$$
\begin{aligned}
& \text { 4. } 3
\end{aligned}
$$

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

URANOMETRIA NOVA 0X0NIENSIS

A PHOTOMETRIC DETERMINATION

> OF THE

MAGNITUDES OF ALL STARS YISTBLE TO THE NAEEDEEE from the pole to ten degrees south of THE EQUATOR
C. PRITCHARD, D.D., F.R.S., F.G.S., F.R.A.S. SAVILIAN PROFESSOR OF ASTRONOMY IN OXFORD

$\mathfrak{D r f o r d}$
AT THE CLARENDON PRESS
M DCCC LXXXV

Ponjon
 HENRY FROWDE

Oxford University Press Warehouse
Amen Corner, E.C.

I NTRODUCTION.

General Historical Survey of Astrometry.

Is the present volume is condensed the record of three years' labour on the Photometry of the stars visible to ordinary and unaided eyes, from the North Pole, to about ten degrees South of the Equator. Estimations of the relative brightness of these stars have been made from time to time by various astronomers, but by none more successfully than by the illustrious Argelander, who gave the results of his survey in the Uranometria Nova, published at Berlin in 1843. It may not be too much to say of these estimations that, taken as a whole, and viewed as estimations made without the aid of graduated instruments, they are not likely to be surpassed in point of precision; yet it is not any disparagement of their intrinsic value to add, that the requirements and progress of modern astronomy demand greater exactitude than that which Argelander's work justly claims, and a precision exceeding any that can be expected from observations made with the unaided eye.

In the place of these estimations, I now propose to substitute instrumental measures, made at the University Observatory in Oxford, with the aid of a Photometer devised for the purpose by myself, and in which a long and varied experience warrants me in placing a high degree of confidence.

From time immemorial, reaching probably even far beyond the Homeric epoch, the configuration of the stars in the heavens served, mainly through their risings and settings, as a rough calendar for the regulation of the dates of civil and religious proceedings, and for the purposes of agriculture and navigation. There is a record that such configurations were depicted on a Celestial Globe, constructed by Eudoxus four centuries before the Christian Era; and there can be no doubt that some method was at the same time devised for the designation thereon of their relative brightness. A copy or modification of this ancient Globe, supported on the shoulders of a marble Atlas, was dug up from the ruins of Rome, and now furnishes one of the most interesting objects of antiquity in the Royal Museum at Naples, placed there by the munificence of Cardinal Farnese. It may be mentioned in passing that the configurations of the constellations on this Globe are substantially the same as those recognised at the present day.

But it is to Ptolemy, in his immortal work the $\mathrm{M} \epsilon \gamma \dot{\alpha} \lambda \eta$ $\Sigma v v \tau a ́ \xi \iota s$, or Almagest as it was termed by his Arabian translators, that we are inclebted for a record, not only of the celestial co-ordinates of the stars visible in his day (cir, A.D. 150), at Alexandria, but also for a catalogue of their relative brightness, such as he had himself probably received from Hipparchus and his predecessors more remote. It is a remarkable instance, among many others, of the incisive intellect of the ancient Greeks, that they adopted not only an admirable nomenclature for stellar brightness, which has remained substantially unaltered to the present day, but one which even in its minuter sub-divisions has been but slightly improved by modern astronomers. It is still more remarkable that in this ancient and conventional nomenclature, they practically but unconsciously anticipated an important and fundamental law in Photometry, the first verbal expression of which was brought into prominence by Fechner at so recent a date as 1859^{1}.

These ancient astronomers, as is well known, divided the brightness of the stars, conceived by them under the thought of 'Magnitude' ($M \epsilon \in \mathcal{\gamma} \in \theta o s$) into six classes. They assigned the 'first magnitude' to a small group of the brightest stars, and then proceeded step by step in successive groups to the sixth, which included all stars shining with the feeblest lustre admitting of appreciation by the naked eye. There was again in Ptolemy's catalogue a sub-division of each magnitude into three, an amount of precision which seems to have been subsequently abandoned for a long period by his successors. It was, however, a nomenclature resumed by Flamsteed and adopted by Argelander in his Uranometria Nova, and perhaps it is not too much to say that a finer or more delicate sub-division of stellar lights, than that denoted by the third of a magnitude, is not readily, and by direct means, ordinarily appreciable by the human eye.

These tabulated magnitudes of individual stars, recorded in the catalogues of Ptolemy, remained practically unimproved from his day to that of the elder Herschel at the close of the eighteenth century. Nevertheless the majority of those who flourished in the long line of eminent astronomers between these distant intervals, did make some few and feeble attempts to improve estimations, which they could not do otherwise than feel, were not more than provisional. Among these the most honourable place must be assigned to Abd-al-Rahman Al Sûfi, who, about the year 930, re-examined Ptolemy's work by a comparison with the heavens ${ }^{2}$. Tycho (cir. 1570) made no advance herein; the same remark applies also to Hevel (cir. 1680). It might have been expected that Bayer, when, in A.D. 160I, he bestowed on astronomers the memorable boon of a new nomenclature of the stars in their several constellations, through the application to them of the letters of the Greek alphabet, would have availed himself of the golden opportunity thus afforded him for a re-examination of the ancient

[^0]magnitudes. Unaccountably, Bayer allowed the opportunity to pass, and thereby laid himself open to the caustic remark of Delambre, as to the cheap rate at which he had acquired immortality.

Finally, Flamsteed (cir. 1689), the first astronomer who applied the telescope to systematic celestial measurements, re-introduced the sub-divisions of a magnitude into thirds, by means of the notation now in general use; but in other respects exhibited either negligence or unconcern in his estimations of relative stellar brightness. It was this disregard of precision on Flamsteed's part which mainly induced Sir William Herschel ${ }^{1}$ to turn his own attention to the subject.

Penetrated with the importance of some record whereby obvious variations in the brightness of stars could be ascertained ; important, not solely on the side of inevitable curiosity, but from the consideration that our own star, the Sun, might itself be variable in light and heat, William Herschel (cir. ${ }^{1796)}$) set himself to the task of forming that record, after his own manner and from his own resources. With this view, he did not propose to verify or improve Ptolemy's magnitudes, and still less those of Flamsteed, but he adopted a more practical expedient, leading, as he rightly thought, both to greater exactness and to greater utility in the direction of the variability intimated above. Accordingly, he divided a constellation into small groups of two, or three, or four stars of nearly equal brightness, and he then arranged the stars in these small groups in the order of their lustre. One star might in this way be found in more groups than one, and thus might furnish the means also of connecting several groups together. Beyond this, he attempted with much success to designate the degrees of the various differences in lustre, not by numerical sub-divisions of nagnitude as had heretofore been the expedient, but by the introductior of symbols such as dots, commas, semicolons, \&c., placed between the stars whose brightness was compared. For instance, in his nomenclature, a dot placed between two stars would indicate all but absolute equality in brightness, the second star however being, if anything, somewhat less bright than the star which preceded the dot. A comma between them would indicate a somewhat greater difference of brightness, and so on. It is due to the reputation of this great practical astronomer to state that, on a photometric examination of the small differences of light indicated by some of these symbols, there is a precision and a consistency generally observable, which excite admiration.

It was evidently no part of Sir William Herschel's intention to form, or even to lay the foundation for forming a systematic catalogue of the brightness of the stars; but, as already intimated, it was his intention to record the means of detecting any, the slightest, variation which might occur at future periods in any of the stars forming any one of his groups. These groups or short sequences are so numerous that they have not unnaturally induced some astronomers to attempt the deduction therefrom
of a complete catalogue of brightness systematically and numerically arranged. Such an unavailing attempt has been made by the author of the present volume, and, could it be successful, the value as a record would be great indeed. But the groups are often so uncomnected, the lacunæ are so numerous, and although the estimates of light between stars in the same group are for the most part unimpeachable, nevertheless these considerations render a complete catalogue of magnitudes, considered as Herschelian, unattainable. The danger consists in the liability of importing so much from the observations, whether photometric or otherwise, of other astronomers, as would (and, in fact, do) render the final result, not so much Herschel's ummixed production, as the reflection therein of other catalogues formed by these astronomers. It must be here repeated, that these remarks are not meant as the slightest disparagement of the illustrious astronomer's work, for in this matter nothing was probably less in his mind, than the formation of a systematic record of star magnitudes.

Sir John Herschel, however, during his busy life at the Cape of Good Hope (1835-1838) did, in his mind, propose to complete the Astrometry of the Heavens so far as was visible to the naked eye. His object appears to have been, through loyalty to his father's memory, and for the permanent advance of Sidereal Astronomy, to apply to the Southern Heavens that same sort of scrutiny on which the latter had so long laboured at Slough, with regard to the Northern. The process which he adopted was to divide the stars visible to the unaided eye, into many sets of long and interlacing sequences arranged in graduated lustre. These, when completed, he considered would furnish him with a systematic catalogue of magnitudes, possessing far greater accuracy than any that had heretofore existed. This plan, it will be observed, was generically different from that adopted by the elder Herschel, whose aim was confined to the comparison of stars divided into small sets of nearly equal brightness. While Sir John Herschel was engaged in this project, and in the midst of others of greater magnitude, he invented a photometer, by means of which he hoped to arrive instrumentally at the same sort of results which heretofore he and his predecessors had sought from estimations alone, though now with far greater precision. The implement he devised was of rude construction, such as could be arranged from the scanty resources of a distant colony, but it was, in principle, sufficient for his purpose. Roughly described, it consisted of a pole, a prism, a small lens of short focus, a few strings and a graduated tape. With these materials properly arranged, he could obtain, in the focus of the lens, a microscopic image of the moon, and this he could view in any direction, and at any measured distance from the eye, so that being brought into the same line of sight with any particular star, he could alter the ciistance of the tiny image, until it and the star appeared to be equally bright. In this way, the brightnesses of some sixty-nine stars were compared with that of a Centauri, and the results were tabulated. These relative light intensities, and the results of the sequence-observations were then expressed in magnitude, in such a way and on such a scale as
best to accord with the accepted magnitudes contained in the best catalogues then extant.

The details of the process, at once ingenious and complicated, can be mastered only by a reference to the original account given by the Author in The Cape Observations. Unfortunately the entire project was not completed. An interesting comparison of some of the results with those obtained by the Oxford Photometry will be found in Vol. xlvil of the Mem. R.A.S., and more elaborate descriptions will be found in the Photometric Researches at Harvard College both by Mr. C. S. Peirce and by Professor Pickering.

About the same time that Sir John Herschel was engaged in his astronomical observations at the Cape of Good Hope, Argelander was at work at Bonn, on the similar work of Astrometry; but fortunately, with this difference, that he was able to complete it. In 1843 he published his Uranometria Nova, containing the estimated magnitudes of all the stars visible to the naked eye in central Europe. This, in fact, is the first successful attempt made by modern astronomers to arrange in an original and independent catalogue, the relative brightness of the stars, and it must ever remain a striking instance of what can be achieved by well-directed perseverance and accurate discernment. Argelander has not recorded the details of the method which he adopted to secure his results, nor is it possible to say by what means or mental impressions, he preserved a fair uniformity of scale, and a general conformity to the magnitudes recorded by his predecessors. It may be sufficient to say that some not inconsiderable variations of light-ratio do occur, depending on magnitude; but such variations are unavoidable, when the scale is the result of mental impressions, rather than an instrumental measure.

Argelander's work was soon followed by another of still greater magnitude and importance in which he, with the most able assistance of Drs. Schönfeld and Kreuger, has recorded the approximate celestial coordinates and the magnitudes of no fewer than 324,000 stars. In this case the magnitudes are such as they are estimated to be, when seen through the telescope, and not, as in the Uranometria Nova, observed with the eye alone. If there are found some slight variations both in the magnitude of individual stars, and in the light-ratios existing in the general estimate of the larger intervals, the cause is to be songht in the same sources of imperfection as those just referred to in the case of the Uranometria Nova.

More recently, the heavens have again been scrutinized by Heis, at Minster, who has re-examined Argelander's Uranometria Nora and has added a considerable number of stars of a fainter lustre; but many of these, it is not too much to say, are beyond the vision of ordinary eyes. Houzea, also by observations made during a residence for that purpose at Jamaica, has rendered good service to astronomy, by publishing the results of his own estimations. The same remark applies also to the astrometry of M. Flammarion at Paris. Dr. Gould has recently enriched the resources of astronomy by his astrometry of the southern heavens, with a degree of
excellence such as to have been crowned by the bestowal of the Gold Medal of the Royal Astronomical Society.

Instrumental Aids to Sidereal Photometry.

Contemporaneously with Herschel's invention of the rude, but ingenious photometer at the Cape, Steinheil at Munich was arranging a more refined, if not more accurate instrument, which was subsequently employed by Seidel. It consisted of a small telescope, with a divided object-glass, each of the halves of which was furnished with a reflecting prism, so that by means of suitable mechanism, the images of two stars might be viewed side by side in the telescope. The two halves of the object-glass were capable of motion in the direction of the axis of the telescope, so that the images of the two stars, when diffused into small discs, might be equalized in brightness, by placing the respective object-glasses at different measurable distances from the eye-piece. In this way, the intensities of a considerable number of the brighter stars were compared. Seidel, however, did not reduce his results to magnitude, but left them as logarithms of light, compared with that of Vega, considered as unity. It is difficult to correctly estimate the precision of Seidel's results, but an interesting comparison of his measures, set side by side with Herschel's, will be found in Vol. xlvir of the Roy. Ast. Soc. Memoirs. Seidel also used his instrument successfully, in measuring the amount of light lost by a star, through absorption in passing through the Earth's atmosphere. Practically he verified Bouguer's results obtained in 1725; he expresses some surprise at the comparative exactness of the verification : but subsequent researches, and among others those of the author of this volume, have confirmed the substantial accuracy of their determinations.

Zöllner also devised a Photometer in which he successfully applied Arago's suggestion ${ }^{1}$ of the method of polarization. The comparison star in Zöllner's instrument was formed artificially by means of a lamp, the light of which could be reduced by double refraction through a measurable quantity, until it was judged to have the same intensity as that of any required star, in the same field of view as the artificial star itself. This form of photometer has been in considerable use, chiefly by Zöllner ${ }^{2}$ himself, by Pierce ${ }^{3}$, Wolff ${ }^{4}$, Müller ${ }^{5}$, Lindemann ${ }^{6}$, and others. The unavoidable want of uniformity in the light of the lamp, and the impossibility of imitating exactly the appearance of an actual star, are fundamental difficulties in the use of this otherwise convenient and ingenious instrument. Zöllner considered that he could imitate the colour also of a star, by the intro-

[^1]duction of suitable polarizing apparatus, between his lamp and the eye-piece of the telescope ; but the success of such an arrangement is doubtful.

An improvement both on Seidel's and Zöllner's instruments has been devised by Professor Pickering at Harvard, to which he has given the name $\mathcal{2}$ of Meridian Photometer, and in which he dispenses with the divided objectglass of the former, and the lamp of the latter. There is a telescope tube placed horizontally at right angles to the meridian in which is placed two object-glasses, with their axes slightly inclined to each other. Each objectglass is 4 centimetres in diameter, and is armed with an adjustable reflecting prism. By these means, images of Polaris and of any star near the meridian, may be formed in the common focal plane of the two objectglasses, after having passed through a suitable combination of double refracting prisms; and then polarized images of the two stars may be equalized, and their brightness ascertained. For a fuller description of the instrument recourse must be had to the original memoir of its inventor forming Vol. xiv of the Annals of the Astronomical Ouservatory of Harvard College. The construction is somewhat intricate, but if it be practicable to bring all the light falling on the two object-glasses, effectively through the double refracting arrangements, into the pupil of the eye, and then to afford adequate time for the necessary repetitions of the equalizations, then this form of photometer seems to ofter very great advantages in stellar photometry. By means of it, Professor Pickering and his assistants have produced a catalogue of photometric measures, of all stars reputed to be equal to or brighter than the sixth magnitude, visible at Harvard, for which the permanent gratitude of astronomers will be accorded. Professor Pickering has also applied the principle of polarization of light to the photometry of double stars with success; but the question of the equalization of some of the more vividly coloured stars still remains of doubtful solution, and it may be is beyond the reach of physical considerations alone.

The method of photometry by means of varying the telescopic aperture has received a new and practical development at the hands of Mr. Knobel. By using the mirrors of a Newtonian telescope, one or both of them in an unsilvered condition, he has contrived, on what appear to be unimpeachable conditions, to extinguish the light of stars, well visible to the naked eyc, and thereby is enabled to compare their relative magnitudes ${ }^{1}$.

Description of the Wedge Photometer.

The instrument with which the researches in this volume were made, differs generically from all the preceding photometers, unless indeed the eye itself be regarded as therein displacing or virtually performing the functions of Zöllner's lamp and artificial star of comparison. It is constructed on the principle that light in passing through a transparent homogeneous medium, loses an amount of intensity depending on the thickness

[^2]of the latter. Hence it is easily shown, that if L represent the intensity of a small pencil of light incident perpendicularly on a medium bounded by parallel plane surfaces, such as a rectangular prism of neutral tinted glass of the thickness τ, it will emerge as a similar pencil with an intensity L^{\prime}, such that
\[

$$
\begin{equation*}
\log \frac{L}{L^{\prime}}=K_{\tau} \tag{I}
\end{equation*}
$$

\]

where K is some constant dependent on the material of the glass and the nature of the light.

If then in passing from any one 'magnitude' to the next fainter, we adopt a constant light-ratio of (ρ), and if L_{n}, L_{n+x} represent the intensity of two lights whose magnitudes are n and $n+x$, forming the incident and emergent pencils, we shall have

$$
\begin{equation*}
\log \frac{L_{n}}{L_{n+x}}=K \tau \text { or } \log \rho^{x}=K \tau \text { or } x=\frac{K}{\log \rho} \tau \tag{2}
\end{equation*}
$$

i.e., the light lost in passiug through the medium, neasured by the alteration of 'magnitude,' is proportional to the thickness of the absorling medium through which it has passed.

The above is the fundamental principle on which the wedge photometer is constructed. This general principle had been applied by Mr. Dawes ${ }^{1}$ and by others, but owing to various circumstances of misconception, and the unavoidable difficulties in the earlier manipulation, no definite or systematic results were then obtained.

The wedge photometer as employed at Oxford is a wedge of very nearly neutral tinted glass $G D F$, six and a half inches long, an inch broad, and 0.145 inch thick, tapering off to D, where it is 0.02 inch. Cemented to it is a similar wedge GDII, of white glass, placed the reverse way. The whole forming a rectangular prism. This glass prism or 'werlge' as it will henceforth be called, is enclosed in a brass cellular rim with bevilled edges, one of which is divided into tenths of inches, the divisions being distinct and white for visibility at night. It slides in a groove on the brass cap of the eye-piece of any telescope, close to the achromatic eye lens, and is thus placed between the eye of the observer and the telescope. In the focus of the eye lens is a diaphragm, pierced with a number of small holes, which vary from the hundredth of an inch to a quarter of an inch in diameter, and in which small circular hole the telescopic image of a star is carefully placed, and there viewed through the wedge. Further, the eye of the observer is directed along the axis of the lens and of the telescope, by means of an external eye hole, placed close to the wedge, and varying from one-twelfth of an inch to a quarter of an inch. This direction of vision is important. A fiducial mark is drawn on the brass cap of the eyepiece, so that the position of the wedge can be distinctly marked and recorded when the image of the stur is just extinguished by the wedge. Usually the position of the wedge, when the light of the star is just extinguished, is

[^3]observed five times, and the mean of all the five readings is called the 'werlge reading.' The extinction of a second star is then observed in a similar manner, and the difference between the two wedge readings is called the ' welge interval.' This wedge interval is obviously a measure of the difference of the thicknesses of the neutral tinted glass of the wedge at the points where the two stars are respectively extinguished ; and it will soon be shown that this 'wedge interval' is also a direct measure of the difference of the ' magnitudes' of the two stars whose lights are respectively just extinguished at the two points on the wedge.

Suppose M_{1} to be the magnitude (expressed as a number) of the star's light incident at A, M_{1}^{\prime} and $M_{1}^{\prime \prime}$ the magnitudes of these lights as reduced by absorption in passing to C and B respectively. Then from the preceding considerations

$$
\begin{aligned}
M_{1}^{\prime}-M_{1} & =K^{\prime} \cdot A C \\
M_{1}^{\prime \prime}-M_{1}^{\prime} & =K^{\prime} \cdot C B \\
M_{1}^{\prime \prime}-M_{1} & =K^{\prime}(A B \cdot-A C)+K . A C=K^{\prime} A B+\left(K-K^{\prime}\right) A C \\
& =\text { constant }+K^{\prime \prime} A D \text { where } K, K^{\prime}, K^{\prime \prime} \text { are constants. }
\end{aligned}
$$

hence

Next suppose the light of a second star incident at λ^{\prime} to be viewed through the wedge and of which the incident magnitude is M_{2}, then as before

$$
M_{2}^{\prime \prime}-M_{2}=\text { constant }+K^{\prime \prime} d^{\prime} D
$$

In the actual case of moving the wedge to such positions that the stars are just extinguished $M_{1}^{\prime \prime}$ and $M_{2}^{\prime \prime}$ is the limit of vision of faint lights by the observers, so that $M_{1}{ }^{\prime \prime}=M_{2}{ }^{\prime \prime}$ and consequently

$$
M_{2}-M_{1}=K^{\prime \prime}\left(A D-A^{\prime} D\right)=K^{\prime \prime} A A^{\prime}
$$

This is the fundamental equation of the wedge, expressing the law and the amount of its action on light. It also follows, as already stated, that if the wedge interval $A A^{\prime}$ which corresponds to a reduction of light by one magnitude, is found, then the constant $K^{\prime \prime}$ is the reciprocal of the number of inches in $A A^{\prime}$. Or, in fact, if the wedge interval corresponding to the reduction of any given number of magnitudes or portions of a magnitude could be found, this would also give the value of the constant.

The first method which occurred for finding this constant was the presumed property of light, that if the linear aperture of an object-glass be
halved the light of a star would be reduced accurately and exactly to onefourth of its light, when viewed with the full aperture. In order to exhibit this constant in a convenient numerical form, it is necessary to fix upon some numerical value for the light-ratio (ρ). Several values have been proposed, among others (2) was proposed by W. Struve ${ }^{1}$ as, in his judgment, fairly representing the sort of light-ratio which may be detected in the ordinary estimations of magnitude. A much better ratio was proposed by Mr. Pogson ${ }^{2}$, who in 1852 assister Mr. Johnson at the Radcliffe Observatory, viz. $\rho=2.512 \ldots$ a number whose logarithm is . 4 , and this ratio being at once convenient and fairly representing the ordinary tabulated magnitudes, meets with a gencral acceptance among astronomers.

Now the result of an immense number of measures made with one of the two wedges (designated as wedge A) in the present researeh was, that the mean wedge interval required for the absorption of the light of one magnitude is 0.5^{14} inch. But for various reasons, chiefly because an object-glass is not uniform, either in thickness or in material, I was not satisfied with the strict accuracy of the result. Accordingly, I proceeded to examine the wedge A, (and subsequently the wedge B) by means of double refraction, or polarization of light, as explained in Vol. xuvir Mem. Roy. Astr. Soc. The wedge was examined for the amount of absorption at intervals of every tenth of an inch from the one end to the other. A very slight, but not altogether insensible, want of uniformity was discovered in the wedge itself, and the inexactness of the method of apertures referred to above was confirmed. In the mean it was found that the wedge interval corresponding to a difference of absorption amounting to one magnitude on Pogson's scale, was 0.539 inch, instead of $0.5^{1} 4$ inch. As the result of a very extensive series of comparisons the following table was drawn up. From this table it is to be inferred, that at one inch from the thinner end, the difference of absorption at the beginning and end of the inch amounts to 1.93 magnitude, instead of the mean amount 1.896 . At two inches from the end, the difference of absorption for an interval of two inches is 3.8 I mag., instead of twice the mean amount or 3.79 mag ., and so on.

[^4]
TABLE I.

For Wedge A ($6 \frac{1}{2}$ inches long).

	Magnitude Absorbed.	$\begin{gathered} \text { Wedge } \\ \text { Scale } \\ \text { Reading. } \end{gathered}$	Magnitude Absorbed.	Wedge Scale Reading.	Magnitude Absorbed.	Wedge Scale Reading.	Magnitude Absorbed.
inches.		inches.		inches.		inches.	
0.0	0.00	1.5	2.88	3.0	5.69	$4 \cdot 5$	8.43
0.1	0.20	1.6	3.07	3.1	5.88	4.6	8.60
0.2	0.40	1.7	3.26	3.2	6.06	4.7	8.77
0.3	0.59	1.8	$3 \cdot 44$	$3 \cdot 3$	6.25	4.8	8.95
0.4	0.78	1.9	3.63	$3 \cdot 4$	6.43	4.9	9.13
0.5	0.97	2.0	3.81	3.5	6.61	5.0	9.30
0.6	5.17	2.1	4.00	3.6	6.79	5.1	9.48
0.7	1. 36	2.2	4.19	3.7	6.98	5.2	965
0.8	1.55	2.3	$4 \cdot 37$	3.8	7.16	$5 \cdot 3$	9.83
0.9	1.74	2.4	4.56	3.9	7.34	$5 \cdot 4$	10.01
1.0	1.93	2.5	4.75	4.0	7.52	$5 \cdot 5$	10.18
I. 1	2.12	2.6	4.94	4.I	7.71	5.6	10.36
1.2	2.31	2.7	5.13	4.2	7.89	$5 \cdot 7$	10.54
1.3	2.50	2.8	$5 \cdot 32$	$4 \cdot 3$	8.07	5.8	10.71
1. 4	2.69	2.9	5.51	4.4	8.25	5.9	10.89

This completed the theory of the wedge so far as ordinary white light was concerned, and as applicable to the great majority of stars. But as a not inconsiderable number of the latter exhibit colour more or less decided, it seemed desirable to test the wedge in respect of such colours as could be produced from coloured glass and coloured solutions of a definite optical character, in regard to their spectra. The result was that in the case of coloured lights not violently or very strongly pronounced, the wedge was found to be equally absorbent throughout, and the mean wedge interval for one magnitude of such light was found to be the same as for white light. To this point it will be necessary to refer again, in considering the sources of error that might be supposed to effect the results given in this volume.

It should be here noted that a second wedge (B) was examined in the same manner as the former (A). The material and general construction are the same, with the exception that it was made a little steeper for convenience and control over the other. This wedge was found to be practically uniform throughout, and the wedge interval for one magnitude was found to be $0.3^{8} 5 \mathrm{inch}$.

The Method of using the Wedge Photometer.

About ten stars were selected for a night's work, such that they could be observed at nearly the same altitude as Polaris, in order that it might not be necessary to correct the measures for absorption of light by the atmosphere. The two Photometers A and B were attached to two telescopes, the one of four inches, and the other of three inches aperture, each telescope being in a separate dome; the four-inch telescope being under the charge of Mr. Plummer the Senior Assistant, and the other, under Mr. Jenkins the Junior Assistant: each observer was independently to measure the several stars specified. The complete plan was that Polaris should be extinguished at the beginning, the middle, and the conclusion of the observations. The readings of the wedge were taken five times with the full aperture of the two telescopes. A cap was then placed on each object-glass, reducing the linear aperture to one half, and five readings for extinction were again made. The reason for thus altering the aperture was to establish thereby a check on the former sets of five measures by means of a virtually new instrument.

Each of the other stars whose magnitude was to be compared with that of Polaris was then observed altogether with twenty extinctions, consisting of four independent sets of five extinctions. The wedge readings were usually brought to me on the following morning, and were reduced to magnitude by the method shown in the example on page xxi, on the scale that the magnitude of Polaris should be 2.05 . If during the observations any suspicious circumstance had arisen regarding the clearness of the sky in the neighbourhood of Polaris or of the stars observed, the sky was scrutinized out of doors and the observations if necessary discontinued.

The observations of a few nights, which in prudence might properly have been rejected at the time, on account of an unfavourable sky, but which have been inserted in the Memoirs of the Roy. Astr. Soc., have been displaced in the present volume by the substitution of measures, taken under more farourable circumstances: such cases are invariably mentioned in the notes to each constellation.

In order that a correct judgment may be formed of the amount of precision, which may on the average be expected to prevail in the results given in this volume, I now append a tabular exposition of the individual determinations of sixteen stars, each of which has been observed on at least ten separate nights, and most of them with one hundred and twenty extinctions in the aggregate. Each determination is derived from measures made by both observers, with their separate instruments. The result will be found to be, that provided the meteorological circumstances are favourable, little or nothing is gained in point of accuracy over a single night's work of the twenty extinctions, by any multiplication of the measures. From an inspection of the notes attached to the Catalogue, it will be observed that this remark also is fully borne out in the case of a large number of other stars, which have been more or less frequently observed.

TABLE II.

Particulars of numerous repeated measures of sixteen stars.

$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$			$\begin{gathered} \text { Date; } \\ 1880+ \end{gathered}$			Date, $1880+$			$\begin{aligned} & \text { Date, } \\ & 1880+ \end{aligned}$		
β Ursæ Majoris.			a Ursæ Majoris.			γ Ureæ Majoris.			δ Ursæ Majoris.		
2.913	2.14	20	2.913	1.90	20	2.938	2.34	20	2.938	$3 \cdot 39$	20
3.062	2.20	10	3.062	1.92	10	3.062	2.31	10	3.062	$3 \cdot 37$	10
3.070	2.18	10	3.070	1.85	10	3.070	2.27	10	3.070	$3 \cdot 36$	10
3.078	2.15	10	3.078	1.90	10	3.095	2.20	10	3.095	$3 \cdot 36$	10
3.081	2.09	10	3.081	1.98	10	3.100	2.31	10	3.100	3.5.3	10
3.089	2.09	10	3.089	1.89	10	$5 \cdot 467$	2.45	10	$5 \cdot 467$	3.40	10
3.092	2.10	10	3.092	1.92	10	$5 \cdot 483$	2.19	10	$5 \cdot 483$	$3 \cdot 43$	10
$5 \cdot 467$	2.19	10	$5 \cdot 467$	1.88	10	$5 \cdot 4^{85}$	2.28	10	$5 \cdot 485$	3.55	10
$5 \cdot 4^{83}$	2.27	10	$5 \cdot 483$	1.81	10	$5 \cdot 505$	2.47	10	$5 \cdot 505$	$3 \cdot 34$	10
$5 \cdot 4^{85}$	2.30	10	$5 \cdot 485$	1.80	10	$5 \cdot 514$	2.13	10	5.514	$3 \cdot 56$	10
						5.519	2.15	10	5.519	$3 \cdot 37$	10
						5.533	2.45	10	$5 \cdot 533$	$3 \cdot 35$	10
Mean	2.17	\ldots	\cdots	1. 59	. ${ }^{\prime}$	\ldots	2.30	\cdots	\ldots	$3 \cdot 41$	\ldots
ϵ Ursæ Majoris.			ζ Urse Majoris.			η Úrsæ Majoris.			β Cassiopeiæ.		
2.938	1.80	20	2.9 .38	1.95	20	2.957	1.75	20	2.835	2.32	20
$5 \cdot 467$	1.70	10	5.467	2.08	10	$5 \cdot 467$	1.69	10	$5 \cdot 5^{14}$	2.34	10
5.483	1.91	10	$5 \cdot 483$	2.18	10	$5 \cdot 4^{83}$	I. 79	10	$5 \cdot 519$	2.40	10
$5 \cdot 485$	1.75	10	$5 \cdot 485$	2.14	10	$5 \cdot 4^{85}$	${ }_{1} .83$	10	5.533	2.35	10
$5 \cdot 505$	1.70	10	$5 \cdot 505$	2.16	10	$5 \cdot 505$	1.67	10	5.552	2.36	10
$5 \cdot 5^{14}$	1.79	10	$5 \cdot 514$	2.04	10	$5 \cdot 514$	1.79	10	$5 \cdot 565$	2.52	10
$5 \cdot 519$	1.89	10	$5 \cdot 519$	2.23	10	$5 \cdot 519$	1.88	10	5.571	2.56	10
5.533	1.80	10	5.533	2.02	10	$5 \cdot 533$	1.80	10	$5 \cdot 574$	2.43	10
$5 \cdot 552$	1.85	10	$5 \cdot 55^{2}$	2.09	10	$5 \cdot 55^{2}$	1.75	10	5.697	2.42	10
$5 \cdot 565$	1.79	10	$5 \cdot 565$	2.03	10	$5 \cdot 565$	1.73	10	5.724	2.32	10
Mean	1.80	\ldots	\cdots	2,09	\cdots	..	1.77	\cdots	...	2.40	\cdots

TABLE II-continued.

$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$			$\begin{aligned} & \text { Date, } \\ & 1880+ \end{aligned}$			Date, $1880+$			$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$		
γ Cassiopeiæ.			δ Cassiopeir.			a Cygni.			γ Cygni.		
2.810	2.19	20	2.810	2.89	20	2.430	1. 38	20	2.4 .30	2.28	20
$5 \cdot 514$	2.27	10	5.514	2.89	10	3.068	1.31	10	3.068	2.23	10
5.519	2.22	10	$5 \cdot 519$	2.94	10	3.148	1.33	10	$5 \cdot 533$	2.35	10
$5 \cdot 5.33$	2.21	10	5.533	2.93	10	3.164	1. 28	10	$5 \cdot 552$	2.31	10
$5 \cdot 55^{2}$	2.42	10	$5 \cdot 55^{2}$	3.02	10	3.167	1.25	10	5.565	2.17	10
$5 \cdot 565$	2.50	10	$5 \cdot 565$	2.88	10	3.170	1.34	10	5.574	2.18	10
5.571	2.55	10	5.571	2.91	10	5.5 .33	1.39	10	5.724	2.31	10
5.574	2.34	10	5.574	2.92	10	5.552	1.42	10	5.732	2.18	10
5.724	2.34	10	5.697	2.84	10	$5 \cdot 565$	1.25	10	5.738	2.21	10
5.732	2.24	10	5.724	2.81	10	5.574	1.30	10	5.749	2.31	10
5.738	2.14	10	$5.73{ }^{2}$	2.94	10				$5.75{ }^{\text {I }}$	2.22	10
5.749	2.27	10									
5.75 I	2.27	10									
Mean	2.23	2.91	\ldots	...	1.33	\ldots	...	2.28	\ldots
η Persei.			a Andromedæ.			μ Andromedæ.			R. 204.		
2.699	4.14	20	2.685	2.01	20	2.693	3.98	20	4.012	5.92	20
2.702	4.13	20	2.693	2.05	20	5.692	3.94	10	5.697	5.95	10
2.705	4.09	20	2.697	2.09	20	5.692	3.89	10	5.724	6.11	10
2.708	4.19	20	5.533	2.02	10	5.697	3.90	10	5.724	6.03	10
3.103	4.14	10	$5 \cdot 55{ }^{2}$	2.24	10	5.724	3.95	10	5.732	6.01	10
3.106	4.05	10	5.565	2.17	10	5.724	3.96	10	5.735	5.92	10
3.108	4.13	10	5.574	2.02	10	5.732	3.85	10	5.738	5.87	10
3.169	4.13	10	5.697	2.00	10	$5 \cdot 735$	3.91	10	$5 \cdot 749$	5.86	10
3.174	4.09	10	5.721	2.05	10	5.738	3.96	10	5.752	5.88	10
3.207	4.14	10	$5.73{ }^{2}$	2.03	10	5.749	3.91	10	5.757	5.99	10
			5.749	2.02	10	$5.75{ }^{2}$	3.98	10	5.782	5.98	10
			5.75 I	2.05	10	5.757	3.97	10	5.792	5.97	10
						5.782	3.93	10			
						5.792	3.97	10			
Mean	4.12	\cdots	...	2.05	\ldots	...	3.94	5.96	...

In explanation of the above table, the case of β Urse Majoris may be taken; read in full it is virtually stated in the table that determinations of the magnitude of this star were made on ten nights, extending from November 29, 1882 to June 27, 1885. The magnitude determined on each of these nights is set down in column two, and in column three is printed the number of extinctions on which the several determinations depend. The mean magnitude from all the ten determinations is 2.17 mag., and the
number of extinctions one hundred and ten. Similar explanations apply to all the sixteen stars. I may observe in passing that μ Andromedæ and R. 204 Andromedre were observed for the purpose of watching the variations of the Nova which broke out in the Nebula in September 1885.

This table contains many valuable elements for scrutinizing the amount of reliance which may be placed on the Photometric records in this Uranometria. On comparing the results of twenty extinctions on one night with the mean of those obtained from one hundred and ten extinctions on ten nights, it appears that practically nothing has been gained in point of accuracy, as far as these stars are concerned, by the multiplication of the observations.

The precision of the results, both as regards the capacity of the wedges and as evidence of the care bestowed on the observations is, in every respect, satisfactory. It will be noticed, that in the text, the magnitudes do not exactly agree with the mean here set down. The differences are however inappreciable, the reason of any slight disaccordance being, that the majority of these observations were made, after the work had been sent to the press, for the purposes of a stricter scrutiny than had hitherto been applied. I have not selected these sixteen stars from a number of others, but I have given all the records of stars so repeatedly observed. Many other stars also have been frequently measured, but none so often as the above, and all such cases of multiplied observations are given in the 'Notes.'

It will be observed that when ten extinctions have been made, the results are not always quite so closely accordant with the mean as is the case with twenty: but in general, and with few exceptions, the agreements are highly satisfactory. An astronomer will not expect from photometric observations that close accordance which he has a right to demand in bisecting a division of a circle with a microscope, or in the transits of a star across the wires of a meridian circle. It may also properly be remarked that in stellar photometry the observer has no amplification by lenses to assist him, but his attention is directed to the point of disappearance of evanescent lights. Not only so, but the results here given are differential, and dependent upon the errors of two fallible measures. The circumstance, which though perhaps unexpected is not less satisfactory, is the practical constancy of the physiological impression on the organs of sight, which is unmistakably manifested by the accordance of delicate measures, taken by two observers, using two instruments, under varying circumstances, and during a considerable lapse of time. On examining the table, it will be found that the mean error of a single determination of magnitude, as given by ten or twenty extinctions, is under the tenth of a magnitude. The mean error of a single extinction is 3 of a magnitude. Of course, this is exclusive of any systematic errors, whether of instrument or observation which might exist.

Freedom of the Measurements from the influence of the background.

Experience has led me to the conclusion, that this form of photometer the wedge) is remarkably free from error in the measurement of light,
notwithstanding the illumination of the background. In making this remark, I wish it to be carefully noticed that I am here, and all along, throughout these photometrieal researches, confining myself to such discriminations of variation of light as practically fall much within the limit of the unavoidable errors of observation. I regard a variation of onethirteenth in the magnitude (or about seven per cent.) as the least intensity of light which this instrument is capable of measuring when applied to stellar photometry; and, accordingly, in the remarks that I shall make, I shall regard smaller variations of light than one-thirteenth of a magnitude as practically not influencing the correctness of results; and I know of no measures of stellar light-intensity, excepting those made at Oxford, which reach even this limit of aecuracy. I admit that Fechner ${ }^{1}$ has referred to experiments on shadows, which show that the eye is, under special circumstances, capable of appreciating an alteration in the illumination of a sheet of paper, arising from the introduction of about one-hundredth of the original light. This experiment has been carefully repeated at the Oxford University Observatory, and Fechner's result has been there verified by observations also in an entirely different form. But it must not be overlooked that in such researches, the comparison is made by means of the juxtaposition of illuminated surfaces of considerable extent. Moreover, the observation is made with the use of both eyes. Independently of this, the method of shadows, apparently so accurate, does not admit of application to the heavens. In Steinheil's photometer, used by Seidel, the comparisons are indeed made by the juxtaposition of stellar discs (or surfaces) not stellar points, as is the case in the Zöllner and in all adaptations of polarization to stellar photometry, but in all these cases, including Steinheil's, the practical limit to the discriminating power of the photometer, is from eight to nine per cent. of the whole light ${ }^{2}$.

It is very necessary to bear these limitations in mind, in forming a judgment of the reliability of the wedge photometer, when viewing stars on faintly illuminated backgrounds, such as those which occur in practice. This faint illumination arises from one of two causes, generically different in eharacter. The first is produced by the diffused or scattered light in the atmosphere or sky; the second arises from the presence of other stars in the field of the telescope as limited in the photometer. Each of these must be considered separately from the other.

When stars are viewed on moonlight nights with the wedge photometer, it might probably be surmised (though not after due consideration) that an effeet would be produced on the measure of the light of a star owing to this background. But, in the first place, it would be injudieious to measure a star very close to the moon itself; and in practice it would be avoided. In the second place, it has been shown ${ }^{3}$ practically, from the examination of some five thousand extinctions of Polaris, made during

[^5]all phases of the Moon, that there is not the slightest trace observable of effects due to moonlight or its absence. Nor indeed could it be otherwise; for the dispersed or scattered light of the atmosphere or of a blue sky, is not, as in the case of stars, concentrated at the focus of the object-glass, but remains very nearly as it would, if viewed with the tube alone from which the object-glass and eye-piece are removed. Practically this scattered light is, on a moonlight night, extinguished at one inch from the thinnest end of the wedge, and long before a sixth magnitude star, or the faintest in this catalogue, approaches extinction.

The second case contemplated is that in which other stars are present in the same field of view with the star which is the subject of measurement. The photometric field of view in the four-inch telescope is confined to a circle of 0.02 inches diameter, equivalent to about $80^{\prime \prime}$. A reference to Argelander's charts will indicate the fact, that in very few instances indeed will so contracted a field, comprise, together with a sixth magnitude star, any star ranging from the seventh to the tenth magnitude. A seventh magnitude is very rare : if it be within (say) $20^{\prime \prime}$ of the star to be measured, then it would be placed in the category of double stars, and its character would be referred to in the Notes. It would, if viewed as one point of light, coalesce with the sixth magnitude, and the combined light would be of 5.6 magnitude. If, on the other hand, the small star, or the two or three small stars in the field be detached from the brighter star, they would produce distinct impressions on the retina, and would be completely extinguished by the wedge long before the extinction of the brighter, and could produce absolutely no influence on its measure in the photometer. Precisely the same sort of reasoning applies to the measurement of fainter stars in a larger telescope, say of twelve inches or any greater aperture. The photometric field in such telescopes is still more restricted, and the very faint stars possibly accompanying the one to be measured, would either coalesce as a double or multiple star, and be noted as such, or they would be extinguished by the wedge long before the extinction of the brighter.

The effect of the coalescence of two stars upon the magnitude of the brighter, is shown in the following short table:-

Difference in magnitude of two stars whose lights coalesce.	Resulting addition of brightness to the brighter star in magnitude.
0.0	0.75
0.5	0.53
1.0	0.37
1.5	0.25
2.0	0.16
3.0	0.07
4.0	0.03
5.0	0.01

These considerations are sufficient to indicate the practical freedom of this photometer from the influence of the greater or less density of stars illuminating various regions of the heavens (always within the limits of accuracy prescribed).

So far, the above conclusions are drawn chiefly from abstract grounds. Practically, a comparison of the photometric magnitudes of a large number of stars between the fourth and six-and-a-half magnitudes has been made with those given in the Harvard Photometry. Not a trace of any systematic difference has been found in the magnitudes in the two catalogues, so far as is due to the varying stellar densities of the regions where these comparisons have been made ${ }^{1}$.

Another cause of conceivable error, and one to be guarded against in the use of the photometer, arises from the possible fatigue of the eye during any considerable series of measures on any single night, whereby the want of constancy in the appreciation of faint lights, might operate unfavourably. In order to assure myself of the non-existence of this sort of error, a large number of extinctions of Polaris made on separate nights, have been examined. These extinctions of Polaris are, as has been explained, made three times on each night, viz. at the beginning, the middle, and the end of the series. No trace of a systematic difference is found indicating symptoms of varying sensitiveness of the observer's eye, depending on these sequences of time. Moreover, as the measures are strictly differential, and as the mean of the three sets of readings of the extinction of Polaris (which rarely differ much inter se), is used for all the observations of the series, the mean condition of the eye is represented throughout. In point of fact, relief is afforded by continual breaks in the work of actual observation, connected with the shifting of the domes, with the identification of the stars, and with the recording the results; the whole series also seldom occupies more than three hours in the night. All these circumstances combine to prevent any undue strain on the eye of the observer, during the limited time of his work.

The action of this form of photometer in relation to colour, seems to be in pretty much the same category as any other photometer, not excepting even Zöllner's ingenious contrivance. The colours of the stars, with a few well-known exceptions, are faintly marked. The action of the wedge on such lights was carefully examined by means of coloured solutions and coloured glasses, and by the spectroscope, as is detailed in the Memoirs of the Royal Astronomical Society, vol. xlvii, pp. 395-6, and, as has been already mentioned at p. xiii, no defect was discovered within the prescribed limits of error of observations. The material of the wedge has a selective absorption for the red part of the spectrum near to the line B, and every case of a star reported to have a red tinge, is referred to in the notes appended to each constellation. It is, however, very remarkable that out of all these numerous instances of stars of a more or less reddish tint, there is very rarely any difference between the Oxford and the

[^6]Harvard magnitude, greater than the mean difference for all the stars examined in both catalogues. The question of colour seems to be, to a very considerable extent, subjective and physiological, and, at present, out of the domain of exact science. Possibly the arrangements described by the present Astronomer Royal in the Monthly Notices, January 1874, may be developed with success in this direction.

Earample of Reductions.

In the following table are exhibited the measures and processes adopted for the final determination of the magnitude of a star: here 72 Tauri.

TABLE III.
Original Observations of the difference of Magnitude between 72 Tauri and Polaris.

WEDGE A.

Date and Instrument.	Original Wedge Reading of Extinction of 72 Tauri.	Mean Wedge Readings of Extinction of Polaris at beginning, middle, and end of series.	Difference or Wedge Interval in inches.	Equivalent of Wedge Interval in Magnitude. See Table I.	Assumed Magnitude of Polaris.	Resulting Magnitude of 72 Tauri.	Finally Adopted Magnitude.
1884, Dec. 20. Wedge A 4-inch Aperture	in. 2.65 .53 .72 .65 . 7 I	$\begin{gathered} \text { in. } \\ 4.602 \\ 4.592 \\ 4.606 \end{gathered}$					
Mean	2.652	4.600	1.948	3.56	2.05	5.6 I	
Wedge A 2-inch Aperture	$\begin{array}{r} \mathrm{I} .90 \\ .83 \\ .79 \\ .9^{2} \\ .86 \end{array}$	$\begin{aligned} & 3.828 \\ & 3.868 \\ & 3.840 \end{aligned}$,			
Mean	1.862	3.845	1.983	3.69	2.05	$5 \cdot 74$	5.65

TABLE III-continued.

WEDGE B.

Date and Instrument.	Original Wedge Reading of Extinction of 72 Tami.	Mean Wedge Readings of Extinction of Polaris at beginning, middle, and end of series.	Difference or Wedge Interval in inches.	Equivalent of Wedge Interval in Magnitude. 1 mag. $=$.385 in.	Assumed Magnitude of Polaris.	Resulting Magnitude of 72 Tauri.	Finally Adopted Magnitude. Mean of the four.
$\begin{gathered} 188_{4} \text {, Dee. } 20 . \\ \text { Wedge B } \\ \text { 3-inch Aperture } \end{gathered}$	in. 1.30 .27 .29 . 34 .26	$\begin{gathered} \text { in. } \\ 2.682 \\ 2.698 \\ 2.682 \end{gathered}$					5.65
Mean	1. 292	2.687	1.395	3.62	2.05	5.67	
Wedge B ${ }_{1} \frac{1}{2}$ inch Aperture	$\begin{array}{r} 0.7 \mathrm{r} \\ .60 \\ .74 \\ .70 \\ .79 \end{array}$	$\begin{aligned} & 2.076 \\ & 2.084 \\ & 2.062 \end{aligned}$					
Mean	0.708	2.074	І. 366	$3 \cdot 54$	2.05	$5 \cdot 59$	

The first column contains the date: the second is the record of the wedge readings for each extinction of the star in the wedge A, with aperture four inches, the mean reading of the five extinctions is 2.652 in . The second column contains the three readings of the extinction of Polaris at the beginning, the middle, and close of the observations. Their mean is 4.600 inches. The equivalent magnitude for 2.652 in Table I is 5.04 , and the magnitude for 4.600 in . is 8.60 . Finally $8.60-5.04=3.56$. This is the difference of magnitudes of the star and Polaris; and as the latter is conventionally 2.05 mag. the resulting magnitude of the star is, so far as this single measure is concerned, 5.61. Similar wedge readings are then taken with wedge A, after the linear aperture of the telescope to which it is attached is halved. These measures, the mean of which is 1.862 , are then combined with the mean of the three wedge readings for Polaris with this aperture, viz. 3.845. Resort is then had to Table I, as before, for these two wedge readings, whence the equivalent difference of magnitude of the star and Polaris is derived, viz. 3.69, and the resulting magnitude of the star is 5.74 . In the remainder of the Table are given the details of the extinctions with the wedge B , with apertures of 3 inches and $\mathrm{I} \frac{1}{2}$ inches. The resulting magnitudes of the star are 5.67 and 5.59 . The final and tabular determination
of the magnitude of 72 Tauri is 5.65 . The mean deviation of the four individual measures is .05 magnitude; and if on several other nights the determinations of the star's magnitude had been taken, there is little doubt, judging by experience (see page xv), that the magnitude (5.65) would not differ from the general mean of all by one-tenth of a magnitude.

Observations taken at Cairo.

It necessarily formed part of the scheme of photometric work at Oxford to determine the amount of light absorbed by the earth's atmosphere when a star is observed at any varying altitude. Without such determination, the research would have been incomplete, although, so far as the stars in this Uranometria are concerned, a knowledge of the amount of this absorption is rarely required, inasmuch as the stars are in general observed at an altitude so near that of Polaris, that no correction is required for absorption in order to obtain the zenithal magnitude of the star, because the zenithal magnitude of Polaris is assumed at 2.05 , and absorption would act equally on the two if observed on the same night and under approximately the same atmospheric circumstances. The detail of the work for the determination of the atmospheric absorption constant at Oxford is all given in Memoirs of the Roy. Astr. Soc., vol. xlvii : the result being to show the necessity of a correction to magnitude, of 0.253 sect. z. I was not wholly satisfied with this determination, excepting so far as it accurately represented the local atmospheric absorption at Oxford, and I thought it desirable to measure it again, in some other locality where the climate is more equable, and the atmospheric circumstance in general more favourable, and more accordant measures might be anticipated. I was also desirous of ascertaining what improvements might be effected in the determination of magnitude in that climate.

Accordingly, I determined on a voyage to Cairo, taking thither Mr. Jenkins, with the telescope and wedge A, hitherto used by Mr. Plummer. I had carefully ascertained before making the exchange, that it was indifferent which wedge was used by either of the two observers, notwithstanding his habituation to the use of one particular instrument. In due time the telescope and Mr. Jenkins were duly installed in the admirable observatory, belonging to the Khedive at Abbasseeyeh, within a stone's cast of the English barracks in the desert. The atmosphere and climate proved to be all that had been stated in their favour, and about three times as much work was there effected in six weeks as was done, or in fact could be done at Oxford: for it was a settled part of the plan, that Mr. Plummer in Oxford was to make the same observations as Mr. Jenkins at Cairo. The results of the expedition are all embodied in the measures recorded in this volume, and greatly add to the confidence I feel in the general accuracy of the work herein exhibited. The atmospheric absorption constant at Cairo proved, as might be expected, slightly less than that at Oxford, but
not so much less as I had anticipated. The climate during the time I was in Egypt, February and March, was indescribably agreeable, and equable to a degree unknown in England; but its increased transparency was only such as to admit of the partial visibility of stars exceeding those visible at Oxford by about a fifth of a magnitude. Of course this addition to the number of stars visible would be counted by the thousand rather than by the hundred; nevertheless the gain in transparency alone was in a telescopic sense comparatively trifling; -in steadiness the advantage was enormous during the time mentioned. Probably at other periods it is much less so, but I speak here from conjecture.

The resulting values of atmospheric absorption expressed in magnitude by various observers at various localities are-

I will only add that in the climate of Oxford and probably that of the greater part of Europe the application of this formula is not safe beyond 60° or 65° from the zenith. In a climate such as Cairo it may probably be trusted to 75° or $80^{\circ} \mathrm{Z}$. D. But I have restricted the catalogue of this Uranometria to such stars as it is possible to observe at a moderate distance from the zenith or at the same altitude nearly as Polaris, and in this way the difficulty is evaded. Generally speaking, when great accuracy of result is needed it will be found necessary to restrict photometry to observatories favourably situated for the purpose.

The result of the many fairly accordant determinations of the general atmospheric absorption given above, obtained as they are by methods widely different, leave no doubt of their approximate and practical accuracy, with this reservation, that it may be admitted, they are not to be trusted as representing facts anywhere near to the horizon. This remark may go far to explain the doubts expressed by Professor Langley as to the general untrustworthiness of the whole investigation from a theoretical point of view.

Explanation of the Catalogue.

We are now arrived at the description of the Catalogue itself. The first measure was made on Dec. 22, 1871; the last on Oct. 16, 1885. The stars selected are strictly those in Argelander's Uranometria Nova, though but few were measured in Oxford, below 10° south of the Equator, on account of the uncertainty of the absorption correction for low altitudes, and of these few, the adopted magnitudes are given in the Notes: not that the mean value of this correction is so uncertain, but because my experience is, that it varies
very sensibly from night to night. Where my work ends it may be more properly continued at some Southern Observatory, and I trust I may be permitted to hope, that as the precision of modern astronomy advances, each observatory will confine its attention to that work alone, for which its position and equipment especially fit it. With regard to celestial photometry in Oxford, I should have preferred not to carry the observations south of the Equator, but it seemed desirable to extend them to some 10° South, in order to provide an overlap for connecting the Oxford results with those obtainable in some observatory in Southern Latitude.

I have adopted the arrangement of the stars in constellations, mainly because the stars concerned are visible to the naked eye, and are more easily cognizable than if the usual celestial co-ordinates alone were given. The abbreviations made use of in the column of 'Star's designation,' and elsewhere in the volume, are such as are generally recognised by astronomers and consequently need no explanation.

I have given the estimated magnitudes of the Uranometria Nova, rather than those in the Durchmusterung, not only on account of the care which Argelander bestowed on this special subject, but because the stars in the larger catalogue were all observed telescopically, and therefore are derived from the impressions of memory alone: nevertheless, I believe, the latter represents faithfully the heavens as they are seen. The average deviation from the mean of the usual twenty extinctions is given, rather than the 'probable error,' because the latter term is liable to misinterpretation: moreover, it must not be forgotten that this 'average deviation' is a test, rather of the general accordance of the individual extinctions with themselves, than of the actual accuracy of the final determination. This accuracy may be better estimated from the inspection of the numerous measures on different nights of the stars given on page xv of this Preface.

I have confined the Notes to calling attention to such features of the star in question, which I considered worthy of notice, or likely to affect the determination of magnitude. The spectra of stars are probably of far greater importance and possess more significance than any indication of colour, which not without some care is detectable by the naked eye: consequently whenever there is anything remarkable in these spectra, I have directed attention to the fact so far as the valuable observations of Dr. Vogel, as given in the Publicationen des Astroplysikalischen Observatoriums au Potsdam, Nr. ir, are concerned. Vogel's classes, described in his own words, are-

Classe I.

Spectra, in welchen die Metallinien nur äusserst zart auftreten oder gar nicht zu erkennen sind und die brechbareren Theile des Spectrums, Blau und Violett, durch ihre Intensität besonders auffallen.
(a) Spectra, in denen, ausser den sehr schwachen Metalllinien, die Wasserstofflinien sichtbar sind und sich durch ihre Breite und Dunkelheit auszeichnen.
(b) Spectra, in denen entweder einzelne Metallinien nur ganz schwach angedentet, oder gar nicht zu erkennen sind und die Wasserstofflinien fehlen.

Uranometria Nova Oxoniensis.

Classe II.
Spectra, in denen die Metallinien sehr deutlich auftreten. Die brechbareren Theile des Spectrums sind im Vergleich zur vorigen Classe matter. In den weniger brechbaren Theilen des Spectrums treten zuweilen schwache Banden auf.
(a) Spectra mit sehr zahlreichen Metallinien, die besonders im Gelb und Grün durch ihre Intensität leicht kenntlich werden.' Die Wasserstofflinien sind meist kräftig, aber nie so auffallend verbreitert als bei Classe Ia. Bei einigen Sternen sind die Wasserstofflinien schwach, und bei solchen sind dann gewöhnlich in den weniger brechbaren Theilen schwache Banden zu erkennen.

Classe III.

