14.GS: RPI 175 c. 1

> STATE OF ILLINOIS WILLIAM G. STRATTON, Governor DEPARTMENT OF REGISTRATION AND EDUCATION VERA M. BINKS, Director

DIVISION OF THE STATE GEOLOGICAL SURVEY M. M. LEIGHTON, Chief URBANA

REPORT OF INVESTIGATIONS-NO. 175

VISCOSITY STUDIES OF SYSTEM CaO-MgO-Al₂O₃-SiO₂: IV, 60 and 65% SiO₂

BY

J. S. MACHIN AND TIN BOO YEE

Reprinted from Journal of The American Ceramic Society, Vol. 37, No. 4, pp. 177-186, 1954.

PRINTED BY AUTHORITY OF THE STATE OF ILLINOIS

URBANA, ILLINOIS

 $1 \quad 9 \quad 5 \quad 4$

LIBRARY

ENVIRONMENTAL PROTECTION AGENCY STATE OF ILLINOIS

ORGANIZATION

STATE OF ILLINOIS HON. WILLIAM G. STRATTON. Governor DEPARTMENT OF REGISTRATION AND EDUCATION HON. VERA M. BINKS, Director

BOARD OF NATURAL RESOURCES AND CONSERVATION

HON. VERA M. BINKS, Chairman
W. H. NEWHOUSE, PH.D., Geology
ROGER ADAMS, PH.D., D.Sc., Chemistry
R. H. ANDERSON, B.S., Engineering
A. E. EMERSON, PH.D., Biology
LEWIS H. TIFFANY, PH.D., Po.D., Forestry
W. L. EVERETT, E.E., PH.D., Representing the President, University of Illinois
DELYTE W. MORRIS, PH.D., President of Southern Illinois University

GEOLOGICAL SURVEY DIVISION M. M. LEIGHTON, PH.D., Chief

VISCOSITY STUDIES OF SYSTEM CaO-MgO-Al₂O₃-SiO₂: IV, 60 and 65% SiO₂ Variation of Viscosity when CaO. MgO, and/or Al₂O₃ are Constant By

J. S. MACHIN and TIN BOO YEE

Abstract

In this final paper of a series on viscosity in the system CaO– $MgO-A1_2O_3-SiO_2$ data are presented for melts containing 60 and 65% SiO₂. There also are diagrammatic presentations of the systems of isokoms at intervals on planes parallel to the zero alumina, zero lime, and zero magnesia faces of the tetrahedron, the apices of which represent 100% of each of the four oxides that make up the system.

I. Introduction

T HIS IS the final paper in a series. the first three of which have appeared in this *Journal*.¹ The experimental methods were described in the earlier reports.

Tables I and II list the experimental values for the viscosity of melts containing 60 and 65% SiO₂, respectively. The percentages of CaO, MgO, and A1₂O₃ are such as to cover at 5% intervals that part of the compositional field which can be completely melted at 1500°C. These data are shown graphically in figs. 1 and 2. The isokoms have the same general direction as at lower silica levels, differing in that they are more nearly parallel to the lines along which the percentage of alumina is constant.

II. Effect of $A1_2O_3$ on Viscosity

Figures 3, 4, and 5 show the pattern of the isokoms when the percentage of $A1_2O_3$ is constant. The lines show less curvature in general than do isokoms drawn parallel to any of the other basal planes of the compositional tetrahedron. The variation of viscosity on these planes (constant $A1_2O_3$) is controlled mostly by the SiO₂ content, the increase of which increases the viscosity at a moderate rate for low $A1_2O_3$ content. As the $A1_2O_3$ content mounts, the rate of increase of viscosity with increasing SiO₂ is accelerated. The effect of increasing CaO and MgO is to cause moderate lowering of the viscosity. This effect is slightly more pronounced at higher $A1_2O_3$ contents.

At 0% A1₂O₃ content the isokoms are nearly straight lines which make rather small angles with the lines along which the silica content is constant. When the A1₂O₃ content increases to 10%, the isokoms are still rather straight, but the angle with the constant silica lines has increased. At 20% A1₂O₃ this angle has increased still more and the lines have developed noticeable curvature.

