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^,7-/3 A BRITISH JOURNAL

Mathematics Teaching is the quarterly bulletin of the Association

for Teaching Aids in Mathematics, a publication and sponsoring organi-

zation that are in some ways British parallels to our own Mathematics

Teacher and National Council. Mathematics Teaching has received

favorable attention from some on the UICSM staff for some time for its

forthright and incisive comments on new developments in mathennatics

education in the United States, England, on the Continent, and elsewhere.

The bulletin now appears (with the Spring 1962 issue- -No. 18) in an

attractive new format and includes a variety of features: a "puzzle

page", research news, book reviews, and a v/ealth of clearly written

articles that probe policy and practice, and are by no means confined

to "gadgets".

Your editor reconnmends this journal to American mathematics

teachers in grades K through 12 who feel they might benefit from the

greater perspective on American problems it offers. Those interested

may write to the ATAM Treasurer for a sample copy (75 cents) or an

annual subscription (three dollars, including postage). Personal checks

drawn on American banks are acceptable and should be nnade out and

sent to:

Mr. Ian Harris, Treasurer
Association for Teaching Aids in Mathematics
122 North Road
Dartford, Kent
England.

--R. S.
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ANIMATED FUNCTIONAL NOTATION

While working on UICSM-PIP (Programed Instruction Project)

materials, we came up with a device which seenns useful for a variety

of purposes. Its general usefulness resides in the fact that it suggests

concepts and does so without the use of much talk. Thus, it can be used

to stimulate lots of student discovery.

In essence, the device is nothing more than an animated functional

notation. For example, consider the function adding 3„ You can show

that 5 is the value of this function for the argument 2 just by the picture:

It is very easy to use this device to get across the idea that a function

is nothing more than a set of ordered pairs. Just have students keep a

record of the "input" numbers and the "output" numbers.

INPUT

^
/

adding 3

2

7

10

4

5

1 r

5 ^
10

13

7

8

OUTPUT

3-
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SINGULARY AND BINARY OPERATIONS

Ju3t as this notation can be used to deal with singulary operations

("functions of one variable"), it can also be used for binary opera-

tions ("functions of two variables"). Thus, an apparent advantage of

this notation is the way it emphasizes the difference between a singu-

lary operation and a binary operation.

Squaring is a singulary operation.

It is performed on single nunnbers,

Adding is a binary operation. It

is performed on ordered pairs of

nunabers.;

A notation such as '(7 + 3) -3 = 7* does not distinguish the singulary

operation adding 3 from the binary operation adding. Nor does it dis-

tinguish subtracting 3 from subtracting.

-4-
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ILLUSTRATING SOME OF THE BASIC PRINCIPLES

The distributive principle for multiplication over addition can be

illustrated nicely using this notation.

2 I

2

\ 1/

2 1

2

adding multiplying by 6 multiplying by 6

\^'C w ^''^

multiplying by 6} adding

Hi ^i(

Notice how the pictures give meaning to: "distributing" multiplying

by 6 "over" addition. Of course, the order of the two pictures may

be reversed. In either case, the concept of a changed "principal

operator" is made prominent (cf. UICSM Newsletters Nos. 1 and 3).

74 26 74 26

multiplying by 8 multiplying by 8 adding

^1^ n
adding multiplying by 8

U^ lir

-&-





Other distributive principles could be investigated by using similar

pictures. For instance, is squaring distributive over multiplication?

2

multiplying

yc

J'[
squaring

lii

2

y{
,

squaring squaring

y^
multiplying

^r

Is division distributive over subtraction?

Is reciprocating distributive over division?

Is oppositing distributive over addition?

Is absolute valuing distributive over multiplication?

Also, one should probably consider such questions as:

Is addition distributive over multiplication?

Is absolute valuing distributive over addition?

Is oppositing distributive over miultiplication?

Is squaring distributive over addition?

While investigating other distributive principles an interesting

subtlety may come to light. That is: can a binary operation be dis-

tributive over a binary operation? The pictures definitely help resolve

this. Even though the word 'multiplication' in the name of the dpma

may suggest that the binary operation multiplication is distributive

over the binary operation addition, a glance at one of our pictures will

dispel such a misconception. In fact, one might properly think of that

principle as the distributive principle for multiplying-by-a-number

over addition. The notation (^ + y) X 6 does not clearly distinguish

between the binary operation nnultiplication and the singulary operation

multiplying by 6. A study of the other distributive principles should

-6-
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convince one that each refers to a singulary operation distributed over

a binary operation. For instance, oppositing, a singulary operation,

is distributive over addition, a binary operation.

You can use a pair of pictures to illustrate easily an instance of the

associative principle for multiplication, or another pair to show that

subtraction is not associative.

9

multiplying

3'£

3

yc

multiplying

yc

i

1^

W \w

multiplying

\l ^^i;;

multiplying

•K

10

y/
6

subtractinjJJ^

N

1

subtracting

L

)\i

10

3'^

6

yc
subtracting

1

subtracting

Yl

'^l





ORDER OF OPERATIONS

The usefulness of the device in eliminating problems dealing with

order of operations has already been touched upon in the discussions of

associativity and distributivity. A more general use, in connection

with this topic, is in getting students to discover a need for an order-

of-operation convention. Certainly, the "output" numbers for the

figures below are different. And, students will have no difficulty in

telling what the output numbers are.

oppositing squaring

squaring

"iir

oppositing—iir

So, it is clear that we don't wish '-5^' to name both output numbers.

Which one, then, is it to name ? This calls for a convention. There

already is such a convention in use„ Under this convention, -5^ = -(5^).

Hence, -5^
i=- (-5)^

More generally, if the grouping is not specified then squaring is per-

formed before oppositing.

Similarly, one can consider conventions for expressions such as:

7 + 3x2 19-12-5
3X5^ '"" '"^^2

32+8+2
log 1000-^

,2

-8-





INVERSE OF A SINGULARY OPERATION

This animated functional notation is useful in emphasizing that an

inverse operation "gets you back to where you started". The word

'inverse' need not be introduced until after the concept has been

developed. Also, it is an easy task to get students to discover this

concept for themselves as a short cut. Consider the sequences of

the exercises below and on the next two pages. Additional exercises

could be used as needed.

yc
subtracting 2

)l

7

(2) ?

adding 5

^il

(3)

y^f

adding 5

9

^i(
(5)

adding 3

19 9

subtracting 8

1

subtracting 8

11
IK
11

(6) ?

adding 3

n

9-





Exercises like the preceding ones should prepare students to do this

kind:

yc
adding 9

yc
adding 4

S^'c

subtracting 1

<iy^
subtracting 6

' V

13 26

Then a teacher could present this type with increasing frequency:

yc
adding 6

^I'f

subtracting 6

'

n^y
16

yc
adding 12

yc
subtracting 12

77

Soon he may insert:

\u
adding 1776

Vc
,

subtracting 1776

n^
1962

10-





to help force a student to look for a short cut. Note that this more

difficult type of exercise is suggested:

p.
adding 1776

subtracting 1776

iir-'

1962

rather than one like:

1962

adding 1776

^f
subtracting 1776

9

because discovering a short cut for a difficult task is more rewarding

to a student.

-11
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We have seen that this type of function notation clearly illustrates

the concept of pairs of first and second numbers (ordered pairs). It

announces in a picturesque manner those pairs which belong to a certain

operation. By inverting a picture of the machine you get a vivid aid for

studying inverse operations.

^

\ L

tripling

"1

\

J L.

SuTxdTJ::^

I \ >^

For instance, whereas the pair (2, 6) belongs to tripling, the pair (6, 2)

belongs to the inverse of tripling.

^Jl
6

tripling §ui-[dTJ:;

6 )\\

12-
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It is, of course, important to know that if a pair belongs to a operation

having an inverse then the "reverse" of that pair belongs to the inverse

of the operation. Note that the 'jse of the inverted diagram is consistent

with our previous meaning of 'inverse operation' -- getting back to where

you started.

2

tripling

6

SuTjdij::;

2

As was pointed out earlier, addition is an operation on pairs of

numbers whereas adding 3 is an operation on single numbers. It is

interesting to note that there are many pairs of numbers the sum of

whose components is 8.

3

adding

8

5 5

yc
adding

i

3 1

r
~

adding

u

7

yc

4

31^

adding

8

Nl

0.23

yc
adding

'U

7.77

yc

-13-
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However, there is but one number \which when 5 is added to it will give

the sum 8.

3

v/
adding 5

8

This accounts for the fact that adding 3 has an inverse, whereas adding

does not. The following two problems help emphasize this point.

(a) Lon picked a number, added 3 to it, and got 10. What

number did Lon pick?

(b) Don picked a number, then he added a second number

to it and got 10. What was Don's first number and what

was his second number ?

It should be easy for you to "puzzle out" (a). However, if you can do

(b), you are probably a mind reader.

14-
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With this device it is easy to illustrate the concept of commutativity
and show, for instance, that while addition is commutative, division is

not.

10

yc
adding

12

V6
2

adding

12

10

10

dividing

5

2 10

dividing

0.2

This device can also be useful for illustrating the principle for

subtraction.

+4 +7

subtracting

i.r

^4

\ !/

*7

\C
oppositing

p̂
-n

adding

1 f"

1
^

15-
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INFORMAL EQUATION SOLVING

Intuitive solution of equations nnay be introduced using this graphic

notation. There are unlimited possibilities in exploring this use. One

may vary the operations, the nunmber of steps, or the location of a '?'.

Here are just a few samples:

yc
adding 13

15

3

niultiplying by ?

"1
V

24

IM
squaring

36

yc^
doubling

i.r
yc

subtracting 6

iir

24

yc
tripling

1,

yL^
adding 2

i'Z

dividing by 5

if'

4

Mr. Howard Marston of the Principia Upper School in St. Louis suggests

that a student could solve "equations" like these by merely inverting the

picture and doing the inverse operations in order. The last figure above

demonstrates effectively the complete freedom from grouping symbols

enjoyed by this notation.

16-





Perhaps one of the most striking advantages of this notation is re-

vealed by a study of the fact that subtracting a real number is the

inverse of adding that number. As you will see, this notation makes

the concept clear and to the point. Consider this subtraction problem:

5 - "2

The figure below exhibits all of the needed information in a concise

manner.

9

M (

adding "2

U^
"5

Nl/

subtracting ^2

~i!

The figure presents this essential problem:

3V
adding "^2

\\r

in a strategic position. It also displays the original subtraction problem;

"5

\\L

subtracting *2

?

17-
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One can readily recognize subtracting *2 as the inverse of adding *Z,

and hence notice that the same number ^is the answer to both questions

in:

So to do this problenn:

one could do this one:

"5 - *2 = ?

? + ^2 = "5

Similar diagrams may be employed for rapidly leading students to

do subtraction problems involving real numbers. The only prerequisites

are the ability to add real numbers, and the knowledge that subtracting

a real number is the inverse of adding that real number. A sample set

of developmental exercises for this purpose appears on the next page.

It would be helpful to precede this sequence of exercises with some

"warm-up" on adding reals, and then sufficient exercises of this type:

?

adding *4——
~iir^

yc
adding "^8

wr

yc
adding "73

)\r
"3

18-



'. v;'J •:

nj' •:<
. V/ r. .

,

.,- ,V..;iJ.C:

" - .' :;

-\r- -:.;

taatvf.i

J 1 r.

^:i:.p;3.



(a) (b) (c)

^'^
adding "3

~^\r
10

3'^^

(

adding *5

subtracting "3

u

A-
adding

"8

subtracting *5

9

"2

subtracting "9

nr
9

(d)

ri 1

~14

(e)

subtracting "l 1

H

iP
"7

subtracting *2l

^i^^

(f)

"2

subtracting "12

^K'
?

Here are some remarks on the above set of exercises.

(a) The student should recognize that the output number must be

the sanne as the input number since subtracting ~3 is the inverse

of adding "3.

19-
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(b) As in (a), the output number has to be the same as the input number.

Since the input number is not given, the student must find it. That

is he must solve this problem:

yc
adding *5

"8

Once the problem is solved, he knows the input number. Hence,

he also knows the output number.

(c) The top part of the diagram is "fading". If the operation named

there were adding "9, then the output number would be the same as

the input number. So the student supposes that the first operation

is adding "9. Now in order to get the input nunaber he must find the

number to which "9 has been added to get "2. That numiber is *7, so

the output is also *7

.

(d) This time the top part has faded so the word 'adding' is missing.

However the student knows that subtracting "11 is the inverse of

adding "11. So, if he knew the number to which "11 was added to

give "14, he would have the answer to this exercise.

(e) The student is now almost on his own. He is, however, reminded

that some operation was performed on an input number to give "7.

If that operation had subtracting "^21 as its inverse, then the input

number would be the samie as the output numiber. It is, therefore,

more than convenient for him to assume that the first operation is

adding "^21. Thus, the input number would have to be the number

whose sum with *21 is "7. That number is "28 which is also the out-

put number.

20-
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(f) The first five exercises give a strong clue for finding the

answer to this one. The student merely has to visualize a

picture like this

:

^'C
adding "12

a

above the one given. Hence, the answer to the original

problem is the answer to:

yc
adding 1

2

"2

since subtracting 12 is the inverse of adding "12.

This experience can be extended to familiarity with the "additive

method" of subtraction, which is nothing miore than "checking" a sub-

traction problem before it has been solved. This subtraction tool is

excellent for doing problems like:

(a) ? - "2 = "7 (b) ? - "9 = ^5 (c) ? - *37 = "40

(d) ? - "12 = ""83 (e) ? - "4 = "11 (f) ? - "53 = "28

21.



;f ;•>
.

• ^^



It also proves helpful for doing problems like: *9 - ? = "3.

Students may find this method useful as a supplement to the "adding

the opposite" method, which has advantages along other lines and is

a direct application of the principle for subtraction.

Finally, we leave with you the following problem which has proven

to be of interest to students, and will undoubtedly suggest many miore

pedagogical applications to you- -especially in the work on function-

composition in Unit 5.

Problem:

INPUT walloping

2 ,

5 ,

9

100

-50

1000

10 _
16

24

206

-94

2006

OUTPUT

What's inside the walloping machine?

22-
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Does it look like this;

/

\ (_

multiplying by 2

J''^_
adding 6

1 i

or does it look like this:

•
i

"\ I

adding 3

r'^^
multiplying by 2

. . ,-

\ (

'\

Those who say that each is correct should be prepared to prove it.--H,W.

[The notation used here is sinailar to a notation used by E. G. Begle in

Introductory Calculus (New York; Henry Holt & Co. , 1954) pages 45,

56, and 79. I have recently seen this notation used to illustrate connmuta-

tive and associative binary operations in J. B. Roberts' The Real Number

System in an Algebraic Setting (San Francisco: W. H. Freeman & Co.

,

1962) pages 9 and 22.]

•23-
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UICSM-NETRC Tests Q and R

The last two tests in the film study series are reprinted below for the

convenience of teachers who nnay wish to make use of the items they
contain. Please note that item 12 of test P (Newsletter No. 6, p. 15)

was defective; the correct answer should have been '(D) cannot tell*.

UICSM teachers are urged to submit items they have devised for their

own classes so that they may receive consideration for publication in

future issues of this Newsletter. --R. S.

TEST Q[3-99]:

I. Choose the correct factor or expansion; if the correct answer is not

given, mark (D).

1. V^x^ - 64 = (x - 8)( ? )

(A) 8 + X (B) 8 - x (C) X - 8 (D) none of these

2. V^(x - 7)(x+ 2) = ?

(A) x^ - 14 (B) x^-9x--14 (C) x^+5x - 14 (D) none of these

3. V 2( ? )(x+ 1) = 2x^ - 6x+ 8

(A) 4 - X (B) 4 + X (C) X - 4 (D) none of these

4. V^(9x - l)(x -•!)= ?

(A) (3x - -j)^ (B) 9x^ +
^

(C) 9x^-2x-l (D) none of these

5. V 7x^ - 42x+ 63 = ?
X

(A) 7(x+2)^ (B) (7x+ 3)(x+ 3)- (C) (x+ 3)(7x - 3) (D) none of these

6. V^ |x^ - |x +
I

7/ ( ? f [Note the inequality. ]

(A) fx+l (B)
I

- -y (C)
^"^

^
^

(D) none of these

II. For each of the following equations, choose the sum of its roots when it

is solved for 'x'. If only one root is apparent, what is it? If the correct
answer is not given, mark (D).

7. x= 9 - -
X

(A) 8 (B) 9 (C) -9 (D) none of these

-24-
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8. x^ + 9 = 6x

(A) (B) 6 (C) 3 (D) none of these

9. 3x'' + lOx - 8 =

(A) -10 (B) 10 (C)
10

(D) none of these

10. 9x^ + 25 = 30x

(A) 30 (B) 3j

11. 2x^ + 13ax = 7a^

(A) 13a (B) -13a

(C) I

(C)
13a

(D) none of these

(D) none of these

12. x"^ - 5 =

(A) 10 (B) 5 (C) (D) none of these

III. Choose the correct answer to the question; if none are correct, mark (D).

13. Al is 5 years older than Bill. The product of their ages is 176. How
old is Bill?

(A) 12 (B) 14 (C) 16 (D) none of these

14, The product of two consecutive negative whole numbers is 240. What
is the sum of these nunnbers ?

(A) -33 (B) -1 (C) 31 (D) none of these

15. One positive number exceeds another by 3. The sum of their squares
is 149. What is the larger number?

(A) 7 (B) 10 (C) -7 (D) none of these

16. What is the sum of the roots of the equation '2x^ + 4x - 30 = 0' ?

(A) -4 (B) 4 (C) -2 (D) none of these

17. What is the product of the roots of the equation 'x - 6x - 7 = 0' ?

(A) 7 (B) 6 (C) -6 (D) none of these

18. Which quadratic equation has the roots —3 and 5 ?

(A) x^ + 2x - 15 =

(C) x^ - 8x - 15 =

(B) x^ - 2x + 15 =

(D) none of these

19. If one root of the quadratic equation 'x - 6x + k = 0' is 2, what is the

other root ?

(A) 8 (B) 4 (C) 3 (D) none of these

-25-
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20. For what value of 'n' is the equation 'x - 7x + n = 0' satisfied by 2 ?

(A) 5 (B) 10 (C) h (D) none of these

Key for Text Q [3-99]:

1. A 2. D 3. D 4. A 5. D 6. A 7. B

8. C 9. D 10. C 11. D 12. C 13. D 14. D
15. B 16. C 17. D 18. D

'1^

19. B 20. B

TEST R [3-123]:

I. Choose the correct solution set for each inequation. If none are correct,
naark (D).

1. 2x - 7 > i

(A)

(C)

2.

5.

-6x < 20

(A)

(C)

x^ +

(A)

(C)

2x^ >

(A)

(C)

|x -

(A)

(C)

|x-

(A)

(C)

x: 4 < x}

x: > X - 4}

x:

x:

X < — >

3x < -10}

5 > lOx

x: |x| > 5}

x: X = x}

5x + 12

x: x > — or X > 4}

3 .I
x: :' > - — or X < 4;

3| < 2

x: x> lorx< 5}

x: X < 1 or x > 5}

5| > 2

x: x>7 orx<^-3}

x: X > 7 and x < 3}

(B) {x: X < 4}

(D) none of these

(B) {x: x< -^}
(D) none of these

(B) {x: -5 < X < 5}

(D) none of these

(B) {x: x< -r-andx>4}

(D) none of these

(B) {x: 1 < X < 5}

(D) none of these

(B) (x: 3 < X < 7}

(D) none of these

-26-





11. Choose the expression which is equivalent to the given one. If none are
correct, mark (D).

7. V 147 =

(A) 7V3~ (B) 10 + ^47 (C) 12.124 (D) none of these

8. 4VT- 5/T2 + 2a/75 =

(A) mVJ-SO (B) A-^ (C) l6^/T (D) none of these

9. V(-8? =

(A) -V^64 (B) -8 {C) 8 (D) none of these

10. {/T + •^){-fT - /J) =

(A) 4 (B) 40 (C) 46 (D) none of these

11. (y -^f =

(A) y' - y (B) y' - 2^7 + y. [y > O]

(C) y^ + y(l - 2/y), [y> O] (D) none of these

12. (3a - 2Vb]^ =

(A) 9a^ - 6aVb~+ 4b, [b > 0] (B) 9a^ - 12aVb'+ 4b, [b > 0]

(C) 9a - 12aVb'+ 4b, [b > O] (D) none of these

III. Choose the correct answer; if none are correct, mark (D).

13. Given that 4. 358 < "flS < 4. 359, which of the following is justified?

(A) the approximation to v 19 correct to the nearest 0. 001 is 4. 358

(B) the approximation to V19 correct to 3 decimal places is 4. 358

(C) /T? - 4. 358 < 0. 0001 (D) none of these

14. Given that 5. 656 < VJz < 5.657, which of the following is false ?

(A) the approximation to ^32 correct to the nearest 0. 01 is 5. 66

(B) the approximation to 'v32 correct to 3 decimal places is 5.656

(C) V32 - 5.656 <
Q-QQ^

(D) none of these

15. What is the approximation to V8 correct to 2 decinnal places?

(A) 2.82 (B) 2.83 (C) 2.8 (D) none of these
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16. What is the approximation to vS correct to the nearest 0. 01 ?

(A) 2.82 (B) 2.83 (C) 2.80 (D) none of these

17. VVV ^„iflx-y|<z then it is not the case that
X y z > '

' '

(A) x-z< y< x + z (B) -z < x - y < z

(C) y-z< x< y + z (D) none of these

18. Which generalization is false ?

(A) V V if x^ = y^ then |x| = |y| (B)VV ifx>y then x^ > y^

(C) V ^ ^V ^ _ if x^ > y^ then x > y (D) none of thesex>0y>0 '

Key for Test R [3-123]:

1. A 2. D 3, C 4. D 5. B 6. D 7. A

8. B 9. C 10. A 11. C 12. B 13. A 14. B

15. A 16. B 17. D 18. B

Primarily, mathematics is a method of inquiry known as postiilational

thinking. The method consists in carefully formulating definitions of the con-
cepts to be discussed and in explicitly stating the assumptions that shall be
the basis for reasoning. From these definitions and assumptions conclusions
are deduced by the application of the most rigorous logic nnan is capable of

using. . . .

Mathematics is, also, a field for creative endeavor. In divining what
can be proved, as well as in constructing methods of proof, mathematicians
employ a high order of intuition and imagination. Kepler and Newton, for
example, were men of wonderful innaginative powers, which enabled them
not only to break away from age-long and rigid tradition but also to set up
new and revolutionary concepts. . . .

In its broadest aspect mathematics is a spirit, the spirit of rationality.

It is this spirit that challenges, stimulates, invigorates, and drives human
minds to exercise themselves to the fullest. It is this spirit that seeks to

influence decisively the physical, moral, and social life of man, that seeks
to answer the problems posed by our very existence, that strives to under-
stand and control nature, and that exerts itself to explore and establish the
deepest and utmost implications of knowledge already obtained.

--Morris Kline
MATHEMATICS IN WESTERN CULTURE
1953

-28-



:j-

J. 1 1.

. >l
ii

• h;



A MATHEMATICAL DESCRIPTION OF UNITS 3-11

The lengthy description of the first half year's work (Units 1 and Z, in

a previous article) was deenned necessary as an attempt to formulate clear-

ly the theoretical considerations that motivated UICSM's choice of nriaterial,

as well as to outline the material itself. The descriptions of later units,

which follow, are somewhat shorter.

Units 3 and 4- -Equations and Inequations, Ordered Pairs and Graphs -

-

complete the study of 9th grade algebra. Comparison with a traditional

text will show that there is less practice with exponents in this part of the

UICSM course, and that the treatment of quadratic equations stops with

solution by factoring, while the traditional text naay culminate with the

quadratic formula. Test-scores indicate that these tenaporary deficiencies

are more than made up for by the greater richness and depth of the UICSM

development. Of course, both deficiencies are more than made up in later

units.

Points especially worth noting in Unit 3 are: the roles played by graph-

ing, by set concepts and notation, and finally, by the theorems of Unit Z,

in explaining the ideas underlying the solution of e<^uations ; the procedure

for obtaining an equation for solving a worded problem by testing a guessed-

at solution [pp. 3-64 and 3-65]; the parallelism between methods for solv-

ing inequations and those for solving equations [pp. 3-100, 101, 104-107];

and the developing of some feeling for irrational niimbers by obtaining

approxinnations [see p. 3-117] to square roots by the dividing-and-averaging

method.

Aside from the topics suggested by its title, Unit 4 contains work in

factoring ["numerical" and "algebraic"] and on exponents, and scientific

notation.

After the experience students have had with set -notation in Units 3 and

4, and the treatment in Units 1 and Z of some singulary operations as sets

of ordered pairs, it is natural for them, in Unit 5, to construe relations as

sets of ordered pairs and functions as relations no two of whose nnembers

have the same first component. Functions are also discussed as mappings
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[see, for example, p. 5-71], The two points of view-sets of ordered pairs

and mappings - -appear to be two sides of the same coin. Indeed, to quote

Dieudonne [ Foundations of Modern Analysis, New York (I960), p. 5]:

It is customary, in the language, to talk of a mapping and a

functional graph as if they were two different kinds of objects

in one-to-one correspondence, and to speak therefore of "the

graph of a mapping", but this is a mere psychological dis-

tinction (corresponding to whether one looks at F either

"geometrically" or "analytically").

The notion that a function is a set of ordered pairs makes easily available

many examples of functions whose domains are finite sets and, so, makes

it particiilarly easy to develop, through exannples and exercises, many

concepts having to do with functions. Sonne of the topics which are thus

made readily accessible at this level are function composition, inverse of

a function, and functional dependence.

The naore special study of numerical valued functions directs attention

to another use of the word 'variable'. Such formulas as that for the area-

measure of a square [A = s ] are most readily interpreted as asserting a

relationship of functional dependence between numerically valued functions

[alternatively: between variable quantities] - -in this case, the functions A

and s. With this interpretation, 'A = s ' is a short way of saying that, for

each square q, A(q) = [s(q)] . Not only is this simpler than is the interpre-

tation:

for each square q, for each number A, and for each

number s, if A is the area-measure of q and s is

the side -measure of q, then A = s ,

but the simpler interpretation suggests that one define operations of addi-

tion, multiplication, subtraction, and division for numerical-valued func-

tions [see p. 5-102]. It is then easy to see that, with respect to these

operations, the set of all real -valued functions with a given domain has

much in common with the system of real nunnbers. So much, indeed, that

the real -number theorems of Unit 2 can be reinterpreted as statements

about such a class of functions. In fact, if one replaced restrictions like

'x /^ 0' [in theorems about division] by others like '0 is not a value of f,

the Unit 2 proofs are still serviceable. This insight justifies one in mani-

pulating the letters in formulas as if they were pronumerals - -that is, as if
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they were numerals.

Besides the analogy just naentioned between the algebra of real num-

bers and the algebra of real -valued functions with a given domain, students

also investigate, earlier in the unit, some of the analogies between the

algebra of real numbers and the algebra of subsets of a given set. After

their experience in earlier units of proving theorems which they have

guessed hold for real numbers, and their experience of guessing theorems

about sets, students are often impatient to learn how to prove theorems

about sets. [Rather than attempting to force on students an interest in so-

called "modern mathematics", UICSM merely caters, minimally, and in

passing, to this burgeoning interest in Boolean algebra.]

The remainder of Unit 5 [about half the unit] is devoted to a more de-

tailed study of constant, of linear, and of quadratic functions. In addition

to applying the general concepts previously developed to these special

kinds of functions ["Each linear function has an inverse", "The composite

of two linear functions is a linear function", etc.], due attention is paid

to the geometric aspects of these functions and to their application ["ratio,

proportion, variation"]. Moreover, in contrast to traditional treatments,

the solution of quadratic equations [by completing the square, and by for-

mula] is merely an application of the theory of quadratic functions. That

there are other, perhaps more important, applications of this theory is

suggested to students by exercises dealing with maxima and minima and

with quadratic inequations. The final section takes up the solution of sys-

tems of [two or three] linear equations, and the application of this to the

solution of worded problems.

Like the earlier units, Unit 5 ends with collections of Miscellaneous

Exercises and Supplementary Exercises, In general, the former serve as

reviews of the current and the preceding units. The Supplementary Exer-

cises are intended to be used, as needed, for additional drill in techniques

introduced in the current unit and, as time permits, as the basis for fur-

ther exploration of topics treated in the current unit. This latter use of

Supplementary Exercises is particularly well illustrated in Unit 5. Here

there are, for example, exercises which introduce such properties of rela-

tions as transitivity and antisymmetry, a graphical procedure for compo-

sing functions, and a slight introduction to groups through compositions of

rotations and reflections.
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The content of Unit 6 - -Geometry- - is outlined in the Introduction to

the commentary. Briefly, the deductive development of Euclidean plane

geometry is based on 15 "Introduction Axioms" concerning incidence and

order, and 10 "Measure Axioms" which deal with measures of segments,

angles, and regions. Since geometric figures are construed as sets of

points, and measures are numbers, the algebras of sets and of numbers

are presupposed. Modulo these considerations, the set of 25 geometric

axioms just referred to is adequate for a rigorous treatment of Euclidean

plane geometry [but, the axioms are by no means independent], including

a treatment of area- measures of polygonal regions. [Area- measures of

circular regions, segments, and sectors is dealt with rather informally.]

The details of such a rigorous development would, of course, be out of

place in a secondary school text, but are carried out to a considerable

extent in the commentary.

The experience which students have had, beginning with Unit 2, in

using test- patterns to prove generalizations not only has made them a'ware

of the role of proof in mathematics, but also has provided a firm foundation

on which to add further knowledge of methods of proof. According to

reports from teachers, the Appendix to Unit 6 in which basic nnethods

of reasoning are developed from the viewpoint of natural inference

[Gentzen, Jaskowski] is one of the nnost popular parts of the course. n
o

It is usually covered early in the study of the unit- -as soon as students'

attennpts to give geometric proofs have convinced them of the need for

more knowledge of methods of proof.

It may be recalled that the proofs in Unit 2 were given in what is,

essentially, a two- column [" statement- reason"] form, reminiscent of

the form of proofs in traditional geometry texts. This form is used in

Unit 2 because the column of "statements" is essentially what a student

might write in carrying out the simplification of an algebraic expression.

The two- column form is not well adapted to more complicated kinds of

proof [and its use in traditional texts may account for the traditional

difficulty of teaching students to understand indirect proofs]. For this

reason UICSM has adopted, in Unit 6 and in later units, a one- column

fornn of proof which lends itself well to proofs of all kinds. It has the

additional advantage that students pass rather easily from writing one-

column proofs to writing understandable paragraph proofs. They are

helped in this, as well as in developing the ability to formulate proofs,

by practice in making tree- diagrams as outlines of proofs.





Although, in the earlier units, UICSM writers shied away from making

what was thought to be a too explicit introduction of basic logical principles,

the feeling now is that it would have been advantageous to introduce much

of the content of the Unit 6 Appendix earlier in the course. This feeling

is reinforced by the numerous requests from teachers for copies of the

Appendix to be used by students who are studying earlier units.

As remarked above, it would be highly inappropriate, even if it were

possible, to teach students at this level to give rigorous, complete proofs

of geometrical theorems. What is desirable, and what turns out to be pos-

sible, is to teach them to give what mathematicians, generally, would

accept as adequate proofs and to recognize where their proofs fail of com-

pleteness. The latter ability 3tem.s from their acquaintance with the Intro-

duction Axioms and with examples of the sort of theorem which can be

derived from them. The informal treatment of these matters in the Intro-

duction to Unit 6 prepares students to recognize v/hen, in later proofs, they

make use of such facts as, say, that two points are on opposite sides of a

given line; and, in such situations, they are able to judge whether this could

be derived from earlier steps in the proof and Introduction Axioms. [See

p. 6-16 and its commentary, and page 6-2Z. ] Their attitude is that of the

working mathematician who knows that his argument is sound and that he

could, with sufficient labor, expand it --by the liberal use, say of 'e's and

'5's--to obtain a rigorous and complete proof. [As is to be expected, they,

like the mathematician, are sometimes wrong--and the recognition of their

errors is one way in \vhich they learn to judge v/hat steps in a proof can

safely be omitted. ]

In the actual development of the content of Unit 6, the proofs of several

of the earlier theorems ma.ke explicit use of the Measure Axioms. How-

ever, once a sufficient stock of such theoreins has been accumulated, proofs

of most of the "standard" geometry theorems are along lines sinriilar to

those given by Euclid, and to he found in traditional texts. One exception

to this is that, once the appropriate theorems have been proved, it is shown

that rectangular coordinate systeins can be set up. From this point on,

students are free to use either ''synthetic" or "analytic" proofs, as occa-

sion warrants.

Feeling that students have little ';o gain from a deductive treatment of

solid geometry, UICSM recominends that teachers using Unit 6 supplement
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it with one of several pamphlets now available which acquaint students with

the basic concepts, terminology, and theorems of solid geometry. One such

treatnnent has been written by a UICSM teacher, and copies are furnished

by the project to participating schools. It is probable that a revision of this

v/jll he included as an appendix to later editions of Unit 6.

'1"

Units 7 and 8, and Unit 9 [the last not yet published] introduce additional

basic principles for real numbers sufficient to complete the description of

the real number system as a complete ordered field and to characterize its

Kujjots P [of positive numbers], I'^[of positive integers], and I [of integers],

Cne nccable aspect of these units is the inclusion of numerous sets of

Miscellaneous Exercises, distributed throughout the text. Exercises at

va.rious levels of difficulty are included. Each unit has a set of Review

Ej^srcises [see pp. 7-133 through 7-144 and pp. 8-218 through 8-227], and,

iCcr rcfersnce, statements of the basic principles which have been adopted

for real numbers and of the theorems which have been deduced from them,

V.} to t>.e end of the unit. In looking over such a list [see pp. 8-228 througli

8-2'l-7]. it should be kept in mind that UICSM students have, from the middle

of the 9th grade, been accustomed to use quantifiers as the simplest way of

s:?.t5.nq: the generalizations which they have discovered. Consequently, their

reactions to what some readers nnay regard as "excessive formalism"

might be expressed by "But, this is the easiest way to say just what I naean .

'

The first section, 7. 01, of Unit 7 reviews the basic principles which

wore r.docted in Unit 2, shows how "connputing facts" can be established,

antl: after pointing out by the use of a model that ' 1 / 0' cannot be derived

irorn these basic principles, introduces this sentence as a new basic prin-

ciple. [Jt is important to realise that, for UICSM students, the basic

principles are not abstract postulates, but, rather, statements of part of

v^fhat tliey already know about the real numbers. Some theorems are also

of this character, while others formulate new knowledge which has been

^v:33sed at on the basis of experience and tested by showing [by proof] that

i: couli have been predicted from basic principles. So, although students

hav? always known that 1 is different from 0, they see the need for inclu-

ding a statement of this among their basic principles. Similar remarks

apply to the other basic principles adopted in Units 7 and 9. ]
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Consideration of whether '2 f 0' can be derived from basic principles

leads to the adoption, in section 7. 02, of four additional basic principles

[see p. 8-232] concerning positive numbers. While choosing these it be-

comes clear that they make it possible to prove, for any of 2, 3, 4, etc.,

that rt is not 0. However, there appears to be no way to prove, at this

point, that each positive integer differs from 0, That this should not be

surprising becomes clear on noting that none of the basic principles makes

any explicit naention of the positive integers. So, there is a need for still

more basic principles - -a need which is satisfied in section 7. 04.

