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=~ ' PREFACE. "t

This handbook is intended as a reference
bbok, for the use of those who have studied
or are studying the branches of mathematics
usually taught in engineering courses. It is
not intended for a text book, and does not,
therefore, attempt to prove many of the
formulse which are given.

Most of the material in this book was
obtained from the following sources: algebra
from Hall & Knight’s Algebra (Macmillan
Co.) ; trigonometry from Bowser’s Trig-
onometry; analytic geometry from Candy’s
Analytic Geometry; calculus from Taylor’s
Differential and Integral Calculus; theoret-
ical mechanics from Church’s Mechanics of
Engineering; and mechanics of materials
fromm Merriman’s Mechanics of Materials ;
to all of which the writer is very much in-
debted and from all these Authors he has
received permission to use the material. The
reader is referred to these works for the proof
and explanation of the various formulza,

L. A. W.
TUCSON, ARIZ., March, 1908.
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ALGEBRA.

EXPONENTS AND LOGARITHMS.

If a™®=b, m=loga b. a™.a"=a™*+",
. logz.y=logzx+logy. a™+a*=a™ "
*. log (z+y)=log x—log y.
(a™)2=qa"™ , g™ =q?™,
‘. log 22=2.logz. (a™)®=a™:",
s logah=n.logz. a’=1,

‘. log (1)=0.

The base of the common system of loga-
rithms is 10.
The base of the natural system of loga-
rithms is
i1y el p
[PISEY I_

3
+L-5-+ .. .=2.7182818284.

.
i.
The cologarithm of a number is the loga- |
|
i
{

rithm of its reciprocal. Log 1)=-0——log o

To transform a logarithm from base e to
base 10, multiply by logio e.

Logio €=0.43420448.
Log, 10=2.30258509.
1
Login =15, 16 °
1







ALGEBRA 3

HARMONIC PROGRESSION.

a, b, ¢ are in harmonic progression if

PERMUTATIONS AND COMBINATIONS.

ab and ba are two permutations but only
one combination.

The number of permutations possible of
n things taken r at a time is

"Pe=n(n—1) (n—2) ... (n—r+1).

"Pn=m.
(ln =1X2X3X4...Xn).
ncr=ff:=_m_.
& " in=r
="Cp_p

BINOMIAL THEOREM.
(@a+b)*=a™+n.a"1.b

FARLUD (Lt ) (n_l).a"” b2

2
SROD D oy
A vg vese
SERIES.

1. An infinite series in which the terms
are alternately positive and negative is con-
vergent if each term is numerically less than
the preceding term.

g
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2. An infinite series in which all of the
terms are of the same sign is divergent if
each term is greater than some finite quan-
tity, however small.

3. An infinite series is convergent if from
and after some fixed term the ratio of each
term to the preceding term is numerically less
than unity.

4. An infinite series in which all the terms
are of the same sign is divergent if from and
after some fixed term the ratio of each term
to the preceding term is greater than unity,
or is equal to unity.

5. If there are two infinite series in each
of which all of the terms are positive, and if
the ratio of the corresponding terms in the
two series is always finite, the two series are
both convergent, or both divergent.

DETERMINANTS.
a; by .
|a2 bzl—albz—asz.
a1 by ¢1] =ay . b2 .c3+ .
az bz c2 a2.ba.c;+
a3 bz c3] az.b.c

—az . b3 «C2
-az. b1 «C3—ag. bg-.cl .

If a1z +by +c12+d; =0,

% agr +boy +c22 +d2=0,

azr +bgy +c3z +d3=0,

then 3
x = -y = z = -1

bycydy a;c1dy arbrdy a1biex
bocods ascads agbods agbace
bacads | | aacads| |asbads| | asbacs




TRIGONOMETRY.

Radius=1.
AB=sin 0.
0A =cos 6. )
CD=tan 6.

EF =cot 0. fo) AC
OD =sec 6. Fig. 1.
OF = cosec 0.

AC=vers 6=1—cos 0.
BG=covers 0=1—sin 0.

_sin@
cos 6

tan 6

sin? 0 +cos? 6=1.
sec? 0=1+tan? 6.
cosec? =1 +cot? 0.

exsec 0 =sec 6—1.
For 0 in radians,
e e 6 0
sin 0= ——-l§—+L—§-—[i-+...

62 64 68
mo=1_—2—+‘1——@+

63  2.68 1767 )
tan 0=0+— + +'3—_5.5'7 e |

+

3 3.5
1
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TRIGONOMETRY

sin (A +B)=sin A . cos B+cos A
sin (A —B)=sin A . cos B—cos 4
cos (A +B)=cos A .cos B—sin 4
cos (A—B)=cos A . cos B+sin 4

tan 4 +tan B
1—tan 4 . tan B

tan A —tan B
1+tan A .tan B

sin2 A=2.sin A .cos 4.

cos 2 A=cos? A —sin? A
=2cos?A—1
=1-2.sin% 4.

2.tan 4
“tan? A

sin (2) \/— (1—-cos A).

cos (2) '\/-— (1+cos 4).
A\_1—cos 4

tan(z) “sind

sin 3 4 =3 .sin A —4 .sin3 4.

cos 3 A=4cos® A —3 cos A.

tan (4 +B)=

tan (4 —B)=

tan 2A—

3 tan A —tan3 4

s 4= 1—-3tan? A

sin A 4sin B=2 . sin

sin 4 —sin B=2 cos 5 - Sin—5

cos A +cos B=2cos . COS

2 2

cos A —cos B=—2 sinA o .sin

2

.sin'B.

.sin B.

A+B 0A—B
5 C0STg

A+B . A-B.

A+B A-B,

7

.sin B.

.sin B.







TRIGONOMETRY 9

Area=3}b.c.sin 4
a?sin B .sin C
2.sin 4

=Vs (s—a) (s=b) (s—0),
where s=1} (a+b+oc).

SPHERICAL TRIANGLES. ‘.;’.
Center of sphere is at 0. =,
z
A <
b 4
c a
o L | E
B8 { 5

Fig. 3. ‘
1
Right Spherical Triangles. Let C repre-
sent the right angle.
cos c=cos a.cosb.
sin b=sin B .sinc.
tan a=cos B . tanc.
tan a=tan 4 .sin b.

ta.nA.tanB=——1——-
cos ¢
cos A =sin B . cos a.

OBLIQUE SPHERICAL TRIANGLES. _,E

sina _sinb _sinc
= = modulus.

snA snB sinC

cosa=cos b .cosc+sinb.sinc.cos 4.

cos A= —cos B . cos C +sin B .sinC . cosa. é.
cota.sinb=cot A . sin C +cosC . cosb. '!VB

Let s=% (a+b+c),
8=} (A+B+0),






ANALYTIC GEOMETRY.

