

UNIVERSITY OF ILLINOIS BULLETIN

Vol. V.

MAY 6, 1908

No. 23

[Entered Feb. 14, 1902, at Urbana, Ill., as second-class matter under Act of Congress July 16, 1894]

BULLETIN NO. 23

VOIDS, SETTLEMENT AND WEIGHT OF CRUSHED STONE

BY

IRA O. BAKER

UNIVERSITY OF ILLINOIS ENGINEERING EXPERIMENT STATION

> URBANA, ILLINOIS PUBLISHED BY THE UNIVERSITY

HE Engineering Experiment Station was established by action of the Board of Trustees December 8, 1903. It is the purpose of the Station to carry on investigations along various lines of engineering and to study problems of importance to professional engineers and to the manu-

facturing, railway, mining, constructional, and industrial interests of the state.

The control of the Engineering Experiment Station is vested in the heads of the several departments of the College of Engineering. These constitute the Station Staff, and with the Director, determine the character of the investigations to be undertaken. The work is carried on under the supervision of the Staff; sometimes by a research fellow as graduate work, sometimes by a member of the instructional force of the College of Engineering, but more frequently by an investigator belonging to the Station corps.

The results of these investigations are published in the form of bulletins, which will record mostly the experiments of the Station's own staff of investigators. There will also be issued from time to time in the form of circulars, compilations giving the results of the experiments of engineers, industrial works, technical institutions, and governmental testing departments.

The volume and number at the top of the title page of the cover are merely arbitrary numbers and refer to the general publications of the University of Illinois; above the title is given the number of the Engineering Experiment Station bulletin or circular, which should be used in referring to these publications.

For copies of bulletins, circulars or other information, address the Engineering Experiment Station, Urbana, Illinois.

UNIVERSITY OF ILLINOIS ENGINEERING EXPERIMENT STATION

BULLETIN NO. 23

MAY 1908

VOIDS, SETTLEMENT AND WEIGHT OF

CRUSHED STONE

BY IRA O. BAKER, PROFESSOR OF CIVIL ENGINEERING

INTRODUCTION

Crushed stone has become an important material of construction in modern engineering work. The chief causes for this are the great increase in the use of plain and reinforced concrete, and the increased activity in macadam road construction. The advances made in these lines have been so rapid that crushed stone has suddenly changed from a minor material to one of first importance in modern engineering construction. This has been done in such a short time that the present knowledge of the properties of crushed stone is entirely inadequate; and the determination of its weight, voids, and settlement, and the variations of these have never been attempted on any adequate scale, so far as the writer has been able to ascertain. Before commencing this article a diligent search was made of engineering literature for information upon this subject. No definite information was found concerning the weight of a cubic yard of stone of different sizes (except one item as noted in Appendix I) or the amount of settlement in transit. The only other reference on the subject was the request of a correspondent in one of the leading engineering journals for information regarding the weight of crushed stone. In answer a wide range of limits was given with the explanation that as no definite values were known, the general practice was to assume some value within these limits.

169957

The need for reliable data on these subjects is very apparent to the engineer who makes designs and estimates. Accustomed to use all other materials, both of engineering and everyday life. and to deal with standard units of weights and measures, he finds here that there are no standards at all. For instance, practically all of the quarries sell stone by the yard, but the so-called yard in one place is not always the same as the yard at some other place. In most cases a certain weight is taken as a yard; but these weights are generally arbitrary amounts that are supposed to approximate the true value, and they differ for different localities and for the different kinds and sizes of stone. Consequently, the number of yards and therefore the cost of the stone for the same piece of work would differ according to the location of the stone supply. Furthermore, this ambiguity may cause difficulties to arise between the producer, the carrier, and the consumer. The producer measures the volume loose in the car after it is loaded from the crusher. The railway then weighs the cars and computes the number of cubic yards by assuming the weight of a The consumer receives the invoice from the producer, and vard. the freight bill from the railway, and tries to check them, but generally finds they do not agree. So it is evident that this lack of standards entails possibilities of constant controversy between the shipper, the railroad, and the consumer.

Again, it is well known that the volume of crushed stone shrinks in transit; and to make accurate estimates the engineer should know the probable amount of this shrinkage. If a certain number of yards of tamped or consolidated stone are required for a pier or for a certain length of macadam road, it is necessary to know how many yards to order at the quarry so as to have the required amount in the structure. As done at present, the engineer to be on the safe side usually orders considerably more than he thinks is enough, and even then he sometimes finds he has not made allowance enough.

In order to establish a definite standard for the different sizes and varieties of crushed stone, tests should be made until sufficient data have been accumulated to determine a definite value for the weight of a cubic yard of crushed stone under various conditions, or to establish a coefficient by which either the weight of a

 $\mathbf{2}$

cubic foot or a cubic yard of the solid stone, or its specific gravity, can be multiplied to give the weight per cubic yard of crushed stone. It is obvious that to make the results of the greatest value will require a very large number of observations under a variety of conditions. It is the purpose of this article to give the results of a few tests along these lines.

Of the data hereinafter referred to, the observations on Chester stone and part of those on Joliet stone were made by Mr. Albert J. Schafmayer, a senior student in Civil Engineering, during the summer of 1906, while employed by the Illinois Highway Commission in connection with constructional work. A brief summary of Mr. Shafmayer's results was published in the report of A. N. Johnson, State Highway Engineer, in the first annual report of the Illinois Highway Commission. The observations on Kankakee stone and part of those on Joliet stone were made by Mr. Benjamin L. Bowling, an employee of the Engineering Experiment Station, during the fall of 1907. None of the investigations could have been made except for the generous cooperation of the officials of the State Penitentiaries at Chester and Joliet, and of the McLaughlin-Mateer Company of Kankakee.

Some observations were taken at Chicago and at Gary, Illinois, but unavoidable conditions at these plants prevented a completion of the work, and the results obtained are too incomplete to be of any considerable value, and hence are not further referred to.

THE STONE

The observations referred to in this article relate wholly to limestone, although in the appendix some data are given concerning trap. The limestones experimented with were those quarried at Chester, Joliet, and Kankakee.

The Chester stone is a rather coarsely granulated gray limestone of the lower carboniferous group, and is quarried in the grounds of the State Penitentiary at Chester, on the Mississippi River, about half way between St. Louis and Cairo.

The Joliet stone is a compact, fine-grained magnesian limestone of the Niagara series, and is quarried in the grounds of the State Penitentiary at Joliet, about 40 miles southwest of Chicago. The output of the crusher consists of 28 per cent 3-in. stone, 53 per cent 2-in., and 17 per cent $\frac{1}{2}$ -in.

The Kankakee stone is a coarse-grained argillaceous limestone of the Niagara group, and is quarried at Kankakee, on the Kankakee River, about 55 miles south of Chicago.

DIVISIONS OF THE SUBJECT

The subject will be considered under the following heads: I. Specific gravity; II. Absorptive power; III. Percentage of voids; IV. Settlement in transit; V. Weight per cubic yard; VI. Coefficients for determining the weight of crushed stone.

I. SPECIFIC GRAVITY

A knowledge of the specific gravity of a stone is useful in determining the per cent of voids in broken stone; and the easiest way to determine the weight of a cubic unit of solid stone is to find its specific gravity.

