of S n .

CASE (i). By (3.92)2,

o

0>

+ Z + 1)
. 6 f (01

-
<)'^(<).

i) ra + 1) J
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The second expression on the right is o&co*"1"' + o(cw*
+l

). So it

is enough to show that the first is o(w
k+l

). Now if we set

y>(to t)
=

7^(co //) b((o t)
1

,
then the first integral, without

the constant factor, is

to

< + f <p(ot
-

t)
-i(<>

dt ,
if jfc > 0,

^ /i + /2 ,

say, where
O)

7a
=

[
o(ft>

-
<)' 0(f~

l

) dt - o(w*
+/

).

Wo write 7
t
as 7

ltl + /, 2 ,
where

O> fO

ILI
~

9 /i,2
=

>

u ">o

and r/> is to be fixed presently. Given e > 0, wr can choose r</ so

that for (o > o>
,

f'^WIrff < B

J 7F+i
ar/ < B

>

"'()

since ^a
tl

is summable JA, &'
,
and then

o>
__

/,.,
= o(<*+') f J^J! d< = o( *+').

"'o

wo

Also /14 = {(w
- a

)'}
f

-^Mi d --=
(
w ')

=
o(o.

t+
').

Combining the estimates for 72 ,
7

ltl
and 7 1>2

we have, since e is

arbitrary,

C^+'H = 06 . o/+z + o(co
k+l

),
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under tbe assumption k 4-I > 0, k > 0.

CASE (ii). If &=-- 0, we start with (3.92)1.

-62 (01
- V'S + 2 ap { 5> - *) - 6(

-
A,)

1

}

Ap<o> Ap<w

= - b . A\(a>) + 2 S { #> -
A,)

- 6 (>
- ij }.

Aj,<>

The first expression oil the right is afro/ h o(a)
1

), while the second

is seen to be o(a>
1

) by splitting it as wo did for /t before.

The next three theorems arc of a Tauberian nature.

THEOREM 3.94. Let ^an be siimwable (A, 1c), Ic > 0, and ^bn

summable (/^, I), I > 0, anrf let

'cM i^ summable (v t
k + I).

PROOF. If k > 0, I > 0, the above conditions can be written as

\A\(t)\ M - 0(W*+1
), \Bl(t)\ dt -

while if k --- 0, / = 0, the same conditions will become

Rummability of l]aw and i]6n implies

)
-

o(co
fc+1

), (3.98)1

-
o(ri)

7+1
), (3.98)2

for

or

and similarly for J?"1
" 1

(o>). Now by Corollary 3.91, cw is summable

(v,k + I + 1), and hence, to prove summability (*>, fc + I), it is

enough to show that
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But, by integrating (3.93) by parts, we see that

(0

)
=

Cl \Bft (u>
-

t) dA\
+l

(t) + c2

say. Now
o>

-

+ c, {#> -
t)
-

6(o
-

=
/I, 1 4" /J,2 '

say, where

by (3.98) and the first consistency theorem. Also

O)

7
I>3

-.

\o(a>
-

t)
1

. |d^J
+ 1

(0|
= (>

t4 '+I
),

l>y hypothesis. Hence /j ^o(o)
k * n '

1

). Similarly we provp/2 =0(o)*"
1

' f {

'),

and hence the theorem.

COROLLABY 3.93. // S /t
awd 2^,, ^^ convergent, and if

This reduces to the case k -
I -->- of Theorem 3.94.

THEOREM 3.95. Let lan and 26W be summable (X,k),k > 0, and

(p, 1), I > 0, respectively, and let l\dA\
+
\t) \

- 0(co
fc+1

),
fc > 0. TAcw-

o

2cn 15 bounded (v y
k + l) and summable (v, k + 1 + e) /or e?;en/ e > 0.

PROOF. By Corollary 3.91, 2cw is summable (v, fc + Z + 1), and

by Corollary 1.71 it follows that cn is summable (v,k + 1 + K) if we

prove that cw is bounded (v, k + I).
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Now we first observe that if k > 0, and if

then
in

fr'jd/J*-
1
- 1

^)!
=

0(tof), (3.09)

by partial integration. Next, from (3.02)2, we can write

C**'("0 - r/ f #',("> * MJ(0< + c"
\

&,,

Each of the expressions on the right is seen to be 0(a/
'

')
on

account of the hypothesis and (3.90).

THEOREM 3.96. // SaM and %bn are summable (A, k), k > 0, and
(tt

(H,l), I > 0, respectively, and if $\dA\+\t)\ - o(r*
+1

), fc > 0,
o

then %cn is summable (v, k + /).

Proof is as in Theorem 3.95, except that we have to use the

analogous formula for (3.00) with o instead of on the right.

NOTES ON CHAPTER III

3.1. -For an introductory study of Dirichlet series of the form

^jin n~* see E. 0. Tilchmarsh, The theory of functions, ed. 2, Oxford

(1930).

3.2. If < k < 1, the function
Jfj(co)

exists except for co = An ,

and is integrable, and the formula (3.21) may be written in the form

dt - M A\ (o>)

for all values of k > 0.
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3.3. It is well to notice the essential difference between the region

of convergence of a power series and that of a Dirichlet series, The
circle of convergence of a pmver series passes through the singularity

nearest to the centre. For a Dirichlet series there is not necessarily

any singularity on the line of convergence. See, for instance, Titch-

marsh, loc. cit., 204.

Most of the results of this section on the summability of Dirichlet

series can be found in the Tract.

In connexion with Theorem 3.31 sec- O. L. Isaacs, Jour. London

Math. Soc. 26 (1951), 285-290. Our attcntirn was called to tlm at

the stage of proof-correction.

3.4. Absolute summability of Dirichlet scries \\as discussed by
N. Obrcchkoff, Math. Zcitschrift , 30 (1029), 375-386. He has also shown

that for a > 5b + e, /() = 0( IT;*).

It should be noted that in Theorem 3.42, if k -- 0, the conclusion

is valid for a > a*.

As Dr. Bosanquet points out, Theorem 3.42 is false with a = a*

(but Theorem 3.45 is true !), e.g. *Ln~ l e in is summablo |n, Ij (by

Theorem 3.46, for instance) but 1,n~ l is not summable |??, 1|. In

a paper which is soon to appear he is stressing this point.

