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PREFACE.

This work was designed to take the place of Green-

leaf's Higher Algebra, portions of which have been used

in the preparation of the present volume. It contains

the topics usually taught in High Schools and Colleges,

and the author's aim has been to present the subject in a

compact form and in clear and concise language. The

principles have been developed with regard to logical ac-

curacy, and care has been given to the selection of exam-

ples and practical illustrations which should exercise the

student in all the common applications of the algebraic

analysis. The full treatment given in the earlier chap-

ters renders the previous study of a more elementary

text-book unnecessary.

Attention is invited to the following chapters, including

those in which the most important changes have been

made in the Higher Algebra :
—

Parentheses.

Factoring.

Zero and Infinity.

Theory of Exponents.
Simultaneous Equations involving Quadratics.

Binomial Theorem for Positive Integral Exponents.
Undetermined Coefficients.

Logarithms.
The answers have been put by themselves in the back

part of the book, and those have been omitted which, if
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given, would destroy the utility of the problem. The ex-

amples are over eighteen hundred in number, and are pro-

gressive, commencing with simple applications of the

rules, and passing gradually to those which require some

thought for their solution.

The works of Todhunter and Hamblin Smith, and other

standard volumes, have been consulted in the preparation
of the work, and have furnished a number of examples
and problems. The author has also received numerous

suggestions from practical teachers, to whom he would

here express his thanks.

WEBSTER WELLS.

Boston, 1884.
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ALGEBRA.

I. — DEFINITIONS AND NOTATION.

1. Quantity is anything that can be measured
;

as dis-

tance, time, weight, and number.

2. The Measurement of quantity is accomplished by find-

ing the number of times it contains another quantity of the

same kind, assumed as a standard. This standard is called

the unit of measure.

3. Mathematics is the science of quantities and their re-

lations.

4. Algebra is that branch of mathematics in which the

relations of quantities are investigated, and the reasoning

abridged and generalized, by means of symbols.

5. The Symbols employed in Algebra are of four kinds:

symbols of quantity, symbols of operation, symbols of relation,

and symbols of abbreviation.

SYMBOLS OF QUANTITY.

6. The Symbols of Quantity generally used are the

figures of Arithmetic and the letters of the alphabet.
The figures are used to represent known quantities and

determined values, and the letters any quantities whatever,

known or unknown.

7. Known Quantities, or those whose values are given,
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when not expressed by figures, are usually represented by the

first letters of the alphabet, as a, b, c.

8. Unknown Quantities, or those whose values are not

given, are usually represented by the last letters of the

alphabet, as x, y, z.

9. Zero, or the absence of quantity, is represented by the

symbol 0.

10. Quantities occupying similar relations in different op-

erations are often represented by the same letter, distinguished

by different accents, as a', a", a'", read "a prime," "a second,"

"a third," etc.
;
or by different subscript figures, as a1} a2) as ,

read " a one/'
" a two,"

" a three," etc.

SYMBOLS OF OPERATION.

11. The Symbols of Operation are certain signs or char-

acters used to indicate algebraic operations.

12. The Sign of Addition, + ,
is called "plus." Thus,

a -(- b, read " a plus b" indicates that the quantity b is to be

added to the quantity a.

13. The Sign of Subtraction, —
,

is called "minus."

Thus, a — b, read " a minus b" indicates that the quantity

b is to be subtracted from the quantity a.

The sign ~ indicates the difference of two quantities when

it is not known which of them is the greater. Thus, a ~ b

indicates the difference of the two quantities a and b.

14. The Sign of Multiplication, x ,
is read " times"

"into," or "multiplied by." Thus, aXb indicates that the

quantity a is multiplied by the quantity b.

A simple point (. ) is sometimes used in place of the sign X-

The sign of multiplication is, however, usually omitted, except
between two arithmetical figures separated by no other sign;

multiplication is therefore indicated by the absence of any

sign. Thus, 2ab indicates the same as 2 X a X b, or 2 . a . b.
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15. The quantities multiplied are called factors, and the

result of the multiplication is called the product.

16. The Sign of Division, ~, is read "divided by."

Thus, a -4- b indicates that the quantity a is divided by the

quantity b.

Division is otherwise often indicated by writing the divi-

dend above, and the divisor below, a horizontal line. Thus,

- indicates the same as a -i- b. Also, the sign of division
b

may be replaced in an operation by a straight or curved line.

Thus, a I b, or b
) a, indicates the same as a -f- b.

17. The Exponential Sign is a figure or letter written at

the right of and above a quantity, to indicate the number of

times the quantity is taken as a factor. Thus, in x3
,
the 3

in-

dicates that x is taken three times as a factor
;
that is, x3

is

equivalent to xxx.

The product obtained by taking a factor two or more times

is called a power. A single letter is also often called the

first power of that letter. Thus,

a2
is read "a to the second power," or "a square," and

indicates a a;

a3
is read " a to the third power," or " a cube," and indi-

cates acta;

a4
is read " a to the fourth power," or " a fourth," and indi-

cates a a a a;

an is read " a to the nth power," or " a nth," and indicates

a a a etc., to n factors.

The figures or letters used to indicate powers are called

exponents ; and when no exponent is written, the first power

is understood. Thus, a is equivalent to a1
.

The root of a quantity is one of its equal factors. Thus,

the root of a2
,
a3

,
or a* is a.

18. The Radical Sign, \f ,
when prefixed to a quantity,

indicates that some root of the quantity is to be extracted.
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Thus,

SJ
a indicates the second or square root of a;

^]a indicates the third or cuhe root of a;

$ a indicates the fourth root of a; and so on.

The index of the root is the figure or letter written over

the radical sign. Thus,
2
is the index of the square root,

3
of

the cube root
;
and so on.

When the radical sign has no index written over it, the

index 2
is understood. Thus, sj

a is the same as
tf

a.

SYMBOLS OF RELATION.

19. The Symbols of Relation are signs used to indicate

the relative magnitudes of quantities.

20. The Sign of Equality, =, read "
equals" or "equal

to," indicates that the quantities between which it is placed
are equal. Thus, x = y indicates that the quantity x is equal
to the quantity y.

A statement that two quantities are equal is called an

equation. Thus, x -\- 4=2 x— 1 is an equation, and is read
" x plus 4 equals 2x minus 1."

21. The Sign of Ratio, :
,
read "

to," indicates that the

two quantities between which it is placed are taken as the

terms of a ratio. Thus, a : b indicates the ratio of the quan-

tity a to the quantity b, and is read " the ratio of a to b."

A proportion, or an equality of ratios, is expressed by writ-

ing the sign =, or the sign : :, between equal ratios. Thus,
30 : 6 = 25 : 5 indicates that the ratio of 30 to G is equal to

the ratio of 25 to 5, and is read "30 is to 6 as 25 is to 5."

22. The Sign of Inequality, > or < , read "
is greater

than" or "is less than" respectively, when placed between

two quantities, indicates that the quantity toward which the

opening of the sign turns is the greater. Tims, x > y is

read "x is greater than y" ; x—6< y is read "x minus 6

is less than y."
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23. The Sign of Variation, cc, read "varies as," indicates

that the two quantities between which it is placed increase

or diminish together, in the same ratio. Thus, a oc _ is read

" a varies as c divided by d."

SYMBOLS OF ABBREVIATION.

24. The Signs of Deduction, .-. and v
,
stand the one for

therefore or hence, the other for since or because.

25. The Signs of Aggregation, the vinculum
,
the

bar
| ,

the parenthesis ( ) ,
the brackets [ ] ,

and the braces
j £,

indicate that the quantities connected or enclosed by them are

to be subjected to the same operations. Thus,

a + b X oc,

a
x, (a + b) x, [a + fr]x, \a + bc x,

b

all indicate that the quantity a + b is to be multiplied

by x.

26. The Sign of Continuation, ,
stands for and so

on, or continued by the some law. Thus,

a, a + b, a + 2 b, a + 3 b, is read

"a, a plus b, a plus 2b, a plus 3 b, and so on."

ALGEBRAIC EXPRESSIONS.

27. An Algebraic Expression is any combination of alge-

braic symbols.

28. A Coefficient of a quantity is a figure or letter pre-

fixed to it, to show how many times the quantity is to be

taken. Thus, in 4«, 4 is the coefficient of a, and indicates

that a is taken four times, or a + a + a + a. Where any

number of quantities are multiplied together, the product of
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any of them may be regarded as the coefficient of the product
of the others; thus, in abed, ab is the coefficient of ed,

b of ac d, a b d of c, and so on.

When no coefficient of a quantity is written, 1 is understood

to he the coefficient. Thus, a is the same as 1 a, and x y is

the same as 1 x y.

29. The Terms of an algebraic expression are its parts

connected by the signs + or — . Thus,

a and b are the terms of the expression a + b
;

2 a, b
2
,
and — 2 a c, of the expression 2 a + b2— 2 a c.

30. The Degree .of a term is the number of literal factors

which it contains. Thus,

2 a is of the first degree, as it contains but one literal factor,

a & is of the second degree, as it contains two literal factors.

3 a b
2
is of the third degree, as it contains three literal factors.

The degree of any term is determined by adding the expon-
ents of its several letters. Thus, a b

2
c
s

is of the sixth degree.

31. Positive Terms are those preceded by a plus sign ; as,

+ 2 a, or + a b
2

.

When a term has no sign written, it is understood to be

positive. Thus, a is the same as + a.

Negative Terms are those preceded by a minus sign ; as,

— 3 a, or —be.

This sign can never be omitted.

32. In a positive term, the coefficient indicates how many
times the quantity is taken additively (Art. 28) ;

in a nega-
tive term, the coefficient indicates how many times the quan-

tity is taken svbtractively. Thus,

+ 2 x is the same as + x + x
;

— 3 a is the same as — a — a— a.



DEFINITIONS AND NOTATION. 7

33. If the same quantity be both added to and subtracted

from another, the value of the latter will not be changed ;

hence if any quantity b be added to any other quantity a, and

b be subtracted from the result, the remainder will be a;

that is,

# a + b — b = a.

Consequently, equal terms affected by unlike signs, in an

expression, neutralize each other, or cancel.

34. Similar or Like Terms are those which differ only in

their numerical coefficients. Thus,

2 x y
2 and — 1 xif are similar terms.

Dissimilar or Unlike Terms are those which are not similar.

Thus,
b x2

y and bxy2 are dissimilar terms.

35. A Monomial is an algebraic expression consisting of

only one term
; as, 5 a, 7 a b, or 3 b'

2
c.

A monomial is sometimes called a simple quantity.

36. A Polynomial is an algebraic expression consisting of

more than one term
; as, a + b, or 3 a2 + b — 5 b

3
.

A polynomial is sometimes called a compound quantity, or a

multinomial.

37. A Binomial is a polynomial of two terms
; as,

a — b, 2 a + b
2
,
ov dad2 — b.

A binomial whose second term is negative, as a — b, is some-

times called a residual.

38. A Trinomial is a polynomial of three terms
; as,

a + b + c, or a b + c
2 — b

3
.

39. Homogeneous Terms are those of the same degree ; as,

a2
,
3 be, and — 4 x2

.
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40. A polynomial is homogeneous when all its terms are

homogeneous ; as, a3 + 2 a b c — 3 b
3
.

41. A polynomial is said to be arranged according to the

decreasing powers of any letter, when the term having the

highest exponent of that letter is placed first, that having
the next lower immediately after, and so on. Thus,

a3 +3a2
b + 3ab2 + b

3

is arranged according t6 the decreasing powers of a.

A polynomial is said to be arranged according to the increas-

ing powers of any letter, when the term having the lowest

exponent of that letter is placed first, that having the next

higher immediately after, and so on. Thus,

a3 + 3 a2
b + 3 a b

2 + b3

is arranged according to the increasing powers of b.

42. The Reciprocal of a quantity is 1 divided by that

quantity. Thus, the reciprocal of

a is -
, and of x + y is

a x + y

43. The Interpretation of an algebraic expression consists

in rendering it into an arithmetical quantity, by means of the

numerical values assigned to its letters. The result is called

the numerical value of the expression.

Thus, the numerical value of

4d+ 3 be — d

when a = 4, b = 3, c = 5, and d = 2, is

4x4 + 3x3x5-2 = 16 + 45 - 2 = 59.

AXIOMS.

44. An Axiom is a self-evident truth.

Algebraic operations are based upon definitions, and the

following axioms :
—
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1. If the same quantity, or equal quantities, be added to

equal quantities, the sums will he equal.
• 2. If the same quantity, or equal quantities, he subtracted

from equal quantities, the remainders will he equal.

3. If equal quantities be multiplied by the same quantity, or

by equal quantities, the products will be equal.

4. If equal quantities be divided by the same quantity, or

by equal quantities, the quotients will be equal.

5. If the same quantity be both added to and subtractedfrom
another, the value of the latter will not be changed.

6. If a quantity be both multiplied and divided by another,

the value of the former will not be changed.

7. Quantities which are equal to the same quantity are equal

to each other.

8. Like powers and like roots of equal quantities are equal.

9. The whole of a quantity is equal to the sum of all its

parts.

EXERCISES ON THE PRECEDING DEFINITIONS AND
PRINCIPLES.

45. Translate the following algebraic expressions into

ordinary language :

d m
1. 3 a2 + b c—

q.
5. cd :

—= ab : \J x*.
3 n

x
2. 4 m . 6. (a

—
b)x = [c + d~] y.

<- -} 3a — d
"

2c + b
3. ^ a + b = ^ a2 — c. 7. {m + r — s}n =

4,mn>pa. 8.
\J-^- < (e

-
d) (h

+
fj.

46. Put into the form of algebraic expressions the follow-

ing :

1. Five times a, added to two times b.

2. Two times x, minus y to the second power.
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3. The difference of x and y.

4. The product of «, b, c square, and d cube.

5. x + y multiplied by a — b.

6. a square divided by the sum of b and c.

7. x divided by 3, increased by 2, equals three times y,

diminished by 11.

8. The reciprocal of a + b, plus the square of a
}
minus the

cube root of b, is equal to the square root of c.

9. The ratio of 5 a divided by b, to d divided by c square,

equals the ratio of x square y cube to y square z fourth.

10. The product of in and a + b is less than the reciprocal

of x cube.

11. The product of x + y and x — y is greater than the

product of the square of a — d into the cube of a + b.

12. The quotient of a divided by 3 a — 2 is equal to the

square root of the quotient of m + n divided by 2x — y
2
.

47. Find the numerical values of the following :
—

When a = 6, b = 5, c = 4, and d— 1, of

1. a2 + 2 a b — c + d. 4. a2

(a + b)
— 2abc.

2. 2a?-2a2
b + c

3
. 5. 5a2 b-±ab2 + 21c.

3. 2a2 + 3bc-5. 6. 7 a2 + (a- b) (a-c).

When a = 4, b = 2, c= 3, and d = l, of

a
2 J,2

1.15a-7(b+c)-d. 10. ^ +| + ^.

8. 25a2
-7(b

2 + c
2

) + d\ 11.
4

+ 1 .

„« £» c '25 a — 30 c— d
9. - H 1-

-
. 12. .bed b + c

When a = \, b = \, c = \, and x= 2, of

IS. (2 a + 3 b + 5 c) ($ a + 3 b - 5 e) (2 a- 3 b + 15 c).
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15. x* - (2 a + 3 b) x
3 + (3 a

- 2 b) x
2- ex + be.

When a=b, and b = £, of

16
5 a + ^ - C3 a -

(
2 a - ^)]

17
13 a + 3 b + {7 Q + b) + [3 a + 8 (4 a

-
b)~\)

2a + Sb

When b= 3, c= 4, d= 6, and e= 2, of

18. V27T- v' 27+ y/2Z 19. V3^7+ ^"9^-^27.

When «= 16, &= 10
;

cc = 5, and y=l, of

20. (b
-

x) (y/a + b) + ^ (a
-

b) (x + y).

48. What is the coefficient of

1. x in 3 n2 x ? 3. x y in — 20 m? xyz
z
?

2. a c
s in a J2

c
3 d4 ? 4. ra

2 w3 in 5 a8 m2
a; ?i

3
?

What is the degree of

5. 3ax? 6. 2m*nx*? 7. a2
b
s
c
2 d5 ? 8. 2mcr2

y
3
.??

Arrange the following expressions according to the increas-

ing powers of x :

9. 2cc2 -3a; + x3 + l-4a;4
.

10. 3 x y*
— 5 xs

y + y
i — x4 — x2

y
2
.

Arrange the following expressions according
'
o the decreas-

ing powers of a :

11. 1- a2 -2 a + a3 + 2 a*.

12. aJ3-i4 + a4 -4«2
i
2-3a3

5.
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NEGATIVE QUANTITIES.

49. The signs + and —
,
besides indicating the operations

of addition and subtraction, are also used, in Algebra, to indi-

cate the nature or quality of the quantities to which they are

prefixed.

To illustrate, let us suppose a person, having a property of

$ 500, to lose $ 150, then gain $ 250, and finally to incur a debt

of $ 450 ;
it is required to find the amount of his property.

Since gains have an additive effect on property, and debts or

losses a subtractive effect, we may indicate these different

qualities algebraically by prefixing the signs + and — to them,

respectively ; thus, we should represent the transactions as

follows,

$ 500 - $ 150 + $ 250- $ 450 ;

which reduces to $ 150, the amount required.

But suppose, having a property of $ 500, he incurs a debt

of $ 700
;
we should represent the transaction algebraically as

follows,

$500-1700;

or, as incurring a debt of $ 700 is equivalent to incurring two

debts, one of $ 500 and the other of $ 200, the transaction may
be expressed thus,

$ 500 - $ 500 - $ 200.

Now since, by Art. 33, $ 500 and — $ 500 neutralize each

other, we have remaining the isolated negative quantity
— $200 as the algebraic representative of the required prop-

erty. In Arithmetic, we should say that he owed or was in

debt $200; in Algebra, we make also the equivalent state-

ment that his property amounts to —$200.
In this way we can conceive the possibility of the indepen-

dent existence of negative quantities; and as, in Arithmetic,

losses may be added, subtracted, multiplied, etc., precisely as

though they were gains, so, in Algebra, negative quantities
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may be added, subtracted, multiplied, etc., precisely as though

they were positive.

The distinction of positive and negative quantities is applied

in a great many cases in the language of every-day life and in

the mathematical sciences. Thus, in the thermometer, we

speak of a temperature above zero as +, and one below as —
;

for instance, +25° means 25° above zero, and —10° means

10° below zero. In navigation, north latitude is considered

-j-,
and south latitude —

; longitude west of Greenwich is con-

sidered +, and longitude east of Greenwich — ;
for example,

a place in latitude — 30°, longitude + 95°, would be in latitude

30° south of the equator, and in longitude 95° west of Green-

wich. And, in general, when we have to consider quantities

the exact reverse of each other in quality or condition, we

may regard quantities of either quality or condition as posi-

tive, and those of the opposite quality or condition as negative.

It is immaterial which quality we regard as positive ;
but hav-

ing assumed at the commencement of an investigation a certain

quality as positive, we must retain the same notation through-

out.

The absolute value of a quantity is the number represented

by that quantity, taken independently of the sign affecting it.

Thus, 2 and — 2 have the same absolute value.

But as we consider a person who owns $ 2 as better off

than one who owes $2, so, in Algebra, we consider + 2 as

greater than — 2
; and, in general, any positive quantity,

however small, is considered greater titan any negative quan-

tity.

Also, as we consider a person who owes $ 2 as better off than

one who owes $3, so, in Algebra, we consider — 2 as greater

than —3; and, in general, oftivo negative quantities, that is

regarded as the greater which has the less number of units, or

which has the smaller absolute value.

Again, as we consider a person who has no property or debt

as better off than one who is in debt, so, in Algebra, zero is

considered greater than any negative quantity.
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II. — ADDITION.

50. Addition, in Algebra, is the process of collecting two

or more quantities into one equivalent expression, called, the

sum.

51. In Arithmetic, when a person incurs a debt of a certain

amount, we regard his property as diminished by the amount

of the debt. So, in Algebra, using the interpretation of nega-

tive quantities as given in Art. 49, adding a negative quantity

is equivalent to subtracting an equal positive quantity. Thus,

the sum of a and — b is obtained by subtracting b from a, giv-

ing as a result a— b.

Hence, the addition of monomials is indicated by uniting

the quantities with their respective signs. Thus, the sum of

a,
—

b, c, d,
—

e, and —f, is

a—b+c+d—e —f.

The addition of polynomials is indicated by enclosing them

in parentheses (Art. 25), and uniting the results with + signs.

Thus, the sum of a + b and c— d is

(a + b) + (c
—

d).

52. Let it be required to add c— d to a + b.

If we add c to a + b, the sum will be a + b + c. But we

have to add to a + b a quantity which is d less than c. Conse-

quently our result is d too large. Hence the required sum will

be a + b + c diminished by d, or a + b + c — d.

Hence, the addition of polynomials may also be indicated by

uniting their terms with their respective signs.

53. Let it be required to add 2 a and 3 a.

By Art. 32, 2 a = a + a,

and 3 a = a + a + a.
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Hence (Art. 52) the sum of 2 a and 3 a is indicated by

a -\- a + a + a + a,

which, by Art. 32, is equal to 5 a. Hence, 2a + 3a = 5a.

54. Let it be required to add — 3 a and — 2 a.

By Art. 32,
— 3 a = — a — a — a,

and — 2 a = — a — a.

Hence (Art. 52), the sum of — 3 a and — 2 a is indicated by

— a — a — a — a — a,

or — 5 a (Art. 32). Hence, — 3 a — 2 a = — 5 a.

From our ideas of negative quantities (Art. 49), we may ex-

plain this result arithmetically as follows :

If a person has two debts, one of $ 3 and the other of $ 2,

he may be considered to be in debt to the amount of $ 5.

55. Let it be required to add 4 a and — 2 a.

4 a = a + a+ a + a,

and — 2«= — a — a.

Hence, the sum of 4 a and — 2 a is indicated by

a + a + a + a — a — a.

Now, by Art. 33, the third and fourth terms are neutralized

by the fifth and sixth, leaving as the result a + a, or 2 a.

Hence, 4 « — 2 a = 2 a.

We may explain this result arithmetically as follows :

If a person has $4 in money, and incurs a debt of $2, his

property may be considered to amount to $ 2.

56. Let it be required to add — 4 a and 2 a.

— 4:a = — a — a — a— a,

and 2a = ffl+«.
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Hence, the sum of — 4 a and 2 a is indicated by

— a— a — a — a + a + a.

The third and fourth terms neutralize the fifth and sixth,

leaving as the result — a — a or —2a. Hence,

— 4ta + 2a = — 2a.

We may explain this result arithmetically as follows :

If a person has $ 2 in money, and incurs a debt of 84, he

may be considered to be in debt to the amount of $2.

.57. From Arts. 55 and 56 we derive the following rule

for the addition of two similar (Art. 34) terms of opposite

sign:

To add two similar terms, the one positive and the other

negative, subtract the smaller coefficient from the larger, affix

to the result the common symbols, and prefix the sign of the

larger.

For example, the sum of 7 x y and — 3xy is 4:xy,

the sum of 3 a2
bs and — 11 a~ b

3
is — 8 a2

b3
.

58. In Arithmetic, when adding several quantities, it

makes no difference in which order we add them
; thus,

3 + 5 + 9, 5 + 3 + 9, 9+3 + 5, etc., all give the same result,

17. So also in Algebra, it is immaterial in what order the

terms are united, provided each has its proper sign. Thus,
— b + a is the same as a — b.

Hence, in adding together any number of similar terms,

some positive and some negative, we may add the positive

terms first, and then the negative, and finally combine these

two results by the rule of Art. 57.

Thus, in finding the sum of 2 a,
—

a, la, 6 a,
— 4 a, and

— 5 a, the sum of the positive terms 2 a, 7 a, and 6 a, is 15 a,

and the sum of the negative terms — a,
— 4 a, and — 5 a,

is — 10 a
;
and the sum of 15 a and — 10 a is 5 a.

59. Let it be required to add 6 a — 7 x, 3 x — 2 a + 3 y,

and 2 x — a — mn.
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We might obtain the sum in accordance with Art. 52, by-

uniting the terms by their respective signs, and combining
similar terms by the methods previously given. It is however

customary in practice, and more convenient, to set the expres-

sions down one underneath the other, similar terms being in

the same vertical column
; thus,

6 a — 1 x
— 2 a + 3 x + 3 y
— a + 2 x —mn
3 a — 2 x + 3 y — m n.

It should be remembered that only similar terms can be

combined by addition ; and that the algebraic sum of dissimilar

terms can only be indicated by uniting them by their respective

signs.

60. From the preceding principles and illustrations is de-

rived the following

RULE.

To add together two or more expressions, set them down one

underneath the other, similar terms being in the same vertical

column. Find the sum of the similar terms, and to the result

obtained unite the dissimilar terms, if any, by their respective

signs.
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6. 7. 8.

la — mp2 2 a — 3 x ab + c d

a + 6 mp2 — a + 4x — ab -\- cd
— 11 a — 3 mp2 a + x 3 a b — 2 cd

8 a + 11 m j9
2 5 a — 7 a; lab — 5 cd

— 9 a— 1 mp2 —4: a— x —4tab + 6cd
18 a — 15 mp2 —3 a + 1 x 2 ab — 5cd

Find the sum of the following :

9. 4,xy z,
— 3xy z,

— 5xy z, 6x y z,
— 9xy z, and 3 x y z.

10. 5 m n2 — 8x2
y,
—m n2 + x2

y,
—6m n2— 3x 2

y, 4:mn2

+ 1 x2
y, 2 m n2 + 3 x2

y, and — ra ri
2 — 2x 2

y.

11. 3a2 + 2ab + 4,b2
,
5a2 -Sab + b2

,
-a 2 +5ab-b2

,

18 a2 -20 ab- 19 b2
,
and 14 a2 - 3 a b + 20 b 2

.

12. 2a— 5b— c +1, 3b — 2-6a + 8c, c + 3a-4, and

1 + 2 b - 5 c.

13. 6x — 3y+lm, 2 n — x + y, 2 y
— 4x— 5 m, and

m + n — y.

14. 2 a - 3 b + 4
<7,

2 & - 3 d + 4 c, 2 cZ - 3 e + 4 a, and

2c-3a + 4i.

15. 3 cc — 2 y — z, 3 y
— 5 x — 1 z, 8 z — y — x, and 4 x.

16. 2 m — 3n + 5r — t,
2 n — 6 t — 3 r — m, r + 3 m — 5n

+ 4t, and 3 t — 2 r + 1 n — 4 m.

17. 4:inn + 3 ab — 4 c, 3 x — 4 a b + 2 m n, and 3 m2 — 4 p.

18. 3 a + b — 10, c — d — a, —4c + 2a — 3b — l, and

4 a;
2 + 5 - 18 m.

19. 4a;8_5 a8_ 5ax2 +6a 2

x, 6as + 3x* + Aax2 + 2a2
x,

-11 Xs +19 ax2- 15 a 2
x, and 10 x3 + 1 a2 x + 5 a3 - 18 a x 2

.

20. la — 5if, S^x + 2a, oif— \/x, and — 9a+ 7tfx.

21. 3 a b + 3 (« + b),
- a b + 2 (a + b), 7 a b— 4 (a + b),

and — 2 a b + 6 (a + b).

22. lsjy-4(a-b), 6 \J y + 2 (a
-

b), 2 ^ y + (a-b), and

sjy
— 3(a — b).
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III. — SUBTRACTION.

61. Subtraction, in Algebra, is the process of finding one

of two quantities, when their sum and the other quantity are

given.

Hence, Subtraction is the converse of Addition.

The Minuend is the sum of the quantities.

The Subtrahend is the given quantity.

The Remainder is the required quantity.

As the remainder is the difference between the minuend

and subtrahend, subtraction may also be defined as the process

of finding the difference between two quantities.

62. Subtraction may be indicated by writing the subtra-

hend after the minuend, with a — sign between them. Thus,

the subtraction of b from a is indicated by

a — b.

In indicating subtraction in this way, the subtrahend, if a

negative quantity or a polynomial, should be enclosed in a

parenthesis. Thus, the subtraction of —b from a is indi-

cated by

and the subtraction of b — c from a by

a— (b
—

c).

63. Let it be required to subtract b — c from a.

According to the definition of Art. 61, we are to find a

quantity which when added to b — c will produce a
;

this

quantity is evidently a— b + c, which is the remainder re-

quired.

Now, if we had changed the sign of each term of the sub-

trahend, giving
— b + c, and had added the resulting expres-

sion to a, we should have arrived at the same result, a — b + c.
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Hence, to subtract one quantity from another, we may change

the sign of each term of the subtrahend, and add the residt to

the minuend.

64. 1. Let it be required to subtract 3 a from 8 a.

According to Art. 63, the result may be obtained by adding
— 3 a to 8 a, giving 5 a (Art. 55).

2. Subtract 8 a from 3 a.

By Art. 63, the result is 3 a — S a or —5a (Art. 56).

3. Subtract — 2 a from 3 a.

Result, 3 a + 2 a or 5 a.

4. Subtract 3 a from —2 a.

Result,
—2a-3«or —5 a.

5. Subtract — 2 a from —5 a.

Result,
— 5 a + 2 a or —3 a.

6. Subtract —5a from —2 a.

Result,
— 2 a + 5 a or 3 a.

65. In Arithmetic, addition always implies augmentation,
and subtraction diminution. In Algebra this is not always
the case

;
for example, in adding

— 2 a to 5 a the sum is 3 a,

which is smaller than 5 a
; also, in subtracting —2 a from 5 a

the remainder is 7 a, which is larger than 5 a. Thus, the

terms Addition, Subtraction, Sum, and Remainder have a

much more general signification in Algebra than in Arith-

metic.

66. From Art. 63 we derive the following

RULE.

To subtract one expression from another, set the subtrahend

underneath the minuend, similar terms being in the same ver-

tical column. Change the sign of each term of the subtrahend

from + to —
,
or from — to + ,

and add the restdt to the

minuend.
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68. Let it be required to indicate the addition of 3 a. and

5 b — c + 2 d
;
this we may do by placing the latter expression

in a parenthesis, prefixing a + sign, and writing after the

former quantity, thus :

3 a + (5 b - c + 2 d).

If the operation be performed, we obtain (Art. 60),

3a + 5b — c + 2d.

69. Again, let it be required to indicate the subtraction of

5b — c-\-2d from 3 a
;
this we may do by placing the former

expression in a parenthesis, prefixing a — sign, and writing

after the latter quantity, thus :

3a-(5b-c + 2d).

If the operation be performed, we obtain (Art. 66),

3 a — 5 b + c— 2d.

70. It will be observed that in the former case the signs

»f the terms within the parenthesis are unchanged when the

parenthesis is removed
;
while in the latter case the sign of

each term within is changed, from + to —
,
or from — to +.

Hence, we have the following rule for the removal of a paren-

thesis :

If the parenthesis is preceded by a -f- sign, it may be re-

moved if the sign of every enclosed term be unchanged; and

if the parenthes-is is preceded by a — sign, it may be removed

if the sign of every enclosed term be changed.

71. To enclose any number of terms in a parenthesis, we

take the reverse of the preceding rule :

Any number of terms may be enclosed in a parenthesis, with

a + sign prefixed, if the sign of every term enclosed be un-

changed ; and in a parenthesis, with a — sig?i prefixed, if

the sign of every term enclosed be changed.
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72. As the bracket, brace, and vinculum (Art. 25) have the

same signification as the parenthesis, the rules for their re-

moval or introduction are the same. It should be observed

in the case of the vinculum, that the sign apparently prefixed

to the first term underneath is in reality the sign of the vin-

culum
; thus, + a — b signifies + (a

—
V), and — a — b signi-

fies — (a — b).

73. Parentheses will often be found enclosing others
;
in

this case they may be removed successively, by the preceding
rule

;
and it is better to begin by removing the inside pair.

74. 1. Remove the parentheses from 3 a — (2 a — 5)
—

(-a + 7).

Result, 3a — 2a + 5 + a — 7 — 2a — 2.

2. Remove the parentheses etc., from

6 a - [3 a + (2 a
-

{
5 a - [4 a - a - 2] } )].

In accordance with Art. 73, we remove the vinculum first,

and the others in succession. Thus,

6 a — [3 a +(2 a -{5 a -[4 a- a- 2]})]

= 6 a - [3 a + (2 a - {5 a - [4 a - a + 2]})]

= 6 a— [3 a + (2 a— {5 a— 4 a + a— 2})]

= 6 a — [3 a + (2 a — 5 a + 4 a — a + 2)]

= Qa — [3a + 2a — 5a + 4a — a + 2^\

= 6a — 3a — 2a + 5a — 4:a + a — 2 = 3a — 2, Ans.

3. Enclose the last three terms of a—b~ c + d+ e —f in

a parenthesis with a — sign prefixed.

Result, a— b — c—(—d— e+f).
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EXAMPLES.

Remove the parentheses, etc., from the following :

4. a — (b
—

c) + (d
—

e).

5. 3a-(2a-{a + 2}).

6. 5 x — (2 x
— 3 y)

—
(2 x +. 4 y).

7. a — b + c— {a + b — c)
—

{c + b — a).

8. in' — 2n+ (a
— n + 3 ?m

2

)
—

(5 a + 3 w — m2
).

9. 2 m - [n
—

{3 wi -(2w- m) } ].

10. 8x — (5x
—

[4 a; — ?/
—

&])
— (— a;

— 3 y).

11. 2«-[5J+ {3c-(a+[2ft-3a + 4c])}].

12. 3c+(2a-[5c-{3a + c-4a}-]).

13. 6 a - [5 a - (4 a -
{
- 3 a - [2 a- a- 1]})].

14. 2 m - [3 m - (5 m - 2)
-

{
m - (2 wi-3m + 4)}].

75. As another application of the rule of Art. 70, we have

the following four results :

+ (+ a) is equivalent to + a
;

+ (
—

a) is equivalent to — a
;

—
(+ a) is equivalent to — a

;

— (—a) is equivalent to + a.

V. — MULTIPLICATION.

76. Multiplication, in Algebra, is the process of taking
one quantity as many times as there are units in another

quantity.

The Multiplicand is the quantity to be multiplied or taken.

The Multiplier is the quantity by which we multiply.

The Product is the result of the operation.

The multiplicand and multiplier are often called factors.
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77. The product of the factors is the same, in whatever

order they are taken.

For we know, from Arithmetic, that the product of two

numbers is the same, in whatever order they are taken
;
thus

we have 3 X 4 or 4 X 3 eacli equal to 12. Similarly, in Alge-

bra, where the symbols represent numbers, we have a X b or

b X a each equal to a b (Art. 14).

78. Let it be required to multiply a — b by c.

By Art. 77, multiplying a — b by c is the same as multiply-

ing c by a — b. To multiply c by a — &, we multiply it first

by a, and then by b, and subtract the second result from the

first, e multiplied by a gives a c, and multiplied by b gives
b c. Subtracting the second result from the first we have

a c— b c

the product required.

79. Let it be required to multiply a — b by c— d.

To multiply a — b by c — d, we multiply it first by c, and

then by d, and subtract the second result from the first. By
Art. 78, a — b multiplied by c gives ac— bc, and multiplied

by d gives ad— bd. Subtracting the second result from the

first, we have

ac— bc— ad+bd
the product required.

80. We observe in the result of Art. 79,

1. The product of the positive term a by the positive term
c gives the positive term a c.

2. The product of the negative term —b by the positive
term c gives the negative term —be.

3. The product of the positive terra a by the negative term
— d gives the negative term — a d.

4. The product of the negative tern> —b by the negative
term — d gives the positive term b d.
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From these considerations we can state what is known as

the Rule of Signs in Multiplication, as follows:

+ multiplied by +, and — multiplied by
—

, produce + ;

+ multiplied by
—

,
and — multiplied by + , produce

—
.

Or, as may he enunciated for the sake of hrevity with regard
to the product of any two terms,

Like signs produce + ,
and unlike signs produce

—
.

81. Let it he required to multiply 7 a by 2 b.

Since (Art. 77) the factors may he written in any order, we
have 7ax2b = 7x2xaXb = 14:ab. Hence,

The coefficient of the product is equal to the product of the

coefficients of the factors.

82. Let it he required to multiply a3
hy a2

.

By Art. 17, as means sX«X«}
and a2 means aXa; hence,

a! Xfl
2= «X»X«X«X(i=«5

. Hence,

The exponent of a letter in the product is equal to the sum

of its exponents in the factors.
'

Or, in general, am X an = am + n
.

83. In Multiplication we may distinguish three cases.

CASE I. •

84. WJien both factors are monomials.

From Arts. 80, 81, and 82 is derived the following rule for

the product of any two monomials.

RULE.

Multiply the numerical coefficients together ; annex to the

residt the letters of both monomials, giving to curb letter an

exponent equal to the sum of its exponents in thefactors. Make
the product + when the two factors have the same sign, and —
when they have different signs.
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EXAMPLES.

1. Multiply 2 «" by 3 a 2
.

2«4 x3a2= 6a6
,
Ans.

2. Multiply a3
b
2
c by - 5 a2

b d.

a8 b
2
c X — 5 a2

b d — — 5 a5 bs
c d, Ans.

3. Multiply
— 7 xm by — 5 se

n
.

— 7 a;
m x — 5 xn = 35 a:

m+n
,

^4?zs.

4. Multiply 3 a
(a;
—

y)
2

by 4«3
(x- ?/).

3 a (a
-

y)
2 X 4 a3

(x-y) = 12 a4

(a;
-

y)
3
,
Ans.

Multiply the following :

5. 15 m5 w6

by 3 m n. 12. — 12 a2 x by — 2 a2

y.

6. 3 a 6 by 2 a e. 13. 3 am 6n by — 5 an br.

7. 17 a b c by — 8 a b c. 14. — 4 xm ?/" by — xn
y
n zb

.

8.-17 a4
c
2

by - 3 a2
c
2

. 15. 2 am 5" by 5 a3
b.

9. 11 n2
y by — 5 w6

«. 16. — 7 mn x 2

by mn #r
y

2
.

10. 4a6 by3aiy2
. 17. 2 m (a

-
b)

2

by m (a - b).

11. — 6 a b
2
c by a3 b m. 18. 7 a (x

—
y) hy —3 a2

b (x — y).

19. Find the continued product of 8 a x2
,
2 a3

y, and 4 a;
3

v/
4

.

20. Find the continued product of 2 a c
2
,

— 4 a c
3
,

and

-3«J2
.

CASE II.

85. Wlien one of the factors is a polynomial.

From Art. 78 we have the following

RULE.

Multiply each term of the multiplicand by the multiplier,

remembering that like signs produce +, and unlike signs pro-
duce — .
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EXAMPLES.

1. Multiply 3 x — y by 2 x y.

3 x — y
2 x y

6 x'
2

y — 2 x y
2

,
Ans.

2. Multiply 3 a — 5 x by — 4 ra.

3 a — 5 x
— 4 m

,3

.2

— 12 a m + 20 ra #, ^4?is.

Multiply tbe following :

3. x2 -2z-3by 4z. 7. -x4 -10a;3 + 5by-2x-
4. 8 a2

6 c - fZ by 5 a f/
2
. 8. a2 + 13 a& - 6 6 2

by 4 a b
2

5. 3 x2 + 6 x — 7 by — 2 xs
. 9. ra

2 + m n + ?r by m n.

6. 3 ra2— 5 ra ?i — ?i
2

by — 2 m. 10. 5 — 6 a — 8 a3

by — 6 <x

11. 5a; 3 -4x2 -3z-2by-6r\
12. «3 - 3 a 2

b + 3 a b
2 - b* by a2

b
2
.

CASE III.

86. When both of the factors are polynomials.

In Art. 79 we sbowed that tbe product of a — b and c — d

rnigbt be obtained by multiplying a — b by c, and then by d,

and subtracting tbe second result from tbe first. It would

evidently be equally correct to multiply a — b by c, and then

by — d, and add the second result to the first. On this we
base the following rule for finding the product of two poly-
nomials.

RULE.

Multiply each term of the multiplicand by each term of the

multiplier, remembering that like signs 'produce +, and unlike

signs produce —, and add the partial, products.
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EXAMPLES.

1. Multiply 3 a - 2 b by 2 a- 5b.

3a -2b
2a —5b

6 a2 — Aab
- 15 a b + 10 b

2

6 a2— 19 a b + 10 6'
2

,
^ws.

The reason for shifting the second partial product one place

to the right, is that in general it enables us to place like terms

in the same vertical column, where they are more conveniently

added.

2. Multiply x2 + 1 — x3 — x by x + 1.

1 — X + X2 — X3

1 + x

1 — X + X2 — X3

+ X — X2 + X3 — X*

1 —x4
,
Ans.

It is convenient, though not essential, to have both multi-

plicand and multiplier arranged in the same order of powers

(Art. 41), and to write the product in the same order.

Multiply the following :

3. 3 x2 — 2 x y — y
2

by 2 x — Ay.

4. x2 + 2x + lhyx2 -2x + 3.

5. a + b — c by a — b + c.

6. 3a-2bhy-2a + 4.b.

7. a 2 + b2 + ab by b — a.

8. 1 + x + x3 + x2

by a x — a.

9. 5 a 2 - 3 a b + 4 b
2

by 6 a - 5 b.

10. 3 x2 — 7 x + 4 by 2 x2 + 9 x — 5.
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11. 6 x - 2 x- - 5 - a-
3
by x 2 + 10 - 2 x.

12. 2a3 +5a>2 -8a:-7by4-5 :*; -3a:2
.

13. a3
b - a2 b2 - 4 a 68 by 2 a2

5 - a b
2
.

14. xm + 2

ij
— 3xyn ~ l

by 4 *"• + 5
y

2 — 4 a 4

y
n

.

15. 6 a:
4 - 3 x3- a:

2 +6 a; -2 by 2x2 + x + 2.

16. m4 — m3 w + rn2 n2— m w3 + %4
by m + n.

17. ft
3-3«2H3ai2- 6

3

by a2 -2ab + b\

87. It is sometimes sufficient to indicate the product of

polynomials, by enclosing each of the given factors in a paren-
thesis, arid writing them one after the other, with or without
the sign X between the parentheses. When the indicated

multiplication is performed, the expression is said to be ex-

panded or developed.

1. Indicate the product of 2 x2— 3 x y+ 6 by 3 x2 + 3 x y— o.

Kesult, (2x
2 -3xy + 6) (3x

2

+3xy-5).

EXAMPLES.

2. Expand (3 a + 4 b) (2 a + b).

3. Expand (a*
— a3 x + a 2 x 2 — a x3 + x4

) (a + x).

4. Develop (a*
— a:

4
) X («

4 —
a,'

4

).

5. Develop (a
m —

a") (2 a — an
).

6. Expand (1 + x) (1 + a-
4

) (1
— a- + .r

2 - a-
3

).

7. Find the value of (« + 2 a) («
— 3 x) (a + 4 x).

8. Expand [« (a
2— 3 a + 3)

-
1] x [a (a

-
2) + 1].

88. From the definition of Art. 76, X a means taken

a times. Since taken any number of times produces 0, it

follows that x a = 0. That is,

If zero be multiplied by any quantity} the product is equal
to zero.
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89. Since (+ a) X (+ b) —ab, and (— a) X (— &) =ab,
it follows that in the indicated product of two factors, all the

signs of both factors may be changed without altering the value

of the expression. Thus,

(x — y) {a — b) is equal to {y
—

x) (J>
—

a).

Similarly we may show that in the indicated product of any
number of factors, any even number offactors may In/re their

signs changed without altering the value of the expression.

Thus, (x
—

y) (c
—

d) (e —f) (g
—

h) is equal to

{y-x) (c-d) (f-e) (g- h), or to

(y
—

x) (d
—

c) {f-e) (h
—

g), etc.; but is not equal to

(y-x){d~c)(f-e)(g-h).

VI. — DIVISION.

90. Division, in Algebra, is the process of finding one of

two factors, when their product and the other factor are given.

Hence, Division is the converse of Multiplication.

The Dividend is the product of the two factors.

The Divisor is the given factor.

The Quotient is the required factor.

91. Since the quotient multiplied by the divisor produces
the dividend, it follows, from Art. 80, that if the divisor and

quotient have the same sign, the dividend is +
;
and if they

have different signs, the dividend is — . Hence,

+ divided by +, and — divided by
—

, produce + ;

+ divided by
—

,
and — divided by +, produce

—
.

Hence, in division as in multiplication,

Like signs produce +, and unlike signs produce
—

.
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92. Let it be required to find the quotient of 14 a b divided

by 7 a.

Since the quotient is such a quantity as when multiplied by
the divisor produces the dividend, the quotient required must

be such a quantity as when multiplied by 7 a will produce
14 a b. That quantity is evidently 2 b. Hence,

The coefficient of the quotient is equal to the coefficient of
the dividend divided by the coefficient of the divisor.

93. Let it be required to find the quotient of a5 divided

by a 3
.

The quotient required must be such a quantity as when

multiplied by a3 will produce a5
. That quantity is evidently

a 2
. Hence,

The exponent of a letter in the quotient is equal to its expo-

nent in the dividend diminished by its exponent in the divisor.

Or, in general, am -f- an = am
~ n

.

94. If we apply the rule of Art. 93 to finding the quotient

of a™ divided by am
,
we have am -f- am = am

~ m = a .

Now, according to the previously given definition of an ex-

ponent (Art. 17), a° has no meaning, and we are therefore at

liberty to give to it any definition we please. As am— am= 1,

we should naturally define a° as being equal to 1
;
and as a

may represent any quantity whatever,

Any quantity whose exponent is is' equal to 1.

By this notation, the trace of a letter which has disappeared
in the operation of division may be preserved. Thus, the

quotient of a 2 b3 divided by a2
b
2
,

if important to indicate that

a originally entered into the term, may be written a b.

95. In Division we may distinguish three cases.

CASE I.

96. When both dividend and divisor are monomials.

From the preceding articles is derived the following
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RULE.

Divide the coefficient of the dividend by that of the divisor ;

and to the result annex the letters of the dividend, each with an

exponent equal to its exponent in the dividend diminished by

its exponent in the divisor; omitting all letters whose expo-

nents become zero. Make the quotient + when the dividend and

divisor have the same sign, and — when they have different

signs.

EXAMPLES.

1. Divide 9 a2
b c x y by 3 a b c.

9a2

bcxy-i-3abc = 3axy, Ans.

2. Divide 24 a4 m3 n2

by — 8 a m3
n.

24 a4 m3 n2
-.
— 8 a m3 n — — 3 a3

n, Ans.

3. Divide — 35 xm by — 7 xn .

— 35 xm -^-
— 7xn = 5 xm

~ n
,
Ans.

Divide tbe following :

4. 12 a 5

by 4 a. 8. - 65 a 3
b
3
c
3

by - 5 a b
2
c
3
.

5. 6 a2
c by 6 a c. 9. 72 m° n by

— 12 m2
.

6. 14 m3 n4

by
- 7 m n3

. 10. - 144 c
5 <P e

6
by 36 c

2 d3
e.

7. -18x2

y
5 zhy9x 2

z. 11. - 91 x4
y

3 z2
by - 13 x3

y
1
.

CASE II.

97. When the dividend is a polynomial and the divisor is

a monomial.

Tbe operation being just tbe reverse of that of Art. 85, we

have the following

RULE.

Divide each term of the dividend by the divisor, remembering

that like signs produce +, and tinlike signs produce
—

.
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EXAMPLES.

1. Divide 9 a3
ft + 6 a4

e— 12 a ft by 3 a.

3«)9a
3H6 a4

c — 12 a 5

3a2
i + 2«3 c-4J, ^4»s.

Divide the following :

2. 8 a3
6 c + 16 a5 6 c — 4 a2

c
2

by 4 a2
c.

3. 9 a5
ft c - 3 a2

ft + 18 a3
ft c by 3 a ft.

4. 20 a4
ft c + 15 a 6 d3 - 10 a2

ft by - 5 a ft.

5. 3 a3
(a
-

ft) + 9 a (a + ft) by 3 a.

6. 15 (x + y)
2 — 5 a (x + y) + 10 ft (x + y) by — 5 (x + y).

7. 4 x7 - 8 a-
6 - 14 t> + 2 a4 - 6 x3

by 2 x\

8. 9 a4 + 27 x3- 21 a2

by -3 a;
2
.

9. _ a6 £6 C
4 _ a4

&5 c
3 + 3 a8

£4 ^2 fcy
_ ft

8 p ^
10. — 12 aP ft? - 30 a12

ft
3 + 108 a" ft

n
by - 6 am ft'".

CASE III.

98. When the divisor is a polynomial.

1. Let it be required to divide 12 + 10 x3 — 11 x — 21 x2
by

2z2 -4-3x.
We are then to find a quantity which when multiplied by

2 x2 - 4 - 3 x will produce 12 + 10 x3 - 11 x - 21 x2
.

Now, in the product of two polynomials, the term containing

the highest power of any letter in the multiplicand, multiplied

by the term containing the highest power of the same letter

in the multiplier, produces the term containing the highest

power of that letter in the product. Hence, if the term con-

taining the highest power of x in the dividend, 10 x3
,
be di-

vided by the term containing the highest power of x in the

divisor, 2 x 2
,
the result, 5 x, will he the term containing the

highest power of x in the quotient.
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Multiplying the divisor by 5 x, the term of the quotient

already found, and subtracting the result, 10 x3 — 20 x — 15 x2
,

from the dividend,' the remainder, 12 + 9 x — 6 x'
2

, may be re-

garded as the product of the divisor by the rest of the quotient.

Therefore, to find the rest of the quotient, we proceed as be-

fore, regarding 12 + 9 x — 6 x2 as a new dividend, and divid-

ing the term containing the highest power of x,
— 6 x'

2
, by

the term containing the highest power of x in the divisor, 2 x2
,

giving as a result — 3, which is the term containing the high-

est power of x in the rest of the quotient.

Multiplying the divisor by — 3, the term of the quotient

just found, and subtracting the result,
— 6 x 2 + 12 + 9 x, from

the second dividend, there is no remainder. Hence, 5 x — 3

is the quotient required.

99. It will be observed that in getting the terms of the

quotient, we search for the terms containing the highest power
of some letter in the dividend and divisor. These may be

obtained most conveniently by arranging both dividend and

divisor in order of powers commencing with the highest

(Art. 41) ; this, too, facilitates the subsequent subtraction.

We also should arrange each remainder or new dividend in

the same order.

It is customary to arrange the work as follows :

10 x3 - 21 x 2 - 11 x + 12

10 x s - 15 x 2 - 20 x

2 x2 — 3 x — 4, Divisor.

5 x — 3, Quotient.

— 6x2 + 9 a: + 12
- 6x2 + 9 a; + 12

100. We might have obtained the quotient by dividing the

term containing the lowest power of x in the dividend, 12, by
the term containing the lowest power of x in the divisor,

—
4,

which would have given as a result — 3, the term containing
the lowest power of x in the quotient. In solving the problem
in this way, we should first arrange both dividend and divisor

in order of powers commencing with the lowest, and should
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afterwards bring clown each remainder in the same order; re-

membering that a term which does not contain x at all con-

tains a lower power of x than any term which contains x.

101. From the preceding principles we derive the follow-

ing
RULE.

Arrange both dividend and divisor in the same order ofpow-
ers of some common letter.

Divide the first term of the dividend by the first term of the

divisor, and write the result as the first term of the quotient.

Multiply the whole divisor by this term, and subtract the

product from the dividend, arranging the result in the same
order ofpowers as the divisor and dividend.

Regard the remainder as a new dividend, and divide its first

term by the first term of the divisor, giving the next term of the

quotient.

Multiply the whole divisor by this term, and subtract the

product from the last remainder.

Continue in the same manner until the remainder becomes

zero, or until the first term of the remainder will not contain

the first term of the divisor.

When a remainder is found whose first term will not con-

tain the first term of the divisor, the remainder may be written

with the divisor under it in the form of a fraction, and added

to the quotient.

2. Divide a8 - 3 a 2
b +. 12 b

z + 5 a b
2

by b + a.

Arranging the dividend and divisor in order of powers,

a + b) a3 - 3 a 2
b + 5 a b

2 + 12 bz

{a
2 - 4 a b + 9 b

2

a3 + a 2
b

- 4 a 2
b

~
— 4 a2

b — 4 a b
2

9ab2

9 a b
2 +9b s

3 b3
,
Remainder.

3 b 9

Ans, a2 -4ab + 9b 2 +
a + b'
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EXAMPLES.

3. Divide 2 a2 x2 — 5 a x + 2 by 2 a x — 1.

4. Divide 3 6
3 + 3 a b

2- 4 a 2
b - 4 «3

by a + b.

5. Divide 8 a? - 4 a2
i - 6 a b

2 + 3 &
3

by 2 a - J.

6. Divide 21 a5 - 21 b5

by la — lb.

7. Divide a3 + 2 a;
3

by a + #.

8. Divide x* + y
4
by cc + y.

9. Divide 23 x"- 48 + 6 cc
4 - 2 a; - 31 x* by 6 + 3a;2— 5 x.

10. Divide 15 x4- 32 x3+ 50 x2- 32 a; + 15 by 3 x2- 4 x + 5.

11. Divide 2 a;
4 - 11 aj - 4 ar - 12 - 3 x3

by 4 + 2 ar + jb.

12. Divide a;
5 —

v/
5

by x — y.

13. Divide 35 - 17 x + 16 x2 - 25 a;
3 + 6 x4

by 2 x — 1.

14. Divide 3 x2 + 4 x + 6 a;
- 11 x 3 - 4 by 3 x2 - 4.

15. Divide a2 — &'
2 + 2 & c — c

2

by a + b — c.

16. Divide a;
4 — 9 a;

2 — 6 x y — y
2

by x2 + 3 x + y.

17. Divide xn + 1 + xn
y + x y

n + y
n + 1

by xn + y
n

.

18. Divide crn — b2m + 2 bm c
r — c

2r
by an + bm — c

r
.

19. Divide 1 + a hy 1 — a.

In examples of this kind the division does not terminate,

there being a remainder however far the operation may be

carried.

20. Divide a by 1 + x.

21. Divide a 8 + a6
b
2 + a 4

b
4 + a2

b* + b
a

by a4 +a3 b + a 2
b
2 + ab 3 + b4

.

22. Divide 3 a3 + 2 - 4 a5 + 7 a + 2 a6 - 5 a4 + 10 a2

by a3 — 1 — a2 — 2 a.

23. Divide 15 x2 - x4 - 20 - 2 a;
5 + 6 x + 2 x3

by 5 - 3 a;
2 - 4 x + 2 x3

.
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24. Divide 2 x5 + 4 x 2 — 14 + 7 x — 7 x3 + x« — xi

by 2 x 2 - 7 + z3
.

25. Divide 12 « 5 - 14 a4 b + 10 a8 i2- a 2
6
3 - 8 a i4 + 4 i5

by 6 a8 - 4 a2 6 - 3 a b
2 + 2 63

.

102. In Art. 88 we showed that X a = 0. Since the

product of the divisor and quotient equals the dividend, we

may regard as the quotient, a as the divisor, and as the

dividend. Therefore,

°-= 0.

That is,

a

If zero be divided by any quantity the quotient is equal to

zero.

VII. —FORMULAE.

103. A Formula is an algebraic expression of a general rule.

The following formulae will be found very useful in abridg-

ing algebraic operations.

104. By Art. 17, (a + bf =5 (a + b) (a + b) ; whence, by
actual multiplication, we have

That is,
(a + V* = cc

2 + 2ab + b
2
. (1)

The square of the sum of two quantities is equal to the

square of the first, plus twice the product of the first by the

second, plus the square of the second.

105. We may also show, by multiplication, that

(a
-

b)
2 = a2 -2ab + b\ (2)

That is,

The square of the difference of two quantities is equal to

the square of the first, minus twice the product of the first by
the second, plus the square of the second.

106. Again, by multiplication, we have

(a + b) (a-b) = a2 - b
2

. (3)
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That is,

The product of the sum and difference of two quantities is

equal to the difference of their squares.

EXAMPLES.

1 107. 1. Square 3 a + 2 b.

The square of the first term is 9 a2
,
twice the product of the

terms is 12 a b, and the square of the last term is 4 b
2

. Hence,

by formula (1),

(3 a + 2 b)
2 = 9 a 2 + 12 a b + 4 b

2

, Am.

Square the following :

2. 2m + 3 w. 4. 3 x + 11. 6. 2ab + &ac.

3. x2 + 4. 5. 4a + 5 b. 7. 7 x3 +3x.
8. Square 4 x — 5.

The square of the first term is 16 x2
,
twice the product of

the terms is 40 a-, and the square of the last term is 25.

Hence, by formula (2),

(4 x - 5)
2 = 16 x2 - 40 x + 25, Am.

Square the following :

9. 3a 2 -b s
. 11. l-2£ 13. 3-a\

10. 4 a b - x. 12. x* - y\ 14. 2 a;
3 - 9 x 2

.

15. Multiply 6 a + b by 6 « — 6.

The square, of the first term is 36 a 2
,
and of the last term b

2
.

Hence, by formula (3),

(6a + b) (6 a - b) = 36 a 2 - b
2

,
Am.

Expand the following :

16. (x + 3) (x
-

3). 19. (a
m + a") (a

m - an).

17. (2 x + 1) (2 x - 1). 20. O 3 + 5
a-) (a;

3 - 5 a-).

18. (5« + 7J) (5a-76). 21. (4ar + 3) (4a;
2

-3).

22. Multiply a + b + chja + b — c.

(a + b + c) (a + b - c)
= [(» + b) + c] [O + 6)

-
c]

= (Art. 106), (a + b)
2- c

2= a 2 + 2 « b + b
2 - c

2
,
Am.
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Expand the following :

23. [1 + («-&)] [1- («- &)]• 25 - (a-5 + c)(a
— &-c).

24. (a + & + c) (a
— &— c).

26. (c + a - &) (c
— a + b).

27. [(a + b) + (c-d)2 [(a + ft)
-

(«-«*)].

28. (a
— b + c — d)(a — b — c + d).

29. (a + b + c + d) (a + b — c — d).

VIII. — FACTORING.

108. The Factors of a quantity are such quantities as will

divide it without a remainder.

109. Factoring is the process of resolving a quantity into

its factors.

110. A Prime Quantity is one that cannot be divided,

without a remainder, by any integral quantity, except itself

or unity.

Thus, a, b, and a + c are prime quantities.

Quantities are said to he prime to each other when they have

no common integral divisor except unity.

111. One quantity is said to be divisible by another when

the latter will divide the former without a remainder.

Thus, a b and a b + a2
b'

1 are both divisible by a, b, and a b.

112. If a quantity can be resolved into two equal factors,

it is said to be a, perfect square ; and one of the equal factors

is called the square root of the quantity.

If a quantity can be resolved into three equal factors, it is

said to be a perfect cube ; and one of the equal factors is called

the cube root of the quantity.

Thus, since 1 a- equals 2 a X 2 a, 4 a2
is a perfect square

and 2 a is its square root
;
and since 27 Xs

equals 3,xx3a
, x3/,

27 Xs
is a perfect cube, and 3x is its <nbe root.
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Note. 4 a2 also equals
- 2 a x - 2 a, so that the square root of 4 <>

2

may be either 2 a or - 2 «. In the examples in this chapter we shall only

consider the positive square root.

To find the square root of an algebraic quantity, extract the square root

of the numerical coefficient, and divide the exponent of each letter by 2.

Thus, the square root of 9 a6 b2 is 3 a? b.

To find the cube root, extract the cube root of the numerical coefficient,

and divide the exponent of each letter by 3. Thus, the cube root of 8 a3 b®

is 2 a b2 .

113. The factoring of monomials may be performed by-

inspection ; thus,

12 a3
b
2
c = 2.2.8. a a abbe.

But in the decomposition of polynomials we are governed by
rules which may be derived from the laws of their formation.

A polynomial is not always factorable
;
but in numerous cases

we can always factor
;
and these cases, together with the rules

for their solution, will be found in the succeeding articles.

CASE I.

114. Wlien the terms of a polynomial have a common mo-

nomial factor, it may be written as one of the factors of the

polynomial, ivith the quotient obtained by dividing the given

polynomial by this factor, as the other.

1. Factor the expression 3 x 3

y
2 — 12 x y

4 — 9 x2
y
3

.

We observe that each term contains the factor 3 x y
2

.

Dividing the given polynomial by 3 x y
2
,
we obtain as a

quotient x2 — 4 y
2 — 3 x y. Hence,

3 x3
y

2 - 12 x y
4 - 9 x 2

y
z = 3 .« y

2

(x
2 -±y2 -3x y), Arts.

EXAMPLES.

Factor the following expressions :

2. as + a.
$

5. 60m4 n2— 12 n\

3. 16 x4 - 12 x. 6. 27 c
4 d2 + 9 c

3
d.

4. a& -2 a4 + 3 a 3 -a2
. 7. 36 Xs

y — 60 x2
y

4 — 84 x4
y

2
.

8. a5 b-3a6 b4-2a3 b
4
c + 6a'1 b

5 x.

9. 84 x 2

y
3 - 140 x 3

y
4 + 56 x4

if.
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10. 72 o 4
b
3
c
3 + 126 a3

c
2 d + 162 a2

c.

1 1. 128 c
4 d5 + 320 c

2 d7 - 448 c
8

<Z
4
.

CASE II.

115. TFAerc a polynomial consists of four terms, the first

two and last two of which have a common binomial factor, it

may he written as one of the factors of the polynomial, wit li-

the quotient obtained by dividing the given polynomial by this

factor, as the other.

1. Factor the expression a m — b m + a• n — b n.

Factoring the first two and last two terms by the method

of Case I, we obtain m (a
—

b) + n (a-
—

b). We observe that

the first two and last two terms have the common binomial

factor a — b. Dividing the expression by this, we obtain as a

quotient m + n.

Hence, am — bm + an — bn=(a— b) (m + n), Ans.

2. Factor the expression a m — bm — an + b n.

am — b 7)i — a n + b n= a m — b m — (a n — b
11)
= ni (a

—
b)

— n(a — b)
— (a — b) (m — n), Ans.

Note. If the third term of the four is negative, as in Ex. 2, it is

convenient to enclose the last two terms in a parenthesis with a -
sign

prefixed, before factoring.

EXAMPLES.

Factor the following expressions :

3. a b + b x + a y + x y. -7. mx2— my2— ?ix2 + n y
1
.

4. a c — cm + a d — dm. 8. x3 + x2 + x + 1.

5. x2 + 2x — xy — 2y. 9. 6 x3 + 4 x2 — 9 x - 6.

6. a3 — a2
b + a b

2 - b3
. 10. 8 c x - 12 c y + 2 d x - 3 d y.

11. 6 n - 21 m2 n-8m + 28 m 3
.

12. a 2 bc — ac2 d+ab2 d — bc d2
.

13. m2 n2 x2— ns x y — m3 x y + m n y'
2
.

14. 12 a b m n — 21 a b x y + 20 < d m n — 35 c d x //.
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CASE III.

116. When the first and last terms of a trinomial are

perfect squares and positive, and the second term is twice the

product of their square roots.

Comparing with Formulae 1 and 2, Arts. 104 and 105, we

observe that such expressions are produced by the product of

two equal binomial factors. Reversing the rules of Arts. 104

and 105, we have the following rule for obtaining one of the

equal factors :

Extract the square roots of the first and last terms, and

connect the results by the sign of the second term.

1. Factor a 2 + 2 a b + b
2

.

The square root of the first term is a
;
of the last term, b

;

the sign of the second term is + . Hence, one of the equal

factors is a + b.

Therefore, a 2 + 2 a b + b
2 = (a + b) (a + b) or (a + b)

2

,
Ans.

2. Factor 9 or — 12 a, b + A hi

The square root of the first term is 3 a
;
of the last term, 2 b

;

the sign of the second term is — . Hence, one of the equal

factors' is 3 a — 2 b. Therefore,

9 a2- 12 a b + 4 b
2=

(3 a -2 b) (3 a
- 2 b) or (3 a

- 2 bf, Ans.

Note. According to Art. 58, the given expression may be written

4 b2 — 12 a b + 9 a2. Applying the rule to this expression, we have

4 b2 - 12 a b + 9 a2 = (2 b- 3 a) (2 b - 3 a) or (2 b - 3 a)
2

.

We should obtain this second form of the result in another way by apply-

ing the principles of Art. 89 to the first factors obtained.

EXAMPLES.

Factor the following expressions :

3. x 2- 14 x + 49. 6. a2 - 28 a + 196..

4. m 2 + 36 m + 324. 7. n6 - 26 n 3 + 169.

5. y
2 + 20 y + 100. 8. x2

y
2 + 32 x y + 256.
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9. 25 x2 + 70 x y z + 49 y
2 z2

. 11. 16 m2 -8am+«2
.

10. 36 m? - 36 w « + 9 n2
. 12. 4 a2 + 44 a b + 121 b

2
.

13. a 2 6 4 + 12 a b
2
c + 36 c

2
.

14. 9 «4 + 60 a 2 bc2 d + 100 b
2
c
i d2

.

15. 4 xA - 60 m re x2 + 225 m2
t»s

16. 64 x6 - 160 x5 + 100 cc
4
.

CASE IV.

117. When an expression is the difference between two

perfect squares.

Comparing with Formula 3, Art. 106, we observe that such

expressions are the product of the sum and difference of two

quantities. Reversing the rule of Art. 106, we have the fol-

lowing rule for obtaining the factors :

Extract the square roots of the first and last terms ; add

the results for one factor, and subtract the second result from
the first for the other. •

1. Factor 36 x2 — 49 y
2

.

The square root of the first term is 6 a;; of the last, 7 y.

The sum of these is 6 x + 7 y, and the second subtracted from

the first is 6 x — 7 y. Hence,

36 x2 — 49 y
2 = (6 x + 7 y) (6 x — 7 y), Ans.

2. Factor {a
-

b)
2 - (c-df.

The square root of the first term is a — b
;
of the last, c — d.

The sum of these is a — b + c — d, and the second subtracted

from the first is a — b — c + d. Hence,

(a
—

b)
2 —

(c
—

d)
2 = (a

— b + c — d) (a
— b — c + cl), Ans.

EXAMPLES.

Factor the following expressions :

3. x2 -l. 5. a4 -/A 7. 4 a*— 225 maw9
.

4. 4x2 -9t/2
. 6. 9 a2 -4. 8. 1 - 196 x2

if z\
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9. (a + b)
2 -

(c + d)
2
. 11. m2-

(x
-

y)
2
.

10. (a-c)*—b*. 12.
(aj
— m)

a—
(y
—

»)*.

Many polynomials, consisting of four or six terms, may be

expressed as the difference between two perfect squares, and

hence may be factored by the rule of Case IV.

13. Factor 2 m n + m2— 1 + n2
.

Arrange the expression as follows, m2 + 2mn + r? — 1.

Applying the method of .Case III to the first three terms, we

may write the expression (m + n)'
2 — 1. The square root of

the first term is m + n
;
of the last, 1. The sum of these is

m + n + 1, and the second subtracted from the first is

m + n — 1. Hence,

2 m n + m2 — 1 + n2= (m + n + 1) (m + n— 1), Ans.

14. Factor 2 x y + 1 — x2 — y
2
.

2 x y + 1 — x2—
y

2= l — x2
-\-2x y— y

2

= 1- {x
2-2 x y + y

2

)
= l - (x-y)

2

, by Case III,

= [1 + (x— y)][l— (as— y)]= (l + #-y) (1—x+ y),Ans.

15. Factor 2xy+b2 -x2-2ab- y
2 + a

2
.

2xy+b2— x2— 2ab— y
2 + a2

= a2 — 2ab + b'
2 — x2 + 2 x y

—
y
2

= a2 -2 a b + b
2 -

(x
s - 2 x y + y

2

)

= (a
-

b)
2 — (x— y)

2
, by Case III,

= [(«-&)+ (as-y)][(a-fl)-(aj-y)]
= (a

— b+x— y) (a—b— x + y), Ans.

Factor the following expressions :

16. x2 + 2xy + y
2 -4:. 19. 9-x4 -4?/2 + 4f2

y.

17. aa_ j2 + 2 h c_ c2. 20. 4 a2 + 6
2 - 9 d? -4ab.

18. 9 c
2- 1 + d? + 6 c d. 21. 4 b - 1 - 4 b

2 + 4 m4
.

22. a2 — 2 a m + m2— b2 — 2 b n — n2
.

23. 2 a m — 6
2 + m2 + 2bn+ a 2 - n 2

.

24. x2 - y
2 + c

2 - d2 - 2 c x + 2 tf y.
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CASE V.

118. Wlien an expression is a trinomial, of the form
x- + a x + b ; where the coefficient of x2

is unity, and a and
b represent any whole numbers, either positive or negative.

To derive a rule for this case we will consider four examples
in Multiplication :

I. ii.

x + 5 x — o

x + 3 x — 3

x 1 + 5 x x 2—ox
+ 3.x- + 15 -3cc + 15

a;
2 + Sx + 15 sc

a -8aT+15

III. IV.

x + 5 x — 5

x — 3 x + 3

a?
2 + 5 x #2 — 5 .<

-3x-15 +3x-ll
« 2+2^-15 x2 -2ic-15

We observe in these results,

1. The coefficient of x is the algebraic sum of the numbers
in the factors.

2. The last term is the product of the numbers.

Hence, in reversing the process, we have the following rule

for obtaining the numbers :

RULE.
Find two numbers ivhose algebraic sum is the coefficient of

x, and whose product is the last term.

Note. We may shorten the work by considering the following points :

1. When the last term of the product is f, as in Examples I ami II,

the sum of the numbers is the coefficient of .<•
; both numbers being +

when the second term is +, and - when the second term is -.
2. When the last term is -, as in Examples III and I V, the difference
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of the numbers (disregarding signs) is the coefficient of x
;
the larger

number being + and the smaller - when the second term is +, and the

larger number
- and the smaller + when the second term is -

.

We may embody these observations in the form of a rule which may be

found more convenient than the preceding rule in the solution of examples.

I. If the last term is +, find tivo members whose sum is the coefficient of

x, and whose product is the last term; and give to both numbers the sign of

the second term.

II. If the last term is -
, find tivo numbers whose difference is the coeffi-

cient of x, and whose product is the last term; and give to the larger num-

ber the sign of the second term, and to the smaller number tlie opposite sign.

1. Factor x2 + 14 x + 45.

Here we are to find two numbers whose -

"
-

(.product
— 45 J

The numbers are 9 and 5
; and, the second term being + ,

both

numbers are +. Hence,

x2 + 14 x + 45 = (x + 9) (x + 5), Ans.

2. Factor x2 — 6 x + 5.

Here we are to find two numbers whose !
\

(product = 5,'

The numbers are 5 and 1
; and, as the second term is —

,
both

numbers are — . Hence,

x2 — 6 x + 5 = (x — 5) (x
—

1), Ans.

3. Factor x2 + 5 x — 14.

Here we are to find two numbers whose <

"

I product = 14 )

The numbers are 7 and 2; and as the second term is +, the

larger number is + ,
and the smaller — . Hence,

x 2 + 5 x — 14 = (x + 7) (x
—

2), Ans.

4. Factor x2 — 7 x — 30.

Here we are to find two numbers whose
]

~
\
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The numbers are 10 and 3; and as the second term is —
,
the

larger number is —
,
and the smaller + . Hence,

x 2 - 7 x - 30 = (x
-

10) (x + 3), Arts.

Note. In case the numbers cannot be readily determined by inspection,

the following method will always give them :

Eequired two numbers whose difference is 8 and product 48. Taking in

order, beginning with the lowest, all possible pairs of integral factors of 48,

we have
1x48,

2x24,

3x16,
4x12.

And, as 4 and 1 2 differ by 8, they are the numbers required.

Evidently this method will give the required numbers eventually, how-

ever large they may be, provided they exist.

EXAMPLES.

Factor the following expressions :

5. a2 +5 a- + 6. 12. m 2 +9m + 8.

6. a 2 -3a + 2. 13. m'2 + 2m-80.

7. 2/2 + 2?/- 8. 14. c
2 - 18 c + 32.

8. m2 -5m-24. 15. x2 + x-42.

9. * 2 -ll;c + l8. 16. x2 + 23x + 102.

10. n*- n -c)0. 17. if-9y-90.

11. * 2 +13a; + 36. 18. a2 +13a-48.

19. cc
2 -9z-70.

20. Factor 15 — 2x — x2
.

15 _ 2 x - x 2 = - (x
2 + 2 x - 15)

By the rule of Case V, x2 + 2 x - 15 =
(.r + 5) (x

-
3).

Hence,

15 - 2 x - x2=- (x + 5) (x - 3) = (x + 5) (3
-

x), Ans.

Note. If the x* term is -, enclose the whole expression in a paren-

thesis with a -
sign prefixed. Factor the quantity within the parenthesis,

and change the signs of all the terms of one factor.
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Factor the following expressions :

21. 20-x-x2
. 22. 6 + x-x2

. 23. 84-5z-a; 2
.

The method of Case V may he extended to the factoring of

more complicated trinomials.

24. Factor m2
ri

2 — 3 m nx + 2 x2
.

r. i it (sum =3)
Here we are to find two numbers whose <

t — 9
j

The numbers are 2 and 1; and as the second term is—,

hoth numbers are — . Hence,

m2
ri

2 — 3 m nx + 2x 2 = (m n— 2 x) (m n — x), Ans.

Factor the following expressions :

25. a-
4 - 29 x 2 + 120. 30. ?«4 + 5 m2 n2 - 66 n\

26. c
6 + 12c3 +ll. 31. (a-b)

2 -S(a-b)-4.