In section 7. 03, the relation > is defined [see (G) on p. 8-232], and the

knowledge concerning this relation which students have acquired in earlier

units - -particularly in v/ork with inequations in Unit 3 --is systematized.

Incidentally, it is pointed out that this could be done on the basis of the five

statements v/hich make up Theorem 86 [see p. 8-233], rather than on the

basis of (P, ) " (^"4) 3-nd (G). New insights concerning > are obtained and

formulated as theorems [see, for example, p. 7-39 and commentary,

TC[7-39, 40]a and b] a'td students' knowledge of strategies of proof is in-

creased.

In Unit 4 students did some work with positive integers [factoring with

respect to I*, e'^'^en and odd integers, etc. ]. In section 7. 04 the assumptions

on which this work was based are collected and proposed as theorems which

should be derivable from basic principles [as a matter of fact, each is

proved in Unit 7 or Unit 8], The additional basic principles [see p. 8-234]

which are needed have already been suggested by Exploration Exercises

[see pp. 7-45, ^-46, and commentary, TC[7-45, 46]a, b, and c] which

immediately precede this section. The technique of mathematical induction

is developed, and much of the remainder of the unit is devoted to practice

in the techniques of formulating recursive definitions and of using them as

bases for proofs by mathematical induction. The traditional difficulty-

-

thdt, in a poorly-written proof by inathematical induction, one seems to be

assuming what one wishes to prove --seldom arises. Students' familiarity

Vvfith test -patterns prepares them to understand what is going on. Such

topics as figurate numbers, compound interest, and combinatorial prob-

leins yield interesting subjects for practice [see pp. 7-66, 7-70, 7-71 and

connmentary, TC[7-66], TC[7-70]a, b, and TC[7-7l] ]. Traditional treat-

ments of induction at, say, the first -year college level concentrate on

svimmation problems. The rather extensive UICSM treatment of such mat-

ters comes in Unit 8.
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Among other matters relating to the order-type of the positive integers,

section 7. 05, after exploring the concepts of lower bovmd and least member
[see p. 7-87 and commentary, TC[7-87]a, b], presents a proof of the least

number theorem [see p. 7-88 and commentary, TC[7-88]]. Also, as a

temporary expedient, a basic principle [see (C) on page 8-235], equivalent

to the Archimedean property of >, is introduced. In Unit 9, (C) will be

"reduced" to the status of a theorem on the adoption of a completeness

principle. At present, (C) is needed to characterize the way in which I"*" is

imbedded in the set of real numbers. In particular it is used, in section

7. 06, to show that the domain of the greatest integer function (the greatest

integer < x) is, as one naturally suspects, the set of all real numbers.

In section 7. 06, some of the previous results concerning positive

integers [closure, induction, least number theorem, etc.] are shown to

hold [in appropriately modified forms] for all integers. In doing this, use

is made of nnappings --translations and the reflection through 0- -of the real

number system on itself. The section continues with a treatment of the

greatest integer function. Students are well acquainted with this function

from work in earlier units [see, for example, pp. 7-41 and 5-254]. They

can now establish several theorems which they will have occasion to use

later. Finally, a study is made of the divisibility relation, comparing it

with <; pictorially representing the lattice of divisors of an integer; dis-

covering the Euclidean algorithm; and solving Diophantine problems.

Unit 8 --Sequences --comprises two sections, one centering on 2-notation,

the other on 11 -notation. In the fornaer, students have many opportunities

to guess at summation theorems by inductive methods, and to verify their

guesses by using nnathematical induction and the recursive definition of

2-notation. [The final form of the definition is reproduced on p. 8-237;

the earlier form there referred to is:

n + 1 n
_

p
'^

Students also learn short cuts --based, essentially, on finite -difference

methods --for sim\iltaneously discovering and proving summation theorems.

In contrast to traditional texts, the "theory" of arithmetic progressions

appears here, in something like proper perspective, as an almost triviail

application of a general theory. In addition to dealing with special problems
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[many of which are, by the way, geometrical in origin], students prove and

apply general theorems [see pp. 8-238 through 8-240] on summation.

In the second section of Unit 8, the factorial sequence and the expo-

nential sequences are introduced as important examples of sequences of

the kind which arise when one considers continued products of the terms

of other sequences. The domain of the exponential sequences is then ex-

tended to include all integers, and the usual "Laws of Exponents" are

proved by mathematical induction. Appropriate exercises lead to the dis-

covery [and consequent proof] of Bernoulli's inequality. This and an

earlier theorem [Theorem 153 on p. 8-242] form the basis for discussing

geometric progressions, both "finite" and "infinite". Incidentally,

geometric progressions appear as a minor generalization of exponential

sequences. There follows additional work on factoring, based in large

part on the previously mentioned Theorem 153. There is, next, a rather

extended discussion of combinatorial problems. Students have dealt with

a few such problems in Units 5 and 7 ["'How many reflexive (symmetric)

relations are there whose field is a given set of 5 elements?", "How

many shortest routes are there from one corner of a 3-by-5 block city

neighborhood to the opposite corner?"]. Here they make a inore organized

study of combinatorial problenns. This leads, finally, into the binomial

theorem and, optionally, a recursion formula for computing sums of powers

of consecutive positive integers and a formalization of their previous dis-

coveries concerning the use of successive differences to obtain summation

formulas.

The unit ends [except for Review Exercises] with eleven pages on

prime numbers [sieve of Eratosthenes, infinitude of primes, occurrence

of primes in arithmetic progressions, and proof of the existence and

uniqueness of prime factorization].

Unit 9 continues the study of exponentiation. A completeness principle

--the least upper bound principle - -guarantees the existence of roots of

nonnegative numbers. On the basis of appropriate theorems on roots it is

easy to introduce rational exponents. Monotonicity of the exponential

functions [restricted at first to rational arguments], and a certain amount

of arm-waving, justifies the introduction of irrational exponents. The

logarithm functions appear as inverses of the exponential functions. As a

matter of course, this so-rapidly outlined theoretical structure is buttressed
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and held together by much practice, leading to discoveries, and much

application of such discoveries to problem -solving.

Like Unit 9, Units 10 and 1

1

exist only in preliminary [but already

well -tested] versions. They deal with the circular functions, polynomial

functions and complex numbers.

In conclusion, it seems appropriate to repeat that the relatively deep

theoretica.1 development, and the seeming emphasis on formality, are not

evidences of an abstract approach to matheinatics as a subject divorced

from reality^ On the cortx-ary, the former is made possible only by allow-

ing students ample opportunity to carry out the prelimiinary thinking and

experimenting v/hich they need as a basis for concept formation; and the

latter [which is by no means as great as it has appeared to sonne who have

been content with a superficial scanning of UICSM texts] is necessitated by

the need which students feel to formulate their discoveries precisely and

efficiently so that ihey can be used z.3 a relia,ble basis for arriving at

further discoveries, --H. E, V.

A great discovery solves a great problem but there is a grain of dis-

covery in the solution of any problem. Your problem may be modest; but

if it challenges your curiosity and brings into play your inventive faculties,

and if you solve it by you-; own means, you may experience the tension and

enjoy the triumph of discovery. Such experiences at a susceptible age may

create a taste for : lental work and leave their imprint on mind and char-

acter for a lifetime.

Thus, a tec.cher of m;.thematics has a great opportunity. If he fills

his allotted tinic with drilling hir students in routine operations he kills

their interest, hampers their intellectual development, and misuses his

opportunity, Biit if he challenge" the curiosity of his students by setting

them probleins propori io.jate to their knov/ledge, and helps them to solve

their problems v/ith stTmtilating questiona, he may give them a taste for,

and some means of, independent thinking,

- George Polya
HOW TO SOLVE IT: A New Aspect

of Mathematical Method
1945
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DICK ZILCH GOES TO PRISON

There are at least five state prison inmates in existence who know

that half of '99' is '9*. for UICSM mathematics has penetrated the walls of

the Massachusetts State Correctional Institution at Norfolk. Two volun-

teers on the prisons comnnittee of Harvard's Phillips Brooks House, the

University instrunnent for mobilizing student social work, spend their

Friday afternoons teaching squotes and the principles of arithmetic to a

class of five at Norfolk. Joel Selig, a sophomore, and Ray Frieden, a

freshman, the former a mathematics and the latter a physics major, and

both past members of the first UICSM class in Newton, Massachusetts,

are firmly convinced that the Illinois way is the only way to teach mathe-

matics to adults.

Having become familiar with the philosophy of rehabilitation that

obtains at Norfolk, where inmates live not in cells but in dormitories,

move about freely within the walls that are prescribed by "careful custody",

and spend a good part of their week in the Education Building, Mssrs. Selig

and Frieden thought "What better way to interest these men in mathematics

than to let them have a go at Units 1-4?" With the encouragement of Pro-

fessor Beberman and Dr. W. Eugene Ferguson, head of the Math Depart-

ment at Newton High School and their teacher for two consecutive years,

they embarked, in this spirit, upon an unusual program. Each week one

of themt teaches and the other becomes a nnember of the class, and the

emphasis is, of course, on student discovery and participation. At the

pace of one class a week the group covered Unit 1 in the first semester,

and the student -teachers plan to give their inmate -students a good taste of

Units 2 and 3 at least during the remainder of the school year.

"Tinae for teaching, let alone testing, is scarce, and getting the men

to do long assignments at home requires soine doing, but we feel we can

safely clainn a high degree of success, " say Mssrs. Selig and Frieden.

"At this point three out of five do their homework very thoroughly, and the

others spend a satisfactory amount of time on it. On the basis of three

quizzes, two would be getting a B in a high school class, the other three a

C. By the end of the year we hope to have all A and B scholars.
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"More important than this, however, is the way in which the men

respond to the UICSM method. For most of them, of course, it is a

completely new way of thinking, and although only one has had an extensive

background in mathematics, they all find it a bit difficult to change their

old ways. They are all enthusiastic about learning modern mathematics,

and they welconnie us as they do all Harvard teachers as living proof that

society has not completely rejected them> We have no idea what their

crimes are, and we aren't interested, V/e look upon them as exactly what

they are: mature adults who hp.ve th^ right to respect, patience, and under-

standing, and of whom we have the right to expect self-discipline.

"We try never to dismiss a question before we have gotten to its root,

but we push the class as nnuch as we can without losing them. Enrollment

in prison classes tends, in geneial, to fluctuate; we have five steady,

interested students. The quertion "What in the world is the book talking

about?" is seldom 3.skod; the men appreciate the ease and liveliness with

which the textbooks are written, and they usually need only the clarifica-

tion of a few points to complete the learning which they themselves have

done at home. In short, when we can ask our students what they notice

about the operation adding zero and get the answer "It is its own inverse",

we are much happier than we would be could they automatically cancel out

the 'x' in '4x y/x'. In our UICSM cl?.ss the men have, for the first time,

an opportunity to use their mindr in the study of mathematics- -and they

enjoy doing so. '' - - J, S.

It is only proper to realize thai iangu'.gc is largely a historical acci-

dent. The basic human lan3uages are traditionally transmitted to us in

various forms, but thei'r v37>.-y niulriplicity proves that there is nothing

absolute and necessary about them. Just as languages like Greek or San-

skrit are historical facbs r_nd not absolute logical necessities, it is only

reasonable to assmne thr!- logics and mathematics are similarly historical,

accidental fornn.s of expression, Thf:y raa.y have essential variants, i. e.

they may exist in other forms than tlie one3 to which we are accustomed.

Indeed, the nature of the central nervous cysten:i and of the message sys-

tems that it transmits indicate positively that this is so.

--John von Neumann
THE COMPUTER AND THE BRAIN
1958
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NEWS AND NOTICES

In June, 1961, the School Board of Tucson (Arizona) School District No. 1

adopted a salary schedule credit in-service program. The first group to take
advantage of this policy was the Mathematics In-Service Senninar. One group,
under the direction of Mrs. Katharine J. S. Sass6, studied Units 1 and 2 of

UICSM First Course and the NETRC films. This group is continuing second
sennester with the study of Units 3 and 4 and the NETRC films under the direc-
tion of Miss Ruby Matejka. The other group, directed by Mr. Ralph Futrell,

studied Unit 6. This group is continuing second semester under the leader-
ship of Mrs. Barbara Buchalter in the study of Unit 5. Evaluation returns
for the first sennester indicate that the progrann is very satisfactory- -K. J. S. S.

Sister Mary of the Angels (St. Rosalia High School, Pittsburgh) spoke
before the annual convention of the Catholic Educational Association of Penn-
sylvania last November. Her topic, "Experiences with a New Mathematics
Program", was presented to the Secondary School Section on November 17.

She reports covering "the history of our participation in UICSM, reactions of

pupils, parents, and teachers, and a slight explanation of the presentation of

equations and inequations. "

"Walter Rucker and I would like to let you know of the progress of UICSM
classes in Redlands [California], and to tell you of an in-service class which
we are conducting for teachers in the district. There are about 15 teachers
attending a 3-hour evening class which meets one night per week. It is pre-
sently scheduled for 12 sessions, in which we hope to complete Units 1 and 2,

and possibly part of Unit 3. We have had a group of seventh graders in for a

demonstration class, and we plan to have other demonstration classes at

appropriate times. "--Paul Krantz

At the December meeting of the Arctic Branch, American Association
for the Advancement of Science, at the University of Alaska, the Rev. Fr.
Charles A. Saalfeld, S. J. , spoke on UICSM under the title "A New Approach
to the Teaching of Mathematics. " Father Saalfeld teaches at the Monroe
High School in Fairbanks and has attended NSF summer institutes in Urbana.

Mr. Donald D. Hankins, Mathematics Chairman at the Crawford High
School, San Diego, California, reports that about 70 secondary mathematics
teachers attended his presentation on "The UICSM Program in Your School"
at the Second Annual A-Iath- Science Weekend in Santa Monica last December.
Mr. Hankins writes: "The presentation included: 1. A brief description of

the UICSM program; 2. Our experience with UICSM materials in our pilot

program (San Diego City Schools). This consists presently of 35 classes and
17 teachers; 3. Problenns in inriplementing a UICSM progrann--this included
our in-service program, meeting with parents, etc. I am happy to report
there was considerable interest. "

Mrs. Mary S. Huzzard of the Cheltenhann High School, V.'yncote, Pa. ,

spoke to the Association of Mathematics Teachers of the Independent Schools
in the Baltimore area about UICSM last November. In succeeding weeks
there were programs on the Maryland Program, A'ladison Plan, and SMSG.
Mrs. Huzzard spoke for about an hour and a half, then answered questions.
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Mr. Arnold Petersen, Head of the Mathematics Department at the

Pascack Valley Regional High School, Hillsdale, N. J. , and Miss Maureen
Jordan of his staff shared the platform at a meeting of the Mathematics
Committee of the Bergen County Education Association in October. Between
60 and 70 teachers from the northern New Jersey area heard Miss Jordan
speak on "Proof and the Algebra of the Real Numbers;" Mr. Petersen spoke
on "Logic and the UICSM Geometry. " As a result of this presentation, the

Committee will include in its roster of in-service training courses a class in

UICSM First Course, Mr. Petersen appeared on a three-man panal spon-
sored by the N.J. Section of M. A. A. at St. Peter's College in Jersey City in

November. The philosophy, content, and evidence for success of UICSM
geometry were presented to an audience of about 100 college and secondary
teachers at that time. Mr. Petersen arranged a number of meetings in his

area at which Max Beberman spoke in December. In February, Mr.
Petersen spoke on "Modern Mathematics: Lower Secondary Level" at the
Don Bosco High School in Ramsey, N. J. , and presented the entire UICSM
program at a teachers' meeting in Chatham. The versatile Mr. Petersen
led a discussion at a conference on language sponsored by the New Jersey
English Teachers' Association at Montclair State College in March. He spoke
there again at a conference on gifted children on April 5th and is to be con-
sultant for a U. S. Office study on miodern mathematics for academically
talented students during two conferences held at Teachers College, Columbia
University.

Newsletter No. 8 will be the last of the 1961-62 academic year, and will

include several articles and letters on teaching aids and suggestions by
UICSM teachers that have accumulated in the past several months. More are
needed, however, and anything that reaches your editor by May 12th will

receive careful consideration for publication. News items for the next issue
must also be in the editor's hands by that date. Notes on the recent activities
of the UICSM staff will be included in the next issue.

v _/

WANTED

A teacher trained in UICSM to fill an opening in the
nnathematic s department at the Colegio Roosevelt in Lima,
Peru, beginning August 1, 1962.

"The salary schedule- -considering living costs-- is

excellent (furnished housing thrown in), the students
capable. ... I am leaving in August, and without a UICSM
man to replace me, the progrann may collapse. "

Interested parties should write to:

Mr. Richard E. Johnson
Mathematics Department
Colegio Roosevelt
Libertadores 500
San Isidro
Lima, PERU
South America

/" A
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THE MATH WARS

Curriculum change is still very much "in the news" these days, though

the mood of national self- searching following upon the October 1957 blow to

our complacency seems to have faded somewhat. Within slightly over a

decade, mathematics education in particular has bean transformed from a

rather settled and uniform scene into one of such apparent confusion and

controversy that sonne teachers are understandably dismayed and feel wholly

justified in "standing pat" until they see v/hat corneG of it p.11. Those who

perceive an unsettled situation as an opportunity and a challenge rather

than a threat, however, may profit fronn looking into what might well be-

come a "controversial issue"--or whole pack of such issues--among mathe-

maticians and mathematics teachers v/ithir. the next fev/ years,. Have the

recent reforms moved too far too fast, in wrong directions, and counter to

some of the virtues of the traditional progrann ? Something like this seenns

to be on the minds of the sircty-five mathematicians who signed the state-

ment "On the Mathematics Curriculum of the High School", as published

in the March 1962 issues of the Mathematics Teache r (pp. 191-195) and the

American Mathematical Monthly (pp. 189-193). Mathematics teachers would

do well to be aware of this statement, even if they should decide that it raises

many more questions than it seeks to answer.

There is also a well-balanced and refreshingly literate article under

the above martial title in the Spring 1962 America n Scholar magazine,

written by a professor of English at Amherst College (pp. 296-310, passim ).

Reading it may help clarify and bring into focus the situation in our sonne-

what untidy house for you. --R. S.
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A BLACKBOARD LATTICE

Since this is my first year in teaching with UICSM nnaterials, I have
found it quite a challenge that no one, at least locally, has devised any
classroom aids for this program. After some experimentation, I managed
to make a lattice board for class demonstration that has become my favor-
ite aid.

V/hen I started teaching Units 4 and 5, the thought of having to draw
or mimeograph lattices was dismaying enough without the added necessity
of lattices on the blackboard! I tried punching holes in a piece of chart
paper, and then in a window shade, pounding chalk over it whenever I need-
ed a lattice (using the powdered chalk used for marking hemlines), but soon
gave it up as too dusty and ineffective. The dots were not clear and rubbed
off too easily.

A piece of pegboard proved to be better, using dowels and other pieces
from a child's pegboard game. Even this had its drawbacks. The holes
could not be seen easily and were too close together to allow much writing
with chalk.

[This doesn't mean that I have discarded the pegboard! It is useful
in Unit 6 in demonstrating the relations between the lengths of the sides of

a triangle. Paper fasteners clipped through the holes support linkages
easily made from stiff cardboard. Our math club members also use it

for playing strategy games, such as Matrix (a trade name of a commer-
cially-produced ganae).

]

Finally, I used a portable blackboard, plastic Contac (a trade name),
punched holes in the plastic shelving material (using light cardboard as
a backing when punching the plastic since it was too soft to be cut cleanly
by the punch), and used the punched-out circles of plastic, sticking them
on the blackboard to make a permanent, washable latticeboard. The circles
can be written on (as well as around) without falling off, can be purchased
in a wide range of colors to contrast with the color of the board for easy
viewing, and can be peeled off without damaging the board if they are no
longer needed. It can withstand nnuch use, even by the students. Once
the major task of peeling the backing from the plastic (long fingernails
are handy) and applying the circles is completed, it requires no more
maintenajice than the ordinary blackboard.

--Mrs. Dorothy Ono
Kaimuki High School
Honolulu, Hawaii

Recommended reading:

Edwin Moise, "The New Mathematics Programs. "

THE SCHOOL REVIEV/, Spring, 1962, pp. 82-101.

(Vol. 70, No. 1)

--R.S.
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ARITHMETIC WITH FRAMES?

Then Miss Mills taught Peter to add and subtract and nnultiply and

divide. She had once heard some lectures upon teaching arithmetic by-

graphic methods that had pleased her very much. They had seemed so

clear. The lecturer had suggested that for a tinae easy sunns might be

shown in the concrete as well as in figures. You would draw an addition

of 3 to 4, thus:

added to makes this heap

And then when your pupil had counted it and verified it you would write it

down:

But Miss Mills, when she made her notes, had had no time to draw^

all the parallelograms; she had just put dov/n one and a number over it in

each case, and then her memory had muddled the idea. So she taught Joan

and Peter thus; "See, " she said, "I will make it perfectly plain to you.

Perfectly plain. You take three --so, " and she drew

'and then you take four--so, '' and she drew

'and then you see three plus four makes seven--so:

"Do you see now how it must be so, Peter?"

Peter tried to feel that he did.
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Peter quite agreed that it was nice to draw frames about the figures in

this way. Afterwards he tried a variation that looked like the face of old

Chester Drawers:

But for Sonne reason Miss Mills would not see the beauty of that. In-

stead of laughing, she said: "Oh, no, that's quite wrong! " which seemed

to Peter just selfishly insisting on her own way.

Well, one had to let her have her own way. She was a grown-up. If it

had been Joan, Peter would have had his way. . . .

Peter was rather good at arithmetic, in spite of Miss Mills' instruction.

He got sums right. It was held to be a gift. Joan was less fortunate. Like

most people who have been badly taught. Miss Mills had one or two foggy

places in her own arithnaetical equipment. She was not clear about seven

sevens and eight eights; she had a confused, irregular tendency to think

that they nnight amount in either case to fifty-six, and also she had a trick

of adding seven to nine as fifteen, although she always got fronn nine to

seven correctly as sixteen. Every learner of arithmetic has a tendency to

start little local flaws of this sort, standing sources of error, and every

good, trained teacher looks out for them, knows how to test for them and

set them right. Once they have been faced in a clear-headed way, such

flaws can be cured in an hour or so. But few teachers in upper and middle-

class schools in England, in those days, knew even the elements of their

business; and it was the custom to let the baffling influence of such flaws

develop into the persuasion that the pupil had not "the gift for nnathematics. "

Very few women indeed of the English "educated" classes to this day can

understand a fraction or do an ordinary multiplication sunn. They think

computation is a sort of fudging- -in which sonne people are persistently

lucky enough to guess right--"the gift for nnathennatics"--or innpudent

enough to carry their points. That was Miss Mills' secret and unfornnulated
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conviction, a conviction with which she was infecting a large proportion of

the youngsters comniitted to her care. Joan becaine a i-nathenaatical gainb-

ler of the wildest description. But there was a guiding light in Peter's

little head that inade him grip at last upon the conviction that seven sevens

make always forty-nine, and eight eights always sixty-four, and that when

this haunting fifty-six flapped about in the sums it was because Miss Mills,

grown-up teacher though she was, was wrong.

--frOi.-n a novel by H. G. Wells
JOAN AND PETER: The Story of an Education
New York: The Mac.-nillan Company, 1918

A NEW TOOL FOR TEACHING 'iATHEMATICS:

THE OVERHEAD PROJECTOR

The purpose of this paper is to acquaint the reader with a new teaching
tool, the overhead projector. This tool provides hinn with a iTieans of more
readily visualizing concepts that may require more than just the spoken
word for complete understanding. Unlike other types of projectors, it can
be used in a fully lighted rooin in front of the class. This permits the

teacher to face his class at all times. It also provides him with a means
of presenting pre-drawn constructions, illustrations, and even fully de-
tailed theorems or other written inaterial without having to take class time
to chalk them on the blackboard.

Mechanics of projection: the projector . A strong beanm of light is

cast up throughThe stage to a lens suspended about a foot above the stage.

The light passes through this lens and is projected upon a screen several
feet away.

The projectual . The projectual is the key factor to overhead projec-
tion. Just what is a projectual? Basically, it is nothing more than a

colorless, transparent sheet of acetate, ranging in size fro.n 12 by 12

inches to 8-l/2 by 1 1 inches. This sheet is placed upon the stage of the

projector. Anything relatively opaque, such as the wax of a marking
pencil or thick ink from a special pen, will stop passage of light through
part of the projectual when applied to the acetate, thus causing a shadow
to be cast upon the screen. For exa^nple, if the teacher uses a wax
pencil to write his name, the name will appear in sharp detail on the

screen many times the original size. If color is desired, translucent
colored ink is used.

While facing the class the teacher can write on the projectual as he
normally would, from left to right and from top to bottom.





Types of projectuals . Projectuals maybe static, dynamic, or of the
overlay type, I have discussed the static projectual, which is simply a
pre -drawn sheet of acetate in one color. The "color" can be an opaque
black shadow or some other color if translucent markings are made with
colored ink.

The dynamic projectual is like this except that several colors are
used on the same sheet or on several sheets which have been taped or
stapled together. This produces a variety of color combinations in the
innage. However, care naust be taken to avoid too great a thickness of

these translucent inks or tinted sheets. This may cause the net result
to be relatively opaque and cast a black shadow.

The overlay projectual is perhaps the most dramatic. It consists of

a series of acetate sheets with hinges or slides. It permits the exposure
of information at different times and buildup of a topic before the eyes of

the audience.

Suggested use of projectuals. A connbination of any or all of these
types of projectuals can be used in the mathematics classroom to achieve
the desired impact and illustrate an idea vividly to the student. In my
own teaching I have found that projectuals which superimpose various
types of geometric figures are particularly helpful. For example, in
discussing regular polygons I use an overlay which has a regular pentagon
as its basic projected innage. Overlays are used to illustrate non-regular
pentagons having some sides or angles congruent to those of the regular
pentagon. By superposition of these images the material is nnore clearly
presented.

Overlays of test patterns into which the teacher can write numerals
or multicolored pronumerals are most enlightening to the student. Any
geometric set which is the union or intersection of other sets can also
be vividly illustrated by the use of the overlay. It is not easy to retrace
steps or show parts independent of others w^hen using chalk and a black-
board. It is very easy to accomplish this with the overlay, since any
sheet may be removed or replaced, thus permitting a buildup or break-
down of the problem at any point in the lesson.

Other uses of the projector . Besides utilizing projectuals there are
other ways to use the overhead projector. Opaque objects such as blocks,
gears, etc., can be projected as black images by placing them directly
on the stage of the projector. Slide rules, rulers, protractors, and other
instrunnents made out of transparent materials can also be used for
demonstration purposes with excellent results.

Making projectuals . A teacher can make over a hundred reusable
static projectuals for less than $15. 00. Clear sheets of IZ by 12 inch
reprocessed X-ray film can be purchased for about 2 cents per sheet.
With these sheets, a pen using special ink that lays an opaque line, and
several felt tip ink markers of various colors, the ingenious teacher is

well on his way to a personalized and very effective set of projectuals.
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Several companies produce two types of felt markers. One type dis-
penses a permanent ink which produces a very effective color when applied
to the acetate. The ink can be removed with a cutting agent such as
duplicator fluid or alcohol. The second type dispenses a water base ink.

It too produces effective color, although not as rich in tone as the pernna-
nent ink. However, this ink can be removed with just a water-dampened
tissue.

When writing on the projectuals one should use letters at least l/4
inch high to assure easy reading by the audience. The time spent in

preparation of projectuals is a factor to consider- -the time spent being
in direct proportion to the degree of accuracy and professional-looking
finish that the maker desires to achieve.

The Thermo-Fax Sales, Incorporated, produces a specially treated
acetate which may be used with their standard copy machine to reproduce
on acetate most printed material. These sheets cost about 20 cents each.
A heat process is used in making such copies. K such a machine is

available the teacher will find it easy to use for this process. The Tech-
nifax Corporation has a fairly easy but equally expensive process for
doing the same thing. It is a light-sensitive process, which also requires
the use of special equipment. While both these companies have good pro-
cesses for developing the black or shadow image, I would not hesitate to

recommend the Technifax process over the other when using color in the
projectual. In addition, Technifax has a novel method of pin registration
for perfect alighment when making overlays.

There are other ways for reproducing information on acetate which
the reader may wish to investigate, but the mentioned ones seem to me
to be the easiest and most economical. Several companies sell commer-
cially prepared projectuals but as yet I have seen only a few in the field

of mathematics worth purchasing.

Physical setup of room . If the room is arranged so as to provide for
use of the projector at a distance of nine feet from the front of the room,
the image on the screen will be approximately 4 by 5 feet. Moving the

projector closer to the screen will reduce the size of the image, moving
it away will increase the size.

The projector is most effectively used at desk level. This allows the
teacher to be seated and, in turn, makes the screen the natural center of

attention. The image is seen to best advantage if it is projected onto a
screen which has its lower edge above the upper edge of the blackboard.
This arrangement also permits full use of the blackboard while the pro-
jector is in operation.

A screen which tilts forward at the top will prevent "keystoning".
As the name suggests, keystoning gives the projected image a fanning
out appearance from the bottom edge to the top. This is due to the top
edge of the screen being farther from the light source than is the bottom
edge. By using a tilted screen the image will appear in its intended
rectangular shape. To achieve "professional -looking" projection a
tilted screen is a must. But certainly, however, good results can be
achieved by using a standard wall projection screen or even a large map
turned to its blank side.





The size of the room and size of the class will dictate a procedure
for best location on the projector. I have found the arrangement dia-
grammed on the next page to be quite satisfactory. Even the teacher
who "floats" fron^ roonn to room can use the overhead projector to

advantage. 1 was in that situation myself for two years and found the
overhead projector not only useful but almost a necessity.

Building a tilted screen . If a tilted screen is desired but funds are
not available for purchasing one,, such a screen 4 by 6 feet in size can
be built for less than $9. 00 in materials.

Materials and directions:

(a) One sheet of l/8" by 4' by 8' masonite (pressed board similar
to that used for pegboard but without the holes). Cut off a 2 foot width at

the abvious end to make a 4 by 6 feet screen.

(b) 20 feet of soft pine pregrooved nnolding, and nails just a bit

shorter than the molding is wide. Cut corners of molding at an angle of

45 degrees and attach to the screen. This molding is necessary for
rigidity.

(c) 3 strong hinges and screws for attaching screen to wall (see
diagram).

(d) 4 large screw eyes and about 20 feet of strong cord (Venetian
blind cord works well).

(e) 2/3 quart of flat white indoor wall paint to paint one side of the
screen. Two or three coats will be necessary,

(f) 1/2 pint of flat black indoor paint to paint molding.

(g) 2 cleats to fasten cords.

1 have made and ann using a screen of this type and find it quite satisfactory.

Where to begin . I recommend the purchase of a supply of clear acetate,
several ink markers, wax or grease type pencils, and a pen for using
acetate -content ink which will adhere to the acetate. The Johnson Process
Company distributes acetate reprocessed from old X-ray film for about
2 cents per sheet. New, clear acetate, prepunched for pin registration,
as well as frame mounts to fit, can be purchased from Technifax. The
acetate sells for about 10 cents per sheet and the mounts for about 20 cents
each. The Charles Beseler Company also distributes these materials.
The frames are handy, although shirt cardboard and a few staples will

suffice.

Ink markers and pencils can be purchased from any stationery store.
"China" type marking pencils work very well, A pen such as the
Acetograph ($4. 95), produced by the Koh-I-Noor Company, can be
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purchased at many stationery stores or from distributors such as Tech-
nifax. I suggest that the following concerns be contacted for more
detailed information:

(a) The Charles Beseler Company, 219 South 18th Street, East
Orange, New Jersey. Ask for "Price List: Vu-Graph materials and
supplies".

(b) Johnson Process Company, 80 Front Street, Elizabeth, New
Jersey.

(c) Technifax Corporation, Holyoke, Massachusetts. Ask for the
"Diazochrome Slide Catalogue", Visucom (an occasional publication),

and "Visucom Equipment and Materials".

(d) Thermo-Fax Sales, Incorporated, St. Paul 6, Minnesota. Ask
for "Overhead Projection Tips", "A Study in School Communication",
and "New Projection Transparencies for Modern Visual Communications'

--William J. Masalski
Greenwich Public Schools
Greenwich, Connecticut

O, ^1^ v'^

I believe we shall discover that there is for the inquiring mind a

hierarchy of significance, with a place for all reality, but a place in an

ordered system. Perhaps the mind which gluts itself indiscriminately

upon thousands of facts is itself a mind which loves reality but little.

There is an intrinsic sense, or order and system, in the world of mean-

ing, which- -just because the world itself is ordered- -can lead from one

love of reality to a still more comprehensive love of reality. The role

of the teacher will not be fulfilled by turning over a thousand stones, but

by enabling the child of youth to see in the stone which arouses his

interest the history of this world, the evolution of its waters, atmos-

pheres, soils, and rocks, prying into deeper meanings "just because

they are there. "

--Gardner Murphy
FREEING INTELLIGENCE

THROUGH TEACHING
1 96 1
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A SUGGESTION ON CHECKING HOMEWORK

I would like to mention a procedure that has been helpful to me in

checking homework assignments, and also in presenting new nnaterial to

my algebra 9 class. Perhaps this is something that the teaching machine

folks are working on or may be interested in.

I have been projecting the solution to homework assignments on the

overhead projector at the beginning of the class period. In this way all of

the students can check all of their work. This gives me an opportunity to

walk aroxind the room to observe the students' work. It also gives the stu-

dents an opportunity to discover their own mistakes. When students question

certain problems I can point to the parts of the probleiii or draw in the

grouping symbols that are there by convention, etc.

If I had written all of this material on the plastic roll that comes with

this machine I wouldn't have to do it all over again next year. I have been

carrying four plastic sheets in my briefcase each day, erasing, and writing

the next day's work at home.