For theorem 3.44 see Obrechkoff, loc. cit.

Theorem 3.46 was proved by L. S. Bosanquet, Jour. London Math.

Soc. 23 (1948), 35-38. He points out that tho less delicate result

of Theorem 3.41 could also be obtained by replacing u~P~~ 8
by e~*w

throughout his proof.

The inequality

ak - ak < liui sup Jugj?-
tt-oo log ln

was proved for integral k by L. S. Bosanquet, Jour. London

Math. Soc. 22 (1947), 190-195. Dr. Bosauquet informs us that

M. C. Austin has proved it for all values of /: > except possibly one,

and that his proof will appear in the Jour. London Math. Soc. 27

(1952).

3.5. It is possible that the results of this section have their analogues
for absolute summability, but we are not aware of any literature on

the subject.

3.6. For Lemma 3.62 see E. T. Whittaker and G. N. Watbon,

A course of modern analysis, ed. 4, Cambridge (1927), 238, and
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E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen,

Leipzig (1909), 342. Theorems 3.61-3.63 were proved by M. Riesz,

Acta Szeged, 2 (1924), 18-31. In connexion with Theorem 3.62 see

A. C. Offord, Proc. London Math. Soc. 37 (1934), 147-160.

Theorem 3.64 is a variant of a result due to M. Riesz, Acta Mathe-

matica, 40 (1916), 349-361. The conditions on an could take the form :

an = o(l) and an
~ o (An An-i). See also A. E. Ingham, Proc.

London Math. Soc. 38 (1935), 463.

The statement that f(s) has boundary- values on a =
ij

should be

understood to mean that f(s) has a unique limit as s tends to any point
on the line a ~ v\

from the right. The boundary-function is the

function defined on the line a -
77 by means of the boundary-values.

Theorems 3.66 is Theorem 41 of the Tract. It is due to M. Riesz,

Comptes Eendus, 5 July 1909. Theorems 3.68 and 3.69 are the modified

versions of Theorems 42 and 43 of the Tract.

3.7. Historically, G. H. Hardy and J. E. Littlewood were the first

to prove analogous results for the Dirichlet series Saw n~ K
, see Proc.

London Math. Soc. 11 (1912), 411-478. They were later generalized

by K. Ananda-Rau, Proc. London MatJt. Soc. 34 (1932), 414-440.

If in Theorems 3.71, 3.72, we replace the discrete variable ln in the

hypothesis (3.75) by a continuous variable to, then it can be shown that

CTO < a + //.
For we may assume that a -\~ fi ^ 0, and consider the

cases: (i) a + p > and
(ii) a + p < 0. In (i) we note, by a

familiar argument (cf. p. 26, line 7), that Ai(t)
= 0(^

ot+A
'), which implies

the desired conclusion, (ii) can then be proved by considering the

series S6W ,
bn = an ln

*
y
a + /i + p > 0, and then applying (i).

Corollaries 3.71, 3.73 f 3.75 and Theorems 3.73, 3.74 are due to

Ananda-Rau, loc. cit. Theorem 3.73 is a generalization of the

Schnee-Landau theorem. See W. Schnee, Acta Mathematica, 35

(1911), 357-398. Corollary 3.75 is obtained from Theorem 3.74 by

letting h - 0. In this Corollary it may further be verified that

(7 = 5 . See K. Ananda-Rau, loc. cit., Theorem 13.

Corollaries 3.72, 3.74 are due to V. Ganapathy Iyer, Annals of Math.

36 (1935), 100-116. For an alternative hypothesis on an in these

corollaries see Notes on 1.8. Here again we assume that l^i = 0.

3.8. For Tauberian theorems on power series sec G. H. Hardy,

Divergent series^ Oxford (1949), 148-175. For an account of

Tauberian theorems on Dirichlet series see 0. Szasz, Trans. American
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Math. Soc. 39 (1936), 117-130. For generalizations of theorems of this

section, where /(or) is assumed to tend to infinity like a logarithmico-

exponential function, see J. Karamata, Journal fur reine uftd ang.

Math. 164 (1931), 27-39.

3.9. For a discussion of various kinds of multiplication of series

see G. H. Hardy, loc. cit., 227-246.

There should be no confusion between the C*(o&) defined here as

the Riesz sum of Scw , and the (7* (x) defined in 1.1 as the Riesz mean
of San .

It should be borne in mind that when 'inner integrals' arise from

the inversion of a repeated Stieltjes integral, they are in general

Lebesgue-Stieltjes integrals existing almost everywhere.

Theorems 3.91, 3.92 and 3.93 are generalizations of the theorems

of Abel, Cauchy and Mertens for the Cauchy product of convergent
series. As an application of Theorem 3.91 we may observe the following :

Let an be a positive monotone null sequence and let An = a1 + ... +an .

Then S( I)"-
1 A n is summable (n, 1) to the sum | 2( I)*

1
" 1 an ,

for

the former series is the Cauchy product of S( l)
n~ l and 2( I)*-

1 an .

Corollary 3.93 is Theorem 58 of the Tract. The conclusions of Theo-

rems 3.95 and 3.96 hold if S6n is bounded
(/z, I) and summable

(fA 9 V)

for some V > 1. These two theorems may fail for k 0. The Cauchy

product of Saw = S( )
n" 1

l/n and & == S( )
n~ l

(log logn)-
1 is

S( ~ )
n~ 1

CH where cn S/ ,
,

-----
/%*/ , p >oo, and hence

(n v) log log v log log n

cannot have bounded partial sums. This shows that Theorem 3.95

may fail for k = 0. Similarly, to show that Theorem 3.96 need

not be true for k = 0, we observe that the Cauchy product of

S( l)
n~ l

(n logn)-
1 and S( I)

11" 1
(log log n)" 1 cannot converge.

Tn Theorem 3.95, if k = 0, a part of the conclusion, namely sum-

mability (v, k + I + e) for every positive e, can be proved, since the

hypothesis on -3* is true for every k > 0, if it is true for k = 0.