27. x 2

y
G + 2xf-120. 32. (x + y)*- 7 (x + y) + 10.

28. (r'^_7«i2 -144. 33. x2 - 2 x y
2 z - 48 y* z\

29. x2 + 25 w x + 100 ?i
2
. 34. (m + nf + (m + n)

- 2.

CASE VI.

119. When an expression is the sum or difference of two

perfect cubes.

By actual division, we may show that

a 3 + b
3 a 3 — b3—— = a2 — ab + b'

2

,
and — = a2 + a b + b

2
.

a + b a — b

Whence,
(a

3 + b
3

)
= (a + b) (a

2 -ab + b2), and

(a
3 - b3

)
= (a

-
b) (a

2 + ab + b
2

).

These results may he enunciated as follows :

To factor the sum of two perfect cubes, write for the first

factor the sum of the cube 7'oots of the quantities; and for the
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second, the square of the first term of the first factor, minus

the product of the two terms, phis the square of the last term.

To factor the difference of two perfect cubes, write for the

first factor the difference of the cube roots of the quantities ;

and for the second, the square of the first term of the first

factor, plus the product of the two terms, plus the square of
the last term.

1. Factor 8 a3 + 1.

The cube root of the first term is 2 a
;

of the last term, 1.

Hence, 8 a 3 + 1 = (2 'a + 1) (4 a
2 - 2 a + 1), Ans.

2. Factor 27 x6 - 64 y
3

.

The cube root of the first term is 3 x2
;
of the last term, 4 y.

Hence,

27 x G - 64 y* = (3 x
2 - 4 y) (9 x

i + 12 x 2

y + 16 y
2

), Ans.

EXAMPLES.

Factor the following expressions :

6. Sc6 -d 9
. 9. 343 + 8 a3

.

7. 125 as - 216 m3
. 10. 27 a;

3 -125.

8. 729 c
3 dP + 512. 11. 1000 -27 a3 b\

CASE VII.

120. When an expression is the sum or difference of two

like powers ofttvo quantities.

The following principles are useful to remember :

1. an — bn is always divisible by a — b, if n is an. integer.

2. an — bn is always divisible by a + b, if n is an even integer.

3. an + bn is always divisible by a + b, if n is an odd integer.

We may prove the first principle as follows :

Commencing the division of an — bn by a — b, wv have

3.
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a — b

an ' + . . . Quotient.

-

a n ] b — bn Remainder.

an — bn
,

an
-

} b — bn
, b (an

~ l — bn
~v

)

or,
- —- =an ~ i

H ;
= an

~ l

-\ '-,
a — b a — b a — b

It is evident from this result that, if a"" 1 — &n_1 is exactly

divisible by a — b, the dividend an — bn will be exactly divisi-

ble by a, — b. That is, if the difference of two like powers of

two quantities is divisible by the difference of those quantities,

then the difference of the next higher powers of the same

quantities is also divisible by the difference of the quantities.

But a s— b
3

is divisible by a — b, hence a4— b
4

is
;
and since

c^ — b* is divisible by a — b, a5— b5
is; and so on to any

power. This proves the first principle.

Similarly the second and third principles may be proved.

By continuing the division, we should find,

= a"- 1 + an
~ 2

b + an ~ 3
b~ + + abn~ 2 + bn

- 1

(1)

an
~'2 b + an

- s
b
2 — + abn~ 2— fi""

1
'

(2)

a
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2. Factor m5 + x5
.

Putting a = m, b = x, n== 5, in (3), we have

1YI -f- X . „ 2 2 3,4= m — m° x + m x — mxA + x\m + x

Hence,

m5 + xs = (m + x) (ra
4 — m3

a; + ra2 a:
2 — m x3 + x4

), Ans.

3. Factor x 6 —
y

6
.

Putting a = x, b = y, n= 6, in (1), we have

x6
ifi—= xs + x* y + xs

y
2 + x2

y
3 + x y* + y

5
.

Hence,

x6 — y
6 =

(x
—

y) (x
5 + x4

y + xs
y

2 + x2

y
s + x y* + f), Ans.

Or, putting a =x, b = y, ?i = 6, in (2), we have

x6
?/

6

J_ — ^5 ~,i », I ~,3 „fi ™2 „.3 i_ ™ ,.4 „.5

Hence,

= x° — a;* ?/ + x" y — x" y
6 + x if

—
y"

x6 — y
6 =(x + y) (x

h — x4
y + xs

y
2 — x2

y
3 + xyi — y

s

), Ans.

EXAMPLES.

Factor the following expressions :

4. x5 + y
5

. 6. to
6-c6

. 8. ms -n*. 10. a4 -16.

5. (*-d\ 7. a' + V. 9. c
7 -l. 11. a7 +128.

121. By the application of one or more of the given rules

for factoring, a quantity may sometimes be separated into

more than two factors.

1. Factor 2 a xs
y

2 - 8 a x y\

By Case I, 2 a x3
if
- 8 a x if = 2 a x y

2

(x
2 - 4 if).

Factoring the quantity in the parenthesis by Case IV,

2 a x3
if
— 8 a x if = 2 a x y

2

(x + 2 y) (x
— 2 y), Ans.

Note. If the method of Case I is to be used in connection with other

cases, it should be applied first.
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2. Resolve aG — b
6 into four factors.

By Case IV, a6 - b
G =

(a
3 + b

3

) (a
3 - b

3
).

By Case VI, a3 + b
3 =

(a + b) (a
2 -ab + b

2

),

and a3 - b
3 = (a

-
b) (a

2 + ab + b2).

Hence,

a6 -bG

=(a + b) (a- b) (a
2 -ab + b

2

) (a
2 +ab + b

2
),

Ans.

EXAMPLES.

Factor the following expressions :

3. 3 a3
b + 12 a2

b + 12 a b. 7. 3 «4 - 21 a3 + 30 a:

4. 45 x 3

if
— 120 x 2 f + 80 x if. 8. 2 c

3 m + 8 c
2 ra-42 c m.

5. 18 x 3

y
— 2 x f. 9. m2a;y-4wa;y— 12 ay.

6. x3 + Sx 2 +7x. 10. 32 «4
b + 4 a 6

4
.

11. Resolve n9 — 1 into three factors.

12. Resolve xi —
if into three factors.

13. Resolve x8 — m8 into four factors.

14. Resolve m6 —
?i
6 into four factors.

15. Resolve a 9 + c
9 into three factors.

16. Resolve 64 «6 — 1 into four factors.

Other methods for factoring will he given in Chapter XXIX.

IX.— GREATEST COMMON DIVISOR.

122. A Common Divisor or Measure of two or more quan-

tities is a quantity that will divide each of them without a

remainder.

Hence, any factor common to two or more quantities is a

common divisor of those quantities.

Also, when quantities are prime to each other, they have no

common measure greater than unity.
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123. The Greatest Common Divisor of two or more quan-
tities is the greatest quantity that will divide each of them

without a remainder.

Hence, the greatest common divisor of tivo or more quanti-

ties is the product of all the prime factors common to those

quantities.

By the greatest of two or more algebraic quantities, it may
he remarked, is here meant the highest, with reference to the

coefficients and exponents of the same letters.

In determining the greatest common divisor of algebraic

quantities, it is convenient to distinguish three cases.

CASE I.

124. When the quantities are monomials.

1. Find the greatest common divisor of

42 a3 b
2

,
70 a 2

b c, and 98 a4
b
3 d2

.

42 a3
b
2 =2x3x7 a a a bb

70 a2 be =2x5x7 aa b c

98 a4 b3 d2 = 2 x 7 X 7 aaaabbb del

Hence, G. C. D. = 2 X 7 a a b= 14 d2
b, Ans. (Art. 123).

•

RULE.

Resolve the quantities into their prime factors, and find the

product of all the factors common to the several quantities.

Note. Any literal factor forming a part of the greatest common divisor

will take the lowest exponent with which it occurs in either of the given

quantities.

EXAMPLES.

Find the greatest common divisors of the following :

2. as x2

,
7 a* x, and 3 a b

2
.

3. G c
5
d\ 3 c

3 d5
,
and 9 c* d3

.

4. 18 m n5
,
45 m2

n, and 72 m8
ri

2
.

5. 15 c
2
x, 45 c

3 x 2
,
and 60 c

4 x8
.
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6. 108 y
2
z\ 144 f z\ and 120 if z5

.

7. 96 a5
b\ 120 a3 b5

,
and 168 a 4

b
&

.

8. 51 m4
n, 85 ra3

a-,
and 119 m2

if.

9. 84 a8
y
4 zs

,
112 a;

4
v/

5 z6
,
and 154 a7

y
6 z\

CASE II.

125. When the quantities are polynomials which can be

readily factored by inspection.

1. Find the greatest common divisor of

5xy3 — 15y
3

,
x2 + 4 x — 21, and mx — 3m — nx + 3n.

5xy3 — 15y
3 = 5y3

(x
—

3)

x2 + 4 x - 21 = (x + 7) (a;
-

3)

mx — 3 m — nx + 3n = (m — n) (x
—

3)

Hence, by Art. 123, G. C. D. = x — 3, Ans.

2. Find the greatest common divisor of

4 x2 - 4 x + 1, 4 x 2 -
1, and 8 ar

5 - 1.

4a;2 -4a; + l= (2a;-l) (2 a;
-

1)

4 a2- 1 = (2 x + 1) (2 x-1)
8 a? - 1 = (2 x

-
1) (4 a;

2 + 2 x + 1)

Hence, G. C. D. = 2 a: — 1, Ans.

The rule in this case is the same as in Case I.

EXAMPLES.

Find the greatest common divisors of the following :

3. 3 a x2— 2 a2
x, a2 x2 — 3 a b x, and 5 a 2 x3 + 2 ax4 — 3 a3

x.

4. vi
2 + 2 in n + n2

,
m2 — n2

,
and m3 + n3

.

5. x* — 1, a-
5 + a3

,
and a;

4 + 2 a;
2 + 1.

6. 3 a xif + 21 ay
2
,
3 c a- + 21 c- 3 d x- 21

rZ, and a;
2-3a- - 70.

7. 4 x2 — 12 a + 9, 4 a;
2 -

9, and 4 m2 »a;-6 m2
n.

8. 9a2
-16, 3a;y— 4^ + 3a;2 — 4a, and 27 a;

3 — 64.
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9. x s —
x, Xs + 9 x2 — 10 x, and x6 — x.

10. a3 — 8 ft
3
,
5 a x + 2 a — 10 ft x — 4

ft,
and a2— 4 a ft + 4 ft

2
.

11. ar
2 - a; - 42, x2 - 4 a - 60, and x2 + 12 x + 36.

12. 8 x3 + 125, 4 aj
2 -

25, and 4 a 2 + 20 x + 25.

13. 3 a xG — 3 a x5
,
a xs — 9 a x2 + 8 a x, and 2 a xh — 2 a x.

14. 12 a x - 3 a + 8 c x - 2 c, 64 x3 -
1, and 16 as*— 8 a? + 1.

CASE III.

126. When the quantities are polynomials which cannot be

readily factored by inspection.

Let a and ft be two expressions, arranged in order of powers
of some common letter

;
and let the exponent of the highest

power of that letter in ft be either equal to or less than the

exponent of the highest power of that letter in a. Suppose
that ft is contained in a, p times with a remainder c

; suppose
that c is contained in

ft, q times with a remainder d
;

and

suppose that d is contained in c, r times with no remainder.

The operation of division may be shown as follows :

ft)
a (p

p ft

e) b (q

1 c

d) c (r

rd

We will first show that d is a common divisor of a and ft.

From the nature of subtraction, the minuend equals the sub-

trahend plus the remainder
; hence,

a=pb + c, ft = q c + d, and c = rd.

Substituting r d for c in tho value of
ft,
we have

b = q r d + d = d (q r + 1).
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Substituting q r d + d for b, and r d for c in the value of a,

we have

a=p q r d + p d + r d= d (p q r +p + r).

Hence, as d is a factor of a and also of b, it is a common

divisor of a and b.

We will now show that every common divisor of a and b is

a divisor of d. Let k he any common divisor of a and b, such

that fl^ffli and b = n k. From the nature of subtraction,

the minuend minus the subtrahend equals the remainder
;

hence,
c = a — p b, and d = b — q c.

Substituting m k for a, and n k for b in the value of c, we

have
c = m k — p n k.

Substituting mk — pnk for c, and n k for b in the value of

d, we have

d — nk — q (j)ik—pnk) = nk — qmk+pqnk
= k (n — q m + p q n).

Hence, k is a factor or divisor of d.

Therefore, since every common divisor of a and b is a divisor

of d, and no expression greater (Art. 123) than d can be a

divisor of d, it follows that d is the greatest common divisor

of a and b.

1. Find the greatest common divisor of x 1 — 6 x + 8 and

4 x3 - 21 x2 + 15 x + 20.

x2 - 6 x + 8) 4 a3 - 21 x2 + 15 x + 20 (4 x + 3

4 x3 - 24 a;
2 + 32 x

3 x2 - 17 x + 20

3 a;
2 - 18 a; + 24

x_ 4) ^—6x + 8(x-2
x2 — 4aj

.
-2a; + 8

-2a + 8

Hence, cc — 4 is the greatest common divisor, Ans.
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RULE.

Divide the greater quantity (Art. 123) by the less • and if

there is no remainder, the less quantity trill he the required

greatest common divisor.

If there is a remainder, divide the divisor by it, and continue

thus to make the preceding divisor the dividend, and the re-

mainder the divisor, until a divisor is obtained which leaves no

remainder ; the last divisor will be the greatest common divisor

required.

Nota 1. If there are three or more quantities, find the greatest common
divisor of two of them

; then of this result and the third of the quantities,

and so on. The last divisor will be the greatest common divisor required.

Note 2. If a monomial factor is seen by inspection to be common to all

the terms of one of the given quantities, and not of the other, it may be re-

moved, as it evidently can form no part of the greatest common divisor
;

and, similarly, we may remove from a remainder any monomial factor

which is not a common factor of the given quantities.

2. Find the greatest common divisor of

6 a x~ — 19 a x + 10 a and 6 xs — x2 — 35 x.

In the first quantity a is a common factor of all the terms,

and is not a factor of the second quantity ;
in the second quan-

tity x is a common factor of all the terms, and is not a factor

of the first quantity. Hence we may remove a from each

term of the first quantity, and x from each term of the second.

6 a;
2- 19 a + 10)6 cc

2 - x -35(1
6a:2 -- 19:c + 10

18a;-45

In this remainder 9 is a common factor of all the terms, and

is not a common factor of the given quantities. Hence 9 may
be removed from each term of the remainder.

2 x - 5)6 x 1 - 19 x + 10(3 x - 2

6 x2 — 15 x
— 4 x'+ 10
— 4 a; + 10

Hence, 2 x — 5 is the greatest common divisor, Ans.
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Note 3. If the first term of a remainder be negative, the sign of each

term may be changed.

3. Find the greatest common divisor of 2 x2 — 3 a; — 2 and

2a;2 -5a;-3.

2a;2 - 3 x - 2)2 a 2 - 5 x -3(1
2x2-3x-2

-2x-l

The first term of this remainder being negative, we change
the sign of each term, giving 2 x + 1.

2 x + 1)2 a;'
2 - 3 x - 2 (x

— 2

2 x'
2 + x

— 4x — 2

— 4a; — 2

Hence, 2 x + 1 is the greatest common divisor, Ans.

Note 4. The dividend or any remainder may be multiplied by any

quantity which is not a common factor of all the terms of the divisor.

4. Find the greatest common divisor of 2 a-
3 — 7 xr + 5 x — 6

and 3 a'
3 — 7 a'

2 — 7 x + 3.

To avoid a fraction as the first term of the quotient, we

multiply each term of the second quantity by 2, giving
6 Xs - 14 x2 - 14 x + 6.

2 xs— 7 x2 + 5 x— 6)6 x
s- 14 cc

2- 14 x + 6 (3
6 a;

3 - 21 x2 + 15 a; - 18

7 a-
2 -29 a; + 24

To avoid a fraction as the first term of the next quotient,

we multiply each term of the new dividend by 7, giving
14 x3 - 49 x2 + 35 x - 42.

7 a;
2- 29 x + 24) 14 x

3 - 49 x2 + 35 x - 42 (2 a;

14 a;
3 - 58 a2 + 48 x

9 a-
2 - 13 x - 42
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The first term of this remainder not heing exactly divisible

by the first term of the divisor, we multiply each term hy 7,

giving 63 x 2 — 91 x — 294.

7 x2 - 29 x + 24) 63 x
2 - 91^-294(9

63 x2 - 261 x + 216

170 x - 510

Dividing each term by 170, x — 3) 7 x2 — 29 x + 24 (7 x
— 8

7 x2 -21x
— 8 a; + 24
- 8cc + 24

Hence, x — 3 is the greatest common divisor, Ans.

Note 5. When the two given quantities have a common monomial

factor, it may be removed from each, and the greatest common divisor of

the resulting expressions found. This result must be multiplied by the

common monomial factor to give the greatest common divisor of the given

quantities.

5. Find the greatest common divisor of 6 x3 — x2 — 5 x and

21 x3 - 26 x2 + 5x.

The quantities have the common monomial factor x
;
remov-

ing it, we find the greatest common divisor of 6 x 2 — x — 5 and

21 x2 — 26 x + 5. We multiply the latter by 2, to avoid a frac-

tion as the first term of the quotient, giving 42 a;
2 — 52 x + 10.

6 x 2 - x - 5) 42 x2 - 52 x + 10 ( 7

42 x2 - 7a;-35

— 45 x + 45

Dividing by — 45, x — 1)6 x2 — x — 5(6a: + 5

6 x2 — 6 x

5x — 5

5x — 5
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Hence, x — 1 is the greatest common divisor of 6 x2 — x — 5

and 21 x2 — 26 x + 5. Multiplying by x, the common mo-

nomial factor, we obtain x (x
—

1) or x2 — x as the required

greatest common divisor, Ans.

EXAMPLES.

Find the greatest common divisors of the following :

6. 6 x2 — 1 x — 24 and 12 x 2 + 8 x - 15.

7. 24 x2 + 11 x - 28" and 40 x2 - 51 x + 14.

8. 2 xs -2 x2- 3 x + 3 and 2 x 3 -2 x2- ox + 5.

9. 6 x2- 13 x -28 and 15 x 2 + 23 a; + 4.

10. 8 x2- 22 x + 5 and 6 a;
2 - 23 x + 20.

11. 5 x 2 + 58 jc + 33 and 10 .x
2 + 41 x + 21.

12. x3 + 2 x 2 + x + 2 and xi -4r-x-2.
13. 2a; 3 -3cc2 -;c + l and 6xs— x2 + 3x -2.

14. a,-
4 - x3 + 2 x 2 + x + 3 and xi + 2 x3 — x — 2.

15. ft
2-5ax + 4 x2 and a3 — « 2 x + 3 a x 2 — 3 x3

.

16. xA -x3 -5 x2 + 2 a- + 6 and x4 + x3 - x2-2x- 2.

17. 6 x2
y + 4 x y

2 — 2 y
3 and 4 cc

3 + 2 x2
?/
— 2 a* //\

18. 2«4 + 3a3x-9a 2 x 2 and 6 «3 - 17 a2
;c + 14 a ar- 3x3

.

19. 15 a2 x3 - 20 a2 x2 - G5 a2 x - 30 a2 and 12 6 a;
3 + 20 b x 2

— 16 b x — 16 b.

X. — LEAST COMMON MULTIPLE.

127. A Multiple of a quantity is any quantity that can be

divided by it without a remainder.

Hence, a multiple of a quantity must contain all the prime
factors of that quantity.
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128. A Common Multiple of two or more quantities is one

that can be divided by each of them without a remainder.

Hence, a common multiple of two or more quantities must

contain all the prime factors of each of the quantities.

129. The Least Common Multiple of two or more quanti-

ties is the least quantity that can be divided by each of them

without a remainder.

Hence, the least common multiple of two or more quantities

must be the pmxluct of all their different prime factors, each

taken only the greatest number of times it is found in any one

of those quantities.

By the least quantity, is here meant the lowest with refer-

ence to the exponents and coefficients of the same letters.

In determining the least common multiple of algebraic

quantities, we may distinguish three cases.

CASE I.

130. When the quantities are monomials.

1. Find the least common multiple of 36 as
x, 60 a2

y
2
,
and

84 c xs
.

36 a3 # = 2x2x3x3 a a ax

60aV=2x2x3x5 a a yy
84 c xz =2x2x3x7 x x x c

Hence, L. C. M. = 2 x f

2 X3x3x5 X? aaaxxxyyc
= 1260 a3 xs

if c, Ans. (Art. 129).

RULE.

Resolve the quantities into their prime factors; and the

product of these, taking each factor only the greatest number of

times it enters into any one of the quantities, will be the least

common multiple.

Any literal factor forming a part of the least common mul-

tiple will take the highest exponent with which it occurs in

p.ither of the given quantities.
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When quantities are prime to each other, their product is

their least common multiple.

EXAMPLES.

Find the least common multiples of the following :

2. 8 a4
c, 10 a3

b, and 12 a2
b
2
.

3. 5 x3
y, 10 if z, and 15 x z3

.

4. a5 b
2
,
9 a3

b\ and 12 a 2
b
3

.

5. 24 m3 x 2

,
30 n2

y, and 32 x y
2
.

6. 8 c
2 d3

,
10 a e, and 42 a2

d.

7. 36 x y
2 z3

,
63 x 3

y z2
,
and 28 .r

2

y
3
z.

8. 40 a 2
b d3

,
18 a c

3
d\ and 54 J2

c d\

9. 7 m w2
,
8 x3

y
2
,
and 84 n x y

3
.

CASE II.

131. When the quantities are polynomials which can be

readily factored by inspection.

1. Find the least common multiple of x2 + x — 6, x2— 6 x + 8

and x2 — 9.

x* + a,
_ 6 = (x

-
2) (x + 3)

a;2_6a: + 8 = (a;-2) (cc-4)

x2 -9 =(x-3)(x + 3)

Hence (Art. 129), L. C. M. = (x
-

2) (a;
-

3) (sc + 3) (x
-

4)

or, x4 - 6 x3 - x 2 + 54 x - 72, ^ws.

The rule is the same as in Case I.

EXAMPLES.

Find the least common multiples of the following :

2. a x 2 + a2
x, x2 — a2

,
and x3 — a3

.

3. 2 a2 + 2 a b
,
3 a b - 3 &

2
,
and 4 a2

c — 4 ft
2

c.
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4. x 2 + x, x
z—

x, and x i + x.

5. 2 - 2 a-
2
,
4 - 4 a-, 8 + 8 a, and 12 + 12 a2

.

6. x2 + 5x + 4, x 2 + 2x — S, and a;
2 + 7 jc + 12.

7. x3 — 10 a;
2 + 21 a;, and a x2 + 5 a x — 24 a.

8. 4 ar - 4 a; + 1, 4 x2 -
1, and 8 a 3 - 1.

9. a x — a y
— b x + b y, x2 — 2 x y + y

2
,
and 3 arb — 3ab2

.

10. 9 a;
2 + 12 a; + 4, 27 x3 + 8, and 6 a x3 + 4 a x 2

.

11. cc
2 - 4 cc + 3, x2 + a; - 12, and x 2 -x- 20.

12. x 2 — y
2 — z2 + 2 y z and x2

-i/
2+r + 2a;s.

CASE III.

132. When the quantities are polynomials which cannot be

readily factored by inspection.

Let a and b be two expressions ;
let d be their greatest com-

mon divisor, and m their least common multiple. Suppose

that d is contained in a, x times, and in b, y times
; then, from

the nature of the greatest common divisor, x and y are prime

to each other. Since the dividend is the product of the quo-

tient and divisor, we have

a = dx and b = d y.

Then (Art. 129) the least common multiple of a and b is

d x y, or m = d x y ;
but dx = a, and y = -', substituting, we

h
have m = a X -; •

d

In a similar manner we could show that m — b X -;•
d

Hence the following

RULE.

Find the greatest common divisor of the two quantities ; di-

vide one of the quantities by this, and multiply the quotient by

the other quantity.
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Note. If there are three or more quantities, find the least common

multiple of two of them, and then of that result and the third quantity ;

and so on.

1. Find the least common multiple of 6 x2 — 17 x + 12 and

12 a:
2- 4 a -21.

6 a;
2 - 17 x + 12)12 a:

2- 4sc-21(2

12 x2 - 34 x + 24

30 x - 45

2 x - 3 ) 6 x2 - 17 x + 12 (3 x - 4

6 x2 — 9 x

- 8 x + 12

- 8 a + 12

Hence, 2 a:
— 3 is the greatest common divisor of the two

quantities ; dividing the first given quantity by this, we obtain,

as a quotient, 3 x — 4
; multiplying the second given quantity

by this quotient, we have

(3 a; -4) (12 a;
2-4 a: -21), or 36 x3 - 60 x2 - 47 x + 84

as the required least common multiple, Ans.

EXAMPLES.

Find the least common multiples of the following :

2. 6 x2 + 13 x - 28 and 12 x2 - 31 x + 20.

3. 8 x 2 + 30 x + 7 and 12 x2 - 29 x - 8.

4. a 3 + a2_ 8 a _ 6 and 2 a3 - 5 a2- 2 a + 2.

5. 2 x3 + x2 - x + 3 and 2 .t
3 + 5 x2 - x - 6.

6. (t
3 -2«2 H2ffii2 - 6

3 and a3 + a2
6 - a b

2 - b
3

.

7. x* + 2 x 3 + 2 x2 + x and a « 3 — 2 a x — a.

8. 2x 4 -llx-3 +3a; 2 + 10a; and 3a;4- 14z3- 6ar+ 5oj.
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XL — FRACTIONS.

133. A Fraction is an expression indicating a certain

number of the equal parts into which a unit has been divided.

The denominator of a fraction shows into how many parts

the unit has been divided, and the numerator how many parts

are taken.

134. A fraction is expressed by writing the numerator

above, and the denominator below, a horizontal line. Thus,

- is a fraction, signifying that the unit has been divided into

b equal parts, and that a parts are taken.

The numerator and denominator are called the terms of a

fraction.

Every integer may be considered as a fraction whose denomi-

a
nator is unity ; thus, a = r- .

135. An Entire Quantity is one which has no fractional

part ; as, ab, or a— b.

136. A Mixed Quantity is one having both entire and

b a
fractional parts ; as, a

,
or c +

x + y

137. If the numerator of a fraction be multiplied, or the

denominator divided, by any quantity, the fraction is multi-

plied by that quantity.

1. Let
y

denote any fraction
; multiplying its numerator by

c, we have -—
. Now, in - and — the unit is divided into b

b b b

equal parts, and a and a c parts, respectively, arc taken. Since
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c times as many parts are taken in — as in -
,

it follows that

a c . .,.
a—- is c times -.

b o

2. Let — denote any fraction
; dividing its denominator

a a a
by c, we have -. Now, in — and -, the same number of

b be a b

parts is taken
; but, since in — tbe unit is divided into

a .

hc
b c equal parts, and in - into only b equal parts, it follows that

• a . . , i ,
• a tt a

each part m - is c times as large as each part m — . Hence, -

is c times -r— .

be

138. If the numerator of a fraction be divided, or the de-

nominator multiplied, by any quantity, the fraction is divided

by that quantity.

1. Let — denote any fraction
; dividing its numerator by c,

we have-. Now, in Art. 137, 1, we showed that — was c

a o a . ac . .

b

times -. Hence, - is — divided by c.

b b . b

2. Let - denote any fraction : multiplying its denominator
b a a

by c, we have — . Now, in Art. 137, 2, we showed that - was

a bc a a . .

h

e times — . Hence, — is - divided by c.

b c b c b

139. If the terms of a fraction be both multiplied, or both

divided by the same quantity, the value of the fraction is not

altered.

For, multiplying the numerator by any quantity, multiplies

the fraction by that quantity ;
and multiplying the denomi-

nator by the same quantity, divides the fraction by that

quantity. And, by Art. 44, Ax. 6, if any quantity be both

multiplied and divided by the same quantity, its value is not

altered.
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Similarly, we may show that if Loth terms are divided by
the same quantity, the value of the fraction is not altered.

140. We may now show the propriety of the use of the

fractional form to indicate division, as explained in Art. 16
;

ft

that is, we shall show that -
represents the quotient of a di-

vided by b.

For, let x denote the quotient of a divided by b.

Then, since the quotient, multiplied by the divisor, gives

tbe dividend, we have b x = a.

But, by Art. 137, bXj=a.

Therefore, x = -
.

b

141. A fraction is positive when its numerator and de-

nominator have the same sign, and negative when they have

different signs.

For, a fraction represents the quotient of its numerator

divided by its denominator
; consequently its proper sign can

be determined as in division (Art. 91).

142. The Sign of a fraction is the sign prefixed to its

dividing line, and indicates whether the fraction is to be

added or subtracted.

Thus, in x -\
—— the sign + denotes that the fraction -j— ,

although essentially negative (Art. 91), is to be added to x.

The sign written before the dividing line of a fraction is

termed the apparent sign of the fraction ;
and that de] tending

upon the value of the fraction itself is termed the real sign.

Thus, in -\
——

,
the apparent sign is + ,

but the real sign

is — .

Where no signs are prefixed, plus is understood.
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odd number of factors have their signs changed, the value of
the fraction is changed from + to —

,
or from — to +.

a — b a — b b — a
Thus,

(x
—

y)(x — z)~ (y
—

x) (z
—
x)~ {y^- x) {x — z)

b — a
1 n

. b — a
but does not equal

(x
—

y)(z
—

x) (y
—

x){z
—

x)

REDUCTION OF FRACTIONS.

146. Reduction of Fractions is the process of changing
their forms without altering their values.

TO REDUCE A FRACTION TO ITS SIMPLEST FORM.

147. A fraction is in its simplest form, when its terms are

prime to each other.

CASE I.

148. When the numerator and denominator can be readily

factored by inspection.

Since dividing hoth numerator and denominator by the

same quantity, or cancelling equal factors in each, does not

alter the value of the fraction (Art. 139), we have the fol-

lowing
RULE.

Resolve both numerator and denominator into their prime
factors, and cancel all that are common to both.

EXAMPLES.

, ^, , 18 a8 b2
o . . , ,

1. ixeduce ——^—2— ™ ^s simplest form.

18 a*b2
c __ 2 . 3 . 3 . a . a . a . b . h . c 2ac

45 a2
b'
2 x
~

5 . 3 . 3 . a . a . b . b . x 5 x '
*

x2 + 2 x — 15
2. Eeduce —s

— — to its simplest form.
x-— 2x — 3

g;
2+ 2x -15_ (x + 5) (x

-
3) _ ,-r + 5

x 2- 2 x - 3
: "

(x + 1) (x
-

3)

~
x~+l'
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_ _. , b c,
— a r — b d + a d . . .

3. Eeduce : ;
— to its simplest form.

a in — b in — an + n

be — ac — bd + ad (b
—

a) (c — d)

am — b m — an+ bn (a — b) (m — n)

= (Art. 89) ("-f)(<*-«0 = fLll
t
Ans.

(it
—

0) (m — n) m — n

Note. If all the factors of the numerator be removed by cancellation,

the number 1 (being a factor of all algebraic expressions) remains to form a

numerator.

If all the factors of the denominator be removed, the result will be au

entire quantity ;
this being a case of exact division.

Reduce the following to their simplest forms :

4. SfUU. 13.

c K.9U !IV IV - -

oo mr n6

65x2
y

3
z*

2(> x* y° z~

„ 54 a3
b
5
c
2

72 a2
b
2
c

Wmxif ,«
o. — —

• 1 1 .

to m x y-

110 e
3 x2

y
9 -

22c2 x 2
1S '

1A 2a2cd+2abcd 1Q1U - a~^ Tr
—

7
' iy>

b <r x y + b ab,x y

ii.
3»'-e« 4

y
go.

6x 2

y
2 — 12 xy

3 ac + ad — b c — b d

19
x2— 2x — lh' 2mx + 3my— 2n 2 x — 3n2

y
x2 + 10 x + 21

'

2 m 2 x + 3 m2y—2nx—3n y

m 2— 10m



72 ALGEBRA.

CASE II.

149. When the numerator and denominator cannot be

readily factored by inspection.

Since the greatest common divisor of two quantities con-

tains all the prime factors common to both, we have the fol-

lowing

KULE.

Divide both numerator and denominator by their greatest

common divisor.

EXAMPLES.

1. Reduce —-—
5

—— to its simplest form.
6 cr — a — 12

By the rule of Art. 126, we find the greatest common divisor

of the numerator and denominator to he 2.a — 3. Dividing

the numerator by this, the quotient is a — 1. Dividing the

denominator, the quotient is 3 a + 4. Therefore, the simplest

form of the fraction is -, Ans.
3 a + 4'

Reduce the following to their simplest forms :

6a:2 + a:-35 „ 6 a-
3 - 19 x2 + 7 x + 12

o -«-" " — "-— "J-
g'

'2u 2 -7a + 6'

. 2 m 2 — 5 m + 3 Q
'

12 m3 - 28 m + 15
'

xa + x*-Sx-2
O. -= ; s ~ 7Z • 1U.

6 '

2x 3 + 5x 2 -2:c + 3"

8x 2 +
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TO REDUCE A FRACTION TO AN ENTIRE OR MIXED QUANTITY.

150. Since a fraction is an expression of division (Art.

140), we have the following

RULE.
*

Divide the numerator by the denominator, and the quotient
will be the entire or mixed quantity required.

EXAMPLES.

ax — a 2 x 2

1. Reduce — to an entire quantity.

(ax — a2 x2

) -i-ax = l — ax, Ans.

q% A3 /j.3

2. Reduce to a mixed quantity.

b3

a — x)a
3 — x3 — b

3
(a

2 + a x + x2
, Ans.

a — x
a3 — a2 x
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TO REDUCE A MIXED QUANTITY TO A FRACTIONAL FORM.

151. This is the converse of Art. 150; hence we may-

proceed by the following

RULE.

Multiply the entire part by the denominator of the fraction ;

add the numerator to the product when the sign of the fraction

is + ,
and subtract it when the sign is — / writing the result

over the denominator.

EXAMPLES.

a2 £2 5
1. Eecluce a + b —

:
— to a fractional form.

a— b

By the rule,

a2 _ b
2 _ 5 (a + &) (g-b)- Q2 - b°- - 5)

a — b a — b

a — b a — b

Note. It will be found convenient to enclose the numerator in a pa-

renthesis, when the sign before the fraction is — .

Reduce the following to fractional forms:

4 „ 3a2 -2Z>2

2. x + l + .- 7.2a ^-x — 6 a a

3. a + — 8. a2 +ab + b 2 —
7

•

n b — a

4. 7a; -
4 "2 + 5a

- 9. 3z-2- 3

~8 2x-l

i
x + 1 in /

a * + b*

5. * + i + __. 10. a-&_-^-.

a + « a;
— ^s
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TO REDUCE FRACTIONS TO A COMMON DENOMINATOR.

t co 1 x> i 5cd 3mx j 3 n y152. 1. Keduce -——
, ,

and —-^ to a common
3 crb 2 ab2 ka6

b

denominator.

Since multiplying each term of a fraction by the same quan-

tity does not alter the value of the fraction (Art. 139), we

may multiply each term of the first fraction by 4 a b, giving

20 a b c d ,
« , 1 , -. „ . . 18 a2 m x

;
each term of the second by b a , giving ;

12 a? 62 ' J ' & ° 12« :i

6
2

and each term of the third by 3 b, giving L. .

12 aJ
b"

It will be observed that the common denominator is the

least common multiple of the given denominators, which is

also called the least common denominator ; and that each term

of either fraction is multiplied by a quantity which is obtained

by dividing the least common denominator by its own denomi-

nator. Kence the following

RULE.

Find the least common multiple of the given denominators.

Divide this by each denominator, separately, and multiply the

corresponding numerators by the quotients ; writing the results

over the common denominator.

Before applying the rule, each fraction should be in its sim-

plest form
;
entire and mixed quantities should be changed to

a fractional form (Arts. 134 and 151).

Note. The common denominator may be any common multiple of the

given denominators. The product of all the denominators is evidently s

common multiple, and the rule is sometimes given as follows : "Multiply
'each numerator by all the denominators except its own, and write the

results over the product of all the denominators."

an a x x it

2. Reduce -——
,
— —

, and . . N , to a common de-
1 — x (1

—
x)

2

(1
— xy

nominator.
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The least common multiple of the given denominators is

(1
—

be)
3
. Dividing this by the first denominator, the quotient

is (1
—

a:)
2

; dividing it by the second denominator, the quo-

tient is (1
—

x) ;
and dividing it by the third denominator, the

quotient is 1. Multiplying the corresponding numerators by
these quotients, we obtain a y (1

—
x)

2

,
a ar (1

—
x), and x i/

3

as the new numerators. Hence the results are

a y (1
—

a?)
2 ax2

(1
—

x) x y
3

(i-xy
>

{i-xy
>
and

(i
- xy

'
Ans -

EXAMPLES.

Reduce the following fractions to a common denominator :

a 3ab 2ac -,56c _ 4c — 1 3b — 2
1 5a

3 - -^o— > -n— >
and "To-- 6 - o „ , > K „ . ,

and
8

' 9 ' 12
'

3ab ' 5ac ' 6b c

. x2
y xy z 7 y z2

„ 2 3 4
^** ~t , * i t~^ i and ^"tt

—
. /. —-——

,
—

-, and —
-.

10
'

15
'

30 a3
a;

2 '

a a:
3 '

ata2 x

3y z Axz 5a;?/ 5 az 3bx ley — m
b '

Yx-'Yy-'
and TT " 8 -

6^' 87i'
and

10* s2

9. -,
——

-, and —
a — b

' a + b
' a2 + 6

2
°

10
# + 3 a? + 1 a; + 2

a;
2- 3 a: + 2' a;

2- 5x + 6' x2- 4a; + 3'

2a 3b 4c

cr + a — 6
' a2 + 5a + 6'

an<"

a2 — 4'

12. T ,

——
T ,

and -j
—

T .

a; — 1 ar— 1 x3— 1

-n a & m — n a + b

a m — b m + a n — b n' 2 a2 — 2 a b
'

3 b m + 3 b n

14. Reduce ; r^—
-

,
— ;—-

,
and

(a-b) (a-c)
'

(b
—

a) (b-e)' (c-a)(c-b)
to u common denominator.
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The fractions may be written (Art 145) as follows :

,
and

(a
-

6) (a
-

c)
'

(a -b)(b- e)
'

(a
-

c) (6
-

c)

The least common denominator is now (a
—

b) (a
—

e)

(b
—

c). Applying the rule, we have the results,

Q-a)(b-c) (h-l)(a-c)
^
^

(a -b) (a- c) (b
—

c)' (a- b) (a
-

c) (b
-

c)

(l-c)(a-b)
(a -b){a- c) (b

-
c)

Kecluce to a common denominator :

,_ 3 2 .a — 2

3

,
Ans.

a



78 algesra.

EXAMPLES.

2. Reduce to a fraction with a2— b
2
for its denom-

a + b

inator.

x -\- 1
3. Reduce - to a fraction with x2 + 5 x — 24 for its

x — 3
denominator.

. -r, , 3 m + 2
4. Reduce to a fraction with G m? — 19 m + 10

for its denominator.

4
5. Reduce to a fraction with a3 — b

3 for its denom-
a —

inator.

6. Reduce 1 + x to a fraction with 1 — x for its denomi-

nator.

ADDITION AND SUBTRACTION OF FRACTIONS.

154. 1. Let it he required to add - to -.
c c

In -- and -
,
the unit is divided into c equal parts, and a

and b parts, respectively, are taken, or in all a + b parts ;
that

a + 6
is . Ihus,

c
a b a + b- + - =—-I—

.

c c c

2. Let it he required to subtract - from -
.

c c

The result must he such a quantity as when added to 7 will

produce -; that quantity is evidently
•

(Art. 154, 1).

,„, a b a — b
1 hus, = .

c c c

Hence the following
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RULE.

To add or subtract fractions, reduce them, if necessary, to a,

common denominator. Add or subtract the numerators, and

write the result over the common denominator.

The final result should be reduced to its simplest form,

wherever such reduction is possible.

3b - a b + a . 1 - 4 o2

1. Add —-

, n 7 ,
and —-——

.

3a ' 2b iab

The least common multiple of the denominators is 12 a b.

Then, by the rule of Art. 152,

3b -a b + a 1 - 4 b* 12 b
2 - 4 ab 6 a b + 6 a2

+ "ITT" + , ,
= " -To-T- - +

+

3a 2 b ±ab 12 a b 12 a b

3 - 12 lr 12 fr
2 -4 a 6 + 6 a fr + 6 a 2 + 3-12 b

2

12 a b 12 a b

6a2 +2ab + S

12 a b
,
Ans.

n n i
4 flj
— 1 . 6 « — 2

«. subtract —^ from — .

2 x 6 a

The least common denominator is 6 ax.

6a —2 4 a; — 1 12 a a; — 4 a: 12 ax — S a
Then, 3a 2a? Gaa; 6 a x

12 a .r — 4 x— (12 ax — 3 a) 12 a a; — 4 a;
— 12 a x + 3 a

6 a x 6 ax

3 a — 4 a;

6 a a;
,
Ans.

Note. When a fraction whose numerator is not a monomial is preceded

by a -
sign, it will be found convenient to enclose its numerator in a pa-

renthesis before combining with the other numerators. If this is not done,

care must be taken to change the sign of each term in the numerator before

combining.



80 ALGEBRA.

4«2 -l 3«i2 -2 5«2
c
2 +3

3. Simplify 2 a c 3 b
2
c 5 a 3

The least common denominator is 30 a b
2
c
3

.

4a2 -l
_
3 a b2 - 2 _ 5a2

c
2 +3

2 a c 3 b
2
c 5 a c

3

60 a 2 b 2
c
2- 15 b'

2
c
2

_ 30 a2
b
2
c
2- 20 a c

2 30 a2
b
2
c
2 + 18 If

30 a b2
c
s 30 d b

2
c
3 30 a 6a

c
3

_ 60 a 2 b2
c
2- 15 b

2
c
2-

(30 a 2
b
2
c
2-20a c

2

)
-

(30 a
2
b
2
c
2 +18 b

?

)

30 a 6
2
c
3

_ 60 a2 &2
c
2 - 15 6 2

c
2 - 30 a2 b2

c
2 + 20 a c

2 - 30 a2 b 2
c
2 - 18 b2

30 a 6'
2
c
3

20 a c
2 - 15 6

2
c
2 - 18 b2

30 a b2
c
3 >

AnS '

EXAMPLES.

Simplify the following :

. 2x — 5 3 a + 11 _ a — b 2a + b b — 3a
4. \- . 9.

1 1 .

12 18 4^6 8

3 1 a 2 + 1 6 a3 + 1 6-2
*

5 a J2
+ 2a 2 i' '3 a2 12 a3 +

ITT'

2 a + 3 3 a + 5 2a;-l 2x + 3 6cc + l

6 8
' "12 ~H~ ^2(P"

ra — 2 2 — 3?»,?i2 m + 2 m + 2 m + 3
' 2m » 3 m 2 n3

' '

~J~ ~U~ ~2lT'

b — 4a a + 5b 10 2 2x— 1 3.r2 +l
o. ——

1

——-—
. lo.

24: a
^

30b
'

'3 6x 9 a;
2

'

,. a — 2 3cc + l 6 a: -5 3
14. -\

'

2
+

3 4 5

3» + l 2&-1 4<?-l 6^+1
12 a ~~8lT"

+
16 c 24^'
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2x + l 3x — 1 11

2 x (x
—

1) 3 a;
(a? + 1) 4

(a-

2 -
1)

The least common denominator is 12 x (x
2 —

1).

2x + l 3x — 1 11
Then,

2 x (x
-

1) 3 x (x + 1) 4
(a;

2 -
1)

6 (a + 1) (2 x + 1) 4
(as
-

1) (3 x
—

1) 33 a;

12x(x
2

-l) 12x(x
2
-l) 12x(x

2
-l)

12 x2 + 18 x + 6 12 x- - 16 x + 4 33 x

12 x (x
2 -

1) 12 x (x-
-

1) 12 x (x
2 -

1)

_ 12 x2 + 18 x + 6 - (12 x 3 - 16 x + 4)
- 33 x

12 x (x
2 -

1)

x + 2

12 x (x
2 -

1)

Aiis.

Simplify the following :

»;_* + *_. »i±» + s=»
x + 2 3 — x a — 6 a + 6

18. -i L_. 20.^-^.x + 7 x + 8 1 —xl + x

a /> 2 a 5
«1. ——7 H j

H—o To •

a + a — a' — b"

1 1 2x
22. +

x + y x — // x' + y-

1 x 3
23. 5 -^r +

24.

X — 1 x2— 1 X3— 1

2 x — 6 x + 2 x + 1

x2 +3x + 2 x2 -2x — 3 x1— x— 6'

x x 2 x
25. Simplify

——r + — h -5x + 1 1 — x x'
2 — 1
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The expression may be written (Art. 143) as follows :

X X Li X
+

X + 1 x — 1 X* — 1

The least common denominator is ar — 1.

ihen
> ZTT^T-Z. T + ~2 7

=
31 i— Z72 T + Z2-x + 1 x — 1 ar — 1 a;'

2 — 1 x' —1 x 2 — 1

or — a:
—

(.t

2 + cc) + 2 a;

x1 — 1

Simplify the following :

x*
= 0, Ans. (Art. 102).

3 4
26. -2-+*. 28. -^-_+ —

a — & b — a 3 x — a2 #2 — 9

_,_. o rt -p x o a — J. -.-. x x x
27. 1

—
. 29. 1

3a+3^2-2a 1+x 1-x

1 1 1

30. T-^f-Ti z +

x

31.

(a
—

b){b
—

c) (b
—

a) (a
—

c) (c
-

a) (c
—

b)

2 3 1

(a;
-

2) (a;
-

3) (3 -*) (4 -a;) (a;
-

4) (2 -a;)
'

MULTIPLICATION OF FRACTIONS.

155. We showed, in Art. 137, that a fraction could be

multiplied by an integer either by multiplying its numerator

or by dividing its denominator by that integer. We will now
show how to multiply one fraction by another.

Let it be required to multiply
- by -

.

Let -= x, and -= y ;

where x and y may be either integral or fractional.
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Since the dividend equals the product of the divisor and

quotient.
a = b x, and c = d y.

Therefore, hy Art. 44, Ax. 3, a c = b d x y.

Regarding a c as the dividend, b d as the divisor, and x y as

the quotient, we have
a c

xy = Vd-

Therefore, putting for x and y their values,

a c a c

~b

X d^bd'
Hence the following

RULE.

Multiply the numerators together for the numerator of the

resulting fraction, and the denominators for its denominator.

Mixed quantities should be reduced to a fractional form

before applying the rule.

When there are common factors in the numerators and

denominators, they should be cancelled before performing the

multiplication.

EXAMPLES.

- ,, 1A . - ,
6x 2

y 10 a 2
y . 3b*x*

1. Multiply together 5—^ ,
-=-=—-

,
and -. ~ .

1 J &
5 a3

b
2 '

9 b x
' 4 a y

2

6x2
y 10 a 2

y 3 J4 xs 6 x 10 X 3 a 2
b* x 5

y
2

b x* .

5a 3
b
2 9bx A

lay2
'

5 X 9 X 4 «4
b3 x y

2
' '

a 2 '
"

Multiply together the following :

a2
5 c -. a3 b

2
. 3 abx2 5 x y

2

•
—

2
and —3

—
j

• 4 - -5
—

2-
ancl 5

—r-

ra ?r md n d bay2, ab x

3 a 3 x ,4fflJ _ m ?/
n

, a x
3 ' ^li- and KTZ, 5 - 7^1 and

7 A4 5Am 4 « x m y
n
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e 2a 6c ,5b 3ab2 3ac2
,Sa<P

o6 5a be 4cd 2&d 9&c

„ 8 a-- 15 y
2 ,3 s;

4
_ 3 m* 2 n* . 11 z 2

'• fT~3> i7
—

5 ?
and in q

• "•
,, o > o

— .and-;—5-.9 if lb zs '

10 cc
3

2a;2 '3??i' 4w2

10. Multiply together

ar
2 _ 2cc x2 -9 . a 2 + a;

,
and

a;2_2a;-3' a;
2-*' cc

2 +a:-.6'

r-2x x2-9 cc
2 + ^

X-s X
ce

2— 2 cc — 3 x-— x x2 + x — 6

x(x-2)(x + 3) (a
-

3) x (x + 1) x

(x-3)(x + l)x(x- 1) (a + 3) (x -2)
~
x~^l '

Multiply together the following :

1t 3.r2 -cc , 10
11. = and

5 2cc2 -4a;'

,. 4 a; + 2 5cc
1*. —^ and

2 x + 1
'

1Q a 2-2ab + b
2

. b
lo. ; and

a + b ax — bx

.,
. a — b . a2— b

2

14. -=— -— and
a 2 + a b a2 — a b

, _ 1 — x 2 1 — y
2

,
10. q , s ,

and
1 + 1/

' X + X 2 '

1 — X

. x2-W . x2 -25
lb. „

— and -5
-—

.

X s + ox r-4a;

a3 — a 2 + a xs — 8
17. -r and — 5 •

x2 + 2 x + 4 a s + 1

,_ a:
2 + 5.r+G , x

2— Ix
18> x^I^^Yl and ^4'
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4 5 x
19. 1 H

— and —
x x 1 x2 — 8x + 7

20. -4-1 and
«X/ fcC

2 -5cc + 6"

a,a _ 3 x + 2 a2 - 7 a; + 12 a3 - 5 x2

2L
aj»_8aj + 15' * 2 -5x + 4'

and
a* -4 '

22. ^ 2—
j

Lj^r> and 1 + ^—
a; — x y + y x~ + x y + y x — y

a* _ U1 - c
2 + 2 5 c a2-p-c2 -2bc

i6 -

a - + c--b2 + 2ac a2 + c
2 -b2 -2ac'

OA a + b a — b 4 b
2 a + b

a — b a + b a — b Jo

_„ 2x-\-y . y x2
.. x 2 — y

2

25. — — — 1 ^ = r- and -=—V-x + y y— cc x* — y* x' + y

DIVISION OF FRACTIONS.

156. We showed, in Art. 138, that a fraction could be

divided by an integer either by dividing its numerator or by

multiplying its denominator by that integer. We will now

show how to divide one fraction by another.

Let it be required to divide - by -
.

ft n

Let x denote the quotient of --$-—.
b a

Then, since the quotient multiplied by the divisor gives the

dividend, we have

c a xe a
XX

d
=

b
]
°r

'

~d
=

b'
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Multiplying each of these equals by -
(Art. 44, Ax. 3),

G

Therefore,
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COMPLEX FRACTIONS.

157. A Complex Fraction is one having a fraction in its

numerator, or denominator, or both. It may be regarded as a

case in division, since its numerator answers to the dividend,

and its denominator to tbe divisor.

However, since multiplying a fraction by any multiple of

its denominator must cancel that denominator, to simplify a

complex fraction, we may multiphj both of its terms by the

least common multiple of their denominators.

EXAMPLES.
a

1. Reduce - to its simplest form.

FIRST METHOD.

Proceeding as in division,

a

c a b a b

-=^Xj=—t, Ans.
a c a ca

b

SECOND METHOD.

Multiplying both terms by the least common multiple of

their denominators,

a a
-Xbc

e c a o .-=- = —T) Ans.da, c a

» b
xbe

a a

2. Reduce —^— — to its simplest form.
b a

a— b a + b
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The least common multiple of the denominators is a2 — b
2

.

Multiplying each term by a'
2 —

lr, we have

a (a -\-b)
— a (a

—
b) cr + ab — a 2 + ab 2 a b

Ans.
b (a + b) + a (a

—
b) a b + b~ + a 2 — a b a 1 + b

2 '

3. Reduce -— to its simplest form.

x

1 1 X+ 1 33 + 1
,
Ans.

1
1

_,

a* a: + 1 + a; 2cc + 1

.1 a; + 1
1 +-

Reduce the following to their simplest forms :

4. -L-. 8. !-|. 12

5.
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a2 + b
2 a 2 — lr in — n m 3 — ns

,n a 2 — b
2 a 2 + b

2

10 m + n in
3 + n3

16. ;
=— • !"•

~? '?•

a + b a — b m + n rnr + nr
+

a — b a + b m — n mr — n.2

i7.
x + y y

, i9.
•> «2x + 2 y x 2 "

a;

v/ a; + y a + x

158. In Art. 42, we defined the reciprocal of a quantity

as being 1 divided *by that quantity. Therefore the reciprocal

in it

of —=—=—
; or, the reciprocal of a fraction is the frac-

n in m
ii

tion inverted.

XII.—SIMPLE EQUATIONS.

159. An Equation is an expression of equality between

two quantities. Thus,

x + 4 = 16

is an equation, expressing the equality of the quantities x + 4

and 16.

160. The First Member of an equation is the quantity on

the left of the sign of equality. The Second Member is the

quantity on the right of that sign. Thus, in the equation

x + 4 = 16, x + 4 is the first member, and 16 is the second

member.

The sides of an equation are its two members.

161. An Identical Equation is one in which the two mem-

bers are equal, whatever values are given to the letters in-

volved, if the same value be given to' the same letter in every

part of the equation ; as,
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2a + 2bc= 2(d + bc).

162. Equations usually consist of known and unknown

quantities. Unknown quantities are generally represented by
the last letters of the alphabet, x, y, z; but any letter may
stand for an unknown quantity. Known quantities are repre-

sented by numbers, or by any except the last letters of the

alphabet.

163. A Numerical Equation is one in which all the known

quantities are represented by numbers
; as,

2 x — 11 = x — 5.

A Literal Equation is one in which some or all the known

quantities are expressed by letters
j as,

2x + a = bx2 — 10.

164. The Degree of an equation containing but one un-

known quantity is denoted by the highest power of that

unknown quantitj' in the equation. Thus,

> are equations of the first degree.
and c x = a'

2 + b d
'

)

3 x2— 2 x = 65 is an equation of the second degree.

In like manner we have equations of the third degree, fourth

degree, and so on.

When an equation contains more than one unknown quan-

tity, its degree is determined by the greatest sum of the

exponents of the unknown quantities in any term. Thus,

x + x y = 25 is an equation of the second degree.

a;
2 — y

2
z = a b

3
is an equation of the third degree.

Note. These definitions of degree require that the equation shall not

contain unknown quantities in the denominators of fractions, or under

radical signs, or affected with fractional or negative exponents.
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165. A Simple Equation is an equation of the first degree.

166. The Root of an equation containing' but one unknown

quantity is the value of that unknown quantity; or it is tin-

value which, being put in place of the unknown quantity,

makes the equation identical. Thus, in the equation

3x — 7 = x + 9,

if 8 is put in place of x, the equation becomes

24 - 7 = 8'+ 9,

which is identical; hence the root of the equation is 8.

Note. An equation may have more than one root. For example, in

the equation
x2 = 7 J! -12,

if 3 is put in place of x, the equation becomes 9 = 21-12; and if 4 is put

in place of x, it becomes 16 = 28 — 12. Each of these results being iden-

tical, it follows that either 3 or 4 is a root of the equation.

167 It will be shown hereafter that a simple equation has

but one root; an equation of the second degree, two mots;

and, in general, that the degree of the equation and the num-

ber of its roots correspond.

168. The solution of an equation is the process of finding

its roots. A root is verified, or the equation satisfied, when,

the root being substituted for its symbol, the equation becomes

identical.

TRANSFORMATION OF EQUATIONS.

169. To Transform an equation is to change its form with-

out destroying the equality.

170. The operations required in the transformation are

based upon the general principle deduced directly from the

axioms (Art. 44) :
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If the same operations are performed upon equal quantities,

the results will be equal.

Hence,

Both members of an equation may be increased, diminished,

multiplied, or divided by the same quantity, without destroy-

ing the equality.

TRANSPOSITION.

171. To Transpose a term of an equation is to change
it from one member to the other without destroying the

equality.

172. Consider the equation x — a = &.

Adding a to each member (Art. 170), we have

x — a + a = b + a

or, x = b + a,

where — a has been transposed to the second member by

changing its sign.

173. Again, consider the equation x + a = b.

Subtracting a from each member (Art. 170), we have

x + a — a = b — a

or, x — b — a,

where a has been transposed to the second member by chang-

ing its sign.

174. Hence the following

EULE.

Any term may he indisposed from one member of an equa-

tion t<> the other, provided its sign be changed.

Also, if the same term appear in both members of an equa-

tion affected with tin same sign, it may be suppressed.
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1. In the equation 2x — 12 4- '3 = a; — 5a + 9, transpose

the unknown terms to the first member, and the known terms

to the second.

Eesult, 2x — x + 5 a: = 12 — 3 + 9.

EXAMPLES.

Transpose the unknown terms to the first member, and the

known terms to the second, in the following :

2. 3x — 2a = 45+.2x.

3. 4:X + 9 = 25-12x.

4. 4 a2 x + b2=— 4 a bx+±ac+ b
2
.

5. a c + c x — a d = 2 a — 7 #.

6. & c + a2 x — m ?r = b x + a tZ — 5.

7. 3 — & — x = c — 3x.

8. 2a — 3c = 5ic — b — dx.

9. 10 jc - 312 = 32 x + 21 - 52 x.

CLEARING OF FRACTIONS.

175. 1. Clear the equation -jr T= -X-+ s of fractions.
o 4 o o

The least common multiple of 3, 4, G, and 8 is 24. Multi-

plying each term of the equation by 24 (Art. 170), we have

16 x - 30 = 20 x + 9,

where the denominators have been removed. Hence the fol-

lowing
RULE.

Multiply each term of the equation by the least common

multiple of the denominators.



2,
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13. -1 -1^= 0. 15. ?_ ?___5a!_
1 + a; 1 — a? x + 1 a; — 1 ar— 1

14
a ar — 3 1 _a 16

,T ~*~ ^ a? — 3 2« + l_
2~2x + l

_
3
_ '

*

~5~ ~2~ ~3~

CHANGING SIGNS.

176. The signs of all the terms of an equation may be

changed without destroying the equality.

For, in the equation a — x = b— c, let all the terms he

multiplied by — 1 (Art. 170). Then,

— a + x = — b + c

or, x — a = c — b.

For example, the equation
— 5 x — a = 3 x — b, by chang-

ing the signs of all the terms, may he written

5x + a = b — 3x.

SOLUTION OF SIMPLE EQUATIONS.

177. To solve a simple equation containing hut one un-

known quantity.

1. Solve the equation 5 x — 7 = a? + 9.

Transposing the unknown terms to the first member, and

the known terms to the second,

5 x — ^ = 7 + 9

Uniting similar terms, 4 x = 16

Dividing each member by 4 (Art. 170),

x = 4, Ans.

This value of x we may verify (Art. 168). Thus, substi-

tuting 4 for x in the given equation, it becomes

20 - 7 = 4 + 9,

which is identical
;
hence the value of x is verified.
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2. Solve the equation 8 x + 19 = 25 x — 32.

Transposing, 8 x — 25 x = — 19 — 32

Uniting terms,
— 17 x = — 51

Dividing by
—

17, cc = 3, Ans.

To verify the result, put 3 for x in the given equation.

Then, 24 + 19 = 75 - 32

or, 43 = 43.

o a i .i .- 3x 5 2x x
o. bolve the equation

——
|-
-=— .

4 o *j

Clearing of fractions, by multiplying each term of the equa-
tion by 12, the least common multiple of the denominators,

9x + 10 = 8x — Gx

Transposing, 9a; — 8x + 6x = — 10

Uniting terms, 7 x = — 10

Dividing by 7, x =——
,
Ans.

To verify this result, put x = =r in the given equation.

Then, _30 5_ _20 10_
.28

+ 6~
-

21
+

14

or,

or,

-90 + 70 _-80 + 60

~84
_

"SlT

_20_ _20
84

"
84'

RULE.

Clear the equation offractions if it has any. Transpose
the unknown terms to tit e first member, and the known terms

to the second, and reduce each member to its simples} firm.
Diride both members of the resulting equation by the coefficient

of the unknown quantity.
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EXAMPLES.

Solve the following equations :

4. 3sc + 5 = a; + ll. 7. 3x + 2-5ce= :b-7 + 3.

5. 3z-2:=5x-lG. 8. 18-5cc-2x = 3 + a; + 7x.

6. 2-2a; = 3-a?. 9. 5x^3 + 17= 19-2x-2.

10. Solve the equation

5(7 + 3x)-(2a;-3)(l-2x)-(2a; -3)
2 -(5 + :*0=O-

Performing the operations indicated, we have

35 + 15a: + 4a;2 -8:r + 3-4x2 + 12:r-9-5-a; =

Transposing, and suppressing the terms 4 x 2 and — 4 x2
,

15 ;c-8;c + 12 a:-a; = - 35 -3 + 9 + 5

18 x=- 24

24 4
,

x =
-lS

=
-3>

AnS-

Solve the following equations :

11. 3 + 2 (2x + S)
= 2x -3(2 x + 1).

12. 2cc — (4a;-l)=5a;-0-l).

13. 7 («-2) -5 (a + 3) = 3 (2x- 5) -6 (4a;- 1).

14. 3(3x + 5)-2(5z-3)=13-(5;c-16).

15. (2 x
-

1) (3 a; + 2) = (3 a; - 5) (2 a + 20).

16. (5
- G a-) (2 x - 1)

= (3 x + 3) (13
- 4 x).

17. (^-3)'
2

-(5-a-)
2= -4'a;.

18. (2a;-l)
2 -3(^-2) + 5(3x-2)-(5-2a;j

2 = 0.

• 3 7 7 5
19. Solve the equation „

— =
zr^
— k~-•
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Clearing of fractions, by multiplying each term by 12 x, the

least common multiple of the denominators,

36 - 42 = 7 x - 20
- 7 x = - 36 + 42 - 20
- 7 a;=- 14

Solve the following equations :

20. i^_7=—-— 24 ^— x -2x 8x
11

4 3 4
' *

5 *-^--2—-11.

2i 1, 1 1 1 ok x -^ x _x 3x
6
+ 2^

_
4
+
12^-

Mt
2
+ ~6~3

=
6~7T-

«. |-| +|
= 18.

26.*-f +
20=

|+ |
+ 26.

23. |_?_*=I_i 27. 2-^= 7- 3

345a? a; 2a; 2a;'

oqqt n . • 3a; — 1 2 a; + 1 4a; — 5
ao. holve the equation : = 4.

4 3 5

Multiplying each term by 60,

45 x — 15 - (40 x + 20)
-

(48 x - 60) = 240

45 x — 15 - 40 x — 20 — 48 x + 60 = 240

45 x - 40 x— 48 x = 15 + 20 - 60 + 240

- 43 a; = 215

X = — 5, ^1?2S.

Solve the following equations :

oq q 5 ./ + 3 7x OA 2 .r + 1 r 5
29. 3>x-\ —= -s-. 30. x =— = 5x — -=.7-2 5 3

31. 7 a- 7 = 3 x + 7.
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32. 2- 7^~^ = 3x

33.

34.

6 4

5a--2_3a- + 4 7x-\-2_x — 10

"IT ~T~ ~6~ ~2~

a; + 1 2 a;
— 5 _ 11 x + 5 a; — 13

~2~ "5" ~W ~3
'

5a- + l 17 x + 7 3.T-1 7 a; — 1

4 + a- 3 a; — 2 11 a- + 2 2 - 9 a;

36.
14

2 a- + 1 4 a- + 5 8 + x 2x + 5
'

~3~~ ~T~ ~~6
_

~8~

2 3 1
38. Solve the equation x — 1 a1 + 1 a'~ — 1

"

Clearing of fractions, by multiplying each term by x 2 —
1,

2
(a- + 1)

- 3 (x
-

1)
= 1

2a; + 2-3a- + 3 = l

2a-3a; =-2-3 + l

— a: = — 4

x = 4, ^4«s.

4 a- + 3 12 a- - 5 2 x - 1
39. Solve the equation 10 5 a; — 1

"

5

Clearing of fractions partially, by multiplying each term

by 10,
120 a; -50

,4a; + 3 =- —t— = ±x — 2
o .''

— 1

_
,

. 120 a; -50
4a; + 3 — 4.r + 2 = —= -.—

ox — 1

: 120 x - 50
5 = —= —

o a- — 1



100 ALGEBRA.

Clearing of fractions, by multiplying each term by 5 x — 1,

25 x - 5 = 120 x - 50

25 a; - 120 x = 5 - 50

- 95 £ = - 45

_45_ 9
x
-y5-vJ>

Ans '

Note. If the denominators are partly monomial, and partly polynomial,

clear of fractions at first partially, multiplying by such a quantity as will

remove the monomial denominators.

Solve the following equations :

1 —X 1 + x 1 — ar

x — 1 x + 1 3

X X2 —
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— 2bcx — a2 + 2acx = — ab

2 a ex — 2b cx = a2— ab

Factoring both members, 2 c x (a
—

b)
= a (a

—
b)

n . ,. a (a — b) a .

Dividing by 2e(a-b), x=
2c^_^

=^ ,
Ans.

Solve, the following equations :

50. 2 ax + d — 3c — bx.

51. 2 x — Aa = 3 ax + a2 — a2
x.

52. 2 a x + 6 b
2 = 3 b x + 4 a b.

53. 6 b m x — 5 a n — lo a ni — 2bnx.

54. (or
- 2 x)

2 = (4 x
-

b) (x + 4 e).

55. (2 a - 3 x) (2 a + 3x) = b
2 -(3x- b)

2
.

56. (3 a — x) (a + 2 x) = (5 a + x) (a
— 2 x),

3b x 2 _ 3 _ 2bx
c a c

- 3+4^=3V 2 «(2 - 3 «>-

57.
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Multiplying each term by 1000,

200 x - 10 - 30 x = 113 x + 161

57 x = 171

x = 3, Ans.

SECOND METHOD.

Transposing, .2 x — .03 x — .113 x = .01 + .101

Uniting terms, .057 x = .171

Dividing by .057, x = 3, ^4ms.

Solve the following equations :

63. .3x- .02 - .003 x= .7- .06 a- - .006.

64. .001 x - .32 = .09 x - .2 x - .653.

65. .3 (1.2 X -5)=U + .05 x.

66. .7 (x + .13)
= .03 (4x- .1) + .5.

67. 3.3a;- \ =.la; + 9.9.
.5

2-3a 5a:
_
2x- 3 _ a- - 2 7

"T5
— + L25~ ~9~ "378

^ "
9

'

178. To prove that a simple equation ran have but one root.

We have soon that every simple equation can be reduced to

the form x = a.

Suppose, if possible, that a simple equation can have two

roots, and that ->\
and r., are the roots of the equation x = a.

Then (Art. 168),
rx — a,

r2
= a.

Hence, tx= r2 \
that is, the two supposed roots are identical.

Therefore a simple equation can have but one root.
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XIII. — PROBLEMS
LEADING TO SIMPLE EQUATIONS CONTAINING ONE

UNKNOWN QUANTITY.

179. A Problem is a question proposed for solution.

180. The Solution of a problem by Algebra consists of

two distinct parts :

1. The Statement, or the process of expressing the condi-

tions of the problem in algebraic language, by one or more

equations.

2. The Solution of the resulting equation or equations, or

the process of determining from them the values of the un-

known quantities.

The statement of a problem often includes a consideration

of ratio and proportion (Art. 21).

181. Ratio is the relation, with respect to magnitude,

which one quantity bears to another of the same kind, and is

the result arising from the division of one quantity by the

other.

A Proportion is an equality of ratios.

Thus,

a : b, or -
,
indicates the ratio of a to b.

a : b = c : d, is a proportion, indicating that the ratio of a

to b, is equal to the ratio of c to d.

In a proportion the relation of the terms is such that the

product of the first and fourth is equal to the product of the

second and third.

ct c

For, a : b = c : <% is the same as j
—

-, which, by clearing of

fractions, gives ad = b c.
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182. For tlie statement of a problem no general rule can

be given ;
much must depend on the skill and ingenuity of the

operator. We will give a few suggestions, however, which

will be found useful :

1. Express the unknoivn quantity, <>r one of the unknoivn

quantities, by taw of the final letter* of the alphabet.

1'. From tlie given conditions, find expressions for the other

unknown quantities, if any, in the problem.

3. Form on equation, by indicating the operations necessary

to verify the values of -the unknown quantities, were they

already known.

4. Determine the value of the unknown quantity in the

equation th US formed.

Note. Problems which involve several unknown quantities may often

be solved by representing one of them only by a single unknown letter.

1. What number is that to which if four sevenths of itself

be added, the sum w.ill equal twice the number, diminished by
27?

Let x = the number.

4 x
Then -=— = four sevenths of it,

and 2x = twice it.

4 x
By the conditions, x -\

—— = 2 x — 27

Solving this equation, x = 63, the number required.

2. Divide 144 into two parts whose difference is 30.

Let x = one part.

Tli en. 144 — x = the other part.

By the conditions, x — (144
—

x) = 30

Solving this equation, x = 87, one part.

144 — #= ~>7, the other part.
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3. A is three times as old as B
;
and eight years ago he was

seven times as old as B. What are their ages at present ?

Let x = B's age.

Then, 3 x — A's age.

Now, x — 8 = B's age, eight years ago,

and 3 x — 8 = A's age, eight years ago.

By the conditions, 3x — 8 = 7 (x
—

8)

Whence, x = 12, B's age,

and, 3 x = 36, A's age.

4. A can do a piece of work in 8 days, which B can perform
in 10 days. In how many days can it he done hy both work-

ing together ?

Let x = the number of days required.

Then, - = what both can do in one day.

Also,
— = what A can do in one day,o

and j- = what B can do in one day.

Since the sum of what each separately can do in one day is

equal to what both can do together in one day,

i JL -i
8
+

10
_

x

Whence, x = 4f ,
number of days required.

5. A man has $ 3.64 in dimes, half-dimes, and cents. He
has 7 times as many cents as half:dimes, and one fourth as

many half-dimes as dimes. How many has he of each ?



106 ALGEBRA.

Let x = the number of dimes.

x
Then, - = the number of half-dimes,

4

7 x
and —r— = the number of cents.

4

Now, 10 x = the value of the dimes in cents,

and —j— == the value of the half-dimes in cents.
4

By the conditions, 10 x -\ ;
—

|

-—= 364J '44
Whence, x = 28, number of dimes,

x
- = 7, number of half-dimes,
4

—t— = 49, number of cents.

6. Two pieces of cloth were purchased at the same price per

yard ;
but as they were of different lengths, the one cost $ 5

and the other $ 6.50. If each had been 10 yards longer, their

lengths would have been as 5 to 6. Required the length of

each piece.

Since the price of each per yard is the same, the lengths of

the two pieces must be in the ratio of their prices, that is, as 5

to 6h, or as 10 to 13. Therefore,

Let 10 x = the length of the first piece in yards,

and 13 x = the length of the second piece in yards.

By the conditions, 10 x + 10 : 13 x + 10 = 5 : 6

or (Art. 181), 6 (10 x + 10) = 5 (13 x + 10)

"Whence, x = 2.

Then, 10 x = 20, length of first piece,

and 13 x = 26, length of second piece.
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7. The second digit of a number exceeds the first by 2
;
and

if the number, increased by 6, be divided by the sum of the

digits, the quotient is 5. Required the number.

Let x = the first digit.

Then, x + 2 = the second.

Since the number is equal to 10 times the first digit, plus

the second,

10 x + x + 2, or 11 x + 2 = the number.

11 x _|_ 2 + 6
By the conditions, ^—= 5

J x + x + 2

Whence, x = 2, the first digit,

and x + 2 = 4, the second digit.

Therefore the number is 24.

8. Two persons, A and B, 63 miles apart, set out at the

same time and travel towards each other. A travels 4 miles

an hour, and B 3 miles. What distance will each have trav-

elled when they meet ?

Let x = the distance A travels.

Then, 63 — x = the distance B travels.

x
- = the time A takes to travel x miles,

and ——— = the time B takes to travel 63 — x miles.
o

By the conditions of the problem, these times are equal ;

x 63 — x

4=^r-
Whence, x = 36, A's distance,

and 63 — x = 27, B's distance.
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9. At what time between 3 and 4 o'clock are the hands of a

watch opposite to each other ?

Let M represent the position of

the minute-hand at 3 o'clock, and H
the position, of the hour-hand at the

same time.

\jj Let M1

represent the position of

Ih' the minute-hand when it is opposite

to the hour-hand, and H1 the po-

sition of the hour-hand at the same

time.

Let x = the arc MHH' M', the space over which the min-

ute-hand has moved since 3 o'clock.

x
Then, ^ = the arc H H', the space over which the hour-

hand has moved since 3 o'clock.

Also, the arc MH= 15 minute spaces,

and the arc H'M1 = 30 minute spaces.

Now, arc MHH1M = arc MH+ arc HH< + arc H< M,

x
or, x = 15 + j^ + 30

Solving this equation, x = 49^ minute spaces.

That is, the time is 49-^ minutes after 3 o'clock.

PROBLEMS.

10. My horse and chaise are worth $ 336 ;
but the horse is

worth twice as much as the chaise. Required the value of

each.

11. What number is that from which if 7 be subtracted, one

sixth of the remainder will be 5?

12. What two numbers are those whose difference is 3, and

the difference of whose squares is 51 ?
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13. Divide 20 into two such parts that 3 times one part may
be equal to one third of the other.

