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VECTOR CALCULUS

INTRODUCTION

In coarse of an attempt to apply direct vector methods to

certain problems of Electricity and Hydrodynamics, it was

felt that, at least as a matter of consistency, the foundations

of Vector Analysis ought to be placed on a basis independent

of any reference to cartesian coordinates and the main theorems

of that Analysis established directly from first principles.

The result of my work in -this connection is embodied in the

present paper and an attempt is made here to develop the

Differential and Integral Calculus of Vectors from a point of

view which is believed to be new.

In order to realise the special features of my presentation

of the subject, it will be convenient to recall briefly the usual

method of treatment. In any vector problem we are given

certain relations among a number of vectors and we have

to deduce some other relations which these same vectors

satisfy. Now what we do in the usual method is to resolve

each vector into three arbitrary components and thus rob it

first entirely of its vectorial character. The various characteris

tic vector operators like the gradient and curl are also subjected

to the same process of dissection. We then work the whole

problem out with our familiar scalar calculus, and when the

necessary analysis has been completed, we collect our components

and read the result in vector language. It is of course quite

useful so far as it goes, the final vector expression of the result

giving not only a succinct look to our formulae but also a
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suggestiveness of interpretation which they had been lacking

in their bulky cartesian forms. But surely, strictly speaking,

we should not call it Vector Analysis at all, but only Cartesian

Analysis in vector language. In Vector Analysis proper we

have, or ought to have, the vector physical magnitudes which

our vectors represent, direct before our minds, and this charac

teristic advantage of being in direct close touch with the only

relevant elements of our problem is sacrificed straight away,

if we throw over our vectors at the very outset and work with

cartesian components. We sacrifice in fact the very soul of

Vector Analysis and what remains amounts practically to a

system of abridged notation for certain complicated formulae

and operators of cartesian calculus which happen to recur every

now and then in physical applications.

The one great fact in favour of this plan is that it affords

us greater facility for working purposes, this facility no doubt

arising solely from our previous exclusive familiarity with Carte

sian Analysis. But however useful it might be in this direction,

and generally in making the existing body of Cartesian Analysis

Available for vector purposes, the process, I venture to think,

is at best transitional, and the importance of the subject and

the importance of our thinking of vector physical magnitudes

direct as vectors, alike seem to demand that the whole of this

branch of Analysis should be placed on an independent basis.

But there is a peculiar difficulty at the very outset. Histori

cally, most of the characteristic concepts of Vector Analysis,

like the divergence and curl, had been arrived at by the physicist

and the mathematician in course of their work with the Cartesian

calculus and had even become quite familiar before the

possibility of Vector Analysis as a distinct branch of mathematics

by itself was explicitly recognised. The vector analyst at

first then starts from these old concepts which happen also

to be the most fundamental, but it is his object right from the

beginning to exhibit them no longer in their cartesian forms,

but in terms of the characteristic physical or geometrical

attributes which they stand for. Very often now a question
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of selection arises from among the number of ways in which

the same concept may be defined, different definitions being
framed according to the different points of view from which

the subject is intended to be developed. The physicist who,

by the way, makes the greatest practical use of Vector Analysis
and whose sole interest also in the subject is determined by
the service it renders him in his work aims, first of all, at

his definition representing most directly a familiar physical

fact or idea; but, at the same time, and very naturally too, he

holds the possibility of the definition yielding quite easily

his useful working formulae, of equally vital importance. But,

unfortunately enough, these two distinct aims of the physicist

are irreconcileable with each other, the most natural definition

from the physical point of view leads to the useful transfor

mation formulae of Physics only with the greatest difficulty,

and the definition that yields these formulae with any facility

is generally hopelessly artificial from the physical point of

view.* It is this irrecoucileability of the two distinct purposes

of the physicist which, I venture to suppose, is directly respon

sible for the persistence of cartesian calculus in Vector Analysis.

For what is done is that definitions are first framed with a

view to direct summing up of the simplest appropriate

physical ideas, but then the necessity almost inevitably arises of

seeking cartesian expressions for working purposes, for making
Vector Analysis a serviceable and at the same time an easily

manageable tool in the hands of the physicist.

I may just illustrate my point by recalling how the usual

definitions of the two most characteristic concepts of Vector

* Reference may be made here to a paper by Air. E. B. Wilson in the

Bulletin of the American Math. Soc., vol. 16, on Unification of Vectorial

Notations, where he criticises the artificiality in the definitions of divergence

and curl by an Italian mathematician, Burali Forti, which were chosen

solely with a view to their adaptability for establishing the working formulae

of Vector Analysis with ease. Thus Burali Forti s definition of divergence is

div v= a. [grad (a. v) 4- curl (a x v)], where a is any constant unit vector.

This has certainly no direct connection with any intrinsic property of the

divergence, physical or otherwise.
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Analysis have been adopted from the simplest physical ideas

which immediately identify them. Thus the idea of divergence

is taken directly from Hydrodynamics, and keeping before our

minds the picture of fluid leaving (or entering) a small closed

space, we define the divergence of a vector function at a point

as the limit of the ratio, if one exists, of the surface-integral
*

of the function over a small closed space surrounding the point

to the volume enclosed by the surface, a unique limit being

supposed to be reached by the closed surface shrinking up to a

point in any manner.

Again, it is found that some vector fields can be specified

completely by the gradient of a scalar function, so that the line

integral t of the vector function along any closed curve in

(simply connected) space would vanish. Thus the work done is

nil along any closed path in a conservative field of force. But

in case the vector function cannot be so specified, an expression

of this negative quality of the function at a point is naturally

sought in its now non-evanescent line integral along a small

closed (plane) path surrounding the point. The ratio of this

line integral to the area enclosed by our path generally approa

ches a limit as the path shrinks up to a point, independently of

its original form and of the manner of its shrinking, but dep

ending on the orientation of its plane. The limit moreover has

usually a maximum value, subject to the variation of this

orientation, and a vector of magnitude equal to this maximum
value and drawn perpendicular to that aspect of the plane which

gives us the maximum value is called the curl of the original

vector function.

Now these definitions, embodying, as they do, the most

essential physical attributes of divergence and curl, must be

regarded as perhaps the most appropriate ones that could be

given from the physicist s point of view. But then comes the

* By the surface integral of a vector function, we always mean the surface

integral of its normal component.

f By the line integral of a vector function, we always mean the line inte

gral of its tangential component.



INTRODUCTION 5

practical problem of deducing from these definitions the working
rules of manipulation of these operators. The direct deduction

being extremely difficult,* the already acquired facility in

working cartesian calculus is naturally utilised for the purpose,

and thus is reached the present position of Vector Analysis

which I have already described.

The only way out of the dilemma would seem to be found

by ignoring altogether both of these two specific interests of the

physicist and looking straight, without any bias, to the require

ments of Vector Analysis as a branch of Pure Mathematics by
itself. And paradoxical though it may sound, this course

perhaps would ultimately best serve the physicist s ends also.

At any rate, no free development of any science is certainly

possible, so long as we require it at every step to serve some

narrow specific end.

We ask ourselves then, what should be the most natural

starting point of the Differential Calculus of Vectors ? All our

old familiar ideas of differential calculus suggest at once that,

whatever the ultimately fundamental concepts might be, we

should begin by an examination of the relation between

the differential of the vector function (of the position of a point

P in space) corresponding to a small displacement of the

point P and this displacement. This very straightforward line

of . enquiry I propose to conduct here, and it will be seen how

in a very natural sense we can look upon the divergence and

curl as really the fundamental concepts of the Differential

Calculus of vectors, and how this new point of view materially

simplifies our analysis.

The first three sections are preliminary. In the first two I

summarise the definitions of continuous functions and of Inte

grals and briefly touch upon just those properties which I

require in course of my work. The third is devoted to the

Gradient of a scalar function. The real thesis of the paper I

*
Compare, for instance, the difficulty encountered by Mr. E. Cunning-

ham in a paper on the Theory of Functions of a Real Vector in the Proceedings

of the Lond. Math. Soc., vol. 12, 1913.
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begin in the fourth section where I consider the Linear Vector

Function only with a view to developing what I have called the

scalar and vector constants of the linear function, and although

there is nothing very special about these ideas themselves, they

will be found to lead very naturally to the concepts of Diver

gence and Curl and have been made here the foundation on

which my Differential Calculus is built. The fifth section is

devoted to that Differential Calculus and in the sixth I consider

a few Integration Theorems and the divergence and curl of anO &

integral with a view to showing with what ease these operations

can be performed from my point of view.

Notation.

With regard to notation I use Gibbs here, although some

of its features are obviously meant to suggest easy ways of

passing from Cartesian formulae to vector, and vice versa, with

which of course I am not at all concerned.

For convenience of reference I reproduce the notation for

the multiplication of vectors.

If A, B are any two vectors,

the scalar product of A, B is A.B=
|

A
| |

B
|

cos 6, and the

vector product is A x B which is a vector of magnitude |

A
|

|

B
|

sin &, and in direction perpendicular to both A and B
;

|

A
|

, |

B
| denoting the tensors of A and B and the angle

between them.

Again, if A, B, C are any three vectors, the notation

[ ABC ] is used for any one of the three equal products

A.B x C= B.C x x/Y= C.A x B= the volume of the parallelo-

piped which has A, B, C, for conterminous edges.

The following useful formula will occur very often :

Ax(BxC) = (A.C)B-(A.B)C.



CONTINUITY : DIFFERENTIATION OF A VECTOR

FUNCTION OF A SCALAR VARIABLE.

1. The functions we deal with will be mostly continuous. The

position of a point P in space being specified as usual by the

vector J
(
= OP) drawn from a fixed origin O, the function /

(&amp;gt; )

is said to be continuous at P, if corresponding to every arbitra

rily chosen positive number 8, a positive number t] (dependent

on 3) can be found such that \f(r+ *)f(r)\ &amp;lt;3,
c being any

vector satisfying the inequality i i
&amp;lt;

?;.
The notation iVi

denotes the absolute value of the scalar if V is a scalar, and the

tensor of V if V is a vector.

If we construct the vector diagram as well, that is, if bv

taking another fixed point O we draw the vector O P repre

senting the value of the vector function corresponding to every

point P in the region in which the function is defined, then Q
being a point in the neighbourhood of P and Q the correspond

ing point in the vector diagram, our definition of continuity

implies that any positive number 3 being first assigned, a

positive number rj can be found such that so long as the tensor

of the vector PQ is less than rj, the tensor of P Q will be less

than 8. It implies in other words that a sphere (of radius
rj)

can be described with centre P such that points Q in the vector

diagram corresponding to all points Q within (not on) this

sphere will lie within a sphere of any arbitrarily small radius

S described with centre P .

We prove now that in the same case the angle P O Q ,

that is, the change in direction suffered by the vector func

tion can also be made arbitrarily small. For, in the triangle
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A A
sin P O Q sin FQ O
P Q O F

A
Hence, sin P O Q

P Q
O F

But P Q, can be made arbitrarily small, and O P is

supposed to be finite. Hence sin P O Q and therefore also the

angle P O Q can be made arbitrarily small. It follows that our

continuous vector functions are continuous in direction as well.

2. The function / (r) is said to have a limit at P, if Q
being any point in the neighbourhood of P we have the same

limiting value of the function no matter in what manner Q
approaches P continuously.

If the function is continuous at P, the limit exists at P and

is equal to the value of the function at P, and conversely.

If the limit does not exist at P, then either of two things

may happen : (i) there may be different limiting values for

different approaches to P ; or (ii) there may be no definite

limiting value for any approach or some approaches. In either

case the function is discontinuous at P.

A third kind of discontinuity arises when the limit exists

at P, but this limit is not equal to the value of the function at P.

But, as has been remarked already, we shall concern our

selves practically with continuous functions alone, and an

examination of the sort of peculiarities we have just noticed, of

what has been described as the Pathology of Functions would

be out of place here. The only discontinuity we shall come

across is the infinite discontinuity which arises when
| f (r) \

tends to infinity at P.

3. Turning our attention then to continuous functions

alone, we note that the sum and the scalar and vector products

of two continuous vector functions are continuous also. The

case of sum is almost self evident, and we prove now that if V
t ,

V are two continuous vector functions, the scalar product

.V 1 -Y 2 is continuous.
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Let V j, V 2 denote the values of the functions at a point
r+* in the neighbourhood of the point t. We have only to show
that for any positive number 8 assigned in advance, a positive
number

&amp;gt;;

can be found such that

I VVV g VYVg | &amp;lt;8,

for all vectors e satisfying |

e
|

&amp;lt; rj.

-VJ- (V. -V,),

which is not greater than |

V
l \ \

V 2 V 2 |
+

|

V 2 | |
V

l -V l \

+
| VY V\ i |

V 2 V
2 | , since the magnitude of the scalar

product of two vectors is not greater than the product of their

tensors.

Hence, since the absolute magnitude of the sum of any

number of quantities is not greater than the sum of their abso

lute magnitudes, we have

IV. -V. -V.-V, I* |V, I I V. -V, I

+
I V, [ I V. -V, i

+
I V. -V, I I V. -V, I

But since V\, V 2
are continuous,

| V/ V
l | &amp;lt;any arbitrary 8 1} provided only |

c
|

&amp;lt;
the

corresponding &amp;gt;; x ,
and

j

V
2

V
2 | &amp;lt;

8 2 , &amp;gt;7 2

Of the two numbers ^ rj t ,
let /h^r/ 2 ;

then provided |

e
|

&amp;lt;T/I! | V/-V, |
&amp;lt;B l

and
|
V

2
-V 2 |

&amp;lt;8 2 ,

and therefore
|
V 1 -V, -V 1 -V, |

&amp;lt;
| V, |

8 2 + | V, | ^4-M*-

Again, since
|

V x |
, |

V 8 |

are supposed to be finite, given any

positive number 8. we can always find 8
1
and S

2 such that 8&amp;gt;

|V t |3 2 + |V, 18,+M.-

Choosing such values now of 8
l
and 8

2 ,
we have

j VVV , V^V-j |
&amp;lt;8. whenever

|

e
| &amp;lt;&amp;gt;;

which proves our theorem.

Similarly we prove that V, x V
2

is also continuous.

2
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4. If we consider in particular the continuous vector func

tion of a scalar variable, we can easily adapt the argument of

the usual scalar calculus and prove the theorems associated with

continuity in that calculus. If Tf (t) be the function consi

dered, t being the scalar variable, we can prove in particular

that if r^f (t t )
and r%=f ( 2 ) an(^ P * s anv number

such that
|
r j | &amp;lt;p&amp;lt; |

1 2 |
,
then there is a value of t lying

between l
l
and 2

for which \f(t) \ =p. In other words, as t

varies continuously from^ to 2 ,
the tensor of r assumes at least

once every value lying between t
l
and t

2 .

It can further be proved that if F (r) is any continuous func

tion, scalar or vector, of r where r itself is a continuous function

of a scalar variable t, then F is a continuous function of t.* In

case F is a scalar function, it follows that if F
t , F

2 are

the values of F respectively for t t^ and t= t
2 , then as t

varies continuously from t
i

to
2 ,
F assumes at least once

every value lying between F
x
and F

2 ; and when F is a vector

function, it is the tensor of F that assumes, as t varies conti

nuously from /! to ^
2 ,

at least once every value lying between

the tensors of F corresponding to t i^ and t= t
2

.

5. If for the continuous vector function r=f(t), a unique

f(i \ f(t\
limit exists of &amp;gt;/v

;
z--i as t approaches t from either side,

t. T. *

(i.e. from values less than t to t and from values greater than

t to t) y then this limit is called the differential coefficient of

*
Proof. We have to show that if 5 is assigned in advance, r/ can be

found such that

lF(r )-F(r)l J_ 5,

when 1 t t 1 L-n^
1

being the value of r corresponding to t=t .