Spectra, in denen ausser dunklen Linien noch zahlreiche dunkel Banden in allen Theilen des Spectrums auftreten und die brechbareren Theile des Spectrums auffallend schwach sind.
(a) Ausser dunklen Linien sind in den Spectren Banden zu erkemen, von denen die auffallendsten nach Violett dunkel und scharf begrenzt, nach Roth matt und verwaschen erscheinen.
(b) Spectra, in denen dunkel, sehr breite Banden zu erkennen sind, von denen die am stärksten hervortretenden nach Roth scharf begrenzt und am dunkelsten sind, nach Violett allmählich erblassen. Sie erscheinen also nach der entgegengesetzten Seite verwaschen, wie die Banden in den Spectren der vorigen Unterabtheilung, aueh ist ihre Anzahl geringer als dort. Das Blau und Violett ist gewöhnlich überaus schwach.

Es haben besonders schöne Exemplare der betreffenden Classe und interessante Spectra !!! erhalten. Schön ausgeprägte Exemplare erhielten !!, deutlich, auf den ersten Blick zu erkennende Spectra endlich haben ! erhalten.

Inasmuch as the photometry of stars exhibiting any salient colour may be open to some doubt, I have noted all such cases, including all Birmingham's stars, though the colours of many are often practically not recognizable.

When the measures in this Uranometria were about three-fourths completed, the 'Harvard Photometry' was published, and inasmuch as this work is one of unquestionable importance, it became desirable to compare the results there given, with my own. Wherever there was a difference exceeding a third of a magnitude between the two catalogues, the stars were re-measured at Oxford. In the great majority of instances, the previously existing measures were re-obtained. Still, it may not be assumed that my determinations are always free from error, and I have accordingly given the Harvard magnitude, as well as the Oxford, but as all the stars in both catalogues are compared with Polaris, and as in the American Catalogue 2.15 is assumed as its conventional magnitude, whereas 2.05 is assumed in this Uranometria, it is necessary to subtract one-tenth of a magnitude from all those to which H.P. is aftixed in the Notes. I did not consider myself warranted in taking the liberty of making the alteration in a more formal manner.

Until Sir John Herschel's photometric researches at the Cape had made it possible to discriminate between the lustres of the brightest stars, these were all grouped together as stars of the first magnitude, though in point of fact they differed from each other enormously in respect of intensity of light. When this fact became apparent a new nomenclature regarding such stars became necessary.

The one adopted, that of the magnitude nothing, and still more the magnitude minus, necessarily leads to confusion. I have therefore ventured to propose another designation, to the effect that the symbol + placed before a magnitude shall intimate that its lustre expressed numerically is so many magnitudes or portions of a magnitude brighter than the first; so that +0.4 and +I .3 shall indicate respectively, four-tenths of a magnitude, and one and three-tenths of a magnitude, brighter than the first. In this way the magnitude of Sirius is designated by +t .95 , indicating that it is very nearly two magnitudes brighter than a star, such as a Aquile or Spica, which stars are very properly regarded as approximately of the first magnitude on Pogson's scale. In connection with this I append the photometric magnitudes of such stars as have heretofore been grouped together, as of the first order of lustre.

Star's Name.	Magnitude.	Star's Name.	Magnitude.
Sirius	+ 1.95	Spica..........	+0.04
Rigel	+1.03	α Orionis	+0.02
Capella	+0.92	a Aquilæ .	1.04
Vega..............	+ 0.86	Aldebaran	1.12
Arcturus	+0.69	Antares	I. 13
Pracyon	+0.50	Pollux	1.36

As a matter of fact, and not without some interest, it may be stated that, on comparing the results of these photometric measures with the telescope estimates of the same stars in the Durchmusterung, the mean difference is found to be . 06 in the magnitude of a single star. The two catalogues, therefore, notwithstanding many individual discordances, may in the average, and on the whole, be regarded as in substantial agreement.

The researches in this volume, being the first that have been completed on the instrumental photometry of the stars by an European astronomer, must have historical relations. If, on examination, they shall also be found to possess, as I confidently expect they will, an appreciable scientific value, I desire to record that much of it is due to the skilful and unremitting attention of my two assistants Mr. W. Plummer, F.R.A.S. and Mr. C. Jenkins, F.R.A.S., by whom the necessary measurements, exceeding seventy thousand, were made.

ANDROMEDA.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Arlopted Zenithal Mamintude. Polaris 2.05.	Arerage leviation in Magnitude	$\begin{aligned} & \text { Date. } \\ & \text { 1880+ } \end{aligned}$	Mag. Arcel. Uran.
1	0 . 1.	$\begin{array}{lc} \mathrm{h} . & \mathrm{m} . \\ 22 & 56.9 \end{array}$	$48 \quad 16$	3.74	0.06	2.677	$4 \cdots 3$
2	2	$2257 \cdot 5$	4750	5.19	. 05	3.960	6
3	3	2259.2	4033	4.93	. 06	39^{60}	5..6
4	4	$23 \quad 2.6$	4413	5.42	. 05	3.960	6
5	7	$23 \quad 7.5$	4112	4.92	. 04	4.012	5
6	Bradley 3084.....	2311.7	372.3	5.88	0.06	3.960	6
7	B.A.C. Si10	2312.1	4526	6.41	. 20	3.973	6
8	8	2.312 .6	4135	5.02	. 02	4.012	5..6
9	9	2313.2	4850	6.22	. 09	3.973	6
10	11	2314.4	4159	5.53	. 05	4.012	6
11	12	2.315 .6	5225	5.96	0.09	4.032	6
12	13	2.321 .8	4742	5.89	. 02	3.973	6
13	14	$23 \quad 25.9$	5122	5.44	. 09	4.012	6
${ }^{1} 4$	${ }^{15}$.................	2329.3	5022	5.51	. 05	4.012	6
15	λ................	$23 \quad 32.2$	448	3.69	. 06	...	4
16	ℓ.................	2.3 .32.7	4720	4.56	0.05	...	4
17	18.	2.333 .8	408	5.41	. 05	4.012	$6 \ldots 5$
18		2.335 .0	4616	4.34	. 06	2.677	4
19	ψ. ${ }^{\text {c............. }}$	2340.6	44 II	5.04	. 04	3.973	5
20	L. $46676 \ldots \ldots$	$23+4 \cdot 1$	5411	6.02	. 02	4.032	6
2 I	R. $6226 . \ldots \ldots \ldots$.	2.351 .5	4757	6.25	0.04	3.973	6
22	IV.B. $23^{\text {h }}-107.3 \ldots$	2.353 .2	5_{5}^{815}	6.45	. 00	4.932	6
23	R. $6265 \ldots \ldots \ldots$	2356.1	$48 \quad 16$	6.19	. 09	4.012	6
24	a	$\bigcirc \quad 2.7$	6131	2.05	. 05	2.685	2
25	22.	- 4.6	4432	5.05	. 06	3.973	5. 6

No. 6. B.A.C. assigns it to Cassiopeia.
No. 8. Called by Arg. red : the colour is not salient.
No. ${ }^{15} .3 .69$ is the mean of two measures (3.6.4, 3.74 olserved with twenty extinctions 1882.677 and with ten, 1885.102 . Schmidt calls this star golden yellow.

No. 16. 4.56 is the mean of two measures $(4.58,4.54)$ observed with twenty extinctions 1882.677 and with six, 1885.102. H.P. $=4.30$.

No. 24. Called δ Pegasi in the Almagest.
No. 25. $\Sigma 3$, Dist. $5^{\prime \prime}$. The magnitule is that of the cmbination.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Averace Deviation in Magnitude.	Date, $1880+$	Mag. Argel. Uran.
		l. m.	- ,				
26	W.B. $O^{\text {b }}-152 \ldots$.	$\bigcirc 7.7$	63.38	6.24	0.06	4.032	6
27	2.3	- 7.8	4934	5.89	. 09	3.97 .3	6
28	WV.B. $0^{\text {h }}$ - $181 \ldots$...	- 8.4	5724	5.96	. 06	40.32	6
29	W.13. $0^{\text {h}}-210 \ldots .$.	- 9.5	6320	6.08	.04	4.032	6
30	θ................	011.4	5156	4.45	. 03	4.012	5..4
31	σ. \quad.	- 12.6	5349	4.39	0.02	...	$4 \cdots 5$
32	P. $0^{\text {h }}-38 \quad \ldots . . .$.	- 12.9	595	5.75	. 06	4.032	6
3.3	If. $3.0^{\text {h }} 3.39$ 1st star	$\bigcirc 14.7$	5940	5.88	. 09	4032	
3.4	W.B. $0^{\text {b }}-3.39$ 2nd star	- It. 8	5939	6.95	. 01	4.032	6
35	L. 367 1st star ...	- 15.0	574^{2}	6.03	. 05	4.029	6
36	L. 367 2nd star...	- 15.2	573^{8}	8.91	0.03	4.029	6
37	ρ.	-15.3	52.38	5.44	. 04	4.029	6
38	B.A.C. 100	-22.3	4613	5.44	. 02	4012	6
39	28	- $2+3$	605^{1}	5.35	. 04	4.012	6.. 5
40	P. $\mathrm{O}^{\mathrm{h}}-122$	- 30.6	6321	6.32	. 04	4.012	6
41	B.A.C. 15^{2}	- 30.8	$46 \quad 7$	5.38	0.10	4.012	6
$4{ }^{2}$		$\bigcirc 31.0$	565.3	4.24	. 05	...	4
43	B.A.C. 158	-315	5512	5.79	. 07	4.012	6
44		- 32.8	6117	4.29	. 11	2.685	4
45	δ	- 33.4	5944	3.18	. 11	...	$5 \cdots 4$
46	32	$\bigcirc 3.3$	519	5.49	0.04	4.032	5
47	R. 204	$0+0.1$	4545	5.92	-06	4012	6
4^{8}		041.5	6620	4.13	- 04	2.693	4
49	\cdots	$\bigcirc 43.8$	4931	4.62	- 03	2.693	$4 \cdots 5$
50	R. 225	$\bigcirc 44.1$	4536	5.65	$\cdot 09$	4.040	6
51	μ................	$05^{0.6}$	526	3.98	0.05	2.693	4
52	η................	- 51.3	6710	4.41	$\cdot 11$	2.677	5
53	P. $0^{\text {b }}-242 \ldots \ldots .$.	- 522	$3^{6} \quad 38$	6.18	-06	4.012	6
54	R. 288	$\bigcirc 53.8$	45.53	5.89	-05	4.040	6
5 5	39	$\bigcirc 56.7$	4915	0.07	-06	3.968	6

No. 31. 4.39 is the mean of two measures ($4.37,4.40$) observed with twenty extinctions 1882.667, and with six, 1885.102.

No. 42. The observation of 1882.685 (See Mem. R.A.S. vol. 47, p. 420) is rejected, the night being hazy. There is a faint eompanion $36^{\prime \prime}$ distant not observed.
No. 45. Birm., No. 8. Noted by Sehmidt as of a deep golden yellow. 3.18 is the mean of two measures ($3.23,3.14$) observed 1882.682 and 1882.693 , each involving twenty extinctions.
No. 54. Σ_{79}, Dist. $8^{\prime \prime}$. Observed as one mass.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05 .	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		$\mathrm{h} . \mathrm{m}$.	- ,				
56	41	$\begin{array}{ll}1 & 1.7\end{array}$	46.39	5.17	0.03	3.968	5
57	ϕ.................	13.1	4.321	4.38	. 02	2.693	$4 \cdots 5$
58	$\beta \ldots \ldots \ldots \ldots$.	13.6	3458	2.21	$\cdot 05$	2.688	$2 \ldots 3$
59	44.	14.1	$+8.30$	5.83	. 03	4.012	6
60	45.	184.9	5252	5.93	09	4.051	6
61	$\xi \ldots \ldots \ldots$.	1 159	$45 \quad 3$	5.18	0.09	$4.0+0$	5
62	47	1174	5251	5.75	. 06	4.031	6
63	P. i. 69	119.8	477	5.99	. 04	4.0 .40	6
64	W.B. $o^{\text {b }}-378 \ldots$	1 I 9.9	5559	6.51	. 10	4.051	6
65	ω................	121.0	4510	4.90	. 02	4.018	5
66	49	123.5	4334	5.38	0.05	+.018	6
67	W.B. $0^{\text {b }}-530 . . .$.	126.5	5443	6.59	. 09	4.051	6
68	P. i. $104 \ldots \ldots$.	127.9	5320	8.10	. 06	4.051	6
69	v....................	$1 \begin{array}{ll}1 & 30.3\end{array}$	498	4.26	. 04	2.693	$4 \cdots 5$
70	X	132.8	46 ı0	5.18	. 07	4.018	5... 6
71	B.A.C. 501	134.0	4715	5.78	0.02	4.018	6
72	τ.................	134.1	4959	5.01	. 07	4.051	5
73	P. i. $142 \ldots \ldots \ldots .$.	1350	475^{6}	5.41	. 09	4.018	6
74	55	146.7	4949	5.69	. 05	4.018	6
75	B.A.C. 579	149.4	53×6	5.79	. 06	4.075	
76	5^{6}.................	$149 \cdot 4$	5316	5.84	0.03	4.075	5
77	$\gamma^{1} \ldots \ldots$.	157.1	$48 \quad 12$	2.14	. 03	2.693	
78	$\gamma^{2} \ldots \ldots \ldots \ldots \ldots$	157.1	4812	4.86	. 0.4	2.693	$2 \ldots 3$
79	58	21.8	5240	5.08	. 02	...	5
80	59 Ist star........	24.2	5129	8.33	. 04	4.075	
81	59 2nd star	24.2	5129	6.12	0.04	4.075	6
82	60.	$2 \quad 6.3$	4^{6} 17	5.08	. 0.4	4.018	5..6
83	62.	212.2	438	5.40	. 12	4.018	5 ..6
84	$\mathrm{f} 33^{\text {. }}$...............	213.7	4021	5.64	. 04	4.018	6
85	B.A.C. 727	216.0	$49 \quad 6$	6.07	.0.3	4.018	6
86	$6_{4} \ldots \ldots$.	217.3	4030	5.44	0.05	4.018	6
87	65.	218.5	4013	5.08	. 09	4.018	5

No. 57. O \sum_{515}^{15}. The magnitude is that of the combination.
No. 58. Birm., No. 17. Called red by Schmidt. The red colour is not salient.
No. 61. Variability suggested by Pigott (see Phil. Trans. 1786, p. 20.3).
No. 69. The Greek letter, which is in Bayer's Map (1603), is omitted in the B.A.C.
Nos. 75, 76. $\Sigma 4^{1}$, Distance ${ }_{17} 7^{\prime \prime}$.
No. 77. $\Sigma 305$, Dist. 10". The colour is intensely yellow.
No. 78 . The magnitude is that of the combination, Dist. $<1^{\prime \prime}$. The combined colour is green.
No. 79. 5.08 is the mean of two measures ($5.06,50.9$) observed 1884.075 with twenty extinctions and with six, 1885.102 . Nos. 80, 81. These stars form $\Sigma 222$, Dist. $16^{\prime \prime}$.
No. 82. Birm., No. 37. Pale orange. No. 87. Birm., Second list of Addenda. Red.

AQUARIUS.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Reference Number. \& Star`s Designation. \& $$
\begin{gathered}
\text { R.A. } \\
1890 .
\end{gathered}
$$ \& $$
\begin{aligned}
& \text { N.P.D. } \\
& 1890 .
\end{aligned}
$$ \& Adopted Zenithal Magnitude. Polaris 2.05 . \& Average Deviation in Magnitude. \& \[
$$
\begin{aligned}
& \text { Date, } \\
& 1880+
\end{aligned}
$$

\] \& | Mag. |
| :--- |
| Argel. |
| Uran |

\hline \& \& h. m. \& \bigcirc, \& \& \& \&

\hline 1 \& I.................... \& $20 \quad 3.3 .8$ \& 8954 \& 5.50 \& 0.03 \& $4 \cdot 598$ \& 5

\hline 2 \& 3................... \& 2041.9 \& 9526 \& 4.84 \& . 03 \& 4.598 \& $4 \cdots 5$

\hline 3 \& 5................... \& 20.46 .3 \& 9555 \& 5.74 \& . 08 \& 4.764 \& 5

\hline 4 \& μ................. \& 20.46 .7 \& 99^{24} \& 4.88 \& . 06 \& 4.598 \& 5 $\ldots 4$

\hline 5 \& I'.xx. $360 \ldots \ldots .$. \& 2048.1 \& 9718 \& 6.51 \& . 06 \& 4.771 \& 6

\hline 6 \& I1 \& $20 \quad 54.8$ \& 959 \& 6.50 \& 0.07 \& 4.764 \& 6

\hline 7 \& 12. \& $20 \quad 58.3$ \& $96 \quad 15$ \& 5.69 \& . 08 \& 4.77 I \& 5... 6

\hline 8 \& 15 \& $21 \quad 12.4$ \& 9459 \& 6.04 \& . 06 \& 4.771 \& 6

\hline 9 \& 16 \& 2115.3 \& 952 \& 6.12 \& . 06 \& $4 \cdot 764$ \& 6

\hline 10 \& 21 \& 2119.6 \& $9+2$ \& 5.84 \& . 05 \& 4.751 \& 6

\hline 11 \& $\beta \quad \ldots . . . \ldots \ldots \ldots$ \& $\begin{array}{lll}21 & 25.8\end{array}$ \& $9^{6} \quad 3$ \& 3.08 \& 0.03 \& 4.771 \& 3

\hline 12 \& P. xxi. 190......... \& $\begin{array}{lll}21 & 29.6\end{array}$ \& 9428 \& 5.91 \& . 04 \& 4.712 \& 6

\hline 13 \& ξ................ \& $21 \quad 31.9$ \& $9^{8} 21$ \& 4.71 \& . 06 \& 4.764 \& $5 \cdots 4$

\hline 14 \& ェ2809 \& 2131.9 \& 9053 \& 6.02 \& . 06 \& 4.731 \& 6

\hline 15 \& ${ }^{5} 5$ (d) \ldots. \& 2134.0 \& 8815 \& 5.35 \& . 06 \& 4.719 \& $6 \ldots 5$

\hline 16 \& 26. \& 2136.6 \& 8913 \& 5.99 \& 0.09 \& 4.731 \& 6

\hline 17 \& P. xxi. 320........ \& 2148.4 \& $9+48$ \& 6.01 \& . 06 \& 4.764 \& 6

\hline 18 \& इ2838 $\ldots \ldots \ldots \ldots$ \& 2148.8 \& 9350 \& 6.48 \& . 07 \& 4.712 \& 6

\hline 19 \& P. xxi. $345 \ldots \ldots .$. \& 2152.5 \& 9557 \& 6.41 \& . 05 \& 4.739 \& 6

\hline 20 \& 28 \& 2155.4 \& $89 \quad 56$ \& 5.85 \& . 05 \& 4.731 \& 6

\hline 21 \& 30 \& 2157.5 \& 973 \& 5.65 \& 0.06 \& 4.771 \& 5... 6

\hline 22 \& 0................... \& 2157.6 \& $9^{2}+1$ \& 4.60 \& . 07 \& 4.712 \& $5 \cdots 4$

\hline 23 \& 32 \& 2159.1 \& 9126 \& 5.60 \& .0.3 \& ... \& 6

\hline ${ }^{2} 4$ \& α \& 220.1 \& 9051 \& 3.04 \& . 07 \& +731 \& 3

\hline 25 \& P. xxi. 42 I \& $22 \quad 4.6$ \& 9426 \& 6.07 \& . 07 \& .. \& 6

\hline
\end{tabular}

No. 7. \sum_{2745}, Dist. 3". Observed as one star.
No. Ir. This star is slightly retl or orange.
No. 14. Dist. 3I'. The larger star observed.
No. 15. $=6$ Pegasi. See Introduction to B.A.C., p. 75.
No. 17. Variability suspected by Gore.
No. is. $\Sigma 2_{2} 838$, Dist. $22^{\prime \prime}$. The brighter star observed.
No. 23. 5.60 is the mean of three very accordant observations made in I 884.764 , and 1885.464 and $.46_{7}$. H.P. $=5.24$.
No. 25. 6.07 is the mean of three accordant observations made in 1884.739 , and 1885.454 and .467 H.P. $=5.85$.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation 111 Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
26	P. xxii. $17 \ldots \ldots .$.	227.0	$95 \quad 16$	6.51	0.05	4.771	6
27		2211.0	9820	4.39	. 06	4.731	$4 \ldots 5$
28	44	2211.4	955^{6}	5.88	. 08	4.719	6...5
29	$\rho \ldots$.	$22 \begin{array}{ll}2 & 14\end{array}$	9822	5.50	. 04	4.739	5... 6
30	γ.................	2215.9	9156	3.97	.05	4.712	$4 \ldots 3$
31	5 I	$\begin{array}{lll}22 & 18.4\end{array}$	$95 \quad 24$	5.94	0.06	4.721	6
32	π...............	$\begin{array}{lll}22 & 19.7\end{array}$	89 II	4.84	.05	4.764	5...4
33	$\zeta^{1} \ldots \ldots$.	2223.2	9035	3.71	. 05	4.712	$3 \ldots 4$
34	L. 43974	$22 \quad 25.5$	976	6.43	. 04	$4 \cdot 76$	6
35	60.	2228.4	928	6.14	. 06	$4 \cdot 719$	6
36	η.................	$22 \quad 29.7$	9041	4.12	0.05	4.7 .39	$4 \cdots 3$
37	к.....................	2232.1	9448	5.43	. 03	4.771	5
38	67	2237.5	9732	6.45	. 07	\ldots	6
39	λ	2246.9	9810	3.82	. 07	4.764	4
40	P. xxii. 250	2249.5	9534	6.05	. 03	...	6
41	8,3	2259.4	$9^{8} \quad 17$	5.61	0.08	4.739	$6 . . .5$
42	¢	2388	$9^{6} \quad 38$	4.32	. 06	4.764	$4 \cdots 5$
43	L. 45521	2.309 .8	945	5.51	.06	4.7 .31	5...6
44	χ..................	2311.1	9820	5.52	.06	\ldots	5... 6
45	$96 \ldots$.	$\begin{array}{llll}23 & 13.7\end{array}$	9543	5.76	. 04	$4 \cdot 7.39$	$6 \ldots 5$
4^{6}	P. xxiii. 9 ¢	$23 \quad 2.3 .8$	$95 \quad 8$	6.09	0.08	$4 \cdot 764$	$6 . . .5$

No. 33. $\Sigma 2909$, Binary. Period uncertain. The observation is of the combination.
No. 38. 6.45 is the mean of three accordant measures, made on $188_{4.7} 6_{4}$, and $188_{5.4} 6_{4}$ and
.467 H. $\mathrm{P} .=6.20$.
No. 39. Birm., No. 621. The red colour is not salient.
No. 40. 6.05 is the mean of three accordant measures made on 1884.719 , and 1885.464 and $.4^{67}$ H.P. $=5.77$.
No. 42. Birm., No. 633. The red colour is noticeable.
No. 44. Eirm., No. 634. The red colour is not salient. 5.52 is the mean of three accordant measures made on 1884.771 , and 1885.464 and .467 . H.P. $=5.15$.
No. 46. The B.A.C. assigns this star to Pisces.

A Q UILA.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05 .	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
1	4...................	1839.3	883	5.03	0.04	$3 \cdot 519$	5
2	5...................	1840.7	9 I 5	6.09	. 05	\ldots	6
3	L. 35150 1847.0	7610	6.00	. 08	$3 \cdot 519$	6
4	L. 3528 I	1850.7	$9^{1} 5^{6}$	6.05	. 08	3.519	6
5		1853.4	7247	5.03	. 04	3.604	5
6	II	1854.0	$7_{6} 3^{1}$	5.25	0.04	3.604	5
7	є....................	1854.6	$75 \quad 5$	3.86	. 03	2.583	4
8	12	1855.8	95 54	4.01	. 06	2.583	$5 \cdots 4$
9	14	1857.1	935^{1}	5.74	. 08	3.519	6
10	L. 35598	1858.0	8821	5.97	. 02	3.604	6
11	15	1859.2	$9+12$	5.67	0.09	3519	6
12	$¢_{6} \ldots$.	$19 \quad 0.4$	$76 \quad 18$	3.08	. 05	2.586	3
13	入...................	$19 \quad 0.4$	95 3	3.27	. 04	2.586	$3 \cdots 4$
14	18	$19 \quad 1.8$	796	5.00	. 12	3.604	5
15	L. 3585^{1}........	193.0	7318	5.96	. 03	3.604	6
16	19	$19 \quad 3.6$	846	5.44	0.04	3.519	$5 . .6$
17	20	196.7	$98 \quad 7$	5.42	. 08	3.519	6
18	21	198.2	8754	5.16	. 05	3.527	$6 \ldots 5$
19	L. 36207	1910.3	756	5.72	. 02	3.604	$6 . .5$
20	22.	19 II.I	8522	5.29	. 1	$3 \cdot 527$	6
21	L. 36268	1911.4	7539	5.42	0.02	3.604	$6 \ldots 5$
22	L. $36285 \ldots \ldots$	1912.3	88 10	6.19	. 07	$3 \cdot 527$	6
2.3	ω	1912.7	$7_{7}^{8} 36$	5.35	. 02	$3 \cdot 554$	$6 \ldots 5$
24	23	1912.9	897	5.29	. 09	3.527	6
25	24.	1913.2	8951	6.63	. 12	3.527	6

No. 2. $\Sigma 2379$, Dist. $13^{\prime \prime}$. Observed as a single star. 6.09 is the mean of two measures ($6.12,6.06$) observed with twenty extinctions 1883.519 and with six, $1885.437 . \quad$ H.P. $=5.75$.
Nos. 3, 5. Spectrum I a! (Vogel.)
No. 6. $\Sigma 2424$. The faint distant companion not observed.
No. 8. Suspected variable by various authorities.
No. II. Marked red by Gould : colour not salient.
No. 17. Decided variability stated by Gillis, but not confirmed. (See Ast. Obs. p. 669.)
No. 21. $\Sigma \sum_{2} 89$, Dist. $8^{\prime \prime}$. Observed as one object. Spectrum I a! (Vogel.)
No. 23. Spectrum I a! (Vogel.)
No. 25. $\Sigma 40^{1}$. The distant companion (423') not observed.

$\begin{aligned} & \text { Refer- } \\ & \text { ence } \\ & \text { Number. } \end{aligned}$	Star's Desiguation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
26	28.	19 14.5	7750	5.55	0.04	3.565	6
27	26	1914.7	95.3	5.21	. 07	3:554	5
28	27	1914.9	916	5.74	. 02	3.554	6
29	L. 36.489	$19 \quad 16.7$	9029	5.86	. 02	3.595	6
30	31	$19 \quad 19.7$	7818	5.33	. 05	3.565	5... 6
31	$\delta \ldots$.	1919.9	876	3.36	0.07	2.586	3...4
32	$\nu \ldots$.	1920.9	8953	5.08	. 03	...	5
33	L. 36715	19 21.3	7711	5.93	. 05	3.604	6
34	L. 36781	1922.5	7557	6.08	. 07	3.604	6
35	35	19 2.3.5	8816	5.45	. 06	$3 \cdot 565$	$6 \ldots 5$
36	L. $36867 \ldots \ldots \ldots$	19 24.5	$75 \quad 38$	5.69	0.03	3.604	6
37	36	1924.9	931	5.23	. 0.3	$3 \cdot 565$	5..6
38	μ.................	1928.7	825^{1}	5.10	. 06	...	$5 \ldots+$
39	37	1929.1	1004^{8}	5.55	. 05	$3 \cdot 595$	$6 \ldots 5$
40	κ к................	1931.0	9716	5.01	. 04	$3 \cdot 595$	5
41	1931.0	9132	4.52	0.03	2.586	$4 \ldots 5$
42	L. 37191	1931.7	$7_{7} \mathrm{~S} 58$	6.25	. 03	3.604	5
43	42	1932.0	9454	5.67	. 11	3.565	6
44	σ	1933.8	$8+5^{1}$	4.88	. 04	3.595	5
45	45	19 35.I	9053	5.48	. 06	3.565	6
46	W.B. $19{ }^{\text {h }}-884 \ldots$	1936.0	7626	6.09	0.04	3.609	6
47	χ.................	1937.4	-S 26	5.60	. 06	3.609	6
48	ψ. $\ldots . \ldots \ldots \ldots . .$.	1939.5	765^{8}	6.06	.0\%	3.609	6
49	v....................	19403	82.39	6.06	. 0.4	...	6
50	$\gamma \ldots$.	$19+1.0$	7939	2.81	. 05	2.745	3

Nos. 26, 28, 31. Spectrum I a! (Vogel.)
No. 29. Called red in Uran. Argent.
No. 32. 5.08 is the mean of three closely accordant observations, made $18 S_{3.595}$, and 1885.434 and .437 . H.P. $=4.80$.
No. 37. Birm., No. 500. The star is orange tinted.
No. 3S. 5.10 is the mean of three closely accordant observations, made 1882.56 S , 1885.434 and .437. There is strong suspicion of variability. (See Uranometria Argentina, p. 323.)
No. 41. Various authorities give discordant magnitudes. (Variable?)
Nos. 45, 46. Spectrum I a! (Vugel.)
No. 49. 6.06 is the mean of three closely accordant magnitudes, made 1883.565 , and 1885.434 and .437 . Spectrum I a! (Vogel.)
No. 50. Birm., No. 5^{12}. Spectrum II a !! (Vogel.)

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopterl Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
51	Bradley 2555 ...	1943.0	1019	6.39	0.07	$3 \cdot 57 \mathrm{I}$	6
52	π	$19+3 \cdot 5$	$7_{7}^{8} 27$	5.62	. 08	3.584	6
53	5^{1}.................	$19+4.7$	1013	5.61	.06	3.571	6
54	a...................	$19+5 \cdot 4$	SI 26	1.04	. 08	...	1... 2
55	L. 37763	$19+5 \cdot 5$	9244	6.42	. 06	3.571	6
56	0.	$1945 \cdot 7$	7952	5.13	0.02	3.571	$6 \ldots 5$
57	η. \quad.	$19+6.9$	89 17	4.22	. 09	$3 \cdot 589$	Var.
$5{ }^{8}$	L. 37832	19475	93^{24}	5.65	. 02	3.571	5
59	57	$19+8.7$	98.31	5.42	. 03	$3 \cdot 57^{1}$	5
60	$\dot{\xi}$	1948	8149	4.86	.08	3.574	5
61	5^{8}.................	19 49-1	901	5.74	0.07	$3 \cdot 574$	6
62	β................	1949.9	8352	3.69	. 06	...	4
63	¢	1951.0	7852	5.60	. 03	$3 \cdot 571$	5... 6
64	L. 38100	1953.8	10014	6.03	. 03	3.574	6
65	L. 3^{81999}........	1955.7	8 I 4	6.22	. 05	$3 \cdot 582$	6
66	62.	1958.7	911	5.91	0.03	$3 \cdot 582$	6
67		1958.8	832	5.75	. 03	$3 \cdot 585$	$6 \ldots 5$
68	L. $38506 \ldots \ldots$	$20 \quad 2.6$	So 56	6.40	. 02	3.582	6
69	L. 3^{8544}........	$20 \quad 3.4$	7936	6.21	. 0.3	$3 \cdot 5^{82}$	6
70	θ................	$20 \quad 5.6$	919	3.26	. 03	2.589	3
71	W.B. (2) $20^{\text {h }}-105$	$20 \quad 7.0$	8929	6.47	0.03	$3 \cdot 595$	6
72		$20 \quad 7.6$	9120	5.77	. 07	3.584	6
63	$\rho \ldots \ldots \ldots \ldots \ldots \ldots$	$20 \quad 9.2$	758	5.07	. 07	3.609	5
74	W.E. (2) $20^{\text {h }}-295$	$20 \quad 14.0$	9126	6.26	. 08	3.601	6
75	L. 39102	$20 \quad 15.3$	72.34	5.95	. 02	3.609	$6 \ldots 5$
76	B.A.C. $701+\ldots$.	2017.7	85 I	5.32	0.0 .3	3.601	$6 \ldots 5$
77	L. 39224	$20 \quad 19.0$	8917	6.14	. 06	3609	6
78		$2022 \cdot 7$	9343	6.10	. 08	$3 \cdot 3^{8 .} 4$	6
79	69	$20 \quad 23.9$	$93 \quad 15$	5.16	. 08	3.58 +	5
80	L. 39540 . ${ }^{\circ}$.	2026.7	889	6.54	. 08	$3 \cdot 601$	6

No. 52. $\Sigma 2583$, Dist. 1".5. Consequently observed as one star.
No. 54. 1.04 is the mean of five accordant determinations mate on as many nights, two at Oxford and three at Cairo, involving sixty extinctions made between 1882.750 and 1883.170 . H.P. $=0.97$. Spectrum I a ! ! (Vogel.)

No. 57. Varies from 3.5 to 4.7 mag. Period $7^{d}, 4^{h} \mathbf{4}^{\mathrm{m}} \cdot 4^{\mathrm{c}}$, but some of the recently observed minima, according to Schönfeld, are not well represented.
No. 59. $\Sigma 2594$, Dist. 32". The brighter star olserved.
No. 62. 3.69 is the mean of three closely accordant observations, made 1882.589 , and $1885 \cdot 434$ and .437 . There is some ground for suspecting varialility.
Nos. $63,70,73$. Spectrum Ia! (Vogel.)
No. 68. $\Sigma 2628$, Dist. $4^{\prime \prime}$. The observation is of the combination.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adoptel Zenithal Magnitude. Polaris 2.05 .	Average Deviation in Magnitude.	$\begin{aligned} & \text { Date, } \\ & 1880+ \end{aligned}$	Mit. Argel. Uran.
		h. m.	- ,				
81	L. 39542	2026.8	88 15	6.32	0.01	3.609	6
S2	70.	2031.0	9256	5.28	. 06	$3 \cdot 584$	5
8.3	71.	20.32 .7	9129	4.63	. 10	2.589	$4 \cdots 5$

No. 82. Birm., No. ${ }_{5}{ }^{6} 4$.

ARIES.

1	4..................	J	42.2	7335	5.63	0.04	4.078	6
2	1....................	1	44.1	$68 \quad 16$	6.20	. 05	4.007	6
3	P. i. $185 \ldots \ldots \ldots$	1	45.0	79.30	5.87	. 05	4.007	6
4	γ. \quad.	I	47.5	7_{1}^{115}	4.11	. 04	2.679	$4 \cdots 3$
5	β................	1	$4^{8.6}$	6944	2.75	. 05	2.679	3...2
6	ו....................	1	51.3	7243	5.21	0.04	4007	6
7	λ.................	1	51.8	6656	4.97	. 02	4.007	5
8	P. i. 22,3...........	1	53.5	${ }_{7}{ }^{8} 14$	6.23	. 04	4.075	6
9	10	1	57.4	6436	5.82	. 08	4.078	6
10				6752	5.31	. 04	4.078	$6 \ldots 5$
11	a		1.0	$67 \quad 3$	2.13	0.06	\ldots	2
12	If		3.2	6435	4.97	. 06	4.089	5
13	15		4.5	7 I I	5.64	. 04	4.078	6
14	Y....................			$\begin{array}{lll}69 & 18\end{array}$	5.50	. 03	4.007	5...6
15	19		7.1	75^{1+}	5.98	. 04	4.078	6
16	20		$9 \cdot 5$	$6+4$	5.89	0.06	4.089	6
17	21		9.5	6528	5.69	. 03	4.089	6
18	θ................		12.0	7036	5.50	. 04	4.078	$6 \ldots .5$
19	$\underline{\xi} \ldots \ldots \ldots \ldots \ldots \ldots$		18.9	79 :3	5.48	. 04	4.0-8	5..6
20	D.M. $+22^{\circ}$, No. 354	2	23.0	67 I	6.11	.o8	4.089	δ

Nos. 1, 8, I8. Spectrum I a! (Vogel.)
No. 2. Σ_{174}, Dist. 2".4. Observed as one mass.
No. 3. B.A.C. assigns this star to Cetus.
No. 4. Σ i 8o, Dist. 9". Observed as one mass. Spectrum I a! (Vogel.)
No. 7. Σ unnum., Dist. $37^{\prime \prime}$. The brighter star observed.
No. 9. $\Sigma 20$, Dist. $\mathrm{I}^{\prime \prime}$.4. Pinary. Observed as one mass.
No. 11. Birm., No. 35. The colour is yellow. 2.13 is the mean of six accordant determina-
tions, made on as many nights, three at Oxford and three at. Cairo, involving seventy
extinctions made between i882.679 and 1883.175.
No. 13. Spectrum III a! (Vogel.)
No. 16. Birm., No. 38. The red colour is not salient.

$\begin{aligned} & \text { Refer- } \\ & \text { ence } \\ & \text { Number. } \end{aligned}$	Star's Designation.	$\begin{gathered} \text { R.I. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.1). } \\ & 1890 . \end{aligned}$	$\begin{gathered} \text { Alopted } \\ \text { Zont thal } \\ \text { Maunitule. } \\ \text { Polars } \\ 2.05 \text {. } \end{gathered}$	Averave Deviation in Magntmbe.	$\begin{gathered} \text { Dite, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
21	P. ii. 9^{6}........	224.2	6515	5.78	0.03	+.089	6
22	26	224.5	70.38	6.20	. 04	4.075	6
2.3	. 30 1st star	2306	65.50	6.33	. 04	4.089	6
24	. 0 2nd star	230.7	650	6.78	. 10	+.089	
25	31	2.30 .7	78 2	5.68	. 04	4078	6
26	\because.	2.326	68.31	5.54	$\bigcirc 09$	4.078	$6 \ldots 5$
27	B3	2343	6.325	5.53	. 07	+.089	6.5
28	1 \%	236.2	7027	5.05	. 05	4.089	$6 . .5$
29	35	237.0	6246	4.51	. 04	4.089	5
30		2385	$\pi 9$	5.68	. 05	$+089$	6
. 31	. 8	2.390	78 I	5.40	0.06	$4.1{ }^{1+}$	5
32	39	$2{ }^{1}+$	6112	4.65	. 05	5.124	5
3.3	P. ii. 181	$2+2.4$	6516	6.09	. 11	4.114	6.5
3.4	π	24.3 .2	3.30	5.51	. 10	+ ${ }^{114}$	$6 . .5$
35	41	24.35	6.311	3.58	. 08	2.704	4
36	σ	2454	75 22	5.58	0.10	4.114	6
37	45	2496	$7_{2} 7$	5.72	. 06	4.114	...
38		250.2	7225	5.66	. 08	4.114	6
. 39	ϵ	2529	696	4.24	.07	2.704	+ $\ldots 5$
40	49	2554	635^{8}	6.09	. 08	4.114	6
41	52	2.590	6510	5.26	0.05	4.114	6
$4{ }^{2}$	5	$3 \quad 3.0$	6121	5.58	. 02	4.114	6
4.3		$\begin{array}{lll}3 & 5 \cdot 3\end{array}$	7041	4.54	. 04	$2.50+$	+ $\cdots 5$
+	s ${ }^{6}$................	$\begin{array}{lll}3 & 5.7\end{array}$	$63 \quad 9$	5.52	. 10	4.114	6
45	ζ...............	38.6	6922	4.78	. 08	2.704	$4 . .5$

N(s. 22 and 28. Spectrmin I a! (Vogel.)
Nos. 23 and 2_{2}. These stars form $\Sigma 5^{1}$, Dist. $38^{\prime \prime}$.
No. 27. ≤ 289, Dist. $28^{\prime \prime}$. The bright star observerl.
No. 3 I . $=88$ Ceti. (See Introd. to B.A.C., p. 75.) Spectrum I a! (Vogel.)
No. 34. 玉 31 . Triple. The closer pair, distance $3^{\prime \prime} .1$, observed as une mass. (unsidered by Struve to be variable. (See Mens. Microm., p. lxxii.)
No. 35. Σ monum. The brighter star observed.
No. 37. Spectrum III a!!! (Vogel.)
 p. lxxii. and Ast. Nach. LAX., p. 317.) An observatiou on I'S $\mathbf{S}_{5} 65$ gave 4.51 as the magnitude for the combined light of the stars. H.P. $=4.58$.
No. 41. $\Sigma_{j} \boldsymbol{f}^{6}$. Quadrmple. The cluser lair, dixtance $\mathrm{I}^{\prime \prime}$, observed at one mass.

Reference Number.	Star's Designation.	$\begin{gathered} \text { RA. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05 .	Average Deviation in Magnitude	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	$\begin{aligned} & \text { Mrig. } \\ & \text { Argel. } \\ & \text { Cran. } \end{aligned}$
		h. m.	- ,				
46	59	3. 13.4	6319	5.86	0.05	4.116	6
47	P. iii. 32	31.3 .7	6 L 21	4.84	. 09	4.116	5
48	τ^{1}	$31+9$	6915	5.42	. 06	\ldots	5
49	62.	. 156	6247	5.60	. 01	4.1:6	6
50	τ^{2}	$3^{16.4}$	69.39	5.37	. 04	4.116	5..6
$5{ }^{1}$	64.	317.8	6540	5.66	0.09	4.116	6
5^{2}	$6_{5} . \ldots$.	3181	6935	5.45	. 06	4.116	6

No. 48.5 .42 is the mean of two meanures ($5.44,5.40$) observed 188.115 with twenty ext'nctions and 188.635 with six. H.P. $=5.18$.

A URIGA.

1	P. iv. $185 \ldots \ldots$	$4+2.2$	37.36	6.02	0.01	5.084	6
2	W.B. iv. $889 . . .$.	442.2	$5^{5} 46$	5.81	. 09	5.1.33	6
3	1	$4+2.5$	5242	5.27	. 01	5.084	6
4	P.iv. $18_{4} \ldots \ldots .$.	$4+2.9$	4127	5.90	. 05	5.084	6
5	R. 1328..........	445.0	4736	5.85	. 05	...	6
6	2	445.3	5329	4.99	0.0 .3	5.100	5
7	R. 1339	447.0	$4^{6} \quad 7$	6.00	. 09	5.13 .3	6
8	ו....................	449.8	57 -	2.87	. 08	2.865	3
9	4	451.8	5217	5.32	. 07	5.152	6
10	¢ $\ldots . . . \ldots \ldots \ldots .$.	454.1	4620	3.64	. 02	2.865	$3 \cdots 4$
11	$\zeta \ldots \ldots \ldots \ldots$	454.8	495	3.80	0.03	2.865	4
12	9	458.0	3833	5.07	.85	5.084	5
1.3	η.................	458.8	4855	3.49	. 08	...	$4 \ldots 3$
14	μ...............	$5 \quad 5.9$	5139	5.15	. 01	5.100	$6 . .5$
15	14.................	$5 \quad 8.2$	5726	5.26	. 06	5.13 .3	$5 . .6$

No. 5. 5.85 is the mean of two measures ($5.80,5.90$) observed 1885.992, and 1585.239 , each with six extinctions. H.P. $=\mathbf{5 . 5 4}$.
No. 9. $\sum 616$, Dist. $7^{\prime \prime}$. Observed as one mass.
No. 10. Variability discovered by Fritsch. Max. 3.0, Min. 4.5 mag. Period irregnlar.
No. ir. Birm., No. 93. The colour is slightly orange.
No. 13. 3.49 is the mean of six accordant determinations, made on as many nights, three at Oxford and three at Cairo, involving seventy extinctions made between 1882.865 aind 1883.233. H.P. $=3.33$.

No. 15. $\quad \Sigma 633$, Mist. $1^{\prime \prime}{ }^{\prime \prime}$. Observed as one mass. There is also a fainter companion.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Maonitude. Polaris 2.05.	Averace Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
16	a	58.5	$44 \quad 7$	0.08	0.05	...	I
17	W.B. x. 162	59.0	5549	6.04	. 14	5084	6
18	16	511.0	5644	4.97	. 12	5.138	5
19	λ.................	511.4	4959	5.03	. 1 I	5.100	5
20	P. v. 26.	511.7	5622	5.10	. 03	5.089	6
21	W.B. v. 266	512.5	49 -	5.29	0.09	5.239	6
22	19	512.8	$56 \quad 9$	5.42	. 07	...	5... 6
2.3	ρ.................	514.0	$4^{8} 18$	5.38	. 00	5.089	$6 \ldots 5$
24	R. $1458 \ldots$.	515.1	$49 \quad 5$	5.55	. 10	5.152	6
25	σ,	517.2	5243	5.37	. 0.3	$5.08{ }_{4}$	6
26	P. v. 62.	517.5	5853	6.20	0.04	5.100	6
27	P. v. 63.	517.5	585^{8}	5.83	. 04	5.100	
28	L. 10143	520.1	5954	5.84	.0.3	5.133	6
29	¢	520.4	55.36	5.44	. 01	5.084	$5 \ldots 6$
30	χ................	525.5	5753	5.08	. 04	5.089	5
31	26	531.7	5934	5.63	0.04	5.152	6
32	0	537.4	+0 13	5.70	. 02	5.084	$6 . . .5$
33	τ................	541.5	$50{ }^{\text {I }}$	4.83	. 08	2.865	5
34	v.................	543.5	5243	5.13	. 02	5.133	5
35	v................	543.9	5053	4.20	. 10	2.865	4
36	$\xi \quad \ldots$.	545.6	$3+19$	5.02	0.04	5.089	5
37	δ................	550.5	3543	3.98	. 06	2.865	$4 \cdots 5$
38	β................	551.5	454	1.94	. 05	2.865	2
39	π.................	551.8	444	4.68	. 02	$5 \cdot 239$	5
40	θ.................	552.2	$5^{2} 4^{8}$	3.03	. 09	...	3

No. 16. 0.08 is the mean of seven accordant determinations, made on as many nights, four at Oxford and three at Cairo, involving eighty extinctions made between I 882.865 and 1883.205 . H.P. $=0.18$. Herschel and Σ think this star has increased in brilliancy.

No. I8. O Σ IO3, Dist. $4^{\prime \prime} .5$. Observed as one mass.
No. 19. $\Sigma 3^{\text {II }}$, Dist. $104^{\prime \prime}$. The brighter star observed.
No. 21. Birm., Add. I, No. I8. The star is slightly red.
No. 22. 5.42 is the mean of two measures ($5.40,5.44$) observed 1885.133 and 1885.239 , each with six extinctions. H.P. $=5.10$.
No. 31. Σ^{753}, Dist. 12". Observed as one mass. Variable? (See Gillis's Ast. Obs., p. 663.)
No. 35. Birm., Add. I, No. 24. The red colour is not salient.
No. 36. ξ Aurigæ $=32$ Camelopardali. (See Introd. to B.A.C., p. 75.)
No. 37. Birm., No. 129. The red colour is not salient.
No. 38. Birm., No. i 30. The colour is orange.
No. 40. 3.03 is the mean of three accordant measures made 1882.865 , 1885.636 , 1885.639 , involving thirty-two extinctions. H.P. $=2.67$.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{aligned} & \text { Date, } \\ & 1880+ \end{aligned}$	Mag. Argel. Uran.
		h. m,	- ,				
41	36	552.6	426	5.70	0.03	5.133	6
42	P.v. 280	554.2	406	6.18	. 01	5.13.3	6
43	$33^{\text {P }}$.................	555.4	$47 \quad 5$	6.14	. 01	5.089	6
44	40	559.0	51.30	5.61	. 06	...	6
45	4^{1}..................	$6 \quad 3.2$	4116	5.81	. 0.3	5.089	6
4^{6}	κ к...............	$\begin{array}{ll}6 & 8.4\end{array}$	6028	4.81	0.05	2.865°	$5 \cdots 4$
47	42.	$\begin{array}{ll}6 & 9.4\end{array}$	43.32	6.42	. 02	5.152	6
48	43	610.1	4.33^{6}	6.44	. 07	$5 \cdot 15{ }^{2}$	
49	45	612.8	36 30	5.83	. 10	...	6
50	W.B. vi. 3 r6.....	614.2	6025	6.06	.16	5.182	6
51	$\psi^{1}+6 \ldots \ldots \ldots \ldots$	616.4	40.39	5.22	0.04	...	5
52	48	621.5	5926	5.48	. 00	5.13 .3	$6 . . .5$
53	P. ri. 126	$6 \quad 25 \cdot 3$	5728	5.77	. 02	5.149	6
54	49	$6 \quad 28 \cdot 3$	6 I 53	4.95	. 06	$5 \cdot 152$	$6 . .5$
55	$\psi^{3} 5^{2} \ldots \ldots \ldots \ldots$	63 I .1	50 -	5.35	. 01	5.149	6
56	53.10.	6.31 .4	6056	5.43	0.07	5.638	6
57	$\psi^{2} 5^{\circ} \ldots \ldots$.	6.31 .5	4725	5.09	. 05	5.089	5
58	54	632.6	6138	5.75	. 09	5.182	6
59	$\psi^{4} 55 . \ldots$.	6 .35.1	4522	5.23	. 09	5.149	5
60	$\psi^{5} 5^{6} \ldots \ldots \ldots \ldots$	6.38 .8	4619	5.58	. 11	5.182	6
61	$\psi^{6} 57 \ldots \ldots$.	$639 \cdot 3$	416	5.32	0.01	5.089	6
62	$\psi^{7} 5^{8} \ldots \ldots \ldots \ldots$	643.0	$48 \quad 5$	5.11	. 03	5.182	5
6.3	$\psi^{8}\left\{\begin{array}{l}60 \\ \\ 60\end{array}\right.$	645.7	5125	6.25	. 07	5.149	6
64	ψ^{8} 61	646.4	5121	6.05	. 02	5.149	
65	$\psi^{9} \ldots \ldots . \ldots \ldots \ldots$	648.4	4334	5.96	-10	5.191	6

No. 44. 5.61 is the mean of three accordant measures made $1885.139,1885.636$, and 1885.639 .
H.P. $=5.30$.

No. 45°. $\Sigma \delta_{45}$, Dist. $8^{\prime \prime}$. Observed as one mass.
No. 46. Variable? (See Gillis's Ast. Obs., p. 663.) H.P. $=4.46$.
No. 49. 5.83 is the mean of three accordant measures made $1855.133,1885.636$, and 1885.639 .

Nos. 51,55 , \&c. The B.A.C. does not adopt the symbols $\psi^{1}, \psi^{2} \ldots \psi^{10}$. The notation here given is that of Argelander.
No. 51. 5.22 is the mean of three accordant measures made 1885.089 , 1885.636 , and 1885.638. H.P. $=\mathbf{5 . 0 5}$.

No. 58. OE ${ }_{15}{ }^{2}$, Dist. o. ${ }^{\prime \prime} 9$. Observed as one mass.
No. 60. Σ unnum., Dist. $37^{\prime \prime}$. The larger star observed.

Reference Number.	Star's Designation.	$\begin{aligned} & \text { R.A. } \\ & 1890 . \end{aligned}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	Date, $1880+$	Mag. Arsel. Ural.
		h. m.	- ,				
66	P. vi. $263 \psi^{10} \ldots \ldots$	$6+9.6$	4446	4.98	0.09	5.191	5
67	P. vi. $316 \ldots . . .$.	658.9	5521	5.73	. 0.3	5.133	5... 6
68	L. 13704	$7 \quad 0.2$	555°	6.00	. 08	5.191	6
69	63.1.	$7 \quad 4.1$	50.30	5.05	. 05	5.636	6
70	64.	710.4	$4^{8} 55$	5.68	. 05	5.191	6
71	65.	714.7	$53 \quad 2$	5.55	0.07	5.191	6
72	66	716.5	$49 \quad 7$	5.43	. 10	5.149	6

No. 67. The B.A.C. assigns this star to Gemini.

BOÖTES.

1	B.A.C. 4559	1334.2	$78+2$	5.50	0.05	$4 \cdot 4^{6}+$	5
2	I....................	1.3 35.4	6929	5.89	.05	$+450$	6
3	2...................	1.335 .8	$66: 7$	5.87	. 10	4.472	6
4	3..................	$1.3+1.6$	6345	6.03	. 0.4	4.472	6
5	$\tau \ldots \ldots \ldots \ldots \ldots \ldots$	1342.1	$7^{2} 0$	4.58	. 08	$5 \cdot 327$	5...4
6	v....................	${ }^{13} 44.2$	73.39	3.91	0.05	2.370	$4 \ldots 5$
7	6 (e)	1344.5	68 II	4.93	. 06	4.48 .3	5
8	P.xiii. 225	${ }^{1} 3+6.9$	3717	6.02	. 02	$4 \cdot 47^{2}$	6
9	7...................	1349.5	713	2.74	.05	...	3
10	9...................	${ }^{1} 351.6$	6158	4.97	.03	$4 \cdot 45^{\circ}$	5
11	P. xiii. 264	1353.4	7449	5.65	0.05	$4 \cdot 472$	6
12	10.	1353.5	$67+6$	5.24	. 11	4.472	6
13	L. 25746	1355.9	80. 34	6.00	. 11	4.464	6
14	11.	13.56 .2	625	0.06	. 02	4.483	6
15	P. xiii. 316	$1+2.5$	45.37	5.47	. 0.3	$4 \cdot 475$	$6 \ldots 5$

No. I. The B.A.C. assigns this star to Virgo.
No. 2. This star is $\Sigma 177^{2}$, Dist. $5^{\prime \prime}$. The observation refers to the brighter component.
No. 5. The observation of 1882.370 (ree Mem. R.A.S., vol. xlvii., p. 423) is rejected; the sky was hazy and varying meteorologically.
No. 6. Noted by Schmidt and Argelander as red. Birmingham as pale yellow. The red colour was not noticeable at the time of observation.
Nos. 8, 9, and 13. Speetrum I a! (Vogel.)
No. 9. 2.74 is the mean of three accordant determinations made $1882.370,1883.173$, and 1883.183.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.1. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adonted Zenithal Magnitude. Polaris 2.05.	Averuge Deviation in Magnitude.	$\begin{aligned} & \text { Date, } \\ & 1880+ \end{aligned}$	Mag. Argel. Uran.
		h. m.	- ,				
16	1.3	$1+4.2$	40 I	5.68	0.06	4.445	6
17	$12(d)$. ${ }^{\text {d }}$ (.......	$1+5 \cdot 4$	$6+23$	4.81	. $0+$	+.450	5
18	14.................	$1+8.8$	76.31	5.66	. 05	...	6
19	15	$1+9.5$	5923	5.45	. 11	$4 \cdot 454$	6
20	к....................	$1+95$	3742	4.56	. 09	2.444	+...5
21	B.A.C. $+728 \ldots$	$1+10.0$	4788	6.21	0.06	$4 \cdot 4+5$	6
22	a	$1+10.7$	7013	0.31	. 05	...	I
2.3	B.A.C. +73 S	$1+11.9$	$49+5$	6.18	. 06	+.4.4	6
24	λ.................	$1+12.2$	4325	4.16	. 04	$2.4+4$	4
25	..	$1+12.3$	$38 \quad 8$	4.63	. 05	$2.44+$	+.. 5
26	P. xir. 45 (1) ...	14.3 .4	5359	4.98	0.03	+445	5
27	I\&	14.13 .9	7629	5.24	. 05	+4.40	6
28	20	$1+1+6$	7311	4.65	. 09	4.46	5
29	B.A.C. +758	1415.3	$50+2$	6.19	. 08	$+4.4$	6
30	D.M. $+26^{\circ}$, No. 2555	$1+15.8$	6326	6.91	. 11	+-4+5	6
31	P. xiv. 69	$1+18.0$	813	5.29	0.06	4.46	5 $\cdots+$
32	P. xiv. 73	$1+18.7$	$8.3+1$	5.25	. 01	4.464	5
33	22 (f)	$1+21.4$	7017	5.15	. 06	$4 \cdot 4^{8} 3$	5
34	θ	$1+21.5$	3738	4.02	. 06	2.44	+..3
35	$24(g) \ldots \ldots \ldots \ldots$	1+ 24.8	3941	5.67	. 0.3	$4 \cdot 4+5$	6
36	ρ.................	1427.1	59	3.56	0.09	2.444	+ $\cdots 3$
37	B.A.C. 4809	$1+2.5$	6251	6.05	. 0.3	4.450	6
38	26	$1+27.6$	6715	5.91	. 06	4.483	6
39	γ	$1+27.7$	5113	3.21	. 08	\ldots	3...2
40	σ. \quad.	$1+29.9$	$59+7$	4.62	.0.3	$4+83$	$5 \cdots 4$

No. 16. This star is Birmingham No. 320. The colour is decidedly orange.
No. 18. This maguitude (5.66) is the mean of two measures $(5.72$ and 5.60 observed with twenty extinetions $188_{4.46}{ }^{4}$, and with six in 1885.327. H.P. $=5.46$.
No. 20. This star is Σ_{1821}, Dist. 13.". The brighter component is observed.
No. 22. 0.31 is the mean of seven accordant determinations, marle on as many nights, four at Oxford and three at Cairo, involving eighty extinctions made between $1882.3 \mathrm{H}^{\circ}$ and 1883.200 . H.P. $=0.03$.
No. 25. This star is $\sum_{3} 124$, Dist. $38^{\prime \prime}$. The fainter component is not observed.
No. 30. Several small stars of approximately equal magnitude near. The star in the text accords best with Argelender's place.
No. 31. This star is I_{1835}, Dist. $6^{\prime \prime}$. The brighter component observed. Slectrum I a! (Vogel.)
No. 39. 3.21 is the mean of four accorlant determinations, male $1882.44,1883.183$, 1883.186 , and 1883.192 .