It is an interesting and important problem to determine the abscissae

of summability, ordinary or absolute, of the Dirichlet series Scw e*~
yw*

knowing those of *San e~*n
9 and S6n e~^*. Except for one result, namely

Theorem 59 of the Tract, no progress has been made in this direction.
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APPLICATIONS TO FOURIER SERIES

4*1 Introduction

IN this chapter we shall be concerned with the application of

Biesz means to the study of the summability of Fourier series.

We shall deal with multiple series summed over spheres, and

demonstrate that such a method of summation makes it possible

for us to utilize results on Fourier series for proving a classical

identity in the theory of lattice points, and several of its

generalized versions.

We first prove a formula, due to S. Bochner, for the Riesz mean

of a Fourier series in k variables (k > 1), and use the formula to

prove that if a function is continuous at a point, its Fourier series

is summable at that point by Riesz means of a certain order 6

which depends on the number k. We then impose a further condition

on the order of magnitude of the Fourier coefficients, and deduce

summability of order less than <5, including convergence. Wei

next consider the summability of series derived from Fourier series

by repeated application of Laplace's differential operator. For the

summability of such series at a given point, we impose on the

function a hypothesis in the nature of differentiability in a neighbour-

hood of the point in question. Here again we obtain further results

of a Tauberian nature by restricting the order of magnitude of the

Fourier coefficients, one of which is applicable to the study of

summations over lattice points. We then prove analogous results

on absolute summability. We conclude the chapter by stating

conditions which are necessary and sufficient for the summability,

ordinary or absolute, of a Fourier series at a given point.

42 Spherical means
Let f(x) = /(#!>...,a*) be a function of the Lebesgue class L19

periodic with period 2n in each of the k variables. We write the

Fourier series off(x) as follows :

f(x) ~ 2 .?. I o^..^e
<<"ii+
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where

a = _J_ f ... \ f(x)t
7lj.../t / f\ \jg I I V \ /

V "^ } V V
n j*

We write

4,w = 2 , .n\ / ^ ni...n

B
2
+...+ |-

with the convention that A n (x) == if n cannot be represented as

the sum of k squares. We now define the n-th spherical partial sum

of the Fourier series as

SH(x) = 2 ^
r(a?).

Our object will be to study the Riesz means of the series

Accordingly we define, for d > 0,

2
B1
2
+...+nf

= 2 o ~ ^ y^^ < ^ < w + 1

~V)d, (4.22)

where

5(5) = 8%x) ** Sn(x).

We next define, for any fixed x and for < t < oo , the spherical

mean fx(t) of the function f(x) as follows :

f
j

(4.23)

where a is the sphere ff+ . . .+ ff
= 1

,
and da

f
is its (k 1

)
- dimensional

volume-element. If k = 1
,
we definefx(t) =~${f(x + t) + f(x-t)}.

Considered as a function of the single variable t, fx(t) exists for

almost all t > 0, and is integrable in every finite ^-interval.

We shall now state two lemmas governing the behaviour of fx(t),
which follow directly from the behaviour otf(x).
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LEMMA 4.21. Iff(x) e L19 and is periodic with period 2n in each

variable, we have
e

1 |/*W I

d*~ ld8 = o(l) as e->0, (4.24)

and
t

f

JI/.WI.

*- 0(0 -*..

PROOF. The conclusions will result from the inequality
b

f r r

j j j
d i

where Q is the spherical shell with radii a and 6, and centre x.

LEMMA 4.22. Let f(x), f
l

(x), f
z
(x),...be a sequence of periodic

functions, with period Zn, belonging to the Lebesgue class L19 and let

f f

uniformly in all unit spheres E. Then, uniformly in x,

i

lim 1/3(5) f
r
x(s)\s

k ~" 1ds = 0, (4.26)
f >CO J

and, given s > 0, and t > 0, there exists rQ such that, for t ^ t and

r > r , we have

d8 < *. (4.27)

PROOF. (4.26) is an immediate consequence of our hypothesis.

(4.27) is proved as follows :

t

\
I/.W -/JMI**-

1* <
f

...
f |/(*) -/^l^...^, (4.28)

o
J

oi
J

where Qt
is a sphere with centre x and radius . Since this sphere

can be covered by a finite number of unit spheres whose total volume

is ctk
,
where c is a numerical constant independent of t, and since

f
f
(x) approximates to f(x) as r >oo uniformly in all such spheres,

the right side of (4.28) is less than efl.
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4.3* Bessel functions

If J^(t) denotes the Bessel function of the first kind and of order

//, we have, for /j > 1,

We define

iyo ^^ . (-02)

It is known that

i, as

(4.33)

^(r
1 /2

), as*->oo.

The following formulae, which are well known, will be required

in the sequel.

ojn+i v r

, (4.34)

^+l-f p

V,(xR) = -_-^ (x
2 - ,/)-A-y.

1 (v //; x j

for v > /i > 1. Ifv>/i + l>0, then

*
Jv(o>t)Jtl(nt)

n

0, ifn >co. (4.35)

= -*^+i(). (4-30)

4.4* A formula of S* Bochner
Our object is to establish a formula which expresses the

Riesz mean S^(x) defined in (4.22) in terms of the spherical mean

fx(t) defined in (4.23), for any fixed x. This formula of Bochner,
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which may be viewed as a generalization of the classical integral

of Fej6r, is as follows :

S(x) = Cl R*
J

t,6>^(k- 1), (4.41)

where cx
- 2*~*/2

-fl
T( + 1) {T(Jc/2}}-

1
.

We shall first prove the formula, as a lemma, in the special case

where f(x) is an exponential polynomial. In the general case where

f(x) eLv we shall make use of the fact that there exists a

sequence of exponential polynomials {/"(#)} approximating to

f(x) in Z^-norm, in the space of (x), and show that this approxima-

tion allows us to extend the formula to arbitrary /(#) eLv

LEMMA 4.41. Formula (4.41) holds when f(x) is an exponential

polynomial, for every d > 0.

PROOF. If

g(x) = ^Vi+.-.+n^
its spherical mean gx(t) is given by

where, as before, we have n = n\ + ... + wf.