III. Variation of Viscosity with Changing Lime Content (Figs. 6, 7, and 8)

The isokoms on sections of the compositional tetrahedron cut parallel to the

	$(\operatorname{SiO}_2 = 60\%)$										
		Compo	osition (wt. %)	Viscosity (poises) at °C.						
	Melt No.	$\overline{\mathrm{Al}_{2}\mathrm{O}_{3}}$	CaO	MgO	1500	1450	1400	1350	13.00	1250	
	173	0	40	0	8.99	14.4					
	170	0	35	5	8.83	12.8	19.1	30.3			
	167	0	30	10	8.85	12.6	19.3	30.1			
	155	0	25	15	8.72	12.2	18.2	27.7			
	158	0	20	20	7.80	11.0	16.9	26.8			
	162	0	15	25	7.25	10.6	17.9				
	165	0	10	30	7.62						
	129	5	35	0	17.1	25.0	39.4				
	204	5	30	5	17.6	25.7	40.0	67.1	120	240	
	205	5	25	10	17.3	26.2	35.7	54.1	94.9	180	
	206	5	20	15	15.7	23.3	36.2	57.9	105		
	207	5	15	20	13.9	20.6	31.7	52.0			
	208	5	10	25	13.6	19.6					
	243	5	5	30	11.6						
	124	10	30	0	32.6	51.7	81.6	126	2 20	421	
	2 09	10	25	5	36.6	57.8	92.4	158	297	619	
	210	10	20	10	32.5	50.4	79.7	139	259	537	
	211	10	15	15	28.5	42.7	71.0	122	227	478	
	212	10	10	20	24.9	38.3	62.3	111			
	21 3	10	5	25	22.6	35.1					
	213.5	10	0	30	20.4						
	119	15	25	0	77.7	128	214	390	730	1,560	
	214	15	20	5	82.9	132	225	417	831	1,820	
	215	15	15	10	69.1	112	194	352	693	1,550	
	216	15	10	15	53.8	87.2	149	273	530	1,180	
	236	15	5	20	45.1	75.1	121	236		-,	
	236.5	15	0	25	40.7	68.6	118				
	115	20	20	0	204	353	663	1260	2530	5,750	
	237	20	15	5	183	323	597	1190	2670	6.290	
	238	20	10	10	137	238	440	856	1880	4,420	
	239	20	5	15	84.1	140	258	491	1030	2.330	
	239.5	20	0	20	86.8	148	269	538			
	138	25	15	0	621	1200	2600				
	2 40	25	10	5	349	667	1350	2930	7210	18,000	
	241	25	5	10	228	413	815	1720	4060	12,000	
	241.5	25	0	15	175	318	612	1310	3040	8,260	

Table I. Viscosity Data for the System: Lime-Magnesia-Alumina-Silica $(SiO_{*} = 60\%)$

zero lime face are gently curved and are roughly parallel to the lines along which the MgO content is constant, provided the lime content is high (40%). As the lime content decreases, the angle between the isokoms and the constant MgO lines increases slowly.

IV. Variation of Viscosity with Changing MgO Content

The zero magnesia basal plane of the compositional tetrahedron was con-

sidered in paper II of this series ^{1(b)}. Figure 1 of that paper shows the isokoms to be roughly parallel to those compositional lines along which the CaO is constant. The viscosity decreases rather rapidly at low lime content and less rapidly at higher lime content as the lime content increases.

When the MgO content becomes 10% (fig. 9, this paper), the parallelism of the isokoms with the constant lime lines

34.2.	Composition (wt. %)			Viscosity (poises) at $^{\circ}$ C.					
Melt No.	Al_2O_3	CaO	MgO	1500	1450	1400	1350	1300	1250
172	0	35	0	21.4					
128	5	30	0	42.2	69.9				
217	5	25	5	46.2	66.1				
218	5	20	10	39.8	66.1				
219	5	15	15	36.7	64.0				
123	10	25	0	94.6	152	256	460	854	1,780
221	10	20	5	114	193	318	578	1,120	2,480
222	10	15	10	97.2	157	269	505	1,010	
223	10	10	15	86.4	136	236			
224	10	5	20	74.6	125				
114R	15	20	0	311	574	1040.	1960	4,500	
225	15	15	5	257	444	821	1590	3.380	8,530
226	15	10	10	224	391	720	1420	2,920	6,820
227	15	5	15	181	307	557	1120	2,450	
249	15	0	20	126	216	392	778	1,770	
113	20	15	0	940	1590	3210	6440	14,700	31,200
228	20	10	5	671	1200	2410	5150	11,900	30,300
229	20	5	10	419	737	1430	3010	6,910	17,500
248	20	0	15	263	488	956	1980	4,070	12,400
112	25	10	0	1900	3960				
230	25	5	5	1030					
247	25	0	10	568	1100	2340			