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. ¿Polaris 2.05 .	Average Deviation in Magnitude.	$\begin{gathered} \text { Date. } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.					
41	B.A.C. 4^{830}.	1430.8	409	6.10	0.02	...	6
42	33	1434.8	$45 \quad 7$	5.24	. 08	4.450	6
43	P. xiv. ${ }^{156}$........	14 4	3530	5.75	. 0.4	4.475	6
44	π	1435.6	737	4.64	. 11	$5 \cdot 327$	4
45	$\zeta \ldots$.	1435.9	7548	3.88	. 03	$5 \cdot 327$	$3 \ldots 4$
46	31.	1436.2	S1 22	5.04	0.10	4.464	5 $\ldots 4$
47	32.	1436.5	7752	5.74	. 06	4.42	6
48	34	1438.6	63 -	4.76	. 01	4.48 .3	6
49	.	14 40.1	7234	4.56	. 10	2.370	$5 \cdots 4$
50	P. xiv. $178 \ldots \ldots$.	1440.9	7424	6.07	. 05	4.472	6
51	$\epsilon^{1} \quad \ldots \ldots \ldots \ldots \ldots$	$144^{0.2}$	6228	2.47	0.05	2.449	
52	$\epsilon^{2} \ldots \ldots \ldots \ldots \ldots$	1440.2	6228	5.03	.o8	2.449	
53	W.B. xiv. 908 ...	$1+4.3 .5$	65 If	6.27	. 04	4.483	6
54	L. 27017	$1+4.4 .3$	8133	6.95	. 10	4.464	6
55	B.A.C. 4897	$1+44.8$	5144	6.02	. 12	$4 \cdot 475$	6
56	P. xiv. $193 \ldots \ldots$	14.45 .2	6056	5.98	0.03	$4 \cdot 483$	6
57	W.B. xiv. 945 ...	$14.45 \cdot 3$	6537	6.00	. 04	4.483	6
58	38 (h)	$1445 \cdot 4$	4325	5.79	.0.3	4.475	6
59	39	$1+46.0$	4050	5.51	. 06	4.486	6
60	B.A.C. 4906	1446.2	$5^{2} 17$	5.46	. 08	4.486	6
61	ξ................	1446.3	7027	4.58	0.08	2.444	t
62	B.A.C. 4926	1451.0	757	5.60	. 12	$5 \cdot 327$	6
63	B.A.C. 4933	14.52 .1	7310	5.93	. 05	4.464	6
64	B.A.C. 49.37	$1+52.7$	3955	5.79	. 07	4.489	6
65	+0	1455.9	5018	5.44	. 09	$4 \cdot 489$	5

No. 41 . This magnitude (6.10) is the mean of two measures (6.12 and 6.08) observed with twenty extinctions 1884.475 , and with six extinctions 1885.327 . H.P. $=5.84$.
No. 44. This star is Σ I864, Dist. 6". The observation of 1882.370 is rejected. (See Note to No. 5.)
No. 45. This star is $\Sigma=1865$, Dist. I". The magnitude is consequently that of the combination. The observation 1882.370 is rejected. (See Note to No. 5.)
No. 46. Gould suspects this star of variability. But the measure at Harvard, 4.99, accords with the Oxford measure here given.
No. 48. Discovered by Schmidt to be variable in 1867 , with limits of magnitude $5^{1} 2-6.1$. Schmidt's estimated maximum is too faint.
No. 50. Spectrum III a !!! (Vogel.)
No. 51. This star is Birmingham No. 339 and $\Sigma 1877$. The colours recorded vary from orange to yellow.
No. 53. This star is $\Sigma 1884$, Dist. $1^{\prime \prime} .2$. Observed as one star.
No. 34. Gould's suspicion of the variabiiity of this star is not supported by the Harvard and Oxford observations, but the magnitude 6.95 seems too faint for its detection by Argelander.
No. 61. Σ is88, Binary. The larger component observed.

Reference Number.	Star's Desiguation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Poluris 2.05.	Average Deviation in Magnitude.	Date, $1880+$	Mag. Argel. Uran.
		h. m.	- ,				
66	ω. ${ }^{\text {a }}$..............	I+ 57.3	$6+33$	4.70	0.09	2.449	$5 \cdots 4$
67	β................	$1+57.8$	4910	3.64	. 05	2. 449	3
68	B.A.C. 4961	If 58.7	$5+22$	5.78	. 03	4.494	6
69	ψ................	1459.7	6237	4.45	. 04	2.452	$4 \cdots 5$
70	44	150.2	$4^{1} 55$	4.65	. 10	2.452	5
71	$47(k)$...........	$15 \quad 1.8$	4125	5.70	0.06	4.494	5 $\ldots 4$
72	W.B. xiv. ${ }_{3} 377$	$\begin{array}{ll}15 & 2.3\end{array}$	537	6.19	. 08	4.489	6
73	45 (c) \quad. ${ }^{\text {c....... }}$	$\begin{array}{ll}15 & 2.5\end{array}$	$64+2$	5.13	. 09	4.483	5..4
74	$46(b) \ldots \ldots \ldots \ldots$.	$\begin{array}{ll}15 & 3.7\end{array}$	6317	5.95	. 03	4.483	6
75	W.B. xv. 106 ...	$15 \quad 7.1$	7037	5.89	. 04	4.46	6
76	P.xy. i8	$\begin{array}{ll}15 & 8.7\end{array}$	6635	6.17	0.07	4.486	6
77	χ.................	$\begin{array}{ll}15 & 9.9\end{array}$	6026	5.47	. 05	4.486	5
78	δ................	15 II.1	5616	3.44	.13	2.452	3
79	P.xv. 36	$15 \quad 13.5$	$69 \quad 1$	5.52	. 02	4.486	6
80	50	1517.4	$56+0$	5.57	. 02	+.489	5..6
81	R. $3369 \ldots \ldots . . .$.	$\begin{array}{lll}15 & 18.6\end{array}$	501	5.81	0.04	4.489	6
82	μ.................	1520.4	5214	4.52	. 08	2.452	$4 \cdots 3$
83	P.xy. 81	1522.0	5517	6.50	.0.3	+.486	6
84	W.B. xv: 555 ...	1586.3	5250	6.35	. 05	4.486	6
85	$\nu^{1} \ldots \ldots \ldots \ldots \ldots$	1527.0	4847	4.64	. 10	...	4
86	W.B. xv. 5^{81}...	$15 \quad 27.2$	531	6.36	0.02	4.486	6
87	$\nu^{2} \quad \ldots \ldots \ldots \ldots \ldots$	$\begin{array}{llll}15 & 27.8\end{array}$	$48+4$	4.98	. 08	2.452	4
S8	¢	15.339	4917	5.24	. 09	4.486	5

No. 70. $\Sigma 1909$, Binary. The magnitude is that of the combination.
No. 75. Spectrum III a !! Vogel.)
No. 82. This star is ≤ 1938, Binary. The magnitude is that of the combined stars.
No. 8_{5}. This magnitude (4.64) is the mean of two measures (4.61 and 4.67) observed with twenty extinctions I882.452, and with six extinctions 1885.327 . H.P. $=5.09$.

CAMELOPARDALUS.

$\begin{gathered} \text { Refer. } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Maagnitude. Pooraris 2.05.	Average Deviation in Magnitude.	$\begin{aligned} & \text { Date, } \\ & 1880+ \end{aligned}$	Mag. Argel. Uran.
		h. m.	- ,				
1	B.A.C. 1001	310.3	2445	4.68	0.01	5.237	6
2	P. iii. 5 1...........	320.2	3026	4.55	. 09	...	$5 \cdots 4$
3	B.A.C. 1062	321.1	3130	4.74	.09	5.234	5
4	B.A.C. 1065	321.6	345^{6}	5.07	. 12	5.234	5
5	B.A.C. IIti	332.6	278	5.21	. 04	$5 \cdot 256$	6
6	B.A.C. 1127	335.6	238	5.71	0.10	$5 \cdot 236$	6
7	P. iii. 105	$\begin{array}{llll}3 & 36.4\end{array}$	27 -	5.20	.09	5.2.34	$6 \ldots 5$
8	R. 10.42	337.8	1928	5.49	. 5	5.252	5
9	γ.................	338.6	$19 \bigcirc$	4.54	. 05	2.812	$4 \cdots 5$
10	P. iii. 121	339.4	2449	4.75	. 05	5.234	5
11	P. ini. $177 \ldots \ldots$	$347 \cdot 7$	2715	5.03	0.04	...	$6 \ldots 5$
12	P. iii. 178	347.7	2913	5.24	. 04	$5 \cdot 234$	6
${ }^{1} 3$	P. iii. 20S	355.3	319	5.14	. 10	5.2.34	$6 . . .5$
14	O.A. 4458	$4 \begin{array}{ll}4 & 1.7\end{array}$	1810	6.22	. 11	$5 \cdot 2.37$	6
15	P. iii. 260	$4 \quad 7.2$	2826	5.63	. 06	5.270	6
16	P. iv. 7	48.1	3640	5.11	0.04	5.234	5
17	P. iv. $10 . \ldots$.	410.3	258	5.36	. 08	5.239	6
18	P.iv. $22 . \ldots \ldots \ldots .$.	412.2	2931	5.72	. 06	5.280	$6 \ldots 5$
19	B.A.C. 1318	412.9	3345	6.12	. 07	$5 \cdot 234$	6
20	L. $7984 \ldots$........	413.6	3038	6.00	. 01	$5 \cdot 256$	6
21	R. 1221.	420.7	1742	5.91	0.05	5.2\%	6
22	1....................	423.3	3620	5.48	. 16	5.234	6
23	O.A. 4895	426.1	2559	5.97	03	5.237	6
24	2....................	431.2	3645	5.48	. 05	$5 \cdot 301$	6
${ }^{2} 5$	3...................	431.2	378	5.78	. 06	\ldots	6

No. I. B.A.C. assigns this star Cassiopeia.
No. 2. $\Sigma 3^{8} 5$, Dist. $2^{\prime \prime}$. Observed as one mass. 4.55 is the mean of two measures (4.63, 4.47) observed with twenty extinctions 188.234 , and with six 1885.38 2. H.P. $=4.16$.

No. 4. $\Sigma 39^{\circ}$, Dist. $5_{5}{ }^{\prime \prime}$. The faint companion not observed.
No. ro. Birm., No. 69. The colour is not salient.
No. II. 5.03 is the mean of two measures ($5.05,5.01$) observed with twenty extinctions 188.253 , and with six 1885.301 . H.P. $=4.75$.

No. I2. Birm., No. 7I. The red coluar is not salient.
No. 22. $\Sigma 550$, Dist. 10". Observed as one mass.
No. z^{4}. $\Sigma 566$, Dist. $I^{\prime \prime} .5$. Observed as one star.
No. 25.5 .78 is the mean of two measures (5.71 and 58_{4}) observed with twenty extinctions
188.234 , and with six on 188.301 . H.P. $=5.37$.

$\begin{gathered} \text { Refer- } \\ \text { enee } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.I). } \\ & 1890 . \end{aligned}$	$\begin{gathered} \text { Adopted } \\ \text { Zenithal } \\ \text { Magnitude. } \\ \text { Polaris } \\ 2.05 . \end{gathered}$	Arerage Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
26	P. iv. 112	434.0	1416	5.86	0.11	5.256	6
27	4....................	4.38 .8	3326	5.41	.10	5.239	6
28	Bradley 65 I	439.1	3433	6.05	. 10	5.280	6
29	P. iv. i\%o	$44^{1.8}$	2638	5.76	. 09	5.280	6
30	a	443.2	2350	4.46	. 07	2.812	4
31	5...................	$44^{6.1}$	3455	5.82	0.09	5.234	6
32	7...................	448.5	$36 \quad 25$	4.72	. 10	5.2.34	5
33	P. iv. 207	450.8	166	5.97	. 02	5.280	6
34	β................	453.8	2943	4.27	. 04	2.812	4
35	II	456.6	3111	5.19	. 02	5.234	5
36	12	456.6	318	5.74	0.04	5.234	...
37	P. iv. 254	458.5	1612	5.59	. 06	5.270	$5 \ldots 6$
38	P. iv. 269	$\begin{array}{ll}5 & 4 \cdot 4\end{array}$	1054	5.15	. 09	5.280	5
39	B.A.C. $1585 . . .$.	$5 \quad 4.6$	1651	5.49	. 10	5.2\%0	6
40	15	510.0	32 -	6.21	. 04	5.234	6
4^{1}	P. iv. 317	512.5	127	6.39	0.07	5.256	6
42	16.	514.0	3234	5.14	. 02	5.234	$6 . . .5$
43	17 1.	$\begin{array}{lll}5 & 19.8\end{array}$	27 I	5.58	. 01	5.280	6
44	B.A.C. ${ }^{7} 5^{1}$......	531.4	2422	5.87	. 07	5.237	6
45	B.A.C. $1813 \ldots$	54 I .1	2134	6.22	. 04	$5 \cdot 301$	6
46	31	545.1	308	5.52	0.05	...	5... 6
47	37	$6 \quad 0.3$	313	5.32	. 05	$5 \cdot 301$	6
48	36.	$6 \quad 1.8$	2416	5.31	. 07	$5 \cdot 301$	$6 \ldots 5$
49	40.	$6 \quad 5.8$	2958	5.74	. 07	5.239	6
50	P.v. 335	$\begin{array}{ll}6 & 6.7\end{array}$	2038	4.60	. 07	2.708	5...4
51	R. 1707...........	615.7	1924	6.04	0.06	5.26 I	6
52	R. 1723...........	621.4	1019	6.09	. 07	5.270	6
53	B.A.C. 2069	$6 \quad 2.3 .4$	11 55	5.85	. 09	5.261	6
54	P. vi. 75	627.5	1018	5.71	. 0.3	$5 \cdot 301$	5... 6
55	O.A. 6978	627.5	1810	6.15	. 06	$5 \cdot 2.37$	6

No. 32. $\Sigma 610$, Dist. 26". The larger star observed.
No. 38. $\Sigma 634$, Dist. $34^{\prime \prime}$. The larger star observed.
No. 46. 5.52 is the mean of two measures ($5.47,5.5$) observed with twenty extinctions 1885.234, and with six on 1885.301 . H.P. $=5.23$.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
56	42	639.5	2218	4.92	0.04	5.261	5
57	43	64 m .8	210	5.04	. 09	5.239	5
58	P. vi. 201	644.0	1253	4.67	. 06	2.708	5 $\cdots 4$
59	R. 1854	$653+$	196	6.27	. 02	5.256	6
60	R. 1882	$7 \quad 1.2$	18 -	6.29	.10	5.237	6
61	P. vi. 292	78.0	722	5.20	0.04	5.253	5
62	B.A.C. 2419	716.5	2326	5.94	. 06	...	6
63	P. vii. $67 \ldots \ldots$.	719.4	2119	5.70	. 02	$5 \cdot 253$	6
64	51	736.1	$2+16$	5.90	. 04	$5 \cdot 237$	6
65	P. vii. $132 \ldots \ldots$	737.2	927	6.29	. 08	5.2.39	$6 \ldots 5$
66	B.A.C. 2596	747.0	1013	5.30	0.02	5.239	5
67	P. rii. $187 \ldots$.	747.0	1547	5.51	. 06	5.253	$6 \ldots 5$
68	B.A.C. 2585	750.6	526	6.28	. 09	5.280	6
69	R. 2057	752.1	3039	6.26	. 03	5.280	6
70	53	752.3	2925	6.01	. 07	5.234	6
71	D.M. $+63^{\circ}$, No. 749	752.8	2637	6.02	0.04	$5 \cdot 2.34$	6
72	54	753.6	3225	6.37	. 08	5.239	6
73	R. 2092	$8 \mathrm{~S} \quad 5.7$	1354	5.64	. 06	$5 \cdot 253$	5
74	B.A.C. 2852	827.4	15 59	6.29	. 08	5.239	6
75	R. 2218.	852.3	523	6.15	. 08	5.280	6
76	R. 2312	$9^{16.3}$	1426	6.26	0.05	5.253	6
77	P.ix. 252	1013.6	5 II	5.34	. 10	5.270	6
78	P. x. 22.	10 17.6	653	5.08	. 08	5.253	5
79	B.A.C. 3906	1124.2	816	6.00	. 01	5.280	6
80	B.A.C. $4^{106} \ldots$	126.3	74^{1}	6.12	. 07	5.253	6
81	Brad. 1730.........	1248.2	559	5.71	0.09	2.708	$\} 5 \cdots 4$
82	Brad. 1731.........	1248.3	559	5.05	. 08	2.708	
83	P. xiii. 133........	${ }_{13} 26.0$	$10+7$	6.00	. 09	5.253	6
84	P. xiii. $263 \ldots \ldots .$.	1345.5	$6+2$	6.10	. 04	5.253	6
85	B.A.C. 4982.	1457.6	7 1	5.73	. 01	5.253	6

No. 59. Birm., No. 160. The red colour is not salient.
No. 6r. Birm., No. 168. Noted to be yellow rather than red.
No. 62. 5.94 is the mean of two measures (5.92, 5.96) observed with twenty extinctions 1885.256, and with six 1885.30 I .

No. 67. Birm., No. 192. The red colour is not salient.
Nos. 68, $80,81,82,83,8_{4}$, and 85 . B.A.C. assigns these stars to Ursa Minor.
No. 74. B.A.C. assigns this star to Ursa Major.
Nos. 81 and 82. These stars form Σ 1 $^{2} 94$, Dist. $22^{\prime \prime}$.

CANCER.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designatiou.	$\begin{gathered} \text { R.1. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. "Polaris. 2.05 .	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Arrel. Uraw.
		h. m.	- ,				
I	ω. \quad.	754.3	64 I8	6.03	0.05	$4 \cdot 305$	6
2	8 . $8^{\text {c.............. }}$	759.0	$7^{6} 34$	5.06	. 05	4.300	6
3	μ................	$8 \quad 1.5$	686	5.55	. 05	...	$6 \ldots 5$
4	ψ................	83.8	$64 \quad 9$	6.02	. 04	\cdots	6
5	ζ................	$8 \quad 5.9$	72 I	4.94	. 04	3.019	$5 \cdots+$
6	β................	810.6	8028	3.70	0.03	5.272	$4 \cdots 3$
7	χ.................	813.4	6225	5.26	. 04	4.305	6
8	P. viii. 42	$8 \quad 13.9$	6854	5.80	.06	5.272	6
9	入	814.0	6538	5.88	.06	5.272	6
Io	20.	8 I7.I	$71 \quad 19$	6.09	. 05	+300	6
11	$d^{2} \ldots \ldots \ldots \ldots \ldots$	819.6	7235	6.19	0.03	$5 \cdot 272$	6
12	$\phi^{1} \ldots$.	819.8	614	6.09	. 07	4.305	6
I3	$\phi^{2} \ldots \ldots \ldots \ldots . .$.	820.1	6242	5.70	. 05	$4 \cdot 305$	6
14	P. viii. $67 \ldots \ldots .$.	820.1	825	5.38	. 0.3	...	6
15	27	820.7	7659	5.87	. 04	$4 \cdot 305$	6
16	29.	822.5	7526	6.05	0.05	$4 \cdot 305$	6
17	$v^{3}(30) \ldots \ldots \ldots$	825.0	65.33	5.92	. 06	$4 \cdot 308$	6
18	θ................	$8 \quad 25.3$	7132	5.89	. 05	4.305	6
19	η................	826.4	69 11	5.53	. 0.3	$4 \cdot 308$	6
20	$32 \ldots$.	826.5	6532	6.46	. 03	4.308	6
2 I	L. 16823	828.4	81 10	5.83	0.05	4.300	6
22	36	831.1	7958	6.12	. 04	4.300	6
23	γ.................	836.9	688	4.89	. 10	2.320	$+\cdots 5$
24	45	83.7 .2	7655	5.67	. 03	4.300	6
25	δ................	838.4	7126	4.27	. 0.3	2.320	4

Nos. 2 and 10. Spectrum I a! (Vogel.)
No. 3. 5.55 is the mean of two measures ($5.5^{2}, 5.58$) observed 1884.305 with twenty extinctions, and 1885.263 with six. H.P. $=5.25$.
No. 4. 6.02 is the mean of two measures ($6.06,5.97$) observed $188+305$ with twenty extinctions, and 1885.272 with six. H.P. $=5.78$. There is great discordance in the older recorded estimates.
No. 5. Σ ing6. Triple and orbital. Observed as one mass.
No. 6. The observation of 1882.320 (see Mem. R.A.S., vol. xlvii.) is rejected. The sky was hazy. Spectrum II a! (Vogel.)
No. 13. Σ_{1223}, Dist. 4".5. Observed as one mass.
No. I4. 5.38 is the mean of two measures (5.39, 5.37) observed I 884.300 with twenty extinctions, and on 1885.259 with six. H.P. $=5.09$.
No. I5. Spectrum III a!! (Vogel.)

	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	$\begin{gathered} \text { Average } \\ \text { Deviation } \\ \text { in } \\ \text { Magnitude. } \end{gathered}$	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran
		h. m.	- ,				
26	49	838.8	7931	5.74	0.04	4.305	6
27	ו....................	840.1	6050	4.24	. 05	3.019	4
28	50.	840.9	7729	6.05	. 02	4.305	6
29	$\sigma^{2} \ldots \ldots \ldots \ldots \ldots .$.	845.8	$57 \quad 7$	5.67	. 03	$4 \cdot 308$	6
30	$\rho^{1} \ldots$.	845.9	6120	5.92	. 02	$4 \cdot 305$	6
31	57	$8+7 \cdot 5$	59 -	5.60	0.04	4:308	6
32	$\rho^{2} \ldots \ldots . . \ldots \ldots .$.	8 49.I	6139	5.35	. 03	$4 \cdot 300$	6
33	59	850.2	5640	5.45	. 04	4.308	6
34	851.1	7415	5.53	. 05	...	6
35	63.1.	851.4	74 -	5.68	. 04	$4 \cdot 300$	6
36	a	852.5	7743	4.36	0.00	...	4
37	$64 . \ldots$.	852.8	$57 \quad 9$	5.51	. 06	4.308	5
38	67	$855 \cdot 3$	6140	6.07	. 04	4.314	6
39	v v...............	856.3	$65 \quad 7$	5.42	. 06	4.308	6
40	τ................	$\begin{array}{ll}9 & 1.4\end{array}$	5954	5.57	.09	4.314	6
41	κ к	$\begin{array}{ll}9 & \mathbf{1} .8\end{array}$	${ }_{78} 53$	5.17	0.01	4.300	5
42	75	$\begin{array}{ll}9 & 2.3\end{array}$	6255	6.20	. 02	4.308	6
43	ξ................	$\begin{array}{ll}9 & 3.2\end{array}$	6731	5.18	. 04	5.259	5
44	W.B. ix. 3	94.0	5835	6.50	. 02	4.314	6
45	π	$9 \quad 9.2$	7436	5.86	. 01	4.300	6
46	83.	912.9	7150	6.65	0.04	4.300	6

Nos. 34, 35, and 36. Spectrum I a! (Vogel.)
No. 34. 5.53 is the mean of two measures ($5.56,5.50$) observed 1884.300 with twenty extinctions, and 1885.259 with six. H.P. $=5.21$.
No. $3^{6} .4 .36$ is the mean of two identical measures observed i 882.320 with twenty extinctions, and 1883.098 with ten.
No. 44. Birm., No. 218. The colour is noticeable. Strong suspicion of variability.

CANES.

Reference Number.	Star's Desiguation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05 .	$\begin{gathered} \text { Average } \\ \text { Deviation } \\ \text { in } \\ \text { Magnitude. } \end{gathered}$	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
I	2....................	1210.6	4844	5.96	0.06	$4 \cdot 355$	6
2	P. xii. 29	1211.0	5619	5.15	. 04	$4 \cdot 386$	5
3	3....................	1214.4	4024	5.82	. 03	$4 \cdot 355$	6
4	4....................	$\begin{array}{lll}12 & 18.4\end{array}$	$4^{6} 5$ I	6.05	. 01	$4 \cdot 355$	6
5	5..................	$12 \begin{array}{ll}128.7\end{array}$	3750	5.18	. 04	$4 \cdot 386$	5
6	6....................	1220.4	5022	5.23	0.03	$4 \cdot 344$	5...6
7	R. 2866	1222.1	$48 \quad 2$	6.82	. 00	$4 \cdot 401$	6
8	7...................	1224.9	375^{1}	6.51	. 0.4	4.401	6
9	R. $28-6$.	$\begin{array}{llll}12 & 25.6\end{array}$	36 I9	6.40	. 01	4.401	6
10	P. xii. 122........	1228.2	568	5.54	. 07	$4 \cdot 40 \mathrm{I}$	5
11	β................	1228.6	$48 \quad 3$	4.53	0.07	...	$4 \cdots 5$
12	9...................	1233.5	4831	6.15	. 02	4.355	6
13	W.B. xii. 683 ...	1233.9	5325	6.33	. 04	$4.40{ }_{4}$	6
14	B.A.C. 4^{282}......	1239.3	$\begin{array}{lll}45 & 18\end{array}$	6.27	. 05	4.404	6
15	10.	1239.8	508	5.77	. 01	4.404	6
16	B.A.C. 4287	1240.0	4358	5.27	0.01	$4 \cdot 44^{2}$	5... 6
17	R. $2914 .$.	1242.8	3915	6.68	. 03	4.445	6
18	11	1243.7	4056	5.96	. 03	$4 \cdot 344$	6
19	B.A.C. 431 I	1245.0	5152	6.06	. 04	4.401	6
20	L. 24054	1248.8	$55 \quad 52$	6.39	. 05	4.404	6
21	B.A.C. 434^{1}......	1249.9	4212	5.84	0.06	$4 \cdot 355$	6
22	a	1250.9	515	3.32	. 05	\cdots	3
23	I2 Ist star	1250.9	$5{ }^{1} 6$	5.74	. 07	2.449	
24	B.A.C. 4350	1252.1	4314	5.99	. 04	4.442	6
25	14	130.6	53.37	5.42	. 02	4.404	5

No. 1. Σ_{1622}, Dist. $1 I^{\prime \prime}$. The faint star not observed.
No. 11. 4.53 is the mean of two measures (4.5^{6} and 4.50) observed with twenty extinctions 18S2.449, and with six 1885.382 . H.P. $=4.30$.
No. 16. Birm., No. 290. The star is decidedly red. Schmidt noted variability, and determined a period of about 386 days. A re-observation on 1885.382 gave 5.54 for the magnitude. H.P. $=5.59$.
Nos. 22 and 23. These stars form $\Sigma \mathbf{\Sigma}_{1692}$, Dist. $20^{\prime \prime} . \quad 3.32$ is the mean of six determinations, made on as many nights, three at Oxford and three at Cairo, involving seventy extinctions made between I882.449 and I883.107. H.P. (the combination) $=3.00$.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	$\begin{gathered} \text { Adopted } \\ \text { Zenithal } \\ \text { Miagnitude. } \\ \text { Polaris } \\ 2.05 . \end{gathered}$	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
26	B.A.C. 4389	1300.9	449	5.78	0.04	4.44^{2}	6
27	15	1346	5053	6.19	. 06	4.445	
28	17	$13 \quad 5.0$	5055	6.23	. 04	$4 \cdot 445$	5
29	P. xiii. 27.	$\begin{array}{lll}13 & 8.7\end{array}$	4916	5.04	. 05	$4 \cdot 355$	5
30	19	1310.6	$4^{8} 34$	5.91	. 04	$4 \cdot 355$	6
31	20.	1312.6	4851	4.71	0.06	2.449	5...4
32	21	$13{ }^{1} 313.6$	3943	4.97	. 02	4.401	5
33	23.	${ }_{1} 13154$	4916	5.83	. 07	$4 \cdot 355$	$6 . . .5$
34	P. xiii. 71	1316.0	4526	6.13	. 01	...	6
35	R. 3013	1321.5	4324	5.79	. 06	$5 \cdot 3 \mathrm{Sa}$	6
36	R. 3017	1323.6	4842	6.26	0.08	$4 \cdot 404$	6
37	B.A.C. 4519	1326.5	4720	6.13	. 07	$4 \cdot 44^{2}$	6
38	W.B. xiii. 557 ...	1329.5	5038	6.20	. 02	$4 \cdot 44^{2}$	6
39	P. xiii. ${ }^{\text {3 }} 3 \ldots \ldots . . .$.	1329.9	5215	4.99	. 05	4.404	5
40	24	1330.0	4025	4.97	. 08	$4 \cdot 449$	5
$4{ }^{1}$	B.A.C. 4545	1330.6	45 I 5	6.49	0.01	$4 \cdot 4{ }^{2}$	6
42	25.	1332.6	539	5.08	. 02	$5 \cdot 382$	5
43	W. B. xiii. 686 ...	${ }^{1} 335.3$	5826	6.22	. 09	$4 \cdot 442$	6
44	P. xiii. 163	${ }^{1} 335.5$	6122	6.47	. 04	4.405	6
45	R. 3074	1338.0	4745	5.96	. 03	...	6
46	R. $3079 \ldots \ldots . . .$.	$1 \begin{array}{lll}13 & 38.9\end{array}$	435^{6}	6.69	0.05	4.445	6
47	B.A.C. 4596	13.41 .6	4822	5.61	. 01	4.40	$6 . . .5$
48	B.A.C. 4600	1342.3	5054	5.37	. 06	$4 \cdot 448$	5... 6
49	B.A.C. 4609	1343.4	4729	6.40	. 01	...	6
50	B.A.C. 4610.	1343.7	5816	5.86	. 06	$4 \cdot 44^{8}$	6
51	B.A.C. 4627	1346.2	5441	5.99	0.04	$4 \cdot 44^{8}$	6
52	B.A.C. 4^{628}......	1346.3	5447	6.35	. 10	$4 \cdot 448$	5
53	P.A.C. 4632	1346.9	55 ○	5.19	. 09	+.4.48	...
54	P. xiii. 235	1348.2	6049	6.10	. 03	4.44^{8}	6
55	B.A.C. 4^{652}.....	1350.8	5726	6.64	. 11	4.404	6
56	L. 25839	1358.0	4343	6.49	0.06	4.445	6

No. 34. 6.13 is the mean of two measures ($6.13,6.14$) observed $188_{4} .401$ with twenty extinctions, and on 1885.382 with six. H.P. $=6.14$. The star observed is I. 3002 .
No. 42. $\Sigma_{1}{ }_{7} 65$. Close binary. Observed as one star.
No. 45. 5.96 is the mean of two measures ($59^{2}, 6.01$) observed on $1884.4+5$ with twenty extinctions, and with six on 1885.382 . H.P. $=6.44$.
No. 49. 6.40 is the mean of two measures ($6.43,6.36$) observed on 1884.445 with twenty extinctions, and 1885.3 S2 with six. H.P. $=6.70$.
No. 33. This star is not in Argelander, but it was probably the object described as No. $\mathbf{5}^{2}$.

CANIS MAJOR.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 \text { : } \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	$\begin{gathered} \text { Average } \\ \text { Deviation } \\ \text { inl } \\ \text { Magnitude. } \end{gathered}$	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
1	a	h. m. 640.3	\circ 106 104	+ 1.95*	0.07	...	1

No. I. +1.95 is derived from five nights' observations at Cairo alone, between 1883.078 and 1883.111, involving fifty extinctions. The mean date is 1883.095 . Further, observations on five nights at Oxford, between 1882.045 and 1883.117, when corrected for mean atmospheric absorption (Memoirs R.A.S., vol. xlvii, p. 414) gave +1.97. H.P. $=+2.43$.

* The symbol +1.95 indicates 1.95 mag. brighter than a star of the first magnitude. (See Preface.)

CANIS MINOR.

1	P. vii. 8	76.0	84 10	6.15	0.04	4.209	6
2	I....................	718.9	787	5.56	. 12	4.229	6
3	¢....................	719.6	8030	5.09	.06	4.218	5... 6
4	β................	721.2	8129	3.11	. 05	\cdots	3
5	\#...................	722.1	8250	5.66	. 08	...	6
6	γ.................	722.2	80 5^{1}	4.77	0.11	4.209	5
7	6....................	723.7	774^{6}	4.87	. 03	4.229	5
8	δ^{1}	726.4	8751	5.03	. 01	4.220	6
9	δ^{2}	727.4	8629	5.72	. 11	4.220	6
10	a...............	733.5	$8+29$	+0.50*	.04	\ldots	I
11	II	740.2	$78 \quad 58$	5.39	0.06	4.229	$5 \ldots 6$
12		746.0	8757	5.05	. 04	4.220	6
13	14	752.7	8729	5.26	. 12	4.209	6
14	L. 15657	755.5	$8+50$	5.75	. 05	4.220	6
15	P. vii. $289 \ldots \ldots .$.	756.6	8722	4.41	. 07	4.209	6

Nos. 1, 2, 4, 8, 10, 11, and 12. Each has the spectrum I a! (Vogel.)
No. 4. 3.11 is the mean of two measures (3.12, 3.09) observed 1882.188 with twenty extinctions, and 1883.215 with six.
No. 5. 5.66 is the mean of two measures $\left(5.69,5.63\right.$) observed $188_{4} .218$ with twenty extinctions, and on 1885.266 with six. H.P. $=5.31$.
Nos. 6 and 7. Spectrum II a! (Vogel.)
No. Io. +0.50 is the mean of seven accordant determinations made on as many nights, four at Oxford and three at Cairo, involving eighty extinctions, between 1882.188 and 1883.13 I. H.P. $=+0.54$.

* The explanation of this notation is given in the Preface.

No. I3. This star has two distant companions, not observed.

CASSIOPEIA.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adonted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
1	D.M. $+56^{\circ}, \mathrm{No}_{0} 2923$	2255.5	33.39	5.71	0.06	5.136	
2	B.A.C. 8024	2256.9	3329	6.23	. 04	5.136	
3	..	232.0	3110	5.22	. 01	\ldots	5... 6
4	2....................	$23 \quad 5.0$	3116	5.57	. 06	$5 \cdot 138$	6
5	B.A.C. 8083	${ }^{23} \quad 7.8$	3327	5.54	. 01	5.136	6
6	4....................	2320.0	2819	5.49	0.06	...	6
7	P. xxiii. IOI	$23 \quad 24.9$	323	4.94	. 0.3	$5 \cdot 138$	5
8	т...................	$23+1.7$	3158	5.09	. 03	$5 \cdot 136$	5
9	6...................	2343.5	2824	5.57	. 02	5.138	6
10	p...................	2348.9	$33 \quad 7$	4.80	. 07	2.835	5
11	P. xxiii. $237 . . .$.	2351.6	$345-4$	5.55	0.03	$5 \cdot 138$	6
12	σ \% \ldots..............	23.53 .4	3452	5.02	. 05	5.109	5
13	9...................	2358.6	2820	6.01	. 06	$5 \cdot 138$	6
14	B.A.C. 8366	${ }^{2} 359.4$	2918	5.84	. 06	5.146	6
15	10	- 0.7	2625	5.67	. 02	$5 \cdot 136$	6
16	$\beta \ldots$.	$\bigcirc 3.3$	3127	2.32	0.11	2.835	$2 . .3$
${ }_{1} 7$	O.A. 4^{6}...........	- 4.7	3328	6.64	. 08	5.146	6
18	12	$\bigcirc 18.7$	2847	5.57	. 07	$5 \cdot 44$	6
19	λ.................	- 25.7	$36 \quad 5$	4.93	. 07	5.138	5
20	к...................	- 26.9	2740	4.32	. 15	2.835	$4 \cdots 5$
21	P.0.118	0.30 .0	3626	5.48	0.05	\ldots	6
22	B.A.C. 148	- . 30.2	3017	5.79	. 02	$5 \cdot 44+$	6
2.3	ζ.	- . 308	$3^{6} 42$	3.75	.05	2.835	4
24	α	- $34 \cdot 3$	$34+$	2.41	. 06	2.8 .35	Var.
25	$\xi \ldots \ldots$.	- 35.9	405	5.19	. 16	...	6

Nos. I and 2. Argelander's place agrees better with the second of these stars.
No. 3. 5.22 is the mean of three accordant determinations depending on eighteen extinctions made on $1885.109, .44^{2}$, and $\cdot 44^{8}$. H.P. $=4.99$.
No. 6. 5.49 is the mean of three accordant determinations depending on eighteen extinctions made on same dates as No. 3. H.P. $=5.17$.
No. 10. Birm., No. $6_{5} 2$. The red colour is not salient.
No. 12. $\sum 3049$, Dist. 3". Observed as one mass.
No. 21. 5.48 is the mern of three accordant determinations depending on eighteen extinctions made on $1885.146,44^{2}$, and $\cdot 44^{8}$. H.P. $=5.00$.
No. 24. Birm., No. 9. The distant faint companion not observed. Variable from 22 mag. to 2.8 mag. Period irregular.
No. ${ }^{25} .5 .19$ is the mean of three accordant observations, depending on eighteen extinctions made on 1882.835 and 1885.442 , and $.44^{8}$. H.P. $=4.80$.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	Date, $1880+$	Mag. Argel. Urall.
		h. m.	- ,				
26	π................	- $37 \cdot 4$	4335	5.02	0.09	5.1.38	6
27	21	- 38.4	1537	5.78	. 01	5.1 .38	6
28	B.A.C. 197	- 38.4	4244	5.48	. 08	5.146	6
29	0.....................	- 38.6	4219	4.85	.09	$5 \cdot 4{ }^{2}$	5
30	P. 0. 162	- 39.0	$35 \quad 23$	5.70	. 04	...	6
31	23	040.4	1545	5.54	0.06	$5 \cdot 442$	6
32	η.................	042.3	3246	3.41	. 07	2.835	$4 \cdots 3$
33	ν_{1}.	$\bigcirc 42.6$	3938	4.93	. 01	5.109	5
34	B.A.C. 228	044.0	2621	5.65	. 05	5.107	6
35	P. o. 209	$\bigcirc 46.5$	2929	5.13	. 02	$5 \cdot 138$	6
36	$v^{1} \ldots$.	048.5	3137	5.07	0.03	5.107	$6 \ldots 5$
37	$\gamma \ldots \ldots \ldots$.	- 50.1	2953	2.19	. 09	2.810	2
38	$v^{2} \ldots \ldots . . . \ldots . .$.	$\bigcirc 50.1$	3125	4.93	. 02	5.107	$6 \ldots 5$
39	B.A.C. 261.........	- 51.5	2415	6.01	. 02	5.146	6
40	μ.................	10.7	3536	5.40	. 09	5.1.38	6
41	31.	13.2	2148	5.42	0.07	$5.1+6$	6
42	B.A.C. 335	14.3	2623	5.41	. 09	5.107	$6 \ldots 5$
43	Ө....................	I 4.4	3525	4.68	. 02	\ldots	+..5
44	32.	$1{ }^{1} 4 \cdot 4$	2534	5.52	. 03	5.146	6
45	¢	113.2	3221	5.12	. 04	$5 \cdot 146$	5
46	ψ................	1818	2227	5.02	0.08	5.107	5
47	ס....................	118.6	3020	2.89	. 06	2.810	3
48	38	123.0	2018	5.92	. 08	5.146	6
49	O.A. $1_{5} 6_{5} \ldots \ldots . .$.	123.2	2428	6.04	. 04	5.146	6
50	χ.................	126.7	3120	5.06	. 06	5.107	$6 \ldots 5$

No. 26. Variability suspected by Peirce. The recorded estimates differ.
No. 30. 5.70 is the mean of three accordant determinations, depending on eighteen extinctions made on $1885.130,44^{2}$, and $.44^{8}$. H.P. $=5.36$.
No. 32. $\Sigma 60$, Binary. Observed as one object.
No. 37. Has double spectrum like T Coronæ. (Huggins.)
No. 40. Birm., Add. I, No. 6. The red colour is not salient.
No. 43. 4.68 is the mean of three accordant observations, depending on twenty-six extinctions made on 1882.2 Io and $\mathrm{IS} 8_{5.44^{2}}$, and .448. H.P. $=4.43$.
No. 46. $\Sigma_{\text {II }}$, Dist. $32^{\prime \prime}$. The faint distant companion not observed. The large star is bright yellow.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05 .	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
51	40	129.7	1731	5.48	0.10	5.138	6
52	B.A.C. 482. .	130.9	3236	5.85	. 07	5.146	6
53	43	134.2	2231	5.75	. 03	$5 \cdot 44^{2}$	6
54	42.	134.4	1956	5.20	. 04	5.146	6
55	44	135.9	30 -	5.67	. 06	5.138	6
56	€.....................	1 46.5	2652	3.51	0.06	2.810	$3 \cdots 4$
57	4^{6}.................	147.4	2151	4.93	. 05	5.107	5
58	B.A.C. $5^{88 ~}$	151.5	2555	5.41	. 04	$5 \cdot 146$	6
59	48	152.9	1938	4.77	. 08	2.750	$5 \cdots 4$
60	50.	154.0	187	4.40	. 03	...	4
61	47	1 54.1	1315	5.37	0.05	5.146	5... 6
62	52	154.7	2538	5.86	. 06	5.107	6
63	53	154.9	268	5.76	. 02	5.146	6
64	49	155.4	1425	5.51	. 01	5.146	$6 . .5$
65	55	25.8	2359	6.04	. 02	5.107	6
66	ו....................	220.0	236	4.45	0.07	2.810	4
67	B.A.C. 777.	227.6	1740	5.54	. 09	5.138	$6 . . .5$
68	Bradley 417	30.0	16 I	4.79	. 11	2.810	5... 4

No. 51. Suspected to be variable in lustre. (See Nature, xxiii. 206.)
No. 6o. 4.40 is the mean of three accordant determinations, depending on twenty-six extinctions, made on 1882.737 and 1885.44^{2} and 1885.44^{8}. H.P. $=4.06$.
No. 65. Ancient authorities differ in their recorded estimates of magnitude.
No. 66. $\Sigma 262$, Dist. $\mathbf{I}^{\prime \prime}$.8. Observed as one star.

CEPHEUS.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Urall.
		h. m.	- ,				
1	к.....................	2012.6	1237	4.50	0.04	2.901	$4 \cdots 5$
2	Q...................	2027.7	2723	4.24	. 06	3.011	4
3	B.A.C. 7176	2038.0	2954	6.06	. 02	5.084	6
4	B.A.C. 7193	2040.3	294^{8}	6.16	. 03	5.088	6
5	4...................	2041.8	2345	5.50	. 07	5.025	$6 . . .5$
6	P. xx. $332 \ldots \ldots .$.	2042.6	3249	4.72	0.11	5.088	5..4
7	η.................	2043.0	2836	3.53	. 05	3.011	$4 \ldots 3$
8	D.M. $+63^{\circ}$, No. 1663	20.47 .4	2623	6.27	. 01	5.025	6
9	B.A.C. 7310	2057.4	3059	6.01	. 05	5.088	6
10	R. 5091	20 59.I	3346	5.98	.05	5.025	6
11	B.A.C. 7363	$2 \mathrm{I} \quad 5.7$	$19 \bigcirc$	6.00	0.01	5.088	6
12	R. 5139	$21 \quad 7.1$	279	6.33	. 04	5.084	6
13	B.A.C. 7381	$21 \quad 7.6$	1219	5.55	. 12	5.084	6
14	B.A.C. 7377	219.0	3028	5.70	. 03	5.025	$6 \ldots .5$
15	a	2 I 15.9	2753	2.57	. 04	2.895	$3 . . .2$
16	B.A.C. 7417	2116.2	3150	5.84	0.05	5.088	6
17	6....................	2117.1	253^{6}	5.49	. 06	5.025	6
18	B.A.C. 7430	2117.6	2942	6.52	. 04	$5 \cdot 382$	6
19	7....................	2125.6	2340	5.58	. 02	5.089	6
20	β.................	2127.2	1955	3.37	. 05	2.895	3
21	B.A.C. 7495	2128.0	302	5.41	0.14	5.089	6
22	9....................	2135.0	2825	4.99	. 07	$5 \cdot 382$	5...6
23	P. xxi. 248	2 I 35.5	331	5.67	. 05	5.025	$6 . . .5$
24	μ..................	2140.1	3144	4.53	. 18	3.011	$6 . . .5$
25	I 1	2140.3	1912	4.92	. 09	$5 \cdot 084$	5

No. I. $\Sigma 2675$, Dist. $7^{\prime \prime}$. Observed as one star.
No. 9. The B.A.C. assigns this star to Cygnus.
No. 10. \sum_{2751}, Dist. $\mathrm{I}^{\prime \prime} \cdot 9$. Observed as one mass. Probably slow binary.
Nos. II and 14. The B.A.C. assigns these stars to Draco.
No. 14. $\Sigma 2780$, Dist. I'. Observed as one star.
No. 16. $\Sigma 2790$, Dist. $4^{\prime \prime} \cdot 5$. Colour orange. Observed as one mass.
No. 18. Difficulty in identifying Argelander's star.
No. 20. $\mathbf{\Sigma} 2$ 2So6, Dist. 14". The faint companion not observed.
No. 23. $\Sigma 2$ 28i6, Dist. 120". The companion not observed.
No. 24. Birm., No. 594. The orange colour is very salient. Variable from 4 to 5 magnitude.
The period is irregular.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05 .	Average Deviation in Magnitude.	$\begin{aligned} & \text { Date, } \\ & 1880+ \end{aligned}$	Mag. Argel. Uran.
		h. m.	- ,				
26	P. xxi. 302.........	2141.7	18 II	5.53	0.03	5.094	6
27	R. 5390	2141.9	$28 \quad 3$	6.23	. 08	5.044	6
28	ν.	2142.3	2923	4.84	. 07	...	5
29	B.A.C. $7_{5} \mathrm{~F}^{8} \ldots . .$.	2153.6	2654	5.36	. 08	$5 \cdot 382$	$6 . .5$
30	ı6	2157.7	1721	5.38	. 01	5.094	5... 6
31	1.4	$\begin{array}{lll}21 & 58.4\end{array}$	3232	5.60	0.10	5.100	6
32	I_{5}..................	$\begin{array}{ll}22 & 0.3\end{array}$	3043	6.41	. 07	\ldots	6
3.3	ξ	220.6	2555	4.72	. 05	2.895	$5 \cdots 4$
34	20.	$\begin{array}{ll}22 & 1.7\end{array}$	2745	5.65	. 04	5.044	6
35	19	221.8	2815	5.38	. 01	$5.09+$	$6 . . .5$
36	$\zeta \ldots$.	227.0	322 I	3.39	0.04	3.011	$4 \cdots 3$
37	24.1.	$\begin{array}{lll}22 & 7.7\end{array}$	1812	4.74	. 07	5.094	5... 4
38	λ................	$\begin{array}{ll}22 & 7.8\end{array}$	318	5.50	. 06	5.044	$6 . . .5$
39	B.A.C. 7754	$22 \quad 7.8$	3343	5.58	.16	$5.09+$	6
40	B.A.C. $7760 . . .$.	228.2	2025	5.60	. 07	$5 \cdot 382$	6
41	B.A.C. 7759	228.4	294^{8}	5.59	0.09	$5 \cdot 382$	6
42	B.A.C. 7766	228.9	2715	6.06	. 11	5.044	6
43	є...................	2211.0	3330	4.76	. 05	...	5... 4
44	25	${ }_{22} 14.6$	2745	6.28	. 03	5.094	6
45	P. xxii. $165 \ldots .$.	2222.2	427	5.50	. 01	5.103	5... 6
46	O.A. $4 \mathrm{I} 48 \ldots \ldots$.	2223.2	194^{8}	5.59	0.14	5.100	6
47		2223.5	2526	5.73	. 12	5.044	$6 . .5$
48	δ.	2225.1	329	4.21	. 08	3.01 I	Var.
49	$\rho\{28$	$22 \quad 25.9$	I I 46	5.82	. 03	5.103	$6 . . .5$
50	29.	2228.9	I 14	5.43	. 06	$5 \cdot 382$	$6 . . .5$

No. 26. The B.A.C. assigns this star to Draco.
No. 28. 4.84 is the mean of three accordant determinations, depending on twenty-six extinctions, made $1885.044, .382$, and .437 . H.P. $=4.50$.
No. 29. Birm., No. 599. The red colour is not salient.
No. 32. 6.41 is the mean of two measures ($6.40,6.42$) observed with six extinctions on 1885.044 , and with also six extinctions on 1885.382 .

No. 33. $\Sigma 2863$, Dist. $6^{\prime \prime}$. Observed as one star. This star was re-observed with six extinctions 1885.3^{82}, the resulting magnitude was 4.Go. H.P. $=4.45$.
No. 34. Birm., No. 602. The colour of the star was noted to be orange.
No. 36. Birm., No. 604. The colour is not salient.
No. 40. $\Sigma 2883$, Dist. $\mathbf{I}_{5}{ }^{\prime \prime}$. The companion was not observed.
No. 42. Birm., No. 606. The red colour is not salient.
No. 43. 4.76 is the mean of two determinations ($4.78,4.74$) observed 1883.01 I with twenty extinctions, and 1885.382 with six extinctions. H.P. $=4.24$.
No. 45. B.A.C. assigns this star to Ursa Minor.
No. 48. $\Sigma 58^{1}$, Dist. $40^{\prime \prime}$. The companion was not observed. Variable from mag. 3.7 to 4.9. Period about $5^{\mathrm{d}}, 8^{\mathrm{h}} 30^{\mathrm{m}}$.

Referenee Number.	Star's Desiguation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05 .	$\begin{gathered} \text { Average } \\ \text { Deviation } \\ \text { in } \\ \text { Magnitude. } \end{gathered}$	$\begin{aligned} & \text { Date, } \\ & 1880+ \end{aligned}$	Mag. Argel. Uran.
		h. m.	- ,				
51	B.A.C. $7876 \ldots$	2229.8	2039	6.11	0.14	5.044	6
52	B.A.C. 7881	2230.4	1420	5.65	. 08	5.100	5...6
53	31	2233.0	1656	5.30	. 09	5.044	5
54	30	2234.8	2659	5.45	. 02	5.044	5...6
55	ו.....................	2245.8	2423	3.61	. 07	...	$4 \ldots 3$
56	P. xxii. 258	2247.9	726	5.07	0.07	5.100	5
57	P. xxii. 295	2255.3	614	5.16	. 05	5.094	$5 . .6$
58	B.A.C. 8039	$2259 \cdot 4$	2322	5.65	. 01	5.044	6
59	π.................	$23 \quad 4.4$	1513	4.67	. 11	2.841	$5 \cdots 4$
60	B.A.C. $8104 \ldots$	$\begin{array}{llll}23 & 10.7\end{array}$	1622	5.73	. 11	5.044	6
61	B.A.C. 8ı06	23 II.4	1943	5.61	0.08	5.10.3	6
62	...	23 14.1	2229	5.22	. 08	5.044	$6 . .5$
63	B.A.C. 8ı $80 . . .$.	2322.6	2015	5.98	. 06	...	6
64	P. xxiii. 135	23.37 .8	318	5.74	. 17	5.103	6
65	B.A.C. $8217 \ldots$	23.30 .2	1858	6.34	. 00	5.094	6
66	γ.................	2334.8	1259	3.51	0.09	$2.8+1$	$3 \cdots 4$
67	P. xxiii. 191	$234^{2.6}$	2248	5.17	. 01	5.044	6
68	B.A.C. 8321	2351.2	725	6.19	. 07	$5 \cdot 10.3$	6
69	B.A.C. 154	- 31.5	87	6.30	. 14	5.044	6
70	B.A.C. 225	- 44.5	653	5.70	. 04	5.094	6
71	P. 0. 220	- 53.5	420	4.66	0.08	2.84 t	+..5
72	P. o. 28.3	12.7	1056	5.70	. 06	5.044	$6 . . .5$
73	B.A.C. 393	114.1	1151	5.97	. 00	5.044	6
74	B.A.C. 605	155.9	914	6.00	. 04	5.103	6
75	B.A.C. 784	231.9	91	6.04	.05	5.0.44	6

No. 55. 3.61 is the mean of two measures (3.59, 3.62) observed $1882.8_{4} 1$ and 1882.895 , each with twenty extinctions.
No. 59. O $\sum_{5}{ }^{8} 9$, Dist. $I^{\prime \prime}$.3. Binary. Observed as one star.
No. 62. $\Sigma 3001$, Dist. 2".5. Binary. Observed as one star.
No. 63.5 .98 is the mean of two measures ($6.02,5.94$) observed with six extinctions on ${ }_{1} 885.092$, and on 1885.382 . H.P. $=5.71$.
No. 64. B.A.C. assigns this star to Ursa Minor.
No. 71. Birm., No. 12. The red colour is not salient. This star is called 2 Urse Minoris in the B.A.C.
Nos. 72, 73, 74, and 75. The B.A.C. assigns these stars to Cassiope:a.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05 .	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
76	P.ii. 91	251.4	11 I	5.89	0.05	5.094	6
77	B.A.C. 908	254.6	857	5.92	. 06	5.044	6
78	B.A.C. 960	36.2	529	6.05	. 04	5.094	6
79	P. iii. 255	36.3	1240	5.54	. 10	5.103	6
80	B.A.C. 1061.	330.4	342	5.93	. 07	$5 \cdot 386$	6
8 I	P. iii. 160	351.6	936	5.46	0.13	5.094	5... 6
82	B.A.C. 1247	42.8	627	5.55	. 04	5.044	6
83	B.A.C. 1263	$\begin{array}{ll}4 & 5.9\end{array}$	656	5.59	. 04	$5 \cdot 103$	6
84	B.A.C. 1276	$\begin{array}{ll}4 & 7.9\end{array}$	926	5.91	. 05	5.100	6
85	B.A.C. $144^{8} \ldots . .$.	439.8	859	5.20	. 1 I	5.100	5
86	R. I3II	452.9	410	6.45	0.12	5.103	
87	R. 1.377	$5 \quad 6.5$	424	6.10	. 07	5.103	
88	B.A.C. 1662	529.8	45^{1}	6.51	. 06	5.100	6
89	P. vi. 21.	648.9	247	5.44	. 08	5.103	5

Nos. 76, 77, 79, and 81. The B.A.C. assigns these stars to Cassiopeia.
No. 76. $\Sigma 320$, Dist. 5". Observed as one mass.
No. 77. Suspicion of variability. (See Nature, xxiii. 206 and xxvii. 541.)
Nos. $78,80,82,83,88$, and 89. B.A.C. assigns this star to Ursa Minor.
No. 79. Suspected by Struve to be variable. (Berl. Jahr. 1819, p. I86.)
No. 81. $\Sigma 4^{60}$, Dist. $<1^{\prime \prime}$. Observed as one star.
Nos. 8_{4} and 85. B.A.C. assigns this star to Camelopardalus.
Nos. 86 and 87. It is uncertain which of these is the star described by Argelander. The position recorded in the Uranometria agrees more nearly with the second and brighter star.
No. 89. Birm., No. 154 . The red calour is not salient.

CETUS.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05 .	$\begin{gathered} \text { Average } \\ \text { Deviation } \\ \text { in } \\ \text { Magnitude. } \end{gathered}$	$\begin{aligned} & \text { Date, } \\ & 1880+ \end{aligned}$	Mag. Argel. Uran.
		h. m.	- ,				
1	2....................	$235^{5.1}$	10757	...	0.08	$2.74{ }^{2}$	$4 \cdots 5$
2	4....................	- 2.1	93 Io	6.52	. 10	3.886	
3	5....................	$\bigcirc 2.6$	934	6.59	. 07	3.886	
4	P.o. I	$\bigcirc 4.7$	9552	6.15	. 07	4.772	6
5	6....................	$\bigcirc 5 \cdot 7$	106415	2.742	$5 \cdots 4$
6	L. 158	- 8.8	$98 \quad 24$	5.47	0.05	3.886	6
7	7	$\bigcirc 9.1$	10933 02	$2.74{ }^{2}$	$5 \cdots 4$
8	ו....................	- 13.8	9926	3.66:	. 08	$2.74{ }^{2}$	$3 \cdots 4$
9	13	- 29.6	9412	5.77	. 05	4.776	$6 . . .5$
Io	P.O. It 6	- 35.1	9457	6.25	. 08	4.776	6
11	β................	- 38.1	10835	...	0.10	$2.74{ }^{2}$	2
12	20	- 47.4	914	5.22	. 06	3.871	$5 \ldots .6$
13	25	- 57.5	9525	6.05	. 04	4.8 .3	6
14	$\eta \ldots \ldots$.	13.1	10046	3.47	. 05	2.827	3
15	37	$\begin{array}{ll}1 & 8.9\end{array}$	9831	5.19	. 07	4.843	6
16	38	I 9.2	91 34	6.02	0.06	3.886	6
17	39	111.0	935	5.77	. 04	3.866	6
18	42.	114.2	9 5	6.46	. 08	4.843	6
19	θ................	118.5	9845	3.36	. 07	...	3
20	W.B. i. 271	I 18.8	9729	6.05	. 04	3.871	6

The maguitude, corrected for atmospheric absorption, for the stars not given in the text is as follows:-

No. I	4.34.	No. 25	4.70.
No. 5	4.63.	No. 26	3.47.
No. 7	4.32 .	No. 27	3.57
No. II	2.42 .	No. 47	4.51
No. 23	3.13.	No. 50	3.97.

