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PREFACE.

Tliis handbook is intended as a reference 2 oc

book, for the use of those who have studied > m
or are studying the branches of mathematics <

usually taught in engineering courses. It is <
}

not intended for a text book, and does not, ^

therefore, attempt to prove many of the
_j

formulae which are given. < m
Most of the material in this book was z 3

obtained from the following sources: algebra S Q
from Hall & Knight's Algebra (Macmillan {Jl ^
Co.) ; trigonometry from Bowser's Trig- -jj

onometry; analytic geometry from Candy's

Analytic Geometry ;
calculus from Taylor's ;

Differential and Integral Calculus
;
theoret- <

'

ical mechanics from Church's Mechanics of o D

Engineering ;
and mechanics of materials H

from Merriman's Mechanics of Materials
;

- o
to all of which the writer is very much in- s=

debted and from all these Authors he has
'

< a

received permission to use the material. The -

reader is referred to these works for the proof ;

^_

and explanation of the various formulae. -
t;

L. A. W. _ h 2

TUCSON, ARIZ., March, 1908.

179775
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ALGEBRA.

EXPONENTS AND LOGARITHMS. :

If aw= b, m= loga 6 . am . an= am+w ,
-

.'. log x . y= logo: +logy. aTO H-an= am~n <g

.'. log (z-^2/) = log:r-log2/.

- 09

.'. log x2= 2 . log x. (a
wl

)
n= aw n

, ^
:

/. logxft= n .logx. a=l,
:

i ']^ <

/. log(l)=0. F

The base of the common system of loga- j w
rithms is 10. $ 3
The base of the natural system of loga- 3 Q

rithms is C d

,4-+ . . .
= 2.7182818284.

The cologarithm of a number is the loga-

rithm of its reciprocal. Log
f-J

= log x.

To transform a logarithm from base e to

base 10, multiply by logio e.

Log10 e= 0.43429448.

Log. 10= 2.30258509.

1"
log 10

'

1



2 ALGEBRA

QUADRATIC EQUATIONS.

2a

PROPORTION.

If a : b : : c : d,

a c b d
7- j* or - = -
b a a c

ad= bc, ^=^-d
,

o d

a b _ cd a+b _ c+d
b d ab cd

ARITHMETICAL PROGRESSION.

a, a+d, a +2 d, . . .

Last term, L= a + (n 1) d.

Sum of terms,

GEOMETRICAL PROGRESSION.

o, ar, ar2, ar3, . . .

Last term, L= ar n~ l
.

Geometric mean, M= ^ab.

Sum,

rL-a
1-r r-1

For an infinite geometrical series, the sum

to infinity is S= _



ALGEBRA

HARMONIC PROGRESSION.

b, c are in harmonic progression if

a _ a b

. if _, , _ are jn arithmetical progression.a b c

PERMUTATIONS AND COMBINATIONS.

ab and ba are two permutations but only
one combination.

The number of permutations possible of

n things taken r at a time is

nPr= n (n-1) (n-2) . . . (n-r + 1).

"P-=ln.

([n =1X2X3X4 . . . Xn).

BINOMIAL THEOREM.

+b) n= an +n . an-1 . b

SERIES.

1. An infinite series in which the terms

are alternately positive and negative is con-

vergent if each term is numerically less than

the preceding term.



4 ALGEBRA

2. An infinite series in which all of the

terms are of the same sign is divergent if

each term is greater than some finite quan-

tity, however small.

3. An infinite series is convergent if from
and after some fixed term the ratio of each

term to the preceding term is numerically less

than unity.

4. An infinite series in which all the terms

are of the same sign is divergent if from and
after some fixed term the ratio of each term

to the preceding term is greater than unity,

or is equal to unity.

5. If there are two infinite series in each

of which all of the terms are positive, and if

the ratio of the corresponding terms in the

two series is always finite, the two series are

both convergent, or both divergent.

DETERMINANTS.

|at &i|=a6 _ Q b
'O2 b2 \

ai 61 ci

tt2 b2 C2

as 63 03

~d\ &2 C3 +
2 b3 Ci +

03 . 61 . C2

CL2 bi . C3 03 . &2 Ci .

then

a^x + b%y + ciz 4- dz= 0,

a^x + b$y + c&z + ds= 0,

3; = -y = -1



TRIGONOMETRY.

r* C
2

Radius = 1 . >
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TRIGONOMETRY 7

sin (A +B) =sin A . cos B +cos A . sin B.

sin (AB)= sin A . cos B cos A . sin B.

cos (A +B)= cos A . cos B sin A . sin',B.

cos (A J5) =cos A . cos 5 +sin A . sin B.

tan A + tan J?

1 _ tanA . tana
-

oS
tan A - tan B r

~

(A-B)^ 1+tanA-tanB
-

;

; j

z ^
sin 2 A =2 . sin A . cos A. <

5

cos 2 A cos2 -4 sin2 A
= 2 cos2 ,4-1 <,

2 . tan A
tan 2 A - - z A

I tan2 A

/A\ _ 1 cos A

sin 3 A =3 . sin A 4 . sin3 *

cos 3 A = 4 cos3 A 3 cos A .

3 tan A tan3 A
tan 3 A =

1-3 tan2 A

sin A +sin B= 2 . sin - .cos ^

sin A sin B= 2 cos ~ .sin pr

A+B A-B
cos A + cos B= 2 cos s .cos jr

--

.A+B . A-B
cos A cos B= 2 sm ~ . sin r



TRIGONOMETRY.

sin A +sin B = tan (A +B)
sin A sin B tan (A B)

sin A + sin B
cos A + cos B

= tan (A+B).

sinA+sinB
cos A cos B

sin A sin B _ ,
, .

cos A +cos B
~~

sin A sin B
cos A cos B

= cot

cos A 4- cos B
cos A cos B rv-

PLANE TRIANGLES.

sin A +sin B
+sin C

= 4 cos . cos

Fig. 2.

cos A +cos B +cos C

= l+4.sin|
. C

tan A +tan B +tan tan A . tan B . tan C.

a

sin A sin B sin C

a2= &2 +c2_2 . 6 .C . COS ,

=
a-6 tan \ (A-B)'



TRIGONOMETRY

Area= i b . c . sin A

_ a? sin B . sin C
2 . sin A

= \/s(s-a) (s-6) (s-c),

where s= i(a+6+c).

SPHERICAL TRIANGLES. '-

> UJ

Center of sphere is at 0. ^ S

?c
/o

B

Fig. 3.

Right Spherical Triangles. Let C repre-

sent the right angle,

cos c= cos a . cos 6.

sin 6 = sin B . sin c.

tan a cos B . tan c.

tan a= tan A . sin b.

tan A . tan B =
cos c

cos A =sin B . cos a.