Now since F(r) is a continuous function of r, an 77 1 can be found such that

1 F(/)-F(r) 1 ^5, when 1 r -rl Z^.

Again, since r is a continuous function of t, corresponding to this 77 n a

positive number T; can be found such that 1 r -r 1 / r; n when H -M L &quot;n-

This -n then is such that when It - 1 \
l_t}&amp;gt;

\ S-r 1 L-n l
and
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&amp;gt;
with respect to t and is denoted by =- . The function r in

&amp;lt;ii

the same case is said to be differentiable at t.

A function r f(f) which is continuous and differentiable

at all points in a certain region can in general be represented

by a curve in that region. The terminus of r will trace out

the curve as t goes on varying continuously, and the vector

^ will be at each point in the direction of the tangent to

the curve at that point.

If
F(&amp;gt;)

is a continuous vector function of r, it follows now

from the last article, that the vector diagram of (r) corres

ponding to points lying on any arbitrary but continuous curve

! = /
(/) between any two specified points P and Q is also a

continuous curve lying between the corresponding points P

and Q/ in the vector diagram.

6. Mean value theorem for r=f(t)&amp;gt;
If ** is a continuous

and differentiable function of t for all values of t between any

two specified numbers ^ and t
2 ,

then t\ and r 2 being the

values of ) respectively for t= t

r

t
and t= t

2 )
we nave

dt

where is some positive proper fraction.

This is proved, precisely as in the case of the corresponding

theorem in scalar calculus, by considering the function

which is continuous for all values of t between t
^

and #
2

and

vanishes for t= t
i

and f= t.2) and of which therefore the differ

ential co-efficient will vanish at some point between f
l

and t 2t

say at t
l +0(f. z

t
1 ) J

where is a positive proper fraction. This

proves our theorem.
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Graphically, if R denotes the vector to any point on the

chord of the curve r=f(t) joining the points ^ and 2 , the

equation of the chord is

for obviously it represents for varying values t a straight line

parallel to i- 2 l*j and gives R= r
j
at t= t

v
and R= t 2 at t

2 . Our
3&amp;gt;(^)

=r R= R
, say, represents then for any value

of t the difference of the vectors to points on the curve and

the chord corresponding to that value of /. If these vector

differences are now drawn from the origin for all values of i

from
t
to /

2 ,
their terminii will give us another curve re

presented by R =
3&amp;gt;(^),

which clearly is a continuous curve

returning unto itself at the origin for t = t^ and t= t
2 ,

and the

vanishing of - for some intermediate value of t implies that
Ci t

in course of the journey of the terminus of R from the origin

and back to it again, there will be a position which will make

the tensor of R or r R stationary.



II.

INTEGRALS.

7. The Vector Volume Integral. Given any finite con

tinuous volume T, if for any convergent system of sub

divisions * of the region, the vector sum ^ F..T,,, where

T B denotes any sub-region at any stage of the sub-division

and F M the value of F at any point within the sub-region

r nt tends to a definite, unique limit as the sub-division

advances, independent of the particular convergent system of

sub-divisions used and of the particular values of F chosen

within the sub-regions T H ,
then this limit is called the volume

integral of the vector function F through the volume T, and

T

is written / F*/T.

Without going into the question of the necessary minimum

condition for the integrability of F, we may prove without

much trouble the only theorem we require in this connec

tion, riz., that if F is continuous at all points within a

jiiiiie region, it is integrable also through that region ;

the continuity of F ensuring that if F w , F/ are the values

of F at any two points in the sub-region T H , the tensor of

the difference of F M and F/ becomes arbitrarily small as

the sub-division advances and each sub-region diminishes in

volume.

A graphical representation of the vector volume integral

may also be suggested here. Starting from any arbitrary

point O
,
we lay down the vectors F H T W as in the ordinary

polygon of vectors. In the limit the polygon becomes a

continuous curve, ending say in A. Then the arc O A will

represent /
|
F

|

d? and the chord O A will represent our

volume integral /F^/r. Since F is supposed to be integrable,

* Compare Hobson s Theory of Functions of a Eeal Variable, 251.
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the chord O A will be unique, but we may have an infinite

number of curves like O A according to the different orders in

which we may place the vectors ~F nr n in forming the

polygon. All these curves however will have the same

length J |

F
|

dr and the same terminal point A . Further, to

any point P on any one of these curves there will corres

pond a unique point P in the volume T, and conversely,

so that there is a one-to-one correspondence between the points in

the volume and the points on any particular curve.* We
have also dr = Y(lr, if r is the vector O P , so that the

tangent at any point P on the curve is in the direction

of F at the corresponding point in the volume. It may

happen that / |
F

|

dr is infinite, but /F^T at the same time

exists as a finite vector. Thus the curve may make an

infinite number of convolutions, but such that the terminal

point A is at a finite distance from O .

8. The surface integrals. Given any continuous surface

S in a region where the vector function F is defined, we^

form the scalar product F.ra at each point of the surface,

n denoting the unit vector along the outward normal at

any point to the surface, and the surface integral, in the

usual sense, of the scalar function Y.n over the surface we

call the surface integral of vector function F over the

surface and denote it by JF.;^S. In other words, for any

convergent system of sub-divisions of the surface S, if S,.

is a sub-area at any stage of the sub-division and F r .w r

the value of F.n at any point within the sub-area, the unique

limit to which ^F r .,.S r is assumed to tend as the sub

division advances is called the surface integral of F over

the surface S. But with the advance of the sub-division

the areas S r approximate to small plane areas on the

tangent planes at points P, and the vectors n r S r ultimately

* There is of course no a priori absurdity in the idea of a one-to-

one correspondence being established between the points in a given

volume and the points on a line, for we know from the theory of

sets of points that the two aggregates have the same &quot;power.&quot;
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may be regarded as representing these plane areas both in

magnitude and direction. We may replace therefore the

notation /F.WS ;by /F. /o-, ^/&amp;lt;r=WS representing the ulti

mately plane element //S both in direction and magnitude.

Forming again the vector product of F and the vector

n
r
S f at each point and summing up for all points and

passing to the limit in the same way, we have another

surface integral JF x n/lS or JF x da-. This has been called

the skew or vector surface integral, JF.//0- being the direct

or scalar surface integral. We shall always mean
jF.^/o-

when we speak only of the surface integral of F, referring

to JF x /la- as the skew surface integral.

If the surface S is supposed to be continuous and to possess

moreover a continuous tangent plane at every point, the vector

n would be a continuous function over the surface, and if F

is supposed to be continuous also, both F. n and F x n will be

continuous functions and the scalar and vector surface integrals

of F over S will both exist. We shall always make this

supposition here.

9. The line integrals. Given any continuous curve, if in

any convergent system of subdivisions, p n is the vector chord

joining two consecutive points of division at any stage of sub

division in the system, and F is the value of F at any point

P of the curve between these two points of division, then the

unique limit to which IfF^.p,, is assumed to tend as the sub

division advances is called the line integral of F along the

curve AB. The chord p n is obviously equal to the difference

in the values of r at the two points which it connects, and our

CB
\ F.dr. It is

JA
integral may be denoted by I F.dr. It is further clear that

J A

with the advance of the subdivision, p, approaches in direction

to the tangent to the curve at P, and if therefore we denote

the unit vector along the tangent at any point of the curve by

t, the integral is the same as the line integral, in the usual
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sense, of the scalar function F.t, and might be denoted by / F.t ds,

ds being the scalar element of arc.

We might in the same way define the vector line integral

/ F x dr, but this will rarely occur in the present paper.

In any case we shall always suppose that the curve along

which we integrate is not only continuous, but also possesses

a continuous tangent, so that t is a continuous vector function

of the position of a point on the curve.

The following properties of the line integral follow imme

diately from the definition.

CB (A
(1) I F.dr = - 1 F. dr

JA J B

fB CP fB
(ii) \ F.dr= I F. dr-f I F.dr, P being any point on the

JA JA JP
curve AB.

(Hi) If 1 is the length of the arc AB and L, U the lower

and upper limits respectively of F.t for the curve AB (which

limits are supposed to exist, though not necessarily to be

attained), then

f
B
IF
JA

Ll&amp;lt;\
F.dr ^Ul.

JA

(iv) Further, if M is some number satisfying L&amp;lt;M&amp;lt;U,

fB
we have I F.dr =. Ml

;
and in case F is continuous, so that F.t

f
B

I F.dr=
JA

is continuous also, the value M is attained by F.t at some point

f
B

P of the curve, and we have 1 F.dr =
(F.t)-l.

JA
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THE GRADIENT OF A SCALAR FUNCTION.

10. Let F(r) be a continuous scalar function of the position
of a point P (OP= r) in a given region. If Q is a point in the

neighbourhood of P, such that PQ= ah where a is a unit vector in

direction PQ and h a small positive number, then the value of

F at Q is F (r f ah). If now the limit
h ^ Q ^- [F (r + ah)

-

F(r)] exists as a definite scalar function (different from zero)
of a and r, this limit would measure the rate of change in the

c?

value of the function for a displacement of P in the direction

a. Supposing the limit to exist and denoting it by f (a, r),

we have F(r+ ah) F(r)= hf(a,r) + h7y, where
&amp;gt;?

and h have

the simultaneous limit zero.

Now since h appears in the left hand side of this equation

only in the combination ah, and the first term on the right hand

side is linear in h, it follows that this term is linear in a also.

The function f (a, r) then is a scalar function linear in a
;

it

vanishes moreover with a, and therefore it must be of the form

a. G (r), where G (r) is a vector function of r, independent

of a.

If the limit in question exists now for every direction a

emerging from P, the rate of change of F(r) in any direction

a is a.G(r), the maximum value of which obviously, for varying

directions a, is obtained when a is taken in the direction of G
and the magnitude of the maximum value is equal to the tensor

of G. The vector G is called the gradient of the scalar function

F. The gradient of a scalar function then may be generally

defined as a vector in the direction of the most rapid rate of

increase of the function and equal in magnitude to this most

rapid rate.

3
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11. The same question may be looked at geometrically also.

We begin by proving* that if F (r) is a scalar function continu

ous in a certain region and does not possess any maxima or

minima in the region, and if F is the value of the function at

any point P of the region, then there passes through P a surface

on every point of which F has the value F

For, since P is neither a point of maximum nor minimum,
all the values of F in the neighbourhood of P cannot be greater

than F
}
nor can all the values be less than F

,
and there would

be points in the neighbourhood for which F is greater than F

and there would be points also for which F is less than F .

In the neighbourhood of P then, let Q be a point such that

, and R a point such that F
&amp;lt;F-p

. Now on account
\cJ JT iV JT

of the continuity of the function, a region can be constructed

about Q within which the fluctuation of the function is as small

as we please. Hence there exist other points near Q for which

also the value of the function is greater than F . Similarly

there exist points near R for which the function is less than F .

Hence the region consists of two distinct regions in every point

of one of which F&amp;gt;F . and in every point of the other

F&amp;lt;F

p .

Again, since in passing from any Q to any R along a conti

nuous curve, F must on account of its continuity assume all the

intermediate values, it assumes the value F somewhere between

* This proof is adapted from the solution an example in Routh s statics,

Vol. II (Ex. 2, $ 124), where from the fact that gravitational potential is

neither a maximum nor a minimum in free space is deduced that an isolated

line cannot from part of a level surface.
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Q and R on that curve. Hence there is a continuous surface

of separation of the two regions at every point of which F=F ,

which proves our theorem.

If now the surface possesses a tangent plane at P, we take

a point P on the normal to the surface at P in its neighbourhood.

Through this point P also will pass a surface on every point

on which F=F/ and PP will be normal to both the surfaces

F
P&amp;lt;

- FpF=F and F=F . Supposing now that the limit

exists as P moves continuously along the normal and approaches

P, a vector in the direction of this normal and equal in magni
tude to the value of this limit is called the gradient of F(/-) at P.

[P might be on the normal on either side of the surface, and

it is assumed that the limit in question exists in either case and

that these two limits are equal.]

To see that the gradient so defined gives us the most rapid

rate of increase of the function both in magnitide and direction,

we take a point Q in the neighbourhood of P on the surface

on which P lies. Let ZP PQ= 0. Then the rate of increase

of the function in direction PQ,

F/-N F., ti i
-ff PP

L -- = L ^-
-QP=0 PP =0

of which the maximum value obviously is obtained when 0=0.

This establishes the identity of the definitions of gradient in

the present article and the last.

We denote the gradient by VF. If SF is the change in the

value of F on account of the shift Sr in the position of P, we have

SF= VF. Sr+ y \

Br
\

where
rj
and

|

8r
\

have the similtaneous limit zero.

12. If the shift 8r is supposed to take place along a definite

continuous curve &amp;gt;

=x(0&amp;gt;
then as we llave seen (4, p. 10) F

would be a continuous function of t along that curve, and our

relation of the last article can be written - VF. ~.
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Further, if / 1? t z specify any two points K, L on the curve

r=x(t) and if F
x ,
F 2 are the values of F at K and L respec

tively, we have by the Mean Value Theorem of 6, p. 11.

(^/F\

//F
-

) dennotes the value of - at some point M on the
dt /j at

curve lying between K and L. That is to say,

In particular, if the curve is a straight line in the direction of

the (unit) vector a and li is the length of KL, so that KL=a/t,
we may write F(r+ab) Y(r) = /ia.(^F) m =/ia. vF (r+ aO/i).

where is a positive proper fraction ; or again, F (r-f a) F(y)

=a.vF(r+0a).

13. We establish now the corresponding integral formula,

for which we prove first that tff(r) is any vector function (not

necessarily continuous) integrable along a given curve AB, then

P being any variable point on that curve, the integral I /(/). dr

A
is a continuous function of the position of P on the curve.

P

Denote \f(r).drby(*) t Then if Q is any other point

Q

r+ on the curve, we have I f(r).dr=F(r+ c), and therefore
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Q

F(/-+ c)-F(r)= (/.dr.

But (see p. 16)

Q

J-
.ilr

| &amp;lt;L7, where U is the upper limit

off.t for the curve AB and / is the length of the arc PQ.

Hence
| F(r+c)-F(/-) | &amp;lt;LV,

and therefore
| F(/-+ e) F(&amp;gt;-) |

can be made less than any

arbitrary positive number 8, if only / is so chosen that 8&amp;gt;U/,

or
l&amp;lt;^ ,

which is always possible because U is supposed to be
U

finite. Again, since the curve is supposed to possess a continuous

tangent at P
(p.lt)&amp;gt;

there is a finite portion of the curve about P

for which the arc measured from P and the corresponding chord

increase together. It is possible therefore to take a point P
e

on the curve in such a way that the arc PP
&amp;lt;

T
and also such

that the arcs corresponding to chords PQ which are less than

|

P P
| ,

are less than the arc PP and less therefore than -=.

It follow^ that for all vectors e satisfying j |
&amp;lt;

|
PP

|
,

where the arc PP
&amp;lt; ~, we have

| F(r + e) F(;-) | &amp;lt;S,
which

proves our theorem.

14. We conclude that iff(r) is integrable along any curve

in a continuous region, and if A is a fixed point and P any

variable point in the region, then integrating along the various

curves through A and P, we have any number of functions

p

J / &amp;lt;//,
each of which is continuous for a displacement of P on

A
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the curve along which the integral is calculated in any case.