14. Divide 100 into two parts whose difference is 17.

15. A is twice as old as B, and 10 years ago he was 3 times

as old. What are their ages ?

16. A is four times as old as B
;
in thirty years he will be

only twice as old as B. What are their ages ?

17. A can do a piece of work in 3 days, and B can do the

same in 5 days. In how many days can it he done by both

working together ?

18. A can do a piece of work in 3§ hours, which B can do

in 2| hours, and C in 2i hours. In how many hours can it be

done by all working together ?

19. A and B can do a piece of work together in 7 days,

which A alone can do in 10 days. In what time could B alone

do it ?

20. The first digit of a certain number exceeds the second

by 4; and when the number is divided by the sum of the

digits, the quotient is 7. What is the number '.'

21. The second digit of a certain number exceeds the first

by 3; and if the number, diminished by 9, be divided by the

difference of the digits, the quotient is 9. What is the

number ?

22. A drover has a lot of oxen and cows, for which he gave

$ 1428. For the oxen he gave $ 55 each, and for the cows $ 32

each
;
and he had twice as many cows as oxen. Required the

number of each.

23. A gentleman, at his decease, left an estate of $1872 for

his wife, three sons, and two daughters. His wife was to re-

ceive three times as much as either of her daughters, and each

son to receive one half as much as each of the daughters. Re-

quired the sum that each received.
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24. A laborer agreed to serve for 36 days on these condi-

tions, that for every day he worked he was to receive $1.25,

but for every day lie was absent he was to forfeit * 0.50. At

the end of the time he received $ 17. It is required to find

, how many days he labored, and how many days he was absent.

25. A man, being asked the value of his horse and saddle,

replied that his horse was worth $114 more than his saddle,

and that g the value of the horse was 7 times the value of the

saddle. What was the value of each ?

26. In a garrison of 2744 men, there are 2 cavalry soldiers

to 25 infantry, and half as many artillery as cavalry. Re-

quired the number of each.

27. The stones which pave a square court would just cover

a rectangular area, whose length is 6 yards longer, and breadth

4 yards shorter, than the side of the square. Find the area of

the court.

28. A person has travelled altogether 3036 miles, of which

he has gone 7 miles by water to 4 on foot, and 5 by water to

2 on horseback. How many miles did he travel in each

manner ?

29. A certain man added to his estate ^ its value, and then

lost $ 760
;
but afterwards, having gained $ 600, his property

then amounted to $ 2000. What was the value of his estate at

first?

30. A capitalist invested § of a certain sum of money in

government bonds paying 5 per cent interest, and the re-

mainder in bonds paying 6 per cent
;
and found the interest

of the whole per annum to be $180. Required the amount of

each kind of bonds.

31. A woman sells half an egg more than halt her eggs.

Again she sells half an egg more than half her remaining

eggs. A third time she does the same; and now she has sold

all her eggs. How many had she at first ?
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32. What number is that, the treble of which, increased by
12, shall as much exceed 54, as that treble is less than 144 ?

33. A ashed B how much money he had. He replied,
" If

I had 5 times the sum I now possess, I could lend you $ 60,

and then i of the remainder would be equal to h the dollars I

now have." Required the sum B had.

34. A, B, and C found a purse of money, and it was mutu-

ally agreed that A should receive $ 15 less than one half, that

B should have $13 more than one quarter; and that C should

have the remainder, which was $ 27. How many dollars did

the purse contain?

35. A number consists of 6 digits, of which the last to the

left hand is 1. If tins number is altered by removing the 1

and putting it in the units' place, the new number is three

times as great as the original one. Find the number.

36. A prize of $ 1000 is to be divided between A and B, so

that their shares may be in the ratio of 7 to 8. Required the

share of each.

37. A man has $ 4.04 in dollars, dimes, and cents. He has

one fifth as many cents as dimes, and twice as many cents as

dollars. How many has he of each ?

38. I bought a picture at a certain price, and paid the same

price for a frame
;

if the frame had cost $ 1.00 less, and the

picture $ 0.75 more, the price of the frame would have been

only half that of the picture. Required the cost of the

picture.

39. A gentleman gave in charity $ 46 ;
a part in equal por-

tions to 5 men, and the rest in equal portions to 7 women.

Now, a man and a woman had between them $8. What

was given to the men, and what to the women ?

40. Separate 41 into two such parts, that one divided by
the other may give 1 as a quotient and 5 as a remainder.
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41. A vessel can be emptied by three taps ; by the first

alone it could be emptied in 80 minutes, by the second in 200

minutes, and by the third in 5 hours. In what time will it be

emptied if all the taps be opened ?

42. A general arranging his troops in the form of a solid

square, finds he has 21 men over; but, attempting to add

1 man to each side of the square, finds he wants 200 men to

fill up the square. Required the number of men on a side at

first, and the whole number of troops.

43. At what time between 7 and 8 are the hands of a watch

opposite to each other ?

44. At what time between 2 and 3 are the hands of a watch

opposite to each other?

45. At what time between 5 and 6 are the hands of a watch

together ?

46. Divide 43 into two such parts that one of them shall be

3 times as much above 20 as the other wants of 17.

47. Gold is 19} times as heavy as water, and silver 10i

times. A mixed mass weighs 4160 ounces, and displaces 250

ounces of water. What proportions of gold and silver does it

contain ?

48. A gentleman let a certain sum of money for 3 years at

5 per cent compound interest
;
that is, at the end of each year

there was added J,, to the sum due. At the end of the third

year there was due him .$2315.25. Required the sum let.

49. A merchant ha!s grain worth 9 shillings per bushel
3
and

other grain worth 1.'! shillings per bushel, in what proportion

must he mix 40 bushels, so that he may sell the mixture at

10 shillings per bushel '.'

50. A alone could perform a piece of work in L2 hours; A
and C together could do it in 5 hours; and C's work is §

of

B's. Now. the work has to be completed by noon. A begins

work at 5 o'clock in the morning; at what hour can he he

relieved by B and ( '. ami the work- he just finished in time'.'
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51. A merchant possesses $5120, but at the beginning of

each year he sets aside a fixed sum for family expenses. His

business increases his capital employed therein annually at the

rate of 25 per cent. At the end of four years he finds that his

capita] is reduced to $3275. What are his annual expenses?

52. At what times between 7 and 8 o'clock are the hands of

a watch at right angles to each other ?

53. At what time between 4 and 5 o'clock is the minute-

hand of a watch exactly five minutes in advance of the hour-

hand ?

54. A person has 11^ hours at his disposal ;
how far may

he ride in a coach which travels 5 miles an hour, so as to re-

turn home in time, walking back at the rate of oh miles an

hour ?

55. A fox is pursued by a greyhound, and is 60 of her own

leaps before him. The fox makes 9 leaps while the greyhound
makes but 6

;
but the latter in 3 leaps goes as far as the former

in 7. How many leaps does each make before the greyhound
catches the fox ?

56. A clock has an hour-hand, a minute-hand, and a second-

hand, all turning on the same centre. At 12 o'clock all the

hands are together, and point at 12. How long will it be

before the minute-hand will be between the other two hands,
and equally distant from each ?

XIV. — SIMPLE EQUATIONS
CONTAINING TWO UNKNOWN QUANTITIES.

183. If we have a simple equation containing two unknown

quantities, as 3 x — 4 y = 2, we cannot determine definitely

the values of x and y ; because, for every value which we give
to one of the unknown quantities, we can find a corresponding
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value for the other, and thus find any number ofpairs of values

which will satisfy the given equation.

Thus, if we put x = G, then 18 — 4 y = 2, or y = 4
;

t

if we put x = — 2, then — 6 — 4 y = 2, or y = — 2
;

if we put a; = 1, then 3 — 4 ?/
= 2, or y= £ ;

etc.

And any of the pairs of values <

"

, I, ! n i, <

~
, ,

etc., will satisfy the given equation.

If we have another equation of the same kind, as 5x + 7?/=17,
we can find any number of pairs of values which will satisfy

this equation also.

Now suppose we are required to determine a pair of values

which will satisfy both equations. We shall find but one pair

of values in this case. For, multiply the first equation by 5
;

thus,
15 x -20 y = 10;

and multiply the second equation by 3
; thus,

15 x + 21 y = 51.

Subtracting the first of these equations from the second

(Art. 44), we have
41 y = 41,

or, p = l.

In the first given equation put y = l; then 3 x — 4 = 2, or

3 x = 6
; whence, x = 2. The pair of values \ ~-i\ satisfies

both the given equations; and no other pair of values can be

found which will satisfy both.

184. Simultaneous Equations are such as are satisfied by
the same values of their unknown quantities.

185. Independent Equations are such as cannot be made

to assume the same form.
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186. It is evident, from Art. 183, that two unknown

quantities require for their determination two independent,

simultaneous equations. When two such equations are given,

it is our object to obtain from them a single equation contain-

ing but one unknown quantity. The value of that unknown

quantity may then be found; and by substituting it in either

of the given equations we can find, as in Art. 183, the value of

the other.

ELIMINATION".

187. Elimination is the process of combining simultaneous

equations so as to obtain from them a single equation contain-

ing but one unknown quantity.

There are four principal methods of elimination : by Addi-

tion or Subtraction, by Substitution, by Comparison, and by
Undetermined Multipliers.

CASE I.

188. Ellin {nation by Addition or Subtraction.

1. Given ox — 3 y = 19, and 7 x + 4 y — 2, to find the

values of x and y.

Multiplying the first equation by 4, 20 x — 12 y = 76

Multiplying the second equation by 3, 21 x + 12 y= 6

Adding these equations, 41 x = 82

Whence, x = 2.

Substituting this value in the first given equation,

10-3y= 19

-3y = 9

y = -3.

We might have solved the equations as follows :

Multiplying the first by 7, 35 x - 21 y = 133 (1)

Multiplying the second by 5, 35 x + 20 y = 10 (2)

Subtracting (2) from (1),
— 41 y = 123

2/
= -3.
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Substituting this value of y in the first given equation,

5 x + 9 = 19

5 a- = 10

x = 2.

The first of these methods is elimination by addition ; the

second, elimination by subtraction.

RULE.

Multiply the given equations, if necessary, by such numbers
or quantities as will make the coefficient of one of the unknown

quantities the same in the two resulting equations. Then, if

the signs of the terms having the same coefficient arc alike,

subtract one equation from the other if unlike, add the two

equations.

This method of elimination is usually the best in practice.

CASE II.

189. Elimination by Substitution.

Taking the same equations as before,

5 x— 3 y = 19 (1)

7x + 4t/= 2 (2)

Transposing the term 7 x in (2), 4 y = 2 — 7 x

2 7 x
Dividing by 4, y =—_ (3)

Substituting this value of y in (1),

5*_3 (^=^) =19

Performing the operations indicated,
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Clearing of fractions, 20 x — (6
— 21 x) = 76

or, 20 x - 6 + 21 x = 76

Transposing, and uniting terms, 41 x = 82

Whence, x = 2.

2 — 14
Substituting this value in (3), y=—j

— = — 3.

• RULE.

7v//r/ £/ie 7v//»e o/o/^e o/ £Ae unknown quantities in terms

of the other, from cither of the given equations; and substi-

tute this value for that quantity in the other equation.

This method is advantageous when either of the unknown

quantities has 1 for its coefficient.

CASE III.

190. Elimination by Comparison.

Taking the same equations as before,

5 x - 3 y= 19 (1)

7x + ±y= 2 (2)

Transposing the term — 3 y in (1), 5 x = 3 y + 19

3//+ 19
,,.

or, a =—
g

(3)

Transposing the term 4 y in (2), 7 a; = 2 — 4 y

or, a: = —

Placing these two values of x equal to each other (Art. 44),

3// + 19 _ 2-4y
5 7

Clearing of fractions, 21 y + 133 = 10 — 20 y
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Transposing, and uniting terms, 41 y = — 123

Whence, y
— — 3.

— 9 + 19
Substituting this value in (3), x = po

RULE.

Find the value of the same unknown quantity in terms of
the other, from each of the given equations : ami form a new

equation by placing these values equal to each other.

CASE IV.

191. Elimination by Undetermined Multipliers.

An Undetermined Multiplier is a factor, at first undeter-

mined, but to which a convenient value is assigned in the

course of the operation.

Taking the same equations as before,

5x-3y = 19 (1)

7 x + 4 y = 2 (2)

Multiplying (1) by m, 5 m x — 3 m y = 19 m (3)

Subtracting (3) from (2),

7 x — 5mx + iy + 3m y — 2 — 19 m

Factoring, x (7
— 5 m) + y (4 + 3 m) =2 — 19 m (4)

Now, let the coefficient of y, 4 + 3 m =
;
then 3 m = — 4,

4
or m = — Kj substituting this value of m in (4),o

/_ 20\ „ 76n7
+ir)

= 2 +3

Clearing of fractions, x (21 + 20) = 6 + 70

41 x = 82

x = 2.
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Substituting this value in (2), 14 + 4 y= 2

4y= -12

y= -3.

We might liave let the coefficient of x in (4), 7 — 5m= 0;

7
then m would have been =

; substituting this value of m in (4),o

y(±+ )=2--

Clearing of fractions, y (20 + 21) = 10 - 133

41 y=- 123

y = -3.

Instead of subtracting (3) from (2), we migbt have added

them and obtained the same results. Also, in the first place,

we might have multiplied (2) by m, and either added the re-

sult to, or subtracted it from, (1).

RULE.

Multiply one of the given equations by the undetermined

quantity, m ; and add the result to, or subtract it from, the

other given equation.

In the resulting equation, factored with reference to the

unknown quantifies, place the coefficient of one of the un-

known quantities equal to zero, and find the value of ra.

Substitute tins value of m In the equation, and the result trill

be a simple equation containing but one unknown quantity.

This method is advantageous in the solution of literal

equations.

2. Solve the equations.

ax + b y
—

c (1)

af x + b'y= c' (2)
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Multiplying (1) by m, a m x + b m y = c m (3)

Add (2) and (3), a' x + a m x + V y + b m y= d + cm

Factoring, x (a' + a vi) + y (b
1 + b m) = d + c m (4)

In (4), put the coefficient of y, V + b in, equal to zero.

Then, b m — — V
; whence, m = — -.

b

Substituting this value of m in (4),

a V \ , c b
x \a' —

)
= d

Clearing of fractions, x (a' b — ab') =b d — b' e

1, (
j _ y c

Whence, x = ——
.

a' b — ab'

In (4), put the coefficient of x, a' + a m, equal to zero.

Then, a m = — a '

; whence, m = .

a

Substituting this value of m in (4),

a'b\ a'e
y\ h—'-) — c —

a ' a

Clearing of fractions, y (ab1 — a 1

b)
= ad — a' c

a d — a' c
Wh ence, y = —r

l

—
.

ab' — a' b

Before applying either of the preceding methods of elimina-

tion, the given equations should be reduced to their simplest

forms.

EXAMPLES.

192. Solve, by whichever method may be most advanta-

geous, the following equations :

3. 3cc + 72/ = 33; 2x + ±y = 20.

4. 7x + 2y = 31; 3 z ~ 4 ?/
= 23.

5. 6x-3y = 27; 4;r-6y = -2.
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6. 7 x + 3y = -50; 2y-5x = U.

7. 8y + 12 .£ = 116
;
2x — y= 3.

8. 11 x + 3 y = - 124
;
2 x - 6 y = 56.

9. 9a; + 4?/ = 22;27/ + 3cc = 14.

10. ^+^f-8; -8x + 2y = -S0.

11. 7z-2y = G;2a; + 22/ = -24.

,«-.- ^ ,.„ 2^; 11?/ 5
12. 11 y + G a; = 115

;

— — = — = .

13.
|

a} + |y
=^ ; 10*-12y= -62.

5 7
14. _7a; + 47/ = -113; £ + -?, = -.

15> 2~3-°' 4
+ G- b -

16. ^- y= 31; a; + ^ = 33.

17. A^_^= _30; aj + 7y = 119.
< 3 a

18. rc + 2// = .G; 1.7 x -y= .58.

3 ^ ?/ cc 2 ?/

19. -tr-?-?1[gL=^.4y-8 aJ= lL

2 T
» + 3y 3 7 y - x

'

2x-y 8' 2 + x + 2y
~

21. a x + b y =m ;
c x + d y= n.

22. m cc + ?i ?/
= r

;
m' cc— n' y= /.

no xy y x

aw a c
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x v 1 x y 1
**

a + b^ a~b a2-b2> a-b^ a+ b a2 -b2

9*
X

19 Vm*. X
S

2 V~ X -Q7 X + V
25l

-2~
12 =

4
+8 ' 3~

8 4T~~^ V
2 2,3 2

26. + = 1;— -= 0.
03 + // X- — V/ 03 + 2/

^ —
i7

2x + y _17 2y + 03 4 2 a? - y _ 2 y - a?

4*. x-
-g-

-
12 4

"'
3 4 "-y "

3
'

2 03 3.7/ x + 2?/_ 5x— 6y
28<

"3 5 4~~
~°

4~"'

03 ox — y H x

29. Solve the equations,

6_3_
x y~
8 15
- + — = -1
« y

Multiplying the first equation hy 5,

30_15 = 2Q
x y

'

Adding this to the second given equation,

"= 19
03

Clearing of fractions, 38 = 19 03

Whence 03 = 2.

Substituting this value in the first given equation,

y

Transposing, = 1

Whence, y = — 3.
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Solve the following equations :
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194. 1. Solve the equations,

8x-dy-7z = -36
12 x— y— 3z — 36

6x-2y- z= 10

Multiplying the first by 3, 21 x — 27 y - 21 z = — 108 (1)

Multiplying the second by 2, 21 x — 2 y — 6 z = 72 (2)

Multiplying the third by 4, 21 x — Sy — 4tz= 10 (3)

Subtracting (1) from (2),

or,

Subtracting (3) from (2),

or,

Multiplying (5) by 3,

Adding (1) and (6),

Substituting this value in (5),

Substituting the values of y and z in the third given equation,

sc= 4.

In the same manner, if we have given n feidependent,

simultaneous equations, containing n unknown quantities, we

may combine them so as to form a — 1 equations, containing
n — 1 unknown quantities. These, again, may be combinnl

so as to form n — 2 equations, containing n — 2 unknown

quantities; and so on : the operation being continued until we

finally obtain one equation containing one unknown quantity.

RULE.

Multiply the given equations, if necessary, by such numbers

or quantities as trill make the coeffirirnt of one of the un-

known quantities the same in the resulting equations. Cont-

inue these equations by addition <>r subtraction, so as to form

2oy + loz = ISO
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a new set of equations, one less in number than before, and

containing one less unknown quantity. Continue the opera-

tion with these new equations ; and so on, until an equation is

obtained containing nut- unknown quantity.

Find the value of this unknown quantity. By substituting

it in either of the equations containing only two unknown

quantities, find the value of a second unknown quantity. By

substituting these values in either of the equations containing

three unknown quantities, find the value of a third unknown

quantity j and so on, until the values of all arc found.

Note. This rule corresponds only with the method of elimination by-

addition or subtraction
; which, however, as we have observed before, is

the best in practice.

2. Solve the equations,

u + x + y = 6

u + x -\- z= 9

u + y + z = 8

x+y+z=7
The solution may here be abridged by the artifice of assum-

ing the sum of the four unknown .quantities to equal an auxil-

iary quantity, s. Thus,

Let u + x + y + z= s.

Then we may write the four given equations as follows :

s-z = 6 (1)

s-y=9 (2)

s-x = S (3)

s-u=7 (4)

Adding, 4 s — s = 30

Whence, s = 10.

Substituting the value of s in (1),,(~), (3), and (4), we obtain

z = 4, y= 1, x = 2, and u = 3.
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EXAMPLES.

Solve the following equations :

3. x + y+z= 53; x + 2 y + 3s = 107; x + 3y + 4s = 137.

4. 3x-y— 2z= -23\ G x + 2 y + 3 z = 15;
4x + 3 y

— z = — G.

5. 5x— 3y+2z= 41i 2x + y-z= l7; 5x + ±y-2z= 3%.

6. 7a; + 47/-2 = -50; 4x- 5 y-3 z = 20;
x — 3y — 4:Z = 30.

7. 3u + x + 2y— z= 22; 4x — y + 3 s = 35;
4:u + 3x-2y=19; 2 u + 4y + 2 2= 46.

8. a; + ?/
= 2j a2 + s = 3; y + *=— 1.

9. ?/ + s = a
;

aj + £= J
;

a; + y= c.

10. 4a;-4y = a + 4s; 6y — 2a; = a + 2s; 7s-y= fl + ^.

11
2
+ 3~4-~ 43

' 3"I + 2-°4
' 4

+ 2~3
== ~°°-

12. 2a + 2
2,+ 3=-17-2w; ?/ + 3*=-2; 4aj. + *= 13j

^
+ 3y = -14.

13. a y -\- b x = c; c x + a z = b
;

b z + c y = a.

14
4 ?_ 6 81 _2_ _3_ 10 _7
a: y 2~

=

2~' 3^"
+
2l/~7

r
i"

Z

"2

8 6 4 ..

+— = 11.
9 .'

// 7

.- 3 2 J_ J_ -1 A A -1°'
4x "37/"

;

'

""32/
+ 2z~ ; 2z + 4:x~

16. x — ay+ cr z — a8
;
x — by+b'

2 z = b
:i

;
x — c y + c'

2 z = c
8
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17 y~ z x + % _ 1 x —y x — z —n.
2

~
4 ~2' 5 6

y+z x + y
4 2

-4.

18. £^±1_ (2 _,) = 0;
^±-^ = 2a-cx

a c

(« + f)
2 -ac(2 + a; + s)

= -y.

XVI. — PROBLEMS
LEADING TO SIMPLE EQUATIONS CONTAINING MORE

THAN ONE UNKNOWN QUANTITY.

195. In the solution of problems in which we represent

more than one of the unknown quantities by letters, we must

obtain, from the conditions of the problem, as many indepen-

dent equations as there are unknown quantities.

1. If 3 be added to both numerator and denominator of a

certain fraction, its value is f ;
and if 2 be subtracted from

both numerator and denominator, its value is h- Required

the fraction.

Let

and

By the conditions,
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Let x = the first digit,

y = the second,

and z — the third.

Then, 100 x + 10 y + z= the nuniher,

and 100 z + 10 y + x = the number with its digits inverted.

By the conditions, x + y + z = 13

100 x + 10 y + z-8 — Zo

100 x + 10 y + z + 99 = 100 z + 10 y + x

Solving these equations, x = 2, the first digit,

y = 8, the second,

3, the third.

That is, the number is 283.

3. A crew can row 20 miles in 2 hours down stream, and

12 miles in 3 hours against the stream. Required the rate

per hour of the current, and the rate per hour of the crew in

still water.

Let x = rate per hour of the crew in still water,

and y = rate jjer hour of the current.

Then, x + y= rate per hour rowing down stream,

and x — y = rate per hour rowing up stream.

Since the distance divided by the rate gives the time, we
have by the conditions,

20
2

x + y

12 = 3
x—y

Solving these equations, x = 7, and y = 3.
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PROBLEMS.

4. A says to B,
" If i of my age were added to § of yours,

the sum would be 19^ years."
"
But," says B,

"
if § of. mine

were subtracted from J of youx-s, the remainder would be 18£

years." Required their ages.

5. If 1 be added to the numerator of a certain fraction, its

value is 1
;
but if 1 be added to its denominator, its value is £.

What is the fraction?

6. A farmer has 89 oxen and cows
;
but, having sold 4 oxen

and 20 cows, found he then had 7 more oxen than cows. Re-

quired the number of eacb at first.

7. A says to B,
" If 7 times my property were added to \ of

yours, the sum would be % 990." B replied,
" If 7 times my

property were added to \ of yours, the sum would be $ 510."

Required the property of each.

8. If \ of A's age were subtracted from B's age, and 5 years

added to the remainder, the sum would be 6 years ;
and if 4

years were added to \ of B's age, it would be equal to fe of A's

age. Required their ages.

9. Divide 50 into two such parts that % of the larger shall

be equal to § of the smaller.

10. A gentleman, at the time of his marriage, found that his

wife's age was to his as 3 to 4
; but, after they had been mar-

ried 12 years, her age was to his as 5 to 6. Required their

ages at the time of their marriage.

11. A farmer hired a laborer for 10 days, and agreed to pay
him $ 12 for every day he labored, and he was to forfeit % 8

for every day he was absent. He received at the end of his

time % 40. How many days did he labor, and how many days

was he absent ?

12. A gentleman bought a horse and chaise for % 208, and i

of the cost of the chaise was equal to § the price of the horse.

What was the price of each ?
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13. A and B engaged in trade, A with $ 240, and B with

$96. A lost twice as much as B; and, upon settling their

accounts, it appeared that A had three times as much remain-

ing as B. How much did each lose ?

14. Two men, A and B, agreed to dig a well in 10 days;

hut, having labored together 4 days, 1! agreed to finish the

job, which he did in 16 days. How long would it have taken

A to dig the whole well ?

15. A merchant has two kinds of grain, one at 60 cents per

bushel, and the other at 90 cents per bushel, of which he

wishes to make a mixture of 40 bushels that may be worth

80 cents per bushel. How many bushels of each kind must

he use '.'

16. A farmer has a box filled with wheat and rye; seven

times the bushels of wheat are 3 bushels more than four times

the bushels of rye ;
and the quantity of wheat is to -the quan-

tity of rye as 3 to 5. Required the number of bushels of each.

17. My income and assessed taxes together amount to $ 50.

But if the income tax be increased 50 per cent, and the as-

sessed tax diminished 25 per cent, the taxes will together

amount to $ 52.50. Required the amount of each tax.

18. A and B entered into partnership, and gained 8200.

Now 6 times A's accumulated stock (capital and profit) was

equal to 5 times B's original stock; and 6 times B's profit

exceeded A's original stock by $200. Required the original

stock of each.

19. A boy at a fair spent his money for oranges. If he had

got five more for his money, they would have averaged a half-

cent less ; and if three less, a half-cent each more. J low many
cents did he spend, and how many oranges did he get?

20. A merchant has three kinds of sugar. He can sell 3

lbs. of the first quality, 4 lbs. of the second, and 2 lbs. of the

third, for 60 cents; or, he can sell 4 lbs. of the first quality,

1 lb. of the second, and 5 lbs. of the third, for 59 cents
; or, he
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can sell 1 lb. of the first quality, 10 lbs. of the second, and 3

lbs. of the third, for 90 cents. Required the price per lb. of

each quality.

21. A gentleman's two horses, with their harness, cost him

$120. The value of the poorer horse, with the harness, was

double that of the better horse; and the value of the better

horse, with the harness, was triple that of the poorer horse.

What was the value of each ?

22. Find three numbers, so that the first with half the other

two, the second with one third the other two, and the third

with one fourth the other two, shall each be equal to 34.

23. Find a- number of three places, of which the digits have

equal differences in their order
; and, if the number be divided

by half the sum of the digits, the quotient will be 41
; and, if

396 be added to the number, the digits will be inverted.

24. There are four men, A, B, C, and D, the value of whose

estates is $14,000; twice A's, three times B's, half of C's, and

one fifth of J)'s, is $16,000; As, twice B's, twice C's, and two

fifths of D's, is $18,000; and half of A's, with one third of

B's, one fourth of C's, and one fifth of D's, is $ 4000. Re-

quired the property of each.

25. A and B are driving their turkeys to market. A says

to B,
" Give me 5 of your turkeys, and I shall have as many

as you." B replies,
" Give me 15 of yours, and then yours

will be f of mine." How man}' had each ?

26. A says to B and C,
" Give me half of your money and I

shall have $ 55." B replies,
" If you two will give me one

third of yours, I shall have $ 50." But C says to A and B,
" If

I had one fifth of your money I should have $50." Required
the sum that each possessed.

27. A gentleman left a sum of money to be divided among
his four sons, so that the share of the eldest was \ of the sum
of the shares of the other three, the share of the second J of

the sum of the other three, and the share of the third I of the
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sum of the other three
;
and it was found that the share of the

eldest exceeded that of the youngest by $ 14. "What was the

whole sum, and what was the share of each person?

28. If I were to enlarge my field by making it .") rods longer
and 1 rods wider, its area would be increased by 240 square

rods; but if I were to make its length 4 rods less, and its

width 5 rods less, its area would be diminished by 210 square
rods. Required the present length, width, and area.

29. A boatman can row down stream, a distance of 20 miles,

and back again in 10 hours; and he finds that he can row 2

miles against the current in the same time that he rows 3 miles

with it. Required the time in going and in returning.

30. A and B can perform a piece of work in days. A and

C in 8 days, and B and C in 12 days. In how many "lays can

each of them alone perform it ?

31. A person possesses a capital of $30,000, on which he

gains a certain rate of interest; but he owes $20,000, for

which he pays interest at another rate. The interest which

he receives is greater than that which he pays by $800. A
second person has $35,000, on which he gains the second rate

of interest
;
but he owes $ 24,000, for which he pays the first

rate of interest. The sum which he receives is greater than

that which he pays by $ 310. What are the two rates of in-

terest ?

32. A man rows down a stream, which runs at the rate of

o\ miles per hour, for a certain distance in 1 hour and 40 min-

utes. In returning it takes him 6 hours and .'50 minutes to

arrive at a point 2 miles short of his starting-place. Find the

distance lie pulled down the stream, and the rate of his pulling.

33. A train running from Boston to New York meets with

an accident which causes its speed to be reduced to
,1

of what

it was before, and it is in consequence 5 hours late. If the

accident bad happened 60 miles nearer New York, the train

would have been only one hour late. "What was the rate of

the train before the accident ?
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34. A and B run a mile. A gives B a start of 44 yards

and beats him by 51 seconds, and afterwards gives him a start

of 1 minute 15 seconds and is beaten by 88 yards. In how

many minutes can each run a mile ?

35. A merchant has two casks, each containing a certain

quantity of wine. In order to have an equal quantity in each,

he pours out of the first cask into the second as much as the

second contained at first
;
then he pours from the second into

the first as much as was left in the first; and then again from

the first into the second as much as was left in the second,

when there are found to be 1G gallons in each cask. How

many gallons did each cask contain at first ?

36. A and B arc building a fence 12G feet long; after three

hours A leaves off, and B finishes the work in 14 hours. If

seven hours had occurred before A left off, B would have fin-

ished the work in 4§ hours. How many feet does each build

in one hour ?

GENERALIZATION OF PROBLEMS.

196. A problem is said to be generalized when letters are

used to represent its known quantities, as well as unknown.

The unknown quantities thus found in terms of the known
are general expressions, or formula', which may be used for

the solution of any similar problem.

197. The algebraic solution of a generalized problem dis-

closes many interesting truths and useful practical rules, as

may be seen from the consideration of the following :

1. The sum of two numbers is a, and their difference is b
;

what are the two numbers ?

Let x = the greater number,

and y = the less.

By the conditions, x + y==a
x — y = b
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, . , . a + b .
,

solving these equations, x = —-—
,
the greater number,

i
a — b

, ,
and y = —-—

,
the less.

Hence, since a and b may have any value 'whatever, the

values of x and y are general, and may be expressed as rules

for the numerical calculations in any like case; thus.

To find two numbers when their sum and difference are

given,
— Add the sum and difference, and divide by 2, for the

greater of tin 1 two numbers; and subtract the difference from
the sum, and divide by 2, for the less number.

For example, if the sum of two numbers is 35, and their

difference 13,

the greater = — = 24,

and the less = -—-— = 11.

2. A can do a piece of work in a days, which it requires b

days for B to perform. In how many days can it be done if A
and B work together ?

Let x = the number of days required.

Then - = what both together can do in one day.

Also,
- = what A can do in one day,

and y
= what B can do in one day.

By the conditions,
- + - = -
a b x

Whence, x — - —
,
number of days required.

Hence, to find the time for two agencies conjointly to ao-
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complish a certain result, when the times are given in which

each separately can accomplish the same, — Divide the product

of the given tunes by their sum.

For example, if A can do a piece of work in 5 days, and B
in 4 days, the time it will take them hoth working together

•ill
5x4 20 o, ,

will be -z .
=—= Z% days.

5 + 4 9
J J

3. Three men, A, B, and C, enter into partnership for a

certain time. Of the capital stock, A furnishes m dollars; B,

n dollars; and C, p dollars. They gain a dollars. "What is

each man's share of the gain ?

Let x = A's share.

Then, since the shares arc proportional to the stocks,

n ./•

in

= B's share,

and == C's share.m

ix x ty %c

By the conditions, x -\ 1

— = a
in in

Whence, x =
,
A's share.

/// + n + p

Then, =
,
B's share,m m + n + p *

and —— =
,
C's share.m in + n + p

Hence, to find each man's gain, when each man's stock and

the whole gain are given,
—

Multiply the whole gain by each

man's stock, and divide tlisproduct by the whole stock.

For example, suppose A's stock $300, B's $500, and C's

$800, and the whole gain $320.
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13. Using the result of the previous problem, in how many
years will $262, at 7 per cent interest, amount to $472.91 ?

14. A banker has two hinds of money. It takes a pieces of

the first to make a dollar, and b pieces of the second to make
the same sum. If be is offered a dollar for c pieces, how many
of each kind must he give ?

15. In the last example, if a = 10, b = 20, and c= 15, how

many of each kind must he give ?

16. A gentleman, distributing some money among beggars,
found that in order to give them a cents each he should want

b cents more; he therefore gave them c cents each, and had d

cents left. Required the number of beggars.

17. A mixture is made of a pounds of coffee at m cents a

pound, h pounds at n cents, and c pounds at j> cents. Re-

quired the cost per pound of the mixture.

18. A, B, and C hire a pasture together for a dollars. A
puts in m horses for t months, B puts in n horses for t' months,
and C puts in^j horses for t" months. What part of the ex-

pense should each pay ?

XVII. — DISCUSSION OF PROBLEMS
LEADING TO SIMPLE EQUATIONS.

198. The Discussion of a problem, or of an equation, is the

process of attributing any reasonable values and relations to

the arbitrary quantities which enter the equation, and inter-

preting the results.

199. An Arbitrary Quantity is one to which any reason-

able value may be given at pleasure.

200. A Determinate Problem is one in which the given
conditions furnish the means of finding the required quantities.
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A determinate problem leads to as many independent equa-

tions as tin-re are required quantities (Art. 195).

201. An Indeterminate Problem is one in which there are

fewer imposed conditions than there are required quantities,

and, consequently, an insufficient number of independent

equations to determine definitely the values of the required

quantities.

202. An Impossible Problem is one in which the condi-

tions are incompatible or contradictory, and consequently can-

not be fulfilled.

203. A determinate problem, leading to a simple equation

involving only one unknown quantity, can be satisfied by but

one value of that unknown quantity (Art. 178).

An indeterminate problem, or one leading to a less number

of independent equations than it has unknown quantities, may
be satisfied by any number of values.

For example, suppose a problem involving three unknown

quantities leads to only two equations, which, on combining,

give
x — z = 10,

or, x = 10 + z.

Now, if we make z = 1, then x = 11
;

z — 2, then x= 12
;

z = 3, then x = 13.

Thus, we may find sets of values without limit that will sat-

isfy the equation. Hence,

An indeterminate equation may have any manlier of so-

lutions.

204. When a problem leads to more independent equations

than it lias unknown quantities, it is impossible.

For, suppose we have a problem furnishing three indepen-

dent equations, as,

x=y+l
y
— 7 — x

xy = 16
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From the first two we find x = 4 and y = 3. But the third

requires their product to be 10; hence the problem is im-

possible.

If, however, the third equation had not been independent,

but derived from the other two, as,

x y= 12,

then the problem would have been possible; but the last equa-

tion, not being required for the solution, would have been

redundant.

INTERPRETATION OF NEGATIVE RESULTS.

205. In a Negative Result, or a result preceded by a —

sign, the negative sign is regarded as a symbol of interpre-

tation.

Its significance when thus used it is now proposed to in-

vestigate.

1. Let it be required to find what number must be added to

the number a that the sum may be b.

Let x = the required number.

Then, a + x = b

Whence, x = b — a.

Here, the value of x corresponds with any assigned values of

a and b. Thus, for example,

Let a = 12, and b = 25.

Then x = 25 - 12 = 13,

which satisfies the conditions of the problem ;
for if 13 be

added to 12,* or a, the sum will be 25, or b.

But, suppose a = 30, and b = 24.

Then, x = 24 - 30 = - 0,
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which indicates that, under the latter hypothesis, the problem

is impossible in an arithmetical sense, though it is possible in

the algebraic sense of the words "number," "added," and
" sum."

The negative result,
—

6, points out, therefore, in the arith-

metical sense, either an error or "// impossibility.

But, taking the value of x with a contrary sign, we see that

it will satisfy the enunciation of the problem, in an arithmeti-

cal sense, Avhen modified so as to read :

What number must be taken from 30, that the remainder

may be 24 ?

2. Let it be required to determine the epoch at which A"s

age is twice as great as B's
;
A's age at present being 35 years,

and B's 20 years.

Let us suppose the required epoch to be after the present

date.

Let x — the number of years after the present date.

Then, 35 + x = 2 (20 + x)

Whence, x = — 5, a negative result.

On recurring to the problem, we find it so worded as to

admit also of the supposition that the epoch is before the pres-

ent date; and taking the value of x obtained, with the con-

trary sign, we find it will satisfy that enunciation.

Hence, a negative result here indicates that a wrong choice

was made of two possible suppositions which the problem
allowed.

From the discussion of these problems we infer :

1. That negatire results indicate cither an erroneous enun-

ciation of a 'problem, or a wrong supposition respecting the

quality of some quantity belonging to it.

2. That we may form, when attainable, a 'possible problem

analogous to that which involved the impassibility, or correct
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the wrong supposition, by attributing to the unknown quan-

tity in fin 1

equation a quality directly opposite to that

which ltml lice// attributed to it.

In general, it is not necessary to form a new equation, l»ut

simply to change in the old one the sign of each quantity

which is to have its quality changed.

Interpret the negative results obtained, and modify the

enunciation accordingly, in the following

PROBLEMS.

3. If the length of a field be 10 rods, and the breadth 8 rods,

what quantity must be added to its breadth so that the con-

tents may be 60 square rods ?

4. If 1 be added to the numerator of a certain fraction, its

value becomes | ;
but if 1 be added to the denominator, it be-

comes §. What is the fraction ?

5. The sum of two numbers is 90, and their difference is

120
;
what are the numbers ?

6. A is 50 years old, and B 40
; required the time when A

will be twice as old as B-

7. A and B were in partnership, and A had 3 times as much

capital as B. When A had gained $ 2000. and B $ 750, A had

twice as much capital as B. What was the capital of each at

first ?

8. A man worked 14 days, his son being with him 6 days.

and received $39, besides the subsistence of himself and son

while at work. At another time lie worked 10 days, and had

his son with him 4 days, and received $28. What were the

daily wages of each '.'



142 ALGEBRA.

XVIII. — ZERO AND INFINITY.

206. A variable quantity, or simply a variable, is a quan-

tity to which we may give, in the same discussion, any value

within certain limits determined by the nature of the problem ;

a constant is a quantity which remains unchanged throughout

the same discussion.

207. The limit of a variable quantity is a constant value

to which it may be brought as near as we please, but which it

can never reach.

Thus, if 3 be halved, the quotient § again halved, and so on

indefinitely, the limit to which the result may be brought as

near as we please, but which it can never reach, is zero. And,

in general, if any quantity be indefinitely diminished by di-

vision, its limiting value is zero.

208. If any quantity be indefinitely increased by multipli-

cation or otherwise, its limiting value is called Infinity, and is

denoted by the symbol co .

209. It is evident, from the definition of Art. 207, that if

two variable quantities are always equal, their limiting values

will be equal.

210. We will now show how to interpret certain forms

which may be obtained in the course of mathematical opera-

tions.

.

' a a
Let us consider the fraction -

: and let - = a*.

b b

1. Interpretation of

Let the numerator of remain constant, and the denomi-
h

nator be indefinitely diminished by division. By Art. l-'>7. it'

the denominator is divided by any quantity, the value of the
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fraction is multiplied by that quantity ;
hence the value of the

fraction, x, increases indefinitely as b is diminished indefi-

nitely. The limiting value of b being (Art. 207), the limit-

ing value of - will be -
;
and the limiting value of x is co

b a
(Art. 208). Now - and x being two variable quantities always

equal, by xlrt. 209 their limiting values are equal ; or,

a

a
2. Interpretation of —

.

00

Let the numerator remain constant, and the denominator be

indefinitely increased by multiplication. By Art. lo8, if the

denominator is multiplied by any quantity, the value of the

fraction is divided by that quantity ;
hence x is diminished

indefinitely by division as the denominator increases in-

definitely. The limiting value of b being oo, the limiting
ft ct

value of - will be —
: and the limiting value of x is 0. By

b co

Art. 209 these limiting values are equal ; or,

GO

Problem of the Couriers.

211. The discussion of the following problem, commonly

known as that of Clairaut, will serve to further illustrate

the form -, besides furnishing us with an interpretation of the

,
form

pr
.

Two couriers, A and B, are travelling along the same road,

in the same direction, \V R, at the rates of m and n miles per

hour respectively. If at any time, say 12 o'clock, A is at the
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point P, and B a miles from him at Q, when and where are

they together '.'

I
!

1 1

R' P Q B

Let #= the required time in hours-,

and x = the distance A travels in the time t, or the dis-

tance from P to the place of meeting.

Then x — a = the distance B travels in the time t, or the dis-

tance from Q to the place of meeting.

Since the distance equals the rate multiplied by the time,

x =m t

x— a ==n 1

Solving these equations with reference to t and x,

a

x =

It is proposed now to discuss these values on different sup-

positions.
1. in > n.

This hypothesis makes the denominator m — n positive;

hence the values of both t and x are positive. That is, the

couriers are together after 12 o'clock, and to the right of P.

This interpretation corresponds with the supposition made.

For, if A travels faster than B, he will eventually overtake

him, and in advance of their positions at 12 o'clock.

2. in < n.

This hypothesis makes the denominator m — n negative;

hence the values of both t and x are negative. Now. from

what we have observed in regard to negative results <
Art. 205),

these values of t and x indicate that the couriers w< re together

before 12 o'clock, and to the left of P.

111 -
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This interpretation corresponds with the supposition made.

For, if A travels more slowly than B, he will never overtake

him
;
but as they are travelling along the same road, they

must have been together before 12 o'clock, and before they

could have advanced as far as P.

3. m = n.

This hypothesis makes the denominator m — n equal to zero
;

ft 77h CL

so that the values of t and x become - and
-j—, respectively;

or, by Art. 210, t = oo and x — co . Since from its nature

(Art. 208), go is a value which we can never reach, the values

of t and x may be regarded as indicating that the problem is

impossible under the assumed hypothesis.

This interpretation corresponds with the supposition made.

For, if the couriers were a miles apart at 12 o'clock, and were

travelling at the same rate, they never had been and never

would be together.

Thus, infinite results Indicate the imjjossibility of a problem.

4. a = 0, and m > n or m < n.

By this hypothesis, the values of t and x each become
m — n '

or (Art. 102), £ = and x = 0. That is, the couriers are to-

gether at 12 o'clock, at the point P, and at no other time and

place.

This interpretation corresponds with the supposition made;

for, if the distance between them at 12 o'clock is nothing, they

are together at P
;
but as their rates are unequal, they cannot

be together after 12 o'clock, nor could they have been together

before that time.

5. a = 0, and m = n.

By this hypothesis, the values of t and x each take the

form^.
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Referring to the enunciation of the problem, we see that if

the couriers were together at 12 o'clock, and were travelling

at the same rate, they always had been, and always would be,

together. There is, then, no single answer, or finite number
of answers, to the problem in this case; and results of this

form are therefore called indeterminate.

Thus, a result - indicates indeterminathn.

212. The symbol -, however, does not always represent an

indeterminate quantity which may have any fin ite mine. Now,

in the preceding problem the result - was obtained in conse-

quence of two independent suppositions, one causing the nu-

merator to become zero, and the other the denominator. We
say independent^ because the quantity m — n can be equal to

without necessarily causing the quantity a to become 0. And

in all similar cases, we should find the result -
susceptible of

the same interpretation.

But if the symbol
- is obtained in consequence of the same

supposition causing both numerator and denominator to be-

come zero, it will be found to have a single definite limiting

value.

a2 — b-

Take, for example, the fraction —
;

if b = a, this single

supposition causes both numerator and denominator to become

zero, and the fraction takes the form -.

Now, dividing both terms by a — b, we have

o?-V _ a + b

a*-ab~ a ' { '

which equation is true so Ion*; as b is not equal to a. It is

not necessarily true when b is equal to a, because the second
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member was obtained by dividing both terms of the first mem-

ber by a — h (which divisor becomes when b = a), as we

cannot speak of dividing a quantity by nothing.

In (1), as b approaches a, the limiting value of the first

member is --, and the limiting value of the second member

is 2. Thus we have (Art. 209),
Q = 2.

Hence the limiting value of the fraction, as b approaches a,

is 2.

213. A proper understanding of the theory of indetermi-

nation, and of the relation of zero to finite quantities, will lead

to the detection of the fallacy in some apparently remarkable

results.

For example, let a= b

Then ai= a b

Subtracting //-, a 2 — J
2= a b — b'

2

Factoring, (a + b) (a
— b)—b (a

—
b) (1)

Dividing by a — b, a + b = b (2)

But b = a; hence a+ a = a

then 2 a = a

or, 2=1

The error was made in passing from (1) to (2). Equation

(1) may be written

a + b a — b

b a — b

Now, as b= a, the second member is an expression of the*form

-
. But we assumed in going from (1) to (2) that - —- = 1,

"
' Cv "

(J

or that -- = 1
;
which we have seen in Arts. 211 and 212 is not

necessarily the case, as it may have any value whatever.
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XIX. — INEQUALITIES.

214. An Inequality is an expression indicating that one of

two quantities is greater or less than the other
; as,

a > b, and m < n.

The quantity on the left of the sign is called the first mem-

ber, and that on the right, the second member of the inequality.

215. Two inequalities are said to subsist in the same sense

when the first member is the greater or less in both.

Thus,

a > b, and c > d
;
or 3 < 4, and 2 < 3,

are inequalities which subsist in the same sense.

216. Two inequalities are said to subsist in a contrary

sense, when the first member is the greater in the one, and

the second in the other. Thus,

a > b, and c < d
;
or x < y, and u > z,

are inequalities which subsist in a contrary sense.

217. In the discussion of inequalities, the terms greater and

less must be taken as having an algebraic meaning. That is,

Of" 11
!/ two quantities, a and b, a is the greater when a — b

is positive, and a is the less when a — b is negative.

Hence, a negative quantity must be considered as less than

nothing; and, of two negative quantities, that is the greater

which has the least number of units (Art. 49). Thus,

> -
2, and - 2 > - 3.

218. An inequality will continue in the same sense after

the same quantity has been added to, or subtracted from, each

member.
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For, suppose a > b
;

then, by Art. 217, a — b is positive ; consequently,

(a + c)
—

(b + c) and («
—

e)
—

(ft
—

c)

are positive, since each equals a — b. Therefore,

a + c > b + c, and a — c > S — c.

Hence, it follows that a term may be transposed from one

member of an inequality to the other, if its sign be changed.

219. If the signs of all the terms of an inequality be

changed, the sign of inequality must be reversed.

For, to change all the signs, is equivalent to transposing

each term of the first member to the second, and each term of

the second member to the first.

220. If two or more inequalities, subsisting in the same

sense, be added, member to member, the resulting inequality

will also subsist in the same sense.

For, let

a> b, a'> V, a"> b",

then, by Art. 217, a — b, a' — b
1

,
a" — b", are all positive ;

and consequently their sum

a + a' + a" + —b — b' — b"—

or, (a + a' + a"+ )
- (b + V + b" + )

i> positive. Hence,

a + a'+ a!'+ > b + b' + b" +

221. If two inequalities, subsisting in the same sense, be

subtracted, member from member, the resulting inequality will

not always subsist in the same sense.
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For, let

a > b, and a' > V
;

*

then a — b and a! — b
1 are positive ;

but a — b— (a'
—

b'), or

{a
—

a')
—

(b
—

&')> may l )e either positive, negative, or 0.

That is,

a — a'> b —
b', a — a' < & — b', or a — a' = b — V.

222. -'// inequality will continue in the same sense after

each member has been multiplied or divided by the same posi-
tive quantity.

For, suppose a > 5
;

then, since « — J is positive, if m is positive,

vi (a
—

b) and — (a — b)m K '

are positive. That is, m a— m b and are positive.
in in

Hence,
7 i a bm a > ??i y, and — > — .

in m

223. If each member of an inequality he multiplied or di-

vided by the same negative quantity, the sign of inequality

must be reversed.

For, since multiplying or dividing by a negative quantity

must change the signs of all the terms, the sign of inequality

must be reversed (Art. 219).

224. The solution of an inequality consists in determining

the limit in the value of its unknown quantity.

This may be done by the application of the preceding prin-

ciples.

When, however, an inequality and an equation are given,

containing two unknown quantities, the process of elimination

will be required in the solution.
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In verifying an inequality, if the symbols of the unknown

quantities be taken equal to their respective limits, the ine-

quality becomes an equation.

EXAMPLES.

225. 1. Find the limit of x in the inequality

23 2x „
i x -

-j
>

-g-
+ 5.

Clearing of fractions, 21 a; — 23 > 2 x + 15

Transposing, and uniting, 19 ic > 38

Whence, x > 2, ^4«s.

2. Find the limits of x in the inequalities,

ax + 55x-5«i >a2

(1)

5x-7ftj; + 7«Ki'2

(2)

from (1), ax + 5b x > a2 + 5 ab

x (a + 5 b) > a (a + 5 b)

x > a.

From (2), bx — 7ax<b2 — 7ab

x (b
- 7 a) < b (b

- 7 a)

x< b.

Hence, x is greater than a, and less than b, Ant;.

3. Find the limits of x and y in the following inequality and

equation :

4 x + 6 y > 52 (1)

4 jc + 2 y = 32 (2)

Subtracting (2) from (1), 4 ?/ > 20

2/ > 5. (3)

From
(2), we have y = 16 — 2 x
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Substituting in (3), 16 - 2 x > 5

-2x >-ll
11
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XX. - INVOLUTION.

226. Involution is the process of raising a quantity to any

required power.

This may he effected, as is evident from the definition of a

power (Art. 17), by taking the given quantity as a factor as

many times as there are units in the exponent of the required

power.

227. If the quantity to he involved is positive, the signs of

all its powers will evidently be positive ;
but if the quantity is

negative, all its even powers will be positive, and all its odd

powers negative. Thus,

(— af=(-a)x (— a) X (— a) = + cr X (— a)
= — a3

,

(- ay= (- a) X (- a) X (- a) x (- a) = (- a3

) X (- a)=+ a\

and so on.

Hence,

Every even poiver is positive, and every odd power has the

same sign as its root.

INVOLUTION OF MONOMIALS.

228. 1. Let it be required to raise 5 a" b c
3

to the fourth

power.

5 a 2 bc3 x5a 2 bcs x5aHc3 x5a2
b c

3 = 625 a 8
b* c

v2
,
Ans.

2. Raise —3m n3 to the third power.

(— 3 m n3

) X (— 3 m n3
) X (— 3 m n3

)
=— 21m3

?j
9
,
Ans.

RULE.

Raise the numerical coefficient to the required power, and

multiply the exponent of each letter by the exponent of the re-

(j
uired power ; making the sign of every wen poiver positive,

and the sign of every odd power the same as that of its root.
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EXAMPLES.
j

Find the values of the following :

3. (a
2

x)
2
. 7. (2x

m
)\ 11. (-2abn

xf.

4. (-3 cr b)
s
. 8. (2ab

2 x8

)
5
. 12. (-7w*ra)

4
.

5. (-ab
2
c
3

y. 9. (a
2
b
2

)\ 13. (5a
2
68 c4)

8
.

6. (a
n
b)
m

. 10. (-a
2
c
3
)
3
. 14. (-6 a;

3
?/

7

)
3

.

A fraction is raised to any required power by raising both

numerator and denominator to the required power.

Thus,

2x*\*_{ 2x*\ ( 2x2
\ f 2x*\ 8 a;

6

'3f) ~\ 3y)
X

\ 3y
3
l
X

\ 3y
3)~~ 21 if

Find the values of the following :

15 . m\ it. L^r. ia i 2x^ z

b J
*

V 3b I
'

V 36

16. R**\\ 18. fL'^V. 20. f-*'^'
4 x y*/ \o / V 4 a~

INVOLUTION OF POLYNOMIALS.

229. Polynomials may he raised to any power, as is obvious

from Art. 226, by the process of successive multiplications.

Thus,

(a + b)
2

=(a + b)(a + b)
= a2 + 2ab + b'

2
,

(a + b)
3

=(a + b) (a + b) (a + b)
= a3 + 3 a2

b + 3 a b
2 + b3

,

and so on. Hence the following

RULE.

Multiply the polynomial by itself, until it has been taken as

a factor as many times as there are units in the exponent of

the required power.
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EXAMPLES.

Find the values of the following :

1, (a -b)
s
. 3. {l + a2 + b

2

)\ 5. (a
m-an

)\

2.
(|-^)

2

- 4. (a + m-nf. 6. (a + b)
5

In Chapter XXXVII will be given a method for raising a

binomial to any required power, without going through with

the process of actual multiplication.

SQUARE OF A POLYNOMIAL.

230. It has been shown (Arts. 104 and 105) that the

square of any binomial expression can be written down, with-

out recourse to formal multiplication, by application of the

formulae

(a + b)
2 = a2 + 2ab + b

2
,

(a-by= a?-2ab + b2.

We may also show, by actual multiplication, that

(a + b + c)
2=a2 + 2ab + 2ac + b

2 + 2bc + c
2

,

(a + b + c + d)
2 = a2 + 2 ab + 2 ac + 2 ad + b

2 + 2 bc+ 2bd

+ c
2 + 2cd + d2

,

and so on.

These residts, for convenience of enunciation, may be writ-

ten in another form,

(a + b)
2 = a2 + b

2 + 2ab,

(a
—

b)
2= a2 + b

2 — 2 a b,

(a + b + c)
2 = a 2 + b

2 + c
2 + 2ab + 2 a c + 2b c,

(a + b + c + d)
2 = a2 + b

2 +c2 +d2 +2ab + 2ac + 2ad
+ 2bc + 2bd + 2cd,

and so on. Hence, the following
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RULE.

Write the square of each term, together with twice its prod-
uct by each of the terms following it.

1. Square x 2 — 2 x — 3.

Square of each term, a?
4 + 4 x2 +9

Twice x2 X the terms following,
— 4. x3 — 6x2

Twice — 2 x X the term following, + 12 x
»

Adding, the result is xA — 4:X3 — 2x2 +12x + 9.

EXAMPLES.

Square the following expressions :

2. a — b + c. 8. 1 + x + x2 + x3
.

3. 2x2 + 3x + 4. 9. x3 -4x2 -2x-3.

4. 2x2 - 3x + i 10. 2x3 +x2 +l x-l.

5. a — b — c + d. l\. x3 + bx2 — x + 2.

6. »i
3 + 2a;2 + a;+2. 12. 3x3 -2 x2 -x+ ±.

7. 1 — 2 a; + 3 ar. 13. a + & — c — d + e.

CUBE OF A BINOMIAL.

231. Hy actual multiplication we may show,

(a + b)
3 = a3 + 3a2 b + 3ab2 + b3

,

(a-b)
3 = a3 -3a 2

b + 3a b
2 - b

3
.

Hence, for finding the cube of a binomial, the following

RULE.

Write the cube of the first term, phis three times the square

of the first term times the second, 'plus three times the first

term times the square of the second, plus the cube of the second

term.
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EXAMPLES.

1. Find the cube of 2 x2 - 3 y
3
.

(2 a-
2

)
3 + 3 (2 x

2

)
2

(- 3 y
3
) + 3 (2 a:

2

) (- 3 y
3
)
2 + (- 3 if)

'

= 8z 6 + 3 (4*
4

) (-3t/
3

) + 3 (2 a;
2

) (9 if) + (-27 y
9

)

_ 8 xG - 36 x* f + 54 x 2

if
- 27 y

9
,
Jns.

Cube the following :

2. a2 +2b. 4. 3 a; -4. 6. 4 a;
2 -ay.

3. 2m+ 5«. 5. 2z3 -3. 7. 3a;7/ + 5a6.2

CUBE OF A POLYNOMIAL.

232. By actual multiplication we may show,

(a + ft + ey = a3 + b3 + c
3 + 3 a 2

b + 3 a2
c + 3 b2 a + 3 b

2
c

+ 3 c
2 a + 3c 2 + Gabc,

(
a + l) + c + d)

3 = a3 + b
3 + c

3 + d3 + 3a 2
b + 3a 2

c + 3a2 d

+ 3b 2 a + 3 b
2
c + 3b2 d + 3 c

2 a + 3 c
2
6

+ 3 c
2 d + 3 d2 a + 3d2

b + 3d 2c+6abc
+ 6 a b d + 6 a c d + 6 b c d,

and so on. Hence, for finding the cube of a polynomial, the

following

BULE.

Write the cube of each term, tor/ether with three times the

product of its square by each of the other terms, and also six

times the product of every three different terms.

EXAMPLES.

1. Find the cube of 2 a;
2.— 3 x — 1.

8 x6 -21 x3 - 1

- 36 xh - 12 a4

-f 54 a;
4 - 27 x2

+ Qx 2 -9x
+ 36x3

8 x6 - 36 xs + 42 x 4 + 9 a'
3 - 21 x2 - 9 x - 1, Arts.
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Find the cubes of the following :

2. a + b— c. 5. 2 - 2 .r + x\

3. a;
2 -2-1. 6. 1 + a; + x2 + X3

.

4. a- 6 + 1. 7. 2.« 3-r + 2x-3.

XXI. — EVOLUTION.

233. Evolution is the process of extracting any required

root of a quantity.

This may be effected, as is evident from the definition of a

root (Art. 17), by determining a quantity which, when raised

to the proposed power, will produce the given quantity. It is,

therefore, the reverse of involution.

234. Any quantity whose root can be extracted is called a

perfect power ; and any quantity whose root cannot be ex-

tracted is called an imperfect power.

A quantity may be a perfect power of one degree, and not of

another. Thus, 8 is a perfect cube, but not a perfect square.

235. To extract any root of a simple quantity, the expo-

nent of that quantity must be divided by the index of the root.

For, since the ?ith power of am is amn (Art. 228), it follows

that the nth. root of amn is am .

236. Any root of the product of two or more factors is

equal to the product of the same root of each of the factors.

For, we have seen in Art. 228, in raising a quantity com-

posed of factors to any required power, that cadi of the factors

is raised to the same power.

237. From the relation of a root to its corresponding

power, it follows, from Art. 227, that
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1. The odd roots of any quantity have the same sign as the

quantity.

Thus, \j
a3 = a

;
and ^ — a5 = — a.

2. The even roots of a 'positive quantity are either positive

or negative.

For either a positive or negative quantity raised to an even

power is positive. Thus,

y/
a4 = a or — a

; or, y'
a* = ± a.

Note. The sign ±, called the double sign, is prefixed to a quantity

when we wish to indicate that it is either + or -
.

3. Even roots of a negative quantity are not possible.

For no quantity raised to an even power can produce a neg-

ative result. Such roots are called impossible or imaginary

quantities.

EVOLUTION OF MONOMIALS.

238. From the principles contained in Arts. 235 to 237,

we obtain the following

RULE.

Extract the required root of the numerical coefficient,
ami

divide the exponent of each letter by the index of the root;

making the sign of every even root of a positive quantity ±,

and the sign of every odd root of any quantity the same as

that of the quantity.

If the given quantity is a fraction, it follows from Art. 228

that we may fake the required root of both of its terms.

EXAMPLES.

1. Find the square root of 9 a4
b- c

6
.

\/9a
4 i

2 c6 = ±3fl2 i c
s
,
Ans.

2. Find the cube root of - 64 a9 xz
y
6

.

.3/

^ _ 64 a9 xs
y
G = — 4:a3 x y

2
,
Ans.
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8 X3
7)1

3. Find the cube root of
27 aG

b
9

8 / /8 x 3m12
\ _ 2 x m4

Find the values of the following :

*

4. if
- 125 x 3

y
6
. 9. yV"1 ^. 14. \/ 729 a 1 *

b
24 <A

5. ySla*b
8

. 10. Sl-8an«x\ 15. \/-32 c
6"^ ™.

_ J f32 m5 n10
\ .

5/

V \ 243 J
' 1L ^ 16 a;2m+2 a2

" 16 - V 243 w16 »*

7. \/l»^?. 12.

y/^QQ^l)
• 17. V(« + *)W-

8. y/ 625 a12
c
2

. 13. y' 3
2 "

63n an
. 18. faj

8B +V1" 6
-

SQUARE ROOT OF POLYNOMIALS.

239. In Art. 11G we explained a method of extracting the

square root of a trinomial, provided it was a perfect square.

We will now give a method of extracting the square root of

any polynomial which is an exact square.

Since the square of a + b is a2 + 2 a b + b
2

,
we know that

the square root of a2 + 2 a b + b
2

is a + b. If we can discover

an operation by which we can derive a + b from a2 + 2 a b + b
2

,

we can give a rule for the extraction of the square root.

„ „ 7 7 „ 7 Arranmne the terms of the
a2 + 2ab+b 2 a + b

5
°.

'

2 square according to the descend-

o „ , 7. 2 a b A- V1 *n8 powers of a, we observe thai

2 a b + b2 the square root of the first term,

a2
,

is a, which is the first term

of the required root. Subtract its square, a2
,
from the uiven

polynomial, and bring down the remainder, 2 a b + b2 or

(2 a + b) b. Dividing the first term of the remainder by 2 a,

that is, by twice the first term of the root, we obtain b, the

other term. This, added to 2 a, completes the divisor, 2 a + b ;
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which, multiplied by b, and the product, 2 ab + V2

,
subtracted

from the remainder, completes the operation.

By a similar process, a root consisting of more than two

terms may be found from its square. Thus, by Art. 230, we

know that (a + b + c)
2 = a2 + 2 a b + b

2 + 2 a c + 2 b c + c
2
.

Hence, the square root of a2 + 2 a b + b'
2 + 2 a c + 2 b c + c

2
is

a + b + c.

a 2 + 2ab + b
2 + 2ac+2bc + c

2

•2a
a + b + c

2a + b 2ab + b
2 + 2ac+2bc + c

2

2ab + b
2

2 a + 2 b + c 2ac+2bc + c
2

2ac+2be + r
2

The square root of the first term, a 2

,
is a, which is the first

term of the required root. Subtracting a 2 from the given poly-

nomial, we obtain 2 a b as the first term of the remainder.

Dividing this by twice the first term of the root, 2 a, we ob-

tain the second term of the root, b, which, added to 2 a, com-

pletes the divisor, 2 a + b. Multiplying this divisor by b, and

subtracting the product, 2 a b + b'
2

,
from the first remainder,

we obtain 2 a c as the first term of the next remainder.

Doubling the root already found, giving 2 a + 2 b, and di-

viding the first term of the second remainder, 2 a c, by the first

term of the result, 2 a, we obtain the last term of the root, c.

This, added to 2 a + 2 b, completes the divisor, 2 a + 2 b + c
;

which, multiplied by the last term of the root, c, and subtracted

from the second remainder, leaves no remainder.

From these operations we derive the following

RULE.

Arrange the terms according to the powers of some letter.

Find the square root of the first term, write it as the first

term of the root, and subtract its square from the given poly-
nomial.

Divide the first term of the remainder by double the root

already found, and add the result to the root, and also to the

divisor.
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Multiply the divisor as it now stands by the term of the root

last obtained, and subtract the product from the remainder.

If there are other terms remaining, continue the operation
In the same manner as before.

Note. Since all even roots have the double sign ± (Art. 237), all the

terms of the result may have their signs changed. In the examples, how-

ever, we shall consider only the positive sign of the result.

EXAMPLES.

1. Find the square root of 9 x* — 12 xs + 16 x2 — 8 x + 4.

9a;4 -12a; 3 + lGx~-8x + 4: 3a;2 -2a; + 2
9 a;

4

6 a:
2 - 2 ./' -12 a;

3

- 12 x3 4 a;'
2

6 x- - 4 x + 2 12 x2 - 8 x + 4
12 a;'

2
-. 8 x + 4

Ans. 3x2 — 2x + 2.

Find the square roots of the following :

2. ±xi -±x s -3x2 + 2x + l.

2 1— + —
im m

3. 4 a4 -16 a3 +24 a2- 16 a + 4.

4. m2 + 2 m — 1

5. 9— 12 x + 10 :•- - 4 x 3 + x*.

6. 19 x 2 + 6 x 3 + 25 + xi + 30 a-.

7. 28 a-
3 + 4 a;

4 - 14 x + 1 + 45 x2
.

8. 40 jc + 25 - 14 x2 + 9 x* - 24 a;
3
.

9. 4 .r
4 + 64 - 20 a-

3 - 80 x + 57 x 2
.

10. a2 + b
2 + c

2 -2 ab -2 a c + 2 b c

11. a;
2 + 4 y

2 + 9 «2 — 4 a; ?/ + 6 a; » — 12 y z.

No rational binomial is an exact square;; hut, by the rule,

the (ip/imxliiinte root may be found.
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Find, to four terms, the approximate square roots of the fol-

lowing :

12. 1 + x. 13. a2 + b. 14. 1 — 2 x. 15. a2 + x2
.

The square root of a perfect trinomial square may be ob-

tained by the rule of Art. 116,

Find the square roots of the first and last terms, and con-

nect the results by the sign of the second term.

Extract the square roots of the following :

16. x4 + 8x 2 +16. 19. «2m -4 am+n + 4 a2
".

rtrt a2 4 a ±b2

17. 9x*-6xf + f. 20. _-—+^.
t2 4 x2 9 ?/

4

18. a*-ax + T . 8L
9?

+ 2 +4^-

SQUARE ROOT OF NUMBERS.

240. The method of Art. 239 may be used to extract the

square roots of numbers.

The square root of 100 is 10
;
of 10000 is 100

;
of 1000000,

is 1000
;
and so on. Hence, the square root of a number less

than 100 is less than 10
;
the square root of a number between

10000 and 100 is between 100 and 10
;
the square root of a

number between 1000000 and 10000 is between 1000 and 100
;

and so on.

Or, in other words, the integral part of the square root of a

number of one or two figures, contains one figure; of a number

of three or four figures, contains two figures ;
of a number of

five or six figures, contains three figures ;
and so on. Hence,

If a point is placed over evei*y second figure in any integral

number, beginning with the units'
1

place, the number of point*

will shoiv the number of figures in the integral part of its

square root.
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241. Let it be required to find the square root of 4356.

Pointing the number according to

60+6 the rule of Art. 240, it appears that

there are two figures in the integral

4356
3600

120 + 6 756 'J" ° ~~— -~ .

jgQ part oi the square root. Let a denote

the figure in the tens' place in the

root, and b that in the units' place. Then a must be the

greatest multiple of 10 whose square is less than 4356
;
this

we find to be 60. Subtracting a2
,
that is, the square of 60, or

3600, from the given number, we have the remainder 756.

Dividing this remainder by 2 a, or 120, gives 6, which is the

value of b. Adding this to 120, multiplying the result by 6,

and subtracting the product, 756, there is no remainder.

Therefore we conclude that 60 + 6, or 66, is the required square

root.

The zeros being omitted for the sake of brevity, we may ar-

range the work in the following form :

4356
36

G6

126 756
756

RULE.

Separate the given number into periods, by pointing every

second figure, beginning with the units' [dace.

Find the greatest square in the left-hand period, and place

its root on the right ; subtract the square of this root from the

first period, and to the remainder bring down the next period

for a dlr hiend.

Divide this dividend, omitting the last figure, by double the

root already found, and annex the result to the root and also

to the divisor,

Multiply tin' divisorj as it now stands, by the figure of the

root last obtained, and subtract the productfrom tin- dividend.

If there are more periods to be brought down, continue the

operation in the same manner as before.
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If there be a final remainder, the given number has not an

exact square root ; and, since the rule applies equally to deci-

mals, we may continue the operation, by annexing periods of

zeros to the given number, and thus obtain a decimal part to

be added to the integral part already found.

It will be observed that decimals require to be pointed to

the right ; and if they have no exact root, we may continue

to form periods of zeros, and obtain decimal figures in the root

to any desirable extent.

As the trial divisor is necessarily an incomplete divisor, it is

sometimes found that after completion it gives a product' larger

than the dividend. In such a case, the last root figure is too

large, and one less must be substituted for it.

The root of a common fraction may be obtained, as in Art.

238, by taking the root of both numerator and denominator,
when they are perfect squares. If the denominator only is a

perfect square, take the approximate square root of the nu-

merator, and divide it by the square root of the denominator.

If the denominator is not a perfect square, either reduce the

fraction to an equivalent fraction whose denominator is a per-

fect square, or reduce the fraction to a decimal.

EXAMPLES.

1. Extract the square root of 49.434961.

49.434961
49

7.031

1403 4349
4209

14061 14061
14061

Ans. 7.031.

Here it will be observed that, in consequence of the zero in

the root, we annex one zero to the trial divisor, 14, and bring
down to the corresponding dividend another period.

Extract the square roots of the following :
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figures ;
and hence — is a proper fraction. Therefore -

a 2 a
is a proper fraction, and less than ^.

In the demonstration we supposed JV an integer with an

exact square root
;
but the result may be extended to other

cases.

From the examples in Art. 241, we observe that each re-

mainder brought down is the given expression minus the

square of the root already obtained
;
and is therefore in the

form A7
"— a 2

. If, then, any remainder be divided by twice

the root already found, we can obtain by the division as many
more figures of the root as we already have, less one.

We will apply these principles to calculating the square root

of 12 to the. sixth decimal place. We will obtain the first four

figures of the result by the ordinary method :

12.000000
9

3.464

64 300
256

686 4400
4116

6024 28400
27696

'04

The remainder now is .000704
;
and twice the root already

found is 6.928. Then, by dividing .000704 by 6.928, we can

obtain the next three figures of the root. Thus,

6.928).0007040 (.000102
.0006928

11200

That is, the square root of 12 to the nearest sixth decimal

place is 3.464102.

The following rule will be found to save trouble in obtaining
approximate square roots by this method :
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Divide the remainder by twice the root already found {omit-

ting the decimal point), and annex all of the quotient, except

the decimal point, to the part of the root already found.

In practice the work would be arranged thus :

12.

9

64 30C

25C
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Arranging the terms of the cube according to the descending

powers of a, we observe that the cube root of the first term, a3
,

is a, which is the first term of the required root. Subtract its

cube, a3
,
from the given polynomial, and bring down the re-

mainder, 3 a2 b + 3 a b'
2 + b3 or (3 a

2 + 3 a b + b'
2

) b. Dividing

the first term of the remainder by 3 a2
,
that is, by three times

the square of the first term of the root, we obtain b, the other

term of the root. Adding to the trial divisor 3 a b, that is,

three times the product of the first term of the root by the last,

and b'
2

,
that is, the square of the last term of the root, completes

the divisor, 3 a'
2 + 3 a b + b'

2

; which, multiplied by b, and the

product, 3 a2
b + 3 a b'

2 + b3
,
subtracted from the remainder,

completes the operation.

If there were more terms, we should proceed with a + b

exactly as previously with a
; regarding it as one term, and

dividing the first term of the remainder by three times its

square ;
and so on. Hence, the following

RULE.

Arrange the terms according to the powers of some letter.

Find the cube root of the first term, write It as the first term

of the root, and subtract its cube from the given polynomial.

Take three times the square of the root already found for a

trial divisor, divide the first term of the remainder by it, and
write the quotient for the next term of the root.

Add to the trial divisor three times the prodnet of the first

term by the second, and the square of the second term.

Multiply the complete divisor by the second term of the root,

and subtract the product from the remainder.

If there are other terms remaining, consider the root already

found as one term, and proceed as before.

EXAMPLES.

1. Find the cube root of x6 — 6 x'° + 40 x 3 — 96 x — 64.
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Find, to four terms, the approximate cube roots of the

following :

11. Xs + 1. 12. xs— a° 13. 8 ./•
o

CUBE ROOT OF NUMBERS.

244. The method of Art. 243 may he used to extract the

cube roots of numbers.

The cube root of 1000 is 10; of 1000000, is 100; of

1000000000, is 1000; and so on. Hence, the cube root of a

number less than 1000 is less than 10
;
the cube root of a num-

ber between 1000000 and 1000 is between 100 and 10
;
the

cube, root of a number between 1000000000 and 1000000 is

betwTeen 1000 and 100
;
and so on.

Or, in other words, the integral part of the cube root of a

number of one, two, or three figures, contains one figure; of

a number of four, five, or six figures, contains two figures ;

of a number of seven, eight, or nine figures, contains three

figures ;
and so on. Hence,

If a point is placed over every third figure in any integral

a miller, beginning with the units' place, the number ofpoints
will show the number offigures lit the integralpart of its eube

root.

245. Let it be required to find the cube root of 405224.

Pointing the number according to

the rule of Art. 244. it appears that

there are two figures in the integral

part of the cube root. Let '/ denote

the figure in the tens' place in the

root, and b that in the units' place.