TRANSFORMATION OF COORDINATES.

To transform an equation of a curve from
one system of codrdinates to another system,
substitute for each
variable its value in 'y
terms of variables
of the new system.

Rectangular Sys- X-
tem. Old Azes Par- °
allel to New Azes. X X

o =x—h.
'/T;,_k’; vy Y
bt T Fig. 4.
y =y +k.

Rectangular System. Old Origin Cotncident
with New Origin.

»

o
2=z .cos 0+y .sinb. 3
=y .cos@—z .sinb. 5
z =2/ .cos 06—y .sin 6. %

OF |

y =y cos 0+2’ .sin 6.
11



12 ANALYTIC GEOMETRY

Rectangular System. Old Azes not Parallel
to New Azes. Old Origin not Cotncident
with New Origin.

Fig. 6.

&’ =(z—h) cos 0+ (y—k) sin 0.
¥ =(y—k) cos 0—(x—h) sin 0.
z =2/ . cos 0—y/ .sin 044,
Y =v .cos 0+ . sin 0 +k.

Polar and Rectangular Systems.

T=p . cos .
Y=p.sin 6,
p= 12+y2‘)
v
— 0==.
X X tan =
Y &
" cosl =—32__
Fig. 7. iy
. y
8in 6 = .
V4t
cot 0="2.
v .
A A
5.
Va2 42

cosec 0 = ——%_,
v



ANALYTIC GEOMETRY 13

THE STRAIGHT LINE.

Equations of Straight Line. An equation of
the first degree containing but two variables
can always be represented by a straight line.

The equation of the straight line may as-
sume the following forms, for the rectangular
system of codrdinates.

Az+By+C=0 . . . . (1)
Y@ Bk o o N

in which m is the value of the tangent of the
angle which the line makes with the X-axis,
and k is the intercept on the Y-axis between
the line and the X-axis. ~

y—y=A4A@-2) . . . 3

in which 2/, ¥’ are the codrdinates of a point
of the line, and A is a constant.
—y
v-v=Y"Le2). . @

in which «/, ' and 2”, 3’ are the codrdinates
of two points of the line.

The polar equation of P
a straight line is

N
0.cos (0—a)=k (5) P y
where k is the length of &
the normal ON. Fig. 8.

Distance between Two Points. The distance
between two points, 2/, ¥ and 2/, y”’, is
equal to 2

V@ -2+ -y

The distance between two points, p1, 6,

and pg, 0, is equal to

o2+ p2—2 py . pz. €08 (6, —02).

. MECH,

OF |






ANALYTIC GEOMETRY 15

THE PARABOLA.
If the Y-axis coincides with the directrix,
DM, then
y=4a(z—a).
M N
Q AP
\

Dl O F

L
Fig. 12.

If the Y-axis coincides with ON, passing
through the vertex, then

v

IFFERENTIAL

: P

yi=4az.

In Fig. 12, F is the focus, OF =0D =a, and
L— L is the latus rectum=4 a.

Eccentricity, e= P—Q =1,
THE ELLIPSE.
2+l
a

Y

P
Q
ﬂ leaies]

x

g/
n
g -

x

€
ics -
hls &

o

®

<
HAN

Fig. 13.

F, F are foci.
Eccentricity, e<1.
The area of the ellipse is equal to zab.

MEC
N RAA



16 ANALYTIC GEOMETRY

A — A =principal hyperbola.
B — B=conjugate hyperbola.
¢ —c=asymptote.

Principal hyperbola:

a2 g2
@ E=L
ALy
’ Asymptotes: @B 0.
| 2 2
Conjugate hyperbola: g—z - blz =1,

When referred to the asymptotes as axes,
| the equations become:

2 132
| Principal hyperbola: w:%-

2
Conjugate hyperbola: zY=— #2) .

D—D is the di-
rectrix.

F, F are foci.

f,%-ol.




ANALYTIC GEOMETRY 7

THE CYCLOID.

Fig. 16.

{z=a (0 —sin 0),
y=a (1 —cos 0),

or :c-a.vers_‘(;v)—\/2ay—yz-

THE SPIRAL OF ARCHIMEDES.
o=k.0.

THE RECIPROCAL OR HYPERBOLIC
SPIRAL.

p==

[}

THE PARABOLIC SPIRAL.
P=k.0.

THE LITUUS OR TRUMPET.
k
A=3

THE LOGARITHMIC SPIRAL.
log p=k . 0.
If k=1, and logarithms to the base a are
employed, then the equation may be written

p=al.

\

IFFERENTIAL

@
2
X
v
w
=

8






ANALYTIC GEOMETRY 19

HYPERBOLOIDS.

The équation of the hyperboloid of one
2
1appe, generated by the hyperbola.Z—,—%:= ) I

rotated about its conjugate axis, is

The equation of the hyperboloid of two
2 2
nappes, generated by the hyperbola, g; - zﬁ= : S

rotated about its transverse axis, is

THE PARABOLOID

The equation of the paraboloid of revolu-
tion generated by the parabola, z?=4az
rotated about its axis, is

224y?=4az.

GENERAL EQUATION OF CONIC
SECTION.

The general equation of any conie section,
for which the Y-axis coincides with the
directrix and the X-axis passes through the
foci normal to the directrix, is

(z—k)2 +y2=e?,

where k is the distance from the directrix to
the focus, and e is the eccentricity.







DIFFERENTIAL CALCULUS 21

d¥=y . ¥V do+a¥ logax . o *
where M=logae.
d
d (bV)=bv.|og.,b.H”-
det=a .21 . dz.

N i,
dxz\/z

d (sin z) =cos z . dx.

d (cos x) = —sin x . dz.
d (tan z) =sec? x . dx.
d (cot z) = —cosec? x . dz.
d (sec z) =sec z . tan x . dz.
d (cosec x) = —cosec = . cot T . dx.
d (vers ) =d (1—cos ) = +sin x . dz.
d (covers x)=d (1 —sin z) = —cos T . ook
d (sin—1 2) =de/V1—2%
d (cos™! z) = —dz/V1—2
d (tan~! z) =dx/(1 +2?).
d (cot™! 2) = —dz/(1 +a?).
d (sec™! x) =dx/(x\/x-2:I).
d (vers~1 x) =dx/\/m
d (covers—1 z) = —dz/V/2 z—2%.

To differentiate a function :

1. Find the value of the increment of the
function in terms of the increments of its
variables;

2. Consider the increments to be infinitesi-
mals, and in all sums drop the infinitesimals
of higher order than the first, and in the







INTEGRAL CALCULUS.

f dz=xz+C, where C is the constant of

integration.