Specific gravity
$$= \frac{Wa}{Wa - Ww}$$

in which Wa is the weight of a fragment weighed in air, Ww the weight of the same fragment suspended in water. If the stone is porous to any considerable extent, the weight in water should be determined so quickly that the absorption during the weighing will be inappreciable.

Samples of stone were collected from the various parts of the Joliet, the Kankakee, and the Chester quarries which were being worked to produce the broken stone considered in the later parts of this paper. The values of the specific gravity are given in Table 1.

II. Absorptive Power

A knowledge of the amount of water absorbed by a stone is useful in determining the voids by the method of pouring in water, and is also useful in correcting the weight of wet stone.

The absorption was determined by thoroughly drying a specimen, weighing it, immersing it in water for 96 hours, drying with blotting paper, and weighing. The results are given in Table 2.

III. PERCENTAGE OF VOIDS

The per cent of voids in broken stone of different sizes has an important bearing upon the amount of cement and sand required

TABLE 1

SPECIFIC GRAVITY OF LIMESTONE

Ref. No.	Location of Quarry	Specific Gravity	Observer	Position in Quarry
1 2 3 4	Joliet "	2.77 2.78 2.70 2.69	Schafmayer	Near Center, 4 to 6 ft. deep 25 ft. W. of C., 4 ft. to 6 ft. deep
56789	66 66 66 66	$2.72 \\ 2.74 \\ 2.71 \\ 2.70 \\ 2.63$	24 24 24 24	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
. 10	Mean Joliet	2.71	Bowling	25 ft. S. of C. of floor 30 ft.
$ \begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \end{array} $	""""""" """""""" Mean	2.74 2.68 2.74 2.73 2.69 2.70 2.71	100winig (1 (1 (1) (1) (1) (1) (1) (1) (1) (1) (deep """""""""""""""""""""""""""""""""""
16 17 18 19 20 21 22	Chester " " "	$2.67 \\ 2.58 \\ 2.59 \\ 2.49 \\ 2.66 \\ 2.50 \\ 2.48 \\ \hline$	Schafmayer "' "' "'	N. end over 25 ft. deep 50 ft. S. of the preceding, over 25 ft. deep 100 " " " " Center near top N. end " " S. " " " " Center " "
23 24 25 26 27 28 29 30	Mean Kankakee " " " " " Mean	2.57 2.62 2.64 2.65 2.56 2.56 2.60 2.62 2.61	Bowling " " " "	S. end at top """"""""""""""""""""""""""""""""""""

in making concrete; and the per cent of voids in connection with the weight of a unit of solid stone is useful in determining the weight of a unit of volume of broken stone.

The percentage of voids may be determined in either of two ways: (1) by pouring in water; and (2) by computation from the specific gravity and the weight of a volume of broken stone.

1. By Pouring in Water. Determine the weight of water a given vessel will contain, then fill the vessel with broken stone, and determine the weight of water that can be poured into the

	Kind	Weight	Absor	ption	
Ref. No.	of Stone	in Îb. per cu. ft.	lb. per cu. ft.	Per cent by Weight	Position in Quarry
$\begin{array}{c}1\\2\\3\\4\\5\\6\end{array}$	Joliet " " " "	170.66 166.98 170.85 170.41 167.61 168.60 169.18	$ \begin{array}{r} 1.23 \\ .79 \\ .86 \\ 1.25 \\ 1.13 \\ 1.28 \\ \hline 1.09 \\ \end{array} $	$0.72 \\ 0.47 \\ 0.50 \\ 0.73 \\ 0.68 \\ 0.76 \\ 0.64$	25 ft. S. of C. of the floor, 30 ft. deep "At Center "" 25 ft. N. """
$7\\8\\9\\10\\11\\12\\13\\14$ 15 16 17 18 19 20	Mean Kankakee "' "' "' Mean Chester "' "' "' "' "	$\begin{array}{c} 169.18\\ 163.49\\ 164.92\\ 165.11\\ 165.30\\ 159.81\\ 159.68\\ 162.24\\ 163.73\\ \hline \\ 163.04\\ 167.0\\ 165.8\\ 164.5\\ 165.1\\ 161.5\\ 161.5\\ \hline \\ 164.2\\ \hline \end{array}$	1.09 1.87 1.98 2.66 2.81 4.49 4.67 2.99 2.85 3.04 $.69$ 1.22 1.89 1.34 2.54 2.34 1.67	$\begin{array}{c} 0.64\\ \hline \\ 1.14\\ 1.20\\ 1.61\\ 1.70\\ 2.81\\ 2.92\\ 1.84\\ 1.74\\ \hline \\ 1.84\\ 31\\ .74\\ 1.15\\ .81\\ 1.57\\ 1.45\\ \hline \\ 1.01\\ \hline \end{array}$	S. end at top """20 ft. deep """40 ft " """40 ft " N. "at floor

TABLE 2

ABSORPTIVE POWER OF LIMESTONE

6

interstices of the broken stone. The ratio of the first amount of water to the second is the proportion of voids.

In this method three sources of error require consideration. In pouring in the water, part of the contained air is not driv-(a). en out: and therefore the resulting per cent of voids is too small. The error from this source may be reduced, if not entirely eliminated, by pouring the stone into the water; but this procedure introduces a new error, since the stone will not pack to the same degree as in the ordinary method of filling a vessel or bin with broken stone, and hence the result of pouring the stone into the water will also give too large a per cent of voids. (b). If the stone absorbs water during the test the apparent per cent of voids will be too great. (c). If the vessel has a wide mouth, as almost necessarily it should have, there will be a likelihood of considerable error in telling when the vessel is exactly full of stone and also of water. The resulting error may make the per cent of voids either too large or too small.

2. By Computation. Determine the weight of a known volume of broken stone. Compute the weight of an equal volume of the solid stone by multiplying the known volume by the weight of an equal volume of water and by the specific gravity of the stone. The difference between the weight of the volume of solid stone and that of the broken stone is the weight of stone equal to the volume of the voids. The ratio of this weight to the weight of the given volume of broken stone is the proportion of voids.

This method is subject to the error of determining when the vessel is exactly full of stone. In practice it is more complicated than the preceding method, but it is more exact.

Table 3 gives the per cent of voids for three sizes of Chester limestone determined by the two methods referred to above, by two independent observers for different methods of filling the vessels with broken stone; and Tables 4 and 5 the same for Joliet and Kankakee limestone, respectively. In each case the results are corrected for the absorption of the stone. Precautions were taken also to eliminate absorption by the walls of the vessel used. The distance of drop employed in filling the vessel corresponded to that employed at the time in loading cars of broken stone.