Under certain conditions however (See 42), of which the

continuity of/ is one, the intergral is known to be independent

p

of the path of integration, and in this case therefore / f-dr
A

will define a unique continuous function Y(r) of the position of

P in space. Assuming these conditions to hold, and assuming
in particular that/I^

1

) is a continuous vector function, we shall

prove here that/= VF,

For, if f is continuous, and since in accordance with the

understanding in 9, the unit vector t to any curve through

A and P is supposed to be continuous,/^ is also a continuous

function of the position of a point on this curve. Hence, if P is

the point r and we consider another point / on the curve in the

neighbourhood of P, f and t being the values respectively of

/ and I at r
,
then for any arbitrary 8, a positive number

rj
can

be found such that

\f*-ft\ &amp;lt;8,
if r -r\ &amp;lt;rj,

which shows that \f -t lies between \f t\ +8 and \f t\

8
; every value, in other words, of/

* in the portion of the

curve between r and r lies between \f i
\
+^ and

|

f t
\

8.

)+

If c denotes the vector / r, the integral / f dr lies between

l\_ |

+ -t
|
+ 8] and l\_\f t\$\,l being the length of the

arc between r and r *

r+f

But F(r+c)-F(r)=/ / *&amp;gt;

.-. F(,. + e)_F(r) Hes betwern l[ \f-t \ +3] and /[ \f-t \ -8]

But 8 and therefore also / can be taken arbitrarily small
;

and with the arbitrary shortening of I the difference between the

arc I and the chord
| |

becomes arbitrarily small, and the

direction of approximates to that of t. We can write therefore
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e)-F(/-) =*/(&amp;gt;)+ I

e
I

8 , where 8 and |c| have the

simultaneous limit zero.

This result, which is true for all curves through A and P and

true therefore for vectors e drawn in all directions round P

shows that /= V E.

If therefore we have any curve in the region, and r
lt r.2 are

any two points on the curve, we have
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THE LINEAR VECTOR FUNCTION.

15. The most general vector expression linear in r can

contain terms only of three possible types, r
t a.rb and c.vr,

a, b, c being constant unit vectors. Since r, a.rb and cxr are in

general non coplanar, it follows from the theorem of the parallele

piped of vectors that the most general linear vector expression

can be written in the form

a.rb -\-vcxr

where X, p, v are scalar constants. The constants p, v may
moreover be incorporated into the constant vectors a and c and

we write our general linear vector function in the form

$ (r}=Xr+ a.rb+ cxr,

where b only is a unit vector.

Obviously, &amp;lt; (r) is distributive
;

that is, &amp;lt; (a+ /3)= &amp;lt; (a)+ &amp;lt;/&amp;gt; (0),

and further &amp;lt; (kr) =k &amp;lt; (r), where k is any constant.

16. Theorem. The surface integral of &amp;lt; (r) over any closed

surface S bears a constant ratio to the volume T enclosed by
the surface, the constant depending only on the function but

being independent of the particular surface over which we

integrate.

To prove this we integrate separately the three terms of
&amp;lt;j&amp;gt; (r)

over the surface.

S S
We know f\r.dcr=\fr.d(r=3XT.

S

To calculate ja.rb. da- we break up the region S into thin

cylinders with axes parallel to b. Since the surface is closed,

each of these cylinders like PQ will have an even number of

intersections with the surface, as in the usual proof of Green s

Theorem. It is enough to consider here the case where there

are two intersections only, the extension to the general case being
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obvious as in that proof. If then do- and do- are the elements of

surface on S enclosed by the cylinder PQ, we have

b. dcr = b. da-= area of the cross section of the cylinder PQ.
Let P be the point r, then if -f is the length of the

cylinder, Q, is the point r+xb, b being a unit vector ; and
the sum of the contributions of da- and da- to the surface integral

approximates, as the cross section of the cylinder diminishes, to

a.(r+xb) b. da- + a. r b. da

i.e., to a.b tb.da-

i.e., to a.bdr, where dT is the volume of the cylinder PQ.
Hence the whole surface integral

S

Sa.rb.da-=a bT.

We may just by the way note from the symmetry of the

result that fa.) b.da-=fb.ra.da-=a bT, and this result holds for

any two arbitrary constant vectors a, b. That is, for any two

constant arbitrary vectors a,b we have

a.frb.da-=b.fa.r rfo-=a 6T, which shows moreover that

frb.d&amp;lt;r
= bT and

fa.rd&amp;lt;r
= aT.

Generally therefore Jra.rfcr Ja.?Y^cr=aT, a being any

constant vector.

To return to our proof now, we have to integrate Jc X r.da.

Put c= aX/3, so that CX r= a.r/3/3.ra (p. 6)

Hence /cX r.d&amp;lt;T=Ja.) P daJp.ra.d&amp;lt;r
= a FV a (3T=0.

We have therefore finally

i.e.. JL
/&amp;lt;(.

da-=3\+ a.b=D, say,

which proves our theorem.

17. The skew surface integral of
&amp;lt;(r)

over any closed

surface S divided by the volume T enclosed by the surface

is a constant vector, this constant vector depending on the

function
&amp;lt;#&amp;gt;(r),

but being independent of the surface over which we

perform the integration.

4
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Proof. We proved in the last article that JVx r.dtr=
being any constant vector. It follows that Jc.r x da-=0 (p, 6),

i.e., c.frxdo-=0, or
JYxd&amp;lt;r=:0, because c is arbitrary.

Also, fa.rb X d&amp;lt;r=bx fa.rda-= bx aT [16]

Again J(c X r) X &amp;lt;7cr= jYc.tfo- Jcr.f/o- [p. 6] .

=cT-3cT= -2cT [16].

s s
Hence

/&amp;lt;/&amp;gt;(&amp;gt;) XeZer=J[

T= -CT, say ;

C=
!&amp;lt;f&amp;gt;(r)xd&amp;lt;T

= JY/o-x^O) being a constant vector,

our theorem is established.

D and C which we find here associated with every linear

vector function, we shall always refer to as the scalar and

vector constants respectively of the linear vector function.

18&quot;. We consider the function now

ex r

which is immediately seen to have the same scalar constant 3A.+

a.b as the original function
&amp;lt;(&amp;gt;(r)=\r+a.rl+ c X r : and its vector

constant is (ax6+ 2c) which differs only in sign from the

vector constant of
&amp;lt;(r).

Further, if a, (3 are any two arbitrary vectors, we have

=a.[A/3+ a-,36+cx]
=P [\a+ b aa r X a]=^8.^ (a), if we call the new function

The two functions
&amp;lt;/&amp;gt;(&amp;gt;)

=\.r+ a.rb + c x r

and
&amp;lt;f&amp;gt; (r)=:Xr-)-b m cxr

may on this account be called conjugate functions.

With every linear vector function
&amp;lt;j&amp;gt;(r)

then is associated

another function &amp;lt; (r), characterised by the propery a.((/?) =
j3.&amp;lt;f&amp;gt; (a) for any two arbitrary vectors a,/? and having further

the same scalar constant as
&amp;lt;(r)

and a vector constant differing

only in sign from that of
&amp;lt;(&amp;gt;)
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19. Since the scalar or vector constant of the sum (or

the difference) of t\vo linear vector functions is obviously the

sum (or difference) of the scalar or vector constants of the

two functions, it follows that the scalar constant of
&amp;lt;(r)-f

&amp;lt; (?) is 2D and its vector constant is zero
;

and that the

scalar constant of
&amp;lt;/&amp;gt;(/) &amp;lt;j&amp;gt; (r) is zero and its vector constant

is 2C.

Obviously again the conjugate of
&amp;lt;(&amp;gt;)

+&amp;lt; (/) is itself
;
this

function, that is to say, is self conjugate. And the conjugate

of 000 &amp;lt;

&amp;lt;&amp;gt;)

=&amp;lt; ( &amp;lt;K&amp;gt; )
= [XO W], which is the origi

nal function with the minus sign prefixed. Such a function

has been called skew or anti-self-conjugate.

The function
&amp;lt;/&amp;gt;(/)

&amp;lt;

( r) in full is

a.rl b.ra + 2c X r

= (axb)xr+ 2cxr [p. 6]

Hence &amp;lt;r can be written

i C x /, where 2$ (?-) has been written

for the self conjugate function
&amp;lt;(&amp;gt;)

+ &amp;lt; (r)-

Any linear vector function
&amp;lt;f&amp;gt;(r)

therefore can be expressed

as the sum of two other functions one of which is self conjugate,

has the same scalar constant as
&amp;lt;(&amp;gt; ) and no vector constant,

and the other is skew, has no scalar constant and the same

vector constant as
&amp;lt;(/).

The result
&amp;lt;/&amp;gt;(/)

&amp;lt; (/) =C x r shows moreover that the vector

constant of all self conjugate functions is zero.

20. The vector constant of
&amp;lt;f&amp;gt;(r) may be exhibited in another

manner, for which we calculate first the gradient of the scalar

function
r.&amp;lt;J&amp;gt;(r).

Since Sr.^(r)=(r+?r).^(f--r)-r.^(r)

I
8r

I

where TJ
is
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a scalar number which has limit zero as
|

Sr
|

tends to vanish,

it follows that V [? .&amp;lt;/&amp;gt;(? )]
=^OO + ^ O )* and we can write

Integrating now round any plane closed curve, we have

Since
;.&amp;lt;(?*)

is single valued, the first integral on the right hand

side is zero, because it is equal to the difference in the values

of \ ?
&amp;lt;t&amp;gt;(

r
) a^ the same point before and after circuiting, [p.23.]

Also JV x dr is twice the vector area enclosed by the curve,

a fact which becomes obvious by taking a new origin O in the

plane of the curve. For if QO r= a,15P=r and OT^, we have

r=p+a and dr=dp t
and frxdr=f(p+ a)xdp. Hence since

fdp and therefore also fax dp vanishes, the curve being closed,

we have frxdr=fpxdp which is a vector normal to the plane

of the curve and equal in magnitude to twice its area.

Thus
J&amp;lt;(r).dr=! / C x r.dr=C.fr x dr=C.nS, where S

stands for the area enclosed by the curve and n a unit vector

along the normal to the plane of the curve.

The ratio-
f&amp;lt;j&amp;gt;(r).dr=C.n

does not then depend on the parti-
S

cular curve round which we integrate, but it depends on the

orientation of the plane of the curve, on the vector n. This

ratio obviously again attains its maximum value when n is taken

in the direction of C. The vector constant of
&amp;lt;(/)

then is a

vector in the direction of the normal to that plane, round any

curve on which if we calculate the line integral of
&amp;lt;(r)

the ratio

of this integral to the area of the curve is maximum, and the

magnitude of the vector constant is equal to this maximum

ratio.

21. There is just one bit of work more in connection with

linear vector functions before we are ready for the Differential

Calculus of vector functions.

If a is any constant vector, a x
&amp;lt;/&amp;gt;(/)

is of course also a linear

vector function of r. We proceed to find D
1
and C

l
the scalar

and vector constants of a x &amp;lt;?.
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Integrating over any closed surface (enclosing volume T) we

have by definition

D
l T=faX&amp;lt;t&amp;gt;(r}.d&amp;lt;r

=
a./(/&amp;gt;(r)

X dcr

= a.C T, where C is the vector constant of
&amp;lt;(r).

Again. C^T^ax &amp;lt;(&amp;gt;

=
fKr)a.rf&amp;lt;r-,fa&amp;lt;K&amp;gt;-).rfcr (p. 6),

But.

/a^(r).rfo-= aJ ^&amp;gt;(r).fZ(r=aDT,
D being the scalar constant

of
&amp;lt;/&amp;gt;(

Also
/&amp;lt;(r)

a. f/o- is calculated immediately by breaking up the

volume into thin cylinders with axes parallel to a, as in 16,

p. 25. Thus if OP=r and PQ=.ra, the sum of the contributions

of the elements of area Jo- and da- at P and Q approximates, as

the cross section of the cylinder PQ diminishes, to

which again, since xa.dcr = ,ra.Jo-=vol. of the cylinder

and
&amp;lt;(/ + ^a) =&amp;lt;(/) + .r&amp;lt;Ka),

approximates to &amp;lt;(a)JT,
T being the volume of the cylinder

PQ. Hence
/&amp;lt;(r)a.d&amp;lt;r=&amp;lt;Ka)T

Hence finally C 1 T=&amp;lt;#(a)T aDT
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THE DIFFERENTIAL CALCULUS OF VECTOR FUNCTIONS.

22. The Differential Calculus of the scalar function of a

single (scalar) variable concerns itself with the rate of change of

the function with respect to the variable. In considering in the

same way the rate of change of a vector function / (r) of the

position of a point in space, the first difficulty we meet with

is that this rate of change is different for the different directions

in which the point P may be shifted. In fact, the position of

P being specified in the usual way by the vector r drawn from a

fixed origin, a change in the position of P of magnitude //

and in the direction of the unit vector a would be denoted by
a7i } and the change in the value of the function would be

f(r4 ali)f(r). The rate of change then in the value of /at
P for displacement of P in direction a is

L
h =. o h

In Gibbs notation this is denoted by tf.V/j we shall often

denote it, perhaps a little more expressively also by d af.

In order that the limit may exist it is necessary that/ should

be continuous at P in the direction a. For if / is discontinuous

in this direction, then however small h might be,
\ f(r -\-aJi)

/(/) |

would be greater than a certain positive number 8 and

therefore I can be made greater than any arbi

trary positive number, and therefore the limit cannot exist. But

the continuity of / alone in direction a cannot ensure the exis

tence of the limit, for which it is necessary that the fluctuation

as a function of h should be arbitrarilyof
J f(r+ ah)-f(r)

small within a sufficiently small interval on the line a in the

neighbourhood of P. The continuity therefore is a necessary

though not the sufficient condition for the existence of the limit

in question.
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But in any case where the limit does exist as a definite

function of a and r, it is clear as in 10, that that function

will be linear in a. We may denote therefore L
^ \f(r -\-ah)

/O )] by $ (a f
7
)j

or niore simply by &amp;lt;/&amp;gt; (a), where
&amp;lt;/&amp;gt;(&amp;lt;/)

stands

for a linear vector function of a. The explicit presence of r in

&amp;lt;f&amp;gt;(a, r) would serve to bring out the fact that the rates of

change of /*(?) are given by different linear vector functions at

different points P in the region.

If the limit exists for all directions a issuing from the point

P, for which it is of course necessary that / should be continuous

at P we write for any a

d af or a. V./ =&amp;lt;
(&amp;lt;/)&amp;gt;

a,ndf(r-{-aft)=f(r) + /i&amp;lt;l&amp;gt;(a)
+ hrii where rj is a vector such that

|
rj

|

has limit zero as Ji tends to vanish.

Or, since h
&amp;lt;A (a)

=
&amp;lt;f&amp;gt; (ah) [. 15, p. 24], if &f denotes the

vector increment of f corresponding to the increment &amp;lt;V of r,

23. If the shift &r be supposed to take place along a definite

continuous curve ; = ,(/), then we know ( 4), that f would

be a continuous function of I along that curve and we would

write from our relation of the last article that

df j &amp;lt;(&amp;lt;$&amp;gt;*)

which, since
&amp;lt;(Sr)

is a linear vector function of &r,

[ 15, p. 24 ]

Further, if t lt t
2 specify any two points K and L on the curve

r= x(t), and/\ and^ are the values of f at K and L [respec

tively, then we have from the Mean value theorem of 6.
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where I -/ Jm. denotes the value of -~
L

at some point M on the
\dt/M dt

curve lying between K and L. In other words

if, of course, a definite
&amp;lt;A

exists at every point on the curve be

tween K and L.

In particular, if the curve is a straight line in the direction

of the (unit) vector a and h is the length of KL so that KL= /,

we may write f(r+ ah)f(r)=h &amp;lt;j&amp;gt;(

assuming, of course, that d af exists at all points on the line KL.