The constant C must be added

to all of the following forms.

f(d:c+dy+dz AL

2
fa' .dx= .
log,a

fdx+fdy+fdz+ aXi'e

a

fe’ .dr=e2.

faﬂ .logsa . dz=a>.

fsin z . dx= — COs z Or Vers z.

fcos z . dz=sin z or—covers .

j‘sec2 z . de=tan z.

fcosec’ z . dx= —cot z.

fsec z . tan z .. dz=sec z.

23

INTEGRAL

MECHANICS






INTEGRAL CALCULUS

ff (x) dz=Fz+C, if
d (Fz)=fx . dz.

Fo a1

f%: =I%[a +bz—a . log (a+bx)].

2 Wk

m’ & [log (a +bx) +

a+b]

25

22.dx 1 [(a+bx)?
fa+bx B_[-—2 —2a (a+bx) l/

+a?. log (a +bx)] -

2. dv
(a+bx)?

at
“a +bz] -

J'L:_l b a_‘*_l’f).
z (a+bx) Rk, &

o PRI R (&bx)
z (@+br)? a(a+bx) a?° 3\ T

dz e Bl a+bx\
fz*(a+bz)“€5+«72"°g( 5

Satiam g5 (VD

+ba? -\/_
when @ >0 and b >0.

11)3 [a+b:c 2a.log(a+bx)

o
>
I
=
u
=

OF
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2™+, (g +bam)?
or =T e

nP +m+1
__‘ZL m ny p—1
+nP+m+1 ™, (a+bzx") . dz,
a™+1, (a +bz™)P+1
S a(m+1)
_bmPimintl) .. P
Z@h D) ™+, (a+bz")" . dz,
—_I™H, (a+bzm)P
5 an (P+1)
nP+m+n+1
job-n =LY P+1, dg.
an (P+D) z™ ., (a+bz™) dz.
f_ﬂ__ -
az?+bx +c
2 kg 2az+b \
V4ac—b? V4 ac—b
1 (2az+b—vb=—4¢w)
or = . lo o
Vb2 —4 ac 2az+b+Vii—4ac

a+bz+c

cibls e
2a ) ar?+bx+c

z.dz 1
f———- 5a° log (az? +bz +¢)

fx\/a+br.d:c=

_2(2a—3bx) (a+bx)¥
15 5% =

fz’.\/a+bz.dz=

2(8 a?2—12 abzx +15 b%?) (a +bx)®
105 b® :

@
S

MECHAI



28 INTEGRAL CALCULUS

:c".da:__2z"\/a-i-—bx
Vatbr @n+l)bd
__2na 1. do
Cn+DbJ) Vatbe

z.dz __2(@2a—bn)Vatbz'
Va+bx 3

f dx il Yok \/a+bz—\/;’
zVa+bz Va Va+bz+Va
when a >0,

or — .2_ . tan=1V g+_bagI
v —a —-a
when ¢<0.
dz TN a+bz
22 Va+bz (n—1) azn~!
(2n—3)b dz

T@n=2)aJ p1Vgtbz

f—————":b” .de=2Va+bz
dz
Fe s it
afx‘\/a+bx
dz )
fT‘\/T—-——_;’smn l(:)-

J i)

f dx —Va—q?
22Vat—z? a’x

[V g

+g—’ . sin~! (%) .
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v aem
3(2 a?—a?) Var—a? +§—‘ sin~1 @ .

f\ﬂ . de=Vai—z
z
el Xy
T

—a.log

f\/‘;:—xz o dz= —\/F —sin-l(g),

x2

z2.dx s Bacfs TS aj 3 -le
Va—a? 3V ai—z*+5sin )

ey e s
(a2—a)¥ aeVa—2z?
f(a’—xz)i. i

3(5 ?—22)Va—z2+ %al. sin-1 (g).
2. dx P A
fm=\/a2-—;i sin l(l_l)

dz
Va2 ia?

f—d—z==l ety :_c)_
z2Vai—q2 @

f d.t_=1 XOZ(“’fx—)-
zVri+ar @ P —r)
[ Vet

=log (”"”\/Izzl:a—?) .

x2 ‘\/xzd:az=q: o

OF

aVat-at 200t 20 a

f dz ‘\/;,;z_ag+ 1 e







INTEGRAL CALCULUS 31

f__ﬂ__= vers—1%
V2 az—a? ¢

o"dy ™! V2az—z?
V2 az—a? g
s 2m—1)a Iy
1A .
= V2 az—a?
f dx o V2 az—a?
1:"'\/2111—22 (2m—1) az™

o f dx .
@Cm—1)aJ) ym-1v2 gz —22

f\/2az—:c2 dr = 2azx—%R
+§* sin“x——e-
T o e B et g0
m+2
+(LZ_I_l)__afm 1 \/Zax x2.dx.
fVZa:c—:c? dz=—(2az—x’)i
X (2 m—3) az™

- g

m—3 fﬁ;z_—-x_l

(2 m—3) a e

f\/az2+ba:+c= A
\/—lalog (2 az +b +2 Va Vaz? +bz +0).
a

4a

(bz—‘l ac' f
\/ax2+bz+c

o
f az’+bx+c.dx=2az+b‘\/aa:2+bz+c g‘







INTEGRAL CALCULUS 33

sin™+1, cos" "1z
=t

or
m+n

m—1
m+n

fsin“‘ z.dz=

—sii™ 1y, e082 L m—1 N
—_— " 4 —— | sin™ "2z, dz.
m m

foos"a:. dz =

sin z.cos® 1z K n-—1
—_— Tan cos™ 1z, dz.

sin™ z . cos®" 2z, dz.

n
sin™ z
e % 4 =
cos
sin™+1 z n—m—2 (“sin™z.dz
(n—1) cos*~1g n—1 cos" 2z
cos™ z
- dx =
fsm"'z
—cos"+1g m—n—2 (“cos"zdzx
(m=T)sia" ' 2 m—1 sin™ %z
dz —Cos Z m—2 dz
Sl e QOB | oo lhand o T
sin™z (m—1)sin™ 1z  m-—1) sinm 2z
. - sin z n—2 dz
cos®x (n—1)cos"~tz n—1_) cos" 2z’

ftan":c dz = :—_II - ftan"":c. dz.