TABLE 3

PERCENTAGE OF VOIDS OF CHESTER LIMESTONE

. t	ne		ne	lb.	er	er	Per Cent	of Voids
Test	Sto	nod ling	Stol	Stor	Wat	Wat ft.		
of.	of	Meth Fill	of 1b.	Wat	of Ib.	of cu.	By Pour-	From
No	Size	of	Wt.	Wt.	Wt.	Vol.	Water	Gravity
		By Use	e of Ve	essel C	ontain	ning 27	cu. ft.	
	e in Car	15.64	0120	2150	500	11 50	49.7	12.0
$\frac{1}{2}$	² -1n. Scr.	15 It. arop	$2430 \\ 2395 \\ 2430 \\ 2395 \\ 2430 \\ 2395 \\ 2430 \\ $	3150 3095	700	$11.52 \\ 11.20 \\ 11.2$	42.7 41.5	43.9
3			2435	3140	705	11.28	41.8	43.8
	-					Mean	42.0	43.4
45	2 in $\frac{3}{4}$ -in.	15 ft. drop	$2320 \\ 2375$	$\frac{3110}{3165}$	790 790	$12.64 \\ 12.64$	$46.8 \\ 46.8$	$46.4 \\ 45.8$
						Mean	46.8	46.1
6	2 in 2 in	15 ft drop	9370	3160	• 700	12 64	16.8	45.3
7	J III2 III. .(10 10. urop	2390	3185	795	12.04 12.72	47.2	44.8
		•				Mean	47.0	45.0
		By Use	e of Ve	essel Co	ontain	ing 2.6	cu. ft.	
8	8-in Scr	Shoveled	226.5	293	66.5	1.06	41.0	45.8
9	s III. Soll.	66 66	227.0 216.5	293 283	66.0 66.5	1.06	40.6	45.7
10			210.0	200	00.0	Moon	40.0	16.8
	• • · · · ·		014 5	900		Mean	10.9	10.0
11 12	<u></u> ² -1n. Scr. "	"	$214.5 \\ 210.5$	$286 \\ 284$	71.5 73.5	$1.14 \\ 1.17$	$44.0 \\ 45.2$	48.6
						Mean	44.6	49.1
13	"	20 ft. drop	229.0	293	64.0	1.025	39.4	45.2
14	2 in ⁸ -in.	Shoveled	204.0	286	82.0	1.31	50.5	51.2
15	2 in 9 in	20 It. drop	237.0	306	69.0	1.10	42.0	43.3
16 17	5 In2 In.	20 ft. drop	212.0 245.0	313	68.0	1.200 1.09	40.7	49.5
					1			

TABLE 4

PERCENTAGE OF VOIDS OF JOLIET LIMESTONE

est	one		ne	ne Ib.	ter	ter	Per Cent	of <mark>Void</mark> s
No. of T	Size of Sto	Method of Fillin	Wt. of Stc lb.	Wt. of Sto and Water,	Wt. of Wa lb.	Vol. of Wa cu. ft.	By Pour- ing in Water	From Specific Gravity
		By Use	of Ves	ssel Co	ntaini	ng 2.34	cu. ft.	
$1 \\ 2 \\ 3$	¹ / ₂ -in. Scr. "	8 ft. drop 	208.75 208.75 207.75	$270.75 \\ 271.25 \\ 270.25$	$\begin{array}{c} 62.00 \\ 62.50 \\ 62.50 \end{array}$	$0.99 \\ 1.00 \\ 1.00$	$42.3 \\ 42.7 \\ 42.7$	$47.6 \\ 47.6 \\ 47.9$
						Mean	42.6	47.7
4 5 6 7	2 in1/2-in.	8 ft. drop "' "'	$218.75 \\ 221.75 \\ 218.50 \\ 220.00$	$285.75 \\ 288.50 \\ 285.75 \\ 286.75 \\ 2$	$\begin{array}{c} 67.00 \\ 66.75 \\ 67.25 \\ 66.75 \end{array}$	$1.07 \\ 1.07 \\ 1.08 \\ 1.07$	$\begin{array}{c} 45.8 \\ 45.6 \\ 45.9 \\ 45.6 \end{array}$	$\begin{array}{c} 45.1 \\ 44.3 \\ 45.1 \\ 44.8 \end{array}$
						Mean	45.7	44.8
8 9 10 11	3 in2 in. "' "'	8 ft. drop "' "'	$227.25 \\ 219.25 \\ 222.25 \\ 212.00$	$291.75 \\ 287.75 \\ 290.25 \\ 282.25$	$64.50 \\ 68.50 \\ 68.00 \\ 70.25$	$1.03 \\ 1.10 \\ 1.09 \\ 1.12$	$\begin{array}{c} 44.1 \\ 46.8 \\ 46.5 \\ 48.0 \end{array}$	$\begin{array}{c} 43.0 \\ 45.0 \\ 44.2 \\ 46.8 \end{array}$
					-	Mean	46.3	44.7
$12 \\ 13 \\ 14 \\ 15$	<u></u> ¹ / ₂ -in. Scr. "	4 ft. drop "' "'	$\begin{array}{c} 215.75 \\ 218.75 \\ 209.25 \\ 208.25 \end{array}$	$276.00 \\ 279.25 \\ 273.00 \\ 272.25$	$\begin{array}{c} 60.25 \\ 60.50 \\ 63.75 \\ 64.00 \end{array}$	$\begin{array}{c} 0.96 \\ 0.96 \\ 1.02 \\ 1.02 \end{array}$	$\begin{array}{c} 41.1 \\ 41.3 \\ 43.5 \\ 43.7 \end{array}$	$\begin{array}{r} 45.8 \\ 45.1 \\ 47.5 \\ 47.7 \end{array}$
	1					Mean	42.4	46.5
$16 \\ 17 \\ 18 \\ 19 \\ 20$	2 in1/2-in. 	4 ft. drop "' "'	$\begin{array}{r} 203.00\\ 209.75\\ 209.75\\ 212.25\\ 213.25\end{array}$	$\begin{array}{c} 277.25\\ 283.25\\ 282.75\\ 283.75\\ 284.00 \end{array}$	$\begin{array}{c} 74.25 \\ 73.50 \\ 73.00 \\ 71.50 \\ 70.75 \end{array}$	$1.19\\1.15\\1.17\\1.14\\1.13$	50.7 50.2 49.9 48.8 48.3	$\begin{array}{r} 49.0 \\ 47.4 \\ 47.4 \\ 46.7 \\ 46.5 \end{array}$
						Mean	49.6	47.4
21	3 in2 in.	4 ft. drop	221.25	291.25	70.00	1.12	47.8	44.5
		By Use	of Ves	sel Cor	ntainir	ng 2.43	cu. ft.	
22 23 24	3 in2 in. "	4 ft. drop "	$\frac{211.25}{216.25}\\212.75$	$287.75 \\ 289.25 \\ 285.75$	76.50 73.00 73.00	$\begin{array}{c} 1.22 \\ 1.17 \\ 1.17 \\ 1.17 \end{array}$	50.4 48.1 48.1	49.0 47.7 48.6
	-				-	Mean	48.6	47.5

