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CHAPTER I

INTRODUCTION

One of the most outstanding problems in Physics in

this century has been the effort to achieve understanding of

the nuclear forces. There exists no complete theory

to date which can give a description of the nuclear forces and

strong interactions. In particular, an unusually large number

of physicists have worked on this problem because the two-body

systems constitute the simplest systems from which the informa-

tion about the nature of the interaction can be, hopefully,

obtained. But even the greatest physicists have wondered about

the immense complexities involved in these areas.

From time to time in the last few decades, our

knowledge about the force field has increased. Yukawa's theory

in 1935 which was basically a Lagrangian field theory was the

first major theoretical breakthrough. Later on, various groups

and individuals attempted to parameterize the nuclear-nucleon

interaction using potential models and invariance arguments. A

considerable amount of field theoretic work was done in this

area. More recently, other methods of calculating the nucleon-

nucleon interaction have emerged and have broadened our

understanding of the subject, but as yet there has been no
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established superiority of these methods over and above the

field theoretic ones.

In field theory, there has been a very interesting

and important development in which the concepts of generalized

quantum electrodynamics were developed around 1930. These

concepts were furthur generalized and applied to the problem

of nucleon-nucleon force from meson field theoretic view-

point by Green (1, 62, 63, 64) in the period 1947-1950. This

theoretical work constitutes an important description of the

nucleon-nucleon force. This work is developed from the

generalizations of Dirac, Fock, and Podolsky's (7) and Fock '

s

(2) work in quantum electrodynamics. The later successes of

field theory have come, from the electrodynamics point of

view, from the formalisms of Schwinger, but the meson theory

aspect of this problem had to wait for corresponding experi-

mental developments. At least one such breakthrough has

occurred due to the discovery of vector mesons. Thus the

work that was dormant for this period in which symmetries and

transformations associated with the field were used has to

be re-examined. The work of Green, mentioned above, will

constitute the theoretical basis of this study. Among others,
a few distinctly distinguishable features of this work are as

follows. It introduces the field theories with higher

derivatives of field coordinates in the Lagrangian formalism,
and as a consequence, introduces the modified Yukawa forms
with subtractive mesons. This avoids the singularities in
many ways. It also considers the applications of Fock • s (2)
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methods to derive the nucleon-nucleon interaction which is

quadratic in coupling constant even when multiple meson

exchange processes are present. In addition, this work

considers the questions regarding the correct field-theoretic

description of the vector meson field. It also considers the

tensorial characters of the field and its five dimensional

aspects . Among other important aspects of this work are

the fact that Green (6, 52) realized the scalar-vector

cancellation of the static terms and the importance of the

velocity dependence and of the other relativistic terms as

early as 194 8. The five-vector form, which is a synthesis

of the scalar and vector meson fields, constitutes an

important aspect of the work that will be presented in coming

chapters and Green's (52) recognition of the significance of

cancellation in 1948 was based upon physical intuition.

A definite influence of Podolsky's (^3) and

Kemmer's (4) earlier works can be seen in the work of Green

(62, 63, 64). Equally important aspects of this work in

relation to two particle Dirac equation come from the study

and use of Breit's (51, 56, 65) work on reduction of

Diracian forms to corresponding Pauli forms. This has helped

our understanding of the components of nucleon-nucleon force

immensely, and will constitute a very important aspect of this

study.

A very large number of review articles and important

publications exist which are almost impossible to compile,

but for the sake of a general background and different view-

points on the nucleon-nucleon force the following references
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might satisfy the reader. They are numbered 12, 15

through 30, 44 through 50, and are given in the Bibliography.

The author's involvement with parts of this

problem occured when he started to look for the latest status

on the nucleon-nucleon force in order to go for many-body

calculations and came across the work of Bryan and Scott (6g)

who considered One Boson Exchange Potentials derived from

Pole projections and the similarities of their work with

Green's work were immediately recognized. A close look

proved that these two agreed in every respect for the OBEP,

except that they had neglected the velocity dependent parts

of the interaction. Green and Sharma (54) then undertook

the comparative study and the agreements obtained were

exciting. As a result, a Born approximation study was under-

taken by the author with a particular emphasis on the velocity

dependence and a phase shift program was developed. The

agreements within the Born approximation limits will be the

topic of subsequent chapters. The results obtained will be

discussed in the last chapter in a summarized form. In

particular, Chapter II concerns itself with the presentation

of old work by Green and others with a viewpoint of presenting

derivation of OBEP. Chapter III is devoted to the study of

reduction of most general Diracian forms and their application

to specific interactions, while Chapter IV is concerned with

a comparison of various velocity dependent potentials

occuring phenomenologically in recent literature. In Chapter V
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a theoretical derivation of the phase shift formulae is

presented both for uncoupled and the coupled states, while

Chapter VI deals with the results on the phase shift calcula-

tions and comparisons with the experimental values. In

Chapter VII, later aspects of the research regarding other

methods of the reduction and 2 7f_ Exchange Potential

are presented while Chapter VIII concludes this study and

points to various possible future directions. We will confine

ourselves , in the following study, to the problem of

accounting for the nucleon-nucleon elastic scattering data

for non-relativistic energies (25 - 310 Mev) before

production and other inelastic processes become important.

This will be done only in the Born approximation. We hope

that this study will illuminate many important aspects of

the nucleon-nucleon interaction and at the same time will

help clarify the validity of various theoretical works on

which it relies.



CHAPTER II

DERIVATIONS OF THE ONE BOSON EXCHANGE POTENTIALS

Section - 1 Introduction

In this chapter an attempt is made to derive the

relativistic nucleon-nucleon interactions due to the exchange

of vector, pseudoscalar , and scalar mesons. The quantum

field theoretical treatment of this problem is due to an

early derivation by Green (1) . Recent successes of Meson

Exchange Potentials have lead to a re-examination of problems

connected with vector mesons by Rochleder and Green (8, 11)

while the multiple meson exchange processes have been again

studied by Chern and Green (9) . There are many different

methods of deriving nucleon-nucleon interactions in One Boson

Exchange approximation and they all give equivalent results

in the static limit. But Two Boson Exchange Potentials and

the relativistic terms due to various methods are not exactly

the same. Some of the important methods for the derivation

of meson theoretical nucleon-nucleon interactions are given

in the Review article by Moravcsik and Noyes (12). Little has

been published about the approach that will be sketched in

the next sections, this being developed by Green (1) on the

generalization of quantum electrodynamics using Fock-functional

6
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and multitirae formalism, the reason for its dormant period

being inadequate experimental knowledge about the properties

of various mesons. Many other books and review articles [for

example, Mandl (10), Hulthen (21), Wentzel (22), etc.] give

details of some of the other methods. Perturbation theory,

Tamm-Dancoff methods, S matrix theory (using Feynman

Diagrams) , Dispersion theory, and Fock formalism are the

important methods quite recently used. Fock formalism, as

treated by Green (1) , was used for deriving a general inter-

action applicable to scalar, vector, and pseudoscalar mesons,

while the vector-meson field with auxiliary condition (Kemmer-

Proca interaction) was treated by perturbation theory as

recently reported by Rochleder and Green (8, 11). Also it

will be outlined that if the auxiliary condition is treated

as a condition on the state vector of two-nucleon system,

then vector meson interaction, as shown by Green (53) , is of

the form of Breit's operator in electrodynamics. The Two

Boson Exchange terra from the Fock methods were also calculated

by Green

.



Section - 2 A Sketch Of The Derivation
Of One Boson Exchange Potentials

For Scalar, Pseudoscalar , and Unconstrained
Vector Meson Fields

The generalization of the mathematical apparatus

and the second-quantization techniques of Fock in meson field

theory were made by Green (1, 4, 62, 63, 64) which also

embodied various other interesting and important aspects of

field theory. He thus derived the nucleon-nucleon inter-

actions due to the presence of scalar, pseudoscalar, and the

vector meson fields. In the lowest order, when only the

first term of such interactions were considered, they

corresponded to One Boson Exchange Potentials. These agree

in their static terms with the conventionally derived OBEP

from perturbation theory (3, 4, 21) or from Feynman diagrams

and the S matrix theory (68). However, their relativistic

terms and fourth order terms like the Two Boson Exchange

Potentials do not necessarily agree with each other.

General ideas about fields and the interaction are

described in Schweber, Bethe, and de Hoffmann (13) where the

concepts about the field and the Lagrangian interaction

theory and field quantization are described starting with

first principles and commutation rules. A field function

^L^j-t) can be decomposed into positive and negative

frequency components in terms of a Fourier Transform as

8



where £ is the three vector such that jz^ — /"£*!-&)

y^ = C*;-t) , 4, - ^/XL . Thus ^<°^
is the negative frequency component and so on. If the

relativistic relation between energy and momentum of the

particle is

then the Klein-Gordon equation for the field

is satisfied.

To sketch Green's (1) meson field theoretically

derived results with Fock techniques , we give very briefly

the following summary. All of these results are either due

to the work of Green (1, 62, 63, 64) or Rochleder and Green

(8, 11) or based on Fock's (2) article on electrodynamics.

For the case of Boson fields, we have the symmetric functions

with regards to the exchange of the particle coordinates.

The creation and destruction operators b C "R- ) and hi**-)

are defined from (II-2.1) as

fcCfc*) = £(*) (^ Vx
2£/
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and

j>w - ^w (5M)~
Y*

which satisfy

The Hamiltonian f-j and the number operator fs/ can now be

written in terms of these operators as

In the Fock formalism a special representation is

chosen so that the adjoint operator b~*~C&) corresponds to

a multiplication by a function -Jzy(_h.) while the arbitrary

state -£1_ on which these operators act can be expanded in

terms of these functions and is a functional of the function

-^9"CP- ) which can be written as

4- - ^ -
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Fock also defines a functional derivative with respect to

the function '^C^) as

where

If

S-6-WO
A

;

then

For an arbitrary functional, therefore, we thus have

541*0 8J>(4to

which is a special representation of (II-2.5) and therefore

the functional derivative is equivalent to b\Jt) or

We notice the similarity between [*r.
f5*_)

and
(
y~ \^\ in

quantum mechanical sense.

In meson theory, Green (1) derived the nucleon-

nucleon interaction using this Fock functional formalism (2)

.

These derivations were based on generalizations of Dirac, Fock,

and Podolsky's (7) multitime formalism. The two particle
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Dirac equation in the manifest covariant form can be written

as

[> #*>, /?«>+^^-1 *£ ^ £tf,V'A)
= o

The interactions must be added to this in an invariant form.

Thus with a scalar interaction U> (r fc) we get

and with a similar equation for particle 2, we get

We specialize to a special frame which in some ways destroys

the totally covariant nature of 2-particle Dirac equation and

set

and thus

2? =
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Let us now denote

3 = S u
l

p - **£r , Me = ht-i fbJie
* Y -** *

J
(ar- 2 ./5-)

where Ur is the free field Hamiltonian. The interaction

Hamiltonian H^ was written by Green (1) in the following

form

4- 4>+a?) UK) j J*

where for the scalar case we have

-fC4?) =L ^ (*n)>}'fiC*Ato>fi £**'**,

(3T-2-IC)

(with the replacement of (J>
} by (nyC.) for pseudoscalar

and by (o£ , xTL) for unconstrained vector interactions
J

and LO— /^(^VK1
) r where /< is the inverse Compton

wavelength associated with the meson field.

The wave function of the 2-particle system, the

functional -£1_ , can be now expanded into the eigenfunctionals

of 1, 2, . . . Boson wave functions, according to the equation

(II-2.7), where -Tl-^is defined by comparison with the

previous step. If we substitute (II-2.7), (II-2.16) into
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and collect the coefficients of -6-C^J , -^ri- &/ ) ^C^t^)

4yC^ ) Jb'L^,) <&'C /k-~3
") etc. and equate it to

we obtain a set of coupled integro-differential equations

because each of the -^- are arbitrary functions. Thus we

obtain in general

3>f + ^a C-k, + -- + &<v)
=

Cozr-a- is)
and explicitly this can be written as a set of coupled

equations as follows.

. Vf<X)+ ^^V) V/ UDJ -o
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But from [t>) to first order

and substituting in (<Z) we get
-fc to

i

^ % = J ^~t#) -ft*?) ^
^k co

%
*

If the approximations made in (II-2.20) are now improved and

Y and Sk are determined in terms of U^ and the

neglected differences are picked up, then to the next orders

the interaction takes the form

(J>) (X-a.-2-O
where

*u - - C 3^3- *««*

These coupled equations for meson fields and the above results

were obtained by Green (1) and have the elegance that the

^{J represents only one meson processes and corresponds

to the OBEP, and is quadratic in the coupling. Also the ^(J

represents the Two Boson Exchange interaction. The direct

reference to the field has been eliminated from these
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interactions and these are therefore our nucleon-nucleon

interactions. Another beauty of these results is that the

multiple meson exchanges have all quadratic terms in the

coupling constants and thus this suggests that the perturbation

approaches in coupling constants can be avoided by this

method of deriving the interaction. Based on these results

of Green, we will show that these interactions, (mostly the

OBEP) represent a major component of the nucleon-nucleon

force by experimental comparisons. We postpone the discussion

if.

of U for Chapter VII and only make an important remark

that in deriving the [J , no considerations were made about

the normalization of the SL , which is a functional,

depending on the meson fields, number and the nucleon

coordinates and is really an infinite sum. Since the multiple

meson processes are assumed to be successively less important,

this series has to be chopped off at a particular point.

But originally (-rL;
-s\) - -i and this requires a normalized

-^- when the series is chopped off. These questions are

being considered by Chern and Green (9) and any changes in

this form of the interaction due to normalization, might

influence our expressions for 2 ~Jf— exchange interaction in

Diracian and Pauli form which will be given in Chapter VII.

Now we proceed to get the Diracian form of the

interaction in the more familiar form. We take the pseudo-

scalar case
v

"~l— where p> is replaced by (!8> ic-J in

(II-2.16) . With some careful operator algebra, we get
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^ - -s&CHcfe^gg""

(JL- 4.5-3)

where we used the fact that Cft^^r) = ~d— • Making

a proper choice of axes and with

y = "C (0 _-^ C*-) ^f ,T •= ^r/^3©-

we obtain after carrying out the angular integrations

The first integral, with the transformation >^_ = KuW[^\ r

can be translated into fj'
'~*~

-fav^^i t{ln — ~ ^-ZT-f- K(^hHM^yif
l

'

t

which blows up and this denotes the self-energy term, which

also has the classical interpretation of the interaction of

the field upon itself. This generally diverges but disappears

when Green's (62) generalized meson theory, with higher

derivatives in the Lagrangian, is considered. The second term

is a known integral which gives the Yukawa form or it can be
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evaluated in the complex plane by properly contouring

around the poles ( + X K ) • The final result is therefore

x u = (jay 1"
(
fty

1" rtr) « v» ,

The analogous results are obtained when a,
f£ j_X )

are replaced for (/3>^-) . They are

and

(3D-2L.2-7;
These are our OBEP results for the scalar, pseudoscalar, and

the undetermined vector meson interactions.
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Section - 3 Vector Meson Interactions

With The Auxiliary Condition

We mention briefly the vector meson interactions

derived in meson field theory by Kemmer (3, 4) and by Green

(6 3) from the considerations of the auxiliary conditions

analogous to those occuring in the quantum electrodynamics.

The result obtained by Green is more general in field theoretic

sense because of Lagrangians with higher derivatives in the

field coordinates but in the usual limit the interaction

reduces to the analogous Breit vector interaction in electro-

dynamics. However, Breit (65) obtained a similar result

with the opposite sign and without specification of the

static Green function in 1938 from the considerations of

relativistic invariance. If we consider the vector meson

field without the auxiliary condition, the resulting

Hamiltonian is not positive definite because of the time

like component of the vector meson field. The free field

Lagrangian for the nucleon field is

.
VL-Ojk+ M)f+H-CV 4.

where the notation is due to Schweber (14) . Field theories

with indefinite metric reported by Arcy^and Sudarshan (113)

constitute interesting aspects but do not form a part of the

present work.

19
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The time like components of the vector field

f> - C f/ ; f^ ) > C fn
~ +

<f>
) satisfy the wrong

sign commutation rules ( <q^f" — j£ A*"" )

while

The expansion of the fields into fourier components with the

definition ^ ~ <?*< 'V , ^ - ±
) 2-, 3 ,

yield the equations

and

where the auxiliary condition with the matter (mesons) is

used as a constraint on the state vector

(.X-3-q )

In electrodynamics where JL\ — q , the two

conditions are compatible because the transverse and long-

itudinal quanta (photons) cancel each other. But because of

the mass term, it is not so in meson theory. Green (63)

used the auxiliary condition as a constraint on the field
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equation and obtained the Breit vector interaction through

the following scheme. If X )f — ° and V Y? = O
,

then LX ; YH U^ - ° roust not imply new condition and for

(II-3.3) it yields that

CX - 3 • ±> )

which is not a new condition of the Klein-Gordon equation is

satisfied by the field quanta. With ^?- 3- analogous

to longitudinal quanta in electrodynamics, the following

commutation rules are satisfied.

Ht (Jl-3.6)

f
&],*? = -(4-1)^*.-^

(7T-3.7)

Now the application of Fock functional formalism analogous

to the last section yields

4 ^ Sl

As a result the Dirac equation in multitime formalism, and

the auxiliary conditions (II-3.3) take the form
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- a. £*« ,-£*)- * W, J ^ - °

(IT- 3"=))

where

37 - ^.JZJ - e X-^

with

and

-K
f3T-3^y)

X = 3^ t ^

To get a Dirac equation in ^Xl_ we use the above canonical

transformation and the transformed operators are given by

the rule

f'= ^Ve = F-L^FJ + C^FJ^
Oir-3-/;}



23

and thus

' « « + *-,£* >2*L
+' +-

With some more simplification the generalized fields are used

to calculate transformed momenta "P ^'and the energy "T^in

terms of various known quantities. The steps are quite

mathematical and for details the reader is referred to Green

(63) and Rochleder and Green (8, 11). The results are

Y" = k»> - J: 5>Cx^,),

T& ' = ; * 3l* * ^l - fro 3^
3 ^ ^T 9^

where

and

Thus the new transformed Dirac equation can be written as
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So far every calculation is in relativistic notation. Now

we set the particle and field times equal t^ •=--£- and

obtain

where If — X® }— >0
(6g

. Thus we see that by

eliminating the auxiliary condition and transforming into

new field quantities, we have obtained automatically a static

Yukawa term. Since there is no auxiliary condition remaining,

and there is only a vector field
J)

remaining in the two

particle Dirac equation, the remaining procedure is similar

to that given in Section -2 , where we expand again in terms

of creation and destruction operators. The Dirac equation

can be rewritten as ( H\* Static Yukawa term)

_T2_

(X-3./6)
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where

3

and

*^P«.<^§k)^s^%
S M~^ X J\^v *# }

S+to*)* gkjnC^j!}^ ?**>
/ (X"-3'/«

where the £- '^ are unit vectors and /L takes on the values

1, 2. The perturbation from Fock techniques give, to the

lowest order, the One Boson Exchange Potential as

( 4p
+ W

y
- I *£ ) -n. = - %\js^

(A) (X>3'iq)

where

lb) (nr-?-i*\)

with 4, = 1, 2, 3. A simplification analogous to Section

2 yields
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where

This result is shown explicitly by Green (63) together with

the subtractive meson in the modified Yukawa form. Thus

the vector interaction so obtained is

(br-3<2.i)
which is the same as derived by Breit (51, 65) from relati-

vistic invariance in nuclear physics without specification of

\J~(y) and by Green (6 3) from meson field theory.

A third form of vector meson interaction can be

derived if the auxiliary condition is treated as a second

field equation. The result thus obtained is the Kemmer-

vector interaction (4). Thus Oi & . s. holds as other

field equation. Various theoretical questions about the

compatibility of the auxiliary condition with the general-

ized vector field and the scalar field have been discussed

by Rochleder and Green (8, 11) and Stuckelnberg (5). The

reader is referred to the derivation by perturbation theory

by Kemmer (4) or by Fock methods by Rochleder and Green

(8, 11) . The result in the Diracian form for OBEP is

D

(IT- 3.^)
This differs from the unconstrained vector interaction by

the last term. Thus we have completed our study on the One

Boson Exchange Potentials from meson field theoretic point of
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view. We now proceed to solve the two particle Dirac

equation in non-relativistic limits. All of these derivations

presented above are due to Green (1, 62, 63, 64), Kemmer (4),

and due to other standard results from the field theory for

some of the interactions. Their inclusion here is for the

sake of completeness of the work that will follow in the

coming chapters and should be regarded as a background

discussion for the convenience to the reader.



CHAPTER III

REDUCTION TO LARGE COMPONENTS - BREIT'S METHOD

Section - 1 Introduction

In the last chapter we sketched field theoretic

methods of deriving nucleon-nucleon interactions due to

exchange of scalar, vector, and pseudoscalar mesons. In

all cases the final interactions contained no reference to

the field quantities, except indirectly through meson masses

and coupling constants, and were functions of distance of

separation between the particles \ r ~
"
Y

'
~

)
v — "*"

'/

and of the Dirac matrices \ <^
j ft jl$- ^.iic, ) . This type

of interaction will be called Diracian Interaction and the

correct quantum-mechanical description of 2-particle system

will be assumed to be given by a 2-particle Dirac equation.

In this chapter we describe a method of reducing

such 2-particle Dirac equation to a Schrfldinger-Pauli form.

The method is originally due to Breit (51) and was dealt with

in the framework of approximately relativistic interactions

between two nucleons , the forms of interactions being fixed

by arguments of relativistic invariance. In the framework

of field theory, most of the interactions were derived by

Green (52) and the method of reduction to large components

28
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was used extensively by Gieen J53) in the period 1948-1950.

The details of most cf this work are still unpublished.

The results of this method of reduction on five vector

(scalar + vector) and pseudoscalar interactions were

published by Green and Sharma (54) , although the consequences

of some of these reduced forms were reported earlier by

Green (55) . Some details of this method and its connections

with pseudoscalar meson field have since been published by

Breit (56) but not in enough detail so that the origin of

various terms occuring in reduced forms could be seen.

Also, for some interactions, the Schrodinger-Pauli form has

not been derived before. It is the purpose of coming sections

to provide this detail and then specialize the general

Schrodinger-Pauli form to include specific interactions.

A procedure of reducing one particle Dirac equation

to "large components" has been described by Be the and

Salpeter (57) as Paul! approximation. Although their

discussion is with reference to one and two electron problems,

various arguments are common to one and two nucleon problems

also. It should also be kept in mind that the two particle

Dirac equation, as it will be treated in this chapter, is not

fully Lorentz invariant. It can be written in the general

form as

Ijnr-i-i)

where E is the total energy, K ^ is free particle Dirac

Hamiltonian, V is the Diracian Interaction and -jTl-is the
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16 -component column wave function made from 4 -component

wave functions for nucleon 1 and 2. The nature of V is

decided in our case by One Boson Exchange effects in lowest

order of perturbation theory or of the second quantization

procedures. It should also be understood that various effects

are neglected in deriving V , like effect of motion of

nucleons during the exchange of mesons, two or more meson

exchanges, virtual processes like emission and reabsorption

of mesons leading to self -energy divergences, and of pair

processes, some of which were referred to in the last chapter.

There are other methods of treating 2-nucleon problems

which are fully covanant [reference (57) , section 42] and

the Bethe-Salpeter equation is one of such formalisms. It

is, however, very tedious to solve and, therefore, we shall

confine ourselves to the 2-particle Dirac equation only,

which despite its complexity can be solved in a straight-

forward way.



Section -2 Reduction of Two Particle Dirac Equation

To Schrodinger-Pauli Form

The two particle Dirac equation for stationary

states of two nucleon system can thus be written as

E -
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in a column, Green 1 5 3> originally arranged them in above

notation for compactness. We have not followed the order

in which the components occur in the direct product but

rather this grouping is done so as to collect those components

which transform in the same way when operated by Dirac

matrices. This grouping will, therefore, imply that for all

the interactions concerned each 4-component part (such as

f ) l) ^l ^ SL ^ wil l keep itself as an identity when

acted upon by Dirac matrices. This grouping is, therefore,

similar to the special cases (involving lower and upper

components of column vectors for each nucleon) given by

Chraplyvy (5 8) , the details of which will be discussed in

Chapter VI. We are thus summarizing, in a compact notation,

what would correspond to 16 -coupled equations and writing

them as only four coupled equations involving vp \jS

%. CXx\A. X^, each of which is a 4-component column vector.

In the process of reduction we will eliminate all other

components in terms of the largest. The purpose of doing

so is to see the relativistic effects explicitly in a

Schrodinger-like equation.

We now introduce the necessary matrix algebra

developed by Green (5 3) for going from Dirac to Pauli

matrices. Let us consider two independent sets of 2 x 2

matrices, one set acting on 4-component wave functions for

the particle concerned, denoted by p , and another set

affecting the spin parts in usual sense and called <j- or

Pauli spin matrices. We can now decompose any Dirac matrix

as a direct product of these 2x2 matrices, the details of
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which are shown below. The same can be achieved alternatively

by considering 4x4 matrices labeled as P and CT by

Dirac (59) or by Rosenfeld (60) , and then going to their

Pauli limits (or nonrelativistic limits) , but in that case

Dirac matrices are the result of ordinary matrix multipli-

cations between
f*

* and <r'6 and are not direct products.

The direct product notation here involves attaching the

matrix on right to each element of matrix on left, i.e.,

:Hi)
/ CL/C o~ d

btL '
Cnr-2.3)

We de fine

k =
\l o) > ^ = Vo -1-/

and

°* = G o) ,
*"* ~ (o -0 •

With the discussed definition of direct product, the Dirac

matrices can be decomposed as
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= (2o)® (1
£
o)= P,®-*-*,

en, . oU = p, ® oz
3-

lt I, ^ ^

,'d. o \ /I o

o-4-; i o ±

o o
/&£ = ip«x^= ( to - = -X^®^)

cr-

O d

Summarizing, we have

^ » p3 ® I,

We retain the Pauli spin matrices as operators

which will appear even in the reduced form and will occur in

the Schrodinger-Pauli equation in familiar forms, while we

show below the effect of P matrices on two particle wave

function -O- , where superscripts refer to the particle.

We have to remember that at least one operator should act

for each particle wave function for the operation to be
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meaningful . For example

tr^-Cin?)»c:)ffij-(?).(Si)

In a similar way, it follows that

f3
IpXL= ^ _f j

^ ff XL. = (<P "Xr

'V-Y'

Now we have the required algebra and notation

for the reduction. We rewrite our Dirac equation for two

particles as
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With the help of (III-2.5) we rewrite this as

£ E (If®I(rf ) (T
f

,®I
<r)

e
>+ /C ( f| ® *.f)**fa9 xjf>+

Using (III-2.6) we get ( JT-«^ ; S)

l e
cvv) + *«""-'fr iy*9*'«(j,Q-

+ an.- (! .;)] - V» (i^ . (w)
All of the interactions that we will use can be placed in

the form

Thus the two particle Dirac equation can be written as four

coupled equations.

\ Y + ^ xi + \ Y - VcX, + ^%^

where

?x = ^(r^. ^-(x!)
)

These equations have also been reported by Breit (56) but

only for the pseudoscalar interaction. Defining
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£ = W 4= S-H/C 2-

we rewrite (111-2.11) as

im^ U+ *0 ** - v*< *d. -f- ?, ^ 4- If - o OO

We solve for %. and OG^ in terms of y and ^p using (III-2.12

b and c) and then we use (111-2,12 a) to get: W in terras of

^ . This is then used to express r
)£. and

r
)Cq only in terms of

\p . Then we use (111-2,12 d) to get an equation in ^ .

It is clear from (111-2,12 d) that >£/ is the large component

because every other component has M /C multiplying it.

In deriving ^X^andOC* we assume that V and V, commute as

indeed they do= Then we find

X L - - ©*.{©*¥ h- e3 f } L
.;,)

and

where
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and

e 3 ^IjM^a+OTit v^l . to

From (II I- 2. 12 a) we have

and
(_£,)

Using (III-2.15 a) in (III-2.13) we see that

and

We use (III-2.15) and (III-2.16) in (III-2.12J and we find

an equation in \L> , the large component, which is exact

since no approximations have been made thus far. Therefore,

Q(w-vO - Vb &H % - \ e
(

(e3f eze^e^ -

- \e± (©z+ ^3^e^) H t -o .
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This we know is only a formal way of writing the equation

compact form and $'£ involve interactions and spin and

momentum operators and therefore must be treated carefully.

Now we have to start approximations to reduce this equation

to the more familiar Schrodinger-Pauli form.

Approximations

A correct relativistic treatment of the problem

of nucleon-nucleon force would require the exact solution of

the two particle Dirac equation. The preliminary results of

such a recent study by Sawada and Green (61) have been

reported. The detailed study is still in progress. The

purpose of present work has been to consider nucleon-nucleon

force problems for non-relativistic energies. Therefore it

should be possible to develop (III-2.17) in a series, using

as the parameter of largeness the rest mass of the nucleons.

We assume the interactions to be small as compared with this

quantity. In other words the expansion parameters are {^-°-j ^^fty

each of which is assumed to be less than unity. Before

proceeding further, let us examine the nature of these

approximations

.

„ implies that the external kinetic energy

imparted to the system should be small compared to its rest

energy. Since for the elastic scattering problem we shall

always be below 400 Mev in the laboratory framework, this

condition will naturally be satisfied. The second condition
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however, is a severe restriction in that ~Vi//.%is not

necessarily small if Vi is the Yukawa form whose radial

dependence is ZT(V) = ^^c)t' e^t^-k^f ) . This

function goes to infinity at the origin and may not be

small even at other distances depending on the nature, mass,

and coupling of the mesons. The quantitative behavior of

these forms will be clear from the potentials reported in

Chapter IV. Detailed studies of this problem both in quantum

electrodynamics and in quantum field theory have been made by

Green (62, 63, 64) on the basis of Lagrangians having higher

derivatives of fields. As a consequence various new features

and theoretical questions regarding subtractive particles

have emerged which may prove helpful in solving the puzzles

regarding the nature of nucleon-nucleon force at short

distances. In our study we have only used the subtractive

meson as a cut-off employing it in the same way as phenomeno-

logical cut-off's are employed in literature. Thus we use

the form

TtO = ffrc) [elr- e—

:

-r -r

which unlike the simple Yukawa expression does not blow up

near the origin. The physical uncertainties of interactions

due to heavier mass mesons and various other processes are

thus nicely parameterized in terms of cut-off masses. At

the same time the device helps to make our expansions valid.