24. We shall practically always confine ourselves to func

tions which are not only continuous within a certain region, but

are also such that d af or
tf&amp;gt;()

exists at every point P of

the region for all directions a round that point. If we

construct a sphere of unit radius with P as centre, then

every point on this sphere will represent a definite direction a

issuing from P, and &amp;lt; being known for P would mean that

corresponding to every point on the unit sphere we know the

rate of change of f (at P) both in direction and magnitude.

But as to the rate of change of / at P as a whole, we cannot as

yet form any definite conception, not at least directly from our

knowledge of the function ^ at P which only brings before our

minds a bewildering diversity of the rates of change for the

infinitely many directions round P. What we naturally do there

fore is to have an idea of some sort of average value of &amp;lt; (a)

for these directions a, average of &amp;lt; () over the unit sphere

round P.

We consider then two kinds of such an average value.

Since a is a unit vector, the magnitude of the component

of $(a) in direction a is
a.&amp;lt;j&amp;gt;(a).

We consider first the average

of this magnitude over the unit sphere, which is

fa-&amp;lt;!&amp;gt;(a)dS

S
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where dS is the scalar element of area on the surface of the

sphere at the terminus of the vector a, and S is the whole

surface S.

Since the radius of the sphere is unity, S is equal to 4?r and

is therefore equal to 3T, where T is the volume of the sphere.

Also adS=d&amp;lt;r the vector element of area, the normal to the

sphere at the terminus of a being along a. Hence the average
value

3T

where D is the scalar constant of the linear vector function

&amp;lt;(#). [D is a constant here in the sense of being independent

of a, but is of course a function or r and is different from point

to point].

The average rate of change of/ (r) then in the direction of

the displacement of P is proportional to the scalar constant of

&amp;lt;(#),
and this average rate therefore for each point of the sphere

may be constructed geometrically by making the sphere bulge

out uniformly outwards from its centre P by an extra length

proportional to D.

To have an idea now of the average value of the tangential

component of
&amp;lt;(a)

for all the points of the sphere, we consider

naturally the average value over the sphere of the moment of

&amp;lt;#&amp;gt;(#)

about the centre P. This moment being a x
&amp;lt;(),

our

average value

=JL
x^)d_

= &quot;** =iC

where C is the vector constant of
&amp;lt;/&amp;gt;(#),

in the present instance

of course the constant being a function of r. The average

moment therefore is in the direction of C and in magnitude is

proportional to that of C. It follows that the average tangential

component of
&amp;lt;f&amp;gt;(a)

on the sphere, the average of the component

that is to say, perpendicular to a, is perpendicular to C and

in magnitude is proportional to that of C. The vector constant

of
4&amp;gt;(a)

affords us a knowledge of the average rate of change

5
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of f(r) for any small displacement of r, perpendicular to that

displacement.

The scalar and vector constants of
&amp;lt;/&amp;gt;(#)

therefore may be

regarded as supplying us with a basis of comparison of the rates

of change off(r) at the various points of the region, and serve

in a sense the same purpose that is served by our old
-j-

in the

case of scalar function of a single (scalar) variable ,r.

25. The scalar D and the vector C being then so fundamen

tal in the Differential Calculus of Vector Functions, we hasten

to exhibit them directly in terms of the function f(r) to which

they belong, and we shall find incidentally how they are ulti

mately identified with the well known Divergence and Curl of

the vector function /(r).

26. Divergence. We integrate lf&amp;gt;dv
over any small closed

surface surrounding the point P. At any point Q on this

surface, PQ being Br, the value of/

where h stands for
|

fir
|

and r) is a vector such that
|

t] has a

zero limit as h approaches zero.

Hence
//.&amp;lt;*&amp;lt;r=/[/*p

+
&amp;lt;(8r) +^].dr.

But ffp.dv ==/p./d&amp;lt;r=0, the surface being closed ;

/&amp;lt;(Sr).Jo-=DT, D being the scalar constant of &amp;lt;

(8r)

regarded as a linear vector function of $r and T the volume

enclosed by the closed surface.

AlzoShydo-^fk | ^ | dSjdS being the scalar magnitude of do-

&amp;lt; i? lhds&amp;gt; where t) is the greatest value of
|

&quot;n \

.

But /&dS=KT, where AC is a finite number.

Therefore,

Hence -

ff.d&amp;lt;r
D
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Now let the surface shrink up to the point P in any manner.

Then since when h approaches zero, all
| 77 |

s and therefore

also
77
tend to limit zero, it follows that L f f.da- exists and is

equal to D. We have the following definition then

Enclose the point P by any small closed surface and calculate

the integral f f.da. If the limit of _/ f.da- exists as the surface

shrinks up to the point P, which limit moreover is independent
of the original surface and of the manner of its approach to

zero, then this limit is called the divergence of f(r) at P. Thif

limit exists if
&amp;lt;f&amp;gt;(a)

exists at P, and in this case the divergence

of f(r) is equal to the scalar constant of
&amp;lt;()&amp;gt;

and mar there

fore be taken (but for the constant factor \) as the measure of

the average rate of change of f(r) corresponding to any dis

placement of P in the direction of that displacement, the

average being taken for all directions round P.

We shall always denote the divergence of f(r) by V
/(&amp;gt; )

-27. It is perhaps possible for the divergence of a given

function to exist at a given point P without
&amp;lt;j&amp;gt;(a) necessarily

existing there. Directly, the necessary and sufficient condition

for the existence of the divergence at P is that within a suffi-

1
S

ciently small neighbourhood of P, the function _-//.rfo- should

vary continuously for continuous variations of the surface S.

In other words, given any arbitrary positive num ber S, it should

be possible to find a positive number 77
such that S^ S

a being

any two closed surfaces round P and T 1; T a the volumes

enclosed by them,

should be less than 3, whenever the surfaces S,, S
2

are entirely

contained within the sphere with centre P and radius rj. It is
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a matter for investigation now how far this condition necessarily

implies the existence of
&amp;lt;$&amp;gt;(a)

at P. We consider however just

now only those functions for which
&amp;lt;j&amp;gt;(a)

exists at every point

and f :&amp;gt;r which therefore there is no question as to the existence

of the divergence.

28. Curl. Integrating ffxda- over any closed surface in

the same way, we have

But //p xd(T=fp xfd(T=0^ the surface being closed
;

/&amp;lt;(?)
xd&amp;lt;r= CT, C being the vector constant of

as a linear vector function of 8r.

Also fh-rjxda- &amp;gt; fh \ TJ \

dS

that
is,&amp;lt;

. J/xdcr-fC&amp;lt; 77
K

,
and therefore in the limit when the

surface shrinks up to the point P, we have

In general, if we find that the limit of _ f da-xf exists as

the surface shrinks up to the point P, the limit so obtained

being independent of the original surface and of the sequence

of forms taken by it during its approach to zero, then this limit

is called the curl of the function f(r) at P. What we have

proved above shows therefore that if
&amp;lt;f&amp;gt;(a)

exists at P, the curl

does so too and in this case is equal to the vector constant of

^&amp;gt;().
For any displacement of P then, the average (for dis

placements in all directions round P) of the component rate of

change of J(r) perpendicular to the direction of the displace

ment is perpendicular to the curl, and the magnitude of the

average is proportional to that of the curl.
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29. The curl may also be exhibited in another (the more

usual) manner corresponding to the property of the vector

constant indicated in 20, p. 28.

Thus, integrating //. dr round any small closed plane curve

surrounding P, we have

But ffp dr=fP -fdr=Ot
the curve being closed.

f&amp;lt;j&amp;gt;(8r)-dr=C-nS, S being the area enclosed by the curve

and n a unit vector normal to the curve. [ 20].

Also, fhrj dr
&quot;jp fh \ rj \ ds, ds being the magnitude of the vector

element of arc dr
;

and fh \ rj \

ds
&amp;lt;~^ fhdS,

&quot;^
being as before the greatest \ rj \ ,

and also
/&&amp;lt;2*=je8,

where * is a finite number.

and we have ff-drC-n &amp;lt;
*.

o

Hence, as the curve contracts to a point in any manner,

~ / f dr approaches the unique limit C /i. The limit moreover

exists for all aspects of the plane area, for all vectors n. These

various limits [for the different aspects of the plane have again a

maximum value when n is in the direction of C, that is, when

the plane is taken perpendicular to C and the magnitude of this

maximum value is equal to that of C.

In case therefore
&amp;lt;j&amp;gt;(a)

exists for the function f (?) at a point

P, it is indifferent whether we define the curl as we have already

done it, or use the following definition.

Having described any plane closed curve surrounding the

point P, if we find that the limit of Sf dr, as the curve con-
S

tracts to the point P, exists and is independent of the form of the

curve and of the manner of its approach to zero, but dependent

on the orientation of the plane of the curve, and if further, as

this orientation is varied, the various similar limits so obtained
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for the different orientations all exist and acquire a maximum
value for a certain orientation, then a vector drawn perpendi

cular to the particular plane which gives us the maximum value

and equal in magnitude to this maximum value is the curl of

/ at P.

We shall denote the curl off(r) by v *f(r)

30. Some Transformation Formulae. The explicit recogni

tion of the divergence and curl of a given function as the scalar

and vector constants respectively of the linear vector function

&amp;lt; (a} r), which defines the rate of change of the function for

displacement in any direction a, considerably facilitates the mani

pulation of these operators in practical work. This is what we

proceed to illustrate.

We shall in this article denote by n a continuous scalar

function possessing a gradient at every point within the region

considered, and U and V will stand for two continuous vector

functions of which the rates of change at any point P will be

denoted by the linear vector functions
ty (a, r) and &amp;lt;

(a,r) res

pectively, so that the scalar and vector constants of ^(a) will

be V-^ and V x {/respectively, and those of
&amp;lt;(#)

will beV *V

and V x V respectively.

(i) To show now that

and Vx(V)=wVxV+VttxV.

Proof. Q being a point in the neighbourhood of P(PQ=aA),
if the values of u and V at Q are ti+ 8u and V+ 8V, the rate of

change of wV for a displacement in direction a

= L i [(+&*)
*

= L -

h=o *

But V (V) and V x (ttV) are the scalar and vector constants of

this rate regarded as a linear vector function of a. Remembering
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therefore that the scalar constant of a.rb is a. 6 [p. 25] and that its

vector constant is a x b [p. 26], we have immediately

and V x (t*V) =uVxV+VxV.
(it) To show that

V (U x V) =V V x U-U V x V

and Vx(UxV)=UV-V-Vvr+f(V)
Proof. The rate of change of U x V for the displacement ah

of the point P

-

h

=L- [Ux8V+SUxV+8UxSV]
h

and we have to find the scalar and vector constants of this as a

linear vector function of a.

We recall
[ 21, p. 29] that the scalar and vector constants of

ax
&amp;lt;/&amp;gt;(r)

are a-C and Da
&amp;lt;(

a) respectively. Hence

and

(Hi) We may quite easily prove also the formula for V(U-)V
as given in Gibbs, Vector Analysis, p. 157, viz.

Thus the rate of change of U-V for the displacement ah of the

point P

=L-
h

=L L
h
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Now we know that if this rate of change can be written in the

form a.G., then G= V(U- V.)

But U &amp;lt;(a)+V-iKa)

=U-
|&amp;gt;O) 4&amp;gt; (a)]+V [^(a)-^(a)] +Uy(a)+V-f (a)

=U- (VxV)xa+ V- (VxU)xa+ a $(TJ)+ a-^(V) [p. 27]

Hence V(U-V)=Ux (V x V)+V x (V xU)+$(U) +^(V

We could write the same result in a more compact form.

Since U &amp;lt;^(a)+V i/r(a) could be written directly

=a.&amp;lt;/&amp;gt; (U)xcn//(Y), we have

In particular, V(yV)=&amp;lt; ( a )&amp;gt;

a being a constant vector.

A short note on Bilinear Vector functions.

31. Before passing on to the Second Derivatives of the

vector function f(r), it would be necessary to consider very

briefly what are called the Bilinear Vector Functions.

A vector function of two variable vectors linear in both is

called a bilinear vector function.

Generally, a vector function of n variable vectors linear

in all of them is called an w-linear vector function.

A bilinear vector function is said to be symmetrical if it

remains the same when the two vectors are interchanged. If

r,r denote the two variable vectors, the general symmetrical

bilinear vector function can contain only terms of the type

r.^(r )X, where X is a constant vector and $ is a self-conjugate

linear vector function, so that r^(r
f

)=r ^(r). We write

therefore for the symmetrical bilinear vector function

where all the functions \j/
are self coujugate.
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32. Since the scalar constant of a rb is a b [p. 25], the

scalar constant of
&amp;lt;^/

/,? ), regarded as a linear vector function

of r alone, is ^A i//(V), or since the functions
if/

are all self-

conjugate, this scalar constant,

of which again, regarded as a function of r
,

the gradient is

It is now obvious a priori from the symmetry of &amp;lt; (r,r ) and

it is verified immediately also that if we had calculated the

scalar constant of
^&amp;gt;(r,r ) regarded as a function of / and then

had obtained the gradient of this scalar constant with respect

to r, we would have got the same result ^i^(X). Hence, without

ambiguity, we may refer to
2E&amp;gt;K^)

as the gradient of the scalar

constant of
&amp;lt;(///). We shall denote ^v^(X) by f~

33. Since again the vector constant of a.rb is ax b [p. 26],

the vector constant of
&amp;lt;( /,/). regarded as a function of r, is

5*K*OxX We want to write down now the scalar and vector

constants of this vector constant 2EiAOO x ^ regarded as

a function of /. We recall that the scalar and vector constants

of ax&amp;lt;fr) are a C and Da
&amp;lt;(a) respectively, where D and C

are the scalar and vector constants respectively of &amp;lt;( / ). Hence,

since the functions ^(/) are all self conjugate and therefore

their vector constants are zero, it follows that the scalar constant

of
;&amp;gt;&amp;gt;K

r ) x A as a function of r is zero.

And its vector constant

*.) + ......]-[A 1
D

1 +A 2
D

a + ......... ],

where D lf D 2 ...are the scalar constants respectively of

That is, the required vector constant

And here also the results would have been the same if we

had calculated the vector constant of
&amp;lt;K?\?- ), regarded as a func

tion of r
,
and then found the scalar and vector constants of

this vector constant as a function of r.

6
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We may say then without ambiguity that the scalar constant

of the vector constant of
&amp;lt;f&amp;gt;(r,r ) Is zero and that the vector con

stant of the vector constant of
&amp;lt;(r,/ )

= F HfA.D. We shall denote

this last by C .

34. For the bilinear vector function we have now to consider

two conjugate functions. If we regard, it as a function of r alone

we have one conjugate function, and we have another when we

regard it as a function of r alone. We denote these two conju

gates by &amp;lt;f&amp;gt;
r (r,r ) and &amp;lt;

,. (r,r ) respectively. These conjugate

functions are not necessarily symmetrical. Remembering that

the conjugate of a rb is b ra, we have in fact

if
&amp;gt;(r

=

and $V(r/) = 5X rV(r);

and we propose now to seek for constants like f and C from

these conjugate functions.

Since a linear vector function (of one vector) and its

conjugate have the same scalar constant and vector constants

differing only in sign, it is obvious that the scalar and vector

constants of &amp;lt;

,. regarded as a function of ; and of &amp;lt; / regarded

as a function of r could be written down immediately from

the results we have already worked out for
&amp;lt;f&amp;gt; (r, r ), but they

would not obviously also furnish us with anything new. Also

&amp;lt; / is only &amp;lt; r with r and r interchanged. We have to cal

culate therefore only the scalar and vector constants of
&amp;lt;f&amp;gt; ,.

regarded as a function of /.