OBLIQUE SPHERICAL TRIANGLES.

sin a sin b sin c
7- = p>

= -
77
= modulus.

sin A sin B sin C

cos a= cos b . cos c +sin 6 . sin c . cos A.

cos A = cos B . cos C -f sin B . sin C . cos a.

cot a . sin 6 = cot A . sin C + cos C . cos 6.

Let
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then s-c)
sin 6 . sin c

/A\ _ A/sin s . sin (s a)

\2 )
~~

sin 6 . sin c

tan (-\ = \/sin (*-fr) sin (* c)
.

\2 / sin s . sin (s a)

sin - = V - :

sin B . sin C

/cos (S-B) . cos (S - C)

sin B . sin C

/_ cos S. cos (S -A)
cos (S B). cos (S-Cy



ANALYTIC GEOMETRY.

TRANSFORMATION OF COORDINATES.

To transform an equation of a curve from

one system of coordinates to another system,

substitute for each

variable its value in ^



12 ANALYTIC GEOMETRY

Rectangular System. Old Axes not Parallel
to New Axes. Old Origin not Coincident
with New Origin.

Fig. 6.

xf = (x-K) cos + (y-k) sin 0.

y
f = (y-k') cos O-(x-h) sin 9.

x =xf
. cos y

f
.sin 0+h.

V =yf
. cos +xf . sin +k.

Polar and Rectangular Systems.

x= p . cos 0.

y= P . sin 0.

P=vV+2/\

tan 9-H.

Fig. 7.

sin0 =

cos

^x*+v*'

v5T^'

cot = - .

y

8ec* = ^EZ2

.

cosec 5 = /x*+tf
y



ANALYTIC GEOMETRY 13

THE STRAIGHT LINE.

Equations of Straight Line. An equation of

the first degree containing but two variables

can always be represented by a straight line.

The equation of the straight line may as-

sume the following forms, for the rectangular

system of coordinates.

Ax+By+C=0 .... (1)

y =mx+k ...... (2)

in which m is the value of the tangent of the

angle which the line makes with the X-axis,

and k is the intercept on the Y-axis between

the line and the X-axis.

y-y' = A(x-x') ... (3)

in which x'
', y' are the coordinates of a point

of the line, and A is a constant.

in which xr
, y

1 and x"', y" are the coordinates

of two points of the line.

The polar equation of

a straight line is

p . cos (0-a)=& (5)

where k is the length of

the normal ON.

Distance between Two Points. The distance

between two points, x', y' and a/', y", is

equal to

The distance between two points, pi, #1,

and 02, 02, is equal to

^Pl2 + P2
2 ~ 2 Pl . p2 . COS (0i

-
2)

.

:
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Angle between Two Lines. The angle be-

tween two lines, y= m'x+kf and y=m"x+W',

is the difference between the two angles

whose tangents are m' and m".

Area of Triangle. The area of the triangle

whose vertices are (x\, 2/1), (x2 , 2/2), and (x3 , 2/3),

is equal to

i r^
*3 2/3 1

THE CIRCLE.

The most general equation of the circle,

for rectangular coordinates, is

in which a, b are the coordinates of the cen-

ter of the circle, and R is the radius.

The following are special equations of the

circle for rectangular and polar systems of

coordinates.

2 R .cos B.

X

Fig. 10.

2R .sin0.



ANALYTIC GEOMETRY 15

THE PARABOLA.

If the Y-axis coincides with the directrix,

DM, then

Q



16 ANALYTIC GEOMETRY

THE HYPERBOLA.

Fig. 14.

A -A = principal hyperbola.
B~B= conjugate hyperbola.
cc asymptote.

Principal hyperbola:

Asymptotes: - ^ =n
a2 b2

Conjugate hyperbola: - - =
a2 b2

When referred to the asymptotes as axes,the equations become:

Principal hyperbola: xy =

Conjugate hyperbola: xy= - (a<i+b\

D-D is the di-

rectrix.

F, F are foci.

FP
pQ-Ol.Fig. (5.



ANALYTIC GEOMETRY

THE CYCLOID.

17

Fig. 16.

x= a (0 sin 0),

ya (1 cos 0),

x= a , vers"1 \\ - ^2 ay-y*-

THE SPIRAL OF ARCHIMEDES.

THE RECIPROCAL OR HYPERBOLIC
SPIRAL.

I

THE PARABOLIC SPIRAL.

THE LITUUS OR TRUMPET.

THE LOGARITHMIC SPIRAL.

log p= k . 9.

If fc= l, and logarithms to the base a are

employed, then the equation may be written
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THE CATENARY.

THE CUBIC PARABOLA.

THE SPHERE.

For the origin at the center,

where R is the radius.

CONES.

The equation of the cone generated by the
hne, z= mx+c, rotated about the Z-axis, is

OBLATE SPHEROIDS.

The equation of the oblate spheroid gen-

erated by the ellipse, g + g
=

l, rotated about

its minor axis, is

PROLATE SPHEROIDS.

The equation of the prolate spheroid gen-

erated by the ellipse, g + ~ =
1, rotated about

its major axis, is

x2 y- z"i^_ i _ _i_ i
A2 "*" A2 "T" Z9 A



ANALYTIC GEOMETRY 19

HYPERBOLOIDS.

The equation of the hyperboloid of one

x2 z2

aappe, generated by the hyperbola, --^=1,
rotated about its conjugate axis, is

2

4. _ * = i

a2 a2 62

The equation of the hyperboloid of two

x2 z2

nappes, generated by the hyperbola, 2

-
p
= 1

,

rotated about its transverse axis, is

a2 ~P ~P =1 *

THE PARABOLOID

The equation of the paraboloid of revolu-

tion generated by the parabola, x2= 4a

rotated about its axis, is

GENERAL EQUATION OF CONIC

SECTION.

The general equation of any conic section,

for which the Y-axis coincides with the

directrix and the X-axis passes through the

foci normal to the directrix, is

where k is the distance from the directrix to

the focus, and e is the eccentricity.



DIFFERENTIAL
CALCULUS.

Variables will be represented by u, v x yand 0, and constants by a, 6, m, and 'n.

'

D will be used as the sign for the deriva-
tive, and d as the sign for the differential.Sm i x= angle whose sine is x.

D <&>-
dx

.'. To obtain the derivative of any func-
tion, drop the differential of the variable
from the differential of the function.

d (av)=a .dv.

d (u +v +x) = du +dv +dx.

d(x .y)=y .dx+x.dy.

d(u.v.x.y. ..) = (v.x.

(u.x.y . . .-)dv + (u .v.

(u . v . x . . .) dy + . . .

20



DIFFERENTIAL CALCULUS 21

dx
dx*= y . xV~ l

. dx -\-x* . Iog x .