The third assumption iJ_/m£?~ implies, in classical terms,

"\7//C to be small which restricts the velocity of relative

motion of nucleons which we can consider.
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With these justifications for expansion, we only

retain the terms which will correct our potential to the

order i-/fs^\^-{or relativistic corrections of order up to

T?'
2
"//C-a'

) and will also give first correction to the

kinetic energy. Using the Binomial Expansion

we obtain, using (III-2.14 a, b, c) and (III-2.15 b,c),

a _ _i_ .

- ^ — ( l-^^cl ftfj

and
^N/C^l— X T 2M^ J W

e 5 „ Vt + ^. e± e3 + ?-l ©a.€!t

-

b "f" 2^/^ H^sC? LtM'*-/^ 2.W/C*-
(€; (zzzr- 5i'^)

Substituting (III-2.19) in (III-2.17) we get the equation in

"large component" ^ correct to order Vn^' as
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Now also we reject terms of order higher than rl/jvj^-in the

potential and retain ' /Vl 3 type terms as correction to

kinetic energy while taking the product of various factors

in the last equation. The result is

(jZ-Z>lo)

Using the proper definitions of €: ^ from (III-2.11) we

rewrite

fw-v^- &±m + w(^) ..v^ .nay- _

- fer^Wb+ vbVk + Vc^W*+W^+T^y
+ VbCw-V)Vb _ V b CnL+^)Vb—I \L, =0 .
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This equation as we see is already a Schrodinger type but

we should remember that the wave function \V is not

normalized.

Normalization

We should clearly understand that
"ty~

occuring in

(III-2.21) is a 4-component wave function formed out of

direct product of 2-component spinor wave functions for

each particle and these two components are lower- lower

components of original 4-component wave functions for par-

ticles one and two. Hence our equation (III-2.21) has

reduced to the analogous form of what would be called 2-

component equation for a single particle Dirac equation. We

now consider the case of single particle Dirac equation, to

see the effects of normalization as discussed by Breit (51)

.

The Dirac equation for a free particle can be written in

2-component form as

(E - M/cP] <£ + <l if '- p ) eg » o
The symbols for 2-component $ ;

c£ are only for temporary

use. To the lowest approximation

For a single particle case, the total probability of finding

the particle is given by
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which means that if we define a 2-coraponent wave function as

then we have the wave function normalized. This transfor-

mation also leaves the resulting Hamiltonian in Hermitian

form, as discussed by Breit (51)

.

This concept may be extended for 2-particle Dirac

equations also. To do this we express U' ~^a and Q£ 9
in

terms of y* . By considering only interaction free terms

of equation (III-2.11) and by using (III-2.15 a) and (III-2.16)

we get to lowest order in 4/m% the following expressions

1 4Hbd* r
•) fa)

and

x^ -ft&-t .

CC) (ar-a-as?

We only keep those terms in normalization which will be of

order !V7*1 a" as they alone can influence the terms which we

are looking for. Thus the normalization takes the form

Therefore
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It happens that even though (( \p*~'& dTj dtT*— A. .

still we should not interpret C\P^~ j. ) as

the particle density. This has been discussed by Breit (65)

in some detail.

Before we start normalization, we notice that

equation (III-2.21) can be written as

wo+»>* = c -lot * > im«)
where C 3 |_, involves remaining terms of (III-2.21). We

can write this by multiplying with (l-^) to get (to linear

order in V )

w f - (±-») L 3 ok f
, (JM^

which means explicitly

^ a.m A2- /
— ^

where in (V C ^ot) we nave neglected terms of order higher

than Wl* in potential and Vm 3 in kinetic energy corrections.

We can say by looking at the term [&i^¥*)VeJLji/iirf/$j that the

Hamiltonian is not Hermitian and this difficulty, as we shall

see, will be remedied by normalization. Normalization here
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implies that we want an equation in normalized wave function

and therefore the Hamiltonian acting on it will also be

transformed. This canonical transformation can be seen

mathematically as follows. We write (III-2.29) as

where Q 3) * contains remaining terms of (III-2.29). Then

or

die -a.- 3i)

which to the linear order in \> implies

^nr-2.32.)
Now we write our transformed equation (III-2.29) as

L- c2MAi2. iir^xL.^ ^M^/CF /£ N^S "

1ivc?^ + ?iY*V TaY^U G^V^l^ C&.W?*

Here also we have retained terms consistent with previous

arguments. We now get the final form of Schrfldinger-Pauli

equation in which the potential is Hermitian to order ^//vj"*.
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(or V //<^
2
~

) and we also get relativistic correction to

the kinetic energy. We here make an assumption that the

terms

(i.e. like Vf/W*-) are small as compared to ^t/jXterms and

this is true only if V. happens to be small. The other term

Vb/4M/C?' has only 4-//v? dependence and is a fairly important

term which would be discussed in detail in Chapter VI.

Hence for the moment we retain only linear terms in potential

and obtain

21+
"r gM3/C6 4M3Af

+^
8M33,

{t?^>^+v^ULW)} ~ifer{Wb+

Now we specialize ourselves to the special refer-

ence system in which the total momentum of the 2-particles

is zero but the relative momentum is not. We do not put

any restrictions on V. 's (i = a, b, c, d) except that

Q Vc ; ^dCH ~ O , but we assume the dependence of radial

functions only upon relative distance between particles.

Breit (65) took this approach to consider whether the

transformation of coordinate systems would change the invar-

iance arguments (to order V2-/^."2-
) discussed by him, but

considered only stationary state (time independen) problem
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and commented that for that particular reason it was not

necessary to decouple the center of mass and relative frame

equations . The equations obtained in this approach would

decouple if we require £ (_ J

5" ^
-f-

)>* ^J = oj » a trans-

formation to zero momentum in the center of mass frame.

This particular physical frame is chosen by Breit (56) later

and leads to similar equations as (III-2.34). Therefore if

we set in our case that V's be radial functions of only V

r^\r\ =
|
=r L"- y

and

ft)

R. ^ (.?<»+?«>)

(
,-. e . f-

m = (.-, r*» = - k ) ^s- 3f

;

then the wave equation for center of mass frame can be

separated out and only the physically interesting part remains

in the equation for relative motion between the particles fajT,— ^<3> Lf)

which in view of ?£ - ?£~ « XI2
" {>* (\- -C^ ' p)

;
^2.=^^^

becomes

- 4^ {c* * r) vc cr*r ) + (** )*> Vt^^ p) -

-Co*11 '.)?) V^(# fe'.p) - (a""- p) V,i (.<?">• p)j ~]^ =o.



49

This result (III-2.36) in the most general form was obtained

by Green (53) in 1948 and was applied then by him to many of

the meson theoretic potentials that will be treated in the

next section. This equation will form the basis of furthur

work and other methods of checking this result, e.g. by

mathematical manipulations of Breit's work, by methods of

sums and differences, etc., will be discussed in Chapter VI.

Green and Sharma (54), in 1965, published the results of

this equation as applied to pseudoscalar and scalar + vector

meson interactions in the light of a purely relativistic

zero parameter model of nucleon-nucleon force which will be

discussed in coming chapters. Now we proceed to apply this

equation (III-2.36) to various forms of one Boson Exchange

potentials discussed in Chapter II.



Section - 3 Application To Various Interactions

The interactions that we discussed in Chapter II

can be written in the Diracian form as follows.

Scalar Meson Interaction

Unconstrained Vector Meson Interaction

(Derived in meson field theory by Green when no auxiliary

condition is imposed.

Pseudos calax_Meson__In.tex action

Breit Vector Meson Interaction (Derived In meson field

theory by Green, as a result, of constraint due to auxiliary

condition on state vector .

I

tev«

Kemmer Vector Meson TnteranH»n .Derived by Keinmer^ing^
auxiliary condition to eliminate one. component of vector

field.)

50
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(IZE-3.5*)
7

In (III-3.5) fc = W/ji is the inverse compton

wavelength of the meson under consideration.

In our notations we will quite often suppress the

subscripts on J's and also the argument whenever it is needed

for compactness of notation within each subsection but it

should be understood that the nature, mass, and couplings of

mesons are implicit in J and transformation properties in

relativistic form are shown by the Dirac matrices ( %--=^ unit

(4x4) matrix for each particle) . We now show, by using

matrix algebra developed in Section - 2, that all these

interactions can be put in the same general form.

Using (III-2.5) and (III-2.6) we rewrite equations

(III-3.1) through (III-3.5) as

Vs^_ . _
(f3
®xrf( f3®irfj5M (£*)

or

nm r<2 > T _n. - + T (~V
~t%t

)_ p, p j
s
-il _ + j

s ^ _^y ^

cnr-3.7)
^

/ 77T_ ^ . 5? ^
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*»]
2- V ^r

(3T-3.X0)
'

where the derivatives occuring in Diracian forms act, by

definition from field theory, only on the J's and not on

the wave function. Therefore, we write these in terms of

the derivatives of the Yukawa form according to the definition

^^ = (^ d-r) W > ^-(H)T.
Hence we can write (III-3.9) as ^ J

'

JJ-

)

and from (III-3.10)
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which also implies

(^•'.vJC^'.v) T kv

a relation that will prove very helpful later.

By looking at (III-3.6) through (III-3.11), we get

the table 1 defining the V. 's (i = a, b, c, d)

according to equation (III-2.10) . cr±% m {jr '". r^) d-Vid

Table I

Meson Exchange Interaction

v^
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The most general Schrftdinger-Pauli form of interaction

is given by (III-2.36) as

V? - V- fop I
pVfc+ V«. (>«- + ifOKp) (???) Vb+

C3T-3W5")
Now we go to special cases with the notation that

an angled bracket < /> implies that the operators in the

bracket do not act outside the bracket, and therefore it

should not be confused with usual notation for expectation

value in quantum mechanics. Also we set temporarily ~k — 1

so that
f=>

= - -*- V and also we suppress any super-

scripts or subscripts for J until we write the last step in

such a process when we use them for differentiating various

J's. We also list below the important operator-algebraic,

vector and spinor identities which are used to reduce the.se

interactions to the final form.

t = Y X p*

if .aX^-S) « (?T-b) 4- X # . CaxU)
£«

A . % x e = B -aA = c-AxB , , .
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Vx(cfA) = (V^))^+ c£(vXA)

V . CVX A) - o

6*;

fie;

- tf .c)S-(*.TS)c, ^C3,£>

(#xS)x c = *§ C*-2)-7U*'£)
; 4 [A

;
sj=o

V'(AxB) = <vxff>."g- A'(v>x£)

c*;

Ax Cv"xS)--^(v.g)-^x(^x'3)-f #.*)*
GO

D0*'P) , L*'\?)l = X* (<f .|s*)

O)

Oo
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C&-Z)A?<?)3 -o LW

cr)i.e

.

<(^«..|OC.f <".*)> « -3X*
i«

W

w
(JZT-3'IO
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(i) Scalar Meson Interaction

With V's defined by Table 1 we get Pauli form of

interaction from (III-3.15)

-> (ar-s-17)

With (III-3.16 a, b) , (<r"K ]i> )

a =
f»

v
etc., we get

Using

and

<(£>.£ .-i^-jO , «,

—

i

' (atr-3'W

we get

+ §.(*•*;} •

em-?'*')
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(ii) Unconstrained Vector Meson Interaction

With the help of Table 1 and in analogy with

(III-3.17), we write from (III-3.15)

L-
(onr-3'23)where v.****

x s tc^^x^fx*^^
•de i*

w.fx*^*w ) 3-c*
00-^

It is best to consider these operations with the wave

function y present so that various operations can be

explicitly seen. With a considerable amount of reduction

involving identities (Hi-3.16 b, c, d, e, g, j , k) we can

write I as

CD f ^ (±- <r°\ # ta
>) Qa < pV> • is* +< |=^r>+
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Similarly by using only (III-3.16 b, £) we get

+ t <(^ t,J
. p) (**>. |*0 V> .

With the help of (III-3.16 b, c, f, g, etc.) identity

we can write

_ t < C8tw -*)(ff' w . v)^ ) .

(lT-3^7)

The expression for (IV) VS can be analogously obtained

(and has also been checked) by interchanging particles 1

and 2 and we finally get

Also from (III-3.25) and (III-3.26)
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Now we write (III-3.23) in detail as £UT-3-*9)

vuv ¥- 0~ fe[" 4^-/»<|s».j.-V

-f <?*». +« ) «|*r» j. y-^ £««, <^

.

But
+ "W ^'^J . L»-*»-)

(0*0'. p) Cs* w )0(.-yy) ~ <(#»• p) (.«*«• )5*)3> <^+

+ t<f^-<l^>Kcr« <J>y>) • (31-3.31)

And by writing in component form, we can show that

c ^HT-3'3a)

By substituting (III-3. 31) and (III-3.32) into (III-3.3uT

we get the unconstrained vector interaction reduced to the

following Pauli form
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In order to bring this in conventional form

involving tensor, spin-spin, spin orbit, and velocity

dependent operators we define, as usual, the tensor operator

Sat s 3 (»<>•? )(<»<» .?) z^o^n
^2r~ '

/-rrr_3 * 3>U)
and substitute in (III-3.33) and using ^ '

we get (JZT-S.3f)

which becomes identical with original way of writing if we

put ^> =: — VK V and insert "fc properly according to

dimensional considerations, i.e.,
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Similarly we can also write scalar interaction from (III-

3.21) in this notation as

which will be useful in the next chapter. These results

were first derived by Green (53)

.

(iii) Pseudoscalar Meson Interaction

Again from Table 1 and Equation (III-3.15) we

obtain

(ac-3.34)

With the help of (III-3.31) we get (M-'i'^ )

using (III-3.32) we obtain ^

With (III-3.34), (III-3.35) we get (inserting ^ also)
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which can be written in final form published by Green (62)

in field theoretic approach

(iv) Breit's Vector Meson Interaction

In this case we plan to use some of the results

derived previously. In that process let us assume another

Diracian interaction given by \f s= J. TCV) , where

-*- isa(4 x 4) unit matrix and we plan to get its Pauli form

and (III-2.6)

which implies

V^ = Vc = T
;

Vb = Y^ = o ;

and from (III-3.15)

Therefore

where the last equation has been obtained by using Equations

(III-3.16 a,b) and definitions of -£ ; ^ etc. From (III-3.36)
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we have the Pauli form of Q4- ~ °< °-
*£®J T and therefore

we get Pauli form of Q £ W, £^J J" as follows (super-

script P
, as before, means Pauli form of)

Define

We can now write, using Table 1 and Equations (III-3.15),

(III-3.48), and (III-3.49), the Pauli form of Breit inter-

action as given below.

- T- jj^ { \>V+ 3-j.
3-- C* 0). fr; 3- (^ to. K) _

+ +(- S£33L«r+ it) (*<>. pH** p) +

+ (f"!F)(-^ (Vn)^(=i + (*».#.
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-±—
-f rw

- ^ &**> p) u. + u. c^ f,)
. (?; G^ fH

Cnr-3'fig
where lA/ is given by (III-3.50) . We now evaluate each

term of last curly bracket of (III-3.52). Let

tnr-3.53
r

)
with the help of (III-3.16 n, p, b) we can write it as

With use of (III-3.16 q, s) we get

(32L-3.5T)
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Now we define

(nr-3.«)

But we first evaluate only <& (3* 1". {^) U^ which, with

the help of (III-3.16 b, q) and some detail of careful

operator algebraic operations , reduces to

We evaluate each of these four major terms using various

identities of (III-3.16) and sum up the result with careful

ordering of the terms and the result is

We define below the similar term (III) which is obtained by

interchanging particles 1 and 2 in (III-3.58) and has

also been explicitly evaluated to see that this is really the

case

.



67

' + *(* "•*>(*».on.
(^_3.^

Therefore

X+UT = -ai.(v*T> +30j)(<?.p)-h4;j|('?-,js*)
a-

+

+ C# w.£X«* M-2) } . (nr-3.60

The only remaining term of (III-3.52) is

TZ = «5:C^ (W
.
js*)(^W' (?) It which can also be written as below

and evaluated with extensive reduction using many identities

of (III-3.16). We first use (III-3.57) to give us

X(^ U)
- pj Vt and then get (IV).

1£ = (^W.fi (^°^p) (c^o,^) (5^. «r)^

. ($>f) + uy fr , p)
x- ( Y^+^Df) Cff

5^^^) -H
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We use (III-3.16 s) for the last term above, add (I and IV)

using (III-3.55), (III-3.61) and we get

X-YK = - QrHt3 t q r^X^ Ii5j] ->l Ca^+4 Of) -

But using (III-3.34) we can finally tabulate the coefficients

of various operators coming from either (II + III) or (I + IV)

to get a clearer picture of the resulting Pauli form. This

will be shown in Table 2.
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We substitute all these results from Table 2 into Equation

(III-3.52) with use of (III-3.35) and get

With (III-3.16 u) and

we obtain

+ A.Cq + yV, ) C r- p) + £ (a- r*op ]»*-

This is the final form of Breit's (51) vector interaction

and agrees with his Equation (17) of reference (51)

.

(v) Kemmer's Vector Meson Interaction

We can carefully use many of our previous results
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in order to derive the Pauli form of Kemmer's interaction.

Using (II I- 3. 14) we can write

C i -& <w + ^ (^ v)(2<»-V)j7

The first term is known in Pauli form from the unconstrained

vector meson interaction and the first term in the curly

bracket can be deduced in Pauli form by using the result

(III-3.49), except that J will be replaced by J Similarly

the last term in (III-3.66) in the curly bracket can be

reduced to Pauli form by a careful use of second curly

bracket of (III-3.63). We therefore start these mathematical

manipulations with careful attention. From (III-3.49) and

(III-3.11)

Now let r
\T-=.U

i_
, then from (III-3.63) we get
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= 1

v-

and we use(in-3.16 u) . Then

4- tiTa.) + <>(.**%+ X7*.)L*>p)-\ yi
'f''+

(III-3.36), (III-3.67), and (III-3.70) properly weAdding

obtain
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. (*». ^ ») + J gj (
£. ?; _ J_ (YiJi) Cstt)

J
+

+ nW k^ { "T (*** + 3^ ) - uj p + x tJ?.^+

+ iC^+a^. )(.*£) - ^y^N-^(£)+^(.6sj-

This is the final form of Remitter's vector meson interaction

and has been confirmed independently by Sawada (66) by working

on each term explicitly.

Conculsions

We must emphasize that many pages of calculations

are suppressed here in order to keep continuity of deductions

among various forms and also to keep the size of this chapter

limited, but essentially all the vector-operator and matrix
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algebraic identities given by (III-3.16) should enable a

serious reader to derive these results with the help of

well defined, necessary intermediate steps.

Another point of similarity among all these inter-

actions is that we can always represent the general interaction

in the following Pauli form:

+ V
ss

(v) (5
s «.#«) + v

ls (y; (t>i)i-

(:m->73)
in which V's represent the radial dependence of the potential

and other operators show the various terms which have been

used for a long time phenomenologically in nucleon-nucleon

force problem, in nuclear physics and in atomic physics.

It should also be pointed out that we have neglected

the quadratic terms in potential even to lowest order and, as

promised before, they will be discussed in Chapter VTI

.



CHAPTER IV

VELOCITY DEPENDENT POTENTIALS

Section - 1 Comparison Of Currently Used

Nucleon-Nucleon Potentials

As pointed out in Chapter I, the problem of finding

a good nucleon-nucleon force has been a very challenging

problem of this century in physics. A few recent developments

in particle physics (discovery of vector meson$ (J^ f )

have opened up new channels of approach which have greatly

reduced the uncertainties in this field. Thus a new picture

has emerged out in the last two to three years which tends to

support the meson-exchange processes for accounting for the

major components of nucleon-nucleon force. As we shall see,

even the concept of potential becomes questionable and has

to be generalized. This approach of One-Boson-Exchange-

Potentials has been currently used by the following major

groups (and many other individuals) and we narrate their

conclusions. We do not claim, however, that this represents

a complete review of the problem.

Within the framework of field theory and with

definitions of potentials as non-relativistic limits of

Diracian One-Boson-Exchange Interactions, Green (52) in 1949

derived various components of nucleon-nucleon potential due

74
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to exchange of scalar, vector, pseudoscalar , and pseudo-

vector mesons (fields) but a quantitative analysis could not

be presented due to lack of knowledge about meson masses and

other properties. This work was re-examined by Green and

Sharma (54, 67) in the light of known mesons and, as stated

originally, this necessitated the presence of scalar meson.

The interest in this problem arose when we were trying to

find the best available nucleon-nucleon force to take as a

starting point for many body calculations and came across the

work of Bryan and Scott (68) who obtained expressions similar

to those obtained by Green (52) . A closer study revealed

that although the two methods of deriving the nucleon-

nucleon force were apparently different, that they gave

exactly the same results as far as one-meson processes were

concerned. In addition, we found that Bryan and Scott

neglected the velocity dependent terms in their potentials.

Later Bryan and Scott, in rechecking their work, found the

velocity dependent terms.

In a later report Bryan and Arndt (69) showed

enough details of their work which may be summarized by

stating that they projected a pole term into angular momentum

states, the poles corresponding to mesons. They relate

Feynman T-matrix to Stapp's (70) M-matrix and then calculate

the contribution to T-matrix as the Born Term in IjH_4 f~y

representation which they indicate to be equivalent to

choosing an interaction Lagrangian (e.g., pseudoscalar pole

«2f-£ = jp^r''r <:k5f / where y^ is nucleon wave function

and cjbp^ is the pseudoscalar aeson field, etc.). In
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addition to direct coupling for scalar, pseudoscalar and

vector mesons, they also calculate dipole type effects by

considering the derivative coupling but in our work we

consider the pole contributions (i.e., direct coupling only)

to be major contributions and remaining discrepancies are

considered to be accounted by Two-Boson-Exchanges and other

effects which may contribute to the same order as the

derivative coupling terms . We have thus been able to

establish a very close contact with this group.

We confine our discussion to potentials alone for

this chapter and come to the experimental phase shifts and

scattering comparisons in the next chapter. Another approach

of using multimeson resonances for NN Interaction has been

due to Scotti and Wong (71) who use relativistic partial

wave dispersion relations embodying single meson exchanges.

They also have to postulate a scalar resonance like others

in the field. They also introduce derivative coupling to the

•r — vector meson on the grounds of contributions (coming

to anamalous magnetic moment of nucleon) from j£tT -exchanges,

but our work in the present phase will discuss these points

later. It is also not clear whether the couplings and cut-

offs (to be discussed shortly) correspond exactly to those

of field theoretical definitions and a detailed comparison

with their approach has still not been made.

Historically it is interesting to note that the

presence of vector meson was pointed out by Breit (72) and

Sakurai (73) in 1960. Breit' s approach was a consideration

of his own reduction (which has been discussed in Chapter III)
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and was also due to observations of experimental facts

especially the spin orbit effects in the scattering data

including electron-nucleon scattering experiments. But the

mass of the particle could then be not fixed exactly.

Sakurai (73) also discussed, almost at the same time in a

general article, the whole approach to strong interaction

physics, seemingly defending the meson-exchange processes

and regarding them to be responsible for NN force. Later on

\j) . P mesons were confirmed supporting these observations.

A similar phase exists today in the controversy about scalar

mesons because experimental stage of affairs has not yet

provided the final word. We feel that a scalar entity (may

be even as an enhancement or S-wave ~TT—Tf resonance) is

most likely to occur in nature and experimental data on

nucleon-nucleon scattering can not be fitted without such an

entity. We shall discuss shortly the idea of purely

relativistic nucleon-nucleon force.

Another group which practically took the similar

approach to that of Bryan and Scott and actually just before

theirs, consisted of Japanese physicists, some of the impor-

tant work being published by Hoshizaki, Otsuki, Watari, and

Yonezawa (74) and by Sawada, T/eda, Watari, and Yonezawa (75).

The latter eliminated the intermediate step of potentials

and went directly to scattering data but their physical

contents appear to be almost the same as those of Bryan and

Scott.

Having given an idea about foresent nucleon-nucleon

potentials we now proceed to discuss as to how our potentials
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compare with Bryan and Scott and also with best phenomeno-

logical models of Hamada and Johnston (76) and Lassila, Hull,

Ruppel, McDonald, and Breit (77) which would be denoted (HJ)

and (YALE) respectively. From last chapter, we can always

write our potential in the general form

At present we consider only the scalar, vector, and pseudo-

scalar meson exchange interactions given by (III-3.1) ,

(III-3.2), and (III-3.3) and their Pauli forms given by

(III-3.21), (III-3.36), and (III-3.44) respectively. The

phenomenological groups have also cast their nucleon-nucleon

potentials in the form of Equation (IV-1.1) but without

velocity dependent terms and Bryan and Scott have reduced

HJ quadratic \JL
XS) term into these forms. Furthermore, since

the scattering states of nucleon-nucleon system can be

divided into isotopic spin singlets and triplets, arising from

the requirements of charge independence [De Benedetti (41)]

the potentials may only be unique for iso-singlet or iso-

triplet states. The requirement of charge independence is

that the nuclear forces between two nucleons be independent

of the charge states. In other words the total isospin

is conserved and forces are independent of T^. . Thus the

forces (y\y\) = OjO = C£h) . Charge symmetry is a

special case (fTiT) ) =-[$>$>) . Conservation of isospin

splits nucleon-nucleon states in to T= O and T=- d. states.
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But the Hamiltonian should be independent of rotations in

I-spin space. This implies that it can contain only scalar

quantities formed out of i. "U^O an(j 7J^ • Only two

such linearly independent quantities exist. They are X.

and JjZ C0 'Z C
^j.

There is an alternative set d_ and X-p- ^(zL+Z^Zf^)

where the latter is denoted as Isotopic spin exchange operator.

Exchange operators of similar type can be defined for spin and

coordinate exchanges. The spatial exchange operator is also

known as Majorana operator and for the case of two particles

of equal mass in the CM. frame it reduces to parity operator.

Thus the exclusion principle can be rewritten as

^r V rr - ~ ±

C_i)
L + S+T= _ ±

-%

If the electromagnetic effects can be neglected,

then T*" becomes a good quantum number. The questions

regarding the effects of charge independence and charge symmetry

on the scattering cross sections have been summarized by

de Benedetti (41) . The phase shift approach is simple as

T— 4- phases are determined by \
3
~f>

scattering. But

T"^- O phases in general are less certainly known because

of difficulties in y\~\=> scattering, etc.
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Hence the most general Hamiltonian can be written as

CV+ r £,) .f£lJ VJ . Also we

make a hypothesis that nucleon-nucleon force is a purely

relativistic force. This is a simple attractive model which

will prove later to be reasonably successful. This requires

that the scalar meson masses be the same as their correspond-

ing vector particles. The Pauli form as given by Green and

Sharma (54) is obtained by adding (III-3.21) and (III-3.36).

Thus

+ <v^> (**>. ^w) + ^ c2-?;-a ^63]

which is a purely relativistic scalar + vector (also called

five vector model) meson exchange force. Together with this

the pseudoscalar meson exchange force as given by (III-3.44)

(35C- ±^)
is also purely relativistic in the sense that its static

limit vanishes as is the case for (IV-1.3). This model thus

has many essential features of nucleon-nucleon force that

are experimentally established. We have the following mesons
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[U?.*)
?**,TY

] T-O T= 1

The Yukawa form for each meson is taken to be

where

V

(XT- 1-7)

The radial forms can now be expressed as

and

•3)

T 3

and

(T2T-±'S)

Since charge independence requirements [De Benedetti (41)]
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decouple the contributions of T = and T = 1 mesons , we

can now compute the contributions of various mesons to

T = or T 1 potentials if the values of the coupling

constants are known. Since this was a preliminary study for

a comparison, we took the pion-nucleon coupling constant as

determined by Hamilton and Woolcock (78) from 77- N scattering

analysis, (14.7) in above definition. This gives the poten-

tials in Mev and range in fermis. The results for potentials

associated with (Isoscalar and Isovector) Tensor, spin-spin,

and spin orbit operators are presented in Figure 1. The

mesons contributing to each potential are shown by (+++)

and (...) symbols and by UO and P in Figure 1 we mean

(tO-f- tO^ ") and C P"f~ Mi) contributions but care

should be taken in noticing, for example, that
(_
UO^ . P^ \

do not contribute to V^ and \A- at all, and that (77" >? )

do not contribute to ]/[_ $ The superscripts on poten-

tials denote the isospin value. Thus Vj- for (HJ) the

dashed dot curves, and (YALE) dashed curves, are of opposite

sign as compared to Bryan and Scott (continuous curves)

.

This, as we see, can be interpreted as due to different

couplings between lO and *V) mesons, which contribute with

opposite signs to the tensor force. This shows how Figure 1(A)

can be interpreted. For V/
$
= V^ the (jd and vj contri-

bute with the same sign as Bryan and Scott's and meson

theoretic potentials give opposite results to phenomenological

results at inner distances as seen in Figure 1(B). The spin

orbit effects for isoscalar states areeentirely due to (iOj-HO)
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and all potentials beautifully agree in Figure 1C. Now we

turn to isovector tensor potential Yj- and see that here

the outer contribution beyond 1.4 fermi is only due to light-

est mass "//"meson. This will guide our Born phases in the

next chapter for higher angular momentum states. At the inner

distances we have P meson playing an important role and

thus the result is a sum of contributions of opposite signs

and parameters can be adjusted to include the phenomenological

or Bryan and Scott range (Figure ID) . Spin-spin potential

X/J" is also satisfactory (Figure IE) but spin-orbit
V CT<T

potential Vi i needs some more adjustments (Figure IF) .

Furthurmore we should notice that our present theory has to

modify the behavior of potentials for inner distances and this

will be based on theoretical and phenomenological cut-offs

in the next sections but at the same time will give us more

lattitude and parameterize the uncertainties about nucleon-

nucleon force in the region where many difficult questions

are yet to be resolved. It was only for these reasons that

Bryan and Scott did not consider S-wave scattering in exact

analysis and put all potentials to zero within the distance

of about 0.6 fermi. We postpone our discussions for central

and velocity dependent potentials for a later section and

conclude that without any adjustments the agreements are

very encouraging. In the next section we show two different

ways of dealing with velocity dependent potentials and then

give an account of phenomenological potentials with velocity

dependence, which can be compared with our velocity dependent

form factors

.
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Covariant solutions of Bethe-Salpeter equation in

Schrtfdinger like reduced form have been worked by Biswas (89)

and Green and Biswas (88) in instantaneous impulse approxi-

mation. They also get velocity dependent potentials and then

go into effective potential approach.



Section - 2 Methods For Treating

Velocity Dependent Potentials

In the last section we have compared various

potentials (isoscalar and isovector) as contributions due

to T = and T = 1 pseudoscalar , scalar, and vector mesons.