405224
343000

70 + 4

14700
840
16

15556

62224

62224
Then a must be the greatest mul-

tiple of 10 whose cube is less than 405224
;

this we find to

be 70. Subtracting a3
,
that is, the cube of 70, or 343000,

from the given number, we have the remainder 62224. Divid-

ing this remainder by 3 a'
2

,
or 14700, gives 4, which is the
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value of b. Adding to the trial divisor 3 a b, which is 840,

and b'
2

,
which is 16, completes the divisor, 15556. Multiplying

the result by 4, and subtracting the product, 02224, there is

no remainder. Therefore we conclude that 70 + 4, or 74, is

the required cube root.

The work is usually arranged thus :

405224
343

74

14700
840
16

15556

62224

62224

RULE.

Separate the given member into periods, by pointing every

third figure, beginning ivith the units' place.

Find the greatest cube in the left-hand period, and place its

root on the right / subtract the cube of this root from the left-

hand period, and to the remainder bring down the next period

for a dividend.

Divide this dividend, omitting the last two figures, by three

times the square of the root already found, and annex the quo-

tient to the root.

Add together the trial divisor, with two zeros annexed;

three times the product of the last root figure by the rest of the

root, ivith one zero annexed ; and the square of the last root

figure.

Multiply the divisor, as it now stands, by the figure of the

root last obtained, and subtract the product from the dividend.

If there are more periods to be brought down, continue the

operation in the same manner as before, regarding the root

already obtained as one term.

The observations made after the rule for the extraction of

the square root (Art. 241) are equally applicable to the extrac-

tion of the cube root.
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EXAMPLES.

1 Extract the cube root of 8.144865728.

8.144865728
8
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Let N represent the number whose cube root is required, a

the part of the root already obtained, x the rest of the root
;

then

$ 2V= a + x,

whence, iV= a3 + 3 a2 x + 3 a x 2 + xs
;

therefore, _Ar— a3 = 3 a2 x + 3 a x2 + x 3
,

iV"— a3 x2 x3

» + — +
dec a 6 a-

Then A7"— a3 divided by 3 a2 will give the rest of the cube

root required, or x, increased by
-

1- 77—,; and we shall show
a o a

that the latter is a proper fraction, less than h, so that by

neglecting the remainder arising from the division, we obtain

the part required. For, x by supposition contains n figures,

so that x2 cannot contain more than 2 n figures. But « con-
o

X"
tains 2 n + 2 figures ;

and hence -— is less than ^ . And as

n
—5=— X o

—
, and -— is less than 1,

-—
. must also be less

o cr a 6 a 6 a -6 a 1

than T
T
n . Therefore, (- ^

—
^
is a proper fraction, less than \.a k> a

Remarks similar to those in the last part of Art. 242 apply
here.

ANY ROOT OF POLYNOMIALS.

247. In order to establish a general rule for the extraction

of roots, it will be necessary to notice the formation of the n\\\

power of a polynomial, n being any entire number whatever.

Thus,

(a + by = an + n an
~

} b +

Therefore,

y' an + n a u~ l b + = a + b.

The first term of the root, a, is the nth root of an
,
the first

term of the power; and the .second term of the root, b, may be
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obtained by dividing the second term of the power by n an~\
or by n times the (n

—
l)th power of the first term of the root.

If the root now found be raised to the nth power, and sub-

tracted from the given polynomial, it will be seen that two

terms of the required root have been determined.

It will be observed that the process is essentially that of the

preceding Articles, simplified by dispensing with completed

divisors, and generalized. Hence the •

RULE.

Arrange the terms according to the powers of some letter.

Find the required root of the first term for the first term of

the root, and subtract its powerfrom the given polynomial.

Divide the first term of the remainder by n times the

(n— l)th power of this root, for the second term of the root,

and subtract the nth power of the root now found from the

given polynomial.

If other terms of the root require to be determined, use the

same divisor as before, and proceed in like manner till the nth

poiver of the root becomes equal to the given polynomial.

This rule is, also, applicable to numbers, by taking n figures

in each period.

EXAMPLES.

1. Extract tl* cube root of x6 + 6 x 5 — 40 xs + 96 x — 64.

x6 + 6 x5- 40 x 3 + 96 x - 64

(*
2
)
2\3 x6

x2 + 2x

3 a;
4

1 6 x5

(x
2 + 2 x)

3= x6+6 x5 + 12x*+Sscia

Sx4 -12*4

(x
2+ 2x-4) 3= x6 + 6 x5 - 40 x3 + 96 x - 64

Ans. x- + 2 x — 4.

2. Extract the cube root of ??i
6— 6 m5 + 40 m3— 90 m — 64.

3. Extract the square root of ai—2a3x+ 3a2x2—2ax3+ xi
.
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4. Extract the fifth root of 32 x5 - 80 x* + SO xs — 40 x"

+ 10 a; — 1.

5. Extract the fourth root of x s— 4 a7 + 10 a;
6— 16a;5 + 19x4

- 16 a-
3 + 10 x 1 - 4 x + 1.

248. When the index of the required root is a multiple of

two or more numbers, we may obtain the root by successive

extractions of the simpler roots.

For, since (Art. 17), ( 7 a)
mn = a,

taking the nth. root of both members, we have (Art. 235),

Taking the mth root of both members,

y/
a== y (y a).

Or, the mnth root of a quantity is equal to the mth root of

the nth root of that quantity.

EXAMPLES.

1. Extract the fourth root of 16 x i - 96 x3

y + 216 x 2

y
2

- 216 x y
s + 81 y\

2. Extract the sixth root of a12 — 6 a10 + 15 a8 — 20 a6

+ 15 a4 - 6 a- + 1.

3. Extract the fourth root of m8 — 8 m1 ± 12 w6 + 40 m5

- 74 m* - 120 ms + 108 m2 + 216 wi + 81.

XXII. — THE THEORY OF EXPONENTS.

249. In Art. 17, we defined an exponent as indicating how

many times a quantity was taken as a factor; thus

am means ay. ay, a to m factors.

Obviously this definition has no meaning unless the expo-
nent is a positive integer; and as fractional and negative ox-
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portents have not been previously defined, we may give to

them any definition we please.

250. We found (Arts. 82, 93, and 228) that when m and

n were positive integers,

I. am Xan — am + n
.

am
II. — = am

~ n
.

an

III. («'")"
= amn .

As it is convenient to have all exponents follow the same

laws, as regards multiplication, division, and involution, we
shall define fractional and negative exponents in such a way
as to make Ride I hold for any values of m and n. We shall

now find what meanings must be assigned to them in con-

sequence.

3

251. To find the meaning of a?.

As Rule I is to hold universalhT

,
it follows that

a a a + a s
a 2 Xa 2 = a 2 2 = a 2 =a3

.

a
Hence, a 2

is such a quantity as when multiplied by itself

3

produces a3
. Then, by the definition of root (Art. 17), a 2 must

a
be the square root of a?

; or, a 2 =
\J
az

.

Again, to find the meaning of a 3
.

i i i. i+ i + i a
By Rule I, a 3 X a,

3 X a 3 = a 3 3 3 = a 3 = a.

Hence, a* is such a quantity as when taken 3 times as a

factor produces a
; or, a 3 =

fya.

252. We will now consider the general case.

p
To find the meaning of a q

> p and a being positive integers.
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p_ p p

By Kule I, aq X a9 X a5 X to q factors

P P P P yy— +—-i 1- to? terms — X<2= a q q « =aq =ap
.

p

Hence, a 5 is such a quantity as when taken q times as a
p

factor produces a p
. Then a'1 must be the qi\\ root of ap

;

p

or, a* = yap
.

3 4 5 1

For example, a* =
\j
az

\
c 2 =\J c

5
;
x 3' = y x

; etc.,

and, conversely, y'
a5 = «4

; y
7

ic = x 2
; y"

m5 = m,3
"

;
etc.

EXAMPLES.

253. Express the following with radical signs instead of

fractional exponents :

a 2 x i
a 3.2 c

2
. 5. x*y^. 7. 4a 5 J« 9. 5yT°£T ^.

2.6^. 4. 3«m^. 6, rn'iA 8. 2c«t/l 10. 3»^c^l

Express the following with fractional exponents instead of

radical signs :

11. yV. 13. sjn. 15. 3
y/
m 5

. 17.
ty a

1

ty
a?.

12. yV- 14. yV. 16. 4 ^a10
. 18. v^vV-

19. 5sjm»%n<. 20. 2 avVy>.

254. To find the meaning of a-3.

By Kule I, a~ 3 X a 3 = a = 1, by Art. 94.

Hence, a~ 3 = —-
.

To find the meaning of a~ 2
.

By Rule I, a~* X c$— a = 1.

Hence, a.
2 =—

.
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255. "We will now consider the general case.

To find the meaning of a~
s

,
s being integral or fractional.

By Eule I, a~ s X as = a° = 1.

1

Hence, a s =— .

1 1 -2 1
For example, ar 1 = ~\ a 4—

^?5 a 3 —~
'>

e*cv

a'
a a*

1 X2 2-3
and, conversely,

—
^
= « -2

;

— = a;
2 a -3

;

—= 2 a *
;

etc.

We observe, in this connection, the following important

principle :

^4 quantity may be changedfrom the denominator of a frac-

tion to the numerator, or from the numerator to the denomi-

nator, if the sign of its exponent be changed.

EXAMPLES.

256. Remove all powers from the denominators to the

numerators in the following :

ar 5a;3 2 a;
-1

a; a;
2

,
a;
-2 x~

a2 a 3 — 1 a 4 a5 — b
3.

4.

x 3
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a 6 3a 4 5a 2 a
7. —^--^ —^ +

8.

a; + 2 5 b 03 7 — b a'

m— x m 3 % 5 2p
1 — x2 3x 5x 1 7 xK ™ — 1 7 ^.

— 3
*

Express the following with positive exponents:

J_ 2. _3
9. 2x 2

y
2 — 3x~ l

y
i'— x~ i

y
r

.

10. a- 1 5- 2 + 2cr 3 i- 4 -3fth~l

_i _s _i
11. 3a; 3

y
7 — 4 a* ?/ + a y~ •

12. a" 1 6~ 2
c
8 + a~ 2 b~% e-4 + as j-2 c#

257. We obtained the meanings of fractional and negative

exponents on the supposition that Bule I, Art. 250, was to

hold universally. Hence, for any values of m and n,

am x a n — am + n

3 2 3_2. J^
For example, a2X «~ 5= a2~ 5= a~ 3

;
a4 X « — «* 3 = a '

5

a- i Xa* = a 2 = a 2
;
a 3 X a 5 = a 3 ° = aTo

I
etc.

EXAMPLES.

Multiply together the following :

1. a8 and a" 1
. 4. c

8 and y'c
2

. 7. rc and n~?.

2. a2 and a" 2
. 5. a:"

1 and (far
8

. 8. a^ and af*.

3. a- x and a~ 5
. 6. m2 and^— . 9. 2 c~ * and- 3 a tyc

s
.
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10. MultiplyA ^+2a*-3ftHy26 *-4a 3_6a £&*.

a% b~ 2 + 2 a^ - 3 b 2

2 J~2 _ 4 a-J _ o a~% iih

2 a$ &- 1 + 4 a* 6"^ - 6

Aa*b~*-S + 12a H 2
.

6 - 12 a
-J b 2 + 18 a %b

2 a$ b- 1 - 20 + 18 a »
6, ^ws.

Note. It should be carefully remembered, in performing examples like

tbe above, that any quantity whose exponent is is equal to 1 (Art. 94).

Multiply together the following :

11. a2
b~°- - 2 + a~ 2

b
2 and a2 b~ 2 + 2 + a~ 2

b
2
.

3. i i ii a , i i
12. a4 — a? b± + a4

b'
2 - b* and a4 + b*.

13. a~ 2 - 2 a" 1 b + b
2 - a b

3 and ar s + 2 or 2
b.

14. 3 ar 1 -a~ 2 b- 1 + or* b~ 2 and 6 a* b
2 + 2 a 2

b + 2a.

15. x~ sf -x~ 2y-2x- 1 and 2 x 2

y~
l + 2x 8

!/-
2 -±xi

y~\

16. x% y~* + 2 + jc" *
y* and 2 a;

-
*
y
4 _ 4 A.- $ y

f + 2 a--
2

y
4

.

17. 2 sc^ — 3 a;^— 4 + aT* and 3 a;'*' + x — 2 x*.

18. 4 a 4 &- 1 + «4 - 3 «~ 4 6 and 8 a 4 &- 1 - 2 a~± - 6 «~ 4
6.

258. Toprove that Rule II holds for all values of'm and n.

By Rule I, am
~n X an= am~ n+ w = am.

Inverting the equation, and dividing by an
,
we have

— = a"
an
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ft
3 cc~

2

For example,
— =:a3_1 =:a2

;

—— = a~ 2~ 3 = a~ 5

;

-I _| + 2 f a3
8 + 4 V-

a
- = a 4 '

" = a 4
;

—-= a 5 = a 5
;

etc.

EXAMPLES.

Divide the following:

_i _4 l 1
1. a3

by a-1 . 4. a 2
by a . 7. x by -^—g.

2. a by a3
. 5. rMiyJc5

. 8. 5 » by 2 or 1
$ 6.

3. a^ by a* 6. m2

by tym,-
2
. 9. a" 1 6^ by - 3 a 6~~*.

10. Divide 2 a^ 6" 1 -20 + 18 a
- """

6 by J b~ * + 2 J - 3 6*.

2 J' b- 1 - 20 + IS a ^b

2a?b~ 1+4: cfib~^—6

2 _l JL I
a :i 6 »+-2a* — 3 6'

2 6 2 - 4 a *— 6 a $ b 2
,
^?*s.

-4 a* 6 * — 14 + 18 a ^6

-4a^6~^- 8 + 12 »~^ 6^

-6 -12 a"* 6^+ 18 a~%b

- 6 - 12 a~^ 62 + 18 <T% b

Note 1. Particular attention must be given to seeing that the dividend

and divisor are arranged in the same order of powers, and that each re-

mainder is brought down in the same order. It must be remembered that

a zero exponent is greater than any negative exponent ; and that negative

exponents are the smaller, the greater their absolute value.

Note 2. In dividing the first term of the dividend or remainder by the

first term of the divisor, it will be found convenient to write the quotient

at first in a fractional form; reducing the result by the principles of Art.

258. Thus, in getting the first term of the quotient in Ex. 10, we divide

2 a* b- 1

by a? b
'2

. Then, the result = „ _ L
= 2 a 3 3 b

+ * = 2 b *

(fit *
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Divide the following :

jl i

11. a — b by a 5 — b b
.

12. a- 4 + a~ 2 b' 2 + b~ i
by a~ 2 + a' 1 b' 1 + b~ 2

.

13. 2x- 2
y

2 + 6 + Sx2

i/-
2

hj2x + 2x2

y-
1 + 4t x3

y-
2

.

14. 2 x ?s

y~
x — 2x~%y + 32 x~ 2

y
3

by 2 + 6 a-" § y + 8 as"
*

?/.

15. cc~
3
?/
-5— 3 x~5

y~
n + x-1 y~

9
by x~2

y~
s + x~ 3

?/
-4— a;

- 4

y
-6

.

16. 8— 10o;-2
2/

J

^+2aj-*2/^
>"

by 4x~*y%+ 2x~ 2 y*—2x~^y
4

.

259. To prove that Rule III holds for all values of m
and n.

We will consider three cases.

Case I. Let m have any value, and n be a positive in-

teger.

Then, from the definition of a positive integral exponent,

(a
m
)
n = am Xam Xam to n factors

— f,m + m + m ton terma __ ~m n

Case II. Let m have any value, and n be a positive frac-

v
tion, which we will denote bv -

•

P_ q,

Then, (a
m
)
n = (a

m
)T= \ (a

m
)
p

, by the definition of Art. 252,

= y
7^"^ by Case I, Art. 259,

mp
= aJ, by Art, 252,

= amx q = amn .

Case III. Let m have any value, and n be a negative

quantity, integral or fractional, which we will denote by — s.
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Then, (a
m
)
n= (a

m
)~

s ——-r
s , by the definition of Art. 255,

(a
m
)
s

=
, by Cases I and II, Art. 259,

= a
- ms = am{

-
s) = amn .

Thus, we have proved Kule III to hold for all values of m
and n.

For example, (a
2

)
3 = a6

; (a"
1

)
5 = a" 5

; (a~
?s
)
* = a"*

;

(J)$= a; (a*)~*= a~*J (a
2

)~* = a-*; etc.

EXAMPLES.

260. Find the values of the following :

5
'(C

"
*)">. 10. f

]

1. («•)- 4. (O
-

*- 7. tf(c
2
)
2

. 10. -
.

2. («-
2

)
3

. 5. (e-*)-
2
*. 8. tfm

8
)

* 11.

(^

3. (a
3
)*. 6. (,/*)* 9. (^f)-

5
. 12. {(^VY 1

-

261. To prove that (a £)
n = an bn for any value of n.

In Art. 228 we showed the truth of the theorem when n was

a positive integer.

Case I. Let n be a positive fraction, which we will denote

v E E E
by — . We have then to show that (ab)« =a« b'i.

9.

[(a bfy = (a b)
p

, by Art. 259.



p p

EXPONENTS. 185

[at &*]*= (c£y (b^)
q = ap bP= (ab)", by Art. 228.

Hence, [(a J)fj*=[a? J?]
3

.

Therefore, (a fi)
«= a« &«.

Case II. Let w be a negative quantity, which we will de-

note by — s. We have then to show that (a b)~
s = a~ 3 b~ 3

.

(a b)-° = -y—^- =—;

-
, by Art. 228 and Case I,v J

(a b)
s as

bs J

= ar s b~ s
.

262. To find the value of a numerical quantity affected

with a fractional exponent.

1. Find the value of 8*.

From Art. 252, we should have S^^y'S
5

;
and to find the

value in this way, we should raise 8 to the fifth power, and

take the cube root of the result.

A better method, however, is as follows :

8^ = (8*)
5
, by Art. 259,

= ($&)*= 2s= 32;Ans.

Note. Place the numerator of the fractional exponent as the exponent
of the parenthesis, and 1 divided by the denominator as the exponent of the

cpiantity within.

2. Find the value of 16"*.

| = J__ J_ J_ J_ 1_~

16*

~
(IB*)*

=
^16)

5
~

(± 2>
5
~
±32 :
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EXAMPLES.

Find the values of the following :

3.27?. 5.1000-* 7. (-8)1. 9. ('f^f.

36'2 x 16 *

1 7 s 4^ x 9~ 2

4. 36*. 6. 9"* 8. (-27)* 10. -^T
1

81" X 16*

If the numerical quantity is not a perfect power of the de-

gree indicated by the denominator of the fractional exponent,

the first method explained in Ex. 1, Art. 262, is the best.

For example, to find the value of 7 2
,
we write it

\/
7 s

,
or

y/
343

;
and find the square root of 343 to any desired degree

of accuracy.

MISCELLANEOUS EXAMPLES.

263. Extract the square roots of the following :

4 x y c*de 2

5. 9 x-* y
2 -12x~ sy-2 x~ 2 + 4 x~ x

y~
x + y~\

6. 4x* + ±x% y~* -15x
2
y~* -Sx% y~* + lGx§ y~\

7. z 8

y~% + 6 - 4 x~% y% + x~ 3
y%
- 4 x% y~*.V

Extract the cube roots of the following :

8. ab\ 9. -8a;- 4/ 10.

11. $ if
- 12 y^'x-^ 6 y$x-

2 -i/x-
3

.

3m2 n
*

ax5
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Reduce the following to their simplest forms :

12. ,^„„^. . 15. ax~v+2z a2x+v~ 3z az
.Ji+ 2»i+r

13. (x
a
)-

b
+(x-

a
)-

b
. 16. (^'"x^X^- 1

) *.

ia (a
x+vY ( a? \

x~ v
,_ r/ _J_\„_»-i_2_

Change the following to the form of entire quantities :

18
15 ^* 2

19
X*V

2

20
^ 2

Reduce the following to their simplest forms :

21.
'

^ 22. ^=^. 23

Factor the following expressions :

24. 9^-12^ + 4. 25. a^-3a*-88.

26. ar 2 & + 5 a" 1 &*- 66.

Factor by the method of Art. 117 :

27. a-b. 28. a£-&~£. 29. ar'"y
— 4«*.

Factor by the method of Art. 119 :

30. a — 6. 31. a + 6. 32. x~ s +8cm^.
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XXIII. — RADICALS.

264. A Radical is a root of a quantity, indicated by a

radical sign ; as, yfa, \Jx + 1, y m2— 2 n + 3.

When the root indicated can be exactly obtained, it is called

a rational quantity ;
and when it cannot be exactly obtained,

it is called an irrational or surd quantity.

265. The Degree of a radical is denoted by the index of
© /

the radical sign; thus, \]
a is of the second degree; \x + 1

of the third degree.

Similar Radicals are those of the same degree, with the
5/- 6,

same quantity under the radical sign ; as, \ax and 1 y ax.

266. Most problems in radicals depend for their solution

on the following important principle :

For any values of n, a, and b, by Art. 236,

V«X \b = \ab.

REDUCTION OF RADICALS.

TO REDUCE RADICALS OF DIFFERENT DEGREES TO EQUIVALENT
RADICALS OF THE SAME DEGREE.

267. 1. Reduce y
1

2, ^3, and ^ 5 to equivalent radicals of

the same degree.

By Art. 252, ^2 = 2* = 2& =^2" = ^64

{f
3 = 3^ = 3^ = v^

4 =
y'Sl

^5 = 5* = 5& =
y'
5 3 =

v'
125
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RULE.

Express the radicals 10 ithfractional exponents ; reduce these

fractions to a common denominator •

express the resulting

fractional exponents with radical signs; and, finally, reduce

the quantities under the radical signs to their simplest forms.

Note. This method affords a means of comparison of the relative mag-
nitudes of two or more radicals ; thus, in Example 1, as y/ 125 is evidently

greater than
y/Sl, and y'Sl than

y/64, hence A'o is greater than
y/3,

and

^3 than
y/2.

EXAMPLES.

Reduce the following to equivalent radicals of the same

degree :

2. s/3, \f4, and ^5. 5. \f2~^ \J3~b, and ^4^
94 ** 6, 4.

3. y 5, y 6, and y 7. 6. y a + b and y a — b.

.3/ -, .*/ „ . /—5 ; - 3/-

4. SJxy, y x z, and yyz. 7. y'cr
— x 2 and sja

z — Xs
.

8. Which is the greater, ^3 or y'S?

9. Which is the greater, </2 or y/3?

10. Which is the greater, ^4 or $5 ?

TO REDUCE RADICALS TO THEIR SIMPLEST FORMS.

268. A radical is in its simplest form when the quantity

under the radical sign is not a perfect power of the degree

denoted by any factor of the index of the radical, and has no

factor which is a perfect power of the same degree as the

radical.

CASE I.

269. When the quantity under the radical sign is a perfect

power of the degree denoted by some factor of the index of the

radical.
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a

1. Reduce y 8 to its simplest form.

EXAMPLES.

Reduce the following to their simplest forms :

2. #9. 4. ^27. 6. \/~a^W.

3. ^25 a2
. 5. $125 a3

1>
9

. 7. <l
25 "'

CASE II.

270. When the quantity under the radical sign has a

factor which is a perfect power of the same degree as the

radical.

1. Reduce
\J
32 to its simplest form.

V 32 = V 16x2= (Art. 266) ^16x^2 = 4^2, Am.

2. Reduce y/54 a4 x to its simplest form.

\/5±a
i x = \/2Ta

s x2ax = % 27~a~
3 X ^2~a~x = 3 a \/2~a~x~,

Ans.

RULE.

Resolve the quantity under the radical sign into two factors,
one ofwhich is the greatest perfect power of the same degree
us the radical. Extract the required root of this factor, and

prefix the result to the indicated root of the other.

Note. In case the greatest perfect power in the numerical part of the

quantity cannot be readily determined by inspection, it may always be ob-

tained by resolving the numerical quantity into its prime factors. Let it

be required, for example, to reduce ^ 1944 to its simplest form. 1944 =
2x2x2x3x3x3x3x3 = 28 x35

. Hence,

^1944 -
V
/ 23lT35 = V22 x 34 x y/6 = 18 ^6.
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EXAMPLES.

Reduce the following to their simplest forms

3. ^50. 6. ^320. 9. 7^63aH5
c
6

.

4. 3^24. 7. 2^80. 10. %250x
3
fz».

5.
si
12. 8. \j98a

s
b
2

. 11. <Jl8x
3
y

i -27 x* y

12. \/ax
2 — 6ax + 9a. 14. \/20 a x 1 + 60 a 2 x + 45 a3

.

13. SJix^-y
2

) (x + y). 15. ^192 a4
6
5 + 320 a3

6
4

.

When the quantity under the radical sign is a fraction, mul-

tiply both terms by such a quantity as will make the denomi-

nator a perfect power of the same degree as the radical. Then

proceed as before.

/2
16. Reduce t / - to its simplest form.

V
/i=\/!=V/(H=Y/

i
x
Y
/6=^ G'-te-

/9
17. Reduce t / - to its simplest form.

Reduce the following to their simplest forms :

18.

19

20
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TO REDUCE A RATIONAL QUANTITY TO A RADICAL FORM.

271. 1. Eeduce 3 a;
2
to a radical of the third degree.

3 x2 =
\7 (3 x

2

)
3 = \]21 x\ Ans.

RULE.

Raise the quantity to the power indicated by the given root,

and write it under the corresponding radical sign.

EXAMPLES.

Reduce the following to radicals of the second degree :

a rr a 3x x — 3
2. i a. 3. -=- . 4. a + 2 x. 5. .

5 x — 2

6. Reduce -=- to a radical of the fourth degree,o

TO INTRODUCE THE COEFFICIENT OF A RADICAL UNDER THE
RADICAL SIGN.

272. 1. Introduce the coefficient of 2 a y 3 x2 under the

radical sign.

2 a V 3a-
2=

\/ 8 a
3 X V 3 x 2= (Art. 266) \f 8 a3 X 3 x 2= y

7
24 a3

x%
Ans.

RULE.

Reduce the coefficient to the form of a radical of the given

degree; multiply together the quantities under the radical

signs, and write the product under the given radical sign.

EXAMPLES.

Introduce the coefficients of the following under the radical

signs :

2. 3^5- 4. 4a2
\/^U. 6. 5c$Ja.

3. 2^7. 5. 3yTT^. 7.
(x-l)J(?±^).
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ADDITION AND SUBTRACTION OF RADICALS.

273. 1. Find the sum of y/18, \J21, J -, and 12
y/1̂8

By Art. 270, . ^18 = 3^2

v/27= 3^3

12

2. Subtract ^48 from ^162.

By Art. 270, ^162 = 3^6
^48 =2^6

^6, ^ws.

RULE.

Reduce each radical to its simplest form. Combine the

similar radicals, and indicate the addition or subtraction of

the dissimilar.

EXAMPLES.

Add together the following radicals :

5
3. y'S, ^18, and y/50. 6. ^20, t/i and J

4. ^12, v/48, and
v/
108. 7.

y/|y/|>
and y^

5. ^16,^/54, and
v'
128. 8.

t/i'tf^**^

2

27

7
2

3



194 ALGEBRA.

Subtract the following :

9.
v/
45 from ^ 245. 10. J ~ horn J

Simplify the following :

16

15

11. \/243 a b2 + V 75 a* +^3as - 54 a2 b + 243 a b
2
.

12.
7^27-^75-y/|

+
v/12-y/l-y/l.

13. {^16 + 5^54-^250-^/^
+
^/1

+
^/^. .

15. V 63 «2« -S4:abx + 2Sb2 x — ^7d2x + 42abx + 63b2
x.

MULTIPLICATION OF RADICALS.

274. 1. Multiply sj
2 by ^ 5.

^2x^5 = (Art. 266) ^2 X 5 = ^10, Arts.

2. Multiply y'
2 by y' 3.

Reducing to equivalent radicals of the same degree (Art.

267), we have

y/2 X $3 = $8 X \j
9 = ^72, Am.

KULE.

Reduce the radicals, if necessary, to equivalent ones of the

same degree. Multiply together the quantities under the radi-

cal signs, and write the product under the common radical

sign.
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EXAMPLES.

Multiply together the following :

3.
y/
12 and

y/
3. 6. V 6 a* and \/ 5 a?.

4. ^2 and y^. 7. V^i V^4
,
and V^^6)

'

5. ^axand^bx. 8.
y/ 2, y/ 5, and t/ ^

•

9. Multiply 2y/cc
—

3y/?/ by 4y/a: + y/?/.

2
y/cc

— 3
\J y

4y/a;+ y/y

8ic — 12 \jxy

+ 2v/^7-3 2/

8 « — 10 v/a; y
— 3 ?/,

^4ras.

Note. It should be remembered that to multiply a radical of the second

degree by itself is simply to remove the radical sigu ; thus,

y/ x x
y/ x = x.

Multiply together the following :

10. s/x- 2 and y]x + 3. 11. 3y/z
- 5 and 7 sjx- 1.

12. s/.T + l-V/z-land y'a; + 1 + y/x-1 (Art. 106).

13. yV — 1 — a and V «'
2 — 1 + «•

14.
\J
x —

s]y+ \J
z and

\j
x -\- \J y

—
\/

z.

15. y/2-y/3 + y/5 and ^2 + ^3 + ^5.

16. 3y/5-2y/6 + y/7 and 6 y/5 + 4 y/6 + 2 y/7.

17. 4y/3-5y/2-2y/5 and 8 y/3 + 10 y/2
- 4 y/5.
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Simplify the following :

Square the following (Arts. 104 and 105) :

20. 2^3-^/2. 22. \/l-a
2 +a.

21. 3^8 + 5^3. 23. ^^b-\{a~+~b.

DIVISION OF RADICALS.

275. Since (Art, 266), \faXs/b = \fab, it follows that

\a b -i-tya
= y

/

6.

RULE.

Reduce the radicals, if necessary, to equivalent ones of the

same degree. Divide the quantities under the radical signs,
and write the quotient under the common radical sign.

EXAMPLES.
8/

1. Divide ^ 15 by y/
5.

Reducing to equivalent radicals of the same degree, we have

^15-^5= ^225-^125= ^/11
=
^/1,

Ans.

Divide the following :

2.
v'
108 by v'

18. 6. s/2by$/3.

3. V^O^by \l~2Z. 7, % 2 by ^3.

4. v/54byv/6. 8.
s/ 12 hjsj 2.

5. S/lT^by $3~o~. 9. \/Ta~by$Ta~.
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INVOLUTION OF RADICALS.

276. 1. Raise
fy
2 to the fourth power.

(^ 2)
4 = (2*)

4 = 2* = f 24 = ^ 16, Jn».

2. Raise y/
3 to the third power.

(ft 3)
3 =

(3")
3 = 3^ = 3* =

\J 3, Ans.

We observe that in the first example the quantity under the

radical sign is raised to the required power ;
while in the sec-

ond, the index of the radical is divided by the exponent of

the required power. Hence the following

RULE.

Ifpossible, divide the index of the radical by the exponent

of the required poioer. Otherwise, raise the quantity tinder

the radical sign to the required poioer.

Note. If the radical has a coefficient, it may be involved separately.

The final result should be reduced to its simplest form.

EXAMPLES.

3. Raise y/5 to the third power.

4. Square \J1.

5. Find the fourth power of 4 y 3 x.

6. Find the sixth power of y/ a
2
x.

7. Raise \l a — b to the fourth power.

8. Raise 3 a\bx to the fourth power.

9. Find the value of (\/ x + l)\

10. Find the square of 4 V^2 — 3.
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EVOLUTION OF RADICALS.

277. 1. Extract the square root of y 6 x2
.

\J(y^) = (y
7^2

)* = {(6 x*)*}
* = (6 a;

2

)* = \/~6x~% Ans.

2. Extract the cube root of \/27 x
3
.

V (V27^Q = (V27V)*= {v/(3 z)
3

P~ = {(3 a>)*}* = (3 a')"

= y 3 £, ^4?zs.

We observe that in the first example the index of the radical

is multiplied by the index of the required root
;
while in the

second, the required root is taken of the quantity under the

radical sign. Hence the following

RULE.

If possible, extract the required root of the quantity under

the radical sign. Otherwise, multiply the index of the radical

by the index of the required root.

Note. If the radical has a coefficient, which is not a perfect power of

the same degree as the required root, it should he introduced under the

radical sign hefore applying the rule. Thus,

y(i\lax )
= y(\?l6ax )

= ylGax.

The final result should be reduced to its simplest form.

EXAMPLES.

3. Extract the square root of y/2.

4. Find the cube root of
y/

8.

4

5. Find the cube root of \a + b.

6. Find the square root of \x
2 — 2 x + 1.

7. Extract the fifth root of y/32.



8. Extract the cuhe root of
y/27.

9. Find the value of ^(3 y/3).
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5/

10. Find the fourth root of \ x* y
vi

.

11. Find the value of \J(±\J2).

TO REDUCE A FRACTION HAVING AN IRRATIONAL
DENOMINATOR TO AN EQUIVALENT ONE
WHOSE DENOMINATOR IS RATIONAL.

CASE I.

278. When the denominator is a monomial.

2 b
1. Reduce -;

— to an equivalent fraction whose denominator
sj
a

is rational.

Multiplying both terms by y/ a,

2b _2bsja _2bsja
\l
a

y/ a\j a a
,
Ans.

5
2. Reduce ^-^ to an equivalent fraction whose denominator

is rational.

Multiplying both terms by y/ 9,

5_ 5^9 _5v^9_5^9

RULE.

Multiply both terms of the fraction by a radical of the same

degree as the denominator, with such a quantity under the

radical sign as will make the denominator of the resulting

fraction rational.
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EXAMPLES.

Reduce the following to equivalent fractions with rational

denominators :

3
3

3<

^2"
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4 2y/5 + y/2 s/a + x+^a-x
3<

3TV2*
"

s/5-3^2'
•

y/^r^-y^T a;

, 4-y/3 y/«-y^ 19 yV-l-y/^+1
2-v/3 s/a+s/x ^at-l+^at+l

_ VS-V73 o 2+V« + 1 1Q ^ + V/^
2-4

«• ~777 To • "•
,

• A«5-
,

•

V/2 + v/3 1-Va+l » — VaJ
2-4

y/ft + y/5 1Q
« — V/V— 1

14 y/x
— 4 y/a

— 2

sja-\jb'
'

a + yjd
1—!

'

2\lx + 3\jx — 2*

280. If the denominator is a trinomial, containing only

radicals of the second degree, by multiplying both terms of

the fraction by the denominator with one of its signs changed,

we shall obtain a fraction which can be reduced to an equiva-

lent fraction with a rational denominator by the method of

Case II. Thus, to reduce the fraction

y/2-v/3-v/7
^2 + ^3 + ^'

Multiplying both terms byy/2 + y/3
—

y/7,

v/2- v/3-v/7 _ (v/2-v/3-v/7)(v/2 + v/3-v/T) _6-2 v 14

l/2 + y/3 + y/7~(\/2 + s/3 + \/7)(s/2+sJ3-s/7) 2y/6-2

_ 3-y/14

Multiplying both terms by y/ 6 + 1, we Lave

(3- V/14)(v/6 + l) _ 3-v/14 + 3y/6- v/84

(v
/ 6 _l)(v/6 + l)

-
5

If the denominator is a binomial, containing radicals of any

degrees whatever, it is possible to reduce the fraction to an

equivalent form with a rational denominator
;
but the process

is more complicated than the preceding and rarely necessary.
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281. To find the approximate value of a fraction whose

denominator is irrational, reduce it to an equivalent fraction

whose denominator is rational.

1. Find the value of ^ j^ to three decimal places.

2-J^
= (Art. 279)

2-±^-2 = 2

-±|^ = 1.707, An*.

It will be seen that the value of the fraction is obtained in

this way more easily than by dividing 1 by 2 —
\J 2, or its

value .586.

EXAMPLES.

Find the values to three decimal places of the following :

2
2

3
3

4 - 5 V/3 -V/2

IMAGINARY QUANTITIES.

282. An Imaginary Quantity is an indicated even root of

a negative quantity ; as, y
—

4, \/
— a2

.

In contradistinction, all other quantities, rational or irra-

tional, are called real quantities.

283. All imaginary quantities may be expressed in one

common form, which is, a real quantity multiplied by y
— 1.

For example,

y/3^ _ yV X (_i)
_

(Art. 266) y'
a" X ^:Z 1 = a y^l ;

also, y/- 2 = ^2 X(-l) = s/2\[^l.

Hence, we may regard ^—1 as a universal factor of every

imaginary quantity, and use it in our investigations as the

only symbol of such a quantity.
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284. Imaginary quantities may be added, subtracted, and

divided the same as other radicals
;
but with regard to multi-

plication, the usual rule requires some modification.

285. By Art. 17, V— 1 means such an expression as when

multiplied by itself produces
— 1

;

or,- (v/^l7 = -l;

also, (y/I^^v/^lTxV^T^-lV3 !;

and, (V^1)
4= (V^1)

2

X(V^31)
2

=(-1)X(-1) = 1.

By continuing the multiplication, we should find

(V-l)
8 = l; etc.

Or, in general, where n is any positive integer,

(v/=ir
+W=T; (V=i)

4B+2
=-i; (V=T)

4n+8
=-V^;

(V=1)
4" +4= L

MULTIPLICATION OF IMAGINARY QUANTITIES.

286. 1. Multiply ^^a^hy \f^¥.

V^^X V17^^ (Art. 283) a <f^l X ft y'^1 = « ft (V11 *)
2

= — aft, ^4hs.

2. Multiply V- 2 by y^3.

V^2 X y
/r3=v/2x\/3x(v/:: i)

2=-^)
il ??s.

3. Multiply together ^— 4, V— 9, V~ 16
>
and V" 25.

V^ X V3^ X S/^IG x V
/Ir 25 = 2x3x4x5x (v^)*

= 120(\/~l)
4 = 120, Arts.
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RULE.

Reduce all the imaginary quantities to the form of a real

quantity multiplied by ^— 1. Multiply toyether the real

quantities, and multiply the result by the required power of

EXAMPLES.

Multiply the following :

4. 4^-3 and 2\J-2. 7. 1 + V- 1 and 1 - \J- 1.

5. _ 3 yL_ a and 4 V- b. 8. \J- a% V~ b% and y— c
2

.

6. 4 + V- 7 and 8-2^-7. 9. a + \/— b and a — \J—b.

10. 2 V- 3 — 3 V- 2 and 4 V- 3 + 6 V~ 2.

11. Divide V- « by V~ *•

We should obtain the same result by using the rule of Art.

275
; hence, that rule applies to the division of all radicals,

whether real or imaginary.

Divide the following :

12. V- 6 by V- 2.

13. ^^12 by y'-S.

Simplify the following :

16.
1 + S

^_1 . (Art. 279).

1-V-l 2-V-2

14.



KADICALS. 205

QUADRATIC SURDS.

287. A Quadratic Surd is the indicated square root of an

imperfect square ; as, \J 3, ^ x + 1.

288. A Binomial Surd is a binomial in which one or both

of the terms are irrational.

289. The square root of a rational quantity cannot be

equal to a rational quantity plus a quadratic surd.

If possible, let
y'
a = b + y/

c

Squaring the equation, a = b2 + 2 b
\j

c + c

or, 2 b
\J

c = a — b
2 — c

. a — b
2 — c

^ C =^b—
that is, a surd equal to a rational quantity, which is impossible.

290. If tin' sum of a rational quantity and a quadratic
surd be equal to the sum of another rational quantity and

another quadratic surd, the two rational quantities will be

equal, also the two quadratic surds.

That is, if a + \J
b — c + \J

d

then a = c and \Jb
= \J d

For, if a is not equal to c, suppose a = c -f- x

then c-\-x-\-\Jb = c + \Jd

or, x + s/
b =

y/
d

which is impossible by Art. 289. Hence, a must equal c, and

consequently y/
b must equal y/

d.

291. To prove that ifsja + ^b
—

sj
x + \J y, then V

'

a —
\j

b

=
s/x — sfy.

Squaring the equation \/ a + sjb
=

\J
x + \J y,

we have tc + \Jb
— x + 2 \l~r~y + y

Whence, by Art. 290, a = x + y and >Jb = 2 \ xy.
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Subtracting these two equations, we have

a~sJb — x — 2sJxy-\-y

Extracting the square root, ^a — ^b = ^ x — ^ y.

292. To extract the square root of a binomial surd whose

first term is rational.

For example, to extract the square root of a + \J
b.

Assume \J a + \fb
=

\/
x + sj y (1)

then (Art. 291), ^a—sjb = ^ x — \Jy (2)

Multiplying (1) by (2), \ja"-b = x-y (3)

Squaring (1), a + \/b
— x + 2^xy + y

Whence (Art. 290), a= x + y. (4)

Adding (3) and (4), a + \J~aT^b= 2x, or x=
l + ^f~

b
-

Subtracting (3) from (4), a— SJ a
2— b=2y, or ?/= ^- .

Substituting these values of x and y in (1) and (2),

^i^=^(l±^EI) +
v/(»=^E»). (5)

EXAMPLES.

1. Find the square root of 3 + 2 ^ 2 or 3 + y/
8.

Here a = 3 and b = 8. Substituting in (5), we have

V3T^=v/(
3

-±^) +
V/('^^)

=
v/(^) +v/^H 2 + i>-<-
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2. Find the square root of 6 —
\J

20.

Here a = 6 and b = 20. Substituting in (6), we have

293. Examples of this kind may always he solved hy the

following method :

3. Extract the square root of 14 — 4
y/

6.

y
,

14_4 v/6 = V
/

l^-2v/24 = V
/12-2v/ 24 + 2

= (Art. 116)^12-^2 = 2^3-^2, Arts.

4. Extract the square root of 43 + 15
\J

8.

V43 + 15
si
8 = \M3 + sj

1800 = ^43 + 2
sj
450

= ^25 + 2^450 + 18 = v/25 + V/18 =:5 + 3
v/
2

>
^s-

EULE.

Reduce the surd term so that its coefficient may he 2. Sep-

arate the rational term into tiro parts whose product shall be

the quantity under the radical sign (see first note on page 48),

writing one part he/ore the surd term and the other part after

it. Extract the square roots of these parts, and connect them

by the sign of the surd term.

The advantage of this method is that it does not require the

memorizing of formulae (5) and (6).

EXAMPLES.

Extract the square roots of the following :

5. 12 + 2^35. 8. 35 + 10 <J 10. 11. 20-5^12.

6. 24-2^63. 9. 12 -sj 108. 12. 14 + 3^20.

7. 16 + 6^7. 10. 8-v/60. 13. 67 -7 si
12.
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Extract the square roots of the following, using formula?

(5) and (6), Art. 292:

14. l-12\/-2. 15. 7 + 30V-2. 16. 35-3V/-16.

17. 2m-2\Jm--n\ 18. x2 + a x -2 \/ax
3
.

Extract the fourth roots of the following :

19. 193 + 22
y/

72. 20. 17-12)/ 2. 21. 97-56^3.

SOLUTION OF EQUATIONS CONTAINING RADICALS.

CASE I.

294. Wlien there is only one radical term in the equation.

1. Solve the equation v/ar
2 — 5 — x = — 1.

Transposing, ^ x2 — 5 = x — 1

Squaring, x2— 5 = x 2 — 2 cc + 1

Whence, x = 3, Ans.

CASE II.

295. When there are two radical terms in the equation.

2. Solve the equation \]
x — \

fx — 3=1.

Transposing, \J
x — 1 = ^x — 3

Squaring, x — 2\Jx + l = x — 3

Transposing and uniting,
— 2

y/
x = — 4

or, \jx = 2

Whence, x = 4, Ans.

CASE III.

296. When there are three radical terms in the equation.

3. Solve the equation \Jx + 6 + \Jx + 13 — v/4a; + 37 = 0.
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Transposing, \Jx + 6 + \/x + l§ = \/4:X + 3T

Squaring, x + 6 + 2 \/cc
2 + 19.r + T8 + x + 13 = 4 x + 37

Transposing and uniting, 2 y as
2 + 19 a; + 78 = 2 a; + 18

or, ^+19 a; + 78 = a: + 9

Squaring, a;
2 + 19 x + 78 = a;'

2 + 18 a; + 81

Whence, x = 3, ^f«s.

RULE.

297. Transpose the terms of the given equation so that a

radical term may stand alone in one member ; then raise each

member to a power of the same degree as the radical.

If there is still a radical term remaining, repeat the op-

eration.

The equation should he simplified as much as possible hefore

performing the involution.

Note. All the examples in tliis chapter reduce to simple equations ;

radical equations, however, may reduce to equations of the second degree,

for the solution of which see Chapter XXIV.

EXAMPLES.

Solve the following equations :

3/

4. V«-8 = 3. 6. y'3a; + 4 + 3= 6. 8. 8-2^ x

5. V^-3 = 2. 7. ^3-1-2= 1. 9. o~\2x = 3.

10. y/4ar-19-2a- = -l. 14. 6 + ^x= \Jl2 +

11. ^^-3^+6-1=1-^. 15. V
/ -'-32 + v/a-r=16.

12. yx* — 6x2 + 2 = x. 16. ^x —3— Va; + 12=— 3.

13. ^ +^ + 5 = 5. 17. \l2x-l+\J2x + 9= 8.

18. ^3x + 10-^3x + 25 = -3.

19. ^x2-3x + 5-\'x 2 -5x-2 = l.
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20. \Jx
2 + 4 x + 12 + \jx

2 - 12 x - 20 = 8.

21. v^— ^-3 =—.

y x

22. ^3^+^3^+13 =^ ==.
V o x + 13

23 V
7 ^ — 3 _y/g;

— 4

V/tc + T
_
"y'ic + 1'

24 y/^_+38_ y/a; + 28

\/# + 6
\J
x + 4

'

25. ^-1 + ^ + 4=^4^ + 5.

26. yWl + V*-2-V/4jc-3 = 0.

27. \j2x-3- ^8^ + 1 + VlS ^-92 = 0.

28. y^ - 3 - V^ - 14 - y/4 a - 155 = 0.

29. x- \^ (9 + x \/^~~3) = 3.

30. x + l = \f(l + x \/^
r
+T6).

31 v5^y/3_v^+_3
V

/

2^"-
v/2~V

/ ^ + 2'

32. y(a*-3a>x + x 2

\/3^~x) = a-x.

XXIV. — QUADRATIC EQUATIONS.
298. A Quadratic Equation, or an equation of the second

degree (Art. 164), is one in which the square is the highest
power of the unknown quantity ; as,

ax2=
b, and x* + 8 x = 20.

299. A Pure Quadratic Equation is one which contains

only the square of the unknown quantity ; as,

ax- = b; and a;
2= 400.
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Equations of this kind are sometimes called incomplete equa-

tions of the second degree.

300. An Affected Quadratic Equation is one which con-

tains both the square and first power of the unknown quan-

tity ; as,

x 2 + 8 x = 20
;
and a x2 + b x — e = b x2 — a x + d.

Equations of this kind, containing every power of the un-

known quantity from the first to the highest given, are some-

times called complete equations.

PURE QUADRATIC EQUATIONS.

301. A pure quadratic equation can always he reduced to

the form
x2 = a,

in which a may represent any quantity, positive or negative,

integral or fractional. Thus, in the equation

20a;2

,K 9 Jv 41 3-5x2

Clearing of fractions, 80 x2 - 12 (5 x
2 + 4) = 41 - (9

- 15 x 2

)

or, 80 x 2 - 60 x2 - 48 = 41 - 9 + 15 x 2

Transposing and uniting terms, 5 x2 = 80

x2= 16
which is in the form x2 = a.

Equations of this kind have, therefore, sometimes been de-

nominated binomial, or those of two terms.

302. An equation of the form

x2 = a

may he readily solved by taking the square root of each mem-
ber. Thus,

x = ± \Ja,
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where the double sign is used, because the square root of a

quantity may be either positive or negative (Art. 237).

Note. It may seem at first as though we ought to write the douhle sign

before the square root of each member, as follows :

±x = ± y/a.

We do not omit the double sign before the square root of the first member

because it is incorrect, but because we obtain no new results by consid-

ering it. The equation ± x = ± y/
a can be written in four different ways,

thus,
x = ^a

— x=tfa

-x— -
y/«

where the last two forms are equivalent to the first two, and become iden-

tical with them on changing all the signs. Hence it is sufficient, in

extracting the square root of both members of an equation, to place the

double sign before one member only.

5x2

303. 1. Solve the equation 3 x2 + 7 = —r- + 35.

Clearing of fractions, 12 x2 + 28 = 5 x2 + 140

Transposing and uniting terms, 7 x2 = 112

x2 = 16

Extracting the square root of both members,

x = ± 4, Ans.

RULE.

'Reduce the given equation to the form x2= a,and then

extract the square root of both members.

EXAMPLES

Solve the following equations :

2. 4a;2 - 7 = 29. 4.

3. 5x2 + 5 = 3x2 +5o. 5.

t X 1 —
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245

x
= 5x. 7. 13-V/3a;

2 +lG = 6.

G
8. x +^x* + 3= ,-z—z

y x- + 6

9.
_y/3

l_y/l_aj
a 1 + y/l- a- .'•

_ cc
2 5 a;

2

_ 7
2

335
10, Y~ + U^2l~ X +

~2l'

11. 2 (x
-

3) (x + 3) = (x + l)
2 - 2 x.

12. aa;2 + 5= c. 13
x 2 — b x2 — a

AFFECTED QUADRATIC EQUATIONS.

304. An affected quadratic equation may always be reduced

to the form

x2
-\-jpx = q,

where p and q represent any quantities, positive or negative,

integral or fractional. Thus, in the equation

3x — 3 _ 3x — 6
5 x 5-

= 2 x H s
—

x — J

Clearing of fractions,

10 x (x _ 3)
_

(6 x
-

6) = 4 x (x
-

3) + (3 x
-

6) (a;
-

3)

or, 10 a-
2 - 30 x - 6 x + 6 = 4 x2— 12 a: + 3 a2 - 15 a; + 18

Transposing and uniting terms, 3 a;
2 — 9 x = 12

Dividing by 3, x2 — 3 x = 4

which is in the form x2 +p x = q.

Equations of this kind have, therefore, sometimes been de-

nominated trinomial, or those of three terms.
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305. Let it be required to solve the equation

x2

-\-px = q.

Equations of this kind are solved by adding to both members

such a quantity as will make the first member a perfect square,

and taking the square root of the resulting equation. The pro-

cess of adding such a quantity to both sides as will make

the first member a perfect square, is termed Completing the

Square.

In any trinomial square (Arts. 104 and 105), the middle

term is twice the product of the square roots of the extreme

terms
;

therefore the square root of the last term must be

equal to half the second term divided hy the square root of

the first. Hence the square root of the quantity which must

be added to x~ + p x to render it a perfect square, is ~- —-
x,

or — . Adding to both members the square of ^,
or

^-,
we have

2 , _,, ,
P

,
p _±q+pX<+px + - = q + ^
= -

Extracting the square root of both members,

X + P= ± \/±<I+P'

or, x =— 7-±p ^iq+jr
2

-1-
2

Thus, there are two values of x,

p \ 4: q + p'
2

p SJ 4 q + p
2

x = -t>+ —o i
or

2
'

2 ' 2 2

We observe from the preceding investigation that the quan-

tity to be added to complete the square is found by taking half

the coefficient of cc,
and squaring the result.

Hence, for solving affected quadratic equations, we have the

following



QUADKATIC EQUATIONS. 215

RULE.

Reduce the equation to the form x2 + p x = q.

Complete the square by adding to both members the square

of half the coefficient of x. Extract the square root of both

members, and solve the simple equation thus found.

1. Solve the equation x2 — 3 x = 4.

Completing the square, by adding to both members the

.3 9
square of -, or -,

o 9 . 9 25
x2— 3x + - = 4:+ -=—

4 4 4

^ 3 5
Extracting the square root, x — ~ = ± ^

™ 3 5
Transposing, a; = - ± -

Taking the upper sign, x = -r+ k= h— 4.
Z ju Li

3 5 2
Taking the lower sign, x=

7>

—
^
= —

7,
= — 1.

Ll Li Li

Ans. x = £ or — 1.

We may verify these values as follows :

Putting x = 4 in the given equation, 16 — 12 = 4.

Putting x = -l, 1 + 3 = 4.

These results being identical, the values of x are verified.

2. Solve the equation 3 x2 + 8 x = — 4.

8x4
Dividing through by 3 x2 + -—-=— -

o o
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Completing the square, by adding to both members the square

,4 16
0f

3'
0ry

2 8^ 16 _ 4 16_4

4 2
Extracting the square root, x + - = ± -

o o

m 4 2
1 ransposing, x = — - ± -

rr i
• n 4 2

lakmg the upper sign, x = — - + - = — -

Taking the lower sign, x = — ^
—

^ = — ^ = — 2.

2
.4ns. cc = — - or — 2.

o

3. Solve the equation
— 3x2 — 7 x = -=-.

o

7 x 10
Dividing through by — 3, x 1 + -~- =——

Completing the square, by adding to both members the square

. 7 49
of

6'°
r
36'
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still it is sometimes rilore convenient to employ a second

method of completing the square, known as the " Hindoo

Method."

An affected quadratic, reduced to three terms, and cleared

of all fractions, may he reduced to the form

a x2 + b x = c.

Multiplying each term by 4 a, we have

By an operation similar to that of Art. 305, we may show

that b
2 must be added to both members, in order that the first

member may be a perfect square. Thus,

4 a2 x- + 4 a b x + b
2 = b

2 + 4 a c

Extracting the square root, 2 ax -\- b = ± \ b
2

-\- 4ta c

Transposing, 2 ax = — b ± \ b2 + 4 a c

tv -a- i q -h±\?b2 +4ac
Dividing by 2 a, x = ^ .

It will be observed that the quantity necessary to complete
the square, is the square of the coefficient of x in the given

equation. Hence the following

RULE.

Reduce the equation to the form a x 2 + b x = r.

Multiply both members of the equation by four times the

coefficient of x2
,
and add to each the square of the coefficient

of x in the given equation.

Extract the square root of both members, and solve the sim-

ple equation thus produced.

Note. The only advantage of this method over the preceding is in

avoiding fractions in completing the square.

4. Solve the equation 2 x 2 — 7 x = — S.
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Multiplying both members by four times 2, or 8,

16 x 2 -5Gx = - 24

Adding to each member the square of 7, or 49,

16 x2 — 56 x + 49 = - 24 + 49 = 25

Extracting the square root, 4 x — 7 = ± 5

Transposing, 4cc = 7±5 = 12or2

Dividing by 4, x = 3 or -
,
^4«s.

307. This method is usually to be preferred in solving

literal equations.

5. Solve the equation x2 + (a
—

1) x = a.

Multiplying both members by four times 1, or 4,

4 x2 + 4 (a
—

1) x = 4 a

Adding to each member the square of a — 1, or (a
—

l)
2
,

4 x2 + 4 (a
-

1) x + (a
-

l)
2 = 4 a + (a

-
l)

2

= a2 + 2 a + 1 = (a + l)
2

Extracting the square root,

2 a; + (a
—

1) = ± (a + 1)

Transposing, 2 cc = — (a
—

1) ± (a + 1)

Taking the upper sign, 2 x = — (a — 1) + (a + 1)

r= — « + l + «+l=2
or,
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Multiply both members of the equation by the coefficient of
x2

,
and add to each the square of half the coefficient of x in

the given equation.

6. Solve the equation 7 x 2 + 4 x = 51.

Multiplying both members by 7, 49 x2 + 28 x = 357

Adding to each member the square of 2, or 4,

49 x 2 + 28 x + 4 = 361

Extracting the square root, 7 x + 2 = ± 19

Transposing, 7 a;
— — 2 ± 19 = 17 or — 21

17
Dividing by 7, ic =— or — 3, ^l»s.

SOLUTION OF QUADRATIC EQUATIONS BY A
FORMULA.

309. In Art. 30G, we showed that if a x2 + b x = c, then

-b± \Jb
2 + ±ac ...

X =
2a

* (1)

We may use this as a formula for the solution of quadratic

equations as follows :

7. Solve the equation 3 x2 + 5 x = 42.

Here a = 3, b = 5, c = 42
; substituting these values in (1),
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Note. Particular attention must be paid to the signs of the coefficients

in substituting.

9. Solve the equation,
— x2— 6 x = 8.

Here a = — 1, b = — 6, c = 8; substituting in (1),

6 ±^36- 32 6±2
x= —jr

= — = — 4 or — 2, Ans.

RULE.

Reduce the equation to the form a x2 + b x = c.

The value of x is then a fraction, ivhose numerator is the

coefficient of x with its sign changed, plus or minus the square
root of the sum of the square of said coefficient, and four times

the product of the second member by the coefficient of x'
2

; and
whose denominator is twice the coefficient of x

2
.

310. The following equations may he solved hy either of

the preceding methods, preference being given to the one best

adapted to the example considered. Special methods and

devices may also be employed whenever any advantage can

thereby be gained.

EXAMPLES.

Solve the following equations :

10. x°- + 2x + 7 = 4:2. 16. 26x + lox2= -7.

11. a;
2 - 9 x- 22 = 0. 17. - 40 + x = 6 x\

12. x2-Sx = -15. 18. 17x = 2x2 -6.

13. z2 +18*= -65. 19. ^+*=_1.
t 7 9 f2

14. Gx*+7 X -3 = Q. 20.
x
=--^-.

£ o o

3x2 °2
15. 13 z - 14 = 3 a;'. 21. ~-^ = x .

5 o
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22. ^_-"-_£=a 24. (as-3)(2as + l)=4.
6 Jo

23. ^--^=-^. 25. (*+5)O-5)-(llx+l)=0.

26. 4x(18x-l) = (10x-l)
2

.

27. (3a:-5)
2

-(> + 2)
2 = -5.

28. (as-l)
2

-(3as + 8)
2
=(2as + 5)

2
.

29
2 as_ 5 _21 ^_ 3

4
29<

x
+ 2-~2-

d7 "

5-as 7 7*

x x — 1_3 _
ft

cc + 1 a? + 3 _8
30 - ^TI—"F""2' ^+2 x + 4

_
3-

.t 5 — as 15 on 3 a?
2 1 — 8 x x

31. -3 = -j- . OV.
5 — x . x 4'

'

x — 7 10 5

5 3z + l 1 .n 2as-l 3x 1
. = -

. 40.
1

—
x a;

2 4" x 3 a; —12
cc

33. = -——-. 41. \/20 + x-x2 = 2(x-5).3x+4 4x+l T

34. _x__——- = 0. 42. as+V5as + 10 = 8.

3a; + 4 7 as- 4

._ . 35-3as ,. AQ as*-a* + 7 n
35. 6 as H = 44. 43. = a; + —

a; ar + 3 a; — 1 o

14 — r 7 3 22
36. 4 a -=t-,?= 14 44. -^ ^=^-

a; + 1 x2 — 4 a; + 2 o

45. ^— +- =—- - +
x*— 1 3 3 (as

—
1) a; + 1
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._ a + 3 x — 3 2 a; — 3
46. -s+- -s= r -

a + 2 x — 2 x — 1

,„ 35 + 2 a — 2 2a + 16
47. T H =-=- -=-,

a — 1 a + 1 a + 5

12 + 5 a 2 + a 1

12 — 5a a 1 — 5a

49.
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XXV.— PROBLEMS
LEADING TO PURE OR AFFECTED QUADRATIC EQUATIONS

CONTAINING BUT ONE UNKNOWN QUANTITY.

311. 1. I bought a lot of flour for $ 175 ;
and the number

of dollars per barrel was to the number of barrels, as 4 to 7.

How many barrels were purchased, and what was the price of

each ?

Let x = the number of dollars per barrel,

7 x
then -= the number of barrels.

4

7 x2

By the conditions, —r- = 175

Whence, x = ± 10.

Only the positive value is applicable, as the negative value

does not answer to the conditions of the problem.

That is, x = 10, the number of dollars per barrel,

7 x
and -= 171, the number of barrels.

4

2. There is a certain number, whose square increased by 30,

is equal to 11 times the number itself. Required the number.

Let x — the number.

By the conditions, x2 + 30 = 11 x

Solving this equation, x = 5 or 6.

That is, the number is either 5 or G, for each of these values

satisfies the conditions of the problem.

3. I bought a watch, winch I sold for $ 56, and thereby

gained as much per cent as the watch cost me. Required
the amount paid for it.

Let x = the amount paid, in dollars.

Then x = the gain per cent,

x X"
and —— X x = ——- = the whole gain in dollars.
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x2

By the conditions, -^-r— = 56 — xJ 100

Solving this equation, x = 40 or — 140.

Only the positive value of x is here admissible, as the nega-
tive result does not answer to the conditions of the problem.
The cost, therefore, was $ 40.

Note. When two answers are found to a problem, they should be ex-

amined to see whether they answer to the conditions of the problem or not.

Only those which answer to the conditions should be retained.

PROBLEMS.
4. I have three square house-lots, of equal size. If I were

to add 193 square rods to their contents, they would be equiv-
alent to a square lot whose sides would each measure 25 rods.

Required the length of each side of the three lots.

5. There are two square fields, the larger of which contains

25,600 square rods more than the other, and the ratio of their

sides is as 5 to 3. Required the contents of each.

6. Find two numbers whose sum shall be 15, and the sum
of their squares 117.

7. A person cut and piled two ranges of wood, whose united

contents were 26 cords, for 356 dimes
;
and the labor on each

of them cost as many dimes per cord as there were cords in its

range. Required the number of cords in each range.

8. A grazier bought a certain number of oxen for $ 240, and

having lost 3, he sold the remainder at $8 a head more than

they cost him, and gained $59. How many did he buy ?

9. The plate of a rectangular looking-glass is 18 inches by
12, and is to be framed with a frame all parts of which are of

equal width, and whose area is to be equal to that of the glass.

Required the width of the frame.

10. A merchant sold a quantity of flour for §.'59, and gained
as much per cent as the flour cost him. What was the cost of

the flour ?
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11. There are two numbers whose difference is 9, and

whose sum multiplied by the greater is 266. What are the

numbers ?

12. A and B gained by trade $ 1800. A's money was in

the firm 12 months, and he received for his principal and gain

$2600. B's money, which was $3000, was in the firm 16

months. What money did A put into the firm ?

13. A merchant bought a quantity of flour for $ 72, and

found that if he had bought 6 barrels more for the same

money, he would have paid $> 1 less for each barrel. How
many barrel's did he buy, and what was the price of each ?

14. A square courtyard has a gravel-walk around it. The

side of the court wants 2 yards of being 6 times the breadth

of the gravel-walk, and the number of square yards in the walk

exceeds the number of yards in the perimeter of the court by
164. Required the area of the court.

15. My gross income is $ 1000. After deducting a percent-

age for income tax, and then a percentage, less by one than

that of the income tax, from the remainder, the income is

reduced to 8 912. Required the rate per cent at which the

income tax is charged.

16. The sum of the squares of two consecutive numbers is

113. What are the numbers ?

17. Find three consecutive numbers such that twice the

product of the first and third is equal to the square of the

second, increased by 62.

18. I have a rectangular field of corn which consists of 6250

hills ; and the number of hills in the length exceeds the num-

ber in the breadth by 75. How many hills are there in the

length and breadth ?

19. A certain company agreed to build a vessel for $ 6300
;

but, two of their number having died, those that survived had

each to advance $ 200 more than they otherwise would have

done. Of how many persons did the company at first consist ?
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20. A detachment from an army was marching in regular

column, with C men more in depth than in front; hut Avhen

the enemy came in sight, the front was increased by 870 men,

and the whole was thus drawn up in 4 lines. Required the

number of men.

21. A has two square gardens, and the side of the one ex-

ceeds that of the other by 4 rods, while the contents of both

are 208 square rods. How many square rods does the larger

garden contain more than the smaller ?

22. A certain farm is a rectangle, whose length is twice its

breadth; but should it be enlarged 20 rods in length and 24

rods in breadth, its contents would be doubled. Of how many
acres does the farm consist ?

23. A square courtyard has a rectangular gravel-walk

around it. The side of the court wants one yard of being six

times the breadth of the gravel-walk, and the number of square

yards in the walk exceeds the number of yards in the perim-

eter of the court by 340. What is the area of the court and

width of the walk ?

24. A merchant bought 54 bushels of wheat, and a certain

quantity of barley. For the former he gave half as many
dimes per bushel as there were bushels of barley, and for the

latter 4 dimes per bushel less. He sold the mixture at $ 1 per

bushel, and lost $ 57.60 by his bargain. Required the quan-

tity of barley, and its price per bushel.

25. A lady wishes to purchase a carpet for each of her square

parlors ;
the side of one of them is 1 yard longer than the

other, and it will require 85 sqxiare yards for both rooms.

What will it cost the lady to carpet each of the rooms with

carpeting 40 inches wide, at 81.75 per yard ?

26. A man has two square lots of unequal dimensions, con-

taining together 15,025 square feet. If the lots were contigu-

ous to each other, it would require 530 feet of fence to embrace

them in a single enclosure of six sides. Required the area of

each lot.
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27. A certain number consists of two digits, the left-hand

digit being twice the right-hand ;
and if the digits are inverted,

the product of the number thus formed, increased by 11, and

the original number, is 4956. Find the number.

28. A man travelled 108 miles. If he had gone 3 miles

more an hour, he would have performed the journey in 6 hours

less time. How many miles an hour did he go ?

29. A cistern can be filled by two pipes running together in

2 hours 55 minutes. The larger pipe by itself will fill it

sooner than the smaller by 2 hours. What time will each pipe

separately take to fill it ?

30. A set out from C towards D, and travelled 3 miles an

hour. After he had gone 28 miles, B set out from D towards

C, and went every hour ^ of the entire distance
;
and after

he had travelled as many hours as he went miles in an hour,

he met A. Required the distance from C to D.

31. A courier proceeds from P to Q in 14 hours
;
a second

courier starts at the same time from a place 10 miles behind P,

and arrives at Q at the same time as the first courier. The

second courier finds that he takes half an hour less than the

first to accomplish 20 miles. Find the distance from P to Q.

XXVI. — EQUATIONS IN THE QUADRATIC
FORM.

312. An equation is in the quadratic form when it is ex-

pressed in three terms, two of which contain the unknown

quantity ;
and of these two, one has an exponent twice as

great as the other. As,

x6 — 6 x3= 16,

xs + x* = 72,

(x-
-

1)
2 + 3 {x-

-
1) = 18, etc.
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313. The rules already given for the solution of quadratics

will apply to equations having the same form. For, in the

equation
a x2n + b xn = c,

let xn = y ;
then x2n =

if. Substituting,

ay2 +by = c

Whence, hy Art. 309, we have

or, x

•
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Here, although the equation is of the sixth degree, we find

hut two roots. The equation in reality has six roots, hut this

method fails to give more than two. It will he shown here-

after how to obtain the other four.

3. Solve the equation x + 4 \Jx
= 21.

Writing the radical with a fractional exponent,

x + 4x^ = 21

which is in the quadratic form.

Completing the square, cc + 4^:r + 4 = 21 + 4 = 25

Extracting the square root, \jx + 2 = ± 5

Transposing, y/x = — 2 ± 5 = 3 or — 7

Whence, squaring, x = 9 or 49, Arts.

7 1

4. Solve the equation 3 x 2 + x^ = 3104 x*.

Dividing hy x^, 3x% + x% = 3104

which is in the quadratic form.

Multiplying hy four times 3, or 12,

36 x% + 12 x% = 37248

Completing the square, 36 x% + 12 x% + 1 = 37249

Extracting the square root, 6 x® + 1 = ± 193

Transposing, 6 x% = — 1 ± 193 = 192 or - 194

5 97
Dividing hy 6, x* = 32 or —y

\ /97\i
Extracting the fifth root, x b = 2 or — (

jr-J

Raising both members to the sixth power,

x =64 or (-4)°> Ana.
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EXAMPLES.

Solve the following equations :

k t
5. .x

4 + 4cc 2= 117. 11. 3 a;*-^- = -592.

6. a-"
4 - 9 or"

2 + 20 = 0. 12. a 3 -a: 2 =56.

7. a10 + 31 a-
5 -10 = 22. 13. x-2-s/x = 0.

8. 81 x- + -4 = 82. 14. x% + x* = 756.
x-

9. *• + !??? -14 = 60. IS. ^+2 = i=V»
a;

2 4 + ya: ya:

3^* 2

10. a;
6 + 20 a;

3 -10 = 59. 16. — — = ^-.x — 5 20

17. Solve the equation (x
-

5)
3- 3 (x

-
5)

2 = 40.

a 9 9 169
Completing the square, (a;

—
5)

3—3 (x— 5)
2 + -= 40 + -= ——

a 3 ^3
Extracting the square root, (x— 5)*

— =— ± -=-

3 3 13
Transposing, (a;

—
5)

^ = - ± — = 8 or — 5

Squaring both members, (x
—

5)
3 = 64 or 25

Extracting the cube root, x — 5 = 4 or
\J
25

Whence, x = 9 or 5 + \J 25,
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Solve the following equations :

18. (x
2 -oa:

)
2 -8(x

2

-5x)=84:.

19. (2 x
-

1)
2 - 2 (2 x

-
1) = 15.

20. (3 x- -2)
2 -

ll(3a;
2

-2) + 10 = 0.

21. (;r
J

-5)
2 + 29 3

-5)=:96.

22. Solve the equation x* + 10 x3 + 17 x 2 — 40 aj — 84 = 0.

We may write the equation in the form

x* + 10 x 3 + 2ox 2 — 8x2 -A0x = 84

or, (;z

2

+5a;)
2

-8(cr + 5a-)=84

Completing the square, (x
2

+ox)
2

—8(x
2

+5x) + 16 = 100

Extracting the square root, (x
2 + 5 x)

— 4 = ± 10

Transposing, (a;
2 + 5 x) = 4 ± 10 = 14 or — 6

Taking the first value, we have x2 + 5 x = 14

Whence (Art. 309), x =
~ 5

±^
5 + 56==M?= 2 or- 7.

Taking the second value, we have x 2 + 5 x = — 6

w, _5±v/25-24 -5±1
Vv hence, a; = ^ = - = — J or — 3.

Ans. x = 2,
—

7,
—

2, or — 3.

Note. In solving equations of this form, our object is to form a perfect

trinomial square with the ,r* and x3
terms, and a portion of the x2 term.

By Art. 305, we may effect this by separating the x2 term into two parts, one

of which shall be the square of the quotient obtained by dividing the x3

term by twice the square root of the x* term.
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Solve the following equations :

23. x* -12 x 3 + 3±x2 + 12cc = 35.

24. xi + 2x3 -2o x- - 26 x + 120 = 0.

25. x4 - 6 cc
3 - 29 x2 + 114 x = 80.

26. a4 + 14 x3 + 47 x- - 14 a; - 48 = 0.

27. Solve the equation 2 ar + \'2 x
2 + 1 = 11.

We may write the equation, (2 x2 + 1) + y 2 x'
2 + 1 = 12

49

Completing the square, (2 x
2 + 1) + V 2 x 2 + 1 + - =

-j-

1 7

Extracting the square root, V^^+l + T^i^
_

1 7

Transposing, V 2 ^ + * = ~
2
±

2
=r3 °r_4

Squaring,
2 a;

2 + 1 = 9 or 16

Transposing, 2 x2= 8 or 15

15
Dividing by 2, a;

2 = 4 or
~^-

/15
Whence, x= ± 2 or ± t/— ,

^4?is.

Note. In solving equations of this form, add such quantities to hoth

members, that the expression without the radical in the first member may
be the same as that within, or some multiple of it.

Solve the following equations :

28. 2 x2 + 3 x - 5^2^+3 x + 9 = -3.

29. x- - 6 x + 5 \?x
2 - 6 x + 20 = 46.

30. 4 z2 + 6 \/4 ar + 12 x - 2 = - 3 (1 + 4
as).

31. x2 - 10 a: - 2 yV2 - 10 ^ + 18 + 15= 0.

32. 3.r2
+15a:-2v/ar"+5a: + l = 2.
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XXVII.—SIMULTANEOUS EQUATIONS
INVOLVING QUADRATICS.

315. The most general form of an equation of the second

degree containing two unknown quantities, is

ax2 +bxy+cy2 + dx + ey +f= 0,

where the coefficients a, b, c, etc. represent any quantities,

positive or negative, integral or fractional.

316. Two equations of the second degree containing two

unknown quantities will generally produce, hy elimination, an

equation of the fourth degree containing one unknown quantity.

Thus, if the equations are

x2 + y = a

x + y
2 = b

From the first, hy transposition, y = a — x2
; substituting in

the second,

x + (a
— x 2

)
2 = b

or, x* — 2 a x2 + x + a2 — b =

an equation of the fourth degree. The rules for quadratics

are, therefore, not sufficient to solve all simultaneous equations
of the second degree.

In several cases, however, their solution may he effected hy
means of the ordinary rules.

CASE I.

317. WJien each equation is of the form a x2 + b y
2 = c.

1. Solve the equations,

3x 2 + Aij
2 = 7Q

3 y
2 - 11 x2^ 4
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Multiplying the first equation by 3, and the second by 4,

9 x 2 + 12 if = 228

12 f-Ux 2 = 16

Subtracting, 53 x2 = 212

x2 = ±, x = ±2.

Substituting these values in either given equation,

When x= 2, y= ± 4.

When a? = — 2, y= ±-4.

^4«s. # = 2, ?/
= ± 4

; or, x = — 2, y = ± 4.

EXAMPLES.

Solve the following equations :

2. 2 a;
2 + y

2 = 9
;
5 x2 + 6 y

2 = 26.

3. 4 a;
2 - 3 f = - 11

;
11 x2 + 5 y

2 = 301.