-^

where M = logo e.

d (&")=&*. iogb.^
dxa=a . xa

~
l

. dx.

d (sin x) = cos x .dx.

d (cos x)= -sinx . dx.

d (tan x)=sec2 x . dx.

d (cot x) = cosec2 x .dx.

d (sec x) =sec x . tan x . dx.

d (cosec x) = cosec x . cot x . dx.

d (vers x) = d (1
- cos x) = +sin x . dx.

d (covers x)=d (l-sinx)= -cosx.dx. j

dtsin-x^dx/vT^ II
d(cos- 1 x)=-dx/Vl-x2

. z <

d (tan-
1 x)=dx/(l+x2

).

d(cot~ 1 x)=-dx/(l+x2
).

j
eo

d(sec- 1 x) = dx/(xV
/

x2 -l). ; g
^ ^

d (vers-
1 x) = dx/v

/
2 x-x2

.

2 O

d (covers
-

1 x) = - dx/v^x-x2
. _ H s

^ "*i

To differentiate a junction : M

1. Find the value of the increment of the

function in terms of the increments of its

variables ;

2. Consider the increments to be infinitesi-

mals, and in all sums drop the infinitesimals

of higher order than the first, and in the
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remaining terms substitute differentials for

increments.

For the maximum value of a function the

first derivative is zero, and the second deriv-

ative is negative.

For the minimum value of a function the

first derivative is zero, and the second deriva-

tive is positive.

If -~ assumes the form - then

Fx D (Fx)

fx
~
D (/*

'

The radius of curvature for a curve, y= fx, is

= = ^
da. d?y dx . d?y

(dx?

where s is length of curve.



INTEGRAL CALCULUS.

I dx=x+C, where C is the constant of

integration. The constant C must be added

to all of the following forms.

J
(dx+dy+dz . . .)

=

Cdx+Cdy+fdz + ...

Cx.dx=^-
J n+1

dx .

x or vers x.

A*. <**-*.
J loge a

\ e* . dx e*.

I ax . loge a . dx= a*.

I sin x . dx= cos

I cos x . <c= sin x or covers x.

cosec2 x . dx= cot x.

I sec x . tan x . dx= &ec x.

23



24 INTEGRAL CALCULUS

J
cosec x . cot x . dx= cosec x.

J tan x . dx= log (sec x).

i cot a; . dx= log (sin x).

J
cosec x . dx= log (tan |)

J"sec
x . dx= \og

[tan ^ +
1)]

=4-
/(fa

1 , /x-a\^^ =
2^- loS

C-+i)'

=log (a;

f_rf^ 1
, /x\

\
-

,
= -

. sec -1
(
-

) ,J x \/x2_ a2 a \a/

-x2

= covers
-



Cf
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C, if

25

I a . dx = a I dx.

fo-c.

\ x . dy= xy I y . dx.

i^t! ~&&+**-i . log (a+te)].

/a
. dc

'

If, ,
,

, .
,

a "I

__^_2
=
_|_log(a+6x)

+
___J

2
1

a+bx]

C dx I

J x(a+bx)
~ ~

a
' log

a+bx

1 _! j
/a+&a:\

a(a+6x) a2
" 3g

V a; /'

_ ,+ ' gaxa?' \ a?

dx 1 . / A /b\
rr-o= F= tan"1 (x V -V

a+6x2
Vafr > a/

when a >0 and 6 >0.
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dx 1 <Sa+x ^~b
t

, ^.2
~

/ lg -/= /==-

when a>0 and 6<0.

dxr_dx_ x _ J_ f_c
J (a +6x2

)
2 2 a (a +6x2

) 2 aJ a J2+6x2

dx

(a +6x2
)
n+1 2na' (a +6z2

)
n

,
2n-l f dxL^l f_2 no J (a

J a+6x2
= a; a

6

(a+6x2
)
n + 1 2 rib (a

^J_ f dx
2n6 J (a+6x2

)*'

/dx J_ / x2 \

x(a+6x2
) 2 a S Va+6x2/

r ^__ = _j__^r
J x2

(a +6x2
) ax aJ a+6x

f_ da; = ! C dx

J x2
(a +6x2

)
n + 1 aJ x2

(a +6x2
)*

_6 C dx

aj (a+6x2
)
n+1

'

6 (nP+m+1)
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nP+m+l

onP+T^i (V . (a +bxn
)P~i . dx,+m+lJ

a (ro + 1)

xm+ n
.

b (nP -\- Tfi -f-n -f- 1 ) /*

o (w + 1) I

^ +1 -(

on (P -HI)

nP+m+n + 1

an(P-fl)

-A. f-
2a J <

1562

/a+bx . dx

105 63
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*
. dx 2 xn^a+bx

n ~ l
. dx

/g.
rfx _

Va+6x

2 na

(2n+l) 6

2(2a-

fx
n~ l

.

J V+

/a+bx

when a >0,

2
or =

.

when a<0.

dx

f
/a+bx

xnVa +bx (n-l)axn~

(2n-3) 6 f dx_
(2n-2) a J ^n-iVa +62;
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fa;2 *S

/z
2

. dx x*/~-* ,

2

,
= - ~Va2_ a;

2 + s

Va2 -^2 2 2

f__^_ x

J (a
2 -z2)i a2Vaz-a;2

'

f(a2 -rc2)5.^=

(5 a2

dx 1 , ( x \---- = -
. log 1
-

. I

xVxz +az a \a +Vx* + a?'

S

21
u.
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C dx _

2a?x2 2 a3

1 .

log

Cx dx= |(2*
2 a ;

a4

L-<fl-a cos" 1 --

;

2 a log
-

f -
:

Jvs

r _j

- log (x +^x2 a

, 4- log (x-l-^a^ia2
).

^(2a;
2 5a2

)
Vx2 a2
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/;*, ,
- = vers~ 1 --

V2ax-x2 a

/x
mdx = xm~ 1 ^/2ax-x2

\/2ax-x2

(2m-
i-l)qj^-'.<fa

dx

m
"(2m

-l C
-1) a J xm-i

dx

/

/

/

/.

ax-x* . dx

,
a2 .

,
x a

+
2
Sm

a;
w V2ax-rc2

. rfa:= - '

(2m+l) a

m+2
Cxm-i t

=
(2m-3)axm

(2m
-3 C^Zcuc a?

-3)aJ xw~i
* d:C '

v ax2 +6x +c

-7= log (2 ax +6 4-2 Va v/
ax2 +6x+c).

dx

/v
/ ^+6^+"c . dx=

2a* +b Vax*+bx+c
4.a

_/&2_-4_ac\ /*_
V 8a / J x
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C dx = _JL_ gin
_

1
/ 2aa;-6 \

7. da;=

f

/

4 o

62 +4oc
8a

a?dz

n:
fe

T
2^

^ r

3 a

c. da:.

sin (2 aO.
Jsin

2

a:.da;=|-|sin

/cos
2

a; . dx= + T sin (2 a;).2 4

I sin2 a; . cos2 x . dx= -(x - sin 4 arV

C C dx
\ sec a; . esc x . dx= \ .