Table II. Viscosity Data for the System: Lime—Magnesia—Alumina—Silica $(SiO_{2} = 65\%)$

persists in the high-lime low-viscosity areas but is less noticeable in the lowlime areas where the viscosity is higher. The same tendencies are more marked when the MgO content is increased to 20% (fig. 10). The viscosity at constant lime content decreases as the magnesia content increases and the silica remains constant. When both silica and alumina remain constant, increase of magnesia decreases the viscosity only in slight degree for amounts of magnesia up to 10%. As magnesia is increased to 20%, the decrease in viscosity for the same silica and alumina value is more marked.

The rate of change of viscosity with respect to variation of lime and alumina content is less as the magnesia content increases. McCaffery² pointed this out and suggested that advantage might be taken of the fact to minimize viscosity variation of the slag in iron blastfurnace operation.

V. General Picture

In this CaO-MgO-A1₂O₃-SiO₂ system the viscosity is represented by a system of surfaces which, although not planes, curve only gently. If one takes a sheet of paper and bends it so that the edge is shaped like an integral sign (and then twists the sheet so as to warp it a little, one will have an approximate representation of a surface within the compositional tetrahedron, all points on which have the same viscosity at a given temperature. The picture is possibly not quite so simple as this at very high viscosities, but for low and intermediate viscosities the general pattern of variation is not highly complicated. An attempt to represent this pictorially has been made in fig. 11, which is an oblique drawing of the tetrahedral solid with some typical isoviscous surfaces inscribed.

It has been suggested in the past that phase-field borderlines on the phase equilibrium diagrams might be expected to influence viscosity. This implies breaks in the isokoms when they cross phase-field borderlines. Figure 3 covers a phase-wise complicated part of the lime-magnesia-silica system³ (see phase equilibrium diagram of Osborn), but there are no significant aberrations in the isokoms in this field.

Footnotes

¹ (a) J. S. Machin and D. L. Hanna, "Viscosity Studies of the System CaO— MgO—A1₂O₃—SiO₂: I, 40% SiO₂," J. Am. Ceram. Soc., 28 [11] 310—16 (1945); Illinois State Geol. Survey Rept. Investigations, No. 111 (1945).

(b) J. S. Machin and Tin Boo Yee,
"Viscosity Studies of the System CaO—
MgO—A1₂O₃—SiO₂: II, CaO—A1₂O₃
—SiO₂," J. Am. Ceram. Soc., 31 [7]
200—204 (1948); Illinois State Geol.
Survey Rept. Investigations, No. 137 (1948).

(c) J. S. Machin, Tin Boo Yee, and D. L. Hanna, "Viscosity Studies of the System CaO-MgO-A1₂O₃-SiO₂: III, 35, 45, and 50% SiO₂," J. Am. Ceram. Soc., 35 [12] 322-25 (1952); Illinois State Geol. Survey Rept. Investigations, No. 163 (1953).

² R. S. McCaffery, J. F. Oesterle, and O. O. Fritsche, "Effect of Magnesia on Slag Viscosity," *Am. Inst. Mining Met. Engrs., Tech. Pub.*, No. 383, pp. 55-68 (1931); *Ceram. Abstr.*, 10 [6] 460 (1931).

³ E. F. Osborn, "The Compound Merwinite $(3CaO + MgO + SiO_2)$ and Its Stability Relations Within the System CaO—MgO—SiO₂ (Preliminary Report)," J. Am. Ceram. Soc., 26 [10] 321—32 (1943).