4. 9 x 2 + 24 v/
2 = 7

;
72 a;

2 - 180 ?f
— - 37.

5. 20 x a - 16 y
2 = 179

;
5 x2 - 336 ?/

2= 24.

CASE II.

318. When one equation is of the first degree.

1. Solve the equations,

x2 + y
2 = 13

x + y — 1

From the second, by transposition, y = 1 — x (1)

Substituting in the first, x2 + 1 — 2 x + x2 = 13

or, cc
2 — x =6

AVI / A * ono\
• 1 ± S/T+2l 1 ± 5 _

\\ hence (Art. 309), cc = L- =—-— = 3 or — 2.

Substituting these values in (1),

When a= 3, y= l — 3 —— 2.

WT
hen x = -2, y = l + 2 = 3.

Ans. x = 3, y = — 2
; or, x = — 2, y = 3.
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In solving examines under Case II, we find an expression

for the value of one of the unknown quantities in terms of the

other from the simple equation, which we substitute for that

quantity in the other equation, thus producing a quadratic

containing only one unknown quantity, by means of which

the values of the unknown quantities are readily obtained.

Note. Although some examples, in which one equation is of the first

degree (Ex. 1 for instance), may be solved by the methods of the next case,

yet the method of Case II will be found in general the simplest.

EXAMPLES.

Solve the following equations :

2. x-\r y= — 1; xy = — 56.

. 3. x + y = 3
;
x2 + y

2 = 29.

4. x s —
y

3 = — 37
;
x — y = — 1.

5. x — y= -s--; xy = 20.

6. 10cc + y = 3ccy;3/ — cc = 2.

7. x — y = 5; xy = — 6.

8. x3 + y
3 = 9

;
x + y = 3.

9. 3x2

-2icy = 15; 2« + 3y = 12.

10. x - y = 3
;
x2 + y" = 117.

11. x + y — 11; xy = 18.

12. x — y = 6; x2 + y*= 90.

13. x 3 + y
3 = 152

;
x + y = 2.

14. x2 + 3 x y — xf = 23
;
x + 2 y = 7.

15. x3 -y3 = 9S; x-y = 2.

16. x + y = -±; x2 + y
2 = 58.

CASE III.

319. When the given equations are symmetrical icith

respect to x and y.
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1. Solve the equations,
x" + y

2 = 68

x y = 16

Multiplying the second by 2, 2 x y = 32

Adding this to the first equation, x2 + 2 x y + y'
2= 100 (1)

Subtracting it from the first equation,

x2-2xy + y
2 =36 (2)

Extracting the square root of (1), x + y = ± 10 (3)

Extracting the square root of (2), x — y — ± 6 (4)

Equations (3) and (4) furnish four pairs of simple equations,

x + y = 10 x + y — 10 x + y = — 10 x + y = — 10

x—y—6 x—y=—Q x—y=6 x—y=—6

2x = 16
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Adding (1) and (4), 2 x = 10 or 4

Whence, x = 5 or 2.

Substituting these values in (1),

When x = 5, y = 2

cc = 2, y= 5.

Ans. x — 5, y = 2
; or, a; = 2, ?/

= 5.

The example might have been solved by substituting the

value of y derived from (1) in either of the given equations,

as in Case II.

The student will notice the difference between Examples 1

and 2 as regards the arrangement of the last portion of the

work.

3. Solve the equations,

x + y = 20

Multiplying the first equation by 2, 2 x 1 + 2 y
2 = 416 (1)

Squaring the second equation, x2 + 2 x y + y
2 = 400 (2)

Subtracting (2) from (1), x 2 - 2 x y + y
2 = 16

Whence, x — y = ± 4 (3)

Adding the second given equation and (3),

2 x = 24 or 16

Whence, x= 12 or 8.

Substituting these values in (3),

When »= 12, y= 8

x= 8, y= 12.

J??5. aj.= 12, y = 8
; or, a;= 8, y= 12.

This example is solved more readily by the method of Case

II; we solve it by Case III merely to show how equations

may be solved symmetrically, when one is of the first degree.
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EXAMPLES.

Solve the following equations :

4. x'
2 + if = 25- xy = 12.

5. x* + y
2 = S5; xy= 42.

6. x3 + y
3 = -19; x 2 -xy + y

2= 19.

7. x 3 - y
3 = - 65

;
x 2 + x y + y

2= 13.

8. o; + 2/
= l;a;y = — 6.

9. cc
2 + y

2 = 65
;

a; — y = 11.

10. a?
9+y2= 61; x + y = ll.

11. a;
8— y

8= 117; a; — y = 3.

Note. Exs. 8, 9, 10, and 11 are to be solved like Ex. 3, and not by
the method of Case II. In solving Ex. 11, begin by dividing the first

equation by the second.

CASE IV.

320. When the equations are of the second degree, and

homogeneous.

Note. Some examples, in which both equations are of the second de-

gree and homogeneous, are solved more easily by the methods of Cases I

and III, than by that of Case IV. The method of Case IV is to be used

only when the example can be solved in no other way.

1. Solve the equations,

x2 — xy = 35

xy + y
2= 18

Letting y = vx, we have

35
x2 — v x2 = 35, or x2

(1
—

v) = 35
; whence, x2= —- -—

(1)

18
v x2 + v2 x2 = 18, or x2

(v + v2
) = 18

; whence, x2 = - '—r

v + v
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Equating the values of x2
, -z = -=10

1 —vv+v2

Clearing of fractions, 35 v + 35 v2 =18 — 18 v

Transposing and uniting, 35 v2 + 53 v= 18

Whence (Art. 309),

- 53 ± V -'809 + 2520 - 53 ± 73 2 9
V =

70
=

70 =7°r -5
2

If v = -
, substituting in (1), x2= 49, or x = ± 7

Substituting in the equation y = v x,
o

When x = 7, y=-xT=2

x = -7, !/
= ~x-7 = -2.

If v = — =, substituting in (1), x2 = -
7r- ,

ov x = ± —j-^
£> 2 y 2

Substituting in the equation y = vx,

«n 5 9 5 9men x
=V2'

y= ~5 x
72

=
~72

5 9 5 9

^2'^ 5'
N

V 2 V 2

.4ns. cc = 7, ?/
= 2; £ = — 7, y = — 2;

5_
9

j5_ _9_X
~^/2

,y~
S/2

]
°l,X ~

\J2
,y

~s/2'

Note. In using the equation y~v x, to calculate the value of y when
x has been found, care should be taken to use that value of v which n/i*

used in getting the particular value of x.

EXAMPLES.

Solve the following equations :

2. x2 + xy + ±y
2 = 6; 3x2 +8y2= U.

3. 6x2 -5xy + 2y2= 12; 3 x2 + 2 x y- 3 y
2 = -3.
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4. x2 + x y = 12
;
x y

— y
2 = 2.

5. 2 y
2 - 4 x y + 3 x2 = 17

; y
2 -x2 = 16.

6. x2 + x y
—

y
2 = 1

;
x2 — x y + 2 y

2 = 8.

7. 2 x2 — 2 a; y — ?/
2 = 3; x 2 + 3a;y + 2/

2 = 11.

321. We append a few miscellaneous examples, for the

solution of which no general rules can be given. Various arti-

fices are used
; familiarity with which can only be obtained by

experience.

1. Solve the equations,
xz —

y
s = 19

x2
y — x y

2 = 6

Multiplying the second by 3, 3 x2
y — 3 x y

2 = 18 (1)

Subtracting (1) from the first given equation,

xz — 3 x2
y + 3 x y

2— y
3= 1

Extracting the cube root, x — y = 1 (2)

Transposing, x = 1 + y (3)

Dividing the second given equation by (2), x y = 6 (4)

Substituting from (3) in (4), y (1 + y) = 6

or, y
2 + y = 6

m -l±V/T+24 -1±5
Vv hence, ?/

— k —
i5
— = ^ or — 3.

Substituting in (3),

When y = 2, x = 3

y = — 3
}
x=— 2.

Ans. x = 3, y = 2
; or, a; = — 2, ?/

=— 3.
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2. Solve the equations,

V *

x + y = 12

Let x — u + v, and y= u— v.

Then x + y = 2 u
; whence, 2u — 12, or u = 6.

From the first given equation, x z + y
s = 18 x y

Substituting x = 6 + v, and y = 6 — v, we have

(6 + vf + (6
-

v)
3 = 18 (6 + v) (6

-
1>)

Reducing, 432 + 36 v2= 648 - 18 v2

Whence, 54v2= 216

v2 = 4, v = ± 2

Then a5= 6+v= 6±2= 8or4.

Substituting these values in the second given equation,

When x= 8, y= 4

a; = 4, ?/
= 8, ^4ws.

3. Solve the equations,
x2 + y" + x + y = 18

x ?/
= 6

Adding twice the second equation to the first,

x2 + 2 x y + y
2 + x + y — 30

or, (x + y)
2

+(;x + y)=30

N
- 1 ± Vl + 120 -1±11 r r

Whence, (x + y) = ^ = „ = 5 or — 6.

Taking the first value, x + y = 5 (1)

and the second given equation, xy = 6 (2)

From (1), y=5—x ; substituting in (2), x2— 5 x = — 6

5±\/25-24 5±1
Whence, x = —^ = —„— = 3 or 2.

Substituting in (1),

When, x = 3, y — 2

cc = 2, y = S.
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Taking the second value, x + y = — 6 (3)

and the second given equation, x y= 6 (4)

From (3), y — — C — x
; substituting in (4),

x 2 + 6 x = — 6

_6±y/36-24 -6+2^3 /0
Whence, a; = ^_ = =r_VL_ — _ 3 ± ^ 3.

Substituting in (3),

When a=— 3 + v/
3

; t/
= — S-—^3.

x = -3-sJ3,y = — 3 + sJ3.

Ans. x = 3, y = 2
;

cc = 2, ?/
= 3

;

a; =— 3+\/3, y=—3—^3; or, x=—3— y/3, ?/=—3+ y/3

4. Solve the equations,
x* + 7/ = 97 (1)

* +y =~1 (2)

Raising (2) to the fourth power,

xi + 4 x s

y + 6 x 2

y
2 + 4 x y

3 + y
4 = 1 (3)

Subtracting (1) from (3), 4 a?
3

y + 6 ar ?/

2 + 4 a; ?/
3 = — 96

or, 3 a;
2

.?/

2 + 2 a; ?/ (x
2 + ?/

2

)
= - 48 (4)

But from (2), x2 + y
2 = l-2xy

Substituting in (4), 3 x2
y

2 + 2 x y (1
- 2 x y) = - 48

or, a:
2

y
2 — 2 cc y = 48

Whence, x y = = ——— = — 6 or 8.

Taking the first value, x y = — 6

From (2), y = — 1 — x
; substituting, x2 + x = 6

Whence, x = j-
—=—- = 2 or — 3.

Substituting in (2),

When x = 2, y = — 3.

x = — 3, y = 2.

Taking the second value, x y = 8
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From (2), y=— 1— x
; substituting, x2 + x = — 8

-l±y/T^32 -l±y/-3i
\\ hence, x = -= = „ .

Substituting in (2),
- 1 + V

/=7 31 - 1 - V^3lWhen x =
^

> V~
<j

'

- 1 - y/^31 - 1 + \/^31*=—
2
—->y=- —2

—
Ans. x = 2,y = ~3; x--S,y= 2; x=- 1+ ^~ 31

^

_1_ S/Z3i _i_y/Z3i _i +v/I73i

y = y— i
ov

>
x =

2~ ->y= 2
'

EXAMPLES.

Solve the following equations :

5. x + y = 9; \/x+\/y = 3..

6. x + \J~x~y + y = 19
;
x2 + x y + f = 133.

7. a;
2
y + ar y

2 = 30
;
x* if + x~y

i = 468.

8. x2 + y
2 — 'x - y = 18

;
x y + x + y = 19.

9. x 2 + 3x + y = 73 - 2 x y ; y
2 + 3 y + x = 44.

. « n „ 5 x 1/ xy
10. as» + If=_£j x- y= -f.J 4

„, a; 4v/# 33 „
11. - + -7—= -r ;

»—y=&
y \jy 4

12 -

2
+
8
= li 5

+
S=-

4

13. x 2

y + x y
2 = 30

;
a3 + y

s = 35.

14. cc+V
/

*'?/=3;?/+V«2/ = — 2

15. x2

y + y
2 x = 6;

- + -= -.

16. r 4 + ?/
4 = 17; x— y= 3.

17. z5 -
y

5= - 211
;

cc — y=— 1.

18. ar + y
2 = 7 + as y ;

xs + y
s= 6 x y — 1.

19. 2x2 -7x?/-2?/'2

=:5; 3x y-x2 + 6 y
2= U.
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20. -A^ + Jl^S | + |
= 2.

y + 3 x + J 2 2 o

21. z + 2 = 7; 2y-3* = -5; a;
2 + y

1 - z~ = 11.

22. xz= y
2

; (x + y)(z—x—y) = 3; (x + y + z) (z—x— y)= 7.

XXVIII. — PROBLEMS

LEADING TO SIMULTANEOUS EQUATIONS INVOLVING
QUADRATICS.

322. 1. What two quantities are those, the sum of whose

squares is 130, and the difference of whose squares is 32 ?

Let x = one number,

and y = the other.

By the conditions, x2 + y
2= 130

x2 -y2 = 32

Solving these equations, as in Case I, Art. 317,

x = 9, y= ± 7
; #

or, x = — 9, y = ± 7.

This indicates four answers to the problem :

9 and 7,

9 and — 7,

— 9 and 7,

— 9 and — 7.

Any one of these pairs of values will satisfy the conditions

of the problem.

2. A says to B,
" The sum of our money is $ 18." B re-

plies, "If twice the number of your dollars were multiplied by



PROBLEMS. 245

mine, the product would be $ 154." How many dollars had

each ?

Let x = A's dollars,

and y = B's.

By the conditions, x + y = 18

2 x y = 154

Solving these equations, as in Case II, Art. 318,

x= li y= U;
or, x = 11, y = 7.

That is, either Alias $7, and B $11, or A has $11, and

B $7.

3. The price of two coats and one vest is $ 38. And the

price of a coat less that of a vest, is to $ 23, as $ 7 is to the

sum of the prices of a coat and vest. What is the price of a

coat, and what of a vest ?

Let x = the price of a coat in dollars,

and y = the price of a vest.

By the conditions, 2 x + y = 38

and x — y : 23 = 7 : x + y
or (Art. 181), a2

-?/
2 = 161

Solving these equations, as in Case II, Art. 318,

x = 15, y = 8
;

107 100
x =— ,y = -— .

Only the first answer is admissible, as a negative value of

either unknown quantity does not answer to the conditions

of the problem. Hence, the price of a coat is $15, and of a

vest, $ 8.

Note. The note after Ex. 3, Art. 311, applies with equal force to the

problems in this chapter.
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PROBLEMS.

4. The difference of two quantities is 5, and the sum of

their squares is 193. What are the quantities ?

5. There are two quantities whose product is 77, and the

difference of whose squares is to the square of their difference

as 9 to 2. Required the quantities.

6. A and B have each a field, in the shape of an exact

square, and it requires 200 rods of fence to enclose hoth. The
contents of these fields are 1300 square rods. What is the

value of each at $ 2.25 per square rod ?

7. Two gentlemen, A and B, were speaking of their ages.

A said that the product of their ages was 750. B replied, that

if his age were increased 7 years, and A's were diminished 2

years, their product would be 851. Required their ages.

8. A certain garden is a rectangle, and contains 15,000

square yards, exclusive of a walk, 7 yards wide, which sur-

rounds it, and contains 3696 square yards. Required the

length and breadth of the garden.

9. What
k
two numbers are those whose difference multi-

plied by the less produces 42, and by their sum, 133 ?

10. A and B lay out money on speculation. The amount
of A's stock and gain is $ 27, and he gains as much per cent

on his stock as B lays out. B's gain is $ 32
;
and it appears

that A gains twice as much per cent as B. Required the capi-

tal of each.

11. I bought sugar at such a rate, that the price of a pound
was to the number of pounds as 4 to 5. If the cost of the

whole had been 45 cents more, the number of pounds would

have been to the price of a pound as 4 to 5. How many pounds
were bought, and what was the price per pound ?

12. A and B engage in speculation. A disposes of his share

for $ 11, and gains as many per cent as B invested dollars.
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B's gain was $ 36, and the gain upon A's investment was 4

times as many per cent as upon B's. How much did each

invest ?

13. A man bought 10 ducks and 12 turkeys for $ 22.50. He

bought 4 more ducks for $ 6, than turkeys for $ 5. What was

the price of each ?

14. A man purchased a farm in the form of a rectangle,

whose length was 4 times its breadth. It cost £ as many dol-

lars per acre as the field was rods in length, and the number

of dollars paid for the farm was 4 times the number of rods

round it. Required the price of the farm, and its length and

breadth.

15. I have two cubic blocks of marble, whose united lengths

are 20 inches, and contents 2240 cubic inches. Required the

surface of each.

16. A's and B's shares in a speculation altogether amount

to $ 500. They sell out at par, A at the end of 2 years, B of

8, and each receives in capital and profits $ 297. How much

did each embark ?

17. A person has $ 1300, which he divides into two portions,

and loans at different rates of interest, so that the two por-

tions produce equal returns. Jf the first portion had been

loaned at the second rate of interest, it would have produced

$ 36 ;
and if the second portion had been loaned at the first

rate of interest, it would have produced $49. Required the

rates of interest.

18. Two men, A and B, bought a farm of 104 acres, for

which they paid $320 each. On dividing the land, A says to

B, "If you will let me have my portion in the situation which

I shall choose, you shall have so much more land than I, that

mine shall cost $ 3 per acre more than yours." B accepted the

proposal. How much land did each have, and what was the

price of each per acre ?



248 ALGEBRA.

19. A and B start at the same time from two distant towns.

At the end of 7 daj's, A is nearer to the half-way house than

B is, by 5 miles more than A's day's journey. At the end of

10 days they have passed the half-way house, and are distant

from each other 100 miles. Now it will take B 3 days longer

to perform the whole journey than it will A. Required the

distance of the towns, and the rate of walking of A and B.

20. Divide the number 4 into two such parts that the prod-
uct of their squares shall be 9.

21. The fore-wheel of a carriage makes 15 revolutions more

than the hind-wheel in going 180 yards ;
but if the circumfer-

ence of each wheel were increased by 3 feet, the fore-wheel

would only make 9 revolutions more than the hind-wheel in

going the same distance. Find the circumference of each

wheel.

22. A ladder, whose foot rests in a given position, just

reaches a window on one side of a street, and when turned

about its foot, just reaches a window on the other side. If

the two positions of the ladder are at right angles to each

other, and the heights of the windows are 36 and 27 feet re-

spectively, find the width of the street and the length of the

ladder.

23. A and B engaged to reap a field for 90 shillings. A
could reap it in 9 days, and they promised to complete it in 5

days. They found, however, that they were obliged to call in

C, an inferior workman, to assist them the last two days, in

consequence of which B received 3.?. 9d. less than he other-

wise would have done. In what time could B and C each reap
the field?

24. Cloth, being wetted, shrinks J in its length and
,\ ;

in its-

width. If the surface of a piece of cloth is diminished by 5^

square yards, and the length of the four sides by 4} yards,

what was the length and width of the doth originally?
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XXIX.—THEORY OF QUADRATIC EQUA-
TIONS.

323. A quadratic equation cannot have more than two

roots.

We have seen (Art. 304) that every complete quadratic

equation can be reduced to the form

x2 + p x = q.

Suppose, if possible, that a quadratic equation can have three

roots, and that r1; r2 ,
and r3 are the roots of the equation

x°- +p x — q. Then (Art. 166),

r1

2 +pr1
= q (1)

r2
2 +pr2

— q (2)

r3
2 +pr3

—
q (3)

Subtracting (2) from (1), (?y
—

r.F) + p (rx
— r2) =

Dividing through by ry
— r2,

which by supposition is not

zero, as the roots are not equal,

r
\ + r2 +p =

Similarly, by subtracting (3) from (1), we have

n + n + p — o

Hence, rx + r2 +p = rx+ rs -fp
or, r2 = r3.

That is, two of the roots are identical. Therefore, a quad-
ratic equation cannot have more than two roots.

DISCUSSION OF THE GENERAL EQUATION.

324. By Art. 305, the roots of the equation x2 + p x = q
are

-p-\- \/p
2 + ±q 1 —p — \Jp

2

+4:q
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1. Suppose q positive.

Since p
2

is essentially positive (Art. 227), the quantity

under the radical sign is positive and greater than ,p° ;
so

that the value of the radical is greater than P- Hence, one

root is positive, and the other negatnre.

If p is positive, the negative root is numerically the larger;

if p is zero, the roots are numerically equal ; and if p is nega-

tive, the positive root is numerically the larger.

2. Suppose q equal to zero.

The quantity under the radical sign is now equal to p
2

;
so

that the value of the radical is p. Hence, one of the roots is

equal to 0. The other root is positive when p is negative, and

negative when p is positive.

3. Suppose q negative, and 4 q < p
2
.

The quantity under the radical sign is now positive and less

than p>
2

;
so that the value of the radical is less than p.

If p is positive, hoth roots are negative ;
and if p> is nega-

tive, both roots are positive.

4. Suppose q negative, and 4 q =p2
.

The quantity under the radical sign is now equal to zero
;

so that the two roots are equal ; being positive if p is negative,

and negative if p is positive.

5. Suppose q negative, and 4 q > p
2

.

The quantity under the radical sign is now negative ; hence,

by Art. 282, both roots are imaginary.

325. All these cases may be readily verified by examples.

Thus, in the equation x2 — 3;r = 70, as p is negative and q

positive, we should expect to find one root positive and the

other negative, and the positive root numerically the larger

And this is actually the rase, for on solving the equation, wfc

find x = 10 or - 7.
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326. From the quadratic equation x2 +px = q, denoting

the roots by rx and r.2,
we have

-p+S/Y + lq _1m -p-Sjp' + lq
2

n =— ^ ,
and r2

Adding these together, we have

2p
rx + r2 = —

-^-
= —p.

Multiplying them together, we have

n r2 =£=M±±1± (Art. 106) =- *±=- q.

That is, if a quadratic equation be reduced to the form
x2 +p x = q, the algebraic sum of the roots is equal to the co-

efficient of the second term, with its sign changed
• and the

product of the roots is equal to the second member, with its

sign changed.

327. The equation a x2 + b x + c = 0, by transposing c, and

dividing each term by a, becomes

x2
-\

bx c

a a

Denoting the roots of the equation by xl and x2 ,
we have, by

the previous article,

b _c
Xi -j- Xo — ,

and x± x.y— —
•

a a

328. A Quadratic Expression is a trinomial expression of

the form a x2 + b x + c. The principles of the preceding
article enable us to resolve any quadratic expression into two

binomial factors.

The expression a x'
2 + b x + c may be written

f bx c
a I x -\ 1

—
V a a
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b c

By the previous article,
-=—(% + x2), and

- =x
1
x2 ,

where

xx
and x2 are the roots of the equation ax2jrbx + c = Q;

which, we ohserve, may he obtained by placing the given

expression equal to 0. Hence,

ax2 + bx + c = a [x
2— (xx + x2) x + xx x2~\.

The expression in the bracket may be written

/V»** rtn /yt ry* /y> I /y» sy

which, by Case II, Chap. VIII, is equal to (x — x^ (x — x2).

Therefore, a x2 + b x + c = a (x — xx) (x — x2).

1. Factor 6 x 2 + 11 x -+- 3.

Placing the expression equal to 0, and solving the equation
thus formed, we find

_
- 11 + ^121 - 72 _ - 11 ± 7 _ 3 1

X ~~
~V1~

~ _
~~12

-
~2'

0r
~3-

Then, a = 6, x1
=—

^,
x2
= — 5.

Therefore, 6 x2 + 11 x + 3 = 6 (x +
|) (»

+
5)

=
(2 a; + 3) (3 x + 1), Ans.

2. Factor 4 + 13 x - 12 x 2
.

Placing the expression equal to 0, and solving the equation

formed, we have

_ - 13 ± y/ 169 + 192 _ - 13 ± 19 _ 4 1
X ~

-24 -24 ~3'
°r

4

4 1
Then, a = — 12,x1

= 7r, x2
= — -.
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Therefore, 4 + 13 x - 12 x2=- 12 he -
^J (a;

+
^J

=
-3{x-l)4(x + \)

— (4
— 3 x) (4 a; + 1), ^4?is.

Note. It should be remembered, in using the formula a (x-x{) (x
-

a'2
N

,

that a represents the coefficient of x2 in the given expression J hence, in

Example 2, we made a= - 12.

EXAMPLES.

Factor the following expressions :

3. x 1 + 73 x + 780. 9. 8z2 + 18z-5.

4. x2- 11 x + 18. 10. 4 z 2 - 15 * + 9.

5. x2 -4cc-60. 11§ 2x2 +x-6.

6. a 8 + 10 a; -39. 12. 9x2 -12a- + l.

7. 2 a;
2 -7 a; -15. 13. l-8x-x2

.

8. 21 a-
2 + 58 a; + 21. 14. 49 x2 + 14 a- - 19.

329. The principles of Art. 328 furnish a method of form-

ing a quadratic equation which shall have any required roots.

For, the equation a x 2 + b x + c = 0, if its roots be denoted

by xx
and x2 , may be written, by Art. 328,

a (x
—

Xy) (x
— x2)

= 0, or (x
—

£Cj) (x
— a-2)

= 9.

Hence, to form an equation whose roots shall be x
v
and x.,,

we subtract each of the two roots from x, and place the product

of the resulting binomials equal to zero.

7
1. Required the equation whose roots are 4 and — -r •

By the rule, (x
—

4) (x + -)=
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EXAMPLES.

Solve the following equations :

3.
(as-|) (as-2) = 0. 9. 2as8 -18as= 0.

4. (as+.5)(as-l) = 0. 10. (2as + 5)(3as-l) = 0.

5.
(as-?) (as

+ ?)=0.
11. (aas + b) (cx-d) =0.

6.
(as + 8)(as

+ i)=0.
12. (x

2

-4) (as

2
-9) = 0.

7. 2as2 -13as= 0. 13. (3 a; + 1) (4 x*
-

25) = 0.

8. 3 as
3 + 12 a:

2 = 0. 14.
(as

2
-a)(as

2
-aas-£)=0.

15. as (2 as + 5) (3 x -7) (4 x + 1) = 0.

16. (x
2 -5x + 6)(x

2 + 7x+ 12) (2 x* + 9x-5) = 0.

331. Many expressions may be factored by the artifice of

completing the square, used in connection with the method of

Case IV, Chapter VIII.

1. Factor x i + a\

x* + a4 = x* + 2 x 2 a 2 +a*-2 x2 a2

= (x
2 + a2

)
2-

(a x ^/ 2)
2

= (Art. 117) (x
2 + a x ^ 2 + a2

) (x
2— a x

\J
2 + a2

), Ans.

2. Factor x2 — ax + a2
.

as
2— ax + a2 = x2 + 2ax + a 2 — 3ax.

=
(x + a)

2 -(^3axY

= (x + V^3 a x + a) (x — \J3 a x + a), Ans.
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EXAMPLES.

Factor the following expressions :

3. x 2 + l. 5. a2-3ab + b*. 7. x 2 -x-l.
4. x 2 +x+l. 6. xi -lx2

y
2

-^y\ 8. mi + m2 n2 +?i\

332. We have seen (Art. 330) that any equation whose
first member can be factored, and whose second member is

zero, may be solved by placing the factors separately equal to

zero and solving the equations thus formed. This method of

solution is frequently the only one which will give all the roots

of the equation.

1. Solve the equation x3 = 1.

The equation may be written x3 — 1 = 0, or (Art. 119),

(x
-

1) (x
2 + x + 1) = 0.

Placing the first factor equal to zero,

x — 1 = 0, or x = 1.

Placing the second factor equal to zero,

x 2 + x + 1 = 0, or x2 + x = — 1

Whence (Art, 309),
- - = ^ ± ^x =

2 2

Hence, x = 1 or ^1 ,
Ans.

EXAMPLES.

Solve the following equations :

2. xi = -l. 4. x 4 +«4 = 0. 6. x6= l.

3. x 3 = -l. 5. X4- X* + 1 = 0. 7. rr
4-— +1 = 0.

These examples afford an illustration of the statement made
in Art. 167 that the degree of an equation indicates the num-
ber of its roots.



DISCUSSION OF PROBLEMS. 257

XXX. — DISCUSSION OF PROBLEMS
LEADING TO QUADRATIC EQUATIONS.

333. In the discussion of problems leading to quadratic

equations, we find involved the same general principles which

have been established in connection with simple equations

(Arts. 205-212), but with certain peculiarities.

These peculiarities will be now considered. They arise from

two facts :

1. That every quadratic equation has two roots • and

2. That these roots are sometimes imaginary.

334. In the solution of problems involving quadratics, it

has been observed that the positive root of the equation is

usually the true answer
;
and that, when both roots are posi-

tive, there may be two answers, either of which conforms to

the given conditions.

The reason why results are sometimes obtained which do

not apply to the problem under consideration, and are there-

fore not admissible, is that the algebraic mode of expression
is more general than ordinary language ;

and thus the equa-
tion which conforms properly to the conditions of the problem
will also apply to other conditions.

1. Find a number such that twice its square added to three

times the number may be 65.

Let x = the number.

Then 2 x2 + 3 x = 65 (1)

13
Whence, x = 5 or —

.

The positive value alone gives a solution to the problem in

the sense in which it is proposed.
To interpret the negative value, we observe that if we

change x to — x, in equation (1), the term 3 x, only, changes
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its sign, giving as a result the equation 2 x'
2 — 3 x = 65. Solv-

13
ing this equation, we shall find x =— or — 5, which values

only differ from the others in their signs. We therefore may
13

consider the negative solution,
—

,
taken independently of

Li

its sign, the proper answer to the analogous problem (Art.

205):
" Find a number such that twice its square diminished by

three times the number may be Go."

2. A farmer bought some sheep for $ 72, and found that if

he had bought 6 more for the same money, he would have paid

$ 1 less for each. How many sheep did he buy ?

Let x = the number of sheep bought.

72
Then — = the price paid for one,x

72
and = the price paid, if 6 more.

JO \~ O

72 72
By the conditions, — = - + 1J ' x x + 6

Whence, x = 18 or — 24.

Here the negative result is not admissible as a solution of

the problem in its present form; the number of sheep, there-

fore, was 18.

If, in the given problem, "6 more " be changed to "6fewer"
and "$1 less" to "$1 more," 24 will be the true answer.

Hence, we infer that

A negative result, obtained as one of the answers to a prob-

lem, is sometimes the answer to another analogous problem,

formed by attributing to the unknown quantity a quality

directly opposite to that which has been attributed to it.
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INTERPRETATION OF IMAGINARY RESULTS.

335. It lias been shown (Art. 324) under what circum-

stances a quadratic equation will be in form to produce imagi-

nary roots. It is now proposed to interpret such results.

Let it be required to divide 10 into two such parts that their

product shall be 26.

Let x = one of the parts.

Then 10 — x = the other.

By the conditions, x (10
—

x)
= 26

Whence, x = 5 ± y/— 1.

Thus, we obtain an imaginary result. We therefore con-

clude that the problem cannot be solved numerically ;
in fact,

if we call one of the parts 5 + y, the other must be 5 — y, and

their product will be 25 — y'
2
. which, so long as y is numerical,

is less than 25. But we are required to find two numbers

whose sum is 10 and product 26
;
there are, then, no such

numbers.

Had it been required to find two expressions, whose sum is

10 and product 25. the answer 5 + \/
— 1 and 5 — \j— 1

would have satisfied the conditions.

The given problem, however, expresses conditions incom-

patible with each other, and, consequently, is impossible.

Hence,

Imaginary results indicate that the problem is impossible.

PROBLEM OF THE LIGHTS.

336. The principles of interpretation will be further illus-

trated in the discussion of the following general problem.

Find upon the line which joins two lights, A and B, the

point which is equally illuminated by them : admitting that

the intensity of a light, at a given distance, is equal to its
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intensity at the distance 1, divided by the square of the given
distance.

C" A C B C—
I

1
J

1
1

—

Assume A as the origin of distances, and regard all dis-

tances estimated to the right as positive.

Let a denote the intensity of the light A, at the distance 1
;

b the intensity of the light B, at the distance 1
;
and c the

distance A B, between the two lights.

Suppose C the point of equal illumination, and let x repre-
sent the distance from it to A, or the distance AC. Then,
c— x will represent the distance B C.

By the conditions of the problem, since the intensity of the

light A, at the distance 1, is a, at the distance x it is —= : and
X'

since the intensity of the light B, at the distance 1, is b, at the

distance c — x it is -. ^ . But, by supposition, at C these

intensities are equal ; hence,

a b

Whence,

x2
'

(c
- xf

'

c—x

~ (c
-
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Since there are two lights, c must always he greater than
;

consequently neither a, b, nor c can he 0. The problem, then,

admits properly of only these three different suppositions :

1. a > b. 2. a < b. 3. a=b.

We shall now discuss the values of x under each of these

suppositions.
1. a > b.

In this case, the first value of x is less than c
;
because

- being a proper fraction, is less than 1. This value

y/
a + \J

b

c

of x is also greater than -
; because, the denominator being

less than twice the numerator, as b is less than a, the fraction

is greater than \. Hence, the first point of equal illumination

is at C, between the two lights, but nearer the lesser one.

The second value of x is greater than c : because —A- —
,

ya — \J
b

being an improper fraction, is greater than 1. Hence, the

second point is at C, in the prolongation of the line A B, be-

yond the lesser light.

These results agree with the supposition. For, if a is greater

than b, then B evidently is the lesser light. Hence, both points

of equal illumination will be nearer B than A
;
and since the

two lights emit rays in all directions, one of the points must

he in the prolongation of A B beyond both lights.

2. a < b.

In this case, the first value of x is positive. It is also less

than
C
-\ because .

^ C '

.

, , having the denominator greater
2 v a + y b

than twice the numerator, b being greater than a, is less than

h- Hence, the first point of equal illumination is between the

lights, but nearer A, the lesser light,

The second value of x is negative, because the denominator

y/
a — y

1

b is negative ;
which must he interpreted as measur-
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ing distance from A towards the left (Art. 205). Hence, the

second point of equal illumination is at C", in the prolongation
of the line, at the left of the lesser light, A.

These results correspond with the supposition; the case

being the same as the preceding one, except that A is now the

lesser light.

3. a = b.

In this case, the first value of x is positive, and equal to ^ .

Li

Hence, the first point of equal illumination is midway be-

tween the two lights.

The second value of x is not finite: because -;
—

p- ,
if

V « — V b
I

a = b, reduces to ~- = cc (Art. 210), which indicates that no

finite value can be assigned to x. Hence, there is no second

point of equal illumination in the line A B, or its prolongation.

These results agree with the supposition. For, since the

lights are of equal intensity, a point of equal illumination will

obviously be midway between them
;
and it is evident that

there can be no other like point in their line.

The preceding discussion illustrates the precision with which

algebraic processes will conform to every allowable interpreta-

tion of the enunciation of a problem.

XXXI. — RATIO AND PROPORTION.

337. The Ratio of one quantity to another of the same

kind is the quotient arising from dividing the first quantity

by the second (Art. 181).

Thus, the ratio of a to b is -
, or a : b.

b
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338. The Terms of a ratio are the two quantities required

to form it. Of these, the first is called the antecedent, and the

second the consequent.

Thus, in the ratio a : b, a and b are the terms, a the ante-

cedent, and b the consequent.

339. A Proportion is an equality of ratios (Art. 181).

Thus, if the ratios a : b and c : d are equal, they form a pro-

portion, which may he written

a : b = c : d, or a : b : : c : d.

340. The Terms of a proportion are the four terms of its

two ratios. The first and third terms are called the antece-

dents ; the second and fourth, the consequents; the first and

last, the extremes ; the second and third, the means ; and the

terms of each ratio constitute a couplet.

Thus, in a : b= c : d, a and c are antecedents
;

b and d, con-

sequents ;
a and d, extremes; b and c, means; a and b, the

first couplet ;
and c and d, the second couplet.

341. A Proportional is any one of the terms of a propor-

tion
;
a Mean Proportional between two quantities is either

of the two means, when they are equal ;
a Third Proportional

to two quantities is the fourth term of a proportion, in which

the first term is the first of the quantities, and the second and

third terms each equal to the second quantity ;
a Fourth Pro-

portional to three quantities is the fourth term of a proportion

whose first, second, and third terms are the three quantities

taken in their order.

Tims, in a : b = b : e, b is a mean proportional between a

and c
;
and c is a third proportional to a and b. In a : b — c : d,

d is a fourth proportional to a, b, and c.

342. A Continued Proportion is one in which each conse-

quent is the same as the next antecedent
; as,

a : b = b : c = c : d = d : e.
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PROPERTIES OF PROPORTIONS.

343. Wlien four quantities are in proportion-, the prodwt

of the extremes is equal to the product of the means.

Let the proportion be

a : b = c : d.

This may he written (Art. 337),

a c

b
=

d

Whence, ad = b c.

Hence, if three quantities be in continued proportion, the

product of the extremes is equal to the square of the means.

Thus, if

a : b = b : c

then, a c = b
2

.

By this theorem, if three terms of a proportion are given,

the fourth may be found. Thus, if

then,

Whence,

344. If the product of two quantities be equal to the prod-

uct of two others, one pair of them may be made the extremes,

and the other pair the means, of a proportion.

Thus, if

a d = b c

ad be a c

Dividing bv b d, -=—= = rr—; ,
or T = -=& J bd bd' b d

Whence (Art. 337), a:b = c:d.

a : b
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In a similar manner, we might derive from the equation
a d = b c, the following proportions :

a : c = b : c
1,

b : d= a : c,

c : d = a : b,

d : b = c : a, etc.

345. Iffour quantities are in proportion, they will be in

proportion by Alternation; that is, the antecedents will

have to each other the same ratio as the consequents.

Thus, if a : b = c : d

then (Art. 343), ad = bc

Whence (Art. 344), a : c = b : d.

346. Iffour quantities are in proportion, they will be in

proportion by Inversion; that is, the second term will be to

the first, as the fourth is to the third.

Thus, if a : b — c : d

then, ad— be

Whence, b : a = d : c.

347. If four quantities are in proportion, they will be in

proportion by Composition; that is, the sum of the first two

terms ivill be to the first term, as the sum of the last two terms

is to the third term.

Thus, if a : b — c : d

then, ad = b c

Adding hoth members to a c,

ac + ad = ac + bc, or a (c
' + d) = c {a + b)

Whence, a + b: a = c + d: c (Art. 344).

Similarly, we may show that

a + b : b — c + d : d.
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348. If four quantities are in proportion, they will be in

proportion by Division; that is,, the difference of the first two

terms will be to the first term, as the difference of the last two

terms is to the third term.

Thus, if a : b = c : d

then, a d = b c

Subtracting both members from a c,

ac— ad= ac— be, or a (c
— d)=c (a

—
b)

Whence, a — b : a = c — d : c.

Similarly, we may prove that

a — b : b = c — d : d.

349. If four quantities are in proportion, they will be in

proportion by Composition and Division; that is, the sum

of the first two terms will be to their difference, as the sum of
the last two terms is to their difference.

(1)

(2)

Thus, if
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351. If any number of quantities are proportional, any
antecedent is to its consequent, as the sum of all the antece-

dents is to the sum of all the consequents.

Thus, if

a : b = c : d = e :f

then (Art. 343), ad = b c

and af-=be

also, a b = « b

Adding, a (b + d +/) = b (a + c + e)

Whence (Art. 344), a :b =a + c + e : b + d +f

352. Iffour quantities are in proportion, if the first and

second be multiplied or divided by any quantity, as also the

third and fourth, the resulting quantities will be inproportion*

Thus, if

a : b = c : d

then,
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Thus, if a : b = c : d

then,

Therefore,

a c

b
=
d

m a m c

nb n d

Whence, m a : nb = m e : nd.

In a similar manner we could prove

a b
_

c d

m n m '

n

Either m or n may he made equal to unity.

354. If there be two sets of proportional quantities, the

products of the corresponding terms will be in proportion.

Thus, if a :b = c : d

and e:f=g:h
a c .. e q

then,
- = - and -=-

Therefore,

b d f h

ae eg
bf dh

Whence, ae :bf= c g : d h.

355. Iffour quantities are in proportion, like poioers or

like roots of these quantities will be in proportion.

Thus, if a :b = c :d

then, r= --,', therefore,
—=—

b d '

bn dn

Whence, an :bn = c
n

: dn
.

In a similar manner we could prove

y/
a :

y/
b = y/

c : y d.

356. If three quantities are in continued proportion, the

first is to the third, as the square of the first is f>> the square

of the second.
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Thus, if a:b = b : c

a b

then,

a

b c

a2 aba
Multiplying by -, y=l* c c

Whence, a: c — a~ : b~.

In a similar manner we could prove that if

a : b = b : c = c : d, then a\d=-az
: b 3

.

Note. The ratio a2 : b2 is called the duplicate ratio, and the ratio a? : b3

the triplicate ratio, of a : b.

PROBLEMS.

357. 1. The last three terms of a proportion being 18, 6,

and 27, what is the first term ?

2. The first, third, and fourth terms of a proportion being

4, 20, and 55, respectively, what is the second term ?

3. Find a fourth proportional to \, \, and \.

4. Find a third proportional to 5 and 3.

5. Find a mean proportional between 2 and 8.

6. Find a mean proportional between 6 and 24.

7. Find a mean proportional between 49 and 4.

8. Find two numbers in tbe ratio of 2\ to 2, such that when

each is diminished by 5, they shall be in the ratio of lj to 1.

9. Divide 50 into two such parts that the greater increased

by 3, shall be to the less diminished by 3, as 3 to 2.

10. Divide 27 into two such parts that their product shall

be to the sum of their squares as 20 to 41.

11. There are two numbers which are to each other as 4 to

9, and 12 is a mean proportional between them. What are

the numbers ?



270 ALGEBRA.

12. The sum of two numbers is to their difference as 10 to

3, and their product is 364. What are the numbers- ?

13. Find two numbers such that if 3 be added to each, they

will be in the ratio of 4 to 3
;
and if 8 be subtracted from each,

they will be in the ratio of 9 to 4.

14. There are two numbers whose product is 96, and the

difference of their cubes is to the cube of their difference as 19

to 1. What are the numbers ?

15. Each of two vessels contains a mixture of wine and

water
;
a mixture consisting of equal measures from the two

vessels, contains as much wine as water; and another mixture

consisting of four measures from the first vessel and one from

the second, is composed of wine and water in the ratio of 2 to

3. Find the ratio of wine to water in each vessel.

16. If the increase in the number of male and female

criminals be 1.8 per cent, while the decrease in the number of

males alone is 4.6 per cent, and the increase in the number of

females alone is 9.8 per cent, compare the number of male and

female criminals, respectively, at the first time mentioned.

17. A railway passenger observes that a train passes him,

moving in the opposite direction, in 2 seconds
;
whereas, if it

had been moving in the same direction with him, it would

have passed him in 30 seconds. Compare the rates of the two

trains.

XXXII. — VARIATION.

358. Variation, or general proportion, is an abridged

method of expressing common proportion.

Thus, if A and B be two sums of money loaned for equal

times, at the same rate of interest, then

A : B = A's interest : B's interest
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or, in an abridged form, by expressing only two terms, the in-

terest varies as the principal ;
thus (Art. 23),

The interest oc the principal.

359. One quantity varies directly as another, when the

two increase or decrease together in the same ratio.

Sometimes, for the sake of brevity, we say simply one quan-

tity varies as another, omitting the word "
directly/'

Thus, if a man works for a certain sum per day, the amount

of his wages varies as the number of days during which he

works. For, as the number of days increases or decreases, the

amount of his wages will increase or decrease, and in the same

ratio.

360. One quantity varies inversely as another, when the

first varies as the reciprocal of the second.

Thus, if a courier has a fixed route, the time in which he

will pass over it varies inversely as his speed. That is, if he

double his speed, he will go in half the time; and so on.

361. One quantity varies as two others jointly, when it

has a constant ratio to the product of the other two.

Thus, the wages of a workman will vary as the number -of

days he has worked, and the wages per day, jointly.

362. One quantity varies directly as a second and inversely

as a third, when it varies jointly as the second and the recip-

rocal of the third.

Thus, in physics, the attraction of a planetary body varies

directly as the quantity of matter, and inversely as the square

of the distance.

363. If A varies as B, then A is equal to B multiplied by

some constant quantity.

Let a and b denote one pair of corresponding values of two

quantities, and A and B any other pair. Then, by Art. 358,
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A:a = B:b

Whence (Art. 343), Ab = a B, or A=^B
• a

Denoting the constant ratio -
by m,

A = m B.

Hence, also, when any quantity varies as another, if any
two pairs of values of the quantities be taken, the four will be

proportional.

For, if A oc B, and. A' and B' be any pair of values of A and

B, and A" and B" any other pair, by Art. 363,

A' = m B', and A" = m B"

aA1 A
Whence, -~ = m, and— -

Therefore,
A"

B1 B"

or (Art. 337), A':B' = A" : B'ii

364. The terms used in Variation may now be distin-

guished as follows :

1. If A = m B, A varies directly as B.

Ml

2. If A = — ,
A varies inversely as B.

3. If A = m B C, A varies jointly as B and C.

4. If A — ,
A varies directly as B, and inversely as C.

Problems in variation, in general, arc readily solved by con-

verting the variation into an equation, by the aid of Art. 364.
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EXAMPLES.

365. 1. Given that y oc x, and when x = 2, y = 10. Re-

quired the value of y in terms of x.

If y oc x, by Art. 364, y = mx

Substituting x = 2 and y = 10, 10 = 2 m, whence m = 5.

Hence, the required value is y = 5 a?.

2. Given that 7/ oc », and that v/
= 2 when x = l. What

will he the value of y when x = 2 ?

3. If y oc £, and y = 21 when £ = 3, find the value of y in

terms of z.

4. If x varies inversely as y, and x = 4 when y = 2, what is

the value of cc when y = 6?

5. Given that z varies jointly as x and y, and that z = 1

when x = 1 and ?/
= 1. Find the value of z when x = 2 and

y= 2.

6. If ?/ equals the sum of two quantities, of which one is

constant, and the other varies as x y ;
and when x = 2, y= — 2

J-,

hut when x = — 2, y = 1
; express y in terms of x.

7. Two circular plates of gold, each an inch thick, the diam-

eters of which are 6 inches and 8 inches, respectively, are

melted and formed into a single circular plate one inch thick-

rind its diameter, having given that the area of a circle varies

as the square of its diameter.

8. Given that the illumination from a source of light varies

inversely as the square of the distance
;
how much farther from

a candle must a book, which is now 3 inches off, be removed,

so as to receive just half as much light ?

'

9. A locomotive engine without a train can go 24 miles an

hour, and its speed is diminished by a quantity which varies

as the square root of the number of cars attached. With four

cars its speed is 20 miles an hour. Find the greatest number

of cars which the engine can move.
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XXXIII. — ARITHMETICAL PROGRESSION.

366. An Arithmetical Progression is a series of quanti-

ties, in which each term is derived from the preceding term

by adding a constant quantity, called the com raon difference.

367. When the series is increasing, as, for example,

1,3,5,7,9,11,

each term is derived from the preceding term by adding a

positive quantity; consequently the common difference is

positive.

When the series is decreasing, as, for example,

19, 17,15,13,11,9,

each term is derived from the preceding term by adding a

negative quantity; consequently the common difference is

negative.

368. Given the first term, a, the common difference, d, and
the number of terms, n, to find the last term, I.

The progression will be

a, a + d, a + 2 d, a + 3 d,

We observe that these terms differ only in the coefficient of

d, which is 1 in the second term, 2 in the third term, 3 in the

fourth term, etc. Consequently in the rath term, the coefficient

of d will be n — 1. Hence, the rath term of the series, or the

last term, as the number of the terms is n, will be

l= a+ (n-l)d (1)

369. Given the first term, a, the last term, 1, and the num-

ber of terms, n, to find the sum of the series, S.

S=a+ (a + d) + (a + 2d) + + (l-2d) + (l— d) + l

Writing the terms of the second member in the reverse

order,

S=l+ (l-d) + (I- 2 d) + + {a + 2 d) + (a + d) + a
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Adding these equations, term by term, we have

2S=(a+l) + (a+ l) + (a+ l)+ + (a+t)+(a+t) + (a+l)

In this result, (a + I) is taken as many times as there are

terms, or n times
;
hence

2S=n(a+l),ovS= 7i (a+I) (2)

Using the value of I given in (1), Art, 3G8, this may he

written

S=%[2a + (n-l)d]

370. 1. In the series 5, 8/11, to 18 terms, find the

last term and the sum of the series.

Here a = 5, n = 18
;
the common difference is always found

by subtracting the first term from the second; hence

d= 8-5 = 3.

Substituting these values in (1) and (2), we have

I = 5 + (18
-

1) 3= 5 + 17 x 3 = 5 + 51 = 56.

1 S
S= -^ (5 + 56) = 9 x 61 = 549.

2. In the series 2,-1,-4, to 27 terms, find the last

term and the sum of the series.

Here a = 2, n = 27, d = the second term minus the first

=— 1 — 2 = — 3. Substituting these values in (1) and (2),

we have

1= 2 + (27-1) (-3) = 2 + 26 (-3) =2- 78= -76.

S=^-(2-76)=^-(-74)
= 27(-37) = -999.

«

EXAMPLES.

Find the last term and the sum of the series in the fol-

lowing :
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3. 1, 6, 11, to 15 terms.

4. 7, 3,
—

1, to 20 terms.

5. — 9,
— 6,-3, to 23 terms.

6. -5,-10,-15, to 29 terms.

^ / o o .

o> 7> k> to 16 terms.

8. =, T-p , to 19 terms.
5 15

1 5
9. -

,

—
,

to 22 terms.

2 1
10. — -

,

-
,

to 14 terms.
o o

5
11. —

3,
—

-, to 17 terms.

113
12. j j 9 j j 3

to 35 terms.

371. Formulae (1) and (2) constitute two independent

equations, together containing all the five elements of an

arithmetical progression ; hence, when any three of the five

elements are given, we may readily deduce the values of the

other two, as by substituting the three known values we shall

have two equations with only two unknown quantities, which

may be solved by methods previously given.

1. The first term of an arithmetical progression is 3, the

number of terms 20, and the sum of the terms 440. Find the

last term and the common difference.

Here a = 3, n = 20, £=440; substituting in (1) and (2),

we have

1= 3 + 19 d

- 440 = 10 (3 + I), or 44= 3 + I

From the second equation, I= 41
;

substitute in the first,

41 = 3 + 19 d
;
19 d= 38

;
d = 2.
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2. Given d = — 3, I= — 39, S= — 264
;
find a and n.

Substituting the given quantities in (1) and (2),

- 39 = a + (n
-

1) (- 3), or 3 n - a= 42

- 264 = -
(a
-

39), or a n— 39 n=- 528

From the first of these equations, a — 3 ?i — 42
;
substitute

in the second,

(3 n
-

42) n - 39 » = - 528, or ?r - 27 n = - 176

Whence, n = - ~ = ^—^
— = 16 or 11

Substituting in the equation a = 3n — 42,

When ii — 16, a = 6

n = 11, a. = — 9, Ans.

The signification of the two answers is as follows :

If n = 16, and a = 6, the series will be

6, 3, 0,
-

3,
-

6,
-

9,
-

12,
-

15,
-

18,
-

21,
-

24,
-

27,

-
30,

-
33,

-
36,
- 39.

If n = 11, and a=— 9, the series will be

_
o,
-

12,
-

15,
-

18,
-

21,
-

24,
-

27,
-

30,
-

33,
-

36,
- 39.

In either of which the last term is — 39 and the sum — 264.113
3. Given a = ^ ,

d—— Tx, S= — ^; find I and n.

Substituting the given quantities in (1) and (2), we have

J=|+(»_l)(-l),or 12l + n*=5

S_nfl
'2~2

(= + l)
,
ox n + 3 1 n = — 9
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From, the first of these, n = 5 — 12 I
;
substitute in the

second,

5 - 12 1 + 3 I (5
- 12 I)

=-
9, or 36 V" - 3 1 = 14

,
3 ±y/ 9 + 2016 3+ 45 2 7

Whence, J= ^ =
70

=
3

°r ~~
12

Substituting in the equation re= 5 — 12
£,

9
"When I= o ,

n — — 3
o

1 =——
,
n = 12, Ans.

The first answer is inapplicable, as a negative number of

terms has no meaning. Hence the only answer is,

7
l = —

j2>
ft= 12.

Note. A negative or fractional value of n is always inapplicable, and

should be neglected, together with all other values dependent on it.

EXAMPLES.

4. Given d = 4, 1 = 75, re = 19
;
find a and >S

f

.

165
5. Given cZ = — 1, re = 15, $= —-

;
find a and Z.

-j

2
6. Given a = — -, re = 18, £= 5

;
find d and &

o

3
7. Given a=— —

,
re = 7, $= — 7

;
find d and Z.

8. Given I = — 31, re = 13, S= - 169
;
find a and tf.

9. Given a = 3, I= 42-f,
d = 2£ ;

find re and S.

10. Given a = 7, l= — 73, #=— 363
;
find re and c?.

n n- 15 5 2625
11. Given a =—

,
d = 7:, o= ;

find re and Z.

£ Ji Ji
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12. Given I = - 47, d = - 1, 8= - 1118
;
find a and n.

13. Given d=— 3, S—— 328, a= 2; find Z and n.

372. 2b insert any number of arithmetical means between,

two given terms.

1. Insert 5 arithmetical means between 3 and — 5.

This may he performed in the same manner as the examples
in the previous article

;
we have given the first term a = 3

;

the last term I = — 5
;
the number of terms n = 7

;
as there

are 5 means and two extremes, or in all 7 terms. Substituting

in (1), Art. 368, we have

4— 5 = 3 + 6 d
; or, 6 d=— 8

; whence, d = — -= .

o

4
Hence the terms are obtained by subtracting

- from 3 for

4
the first,

- from that result for the second, and so on
; or,

3
5 1

1 -l - 11 -5 Ans
«5j o i o j

— L
t
—

o j o" > °> sins.

EXAMPLES.

2. Insert 5 arithmetical means between 2 and 4.

3. Insert 7 arithmetical means between 3 and — 1.

4. Insert 4 arithmetical means between — 1 and — 6.

5. Insert 6 arithmetical means between — 8 and — 4.

6. Insert 4 arithmetical means between — 2 and 6.

7. Insert m arithmetical means between a and b.

PROBLEMS.

373. 1. The 6th term of an arithmetical progression is 19,

and the 14th term is 67. Find the first term.

By Art. 368, the 6th term is a + 5 d, and the 14th term is

a + 13 d. Hence,
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a+ 5d = 19

a ±13 d = 67

Whence, 8 d= 48, or d = 6

Therefore, a = — 11, Ans.

2. Find four quantities in arithmetical progression, such

that the product of the extremes shall he 45, and the product
of the means 77.

Let a, a + d, a + 2 d, and a ± 3 d he the quantities.

Then, by the conditions, a2 ± 3 a d= 45 (1)

a2 ± 3 a d + 2 d2 = 77 (2)

Subtracting (1) from (2), 2 d2 = 32

d2 = 16

t?=±4.

If d= 4, substituting in (1), we have

a2 + 12a = 45

_ -12±V^Ti4TT80 -12 ±18 Q
Whence, a = —^ =

^
= 3 or — 15.

This indicates two answers,

3, 7, 11, and 15, or,
—

15,
—

11,
—

7, and — 3.

If d = — 4, substituting in (1), we have

a2— 12 a- 45

W1 12±V144 + 180 12 ±18 1K Q
Whence, a = !—

^
= „ = 15 or — 3.

This also indicates two answers,

15, 11, 7, and 3, or,
—

3,
—

7,
—

11, and — 15.

But these two answers are the same as those obtained with

the other value of d. Hence, the two answers to the problem
are

3, 7, 11, and 15, or,
—

3,
—

7,
—

11, and — 15.
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3. Find the sum of the odd numbers from 1 to 100.

4. A debt can be discharged in a year by paying $ 1 the

first week, $ 3 the second, $ 5 the third, and so on. .Required

the last payment, and the amount of the debt.

5. A person saves $270 the first year, $210 the second,

and so on. In how many years will a person who saves every

year $ 180 have saved as much as he ?

6. Two persons start together. One travels ten leagues a

day, the other eight leagues the first day, which he augments

daily by half a league. After how many days, and at what

distance from the point of departure, will they come together ?

7. Find four numbers in arithmetical progression, such that

the sum of the first and third shall be 22, and the sum of the

second and fourth 36.

8. The 7th term of an arithmetical progression is 27
;
and

the 13th term is 51. Find the first term.

9. A gentleman set out from Boston to NeW York. He
travelled 25 miles the first day, 20 miles the second day, each

day travelling 5 miles less than on the preceding. How far

was he from Boston at the end of the eleventh day ?

10. If a man travel 20 miles the first day, 15 miles the sec-

ond, and so continue to travel 5 miles less each day, how far

will he have advanced on his journey at the end of the 8th

day?

11. The sum of the squares of the extremes of four quanti-

ties in arithmetical progression is 200, and the sum of the

squares of the means is 13G. What are the quantities ?

12. After A had travelled for 2| hours, at the rate of 4

miles an hour, B set out to overtake him, and went 4£ miles

the first hour, 4J the second, 5 the third, and so on, increasing
his speed a quarter of a mile every hour. In how many' hours

would he overtake A ?
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XXXIV. — GEOMETRICAL PROGRESSION.

374. A Geometrical Progression is a series in which each

term is derived from the preceding term by multiplying by a

constant quantity, called the ratio.

375. When the series is increasing, as, for exanrple.

2, 6, 18, 54, 162,

each term is derived from the preceding term by multiplying

by a quantity greater than 1
; consequently the ratio is a

quantity greater than 1.

When the series is decreasing, as, for example,

9 3 1 i i jl

each term is derived from the preceding term by multiplying

by a quantity less than 1
; consequently the ratio is a quantity

less than 1.

Negative values of the ratio are admissible
;
for example,

-3, 6,-12,24,-48,

is a progression in which the ratio is — 2.

376. Given the first term, a, the ratio, r, and the number

of terms, n, to find the last term, I.

The progression will be

a, ar, ar2
,
ar5

,

We observe that the terms differ only in the exponent of r,

which is 1 in the second term, 2 in the third term, 3 in the

fourth term, etc. Consequently in the nth. or last term, the

exponent of r will be n — 1, or

l=arn- x

(1)

377. Given the first term, a, the last term, I, and the ratio.

r, to find the sum of the series, S.
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S= a + a r + a r2 + a r3 + + a r
n~ 3 + a r"- 2 + a rn

~ x

Multiplying each term by r,

r S—ar+ ar2 +ar3 + a7A + + a rn
~ 2 + a r"

_1 + a rn

Subtracting the first equation from the second, we have

ft 2
,Tl

(f

r S— S=arn —
a, or S (r —l) — a rn — a, or S= - —^—

But from (1), Art. 376, by multiplying each term by r,

Substituting this value of a rn in the value of S, we have

r— 1

378. 1. In the series 2, 4, 8, to 11 terms, find the last

term and the sum of the series.

Here a = 2, n = ll; the ratio is always found by dividing
4

the second term by the first ; hence, r= - = 2.

Substituting these values in (1) and (2), we have

I = 2 (2)
11- 1 = 2 x 2 10 = 2 x 1024 = 2048.

s= (2x204S)-2 =4096 _ 2 = 4094
Zi — JL

2. In the series 3, 1. », to 7 terms, find the last term
o

and the sum of the series.

Here a= 3, n= 7, r= second term divided by first term= ^.

Substituting these values in (1) and (2), we have

l - 6
\3)

~*
\3)

_
36_ 35_ 243"
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a j_v ,
r

,
2186

v3
X

243/
°

_729
"

729 _ 2186 3_ 1093
^= ~^[

~ -
1

— "

^2~
:

T29"
X

2
~"

^43"
'

3
_1

3 ~3

3. In the series — 2, 6,
—

18, to 8 terms, find the last

term and the sum of the series.

Here a — — 2, n = S, r= —~ =— 3. Hence,

I= (_ 2) (- 3)
8- 1 = (- 2) (- 3)

7 = (- 2) (- 2187) = 4374.

(_ 3 x 4374)
- (- 2)

- 13122 + 2
_^
- 13120=

(-3)
— 1- -4 -4

EXAMPLES.

Find the last term and the sum of the series in the fol-

lowing :

4. 1, 2, 4, to 12 terms.

4
5. 3, 2,

-
,

to 7 terms.
o

6. —2, 8, —32, to 6 terms.

7. 2,
—

1, =
,

to 10 terms.

111
2' V 8

8. ^ , T , q ,
to 11 terms.

2 3
9. k i

—
1? ^ i

to 8 terms.

10. 8, 4, 2, to 9 terms.

11.
4' -4' J2'

to6 termS*

2 11
12. -k>— g>— gj

to 10 terms.

13. 3, -6, 12, to 7 terms.
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379. Formulae (1) and (2) together contain all the five ele-

ments of a geometrical progression ; hence, if any three of the

five are given, we may find the other two, exactly as in arith-

metical progression. But in certain cases the operation in-

volves the solution of an equation of a higher degree than the

second, for which rules have not heen given ;
and in other

cases the unknown quantity appears as an exponent, the solu-

tion of which equations can usually only be effected by the use

of logarithms ; although in certain simple cases they may be

solved by inspection.

1. Given I = 6561, r — 3, n = 9
;
find a and S.

Substituting these values in (1) and (2), Arts. 376 and 377,

we have

6561 = a (3)
8

;
or 6561 = 6561 a

;
or a = 1.

(3x6561)-l_ 19683-1 _ 19682 _6 ~ 3=1
~"

~2~
""~2~

2. Given a = — 2, n = 5, I = — 32
;
find r and S.

Substituting these values in (1) and (2), we have

-32 = (-2)(r)
5 - 1

;
or-32 = -2r1

;
r4 = 16; r= ±2.

If r = 2, S= (2 X ~ 32)7 (
~

2) =- 64 + 2 = -62.

T , 9 q (-2x-32)-(-2) _ 64 + 2 _66_

The signification of the two answers is as follows :

If r=2, the series will be -2, -4, -8, -16, -32, in

which the sum is — 62.

If r=— 2, the series will be — 2, 4,
—

8, 16,
—

32, in which

the sum is — 22.

3. Given a = 3, r = — ^ ,
S=

;
find n and I.
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Substituting these values in (1) and (2), we have

-Us
1640 _ 3 1+9

•

6560 1

"729—^TV=^r ; oW+9 = T29 ;
°Tl=

-729-
3

3
Substituting this value of I in the equation (— 3)"

_1= -, we

3
have (— 3)

n ~ 1=
^-
=— 2187; whence, by inspection, n— 1

71".)

=
7, or n = 8.

EXAMPLES.

4. Given J= - 256, r=— 2, n = 10
;
find a and A

5. Given r= -, n = 8, S— -^-^r ;
find a and Z.

o 6561

6. Given a= 2, n= 7, I= 1458
;
find r and 5.

3
7. Given a = 3, « = 6, Z = — . ,^ , ;

find r and &
1024

8. Given a-= 1, r= 3, Z = 81
;
find -« and S.

1 127
9. Given a = 2, Z = ^ ,

$= -^- ;
find n and r.

10. Given «. = -
,
r = — 3, $= — 91; find n and Z.

11. Given £= -128, r = 2, £= -255; find n and a.

380. The Limit to which the sum of the terms of a decreas-

ing geometrical progression approaches, as the number of terms

becomes larger and larger, is called the sum of the scries to

infinity. We may write the value of S obtained in Art. .'177

as follows :
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a — r I

S-. 1-r

In a decreasing geometrical progression, the larger the num-

ber of terms taken the smaller will be the value of the last

term
; hence, by taking terms enough, the last term may be

made as small as we please. Then (Art. 207), the limiting

value of I is 0. Consequently the limit to which the value of

S approaches, as the number of terms becomes larger and

larger, is -
.

Therefore the sum of a decreasing geometrical progression

to infinity is given by the formula

1. Find the sum of the series 3, 1, ^ ,
to infinity.

o

Here a = 3, r= k ; substituting in (3), we have

O 3 9 9
A

3

8 16
2. Find the sum of the series 4,

—
^ ,
—

,
to infinity.

_8~~
3 2

Here a = 4, r = —r- = — »
; substituting in (3), we have

+
3

EXAMPLES.

Find the sum of the following to infinity :

3l 2
' lj

2'
5 -
- 1

'3'~9'



288



GEOMETRICAL PROGRESSION. 289

382. To insert any number of geometrical means between

two given terms.

64
1. Insert 4 geometrical means between 2 and p-r^ .

This may be performed in the same manner as the examples
64

in Art. 379. We have a= 2, I= —-^ ,
and n = 6, or two more

243
than the number of means.

Substituting these values in (1), Art. 376, we have

64 32 2

243
= 2? '

5; °rr5 =
243

;
mr=t

2
Hence the terms are obtained by multiplying 2 by ^

for the

2
first, that result by ^ for the second, and so on

; or,
o

4 8 16 32 ^42
'3' 9' 27' 81' 243'

2. Insert 5 geometrical means between — 2 and — 128.

Here a = — 2, I= — 128, n = 7. Substituting in (1), Art.

376, we have

— 128 = — 2 7*
;

or r6 = 64
; whence, r = ± 2.

If r = 2, the series will be

_
2; -4, -8, -16, -32, -64, -128.

If r = — 2, the series will be

-
2, 4,

-
8, 16,

-
32, 64,

- 128.

EXAMPLES.

o 1
128

3. Insert 6 geometrical means between o and
^Hq

•

4. Insert 5 geometrical means between
^
and 364£.

5. Insert 6 geometrical means between — 2 and — 4374.
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729
6. Insert 4 geometrical means between 3 and —

3

1024

7. Insert 7 geometrical means between - and

PROBLEMS.

383. 1. What is the first term of a geometrical progression,

when the 5th term is 48, and the 8th term is — 384 ?

By Art. 376, the 5th term is a r4

,
and the 8th term is a r~.

Hence,
ar* = 48, and a r' = — 384.

Dividing the second of these equations by the first,

r3 = — 8
; whence, r = — 2.

Tl
48 48

<* JIhen, « = —
;

-= :r7r=z: 3
,
Ans.

r* 16

2. Find three numbers in geometrical progression, such that

their sum shall be 14, and the sum of their squares 84.

Let "a, a r, and a r~ denote the numbers. Then, by the con-

ditions,
a + a r + a r2 = 14 (1)

a2 + a2 r2 + a2 ri = 8A (2)

Dividing (2) by (1), a — ar+ar2 = 6 (3)

Adding (1) and (3), a + a r2 = 10 (4)

4
Subtracting (3) from (1), a r = 4, ofr = -

(5)

1 c

Substituting from (5) in (4), a -\
= 10

<r -10 a = -16

wi (K onox lOiy/100-64 10 ±6 Q _

VV hence (Art. 309), a — ~ -=—-— — 8 or 2.
— Z

4 1
If a = 8, r = q

=
jr, and the numbers are 8, 4, and 2.

8 Z
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4
If a = 2, ?• = - = 2, and the numbers are 2, 4, and 8.

Therefore, the numbers are 2, 4, and 8, Ans.

3. A person who saved every year half as much again as he

saved the previous year, had in seven years saved $2059.

How much did he save the first year ?

4. A gentleman boarded 9 days, paying 3 cents for the first

day, 9 cents for the second day, 27 cents for the third day, and

so on. Required the cost.

5. Suppose the elastic power of a ball that falls from a

height of 100 feet, to be such as to cause it to rise 0.9375 of

the height from which it fell, and to continue in this way

diminishing the height to which it will rise, in geometrical

progression, till it comes to rest. How far will it have moved ?

6. The sum of the first and second of four quantities in

geometrical progression is 15, and the sum of the third and

fourth is 60. Required the quantities.

7. The fifth term of a geometrical progression is — 324, and

the 9th term is — 26244. What is the first term ?

8. The third term of a geometrical progression is ^-r ,
and

9
the sixth term is

-^r^
. What is the second term ?

XXXV.— HARMONICAL PROGRESSION.

384. Quantities are said to be in Harmonical Progression

when their reciprocals form an arithmetical progression.

For example, 1, -, F , -,
3' 5' 7

are in harmonical progression, because their reciprocals,

1, 3, 5, 7,

form an arithmetical progression.
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385. From the preceding it follows that all problems in

harmonical progression, which are susceptible of solution, may
be solved by inverting the terms and applying the rules of the

arithmetical progression. There will be found, however, no

general expression for the sum of a harmonical series.

386. To find the last term of a given ha rmonical series.

2 2

3' 5
;

1. In the series 2,
-

, p, to 36 terms, find the last term.

Inverting the series, we have the arithmetical progression

2 j

2
' 2 '

t0 36 terms •

Here a = -, d = l, w = 36
; hence, by (1), Art. 368,

Z = i+(36-l)l = ^
+ 35 =

^.

2
Inverting this, we obtain -=r as the last term of the given series.

EXAMPLES.

Find the last terms of the following :

K Q A *} 1 9
2. -

,

-
,

to 23 terms. 4. r,T,-, to 26 terms.

3. - ---r, to 17 terms. 5. a, b, to n terms.
2 3 o

387. To ii/si'rf any number of harmonical means between

two given terms.

1. Insert 5 harmonical means between 2 and — 3.

Inverting, we have to insert 5 arithmetical means between

1
A

1

2
and

~3'
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Here a= -
,

Z=— -,n= J; substituting in (1), Art, 368,
Z o

we have

— - — - + 6d: or 6 d— — -x : whence, cZ =—— .

3 2 6 ob

Hence, the arithmetical means are

13 2
1_ _1_ _L

36' 9' 12' 18' 36*

Then, the harmonical means will be

36 9 ._ 1Q 36
-,-,12,-lS, -T ,Ans.

EXAMPLES.
2 3

2. Insert 7 harmonical means between - and — .

5 10

3. Insert 3 harmonical means between — 1 and — 5.

4. Insert 6 harmonical means between 3 and — 1.

5. Insert m harmonical means between a and b.

388. If three consecutive terms of a harmonical progres-

sion be taken, the first has the same ratio to the third, that

the first minus the second has to the second minus the third.

Let a, b, c be in harmonical progression ;
then their recip-

rocals -
,

-
,
and - will be in arithmetical progression. Hence^

a> o c

1_1_1_1
c b b a'

Clearing of fractions, ab — ac = ac — bc

or, a (b
—

c)
= c (a

—
b)

Dividing through by c (b
—

c), we have

a a — b

which was to be proved.
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389. Let a and c be any two quantities ;
b their harrnoni-

cal mean. Then, by the previous theorem,
- =

.

Clearing of fractions, ab — ac= ac— be; then, ab + bc= 2ac

2 a c

or, b = .

a + c

390. We may note the following results : if a and c arc

a ~f~ c

any two quantities, their arithmetical mean =—-—
;
their

geometrical mean = \a c
;
and their harmonical mean = - - .

a+ c

a- 2 a c a + c /
/

— \2 .

Since X —7.
— = vV a c ) >

l t follows that the producta -\- c ~j

of the harmonical and arithmetical means of two quantities is

equal to the square of their geometrical mean.

Consequently the geometrical mean must be intermediate in

value between the harmonical and the arithmetical mean. But

the harmonical mean is less than the arithmetical mean, be-

a + c 2ac (a + e)
2 — 4 a c a2 + 2 ac+ c

2— £ac
cause—pr

= -—
T—/- r = ——

r

2 a + c 2 (a + c) 2 (a + c)

a2 — 2ac + c
2

(a — c)
2

=—7T7 ^
= 7T^ n a positive quantity.

2 (a + c) 2 (a + c)
' L > *

Hence of the three quantities, the arithmetical mean is the

greatest, the geometrical mean next, and the harmonical mean
the least.

XXXVI.— PERMUTATIONS AND COMBINA-
TIONS.

391. The different orders in which quantities can be ar-

ranged are called their Permutations.

Thus, the permutations of the quantities a, b, <; taken two

at a time, are
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a b, b a
;
a c, c a; be, c b;

and taken three at a time, are

a b c, ac b; b a e, b c a
; cab, cb a.

392. The Combinations of quantities are the different col-

lections that can he formed out of them, without regard to the

order in which they are placed.

Thus, the combinations of the quantities a, b, c, taken two

at a time, are

a b, ac, be;

a b, and b a, though different permutations, forming the same

combination.

393. To find the number ofpermutations of n quantities,

taken r at a time.

Let P denote the number of permutations of n quantities,

taken r at a time. By placing before each of these the other

n — r quantities one at' a time, we shall evidently form P (n
—

r)

permutations of the n quantities, taken r + 1 at a time. That

is, the number of permutations of n quantities, taken r at a

time, multiplied by n — r, gives the number of j)ermutations

of the n quantities, taken r + 1 at a time.