J J sin x . cos x
= log tan x.

Csec*x.csc*x.dx= C .

,

dx
r-

J J sin2 x . cos2 x
= tan x cot x.

m+n

H I sin"1 " 2 x cosn x . dx,m +nj



INTEGRAL CALCULUS 33

sinw+1 a;. cosn
~ 1 x

i-i r .

, I si

i+nj

f+tmt
m-l C

I smm ~
m J

H I sinw x . cosw
~ 2 x . dx.+ '

dx =

m

cosn x . dx -

sin x .c . cosn-1 x
,
n 1 C

H I cos l x . dx.
n n J

/sin**

x , _
cosn x

sinw+1 x n m 2 rsinm x.

(n l)cosn
~ 1 x n I J cos"" 2

/cos

n x ,
. m . dx =

sin x

-n 2 f*cosn x

i \ J sinm ~

dx

(m 1) sin"1 " 1 x m-

/dx
cos x m 2 C dx

sin
m x (m 1) sin"

1 " 1 x m lj smm~'ix ^ ^
3 O

/dx
_ sin x n 2Cdx ^~<t

cos" re (n 1) cos"" 1 x n lj cos"""2 x' ^g
u S

/tan"-
1 ^ /"

tan"x . dx = r I tan"~ 2 x . dx.
n L J _^_

ont"" 1 r C V>

cot" a;, da; = ,
-

j
cotn~*x.dx. :

l
~ J EE

-^ = g&a+o cos x ui S

v/

if a2 >

2 /A /a - b x\
tan" 1

! V r.tan-l,
,2_ft2 \ a +6 2/'
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if a2<&2
.

. sin a; .

dx

/-
xm cos x +m I re

77*" 1 cos x dx.

I xm . cos x . dx=

xm sin x m I re"
1 "" 1 cos re dx.

/sin

re , re
3

,

re
5

re
7

,dx=X
-3l +

5H-7]7
+ ---

/sin

re ^ _ 1 sin x 1 fcos re a
m ^*^

1" m. \
' T I m Txm m Lxm m \J xm ~

/cos
re, _. x2 x* re

8

~x~ '~2\2
+
4[4~"Q{6

+ '

/cosx
, 1 cos re 1 /*sin re dx^ dx=^l-^-^ij-^r-

\ resin" 1
re . dx=

^
[(2 re

2-
1) sin" 1

re +rc Vl-a;2
].

/"*>.*-
rc
n + 1 sin- 1

a; 1
fx

n + l dx

n + l n + l J Vl-xz

/n re-

rc
n+ 1 cos" 1

re
,

1 fre
n+

n + l
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xn tan" 1 x . dx

n+1 n + lj 1+z2

dx

*1
3 O

S3

O <
z cc

< LJ

n
2 u.

O
dx 2 . xi .= sec" 1

/~n _ /,2 an a
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=. log -

if a2<62
.

ERRATA

should read

J -'** - cos .r . ,
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I xn tan" 1 x . dx=

n+1

! dr.*V""dfc-2-2--2 f*-!
i/ aj

fe
a*

, -1 ea*
,

a f ea* .

dx=--
. r -

-{
--

; -.dx.

J xn n-l xn
~

l n-lj xn
~

]

/ax
/ \ ^ ax\

a (cos (nx^ +nsin(nrc)"l

[ a?+n*

/
dx



THEORETICAL
MECHANICS.

NOTATION.
A =area.

a acceleration.

an= normal acceleration.

at tangential acceleration.

b = breadth.

Cx= component of force parallel to the

X-axis.

Cy
= component of force parallel to the

Ct
= component of force parallel to the

Z-axis.

d= depth or distance. Also the sign of

the differential.

F= force.

Fn= normal force or component of force.

Ft
= tangential force or component of

force.

/= coefficient of friction. Also the sign

of a function of a variable.

g= acceleration due to gravity= 32.2.

(The exact value is 32.1808-
0.0821 cos 2 L, where L is the

latitude.)

h distance from center of moments to

line of force.

7 = moment of inertia.

I
ff
=moment of inertia referred to center

of gravity.

Igx moment of inertia about an axis

through the center of gravity and

parallel to the X-axis.
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7 = polar moment of inertia about the

pole 0.

7a.=moment of inertia about the Jf-axis.

Iy
=moment of inertia about the Y-axis.

/ =moment of inertia about the Z-axis.

J= product of inertia. (Subscripts are

similar to those for /.)

K=a constant.

L= power.
M=moment of a force.

Wm= mass=
Q

N=SL normal force or component of a

force.

P= point considered.

R= resultant of a system of forces.

r= radius of gyration.

s= space.

T= tangential force or component of a

force.

f= time.

V volume.

v= velocity.

VQ= initial velocity.

vt= tangential velocity.

tf*= velocity parallel to the X-axis.

vy
= velocity parallel to the F-axis.

W= weight.

w= work.

, y, z= rectangular coordinates of a point.

p,
= polar coordinates of a point.

p= distance from pole to center of

gravity,

a= angle.

$== angle of friction.
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STATICS.

Equilibrium of Forces.

Fig. 17.

For a system of concurrent forces in equi-
librium in one plane:

(Cz=F cos a,Cy=F sin a, where a is the
angle which F makes with X-X,)

For a system
of non-concur-
rent forces in

equilibrium in

one plane :

Also, i

Fig. 18.

If three forces are in equilibrium they
must be concurrent or parallel.
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If a system of non-concurrent forces in

space is in equilibrium, the plane systems
formed by projecting the given system upon
three coordinate planes must each be in

equilibrium.

A couple consists of two equal and oppo-
site parallel forces acting on a rigid body at

a fixed distance apart.

The moment of a couple is equal to the

product of one force by the distance between
the two forces.

Center of Pressure.

FI, F2 , F3 , etc., are parallel.

Fig. 19.

If F is the force exerted by a variable

pressure, then

xFdx

Fdx
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Center of Gravity.

For an area,

x dx dy

dxdy

Fig. 21
fx.dx
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If x2 -xi = 1

y=

\ y O2 -Zi) dy

\ (x2-xi) dy

J y fy . dy

Fig. 22.

For a homogeneous mass,

///****x- *xdm
-.

Zdm
fSfdx dy dz

-V =>F
Fig. 23.

/-//***

fff

fff

zdxdydz

dxdydz
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Rectangular Moment of Inertia.

For an area,

L= C
fy^dxdy.

Fig. 24.

Fig. 25.