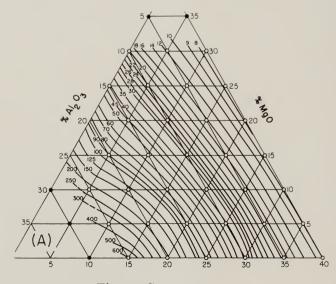


Fig. 1.—See opposite page.

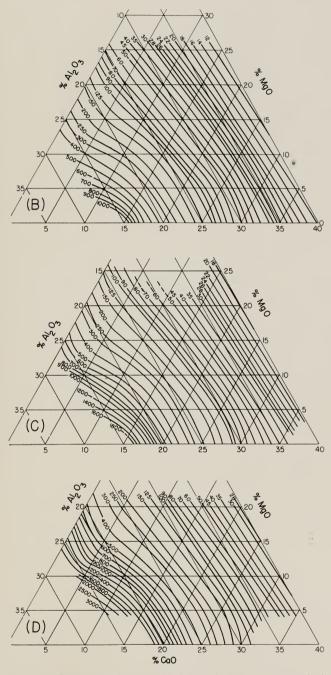


FIG. 1.—Isokoms (60% SiO₂) at (A) 1500° C., (B) 1450° C., (C) 1400° C., (D) 1350° C. In (A) solid circles indicate experimental compositions not molten at 1500° C.; hollow circles, compositions molten at 1500° C. or lower.

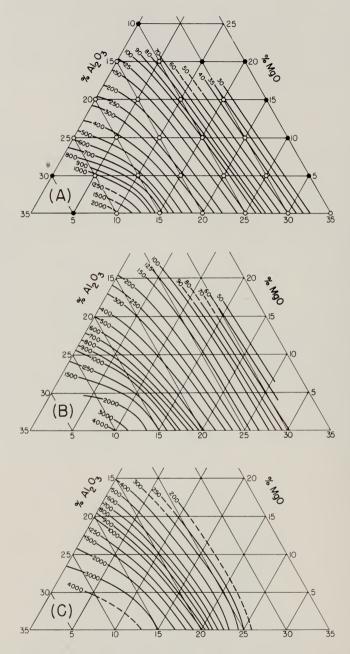


FIG. 2.—Isokoms (65% SiO₂) at (A) 1500° C., (B) 1450° C., (C) 1400° C., (D) 1350° C. In (A) solid circles indicate experimental compositions not molten at 1500° C.; hollow circles, compositions molten at 1500° C. or lower.

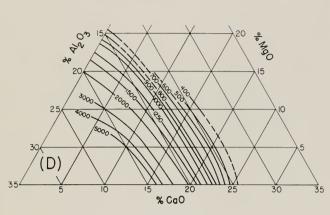


Fig 2.—Continued.

