路

\qquad
anc．and
20．2atasi
－ 模
4 $2+4$

4
4．
4． 7aver
（2x：
＊）Wax
32
品$\frac{2}{2}$
$\frac{18}{8+5}$
20vavinded

4
54．－2 $1 / 2$
4． 4
20，

> UNIVERSITY OF ILLINOIS LIBRARY
> AT UREANA CHAIVIPAIGN BOOKSTACKS

Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign

Faculty Working Papers

UTILITY FUITCTIONS FOR SI:PLE GAIES Alvin E. Roth

College of Commerce and Business Administration

FACULTY WOMLIG PAPLRS

College of Comuerce and Business Administration University of Illinois at Urtana-Champaign March 24, 1976

UTILITY FUiICTIONS FOR SIIPLE GAIES
Alvin E. Roth
\#305

Utility Functions for Simple Games

By

Alvin E. Roth

The author wishes to acknowledge thoughtful comments giter by D. Erovn, following a colloquium at Yale University, and by p Duney after mamioniz an outline of the results presented here.

A simple game with transferahle utility on a set N of players is one in which the characteristic function v takes on only the values 0 and 1 , and in which $v(S)=1$ implies $v(T)=1$ for all $S \subset T \subset N$. Such games arise naturally as models of political or economic situations in which every coalition of players is either 'winning' or 'losing'.

In this paper we will investigate indices which reflect the relative power of each position (or player) in a simple game. We will show that both the Shapley-Shubik index and the Banzhaf index correspond to von NeumannMorgenstern utility functions, which differ only in their posture towards risk. Chiefly, we will be applying the techniques developed in [9] to the results presented in [5] and [6].
2. Historical Background

A game on a finite universal set N of positions may be considered to be any function $v: 2^{N} \rightarrow R$ such that $v(\Phi)=0$. In [10], the value of a game v is defined to be a vector valued function $\phi(v)=\left(\phi_{1}(v), \ldots, \phi_{n}(v)\right)$ which associates a real number $\phi_{i}(v)$ w th each position $i \in N$, and which obeys the following conditions.
2.1) For each permutation $/ 1$
2.2) For each carrier $\quad / \frac{2}{T}$ of $v, \sum_{i \in T} \phi_{i}(v)=v(T)$.
2.3) For any games v and $w, \phi(v+w)=\phi(v)+\phi(w)$.

Shapley showed that the unique value defined on all games has the form

$$
\phi_{i}(v)=\sum_{S \subset N}\left(\frac{(s-1)!(n-s)!}{n!}\right)\{v(S)-v(S-i)\}
$$

where s and n denote the cardinality of the sets S and N.

In [11] this value is studied in the context of simple games.
Observe that if v is a simple game, then the quantity $(v(S)-v(S-i))$ equals 0 unless S is a winning coalition and (S - i) a losing coalition, in which case it equals 1. Consequently, if we suppose that players in a simple game v 'vote' in random order, then $\phi_{f}(v)$ is precisely the probability that player i will cast a 'pivotal' vote. As such, it can be viewed as an a priori index of power in simple games, and is referred to as the Shapley-Shubik Index.

However if only stmple games are to be considered, the conditions (2.1), (2.2), and (2.3) no longer specify a unique functional form. This is because condition (2.3) becomes non-binding, since the class of simple games is not closed under addition. (So if v and w are non-trivial simple games, $v(N)=W(N)=1$, and the game $v+w$ is not simple, since $v(N)+w(N)=2$. Another value for simple games which has received attention in the literatur $=$ is the Banzhaf index, first introduced in [1].

The Banzhaf index takes as a measure of power the relative ability of players to transform winning coalitions into losing coalitions, and vice versa. Defint a swing for position $i=N$ to be a pair (${ }^{(}, \mathrm{S}$ - i) such that the coalition S is winnitg, and $S-i$ is losing (i.e. $v(S)=1$ and $v(S-i)=0 \%$ Let $\eta_{1}(v)$ denote the number of swings for position in in game v, and let $T(v)=\sum_{1 \in \mathbb{N}} \eta_{i}(v)$. Then the Banzhaf index of relative power for each position is

$$
\beta_{i}(v)=\eta_{i}(v) / T(v) \quad \text { for } \quad i=1, \ldots, n
$$

We will refer to $\eta_{i}(v)$ as the non-normalized Banzhaf index.
The Shapley-Shubik and the (normalized or non-normalized) Banzhaf indices yield different rankings of the positions in a given simple game.