Hence if Vr -t
denotes the total potential due to T =

and T = 1 mesons, we can write it as

vro^ « V
lo) + (T (".t (l,JV l"

where ^""D • "C ) is the state dependent isospin operator

that is analogous to spin-spin operator and has value (+1)

for iso-triplet states of the two nucleon system and (-3)

for iso-singlet states, in analogy to (q±U)
% fi±t*-) ) .

If we denote

then we can write the total potential using (IV-2.1), (III-

3.21), (III-3.36), and (JII-3.44) as
{over)
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This can be rewritten as

The meanings of ^ S ; ^ and ^j are defined by

comparison with (IV-2.3) and A) is defined as

Now we go to the effective mass or effective potential method

of treating velocity dependent terms.

(i) Effective Mass Method

In this approach we make use of a transformation



which allows our Schrfldinger equation with velocity depend-

ence to be placed in the usual radial form with an effective

potential which turns out to be energy dependent. We write

SchrOdinger equation in the center of mass frame as

M

Defining

and

we obtain

4l « J^o?

(^GE-2-'7j

+ £i C-^-kT)+ (?»». a
8 w; us, + or. *; t^ +-

Let us assume that we are considering such states of two

particle system which are not coupled by tensor force and

this is done only for the simplicity of notation because the

tensor force does not involve any velocity dependence. We

have thus only to be careful about £- value dependence of

wave functions that are involved with velocity dependent

terms. Hence we can write our wave function in spherical

polar coordinates as
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Ordinarily tensor force mixes different J^_ values but let

us confine only to uncoupled states. Then we can write

+ (f• t) LS + Slx 0^2 )%A = HU-H) %A

where we have used the following relations [see Schiff(79)]

and

These ©©fit© item associated tefendre equations and the

expansien of Laplaeian iftt© Spherical polar coordinates.

m redue© (IV-2.1Q) int© »©#© conventional form as
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This looks like ordinary form of radial Schrfidinger equation

except for the last term arising from the gradient term in

the potential. In an exact numerical method of solving

second order differential equation, it would create no

extra problem to deal with this term since the first

derivative of the wave function is always evaluated. How-

ever, for the work here, it is convenient to eliminate it

using the transformation

/- ^ (azr-3'12.)

Letting primes denote differentiation with respect to Y" ,

we deduce the following relation by differentiating twice

We substitute (IV-2.13) into (IV-2.11) with definition of

%JL from (IV-2.12) to obtain

Hence our effective potential is
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(JET--2.''^
We just want to conclude this approach with the comments

that the /i_ -f$\ factor occurs in the denominator and

therefore it is not possible to see the explicit contributions

to potential occuring from each meson or the separation and

identification of various terms arising from velocity

dependent terms. Since it is fairly important to understand

these effects in the One-Boson-Exchange approach and in the

study of velocity dependence, we decided to look at the

problem in Born approximation where another method of treating

velocity dependence is possible. This second approach has

further advantages which will be discussed in the next

chapter on phase shifts.

This effective potential method is, however, the

only one known for exact solution of the velocity dependent

problems and it should be born in mind that it imposes

certain restrictions on potentials whose physical nature

should be examined carefully.

(ii) Direct Method In Born Approximation

We can write the Sohrddinger equation in this case
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also as in (IV-2.4) and (IV-2.5). Our intention in this

approach is to make use of Bessel's equation and recurrence

relations associated with them. Thus it is possible to do

so only when the analytical properties of the wave functions

are known. The "potential" in this approach is really the

effect of various differentiation operators on known functions

and is really (y S? ) • This is reduced into an effective

potential by dividing through <g , i.e., N/ej}- * 2" 0*$)
}

which is only a temporary process to look at the overall

behavior of potential because, for physical quantities and

experimentally related values, only the expectation values

or overlap integrals among wave functions are involved.

But nevertheless we decided to look at the effective potential

in radial form to get some idea about the phase shift work

where this ambiguity would disappear. The Schrodinger

equation is written as (IV-2.6) and •g" given by (IV-2.7)

but we do not group the velocity dependent terms with kinetic

energy and write

By uaing (IV- 2. 9) end (IV-2.10) wa have

and GUT-*' 17)
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The radial parts only contribute in the scalar product in

the latter case. Hence angular parts separate out and we

get

With the transformation

we get

and on substituting in (IV-2.20) we deduce

+ 4> C Tl - 4£^.0 -a"] + r^ »<,

.

Let every potential be set to zero, then the field-free

solution r
ii C*") satisfies (Tj.'^, «o)
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Now we use the radial form of the Born approximation and

require that, to a fairly resonable extent, ^o^O ZCfoCt*-*)

For the velocity dependent part, the wave equation reduces

to (4MpY^); (25T-2-.249

(jZT-2.'^")
where

+ IT. S) U US + (S.O UJJ - £__^ ^teH

We have grouped the velocity dependent parts in the last

bracket. Now we make use of a recurrance relation among

Bessel functions

which reduces our effective potential to
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which is the final form of effective potential in this

approach. Now we see that in this case we do not have

(d--(~ <P J factor coming in the denominator so it is

possible to identify contribution to potential from each

meson and also we can identify the contribution from each

velocity dependent term that we started with. This approach

has been mainly used in establishing the contact with

experimental data through phase shift calculations.



Section - 3 Phenomenological Velocity Dependent Potentials

We pointed out in Section - 1 of this chapter

several groups working on the problem of nucleon-nucleon

force through meson exchanges. Similarly the importance

of velocity dependent potentials has also been recognized

by many people in the field from phenomenological point of

view. The concept of velocity dependent forces in classical

physics, atomic physics, and nuclear physics (including

nucleon-nucleon interactions) has been recently discussed in

a historical way by Green (81) in a review article. This

material also embodies the meson-theoretic nature but an

attempt has. been made to simplify the physical nature of the

problem. Thus the velocity dependent, tensor, spin-spin, and

spin-orbit force concepts have been described by Green (42)

in analogy with simple classical electrodynamics.

In this brief survey we mention only the major

similarities of such phenomenological attempts in this

direction. It is interesting to note that Marshak and Okubo

(82) commented in 195 8 that nucleon-nucleon scattering data

was not represented satisfactorily above 150 mev with just

a linear term in momentum. Then they discussed a possible

quadratic momentum dependence of the type of terms coming

from Breit and Kemmer vector meson exchange interactions

discussed in the last chapter. Simultaneous work was done

by Moshinsky (83) which is a detailed work to understand

96
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two body velocity dependent potential in a nuclear structure

calculation. This includes central and spin dependent forces

in the discussion of shell model level-ordering utilizing

Racah algebra and irreducible tensors. Another contemporary

approach on the nuclear many body problem by Green in the

same period will constitute the last section of this chapter.

An interesting and useful phenomenological approach

of A. M. Green (84) on the nucleon-nucleon problem has been

to use the form of potential as

If we use the methods analogous to those used for effective

mass method of the last section, we get analogous effective

potential containing the factor £ ±-h H W Ct)Z) in the

denominator. He then parameterizes the form factor with the

form

and

where (^ and >*• depend on nucleon-nucleon scattering

states (e,j.<S *».lif
; ^C = 3) •

Parallel developments in this area are due to

Razavy, Field and Levinger (85) and also due to Rojo and

Simmons (86) . The former group takes the potential as

YCr, p) m -Vp 3|(r) - !_ |5* £Mfc\
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which for special choice of j^ — ~J^ =. "U" and

*\ — d- in this notation becomes identical to our central

and velocity dependent terms of purely relativistic (uJ-f-m^)

case if U" is Yukawa form and k^ V — *- / *4 • But

instead they specialized to analytically solvable potential

forms. They took in one case square well forms in which

they could get analytic answers for S-wave phase shifts and

simple forms for others. In another case they chose square

well "Jost" potential in which they employ techniques in

Born approximation that are similar to our indirect method

but involve only one integral to be evaluated. This is so

because of the simple form of their potential. A comparison

of form factors is therefore not easy.

Rojo and Simmons use the same structure of potential

as A. M. Green

and we have carried out a detailed study of their work.

Their form factor is

but the central part differs in their two sets of potentials.

They also reduce them to effective potential formalism. Our

detailed study revealed that a simple criterion for comparisons

among A. M. Green, Ro jo-Simmons, and Green-Sharma potentials

could not be established if the central and velocity dependent

terms were included together. The main reason for this

being the different ways of parameterizing the potentials
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and also behavior of our potential at shorter distances.

Especially until we reached the best set of couplings and

cut-offs, this comparison would not be very meaningful in

the radial form. It may well be the case that, when momentum

dependences are involved, differently looking effective

potentials may give the same phase shifts. Hence a true

criterion was left for phase shift calculations. Instead of

this we decided to compare the effective masses in various

cases to get an idea of the range of velocity dependence

when these factors occurred in the same place (i.e., in the

denominator) in the effective potential (in the cases that

are compared)

.

We might also mention a very recent preprint from

Tabakin and Davies (87) describing the velocity dependence of

the form

"2-L-2-

V ( r, p) = - V, (no + K
2
- e A

^ Vz(y) + V^(r) j^e^

which reduces to our form in the first term. But it is not

clear whether the physical nature of the problem is less

strongly velocity dependent, as they put it in the above

potential.



Section - 4 Comparison Of Velocity Dependent Forms

Before we go to comparison with phenomeno logical

velocity dependent form factors, we will sketch the results

that are obtained if the velocity dependence is used with the

direct method. This was shown in Equation (IV-2.28). In

order to see the radial dependence, the last terms of (IV-2.2 8)

with f~ ^ ^"
- ~T were used to group together central

and velocity dependent terms. The trends were reported by

Green and Sharma (54) and are shown in Figure 2. The potential

is thus energy dependent and angular-momentum dependent and

thus Jt**€> j &CM = 3©
;
ioo <v*d 3»£OMeV are

specified for the effective radial potential thus obtained

which are shown in Figure 2a. Also we chose the wave function

for deuteron as originally used by Green (52)

with

^ C2
- = a Cfc^-Kfc) K^*b ^ ^

(as required by normalization) . We neglect the non-spherical

contribution for an estimation of the effects. Thus the

direct approach was applied to deuteron wave function and the

results are shown by curve labeled (d) in Figure 2a. We see

that the potential thus obtained (purely relativistic $*fc>^(u)+-H)

being used) is attractive for deuteron, is attractive at lower

100
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energies, and becomes strongly repulsive at higher energies.

This is what is precisely the requirement for the S-waves to

become negative at higher energies and is normally met by

using a hard core. The exact phase shift calculations will

show no necessity for such a hard core. Figure 2B shows the

same results for A— 3 Oy\cL Bclm - 3o , loo £Z*4 32.0 Mev,

Now we turn to a comparison of effective masses.

In every case we can put the central and velocity dependent

terms in the form

> ' ^rhU^cL ^
fV| (v) l

^ ^ MIX) / '

where C^T- 4 '*-*)

G
M(V) 1M * __i r , ±-4- 2-W

L

and

fM(T) i _ ^

where J" is Yukawa's form for purely reiativistic case and

^AMGj^ and *X ^/^ M are given by (IV-3.2) and (IV-3.5)

respectively. This radially dependent factor occurring in

the effective potential can be interpreted as the effective

mass of the system and Figure 2C shows a comparison among all

three form factors. We observe that the agreement is encour-

aging. A detailed look at the radial dependence shows that

we tend to drop to zero at 1.2 fermis where the others do the
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same at 1.6 fermis. A larger coupling (to ^"60 mesons) in

our case could do the same. The behavior at short distances

can be attributed to multiple meson exchanges and pair

production processes.

Theoretically, Green's (62, 64) work on higher

order field equations showed that infinite self energy terms

were eliminated when certain algebraic relations were satis-

fied. These relations were mentioned by Green and Sharma (54)

and the first correction gives us a subtractive meson which

is equivalent to a phenomenological cut-off. In the Figure

3A we show how our effective mass will change if higher mass

subtractive mesons with proper weights would occur in a

realistic way. This approach not only removes the infinite

self energy terms, but reduces the singularties in various

terms of the potential and at the same time brings us closer

to the phenomenological form factos . In Figure 3B we give

the modification to the Yukawa form due to these subtractive

conditions. The functions X"2" through CT are discussed by-

Green (62) in detail [Equations 2.5 through 2.8 of (62)].

Physically interesting consequences and interpretations of

these conditions in terms of indefinite metric in field

theories arise but do not constitute a part of the present

work.

Thus we have seen that the total picture on velocity

dependent terms that emerges out of One-Boson-Exchange —

Potentials is a very encouraging one and this leads us directly

into a more meaningful area of direct contact with experimental

data. In the next chapter we calculate the phase shifts in
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Born approximation arising from this approach and compare

them with the experimental facts.



Section - 5 Velocity Dependence

In Nuclear Physics And Non-Locality

It is exciting to note that Green, et.al [References

(31) through (39)] have worked extensively on the phenomen-

ological velocity dependent potentials in nuclear physics.

Thus the treatment of Schrodinger equation becomes quite

difficult but the effective potential approach was used by

them in this period (1955 - 1960) . Thus the Schrodinger

equation was mostly written as

I ~G~ L V MM + MM MCy) -J

_ \J gw
tzr- 5"- ±)

with

MCy)
1-f /5 £tr)

where p, V are parameters and £Xv)had been taken real

or complex depending on the nature of the problem.

Wheeler (40) was first to recognize the connection

of velocity dependence with non-local operators in his work

on nucleon-nuclear potentials when one could write
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where

and symbols are self-explanatory. If the range of non-

locality is assumed small then one can write the kernal as cx^

smeared h> function.

For small non-locality V [= Y4 i? T and with Taylor

expansion around b -P =. O Ocr\^collection of terms in

powers of h , we get

IC L

4- fcCr) V 7
"

I v//£?; = £" ^J
where properties of £ functions ( ^ J d^(f ) df = ±. and

£> f^3^~^^f )^f ~ ^A. ) make odd powers of k> vanish.

Hence we see that the non-locality to a certain degree can

be brought into a velocity dependence. The physical nature

of correlations in nuclear phenomena may be thus accounted by

velocity dependence. These results have been shown by Green

(81) , Moravcsik (24) , and Mott and Massey (98)

.

Thus we have concluded our discussion on velocity

dependence and now we embark on the difficult task of

confronting ourselves with the nucleon-nucleon scattering

phase shifts in non-relativistic energy (elastic scattering)

range (0 - 320 mev) with Born approximation. With this
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technique we hope to extract substantial information on

nucleon-nucleon force in intermediate distances ranging from

one to two fermis. This will be done in the light of the

One Boson Exchange Potentials derived so far.



CHAPTER V

PHASE SHIFTS IN BORN APPROXIMATION

FOR ONE BOSON EXCHANGE POTENTIALS

Section - 1 Classification of Nucleon-Nucleon Scattering

States

In this chapter we will calculate the phase shifts

corresponding to our One Boson Exchange Potentials developed

in previous chapters. We confine ourselves to Born approx-

imation because we want to treat velocity dependence in a

direct way without going to the effective mass approach. We

also want to estimate the importance of individual meson

contributions and to examine the contribution from each term

in the potential. At the same time, we would like to see the

total picture of scattering states, judge the validity of

Born approximation for lower angular momentum states, and

compare these results with exact phase shift analysis. We

also wish to study different forms of vector meson interactions.

It may also be possible then to extract some information on

the nature of nucleon-nucleon force and on possible corrections

to the Born approximation. The exact phase shift analysis

within the framework of the above potentials for ^

~

waves and

higher has been reported by Bryan and Scott (68) and, subsequent

to our publication, they have incorporated the effective
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potential approach to include velocity dependence in the

exact phase shift calculation code. Thus we can not over

emphasize their original results because of their neglect

of velocity dependent terms. However, there are many

features of their work that will be useful for discussion

of the nature of the problem. All these reasons made us

choose a Born approximation approach to nucleon-nucleon

scattering.

Before we proceed we want to sketch the connection

of phase shifts with experimental data. This itself is

quite a detailed study but the voluminous work of Livermore's

group (references 90 through 93) has enabled the field to

have a unique set of phase shifts which utilizes scattering

and polarization data to determine nucleon-nucleon elastic

scattering matrix at energies of 25, 50, 95, 142 and 310 Mev

in laboratory frame. This includes the analysis of^f> ; />)

and vVl/jO data. We shall keep coming to the discussion

of these whenever it is necessary, and these will form the

basis of our comparison. The most recent representations

are due to Arndt and McGregor (93)

.

Now we proceed to classify the scattering states

of two nucleon system each nucleon having spin magnitude 1/2.

The total spin of the system S , can be or 1 and the

corresponding states are known as singlet or triplet spin

states respectively. As is well known, the spin part of

wave function is symmetric in triplet case and is anti-

symmetric in the singlet case. Furthurmore , three types of

usual symmetric spin wave functions are known. Isospin plays
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an analogous role with I-spin components for neutron and

proton having magnitude 1/2. Thus we can get total I-spin

T = or 1 and similar arguments to those of spin hold. We

know that the quantum mechanical problem and its complete

degeneracy is removed if we know all different commuting

operators which commute with the Hamiltonian. In alternative

language, we can employ conservation principles derived from

experiments and experience in strong interactions to decompose

the hf-N* scattering states into partial wave formalism.

This can be done as follows.

Rotational invariance requires that the total

angular momentum g[ be a constant of motion and therefore

states with different ;j- values will not mix together. Also

we have seen that only singlet and triplet spin states are

possible from vector addition theorem. If we adopt a general

notation ^ ' (J ) -j- to represent a state of the two

body system in analogy with spectroscopic notation (as is

usually done) , then we get the following decoupled states.
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where states in each line could, on the J" conservation rule,

get mixed together.

We know another tested and well known principle of

Conservation of Parity in strong interactions . If the parity

is conserved, then there should be no transition between

states of even parity and odd parity. The concept of parity

operator implies spacial reflection (jt ~^> —X ) through

origin and it is idempotent. Its eigenvalues are given by

(— . The states with even (odd) angular momenta have

even (odd) parity. Thus the states with different parity can

not mix and we have furthur classification

oDJ)EVSI
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states that the wave function of two nucleons must be

antisymmetric relative to exchange of the space, spin, and

isospin coordinates. This, therefore, restricts the

states as follows

^.

CE-l-3)
But isospin conservation demands that the states of T =

do not mix with states of T = 1 and this therefore classifies

the states of NM - system and also satisfies the exclusion

principle which may be stated as

or

L-\- $ -f~T = o*M.

Thus we get for T = states

TRi^teT even >is 67 LPt
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Both (V-1.3) and (V-1.5) completely break the degeneracy of

nucleon-nucleon scattering states. The only complication,

that will be discussed later, is due to the triplet states

with the same J" but with £ = T± } , and they get mixed

with each other. We will see that we need to define one more

additional parameter for each *J~ to completely represent

them. The tensor force operator, as we shall see, mixes the

states with different -£ values. It is interesting to note

that £" has become a good quantum number as a by product of

the exclusion principle.

Now we consider the effect of various operators

acting on these states. The operators we have already

discussed are the velocity dependent parts of potential and

the remaining ones are (o* to
. or '*)) (-£•$) LjL 7 and C^»; a.) ,

The effect of ( cr ^ < <J* ^ ) can be seen by considering the

effect on spin symmetric (triplet) functions

and

4- U) , P = (V,

{*) (rsc- 1.7;

For spin antisymmetric (singlet) wave function

where

which yield
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which yields

<<F<" ,^^)> = -3
;

(2>''*)

where we used usual properties of Pauli matrices. Since

(^d ' S ) operator commutes with T
^ 1 S

and "J" , we can write for | T
/
S
/
^.U^> state the

eigenvalues of ( /
£»5 ) operator as

which could be also derived from

and then substituting wave mechanical eigenvalues. We see

that v^- • ^ ) — O f°r singlets. Depending on the value of

Z. we have

because [_/. ;
J"J — \^JL A J which takes corresponding

<£ value for coupled states. The tensor force operator

does not prove to be that simple because it has non-diagonal

matrix elements in
\

r3~
f
JL

)
S> representation. They connect

states with JL-. "3""+
I values. The states with T^ £

are not connected with these because of parity conservation

and for singlet states the tensor force averages to zero,

identically. This can be seen by using (V-1.7b) , definition
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of S|-2_ in component form, and of spherical harmonics in

terms of Xj ^ ;
7^ . The values of tensor force operator

for coupled triplet states were first derived by Bethe (94)

and have been also discussed by Hulthe ' n and Sugawara (21).

Since JL is not a good quantum number, the eigenfunctions of

TjT^ and Jl_ are given by spin angular functions.

where ]£ are normalized spherical harmonics, %» are

triplet spin functions and (^ ^are Clebsch-Gordon coefficients.

The remaining task is a lengthy calculation which determines

the matrix elements of tensor force by calculating

(3T-/./3;

where integral over d~
f

U> and summation for spin coordinates

are implied. By using properties of C ^
; y

Mand the a^' 6
>

the non-vanishing elements of the tensor force are obtained.

A parallel but different mathematical treatment is

due to Corben and Schwinger (95) and Rarita and Schwinger (96)

who utilize the fact that only three projections of spin are

possible for triplets and calculate these matrix elements

using vector spherical harmonics. It is an interesting

alternative method of obtaining the same results.
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The results for all these operators are

(pp- 4-'l-H)

--C*H) fcM-0
(^ /(/^

^/ / 5/*J TH> = -
5.^-4-1

<^-H |5ia) J^H> -S.(^4-2l;

These completely specify effects of all operators on all

states of fJ M - system.



Section - 2 Explicit Forms Of One Boson Exchange Potentials

Now we proceed to reduce our potentials from

functions to explicit forms which will be then used for the

calculation of phase shifts. In this approach, the radial

behavior of many terms will become clear. In effect we had

done this when we compared various potentials for scalar, vector,

and pseudoscalar cases. We also want to remind ourselves that

both theoretical and phenomenological reasons support the

modified Yukawa form with Green's subtractive meson as given by

'— V y ^J

where V- *

=fc ' *r (X--2.-2.)

Thus /\ can be interpreted as a parameter which reduces

uncertainties in the behavior of fi{l\f potentials for inner

regions

.

This form as well as more general forms of this

type have been obtained by Green (62, 63, 64) in meson field

theory on generalizations of Podolsky's (43) treatments in

quantum electrodynamics. These were also discussed in Chapter

IV when we compared our velocity dependent form factors with

those of phenomenological potentials. Green showed with these

modified Yukawa forms that infinite self energies did not appear

119
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and that the various potential terms were non-singular at

origin. Later on this modified Yukawa form as well as other

conditions have appeared with different names (e.g. Pauli-

Villar of Faynman regularization) . A full discussion and

utilization of these conditions in terms of field theories

with indefinite metric has not yet been fully exploited.

From out standpoint here, this result of Green's gives a

convenient cut-off parameter at a helpful place and enables

us to allow for the uncertainty of nuclear forces at shorter

distances. This parameterization, as mentioned before,

compensates for higher mass mesons, pair processes, etc., and

forms a potential without singularities. Let

"kid —

c\rr\(L

= -&y

The general potential is written as

To=t _ uc + Ov X (y . p) + uA f>*~+ Uy +

+uis O 05
.
5*w) +4s c*r; + vLuu 2

) +

with
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For special cases, we have the following forms using (III-3.21)

(III-3.36)

,

SCALAR

**( ^-**#)

vi, -£
(

fc
*

4>. ££"'«*#-)

U

VECTOR (Green's)

Y

U
vT

Vv^ = (^ k/L
V

y,

0^ = -i ^i— &VV3K^^e

H (^-^J
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PSEUDOSCALAR

= V{L -*• =o

< 2- SS

01 =- VT T

(^r-2-g)

BREIT VECTOR

5*r

^ -

B

2- V 2-V*

w
is

Utt~-

a. ^«K) e fcI cai-^i

V~
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KEMMER VECTOR

We have carried our various differentiations and used notation

that is obvious or is defined in this section. Again the

relativistic nature of these interactions in apparent. The

main static Yukawa type term in various cases cancels when

the same mass T*1
, coupling <3- , and cut-off mass 'H^

are used for the scalar and any of the three types of vector

mesons. The purely relativistic forces in the three cases

are, however, quite different and it is essential to carry

out a careful study of them. This will form the subject of

the next section where we present the phase shift formulation

in Born approximation. Care should be taken in interpreting
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these formulae because both isoscalar and isovector meson

contributions should be added properly y C°) +- Z.°\ X.^ M U
\



Section - 3 Born Approximation Phase Shifts

For Velocity Dependent Potentials

Starting with first principles, we examine the

meaning of Born approximation for velocity dependent

potentials and the nature of restrictions arising out of it.

Assumptions

1. A Schrodinger-like equation can be written for such a

potential with V(r
;

£*) replacing the usual V(r)
.

2. The coulomb forces are small and can be neglected for

Lf'tO scattering.

3. The potential form factors are short ranged for reason-

able masses and couplings in modified Yukawa forms.

4. The modified Yukawa form occurs with either the theoretical

or phenoraenological cut-off mesons in the form

TM- t^(^- C5J> ,

as given by Green (6 3, 64) . Hence the SchrdJdinger

equation can be written for scattering states of two

nucleon system as
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where £ is the energy in the center of mass frame. Let

the solution of this equation, without interaction, be <^ .

Then we have

C-
vl 3 | = **-§,

Multiplying (V-3.3) by jj£~ and (V-3.4) by
<J>

and subtracting

we get

If the solutions <p . v^ exist, then (V-3.5) holds and is an

identity. Thus 5) vp are supposed to be regular functions

with meaningful second derivatives. This also implies that

the operation VlV} fi)
$* is meaningful because derivatives

up to only second order occur in the potential operator as

given by Equation (IV-2.3) (denoted by ^To~b )•

We want to consider for a while only the left hand

side (L.H.S.) of (V-3.5) with the Green theorem in mind. The

conditions, which two scalar functions _££. and ^ must

satisfy for Green's theorem to be applicable, have been

discussed in detail by Korn and Korn (97) and also by Mott

and Massey (98) . Thus a volume integral of the above expression

can be changed by Green ' s theorem into a surface integral

provided that the volume integrals are taken over an open

singly connected bounded region V which is bounded by a

two sided regular closed surface 5 • All functions are

assumed to be single valued through out V and on S .

Let us choose our volume to be bounded by two surfaces

S| and ->2_ with radii £r. and £- . In the limit we
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shall make £|~>o and ^ -^ °° • This will impose

certain restrictions for the integrals to be defined in this

limit and they will be now examined in the light of Velocity

Dependent Potentials. There are no singularities in the

region V and the T vanish at reasonable distances (a

few fermis) . Thus with Green's theorem and L.H.S. of (V-3.5)

"< " S^Sfti^ (S-3-6)

where the contributions from the enclosing surface S are

only due to ^ and 5 . The surface S
f

shrinks to zero

area when &J -±, o and in order for the surface integral in

(V-3.6) to exist we need two requirements. (1) )¥ ; 0_

to be finite and continuous at origin . (2) V !J? ; V j?

C^ye^-eM^, ) be also finite and continuous at origin .

Those are the requirements of a quantum mechanical wave

function as discussed by Schiff (7a) and the boundary conditions

of this type are also discussed by Jackson (99) and Morse and

Feshbach (100) . Thus the requirements for this limit to

exist are the requirements which are usual to the physical

wave function and the velocity dependence of the potential

does not affect these arguments until we consider the right

hand side of (V-3.5).

Thus the only integral that survives in (V-3.6) is

over surface S^ which has to be considered when €r^—^ oo

i.e. in the region where ^ and <3? take on their asymptotic

values. In order for the limit <£, -> o to be meaningful,
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the integral

V
should exist. Whether this imposes certain restrictions on

velocity dependent parts or on other singular tensor and spin-

orbit parts of U , will be seen in the following. We do

not go to Born approximation and try to evaluate these

conditions in the exact case. The integral (V-3.7) can be

written with the potential with the velocity dependent

part separated from the rest

M

We want to change I4 , with velocity dependent part, into

volume and surface integrals so that derivatives are trans-

formed to ~<E , the free field solution (plane wave) and

the modified Yukawa form. Thus we shall be able to see the

conditions at origin because we know the effect of these

derivatives on &_ and 3" . In the upper limit G^T* °°
,

the integrand identically vanishes because XT** all vanish.

Thus we have to consider only the limit ^j —^ o
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We use the identities

V.(|T(V!f>) = X<V<g>. <V£> -h

(TT-3^)
and

These, on application of Green's theroem (Gauss' divergence

theorem) yield (with Jj —^ O )

V

V
/ A(X- 3.11)

Now we use (V-3.4) and also note that

where the angular contributions are zero because T=TW
Using the already made assumptions (i.e. ^ ;

<£_ and
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Lv ^P )> ^"V^^> are finite and continuous at

origin) we get the condition from surface integral that ^T

can at most vary as -i_ . And the volume integral
Y

j

yields that "J~
and dJ may vary the most as y T 3 .

Now we consider IX, which gives the contribution

to the volume integral from the non-velocity dependent terms.

Thus

J-i = j|$ R^ -Kj. -^ (^.s^o + uL$ (*•?>

and this restricts the \j'$ to vary at the most as lV^3

By the term "at the most" we mean i-/CfS
-'v

\) > C\^ °)

such that the resulting integrand is integrable. The reader

is reminded that this is so because the volume is proportional

to Y 3 and the surface is to Y*
2"

. If we carry out exact

analysis with Yukawa form

v
only, then we see that

Thus the Yukawa potential without the cut-off is not integrable.

Also V^ has a £ function because

as given by Wentzel (22) . This would give a finite contribution
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from spin-spin term. These difficulties about tensor force

and spin-orbit force disappear if Green's subtract!ve meson

is present, i.e. if

So that near the origin the radial dependence of (J,

and v-y can be deduced by expanding the exponential and

we obtain

—(H-Ar)(i- av + Air*-)
2]

where only singular term is proportional to (1/y) which is

quite acceptable in volume and surface integrals at origin.

Thus if we take modified Yukawa form with a cut-

off, as originally derived by Green (63,64) based on general-

izations of Podolsky's electrodynamic treatments, we can

remove the difficulties with the tensor and the spin-orbit

forces. Also the conditions from JX^ are also satisfied as
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- (h-a-O ( i- ay + dt±r)~]

also

thus the O functions also cancel. In this way we conclude

that neither the velocity dependent potentials nor the other

potentials create any theoretical difficulties if we choose

the modified Yukawa forms with Green's subtract!ve mesons.

Thus we can meaningfully write (V-3.6), (V-3.7), and (V-3.5)

as

where ^
j
^ are functions of C ^ &

}

U) ~) and ^ 5^_

is drawn such that the outward normal sy\ is in the direction

of Y . Thus c{S^~dS^y\ and (.V < $ )

imply that only the radial part will contribute.

We want to now decompose the incident plane wave

and the outgoing spherical wave into partial waves in the

usual manner. Thus we seek a solution of (V-3.3) which, in

asymptotic form, is
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The symmetry along the *£ direction, along which the plane

wave is incident, implies Y* independence. These partial

wave expansions are given in Mott and Massey (reference 98,

page 21) .