--Richards. Davis
York Community High School
Elnnhurst, Illinois

o, o- o^
'1^ w 'f

New types of logic may help us eventually to understand how it is that
electrons, the velocity of light, and other components of the subject
matter of physics appear to behave illogically, or that phenomena which
flout the sturdy common sense of yesteryear can nevertheless be true.
Modern thinkers have long since pointed out that the so-called oiechanistic
way of thinking has come to an impasse before the great frontier prob-
lems of science. To rid ourselves of this way of thinking is exceedingly
difficult when we have no linguistic experience of any other and when
even our most advanced logicians and mathematicians do not provide
any other- -and obviously they cannot without the linguistic experience.
For the mechanistic way of thinking is perhaps just a type of syntax
natural to Mr. Everyman's daily use of the western Indo-European lan-
guages, rigidified and intensified by Aristotle and the latter's medieval
and modern followers.

--Benjamin Lee V/horf
LANGUAGE, THOUGHT, AND REALITY
1956
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CLOSURE UNDER A "MOVING RULE"

While covering the Miscellaneous Exercises A-E on pages 4-87 to 4-95,

I had an interesting experience which naight be of interest to others.

Although my classes {naixed 9th and 10th grade) had completed Ex. 11

on pages 89 and 90, I did not feel that they had really gained much "feeling"

for closure, etc. We had progressed to Ex. C on page 4-93 and had finished

number 2 when an idea flashed to nnind and I posed this question:

"Suppose we have {(x, y): y = 5 + x}, part of the locus of which is shown

by straight line "c" on page 92, can anyone give us a "moving rule" under

which this set will be closed?"

One or two students were ready to give an answer immediately and I

suggested that others might want to list somie of the ordered pairs they

could find on line "c", etc. Very shortly several students were ready with:

(x, y) ^_ (x + 1, y + 1)

One boy then asked: "Couldn't you use the rule:

(x, y) ;^ (x - 1, y - 1) ?"

We continued this discussion with the remaining examples in this exercise.

Many of the students solved for "y"; I felt that when we finished many naore

people had begun to have some idea of slope and also that exercise 11 on

page 89 had more meaning for them.

--Miss Louise A. Brunell
Edwin O. Smith School
University of Connecticut, Storrs

Recommended reading:

Max Beberman, "The Old Mathematics m the New Curriculum.

EDUCATIONAL LEADERSHIP, March, 1962,

pp. 373-375. (Vol. 19, No. 6)

--R.S.
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BULLETIN:

UNITS 9, 10, AND 11

The student edition of Unit 9 (Elementary Functions: Powers,

Exponentials, and Logarithms) will be published on August 1, 196Z, by

the University of Illinois Press. The price of this edition will be two

dollars per copy. The teacher edition of this unit will not be available

from the Press until January 1, 1963, but teachers using this unit may

obtain a mimeographed answer book without charge from the UICSM

Project office after September 1, 1962. Orders for the published teacher

edition may be placed at any time, but will not be filled until January.

An overview of the contents of this unit is presented below,

"IT-

The publication dates for the new editions of Unit 10 (Circular Func-

tions) and Unit 11 (Complex Numbers) have not yet been determined. It

will probably turn out that they will not be published in time for classroom

use in 1962-63. So, orders for the current (mimeographed) editions

should be sent to the UICSM Project office and will be filled without

charge. --M.B.

'I-

Unit 9: An Overview of Contents

9. 01 Definite description: Existence and uniqueness of principal square

root and cube root; absolute value.

9. 02 The need for a new basic principle: closure, bounds, greatest and

least mennbers, and motivation of the least upper bound principle.

9. 03 The least upper bound principle: the iubp completes the list of

assiinnptions needed to characterize the reals and permits deri-

vation of the cofinality principle. Exploration exercises on

inverses, increasing and decreasing functions, functions as

monotonic and continuous.

9. 04 Principal roots: operators, the principal nth root function, radical

expressions, roots of negative numbers.
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9. 05 The rational numbers: using a definition for the set of rationals

in proving theorems; rationality and roots; rational-linear

combinations, density of the rationals, and reciprocation.

9. 06 Rational exponents: building a definition; testing, extending, and

using the definition,

9. 07 The exponential functions: properties of exponential functions with

rational arguments; irrational exponents; properties of expo-

nential functions.

9. 08 Computing with inverses of exponential functions: approximations

and computations; linear interpolation,

9. 09 The logarithm functions: the defining principle; theorems; scien-

tific notation, characteristics, and mantissas; relating logar-

ithms to two bases.

9. 10 Some laws of nature: gas laws; growth and decay; the natural

logarithm function.

Summary.

Review exercises.

Mi3cell?.nsous exercises-

Appendix A- -The simplest functions.

Appendix B- -Irrational numbers: countably and uncotmtably infinite sets.

Appendix C--The exponential functions: uniform continuity; theorems on

continuity.

Appendix D--Volume-measures: points, lines, and planes; some simple

solids; an axiom on volume -measure; volunne formulas; pris-

matoids; frustums; solid spheres; surface area formulas;

summary of mensuration formulas.

Appendix E--Some functional equations: homogeneous linear functions;

theorems; an application.

Basic principles and theorems.

Table of squares and square roots.

Table of trigonometric ratios.

Table of common logarithms.

vU vl^ o^
'1^ 't- '1^
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NEV/S AND NOTICES

Staff Notes

Mr. Beberman's professional calendar for 1961-62 included the

following:

November --Dennonstration class and speech at NSF Institute, Rich-

mond, Indiana. Film and speech at Louisiana Polytechnic Institute,

Ruston, and speech to Louisiana Teachers Association, Shreveport.

Convention of Central Association of Science and Mathematics Tea-

chers, ChicagOo Visit UICSM schools in St. Louis and V/ebster

Groves, Missouri, PTA ineeting, Taylorville, Illinois.

December- -Visit schools in New Jersey and Pennsylvania. Panel,

American Association for the Advancement of Science, Denver.

January- -Two weeks in and around Los Angeles County, California.

February- -Meeting with New York State Regents Committee. V/heatley

School PTA, Old Westbury, New York. Visit three high schools

in Atlanta, Georgia; speeches at the University of Georgia (Athens)

and Agnes Scott College (Decatur).

March- -Visit schools in Andrews and Odessa, Texas. District Tea-

chers Convention, Odessa. Spring Conference Panel, Havana

(Illinois) High School. Demonstration class at Notre Dame (Indiana)

University. Mathematics curriculum conference of the National

Science Foundation Academic Year Institutes, Notre Dame University.

April- -Speech, "Good Mathematics Is Not Enough", at annual meeting

of the National Covincil, San Francisco. Mathematics symposium

in Los Angeleso Manitoba Education Association meeting in

Winnipeg (Canada).

May- -Conference on mathematical learning, Berkeley, California.

Visit schools in Tucson, Arizona.

Mr. Beberman announces that the UICSM Project has received a new

grant of approximately $385, 000 from the National Science Foundation

for the period April 1, 1962, through June 30, 1963.

Mr. O. Robert Brown, Jr., has been associated with two teaching

machine projects this year: UICSM' s Programed Instructional Project

(PIP), for which he has programed, edited, and constructed achievement
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tests; also the Programed Logic for Automatic Teaching Operations

(PLATO) project, for which he has written a seven-chapter programed

sequence teaching the rudiments of programing the Illiac computer, and

about which a paper will appear this summero "Bob'' has taught a Unit 6

class at University High School during the second semester and has

written revised tests for Units 5 and 6, for which norming statistics are

now being computed, ''Hopefully, " he says, "the U. of I. Press will

publish the two Unit 5 tests (one for each half of the unit) by September. "

Mr. Brown has been the Project Evalui-tor for the past two years.

Mr. V/illiam To Hale; the Assistant Project Director, published an

article on "UICSM's Decade of Experimentation" in the December 1961

Mathematics Teacher . Bill gave speeches at the NSF Summer Institute

Directors meetings in Chicago and San Francisco and another at NCTM's

Toronto meeting last summer. Most UICSM teachers know him as the

Associate Director of the NSF Summer Institutes in Urbana. He has

taught Units 7, 8, 9, and 10 at University High School this year.

Miss Gertrude Hendrix, Teacher Coordinator for the Project, wrote

"The Psychological Appeal of Deductive Proof" and a review of The

Child's Conception of Geometry (by Jean Piaget and his associates) for

The Mathematics Teacher, both of which appeared in the November 1961

issue. Miss Hendrix supervises the distribution of the UICSM-NETRC

teacher training films, and reports that "During the academic year

1961-62, the UICSM films in their present temporary fornn have been

used by seventeen in-service institute and seminar classes, in which

more than six hundred teachers have been studying Units 1, 2, 3, and 4

as a content course. " She spoke on the use of the films in the Teacher

Education Section of the NCTM annual nneeting in San Francisco, and is

engaged in revising Productions III and XII of this series.

Miss Hendrix spoke at an International Conference on Educational TV

at Purdue University in October, was a leader of the faculty workshop on

learning by discovery at the U„ of L College of Dentistry (Chicago) in

December, and participated in a work-conference on kinesics and para-

language sponsored by the U. S. Office of Education at Indiana University

this month. She was a lecturer in the MAA-NSF Secondary School Lecture

Program and has been Chairman of the Illinois Section MAA- -Illinois

17-
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Council joint Committee on Strengthening the Teaching of Mathematics,

which conducted a questionnaire study of college faculty opinion in Illinois

on the teacher -training recomnaendations of MAA's Committee on the

Undergraduate Prograin in A^athemiatics.

Miss Hendrix continues her interest in basic psycho -biological re-

search on the origin of communication systems. She hopes eventually to

obtain support for an extensive study of animal behavior aimed at clari-

fying the difference between learning by discovery and by communication

of the thing learned, and identifying and clarifying the role of nonverbal

communication in teaching.

Mr. Allen Holmes has been teaching Units 4, 5, 6, 7, and 8 to sopho-

mores and juniors at University High School this year. He plans to get

married next month and to obtain his M. A. in mathematics in June of

1963. Al will be a teaching assistant in the NSF Institute this summer.

Miss M. Eleanor McCoy, Project Associate Teacher Coordinator,

authored an article on the UICSM Project for the AAAS publication Science

Education News, which appeared last December in an issue devoted to

reports on various curriculum improvement programs in science and

mathematics. She was on the panel with Mr. Beberman at Havana, Illi-

nois, in March and taught a demonstration class of 2 1 seventh graders

at the NCTM April meeting in San Francisco. During the second semester

of this year she has taught an extension class of 26 junior and senior high

school mathematics teachers at Decatur, Illinois. She will teach a section

of First Course during the Summer Institute in Urbana and be on the staff

of a New England Institute meeting for one week in August at the Kent

School for Girls, Kent, Connecticut, where she will deliver five 75-nninute

lectures on First Course. She expects to serve as Field Consultant on the

staff of the new UICSM project during 1962-63.

Mr. Herbert E. Vaughan, Professor of Mathematics at the University

of Illinois and nnathematics editor of UICSM text materials, spoke on

UICSM to a group of high school teachers in the seminar conducted by

Professor Hans Zassenhaus at the University of Notre Dame in March.

He was a member of the panel on "The Role of Vocabulary in Learning

Mathematics" at the San Francisco NCTM meeting.
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Mr. Herbert Wills, programer for UICSM-PIP, has written a brief

description of the Programed Instruction Project which will appear in

the "Mathematicsl Education Notes" department of the American Mathe -

matical Monthly , The review of Unit 6 he wrote last year while teaching

in Elmhurst, Illinois, was published in the May Mathematics Teacher,

pp. 399-401„ He spoke on "Prestidigitation or Pedagogy?" at the Kappa

Mu Epsilon initiation banquet at Eastern Illinois University this spring

and will speak at the summer nneeting of the NCTM in V/isconsin on the

topic "UICSM Programing Techniques for Live Learning," Herb served

as progrann chairman for the Men's Mathennacics Club of Chicago and

Metropolitan Area this year and I. as been teaching the content of Units 1-6

in a University of Illinois extensioii clarjs for teachers at Northbrook this

year. This summer he will also program a segment of First Course to

be used with the PLATO computer-based teaching machine project.

This issue of the UICSM Newsletter is the last of the 1961-62 school

year and the last to appear under the current editorship. Next year's

editor. iTlr. Clifford W, Trembl?//^ wixl be as grateful ^cr your contri-

butions as I have been, I'm sure., and will proba.bly iss\xe No. 9 sometime

in the early fall. Please write to him at the project office when request-

ing copies of the Nev/sletter or subn^itting news items or articles for

possible publication, --R,S„
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GREETINGS

A surprising number of letters has reached our desk, expressing alarnn

at the fact that no Newsletters have reached our correspondents., The main

reason that no one has received a Newsletter yet is that tliere has not been

any printed up until now. We serioiisly doubt that this one will receive a

Pulitzer Prize, but wc just want everyone to know that we have not disappeared

or given up publishing. We hope that this will be the most nueager offering

of this type to reach you„

There has been a rather rapid .sequence of events in and around 1208 W.

Springfield, Urbana, Illinois, The enlarged staff of UICSM now occupies

offices in four different buildings or the University of Illinois campus. This

is gradually becoming a nnajor problem in terms of con-imunication between

staff members. As the nuinber of projects being undertaken by individuals

increases, this will mean we will hi.ve to use a Nev/sletter just to inform each

other of our present projects.

Since the close of the Summer NSF Institute, the major work of producing

eighteen programed instruction books covering Unit One of "Traditional"

UICSM texts has been accomplished. These progranned texts are being used

at present in eight schools in various parts of the country. About 560 students

in ninth grade are involved in this experiment, A revision of these texts is

now underway for next year,

A fire of undetermined origin did extensive damage to the 1208 W. Spring-

field building at a tinme when production w^as just beginning to get back into stride

after having moved back into that building from tlie summer quarters in University

High School. This fire managed to strike inore or less at the core of production

and shipping. It also meant that 1208 W. Springfield had to be vacated for about

six weeks while some repair work \/as completed by the Physical Plant of the

University of Illinois. The University High School Gymnasium became our

home for that time. Unfortunately, it was a bit too crowded for us to play

basketball during the coffee breaks.

In line with this story, we tnight note that several issues of the Newsletter

were destroyed by the fire and the firemen. Some of the requests that we have

received for past issues could not be honored because there were no copies

available. The requests may still be filled in the future, however, when our

production staff gets a chance to run soino extra copies of these back issues.

In the meantime, a file of requests will be kept by our office.
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THE FUNCTION OF A FUNCTION THEOREM

For eac,h function h, for each function g,

th ere is a function

if and o

f such that h = f

nly if

•g

that g(x

and for all

g(x^), if

x, and x^, in ^
1 .. g

either x^^ or x,.

such

then both belong to ;5- , and h(xT ) = h(
h •"-

K^).

If you are a teacher who has been perplexed by how to teach this theorem

[and its proof] in Unit 5 [i960 edition] on pages 5-90 and 5-91, I hope this

article will be of some help.

GROUNDWORK

After thinking about this theorem for soine time, 1 finally had a chance

to try some of my ideas of teaching it to a class of students. Naturally, 1

tried to plan the groundwork carefully. This was act\ially begun the day we

started fvuictions.

It was necessary to niake students aware that

R is a function

if and only if

V V, V [({a, b)eRand(a, c)eR)=>b = c].
a b c

Of course, this is just another way of saying that a function is a set of ordered

pairs no two of which have the sanie first component. Although students are

given this definition on page 5-50 and make some applications of it at that point,

they need to work with it in many Nvays in order to assimilate it to the point of

being able to use it in a natural way. One of the things I did in this connection

was to give them oral exercises like this [Handscript shows you what is written

on the blackboard.]:

I am thinking of a function. Suppose that

(2,6) JcA^^ /^ 2^ A^^-^J^,,^.

Now, what can I put in place of the 'a' to

make this:
/? /J ^-
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into a true sentence ? Suppose that

Then, what replacements for the 'b'

will change the sentence:

into a true sentence? Here is an open sentence:

(3, h -f /z) j€.&;^t^J^ -^^

What replacements for the 'a' will give us true

sentences? What ones will give us false sentence?

A second groundwork- idea involves the notion of equality of functions.

[This notion is dealt with on what is mow page 5-52 of the i9 60 edition. As

you will note in the commentary, the material was misplaced at this point

because it uses notation not introduced until page 5-56.] The idea is expressed

by the generalization:

(>5<>I=^ For each ftuiction f, for each function g,

if and only if

f and g have the same domain- - say ^

--and V^. „ f(x) = g(x)

Other w^ays' of stating this theorem are:

('I') For each fiuiction f, for each function g,

f . g

if and only if

and

^ , = ^ and '/ . , _ , f(x) = g(x).

f g

(5,c;,C5,;) For each function f, for each function g,

f :. g

if anc only if

f and g have a common domain and for,

each of their arguments, they have the same function values.
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Certainly, a formal proof of this need not be given. But, students should

have a chance to look at the generalization and appreciate and \inderstand

the notation. This appreciation and understanding can be gained by a

discussion of the if-part and the on-if-part of the generalization. The

following proof for (^I') is similar to the one developed by the class I taught.

Only-if-part

Suppose that f = g. Since each of f and g is a set of ordered pairs,

it follows that the set of first components of f must be the same as the set

of first conponents fg. That is, f and g have the same domain. Now, if ^

is the common domain gf and g then, for each x€^, the ordered pair in f

whose first component is x must [serve f = g] be the same as tlie ordered

pair in g whose first component is x. In particular, the first of these ordered

pairs, (x, f(x)), must have the same second component as the ordered pair

(x, g(x)). That is, f(x) = g(x).

If-part

Suppose f and g have a common domain ^ and that, for each x €,?c,

f{x) = g(x). It follows that, for each x € ,5- the pair (x, f{x)) of f whose first

component is x is the same as the pair (x, g(x)) of g whose first component

is X. So, f and g are the same set of ordered pairs- -that is, f = g.

COMPOSITION OF FUNCTIONS

The preceding developement on these two groundv/ork- ideas would

take place during the early work on functions. Finally, we come to com-

position of functions. It seems to me that proof of the function- of-a-function

theorem stated at the outset of this article has special value in getting students

to assimilate the definition of the composition operation. For your convenience,

here is the definition as it is given on page 5-74:

For ea ch fvmction f, for each fimction g.

fog is the function such that

(1) [f. g](x) = f(g(x)), for each xe,^ such that g(x)e^^,

and

(2) ^f
= {x€>

»g g
: g(x)e>^}.





Condition (2) tells you what *:^.e argunnents of f » g are. Condition (1)

tells us how to get the value of f «> g which corresponds with a given argument.

Clearly, these things, together, tell you exactly all there is to know about a

function.

It is important to understand this definition. As students work with

composition, their understanding w^ill increase. But let's nnake sure that

we understand it now. Let's consider another definition of the same type:

,

1

I

For each x > 0, .

I

n/x is the number such that .

I

(1) (n/x)2 = X,
I

I

and
j

I

(2) nTx > 0.
J

This definition tells me, in effect, what I must do to find the principal

square root of a nonnegative nvimbero For example, if I want to find the

principle square root of the nonnegative number 4, it tells me to find a

nvimber whose square is 4 and which is not less than 0. If I do have such

a number the definition assures me that my number is n/4 because it tells

me that there is only one niimber which will meet these conditions. [Of

course, before such a definition can be used at all, one must establish an

existence theorem and a uniqueness theorem. There will be a thorough

discussion of these matters in the forthcoming edition of Unit 9.] So, the

definition tells me that each nonnegative nximber has one and only one principle

square root, and it gives me the guides I need in trying to find the principle

square root. Both guides must be followed. For example, if I used only the

first guide, I might think that -2 = \/4 because (-2)2 = 4.

Now, the definition of composition is used in precisely the same

manner. Notice first that it is a reasonable definition. Condition (2) tells

us what the domain of f » g is, and condition (1) tells us how to find the values

of f e g for each of its arguments. Since f and g are functions, the procedure

in (1) makes sense and works for each of the arguments prescribed by (2).

So, there is a function which satisfies the definition and, by the theorem on

equality of functions, there is only one. To see how to use the definition.





consider Exercise 1 of Part A on page 5-74„

g = {(6, Z), {9. 4), (IZ, -1), (5, 3)}

f ={{x, y): y - x^)

f«g= { I }

Since f and g are fimctions, the definition assures me that there is a function

which is the composition of f with g, and that there is only one such function.

This assurance is comforting in two respects--! know that I am not starting

on a wild goose chase, and I know that when I find such a function, I can stop

looking for any others. Now, the definition gives me two guides to follow in

my search. The first guide tells me something about the ordered pairs of

the function I am searching for,

(1) [f "gK?^) = f(g(x)), for each xg^ such that g{x)e„>,

I am told that there is an ordered pair (a, b) which belongs to this function

if a 6,5^ and g(a)€,3'^; and I am told how to find, for each such a, the second

component b of this ordered pair. So, I have a way of getting sonne ordered

pairs which belong to f og. Here is the procedure.

Consider each ordered pair in g. Take, for

example, the ordered pair (6, 2). The first

component 6 is a candidate for first-component-

hood in the sought- for function, I'll be sure that

it is if g(b)--that is, 2- -is an argim-ient of f. It

turns out that Z is an argument of f. So, I know

that 6 is an argviment of the sought -for ftunction.

Not ordy that, I also know that f(2) is the value

of the function for this argument 6, Since f(2) = 2^ = 4,

I know that (6, 4) belongs to the sought -for function,

[l also know that the sought-for function contains no

other ordered pairs with 6 as first component. It

wouldn't be a function if it did,
]

By continviing this procedure, I can discover many ordered pairs which belon;.

to the sought-for fionction. In fact, in the example question, I can collect a

total of four ordered pairs in this manner.

Now, Now, shall I stop looking? If I did, I would be like the person who is

tryiig to find the nuinber which is \/4 and stops when he learns that [ — Z)- = 4^
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The second condition of the definition tells me what to do at this point,

(2) ^^^g = {^e^^: g(x)e.\^}

This says that the first components of the ordered pairs in fog are just those

arguments of g for which the corresponding g-values are arguments of f.

Having found all the pairs of f " g which have svich arguments for first com-

ponents, we are finished. We have all the ordered pairs in f «>g. In exercise

1, it happens to be the case that, for each -kE^ , g{x) €,?y j.- -and, as ,3-,^ = ^ .

Exercise Z of Part A on page 5-74 points out the fact that this is not

always the case [although by (Z) ,IV ,^ is always a subset of ^ ].

a = {(John, 7), (Bill, 5), (Emma, 8)}

b = {(x, y), X > 6: y --^ 3x + 1}

b«a = { ? }

Suppose that we follow the procedure suggested by condition (1). Doing so,

we discover that the ordered pairs (John, b(7)) and (Emnna, b(8)) belong to

the sought-for function, But, condition (1) does not tell whether or not Bill

is an argument of the sought-for function. [Nor does condition (1) rule out

any other arguments.] It is condition (2) which helps us. For it says that

even though Bill 6 ^^ , since g(Bill) ^-^i . Bill^,5-, . [And, of course,

condition (2) rules out all other arguments except John and Emma.]

Your understanding of the definition of composition of functions may be

strengthened by considering:

g= {(2, 5), (7, 8)}

f = {(5. 9), (8. 14), (3, 2)}

What is f »g? Suppose sonneone says that f eg is the function

{(2, 9). (7, 14), (3, 2)}

For convenience, let's name that function 'h ^ '. So he believes that

hi = f "g.

Let's use our definition to see if he is correct. Condition (1) of the definition

tells us that

for each xe^ such tliat g(x)e,5r, [f "gK^) = f(g(x)).

So, if he is right, then

for eachx€,5- such that g(x)e^r, h^(x) mtist be f(g(x)).





Now, ^ = {Z, 7}. Also, g{Z)e,5', and g(7)e^£. Examination shows that

f(g(2)) = f{5) = 9 =hj2)

and

£(g(7)) = £{{)= 14 =h^(7).

So, it is the case that

for each x€> such that g(x)e,^r, h ^ (x) = f(g(x)).

If condition (2) were ignored, we might well believe that

f-g = iU, 9), (7, 14), (3, Z)}

But, do you see that we ^Aould also believe that

f»g= {U, 9), (7, 14), (Al, Mary), (10, 17)

that

fog = {(x, y): y = X + 7}

and that

f»g = {(2, 9). (7, 14)}.

What does condition (2) of the definition tell us? Why, it tells us that the only

one of these functions that is fog is that one whose domain is {xe,^ : g(x)€,^,}.

In this case, fog is that one of these functions whose domain is {2, 7}. Hence,

f "g = {(2, 9), (7, 14)}. In brief, condition (1) gives us a way to find certain

ordered pairs which belong to f «g and condition (2) tells us that the only ordered

pairs which belong to f eg are those which can be obtained in that way.

PRELUDE TO THE THEOREM

The Exploration Exercises on pages 5-86 ff. are designed to make the

student aware of the theorem toward which we are nnoving. The task is to

find, if possible, a function f such that h = f «>g. Here are some of the things

we did in class.

Exercise 4. g= {(0, ]), (1, 5), (2, 9)} [page 5-86]

f = ?

h = {(1, 5), (2, 8), (4, 8)}
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There is no function f such that h = f eg si^ce there is no way of "getting"

(4, 8) into h when there is no member of g which has first component 4.

Out of this should come the requirement that

h— g

[Naturally, this requirement can also come out of an examination of the

definition of composition. If there is an f such that h = f » g then

This tells us that each elennent of ,5^, must belong to > . So, if there is
h ^^

g
such an f, ,?c, C ^ 1

h — g ^

Exercise Z shows that the converse is not true. Other ideas should

also come from this exercise.

Exercise 2. g = {(2, 5), (3, 8), (6, 8), (5, 0)} [page 5-86]

f = ?

h = {(2, 12), (3, 18), (6, 14), (5, 2)}

If there were such a function f then it would have to contain (5, 12), (8, 18),

(8, 14), and (0, 2)„ A relation which contains both (8, 18) and (8, 14) is not

a function. So, there is no fvmction f such that h = f «g.

Now, can you change h so tliat there is such a function f? Let h(6) be 18

instead of 14 or let h(3) be 14 instead of 18. So, we put on the board:

if there is a function f such that h = f "g

then [if 3€^ and 6e^ and i€^, and
g g h

6e.5'j^ and g(3) = g(6), h{3) must be h{6)]

Now, we considered a new problem. Suppose that the ordered pair

(6, 14) is removed from h in Exercise 2.

g = {{2, 5), (3, 8), (6, 8). (5, 0)}

f = ?

hj= {{2. 12), (3. 18), (5, 2)}
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Here, (5, 12), {8, 18) and (0, 2) must belong to f if there is an f. However,

{(5, 12), (8, 18), (0, 2)}cg= {(2, 12), (3, 18), (6, 1 ), (5, 2)}.

Clearly, this is not h^^

.

We also considered removing both (3, 18) and (6, 14) from h,

g= {(2, 5), (3, 8), (6, 8). (5, 0)}

f = ?

h^ = {(2, 12), (5, 2)}

Then, if there is an f, (5, 12), and {0, 2) must belong to it.

{(5, 12), (0, 2)).g = {(2, 12). (5, 2)}.

and this is hg. The class decided tliat if 3 € ,5 and 6€,^ and g{3) = g{6) and

either 3 or 6 belongs to ^, then the other one must also belong to ^, .

So, we change to:

if there is a function f such tliat h = f og

then[if3e,3> and 6€^ and 3 e^, and g{3) = g(6)
g g h ^ ^

then 6e^^ and h(3) = h(6)]
h

We were now ready to state the only- if part of the theorem:

. - For each function h, for each function g,

there is a. function f such that h = f og

then

h— g

and

< X, e ,5-

x„e^
g

g{Xi ) = g(x2)

\ Xt e>

x^e^j^

then i and

h(x3^ ) = h(x2)

Notice that our exercises really led to the contrapositive of this. If the then-

things did not happen, there was no such function f. Contrapositively, if there

is such a function, the then-things must happen.
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At this point, I suggested that we consider the converse of this theorem.

This was stated and the class decided it was probably true also. We left this

and finished the period by doing the rest of the exercises on page 5-87.

PROOF OF THE THEOREM

At this stage, the students are probably willing to accept the theorem

on the basis of the exercises. I decided to try the proof of the theorem. We

did the proof [questions and boardwork done by me] in fifty- six minutes.

Obviously the students could not reproduce it but they had all contributed and

they all stayed awake. Questions were of these types:

What will we need to establish in order to get ?

What does it mean to say ?

I had the students keep their books open at page 5-74 [definition of composition].

IF-PART OF THE THEOREM

Prove: For each function h, for each function g.

h— g

« and

if when

X, € ,^

x,e^

{

f x^e^j^

g(x, ) = g(x2)

^
then

h(x3^ ) = Mxg)

^ 1 h

then there is a function f such that h - f <»g.

Suppose that, for a ftmction h and a function g, ^, ^ ^ . If x^^ 6^, ,

what else can you say? [Answer: Xj^ e> ] If x
j^ ^'^v> ' "^^^ ordered pair

belongs to h? Give a very, very inexpensive answer- -no work at all. [Ans. :

(x.^ , h(xj^ ))] If Xj^ € ,^ , what ordered pair belongs to g? [Ans.: (x^^ , g(xj^))]

So, on the supposition that ^, ^ ^ and x^^ ^^u » ^^ know that
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g - {(x^ , g(x^)), . , . }

f = ?

h = {(Xj^ , hCx^)), ,.„}

Now, if ftaere is a function f such that h = f >= g, what ordered pair must belong

to that fmiction? [Ans„ : (g(x^), h(x2^))] OK, think of all the ordered pairs

which must belong to f^ Let's say that set of such ordered pairs is the relation

k. I wrote the following on tlie board;

k = {(z, w): there is an xe,5, such that z = g(x) and w = h(x) } .

Note that k = h ^

The way to find the members of k is to pick arguinents of h ["there is

an xCfS-, "] and find the corresponding g-values and h- values,, Will each such

argiiment have an h-value? [Ans„: Of covirse, becaut-e it is an argument ot

h, ] Will each such argument have a g- value? [Ans.: Of course. By

hypothesis, ^, ^ ,5-
^ » ]

What must we show about k? Two things. First, that k is a function

[the first groundwork idea]. And, second, that h = k«g [the second groundwork

idea].

Let's show that k is a function. How can wc do this? Well, k is a se:

of ordered pairs. So, to show that k is a function, we'll suppose that (a, b)(:k

and a, (c)e k and prove that b = c.

Since (et, b)ek, it follows that [according to the set selector in the det-crijitlon

of k] that

there is an x€,5 , such that a = g(x) and b = h(x).

Since (a, b)ek, it follows [according to the set selector in the description

of k] that

there is an xe^S-, such that a = g(x) and b = h(x).

Let Hence, and
X be that number of ^ . a - f^ix^^ )

^ ~
^("^x )•

Also, since ^,6^ ,h g
'^ X, € ^ .
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Similarly, since (a, c)el<;, it follows that

thei'e is an xe,>, such that a = g{x) and c = h(x).

Let x^ be that nnennber of > „ Hence, ^ _ /^ ^ and c = h(x^^)„

Also, since >, '- A^ , .^h — g Xp € ^ .

So, from the blue sentences

Look back at all the green sentences. We have

x^ €^

x,€^
^ Now look at the conditional sentence

g{x, ) = g(^,o) ill our hypothesiSo We must conclude,

by modus ponens, that "(^i ) - htXg),

Now look at the red sentences. We conclude that b = c. So, k is a fxinction.

Take another breath and we'll show that h = k<>g.

Remember that to show this, all we need to show is that

(1) h and k<>g have the same domain [i.e., ^>, = ^, 1

h k » g
and

(Z) for each element in that domain, they have the same

value, [i.e., V .. h(x) = [k = g](x)]

h

(1) ^, and ^ ., are both sets. So to show they are the same set we will
h k e g

'

show: (a) ^, C ^ and (b) >, C ^ ,h — kog '^ " g — h

(a) Suppose x, e^, . Then (since >, C
„'v ) x, e ,S- . Now, look back at

1 h h — g ^ g
the definition of k. From it, it follows that

(g(x^), h(x3^))ek.

Since that is the case, g(x, )£.?>, . So, x^ e ^> and g{y.^ ) € ,5- , .' k g
-'• k

That is, x^ € {xe ,?) : g(xj^ ) e a>, }. But, by definition
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kog = {x€^ : g(x)e^V, }o Hence, x, e>, . So, if x, e „V,

then x, € >, . Since this reasoning would hold for any xe,S, ,1 k o g
' h

it follows that

h — k » g

(b) Suppose Xo€ ,^, o Then x^e{xe> : g(x)e,^, }„ That is, x„€ ^
^ '

i r .^ k »

g

g K g

and g(xp)e,5-, . Now, g(x^)eA>, says that there is an ordered pair,

{g(x.,), k(g(x^)))ek.

Again, we use the definition of k„ This ordered pair,

(g(x.). Mglx^)))

belongs to k if and only if

there is an xC-Sv such that g(x^) = g(x) and k(g(x,^)) = h(x).

[Maybe this x is x^ but we can't make such an assumption].

Let's say that this x is x
j^

, So, ^i € ^j^ and g{x3) = g(xj_ ).

Furthermore, since >, CI ^ x^ € /5- .

h — g -^
g

Now, pick up the four green sentences and go back to the conditional

sentence in the hypothesis. By modus ponens, we conclude that

x^€^-, , So, if x^e,^, then x^e,^, , Since the reasoning would hold
2 h - k o g h '^

for any xC^, , it follows that' k eg

keg ll

and hence, that ^, = >,
h keg

We now know that ha dn k » g have the same domain. It remains to show that for

each element x in that domain (we will call it '^, ') h(x) = [kog](x).
It

Suppose x, e ^, , Then x^ € ^t „ Also, x^ e ^ .^'^ ih ikog 'ig
So, back to the definition of k:

(g(x^), h(x3^)) €k.

Since k is a function, the second component of an ordered pair whose first

component is g(xj^ ) and which belongs to k must be k(g(x^ )), So
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and

(g(xi), k(g(x^)))e k,

h(x3^) = k{g(xi)).

However, k(g(Xj^ )) is precisely [k* g] (xj^ ), since x^€^.

Consequently, for each element x in the domain of h (and kog)

h{x) = [kog](x).

So, h and kog have the same domain and for each element in that domain,

they have the same value. Hence, h = k<>g.

So, there is a^ function f (we used the name 'k') such that h = f »g.

ONLY-IF PART OF THE THEOREM

Prove: For each function h, for each function

if there is a function f such that h = f og

then

h— g

and

if

x^ 6 ^

X ^ fc rj"

g

g(x^ ) = g(x.,)

^i^^h

then

x^e^>

[h(x,

h

) = Mx^).

Let's see what we have to start. Not very much. We have
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f, g, and h are functions

h = f og.

First, we want to show that ,5^, C .S- . So, we will show that each nnember
h — g

of ,5-, belongs to ,5^ . Suppose that x^^ € ^,. Then, since h = f o g, it follows

[by substitution] that x^ e «5-, - But, by the definition of composition,

1^.^ = {x e ^ : g{x) e ^.]. Hence, Xj^ e {x € -Jr : g(x) € ,5- ,}--that is, x^ e -5-

^ o o o o
and g{x ) € ,5- ,. So, if x e .5 , then x, e -5- . Therefore, ,5-, C ^ . So"^if ih ^g " — g
far, so good.