Since the functions f are all self conjugate, the vector

constant in question is zero immediately. And the scalar

constant= !&amp;gt;A-rD
=

?&quot; ;&amp;gt;A.D, the gradient of which with respect

to r is ^AD. We denote 2&amp;gt;AD by f Thus f =
2&amp;gt;A-D is gra

dient with respect to r of the scalar constant of &amp;lt;

,. regarded

as a function of r and is also the gradient with respect to

/ of the scalar constant of
&amp;lt; / regarded as a function of r.

We thus have two independent constants of the symmetrical

bilinear vector function, viz. f and f an^ a third C deducible

from them.
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If the function is &amp;gt;r = &amp;gt;r \/r \

and C =r-r

35. Now we are in a position to consider repeated opera

tions of the derivative operators.

Denoting L [f(r+ ^) /(-r)], the rate of change of f(r)

i=t)

at P for a small displacement of P in direction a by ^ (a, ;),

we consider first of all the rate of change of this function
&amp;lt;f&amp;gt; l (a,r)

for any displacement of P. If a h is this new displacement,

a being a unit vector and h a small positive number, then the

rate of change of
&amp;lt;f&amp;gt; l (a, r)

h&amp;gt; + q^) -/(/+ a A )_ f(r 4- ^) -

Assuming that a unique limit exists as h, h approach zero,

we conclude as in 10, p. 17 that this limit is a vector function

linear both in a and a . We denote this bilinear vector function

by 4&amp;gt;.2 (V&amp;gt;
a

&amp;gt; )
and c*11 li the second differential linear vector

function for/(r), &amp;lt;/&amp;gt;! (a, r) being the first.
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By definition then

d af=^ l (a, ;),

d a d a
f=&amp;lt;l&amp;gt; 9 (a, a, r).

In the same way,

7^= 0/^ =

and this would be denoted by &amp;lt;

2 (a, a, r).

We see that d a d af and d ad tt f differ only in the order in

which h and h are made to approach zero and under certain

circumstances, which may be investigated, the limit operations
are commutative and then we should have

d a d af=d a d aS.

We prove here only that in case d af, d a d af and d a d af
all exist and are continuous within a finite region round P, the

commutative property of the limit operations in question

certainly holds and we have d tt d af=d ad a f

For, applying the Mean Value Theorem of 23, P. 32 to

the function

we have [f(r+a h + ah)-f(r + ah)-}
-

[f(r+ a h )-f(r)]

= hd
tt [f(r + ak + a6h)-f(r+ a6h)],0 being a positive

proper fraction,

= hd a h d a [/(r -I- afO ti + a0h ], applying the same Mean
Value Theorem to f(r -\-a0h), being some other positive proper

fraction.

In the same way we have

[ f(r+ a h + ah) -f(r + * )]-[ f(r+ ah) -/(/)]

0\, 6^ being also positive proper fractions.
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Provided only then r + ah, f+a h and ?+ aJi + a h lie within

the region where our conditions hold, we have it that whatever

A, h might be,

f(r + a k + ah) -/(&amp;gt; + a A
) -f(r+ ah) +f(r)

Since again d u d af(r+ a h + a6Ji) and d a d af(r+ a 0\h +
a6 Ji) are supposed to be continuous, they approach the same

limit at r, and we ha,\ed. d af=d ad a f; or
&amp;lt;j&amp;gt;&amp;lt;&amp;gt;(a ,a,r) =&amp;lt;t&amp;gt;%(a,,a?,r).

In other words, &amp;lt;

2
is a symmetrical bilinear vector function of

a, a .

36. Since by definition &amp;lt;

2 (a ,a,r) regarded as a linear

vector function of a gives us the rates of change of
&amp;lt;f&amp;gt;

l (a,r)

for the directions a
,

the divergence and curl of this latter

function are the scalar and vector constants respectively of

&amp;lt;

2 (# ,rt,r) as a linear function of . AVe proceed to show now

how the second derived functions of f(r) can be obtained from

&amp;lt; s , just as we obtained our first derived functions the diver

gence and curl of/(r) from
&amp;lt;,.

Since the divergence of f(r)

is a scalar, we can have its gradient, and the curl being a vector,

we can have its divergence and curl We consider these in

order.

37. Let D stand for the divergence of /(/) ;
D= V-/- If Q

is a point in the neighbourhood of P, such that PQ=aA, we have

for the divergence of / at Q,

=o h

=LV.
/i=o

linear vector function of a,
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But V-^! (&amp;lt;V ) is the scalar constant of &amp;lt;

2 (a ,a,r) regarded as a

linear function of a and is therefore equal to a-
f&quot; [ 32]. Hence

a.V-D=a.f~ ,
and since a is arbitrary, we have

where [~ is the gradient of the scalar constant of
&amp;lt;/&amp;gt; a (a ,a,r).

38. In the same way, if C is the curl of /at P and C+ 8C is

the curl at Q, PQ as before being ah, we have

C= Vx/,

/. 80=V x 8/= V x
[&amp;gt; l (aV) + hy]

and .\(Z aC=Ll-Vx^ 1
a

which we know is the vector constant of &amp;lt;

3 (o/.a,r) regarded as

a linear vector function of a .

Hence V-C and V X C, which are the scalar and vector con

stants respectively of d a C as a linear function of a, are respectively

the scalar and vector constants of the vector constant of &amp;lt;

s (a ,a,r).

The former we have proved to be zero [ 33, p. 41],

that is, V-V X/ is always zero
;

and the latter was found to be f~ f~ ,
that is

where |~ ig t^e gradient with respect to a of the scalar constant

of &amp;lt;

2&amp;lt;l (a ,a,r) regarded as a funtion of a . We shall presently

find an interpretation of |~ directly in terms of /.

39. It was seen [ 30, (iii), p. 40] that if

then
V(a./)=&amp;lt;^&amp;gt; 1 (a^), where ^i (a t

r) is *^e linear vector

function of a conjugate to
&amp;lt;f&amp;gt; 1 (a,r).

Hence V.V(cr /)= V.*, (.r);

that is, V.V(./) is the scalar constant of d^^a.r) regard

ed as a function of a .
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Therefore, /? being an arbitrary constant vector,

=L
f

h =o *

=a

Hence c?/^/(a,r) is the conjugate of
&amp;lt;f&amp;gt; t (a?a,r) with respect to

a. That is,

Hence V- V(a./)=a- f [ 34, p. 42]

That is. the divergence of the gradient of the (scalar) magni
tude of the component of / in any direction is equal to the com

ponent of |~ in that direction.

40. Generally, starting from any scalar function w, we may
have two second derivatives, the devergence and curl of its gradi

ent G= V?&amp;lt;-

If G+8G devote the gradient at Q. PQ=ah, we have

A?

The divergence and curl of G now are respectively the scalar

and vector constants of d aG as a linear vector function of a.

For shortness sake the divergence of G, that is, V-(V)
is always devoted by V 2

- ^e prove now that the curl of

G is always zero,
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For denoting d aG by &amp;lt;()
f r a moment, we know that

V(a.Gr)=:&amp;lt; (a) ;
and we have just shown that d a&= V(a.Gr)

In other words, &amp;lt;O)
is a self conjugate function and therefore

its vector constant is zero.

Hence. Vx(Vw)=0.

41. We have thus obtained two second derivatives of a scalar

function u, viz., V X ( V**) and V (V^) or V 2 ^
5
of which the first

vanishes for all functions u.

For the vector function f(r) we got three second derivatives

V(V /)&amp;gt;
V X (V x/) and V(V x/), of which the last vanishes

for all functions f and the other two correspond to two of the

invariants f an(i C of the symmetrical bilinear vector function

4&amp;gt; 2 (a 5 a, r).

But there was a third invariant [~ of &amp;lt;

2 (a , a, r) which we

saw was related to / by the relation

VV(a/)=aT or V 2O/)=T ,

showing that V 2
(a /) is maximum when a is taken in the direction

of f and the magnitude of this maximum value is equal to the

tensor of f This suggests the following definition of a fourth

second derivative of the vector function f(r). It is a vector of

which the direction is that along which if we calculate the

component of f(r) t the divergence of the gradient of the (scalar)

magnitude of this component is maximum, and of which the

magnitude is this maximum value. This, as the relation

y s
(ay)= a* f verifies immediately, is of course that old deri

vative which is so familiar to us in its Cartesian form

or

, v, w being the Cartesian components ofy(r) and i
t j9

/as usual

unit vectors along the axes. But it is certainly significant how,
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without consciously seeking for it, we arrive at it all the same

from an unbiassed and straightforward examination of

*,(a , a, ,).

We obviously require now a new notation for this second

derivative, for it is not deducible by any repetition of the first

derivative operators, viz., the gradient, divergence and curl. As

all writers on Vector Analysis, not excluding mathematicians

like Silberstein (Vectorial Mechanics, Chap. I) who constantly

advocate the exclusion of Cartesian decomposition from Vector

Analysis, have always defined it by its Cartesian expression

which immediately suggest for it the notation V*/( ;
)&amp;gt;

this

V 9
/(r

)
1S the Dotation that is invariably employed. With this

notation now we write

V 2/=r ;

V 2
(a-/)=a-V

e

;

and further. V x ( V x /) = V (V /)
- V */



VI.

INTEGRATION THEOREMS.

42. The characteristic properties of the divergence and curl

lead almost immediately to the integration theorems

S r

(i) !f.d&amp;lt;r= fVjdr ,

S T

(li) / fxdcr= /V X/C?T ,

the integrations extending over the surface S and through the

volume T of any finite closed region ; and again

(iii) f f.dr=f\7 xf.dcr .

the surface integral here extending over the surface of any

finite unclosed region and the line integral round the contour of

the unclosed surface. The function f(r) in all cases is supposed

to be finite, single-valued and continuous at all points of the

region of integration.

To prove the first theorem : For any sub-division of the

region into smaller closed volumes, we know by the usual

argument of the integrals cancelling over the interfaces, (the

continuity of /&quot;ensuring
the equality of the values of/ at cor

responding points on the two sides of an interface) that

S r=n S,.

//.fcr= ^ / f.dcr ,

r=l

S,. denoting the whole surface of any one of the sub-regions.

If now we have a convergent system of sub-divisions such

that at any stage the greatest diameters of all the sub-regions are

less than any arbitrary number h, then

S,

J/.cfcr=D r r r +r) r r r [ 26, ]

where D r is the divergence of /at some point within S r ,
r r

the volume enclosed by S r and
t] r is a number haying limit zero

as h tends to vanish. Hence
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S

Let us pass to the limit now as the sub-division advances and

h therefore diminishes indefinitely.

Now
2&amp;gt;r] r T r is always less than

rj j^r,, rj being the greatest r/ r

But T is supposed to be finite and in the limit
r;
=0.

.*. in the limit
;&amp;gt;t} r r r =0.

Also, by definition, the limit of
^&amp;gt;D r r r is J Ddr orf^.fdr.

S r

Hence f f.d&amp;lt;r=

In precisely the same way we prove that

S T

Sfxd&amp;lt;r= /V x/dr.

To prove the third theorem, we break up, as usual, the un

closed surface by a network of closed curves. Then having a

definite convention as to the sense in which the line integrals are

to be calculated round these curves, we prove first of all in the

usual way that the line integral round the original contour is

equal to the sum of the line integrals round the closed curves

that have been drawn on the surface. Hence, using the same

sort of argument as used above for proving the first theorem,

and by a reference to 29, we prove quite easily that

Sf.dr=f Vx/.d&amp;lt;r.

Corollary 1. For a closed surface JV xf.d&amp;lt;r=0, and this

affords another proof of the theorem V.V x/=0 [ 38, p. 4-6] ;

for the closed surface may be taken as small as we please, and

then integration theorem () will prove the result.

Corollary 2. The line integral round every closed curve in

the region will vanish, if and only if V x/ is zero at every point
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of the region. But if the line integral round any closed curve

like ADPEA drawn through the two points A and P is zero,

P
that means that the line integrals / f.dr are the same, whether

A
we use the path ADP or the path AEP. Similarly if we

connect A and P by any other path like AFP, then since

the line integral round the closed curve ADPFA is zero also,

it follows that the line integral for the path AFP is equal

to that for the path ADP. We conclude that the condition

P
(promised in 14, p. 2) that If.dr may be independent of the

A

path of integration and may therefore define a unique function

of P, (A being a fixed point) is that the curl of/should be zero

at every point of the region considered.

43. If we
\&amp;gt;\\i f=-att in the theorem (i) of the last article,

a being any constant vector and u a continuous scalar function

possessing a gradient at every point of the region considered,

we have

/ ua.da-=f V .(au)dT

=! a.Vudr; [ 30, (*) p. 38]

that is, for any arbitrary constant vector a, we have

It follows that
JW&amp;lt;r=

Again putting/=// in the theorem (Hi) of the last article,

we have

fu a. dr=/V X (ua). d a

=/VXo. da-
[ 30, (i) ]

=/a. da- X V,
the integrals extending round the contour and over the surface

respectively of any unclosed surface.

Since a is a constant vector, we may write

a. fudr=a. fdvX V?&amp;lt;

/. fudr jda- x V**, a being arbitrary.



INTEGRATION THEOREMS 53

44-. Differential of an integral. Since the calculation of

the gradient, divergence and curl all depend on that of the

differential of the function considered, it is necessary to have

formulae for the differentials of functions given in the form of

integrals, before we can get the result of operation on them by
these derivative operators.

Let / (r, X) be a vector or scalar function, X being an

arbitrary (vector) parameter of the function.

Consider the volume integral ff (r, X) dr of the function,

the region of integration being bounded by the surface

F(r, X) = 0, where F is a scalar function. The integral of course

is a function of X alone, say

Imagine now a small increment SX to be given to X and

let T and r denote the volumes bounded by F(r, X)= and

F(&amp;gt;,
X+ SX)= respectively. Then

J

T

f ( &amp;gt;. X+ SX)dT+/
T

/ (r. X+ SX) dr-f /(r,X) dr

f [f (&amp;gt;

- A+ SX)-/ (r, X) ] t/r+f /(

/

f f (r,
X+ 8X)&amp;lt;r denoting that this integral is to be taken in

the region between the surfaces F(r, X)= and F(/-, X+SX)=0,

d r being reckoned positive or negative according as it is outside

or inside the surface
F(&amp;gt; , X) = 0.

Now as
|

8X
|
becomes smaller, the surface F(y, X+ SX)=

approaches F(r,X)= and tbe volume between them tends to

become a thin shell distributed over this last surface; and

if / and &amp;gt; + & are corresponding points on the surfaces

F(/,X)=0 and F(r,X -r SX)
= 0, the volume dr of this shell resting
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on the element of area da at r on the surface F(/-,X)
= u

tends to

or

8r.V/F(V,X) ,athat is, to
v^ j^

y
e*S,

V7 V
# the unit vector along the normal to F(r,X) = being -

r ,

I
V

:
r*

I

if VrF denotes the gradient of F(r, A) regarded as a function

of r alone.

Hence, as
|

8X
|
diminishes,

f* fat+ta)-*

Q

tends to / / (r, X+SX)
gr V

T

I&amp;gt;

dS, the surface integral being
I
Vt-J I

taken over the surface S of F(r, A)=0

To express this integral now explicitly in terms of 8\, we note

generally that

[ 12, p. 20.J

which, by sufficiently diminishing |

SX
|

and
|

8r
| may be

made to approximate, to any arbitrary degree of accuracy, to

8r. V r F(r, X) + SX.VxF(r, X),

if of course both V,F and V^F are supposed to be continuous

functions of r and X.

If now r+$r be supposed to be a point on the surface

X-f $X, in the neighbourhood of the point / on the surface X,

then

F(r+8r, X+8X)=0 and F(r, X)=0,

and therefore 8r.V,F (r,X) + 8X.VxF(r, X) can be made arbitrarily

small.
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Hence the integral / / (r. X-f 8X)dT further approximates to

the degree of approximation remaining the same.