-— n—1
fcot" z.dr= —tof D —fcot"" z . dz.

n—1
f_dz__=
a+bcosz

St (VL ),

Vat—
if a2 >0?,




r’
|
f
|

34 INTEGRAL CALCULUS

1 \/b—atang +Vb+a
By 5 log :
pra Vb-—atang—\/b+a

if a?2<82,

f:t".sinx.d:c=

—2z™ cos a:+mfz"“1 cos  dz.

fa:"‘.cos:c.dz=

™ sin 2 — mf:c""l cos z dz.

sin z :c5 2l
S e+
fsin:cd __—1 sinz 1 cos z dz
ey m—1a""1  m—=1 ™ *
cos x‘
f dz=logzr— 2]_ 41_ GL..+'“'

—~1 cosz 1 sin z dx

’ f ™ Sm—1tzn1 m—1) gmet

zsin~lz, dr=
Z[(Z 23=1) sin"lg+2V1-—22],

fa: sin"lz.dz=

ZhHigin—1z 1 " +1 dx

n+1 Tn+l \/1_:,2.

f cos~lz.,dz=

z"+1 cos—1 2 1 7"+ do
n+1 n+l1 \/1..1:
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fa:" tan~lz.dzr=

z"+1tan z 1 fx"“ dz

n+1 n+1 B

I log z 1 I
AR LR el Lo B ¥ S
fx" log 2. dz=2z"+1 1~ G

f d =2°0t_1\/u'
Viz—a) (b—2) s

= 2gin~1 - el

p o dec B0 S 0, ———— 3
TN gn a2 0N g‘\/a"+a:'l +a

f dz 1 Vattar—a

”

dx 2 _1%3.
—————— = —gec™ 1=
A/ gn_gz an a
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fx" tan=lz . dr=

z"tltanz 1 2" Hdr
n+1 n+1 T4

log 2 1 ]
MO B W L T
fx" log z.dz=z" [ 1~ e

| " dp = :—t—{f w2 nfz""e‘“‘ dz.
J

-1 eaz
—,,d:c— . —,, . i
x =1 iy n— 1 %

z
fe“’ logz. dz=-ea——l::gz _1fe___“= dz

a E4

f % sin (na) . dz = eoe (28221 000 [z [’“’1) .

f €*¥ cos (nx) dz=¢** [a___—_(cos ("':2) :—::in (nz)] 8

f\/“” L@t Vig+z) b+
+(a—b) log(\/m +Vb +z).

f b+xdx vV (a—2z) (b+z)

. b+x
1 —
+ (a+b) sin \/ i

f\/=dz-==2cot“ \Y —b—:—g
(z—a) (b—2) el

a
= 2sin—1 Lk
2 sin Ty
f dx —Ll Va2 +a:"—a
“ \/x"+a2 ‘\/a2 +an+a

”

dx LI L
s iy = g0
A /gn_qg2z an a



THEORETICAL
MECHANICS.

NOTATION.
A =area.
a =acceleration.
an=normal acceleration.
a; =tangential acceleration.

b = breadth.

Cz=component of force parallel to the
X-axis.

Cy=component of force parallel to the
Y-axis.

C,=component of force parallel to the
Z-axis.

d=depth or distance. Also the sign of
the differential.
F=force.

Fp=normal force or component of force.

Fy=tangential force or component of
force.

f=coefficient of friction. Also the sign
of a function of a variable.

g=acceleration due to gravity=32.2.
(The exact value is 32.1808—
0.0821 cos 2 L, where L is the
latitude.)

h=distance from center of moments to
line of force.

I =moment of inertia.

I,=moment of inertia referred to center
of gravity.

Ije=moment of inertia about an axis
through the center of gravity and
parallel to the X-axis.

36
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Io=polar moment of inertia about the
pole 0.

J.=moment of inertia about the X-axis.

I,=moment of inertia about the Y-axis.

I,=moment of inertia about the Z-axis.

J=produect of inertia. (Subscripts are
similar to those for I.)

K =a constant.

L=power.

M =moment of a force.

w
m=mass= —-
g

N=a normal force or component of a
force.
P =npoint considered.
R=resultant of a system of forces.
r=radius of gyration.

s=space.
T=tangential force or component of a
force.
t=time.
V =volume.
v=velocity.

vo=initial velocity.

vs=tangential velocity.

vg=velocity parallel to the X-axis.
v,=velocity parallel to the Y-axis.

W = weight.

w=work.

x, ¥, z=rectangular codrdinates of a point.
p, @=polar codrdinates of a point.
p=distance from pole to center of
gravity.

a=angle.

¢=angle of friction.
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STATICS.
Equilibrium of Forces.

5

<

Fig. 17.
For a system of concurrent forces in equi-
librium in one plane:

2=0.

3Cy=0.

(Ca=F cos a, C)y="F sin a, where a is the
angle which F makes with X~-X.)

¥ For a system
By of non-concur-
rent forces in
equilibrium in
one plane :
3Ce=0.
- 2Cy=0.
= L WYL
Also, if M =0,

SM =3Cy +3C)z.

Fig. 18.

If three forces are in equilibrium they
must be concurrent or parallel.
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If a system of non-concurrent forces in
space is in equilibrium, the plane systems
formed by projecting the given system upon
three coodrdinate planes must each be in
equilibrium.

A couple consists of two equal and oppo-
site parallel forces acting on a rigid body at
a fixed distance apart.

The moment of a couple is equal to the
product of one force by the distance between
the two forces.

Center of Pressure.

Fy, Fy, Fj3, etc., are parallel.

Fig. 19,

If F is the force exerted by a variable
pressure, then
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Center of Gravity.
For an area,

ffzdzdy
Sz d— .
BdA

§ oo

x =

Fig. 20.

dz d
s :y.dA_ff" <

2dA d
Jfon

If y2—y1=fz,

z=

(7
S fz W2—y1) dz

= f(yz-m) dz

= . iﬂ- J X fx.fz.dr

] e
Fig. 21. ffx'dz
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If zp—z=fz Y
y=
fﬂ (22—x1) dpy s

f @z ay

fy-fy-dy

>u<dy

i X
ff”'dy ¥ Fig. 22.

For a homogeneous mass,

fff:cd:cdydz
e Sy dm _ .
S dm
fffda:dydz
2

=0
dz

Z

e
e

X Fig. 23.

fffy dx dy dz
T Sydm _ )

. fffdzdydz

[ffrimaas
T Szdm _ :

as fffdz dy dz

41
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Ya—yi=fz,

Fig. 26.
I,=322dA
= fzz (W2—w) dz

=fzz.fz.dx.

Fig. 27.
Ip=Ip+A.d%.

Polar Moment of Inertia.

For an area,

ly=3p2dA= ffpz.dp.da.

43
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THEORETICAL MECHANICS 45

where J, is the value of J referred to X —X
and Y —Y, Jog is the value of J for axes
para.llel to X —X and Y —Y passing through
the center of gravity, and &, % are the co-

Fig. 30.

ordinates of the center of gravity referred to
X—-Xand Y-Y.