Hence the spherical mean of the exponential polynomial

f(x) == ^ ^...^ ei(n^+ "^ n^>
(4,42)

is given by

m =2 ^-"t e*<"i+-+*> F
(t
_ 2)/2 (n^t). 2<*- 2>/2

r(t/2).

Hence we have

J<-,, (
1/2

J j

by (4.35), which proves the lemma.
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THEOREM 4.41. For any f(x) defined as in 4.2, we "have

00

SR(x) = d Rk t*~
l

fx(t) Fd+w () ctt, (4.43)

provided that d > (k
-

l)/2.

PROOF. There exists a sequence of exponential polynomials

{f
r
(x) },

r = 1, 2, ... ,
such that

lim
| f

r
(x)

-
f(x) |

dx1 . . .dxk
=

uniformly in all unit spheres E. This implies that

lim b
r

n n
= an n,, (4.44)

r ->oo

where b
r

n n is defined as in (4.42). Let the Riesz mean corres-

ponding to f
r
(x) be denoted by

&*(* ; f) -

then we have already seen, in Lemma 4.41, that
GO

s'R(x ; /
r
)
= e &

\
<
t~ 1m v+u*

J
o

Keeping R fixed, we let r >-oo, and show that
00

lim Ss
K (x; f') = I c JZ*

f ^-^(O F
r-> oo r > oo J

,+i/2 dt

(4.46)

i+tl2 (tR)dt

uniformly in ir. This is seen as follows. Let

01
say. Using relations (4.26) and (4.33), we obtain
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GO

and /, =
( J

|/.(0
-

(*)|
r<+*'2

- 8 /2

dt)

^/2~l/2d \
=(?(1)>

as r > oo, since, for an arbitrary e > 0, we have, for t > 2 and

r > r ,

t

by (4.27). This establishes (4.46). Thus, for each r, the function

ASjj (# ; f
r
)

is periodic, and the sequence converges uniformly in x

as r * oo
;
therefore the limit-function is again periodic, and its

Fourier series is the formal limit of the right side of (4.45). Using

(4.44), we see that the limit-function has the Fourier series

2
9w<jR2

therefore

1
n

~

and this, in conjunction with (4.46), yields the formula (4.43).

4*5. Summability theorems

We shall now prove a few results on the summability and

convergence of multiple Fourier series by making use of Bochner's

formula. Before doing so, we wish to observe that if the order

of summability is sufficiently high, then the summability of the

series at a point x depends only on the behaviour of the function in

a neighbourhood of that point.

LEMMA 4.51. // r\ > and d > (k l)/2, then

as R ~> oo, uniformly for all x.



4.5] APPLICATIONS TO FOURIER SERIES 117

PROOF. We have, on using (4.33),

v.#)*
oo

by (4.25), which proves the lemma.

Combining this lemma with formula (4.41), we obtain

THEOREM 4.51. Riesz summability (n, d) for 6 > (k l)/2 is a
'

local property
'

/or multiple Fourier series summed spherically.

Because of Theorem 4.51, we can state several simple conditions

for summability of order d when d exceeds \(k 1); one such

condition is embodied in the following

THEOREM 4.52. If /,.(/<)
> I as t > 0, for a fixed x, or more

generally, if

lim

then

{
sl
~ l

\fx (s)
-

l\
ds = 0,

J

lim ^(x) =
I, 6 > (k

-
l)/2.

je->oo

PROOF. On account of (4.37), we may assume that I

without loss of generalit}
r

. Choose 77 > arbitrarily, and define

F(t) as in Lemma 4.51. In view of Lemma 4.51, we have only to

prove that

I
L
=

by (4.33);

o

as -K --> oo. This follows from the fact that

n r n
J J

= O
^R

*

J

<*-' j/,(0| eft

J
,

=
o(l), as jR -> oo,
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and

1,2
r

f
i = o \

R"
f

**-' !/,(*)!

L
ii (

J L
J*
^

~i
-*+* /2- 1/2 f

dF
I

I fa+S/2+172 -J

*w y + mdt
**
+w+i/

*/i/K J ^*^ 3/2

as R-+ cc, if (5 > (t
-

1)12.

The hypothesis on / in the foregoing theorem is in the nature

of a restriction on its continuity, in the neighbourhood of a fixed

point, and the conclusion is the summability of the Fourier series for

d > (k l)[2. If we impose another hypothesis on the order of the

Fourier coefficients (or, what is the same, on the partial sums), it

should be possible to reduce the order of summability by the use

of Theorem 1.81, and, in special cases, to derive ordinary con-

vergence. Actually we shall see that it is possible to tie up the two

hypotheses in such a way that when the continuity-condition on

the function is strengthened, the order-condition on the Fourier

coefficients is correspondingly weakened, the two together yielding

summability of order 7 where < y < (k l)/2. We need two

preliminary lemmas.

LEMMA 4.52. // rk(n) denotes the number of lattice points on the

sphere x\ -f ... +#! = *&, then

rk (ri)
= (**'*-*+'), > 0.

Further

#*(*) s 2 rk(n)
- **'* {r(lc/2 + I)}-

1
a*** +

n^x

LEMMA 4.63. // at a point x,

/,(*)
- Z = (0> > 0,

then

l^0 (R~\ d > + (k
-
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PROOF. As before, we may assume that I = 0. We have

, ., dt

~n+ MV, +'''"u ,i jj
-

say. AR in Lemma 4.51, \ve obtain

/f\ I I f\l TD~ 0\ S -^^ /7, 1 \ /*> I /)
.. r=r (_/-- .-- I ::rr

~
f/l/V ), O ^> \ti> *)]' "T"

"

Again

using the h}
7

pothesis on fx(t), while

/<> ---=

r//

for > + (fc
-

i)/2.

f f rw--i/sd^) 1 ^ o

THKOBEM 4.5S. // < a jxnnt x, we hare

f,(t) -l = o (0, > 0, (4.51)

and

a*
t
...*

= 0\(n* + ...+n*)-
a

\, (4.52)

a -= (A/2)
-

i{6(l + /)/ (-/)},/> 0, fl > i (i-
-

1) + 0,

(Sj?(a;)
- I = o (1).