We write finally therefore

X+ X)-/(r,X)]&amp;lt;*T

our assumptions about the function F being that both V r F and

VxF are continuous functions in each of the vectors r and X.

45. Suppose now f to be a continuous scalar function

possessing a gradient at every point within the region of inte

gration. Then by the Mean Value Theorem of 12, p. 20,

T T
/ f(r*)dr=l [8X-

-/ [/0,X)+ fix.

0j being a positive proper fraction.

If we further assume the continuity of VA ./ in X, then since

the surface S and the volume T are both supposed to be finite,

the difference between the right hand side of the last equation and

/ [8X- Vx/(r. V&amp;gt;]rfT-/)(A X)

that is, the difference between this right hand side and

T S

will have limit zero as
|

8X
|

tends to vanish. Hence

T T S
fur. \)dr= f
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46. Suppose next that f is a continuous vector function.

Let daf denote the rate of change of/, regarded as a function

of X, for an increment of X in the direction of the unit

vector a.

If we assume now that daf is a continuous function of X,

then using the Mean Value Theorem of 23, p. 32, and

remembering that the surface S and volumeT are finite, we

have, by an argument similar to that of the last article.

But the divergence and curl of xW are ^he scalar and

vector constants respectively of r/x(X) regarded as a linear

vector function of a.

Now since the scalar constant of the sum of any number of

linear functions is the sum of the scalar constants of those

functions, and since further the scalar constant of daf is

V /, we have the scalar constant of frfafdT =/Vx-/^T. Hence,

[remembering that the scalar constant of a rb=a-6 (p. 25)].

= Vx-

Similarly,

T T
/(r,X)dr=J

4-7. If X is not involved in the equation of the bounding

surface, and its variation therefore does not affect the region of

integration, we have simply, for a scalar function /(r,X)

and for a vector function ,/(r,X)

and VAx/dr = /

the restrictions imposed on /being the same, viz., that both/

and S/&quot;
should be continuous functions,
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48. We conclude our vector calculus here. A much greater

elaboration of details would certainly have been necessary, if it

had been intended to present the subject with any degree of

completeness for purposes of practical applications. There are

certain obvious extensions moreover which suggest themselves

immediately from the work done here in the foregoing pages ;

for example,

(i) The discussion of the trilinear, and generally of the

n -linear symmetrical vector factions wiih a view to discovering

the higher derivative operators.

(ii) The discussion of the improper integrals, in particular

integrals of functions having one or more infinities in the region

of integration, and of finite functions through regions extending

to infinity, and the differentials of such integrals ; and of ^oissou s

equation for vector functions.

(iii) The consideration of what Gibbs calls the determinant

of the linear vector function, and the development therefrom of

the Jacobian and Hessian of vector functions on the same lines

that have been adopted here for developing the ideas of divergence

and curl from what we have called the scalar and vector con

stants of the linear vector function.

But the object throughout the present paper has been to

bring into as great a prominence as possible the one idea that

the concepts of divergence and curl of a vector function, which

we are always in the habit of thinking of in terms of those

physical ideas that gave rise to them, do also form, quite apart

from their physical interpretations, the fundamental notions of

the Abstract Calculus of Vectors, and supply us with a counter

part of the differential co-efficient of a scalar function in the very

real sense of giving us a basis of comparison of the rates of

change of the vector function from point to point of the field ;

and further that this new mode of viewing them introduces con

siderable simplicity in the practical work of manipulation of

these operators.



PART II

THE STEADY MOTION or A SOLID UNDER NO FORCES

IN LIQUID EXTENDING TO INFINITY.

An attempt is made in this Part II to apply vector

methods to the above problem. It is just likely that it will

be [found to contain, especially towards the end, some new

results which have not yet been worked out either with the

cartesian or with vector calculus.

1. The origin O being fixed in the solid, if we denote by

the vectors R and G the force and couple constituents of the

&quot;

impulse&quot; that would, at any instant, produce from rest the

motion of the system consisting of the solid and the liquid,

and by the vectors V and W the linear and angular velocity

components of the solid, then arguing as in Lamb s Hydro

dynamics, Chap. VI, 119, 120, we have for the equations

of the motion of system,

(It

and-lir-RxV-GxW-X,
dt

where ,
X represent the force and couple constituents of the

extraneous forces, the left hand sides being the rates of change

of R, G when the origin system [see Silberstein s Vectorial

Mechanics, foot note, p. 69] has the velocities V and W.

If T is the kinetic energy of the system, we have

and further, R= V ,
T and G= V *T, )

where VT and VT denote the gradients of T regarded as a

function of Y alone and W alone respectively. [Lamb 122.]
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2. We have to express first T in terms of V and W and

then equations (2) will give us expressions for R and G in terms

of V and W.

If we put Tj for the kinetic energy of the liquid motion

alone and T 2 for the kinetic energy of the solid, T= T, +T 2
and

we calculate T
l
and T

2 separately.

3. To calculate T
x

If U is the velocity potential of the

liquid motion, we have, if we take the density of the liquid

to be unity.

where the integration extends over the surface of the moving
solid.

Now the velocity potential U satisfies the following

conditions :

(i) V 2U=O at all points of the liquid ;

(ii) w.vU= w - (V+ Wx;-) at any point P on the surface

of the solid, ; denoting the vector OP, and n being a unit vector

along the outward normal to the surface at P. For the velocity

of the liquid at the same point is vU, and the normal

components of these two velocities must be the same.

(iii) vU=O at infinity.

Of these, condition (ii) shows that U must be linear in both

V and W. It is also a scalar. Therefore it must be of the form

p\ V-f F. W, where F.F are two vector functions of the position

of a point (i.e. functions of r), but independent of V and W.

Taking then U= F.V-fF .W, condition (i) becomes

V 2 (F.V)+V
2
(F .W)=O.

at all points of the liquid. Or, since V and W are constant

vectors so far as the operation of V 2
is concerned,

V.V 2 F+WV 2F = O. [See page 49.]
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Or, again, since V and W are perfectly arbitrary, we have

V 2 F=O and V 2F = O ... (A)

at all points of the liquid.

Again F.V + F .W being written for U, our condition (ii)

becomes n. v(F.V + F .W) = . (V + Wxr);

or since V and W are arbitrary.

and fl.

at all points r on the surface of the solid. If for a moment

we write
&amp;lt;/&amp;gt;(Sr)

and
\f/(8r)

for SF and SF respectively, we have

by 30, p. 40, v(F.V) = 4/(V) and vF .W)=//(W), and

therefore the above relations may be written

and .Wxr = w.

or, n=
(f&amp;gt;(n)

= n.^}? ^
... (B)

and rxn=
\f/(n)

= n.V F
, )

since V, W are arbitrary.

Thirdly, condition (iii) becomes

V(F.V) = O and V(F .W) = O

or ,//(V)
= Oaud,//(W) = O ... (C)

at infinity for all arbitrary vectors V and W.

Conditions (A), (B) and (C) will uniquely determine the

vectors F, F and so U being determined, we have

. da.

=JU( V+W x r).da, by the surface condition (ii),

U being written for F.V + F .W,
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4. To calculate T 2 , the kinetic energy of the solid :

We have, 2T
2 =/(V +W x r). (V+W x r) dm, dm being an

element of mass of the solid at the point r and the integration

extending through the mass of the moving solid.

That is, 2T
2 =/[V.V + 2V.Wx&amp;gt;- + W. (rxWxT)] dm [see

P- 6].

where m denotes the mass of the solid, r the vector to its

centre of gravity (so that fr dm= m
r), and w (W) has been

written for
J&amp;gt;

x (W x r)dm. Writing this integral in the form

f(r.rW &quot;Wr.r)dm [p. 6], we see that &amp;lt;o (W) is a self conjugate

linear vector function of W. Clearly also w(W) represents

what the angular momentum of the solid about O would have

been, if O had been fixed; and
W.&amp;lt;o(W)

= constant, is, for

variable W, the equation of the momental ellipsoid of the

solid at O.

5. We can now write down the expression for the kinetic

energy of the system in terms of V and W. Thus,

x r.rffl + MV.V + 2rTV xW+ W.u(\V).

For R and G, then, we calculate Vt-T and VT from this

expression for T. Noting that ^(a.r)=a and y (?.&amp;lt;&amp;gt;)

=
if

&amp;lt;f&amp;gt;

is self conjugate [p. 28], and that VrU= F and

we write down almost immediately

2 R= 2V rT=/U^/+ FV.^+/FWxr.r/rt + 2wAr

and

2 G= 2V lf
T= / F V.rfa + J U;- x da + f F W x r.da + ^mf x V

6. There are now certain relations among the integrals

occurring in these expressions for R and G. Just to obtain

these we prove generally that if V is any constant vector,

S - S

JFY. (
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F, F being any two vector functions, satisfying V 8 F = and

V 2F = at all points within the closed surface S over which the

integrations are performed.

If we put, as before, 8 F=&amp;lt;(Sr) and SF = //(&), then da.yF
=

ij/(da) and da.^F= &amp;lt;j&amp;gt;(da).

If then C is any arbitrary constant

vector

S S

C./FV. (^,vF )=/F.C

S

T
which by Green s Theorem =/v.[F.CV (F .V)] dr, the volume

integral being taken through the volume T enclosed by S.

Using now (i) 30, p. 38, and the relation v 2 F = 0, we have

S T
C./FV. (^.vF )=/V(F.C). V(F .V) dr;

S T
Similarly, C./F .V (^.vF)=/V(F.C).v(F .V&amp;gt;/

T .

C being arbitrary, this proves our theorem.

In the application of this theorem to our problem, we have

to note that the region of integration would be that between

the surface of the solid and a sphere of infinite radius, and the

question of convergence of the integrals would arise. This

question has been discussed by Leathern in &quot;Volume and Surface

Integrals used in
Physics,&quot; Sections IX and XI.

7. Using this theorem now and remembering our surface

condition (B),viz., &amp;lt;f&amp;gt;(da)=da
and \j/(da)=rx da, we have, among

the integrals in the expressions for R and G in 5

JFV. rffl=JPV. ^(da)=f.\^(da)={Y.V da, ... (a)

/FWxr. da = JFW. rxda --= /FW. ^(da)
= JF .W &amp;lt; (da)
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JF V.
&amp;lt;to=jF V.$(rfa) = /F.V^to)=/F.Vf X da, ... (y)

= JF W. ^ (rfa)= F .W

=/F :Wrx&amp;lt;fo ... (8)

Hence those same expressions for R and G may be written

R=/U&amp;lt;fa + MV + zW x7-=[/F.y,/rt + ;;A
r

] + [JF .W^ +^W x r]

G =JUy x rfrt + Mr x V + co(W) = [/ F.Vr x da + wP x V]

We write now R=
&amp;lt;/&amp;gt; 1
V +

^&amp;gt; 2 W, where &amp;lt;
&amp;lt;

2 are the two

linear vector functions,

and
^&amp;gt; s W=/F

/.W

Since the conjugate of . r b is /. ^, (a) shews that X is

self conjugate. The conjugate of
&amp;lt;/&amp;gt; 2
W

=/F Vr.da-

=
/F.W&amp;gt;-

x /fa + wr x W, by (y),

so that tY==/F.Vrx&amp;lt;fa-f*?xY, Hence we may write

where &amp;lt;

3W = jF .Wr x r/rt + o&amp;gt;(W).
Since w(W) is self conjugate

(p. 78), (8) shows that &amp;lt;

3 is self conjugate.

Thus we may write

... (3)
and G=&amp;lt;

where ^ 1? &amp;lt;

3
are self conjugate functions.

This fact alone, of
&amp;lt;f&amp;gt; lt &amp;lt;j&amp;gt; 3 being self conjugate and

&amp;lt;/&amp;gt; 2 and

&amp;lt; 2 being conjugate could of course be deduced directly from

(*), P. 7*.

8. Considering now the case where no extraneous forces are

present, we have, putting ,
A= in equations (1) of page 74.
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=
dt

and ^L =
dt

The three well known integrals follow immediately.

(i) Multiplying the first equation scalaily by R, we have

R. &amp;lt;!& =(HRW)=
civ

:. R.R= constant.

(ii) G.
d~ + R. -* = (GRW) + (RRV) + (RGW) =
dt dt

/. R. G= constant.

R C*

That is, the pitch of the wrench (R,G) which is -^ is constant.
R.R

Again, if r=
,
which we know is the perp. from O

R.R

on the axis of the wrench (R,G),

clr 1 rfK

bR.R

which by the last formula of p. 6, reduces to

J_[(RxG)xW + Rx(RxV)],
R.ri

that is,
.z
at

where V
t
=- R X ^R X V

^ = component of V perpendicular
R.R

to R.
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If then L
)
denote the rate of change of r in space, \-f-J

=
-jr

/ x &quot;W -fV=V V
j
=V

2 ,
where V

2 denotes the com-

ponent of V parallel to R, i.e., to the axis of the wrench (R,G).

It follows that this axis is a fixed line in space, its direction

being obviously constant from the first of the equations of

motion.

But there was no special point deducing these results from

the equations of motion, as the fact they express, riz., the

constancy of wrench (R,G) in case no extraneous forces act,

was obvious a priori from the theorem that &quot; the impulse of

the motion (in Lord Kelvin s sense) at time t differs from the

impulse at time t by the time-integral of the extraneous forces

acting on the solid during the interval f f
&quot;

[Lamb 119]

of which theorem it is only an analytical expression that we have

in the equations of motion.

(Hi) V 2T = R.Y + G.W,

^
,17- 77 -Jt -*

Using (3) p. SI, R. +G.^ reduce, to V.
-Jf

+W. f

_ =V. -MV. =(VR\V)
dt dt dt

/.T= constant.

9. These three integrals however are not sufficient to

determine the motion completely. We require three more scalar

9
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(or one vector) integrals for determining the two vectors V and

W. The difficulty of finding them is avoided in two cases :

(i) When R= 0, in which case we can utilise the known

solution of Poinsot in Rigid Dynamics,

(ii) Steady motion, when - =0 and - =0, so that t

at at

is got rid of altogether from our equations of motion.

10. The case R= 0, is fully worked out in Lamb s Hydro

dynamics, 125. It may be interesting, just by the way, to

put the solution in vector form.

The equations of motion reduce, when R = 0, to

^ =GxW.
do

Again, putting R= in equations (3) p. 81,

we have V=
&amp;lt;}&amp;gt;-

*

&amp;lt;j&amp;gt; z W,

Now ( 3 is self conjugate. Also, the conjugate of a product*

of linear vector functions being the product of their conjugates

taken in the opposite order (Gibbs Vector Analysis, Chap. V,

p. 295), and further ^ and therefore
&amp;lt;}&amp;gt;~

l also being self

conjugate, the conjugate of ^ ^Y 1^ is itself. That is, G is a

self conjugate linear vector function of W.

Hence, G= 4- V- (O-.W) [see p. 28.]

It follows that Poinsot s solution is applicable.

11. But the case of steady motion does not seem to have

received yet the attention it deserves. Two simple particular

cases are well known the permanent translation and the

permanent screws that we have when R= 0. It is proposed to

have a general investigation of the question here.

If -^L and -^Lare both zero, ^ =0 and ^ -0, and our
a,t dt at dt
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equations of motion of page 82 reduce to

RxW =
)

... (4)
and RxV + Gx W = j

The first equation shows that R is parallel to W, or

R= .--W, where * is a scalar. Substituting in the second,

we have

CrV + G)xW = 0.

Again, putting R= .rW in equations (8), p. 81, we have

V^-^-W-c^^AY, ... (5)

where, #,=$-*, O^^
and ft has been written for the linear vector function

&quot;*i+if.+i&amp;gt;..