(See “A Complete Analysis of General
Flexure in a Straight Bar of Uniform Cross-
Section,” by L. J. Johnson, Trans. Am. Soc.
C. E., Vol. LVI, 1906.)

Radius of Gyration.
PR, ¥k o e B
A m

Ellipsoid of Inertia.

The moments of inertia about all axes
through any given point of any rigid body
are inversely proportional to the squares of
the diameters which they intercept in an
imaginary ellipsoid, whose center is the
given point, and whose position depends
upon the distribution of the mass and the
location of the given point. This ellipsoid
is the ellipsoid of inertia for the body. The
axes which contain the prineipal diameters
of the ellipsoid are called the principal axes
of the body for the given point.

Ics

. MECH
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Then v = DL M0, il g
my +mg

For two elastic bodies having velocities

k1 and k; after impact,
M1V1 +mave=mky +maks.

The product of mass by its velocity is
momentum.

The sum of the momenta before and after
impact is constant.

Virtual Velocities.

F = force. F
aw
v = direction of motion of P, P \
du = virtual velocity of force. g v

Z_t“ = velocity of force.

ds
dt
F . du = virtual moment of force.

The virtual moment of a force is equal to
the algebraic sum of the virtual moments of
its components.

For a system of concurrent forces in
equilibrium, SF.du=0.

= velocity of P.

For any small displacement or motion of
a rigid body in equilibrium under non-con-
current forces in a plane, with all points of
the body moving parallel to this plane,

2 F.du=0.

Curvilinear Motion of a Point.

|

ics
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OF







THEORETICAL MECHANICS 49

Translation of Rigid Body.

dFg=ay .dm.
Re= fa. . dm.
Y Y
E g dm
sj@__;v 5_% F
F8
X X: X
Y
Fig. 33. Fig. 34.

The resultant force must act in a line
through the center of gravity and parallel to
the direction of motion.

Rotation of a Rigid Body.

Let O be the axis of rotation.
#=angular space passed over by any line
from O.
a=angular accelera- R
tion.
w=angular velocity.
Then

0
vl
PR I Fig. 35.
[ ]
wdw=ad0.
For uniform acceleration, a=Fk, ..
w=wo+kt.
0=wot +1% k2
_ o —wg?
P

=f°°_+’.’.g.

ICS

MECH,
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Pendulum.
t=time of oscillation /
from one extreme posi- // A\ =\
tion to the other. /7l

/
r=radius of gyration. O'
Then

T=n\/£~
veg

Fig. 38.

Work, Energy, and Power.

Work is equal to the product of the force
by the distance through which it acts.
w=F.8.
Power is the rate of doing work.
9
t
1 H.P.=33,000 ft.-Ib. per min.=550 ft.-Ib.
per sec.
Energy is the capacity or ability to do
work.
K.E.=Energy of a moving body.
K.E.=} m
For rotation,
KE.=3}1.0%

T

Friction.
s F=friction.
N ==normal force.

f=coefficient of fric-
tion.

F=f,N.

—F

N
Fig. 39.

Angle of friction.
F
¢=tan—1 N

‘MECHANICS

OF
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Eccentric Loads.*

F
Pg/N T m‘:/‘xp
G (’ % g‘e H
) Y

Fig. 43.

Consider a section a—a perpendicular to
axis of a bar, and take axes of coodrdinates
through center of gravity.

Let =z, y = codrdinates of any point of
section.

n—n=neutral axis.

v=distance of any point from line through
center of gravity and parallel to neutral
axis, positive toward P,

vy=value of » for neutral axis.

F=force or resultant of forces acting at P.

N =component of F normal to section
considered.

So=unit stress at center of gravity.

N
So=+

* The method here presented is taken
from a paper by L. J. Johnson, M. Am. Soc.
C. E., “An Analysis of General Flexure in a
Straight Bar of Uniform Cross Section,”
Trans., Am. Soc. C. E., volume LVI, p. 169,
1906.
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=So—'f';°(‘.llcos¢—a:.sina)

N N.zp(y—=ztana)
W3O Ty

N N.yp(y—=ztana)
TAT T L—Jtne

N N.op(y—=z.tana)cos?®
Ta J—1Iy.tana
=]_v_+N.pP(y—:c.tana)sin0

I.—J.tan a

N N@ply—zpl)y+N(@pla—ypl)z

Sapd Tly— 7

N
'=-Z+N.pp X

[(I,siu 0—J . cos0)y+(Igcos 6 —J sin 6) x]
Ily—J?

In the above equations %{ is the portion of

S which is direct stress, and the other term
is the portion due to the bending moment,
M=N.pp. If s represent the section
modulus

I.I,—J?
((I,siuo—.l + 08 6) y + (I cos 0—J . sin 6) :c) >
then
S= T o+ s
Note. — The values of the section modu-
lus given in the handbooks are computed

from the formula s = 5, which is the value of
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s for J=0 and for P located on Y —Y. For
angles and Z-bars J does not equal zero.
In the above equations,

—J.tan @

Iy cos 6—J . sin 0
J cos 0—1I,sin 0
For any bar having a section which is
symmetrical about either axis, J=0, and
the values of S become
Tysin 0.y +1, cos 0.::)

N
yope L o
kA ”P( R

If for a symmetrical section, Pison Y —Y,
then sin 6=1 and cos =0, or

N Neoopey

S=2+
I
N M.y
T

=2 N o -

Stup i, d
< 7 L

Fig. 44.

For a rectangular section, for which N is
applied on Y -Y and p distant from the
axis of the bar, the extreme fiber stresses are

S==——(1:I:6 I
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Equation of Neutral Axis.

The equation of the neutral axis for an
eccentric load is

peTa—Ypo J T3, =t
;o )

+ .
Ty T o Al =S el

Kernel or Core-Section.

The kernel of a section (sometimes called
the core-section) is the area within which P,
the point of application of the resultant of the
forces, must fall in order that the stress
shall be of the same sign throughout the
section. It is the area bounded by the
locus of the P's corresponding to a series of
neutral axes touching the periphery of the
section but never crossing the section. For
every side of the section there will be an
apex of the kernel. If za, ¥a and 2z, ys are
the codrdinates of @ and b, which are two
consecutive vertices of the section, then the
codrdinates, 243, Yab, Of the vertex of the kernel
corresponding to the side, ab, of the section
will be

(za—23) J — (Ya—yp) Iy
A @an—1800)

(2a—13) Ic—(l/a —ys) J
A (Zays —28Ya) ;

Lgp = —

Yab = —

If ab is parallel to X — X, then

z=—J y:=l-— .
i TR s T

If ab is parallel to Y —Y, then,

Iy J
A.zxg' . A.zg

Tgp = —
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The radii vectores of the kernel are lengths
which for any 0 need only be multiplied by
the area of the section (4) to give the sec-
tion modulus

IZI—J?
((1, sin0—J . cos 0) y +(Iy.cos 6—J .sin o)x)'

but these lengths must be considered posi-
tive if measured on the opposite side of G
from P.