Consider this correspondence:

there is a function f such that h = f og >- p

h — g

X , e /S- and x^ 6 ^ and e(x, ) = e{x_ ) and x, 6 ^, »- r

x^e ^, and h(x^) = h(Xj^) > s

So, the pattern of our theorem is

if p then [q and (if r then s)].

We have already shown that

if there is a function f such that h = f og then ^, C ^ .

h — g

This corresponds to

if p then q.

Now, examine the following diagram:

t

p if P then q
t

t
^ ± if (p and q and r) then s

(Exportation)

p if p then q p and q if p and q then (if r then s)

q if r then s

q and (if r then s)

if p then [q and (if r then s)]
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So, using

if p then q

and

if (p and q and r) then s

there is a pattern by which we can arrive at

if p then [q and (if r then s)].

Now, prove

there is a function f such that h = f og

if <

h — g

X e ^
1 g

x„e -^^

2 g

P

q

g(x^) = g(x^)

X. e -5-,1- h

then
h(x^) =h(x^)

This discussion of the logical background need not (in fact, probably should

not) be done with the students. You might do something like this:

We started with

f, g, and h are fvmctions

h = fog

What other sentence can we now use whenever we like? fAns: ^, C ,5- ].^ h — g-"

Now, our hypothesis is

f. g, ajid h are functions

h = fog

^, C ^
h — g

We want to show that

if x^e ^ , Xj,e ^ , g(xj^) = g{:>c^), x^ e ^^ then [x^, € ^^ and h(x^} = h{x^)].
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How do we do this ? [Ans. Suppose those four things and prove that Xp € ^,

and h{x^ ) = h(x-,), ] That means that we now have:

Hypothesis:

f, g, and h are functions

h = f o g

X e ^
1 g

X € -S-

2 g

g(x^) = g(x^)

X e ,5-,

1 h

Conclusion:

? h

h(x^) = h(x^)

We know very little about x^. So let's ask our questions in reverse order.

First: We want to end with
I

I

x,€,3-
h

Look at the hypothesis. Can you suggest a step from which it would be

very easy to deduce x^ e ^,? [Ans. x^G/^, ^ because h = f og. ] How

about that? Do you think that the proof might end

Given

h = f " g, Xoe,^ fog

2 h

Now, what is /S-, ? Look at the definition of fog.
fog

^. = {x € -^ : g(x) e ^f}fog g ^' ' f ^

What can we show about x„ in order to get x„ e <^j.
2 =• 2 f og
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Xj,e,^ and g(K^,)e>r

Given x^e {x€,:v : g(x)€^ }

Now, what about this? Our hypothesis tells us that x^e^ <» So, all we

need is to show that g(xo) e^ (.„ Look agaln„ Since we are given that

g(xj^ ) = g(x^), we can show tliat g(xo)€ ,ti „ if wu can show that g{xj^)e„\,.

Given

Given 8^=^!^ = -^-^2). g('^i)e^£

x^O and c(x^)e,?r,
g f

Given x^e{x€^ : g(x)e,?)^

h = fog, x^e^^.^g

x,6^^

So, our problem is to show that g(xj^)e,5-,. What do we know about x. ?

[Ans. -x.^ e;^, , Xj^ e^ ]

Let's examine these. Since x, € ^, , what else can you say about x, ?
•*- n -^

[AnSo Xj^ €> r ] What does that mean? Why that means that x^ 6 .^ and

g(xj^)e ^r. Hey, that's what we wanted.

Given Given

h = f «g , x^e ,>j^

Xj^ € ^
^^
and g(x^)e ^^

Given "

g{xj ) = g(x,,) , g(x3^)e >^.

Given
Xj,€ r^- and g(x^)e ^^

Xoe (xe,^ : g(x)€,'>^]

Given "

h = f og , x.^€ ^ ,teg
x„€,^,

' h
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Now, let's finish it off. Show tliat h(yL^ ) - h(xp)<.

We know that x, € ^v and XoC-S-r • So, by the definition of corriposition
1 f.g '- f'g ' ^

[f»g](xj = f(g(x^)) and |feg](x.J = f{g(x^^))

But, g(x3^ ) = g(x^) and f is a funtion. So,

f(g(xi)) = f(g(x.)), and [f»g](x^) = [f»g]{x,).

Since h = f « g,

h{x^ ) = h(x,,}„

We did it.

vl^ O^ vl^
-•(^ 't- 't-

The following is an abbreviated forin of the proof of the only-if part of the t)\eorem.

(1) Suppose Xj^ € aV . Since h = f "g, x^ 6 >, . But,

^-^^g = (xe^^: g(x)€,^^}

It follows that X, e{x€,!y : e(x)e>^}« Hence, x, 6^ o So, if x, € „\ig'^f ^g ^h
then X, e ^ .

g

Since this reasoning would hold for any x€ X ,

h— g

Now we must prove a conditional sentence.

x. € ^^
g

X2 e ^g ^2 ^\
if

'^

then
g(xi ) = g(x^)

hU^ ) = h(x,)

x^ e ^^
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So, in addition to knowing that

f, g, and h are functions

h = fog

h— g

we have the additional premise ss

^ g

g

g(x3^) = g(Xo)

Kj^ e ,^j^

Each use of any one of

these will be in green.

Since
h = f e g .. r

*, it foHows that

-^1- = ^r ~ {xe^ : g(x)eX} [by definition]
h leg g f

X, € ,^.
Since 1 "^hit follows that x, e ^r a^i'^d x^ G ^ and g(x. )eX.l fog 1 R t^ " - f

Since ^(''i) = gC^^)
it follows from

x- 6 ^

that g(x^,) e ^r.

Since ^ ind g(x2)€ ^. it follows that

x-^eixe^ : g(x)e^,}<
g

That is x„ € ^^ » Since ^ = ^"g x„,€ ^, <H f 6 g - h

Now to show that h(x^ ) = h(x2)

Now we have x, 6 ,5- and x„€ ,>>, ,1 fog 2 fog

By definition of composition

[fog](x^) = f(g(x^)) and [fcg]{x.J = f(g{x,-,)).

Since Si^x^l = S(^rs) and ^ ^^ a function
^^ follows that

f(g{x^)) =f(g(x,))

So, [f c g](x 1 ) = [f o g](x.^). Since h = f . g

h(x^ ) = h(x.,) - A. H. -
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PROGRAMED INSTRUCTION
TRIAL RUN

The UICSM-PIP (Programed Instruction Project) materials covering the
course content of Unit I have been undergoing a trial run in nine pilot

schools. Test results and teacher comments from those pilot schools
are being studied preparatory to the revision of the programed materials.
Significant data arising from this study will be published in future news-
letters.

In preparing Unit I in programed form, we have modified and augmented
both mathematical and pedagogical content. We have made extensive use
of function machines [see "Animated Functional Notation", Newsletter #7],
used proofs more extensively, and expanded our discussion of isomorphisms.
Before looking at specific differences between Unit I and the PIP materials,
here is a list of the 18 programed parts which notes their content and
length. The approximate student study time necessary to complete any
part averages two school days.

Part #
# of

Pages

101 Things and Names of Things 80

102 Trips on Roads 79

103 Addition of Real Numbers 96

104 Multiplication of Real Numbers 64

105 I somorphi sm s 109

106 Conventions for Grouping 74

107 Conventions for Grouping 83

108 The cpm and the cpa 79

109 The apa and the apm 92

110 The dpma and the idpma 85

110.5 Logical Consequence, pml, pmO,
and Principles for Real Numbers

paO, 64

111 Inverse Operations 81

112 Subtraction of Real Numbers 53

113 Principle of Opposite s and the
Zero-Sum Principle

65

114 Principle for Subtraction 59

114.5 Division of Real Numbers 75

115 The Greater-Than and Less-Than Relations
for Numbers of Arithmetic and Real Numbers

57

116 Number Ray, Nunnber Line and
Absolute Valuing

80
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There are three major differences between the mathematical content of
Unit I and the mathennatical content of the PIP materials. Each UICSM
teacher should be aware of these differences since there is now the
possibility that a PIP-trained student may come his way.

The first change occurs in Part 109 where the student accepts:

(^^ )+— - ~^-t-( + ---)
as a pattern sentence for the associative principle for addition (for

numbers of arithmetic). It follows that a sentence about numbers of

arithmetic is an INSTANCE of the apa if and only if it fits the accepted
pattern sentence. Hence:

{29 + 8) + 2 = 29 + (8 + 2)

is an instance of the apa whereas:

29 + (8 + 2) = (29 + 8) + 2

is not an instance of the apa.

We later point out [Part 110,5] that since:

29 + (8 + 2) = (29 + 8) + 2

is a LCX3ICAL CONSEQUENCE of the fact that:

(29 + 8) + 2 = 29 + (8 + 2)

and since:

(29 + 8) + 2 = 29 + (8 + 2)

is an instance of the apa, it follows that:

29 + (8 + 2) = (29 + 8) + 2

is a LOGICAL CONSEQUENCE of the apa.

This precise meaning of "instance" gives rise to a second mathematical
difference in Part 110. In this part, the examples lead the student to

accept:

(-ws^X )+ ( X ) = (,www+ )X
as a pattern sentence for the distributive principle for multiplication over
addition (for numbers of arithmetic). Hence, in view of our previous
discussion, we say that:

(12 X 7) + (88 X 7) = (12 + 88) X 7
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is an instance of the dpma whereas:

(12 + 88) X 7 = (12 X 7) + (88 X 7)

is not. Because of the curious American habit of reading from left to

right, an objection has been raised to the effect that it would be more
appropriate to think of:

( .)+( X } =(™+--Jx

as a pattern sentence for the "collecting principle for multiplication from
over addition." For this reason, we shall most likely take the precaution
of establishing:

(-^-H )X = (_X ) +( X
]

as a pattern sentence for the dpma when rewriting Part 110.

Our new approach to absolute valuing (Part 116) connprises the third
major change in mathematics. Most texts declare absolute valuing to be
a mapping of the real numbers onto the nonnegative real numbers which
is defined by:

X

!x, if X >

-X, if X <

We could not use the above sentence in introducing absolute valuing in

Unit I, of course, since the student doesn't yet have the necessary
language.

Many high school texts creep up on the idea of absolute valuing by
discussing the "distance" between real numbers. This gives thein a
mapping which looks like:
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They follow this with a comment to the effect that the nonnegative real
numbers "are" or "act like" the numbers of arithmetic and, hence, Vv'e

may think of measuring the "distances" between real numbers with
nonnegative real numbers. This allows them to replace the foregoing
diagram with:

*2 *3 M

They then define absolute valuing to be the mapping suggested by the

latter diagram.

Because UICSM finds it most convenient to maintain that the "distances"
between real numbers are measured by numbers of arithmetic and that

the nonnegative real numbers are merely isomorphic to the numbers of

arithnnetic with respect to certain operations, the treatment of absolute
valuing just reviewed is not consistent with the rest of the UICSM texts.

One possible solution to this problein is suggested in Unit I. There the
discussion of the "distance" between real numbers leads us to define the
absolute value of a real number as the number of arithmetic which corres-
ponds to that real number. The particular correspondence we have in mind
is visualized in the diagram:
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Unfortunately defining the absolute value of a real nunriber to be a number
of arithmetic inakes a sentence like:

|"8j - no = "2

amount to so much nonsense since:

I
-8

1

is, by definition, a name for the number of arithmetic 8.. Since we will,

in practice, want to make statements such as:

-8 10

we must arrive at an agreement by which:

|-8!

can be interpreted to be a name for the real number ''"8. We solve this

problem in Unit I by discussing an operation '"*"' which is defined to be a
mapping of the numbers of arithmetic onto the nonnegative real numbers
and which can be visualized as:

numbers
of

arithmetic

*l -"2 *3 M "5
nonnegative real numbers

It is then possible to consider an operation which is the composition of
* '*'

' with absolute valuing and, hence, is a mapping of the real numbers
onto the nonnegative real numbers. This final mapping can be visualized
as:





We now find ourselves in a troiiblesome situation. We have the desired
mapping, but we cannot name it 'absolute valuing' also. It nriight appear
that, in Unit I, we fudge a bit on this point. We tell the student to read:

as:

the absolute value of

and then to intepret the resulting numeral in such a way that it will i-nake

sense in the given context, [A full explanation of what is really happening
here can be found in the article entitled "Absolute Valuing" in Newsletter
No, 2,] On the basis of this agreement, the student interprets ' |~8|' as
a name for the real number *8 in the sentence:

I

-8
I

- ^10 = "2

and interprets ' |~8| ' as a name for the nuinber of arithmetic 8 in the

sentence:

I

"8 1 - 8 is the number of arithmetic 0.

This agreement may suggest to the student that we are using 'absolute
valuing' as a name for two different mappings ? Perhaps we were too
quick to use the name 'absolute valuing'. If, as in Part 116, w^e use a
different name (say: arithmetic valuing) for the mapping suggested by:
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We would be able to use:

absolute valuing

to name the mapping suggested byt

In Part 116, we denote:

by writing:

the arithmetic value of "8

(-8)

which is, therefore, a name for the number of arithmetic So We then
denote:

the absolute value of "8

by writing:

which is a name for the real number "^8.

Having developed these two operations v/ith their corresponding notation.
Part 116 comes to a close. At this point, the student would simplify !~8j

by writing **8*. He would not siinplify ' i'SJ' by writing '8', Since we
wish:

and:

f-SJ = 8

8 - 9 = "9
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to be meaningful statements, some additional comments need to be made»
Lists are handy for this purpose. Our job now is to introduce the agi-ee-
ment to use *

|
]' as an operation symbol for both arithinetic valuing and

absolute valuing. In doing this, we wish to communicate the idea that

we are using the same symbol to denote two distinct operations . This is

not a new idea. For instance we use the symibol - to denote 4 operations
at present. These operations are:

(1) subtraction of numbers
of arithmetic [10-8 = 2]

(Z) subtraction of real
numbers [+10 - -"8 = *2]

[-8 = negative 8]

Here is one way you might introduce the dual use of the '

|
j '.

Look at the following list of ordered pairs which belong to an operation;

(3) oppositing

(4) direction

r6, 6) r9, 9)

re, 6) r3, 3)

r9, 9)

What would be a good name for this operation? Most students will recognize
these pairs as belonging to arithmetic valuing. Recall, then,our agreement
on writing shorter names for nonnegative numbers. By this agreement:

6 = *6, *9, 3 = -"S

Hence, the foregoing list might be the list:

in disguise. But this is a list of pairs belonging to absolute valuing. So,
considering our agreement on shorter names for nonnegative numbers,
the list:
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might be a list of pairs belonging to absolute valuing. Hence^if it weren't
for the flags, the pairs in the lists:

arithmetic valuing

I
absolute valuing

.I.. .»" " • »

re, 6) r9, 9)

(-6, 6)

("9, 9)

r3, 3) I

could not be distinguished as belonging to two distinct operationsa Suppose
then, that we wished to simplify;

f\ r6)

by using the above lists. By definition of the *^( )'* we know that we should
use the list on the left. Here's a copy of that list:

{^)

Use {-k) to simplify *<f^r6)'. Got the answer? Okay o . . I lied, {h) is really
a copy of the list for absolute valuing. So, we can use (^) to simplify
*f1(~6)' on the understanding that l^k) is a list for arithmetic valuing* We
could, moreover, use (-sIV) to simplify 'j~6|' on the understanding that (i>)

is a list for absolute valuing which was written using our shorter names
for nonnegative real numbers in the right member of each ordered pair.

Use (i^) to help you solve these problems:
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(1) |*9| - 12 = ?

(2) ^fS) - 3 = ?

(3) /^ r6) - 3 = ?

(4) |-6| - 3 = ?

Clearly, we can use (&) to solve each of these four problems. In doir.g (1)

and (4), we think of (i^) as a list of pairs belonging to absolute valuing.
In doing (2) and (3), we think of (-ft-) as a list of pairs belonging to arithnrjetic

valuing. In (1) and (4), it is the '[ |' which sends xis to {-i^). In (2) and (3)^

it is the *A( )' that sends us to (^). Since both '| |' and '(fl( )' simply serve
as *'cues" to use (-sSr), let us agree to abandon the use of:

f?( )

and use:

i 1

as our cue to use (-i!^).

By this we are agreeing that, in a given instance, the numeral:

may be used as a name for the absolute value of "6 or as a name for the
arithmetic value of "6 but not both . The context in which:

|-6i

appears will usually make it clear which operation is referred to by the
*| I'. For example, in the statement:

j-6l - 13 =-7

it is clear that:

i-6i

is a name for the absolute value of "6. On the other hand, in the statement?

|~6| - 4 is a number of arithmetic

it is clear that:

refers to the number of arithmetic 6.

-32-



'"^.'":i^!l'^.:..



On page 27 we noted that we wished to arrive at some agreement that would
make:

!8{ - 9 = -l

be a meaningful sentence. Clearly, the •[ [' must be referring to the operation
absolute valuing. But absolute valuing is an operation which is performed on
real numbers. Hence:

must be an abbreviation for:

|8i

l*8l

Consider the statement:

|6| + 9 = 15

The 'I I' may be referring to the operation absolute valuing or the *| |'

may be referring to the operation arithmetic valuing. Regardless of
which operation is intended , we know that:

must be an abbreviation for:

since the domain of either operation is the set of real numbers.

-B.K.

-

[Author's note: UICSM (and many others) define a singulary operation on
a set S to be a mapping of S into S. Sinnilarly a binary operation on a set

S is a mapping of S X S into S. In view of this fact, absolute valuing and
'*' (as defined in Unit I) and arithmetic valuing (as defined in Part 116) are
NOT operations. They are merely functions. In rewriting these materials
we hope to introduce the definitions of 'operation' and 'function' sooner,
so that we may make this distinction for the student.

]
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UiCSM TRAVELS

The following is an incomplete resum^of Mr. Beberman's engagements
through December 16. We realize some of it is past history, but some people
may like to know where he has been.

October 25 - Storrs, Connecticut

Speak at the joint meeting of the Connecticut Education Association and the

Associated Teachers of Mathematics in Connecticut.

October 26, 27 and 28 - Gearhart, Oregon

October 29 and 30 - Portland, Oregon

Will visit these schools: Franklin High School
Central Catholic High School
Reed College

November 1 - Boulder City, Nevada

Will visit the Boulder City High School

November 3 and 4 - Stanford, California

Attend meeting of the SMSG Test Panel

November 4

Return to Champaign

Weekend of November 9, 10, and 11 Mr. Beberman and UICSM staff will
consult with Professor Dick Wick Hall of Harpur College.

November 16 - Columbus, Ohio

Will speak to the University Symposium on Mathematics at Ohio State University

Npvember 16 (evening), 17 and 18 - Washington, D. C.

Attend NSF Advisory Conference on Coordination of Curriculum Studies

December 6, 7 and 8 - Washington D. C.

Attend NCTM Board of Directors meeting

December 15, 16 - Chicago, Illinois
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ADVISORY BOARD MEETS

The UICSM Advisory Board met on Oct, 6, 196Z to discuss various phases
of the project and suggest some future points of exploration. Progress
since receipt of the NSF grant on April 1, 1962 was related by Mr. Bebermian.
This included production of 18 volumes of approximately 1400 pages of

programed material, sponsorship of a summer institute for 324 teachers,
recruitment of the entire staff called for in the NSF proposal with tvs^o

exceptions, and consultation with Professor Rosenbloom and Professor
Dick Wick Hall, The Board suggested some work sessions which might
prove fruitful. These are intended as outlining and brainstorming
sessions to get some new course content started. The Board suggested
two approaches to developing seventh grade material which might be used,
but the Board was strongly in favor of experimenting for two or three years
before producing a year's coiirse for seventh grade.

Authors Wanted
One very important aim of the Newsletter is to provide a medium in which
teachers of UICSM materials may exchange their ideas and suggestions on
the teaching of these materials. Several such items of information have
appeared in previous issues of the Newsletter. In particular, Newsletter
Number Eight w^as primarily devoted to the publication of articles which
were contributed by teachers in the field.

It is hoped that this request for contribution s will bring forth a heavy
response from readers of the Newsletter. Your article can be a para-
graph or several pages in length. It can concern itself with any phase
of teaching mathematics, whether it be content or pedagogy. Suggestions
for the use of visual aids such as charts, pegboards, overhead projectors,
photographs, blocks, models and any other physical materials should be
most welcome to other teachers. So would supplementary problems or
test questions w^hich have been useful to you in teaching the course con-
tent.

In brief, information is wanted from you on anything which might be of

some interest to other readers of the UICSM Newsletter.

Please send this material (in any form) to:

UICSM Newsletter Editor
1208 West Springfield
Urbana, Illinois
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OTHER AMBASSADORS

Gene Epperson of Talawanda High School in Oxford, Ohio spoke at the junior
high division of the East Division of Indiana State Teachers Association on
October 26. He illustrated the function machine in his talk entitled "You
May Be Teaching High School Mathematics Sooner Than You Think."

In addition, the following UICSM staff members are teaching First Course in

extension course classes this Fall: Eleanor McCoy - Springfield, Herb Wills
Decatur, Russ Zwoyer - Downers Grove.

If there are any teachers in your school who would like to receive the UICSM
Newsletter, and they are not on the current list, you may submit their names
for the mailing list by completing the following form a plain piece of

paper will suffice if you have more than one name to send.

To: Editor, UICSM Newsletter
1208 W. Springfield
Urbana, Illinois

Please add the following name to the Newsletter mailing list:

Name

Address
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OPERATIONS AS FUNCTIONS, PART 2

This material is belated fulfillment of the promise made in the
"Operations as Functions" article which appeared in Newsletter No. 4,

pages 2-19. The first part dealt with operations as sets of ordered
pairs, their uniqueness (since they are functions), and the question of

converse and inverse sets. The operation equivalent to two successive
operations was developed as a foreshadowing of the composition of

functions.

When you are ready for page 1-75, the board work might "accidentally"
result in the following:

1 add ing

f
(0,-3) (-3,-6)

'

i
(-4,-7} (10,7) /

i /

\ (13,10) ...

idding the opposite of 3j

f(4,7) f'sTsN,

\ (-3,0) (-6,-3) \

f^3,^6) (-4,'l)
)

\(I0,I3) ... /

[it nnight be well to list the ordered pairs for adding ~3 and ask
for the name. Then, write the name 'adding the opposite of ~3'

and ask for the pairs.
]

Teacher: Can you give me anothjer name for the operation, adding the

opposite of "3 ?

Student: The inverse of adding "3.

Student: Adding *3.

Teacher: Both of you gave correct answers.

Let's just check to see that we're clear on what we mean by

'inverse'. [Write 'the inverse of adding "3' in the indicated

position.
]

oddma
1L

\ (13,10)

\

/l7,4) (-5,-d)\ ~ fthe inverse _of\ if(4J) ('8,'5)^

(0,-3) (-3,-6)] 1-S^.^ip.ZIJ \ (-3,0) (-6,-3)

(-4,-7) (10,7) .', (*3,*6) (-4,-1)

(10,13)
I:

r+3,^6j (-4,-1) (-7,-4)

\(I0,13)...

y





Teacher: Let's start with 5. K I apply this operation to "5, what do I

get?

Student: "8.

Teacher: Now, I want to undo the result of the adding "3, that is, I want

to start out with ~8. What shall I get back to if I have properly

"undone what adding ~3 did"?

Student: You should get back to "5.

Teacher: Does the second operation get you back to where you started?

Student: Yes.

Teacher: What shows you that you get back to "5?

Student: ("8, ~5).

Teacher: Right. This operation (adding ~3) takes you from ~5 to "8 and

this one --the inverse of Ihe first operation- -takes you from ~8

back to "5- That's why v e call it 'the inverse'.

[More work like the above.
]

Let's think back to the set of numbers of arithmetic. Just as

we say that subtracting the number of arithmetic 3 is the inverse

of adding the number of arithmetic 3, so we say that subtracting

the real number ~3 is the inverse of adding the real number "3.

yyj '

>
'

."v,
'

i
'

.""i"^^" ,,;.-.' '. i^-'vi'

Jd'l •no ^ >

7,4) ( 5, a H^s,:

(0,-^) ('5,-6)
"

('4,-7) (10,7)

(15,10) ...

the inverse of

addinr; ~3

siwmwwmw^

adding 'h'^ 0{.;)csite of '3]

lA.?) 8,"5J % Isubtractinq 5

/¥(4,7) ca, 5) "-^
^

f (~3,0) (-6,-3)
\\t'0.'-3''

'3,0) ('6,-3/

{'3, '6) (-4,-11
1

\r3/6j (-4,-1) (~ 7,-4)
\

\.•-^(10,13) ...

Teacher: I am thinking of an operation one of whose nanaes is 'the inverse

of adding """S'. What other name might we give that oije ration?

Student: Subtracting ^S.





Teacher: You are right. Give another name.

Student: Adding ~8. [it will be nicer if you don't get this one but you may.

Just say, "OK'* and go on.]

Teacher: Another name.

Student: Adding the opposite of "^8.

Teacher: Right. 'Subtracting '^B' and 'adding the opposite of '^8' are excel-

lent names for this operation. Now I'm thinking of an operation,

one of whose names is 'subtracting ~2'. What are other names?

And so on.

[After Sonne work of this sort, we repla.ce the written words

'the opposite of by'-'. However, v/e still read '-'as 'the

opposite of- ]

Teacher: John, pick a real number.

Student: ~3.

Teacher: Jane, what is the opposite of John's number?

Student: "^3.

[As these numbers are given, list them on the board as ordered

pairs. Continue until you have several pairs. See that such

pairs as (~3, ^3) and {*3. ~3) appear.]

Teacher: I'll pick a number: "^3. What is its opposite?

Student: ~3.

Teacher: Now imagine all such ordered pairs. Do you think we should

call this an operation?

Student: Yes, because *3 goes to "3 and no where else.

Teacher: Right. Now, let's give this operation a name.

Student: Multiplying by ~1.

T

(0,0) I
3,'*'3)

I





Teacher: Right. Now, try to think of a name that would make people

remember that the second number in a pair is the opposite of

the first number in that pair.

Student: Oppositing.

[You may have to tell thenn this name. This might be expected,

since the choice of a name is an arbitrary matter.]

Teacher: Let's reverse these pairs. What pairs do we get?

Is this set of pairs an operation?

Student: Yes.

Teacher: Since this set is an operation whose pairs are obtained by

reversing the pairs of the other operation, what shall we call it?

Student: The inverse of oppositing. [Teacher writes-

]

Teacher: O. K. Now can you think of another name for it?

Student: Say, that's just the same as the first one!

Teacher: How about that? Do you mean that each pair in this first opera-

tion is in the second one?

Student: Yes.

Teacher: But surely there's a pair in the second one that isn't in the first

one ?

Student: No! !

Teacher: So, the operation oppositing is its own inverse. Can you think

of any other operation that is its own inverse? How about some

of the operations involving nnultiplication? Is mviltiplying by 2

its own inverse? Multiplying by 3 ?

Student: Multiplying by 1 is its own inverse.

Teacher: Let's see if it is.





the inverse of

multiplying by 1

1/^3,-3; rs,-2; \. / rZ.-'S) r2,*2; \J f+3/3) r2,-2)\ / C3,-'3) (-2,-2)

.i^.rjs;r:" vM^if*-""''"

oppositingl 'the inverse of\ * multiplving by 1\

j
opposifing

\

'

§(0,0) f-3,-^3J 1 i (0,G) r*3,-3i ^(0,0) (-3,-3) m (0,0) r3,-3) p

g(-e,-'8)C7,-7)
I \ C8,-8) (-7,^7) A (-8,-8) (*7,*7) (-8,-8) ('7,-'7) H

Student:

Teacher:

Student:

Teacher:

Student:

Teacher:

Student:

Teacher:

Student:

Teacher:

Student:

Teacher:

Student:

/ \

Yes, it is.

Let's try some of the addition operations. Is any one of these

its own inverse?

Yes. Adding 0.

What are soine pairs that belong to adding ?

("8, -8), CZ, ^2), {0, 0), (-3, -3).

I'm running out of room up here. Can you suggest a way that

I can save room and still show that ("^3, "3), CZ, *Z), (0, 0),

("3, "3), (~8, ~8) all belong to the operation adding 0?

Just put the name 'adding 0' up there beside the loop that's

named 'mtiltiplying by 1'.

Liike this ?

Yes.

Wait a min\de. That looks to me like you believe that:

The operation adding is the same

as the operation multiplying by 1.

Do you believe that?

Yes - No 1 don't knov/

Y/ell, let's see. Certainly the names are different. Does that

necessarily mean that the operations are different?

No.





Teacher:

Student:

Teacher:

Student:

Student:

Teacher:

Can you think of something that has two (or more) different

names ?

Student:

Teacher:

Student:

Teacher:

Student:

The number 2 has lots of names.

Right. So iTiaybe these operations are the saine,

tion the name or is it the set of pairs?

Is the opera-

It's not the name.

I don't think it's the set of pairs either.

That's too bad, because that's exactly what it is. The operation

is the set of ordered pairs. You may not like it, but that's the

way it is.

Then the operation adding is the saine as the operation multi-

plying by 1 ? ? ?

Well, let's see if they're the same. Are the pairs that belong

to them exactly the saine ? Let's look at them and see. Each

one of you think of a pair that belongs to adding 0. Does it

belong to multiplying by 1 ? Now each of you think of a pair

that belongs to naultiplying by 1. Does it belong to adding 0?

Do you think anyone can find a pair that belongs to one of these

and does not belong to the other? The operation adding is

the same as the operation multiplying by 1.

OK, let's go back to oppositing and its inverse. Mary pick a

number. Now, oppositing takes you from the number 3 to what

number ?

Now, the inverse of oppositing [pointing to the proper name]

takes you from ~3 to what number?

[Continue this way,]





IV^/
^^3,-3) (-3,'^)

r2,+2; (0,0)

(-8*8) C7,-7)

(-7,'7)

' " .

—

' rruiupiying c/ i

[

s- •'.a^^isi.

adding
the inverse of

multiplying by IF**

(8,-^8) (-8,~e) "^-i^

(0,0) r2r2) C7,*7)
j

(*3,-'3) I

Teacher:

Student:

Student:

Teacher:

Now, is this set of pairs an operation?

Yes! That's multiplying by 1.

It's adding 0.

Correct! So we already had this up here! Tell me some more

pairs that belong to this operation.

Teacher:

Student:

Teacher:

Student:

Teacher:

Student:

Teacher:

Did you really go from "1 5 to '''15 and then from '''15 to "15 to get

that pair {"15. ~15)?

No.

What did you do?

Wellj the second number is just like the first.

Oh, the second number if the Fame as the first. 'Would that be

true for each pair in this operation?

Yes.

Because that's true for erxh pair in this operation we sometimes

call this operations sameing.

multiplying by I

f^^z^pmY^^'^

I V <<:l -zz; w I

'^ing Oi — ' ultiplying by I ^:~"~
''

C^8,'-8) r8,-8) """"^^
"'

s/0,0) (-2,-2) ("7,* 7) ]





student: Is there any symbol for it like there is for oppositing?

Teacher: Yes, we can use this sign ' + '.

'1^

Let's consider absolute valuing. First, I would use the name 'arith-

metic absolute valuing' instead of 'absolute valuing' when I consider the

operation which maps the reals onto the numbers of arit -inetic. I would

also use the symbol '

| i a instead of '
j j

'.

Now for pages 1-105 and 1-106.

'I*

Teacher:

Student:

Helen, pick a number. Tell me the number you picked and then

tell me the arithmetic absolute value of the n\amber. Remember,

we are not using ambiguous names today.

(*8, 8).

(^8, 8) (-5, 5)

(0^,0) re, 8) (-2, 2)

Teacher: Now, I'll give you a number. What is its arithmetic absolute

value ? ~5.

Student: 5,

Teacher: 0,

Student: 0.

Teacher: Is the number that I thought aboixt the same as the number

that Jane thought about ?

Student: No. Yours is a real nunnber. Jane's is a number of arithnnetic.

Teacher: To show that, let's write '0„' today when v/e want a name for the

real number zero and just '0' when we want a name for the num-

ber of arithmetic zero. (0„, 0). Is this set of pairs an operation?

Student: Yes.





Teacheri What name do we give it?

Student; Sameing.

Teacher: Let's see. Is the number of arithmetic 8 the same as the real

numbe r *8 ?

Student: No. So, this isn't sameing?

Student: We call it 'arithmetic absolute valuing'.

Teacher: Good. So, arithmetic absolute valuing takes you from a real

number to a single number of arithmetic. By the way, have

any of you ever carried out this operation before today?

Student: Well, yes. When we're doing sonae of these problems with

real numbers, it's easier to multiply numbers of arithmetic.

Teacher: Yes, Every time you go fronn a real number to the correspond-

ing number of arithmetic, you're actuedly performing the

arithmetic absolute valuing operation. So, you've been doing

it for a long time even if you didn't have a nanrie for it.

Take another look at this operation. Now let's reverse the

pairs.

^m arithmetic absolute valuing
,

'•>/ CS, 8) (-5,5)

f^^U (0^,0) (-2,2)

(-8,8) r5,5) (-^2,2)
'r)f 1^

(8,*8) (5,-5) ^
(0,0f^)

(2,-2) >

(8,-8) f5,+5; (2,^2)

h.'^At}

Is this an operation?

Student; Yes.

Teacher: I'nn going to pick a number of arithmetic. 5! Now, this set

of pairs takes me fronn the number of arithmetic 5 to what?

Student: "^5.

Student: ~5.
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Teacher: Well, which is it? If this is an operation it must take you to

a single number.

Student: There isn't just one single one. There are two.

Teacher: Then, is this an operation?

Student: No

!

Teacher: Let's look at this set cind sort of break it into two sets. What

way of breaking it do you think I have in naind?

anthmeiic absolute

I
valu i n n

,^ (-5,5) ^^—^-
Yce.e) (-2,2) •'

(0^,0) {*2, 2)

A (-8,8) (^5,5; /'

(5,-5) \
(8,*8) (2,-2) \
(0, 0^) (2,*2)

\
. (8^8) (5,-^5)

II

Student: Put '(b, a)', '{b, ^)', '(6, *6)' in the second loop.

Teacher: What shall I jjut in the third loop?

Student: '{5, ~5)', '(8, "8),

Teacher: What are some others that would go in each one?

Does this take care of all the pairs you have in this set?

Student: No. (0, Op) is left out.

Teacher: Where does that go?

Student: Well, if you only want positives in the first one and negatives

in the second one, it won't go any place.

Teacher: But we don't want to leave (0, 0- ) out in the cold? What shall
is.

v/e do ?

Student: Put it in both, [if you don't get this answer, give it yourself.].

Teacher: Right. Are these operations?