Consequently it is desirable to find a common interpretation of the indices which will permit us to investigate their differences and similarities. This task is facilitated by the Following two propositions, which are presented in [5] and [6].

Proposition 1 (Dubey): The Shapley-Shuid index is the undque function ϕ defined on simple games which satisfies conditions (2.1) and (2.2) and which has the property that
(2.4) For any simple games $v, b \phi(v \vee w)+\phi(v \wedge w)=\phi(v)+\phi(w)$ where the games $(v \vee w)$ and $(v \wedge w)$ are defined by

$$
(v \vee w)(S)= \begin{cases}1 & \text { if } \quad v(S)=1 \quad \text { or } \quad w(S)=1 \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
(v \wedge w)(S)= \begin{cases}1 & \text { if } \quad v(S)=1 \quad \text { and } \quad w(S)=I \\ 0 & \text { otherwise. }\end{cases}
$$

Proposition 2 (Dubey): The non-normalized Banzhaf index is the unique fur: defined on six lle games which satisfic; the following for conditions. /3
(2.5) If $i \in N$ is a dummy in v, then $\eta_{1}\left(v^{2}\right)=0$
(2.6) $\sum_{i \in \mathbb{N}} n_{i}(v)=T(v)$
(2.7) For each pormutation $\# N \Rightarrow N, \eta_{\pi i}(\pi v)=\eta_{1}(v)$
(2.8) For any siuple games, $v, w(v \vee w)+\phi(v \wedge w)=\phi(v)+\phi(w)$.

In the next section, we shall use these propositions to show that ϕ, η, and 3 can be viewed as cardinal utility functions which dif only ir their posture towards risk. It will be seen that conditions (2. n, or (2.6) express a posture townas one kind of risk, while the somethat opaque conditions (2.4) or(2.8) express a posture towards another kind of risk.

3. Utility Punctions for Simple Games

Let - be the class of simple games defined on finite set N, and let i be the mixture space generated by $C \times N$. Then the elements of M are elements (w, i) of $C \times N$, and lotteries of the form $[p(w, i) ;(1-p)(v, j)]$ where (w^{\prime}, i) and (v, j) are in $\mathbb{C} \times N$, and p is a probability (i.e. $p \in[0,1]$).

Let P be a (strict) preference relation defined on M. $/ 5$ (Read (w, i) $P(v, j)$ as 'it is preferable to play position i. in game w than to play position j in game v^{\prime}). We will take P to be continuous on M i.e. if a, b, $c \in M$ such that $a P b P c$, then there exists a (unique) $q \in(0,1)$ such that $b I[q a ;(1-q) c]$.

Denote by v_{R} and v_{0} the games defined by

For each $i \in N$ denote by $D_{i} \subset C$ the set of simple games for which player i is a dumy. We will take P to have the following properties.
(3.1) For all. $v \in C_{,} i \in N$ and every permutation $\pi: N \rightarrow N$, ($\mathrm{v}, \mathrm{f})$) ($\pi \mathrm{rv}, \pi \mathrm{i}$)
(3.2) For every $i \in N_{2} \quad v \in D_{i}$ implies ($\left.v, i\right) I\left(v_{0}, i\right)$ and $\left(v_{i}, i\right) P\left(v_{0}, i\right)$. for every $v \in C$, (vi, i) $R(v, i) R\left(v_{0}, i\right)$.

It is well known (cf. [7]) that such a preference can be represented by a cardinal utility function θ; i.e, a function θ such that for all a, $b \in M$

$$
\theta(\mathrm{a})>\theta(\mathrm{b}) \text { iff } \mathrm{aPb}
$$

and

$$
\theta([p a ;(1-p) b])=p \theta(a)+(1-p) \theta(b) .
$$

Furthermore, θ is inique up to an affine transformation, so we can set $\theta\left(v_{i}, i\right)=1$ and $\theta\left(v_{0}, i\right)=0$. For an arbitrary element (v,i) of $C \times \mathbb{N}$ we have

$$
\theta_{i}(v) \equiv \theta(v, i)=q,
$$

where q is the number surh that

$$
(v, i) I\left[q\left(v_{1}, 1\right) ;(1-q)\left(v_{0}, 1\right)\right]
$$

By the continuity of P and condition (3.2), $\theta_{i}(v)$ is well defined.
We have yet to completely specify the preference P. We do so by expressing the preferences involving two kinds of risk.
(2.3) Ordinary risk neutrality: for all simple games v, w

$$
\left[\frac{1}{2}(v, i) ; \frac{1}{2}(w, i j] I\left[\frac{1}{2}\left(v V_{w}\right) ; \frac{1}{2}(v / A w)\right]\right.
$$