Section Modulus Polygons.

In the equation 8 = % +%[ (see Eccentric

Loads), s is the section modulus. The sec-
tion modulus polygon is the polygon the
lengths of whose radii vectores are the
graphical representations of the values of s
for extreme fibers for successive values of
0 from O to 360 degrees. The section modu-
lus polygon is a figure whose sides are parallel
to the sides of the kernel of the given section
but which lie on opposite sides of the center
of gravity from the sides of the kernel.
The most general value of s is

I Iy—J2
(Iysin 6—J cos 0) y +(Iycos 6—~J . sin 0) =

For any secticn which is symmetrical
about either axis, s becomes
Tl
8= — .
Iysin@.y+Izcos 0.z
For any symmetrical section for which P
lies on Y - Y, §=90°, hence
Iy

§== =

Yy
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If for any symmetrical section P lies on

X —X, 6=0° hence
AEC

There will be one vertex of the s-polygon
for each side of the polygon bounding the
section. If x4, y, and 3, s, are the codrdi-
nates of a and b, two consecutive vertices of
the bounding polygon of the section, then
the codrdinates of the vertex of the s-polygon
corresponding to the side ab of the bounding
polygon will be

(@a—z3) J—(Ya—ws) Iy £
Talyd —TblYa

aZab=

- (Xa—13) Ie— (Ya—us) J )
Zal¥b— T8Ya
If ab is parallel to X ~X,

Yad

z
e Jaiata
Ya Ya
If ab is parallel to Y -7,
Iy J
Tap=—, Yab=—"
Tq Zq y:

For sections symmetrical about either

f
X-X, or Y-Y, J=0, and the values of -y—-'
a

and L can be found in the handbooks
2

issueda by the steel companies, under the
column marked *“Section Modulus.” The
vertices can then be plotted and connected
by straight lines to form the s-polygon.
From this s-polygon the values of s for any
value of 6 can be obtained graphically.

The most advantageous plane of loading for
any section will be that having the greatest
value of s.
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DIAGONAL STRESSES

Fig. 45.

F =axial load.
A =area of section normal to axis of bar
n—n=any diagonal section.

0=angle which n —n makes with axis.
S=unit axial stress.

§;=unit shear along plane normal to axis.
Sp=unit tension or compression normal

to section n—mn.
Sen=1unit shear along section n—n.

For combined direct stress and vertical shear,

,.=~‘2§ (1—cos20)+8,.sin286.

g.sin20+S..cos20.

The maximum or minimum value of Sy

S .
oceurs when cot 2 0= — —— | and is
28,

1 ]
max. Sp=-3 S & (S.’+S£) 3
The maximum value of S, occurs when

S F
tan260= 35" and is

max. Sen = (S.2 + Sf)}.
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For azial load only, Ss=0, hence

Sp= §(1 —cos8 26)=S,sin?0= i‘— . 8in? 6,

8
S‘"—E «sin 2 6—-2—71- sin 2 0,
The maximum value of S, occurs when
#=090°, and is then the unit axial stress.
The maximum value of Sen occurs when

S F
=45° is = =Y
0 45,&!)(1]8201‘2'.

THIN PIPES, CYLINDERS, AND SPHERES.

S=unit stress in metal.
t=thickness of metal.
d=diameter.
p=unit pressure of
liquid or gas.

0=angle which the
direction of P
makes with
X—-X.

Fig. 46.

For the transverse stress across a long:-
tudinal section of a pipe or cylinder,

Ry=R;=3}3p.cos0=3}p.d.

For the longitudinal stress across a trans-
verse section of a pipe, or for the stress in a
thin hollow sphere,

P} xd® }ndz p.d
P Txd.t 4t'

which is one-half of the unit transverse stress
in a pipe having the same diameter and
thickness.
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RIVETED JOINTS.

e T T P —

Fig. 47.

a=distance center to center of two con-
secutive rivets in one row.
d=diameter of rivet or rivet hole.
F=stress in unriveted plate in length a.
t=thickness of plate.
Sg=unit tensile stress.
.=unit compressive or bearing stress.
Ss=unit shearing stress.
es=efficiency of joint for tension.
e.=efficiency of joint for compression.
es=efficiency of joint for shear.
m=number of shearing sections of rivets
in distance a. (Notice that for butt
joints each rivet has two shearing
areas.)
n=number of bearing areas of rivets in
distance a.

F=t(a—d) S.=m.imi’.S.=n.t.d.S,,

€= ——-¢

m.x.d%S,
4.at8
n.dSe

aSg

G

€g =
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For maximum, efficiency, make e;=e;=e,
for which
4.n.8,, :
m.n.Ss

and a= 4nS,t(1 %-) t.

For single riveted lap joints the maximum
efficiency is approximately 55 per cent, for
double riveted lap joints approximately 70
per cent, for triple riveted lap joints approx-
imately 75 per cent, and for triple and
double riveted butt joints approximately 80
per cent.

BEAMS.

Vertical Shear. The vertical shear at any
given section of a horizontal beam is the
sum of the vertical components of all of the
stresses at that section. The vertical shear
is equal to the sum of all the reactions of
the supports upon the left of the given sec-
tion minus the sum of all of the vertical loads
on the left of the section.

For any beam the vertical shear upon the
right side of the left support of any span is

Mooy 2 wazr (1-9),

Y ]

where
M;=the moment at the left support,
M:=the moment at the right support,
w=the uniform load per lineal unit,
F=any concentrated load,
a=the distance from the left support to F,
l=the length of span.
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Shearing Stresses. If V =vertical shear at
any section,
|4
Sy= A
where S, is the average unit shear.

The actual unit vertical shear at any
point is equal to the unit horizontal shear at
that point, and may be determined by the
following equation:

v
Si=pg 3, e da)*

where b is the breadth of the section at the
given point, y is the distance of the point
considered from the neutral axis, and ¢ is
the distance from the neutral axis to the
extreme fiber on the same side as the point
considered.

The maximum value of S, occurs at the
neutral axis, and is

Vv % |4 }
max.S.=—I—'—I-’j; Y dA:T.—I; o Ay,

where A,; is the area of the portion of the
section on one side of the neutral axis, and
y1 is the distance from the neutral axis to
the center of gravity of the portion of the
section on one side of the neutral axis.

For a rectangular section, the maximum
unit shear is § of the mean unit shear.