Student: Yes.
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."[^l

-: :'ii.f^;#o%^vjteJ3^fe^-i;

ithmefic absolute -,

1 8/8; (5,^5)

,j
(7*7) f2,*2l

i (3,^3;

y

I (8,-8) (5,-^3)

(7,-7) (2,-2)

(3,-3)

\

>^

wjM.'jj. ' r^w i

Teacher: Now about names for them.

Student: Unab solute valuing.

Student: The inverse of arithmetic absolute valuing from the positive

numbers.

Teacher: I don't think I would say it quite that wa,y, I might say 'from

the nonnegatives- -'. Why would I use 'nonnegative' instead

of 'positive' ?

Student: To take care of 0.

Teacher: Correct. We might use the raised plus sign as a symbol for

this operation. If we did that how would we v/rite '(0, 0^)' ?

Susan, come up here and write it.

Susan: (0, ""O).

^:^T^?!^r?rrF

orifmef/c absolut"
,

A valuin.a
j

^A . St'" .

'
—'

L~ /(*6,8) (-5,5) ' /

f'^o^.o; (-2,2) •

r8,s; (*5,5;

-I nonposjfa'fng !

legc- ./"./,
]

"
\ :

-

^''
t

'

i--—. -' ipositivinoi [~^n\ 1 negoNv/ngJ

-y (8,^8) (5;5) 1^(6,-8} (5,-5) ^

j
(7,^-7) (2,*2)

' (7,-7) (2,-2)

(3/3; (3,-3;
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Teacher: Does that mean that the real number is a positive nunaber?

Student: No. It means it's nonnegative.

Teacher: Very good. Sometimes we call this operation 'positiving' but

'nonnegativing' might be a better nanne. How about names

for this other operation? [And so, on!]

Now to develop the operation absolute valuing from real numbers to

the nonnegative reals.

Teacher: Here are some pairs. Give me some more that are like thenn.

[Usual questions about operation.]

J'

('8,-<-8) (-8,-'8)
~

I 1 (o.-'o) r+3,+3;

i:

^"^''^^ (-5,^5)
^;

Now let's rewrite these names using the convention that a

numeral for a number of arithmetic may be used to name a

nonnegative real number.

f c^s.^s; r8r^B) ' (--8,8) (-8,8) -

^ (0,-^0) (+3, +3) (0,0) (+3,5)

4
(-7,*7) f-5,+5; (-7,7) (-5,5)

'
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Teacher: Suppose someone walked in the room and saw this second one.

He might believe that we were thinking of w^hat operation?

Student: Arithnaetic absolute valuing.

Teacher: Right. Let's look at some of the ordered pairs that belong to

/'('8,*6) r8,-^8) \

(0,-^0) (>-3,-^3)

r?,*?) (-5,^5) j

'6,8) (-8,8)

(0,0) ('3,3)

(-7,7) (-5,5)

/(*8,8) (-8,8)

(0,0) (-"3,3)

(-7,7) (-5,5)

So, if he saw this middle one, he wouldn't know which of the

other two you had in mind. Actually people use the words

'absolute valuing' in naming both of the operations because

the nonnegative reals behave like the numbers of arithmetic.

The first is absolute valuing from the reals to the nonnegative

reals. The second is absolute valuing from the reals to the

numbers of arithnaetic. We might use the symbol '
| |'d+

' ^^d

'I )

.' to name them. However, most people give them

the same name 'absolute valuing', and use the sanae symbol,

'I I'. Does that make them, the same operation? [No.] From
now on, in most of your Avork you will be using absolute

valuing from the reals to the nonnegative reals. So, let's

agree that:

Nunnerals which contain 'absolute value', '
|

j', should be

interpreted as numerals for real numbers --except in places

where the context prohibits this interpretation.

M

A. H.
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PROGRAMED INSTRUCTION REPORT

As a part of the UICSM Programed Instruction Project, we have prepared a

report which summarizes the content and pedagogy of the programed Unit I.

It consists of a great number of sample pages accompanied by explanations

which tell the specific objectives and methods of our programers as they

programed.

If you would like a copy of this report for your mathematics department, please

complete the following form and return to

Clifford W. Tremblay

UICSM Project Office

IZOS W, Springfield

Urbana, Illinois

, Mathematics Department Head

(School)

(Address of School)

(City and State)
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A NOTE OH INVERSE OPERATIONS

The work on inverse operations [Unit 1, pages 66-70] culminates in the

students' discovery that

(1) for each number of arithmetic x,

SUBTRACTING x

is the same thing as

THE INVERSE OF ADDING x

and (2) for each nonzero number of arithmetic x

DIVIDING BY X

is the same thing as

THE INVERSE OF MULTIPLYING BY x.

We capitalize on these agreements on page 75 of Unit I by defining, for

each real number x:

to mean:

SUBTRACTING x

THE INVERSE OF ADDING x

Here is one way of using lists of ordered pairs to give the students nnean-

ingful practice in using this definition. Starting with a list of pairs

belonging to ADDING *7, we quickly get a corresponding list of pairs

which belong to THE INVERSE OF ADDING *7.

Since we can also think of the latter list as a list of pairs belonging to

SUBTRACTING *7, we can write:

n—

I

adding ( \

&^Y (^l,*8) f
+ 2, + 9)

(-9,-2) (-7, 0)

(-2, '5)

-^ .-,
;;':

,,-.._,— .., .,...- _._^^

' adding f >— f/fic;
'*'

'

i

\
, "' "v

/ f-^8, -^/; (+9/2J

' rz,-9) io,-?) 1

\
(^5,-2)

i\^ • • »

.

^--- -^'''^""':
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Using the lists, the students solve problems such as these:

"•8 - "7 = ?

*9 — ^7 = ?

"2 - ""7 = ?

Now consider the problem:

-16 - *7 = ?

When the students see that the problenn can't be solved using the pairs we

have listed, have someone guess at the answer. The discussion in my
class went something like this:

Teacher: Someone guess at the answer to:

"16 - *7 = ?

Student: "9.

Teacher: In saying that:

"16 - ^7 = "9

we are saying that a certain ordered pair belongs to

SUBTRACTING *7. What pair is this?

Student: ("16, "9).

The teacher adds '{"16, "9)' to the list for SUBTRACTING ''7. The board

now has these entries:



lO: -.ci •> a
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hhe inverse of]
| s7b1racimg

+7""^v>, ;-*;;

:-/' re, +;; Cs/z) \
V r2,"9; fo, -7)

}

:; /

r+5,-2j f-/6,-9)/

Teacher; Since SUBTRACTING *7 is the same thing as THE INVERSE
OF ADDIIMG ^7, it folJows- that the pair ("16, ""9) belongs

to SUBTRACTING ""7 just if [if and only if] what pair

belongs to ADDING *1 ?

Student: ("9, -16)

The teacher adds '('9, ^16)' to the list for ADDING '7. The board now
reads:

I
*he inverse of

"•'jvi.v -T
-
^^'^•XZ~ 'v-'g'g!

I '^ubhacUng '*"

(-2, -9) (0, -J)

Teacher: Does { 9, '16) belong to ADDING ""7?

Student(s): No!
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Teacher: Is it possible, then, for ("16, "9) to belong to SUBTRACTING

Student{s): No! [idso: Nix! Nyetl]

Teacher: Hence it can't be th 3 case that:

-16 - ^7 = -9

is a true statement.

Someone else take a guess at the answer.

Succeeding guesses are tested in the manner indicated until (hopefully)

a student or (if necessary) the teacher submits the correct answer.

The reasoning involved is sinnply illustrated by:

V.VyV, X - y = z

if znd only if

(::, z) belongs to SUBTRACTING y

if and only if

(z, x) belongs to ADDING y

A similar approach caji he used in disciissing division of real numbers

[Unit I, pagc-s 92-94J. l/je re?.i;oniiig in this case is illustrated by:

^x^y^ V X 4- y =

z
z

if and only if

(x. z) belongs

if and

to DIVIDING

only if

BY y

(2 X) belongs to MULTIPLYING BY y

xa addition, we show that the converse of MULTIPLYING BY is

not a function and, hence, is not an operation.

B. K.
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Mafhematical Overlap

Some ideas in one mathematics course overlap ideas developed
in other mathematics courses. For example students in elementary-
algebra courses find that:

(1) {(x, y): (x - a)2 + (y - b)^ = r^}

is a circle. If we let:

u = X - a

V = y - b

and substitute in (1). The result is:

(2) {(u, v): u^ + v^ = r^}

what we obtain makes it clear that the original set was a circle.

But, we miss a good trick by not emphasizing the notiton of translations,
Earlier (in most course sequences), we study quadratic functions

(3) f = {(x, y): y = ax^ + bx + c, a / 0}

and could employ the translation (if we mentioned it then)

^ b b
u = X + -=— or x = u - •=—

2a 2a

V - y.

This translation is a particularly convenient one since it forces the
ajcis of symmetry to be given by u = 0.

Using this translation in (3) we get:

(4) f = {(u. V): V = au^ + "^^^^'^^
, a / 0}.

From (4), we can compute readily the usual quantities:

A. Axis of symnnetry

{(u, v): u = 0} and {(x. y): x = - ^}

B, Extreme Value

^ _^ 4ac - b^
u = s^ V =

;;
= y.4a ^



kij'SI'

(0 '•^
ft
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C. Roots

V = => u = + \lh^ - 4ac
2F

X = ry- -^ '^^ - 4ac
da =

2a.

These two examples show how the notion of translations overlaps
elementary topics developing more sophisticated connections.
Another example of this is found in Unit 7 where the students repeatedly
acknowledge that *'it's easy to get the recursive definition, but how
do you find the explicit definition of a sequence quickly?" For the

answer to this question they must wait unit Unit 8. In that unit we
find the necessary language and techniques to do this job relatively
easily.

A sample recursive definition nnight be:

(i) bj =: K

(ii) V b ,,=b +3n+2
n n + 1 n

From (ii) b , , = b +3 +2
' q + 1 q q

By our definition of a difference sequence:

V (Aa) = a ^ ,
-

P P P + 1
a
P

it follows that (Ab) = b
, i

' ^ • ('1'=!')

From Theorem 140 [V a = a, + X"' (A a) 1n n 1 / * 'p-*—

I

P- 1

we obtain V b =^ b, 4 V"" (Ab)
n n 1 / 1

n - 1

I
P= 1

An instance of this is b = b, + \ (Ab) (>I''k'Ic)
q 1 Z-. P

P= 1
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From {>',<) and (i\<>]<) we get:

(Ab)q = 3q+ 2

Substituting this in (;,'c;Ic5l;) we get:

q - 1

\=^1+ Y <3q+2)

By our summation theorems this may be written:

b =b, +Mq:_L) +2(q- 1)
q 1 2.

v-a '

= 8 + ^^^^ " ^^ + 2(q - 1) from (i)

\ = h''-h^^

So, we have a test pattern for the generalization:

V b =^n^ +^n + 6.
n n 2 2

This is the required explicit definition.

A. Holmes
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Instructional Aids

Most of the teachers who have taught unit 4, have probably felt the need

for a device to help them in the classroom when dealing with lattices.

One of the teachers who did something about this described his experiment

to us in a letter. Our correspondent is Charles J. Searey from Sterling,

Colorado.

He acquired a 4' x 4' pegboard and painted it. The pegboard had quarter

inch holes spaced one inch apart. He used half inch long dowel segments

to "plot points".

The graphs of linear functions were illustrated by ribbons, different

colors distinguishing different graphs. It occurred to us that an arbitrary

point set might be illustrated by inserting tacks of a particular color in

the tips of those dowels which define the set.

If the axes are drawn with ribbon (rather than being fixed), such topics

as adding constant functions can be simplified considerably.

Editor's Note:

If you happen to try this experiment, you will probably find (as our

correspondent did) that the tennptation will be to expand its uses constantly.

Should you come up with a new (to you) use, please send us a note about

it, and we will use the Newsletter as our medium for disseminating this

information.

G T.
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This article is the work o£ another of our correspondents. Sister Mary

Lucy, V. S. C. , fronn Pittsburgh, Pennsylvania. We are indebted to

our readers who want to share their ideas with us via this medium.

Relations -- Reflexive and Symmetric

How many subsets does a set of n elements have ?

S = {a, b, c) (a, b, c}

i—--

S has eight or 2. stibsets. Each column of entries after the first has

twice as many elements as the preceding column.
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It Is clear that this process could be extended to detei-mine the number of

subsets of anv finite set. A set of n elements has 2 subsets.

A relation R is reflexive < > V x R x
X e r

Consider S = (a, b} , n(s) = 2

R= S XS = ((a, a), (a, b), (b, a), (b. b)}

Question 1. How many relations are there among the members of a set

of 2 elements? or, How many subsets does R have?

Rj = {{a, a)} Rg ={(b, b), (b. a)}

R^ ={(b, b)} RjQ = ((b. b), (a. b)}

R3 ={(a, b)} Rjj = {(a, a), (b, a), (a, b))

R4 ={(b. a)} Rj2 = {(b, b). (a, b), (b. a))

R^ -{(a, a), (b, b)} Rj3 = {(a, a), (b, b), (a, b)}

:l^ -{(a, a), (b, a)} Rj^ = {(a, a), (b, b), {b, a)}

1. - {{a, a), (a, b)} Rj5 = ((a, a), (b. b), (b, a), (a, b)}

Rg = {{a, b), (b, a)} Rj^ = gi

Z
xi S has n eleinents, then R = S X S has n elements. So, the class of

2
all subsets of R has 2 elennents.

2^
In our. case n{S) =2, so R has 2 =16 subsets.

2

There are 2 re''ations among the members of a set of n elements.

Question 2. How many reflexive relations are there whose field is a

given set of 2 elements.

Consider
a • e

H b
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A reflexive i-elation wliose field is {a, b} is the union of two sets; S,

consisting of the "diagonal" ordered pairs united to S, whose members

are the remaining ordered pairs.

S has 2 elements

2
S, has 2 - 2 elements

The reflexive relations a.ret

{(a, a), (b, b)} '^{(a, b)} = {(a, a), (b, b), (a, b)}

{(a. a), (b, b)} w{{b, a)} = { (a, a), (b, b), (b, a)}

[(a, i), {h, b)} ..((a b), (b, a)} = { (a, a), (b, b), (a, b), (b, a)}

{(a. a), (b, b}] w 0- {{a, a), (b, b)}

'iii^ "^^ore, since S, is common to all of these reflexive relations, the

number of reflexive relations is equal to the number of subsets of

S^-'that is, 2^ ' or 4.

Thus, there are 4 refjexi\3 relations whose field is a given set of 2 elements.
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A Preview of the U8CSM Programed Text on Solid Gecmetrv

This spring, a programed edition of a solid geometry course will be tested

in several classes. This program will not be made available for general use

until it has been through at least this initial trial run and has been revised on

the basis of the information gathered in this trial run. Even though the solid

geometry program will not be generally available, the thought occurred to

us that our Newsletter readers naight like to know something about it.

As you probably know, the importance of studying solid geomietry, as a

separate semester-long course, has been minimized in recent years. Many

up-to-date geometry texts have taken to integrating the solid geometry

topics with appropriate topics in plane geometry. In some of these texts,

these topics are discussed toward the end of appropriate chapters. In

some cases they are so far at the end that these discussions appear after

the chapter summaries [of important things to remember], chapter tests,

and other exercises. The placement of the present UICSM solid geometry

course is Appendix D of Unit 9- This placement leads some teachers to

believe the topic is secondary to other topics and may be omitted without

loss.

While we do not advocate that a full semester be set aside to develop the

topics of solid geometry and the student's spatial concepts, this development

is important enough to consume a portion of one semester. By preparing a

programed edition of a full course in solid geometry, we hope to limit the

study to a concentrated 3- or 4-week course of self-instruction, without

short-changing the students. Another goal we hope to achieve is that of

developing important spatial concepts in a greater percentage of our students.

This we feel may be done by giving the student a program in which to partic-

ipate. The programed edition of solid geometry combines the development

found in Appendix D of Unit 9 with a short unit of solid geometry prepared

by Howard Marston for UICSM. The format of the program calls for

little formal development of a postulational system. An appeal is made

to the student's intuition to get a "feeling" for the basic concepts of a

three -dimiensional space. Good diagrams can be used to (a) give cues to

properties of points, lines, and planes in space, (b) help develop a student's

intuition and feeling for 3-space, and (c) help reinforce correct concepts
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andvgenerate counter-examples to false generalizations. The student's

intuition and knowledge of 3-space is also developed by the program's

built-in feature of reinforcement.

Included in the content of the programed edition are the topics which

are normally covered in a full course in solid geometry. One could

think of the course as being divided into several broad categories:

(a) properties of points, lines, and planes in space

(b) solids whose volumes are computed by *V = Bh'

(c) solids whose volumes are computed by 'V = — Bh'

(d) prismatoids

(e) solid spheres

(f ) locus problems

In the following sequence of pages, we have an example of the approach

w^e use in this program to develop an elennentary space concept involving

lines determined by sets of points-

(Pate 18] [pan 901)

We have now discussed three conditions under which a iilane ie dett-r-

mined:

(1) Given three none ol linear pointb,

they determine a plane.

{2) Given a line and a point not on

the line, the line and the point

duCermine a plane.

(3> Given two intersecting lines,

these lines determine a plane.

X-

— ^^.^

(Hart 901] (P„,. ,-|

niini'ii 3 Untr,

*rht: nonrrollinear puinttt A, B, and C di.-liii'mint.- llii«-« ASi, At;, ^ind

Since C )E not on AB, lines AB and AC art- Jilferenl. Slot •• n is

not on AC, liuea AC and BC arc differeni. Sine*- A ir, not un l^C,

linett BC and AB are difft-rcnt. Hcnte, lin«a AB, AC» and BC arc

all different.

So, we conclude thai rhrce noncollincar points dctcrmioo three lines.

Now, consider 4 poinis, no threr yf which are collln^nr.

.A

.C

•* .D

How many lines are determined by t^eso 4 points?

Write yo(ir answer on your work sheet.





I Page 2 0] [P.irl 901

J

Check your answer.

4 pointB, no 3 collincar. dfflerniine P M/rui^

Here is one way lu tliuik about the lapl problem. [There are others. J

Considering Iht.- problem of counting the lineti determinetl by 4 pointij.

no 3 collinear. wc i.an solve this problem by finding the mimbur of Jin«

which are ''added*' to the original 3 lines when we "add" a point to 3

noncolHnear points.

A, B, C are the "original" points.

odded lines

D \n Ihe dddvd point. D dcrcr-

mines one line with ("ach o( Ih*-

* original points. Kence, 3 linus

<tre ".idded" to the original stt

ol 3. Therefore, the four points

:./D t'odded" point) determine 3 + 3. or 6. lince.

tPart 901] [Page Z 1]

Now, add a fifth point, ooncoUinear >with each pair ol Ihe points con-

sidered (lius Jar,

Answer these <^uf:Stione on your work sheet.

( 1) How many lines are "added" to the coUeclion of determined lii

by the addition of this filtb point 7

{i) How n^any line* are determined by 5 points, no 3 coUtnear ?

[Page 12]

Check your answers.

[Pjr: 90li

(!) The addition o) the fifth point "added" 4 /t/n.^ to the set of

lines delormin*id by the 4 given points.

U) F'.ve points, no 3 collinear, delwrmine 6+4. or ^O M/n.e^

[Pari '>Oll fPage ^3l

1 riTo is a l.ible which has been filled in with the reoiiltG of counting

"dedrnijnru" lines thus far. Answer on your work sh^'Ct.

Ni;i)iber of points.

no three coiJinear 3 4 b 6 7 8 9 10 100 "

Number ..1 lines.

eocii coul;iiuiji>; two 3 6 fO ' ? 7 7 7 ? 1

ot W.esf pouith

Look for a p,itt»rn

in tin- first eight

columns.





[P-lic 2.>I

Ch<?cK vonr ^nttvmro.

(Part 90 3

J

Nitniber ol {>OM)t8,

no ihrre «:o)Jlinvor i •» h b 7 H 9 >0 100 U

Number 0/ Unci) ca<-h

containing two oX S 6 /O 15 21 28 3fc 45 475<5
Z

Here in iinoth«r way to Jook at this probj^frn. i [Th*^*- arc orhi*?«. j

3 nuncoltlnear points.

Start at A, Dt-ti^rmlne
all line» throu^ A atul

each rvniaiiiiriu potnt.

Siart at B. Dttermlnt
Qli Jinev throu(;h B
and each r«fTnrtiinn;;

poiuc. (2 such lint- »]

\ Start at C. D.-lcriutnc
All lines through C dad

\ each rcinair.^nK point.
__?- Y" l^ ''"'^*^ lines)

Notr careftUly that each line in

courtred twice. So* there arc

actually

liaes dctcrniincd.

Cuaikidt-T 4 points, no 3 tollinoar

Smarting ^t A, there
are .^ linen fthrough

-J. D, f... D] doicrmincd.

Starting nt B, there
are 3 linep (through
A, C. D) dcivrmined.

Starling Jit D, th'-re

arc ? Lfie? [through
£- A. E, CJ dttermined.

\ StBrtwig i\ C, th»*re

_8 \x, '\T<- '> lir^oe fthroiigh
—5 " A. B, D) dflernm'<-d.

Siiictr c;icli )in<< in t

ther«; are
4-3

linfs di-t*-Tnnined.

[Pan 901) [Page iS]

Now, coneidci* the vam: r>l n pohite, no 3 of which ure coHinifar

[n > 2], FoUowiug th*- same plan, wt- can count (n - 1) linus through

t:Rvh of the n points. But, Ku doinp this, wt- ircunt each line twice.

HeiiC<-, thfr«* Jtn* —^—r—^ line-s detcrniined by thi? n given points.

Thus, in the casr of 5 points, no 3 collintrsr. ihrro arc ~^ or

\0 linoB. In tbr; case of lOP pojnts, no 3 coUineur, rhorc arc
100-99

2
or 4950 Ji.-ieu

• a eel of points is eiaid to he a cop lanar set if and

only if the set is wholly contained in a plane

.

[Say 'co-I'LANE-er* for •coplanar'.]

• Two or more nets art- said to be coplapar if and only

if, together, they roriit a cop}anar eot.

Thu»» for example* every line fa a coplanar set. So, each two points

on a line are coplanar. In fact, each three points ans coplanar,

Anpwer (hr following questionf.

(1) Wf have discovered that a line and a point not In the line deturmine
e plane. Hence, it follows that a lin*' together with a point not in

thft line is a 7 set. We aUc say thai a i\n^ and a point not

in the. Jiijc are ?
^

(2) Kach two intersecting Un«B determrnr a plaTi«>. So, a set formed
by two interBeciinR lines is a ? st-t. In other words, each
'wo 1 linee are ?

Later, the student develops a means for counting the number of planes

determined by sets of concurrent lines, no three coplanar, and sets of

parcillel lines, no three coplanar. By working a considerable number of

exercises, the student develops sonae notions about sufficient conditions

for determining a plane. Out of this he evolves some of the basic ideas

found in conventional solid geometry classes.

Later, we introduce the student to Cavalieri's Principle through a sequence

of developmental pages. The student is lead to agree that the volume of

a rectangular solid is the product of its length, width, and height. We then

find it natural to develop the mensuration formulas for prisms and cylinders.

On Page 199, we employ Cavalieri*s Principle to obtain a formula for the

volume of a cylinder.
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[Part vol] [P.-Kv iy)J

ConsltK^r the probiuni of lindhi): Ih*- volaini.- oi a cyiijidt-r whui>-<- nitav

hut( Hruu B and whusi.- jltitudt. L' h. AI! tliiit w>- lurcO to Tuid i» a rvt;-

la()]>ular hijJiO whom: Uls*.- ban arua £1 and whoue altttadc is h. Such <i

cylinder and i-(;rtrinf;ular MoUd arc pictnn^d buluw.

Sincr «;ach f">ctiun ol )* cylindtir which in parall*'' tu - l--. -^; li.ii. the sanu

arra ;ip that basv. it follows, by Cavalirri's Prlncipli* that tin?**: two

HnlidF have th>- samo volvuntr. Now, thw voluino, V, of the rirctan^ular

«ulid pictured al>>vi' ir: givrn by thi? fornmla:

V = Bb

Since the given cylinder has tJie tJiin^*.* vylumf, it foJ]o\\ n thiU thi

V, of thi; giver, cylinder i» alao given by the Jorinuia:

Bh

Solve Th»!fu problf-n

(1) Vind the volume of a right circular cyliod-.-r >v)ii<;h Juk allitudi* .)f

)4 ai>d whose diameter of a banc t.s 10,

U) Kliid the radiua of a rircular cylinder with an altituHf of 12 ami wIioki

voiurr»p is 7fr.

The approach taken in developing a

formula for computing the lateral

area of a cylinder is shown on

pages 201-203.

(i'a.-t 90IJ

GoiiMidur tlic s».'»|ii''iic>: ol* n-piitai" |>oly-

t;U')>> >nK<..>'ibt:d in ciruleK vf radiuh 10,

aM .-fViwiJ ln-rt:,

in U'Ik HOOdcncc of successive uiHcribed

poiyitoHK, .Hi thu DiimlMir of sides iiicfeaie.N,

th« pi'riiTn;ter aiso incr<:asft., However,

wliiJe there is no lt*7lit to the niifnbtT of

Hitit^s which cnn be atlalrod by a pi)Jyf<on

ill thi.v bcquence, there is a limit to huw

larj:»t a perirrn^tcr which can he attained.

M.iiiy jujTTjbers which you can nanm; are

largt-r fhan each ol tlie perimeters ol the

P^iyg"'"* i" this sequence. For example,

68 and 71 rtre two such ttumlK-rs, £ach

«och number is an upp'-r bound (or tho

sequence. If there is a Kinal'.irst number

whicli i>i an upper bound, th«. n l>)i»* number

in the least tippi'r bound.

Ar!5w> r llies.- qUtBtions mi your *or|t shet't.

(1) P'or the >ii_-qii.:iic*- ol p.:rimcter^, the

least upper botuid i^ Lh<- ?

of a ? with ? 10.

[Z) The circiimff renc<- of a eirc!** \^ilh a

ladiuj. JO is ? .

(3) For ihf sequejie^ oi meaHures of

*poth<-m^, ag, .1^, a^, a^ ....

tt ,
, tihuwt) in the ligures, Uif It aKt

upper bound is the ? of Ihf

? , which is

lPa«e /Oil

t-lu'ik your answer*-,

(1) Kor the Mfqueiice ul jn.-rime,t<-vi^. th.-

least upper bo<uid it4 tb. t/lfVUvmIu%SnvtJU-

of a tUK^M^ vfc^itj, >UUJtm^ irt.

(i) Thir i:ircun-if<*r»'nte ol a cirele with

radiu»> 10 JH ZO TT . [To find

the circurnference, c, of a circle

with radius r, us-.- the formula:

C - IT .)

(3) >'or the sequence uf mea.vuret. of

apoth<ms. a,, a^, a^, a„

a , whowr, in tin.- i'.^ur*:ij, the least

upper boimd is tliu /t>^<W<A;_ of the

/OJyilxy , which is _/0_.

Recall tiiat tlie area of a regular polygon

is the product of the nK'asnre oJt an apothein

and on<--half llit^ pcrimi'ter. If we think of

the wequnncc ol areas of inscribed polygons

as successive approximationa for the are-a

of .T circle with radJas 10, then we may
approxiiTiate the area of tiie. ftiven circle as

closely at: we wish. If we use the limiting

values for the apothem and perimeter, tlie

area can b*: written:

(PJ!-1 90 1)

10 X Ufl X 10)

sinipl y

;

"^-^^^t^"





iFjrl HOl\ IP.J ^0^]

Ot ctHirKi-, wy UiUii't have- tu chovn**- kO a« the- i-jJius of our givvn circK*.

e I J* Ih*' radluv o/ the clrcU-, iIkii H (oUowh that:

(a) Ui*' U'JHt upp>;r bound of tho »«iqu<uicv

%>i inc-jKiirutt oi Jpothvinti of the a^x of

all iiiMcrilH^d regular polygont) l» r.

(b) (ht* Itiusl upper bound of the tfequt*ncu

o( ffurlmctert} o( the ivt of all insc'ribt^d

r«:eular potygonb lb 2 * r.

So, uKlJiK these Himtin^ valu<:s to compute the ari-j of the given circle

of rudiuB r w«9 obtain:

r-f-U.r)
or. more tilmfily:

Similarly, we tan condltk-r a sequence of pridinii with b:»cies hiseribcd in

the biiifeii of a circular cyllixLer. U each prUtn haH succeiioivi^ly more
laUTdl faces, then the leattt upper bound for the sequence ot perimeters of

siKCi'Miiive right sectlonti Is th« perimeter of a rtgbt section of thi^ cylinder.

So, w*f shall agrtfc that:

• The lateral area c^ a^ circ
_

ujar cylinder t & the

product of tbu nteasure of aii element and the

perimeter of n right section of t!ie cylinder,

Solvu 6i4:h«> prubleniM.

0) FlitU the lateral area ;tntl total arej of a right circular cylinder with

diameter of 6 fret and an altitude of 14 feet.

U) Find the measure oi an element of a circular cylinder which has a

right B<-ctlon with perimeter ot 9 inches and lateral arc;* of 1/b square

inchen*

We ask the student mauiy times in the course of the program to employ

his intuition. He has also been shown how one. can use his intuition and

reasoning to develop a new idea from fanniliar ideas. To avoid leaving

you with the impression that the program is composed entirely of develop-

menteil treatnnents as the samples show, we should naention that we ask

the student to solve many problems involving each of the space concepts

which have been discussed and devcsloped. The examples shown on pages

303-304 prove to be useful because they afford the student some review

of graphing and inequalities. In addition to giving him a review, we ask

the student to generate solids, and compute their volujmes.
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iPan 'JOtl IH-K- HHj

V..U ni,iy r. .nil h^vinj: bx en .lykfil t<( fti-;tpii t)u- iSoJuLion h. In .>J xcil-iiC^s )ih'-;

(^0 X t y ^ Z

ir) J i X < 5

{<!) y > 4

if til- rcstricllitfl Ik m^tU' that "5 < x < 5 and "^ < y :! *>, thi.-u the yraphs

oi ttu' rioliiLiun i.«'ti« of tsich of iht; :il>ove H*.-iitt'.K-«- s av*-:

(«l) fc)

OiiiKlriur Iho nrjjth nl Mvntcncc {;i). Suppos..- that th*- triauguJar ri^iion

iK ti'Vtilvctl al>j)i1 Uu- line which Is th>; Rriiph of 'x - 5' a*- an axKs. Th-.'

ri^aiUl^tiiK Kitiiv, ol rcvoliilion in pictured at th«- right. To coiuputt: tho vol-

uiti*- iif th)t< con«t, riotic«! that thu radium of the baric

Iw ** [rtlnc'T \>ni- uj" the* r^KlH ha« <-iidpuluLf; ( "S, f^)

aj»a IS, ^)J anti Ui*: :JlUudv- i& 8 tmu-a.nur.: o£ thi; r3,9),^

:it;niTiiint whoHC- «:ii<li>oinlt- ai-i; (5, 5) aiid (?), *3>),

:>\>, U. AillowH thill

Bii

ill nt:i-, tlif Vixlumi: of ihc Riven cone of revolution Is —\— .

oi'Jvf th<-m* probK'ins.

(1) Cortipiit'-' t)ur vtOuirii^ of the ^oJid gcnt'ratt-d by tv\o\y/'\x\% Die quddran

^vil.'ir r«:yiton (b), .i^K>vtr, dhout th*; j-rjph of 'y = V an an axle,

\£\ Compute the v(fliiin>: of tho solid (joieralfd by revolving the n^otaii-

puljr rt'Kion (c), above, about thi> y-.-utia as an axle.

\\\K^. KM]

(I) (...input.- thi- v.ijnttn- ..I Un- '-oJid u.-i|.-r;Uv«l

by .••v..lvin{{ Ihp (|tiafli iinnnt.ir r.'j-i.H. (b)

abitiit til'- tii'apit nf 'y ?i* aB aji axi.s.

Th. -s.ili.I ji.-n.-i-..i-.i io lb'- fru.-.tun. uf a

COl). , 'fhi' v.iilill:. -.1 l)u* "upiB-r" l>a.*i( i ;:

|i'..ri -/nil

Irusliiit. i ; 10. r.. fiiKl III.- vol.im. V:

—
, - Mlfs

.*>... Ill- v.. J. I.,.. -.1 111.- viv.f. -oli'l >! r.-v.ili]i;..n i s S^O TT .

(i) t.oii,,>.,l.- 11..' V..I.JM I U..- .-...li.l c. . ..-.. il.-. I l,y

..V..IVII!,; ;!.. 1-. . i.,i,;;m|.,:- r./Kl,,i, (, ) .,i,.„.l 1,1..-

V.ixi- i:. .in .1X1: . Tl... .....liil ,..,Ml..|-.H.-.i I .

s.»inL-liin.-..i (..tlJ.H .1 ryltiiitri-i.vl sh.U*. J'hi-

i....l,ii^ ..1 th. •!... I." .s i, ml til. r ..hij (.1

Ih. "...il.-i '•
~.,|.i... ,• ,-. S. Th.. ..Uil...l.- i.,

.:..ch CIS.- 1.^ (0. 'I'll litul 11... vol.m.4 V;

«• ^' 111 - 3 • ('• HI

•n.ii'. - ,.)

II. -I..... 11... v,.|..,.i. ..1 th.- I yli.i.lr.i.il ah..)l \,.Ji',0-!r

C:

The entire program is about 400 pages in length. The prograna is written

in linear form. There is one optional section on spherical polygons which

we hope will prove to be of interest to those students who elect to try this

portion of the program. We have included 5 self-administered quizzes

in this program. The student periodicaUy checks his progress through

this material by taking these quizzes. The answers are readily available,

so he has immediate reinforcement to aid his learning.

S. Szabo





Test for Pages 4-A Through 4-42

The next several pages of this Newsletter contain a test which is meant

to be given in Unit 4 when the students have reached page 42, It is designed

to take 50 minutes to administer. We have not attenapted to standardize

this test, but we do feel that it tests important outcomes of these pages.

Math. 1 Test [pp. 4-A through 4-42]

A. Consider the cartesian product

{-2, 0, 2}x{0, 1, 2, 3}.

How many ordered pairs in the product have:

1. first component 0?

2. second component 2?

3. first component 2 less than second component?

4. second component 3 nmore than first component?

5. first component 2 less than second component and

second component 3 more than first component?

_B^ On the picture below, graph the set of all ordered pairs of integers

such that the first component is greater than and the second

component is less than 2.

• t
•

I
•' • • • •

.21

<
1

^ -^
2

. 2̂
4-

8





2. Suppose that

R = {(x, y), X and y integers: 1 < x < 5 and 2 < y < 5/

S = {(x, y), X and y integers: < x < 3 and 1 < y < 4/.