/ (Ay) * /AtV (-fer- £M»)
h\m ^t, —^

(J5t-3<te)
Since axial symmetry about -£ exists, we can write

^=
x x

(per- 3.21)

Since the scattered part of the wave function must not have

—A- fev / A r ^
a .g, / y (the converging wave) the f\j^ have to be

chosen for each J^_ such that in the asymptotic region

In the asymptotic region "K/t'V can at the most differ from

the force solution fa (fcr) by a phase factor as the interaction

vanishes. Thus we can write
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% fr) _^ Mw far- ^f^ +$jl )

(JET- 3 '2.3)

5The constant <^_ {called the phase shift) therefore depends

on hf^ and V and will contain the information about them

which interests us. We expand (^iVX) in terms of

exponentials and collecting these terms we get L.H.S. of

(V-3.22) as

s^lkr U —

/

From the second term, therefore,

Hence

(3C-3-2S-)
and from (V-3.19) for the asymptotic form of the scattered

wave we obtain

If we can obtain an alternative expression for

yCO-) which depends on the potential, then by using
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orthonormality of Legendre polynomials we can project out a

particular partial wave. For this purpose we introduce the

integral form of Schrttdinger equation

(3T-3'.r7)
where y

with

we write

Green's function for this equation, with the outgoing part,

is given by

("31- 3 * 3 <?)

Hence a general solution is a sum of homogeneous solution

and of the non-homogeneous part

(^3Z~ 3'S)
1

)With the asymptotic expansions v J

we identify
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where oC is the angle between Y and V and ** denotes

the scattered wave propagation direction which is parallel

to Y . It should be clarified here that 'T is the inte-

gration variable which in spherical polar coordinates can

be represented by Y*'- Y f

(y
f

, V/^l ) )
while -£^

denotes the original direction of y occuring in (V-3.30)

represented by -£V = j£ f
[ A j &y (^ = o) , because

the original incident wave was propagating along the -^axis.

Now we make the Born approximation for velocity

dependent potentials by replacing ^f-y'Jby a plane wave.

Thus we have

r~ s <~ .** 4-A^'Y'

where ^~* is chosen along ^ - direction. For simplicity of

notation, we put Y f = Y for the integral in IV-3.33J and

obtain in the Born approximation

Now we use the expansions of plane and spherical waves in

terms of spherical harmonics. The notation adapted here is

due to De Benedetti (41) and Clebsch-Gordon coefficients used

are also according to its phase conventions. Thus
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fe-3.3fc)

where V. ( ^f;'
V

l ' does not depend on "Vi because

on ; — O for this case. The expansion for the spherical

wave with proper identifications of angles is

e
14?',? = £^* v

H

. *f£ (-/;* /aw tft»,")2
•

• V i%\>
f(31- 3' 37)

where we used the fact that \p •=. so only ov\ =- o term

survives

.

Now we write our potential as

where L/(p ("V contains the central, spin-spin, tensor

(diagonal part for the uncoupled states) , and spin-orbit parts

for isoscalar and isovector mesons, Thus l/y and ^a, are

only functions of (V) and velocity dependence has been

separated out for the most general form of the potential used

in our cases. The effect of potential operators on plane
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wave is

V* *,*+* = - ** e^ fc

We can also write

and thus

• YjJ
t\

; 0) j ($E-3 , ifo(bj)

and with the use of additional theorem for spherical harmonics

we obtain, using C_i given by De Benedetti (41)

•h fe'+O

t V+,^'°>
Now we substitute the results obtained in equations (V-3.36)

through (V-3.40 d) into (V-3.35) and obtain
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IT rill

Using (V-3.40 d) for the last term in the above equation and

integrating over ^^T/ljand using the orthonormality condition

J"

1

~TT~ P ^fT~

the sums over ^ and Tvj
; are removed. Thus we obtain

various orders of A.*! C kf) contributing as

- *>t»Aiv)j (j,
l
fy_ckv) i^w^y +-

+. lA^J^ J.** (jM) J..CAY) + *.*''Jttg Jew).
4nT\ &L Jaw <%.->_]
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CSL~ 1-HO 4,)

and we obtain the final expression as

P rem

Equating two expressions for -ji^) as given by (V-3.26) and

(V-3.40 i) , and then projecting a partial wave by multiplying

through t#/ C^en&") and integrating with respect to

(CrAS-* i and using

r^VW = $*' fer)
(S>3 4o£))

we obtain

= - a
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This result agrees with the result obtained by just carrying

the partial wave expansion in Schrfidinger 's equation, and

then letting the various derivatives operate on radial

functions when the radial form of the Schrodinger equation

is obtained by multiplying with Tj^r C ĉ > 9-) and using

orthogonality condition. Then the phase shifts are obtained

from the field free radial equation and radial Schrodinger

equation by partial integration. This identification is made

clear if we substitute A,n Cf^Y'J for radial wave function

in the Born approximation and identify

Thus we can write the phase shift expression alternatively as

CZSC- 3.4-1. <?=u)
which is the form of phase shift expressions used in the Born

approximation for uncoupled states.
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Let us for a moment concentrate on what we would

get if we did not make Born approximation. A careful work

on radial form of the equation gave the expression

Y"

The disappearance of e,
K °4. is due to substitution for_^

and not ^ , the free wave function.

In the last case we chose our asymptotic form

(which was regular at origin) to be

*JL ' ^*> ~£7—;

Alternatively, if we chose another form (regular at origin)

as

» r

(^-3'^))
then our analogously derived expression is

in which L.H.S. is the same as we obtained in the Born

approximation. If we chose still another form as

\j£0 ^F^? f/^v) ^hi^^^Ckr)
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where /y/fCiM^ is spherical Neumann function, then

the expression for phase shift is

These expressions have been discussed by Mott and Massey

(reference 98, page 75) in the light of choice of asymptotic

form, regular at origin, and the Green function method of

most general solution of a second order differential equation.

If we made the Born approxiamtion we would substitute

fet&f) for /\£
}
'Md <?rr ^^-n and thus the expressions

for phases in the integrals would be the same in all three

above cases. But the left hand sides of the phase shift

expressions, although they look different, yield the same

result for small phase shifts when

is satisfied. In our calculations, we have chosen the

tangent representation for uncoupled phases. At this point

we would like to remind the reader that there are other

representations for getting phase shifts and in some of the

iterative schemes, the Born approximation appears as successive

approximation. Thus we can call them first, second, ... etc.

Born approximations and the formalisms are presented in

various books (Wu and Ohmura (23), etc.).

When we make Born approximation we have real

quantities in the integral on R.H.S. provided that 01^; j^)

is real. But if we relate the scattering amplitude to

matrix and then require unitarity conditions, then we have
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complex phase shifts in general which are equated to a real

integral only. Arndt, Bryan, and McGregor (101) make a

discussion in this connection to make unitarity correction to

their real Born amplitudes and fit fipl scattering data

(with four mesons) with O.B.E.P. The conformity of these

corrections with dispersion relations and a geometric picture

of such unitarization has been discussed by Moravcsik (102)

.

One useful result is that the "true" phase S is related

with Born phase as

&£ = £:
'7WK S

f = ^C 1^) (izi-s^/W)

Thus the corrections are about 14% in the upper limit for

uncoupled phases for a phase shift value of 30°. As Born

approximation breaks down for very large phases, this point

does not affect us seriously. Bryan and Arndt (69) have also

indicated the differences due to /(-matrix or if- matrix

identification of Born amplitudes in their calculations and

those of the Japanese group. These arguments are more

complicated for coupled states and will also be neglected for

simplicity.

We have sketched in the last chapter that non-

locality to a certain degree of approximation is equivalent

to quadratic velocity dependent terms. Mott and Massey (98)

give a generalized phase shift formula for non-local potential!
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involving a kernel and double radial integration. This

generalization is the same as replacing U(y) G\ (y)

of local problem by J K/_(^; yO &,/_ ("*') <^Y 7
•

Thus

apart from this, they give an extensive discussion and

examples on non-local potentials and on velocity dependence

in its connection with non-locality.

(i) Successive Born Approximation in Integral Form and

Validity

In the following we give an integral equation,

equivalent to Schrfldinger equation from an academic point of

view, to apply Born approximation as a successive approx-

imation. The general nature of the nucleon-nucleon force

problem in OBEP is so much numerically oriented that an

extensive analysis of II-Born approximation is as complicated

as the exact numerical integration. However, since the

detailed numerical analysis even for first Born approximation

will be found quite tedious, we leave the numerical test of

this problem as an open question and present the formalism

only. This will help us in understanding the Born approx-

imation for coupled states also which will be treated in the

next section. The approach is the Green function technique

of solving differential equations in the integral forms, and

we use its partial wave expansions. The Schrfldinger equation

is
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where

Car-*' 4")

we write (3ZT- 3 • ^ U)

where

We also require that t£
' (Y) have the asymptotic form

T" C^— 3"77)
The solution 'Y

y can be written as a sum of homogeneous part-

solution and an integral in terms of a kernel corresponding

to an inhomogeneous part, i.e.

with the particular solution of homogeneous part
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The function G\(r
/
yLl ') is called Green's function for

the operator (% - £ ) and satisfies

By expanding ^0?) in a complete set of orthogonal

functions Wj*j(^f
) f and usin9 (V-3.45), it can be

shown that the coefficients of expansion and Green's

function are given by the following expressions and that

(sitriY**) satisfies (V-3.49) .

7

)
^ (r) - j C^,^ I*') dtt>

and

m *-

Thus a general solution (V-3.47) is

The fe
3 ' dependence in potential will be changed to\£-^~~^'"'

^'dependence if we make second Born approximation, i.e.

2T'^,(y') ^jxsi '}pLv' /
) in the last term in (V-3.51).

The Green function for outgoing scattered waves can be

decomposed into partial waves as
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oo

(5F- 3.5-2.;

with

£U\^_

© = 5?V

where
f^/^/

are spherical Bessel and Neumann functions

respectively and Y4 ;
Y^ are the smaller and larger- functions

of Y, Y ; respectively. These are given by Rohrlich and

Eisenstein (103) . We also decompose the wave function into

partial waves as
Oo

Thus

*"
fcr-s-rv)

We now obtain it explicitly with CS^ (V; r') substituted

from (V-3.53) and make II-Born Approximation by substituting

^i^ kY/ ) for ^(Y') in (V-3.55).
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where

and

(70

(ter- 3. rs)

One way to decide the validity of the Born

approximation is to see whether the correction terms due to

II-Born approximation are small in the region of interest.

These regions may be divided classically for partial waves

according to the simple relation _^y G&JL . For those

regions it should be seen whether At = -& £"">% A +/L &1

is such that ) fa (kr) ]
* > I^C-r)) 5-

.

Another approach would be to compute %qS^ using (V-3.57)

and then carry out a phase shift analysis. Even the deter-

mination of f^j2_Cf) would require another integral to

be evaluated. This would make it a complicated expensive

numerical approach because of the nature of V tf} f?)

and an exact treatment might even be simpler if numerical

schemes are to be followed.

We should be careful about this validity criterion
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which assumes that a Born Expansion is valid. This severely

restricts the problem when the expansion parameter associated

with the potential (in this case <*% ) is large. The

convergance criteria of this type have been extensively

discussed by many authors [Wu and Ohmura (23), Manning (104)].

Thus these methods of iteration are limited by the usual

reasons of large couplings. Now we start deriving the phase

shift expressions to be used for uncoupled states, using only

the first Born approximation.

(ii) Direct Born Phases

Thus we are prepared to write the expressions for

phase shifts in the Born approximation that will use the

direct method of treating velocity dependence and will later

be used for numerical analysis. We use the explicit formulae

for potentials as given in the last section. The expression

for uncoupled states is given by (V-3.34) in accordance with

discussion on tangent representation for the phase

where VlX) ? ) for a sum of various interactions is given

by (V-2.3) through (V-2.10). Only one of the vector inter-

actions is to be chosen and the numerical program is so

written that any of the vector interactions can be taken into

the calculation along with the scalar and pseudoscalar

interactions. This enables a comparison among various vector

interactions. Actually the parts that are common are
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calculated only once and extra contributions are calculated

by evaluating extra integrals , for the Breit and Kemmer cases,

and are multiplied by appropriate numerical coefficients. We

see that the potential is a sum of terms with separable

contributions from each meson. We proceed symbolically to

evaluate the contribution of each term to the phase shift

{&JL) by the symbol £ , subscripted to denote a

corresponding term in the potentials. In all cases (within

a numerical coefficient depending on the nature of the meson

and of the state) the functional form for each term is the

same for all mesons. This is not true of the Breit and the

Kemmer vector interactions where additional terms occur

which are grouped and called & J?
or dp- depending on the

case. The description of codes will provide the detail later.

Let us define

=£ = -fer
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Using (V-3.60) , (V-3.61), (IV-2.3) (IV-2.26) and (IV-2.28)

we get

where we chose the sign corresponding to ^ , for this case

but coefficients will be properly accounted for in the code.

Thus

^ - -£ 6

K = -.ai *

(3T- 3-£^)
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where

• ft"** ] (4; ^^ .

These are the actual phase shift expressions used in the

numerical analysis with the direct method for uncoupled

states. The extra contributions from the Kemmer and the

Breit vector meson interactions are given below.

where Q. F are defined above and the other integrals are
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Similarly for the Keramer interaction

where C^-^'^^Cy

kv - f- fC a3*3 * 3A4rV6A*+6 ) e^_

- c-^f H few C'^ -^;A^^te

• 6& <k
x
O)*<* &--?&)
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Thus we see that for Kemmer's interaction our criterion for

potential is not satisfied because of the highly singular

nature of the potential. Hence for S — waves the phase shift

expressions are not valid and even the cut-off does not help

us. We roust mention a very important fact about the cut-off

for Kemmer's interaction. This interaction contained the

square of inverse Compton wave length of the meson in the

denominator. This part explicitly depends upon the nature

of the meson. Thus a cut-off which comes from theoretical

assumptions can only remove this difficulty. However, we

have taken a phenomenological view point which means a

substitution of the cut-off only in ^J~ and so the concerned

interaction is

with the modified Yukawa form with Green's subtractive form,

3W = f-frt) r £*r _ -ay -,

as before. Thus this may not be the same as obtained from

theoretical considerations

.

(iii) Effective Born Phases

In this case we use the effective mass method

of treating the velocity dependence. The general arguments

of the Born approximation for velocity dependence in this case

are not very much complicated due to the fact that the

potential is expressed already in a radial form. Thus we can

directly start with the radial form of the Schrodinger type
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equation with velocity dependent potentials as given by

(IV-2.14) and (IV-2.15) which define the effective potential

and we can write

%l + ["<*>- 4£g> ~]%jr
u
*tf

(r^\ = °

where %LW = rC^^^W —^ is given

by (IV-2.12). Let the field free solution be called

which satisfies

V + O"
1
--^Jv

hence Y|^_ = Y 4* ( kV) • Multiplying (V-3.68 a)

by flj . and (V-3.68 b) by %_» and subtracting we get

Integrating with respect to V we obtain '

(per- 3'fsfro)
We have assumed that both A/ Lkrf and ^ (Yj

are regular solutions at the origin and therefore the lower

limit of L.H.S. vanishes. For the upper limit we substitute

the asymptotic forms

-Ay"
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Substituting proper differentiations into L.H.S. and using

trigonometric relations we get

(pz- 3'fi« (e;)
We make the Born approximation for the R.H.S. of

(V-3.68 d) in the partial wave form by replacing %_ *

by 14 n and obtain

fate. = $" i^ U^f (*>«^w^
and thus we obtain the expression for phase shifts as

Actually we use tangent expression for the phase as discussed

before. Thus by starting with partial wave expansion we

obtain the above formula for phases. This approach would

also apply to the Direct Method because only radial parts of

the differential operators act on the
ifjL ^^ and we

have to replace Ueff-C^jk) fatktfby <^i>C^ ^)^^ Y}}
to obtain the analogous expressions.

Thus in this approach the zero of ^ ;i_-/-<£> ) has

to be avoided by further restriction of the parameters. We

analogously define O with the exception that o\j be the

contribution of (<fc ) m(j^~ <P)"
L
' term and <^A that of

__L_^V" <$> / thus individual meson contributions can not

be separated out from the phase shift. These subscripts, as

well as others, therefore do not truly denote the analogous

contributions from potentials but only approximately do so,
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(because of (d-4-<p) factors, transformation (IV-2.12) etc.).

They are adopted only for convenience in approximate grouping

of the terms and to conform to numerical analysis notation.

This applies only to the effective mass approach. Let

We see that J^v\, is a dimensionless function. Using

(IV-2.3), (IV-2.5) and (IV-2.15) and (V-3.41 a) together with

the above equations we get

where
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In this case we chose a sign corresponding to T^ . Similar

reduction on other parts of potential yields

c T^ F

Sv = - £(40

2- >W

/2. >W

(3ZT-3-V/)
where

0>7V

. <L?C-20 ^^4/

(per- 3 72.)
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These phase contributions have to be multiplied by proper

coefficients and summed over all mesons appropriately. Then

the sum total of all such sums is ~te*^Fj(_ . These

integrals are to be evaluated numerically and the details will

be discussed in the next chapter on numerical analysis and

computer programs. The only phase contribution £^- (symbolic),

is directly evaluated as the sum of all scalar and vector

(T = and 1) mesons due to the necessity of its functional

form. There also has to be made a check on 3^ . if

is zero or negative, this procedure breaks down. Only

unconstrained vector, scalar, and pseudoscalar interactions

for uncoupled states will be treated in effective approach.



Section - 4 Born Phases For Coupled States

We have seen that velocity dependence complicates

the conventional method of treating the potentials. Another

complication is introduced when non-central forces play an

appreciable role. In nucleon-nucleon scattering the tensor

force has been long recognized phenomeno logically and meson

theoretically, and represents a major contribution from the

meson. The methods of treating the non-central forces

have been discussed extensively in literature [Wu and Ohmura

(23), Goldberger and Watson (105), Blatt and Biedenharn (106)].

Indeed the contribution to the quadrupole moment of deuteron

from tensor forces has been an historic topic in nuclear

physics and constitutes an important quantity in the character-

ization of low energy nuclear phenomena. The complication

due to the tensor force operator arises from the fact that

the orbital angular momentum j£_ is no longer a conserved

quantity as discussed in Section - 1. But there are only

*^,-s=. t7j±:
| states which can get coupled in our problem

and the matrix elements of non-vanishing contributions were

given there. The angular parts can thus be eliminated since

their effects are embodied in the matrix elements of 5?(2_ •

Thus we obtain two coupled equations for each

the total angular momentum-quantum number and these couple

the Jt-=- 3"—l to JL
f = v-f-l states of orbital

angular momentum. While the spectroscopic notation is not

161
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valid, nevertheless it is used conventionally. For example
"2, 3

3^ i and -^| 9et coupled and the statement " S,

phase" has no precise meaning. It turns out that because of

its singular nature, the tensor potential is a major part of

the potentials. However, if we assume it to be not too large

as compared to the other potentials , then we can assume the

mixing to be small, at least at lower energies. The usual

tensor part is non-velocity dependent and therefore poses no

complication from this standpoint. We will therefore concern

ourselves only with the coupled aspects of the problem. Thus

we can talk about predominantly ^5. or -Di phases in this

interpretation. The two radially coupled equations are

£gi + (^ teg?) u^^-l v:^+4^
vT tt/ j

where U*(y) , UL/Cl*) are radial wave functions with

£'= ZT+-I

and

J±_

V55 C*<°.# w ) + ^s l*'?2 4- VT <^'^;
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with similar expression for vo corresponding to //—ZT-h)'

We should carefully interpret V U.£ , etc. for velocity

dependent terms where it is actually y V 'Ro > etc « But

this notation is used for compactness. Also the diagonal

parts of tensor force are grouped with V . We intend to

solve this problem in integral form using Green's functions

and scattered and incident wave formalism. These two second

order coupled differential equations have to posses two

linearly independent solutions. These solutions will be

specialized in the Born approximation. Two channel scattering

of this type is specialized in our case by the fact that we

choose incident waves only in JL~=- ^— I state for first

set of solutions and in Ji
f - zr-f-l state for second set

of solutions. The plane waves are decomposed into partial

waves. These two initial state solutions are linearly

independent. But the scattered waves in both cases will

contain parts coming from both channels JL =- 1—\ and

JL •=- ZTA-t . Thus a pure incident wave when scattered

in a potential with tensor force, will contain both J>_ and

JL parts in the scattered wave. But predominant J>_ or

JL wave will be assumed to be present. This approach has

been the mathematical content of the appendix by Stapp,

Ypsilantis and Metropolis [called SYM reference (70)] who

write the expressions for phase shifts in the Born approx-

imation. We will use the matrix form of integral representa-

tion of the Schrfldinger equation.
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The general solution jjfr") in terms of the

partial waves would be for the scattered part

vD <V) = (*AW ) L V.J**. <*&)

but we would hope that n// would be small because

initally it was zero. We know that the ratio HZ/fid?

should be related to the mixing parameter which roughly

designates the amount of mixing from the coupled state. Thus

the parts, u^y (y ) , are perturbations on the wave

function for the incident wave in J&-=- ZT-) channel

and similarly for the incident wave in the 2 r = T+- "/

channel, LLA^^ is a perturbation. Let us also examine

(V-4.1) and (V-4.2). These should be written for each

independent set. Thus V U)^/ will be small for the

set corresponding to predominant Ji channel and ^/^£

will be small for the other set. In other words, the two

sets of equations are after neglecting second order effects

Jtr^-

l (jL-=. "J"-/) called oC wave], and (£'= 0~-h))

for (h wave
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a2^
t& + E^-^l** =-H^'l

z.A toJjf

£ + fJA-tfce&ju* = -[ v/ojm JAy'2- L- y^ -'

This approximation removes the uncertainty about the ratio

of coefficients of U^ (-A-V / which are related to £r;y

the mixing parameter (to be defined later) the presence of

which would imply only a self consistent iterative solution

because ^j- i$ to be determined. This would pose no

additional problem in an exact case but we want to make a

Born approximation for coupled states. Since potential is

assumed small and the particular wave function U^ or uP^y

depending on the set, is small so \J[j[ n or »U^/ are

neglected as second order effects as compared to V^g/ and

VW-/ respectively, in a corresponding predominant channel,

Let us start with the ot—wave where only Jt — T— / is

present in incident channel. The Green functions for (V-4.5)

are given by Wu and Ohmura (23) and also by Rohrlich and

Eisenstein (103) in the real form. Since they satisfy

{£»+ *'^ JSCW) =-*Cr-*0

and a similar equation for <^/ (V, yO , they can be

written in the partial wave decomposition as
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<?# £*> yO = Aiowt -e^ii uHtfc £--£'

where Y^ ) ^> are the smaller and the larger of Y, Y
respectively. They are chosen with spherical Hankel functions

so that complex forms can be used to denote the incoming or

outgoing waves as we will see below. These Green functions

vanish at Xc^= ° ' Tnus for a fixed T value (index

suppressed) we have the solution U>00 given in matrix form

the general form of which in uncoupled case was discussed in

the last section. The free wave solution has been chosen as

discussed
J

where

(or- 4 - io)
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and

(TC- 4')i)

^V •' X ' being given by (V-4.8).

Now we make the Born approximation for the in1

equation (V-4.9) where \f^(l>) is not known and >] aced

by
|

) i.e.

Thus we substitute (v-4.il) through (V-4.13) in (V-4.9) and

obta

With

the upper integral in (V-4.14) becomes, using (V-4.8),

fr'JV <^(r, Y ') (-V (->)
fa

(kY')^
r

= -£r Xf^'OO <p v'V Ckr>) { } d-r' +
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We consider analogous expression for the lower integral also.

This choice of breaking the integrals is made (Wu and Ohmura,

reference 23, page 15) so as to prevent the expressions from

blowing up at the origin or at infinity. Thus the first

integral in (V-4.15) vanishes if T—>• o and the second

one vanishes if Y~—$» oo . We have to choose the asymptotic

case when the second integral vanishes , because we are

interested in extracting the phase shifts out of the scattered

wave in the asymptotic region. With the realtions

and

we obtain the asymptotic form of \b £y) as

/ ^(kr-nFf^) SJr'^tty {-VoWfr CkrOJ di>

We multiply this throughout by a factor (^-2.£<k) and obtain
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the correct asymptotic form

where X
f

and X^ are integrals of (V-4.17). We now have

acquired the correct asymptotic form for the wave function.

This two channel scattering in general is charac-

terized by two amplitudes
( J' J

for the initial wave and

two / g ) for the scattered wave. The scattering matrix

is thus described by four elements. We will see in the

following that only three parameters are needed to charac-

terize the £— matrix (for a particular J* value) completely.

This 2x2 matrix has to be unitary from the arguments of

conservation of flux and ahs to be symmetric from arguments

of time reversal. These points have been discussed by

Moravcsik (24) and also by McGregor, Moravcsik, and Stapp

(25). The S~ matrix, by definition, depends only on the

asymptotic form of the wave function. The consequences of

time reversal invariance are that f>-be symmetric (discussed

in reference 2 4) . A general symmetric, unitary 2x2 matrix

has three degrees of freedom and can be expressed in either

of the following forms.

^ _ f^e -^e \fst
L^ ° y&&€.****€.

(pr- 4*11)
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The individual matrices are unitary and £~ is symmetric.

The former is Blatt and Biedenharn's (106) way of character-

izing the phases and the other is Stapp's (107) method of

characterizing nuclear "bar" phases. The corrections and

transformations between the two sets are discussed by

SYM (70) and we will return to them later. At present we

confine ourselves to the Blatt and Biedenharn phases.

In an alternative way we can start with the

asymptotic form as given by Hulthe'n and Sugawara (21) in

which U^M and Odjfj Cr) are forced to

il. M __» a, €* [kr~ **> &,llc kr-***>

CJ./M —? o - B, e ^ ' '

for the <?<. wave. Now the scattering matrix S -is defined

by

£> - 5 A

or

/B, \ fir, S.j. -\ lh \
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where f\
6 are incoming amplitudes and g,

6
are outgoing

ones. For the special case of ^- wave , this reduces to

B, >* f Sit *i

(X- ^2-3)

Substituting in (V-4.21) we get

And by comparison with (V-4.18) , we get

Sj| = £^ (x^) 4-1-

=» %lk V,, +- d_

Similarly by going to £3 wave or Ji^ — CT-f- f
channel

predominant scattering we get
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Thus we have been able to express the scattering matrix

elements in terms of the potential matrix elements. We

would like to draw the attention of the reader to the fact

that it expresses the familiar result in terms of T— matrix

formalism, i.e.

5 ^ Xx T-+- ±

where T^ =^V> expresses the fact that f
matrix elements to the lowest order are just the potential

matrix elements. The integral formulae for this relation

are expressed by Kerman, McManus , and Thaler (108), and

also by Wu and Ohmura. Now we can choose any representation

that characterizes the 5~ matrix and these three quantities

Mf ; Via. and Mx— ^4.r '
wil1 enable us to deter-

mine three parameters &zr—) ; &ZT-h) 6 -r

(or those of the other set) completely.

The scattering matrix 5 is diagonal in the

coupled case so in the case of vanishing coupling if the

phases are defined by &7±i then S can be expressed as

s = v] ^ CA v

where

o

O °7H ) (:Z> ^jf.zg)

and \) is a unitary matrix which is characterized by one

parameter fc -r as
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u

Thus £-can be explicitly written as

'**?Lj e-18^ +M^t3
s -

W
~s-lS-

t*«tf*»««) ,
*"*££*

'
Si,

S '^

S2., **-*-

Also we can write, using (V-4.25) and (V-4.26),

fee—*+**>))
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These formulae are identical with those of SYM (70) in their

appendix if we identify V„ = Xj-^
, y^ = X T+/ and

Via-- <f-j- . In the above relations we have again used

the fact that / .

for small phase shifts, as discussed in Section - 3.

We want to express the nuclear Blatt-Biedenharm

(BB) phases in terms of potential matrix elements. Thus

using notation of (V-4.32) we obtain from (V-4.31)

with some algebraic and trigonometric manipulations we obtain

and

-W ^e = ^_^i

With

C*« -*:ph)
(3t>^.33)

-fa^dj.^ - 'ia^S' ~- ^t-
4n\ 2.6 .

[obtained from (V-4.31), and more algebraic and trigonometric

deductions] we obtain(3C- 4 . 3q fc>)
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^3£ = ± r-^ '

. (-3ZT- a '3?)
From (V-4.33)a,W« e^ ^ o^-faO^ ,

(^C-4'3fXW
and thus by solving (V-4.34) we get

Thus we have obtained expressions for ~taM. 2. £ and

-,Iq. £-t-_. and the sign of the root is decided by the

requirement that in the limit of 6-^0 or vanishing coupling

these expressions (V-4.36) reduce to corresponding expressions

for phase shifts in the uncoupled cases.

There is an alternative viewpoint which we can

take to derive the same results. We want to solve the

eigenvalue problem for the £— matrix which can be reduced

to the di agonalization of a 2 x 2 matrix, i.e. to solve

set) - * 1%)

"Oiv + D-aOG) =°

(pr- ^3>7)
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or

v,/ - ?t v,»

'12.
V,' - >"2.-2,

=

C3H- 4<3g)
The determinant equated to zero gives

^7
-2*

since

therefore

^^T) fcsr-*.**)

and we get the same result (V-4.36). We have to find the

eigenvector uniquely, up to a ratio, and from

expression we get

tfc* a-X-|

(j)j-/
" (Via-- V„) + 4(yu+v^)^^v^) 2TT

sy12.

Similarly from "ffcg. ^-n ,
expression we obtain

fcST-O^l)

'JH

b Jjh

If we identify ~T^m_ £,-*- = vVa) ' we can derive

(V-4.33) and also prove that
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tfatr) TH
= ^^)^, = -Wfi

provided

^V,J- - UV,

which is always true. Just as a check on the numerical

procedure, we calculate both expressions and verify that

they are the same. We thus use (V-4.41), (V-4.42), and

(V-4.36) for our calculations of phase shifts &ZrjtL\ anc^

the mixing parameter £ _ in the BB representation.—
' <j

We could directly use the alternative defintion

of £> —matrix and calculate the recently quoted "bar"

phases and mixing parameter in an analogous way. The

reasons for using "bar" phases are given in SYM (70) where

they discuss the coulomb phase shifts and the subtraction

of coulomb effects from nuclear effects in the asymptotic

region. The conversion from nuclear phases to the total

phases is simple in "bar" phases as

J N - fi

where <b denotes pure coulomb phases. In our cases we

neglect the coulomb phases but compute bar phases for

convenience of comparisons. Thus the phases and parameters

obtained by these two methods may be completely different.