We have, then
,

ftW x W =
; . . . (6)

and our conclusion is that in any case of steady motion W should

be parallel to ftW.

12. By the rule for the conjugate of a product of linear

vector functions quoted in 10, we see immediately that O lt
O

z , 3

and therefore ft also are self conjugate linear vector functions.

We recall now Hamilton s theorem of the latent cubic of a

linear vector functions. In general, for any linear vector

function
&amp;lt;,

there are three vectors, say \ lf
\ z ,

A
3 ,

of which the

directions are left unaltered by the operation of that function.

ff*&amp;gt; ffa are the roots of the cubic equation

f/
3

m&quot;g

% + m ff
m 0,

where *
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a, /?, y being any three arbitrary non-coplanar vectors, then,

&amp;lt;#X 1 =^ 1 X 1 , &amp;lt;j&amp;gt;X 2 =ff z
X

z and
&amp;lt;AX 3 =&amp;lt;7 3

X
3 . The cubic in g is

called the latent cubic of
&amp;lt;/&amp;gt;,

and its roots the latent roots, and

the vectors X
x ,

A. 2 ,
X

3 which retain their old directions after the

operation of
&amp;lt;j&amp;gt;

are called the axes of &amp;lt;. If &amp;lt; is self conjugate,

the latent roots are all real, and the three axes real and mutually

perpendicular. [Killand and Tait s Quaternions, Chap X.].

Applying this theorem, we conclude that for any x there are

three mutually perpendicular directions for W, corresponding to

any one of which we may have a case of steady motion.

Further, if y is the latent root of 11 corresponding to the

axis W, OW=/W, and we have .tV +G= /W, or

G=-,eV-/VV.

Thus our impulse is given by

and G=-.cV-/W. )

18. To construct a screw, therefore, such that the corres

ponding motion of the solid may be steady, we find an axis

of the linear vector function O(y) corresponding to any x and

take W along this axis. V then is given by (5), p. 85 to

WxV -, ,,

be o?d)7
1W d&amp;gt;7

l
&amp;lt; W. Draw the vector -rand throughw*w

its extremity draw a line parallel to W. This line is the

axis of the screw. If then the motion is started by the

impulse R = .i-W and G= .rV yW, the solid will continue

to have the steady twist on our screw, the angular velocity

W V
being W and the pitch -.

It is easily seen the axis of any screw and the axis of the

corresponding wrench coincide. For these axis being parallel

to W and R respectively are themselves parallel. Further,

RxG _-,Wx(-,iV-//W) WxV
smce TOT

=
(-xW).(-.w} ~WW are
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drawn through the same point, so that the lines coincide and

either line is fixed in space.

If j), p denotes the pitches of the screw and wrench

(R.G) respectively,

/ -R.(&amp;gt;_-.\v.(-.v-yW)_ .

R.R
(.CW).(-*\V)

~7
*

14. AVe conclude then that any x being specified, three

mutually perpendicular (though not necessarily intersecting)

screws of steady motion are determinate, except only as to the

magnitude of AY
; and again that, by varying r, the directions

of screws of all possible steady motions would be obtained by

solving the vector equation ft(&amp;gt;)
x &amp;gt;-

= 0, or (x*e^r + *0
2
r + 3 r)

x r= 0, in other words, by finding an axis of the linear vector

function ft.

It would be interesting now to enquire to what values of ,

correspond the two eases mentioned in 11, viz., permanent

translation and steady motion with R= 0.

Since, in any case, R= &amp;lt;W and W is not supposed to be

infinite, R= would make .e= 0. ^ now reduces to 6
Z)

G= -AV = -0 3W, V= -*

Since, again, when the motion of the solid is one of

translation only, W = and the screw reduces to V only; and

since, in any case, R is supposed to be finite, we see that in this

case x tends to infinity in such a manner that ,iW= R.

The equations (6) of p. 56, being written

we see that in this case ^RxR^rO, i.e.
&amp;lt;7

1RxR= 0.

Hence the axis of the wrench, and therefore the axis of the

screw also is parallel to r, where r satisfies ^r x r= 0. That is,

V is parallel to an axis of
&amp;lt;f&amp;gt;1

1 r to an axis of &amp;lt; since ^ and

&amp;lt;/&amp;gt;7

a are co-axial,
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These permanent translations, of course, could be worked
out more directly by putting W= in (4j of p. 85 and (3) of

p. 81.

15. If we eliminate ^ from

we shall obtain the whole assemblage of lines, to one of which

the axis of the screw corresponding to any case of steady motion

must be parallel.

Multiplying scalarly by O^r and 6 2 r respectively, we have

*O
l r.O zrxr + 1

r.6 arxr= Q,

and ,^O
a r.0 1 rxr-}-e z

r.e
a
rxr= Q.

or, ,r. zrxr z t . 3rxr =
s r lrxr i

which is homogeneous and of the sixth degre^ in the tensor

of r, and represents therefore a cone of the sixth order, to some

generator of which the axis of every steady screw must be

parallel.

Obviously, the axes of the linear vector functions O
v
and 3)

which we came across as giving the directions of screws for

the special cases, 14, all lie on this cone, for the equation is

identically satisfied if we put either O^rx r=0 or
0:;

x r= Q.

16. The motion of the solid being thus a twist about a

screw of which the axis is fixed in space and pitch constant,

it is almost obvious that each individual point of the solid would

be describing a helix about the fixed axis of the screw and

having the same pitch p (except of course points on the axis

which would move along the axis). For, if referred to a fixed

origin O on the axis, the position of any point P of the solid

dr
is specified by ;

&amp;gt;

,(O P= ?
&amp;lt;

), the velocity of P is =^W-fWx ;.
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Hence, (W x r)J- (W x /)
=W x r. (W x ~

)
=W x r.

[Wx(Wxr)]=0

which shows that (W x
r).(&quot;W

x r) is constant, or the magnitude

of W x r is constant. That is, the distance PN of P from the

axis of W is constant.

The formula for shows, moreover, that the velocity parallel
(it

to W is joW, and velocity in plane perpendicular to W is W x r,

so that the motion in this plane is instantaneously in a circle

(of which the centre is N and radius NP) with angular

velocity |

W
|

. Hence P moves in a helix of which the

pitch
=

17. For the maintenance of a motion of this type, appro

priate forces must be continuously acting on the solid, for we

know that the only motion a solid is capable of under no forces

is either one of uniform translation, or a uniform translation

combined with a motion of rotation about a principal axis of

the solid at the centre of gravity. We shall just verify that

fluid presssures exert on the solid just the force and couple

necessary for the maintenance of the sort of motion that we

have heie.

Considering the general case (where the motion is not

necessarily steady), let ,
A denote the force and couple which

the fluid pressures on the solid are equivalent to. The linear

and angular moments of the solid are respectively

and G 2 =///? x V + (W), ... (8)
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these being just the terms of R and G that are obtained from T
a

by the operation of V,. and V* respectively, For the solid

alone, therefore, the equations of motion are

If we further put now R x =/UW and G 1 =jUrx^&amp;lt;7,
we have

R=R 1 + R 2 ,
G=G

1 -fG 2 . From our equations of motion

therefore of p. 32, we have

= RlX W-r andi -R.xV +G.xW X
clt fit

Hence, =- +R,xW and * =-

1
xV + G 1

xW.

Considering steady motion now, for which--1
- =0 and

(It

IsaO.we have
clt

= R! xW and X ^R, xV + G, xW,

or, using (4) p. 85.

= R.xWand X =-R, x V-G, x W.

These formulae, for the special case of steady motion, could

of course be obtained directly by putting^
=0 and ^ =0

in the equations of motion of the solid above.

Substituting now the values of R a ,
G 2 given in (8), we

obtain after slight reductions,

and V=rw(VxW)xr-a&amp;gt;(W)xW,
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If, again, we refer the motion to the centre of gravity of

the body as origin, so that 7-= 0, we have

)

J

(9)

where w(W) now is the angular momentum of the solid about

its centre of gravity.

We notice that and \ both vanish only if either

(i) W= 0, or (ii) V, W and co(W) are collinear. The first is

the case of one of the three permanent translations. In the

second case, since W and w(W) have the same direction, W is

along an axis of the linear vector function w, i.e., along a

principal axis of the solid at its centre of gravity. The axis

of the screw therefore is a principal axis of the solid at its

centre of gravity. These two, of course, are precisely the cases

in which we expected a priori that ,
\ should vanish.

We show now that in the general case
,

A. of formula

(9) are just the force and couple that would make ^the solid

continue to have its screw motion represented by V, W at the

centre of gravity. Since the motion of the centre of gravity and

the rotation of the solid about the axis W at its centre of gravity

can be considered independently, we show that the velocity V
of the C.G. is maintained by ,

and then, regarding now the C.G.

at rest, that the rotation W by itself is maintained by A
; or,

what comes to the same thing, that the mass-acceleration of the

C.G. is equal to and that the rate of change of angular

momentum about c.s. is equal to A .

For, if referred to a fixed origin O on the fixed axis of the

screw, the position of the C.G. is specified by /
,
then its velocity

dt

Ut\ -iiir dl TV- -I
T .. ic- T rv ecy/

Tt
=

dt~ ~df Tt~

10
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/. m- =^Wx V, which is our .

at

Again, the angular momentum of the solid about the C.G.

is
&amp;lt;i&amp;gt;(W),

and in calculating its rate of change we take the C.G.,

which is now supposed to be at rest, as our origin. Since the

&quot;

origin system&quot; [see Silberstein s foot note cited on p. 74] is

fixed in the body and rotates with it with angular velocity W,

the rate of change in question = ^L )_ W(W) x W
tvv

=Wx(W), [V . =0],

which is our A .

18. Having thus considered the general character of steady

motion in the preceding articles 11-17, we would next turn our

attention to the question of stability of these steady motions.

Before considering this question, however, it would be convenient

to summarise here a few propositions on the linear vector function

which we shall presently have occasion to use. The more

important ones are taken directly from Kelland and Tait s

Quaternions, Chap. X.

(i) From the well-known relation

it follows easily enough, say, by writing &amp;lt;j&amp;gt;(r)

in the form

.rb + cxr of page 24 that

Here a,/?,y are any three arbitrary non-coplanar vectors, and r

any fourth vector, and
&amp;lt;f&amp;gt;

denotes a linear vector function, (a/fy)

etc. of course, as explained on p. 6 stand for a./?xy, etc.

(ii)
For inverting the function

(f&amp;gt;(r)
we have, if we denote

the inverse function by &amp;lt;&quot;*,
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where w(a/3y)
=

(&amp;lt;j&amp;gt;a&amp;lt;j&amp;gt;f3&amp;lt;j&amp;gt;y) }
and A, /* any two vectors.

If we introduce the function $ by the definition,

we may write symbolically M&amp;lt;f&amp;gt;~

1 =
/ .

(iii) For inverting &amp;lt;f&amp;gt;r+ffr,
or

(&amp;lt;t&amp;gt;+ff)r,
where g is a constant

scalar, we have

(m + m g + m&quot;ff* +3*) (&amp;lt;+,?)- (A x /*)
=

(

where i, ;#
,

M&quot; have the values defined on p. 86, viz.

m(afo) = (&amp;lt;M&amp;gt;/%),
M (aftO=2H/%), &amp;gt;// (a/?y)

= 2(^a), and

the function x is defined by

(iv) Integrating &amp;lt;$&amp;gt;r

over the surface of a parallelepiped of

which the edges are the vectors ,/3/y we get easily enough

Hence our m&quot;=,

*
=scalar constant of

&amp;lt;/&amp;gt;

( a/?y)

(v) We have also for any vector X.

or, symbollieally, m&quot;=&amp;lt;t&amp;gt;+\.

(vi) We already enunciated Hamilton s theorem of the

latent cubic on page 86. We only note here that if for any

function
&amp;lt;, =0, the product of the three roots g^ g z

and g*

of the latent cubic vanishes and therefore one of the roots, say

ff lt is zero. It follows that for such a function there exists a

vector X
t
such that &amp;lt;^X 1 =0. Conversely, if for a function &amp;lt; we

can find a vector X, such that
&amp;lt;#&amp;gt;X 1 =0, m for that function must

vanish
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Keeping to Gibbs notation, we shall speak of m for any
function $ as its determinant and denote it by |

&amp;lt;

|

.

(vii) About the determinants of linear vector functions,

we have the theorems that the determinant of a product of

linear vector functions is the product of their determinants, and

that the determinant of the quotient of two linear vector

functions is the quotient of their determinants. Thus the

determinant of ^,0;*= I ** UA-l = ^-J
,
if 2 ljWjl ,w H

I Vs I

W
3

are the determinants of &amp;lt;

&amp;lt;

2 ,
&amp;lt;

3 respectively. [See Gibbs,

p. 312.]

(viii) The inverse of the (

product of any number of

linear vector functions is the product of their inverses taken

in the opposite order. [Gibbs, p. 293]. Thus the inverse

of ti+.+.sfr,*.*,)-
1 ^;**;**;*,

19. To examine now the stability of any particular mode

of steady motion, we consider as usual the effect of a small

disturbance given to the system. V, W being the linear and

angular velocities of the solid for the steady motion, and R, G
the corresponding impulse, if 8V, SW are the additional linear

and angular velocities imparted to the solid by the disturbance,

the total impulse that ,vould generate from rest the new

disturbed motion is represented by

and

so that 8B

and 8G=&amp;lt;A

Our equations of motion of p. 82 now are
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which, by the condition of steady motion [ 11, p. 85],

reduce to

Jt

and
at

if we neglect the terms SRxSW, 8Rx8V and SG x 8W.

Using (7) of p. 87, these equations further reduce to

(10)

dt

20. Let us put now SV=ve nt and SVf=we* f where v, w

are two vectors independent of t, so that

SR=RV&amp;lt; and 8G=GV,
where R =

&amp;lt;^ 1
f+

^&amp;gt; 2
?/

&amp;lt;

and G =&amp;lt;f&amp;gt; or-f-&amp;lt;f&amp;gt;o
?c

and
rf? at

Equations (10) then are identically satisfied provided

|

... (12)

- -

;
... da;

and

where 3?
l v=n&amp;lt;j&amp;gt; l v&amp;lt;J&amp;gt; lvxW,

-
(14)

-(^ , +,&amp;gt; xW,

and * 4 u-=tz^ 3 i(;-(^ 2 +.O^xV-(^ s +2/&amp;gt;cxWJ
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From (13) now we have v=&- l $
2
w ... (15)

and ^
3$7

1$
2 ?r+$ 4 ?y=0 ... (16)

It follows that the latent cubic of the function $^&amp;gt;
1

&amp;lt;

has a zero root and w is the corresponding axis. Thus the

determinant of the function vanishes and we have

[See (ii) and (vi), 18]

a, /?, y being any set of three non-coplanar vectors
;
that is,

Dividing out by (a/?y), and noting that by 18, (vii) p. 99, the

1*11*1
determinant of &

3

~ l
2
= !

3 2
L_, we have

7
1 $ 27]=:0 ... (17)

This relation (17) gives us an equation for the appropriate

values of n, and only when the roots are all imaginary, would

the motion be stable.