For Diagonal Shear, see Diagonal Stresses,
page 61.

Bending Moment. The bending moment
at any point for any beam is

M=M;+Vz—}% wa~3F (z—a),

* See ‘“Merriman’s Mechanics of Materi-
als,” page 269.
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where

M =bending moment at section considered,
M;=bending moment at the left support,
Vi=vertical shear upon the right side of
the left support,
w=uniform load including weight of
beam, per lineal unit,
F=any concentrated load upon the left
of the section considered,
z=distance from the left support to the
section considered,
a=distance from left support to F.

For any beam of one span ¥V, is equal to
the reaction at the left support.

The maximum values of M occur at those
sections for which% =0, that is, where the
shear passes through zero.

The values of M for special cases are given
in Table of Beams, page 68.

Theorem of Three Moments. For any two
consecutive spans of a continuous beam, let

My=moment at the left support,
Ms=moment at the middle supporf,
M3z=moment at the right support,
Iy =length of the first span,
ls=Ilength of the second span,
I=length of span for equal spans,
w;=uniform load per lineal unit on first
span,
ws=uniform load per lineal unit on second
span,
Fi=any concentrated load on the first
span,
Fy=any concentrated load on the second
span,
ay =distance from first support to Fy,
az=distance from middle support to F3.
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Then, for uniform loads only,
Myl +2 My (I +12) + Malo= — % wily3— 1 walod.

For equal spans with equal uniform loads,
Mi+4 Mo+Ms=—3 w2

For concentrated loads only,
Myl +2 M3 (I +15) +Msl,

3
=_7, (alll— “T:’)—Fz (2 azls—3 agt+ %:—)

Flexural Stresses. The tensile and com-
pressive stresses in a beam, produced by
bending, are the same as the stresses upon a
section having an eccentric load, due to the
moment of that load. Therefore, for pure
flexure the tensile and compressive stresses
for the extreme fibers of any section can be

determined by placing AZ’=0 in the formula

for S given under Eccentric Loads, which
gives

5=,
8

where s is the section modulus, the values for
which are given under Section Modulus
Polygons.

For combined flexure and direct stress, the
tensile and compressive stresses are given by
the formule for Eccentric Loads.

Elastic Curves. The curve which is as-
sumed by the neutral surface of a beam
under load is called the elastic curve.

. The radius of curvature of the elastic curve
18
EI dB da?

R = =

M dz.day  ay’
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from which the equation of the elastic curve
can be obtained, for any particular case, by
placing M equal to EI %, and by making
two integrations to obtain an equation in
terms of z and y.

The deflection of a beam at any given
point is obtained by substituting the par-
ticular value of z in the equation of the
elastic curve and solving for y. The maxi-
mum deflection occurs at the section for
which dy

d_.:;:=0'

(For particular cases, see Table of Beams.)

TABLE OF BEAMS.

Note. — The equations for elastic curves
and the values of A applv only to beams of
uniform section.

Beams Supported at Both Ends and Uniformly
Loaded.

V7777777227724 _
R, TRs

o~

Shear

MML

Moment

Fig. 48.
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1 w
R1=Rz='2' wl=5-
V=R, —wz.

M-R,z—% wa?

1 1
=3 Wa:—E wa?,

M;=§wp-§wm

ay _1 1
EI — d.tz wlz—-§ wa?,

24 Ely=w (—~a* +2 la3—Bx).
y=A when x=!2- ,or

5 wh_ 5 WB,

ns 384 BI 384 EI '

Beam Supported at Both Ends and Loaded
with a Concentrated Load at Center of Span.

: g

Ry R,

R,

Shear
R 2

Moment
Fig. 49.

Ey=Ry=1 F.
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V=R, on the left of F,
=Rs, on the right of F.

M =Rz, on the left of F,
=Ryz—F (z—a), on the right of F.

Map=Fa (1 LEps
EITY = Rua, on the left of F,

=R,z—F (z—a), on the right of F.

Ely=é R123+ c1z + co, on the left of F,

1 1 1
At ot 3 = Pl = 2 s
6R11 6Fz +2Fax +c3z +cy

on the right of F.
6 Ely=F (1— %)x’—F(mzl—a a’+%a):c.

The maximum deflection (A) occurs at the
section for which

,_\/yﬂ*.

and is A= 3—Ei (2 al—a’) (1

Beam Supported at Both Ends and Loaded
with Several Concentrated Loads.

SF (l—a)_
]

R1=
m-2_sr g,
V-R,—-Z:F.

M—R;z—Z:F’ (z—a).
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The maximum moment (Mm) occurs at
the section for which RI—E:F—O, that is,
where the vertical shear is zero.

For a system of movable loads the maxi-
mum moment will occur under one of the
loads, the loads being in such a position

L T - |
[a—r]
Ry e Ry
h ¢
1
Ry
Shear
Ry

Moment P
Fig. 51.

that the center of the span is midway be-
tween the center of gravity of all the loads
and the section at which the maximum
moment occurs.

The maximum deflection of a beam loaded
with several loads is the sum of the deflec-
tions produced by each load at the section
at which the maximum deflection for the
entire system of loads occurs. The deflec-
tions produced by each load can be obtained
by means of the equation of the elastic curve
for a single load.
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Cantilever Beam with Uniform Load.
Ry=wl=W
R3=0.
V=R,—wz.

M= ;— w =z,

Moment

Flg. 52,

or if « is taken from the free end,

1
M=§wx’.
1 1
M..=§- wit= 7 wi.

d.i..l 2.
EI zwl2 wl:a+2wx

24 Ely =wa* —4 wiz® +6 wix?,
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Ma=i5 wl’=-—- wi.

Y

B T wl:c—%wz’.

Shear R,
s S
Man My
Moment
Fig. 54.

By placing Z—x =0 when =0 and when =1,

My=— l—zwl’.

24 EIy=w (—Da?+2 lz3—2%),
1 wit 1
A=3giEr "3

Beam Fixed at Both Ends and Loaded at
the Center of the Span with
trated Load.

a Concen-
1
Ri=R;= §F.

V = Ry, on the left of F,
= Ry, on the right of F.
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My = —%Fl.

48 Ely=4 Fx3—3 Fla?, on the left of F.

ey PO
102 EI

Beam Fixed at Both Ends and Loaded with
a Concentrated Load Distant & from the
Left Support.

NN

Z

. R1

‘Mg / Mg M,
Moment

Fig. 56.

Ry=F(1-3% +2z:)

a? a
R2=FF(3 —2:) .
V = Ry, on the left of F,

= Rz, on the right of F.