9

TABLE 5

PERCENTAGE OF VOIDS OF KANKAKEE STONE

Cest	tone	d	tone	tone er, lb.	ater	tater t.	Per Cent	of Voids
No. of 7	Size of S	Metho of Filli	Wt. of S lb.	Wt. of S and Wate	Wt. of W lb.	Vol. of W cu. ft	By Pour- ing in Water	From Specific Gravity
		By Use						
$\begin{array}{c} 1\\ 2\\ 3\\ 4\end{array}$	⁸ / ₈ -in. Scr. ,,, ,,,	8 ft. drop 	$189.50 \\ 192.25 \\ 186.00 \\ 183.25$	$242.75 \\ 244.75 \\ 237.50 \\ 235.25$	$53.25 \\ 52.50 \\ 51.50 \\ 52.00$	$\begin{array}{c} 0.85 \\ 0.84 \\ 0.82 \\ 0.83 \end{array}$	$\begin{array}{c} 40.3\\ 39.7\\ 39.0\\ 39.3 \end{array}$	$\begin{array}{c} 45.9 \\ 45.1 \\ 46.8 \\ 47.6 \end{array}$
						Mean	39.5	46.4
	14-in§-in.	8 ft. drop "	$193.50 \\ 197.50$	$\begin{array}{r} 253.50\\ 258.00 \end{array}$	$ \begin{array}{r} 60.00 \\ 60.50 \end{array} $	$\begin{array}{c} 0.96 \\ 0.97 \end{array}$	$\begin{array}{c} 45.4\\ 45.8\end{array}$	$\begin{array}{c} 44.7\\ 43.6\end{array}$
						Mean	45.6	44.2
7 8	$2_{\frac{1}{4}}-in1_{\frac{1}{4}}-in.$	8 ft. drop	$196.50 \\ 197.50$	$258.50 \\ 258.75$	$\begin{array}{c} 62.00\\ 61.25 \end{array}$	$\begin{array}{c} 0.99 \\ 0.98 \end{array}$	$\begin{array}{c} 46.9\\ 46.4\end{array}$	$\begin{array}{c} 43.9\\ 43.6\end{array}$
						Mean	46.6	43.8
9 10	2 ¹ / ₄ -in ⁸ / ₈ -in.	8 ft. drop	$\begin{array}{r} 202.25\\ 201.50\end{array}$	$\begin{array}{r} 260.50\\ 260.50 \end{array}$	$\begin{array}{c} 58.25\\ 59.00 \end{array}$	$\begin{array}{c} 0.93 \\ 0.94 \end{array}$	$\begin{array}{c} 44.1\\ 44.6\end{array}$	$\begin{array}{c} 42.2\\ 42.4\end{array}$
						Mean	44.4	42.3
		By Us	e of V	essel C	ontain	ing 1.	15 cu. ft.	
$\begin{array}{c} 11 \\ 12 \end{array}$	[§] -in. Scr.	8 ft. drop	$100.00 \\ 103.75$	$\begin{array}{c}129.25\\132.75\end{array}$	$\begin{array}{c} 29.25\\ 29.00 \end{array}$	$\substack{0.47\\0.46}$	$\begin{array}{c} 40.9\\ 40.5\end{array}$	$\begin{array}{c} 47.5\\ 45.6\end{array}$
						Mean	40.7	46.6
13 14	1¼-in§-in.	8 ft. drop	$\begin{array}{c}104.25\\104.50\end{array}$	$137.50 \\ 136.75$	$\begin{array}{c} 33.25\\32.25\end{array}$	$\begin{array}{c} 0.53 \\ 0.52 \end{array}$	$\begin{array}{c} 46.5\\ \textbf{45.1} \end{array}$	$\substack{45.4\\45.2}$
					1	Mean	45.8	45.3
15 16	2 ¹ / ₄ -in ⁸ / ₈ -in.	8 ft. drop	$106.50 \\ 109.00$	$\begin{array}{r}138.25\\140.50\end{array}$	$\begin{array}{c} 31.75\\ 31.50 \end{array}$	$0.51 \\ 0.50$	44.4 44.0	$\begin{array}{c} 44.1\\ 42.8\end{array}$
						Mean	44.2	43.5

rest	stone	od Ing	tone	tone r, lb.	ater	/ater	Per cent o	of Voids
No. of	Size of S	Metho of Filli	Wt. of S lb.	Wt. of S and Wate	Wt. of W lb.	Vol. of W cu. ft	By Pour- ing in Water	From Specific Gravity
	Ву	Use of V	essel C	ontain	ing 0.	694 cu.	ft.	-
17 18	§-in. Scr.	8 ft. drop ''	$63.00 \\ 63.50$	$79.75 \\ 80.25$	$\begin{array}{c} 16.75\\ 16.75\end{array}$	$\substack{0.27\\0.27}$	$\begin{array}{c} 38.5\\ 38.5\end{array}$	$\substack{45.5\\45.1}$
						Mean	38.5	45.3
19 20	2¼-in1¼-in.	8 ft. drop	$\begin{array}{c} 65.25\\ 66.50\end{array}$	$\begin{array}{c} 85.25\\ 86.25\end{array}$	$\begin{array}{c} 20.00\\ 19.75 \end{array}$	0. 32 0.31	$\begin{array}{c} 45.9\\ 45.4\end{array}$	$\begin{array}{c} 43.6\\ 42.5\end{array}$
						Mean	45.6	43.0

TABLE 5 (Continued)

Precautions were taken to prevent absorption of water by the sides of the vessel; and it is believed that there is no possibility of error from this source in the data given in Tables 3, 4, and 5. In some of the experiments the vessel containing the stone was hauled from the chute to the scales on a wagon; and to eliminate a possibility of error in weighing, the team was unhitched while the weight was being taken.

Notice that the first part of Table 3 shows the percentage of voids for the different sizes of stone; while the second shows the variation due to the different methods used in filling the tub. An inspection of the table shows that with each vessel the voids increase with the size of the stone. It also shows that for both vessels the average percentages are fairly uniform, the greatest variation being in the case of the 3-in. (3-in. to 2-in.) stone. In comparing the tests in which the 15- and 20-ft. drops were used, the stone falling 20 feet invariably has a smaller percentage of voids than that falling only 15 feet. The lower part of the table shows that the voids were very materially less for the same size of stone when the tub was filled by the 20-ft. drop, than when the stone was shoveled in. These data show clearly that the density increases with the fall. However, the tests were not sufficient in

number to justify an attempt to deduce a statement of the relation of the height of fall to the density of the mass.

A comparison of the results in the last two columns of Table 3 shows that for screenings the method by pouring in water gives a considerably smaller per cent of voids than by computation, while for the 2-in. (2-in. to $\frac{2}{8}$ -in.) and the 3-in. (3-in. to 2-in.) sizes there is practically no difference by the two methods. Substantially the same conclusions may be drawn from Tables 4 and 5.

Summary of Voids:—A summary of the results in Tables 3, 4 and 5 is given in Table 6.