But the number of permutations of n quantities, taken one

at a time, is obviously n. Hence, the number of permutations
taken two at a time, is the number taken one at a time,

multiplied by n — 1, or n (n— 1). The number of permuta-

tions, taken three at a time, is the number taken two at a time,

multiplied by n — 2, or n (n
—

1) (n
—

2); and so on. We
observe that the last factor in the number of permutations is

n, minus a number 1 less than the number of quantities taken

at a tinie. Hence, the number of permutations of n quanti-

ties, taken r at a time, is

n(n-l) 0-2) (n-(r-l))

or, n(n — l)(n — 2) (n— r + T). (1)
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394. If all the quantities are taken together, r = n and

Formula (1) becomes

n(n-l) (n-2) 1;

or, by inverting the order of the factors,

1x2x3 (n—l)n. (2)

That is,

The number ofpermutations of n quantities, taken n at a

time, is equal to the product of the natural numbers from 1

up to n.

For the sake of brevity, this result is often denoted by \n,

read "factorial n "
;
thus

\n_
denotes the product of the natu-

ral numbers from 1 to n inclusive.

395. To find the number of combinations of n quantities,

taken r at a time.

The number of permutations of n quantities, taken r at a

time, is (Art. 393),

n{n — l) (n
—

2) (n— r+ 1).

By Art. 394, each combination of r quantities produces \r

permutations. Hence, the number of combinations must equal

the number of permutations divided by ta or

n(n-l) (n-2) (n-r+1)
|

r

396. The number of combinations of n quant It Its, taken r

at a time is the same as the number of combinations of n

quantities taken n — r at a time.

For, it is evident that for every combination of r quantities

which we take out of n quantities, we leave one combination

of n — r quantities, which contains the remaining quantities.

EXAMPLES.

397. 1. How many changes can be rung with 10 bells,

taking 7 at a time ?
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Here, n = 10, r = 7
;
then n— r + 1= 4.

Then, by Formula (1),

10x9x8x7x6x5x4 = 604800, ^».s.

2. How many different combinations can be made with 5

letters out of 8 ?

Here, n = 8, r= 5
;
then n — r + 1 = 4:.

Then, by Formula (3),

8x7x6x5x4
1x2x3x4x5 56, Ans.

3. In how many different orders may 7 persons be seated

at table ?

Here n= 7
; then, by Formula (2),

1x2x3x4x5x6x7 = 5040, Ans.

4. How many different words of 4 letters each can be made
with 6 letters ? How many words of 3 letters each ? How
many of 6 letters each ? How many in all possible ways ?

5. How often can 4 students change their places in a class

of 8, so as not to preserve the same order ?

6. From a company of 40 soldiers, how many different pick-
ets of 6 men can be taken ?

7. How many permutations can be formed of the 26 letters

of the alphabet, taken 4 at a time ?

8. How many different numbers can be formed with the

digits 1, 2, 3, 4, 5, 6, 7, 8, 9, taking 5 at a time, each digit

occurring not more than once in any number ?

9. How many different permutations may be formed of the

letters in the word since, taken all together ?

10. How many different combinations may be formed of the

letters in the word forming, taken three at a time ?
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11. How many different combinations may be formed of 20

letters, taken 5 at a time ?

12. How many different combinations may be formed of 18

letters, taken 11 at a time ?

13. How many different committees, consisting of 7 persons

each, can be formed out of a corporation of 20 persons ?

14. How many different numbers, of three different figures

each, can be formed from the digits 1, 2, 3, 4, 5, 6, 7, 8, 9, ?

XXXVII. — BINOMIAL THEOREM.

POSITIVE INTEGRAL EXPONENT.

398. The Binomial Theorem, discovered by Newton, is a

formula, by means of which any binomial may be raised to any

required power, without going through the process of invo-

lution.

399. To prove the Theorem for a positive integral ex-

ponent.

By actual multiplication we may show that

(a + x)
2 = a2 + 2 ax + x2

(a + x)
3 = a3 + 3 a2 x + 3 a x2 + x3

(a + x)
4 = a4 + 4 a 3 x + 6 a2 x 2 + 4 a x3 + x*

In these results we observe the following laws :

1. The number of terms is one more than the exponent of the

binomial.

2. The exponent of a in the first term is the same as the

exponent of the binomial, and decreases by one in each stic-

ceedin;/ term.

3. The exponent of x in the second term is unity, and in-

creases by one in each succeeding term.
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4. The coefficient of the first term, is unity ; and of the sec-

ond term, is the exponent of the binomial.

5. If the coefficient of any term be multiplied by the expo-

nent of a in that term, and the product divided by the number

of the term, beginning at the left, the result will be the co-

efficient of the next term,.

Assuming that the laws hold for any positive integral expo-

nent, n r we have

. . , n(n—1) „ „ n(n—T)(n—2) „ ,

(a+x)
n=an+nan-1x+ \

'an~2x2+ K

J±-
/an

~sx3+

This result is called the Binomial Theorem.

400. To prove that it holds for any positive integral expo-

nent, we multiply hoth members by a + x, thus

/ x ^i , , n(n—T) , , n(n—l)(n— 2) . „

(a+x)
n+1=an+1+?ianx+ \ V^ar^-

v J \ ' an~2x3

, „ n(n—1) . ,+ + anx+ nan~yx~+ v an
~i x 6 +.

X.A

= an + 1 + (n + 1) an x +
n (n — 1)

a"" 1 x-

ln{n-l)(n-2) ^-1) 1

+
L 1.2.3

" +
1.2 J

+>

= an+1 + (w + 1) a
n x + -™

2
In- 1 + 21 an

~l a?

+
nS [-H <-*+

{ ?i "T~ 1 ) 72-= a"+1 + (n + 1) a" a; +
^-j-tj

a"-1
ar

2

(w + 1) n (n— 1) _„ 3

1.2.3
~a" " * +

where it is evident that every term except the first will con-

tain the factor n + 1.
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"We observe that the expansion is of the same form as the

value of (a + x)
n

, having n + 1 in the place of n.

Hence, if the laws of Art. 399 hold for any positive integral

exponent, n, they also hold when that exponent is increased

by 1. But we have shown them to bold for (a + cc)
4
,
hence

they hold for (a + x)
5

;
and since they hold for (a + x)

5
, they

also hold for (a + x)
6

;
and so on. Hence they hold for any

positive integral exponent.

401. Since 1.2=
[2,

1. 2. 3 =
[3,

etc. (Art. 394), the Bino-

mial Theorem is usually written as follows :

\ n(n—l) „ o n(n—l)(n—2) _ , „

(a+x)
n=an

+?i a
n ~lx+ V V~V+— £

} an^x3+
If. £L

402. If a =1, then, since any power of 1 equals 1, we

bave

?i(n — l) , w (n.
—

1) (w
—

2) „

403. In performing examples by the aid of the Binomial

Theorem, we may use the laws of Art. 399 to find the expo-

nents and coefficients of the terms.

1. Expand (a + x)
6
by the Binomial Theorem.

The number of terms is 7.

The exponent of a in the first term is 6, and decreases by 1

in each succeeding term.

The exponent of x in the second term is 1, and increases by
1 in each succeeding term.

The coefficient of the first term is 1
;

of the second term, 6;

if the coefficient of the second term, 6, be multiplied by 5, the

exponent of a in that term, and the product, 30, be divided by
the number of the term, 2, the result, 15, will be the coefficient

of the third term
;

etc.

Eesult, a6 +6a5 x + 15 a4 x2 + 20 a3 x* + 15 a2
x" + 6 a x5 + x*.
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Note. It will be observed that the coefficients of any two terms taken

equidistant from the beginning and end of the expansion are the same.

The reason for this will be obvious if, in Art. 401, x and a be inter-

changed, which is equivalent to inverting the series in the second member.

Thus, the coefficients of the latter half of an expansion may bo written

out from the first half.

2. Expand (1 + sc)
7

by the Binomial Theorem.
"

Result, l7 + 7.1
6

. x + 21.15
. x2 + 35.1 4

. x3 + 35.13
. x* + 21.1s

. x5

+ 7.1
1
. x° + x 1

;

or, 1 + 7 x + 21 x2 + 35 x 3 + 35 x A + 21 x5 + 7 x 6 + x\

Note. If the first term of the binomial is a numerical quantity, it will

be found convenient, in applying the laws, to retain the exponents at first

without reduction, as then the laws for coefficients may be used. The re-

sult should afterwards be reduced to its simplest form.

3. Expand (2 a + 3 b)'° by the Binomial Theorem.

(2a + 3&)
5

=[(2«.) + (36)]
5

= (2 a)
5 + 5 (2 a)

4

(3 b) + 10 (2 a)
3

(3 bf + 10 (2 a)'
2

(3 b)
3

+ 5 (2 a) (3 by + (3 b)
5

= 32 a5 + 240 a4
b + 720 a3 V2 + 1080 a2

b
3 + 810 a b* + 243 b

5
,

Aiis.

4. Expand (irf
2 — ft

-1
)
6
by the Binomial Theorem.

(m-i _ n-i)« = [(m
_i

) + (- ft-
1

)]
6

=
(
m-^) +6(m"2)5(_w-i)+i5(m-*)

4

(-«-
1

)'

2

+20(m"^)
3

(-H-
1

)
3

+ 15 (m~ty (-ft"
1

)

4 + G (m~*) (-n-
lf+ (-ft-

1

)
6

'

=mr 3 + 6 m~ r%

(- ft"
1

) + 15 m~ 2
(ft-

2
) + 20 i»~* (- ft"

3

)

+ 15 m-1
(ft-

4

) + 6 m~- (- ft"
5

) + (ft"
6

)

= m~ 3 — 6 m~* ft-
1 + 15 m~- n~- — 20 m~ - ft~ 3 + 15 m~ x ft"

4

— 6 m "2
ft
-5 + ft

-6
,
Ans.
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Note. If either term of the binomial is not a single letter, with unity

as its coefficient and exponent, or if either term is preceded by a minus

sign, it will be found convenient to enclose the term, sign and all, in a

parenthesis, when the usual laws for exponents and coefficients may be

applied. In reducing, care must be taken to apply the principles of Arts.

227 and 259.

EXAMPLES.

Expand the following by the Binomial Theorem :

5.
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Therefore the

n (n - 1) (n - 2) (n
— r + 2)

rth term = -^ t^t;-^— ^^^rr -1—
ct
n~ r + 1 xr~\

1 . Z . 6 (r
—

1)

1. Find the 8th term of (3 J -2b~ l

)
n

.

Here r = 8, n = 11
; hence, the

8thtom = 1

l:2°3
9

4

8

5.6

6

7

5
<3a *>

,
(- 2t-)'

= 330 (81 a2
) (- 128 b~'')

= - 3421440 a2 J- 7
,
^ras.

Note. The note to Ex. 4, Art. 403, applies with equal force to examples
in this article.

EXAMPLES.

Find the

2. 10th term of (a + x)
15

. 5. 5th term of (1
- a2

)
12

.

3. 6th term of (1 + m)
u

. 6. 9th term of (x~
1 -2 y*)

u
.

4. 8th term of (c
-

d)
l\ 7. 8th term of (a% + 3 x" 1

)

10
.

405. A trinomial may he raised to any power by the Bi-

nomial Theorem, if two of its terms he enclosed in a paren-

thesis and regarded as a single term
;
the operations indicated

being performed after the expansion by the Theorem has been

effected.

1. Expand (2 a — b + c
2

)
3

by the Binomial Theorem.

(2 a- b + c
2

)
3 = [(2 a-b) + (c

2

)]
3

= (2 a - by + 3 (2 a -b)
2

(c
2

) + 3 (2 a - b) (c
2

)
2 + (c

2
)
3

=Sa3~12a2
b + 6ab 2-b 3+3c2

(4:a
2-4ab+ b

2

) + 3c4

(2a-b) + c
6

= 8 a3 - 12 a2
b + 6 a b 2 - b

3 + 12 a2
c
2 - 12 a b c

2 + 3 b
2
c
2

+ 6aci -3bc4 + c
6
,
Ans.
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The same method will apply to the expansion of any poly-

nomial hy the Binomial Theorem.

EXAMPLES.

Expand the following by the Binomial Theorem :

2. (1-x-x2
)*.

4. (1
- 2 x - 2 x2

)\

3. (x-+3x + l)
3
. 5. (l + a;-a;2

)
5
.

XXXVIII.—UNDETERMINED COEFFICIENTS.

406. A Series is a succession of terms, so related that each

may be derived from one or more of the others, in accordance

with some fixed law.

The simpler forms of series have already been exhibited in

the progressions.

407. A Finite Series is one having a finite number of

terms.

408. An Infinite Series is one whose number of terms is

unlimited.

The progressions, in general, are examples of finite series
;

but, in Art. 380, we considered infinite Geometrical series.

409. An infinite series is said to be convergent when the

sum of the first n terms cannot numerically exceed some finite

quantity, however large n may be
;
and it is said to be diver-

gent when the sum of the first n terms can numerically exceed

any finite quantity by taking n large enough.

For example, consider the infinite series

1 + x + x- + X3 +

The sum of the first n terms

1 + x + x 2 + x 3 + +xn ~ 1 =^^ (Art. 120).
1 — x
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If x is less than 1, xn
is less than x, however largo n may

be
; consequently the numerator and denominator of the frac-

tion are each less than 1, and positive ;
and the numerator is

larger than the denominator
;
hence the fraction is equal to

some finite quantity greater than 1. The series is therefore

convergent if x is less than 1.

If x is equal to 1, each term of the series equals 1, conse-

quently the sum of the first n terms is n
;
and this can numer-

ically exceed any finite quantity by taking n large enough.

The series is therefore divergent if x = 1.

If x is greater than 1, each term of the series after the first

is greater than 1, consequently the sum of the first n terms is

greater than n
;
and this sum can numerically exceed any finite

quantity by taking n large enough. The series is therefore

divergent if x is greater than 1.

410. Every infinite literal series, arranged in order of pow-
ers of some letter, is convergent for some values of that letter,

and divergent for other values.

We will now show that it is convergent when that letter

equals zero.

Let the series be

a + bx + cx2 + dxs + + Jexn
~ 1 +

The sum of the first n terms is

a + bx + cx2 + dx3 + + kxn
~\

which is equal to a, if x is made equal to 0.

Hence, however large n may be, the sum of the first n terms

is equal to a, if x is equal to 0. Consequently the series is

convergent if x = 0.

411. Infinite series may be developed by the common pro-
cesses of Division, as in Art. 101, Exs. 19 and 20, and Extrac-

tion of Roots, as in Arts. 239 and 243
;
and by other methods

which it will now be our object to elucidate.
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UNDETERMINED COEFFICIENTS.

412. A method of expanding algebraic expressions into

series, simple in its principles, and general in its application,

is based on the following theorem, known as the

THEOREM OF "UNDETERMINED COEFFICIENTS.

413. If the series A + Bx + Cx 2 + Bx3 + is always

equal to the series A' + B' x -f- C ar -f- D' x3 + , for a ny
value of x which makes both series convergent, the coefficients

of like powers of
'

x in the two series will he equal.

For, since the equation

A + Bx + Cx 2 +Dx3+ =A'+B'x+ C'x-+D>x3 +

is satisfied for any value of x which makes both members con-

vergent ;
and since by Art. 410, if x is equal to 0, both mem-

bers are convergent ;
it follows that the equation is satisfied if

x = 0. Making x — 0, the equation becomes

A = A'.

Subtracting A from the first member of the equation, and its

equal, A', from the second member, we have

Bx+ Cx2+Bx3 + = B'x + C'x 2 + D'x3 +

Dividing through by x,

B+Cx + Bx2 + =B'+ C'x + D'x 2 +

This equation is also satisfied for any value of X which makes

both members convergent ;
hence it is satisfied if x = 0. Mak-

ing x = 0, we have;

B = B'.

Proceeding in this way, we may show C= O, I) = D', etc.
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Note. The necessity for the limitation of the theorem to values of x

which make both series convergent, is that a convergent series evidently

cannot be equal to a divergent series
; and two divergent scries cannot be

equal, as two quantities which numerically exceed any finite quantity can-

not be said to be equal.

Hence, in all applications of the theorem, the results are only true when

both members are convergent.

APPLICATION TO THE EXPANSION OF FRACTIONS INTO SERIES.

2 + 5 x
414. 1. Expand - —- into a series.

JL — o x

We have seen (Art. 101), that any fraction may he expanded
into a series by dividing the numerator by the denominator

;

consequently, we know that the proposed development is pos-

sible. Assume then,

^
+

f
x =A+Bx + Cx2 + Dx*+Exi + (1)

1 — ox

where A, B, C, D, E, are quantities independent of x.

Clearing of fractions, and collecting together in the second

member the terms containing like powers of x, we have

2+5x = A + B
-3.4

x+ C
-3B

x-+ D
-3(7

x 3 + E
-3D

x* +

Equation (1), and also the preceding equation, are evidently

to be satisfied by all values of x which make the second mem-

ber a convergent series. Hence, applying the Theorem of Un-

determined Coefficients to the latter, we have

A = 2.

B — 3 A — 5
; whence, B = 3 A + 5 = 11.

C-3B = 0; whence, C= 3B =33.

D - 3 C =
; whence, D = 3 C = 99.

E-3D= 0; whence, E=3D =297.
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Substituting these values of A, B, C, D, E, in (1), we

have

^+-^ = 2 + 11 a: + 33 z 2 + 99 cc
3 + 297 a:

4 + ,

1 — o x

which may he readily verified by division.

This result, in accordance with the last part of the Note to

Art. 413, only expresses the value of the fraction for such

values of x as make the second member a convergent series.

2. Expand — —
« into a series.

l-2ic-a;'2

Assume
1 — 3 x- x* A + Bx + Cx2 +Dx !i + JExi +l—2x—x

Clearing of fractions, and collecting terms,

1-Sx x2= A + B
-2 A

x+ C
-2B
- A

x2 + D
-2(7
- B

x3 + E
-2D
- C

.v

Equating the coefficients of like powers of x,

A = l.

B-2A = -3; whence, B— 2A— 3=— 1.

C-2B-A= -1; whence, C=2B + A-l = -2.

D-2C—B= 0; whence, D=2 C+B=— 5.

E-2D- 0— 0; whence, E=2D+ C=-12.

Substituting these values,

1-3 x x
\-2x X"r

= 1 — x — 2 x2— 5 x 3 — 12 x* —
,
A ns.

Note. This method enables us to find the law of the coefficients in any

expansion. For instance, in Example 1, we obtained the equations C=3B,
D= BC, E= ZD, etc. ; or, in general, any coefficient, after the second, is

three times the preceding. In Example 2, we obtained the equations

Ij— IC-^B, E=2D + C, etc.; or, in general, any coefficient, after the

third, is twice the preceding plus the next but one preceding. After the

law of the coefficients of any expansion has been found, we may write out

the subsequent terms to any desired extent by its aid.
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Clearing of fractions, and collecting terms,

x* +1=3A+3B
- A

x + 3C
- B

x- + oD
- C

x3 + 3E
- D

Equating the coefficients of like powers of x,

3 A = 1
; whence, A = -

.

o

3B~A = 0- whence, B=— = -
.

3 9

7? 1

3 C—B — 0] whence, C=—=— .

3D- C=0; whence, D= ^-=— .

3E-D = 0; whence, E=^ = ~.

Substituting these values,

1 1.11 1.1,
3x-x 2 3 9 27 '81 '243

EXAMPLES.

Expand the following to five terms :

2 n l + z-a2
. l — 2x*— at

3sc2 -2a;8
"

cc-2a2 +3cc3
a-

a + a:
8 -a-4

APPLICATION TO THE EXPANSION OF RADICALS INTO SERIES.

416. As any root of any expression consisting of two or

more terms can be obtained by the method of Art. 247, we

know that the development is possible.

1. Expand \'l + x2 into a series by the Theorem of Unde-

termined Coefficients.

Assume \Jl-\-x'
2 = A + Bx + Cx*+ Dx* + 22xi +
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Squaring both members, we have (Art. 230),

l + x2=A2

+ 2AB
x + B2

+ 2AC
.'-

+ 2 AD
+ 2BC

x3 + C2

+ 2AE
+ 2BD

./•

Equating the coefficients of like powers of x,

A2 = l; whence, A = l.

2AB= 0; whence, B= -

B2 + 2AC=1; whence, C =

2 A

1 - B2 _ 1

^2

2vlZ> + 2i?CY= 0; whence, D = =0

C 2 + 2AB+2BD = 0; whence, .E=-

2 A

BC
A
2BD+ C 2

2 A
1

8

Substituting these values,

yi + x 2 = l + -x2
--;x

i +
2 8

which may be verified by the method of Art. 239.

Note. From the equation A-= \, we may have A= ± 1
;
and taking

-4= -
1, we should find C = - —

, E=— , ,
so that the expansion might2 8

he as follows :

2 8

This agrees with the remark made after the rule in Art. 239.

EXAMPLES.

Expand the following to five terms :

2. Sjl + x. 4. v
/ l-2a; + 3x2

.

3. v/1-2*. 5. y/1 + * + x2
.

6. yi-aj.

7. yl + ic + a;
2
.
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APPLICATION TO THE DECOMPOSITION OF RATIONAL
FRACTIONS.

417. When the denominator of a fraction can be resolved

into factors, and the numerator is of a lower degree than the

denominator, the Theorem of Undetermined Coefficients ena-

bles us to express the given fraction as the sum of two or more

'partial fractions, whose denominators are the factors of the

given denominator.

We shall consider only those cases in which the factors of

the denominator are all of the first degree.

CASE I.

418. When the factors of the denominator are all un-

equal.

x + 7 .

Let — tt—7z ^r be a fraction, whose denominator is

(3 x
—

1) (5 x + 2)

composed of two unequal first degree factors. We wish to

prove that it can be decomposed into two fractions, whose

denominators are 3 x — 1 and 5 x + 2, and whose numerators

are independent of x. To prove this, assume

x + T A B
+

(3 x - 1) (5 x + 2) 3 x - 1 5 x + 2

We will now show that such values, independent of x, may
be given to A and B, as will make the above equation identi-

cal, or true for all values of x. Clearing of fractions,

x + 7 = A (5 x + 2) + B (3 x
-

1)

or, x + 7 = (5 A + 3 B) x + 2 A - B,

which is to be true for all values of x. Then, by Art. 413, the

coefficients of like powers of x in the two members must be

equal ; or,

5^+35=1
2A-B=7



UNDETERMINED COEFFICIENTS. 313

From these two equations we obtain A = 2, and B = — 3.

Hence, the proposed decomposition is possible, and we have

x + 7 2 -3

(3x-l)(5x + 2) 3x-l'5x + 2

2 o

3a;-l 5x + 2

This result may be readily verified by finding the sum of

the fractions.

In a similar manner we can prove that any fraction, whose

denominator is composed of unequal first degree factors, can

be decomposed into as many fractions as there are factors,

having these factors for their denominators, and for their nu-

merators quantities independent of x.

EXAMPLES.

1. Decompose —2
—

j-
— —— into its partial fractions.

The factors of the denominator are x— 8 and x— 5 (Art. 118).

a .i
3 x — 5 A B ,* >.

Assume, then,
— — —=

-\ (J-)
x- — Id x + 40 x— 8 x — 5

Clearing of fractions, and uniting terms,

3 x - 5 = A (x
-

5) + B (x - 8)

19
Putting x = 8, 19 = 3 A, or A =

-g--

Putting cc= 5, 10= —3 B, or B= -—
g--

Note. The student may compare the above method of finding A and

B with that used on page 312.

Substituting these values in (1),

19 10

3^-5 "3" 3_19 10

x 1 - 13 x + 40
~~
x-S +

x — 5
~

3 (x
-

8)

~
3 (x

-
5)

'
AnS '
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EXAMPLES.

Decompose the following into their partial fractions

5ic — 2 3a; + 2 n cc

«• -
o
—r • ^ i—o

—
•

ar — 4 ar— 2 a;

x + 9 _ 2a; — 3
0.

6.
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If the terms of the numerator are expanded by the binomial

theorem, and the terms containing like powers of y collected

together, we shall have a fraction of the form

a, y'
1' 1 + b

r y
n ~ 2 + c

x y
n~ 3 + +ky

y
,

Dividing each term of the numerator by y
n
,
we have

ax b
x

cx l\

y y y v

Changing back y to x + h, this becomes

«i b, c, /.',

+ , ,

'

, + , ,' Q + +
x + h (x+ h)

2
(x + h)

3
(x + h)

n

This shows that the assumed fraction can be expressed as

the sum of n partial fractions, whose numerators are indepen-

dent of x, and whose denominators are the powers of x + h,

beginning with the first, and ending with the nth.

In accordance with this, we assume

a2 -11 a; + 26 A B
,

C

(x -3)
3

~
x - 3

T
(x
-

3)
2 ^

(x - 3)
3

'

Clearing of fractions,

x2 -llx + 26 = A(x-3)- + B(x-3)+ C

= A (x
2 -6x + 9) + B(x— B)+-C

= A x 2 + (B - 6 A) x + 9 A - 3 B + C.

Equating the coefficients of like powers of x,

A = l, B-6A = -11, and 9A-3B+ C=26

Whence, A= 1, B = -5, and C= 2.

Substituting these values,

a;
2-lla; + 26_ 1 5 2

(x
-

3)
3
~~ "

~x~^3
~

(x - 3)
2 +

(x
-

3)
3 '

US'
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EXAMPLES,

Separate the following into their partial fractions :

ar+3a: + 3 a;
2 3 a; — 10

(x + 1)
3

" '

(x-2)
3

*

(2a--5)
s

2 a; -13 3 a;
2 -4 18 a;

2 + 12 a; - 3

(x-5)
2

'

(cc + 1)
8

'

(3 x + 2/

CASE III.

420. When some of the factors of the denominator are

equal.

1. Separate zrrz into its partial fractions.
1 x (x + l)

3 l

The method in this case is a combination of the methods of

Cases I and II. We assume

3 a + 2 A B C D
+ ,.. . ,,, + ,.. , ^„ + — •

a; (x + l)
3

a- + 1 (x + l)
2

(a; + l)
3

Clearing of fractions,

3ai+ 2 = A x (x + l)
2 + B x {x + 1) + Cx + D (x + l)

3

= (A+ D) x*+ (2A+B+ 3D) x 2+ (A+B+ C+ 3D) x+B.

Equating the coefficients of like powers of x,

£> = 2, A + B + C+3 B = 3, 2A + B+3B = 0, and

A + B =

Whence, A= -2, B = -2, C= l, andZ>= 2.

Substituting these values,

3a; + 2 2 2 12,
a;(a; + l)

3
a; + 1

(a? + 1)
2

(a- + l)
3 x

It is impossible to give an example to illustrate every pos-

sible case; but no difficulty will be found in assuming the
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proper partial fractions, if attention be given to the following

general case. A fraction of the form

X
(x + a) (x + b) (x + m)

r
(x + n)

s

should he put equal to

A B E
t

F K
x+a x+b x + m (x+m)' (x + m)

r

L M R
+

x + n
+

(x + n)
2 + +

(x + n)
s
+

Single factors, like x + a and x + b, having single fractions

A B
like and - ——

, corresponding ;
and repeated factors,x+a -x+b

like (x + m)
r
, having r partial fractions corresponding, ar-

ranged as in Case II.

EXAMPLES.

Separate the following into their partial fractions :

8-3 x-x'2 15 - 7 x + 3 x2 - 3 xz

x(x + 2)
2

'

x 3

(x + 5)

3 ,-r
3 - 11 x2 + 13 x - 4 6 ar - 14 x + 6

x (x - 1) (x
-

2)
2

'

(x-2)(2x-3y
2

'

3a;-l
?

5 x2 + 3 x + 2

x2

{x + iy
'

x3

(x + iy
2

'

421. Unless the numerator is of a lower degree than the

denominator, the preceding methods are inapplicable.

:' .'•- + 1 .

For example, let it be required to separate
-—^— — into its

partial fractions. Proceeding in the usual way, we assume

2 .r- +1 A B
Ob *jC JC *fc -x.

Clearing of fractions,

2 x 2 + 1 = A (x
-

1) + B x = (A + B) x - A.
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Equating the coefficients of like powers of x, we have 2= 0;

an absurd result, and showing that the usual method is inap-

plicable.

But by actual division, as in Art. 150, we have

2z 2 +l 2« + l— £ +
x- — x x- X

2 x + 1 . .,„.-,We may now separate
—

^
into its partial fractions by

the usual method, obtaining

2a; + 1 1 3

x' — x X X 1"

Hence,
2a2 +l 2^ + 1 1 3

= 2 + —r- =2- - + - —,Ans.
x- X x- — X

APPLICATION TO THE REVERSION OF SERIES.

422. 1. Given y = 2x + x 2 — 2xz — 3x* + ,
to revert

the series, or to express x in terms of y.

Assume x = Ay + B if + G if + D if + (1)

Substituting in this the given value of y, we have

x=A(2x+ x 2-2xs-3xi

+...)+B(ix
2 + x 4+Axs-Sxi + ...)

+ <7(8x
3 + 12z 4

+...) + Z>(16z
4

+...) +

or, X: 2Ax+ A
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Substituting these values in (1),

V if 3 y
3 13 y

i

If the even powers of x are wanting in the given series, we

may abridge the operation by assuming x equal to a series

containing only the odd powers of y.

Thus, to revert the series y = x — x 3 + x5 — x1 + ,
we

assume x = A y + B y
3 + C y

5 + D y" +

If the odd powers of x are wanting in the given series, the

reversion of the series is impossible by the method previously

given. But by substituting another letter, say t, for x~, we

may revert the series and obtain a value of t, or of x2
,
in terms

of y ;
and by taking the square root of the result, express x

itself in terms of y.

If the first term of the series is independent of x, we cannot,

by the method previously given, express x definitely in terms

of y ; though we can express it in the form of a series in which

y is the only unknown quantity.

2. Kevert the series y = 2 + 2x — x2 — x3 + 2xi +

We may write the series,

y-2 = 2x-x2 -x3 + 2x4 + (1)

Assume x=A(y-2) + B(y-2y2

+C(y-2)
3

+D(y-2y+... (2)

Substituting in this the value of y — 2 given in (1), we have

x= A(2x— x2— xs +2x*+ ...) + B(4:X
2 + xi—ix3—4x*+ ...)

+ C(Sx
3 -12xi + ...) + D(lGx

4 + ...)+

or, x = 2 A x — A
+ 4:B

x2 - A
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Equating the coefficients of like powers of x,

2 A — l; whence, A = ^ .

— A + 4 B =:Jd
; whence, B = ^ .

o

— A-4:B + 8C= 0; whence, C = ^.o

7
2A-3B-12C+16I>= 0] whence, D= -j-.

Suhstituting in (2),

x=l(y-2)+l(1/ -2y+l(}/-2y+^(u-2y+ ,Am.

EXAMPLES.

Revert the following series to four terms :

3. y = x + x- + x 3 + x i +

4.
ij
= 2x + 3x 3 + 4:x 5 + 5x7 +

5. i/
= x — x3 + x 5 — x1 +

2 3 4
^y»— rj/*" 'V*^
\K/ *Aj *AJ

tAs \Kj \Aj

8. y = 3x-2x2 +3x 3 -4xi +

Note. This method may sometimes be used to find, approximately, the

root of an equation of higher degree than the second. Thus, to solve the

equation

we may put .1= 2/, and revert the series
; giving, as in Ex. 1, Art. 422,

1 1 „ 3 , 13
x = —

ii if-\ if if +
2 &

J
16 128

Putting back y=.l, we have

.1 .01 .003 .0013

^ 2 8 16 128

= .05-. 00125 + . 00019 -. 00001 + = .04893 + ,
Ans.

This method can, of course, only be used when the series in the second

member is convergent.
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XXXIX. — BINOMIAL THEOREM.
ANY EXPONENT.

423. We have seen (Art. 402) that when n is a positive

integer,

n(n— 1) „ n(n — l)(n— 2) „

(l + a;)»=l + wa; + —^r V+ — ^ '- xz +

We shall now prove that this formula is true when n is a

positive fraction, a negative integer, or a negative fraction.

1. Let n be a positive fraction, which we will denote by

p ...—
; p and q being positive integers.

Now (Art. 252), (1 + x)
* = V (1 + xf

= yi+px+ , (Art. 402).

Extracting the ^th root of this expression by the method of

Art. 247,

1 +px +
1«= 1

. p x
1 +— +

q j) x

That is, (l + a:)i"
= l +— + (1)

2. Let n be a negative quantity, either integer or fraction,

which we will denote by
— s.

Then (Art. 255),

=
, (by Arts. 402, and 423, 1).

1 + sx+ ' v J

From which, by actual division, we have

(l + x)-°= l-sx + (2)
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From (1), (2), and Art. 402, we observe that whether n is

positive or negative, integral or fractional, the form of the

expansion is

(1 + x)
n = 1 + n x + A x 2 + B x 3 + Cx* + (3)

x
Writing - in place of x, we have

a

/y* /y>-J /y.3 /y»4

1 + -) =l + n- + A~
r2
+B-+C—i +al a a1 a 6 a4

Multiplying this through by an
,
and remembering that

(x\
n r / x\ i

"

1+-) = a\l+-j =
(a + x)

n
,
we have

(a + x)
n = an + n a"' 1 x + A an

~ 2 x- + Ban ~ s xs + (4)

To find the values of A, B, etc., we put x + z for x in (3),

and regarding (x + z) as one term, we shall have

[1 + (x + z)']
r' = l + ii(x + z) + A(x + z)

2 + B(x + z)
3 +

= 1 + n x + A x'
1 + B xs +

+ (n + 2Ax + 3Bx2 + )*+ (5)

Regarding (1 + x) as one term, we shall have, by (4),

[(1 + x) +z~]
n = (1 + x)

n + n (l + x)
n - 1 z+ (6)

Since [1 + (x + z)~\
n = [(1 + x) + z\

n
, identically, we have

from (5) and (6),

l + nx+Ax 2+Bxz+ + (n+2Ax+ 3Bx2+ )z+

= (1 + a-)
n + w(l + a-)

n_1 * +

which is true for all values of z which make both members of

the equation convergent. Hence, by Art. 413, the coefficients

of z in the two series must be equal ; or,

11 (l + x)
n - 1 = n + 2Ax + 3Bx2 +
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Multiplying both members by 1 + x,

n(l + x)
n = n+ (2A + n)x+(3B+2A)x2 +

or, by (3),

n + n2 x + n Ax2 + n Bx3 + = n+ (2 A + n) x

+ (3B+2A)x2 +

•which is true for all values of x which make both members of

the equation convergent ; hence, equating the coefficients of

like powers of x,

sfy {fl, j\
2 A + n = n2

; whence, 2 A = n2 —
n, or A = - --=

3B+2A = ?iA; whence, 3 B=n A-2 A = A (n-2)

„ A (n
-

2) n (n
-

1) (n - 2)B=~3— =
\3

Substituting in (4),

(a + x)
n = an + na"- 1 x+

V

^\~
'
an~ 2 x2

n(n-l)(n-2)+ —i
-^ an

~ a Xs +

which has tbus been proved to hold for all values of n, positive

or negative, integral or fractional. Hence, the Binomial The-

orem has been proved in its most general form. The result,

however, only expresses the value of {a + x)
n for such values

of x as make the second member convergent (Art. 413).

424. When n is a positive integer, the number of terms in

the expansion is n + 1 (Art. 399). When n is a fraction or

negative quantity, the expansion never terminates, as no one

of the quantities n — 1, n — 2, etc., can become equal to zero.

The development in that case furnishes an infinite series.
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425. The method and notes of Art. 403 apply to the ex-

pansion of expressions hy the Binomial Theorem when the

exponent is a fractional or negative quantity.

2

1. Expand (a + x)
:! to five terms.

2
The exponent of a in the first term of the expansion is -

,
and

o
decreases hy one in each succeeding term.

The exponent of x in the second term of the expansion is 1,

and increases hy one in each succeeding term.

The coefficient of the first term is 1
;
of the second term,

2 2-
; multiplying the coefficient of the second term, -, hy the ex-

o o
1 2

ponent of a m that term,
— -

,
and dividing the product,

— -
,

hy the numher of the term, 2, we ohtain— - as the coefficient of

the third term
;

etc.

2 2_i 1 _4 4 -i 7 _jo
Kesult, a 3 + ~a 3x—-a ^x2

+^ra
3 x3—

7r-r^a
s xA

-\-

.^1-2

2. Expand (1 + 2 a:
2
)
-2

to five terms.

(l + 2zV 2 =D- + (2*-)]-

= l- 2 - 2.1-= . (2 x$) + 3.1- 4
. (2 xfy - 4.1- 5

. (2 a;*)
8

+ 5.1- 6
. (2 a;*)

4

i
= 1 - 2 (2 x-) + 3 (4 a)

- 4 (8 x?) + 5 (16 a
2

)
- ....

= l-4a 2 + 12x-32a:- + S0a;2 —
,
Ans.

3. Expand (a
-1 — 3 a: *)

*
to five terms.

(a-
1 -3a5

~
i
)~*= [(«"

1
) + (-3 a;

-
*)]"*
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= (a-
1
)"^

-
\ (co-

1

)-'" (- 3 aT*) +
"
(0~V (- 3 x~fy

1 40 L3 _ JL 455 —JUS 1

-TFr(0~v (-3*
l
)
8

+iS(«-
1
)
¥ (-3* *)«-81 v y v y '

243

447 _i 14 lo 140 13 _a= ft
3_* :w 3a; 2

) + -3
(9 a;-i)__^ aV(_27 a; 2)

O 9 ol

+i-*>o-
4 7 _i J-" 140 13 _a 455 .lb=a^+4a 3

a;
2 + 14a 3

cc
_1 + —— a 3 x 2 + -—- a 3 #~ 2

,o o

^l?zs.

EXAMPLES.

Expand the following to live terms :

4. O + z)
2 8. .8/r

—— '

12. (m~"3-_2«
2
)
-2

.

v y
yl + a;

v '

5. (1 + ^)-
6

. 9. ^^y3
- 13. (l + e.r 1

)^.

6. (l-x)~%. 10. —— . 14. (a;
4+ 4aJ)t

c 2 + d

7. V^1^- 11. (aT*-8y)*. 15-

(g
-i_8y-y

426. The expression for the rth term, derived in Art. 404,

holds for any value of n, as it was deduced from the expansion

which has been proved to hold universally.

1. Find the 7th term of (1
—

cc)~
3

.

Here r= 7, n =— ^ ; hence, the
o

1 4 _7 10 13 16

~3 ,_
3*~3'""3"'

'

"3""
"

3 . NR 728a;6

j th term =
172.3.4.5.6 (

~
x) = "656T

'

Ans.
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2. Find the 8th term of (eft + x~%)~
z
.

Here r = 8, n = — 3
; hence, the

-3.-4.-5.-6.—7.-8.-9 , ^ „ . _*
,8thterm=

0.3.4.5.6.7 ^-W
(* ^

= — 36 ar b x 3
,
Ans.

EXAMPLES.
Find the

3. 8th term of \/ a + x. 7. 7th term of (x'
1 —

ifift.

4. 7th term of (1 + m)-
4

. 8. 5th term of .

(n~*
— <ry

5. 5th term of (1
—

ar)~ *. 9. 6th term of (eft + 3 x~ l

)~%.

1 -2
6. 6th term of . 10. 8th term of (x

3

y — z 3
)
-3

.

y'x
2 + f

427. To find any root of a number approximately by the

Binomial Theorem.

1. Find the approximate square root of 10.

y/
10 = 10* = (9 + 1)

* = (3
2 + 1)*

Expanding this hy the Binomial Theorem,

(3' + 1)* = (3*)* + \ (3
a

)-i
-

\ (3')-* + 1 (3T*

111 ^— 3 _L Z 3-1_ Z Q-8 i Q-5 ^
q-7 i-6 +

2
.6

8
.3

+jg.
3

-J28-3 +

= 3-i _1_ J_ _t_ _JL+
2.3 8.33 + 16.36 128. 37+

= 3 + .16667 - .00163 + .00026 - .00002 +
= 3.16228+,
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which is the approximate square root of 10 to the fifth decimal

place, as may be verified by evolution.

2. Find the approximate cube root of 26.

$ 26 = 26* = (27 -1)3 = (3
3 -

1)*

Expanding this by the Binomial Theorem,

(3
3 -

1)* = (3
3

)^ + \ (3
3

)-

3
*
(- 1)

- i
(3

3

)"* (- 1)»

+|[
(3

3r l
(-i)

3 -

1 1 K
Q Q-2 Q-5 Q-8

-°~r 6 ~9 "si"5 ~

= 3
3.3 2 9.35 81. 38

= 3 - .037037 - .000457 - .000009 -

= 2.962497 + ,
Ans.

RULE.

Separate the given number into two parts, the first of whir//

is the nearest perfect power of the same degree as the required

root. Expand the result by the Binomial Theorem.

Note. If the second term of the binomial is small, the terms in the

expansion converge rapidly, and we obtain an approximate value of the

required root by taking the sum of a few terms of the development. But

if the second term is large, the terms converge slowly, and it requires the

sum of many terms to insure a considerable degree of accuracy.

EXAMPLES.

Find the approximate values of the following to five deci-

mal places :

3. #31. 5. #99. 7. #17.

4. #9. 6. #29. 8. #78.
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XL. — SUMMATION OF INFINITE SERIES.

428. The Summation of a Series is the process of finding
a finite expression equivalent to the series.

Different series require different methods of summation,

according to the nature of the series, or the law of its forma-

tion. Methods of summing arithmetical and geometrical series

have already been given (Arts. 369, 377, and 380). Methods

applicable to other series will now be treated.

RECURRING SERIES.

429. A Recurring Series is one in which each term, after

some fixed term, bears a uniform relation to a fixed number of

the preceding terms. Thus

l + 2x + 3x2 + Ax 3 +

is a recurring series, in which each term, after the second, is

equal to the product of the preceding term by 2 x, plus the

product of the next term but one preceding by — x2
.

The sum of these constant multipliers is called the scale of
relation of the series, and their coefficients constitute the scale

of relation of the coefficients of the series. For example, in

the series 1 + 2 x + 3 x'
2 + 4 xs + ,

the scale of relation is

2 x — x2
,
and the scale of relation of the coefficients is 2 — 1.

430. A recurring series is said to be of the first order

when each term, commencing with the second, depends on the

one immediately preceding; of the second order, when each

term, commencing with the third, depends ujion the tiro im-

mediately preceding ;
and so on.

If the series is of the first order, the scale of relation will

consist of one term
;

if of the second order, it will consist of

two terms ; and, in general, the order and the number of terms

in the scale of relation will correspond.

431. To find the scale of relation of the coefficients of a

recurring series.
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1. If the series is of the first order, it is a simple geometri-

cal progression, and the scale of relation of the coefficients is

found by dividing the coefficient of any term by the coefficient

of the preceding term.

2. If the series is of the second order, let a, b, c, d,

represent the consecutive coefficients of the series, and p + q
their scale of relation. Then,

c =p b + q a)

d=p c + q b
j
(4>

to determine p and q ; solving, we obtain

ad— bc .. c
2— b d

p = 77 ,
and q = — — .

ac — b1 ac— b
1

3. If the series is of the third order, let a, b, c, d, e, f,

represent the consecutive coefficients of the series, and p + q

+ r their scale of relation. Then,

d=p c + q b + r a

e =p d + q c + r b

f=X> e + q d + r c

from which we can find p, q, and ;.

432. To ascertain the order of a series, we may first make
trial of a scale of two terms, and if the result does not corre-

spond with the series, we may try three terms, four terms, and

so on, till the true scale of relation is found. If we assume

the series to be of too high an order, the terms of the scale

will take the form r.
•

433. To find the sum of a recurring series, when the scale

of relation of its coefficients is known.

Let

a + bx + cx2 + dx3 + +jx
n ~ 3 + kxn ~ 2 + lxn

~ l +

be a recurring se"ries of the second order. Let S denote the
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sum of n terms of the series
;
and let p + q be the scale of re-

lation of the coefficients. Then,

S= a + b x + c x 2 + d x3 + + lxn~ x

p Sx=pax+pbx2 +pcx3 + +pkxn ~ 1

+plx
n

q Sx
2= q ax

2 + q b Xs + + qjx
n~ 1+q k xn + qlx

n + 1

Subtracting the last two equations from the first,

S—p Sx — q Sx
2= a + bx —pax—plxn —

q kxn — qlx
n + 1

the rest of the terms of the second member disappearing, be-

cause, since p + q is the scale of relation of the coefficients,

c =p b + q a, d =p c + q b, I=p k + qj.

Therefore we have

a + (b—p a) x — (p I + q k) xn — q I xn + 1

S=
px — q x"

the formula for finding the sum of n terms of a recurring series

of the second order.

But if n becomes indefinitely great, and the series is con-

vergent, then the limiting values of the terms which involve

xn and xn + ! must become 0, and we have at the limit

s= a + (p-pa)x
1 —p x — qx

2

the formula for finding the sum of an infinite recurring series

of the second order.

If q = 0, then the series is of the first order, and conse*

quently b =p a; then,

1 —px
the formula for finding the stun of an infinite recurring series

of the first order. (Compare Art. 380.)
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In like manner, we should obtain

a + (b
—p a) x + (c —pb — qa)x

2

o — -z o 5 (o)1 —p x — q x-— r x6 w

the formula for the summation of an infinite recurring series

of the third order.

434. A recurring series, like other infinite series, originates

from an irreducible fraction, called the generating fraction.

The summation of the series, therefore, reproduces the frac-

tion
;
the operation being, in fact, the exact reverse of that in

Art. 414.

435. 1. Find the sum of l+ 2cc + 8ar+28z3+100x4+

We must first determine the scale of relation of the coeffi-

cients. In accordance with Art. 432, we first assume the

series to be of the second order. We have a= i, b = 2, c==8,
d= 28. Substituting in the values of p and q derived from

(^4), Art. 431, we have p = 3 and q = 2. To ascertain if this

is the proper scale of relation, consider the fifth term, 100 x 4
;

this should be 3 x times the preceding term, plus 2 x 2 times

the next preceding term but one, or, 84 x 4 + 16 x*. This shows

that the series is of the second order.

Substituting in (1) the values of a, b, p, and q, we have

l + (2
—

3)a; _ 1 — x
b ~ i-Zx-2tf

~
l-3x-2x2 '

EXAMPLES.

Find the sum of the following series :

2. l + 2a- + 3x 2 + 5a;3 + 8a;4 +

a ac a c
2

„ a c
3

3> b^¥ x + !F x"-l^ x+

4. 4 + 9a; + 21ar+51;r5 +
5. l + 3x + 5x2 + 7x3 +
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6. 2-a + 2a2 -5a3 +10ai -17a5 +

7. 3 + 5x + 7 x'
2 + 13.x'

3 + 23 a;
4 + 45 x* +

8. l + 3x + 4:x2 +7x3 +llx4 +

9. 2 + 4x-x*-3xs + 2x i + ±x 5 +

DIFFERENTIAL METHOD.

436. The Differential Method is the process of finding any

term, or the sum of any number of terms, of a regular series,

by means of the successive differences of its terms.

437. If, in any series, we take the first term from the sec-,

ond, the second from the third, the third from the fourth, and

so on, the remainders will form a new series called the first

order of differences.

If the differences be taken in this new series in like manner,

we obtain a series called the second order of differences ; and
so on.

Thus, if the given series is

1, 8, 27, 64, 125, 216,

the successive orders of differences will be as follows :

1st order, 7, 19, 37, 61, 91,

2d order, 12, 18, 24, 30,

3d order, 6, 6, 6,

4th order, 0, 0,

Hence, in this case there are only three orders of differences.

438. To find any term of a series.

Let the series be

al) a2> a3> a i) a5> an1 an+l>

Then the first order of differences will be
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the second order of differences will be

a 3
— 2a2 + a

l ,
aA
— 2a 3 + a 2 ,

a5
— 2ai + a3 , ,

the third order of differences will be

aA
— 3 a 3 + 3 a2

— a
x ,

a5
— 3 aA + 3 a3

— a2 , ,

the fourth order of differences will be

a5
— 4 aA + 6 a&

— 4 a2 + a1} ,

and so on
;
where each difference, although a compound quan-

tity, is called a term.

Let now d
x ,
d2 ,

ds ,
dA , represent the first terms of the

several orders of differences. Then,

dl
= a 2

— a
l ; whence, a2

= a l + dA .

d2
= a 3

— 2 a 2 + ax ; whence, a3
— 2a2

— al +d2 ^2ai + 2d
1

— a
x + d2

= aA + 2 dA + d2 .

d3
= aA

— 3 as + 3 a 2
— a

x ; whence, aA
= a x + 3 d

v + 3 d2 -f- ds .

dA
= a 5

— A a A + 6 a3
— Aa 2 +a l ; whence, a5

= a
l + 4^d1 + 6d2

+ ±d3 +dA
.

We observe that the coefficients of the value of a 2 are the

same as the coefficients of the first power of a binomial; the

coefficients of the value of a3 are the same as the coefficients

of the second power of a binomial
;
and so on. Assume that

this law holds for the nth term
;
that is, that the coefficients

of the value of aH are the same as the coefficients of the (n
—

l)th

power of a binomial
; then,

,
„ . (n-l)(n-2) .

a*= «i + (n
-

1) (h + Q d2

+
(„-!)(„- 2) <«-S)

d3+ (1)

If the law holds for the nth term in the given series, it will

also hold for the «th term in the first order of differences
; or,
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an+1 -an
= d1 +(n-l)d2 + ^—-^f—^d;i + (2)

Adding (1) and (2), we have

(n - 1) (n
-

2)
a ,+1 = «!+[! + (n-l)]dl + (n

-
1) +

+ (w-l)(w-2) (w-l)(w -2)(ra-3)

~|2- ~\T

2
,/.,

= aj + n dx H
r^- [2 + n — 2] d2

(n - 1) («
- 2) ro

, n(n-l) ? »(»-l)(n-2) . ,„= «! + »!(/!+ -^~ <4 + ^ "^3 + (3)

where the coefficients are the same as the coefficients of the rath

power of a binomial. Hence, if the law holds for the nth term,

it also holds for the {n + l)th term
;
but we have shown it to

hold for the fifth term, a5 ;
hence it holds for the sixth term

;

and so on. That is, Formula (1) holds for any term in the

series.

When the differences finally become 0, the value of the nth

term can be obtained exactly ; but, in other cases, the result is

merely an approximate value.

439. To find the stem of any number of terms of a series.

Let the series be

a, b, c, d, e, (1)

Let S denote the sum of the first n terms. Assume the

series

0, a, a + b, a + b + c, a + b + c + d, (2)

in which the (n + l)th term is obviously equal to the sum of n

terms of the given scries ; that is, S is the (n + l)th term of

series (2). Now the first order of differences of series (2) is
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the same as series (1) ; hence, the second order of differences

of series (2) is the same as the first order of (1) ;
the third

order of (2) is the same as the second order of (1) ;
and so on.

Then, letting a', d\, d'2 ,
d's , represent the first term, and

the first terms of the several orders of differences of (2), we

have a' = 0, d\ = a, d'2
= dl,d's = d2 ,

where a, d
x ,
d2 ,

are the first term, and the first terms of the several orders of

differences of (1). But, by (3), Art. 438, the (n + l)th term

of series (2) will be

n (n - 1) „ n (n - 1) (n
-

2)

In this put for a', d\, d'2 ,
d'3 ,

their values; then

n (n — 1) , n (n
—

1) (re
—

2) .

S=na + —
^|2
—L d1 +- ~" L d,+ (3)

440. 1. Find the 12th term of the series 2, 6, 12, 20,

30,

The successive orders of differences will be as follows :

1st order, 4, 6, 8, 10,

2d order, 2, 2, 2,

3d order, 0, 0,

Then ax
= 2, d

Y
= 4, d2

= 2, ds ,
dA ,

= 0, and n = 12.

Substituting in (1), Art. 438, the 12th term

(12 — 1) (12 — 2)= 2 + (12-l)4+
l

>)}
; 2 = 2+ 44+ 110=156,^.

2. Find the sum of 8 terms of the series 2, 5, 10, 17,

1st order of differences, 3, 5, 7,

2d order of differences, 2, 2,

3d order of differences, 0,

Then a= 2, d, = 3, d, = 2, n = S.
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Substituting these values in (3), Art. 439, we have

= 16 + 84 + 112 = 212, Ans.

EXAMPLES.

3. Find the first term of the fifth order of differences of

the series 6, 9, 17, 35, 63, 99,

4. Find the first term of the sixth order of differences of

the series 3, 6, 11, 17, 24, 36, 50, 72,

5. Find the seventh term of the series 3, 5, 8, 12, 17,

6. Sum the first twelve terms of the series 1, 4, 10, 20,

35,

7. Sum the first hundred terms of the series 1, 2, 3, 4,

5,

8. Find the 15th term of the series l 2

,
22

,
32

,
4 2

,

9. Sum the first n terms of the series l 3
,
23

,
33

,
43

,
53

,

10. Sum the first n terms of the series 1, 2
4
,
3 4

,
44

,
54

,
64

,

11. If shot be piled in the shape of a pyramid, with a trian-

gular base, each side of which exhibits 9 shot, find the number

contained in the pile.

12. If shot be piled in the shape of a pyramid, with a square

base, each side of which exhibits 25 shot, find the number

contained in the pile.

INTERPOLATION.

441. Interpolation is the process of introducing between

terms of a series other terms conforming to the law of the

series.
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Its usual application is in finding intermediate numbers

between tbose given in Mathematical Tables, which may be

regarded as a series of equidistant terms.

442. The interpolation of any intermediate term in a

series, is essentially finding the nth term of the series, by the

differential method (Art. 438). Thus,
Let t represent tbe term to be interpolated in a series of

equidistant terms, and p the distance the term t is removed

from the first term, a, expressed in intervals and fractions of

an interval
;
that is, p being the distance to the nth term,

p = n — 1 intervals.

In Formula (1), Art. 438, putting p for n — 1, the nth. term

t=a+pdl+ pj£!=v. il+
p(*- 1np-*>

dt+

443. 1. In the series :j^ , 7-7 > TE > T£ > T?? > ,
find the

13 14 15 16 17

middle term between 5-= and ^-7 .

15 lb

Here, the first differences of the denominators are

1, 1, 1, 1,

The second differences are

0, 0, 0,

Whence, d
t
= 1, and d2

= 0.

5
The distance to the required term is 2\ intervals, or p = ^-

Make a = 13, the denominator of the first term
;
then by the

preceding formula, the denominator of the required term,

1 2
Therefore the required term is — or 757, Ans.

31 ol

~2
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2. Given ^94 = 9.69536, ^95 = 9.74679, y/
96 = 9.79796

;

to find y/94i.

Here, the first differences are

.05143, .05117,

and the second differences are

-.00026,

Whence, ^= .05143, d2
= -.00026,

. 1 . 1
The distance of the required term is -

interval, orp= -? ,

Then the required term,

1(|-1
* = 9.69536 + 1 x .05143 +

4 ^

(- ,0(

= 9.69536 + .01286 - J, (- .00026) +

= 9.69536 + .01286 + .00002 +

= (approximately) 9.70824, Ans.

EXAMPLES.

3. Given ^64 = 4, ^65 = 4.0207, f 66 = 4.0412, ^67 =
4.0615

;
find ^66A

4. Given ^45 = 3.556893, ^47= 3.608826, ^49= 3.659306,

^51 = 3.708430; find ^48.

5. Given ^5 = 2.23607, yf
6= 2.44949, ^7 = 2.64575, y/8

= 2.82843
;
find \'r>M.

6. (Jivcn the length of a degree of longitude in latitude

41°=4528 miles; in latitude 42° = 44.59 miles; in latitude

43°=43.8S miles; in latitude 44°= 43.16 miles. Find the

length of a degree of longitude in latitude 11' 30'.
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7. If the amount of $ 1 at 7 per cent compound interest for

2 years is $ 1.145, for 3 years $ 1.225, for 4 years $ 1.311, and

for 5 years $ 1.403, what is the amount for 4 years and 6

months ?

XLI. — LOGARITHMS.

444. The logarithm of a quantity to any given base, is the

exponent of the power to which the base must be raised to equal
the quantity.

For example, if ax = m, x is the exponent of the power to

which the hase, a, must be raised to equal the quantity, m;
or, x is the logarithm of m to the base a

;
which is briefly

expressed thus :

x = loga m.

445. If a remain fixed, and m receive different values, a

certain value of x Avill correspond to each value of m; and

these values of x taken together constitute a System of Loga-
rithms. And as the base, «., may have any value whatever, the

number of possible systems is unlimited.

For example, suppose a = 3.

Then, since 3°= 1, by Art. 444, =
log., 1

" 3X= 3,
" " l = log3 3

" 32
=9, " " 2 = log3 9

Hence, in the system whose base is 3, log 1 = 0, log 3 = 1,

log 9 = 2, etc.

Again, suppose a = 12.

Then, since 12 1 = 12, 1 = log12 12

" 122 = 144, 2 = log12 144

Hence, in the system whose base is 12, log 12 = 1, log

144 = 2, etc.
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446. The only system in extensive use for numerical com-

putations is the Common System or Briggs' System, whose

base is 10. Therefore the definition of the common logarithm
of a quantity is the exponent of that power of 1.0 which equals

the quantity. Hence,

Since 10° = 1, log10 1 =
10 1 = 10, log 10 10 = 1

" 102

=100, log10 100 = 2

TO3= 1000, log10 1000 = 3

" 10- 1=i=
.l, login .l =-l

a 10- 2 =^ = .01, log10 .01=-2

'< 10- 3-^ = .001, log10 .001 = -3, etc.

447. It is customary in using common logarithms to omit

the subscript 10 which denotes the base
; hence, we may write

the results of Art. 446 as follows :

log 1 = log .1=- 1 = 9- 10

log 10 = 1 log .01 = - 2 = 8 - 10

log 100 = 2 log .001 = -3 = 7 -10

log 1000 = 3 etc.

The second form of the results in the second column will be

found less complicated in the solution of examples.

448. We infer the following from the first column of

Art. 447 :

The logarithm of any number between 1 and 10, lies between

and 1.

The logarithm of any number between 10 and 100, lies be-

tween 1 and 2.
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The logarithm of any number between 100 and 1000, lies be-

tween 2 and 3, etc.

Or, in other words,

The logarithm of any number with one figure to the left of

its decimal point, is equal to plus some decimal.

The logarithm of any number with two figures to the left of

its decimal point, is equal to 1 plus some decimal.

The logarithm of any number with three figures to the left

of its decimal point, is equal to 2 plus some decimal, etc.

449. Reasoning in the same way from the second column

of Art. 447,

The logarithm of any number between 1 and .1, lies between

and 9 — 10, or between 10 — 10 and 9 — 10.

The logarithm of any number between .1 and .01, lies be-

tween 9 — 10 and 8 — 10.

The logarithm of any number between .01 and .001, lies be-

tween 8 — 10 and 7 — 10, etc.

Or, in other words,

The logarithm of any decimal with no zeros between its

point and first figure, is equal to 9 plus some decimal — 10.

The logarithm of any decimal with one zero between its

point and first figure, is equal to 8 plus some decimal — 10.

The logarithm of any decimal with two zeros between its

point and first figure, is equal to 7 plus some decimal — 10,

etc.

450. It will be seen from the two preceding articles that

in general the logarithm of a number consists of two parts,

one integral, the other decimal. The integral part is called

the characteristic ; the decimal part, the mantissa. For rea-

sons which will be given hereafter, only the mantissa of the

logarithm is given in the tables
;
the characteristic must be

supplied by the reader. The rules for characteristic are based

on the results obtained in the last parts of Arts. 448 and 449.
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451. I. If the number is greater than 1, the characteristic

is 1 less than the number offigures to the left of the decimal

[lit';
lit.

For example, characteristic of log 354.89 = 2,

characteristic of log 906328.3 = 5, etc.

II. If fin' number is less than 1, the characteristic is found

by subtracting the number of zeros between the decimal point

cut/ first significant figure from 9; writing
— 10 after the

mantissa.

For example, characteristic of log .00792 = 7, with — 10

after the mantissa; characteristic of log .2583 = 9, with —10
after the mantissa

;
etc.

It is customary in ordinary computation to omit the — 10

after the mantissa
;

it should he remembered, however, that it

is really a part of the logarithm, and should be allowed for,

and subjected to precisely the same operations as the rest of

the logarithm. Beginners will find it useful to write it in

all cases
;
and in some problems it cannot conveniently be

omitted.

Note. Many writers, in dealing with the characteristics of the loga-

rithms of numbers less than 1, combine the two portions of the characteris-

tic, writing the result as a negative characteristic before the mantissa.

Thus, instead of such an expression as 7.603582-10, the student will fre-

quently find 3.6035S2
;
a minus sign being written over the characteristic,

to denote that it alone is negative, the mantissa being always positive. The

objection to this notation is the inconvenience of using numbers partly

positive and partly negative.

PROPERTIES OF LOGARITHMS.

452. In any system the logarithm of unity is zero.

For, since a = 1, for any value of a, = loga 1.

453. In any system the logarithm of the base itself is

unity.

For, since a 1 = a, for any value of a, 1 = log„ a.
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454. hi any system, whose base is greater than unity, the

logarithm of zero is minus infinity.

For, since or 00 = —- =— = 0,
— cc = loga 0.

a go

If the base is less than unity, the logarithm of is + cc .

455. In any system the logarithm of the product of any

number of factors is equal to the sum of the logarithms of

those factors.

Assume the equations,

-
"H whence, by Art. 444, [

x ~~
!°g"

Multiplying, a x X cC> — m n, or ax +
\— m n

Whence, x + y = loga m n

Substituting values of x and y,

loga m n — loga m + loga n.

If there are three factors, m, n, andj?,

loga m np = loga (m n Xp) = (Art. 455) loga m n + \ogap

= loga m + loga n + loga p.

An extension of this 'method will prove the theorem for any
number of factors.

By the application of this theorem, we may find the loga-

rithm of a number, provided we know the logarithm of each

of its factors. For example, given log 2 = 0.301030, log 3 =
0.477121, required log 72.

log 72 = log (2 x 2 x 2 x 3 X 3)

= log 2 + log 2 + log 2 + log 3 + log 3

= 3 x log 2 + 2 x log 3

= 0.903090 + 0.954242 = 1.857332, Ans.
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EXAMPLES.

Given log 2 = 0.301030, log 3 = 0.477121, log 7 = 0.845098,

calculate :

•

1. log 48. 4. log 98. 7. log 1G8. 10. log 3087.

2. log 441. 5. log 84. 8. log 7056. 11. log 15552.

3. log 56. 6. log 567. 9. log 504. 12. log 14406.

456. In any system the logarithm of a fraction is equal

to the logarithm of the numerator minus the logarithm of the

denominator.

Assume the equations,

ax = m) i fx = loga m
„ > whence, { ,

oa
ay — n J (y = \oga n

Dividing,
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1. log 15. 4. log 175. 7. logTf

2. log 125. 5. log 3i. 8. log—,

10

T3. log—. 6. loglH. 9. log5£.

457. In any system the logarithm of any power of a

quantity is equal to the logarithm of the quantity, multiplied

by the exponent of the power.

Assume the equation,

ax =
in, whence, x = loga m

Eaising both members of the assumed equation to the^th

power,
(a

x
)P = mP, or aP x = mP

Whence, px = log„ mP

Substituting the value of x,

loga mP=p\oga m.

458. In any system the logarithm of any root of a quan-

tity is equal to the logarithm of the quantity, divided by the

index of the root.

For, loga v'm = loga (m7) = (Art. 457)
-
loga m.

459. In the common system, the mantissa; of the loga-

rithms of all numbers having the same sequence of figures

will be the same.

For example, suppose we know that log 3.053 = .484727.

Then,log30.53=log(3.053xl0)=log3.053+logl0=.484727
+ 1= 1.484727.

Also, log 30530= log (3.053x 10000) = log 3.053 + log 10000

= .484727 + 4 = 4.484727.



346 ALGEBRA.

Again, log.03053=log (^~J=log3.053-logl00=.484727

-2= .484727+ 8-10= 8.484727-10.

It is clear, then, that if a number he multiplied or divided hy

any integral power of 10, thereby producing another number

having the same sequence of figures, the mantissse of their

logarithms will be the same.

Or, to illustrate, if log 3.053 = .484727,

then, log 30.53 = 1.484727 log .3053 = 9.48472? - 10

log 305.3 = 2.484727 log .03053 = 8.484727 - 10

log 3053. = 3.484727 log .003053 = 7.484727 - 10

etc. etc.

We may now see the reason why, as stated in Art. 450, only
the mantissa? are given in the table

;
for if we wish to find the

logarithm of any number, we have only to find the mantissa

of the sequence of figures composing it from the table, and can

prefix the proper characteristic, depending on the position of

the decimal point, in accordance with the rules stated in Art.

451. This property of logarithms is only enjoyed by the com-

mon system, and constitutes its superiority over all others.

460. Given the logarithm, of a quantity to a certain base,

to calculate the logarithm of the same quantity to any other

base.

Assume the equations,

a x= m) i (x = log, m
,,. > whence, < ,

oa
O'J =m) '

\y = log6 m
From the assumed equations, ax = by

l I £
Hence, (a*)?/

=
(tity, or av = b

Whence, - = lo£„ b

y

X
°h y

l°ga h
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Substituting the values of x and y,

, log„ m
log,, m = . .

log„£

That is, if we know the logarithm of m to a certain base, a,

its logarithm to any other base, b, is found by dividing by the

logarithm of b to the base a.

461. To show that loga 6 X log6 a= l, for any values oj

a and b.

Assume the equation,

ax = b, whence x = loga b

Taking the - power of both members,
00 III

(a
xy= bx

,
or b

x = a

Whence, - = log6 a7 x

Therefore, loga b X log6 a= x X -= 1-

462. We append a few examples to illustrate the applica-

tions of Arts. 455, 456, 457, and 458.

e

L l0g © d=4 l0g
!'

(Art. 457)

= -
(log a - log b), (Art. 45G) .

Co

2. log
% a *V b = log Q a x

m
\J b)

-
log % e, (Art. 456)

= log \f
a + log y

7 ^ — log y/ c, (Art. 455)

= - log a-\ log b log c, (Art. 458).
n m P

The following are proposed as exercises

a b c

~d~e.
3. log -7— = log a + log b + log c — log d — log e.
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4. log (J/«xJ
3 X c-)

= -
log « + 3 log & + ^ log a.

5. log^ = r, log2--log3.
3g

o o

6. log \7
— = -

(2 log a — log b — log c).
V c n

„ . V a b 1 „ _ _ . 1

7 - log -^y—
= -

(log « + log &)
-—

log c.

8 - l°g >
= t log a

—
log & — s log c — 2 log tf.

bc$d2 4 °

( s I a _ ™\ 1 to
9 - loS VV ^

+ (
c d)

"J
=

5 (
loS « - log ^) + — (logc+ logd)-

USE OF THE TABLE.

463. The table (Appendix) gives the mantissa? of the

logarithms of all numbers from 1 to 10000, calculated to six

decimal places. On the first page of the table are the loga-

rithms of the numbers between 1 and 100. This table is

added simply for convenience, as the same mantissae are to be

found in the rest of the table.

To find the logarithm of any member consisting of four

figures.

Find, in the column headed N, the first three figures of the

given number. Then the mantissa, (if the required logarithm

will be found in the horizontal line corresponding, in the ver-

tical column which lias the fourth figure of the given number

at the top. If only the last four figures of the mantissa are

found, the first two figures may be obtained from the nearest

mantissa above, in the same vertical column, which consists of

six figures. Finally, prefix the proper characteristic (Art.

451).
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For example, log 140.8 = 2.148603

log .05837 = 8.766190 - 10

log 8516. = 3.930236

For a number consisting of one or two figures, use the first

page of the table, which needs no explanation ;
for a number

of three figures, look in the column headed 1ST, and take the

mantissa corresponding in tbe column headed 0. For exam-

ple, log 94.6 = 1.975891.

464. To find the logarithm of a number of more than four

figures.

For example, let it be required to find log 3296.78.

From the table, we find log 3296 = 3.517987

log 3297 = 3.518119

That is, an increase of one unit in the number produces an

increase of .000132 in the logarithm. Then' evidently an in-

crease of .78 unit in the number will produce an increase of

.78 X .000132 in the logarithm = .000103 to the nearest sixth

decimal place;

Therefore, log 3296.78= log 3296 + .000103

= 3.517987 + .000103= 3.518090, Ans.

Note. The foregoing method is based upon the assumption that the

differences of logarithms are proportional to the differences of their corre-

sponding numbers, which is not strictly correct, but is sufficiently exact

for practical purposes.

We derive the following rule from the above operation :

Find in the table the mantissa of the first four figures,

without regard to tin' position of the decimal point.

Find the difference between this and the mantissa of the

next 7iigher number of four figures ; (called the tabular dif-

ference, and to be found in the column headed D on each

page : see Note on page 350.)

Multiply the tubular difference by the rest of the figures of

the given number, with a decimal point before them.

Add the result to the mantissa of the first four figures.

Prefix the proper characteristic.
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1. Find the logarithm of .02243076.

Mantissa of 2243 = 350829

Tabular difference = 194 lj>

.076 350844

1.164

13.58

Correction = 14.744 = 15 nearly.

Am. 8.350844-10.

Note. To find the tabular difference mentally, subtract the last figure

of the mantissa from the last figure of the next larger, and take the nean si

whole number ending in that figure to the number in the column headed

D in the same line. For instance, in finding log .02243076, the last figure

of the mantissa of 2243 is 9, and of the next larger mantissa, 3
;
9 from 13

leaves 4, and the nearest number ending in 4 to 193, the number in the

column headed D, is 194, the proper tabular difference.

EXAMPLES.

Find the logarithms of the following numbers :
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465. To find the number corresponding to a logarithm.

For example, let it be required to find the number whose

logarithm is 3.693845.

Since the characteristic depends only on the position of the

decimal point, and in no way affects the sequence of figures

corresponding, we ought to obtain all of the number corre-

sponding, except the decimal point, by considering the man-

tissa only. We find in the table the mantissa 693815, of which

the corresponding number is 4941, and the mantissa 693903,

of which the corresponding number is 4 (
.)42.

Tbat is, an increase of 88 in the mantissa produces an in-

crease of one unit in the number corresponding. Hence, an

increase of 30 in the mantissa will produce an increase of §§ of

a unit in the number, or .34 nearly. Therefore,

Number corresponding = 4941 + -34 = 4941.34, Ans.

We base the following rule on the above operation :

Find in the table the next less mantissa, the four figures

corresponding, and the tabular difference.

Subtract the next less mantissa from the given, mantissa.

Divide the remainder bg the tabular difference / (the quo-
tient in general cannot be depended upon to more than two

decimal places.)

Annex all of the quotient except the decimal point to the

first four figures of the number.

Point off.

Note. The rules for pointing off are the reverse of tire rules for charac-

teristic given in Art. 451 :

I. If
— 10 is not written after the mantissa, add 1 to the

characteristic, giving the number of figures to the left of the

decimal point.
II. If — 10 is written after the mantissa, subtract the

characteynstic from 9
; giving the number of zeros to be

placed between the decimal point and first figure.
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1. Find the number whose logarithm is 7.950185 — 10.

950185

Next less mantissa=950170; four figures corresponding=8916.

Tabular difference=49) 15.00 (.31 nearly.

147

~30

Therefore, number corresponding = .00891631, Ans.

EXAMPLES.

Find the numbers corresponding to the following :

2. 1.880814. 6. 8.044891-10. 10. 0.990191.

3. 9.470410-10. 7. 2.270293. 11. 7.115658-10.

4. 0.820204. 8. 9350064-10. 12. 8.535003-10.

5. 4.745126. 9. 3.000027. 13. 1.670180.

14. Given log 113 = 2.05308, log 114= 2.05690
;
find num-

ber corresponding to 1.05411.

15. Given log .08630= 8.936011 - 10, log .08631 = 8.936061
— 10

;
find number corresponding to 0.936049.

16. Given log 2.0702 = .3160123, log 2.0703 = .3160333
;

find number corresponding to 9.3160138 — 10.

17. Given log 548 3 = 2.739018, log 548.9= 2.739493
;
find

number corresponding to 7.739416 — 10.

18. Given log 7.3488 = .8662164, log 7.3492 = .8662401
;

find number corresponding to 2.8662350.

466. In the application of Arts. 455, 456, 457, and 458, we

have to perform the operations of Addition, Subtraction, Mul-

tiplication, and Division with logarithms. As some of the

problems which may arise arc peculiar, wo give a few hints as

to their solution, which will be found of service.

1. Addition. If, in the sum, — 10, —20, —30, etc., are

written after the mantissa, and the characteristic standing be-
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fore the mantissa is greater than 9, subtract from both parts

of the logarithm such a multiple of 10 as will make the charac-

teristic before the mantissa less than 10.

For example, 13.354802 - 10 should be changed to 3.354802
;

28.964316 - 30 should be changed to 8.964316 - 10
;

etc.

2. Subtraction. In subtracting a larger logarithm from

a smaller, or in subtracting a negative logarithm from a posi-

tive, the characteristic of the minuend should be increased by
10,

— 10 being written after the mantissa to compensate.
For example, to subtract 3.121468 from 2.503964, we write

the minuend in the form 12.503964 — 10
; subtracting from

this 3.121468, we have as a result 9.382496 — 10.

To subtract 9.635321 — 10 from 9.583427 - 10, we write

the minuend in the form 19.583427 — 20
; subtracting from

this 9.635321 - 10, we have as a result 9.948106 - 10.

3. Multiplication. The hint already given for reducing
the result of Addition, applies with equal force to Multiplication.

To multiply a logarithm by a fraction, multiply first b}
r the

numerator, and divide the result by the denominator.

4. Division. In dividing a negative logarithm, add to

both parts of the logarithm such a multiple of 10 as will make
the quantity after the mantissa exactly divisible by the divisor,

with — 10 as the quotient.