PROOK. Hypothesis (4.51) implies, in virtue of Lemma 4.53, that

8&x) -l = o (E~), (4.53)

for B > and 6 > (k
-

l)/2 + 0. Again, for < = 0(B),

,... J
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= (
S rt(n) n-)V K<n<JM / /

/i-H

=
0( f

arVtf,(,

by partial integration and an application of the second part of

Lemma 4.52.

Now by applying Theorem 1.81 we deduce that

r.M^c-^^.-joo- )-;{-
tf/Ka)

- i =- o \ R

for < ft < d. The exponent of R will be zero if

(d
- 0)(4/2- a) -ifl(l +/*),

which will certainly hold if

Q
i

__ 0(1 4-/J)

2 2(<i
-

/?)

'

REMARKS, (i). In (4.51) and (4.52) the o and O can be interchanged.

(ii). The result holds for = because, in that case, Theorem 4.52

will take the place of Lemma 4.53.

(iii). Given any > 0, for a ^ k]2 0/2y, where y is some

number exceeding (k
-

l)/2 + 0, we have ordinary convergence at #.

(iv). If ----- and a =&/2, then too we have convergence at x.

4*6* Derived Fourier series

In this section we shall consider the summability of series

obtained by successively applying the Laplacian to a given

Fourier series. We shall actually prove a generalization of

Theorem 4.52. The proof is based on the idea that we can

differentiate Bochner's formula.
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Conforming to the notation x~ (x1
,...

J
xk), we set

\x
=

|>? + . ..+**]''<'.

We shall say that /(a?) f(xl ....,xlc )
Jias a zero at the point x if

lim
!,i-*0

!-*
f

...
[l/fr, + {p..., x, + ,)! rfs

e
,...rf|t

-
0,

J J

where E$ denotes the A:-dimensional sphere of radius j| with the

origin as centre. If q is a non -negative integer, wo shall say that

f(x) has a q-fold zero at x
t
if

lim |f |-* \
...

\\f(x f
i s* !-> J J

0.

If we write the spherical mean of \f(x) \ as/r() then this condition

amounts to saying that

e

lim
-*[/()

t->>0 J

= 0.

o

THEOREM 4.61. For every point x at which

lim s~ k

o

we have

lim AJ S%(x) 0, (5 > 2
</ + (fc

-

where q is a non-negative integer, amd

/ d* d2 \\Q ___ I __ ^

1

PROOF. We have

=
c, 7?* /,()

*-' Ve+klz (tR) dt.

Set
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Now, by a change of variable, we see that

(.r !- f ) Af

(4.62)

,...#,.. (4.63)

(4.64)

for some e > 0, since for a function /(#],...,a^-) whose value depends

only on the radius
]

x
\

= r , we have

Further

=
[
dz

(k
-

1) d_

.dr
2

r dr
-

and we have then only to use (4.36) and (4.33). Using (4.64) in (4.63),

we easily obtain

K
J... |/(*+l)A?4i?

,...* (4.65)

say. We shall show that (4.65) is finite for each fixed jR, and tends to

zero as R ~* oo, provided that d > (k
-

l)/2 + 2q. For

Hit

= o(l), as E -+ oo,
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and
/

CO

f
+ flJ

say, where
ry

is chosen so small that in the interval (0, q) the hypo-

thesis on ft(t) operates. Now

, f f
m

i/-
f

J <*
+ -+

for l/R : ^t ^rj. Hence

as R > oo. In /
2>2

we use (4.25) with
/,.(*) in place offx(t), and by

an argument similar to the one employed in Lemma 4.51, prove

that

7 2 ,2
^ W ,

as JB > oo.

Hence (4.62) is finite for each li, and from (4.61) we see that it

is equal to A* S^(x). We have further proved that this tends to

zero as R -+ oo for <5 > (k
- 1)2 -j 2q, which comjiletes the proof

of the theorem.

We shall now sho\v that given any function f(x) e L
v
which is

periodic, if it is differentiable in a neighbourhood of a given point,

we can then subtract an exponential polynomial from it such that

the difference has all its derivatives equal to zero at the point near

which differentiability is assumed. We need the following

LEMMA 4.61. //&>!, 0<w<oo, and if the numbers an n

are arbitrarily given for < % < n, < n < w,..., < nk < n,

then there exists an exponential polynomial

..^)= f ... I .

rt



124 APPLICATIONS TO FOURIER SERIES [Cn. IV

such that

= (0)

PROOF. If arbitrary numbers 6
Wi njc

, < n^
*

are given, then there exists an ordinary polynomial

such that

-- b tl

namely the one with d
t(i

. n
}
\.. .n

k
l ~"fr

Ml ...,,A
.-
Now tlie transformation

y {
-e*> -

1, ... .yt ~e*** 1

transforms a P(x) into a $(?/) and conversely, under juvKCJi'vation

of n, and for assigned values of a n tlt
this leads to values

b
tl , and inverselv from the fe's to the a's, and hence the lemma.
*'l ">!

REMARK. By a suitable change of co-ordinates, it can be seen

that the lemma holds at any point x, not necessarily the origin.

THEOREM 4.62. If f(x) (defined as in 4.2) has continuous deriva-

tives of total order < 2q in a neighbourhood of the point x --- #
,
then

at that point we have

lim Sx) - A/(*) -

for d > (k
-

l)/2 h 2g.

PROOF. The conclusion is trivial when /(#) is an exponential

polynomial P(x). In the general case, on account of Lemma 4.61,

we may write /(x) = P(x) + <p(x), where for <p(x) all partial deriva-

tives of total order < 2q are zero at the point x = x . But y(x)

has also continuous derivatives of order 2q in a neighbourhood

of x, therefore it satisfies the condition of Theorem 4.61, fromwhich

the conclusion follows.

We shall next prove a theorem where the hypotheses are of

a composite nature, consisting of
'

local
'

differentiability of the

function as in Theorem 4.62, and a restriction on the order of magni-

tude of the Fourier coefficients.
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THEOREM 4.63. // An
= O(n

a
), then at a point x in a neighbour-

hood of which f(x) possesses partial derivatives of all orders, the series

^Ann
h
is summable (n, d),for d > and d > 2a + 1 + 2h.