Nos. 8 and in. Birm., Nos. 3 and io. The red colour is not salient.
No. 12. Spectrum II a ! ! (Vogel.) Called red in the Uranometria Argentina.
No. 14. Birm., No. 16. Nuted to be of orange tint.
No. 15 . $\Sigma 3^{1}$, Dist. $0^{\prime \prime}$. The companion not observed.
No. i8. $\Sigma_{\text {in3 }}$, Dist. I".2. Observed as one mass.
No. 19. 3.36 is the mean of four determinations made on as many nights at Cairo, between 1883.099 and 1883.107. H.P. $=3.77$.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Masnitude. Polaris. $\mathbf{2 . 0 5 .}$	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
21	L. 2798	128.2	9734	6.17	0.06	3.902	6
22	L. 3159	$13^{8 \cdot 2}$	9414	5.63	. 06	3.917	5...6
23	τ	139.0	10632 04	2.827	$3 \ldots 4$
${ }^{2} 4$	P. i. 167	140.5	9617	5.90	. 05	4.792	6
25	X	14.2	101 14 10	2.827	$5 \cdots 4$
26	ζ................	1 46.0	10053	...	0.13	2.827	3
27	v...................	154.8	11137 07	2.827	4
28	L. 3717.	155.0	993	5.95	. 06	3.917	6
29	L. 3731	155.4	99 -	7.40	. 09	3.917	
30	60.	157.5	9024	5.88	. 08	4.792	6
31	64	$2 \quad 5.6$	8157	5.88	0.09	3.924	6
32	63	26.0	9220	6.22	. 05	3.917	6
33	$\xi^{1} \ldots \ldots$.	$2 \quad 7.2$	8140	4.51	. 08	2.827	$4 \cdots 5$
34	67	211.5	9655	5.84	. 05	3.924	6
35	P.ii. 5^{2}........	212.3	884^{6}	6.02	. 06	$4 \cdot 792$	6
36	69	216.3	906	5.91	0.05	$4 \cdot 792$	6
37	70	216.6	9123	5.86	. 04	4.843	6
38	$\xi^{2} \ldots \ldots$.	222.3	822	4.66	. 10	2.827	4
39	B.A.C. 776	225.8	8813	5.62	. 04	3.871	6
40	75	226.6	9131	5.78	. 05	3.87 I	$6 . . .5$
41	P. ii. 123	230.0	8339	6.06	0.03	4843	6
42	v.	230.1	$8+53$	4.93	. 06	2.827	5
43	80	230.6	9^{818}	5.84	. 04	4.792	6
44	P. ii. 130	230.8	8245	6.17	.06	3.917	6
+5	8ı	232.2	935^{2}	5.68	. 05	3.924	6
46	ס...................	233.8	909	4.23	0.08	...	4
47	6...................	234.2	10220	\ldots	. 09	2.832	$5 \cdots 4$
48	P. ii. 148	2.34 .5	$8+22$	6.38	-10	4.792	6
49	γ.................	237.6	8714	3.38	. 08	2.832	$3 \cdots 4$
50	π................	238.9	10.419	\ldots	. 07	2.832	$+$

No. 26. Probably varialle. (See Uranometria Argentina, p. 312.)
Nos. 30 and 38 . Spectrum I a ! (Vogel.)
No. 36. Spectrum III a ! ! (Vogel.)
No. 39. Spectrum II a! (Vogel.)
No. 4^{2}. $\Sigma 28$ i, Dist. 6". Observed as one mass.
No. 46. 4.23 is the mean of two measures ($4.21,4.37$) after applying the correction 0.06 for atmospheric absorption, olserved 1882.827 and 1882.832 , each with twenty extinctions.
No. 49. $\Sigma 299$, Dist. 2'.5. Observed as one mass. Spectrum I a ! (Vogel.)
No. 50. Ancient estimates discordant. There is probability of slight variability in this star.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	$\begin{gathered} \text { Average } \\ \text { Deviation } \\ \text { in } \\ \text { Magnitude. } \end{gathered}$	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
51	μ.................	239.0	8021	4.25	0.06	$2 \cdot 832$	4
52	λ.................	253.8	S1 32	4.93	. 06	\ldots	5...4
53	a....................	$25^{6.5}$	8621	2.44	. 05	2.832	$2 . .33$
54	94	$3 \quad 7.2$	9136	5.30	. 05	4.792	5...6
55	95	312.7	9120	5.77	. 05	4.843	6
56	κ к	313.6	872	5.15	0.09	3.924	5
57	97	315.4	8643	5.71	. 04	4.792	6

No. 51. B.A.C. assigns this star to Aries. Spectrum I a! (Vogel.)
No. 52. 4.93 is the mean of two measures (4.96, 4.90) observed 1882.83^{2} with twenty extinctions, and on 1884.967 with six. H.P. $=4.60$. Spectrum I a ! (Vogel.)
No. 53. Spectrum III a ! ! ! (Vogel.) By Huggins, the Spectrum is nearly the same as that of a Orionis.

COMA.

1	2	1158.6	6756	5.90	0.02	$5 \cdot 333$	6
2	4	$\begin{array}{lll}12 & 6.3\end{array}$	63 3r	6.06	. 06	$4 \cdot 386$	6
3	5	126.6	6851	5.43	. 07	$4 \cdot 357$	6
4	6	1210.4	7429	5.15	. 02	4.357	5
5	7	1210.8	6527	5.36	. 05	4.385	5... 6
6	W.B. xii. 199 ...	1212.0	6026	5.56	0.05	$4 \cdot 386$	6
7	11	1215.2	71.36	4.73	. 06	$4 \cdot 357$	5
8	P. xii. 57	1216.5	6437	6.05	. 04	$4 \cdot 385$	6
9	12	1217.0	6333	4.64	. 03	4.386	5
10	13	1218.8	6317	5.47	. 05	\cdots	5
11	14	1220.9	627	5.09	. 0.06	4.385	5..4
12	γ.................	1221.6	617	4.55	. 08	5.333	$4 \ldots 5$
13	16	1221.5	6234	5.39	. 06	...	5
14	17	$\begin{array}{ll}12 & 23.4\end{array}$	6329	5.07	. 08	$4 \cdot 386$	5
${ }^{1} 5$	18	1224.0	6517	5.41	. 03	$4 \cdot 385$	6

No. 2. $\Sigma 1596$, Dist. $3^{\prime \prime} .6$. Observed as one mass.
No. 4. Spectrum I a ! (Vogel.)
No. 9. Has a distant companion, not observed.
No. 10. 5.47 is the mean of two measures (5.43, 5.51) observed with twenty extinctions 1884.365, and with six on 1885.333 . H.P. $=5.09$.

No. 12. Birm., No. 279. The colour is yellow.
No. 13. 5.39 is the mean of two measures $\left(5.36,5 \cdot 4^{2}\right)$ observed with twenty extinctions 1884.386, and with six 1885.333 . H.P. $=5.09$.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Desiguation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Maguitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
16	20	1224.2	6830	5.85	0.02	4.357	6
17	2 I	1225.5	645°	5.69	. 06	$4 \cdot 385$	$6 . . .5$
18	23	1229.4	6646	4.95	. 05	$4 \cdot 357$	5
19	24	12296	7 I I	4.79	. 06	$4 \cdot 386$	5
20	26.	1233.7	6820	5.47	.06	$4 \cdot 357$	6
21	27	$124^{1.2}$	7249	5.23	0.06	$4 \cdot 357$	5
22	29.	$1243 \cdot 4$	7517	5.96	. 02	$4 \cdot 385$	6
23	30.	124.3 .9	6151	6.24	. 05	$4 \cdot 357$	6
24	31	1246.4	6 5 52	5.14	. 03	$4 \cdot 386$	5
25	35	1247.9	689	4.93	. 05	$4 \cdot 385$	5
26	3^{6}..................	1253.5	720	5.22	0.05	$4 \cdot 357$	5
27	37	1255.0	5837	5.00	. 04	$4 \cdot 385$	5
28	39	I3 1.0	$68 \quad 15$	6.14	. 07	$4 \cdot 357$	6
29	40.	131.0	664^{8}	5.98	. 08	$4 \cdot 386$	6
30	41.	131.9	6147	5.00	. 05	$4 \cdot 385$	5
31	a	$13 \quad 4.7$	7 I 53	4.38	0.05	$2.45{ }^{2}$	$4 \cdots 5$
32	β.................	1368	6134	4.24	. 08	$2.45{ }^{2}$	4
33	P. xiii. IS	1.37 .2	7040	6.68	. 05	$4 \cdot 357$	
34	W.B. xiii. $9^{8} \quad$...	$13 \quad 7.9$	7042	6.47	. 0.4	$4 \cdot 357$	6
35	P. xiii. $3^{6} \ldots \ldots . .$.	1311.2	693^{8}	6.33	-03	$4 \cdot 385$	6
36	P. xiii. 77	1319.9	6534	5.56	0.04	...	6
37	W.B. xiii. $59{ }^{6} \ldots$	1331.8	645°	6.04	. 03	$4 \cdot 386$	6

No. 19. $\sum 16_{5}^{7}$, Dist. $20^{\prime \prime}$. The distant companion not observed.
No. 22. $=36$ Virginis. (See Introduction to B.A.C., p. 75.)
No. ${ }^{25} . \Sigma 168_{7}$, Dist. $\mathbf{1}^{\prime \prime}$. Triple. Observed as one mass. The third distant star not observed.
No. 26. Birm., No. 300. The red colour is not salient. Spectrum III a ! (Vogel.) Variable?
No. 27. = I3 Canum Ven. (See Introduction to B.A.C., p. 75, where however the star is incorrectly called 31 Comæ,

No. 36. 5.56 is the mean of two measures $(5.54,5.57)$ observed 1884.357 with twenty extinctions, and on 1885.333 with six. H.P. $=5.93$.
No. 37. Birm., No. 311. The colour is not salient.

CORONA.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Maguitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	\bigcirc,				
I	o....................	$15 \quad 15.6$	5959	5.61	0.06	4.530	6
2	η.................	$\begin{array}{lll}15 & 18.7\end{array}$	5919	5.05	. 03	4.535	5
3	β................	${ }_{15}{ }_{5} 23.3$	6031	3.85	.09	2.485	$4 \cdots 3$
4	0...................	1528.5	5_{5}^{816}	4.26	. 07	2.583	4
5	a....................	1530.0	6255	2.23	. 10	\ldots	2
6	μ................	1531.2	5038	5.44	0.04	4538	5
7		15.32 .4	5939	6.34	. 04	4.530	6
8	P. xv. 142	1533.6	$65 \quad 7$	6.99	. 09	4.538	6
9	¢....................	1535.2	53 -	4.66	. 05	$5 \cdot 35{ }^{2}$	4
10	γ.	1538.1	6321	3.91	. 08	\cdots	$4 \cdots 3$
11	π.................	1539.7	578	5.76	0.06	4.530	6
12.	¢...................	1545.0	6336	4.87	. 05	\ldots	$4 \cdots 5$
13	к....................	1547.1	54 -	5.02	. 09	2.583	5..4
14	λ	1551.8	5 I 44	5.79	. 05	$5 \cdot 35^{2}$	$6 . . .5$
15	є....................	${ }^{15} 53.0$	624^{8}	4.18	. 04	2.583	4
16	W.B. xv. 239.....	$15 \quad 54.9$	533	5.81	0.08	4.532	6
17	P....................	$15 \quad 56.9$	5621	5.08	. 06	4.530	$6 . .5$
18	...	1557.0	5951	5.07	. 09	2.583	$5 \cdots 4$
19	P. x\%. 266	15 59.3	534	6.08	. 05	...	6
20	т...................	$16 \quad 5.0$	5314	5.07	. 09	2.583	$5 \cdots 4$

No. 2. $\Sigma 1937$, Dist. $I^{\prime \prime}$. Binary. Period 40 years. Observed as one mass.
No. 5. Birm., No. 354. The red colour is not salient. Seidel suggests varialility. (Resul. Phot. Mess., p. I63.)
No. 5. 2.23 is the mean of three accordant determinations made $1882.485,1883.198$, and IS83.201.
No. 9. $\Sigma \mathbf{\Sigma}_{19} 65$, Dist. $6^{\prime \prime}$. Observed as one mass. Birm. Add. II, No. i2. Colour not salient.
No. 10. Σ_{1967}, Dist. $<1^{\prime \prime}$. Period 96 years. Observed as one mass. 3.91 is the mean of two measures ($3.87,3.95$) observed 1882.583 with twenty extinctions, and $18 S_{5.352}$ with six. H.P. $=4.18$.

No. 12. Birm., Add. II, No. I3. The red colour is not salient. 4.87 is the mean of two measures (4.93 and 4.80) observed 1882.430 with twenty extinctions, and 1885.352 with six. H.P. $=4.56$.

No. 15. Birm., Add. II, No. I4. The star is slightly orange coloured.

Reference Number	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	$\begin{gathered} \text { Adopted } \\ \text { Zenithal } \\ \text { Magnitude. } \\ \text { Polaris } \\ 2.05 . \end{gathered}$	$\begin{array}{\|c} \text { Average } \\ \text { Deviation } \\ \text { in } \\ \text { Magnitude. } \end{array}$	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
21	P. xvi. 25.	$16 \quad 7.8$	5.3 I7	5.92	0.07	$5 \cdot 35^{2}$	6
22	σ	16 10.6	$55 \quad 52$	5.13	. 07	4.538	6
2.3	v.	1612.3	6035	5.61	. 03	4.535	$6 . . .5$
24	g...................	$16 \quad 17.8$	$5^{8} 51$	4.63	. 06	4.530	5
25	ν^{1}	${ }^{1618.2}$	5557	5.07	. 02	4.535	
26	$\nu^{2} \ldots \ldots$.	1618.3	$56 \quad 3$	5.06	0.01	4.535	5

No. 22. $\Sigma \mathbf{2 0 3 2}$, Dist. $I^{\prime \prime}$.3. Binary. Observed as one mass.
Nos. 25 and 26. These stars form $\Sigma 29^{1}$. They are also in Birmingham's Catalogue, Nos. 376 and 377 . The stars are yellow.

CYGNUS.

1	B.A.C. 6579	$19 \quad 9.3$	4022	5.92	0.05	4.932	6
2	O.A. נ9116	1913.7	4312	5.93	. 06	4.938	6
3	к	19 14.6	3650	3.83	. 04	2.455	4
4	2....................	1919.8	6036	5.10	. 02	4.888	5
5	4.................	1922.2	5354	5.08	.09	4.888	5
6	W.B. xix. 667 ...	1922.7	4513	6.50	0.03	4.927	6
7	7...................	1924.8	3754	5.95	. 04	4.938	6
8	$\beta^{1} \ldots \ldots$.	1926.3	6216	3.02	. 10	2.455	
9	$\beta^{2} \ldots \ldots$.	1926.3	6216	4.83	. 07	2.465	
10	W.B. xix. 779 ...	1926.7	$54 \bigcirc$	6.04	. 04	4.899	6
II	ו....................	1926.9	3830	4.02	0.05	2.430	4
12	8...................	1927.7	5547	4.75	. 03	2.455	$5 \cdots 4$
13	O.A. 19337	1928.5	.3956	5.91	. 06	4.932	6
14	9....................	I9 30.4	6047	5.62	. 05	4.888	6
15	B.A.C. 6718	1931.1	4750	5.37	.09	$5 \cdot 4^{15}$	6
16	P. xix. 211.	1931.5	39 ○	5.66	0.09	4.938	6
17	If	1931.9	5318	5.99	. 07	4.888	6
18	B.A.C. 6731	I9 33.2	45.33	5.44	. 05	4.910	6
19	θ	1933.5	$40 \quad 2$	4.90	0.3	2.430	$5 \cdots 4$
20	¢	1935.0	606	5.11	.06	4.888	5

No. I. $\Sigma_{24} 86$, Dist. $10^{\prime \prime}$. Observed as one mass.
Nos. 8 and 9 . These stars form $\Sigma 43^{1}$, Dist. $34^{\prime \prime}$, also Birm., No. 503. There is strong suspicion of variability. (See Ast. Nach., lxx. p. 108.)

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{aligned} & \text { Date, } \\ & 1880+ \end{aligned}$	Mag. Argel. Uran.
		h. m.	- ,				
21	It	1935.8	4726	5.47	0.12	4.910	$6 . .5$
22	B.A.C. 6748	1936.2	3517	5.69	. 02	4.938	6
23	B.A.C. $675+\ldots .$.	1937.4	$4+44$	5.27	. 15	4.910	$6 . . .5$
24	R. 4420	1938.2	50 -	6.02	. 08	4.899	6
25	L. 375^{27}........	1938.4	5749	6.07	. 05	4.888	6
26	16	19 38.9	3944	6.11	0.05	4.927	$6 . . .5$
27	P. xix. 262........	1939.0	3945	6.12	. 03	4.927	
28	15	1940.3	5255	5.42	. 05	...	5... 6
29	$\delta \ldots$.	1941.5	458	2.79	. 05	...	3
30	17	1942.3	$5^{6} 31$	5.31	. 05	4.888	5..6
31	B.A.C. 6799	I9 44.2	4222	6.30	0.07	4.932	6
32	19	1946.7	5134	5.68	. 04	4.899	6
33	B.A.C. 6817	1946.8	4941	5.76	. 05	4.910	6
34	20	1947.9	3717	5.27	. 03	$5 \cdot 415$	5... 6
35	O.A. 19720	1948.7	4315	5.74	.03	4.927	6
36	B.A.C. 6830	1948.9	4221	5.96	0.05	4.932	6
37	23	19 51.0	3246	5.34	. 03	4.899	5... 6
38	22	1951.9	5148	5.14	. 05	...	5...6
39	B.A.C. 685^{2}......	1951.6	3035	6.02	. 04	$4.94{ }^{\text {I }}$	$6 . . .5$
40	η................	1952.2	5510	4.10	. 07	2.430	$4 \cdots 5$
41	ψ.................	1952.8	3751	4.79	0.04	4.938	5
42	B.A.C. 6857	19 53.4	4956	5.74	. 05	4.899	$6 . . .5$
43	B.A.C. $6865 . . .$.	1953.7	$39 \quad 24$	6.05	. 04	4.938	6
44	B.A.C. 6867	1953.8	3127	5.37	. 05	4.94^{1}	$6 . . .5$
45	O.A. 19835	1954.1	3336	5.89	. 10	4.938	6

Nos. 26 and 27 . These stars form $\Sigma 4^{6^{1}}$, Dist. $37^{\prime \prime}$. The two stars, seen as one object, are called $16, c$, in Argelander.
No. 28. 5.42 is the mean of two measures (5.44, 5.39) observed $188_{4} .8_{99}$ and $188_{5.4}{ }^{1} 5$, each with six extinctions. H.P. $=\mathbf{5 . 0 3}$.
No. 29. $\Sigma 2579$, Dist. $\mathbf{I}^{\prime \prime} .5$. Binary. Observed as one mass. 2.79 is the mean of two measures ($2.79,2.78$) observed 1882.430 with twenty extinctions, and $1885.4^{1} 5$ with six.
No. 30. Called χ in the B.A.C. $\Sigma{ }_{25} 5^{8} 0$, Dist. $26^{\prime \prime}$. The brighter star only observed.
No. 32. Birm., No. 519. The red colour is not salient.
No. 38. 5.14 is the mean of two measures (5.15, 5.13) observed 1884.910 and 1885.415 , each with six extinctions. H.P. $=4.67$.
No. 39. B.A.C. assigns this star to Draco.
No. 4o. Possibly variable. (See Bonn. Beob., vol. vii, p. 402.)
No. 41. $\sum 2605$, List. $3^{\prime \prime} .5$. Observed as one mass.
No. 44. B.A.C. assigns this star to Cepheus.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	$\begin{gathered} \text { Adopted } \\ \text { Zenithal } \\ \text { Mawnitude. } \\ \text { Polaris. } \\ \text { 2.05. } \end{gathered}$	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
46	W.B. xix. 1739 ...	1954.2	5919	5.55	0.09	$5 \cdot 415$	6
47	L. 38193	1954.2	$48 \quad 2$	6.46	. 05	4.910	6
48	25	1955.8	5316	5.52	. 07	...	$6 . . .5$
49	B.A.C. 6876	1955.9	443^{2}	5.96	. 03	4.927	6
50	P. six. 380	1956.4	$3^{8} 15$	6.05	. 04	4.932	6
51	26.	$195^{8.3}$	4012	5.34	0.06	4.927	$6 . . .5$
52	W.B. xix. 1910...	1959.0	6023	5.74	. 05	4.888	6
53	W.B. xix. 1957 ...	$20 \quad 0.2$	$58 \quad 5$	5.74	. 05	4.899	6
54	O.A. 19983	$20 \quad 1.2$	425	6.04	. 02	4.927	6
55	B.A.C. 6918	$20 \quad 2.1$	3828	6.13	. 02	4.932	6
56	27	$20 \quad 2.3$	5420	5.58	0.07	4.899	$6 \ldots 5$
57	B.A.C. 6928	$\begin{array}{lll}20 & 3.3\end{array}$	3710	5.89	. 06	4.941	$6 \ldots 5$
58	28	$20 \quad 5 \cdot 3$	5329	4.97	. 09	4.899	5
59	B.A.C. 6959	$\begin{array}{ll}20 & 9.5\end{array}$	$3^{8} 5^{2}$	6.42	. 03	4.932	6
60	$0_{1}^{1} 30 \ldots \ldots$.	$20 \quad 9.8$	433^{1}	4.73	. 09	2.430	
61	$0^{1} 231 \ldots \ldots$.	2010.2	4336	4.25	0.10	2.430	
62	29	2010.4	5332	4.99	. 07	4.899	5
63	33	2010.8	3346	4.47	. 09	5.415	4...5
64	L. 38943	20 11.1	5636	5.97	. 08	4.888	6
65	$0^{2} 32 \ldots \ldots \ldots \ldots$	2012.1	4237	4.46	. 06	4.941	$4 \cdots 5$
66	O.A. 20293	2012.4	4445	6.03	0.10	4.910	6
67	B.A.C. 6986	2013.0	4958	5.58	. 03	4.910	6
68	36	2014.3	5321	5.69	. 03	4.927	6
69	35	2014.4	5522	5.34	.07	4.927	5... 6
70	R. 4734	$20 \quad 15.8$	3457	5.81	. 05	4.941	$6 \ldots 5$

No. 47. $\Sigma 2607$, Dist. $3^{\prime \prime} \cdot 5$. Observed as one mass.
No. $48 . \quad 5.52$ is the mean of two measures $(5.47,5.57)$ observed 1884.899 and 1885.415 , eaeh with six extinctions. H.P. $=\mathbf{5 . 2 0}$.
No. 51. (Σ unnum.) The distant companion not observed.
Nos. 60 and 6r. Seen as one star by Argelander.
No. 61. Birm., No. 543. The colour is bright yellow.
No. 63. The observation of 1882.430 (see Memoirs of R.A.S., vol. xlvii, p. 431) is rejected. The night was hazy, and with eumulus clouds in parts of the sky.
Nos. 6_{5} and 6_{7}. Birm., Nos. 549 and 551. The colour of loth is orange.
No. 7o. $\Sigma 2671$, Dist. $3^{\prime \prime}$. Observed as one mass.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	$\begin{gathered} \text { Adopted } \\ \text { Zenithal } \\ \text { Magnitude. } \\ \text { Polaris } \\ 2.05 . \end{gathered}$	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
71	R. 4738	2016.4	433°	6.10	0.04	4.932	6
72	γ.................	2018.3	506	2.26	.04	...	3.2
73	O.A. 204.30	$2018 \cdot 5$	$4+34$	5.96	. 04	$4.9+1$	6
74	B.A.C. 7027	2018.8	4920	610	. 04	4.912	6
75	39	2019.5	$5^{8} 10$	4.81	. 07	4.927	5
76	W.B. xx. $665 \ldots$.	2019.6	5253	5.95	0.05	4.912	6
77	40	$20 \quad 23.5$	$5^{1} 56$	5.76	. 05	4.912	6
78	B.A.C. 7064	2023.7	3343	6.29	. 02	$4 \cdot 9.46$	6
79	41.	$20 \quad 24.9$	60 -	4.32	. 06	2.455	+ ${ }^{6} 5$
80	$4^{2} \ldots \ldots$.	2025.1	5.35 55	6.05	. 01	4.912	6
81	$\omega^{2}(45) \ldots$.	2026.7	$4^{1} \quad 25$	5.04	0.05	4.927	5
82	B.A.C. 7086	2026.8	3418	6.07	. 03	4.946	6
83	$\omega^{3}\left(4^{6}\right) \ldots \ldots \ldots .$.	$20 \quad 27.9$	419	5.64	. $0+$	4.932	$6 \cdots 5$
84	B.A.C. 7105	20 29.1	3336	6.16	. 03	4.946	6
85	47	2029.6	558	5.03	. 03	...	5 ... 6
86	B.A.C. 7112	2030.3	4341	5.74	0.02	4.927	6
87	48	20.33 .0	5_{58}^{89}	5.92	. 09	4888	6
88	P. xx. 243	20 33.1	5852	6.12	. 06	4.888	
89	L. 39885	2033.2	523	6.31	. 06	4.912	6
90	B.A.C. $715^{8} \ldots .$.	$2035 \cdot 5$	4949	6.05	. 03	4.927	6
91	W.B. xx. 1193 ...	2036.1	$4^{6} 5^{5}$	6.20	0.02	4.927	6
92	49	20.36 .6	58	5.93	. 05	4.912	6
93	α	2037.7	458	1.32	. 04	...	$2 \ldots$. 1
94	P. xx. 283	2038.0	5+ 5 \%.	6.30	. 07	4.912	6
95	B.A.C. 7174.	2038.0	$4^{8}+1$	5.71	. 02	4.927	6

No. 72. 2.26 is the mean of two determinations (2.28, 2.23) made on 1882.430 with twenty extinctions, and on 1883.070 with ten.
No. 74. Birm., No. 555. The red colour is not salient.
No. 75. Birm., No. 557. The colour is yellow.
No. 78. B.A.C. assigns this star to Cepheus. $\sum 2687$, Dist. $26^{\prime \prime}$. The brighter star only observed. Nos. 82 and 84 . B.A.C. assigns these stars to Cephens.
No. 83. Σ Unnum., Dist. $55^{\prime \prime}$. The distant companion not observed. Birm., No. 56z. The red colour is not salient.
No. 85. 5.03 is the mean of two determinations (5.09, 4.98) made on 1884.912 and 1885.415 , each with six extinctions. H.P. $=4.77$.
Nos. 87 and 88. These stars form $\Sigma 53^{1}$, Dist. $I_{7} S^{\prime \prime}$.
No. 92. $\quad \sum_{27}{ }^{16}$, Dist. $2^{\prime \prime} .7$. Observed as one mass.
No. 93. 1.32 is the mean of six accordant determinations, made on as many nights, three at Oxford and three at Cairo, involving seventy extinctions, made between 1882.43° and 1883.170.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Desiguation.	$\begin{gathered} \text { RA. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Marnitude. Polaris 2.05 .	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
96	51.	2038.8	403	5.53	0.06	4.946	$6 . . .5$
97	W.B. xx. $1276 \ldots$	2039.0	548	6.26	. 07	4.912	6
98	B.A.C. 7198	2041.0	436	6.55	. 0.3	4.9 .32	6
99	52	$20+1.0$	594^{1}	4.53	. 03	2.455	$4 \cdot 5$
100	¢....................	20418	5627	2.45	. 07	2.455	$3 \cdots 2$
101	λ................	2043.1	53.54	4.90	0.06	...	5..4
102	5.5................	2045.2	$4+17$	5.39	. 06	...	$6 . . .5$
10.3	56	$204^{6.2}$	4621	5.25	. 03	4.938	5... 6
104	57	2049.3	$4^{6} \quad 2$	4.84	. 02	$5 \cdot 415$	$5 \ldots 6$
105	B.A.C. $7254 . . .$.	2049.5	4514	5.79	. 05	$4.94{ }^{\text {I }}$	6
106	B.A.C. 7268.	20.51 .4	430	3.00	0.09	4.956	6
107	v....................	2053.1	$49 \quad 15$	4.23	. 06	2.455	4
108	B.A.C. 2290	20.54 .4	455^{8}	6.03	. 04	4.938	6
109	B.A.C. f^{294}......	2055.0	39.58	5.55	. 06	4.941	6
110	59	20 56.1	$4^{2} 5^{6}$	4.74	. 02	$5 \cdot 4^{2} 3$	5... 6
111	60	20.37 .3	4416	5.35	0.06	4.946	6
112	$\underline{\xi}$.	21009	4631	4.04	. 01	$5 \cdot 423$	4
113	L. 40951	$21 \quad 1.8$	5916	6.07	. 04	4.910	6
114	61	2120	5149	4.98	. 04	2.381	5... 6
115	63	21.2 .8	4248	5.30 -	. 03	4.941	5... 6
116	P. xxi. I...........	21.39	60 I6	5.49	0.09	4.910	6
117	B.A.C. 7365	$21 \quad 6.9$	3653	5.96	. 0.3	4.956	6
118	$\zeta \ldots$.	$\begin{array}{ll}21 & 8.3\end{array}$	60 I5	3.09	.c6	...	3
119	τ	$\begin{array}{llll}21 & 10.4\end{array}$	5225	3.65	. 04	...	4
120	L. 41422	2113.1	4746	5.97	. 03	4.912	6

No. 99. $\quad \Sigma 2726$, Dist. $6^{\prime \prime} .6$. Observed as one mass.
No. 100. Birm., No. 570 . The colour is decidedly yellow.
No. IoI. Oг 413 , Dist. < $\mathrm{I}^{\prime \prime}$.o. Rapid binary. Observed as one mass. 4.90 is the mean of two determinations ($4.93,4.87$) made with twenty extinctions on 1882.455 , and with six on 1885.415. H.P. $=4.57$.

No. 102. 5.39 is the mean of two determinations ($5.40,5.38$) made on 1884.932 and ISS5.415, each with six extinctions. H.P. $=5.00$.
No. IIo. $\sum 2743$, Dist. $20^{\prime \prime}$. The brighter star observed.
No. 112. Birm., No. 576 . The colour is slightly orange. The observation of $\mathbf{1 8 8 2 . 4 3 0}$ (see Memoirs R.A.S., vol. xlvii, p. 432) is rejected. See note to No. G_{3}.
No. IIf. $\Sigma 275^{5}$, Dist. $5^{5 \prime}$. Probably linary. Parallax 0.56. (Auwers.) Observed as one mass.
No. ir6. $\quad \Sigma 2762$, Dist. $3^{\prime \prime} \cdot 5$. Observed as one mass.
No. II8. 3.09 is the mean of two determinations (3.04, 3.14) made on 1882.455 with twenty extinctions, and on $1885.4^{2} 3$ with six. H.P. $=3.48$.
No. IIg. Double. Dist. $\mathbf{1}^{\prime \prime}$. Rapid binary. Observed as one mass. 3.65 is the mean of two determinations $(3.68,3.62)$ made on 1882.455 with twenty extinctions, and on 1885.423 with six.

$\begin{gathered} \text { Refer } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Maguitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{aligned} & \text { Date, } \\ & 1880+ \end{aligned}$	Mar. Argel. Uran
		li. m.	- ,				
121	σ \% \quad.	2113.1	514	4.52	0.06	2.591	$4 . . .5$
122	v	2113.4	5534	4.33	. 07	$2 \cdot 591$	$4 \cdots 5$
123	68	$\begin{array}{lllllll} & 1 & 14\end{array}$	4631	5.04	. 04	4.938	5
124	B.A.C. $74{ }^{\text {I I }}$......	2115.7	4057	5.49	. 07	4.956	5... 6
125	L. $41554 \ldots \ldots$.	2116.6	5751	6.10	. 04	4.910	6
126	B.A.C. 7431	2118.2	415	583	0.03	$4.94{ }^{\text {I }}$	$6 \ldots 5$
127	69	2121.3	5349	5.97	. 09	4.910	6
128	B.A.C. 7455	2121.3	4346	5.68	. 06	4.956	6
129	70.	2122.8	5322	5.07	.05	4.912	$6 . .5$
130	O.A. 22275	2 I 22.9	$4^{11} 38$	5.31	. 03	4.95^{6}	5
131	B.A.C. $7+65$.....	2123.4	5815	5.89	0.10	4.924	6
132	71 (g)	$\begin{array}{llll}21 & 25.4\end{array}$	4357	5.09	. 10	4.956	5
${ }^{1} 33$	B.A.C. 7483	2126.7	373^{2}	6.11	. 01	+941	6
134	р...................	2129.8	4454	4.10	. 07	2.591	$+\cdots 5$
${ }^{1} 35$	72.	2130.3	$5^{1} 58$	5.25	. 04	4.924	5
136	74	2132.5	505	5.21	0.04	4.924	5
137	75.	2 I 35.8	4714	5.50	.13	4956	$6 \ldots 5$
138	π^{1}	2138.2	3919	4.92	. 05	5.423	$5 \cdots 4$
139	B.A.C. 7565	$\begin{array}{ll}21 & 38.7\end{array}$	4921	5.55	. 07	4956	$5 \ldots 6$
140	79	2138.9	5213	5.68	. 04	4.924	5.6
141	μ...	2139.2	6145	4.50	0.08	2.59 I	$4 \cdots 5$
142		2142.7	4112	4.76	. 11	$5 \cdot 4^{2} 3$	$4 \cdots 5$
143	L. 42563	214.3 .8	5151	5.94	. 05	4.924	6
144	L. 42607	2145.0	4922	6.29	. 03	$4 \cdot 941$	6
145	B.A.C. 7631	2148	$3+43$	5.58	. 07	4956	6
146	B.A.C. $7676 \ldots$	2157.8	3739	5.85	0.14	4.956	6

No. ${ }^{3}$ 3. The observation of 1882.591 (see Memoirs R.A.S., vol. slvii, p. 43^{2}) is rejected on account of uncertainty introduced by ' passing clouds.'
No. 141. Σ_{2822}, Dist. 5".5. Olserved as one mass.
No. I42. The observation of 1882.591 (see Memoirs R.A.S., vol. xlvii, p. 432) is rejected. See Note to No. 138 .
No. I4.3. The star observed does not agree well with Argelander's place.
Nos. 145 and 146. The B.A.C. assigns these stars to Cepheus.

DELPIIINUS.

Reference Nimber.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	$\left\lvert\, \begin{gathered} \text { ' Adopted } \\ \text { Zenithal } \\ \text { Macmitudc. } \\ \text { Pol ric } \\ 2.05 . \end{gathered}\right.$	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag Arcel. Uran.
		h. m.	- ,				
1	W.B. xx. $302 \ldots .$.	2014.3	$77 \quad 6$	6.38	0.03	3.609	6
2	L. 39188	2017.8	7549	5.94	. 03	\cdots	6
3	є....................	2028.0	$79 \quad 4$	3.59	. 02	\ldots	4
4	7...................	2028.7	7721	5.32	. 07	3.612	$6 \ldots 5$
5	$\zeta \ldots$.	2030.2	7542	4.80	. 07	2.630	$5 \cdots 4$
6	β................	$20 \quad 32.4$	7547	3.53	0.03	2.630	$3 \cdots 4$
7	ו....................	2032.6	79 -	5.19	. 06	3.609	6
8	θ.................	2033.5	774	6.13	. 07	3.615	6
9	κ к	2033.8	So 18	5.13	.05	3.615	5
10	a	2034.5	7429	3.93	. 04	\ldots	$4 \cdots 3$
11	δ................	2038.3	$75 \quad 19$	4.59	0.09	2.630	4
12	$\gamma^{1} \ldots \ldots$.	$204^{1.6}$	7416	4.05	. 07	2.630	$3 \ldots 4$
13	$\gamma^{2} \ldots \ldots \ldots \ldots \ldots$	2041.6	7416	4.99	. 07	2.630	
14	13	2042.4	8424	5.72	. 08	3.615	6
15	14.	2044.4	8233	6.30	.0.3	3.609	6
16	15	$204+4$	7752	6.15	0.06	3645	6
17	16	20.50 .4	7751	5.28	. 07	3.630	$6 \ldots 5$
18	17	20.50 .4	7642	5.38	. 10	3.645	$6 . .5$
19	I8	20.53 .1	7935	5.56	. 0.3	3.645	$6 \ldots 5$
20	L. 40675	20.547	$73 \quad 36$	6.44	. 0.3	3.609	6
21	L. 40682	2055.4	715	5.92	0.03	3.645	6

No. 2. 5.94 is the mean of two determinations ($5.93,5.94$) made on 1883.609 with twenty extinctions, and on $18 S_{5.442}$ with six. H.P. $=6.27$.
No. 3. 3.59 is the mean of three accordant determinations, depending on twenty-six extinctions, observed $1882.630,1885 \cdot 44^{2}$, and $\mathrm{I}^{8} 85.44^{8}$. H.P. $=4.13$.
Nos. 5, 7, 15 , and 17. Each has the Spectrum I a ! (Vogel.)
No. 6. Σ_{2704}, Dist. $32^{\prime \prime}$. The brighter star, which is really a close double, only observed. Spectrum I a ! (Vogel.)
No. 9. Called red in the Uranometria Argentina. The colour is not salient.
No. io. Variable according to Auwers. (See Ast. Nach., vol. l, p. 106.) 3.93 is the mean of two identical determinations, each depending on twenty extinctions, made on $\mathbf{1 8 8 2 . 6 3 0}$ and on 1882638 .
Nos. 12 and 13. These stars form $\sum 2727$, Dist. $12^{\prime \prime}$.
No. 14. Variable accord'ng to Schmidt. (See Ast. Nach., vol. lsxiv, p. 286.)
No. 21. Spectrum III a !! (Vogel.)

DRACO.

$\begin{gathered} \text { Refer- } \\ \text { enee } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.I. } \\ & 1890 . \end{aligned}$	Adonted Zenithal Magnitude. Polaris 2.05.	$\begin{gathered} \text { Average } \\ \text { Deviation } \\ \text { in } \\ \text { Magnitude. } \end{gathered}$	Date, $1880+$	Mag. Argel. Uran.
		h. m.	- ,				
1	P. ix. 37	921.3	8 ı	4.43	0.05	2.708	$4 \cdots 5$
2	Bradley 1446.....	$10 \quad 25.9$	${ }^{13} 43$	4.94	. 09	2.708	$5 \cdots 4$
3	B.A.C. 3747	10 51.2	1139	6.25	. 02	5.215	6
4	λ.................	If 24.9	204	3.80	. 07	...	$3 \cdots 4$
5	3....................	1 i 36.3	2239	5.36	. 11	5.283	$5 \ldots 6$
6	R. 2794.	If 59.7	1229	5.82	012	5.294	6
7	B.A.C. $+^{112} \ldots$	$12 \quad 7.1$	II 46	5.12	. 04	2.712	5...4
8	P. xii. 45	$\begin{array}{lll}12 & 13.9\end{array}$	1414	5.45	. 18	5.215	$6 \ldots 5$
9	4....................	1225.3	2011	5.18	. 01	5.215	5
10	к.....................	1228.8	1936	3.68	. 06	2.712	$3 \cdots 4$
1 I	7....................	1243.1	2237	5.65	0.05	5.250	6
12	8	1251.1	235^{8}	5.10	. 04	5.22 .3	5
13	9	1255.8	2248	5.63	. 0.3	5.28 .3	6
14	P. xii. 255	1257.5	2548	5.95	. 05	5.22 .3	6
15	R. $3020 . .$.	1323.4	244^{1}	6.09	. 11	5.294	
16	R. 3021	1323.5	$2+42$	6.52	0.09	5294	
17	P. xiii. $18+\ldots \ldots$.	1338.1	$2+37$	5.58	. 07	5.215	6
18	R. 3103	1346.2	2758	6.06	. 02	5.250	$6 \ldots 5$
19	10 ,................	1348.2	2444	4.82	. 04	$5 \cdot 223$	5
20	R. $3119 \ldots$.	1354.1	2759	6.32	. 01	$5 \cdot 247$	6
21	a...................	$14 \quad 1.4$	256	3.56	0.08	2.712	$3 \cdots+$
22	D.M. $+57^{\circ}$, No. 1498	1+ 12.4	3248	6.49	. 04	5.250	\} 6
23	D.M. $+57^{\circ}$, No. 1499	$1+12.6$	3248	6.63	. 03	$5 \cdot 250$	
24	B.A.C. 4^{817}......	It 28.2	2620	6.19	.13	$5 \cdot 2.47$	6
25	R. 3225	1428.7	2918	6.13	. OI	$5 \cdot 223$	6

No. 4. 3.80 is the mean of two determinations (3.75, 3.84) made on IS82.712 with twenty extinctions, and on 1885.423 with six. Birm., No. 262. The star is of a deep yellow tint.
Nos. 9 and 13. Birm., Add. I, Nos. 44 and 46, These stars are decidedly orange.
No. 19. $=87$ Ursæ Majoris. See Introduction to B.A.C., p. 75. Birm., No. 315. The star is slightly red.
No. 23. $\sum 1831$, Dist. 6". Observed as one mass.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	$\begin{gathered} \text { Adopted } \\ \text { Zenithal } \\ \text { Magnitude. } \\ \text { Polaris } \\ 2.05 . \end{gathered}$	Average Deviation in Masnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
26	O.A. i $_{4} 66_{5} \ldots \ldots$.	14 29.1	347	6.08	0.13	$5 \cdot 250$	6
27	B.A.C. $4^{87}+\ldots .$.	$14.39 \cdot 3$	2816	6.41	. 04	5.2 .47	6
28	P. xiv. $217 \ldots \ldots .$.	$1+48.7$	3016	5.69	. 07	$5 \cdot 247$	6
29	B.A.C. 4967	$145^{8.9}$	2922	5.85	. 08	5.223	6
30	B.A.C. 4992	${ }^{15} 53.2$	351	5.34	. 03	$5 \cdot 239$	$6 \ldots 5$
31	B.A.C. 507 I	15016.9	3741	5.87	0.12	$5 \cdot 2+7$	6
32	B.A.C. 5091	${ }_{15} 520.8$	2616	5.88	. 12	$5 \cdot 2.47$	6
33	ו....................	1522.5	3039	3.26	. 06	\ldots	3
34	B.A.C. 5^{115}.....	$15 \quad 25.7$	2857	6.06	.05	5.239	6
35	P. xv. 110	$15 \quad 25.7$	2721	6.05	. 05	5.239	6
36	P. xv. $136 \ldots \ldots .$.	$15 \quad 29.4$	2525	5.85	0.00	5.223	6
37	R. 34^{26}...........	1534.7	359	6.03	. 01	5.250	6
38	B.A.C. 5181	1535.4	39 13	5.85	. 05	$5 \cdot 2.7$	6
39	B.A.C. 5210	1539.9	3718	5.49	. 09	5.239	6
40	B.A.C. $5^{2} 4^{8} \ldots$....	1545.0	3417	5.90	. 12	$5 \cdot 247$	$6 . .5$
41	P. xv. 198	1545.0	274	5.40	0.01	5.239	5
42	B.A.C. 5279	1549.7	3351	6.12	. 08	5.250	6
43	B.A.C. 531.3	1555.2	3+ 57	5.23	. 05	...	5... 6
44	Ө...................	1559.9	319	3.86	. 05	...	$4 \ldots 3$
45	B.A.C. 5406	166.0	2154	5.50	. 02	5.283	$6 \ldots 5$
4^{6}	B.A.C. 5415	$16 \quad 7 \cdot 3$	3153	6.35	0.13	5.292	6
47	R. $3527 \ldots \ldots \ldots .$.	$16 \quad 11.9$	22.34	6.31	.05	5.292	6
48	B.A.C. 5459	$16 \quad 15.4$	2958	5.57	. 12	5.2.47	6
49	B.A.C. 5502	16 22.0	$3+33$	5.60	. 04	5.261	$6 \ldots 5$
50	B.A.C. 5.514.	1622.1	2038	5.26	. 11	5.261	$6 \ldots 5$

No 27. $\sum 1878$, Dist. $3^{\prime \prime}$. Observed as one mass.
Nos. 31 and 38. B.A.C. assigns these stars to Boötes.
No. 33. Birm., No. 352. The red colour is not salient. 3.26 is the mean of seven accordant determinations, made on as many nights, four at Oxford and three at Cairo, involving one hundred and ten extinctions, between 1882.712 and 1883.13 I.
No. 43.5 .23 is the mean of two determinations ($5.30,5.16$) made on 1885.247 and 1885.423 , each with six extinctions. H.P. $=\mathbf{5 . 0 2}$.
No. 44. 3.86 is the mean of two determinations ($3.85,3.86$) made on 1882.712 with twenty extinctions, and on $1885.4^{2} 3$ with six.

$\begin{gathered} \text { Refer. } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05 .	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Arcel. Uran.
		h. m.	- ,				
$5{ }^{1}$	$\eta \ldots \ldots \ldots$.	1622.5	2814	2.79	0.07	2.717	$3 \ldots 2$
52	R. 3566	$16 \quad 25.9$	3821	6.36	. 01	5.292	6
5.3	${ }^{1} 5$.................	1628.2	2 I	4.92	.c9	5.292	5
54	P. xvi. I $40 . .$.	16.30 .9	2857	5.71	. 10	5.261	6
55	16	16 33.6	3653	5.63	. 07	$5 \cdot 4^{2} 3$	
56	17	$16 \quad 33.6$	3651	5.22	0.10	2.717	$\int^{4 \cdots 5}$
57	B.A.C. 5599	$16 \quad 35.8$	334^{6}	5.53	. 13	5.26 I	$6 \ldots 5$
58	18	1640.2	2512	5.03	. 05	5.294	$5 \ldots 6$
59	B.A.C. $5^{6}+3$......	$16+3.2$	33 I	4.90	.16	5.283	5
60	P. xri. 219........	1644^{6}	$3+24$	6.61	. 08	5.294	6
61	19	16554	${ }^{2} 44^{2}$	4.92	0.19	5.292	5
62	μ.................	$17 \quad 30$	3523	5.00	. 07	2.717	$5 \cdots+$
63	L. 31388	17 8.1	3728	6.13	. 08	5.261	6
64	$\zeta_{\ldots} . . . \ldots \ldots \ldots \ldots \ldots$	$\begin{array}{ll}17 & 8.5\end{array}$	$24 \quad 9$	3.29	. 07	2.717	3
65	P. xvii. 61.	$17 \quad 11.6$	27 ○	5.45	. 03	5.283	6
66	R. $3^{6966 \ldots \ldots \ldots . .}$	${ }_{17} 715.2$	29 I3	6.03	0.07	...	6
67	B.A.C. $59{ }^{17}$......	1724.3	2952	5.47	. 06	...	6
68	β................	1728.0	37.37	2.96	. 13	2.717	$3 \ldots 2$
69	$v^{1} \ldots \ldots$.	1730.0	$3+44$	4.75	. 09	2.717	
70	$\nu^{2} \ldots \ldots \ldots \ldots \ldots$	1730.5	$34+5$	4.76	. 03	2.717	
\% 1	27	17832.4	2148	5.06	0.07	5.292	5... 6
72	26	$\begin{array}{lll}17 & 3.3\end{array}$	$28 \quad 2$	5.51	. 02	5.283	$6 . . .5$
73	ω	17.37 .6	2112	4.81	. 10	5.283	5
74	L. 32455	$\begin{array}{lll}17 & 38.8\end{array}$	387	6.13	. 10	5.261	6
75	L. 32566	$17+1.8$.3610	5.51	. 0.5	\ldots	$6 \ldots 5$

No. 51. OE 312, Dist. 4".7. Observed as one mass.
No. 55. This star is one of the components of $\Sigma 30^{\circ}$, Dist. $90^{\prime \prime}$. The observation 1882.717 (see Mem. R.A.S., vol. xlvii, p. 433) has been rejected, owing to the observation having been made on an indifferent night.
No. 56. The other component of $\Sigma 30^{1}$, and is $\Sigma 2078$, Dist. $3^{\prime \prime} \cdot 7$. Observed as one mass.
No. 58. Birm., Add. I, No. 49. The red colour is not salient.
No. 60. Identification doubtful. The place agrees with that given by Argelander.
No. 62. $\mathrm{E}_{21} 30$, Dist. $3^{\prime \prime}$.5. Possibly binary. Observed as one mass.
No. 66. $\Sigma{ }_{2155}$, Dist. $10^{\prime \prime}$. The brighter star observed. 6.03 is the mean of two determinations ($6.02,6.04$) made on 1885.294 and 1885.437 , each with six extinctions.
No. 67. 5.47 is the mean of two determinations ($5.50,5.44$) made on 1885.294 and 1885.437 , each with six extinctions.
No. 68. Birm., No. f^{12}. The red colour is not salient.
Nos. 69 and ;o. $\Sigma 35^{1}$, Dist. $61^{\prime \prime}$.
No. 75. 5.51 is the mean of two determinations ($5.56,5.4^{6}$) made on 188.26 I and 1885.427 , each with sir extinctions.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	$\begin{gathered} \text { Adopted } \\ \text { Zenithal } \\ \text { Magnitude. } \\ \text { Polaris } \\ 2.05 . \end{gathered}$	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
76	$\psi^{1} \ldots \ldots$.	1743.9	1748	4.84	0.06	2.731	$4 \ldots 5$
77	$\psi^{2} \ldots \ldots$.	1743.9	1748	5.80	.o8	2.731	$4 \cdots 5$
7^{8}	30	1746	3912	5.17	. 06	5.294	5
79	ξ ¢ \quad.	$17 \quad 51.6$	337	3.90	. 06	2.723	$3 \cdots 4$
80	γ................	1754.1	3830	2.40	. 0.4	2.723	$2 \ldots 3$
8 I	35	$17 \quad 54 \cdot 4$	13 I	5.08	0.13	5.292	5
82	34	1757.1	1759	5.57	. 09	$5 \cdot 303$	6
83	B.A.C. $6185 \ldots$	188.2	$35+5$	5.82	. 06	$5 \cdot 303$	6
84	40	188.3	101	5.69	. 01	5.292	
85	41	$\begin{array}{ll}18 & 8.4\end{array}$	101	6.04	. 04	5.292	
86	3^{6}.................	1813.2	2538	4.98	0.12	$5 \cdot 303$	5
87	37	$18 \quad 15.9$	2117	5.97	. 13	5.253	6
88	B.A.C. $6246 \ldots$	1817.4	3842	6.15	. 11	5.294	6
89	B.A.C. $6255 . . .$.	1818.7	+0 56	5.13	. 07	$5 \cdot 305$	5
90	39	1822.3	3116	4.84	. 14	$5 \cdot 292$	5
91	¢	1822.3	1843	4.22	0.04	2.731	$4 \cdots 5$
92	χ................	1823.0	1719	3.93	. 0.	2.731	+ $\cdots 3$
93	42	$18 \quad 25.7$	$2+30$	5.08	. 00	5.253	5
94	45	1830.7	$33 \quad 2$	4.92	1.3	5.294	5
95	B.A.C. $6.35^{\circ} \ldots .$.	1831.4	3744	5.33	. 02	5.253	5... 6
96	B.A.C. 6375	1835.0	12.31	5.51	0.05	5.261	6
97	L. $34^{817} 7 \ldots . .$.	1835.8	$2+36$	5.90	. 05	5.261	6
98	O.A. $18518 \ldots$	1836.5	2734	5.58	. OI	$5 \cdot 303$	6
99	P. xviii. 170	IS 3.37	3754	5.65	. 05	$5 \cdot 253$	6
100	B.A.C. 6.393	1840.0	2722	6.02	. 06	$5 \cdot 305$	6
101	$4^{6} \ldots$.	1840.5	$3+34$	5.31	0.07	$5 \cdot 305$	$5 \ldots 6$
102	B.A.C. 6428	$1845 \cdot 4$	4122	5.97	. 10	5.261	6
103	B.A.C. 6469	1848.5	$16 \quad 2$	5.60	. 00	$5 \cdot 305$	6
104	B.A.C. 6452	1849.1	3710	5.44	. 06	5.253	6
105	0....................	$18+9.6$	3045	4.72	. 09	2.731	$5 \cdots+$

Nos. 76 and 77. $\Sigma 2241$, Dist. $31^{\prime \prime}$.
No. 79. Birm., No. 42I. The colour is slightly orange.
No. 80. Birm., No. 423. The red colour is not salient.
Nos. 84 and 85. $\Sigma 2308$, Dist. $20^{\prime \prime}$.
No. 90. Σ_{2323}, Triple. The close pair, Dist. $3^{\prime \prime}$. Olserved as one mass.
No. 91. O乏 353, Dist. < $\mathrm{I}^{\prime \prime}$. Olserved as one mass.
No. 95. $\Sigma 234^{8}$, Dist. 26". The brighter star observed.
No. 105. $\Sigma 2420$, Dist. 30". The brighter star observed.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	Date, $1880+$	Mag. Argel. Uran.
		h. m.	- ,				
106	50.	1849.9	1442	5.60	0.05	3.253	6
107	B.A.C. 6470	1850.5	3926	5.12	. OI	$5 \cdot 303$	5
108	P. xriii. $254 \ldots . .$.	$18 \quad 51.9$	4^{117}	5.77	. 0.3	$5 \cdot 29+$	6
109	4^{8}.................	1854.9	3226	5.58	. 05	5.253	6
110	v	1855.8	1851	5.06	. 05	$5 \cdot 305$	5... 6
111	O.А. $18836 \ldots$	1856.1	$2+52$	5.83	0.09	$5 \cdot 303$	6
112	L. 3568 I	1857.4	3937	4.99	.06	...	5... 6
113	49	$18 \quad 58.6$	$3+28$	5.67	. 5	5.253	6
114	51.	$19 \quad 2.5$	$36+6$	5.40	. 07	5.253	$6 \ldots 5$
I 15	53	$19 \quad 9.6$	3320	5.26	. 02	5.294	$6 \ldots 5$
116	54	1912.0	$32 \quad 29$	5.11	0.04	$5 \cdot 303$	5... 6
117	δ................	19 I2.5	2232	2.96	. 07	2.731	3
118	59	1913.2	1337	5.17	. 13	$5 \cdot 3 \circ 5$	$6 . .5$
119	τ................	1917.7	1651	4.64	. 06	2.731	5
120	B.A.C. 6640	19 I8.3	3234	5.85	. 07	5.294	6
121	D. M. $+64^{\circ}$, No. 1344	19 I9 I	2549	6.20	0.11	5.303	6
122	R. $4304 \ldots \ldots \ldots$	1919.5	3228	6.50	. 00	$5 \cdot 294$	6
123	π................	1920.1	$2+30$	4.84	.04	...	5
$12+$	σ................	1932.5	2031	4.78	.05	5.294	5... 6
125	B.A.C. 6808	1944.5	205^{6}	5.85	. 10	$5 \cdot 305$	6
126	є....................	$19+8.5$	20 I	3.72	0.08	2.731	4
127	$6+\ldots$.	$20 \quad 0.3$	$25 \quad 29$	5.50	. 06	$5 \cdot 305$	$6 . . .5$
128	ρ.................	$20 \quad 2.3$	2226	4.54	. 08	5.294	5
129	66.	$\begin{array}{ll}20 & 3.8\end{array}$	2820	5.54	. 11	$5 \cdot 305$	6
130	68	$20 \quad 9.8$	2815	5.72	.06	$5 \cdot 303$	6
131	B.A.C. 7017	2016.3	23.31	5.98	0.13	5.294	6
132	71	2017.8	$28 \quad 6$	5.77	. 03	$5 \cdot 305$	6
1.33	B.A.C. 7037	2019.6	2128	5.92	. 02	$5 \cdot 305$	6
134	73	2033.0	1525	5.41	. 05	...	5... 6
135	75	2035.2	857	5.78	. 11	5.305	6

No. 112. 4.99 is the mean of two determinations ($5.06,4.93$) made on $1 \$ 85.294$ and on ${ }_{1} 985.437$, each with six extinctions. H.P. $=5.37$.
No. 117. Birm., No. 49I. The star is yellow.
No. 120. The star observed is the preceding of two, both near Argelander's place.
No. 123. 4.84 is the mean of two determinations (4.79, 4.88) made on 1885.253 and on
I 885.437 , each with six extinctions. H.P. $=4.55$.
No. 126. $\Sigma 2603$, Dist. $3^{\prime \prime}$. Observed as one mass. Probably binary.
No. 134. 5.41 is the mean of two determinations (5.46, 5.36, made on 1885.294 and on
1885.43 , each with six extinctions. H.P. $=5.20$.