=^dA
=

j
7/
2

. (xi-x
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If Va-yi=fx,

Fig. 26.

= ( x* (ytyi) dx

= Cx2
. f. fx . dx.

Fig. 27.

Polar Moment of Inertia.

For an area,
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Since p
2=xz +y2

,

Fig. 28.

For a mass,

p*dxdydz'//;

=kfff(x*+y*)dxdydz,

Fig. 29.

where k is the weight per cubic unit divided

by g.

Product of Inertia.

J = l

. y . dx . dy.

Ji=Jo.f.+Akh,
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where J\ is the value of J referred to X X
and Y F, Jo.%. is the value of J for axes

parallel to X -X and Y Y passing through
the center of gravity, and h, k are the co-

Fig. 30.

ordinates of the center of gravity referred to

X-X and Y-Y.
(See "A Complete Analysis of General

Flexure in a Straight Bar of Uniform Cross-

Section," by L. J. Johnson, Trans. Am. Soc.

C. E. t Vol. LVI, 1906.)

Radius of Gyration.

- -.
A m

Ellipsoid of Inertia.

The moments of inertia about all axes

through any given point of any rigid body
are inversely proportional to the squares of

the diameters which they intercept in an

imaginary ellipsoid, whose center is the

given point, and whose position depends

upon the distribution of the mass and the

location of the given point. This ellipsoid

is the ellipsoid of inertia for the body. The
axes which contain the principal diameters

of the ellipsoid are called the principal axes

of the body for the given point.
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DYNAMICS.

Velocity and Acceleration.

ds
V =

Jt'

dr cPs

Uniformly Accelerated Motion.

If a is constant,

2 a

Falling Bodies.

For a body falling in a vacuum, a= g, hence

Force and Acceleration.

- =~~ ' C

Direct Central Impact.

For two inelastic bodies, let

mi = mass of first body.

m2=mass of second body.

Vi= original velocity of first body.

v2= original velocity of second body.

v= common velocity after impact.
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Then v = miVl + 2V2
.

mi +m,2

For two elastic bodies having velocities
i and k2 after impact,

The product of mass by its velocity is

momentum.
The sum of the momenta before and after

impact is constant.

Virtual Velocities.

F = force.

v = direction of motion of P.

du = virtual velocity of force.

fa
= velocity of force.

ds

-^
=

velocity of P.

F . du = virtual moment of force.

The virtual moment of a force is equal to
the algebraic sum of the virtual moments of
its components.
For a system of concurrent forces in

equilibrium, 2 p . du = 0,

For any small displacement or motion of
a rigid body in equilibrium under non-con-
current forces in a plane, with all points of
the body moving parallel to this plane,

Y
Curvilinear Motion of a Point.

ds

v
Vt==

dt'
"

/ clx /rfs\ 2

^_ *^
~ 1 V y.7

Y
Fig. 3!.

-(%f+m
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dv _ d?s
t dt~ dP
= ax cos a +Oy sin a.

n = Oy cos a a* sin a.

where r is the radius of curvature.

F=m . a, .'.

where r is the radius of curvature.

Ft=m . ax cos a +m . Oy sin a

1V-/*
Projectiles.

Neglecting resistance of air,

X= VQ COS OQ . t.

y=vosm OQ. t-*%g&,

-X,

2 1'
2 COS2

OQ

'

Horizontal range,

xr= sin 2 oo,

which is a maximum for a = 45.
The greatest height of ascent,
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Translation of Rigid Body.

dFx ax .dm.

R I * dm.

Fig. 33, Fig. 34.

The resultant force must act in a line

through the center of gravity and parallel to

the direction of motion.

Rotation of a Rigid Body.

Let O be the axis of rotation.

6= angular space passed over by any line

from O.

a= angular accelera- "*x
s

tion. / X V
a)= angular velocity.

Then
dO

=
dt dt*

' Fig. 35,

For uniform acceleration, a.= k, .'.

2a

.t.
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For a point p distant from O,

p . ai.

p . a.

Fig. 36.

For a mass m concentrated p distant

from O,

Center of Percussion or Oscillation.

If an unsupported bar upon being struck

at a begins to rotate about 6, then a is the

center of percussion for 6 as a center, and b

is the center of instantaneous rotation.

Fh=

dF=a . p . dm.

F=a l P . dm

= a . p.m.

^dHv Fi e- 37 -
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Pendulum.

*= time of oscillation

from one extreme posi-

tion to the other.

r= radius of gyration.

Then

Work, Energy, and Power.

Work is equal to the product of the force

by the distance through which it acts.

Power is the rate of doing work.

1 H.P.= 33,000 ft.-lb. per min. = 550 ft.-lb.

per sec.

Energy is the capacity or ability to do
work.

K.E. = Energy of a moving body.

For rotation,

Fig. 39.

Angle of friction,

K.E.= /.<o2.

Friction.

F= friction.

N= normal force.

/= coefficient of fric-

tion.

F=f.N.

pi
^-tan-1 :.
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Average values of / for motion are as

follows:

Wood on wood 25-. 50

Metal on wood 50-. 60

Leather on metal . 56

Leather on metal, lubricated ... 0.15

Metal on metal, dry 0.15-.24

Lubricated surfaces:

Ordinary 0.08

Best 0.03-0.36

For values of / for rest add 40 per cent to

above values.

Fig. 40.

dF=f.Nds

,
where 0j is in radians.
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NOTATION.
A= area.

6= breadth.

d= depth.
Z=modulus of elasticity.

e= total deformation.

F=force of load.

/=moment of inertia.

/o= polar moment of inertia.

J= product of inertia.

Z= length.

M=moment.
R= resultant of forces.

r= radius of gyration.
= unit stress.

s= section modulus.

V= vertical shear.

JF= total weight.
w= weight per lineal unit,

A=maximum deflection.

e=unit deformation.

Direct Stress.

I

s Fl
.

eA
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Fig. 43.

Consider a section a a perpendicular to

axis of a bar, and take axes of coordinates

through center of gravity.

Let x t y coordinates of any point of

section.

n n= neutral axis.

v= distance of any point from line through
center of gravity and parallel to neutral

axis, positive toward P.

yo= value of v for neutral axis.

F= force or resultant of forces acting at P.

N= component of F normal to section

considered.

o
= unit stress at center of gravity.

* The method here presented is taken

from a paper by L. J. Johnson, M. Am. Soc.