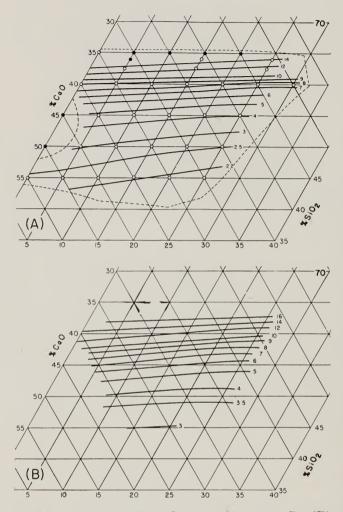
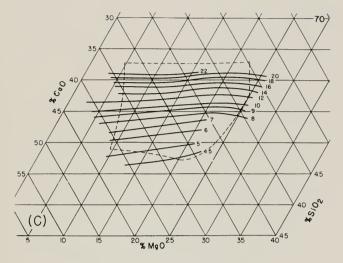
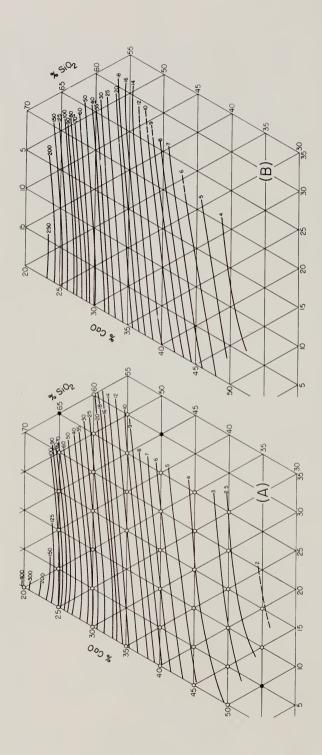
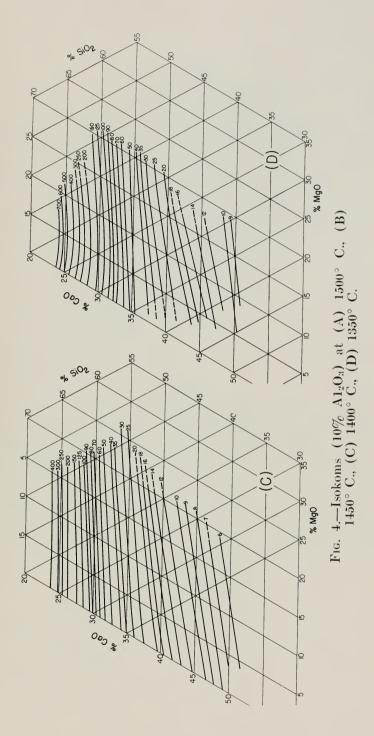
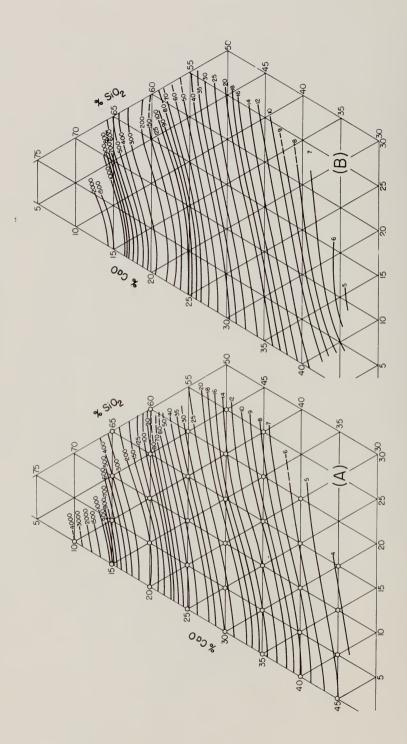
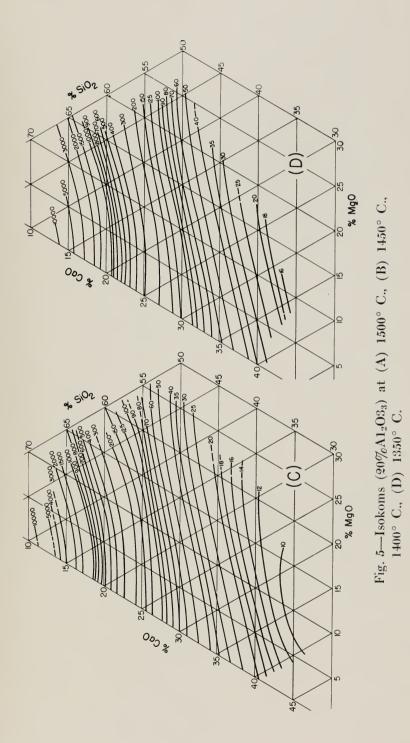
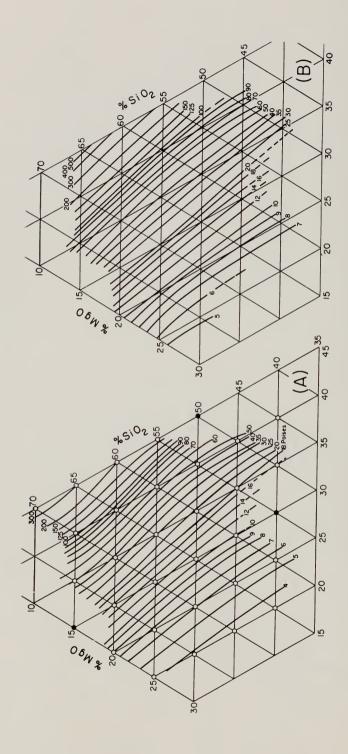
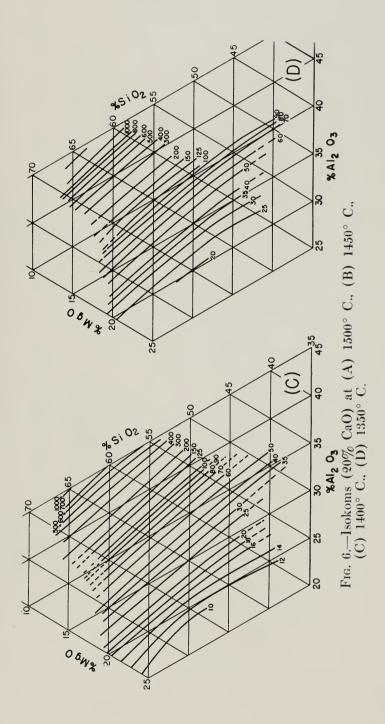