PROOF. By Theorem 4.62, we find that %Ann9 is summable

(n, 6) for d > (k l)/2 + 2q, where q is a non-negative integer.

Since Ann* = O (n
a+<?

), it follows from Corollary 3.71 that I>Ann
h

is

summable (n, ?) for r) > 0, and

q - h > f + g + 1)
-

*1\
d + 1

or

_
a +q+ 1

Since 6 may be any number greater than (k l)/2 + 2q, this implies

that any

{ (t
-

l)/2 } (a + 1 + h) + h + 2q (a + j + A)
'?> +?+!

is admissible. Given fc, a, A, since g may be chosen as large as we

please, the theorem is true for rj>2a + l+2h.

4*7. Summations over lattice points
Let

rk(n)
= S 1

9 9

nJ-K..+n-n

for integral values of nk ; representations of n which differ only

in sign or order being counted as distinct. Let

Rk(x)
= 2' r

ft(n),
n^x

the dash denoting that the last term should be replaced by | rk (x)

if x is an integer. It is well known that Rk(x) can be represented as

a series of Bessel functions. In the case k 2, the following

identity is classical :

n

For general 7j, the series representing Rk(x) is no longer

convergent but summable. Thus it is known that the series

S rk(n) Jm[2n ^(nx)} n~*/4
(4.72)



126 APPLICATIONS TO FOURIER SERIES [On. IV

is summable (n, d) for d > (k 3)/2, and not summable for

<J = (k 3)/2. We shall show that the above expansion is a

(spherical) multiple Fourier Series of a simple function at the origin,

and then apply the foregoing theorems to study its summability.

For this, we need the following lemmas.

LEMMA 4.71. For ft > -
1, let

Let
00

f(~ ~ \ y V n (rf _J_ /n r -4- /n \ ^4. 7^
j\Xi,..., ick ) Zj ... & y(*i ~r P\ > > ^jc T^ ^y l*' t5 /

{ft} are integers. Then /(#!,..., Oj.)
2*5 a periodic function

with period 1 ir& eacA variable, which belongs to L
l ,

and its Fourier

coefficients are given by

"""*
(n\+

and,

a
.....0=

PEOOF. We have

j...i
=

J

-
-1/2
oo

= ... ST^,...,^

We now obtain the required result if we use (4.34).

We observe that the function in (4.73) is differentiate in a

neighbourhood of the origin, and its Fourier series is therefore

summable (w, d) for d > (k 1)/2 at the origin. We can write down the

series by using (4.74), and by an appeal to Theorem 4,52, obtain
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THEOREM 4.71. // f
2
is non-integral,

S (I
2 - n2

)' rk(n)

This theorem does not yield the identity (4.71) for k =- 2, because

the series on the right has been proved to be only summable (n, 6) for

d > . We can, however, obtain a result which does yield the

identity as a special case, if we appeal to Theorem 4.63, by noting

that

as in Lemma 4.52.

THEOREM 4.72. // |
2

is non-integral, then

S rk(n) Jk!2+ p (2 n $ ^/n)n
l

is summable (n, rj)for 77 > and I < 3/4 k/2 + rj/2, ft > 1.

PROOF. If |
2

is non-integral, the function /(a^,...,^) defined

in (4.73) is infinitely differentiable in a neighbourhood of the origin,

and its Fourier coefficients satisfy the condition

in the notation of (4.21). Applying Theorem 4.63 now, wo find that

(2 ft f Vw)^y2 rk n

is summable (n, TJ) for y > (k 3)/2 /? + 2
JP. Setting

/ = 2> fc/4 )S/2, we observe that S^(w)Jfc/2+/8(2 jr y'w) n' is

summable (n, rj) for
rj > 2 I + k 3/2.

4*8* Absolute summability
In this section we shall consider the analogues, for absolute

summability, of some of the foregoing theorems. If we aim at

summability n, d
\

for d > (k l)/2 at a point x, we have to

impose conditions on fx(t) in the entire interval < t < oo
; if we

consider the case d > (k + l)/2, however, we can prove that

summability [
n, d

[

is a local property.
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THEOREM 4.81. For a fixed x, if we have
00

J
(<&(') I

= 0(1),

then
00

\dS&x)\ = 0(1), for d>(k- 1)12.

PROOF. Setting y(u) = uk^ l

u

and Vi(u)
~

\
v(v) dv }

5

we find, for 6 > (k
-

l)/2, that

y(u) = Ofa-
1
"*), e > 0,

as u > oo. Now
00

(z)
= B

J

BO that, by (4.37),

z)
- fx(

oo R

[Cn. IV

(4.81)

(4-82)

the last step being justified by (4.81) and the hypothesis on fx(t).

Substituting for y>, we get
00 00 00

f
I dS&x) I

<
[
M*- 1 d I

f
** F,+w00
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CO 00

=
f

*
!#,(<) I

J"*-
1

which is justified since d > (k 1)12 (in view of (4.33) ).

If

o nt

say, we have

,,-.[>
= 0(t~

k
),

o

and

so that

/ = (r*),

and hence

REMARK. The integral $\dfx(t) should be interpreted as
o

oo

lim

We next prove the analogue for the g-th Laplacian of SR(X),

where q is a non-negative integer, as before.
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THEOREM 4.82. //
00

\WJ\*-*
= 0(1),

then

for d > (k- 1)12 + 2q.

PROOF. As in the proof of Theorem 4.61, we use the relation

We write

Aff

and

a*-i P(s) -
so that

Using the estimate

Q(*) = 0(a~**
1
), 6>0,

as s ~> oo, which is obtained from (4.64), and proceeding as in

(4.82), we obtain

00

f
\dR AJSj|(*)

since
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which can be seen as follows :

131

and

f
\Q(sR)\dR - of

[
/- 1 Rk~*+*dR~\ - 0(s~*-*),

I L
b

J

r r f , i
\\Q(sR)\dR^=0\ s-^-'^R-'-idR \= O^ 2*- 1

),

on account of the estimate (4.64).