There exist the relations which connect these two phases
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which are obtained by Stapp (107) and also given in SYM (70)

.

These are

and

which are the relations we have also used in going from "BB H

to "bar" phases. These transformations are numerically

carried out because solving for one set in terms of the

other set is not straight-forward, and the problem has to

be dealt with numerically in any case. Thus we have

presented an extensive account of dealing with the coupled

phases in Born approximation. We would like to point out

that for the coupled states the nature of the problem is

such that individual mesonic contributions can not be studied

and also individual terms in the potentials can not be

identified. Thus we rely on uncoupled states for this

aspect of the problem.

We have thus given all the required theoretical

formalism for phase shift study and now we discuss the

numerical analysis approach in the next chapter.



CHAPTER VI

NUMERICAL ANALYSIS AND COMPARISON

WITH EXPERIMENTAL PHASES

Section - 1 Numerical Analysis And Computer Programs

In Section - 3 and Section - 4 of the last chapter

we obtained analytic expressions for uncoupled and coupled

phase shifts which were functions of meson masses, cut-off

mases, coupling constants, scattering energy, and orbital

angular momentum, etc. It is seen by a careful look at them

that similar expressions for different mesons and for

different couplings are to be evaluated. The nature of

integrals involved is such that it is not possible to

evaluate them analytically into a simple closed form. A

close look at them revealed that they could be changed into

an infinite confluent hypergeometric series but the conver-

gence criterion were not simple and the series was oscil-

lating with alternating signs. Even if there was a closed

expression for these individual integrals, the variations of

parameters, together with energy and the partial waves would

have been very involved. Thus a computer oriented approach

to this problem would have been essentially required. These

were the reasons why Born approximation phases were developed

in computer programs with these facilities in mind. Also the

179
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purpose of seeing the individual meson or individual term

contributions could be mechanized relatively simply on the

computer. These individual meson (or term) contributions

are evaluated on the particular assumption that no other term

except the one under consideration contributes. Thus the

sum of these phases may not equal the total phase. In other

words , we can say that the tangent of a sum of functions is

not distributive (i.e., does not equal the sum of tangents

of each function) . These integrals can be easily evaluated

numerically because they are in general smooth functions and

in every case the factor g/^1 makes them vanish at a

reasonable distance from the origin (within 3-4 fermis)

.

Since the potentials are short ranged only a few partial

waves are scattered. The
ft

waves are very small and, there-

fore, experimentally not known to a good accuracy. Hence, our

phase shift calculations will be done only for the T^T) jF
and 6? waves, for both uncoupled and coupled states. S waves

can be calculated in the same manner but will be excluded

from our discussion due to the physical restrictions on the

Born approximation. It might be mentioned that the final

forms of these programs developed through many stages as the

author's familiarity with programming developed. For example,

these integrals were evaluated in a few different ways before

bringing them into present form.

Returning to the problem, we summarize below the

scheme of this work. Other than commonly available functions,

we need spherical Bessel functions of desired argument and

order. They are generated for a fixed set of energies,
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value and mesh widths, and are stored in an array for

the main programs. Another important part is the Numerical

Integration subroutine which uses Newton-Coles formula. We

shall list all these programs in Appendix - A. A general

criterion of using 60 points for integration between 0.001

and 5.0 fermis was established to be useful and economic for

the accuracy desired in this problem. For uncoupled phases

unconstrained Breit's or Kemmer's vector interactions can be

used or the choice allows only the unconstrained vector

interaction to be chosen. In either case, the scalar and

pseudoscalar interactions are common as they are described

in Chapter III. The phases are evaluated in degrees and

energy in units of Mev. In this program, a subroutine is

defined which contains the portions connected with numerical

integration. Before this part the program reads in an array

of multiplication constants for various mesons and various

terms. With these coefficients and integrals we then

calculate the appropriate contributions to integrals. Then

their sum is also evaluated. The inverse tangent of the sum

is the required phase in radians . To see the individual

contribution to the phase, each meson or term value is changed

to the radian by taking the inverse tangent if the phase is

large or by using the expansion for the inverse tangent if it

is small (i.e., less than 0.5 radian). Let

y = -\osy\ S^ =6^-5
3
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This approximation is good up to 25°-30° or about half-radian.

Thus individual contributions £ * in degrees are also

printed out. In case of the Kemmer and Breit interactions,

the extra contribution to the phases are evaluated and added

with original parts having appropriate numerical coefficients.

For the effective mass approach, the differences

arise in coefficients, and the subroutine for integration is

incorporated in the main program. The general layout is the

same except for "gradient term" for which only a sum for

proper mesons can be evaluated.

For the coupled states, a major portion of the

uncoupled phase program is used but parts of it have to be

looped twice to account for Vg-_
(

and ^J-H which

correspond to diagonal matrix elements of the potential.

These parts are almost the same as the uncoupled program.

In addition the non-diagonal matrix elements of pot tial

are also evaluated. The last section of this program involves

the calculation of coupled phases and mixing parameter in the

Blatt-Biedenham approach and then they are numerically

converted to the "bar" phases. The mixing parameter in BB

form is evaluated twice just for a check on the programs.

As a further study we used the exact phase shift

code of Professor B. L. Scott (Long Beach State University)

for comparisons. This code has been modified by Dr. T. Sawada
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(University of Florida) to include different cut-off masses.

(i) Spherical Bessel Functions

These functions are well known to a physicist and

we developed a code that used a series expansion for *4 (j£)

for t^i^I. and /iw\i . Cfci>
:it and recurrence relation forms

for 'Z.'yd. • Specifically

for Cac-J'A)

o <: * 4 l-

where

r^-P 3A) « f
#3 ' r' ~"fe*+D

*V\-H1 Kk)
as given in the Handbook of Mathematical Functions (109)

.

For

and

* bar- 1
->4)

were calculated and the higher order spherical Bessel functions

were generated by the recurrence formula

Ozr-i-'?)
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These formulae are given in Schiff (79)

.

(ii) Weddle's Rule For Numerical Integration

If a function -j~00 is continuous over intervals

\jXj b) then the numerical integration of such a function is

done by method of approximate quadratures by replacing

X «. \^ Xc>c) a*

where farm are independent of f/X W6
. The error is

minimized by a proper choice of fr!^ . If we write the

differences in terms of the ^j° then the Newton-Coles

formula follows for ifolfiw as given in MarganaU, and Murphy

(110) ,

*! &*-*»)! J (^r^ "

where ^ is the variable of integration, /v- the interval

and YV_ the number of sub-divisions of each interval. The

cases W = J- and 2- correspond to trapezoidal and Simpson's

rules respectively. We take a more accurate V\ = 6 case

known as Weddle's rule which yields to a formula
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(These agree with Table 4 of reference 110, page 460.)

This method restricts the total number of integration intervals

to be of the form £>'Vi^ or the number of points to be

{j~> y^-\- i-
1

) , for which the integrand has to be evaluated

and multiplied properly. The differences are of the order

greater than the sixth and this is one of the most accurate

formulae for numerical integration. Its accuracy for 25

points has been confirmed to second decimal place as compared

to exactly known integrals.

The general formula is given by

. Yv

The sums of such forms are evaluated for phase shift integrals.

(iii) Notation

It will be an essential duplication to list the

names of variables and their corresponding physical quantities.

Any reader reasonably familiar with Fortran - 2, and the

facets of this problem can follow a parallel nomenclature of

the text symbols to those used in the program. For example,

Ot? will be denoted as DGRAD, for phases. The mesons are

also designated by their names although in the sequence they

occur as DA
}
^ ; "\

) f<j ; C ;
"^ and <t>

but the last one is left out for most cases because it is

heavy (1020 Mev) and influences mostly S— waves. Its effects

will be discussed in the next section.TKjeVv are the

numerical coefficients and alternate indices in their array
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are reminiscent of older approaches. The three phase shift

programs which are listed in Appendix - A could be, with a

considerable effort, changed to one single code but the

effort spent on it may imply an equivalent spending of time

as compared to the advantage . Hence they are not given in

most compact form. The results of these analyses will be

discussed in the next two sections.



Section - 2 Variations Of Potential Parameters

Any theoretical description of physical phenomena

has to face, at one stage or another, the task of a successful

connection with experimental facts. A proper time exists

for any reasonable hypothesis to be tested experimentally

and vice-versa. It is often not possible to do so simul-

taneously. Thus this study had begun almost two decades ago

(Green, reference 53) as pointed out in the first chapter

but had to await a variety of experimental results. The

task is yet unfinished but a great deal of uncertainty in

the field is reduced today. It has been shown by various

workers in the field that one-particle-exchange models can

explain to a reasonable degree almost all the awaitable data

on nucleon-nucleon force. Although in almost all the cases

a strict meaning of potentials breaks down, it is possible

to reasonably generalize such a concept for non-relativistic

problems. This has been the topic of the past few chapters.

Now we start within the limits of our model, in the Born

approximation, to establish this contact through comparison

with sets of phases (obtained from a variety of experimental

data) by Arndt and McGregor (9 3)

.

We briefly recall that the Born approximation

implies replacement of scattered wave by a plane wave and

thus depends heavily on the smallness of the phases or of the

potentials. Hence for small potentials we expect to get good

187
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results in the Born approximation. Sometimes it so happens

that even lower angular momentum partial waves have an

effectively small interaction and thus the Born approximation

will be found quite accurate for them. For higher Jc, values

and higher energies (for ordinary potentials) the Born

approximation is generally good. But for velocity (energy)

dependent potentials, we have to be careful about this state-

ment because the interaction might become larger at higher

energies and plane wave approximation might start loosing its

accuracy. But since higher partial waves sample only the

outermost regions of meson exchange potentials (short ranged)

we expect them to be quite good in the Born approximation.

Let us start with classical relation for angular momentum

associated with a particle scattered by a center of force.

The impact parameter V is defined as the perpendicular

distance between the center of force and the incident velocity

The angular momentum X associated with velocity \r of the

particle is given by

or

But quantum mechanically

and also £> — -fc ^ and we obtain

& hv - \TlUH)' 7t , £227-2.3,)
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For convenience we use a good approximation for the root

along with the definition

Thus we finally have approximately

Hence we can assign a classical impact parameter or a quantum

mechanical region of importance for each of the partial waves

for a given energy. Taking the example of 320 Mev we have

-^ r^ 2. -%-yvC . Thus ?- waves according to (VI-2„5)

would be affected up to a distance of about 0.75 fermis, 3>-

waves up to about 1.25 fermis, F- waves up to 1.75 fermis,

^7 — waves up to 2.25 fermis, and so on. These estimates

will change slightly with energy „ The approximation which

is not very good for S - waves denotes a short range of about

0.25 fermi but these are only approximate characterizations

because of quantum mechanical effects, and also due to mixing

in various phases. Thus we can say that heavy vector mesons

will not play a great role in phenomena involving partial

waves higher than J) -waves and TT~" meson being the lighest
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would affect the higher partial waves. The cut-offs assoc-

iated with the already discussed modified Yukawa form with

Green's subtract!ve meson will also affect the phases

according to this rule, thus higher mass cut-offs will affect

S — waves only.

With these ideas in mind, we now report the results

on the phase shifts. The experimentally determined quantities

are the masses of U)
;

V\^
} f dnd 7T mesons and the

coupling constant of If meson as determined by Hamilton and

Woolcock (78) from 7P-A' scattering experiments. Other

coupling constants and cut-cff masses are the parameters of

our theory. However, in the following we will try to

minimize our parameters, see the effects of slight and

considerable deviations from the purely relativxstic model

and will, in the end, confine ourselves again to the exactly

determined phases within the purely relativistic model.

We list in Table - i, various parameters that have

been used for the calculations of phase shifts in the Born

approximation and plot the results of these calculations in

Figure 4„ Starting with our original study, we try to

establish parameters that will i
: it the uncoupled states

reasonably well in the Born approximation. Then we try to

make use of the exact phase shift analysis to be referred

to in the coming results. These more or less represent the

results in which accumulated experience is used due to

various other variations that are not reported here. We

only give those variations whloh led us to some definite and

interesting physical conclusions. We have not mechanized our
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searching procedures, because we wanted to see the sensitivity

of various parameters with regards to our physical intuitions

and also according to our accumulated experience and there-

fore no least square criterion has been used in the present

study. Our thinking is in favor of purely relativisitc models

of nucleon-nucleon force together with the contributions from

various other terms from multiple meson exchanges, and from

other processes within the OBEP and outside it and we want

to assign the descrepencies of agreement to these rather than

adjust the parameters in this respect.

We adopt the following notation for this discussion.

The parameters of Table - 3 will be designated by numbers

in parentheses and the Figure - 4s corresponding to them will

be referred to by lower case letters in parentheses.

We represent the phase shifts corresponding to the

simple purely relativistic model of Green and Sharma (54) in

which the strengths of nuclear forces are assumed to be the

same for all the mesons exchanged. The parameters (1) are

reduced to minimum and this is an overly simplified model

(the Zero Parameter Model) . The results are presented in (a)

,

for uncoupled phases, by continuous curves. For a completely

unadjusted model, the results are quite encouraging. The

signs of phases and their behaviors are all in the right

direction in relation to the phases of Arndt and MacGregor (93)

(extracted from experimental data). The phases "^ and Tyire- W. 4

are the phases which sense the innermost part of the potential,

of the phases reported in (a) . Higher phases mostly sense the

pion contribution denoted by OPEP (or If in other figures)
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TABLE - 3

Parameter Variations

m = Meson Mass in Mev X = Cut-off Mass in Mev

Constants

m B - 782



193

TABLE - 3 (cont.)

Parameter Variations
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TABLE 3 (cont.)

Parameter Variations

11 12 13 14 15

P

2000

2000

1000 1000

1000 1000

1000

1000

1600

1600

1000

1000

1000

550

10.0

10.0

2.5

2.5

550

20.0

20.0

1500

275

20.0

20.0

1500

1500

20.0

20.0

750

3g?
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Figure 4B. Phase Shifts Corresponding to the Parameter of Table
3. (3) solid curves, (4) dot-dash curves, (1)
dashed curves.
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and they are generally good. Encouraged by this, we carried

out a few different combinations of the coupling constants.

Out of some such sets the ones in which the vector mesons

occured with smaller couplings proved a little better at the

first sight. We should be careful in considering the couplings

and cut-offs in the Born approximation. The higher phases

decide and give information only about the pion coupling

constant which is fixed and is known ( *1 — /^ ' 7 ) in our

case. Thus the lower phases will decide the other Born

parameters. The results for lower phases are generally larger

in the Born approximation than in the exact calculations.

Thus an attempt to calculate the exact phases after the

parameters are determined by the Born approximation should

carefully allow for the uncertainties of the Born results for

the lower phases. Alternatively, the Born parameters (granting

the exact parameters to denote the physical values for nuclear

forces) also contain the corrections for the inaccuracy of the

Born approximation for lower partial waves. This tends to

yield smaller couplings in the Born approximation.

The parameters (2) are given by the dashed curves

in (a) . Here we have reduced the coupling of r— meson by

nearly a factor of 10 while we have enhanced that of the

slightly. The results become better in every case. We should

thus expect the results to be less strongly dependent on

Isovector mesons (except the TT ) • This aspect of the study

has been made by Green, Sawada, and Sharma (111) and will be

discussed later. We should also mention that the model stays

purely relativistic only as long as ~J~^ — ~^\r which
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"2- Q ^-

requires that nrt^ =s™loa , ^^ - dtO^ ' and

^.^^pA^ and similar relations for the isovector,

scalar and vector mesons ( f^ and y \ .

Staying within the purely relativistic model, we

decided to see the sensitivity of our results as a function

of the cut-off mass which was kept the same for all the mesons.

The results for (3) , (4) , and (1) are presented in Figure (b, .

The solid curves present the cut-off mass /^ = 1000 Mev for

all mesons. The dashed curves represent /\ = 1500 Mev and

dot dashed curves represent X = 3000 Mev. Hence a change

in cut-off mass from 1500 to 3000 Mev produces very small

changes in these phases, while a change from 1000 to 1500 Mev

produces a comparatively big change. Thus our results for

1500 Mev cut-off or higher are not sensitive to it. A smaller

mass for the cut-off implies that we have modified the

Yukawa form starting with larger distances and vice-versa.

With different cut-offs we can thus properly weigh the impor-

tant regions of the OBEP. For example the ~ff meson is very

light and its potential has the longest range. We also think

that 2 IT— exchange processes start taking place in a corre-

lated as well as uncorrelated way as we move towards the origin.

Thus the cut-off for the ~ff" meson is a very helpful device

to truncate or reduce the effects of OPEP in the regions where

other effects like these may be important.

Having seen the general trend of phase shifts we

decided to break our relativistic model just to see the

influence of other parameters. We believe that the nuclear

forces are mainly relativistic but we have to be open minded
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about possible outcomes of future experiments regarding the

scalar meson. There is a good reason to believe that they

will be experimentally more difficult to discover if their

masses are at the same place as those of the to and the P

(and the <p ) mesons. Recently many groups (112) have

reported such a meson. It may also be an enhancement in meson-

meson scattering or simply an S wave JT—TT resonance.

Thus the question of the existence of scalar mesons and the

positions of their peaks are quite important from the stand-

point of our results and for theories characterizing the

nucleon-nucleon force. This requirement of additional

attraction in central potentials is the common ingredient of

almost all current theories which account for nucleon-nucleon

force (69, 71, 74, and 54), and more or less balances the

repulsive static term coming from the vector mesons. Bryan

and Scott (69) however make the scalar meson mass quite light

as compared to the vector meson.

We decided to see the effects of approximately

relativistic models in the light of scalar-vector couplings

and the masses. The parameters (5) and (6) are denoted in (c)

by dashed and continuous curves respectively and the changes

from previous sets are that we make vector meson couplings

smaller as compared to scalar meson couplings and this has

the effect of introducing extra attraction. As a result, the

phases 14, and &m become better. Thus we need basically

a short range attraction. All other phases improve. We

exclude *S& for this case. It is sensitive to cut-offs

and will be discussed in context with other parameters.
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Approximately the same and somewhat better results can be

obtained if we make the scalar meson mass lighter as compared

with the vector mass. This is done for the parameters (7)

,

(8), and (9) which are given in (d) by continuous, dashed and

dot dashed curves respectively. Thus we have seen that as

far as parametric analysis is concerned, we can adjust various

degrees of freedom at our disposal and account for the

uncoupled states.

Such an attempt was made in the Born approximation

for uncoupled states and a reasonable fit to the uncoupled

states was obtained for (10) shown by continuous lines in (e) .

An attempt to fit ^-p ,
^

?/j_ > and t>^_ along with

higher partial waves for uncoupled phases were considered

and the Born parameters for this broken relativistic model

were determined. The model is quite broken in this case

because scalar mesons are lighter. But we still maintain a

major cancellation of the static term. However the gains are

not too much and so we will return to purely relativistic

models again. Therefore we started out to test the con-

clusions derived from the uncoupled phases. Since only a

few constraints are contained in the uncoupled phases, the

other constraints are determined by the coupled phases . Thus

all the phases taken together can characterize the two body

scattering data. We wanted to determine how much information

could be obtained purely from the considerations of uncoupled

phases. For this test we evaluated these parameters (10)

for uncoupled Born phases and then calculated the coupled

phases (with mixing parameters) for the set (10) by the
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methods described in the last chapter. The results for these

are also included in (e) . We do not present these for S -

waves for which the Born results are not very meaningful. We

see that &± and T>^ are quite good in the Born approx-

imation while ^T^ is far too positive and ^c is reason-

ably good. Another exception is ^3 which always follows

the OPEP trend while the experimental values are quite differ-

ent from it. This is true of all the variations made on the

coupled states. The quantity 6=3 and the phases ^^73

and I'll t however, are quite good- Thus we have predicted

the coupled phase shifts within the limits of our model quite

well.

We should be careful about the high energy behavior

of coupled phases in general. The amount of mixture of the

two coupled states in question becomes larger with increasing

energy and the coupled non-predominant wave function starts

becoming important. But we made approximations which

neglected the second order perturbations in the coupled states

which might become important at this stage. This reason,

together with the strongly velocity dependent forces, may be

sufficient reasons for deviations from the Born approximation

at higher energies. But in general our previous conclusions

still hold. The lower partial waves are thus more uncertain

in the Born approximation. Thus (10) represents the approx-

imately broken relativistic model (e)

.

But we have to confine ourselves to a physically

reasonable picture of the nucleon-nucleon force because as yet

there are many open questions connected with the meaning,
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derivation, and validity of OBEP . These may very well account

for the discrepencies in the exceptional phases. The sources

of these additional terms have been mentioned before and are

mainly confined towards the origin, except probably for 2 77"—

exchanges which may be important for the intermediate (1.5 to

2.0 fermis) range. Unless the questions are resolved regard-

ing multiple meson exchanges, pair processes, derivative

couplings, other mesons, and other field theoretic symmetries

together with the mass of the scalar entity, it is not

possible to attach much meaning to the parameters as deter-

mined. In other words, we do not want to search the parameters

for the sake of experimental agreements without considering

the limits of the physically feasible model. AnJLthis line

of thinking brought us back to explore the limits of the

purely relativistic model of nucleon-nucleon force.

Thus using the previous experience but still

staying within the purely relativistic model, the effect of

the f meson was reduced by a lighter cut-off and small

coupling and the pion cut-off mass was kept at ^Tvw . The

results of these variations are given by (11) and are plotted

in (f) by the continuous lines. We see that this model is

almost as good as that given by (10) except for 3 p. and

1>^_ phases and this is because of the purely relativistic

model which lacks the attraction needed for the ^3^ phase.

Another step towards further simplification was taken by

excluding the -^ , f , and ^ mesons and just calling

it (A^ + lO-hTT) model in which the coupling of the oO^

and CJ are increased slightly. The results for these
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parameters (12) are given by dashed curves in (f) . Our

results are almost always better even after removing f^ ,

P , and ~Y\ mesons from the scene. Thus the purely

relativistic { CQ^ + fcO -f-TT ) model is quite encouraging.

A number of variations were made on this set of parameters

and also the ones including the ^ meson. We denote by

(13) and (14) the parameters that differ only in the -|T'"meson

cut-off and the results are shown in (g) by continuous and

dashed curves respectively. The phases ^Te (dashed curves

are out of the scale) , ^V and ^ are most affected

because the tensor force from the pion becomes quite large

for these phases in the inner regions and so the ~ff cut-off

is quite important for adjustments on these phases. However

we note that an intermediate value of 700 to 800 Mev for TT

cut-off should give a reasonable fit for these phases,,

Now we proceed to discuss our final set and one

of the latest results for which a considerable search has

been made by Green, Sawada, and Sharma (111) within the

relativistic ( ^^ 4- *** + TV ) model. The exact phase

shift code was used in this study tc fit the $— waves and

higher as close as they could be allowed within the limits of

a simple model like this which is given by (15) in (h) .

Here the results of phase shift calculations with exact code

are given by solid lines with open circles, the experimental

and OPEP curves are given by thin continuous lines. In other

figures, by "continuous curves" we meant the dominant curves

for the Born calculations. The Born phases are given by

dashed lines with symbol +'s. The symbols (+) and (0) in
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the curves denote the theoretical values of phases carried

out at 25, 50, 95, 142, 210, and 310 Mev lab energies. The

coupling constants thus determined are quite large 3 <3-.~~

and they are required by the constraint to fit the S — waves.

The cut-offs of 1600 Mev for to and L*5^ are forced to be

the same in purely relativistic model and the pion cut-off

is searched at 750 Mev. Thus the number of parameters is

three for this model and the exact fits to the S~ waves are

excellent. The other phases are quite close in exact analysis

The Born phases follow the trend of the exact phases. Thus

the Born approximation always gives larger phases for

waves or more precisely for & . , 3 P , ^V » an<^

4-"P^ phases. The agreement for the Born approximations

for higher phases is quite good and the only exception is

the coupled 3)^ phase which follows the OPEP trend for

every calculation done on coupled phases. In general, thus

we see that for both coupled and uncoupled phases the Born

approximation can be relied upon for j£)— waves and higher.

Also for f>— waves it always gives the right trend and simple

criteria like reducing the Born phase by 50% to get the

corresponding exact r— wave phases may be established. In

general it is surprisingly good at low energies.



Section - 3 Vector Mesons

And The Nucleon-Nucleon Interaction

We have reported in Chapter II three different

methods of deriving the OBEP due to the vector meson field.

Their Diracian forms are given by (III-3.2) , (III-3.5) , and

(III-3.4) or explicitly by

(-ST-3-cL)

OcneL

Gbt-3»3)
Their Pauli forms are given by (III-3.36), (III-3.72), and

(III-3.65) respectively. All of the three forms of vector

meson interactions have a common Yukawa term while they

differ considerably in their relativistic terms as can be

seen by looking at their Pauli forms or at their explicit

forms as given in Chapter V, Section - 2. Since the vector

meson interactions play a very important role in nucleon-

nucleon force for lower partial waves, as is evident from
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the successes of OBEP models, and since the relativistic

terms are very important for all these theories, it is

necessary to decide upon the nature of the vector interaction.

These three different forms as mentioned before, imply

different field theoretic derivations which involve the

discussions of auxiliary conditions and the constraints on

the wave function. Because of the importance of vector

mesons, we decided to study all these three interactions in

detail in the Born approximation and calculated uncoupled

phases for them. To get realistic values within the limits

of the Born approximation for these vector interactions, we

decided to confine ourselves to the purely relativistic model

and included the scalar meson interaction given by (III-3.1)

and (111-3,21) and also the pseudoscalar interaction as given

by (III-3.3) and (III--3.44). This brings out the relativistic

effects to the utmost importance and the differences, if any,

will become larger. The results of these phase for the para-

meters (15) of Table 3 at 50 and 310 Mev laboratory energy

are given in Table 4. Equations (1), (2), and (3) in the

table denote (VI-3.1), (Vl-3.2) and (VI-3.3) or the uncon-

strained, the Kemmer, and the Breit vector interactions

respectively. The experimental values (93) are shown to give

an idea of the deviations of the Born approximation, but only

in a crude way. The exact phases for these parameters (15)

of Table 3 are plotted in Figure - 4(h) which gi.ves a more

precise idea of the validity of the Born approximation.

We notice that the phases are almost identical for

r— waves and higher. The only noticeable exception is



Table *[}, Born Phase Shifts For Vector Interactions
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4-T>. phase which differs by about 10° at 310 Mev lab energy.

The only other phase is i^ which shows a difference of

about 2®. For these phases the tensor and the spin orbit

potentials vanish and they depend strongly on the central,

velocity dependent and spin-spin forces and thus sense the

inner regions of potential as compared to some of the other

phases given here. The meaning of this comparison is lost

for F*~ and Gj- waves where the only contribution to the

phases is from the pion and vector mesons have little affect

after a distance of about 1.8 fermis for the range of para-

meters used in all of our discussions. This aspect led to

the question of whether these identical results were due to

the fact that ?- waves and higher were not affected by vector

mesons (masses over 750 Mev) or due to the fact that these

three interactions were the same in terms of their relativistic

terms for the distances that generally affect the P- and 3> "

waves. Therefore we carried out the calculations for a number

of different sets of parameters for the uncoupled states with

all three vector interactions and realized that our conclusions

were quite general and that in all of the cases tried, we

reached the same result, i.e., the relativistic terms of all

three interactions are the same for V waves and higher with

the exception of ^±. and there are consistently differing

results for 3^ also, although by only a small amount.

This suggests that the three vector interactions are likely

to give different results for $- waves. There are other

reasons besides ?± and D^ wnich also support this

observation. One of the important ones among them is the fact



215

that the Kemmer vector interaction has quite singular terms

in its Pauli form. Even with the introduction of the

modified Yukawa form with Green's subtractive meson, it

remains singular and the S~ waves, even in the Born approx-

imation, can not be calculated. This difficulty could

probably be removed if one studies this problem in the light

of Green's higher derivative Lagrangians {62, 63, 64).

Another difficulty that is connected with this interaction

is that the meson compton wavelength occurs in the interaction

in the last term. Thus, the way in which a cut-off should

be applied to this interaction is not clear. A more conclu-

sive statement about these problems lies in furthur

theoretical studies and for our purposes we took the phenomen-

ological view point for this aspect and used the modified

Yukawa form for T occuring in (VI-3.2) , without worrying

about the different form of the Diracian interaction that

may arise in this way. These problems will affect the S -

waves which are not presented here because both the Born

approximation and OBEP become very uncertain for these phases.

To remove the doubt about the question of whether

vector mesons affect the P— and J)— waves, we consider

^?^ , ^D^ ,

3 ?± , and ^^ phases for the para-

meters (1) of Table 3 at 310 Mev lab energy. If we also look

at a typical computer output given in Appendix B, we can

notice that by adding the phases for each meson in a vertical

column, we can get a rough estimate of the contribution by

that meson to a particular phase at the given energy. This

was the advantage of our Born approximation where individual
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potential terras or meson contributions could be estimated

approximately and relatively easily. But for large phases,

we should really account for the fact that i2u\Srjh ~fau^{X-
<

bj)

But this certainly gives a rough estimate of the contribution

from each meson. For the four cases discussed, the contri-

butions of (GO +- ^ ) vector mesons are more than -25° for

^Vj_ , 7 9 for 3j> , 20° for ^T^ , and -2.5° for

3>2_ for the interaction (VT-3.1). The phases as calculated

from all three vector interactions at the same energy do not

differ from each other by more than 3° for ^^-i > 2 e for

3
;DX ,10° for

±
T^_ and 2* for ^D^ . This result

therefore decisively proves that the vector mesons do affect

the P— and J)— waves and that the relativistic terms of the

three vector interactions under consideration give almost the

same results for the r— waves and higher. Thus any furthur

study on vector mesons for S— waves should also resolve the

questions connected with the cut-off, the OBEP, and also as

to which one of the three field theoretically derived forms

should be used.