TABLE 6

SUMMARY OF PER CENT OF VOIDS

	T		Per Cent	of Voids
Ref. No.	Location of Quarry	Size of Stone	By Pour- ing in Water	From Specific Gravity
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	Chester " U Joliet "	$\frac{8}{4}$ in. Scr. $\frac{4}{2}$ in. Scr. 2 in. to $\frac{4}{2}$ in. 3 in. to 2 in. $\frac{1}{2}$ in. Scr. 2 in. to $\frac{1}{2}$ in. 3 in. to 2 in.	$\begin{array}{c c} 40.9\\ 43.0\\ 46.6\\ 46.1\\ 42.2\\ 47.9\\ 47.5\\ \end{array}$	$46.8 \\ 45.6 \\ 46.6 \\ 45.1 \\ 47.1 \\ 46.2 \\ 46.1$
8 9 10 11	Kankakee "'	$\frac{8}{14}$ in. Scr. $1\frac{1}{4}$ in. to $\frac{8}{5}$ in. $2\frac{1}{4}$ in. to $\frac{8}{5}$ in. $2\frac{1}{4}$ in. to $1\frac{1}{4}$ in.	$\begin{array}{c} 39.6 \\ 45.7 \\ 44.3 \\ 46.2 \end{array}$	$\begin{array}{r} 46.1 \\ 44.7 \\ 42.9 \\ 43.4 \end{array}$

IV. SETTLEMENT OF CRUSHED STONE IN TRANSIT

Sometimes crushed stone is bought by bulk, in which case it may make a difference whether the volume is measured at the beginning or at the end of the journey. Therefore experiments were made to determine the settlement of crushed stone during transit in wagons and also in railway cars.

Settlement in Wagons:—Observations were first made to determine the relation between the settlement in wagons and the distance hauled. An attempt was made to determine the amount of settlement for regular increments

in the distance hauled. This was done by stopping the team and taking a measurement each successive 100 feet until the settlement for that distance was too small to measure. The measurements in all cases were taken by using two straight edges, one placed across the top of the box and the other resting on the top of the stone. Then as both straight edges were of the same width, each measurement was taken from the top of the upper one to the top of the lower one. Measurements were taken near each side and on the center line, near the front, middle, and back of the load, making a total of nine measurements for each load.

The data for Chester limestone are given in Table 7. The results vary surprisingly,—for example, compare tests No. 2 and 3, or 7 and 8, or 13 and 14. The haul was over about equal distances on macadam, cinders, and earth. The results were obtained within a day or two of each other, and it does not seem possible that the smoothness of the roads could have changed materially in the meantime. An attempt was made to drive equally carefully every time. About the only safe conclusions that can be drawn from these data are: (1) about half of the settlement occurs in the first 100 feet; and (2) the settlement at half a mile is practically the same as that at a mile.

Test No.*	Size of Stone	Method of Loading		I	Per C	ent o Ha	f Sett uls of feet	lemer	nt for		
			100	200	300	400	500	600	700	2640	5280
3 4 6 7 9 11 12 14	<pre># in. Scr.† 2 in# in.</pre>	15 ft. drop 15 ft. drop Shoveled 15 ft. drop " Shoveled	$7.3 \\ 5.0 \\ 2.6 \\ 5.3 \\ 3.5 \\ 0.57 \\ 3.5 \\ 5.0 $	$8.3 \\ 9.7 \\ 3.7 \\ 6.2 \\ 4.1 \\ 2.6 \\ 4.2 \\ 5.7 \\$	$8.9 \\10.2 \\4.9 \\7.1 \\4.8 \\2.8 \\4.5 \\6.53$	9.210.25.37.75.34.14.86.53	9.510.45.37.95.34.255.06.7	$10.1 \\ 10.4 \\ 5.3 \\ 8.0 \\ 5.7 \\ 4.25 \\ 5.0 \\ 6.7 \\ 100 \\ 1$	$10.1 \\ 10.7 \\ 5.4 \\ 8.3 \\ 6.5 \\ 4.25 \\ 5.1 \\ 6.7 $	$11.2 \\ 12.4 \\ 5.4 \\ 9.2 \\ 7.3 \\ 4.9 \\ 6.0 \\ 7.1$	11.2 5.4 4.9 6.0 7.1

TABLE 7

EFFECT OF DISTANCE HAULED UPON SETTLEMENT IN WAGON Experiments on Chester Limestone by Mr. Schafmayer

*These numbers refer to the series in Table 8. †Dusty.

The per cent of settlement of stone from three different localities for a haul of practically one mile is given in Table 8; but the variation for any one size under identically the same conditions (for example, compare the first three lines of the table) is so great as not to warrant any attempt to draw conclusions. It was not possible to secure more accurate data except by an expenditure of time and money much greater than the value of the information seemed to justify.

Settlement in Cars:—The shortage of cars at the time these experiments were made and the desire of the shipper and also of the railway to hurry shipments forward seriously interfered with the scope and value of these

TABLE 8

SETTLEMENT OF CRUSHED STONE IN TRANSIT IN WAGONS

Test No.	Method of Loading	Orig. Vol. cu.yd.	Final Vol. cu.yd.	Fer Cent of Settlement	Size of Stone	Dist. Hauled miles	Remarks
	Chester	r Lime	stone	by Mr.	Schafmayer		
1 2 3 4 5 6 7 8 9	15 ft. drop 15 ft. drop 15 ft. drop Shoveled 	$1.41 \\ $	1.23 1.25 1.25 1.23 Mean 1.25 1.33 1.28 1.23 1.31	12.7 11.4 11.4 12.7 11.8 11.4 5.7 9.2 12.7 7.1	 §-in. Scr. §-in. Scr. .' 2-in§ in. .'' 	1 1 1 1 1 1 1 1	Same for $\frac{1}{2}$ mile Mostly dust Same for $\frac{1}{2}$ mile Stone dusty,wet Same for 2 miles Same for $\frac{1}{2}$ mile Same for $\frac{1}{2}$ mile Stone damp
10 11 12 13 14	15 ft. drop " Shoveled	$1.41 \\ $	Mean 1.27 1.34 1.32 1.23 1.31 Mean	$9.2 \\ 10.1 \\ 4.9 \\ 6.4 \\ 12.7 \\ 7.1 \\ 8.2$	3-in2 in. " "	1 1 1 1	A few tailings Same for ½ mile " " " A few tailings Same for ½ mile Stone dirty

Test No.	Method f Loading	Orig. Vol. cu. yd.	Final Vol. cu. yd.	er Cent of ettlement	Size of Stone	st. Hauled miles		Remarks
	0			A va		Di J		
	Kanka	kee Li	mestor	ne by l	Mr. Bowling			
15	*	1.80	1.61	10.6	§-in. Scr.	1	Chute	atincline
16	*	1.61	1.46	9.3	"	1	of 30'	۰، <u>،</u>
			Mean	10.0				
$\begin{array}{c} 17\\18\end{array}$	* *	$\begin{array}{c} 1.80\\ 1.61 \end{array}$	$\begin{array}{c} 1.67 \\ 1.45 \end{array}$	$7.2 \\ 9.9$	1 ¹ / ₄ in§-in.	1 14	••	6.6 6.6 6.6 6.6
			Mean	8.6		1.11		
	Jolie	l et Lim	lestone	by Mi	l r. Bowling	ł		
19	4 ft. drop	1.81	1.66	8.3	<u></u> ₁-in. Scr.	1/2	Chute	atincline
20	"	1.86	1.69	9.1	. 6	1	of 45 "	••••••
21	"	1.81	1.63	9.9	"	1	66	
	1.1		Mean	9.1				
22	4 ft. drop	1.81	1.69	6.6	$2 \text{ in.} -\frac{1}{2} - \frac{1}{2} - 1$	1/2	"	** **
23	"	1.79	1.67	6.7	$2 \text{ in.} -\frac{1}{2} - \text{in.}$	1/2	"	
			Mean	6.6				
				1000				

TABLE 8 (Continued)

* Lower end of chute even with top of wagon bed.

experiments. (See Table 9). It will be noticed that the settlement varies greatly for stone of the same size, loaded the same day, and shipped to the same destination on the same train,—for example, compare the second, third and fourth lines of the table. The settlement was measured by the same method as previously described for wagons, and was as carefully determined as possible by that method. Part of the error is doubt-less due to a variation in the freedom with which the crushed stone ran out of the loading chute, and to a variation in the details of the method employed in leveling off the load.