(3.4) Strategic risk nsutrality: for all $R \subset N$ and $f \in R$,

$$
\left(v_{R}, 1\right) I\left[\frac{1}{r}\left(v_{1}, i\right) ;\left(1-\frac{1}{r}\right)\left(v_{0}, 1\right)\right] .
$$

Conditica (3.3) specifies indifierence between two lotteries: note that the condition is nlausible, since $(v / W) \geqq v a n d(v A w) \leqq v$. Condition (3.4) specifies indfference between playing the game v_{R} as one of r players in the unique minimal winning coalition, or particlpating in a lottery which gives probability $\frac{1}{x}$ of being a dictater and probability ($1-\frac{1}{\mathrm{r}}$) of being a dumoly. Note that the risk involved in playing the game v_{R} is strategic racher than probabilistic--no gamble is involved.

We can now state the following theorem.
Theorem 1: If P is a preference obeying conditions (3.1) through (3.4), thei

the unique utility θ such that $\theta_{i}\left(v_{i}\right)=1$ and $\theta_{i}\left(v_{0}\right)=0$ is equal to the Shapley-Shubi? index.

Lema 1: If P obeys condition (3.1) then, for every $v i d$, $i \in N$ and permutation $\pi: N \rightarrow N$,

$$
\theta_{j-}(v)=\theta_{i 1}(r v) .
$$

Proof: Immediate f:om (3.1) and the definition of utility.
Lemma 2: If P obeys conditions (3.3), (3.2) and (3.4) then for each $R \in N$,

$$
\theta_{i}\left(v_{R}\right)=\left\{\begin{array}{lll}
\frac{i}{r} & \text { ir } & -E R \\
0 & \text { iI } & i \frac{\varepsilon_{i}}{} R
\end{array}\right.
$$

Proof: If i $\& R$ then (v_{R}, i) I (v_{0}, i) by (3.2), and so $\theta_{i}\left(v_{R}\right)=\theta_{i}\left(v_{0}\right)=0$. If $i \quad R$, then $\partial_{i}\left(v_{R}\right)=\frac{1}{I}$ by (3.4) and the definition of tie utility θ.

Lemma 3: If p obeys condition (3.3), then

$$
\theta_{i}(v / W)+\theta_{i}\left(v A(W)=e_{i}(v)+\theta_{i}(W) .\right.
$$

Proof: From the definition of utility,

$$
\begin{aligned}
& \theta\left[\frac{1}{2}((v, V w), i) ; \frac{1}{2}((v / \sim), i j]\right. \\
= & \frac{1}{2} \theta\left\{(v V(v), i)+\frac{j}{2} \theta(v \wedge w), i\right) \\
& \theta\left[\frac{1}{2}(v, i) ; \frac{1}{2}(w, i)\right]=\frac{i}{2} \in(v, i) \div \frac{1}{2} \theta(w, i) .
\end{aligned}
$$

and

Consequentily, by condition (3.3) ve nave

$$
\frac{1}{2} \theta(v, i)+\frac{1}{2} \theta(w, i)=\frac{1}{2} \theta((v \vee w), i)+\frac{1}{2} \theta((v \wedge v), i,
$$

So far we have demonstrated that θ obeys condtions (2.1) and (2.4), and that for every $R \in N, \theta\left(v_{R}\right)=\phi\left(v_{P}\right)$; i.e. S coincides with the ShapleyShubik index or the games y_{R}. (Note tizat conditions (2.) and (2.2) determine the value of $\phi\left(v_{R}\right)$.) To complete the proof of the theorem, we show that θ coincides with ϕ on every game $v \in C$.