C. E., "An Analysis of General Flexure in a

Straight Bar of Uniform Cross Section,"

Trans., Am. Soc. C. E., volume LVI, p. 169,

1906.
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S = S *
. v

= So (y cos a x . sin a)

jy N. xp (y xtan a)

A- J Iy tan a

jy N .yp (y x tan a)

Ig J tan a

jY N . pp (yx . tan a) cos

-4 J Iy . tan a

N . pp (y x . tan a) sin

/-,/. tan a

AT N(yPIy-xpJ)y+N(xjJae-yPJ)x

lysin 6 J . cos 0) y+(Ix cos ./sin
*)af|

./V
In the above equations -r- is the portion of

.A

S which is direct stress, and the other term

is the portion due to the bending moment,
M=N . pp. If s represent the section

modulus

V(/ysin0 J . cos0) y +(/ cos Q J . sin 0) x)

then

N .
M

NOTE. The values of the section modu-
lus given in the handbooks are computed

from the formula s = -
,
which is the value of

y
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s for .7= and for P located on Y-Y. For

angles and Z-bars J does not equal zero.

In the above equations,

tan a =
/-/. tan

J Iy tan

Ix cot 0-J
J cot 0-Iy

Ix cos 7 . sin

J cos lysin

For any bar having a section which is

symmetrical about either axis, .7=0, and
the values of S become

c = x\

If for a symmetrical section, P is on Y Y,
then sin = 1 and cos = 0, or

,o ~:~ H

. PP . y

Fig. 44.

For a rectangular section, for which N is

applied on Y Y and p distant from the

axis of the bar, the extreme fiber stresses are

= ^1
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Equation of Neutral Axis.

The equation of the neutral axis for an
eccentric load is

&P *i*-yp.J\ iziy
- J*

V ~
\Xp.J -yp . Iy)

X A (xp.J-yp .Iy-)

'

Kernel or Core-Section.

The kernel of a section (sometimes called

the core-section) is the area within which Pt

the point of application of the resultant of the

forces, must fall in order that the stress

shall be of the same sign throughout the

section. It is the area bounded by the

locus of the P's corresponding to a series of

neutral axes touching the periphery of the

section but never crossing the section. For

every side of the section there will be an

apex of the kernel. If xa , ya and Xb, j/j are

the coordinates of a and b, which are two
consecutive vertices of the section, then the

coordinates, Xab, 2/o6, of the vertex of the kernel

corresponding to the side, ab, of the section

will be

Xab
(xa -Xb) J (ya yb) Jy=----

yob A (xayb-xbya)

If ab is parallel to X X, then

J I
Xab= ~T~17' v<*=--AjA. |/a A. , ya

If ab is parallel to Y Y, then,

Iy J

A.Xa
' V<>b

A.Xa
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The radii vectores of the kernel are lengths

which for any need only be multiplied by
the area of the section (A) to give the sec-

tion modulus

\(Iy sin0-J.

but these lengths must be considered posi-

tive it measured on the opposite side of O
from P.

Section Modulus Polygons.

In the equation S -r -\
--

(see EccentricA s

Loads), s is the section modulus. The sec-

tion modulus polygon is the polygon the

lengths of whose radii vectores are the

graphical representations of the values of s

for extreme fibers for successive values of

from to 360 degrees. The section modu-
lus polygon is a figure whose sides are parallel

to the sides of the kernel of the given section

but which lie on opposite sides of the center

of gravity from the sides of the kernel.

The most general value of s is_ __
(lysin J cos 0)y + (Iy cos Q J . sin 0) x

For any section which is symmetrical
about either axis, s becomes

Iy sin . y +IX cos . x

For any symmetrical section for which P
lies on Y Y. = 90, hence
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If for any symmetrical section P lies on
X-X,e= 0, hence

There will be one vertex of the s-polygon
for each side of the polygon bounding the
section. If xa , ya and #5, yb , are the coordi-
nates of a and 6, two consecutive vertices of
the bounding polygon of the section, then
the coordinates of the vertex of the s-polygon
corresponding to the side ab of the bounding
polygon will be

If ab is parallel to X-X,
J I*

Xab= , yab= '

ya y<*

If ab is parallel to Y-Y,
Jy J

Xab=, yab= >

Xa Xa

For sections symmetrical about either

X-X, or Y-Y, J= 0, and the values of
ya

and can be found in the handbooks
za

issued by the steel companies, under the

column marked "Section Modulus." The
vertices can then be plotted and connected

by straight lines to form the s-polygon.

From this s-polygon the values of s for any
value of 9 can be obtained graphically.
The most advantageous plane of loading for

any section will be that having the greatest
value of s.
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DIAGONAL STRESSES

Fig. 45.

F= axial load.

A =area of section normal to axis of bar

n n=any diagonal section.

= angle which n n makes with axis.

= unit axial stress.

$3= unit shear along plane normal to axis.

$n=unit tension or compression normal
to section n n.

$n == unit shear along section n n.

For combined direct stress and vertical shear,

Sn = ~ (1 -cos 2 0) +S. . sin 2 9.

Sn = IT sin 2 +S, . cos 2 0.

The maximum or minimum value of Sn
S

occurs when cot 2 =
, and is

max. /S= ;

The maximum value of S8n occurs when

S
tan 20= -, and is
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For axial load only, >S8 =0, hence

n= . sin 2 = sin 2 *

The maximum value of Sn occurs when
= 90, and is then the unit axial stress.

The maximum value of Sen occurs when

Q W= 45, and is - 01-75 i

*j Z A

THIN PIPES, CYLINDERS, AND SPHERES.

S= unit stress in metal.

t= thickness of metal.

d= diameter.

;p
= unit pressure of

liquid or gas.
= angle which the

direction of P
makes with

X-X.Fig. 46.

For the transverse stress across a longi-
tudinal section of a pipe or cylinder,

. cos = % p. d.

P*d-'
For the longitudinal stress across a trans-

verse section of a pipe, or for the stress in a
thin hollow sphere,

o
nd.t 4t

which is one-half of the unit transverse stress

in a pipe having the same diameter and
thickness.
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RIVETED JOINTS.

Fig. 47.

a= distance center to center of two con-

secutive rivets in one row.

d= diameter of rivet or rivet hole.

F stress in unriveted plate in length a.

t thickness of plate.

S$=unit tensile stress.

$c=unit compressive or bearing stress.

= unit shearing stress.

et= efficiency of joint for tension.

ea= efficiency of joint for compression.

et= efficiency of joint for shear.

m= number of shearing sections of rivets

in distance a. (Notice that for butt

joints each rivet has two shearing

areas.)

n number of bearing areas of rivets in

distance a.

F = t (a d) Sf=m . xd? . St~n t d Se.

m. x. d?Sg

4 . atSt

n . dSe
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For maximum, efficiency, make et= et

for which

4 . n . Se . t

m.n . SB

and a ~[l +n -3-1 1 .

For single riveted lap joints the maximum
efficiency is approximately 55 per cent, for

double riveted lap joints approximately 70

per cent, for triple riveted lap joints approx-
imately 75 per cent, and for triple and
double riveted butt joints approximately 80

per cent.