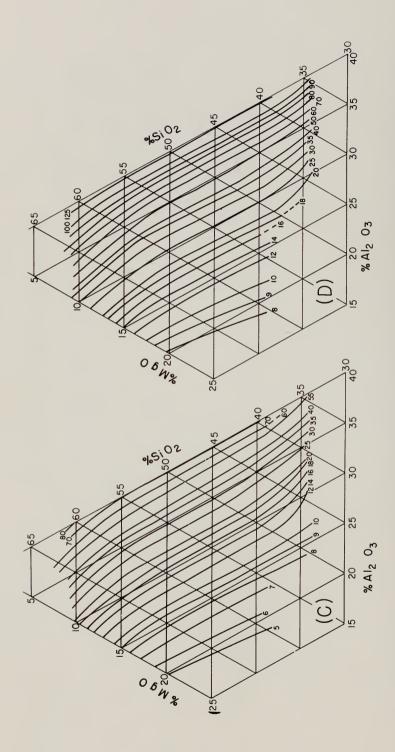
Fig. 3.—Isokoms (0%A1₂O₃) at (A) 1500° C., (B) 1450° C., (C) 1400° C. In (A) solid circles indicate experimental compositions not molten at 1500° C.; hollow circles, compositions molten at 1500° C. The dashed isotherm is from Osborn, footnote 3.

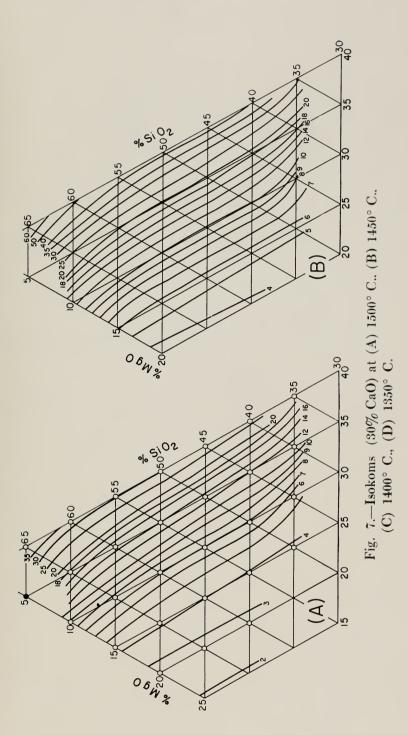






Fig. 3.—Continued.