Use the lattice picture below to show graphs of R and S [you will

need to draw dashed lines to indicate the axes]. Draw a loop around

each dot which corresponds to a point in set R; show the points in

set S by drawing small crosf-marks over the appropriate dots [X]-

3. In the picture below, a graph of a set G is indicated by loops, and a

graph of a set K by cross -marks.

yf . . .X
!

X 2x X •

X j§ S O

85 is

-2; • • X

(a) Fill these blanks.

n(G) -

n(H) =

n(G r-> H) --=

_

n{G w H) -

(b) Write a brace -notation description of the set G.





4. Here is a graph of a certain set.

y

2-

r

\
'^

;:!:::..

::/

v'.-:-'. :-:-:!•;-:;":::-:

''-y.-y/-^

^ , y

-z
*':: -*

'1 rrrr^y.

X

^
t

^ t

Write a brace -notation description of the set pictured.

C_^ 1. Which of these is a graph of 'x < 1 and y > 1'

(A) (B) (C)

,..'

«< I I I I

*y

ii 3

2 2
I > I I »« r { 4 I I K>

-5"

Hf~+-+-i—I-

*

2. Which of these is a graph of 'x = 4 - jy|'?

10





D. Each exercise contains a pair of equations. Graph each of the two

equations on the appropi-iate picture, and give the point(s) in the

intersection of their solution sets.

1. (a) y - 3x = 3

(b) y + X = -1

(c) { (x, y): y - 3x =

2. (a) |xi = 3

(b) 2y = 4 - x

3} n. { (x, y): y + X = !}={.

i-4

-2

:i

2

(c) {(x, y)s lx| = 3} .-> {(x, y): 2y = 4 - x} = {_

E. Fill in the blanks.

1. Quadrant I is 1 (x, y):

2. Quadrant is "1 (x, y): x < and y< o|.

3, The X-axis is jx, y)t I.

4. The intersection of Qiiadrant II and Quadrant IV is

5. The intersection of the x-axis and the y-axis is "i

11





F. For each equation, tell which quadrants contain points in its solution

set. [Use 'Qj', * Q^ , '^3^ and 'Q^' as names of the quadrants.]

1. (a) y = ~5x

(b) y = -5x + 2

(c) y = -"5x - 2

2. (a) X = 3

(b) X = y + 3

(c) X = -y + 3

3. (a) x2 + y2 = 36

(b) lx| = y - 6

G. Here is a graph which is an approximate record of a hike taken on a

Saturday morning by members of a biology class at Zabranchburg

High.

6.—
1

—

I

1—

1

1 j

—

1

—

r~ [—
,J

I

——
—
Y

\ — -
— _. — \

S- -^ ^
/ \

y
•

^
.

/ 1

A m — — -— -- ^

/
/ K.
/ t \ \

S ^- /
'"

^
^ / I
w / \
E

k«az/ J \o /' r

!
\

^
1

(0 /\ 1 \•
f \\

E \
1

«

\k. ,_...

1

V
— — \

/ \— (lI L_ _„— ™ „. ~ — _ — 1

—

_ L L_lU_. \
'

9 a.m. 10 o.m. U o.m. noon I rm. 2 p.m. 3 p.m.

They left the school building at 9:00 a. m. , and kept track of their

distance from school at various tixxics [chiefly when they stopped to
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gather specimens, or to rest]. For example, their first stop was

made at 9:45 a.m., and they were Z-^- miles from school. [They

arrived back at school at 2:28 p.m.
]

(a) How far from school were the hikers at 1 1:30 £i.m. ?

{b) At what time were they S-j miles from school?

(c) By what time had they traveled a total of 7 railes?

(d) What was the average speed of the hikers froin 10:10 a.m.

to 10:50 a.m. ? From 1:00 p.m. to 1:30 p.m. ?

(e) During which period was the group hiking faster- -from

noon to 12:45 p.m., or from 1:40 p.m. to 2:28 p.nn. ?

( f ) What was the average hiking speed during the last 48

minutes of their trip?

E. McCoy

Answers for Test for pages 4-A through 4-42

A. 1. 4 2. 3 3. 2 4. 2 5.

B. 1.

• t
.1
.21

• ^ X X X X /-^

4* -i—x-->^ ^—x-pje^-*

• i X X X y. x-^

•-2r >< XX X Y"^

13





2.

?

^

i '
f • (9 (p ®

J •
f X K) 6>

^ •
f

X X

o^ 4—

^

-^ --- -"—

^

-
;

D /
it- 3 V -5

3. (a)n(G) = 9, n (H) = 15, n(Gr-^H) = 7, n(GwH) = 17

(b){ (x, y), X and y integers: < x < 4 and -Z < y < 2}

4. { (x, y) : x > 1 or y < -2)

C. 1. (A) 2. (A)

D. 1.

(c) {(-1, 0)}

14





2.
' 1

:^
=:?

>._ 1
~' — -

*-

>>
^^

^

—
-• -— — -

2 S»

—

— -% t

\

(c) {(-3. 3}), (3, 1)}

E. 1. X > and y >

2. m (or: 3)

3. y :-

4.

5. (0, 0)

F. 1. (a) Q3, and Q^

2. (a) Qj^ and Q^

3. (a) Q;,, Q^, C

G. (a) c3 .

5-j mi.„

(c) 12:25

(b) Q^. Q^, Q^ (c) Q^. Q3, Q^.

(b) Q^, Q3, Q^ (c) Q^, Q^, Q^.

Q4 (b) Q^ and Q^.

(b) 10:30 A.M., and 1:05 P. M.

(d) 3 ni.p. h. , 3m.p. h.

(e) noon to 1Z:45 P. M. (f ) 2 j m. p. h.

15





Supplementary Program

The use of the division theorem [V V
X y ?fo

Division Theorem

•y =V if z,

z
then z = — 1

y

is often difficult for a student to grasp. Much class time is consumed

clarifying the idea, for the student,. For instance, a student might be

able to state and prove the theorem handily; but, have no idea where to

begin when he is asked to derive;

V X
X

1 =
5x- 5

A student should see that the sentence can be generated as a conclusion

of an instance of the division theorenn where 'x' is replaced by '5x - 5',

*y' by *5', and 'z' by 'x - I'o The following progranied supplement

develops a facility for seeing these replacements by using a machine

like this:

?

X \C

if O • A ^

r

^2^

/cLeAri<J!- tOTvi^cE- ftiU>eI>o <X/«»--j*-

then o> A

1

i V
5x- 5

The student should answer the question tliis way;

^—i—

^

if <C^«A=^D then CD~ a

7 i X
X - 1 =

5x- 5

D

The program was written to be used as a homework assignment for use

with pages 86-92 of Unit Z, UICSM First Course. This was done to

cut down the time used in class. Most teachers do not have facilities

available for producing a program such as the supplement. This does

not mean that it has no value for them. Many of the ideas and "gimmicks'

in this program may be employed in a normal classroom presentation

to great advantage.

16





[D- 1] (li

In your earlier work, you learned about opuratiunti wliich "uiidu" what

other operations 'Mo*', We shill now put tfuu knowK-dyp to work.

;;c ^e :)<

Fill the Manke.

{
Multiplying by 2

|\
( |3. «> R. •!)

l!-. 10) ("0, -1.^)

(-1. -2> (0. 0)

n. _1) r«.-2)

c..^,

J

IIJ- ll

Cli«cK yu'ir aiiiiwers,

1
hlMltipiying by l\

I
('. 10)

(-1. -f.)

(••I.::*:)

Ih. 1., IMwi.it li^a..

UJ

ID- 11

Cliuck your aii&i*'<'rr>

131

T "*'
I

r7<wt.p/,.., t.,. -6

1. <*.-,*) btlongt. to miiltiplyiriii by *3 l>fi-.u;s»- .? - *3 =
,

,*.. C-l,..,) bi'lunK" to JiiMjlipiyinj.^ by "*> bccjnsc ~'i''b ^

i. CS,^ b.-loiiRh (^. MuiUiplyiiiii by U l><.duhf *^ • -

-J. ra,^.-) U-Jonns 1., ijilyiii^ by ^ b. r.ius.-

|D- 1) |4)

CJnck your answers.

1. U,^) b<ioi)j>.s to rmUtiplyitif- by *3 becaus..' 2 • *3 = *£- .

.^. r^^Al) bvioug. l.» ni.atipiyiii^ by "5 becaofie "4 - "b - .^£. .

i. (*5,^> b._-io;.gN tu multiplying by because *b'1i r^ ^

t. r8,r;i.) U'ioujjs to miiit.pjying by ^ because 'S-^ = .'•t .

* * -J:

The iolJowing "mdchinos" htlp us do probK-m6 like tbo orn-d .ibovr.

Here is ^ sample of how u machine works.

•8

Multiplying by "2

-16

Here U aiiotht-r tna< hlu*-.

Fill the blank.

Multiplying by **

17





ID- 1) l^I

Chick your jiis^i-rH.

•^u

* :? ^f

Multlplyiiii! by M

FilJ 1/1 111.: blA.ks ii. Ih.- fullnwitili iriichiM.-»i.

7.

M/
•h

1.

Mu)1i]>lyi'iK ''V *7 Mititii>iy*'>u '>y ^

\f/
'a

7

X*/
1.

>
\*/

J.

MuH>piyi»)j by *l Multij^lyidK l>y ?

1

\t/ Nf/
••10 u

to-n It]

Check your -inf-wi; ri.

-i •8

1.

Multiplying by *7

Z.

M) Uiplyintby "^

\t/
-fi '2.A

-/a

\*/ \</
3.

„, litiplying by '4
4.

Multiplying by

•40
M/

* * *

Here are some compjex machireii, FiJ} in tbi: bl.inks ii' lbc--sc mactiiiti:s.

2
V+/

1.

Multiplying by '3
2,

MulttplyinR by "?

^t/

\»/

\t/
-10

\t/

"undoing" inultipjying "undoing*' multiplying

by •) by 1
\*/ t/ -'

2. z

[D- Jl

ChtiCk your answorK.

(')

* *

FiU the bl.inks.

"6

sh
Mulripjying by *~i

Z.

MaItiplyir 8 by -2

v*/

St/

••undoing" multiplying

by -J by -i

'ijJK" mint ipjyins

^t/ \

's

\t/

Multiplying by '8 MultiplylnH by

X
\»/

9

\*/

"undoing" multiplying

by •»

"undoing" multiplying

by

At/-

ID- 1]

c;hick your .inswprs.

l8l

M.

\»/
•t

\t/ _

tltlplying by *8 Multiplying by

'11

\+/

\t/
O

\»/

"undoing" multiplying

by '6

"undoing" multiplying

by

"6

»/

(i you wrutt? a iiumcr.il in ihis blanJ^t ti-ni to pit^tf J^, II you did not writi?

a numur^l in t)iii> bjanki turu to page 1-1.





[D- U

Kill Uir blanks.

iMuitiplyinK by "^l

<
-^ 1

(3, .?.)

(0. _7 ) (-b, X >

IS]

" Umloititi** nioltiplyin^ by *•»
j

I J. i) (J., 0)

(0. _' )

Id- 1)

Check your juawfrb-,

[ Muitiplyinti by *5
[

110]

I
'*L'iidoinK'*Multip]yint; by '3

[

* * *

Fill ll>.' b).<nl<B.

I MiltliplyinK by

('3. ? )

ID- 1)

0>»;ck yi'ur uiittU'iTK.

1
MuJtiplvi "S by

\

(3.

)

)

10, )

)

CK. 0) (-'.
)

(11)

^II >r *

If w.: wajil'-i! t*» billiti .ui **iui»toi>ie" rtieitijjlyinj; by lifct usinf, Uk- above

list .IS our i>»iiJ.^, it wuuld loot, like thi«;

CouM wi: u:ii- IhU n«;w ll>il to find out vvhiil '*»in<li>ing" mulliplyin); by

apuliod to % isr 7

[D-l] [12]

Check your answrr.

*f^» *b docB nol appear as a first ''Mtry in any pair in Ibiw IIbT, so

the list dot-e not hcl)) ub answer thu qut-Ktion.

y^ * ^V

Now look aRain at the list djid antiwer the following qm-stioii.

("Undoing" Tnultipiyln^ by

(0. 0)

(0, 21

(0. i)

CouM wc u»«; thii' Unt to flod out wlid.t "imUoing" niuUiplyijiK by

applied to l« ?
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ID- 1]

C*n.'c)k your hhs'wvt.

[13]

I "Uiicjfli^g*<^iltip]yini» by

%!

According to the list, Jiiy rt-.ll ii»ljnb«-r would liiiajily an uit answer.

ThiJ* in .1 viTy un*)t'<i«"jblt- JiMturr, Tlivrrlo-*-, wo say *'you can't ui:<i'>

m<jlliplyiiiu by 0'*. [Nciilicr can wc. j

iO - I]

yin iiu- h).irK

M>|

_:.t^.

Itil^lyinji by i

-\i/
?

|!'l

[D- IJ

Check your jn&w^-rs

1

, \U
1.

I Muitipjying by i

^r~

A'ii-

Oividing by 5

4

[IS]

You have probably noticed that th'^r "dividlnt; liy" niaclurK* U tlu- sa

thL- •*undoinc niitltiplymg by*' machine.

;!c :!c -.

Fill the blanks.

At^
miUti plying by 3

\f/-

r-^^-^

plyinc by ••;

diviiJi/i(j by *

JS\L^

llr.'i.li'it by *-i

2Q

ID- Ij

Chi-'cjv your AUHwvrr^

5

\t/

15

d'vidinji by 5

I 16)

r
1

i Mtiltiplyini: l>y ' i \

s

Fill tbi- blanks.

Multiijly.iig by

\«/

iu
Dividing by "^

it/1-

Oividi)>K liy '

-f

r,:Divitling by *i

v»r-





(D- IJ

Check your ancwere.

Muitiplylng by

^r
-12

Mi-
Dividing by ^

v</-

,.^U
I
MuJttplylns by

s

MuJtiplyinjT by yr

\t/

—

117 1

Dividing hy *?

* * 51'

10

EHvidiIXvidioK by 7-

i

Dividing by -r?

s»/

—

ID - 1)

Chi'ck your answers.

I. SO.

Z. SO, 1)1 number ! w«.- found Uul bQ • ~ = 10. lJicri-£ore, w.: know that

H>T^ ^ M).

..i.

-t, '2 , 111 miinbtT 3 wi- (outid tb-it ** *
jt;

= >> then-fore, wi* kjoow thatX 1

16 5-

Sitmpli" -li -f -! - V

Solution: ~'\i ^'^ ~ O bccdnSf

•S-"l = "32

Fill ilM? blank*?.

I. *l=-v'3 - ? I>pcaii8t; 7 '"j = '15,

I, TiO-'J = ? because ? • ? =

3. '30i__? = -10 btcautu ? • ? =

1. ? -• I = *6 b.!rau«

tD-0 1)9)

Check your answers.

1, 'IS^-S = 'J~ bi:<atifio "S -"3 = 'J6.

2, -20-=-*5:T"y because -/.tr="^t7.

3, 'aO-r'J^ -10 because '/^•^^-'30,

4, T J
s "6 bc-cause 6 • A = ' 3 .

5, 'O -rye = '45 b*?cau3<T ~ JC> • ^= '3.

Recall that 'b~0* ie mi;amugJesH. Using your answors abovw, cumpleve

the following pattern sentcnci'.

D ^A = Q bccauv provi*le<! A j^ 0,

{!> 1] I2OJ

Chi^ck yonr iwitwi-rs.

In th«' ijcitEern .ibovo, Ici 116 nuikt- tiit.* rupl.tCfmcntB, M' lor 'D *, '1.**

for 'A* .uiti *fi' for 'O*.

This eivOH 1)6 rh.- InaLaiu:.?;

You [jroli.-il.ly do Dol bfli^ve tliai <! i U = '-. Nor •>.> you lj.-)ifv»< (hal

r> - U =^ 4. R.ii, yo>i woulO b.-lii vi' i)i.-\i -1 \Z = - i/ you b.)).-v«-d

((•.11 S ' M T. .».

TbJE sii|;fi».Fls tin- following patu rn:

TliiR palt'i rn sugj^cflln .1 j;i-iiiT.iJi7,<»tloi», Conn(ji'tv ih<- MciU'^nci.-:

V^V / V^ i.< ?.-y = X lfa.;n __? „L_ = ? .

21





la- ij

Clmcl* your ansv-cru.

Ul)

V V < tl V it »-y = « thvn A- ^
X y ' It

* * \\

r^^

I» thin, ii tlntorcm? U it ib--wc should (k: dblr to fkrivc it. U it U not,

WL- should be ttblc to give a coiinttT-inntancc;, Don't try too harj tt> jtel

<t cuuiiLcr-ineLancCa Ijct^i; dvrtve it, iriHtcid. Bclurc we writo .1 tjcri

Viition wc i}oud to recall one oC our baKlc pri/iciplvu:

V V X Iprmciple ol quotit'ijli.]

Thic principle tells ui* for instinct;, that, wi«c<' ^ / 0,

(6 V S)•^ = 6

Thi» principle wlli maVe it possible lov uu to Herivo the cajicellation prhi

clpK- for rnultipUcatlon, Recall the canct*l]atio» principle tor addition;

V V V if ;i + y = ?. + y then x = »
X y z

I. Write the cancellation principl** for midtiplJcatioii .

Z, Is 'H 3-0 a 4-Othyn 3= 4* an instanci- rtl tbi.' gcneraltx-iition you

wrote for problem J?

fl> - i) (-vi

Cb •<'n your JDHVi^-r;.,

1. V, ^'r '3 *- « - r

I. If ymi oDaw ir»-d "Vrtw' to this <^*n h-t oi> (und yuur itiibwi-j- w.,»

correct) th n your B •iiL'rallKatLoi) witb not tin- 0.),. w,^ w;n.t
I

10 i:al)-

The fdiio-JUtioit pri/ic pl • lor m iiitt [iliriitiuii

bfCrtuei it would al)< w >iF I0 rrjt h :i falBv »'OI ilusiop \**'i = -i-i

from w lru< premiBi- f"-\0 = 4. 0" ). W.- <ix hiB by no< .illowinj;

•0- ;,.- a r,:, !:i» fmt- (»l ior •>• in a n nRlatic .1/ itiv (!<:i?«.i;i] z;il;i>ii.

->= * *
U-'fi rivriv •=

".*v^»^ ""' = *y Ih 'It «=.

Kin thv W.viks.

Suppose That jb <b.

11 follow . ii.». ,.,i.)i = M„i. lb /' y]

...b.l, .,b.i .Up.ii, v.|).n)

Ml-b) ' C^.b, 1. ? . ? )

••i -- I . >
, IprlncipP- 111 f] „.1,,-,„.|

" fi" 11 J. pint]

U.-.Ki. is,,. b ? 0). il Jb - rb Iht'O ;i s »;.

l-.i. V. V >0^ K ty 'V ' h«-n
1

X - y. U lb., or......

Id- 11 1^-3)

ChccX your an**or«.

V V ^ V If xy = :^ then X = y-

SuppoKo lh»l ub = ch.

Il follow.; th.M Ub)^ = M.)i. |1, / 11]

..(b-|) = c(b^). |«pi... »pm)

a(^-b) = c(i-b), t<!j^-.. cf^^

• ^ , IprtJiripl.- of quottoittb]

1> j' b
C. (pml. pn.ll

Hc-ncc, [for b ^ 0), if ab = cb lb. n J = c

Tli«r«lort,'v V V
X y *o r.

l( xy - xy thin X = 2 in a Iboort'ni.

* * *

Now we itru re^tly to coinpi no th.> rivrl vatliK. of:

V V V
X yKO »

ifz-y = X Ih.-n ^- ~
y

SuppoB.. Uiat c-b = a.

It follnwa thai c-b ^ r* ? f Iprinrlplc of qootloBt.^1
' — b yo

and

H;nc., [for b ^ 0]

c =

if c b =

f- ''

a Ih.-i. 7 = ? .

Thcr.forc.'v^V^^, V, if »y -- X then -^ -- — i^ a 7

|.!.la)

Chc.k y.>ur acHWerf.

(>•) "x \ ^0 '^7. '' -' >• ' """ ' ?

Siijitmwi- Inof >. I) ...

il fc.ll-,.*e tls.a , . L : ^- _^ .

at)d <- - TT

HriH c. (lur b / 0] if lb = ^ :)ien ^ '~ %. •

Therch. r<', 'V V V i' ?v \ :hCM v, : -1'is ;» Hi«r^»^

;.< j;. s^t

\i.i<i » y / /.
'

y

[U-H

IpriiM i^jl,r ..f »)...no.. IN, I- ./ 0|

i'l iilso ,1 llif'n>cxr
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fD- IJ [i4b)

Wo cau vac (Ai) t> h.lp Ill J.- .,., f'i;*ny olhcr iIif'-Tcmis. yor example.

«,.• fan di-riv- V^
T

' >• ill lilts iTiaikn>. r.

Wc wish to write a te«t-pQtu-ri whivt. wil i,;:i .jjiy lnwl.irii:i- ol •^ ? ' •>•

L,cl s look a» tJiis iTtetan<:o:

(1)
a ^
T

" »

•ni« trorrtspamlint; tn&ta> Cc Ot (V-.,.) .«:

U) if a • t - » ,„.„ 3 = a |1 / 0)

Nutici; thai thv Uicn •part ii> (2) IB a copy o( (1 . 'ThcTciorv, if WC ClTl

Hhow IhtJt a ' 1 = a then, sine 1! 1 / 0. V .< can use (-ft*) to conclude 1

ihal f^-

V
,

X
T

' X

IpmJj=> • J = A

H«n CO, by {*<> lair.ee 1 ^ 0).
a
T

...

Therelore. •*»
X
T

- \' i» a tJteor^m.

An»-w>-t th]« qinrsiion.

1/

W

-. knww that 1 • -.. Ihfn, lor c / , W«' can use (ft*) 'o conclude'

that ? = 1.

(D- 1)

Cfi%-rk yoi:r an»,wvre.

l«J

*.^ "'y / '',• " '• V ' > «.."
J-

• ».

II wr kngw thitt 1 • c '- c ibi-n, fwr .; / 0, wf can «8»; (»>*) tti voncludi-

thai £' - 1.

:;< ^

Answer thenf cjurKtmni;.

). Sine - ) / 0, wt can U2t^ (**) t.j show that ^T " "« •*" w<-. lan

Bhcv. th.it T 7 = ? .

rr
^

^- *"'''" ? / Ol we can yjit: (ti*J to show thai - = i( wi: *

Ghow that ? * ? - ? .

|D - 1} 126J

(V>*) V^ V ,,

ij

V^ if 7. • V - X then ^ = »

J. Sirt-L- -1 / 0. wv cnji u^.1- (ft-fO t" eiimv that -~ = -a. )f wo tan

show thai -ii •-/ - «2^ .

e. For (jL- / 0, we ca/> ukc (•;.*> to chow that - - 0. if w#: can

6h.jw thM • a- = .

::« i:< .-:<

H.-rc ..r.- iomv pici.o.-h of .^ m.»(h.rc of a hlightly diJdront ty,,,-. Thr aamplch

l.'tl y.fii BOiTi.-ihinH .th-mi tu^w ih.- m.i. hinc wuika.

SjtnpJ." i: Samph- >:

^:lu^ J;]':i__
„D-A=0"'"D=Q -'a-A=o'>'-a=^

\
,

/ \ 1
/'

Sa.npU- i: SampJi <:

.\4 1 \ /

•a-A=0 "D--^ DA=0""-"D= ^
w ' \i

/
T^Ji^ machine will not .iccrpt (j ?
scnirm i-» with a naLme lor -^

in ihv multiplier position.

ID-I)

Fill the blanks.

D-A=0'--"D =A

n I

"^

._A_4-L

I

•D-A=0' D^Q

1
r

I J i 7-^4 3-9
9 5" V5

t")

''DA^O^''"-n=^O
"\

1 r

r-A-1--^
i'nA=0"""D=^

-A I r
3 7 J-JB4J
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(u-K

Check your anBwcJS.

|.:«J

"D-A-O' 'D =^
-^

i r~

'DA=0"'-"D=^

U
7 3 7- i * 1-9
9 5" 9")

-^
1

1

—
(^ * ^)(if) ^ 3-i' 7-',

=0>'<'"l

A i r
IB" 1 • B

fD-A=0»<'"D =^

Fill m ih>! I>l.jnk».

(^ 1 -^i • (a • J_J i ^ • 7 + * . a I

2,5 2- 7 -t S. ^/O)

!. If (|* j)-(7.6) = 3-6 I b._J_ thcl. I -t ^- -- il|4r—— I ? )'"l

.i^O)

•'• "(g4S)-(_L.>'--'-"^c._7_,h,>nf,i.^ (_2_/0)

111-]]

Chft)! your •Tiiev.'i; t-6.

1. IM^-" ^-(.iV) - -i-? 4 S... ,hen|4 ^- "'IX'''*
'

l<i-7 /O)

t. 11 (i 4li).U.c) ^ S.C4 l.-»-ll.^nl4^. ^"^ ''••'

•' ' » c a. C
[a c / 0)

4. If (ii »!-)•(«</)- .•14 filh,.n ^4 i-^ji|-£u. \(,l/v\

Ihi^ Xtt ih.- »-nii o) ihiv p.irl. K«_-luri) your b»uk lo your luachcr lomoirow.
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Angle Functions

Your students may enjoy connparing quadratic functions with what I have

called angle functions. This kind of activity w^ill be quite appropriate

when quadratic functions are studied in Unit 5.

Let's begin by graphing the function

f = { (x, y) : y = 3
|
x| + 2x + 4}

.

One way is to obtain ordered pairs that belong to f by substitution and

computation. A more conveniejit way is to recall a definition of absolute

value:

(1) V |x| =

I

X if X >

if X =

-X if X <

Using this definition, we find that f is the union of three sets.

f = ({{x, y); X > and y = {3 + 2)x + 4}

\^ { (x, y) : X = and y = 4}

w {(x, y): X < and y --= (-3 + 2)x + 4})

So, the graph of f is an angle.

f(x) = -x + 4,x<0
(0,4) f{x) = 5x + 4 , x>0

(1,0)
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Recalling that the graph of the quadratic function

(2) q(x) = ax'' + bx + c [a / O]

is a parabola whose orientation and shape depend on the values of a, b,

and c, we can draw an analogy here by noticing that the position and

orientation of the angle depended on the numbers 3, 2, and 4.

Let's investigate the function, where for some a / 0, b, and c,

(3) g(x) :^ a[x| + bx + c.

In view of the definition (1),

. (a + b)x -!- c if x >

(4) g(x) = c if X =

V(b - a)x + c if X < 0.

We may abbreviate this by writing

^(a -h b)x + c if X >

(5) g(x)

:,(b - a)x + c if X < 0,

Thus g is the unir ,f two functions, the graph of each is a ray, with

common end point (0, c). Now, if the two rays are collinear then

b+a = b-a-- that is, a = 0. Since a / 0, the rays are noncoUinear.

Hence, the graph of g is an angle , as our example suggested.

Let's investigate the graph in more detail. The side of the angle is

parallel to or contained in the x-axis if and only if b + a = or

b - a = 0. For example, let b + a = 0. Substituting in (5), we
see that

( x + c if X >

g(x) ='

((b - a)x + c if X < 0. [b - a / O]
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g(x) = {b-a)x+ c

x< g{x) = c, x>0
(0,c)

On the other hand, if b - a = 0, one side of the angle is either the negative

half of the horizontal axis [c = 0] or parallel to it [c / 0]. So, by assuming
that b^ - a^ / 0, v/e can require that both sides of the angle be oblique to the

X-axis.

(b - a)x + c, X > [b - a / 0]

g(x)

Mb f(b f a)x + c, X < [b + a / 0]

and both sides of the angle are subsets of some linear function which cannot

be parallel to the x-axis.

Following the development of quadratic functions, it is natural to ask next

about roots of the equation 'g(x) = 0\ Let's assume that b^ - a / and

that a. f 0. We wish to solve:

(6) a|x| f bx + c =

This equation is equivalent to the sentence:

(7) [x > and (b + a)x + c = 0] or

[x < and (b - a)x + c = 0]

which, under the above assumptions, is equivalent to:

(8) [x > and x = ^1^] "^ [^ 1 ^ ^nd x = g^]
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The solution of (6) is not similar to the solution of the quadratic equation. The

technique of completing the square has no analogue. In the same vein, the

angle's vertex is (0, c), while the vertex of the graph of the quadratic function

is

-b -b- + 4ac
2a ' 4a

The vertex of the fornner is restricted to the y-axis. The vertex of the

latter may be any point on the plane.

This suggests that we look for a more general angle function. Such a function

turns out to be, for some a / 0, b, c, and h,

(9) A{x) :^ a|x - h| + bx + c .

Let's use a technique analagous to completing the square to analyze A. We

see that

bx + c = b(x - h) + (c + hb)

so that

(10) A(x) = a|x - h| )- b(x - h) + (c + hb) .

Using the definition of |x - h|, and abbreviating as in (5),

.(b + a)(x - h) + (c -f- hb) if x - h >

(11) A(x) =<

(b - a)(x - h) + (c + hb) if x - h <

This certainly has for its graph an angle.
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Finally, we shall find the roots of;

a
I

X - h
1 + b(x - h) + (c + hb) =

just as we solved (6), retaining the same assumptions.

(12) ( X - h > and X - h = ^-4-^^
I

- b + a

or

'x - h < and X - h = ' ^? ^ ^'^^
— b - a

Rearranging, we see that

(13)

or

/ - (be + ha^) + a(c + hb) , ^ i. \
I X = —

^

' ^ '- and X > h 1

V b^ - a^
~

/

/ ^ __ -_JbcJJiafLl_aicJ-_hbI ,^^, < J, y
V b^ - a^

~ /

So, we have a result which is analagous to the familiar quadratic formula.

The next step is to consider the absolute value relations in two variables.

But this is material for a future article.

A. Holmes
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Fractions

Consider the child's initial contact with the words we use with fractions. He

learns to use the word 'half in many kinds of contexts.

Give me half of your apple.

Would you like half of this orange ?

I'll give you half of this egg for lunch.

I'll let you have half of my candy bar.

Which half of this banana do you want?

To make a banana split, you put half of a banana on each

side of a long dish.

I like half of a banana on my cereal.

Put half of the marbles in each bag.

What is half of 1 ?

In each of these illustrations, 'half of refers to a relation, but the relations are,

in most cases, significantly different from one another. There are a large

number of ways to cut a given apple in half. If half of an orange is thought of as

similar to half of an apple, the orange may be cut in any direction; but if the half

orange is to be considered an appropriate number of sections, the number of

ways to get half of the orange is smaller. The anr.biguity in 'half of this egg' is

considerable. [Are we going to scramble it? Is it hard-boiled? If it is hard-

boiled, shall we slice it? If so, shall we slice it the long way or the short way?

Any more questions ?] In each of the cases which concern a banana, there are

ideally just two halves --but what passes for half of a banana in some instances

will not do for a banana split; and the half of a banana on cereal is a quite

different situation. Half of a collection of marbles is another collection of

marbles, and if you have 10 marbles, all different, there are 252 ways you can

divide them into two collections of 5 marbles each. Half of the number 10 is the
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number 5--a cardinal nunnber has at most one half [there is nothing which has

this halving relation to the cardinal number 3].

There are contexts of other quite different kinds. These are not relevant to our

present purposes, but--to compound the confusion- -here are some examples:

This recipe calls for half a cup of sugar.

It's half a mile to school.

I'd like just half a bowl of soup.

There will be a half moon tonight.

Half of me wants to go to the show; the other half wants to stay home.

He is half-way committed.

It's a half-baked idea.

He only half did the job.

Would you rather have a half dollar or a half of this dollar?

He listened with half an ear.

In none of these examples is there one dealing with the number l/Z. Moreover,

in none of the common teaching aids- -folding or cutting paper or flannel, playing

with blocks or other counters, pouring sand from one container into another,

et al. --does a child nnake any use of fractional numbers. Engaging in such activi-

ties may enable a child to discover some relationships which are analogous to

relationships among fractional numbers, and this is both a blessing and a curse.

It seems not impossible that the traumatic experiences which all too many people

associate with mathematics begin with the introduction of *l/Z* as a synonym for

'a half. 'A half of a banana' makes sense, although, as we have seen, what sense

it makes depends upon the context in which it occurs; but in 'l/2 banana' the '1/2'

surely is not the name for a nvimber. Introducing ' l/2 banana' as a rephrasing of

*a half of a banana' does not lead toward recognition of fractional numbers. The

fraction symbol has several uses, only one of which is naming a fractional number.
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A bright first grader who is asked, "Which is more, one half of an orange or

one third of an orange?'' may quite properly ask, "Is it the same orange?" If

his teacher says, " No, " he may ask, "Are the oranges both the same size ?

"

Would there be any need for his question if the conversation were about numbers?

The number one-half is greater than the number one-third, period.

A large part of the difficulty we have been having in teaching the role of fractions

in the computational algorithms may lie in our failure to recognize those

situations in which the child is dealing with fractional niimbers and those

situations in which he is not. The "old-fashioned" teacher who kept his questions

specific and concrete was probably exhibiting more wisdom in this regard than

some of the "modern" approaches we have seen recently. For instance, the

confusion invited by an exercise like the following may be the result of the

unfortunate formulation of the directions;

Name the fractional number represented by the shaded portions

in each of the figures below:

The child who answers "correctly" that the first figure shows the fractional

number 2/4 and the second figure shows the fractional number 2/3 may note that

the shaded portions of the two figures are the same size. An obvious outcome

of this line of reasoning is the conclusion 2/4 = 2/3. But do those diagrams

show fractional numbers? Two quarters of the first figure are shaded; two

thirds of the second figure are shaded. It makes no sense to compare the shaded

portions unless the appropriate wholes (units) are taken into account. We can

note that relatively more of the second figure is shaded than of the first. An

absolute con^parison requires more information. Why? Because we are not



NS-12

dealing with numbers. The '2/4' and 'Z/3', if used at all, are names lor

the relation of the shaded portion of each figure to its whole.

Quite properly, a child spends a long time [at least two years] and performs

many experiments folding, cutting, separating, or joining pieces of paper, cloth,

plastic, or wood and discovers many relations which hold for fractional

nximbers as well as for the objects he has been using before he ever sees a

written symbol. He can discover "equivalence relations", "order relations",

"addition facts", "subtraction facts", "multiplication facts", and "division

facts" for fractions and fractional numbers, but he never has been working with

fractional numbers. In the more complex of his discovery exercises, he has

been working with concrete representations of composition of functions.

Usually, the child's first written computation with fractions has to do with

finding one half of a number. He does this by dividing the number by 2:

1/2 of 18 = 18^2 = 9.

He is not multiplying 1 /2 X 18; he is performing the operation of halving on 18,

and he finds the number which corresponds to 1 8 under this operation by dividing

18 by 2.