No. 137. The B.A.C. assigns this star to Cepheus.

EQUULEUS.

1	P. xx. $376 \ldots \ldots$	2050.2	8553	6.15	0.03	...	6
2	1...................	2053.6	868	5.41	. 06	3.628	5
3	2...................	2056.8	8315	6.47	. 0.3	3.628	6
4	3...................	20.59 .1	$8+5^{6}$	5.70	.05	3.628	6
5	D.M. $+1^{\circ}$, No. 44^{18}	2059.2	889	6.41	. 01	$3.6+5$	6
6	+..................	210.0	$8+29$	5.76	0.02	...	6
7	$\gamma \ldots \ldots \ldots \ldots \ldots$	215.0	So 19	4.39	. 08	...	5..4
8	δ................	219.1	8026	4.51	. 04	2.630	5...4
9	a...................	2110.3	8515	3.92	. 03	2.630	4
10	9..................	2115.6	837	5.84	. 03	3.628	6
11	D.M. $+2^{\circ}$, No. 434^{8}	2117.0	87.32	6.23	0.04	$3.6+5$	6
12	β................	21174	834°	5.00	. 11	3.6.39	5
13	D.M. $+9^{\circ}$, No. 4800	2118.9	80 18	6.33	. 06	3.639	6

No. I. \sum_{2735}, Dist. $2^{\prime \prime}$. Observed as one mass. 6.15 is the mean of two determinations ($6.28,6.03$) made on 1883.628 with twenty extinctions, and on 1885.504 with six. H.P. $=5.90$.

No. 2. Triple. The close pair, \sum_{2737}, Dist. $>1^{\prime \prime}$, observed as one mass.
No. 3. $\mathbf{\Sigma ~ 2 7 4 2 , ~ D i s t . ~ 2 " ~}^{\prime \prime}$. Observed as one mass. The star observed agrees with Argelander's place, but Gould suggests that a brighter star preceding two minutes in R.A. was the object seen by Argelander.
No. 4. Called red in the Uranometria Argentina.
No. 6. 5.76 is the mean of two determinations ($5.71,5.81$) made on 1883.628 with twenty extinctions, and on ISS5.50.f with six. H.P. $=6.18$.
No. 7. The star observed is the brighter component of $\Sigma 54^{1}$. There are several minute companions. 4.39 is the mean of two determinations ($4.34,4.44$) made on 1883.628 with twenty extinctions, and on 1885.504 with six. H.P. $=4.79$. Spectrum I a! (Vogel.)
No. 8. Σ_{2777} and $O \Sigma 535$; the latter of which is observed as one mass: Dist. $>\mathrm{I}^{\prime \prime}$. Binary: the period of possibly II years is the shortest yet computed.
No. 9. Spectrum I a! (Vogel.)
No. Io. Spectrum III a! (Vogel.)
No. 11. Several stars of approximately equal magnitude near.
No. 12. Quadruple. The brighest star only obeerved.

ERTDANUS.							
$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Marnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
1	\#....................	$25^{1.0}$	9920	3.87	0.07	5022	3
2	L. 5449	251.1	949	5.23	. 01	5.025	$6 . . .5$
3	L. $5516 \ldots$. .	253.2	9313	5.40	. 01	5.061	6
4	5..................	254.1	9254	5.32	. 02	5.025	5..6
5	$\rho^{2} \ldots \ldots \ldots \ldots \ldots$	257.3	987	5.52	. 10	5.022	6
6	10	258.9	$98 \quad 2$	5.69	0.11	5.018	6
7	W.B. ii. 1054 ...	3 1.1	9631	5.74	. 07	5.025	6
8	ל...................	310.5	9914	4.82	. 04	5.022	$4 \cdots 5$
9	W.B. ïi. 147	310.6	9620	6.35	. 10	5.06 I	6
10	14	311.3	99.34	8.10	. 08	5.018	6
11	L. $6_{4} 62 \ldots \ldots . .$.	324.2	97 II	6.22	0.04	5.061	6
12	17 \ldots..............	326.2	9527	4.72	. 07	5.025	5
13	€ \ldots..............	3 27.5	9951	3.45	. 02	5.022	3
14	L. 6726	333.1	9745	6.22	. 10	5.042	6
15	W.B. iii. 604.	3 34.1	9345	6.47	. 07	5061	6
16	22	335.2	9534	5.41	0.09	5.042	6
17	24.	3.38 .9	9130	5.40	.o8	5.018	6
18	30	$347 \cdot 3$	9541	5.39	. 07	5.025	$6 \ldots 5$
	32 Ist star	348.8	9317	6.44	. 01	5.025	
19 \{	32 2nd star.........	348.8	9317	4.83	. 09	5025	
20	L. $7384 . \ldots \ldots \ldots$	353.5	9547	6.10	. 09	5.018	6
21	35	355.9	9151	5.10	0.05	5.022	$5 \ldots 6$
22	L. $74^{8} 4 \ldots \ldots \ldots \ldots$	357.0	90.34	5.60	. 04	5.025	6
2.3	0^{1}.................	$\begin{array}{lll}4 & 6.5\end{array}$	97	4.10	. 06	5.018	$4 \cdots 5$
24	0^{2}. $\ldots \ldots \ldots \ldots \ldots .$.	$4 \quad 10.3$	9747	4.54	. 05	5.042	5...4
25	L. 8048	411.9	9644	6.25	. 07	5.06 I	6

No. 2. Variable according to Schmidt. (See Ast. Nach., xcv. p. 366.)
No. 5. Double. Dist. 2". 5. Observed as one mass.
Nos. 16 and 22. D'Arrest suggests variability. (See Notes to Berlin Charts.)
Nos. 17 and 21. Spectrum I a! (Vogel.) D'Arrest suggests variability.
No. I8. A faint companion not observed.
No. 19. $\quad \Sigma_{470}$, Dist. $6^{\prime \prime}$.
No. 24. $\Sigma 518$, Dist. $8_{4}{ }^{\prime \prime}$. The faint companion not observed. Rapid common proper motion.
The large star is itself double, Dist. $3^{\prime \prime}$. Observed as one mass. Binary.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05 .	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Urall.
26	L. $8154 \ldots \ldots \ldots .$.	h. m. 415.2	$\begin{array}{cc} \circ \\ 96 & 30 \end{array}$	6.27	0.08	5.061	6
27	d....................	415.4	9751	5.77	. 03	5.018	6
28		418.2	$9+\quad 0$	5.36	. 06	5.025	5..6
29	44	429.8	8852	5.64	. 05	$5.0+2$	6
30	45	+26.2	90 I 7	5.07	. 08	5.061	5... 6
31	$4^{6} \ldots$.	428.6	$9^{6} \quad 5^{8}$	5.42	0.12	5.061	$6 \ldots 5$
32	47	+ 289	9828	5.24	. 01	5.018	$6 \ldots 5$
33	W.B.iv. $5^{8} 5$.....	4289	9911	5.96	. 19	5.061	6
$3+$	1 V..................	430.9	93.34	3.97	. 05	5.025	$3 \cdots 4$
35	49	431.5	89 I 3	5.40	. 03	5.018	$6 . . .5$
36	5^{1}.................	432.1	9241	5.54	0.01	$5.0+2$	5... 6
37	55	438.3	99 -	. 5.96	. 06	5.061	6
38	$56 \ldots \ldots$.	$+38.8$	$9^{8} 4^{2}$	5.76	. 04	5.042	6
39	μ................	440.0	9327	4.12	. 02	5.018	$4 \ldots 3$
40	ω. \ldots.............	$+47.5$	9538	4.27	. 07	5.025	$4 \cdots 5$
$4{ }^{1}$	62.	451.0	9521	5.66	0.03	5.061	6
42	ψ................	4561	9720	4.79	. 00	5.061	5..4
43	β................	$5 \quad 2.4$	95 If	2.85	. 07	5.042	3
44	68	$5 \quad 3.3$	$9+36$	5.84	. 09	5.061	6
45	λ................	$5 \quad 3.9$	9854	4.29	. 01	5.018	4

No. 26. Birm., No. 73. The red colour is not salient.
Nos. 30 and 33. Called red in Uranometria Argentina.
No. 32. Birm., Add. I, No. 14. The colour of the star is slightly red.
No. 35. Spectrum I a! (Vogel.)
No. 36. Probably variable. (See Uranometria Argentina, p. 273.)
No. 37. $\Sigma 590$, Dist. 10". Observed as one mass.
No. 41. Has a faint distant companion, $63^{\prime \prime}$, not observed.
No. 43. Probably variable. (See Uranometria Argentina, p. 273.)
No. 45. Gilliss suspects this star of variability. (See Ast. Obs., p. 663.)

G EMIN I.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m,	- ,				
1	I.....................	557.4	6644	4.53	0.06	4.272	5
2	$\eta \ldots \ldots$.	$\begin{array}{lll}6 & 8.2\end{array}$	6728	3.65	. 03	2.300	$3 \cdots 4$
3	¢	616.3	6726	3.45	. 09	2.300	3
4	$\nu \ldots$.	622.4	6943	4.33	. 04	...	$5 \cdots 4$
5	\%..................	631.4	7330	2.13	. 05	. ${ }^{\prime}$	$2 \ldots 3$
6	26.	636.0	7215	5.20	0.06	4.272	$6 . .5$
7	є....................	637.2	6446	3.29	. 04	2.300	$3 . .4$
8	28	637.8	6055	5.38	. 08	4.242	6
9	. 30	6 .37.8	7640	5.19	. 03	...	5
10	ξ^{2}	6 39.1	7659	3.84	. 04	2.305	$4 \cdots 3$
11	W.B. vi. $1227 \ldots$	642.6	5716	5.87	0.06	4.242	6
12	33	643.5	7340	5.75	. 07	4.275	6
1.3	. 66.	645.0	$68 \quad 6$	5.30	. 04	4.275	6
14	θ.	645.5	55.5	3.60	. 05	2.305	3 $\cdots 4$
15	$3^{8} \ldots \ldots$.	$64^{8.4}$	7641	4.86	. 02	4.242	5
16	41.	654.0	7346	6.12	0.04	4.275	6
17	ω	655.7	6538	5.30	. 06	4.312	6
18	B.A.C. 2306	657.5	7833	5.22	. 03	4.275	6
19		657.6	69 16	4.01	. 06	2.305	4
20	45	72.1	7353	5.67	. 03	4.242	6

No. 2. Variability discovered by Schmidt in 1865 . Varies from 3.2 to 4.2 mag. Period 229.1 days. Epoch of mimimum 1870, Apr. 7.

No. 3. Birm., No. 143. The star is slightly red.
No. 4. 4.33 is the mean of two determinations (4.39, 4.26) made on 1882.300 with twenty extinctions, and on 1885.239 with six. H.P. $=3.98$.
No. 5. 2.13 is the mean of two determinations (2.14, 2.13) made on 1882.300 with twenty extinctions, and on 1883.193 with ten. Spectrum I a ! ! (Vogel.)
No. 6. Spectrum I a !! (Vogel.)
No. 7. Birm., No. 152. The red colour is not salient.
No. 9. 5.19 is the mean of two determinations ($5.22,5.16$) made on 1884.275 with twenty extinctions, and on 1885.253 with six. H.P. $=4.62$. Spectrum II a ! (Vogel.)
No. Io. The determination of 1882.305 (see Memoirs R.A.S., vol. xlvii, p. 435) is rejected. The sky was covered with haze at the time. Spectrum I a! (Vogel.)
No. 12. This magnitude was exactly reproduced 1885.239 . H.P. $=\mathbf{5 . 4 4}$.
No. I5. $\Sigma 982$, Dist. $6^{\prime \prime}$. Binary. Observed as one mass. Struve thought the variability certain. (See Mens. Mic., p. lxxiii.)
No. I8. The B.A.C. assigns this star to Monoceros. Spectrum II a ! (Vogel)
No. 19. Variability discovered by Schmidt in $1 S_{4} 7$. Varies from 3.7 to 4.5 mag. Period $10^{\mathrm{d}}, 3^{\mathrm{h}} 43^{\mathrm{m}} 12^{\mathrm{c}}$. Epoch of maximum 1863 , July $17 \cdot 4^{\mathrm{h}} 52^{\mathrm{m}}$. Epoch of minimum 1863 , July 12, $4^{\mathrm{h}} 30^{\mathrm{m}}$.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	\bigcirc,				
21	т....................	7 4.1	5934	4.71	0.09	2.305	5...4
22	47	$7 \quad 4.6$	6258	5.63	. 07	4.242	6
23	51.	7 7.1	7339	5.62	. 11	4.242	6
24	L. 14100	711.1	$5^{88} 51$	6.06	. 05	4.275	6
25	λ..	711.8	7316	3.72	.05	2.305	$4 \cdots 3$
26	ס...................	713.6	6\% 49	3.48	0.09	$2 \cdot 305$	$3 \ldots 4$
27	56.	715.5	6921	5.14	. 02	4.275	$6 \ldots 5$
28	57	716.8	6444	5.20	. 04	4.275	5... 6
29	58.	716.9	6651	6.09	. 03	4.28 I	6
30	८.....................	718.9	6159	3.98	. 06	2.305	4
31	61.	720.5	6931	5.51	0.06	4.281	6
32	6.3	721.2	6820	5.23	. 03	4.275	$6 \ldots 5$
33	p...................	722.0	58 -	4.45	. 04	...	5
34	64.	722.5	6139	5.13	. 0.3	5.239	5
35	$6_{5} \ldots$.	723.0	6151	4.97	. 04	4.281	5
36	W.B. vii. $685 \ldots .$.	725.4	7241	5.81	0.04	4297	6
37	68	727.3	7356	5.21	. 05	4.297	$6 \ldots 5$
38	...	727.6	5752	1.53	.05	...	2...I
39		729.2	625^{2}	4.37 .	. 09	...	$4 \cdots 5$
40	70.	731.3	544^{2}	5.82	. 04	4.275	6
4 I	0.	732.0	5510	5.02	0.09	...	5...6
42	74	733.1	724	5.20	. 09	4.275	6
43	σ................	736.4	6051	4.06	. 05	4.305	5
44	7_{6}.	$737 \cdot 4$	6357	5.34	. 04	4.297	6
45	к....................	737.8	6520	3.63	. 07	2.311	+..3

No. 23. Spectrum III a !!! (Vogel.)
No. 25. $\Sigma_{\text {I }}$ 6бI, Dist. 10". Observed as one mass. Probably variable. (See Ast. Nach., xciv. p. 243.)

No. 26. Σ io66, Dist. $6^{\prime \prime}$. Observed as one mass.
No. 33. 4.45 is the mean of two determinations ($4.50,4.40$) made on 1882.305 with twenty extinctions, and on I 88.239 with six. H.P. $=4.15$.
No. 38. इifio, Dist. 6". Binary. Observed as one mass. 1.53 is the mean of seven accordant determinations made on as many nights; four at Oxford and three at Cairo, involving eighty extinctions, between 1882.979 and 1883.205 . H.P. $=1.56$.
No. 39. Birm., No. i8ı. The star is orange. 4.37 is the mean of two identical determinations, each depending on twenty extinctions, made 1882.3 II and I882.316.
No. 4I. 5.02 is the mean of two determinations (5.01, 5.03) made on 1884.297 with twenty extinctions, and on 1885.239 with six. H.P. $=4.67$.
No. 42. Spectrum III a ! (Vogel.)
No. 43. Birm., No. i83. The red colour is not salient.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	$\begin{array}{\|c} \text { Adopted } \\ \text { Zenithal } \\ \text { Magnitude. } \\ \text { Potaris } \\ 2.05 . \end{array}$	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
46	β.................	738.6	6142	1.36	0.07	\cdots	1... 2
47	81	739.8	7113	5.34	. 05	4.297	$6 . . .5$
48	π..................	740.4	${ }_{5}^{6} \quad 19$	5.55	. 09	4.275	6
49	¢	746.8	6257	4.97	. 03	4.297	5
50	$85 . \ldots \ldots \ldots \ldots \ldots$	749.2	6949	5.19	.05	$4 \cdot 28 \mathrm{I}$	$6 \ldots 5$
51	χ.................	756.8	6154	5.09	0.04	4.297	5
52	ψ	$8 \quad 6.3$	60 I	5.65	. 08	4.297	6

No. 46. $\Sigma 5^{11}$. The very faint distant companion not observed. Birm., No. IS8. The red colour is not salient. 1.36 is the mean of seven accordant determinations, made on as many nights; four at Oxford and three at Cairo, involving eighty extinctions, between 1882979 , and 1883.206 . H.P. $=1.12$.
No. 48. $\Sigma_{1135, ~ D i s t . ~ 22 " . ~ T h e ~ b r i g h t e r ~ s t a r ~ o b s e r v e d . ~}^{\text {2 }}$
No. 51. Called 6 Cancri in B.A.C. and Nautical Almanac.
No. 52. Called I_{5} Cancri in B.A.C.

HERCULES.

I	P. xv. $153 \ldots \ldots$	15.34 .7	$4^{2} 50$	5.93	0.02	+.54.3	6
2	χ.................	1548.8	4715	4.48	. 07	2.376	$4 \cdots 5$
3	2....................	$15 \quad 51.0$	$4^{6} 33$	5.63	. 04	4.541	6
4	4....................	1551.8	$47 \quad 7$	5.92	.05	4.553	6
5	$5(r) \ldots \ldots \ldots \ldots$	1556.3	7153	5.24	.08	4541	$6 \ldots 5$
6	v....................	${ }^{15} 59.4$	43.39	4.60	0.03	2.376	$4 \cdots 5$
7	W.B. xv. ${ }^{1569} \ldots$	$16 \quad 2.6$	6753	6.48	. 04	+.560	6
8	к...................	$16 \quad 3.1$	7240	5.04	.05	4.541	5
9		$\begin{array}{lll}16 & 5.3\end{array}$	4447	4.10	. 10	2.376	4
10	P. xri. $12 \ldots$.	$16 \quad 6.5$	733	6.05	.04	4.563	6
11	10.	$16 \quad 7.0$	66 I3	6.00	0.08	4.553	6
12	9...................	$16 \quad 7.8$	844^{2}	5.88	. 04	4.553	6
13	B.A.C. $5452 \ldots$	$\begin{array}{llll}16 & 15.3\end{array}$	6836	6.28	.05	4553	6
14	B.A.C. 5460	1616.2	502	5.71	. 07	4.560	6
15	т...................	1616.4	4326	3.63	.13	...	$3 . .4$

No. 1. B.A.C. assigns this star to Boötes.
No. 7. Birm., No. 369 . The red colour is not salient.
No. 8. $\Sigma 2010$, Dist. 31". The brighter star observed.
No. 15.3 .63 is the mean of two determinations ($3.55,3.7 \mathrm{I}$) made on 1882.305 with twenty extinctions, and on 1885.333 with six.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & \text { 1890. } \end{aligned}$	$\begin{gathered} \text { Adopted } \\ \text { Zenithal } \\ \text { Magnitude. } \\ \text { Yolaris } \\ 2.05 . \end{gathered}$	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		1. m.	- ,				
16	γ.................	1617.1	7035	3.56	0.08	2.387	3
17	21.	$\begin{array}{llll}16 & 18.7\end{array}$	8248	5.94	. 04 -	4.560	6
18	23	16 18.7	5725	6.15	. 04	4.553	6
19	ω	$16 \quad 20.3$	7543	4.70	. 08	4.541	5
20	25	1621.5	$5^{2} 21$	5.63	. 06	4.543	$6 . . .5$
21	30 (g)	$16 \quad 25.0$	4753	5.14	0.09	4.560	5... 6
22	β................	1625.5	6816	2.67	.06	2.387	2...3
23	B.A.C. 55^{27}......	1625.8	6917	4.91	. 04	4.553	6
24	28 (n)	1627.2	$8+15$	5.70	. 08	4.560	6
25	29 (h)	1627.5	7816	5.18	. 0.3	4.541	5... 6
26	W.B. xvi. 840 ...	$16 \quad 28.7$	$4+5$	5.52	0.08	4.56 .3	6
27	σ \% \quad.	1630.6	4720	4.06	. 05	2.376	4
28	B.A.C. 5568	1633.0	4.310	6.07	. 06	+.560	6
29	3^{6}.................	1635.1	8535	6.69	. 09	4.560	6
30	37	1635.2	8534	5.80	. 07	+.560	
31	42	1635.8	$40{ }^{1}$	4.95	0.06	4.543	$5 \cdots 4$
32	ζ.	${ }_{16} 637.2$	5812	2.64	. 06	2.376	$3 . . .2$
33	η.................	1639.1	5052	3.60	. 08	2.376	3
34	P. xvi. 177. .	1639.8	5546	5.91	. 08	$4 \cdot 566$	6
35	B.A.C. 5620	$16+0.4$	74	5.75	. 06	4.563	6

No. 16. The faint distant companion not observed. Gilliss suggests variability. (See Ast. Obs., p. 667.) Spectrum I a! (Vogel.) A second determination on 1885.333 with six extinctions, gave the magnitude 3.66. H.P. $=3.83$.

No. 17. Spectrum I a! (Vogel.)
No. 19. Called 51 Serpentis. (See Introd. to B.A.C., p. 75.) Spectrum I a! (Vogel).
No. 21. Birm., No. 382. The star is yellow or slightly orange. Baxendell detected variability in 1857 from 5.0 to 6.2 mag. Period irregular.
No. 22. Birm., No. 383. The red colour is not salient.
No. 24. Called 11 Ophiuchi. (See Introd. to B.A.C., p. 75.)
No. 26. $\Sigma 2063$, Dist. $16^{\prime \prime}$. Observed as one mass.
Nos. 29 and 30. These stars form $\Sigma 31^{\mathrm{I}}$, Dist. $69^{\prime \prime}$.
No. 30. Spectrum Ia! (Vogel.)
No. 31. $\Sigma 2082$, Dist. 22" . The brighter star observed.
No. 32. $\Sigma 2084$, Binary. Period 35 years. Observed as cne mass.
No. 35. Spectrum III a! (Vogel.)

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	Date, $1880+$	Mag. Argel. Uran.
		h. m.	- ,				
36	43	1640.6	8113	5.74	0.08	$4 \cdot 541$	$6 . .5$
37	45	1642.3	8433	5.43	. 03	4.541	6
38	B.A.C. $5^{647} \ldots$	1644.4	7632	6.13	. 07	4.563	6
39	47	1645.0	8234	5.49	. 01	4.541	$6 . . .5$
40	52.	1646.4	4349	5.02	. 02	$4 \cdot 549$	$4 \cdots 5$
4^{1}	50.	1646.4	60 I	6.04	0.05	4.563	6
42	49	1647.1	7451	6.51	. 03	$4 \cdot 566$	6
43	51	1647.2	6510	5.02	. 01	4.543	6
44	53	1648.8	587	5.43	. 05	4.563	5
45	W.B. xvi. $1513 \ldots$	1650.1	6850	5.58	. 09	$4 \cdot 54{ }^{1}$	6
46	54	1650.5	7123	5.29	0.07	$4 \cdot 54{ }^{1}$	6
47	¢...................	1656.1	5855	3.85	. 09	...	$3 \cdots 4$
4^{8}	W.B. xvi. 1688 ...	1656.3	6712	5.92	. 06	4.563	6
49	59	1657.6	$56 \quad 16$	5.21	. 08	$4 \cdot 5+3$	5
50	W.B. xvi. 1735 ...	1657.8	6420	6.21	. 06	4.563	6
51	P. xvi. 279........	1658.1	7545	5.35	0.03	4.560	5
52	P. xvi. 28,3........	1658.6	7614	6.20	.07	4.566	6
53	P. xvi. $285 \ldots \ldots$.	1658.9	7616	8.28	.09	4.566	
54	P. xvi. 292........	16 59.6	7015	6.08	. 02	4.566	6
55	W.B. xvi. 1807 ...	1659.9	553	5.96	. 07	$4 \cdot 5^{66}$	6
56	60.	$17 \quad 0.3$	$77 \quad 6$	4.95	0.03	4.543	5
57	W.B. xvi. 1844 ...	$17 \quad 1.5$	6746	6.09	.05	4.579	6
58	P. xrii. 3	174.1	5355	5.58	. 03	4.549	5
59	B.A.C. 5790	174.2	4920	6.09	. 05	4.563	6
60	W.B. svii. II4 ...	176.0	$49 \quad 5$	5.33	. 10	4.549	5

No. 36. Birm., No. 3^{87}. The star is slightly orange. Double. The distant faint companion not observed. Spectrum II a !! (Vogel.)
No. 38. \sum_{2103}, Dist. $5^{\prime \prime} \cdot 5$. Observed as one mass. Spectrum I a! (Vogel.)
No. 33. Spectrum I a! (Vogel.)
No. 46. Spectrum II a! (Vogel.)
No. 47. 3.85 is the mean of three accordant determinations involving forty extinctions made on $1882.376,1882.3^{9} 7$, and 1882.738 .
No. $5^{\text {I }}$. Spectrum III a! (Vogel.)
Nos. 5^{2} and 53. These stars form $\Sigma 33^{1}$, Dist. 290".

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	$\begin{gathered} \text { Adopted } \\ \text { Zenithal } \\ \text { Magnitude. } \\ \text { Polaris } \\ \text { 2.05. } \end{gathered}$	Averace Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
61	63	1765	6538	6.20	0.08	$4 \cdot 579$	6
62	a	178	7525	3.02	. 04	2.387	Var.
63	ס...................	$\begin{array}{lll}17 & 10.5\end{array}$	$65 \quad 2$	3.25	. 02	$5 \cdot 333$	3
64		1711.2	534	3.60	. 05	$2 \cdot 376$	3... 4
65	68 ...,............	178	5647	5.14	. 11	$4 \cdot 543$	5
66	69	$\begin{array}{lll}17 & 1,3.9\end{array}$	5236	4.52	0.06	2.376	5
67	P. xvii. 69.	1714.0	4012	6.14	. 08	4.563	6
68	P. xrii. 64.	17814	615	6.01	. 06	4.549	6
69	W.B. xvii. 377 ...	$\begin{array}{ll}17 & 14.7\end{array}$	514	6.07	. 07	4.579	6
70	P. xvii. 68.	$17 \quad 15.5$	$7^{1} 50$	4.99	. 08	4.579	6
71	P. xvii. 71.	17815.6	6421	5.51	0.09	4.563	6
72	70.	17816.4	$65 \quad 23$	5.56	. 04	$4 \cdot 543$	6
73	72.	$\begin{array}{lll}17 & 16.5\end{array}$	5723	5.51	. 05	$4 \cdot 546$	5... 6
74	74	1717.2	4339	5.66	. 04	$4 \cdot 549$	$6 . . .5$
75	B.A.C. $5^{8} 74$.....	1718.1	4955	5.40	. 06	...	5
76	73	1719.5	$66 \quad 56$	5.94	0.05	4.566	6
77	$\rho \ldots$.	17 19.9	5245	4.35	. 07	2.376	4
78	W.B. xvii. $554 \ldots$	1720.3	5117	6.47	. 03	4.582	6
79	P. xvii. 109	1722.1	6950	5.82	. 07	4.579	6
80	W.B. x xii. $653 \ldots$	1722.7	5511	6.09	. 09	4.582	6

No. 62. $\Sigma 2140$, Dist. $4^{\prime \prime} .5$. Observed as one mass. Birm., No. 402. The colour is orange. Variable from 3.0 to 3.9 mag. Period irregular. The mean of two accordant determinations at Cairo, 1883.138 , and i883.160, each depending on ten extinctions, is 3.29 . Spectrum III a !!! (Vogel.)
No. 63. $\Sigma 3127$, Dist. 18". Observed as one mass. Birm., No. 403. The colour is not salient. The determination 1882.387 (see Memoirs R.A.S., vol. xlvii, p. 436) is rejected as erroneous.
No. 64. Birm., No. 404. The star is reddish.
No. 65. O玉 328, Dist. 4".4. Observed as one mass. Birm., No. 405. The red colour is not salient. Variability discovered by Schmidt, from 4.6 to 5.4 mag. Period 37 to 40 days.
No. 66. Suspected to be variable. A repetition of the determination of this star made on I 85.3 .33 gave 4.86 as the magnitude. H.P. $=4.94$.
No. 70. Spectrum III a! (Vogel.)
No. 75.5 .40 is the mean of two determinations ($5.43,5.37$) made on 1884.543 with twenty extinctions, and on 1885.35^{2} with six. H.P. $=5.77$.
No. 77. \quad 2161, Dist. $3^{\prime \prime} \cdot 7$ Observed as one mass.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{aligned} & \text { Date, } \\ & 1880+ \end{aligned}$	Mag. Argel. Uran.
		h. m.	- ,				
81	77	1783.8	4139	5.89	0.05	$4 \cdot 543$	6
82	λ................	$\begin{array}{ll}17 & 26.3\end{array}$	6348	4.70	. 09	\ldots	5
83	P. xsii. 143	1726.8	$5^{8} 4^{6}$	6.04	. 02	4.582	6
84	78	1727.5	6131	5.71	. 04	4.566	6
85	B.A.C. 5944	1789	4841	5.87	. 0.3	$4 \cdot 5^{82}$	6
86	P. xrii. 163	1731.2	6855	6.00	0.07	4.5^{82}	6
87	P. xvii. $176 \ldots .$.	$\begin{array}{ll}17 & 32.4\end{array}$	$59 \quad 9$	5.73	.ro	4.590	6
88	79	1733.0	6538	6.04	. 08	$4 \cdot 566$	6
89	82.	1733.7	4121	5.45	.II	4.549	6
90	P. xvii. 196	${ }^{1} 735.8$	5844	6.45	. 05	4.582	6
91	ו.....................	1736.4	435^{6}	4.11	0.12	2.376	$3 \cdots 4$
92	84	$\begin{array}{ll}17 & 38.9\end{array}$	6537	6.19	. 02	4.566	6
93	W.B. xvii. 1304...	1741.4	$5^{8} 27$	6.49	. 05	$4 \cdot 5^{82}$	6
94	W.B. xvii. $1324 \ldots$	1742.1	7213	5.62	. 07	4.590	6
95	μ.................	1742.2	6212	3.50	. 05	$2 \cdot 387$	$3 \cdots 4$
96	W.B. xvii. 1334 ...	1742.2	514	6.17	0.03	4.582	6
97	D.M. $+20^{\circ}$, No. 3570	1743.6	$69 \quad 24$	5.96	. 09	4.543	6
98	P. xvii. 255	1744.0	704^{2}	8.04	. 06	4.590	6
99	B.A.C. 60.36	1744.2	4221	8.10	. 06	$4 \cdot 54^{6}$	6
100	87	1744.3	6420	5.73	.05	...	6
101	W.B. xvii. 14,38...	1746.0	6038	8.17	0.04	...	6
102	W.B. xvii. $1433 \ldots$	1746.1	6740	6.06	. 02	4.566	6
103	88	1747.2	4135	6.41	. 11	4.582	6
104	O.A. 17589	1749.1	4318	6.36	. 07	$4 \cdot 582$	6
105	90	$1749 \cdot 7$	4958	5.20	. 10	$4 \cdot 566$	5

No. 82. 4.70 is the mean of two determinations (4.72, 4.69) made on 1882.387 with twenty extinctions, and on 1885.333 with six. H.P. $=$ 4.29. Pirm., No. 41 . The red colour is not salient.
No. 86. $\Sigma 2190$, Dist. $10^{\prime \prime}$. Observed as one mass.
No. 90. Birm., No. 416. The star is slightly orange.
No. 94. $\mathbf{\Sigma 2 2 1 5}$, Dist. < $\mathrm{I}^{\prime \prime}$. Observed as one mass. Spectrum I a! (Vogel.)
No. 95. $\Sigma 2220$, Dist. $30^{\prime \prime}$. The faint companion not observed.
No. 98. Spectrum I a! (Vogel.)
No. 100. 5.73 is the mean of two determinations ($5.71,5.75$) made on 1884.543 with twenty extinctions, and on 1885.333 with six. H.P. $=5.39$.
No. 101. 6.17 is the mean of two determinations ($6.22,6.12$) made on 1884.549 with twenty extinctions, and on 1885.35^{2} with six. H.P. $=5.66$.
No. 105. Suspected to be variable by Peirce. (See Photometric Researches, p. 140.)

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	$\begin{array}{\|c} \text { Adopted } \\ \text { Zenithal } \\ \text { Magnitude. } \\ \text { Polaris } \\ 2.05 . \end{array}$	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
106	89	1751.1	6356	5.87	0.07	4.590	6
107	W.B. xvii. $1591 .$.	1751.1	6732	5.86	. 06	4.582	6
108	θ.................	1752.5	5244	3.68	. 07	...	4
109	ξ ¢...............	${ }_{17} 753.5$	6044	3.99	. 11	2.387	$4 \cdots 3$
110	V...................	1754.3	5948	4.58	. 07	2.398	$4 \cdots 5$
111	9.3	1755.2	7315	4.47	0.08	4.526	5
112	B. $+45^{\circ}$, No. 26.35	1755.8	4431	6.24	. 06	+.582	6
113	B. $+33^{\circ}$, No. 3006	1756.5	5647	5.90	. 04	4.590	6
114	95	1756.8	6824	4.36	. 09	\ldots	$4 \cdots 5$
${ }^{115}$	B.A.C. 6109	1756.9	$4+29$	5.72	. 04	$4 \cdot 582$	6
116	B. $+33^{\circ}$, No. 3009	1757.5	$5^{6} 40$	6.32	0.06	4.590	...
117	96	${ }^{17} 57.7$	6910	5.19	. 10	+ 546	5
118	B.A.C. 6129	180.3	4132	6.16	. 07	4.582	6
119	98	1818	6747	5.68	. 09	...	6
120	W.B. xvii. $194^{1} \ldots$	$\begin{array}{ll}18 & 1.7\end{array}$	574^{6}	6.14	. 02	$5 \cdot 35{ }^{2}$	6
121	99	$18 \quad 2.9$	5927	5.21	0.07	4.582	5
122	0....................	$18 \quad 3 \cdot 3$	6115	3.67	. 11	2.398	$4 \cdots 3$
123	100 Ist star	18 3.4	6355	6.02	. 03	$4.59{ }^{\circ}$	$\} 5 . .6$
124	100 2nd star	$18 \quad 3.6$	6355	6.16	.09	$4.59{ }^{\circ}$	
125	102.................	184.0	6912	4.26	-09	...	$4 \cdots 5$
126	101.................	18 4.1	6958	5.28	0.04	+592	3
127	W.B. xviii. ${ }^{6}$...	$18 \quad 4.2$	5337	5.91	. 05	...	6
128	B.A.C. 6162	$18 \quad 4.2$	4633	4.96	. 06	4.582	5
129	O.A. 17898	184	+0 19	6.11	. 09	4.592	6
130	W.B. xriii. ${ }^{137}$...	18 6.1	5334	6.09	. 04	+ 592	6

No. 108. 3.68 is the mean of two determinations (3.66, 3.69) made on 1882.387 with twenty extinctions, and on 1885.35^{2} with six.
No. ili. Spectrum II a! (Vogel.)
No. II4. $\sum 2264$, Dist. $6^{\prime \prime}$. Observed as one mass. 4.36 is the mean of two determinations ($4.25,4.47$) made on 1882.39 with twenty extinctions, and on 1885333 with six.
No. IIS. \sum_{2277}, Dist. 28". The bright star observed.
No. II9. 5.68 is the mean of two determinations ($5.65,5.71$) made with twenty extinctions on 1884.593 , and on 1885.333 with six. H.P. $=5.38$.
No. 122. A strong suspicion of the variability of this star has been entertained by Schwab, Oudemans, and others. A second determination on 1885.352 with six extinctions gave 4.01 as the magnitude. H.P. $=3.99$.
Nos. 123 and 124. These stars form $\sum 22$ So, Dist. $14^{\prime \prime}$.
No. 125.4 .26 is the mean of two determinations (4.16, 4.36) made on 1882.348 with twenty extinctions, and on 1885.33 .3 with six.
No. 127.5 .01 is the mean of two determinations $(5.89,5.92)$ made on $1884.5 y^{2}$ with twenty extinctions, and on 1885.35^{2} with $s^{*} \times$. H.P. $=5.64$.

Reference Number	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
131	W.B. xriii. $183 \ldots$	$18 \quad 7 \cdot 7$	$5^{6} 34$	6.04	0.02	$5 \cdot 352$	6
132	10+................	$18 \quad 7.8$	5837	5.07	. 05	$4 \cdot 582$	5
13.3	Lal. 33610.	1888	4143	6.49	. 04	4.595	6
1.34	W.B. xviii. 319 ...	18 I3.1	$7^{1} 55$	6.25	. 11	4.595	6
135	105.................	$\begin{array}{llll}18 & 14.7\end{array}$	6536	5.53	. 10	4.592	6
136	106..................	$\begin{array}{lll}18 & 15.7\end{array}$	685	5.00	0.03	4.546	6
1.37	107..................	I8 16.7	6111	5.25	. 16	$4 \cdot 5^{82}$	5
138	108.................	$18 \quad 16.7$	6012	5.72	. 06	4.592	5... 6
139	B.A.C. 6241	$18 \quad 17.6$	6646	5.65	. 06	4.595	6
140	B.A.C. 6245	1818.1	7214	5.41	. 07	4.590	6
14^{1}	109.................	1819.0	6817	4.16	0.10	$5 \cdot 35^{2}$	4
142	P. xviii. 83........	1822.0	6337	6.83	. 02	4.592	6
${ }^{1} 43$	P. xviii. $84 \ldots \ldots .$.	1822.2	6337	6.01	.05	4.592	
144	P. xviii. 100	1825.0	6612	5.73	. 05	4.595	6
145	W.B. xviii. 703 ...	1826.0	739	5.80	. 07	4.595	6
146	P. xviii. $116 \ldots$	$18 \quad 28.2$	6628	5.86	0.06	4.592	6
147	W.B. xviii. $8+5$...	1830.2	7154	5.69	. 07	4.595	6
148	P. xviii. 132	1830.9	6629	5.71	. 12	4.592	6
149	W.B. xriii. $906 .$.	1832.1	7354	6.31	. 08	4.595	6
150	B.A.C. $634^{1} \ldots$	1839.9	6633	6.40	. 05	4.595	6
151	110..................	1840.9	6933	4.04	0.07	2.398	4
152	111.................	$18+2.2$	7157	4.25	. 04	2.398	$4 \cdots 5$
153	B. $+23^{\circ}$, No. 3461	1843.5	66.36	6.22	. 15	+.595	6
154	Lal. $350.32 \ldots \ldots .$.	184.3 .9	7047	6.23	. 06	4.592	6
155	112.................	$18+7.6$	6842	5.46	. 12	$+592$	5
156	113..................	1850.1	6730	4.77	0.06	2.398	$4 \cdots 5$
157	W.B. xviii. 1528	1851.1	721	5.97	. 10	4595	6

No. I32. Birm., No. 430. The star is orange.
No. 134. Spectrum I a! (Vogel.)
No. if1. The determination of IS82.39 (see Memoirs R.A.S., vol. xlvii, p. 4.37) is rejected. The observer's note is 'doubtful night, clouds and mist.' Birm., No. 440. The red colour is not salient.
Nos. 145 and I47. Spectrum I a! (Vogel.)
No. 14 8. Dirm., No. 452. The red colour is nnt salient.
No. 152. See note to No. 141. A second determination with six extinctions made on 18853.2 gave 4.39. H.P. $=4.52$. Spectrum I a !! (Vogel.)

No. If. The determination was exactly repeated on 1885.352 with six extinctions. H.P.-5.92. Spectrom I a! (Togel.)

No. 157. Lirm., No. 472. The red colour is not salient.

HYDRA.

Reference Number.	Star’s Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude Polaris 2.05 .	Average Deviation in Magnitude	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
1	ס....................	831.8	8355	4.23	0.15	...	4 $\cdots 5$
2	σ. \ldots.	833.0	8616	4.42	. 06	4.209	5
3	$\eta \ldots$.	$8.37 \cdot 5$	8612	4.42	. 08	...	5...4
4	є....................	841.0	83 II	3.55	. 10	...	3..4
5	P. viii. $167 \ldots \ldots \ldots$	841.7	9130	5.15	. 07	4.220	5
6	p...................	842.6	8345	4.66	0.11	...	5
7	If	843.8	932	5.07	. 06	4.220	6
8	15	846.2	$9^{6} \quad 46$	5.52	. 12	4.215	6
9	$\zeta \ldots$.	849.6	8338	3.42	. 10	...	3..4
10	L. 17835	856.4	903	6.00	. 08	\ldots	6
11	()	$\begin{array}{ll}9 & 0.2\end{array}$	8428	5.57	0.05	4.220	6
12	20	$9 \quad 4.2$	9820	5.63	. 05	4.229	6
13	21	97.0	9640	6.20	. 09	4.229	6
14	θ	$9 \quad 8.6$	8713	4.03	. 07	2.300	4
15	23.	911.3	9554	5.64	. 12	4.215	6
16	24................	911.3	$98 \quad 17$	5.40	0.03	4.229	6
17	27	9 15.1	$99 \quad 5$	5.01	. 06	4.229	6
18	28	919.9	9439	5.72	. 12	4.215	6
19	a	922.2	98 I I	2.22	. 04	...	2
20	B.A.C. 3226	922.3	9535	5.39	. 04	4.231	6

No. 1. 4.23 is the mean of two determinations (4.09, 4.37) made on 1882.300 with twenty extinctions, and on I 883.207 with ten. Spectrum I a! (Vogel.)
No. 2. Slectrum II a ! (Vogel.)
No. 3. 4.42 is the mean of two determinations (4.47, 4.37) made on 1883.300 with twenty extinctions, and on 1885.206 with six. H.P. $=4.17$.
No. 4. \sum_{1273}, Dist. 3".4. Binary. Observed as one mass. 3.55 is the mean of two determinations ($3.58,3.51$) made on 1882.300 with twenty extinctions, and on 1883.207 with ten.
No. 6. 4.66 is the mean of two determinations (4.63, 4.69) made on 1884.209 with twenty extinctions, and on 1885.266 with six. H.P. $=4.31$. Spectrum I a ! (Vogel.)
No.9. 3.42 is the mean of two determinations (3.44, 3.40) made on 1882.300 with twenty extinctions, and on 1883.207 with ten.
No. io. 6.00 is the mean of two determinations ($5.93,6.07$) made on I 884.229 with twenty extinctions, and on 1885.266 with six. H.P. $=5.61$
No. 11. Called red in Uranometria Argentina.
No. If. The faint distant companion not observed.
No. 19. Birm., No. 223. The colour is reddish. 2.22 is the mean of six accordant determinations, made on as many nights; two at Oxford and four at Cairo, involving sixty extinctions between 1883.094 and $1>83.207$.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
21	$\tau^{\text {I }}$. \ldots.	923.6	9217	4.99	0.02	4.209	5
22		926.4	9042	4.81	. 04	4.231	5
23	33	929.1	9525	5.76	. 09	4.215	6
24	l....................	934.2	90.39	4.36	. 0.3	4.231	$4 \cdots 5$
25	L. 20850	1044.2	9916	6.45	. 05	4.220	6

No. 2\%. The distant companion not observed.
No. 24. Birm., No. 226. The red colour is not salient. Spectrum II a !! (Vogel.)

LACERTA.

1	B.A.C. 7681.....	$\begin{array}{lll}21 & 58.5\end{array}$	4553	5.75	0.09	5.015	6
2	P. xxi. 405	$\begin{array}{ll}22 & 1.5\end{array}$	4531	5.31	. 03	5.015	6
3	B.A.C. $77+6$.....	226.9	3943	5.65	. 02	5.025	5...6
4	P. xxii. $3^{6} \ldots \ldots .$.	$22 \quad 9.2$	5050	4.86	. 01	5.031	5
5	R. $5^{61} 4 \ldots \ldots \ldots \ldots$	$22 \quad 9.2$	456	5.96	. 04	5.025	6
6	1.....................	2211.2	5248	4.64	0.06	...	5..4
7	2.....................	2216.5	44 I	4.65	. 06	2.675	5...4
8	3..................	2219.2	3819	4.50	. 05	2.675	4.5
9	4....................	22200	415	4.86	. 12	5.031	5
10	W.B. $x \times$ ii. $467 \ldots$	2222.6	5045	6.02	.05	5.025	6
11	5..................	2224.9	4251	4.48	0.09	5.031	5
12	6....................	2225.7	4726	4.72	. 02	5.017	5
13	7....................	2226.8	4017	4.15	. 04	2.675	4
14	B.A.C. 7858	2227.6	5047	5.80	. 01	5.017	6
15	P. xxii. 163	2231.0	5057	5.67	. 01	5.031	6
16	8....................	2231.0	5056	5.31	0.09	5.031	
17	9...................	2232.9	391	4.90	. 02	5.017	5
18	10	$2234 \cdot 3$	$\begin{array}{lll}51 & 31\end{array}$	5.18	. 05	5.025	5
19	L. 4434^{2}........	2234.6	5259	5.90	. 06	5.031	6
20	II	2235.7	4618	4.80	. 07	5.017	5

No. 1. B.A.C. assigns this star to Cygnus.
No. 4. Birm., No. 607. The colour is orange. Secchi suggests variability. (See Prodromo.) No. 6. Birm., No. 608. The star is slightly red. 4.64 is the mean of two determinations ($4.67,4.60$) made on 1882.675 with twenty extinctions, and on 1885.485 with ten. H.P. $=4.14$. No. 8. Birm., No. 61I. The red colour is not salient.
No. 11. Birm., No. 612. The star is of a deep orange colour.
Nos. 15 and 16. These stars form $\Sigma 2922$, Dist. $22^{\prime \prime} .5$.
No. 20. Birm., No. 616. The red colour is not salient.

Reference Number.	Star's Designation.	$\begin{aligned} & \text { R.A. } \\ & 1890 . \end{aligned}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05 .	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
21	12	2236.5	5021	5.28	0.01	5.025	6
22	13	2239.2	4845	5.14	. 01	5.031	6
23	14	2245.4	4838	5.80	. 10	5.017	6
24	15	22 47.1	4716	5.28	. 07	5.025	6
25	B.A.C. 7983	2248.8	4550	5.75	. 10	5.031	6
26	B.A.C. 7984	2249.0	5013	5.96	0.01	5.031	6
27	W.B. xxii. $112 \mathrm{I} . .$.	2249.9	5330	5.86	. 04	5.025	6
28	W.B. xxii. I 33 ...	2250.6	54 I3	6.06	. 02	...	6
29	16	2251.4	4859	5.84	. 01	5.031	6
30	B.A.C. 7995	2251.6	$405^{\text {I }}$	5.22	. 02	5.025	6
31	B.A.C. 7999	2252.2	4154	5.30	0.07	5.031	6
32	R. 5895.	2252.5	5115	6.11	. 01	5.025	6

No. 24. Birm., No. 622. The red colour is not salient.
No. 28. 6.06 is the mean of two determinations (6.01, 6.12) made on 1885.025 and 1885.485 , each with ten extinctions. H.P. $=\mathbf{5 . 6 0}$.
No. 29. $\Sigma 2960$, Dist. $64^{\prime \prime}$. The larger star observed. Birm., No. 624. The red colour is not salient. Variable?

LEO.

1	к....................	918.2	6.321	4.69	0.05	5.322	5
2	ω.................	922.6	8028	5.53	. 05	4.327	6
3	3	922.6	8120	6.05	. 04	4.330	6
4	λ................	925.5	6633	4.49	. 07	2.357	5..4
5	ξ................	926.0	7813	5.22	. 03	4.330	6
6	6	926.1	7948	5.55	0.04	4.327	6
7	P. ix. 124.	930.2	5821	5.66	. 03	$4 \cdot 330$	6
8	8....................	931.0	734	6.18	. 05	4.330	6
9	P. ix. i45	935.1	58 I3	6.30	. 05	$4 \cdot 338$	6
10		$935 \cdot 3$	7936	3.75	. 08	2.31 I	$4 \cdots 3$

No. I. The determination of 1882.357 (see Memoirs R.A.S., vol. xlvii, p. 438) is rejected as apparently erroneous.
No. 2. $\Sigma_{\text {I }} 356$, Dist. $I^{\prime \prime}$. Binary. Period III years. Observed as one mass.
No. 4. Birm., No. 22.4. The star is slightly red.
No. 6. Σ Unnum., Dist. $38^{\prime \prime}$. The faint companion not observed. Birm., Add. I, No. $4 \mathbf{I}$. The colour is yellow.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	Date, $1880+$	Mag. Argel. Uran.
		h. m.	- ,				
II		937.1	5931	5.69	0.04	4.330	5
12	ψ.................	$937 \cdot 7$	7529	5.77	. 03	4.3.38	6
13	¢	939.6	6543	3.39	. 04	2.344	3
14	18	940.5	774^{1}	6.06	. 0.4	4.327	6
15	22.	945.6	65	5.26	. 04	4.330	5
16	μ.................	946.5	6328	3.92	0.05	2.344	4
17	v.................	952.3	$77 \quad 2$	5.38	. 0.4	4.330	5
18	P.ix. 221	953.3	595°	6.08	.06	4.3.30	6
19	π..................	$954 \cdot 4$	8126	5.17	. 08	4.327	5
20	P. ix. 230	956.7	6731	5.69	. 06	4.330	6
2 I	η.................	$10 \quad 1.3$	7242	3.48	0.16	...	$3 \cdots 4$
22	31.	102.1	7928	4.87	. 08	...	5
23	a	$10 \quad 2.5$	7730	1.17	. 07	...	1... 2
24	ζ................	1010.6	$66 \quad 2$	3.39	. 11	...	3
25	γ.................	1013.9	6936	2.12	. 07	\ldots	2
26	44	1019.5	80 39	6.23	0.08	4327	6
27	45.	1021.8	7941	5.78	. 07	+.338	6
28	4^{6}.................	1026.3	7518	5.76	. 04	$5 \cdot 322$	6
29	p...................	1027.0	So 8	3.96	. 10	\ldots	4
30	$4^{8} \ldots$.	1029.1	S2 29	5.02	. 06	4.327	6
31	50	103.3 .0	7.318	6.38	0.07	4327	6
32	5^{1}.................	1040.5	7032	5.96	. 0.5	4.3.4t	6
33	52.	1040.7	7515	5.75	. 04	5.322	6
34	53	1043.5	7852	5.40	. 05	434^{6}	5
35	p^{1} (ist star)	10 48.1	9133	8.16	.09	4.346	6

No. 19. Birm., No. 231. The red colour is not salient. Spectrum III a ! ! (Vogel.)
No. 21. 3.48 is the mean of two determinations ($3 \cdot 48,3 \cdot 47$) made on 1882.344 with twenty extinctions, and on 1883.097 with ten.
No. 22. Birm., No. 233. The colour is slightly orange. Spectrum II a !! (Vogel.) 4.87 is the mean of two determinations ($4.8_{4}, 4.90$) made on I882.3II with twenty extinctions, and on 1883.097 with ten.
No. 23. $\Sigma 6^{1 I}$. Spectrum I a!!! (Vogel.) 1.17 is the mean of seven determinationz, made on as many nights, fonr at Oxford and three at Cairo, involving eighty extinctions, between I 882.31 I and $\mathrm{I} 883 . \mathrm{I} 27$. H.P. $=1.42$.
No. 24. $\Sigma 18^{1}$. The distant companion $314^{\prime \prime}$ not observed. 3.39 is the mean of two determinations ($3.37,3.4^{2}$) made on 1882.344 with twenty extinctions, and on 1883.097 with ten.
No. 25. $\Sigma 1 \mathbf{1 2 4}^{24}$, Dist. 3". Binary. Period 407 years. Dirm., No. 237. The red colour is not salient. 2.12 is the mean of two determinations ($2.08,2.16$) made on 1882.357 with twenty extinctions, and on 1883.097 with ten.
No. 28. Spectrum III a! (Vogel.)
No. 29. 3.96 is the mean of two determinations (3.94, 3.9 ${ }^{8}$) made on 1882.344 with twenty extinctions, and on 1883.097 with ten.
No. 34. Spectrum I a! (Vogel.)

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	$\begin{gathered} \text { Adopted } \\ \text { Zcnithal } \\ \text { Magnitude. } \\ \text { Polaris } \\ 2.05 . \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Average } \\ \text { Deviation } \\ \text { in } \\ \text { Magnitude. } \end{gathered}\right.$	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
36	p^{1} (2nd star)	$\begin{array}{cc} \text { h. m. } \\ \text { 10 } & { }_{4} S_{8} .1 \end{array}$	$9^{1} 33$	6.00	0.11	$4 \cdot 3.46$	6
37	54.	1049.7	$6+40$	4.46	. 09	2.344	$4 \cdots 5$
38	55	1050.1	8841	6.20	. 04	4.327	6
39	P. x. 194	1050.4	$67 \quad 4$	6.32	. 06	4.338	6
40	58.	$10 \quad 54.9$	8547	5.01	. 06	$5 \cdot 322$	5
41	59	1055.1	8318	5.13	0.03	4.3 .30	5
42	61	1056.2	$\begin{array}{ll}91 & 5.3\end{array}$	5.06	. 04	4.344	5
4.3	60.	10.56	6913	4.56	. 07	2.357	$4 \cdots 5$
4	62.	10.58 .0	8924	6.26	. 02	+.3.38	6
45	χ................	1059.4	$82+$	4.98	. 08	...	5
46	$6_{5} \ldots \ldots$.	118	$87 \quad 27$	5.81	0.03	4.330	6
47	$6_{7} \ldots \ldots \ldots \ldots \ldots$	118	$6+45$	5.74	. 08	$4 \cdot 3+4$	6
48	69	1181	S9 28	5.52	. 04	4.344	5
49	¢	1188	6852	2.55	. 03	$2 \cdot 357$	$2 \ldots 3$
50	P. xi. 12.	$\begin{array}{ll}11 & 8.3\end{array}$	8120	6.09	. 01	4.346	6
51	$\theta \ldots \ldots \ldots \ldots \ldots$	1188	7358	3.44	0.07	2.357	$3 \cdot 4$
52	72	11 9.4	6618	5.03	. 02	4.376	5
5.3	73.1.	1110.1	$76 \quad 6$	5.74	. 05	$4 \cdot 3+4$	6
54	¢	1111.1	933	4.31	. 04	2.360	5...4
55	75	1111.6	8723	5.63	.05	$4 \cdot 327$	6
56		$\begin{array}{lll}11 & 15.5\end{array}$	8322	4.15	0.08	...	4
57	८	11188	$78{ }^{2}$	4.18	. 05	2.360	4
58	79	$\begin{array}{lll}11 & 18.4\end{array}$	8759	5.45	. 04	4.327	6
59	P. xi. 60.	$\begin{array}{lll}11 & 19.3\end{array}$	775^{8}	6.03	. 06	$4 \cdot 344$	6
60	81................	11199	$7^{2} 5^{6}$	5.77	. 03	...	6

No. 37. Σ_{1487}, Dist. $6^{\prime \prime}$. Observed as one mass.
No. fo 2. The observation of 1882.357 (see Memoirs R.A.S., vol. xlvii, p. 439) is rejected. See note to No. 1, Leo. Spectrum II a! (Vogel.)
No. 4i. Spectrum I a! (Vogel.)
No. 42. Spectrum III a! (Vogel.) Called red in the Uranometria Argentina.
No. 43. Birm., No. 251. The red colour is not salient.
No. 45.4 .98 is the mean of two determinations ($5.00,4.96$) made on 1882.357 with twenty extinctions, and on 1883.097 with ten.
No. 47. $=53$ Leonis Minoris. (See Introduction to B.A.C., p. 75.)
No. 48. Spectrum I a !! (Vogel.) No. 51. Spectrum I a!!! (Vogel.)
No. 52. Birm., No. 256. The red colour is not salient.
No. 54. Gould suspects variability. See Uranometria Argentina, p. 337.
No. 55. Spectrum III a! (Vugel.)
No. 56. 4.15 is the result of two identical determinations made on 1882.360 with twenty extinctions, and on 1883.097 with ten.
No. 57. $\Sigma 1536$, Dist. $3^{\prime \prime}$. Observed as one mass.
No. 60. 5.77 is the mean of two determinations ($5.73,5.80$) made on 1884338 with twenty extinctions, and on 1885.322 with six. H.P. $=5.47$.