BEAMS.

Vertical Shear. The vertical shear at any
given section of a horizontal beam is the

sum of the vertical components of all of the

stresses at that section. The vertical shear

is equal to the sum of all the reactions of

the supports upon the left of the given sec-

tion minus the sum of all of the vertical loads

on the left of the section.

For any beam the vertical shear upon the

right side of the left support of any span is

where

MI = the moment at the left support,

M2= the moment at the right support,

10= the uniform load per lineal unit,

jP=any concentrated load,

a= the distance from the left support to F,

Z= the length of span.
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Shearing Stresses. If F= vertical shear at

any section,

-

where S9 is the average unit shear.

The actual unit vertical shear at any
point is equal to the unit horizontal shear at

that point, and may be determined by the

following equation:

where 6 is the breadth of the section at the

given point, y is the distance of the point
considered from the neutral axis, and c is

the distance from the neutral axis to the

extreme fiber on the same side as the point
considered.

The maximum value of S, occurs at the

neutral axis, and is

V C V
max.S.= j--^

I y.
* ** o

l.b

where AI is the area of the portion of the

section on one side of the neutral axis, and

yi is the distance from the neutral axis to

the center of gravity of the portion of the

section on one side of the neutral axis.

For a rectangular section, the maximum
unit shear is | of the mean unit shear.

For Diagonal Shear, see Diagonal Stresses,

page 61.

Bending Moment. The bending moment
at any point for any beam is

M=Mj + Vlx-$wx*-'2F (x-a),

* See "Merriman's Mechanics of Materi-

als," page 269.



66 MECHANICS OF MATERIALS

where

M = bending moment at section considered,

MI = bending moment at the left support,

FI= vertical shear upon the right side of

the left support,

w= uniform load including weight of

beam, per lineal unit,

F=any concentrated load upon the left

of the section considered,

x= distance from the left support to the

section considered,

o= distance from left support to F.

For any beam of one span Vi is equal to

the reaction at the left support.
The maximum values of M occur at those

sections for which 7 =0, that is, where the
dx

shear passes through zero.

The values of M for special cases are given

in Table of Beams, page 68.

Theorem of Three Moments. For any two

consecutive spans of a continuous beam, let

MI =moment at the left support,
M2

=moment at the middle support,
M3

=moment at the right support,

Zi=length of the first span,

h= length of the second span,
1= length of span for equal spans,

wi = uniform load per lineal unit on first

span,

w2= uniform load per lineal unit on second

span,

FI = any concentrated load on the first

span,
F2= any concentrated load on the second

span,

i= distance from first support to FI,

d2 = distance from middle support to F%.
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Then, for uniform loads only,

ih +2 M2 (h + 12) +M312= -$w1 ll
3-iw2l2*.

For equal spans with equal uniform loads,

For concentrated loads only,

Mill +2M2 (h +fe) +M312

Flexural Stresses. The tensile and com-

pressive stresses in a beam, produced by
bending, are the same as the stresses upon a

section having an eccentric load, due to the

moment of that load. Therefore, for pure

flexure the tensile and compressive stresses

for the extreme fibers of any section can be

determined by placing =0 in the formula

for S given under Eccentric Loads, which

gives

where s is the section modulus, the values for

which are given under Section Modulus

Polygons.
For combined flexure and direct stress, the

tensile and compressive stresses are given by
the formulae for Eccentric Loads.

Elastic Curves. The curve \vhich is as-

sumed by the neutral surface of a beam
under load is called the elastic curve.

The radius of curvature of the elastic curve
is

ff/ = dP ^dtf
' M dx.d*y d*y'
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from which the equation of the elastic curve
can be obtained, for any particular case, by

placing M equal to El
, and by making

two integrations to obtain an equation in

terms of x and y.

The deflection of a beam at any given

point is obtained by substituting the par-
ticular value of x in the equation of the

elastic curve and solving for y. The maxi-
mum deflection occurs at the section for

which #y
dx~

(For particular cases, see Table of Beams.)

TABLE OF BEAMS.

NOTE . The equations for elastic curves

and the values of A apply only to beams of

uniform section.

Beams Supported at Both Ends and Uniformly
Loaded.

Moment

Fig. 48.
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=Rix- wx*

wlx - wx*

A when x= -
, or

A== oo3 "Fr ^QQA"384 til o84

Beam Supported at Both Ends and Loaded

with a Concentrated Load at Center of Span.

f

Ri

Moment

Fig. 49.
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V=Rlt or V=R2 .

M= Rtx, on the left of F,

=Rix-Fx-- t on the right of F.

EI
l
= Fx

> on the Ieft of F -

48 EIy=F (4 *'-3 Pa;), on the left of F.

A= __
'

48 J^/
'

(For both uniform and concentrated loads,
combine the results for each.)

Beam Supported at Both Ends and Loaded with
a Concentrated Load Distant a from the Left

Support.
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V=Ri, on the left of F,
= #2, on the right of F.

M=Rix, on the left of F,

*=Rix-F (x-a), on the right of F.

EI~~ = Rlx, on the left of F,

= Ri.x-F (x-a), on the right of F.

Ely= - Rix* + cix 4- c2, on the left of F,

Fax*

on the right of F.

The maximum deflection (A) occurs at the

section for which

and is

Beam Supported at Both Ends and Loaded
with Several Concentrated Loads.
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The maximum moment (Mm) occurs at

the section for which R\ 2 ^=0, that is,

where the vertical shear is zero.

For a system of movable loads the maxi-
mum moment will occur under one of the

loads, the loads being in such a position

,

F
1

!

F*
!

F
3

Fig. 51.

that the center of the span is midway be-

tween the center of gravity of all the loads

and the section at which the maximum
moment occurs.

The maximum deflection of a beam loaded

with several loads is the sum of the deflec-

tions produced by each load at the section

at which the maximum deflection for the

entire system of loads occurs. The deflec-

tions produced by each load can be obtained

by means of the equation of the elastic curve

for a single load.
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Cantilever Beam with Uniform Load.

Rl
=wl=W

#2=0.

Moment

Fig. 52.

Of if is taken from the free end,

1

~2 WX '

El = i wP-'wlx + i wx*.

4- 4

I wl* _l Wl3

8 El "8 El
'
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Cantilever Beam with Concentrated Load at

the Free End.

Ri = F.

#2=0.

3 El'

Beam Fixed at Both Ends and Uniformly
Loaded.

M= - wlx 2
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By placing ~ when x=0 and when x*=lt

w (
-

JLE
384 ;/

-re4).

Beam Fixed at Both Ends and Loaded at

the Center of the Span with a Concen-

trated Load.

V = Ri, on the left of F,

=* R2 , on the right of F.
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M = - FI+ FX, on the left of F,a &

on the right of F.