Section - 4 Comparison Of Direct And Effective Mass Methods

With Born Phases

We discussed in Chapter IV two different methods of

treating the velocity dependent potentials in the Born

approximation. The direct method employed the use of Bessel's

equation and the recurrence relations among the Bessel

functions for treating the first and second derivatives

occuring in the potential. The effective mass method, however,

made use of a transformation that eliminated the first deriv-

ative while the potential terms with the second derivative

were grouped together with the kinetic energy terms. This

gave rise to a factor (jd-+ cp ^ in the denominator of the

effective potential where

¥•<)

and

For the iso-triplets , t w«t J- d- and therefore the

denominator term £i- +* 40 can not blow up for T 1 state

potentials. However, if the isovector, scalar, and vector

mesons (
-f^

and -P )Hthen, since we have for iso-singlets

X,^ * I ^L -3 , the quantity (JL+ <fO can be zero or

even negative. Thus the effective potential can blow up for
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T = 1 states if ( k)-H 0O4 ) and { (* -h fi$ ) play the same

part in nucleon-nucleon forces. Since there is no a priori

reason to believe that they do not, the effective mass method

of treating velocity dependence in the Born approximation has

the inherent weakness that for certain feasible values of

parameters, the method breaks down. The exact treatment of

the Schrfldinger equation also employs the same method, hence

it also runs into the same problem. We have also shown that

the non-locality and the velocity dependence to the quadratic

order in momentum can be shown to be equivalent. Thus we can

change our velocity dependent form of Schrodinger type

equation into an integro-dif ferential equation which can then

be solved by standard methods for integral equations. This

difficulty arises from a mathematical transformation and

grouping of terms and if this can be avoided in the integral

equation methods, then velocity dependence might be treated

by determinantal methods of the type used for the solutions

of Fredholm or Volterra type of integral equations. This

type of integro-dif ferential equation occurs in the cascade

theory of cosmic ray showers also. No attempt is made here

to solve it by those methods.

However, it seemed of interest to compare the two

methods and we carried out a calculation for the uncoupled

states using both methods for the constants of Table 3 and

parameters Q^^<J^=3^7, /^to'^co^ sz. t&OO N€v.
y

f? = fr* - ^A > V = * t*
= ,40° Mw - >

without the *V1 meson and Tv. -jj- = 75~0 Mev, in the notation
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of the Table 3. This set does not make the effective mass

negative and so both the methods are valid for these parameters

The results are shown in Table 5 for E. . = 50 and 310 Mev.lao

TABLE 5

Comparison of Direct and Effective Mass Methods
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differences are due to different effective potentials in the

two cases. However the differences are not extremely large

for T— and CD— waves. If we take the parameters (1) of

Table 3, we see that the effective potential blows up and if

the potential is put to zero up to this point where it blows

up (in this case, 0.67 fermi) , the phases take on unphysical

values. For example D
2
phase normally +25 to +30° now

becomes -85° at 310 Mev and this is due to a chopping off of

the potential. In general the T = phases start becoming

bad as the parameters reach the limit such that Cp = - ^-/^.«

But T = 1 phases are still reliable. Thus we have seen the

limitations of the effective mass method.

Effect of the Heavier <p Meson

We decided to look at the total effect of heavy

isoscalar vector d> meson (1020 Mev) which in ^^3 theory

is generally mixed with the U and various accounts of their

mixing are important from that point of view. We do not

expect to see a considerable influence on our phases because

it will affect S— waves mostly but its effects on r — waves

may be noticeable. However we did not confine ourselves to

a purely relativistic model for this case since we wanted to

see its total effect including its static term. We thus do

not have a scalar meson corresponding to <£» in seeing its

influence. The parameters (1) and (15) of Table 3 together

with J^ju m tfrjr and *X^> = ftooo Mev. in the previous

notation are shown with and without (b in Table 6.
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TABLE 6

Effects of <f> — Vector Meson

P/Y*A-Mi=TeRS (1) of Table 3 , (15) of Table 3

Phases



CHAPTER VII

ALTERNATIVE METHODS OF THE REDUCTION
AND EXPLORATORY DIRECTIONS

Section 1 - Alternative Methods of the Reduction to Large

Components .

In this chapter we report the work which was either

done by the author during the last stages (Section 1) or for

which no definite conclusions have been reached (Section 2) as

yet. We now give an alternative derivation of the method of

reduction to large components which has the mathematical elegance

that the momentum does not appear in the binomial expansions in

the denominator. Also, the four component form of the Dirac

equation is simple to deal with. In this method we go to the sums

and differences of V, ^fVY-j and %^ (notation of Chapter III),

and wish to derive the same result under the similar approximations

as done in the Chapter 111. We start with the equations (III-2.11)

and by defining (Green unpublished notes 1949)

\ = ^ V

and

222
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together with

tjar-i-3)
We obtain from (III-2.11) the Dirac equation in component form

?X%. + t£-V+ ) X^ =o (3IL-l.it)

therefore

%^ =- (e-V &1# (pdh.s)
and substitution in first two equations of (VII-1.4) yields two

equations in 4-' and\^,, . Thus we conclude that by going to sums

and differences we have obtained the same result in equivalent

approximations

,

Q6 _ V|) _ p5 Cfi--w»)"' 53^ - aM<i Vit-°

Hence £<C-l) _ (jHL-h(,)

% - At D e-^~ ^ e^H
^>&,&2><.7)

substituting in (VTI-1.6)

~ &H 1% «o,£m:-h8
-



Also from (VII-1.6)

foretherefore

But as noted in 195 8 by Breit and recently by Sawada

w^ s * (xa-i-io)

where

Similarly from (VII-1.9a)

Thus both the equations can be written as '
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These two equations in y^ and ^Kwere obtained by Sawada

and Green and are the basis of their exact relativistic study of

the two particle Dirac equation (6/) . We wish to use their starting

point as a basis for our approximate treatment. Rearranging the

terms with

(tee- biyy

But we are neglecting V terms, hence QllL~l'l5J

B
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£fc> (c™jc*-u- £VW+ 5 ^-»-**#}

-14 ^(^Vs^^-WRc+tfMrjY^J^S-

We know that the term with (-1) is large as compared

to the terms with ('/^jl) hence equation (VII-1.20) is an equation

in which IP is the small component and should be expressed in terms

of ^from (VII-1.19b) . Also, we see that equation tfll-1.19a)

has the \D term correct up to/ 1/M Jorder already and so even

approximate expression (first order) for U) in terms of y^ will

suffice to make (VTI-1.19a) an equation in large component y.

Really we have

This term in second part of (VII-1.19a) would give square of

potential terms only but we neglect that part, and our equation

in large component is

Since W = P/m 4- V^ 3

to lowest order from above, therefore w"2-/
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NORMALIZATION - Neglecting potential (for consistency

of two methods)

en

or

Then

or

olification (-331-/. 1<T)we get oyv simplification (j

with *" '

and retaining only linear terms we get
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' V F*^ = £v - J-
[ W«. (ftf* «",,,-)V Vb (^l£).

• L$
«w.

p) +• P v«. + *, f^j+^ { P
5 C^-Kd Pj+

Thus (VII-1.28) is the same as (III-3.15). Thus we conclude

that by going to sums and differences we have obtained the same

result in equivalent approximations.



Section 2 - Exploratory Directions-Two Boson Exchange

Contributions

As mentioned in Chapter II, the two meson processes

in the Fock formalism could be accounted for by carrying the

series to one higher order and with various improvements and

iterations Green (1) derived the Two-Boson-Exchange-Potential

in which various relations used resulted in the quadratic depen-

dence on the coupling constant. The details about various

physical processes and normalization are currently being studied

by Chern and Green (9) and final conclusions are yet to be

reached. However, for our purposes we took the form of Two-Dion-

Exchange-Potential as given by Green (1) (Eq. II - 2.22) and

proceeded to reduce it to the Diracian form. Then an attempt

was made to use the method of reduction and the interaction was

brought to the Schrodinger-Pauli form. There are quite a few

calculational steps involved which will not be provided here,

but if the reader is familiar with Chapter III, there will be

little difficulty in deriving them. From (II - 2.22) and (II -

2.16) with (ijtpor 9>
(fi)

, we obtain

229
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and

^,= .£r, o_ <= kr --3)

To reduce this Diracian form to the Pauli form we take our wave

function -Q_ from Chapter III and develop the algebra analogous

to the one given there and obtain

+(**>»($ t)>^ x
< c-/;;jcwo

We substitute this result together with the one bion contribution

and obtain after neglecting the self energy terms, various higher

order terms in
( ^~/m ) and J, while the normalization is being

carried only to the previous order

where

^ J""
/T ; ^ * <^ a (SzrU.6)

function fic
>

^ is the modified Bessel function of zero order.The function

In order to compare these effects as compared to OPEP we tried

to determine (J^l/3~) and if their coupling constants were taken

to be the same (which may not be true as the g-yT -exchange
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would be partially accounted for by resonances also) then it

was found that J^. was ten times larger as compared to ~3~ at

a distance of about 1.5 fermis and five times as large at 0.5

fermis. This indicates therefore that XTT -processes might

be very important in the intermediate range where we are looking

1 ±
for a correct analysis for '7> and P, phases, etc. Thus, the

•2.7T -exchanges should be also studied and the questions about

their couplings should also be decided.



Section 3 - Discussion on the Methods of Reduction

In the derivation of the Schrodinger-Pauli forms of

various interactions in Chapter III we met quite a few terms which

were quadratic in the potentials. These terms partly come from

the method of reduction to large components and partly from the

structure of two particle Dirac equation whenever some of the

components are expressed in terms of the others. Breit (56),

Green (53) and recently Sawada (66) have noticed these terms

in their reductions of the Dirac equation, even in exactly

relativistic treatments. An extensive discussion about these

can be found in Breit' s (56) paper where he relates this term

to the soft core. But a very clear conclusion about the results

from such a core is yet to come. We see that only the pseudo-

scalar and vector mesons contribute to this term. We call this

the non-linear term.

The explicit effects of this term can also be calculated in our

computer programs where we have an input variable ANL which

decides whether the non-linear term in the interactions is to

be considered or not. With the coupling constant 14.7 taken

for the vector and pseudoscalar mesons, we found the contri-

butions from this term to be about ten times as large as due

to various other terms. However, we do not yet understand the

origin and the physical interpretations of this term and further

work will shed more light at to whether this term would survive

after the contribution! from the Two-Boson-Exchange-Potentials

.
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We have seen in the last chapter that the contributions from Iff-

exchange are also large. Thus these two effects (i.e. tjf - exchange

and Zf /qtA/L terms) are quite important if the coupling

associated with the former is comparable with the latter,

especially for the intermediate range where we want to be more

certain about our knowledge of the nucleon-nucleon interaction

in order to be able to fit the P and the D waves. We assume

for most purposes that the already established OPEP and the

OBEP are the most important contributions for non-relativistic

energies and this indeed is so because the coupling of the

and its contribution for the higher waves are reasonably well

established. However, for the relativistic problems the ideas

about the OBEP alone being the principal contribution may not

hold.

Another area of interest is to explore various methods

of reduction to the large component . In the literature the

only other reference found is that of Chraplyvy (5 8) and the

previous paper by him referred in (58) . There is also a compli-

cated reduction of the two particle Dirac equation carried out.

The Hamiltonian is reduced by using various matrix product

properties in to even-even, even-odd, odd-even and odd-odd

parts as defined in details in the reference (58) . It is

not clear to us whether the two methods of reduction are

equivalent or not since most of the terms referred by him are

the same as those obtained by Breit's method of reduction to

the large components. However, a detailed comparison to
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orders higher than VM^^ght give significant results. We have

also obtained an agreement for our purely relativistic model for

its reduced terms using Breit's (54) results on Pauli forms

of the vector interactions treated there. If from (51) we

take

and

as given by Eqs. (16.1) and (16.2) of (51) with (£, defined by

(16.3)

(tSL- 3.<0

then proper substitutions of -2.T and + 2T in the Dirac

equations for these Hamiltonians and simplifications yield

to

{f + <c* ,,
'|>
jW

) + *.(*<*>. p<xO +tp
eo+p^)n&-

°j



235

and therefore the corresponding Pauli forms can be obtained

by using the results on the Pauli forms given in (51) . The

results agree with those found in Chapter III or in the

Section 1 of this chapter, thus providing a check on the

method by which the Dirac equation is reduced to Schrodinger-

Pauli form at least to the order V" (/c.'*- . The higher orders

and normalization connected with them should be carefully

examined but a relatives tically correct treatment should

serve the purpose better.

It would also be appropriate here to understand

the structure of the equations obtained in these methods of

reduction to the large components. The conclusions obtained

are not unexpected but clear our understanding of the

expansions involved in approximations that are made in

obtaining the Schrodmger-Pauli form.

We obtained equation (VII-1.8) in </£ and equation

(VII-lo9) in \^ which can be written as (s&.*>a~dLa'j (>&)

Cam- 3. e)

and

where &
f

and Aare defined from (VII-1.8) and (VXX-1.9) . The

expressions for \J> obtained from these two equations are
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and

(0, -2_<^) v^

If we require that these two equations in U> are the same then

should be satisfied. But if (VII-1.8) and (VII-1.9) are

reduced to a single equation in either ^p or Yj from substi-

tution of one in terms of the other then the two forms obtained

are —
O, - iM) + (©! + *")

C5^) C^-^)J ^=0
and (JOT- 3' II)

|T©,-^) + C^^H) -±-_ <>,-*"/>= o

If we multiply (VII-3.11) by (jf^-f2N) from the left and

(VII-3.12) by /©g-f-l^l) from the left then the equation (VII-

3.10) is obtained.

This observation makes differently looking forms

consistent before the reduction is made. But if different looking

forms of these operator equations are used, then the orders of

expansion should be kept in proper sequence to obtain the

same results

.

In chapter III we gave another method of the reduction

to large components. There also we used an equation expressing
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U>in terms of 4^ . If we had used another equation for this

substitution the we would have reached the similar conclusions

as are obtained from the equations used in this chapter

.

Thus in these chapters we have given the furthur

work of what was reported by Green and Sharma (115) and the

work includes some more recent aspects and the discussions on

the vector mesons as discussed by Sharma , Rochleder and Green (114)



CHAPTER VIII

DISCUSSIONS

Thus an attempt has been made to understand the nucleon-

nucleon (NN) interaction in terms of One-Boson-Exchange-Potential

(OBEP) model and to account for NN elastic scattering phase-

shifts in the Born approximation for non-relativistic energies

(25 - 310 Mev) in the laboratory frame. Theoretically, the OBEP

were derived by Green (1) , the results being given in the Diracian

form (Chapter II) . The two particle Dirac equation was reduced

to a Schrodinger-Pauli form using the method similar to Breit's

method of reduction to large components (Chapter III) . A general

form of interaction was then obtained in the Pauli form which

was applied to scalar, pseudoscalar and three different forms

of vector meson exchange potentials. They all were put in to

the general form

V
?= M& + % (T.V) + VAt^) i- \> C# *»*w) +

where the V's denoted the radial forms and velocity dependerrt

features of the nucleon-nucleon force together with more established

tensor, spin-spin and spin-orbit effects. The velocity dependence

was studied in great detail to see its effects and the general

formalism for phase-shift expressions with velocity dependent

potentials were also presented (Chapter V) . Special methods

were required to deal with the Schrodinger-type equation with

velocity dependence. The method of effective mass generally used

in exact treatments was discussed. Another method in the Born-

238
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approximation was the direct-method which treated the velocity

dependence directly in phase-shift integrals without going to an

effective potential. The experimentally known mesons If, iO , P

and VI were used together with two postulated scalar mesons in

Green's purely relativistic model (cancellation of static

scalar-vector terms) as well as in broken-relativistic models

and use was made of modified Yukawa form with a higher mean

subtractive meson coming from Green's work on Lagrangian with

higher derivatives in the field coordinator. This modified

form successfully removed the singularities from the integrands

and at the same time nicely parameterized the OBEP in the

inner regions where various other processes could be important.

The scalar meson masses are very important for the results

presented in this study on phase shifts. Only phases higher

than S-waves are considered. The Born phases are found to be

quite reliable for D-waves and higher and could be corrected

empirically for P-waves. However, some general information

was obtained from P-wave Born phases. It was shown that couplings

determined from the Born-approximation are usually smaller and

therefore Born-approximation generally gives larger phases for

P-waves o Comparisons are made for certain sets of parameters

between exact and Born phases and the differences are large only

for the P-waves, Coupled states are treated according to

Stapp ' s (jjo) formalism and are also found to conform to these

conclusions

.

Three different vector meson interactions have been

treated and the Born phases resulting from them indicate that
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their relati.vist.ic terms agree for P-waves and higher. Various

theoretical questions should be resolved before treating the S-

waves, for which these interactions are likely to differ. The

effective mass method has been shown to fail if p »eson parameters

play an important role. The direct Born approximation method

can help in that case and also the effects of various mesons and

various terms in the interactions can be seen relatively explicitly

in the Born approximation . The Born approximation thus seems to

have given us an overall picture of various important and emerging

phenomena in accounting for the nucleon-nucleon interaction.

However, the definition of velocity dependent potentials and the

validity of the OBEP become questionable at shorter distances where

S and P waves might be affected. Multiple meson exchanges and

the pair productions become quite important for distances less

than 0<,6 fermis or so and various definitions and the reduction

procedures have to be examined. The quantity T/n^may thus

be no longer a small quantity for these distances. Therefore a

relativistically correct approach to this problem is currently

being taken by Sawada and Green '61; , The results of this approach

should clarify more the understanding of nucleon-nucleon force

for still inner distances.

Another important area of approach should be to account

for the inelastic processes like the Bion. production. It is

also worth noting that recently the attempts have begun to obtain

the mesons as bound states of the nucleon-antinucleon system

and then use these parameters for accounting the nucleon-nucleon
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scattering data also. Recent studies (61) are proceeding in the

same direction.

A very crucial requirement at this stage is to come to

a conclusion about the scalar mesons and to decide their "masses"

of the positions of their resonances. It is likely that a scalar

peak might be hidden under the uJ or the p peaks and the scalar

mass can radically change the phase shift results,

A few words must be said about the possibility that

other interactions might also bridge the gap that seems to occur

at the intermediate distances from 1.2 to 2.0 fermis . The sources

of this might be in the derivative couplings of the -P meson as

used by Bryan and Scott (6 8) or in the Two-Boson-Exchange-Potentials.

Another difficulty is regarding the±(p~ /M /C?~) t&rva. as discussed

by Breit (56) which should be properly accounted for, for exact

treatments

.

Thus we finally conclude that our understanding of the

nucleon-nucleon interaction has increased by an order of magnitude

due to the discovery of various vector and the pseudoscalar

mesons o However, the need to establish a scalar entity (that

gives proper attraction) still remains an open question. Our

understanding breaks down for distances around 0.5 fermi or more

and further work is needed to explore this region „ The Born-

approximation has been pushed far enough and should be corrected

for S and P waves, however the advantages obtained from it are

quite significant from the point of view of individual meson

contributions or the terms, The treatment of the velocity
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dependent potentials can also be carried out in the Born-approxi-

mation where the effective mass method of exact treatment breaks

down

.
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Appendix A

COMPUTER PROGRAMS

1. SPHERICAL BESSEL FUNCTIONS

FUNCTION SF6ESS (H V Z)
C FUNCTION SFBESSIM.Z) USING ASCENDING SERIES
C THIS IS A MORE REFINEO CODE WHICH CALCULATES BESSEL FU

NCTIONS MORE
C CORRECTLY BY POLYNOMIAL APPROXIMATION IN THE RANGE

TO 1 FOR ITS
C ARGUMENT. REF. HANDBOOK MATH FUNCTIONS NATL BUREAU OF S

TANDARDS.
DIMENSION VALUE(I5)
LIMIT=M+1
IF (Z-1.0 ) 231.231.232

231 CONST = 1.253314137
CONSTZ = ( CONST/(S«RTF( Z)))
ZJ = (Z/3.0)«»2

7 FM =M
U=FM+0.5
ZU=(Z/2.0)«»U
FACTOR = UCONST»ZU)/SQRTF(Zn
LI* (Z/2.0)««2
MULT -1
MULTl =1
AMULT2 =1.0
AMULT3 =1.0
MA=M+1
MM= 2»MA-1
DO 237 1=1, MM,

2

MULT = MULTM
237 CONTINUE

AMULT = MULT
GAMA = (U1.772453851)#AMULT)/(2.0»»MA))
TERM = 1.0/GAMA
DO 238 KK= 1,30
DO 239 1=1, KK
AI = I

AMULT2 =AMULT2*AI
239 CONTINUE

FACTL =AMULT2
MMM = M+l+KK
MK1 =2»MMM-1
DO 247 I =1,MK1,2
AI =1
AMULT3 =AMULT3 «AI

247 CONTINUE
GAMA = (U1.772453851)»AMULT3)/(2.0»»MMM)I
TERM = TERM ( (-ZZ)«»KK/ ( FACTL«GAMA)

>

238 CONTINUE
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VALUE (LIMIT) = FACTOR • TERM
1*0 TO 4

232 VALUE(1)=SINF(Z)/Z
VALUE! 2)=SINF(Z)/Z»»2.0-C0SF(Z)/Z

I

7

F
L
M!M!T

( ^ f
Z
*I

3,r i - 0/Z) * SINF(Z, ~ 3 - 0/Z##2 - *COSF(Z)

6 K=3
5 FK =K-1

VALUEIK+1) = ((2.0.FK+1.0J/Z). VALUE(K) - VALUE(K-l)

IF (LIMIT-K) 20, 20, 5
20 SFBESS=VALUE(K)
21 RETURN
4 SFBESS=VALUE(LIMIT)

GO TO 21
END
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2. WEDDLE'S RULE FOR NUMERICAL INTEGRATION

C WEDDLE'S RULE FOR NUMERICAL INTEGRATION

C NOTATION—
C DELTA = WIDTH OF EACH INTERVAL.
C N = THE NUMBER OF POINTS AT WHICH THE INTEGRAND IS

TO BE
C EVALUATED. N IS AN INTEGER AND MUST BE OF THE FORM 6»

M+l, WHERE
C M IS AN INTEGER.
C Y = A L-DIMENSIONAL ARRAY OF THE N VALUES OF THE IN

TEGRAND.
C VALUE = THE VALUE OF THE INTEGRAL.
C NOTE OF CAUTION
C THE NUMBER OF INTERVALS MUST BE A MULTIPLE OF

6 AND
C HENCE N = 6*M+1.

SUBROUTINE WEDDLE (DELTA, Y, N, VALUE)

DIMENSION Y(1201 )

VALUE = 0.

M = N - 6

SUM1=0.0
SUK2=0.0
SUM3=0.0
SUrw = 0. j

DO 15 1=1, M,

6

W 01

W 03

W 04

W 005
SUM1=SUML+Y(I )

SUM2 = SUM2 + Y(l + l)+YU + 5)
SUM3=SUM3+ Y(I+2)+Y(I+4)

SUM4=SUM4+Y( 1+3)
15 CONTINUE

W 08
VALUE=VALUE+tt2.0*SUMlt216.0*SUM2+27.0*SUM3+272.O*SU

M4
VALUE=DELTA*(VALUE+41.0*(Y(N)-Y( 1)) J/140.

RETURN
W 10

END
W
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3. UNCOUPLED BO"N ~

C UNCOUPLED BORN PHASES ( DIRECT METHOD)
C IMPROVED DIRECT UNMIXED BORN PHASES WITH CUT OFF
C THIS CODE WILL CALCULATE PHASE SHIFTS FOR SINGLET ANO

TRIPLET
C (UNMIXED) STATES OF NUCLEON-NUCLEON SYSTEM IN BORN APP

ROXIMATION
C THIS CODE WILL CALCULATE BORN PHASES BY DIRECT METHOD

IN WHICH THE
C OPERATORS OF VELOCITY DEPENDENT POTENIIAL ACT ON THE B

ESSEL FUNCT'
C IONS AND THEN THE RECURRENCE RELATIONS ARE USEDTO REMO

VE FIRST AND
C SECONDDERIVATIVES. THEN THE PHASE SHIFT EXPRESSIONS IN

VOLVE ONLY
C SIX INTEGRALS A B C D E AND F. INTEGRALS ARE EVALUAT

ED USING
C WEDDLE,S RULE. FUNCTION SFBESS IS NEEDE D AND NO OF P

OINTS OF
C INTEGRATION MUST BE 6*M AND SO INPOI NTSARE6M+1

.

C AMASS IS THE MASS OF MESON IN MEV . GSQ IS THE COUPL
ING CONSTANT

C SS IS THE EXPECTATION VALUE OF { SIGMA1 .S IGMA2) FOR THE
STATE .

C ALS IS THE SPIN GR^IT OPERATOR EXPECTATION VALUE FOR
THE STATE

C THAT IS (L.S).Si2 IS THE TENSOR OPERATOR EXPECTATION V
ALUE FOR THE

C STATE. L.S AND S12 AVERAGE TO ZERO FOR SINGLET STATES.
C ' ANL IS THE COEFFICIENT THAT MAKES NON LINEAR TERM ZER

OR TAKES
C IT INTO ACCOUNT
C J IS THE NO OF MESONS 12 OR ,4 (FOR INCLUDING PHI) IN

CLUDING CUT OFF
C NBK CHARACTERISES CHOICE OF CALCULATING BREIT,S AND K

EMMER.S
C VECTOR MESON I NTERACTI OimS . IT CAN BE ZERO OR ONE.
C IDENTIFICATIONS OF THREE VECTOR INTERACTIONS ARE MADE

ACCORDING
C TO THE NAMES OF THE PEOPLE WHO USED THEM HISTORICALLY.

COMMON R0,RMAX f XN,UF,AK,FL,AF,BF.CF,0F,EF f SS,ALS,S12,A
NL ,UFC ,

1 ELAB,8ES ,FF ,HBF,HKF,NBK
DIMENSI0NW(20,2u),GSQ(15),AMASS(15),U( 15),A(15),8(15),

C(15),DI15)
1,E(15),G(15),DY(15),DC(1!J),DGRAD(15) ,DDELSQ ( 15 ) , DSS ( 15

) ,DLS(15),DT
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2(15), DNL(15) ,CAPPA(15) , RY ( 15 ) , RC ( 15 ) , RGRAD ( 15
),RDELSQ(15)

i ,RSS(15),RLS(15),RT(15) V RNL(15) ,BES ( 6, 8, 100 ) ,F(15)
,HB(15),

4 RB<15) ,DB(15),HK( 15),RK<15) , DM 15 ), RGRADB ( 15 ) ,RDLSQBl
15),

5 DGRADS(15) ,DDLS(jB(15)
CALL BESTO

18 READ INPUT TAPE 5, 9, J ,N8K
C IF BREIT KEMMER NOT NEEDED NBK =0 OTHERWISE =1

9 F0RMAT(I2,I1)
973 IF ( J-12) 967,967,966

966 READ INPUT TAPE 5,43,
i(AMASS(I),I=l,J ),(GSQ(I),I=1,J )

43 FORMAT! i 2F6. 0/2F6. 0/12F6 .0/2F6 . )

GU TO 19
967 READINPUT TAPE 5,968,

MAMASSl I), 1 = 1, J ) , (GSQU ), I = 1,J )

968 FORMAT! 12F6.0/ 12F6.0)
19 WRITE UUT PUT 1 APE 6,1150

1150 FORMAH 1H1, 25H DIRECT BORN PHASES )

971 READ INPUT TAPE 5 , 972 , ELAB, FL , T , SS , ALS , S12, ANL , RO, RMAX
,XN

972 FURMAT( 10F6.0)
IF (ELAB- 1000.0) 969,973,973

969 IF (SS-1.0 131,32,31
32 WRITE OUTPUT T APE 6,115

115 FuRf'AH 5X,3uH THIS IS A TRIPLET SPIN STATE
)

GO 10 199
31 IF. (SS + 3.0) 41,42,41

41 WRITE OUT PUT TAPE 6,125
125 FORMAT ( 5X ,20H WRONG INPUT DATA )

CALL EXi T

42 WRITE OUTPUT TAPE 6,135
135 FORMAT! 5X, 30H THIS IS A SINGLET SPIN STATE

)

199 ENERGY = ELAB
WRITE OUTPUT TAPE 6 , 55 , ENERGY , FL , T , SS,ALS,S12 ,ANL

,RO,RMAX,XN
55 FORMAT ( ////1X, 9H ENERGY = ,F6.1,4H L = ,F4.1,9H

T1.T2 = ,

1 F5.1 ,7H S.S = ,F5.1,7H L.S = ,F5.1, 7H S12 = ,F5.1,
5H ANL=,F3.1

2 , 4H R0=,F8.4,6H RMAX= ,F4. 1 ,4H XN=,F5.1 )

AK = SQRTF(ELAB/(2. 0*41. 469)

)

UN= 4.7583/AK
DO 600 1=1,

J

CAPPA(I)=AMASS( I)/ 19 7. 32
U(I) = CAPPA(I)/AK

600 CONTINUE
h(l,l) =1.0
W( 1,3)= -1.0
W( 1,5) =0.0
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w(i, 7) = r

W( 1,9)=-T
W(i,ll)=0.0
W(2,l)=l.O
W(2,3)=0.0
W(2 t 5)*0.0
W ( 2 , / ) = T

W12,9)= 0.0
W(2,ll)=0.0
rt(3, 1)=1.0
W(3,3)=1.0
W(3,5)=0.0
W(3,7)= T

W(3,9)= T

W(3tll)=0.0
W{4,1)=1.0
W(4,3)= 1.0
W(4, 5)=0.0

W(4,7)= T

W(4,9)= T

W(4,ll)=0.0
W(5, 1)=0.0
W(5,3)= 1.0
W(5,5)=l. 0/2.0
W(5,7)=0.0
W<5,9)= T

W(5,ll)= (1.0/2.0)»T
W(6,l)=1.0
W(6,3)=3.0
W(6,5)= 0.0
W(6,7)= T

W(6,9)= 3.0*T
W(6,ll)=0.0
H(7.1)«0.0
W(7,3)=1.0
W(7,5)=-1.0
W(7,7)= 0.0
W(7,9)= T

W(7,ll)= -T
W(8, 1)=0.0
W(8,3)=1.0
W(8,5)=i.0
W(8,7)=0.0
W(8,9)= T

W(8,ll)= T

W(1,13)=W(1,3)
W(2,13)=W(2,3)
W(J,13) =Wt3,3)
W(4,13) =W{4,3)
W(5, 13)=W(5,3)

W(6,13)=W(t>,3)
W(7.13)=U(7.3)
W(8,13)=W(8,3)
Wt 10,1)=0.0
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W(10,3)=1.Q
W(10,5)=0.0
W(10,7)=0.0
W( iO,9)=T

W( iO,ll)=0.0
W(10,13)=W(10,3)

Wtll,l)=0.0
W(ll,3)= 1.0/2.0

W(ii,5)=0.0
W(ll,7)=0.0

W(ll,9)= T/2.0
W(11,11)=0.0

W(ll, 13)=W(li,3)
W( 12,1 J =0.0

W(12,3)= 1.0/2.0
W(12,5)=0.0

W(12, 7)=0.0
W(12,9)= T/2.0
Wtl2,ll)=0.0
W(12,13)=W(12,3)