TABLE 9

SETTLEMENT OF CRUSHED STONE IN TRANSIT IN RAILWAY CARS

Test No.	Method of Loading	Original Depth of Load feet	Final Depth of Load feet	Per Cent of Settle- ment	Size of Stone	Destination	Length of Haul, miles
	e	Joliet Li	mestone	by Mr.	Schafmayer		
1	8 ft. drop	2.4	2.4	0.0	³ / ₄ -in. Scr.	Springfield	149
$2 \\ 3 \\ 4$	8 ft. drop """""	$2.4 \\ 2.0 \\ 2.6$	$2.2 \\ 1.75 \\ 2.3$	$8.3 \\ 12.5 \\ 8.3$	66 66 66 6. 66 66	McLean "	105
			Mean	9.7			
5 6	8 ft. drop	$\begin{array}{c} 2.1 \\ 2.2 \end{array}$	$\begin{array}{c} 2.08 \\ 1.9 \end{array}$	$\begin{array}{c} 1.4\\ 13.9\end{array}$	2 in ⁸ -in.	Springfield	149 ''
			Mean	7.6			
7 8 9 10 11	8 ft. drop (' '' '' '' '' '' (' ''	$2.3 \\ 2.2 \\ 2.7 \\ 2.6 \\ 2.6$	2.1 1.9 2.5 2.33 2.4 Mean	$ \begin{array}{r} $	22 22 23 22 24 24 24 25 26 25 26 25	McLean 	105
12 13	8 ft. drop ,,	2.6 2.6	2.5 2.3 Mean	3.8 10.5 7.2	3 in2 in.	Springfield	149
$14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26$	8 ft. drop	$\begin{array}{c} 2.2\\ 3.2\\ 2.1\\ 2.7\\ 2.7\\ 2.3\\ 3.33\\ 2.3\\ 2.7\\ 2.7\\ 2.7\\ 2.6\\ 2.2\end{array}$	1.95 3.1 2.0 2.35 2.6 2.2 3.0 2.05 2.5 2.45 2.4 2.35 2.0 Mean	$11.4 \\ 3.4 \\ 5.0 \\ 12.9 \\ 3.7 \\ 0.0 \\ 9.0 \\ 10.8 \\ 7.4 \\ 9.2 \\ 11.1 \\ 9.6 \\ 9.1 \\ 10.2$	23 23 23 24 25 23 25 26 23 26 26 26 27 28 26 28 28 26 29 29 29 20 28 26 21 29 29 22 28 26 23 29 29 24 29 29 25 28 29 26 28 29 27 29 29 28 29 29 29 29 29 20 29 29 21 29 29 22 29 29 23 29 29 24 29 29 25 29 29	McLean "' " " " " " " " " " "	105 "' "' "' "' "' "' "' "' "' "'

TABLE 9 (Continued)
-----------	------------

Test No.	Method of Loading	Original Depth of Load feet	Final Depth of Load feet	Per Cent of Settle- ment	Size of Stone	Destination	Length of Haul, miles
		Joliet I	Limeston	e by Mr	. Bowling		
1	8 ft. drop	2.37	2.17	8.4	¹ / ₂ -in. Scr.	Bloom'ton	91
$\frac{2}{3}$	66 66 66 66	$\substack{2.52\\2.80}$	$\begin{array}{c} 2.31 \\ 2.62 \end{array}$	8.3 6.4	$2 in\frac{1}{2}-in.$	6 6 6 6	6.6 6.6
			Mean	7.4			
4	66 66	2.57	2.37	7.8	3 in. -2 in.	66	"
	Cl	hester Li	mestone	by Mr.	 Schafmayer		
1 2 3	15 ft. drop 	$3.00 \\ 2.75 \\ 2.50$	$2.7 \\ 2.4 \\ 2.25$	$9.5 \\ 12.5 \\ 9.8$	⁸ -in. Scr.	Springfield	180 "'
			Mean	10.6			
4 5 6	Barrows 15 ft. drop Barrows	$2.67 \\ 3.00 \\ 2.58$	$2.58 \\ 2.7 \\ 2.33$	$\begin{array}{r} 3.4\\ 9.5\\ 8.2 \end{array}$	3 in2 in. 	66 66 66	66 66 66
			Mean	7.0			
	К	ankakee	Limest	one by N	Ir. Bowling		
1	8 ft. drop	2.27	2.15	5.4	$2\frac{1}{4}$ in $\frac{8}{5}$ in.	Bloom'ton	86

It is probable that part of the difference is due to the difference in the care employed in switching the car from the loading chute. At Joliet the cars were switched about a mile from the crusher to the yards in the city, to be weighed; and at the time they were weighed a casual examination was made of the settlement, and the conclusion was drawn that from $\frac{1}{3}$ to $\frac{1}{2}$ of the total settlement took place while the cars were being switched. The cars were continually being moved while they were in the yard, and

hence more accurate observations could not be made as to the effect of switching upon the settlement. The distance from Joliet to McLean is 105 miles, and apparently a further haul of 44 miles to Springfield did not materially increase the settlement. The great variations in results obtained under seemingly like conditions make it unwise to attempt to draw any conclusions. Apparently more tests must be made before any reliable conclusion can be stated concerning the total amount of the settlement or the law of its variation.

The depth of load in Table 9 is the mean of nine separate measurements, and was computed to the nearest hundredth of a foot although it is recorded only to the nearest tenth. The more accurate values were employed in computing the per cent of settlement. However, to eliminate any possibility of error in the arithmetical work, the per cent of settlement was computed to a greater number of places than is justified by the data. A similar statement applies to several of the tables in the subsequent parts of this paper.

Summary of Data on Settlement:—A summary of the data in Tables 8 and 9 is given in Table 10.

Ref. No.	Location of Quarry	Size of Stone	Settlemen Hau ¹ / ₂ mile or more in wagons	nt after a al of 75milesor more in cars
1 2 3 4	Chester "' "'	$\frac{\$}{2}$ ·in. Scr. $\frac{\$}{2}$ ··· ·· ·· 3 in2 in. ···	$ \begin{array}{c c} 12.7 \\ 11.8 \\ 9.2 \\ 8.2 \end{array} $	10.6 7.0
5 6 7 8 9	Joliet "' "'	$\begin{array}{c} \frac{1}{2} \text{ in. Scr.} \\ \frac{1}{2} \text{ in.} -\frac{1}{2} \text{ in. Scr.} \\ 2 \text{ in.} -\frac{1}{2} \text{ in. Scr.} \\ 3 \text{ in.} -2 \text{ in.} \end{array}$	9.1	$\begin{array}{c} 8.4 \\ 9.7 \\ 7.4 \\ 9.5 \\ 7.8 \end{array}$
10 11 12	Kankakee "	$\frac{8}{14}$ in. Scr. $1\frac{1}{4}$ in. $\frac{-8}{8}$ in. Scr. $2\frac{1}{4}$ in. $\frac{-8}{8}$ "	$\begin{array}{c c}10.0\\8.6\\\ldots\end{array}$	5.4

TABLE 10SUMMARY OF DATA ON SETTLEMENT

V. WEIGHT PER CUBIC YARD OF CRUSHED LIMESTONE

Broken stone is usually sold by weight even though the unit is nominally the cubic yard, since it is the custom to determine the number of cubic yards in a shipment by weighing the shipment and dividing the total weight by the supposed weight of a cubic yard. It does not appear that any adequate observations have been made to determine the weight of a unit of volume of the different sizes and kinds of crushed stone.