$\begin{gathered} \text { Refer. } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{aligned} & \text { Date, } \\ & 1880+ \end{aligned}$	Mac. Arcel. Uran.
		h. m.	- ,				
61	т....................	1122.3	8632	5.18	0.06	4.327	5
62	$8_{5} \ldots \ldots$.	1124.0	7359	6.00	.08	$4.3+6$	6
6.3	86		$7 \bigcirc 59$	6.03	. 09	...	6
6.	$8_{7} \ldots \ldots$.	1128	9224	5.09	. 0.4	$4 \cdot 3+4$	5
65	88	II 26.1	75 I	6.25	. 03	$4 \cdot 3+4$	6
66	89	II 28.8	8620	6.09	0.04	\ldots	6
67	90	1129.0	$7^{2} 36$	5.90	. 05	$4 \cdot 3: 6$	6
68	L. 21984	I 130.0	$7_{78}^{8} 29$	6.48	. 0.3	$5 \cdot 322$	6
69	P.xi. Ifi	11130.5	6136	5.82	. 05	$4 \cdot 327$	6
70	v.....................	1131.3	9013	4.32	. 06	$4 \cdot 34^{6}$	$5 \cdots 4$
71	92	11.35 .1	682	5.25	0.06	+.3+4	5
72	9.3	1142.3	6910	4.39	. 05	2.360	+ $\cdots 5$
73	β...............	I $1+3 \cdot 5$	7449	2.07	. 02	...	2
74	B.A.C. 3997	$\begin{array}{ll}11 & 4.3 .6\end{array}$	739	5.89	. 05	4.346	6
75	B.A.C. $4005 \ldots$	$\begin{array}{ll}11 & 45\end{array}$	776	6.00	. 02	4.344	6
76		1150.0	734	5.51	0.03	$4 \cdot 346$	6

No. 61. E 19 ', Dist. $95^{\prime \prime}$. The bright star observed.
No. 62. Spectrum II a! (Vogel.)
No. 63.6 .03 is the mean of two determinations ($6.01,6.04$) made on $188_{4.34} 6$ with twenty extinctions, and on ISS5.322 with six. H.P. $=\mathbf{5 . 7 2}$.
No. 64. Birm., No. 261. The red colour is not salient.
No. 65. $\quad \Sigma{ }_{1547}$, Dist. $\mathrm{I}_{5}{ }^{\prime \prime}$. Observed as one mass.
No. 66. 6.09 is the mean of two determinations (6.07 , 6.11) made on $188+.327$ with twenty extinctions, and on 1885.322 with six. H.P. $=5.73$.
No. 67. Σ 1552. Triple. The close pair $3^{\prime \prime} \cdot 5$ distance, obserred as one mass.
No. 68. Spectrum I a! (Vogel.)
No. 69. Σ^{1555}, Dist. I". Observed as one mass. B.A.C. assigns this star to Ursa Major.
No. 7o. Called red in Uranometria Argentina.
No. 73. Birm., No. 267. The red colour is not salient. Suspected to be variable by Sir W. Herschel and Schmidt. (See Ast. Nach., xxi, p. IIo.) Spectrum I a!!! (Vogel.) 2.07 is the mean of five accordant determinations, made on as many nights, three at Oxford and two at Cairo, involving sixty extinctions, between $\mathrm{I} \int 2.360$ and $1883.127 . \mathrm{H} . \mathrm{P} .=2.23$.
No. 76. Spectrum I a! (Vogel.)

LEO MINOR.

Nos. 2 and 10. The determinations of 1882.368 (see Memoirs of R.A.S., vol, xlvii, p. 4.40) are rejected. The meteorological conditions were variable.
No. 18. The B.A.C. assigns this star to Leo.
No. 21. Identification of Argelander's star doubfful.

No. 2. 4.73 is the mean of two determinations (4.83, 4.63) made on 1882.371 with twenty extinctions, and on 1885.30 I with six. H.P. $=4.33$.
No. 7. $\Sigma 948$, Triple. Distances $\mathrm{r}^{\prime \prime} .4$ and $8^{\prime \prime} .5$ respectively. Observed as one mass.
No. 9. $\Sigma 95^{8}$, Dist. $5^{\prime \prime}$. Observed as one mass.
No. 10. $\Sigma 9^{6} 3$, Dist. < $I^{\prime \prime}$. Observed as one mass.
No. 16. Σ Io62. Triple. The closer components, Dist. $14^{\prime \prime}$, observed as one mass.
No. 17. 4.88 is the mean of two determinations ($4.83,4.94$) made on 1885.250 and on I 885.301 , each with six extinctions. H.P. $=4.57$.
No. 23. 5.50 is the mean of two determinations $(5.57,5.44)$ made on 1885.247 and on 1885.301 , each with six extinctions. H.P. $=5.20$.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 \text {. } \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	$\begin{gathered} \text { Adopted } \\ \text { Zenithal } \\ \text { Magnitude. } \\ \text { Polaris. } \\ 2.05 . \end{gathered}$	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
26	26	746.7	429	5.66	0.07	5.250	6
27	27	$8 \quad 0.2$	3810	4.99	. 04	2.371	$5 \cdots 4$
28	B.A.C. 2704	8 I.I	3126	5.94	. 03	5.283	6
29	R. 2101.	$8 \quad 4.1$	33 I3	5.61	. 11	5.280	$6 . . .5$
30	29.	88.7	305	5.52	. 05	$5 \cdot 247$	6
31	30	811.6	3155	5.86	0.02	5.283	6
32	31	815.2	4627	4.58	. 06	5.280	5
33	P. viii. 40	815.5	3625	5.67	. 12	5.283	6
34	33	827.7	5312	5.72	. 01	5.193	6
35	34	$833 \cdot 4$	4347	5.60	. 10	5.280	6
36	35	844.5	$45 \quad 52$	5.41	0.03	5.28 .3	6
37	P. viii. 202........	849.4	4357	6.10	. 05	5.280	6
38	36	96.6	4620	5.10	. 06	5.193	5
39	38	912.0	5243	3.89	. 10	2.371	4
40	40.	914.4	558	3.16	. 07	\ldots	$3 \cdots 4$
41	P. ix. 115	928.2	4953	4.91	0.01	5.193	5
42	42	931.5	$49 \quad 16$	'5.33	. 13	5.193	6
43	43	935.2	4944	5.56	. 02	5.193	6

No. 28. B.A.C. assigns this star to Camelopardalus. Birm., No. 196. The red colour is not salient.
No. 31. B.A.C. assigns this star to Camelopardalus.
No. 39. Σ 1334, Dist. $3^{\prime \prime}$. Observed as one mass.
No. 40. $\Sigma 1342$. The faint companion, dist. 18 " , not observed. Birm., No. 220. The colour is orange. 3.16 is the mean of two determinations (3.13, 3.19) made on 1882.371 with twenty extinctions, and ou 1885.301 with six.

LYRA.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Reference Number. \& Star`s Designation. \& $$
\begin{gathered}
\text { R.A. } \\
1890 .
\end{gathered}
$$ \& \[
$$
\begin{aligned}
& \text { N.P.D. } \\
& 1890 .
\end{aligned}
$$

\] \& | Adopted |
| :--- |
| Zenithal Magnitude. Polaris 2.05. | \& | Average |
| :--- |
| Deviation in Magnitude. | \& \[

$$
\begin{gathered}
\text { Date, } \\
1880+
\end{gathered}
$$

\] \& | Mag. |
| :--- |
| Argel. |
| Uran. |

\hline \& \& h. m. \& - , \& \& \& \&

\hline 1 \& B.A.C. 6193 \& 189 \& 5116 \& 6.01 \& 0.07 \& 4.756 \& 6

\hline 2 \& B.A.C. $6203 \ldots .$. \& 1812.2 \& 4753 \& 5.66 \& . 03 \& \ldots \& $6 . .5$

\hline 3 \& B.A.C. 6218 \& $\begin{array}{lll}18 & 13.6\end{array}$ \& 497 \& 5.96 \& .06 \& 4.756 \& 6

\hline 4 \& κ.................. \& 1816.0 \& 5359 \& 4.54 \& . 0.4 \& 2.656 \& 5 $\cdots+4$

\hline 5 \& μ................. \& 1820.6 \& 5033 \& 5.15 \& .05 \& 4.74^{6} \& 5... 6

\hline 6 \& \& $18 \quad 21.8$ \& 6014 \& 5.78 \& 0.08 \& 4.768 \& $6 \ldots 5$

\hline 7 \& W.B. xviii. $794 \ldots$ \& 1828.7 \& 5931 \& 5.62 \& . 04 \& \ldots \& $6 \ldots 5$

\hline 8 \& W.B. xxiii. $89+\ldots$ \& 1831.3 \& 5538 \& 5.85 \& . 06 \& 4.780 \& 6

\hline 9 \& W.B. xviii. $93+\ldots$ \& 1832.6 \& $5^{6} 37$ \& 5.52 \& .06 \& 4.756 \& $6 \ldots 5$

\hline 10 \& a \& 1833.2 \& 5 L 19) \& + 0.86 \& . 05 \& ... \& 1

\hline 11 \& L. $3+^{853}$........ \& 1839.8 \& 5^{811} \& 5.72 \& 0.06 \& 4.768 \& 6

\hline 12 \& ϵ. \& 1840.7 \& 5027 \& 4.39 \& . 03 \& 2.497 \&

\hline 13 \& 5 \& 18 +0.7 \& 50.30 \& 4.75 \& . 12 \& 2.497 \&

\hline + \& $\{\zeta(6) \ldots \ldots \ldots \ldots$ \& $18{ }^{1} 1.0$ \& 5229 \& 4.54 \& . 06 \& 2.497 \&

\hline 14 \& 7 \& 1841.1 \& 5230 \& 6.02 \& . 05 \& 4.756 \&

\hline 15 \& W.B. xriii. $1218 .$. \& 184.6 \& 6327 \& 5.01 \& . 08 \& 4.770 \& 5

\hline 16 \& B.A.C. 6404 \& 1842.7 \& $4^{8} 41$ \& 5.80 \& 0.07 \& 4.746 \& 6

\hline 17 \& L. 35045 \& 1843.8 \& 5822 \& 5.86 \& . 06 \& 4.750 \& 6

\hline 18 \& 8................... \& 1845.7 \& 5719 \& 5.71 \& . 05 \& 4.768 \& \ldots

\hline 19 \& v................... \& 1845.8 \& 5735 \& 5.31 \& . 05 \& 4.768 \& 5...6

\hline 20 \& W.B. xviii. 1460 \& $18+8.6$ \& $4^{8} 45$ \& 6.02 \& . 06 \& 4.756 \& 6

\hline 21 \& δ. $\ldots \ldots \ldots \ldots \ldots$ \& IS 50.7 \& 5.314 \& 4.68 \& 0.06 \& 2.497 \& 4.5

\hline 22 \& B.А.C. 6468 \& 1850.8 \& 5612 \& 6.17 \& . 05 \& 4.750 \& 6

\hline 2.3 \& B.A.C. $6473 \ldots .$. \& 1851.3 \& $4^{8} 33$ \& 5.62 \& .03 \& 4.746 \& 6

\hline 24 \& 13 \& 1852.0 \& 4612 \& 4.64 \& . 03 \& 4768 \& $5 \cdots 4$

\hline 25 \& D.M. $+38^{3}$, No. 3373 \& $1854 \cdot 3$ \& 515.3 \& 5.80 \& . 07 \& 4.756 \& 6

\hline
\end{tabular}

No. 2. 5.66 is the mean of two determinations $(5.69,5.64)$ made on 188.7 .768 with twenty extinctions, and on $188_{5.4 .4} 8$ with six. H.P. $=5.34$.
No. 7. 5.62 is the mean of two determinations $(558,5.67$) made on 188.4 .770 with twenty extinctions, and on 1885.442 with six. H.P. $=5.39$.
No. 9. $\Sigma 2349$, Dist. $7^{\prime \prime}$. Observed as one mass.
No. 10. $\Sigma 9^{\mathrm{II}}$. Observed as one mass, +0.86 is the mean of six determinations made on as many nights, two at Oxford and four at Cairo, involving seventy extinctions between 1882.680 and 1883.185 . H.P. $=+0.81$. For explanation of notation see Preface.

No. 12. $\Sigma{ }^{2} 382$, Dist. $3^{\prime \prime}$. Observed as one mass.
No. 13. $\Sigma 2383$, Dist. $2^{\prime \prime} .5$. Observed as one mass.
No. If. $\Sigma 3^{81}$, Dist. $44^{\prime \prime}$.
No. 21. Birm., No. 47°. The colour is slightly orange.
No. 24. Variability discovered by Baxendell in 1856 . Max. 4.3, Min. 4. 6 mag. Period 4^{6} days. Birm., No. 474 . The red colour is not salient.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	$\begin{gathered} \text { Adopted } \\ \text { Zenithal } \\ \text { Magnitude. } \\ \text { Polaris. } \\ 2.05 . \end{gathered}$	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
26	γ..................	1854.8	5728	3.16	0.03	2.656	$3 . .4$
27	B.A.C. 6493	1855.2	4929	5.99	. 13	4.746	6
28	W.B. xviii. 1670	1855.3	635^{6}	5.46	. 05	4.785	6
29	B.A.C. 6495	1855.5	5056	6.30	. 04	4.785	6
30	λ................	1855.9	$5^{8} \quad 1$	5.22	.05	4.756	$5 . .6$
31	W.B. xviii. 7721	1856.8	6352	5.56	0.05	4.785	6
32	P. xviii. 290	1856.4	$56 \quad 25$	6.14	. 09	4.768	6
33	16	1858.3	4313	5.20	. 02	4.746	5
34	P. xviii. 318	$19 \quad 2.3$	6133	5.48	. 07	4.785	$6 . . .5$
35	W.B. xix. $20 . . .$.	198	4845	6.09	. 07	4.756	6
36	17	$19 \quad 3 \cdot 3$	574°	5.11	0.06	4.785	5... 6
37	८....................	$\begin{array}{ll}19 & 3.4\end{array}$	$54 \quad 4$	5.31	. 12	$4 \cdot 746$	5
38	≤ 2470..........	194.8	$55 \quad 25$	6.47	. 03	4.785	6
39	ミ 2474	19 5.I	55.35	6.48	. 04	4.785	
40	D.M. $+26^{\circ}$, No. 3476	19 7.1	6354	6.82	. 0.4	4.802	
	D. M. $+26^{\circ}, \mathrm{N}$		6356	7.14	0.05	4.802	6
4			5854	5.80	. 11	4.746	6
4.3	L. 36283	199.9	5346	6.60	. 05		6
44	η...................	1910.0	5 I	4.68	. $0+$	2.497	+ $\quad .5$
45	W.B. xix. $304 \ldots$	19115	6245	6.07	. 04	4-768	6
46	D.M. 2 $^{2}{ }^{\circ}$, No. 3314	1911.6	6216	6.11	0.06	4.768	...
47	θ.................	1912.6	524	4.64	. 02	...	+..5
$4_{4} 8$	W.B. xix. $437 \quad \ldots$	1915.1	5245	6.10	. 06	4.802	6
49	W.B. xix. 4.57 ...	1916.6	$55 \quad 1$	5.98	. 0.3	$4 \cdot 768$	6
50	W.B. xix. $5^{12} \ldots$	19 18.5	5642	6.13	. 04	4.802	6
51	B.A.C. $6656 \ldots$	1920.5	$4^{6} 49$	5.79	0.09	4.746	6

No. 30. Birm., No. 479. The colour is orange.
No. $3^{6 .} \sum_{24}{ }^{61}$, Dist. $4^{\prime \prime}$. Observed as one mass.
No. 38. Dist. $3^{\prime \prime}$. Observed as one mass.
No. 39. Dist. $17^{\prime \prime}$. Observed as one mass.
No. $43 . \quad 6.60$ is the mean of two determinations ($6.6 \mathbf{1}, 6.58$) made on 1884.779 and on 1885.44 , each with six extinctions.
No. 44. $\Sigma{ }_{2} 4^{87}$, Dist. $28^{\prime \prime}$. The faint companion not observer.
No. 47. 4.64 is the mean of two determinations (4.67, 4.61) made on 1882.497 with twenty extinctions, and on 1885.448 with six. H.P. $=4.34$.
No. 5^{1}. B.A.C. assigns this star to Cygnus.

MONOCRSOS.							
	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	Date, $1880+$	Mag. Argel. Uran.
		h. m.	- ,				
1	2....................	553.9	9934	5.06	0.06	4.201	$6 \ldots 5$
2	B.A.C. 1994	$\begin{array}{lll}6 & 6.5\end{array}$	9631	4.90	. 03	4.190	$6 \ldots 5$
3	L. 11916	$6 \quad 9.2$	9432	6.06	. 04	4.190	6
4	5..................	$\begin{array}{ll}6 & 9.5\end{array}$	9^{614}	4.38	. 04	2.971	$5 \cdots 4$
5	L. II927	610.0	8541	6.70	.14	4.097	6
6		$6 \text { Io. } 1$		6.06	0.06		6
7	L. 11949	6 ± 3.6	$\begin{array}{ll} 9+ & 53 \\ 99 & 21 \end{array}$	5.61	. 0.06	$4 \cdot 196$	6
8	1. 12074	$6 \quad 14.4$		5.16	.04	4.201	6
9		$6 \quad 14.5$	9747 9254	5.00	. 04	4.196	6
10	L. 12146	615.7	8741	6.01	. 06	4.196	6
11	8....................	$6 \quad 17.9$	8521	4.89	0.06	...	5..4
12	L. 12216	618.0	813	5.83	. 0.4	4.218	6
13	D.M. $+2^{\circ}$, No. 1237	621.6	87 I	6.00	. 02	4.218	6
14	10.	622.5	$9+42$	4.82	. 05	4.204	5
15	II	623.5	$9^{6} 58$	4.32	. 06	2.971	$4 \cdots 5$
16	L. 12494	625.7	$78 \quad 23$	4.89	0.03	4.229	5
17	12	626.5	854	6.03	. 04	...	5
18	L. 12545	626.6	$98 \quad 5$	5.43	. 04	4.196	6
I9	13	627.0	8235	4.78	.04	5.206	$5 \ldots+$
20	L. $12552 \ldots$	627.0	9547	5.82	. 03	4.190	$6 . . .5$

No. 4. Birm., No. 140. The colour is orange.
No. 9. An orange star, suspected of variability by Gould and others. (See Uranometria Argentina, p. 33I.)
No. II. $\Sigma 900$, Dist. $13^{\prime \prime}$. Observed as one mass. 4.89 is the mean of six determinations made on as many nights, one at Oxford and five at Cairo, involving seventy extinctions, between 1882.97I and 1883.138. H.P. $=4.40$. Spectrum I a! (Vogel.)
No. I5. $\Sigma 9$ I9, Distances $7^{\prime \prime}$ and $10^{\prime \prime}$. Triple. Observed as one mass.
No. 16. Spectrum I a! (Vogel.)
No. 17. 6.03 is the mean of two determinations ($6.00,6.05$) made on 1884.196 with twenty extinctions, and on IS85.17+ with six. H.P. $=\mathbf{5 . 6 9}$.
No. i8. Called red in Uranometria Argentina.
No. 19. The determination of 1882.971 is rejected as erroneous. (See Memoirs R.A.S., vol. xlvii, p. 44i.)

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
21	L. 12587	628.0	9r 8	4.73	0.05	4.190	$5 \ldots 6$
22	P. vi. 71.	631.2	957	5.61	. 03	4.201	6
2.3	L. 12699	631.5	8346	5.92	. 09	4.220	6
24	${ }^{15} 5$.	634.9	80 -	4.58	. 08	4.229	4
25	L. 12907	636.7	$99^{\circ} 4$	5.91	.10	4.196	6
26	16	640.6	8118	5.45	0.05	4.204	6
27	17	641.4	8151	5.03	. 03	4.196	5
28	18	642.1	8728	4.96	.06	\ldots	5
29	L. 13100	$64^{2.4}$	9853	5.55	. 05	4.201	6
30	L. 13216	645.4	9755	6.13	. 04	4.201	6
31	P. vi. 257	$64^{6.8}$	8129	5.98	0.07	...	6
32	D.M. $+10^{\circ}, \mathrm{N}_{\text {ol }} \mathrm{I} 335$	650.4	7954	5.77	. OI	4.229	6
3.3	W.B. vi. $15^{\text {So }}$...	653.4	8232	6.29	. 09	4.204	6
34	L. 13627	656.6	9534	5.26	. 09	4.201	6
35	B.A.C. 230 +	$6.57 \cdot 3$	8042	6.12	. 08	4.190	6
36	19	657.5	$9+5$	4.85	0.04	4.196	6
37	L. 13781	$\begin{array}{ll}7 & 1.3\end{array}$	8455	5.80	. 01	4.220	6
38	L. 13799	$\begin{array}{ll}7 & 1.9\end{array}$	8221	6.06	. 03	4.204	6
39	20	$7 \quad 4.8$	$94 \quad 4$	4.94	. 04	4.190	6
40	22	76.3	9019	4.46	. 04	2.971	$4 \ldots 5$
41	B.A.C. 2373	78.6	8642	5.58	0.06	4.220	6
42	P. vii. 86	717.0	9546	6.16	. 03	4.201	6
43	25	731.8	935^{2}	4.95	. 04	4.196	5..6
44	26	736.0	9918	4.39	. 10	2.971	$4 \cdots 5$
45	L. $15{ }^{1} 36$........	740.7	9630	5.98	17	4.201	6

No. 24. $\Sigma 950$, Dist. 2".5. Observed as one mass. Variability discovered by Winnecke in 1867. Max. 4.9, Min. 5.4. Period $3^{\text {d }} .4$.

No. 25. Birm., No. 151. The red colour is not salient.
No. 27. Birm., Add. II, No. 4. The colour is slightly orange.
No. 28. 4.96 is the mean of two determinations ($5.07,4.84$) made on 1884.204 with twenty extinctions, and on 1885.206 with six. H.P. $=4.75$.
No. 31. 5.98 is the mean of two determinations ($5.96,5.99$) made on 1884.196 with twenty extinctions, and on 1885.206 with six. H.P. $=5.72$.
No. 34. Birm., Add. I, No. 31. The star is reddish.
No. 36. Suspected to be variable. (See Uranometria Argentina, p. 332.)
No. 40. Spectrum I a! (Vogel.)
No. 4I. B.A.C. assigns this star to Canis Minor.
No. 44. Birm., Add. II, No. S. The red colour is not salient.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & \text { I890. } \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	$\begin{aligned} & \text { Mag. } \\ & \text { Argel, } \\ & \text { Uran. } \end{aligned}$
		h. m,	- ,				
46	P. vii. 228........	744.9	$9^{8} 54$	5.92	0.06	4.201	6
47	L. I5.374	$747 \cdot 3$	958	5.56	. 08	4.201	ó
48	27	754.2	9323	5.18	. 09	4.201	$6 . . .5$
49	28.	755.6	915	4.82	. 09	4.196	$5 \ldots 6$
50	L. $15717 \ldots \ldots .$.	757.0	$96 \quad 2$	6.03	. 05	4.204	6
$5{ }^{1}$	इ $1183 \ldots$.	$8 \quad 1.2$	$9^{8} 56$	5.96	0.04	4.204	6
52	29	8 3.1	9240	5.32	. 06	2.971	5
53	L. 16049	$8 \quad 6.2$	9727	5.56	. 04	4.204	6
54	30	820.2	9333	3.63	. 03	2.971	$4 \cdots 3$
55	L. 16837	828.5	9147	5.41	. 09	4.204	6
56	31.	838.3	9650	4.60	0.04	$4.20+$	5

No. 47. Variable? (See Uranometria Argentina, p. 333.)
No. 49. Birm., Add. II, No. io. The red culour is not salient.
No. 51. Dist. 31". The bright star observed.
No. 52. Σ ifgo. Triple. The bright star observed.
Nos. 54 and 56 . B.A.C. assigns these stars to Hydra.
No. 55. Spectrum Ia: (Vogel.)

OP IIIUCHUS.

1	ס...................	168.6	9325	2.65	0.04	2.475	3
2	¢....................	$16 \quad 12.5$	$9+25$	3.28	. 10	2.475	3...4
3	v....................	$16 \quad 21.9$	988	4.64	. 07	$4 \cdot 505$	5
4	W.B. xvi. 394 ...	16230	S9 5	5.59	. 03	4.498	6
5	λ.................	$16 \quad 25.4$	$87{ }^{\prime}{ }^{6}$	3.81	. 09	2.475	$4 \cdots 3$
6	12	$16 \quad 30.6$	925	5.89	0.06	4.508	6
7	$\zeta \ldots$.	163.1	10021	2.78	. 06	...	3... 2
8	L. 30232	1632.1	$96 \quad 19$	6.20	. 0.4	$4 \cdot 49^{8}$	6
9	L. $3035^{1} \ldots \ldots . .$.	1635.9	88.33	7.13	. 07	4.505	6
10	14	1636.1	8837	6.03	. 0.4	$4 \cdot 505$	

No. I. Birm., No. 373. The colour is reddish.
No. 2. Birm., No. 375. The red colour is not salient.
No. 5. $\Sigma 2055$, Dist. $\mathrm{I}^{\prime \prime} .5$. Binary. Period 234 years. Observed as one mass. Spectrum I a! (Vogel.)
No. 7. 2.78 is the mean of four determinations made on as many nights at Cairo, involving forty extinctions between 1883.161 and 1883.171.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adonted Zenithal Magnitude. Polaris 2.05 .	Average Deviation in Magnitude.	Date, $1880+$	Mag. Argel. Uran.
		h. m.	- ,				
11	19	1641.6	874^{6}	6.21	0.02	$4 \cdot 498$	6
12	2I	1645.8	$88 \quad 36$	5.56	. 05	$5 \cdot 363$	6
13	23	1648.7	$95 \quad 58$	5.65	. 04	$4 \cdot 508$	6
14	ו.......................	1648.8	79.39	4.16	. 05	...	$4 \cdots 5$
15	κ..	$1652 \cdot 3$	$80 \quad 28$	3.17	. 03	2.475	$3 \cdots 4$
16	30	$1655 \cdot 3$	943	5.00	0.10	$4 \cdot 505$	5
17	P. xvi. $289 \ldots \ldots .$.	1659.9	9045	5.68	.04	$4 \cdot 498$	6
18	η.................	17 4.1	10535	.	. 09	2.475	$2 \ldots 3$
19	37	$17 \quad 7 \cdot 3$	7917	5.57	. 0.3	5.360	6
20	W.B. xvii. $143 \ldots$	1710.9	8840	5.68	. 06	4.522	6
21	$4^{\text {I }}$..................	1711.0	$90 \quad 19$	5.14	0.04	4.519	5
22	(e) B.A.C. $5^{8} 41 \ldots$	1713.5	791	5.45	. 06	4.508	5
23	θ.................	1715.3	11453 03	2.475	$3 \cdots 4$
24	P. xvii. $8_{4} \ldots \ldots . .$.	$\begin{array}{lll}17 & 18.7\end{array}$	81.3	6.05	. 04	$4 \cdot 505$	6
25	P. xvii. 94.	$\begin{array}{lll}17 & 19.6\end{array}$	7335	5.84	.05	$4 \cdot 5^{19}$	6
26	P. xvii. $95 \ldots \ldots .$.	1719.6	7418	5.91	0.04	$4 \cdot 522$	6
27	P. xvii. $99 \ldots . . .$.	1720.8	950	4.68	. 07	2.475	$5 \cdots 4$
28	B.A.C. $5894 \ldots$	1721.0	8218	6.09	. 02	$4 \cdot 519$	6
29		17 21.1	8546	4.45	. 07	2.48 .3	5
30	P. xvii. II2 \ldots....	1723.2	S9 35	5.28	. 08	$4 \cdot 505$	$5 \ldots 6$
31	B.A.C. $5910 . . .$.	$17 \quad 24.7$	9058	5.47	0.02	4.522	6
32	P. xvii. 127	1725.8	8712	5.75	. 06	$4 \cdot 519$	6
33	L. 31952	17876	9540	6.07	. 06	4.522	6
34	L. 32015	$\begin{array}{lll}17 & 28.7\end{array}$	7335	5.62	. 08	4.522	6
35	53	I7 29.4	8020	6.11	. 06	4.508	6

No. 11. $\Sigma 2096$, Dist. 22". The bright star observed.
No. 12. O Σ^{315}, Dist. $1^{\prime \prime}$. Observed as one mass. Spectrum I a! (Vogel.)
No. 14. 4.16 is the mean of two determinations (4.12, 4.19) made on 1882.475 with twenty extinctions, and on 1885.363 with six. H.P. $=4.41$.
No. 15. Birm., No. 395. The red colour is not salient. Spectrum II a !!! (Vogel.) Suspected of variability. (See Ast. Nach., xciv. p. 248.)
No. 16. Birm., No. 399. The star is reddish. Variable? (See Uranometria Argentina, p. 306.)
No. 18. The magnitude, after applying the mean absorption correction, is 2.42.
No. 19. Spectrum III a ! (Vngel.)
No. 20. Var. (U) Ophiuchi. Variability discovered by Sawyer in 1881. Period $20^{\mathrm{h}} 8^{\mathrm{m}}$.
Nos. 21, 22, and 24. Spectrun II a ! (Vogel.)
No. 23. The magnitude, after applying the mean absorption correction, is 2.83 .
Nos. 25 and 30. Spectrum I a! (Vogel.)
No. 26. $\Sigma 2160$, Dist. $4^{\prime \prime}$. Observed as one mass.
No. 29. Spectrum II a ! : (Vogel.)
No. 31. \sum_{2173}, Dist. < $1^{\prime \prime}$. Binary. Period 45 years. Observed as one mass.
No. 35. $\Sigma 34^{\mathrm{I}}$, Dist. 41". The brighter star observed. Spectrum I a ! (Vogel.)

Ophiuchus.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890, \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05 .	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
36	a	${ }_{17} 729.8$	7722	2.23	0.07	2.483	2
37	μ.................	1731.9	983	4.71	.06	2.483	$5 \cdots 4$
38	P. xvii. 203	1737.0	74 -	5.74	. 10	4.519	6
39	β................	1738.0	8523	2.92	. 06	...	3
40	6I ist star	1739.0	8722	6.34	. 04	4.522	6
41	61 2nd star	1739.0	8722	6.54	0.03	4.522	
42	L. 32408	1739.0	7532	6.14	. 04	4.522	6
43	γ.................	1742.4	8715	3.83	. 08	2.483	$4 \cdot 3$
44	v....................	1753.0	9946	3.48	. 05	2.483	$4 \cdots 3$
45	66	1754.8	8537	4.75	. 10	$4 \cdot 5^{19}$	5
46	$6_{7} \ldots$.	1755.1	874	4.35	0.03	\ldots	4
47	68	${ }^{1} 756.2$	S8 41	4.75	. 05	2.483	$4 \cdots 5$
48	т....................	17 57.1	98 II	5.08	. 04	4.519	5
49	70	1789.9	8728	4.35	. 02	...	$4 \cdots 5$
50	71	$18 \quad 2.1$	817	4.91	. 03	4.508	5
51	7^{2}................	$18 \quad 2.1$	8027	3.92	0.04	2.483	$3 . .4$
52	73	18 4.I	$86 \quad 2$	5.82	. 04	$4 \cdot 502$	6
53	W.B. xviii. 28 ...	$\begin{array}{ll}18 & 4.4\end{array}$	8653	5.86	. 03	4.522	6
54	B.A.C. 6213	$\begin{array}{lll}18 & 13.8\end{array}$	8249	5.96	. 05	4.502	6
55	74	1815	8641	5.06	. 07	4.519	5
56	L. 34021	$18 \quad 20.4$	821	6.10	0.05	4.522	6
57	W.B. xviii. 10 ...	1831.0	So 57	5.60	. 04	4.502	6
5^{8}	L. 34486	1831.0	8325	5.39	. 08	$4 \cdot 502$	6

No. 36. Spectrum I a ! ! (Vogel.)
No. 39. Birm., No. 4^{17}. The red colour is not salient. 2.92 is the mean of three accordant determinations made on 1882.483 , 1882.732 , and 1882.735 . Spectrum II a ! ! ! (Vugel.)
Nos. 40 and 41. These stars form $\Sigma 2202$, Dist. $20^{\prime \prime} .5$.
No. 42. A star of about the same brilliancy precedes nearly one minute in R.A. and of less declination, which is not given in the Uranometria Nova. Spectrum I a! (Vogel.)
No. 43. Spectrum I a! (Vogel.)
No. $4^{6 .} \Sigma$ Unnum., Dist. $55^{\prime \prime}$. The brighter star observed. 4.35 is the mean of two determinations $(4.35,4.36$) made on 1882.483 with twenty extinctions, and on 1885.363 with six. H.P. = 4.02.

No. 47. Variable? (See Uran. Argent., p. 307.) A determination made on 1885.363 with six extinctions gave the magnitude 4.69. H.P. $=4.42$. Spectrum I a ! (Vogel.)
No. 48. Σ_{2262}, Dist. $I^{\prime \prime} .5$. Binary. Period 218 years. Observed as one mass.
No. 49. $\Sigma 227^{2}$, Dist. $3^{\prime \prime}$. Binary. Period 94 years. Observed as one mass. 4.35 is the mean of two determinations ($4.40,430$) made on 1882.483 with twenty extinctions, and on I885.363 with six. H.P. = 4.11. Spectrum II a ! ! (Vogel.)
No. 51. Spectrum I a! (Vogel.)
No. 52. $\mathbf{\Sigma} 2281$, Dist. $\mathbf{I}^{\prime \prime} .7$. Observed as one mass. Spectrum I a! (Vogel.)
Nos. 53 and 55. Spectrum II a! (Vogel.)

ORION.

Reference N umber.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05 .	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		11. m.	- ,				
1	P.iv. 169	438.3	$79 \quad 3$	5.56	0.05	4.177	6
2	L. 8943	439.9	${ }_{7} 829$	5.65	. 07	4.177	6
3	L. 9037	443.0	863^{6}	6.16	. 06	4.064	6
4	$\pi^{3} \ldots \ldots$.	443.9	8314	3.62	.09	3.007	4
5	$\pi^{2} \ldots \ldots \ldots \ldots \ldots$	444.6	8117	4.86	. 09	...	$5 \cdots 4$
6	$\pi^{4} \ldots \ldots \ldots \ldots \ldots$	$445 \cdot 3$	84.35	3.99	0.17	1.976	$4 \cdots 5$
7	P. iv. 214	$445 \cdot 7$	8012	6.07	. 03	4.064	6
8	0^{1}.................	$44^{6.3}$	755^{6}	5.40	. 09	4.17	5... 6
9	π^{5}	$4+8.5$	8744	4.10	. 05	1.976	4
10	6.	$4+8.7$	7845	5.04	. 13	4.177	6
II	$\pi^{1} \ldots$.	448.8	801	5.04	0.05	4.064	5
12	P. iv. 236	$44^{8.9}$	8223	5.65	. 06	5.206	6
13	P. iv. 239	449.2	8943	5.99	.14	3.987	6
14	0^{2}	450.2	76.39	4.48	. 04	4.157	5
${ }^{5} 5$	$\pi^{6} \ldots \ldots \ldots \ldots \ldots$	452.9	$88 \quad 27$	4.74	. 07	1.976	5... 4
16	L. 9419 Ist star...	$454 \cdot 7$	86.33	6.06	0.07	4.064	6
17	L. 9419 2nd star	454.8	8633	6.60	. 10	3.987	5
18	P. iv. $276 \ldots \ldots .$.	456.2	8925	6.29	. 08	4.064	6
19	11	458.3	74 45	4.76	. 04	4.177	5
20	L. 9579. .	459.4	9312	6.00	. 07	4.064	6

No. r. B.A.C. assigns this star to Taurus. Spectrum I a! (Vogel.)
No. 4. Variable? (See Uran. Argent., p. 325.) A determination made on 1885.216 with six extinctions, gave the magnitude 3.60 . H.P. $=3.33$.
No. 5. 4.86 is the mean of two determinations (4.84, 4.89) made on 1881.976 with twenty extinctions, and on I885.216 with six. H.P. $=4.42$. Spectrum I a ! (Vogel.)
No. 6. Variable? Gilliss. (See Astron. Obs., p. 663.)
No. 8. Birm., No. 87. The colour is a decided orange. Spectrum III a !!! (Vogel.)
Nos. Io, 11, and 19. Spectrum I a! (Vogel.)
No. 12. Birm., No. 89. The red colour is not salient.
No. I4. Spectrum II a! (Vogel.)
Nos. 16 and 17. These stars form $\Sigma 627$, Dist. $21^{\prime \prime}$.
No. I8 Birm., No. 95. The colour is decidedly orange.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05 .	Average Deviation ill Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran
		h, m.	- ,				
21	14	$5 \quad 1.9$	8 I 39	5.48	0.04	4.064	6
22	16	$5 \quad 3 \cdot 3$	8019	5.43	. 06	4.064	6
23	${ }^{15} 5$.	$5 \quad 3 \cdot 4$	74 33	4.78	. 05	4.177	5..6
24	I. $9744 \ldots \ldots . . .$.	$54 \cdot 5$	9043	6.43	. 04	4.125	6
25	P. v. 1	$5 \quad 5 \cdot 4$	745	5.31	.05	4.177	6
26	L. 9764	$5 \quad 5.8$	9238	6.06	0.02	4.125	6
27	W.B. v. 64.........	56.1	896	6.03	. 03	4.125	6
28	ค.....................	$5 \quad 7.5$	8716	4.40	. 02	4.152	5
29	L. 9820.	58.9	845^{8}	6.02	. 05	4.125	6
30	β................	$5 \quad 9 \cdot 3$	9820	+1.03	. 07	...	I
31	W.B. v. 169	$5 \quad 9.3$	9132	6.21	0.03	4.14I	6
32	18	$5 \quad 9.8$	$7^{8} 47$	5.80	. 03	4.177	6
33	т....................	512.3	$9^{6} \quad 58$	3.95	. 10	...	4
34	21	$5_{5} 13.3$	8731	5.33	. 04	4.125	$6 \ldots 5$
35	L. 9973	514.2	9132	6.32	. 05	4.14I	6
36	B.A.C. $1656 \ldots$	515.6	9141	6.00	0.04	4.152	6
37	0....................	516.2	9029	4.77	. 05	$4.1{ }^{11}$	5
38	23	517.1	8634	5.20	. 09	5.206	5...6
39	29	518.7	9754	4.18	. 08	4.155	5...4
40	27	$5 \quad 18.9$	910	5.25	. 04	4.177	6
41	η.................	519.0	9230	3.66	0.09	2.073	3.. 4
42	$\psi^{1} \ldots \ldots$.	519.0	88 s 5	4.61	. 03	4.152	5
43	γ.................	519.2	8345	1.79	.06	2.073	2
44	L. 10184	519.9	10026	5.89	. 09	4.155	6
45	$\psi^{2} \ldots \ldots . \ldots \ldots \ldots$	521.1	87 -	4.63	. 04	4.141	5

No. 21. OE98, Dist. 1". Binary, Observed as one mass. Spectrum I a! (Vogel.)
No. 22. Spectrum I a! (Vogel.)
No. 24. Birm., No. 100. The red colour is not salient.
No. 27. $\Sigma 6_{52}$, Dist. $\mathbf{1}^{\prime \prime} .7$. Observed as one mass.
No. 30. $\Sigma 668$, Dist. 9". Observed as one mass. Seidel suggests variability. (See Result. Phot. Mess., p. 160.) +1.03 is the mean of seven determinations, made on as many nights, four at Oxford and three at Cairo, involving eighty extinctions between 1881.976 and 1883.127. H.P. $=+0.68$. For explanation of notation see Preface.

No. 32. Spectrum I a! (Vogel.)
No. 33. 3.95 is the mean of two determinations (3.99, 3.90) made on 1882.043 with twenty extinctions, and on 1885.189 with six. H.P. $=3.65$.
No. 34. Variable? (See Uran. Argent., p. 326.)
No. 38. $\Sigma 696$, Dist. $32^{\prime \prime}$. The brighter star observed.
No. 4i. Close double. Observed as one mass.
No. 43. Variable? (See Uran. Argent., p. 327.)

$\begin{array}{c\|} \text { Refer. } \\ \text { ence } \\ \text { Number. } \end{array}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Urau.
		h. m.	- ,				
46	L. 10264	522.4	8847	6.27	0.08	4.152	6
47	31.	524.2	91 11	5.02	. 04	4.155	5
48	L. 10328	524.2	8818	5.59	. 04	4.141	6
49	32	524.9	848	4.36	. 07	4.152	5... 6
50	33	$525 \cdot 5$	8647	5.65	. 06	4.155	6
51	ס...................	526.4	9023	2.02	0.06	2.073	2
52	v....................	526.6	9723	5.18	. 03	2.221	$5 \cdots 4$
53	L. 10437	$5 \quad 27.2$	9140	5.24	. 03	4.155	6
54	35	527.7	7546	5.64	. 07	4.177	6
55	38	528.5	8618	5.39	. 04	4.064	6
56	$\phi^{\text {I }} \ldots \ldots \ldots \ldots \ldots .$.	528.8	8035	4.55	0.09	5.137	5
57		529.1	808	3.52	. 08	3.040	$3 \cdots 4$
58	$\theta^{\text {I }} \ldots \ldots$.	529.9	9528	4.61	. 06	4.122	
59	$\theta^{2} \ldots \ldots$.	530.0	9530	5.14	. 10	4.122	
60	$4^{2} \ldots \ldots$.	530.0	9455	5.45	. 08	2.043	$5 \cdots 4$
61	ו.....................	530.1	9559	3.19	0.06	2.073	3
62	45	530.2	$9+56$	5.78	. 07	2.221	$5 \cdots 4$
63		530.6	9116	1.85	. 04	2.221	2
64	$\phi^{2} \ldots \ldots$.	530.9	8046	4.66	. 07	2.043	$5 \cdots 4$
65	L. 10600	532.1	8231	5.84	. 03	5.206	6

No. 47. $\Sigma \mathbf{7 2 5}^{25}$, Dist. $13^{\prime \prime}$. Observed as one mass. Birm., No. 11o. The red colour is not salient. Variable? (See Uran. Argent., p. 328.)
No. 49. $\Sigma \mathbf{7}^{728}$, Dist. $1^{\prime \prime}$. Observed as one mass.
No. 51. $\Sigma_{14}{ }^{1}$, Dist. $53^{\prime \prime}$. The brighter star observed. Variability discovered by Herschel in 1843. Max. 2.2, Min. 2.7. Period irregular. A determination made on 1885.189 gave the magnitude 2.29. H.P. $=$ 2.36. Spectrum I b ! (Vogel.)
No. 52. A determination made on 1885.137 gave the magnitude 4.9I. H.P. $=4.66$.
No. 54. Spectrum I a ! (Vogel.)
No. 56. The determination of 1882.22 I (see Memoirs R.A.S., vol. xlvii, p. 443) is rejected. Clouds were passing at the time of the observation.
No. 57. $\Sigma 738$, Dist. $4^{\prime \prime}$. Observed as one mass. Variable? (See Uranometria Argentina, p. 328.)

Nos. 60 and 62. Probably variable. (See Uran. Argent., p. 329.) H.P. $=4.60$ and 4.95 respectively.
No. 6I. $\Sigma{ }_{75}{ }^{2}$, Dist. $\mathrm{II}^{\prime \prime}$. Observed as one mass.
No. 63. 1.85 is the mean of two determinations (1.87, 1.84), one at Oxford involving twenty extinctions and one at Cairo involving ten.
No. 64. Birm., No. i13. The red colour is not salient. 4.66 is the mean of two determinations (4.70, 4.62) made on 1882.043 with twenty extinctions, and on 1883.040 with ten.

$\begin{gathered} \text { Refer. } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Desiguation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05 .	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
66	L. 10622	532.1	101 51	6.07	0.05	4.155	6
67	σ.................	533.2	9240	3.88	. 03	5.137	4..3
68	ω.................	533.4	855^{6}	4.33	. 04	4.122	5
69	49	533.6	9716	5.18	.04	4.064	5
70		534.0	9337	6.07	. 04	4.179	6
71	$\zeta \ldots$.	535.2	92 -	1.80	0.03	2.221	2
72	L. 10734	$535 \cdot 3$	91 II	5.27	. 06	4.179	6
73	51.	536.8	8835	5.49	. 02	4.155	$6 \ldots 5$
74	L. 10826	537.6	9651	6.04	. 03	4.125	6
75	P. v. 206	539.2	862	6.09	. 04	4.079	6
76	B.A.C. 1826	540.8	8031	Q. 02	0.07	4.177	6
77	P. v. 220	540.9	8852	6.12	. 06	$4^{*} 179$	6
78	52	542.1	8336	5.18	. 03	4.125	$6 . . .5$
79	κ к................	542.5	9942	2.42	. 06	2.22 I	3... 2
80	W.B. v. 10.48.....	$5+3 \cdot 1$	947	6.00	. 09	...	6
81	P. v. 239	544.0	8010	5.67	0.05	4.177	6
S2	L. 11061	544.4	8537	6.00	. 06	4.155	6
83	55	546.1	97.33	5.32	. 04	4.097	$6 . . .5$
84	56	546.7	8810	5.08	.09	4.097	6...5
85	$\chi^{1} \ldots \ldots$.	547.9	6945	5.06	. 09	$5 \cdots 4$
86	57	548.4	7016	6.03	0.04	4. 179	6
87	α	549.2	8237	$+0.02$. 05	...	1
88	L. 11221	550.1	$9+38$	5.82	. 07	4.097	6
89	B.A.C. 1893	550.4	8030	6.08	. 09	4.097	6
90	L. 11224	550.7	7830	6.22	. 05	4.179	6

No. 67. $\Sigma_{7} \mathbf{6 2}$. Triple. The closer pair, dist. $\mathbf{I}^{\prime \prime}{ }^{\prime \prime}$, observed as one mass. Birm., No. 116. The red colour is not salient.

No. 73. Birm., No. 119. The colour is slightly red.
No. 75. Spectrum I a ! (Vogel.)
No. 78. Σ 795, Dist. $\mathrm{I}^{\prime \prime} .7$. Observed as one mass.
No. 80.6 .00 is the mean of two determinations $(6.03,5.97$) made on IS84.179 with twenty extinctions, and on 1885.189 with six. H.P. $=5.68$.
Nos. 82 and 84 . Called red in Uranometria Argentina.
No. 85.5 .06 is the mean of two determinations ($5.10,4.99$) made on IS82.22I with twenty extinctions, and on 1885.206 with six. H.P. $=4.65$.
No. 87. Variability discovered by Herschel in 1836. Max. i.o, Min. i.4 mag. Period irregular. Eirm., No. 127. The colour is reddish. Spectrum III a !!! (Vogel.) +0.02 is the mean of seven determinations, made on as many nights, four at Oxford and three at Cairo, involving eighty extinctions made between I882.22I and 1883.169. H.P. $=+0.09$. For explanation of notation see Preface.

Reference Number.	Star's Designation.	$\begin{aligned} & \text { R.t. } \\ & 1890 . \end{aligned}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	$\begin{gathered} \text { Adopted } \\ \text { Zenithal } \\ \text { Magnitude. } \\ \text { Polaris } \\ 2.05 . \end{gathered}$	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel Uran.
		h. m.'	- ,				
91	B.A.C. 1907	$5 \quad 52.7$	7712	5.63	0.06	4.155	6
92	59	$55^{2.7}$	8810	6.07	. 04	4.097	6
93	60.	553.2	$89 \quad 27$	5.13	. 05	4.125	6... 5
94	L. 11382	$554 \cdot 5$	935	5.04	. 04	4.097	5...6
95	μ.................	556.3	8021	4.69	.10	...	5..4
96	64	557.0	$70 \quad 18$	5.00	0.08	4.179	6
97	L. 11455	557.3	7819	6.08	. 02	4.212	6
98		557.4	6952	4.88	. 07	4.212	5
99	L. 11530	558.9	9642	5.29	. 03	4.097	6
100	63	559.1	8434	5.65	. 05	4.125	6
101	66	559.2	8550	5.72	0.07	4.097	6
102	L. 11621	6 1.2	94 11	5.23	. 08	4.125	6
103	v....................	$\begin{array}{ll}6 & 1.3\end{array}$	7513	4.45	. 04	5.137	5..4
104	L. 11688	$\begin{array}{lll}6 & 3 \cdot 3\end{array}$	8729	5.68	. 11	4.125	6
105	L. $11748 \ldots \ldots .$.	$\begin{array}{ll}6 & 5 \cdot 3\end{array}$	7620	5.61	. 06	4.212	6
106	$\underline{\xi} \ldots$.	$\begin{array}{ll}6 & 5.5\end{array}$	7546	4.41	0.08	5.137	5..4
107		6.5 .5	7011	5.67	. 0.5	4.179	6
108	69	$\begin{array}{ll}6 & 5.6\end{array}$	7351	5.24	. 03	4.212	$6 . . .5$
109	7^{1}.................	688.4	7048	5.28	. 05	4.218	$6 . .5$
110	L. 11884	$6 \quad 8.9$	$76 \quad 7$	5.69	. 06	4.097	6
111	7^{2}.................	$6 \quad 9.1$	7349	5.38	0.10	4.212	$6 . . .5$
112	73	$6 \quad 9.6$	7725	5.33	. 07	4.218	6
11.3	L. 11936	610.0	9028	5.69	. 07	4.125	6
114	L. $119+7$........	610.2	884^{8}	6.34	. 03	4.141	6
115	74	$6 \quad 10.3$	7742	5.27	. 08	4.179	5... 6
116	75	6 11.1	80 I	5.27	0.04	4.125	6
517	L. 12057	613.8	7518	6.08	. 04	4.212	6
118	77	621.6	8938	5.04	. 07	4.141	6

No. 93. Spectrum I a! (Vogel.)
No. 94. Variable? (See Uran. Argent., p. 330.) H.P. $=4.73$.
No. 95. 4.69 is the mean of two determinations ($4.83,4.55$) made on 1882.048 with twenty extinctions, and on $\mathbf{1} 885.206$ with six. H.P. $=4.29$. Spectrum I a! (Vogel.)
No. 103. The determination of 1882.043 (see Memoirs R.A.S., vol. xlvii, p. 444) is rejected. The night was uncertain.
No. 104. $\Sigma 8_{55}$, Dist. 29". Observed as one mass. Spectrum I a! (Vogel.)
No. 106. The determination of 1882.22 (see Memoirs R.A.S., vol. xlvii, p. 444) is rejected. The night was very doultful. Spectrum I a ! (Vogel.)
Nos. 107 and 116. Spectrum I a! (Vogel.)
No. 117. Birm., No. 142. The red colour is not salient. Spectrum III a! (Vogel.)

PEGASUS.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	$\begin{gathered} \text { Adopted } \\ \text { Zenithal } \\ \text { Magnitude. } \\ \text { Polaris } \\ 2.05 . \end{gathered}$	Average Deviation in Magnitude	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
1	W.B. xxi. 319 ...	2115.3	6826	5.77	0.05	3.656	6
2	B.A.C. $7+10$.....	2116.1	663^{6}	5.90	. 04	3.656	6
3	1	2117.0	7040	4.30	. 08	2.64 .5	$4 \cdots 5$
4	B.A.C. 7437	2119.0	6612	5.61	. 05	3.656	6
5	2	2125.0	6651	4.52	. 02	...	5
6	W.B. xxi. 557 ...	2125.8	7820	5.97	0.05	3.645	6
7	3	2132.2	8353	6.03	. 07	3.639	6
8	4	2133.0	8444	5.59	. 03	$5 \cdot 549$	$6 \ldots 5$
9	7	2136.8	8449	5.41	. 05	3.639	$6 \ldots 5$
10	Bradley 2827.....	2137.2	7941	5.93	. 09	3.645	6
11		21.38 .8	80.38	2.43	0.04	...	$2 . .33$
12	9	$\begin{array}{ll}21 & 39.3\end{array}$	$73 \quad 9$	4.44	. 08	2.656	5
13	$\boldsymbol{\kappa}$..................	$21 \quad 39.7$	$6+5^{2}$	4.16	. 02	2.656	4
14	12	2141.0	6733	5.44	. 04	3.661	$6 \ldots 5$
15	11	2141.7	8749	5.55	. 02	3.639	$6 \ldots 5$
16	13	2 I 44.9	73 I3	5.56	0.03	3.645	6
17	14	2145.0	6020	5.16	. 12	3.66 I	5
18	W.B. xxi. $1096 .$.	2146.4	7042	5.73	. 08	3.6.39	6
19	${ }^{15}$.................	2147.6	6 I 43	5.92	. 06	...	$6 . . .5$
20	$16 \ldots$.	2148	$6+36$	5.18	. 06	3.661	5... 6

Nos. 2 and 4. B.A.C. assigns these stars to Vulpecula.
No. 3. Σ III $^{\text {II }}$, Dist. $3^{6^{\prime \prime}}$. The brighter star observed.
No. 5. Birm., No. 583. The colour is slightly orange. 4.52 is the mean of two determinations ($4.48,4.57$) made on 1882.645 with twenty extinctions, and on 1885.549 with six.
No. 7. $\Sigma 5_{5} 6^{1}$, Dist. $39^{\prime \prime}$. The brighter star observed.
No. 8. Spectrum I a! (Vogel.)
No. 9. Spectrum III a !! (Vogel.)
No. in. Triple. The bright star only observed. Birm., No. $59^{\text {I }}$, and also called red in Uran. Argent. The red colour however is not salient. Variable? See Ast. Nach., vol. Ixi, p. 136, and Uran. Argent., p. 338. Spectrum II a !!! (Vogel.) 2.43 is the mean of four accordant determinations made between 1882.645 and I 882.661 , involving eighty extinctions.
No. 13. $\Sigma 2224$, Dist. 12". The brighter star observed.
No. 15. II Pegasi $=27$ Aquarii. See Introd. to B.A.C., p. 75.
No. 19. 5.92 is the mean of two determinations ($5.98,5.86$) made on 1883.661 with twenty extinctions, and on 1885.565 with six. H.P. $=\mathbf{5 . 6 3}$.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 \text {. } \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	\bigcirc				
21	W.B. xxi. 1136 ...	2148.4	7051	5.74	0.05	3.665	6
22	17	2151.6	$7_{8}^{8} 27$	5.36	. 05	3.735	$6 . .5$
23	18	2 I 54.6	8349	6.04	. 04	3.639	6
24	19	2155.7	8216	5.93	. 03	3.639	6
25	20.	2155.7	7724	5.68	. 07	3.735	$6 . .5$
26	21.	2 I 57.9	$79 \quad 9$	5.72	0.04	5.565	$6 \ldots 5$
27	V....................	220.1	8529	4.84	. 12	3639	5
28	L. 4308 I	220.2	6351	5.95	. 02	3.735	6
29	23	220.6	6134	5.31	. 0.3	3.735	$6 . . .5$
30	ו....................	$22 \quad 1.9$	6512	4.24	. 08	...	4
31	θ................	224.6	842 I	3.53	0.03	2.658	$3 \cdots 4$
32	π.................	22 5.1	5722	4.06	.0.3	...	4
3.3	P. sxii. 29. .	$\begin{array}{ll}22 & 7.9\end{array}$	5556	5.23	. 08	3.754	$6 . . .5$
34	P. xxii. 32........	2288	6156	6.15	. 05	3.754	6
35	30.	2214.9	844^{6}	4.99	. 09	3.757	5... 6
36	31	2216.1	7821	5.09	0.1 1	5.565	5...4
37	32.	$\begin{array}{llll}22 & 16.3\end{array}$	6213	5.07	. 06	3.735	5
38	34.	2221.0	86 ıо	5.90	. 04	3.757	6
39	35	2222.3	$85 \quad 52$	5.02	. 04	3.771	$6 . . .5$
40	P. xxil. 113	2222.7	$5^{8} 43$	6.19	. 04	3.779	6
41	36	2223.7	81 26	5.89	0.05	3.771	6
42	P. xxii. 120	2224.0	6348	5.85	. 07	3.735	6
43	37	2224.4	868	5.05	. 04	3% \%	$6 \ldots 5$
44	38	2225.0	5759	5.62	. 06	$5 \cdot 56$	$6 \ldots 5$
45	39	2227.3	7020	6.24	. 04	3.735	6
46	40	2233.6	713	5.95	0.06	3.735	6
47	41	2234.5	$7 \bigcirc 53$	6.00	. 10	3.735	6
48	P. xxii. 186	$2235 \cdot 4$	76 1	5.67	. 02	3.757	$6 \ldots 5$
49	§...................	2236.0	7945	3.29	. 01	...	$3 \cdots 4$
50	P. xxii. 195	2236.5	$7^{6} 3$	6.02	. 05	3.757	6

No. 24. Called red in Uranometria Argentina.
No. 27. Spectrum III a! (Vogel.)
No. 30. 4.24 is the mean of two determinations ($4.25,4.22$) made on 1882.656 with twenty extinctions, and on I $88 . .565$ with six. H.P. $=3.99$.
No. 3r. Variable? See Uran. Argent., p. 338. Spectrum I a ! ! (Vogel.)
No. 32. 4.06 is the mean of two determinations ($4.09,4.04$) made on 1882.6 .8 with twenty extinctions, and on 1885.549 with six. H.P. $=4.41$.
Nos. 39 and 41. These stars are called red in Uranometria Argentina.
No. 43. Σ 2912, Dist. $\mathrm{I}^{\prime \prime} .1$. Observed as one mass.
No. 49. 3.29 is the mean of two determinations ($3.30,3.27$) made on $1882.6 ; 8$ with twenty extinctions, and on 1885.549 with six. Spectrum I a ! (Vogel.)