SUM 1=0.0
SUM2=0.0
SUM3=0.0
SUM4=0.0
SUM5=0.0
SUM6=0.0
SUM7=0.0
SUM8=0.0
SUMiO=0.0

5UM11=0.0
SUM12=0.0
SUMi3=0.0

RADIAN =57.29578
JM=J-1
JJ=J+1

1= -1

3 1=1+2
IF(I-JJ)5,6,41

5 IF(I-1)41,1,12
12 M=I
10 M=M-2

IF(M) 1,41,2
2 IF (AMASS(I)-AMASStM)) 10,7,10

I UF =U{ I )

UFC = UU + 1)
CALL BGKINT

All) = AF
BtlJ = 8F
C(I) =CF
0(1) = OF
Ed) =i£F

F(I)=FF
IF (M8K)471,472,471

Wl HBU) = HBF
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HK{

I

)=HKF
4 72 GU lb 3
7 A(I) = A(M)

B(I) = 0(M)
C ( I ) = C ( M

)

D( I) = D(M)
L( I) = t(M)
F(I)=F(M)
HB(I)=HB(M)
HK(I )=HK(M)

GU 10 3

6 GO TO 132 1

1321 WRJFEUUTFUrrAPL 6,33 , ( A { I ) , B ( I ) ,C ( i ) , D( I ) , E { I ) , F(
I) ,Hli( I) ,

1 HK< I ) ,I = 1,JM,2)
33 FORMAT ( 10X,8bl3.6)

DO 100 I=1,JM,2
RY(I) = GSQU )*UN*A(I )»W(1,I)
SUM1=SUM1+RY(I

)

RC(I) = (0.25»GSQ(I)* F(I)»W(2,I)/UN)
SUM2-SUK2+RC(i)
RGRAD(I)=-GSfl(I]/UN *BU)*W(3,I)
3UM3=SUM3+RORAD(l

)

RDELSQ(I)= -(GSQ(I)/UN)»A(n*W(4,I)
SUM4=SUM4+RDELSu( I )

RSS(I)= -ll.0/6.0)»(GSQ(IJ/UN)*SS *W(5,I)»F(
I)

SUM5=SUM5+RSS( I)
RLS(I)= {ALS/2.u)*(GSQ(I)/UN)*C(I)*W<6, i)
S0M6=SUK6+RLS( I)
RT(I) =(S12/12.0)*(GSQ(IJ/UNJ»D{I)»W(7 t I)
SUM7=SUM7+RT(1)
RNL(I) = -( (GSwd )**2)/4.0)*E(I)*W(8,I)«ANL
SUM8=SUM8+RNL(I)
Y1=RY(I)
Y2=RC( 1)

Y3=RGRAD(I >

Y4=R0ELSQ(I)
Y5=RSS(1)
Y6=RLS(I)
Y7=Rr(I)
Y8=RNL(I)
YP=A8SF(Y1J
YQ=ABSF(Y2)
YR=A3SF(Y3)
YS= ABSF(Y4)
YT= ABSF(Y5)
YO= ABSFIY6)
YV= ABSF{Y7)
YW= ABSF(Y8)
IF(N8K) 411,412,411

411 RGRADB(I)= C-GSQ( I )/UN)«C( I J »W ( 11 , 1 )

SUM12-S0M12+RGRADB( 1 )

RDLSQB(I)= (-GSQU ) /UN) »A( I ) *M 12 , I )
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SUM13 =SUM13 +RDLSQB( I)
RB(I)=(GSQ(I)/UN)«HB(I)*W{10, I)

SUM10=SUM10+RB(I

)

RK(I)=(GSUCI)/(UN»(U(I)»»2)))«H(10,I)*HK(i)
S0M11=SUM11+RK(I)
Y10 =R3(I)
Yll=RK(I)

Y12 =RGRADB(I)
Y13=RDLSQB( I)
OB(I)= ArANF(Y10)*RA0IAN
UK(I)=ATANF(Y11)»RADIAN
DGRA0B(I)=ATANF(Y12)»RADIAN

D0LSQB(I)=ATANF{Y13)»RADIAN
412 IF(YP-0. 5)201, 202, 202

201 DY(I)=(Y1-{Y1**3)/3.0)*RADIAN
GO TO 203

202 DY(l)=ArANF(Yl)*RADIAN
203 IF(YQ-0.5) 204,205,205
204 DC(I)=(Y2-(Y2»*3)/3.0)*RADIAN

GO TO 206
205 DC(IJ=ATANF(Y2)*RADIAN
206 IF(YR-C. 5)207, 208, 208
207 DGRAD(I)=(Y3-(Y3**3)/3.0)*RADIAN

GO TO 209
208 DGRAD(I)=ATANF(Y3) *RA0IAN
209 IF(YS-0. 5)210, 211, 211
210 DDELSQ(I)=(Y4-(Y4«*3)/3.0)*RADIAN

GO TO 212
211 DDELSQ(1)=ATANF(Y4)*RADIAN
212 IF (YT-0. 5)213, 214, 214

213 OSS(I)=(Y5-(Y5**3)/3.0)*RAOIAN
GO TO 215

214 0SS(I)= ATANF(Y5)*RADlAN
215 IFJYO-0.5) 216,217,217
216 0LS(I)=(Y6-(Y6**3)/3.0)»RADIAN

GO TO 216
217 DLS(I)= ATANF(Y6)*RA0IAN
218 IF(YV-0. 5)219, 220, 220
219 DT(I)=(Y7-{Y7»*3)/3.0)*RADIAN

GO TO 221
220 DT(I)=ATANF(Y7)*RADIAN
221 IF(YW-G. 5)222, 223, 223
222 DNL(I)=(Y8-(Y8**3)/3.0)*RA01AN

GO TO 100
223 UNL(I)=ATANF(Yu)*RADIAN
100 CONTINUE

PHASEL= S0M1+SUM2+SUM3+SUM4+SUM5+SUM6+S0M7
PHASE =PHASEL+S0M8

SHIFTL=ATANF(PHASEl_)*RADIAN
SHIFT-ATANFl PHASE )*RADI AN
IF(NBK)415,416,415

415 PHASEK=PHASEL+SUM11
PHASEB=S0M1+SUM2+SUM12 + SUM1 3+SUM5+SUM6+SUM7+SUM10
SHIFTK= ATANF(PHASEK)*RADIAN



252

SHIFTB= ATANF(PHASEB)»RAOIAN
OIFK = SHIFTL-SHIFTK

UIFB = SHIFTL-SHIFTB
UIF6K=SHIFTB-SHIFTK

SUM10= ATANF(SUM10)»RA0IAN
SUM11= ATANF(SUM11)»KADIAN
SU';i2=ATANF(SUMl2)*RAUIAN
SUM 13= ATANF(SUM13) *RADIAN

416 SUMP = ABSF(SUMl)
SUMQ= ABSFCSUM2)

SUMR- ABSF(SUM3)
SUMS = AOSF{ SUM4)
SUMT = ;.BSF(SUMp)
SUMU= ABSFISUMO)
SUMV= ABSF(SUMY)
SUMW= A8SF(SUM8)
IF(SUMP-0.5)22f,225,225

224 SUM1 =(SUM1-(SUM1**3)/3.0)*RADIAN
GO TO 226

225 SUMl=ATAl\iF(SUMl)*RADIAi\l
226 IFiSUMQ-0. 5)227, 228, 228

227 SUM2-(SUM2-(SUM2*«3)/3.0) »RADIAN
GO 10 229

228 SUM2 =ATAiMF(SUM2)*RADIAM
229 lF(SUMR-0. 5)230, 231, 231
230 SUM3 = (SUM3-(SUM3**3)/3.0)*RADIAN

GO TO 232
231 SUM3=ATANF(SUK3)»RADIA..^
232 IFtSUMS-O. 5)233, 234, 234
233 SUM4=(SUM4-(SUH4**3)/3.0)«RADIAN

GO TO 235
234 SUM4=ATANF(SUM4)*RA0IA,W
235 IF(SUMT-0. 5)236, 237, 237
236 SUM5=(SUM5-(SUM5**3)/3.0)»RADIAN

GO TO 238
237 SUK5=ATANF(SUM5)*RADIAN
'238 IFtSUMU-O. 5)^39, 240, 240
239 SUM6=(SUM6-(S0M6«*3)/3.0)*RADIAN

GO TO 241
240 SUM6=ATANF(SUM6)*RADIAN
241 IF(SUMV-0. 5)242, 243, 243
2**Z SUH7 =(SUM7-(SUM/**3)/3.0)«RADIAN

GO TO 244
243 SUM7 =ATANF(SUM7)*iiADIAN
244 IF(SUMW-G. 5

)

24d , 245 , 246
245 SUM8=(SUM8-(SUM8**3)/3.0)*RA0IAN

GO TO 247
246 SUM8 =ATAIsiF(SUMa)*RA0IAU
247 IF (J-12) 302,302,303

302 WRITE OUTPUT TAPE 6,15
15 F0RMAH8X . 7H OMEGAS , 4X , 6H 0MEGA

« 4X, 4H ETA , 6X, 7H RHOS , 6X
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2 4H RHO , 6X, 3H PI , 6X, 5H S

UM //)
304 WRITE OUTPUT TAPE 6, 75 , ( AMASS ( I ) , 1=1 , JM ,2 ) , (GSQ( I) , 1=1

iJH,2J
75 FORMAT(2X, (6H.MASS , 6F 10.2 ) // I 2X, 6H GSQ , 6F10.2)

)

WRITE OUTPUT TAPE 6, 76, I AMASS (I) , I =2 , J , 2 ) , I GSQ ( I ) , 1 = 2

,J ,2)
76 FORMAT(2X, (6H MASSC , 6F10. 2 ) // ( 2X, 6H GSQC , 6F10.2)

)

402 WRITE OUTPUT TAPE 6 , 25, (DY< I ) , 1 = 1 , JM ,2 J , SUM1 , ( DC( I ) , 1 =

1,JM,2),SUM2
i , (DGRAD(I),I=1,JM,2),SUM3, (ODELSQl I ) , 1=1 , JM,2 ) ,SUM4,

(DSS(I),I=1,
2 JM,2) ,SUM5, (DLSU ),I=1,JM,2) ,SUM6 , ( DT t I ) , 1=1 , JM,2) ,SU

M7,(DNL(I)

,

3 I=1,JM,2),SUM8
25 FORMAFU 3X, 5H DY , 7F 10.5 ) // ( 3X , 5H OC ,7F10.5

)//(2X,
1 6H DGRAD ,7F10.5)// (IX, 7H ODELSQ , 7F 10.5) // (3X, 5H

DSS ,7F10.5)
I //(3X, 5H ULS ,7F10.5)//(3X,5H DT ,7F 10. 5 ) // { 3X, 5H

DNL,7F10.5))
GO TO 409

303 WRITE OUTPUT JAPE 6, 16
16 FORMAT (8X , 7H OMEGAS , 4X, 6H OMEGA ,

1 4X, 4H ETA , 6X, 7H RHOS , 6X
t

2 4H RHO , 6X, 3H PI ,6X,4H PHI , 6X, 5H S

UM //)
WRITE OUTPUT TAPE 6 , 78 , ( AMASS ( I ) , 1 = 1 , JM , 2 ) , ( GSQ ( I ) , 1 = 1

, JM,2)
78 F0RMAT(2X,(6H MASS , 7F 10. 2 ) // ( 2X, 6H GSQ , 7F10.2)

)

WRITE OUTPUT TAPE 6 , 77 , ( AMASS ( I ) , I =2 , J ,2 ) , ( GSQ( I ) , 1=2
,J ,2)

77 F0RMAT(2X,(6H MASSC , 7F10.2) //( 2X, 6H GSQC , 7F10.2)
)

403 WRITE OUTPUT TAPE 6,26, ( DY( i ) , 1 = 1 , JM,2 ) ,SuMl , t DC { I ) , 1 =

1,JM,2),SUM2
L , (DGRADd ) ,I = 1,JM,2),SUM3, IDDELSQt I ) , 1 = 1 , JM, 2) ,SUM4,

(DSS(I),I=1,
2 JM,2) ,SUM5, (DLS(I) ,I=1,JM,2) , SUM6 , ( DT( I ) , 1=1 , JM ,2 ) ,SU

M7,(DNL(IJ,
3 I=1,JM,2),SUM8

26 FORMAT! ( 3X, 5H DY , 8F10.5 ) //{ 3X , 5H DC ,8F10.5
)//(2X,

L 6H DGRAO .8F10.5)// (IX, 7H DDELSQ , 8F10. 5 ) // ( 3X, 5H
DSS .8F10.5)

2 //{3X, 5H DLS , 8F 10 .5 ) // ( 3X, 5H DT ,8F 10. 5 ) // ( 3X, 5H
DNL.8F10.5J

)

409 WRITE OUTPUT TAPE 6, 36 , PHASE , PHASEL
36 FORMAT (5X,9H TANDG= , F12.5,10H TANDLG= , F12.5)

WRITE OUT PUT TAPE 6, 35, SHIFT ,SHIFTL
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35 FORMAT (1X.25H PHASE GREEN IN DEGREES = ,F12.5,20H PHA
SE LINEAR GR

i£EN= ,F12.5 )

IF(NlK) 421, 42*:, 421
421 IFU-12) 452,451,452
451 WRITE OUTPUT TAPE 6,423,

1 (DGRADB(I),I = l,JM,2),SUM12,(DDLSQBm,I
=1,JM,2),SUM

1 13,(DK(I),I=1,JM,2),SUM11,(D8(I),I=1,JM,2),SUM10
423 FORMATt (1X,7H DGRADD , 7F 10.5 ) //( IX, 7H DDLSQB .7F10.5)/

/(1X,7H OKMR
1EX ,7M0.5)// (IX, 7H DBRTEX .7F10.5 ) )

GO TO 457
452 WRITE OUTPUT TAPE 6,456,

1 (DGRADB(I),I=l,Jfo,2),SUM12,(DDLSQB(I),I
=i,JM,2),SUM

i 13,(0K(I),I=1,JM,2),SUM11,(DBU ) , 1=1, Jrt, 2 ) , SUM10
456 FORMAT( { IX, 7H DGRADD , 8F 10. 5 ) //( IX, 7H DULSQB ,8F10.5)/

/(1X,7H DKMR
IcX ,8Fi0.5)// (IX, 7H DtlRTEX ,8F10.5 ) )

457 URITE OUT PUT TAPE 6,461,
i, PHASbK,PHASEB,SHIFTK,SHIFTB,DIFK,DIFB

,DIFBK
461 FORMAT(5X,20H TAND (KEMMER) = ,F12.5, 20H TAND(

BREIT)=
i ,F12.5,// 15H PHASE KEMMER= ,F12.5

,15H PHASE
2BREIT= ,F12.5,//20H GREEN-KEMMER= ,F12.5, 20

H GREEN-BRE
3IT = ,F12.5 , 20H BRE IT-KEMMER=

,F12.5)
422 GO TO 19

END
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SUBROUTINE "BGK1NT"
Used for Calculating Integrals

for Uncoupled Phases

SUBROUTINE BGKINT
BGKINT IS THfc SUBROUTINE FOR BREIT GREEN KEMMER INTEGR

ATIONS
COMMON R0,RMAX,XN,UF,AK,FL,AF,BF,CF,0F,EF,SS,ALS,S12,A

NL ,UFC ,

1 ELAB,BES ,FF ,HBF,HKF,NBK
DIMENSION Z I 1201 ), GA( 1201 ),GB( 1201 ),GC( 1201 ),GD( 1201),

GEI1201) ,

1 BES(6,8,100) , TFU201) , THB ( 1201 ), THK( 1201

)

Z0=R0*AK
ZMAX =RMAX»AK
DELZ ={ZMAX-Z0)/XN
M=FL
K=M-1
N = M+l

NN=XN
L=NN+1
EXl=EXPF(-UF*ZQ)
EX2=EXPF(-UFC»Z0)
EXD=EXPF(-UF*DELZ)

EXDC= EXPF(-UFC*DELZ)
M1=M+1
k;=k+i
N1=N+1

IFIELAB-50.0 ) 21,21,22
21 11=1

GO TO 23
22 IF (ELAB-142.0) 99,99,25
99 11=2

GO TO 23
25 IF ( ELAB-310.0 ) 26,26,27
27 WRITE OUTPUT TAPE 6,28
28 FORMAT(20H WRONG ENERGY )

CALL EXIT
26 11=3
23 DO 100 1=1,

L

AI = I

Z(I) =Z0+(AI-1.U)*DELZ
2Z=Z(I)
UZ=UF»ZZ
UZC=UFC*ZZ
UZ2=(UZ**2+2.0*UZ+2.0>
UZ2C=(UZC#*2+2.0»UZC+2.0)

UZ3=(UZ»»2+3.0»UZ+3.0)
UZ3O(UZC*»2+3.0*UZC + 3.0)

BESN =BES(I1,N1,I)
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BESM=BES(I1,M1,I)
IF (Kl) 27,401,402

402 BESK=BES< I 1 , Kl , 1

)

GD TU 404
401 BESK = (C0SF1ZZJ/ZZ)
404 BESQ=(Bi-SM)»*2

TjBES=(FL*BbSK-(FL+i.O)*BESNM(1.0/(2.0*FL-H.O) )

EX - ( EX1 - EX2)
GA(I) =EX«ZZ»BESU
GBII) = ( EX + ( UF*EX1 -UFC«EX2 ) •LD^l DBES»BESM)
GCtl) = £X » I BESU/ZZ) + ( UF*EX1 -UFC*EX2 )»BESQ
GD(I) = (( (UF»*2)*EX1-(UFC»*2)»EX2)*ZZ+3.0*(UF*EX1-UF

C»EX2) )*BESQ
I +3.0*EX*(BESQ/ZZ)
GE(1) =(EX**2)»BESQ

TF( I)=((UF**2)*EX1-(UFC**2)*EX2)*BESQ*ZZ
IF(NUK)405,406,405

405 CK=( (UF*«4)»EXl-(UFC»*4)*EX2)»ZZ»BESg
DLSQK=(UZ2*EX1-UZ2C»EX2)»(BESQ/ZZ)
GRADK =( (UZ**3+3.0*UZ2)»EX1 -( UZC**3+3 .0»UZ2C ) »EX2 )»

DBESMSESM/
1(ZZ«»2) )

ELLK= (UZ3*EX1-UZ3C*EX2)*(BESQ/(ZZ**3))
THK{ I )=-0.25*CK+DLSQK+GRADK -FL»( FL+1. ) *ELLK
CB=( (UF**2)*U.0+UZ)*EX1-(UFC**2)»(1.0+UZC)«EX2)*ZZ

*BESQ
GRADB = (UZ3*EX1- UZ3C*EX2 ) »DBES*BESM
DLSQB = ( {1.0+UZ)«EX1-(1.0+UZC)»EX2)*ZZ*BESQ

THBU) = 0.5*(-i.25»TF(I)+0.25*C8-GRADB-DLSQB +FL*(FL+1
.0)*GC(I)J

406 EX1=EX1»EX0
EX2=EX2*EXDC

100 CONTINUE
CALL WEODLE(DELZ,GA,L, RESULT)
AF = RLSULT
CALL WEDDLEIOELZ.GB, L, RESULT )

8F - RESULT
CALL WbDDLttDELZ.TF.L, RESULT)
FF=RESULT
IF (NBK)407,40d,407

407 CALL WEDDLEt UELZ , THB ,L , RESULT )

HBF=RESULT
CALL WEDDLE { DELZ , THK , L , RESUL T

)

HKF = RESULT
408 IF (ALS) 20,30,20
20 CALL W£DDLE(DELZ,GC,L, RESULT)

CF = RESULT
GO TO 40

30 CF 0.0
40 IFIS12) 50,60,50
50 CALL WEDDLEIDELZ, GO, L, RESULT)

DF = RESULT
GO TO 70

60 DF=0.0
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70 IF (AND 80,90,b0
80 CALL WEDOLEtDELZ.GE.L. RESULT)

EF=RESULT
GO TO 130

90 EF=0.0
130 RETURN

END

257
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BORN PHASES FOR THE UNCOUPLED STATES WITH "EFFECTIVE
MASS" METHOD

C EFFECTIVE BORN PHASES
C CORRECT EFFECTIVE POTENTIAL APPROACH TO BORN PHASES
C THIS CODE WILL CALCULATE PHASE SHIFTS FOR SINGLET AtiD

TRIPLET
C (UNMIXED) STATES OF NUCLEON-NUCLEON SYSTEM i.N BORN APP
- , _ ROXIMATICiJ
C WILL BE DONE IN EFFECTIVE MASS APPRUXI MATIO.M WHERE 2ND

.__ n „ DERIVATIVES
ARE REMOVED BY EFFECTIVE MASS AND FIRST BY TRANSFORMIN

r y . D , (Ii „ ucl „
G THE WAVE FONCTIONC X-R*(1+PHE)»».5*U .THEN THE PHASE SHIFT EXPRESSIONS IN
VOLVE ONLY

C )IX INTEGRALS A B C D EFAND THE INTEGRALS ARE PERFORM

C WEDDLE,S RULE. FUNCTION SFBESS IS NEEDE D AND NO OF P

C INTEGRATION MUST BE 6*M AND SO INP0INTSARE6M+1

.

C DtLSQ MEANS LINEAR VEL DEP TERMS. SUM3 IS VEL DEP NO

C AMASS IS THE MASS OF MESON IN MEV . GSQ IS THE COUPL
r cc ,o t, r-

ING CONSTANT
C SS IS THE EXPECTATION VALUE OF ( SIGMA1 . SIGMA2) FOR THE

C ALS IS THE SPIN ORBIT OPERATOR EXPECTATION VALUE FOR

C THAT IS CL.SJ.Si2 IS THE TENSOR OPERATOR EXPECTATION V

r cta-t^ r-
ALUE FOR THE

C I2i « ;JB
A
?2«!ii

AVERAGE T0 Z£R° FOR SINGLET STATES.C ANL IS THE COEFFICIENT THAT MAKES NON LINEAR TERM 2ER

C IT INTO ACCOUNT ° °R rAKES

C J IS THE NO OF MESONS 12 OR 14 (FOR INCLUDING PHI) IN

common Ro.rmax.xn.uf.ak.pl.af.bf.cf^IS.ssIa^s^.a

i ELA8,BES ,FF
NL ' UFC

'

DlMtNSlONW(10,2U),GSQ(15),AMASS(15),U(li>),A(15),B(15),

i,E(15) t G(15),DY(15),DC(15),DGRAD(15)
f DDELSQ(li),DSS(15

2(15), DNLU5) ,CAPPA<15, ,RY\£\ Jrc?is'IttlUDClS
J
n;Sfn! ,^S<15MTll5, ' RNL,15) .BEM^loo! ,F<15)DIMENSION Z( 1201) ,GA ( 120 1 ) ,GB ( 1201 ) ,GC < 1201), 60(1201),

DIMENSION DENOM( 1201 ),PHEPR( 1201 l^^TFC 1201)
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CALL BESTU
18 READ INPUT TAPL 5,9,

J

9 FORMAT (12)
973 IF { J-12) 967,967,966

966 READ INPUT TAPE 5,43,
1(AMASS(I),I=1,J ),(GSQ(I),I=1,J )

43 FORMAT! 12F6. 0/2F6. 0/12F6 .0/2F6.0

)

GO TO 19
967 REAOINPUT TAPE 5,968,

i(AMASS(I),I=l,J ), (GSQ(I),I=1,J )

968 FORMAT( 12F6.0/ 12F6.0)
19 WRITE OUT PUT TAPE 6,1150

1150 FORMAT( 1H1, 2511 EFFECTIVE BORN PHASES )

971 READ INPUT TAPE 5 , 972 , ELAB , FL ,T, SS , ALS , S12 , ANL , RO, RMAX
f XN

972 FUR1!AT(10F6.0)
IF (ELA3- 1000.0) 969,97.3,973

969 IF (SS-1.0 )31, 32,31
32 WRITE OUTPUT T APE 6,115

115 FORMAT( 5X,30H THIS IS A TRIPLET SPIN STATE
)

,G0 TO 199
31 IF (SS+ 3.0) 41,42,41
41 WRITE OUT PUT TAPE 6,125

125 FORMAT ( 5X ,20H WRONG INPUT DATA )

CALL EXIT
42 WRITE OUTPUT TAPE 6,135
135 FORMATt 5X, 30H THIS IS A SINGLET SPIN STATE

)

199 ENERGY = ELAB
WRITE OUTPUT TAPE 6, 55, ENERGY.FL, T, SS,ALS,S12 ,ANL

,R0,RMAX,/CN
55 FORMAT ( ////1X, 9H ENERGY = ,F6.1,4H L = ,F4.1,9H

T1.T2 = ,

1 F5.1 ,7H S.S = ,F5.1,7H L.S = ,F5.1, 7H S12 = ,F5.1,
5H ANL=,F3.1

, 4H R0=,F8.4,6H RMAX= , F4. 1 , 4H XN=,F5.1 )

AK = SQRTFiELAB/(2. 0*41. 469))
UN= 4.7583/AK
DO 600 1=1,

J

CAPPA(I)=AMASS(I J/197.32
U(I) = CAPPA(I)/AK

600 CONTINUE
W(l.l) =1.0
W(l,3)= -1.0
W(l,5)=0.0
W(1,7)=T
W(l,9)=-T
W( 1,111=0.0
W(2,i)=-1.0
W(2,3)=0.0
W(2,5)=0.0
W(2,7)=-T

W(2,9)=0.0
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W(2,ll)=0.0
W(3,l)=1.0
W(3,3)=1.0
W(3,5)=0.0
W<3, 7)= T

W(3,9)= T
M(3 V 11)=0.0
W(4,l)=1.0
W(4,3)= 1.0
W(4,5)=0.0

W(4,7)= T
W(4,9)= T

W(4,li)=0.0
W(5,I)=0.0
W{5,3)= 1.0
W(5,5)=l. 0/2.0
W(5,7)=0.0
W(5,9)= T

W(5,ll)= (1.0/2.0)*T
W(6,1J=1.0
W(6,3)=3.0
W(6,5)= 0.0
W(6,7)= T
W(6,9}= 3.0*T
W(6, 11)=0.0
W{7,1)=0.0
W<7,3)=1.0
W{7,5)=-1.0
W17,7)= 0.0
W{7,9)= T
W(7,ll)= -T
W(8,l)=0.0
W(8,3)=1.0
W(8,5)=1.0
W(8,7)=0.0
W(8,9)= T
W(8,ll)= T

W(l, 13)=W(1,3)
W(2,13)=W(2,3)
W(3,13) =W{3,3)
W(4,13) =W(4,3)
W(5,13)=W(5,3)

W(6,13J=H(6,3)
W(7 f 13)=W(7,3>
W(8,13)=W(8,3)

SUM1=0.0
SUM2=0.0
SUM3=0.0
SUM4=0.0
SUM5=0.0
SUM6=0.0
SUM7=0.0
SUM8=0.0
RADIAL =57.29578
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JM-J-1
Z0=K0*AK
ZMAX =RMAX«AK
DELZ =(ZMAX-Z0)/XN
M=FL
NN=XN
L=NN+1
M1=M+1

IF(ELAB-50.0 ) 521,521,522
521 11=1

GO TG523
522 IF (cLAB-142. 0)599, 599, 525
599 11=2

GO T0523
525 IF ( ELAB-310.00 ) 526,526,527
527 WRITE OUTPUT TAPE 6,528

528 FORMAT* 20H WRONG ENERGY )

CALL EXIT
526 11=3
523 00 2000 K=1,JM,2

UF = U(K)
UFC = U(K+i)
EX1=EXPF(-UF»Z0)
LX2=EXPF(-UFC*Z0)
EXD=EXPF(-UF»DELZ)

EXDC= EXPF(-UFC»DELZ)
00 10001=1,

L

AI = I

Z(I) =Z0+(AI-1.0)*DELZ
ZZ=Z(I)
BESM=BESU1,M1,1)

404 BbSQ=(BtSM)**2
EX = ( EX1 - EX2)
IF(K -1) 527,572,5005"

572 PSUM =0.0
DPSUM =0.0

DO 550 JJ=1,JM,2
Ji = (JJ -D/2 + 1

GO TO (551,551,552,553,553,552,55i),JI
552 PHE =0.0

DPHE =0.0
GO TO 554

551 PHE= GSQ(JJ)»(EXPF'-U(JJ)*ZZ)-EXPF(-U(JJ+l)»ZZ))/(UN
*ZZ)

OPHE =-(PH£/ZZ)-(GSQ(JJ))»(U(JJ)«EXPF(-U(JJ)*ZZ)-U(JJ
+1)»EXPF(-

1 U( JJ+1)»ZZ) )/(UN»ZZ)
GO TO 554

553 PHH= GSQ(JJ)»(EXPF(-U(JJ)*ZZ)-EXPF(-U(JJ-H)*ZZ))/(UN
•ZZ)

DPHE =-{PHE/ZZ)-<GSQ(JJ))MU(JJ)*EXPFl-U(JJ)«ZZ)-U(JJ
1)*EXPF(-

i U(JJ+l)*ZZ) )/(UN«ZZ)
PHE = T»PHE
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DPHE = T* DPHE
554 PSUM = PSUM + PHE

DPSUM = DPSUM + DPHt
550 CONTINUE
5004 DENOM(I)= 1.0+PSUM

PHEPR(1)=DPSUM 5-5-5-
SOOiT IF (DEN0M(I))555 f 555,571 \± PfK-/) **5$"5\ 556~? S006
5555 RR = ZZ/AK ' > V

WRITE OUTPUT TAPE 6, 557, DLNOM ( I ) , RR
557 FORMAT! 25H EFFECTIVE MASS NEGATIVE ,E12.6 f 15H

AT RADIUS*
1 , F 10.6 )

5*000 KK={
GA{KK)=0.0
GB(KK)=0.0
GC(KK)=0.0
GD(KK)=0.0
GE(KK)=O.G

TF(KK)=0.0
GO 10 1000

571 GAU) - ( EX*ZZ*BESQ )/DENCiMlI)
5001 GC(I) = (EX * { BESQ/ZZ) + ( UF*EX1 -UFC*EX2 ) *CESQ )/

5002 GDI I) *{(((UF««2)»EXl-(UFC«.2)»EX2)»Zzi3lo.(UF*EXl-UF

i +3.0*EX*(BESQ/ZZ) )/DENOM(I)
5003 CE(I)=((EX»*2)*LESQ l/DENOM (I)

TFU)=UUF.»2)*EX1-(UFC»*2)»EX2).BESQ*ZZ /DENOM(

IF(K-1)527, 574, 1001

100^ Ex!lexI*EXD
5MtPHEPR (n/DEN0M <l>>**2>*CBESQMZZ..2))