21. Summary of results to he proved. It is very tedious

now to calculate all the co-efficients of the several powers of n

in this equation, and even when these co-efficients are calculated,

it is found impossible to come to any definite conclusion as to

the conditions of stability. The solution of the problem with

any degree of completeness was therefore given up as hopeless

by this method, and there is no point going here over all the

elaborate analysis for obtaining the full equation in n. What

we propose to do is just to obtain a few special results which

can be proved without much trouble. Thus we shall show, in

the first instance, that in the most general case our equation
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for n is of the seventh degree, and that the co-efficient of ;/
7

is

determined solely by the nature of the solid and does not vanish,

unless some special limitation is imposed on its shape, say, by

way of symmetry. If will follow that, being of an odd

degree, this equation must have at least one real root, and that

in general therefore, for any arbitrary x, we shall not have any
stable steady motion at all. We shall next show that for some

special values of
./-,

the term independent of n in our equation

vanishes, and then neglecting the root ,&amp;lt;
=

(), of which the

effect is simply to add a constant vector each to the values of

8V and SW, and which therefore does not affect the question of&quot;

stability either way, we shall have our equation reduced to

one of the sixth degree; and since an equation of an even

degree may have all its roots imaginary, it is possible now for

the motion to be stable. Instead of groping about then for the

stable screws among the infinite system of steady screws, we

shall be sure of this one fact that if any stable screws are there,

they would be found only among the group determined by

those values of j
1 which make the term independent of n

vanish. It will be shown again that in general there are six

such values of r, and our conclusion would be that in any case

there cannot be more than 18 (
= 6x8) stable steady screws.

We shall show finally that ,v=0 is one of these six values of x,

and we shall conclude by working out this case completely.

22. To obtain the degree in n of the left hand side of (17),

let us first express R in terms of w from the first of the equa

tions (12) of page 101.

Writing &amp;lt;R/ for R R/xW for the time being, this equation

is $R =R -R xW=*M;xW. Hence by (ii) of 18, p. 97,

we have
/iR = &amp;lt; w&amp;lt;~

x
(w x W) =x$w x &amp;lt; W,

where
&amp;lt;J&amp;gt;

w is the conjugate of $w and is therefore nw+wxW
and &amp;lt; W=W, and

m(a/3y) = (a-a X W).(0-0xW) X (y-y X W), which,

again being written out in full, is easily found to be equal to

, so that wi =n(+W.W).
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Thus we have, n(n* +W.W)R = ,r(w0+wx W) X nW,

or, O 2 + W.W)R = ar[w(? x W) + (w? x W) x W]

=
.i{(&amp;gt;x W) +W.ivWW.Ww], p. 6, ... (18)

23. Now from (11) p. 101, R
=&amp;lt;M+ &amp;lt;M

- Therefore,
~ lR . Equating this value of v and the value

in (15), p. 101, we have, by using (18),

Looking up the form of &amp;lt;l

3
now in (14), p. 101, we see that we

can write $
3 ^&amp;gt;7

1$
2
^= - r-==- [?*

3 A-f 74
2B + nC + D]^, where

A, B, C, D denote certain linear vector functions which do not

involve n in their constitution. We have, for instance.

Aw^V^faw, ... ... (19)

and again, it is easily seen also, that

r]xW,by(5),p. 85,

F)xW], .,, (20)

where 1), 1? 2 are the linear vector functions defined on

p. 86 and F has been written for the vector function of W,
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24. Our 3[*4 a.* 40x SsfcT
1

*,?] of (17), p, 102, then, is of

the form

n +W.W
where nA -fB has been written for 3 4 ,

so that

A a= &amp;lt;

s a, and - B u=
(( 2 4- r)a X Y+ (&amp;lt; s +y)a X W.

Obviously A . B also do not involve?;. We may write therefore

1

y-[aw*+ A *+a,

where the a s are all independent of n. The values of a 5 and a

may be written down immediately. Thus

and (aj8y)a =S[B a.B 0xDy] ... (22)

25. Again, with the same notation,

* ^ PJL JK. J*L_ i :

which.is of form L. [a ,n
7 +aX -f a 5 ?*

8 + ...+o ],

where also the co-efficients of the powers of n are independent of

n. Clearly also,

x^^T^ty], - (23)

and (o^x)a .=5[B o. D/JxDy] ... (24)

11
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26. We try to form an idea now of the other terms

| $! | ,
| $j |

and
|

$ 8 |

that occur in (17), p, 102.

(t) We note in the first instance that
&amp;lt;f&amp;gt;(r) being any liner

vector function and a any constant vector, the determinant of

&amp;lt;r x a vanishes. For,

(4&amp;gt;axa). O/?Xa)x(&amp;lt;yXa)=:[&amp;lt;aXa]. a(&amp;lt;/tyya)=0, [page 6.]

It follows that the parts independent of n in &~r and 4&amp;gt; a r, viz.,

(^rxW and
(&amp;lt;f&amp;gt; l +x)rxW have their determinants equal to

zero.

(u) We note again that if &amp;lt;

15 &amp;lt;

2 are any two linear vector

functions, the determinant of n$ ^r+ &amp;lt;j&amp;gt; z
r is easily found by writing

out the expanded form of

to be ra 1 n
s

+/&amp;gt;w

2
4-At M+w 2 ,

where m^m^ are the determinants of

&amp;lt;#&amp;gt;!, &amp;lt;/&amp;gt;, respectively and ^t, yu are determined from

and /

It follows that the terms independent of n vanish in both

|
and

|

4&amp;gt;

2 |

. We find, in fact, by working out

as in 22, that

| $, |
=wi

1w.(n+W.W),

where in
t

is the determinant of 0^

We may write also

| 4&amp;gt;, | =m,n* f 6 fn+c a n,
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where m
t

is the determinant of either of the two conjugate

functions &amp;lt;

s . &amp;lt;

, and ??i s is the determinant of &amp;lt;

s ,
and the & . c

and cTs are all independent of n and in general none of them

yanishes,

27. For our equation in n then, corresponding to (17) p, 102.

we have

n+W.W

7

(n +W.W) 1

=0. ... ... ... ... (25)

Multiplying out by (n*4-W.W)*, we get an equation of the

seventh degree in n.

The co-efficient of n 7

, ml

by (21) p. 106 and (23) p. 107, and (vii), p. 99.

Remembering now theorem (ii). 26, we see that this co-efficient

=
|

&amp;lt;

3 c/) 2 &amp;lt;^7

1

&amp;lt;/&amp;gt; 2 j

=
| #s |

,# s having the same definition

as on p. 86. Obviously, our co-efficient of n 1 does not vanish,

unless the functions &amp;lt; 1?
&amp;lt;

2 and &amp;lt;

3 are given in special ways,

unless, that is to say, some special restriction is imposed on

the shape of the moving solid, for these functions are solely

determined by the form of the bounding surface of the solid.
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28. We may write down also the term independent of n in

the same equation. This term directly

m.

Now if, as in 24, we write n A +B for 3 4 ,
d4 by (ii) 26 is

the determinant of B . That is,

The values of
a&amp;lt;, 5

a are given by (22) and (24), viz.,

(a/?y) a u =3[B a. B /? X Dy] =W.WS[B a.B X D y],

(a/3y)a =2[B a. Dj8x Dy] = (W.W)-2[B
;

o. D

if a new function D is introduced by the definition

-D r= ^^ Dr, which by (20) p. 106

= (*, + *) xV+[(* s +0&amp;gt;-+W.rF]xW,

where F=

Hence,

(a/^y)

=(W.W)-[ |

B -D
I
+

|

D
| ],by (ii), 26,

But (B -D )r=[(0-y)r+ W.rP] x W,

and, therefore, by (i) 26, |

B -D
|
=0.

Therefore, (W.W)^ 4 -a W.W+ a =(W.W) 8
|

D
|

.

Hence our term independent of n

=W.W[W.W I

D
|

- = W.W[ |

D
|

- ... (27)m
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29. For further simplification of this term, we calculate

generally the determinant of

1} &amp;lt;/&amp;gt; t being any two linear vector functions.

Since the determinants of both ^yxV and &amp;lt;

2yxW are zero

by (i) 26, the determinant in question is by (ii) 26,

xa x V). (&amp;lt;M
x V) x

(4&amp;gt; ay x W)

Now 2(M x V) x fop x
V).(4&amp;gt; 8 y x W)

=WxV.

=Wx V.

=WX V.

n,

), by (i), 18, p. 96

,
w

x being | ^ |
.

^ xW)x(&amp;lt;A 2yx W)

=V x W. &amp;lt;M;

XW w,(o/8y), ??T 2 being &amp;lt;#&amp;gt;, |

The determinant of
&amp;lt;/v

x
V+&amp;lt;/&amp;gt; 8 r xW is therefore

=WxY. [m^^T^-m^^^W] ... (iii)

=WxY. Wa^i^ ^i^2W] in the notation of (ii),p. 97

18.

30. Applying this result now, we easily calculate d s and

ID |
.
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Thus, if we write wA&quot;-f-B&quot;for
&amp;lt;*&amp;gt;,, d, is by (ii), 26 the deter

minant of B&quot;. That is,

d= determinant of 0^ X V-f(0 a + .r)rxW
=WxV. [(0 a +*)&amp;lt;Ai V-0 1 (f 1 H-.B,u t +.8)W], by

(iii) 18, p. 97

Again, |
D

|
= determinant of (0 9 +.c)r x V-f/rx W,

[(26), p. 110]

if/ris written for the linear vector function (0 3 -fD)r+W.rF.

Hence, we have
|
D

j =Wx V.

where g denotes the
\f/
function for/, that is,

ff(aX/3) =fa X//3 = [0 3 + Q) a + W. Fa] X [0, -f O) /S

+ W. F/3].

31. For the expression (27), c
z only remains to be calcu

lated. This is done directly. Thus by (ii), . 6,

^,. W [(0,-f *) ySx (0,+*) y. W]

20 a a. W [(.o
2 + ^x 2 +A a ) ySxy)]. W, [see (iii), p. 97]

50 2 a. W [.

W. ,C

which by (*), 18 = (a/3y) W. [,Tj0 a
W + ,0 8x 2 W-f 8 W],

since by (*Y), 18, 2^ 2W = m 9 W.

.% c 2
= .t

2 W. 2 W + * W. W + z W. W.

32. The term independent of n, then, in our equation for

n is, as given in (27),

W. W [W. W |
D

|

-



STEADY MOTION OF A SOLID 87

where c
a ,

(1 5 and
|

D I have the values calculated in the last

two articles. As explained in 21, it is necessary for stability

that this term should vanish. A necessary, of course, not

sufficient condition therefore that any one of the three steady

screws corresponding to .v should be stable, is that x should

satisfy W. TV
|

D
|

- CA = ... (28)m
l

Since now x occurs in the first degree in V [(5), p. 85], in

the second degree in O [p. 86] and F [(26), p. 110] and in the

fourth degree in gt
it appears from an inspection of the values

of c
9 , rf 3 and

|
D

| given in the last two articles, that (28)

represents an equation of the sixth degree in ,r, and will, in

general, therefore determine only six values of .,*. No x other

than these six can possibly determine a stable steady screw.

S3. We prove now that a?= is always one of this set of

six values of .-. It is only necessary to show that (28) is satis

fied when .&amp;gt;

= 0.

For, when ,t-
= 0, the expression for D r in (26), p. 110

reduces to

F being zero, and &amp;lt;

3 4- O reducing to &amp;lt;

3 -f 3 , i.e. to

in this case. Hence now by (///), p. 112,

But, by (vii) and (vtit), 18,

m

Hence.. - |

D
j

= WxV. [m^^V- -!!j_ ^
m, W x V. t^^.V-*,^ 2W], by (i,), 18.
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Also, putting ,i= in the values of &amp;lt;?&amp;lt;

2 ,
d s in 30, 31, we

have now c^rn^ W. W

It follows that W. W I D I

C =0 identically When

34. Thus the case aj= satisfies our necessary condition of

stability. It is a relevant enquiry then if t*hy one of three

screws corresponding to this case is stable. This is the case

(14). when the impulse producing? the original steady motion

reduces to a couple alone, 0-= 3W = /W; R= 0.

For equations (U) of p. 101, we write now

xW.

From the first, R = (for no vector can be perpendicular to

itself), and therefore the second reduces to

Putting again R = in (11) p. 101, we have

V
&amp;lt;t&amp;gt;~

l
&amp;lt;t&amp;gt; 2 W, G = -fizfa^vW+ ^zW = O a W.

Writing &amp;lt;#&amp;gt;

for 3 for convenience, we have G =
&amp;lt;l&amp;gt;w

and /. nfyv ( &amp;lt;^&amp;gt;

-fy) w xW=

or w^-(&amp;lt;#&amp;gt;-^xW
= 0. ... (30)

Putting the determinant of the function on the left hand

side of (SO) to zero, we shall have our equation for the appro

priate values of n in this case.

The determinant in question is, by (ii) 26

m n
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where, &amp;lt;/= determinant of ( y) // x W = 0, \)\ (i) 26
;

determinant of &amp;lt; =
| 3

t-=/ W. &amp;lt;/&amp;gt;AV //W. c/&amp;gt;xAY + //AY. AY, just as. in the

calculation of c
2

in 31 ;

and fj (ay) =5(&amp;lt;/ax^). [&amp;lt; y)yxW], which we find to

be zero when we write it out and remember also that &amp;lt; is self

conjugate ; so that = 0.

Hence, our equation for n now is

/// &amp;gt;i

3 +u \j
2W.

&amp;lt;/&amp;gt;W-/W. 4&amp;gt;xW + ttiW. WJ=0 ... (31)

_AYe may note, by the way, here that the co-efficient of //
3

in this equation, /;/?., /// or
3 | ,

is the same (but for the

sign) as the co-efficient of u 7 in the equation for // in the general

case (see 17
, p. 109). Since this last co-efficient in any case

is independent of *, and since equation (31) is only the reduced

form, when =0, of the general seventh degree equation, we

see that when =0, not only does the term independent of //

vanish in the general equation, (as we have proved in M3),

but the co-efficients of all terms from ;&amp;gt;

4 downwards vanish

too].

35. Now one root of equation (31) is //= (), and the other

two are given by

* = _
|&amp;gt;

2 \Y. 4AY-//W. &amp;lt;faW + //AV. AY]

since &amp;lt;/&amp;gt;W=/\Y,
and by (V) ^ 18, \= m&quot;

&amp;lt;,
this simplifies to

The motion is stable, therefore, if y is so chosen that

III

is positive. Now, by Hamilton s theorem of the latent cubic.

( 12, p. 86) // may have any one of three values, viz., the roots,

say yi,y* 9 y*&amp;gt;
^ the equation
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so that
///&quot;=,?! -f-j/, +y*,ut!=y&amp;lt;2yz +y^y\ +y\y*

Putting, then, ij equal to any one of these roots, say ^,
expression (32) becomes

-

\*9\&quot;-y\ O l+
//I ^2 .^3

** - Oi-yi C/a+^s) + y^sL

(88)

The steady screw, therefore, parallel to that axis of &amp;lt; which

corresponds to the latent root
// 1

is stable, if the expression (33)

is positive.

Since, R being zero, the energy of the steady motion for

any y is \ G. AY = \ //
W. W, which must in any case be

positive, it follows that all the
t//s are negative. The expression

(33) therefore is positive, if y l
is numerically either the greatest

or the least of the three numbers
i// l) y,2i y 3) and it is negative,

if
&amp;gt;y 1

is intermediate in magnitude between y 2 andy 3 . In this

last case, therefore, the motion is unstable, and it is stable in

either of the two other cases.

We may put the conclusion in another form. Since /.&amp;lt;&amp;gt;

is always positive, r.^r k, where k is a positive constant

represents an ellipsoid, of which the principal axes are in the

directions of the axes of the linear vector function
&amp;lt;/&amp;gt;,

and the

magnitudes of these principal axes are inversely proportional to

^/ if 1 , \///.2
and \/-~.ys- Hence, the two steady motions

for which the screws are parallel to the greatest and least axes

of this ellipsoid are stable, and that steady motion for which

the screw is parallel to the mean axis is unstable.
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