A remark similar to the one made at the end of the previous

theorem applies here as well. We shall next prove that summability

n, d of a sufficiently high order is a local property.

THEOREM 4.83. Riesz summability \n, d
\ for d > (k + l)/2 is

a '

local
'

property for Fourier series.

PROOF. Lot

t

Integrating Bochner's formula, given in (4.43), by parts once, and

using the fact that/^r) = 0(r*), as r >oo, we obtain

00

J
+V2(0 dt,

provided that (5 > (& l)/2. In the same manner as in (4.82), we

show that

= dR dfl(t)

=
f

+/a !,8ay. (4.83)
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We show that

J

\Iz\dR < oo, for (5 > (k + l)/2. (4.84)

We first observe that

i
>!
-

-;

using this in /2 ,
we have

CO

r r ~pk+l \ fk+lf //\ IT ///?\ rttI 2 GI jK I I J*\l) V i./9.a-^xiU-tvJ &P

= 2, i 2, 2 >

say. Now

f
1

\ f
dt

\U5-l-Ar/2+3/2y J ^<5-l-Jk/2

=
jjd-i-.|./2+ 8/2J

(
4 '85

)

if (5 > (fc + l)/2, since /J(<)
= 0(1) as i -> + oo. And

(4.86)

if 5 > (k + l)/2, as in the proof of Lemma 4.51. (4.85) and (4.86)

prove (4.84); if the latter is used in (4.83), we see that a necessary

and sufficient condition for the validity of J | dS^
\

=
(I) is

that J | /i |

dR = 0(1), which proves the theorem.

4*9* Necessary and sufficient conditions for summability
In the foregoing sections we have considered various conditions

which are sufficient for the summability (ordinary or absolute) of a

Fourier series at a given point. It is possible similarly to prove

that certain conditions are necessary for the summability of a Fourier

series at a given point. To demonstrate this, we consider the spherical

mean fx(t) as the mean of order zero, and define spherical means

of higher order in analogy with Riesz means of series. We then

prove that if the Fourier series is summable to a sum I at a point,
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then the spherical mean, of some order, of the function tends to

I as t >0. We prove the converse proposition by a slight extension

of Theorem 4.52. Combining the two, we state a necessary and

sufficient condition for the summability of the series at a point.

We next prove the analogue for absolute summability.

We define

!

f M - *>> V >Jx ' p()
"

B(p,
' *^7* ' ^

/*,oM =/,W, as in 4.2.

It is easily verified that

if p + <? > 1, and hence it follows that

A;/2 + q) f / 2_#2y/-u-*
J

(
f ^

)
*

(4.92)

It is easy to see that

/(*) - 0(1) (4.93)

> 1, as t * oo. For

- te*-
1

,/;, (tt) I

- 0(1),

by (4.2). Using this in formula (4.92), we obtain (4.93).

We now generalize Bochner's formula (4.43), so an to admit

spherical means of order greater than zero.

THEOREM 4.91. Ifp is a positive integer,
00

-"

J
dt, (4.94)

provided ilmt d > p + (k
~~

3)/2. // p = 0, we require * > (*
~ 1)/2 -

17
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PROOF. We have only to integrate by parts, (p 1) times, the

right side of the formula

each time using
t

=
J
o

() 4 PW = 0(1), as in (4.93), and

(iii) [ V,,(x) ]
= -

xV,+l (x), as in (4.36).

From Theorem 4.91 we deduce the following

THEOREM 4.92. //, at a point x, we have

lim /(*)- I,

f-*0

for a non-negative integer p, then at that point

lim 8&x) = I, d > p + (k
-

l)/2.
R-*<x>

The proof of this theorem follows from Theorem 4.91, in the

same manner as the proof of Theorem 4.52 follows from that of

Theorem 4.41.

Again we have a result on absolute summability.

THEOREM 4.93. //

for a non-negative integer p > then

00

d8(x) \

-- 0(1), 6 > p + (fc
-

l)/2.

o

The proof of this theorem follows from that of Theorem 4.91,

in the same manner as the proof of Theorem 4.81 follows from

that of Theorem 4.41.

We now proceed to state some converse theorems. For this

purpose we first need a formula which is a
*

converse
'

of (4.94).
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THEOREM 4.94. Tfp > 1, and d > (k
~~

l)/2, then

fi. (4.95)

PROOF. From the definition of S as

4 V 4r(*)' < n + 1,

and the estimate for r^w) in Lemma 4.52, it follows that

S(x) = (?(#*), as jR -+ oo,

if \ve note that the Fourier coefficients of a function in L
v
tend to

zero. Hence the integral

converges for y > 2 r5 + 3/2. Hence, using formula (4.94) in the

case p = 0, we get

oo

,^3 f
dR,

as the double integral is absolutely convergent. Hence, by (4.35),

v

where p = y
- d - fc/2, 7 > 2 (5 + 3/2, <5 > (i

-
l)/2, which proves

the theorem.

REMARK. Here p need not be an integer.

Using formula (4.95), we now prove some converse theorems.

THEOREM 4.95. // /<%(#) -> I as B * oo, then fXtP(y) -+la8 y-+Q,

provided that

p > max (1, y
-

(k 3)/2 }.
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PROOF. We may assume that / ~ 0, without loss of generality,

on account of (4.37). If y > (k l)/2, wo choose d = y ;
if

y < (k
-

l)/2, we choose d = (k l)/2 + 0, > 0. With this

choice of <5, we make use of formula (4.95). We may write the

integral 7 from the previous theorem as

rr ? n

|J
+

| J
4- J8t

say, and obtain

= 0(1),

as y 0, and

), for /; > max
{
1, y

-
(k
-

3)/2} ,

-
0(1),

if# >(5 - (i
-

3)/2. Thus I -
and the theorem is proved.

Analogously we obtain

THEOREM 4.96. //

then

for p > max [i,d (k 3)/2}.

PROOF. We have only to use the formula in Theorem 4.95, and

adopt the same argument as in Theorem 4.81.

Combining Theorems 4.92 and 4.96, we obtain
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THEOREM 4.97. A necessary and sufficient condition that a

multiple Fourier series of a function f(x) should be summable at a

point x is that the spherical mean fXtp (t), of some order p< of the

function should have a finite limit as t > 0.