For example, to divide 7.402938 — 10 by 6, we add 50 to

both parts of the logarithm, giving 57.402938 — 60. Dividing
this by 6, we have as a result 9.567156 — 10.

EXAMPLES.

1. Add 9.096004 - 10, 4.581726, and 8.447510 - 10.

2. Add 7.196070 - 10, 8.822209 - 10, and 2.205683.

3. Subtract 0.659321 from 0.511490.

4. Subtract 7.901338 - 10 from 1.009800;

5. Subtract 9.156243 - 10 from 8.750404 - 10.
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6. Multiply 9.105107 - 10 by 3.

7. Divide 8.452G33 - 10 by 4.

8. Divide 9.670392 - 10 by 11.

9. Multiply 9.6G8311 - 10 by ?.

SOLUTIONS OF ARITHMETICAL PROBLEMS BY
LOGARITHMS.

467. In finding the value of any arithmetical quantity by

logarithms, we first find the logarithm of the quantity, as in

Art. 462, by the aid of the table, and then find the number

corresponding to the result.

1. Find the value of .0631 X 7.208 X 512.72.

By Art. 455, log (.0631 x 7.208 x 512.72) = log .0631

+ log 7.208 + log 512.72

log .0631= 8.800029-10

log 7.208= 0.857815

log 512.72= 2.709880

Adding, .-. log of Ans. = 12.367724 - 10

= 2.367724 (Art. 466, 1)

Number corresponding to 2.367724 = 233.197, Ans.

„. , „ . . 3368.52
2. Find the value of

-^^g.

log HJIJH
= log 3368.52 - log 7980.04

log 3368.52 = 13.527439 - 10 (Art. 466, 2)

log 7980.04= 3.902005

Subtracting, .-. log of Ans. = 9.625434—10

Number corresponding =.422118, Ans.
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3. Find the value of (.0980937)
5

.

log (.0980937)
5 = 5 x log .0980937

log .0980937 = 8.991641 - 10

5

Multiplying, .-. log of Ans. = 44.958205 - 50

= 4.958205-10

Number corresponding = .0000090825, Ans.

4. Find the value of ^2.36015.

log ^ 2.3601 5 = *
log 2.36015

log 2.36015 = 0.372940

Dividing by 7, .-. log of Ans. = 0.053277

Number corresponding = 1.13052, Ans.

2 v^5
5. Find the value of —— .

3*

log
$
- ]°g 2 +

I log 5-5 log 3
o

log 2 = 0.301030

log 5 = 0.698970
;
divide by 3 = 0.232990

log 3 = 0.477121 0.534020

Multiply by 5, = 2.385605
;
divide by 6 = 0.397601

Subtracting, .-. log of Ans. = 0.136419 •

Number corresponding = 1.36905, Ans.

Note. The work of the next two examples will be exhibited in the

customary form, the — 10's being omitted after the mantissse. See Art. 451.

6. Find the value of ^.00003591.
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log {/ .00003591 = ^ log .00003591

log .00003591 = 5.555215

7)5.555215

log of Ans. Z 9.365031 (Art. 466, 4)

Ans. = .231756.

m -n- ", i i r // -032956 \
7. Find the value of W (

-

7.96183/'

los
\J (^SiH)

=
\^ -03295G " log 7,96183)

log .032956 = 8.517934

log 7.96183 = 0.901013

2)7.616921

log of Ans. = 8.808460

Ans. = .0643369.

Note. In computations by logarithms, negative quantities are used as

if they were positive ;
the sign of the result being determined irrespective

of the logarithmic work.

EXAMPLES.

468. Calculate; by logarithms, the values of the following :

1. 9.23841 x .00369822. 5. ^3.
*

3.70963 x 286.512
g ,g

1633.72
* ' V

3. (23.846-t)
8

. 7. ^5.

4. (- .0009296S7)*. 8. ^.0042937.
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18

9. V- 6829.586.

112
10. (1.05624)

11. (- .0020001G)i£.

12. 2? x (- 3)*.

13.

14.

3

5T

(-2)*

3^

(- 4)
§

15. m
ii

16. V 7239.812.

17. V .00230508.

19.
35

113

/ .0872635U
\ .132088 /

"

«.
i/\-

22. i>

23

21

13*

24. f2x('3xf4.

// 3258.826 \

V V 49309.8 )
'25

/- 31.6259W
'

V 429.0162

27 _

(625.343)-

(.732465)
t

28.

29.

30.

V .000128883

y.000827606*

(_ .746892)
^

-
(.234521)^

ty .00730007
"

*

(.682913)
^

18. V- .000009506694. 31.
y 5.95463 x V 61.1998

V 298.5434

32. (538.217 x .000596899)^.

33. - 304.698 x .9026137

.00776129 X- 16923.24

34. (18.9503)
11 x (-.213675)

14
.
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A Orro I Q
35. V 3734.89 x .00001108184.

36. (2.03172)* x (.712719)*

y- .00819323 x (.0628513)
*

- .9834171
"

6/^T7T7777^T- .8/

38. \/.035 x V .626671 X V-M721033.

EXPONENTIAL EQUATIONS.

469. An Exponential Equation is one in which the un-

known quantity occurs as an exponent.

To solve an equation of this form, take the logarithms of

hoth members according to Art. 457'; the result will be an

equation which can be solved by ordinary algebraic methods.

1. Given 31* = 23
;
find the value of x.

Taking the logarithms of both members,

log (31*) = log 23

or, by Art. 457, x log 31 = log 23

mi loS 23 1-361728 MWVr- ,
Whence, X =^ =

-^—^
= .91307 <

,
Ans.

The value of the fraction '.^~^ may be obtained bv di-
1.491362

J J

vision, or better by logarithms, as in Art. 468.

2. Given .2* = 3
;
find the value of x.

Taking the logarithms of both members,

x log .2 = log 3

log 3 .477121 .477121
\Y hence, x ='

log .2 9.301030 — 10 .698970

We may find the value of the fraction by logarithms exactly
as if it were positive, and prefix a — sign to the result. Thus.
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log .477121 = 9.678628 - 10.

log .698970 = 9.814458 - 10

Subtracting, = 9.834170 - 10

Number corresponding = .682606

Therefore, x = — .682606, Ans.

EXAMPLES.

Solve the following equations :

3. II 1 = 3. 5. 13* = .281. 7. 5*~ 8= 82*+1
.

4. .3
r = .S. 6. .703* = 1.09604. 8. 23 3* + 5 = 31 2*- 3

.

APPLICATION OF LOGARITHMS TO PROBLEMS IN
COMPOUND INTEREST.

470. Let P = the principal, expressed in dollars.

Let t = the interval of time during which simple interest

is calculated, expressed in years and fractions of a }*ear. For

instance, if the interest is compounded annually, t = 1
;

if

semi-annually, t = -
;

etc.

Let P = the interest of one dollar for the time t.

Let n = the number of years.

Let Ai, A 2 , A3 ,
be the amounts at the ends of the 1st,

2d, 3d, intervals.

Let A be the amount at the end of n years.

Then A
l
= P + PP = P(l + P)

A2
= A1 + A1 B= A1 (1 + R)

=p (i + p) (i + p) = p (i + py
A3
= A, + A 2 P = A 2 (1 + P)

= p(i + py
2

(i + p) = p(i + py
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71

As there are -
intervals, the amount at the end of the last,

v

according to the law observed above,

A =*P (1 + Sp.

1. Given P, t, R, and n, to find A.

n

As A = P (1 + R) *.,
we have by logarithms,

log A = log P (1 + Rp = log P + log (1 + Rp
71= log P + -

log (1 + R).
h

Example. What will be the amount of $7,325.67 for 3

years 9 months at 7 per cent compound interest, the interest

being compounded quarterly ?

Here P = 7325.67, t = j ,
R— .0175, n = 3f,

- == 15.

log P = 3.864848
i

log (1 + R) = 0.007534
; multiply by 15 = 0.113010

Adding, . •. log of A = 3.977858

Number corresponding, A = $ 9502.93, Ans.

2. Given t, R, n, and A, to find P.

n A

As A = P (1 + R)t ,
.-. P =

; or, by logarithms,

(1 + R)~

/log P = log A — log (1 + Rp = log A —
"

log (1 + R).

Example. What sum of money will amount to $ 1 ,76« \.5B at

5 per cent compound interest in 3 years, the interest being

compounded semi-annually ?
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1 n
Here t= % , B= .025, »= 3, A= 1763.55,

- = 6.

log ^ = 3.246388

log (1 + P) = 0.010724; multiply by 6 = 0.064344

Subtracting, .-. log P= 3.182044

Number corresponding = f> 1520.70, Ans.

3. Given P, t, P, and A, to find n.

In Art. 470, 1, we sbowed that

log^= logP + -log(l + P)
1/

.•.^log(l + P)=log^-logP

£ (log A — log P)
* • l ~

log (1 + 5)
•

Example. In bow many years will $300.00 amount to

8 400.00 at 6 per cent compound interest, the interest being

compounded quarterly ?

Here P = 300, t =
| ,
P = .015, A = 400.

log 400
-

log 300 2.602060 - 2.477121 .124039
.'.71 =

4 log 1.015 ~ 4 x .006466 .025864

= 4.83 years, Ans.

4. Given P, t, n, and A, to find P.

n
We sbowed, in Art. 470, 3, that -

log(l + P)= log^-logP
V

1 /1 , T>\ log^ — logP
••• log (1 + P) •

Example. If $ 500.00 at compound interest amounts to

$689.26 in 6 years and 6 months, the interest being com-

pounded semi-annually, what is tbe rate per cent per annum '?
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1 n
Here P = 500, t =

7> ,n = 6h,A = 689.26,
- = 13.

z t

, ,- ™ log 689.26- log 500

13

log 689.26 = 2.838383

log 500 = 2.698970

Subtracting, = 0.139413

Dividing by 13, .-. log (1 + B) = 0.010724

Number corresponding = 1.025 = 1 + II, or R = .025.

That is, one dollar gains $ .025 semi-annually ;
or the rate is

5 per cent per annum.

EXPONENTIAL AND LOGARITHMIC SERIES.

471. We know that for any values of n and x,

1 +
x / 1 \ n

=
(
1 +

n,

Expanding by the Binomial Theorem, we obtain

1 n (n
-

1) 1 n (n - 1) (n
-

2) 1
1 + n - H r?i 5 H rr; ? +

w w." [3
?r

. 1 v x (nr—1) 1 ?? x(nx—V)(nx— 2) 1

w 2 ?r 3 ?r
+

or,

!_! (l-l)(!-
2

)

T77- T^ +
L3

x \x x \x
V n I n= 1 + x H r^ +
11 \1

; +
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This is true for all values of n
; hence, it is true however

large n may he. Suppose n to he indefinitely increased. Then

1 2
the limiting values of the fractions -

,
—

, etc., are (Art. 210).
n n

Hence, at the limit, we have,

1 1
1 + 1 + 777 + T7V + -f^ + Sr +

[3_
J

' '

[2

'

[3

The series in the bracket we denote by e
; hence,

2 3x x
<? = ! + * +- +-+

472. To expand ax in poivers of x.

Let a = e
m

;
whence (Art. 444), 7ft = logc ft.

m2
a?

2
ra3 x3

Then a* = e
ra x =

(Art. 471) 1 + m a; + -y^- + -r^- +

Substituting the value of m,

V 2 /I \ *\a* = 1 + (l0ge ft) X + (log, ft)

2— + (loge ft)
3

j^
+

This result is called the Exponential Theorem.

473. The system of logarithms which has e for its base,

is called the Napierian System, from Napier, the inventor of

logarithms. The value of e may be easily calculated from the

series of Art. 471, and will be found to be 2.7182818

474. To expand log,, (1 + x) in poivers ofx.

a* = {l+(a-l)}* = l + x(al -l).+
X(x ~ 1)

(a-iy

+
g (s-l)(s-2) +

= l + x
{(ft- 1)

- -
(-^ +^^ }

+ terms con-

taining x2
,
xs

}
etc.
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But (Art. 472), a x = 1 + x (loge a) + terms containing x%

As the two values of ax are equal for all values of x, by the

Theorem of Undetermined Coefficients the coefficients of x in

the two expressions are equal; hence,

loge a=(a — l) ^
1

3

Putting a = 1 + x, and therefore a — 1 = x, we obtain

Syt" /ytO

loge (l + «)=» —— +— —

Note. This formula might be used to calculate Napierian logarithms ;

but unless x is a very small fraction, the series in the second number is

either divergent or converges very slowly, and hence is useless in most

cases.

475. To obtain a more convenient formula for calculating

the Napierian logarithm of a number.

X2 Xs X* X5

By Art. 4,4, loge (1 + x) = x —y + y—y + y—

put X = — X,

X2 X3 X* Xs

.-.loge (l
— x)=—x

Subtracting,

2 x3 2xh

•

. loge (1 + x)
-

log, (l-x) = 2x+— +-ir +

or, by Art. 456, log,, f

j
1 + x\ c ( x3 x 5

> = 2 [x+-7r +-Tr +

Let x =

x) 3 5

1

1 +

2n + l

1

l+x_ 2n + l _ 2n + 1 + 1 _ 2n + 2 __ n + l

l—x~~7 ~T~ ~2n + l — l~ 2 u n

2n + l
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Substituting, .\ log,p—J
= loge (n + 1)

—
loge »

~~
\2n + 1^3(2n + iy

^
5 (2 n + l)

3 T "
/

^ge (n+l)=\ogen+2(^+
3^+1)

,+
5{:Jn+1)b

+
)

476. To calculate loge 2, put n = 1 in the formula of Art.

475.

/ 1 1 1 \

...loge 2= loge H-2^2TI +3 (2 + 1)s+5^2q:-i)5+
j

or, since loge
1 = 0,

/l 1 1 1 1 1

log. 2 = 2
^3
+

81
+

12i5
+
15309

+
177147

+
1948617"

1
"""

= 2 (.3333333 + .0123457 + .0008230 + .0000653

+ .0000056 + .0000005 + )

= 2 x .3405734 = .6931468 = .693147, correct to the

sixth decimal place.

From log,, 2, we may calculate loge 3 ;
and so on. We shall

find loge 10= 2.302585.

477. Tn calculate the common logarithm of a numberfrom
its Napierian logarithm.

By Art. 460, changing b to 10, and a to e, we obtain

"» " =
feS

=
&3S3«i

b~ »= -434-0945 X ,0g' *

For instance, logI0
2 = .4342945 x .693147 = .301030.

The multiplier by which logarithms of any system are de-

rived from the Napierian system, is called the modulus of that

system. Hence, .4342945 is the modulus of the common sys-

tem.
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As tables of common logarithms are met with more fre-

quently than tables of Napierian, a rule for changing common

logarithms into Napierian may be found convenient.

RULE.

Divide the common logarithm by .4342945.

For example, to find the Napierian logarithm of 586.324,

common log 586.324 = 2.768138

Divide by .4342945, .-. Napierian log 586.324 = 6.373873, Ans.

Another method would be to multiply the common logarithm

by 2.302585, the reciprocal of .4342945.

Napierian logarithms are sometimes called hyperbolic loga-

rithms, from having been originally derived from the hyper-

bola. They are also sometimes called natural logarithms,

from being those which occur first in the investigation of a

method of calculating logarithms. Napierian logarithms are

seldom used in computation, but occur frequently in theoretical

investigations.

ARITHMETICAL COMPLEMENT.

478. The Arithmetical Complement of the logarithm of

any quantity is the logarithm of the reciprocal of that quantity.

For example, if log 4098 = 3.612572, then

ar. co. l#g 4098 = log
—— = log 1 - log 4098° 4098 ° °

= - 3.612572 = 6.387428 - 10.

Again, if log .06689 = 8.825361 - 10, then

ar. co. log .06689 = log
--?—- = -

(8.825361
-

10)

= 10 - 8.825361 = 1.174639.
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The following rules will be evident from the preceding

illustrations :

To find the arithmetical complement of a positive loga-

rithm, suitnut it from 10, writing
— 10 after the mantissa.

To find the arithmetical complement of a negative loga-

rithm, subtract that portion of it besides the — 10 from 10.

The only application of this is to exhibit the work of calcu-

lation by logarithms in a more compact form in certain cases.

It depends on the' principle that subtracting a logarithm or

adding its arithmetical complement gives the same result.

For, suppose we are to calculate by logarithms.

. a X b . ( . 1 1
l0«7^ = l0g

l
ax(' x

c
x

(z

= log a + log b + log
- + log
1

i
1

c
+ ]°S d

= log a -f- log b + ar. co. log c + ar. co. log d.

That is, the work can be exhibited in the form of the addi-

tion of four logarithms, instead of the subtraction of the sum

of two logarithms from the sum of two others. The principle

is only applicable to the case of fractions
;
and the rule to be

used is,

Add together the logarithms of the quantities in the numer-

ator, and the arithmetical complements of the logarithms of

the- quantities in the denominator.

Example. Calculate the value of „ 't,
—_100 .

1 613.8 x .0* .23

logQi^xljfn
= l0S 79 '23 + lQg 10 -39 + ar" co - IoS 613 -8

+ ar. co. log .07723
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log 79.23= 1.898890

log 10.39 = 1.016616

ar. co. log G13.8 = 7.211973 - 10

ar. co. log .07723= 1.112211

Adding, .-.log of Ans. = 11.239693 - 10 = 1.239693

Number corresponding = 17.3657, Ans.

Note. The arithmetical complement may be calculated mentally from

the logarithm, by subtracting the last significant figure from 10, and all the

others from 9.

MISCELLANEOUS EXAMPLES.

479. 1. Find log3 2187. (See Art. 111.)

2. Find log5 15625.

3. Find the logarithm of -rr to the base —2.* 61

4. Find the logarithm of — to the base 8.

5. Find the characteristic of log2 183.

6. Find the characteristic of log5 4203.

7. Given log 2 = .301030, how many digits are there in

2 17 ?

8. Given log 3 = .477121, how many digits are there in

3^?

9. Findlog13 56. (See Art. 460.)

10. Find log8 163.

11. Find loggo 411.

12. What sum of money will amount to § 8705.50, in 7

years, at 7 per cent compound interest, the interest being com-

pounded annually ?
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13. In how many yours will a sum of money double itself at

6 per cent compound interest, the interest being compounded

semi-annually ?

14. What will be the amount of $1000.00 for 38 years

3 months, at 6 per cent compound interest, the interest being

compounded quarterly ?

15. At what rate per cent per annum will $2500.00 amount

to $ 3187.29 in 3 years and 6 months, the interest being com-

pounded quarterly ?

16. In bow many years will 8 9681.32 amount to $ 15308.70

at 5 per cent compound interest, the interest being compounded

annually ?

17. Using the table of common logarithms, find the Na-

pierian logarithm of 52.9381 (Art. 477).

18. Find the Napierian logarithm of 1325.07.

19 Find the Napierian logarithm of .085623.

20. Find the Napierian logarithm of .342977.

XLII.—GENERAL THEORY OF EQUATIONS.

480. The general form of a complete equation of the nth

degree is

xn -\- 1~>
xn~ l + q xn ~'2 + + t x2 + u x + v =

"Where n is a positive integer, and the number of terms is n + 1.

The quantities j), q, t, u, v are either positive or nega-

tive, integral or fractional
;
and the coefficient of x 11

is unity.

481. In reducing an equation to the general form, all the

terms must be transposed to the first member, and arranged

according to the powers of x. If as" has a coefficient, it may
be removed by dividing the equation by that coefficient.
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482. A Root of an equation is any real or imaginary ex-

pression, which, being substituted for its unknown quantity,

satisfies the equation, or makes the first member equal to

(Art. 166).

We assume that every equation has at least one root.

483. An equation of the third degree containing only one

unknown quantity, or one in which the cube is the highest

power of the unknown quantity, is usually called a cubic equa-

tion.

484. An equation of the fourth degree containing only one

unknown quantity is usually called a biquadratic equation.

DIVISIBILITY OF EQUATIONS.

485. If a is a root of an equation in the form

xn
+qi xn~ l + q x n ~ 2 + + tx 2 + ux + V — 0,

then the first member is divisible by x — a.

It is evident that the division of the first member by x — a

maybe carried on until x disappears from the remainder. Let

Q represent the quotient, and R the remainder, which is inde-

pendent of x
;
then the given equation may be made to take

the form

. (x
-

a) Q + B= 0.

But if x = a, then (x
—

a) Q = 0, and, consequently,

R = 0;

that is, x — a is a factor of the first member of the given equa-

tion, as it is contained in it without a remainder.

486. Conversely, if the first member of am. equation in the

form
*

xn -\-px
n~ 1

-\- qxn ~ 2 + + t x 2 + ux + v =

is divisible by x — a, then a is a root of the equation.
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For, if the first member of the given equation is divisible by
x— a, then tbe equation may be made to take the form

(x
—

a) Q = ;

and it follows from Art. 330 that a is a root of this equation.

EXAMPLES.

By the method of Art. 486,

1. Prove that 3 is a root of the equation

x3 — 6 x2 + 11 x — 6 = 0.

2. Prove that — 1 is a root of the equation x3 + 1 = 0.

3. Prove that 1 is a root of the equation

x3 + x 2— 17 a; + 15 = 0.

4. Prove that — 2 is a root of the equation

a;
4 — 3 x 2 + 4 x + 4 = 0.

5. Prove that 4 is not a root of the equation

x* — 5 x3 + 5 x2 + 5 x - 6 = 0.

NUMBER OF ROOTS.

487. Every equation of the nth degree, containing but one

unknown quantity, has n roots, and no more.

Let a be a root of the equation

xn
+2) xn~ x + qx

n ~ 2 + + tx2 + ux + v — 0;

then, by Art. 485, the first member is divisible by x— a, and
the equation may be made to take the form

(x — a) (V1
- 1 + 2h xn~ 2 + + «j x + i\)

= 0.

The equation may be satisfied by making either factor of

the first member equal to (Art. 330) ; hence,

x• — a =
and x»~ 1 +p1 xn- i + +ul x + v1

= 0. (1)
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But equation (1) must have some root, as b, and may be

placed under the form

(x
—

b) (x
11
- 2

+jh xn
~ 3 + + v,x + v,)=0',

which is satisfied by placing either factor of the first member

equal to
;
and so on.

Since each of the factors x — a, x — b, etc., contains only
the first power of x, it is evident that the original equation can

be separated into as many such binomial factors as there are

units in the exponent of the highest power of the unknown

quantity, and no more
;
that is, into n factors, or

(x
—

a) (x
—

b) (x — c) (x
—

T)
= 0.

Hence, by Art. 330, the equation has the n roots a, b, c, /.

Moreover, if the equation had another root, as r, then it

must contain another factor x — r, which is impossible.

488. It should be observed that the n binomial factors of

which the general equation of the nth degree is composed, are

not necessarily unequal j hence, two or more of the roots of an

equation may be equal. Thus, the equation

x*_ g x2 + 12 x _ 8 =

may be factored so as to take the form

(x-2)(x-2) (.r-2)=0, or (*-2)
3 = 0;

and hence the three roots are 2, 2, and 2.

489. It will be readily seen that any equation, one of

whose mots is known, may be depressed to another of the next

lower degree, which shall contain the remaining roots. Hence,

if all the roots of an equation are known excepl two, those

may be obtained from the depressed equation, hy the rules for

quadratics.

1. One root of the equation xs + 2 x 1 — 23 x — 60 = is — 3
;

what are the others ?
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Dividing x3 + 2 x~ — 23 x — 60 by x + 3, the given equation

may be put in the form

O + 3)O
2 -x-20)=0.

Thus,- the depressed equation is x2 — x — 20 = 0.

Solving this by the rules for quadratics, we obtain x = 5 or

— 4
;
which are the remaining roots.

EXAMPLES.

2. One root of the equation xz — 19 x + 30 = is 2
;
what

are the others ?

3. Eequired the three roots of the equation Xs = a3
,
or

x3 — a3 — 0.

4. One root of the equation x3 + x2 — 16 x + 20 = is — 5
;

reqxiired the remaining roots.

5. Two roots of the equation xA— 3 x 3— 14 x" + 48 x — 32 =
are 1 and 2

; required the remaining roots.

6. One root of the equation x 4 — 7 x3 + 3 x + 3 = is 1
;

what equation contains the remaining roots ?

7. One root of the equation 6 x3 — x~ — 32 x + 20 = is 2
;

what are the others ?

8. Two roots of the equation 20 x* - 169 x3 + 192 x~ + 97 x

— 140 = are 1 and 7 : what are the others ?
5

FORMATION OF EQUATIONS.

490. An equation having any given roots may be formed

by subtracting each root from the unknown quantity, and pla-

cing the product of these binomial factors equal to 0.

For it is evident, from principles already established, that

an equation having the n roots a, b, c,
I may be written

in the form

(x
—

a) (x
—

b) (x
—

c) (x
—

I)
= 0.
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After performing the multiplication indicated, the equation
will assume the form .

xn
+2?x

n ~ 1 + qx
n~ 2 + + tx2 + ux + v= 0.

(Compare Art. 329.)

1. Form the equation whose roots are 1, 2, and — 4.

Result, (x
—

1) (cc
—

2) (cc + 4) =

or, x3 + x 2 — 10 x + 8 = 0.

EXAMPLES.

Form the equations whose roots are :

2. -
1,
-

3, and - 5. 6. 1, 2, 3, and 4.

3. 5,
-

2, and - 3. 7. 4, 4, and 5.

4. 1,
-

,
and -

. 8. 0,
-

1, 3, and 4.

5. ± 1 and ±2. 9. - 5 ?
,

-
2, and ?

4 3

COMPOSITION OF COEFFICIENTS.

491. The coefficient of the second term ofan equation of the

nth degree in its general form is the sum of all the roots with

their signs changed; that of the third term is the sum of their

products, taken two and two ; that of the fourth term is the

sum of their 'products, taken three and three with their .signs

changed, etc. ; and the last term is the product of all the roots

with their signs changed.

For, resuming the equation

(x
'—

a) (x
—

b)(x
—

c) (x
—

k) (x
— l)=0,

if we perform the multiplication indicated, we obtain

(x
—

a) (x
—

b)
= x~ — (a + b) x + a b,

(x—a)(x— b) (x—c)= x3

—(a+ b+c)x+(ab+ ac+bc)x—abc,
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and so on. When n factors have heen multiplied, the coeffi-

cients of the general equation become

jp
= — a — b —c— — k — I

q = ab + ac-\-bc-\- + kl

r =— a b c — ab d — a c d — — ikl

v = ±a b c kl

which corresponds with the enunciation of the proposition ;

the upper sign of the value of v being taken when n is even,

and the lower sign when n is odd.

492. If ^=0, that is, if the second term of an equation
be wanting, the sum of the roots will be 0.

If v = 0, that is, if the absolute term of an equation be want-

ing, at least one root must be 0.

493. Every rational root of an equation is a divisor of the

last term.

494. When all the roots of an equation but two are known,
the coefficient of the second term of the depressed equation

(Art. 489) can be found by subtracting the sum of the known

roots, with their signs changed, from the coefficient of the

second term of the original equation. The absolute term of

the depressed equation can be found by dividing the absolute

term of the original equation by the product of the known
roots with their signs changed.

EXAMPLES.

Find the sum and product of the roots in the following :

1. a;
3 -7a;+6 = 0. 2. 2 x*- 5 xs - 17 x2 + 14 x + 24 = 0.

In the following example obtain the depressed equation by
the method of Art. 494 :

3. Two roots of the equation x4 — 5 xs — 2 x 2 + 12 x + 8 =
are 2 and — 1

;
what are the others ?
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FRACTIONAL ROOTS.

495. An equation whose coefficients are all integral, the

coefficient of the first term being unity, cannot have a

rational fraction as a root.

If possible, let -, a rational fraction in its lowest terms, be

a root of the equation

xn + px n ~ l + qx
n ~ 2 + + tx2 + UX + v = 0,

where p, q, , t, u, v are integral. Then

a\
n faV' 1

fa\
n - 2

( a\
2 fa

Multiplying through by lf~ l

,
and transposing,

-
n

=—
(2,a

n - 1+qan - 2 b + + ta2
bn

~ s + ua u
n ~ 2+ vbn ~ l

).

Now, as - is in its lowest terms, a and b can have no com-

mon divisor
;
therefore an and b can have no common divisor

;

a"
hence — is in its lowest terms. Thus, we have a fraction in

o

its lowest terms equal to an entire quantity, which is impossi-

ble. Therefore no root of the equation can be a rational

fraction.

Note. The equation may have an irrational fraction as a root, such as

' for example. Such a root, whose value can only be expressed
4

approximately by a decimal fraction, is called incommensurable.

IMAGINARY ROOTS.

496. If the coefficients of an equation be real quantities,

imaginary roots enter it by pairs, if at all.

Suppose a + b ^— 1 to be a root of the equation

Xn + p X"
~ l + q Xn ~ 2 + + t X 2 + U X + V = 0.
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Substituting a + b y/— 1 for x, and developing each expres-

sion by the Binomial Theorem, all the odd terms of each series

will contain either powers of a, or even powers of b
y/
—

1, and

are therefore real
;
while all the even terms contain the odd

powers of b y
—

1, and are therefore imaginary. Representing
the sum of all the real quantities by P, and the sum of all

the imaginary quantities by Q y
—

1, we have

P+ £y/-l=0.

This equation can be true only when both P and Q equal 0.

If we now substitute a — b
y/
— 1 for x, we find that the

series differ from the former only in having their even or

imaginary terms negative. Hence, we obtain as the first

member

P-Q^-l,

which must be equal to 0, for we have already shown that both

P and Q equal 0. Thus, a — b y/— 1 satisfies the equation.

Similarly, we may show that,if b
y/
— 1 is a root of the equa-

tion, then will — b y/— 1 also be a root of the equation.

497. The product of a pair of imaginary quantities is

always positive. Thus,

(a + 6y/-l) (a-b^-l) = a2 + b

and y/^l) (- b y/^I)
= b\

TRANSFORMATION OF EQUATIONS.

498. To transform an equation into another which shall

have the same roots with contrary signs.

Let the given equation be

xn + p xn ~ 1 + q xn ~ 2 + + t x2 + u x + v = 0.
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Put x = — y; then whatever value x may have, y will have

the same value with its sign changed. The equation now

becomes

{-y)
n +p(-y) n - l + q(-y)

n - 2 + + t(-y)
2 + u{- y)

+ v = o.

If 11 is even, the first term is positive, second term nega-

tive, and so on
;
and the equation may be written

yn_p yU-\ + (1 yn~1_ + f y'2
_ ^ y _J_ y

_ Q Qj

If n is odd, the first term is negative, second term positive,

and so on
; hence, changing all signs, we write the equation

y" —v y
n ~ 1 + 1 y

n ~ 2— — ^ y
1 + u y~ v — o. (2)

From (1) and (2) it is evident that to effect the desired

transformation we have simply to change the signs of the

alternate terms, beginning with the second.

Note. The preceding rule assumes that the given equation is complete

(Art. 300) ;
if it be incomplete, any missing term must be put in with

zero as a coefficient.

1. Transform the equation x3 — 7x + 6 = into another

which shall have the same roots with contrary signs.

We may write the equation x3 + . ar — 7 x + 6 = 0.

Applying the rule,

x s _ o . x2 — 7 x — 6 = 0, or xz — 7 x — 6 = 0, Ans.

EXAMPLES.

Transform the following equations into others which shall

have the same roots with contrary signs:

2. x* - 2 xs + x - 1.32 = 0. 3. x5-3x2 + 8 = 0.

499. To transform an equation into another whose roots

shall be some multiple of those of the first.

Let the given equation he

xn +pxn - 1 + qx
n ~ 2 + + tx'

2 + ux + v = 0.
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v
Put x =—

;
then whatever value x may have, y will havem

a value m times as great. The equation now becomes

(i)r+ jjLY-\Ji\"-\ +,(£)*+.(»)+.=*

Multiplying through by ran
,
we have

y
n+pmyn ~ 1+qm2

y
n ~ 2+ + tmn ~ 2

y
2+umn ~ 1

y+ vm" = 0.

Hence, to effect the desired transformation, multiply the

second term by the given factor, the third term by its square,

and so on.

Similarl}'-, we may transform an equation into one whose

roots shall be those of the first divided by some quantity.

1. Transform the equation x 3 — 7 x — 6 = into another

whose roots shall be 4 times as great.

The equation may be written, xs
-f- . x 2 — 7 x — 6 = 0.

Then, by the rule,

x 3 - 42
. 7 x - 43

. 6 = 0, or x3 - 112 x - 384 = 0, Ans.

EXAMPLES.

2. Transform the equation xz — 2 x2 + 5 = into another

whose roots shall be 5 times as great.

3 xs

3. Transform the equation x i
-|
— 27 = into another

whose roots shall be one third as great.

500. Ta transform an equation containing fractional

coefficients into another whose coefficients are integral, that of
the first term being unity.

If in Art. 499 we assume m equal to the least common

multiple of the denominators, it will always remove them
;

but often a smaller number can be found which will produce
the same result.
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1. Transform the equation x s — —— — + —— = into
o So lUo

another whose coefficients shall he integral.

The least common multiple of the denominators is 108
;
so

that one solution would he, by Art. 499,

rf_M8.
|-.M8-:| +108^ = 0.

An easier way, however, is as follows
;
the denominators

may be written 3, 32 X 2'
2

,
and 33 X 2 2

,
so that the multiplier

3 x 2 or 6 will remove them. Hence, by Art. 499, we have

xa_ 6
*a

__ 63
*
+6s

* =0 or x*-2x*-x + 2= 0,
ob 106

whose roots are 6 times as great as those of the given

equation.

EXAMPLES.

Transform the following equations into others whose coef-

ficients shall be integral :

**'+T~
7

4= -

*.-
,+ re-g-»= a

av-^ + fwb. 5.^-5^-^ + 5 = 0.no 4 I

501. To transform an equation into another ivhose roots

shall be the reciprocals of those of the first.

Let the given equation be

xn + p xn ~ 1 + q x
n ~ - + + t x 2 + u x + v = 0.

Put x = -
;
then whatever value x may have, y will be its

v

reciprocal. The equation now becomes

1 p q t u n

y y y y y
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Multiplying through by y", and reversing the order,

vy
n + uy

n ~ 1 + ty"-
2 + + qy

2 +py + 1= 0.

Dividing through by v,

u , t a „ 7} 1n + _
y
«-i + -

gf-» + + Lf + L l/+ ± =0.

v « w «; «;

Hence, to effect the transformation, write the coefficients in

reverse order, and then divide by the coefficient of the first

term.

EXAMPLES.

Transform the following equations into others whose roots

shall he the reciprocals of those of the first :

1. a;3_6x 2 +ll iC -6 = 0. 3. x3 -9x2 +— -i = 0.
7 49

2. x i~x3 -3x 2 + x + 2 = 0. 4. x3 -4x 2 + 9 = 0.

502. To transform an equation into another whose roots

shall differfrom those of the first by a given quantity.

Let the given equation be

s"+ju""' + qx
n ~ 2 + + tx* + ux + v = 0. (1)

Put x = y + r, and we have

(ff + r)*+p(t,. + r)— 1 + + u (y + r
) + v=0. (2)

Developing (y + r)
n

, (y + r)"-\ , by the Binomial The-

orem, and collecting terms containing like powers of y, we
have an equation of the form

yn +pi yn-l + ^ y
«-1 + + ^ y

2 + ^ y + ^ = Q ( o)

As y=x — r, the roots of (3) are evidently less by r than

those of (1). By putting x = y — r, we shall obtain in the

same way an equation whose roots are greater by r than

those of (1).

503. If n is small, the operation indicated in Art. 502

may be effected with little trouble; but for equations of a

higher degree a less tedious method is better.
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If in (3) we put y = x — r, we shall have

(x—rf +2h(x— r)
n - 1 + +u1 (x

—
r) + v

1
=

0, (4)

which is, of course, identical with (1), and must reduce to (1)

when developed. If we divide (4) by x — r, we obtain

(x
-

r)"
~ J

+jh -
r)

n - 2 + q i {x-r)"-"+ +u, (5)

as a quotient, with a remainder of vv Dividing (5) by x — r,

we obtain a remainder of u
x ;

and so on, until we obtain all

the coefficients of (3) as remainders.

Hence, to effect the desired transformation,

Divide the given equation by x — r or x + r> according as

the roots of the transformed equation are to be less or greater

than, those of the first by r, and the remainder will be the

absolute term of the transformed equation. Divide the quo-

tient just found by the same divisor, and the remainder will

be the coefficient of the last term but one of the transformed

equation ; and so on.

504. 1. Transform the equation x3 + 3 x2 — 4^ + 1 =
into one whose roots shall be greater by 1.

Using the method of Art. 502, put x = y
— 1.

Then, (y-iy + 3(y~iy-4(y-l) + l = 0,

or, t/
3- 3 y

2 + 3 7/
- 1 + 3 / - 6 y + 3 - 4 y + 4 + 1 = 0,

or, if
— 7 y + 7 = 0, Ans.

EXAMPLES.

2. Transform the equation x3 — x — 6 = into one whose
roots shall be less by 8.

3. Transform the equation x* -f 6 x3 — x 1 — 5 x — 1 =
into one whose roots shall be greater by 3.

505. To transform a complete equation into one tchos*

second term shall be wanting.
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The coefficient of y"
-1 in (2), Art. 502, is n r + p. Hence,

in (3), py
= n r + p. To make ^ = 0, it is only necessary to

make nr + p =0, or r = — —
; hence, to effect the desired

n
V

transformation, put x = y— -
;
that is, put x equal to y}

minus the coefficient of the second term of the given equation
divided by the degree of the equation.

1. Transform the equation x3 — G x~ -j- 9 x — G = into

another whose second term shall be wanting.

Here p = — 6, n = 3
; then, put x = y — —— = y + 2.

Result, (y + 2)
3 - 6 (y + 2)

2 + 9 (y + 2)
- 6 = 0,

or, tf + 6y*+ 12y + 8-6y*-24:y-24:+9y +18-6= 0,

or, y
3 — 3 y — 4 = 0, Ans.

EXAMPLES.

Transform the following equations into others whose second

terms shall be wanting :

2. x2 -px + q = 0. 4. x3 + 6x2 -3x + 4: = 0.

3. xs + x2 + 4 = 0. 5. x 4 - 4 x3 - 5 x — 1 = 0.

DESCARTES' RULE OF SIGNS.

506. A Permanence of sign occurs when two successive

terms of a series have the same sign.

A Variation of sign occurs when two successive terms of a

series have contrary signs.

DESCARTES' RULE.

507. A complete equation cannot have a greater number

ofpositive roots than it has variations of sign, nor a greater
number of negative roots than it has permanences of sign.
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Let any complete equation have the following signs :

+ + + - + - +
in which there are three permanences and five variations.

If we introduce a new positive root a, we multiply this by
x — a (Art. 490). Writing only the signs which occur in the

operation, we have

+ + + - +
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A complete equation whose terms are all positive can have

no positive root
;
and one whose terms are alternately positive

and negative can have no negative root.

509. In an incomplete equation, imaginary roots may
sometimes he discovered hy means of the douhle sign of in

the missing terms. Thus, in the equation

x3 + x2 ± x + 4 =

if we take the upper sign, there is no variation, and conse-

quently no positive root; if we take the lower sign, there is

hut one permanence, and hence but one negative root. There-

fore, as the equation has three roots (Art. 487), two of them

must he imaginary.

In general, whenever the term which precedes a missing
term has the same sign as that which follows, the equation
must have imaginary roots

;
where it has the opposite sign,

the equation may or may not have imaginary roots, hut

Descartes' Hule does not detect them. If two or more suc-

cessive terms of an equation he wanting, there must be imagi-

nary roots.

Note. In all applications of Descartes' Rule, the equation must con-

tain a term independent of x, that is, no root must be equal to zero (Art.

330) ;
for a zero root cannot be considered as either positive or negative.

EXAMPLES.

510. The roots of the following equations being all real,

determine their si cms :*&'

1. x8 -3x-2 = 0. 3. a;
8-7 a;

2 + 36 = 0.

2. .x
3 -10a; + 3 = 0. 4. xi-2x3-13x2 + 38*-24= 0.

5. What are the signs of the roots of the equation x3 + x 1

-4 = 0?

DERIVED POLYNOMIALS.

511. If we take the polynomial

a xn + b xn ~ 1 + c xn ~ 2 +
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and multiply each term by the exponent of a; in that term,

and then diminish the exponent by 1, the result

n a x"
~ l + (n

—
1) b xH ~ 2 + Qi

—
2) c xn ~ 3 +

is called the first derived polynomial or first derivative of the

given polynomial.

The second derived polynomial or second derivative is the

first derived polynomial of the first derivative
;
and so on.

The given polynomial is sometimes called the primitwe poly-

nomial.

A derived equation is one whose first member is a deriva-

tive of the first member of another.

1. Find the successive derivatives of x* + 5 x 1 + 3 x + 9.

Result : First, 3 x2 + 10 x + 3.

Second, 6 x + 10.

Third, 6.

Fourth, 0.

EXAMPLES.

Find the successive derivatives of the following :

2. a;
3-5r + 6x-2. 4. a x* -bx % + ex -Sd.

3. 2cc2 -ic-7. 5. 7cc4 -13a;2 +8x-l.

EQUAL ROOTS.

512. Let the roots of the equation

xn +pxn -'1 + qx
n ~ 2 + + tx2 + ux + v = (1)

be a, b, c, Then (Art. 490), we have

xn
+2? x

n ~ 1 + q x
n ~ 2 + = (x

—
a) (x — b) (x — c)

Putting x + y in place of x,

(x + y)
n + p (x + y)"-

1 + ... = (y + x -a) (y + x-b) ... (2)

By Art. 399, the coefficient of y in the first member is

nxn ~ 1 +p (n
—

I) xn ~ 2 + q (n
—

2) xn ~* + (3)



GENERAL THEORY OF EQUATIONS. 387

which, we observe, is the first derivative of (1) ; and, as in

Art. 491, regarding x — a, x — b, as single terms, the

coefficient of y in the second member is

(x
—

b) (x
—

c) (x
—

d) to n — 1 factors "1

+ (x
—

a) (x — c) (x — d) to n — 1 factors !

+ (x— a) (x
—

b) (x
—

d) to ii — 1 factors
|

^ '

+ ......
j

As (2) is identical, by Art. 413 these coefficients are equal.
Now if b = a, that is, if equation (1) has two roots equal to

a, every term of (4) will be divisible by x — a, hence (3) will

be divisible by the same factor
;
therefore (Art. 486) the first

derived equation of (1) will have one root equal to a. Sim-

ilarly, if c = b = a, that is, if (1) has three roots equal to a,

(3) will have two roots equal to a
;
and so on. Or, in general,

If an equation has n roots equal to a, its first derived equa-
tion xv ill have n — 1 roots equal to a.

513. From the principle demonstrated in Art. 512, it is

evident that to determine the existence of equal roots in an

equation we must

Find the greatest common divisor of the first member and
its first derivative. If there is no common divisor there can

be no equal roots. If there is a greatest common divisor, by

placing it equal to zero and solving the resulting equation we

shall obtain the required roots.

The number of times that each root is found in the given

equation is one more than the number of times it is found

in the equation formed from the greatest common divisor.

If the first member of the given equation be divided by the

greatest common divisor, the depressed equation will contain

the remaining roots of the original equation.

1. Find the roots of the equation

x* - 14 xs + 61 x~- 84 x + 36 = 0.

Here the first derivative is 4 xs — 42 x% + 122 x— 84
;
the

greatest common divisor of this and the given first member
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i s x 1 — 7 x + 6. Placing x2 — 7 x + 6 == 0, we have, by the

rules of quadratics, or by factoring, x = 1 or 6. Therefore

the roots of the given equation are 1, 1, 6, and 6.

EXAMPLES.

Find all the roots of the following :

2. xs-Sx-+13x-6 = 0. 4. .T
4 -6a; 2 -8a;-3 = 0.

3. x3-7x 2 +16x-12 = Q. 5. cc
4 -24x2 + 64z-48 = 0.

514. When the equation formed from the greatest com-

mon divisor is of too high a degree to be conveniently solved,

we may in certain cases compare it with its own derived

equation, and thus obtain a common divisor of a lower degree.

Of course this can only be done when the equation formed

from the greatest common divisor has equal roots.

For example, required all the roots of

x b - 13 x* + 67 x 3 - 171 x- + 216 x - 108 = 0. (1)

Here the first derivative is 5 x* — 52 x3 + 201 ,x
2 — 342 x

+ 216
;
the greatest common divisor of this and the given

first member is x 3 — 8 x 2 + 21 x — 18. We have then to solve

the equation
x 3-8x2 +21z-18 = 0. (2)

The first derivative of (2) is 3 x 2 — 16 x + 21
;
the greatest

common divisor of this and x3 — 8 x2 + 21 x — 18 is x — 3.

Solving x — 3 = 0, we have x = 3; hence two of the roots of

(2) are equal to 3. Dividing the first member of (2) by
(x — 3)

2 or by x2 — 6 x + 9, the depressed equation is

x — 2 = 0, whence x = 2.

Thus the three roots of (2) are 3, 3, and 2. Hence, the five

roots of (1) are 3, 3, 3, 2, and 2.

515. If an equation has two roots equal in magnitude, but

opposite in sign, by changing the signs of the alternate terms

beginning with the second we shall obtain an equation with

these same two roots (Art. 498) ;
then evidently the greatest
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common divisor of the two first members placed equal to zero

will determine the roots.

For example, required all the roots of

x* + 3 x3 - 13 x--21 x + 36 = 0. (1)

Changing the signs of the alternate terms, we have

x4 - 3 x3 - 13 x°- + 27 x + 36,

the greatest common divisor of which and the given first

member is x2 — 9
; solving x2— 9 = 0, we have x = 3 or — 3.

thus giving two of the roots of (1). Dividing the first mem-
ber of (1) by x2 —

9, we have for the depressed equation

x- + 3 x - 4 = 0,

whence x = 1 or — 4. Thus the roots of (1) are 3,
—

3, 1,

or —4.

LIMITS OF THE ROOTS OF AN EQUATION.

516. A polynomial of the form

xn +p xn~ * + q x
n ~ 2 + Jr tx2 + ux+v

which we shall represent by X, may also be expressed thus

(Art. 490) :

(x
—

a) (x
—

b) (x
—

c) (x — I) Y

in which a, b, c, I are the real, unequal roots of the equa-
tion X= 0, in the order of their magnitude, a being algebrai-

cally the smallest; and Y the product of all the factors con-

taining imaginary roots, which must always be positive, and

cannot affect the sign of X, for each pair of imaginary roots

(Art. 497) produces a positive factor.

Suppose x to commence at any value less than a, and to

assume in succession all possible values up to some quantity

greater than I. When x is less than a, each of the factors

x — a, x — b, is negative, and therefore X is either posi-

tive or negative, according as the degree is even or odd.
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When x == a, X= 0. When x is greater than a, and less

than b, x — a becomes positive, and the sign of X changes.

Also, when the value of x is made equal to b, and then greater,

X first becomes and then changes sign; and so on, for each

real root.

When x has any value greater, than I, X must be positive ;

for all its factors are positive.

517. If two numbers, when substituted for the unknown

quantity in an equation, give results having a different sign,

at least one root lies between those numbers.

It is evident, from Art. 516, that if X has a different sign

for two values of x, some odd number of roots lies between

them.

When the numbers substituted differ by unity, it is evident

that the integral part of the root is known.

EXAMPLES.

1. What is the first figure of a root of the equation x3 + 3 x-

Here, if x = 2, the first member becomes — 2
;
and if x = 3,

the first member becomes 25
;
therefore at least one root lies

between 2 and 3. Hence 2 is the first figure of a root.

2. Find the integral parts of all the roots of the equation

x3-Gx2 +3x+9 = 0.

3. Find the first figure of a root of the equation x3—2x
- 50 = 0.

4. Find the first figure of a root of the equation x*— 2 ar
8

+ 3x2 -x-5 = 0.

5. Find the integral part of a root of the equation 2 x4 + x :

-7x2 -llx-4, = 0.

518. To find the superior limit of the positive roots of an

equation.

Let the equation be

X= xn + p x"- 1 + q .r"- 2 + + tx- + ux + v = 0. (1)

a
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Let r be the numerical value of the greatest negative

coefficient, and xn ~ s the highest power of x which has a nega-

tive coefficient. Then the first s terms have positive coef-

ficients.

Now Xwill be positive when x is positive, provided

x11 — r xn ~ * — )
, / _,_1 — — r x- — r x — r (2)

is positive ; for, since r is the numerically greatest negative

coefficient, and all terms up to the (s + l)th are positive, Xis

equal to (2) plus a, positive quantity.

We may write (2)

xn — r (x
n - s + xn - s - 1 + + x°- + x+l),

or (Art. 120), x*-r -——~
. (3)x — 1

Then AT will be positive when (3) is positive. But if x is

greater than unity, (3) is evidently greater than

xn — s + 1

X-l
Therefore X will be positive when this is positive ; or, when

(x
—

1) x11 — rxn - s + 1
is j>ositive ; or, when (x

—
1) x

s ~ x — r

is positive.

But (x— 1) X
s-1 — r is greater than (x

—
1) (x — l)

s_1 — r

or (x
—

1)'
— r

;
therefore X will be positive when (x

—
l)

s — r

is positive or equal to zero
; or, when (x — l)

s = r or > r
;

or, when x — l — \Jr or > \/r; or, when x = l-\-\jr or >1
+ </r.

That is, when x = 1 + \J
r or any greater value, X is posi-

tive, which is impossible, as it must equal zero. Hence x

must be less than l + tyr; or, 1 + $r is the superior limit of

the positive roots.

519. To find the inferior limit of the negative roots of an

equation.

By changing the signs of the alternate terms beginning
with the second, we shall obtain an equation having the

same roots with contrary signs (Art. 408).
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Then evidently the superior limit of the positive roots of

the transformed equation, obtained as in Art. 518, will by a

change of sign become the inferior limit of the negative roots

of the given equation.

Note. In applying the principles of the preceding articles to determine

the limits of the roots of an equation, the absolute term must be taken as

the coefficient of x'K

520. 1. Find the superior limit of the positive roots of

x4 + 4 x3 - 19 x- - 46 x + 120 = 0.

Here, r = 46, and n — s = 2
; or, as n = 4, s — 2. Then by

Art. 518, the required limit is 1 + y/46,
or 8 in whole num-

bers.

2. Find the inferior limit of the negative roots of

a-
3 -a;2 -14.x +24 = 0. (1)

Changing the signs of the alternate terms beginning with

the second, we have

x3 + x2 -Ux-2A = 0. (2)

Here r = 24, and n — s = 1, or s = 2. Then the superior

limit of the positive roots of (2) is 1 + \/24 ;
therefore the

inferior limit of the negative roots of (1) is — (1 + v/24).

EXAMPLES.

Find the superior limits of the positive roots of the follow-

ing:

3. x*+ 2x 3-13.r'1-Ux + 24:=Q. 4. a:
4-15.T 2+10,r+24=0.

Find the inferior limits of the negative roots of the fellow-s'

mg
5. x*-2x°--5x + (j = 0. 6. x x -5x5 +ox- + 5x + 6 = 0.

STURM'S THEOREM.

521. To determine the number and situation of the real

roots of an equation.
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A perfect solution of this difficult problem was first obtained

by Sturm, in 1829. As the theorem determines the number
of real roots, the number of imaginary roots also becomes

known (Art. 487).

522. Let X denote the first member of

Xn
+21X

n - 1 + qx
n ~ 2 + + tX2 + UX+ V = 0,

from which the equal roots have been removed (Art. 512).
Let Xx denote the first derivative of X (Art. 511).
Divide AT by X1}

and we shall obtain a quotient Ql}
with a

remainder of a lower degree than Xv Denote this remainder,

with its signs changed, by X2 ,
divide X

x by X2 ,
and so on

;

the operation being the same as in finding the greatest com-

mon divisor, except that the signs of every remainder must be

changed, while no other change of signs is admissible. As
the equation X— has been freed from equal roots, there can

be no common divisor of ZandJ1; and the last remainder,

X„ , will be independent of x.

The successive operations may be represented by the fol-

lowing equations :

X =X
x Qv

- X2 (1)

XI
=X2 Q2-X3 (2)

X^X,Q,-X4 (3)

Xn _ 2
—

-<*« - 1 V« - 1 Xn

The expressions X, X1} X2 ,
XH are called Sturm's

Functions.

STURM'S THEOREM.

523. If any tiro numbers, a and b, be substituted/or x in

Sturm's Functions, and the signs noted, the difference between

the number of variations in the first case and that in the

second is equal to the number of real roots of the given equa-
tion lying between a and b.
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The demonstration of Sturm's Theorem depends upon the

following principles :

(A). Two consecutive functions cannot both become for

the same value of x.

For, if A\ = and X = 0, then by (2), Art. 522, X3
=

;

and if X2
= and X3

= 0, by (3), X4
= 0; and so on, till

Xn = 0. But as Xn is independent of x, it cannot become

for any value of x. Hence no two consecutive functions can

become zero for the same value of x.

(B). If any function, except X and Xn ,
becomes for a

particular value of x, the two adjacent functions must have

opjjosite signs.

For, if X, = 0, we have by (2), Art. 522, X1
= —Xs ;

that

is, X1
and Xs must have opposite signs, for by (A) neither can

be equal to zero.

(C). When any function, except X and Xn , changes its sign

for different values of x, the number of variations is not

affected.

No change of sign can take place in any one of Sturm's

Functions except when x passes through a value which re-

duces that function to zero.

Now, let c be a root of the equation X2
= 0; d and e quan-

tities respectively a little less and a little greater than c, so

taken that no root of Xx
= or of Xs = is comprised be-

tween them. Then, as x changes from d to e, no change of

sign takes place in A^ or X
:i ,

while X2 reduces to zero and

may change sign. And as by (B), when X
2
= 0, Xl

and X
z

have opposite signs, the only effect of a change in the sign of

X
2

is that what was originally a permanence and a variation

is now a variation and a permanence ; that is, the permanence
and variation exchange places. Hence a change in the sign

of X., does not affect the number of variations.

As Xn is independent of x, it can never change sign for any
value of x. Therefore a change in the number of variations
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can be caused only by a change in the sign of the given
function X.

(D). When the function X changes its sign for successive

increasing values of x, the number of variations is diminished

by one.

Let m be a root of the equation X = ;
m — y and m + y

quantities respectively a little less and a little greater than

7>i, so taken that no root of X1
= Q is comprised between them.

Then, as x changes from m — y to m + y, no change of sign
takes place in Xr ,

while X reduces to zero and changes sign.

Putting in + y in place of x in X, we have

O + y)
n + P (m + y)

n ~ l + + u (m + y) + v.

B/eveloping the terms by the Binomial Theorem, and col-

lecting terms containing like powers of y, we have

mn + p mn ~ 1 + + um + v

+ y \_n m"
_ l + p (n

—
1) ni

n ~~ 2 + + u\

+ terms containing y
2

, y
s
, y

n
.

Representing the coefficient of y, which we observe is the

value of X1 when x is put equal to m, by A ;
the coefficient of

y
1

by B; and so on, we have

mn +pmn- 1+ + um + v + Ay + By-+ + Kyn
. (1)

But as x = m reduces X to 0, we have

mn + p mn ~ 1 + + u m + v = 0.

Hence (1) may be written

Ay + Bf-+ + Ky\ (2)

Now y may be taken so small that the sign of (2) will be

the same as the sign of its first term. That is, when a? is a

little greater than m, the sign of X is the same as the sign
of Xl

.

Similarly, by substituting in — y for x in X, we shall arrive

at the expression

-Ay+By2-Cy3 + ,
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where as before y may be taken so small that the sign of the

whole expression will be the same as that of its first term.

That is. when a; is a little less than m, the sign of X is the

reverse of the sign of Xx .

Thus we see that as x changes from m — y to m + y, the

signs of X and A^ are different before x equals m, and alike

afterwards. Hence, when A changes its sign a variation is

changed into a permanence, or the number of variations is

diminished by one.

We may now prove Sturm's Theorem
;

for as x changes
from a to b, supposing a less than b, a variation is changed to

a permanence each time that X reduces to and changes sign,

and only then, for no change of sign in any of the other

functions can affect the number of variations. And as X
reduces to zero only when x is equal to some root of the

equation X — 0, it follows that the number of variations lost

in passing from a to l> is equal to the number of real roots of

the equation X = comprised between a and b.

524. When — oo and + go are substituted for x, or when
the superior limit of the positive roots and the inferior

limit of the negative roots are substituted for x, the whole

number of real roots of the equation A^ = becomes known.

The substitution of — go and will give the whole number

of negative roots, and the substitution of + go and will give

the whole number of positive roots. If the roots are all real,

Descartes' Kule (Art. 507) will effect the same object.

The substitution of various numbers for x will show be-

tween what numbers the roots lie, or fix the limits of the

roots.

525. A and A, must change signs alternately, as they are

always unlike in sign just before X changes sign (Art. f>L\'
>

>

i

(D)). Hence, when the roots of X = and of Aq = are all

real, each root of Aq = must be intermediate in value be-

tween two roots of X= 0. For this reason the first derived

equation is often called the limiting or separating equa-

tion.
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526. In the process of finding X2 ,
X3} etc., any positive

numerical factors may be omitted or introduced at pleasure, as

the sign of the result is not affected thereby. In this way
fractions may be avoided.

In substituting
— go and + go, the first term of each func-

tion determines the sign, for in any expression, as

axn + bxn~ 1 + + /,•,

where x may be made as great as we please, it may be taken

so great that the sign of the whole expression will be the same

as that of its first term.

527. 1. Determine the number and situation of the real

roots of the equation

x3 — 4 x 2 — x + 4 = 0.

Here, the first derivative, X1
= 3 x 2 — 8 x — 1. Multiply-

ing x 3 — 4 x'
1 — x + 4 by 3 so as to make its first term divisi-

ble by 3 x2

,

3x2-8x-l)3x3 -12x2- 3 a: + 12 (a;

3 a;
3 - Sx2 x

- 4r- 2 a; + 12
3

- 6 a;
2- 3 x + 18 (-2

- 6.r- + 16a- + 2

19 a: + 16 .-. X = 19 x - 16.

3 x2 - 8 x - 1

19

19 x - 16 ) 57 x2 - 152 x - 19(3x
57 x2 — 48 x

- 104 x - 19

19

1976 a;- 361 (-104
1976 x + 1664

-2025 .-. X = 2025.
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Thus we have, X = xz — 4 x2 — x + 4
;
X2
= 19 cc — 10.

Xj == 3 x- - 8 x - 1
;

Z3
= 2025.

The last step of the division may he omitted, for we only-

wish the sign of X3 ,
and that may he seen by inspection when

— 104 x — 19 is obtained.

We first substitute — go for x in each function, and obtain

three variations of sign ; similarly + go gives no variation
;

hence the three roots are all real. Substituting 0, we have

two variations
; comparing this with the former results, we

see that one root is negative and the other two are positive.

The same result could have been obtained by Descartes' Rule,
as all the roots are real. We now substitute various numbers

to determine the limits of the roots.

The table presents the results in a connected form :
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Here we find X, = 4x3- 9x2 + 6x - 3
;
Xa=— <d2x + 129

;

X = 3 x 2 + 18 x - 31
;

Xi
= - 1163.

Substituting + co for x, we obtain one variation
; similarly,

gives three variations, and — oo gives three variations.

Hence there are only two real roots, both of which are posi-

tive. We then substitute values of x from upwards, giving
the following results :
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equations ;
for their general solutions are complicated, and

only of limited application. No general solution of an equa-

tion of a degree higher than the fourth can he ohtained.

COMMENSURABLE ROOTS.

529. A commensurable root is one which can be exactly

expressed as an integer or fraction without using irrational

quantities.

An incommensurable root is one which can only he ex-

pressed approximately by means of a decimal fraction.

530. Any equation containing fractional coefficients may
be transformed into another whose coefficients are entire, that

of the first term being unity (Art. 500), and such an equation

cannot have a root equal to a rational fraction (Art. 495) ;

hence, to find all commensurable roots, we have only to find

all integral roots.

531. As every rational root of an equation in its general

form is a divisor of the last term (Art. 493), to find the com-

mensurable roots we have only to ascertain by trial what in-

tegral divisors of the absolute term are roots of the equation.

The trial may be made by substituting each divisor, both

with the positive and the negative sign, in the equation ;
or

by dividing the first member of the equation by the unknown

quantity minus the supposed root (Art. 486). In substi-

tuting very small numbers, such as ± 1, the former method

may be most convenient
;
but when an actual root lias once

been used, the latter method will give at once the depressed

equation, which may be used in obtaining the other roots.

532. When the number of divisors of the last term is

large, this process of successive trials becomes tedious, and a

better method, known as the Method of Divisors, may be

adopted.

If a is a root of the equation

x4 +pxi +qx 2 + tx + u = 0,
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then a 4 + p as + q a- + t a + u= 0.

Transposing and dividing by a,

-= — t — qa—pa2 — a3
, (1)

u
whence we see that - must be an integer.

a

Equation (1) may be written

—h t = — q a —p a- — a*,
cv

U

a

a

u
Denoting

- + t by t',
and dividing by a,

— — q —p a — a2
,

t'

whence - must be an integer.
a

Proceeding in this way, we see that if a is a root of the

equation,
—

\- t or
t',
—

\- q or q', and \- p or p
1 must be in-

Ct Ct Lt

p'
tegers, and 1-1 must equal zero.

Hence the following

RULE.

Divide the absolute term of the equation by one of its inte-

gral divisors, ami to the quotient add the coefficient of x.

Divide this sum by the same divisor, and, if the quotient is

an integer, add, to it the coefficient ofx
2

.

Proceed in the same manner with each coefficient in regular

order, and, if the divisor is a root of the equation, each

quotient will be entire, and the last quotient added to the

coefficient of the highest poicer ofx will equal 0.

Equal roots, if any, should be removed before applying the

rule
;
and the labor may often be diminished by obtaining the

superior limit to the positive and inferior limit to the nega-
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tive roots of the equation, for no number need be tried which
does not fall between these limits.

1. Find the roots of the equation

xs - 6 x 2 + 27 x - 38 = 0.

By Descartes' Rule, we see that the equation has no nega-
tive root; and the only positive divisors of 38 are 1, 2, 19,
and 38. By substitution we see that 1 is not a root of the

equation.

Dividing the first member by x — 2, we obtain x2 — 4 x + 19
as a quotient. Hence 2 is a root, and the depressed equation
is x2 — 4 x + 19 = 0, from which we obtain

x = 4±y/16-76
~~2~

as the remaining roots. Hence,

2±v/-15

x = 2, or 2 ± y/
—

15, Ans.

2. Find the roots of the equation

8 x* - 4 xs - 14 x2 + x + 3 = 0.

We may write the equation

A 9C i QC 0C O -

*-2--^r +
§
+ 8= -

Proceeding as in Art. 500, we see that the multiplier 2 will

remove the fractional coefficients. We then have the equation

x4 — xs — 7 x2 + x + 6 = 0, (1)

whose roots are twice those of the given equation (Art. 499).

The divisors of G are ±1, ±2, ±3, and ± 6.

By putting x equal to + 1 and — 1 in (1), it is readily seen

that both are roots of the equation, and the other roots can be

found from the depressed equation. But all of the rational

roots may be obtained by the rule.



6,
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RECURRING OR RECIPROCAL EQUATIONS.

533. A Recurring Equation is one in which the coef-

ficients of any two terms equally distant from the extremes

of the first member are equal.

The equal coefficients may have the same sign, or opposite

signs; hut a part cannot have the same sign, and a part

opposite signs, in the same equation. Also, if the degree he

even, and the equal coefficients have opposite signs, the middle

term must be wanting. Thus,

a4 - 5 xz + 6 x2 - 5 x + 1 = 0,

5 x5 - 51 x* + 160 x3 - 160 x2 + 51 x - 5 = 0,

x6 — x5 + x* — x2 + x — 1 = 0,

are recurring equations.

534. If any quantity is a root of a recurring equation,

the reciprocal of that quantity is also a root of the same

equation.

Let xn +px
n ~ 1 + qx

n ~ 2 + ...± (... + </x
2

+i*z + l)=0 (1)

be the equation. Substitute - for x
;
then

V

y" y'"
1

y
n ~- v v v >

Multiplying each term by y
n

,

(i+py+.qf.+,..)±(...+ qy
n-*+py

n - 1+yn)=Q (
2)

Now, (1) and (2) take precisely the same form on changing

the ± sign to the first parenthesis in equation (2), and hence

they must have the same roots. Now, if a is a root of (1), as

1 1
v
— - must be a root of (2) ; but, as (1) and (2) have the

x a

same roots,
- must also be a root of (1). In like manner, if

a

b is a root of (1), y is also a root of (1).
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On account of the property just demonstrated, recurring

equations are also called reciprocal equations ;
the former term

relating to their coefficients, and the latter to their roots.

535. One root of a recurring equation of an odd degree is

— 1 when the equal coefficients have the same sign, and +1
when they have opposite signs.

A recurring equation of an odd degree, as

x*n + l +px2m + qx
2m-l + _ ± ( + q tf +p x + ^ _ Q (3)

has an even number of terms, and may he written in one of

the following forms,

(x
2M + 1 + 1) +p (x

2m + x) + q (x
2 "'- 1 + x") + =0,

(X
2m + 1 —

1) +p (x
2m —

x) + q (X
lm - 1

-X-) + ...... = 0.

If — 1 he substituted for x in the first form, or + 1 in the

second, the first member will become
; hence,

— 1 is a root

of the first and + 1 a root of the second.

If equation (3) be divided by x ± 1, both forms will reduce

to the following form,

X2m +px2 " 1 - 1 + qx
2m ~ 2 + + qx

2 +px + l = 0, (4)

a recurring equation of an even degree in which the equal

coefficients have the same sign. Hence, a recurring equation

of an odd degree may always be depressed to one of an even

degree.

536. Two roots of a recurring equation of an even degree

are + 1 and — 1 when the equal coefficients have opposite signs.

Let

x*>» + pX2m - 1 + qX
2m - 2 + -( + qx

2 +px+ 1)=0

be such an equation. As the middle term must be wanting

(Art. 533), the equation may be written in the form

^™-l)+F (^»"
!

-l) + ?x
2

(f'»-
4
-l)-h = (5)

which is divisible by both x — 1 and x + 1, or by x'
2 — 1 (Art.

120). Hence, both + 1 and — 1 are roots of the equation.
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If equation (5) be divided by x 1 —
1, it will be depressed

two degrees, and become a recurring equation of an even

degree, in which the equal coefficients have the same sign

(Art. 120). Hence, every recurring equation may be de-

pressed to the form of equation (4), Art. 535.

537. Every recurring equation of an even degree, whose

equal coefficients have the same sign, may be reduced to an

equation of half that degree.

Let

a?
m
+qi x-"'- 1 + q ar m

~ 2 + + q x~ +p x + 1 =
be such an equation. Dividing it by xm

,
we may write it

(^ + ^) + ^(^"-
, + ^)+?(^-

2 + ^r-2)
+ ---=0 (6)

the middle term if present becoming a known quantity.

Put x + - = y

Then, a2 + -=-= y
2- 2

x-

x3+
x^ =y3

~ s
(
x+

x) =i/3
~ s y

xm + — = y
m — m y

m ~ 2 +

Substituting these values in (6), we have an equation of the

form

y"
l

+2hy
m - l + qiy

m -* + = 0.

After this equation is solved, we can immediately find x

from the equation x + - = ?/.

x

538. It thus appears that any recurring equation of the

(2 m + l)th degree, one of the (2 m + 2)th degree whose equal
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coefficients have opposite signs, and one of the 2 with degree

whose equal coefficients have the same sign, may each he

reduced to an equation of the with degree.

EXAMPLES.

1. Given x4 — 5 xs + 6 x2 — 5 x + 1 = 0, to find x.

Dividing by x2
,

far -\
—

j j

— 5 f x -\
—

j
+ 6 = 0.

S instituting y for x -\
—

,
and y

2 — 2 for x2
-\
—-

9 we have
x xl

w2-2-5w+6 = 0.

Whence, y = 4 or 1.

If y = 4, x + - = 4, or x2 — 4 x = — 1
;

Whence, x = 2 ± ^3.

If y= 1, x + - = 1, or a;
2— x=— 1

;

Whence, x = T

Note. That 2 — y/3 and are reciprocals of 2 +
y/3

and -—^

1 2
may easily be shown by reducing

——— and —-—;=. to equivalent frac-
2 + ^3 1 + V— 3

tions with rational denominators (Art. 279).

Solve the following equations :

2. a-
5 - 11 xl + 17 x3 + 17 a-

2 - 11 x + 1 = 0.

3. a;
5 + 2 x* - 3 a;

3 - 3 x2 + 2 x + 1 = 0.

4. xG — x5 + x4 — x2 + x — 1 = 0.

5. a;
3 + px2 +px + 1 = 0.

6. 6 x4 + 5 a.-
3 - 38 x2 + 5 x + 6 = 0.

7. 5 x5 - 51 a,-
4 + 160 a;

3 - 160 a-
2 + 51 x - 5 = 0.
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8. x4 + 5 x' + 5 x + 1 — 0.

9. x5 = - 1, or x> + 1 = 0. (See Art. 332.)

10. x5 -32 = 0. (Let cc = 2
?/.)

CARDAN'S METHOD FOR THE SOLUTION OF CUBIC
EQUATIONS.

539. In order to solve a cubic equation by Cardan's

method, it must first be transformed, if necessary, into another

cubic equation
1

in which the square of the unknown quantity
shall be wanting.

By Art. 505, this may be done by substituting for x, y
minus the coefficient of x2 divided by 3.

540. If the first power of the unknown quantity be want-

ing in the given equation, we may obtain the result by a

simpler method, as follows :

Let x3 + a x2 + c = be such an equation.

Substituting - for x, we have
V

1 a— + — + c = 0, or c y
% + a y + 1 = 0.

541. To solve a cubic equation in the form x3 + p x + q= 0.

P
Put x = z — =-, and the equation becomes

Sz

V2 V3
7)

2

or, z3 - £—. + q = 0; or, 27 z* + 27 q z3 -p3 = 0.
2( z3

This is an equation in the quadratic form, and may be

solved by the method of Art. 313
;
and after z is known, x

P
may be found directly from the equation x= « — —-.

o z
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We have then for solving cubic equations the following

RULE.

If necessary, transform the equation into another cubic

equation in which the square of the unknown quantity shall

be wanting (Arts. 539 and 540).

If y be the unknown quantity in the resulting equation,

substitute for it z minus the coefficient of y divided by 3z.

EXAMPLES.

1. Solve the equation x3 — 9 x + 28 = 0.

3
Substituting z -\

— for x,

27 97 27
z3 + 9z + — +^--9z -— + 28 = 0,

z z6 z

27
or, «3 + tf + 28 = 0; or, *c + 28s3 = -27.

Solving by quadratics, z3 = — 1 or — 27.

Whence, z =— 1 or — 3.

Uz = -1, x= z + - = -l-3 = -±.
z

If z = -3, x = - 3 - 1 = - 4.

Hence, one root of the equation is — 4. Dividing the first

member of the given equation by x + 4, we obtain as the de-

pressed equation,
x2— 4 x + 7 = 0.

Whence, x — 2 ± y/— 3, the remaining roots.

2. Solve the equation xs — 24 x2— 24 x— 25 = 0.

Putting x = y + 8 (Art. 539), we obtain

2/
3 + 24^+192Z/+ 512-24y2

-384?/-1536-24y-192-25=0,

or, y
8- 216 y— 1241 = 0.
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72
Putting y = z H—-, we have

. _,_ 15552 373248 ._ 15552
, OM _

zz + 216s h 1 5 216 « 1241 = 0,
z z* z

or, z3 +
3 ' 3

^
48 - 1241 =

; or, s
c - 1241 z3 + 373248 = 0.

Whence, ss = 729 or 512, and 2 = 9 or 8.

72 72
Therefore, y = 9 + -

r or 8 + -^ = 17, and sc = y + 8 = 25.
9 o

Hence, one root of the equation is 25. Dividing the first

member of the given equation by x — 25, we have as the

depressed equation
x2 + x + 1 = 0:

- 1 ± \J- 3
,

Whence, x = -
,
the remaining roots.

ii

Solve the following equations :

3. x3 - 6x + 9 = 0. 6. x3 + 9 x2- 21 x + 11 = 0.

4. x3 - 6 x2 + 57 x -196=0. 7. x3 -2 x 2 + 2x- 1 = 0.

5. :c
3 -4a;2 -3x + 18 = 0. 8. x3-±x2 + 4a;- 3 = 0.

9. a-
3 -3x2 + 4 = 0.

10. Obtain one root of the equation x3 + 6 x — 2 = 0.

542. In the cubic equation x3 +px+q = 0, when p is

— p
3 o2

negative, and f, > =y ,
Cardan's method involves imaginary

expressions ;
but it may be shown in that case that the three

roots of the equation are then real and unequal.

Thus, in solving the equation x3 — 6 x + 4 = 0.

2
Substituting z + - for x, we have

z

z3 + 6 2 H \- -j
— Gz f- 4 = 0,
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r, g« + J* + 4=
; or, z

r> + 4 z* + 8 = 0.

Whence, z
z = -2 ± y/- 4, or -2 ± 2 y/- 1,

or, ft = y/_ 2 + 2y/- 1 or ^-2-2^-1.