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Avcrage Deviation in Magnitude.	$\begin{aligned} & \text { Date, } \\ & 1880+ \end{aligned}$	Mag. Argel. Uran.
		h. m.	- ,				
51	0....................	2236.6	6116	5.15	0.05	3.735	5
52	η................	2237.9	6021	2.95	.05	2.658	3
53	45	2240.1	7113	6.32	. 04	3.754	6
54	$\xi \ldots$.	2241.2	7823	4.16	. 05	$5 \cdot 565$	$5 \cdots 4$
55	λ..	2241.2	67 I	4.05	. 07	2.661	4
56	μ.................	2244.7	6559	3.58	0.02	2.661	4
57	σ \% \quad.	2246.8	8045	5.12	. 03	3.771	5
58	P. xxii. 241 I.....	2247.6	7345	5.94	. 06	3.754	6
59	ρ.................	2249.7	814^{6}	5.02	. 05	3.771	5
60	5^{1}................	22 52.I	6949	5.56	. 02	3.754	$6 \ldots 5$
61	52	225.3 .7	$78 \quad 52$	6.22	0.01	\ldots	6
62	P. xxii. 285	$2257 \cdot 4$	6728	7.25	. 03	3.793	6
63	β................	2258.4	6231	2.50	. 07	2.661	$2 . .3$
64	a...................	$2259 \cdot 3$	7523	2.33	. 08	...	2
65	55	$23 \quad 1.5$	8 I 11	4.72	. 03	3.751	5
66	56	$23 \quad 1.8$	$65 \quad 8$	4.69	0.11	3.793	5
67	W.B. xxii. $1378 .$.	$23 \quad 2.1$	6927	6.05	. 01	3.793	6
68	57	2.34 .0	SI 55	5.33	. 05	3.771	5... 6
69	58	2345	8046	5.21	. 02	3.771	5... 6
70	P. xxiii. 4	$23 \quad 5 \cdot 3$	73 -	6.03	. 04	3.754	6
71	59	$23 \quad 6.2$	8153	5.31	0.07	3.77 I	5
72	60.	$23 \quad 6.5$	6.345	6.28	. 06	3.793	6
73	W.B. xxiii. $137 . .$.	$23 \quad 9.2$	6630	6.21	. 05	3.793	6
74	W.B. xxiii. $169 . .$.	2310.6	6549	6.39	. 02	3.793	6
75	τ ¢ \quad,	2315.2	6652	4.75	. 07	2.66 I	$5 \cdots 4$

No. 54. The determination of 1882.658 is rejected as erroneous. See Memoirs R.A.S., vol. xlvii, p. 445.
No. 59. Spectrum I a! (Vogel.)
No. 61. O $\sum_{4}{ }^{8} 3$, Dist. $I^{\prime \prime}$.2. Observed as one mass. 6.22 is the mean of two determinations ($6.22,6.2 \mathrm{I}$) made on 1883.757 with twenty extinctions, and on 1885.655 with six. H.P. $=5.86$.

No. 63. Variable. Discovered by Schmidt in 1847. Max. 2.2, Min. 2.7 mag . Period irregular. Birm., No. 627. The red colour is not salient.
No. 64. 2.33 is the mean of two determinations (2.24, 2.42) made on IS82.66I with twenty extinctions, and on 1885.568 with six. H.P. $=2.61$. Spectrum I a !! (Vogel.)
No. 65. Birm., No. 629. The colour is fine orange. Spectrum III a! (Vogel.)
No. 68. $\sum 2982$, Dist. $35^{\prime \prime}$. The brighter star observed. Spectrum III a !! (Vogel.)
No. 70. Spectrum II a! (Vogel.)
No. 71. Spectrum I a! (Vogel.)

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	$\begin{gathered} \text { Average } \\ \text { Deviation } \\ \text { in } \\ \text { Magnitude. } \end{gathered}$	$\begin{aligned} & \text { Date, } \\ & 1880+ \end{aligned}$	Mag. Argel. Uran.
76	63	h. m. $23 \quad 15.4$	$60 \quad 11$	5.82	0.02	3.793	6
77	6_{4}.................	2316.5	5847	5.57	. 04	3.793	6
78	$6_{5} \ldots \ldots$.	2317.2	6946	6.29	. 09	3.754	6
79	66	2317.5	7817	5.42	. 07	3.771	$6 \ldots 5$
80	67	2319.5	5813	5.66	. 11	3.793	6
8 I	v.................	2.319 .9	$67 \quad 12$	4.57	0.08	2.661	5 $\cdots 4$
82	69.	2322.2	6526	6.04	. 02	3.793	6
83	ro	$23 \quad 23.6$	7751	5.04	. 04	...	5
84	71	2328.0	686	5.55	. 09	3.754	6
85	72.	2328.5	5917	5.44	. 06	3.793	6
86	73	2329.2	57	6.03	0.05	3.801	6
87	W.B. xxiii. 593...	2329.5	6611	6.45	. 13	3.754	6
88	W.B. xxiii. $613 \ldots$	2.330 .4	$66 \quad 3$	6.46	. 04	3.801	6
S9	W.B. xxiii. 629...	2331.0	5742	6.49	. 10	3.782	6
90	74	2332.1	7347	6.14	. 15	. 3.754	6
91	75	2332.4	7212	5.48	0.04	3.754	$6 \ldots 5$
92	P. xxiii. $446 \ldots .$.	${ }^{2} 3 \quad 34.3$	So 56	6.17	. 03	3.779	6
93	77	2337.8	8017	5.20	. 05	3.779	$6 \ldots 5$
94	78	2338.5	61 15	5.03	. 09	3.801	5
95	79	23 44.1	6146	6.04	. 02	3.782	6
96	Bradley 3175.....	2.346 .8	685^{6}	6.05	0.04	3.801	6
97	¢	2346.9	7129	5.45	. 06	$5 \cdot 589$	$6 \ldots 5$
98	82	2347.0	7940	5.42	. 05	3.779	$6 \ldots 5$
99	W.B. xxiii. $928 \ldots$	$2.3+7 \cdot 4$	7243	6.58	. 03	3.802	6
100	P. xxiii. $235 \ldots \ldots$	${ }^{2} 351.1$	675^{8}	5.98	. 12	3.782	6
101	ψ.................	2352.2	6528	4.70	0.04	2.661	5
102	$8_{5} \ldots \ldots$.	${ }^{2} 3 \quad 56.4$	6329	5.72	. 02	3.782	6
103	86	- 0.1	7713	5.55	. 12	3.782	6
104	W.B. x xiii. 1389	- 3.2	65	5.99	. 07	3.793	6
105	87	- $3 \cdot 4$	7225	5.53	. 09	3.771	6

No. 79. Spectrum II a ! (Vogel.)
No. 83. 5.04 is the mean of two determinations (5.06, 5.02) made on 1883.782 with twenty extinctions, and on 1885.589 with six. H.P. $=4.65$.
No. 84. Birm., No. 643. The star is very slightly red.
Nos. 90, 92, and 98. Spectrum I a ! (Vogel.) No. 9I. Spectrum I a !! (Vogel.)
No. 93. Birm., No. 645. The colour is yellow. Spectrum III a! (Vogel.)
No. 94. Birm., No. 647. The red colour is not salient.
No. 97. Spectrum III a !!! (Vogel.)
No. 100. Birm., No. 653. The colour is slightly red.
No. 101. Birm., No. 655. The red colour is not salient.
No. 102. Double. Dist. 14". The brighter star olsserved.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05 .	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran
$\begin{aligned} & 106 \\ & 107 \end{aligned}$	$\begin{array}{ll} \gamma & \ldots \\ \chi & \ldots ~ \end{array}$	h. m. 07.6 - 8.9	$\begin{array}{cc}\circ & 1 \\ 75 & 25 \\ 70 & 24\end{array}$	$\begin{aligned} & 2.47 \\ & 4.87 \end{aligned}$	0.06 .06	$\begin{aligned} & 2.66 \mathrm{I} \\ & 3.779 \end{aligned}$	$\begin{gathered} 3 \ldots 2 \\ 5 \end{gathered}$

No. 106. Variable? (See Ast. Nach., xciii, p. 189 and Uran. Argent., p. 3+1.) Another determination on 1885.589 gave the magnitude 2.72. H.P. $=3.04$.
No. 107. Spectrum III a! (Vogel.)

PERSEUS.

1	v....................	1 31.2	$4^{1} 5^{6}$	3.76	0.06	2.699	4 $\cdots 3$
2	ϕ.................	136.8	395^{2}	4.29	. 05	2.699	4
3	B.A.C. 547	142.6	4239	5.85	. 09	5.174	6
4	I	I 44.8	$35 \quad 24$	5.70	. 07	5.188	6
5	2.................	145.1	3945	5.68	. 07	5.182	6
6	3....................	151.6	4120	5.82	0.08	5.174	6
7		155.0	$36 \quad 3$	5.15	. 10	5.188	5..6
8		26.3	3927	5.51	. 01	5.182	6
9	9...................	214.7	$3+39$	5.46	. 04	5.182	$6 \ldots 5$
10	i2	$235 \cdot 3$	5016	5.02	. 02	5.174	5
11	θ	236.6	4114	4.26	0.04	2.699	4
12	14	236.9	4^{6} 10	5.78	. 04	5.188	6
13	η................	242.6	3434	4.13	. 04	\ldots	$4 \ldots 3$
${ }^{1}+$	16	24.3 .6	528	4.77	. 06	\ldots	$5 \cdots 4$
15	17	244.7	55^{24}	4.90	. 05	5.154	5
16		$2+6.5$	3741	4.07	0.04	2.699	4
17	20	246.8	527	5.51	.0.3	5.182	6
18		250.6	$5^{8} 30$	5.38	. 10	5.188	5
19	π	251.7	5047	4.89	. 04	5.174	5
20	$2^{4}+\ldots \ldots$.	252.3	5515	5.28	. 5	5.182	$5 \ldots 6$

Nos. 1, 2, and 3. B.A.C. assigns these stars to Andromeda.
No. 3. $\Sigma_{162, ~ D i s t . ~} I^{\prime \prime} .9$ and $20^{\prime \prime}$. Triple. The closer pair observed as one mass.
No. $11 . \Sigma 296$, Dist. $15^{\prime \prime}$. Observed as one mass.
No. 13. $\Sigma 307$. Multiple. The bright star observed. Birm., No. 49. The red colour is not salient. 4.13 is the mean of ten determinations, made on as many nights, seven at Oxford and three at Cairo, involving one hundred and forty extinctions nade between 1882.699 and 1883.207. H.P. $=3.93$.

No. 14. 4.77 is the mean of two determinations (4. $8_{4}, 4.70$) made on 1882.699 witlı twenty extinctions, and on 1885.239 with six. H.P. $=4.44$.
No. if. $\Sigma 318$. Triple. Observed as one mass.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05 .	Average $\begin{gathered}\text { Deviation } \\ \text { in } \\ \text { Magnitude. }\end{gathered}$	$\begin{aligned} & \text { Date, } \\ & 1880+ \end{aligned}$	Mag. Argel. Uran.
		h. m.	- ,				
21	P.ii. 220	253.0	$3^{8} \quad 5$	5.24	0.01	5.188	5
22	γ. ${ }^{\text {c............... }}$	256.8	$36 \quad 56$	3.06	. 04	2.702	3
2.3	B.A.C. $94^{8} \ldots$....	$257 \cdot 3$	3344	4.98	. 08	5.174	5
24	p.....................	258.1	5135	4.24	. 05	2.702	4
25	ו.....................	31.0	4048	4.39	. 08	2.702	4
26	β.................	31.0	4928	2.40	0.06	2.702	Var.
27	κ к \quad................	32.1	4533	4.08	. 05	2.702	$4 \cdots 5$
28	ω.................	$3 \quad 4.2$	504^{8}	4.94	.03	5.224	5
29	D.M. $+56^{\circ}$, No. 798	$3 \quad 7 \cdot 4$	3317	5.86	.14	5.193	6
30	B.A.C. 995	38.3	3928	5.25	.03	5.174	5
31	P. iii. 9	38.6	595 I	5.42	0.08	5.188	6
32	30.	310.4	4622	5.55	. 10	5.182	6
33	29	310.8	4011	5.40	. 12	5.188	
34	31	311.3	4018	5.08	.09	5.188	
35	P. iii. 23	311.9	56 II	4.95	. 04	5.224	5
36	32	314.1	$47 \quad 4$	5.00	0.03	5.182	5
37		316.5	40.32	1.93	. 02	2.702	2
3^{8}	P. iii. 53	320.2	$41 \quad 19$	5.05	. 08	5.224	6
39	34	321.5	405^{2}	5.00	. 10	5.182	5
40	σ	322.8	4223	4.73	.05	. ${ }^{\text {a }}$	5
4 I	$3^{6} \ldots \ldots$.	324.8	$44 \quad 19$	5.55	0.04	5.191	6
42	R. 998	325.1	4531	5.90	. 01	5.19.3	6
4.3	W.B. iii. $4^{8}+\ldots .$.	325.7	5455	5.90	. 10	5.182	6
44	ψ \%...............	328.7	4210	4.48	. 02	5.191	5
45	P.iii. IO4	334.0	5246	6.08	. OI	5.188	6

No. 21. Σ 33I, Dist. $12^{\prime \prime}$. Observed as one mass.
No. 24. Variability discovered by Schmidt in 1854 . Max. 3.4, Min. 4.2 mag. Period irregular. Birm., No. 53. The red colour is not salient. Another determination made on 1885.239 gave the magnitude 4.OS. H.P. $=3.68$.

No. 26. Variable. Max. 2.2, Min. 3.7 mag. Period $2^{\text {d }}, 20^{h} 48^{m} 53^{\mathrm{s}} .67$. Birm., No. 55 . This star does not appear to be coloured.
No. 28. Birm., No. 56. The red colour is not salient.
No. 40. Birm., No. 62. The colour is deep yellow. 4.73 is the mean of two determinations (4.78, 4.68) made on 1882.702 with twenty extinctions, and on 1885.2 .9 with six. H.P. $=4.39$.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopterl Zenithal Marnitude. Polaris 2.05.	A verage Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	$\begin{aligned} & \text { Mar. } \\ & \text { Arget. } \end{aligned}$ Uran.
		h. m.	- ,				
46	ס...................	335.1	$4^{2} 34$	3.11	0.04	2.656	3
47	to	$3.35 \cdot 4$	5623	5.04	. 04	5.191	5
4^{8}	O.A. 4062	3370	4414	6.13	. 07	5.188	6
49	D.M. $+36^{\circ}$, No. 7.42	$337 \cdot 4$	5353	5.66	. 05	$5 \cdot 193$	6
50	0.	337.4	$5^{8} 3$	4.40	. 08	...	4
51	v...................	3 37.7	$+74^{6}$	4.06	0.05	2.702	4
52	B.A.C. $114^{2} \ldots .$.	3.38 .3	4440	5.86	. 02	5.191	6
53	R. 1071	341.6	$4^{6} \quad 23$	5.89	. 09	5.188	6
54	B.A.C. 1172	$3+2.4$	4522	6.04	. 01	5.191	6
55	42.	. 342.6	5715	5.41	. 11	5.182	$6 . .5$
56	W.B. iii. $942 \ldots$....	$34+9$	5358	5.93	0.03	\ldots	6
57	$\zeta \ldots \ldots \ldots \ldots \ldots$.	347.2	5827	3.09	. 02	2.705	3
58	D.M. $+5 \mathrm{I}^{\text {², No. }}$, So 3	$3+7 \cdot 3$	$38 \quad 6$	6.36	. 13	5.193	\ldots
59	P. iii. 186	348.0	4227	5.45	. 10	5.188	$6 \ldots 5$
60		$3+8.4$	$39 \quad 38$	5.66	.07	5.191	5... 6
61	L. $7206 \ldots$.	. 49.4	55 J4	5.65	0.05	5.193	6
62		350.5	5021	3.13	. 05	\ldots	3.4
63		351.8	5431	4.31	. 07	2.705	4
64	λ	3.58 .4	3956	4.39	.04	2.502	4.5
65	$4^{8} \ldots \ldots \ldots \ldots \ldots$	40.7	4235	4.30	. 07	2.702	4
66	50	41.3	5216	5.59	0.10	5.188	6
67	W.B. iii. I33I ...	+ 3.9	5642	5.94	. 10	5.191	6
68	μ................	46.8	$4^{1} 5^{2}$	4.17	. 03	2.702	$4 \cdots 5$
69	$5{ }^{2}$	$\begin{array}{lll}4 & 7 \cdot 4\end{array}$	4949	4.85	. 08	5.188	5
70	B.A.C. $1301 . . .$.	49.9	. 3958	4.80	. 12	5.193	5

No. 47. $\Sigma 431$, Dist. 20". The brighter star observed.
No. 50. 4.40 is the mean of two determinations (4.47, 4.32) made on 1882.702 with twenty extinctions, and on 1885.239 with six. H.P. $=4.01$.
No. 56. 5.93 is the mean of two determinations ($5.98,5.58$) made on 1885.193 and 0 n 1885.224 , each with six extinctions. H.P. $=5.70$.

No. $57 . \quad \Sigma_{4}{ }_{4}$, Dist. $12^{\prime \prime} .5$. Observed as one mass.
No. 58. It is stated in the corrigenda to the Uranometria Nova that the star was not visible to the naked eye.
No. 62. Σ_{471}, Dist. $8^{\prime \prime} .4$. Observed as one mass. 3.13 is the mean of three accordant determinations, made between $1882.7 \circ 5$ and 1883.237 , involving forty extinctions.
No. 68. O $\sum_{7} 8$, Dist. $15^{\prime \prime}$. Observed as one mass.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { number. } \end{gathered}$	Star's Desiguation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{aligned} & \text { Date. } \\ & 1880+ \end{aligned}$	Mag. Argel. Ural.
		h. m.	- ,				
71	B.A.C. $131+\ldots$	4 II.9	39 2I	5.54	0.08	5.237	6
72	54	413.3	5542	5.31	. 05	5.191	6
7.3	53 (d)	413.6	$43+6$	4.95	. 11	5.188	5
74	55	+17.3	567	5.47	. 07	5.188	6
75	P. iv. $69 . \ldots \ldots$.	+19.1	5849	5.64	. 10	5.193	6
76	$57(m) \quad \ldots \ldots \ldots$	425.5	4710	0.06	0.03	$5 \cdot 193$	6
77	$5^{8} \ldots \ldots$.	429.1	$4^{8} 5^{8}$	4.60	. 02	5.237	5
${ }^{3} 8$	R. $1283 \ldots \ldots \ldots$	$+3.32$	4155	5.66	. 10	5.188	6
79	R. 1289	$+35.0$	4014	5.60	. 04	5.188	6
So	59	435.1	$4^{6} 5^{1}$	5.51	. 02	$5 \cdot 2.37$	6

No. 75. B.A.C. assigns this star to Taurus.
No. 77. Birm., No. 8o. The red colour is not salient.

PISCES.

1	2...................	2253.8	8938	5.60	0.10	3.877	6
2	3...................	2255.0	9024	6.48	. 03	3.877	6
3	$\beta \ldots$.	$22 \quad 58.3$	8646	4.41	. 05	2.604	$5 \cdots 4$
4	5..................	23.3 .0	8828	5.45	. 05	5.568	6
5	γ................	2311.4	8719	3.63	. 07	2.604	4
6	7...................	2314.7	8513	5.05	0.08	3.877	6
7	к....................	2321.3	8921	5.17	. 03	3.888	$5 \cdots 4$
8	9....................	2321.6	8929	6.48	. 06	3.888	\ldots
9	θ	2322.4	8 413	4.18	. 05	2.604	$4 \cdots 5$
10		2328.5	9151	6.13	. 04	$3.89+$	6
11	16	$23 \quad 30.8$	8830	5.77	0.06	5.568	6
12	ו...................	23 34.3	8458	4.25	. 03	2.604	$4 \ldots 5$
13		23.36 .4	8849	4.94	. 04	. 3.894	5
14	Ig	2.340 .8	87	5.21	. 06	3.888	6
15	20.	$23+2 \cdot 3$	9322	5.80	.03	3.877	6

Nos. 7 and 13. Spectrum I a! (Vogel.)

No. 9. Spectrum II a! (Vogol.)
No. I4. Birm., No. 648. The star is distinctly red. Variable? (See Uran. Argent., p. 334, and Dunsink Obs., iv, p. 57.) Spectrum III b ! ! ! (Vogel.)

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Desiguation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05 .	Average Deviation in Magnitude.	$\begin{aligned} & \text { Date, } \\ & 1880+ \end{aligned}$	Mag. Argel. Uran.
		h. m.	- ,				
16	21.	$23+3.8$	8932	6.11	0.07	3.888	6
17	25	$23.47 \cdot 4$	8831	6.05	.03	3.877	6
18	27	2.353 .1	9+10	5.30	. 02	...	5... 6
19	${ }^{\omega}$	2.353 .7	$83+5$	4.19	. 06	2.60 .4	4
20	L. $470+1$........	2354.2	9053	6.68	. 07	3.888	6
21	29	2356.2	9.338	5.30	0.08	3.877	$5 . .6$
22	30	2356.3	$9^{6} 38$	4.55	. 07	2.607	5
23	32	2356.9	828	5.72	. 05	\ldots	6
24	33	23597	9^{619}	4.82	. 09	3.888	5
25	34	- 4.4	7928	5.55	. 07	3.877	6
26	35.	- 9.3	8 I 47	5.95	0.05	3.888	6
27	36	$\bigcirc 10.9$	8222	6.18	. 08	3.894	6
28	4I	- 1.4.9	8225	5.44	. 06	$389+$	$6 . . .5$
29	47	$\bigcirc 22.3$	7243	4.94	. 02	...	$6 \ldots 5$
30	48	- 22.5	it 10	6.47	. 06	3.946	6
31	51	- 26.7	83.39	5.86	0.06	3.894	6
32	52	- 26.8	7019	5.45	. 10	3.946	6
33	\$3	031.1	7522	6.00	. 03	3888	6
34	54	- 33.8	6920	8.08	. 04	3.946	\ldots
35		- 34.1	6910	5.48	. ${ }_{5}$	3946	$6 \ldots 5$
36	57	040.8	757	5.73	0.05	3.894	$6 \ldots 5$
37	$8^{8} \ldots$.	- 41.3	$7^{8} 37$	6.00	. 06	...	5
38	59	0 +1. 4	71	6.24	. 06	3946	6
30.	P. о. 189	- 42.6	8516	5.74	. 12	3.888	6
40	$\delta \ldots \ldots \ldots \ldots \ldots \ldots$	- 43.0	83 1	4.32	. 06	...	$4 \cdots 5$

Nos. 16 and 17. Spectrum I a! (Vogel.)
No. IS. 5.30 is the mean of two determinations $(5.34,5.27)$ made on 1883.894 with twenty extinctions, and on 1885.568 with six. H.P. $=5.03$.
No. 20. Spectrum III a! (Vogel.) No. 2r. Gilliss suspects variability. (Ast. Obs., p. 67 r.)
Nos. 22 and 24. Called red in the Uranometria Argentina.
No. 23. 5.72 is the mean of two determinations ($5.66,5.79$) made on 1883.894 with twenty extinctions, and on $199_{5.568}$ with six. Spectrum I a! (Vogel.)
No. 25. $\Sigma 5$, Dist. $\mathrm{S}^{\prime \prime}$. Observed as one mass.
No. 26. Σ 12, Dist. $^{1} I^{\prime \prime} .5$. Observed as one mass.
No. 29. 4.94 is the mean of two determinations $(4.93,4.95)$ made on 1883.946 with twenty extinctions, and on 1885.56 S with six. H.P. $=5.37$. Spectrum III a !!! (Vogel.)
No. 31. $\Sigma_{3} 6$, Dist. $27^{\prime \prime} .5$. The brighter star observed. Spectrum I a! (Vogel.)
No. 35. $\Sigma 4^{6}$, Dist. 6". Observed as one mass.
No. $3^{\text {f. }}$ Spectrum III a!!! (Vogel.)
No. 37. 6.00 is the mean of two determinations ($6.08,5.92$) made on 188.3 .853 with twenty extinctions, and on 1885.56° with six. H.P. $=5.70$.
No. 3 8. Spectrum I a! (Vogel.)
No. 4o. 4.32 is the mean of two determinations ($4.25,4.40$) made on 1882.624 with twenty extinctions, and on 1885.568 with six. H.P. $=4.58$.

$\begin{gathered} \text { Refer. } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Maœnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
41	$64 . \ldots \ldots \ldots \ldots$	h. m. 04.3	$73 \quad 39$	5.09	0.05	3.946	$6 \ldots 5$
42	6_{5}.	- 44.0	62.53	5.83	. 10	3.954	6
43	66	- 48.8	7124	6.07	. 08	3.888	6
44	67.	- 50.1	6323	6.00	. 0.3	3.960	6
45	68	- 51.9	61.36	5.56	. 05	3.960	6
4^{6}	P. O. $2+3$........	$\bigcirc 52.1$	$7^{6} 54$	8.29	0.05	3.888	6
47	σ. \ldots..............	- 56.8	$5^{8} 47$	5.68	. 03	3.960	5
48	€...................	- 57.2	8242	4.17	. 0.4	...	4
49	i^{2}.................	- 59.3	7539	5.84	. 07	3.894	6
50	ψ^{1} Ist star $\ldots \ldots \ldots$	- 59.8	697	5.16	. 06	2.609	
51	ψ^{1} 2nd star $\ldots \ldots$.	- 59.8	$69 \quad 7$	5.34	0.07	2.609	, $5 \cdots 4$
52	77 ist star........	10.1	8541	6.53	. 1	3.954	6
5.3	77 2nd star	10.2	854^{1}	6.92	. 0.3	3.954	
54	75................	10.8	7738	6.19	. 03	3.886	6
55	$\psi^{2} \ldots \ldots \ldots \ldots \ldots$	12.1	695^{1}	5.76	. 05	3.888	$6 \ldots 5$
5^{6}		12.7	8456	5.60	0.0 .3	3.954	$6 . . .5$
57	ψ^{3}................	13.9	70.6	5.60	. 06	.3. 888	6
-8		15.1	5910	4.93	. 04	.3. 888	5
59		15.5	6933	4.87	. 07	2.609	$5 \cdots 4$
60		15.6	60.30	4.24	. 07	...	4
$6:$	ϕ................	$1 \quad 7.8$	66 。	4.77	0.11	2.609	5
62	ζ...............	18.0	83 ○	4.93	. 03	2.609	$5 \cdots 4$
6.3	8;	18.3	$7+27$	5.72	.c6	3.886	6
6	88	19.0	8, 35	6.01	.05	3.954	6
65	89	112.1	$86 z^{8}$	5.34	. 1	3.954	5 ..6

No 41. Spectrum I a ! (Togel.)
No. 42. Σ GI, Dist. 4'.5. Observed as one mass.
No. 43. OE 20, Dist. < $\mathrm{I}^{\prime \prime}$. Observed as one mass. Spectrum I a! (Vogel.)
No. 47. 40 Andromedæ. (See Introduction to B.A.C., p. 75.)
No. $4^{8 .} 4.17$ is the mean of two determinations (4.07, 4.26) made on 1882.639 with twenty extinctions, and on 1885.568 with six. H.P. $=4.46$.
Nos. ≈ 0 and 51 . These stars form $\Sigma 88$, Dist. $30^{\prime \prime}$.
Nos. 5^{2} and 53. These stars form $\Sigma 90$, Dist. $33^{\prime \prime}$.
Nos. 55,56 , and 65 . Spectrum I a! (Vogel.)
No. 6o. 4.24 is the mean of two accordant determinations made on 1882.609 , and on 1882.639 with twenty extinct:ons. H.P. $=4.73$.
No. 61. $\Sigma 99$, Dist. $8^{\prime \prime}$. Observed as one mass.
No. 62. Σ I 00 , Dist. 23". Observed as one mass.

Reference Number.	Star's Desiguation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adcpted Zenithal Magnitude. Polaris 2.05 .	Averace Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
66	v....................	11.3 .4	6319	4.47	0.12	2.620	4
67	91	115.0	6150	5.56	. 06	3.877	5
68	W.B. i. 320	117.5	706	6.25	.os	3.886	6
69	ค....................	120.3	7124	5.33	. 65	3.886	5
70	94	120.8	7120	5.46	. 05	3.886	...
71	$\mu \ldots$.	12.4	$8+25$	5.43	0.04	3954	5
72	η................	125.6	7513	3.71	. 05	...	$4 \ldots 3$
73	P. i. 120...........	130.0	7.38	6.09	. 0.3	3.886	6
74	π...............	131.3	7825	5.60	. 04	.3.877	6
75	$105 \ldots \ldots \ldots \ldots .$.	13.3 .7	7+ 9	5.95	.07	3.877	6
76	v..	13.3 .7	854	4.68	006	2.620	5...4
7	10\%................	1.36 .5	7015	5.38	. 06	3.877	5... 6
78	0	139.6	8124	4.29	. 03	2.620	4
79	$\xi \ldots \ldots \ldots \ldots \ldots$	$1+7.9$	8721	470	. 0.3	2.623	4
80	a^{1}	186.4	8746	3.71	. 07		
8 I	α^{2}	1.56 .4	87.46	4.70	0.03	2.623) $3 \cdots 4$

No. 72. 3.71 is the mean of two accordant determinations made on 1882.620 and on 1882.639 , each with twenty extinctions. Spectrum II a ! (Vogel.)
No. $\mathbf{7}^{6}$. $={ }_{51}$ Ceti. See Introduction to B.A.C., p. 75.) Birm., No. 29. The colour is yellow. Spectrum II a! (Vogel.)
No. 77. $=2$ Arietis. (See Introduction to B.A.C., p. 75.)
No. So. 3.71 is the mean of two accordant determinations made on 1882.623 and on 1882.630 , each with twenty extinctions.
Nos. So and 81. These stars form $\Sigma 202$, Dist. $3^{\prime \prime}$.6. Spectrum I a! (Vogel.)

PLEIADES.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline $$
\begin{aligned}
& \text { Refer- } \\
& \text { ence } \\
& \text { Number. }
\end{aligned}
$$ \& Star`s Desiguation. \& $$
\begin{gathered}
\text { R.A. } \\
1890 .
\end{gathered}
$$ \& \[
$$
\begin{aligned}
& \text { N.P.D. } \\
& 1890 .
\end{aligned}
$$

\] \& Adopted Zenitha! Magnitude. Polaris 2.05. \& | Averare |
| :--- |
| Deviation in Magnitude. | \& \[

$$
\begin{gathered}
\text { D:te, } \\
1880+
\end{gathered}
$$

\] \& | Mag. |
| :--- |
| Argel. |
| Uran. |

\hline 1 \& Coleno \& II. m.

$$
338.3
$$ \& \[

$$
\begin{array}{cc}
\circ \\
66 & \\
66
\end{array}
$$
\] \& 5.34 \& 0.03 \& 3.908 \& \ldots

\hline 2 \& Electra \& 3.38 .3 \& $661+$ \& 3.96 \& . 05 \& 3.908 \& 4

\hline 3 \& $18(m)$.......... \& 338.6 \& 6530 \& 5.99 \& . 04 \& 3.954 \& \ldots

\hline $+$ \& Targeta \& $3 \quad 3.38 .7$ \& 6553 \& 4.54 \& . 0.3 \& 3.908 \& 5

\hline 5 \& \& 338.9 \& $66 \quad 19$ \& 7.38 \& . 01 \& 3.92 I \& ...

\hline 6 \& +................... \& 3.39 .1 \& 66 I \& 7.44 \& 0.03 \& 3.951 \& ...

\hline 7 \& \& 3392 \& 663 \& 9.32 \& . 11 \& 3.951 \& ...

\hline 8 \& Maia \& 3 3-397 \& 6559 \& 3.96 \& .05 \& 3.95 I \& 5

\hline 9 \& 7................... \& $3 \quad 39 \cdot 3$ \& 6618 \& 7.54 \& . 03 \& $3.95{ }^{1}$ \& \ldots

\hline 10 \& Asterope k. \& 3.39 .4 \& 6547 \& 5.98 \& . 05 \& 3908 \& \ldots

\hline II \& Asterope l \& $3 \quad 39.5$ \& 6549 \& 6.46 \& 0.05 \& 3.908 \& \ldots

\hline 12 \& 8................... \& $3 \begin{array}{ll}3 & 39.7\end{array}$ \& $66 \quad 9$ \& 7.36 \& . 05 \& $3.9+4$ \& \ldots

\hline 13 \& 9................... \& $3 \begin{array}{ll}3 & 39.7\end{array}$ \& $66 \quad 9$ \& 7.68 \& . 02 \& 3944 \& ...

\hline 14 \& 10 \& 339.9 \& $66 \quad 5$ \& 7.18 \& . 06 \& 3.921 \& ...

\hline ${ }^{1} 5$ \& 12. \& 340.4 \& 6549 \& 6.74 \& . 08 \& 3927 \& ...

\hline 16 \& 1.3 \& $3+0.5$ \& 6621 \& 8.22 \& 0.04 \& $3.95{ }^{1}$ \& ...

\hline 17 \& \& $3+0.7$ \& $66 \quad 13$ \& 8.09 \& . 10 \& $3.95{ }^{1}$ \& ...

\hline 18 \& 17 \& 340.8 \& 66.37 \& 6.84 \& . 05 \& 3.908 \& ...

\hline 19 \& 18 \& $3+0.8$ \& 6612 \& 7.61 \& . 04 \& 3.924 \& ...

\hline 20 \& $2+(p) \quad \ldots \ldots \ldots \ldots$ \& 340.8 \& 66 I4 \& 6.04 \& . 03 \& 3.921 \& ...

\hline 21 \& 19 \& 340.8 \& 66.32 \& 6.78 \& 0.04 \& 3.924 \& \ldots

\hline 22 \& 20 \& 340.8 \& 6545 \& 7.52 \& . 04 \& 3.908 \& ...

\hline 2.3 \& 21. \& 3.40 .9 \& $65+1$ \& 7.60 \& .08 \& 3951 \& ...

\hline 24 \& 22 \& 340.9 \& 6626 \& 6.80 \& . 05 \& 3.924 \& 5

\hline 25 \& 2.3 \& 340.9 \& 6640 \& 7.53 \& . 05 \& 3.951 \& ...

\hline
\end{tabular}

The magnitudes of the stars in the Pleiades were compared directly with that of Mérope, determined by measurement to be 4.30 on the scale of Polaris $=2.05$ mag.
Other valuations of these magnitudes made by other Astronomers will be found in Memoirs R.A.S., vol. xlviii, p. 272 .

For the literature connected with the magnitude of the stars in the Pleiades, see Bessel, Beobachtungen Verschiedener Sterne der Plejaden.
Wolf, Annales de l'Observatoire de Paris, Mémoires, Tome xiv, deuxième partie.
Lindemann, Mémoires de l'Académie Tmpériale des Sciences de St Pétersbourg. Tome xxxii, No. 6.
Pritchard, Memoirs of the Royal Astronomical Society, vol. xlviii.
Pickering, Harvard Observations, vol. xiv, p. 398 .

Pleiades.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
26	24	$34^{1.0}$	$66 \quad 3$	6.53	0.0 .3	3.924	...
27	η Tauri	341.0	66 I 4	3.12	. 04	3.908	3
28	28	341.8	6655	5.75	. 03	3.908	...
29	29	342.0	66 -	6.58	. 06	3.921	..
30	26 (s)	$342 \cdot 5$	6629	6.56	. 06	3.927	\ldots
31	Atlas	342.6	$66 \quad 17$	4.00	0.06	3.951	4
32	Pleione	342.6	6612	5.43	. 07	3.908	...
3.3	30	342.7	6627	7.89	. 02	$3.95{ }^{1}$	\ldots
34	31.	342.7	6556	6.81	. 05	$3.95{ }^{1}$	\ldots
35	32	342.8	6557	6.34	. 06	3.927	...
36	33	342.9	$66 \quad 5$	6.78	0.04	3.951	...
37	34	34.3 .2	6637	6.27	. 08	.3.927	\ldots
38	35	343.2	$66 \quad 5$	9.67	. 04	3.954	...
39	. 6^{6}.	$343 \cdot 4$	667	9.07	. 13	3.954	\ldots
40	37	$343 \cdot 4$	6559	7.28	. 01	3.927	\ldots
41	38	343.4	6629	6.84	0.05	3.944	\ldots
42	39	34.3 .9	655°	7.33	. 05	3.944	...
43	40	$344 \cdot 3$	6622	7.17	. 05	3.944	...

SAGITTA.

I	1....................	$19 \quad 10.6$	$68 \quad 58$	5.84	0.04	3.658	6
2	2....................	1919.4	7317	6.05	. 06	3.658	
3	3....................	$1 \begin{array}{ll}19 & 19.8\end{array}$	7315	6.31	. 04	3.658	6
4	¢....................	1932.3	7347	5.83	. 06	3.655	6
5	5....................	1935.2	7214	4.42	. 05	5.568	$4 \cdot 5$
6	β...............	1936.1	7247	4.61	0.05	...	$4 \cdots 5$
7	ס...................	1942.5	7144	3.83	. 0.3	$5 \cdot 565$	4
8	\%...................	19 44.i	718	4.85	. 02	3.655	5
9	10	1951.0	7339	5.29	. 0.3	3.658	6
10	II	1952.8	733°	5.22	. 04	3.594	6

No. I. B.A.C. assigns this star to Vulpeeula.
Nos. 2 and 3. These stars form $\Sigma 4^{1}{ }^{1}$, Dist. $336^{\prime \prime}$.
No. 4. Σ Unnum., Dist. 92". The bright star observed. Speetrum II a! (Vogel.)
Nos. 5, 7, and II. The determinations of 1882.59^{2} (see Memoirs of R.A.S., vol. xlvii, p. 448) are rejected. The meteorological conditions were variable.
No. 6. 4.61 is the mean of two determinations made on 1882.592 and on 1882.595 , each with twenty extinetions. H.P. $=4.40$.
No. 7. Spectrum III a !! (Vogel.)
No. 8. $\Sigma 25^{8} 5$, Dist. $8^{\prime \prime}$. Observed as one mass.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	$\begin{gathered} \text { Average } \\ \text { Deviation } \\ \text { in } \\ \text { Magnitude. } \end{gathered}$	Date, $1880+$	Mag. Argel. Uran.
		$\mathrm{h} . \mathrm{m}$.	- ,				
11	γ.................	1953.9	704^{8}	3.72	0.06	$5 \cdot 565$	$4 \cdots 3$
12	13	19 55.1	7247	5.35	. 03	3.658	6
13	14.	1958.5	74 17	5.50	. 11	3.655	6
14	15	1959.2	7313	6.00	. 07	3.655	6
15	$\eta \ldots \ldots \ldots \ldots \ldots$.	$20 \quad 0.3$	7020	5.39	. 09	$3 \cdot 59{ }^{2}$	$5 \ldots 6$
16		20 5.1	6925	6.01	0.04	3.655	6
17	18	2011.5	$684+$	5.92	. 08	3.658	6

No. II. Spectrum II a! (Vogel.)
No. 12. Double: dist. 29". The brighter star observed. Spectrum III a! (Vogel.)
No. 16. $\Sigma 2637$, Dist. $11^{\prime \prime}$ and $70^{\prime \prime}$. Triple. The closer pair observed as one mass.

SCORPIO.

1	$\alpha \ldots \ldots \ldots \ldots \ldots \ldots$	1622.7	116 II	1.13	0.07	\ldots	$1 \ldots 2$

No. I. 1.13 is the mean of two determinations made at Cairo. See Memoirs R.A.S., vol. xlvii, p. 449 .

S C U T U M.

1	W.B. xviii. $3.39 \ldots$	18	17.7	98	59	5.13	0.06	4.601	6
2	B.A.C. $6325 \ldots \ldots$	18	29.2	98	19	4.18	.09	4.604	$4 \cdots 5$
3	P. xviii. $149 \ldots \ldots$	18	36.2	99	9	4.96	.10	4.604	5
4	P. xviii. $157 \ldots \ldots$	18	37.5	98	23	5.20	.08	4.601	5
5	P. xviii. $177 \ldots \ldots$	18	41.3	94	52	4.53	.09	4.601	$5 \cdots .4$
6	R. Scuti..........	18	41.6	95	49	5.37	0.06	4.604	Var.
7	B.A.C. $6464 \ldots \ldots$	18	51.2	95	59	5.15	.02	4.604	5

No. 2. B.A.C. assigns the star to Aquila. Birm., No. 449. The red colour is not salient.
Nos. 3, 4, 5, and 7. B.A.C. assigns these stars to Aquila.
No. 6. Variability discovered by Pigott in 1795 . Max. 4.7 to 5.7 , and Min. 6.0 to 8.5 mag.
Period 7i.I days. Birm., No. $\mathbf{4}^{62}$. The colour is slightly red.
No. 7. Called red in Uranometria Argentina.

SERPENS.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{aligned} & \text { Date, } \\ & 1880+ \end{aligned}$	Mag. Argel. Uran.
		h. m.	- ,				
1	3...................	$\begin{array}{ll}15 & 9.7\end{array}$	8439	5.55	0.05	$4 \cdot 491$	6
2	4....................	1510.2	89 13	5.59	. 05	$5 \cdot 366$	6
3	5..................	$\begin{array}{llll}15 & 13.7\end{array}$	8749	5.13	. 05	4.49 I	5
4	6....................	$\begin{array}{lll}15 & 15.4\end{array}$	8853	5.63	. 08	4.494	6
5	$\tau^{1} \ldots \ldots \ldots \ldots \ldots$	$15 \quad 20.7$	74 II	5.41	. 05	4.491	6
6	Io	1523.1	8747	5.19	0.04	4.494	6
7	$\tau^{2} \ldots \ldots \ldots \ldots \ldots$	${ }_{15} 27.1$	7334	6.05	. 03	$4 \cdot 491$	6
8	II (${ }^{1}$) \ldots.	${ }_{15}{ }_{5} 27.3$	9049	5.91	. 04	4.489	6
9	ס...................	$15 \quad 29.6$	796	3.80	. 05	2.467	$3 \cdots 4$
10	W.B. xv. $505 \ldots$.	I5 29.6	875^{8}	6.51	. 09	4.500	6
11	$\tau^{3} \ldots \ldots \ldots \ldots \ldots$	1530.6	7159	6.15	0.03	$4 \cdot 49$ I	6
12	16	1531.2	79.37	5.22	. 07	4.500	6
13	$\boldsymbol{\tau}^{4} \ldots \ldots$.	1531.4	743^{2}	6.65	. 09	4.491	6
14	τ^{5}................	1531.4	733^{1}	5.72	. 05	$5 \cdot 366$	6
15	τ^{6}	${ }^{1} 535.9$	73.88	6.08	. 05	4.500	6
16	χ..................	${ }^{1} 5836.6$	${ }^{7} 647$	5.00	0.08	4.502	6
17	¢.....................	1536.7	6959	4.59	. 09	2.467	$5 \cdots 4$
18	$\tau^{\boldsymbol{7}} \quad \ldots \ldots \ldots \ldots \ldots \ldots$	1537.0	7111	6.04	. 02	$4 \cdot 502$	6
19	ψ.................	${ }_{1} 15$ 38.5	878	5.83	. 06	4.500	6
20	a	1538.9	83 I 4	2.67	. 02	2.467	$2 \ldots 3$
21	$\boldsymbol{\tau}^{8} \ldots \ldots \ldots \ldots \ldots$	1539.7	7223	5.79	0.05	$4 \cdot 500$	6
22	25 (A^{2}) $\ldots \ldots \ldots \ldots$	1540.4	91 28	5.60	. 08	4.489	6
2.3	β.................	154 [.I	7414	3.55	. 13	2.467	3...4
24	λ.................	1541.1	8218	4.68	. 04	...	$4 \cdots 5$
25	v...................	1542.2	7533	5.77	. 05	$4 \cdot 494$	6

Nos. 2, 6, and 22. Spectrum I a! (Vogel.)
No. 3. Σ 1930, Dist. 10". Observed as one mass.
Nos. 4 and 8. Called red in Uranometria Argentina.
No. 4. Double. Dist. 2".3. Observed as one mass.
Nos. 5 and 12. Spectrum II a! (Vogel.)
No. 9. $\Sigma 1954$, Dist. $3^{\prime \prime} .5$. Binary. Observed as one mass. Spectrum I a! (Vogel.)
No. 13. Birm., No. 356. The colour is orange. Variable? (See Birm., p. 279.) Spectrum III a !!! (Vogel.)
No. 20. Spectrum II a!!! (Vogel.)
No. 23. Σ^{\prime} 1970, Dist. 31". The brighter star observed. This magnitude, 3.55, was also given by a second determination made on $188 \mathbf{5} \cdot 366$. Spectrum I a ! (Vogel.)
No. 24. 4.68 is the mean of two determinations (4.75, 4.61) made on 1882.467 with twenty extinctions, and on 1885.366 with six. H.P. $=4.35$.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
26	κ	1543.8	7131	3.94	0.10	...	4
27	μ.........	154.3 .9	936	3.30	.17	2.467	$3 . .4$
28	ω.................	1544.7	8728	5.05	. 07	4.500	6
29	¢...................	1545.3	8511	3.65	. 05	2.467	$3 \ldots 4$
30	36 (b) $\ldots \ldots \ldots \ldots$	${ }^{1} 545.5$	9245	5.31	. 05	$4 \cdot 4^{89}$	5
31	p..................	1546.4	$68+1$	5.00	0.04	4.500	5
32	P. xv. $212 \ldots \ldots \ldots$	1549.7	6922	6.21	. 03	4.500	6
3.3	P. xv. $215 \ldots \ldots$.	1550.7	71.3	6.40	. 07	4.502	6
34	γ...............	15 51.4	7358	3.83	. 07	2.467	+..3
35	ϕ................	${ }^{15} 52.2$	7516	5.46	. 11	4.500	6
36	π................	1557.6	6653	4.48	0.08	...	5...
37	45	$16 \quad 2.4$	7949	5.65	. 07	4.502	6
38	47	$16 \quad 3.2$	8110	6.06	. 09	4.502	6
39	σ, \ldots.............	$16 \quad 16.5$	8843	4.92	. 06	4.500	5
40	$r^{\prime} \ldots \ldots \ldots \ldots \ldots \ldots$	17814.6	1024	..'	. 03	2.472	5 $\ldots 4$
$4{ }^{1}$	ξ................	1731.3	10520	...	0.14	2.472	$4 \cdots 3$
42	0...................	1735.2	10249	\ldots	. 07	2.472	$5 \ldots 4$
4.3	$\zeta \ldots \ldots$.	1754.7	9341	4.48	. 06	4.502	5
44	η................	$18 \quad 15.6$	$9^{2} \quad 5^{6}$	3.56	. 10	...	3
45	59	1821.6	895^{2}	5.50	. 08	...	6

No. 26. Birm., No. 35 . The colour is orange. 3.94 is the mean of two determinations (3.96, 3.92) made on 1882.467 with twenty extinctions, and on 1885.366 with six. Spectrum III a!! (Vogel.)
Nos. 28 and 38. Called red in the Uranometria Argentina.
Nos. 29, 37, and 39. Spectrum I a ! (Vogel.)
No. 31. Birm., No. 363. The red colour is not salient.
No. 36. 4.48 is the mean of two determinations (4.40, 4.56) made on 1882.47^{2} with twenty extinctions, and on 1885.366 with six. H.P. $=4.99$.
No. 4o. Σ Unnum., Dist. $5 \mathbf{1}^{\prime \prime}$. The resulting magnitude after applying a mean absorption correction is 4.3^{2}.

Nos. 41 and 42. The resulting magnitude of these stars after applying a mean absorption correction is respectively 3.34 and 4.28 .

No. 44. 3.56 is the mean of two determinations ($3.65,3.48$) made on 1882.47^{2} with twenty extinctions, and on 1885.366 with six. H.P. $=\mathbf{3 . 3 5}$.
No. 45 . $\sum 2.316$, Dist. $4^{\prime \prime}$. Observed as one mass. A second determination of this star made on 1885.366 gave the same magnitude $5 \cdot 50$. H.P. $=5.21$.

$\begin{gathered} \text { Refcr- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m,	- ,				
4^{6}	60.	1824.0	923	5.61	0.06	4.500	6
47	e	IS 31.9	9025	5.84	. 0.4	4.502	6
4^{8}	6_{2}.................	IS 50.1	83 31	5.91	. 09	4.500	6
49	$\theta_{1} \ldots \ldots$.	1850.7	862	3.91	. 06	2.472	
50	$\theta 2$	1850.7	862	4.23	. 03	2.472	
51	$6+\ldots$.	$18 \quad 51.7$	8737	5.66	0.06	4.500	6

Nos. 46 and 48. Called red in Uranometria Argentina.
No. 47. Spectrum I a! (Vogel.)
Nos. 49 and 50. These stars form $\Sigma^{241}{ }^{7}$, Dist. 22". Strong suspicion of variability. (See Uran. Argent., p. 322.) Spectrum I a! (Vogel.)

SEXTANS.

1	1....................	931.4	8240	5.08	0.06	4.264	6
2	2...................	932.6	8.451	4.61	. 0.4	4.264	5
3	B.A.C. 3336,	940.4	8247	5.88	. 02	4.264	6
4	P. xix. 171 ,.......	$9+0.7$	8742	5.76	.05	4.272	6
5	7....................	946.5	872	6.14	.04	4.272	6
6	8...................	$9^{\prime} 47.1$	9735	5.34	0.07	4.24^{8}	5
7	12	954.0	865	6.73	. 02	4.272	6
8	13	958.4	86 I5	6.70	. 02	4.272	6
9		$10 \quad 2.3$	8950	4.89	. 04	...	$4 \cdots 5$
10	I7	10 4.7	9752	6.10	. 04	4.231	\ldots
11	18	$10 \quad 5.5$	975^{2}	5.70	0.02	4.231	6
12	19	$10 \quad 7.1$	845^{1}	6.04	. 06	4.248	6
13	22	1012.2	9731	5.47	. 03	4.248	6
14	23	10 15.4	879	6.79	. 07	4.272	6
15	29	1023.9	9211	5.15	.04	4.215	5
16	30	1024.7	904	5.02	0.04	4.220	5
17	35	10 37.6	8440	6.15	.05	4.264	6
18	4^{1}.................	1044.8	9819	5.70	. 03	4.272	5

No. 1. = 10 Leonis. (See Introduction to B.A.C., p. 75.)
No. 3. B.A.C. assigns this star to Leo. Nos. 5 and I 5. Spectrum I a ! (Vogel.) $^{\text {I }}$
No. 9. 4.89 is the mean of six accordant determinations made on as many nights, one at
Oxford and five at Cairo, involving seventy extinctions, made between 1882.360 and 1883.108 .
H.P. $=4.51$.

No. in. Birm., No. 234. The red colour is not salient.
No. 17. Σ^{2} I466, Dist. $7^{\prime \prime}$. Observed as one mass.

TAURUS.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Averace Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
1	P. iii. 6	36.6	8345	5.95	0.10	4.861	6
2	0....................	318.9	8121	3.56	. 06	2.877	$4 \cdots 3$
3	छ...................	321.2	8039	3.72	. 03	2.877	$4 \cdots 3$
4	4....................	$3^{2}+7$	$79 \quad 2$	5.31	. 06	$4^{8.8} 7^{2}$	5
5		$3^{2+} 7$	6249	5.93	. 06	$4.8+5$	6
6	5...................	324.8	7726	4.15	0.10	2.869	4
7	6...................	326.7	810	5.70	. 05	4.861	6
8	7	327.9	6554	6.01	. 03	4.845	6
9	10	$3 \quad 31.3$	8957	4.49	. 09	2.877	$4 \cdots 5$
10	P. iii. 103........	333.2	7349	6.19	. 08	4.853	6
11	12	334.2	8718	5.99	0.10	4.861	6
12	13	336.0	7039	5.49	. 04	4.872	$6 \ldots 5$
13	P. iii. 128.	338.1	6925	5.93	. 04	4.845	6
14	29	$\begin{array}{llll}3 & 39.8\end{array}$	$8+18$	5.69	. 05	4.861	$6 \ldots 5$
15	30	$34^{2.2}$	7912	5.09	. 02	4.861	5
16	P. iii. 1_{70}.........	$343 \cdot 7$	6445	5.56	0.07	4.853	6
17	D.M. +21 $^{\circ}$, No. 539	345.2	6817	5.99	. 09	...	6
18	D.M. $+12^{\circ}$, No. 5^{16}	$3+5.2$	7717	6.10	. 06	4.890	6
19	31	346.1	8348	5.87	. 05	4.883	6
20	P. iii. 187	346.9	73 -	6,17	. 03	4.872	6
21	32	350.4	$6_{7} 5^{\circ}$	5.77	0.09	4.845	6
22	P. iii. 203	351.2	8417	6.09	. 04	4.890	6
23	P. iii. 215	354.5	727	6.07	. 04	...	6
24	λ................	354.6	7749	3.43	. 05	2.877	$3 \ldots 4$
25	Bradley $5+7$.....	354.7	706	6.75	. 07	4.853	6

No. I. B.A.C. assigns this star to Cetus.
No. 2. Called red in Uranometria Argentina. Auwers thought the star variable with a period of seven days. (See Ast. Nach., vol. l, p. 105.)
Nos. 3 and 4. Spectrum I a !! (Vogel.)
No. 5. $\Sigma 401$, Dist. 11 ". Observed as one mass.
No. 6. Spectrum II a! (Vogel.) Nos. 7, I4, 15, and 22. Spectrum I a! (Vogel.)
No. 8. Σ_{412}, Dist. $<1^{\prime \prime}$. Observed as one mass.
No. $\mathrm{I}_{5} . \quad \Sigma 4 \mathbf{5}^{2}$, Dist. $9^{\prime \prime}$. Observed as one mass.
No. 17. 5.99 is the mean of two determinations ($5.97,6.00$) made on 1884.872 and on 1885.168 , each with six extinctions. H.P. $=5.68$.

No. 23. 6.07 is the mean of two determinations ($5.98,6.15$) made on 1884.890 and on 1885.168 , each with six extinctions. H.P. $=5.68$.

No. ${ }^{2}$. Variability discovered by Baxendell in 1848 . Max. 3.4, Min. 4^{2} mag. Period $3^{\text {d }}$, $2^{2}{ }^{\mathrm{h}} 5^{2^{\mathrm{m}}}$. Epoch of minimum 1866, Dec. 31, $12^{\mathrm{h}} 34^{\mathrm{m}}$. Spectrum I a! (Vogel.)