Somewhat later, he has no difficulty in seeing that two-thirds of 18 will be

twice as much as one-third of 18:

2/3 of 18 = 2 of 1/3 of 18 == 2(18 ^ 3) = 12

The fraction symbol can be introduced initially as an abbreviation for the ex-

pressions '1 half, '2 thirds', and the like. In this symbolisn^, 2 wholes is

written '2/1'. Manipulation of fraction cutouts show clearly that '

1
/2' , '2/4',

'3/b', '4/8', . . . represent the same relation. It serves also to show the commu-

tativity and associativity of certain particular function compositions and,

eventually, to demonstrate concretely the analogous operations on numbers.
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1/4 of 1/3 of (an object or a nximber) = l/l2 of (the object or the number)

1/3 of 1/4 of (an object or a number) = l/l2 of ( )

2/3 of 1/4 of ( ) = (2 of 1/3) of 1/4 of ( )
=

2 of (1/3 of 1/4) of ( ) = 2/12 of ( )=l/6of( )

1/4 of 2/3 of ( )= 1/4 of (2 of 1/3) of ( )
=

(2 of 1/3) of 1/4 of ( ) = 2 of (1/3 of 1/4) of ( )
=

2/12 of ( ) ^ 1/6 of ( )

The step from functions to numbers seems to be a small and simple matter, but

it may be quite the opposite. At any rate, recognizing that it is a problem is one

necessary requirement for its solution.

If you have 2 apples and 3 apples, you have 5 apples.

2+3=5

If you have 2/8 of an apple and 3/8 of an apple, you have

5/8 of an apple.

2/8 + 3/8 = 5/8

2 of 3 apples is (2 X 3) apples.

2 disjoint sets with 3 members each make one set with 2X3 members.

1/4 of 1/3 of an apple equals (1 /4 X l/3) of an apple.

3/4 of an apple and 1 /4 of an apple are 4/4 of an apple,

which is equivalent to l/l (1 whole) of an apple.

3/4 +1/4 = 4/4=1/1

Ylo^w big are the steps between successive lines in the preceding list? Are all

the steps the same size? Does having taken one of these steps make subsequent

steps easier? We need answers for these questions.
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Having established the requisite concepts informally, we may proceed to a more

forn-ial treatnnent of fractional numbers and operations on fractional nvunbers.

What is a fractional number? It is an infinite set, an equivalence class, of

ordered pairs of cardinals in which the. second component of a pair cannot be

zero. Thus, any ordered pair of cardinals of the form (n, 2n), n =^ 0, belongs to

the fractional number l/Z, and any pair like (2, 4), (50, 100), or (124, 248) which

also belongs to that niomber suggests a name (2/4, 50/100, 124/248) for the

number. Are these ideas easy for children to grasp? Surely, a few simple

declarative sentences will not sviffice. It is not wise to be too glib too soon.

Where do we start? [Remember that the children have been working informally

with fractions for several years. This is the "start" of the formal treatment.
]

Perhaps the best way to initiate the development of the meaning of fractional

number is to work with equivalence relations among fractions. Suppose that we

define a fraction as a name, or a symbol, for a nvunber or a relation. We shall

be concerned now with the fraction as a numeral, a name or symbol for a

number. To show equivalence among fractions, we might use strips of paper

which can be folded appropriately, a number scale which resembles a magnified

version of a few inches on an architect's rule, a nnake-believe machine which

will cut and join strips of wood according to the way certain buttons are pressed,

or other schemes for showing that certain sequences of maneuvers produce

equivalent results in terms of the names which may be given to these results.

b

a

H
\

\
\ H

i
2 I 1 \
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How long is segment a? It is 1 whole unit (y), 2 half-units (y),

4 8
4 fourth-units {-^), and 8 eighth-units (-g); and if we had more marks on

the scale, we could see that any fraction for which the two components of the

pair of numbers are the sanne could be used as a name for the number which

is the measure of this length in terms of the unit we are using. Thus,

{(1,1), (2, 2), (3, 3), . . . , (n, n), . . . } is the fractional number which we can

name by using the nanne suggested by any one of its mennbers.

1 2
Similarly, the length of segnnent b is 1 half-unit (y). 2 quarter-units ( x)i

4 eighth-units ( q-), and so on; and if we took the sanne unit scale and divided it

.3. .^. .5,
differently, we could find the same length expressible by -7- , -ry, TTT* ^nd an

endless list of equivalent fractions.

A great deal of work, preferably with a variety of materials, must be done to

establish the idea that each fractional number, like each cardinal number, has

an endless list of names. For some children, this idea becomes clearer if one

speaks of different ways to think of a number rather than of different names for

the number. " I can think of 99 as 1 00 - 1 if I want to. " " Why wovild you want

to do that?" "Well, the easy way to find the cost of 3 pounds of steak at 99<;^ a

pound, ..." " Oh, I see. How can you tell how you want to think of a number ?'

'

1 5
"It depends upon what 1 want to do with it. Sometimes I want to think of y as t-q.

Sometimes I want to think of y as 7- . The way my mother cuts pies makes me
1 3

think of rr- as 7-." Different ways of thinking about, or writing about, or talking

about, or naming the same number--this makes sense. And aren't we lucky to

have a choice ?
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The words applied to the two terms of a fraction give a clue to the concepts

implied.

3 •• numeratetor "I

lator/o J „ I number name
8 - denominate ~

The numerator number is used definitely in the cardinal sense; it tells how many

of something. What is this "something" ? The name of the "something" is

suggested by the denominator.

In the introduction of addition of fractional numbers in its first abstract

presentation, I have found it helpful to write the fractions like this:

1 eighth + 2 eighths = 3 eighths
1 eighth g-

2
+ 2 eighths + 3-

3
3 eighths q-

8 8 8

"You have to get what you're adding. " If you are adding numbers of eighths, the

sum is a number of eighths. Always this svun may be expressed in other ways

(t-t-, for instance, in this case) and sometimes it may be expressed in "simpler

form", but these are matters of what you choose to call your answer.

Now, consider this:

1 fourth T + l4 8

+ 3 eighths

The sum exists. In fact, we have just written a couple of its names. These

names are probably not the most convenient ones for our purposes, so we need

a way to find a more convenient name. If the denominators of the fractions were

the same, we could add the numerator numbers to get a numerator for the

"simple" name for the sum and use the same denominator. Can we find a name

for — whose denominator is 8? (Can we think of 1 fourth as some number
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13 5
of eighths ?) If a child knows without going through all of this that x "*"

o"
~ F*4 o o

should we insist that he go through it anyway? [A kindergarten child once said

to me, "A half and a third is five sixths." I said, "How do you know that?" He

shrugged, "How do I know anything? It just is."] I would let a child who knows

an answer write that answer and give him an example for which he needed the

computation in teaching him how to do the computation.

Suppose someone does not know a simple name for — + :r-. The standard

algorism for finding this name is to choose, out of the endless list of names for

J and tr-, a pair of fractions with the same denominator. It is standard practice

to choose that pair of names in which the denominator number is smallest.

y - 7" - yy ~ To - • • . and T - T - Ty - Tq" = . . . » but we usually choose -r

2 3 2 3 + 2 5
and 7"; T ^ T ~ —

T,
— ~

TT' There is no mathematical law w^hich says we have

to make this choice. In fact, a person who would like a picturesque way of going

insane could spend the rest of his sane years writing different correct computa-

tion? for the sum of y and y. However, small numbers are usually easier to

5 65
work with than large numbers, and j- sounds "simpler" than y^-. Discretion is

not out of place.

Before introducing subtraction, we must establish order-relations among

fractional numbers. The "function vs. number" distinction enters the picture

here, I think. Why will a child who knows without question that one-half of

something is more than one-third of it very often state with equal conviction that

y > y? When he is dealing with numbers, 3 > 2, so why isn't y > y? K he

has ever encountered sonne of the foolishness about "the Golden Rule for

equations and inequalities" or "treating both sides alike", he can "prove" that,

because 3 > 2, y > y.
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We must have established, intuitively at least, that each ordered pair of

cardinals (second component ^ 0) belongs to one and only one fractional number.

Next, we need a way of determining whether or not two different such ordered

pa.irB belong to the same fractional nximber. A usual way of doing this is to

parlay the question into equivalence of fractions, somewhat as follows:

3 ? 21

13 " 91

3 3X7
13 " 13 X 7

21
" 91

3 21

13 91

or

21 21 -r 7 3

91 " 91 f 7 " 13

21 3

91 " n

or
21 3X7
91 13X7

3 X 7 -i- 7 3X1 3

13 X 7 -i- 7 13X1 ' 13

We say that two fractions are equivalent (they name the same number or are

different ways of thiivking about the same ntimber) if we can mviltiply or divide

the numerator and denominator numbers of one of them by some [same] number

and get the numerator and denominator numbers of the other. [After

multiplication and division of fractional nvimbers have been introduced, it can be

shoMm that this amounts to miiltiplying or dividing by y, operations which al^^ays

res\ilt in the same number we started with. ] If two fractions are equivalent,

then the corresponding ordered pairs of cardinals belong to the same fractional

number. In general, {(p, q), (2p, 2q), . . . ,(np, nq), . . . } € ^ (q =^ 0, n =^ 0).

Another wjiy of telling v^rhether two fractions are equivalent is to note the

follovring illustrations of an important relation:

1_

2

2

4

1X4=2X2

5_

8

10
16

5X16= 10X8

ii
12

3

2

18X2=3X12

L4
7 'I

14 X 2 ^t 3 X 7
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Note that this amounts to comparing nximerators of fractions having a common

denominator,

i^ X A ^ 1 X I
7 2 ^ 2 ^ 7

14X2 3X7

1

2
x| = 2

4
X 2

2

1 X 4 2 X 2

8 8

4

8
=

4

8

14 14

28^ 21.

14 * 14

3. C
Stated formally, ^ = ^ is a necessary and sufficient condition for 'a X d = c X b'

'a c
--that is, h " d ^^ ^^^ only if ad = cb' is a theorem.

We can use this relation to show that, if the numerator and denominator numbers

of a fraction have a common factor, removing this common factor (by division)

produces an equivalent fraction.

11 = 5X3
20 5X4

nXaa, 5X33,
FXT = b

b«c^^«e Tx-i = 1 because

(n X a) X b = a X (n X b) (5 X 3) X 4 = 3 X (5 X 4)

[(n -^ n) X a] X b = a X [(n v n) X b] [(5 v 5) X 3] X 4 = 3 X [(5 -^ 5) X 4j

{IXa)Xb = aX{lXb) (1X3)X4 = 3X{1X4)

aXb = aXb. 3X4 = 3X4.

Two fractions either name the same number or name different numbers. If the

numbers are different, one is larger than the other. Once we have a way of

determining which of two fractional numbers is the larger [and which is the

snnaller] we have a way of ordering the set of fractional numbers.
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One widely-used definition of order among [fractional] numbers is the

following:

A number whose graph is to the right of the graph of another

number on a picture of a number-line like this:

I 1 1 1 1 ».^321
I

is the larger number. It may be pedagogically better to start with the

"opposite" definition, since we usually read from left to right: Of two numbers,

graphed on this number-line picture, the one to the left is the smaller.

*1' '1*1 1

T is to the left of y ; -y < y .

This definition has always seemed unsatisfactory to me. How does one tell

what points on the scale should be associated with certain given numbers? We

can take a strip of paper which we will call 1 vuiit, fold it into two equal parts

and then into three equal parts, and conclude that t- is less than t- because the

first fold for thirds "comes before" the fold for halves, perhaps; but suppose

5 1

3

the two numbers we are considering are q- and jy. It is not easy to divide some

object, even a unit segment, into 21 congruent parts. Comparing 13 of Zl

congruent parts of an object with 5 of 8 congruent parts of the same object is

an extremely difficult mechanical task, and even if we could achieve this, we

might still have the problem of associating the results with the numbers we

are comparing. It is better to work with the numbers themselves.

The san:ie test we used for equivalence of fractions can be expanded to determine

which of the numbers named by the fractions is larger.

8 21 IT • 8

5 X 21 ? 13 X 8 13 X 8 ? 5 X 21
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These products are not the same, so the fractions are not equivalent.

105 > 104 104 < 105

i > il il < 1
8 21 21 8

Again, this amounts to comparing nvimerators of fractions having a common

denominator.

ivil^ilvi^^, i3_8,5218^21-21^8^''^ 2r^8-8^2r
5 X 21 „ 13X8
168 168

13X8
168

. 5 X 21

168

105 ^ 104
168 ' 168

104
168

. 105
< 1^8

Stated formally, the necessary and sufficient condition that the fractional nxxmber

a c
r- be greater than the fractional number -r is that the product a X d be greater

a c
than the product c X b, C" -* "J

""
'

'' ad > cb. The "greater than" relation also

establishes the "less than" relation:

^ < §- <=> ad < cb.
b d

Once order relations are established, we have a way of telling whether or not an

expression containing a minus sign is meaningful, and subtraction of fractional

niimbers can be treated in a manner analogous to the treatment of subtraction of

cardinals. Everything which has been said about fractions in addition exercises

applies to fractions in subtraction exercises.

105 one hundred sixty-eighths

in>. ^ ^ A . • v.v 105 104 _ 1-104 one hundred sixty-eighths
TZfi'

~
TTTft

~ TbR
1 one hundred sixty-eighths

"You have to get what you're subtracting." In this case, there is no "simpler"

name for the difference.
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In essence, tnali ipln ation of fractional numbers is deti: id a^; lollows:

a c _ a X c
7^ X. ~^ —
b d b X d

2 4 2X4 8
•

The fifth grader can accept this definition, given the appropriate background.

He knows that y of — of a strip of paper is 3- of that strip of paper; with

numbers, T of T ~
a"

3-nd, since j- oi -j- - y X — (it has been so defined),

1 V 1 - 1
2 4 8-

Now, consider tlie following example of the standard algorithm for multiplying

fractional numbers;

2

-^17 17

1

We could vrite this:

3 10 V =. 3X2
X

5 V =. 17 1X17 17

Who understands v/hat u e have done, in terms of operations on numbers? About

two years before we tackled an example like this, we should have started to

develop an understanding of the principle that di\ iding one factor of a product by

a given number divides the product by that number. 1 have found this principle

difficult fo) children to grasp. They need a long time, and many experiences

like the fol owing, before any real understanding appears.

7 X b =

7 X (b ^ 2) -

7 X (h T 2) = V 2
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Eventually they get to something like this:

10 X 12 = _

(10 ^ 5) X 12 = _

(10 ^ 5) X 12 = ^ 5

(10 V ) X 12 = 120 4- 5

10 X (12 -f 6) =

10 X (12 -^ 6) = V 6

(10 -^ 5) X (12 4- 6) =

(10 4- 5) X (12 4- 6) = 120 4-

(10 4- 5) X (12 4- 6) = 120 4-
( )

We are now ready to see the rationale of the example with the fractions.

3X101 V ii
5 17 5X17 by definition

3 X (10 4- 5) = (3 X 10) 4- 5

and

(5 -=- 5) X 17 = (5 X 17) 4- 5

dividing one factor of a product by a given

number divides the product by that number.

1 V ii
5 ^ 17

3X2X5
17X5

3X10 ^ 3 X (5 X 2)

5X17 5X17

3X2X54-5
17X54-5 17

There is a number, 5, which is a factor of both

the numerator and denominator numbers of this

product. Removing (by division) this common
factor produces a "simpler" name for the

product.

2

-a-x 17

3X2
1 X 17

6

17
is a handy way to record the mechanics of

this procedure.
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.\\ some later date, the child sliould he able to interpret a complicated example

somewhat as follows:
1 1 5

3 T 10 3_ -y >ft" ^ =.

5 ^ h "" 11 ' *- ^ ^ ^'
1 1 1 1

1 ^
1

because

3^5^10_3x5xlO_
5fall 5X6X11

3 X 5 X (Z y 5) ^ 5X3X2X5
5X(3XZ)X11 " 5X3X2X11

5X(5x3XZ)v(5X3X2) ^ 5

11 X (5 X 3 X 2) -i- (5 X 3 X 2) 11

and the top line in this example is a handy way to record the mechanics of this

procedure. It is sad that we cannot point out, at this stage, that what we have

done amounts to dividing the product by 1, but we are just getting ready to

introduce division of fractional numbers.

In any division example,

4 2'—^
because

We do not introduce division examples involving fractions with one like the

foregoing. We begin by recalling what we know about division of whole numbers.

We note, pointedly, that if XA =0» ^^^^ O ="A = D ^"^ Q^D "^A '

where
| I . /

\

. and
( ) are used as placeholders for numerals for appropriate

whole numbers. We review this generalization about whole numbers at this time,

because we wish to show, eventually, that the same generalization holds for

fractional numbers. We have found that fractional numbers whose names have

the form y behave like whole numbers. This gives us immediately a class oi
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instances of the same generalization with fractional nximbers. We probably

proceed next to examples like this:

1- - - = n12 I—

J

We ask questions, such as "How many halves in 1 grapefruit? Then how many

halves in 3 grapefruit?"' "Starting with 3, how many times could you subtract

y (from the successive differences) to arrive at 0?" "— X what number = ;-?"

"Refer to this number scale:"nil 3253
2 T I T 2 T

Starting at '0' how many tinnes will you have to add a segment this long:

'j

' 3
'

3 13^
to arrive at -j- ?" " Does -p-r— = ^-x^-? Why?" All but two of these questions

suggest physical interpretations of a division situation.

There are other useful tactics. For instance: "Does multiplying and dividing

both dividend and divisor of a division example by the same number change the

quotient? By what number can we multiply y to make the result easy to divide

by? Then, -^X-j- -r yX-p =T--^y. But y X -p is equivalent to 1, and

dividing by I produces a quotient equal to the dividend. [Eventually we get

tired of writing the expression which has no effect on our answer, so we leave

•* *ic 3.1_3^2_6 „, , 1^6_3,,
it out.

J
So-j--y--j-X — -— , Check: T ^ T - T«

Ajiother tactic, which probably should not be taken except to provide enrichment

for high achievers, employs the following relation;

5. -L £ - ^ "^ c

b d " b ^ d
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This does not appear in any textbook, to my knowledge, although it is implied In

the "common denominator method" for division of fractional numbers. The

trouble with it, of course, is that it frequently produces an expression just as

complicated as the one in the original example; in other words, it frequently gets

you nowhere. But notice:

J- ^ 1 = 3 -=- 3 ^ 1_

10-5 10 -^ 5 2

_L ^ A - 9 ^ 3 ^ 1
11 • 11 " rmr i

9 H- 6 3/2 3

12 • 12 12 ^ 12 1 2

1 • _L - 3-^7 _ 3/7
5 ~ 13 5 4 13 5/rT

correcf answer?

correct answer?

correct answer?

correct answer?

(Now we are involved with another use for the fraction symbol: r- = a -r b . )

Pursue the last example a little bit further and see what happens.

3/7 ^ 1 ^ _5_ _ 3 V 5 ^ 1 ^ _7_

VTT 7 13 " 7 V 13 5 ' 13

The fact that division of cardinals is interspersed Avith division of rationale in

this development makes it hard to explain.

After exploring a number of avenues which suggest ways of dealing with

fractions in division exannples, we are ready to introduce the standard algorithm.

If we wish to verbalize the instructions, we need the word reciprocal (or the

equivalent phrase, multiplicative inverse , which is such a tongue-twister that

most people avoid it). Two numbers are reciprocals if their product is 1.

' 1
*

' 3

'

[We follow the custom of writing y as '1', y as '3', and so on, ] Being recip-

rocals is like being cousins; it takes two, and each bears the given relation to

the other (except for 1 which is its own reciprocal and which has no recip-

2 3 3
rocal). The number -y is the reciprocal of the nunnber y , and y is the
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2 3 2 _
reciprocal of ^, because y X — - 1 . It soon becomes apparent that the

reciprocal of a fractional number can be named by the fraction obtained by

interchanging the numerator and denominator of a fraction which names the

given number. [The word invert, properly defined, should not be in ill repute.

It does not mean "turn the fraction upside down," If it did, the reciprocal

3 fr

of 7" would be T . ]

In the standard algorithm for dividing fractional numbers, a division example

becomes a multiplication example.

I - i = I V 1
8 • 5 8 2

T/ie quofi'enf of a first fractional number by a

second fractional number equals the product of

the first by the reciprocal of the second.

It is helpful to note that, in a "real-world" context, the reciprocal tells how

many of a given part of an object are contained in 1 whole of that object.

In
1

one whole candy bar, there are 1 two-thirds of the candy bar and j- of

to

1
'3'

another two-thirds of the candy bar. Another way to write '1 and t' is y .

3
There are -j two-thirds of a candy bar in 1 whole candy bar. It is essential

3 3 1

realize that, in this situation, the y does not refer to y (or 1 y) candy bars,

but to
J-

(or 1 -j) two-thirds of a candy bar . Once this idea is clear, it is easy

to see that there would be 5 times as many y candy bars in 5 such bars as

7 7
there are in 1, or q- times as many in 3- candy bars, and so on.
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The particular relevance of the foregoing paragraph to our discussion of division

of fractional numbers comes in the interpretation of answers to "word

problems' '

.

HoAV many pieces of ribbon, each 27 inches long, can be cut

from a 10 -yard spool of ribbon?

3
27 inches = -j oi di yard

3
10 -T — should give the answer

10^1= 10xi= i^= 13i
4 3 3 3

The answer to the question is surely 13, but how long is the

extra piece? Is it -r- of a yard (12 inches) or rr of 27 inches

(9 inches)? A sixth grader should be able to tell.

Larded through an entire development of the use of fractions should be a great

deal of work on estimating answers.

How can one tell whether ^ + -5- > 1 is a correct statement?

* 1" '2'
If

-J
refers to an acre of land and rr- also refers to an acre of land, what does

' 1
' refer to ?

'1' '2'
If

J-
and -J- refer to fractional numbers, what does '1' refer to?

'1' '2'
Suppose

-J
refers to a mile and -:r refers to an hour?

Questions like these should be asked, discussed, answered, and understood in

every situation in which fractions appear.

J. Phillips

H. Vaughan
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Activities in the Field of Self-Instruction

General

Since early in 1961, the University of Illinois Committee on School Mathe-

matics has been preparing and evaluating self -instruction materials. Our

experimental programed texts have been used in research studies in over

fifteen schools with the co-operation of more than twenty teachers. Topics

treated have come from Units 1, 3, 4, 6, and 9 of UICSM High School

Mathematics [University of Illinois Press, Urbana, Illinois].

The materials that the UICSM Programed Instruction Project has produced

have been made subject to circulation restraints, following the general rule

that, until the results obtained in our evaluations have stabilized at an accept-

able level, nnore modifications are necessary and general circulation is not

possible.

Trials of Unit 1 materials during the 1961-62 and 1962-63 school years have

resulted in the design of a final research study on those materials. The study

will be conducted during the 1963-64 school year. Upon its completion, a

definitive statement about the Unit 1 materials and their availability will be

made. Also during the 1963-64 school year, studies will be conducted

involving the materials derived from Units 6 and 9.

Deacription of materials

Our self-instruction materials are printed as programed texts. Most texts

are accompaoiied by a work sheet which provides a place for the student to
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write his response to each problem. Sometimes an entire problem is re-

peated on the work sheet page, especially when the student is to fill in blanks

to complete a sentence. The work sheets are obviously not re -usable, but

the programed texts are re -usable.

Perhaps the nnost basic characteristic of all the UICSM-produced self-

instruction materials is the flexibility of presentation. Most of the time

we employ a linear technique, which requires each student to understand

each discussion and work each problem. There are times when we use

branch schemes, which allow any two students to follow different discussions

and problems. Some branches provide enrichment work; some provide reme-

dial work.

Much flexibility derives from the fact that our use of a linear technique has

not been restricted to the presentation of small bits of information at scat-

tered intervals. Instead, a full-page format is usually used, and there are

sometimes lengthy discussions of previous problems or of new ideas. There

are frequent illustrations. With occasional exceptions, we have up to ten

problems on a page, all to be done before checking any answers. In a cer-

tain sense, the variety of situations and problems encountered by each stu-

dent approximates what he encounters in a carefully conducted UICSM class.

Achievement tests explicitly covering the material treated in the programed

texts have been our basic evaluation instruments.

Research-- school year 1961-6Z

Our research work began officially in June, 1961. At that tinne a project

co-directed by Max Beberman, Director of UICSM and Professor in the

College of Education, and Lawrence M. Stolurow, Director of the Training
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ReBearch Laboratory of the Department oi Psychology and Professor in the

Colleges of Education and Liberal Arts and Sciences, was granted support

under the National Defense Education Act, Title VII, through the Educational

Media Branch of the United States Office of Education, Department of Health,

Education and Welfare.

The project, entitled "Connparative Studies of Principles for Programing

Mathennatics in Automated Instruction", has December 31, 1963, as its ter-

minal date. The research has been oriented so that, in putting various sec-

tions of the UICSM curriculum materials into self-instruction form, we could

learn principles for programing which would have a generality beyond their

use in secondary school mathematics materials.

For one of our studies during the 1961-62 school year we prepared eight pro-

gramed texts, with accompanying work sheet materials and achievennent tests.

The content was based upon certain portions of the UICSM Unit 1 . In preparing

these texts, we selected topics from the Unit which needed different pedago-

gical approaches so that we would become familiar with problems of

re-creating, in self-instruction form, many classroom situations.

The nine teachers fronn seven schools who co-operated in the trial of these

early materials were chosen on the basis of their experience with the regular

UICSM materials, including Unit 1. As we had not prepared programed texts

embodying all of the Unit, a student received instruction both from

self-instruction materials and from his teacher.

The results of this study are presented in reference (1), as listed on page 29.

In brief, the study assured us of the feasibility of instruction employing only

our programed texts with their flexible teaching strategies and flexible format.
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Weekly reports submitted by our co-operating teachers, together with analyses

of test data and other response data from the students, gave us this assurance.

Also during the 1961-62 school year, we produced five programed texts which

covered selected topics from UICSM Unit 3 and three which covered Unit 4

topics. A preliminary survey of the results achieved by students using the

Unit 3 self-instruction materials led to the conclusion that the texts should be

extensively revised before another trial. The progranning skills developed in

the preparation of those texts had application in the preparation of additional

Unit 1 materials, and no Unit 3 sequence was included in later studies.

The materials treating Unit 4 topics were used in a separate study. A signi-

ficant aspect of the study was the use of self-instruction materials to control

many variables present in typical teacher-class interactions. With such

control, data relevant to a specific pedagogical question could be gathered

without the introduction of unwanted sources of variance.

One finding of the Unit 4 study was that students who had been taught by dis-

covery [inductive] techniques for a full year had acceptable achievement on

new materials which were taught with deductive techniques.

The work of the 1961-62 school year resulted in the formulation of sonne

preliminary conclusions about the construction and classroom use of

self-instruction materials. In brief, the actual writing of the nnaterials

contributed significantly to our understanding of the pedagogy of classroonn

presentation, and from their classroom trial we immediately received use-

ful feedback for revision both of the nnaterials and of our teaching technique.
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Research -- school year 196Z-63

Another series of studies commenced in July, 1962, when a set of eighteen

programed texts was prepared covering the whole of UICSM Unit 1. Eight

of these texts were revisions of the first Unit 1 self-instruction materials,

while ten were new.

A brief statement about the pedagogy, which cannot be fully descriptive, is

that we have included many developmental sequences of exercises to imple-

ment discovery techniques and many introductory "real-life" situations to

lead to discussions of new mathematical ideae. Personal mannerisms which

are often part of classroom pedagogy are impossible to put in a book. We

have used frequent changes of pace to help the student learn and stay inter-

ested in mathematics. Both the appearance and content of the pages contri-

bute to such changes.

Nine teachers from eight schools and a total of twelve classes co-operated

in a trial of the eighteen programed texts in the first semester of the school

year 1962-63. Data from the students is currently being analyzed.

Being aware that there were many ways a teacher could use self-instruction

materials with students, we defined three nnodes of use for our study. We

could then relate student achievement to the properties of each mode.

Following are descriptions of the modes:

Mode 1 -- " Pure"

The only instruction students receive, except for unusual cir-

cumstances, is by means of the programed texts. Students
work in the materials throughout each class meeting, except
when taking appropriate achievement tests. Homework assign-
ments, when given, are to do further work in the programed
texts.
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Mode Z -- "Anticipating"

The students receive instruction both from the programed texts

and fronri their regular classroom teacher. Assignments either
for homework or lor in- class work are given m such a way that

every topic the teacher discusses has been anticipated by its

treatment in a programed text. As these texts give the intro-

duction to topics, the teacher's discussion includes elaboration
and clarification of the new topics. In addition, the teacher is

encouraged to give a different perspective on the topic and help
clear up general or individual difficulties of the students.

Mode 3 -- "Following"

The students receive instruction both from their regular class-
room teacher and the programed texts. Assignments either for

homework or for in-class work are given in such a way that

every topic the teacher discusses is followed by its treatment
in a programed text. As the teacher gives the introduction to

topics, the programed texts give the additional exannples and a
different perspective.

Although complete quantitative analyses ol the student data collected in the

1962-63 study are not ready, some preliminary statements of conclusions

can be given as follows:

(1) The mode most suited to controlled research in which instruc-
tional variables are carefully assessed is Mode 1. In that

mode, teacher-student interaction is severely minimized and
the self-instruction materials are the exclusive vehicles of

instruction. There is some indication, however, that student
attitudes are still strongly influenced by the classroom teacher.

(2) It is extremely difficult to write self-instruction materials
that alone are as effective as a well-trained and experienced
teacher. When control and "pure" experimental groups are
compared, the control groups often outperform the experi-
mental groups, but not always to a statistically significant
degree

.

(3) Materials which do an excellent job under Mode 2 are unlikely
to do as well under Mode 3. Mode 2 conditions tend to pro-
duce results superior to Mode 1 conditions, and the results are
more similar to those fronn control groups. The co-operating
teachers who had participated in both the 1961-62 and 1962-63
studies indicated that they preferred either Mode 2 or Mode 3

to the Mode 1 restrictions of the 1961-62 trial.

(4) Special measures must be taken to ensure that discovery
sequences function as intended. When a teacher leads a

class through a discovery sequence, the discovery of the

generalization by sonne of the students strongly motivates
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other students to find it. Students studying self-instruction
materials work independently and at their own pace.
Therefore, the class as a fvmctioning unit does not exist and
the beneficial interaction effects are not present.

On the basis of these preliminary observations, we feel that self-instruction

materials written to be the exclusive medium of instruction [as under Mode 1]

will do their best job under flexible adaptations of the conditions of Mode Z.

On the other hand, none of our materials have been written to provide review

only. We think that there is a place for self-instruction review materials

and that these could be successfully prepared for use under conditions like

those of Mode 3. In addition, we are experimenting with new techniques to

solve the problem regarding discovery sequences.

The production and experimental use of the eighteen texts was supported in

part by the Course Content Improvement Section of the National Science Foun-

dation. This support will also make possible our continuing efforts to use

self-instruction both as a means of developing text materials, not necessarily

self-instructional in nature, and as a research tool.

A programed text treating topics from elementary symbolic logic, based on

the appendix to UICSM Unit 6, is being prepared and tested using students

at various stages of their mathematical development. A knowledge of rules

of reasoning is useful to students wherever proofs are studied. This can

occur in almost any high school mathematics course.

One of the appendices to Unit 9 treats the mensuration formulas of solid geo-

metry. We have written a programed text based on this and other UICSM-

produced solid geometry materials. This text was intended for use by stu-

dents with either a modern or a traditional background. Student data gathered
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from a trial in May, 1963, indicates that the test is quite difficult and does not

communicate well enough with students having no previous UICSM training.

The results of our trial indicate that students with UICSM training do

significantly better in this particular text.

Future plans

As has been indicated above, the UICSM project has an extensive research

program planned for the 1963-64 school year in the use of self-instruction

materials. Both the logic and solid geometry materials will undergo extensive

revision based on the results of their recent trials, and new evaluation studies

will be conducted.

Questions regarding teaching strategies, methods of presentation within a

programed text, and methods of use of programed texts are being investigated.

In addition, we plan to investigate relationships between use of self-instruction

materials and such variables as ability and time.

An entirely different dimension of the use of self-instruction materials will be

investigated as we begin to include the step of programing into the writing of

new curriculum materials. We hope that close co-ordination between the

authors of our new curriculum materials and experienced programers will

help produce new insights and perspectives. Since putting materials into

self-instruction form yields both content and pedagogical ideas, this inter-

action should contribute both to the student and teacher editions of materials.

O. Robert Brown, Jr.

General Interest Publications

(1) Wills, Herbert, " The UICSM Programed Instruction Project. "

American Mathematical Monthly, Vol. 69, No. 8, October, 1962.

(2) UICSM Staff, A Description of UICSM Materials for Self-Instruction.
February, 1963. [Includes a reprint of (1)]
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Technical Reports

(1) Brown, O. Robert, Jr., "A Comparison of Test Scores of Students
Using Programed-Instructional Materials with those of Students Not
Using Programed-Instructional Materials." Technical Report No. 3,

July, 1962.

(Z) Wolfe, Martin, "Effects of Expository Instruction in Mathematics on
Students Accustomed to Discovery Methods." Technical Report No, 4,

January, 1963.

T*st lUm FiU Project

One of the most interesting and most challenging projects which is presently

being worked on by the UICSM research section is the development of a file of

test items whose validity and level of difficulty have been determined but which

are, as much as possible, neutral with respect to the course of instruction.

Item analysis is being carried out on a variety of test items which have been

used in the past, and work is in progress on constructing new test items for

further analysis. We believe that teachers can help us greatly by sending in

interesting test ideas, and we shall try to reciprocate by publishing ideas

teachers nnight like to use. We intend to include sample items from the pool in

the UICSM newsletters and invite any of you who can to try these items in your

classes and send us the results. When you send us items, we would appreciate

knowing the following:

1. What per cent of your classes got it right?

2. What were some of the common erroneous responses?

3. What per cent made each of the erroneous responses?

4. How many students were in the classes that took the test?

5. Grade level(s) of classes taking the test?
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Here is a test item which shows something about understanding the decimal

numeral system. Do not be surprised if many of your students fail to get it

correct.

Arrange the following from smallest to largest:

.00501 .017 .000008 .0030 .010005 .001 .007 .0081

.0015060 .0000001 .00003 .01 .0057 .196 .0400000

.001963 .OOOZ .0000063 ,001060 .00069

A con-imon erroneous response is as follows:

.0000001

.0000063

.0015060

.0400000

.000008
,001060
.001963
.010005
.00003
.00069
.00501
.0002
.0030
.0057
.0081
.001
.007
.017
.196
.01

Please send any correspondence regarding the test item pool to;

Mr. J. A. Easley, Jr.
Research Coordinator
UICSM Math Project
1210 W, Springfield
Urbana, Illinois
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Follow-Up Study

The UICSM research section is presently conducting a Follow-up Study on

students who have completed three or more years of UICSM materials. It is

especially hoped that this study will provide us with some knowledge of the

effects of the UICSM mathematics curriculum on college work. Following is

a brief outline of the work being done on this study.