'

Moment

Mo

Fig. 55.

+ |F*, on the left of F.

on the right of F.

By placing - = when a:= and when x= .
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48 Ely , on the left of F.

1 FP
''

192 El
'

Beam Fixed at Both Ends and Loaded with

a Concentrated Load Distant a from the

Left Support.

Fig. 56.

V RI, on the left of F,

= #2, on the right of F.

M = Mi +Rix, on the left of F,

= MX + Rix -F (x
-

a), on the right of F.
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7 = Afi + Rix, on the left of F.

6 Ely = 3 M!X2 +# i:r
3
, on the left of F.

The maximum deflection (A) occurs at

2al
the section for which x -

l+2a

El (I +2 a)2 3 El (I +2 a)3

Continuous Beam with Uniform Loads.

u?j=load per lineal unit on Zj.

w2
= load per lineal unit on 12 , etc.

TFi= total load on Zi.

TF2= total load on I2 . t etc.

Rn=Vn .

For a continuous beam supported at the

ends,

O+2M2 (h
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M212 +2 M3 (la

= - w2l2
z

j wda-, etc.

= -wn- 2ln - 2* r w-i/n-i2
.

From the above simultaneous equations

*, . . Mn-\ can be determined.

1*2 t R
3 t R 3*i

zi -F ti r ^H

Moment X^X V
Fig. 57.

For equal spans with equal uniform load

over the entire beam, the ends of the beam
resting upon supports, the moment at any
support is KwP or KWl, and the vertical

shear is Nwl or NW, where K and N have
the values given in the following table:
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2

o o o o o

-S HS

a
<O

J4

a
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For a continuous beam with fixed ends con-

sider an imaginary span to be added at each

end of the beam, with the free ends resting

upon supports. Then write the equation of

three moments for each two consecutive

spans, making 1= for the first and last

spans, and compute the moments at the

supports as shown above.

Continuous Beams with Concentrated Loads.

Determine the moments at the supports in

a similar manner to that employed for con-

tinuous beams with uniform load, employing
the equation of three moments for concen-

trated loads.

STRUTS AND COLUMNS.

Euler's Formula,

Fig. 58.

.-Vf .sin-CO-cr

y=a . sin (*V -) .
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7
J / Tf

Since y= a when x -
,

- v TTT must equal
2 2 til

= 7t
zE

\j\
, for round ends.

For one end round and the other end fixed,

4.

replace I by -
1 and TT by 2 n, which giveso

o
For 6oiA ends /ixed, replace Z by - I and ^

by 3 it, in the formula for round ends, which

gives

Rankine's Formula. (Sometimes called

Gordon's Formula.)

Fig. 59.

From the formula for eccentric loads for

a symmetrical section (page 57), the maxi-
mum stress will be
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where y is the distance from the neutral

axis to the extreme fiber.

But, I^Ar2, M=Fa and a=K- , where
y

K is some constant depending upon charac-

ter and condition of the column. Hence

Cambria handbook gives the following
values of K for steel columns:

1

36,000
for both ends fixed,

24^00
f r one end fixed,

, for pin connected ends.
18,000

The above values are to be used with

following values of S for ultimate strength:
5= 50,000 for medium steel.

S= 45,000 for soft steel.

Hitter's Formula. Hitter's formula is the

same as Rankine's formula except that the
o

expression is used for K , in which Se is
nE

the elastic limit of the material, and n is

g
equal to n2 for round ends, n? for one end

round and one end fixed, and 4 rc
2 for both

ends fixed.

The Straight Line Formula. The straight
line formula is

where C is a constant depending upon the

character and condition of the column.



84 MECHANICS OF MATERIALS

Merriman gives the value of C in the
above equation to be

C= Sf (
^ J

\ t

which is obtained by making the straight line

a tangent to the curve for Euler's formula

passing through the point S for - = 0.

The following values of S and C for allow-
able stresses are given in Cooper's Specifica-
tions for Railroad Bridges, 1906.

5= 10,000, C= 45,

for live load on chords,
5= 20,000, C= 90,

for dead load on chords,
5= 8,500, C= 45,

for live load on posts of through
bridges,

5= 17,000, (7=90,
for dead load on posts of through
bridges,

5= 9,000, C7=40,
for live load on posts of deck

bridges,

5= 18,000, (7=80,
for dead load on posts of deck

bridges,

5=13,000, (7= 60,

for wind load on lateral struts.

Engineering News Formula. The Engin-

eering News, Vol. 57, No. 1, Jan. 3, 1907,

gives the following formula:

which is the same as Rankine's formula given
on page 87, allowing the eccentricity a to
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remain in the formula instead of substituting

K-. The value of a to be used may be

considered to represent the eccentricity due
to imperfection in manufacture (since it is

impossible to obtain the ideal straight

column), plus the additional eccentricity

due to the failure to obtain an axial load.

The proper value of a to obtain correctly

proportioned columns might be determined

empirically by experiment, or it may be
determined by comparison with column
formulae in use which have been found to

give correct results.

For any formula of the Rankine type,

y

In the article above mentioned the values

of a for a number of formulae in use are

thus computed, the mean values being as

follows:

a = 0.000051-, for steel,
y

a = 0.000177- , for cast iron,

72

a = 0.000164- , for timber.

For any formula of the straight line type

CAlr~

In the article above mentioned the values

of a for a number of formulae of the straight

line type have been computed, using- =0.8,

the mean values being as follows:

a =0.0053 I, for steel,

a= 0.0015 I, for cast iron.

a =0.0044 I, for timber.
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Eccentrically Loaded Columns. To the

quantity a in the Engineering News formula
add the eccentricity of the load at the end
of the column, that is

'-ll 1
(e+an/l

where e= eccentricity of load at the end of

the column.

To determine the maximum stress of an

eccentrically loaded column by Rankine's

formula replace a in the above formula by
p

its equivalent K -
, which gives

TORSION.

Circular Sections.

Twisting moment, M= Fa.

Circular Sections

Fig. 60. Fig. 61.

Resisting moment, Mr I SdA, where

S is the shearing stress at the extreme fiber.

M=Mr , or

M ^M~
R '

where 7 is the polar moment of inertia.
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For a solid round shaft 7?
= - nR3

, henceK 2,

Non-Circular Sections. (Taken from Mer-
riman's "Mechanics of Materials.") For
non-circular sections the above formulae are

only approximate.
For an elliptical section whose major axis

is m and whose minor axis is n the maximum
stress is

WFa

For a rectangular section whose long side

is m and whose short side is n, the maximum
stress is

,

9 Fa

Transmission of Power. The horse-power
which is transmitted by a shaft is

" i

550X12

where a=moment arm in inches,

<>== number of revolutions per sec.

But, Fa =^, hence
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