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude - Polaris -2.05.	$\begin{gathered} \text { Average } \\ \text { Deviation } \\ \text { in } \\ \text { Magnitude- } \end{gathered}$	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
26	P. iii. 220	355.8	80 19	5.98	0.05	4.861	6
27	1....................	357.3	$8+19$	4.10	. 04	2.874	4
28	$36 \ldots$.	357.8	66 I2	5.71	. 04	4.845	6
29	P. iii. $23+\ldots \ldots .$.	$35^{8.0}$	82 6	5.80	. 05	\ldots	6
30	40	358.0	$8+5{ }^{2}$	5.53	. 03	4.880	6
31	37	358.2	6813	4.84	0.09	\cdots	$5 \ldots 4$
32	P. iii. 238	$35^{8.5}$	8728	5.71	. 06	4.960	6
33	41	359.9	624^{2}	5.36	. 09	${ }_{4} 8_{45}$	$6 \ldots 5$
34	ψ.................	40.2	6118	5.27	. 05	4.853	6
35	43	$4 \quad 2.8$	7041	6.07	. 02	4.872	6
36	44 (p)	4 4.1	634^{8}	5.78	0.05	4.853	6
37	45	$4 \quad 5 \cdot 5$	$8+4^{6}$	5.86	. 06	4.88 .3	6
38	$46 \ldots$.	$4 \quad 7.6$	8234	5.43	. 0.4	4.872	6
39	47	48.0	81 I	5.10	. 0.4	4.960	5
40	P.iv. 19	48.6	So I7	5.27	. 04	4.880	$6 . .5$
$4{ }^{1}$	$48 \ldots$.	$4 \quad 9.5$	$7+52$	6.19	0.05	4.960	6
$4{ }^{2}$	μ.................	$4 \quad 9.6$	8 I 23	4.30	. 05	5.248	$4 \cdots 5$
4.3	P. iv. $24 . \ldots$.	$4 \quad 9.6$	845	6.95	. 02	4.962	\} 6
44	P. iv. $25 \ldots \ldots \ldots .$.	$4 \quad 9.7$	$8+6$	6.25	. 04	4.962	
45	ω^{1}.................	-4 10.8	694^{1}	5.08	. 03	\ldots	$6 \ldots 5$
4^{6}	53	413.0	$69 \quad 7$	5.76	0.07	+.85.3	6
47	5^{6}................	4 I3.1	6829	5.65	. 02	4.890	6
48	γ.................	413.5	$7+38$	3.55	. 10	...	4
49	¢	413.6	6255	5.21	. 03	4.853	$5 \ldots 6$
50	57 (h)	413.8	7614	5.77	. 08	4.960	6

No. 26. Called red in Uranometria Argentina. Spectrum I a ! (Vogel.)
No. 27. 4.10 is the mean of two determinations (4.06, 4.14) made on 1882.869 and on 18S2.877, each with twenty extinctions. Spectrum I a !! (Vogel.)
No. 29. 5.80 is the mean of two determinations (5.87, 5.73) made on 1884.890 and on I885.I68, each with six extinctions. H.P. $=5.55$.
No. 31. 4.84 is the mean of two determinations (4.88, 4.So) made on 1882.869 with twenty extinctions, and on 1885.248 with six. H.P. $=4.45$.
Nos. 3^{8} and 39. Spectrum I a ! (Vogel.)
Nos. 39 and 40. Called red in Uranometria Argentina.
No. 41. Variable? Schmidt. (See Ast. Nach., vol. lxxx, p. 253 and p. 383.)
No. 42. The determination of 1 S82.897 (see Memoirs R.A.S., vol. xlvii, p. 451) is rejected. The night was hazy.
No. 45. 5.08 is the mean of two determinations ($5.05,5.10$) made on 1884.853 and on 18S5.168, each with six extinctions. H.P. $=4.65$.
No. 48.3 .55 is the mean of two determinations ($3.50,3.60$) made on 1882.877 with twenty extinctions, and on 1885.168 with six. Spectrum II a ! (Vogel.)
No. 50. Spectrum I a ! (Vogel.)

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris $\mathbf{2 . 0 5 .}$	$\begin{gathered} \text { Average } \\ \text { Deviation } \\ \text { in } \\ \text { Magnitude. } \end{gathered}$	$\begin{aligned} & \text { Date, } \\ & 1880+ \end{aligned}$	Mag. Argel. Uran.
		h. m.	- ,				
51	P. iv. 49	414.9	848	6.02	0.06	4.890	6
52	χ.................	4×5.9	$6+38$	5.69	. 03	4.853	$6 \ldots 5$
53	60	415.9	7611	5.92	. 10	4.883	6
$5+$	$\delta^{1} \ldots \ldots \ldots \ldots \ldots$	416.6	7243	3.90	. 08	5.168	4
55	Г. iv. 6I	417.0	6917	6.05	. 03	4.890	6
56	62.	$+17.4$	6557	6.11	0.03	4.960	6
57	$6_{4} \ldots \ldots$.	417.7	7249	4.97	. 06	4.890	6
58	$66(r) \ldots \ldots$.	417.9	So 4^{8}	5.21	. 04	4.880	$5 \ldots 6$
59	κ к................	418.8	6757	4.60	. 07	2.869	$5 \cdots 4$
60	68	419.1	7219	4.48	. 02	4.960	5
61	v..................	419.7	6726	4.64	0.07	2.869	$5 \cdots 4$
62	71.	420.1	7438	5.03	.04	...	6
63	π.................	420.4	7532	5.09	. 11	4.880	5
64	72	$4^{20.7}$	6715	5.65	.05	4.968	6
65	P. iv. $82 \ldots \ldots \ldots .$.	421.5	6837	6.00	. 04	...	6
66	D.M. $+10^{\circ}$, No. 577	$+21.5$	$79 \quad 2$	6.07	0.03	4.883	6
67	¢....................	422.2	71	3.69	. 04	5.248	$4 \cdots 3$
68	$\theta^{1} \ldots \ldots \ldots \ldots \ldots$	422.3	$7+17$	4.13	. 04	2.902	$4 \cdots 5$
69	$\theta^{2} \ldots \ldots \ldots \ldots \ldots$	422.4	7422	3.65	. 04	2.902	$4 \cdots 5$
70	79(b)	422.7	7712	5.06	. 07	4.880	$6 \ldots 5$
71	P. iv. $99 \ldots \ldots . . .$.	$4^{2+3} 3$	$74 \quad 3$	5.09	0.05	4.968	5
72	83	42.4 .4	7631	5.62	. 06	4.984	6
73	$\rho \ldots$.	427.6	$75 \quad 23$	5.01	. 07	4880	5
74	P.iv. III	427.8	6116	5.70	. 03	4.984	6
75	D.MI. $+5^{\circ}$, No. 679	428.3	8440	5.97	. 03	$4 \cdot 968$	6

No. 52. $\Sigma 5_{2} 8$, Dist. $\mathbf{1 9}^{\prime \prime}$. The bright star observed.
Nos. 53, 57, and 58. Spectrum I a! (Vogel.)
No. 54. The determination made on 1882.877 is rejected. (See Memoirs R.A.S., vol. xlvii, p. 451.) The night was hazy and variable.

No. 56. $\Sigma 534$, Dist. 29". The bright star observed.
No. 59. $\Sigma 9^{1}$. The very distant companion (67 Tauri) is not observed.
No. 60. Spectrum I a ! ! (Vogel.)
No. 62. 5.03 is the mean of two determinations (4.99, 5.07) made on 1884.968 and on 1885.174, each with six extinctions. H.P. $=4.61$.

No. 65. 6.00 is the mean of two determinations (5.96, 6.03) made on 1884.890 and on 1885.174, each with six extinctions. H.P. $=5.68$.

No. 67. The determination made on 1882.877 is rejected. (See Memoirs R.A.S., vol. xlvii, p. 451.) See note to No. 54.

Nos. 68 and 69. These stars form $\Sigma 10^{1}$, Dist. $337^{\prime \prime}$.
Nos. 69 and 70. Spectrum I a !! (Vogel.)
Nos. 71, 72, 73, and 75. Spectrum I a! (Vogel.)

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.I). } \\ & 1890 . \end{aligned}$	$\begin{gathered} \text { Adopted } \\ \text { Zenithal } \\ \text { Magnitude. } \\ \text { Polaris. } \\ 2.05 . \end{gathered}$	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		li. m.	- ,				
76	a	429.6	7.343	1.12	0.05	...	1
77	S8	429.6	804	4.47	. 05	2.902	5..4
78	W.B. iv. $650 \ldots .$.	$43^{1.8}$	693^{2}	5.88	. 10	4.984	6
79	90	432.0	7743	4.57	. 06	2.902	$5 \cdots 4$
80	$\sigma^{1} \ldots \ldots \ldots \ldots \ldots$	433.0	7425	5.34	.09	4.890	
81			$7+18$	5.06	0.06	4.890	¢ 5
81	σ^{2}.................	433.0					
82	P. iv. 146	433.2	82 II	5.72	. 04	4.968	6
83	93	$433 \cdot 9$	78 I	5.50	. 06	4.960	$6 \ldots 5$
84	P. iv. $\mathrm{I}_{4} 8 \ldots \ldots .$.	$434 \cdot 4$	6136	6.00	. 06	4.968	6
85	τ................	435.6	$6_{7}{ }^{5} 5$	4.65	. 06	2.902	$4 \cdots 5$
86	97	444.9	7121	5.20	0.10	4.984	5... 6
87	Bradley 686	451.0	731	5.74	. 01	4.984	6
88	Bradley 684......	451.1	66 I3	6.00	. 02	4.968	6
89	98	$45^{1.4}$	$65 \quad 7$	5.79	. 05	4.960	$6 . . .5$
90		$45^{6.5}$	6834	4.90	. 04	4.890	5
91	104.................	$5 \quad 0.9$	7130	5.30	0.07	4.880	$5 \ldots 6$
92	106.................	$5 \quad 1.3$	$69+4$	5.47	. 05	4.984	$6 . .5$
9.3	105.................	$5 \quad 1.4$	6826	5.67	. 06	5.000	6
94	103.................	$5 \quad 1.4$	6554	5.69	. 10	4.984	6
95	109................	512.7	68 I	5.44	. 05	...	6
96	111..................	518.0	7243	5.26	0.05	4.968	$6 \ldots 5$
97	β................	519.3	6129	1.79	. 07	...	2
98	115...............	520.8	728	5.69	. 05	...	6
99	114.................	521.0	$68 \quad 9$	5.06	. 05	4.984	6
100	116.................	52 I .4	7413	5.62	. 03	4.960	6

No. 76. Birm., No. Sr. The colour is yellow. $\underset{\Sigma_{2}{ }^{I I} \text {. The faint distant companion not }}{ }$ observed. Seidel suggests variability. (See Result. Phot. Mess., p. 162.) Selected by Dr. G. Müller to detect the effect of atmospheric absorption on coloured stars. See Photometrische Untersuchungen. Spectrum II a !!! (Vogel.) 1.12 is the mean of seven determinations made on as many nights, four at Oxford and tlree at Cairo, involving eighty extinctions, between 1882.902 and 1883.168 .
Nos. 77, 79, and 82. Spectrum I a ! (Vogel.)
Nos. So and 81. These stars form ΣI_{11}^{1}, Dist. $428^{\prime \prime}$. Spectrum I a! (Vogel.)
No. S5. Double. Dist. 61'. The distant companion not observed.
No. 86. Spectrum I a! (Vogel.)
No. 95.5 .44 is the mean of two determinations (5.40, 5.47) made on 1884.962 and on 1885.174, each with six extinctions. H.P. $=5.15$.

No. 97. β Tauri $=\gamma$ Aurigæ. (See Introduction to B.A.C., p. 75.) 1.79 is the mean of five determinations, made on as many nights, three at Oxford and two at Cairo, involving sixty extinctions, between 1882.902 and 1883 . 993 .
No. 98. 5.69 is the mean of two determinations (5.64, 5.74) made on 1884.984 and on ${ }_{188} 8.174$, each with six extinctions. H.P. $=5.38$.

	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05 .	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
101	118.................	522.5	$6+56$	5.48	0.06	4.984	6
102	119.................	525.8	7129	4.60	. 10	4.962	$6 . . .5$
103	ェ 730.	525.9	$73 \quad 2$	5.67	. 09	5.000	6
104	121..................	$5 \quad 28.7$	$66 \quad 2$	5.77	. 04	...	6
105	122.................	530.7	$73 \quad 2$	5.60	. 04	4.960	6
106	$\zeta \ldots \ldots \ldots$.	531.1	6855	3.00	0.06	2.902	$3 \cdots 4$
107	125................	532.9	$6+10$	5.07	. 07	5.000	6
108	126................	534.9	73.31	5.10	. 05	5.000	5
109	P. v. 192	536.7	6651	6.04	. 05	4.968	6
110	130.................	541.0	7219	5.48	. 02	4.960	6
111	133..........2......	541.5	76	5.27	0.02	4.883	6
112	132................	$54^{2} \cdot 3$	6528	5.30	. 03	4.968	5... 6
113	13+.................	$543 \cdot 4$	7723	4.98	. 02	4.962	$5 \ldots 6$
114	135.	$54+2$	$75+4$	5.73	. 02	4.98 +	6
115	137................	546.1	755^{1}	5.67	.o8	4.960	6
116	136.................	$54^{6.4}$	$62 \quad 25$	4.66	0.09	\ldots	5
117	139................	5.51 .2	$6+4$	5.00	.04	4.968	5...6

No. 10I. $\Sigma \mathrm{S}^{2} 16$, Dist. $5^{\prime \prime}$. Observed as one mass.
No. 102. Birm., No. ili. The colour is distinctly red. Spectrum III a ! ! (Vogel.)
No. 103. $\Sigma 730$, Dist. 10". Observed as one mass.
No. 104. 5.77 is the mean of two determinations ($5.75,5.80$) made on 1884.968 and on I 88 .I 74 , each with six extinctions. H.P. $=\mathbf{5 . 4 3}$.
Nos. 113 and 115 . Spectrum I a ! (Vogel.)
No. 116, 4.66 is the mean of two determinations (4.72, 4.60) made on 1885.000 and on IS8.174, each with six extinctions. H.P. $=4.46$.

TRIANGULUM.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05 .	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
1	B.A.C. 5^{14}......	135.4	6030	6.07	0.03	4.984	6
2	B.A.C. $5^{16} \ldots$	135.7	5519	5.66	. 07	...	6
3	P.i. ifi \ldots.	142.4	5753	5.95	. 06	4.999	6
4	a	1 46.8	6059	3.50	. 06	2.656	$4 \cdots 3$
5	є....................	I 56.5	5715	5.63	. 04	5.022	5... 6
6	β................	23.0	553^{2}	3.12	0.06	2.656	3
7	6....................	26.0	6013	5.50	. 05	4.984	$6 \ldots 5$
3	7....................	$2 \quad 9.4$	579	5.28	. 07	4.999	5
9	ס...................	210.3	5617	51.17	. 01	5.022	$6 . . .5$
10	γ................	210.8	5640	4.35	. 06	2.656	$4 \cdots 5$
II	10	212.6	6152	5.55	0.06	...	6
12	11	220.9	$5^{8} 41$	5.60	. 08	4.999	6
13	12	221.7	6049	5.54	. 02	4.984	$6 \ldots 5$
14	14	225.4	5419	5.43	. 07	4.999	6
15	15	229.1	5548	5.65	. 01	4.984	$6 \ldots 5$

No. 2. B.A.C. assigns this star to Andromeda. 5.66 is the mean of two determinations $(5.65,5.68)$ made on 1884.999 and on 1885.137 , each with six extinctions. H.P. $=\mathbf{5 . 3 7}$.
No. 5. Σ 201, Dist. 5". Observed as one mass.
No. 7. $\sum 227$, Dist. $3^{\prime \prime} \cdot 5$. Observed as one mass.
No. II. 5.55 is the mean of two determinations $(5.57,5.53)$ made on 1884.984 and on 1885.137 , each with six extinctions. H.P. $=5.29$.
No. ${ }^{5}$. Birm., Add. I, No. 9. The red colour is not salient. Secchi suggests variability. (See Prodromo.)

URSA MAJOR.

Reference Number.	Star's Designation.	$\begin{gathered} \text { S.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. PoIaris 2.05.	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	-				
1	B.A.C. 2707	$\begin{array}{ll}8 & 1.8\end{array}$	2112	5.45	0.05	5.292	6
2	B.A.C. 2765	$\begin{array}{ll}8 & 9.7\end{array}$	$27 \quad 9$	5.82	. 11	$5 \cdot 303$	6
3	P. vini. 46	819.4	2220	5.95	. 00	5.283	6
4	0....................	821.2	2855	3.36	. 09	2.913	$3 \ldots 4$
5	2.....................	$8 \quad 24.7$	2429	5.48	. 02	$5 \cdot 305$	5
6	B.A.C. 2887	830.2	3613	5.78	0.01	5.283	6
7	$\pi^{2} \ldots \ldots$.	830.6	2517	4.76	. 03	2.913	$5 \cdots 4$
8	P. viii. 105........	831.1	3654	8.10	. 10	5.292	6
9	P. riii. 137........	838.9	2253	6.05	. 14	5.283	6
10	5.....................	844.3	273^{8}	5.57	. 10	$5 \cdot 303$	5
11	6....................	847.2	2458	5.71	0.07	5.292	6
12	ו....................	851.7	4131	3.83	. 07	...	3
13	p...................	852.6	2157	4.98	.13	5.283	5
14	10	853.5	474^{6}	4.10	. 09	2.913	4
${ }^{5} 5$	B.A.C. 3072	855.9	3517	5.71	. 07	$5 \cdot 305$	6
16	к.....................	856.1	4224	3.62	0.03	2.913	3... 4
17	B.A.C. 3086	858.2	3012	6.23	. 07	5.283	6
18	$\sigma^{1} \ldots$.	858.7	2241	5.26	. 12	$5 \cdot 303$	5
19	P. viii. 245.........	859.6	516	4.74	. 04	2.938	5
20	$\sigma^{2} \ldots \ldots$.	$9 \quad 0.7$	2225	5.00	.13	$5 \cdot 303$	5
21	15	91.1	3757	4.68	0.10	$5 \cdot 308$	5
22	т....................	$\begin{array}{ll}9 & 1.8\end{array}$	$26 \quad 2$	4.94	.55	5.283	$5 \ldots 4$
23	B.A.C. 3116	$\begin{array}{ll}9 & 4.8\end{array}$	1636	5.83	.16	5.292	6
24	16	96.0	$28 \quad 8$	5.14	. 07	$5 \cdot 308$	5
25	17	$\begin{array}{ll}9 & 7.7\end{array}$	324^{8}	5.51	. 11	5.292	6

No. 1. Called 55 Camelopardali in the B.A.C.
No. 2. B.A.C. assigns this star to Camelopardalus.
No. 5. Σ Unnum. The distant star not observed.
Nos. 6, 8, 14, and 19. B.A.C. assigns these stars to Lynx.
No. I2. O乏 196 , Dist. $10^{\prime \prime}$. Observed as one mass. 3.23 is the mean of four determinations made on as many nights, two at Oxford and two at Cairo, involving fifty extinctions, made between $1882.9^{13} 3$ and 1883.089 .
No. 18. Birm., Add. I, No. 39. The colonr is slightly orange.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	$\begin{gathered} \text { Adopted } \\ \text { Zenithal } \\ \text { Magnitude. } \\ \text { Polaris } \\ 2.05 . \end{gathered}$	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
26	18	98.3	3532	5.00	0.07	5.292	5
27	P.ix. 19	910.1	4243	5.79	. 06	5.283	6
28	B.A.C. 3172	913.6	3250	5.86	. 08	5.283	6
29	P. ix. 78	921.5	4355	5.35	. 03	5.292	6
30	23	922.8	2627	3.66	. 08	2.913	3...4
31	22	9 24,5	1718	5.88	0.11	5.283	6
32	24	924.8	1941	4.92	. 06	...	$5 \cdots 4$
33	θ.................	925.6	3749	3.12	. 06	2.913	3
34	26	927.3	3727	4.75	. 07	5.303	5
35	27	932.8	1715	5.44	. 08	5.283	6
36	B.A.C. $3287 \ldots$	932.9	2016	5.62	0.01	5305	6
37	P. ix. 159	938.7	3222	5.42	. 12	5.292	6
38	P.ix. 169	941.5	4328	5.39	. 04	$5 \cdot 308$	5
39	v.....................	943.2	3026	3.94	.10	2.913	$4 \cdots 3$
40	¢	944.6	3525	4.73	. 11	..	$5 \cdots 4$
41	31	948.5	3940	5.15	0.08	5.292	5
42	P. ix. 201	949.6	323	5.75	. 07	5.283	6
43	B.A.C. 3402	952.3	$3^{2} 4^{\circ}$	5.53	. 10	5.283	6
44	P. ix. 229	$957 \cdot 3$	3534	5.90	. 04	5.292	6
45	R. 2460	$10 \quad 7.5$	2928	5.98	. 08	$5 \cdot 303$	6
46	32.	1010.0	2420	5.78	0.09	5.283	6
47	λ................	1010.5	4632	3.52	. 0.3	2.938	$3 \cdots 4$
48	P. x. 26.	1012.7	2042	5.88	. 05	$5 \cdot 308$	6
49	L. 19985	1013.1	353^{8}	6.56	. 10	$5 \cdot 303$	6
50	μ..................	1015.8	4757	3.12	. 05	2.913	3
51	P. x. $42 \ldots$.	1016.2	2352	5.01	0.03	$5 \cdot 305$	5
52	B.A.C. $3567 \ldots$	1021.2	4037	6.17	. 04	5.303	6
53	R. 2498	1022.8	2511	6.03	. 05	5.308	6
54	36	1023.6	3327	4.98	. 09	5.308	5
55	B.A.C. 3607	1026.8	49 -	5.11	. 12	$5 \cdot 193$	5

No. 29. B.A.C. assigns this star to Lynx.
No. 30. $\Sigma \mathbf{1}_{351} 1$, Dist. 23". The brighter star observed.
No. 32. 4.92 is the mean of two determinations (4.99, 4.86) made on 1882.913 with twenty extinctions, and on 1885.415 with six. H.P. $=4.59$.
No. 38. B.A.C. assigns this star to Leo Minor.
No. 40. OE 208. 4.73 is the mean of two determinations ($4.80,4.67$) made on 1882.938 with twenty extinctions, and on 1885.4 I 5 with six. H.P. $=\mathbf{4 . 4 3}$.
No. 50. Birm., No. 238. The colour is orange.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	$\begin{gathered} \text { Adopted } \\ \text { Zenithal } \\ \text { Magnitude. } \\ \text { Polaris } \\ 2.05 . \end{gathered}$	Average Deviation in Magnitude.	Date, $1880+$	Mag. Argel. Uran.
		h. m.	\bigcirc,				
56	37	1028.1	3221	5.38	0.04	$5 \cdot 303$	5
57	B.A.C. 3639	1032.8	3545	5.71	. 03	$5 \cdot 308$	6
58	B.A.C. 3645	1034.0	2059	5.78	. 07	5.311	6
59	38	10 34.5	2342	5.00	. 03	$5 \cdot 311$	5
60	P. x. 126	10 35.2	2021	4.96	. 09	...	5
61	39	10 36.8	3213	5.80	0.02	$5 \cdot 303$	6
62	P.x. 135	1037.1	4313	5.13	. 05	$5 \cdot 308$	5
63	D.M. 65°, No. 803	1041.4	2417	5.99	. 07	...	6
6.4	43	1044.4	3250	6.02	. 08	$5 \cdot 305$	6
65	42.	1044.5	306	5.87	. 12	$5 \cdot 305$	6
66	R. 2571	1045.9	3651	6.66	0.10	5.3II	6
67	R. 2572	1046.0	3655	6.44	. 06	$5 \cdot 3$ II	
68	R. 2569	1046.1	I9 34	5.90	. 05	5.308	6
69	44	1046.9	3450	5.56	. 05	$5 \cdot 305$	5
70	ω. \quad.	1047.7	4^{613}	4.91	. 09	5.193	5
71	O.A. 11292	1052.7	3731	6.34	0.10	5.308	6
72	47	10 53.3	$4^{8} 59$	5.23	. 01	5.196	5
73	P. x. 203	1053.3	5317	6.14	. 06	5.206	6
74	B.A.C. 375^{8}......	10 53.9	4353	5.88	. 06	5.193	6
75	B.A.C. 3760	1054.1	4629	5.90	. 09	5.193	6
76	49	1054.7	5012	5.18	0.05	5.196	5
77	β................	1055.2	331	2.17	. 06	...	2...3
78	a	1057.0	2739	1.89	. 04	...	2
79	51	1058.4	5110	5.87	. 10	5.193	6
80	O.A. 11453	$\begin{array}{ll}11 & 2.6\end{array}$	2211	5.91	. 10	$5 \cdot 308$	6

No. 60. 4.96 is the mean of two determinations (4.94, 4.97) made on 1885.305 with twenty extinctions, and on 1885.423 with six. H.P. $=5.25$.
No. 63.5 .99 is the mean of two determinations ($6.00,5.98$) made on 1885.308 with twenty extinctions, and on 1885.423 with six. H.P. $=6.32$.
No. 77. 2.17 is the mean of the determinations made on ten different nights involving one hundred and ten extinctions, details of which are given in the Preface.
No. 78. Birm., No. 252. The colour is supposed to be variable. (See Ast. Nach., vol. Ixxxviii, p. 363.) 1.89 is the mean of the determinations made on ten different nights involving one hundred and ten extinctions (see Preface). The variability of this star and of the other brighter stars in Ursa Major has been discussed by Schmidt. (See Ast. Nach., vol. xlvi, p. 299.) Argelander distrusts the evidence in favour of variability. (See Bonn. Beobacht., vol. vii, pp. 401 and 515 .)

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran
		h. m.	- ,				
81	P. x. 252	II 3.3	536	5.96	0.07	5.196	6
82	\%	$\begin{array}{ll}11 & 3.5\end{array}$	4454	3.21	. 05	2.913	3
83	B.A.C. 3821.	II 5 5.1	217	6.06	. 03	...	6
84	R. 2648	$\begin{array}{ll}11 & 9.7\end{array}$	$3^{6} 37$	6.16	. 03	5.308	6
85	P. xi. 19............	1110.5	3955	5.76	. 13	5.308	6
86	ξ.	1112.3	5751	3.75	0.07	2.957	4...3
87	V....................	1112.5	5618	3.49	. 09	...	3... 4
88	55		5114	4.91	. 03	5.196	5
89	R. 2662	II 14.2	2217	6.08	. I I	...	6
90	P. xi. 43...........	$\begin{array}{ll}\text { II } & 16.3\end{array}$	254	5.93	. 07	$5 \cdot 423$	6
91	56.	$\begin{array}{lll}11 & 17.8\end{array}$	4555	5.27	0.16	5.196	6
92	P. xi. 59...........	$\begin{array}{ll}11 & 19.9\end{array}$	3333	5.71	. 15	$5 \cdot 308$	6
93	57	$\begin{array}{ll}11 & 23.2\end{array}$	503	5.10	. 02	5.206	5
94	R. 2693	$\begin{array}{ll}11 & 23.6\end{array}$	3239	5.88	. 07	$5 \cdot 308$	6
95	58	1124.6	4^{613}	5.95	. 03	$5 \cdot 196$	6
96	B.A.C. 3918	1126.1	2818	5.53	0.01	$5 \cdot 308$	6
97	B.A.C. 3931	II 29.0	3436	5.67	. 07	5.210	6
98	B.A.C. 3949	1131.9	384^{6}	5.85	. 14	$5 \cdot 311$	6
99	59	11132.5	4546	5.53	. 05	5.196	6
100	R. 2721	II 32.6	$25 \quad 2$	6.28	. 05	5.308	6

No. 82. Birm., No. 254. The colour is yellow. This star has been suspected of variability. (See Ast. Nach., vol. xlvi, p. 303.)

No. 83. B.A.C. assigns this star to Draco. 6.06 is the mean of two determinations ($6.06,6.05$) made on 1885.305 with twenty extinctions, and on 1885.423 with six. H.P. $=6.57$.

No. 84. $\Sigma \Sigma^{5} 520$, Dist. $I^{\prime \prime}$. Observed as one mass.
No. 86. Σ^{1523}. Binary. Period 60.80 years. Semi-axis major $2^{\prime \prime} .58$. (See Oxford University Astron. Obs., No. i, p. 62.) Observed as one mass.

No. 87. $\Sigma \Sigma_{524}$, Dist. $S^{\prime \prime}$. Observed as one mass. Birm., No. 259. The colour is orange. 3.49 is the mean of two determinations ($3.50,3.47$) made on 1882.957 with twenty extinctions, and on I 885.415 with six.

No. 89. 6.08 is the mean of two determinations ($6.08,6.07$) made on 1885.305 and on 1885.423 , each with six extinctions.

No. 93. $\Sigma \Sigma^{1} 543$, Dist. 6". Observed as one mass.
No. 96. OE 235, Dist. $I^{\prime \prime}$. Rapid binary. Observed as one mass.
No. 100. Σ I559, Dist. 2". Observed as one mass.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & \text { 1890. } \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	$\begin{gathered} \text { Average } \\ \text { Deviation } \\ \text { in } \\ \text { Magnitude. } \end{gathered}$	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
101	61	1135.3	5510	5.55	0.10	...	5
102	62	1135.9	5738	5.60	. 17	5.196	6
103	χ.................	1140.3	4136	3.80	. 07	2.957	4
104	B.A.C. $39^{8} 5$......	1141.0	3345	5.58	. 06	...	6
105	P. xi. 164	II 44.0	5427	5.58	. 06	5.210	6
106	D.M. 34°, No. 2264	I I 45.4	56 -	6.22	0.15	5.196	6
107	γ..................	II 48.0	3542	2.30	. 09	...	$2 . .3$
108		I I 49.4	4254	6.32	. 07	$5 \cdot 311$	
109	\} 65 $\{$	1149.5	4255	6.86	. 07	$5 \cdot 31 \mathrm{I}$	6
110	66	II 50.2	3247	5.86	. 04	$5 \cdot 308$	6
III	B.A.C. 4036	1151.2	2750	6.06	0.01	5.308	6
112	R. 2771	II 51.6	492	6.23	. 18	5.196	6
113	W.B. xi. 1066 ...	II 56.0	53 I9	5.85	. 03	5.203	6
114	67	1156.6	4620	5.09	. 12	$5 \cdot 196$	5
115	B.A.C. 4074	120.1	2627	6.21	. 01	$5 \cdot 311$	6
116	R. 2800	$\begin{array}{ll}12 & 3.8\end{array}$	3559	6.36	0.11	5.196	6
117	ס...................	1210.0	322 I	3.41	. 06	...	3 $\cdots 4$
118	70.	1215	3131	5.58	. 07	5.210	6
119	73	1222.4	3341	5.75	. 10	5.196	6
120	74	1224.8	3059	5.62	. 05	5.203	6
121	7^{6}.................	1236.8	2641	5.99	0.05	5.196	6
122	R. 2913	1242.6	2637	5.90	. 14	5.210	6
123	E....................	1249.2	3327	1.80	. 07	...	2
124	B.A.C. $434{ }^{8}$......	1251.5	3520	5.82	. 01	5.196	6
125	78	1256.0	$33 \quad 2$	4.98	. 09	5.210	6

No. IoI. 5.55 is the mean of two determinations ($5.53,5.58$) made on 1885.203 and on 1885.423 , each with six extinctions.

No. 103. Birm., No. 266. The red colour is not salient.
No. 104. 5.58 is the mean of two determinations (5.56, 5.60) made on 1885.308 and on I885.423, each with six extinctions. H.P. $=5.33$.
No. 107. 2.30 is the mean of the determinations made on twelve different nights involving one hundred and thirty extinctions. (See Preface.)
No. 108. $\Sigma \Sigma_{1579}$, Dist. $4^{\prime \prime}$. Observed as one mass.
Nos. 108 and 109. These stars form $\Sigma 20^{1}$, Dist. $63^{\prime \prime} .5$.
No. i16. B.A.C. assigns this star to Canes Venatici.
No. II7. 3.41 is the mean of the determinations made on twelve different nights involving one hundred and thirty extinctions. (See Preface.) Schmidt believes this star to be slightly variable. (See Ast. Nach., vol. lxxii, p. 343, and vol. lxxiii, p. 272.)
No. 123. 1.80 is the mean of the determinations made on ten different nights involving one hundred and ten extinctions. (See Preface.)
No. 124. $\Sigma 1695$, Dist. 3." Observed as one mass.

Refer. ence Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	$\begin{gathered} \text { Average } \\ \text { Deviation } \\ \text { in } \\ \text { Magnitude. } \end{gathered}$	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
126	R. 2965	132.0	2722	6.29	0.03	5.203	6
127	§....................	1319.5	3430	2.09	. 07	...	2
128	80	1320.8	3426	4.02	. 14	$5 \cdot 196$	5
129	R. 3025	1324.2	3842	6.15	. 05	5.210	6
130	P. xiii. 110.	$13 \quad 24.4$	2929	5.40	. 11	5.210	5... 6
131	81	$13 \quad 29.9$	345	5.69	0.08	5.203	6
132	82	$13 \quad 35.3$	3631	5.31	. 09	5.196	6
133	R. 3072.	1336.5	3214	8.17	. 09	5.210	6
134	8.3	1336.6	344^{6}	5.10	. 11	5.203	$6 \ldots 5$
135	R. 3081.	I 339.7	3723	- 5.96]	. 05	5.196	6
136	R. 3089	1341.2	3333	6.08	0.16	5.210	6
137	84	1342.5	35 I	5.65	. 16	5.196	6
138	η.................	1343.2	408	1.77	. 05	...	2
139	R. 3104.	1346.7	3055	6.19	. 11	5.206	6
140	86	I 349.8	3544	5.63	.10	5.196	6

No. 127. Σ_{1744}, Dist. 14". Observed as one mass. 2.09 is the mean of the determinations made on ten different nights involving one hundred and ten extinctions. (See Preface.)
No. 134. Birm., No. 312. The colour is orange. Variable? Birmingham saw the star as bright as δ Ursæ Majoris in August, 1868. A determination made on $\mathbf{1 8 8 5 . 4 2 3}$ gave the magnitude 4.95 .

No. r38. 1.77 is the mean of the determinations made on ten different nights involving one hundred and ten extinctions. (See Preface.)

URSA MINOR.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
I	Polaris	118.2	117	(2.05)	2
2	B.A.C. $4^{15} 5^{\circ}$.....	$\begin{array}{lll}12 & 13.7\end{array}$	257	6.12	0.02	5.210	6
3	B.A.C. 4165	1214.3	141	6.15	. 10	5.210	6
4	P. xiii. 109	1323.3	172	5.90	. 05	5.215	6
5	R. 3068	1334.5	1812	5.71	. 03	5.215	6
6	4.....................	$14 \quad 9.3$	II 5^{6}	4.99	0.08	5.210	5
7	B.A.C. 4732	1410.1	203	5.43	. 03	5.215	$6 . . .5$
8	5...................	1427.7	1349	4.72	. 05	\ldots	5... 4
9	β.................	1451.0	1524	2.26	. 04	2.363	2
10	P. xiv. 260.........	1455.9	2338	4.89	. 08	5.245	5
11	B.A.C. 4989	$15 \quad 2.3$	2339	5.95	0.02	5.245	6
12	B.A.C. 5058	$\begin{array}{ll}15 & 13.3\end{array}$	2214	5.24	.06	5.215	$5 \ldots 6$
13	γ.................	1520.9	1746	3.02	. 10	2.708	3
14	θ.................	${ }^{15} 54.7$	1217	5.02	. 04	\cdots	$6 . .5$
15	O.A. $155{ }^{8}+\ldots .$.	${ }^{15} 37.4$	2021	6.01	. 03	5.210	6
x^{6}	ζ.	1548.0	1152	4.65	0.07	2.708	4...5
17	R. 3524	16 7.1	1255	5.70	. 03	5.439	6
18	19	$16 \quad 13.9$	${ }^{13} 51$	5.69	. 03	$5 \cdot 245$	6
19	B.A.C. $54^{8} 3 \ldots .$.	1616.3	1620	5.94	. 05	5.215	6
20	η................	1620.7	140	5.09	. 14	5.210	5
21	P. xvi. 182........	1631.9	1048	5.92	0.07	...	6
22	P. xvi. 195........	1635.4	1220	5.97	. 03	5.215	6
23	€....................	1657.3	747	4.46	. 03	2.708	$4 \cdots 5$
24	B.A.C. 5^{811} I	17 5.1	1433	6.38	. 12	5.245	6
25	R. 3727	1727.9	946	5.88	. 06	5.210	6

No. 1. $\Sigma 93$, Dist. $19^{\prime \prime}$. The extinctions always refer to the brighter star alone. For further remarks consult the Preface.
No. 6. Birm., No. 324. The red colour is not salient.
No. 8. Birm., No. 332. The colour is orange. 4.72 is the mean of three accordant determinations made on 1882.708 , 1885.245 , and on 1885.439 . H.P. $=4.29$.
No. 9. Birm., No. 341. The red colour is not salient. Variable? (See Ast. Nach., vol. lxiv, p. I72, and vol. xlvii, p. 293, and Monthly Notices, vol. xlvii, p. 310.)

Nos, io and II. The B.A.C. assigns these stars to Draco.
Nos. 10 and 14. Birm., Nos. 34^{2} and 357 respectively. The colour is in each case slightly orange.
No. 14. 5.02 is the mean of three accordant determinations made on $1885.210,1885.245$, and on 1885.239 respectively.
No. 21. 5.92 is the mean of three accordant determinations made on $1885.210,1885.245$, and on $\mathbf{I} 885.239$ respectively. H.P. $=5.54$.

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Avcrage Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\delta \ldots \ldots \ldots \ldots \ldots \ldots$. $2_{4} \ldots \ldots \ldots \ldots \ldots$.	$\begin{array}{cc}\text { h. } & \text { m. } \\ 18 & 7.8 \\ 18 & 11.5\end{array}$	$\begin{array}{cc}0 & \prime \\ 3 & 23 \\ 3 & 0\end{array}$	4.54 5.87	0.03 .01	2.708 5.210	$4 \cdots 5$ 6
1	ω^{1}. $\ldots \ldots \ldots \ldots \ldots \ldots$	1 II 32.8	8ı 15	5.69	0.06	4.332	6
2	$\xi \ldots \ldots \ldots \ldots \ldots$	II 39.6	81 8	5.21	. 06	...	5...4
3	$v \ldots \ldots \ldots \ldots \ldots \ldots$	11	8251	4.31	. 09	2.360	$4 \cdots 5$
4	$\Lambda^{1} \ldots \ldots \ldots \ldots \ldots$	II 42.3	81 9	5.30	. 02	4.368	6
5	β...............	1144.9	873^{6}	3.58	. 06	...	$3 . .4$
6	$\mathrm{A}^{2} \ldots \ldots \ldots \ldots \ldots$.	I 189	So 57	5.72	0.04	$4 \cdot 368$	6
7	b...................	$1154 \cdot 3$	8544	5.36	. 11	4.376	6
8	π...............	1155	824^{6}	4.62	. 08	$5 \cdot 327$	$4 \cdots 5$
9	0......	1159.6	So 39	4.29	. 08	2.363	4
10	10	124.0	8729	6.33	. 06	4.390	6
I I	II	1244	8335	5.70	0.04	4.368	6
12	12	1278	79	5.81	. 04	$4 \cdot 365$	6
13	L. 22954	1295	9938	5.95	. 05	$4 \cdot 365$	6
14	Y...................	$12 \begin{array}{lllllll}12\end{array}$	903	3.82	. 03	5.327	$3 \ldots 4$
15	$16 \ldots \ldots \ldots$.	1214.8	864	5.32	. 06	4.390	5
16	21	1228.1	9851	5.67	0.06	$4 \cdot 368$	6
17	25	1231.1	9514	5.93	. 06	4.368	6
18	L. $23608 \ldots \ldots .$.	1232.5	866	6.12	. 09	$4 \cdot 365$	6
19	P. xii. 142........	1232.8	8732	6.06	. 06	$4 \cdot 376$	6
20	χ................	1233.6	9723	4.67	. 04	$4 \cdot 393$	5

No. 1. Called red in the Uranometria Argentina. Spectrum III a !!! (Vogel.)
No. 2. 5.21 is the mean of two determinations ($5.31,5.11$) made on 1882.360 with twenty extinctions, and on 1885.327 with six. H.P. $=4.92$. Spectrum I a ! (Vogel.)
No. 3. Spectrum III a! (Vogel.)
No. 4. Spectrum I a ! (Vogel.)
No. 5. 3.58 is the mean of eight determinations made on as many nights, three at Oxford and five at Cairo, involving ninety extinctions made between 1882.363 and 1883.169 . H.P. $=3.72$. Nos. 7 and i8. Spectrum I a! (Vogel.)
No. 8. The determination made on 1882.363 (see Memoirs R.A.S., vol. xlvii, p. 455) is rejected. The observations were interrupted by clouds. Spectrum I a! (Vogel.)
No. 10. The estimates of magnitude by various authorities differ. (See Uran. Argent., p. 3 IS.)

No. 12. Olbers suggested variability from comparisons with Vesta. (See Berl. Jahr., p. 197.)
No. 14. The determination made on 1882.363 (see Memoirs R.A.S., vol. xlvii, p. 455) is rejected. See note to No. 8. Spectrum I a! (Vogel.)
No. 19. Spectrum III a!! (Vogel.)

$\begin{array}{\|c} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{array}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	-				
2 I	γ...............	1236.1	9051	2.67	0.12	2.363	3.. 2
22	p...................	1236.3	$79 \quad 9$	4.95	. 09	4.401	5
23	31	1236.4	8235	5.80	. 05	4.376	6
24	32	$12+0.1$	8144	5.38	. 04	$4 \cdot 365$	6
25	33	1240.8	7951	6.08	. 07	$4 \cdot 3{ }^{6}$	6
26	41	$12+8.3$	${ }_{76} 59$	6.16	0.02	$4 \cdot 376$	6
27	ψ................	$12+8.6$	$98 \quad 56$	5.12	. 09	$4 \cdot 40 \mathrm{I}$	5
28		1250.1	86 -	3.47	. 10	2.363	3
29	44	1254.0	9313	5.73	.06	$4 \cdot 368$	6
30	$4^{6} \ldots \ldots \ldots \ldots \ldots$	1254.9	9247	5.97	. 05	$4 \cdot 365$	6
31	¢...................	1256.7	7827	3.01	0.07	2.363	$3 . . .2$
32	4^{8}................	1258.2	934	6.42	. 0.4	$4 \cdot 376$	6
33	B.A.C. $439+\ldots .$.	1.32 .8	$98 \quad 24$	5.86	. 09	4.390	6
34	Ө...................	134.2	9457	4.49	. 04	$5 \cdot 327$	$4 \cdots 5$
35	L. 24586	1.388	$78 \quad 6$	5.73	. 05	4.390	6
36	59	1311.3	80 -	5.17	0.07	4393	5
37	P. xiii. 4^{1}........	1.311 .8	7545	5.76	. 02	4.401	6
38	σ.................	1312.1	8357	5.14	. $0+$	$4 \cdot 365$	5
39	L. 24703	1.313 .2	8546	6.19	. 03	4.401	6
40	L. $24708 \ldots \ldots .$.	13.313	$85+4$	6.53	. 02	4.390	6
41	B.A.C. $4+70$....	1316.1	8720	5.96	0.02	$4 \cdot 376$	6
+2	$6+\ldots$.	1316.6	$8+16$	5.97	. 05	4.390	6
43	$6_{5} \ldots$.	1317.6	$9+2$ I	6.13	. 0.4	...	6
4.4	66	1318.8	$9+35$	5.95	.08	4.376	6
45	a..................	13.19 .4	10036	+0.04	. 03	...	1

Nos. 21, 22, 23, and 24. Each has the Spectrum I a ! (Vogel.)
No. 21. $\Sigma 1670$. Binary. Period 185 years. The relative brightness of the two components is variable. (See Mens. Mic., Introduction, p. Ixxii, and Pulkova Observations, vol. ix, p. 122.)

No. 27. Called red in the Uranometria Argentina.
No. 28. Birm., No. 297. The colour was noted to be yellow. Spectrum III a !!! (Vogel.)
No. 29. $\Sigma_{\mathrm{I} 704}$, Dist. 21". The brighter star observed.
No. 34. $\Sigma_{1724 .}$. Triple. The close pair, dist. $7^{\prime \prime}$, observed as one mass. The determination made on 1882.363 (see Memoirs R.A.S., vol. xlvii, p. 455) is rejected. See note to No. 8 .
No. 38. Birm, No. 302. The star is decidedly of an orange tint. Spectrum III a !! (Vogel.)
No. $4^{+2} .5 .97$ is the mean of two determinations (5.94, 6.00) made on 1884.390 with twenty extinctions, and on 1885.35^{2} with six. H.P. $=\mathbf{5 . 6 8}$.
No. $45 .+0.04$ is determined from three nights' observations at Cairo alone, made between 1883.127 and 1883.136. Further, observations on four nights at Oxford, between 1882.363 and 1883.207, when corrected for mean atmospheric absorption, gave +0.19. H.P. $=1.23$. For explanation of notation see Preface.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.I. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	$\begin{gathered} \text { Average } \\ \text { Deviation } \\ \text { in } \\ \text { Magnitude. } \end{gathered}$	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
46	70	1323.1	$75 \quad 38$	4.97	0.04	$4 \cdot 401$	5
47	71	${ }_{13}{ }^{13} 23.8$	7837	5.93	. 04	...	6
48	74	1326.3	9541	4.97	. 06	4.363	5
49	7^{6}.	$13 \quad 27.2$	9936	5.62	. 07	$4 \cdot 368$	5
50	78	1328.5	8547	5.11	. 05	$4 \cdot 376$	5
51		I3 29.2	$90 \quad 2$	3.36	0.06	2.363	$3 \cdots 4$
52	80.	${ }_{13} 29.8$	$9+50$	5.91	. 07	4.390	6
53	82.	${ }_{1} 1335.8$	989	5.54	. 05	4.390	6
54	84	$13 \quad 37.5$	8554	6.00	. 05	...	6
55	P. xiii. $174 \ldots \ldots \ldots$	1338.2	9457	6.05	.05	$4 \cdot 393$	6
56	B.A.C. 4591	13.41 .4	$99 \quad 9$	6.21	0.03	$4 \cdot 393$	6
57	88	${ }_{1} 1342.5$	9613	6.67	. 04	$4 \cdot 393$	6
58	90.	1349.0	9059	5.39	. 05	4.390	$6 \ldots 5$
59	P. xiii. $238 \ldots \ldots .$.	1349.2	9731	6.58	. 03	4.393	6
60	n................. ..	1.349 .9	99 I	6.73	. 08	$4 \cdot 398$	6
6 I	92	1350.8	8825	5.97	0.03	$4 \cdot 393$	6
62	т.........	${ }^{1} 356.1$	8755	4.29	. 07	2.363	4
63	95	$14 \quad 0.9$	$9^{8} 47$	5.85	. 02	4.390	6
64	P. xiv, 12	146.7	874	5.44	. 05	2.363	$5 \cdots+$
65	к....................	$14 \quad 7.0$	994^{6}	4.09	. 10	2.368	$4 \ldots 5$
66	८....................	$1+10.2$	9.58	3.94	0.04	2.368	4
67	W.B. siv. $143 \ldots$	1410.8	9241	6.02	. 05	$4 \cdot 401$	6
68		$1+13.2$	10252 03	2.368	$5 \ldots 4$
69	v	1413.8	9145	5.00	. 04	4.401	5
70	L. 26200	$14^{14.1}$	S9 6	6.31	. 02	4.393	6

No. 47. 5.93 is the mean of two determinations (5.99, 5.87) made on 1884.393 with twenty extinctions, and on 1885.35^{2} with six. H.P. $=5.66$.
No. 48. Birm., No. 309. Called red in the Uranometria Argentina. The colour is orange.
No. 50. Spectrum I a! (Vogel.)
No. 51. Spectrum I a!! (Vogel.)
No. 54. Σ_{1777}, Dist. $3^{\prime \prime}$. Observed as one mass. 6.00 is the mean of two determinations ($5.98,6.02$) made on 1884.365 with twenty extinctions, and on 1885.35^{2} with six. H.P. $=5.73$.
Nos. 57 and 6o. The notation is that of Argelander ; No. 57 is called \tilde{n} in B.A.C.
No. 63. Called red in the Uranometria Argentina.
No. 64. Probably variable within small limits. See Uran. Argent., p. 320. H.P. $=4.97$.
No. 65. Birm., No. 32 2. The red colour is not salient.
No. 68. The magnitude, when corrected for mean atmospheric absorption, is 4.\%.
Nos. 69 and 7o. Gould suggests variability. (See Uran. Argent., p. 320.)

Reference Number.	Star's Designation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	$\begin{array}{\|c} \text { Adopted } \\ \text { Zenithal } \\ \text { Magnitude. } \\ \text { Polaris } \\ 2.05 . \end{array}$	Average Deviation in Magnitude.	$\begin{gathered} \text { Date, } \\ 1880+ \end{gathered}$	Mag. Argel. Uran.
		h. m.	- ,				
71	L. 26289	1417.6	8815	6.40	0.02	$4 \cdot 393$	6
72	¢	1422.6	9144	4.87	. 04	$4 \cdot 365$	5
73	106.................	1422.8	9624	6.02	. 06	$4 \cdot 401$	6
74	B.A.C. 4798	1424.2	8841	6.00	. 04	4.401	6
75	μ................	1437.3	95 II	3.86	. 05	2.368	4
76	108............	1439.9	8849	5.71	0.05	$4 \cdot 393$	6
77	109.................	1440.7	8738	4.04	. 06	...	$4 \ldots 3$
${ }_{7} 8$	L. 26980	1443.4	8334	6.30	. 04	$4 \cdot 401$	6
79	W.B. xiv. 880 ...	1448.2	8318	6.87	. 02	$4 \cdot 393$	6
80	L. 27162	1450.0	8245	6.93	. 08	4.39°	6
81	L. 27297	1453.9	8459	6.31	0.02	$4 \cdot 393$	6
82	110.............	1457.3	8727	4.99	. 06	...	5
83	L. 2754 I . \ldots......	$\begin{array}{ll}15 & 2.2\end{array}$	843	5.96	. 02	$4 \cdot 393$	6

No. 72. Σ i 846 , Dist. $5^{\prime \prime}$. Observed as one mass.
No. 73. Called red in the Uranometria Argentina.
No. 74. Spectrum [a ! (Vogel.)
No. 77. 4.04 is the mean of two determinations (4.14, 3.94) made on 1882.368 with twenty extinctions, and on 1885.35^{2} with six. H.P. $=3.72$.
No. 7^{8}. Gould thinks it impossible that the star could have been so faint when seen by Argelander. (See Uran. Argent., p. 321.) Spectrum I a! (Vogel.)
No. 82. 4.99 is the mean of two determinations (4.92, 5.06) made on 1884.393 with twenty extinctions, and on 1885.352 with six. H.P. $=4.56$.

VULPECULA.

1	Bradley 2409.....	19 I. 5	6555	5.43	0.02	3.719	6
2	W.B. xix. $17 \ldots$	$\begin{array}{lll}19 & 3 \cdot 3\end{array}$	6829	6.06	. 04	3.877	6
3	B.A.C. 6574	$19 \quad 7.9$	6838	5.68	.0.3	3.719	6
4	1....................	1911.5	6848	4.83	. 10	2.601	5..4
5		19 13.1	6710	5.26	. 06	\ldots	6
6	3...................	$19 \quad 18.4$	6357	5.05	0.05	3.719	$5 \ldots 6$
7	.	1920.6	7025	5.04	. 06	3.730	5
8	5..................	1921.4	707	5.63	. 0.3	3.719	6
9	6....................	19 24.1	65.33	4.58	.09	\ldots	$4 \cdots 5$
10	9...................	1929.7	7028	5.12	. 08	$3 \cdot 711$	5

No. 5. Double. Dist. 1."8. Observed as one mass. 5.26 is the mean of two determinations ($5.29,5.24$) made on 3883.692 with twenty extinctions, and on 1885.442 with six.
No. 9. $\quad \Sigma 4^{2}$ 1 Dist. $396^{\prime \prime}$. The distant companion not observed. 4.58 is the mean of two determinations (4.57 and 4.59) made on 1882.601 and on 1882.60.4, each with twenty extinctions.

$\begin{gathered} \text { Refer- } \\ \text { ence } \\ \text { Number. } \end{gathered}$	Star's Desiguation.	$\begin{gathered} \text { R.A. } \\ 1890 . \end{gathered}$	$\begin{aligned} & \text { N.P.D. } \\ & 1890 . \end{aligned}$	Adopted Zenithal Magnitude. Polaris 2.05.	Average Deviation in Magnitude.	$\begin{aligned} & \text { Date, } \\ & 1880+ \end{aligned}$	Mag. Argel. Uran.
		h. m,	- ,				
I I	10	19 .39.1	$6+30$	5.20	O. 13	3.72 I	6
12	12	1946	6740	5.49	. 09	\ldots	5
13	13	1948.8	6612	4.97	. 11	...	$5 \cdots 4$
14	Bradley 2541......	1949.9	655^{8}	5.36	.04	3.719	6
15	14	59 54.5	6712	5.94	.05	3.721	$6 . .5$
16	15	19 56.6	6233	5.03	0.04	3.721	5
17	Bradley 2559.....	19 57.1	6530	6.09	. 06	3.840	\ldots
18	16	1957.4	6522	5.37	. 03	3.840	5
19	17	$20 \quad 2.2$	6642	5.26	. 08	3.719	$5 . .6$
20	ı8	206.0	6325	5.45	0.3	3.72 I	6
21	19	$20 \quad 7.2$	6331	5.54	0.11	3.730	6
22	20	$20 \quad 7.4$	6351	5.72	. 08	3.721	6
23	21.	$20 \quad 9.7$	$61 \quad 38$	5.30	. 06	3.719	$6 . . .5$
24	B.A.C. 6966	2010.6	$6+45$	5.09	. 10	...	5
25	22.	2010.8	6650	5.45	. 09	3.719	6
26	23	20 II. 2	6231	4.72	0.07	3.730	5
27	24	2012.1	6540	5.67	.14	3.719	6
28	25	2017.3	6554	5.34	. 12	3.730	6
29	L. 39329	2020.8	$68 \quad 37$	6.01	. 04	3.738	6
30	27	2032.4	6355	5.73	. 09	3.721	$6 \ldots 5$
31	29	2033.6	6911	4.68	0.03	3.738	5
32	28	2033.7	6616	5.33	. 04	3.719	5...6
33	30	2040.1	$65 \quad 7$	5.02	. 02	3.721	$6 . . .5$
34	31.	$2047 \cdot 4$	6319	4.62	. 02	3.730	5
35	32	2049.9	6222	5.31	.05	3.738	$5 \ldots 6$
36	33	2053.4	686	5.49	0.04	$3 \cdot 7.38$	$6 \ldots 5$
37	P. xxi. 120.........	2119.7	6418	5.84	. 08	3.719	6
38	35	2122.8	6252	5.34	. 04	3.738	$6 \ldots 5$

No. 12. 5.49 is the mean of two determinations ($5.45,5.53$) made on 1883.719 with twenty extinctions, and on 1885.442 with six. H.P. $=\mathbf{5 . 0 2}$.
No. 13. 4.97 is the mean of two determinations (5.09, 4.SS) made on 1883.730 with twenty extinctions, and on 1885.442 with sir. H.P. $=4.66$.
No. 21. Birm., No. 537. The red colour is not salient.
No. 24. 5.09 is the mean of two determinations (5.06, 5.12) made on 1883.730 with twenty extinctions, and on 1885.44^{2} with six. H.P. $=4.76$.
No. 26. Birm., No. 546. The colour of the star is yellow.
No. 35. Variable? (See Gilliss, Ast. Obs., p. 67o.)

$$
\square
$$

[^0]: ${ }^{1}$ Über ein psychophysisches Grundgesetz und dessen Beziehung zur Schätzung der Sterngrössen, von G. Th. Fechner. Leipzig, 1859.
 ${ }^{2}$ Description des Étoiles fixes, composée au milieu du dixième siècle de notre ère par l'astronome persan Abdial-Rahman Al Sûfi, St. Pétersbourg, 1874; and Monthly Notices, vol. xlv, p. 417.

[^1]: ${ }^{1}$ Euvres de Fr. Arago, Tome x, p. 184.
 ${ }^{2}$ Grundzüge einer allgemeinen Photometrie des Himmels, 186i.
 ${ }^{3}$ Annals of the Harvard College Observatory, vol. ix.
 ${ }^{4}$ Photometrische Beobachtungen an Fixsternen. Bonn, 1875.
 ${ }^{5}$ Publicationen des Astrophysikalischen Observatoriums zu Potsdam, Nr. I2.
 ${ }^{6}$ Helligkeitsmessungen der Bessel'schen Plejadensterne.

[^2]: ${ }^{1}$ Monthly Notices of the Royal Astr. Soc., vol. xxxv, p. 100.

[^3]: ${ }^{1}$ See Memoirs of Royal Astr. Soc., vol. xxi, p. 557.

[^4]: ${ }^{1}$ Mensurae Micrometricae, p. xlii.
 ${ }^{2}$ Radcliffe Observations, vol. xv, p. 297.

[^5]: ${ }^{1}$ Leipzig, Abhandlungen der Mathematisch-Physischen Classe, p. 467.
 ${ }^{2}$ See Wilsing, Astron. Nachrichten, vol. cix, p. 50, where, from experiment, he assigns a greater probable error to the Zöllner photometer than to the wedge.
 ${ }^{3}$ Monthly Notices, vol. xlv, P. 412.

[^6]: ${ }^{1}$ Monthly Notices, vol. xlv, p. 4 II.