It may be proved by trial that 1 + y/— 1 is the cube root of

_ 2 + 2 yC3, and 1 - y/^1 of - 2 - 2 yCl. Hence,

= l + y/-l or l-y/-l.

If z = 1 + y/- 1,

X=Z+-=1+ y/— 1 +
2 _2y/-l + 2

i + ^/=3

_ '

1 + y'-i

_ o

Hence, one root of the equation is 2. Dividing the first

member of the given equation by x — 2, we have as the de-

pressed equation
x2 + 2 x - 2 = 0.

Whence, £C = — 1 ± y^, the remaining roots.

543 We have no general rule for the extraction of the

cube root of a binomial surd
;
so that in examples like that

in the preceding article, unless the value of z can be obtained

by inspection, it is impossible to find the real values of x by

Cardan's method. . In this case, the real values of x can

always be found by a method involving Trigonometry.

BIQUADRATIC EQUATIONS.

544. General solutions of biquadratic equations have been

obtained by Descartes, Simpson, Euler, and others. Some of

them require the second term of the equation to be removed,

while others do not. All of them depend upon the solution of

a cubic equation by Cardan's method, and will of course fail

when that fails (Art. 542). They are practically of little

value, especially as numerical equations of all degrees can be

readily solved by methods of approximation.
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INCOMMENSURABLE ROOTS.

545. If a higher numerical equation is found to contain

no commensurable roots, or if, after removing the commen-

surable roots, the depressed equation is still of a higher

decree, the irrational or incommensurable roots must next be

sought. The integral parts of these roots may be found by

Sturm's Theorem or by Art. 517, and the decimal parts by

any one of the three following methods of approximation.

HORNER'S METHOD.

546. Suppose a root of the equation

x" +j>x"~
1 + q xn ~ 2 + + tx'2 + ux + v = (1)

is found to lie between a and a + 1. Transform the equation

into another whose roots shall be less by a (Art. 502), and we

shall have an equation in the form

y
n
+p'V

n ~ 1 + Q'y
n ~ 2 + + t'y°- + u'y + v' = 0, (2)

one of whose roots is less than 1. If that root is found to lie

between the decimal fractions a' tenths and a' + 1 tenths,

transform equation (2) into another whose roots shall be less

by a' tenths, and we shall have an equation in the form

s»+_p"2"-
1 + q"z

n ~ 2 + ...... + t"z2 + u"z + v"= (3)

one of whose roots is less than .1. If that root is found to

lie between the decimal fractions a" hundredths and a" + 1

hundredths, transform equation (3) into another whose roots

shall be less by a" hundredths
;
and so on.

Thus we obtain

x = a + a' + a" +
to any desired degree of accuracy.

As y and z in equations (2) and (3) are fractional, their

higher powers are comparatively small ; hence approximate
values of y and z may be found by considering the last two

terms only, from which we have

v' .. v"
V = -77 and *^~ TJ, '
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Thus approximate values of a', a", may be found in

this way, and with greater accuracy the smaller they become.

Hence a positive incommensurable root of the equation may
be found by the following

RULE.

Find by Sturm's Theorem the initial part of'the root, and

transform the given, equation into one whose roots are less by

th is initial part.

Divide the absolute term of the transformed equation by

the coefficient of the first power of the unknown quantity for
the next figure of the root.

Transform this last equation into another whose roots are

less by the figure of the root last found, divide as before for
the next figure of the root ; and so on.

547. A negative root may be found by changing the

signs of the alternate terms of the equation beginning with

the second, and finding the corresponding positive root of the

transformed equation (Art. 498). This hy a change of sign
becomes the-required negative root.

548. In obtaining the approximate value of any one of

the quantities a 1

, a", by tbe rule, we are liable to get too

great a result
;
a similar case occurs in extracting the square

or cube root of a number. We may discover such an error

by observing the signs of the last two terms of the next

transformed equation ; for, as the figures of the root as ob-

tained in succession are to be added, it follows that a', a",

must be positive quantities, so that the last two terms of the

transformed equation must be of opposite sign. We then

diminish the approximate value until a result is found which

satisfies this condition.

549. If in any transformed equation the coefficient of the

first power of the unknown quantity should be zero, the next

figure of the root may be obtained by dividing the absolute

term by the coefficient of the square of the unknown quantity,
and taking the square root of the result.
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For, if in equation (2), Art. 546, u' = 0, we have, approxi-

mately,

t' y
2 + v' = 0, whence y = \/

We proceed in a similar manner if any numher of the

coefficients immediately preceding the absolute term reduce

to zero.

550. 1. Solve the equation x 3 — 3 x2 — 2 x + 5 — 0.

By Sturm's Theorem, the equation has three real roots
;

one between 3 and 4, another between 1 and 2, the third

between — 1 and — 2.

To find the first root, we transform the equation into

another whose roots are less by 3, which by Art. 503 is

effected as follows :

Dividing x3 — 3 x 2 — 2 x + 5 by x — 3, we have x2 — 2 as a

quotient and — 1 as a remainder. Dividing x 2 — 2 by x — 3,

we have x + 3 as a quotient and 7 as a remainder. Dividing
x + 3 by x — 3, we have 1 as a quotient and 6 as a remain-

der. Hence the transformed equation is

x3 + 6 x2 + 7 x - 1 = 0,

whose roots are less by 3 than those of the given equation.

Note. The operations of division in Horner's Method are usually per-

formed by a method known as Synthetic Division. For example, let it be

required to divide ofi - 19 x + 30 by x - 2.

*3 ±0.r2 -19a; + 30

T3 _ O r2

x -2

a;
2 + 2x-15

2 a;
2

2.-C2 - ix

-15a;

-15.Z + 30

The first term of each partial product may be omitted, as it is merely a

repetition of the term immediately above. Also the remaining term of

each partial product may be added to the corresponding term of the divi-

dend, provided we change the sign of the second term of the divisor before
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multiplying. Also the powers of x may be omitted, as we need only

consider the coefficients in order to obtain the remainder.

The work now stands

l±0-19 + 30|l+2
+ 2

|

1 + 2-15

+ 2

+ 4

-15
-30

As the first term of the divisor is 1, it is usually omitted, and the first

terms of the dividends constitute the quotient. Raising the oblique

columns we have the following concise form :

Dividend, l±0-19 + 30|+2
Partial Products, +2+ 4-30

Quotient, 1 + 2-15,+ Remainder.

Here we use only the second term of the divisor with its sign changed ;

each term of the quotient is the sum of the terms in the vertical column

under which it stands, and each term of the second line is obtained by

multiplying the preceding term of the quotient by the divisor as written.

By the method of Synthetic Division, the work of trans-

forming the given equation into one whose roots are less by

3 stands as follows :

1 -



416



SOLUTION OF HIGHER NUMERICAL EQUATIONS. 417

EXAMPLES.

Find the real roots of the following equations :

2. ar3 _2x-5 = 0. 5. x3 - 17 x 2 + 54 x -350 = 0.

3. a* + x3 - 500 = 0. q a;
4 -4 a3-3 a: + 27 = 0.

4. x 3 - 7 a; +7 = 0. 7. x4 - 12 x1 + 12 x -3 = 0.

APPROXIMATION BY DOUBLE POSITION.

551. Find two numbers, a and b, the one greater and the

other less than a root of the equation (Arts. 517 or 521), and

suppose a to he nearer the root than b. Substitute them

separately for x in the given equation, and let A and B repre-

sent the values of the first member thus obtained. If a and b

were the true roots, A and B would each be
;
hence the

latter may be considered as the errors which result from sub-

stituting a and b for x. Although not strictly correct, yet,

for the purpose of approximation, we may assume that

A : B = x — a :x — b

Whence (Art. 348), A — B : A= b — a : x — a

or (Art. 345), A — B : b — a= A:x — a (1)

A(b-a)
and, x — a =— —

A — B

A(b-a)
or, x = a + A _B .

From (1), we see that, approximately,

As the difference of the errors is to the difference of the two

assumed numbers, so is either error to the correction of its

assumed number.

Adding this correction when its assumed number is too

small, or subtracting when too large, we obtain a nearer

approximation to the true root. This result and another
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assumed number may now be used as new values of a and b,

for obtaining a still nearer approximation ;
and so on.

It is best to employ two assumed quantities tbat sball differ

from each other only by unity in the last figure on the right.

It is also best to use the smaller error.

This method of approximation has the advantage of being

applicable to equations in any form. It may, therefore, be

applied to radical and exponential equations, and others not

reduced to the general form (Art. 480).

EXAMPLES.

1. Find a root of the equation xz + x- + x — 100 = 0.

When 4 and 5 are substituted for x in the equation, the

results are — 16 and + 55, respectively; hence a = 4, b = 5,

A —— 16, and B = 55. According to the formula,' the first

approximation gives

_ 16 (5 - 4) ,
16

,
_

* = 4+ -16-55
- 4 +

7l
= 42+ -

As the true root is greater than 4.2, we now assume 4.2

and 4.3 as a and b. Substituting these values for x in the

given equation, we obtain — 4.072 and + 2.297
;
therefore 4.3

is nearer the true root than 4.2.

„ , Q 2.297(4.3-4.2) .2297
Hence, x = 4.3- ^ + 4

_ = 4.3 --^
-4.3 -.036 = 4.264.

Substituting 4.264 and 4.265 for x, and stating the result

in the form of a proportion, we have

.0276 + .0365 : .001 = .0270 : correction of 4.264.

Whence the correction = .00043+.

Hence, x = 4.264 + .00043 = 4.26443+, Am.

Find one root of each of the following equations :
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2. x3 - 2 x- 50 = 0. 4. a;
3 + 8r+ Gx — 75.9 = 0.

3. *3 +10x2 +5a;-260 = 0. 5. x3 +^-^- T = 0.
lb 4

6. x4 - 3 x 2 - 75 x - 10000 = 0.

7. a;
5 + 2 x4 + 3 x3 + 4 a;

2 + 5 x - 54321 = 0.

NEWTON'S METHOD OF APPROXIMATION.

552. Find two numbers, one greater and the other less

than a root of the equation (Arts. 517 or 521). Let a he one

of those numbers, the nearest to the root, if it can be ascer-

tained. Substitute a + y for x in the given equation ;
then y

is small, and by omitting y
2
, y

3

, ,
a value of y is obtained,

which, added to a, gives b, a closer approximation to the value

of x. Now substitute b + z for x in the given equation, and a

second approximation may be obtained by the same process as

before. By proceeding in this way, the value of the root may
be obtained to any required degree of accuracy.

The assumed value of x should be nearer to one root than

to any other, in order to secure accuracy in the approxima-
tion.

EXAMPLES.

1. Find the real root of the equation x3 — 2 x — 5 = 0.

When 2 and 3 are substituted for x in the equation, the re-

sults are — 1 and + 16 respectively ;
hence a root lies between

2 and 3, and near to 2. Substitute 2 + y for x, and there

results

y
3 + 6y" + 10y-l = 0.

Whence, approximately, y = .1.

Now substitute 2.1 + z for x, and there results

.061 + 11.23 2 + = 0.



420 ALGEBRA.

Whence, approximately, z = '

i}0
= — .0054, and

x = 2.1 - -0054 = 2.0946, nearly.

Find one root of each of the following equations :

2. a;
8— 3 x -(- 1 = 0. 3. xs - 15 x- + 03 x - 50 = 0.



ANSWERS TO EXAMPLES.

In the following collection of the answers to the examples and problems given in the

preceding portion of the text-book, those answers are omitted which, if given, would

destroy the utility of the problem.

Art. 47; pages 10 and 11.

1. 93. 5. 408. 9. 5§. 13. 36. 17. llf.

2. 136. 6. 254. 10. 13$. 14. 48. 18. 9.

3. 127. 7. 24. 11. 4. 15. 3. 19. 10.

4. 156. 8. 310. 12. If. 16. 4. 20. 76.

Art. 60; page 18.

6. Ua-9vip2
. 7. x. 8. Sab-lcd. 10. 3mn2-2x2

y.

11. 39 a2 -2i ab + 5 h\ 12. - « + 3 c + 2.

13. x-y+3m + 3n. 14. 3a + 3b + 3c + 3d. 15. x.

16. n+ r. 17. 6mn — ab — 4 c + 3x + 3m2— 4 p.

18. 4 a - 2 b - 12 - 3 c - d + 4 x2 - 18 m. 19. 6 a3
.

20. 14 six. 21. 7 a b + 7 (a + b). 22. 16 \/ y - 4 (a- b).

Art. 66; page 21.

6. — 3a5+4ctf— 5 a x. 7. 6 z + 12 ?/
— 8 « + 4.

8. _4a6c-14a--2y- 148. 9. 2
y/
a - 4 y- + 12 a .+ 1.

11. 14 x2
-Sj/

2 + 5ab-7. 12. 2 b -2 e. 13. 6 b + 1.

14. 4m^8»-r+3s. 15. Qd -2 b — 3 a -3c
16. 5m2 +9w3 -71a;. 17. 2 b. 18. a -6 -3 c.
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Art. 74; page 24.

4. a — b + c + cl— e. 5. 2 a + 2. 6. x— y. 7. a— 3b + c.

8. 5wr-6»-4(i. 9. 6?» — 3%. 10. 4x + 2y.

11. —35 — 7c. 12. a — c. 13. 9a+l. 14. 6 m + 2.

Art. 86; pages 29 and 30.

3. 6a3 -16a 2

?/+6ay
2 + 4?/

3
. 4. a4 + 4a + 3. 5. a2 -b2

+ 2bc-c\ 6. -0a2 +16a&-8£ 2
. 7. 68-a8

. 8. o4-«.

9. 30 a3- 43 a2 b + 39 a b
2 - 20 b

3
. 10. 6 a4 + 13 x3 - 70 a3

+ 71a-20. 11. -a5- 37a; 2 + 70 x -50. 12. -Gar5- 25 a4

+ 7a3 + 81a 2 + 3a-28. 13. 2a5 b
2-3a4

b3-7 a3 b
4 + 4:a2

bs
.

14. 4x2m+1 y
3 — 1G xm+6 y

n + 1 + 12 x 5

y
2n ~\ 15. 12 a;

6 +7 a;
4

+ 5 x3 + 10 x — 4. 16. m5 + re
5
. 17. a5 — 5 a4

6 + 10 a3 b2

-10 a2 b3 + 5 ab4 - b\

Art 87; page 30.

2. 6 a2 + 11 a J + 4 6
2

. 3. a5 + x5
. 4. a8 - 2 a4 a4 + x8

.

5. 2 am + 1 - 2 an + 1 - am + n + a 2n . 6. 1 - a 8
. 7. a3 + 3 a2 a

- 10 a x2 - 24 x3
. 8. a5 -5 a4 + 10 a3 -10 a2 + 5 a- 1.

Art. 101; pages 37 and 38.

3. a x - 2. 4. 3 b
2 - 4 a 2

. 5. 4 « 2 - 3 b
2

. 6. 3«4 + 3a3 i

+ 3a2 6 2 + 3«63 + 364
. 7. a2-ax + x2+-^—. 8. x3-x2

y
a + x

+ xy2-y3 + —¥—. 9. 2 x2 - 7 a - 8. 10. 5 x 2 - 4 a + 3.
a; + y

11. x 2 - 2 x - 3. 12. a4 + x3
y + a-

2
?/

2 + x y
3 + y\

13. 3a3 -2a2 + a-5. 14. 2 a-
3 - a- + 1. 15. a-b+c.

16. a 2— 3 a— y. 17. x + //. 18. an — bm + c
r
.

19. l + 2a + 2a 2 + 2a3+ ... 20. a-ax + ax2-ax3 + ...
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21. a*-an + a i
b
2 -ab* + b

i
. 22. 2 a 3 - 2 a2 - 3 a - 2.

23. - x 2 - 2 x - 4. 24. a3 -
a: + 2. 25. 2 a2 - a b + 2 &2

.

Art. 107; page 40.

23. 1 - a2 + 2 a b - b
2
. 24. a2 - b

2 - 2 b c - c
2

.

25. a 2 -2ab + b 2 -c2
. 26. c

2 - a2 + 2 «6 -£ 2
.

27. a2 + 2«i + i'
2 -c2 + 2^- c/

2
. 28. a2 - 2 a 5 + 52

-c2 +2crf-£ 29. a2 + 2 a & + &
2 - c

2 - 2 c d - d2
.

Art. 115; page 42.

3. (a + x)(b + y). 5. (x + 2)(x- y). 7. (x
2- y

2

) (m- n).

4. (a-m)(c + tf). 6. (a-b)(a
2 + b'

2

). 8.
(a: + 1) (x

2 + 1).

9. (3 a; + 2) (2 a;
2

-3). 12. (ab-cd) {ac + b d).

10. (2 a; - 3 y) (4 c + d). ,
13. (m

2

x-ny) (n
2 x - m y).

11. (2-7m2

j(3»-4m). 14. (4ww-7a;y)(3a& + 5crf)-

Art. 117; page 45.

9. (a + b + c + d) (a + b — c — d).

10. (a
— c + b) (a

— c — b). 11. (m + x—y) (m — x + y).

12. (x
— m + y — n) (x

— m — y+ n).

16. (x + y + 2)(x + y-2). 18. (3c + d+l)(3c + d-l).
17. (a + b-c)(a-b + c). 19. (3 + x2

-2y) (3-x 2 + 2y).

20. (2 a— 5 + 3 d) (2 a- J - 3 d).

21. (2 m2 + 2 b - 1) (2 m2 - 2 b + 1).

22. (a
— m + b -f- n) (a

— vi — b — n).

23. (a + m + b — n) (a + m — b + n).

24. (x
— c + y — d) (x

— c — y + d).

Art 118; page 49.

25. (x
2 -

24) (x
2 -

5). 27. (x y
3 + 12) (x y

3 -
10).

26. (c
3 + 11) (c

3 + 1). 28. (a b
2 -

16) (a b
2 + 9).
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29. (x + 20 n) (x + 5 n). 32. (x + y- 5) (x + y— 2).

30. (m
2 + 11 n 1

) O'
2 - 6 ir). 33. (x

- 8 y
2

g) (aj + 6 y
2

s).

31. (a _ 5 _ 4) (a
_ 5 + 1). 34. (m + n + 2) (m + ra

-
1).

Art. 121
; page 53.

3. Sab (a
-'r 2)

2
. 7. 3 a2

(a
-

5) (a
-

2).

4. 5 x y
2

(3 x
- 4 y

2

)
2
. 8. 2 c m (c + 7) (c

-
3).

5. 2ay(3a; + y)(3a;
—

y). 9. a; y (m— 6) (m + 2).

6. a; (x + 7) (a; + 1). 10. ±ab(2a+ b) (±a
2-2ab+ b2

)

11. (n
-

1) (>r + » + 1) O6 + w3 + 1).

12. (x
2 + y

2

)(x-t- 2/)(^- 2/).

13. (cc
4 + m4

) (a;
2 + m2

) (x + m) (x — m).

14. (m + w) (??i
—

w) (m
2 + m w + ?z

2

) (??i

2 — mn + ri
2
).

15. (a + c) (a
2 - a c + e

2

) (a
6 - a3

c
3 + c

6

).

16. (2 a + 1) (2 « - 1) (4 a2 + 2 a + 1) (4 a2 - 2 a + 1).

Art. 125
; pages 55 and 56.

Z. ax. 6. x + 7. 9. x (x
—

1). 12. 2 a: + 5.

4. m + n. 7. 2 a; — 3. 10. a — 2 &. 13. m(j;- 1).

5. x2 + 1. 8. 3 a - 4. 11. x + 6. 14. 4 a? - 1.

Art. 126
; page 61.

6. 2 x + 3. 10. 2 a; - 5. 14. x2 + x + l.

7. 8a; — 7. 11. 5x + 3. 15. a — a;.

8. x - 1. 12. jb + 2. 16. x2 - 2.

9. 3 a; + 4. 13. 2 a; - 1. 17. 2 (x + y).

18. 2«-3x. 19. 3 a; + 2.

Art. 130; page 63.

2. 120a4 6
2
c. 4. 36 a& b\ 6. 840 a2

c
2 d3

.

3. 30xV«8
. 5. 480 m3

rt
2 x 2

t/
2

. 7. 252 a 8

y
3 s8

.

8. 1080 a 2
b
2
c
3 d\ 9. 168 m n2 xz

y
s

.
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Art. 131; pages 63 and 64.

2. ax(x-\-a)(x—a)(x-+ax+a
2

).
7. ax (x — 3) (x— 7) (x + 8).

3. 12 abc (a + b)(a-b). 8. (2x+l)(2x-l)%4:x
2

+2x+l).
4. «(cc + l)(a;-l)(x

2— rc+ 1). 9. 3 ab (x
—

y)
2

(a
—

b).

5. 24(l+ cc)(l-x)(l+ a:
2

). 10. 2az; 2

(3;c+ 2)
2

(9a;
2

-6x+4).
6. (x+l)(a;-2)(cc+3)(*+4). 11. (x-l)(x-3) (x+ 4)(x-5).

12. (x + y + z) (x + y — z) (x
— y + z).

Art. 132; page 65.

2. (3x-4)(4 :r-5)(2a;+ 7). 4. (a
2

-2a-2)(a+ 3)(2a-l).
3. (4a;+l)(2a;+7)(3a;-8). 5. (2x+ 3)(x

2-x+ l){x
2

+x-2).
6. (a

—
b)(a

2 -ab + b
2

)(a
2 + 2ab + b

2

).

7. a x (x + 1) (x
2 — x — 1) (x

2 + x + 1).

8. x (x
-

5) (2 x
2 - x -2) (3 x

2 + x - 1).

If the above expressions are expanded, the answers take the

following forms :

2. 24 z3 + 22 a2 -177 a; + 140. 4. 2«4 + a3 -17« 2-4« + 6.

3. 24 z 3 + 26 z 2- 219 a; -56. 5. 2x5 + 3xi-±x3 + 5x-Q.
6. a5 -a3

b
2 + a2

b3 -b\

7. a xG + ax5 — ax4 — 3 ax3 — 3 ax2— ax.

8. 6ic6 -31a;c -4x 4 + 44a; 3 + 7a;2 -10a;.

Art. 148
; page 71.

14- *£ 18-

o + 2 c

a (2 + 3 n)1D *

b{2-3n)
• 19 '

16. ±*--J*y+v\ 20.

m + 9 3 y — 5

10.
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Art. 149; page 72.

2.
3 *

3.

4 a; + 1

5a + 7

a-2 '

10.
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100 a y z3 Aob x 3 z 8Acxys— 12mx y
2

120 x1
?fz

2 ' 120 x 2

y
2 z2>

'

120 x 2

y
2 z2

*

(a+b) {a
2 + U1) (a

-
b) (a

2 + b
2

) a2 - b
2

10.

a4 -64 at-b* ' at-W
x2— 9 x 2 -l x 2-4

(x-l)(x-2)(x-3)' (x-l)(x-2)(x-3)' (x-l)(x-2)(x-3)'

2 a (a + 2) 3 b (a
—

2) 4 c (a + 3)

12.

0-2)(a+2)0+3)' 0-2)0+2)0+3)' (a-2)(a+2)(a+3)'

x3 +2x2
-\-2x + l x 2 + x + l x + 1

(x + 1) {x
3-

1) '0 + 1) (X
s-

1)' {x + 1) (a
3-

1)'

13
6 a2

b
2 3 b (m

2- n 2

) 2 a (a
2- b 2

)

6ab(a—b)(m+ ?iy 6ab(a—b)(m+ n)' 6ab(a—b)(m+ ii)'

3 Q+l) 2Q-1) 2-a 1-x x2-x-2 3
'

a»-l' a2 -l'a2 -l'
"*'

l-x» 1-jb2 >1=?'

17
c2 -^2 Q-l)Q + &) Q-6) 2

'

O2- 62) (c
-

d)' O2 -*2
) (e-d)' (a

2 -b 2

)
-

d)'

Art. 153; page 78.

2 (a
~ by

3
g2+9«+8 9 m2 - 4

a*— b2
' '

x 2+5x — 24' "6m2— 19m + 10"

4 2 +«& + 62

) 1_^
a3 — & 3

1 — x

Art. 154; pages 80 to 82.

4
12 a; + 7 6a + 5& a + 3 3 m2 n2 - 4

36
' '

10 a2
6 2

'

24
•

6m2
-»

3
*

8
5 &* + 4 «'

q
5a + 6

in 4,ab-b-±a3 1
"

120 a 6
" *

24
• iUl

12«3T~ ~* 1L
15"

12 — is
3a; ~2 1 45ctf+6acd—3ahd—2abc

•42'
"

18 x2
' 14l_

60-
15-~ ~48^X~

17. ? 18 1 19
2 Q^ + &2

)

6 + x-x2
' '

x2 +15x+56' a 2 -b2
'
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Oi
*"

«l£±|. 22..4^. 23.
(* + 2y

1_^'
— a-6* -a4 -^'

•

(.x + l)(a;
3

-l)

13-18* _J_ a2 -14a + l^
(z + lXa^Xz-S)*

0,
&-«'

'

6(^-1)

28. 57_?-_. 29. 44- 30. 0. 31.
9 a:- a;

3
' '

»*—1"
' ' '

(»-2)(jb-3)(»-4)

Art. 155; pages 83 to 85.

2.
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17 1 18
ww(m-w) 8

19 _

s-g
m* + m1

ri
1 + w4

'

x + 2 a

Art. 175; pages 94 and 95.

2. aenx—bcen=bdnx—bem. 3. 6 bx— 8a2 = 3— 2a6a.

4. bdex—adex+bcex—abd=0. 5. \2x-\-hx— 6x— 1320-

6. 9z-12a=10a:+24-46. 7. 28a:-4a;+560=14a;+7a;+728.

8. ±ax-6c-5asx+ 2a3bd=0. 9. 10x-32a;-312=21-52a;.

11. 3 a — 2 a— 2 a;= 45. 12. a 6 a; + b
1 — ex — d = a c.

13, 3-3z-2-2x= 0. 14. 6ar+3z-6ar+ 18-4a;-2=0.

15. 3a._3_2a--2-5x=0. 16. 6x+ 6-15aj+ 45-20a;-10=0.
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Art. 182
; pages 108 to 113.

10. Horse, $224; chaise, $112. 11. 37. 12. 10 and 7.

13. 18 and 2. 14. 58J and 4l£. 15. A, 40
; B, 20.

16. A, 60
; B, 15. 17. If. 18. ft. 19. 23£.

20. 84. 21. 36. 22. Oxen, 12
; cows, 24.

23. Wife, $864; daughter, $288; son, $144.

24. Worked, 20
; absent, 16. 25. Horse, $ 126

; saddle, $ 12.

26. Infantry, 2450
; cavalry, 196

; artillery, 98.

27. 144 sq. yds. 28. Water, 1540
; foot, 880

; horse, 616.

29. $ 1728. 30. $ 2000 at 6 p.c. ; $ 1200 at 5 p.c. 31. 7.

32. 31. 33. $24. 34. $100. 35. 142857.

36. A, $ 466| ; B, $ 533J. 37. 2 dollars, 20 dimes, 4 cents.

38. $2.75. 39. Men, $25; women, $21. 40. 23 and 18.

41. 48 minutes. 42. 12121 men
;
110 on a side at first.

43. 5r\ minutes after 7. 44. 43T
7
T minutes after 2.

45. 27f\ minutes after 5. 46. 29 and 14.

47. 3377 ounces of gold ;
783 ounces of silver. 48. $ 2000.

49. 30 bushels at 9 shillings ;
10 at 13 shillings. 50. 10 a.m.

51. $ 1280. 52. 21ft minutes, or 54T<Y minutes after 7.

53. 27 T̂ minutes after 4. 54. 23*1 miles.

55. Greyhound, 72
; fox, 108. 56. 1 minute, If§f seconds.

Art. 192
; pages 120 to 123.

3. x = 4, y = 3. 9. x=-2, y=10. 15. x = 12, y= 18.

4. s = 5, y= -2. 10. jk==12, y= S. 16. a; = 35, y= -10.
5. x = 7, y = 5. 11. x=~2, y=-10. 17. x =- 28, y= 21.

6. x =- 8, y = 2. 12. x = 10, y = 5. 18. x = A,y = .1.

7. x = 5, y = 7. 13. x = 7, y = 11. 19. x = l£, y = 3f .

8. x=-8, y=-12. 14. a>=ll, y=-9. 20. x = 3, y = -2.

21
dm — bn _an — c m n / + ri r

ad — be ad — be
~
mri + m' n '
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m'r—mr' nn ac(bvi + dv) bd(cn-am)
V= • "3. X= ^-=

; -, y= ^ : -.
u m n' + w! n ad + b c ad + b c11 25 5*

24. x=—, y=-^. 25. x= 60, y= 40. 26. x=—
, y=».

2 a 2, a Ob
27. x = lft, y = 4 TV 28. x= -6, y=-5. 30. #= 4, y=2,

be — ad
bn— d vi

'31. x =— 5, y=3. 32. x= -2, y—— l. 33. x=

b c — a d „. 3 2 oe 1 1
y = • 34.33 = ^77,2/= —^. 35. x=-,y = —cm — an a~ b a tr n vi

Art. 194; pages 126 and 127.

3. x = 23, y = 6, g = 24. 6. a; = — 5, y = — 5, z = — 5.

4. x.=— 2,y= 3, z = l. 7. «= 4, x= 5, y= 6, z = 7.

5. x= 8, y=- 3, g=- 4. 8. a; = 3, y = - 1, s = 0.

9. jc =^ (b + g— a), y = ^ (a + c — b), y= ^
(a + & — c).

10. x~^,y=
7

-£,z=^ 11. a=-24,y=-48,g=60.

12. u = — 7, x = 3, ?/= — 5, z = 1.

_ 5
2 +c2 -ft2

_a
2+c2-&2

_ a2 + &2 -c2

13, *~
2bc

~,V ~ 2ae ,Z ~~ 2ab
'

14. x= -,y=-^,z=--. 15. a;= li y= -X\, «='l.

16. x= ab c, y=ab + ac + bc, z = a + b + c.

a+ 1 f-
17. x= 7, y—— 3, g=— 5. 18. as= ,y—a— c,z--

c a

Art. 195
; pages 129 to 133.

4. A, 30
; B, 20. 5. ^. 6. Cows, 49

; oxen, 40.

7. A, $140; B, $70. 8. A, 98; B, 15. 9. 32 and 18.

10. Man, 24
; wife, 18. 11. Worked, 6

; absent, 4.

12. Horse, $96; chaise, $112. 13. A, $96; B, $48.
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14. 16 days. 15. 13J bushels at 60 cts.
; 26| at 90 cts.

16. Wheat, 9; rye, 15. 17. Income tax, $20; assessed tax, $30.

18. A, $500; B, $700. 19. 30 cents
;
15 oranges.

20. 1st, 8 cts.
; 2d, 7 cts.

; 3d, 4 cts. 21. Better horse, $40 ;

poorer, $30; harness, $50. 22. 10, 22, and 26. 23. 246.

24. A, $2000; B, $3000; C, $4000; D, $5000.

25. A, 45; B, 55. 26. A, $20; B, $30; C, $40.

27. Whole sum, $120; eldest, $40; 2d, $30; 3d, $24; 4th, $26.

28. Length, 30 rods
; width, 20 rods

; area, 600 sq. rods.

29. Going, 4 hours
; returning, 6 hours.

30. A, 9f days ; B, 16
; C, 48. 31. 1st rate, 6 p.c. ; 2d, 5 p.c.

32. 15 miles
; 5^ miles an hour. 33. 30 miles an hour.

34. A, 5
; B, 6. 35. First, 22

; second, 10. 36. A, 8
; B, 6.

Art. 197; pages 136 and 137.

. a b c _ .
,

_ m a .. n a
4. — —

. 5. li hours. 6. and .

ab + ac + bc vi-\-n m,-\-n

7. 12 and 8. 8. -^-. 9. 12. 10.
10°"

11. $2100.
b — a rt+ 100

12.
100

>-i>), 13. m. 14. lst,
g(c

-
6)

;2d ;

ft(a
-

r)
.

p r
~ a — b a — b

,.-.». ^,.,/n , „ b + d ^„ am+bji + cp
15. 1st kind, 5

; 2d, 10. 16. —— . 17. - -r- — .

a — c a + b+c

*
amt

. -o ant'

n a P t
"

mt + nt' -\-pt'
n ' mt+ nt'+ptf

n '

mt+nt'+pf'

Art. 205; page 141.

5
3.-2 rods. 4. -

^ . 5. 105 and — 15. 6. In — 30 years.

7. A, .-$1500; B, -$500; that is, A was in debt $1500,

and B $ 500. 8. Man, $ 3
; son,

— $ 0.50
;
that is, the man

was at an expense of 50 cents a day for his son's subsistence.
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Art. 225; page 152.

4. x > 5. 5. x > 15, x < 20. 6. 4. 7. x > 6|, y > 2|.

8. a; > c, x < d. 9. * > 9|, 7/ < 12£. 10. 19 or 20.

11. Any no,, integral or fractional, between 8 and 15. 12. 60.

Art. 229; page 155.

2 7 2

1. a3 -3a2
b + 3ab2 -b3

. 2.~-2+—
i

.

3. 1 + 3 a2+ 3 b
2+ 3 a4+ 6 a2

6
2 + 3 b* + a&+ 3 a4 b2+ 3 a2

6
4+ 6

6
.

4. a2 + 2am — 2an + m2 — 2mn + n2
.

5. a*m _ 4 a3m + »,

_|_ (5 a2m+ 2n _ 4 ((
m + 3a + a4

n#

6. a5 + 5 a4
5 + 10 a3 b

2 + 10 a2
bs + 5 a 6

4 + 65
.

Art. 230
; page 156.

3. 4a:
4+12ar+25ar2+24z + 16. 4. 4a:4-12a;3+ lla; 2-3a:+ |:.

6. a;
6
+4a: 5+6a;

4
+8a;

3
+9a:

2
+4a;+4. 7. l-4a;+10a:

2-12a;3
+9a:

4
.

8. 1 + 2 a; + 3 ar + 4 x3 + 3 a;
4 + 2 a:

5 + a:
6

.

9. x6 -8x 5 + 12 x* + 10 a;
3 + 28 x 2 + 12 x + 9.

10. 4 x« + 4 a:
5 + 29 x" + 10 a;

3 + 47 a:
2 - 14 x + 1.

11. a;
6 + 10 x5 + 23 xi - 6 a:

3 + 21 x2 - 4 a; + 4.

12. 9 a;
6- 12 x5 - 2 xi + 28 x 3 - 15 a;

2- 8 a: + 16.

Art. 231; page 157.

2. a^+Qa'b+ 12 a2
b
2+U3

. 3. 8m3+60?7r?z+150mw2+125» 3
.

4. 27 a;
3 -108 a;

2 +144 a; -64. 5. 8 a;
9- 36 a;

6 + 54 x 3- 27.

6. 64 x6 -48 x5

y +12 a;
4

?/
2— a;

3
?/

3
.

7. 27 a;
3

?/
3 + 135 a b

2 x2
y

2 + 225 a2
bA xy + 125 a3

b
6
.

Art. 232; page 158.

3. a;
6 - 3 x5 + 5 a;

3- 3 x - 1. 5. 8 - 24 a; + 36 x2- 32 a:
3

+ 18 x i - 6 a;
5 + a;

6
. 6. 1 + 3 x + 6 a;

2 + 10 a;
3 + 12 a;

4
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+ 12 x 5 + 10 x« + 6 x 1 + 3 x 8 + x\ 7. 8 x» - 12 x s + 30 a;
7

- 61 x* + GG x5 - 93 a4 + 98 a;
3 - 63 a2 + 54 a; - 27.

Art. 239
; pages 162 and 163.

2. 2 a;
2 - x - 1. 5. 3 - 2 a; + a;

2
. 8. 3 ar - 4 x - 5.

3. 2 a2 - 4 a + 2. 6. 5 + 3 x + x\ 9. 2 x 2 - 5 a; + 8.

1
4. m + 1 m 7. 1 — 7» -2 a;

2
. 10. a -b c.

U. x-2y + 3z.

13. a-+ S fr—,: 4

a; a;
2

a;
3

i3

8 a3 16 a5

15. a + s

12 - 1 + 2-^+ 16

2 a 8 a3 +
x°

16 a5



12. x
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Art. 262; page 186.
'

1 n 12500
3 - 9 - 5

-ioooo-
7 - 4 ' 9± -^~

4. ±216. 6. ±-^. 8.-243. 10. ±£.

Art. 263
; pages 186 and 187.

5. 3 3-2 y _ 2 x- 1 - 2T
1
- 6. 2 aj^ + x y~^ -4^ y~*.

./•'7. a?t"y

T

*-2-+aT*y*. 1L 2y*-y*ar
1
. 12.

13. a;-
2 " 6

. 14. a*». 15. a31 . 16. a
-
^. 17. sc.

01 •* + «* oo h^d'-afd* 9q
5 »" (»»-!)

21 1_3«3
* ^

ab*# + aP*' 3a
'

Art. 267; page 189.

2. ^27, #16, #25. 3. $625, ^216, ^49.
12.^ 12, 12 „ 15,— — 15,-———- 15,.

4. V*V, V^
4 ^ VVs3

- 5. #32 a 5
, #27 &

3
, #64c

3
.

12. 12,

6. #cr+2a6+6
2
, \/a

3-3a-b+3ab2-b3
. 7. #a°-3a

4
.z

2+3a2
;c

4-x6
,

fa8 -2«3 x3 + x6
. 8. y^3. 9. #2. 10. #4.

Art. 269 ; page 190.

5. \l$ab\ 6. #a&2
. 7.

v/(|f3)-

Art. 270
; page 191.

11. 3xyS/2xy'
2

-3xhj. 12. (a
—
3)^a. 13. (x + y)^x— y.

14. (2 x + 3 a) f 6a. 15. 4 a & #3a&2 + 5&. 18. ^ 6 -

1 ._ „„ 1 ,„. „. 2a
19. ^i/30. 20. Ji/21. 21. ^f y/3. 22.

r> #6*.
6 b y J
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a\j ab c

2 (a + x) 6- (a + 6)

Art. 272; page 192.

7. v^x s- ft^F- 9-

y/(^)-

Art. 273; pages 193 and 194.

«/. o 38
3. 10

si
2. 4. 12

v/
3. 5. 9^2. 6.

^y/o

7-
|\/6.

8.
|j2 + ^18. 9.4^5. 10. i^-

11.6asJ3a. 12. ^V 3 - 13. ^2 + ^3.

14. 2 yV2 -
tf. 15. (2 a - 5 b) \Jl x.

Art. 274; pages 195 and 196.

5. \f^¥x-\ 6.^4500^ 7 -

^(g^ga)-

8. y/5^
. 10. a; + v/z

- 6. 11. 21 x - 38 v^ + 5.

12.2. 13.-1. U. x-ij-z + 2\jy^.

15.4 + 2^10. 16. 56+12v/35. 17.36-32^15.
18. ax-x\ 19. m + TO. 20. 14— 4^6.

21. 147 + 30 v/24. 22. 1 + 2 a %/l-a
2

. 2-3. 2 a- 2 \/a
2-&2

.

Art. 275
; page 196.

b/16

V
/
243'

e/8

V9-
7. {/" 8. {18. 9.^
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Art. 276; page 197.

3. ^125. 4. y/7. 5. 2304 x\ 6. a4 *2
. 7. \j~a~^-~b.

8. SlaHx Sjbx. 9. a:
2 + 2x + l. 10. 16 a:

2 - 48.

Art. 277; pages 198 and 199.

12,-

3.^2. 4.
si

2. 5.<)a + b. 6. V* - 1. 7. y/2

8. ^3. 9. v/3. 10. ^^V- n - V 2 -

Art. 278
; page 200.

. 3s/2 . ^4V2 x 5
\/
2 a 2°\/3tf

O.
pr
—

. 4. —
s . 0. —^

—
. D. 5

2 2a 2 3a

Art. 279; page 201.

3.
12 ~ 4y/2

. 4. 5 + 2 V 3. 5. 2 ^ 6 - 5.

a + 2_^b'+b 16 + 7
y/
10

6 '
"

«-fi
^ ~* 7 *

"

13

_ a — 2 ^ax + x a + 3 + 3 \la + 1

a — x a

a+^a*-x2

10. 2a2-l-2aV/ «2-l- H. • 12. y^-l-ff 2
.

a;

1Q x*-2 + x^x 3-4: 14 a: - 24- 11 Vs8- 2a;

2 18 — o x

Art. 281; page 202.

2. .894. 3. 7.243. 4. 3.365. 5. .101.

Art. 286; page 204.

4. — 8 v/6. 5. 12\/ab. 6. 46. 7. 2.

8. -abc V^l. 9. a2 + b. 10. 12. 12. sJB.
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13. y/2. .
14.

y/5. 15. ^3. 16. \f^l. 17. 1 + <f^2.

18.
2
(f-

b)
. 19. 1 _ 4 y/^3. 20. - 100 - 18 tf=2.

or + b
T

Art. 293; pages 207 and 208.

5. v/T + y/5. 8. 5 + y/lO. 11.^15-^5.14.3-2^-2.
6. v/21-v/3. 9. 3-v/3. 12.3 + ^5. 15. 5 + 3 \/^2.

7. 3 + v/7. 10. v^5-v/3. 13. 7-3
y/ 2. 16. 6-V-l.

17. ^m + n— \jm — n. 18. x — SJax. 19. 3 + v/2.

20. v/2-1. 21. 2-^3.

Art. 297; pages 209 and 210.

4. 17.
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13. - 5 or - 13. 29. - 4 or - 1. 45. 2.

14.
^or-|.

30. 2 or i. 46. 4 or 0.

15. 2 or -. ' 31. 4 or - If. 47. 3 or - 2.

16,_l r-|. 32. 4±2y/3. 48. -2ov~do bo

17. ^^^ 33.3or-l. 49. ±
2

12
-- — ~

.y/8'

18.
17±

y
337

. 34. 2 or - 1 . 50. 25 or 3.
4 7

19. -- or -1 35. 7 or | . 51. 6 or -2.
o 2 6

20. lor-
7
, 36. 4or-^. 52. -or--.
4 4 a. c

21. =f or - 2. 37. - 10 ± v^78. 53. a ± b.
o

0Q 1±V409 3 a a
**. £ . 38. — 3i or — 2^. 54. ——- or -

.

b ""42
23. — or -

. 39. 1 or — . 55. — a or — b.
4 Z oh

24. 3£ or - 1. 40. 1 or
£

. 56. 11 or 18£.

25. 13 or - 2. 41. 5 or ^ . 57. 5 or - 3.
5

26. I or i . 42. 18 or 3. 58.
12±

J .

2 14 5

27. 1 or 3i. 43. — 2 or — . 59. a— ft or — a— c.

28. - 4 or - **
. 44. - 3 or 2*. 60. ^=* or-

3^.
_, a + b a — b
bl. or ——r .

a — o a +
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Art. 311
; pages 224 to 227.

4. 12 rds. 5. 40000 sq. rds., and 14400 sq. rds. 6. 9 and 6.

7. 16 and 10. 8. 16. 9. 3 inches. 10. $ 30. 11. 14 and 5.

12. $2000. 13. 18bbls., at $4 each. 14. 256 sq. yds. 15.5.

16. 7 and 8. 17. 7, 8, and 9. 18. Length, 125
; breadth, 50.

19. 9. 20. 3712. 21. 80. 22. 20.

23. Area of court, 529 square yards ;
width of walk, 4 yards.

24. 36 bu. at $1.40. 25. Larger, $77.17^; smaller, $56.70.

26. 1st, 14400; 2d, 625
; or, 1st, 8464 ; 2d, 6561. 27. 84.

28. 6. 29. Larger pipe, 5 hours
; smaller, 7 hours.

30. 38 or 266 miles. 31. 70 miles.

Art. 314
; pages 230 to 232.

5. ±3or±V-13. 6. ±l or ±J_ 7. lor -2.
I y 5

8. ± 1 or ± -
. 9. ± 7 or ± 5. 10. ^3 or - ^23.

11. ± 8 or ± d(-^ . 12. 4 or ^49. 13. 4 or 1.

14. 243 or -
J' (28

5

). 15. 4 or 1\. 16. 49 or 25.

18. 2,
-

2, 3, or 7. 19. 3 or - 1. 20. ± 1 or ± 2.

21. 2 or - 3. 23. 1,
-

1, 5, or 7. 24. 2,
-

3, 4, or - 5.

25. 1, 2,
-

5, or 8. 26. 1,
-

1,
-

6, or - 8.

28.
3,-|or

3±
4

V/ 55
. 29. 8, -2, or 3 ± y/

110.

80.?,-?, or
" 3±

2

2 ^3
. 31. 1,9, or 5±2 N/2.

32. 0,-5, 1, or-^.

Art. 317; page 234.

2. x = 2
} y—±l; or, x = — 2, y=±l. 3. x = 4, y = ± 5

;
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„ . 1 1 11
or, x=— 4, y=±5. 4. « =

g,
y—±^ °r

'
a;=—

3'
^=±

2'

1 1
5. x= 3,y=±p or,x = — 3,y = ±g.

Art. 318; page 235.

2. a? = 7, y=— 8; or, x = — 8, y = 7.

3. a; = 5, y = — 2
; or, a; =— 2, y = 5.

4. x = 3, y = 4
; or, cc = — 4, y=— 3.

5 5
5. x = S, y= 2>

or
>
cc=:

~2' y:= — 8*

1 5
6. x= 2, y= 4

; or,x = — ^,y
=

^.

7. ar= 2, y= — 3
; or, x = 3, y= — 2.

8. x = 1, y = 2
; or, a; = 2, y = 1.

Q Q 9
15 62

9. a? = 3, y — 2; or,x = — —,y= —.

10. a? = 9, y = 6
; or, x = — 6, y = — 9.

11. a; = 2, y = 9
; or, x = 9, y = 2.

12. a; = 9, y = 3
; or, x = — 3, y= — 9.

13. x = 6, y = — 4
; or, x = — 4, ?/

= 6.

14. a; = 3, y= 2; or, a; = —, y= —— .

15. x = 5, y = 3
; or, a; = — 3, y = — 5.

16. x = 3, y = — 7
; or, a; = — 7, y = 3.

Art. 319; page 238.

4. x = 3, y= 4; a; = 4, y= 3; x = — 3, y=— 4; or, x=— 4,

y = — 3.

U. &= 6, y= 7
;

a; = 7, y= 6
;

a;=— 6, y = — 7; or, a; =— 7,

y = — 6.

6. x = 2, y= — 3
; or, x = — 3, y = 2.
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7. x = — 1, y = 4
; or, as=— 4, y == 1.

8. # =1 3, y = — 2
; or, x =— 2, y = 3.

9. a; = 4, y = — 7
; or, a; = 7, y = — 4.

10. x = 5, y = 6
; or, cc— 6, y = 5.

11. x = 5, y = 2
; or, a; =— 2, y = — 5.

Art. 320
; pages 239 and 240.

2. x = 2, y = 2>
x = - 2,!/ = -2>

x =
\ 5>y

= — 2
\

2

5
;

5 g
3. x = 2,y = 3; x=— 2,y = — S- x = ^^r ,y =

^31
' y ~

v'
31

'

5 6

y/31'
y
"~^31.'

4. aj= 3, y= l; a>=— 3, y=— 1; x= 2^2, y= \/2;

or, ^ = -2^2, y= — ^2.

5. £= 3, y= 5;a;= — 3, y=— 5; x = -, y=y5 or, z=— -,

13

6. a; = 2, y = — l\ x=— 2,y= l-, x = —-r
, y

5 7

7. a; = 2, y
— 1

;
a; = — 2, ?/

= — 1
;
x = 7, y = — 19

; or,

x — — 7, y = 19.

Art 321; pages 243 and 244.

5. x = l, y = 8; or, x = 8, y = 1.

6. a; = 4, y= 9
; or, x = 9, y = 4.

7. a: = 2, ?/
= 3

; or, a: = 3, y = 2.
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8. x=3, y=4 ; 3=4, y=3 ;
x=-±+ \J^11, y=-A-\^H

or, x = — 4 — \/— 11, y = — 4 + y^— 11.

9. a:=4,y=5;a:=16, y=-7 ;
3=- 12+^/58, y=-l—^58 ;

or, x =- 12 - y/58, y = - 1 + y/58.

10. a; = 4, y = 2
;

cc
— —

2, y = — 4
; or, a;= 0, y = 0.

11 o a
605 20 io -,

3
11. x = 9, y= 4; or, *=.— , y =— . 12. a- = 1, y= -.

13. x = 3, y = 2
; or, a; = 2, y = 3. 14. x — 9, y = 4.

15. 3= 1, y=-3; a=-3, y=l; a-=l+V^^2, y=l- V^2;
or, a; = 1 — \/-2, y= 1 + ^~2.

1« 1 o o -, 3+V-55 -3+V-55.
16. x=l,y=—2;x=2,y=—l;x= 1 ,y= j

;

or,x= , y= y.
.

17 9 o o o -1+3V^3 1+3^.
17. x=2,y=3;a:=-3,y=-2;a:= ^ ,y= J

,

-1-3 y/^3 1-3 V
/

'

=r3
or, a;= ^ » ?= ^

18 . ,=3;y=2;,= 2,,=3 i ,=^±^,,==^.
9

;

_-9-v/309 -9 + ^309
12

" ,y ~
12

19. 3=1, y=-3; 3=-l, y=3; 3=141, y=3f; or, 3=-14f,

20. 3= 2,y= 3; or,3= 2f>y= lf.01,100 4 22 59
21. a: = 4, y = 2, « = 3; or, x= -,ij =— ,

z =
-g--

22. a; = 1, y = 2, z = 4
;

a; = — 1, y = — 2, s = — 4
;
x — 9,

y = — 6, s = 4
; or, x = — 9, y = 6, z =— 4.

Art. 322; pages 246 to 248.

4. 12 and 7, or — 12 and — 7. 5. 11 and 7, or — 11 and — 7.

6. A, $2025; B, $900; or, A, $900; B, $2025.
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7. A, 25
; B, 30. 8. Length, 150 yds. ; breadth, 100 yds.

9. 13 and 6. 10. A, $15; B, $80. 11. 10 lbs., at 8 cts.

12. A, $ 5
; B, $ 120. 13. Duck, $ 0.75

; turkey, $ 1.25.

14. Price, $ 1600
; length, 1G0 rods

; breadth, 40 rods.

15. Larger, 864 sq. in.
; smaller, 384. 16. A, $ 275

; B, $ 225.

17. 1st rate, 7 p.c; 2d, 6. 18. A, 40 acres at $ 8 ; B, 64, at $ 5.

19. Distance of towns, 450 miles
; A, 30 miles a day ; B, 25.

20. 3 and 1
; or, 2 + sj 7 and 2 -

y/
7. 21. Larger, 12 ft.

;

smaller, 9. 22. Width of street, 63 ft.; length of ladder, 45.

23. B, 15 days ; C, 18 days.

24. Length, 16 yds. ; width, 2 yds.

Art. 328
; page 253.

3. (a:+ 60) (a;+ 13). 6. (x + 13) (a? -3). 9. (4a;-l) (2a;+ 5).

4. (x -9) (x -2). 7. (jc-5)(2a;+ 3). 10. (x- 3) (4 x- 3).

5.
(a; -10) (a; + 6). 8. (7 a;+ 3) (3 a;+ 7). 11.

(a; + 2) (2 a; -3).

12. (3a:-2+ v/3)(3a-^2- v/3). 13. (y/17+ 4+ a-) (^17-4-3:).

14. (7a3 + l + 2 v
/ 5)(7a; + l-2v/5).

Art. 329
; page 254.

2. ar + a; = 2. 5. 3 x2- 2 x = 133. 8. 3 x 1 + 17 x = 0.

3. a;
2-9 a;=-20. 6. 21.x 2 + 44 x = 32. 9. a:

2 -2a; = 4.

4. 5a;
2- 12a;=
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Art. 331; page 256.

3. (x + y/2 x + 1) (x - \/2 x + 1).

4.
(a; + \Jx + 1) (x

—
\J
x + 1).

5. (a + ^5lTb + b) (a
-

\j~h~ab + b).

6.
(x°~ + 3 x y + f) (x

2 -3xy + f).

7. (x + 1 + S/Sx + 2) (x + 1 - \J~3x~+2).

8. (m
2 + mn + w2

) (m
2— m n + to

2
).

Art. 332
; page 256.

2.

7.
^ 7 * V

71- 1 ™ -v/7±V/:-l
or

2^2 2^2

Art. 357; pages 269 and 270.

1. 4. 2. 11. 3. £. 4. 1 J. 5. ±4. 6. ± 12.

7. ± 14. 8. 25 and 20. 9. 23 and 27. 10. 12 and 15.

11. 8 and 18. 12. 26 and 14. 13. 17 and 12. 14. 12 and 8.

15. First, 1:2; second, 2 : 1. 16. Females : males = 4:5.

17. 8 : 7.

Art. 365; page 273.

2.4. 3. „= 8* 4* 5.4. 6. y=
14

. .

°> 4 — 5cc

7. 10 inches. 8. 3
(y/ 2

—
1) inches. 9.143.
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Art. 370; page 276.

3. 1=71, £=540. 4. Z=-69, £=-620. 5. 1=57, £=552.

OQ A9 3
6. l=-U5, £=-2175. 7.

Z=^|,£=y.
8. l=--,S=0.

9. l=-^,S=±.
10. l=~,S=~. U.l=5,S=17.

4 2

Art. 371; pages 278 and 279.

q 95 1

4. a= 3,£= 741. 5. a=
^,i==--^-.

6. <Z=-,£=39.

7. d=— i, «= -?. 8. a=o,d=-3. 9. w=18, £=411.
12 4

10. «Z=— 8, n= ll. 11. w = 30, Z = 80. 12. ^ = 52, a = 4;

or, » = 43, a—— 5. 13. n = l%l = - 43.

Art. 372; page 279.

7 8 10 11 5 3 1 1
A
3'3"I'"3""

J,
2'

w,
2' '2'

'
2'

4 2 3 _4 _ 5 5 Jl -^ _^ _!? -^ -??* ^ —^ 4
>

°-
7

' 7' 7' 7' 7' 7

2 6 14 22 „ am + 5 a(m -l) + 2b

5'5' 5
'

5
' ' m + 1

' m + 1

Art. 373; page 281.

3. 2500. 4. Last payment, $ 103 ; amount, $ 2704.

5. 4. 6. After 9 days, at a distance of 90 leagues.

7. 4, 11, 18, and 25. 8. 3. 9. 0. 10. 20 miles.

11. 2, 6, 10, and 14
; or,

-
2,
-

6,
-

10, and - 14. 12. 8.
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Art. 378; page 284.

4. 1= 2048, £=4095. 9. 1=-— , s=-^^
64

'

192

64 2059 _ 1 511
5- l=m> S=

243-.
10. 1 =

^, S=~.

6. Z= 2048, £=1638. 11. l^-~, £=^.

7 l---L s- 3^ 12 Z-
1

<?-
341*~

256' ^-256'
"'

^-~768'^-~256-
1 2047

8- l = zm> S=mi- 13^= 192,5=129.

Art. 379; page 286.

- 1 c 341 2 _ 2
4. a = ^, £= 7r-. 5. a = 7., Z =

2' 2
"" "-_

3' 6561'

6. r= 3, £=2186; or, r= -3, £=1094.

1 2457
7. ^-j, /S=m . 8. » = 5, £=121.

9. n = l, r= \. 10. w = 6, Z=-?S 1L w= 8, a= -l.
^ 2

Art. 380 ; pages 287 and 288.

3. 4.
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Art. 382; pages 289 and 290.

48 16 32 64 392781243 39
'3' 9' 27' 81' 243" 2' 2' 2

'

2 ' 2
'
°r

'

2' 2'

-|, |, -y. 5. - 6, -18, - 54,
-

162,
-

486,
- 1458.

927 81243 33333 3 3

~4' 16' ""64' 256* 4' 8' 16' 32' 64' 128' 256'

3 3
_3_ _3^ 3_ _3_ _3_°r

'~4' 8' ~16' 32' 64' 128'
"

256'

Art. 383; page 291.

3. $ 64. 4. $ 295.23. 5. 3100 ft. 6. 5, 10, 20, and 40
;

or,
-

15, 30,
-

60, and 120. 7. - 4. 8. TV

Art. 386 ; page 292.

Z.E. 3. -i. 4.
3 " •»

31' 78'
'

4'
'

arc-&?i + 2&-a'

2.

Art. 387; page 293.

48 24 16 12 48 8 48

125' 65' 45' 35' 145' 25' 155'

5_5_5 21 _7 21 21
3 '

4'" 3'" 2"
'" '"

5
'

3' 13' 17"

_ (m + 1) a 6 (m + 1) a b (m + 1) ab

m b + a
' m6 + 2a-6' mH3«-2i'

Art. 397; pages 297 and 298.

4. Of 4 letters, 360
;
of 3, 120

;
of 6, 720

;
in all, 1956.

5. 1680. 6. 3838380. 7. 358800. 8. 15120. 9. 120.

10. 35. 11. 15504. 12. 31824. 13. 77520. 14. 648.
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Art. 403
; page 302.

5. 1 + 5 c + 10 c
2 + 10 c

3 + 5 c
4 + c

5
.

6. a6 + 6 a5 a 8 + 15 a4 x6 + 20 a3 x9 + 15 a?xu +Qa xlh + xls
.

7. x s -8x 6

y + 24:Xi
7f-S2x

2 f+16y\
8. a7 ^-7a6

i
6 c^ + 21a5 i 5 cV2-35aH4

c
8 ^3 +35aH8

c
4 ^4

-21a 2
&
2
c
5 d5+7a&c6 a,6-c7

cf.

9. m12 + 18 m10 w2 + 135 m8 w4 + 540 m6 w6 + 1215 m4 w8

+ 1458 m- n10 + 729 w12
.

10. a
- 10-20 a- 8a^+160 ar 6x- 640a~^+1280or 2ar-1024a^.

11. c™ + 8 c*' cfl + 28 c
4 e^ + 56 c$~ <fi + 70 c% d3+ 56 c

2 d^'

+ 28 c* <# + 8 J eft + d6
.

12. m~^ + 14»"^ w3+ 84 m- 8»6+280 m
-^" w9+ 560m~*»12

+ 672 m"^ w15 + 448 j»~* w" 4- 128 w21
.

13. a- 4 -4ffl- 3 i2 x^ + 6 a~ 2
Z>
4
a;^ - 4 or 1 6

6
a; + b

s sA

Art. 404; page 303.

2. 5005 a6
a;

9
. 4. - 19448 c

10 d7
. 6. 42240 x~ 3

yK

3.2002 m6
. 5.495 a8

. 7. 262440 a2 ar 7
.

Art. 405
; page 304.

2. 1 - 4 x + 2 a;
2 + 8 x3 - 5 x i - 8 xh + 2 x6 + 4 x 1 + x\

3. a;
6 + 9 x5 + 30 a;

4 + 45 x3 + 30 x2 + 9 x + 1.

4. l-6a; + 6a;2 +16a:8— 12a4 -24a;8 -8a:6
.

5. l+5a;+ 5a;
2-10a;3-15a;4

+lla;
5+15x6-10a;7-5x8+5x9-cc 10

.

Art. 414; page 309.

3. l-2a: + 2a;2 -2a:3 + 2a;4

4. 3 + 19 x + 95 x 1 + 475 xa + 2375 a;
4

5. 2-a; + 3a:2 -a:8 + 3a:4
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6. l-2a; + 2a;3 — 2x4 + 2x6

7. l-2x + ox2 -16x3 + 4:7xi

1 5x
7_x* lTjc

3

31_x
4

9. 2- 7 a; + 28a; 2 - 91 a;
3 + 322 a;

4

2 a; 7 a;
2 13 a;

3 8 a;
4

io. i +—-— 27
+

81

1
3jc

a2 15k8 49a4

1L
2
+ ~T + IT* 16

+
32

Art. 415; page 310.

2 a;-
2 4 a;-

1

_8_
16 a; 32 a;

2

2 -
_
3
_+_

9
_+

27
+

81
+

243

3, £C
- 1 + 3 + 2x-5a;2 -16a;3

4. x~ 2 — x- 1 -2 x + 2 a;
2 -4 a;

3

Art. 416; page 311.

a; a;
2

a;
3 5 a;

4
a; 3 a;

2 3 Xs 3 a;
4

3* 1 + 2~8~+ 16~128""
,1+

2
+

8 "16
+

128"'

a;
2

a;
3 5 a;

4

_
a _ s2 5 a;

3 10 a;
4

3. l_aj_——-—
g-...

«>. i
3 9

-~
81

-

243
•'•

x4
„ . a; 2 a:

2 13 a;
3 8 a;

4

4. l_a; + a;
2 + a;

3 + y ... 7. 1 +-+——^+-^3
...

Art. 418 ; page 314.

3 2.41 _J_ 6_
2 -

x~T2
+ x~=2' x-2 x 'x-7 x-6'

, 3 2 ,1 J_ 7 _2 3_
«~T+8"

&'^T4 +
a; + l' '"2»-5 Sas + l"

Q 1 2 _J 1
1

4
8
"3+T£

+ 3=!T
y
"6(x + l) 2(a;-l)

i
"3(a;-2)'
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Art. 419
; page 316.

o 11 1
„ 1 4 4

2- —^- + 7—^Tv2 + 7—"TV,- 4.-— + - — +
x + l (x+ l)

2

(x + l)
3

'

x-2 (x-2f
'

(a;-2)

3
2 3

5
3 6

B'

x-5 (x-5)
2

'

x+ l (x+ l)'
2

(x+ l)
3

'

3 5
6.

7.

2 (2 a;
-

5) 2 (2 x
-

5)
2

'

2 4 3

3 a; + 2 (3x + 2)
2

(3x + 2)
3

Art. 420 ; page 317.

_ 2 3 5 .515
2. —

-,
—

; . 4.
x x+2 (x+2)

2
'

'x x* x+ l (x+ l)
2

'

„11 1 1 .123 4
3. -+—T +—0 + 7—2K3- 5.- ,+

x x—1 x—2 (x—2)'
2

' '

x x2 xs x+ 5*

ix-2 2x-3 (2x-3)

„ 5 1 2 5 4
7. S + -T-—

X X2 X3 X+ l (x+l)
2

'

Art. 422; page 320.

o 2,84 /i y 3?/ 19?/
6 19 y'3. x = y — ?/

2 + ?/
8 — y

4
. . . 4. x = sL -j £ —

. .J J J J
2 16

+
128 128

5. x = y + y
3 + 2 y

5 + 5 y
7

. . .

vy ;
2

i-
3 4

"

7 x_ ?/
, ^,2^ 17 y' y 2y2

y
3

14y*^~y+
3
+
l5-

+
315"-

8 ' *-3 + 27~~243~2T87"

Art. 425; page 325.

- § 5 | .15 1,5 a . 5 _a
4. a 2 + -a 2 x + -^-a

2 x' + z—a 2 xz — —-a ^4

«s 8 lb 128
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5. 1 - 6 x + 21 x 2 - 56 x 3 + 126 x*

3 12
2

52
3

234
4

b. i +
5
x +

25
x +

125
x +

G25
x

i 1 _i. 1 _| 1 _i 5 -z
7. a J

—-^a *x — -^a 'X'— zr^a
2 x6 — zr^a

J x*
£ o lb lwo

„ ,
1 2 „ 14, 358.1-- x + - x*-- x, +mX>

9. ar 3 + 3a- 4 x + 6 a~ 5 x2 + 10 a~ 6 x3 + 15 «" 7 x* ....

10. c"^— c- 3
df + c~* d2 - c- 6 d3 + c"

1
*' d*

11. x z —2x b
y — X s

y
2 — -X s

y
3— ^x

3
y*o o

I
3 15 7 35

3
a 315 jjl

614. m + 6 in 6 n- + -jr- m J n6 + -=- mr n 2
-\
—— m J

?i . . .

2 2 o

in -i -i^ i ™ o o 1760 „ „ 12320
13. 1— 10 xy-

1 + 80 a;
2
?/-

2

q-b'jt'H 5— a?
4
?/"

4

2 2 8

15. a4 + 12 a5
gT

2 + 90 a6
y~

4 + 540 a7
jr

6 + 2835 as

y
— 8

Art. 426
; page 326.

33 aT'^'x'' 315 a8 44 x^' y*

"~2048
'

128"' 6561
'

663 x "V
4. 84 m6

. 6. - " y
8. 210 w^c" 8

.

8192

9. _?5? a-^aj- 6
. 10. 3§x- 3

«y-
Vi z~

1
£.

Art. 427; page 327.

3. 3.14138. 5. 9.94987. 7. 2.03054.

4. 2.08008. 6. 1.96101. 8. 2.97183.
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2.

3.

1 + x

Art. 435; pages 331 and 332.

4 -11 x „ 2 + 5« + 5a2

1 — x — x2
'

a

b + ex

4.

5.

1 — 5 x + 6 x2

1+x
1 - 2 x + x2

'

6.

7.

(1 + a)
3

'

3 — x — 6 x2

l-2a;-a:2+2a;3

3. 3.

8. 225.

8.
l + 2cc

1 — x — x2
9.

2 + 2 a; - 3 x2

l — x + x2 — x&

4.

Art. 440; page 336.

14. 5. 30. 6. 1365. 7. 5050.

9.
ni + 2nz + n2

11. 165.

10.
6 n6 + 15 m4 + 10 w8

?«

30

12. 5525.

3. 4.0514.

1. 1.681241.

2. 2.644438.

3. 1.748188.

Art. 443
; pages 338 and 339.

4. 3.634241. 5. 2.23830. 6. 44.24.

7. $1,356.

Art. 455
; page 344.

4. 1.991226. 7. 2.225309.

5. 1.924279. 8. 3.848558.

6. 2.753582. 9. 2.702430.

10. 3.489536.

11. 4.191785.

12. 4158543.

1. 1.176091.

2. 2.096910.

3. 0.154902.

Art. 456
; page 345.

4. 2.243038. 7. 0.853872.

5. 0.522879. 8. 1.066947.

6. 1.045758. 9. 0.735954.

Art 464; page 350.

2. 8.724276-10. 4. 9.470704-10. 6. 1.527511.

3. 1.714330. 5. 0.011739. 7. 8 780210-10.
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8. 4.812917. 11. 9.942550-10. 14. 4.89381.

9. 7.013150-10. 12. 3 863506. 15. 1.718451.

10. 2.960116. 13. 8 640409-10. 16. 7.4984240-10.

17. 9.275374-10. 18. 1.9792784.

2. 76.

3. .2954.

4. 6.61005.

5. 55606.5.

6. .011089.

Art. 465
; page 352.

7. 186 334. 12. .034277.

8. .223905.

9. 1000.06.

10. 9.77667.

•

11. .00130514.

17. .00548803. 18.

13. 46.7929.

14. 11.327.

15. 8.63076.

16. .2070207.

734.9114.

Art. 466; pages 353 and 354.

1. 2.125240. 4. 3 108462. 7. 9.613158 - 10.

2. 8.223962-10. 5. 9.594161-10. 8. 9.970036-10.

3. 9.852169-10. 6. 7.315321-10. 9. 9.905232-10.
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The following are the values of the expressions in Art. 468,

when calculated by seven-figure logarithms :

1.
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The results of the last 12 examples, using seven-figure

logarithms, are as follows :

9. 1.569369. 13. 11.725 yrs. 17. 3.969124.

10. 2.449576. 14. $9756.59. 18. 7.18922.

11. 2.009056. 15. 7 per cent, 19. -2.457802.

12. $5421.35. 16. 9.392 yrs. 20. -1.070092.

Art. 489; page 373.

2. 3 and - 5. 3. a and
| (-

1 ± y/^3). 4. 2 and 2. 5. ± 4.

6 . X3_ 6a.2_ 6a,_ 3 = 7> ? and
5

8 . ?and-l
3 2 4 5

Art. 490; page 374.

2. z3 + 9x2 + 23£ + 15 = 0. 4. 6ai3 -lla: 2 + 6*-l = 0.

3. a8 -19 a: -30 = 0. 5. cc
4 - 5x' + 4 = 0.

6. a;
4 - 10 x* + 35 x 2 - 50 cc + 24 = 0.

7. cc
3 - 13 x2 + 56 x - 80 = 0.

8. x4 -6a;3 +5x2 + 12x = 0.

9. 12 z4 + 55 r3 - 68 x2 - 185 x + 150 = 0.

Art. 494; page 375.

5
1. Sum, ; product,

- 6. 2. Sum, -
; product, 12.

3. 2±2v/2.

Art. 504; page 382.

2. ?/
3 + 24?/

2 + 191?/ + 498 = 0. 3. y*
-

6?/
-

if + 55y- 76= 0.

P
:

Art. 505; page 383.

2. y
2

-^ + <7
= 0. 4. ^-15y+26 = 0.

y
3
+

"2y
==0, 5 *

2/
4 -6y2 -137/-9 = 0.
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Art. 513; page 388.

2. 1, 1, and 6. 4.-1,-1,-1, and 3.

3. 2, 2, and 3. 5. 2, 2, 2, and - 6.

Art. 517; page 390.

2. -
1, 1, and 5. 3. 3. 4. 1. 5. 2.

Art. 520; page 392.

3. 1 + s/U. 4. 1 + V15 - 5- - (1 + V^)- 6. -
(1 + $5).

Art. 527; page 399.

3. Three
; respectively between and 1, 1 and 2, and — 1 and — 2.

4. Three
;
two between 1 and 2, and one between — 3 and — 4.

5. One
;
between 2 and 3.

6. Four
; respectively between and 1, 1 and 2, 2 and 3, and

— 2 and — 3.

7. None.

8. Two
; respectively between 2 and 3, and 3 and 4.

Art. 532; page 403.

3. — 1,
-

2, and - 3. 9. A, and 1 ± }f—i.

4. 2, -2, and -3.

5. 2, 4, and - 1 ± y/^3.

6. -
, 4, and —

^
•

7. 2, and——*-
.

8. 3. 6, and - 2.

10.
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Art. 538; pages 407 and 408.

2 1
9 ±x/77 3 ± y/5 l_^ ±V/^_ 2j? -3

3. -1,1,1, or=^?. 6.
2,i,-3,or-|.

4. ±lJ±V/=T,or^f:
3

. 7. l,5,i or2±^3.

y/33- 5 ±^42- 10 y/33
-

y/33
- 5 ± y/42 + 10 y/338 -

4 '
°r

~I~

q _i 1 + y/
5 ±V/2 V/5jri

~
Q
"

or 1-^5+^-2^5-10
a> *' 4 4

-l-^5±y^5-1 -l +v/5±y/-2v/5-10
iu. w, 2~ ?

01 o

Art. 541; page 410.

3. -3or^±£3. 7. lorl±YE5.
2 2_

4. 4 or 1 ± 4 \/=3. 8. 3 or
1 ±

^~
3 '

5. 3, 3, or -2. 9. 2, 2, or— 1.

6. 1,1, or -11. 10. $±-1(2.

Art. 550; page 417.

2.2.09455. 3.7.61728. 4. 1.3569, 1.6920, and -3.0489.

5. 14.95407. 6. 2.2674 and 36796.

7. 2.85808,-60602, .44328, and - 3.90738.

Art, 551; page 419.

2. 3.864854. 4. 2.4257. 6. 10.2609.

3. 4.11799. 5. .66437. 7. 8.414455.

Art. 552; page 420.

2. 153209. 3. 1.02804.





T A B L E

CONTAINING THE

LOGARITHMS OF NUMBERS

FROM 1 TO 10,000.

No.



LOGARITHMS

I
2

|
3

|
8

|
9N.|

I
1 D.

100,001)000

4321
8000

012837
7033

021189
6300
9384

0334 21

7420

000434
4751
9020

013259
7451

021003
6715
9789

033820
7825

110
1

2

3

4

6

7

S

9

041393
6323
9218

053078,
0905

0G0098
4458
8180

071882
6547

041787
5714
9000

053403
7280

001075
4832
8557

072250
5912

000808
6181
9451

013080
7808

022010
0125

030195
4227
8223

001301
5009
9876

014100
8284

022428
0533

030000
4028
8020

001734
6038

010300
4521
87CT,

02284 1

0942
031004

5029
9017

042182
0105
9993

053840
7066

001452
6200
8928

072017
0270

042570
6495

050380
4230
8040

061829
5580
9298

072985
6640

042909
0885

0507C6
, 4013

8426
002200

5953
9008

073352
7004

002100
6406

010724
4940
9110

023252
7350

031408
5430
9414

002598
6894

011147
5300
9532

023004
7757

031812
6830
9811

003029
7321

011570
5779
9947

024075
8164

032216
6230

040207

003401
7748

011993
6197

020301
4480
8571

032619
6629

040002

003891 432
8174428

012415'424
00l0i420

020775416
4896 412
8978408

033021
7028

040998

404

400
397

120

1

2

3

079181
082785

6360
9905

4 093422

5, 6910
6 100371
7- 3S04
8' 7210
91 10590

079543
083144

6710

090258
3772
7257

100715
4146
7549

110926

079904
083503

7071
09001 i

4122
7004

101059
4487
7888

111203

080206
3801
7420

090903
4471
7951

101403
4828
8227

111599

0801.20
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N. 1
I

D.

520
I

2

3

4

5

6

7

8

9

716003
6838
7671
8502
9331

720159
0986
1811

2634
3456

716087
6924
7754
8585
9414

720242
1068
1893
2716
3538

7L6170
7004
7837
8668
9497

720325
1151

1975
2798
3620

716254 716337
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