In December, 1962, the first phase of our Follow-up Study was begun. It was

decided to limit the initial sample to those who had graduated from high school

in 1962, who had completed at least three years of UICSM mathematics courses,

and who were enrolled in a college or university. This limitation was made in

the light of several factors — first, this was the first group to complete (or

nearly complete) the current UICSM nnathematics courses; second, these students

would provide us with the most easily accessible sample; and third, we would be

able to follow the students throughout their four years of undergraduate study.

We wrote to the high schools which we knew had graduates w^ith the above

qualifications and,from 26 high schools throughout the country, received the

names of approximately 600 students. Each of these students was contacted

and asked to fill out a questionnaire pertaining to his high school and college

work. We also asked the students for permission to obtain their high school

and college transcripts. The co-operation we have received from the students,

the high schools, and the colleges has been exceptionally good. At the present

time, we have had about 75 per cent of the questionnaires completed and returned

from students in over 200 different colleges and universities, and 95 per cent

of those returned have included the permission for the transcripts.
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We are now processing the data received from the questionnaires and transcripts

and hope to have soon a summary report which will include data on the following:

1. The nnathematics and science training received
in high school

2. The nnathematics courses being studied by these
students in college

3. Grades received in both high school and college

4. Majors in college and planned careers of these
students

5. Comnnents from the students about their high
school mathematics training

Work is in progress on the second phase of this study involving the high school

graduates of 1963. In this second sample we hope to ask approximately

2000 students to fill out a similar questionnaire. Students of the

second phase sample will also be followed as they progress through their

college careers in order to obtain more data indicative of the effects of the

UICSM curriculum on college work.

Those who would like to receive a copy of the summary report of the first

phase of our Follow-up Study should send their names and addresses to:

Mrs. Judith E. Boyle
UICSM Mathematics Project
1210 West Springfield
Urbana, Illinois

Your nannes will be added to our mailing list and you will receive a copy of the

report as soon as it is connpleted.
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Editor's Page

Since the activities of UICSM have become so diverse, it is natural that our

Newsletters should reflect this. The information in the articles appearing in

Newsletters will not apply equally to all the classes taught by UICSM-trained

teachers. On the editor's page, there will be a short discussion of each article

and how it fits into the educational picture as we see it. The editor's page will

also contain any other messages which we believe fit better there than in sepa-

rate articles. If you have any comments on our new format, we would welcome

them, and we will try to use any suggestions you might have for improving the

Newsletters,

The UICSM staff is not unlike the staff of most schools. Each year sees many

changes in personnel. In recent years, we have had many additions and very

few subtractions. Thus, it is possible that some of you are still corresponding

with people who are known to you. Most of our readers, however, are probably

seeing, on articles and correspondence from this office, names that are com-

pletely new to them. It is with the thought in mind that you might like to know

something about the people behind the names that, in this and further News-

letters, we will provide a short biographical sketch of people on our staff.

Some of the sketches will be about people who have begun this year, and some

will be about people who joined the staff in recent years.

Mr. Hoffn^ann has provided us with an interesting article that provides drill on

real numbers for average (or below average) students and gives better students

a challenge in discovering patterns.
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"Stone -Age Math" by Dr. Phillips is essentially a short classroom unit on the

development of an elementary number system. She uses devices that provide

their own motivation. The vocabulary she develops is one which can interest

children in grades six, seven, or eight. Some students might even want to

enlarge on the system she has developed.

We are most fortunate in being permitted to use some letters received by our

staff members from former students. If any readers have letters dealing with

the experiences of fornner UICSM students, we would be pleased to print any

parts of the letters you would care to designate. These reactions are good

motivation for continuing with contemporary mathematics.

Mr. Mueller and Mr. Vaughan have some notes they felt should be shared with

teachers of Unit 10. The notes on the "Solution of a Special Trigonometric

Equation" will be found most useful to these teachers.

Mr. Gabai has summarized the work currently being done in vector geometry

by our staff. We hope that this material will prove useful in the third year of

high school mathematics. We are sure that it will at least throw a new light

on the ancient subject of geometry.
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Stone-Age Math

Do you think a small child may know what four is without knowing anything

about one or two or three ? Could he know that four tells how many wheels a

car has and how many feet his dog has and how many legs a chair has, and

still could he know nothing about any other numbers?

Have you ever heard a child count to five by saying, "One, seven, four, nine,

three, ten, five"? He knows some words, but he doesn't really know what all

of them mean or how they are related to each other.

How does anyone know that five is greater than three but less than nine, for

example ? First, he has to know what three is and what five is and what nine

is. Then, he has to know what is meant by greater than and less than .

In any kind of productive discussion, we need preliminary agreement about the

meaning of some terms we shall use. Pay careful attention to the underlined

words in the next two paragraphs.

Any specific collection of separate objects (where object can refer to anything:

a person, a planet, an electron, or even an idea) is a set. Each object which

belongs to a set is a member of the set. For each object and each set, either

the object is a member of the set or it is not. In mathematics, the word 'set'

is always used in this precise sense.

To each set there corresponds a cardinal number which tells how many

members the set has. Sets which have the sanne cardinal number are

equivalent sets. Describe another set which has the same cardinal number as
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the set whose members are your eyes. Is the set whose members are your

feet equivalent to the set you have just described? What is the cardinal number

of the set whose only member is the chair on which you are now sitting? If you

are not now sitting on a chair, how many members belong to the set of chairs

you are sitting on? You see that it sometimes makes sense to think of a set

which has no members. The set with no members is the ennpty set . What

number tells how many members the ennpty set has? Then, the cardinal

number of the empty set is zero. A set cannot have fewer than no members,

so zero is the smallest cardinal number. Is there an upper limit to the number

of members a set may have? Is there a largest cardinal number?

Cardinal numbers are the numbers primitive peoples used first in developing

their cultures. Cardinal numbers are also the numbers very young children

use first in learning to deal with the cultures into which they are born. It may

help us to a better understanding of our own use of cardinal numbers if we take

a make-believe excursion several thousand years back into history.

Suppose we pretend that we are living in the Stone Age. We have a simple

language with which we can think and with which we can express thoughts to

one another.

In this language, ' glm' (pronounce ' glm' as you would pronounce 'glum') is the

word for the number of pebbles in the set |o,0}> The idea of counting has not

occurred to us. How would we pick out other sets which have glm nnembers?

One of us might pick up the pebbles, lay one pebble on his left foot and the

other pebble on his right foot. He has run out of pebbles and also out of feet.
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Can he now say he has glm feet? Could he pick out other examples of

"glmness" in the same way?

In this language, 'kog' (pronounce ' kog' as you would pronounce 'cog') is the

word for the number of pebbles in the set
| ^^ > C^ ' 0' C:^»^ (

. How can

we find other sets which have this same number property? Does a man have

kog fingers on his right hand? Does he have kog fingers on his left hand?

Where else might he find sets with kog members?

Would he have to know the word 'kog' in order to tell that he has the same

number of fingers on each hand? To tell that he has the same number of

fingers on a hand as he has toes on a foot? Would he need to know how to count,

or how to add, in order to be sure he had the same number of fingers on both

hands as he has toes on both feet (assuming that he was a normal Stone-Age

baby and has not been damaged since)?

In order to tell whether sets have the same number or different numbers, all

we need is a matching technique. Given the members of any two sets of

objects, we can try to match each member of one set with a member of the

other set. If the matching " comes out even" — each member of each set

paired with exactly one member of the other set — we can be sure that the two

sets have the same number of members. When this happens, we say there is a

one-to-one correspondence between the members of the two sets. Try match-

ing the members of the set {a, b, c} with those of the set {Tom, Dick, Harry}.

Pair each letter with the name of one boy and different letters with different

names of boys so that each member of each set belongs to exactly one pair.

Can you match the members of these sets in another way? In how many ways?

Does each one-to-one correspondence assure you that there is the same
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number of members in the set of letters as in the number of boys ? If two sets

have the same number of members, is it always possible to set up a one-to-

one correspondence between their members? Is it always possible to do this

in nnore than one way?

Our Stone -Age technique of pairing pebbles with other objects has given us a

way of telling when two sets have the same number of members. You are a

smart Stone -Age boy or girl. Your father has chosen you (out of the entire

family group) to teach all the number names he knows so that you can pass this

knowledge along to others and, eventually, to your own children. This is what

he taught you:

Pictures of collections of £6bbles Number names

dy # glm (pronounced glum)

m
kog (cog)

QZ?

O O C£^
<U>

ds (dees)

c^ ug (ug)

®^^® qut (cat)

.£
okz (ox)

# ^f tr (tor)
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Pictures of collections of pebbles Number names

nn (noon)

hk (heck)

You find it hard to remenaber which name goes with which collection. You

reason that, if there were some way of organizing the numbers, it would make

it easier to remember their names. (We said you are smart.) Start with the

first two numbers in the list. How will you decide which is greater, glm or kog?

(So far, all you know how to do is match.) Match the appropriate collections of

pebbles. What do you find out? If you decide to call the collection m which

you had pebbles left over the larger collection, you would probably call the

number of this collection the greater number. If so, you really know two

things — kog is greater than glm, and glnn is less than kog. Jump forward in

time a few thousand years so that you know not only how to write but also how

to use modern symbols, and you may write:

kog > glm and giifi < kog

This may be read:

kog is greater than glm and glm is less than kog

Now jump back into the Stone Age (except that you can use modern English,

an enormous "except") and answer the following questions:

1. Is the same number named twice in the list? How do you tell?

Z. Which of these are true statements:

nn > tr? qut > hk? How do you tell?
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3. I8 glm leas than every other number? How many connparisons would you

have to make to find this out?

4. What is the name of the smallest number? How could you find out which

nximber is next smallest?

5. Which number names could you write in the blank to make true statements?

glm < tr > tr <

Is this all you need to know in order to tell which number is next larger

than glm?

6. Could you extend the scheme described in question 5 so that you could line

up the collections of pebbles in order from fewest to most? Once you have

done this, you have also ordered the cardinal numbers ug through ds from

least to greatest, and you can learn to say their names in order.

7. Make a list of numbers, in order, from ug through ds. Are you now ready

to covmt? If so, how far can you count? Why?

8. Under what circumstances would a Stone-Age father be able to use the list

to tell sonneone else how many children he had?

Apparently, we need sonnething nnore than some numbers lined up in order from

snnallest to largest before we can say we have "counting nximbers." Let's go

out and get a heap of pebbles so that we can duplicate the collections shown in

our list. It is important that we realize that ug is the nvimber of objects in

each set which contains a single object. If we have any pebbles at all, ug is

the smallest number we can have, so we'll call ug our first counting number.

Now we have the idea of combining members of two collections. Let's start

with two sets, each of which has ug nnembers. Consider a new set built by

putting the members of these two sets together. Which of the model collections
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does this new set match? Let's keep a record, twentieth-century style, and

let's be orderly. Complete each of the following:

1

.

Ug and ug is

2. Glm and ug is
.

3. Tr and ug is
.

4. Qut and ug is ,

5. Kog and ug is
.

6. Hk and ug is ,

7 . Okz and ug is

8. Nn and ug is _

9. Ds and ug is

It appears that we have a couple of problems to solve, difficult problems for

Stone-Agers. What suggestions can you make?

We need a number which is ug greater than hk. A picture of the members of

a set which would have this nvimber might be as follows:

^^ ^J C^

Suppose we agree to name this number 'pr' (pronounce 'pr' as you would

pronounce 'purr'). Now can we count up to ds? We can if each of our numbers,

as far as they go, is ug greater than the number it follows. Do we have num-

bers like that? Let's see how we use thenn.

Lay out a few objects on your desk and count them, using our Stone-Age num-

ber names. Think about how you did it.
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1. Did you say a number name for each object as you counted if Did you

make a cm., -to-one correspondence betv-etn the number names and objects

you were counting?

2. Would you have gotten the same result if you had counted the objects in a

different order?

3. If you touched each object as you counted it, did you touch any object more

than unce? How many objects had you touched when you said the number

name 'tr'? Then, ^vhat does 'tr' tell you when you use it in counting?

Coulu you make a similar statement about the other number nannes?

4. How many number names did you use? If you count correctly, do you have

to use the number names m order? How do you know when to stop counting?

5. What can you do if you run out of number names before you have counted

all the objects on your desk?

What the real Stone Agers did was use a word meaning "a lot" for any number

larger than the largest number they could name. Their culture did not require

names for large nunnbers. As someone once remarked, thirty was infinity to

them.

In our culture, we need nannes for millions of numbers, very large numbers,

very small numbers, and different kinds of numbers.

Let's reorient ourselves to the twentieth century and summarize what we have

discussed so far. Fill in the blanks.

1. The number which tells how many members a set has is a

Z. The cardinal number of any set whose members could be paired, one-to-one,

with the members of the set of wheels on a car is
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3. The cardinal number of any set whose members can be placed in a

one-to-one correspondence with the members of the set of your eyes

is
.

4. A set with no members at all is called

5. Before the cardinal nvimbers can be used for counting, they have to be

ordered so that each number is more than the number just before it.

6. In counting, we make a one-to-one correspondence between the members

of the set of objects we are counting and the equivalent set, starting with

'one', of ordered number names. We use each number name in order

exactly (how many times) and coxint each object exactly .

7. The last number name we say in a counting sequence tells us the

number of the set whose miembers we are counting.

8. The snnallest counting number is ; the smallest cardinal number

is ; the largest cardinal number is
.

J. Phillips
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Staff Biographies

Dr. Josephine M. Phillips

We have chosen to start with Dr. Phillips

since she is an author of some of the material

in this Newsletter. Prior to joining the UICSM

staff last year, Dr. Phillips was an arithmetic

editor for D. C. Heath and Company. Her expe-

rience before she went into the publishing field

was in the teaching of mathematics and in the

training of teachers. She has taught in public

schools in New Jersey, at Longwood College,

at Montclair State College, and at Boston Uni-

versity. Her vast experience also includes

some time as a Lt. (j. g.) in the U. S. Coast

Guard Women's Reserve.

Dr. Phillips has a productive background

in writing. Her publications include articles in

The Arithmetic Teacher, School Science and

Mathematics, and Book Production. She has

also produced sixty fiimstrips under the general

title "Seeing the Use of Numbers". These

fiimstrips are produced by Eye Gate House

Inc., Jamaica, New York. Dr. Phillips is also

co-author of a revised edition of Learning to

Use Arithmetic, published by D. C. Heath and

Company, Boston.

At present. Dr. Phillips is engaged in

writing materials to be used by the seventh

grade classes at University High School on

campus. The emphasis of this course is chiefly

on the physical applications of mathematics.

From time to time, we will be able to present

some of these topics for your consideration in

this Newsletter. Many of the topics which she

has developed will not be used in the course

because of time allotments, but their impor-

tance in general education is recognized, and

we hope to share them with our readers.
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Dr. John A. Easley Jr.

Dr. Easley left the salubrious climate of

beautiful Hawaii last year to be a Visiting

Associate Professor at the University of Illi-

nois. His job on the UICSM staff is to co-

ordinate the objective studies which we are

constantly undertaking on our materials. He

brings a varied and interesting background to

that particular position. At one time or another,

he has been a teacher, a principal, a Peace

Corps consultant, and a radio engineer.

Dr. Easley's stint as a radio engineer for

the Carnegie Institute in Washington, D. C,

took him to Baffin Island and to Hawaii. He

then moved to California to take a job as a

physics instructor at Vallejo Junior College.

From there, he went to Magino in the Marshall

Islands, where he was Principal of the Marshall

Islands Intermediate School. Then he became

an instructor in Science Education at the Uni-

versity of Hawaii. After a Teaching Fellow-

ship at Harvard, Dr. Easley went back to

Hawaii as an Associate Professor of Science.

Finally, he made his way back to the mainland

to join the UICSM staff.

The list of publications by Dr. Easley

is very nearly as diverse as his background.

His Ph.D. dissertation at Harvard is entitled

"A Study of Scientific Method as an Educa-

tional Objective". An article he had printed in

the Proceedings of the Hawaiian Academy of

Science was entitled ".\ Pedagogical Device

for Clarifying the Concept of Drift". An article

printed in Philosophy and Education (Israel

Scheffler, editor) was entitled "Is Scientific

Method a Significant Educational Objective?"

The Winter, 1959, Harvard Educational Review

carries his article "The Physical Science Study

Committee and Educational Theory". He has

also written a college level general science

text being published by Wadsworth Publishing

Company, called Introduction to Scientific

Thought in the Physical Sciences. In addi-

tion to these publications, Dr. Easley has had

his speeches before some academic bodies

printed in the proceedings.
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Mr. Howard Marston

Howard Marston is here on leave of

absence from Principia Upper School in

St. Louis. He has probably taught more UICSM

classes than any other person. He started with

one UICSM class at Principia in 1955 and since

then has taught a total of 34 UICSM classes

there. In the past six summers he has also

taught eight institute classes the ways of

UICSM. The classes were held at the Uni-

versity of Arizona and the University of Illi-

nois. Prior to joining the staff at Principia,

Mr. Marston taught in public and private schools

in Connecticut and New York. He received his

B..^. degree from Wesleyan University in Con-

necticut and his M.A. degree from Teachers

College, Columbia University. He has had one

publication, Worktext in Modem Mathematics

published by Harper & Row. UICSM has run

several printings of a short text on Solid

Geometry written by Mr. Marston. This text

was made available at cost to UICSM teachers

for several years. Mr. Marston is currently

engaged in revising and rewriting the programed

edition of solid geometry which had its first

trial run last spring. Mr. Marston has a wife

teaching at Principia and two children attend-

ing Principia, with whom he gets reacquainted

each weekend by commuting to St. Louis.
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Test Score Comparison Report

The first report produced by the newly-organized research section of UICSM

is entitled "Comparison of UICSM vs. Traditional Algebra Classes on Co-op

Algebra Test Scores."' This report describes the results of an evaluation

study involving approximately 1700 eighth and ninth grade UICSM students,

called the experimental sample, and nearly 700 non-UICSM algebra students,

called the control sample. All students in these samples began the study of

algebra in either 1958 or 1959. Theii achievement in algebra was measured

by the Co-operative Algebra Test (Elementary) Forms T, S, and Y. We do

not claim that this standardized traditional algebra test provides a complete

description of achievement by UICSM students. However, we are willing to

consider the results of this test as a rough basis for evaluation of the UICSM

curriculum because the skills and knowledge expected from the traditional

curriculum are included in the objectives of the UICSM program.

The experimental sample was divided into six groups depending on grade, year

of first course, and duration of study prior to testing. The control sample was

divided into two groups depending on the year. Further subdivision of the con-

trol sample was unnecessary because non-UICSM classes were unifornn with

respect to grade and time of testing. Table 1, below, contains a description

of the groups and the means and standard deviations of the scores on the

Co-op Algebra Test and the Differential Aptitude Tests of Numerical Reasoning

and Verbal Ability. Table 1 gives this information for the subgroups of both

the experimental and control samples.
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Table 1. Descriptions of Experimental and Control Samples and the Subgroups
Thereof. Means and Standard Deviations of the Co-op Alg Test,
DAT-VR, and DAT-NA for Each.
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A direct con-parison of the means is not appropriate because the UICSM

classes had a higher mean on the DAT-tests as shown in Table 1. Therefore,

adjustments for these inequalities between groups were made by using the

analysis of covariance in comparing group means on the Co-op algebra test.

With these adjustments, the experimental sample as a whole showed signifi-

cantly greater achievement than the control sample. This was also true of

four of the six experimental groups taken separately, while the remaining two

were not significantly different from the control sample. Various other

comparisons between groups within the oxperimental or control samples were

also made. Table Z lists all the comparisons between various groups that

were made. An inequality sign m this table indicates whether the adjusted

Co-op Algebra mean for the group named on the left margin was significantly

greater than (>), significantly less than (<), or not significantly different from

(-) that for the other group.

Table 2. Comparisons of adjusted group means on Co-op Algebra

Statistical test used: Standard Covariance Analysis

Groups
Compared

Adjusted
Group Means F -ratio P Conclusions

total

r
total

62.50

60.45
31. 19 < .001

^total ^total

^1

^(2. ..6)

67.33

62.76
34. 79 < .001 ^1 ^^U...S)

^(2. ..6)

*^total

61,85

60.04
14.90 < .001 ^(2... 6) * '^total
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Table 2. (continued)

^2

r-

total

62.41

58.99
17.57 < .001 ^2 >

total

E, 60.48
3

^total
59.56

2.53 > .05 ^3
•

^total

E. 59.07
4

^total
58.68

.67 > .05 ^4
•

total

E, 63.49
2 15.63 < .001 ^2 > ^4

^4 60.20

E- 63.21
3

11.86 < .01 ^5 > E,
^5 65.75 3

Statistical test used: Unrestricted Linear Hypothesis Model

Compared

Differences
Between
Adjusted
Means

Standard
Error of
Estimate t-ratio P

Conclu
Computer
Program due
to Watson

sions
Johnson-
Neyman
Technique

^1

^2
1.11 2.93 .38 > .05 C^^C^

^5

total

3.00 .538 5.57 < .001 ^5 =-
^total ^5 =- So

(P < .05)

^3

^1
6.92 2.33 2.97 < .01 ^3> S E3 ^ Cj

(P > .05)
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Possible reasons for these results as well as the specific details of the

statistical analysis are discussed in full in the report. Readers may obtain

a copy of this report by writing Mrs. Ann Perkins, IZIO W. Springfield,

Urbana, Illinois, and asking for a copy of "Comparison of UICSM vs.

'Traditional' Algebra Classes on Co-op Algebra Test Scores".

J. Boyle
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A Pat on the Back

Many UICSM teachers have, no doubt, received messages of one kind or another

from former students who have started work on college mathematics and who

have realized that their UICSM background is helping them. [Your editor is no

exception to this statement.] One of our present staff members received such

a letter recently. He had been teaching UICSM math in an Illinois high school

prior to joining our staff. One of his students in a class that he had for four

years is now attending a major university and felt moved to communicate with

his former teacher. The following is an excerpt from this letter.

... 1 never believed that (name of high school) was such a

good school til (sic) I got here. Many, nnany people could not

pass the placement tests to get into freshman calculus. Also,

this first week for me has been purely review. Many others

are already having trouble. Inequality and absolute value (also

the empty set) are new concepts to them. I am frankly surprised.

What I really want to say is that 1 apologize for every time I

criticized the exactness of U. of I. math. The only way I'll

get through this course is to listen to what the professor means

rather than to what he says . (Underlining is ours.) . . . [There

follows a discussion of changes in notation which are minor

nuisances to the student.
]

. . .Set theory is given here, but it is very lax. A set {x: x > l)

can be shown as {x| x > l} or {x > l}. This second one is silly!

Also g - {(x, y): y = x } can be written g = {x, x } ! ! No set

selector, no nuthin!
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Another letter reached a member of the UICSM staff from a former student of

his who now attends Wesleyan University. The following is an excerpt from

this letter.

A month of college life has already passed, but I can say it

has been the most rewarding month of my life. My courses

are all great, and the professors are marvelous. There is

nothing that can compare with college life.

My favorite subject is calculus mainly because I got into an

honors group for students who want to treat the calculus from

the viewpoint of theory or the "UICSM" philosophy. We are

using a mimeographed text written by Einar Hille of Yale.

Ducas is using the same text at Yale. I can't tell you how

valuable the UICSM program has proved to be for me. While

most of the guys in my class had already had a lot of calculus

before, I am way ahead of them due to my UICSM background.

We have been studying set theory, math induction (Peano's

Postulates), the development of theorenris for rational and

real numbers, and associated material. This is pure review

for me, but most of the students are really having a tough

time. I do find that I have to spend alnnost 7 hours a week on

calculus, but it is really interesting. It is quite a challenge

also. I never had to spend more than 7 hours a nnonth in high

school. There are some bright kids up here, needless to say. . . .
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Non-Pharoahic Pyramids

Here is a device which can ue used as an interesting drill on addition of real

nunibers. It has the peculiar inherent property of providing more drill for the

methodical students but less drill for the ingenious ones. A short-cut nnay be

discovered by the student at any time the teacher wishes to allow hinn to make

the discovery. On the other hand, the short-cut is very simple to see and still

involves a little addition of real numbers. See if you can discover the short-cut

to use in the following exercises.

(1) The inner-number is the sum of the 3 "corner-numbers". Give the inner-

number of this pyramid.

Of course, the answer is *6. Now, consider a slightly more complicated

pyramid. To find the inner-number, one must find the corner -number s

for the mner-triangle. This is done by adding the given numbers at

each end of one side.
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(2) One corner -n\imber of the inner-triangle has been found for you in the

pyramid below. Find the other two, and then find the inner -number

.

The -inner-number is 16. For more complicated pyramids, just extend

the process.

(3) Find the inner -nvimber of this pyramid.

17
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Did you get *8? If not, you better check your computation. [l had to!]

Now, it is time to make a discovery.

(4) Find the inner-number for each of these pyrannids

*7

•7.47

*H

2.18 "^1829 792

The inner-number for each pyramid is * 4.

(5) As simply as possible, tell whether each of these pyrannids has the same

inner -number.

'8 -2.7 T^ K 7 "3.8 .^\^
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Yes, they do.

(b) Give the inner -number I'or each oi these pyramids,

It's about time that you proved your conjectures, don't you think?
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Vector Geometry—Experimental Edition

This year at UlCbM, one of Ine exciting projects underway is that of developing

a course in vector geometry. This course was designed by Herbert E. Vaugnan.

It is being taught to two experimental classes in the University High School by

Max Beberman and Steven Szabo, with the assis'a.nce of Dick Dennis. The

classes are bi ing critically observed and analyzed by a team of staff members

which includes the experienced observers Harvey Gelder, Alice Hart, Gertrude

Hendrix, and Eleanor McCoy. Hyman Gabai, Steven Szabo, and Dick Dennis

are assisting in the preparation of the text materials for the course, under the

supervision and guidance of Max Beberman. It is, of course, still too early

to nnake any definite statements about how well the two classes are working

out, but so far they seem to be off to a good start.

The course itself is a unique and interesting development of geometry. Trans-

lations (that is, vectors) art- introduced as mappings of ordinary 3 -dimensional

euclidean space on itself. These mappings satisfy certain postulates which are

introduced in small doses. The introduction of postulates is always preceded

by discussions based on the student's intuitive feelings and knowledge about the

physical world in which he lives. Thus nnotivated, the postulates appear as

clear and natural statements which are reasonable to assume in the development

of our geometry.

The first few postulates relate translations with euclidean space, / . For

instance, one postulate states, in effect, that given any points A, B of / ,

there is a translation which maps A on B.
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The remaining postulates refer to properties of translations. For example, it

is postulated that the composition of translations is itself a translation. These

postulates are eventually stated as a single postulate: the set of all transla-

tions of /^ onto itself is an abelian group.

Later, more postulates are introduced until we are able to make the statement

that the set of all translations of q is, itself, a three-dimensional vector

space over the real numbers. Still later, we introduce other postulates and

arrive at our final statement that the set of all translations is a three-

dimensional inner product space.

Along the way, as these postulates are being introduced,

1. the usual geometrical entities, such as lines and planes, are introduced as

subsets of (^ having certain properties;

Z. quite a number of "traditional"' geometrical theorems are proved;

3. many important mathematical concepts are studied. Among,these are:

(a) The concepts of groups, abelian groups, vector spaces, and inner

product spaces, (A distance function is defined and shown to satisfy

the usual axioms of a metric space.)

(b) The concepts of linear dependence and linear independence,

(c) Dimension and basis of a vector space, (Including the concept of

orthonormaT bases
,

)

(d) Schwartz's inequality.

One especially interesting feature in the development is the notation which is

introduced. The notation permits us to operate on points and translations in a

manner which closely parallels the ordinary rules of algebra, (We even speak
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of our "algebra ol points and translations".) For instance, we write sentences

like this:

B - A = (C - A) + (B - C)

This states that, for points A, B, C
of £ , the sum of the vectors from

A to C and C to B I s equal to the

vector from A to B

Some of the advantages, of this approach to geometry, as de\eioped by

Professor Vaughan,are:

1 . It is a very rigorous and strict deductive development of geometry, but

the many motivational and intuitive discussions and examples will permit

the student to see it unfold in a natural manner. Even if we strip it of the

motivational and intuitive discussions, the rigor, logic, and novelty of

the development will appeal to a mature mathematical mind.

2. The student will gain experiences and develop a broad background covering

many important mathematical concepts which otherwise would not be

touched upon m his high school courses,

3. The student will become acquainted with much more than geonnetry; he will

study vectors, mathematical structures, and the developmient of a deductive

system.

4. The student will work with many interrelated concepts and develop an aware-

ness that all of these concepts (including geometry, algebra, and arithmetic)

are locked together in the foundations of the structure of mathematics.

From time to tinne you will be brought up to date on the progress of the course

through this Newsletter.

H. Gabai
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On the Solution of a Special Trigonometric Equation

A problem of some interest to teachers of trigonometry (and to their students)

is the solution ol:

(1) a cos X + b sin x = c

[for a and b not both zero].

The purpose of this note is to give a method of solving (1) and to investigate

the choices of a, b, and c which yield a solution for (1).

We are assuming that not both a and b are zero. Hence, it follows that

V a^ + b^ / and that
, , / 0. Also since
Va^ + b^

a X 2 / -u M
1

Va^+b^/ \Va^ + b^

/ a b \
it follows that , , , , ) belongs to the unit circle.

V a^ + b^ Va^ + bV

For each point (c, d) of the unit circle, there is just one number 6 such

that

(2) < e < 2 TT
, and

c ^ d
(3) cos e -

, - - and sin 6 = —====. .

Vc^ + d^ V? + ?

In our development it will be convenient to have a more direct method of cal-

culating 6. It is easily seen that

c
(4) /Arccos , . , d >

i V c'^ + d^
~

e =

I Zir - Arccos , ' i , d < 0.
V c^ + d^
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Returning no\v' to the solution oi (1), v> c iirst trant>icrm it to;

(5) ^TPTh^ cos X
/a^Tb^

+ sm X

yU^t^

We have previously established that tor each pair ol numbers a, b, not both

zero,
r^-^—-^-^ /I^TTV a -r D

there is a unique 9 such that, 0< 9< 2tt,

Substituting in (5), v. e get:

-
]
belongs to the unit circle and that for this pair

b

\a^TV
cos o, and —

?

r^
sin w.

(6) v'a^ + b [coaxcosQ + sinxsinQ] = c

The form of (6) suggests using the Subtraction Law for Cosines:

(7) V V
^ cos (x - y) = cos x cos y + sin x sin y,X V

to simplify the left member. Since \ a^ + b^ t 0, it follows from (o) and (7) that

(8) cos (x - 6) =

Va2+b^

At this point we see that, if there are to be solutions to (1), we need a restric

tion on 'c'. If
|
c

|
> \ a^ + b^ we would have | co^ (x - 9) |

> 1, which is

impossible. Hence, we will have solutions of (1) only if | c | <_ \ a^ + b^.

It is v,ell known that, for |y| < 1, cos x = y if and only if

(9) x = Zk TT ± Arccos y, for some integer k.

(Equation (9) and its derivation can be found in UICSM Unit 10, page 125. )

The solution of (8) follows immediately from (9). We find that

(10) x - e = 2k TT ± Arccos

and finallv that
Va^+P
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(11) X = ZkiT + d ± Arccos

where 6 is given by (4).

The solutions of (1) with the restrictions a and b not with and |cl < Va^ + b^

are given by (11).

We end this note with two examples of the solution of (1).

Example 1. cos x + sinx - 1

Here a = b - c = 1 and V a^ + b^ = VT

.

Therefore, c < Va^ + b^.

We can write the original equation as:

^fz [cos x • + sin X • ] = 1

Here, ^ = T* 3-nd so this equation becomes:

IT IT 1

cos X cos -r + smx sin-r -
4 4

or: cos (x - -r)
4

VT

/2"

Therefore, x - -r = Zkir ± Arccos - Zkir ± -r

and X = ZkiT + -r ± t •

4 4

That is X = Zkir or x = Zkir +j.

We may solve the same equation directly by using (4) and (11),

Since a = b = 1,

n • a A 1 TT

o = Arccos —^:—^ = Arccos = -r
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C 1
TT

and Arccos , , ,
= Arccos "p" ^ —

Therefore,

That is X = 2k TT or x = 2k t: + - , k an integer.

Example 2. \3 cosx - 1 sinx = 2

Here, a = VI , b = -1, c = 2. So, by (4),

V3
9 = 2 ;r - Arccos

V(V^)^ + (-1)^

= Z It - Arccos -»-

= 27r-^

_ 11 TT

c 2
and Arccos

,

= Arccos /—7=r—

V a^ + b^ V(Y3)^ + (-l)^

= Arccos ]

= 0.

Therefore, by ( 1 1), x = 2k n- + —r— , k an integer.

J. Mueller and H. E. Vaughan
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UICSM News and Notes

We are including a brief News and ^>o;e^5 Column in this newsletter in order to

reestablish a line of connmunication which has been missing in the last few news-

letters. Our hope is that we will hear froin many of ovir readers who will tell

us of their activities in the area of public -elations for the UICSM program.

Mr. Arnold Petersen spoke at the October meeting of the Association of Mathe-

matics Teachers of New Jersey. His topic dealt with the trainir.g of teachers

for modern mathematics programs. Mr. Petersen was a Teacher Associate on

the UICSM staff in the school year I96O-6I. He is the chairman of the matht -

matics departnient at Pascack Valley Regional High School :n Hillsdaie, New

Jersey.

Professor Max Beberman was one of three representatives from the United

States to speak in Athens, Greece. He spoke before the International Working

Session on Modern Teaching of Mathematics. At that meeting, he delivered a

paper entitled "Searching for Patterns". He then went on to the Sixth Annual

Conference of Overseas Schools, held in Rome. At that conference, Professor

Beberman participated in a panel discussion on Elementary and Secondary

School Mathematics.

A,.ce Hart spoke at the Fall meeting of the Eastern Division of the Illinois Educa-

tion Association. Her topic at this meeting was "Mathematics in the Schools

'I oday"

.
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Herbert Wills spoke at the Thanksgiving weekend meeting of the Central

Association of Science and Mathematics Teachers. His topic for this meeting

was "UICSM — 19b4 Model",

Robert Wirtz and Alice Hart were among the speakers at the Idaho Centennial

Mathematics Conference which was held in Boise, Idaho. Mrs. Hart's contri-

bution consisted of four speeches. These included a speech at the breakfast

meeting of Phi Delta Kappa, and three speeches entitled "UICSM Program",

"New Mathematics?", and "The Next Step". Professor Wirtz' speeches were

entitled "An Introduction to Sets" and "Numbers have Many Names".

William Hale spoke on "The Evolution in Secondary School Mathematics

Program" at a Mathematics teachers conference at Westmar College in

Le Mars, Iowa.
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