Proof of Theorem I: Let $v \in C_{3}$ and let $R_{1}, R_{2}, \ldots, R_{i} \subset \mathbb{N}$ be all the distinct minimal wimfog coalitions of v, minen qe say the gate v is in class k, and note that

$$
v=v_{R_{1}} V v_{R_{2}} V \ldots V v_{R_{k}}
$$

$$
\text { If } v \text { is in class } k=0 \text {, then } v=v_{0} \text { and } e(v)=\phi(v)=0 \text {. If } v \text { is }
$$ in class $k=1$, then $v=v_{R}$, and $\theta(v)$ is defined by lerma 2 , and is equal to $\phi(v)$.

Suppose that for games v in classes $k=1,2, \ldots$, mit has been shown that θ is well defined and coincides with the Shapley-Shubik index. Consider a game vinclass m + i. Then

$$
v=v_{R_{1}} V \mathrm{v}_{\mathrm{R}_{2}} V \ldots V \mathrm{v}_{\mathrm{R}_{\mathrm{IB}}} V \mathrm{v}_{\mathrm{R}}=\mathrm{w} V \mathrm{v}_{\mathrm{R}}
$$

where w is a gane in class m.
So, by Lemma 3,

$$
\theta_{i}(v)=\theta_{i}\left(w V v_{R}\right)=\theta_{i}(w)+\theta_{i}\left(v_{R}\right)-\theta_{i}\left(w A v_{R}\right)
$$

But we will show that the game ($w \wedge \nabla_{\mathrm{R}}$) cannot be in a higher class than w, so by the inductive inpothesis the terms on the right hand side of the above expression are uniquely determined and equal to the Shapley-Shubik index. Consequently (from property (2.4) of ϕ) we will have shown that $\theta(v)=\phi(v)$

for all simple ganes v.
 the game w, consiaer a minimal wiming coaition S of the game w^{4}. By the
 and we are done (since except for the gatie g_{g}, every game has at least one minimal wining coalftion\% Otherwise $S=S^{\prime} U R$ where S ' is mon-empty and disjoint from R_{n}. Then there erists an $S_{1} \subset$ sucn thet $S_{1}=S^{1}$, and S_{1} is mimimal winning in the game w.

Consider now a coaltiton T f such that f is also minimal winntng in W^{*} and $T=T^{\prime} \cup R$ where T^{\prime} is nonmempty and disjoint from R. Then there is a coalition $T_{1} \supset \mathrm{~T}^{4}$ which is minimai winning in .

But any coalition which contafos both m_{1} and S_{1} canot be minimal winming in w, since it is not contained in any minimal minning coalition of w. Consequentiy every minimal winng coalition in m' $^{\prime}$ can be identified with a
 than w. This completes the proof.

So t. e Shapley-Shubik index s the utility func cion representing preferences described by conditions (3.1) Ghrough (3.4). Naturally, different preferences will give rise to dfferent utility functions. Suppose, for instance, that the posture tomards strauegic ris" io represented not by condition (3.4) bat by the following condition for every $R \in N$ and $i \in R$.
(3.5) $\left[\frac{1}{T\left(v_{R}\right)}\left(v_{R}, i\right) ;\left(1-\frac{i}{I\left(v_{R}\right)}\right)\left(v_{0}, i\right) I I\left[\frac{1}{r}\left(v_{i}, i\right):\left(1-\frac{1}{r}\right)\left(v_{0}, i\right)\right]\right.$

Then the following theorent says that the non-normalized Banzhaf index is a cardinal utility for the preference relation P.

Theorem 2: If P is a preference obeying condtions (3.1), (3.2), (3.3) and
(3.5), then the unique utility θ such that $e_{i}\left(v_{i}\right)=2^{n-1}$ and $v_{i}\left(v_{0}\right)=0$ is equal to the non-normaiszed Banzliar index.