Combining Theorems 4.93 and 4.96, we obtain

THEOREM 4.98. A necessary and sufficient condition that the

multiple Fourier series of a function f(x) should be absolutely summable

at a point x is that the spherical mean f^r (t) should satisfy the

condition

for some p.

NOTES ON CHAPTER IV

4.1 . Throughout this chapter we confine attention to the spherical

summation of multiple Fourier series, since it affords a good illustra-

tion of the use of typical means, and facilitates a unified treatment.

The literature that exists in tho case k = 1 is so vast that, for the

sake of convenience, we give only the most obvious references. Fuller

information can be obtained from the references contained in the

papers cited hereunder, and from A. Zygmund, Trigonometrical series,

Warsaw (1935).

4.2. For the spherical summation of multiple Fourier series and

integrals see 8. Bochner, Trans. American Math. 8oc. 40 (1936),

175-207.

4.3. For the properties of Bessel functions see G. N. Watson,
A treatise on Bessel functions, Cambridge (1922). In particular, for

(4.34) see p. 372, and for (4.37) see p. 392. For (4.35) see E. C. Titchmarsh,

Introduction to the theory of Fourier integrals, Oxford (1937), 183.

4.4. For formula (4.41) see S. Bochner, loc. cit. For an alternative

approach see S. Minakshisundaram, American Jour. Math. 71 (1949),

60-66. For further 'generalizations see K. Chandrasekharan, Proc.

London Math. Soc. 50 (1948), 210-229. Also see S. Bochner and

K. Chandrasekharan, American Jour. Math. 71 (1949), 50-59.
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4.5. Theorem 4.52 ceases to hold if d = (k l)/2, and this value of

d is therefore called the critical exponent. If k > 1, S. Bochner has shown

(loc. cit., 193) that there exists a periodic and Lebesgue-integrable
function f(x) which vanishes in a neighbourhood of the origin,

such that lim sup 5/ST
1)/2

(0)
= oo. For further information on the

critical case see S. Bochner and K. Chandrasekharan, Annals of

Math. 49 (1948), 966-978.

For Lemma 4.52 sec A. Walfisz, Math. Zeitschrift, 19 (1924),

300-307.

For Lemma 4.53 see K. Chandrasekharan, Proc. London Math. Soc.

50 (1948), 219. For the original version of Theorem 4.53 with

ft
= 0, k = 2, see K. Chandrasekharan and S. Minakshisundaram, Duke

Math. Journal 14 (1947), 731-753.

If Jc 1, Theorem 4.51 is true for d ~~
(k l)/2 since convergence

is known to be a 'local' property for ordinary Fourier series. See

B. Riemann, Ges. Werke, Aufl. 2, Leipzig (1892), 227-271. Theorem

4.52 yields, in the case k = 1
,
a generalization of Fejer's theorem, see

G. H. Hardy, Proc. London Math. Soc. 12 (1913), 365-372. For the

case k .-= 1 of Lemma 4.53 soe N. Obrechkoff, Bull. Soc. Math. 62

(1934), 84-109.

4.6. For the summability of derived (multiple) Fourier Series

see S. Bochner, Annals of Math. 37 (1936), 345-356. For Lemma 4.61

and Theorems 4.62 and 4.63 see S. Bochner and K. Chandrasekharan,
Acta Szeged, XII B (1950), 1-15.

For the formula for the Laplacian of a radial function, used in the

proof of Theorem 4.61, see R. Courant and B. Hilbert, Methoden der

mathematischen Physik, II, Berlin (1937), 227.

4.7. For literature pertaining to summations over lattice points
see S. Bochner and K. Chandrasekharan, Quarterly Jour. Math.

(Oxford) 19 (1948), 238-248, (2) (1950), 80 and Acta Szeged, loc. cit.

4.8. For Theorems 4.81 and 4.83 on the absolute summability of

Fourier series see K. Chandrasekharan, Proc. London Math. Soc. 50

(1948), 223-229. Theorem 4.82 is due to appear in a paper by
S. Bochner and K. Chandrasekharan.

The case k = 1 of Theorem 4.81 is due to L. S. Bosanquet, Jour.

London Math. Soc. 11 (1936), 11-15. Theorem 4.83 has been proved
to be

*

best*possible
'

if k = 1 by L. S. Bosanquet and H. Kestelman,
Proc. Lcndon Math. Soc. 45 (1939), 88-97.
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4.9. For a definition of the higher spherical means, and for

Theorems 4.91-4.98, see K. Chandrasekharan, Proc. London Math. Soc.

60 (1948), 210-229. Theorems 4.91-4.93 are valid without the res-

triction that p is integral.

It is clear that if fx,p(t)~* 0, as t -* 0, then fr>q (t)
~

0, as t -v 0, for q > p
(cf. first theorem of consistency). In the proof of Theorem 4.94,

we use the Riemann-Lebesgue lemma for several variables. See

S. Bochuer and K. Chaudrasekharan, Fourier transforms, Princeton

(1949), 57.

For Theorem 4.92 in the case k = 1, < p < 1, see G. H. Hardy
and J. E. Littlewood, Proc. Cambridge Phil. Soc. 23 (1927), 681-684.

Forthecasefc l,p> 0, of Theorems 4.92 and 4.95 see L.S. Bosanquet,
Proc. London Math. Soc. 31 (1930), 144-164; R. E. A. C. Paley, Proc.

Cambridge Phil. Soc. 26 (1930), 173-203; S. Verblunsky, ibid., 152-157.

For Theorems 4.93 and 4.96 in the case k = 1 see L. S. Bosanquet,
Proc. London Math. Soc. 41 (1936), 517-528. For the case k = 1 of

Theorem 4.97, which effects a solution of the
'

summability problem
'

for Fourier series, see G. H. Hardy and J. E. Littlewood, Math.

Zeitschrift, 19 (1924), 67-96, and for the corresponding case of

Theorem 4.98 see L.S. Bosanquet and J.M. Hyslop, Math. Zeitschrift,

42 (1937), 489-512.
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