M = M; + Rz, on the left of F,
= M, +Riz—F (z—a), on theright of F.
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" Malo+2 M3 (lo+1s) + Mls
=— i'wzl-g2 - i—wals’- ete.
Mp—2ly-2+2 Mp_1(lp-2+1ls~1) +O

1 1
- —an-— olp-22— Z Wp—1ln=12.

From the above simultaneous equations
Mo, M3, My, . . Mpn-; can be determined.

Moment /V \V

Fig. 57,

Vl= Liz + % 1171l1.
Vzu’= W; S Vl-

M3z—Mz , 1

Vo= % + 2 wala.

Va¢= Wz— Vzb, ete.

For equal spans with equal uniform load
over the entire beam, the ends of the beam
resting upon supports, the moment at any
support is Kwl? or KWI, and the vertical
shear is Nwl or NW, where K and N have
the values given in the following table:
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' S[BIIIBI JO SOIURYIDY ,, S,UBWLIIJY UIOI] UOHBY, =

o |%¢|8E|3:| 8F | 8% | 8% | 8% | 3 | £ | 8 fo (o |W| W | ¥ | ¥ o [ 9
A RS R S R R I e iR . B
b Y e 0 bvw oon onh buu bew nrn 0 . .o 0 .o«u .(n 0 ¢
Al B - o a8 18 s e ol lo]lt |o] 2
TSR R R B PR ORI W P erd PR PP IV PN Pl A

LZARAL AL IO O B I B B O 7 B e B IR B A B e L o
Aot -3

JUOUIOTY JOF ) JO SoN[BA ON
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For a continuous beam with fized ends con-
sider an imaginary span to be added at each
end of the beam, with the free ends resting
upon supports. Then write the equation of
three moments for each two consecutive
spans, making !=0 for the first and last
spans, and compute the moments at the
supports as shown above.

Continuous Beams with Concentrated Loads.

Determine the moments at the supports in
a similar manner to that employed for con-
tinuous beams with uniform load, employing
the equation of three moments for concen-
trated loads.

STRUTS AND COLUMNS.

Euler's Formula.

o~

-

i 4 ;

Fig. 58.

dy
EI v e -Fy.

dm=( \/ﬁ) («/az_yz)
:¢:==-'\/-Ej;.£ . sin? (g), or
; y=a . sin (z'\/%) .
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where y is the distance from the neutral
axis to the extreme fiber.

But, I=Ar?, M=Fa and a=Kzl—: , where

K is some constant depending upon charac-
ter and condition of the column. Hence

S=§- [1 +Ke)2] B OT
K el g
4 ek ()
Cambria handbook gives the following
values of K for steel columns:

36,(1)00 for both ends fixed,

1
52,000 for one end fixed,

1 ¥
18,000 for pin connected ends.

The above values are to be used with
following values of S for ultimate strength:

8=>50,000 for medium steel.

8=45,000 for soft steel.

Ritter's Formula. Ritter’s formula is the
same as Rankine’s formula except that the

expression 7%;, is used for K, in which S, is
the elastic limit of the material, and n is
equal to z? for round ends, % #? for one end
round and one end fixed, and 4 z? for both

ends fixed.
The Straight Line Formula. The straight
line formula is
F_
A
where C is a constant depending upon the
character and condition of the column.

§7E
T
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Merriman gives the value of C in the
above equation to be

ot e E)

which is obtained by making the straight line
a tangent to the curve for Euler's formula

passing through the point S for ;l =0.

The following values of S and C for allow-
able stresses are given in Cooper’s Specifica-
tions for Railroad Bridges, 1906.

8=10,000, C=45,
for live load on chords,

8=20,000, C=90,
for dead load on chords,

S= 8,500, C'=45,
for live load on posts of through
bridges,

8=17,000, C=90,
for dead load on posts of through
bridges,

8= 9,000, C=40,
for live load on posts of deck
bridges,

S§=18,000, C=80,
for dead load on posts of deck
bridges,

8=13,000, C=60,
for wind load on lateral struts.

Engineering News Formula. The Engin-

eering News, Vol. 57, No. 1, Jan. 3, 1907,
gives the following formula:

s=~(1 +4),

which is the same as Rankine’s formula given
on page 87, allowing the eccentricity a to



MECHANICS OF MATERIALS 85

remain in the formula instead of substituting
Ks-. The value of @ to be used may be
considered to represent the eccentricity due
to imperfection in manufacture (since it is
impossible to obtain the ideal straight
column), plus the additional eccentricity
due to the failure to obtain an axial load.
The proper value of a to obtain correctly
proportioned columns might be determined
empirically by experiment, or it may be
determined by comparison with column
formul® in use which have been found to
give correct results.
For any formula of the Rankine type,

iy o
0]

In the article above mentioned the values
of a for a number of formule in use are
thus computed, the mean values being as
follows:

a = 0.000051 :7" foratesl,
a= 0.0001775. for cast iron,

a= 0.000164;—:, for timber.

For any formula of the straight line type
o cAlr
.~
In the article above mentioned the values
of a for a number of formule of the straight
line type have been computed, using[ =0.8,

the mean values being as follows:
a=0.0053 I, for steel,
a=0.0015 !, for cast iron.
a=0.0044 , for timber.
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Eccentrically Loaded Columns. To the
quantity a in the Engineering News formula
add the eccentricity of the load at the end
of the column, that is

=5[22

where e=eccentricity of load at the end of
the column.

To determine the maximum stress of an
eccentrically loaded column by Rankine’s
formula replace a in the above formula by

its equivalent K 5 , which gives

F 2 _oey
S=Z [1 +K?z'+,-z-]'

TORSION.

Circular Sections.
Twisting moment, M =Fa.

Circular Secfions

?
Fig. 60. Fig. 61.

2
Resisting- moment, M,.=f% SdA, where

S is the shearing stress at the extreme fiber.
M=M,, or

SIy

M R’

where I, is the polar moment of inertia.
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]n

For a solid round shaft 5} = zR3, hence

z
2
2M

M=é zR3S, or S= =l

Non-Circular Sections. (Taken from Mer-
riman’s *“Mechanics of Materials.””) For
non-circular sections the above formulz are
only approximate.

For an elliptical section whose major axis
is m and whose minor axis is n the maximum
stress is

S= 16 F;a
mn

s or

amn?S

i

For a rectangular section whose long side
is m and whose short side is n, the maximum
stress is

9 Fa
S=§m—nz,or

2 nt
M anS.

Transmission of Power. The horse-power
which is transmitted by a shaft is

27a.F.w

Hekm S so%1s

where a=moment arm in inches,
w==number of revolutions per sec.
SIy
But, Fa = = hence

2 anIn USIo
H.P.= B50XIZ R = 0.000952 ——
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