11



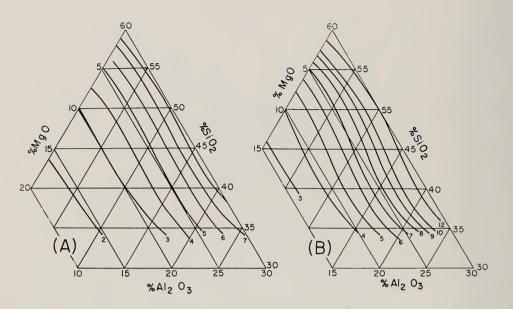
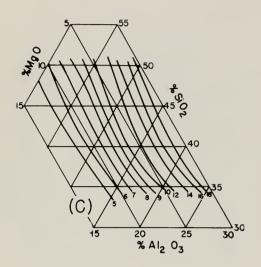
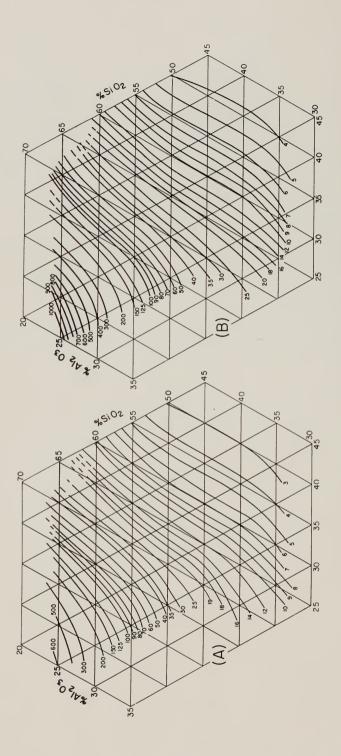


FIG. 8.—Isokoms (40% CaO) at (A) 1500° C., (B) 1450° C., (C) 1400° C.

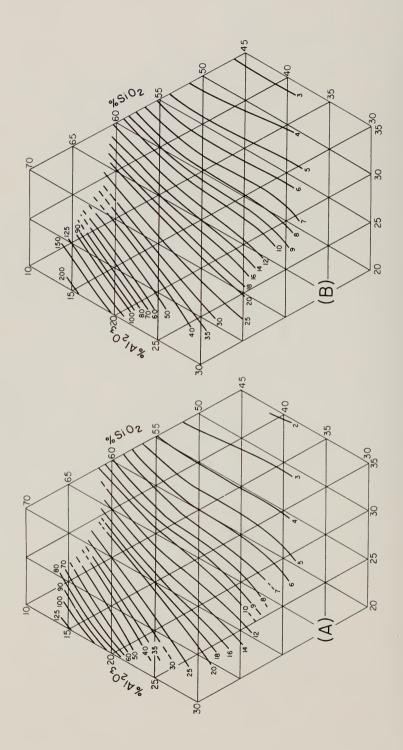
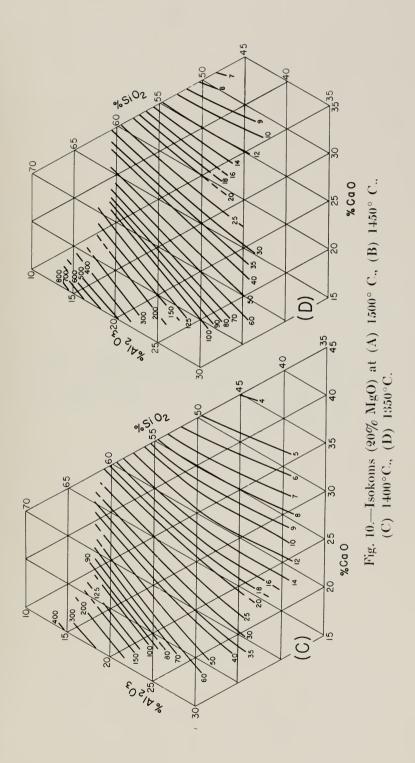



Fig. 8.—Continued.

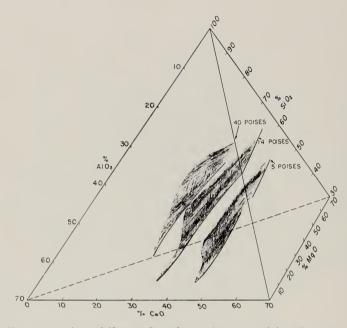


FIG. 11.—An oblique drawing of compositional tetrahedron with inscribed equiviscous surfaces. Front face is zero MgO; base is 30% SiO₂; right-hand face is zero A1₂O₃. Heavy lines at edges of shaded areas are intersections of equiviscous surfaces with faces of tetrahedron.

ILLINOIS STATE GEOLOGICAL SURVEY REPORT OF INVESTIGATIONS NO. 175 1954.

LIBRARY ENVIRONMENTAL PROTECTION AGENCY STATE OF ILLINOIS SPRINGFIELD, ILLINOIS