EX2=EX2*EXUC
1000 CONTINUE

CALL WEDOLE(DELZ,GA,L, RESULT)
A(K) =RESULT
CALL WEDDLE(DELZ,TF,L, RESULT)
F(K)=RESULT
IF (K-l)fa61,86i,862

8ol CALL WEDDLE(DELZ,GB,L, RESULT)
B(K)=RtSULT

862 IF (ALS) 20,30,20
20 CALL WEOOLE(D£LZ,GC,L, RESULT)

C(K)=RESULT
bo rc 40

30 C(K) = 0.0
40 IF(S12) 50,60,50
50 CALL WEDDLEtOELZ, GO, L, RESULT)

D(K) = RESULT
GO TO 70

6G 0(K)=0.0
70 IF (AND 80,90,80
60 CALL WEDOLE(D£LZ,GE,L, RESULT)

E(K)= RESULT
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GU ro 2000
90 b(K)=0.0
2000 CONTINUE

DO 575 KK=3,JM,2
575 8(KK)=B(1)

WRITE OUTPUT f A PE 6,33,UCI1 .BCII.CI I) ,Dt II.EU1 , 1-l.J

33 FORMAT (10X,5E15.6J
M,2)

00 100 1=1, JM,

2

RY(I) = GS(J(I)*UN*A(I)»W(l f I)
SUMI = SUM1+RYU)

sS^su^n" '"* Fii..«a.n/«,
RGRAUt IJ=0.0
SUM3=SUM3+RGRAD{ I J

RDELSQ(I)=-(GSQ(I)/UN)»(A(IJ+0.5*F(I))*W(4.I)
SUM4=SUM4+RDELSQ(I)
RSS(I)= -ll.0/6.0)»(GSQ(I)/UN)»SS *W(5,I)«F(

SUM5^SUM5+RSS(I

J

RLS(I)= (ALS/2.0)*{GSQ(I)/UN)»C(I)»W(6,IJ
SUM6-SUM6+RLS(I)
'RT(I) = {S12/12.0)*(GSQU )/UN)*D(I)»W(7, I)
SUM7=SUM7+RT(I)
RNL(I) = -{ (GSQU )**2)/4.0)*E(I)*W(8, I)*ANL
SUM8=SUM8+RNL(I)
Y1=RY( I)

Y2=RC(I)
Y3 =RGRAD( I J

Y4 =RDELSQU)
Y5=RSS(I)
Y6=RLS(I)
Y7=Rf(I)
Y8=RNL{ I)

YP=A8SF{Y1)
YQ=ABSF(Y2)
YR=ABSF(Y3)
YS^ ABSF(Y4)
YT= ABSF(Y5)
YU= A3SF(Y6)
YV= ABSF(Y7)
YW= A8SF(Y8)
IF(YP-0. 5)201, 202, 202

201 DY(I)={Y1-(Y1*«3)/3.0)*RADIAN
GO TO 203

202 DY(I)=ATANF(Y1)»RA0IAN
203 IF(YQ-0.5) 204,205,205
204 DC(I)=(Y2-(Y2»*3)/3.0)»RADIAN

GO TO 206
205 DC(I)=ATANF(Y2)*RADIAN
206 IF(YR-0. 5)207, 208, 208
207 DGRAD(I)=(Y3-(Y3**3)/3.0)*RADIAN

GO TO 209
208 DGRAD(I)=ATANF(Y3) *RADIAN
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209 IF(YS-0. 5)210, 211, 211
210 DDELS(0( I ) = (Y4-(Y4"»3)/3.0) "RADIAN

GO 1U 212
211 DDEL5U( I)=ATANHY4)«RADIAN
212 IF (YT-0. 5)213, 214, 214

213 DSS( I )=(Y5-{Y5**3)/3.0) "RADIAN
GO TO 215

214 DSS(I)- ATANF(Y5)*RADIAN
215 IFJYU-0.5) 216,217,217
216 ULS( I )={Y6-(Y6»*3)/3.0) "RADIAN

GO TO 21U
217 ULS(I)= ATANF(Y6)»RADIAN
218 IF(YV-0. 5)219, 220, 220
219 DT{I)=(Y7-(Y7"*3)/3.0)»RADIAN

GO TO 221
220 0TU)=ATANF(Y7)*RAD1AN
221 IFCYW-0. 5)222, 223, 223
222 DNL< I )={Y8-{Y8""3)/3.0) "RADIAN

GO TO 100
223 DNL(I)=ATANF(Yti)»RADIAN
100 CONTINUE

PHASEL= SUM1+SUM2+SUM3+SUM4+SUM5+SUM6+SUM7
PHASE =PHASEL+SUM8
SUMP= A8SF(SUM1)
SUMQ= A8SF(SUM2)
SUM3=-B(1)
SUMR=ABSF(SUM3J
SUMS= ABSF( SUM4)
SUMT= ABSF(SUM5)
SUMU= ABSF(SUM6)
SUMV= ABSFISUM7)
SUMW= A8SF(SUM8)
IF (SUMP-0. 5) 224,225, 225

224 SUM1 =(SUM1-ISUM1*»3)/3.0)*RADIAN
GO TO 226

225 SUM1=ATANF(SUM1) "RADIAN
226 IF(SUMQ-G. 5)227, 228, 228

227 SUM2=(SUM2-(SUM2**3)/3.0) "RADIAN
GO TO 229

228 SUM2=ATANF I SUM2) "RADIAN
229 IF(SUMR-0. 5)23-, 231, 231
230 SUM3 = {SUM3-(SUM3»»3)/3.0)*RADIAN

GO TO 232
231 SUM3=ATANF(SUM3)*RADIAN
232 IF(SUMS-G. 5)233,234,234
233 SUM4= ( SUM4- ( SUM4**3)/ 3.0) "RADIAN

GO TO 235
234 SUM4=ATANF(SUM4)*RADIAN
235 IF(SUMT-G. 5)236, 237, 237
236 SUM5= ( SUM5- ( SUM5»» 3 J/3.0) "RADIAN

GO TO 238
237 SUM5=ATANF(SUM-J)*RADIAN
238 IF(SUMU-0. 5)239, 240, 240

239 SUM6= ( SUM6- (S0M6"* 3 )/3.0) "RADIAN
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GO fU 241
240 SUM6=ArANF(SUM6)*RADIAw
241 IF(SUMV-0. 5)242, 243, 243
242 SUM7 =(SUM7-(SUM7**3)/3.0)*RADIAN

GO TO 244
243 SUM7=ATANF(SUM7)»RAUIAN
244 IFISUMW-0.5) 24b, 245,246
245 SUM0=(SOM8-(SOi18**3J/3.0)*RADlAN

GO TU 247
246 SUM3 =AlAi\iF(SUMb)*RADIA i j

247 SHIFTL=ATANF(PHASEL)«RADIAN
SHIFT = ATANF( PHASE )*RADI AN

IF (J-12) 302,302,303
302 WRITE OUTPUT TAPE 6,15

15 FORMAT ( 8X , 7H 3MEGAS , 4X, 6H OMEGA ,

1 4X, 4H ETA , 6X, 7H RKOS , 6X

2 4H RHO , 6X, 3H PI , 6X, 5H S

UM //)
304 WRITE OUTPUT TAPE 6 , 75 , ( AMASS ( I ) , 1=1 , JM, 2 ) , ( GSQ ( I ) , 1=1

,JM,2)
75 ,F0RhAT(2X, (6H MASS , 6F 10. 2 ) // ( 2X, 6H GSQ , 6F10.2)

)

WRITE OUTPUT TAPE 6, 76, ( AMASS( I ) , 1=2, J , 2) , ( GSQ( I ) , 1=2
,J ,2)

76 F0RMATC2X,(6H MASSC , 6F 10. 2 ) // { 2X, 6H GSQC , 6F10.2)
)

4J2 WRITE OUTPUT TAPE 6, 25 , ( 0Y( I ) , 1= 1 , JM , 2 ) , SUMi , { DC ( I ) , 1=

1, JM,2),SUM2
L , (DGRADt I) ,I=i,JM,2) ,SUM3, (ODELSQt I ) , 1=1 , JM, 2) ,SUM4,

(DSS(I),I=1,
2 JM,2) ,SUM5, (DLS(I),I=1,JM,2),SUM6,(DT(I),I=1,JM,2),SU

M7,(DNL(I),
3 1=1, JM, 2) ,SUM8

;-5 FORMAf({ 3X, 5H DY , 7F10.5 ) // ( 3X, 5H DC ,7F10.5
)//(2X,

1 6H DGRAD ,7F10.5)// (IX, 7H DDELSQ ,7F10.5) // { 3X, 5H
DSS ,7F10.5)

2 //{3X, 5H DLS , 7F 10. 5 } // { 3X, 5H DT ,7F10.5 ) // ( 3X.5H
DNL,7F10.5)

)

GO TO 409
303 WRITE OUTPUT TAPE 6, 16
16 F0RMAT(8X , 7H OMEGAS , 4X, 6H OMEGA ,

1 4X, 4H ETA , 6X, 7H RHOS , 6X

2 4H RHO , 6X, 3H PI ,6X,4H PHI , 6X, 5H S

UM //)
WRITE OUTPUT TAPE 6 , 78 , ( AMASS I I ) , 1 = 1 , JM, 2 ) , ( GSQ( I ) , 1 = 1

,JM,2)
76 F0RMAT(2X,(6H MASS , 7F10.2 ) // ( 2X, 6H GSQ , 7F10.2)

)

WRITE OUTPUT TAPE 6 , 77 , ( AMASS ( I ) , 1=2 , J ,2 ) , ( GSQl I ) , 1=2
,J ,2)
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77 F0RMAT(2X, (6H MASSC , 7F 10. 2 ) // ( 2X , 6H GSQC , 7F10.2)
)

403 WRITE OUTPUT TAPE 6, 26 , { DY { I ) , 1=1 , JM, 2 ) , SUM i , ( DC ( I ) , 1=

1,JM,2),SUM2
1 , (UGRADt I), 1=1, JM,2),SUM3, (DDELSQC I) ,1=1, JM,2),SUM4,

(DSS( I), 1 = 1,
2 JM,2),SUM5,(DLS(I),I=1,JM,2),SUM6,(DT( I ) , 1=1 , JM, 2 ) , SU

M7,(D,NL(I) ,

1 I=1,JM,2),SUM8
26 FURMAT(( 3X, 5H DY , 8F10.5 )// ( 3X, 5H DC .8F10.5

)//(2X,
1 6H DGRAU .0F1O.5)// (1a, 7H DDELSQ ,8F 10. 5 ) // ( 3X, 5H

DSS .8F10.5)
2 //(3X, 5H DLS , 8F 10. 5 ) // { 3X , 5H DT , 8F 10.5 ) // ( 3X, 5H

DNL.8F10.5))
409 WRITE OUTPUT TAPE 6, 36 , PHASE , PHASEL
36 FORMAT (5X,9H TAND = , F12.5.10H TANDL = , F12.5)

WRITE OUT PUT TAPE 6, 35, SHIFT ,SHIFTL
35 FORMAT (1X,25H PHASE SHIFT IN DEGREES = ,F12.5,20H PHA

SE LINEAR
1= ,F12.5 )

.GO TO 19
END
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5. BORN PHASES FOR THE COUPLED STATE

C THIS IS A DIRECT COUPLED STATE CODE IN BORN APPROXIMAT
ION AND

C I HE THREE MTRIX ELEMENTS OF TENSOR FORCE ARE THE INPUT
WHILE THE

C L.S SECOND ELEMENT IS CALCULATED IN THE CODE USING TH
E FIRST ONE

C THERE ARE TWO SETS OF SAME INTEC7RALS FOR L =J-i ,L=J + i

AND ONE FUR
C THE INTEGRAL FOR NON DIAGONAL CASE. BOTH BLATT BIEDEN

HARN AND
C BAR PHASES ARE CALCULATED. PHYS REV STAPP
C THIS CUUE WILL CALCULATE PHASE SHIFTS FUR

TRIPLET
C (MIXED) STATES OF NUCLEON-NUCLEON SYSTEM IN BORN APP

ROXIMATION
C THIS CODE WILL CALCULATE BORN PHASES BY DIRECT METHOD

IN WHICH THE
C OPERATORS OF VELOCITY DEPENDENT POTENTIAL ACT ON THE B

ESSEL FUNCT'
C IONS ANO THEN THE RECURRENCE RELATIONS ARE USEDTO REMO

VE FIRST AND
C SECONDDERIVAT1VES. THEN THE PHASE SHIFT EXPRESSIONS IN

VOLVE ONLY
C FIVE INTEGRALS A B C D E AND THE INTEGRALS ARE PERFORM

ED USING
C WE.DDLE,S RULE. FUNCTION SFBESS IS NEEDE D AND NO OF P

OINTS OF
C INTEGRATION MUST BE 6*M AND SO 1 NPOI NTSARE6M+1

.

C AMASS IS THE MASS OF MESON IN MEV . GSQ IS THE COUPL
ING CU .STANT

C SS IS THE EXPECTATION VALUE OF ( S IGMA1 . S IGMA2 ) FOR THE
STATc .

C ALS IS THE SPIU URBIT OPERATOR EXPECTATION VALUE FOR
THE STATE

C THAI IS (L.S).Si2 IS THE TENSOR OPERATOR EXPECTATION V
ALUE FOR THE

C STATE. L.S AND S12 AVERAGE TO ZERO FOR SINGLET STATES.
C ANL IS THE COEFFICIENT THAT MAKES NON LINEAR TERM ZER

CR TAKES
C IT INTO ACCOUNT
C J IS THE NO OF MESONS 12 UR 14 (FOR INCLUDING PHI) IN

CLUDING CUT OFF
COMMON RO,RMAX,XN,UF,AK f PQ, AF ,BF, CF, OF , EF, SS , ALS , S12 ,A

NL ,UFC ,

i ELAB,BES ,FF,FJ,GF,KKK
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DIMENSIONS 10,20) ,GSU( 15 ) , AMASS ( 15 ) , U( 15),A(15),B(15),
C(15),D(15)

l,E( 15) f G(15),DY(l5),DC(15),DGRAD(15) ,DDtLSQl 15 ) ,DSS ( 15
),DLS( 15) ,0T

2(15), DNL(15) ,CAPPA(15) , RY( 15 ) , RC ( 15) ,RGRAD{ 15
),RDELSQ(15)

3 ,RSS(15),RLS(15),RT(15) ,RNL(15) , BES ( 6,8 , 100) ,F(15)
CALL BESTO

18 READ INPUT TAPE 5, 9,

J

9 FORMAT (12)
973 IF ( J-12) 967,967,966

966 READ INPUT TAPE 5,43,
KAMASSU ),I = 1,J ),(GSQ(I),I=1,J )

43 FORMAT! 12F6. 0/2F6.0/ 12F6.0/2F6 . )

GO TO 19
967 REAOINPUT TAPE 5,968,

UAMASSl I ),I = 1,J ),(GSQ(I),I=1,J )

968 FORMAT! 12F6.0/ 12F6.0)
19 WRITE OUT PUT TAPE 6,1150

1150 FORMAH 1H1, 35H COUPLED DIRECT BORN PHASES
)

971 READ INPUT TAPE 5 , 972 , ELAB , F J , T, SS , ALS , SI ,S2,SN,ANL,R
0,RMAX,XN

972 F0RMAT(12F6.0)
IF (ELAB- 1000.0) 969,973,973

969 IF (SS-1.0 )31,32,31
32 WRITE OUTPUT T APE 6,115
115 FORMAT( 5X,30H THIS IS A TRIPLET SPIN STATE

)

GO TO 199
31 IF (SS+ 3.0) 41,42,41
41 WRITE OUT PUT TAPE 6,125
125 FORMAT (5X ,20H WRONG INPUT DATA )

CALL EXIT
42 WRITE OUTPUT TAPE 6,135

135 FORMAT( 5X, 30H THIS IS A SINGLET SPIN STATE
)

199 ENERGY = ELAB
WRITE OUTPUT TAPE 6, 55 , ENERGY, FJ ,T,SS, ALS ,S1 ,S2 , SN, ANL

,RO,RMAX,XN
55 FORMAT ( ////1X, 9H ENEKGY = ,F6.1,4H J = ,F4.1,9H

T1.T2 = ,

1 F5.1 ,7H S.S = ,F5.1,7H L.S = ,F5.1, 10H S12(J-1)=
,F7.3

2 ,/iOH S12(J+1)= ,F7.3 ,10H S12(ND)= ,F7.3,5H ANL=
,F3.1

3 , 4H R0=,F8.4,6H RMAX= , F4. 1 ,4H XN=,F5.1 )

AK = SQRTF(ELAB/(2. 0*41. 469)

)

UN= 4.7583/AK
DO 600 1=1,

J

CAPPA(I)=AMASS(I)/197.32
U(I) = CAPPA(I)/AK

600 CONTINUE
W(l,l) =1.0
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W(l,3)= -1.0
W(l,5)=0.0
W(1,7)=T
W( 1,9) =-T
W(1,11)=0.0
W(2,l)=1.0
W{2,3)=0.0
W(2,5)=0.0
W(2,7,= T
W(2,9)= 0.0
W{2,11)=0.0
W(3,l)=1.0
W(3,3)=1.0
W(3,3)=0.0
W(3,7)= T

W(3,9)= T

W(3,ll)=0.0
W( 4,1) =1.0
W(4,3)= 1.0
W I 4, 5) =0.0

W(4,7)= T
W<4,9>= T
W{4,11)=0.0
W(5,l)=0.0
W(5,3)= 1.0
W(5,5J=1. 0/2.0
W(5,7)=0.0
W(i>,9) = T

W(5,ll)= (1.0/2.0)»T
W{6,1)=1.0
W(6,3)=3.0
W(6,5)= 0.0
W(6,7)= T
W(6,9)= 3.0*T
W(6,ll)=0.0
W(7,l)=0.0
W(7,3)=1.0
W(7,5)=-1.0
W(7,7)= 0.0
W(7,9j= T
W(7,ll)= -T
W{8,1)=0.0
W(8,3)=1.0
W(8,5}=1.0
W(8,7)=0.0
W(8,9)= T

W(8,ll}= T
W(1,13)=W( 1,3)

W(2,13)=W(2,3>
W13,13) =Wi3,3)
W{4,13) =W(4,3)
W(5,13)=W(5,3)

W(6,13)=W(6,3)
W(7,13)=W(7,3)
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W(8, 13)=W(8,3)
W(9,i)=0.0
W(9,3)=l.O

W(9,5)=-1.0
W(9,7)=0.0
W { 9 , 9 ) = T
W ( 9 , 1 1 ) =- T

W(9,13)=W(9,3)
KAOIAN =57.29578
JM-J-l
JJ=J+1
KKK^l

S12=S1
GO TO 1234

1232 S12-S<:
ALS=-(ALS+3.0)
GO TO 1234

1233 S12=SN
1234 1= -1

3 1=1+2
IF( 1-JJ)5,6,41

^ IFU-lKl, 1, 12
12 M=I
10 M=M-2

IF(M) 1,41,2
2 IF (AMASSCI J-AMASS(MJ) 10,7,10

1 UF =U(IJ
UFC = U(I+1)
CALL COPINT

IF (KKK-3J 1253,1254,1254
1254 G( I »=GF

GO TO 1259
1253 Ad ) =AF

8(1) = 8F
C(I) = CF
0(1) = OF

E( I ) =EF
F( I) =FF
GO JO 3

7 IFCKKK-3) 1258,1257,1257
1257 G(U=G(M)

GO 10 1259
1259 GO 10 3
1258 A(I) = A(M)

B( I) = B(M)
C(I) = C(M)
0(1) = 0(M)
ECU = E(M)
F(I)=F(MJ

GO TO 3

6 WRITE OOTPUT TAPE 6,1255,KKK
1255 F0RMAT(5X f 13)

SUMl=0-0
SUM 2=0.0
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SUM3=0.0
SUM4=0.0
SUM5=0.0
SUM6=0.0
SUM7=0.0
SUM8=0.0
SUM9=0.0
IF(KKK-i) 1251,1252,1252

DU 1300 1=1, JM,

2

GO TO 1276
1251 WRITE OUTPUT TAPE 6, 33 , ( A( I ) , B( I ,

,

C ( I) , D ( I , , E ( I , , F ( I)

,

33 FURMAT (10X,6E15.6)
I-1.JM.2)

DO 100 1=1, JM,

2

RY(I) = GSQ(I)*UN»AII)«W(1,I)
SUM1=SUM1+RY(I)
KC(I) = (0.25*GSQ(I)* F(I)*Wf? n/iiwi
,SUM2 = SUM2+RC(I) (

' ' *
/UN)

RGRAO(I)=-GSQ(I)/UN *B(I)»W(3,I)
SUM3=SUM3+RGRAD(I)
R0ELSQ(I)= -{GSQm/UN)*A(i)*Wt4,I)
SUM4=SUM4+RDELSQ(I)

»l*fll

RSS(I)= -(1.0/6.0J*(GSQ(I)/UN)»SS *W(5,I)»F(

SUM5=SUM5+RSS(I} U

S

R

U

T

M7ls^RTU;
U, ** GSQ" ,/UN, *D,n * K,7 • ,,

so«3
I

lu«e^
GS
r

,1"2,M - 0, *E,I, * w<8""^
100 CONTINUE

PH
H

A
A

L
EL

:pH
s

A
u
sE:+

s

s

u
cM
2
:
SUM3tsljM4tsuH;,suM6tsw7

^47 SHIFTL=ATANF{PHASEL)*RAOIAN
SHIFT=ATANF{ PHASE )*RADIAN
IFCKKK-2J 1271,1272,41

1271 IF (J-12) 302,302,303
302 WRITE OUTPUT TAPE 6,15

15 FORMAT! 8X , 7H OMEGAS , 4X 6H nMFr .

1 4X, AW CTA * 6H 0ME GA ,4H ETA , 6Xf 7H RHQS f 6X

2 4H RHO , av d M r> T
*6X

' 3H p I » 6X, 5H S

304 WRITE OUTPUT TAPE 6 , 75 , ( AMASS ( I) , 1 = 1 , JM , 2 "!gSQ< I ) , 1 = 1

75 F0RMAT<2X,(6H MASS , 6F 10. 2 1 // ( 2X ,' ^h" 'gSQ , 6F10.2)

WRITE OUTPUT TAPE 6 , 76 , ( AMASS ( I J , 1=2 , J ,2 ) , ( GSQ( I ) , 1=2
,J ,2)
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76 F0RMAT(2X,(6H MASSC , 6F 10.2 ) // ( 2X, 6H GSQC , 6F10.2)
)

GO TO 409
303 WRITE UuTPUT TAPE 6, 16
16 FORMATUX , 7H uMEGAS , 4X, 6H OMEGA ,

1 4X, 4H ElA , 6X, 7H RHOS , 6X
t

2 4H RtiO , 6X, 3H PI ,6X,4H PHI , 6X, 5H S

UM //)
WRIT.: OUTPUT TAPE 6 , 78 , ( AMASS ( I ) , I = 1 , JM ,2 ) , ( GSQ( I ) , 1 = 1

,JM,2)
78 FORMAK2X, (6H MASS , 7F 10. 2 ) // ( 2X, 6H GSQ , 7F10.2J

)

WRITE OUTPUT TAPE 6, 77 , ( AMASS ( I ) , 1=2 , J ,2 ) , IGSQI I ) , 1=2
,J ,2)

77 F0RMAT(2X,(6H MASSC , 7F10.2) //( 2X. 6H GSQC , 7F10.2)
)

409 WRITE OUTPUT TAPE 6 , 36 , PHASE , PHASEL
36 F0RMAK5X, 25H XI WITH NL TERM = ,F12.6,5H

XI =,F12.6)
X1=PHASE

KKK=KKK+1
MAKE SURE YOU HAVE TAKEN OBVIOUSLY CARE OF BIG NL TERM

TO THIS POINT
GO TO 1232

1272 WRITE OUT PUT TAPE 6, 1275, PHASE ,PHASEL
1275 FORMAT { 5X, 25H X2 WITH NL TERM ,F12.6,7H

X2 =

1 F12.6)
X2=PHASE

KKK=KKK+1
GO TO 1233

1276 YJ=SUM9
WRITE OUTPUT TAPE 6,1277,YJ

1277 F0RMAK5X, 6H YJ = , F12.6)
DIFR=X1-X2
SUKM=X1+X2

ROOT= SQRTF{ (X1-X2 ) **2+( 2.0*YJ )*»2

)

TD1=0.5*(SUMM+R00T)
TL)2= 0.5MSUMM-ROOI )

01=ATAMF(TD1)
02=ATANF(TD2)
DiP=01*RADIAN
02P = D2*RADIAN
TNE1 = (2.0*YJ)/(DIFR+R00T)

TNE2 = t-0IFR+R00T)/{2.0*YJ)
EJ = ATANF(TNcl)

EJ1P = AIANF( TNE2)»RADIAN
EJP= EJ»RADIAN
WRITE OUTPUT TAPE 6 ,721 , DIP , D2P , EJP ,F J ,EJ1P

721 F0RMAT(5X,45H BLATT BIEQENHARN PHASES IN DEGREES D(J
-1)= , F12.

16, 8H D(J+1)= , F12.6, 8H E(J) = ,F12.6 ,6H J= ,

F3.1 , 7H
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2EU) = ,F12.6 )

DA=Dl
03 = 02

EPN=EJ
SIN2EB=S1NF(2**EPN)*SINF(DA-DB)
CSK2E3=l./SlN2EB**2
TAN2EB=1./SQRTF(CSK2EB-1.)
IF(SIN2EB) 1001,2001,2001

1001 TAN2EB=-TAN2EB
2001 SINDLB=TAN2EB*CUSF(2.*EPN)/SINF(2.»EPN)

EJBP =.5«ATANF(TAN2EB)»57. 29578
CSKDLB=1./SINULB**2
TANDLB=i./SURTF(CSKDLB-l.)
IF ( SI NDLB) 3001,4001, 4001

3001 TANDLB=-TANDLB
4001 DLBM=ATANF{TANDLB)

DLBP=DA+DB
DBi =.5*(DLBM+DLBP)*57. 29578
032 = DL1 -DLBM*57. 29578
WRITE OUTPUT TAPE 6, 722, DBI ,0B2 ,EJBP

722 FORMAT (5X, 45H STAPP BAR PHASES IN DEGREES DB(J-1)=

1F12.6,10H DB(J+1)= ,F12.6,7H EB(J)= , F12.6)
GO TO 19
END
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SUBROUTINE "COPINT"
for the Coupled State Integrals

SUBROUTINE COPlNF
C SUBROUTINE COPINT FOR COUPLED STATES

COMMON R0,RMAX,XN,UF,AK,PQ t AF,BF,CF,DF,tF,SS,ALS,S12,A
NL ,UFC ,

1 ELAB,BES ,FF,FJ,GF,KKK
OIMENSION Z ( 1201 ), GA { 120 1 ), GB{ 1201 ),GC( 1201 ),GU( 1201),

GE(1201) ,

1 BES(6,8,100) ,GG(1201) ,TF(1201)
Z0=R0*AK
ZMAX =RMAX»AK
OELZ =(ZMAX-Z0)/XN

GO TO (1241, 1242, 1243), KKK
1241 FL=FJ-1.0

C FL HERE IS NOT TO BE CONFUSED WITH FL IN THE COMMON OF
BESTO INDEX

GO TO 1244
1242 FL=FJ+1.0

GO TO 1244
1243 FL = FJ
1244 M=FL

K=M-1
N = M+l

NN=XN
L=NN+1
EX1=EXPF(-UF»Z0)
EX2=EXPF(-UFC*Z0)
EXD=EXPF(-UF*DELZ)

EXDC= EXPF(-UFC»DELZ)
Ml=M+i
K1=K+1
N1=N+1

1245 IF(ELAB-50.0 ) 21,21,22
21 11=1

GO TO 23
22 IF (ELA8-142.0) 99,99,25
99 11=2

GO TO 23
25 IF ( ELAB-310.0 ) 26,26,27
27 WRITE OUTPUT TAPE 6, .8
28 F0RMAT(20H WRONG ENERGY

j

CALL EXIF
26 11=3
23 DO 100 1=1,

L

AI = I

Z(I) =Z0+(AI-1.0)*0ELZ
Zl=Zil)
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j

BESN =BES(I1,N1(I)
BESM=8ES(I1,M1,I

)

IF (Kl) 27,401,402
402 B£SK=BES(I1,K1,1

)

GO TO 404
401 BESK = (C0SF(ZZ)/ZZ)
404 3eS0^(6t.SM)**2

EX = ( EX1 - EX2)
I F(KKK-3) 1246, 1247, 1247

1246 GA( I) =EX*ZZ*BESU
GB(I) = ( EX + ( UF*EX1 -UFC*EX2 ) *ZZ ) » (FL»BESK-( FL+1

.0)*BESN)»BE
1 SM»(1.0/(2.0*FL +1.0))

GC(I) = EX * ( BESQ/ZZ) + ( UF*EX1 -UFC*EX2 ) »BESQ
GO(I) = { ( (UF»*2)»EX1-(UFC**2)*EX2)»ZZ+3.0*(UF*£X1-UF

C*EX2) )»BLSQ
1 +3.0*EX»(BESQ/ZZ)
GE(I) =(ex*»2)»l:esq

TF(I )=((UF»*2)*EX1-(UFC*»2)*EX2)*BESQ*ZZ
GO TO L249

1247 GG( !)={ ( (UF**2)*EX1-{UFC**2)»EX2)*ZZ+3.0*(UF*EXI-UFC
*EX2))MBESK

1 * BESN)+3.0*EX*(BESN/ZZ)«B£SK
1249 EX1=EX1*EX0

EX2=EX2*EXUC
100 CONTINUE

IFtKKK-3 ) 1248, 132, 132
1248 CALL WEDDLE(OELZ,GA,L, RESULT)

AF = RESULT
CALL WEDDLE(DELZ,GB,L, RESULT)
BF = RESULT
CALL WtUDLE(DELZ,TF,L,RcSULT)
FF=KESULT
IF (ALS) 20,30,20

20 CALL WEDDLE(DELZ,GC,L, RESULT)
CF = RESULT
GO TO 40

30 CF = 0.0
40 IF(S12) 50,60,50
50 CALL WEDDLEtDELZ, GO, L, RESULT)

OF = RESULT
GO TO 70

60 DF=0.0
70 IF (AND 80,90,80
80 CALL WEDDLE(DELZ,GE,L, RESULT)

EF=RESULT
GO TO 130

90 £F=0.0
GO TO 130

132 CALL WEDDLE ( OELZ.GG, L, RESULT)
GF= RESULT

130 RETURN
END
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•^y S1Z(NU)= 2.S6'J AHL=0. RC = 0.CC1

.955736E-03 0.286648E-02 C.1U6122E-02 0.U32O7E-01 0. 0.573701E-C2-03 0.159819E-02 0.974046E-03 0.612102E-02 0. o " .
,
-02 0.«,53279E-02 0.316792E-02 0.1857«9E-01 0.

" .
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