The proof is precisely like the proof of theoreta 1 , once it has been observed that condition (3.5) farpies thit

$$
\theta_{i}\left(v_{R}\right)=\eta_{i}\left(v_{R}\right)= \begin{cases}\frac{I\left(v_{R}\right)}{r} & \text { for } \\ \frac{i}{L} \in R \\ 0 & \text { for } \\ i \notin \mathbb{R}\end{cases}
$$

So the non-normalized Banzhaf index and the Shapley-Shubik index
reflec: preferences which differ only in their posture towards strategic risk. Sinilarly it is not difficult to show that the ordinary (normalized) Banzhaf index corresponds to preferences which obey condition (3.4) but not condition (3.3). That is, the Banzhaf indez reflects preferences which are noutral to strategic risk, but not to ordinary fisk. The normalization has the effect of changing the risk posture, since each game is normalized indepenwettly (i.e. each game v is normalized by $T(v)$.)
4. Discussion

We have seen that the difference between the Shapley-Shubik index and the non-normalized Banzhaf index results fron different postures towards strategic risk. That is, the two indices refiect difceroat attitudes towards the relative benefits of engaging in strategic interaction with other players In games of the form ${ }_{\mathrm{V}}^{\mathrm{R}}$.

The difference between the Shapiey-Shubik index and the ordinary Banzhaf index, on the other hand, reflects different postures cowards ordinary : :sk...the kind which results from lotteries, rather thar from strategic interacions. Thus the difference between these two indices seems to be

essentiaily non-game-theoretic (cf. 13] py 195-196)
It in netural to conslder a hole spectron of isk postures, and to examine the resulaing utilly Guctions. It seems itkely that this point of view will serve to illuminate some of tio zecen bork (ct. [2], [4], [8) on alternative formiarions of the value cuncept.

Footnote;

i)

A perautation - : $N \rightarrow$ in is one-to- u and onto. The game πv is defined by $\pi y(\pi S)=-$ (S).
2)

A carrier of a game v is my coalfion a a suct that for all $S G$ iv, $V(S)=v(S$ it $)$. The smallest carrier in a gama may be viewed as the set of active players ith the gracte.
3)

A dumay in a game v is an $i \leqslant N$ such that n (v) $=0$.
4) We assume the usual properties of mixture spaces: i.e. for ali elements $a, b \in M$ and all probabilties p and q_{s} we have
$[1 a ;(1-1) b]=a ;$
$[p a ;(1-p) b]=[(1-p) b: p a]:$
and
$[0[p a ;(1-p) b] ;(1-q) b]=[q p a ;(1-q p) b]$.
5)

For $a, b \in M$ write $a b$ (a is indifferent to b) if neitinex $a p b$ not bFa. We write aRb if either aPb or aIb , and assume that R is a transitive, complete order on M. Wrthemore, we assume that if alb then for every $c \in M$ and $p \in[0,1]$

$$
[p a ;(1-p) c] I[p b ;(1-p) c] .
$$

6) A coalition $R \subset N$ is minimal winning in v if $v(R)=1$ and if $S \subset \mathbb{R}$, $S: \mathbb{R}$ implies $v(S)=0$.

BL5liography

1. Analysis," Rutgers Lave Rev-ew, Vow, 19 (1965), 313-43.
2.

Biair, D. H. "Poper Valuations of initite Voting Ganes," presented at Econometric Society Winter Meetings Mallas, Iexas, 19:5.
3.

Brams, S. Gate Theor, and Polittacs (Hew fork: Free Press, 1975).
4.

Brown, D. aud Dubay. P. F Fivate conmancazion (Comles Foundation technical report in progress, 1976).
5. Dubey, P. "Some Results on Values of Finite and Infinite Games," (Ph.D. thesis, Comell University, 1975?.
6.

Dubey, P. "On the Unioueness of the Shapley Value," International Journal of Gatie Theory, Vol. 4, No. 3 (1975), 131-139.
7.

Herstein, I. N. and Milnor, J., "An Axionatic Approach to Measurable Utility," Econometrica, Vol. 21 (1953), 291-297.
8.

Meyerson, R., "A Theory of Cooperarive Games," (Ph.D. dissertation in progress, Farverd University).
9.

Roth, A. E., "The Shapley Value as a von Neuman-Morgenstern Utility, Faculty Working Paper 297, College of Comierce and Business Administration, University of Illinois, Urbana.
10.

Shapley. L. S., "A Value for a-Person Games," Amals of Mathematics Studies, Vol. 28 (1953); Princeton, Ner: Jersey, 307- $\overline{313}$.
11.

Shapley, I. S. and Shbik, M.. "A Method for rivaluating the Distribution of Power in a committee System," Agerican Tolitical Review, Vol. 48 (1954), 787-792.

${ }^{N D_{8}}$