Tests to determine the weight of a unit of volume of crushed limestone were made on stone from Joliet, Kankakee, and Chester, both in wagons and in cars, at the same time the record was taken of the settlement, as previously described.

Before beginning to load a car, measurements were taken from a straight edge laid on top of the car body to the floor of the car. These measurements were taken on each side of the car and at the center transversely, and at each end and the middle longitudinally. The stone was loaded into the cars by means of a chute in the bottom of the bin. After the car was loaded the upper surface was leveled off, and the depth of the stone below the top of the car body was determined by measuring down from a straight edge across the top of the car to a similar straight edge lying on the crushed stone. From the above measurement the volume of the stone was computed.

The cars were then switched to the scale track where they were weighed by a representative of the National Weighing Association, each weight being verified by either Mr. Schafmayer or Mr. Bowling. From these data the weight per cubic yard of the loose stone was computed. Measurements similar to those made at the crusher were taken when the car reached its destination; and the weights per unit of volume of the stone when compacted were computed as before.

The data and results of the observations on Joliet, Chester, and Kankakee stone are given in Tables 11, 12 and 13 respectively. For car loads, the "original weight" is after the car was switched about a mile, and the "final weight" is after being shipped 75 miles (a greater distance makes practically no difference); and for wagon loads the weights are at the loading bin and after being hauled a half mile or more.

TABLE 11

WEIGHT PER CUBIC YARD OF JOLIET LIMESTONE

Test No.	Size of Stone	Wt. of Stone, lb.	Original No. of cu. yd.	Final No. of cu. yd.	Original Wt., lb. per cu. yd.	Final Wt. lb. per cu. yd.
	Car Loads by I	Mr. Schaft	nayer			
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	≗-in. Scr. "' "'	$\begin{array}{c} 94500 \\ 75500 \\ 94400 \\ 54700 \\ 96900 \end{array}$	$36.0 \\ 28.9 \\ 34.6 \\ 20.9 \\ 36.2$	36.0 31.7 18.2 33.2 Mean	$\begin{array}{r} 2625\\ 2612\\ 2730\\ 2610\\ 2680\\ \hline \hline 2652 \end{array}$	2625 2980 3000 2920 2881
$ \begin{array}{c} 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{array} $	2 in <u>*</u> -in. .: .: .: .: .: .:	$\begin{array}{c} 78700 \\ 69700 \\ 58500 \\ 54300 \\ 67500 \\ 82600 \\ 84400 \end{array}$	30.6 31.5 24.8 23.6 31.0 37.5 37.5	$\begin{array}{c} 30.2 \\ 27.1 \\ 22.7 \\ 20.3 \\ 29.1 \\ 34.0 \\ 34.8 \end{array}$	$\begin{array}{c} 2570 \\ 2210 \\ 2360 \\ 2300 \\ 2180 \\ 2200 \\ 2250 \end{array}$	$\begin{array}{c} 2600\\ 2570\\ 2580\\ 2680\\ 2320\\ 2430\\ 2430\\ \end{array}$
				Mean	2296	2516
$13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	3 in2 in. "" "" "" "" "" "" "" "" "" "	$\begin{array}{c} 92400\\ 52700\\ 102300\\ 78600\\ 63050\\ 66600\\ 88600\\ 75800\\ 94800\\ 69000\\ 87900\\ 88300\\ 86900\\ 72800\\ 88300\\ 86900\\ 72800\\ 88200\\ 91000\\ 91300\\ 76800\\ \end{array}$	$\begin{array}{c} 36.6\\ 23.0\\ 42.0\\ 31.8\\ 25.2\\ 27.7\\ 38.6\\ 31.6\\ 41.4\\ 30.0\\ 38.8\\ 38.8\\ 38.8\\ 38.8\\ 32.2\\ 36.5\\ 37.2\\ 37.5\\ 31.3\\ \end{array}$	35.2 40.6 23.6 24.3 37.4 31.6 37.7 26.4 36.0 35.4 34.8 28.8 33.9 28.5 Mean	2520 2290 2440 2470 2500 2380 2300 2290 2290 2290 2270 2275 2240 2275 2240 2420 2426 2420 2426 2430 2450	2620 2620 2670 2740 2370 2400 2520 2610 2440 2500 2530 2690 2700
		1		linean	2010	

TABLE 11 (Continued)

WEIGHT PER CUBIC YARD OF JOLIET LIMESTONE

Test No.	Size of Stone	Wt. of Stone, lb.	Original No. of cu. yd.	Final No. of cu. yd.	Original Wt. lb. per cu. yd.	Final Wt. lb. per cu. yd.
	Car Loads by	y Mr. Bov	vling			
31	¹ / ₂ -in. Scr.	83800	31.52	28.85	2659	2905
$\begin{array}{c} 32\\ 33 \end{array}$	$2 \text{ in.} -\frac{1}{2} - \text{in.}$	$\frac{82800}{79600}$	$\begin{array}{r} 34.40\\ 33.64\end{array}$	$\begin{array}{c} 31.82\\ 30.82 \end{array}$	$\begin{array}{c} 2407 \\ 2366 \end{array}$	$\begin{array}{c} 2602\\ 2583 \end{array}$
				Mean	2386	2592
34	3 in2 in.	58300	26.47	24.37	2202	2392
	Wagons Loade	d by Mr.	l Bowling			
35 36 37	12-in. Scr.	$\begin{array}{c} 4195 \\ 4260 \\ 4165 \end{array}$	$1.81 \\ 1.86 \\ 1.81$	$1.66 \\ 1.69 \\ 1.63$	$2318 \\ 2290 \\ 2301$	$2527 \\ 2521 \\ 2555$
				Mean	2303	2533
38 39	$2 \text{ in.} -\frac{1}{4} - \text{in.}$	$\begin{array}{c} 4185\\ 4150 \end{array}$	1.81 1.79	$\begin{array}{c} 1.69 \\ 1.67 \end{array}$	$\begin{array}{c} 2312\\ 2318 \end{array}$	$\begin{array}{c} 2476\\ 2485 \end{array}$
				Mean	2315	2480

It will be noticed that there is considerable variation in both the original and the final weight per cubic yard. Notwithstanding the variation it is believed that the number of observations is so great as to make the means reasonably reliable; but the table shows that the maximum error of any one observation may be as much as 10 per cent, and hence great accuracy can not be expected from a single observation. Similar results are shown for Chester stone,—see Table 12. There are three errors that affect these results: (1). Errors in determining the value of the stone at the quarry and at the destination. (2). Errors in the weight of the car as stenciled upon it. The original weight may have been de-

TABLE 12

WEIGHT PER CUBIC YARD OF CHESTER LIMESTONE

Test No.	Size of Stone	Wt. of Stone lb.	Original No. of cu. yd.	Final No. of cu. yd.	Original Wt.lb.per cu.yd.	Final Wt. lb. per cu. yd.	Remarks
	Car Lo	ad by	Mr. Sc	hafma	yer		
$1 \\ 2 \\ 3$	å-in. Scr. .,,	$109100 \\70600 \\92900$	$\begin{array}{r} 41.97 \\ 28.14 \\ 36.72 \end{array}$	$38.0 \\ 24.6 \\ 33.1$	$2600 \\ 2509 \\ 2530$	$2870 \\ 2870 \\ 2810$	Damp
				Mean	2546	2850	
$\frac{4}{5}$	3 in.–2 in. "	$96500 \\ 81500$	$\begin{array}{c} 41.60\\ 32.91 \end{array}$	$\substack{38.2\\31.8}$	$\begin{array}{c} 2320\\ 2476 \end{array}$	$2530 \\ 2560$	Hand made Damp
				Mean	2398	2545	
6	3 in2 in.	106100	41.97	38.0	2528	2790	Wet
	Wagon I	loads b	y Mr.	Schafr	nayer		
7 8 9 10 11 12 13	<pre>#-in. Scr.</pre>	$\begin{array}{c} 3550\\ 3550\\ 3460\\ 3420\\ 2430\\ 2395\\ 2435\\ \end{array}$	$1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.00 \\ 1.00 \\ 1.00$	$1.23 \\ 1.25 \\ 1.25 \\ 1.23$	$\begin{array}{c} 2518\\ 2518\\ 2450\\ 2425\\ 2430\\ 2395\\ 2435\\ \end{array}$	2886 2840 2770 2780	15 ft. drop 15 ft. drop 15 ft. drop 15 ft. drop No haul, 15 ft. drop No haul, 15 ft. drop No haul, 15 ft. drop
				Mean	2453	2819	
14 15 16 17 18	2 in ² -in. "' "' "'	$\begin{array}{c} 3360 \\ 3250 \\ 3460 \\ 3200 \\ 2375 \\ 2200 \end{array}$	$1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.00 \\ 1.00$	$1.28 \\ 1.23 \\ 1.33 \\ 1.31$	$\begin{array}{c} 2380 \\ 2305 \\ 2450 \\ 2270 \\ 2375 \\ 2390 \end{array}$	$2625 \\ 2642 \\ 2600 \\ 2445$	15 ft. drop Shoveled 15 ft. drop Shoveled No haul, 15 ft. drop
$\frac{19}{20}$	"	3250	1.00	1.25	2320 2305	2600	No haul, 15 ft. drop
				Mean	2444	2582	
$21 \\ 22 \\ 23$	3 in2 in.	3200 3330 2390	1.41 1.41	$1.23 \\ 1.33$	2270 2360 2390	$2601 \\ 2505$	Shoveled
$ \begin{array}{c} 24 \\ 25 \\ 26 \end{array} $	66 66 66	$ \begin{array}{r} 2330 \\ 3480 \\ 3290 \\ 2370 \end{array} $	1.41 1.41 1.41 1.00	$1.34 \\ 1.31$	2335 2470 2335 2370	2595 2510	15 ft. drop Part dirt, shoveled No haul, 15 ft. drop
27	66	3350	1.41	1.27	2376	2638	15 ft. drop
		1.1		Mean	2367	2570	and the second state

22

termined when the car was wet; while in the observations under consideration the cars were dry. (3). In weighing a string of cars, either empty or loaded, there is some error due to the action of the coupler.

Table 11 shows that the weight per cubic yard of screenings is more than that of coarser stone, but also shows that 3-in. stone weighs more per cubic yard than 2-in. Similar results obtained for wagon loads, and also for Chester and Kankakee stone, both for car loads and for wagon loads—see Tables 12 and 13.

TABLE 13

WEIGHT PER CUBIC YARD OF KANKAKEE LIMESTONE

est No.	of Stone	eight of one, lb.	ginal No. cu. yd.	al No. of cu. yd.	inal Wt. er cu. yd.	nal Wt. er cu. yd.	emarks
H	Size	St	Origof	Fin (Orig lb. p	Fi lb. p	Å
		Car	Load	by Mr	. Bowl	ing	
1	$2\frac{1}{4}$ in $\frac{8}{5}$ -in.	62900	27.83	26.32	2260	2390	
		Wago	on Loa	ds by M	Ir. Boy	wling	
$\frac{2}{3}$	§-in. Scr.	4085 4170	$1.80 \\ 1.61$	$1.61 \\ 1.46$	$2270 \\ 2590$	$2537 \\ 2856$	
				Mean	2430	2697	
45	$1\frac{1}{4}$ in. $-\frac{8}{6}$ in.	3840 4050	$1.80 \\ 1.61$	$1.67 \\ 1.45$	$2133 \\ 2516$	$2299 \\ 2793$	
				Mean	2325	2546	
4 5	1¼ in§ in.	3840 4050	$\begin{array}{c} 1.80\\ 1.61 \end{array}$	1.67 1.45 Mean	$2133 \\ 2516 \\ \hline 2325$	2299 2793 2546	

Summary of Weights:—Taking an average of the preceding results for each size of stone from each quarry the summary shown in Table 14 is obtained.

23

TABLE 14

SUMMARY OF WEIGHTS OF CRUSHED LIMESTONE

		<i>a</i> :	Wagor	Loads	Car	Loads
Ref. No.	Location of Quarry	Size of Stone	Wt. at Crusher	After a Haul of $\frac{1}{3}$ mile or more	Wt. at Crusher	After a Haul of 75 miles or more
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	Joliet (, (, (,	$\frac{1}{2}$ -in. Scr. $\frac{8}{2}$ -in. Scr. 2 in. $-\frac{1}{2}$ -in. 2 in. $-\frac{8}{4}$ -in. 3 in. -2 in.	2303 2315	2533 2480	$2659 \\ 2652 \\ 2386 \\ 2296 \\ 2361$	$\begin{array}{c c} 2905 \\ 2882 \\ 2592 \\ 2516 \\ 2553 \end{array}$
6 7 8	Chester ,,,	⁸ ₄-in. Scr. 2 in.– ⁸ ₄-in. 3 in.–2 in.	$2442 \\ 2344 \\ 2367$	$2797 \\ 2582 \\ 2569$	$\begin{array}{c} 2546\\ 2348\end{array}$	2850 2545
9 10 11	Kankakee 	$\frac{1}{4} - \frac{1}{4} - \frac{1}$	2430 2325	2697 2546	2260	2390

Results in Pounds per Cubic Yard

Relations between Actual and Nominal Weight of Crushed Stone.-As is well known, it is the universal custom to load a car more than its rated capacity; and similarly it seems to be the custom of laborers when loading a car with crushed stone, to put in more than directed. This fact causes an erroneous idea of the weight of a yard of the material among the railway officers, as they weigh the car and divide the weight of the stone by the nominal number of yards to obtain the weight per cubic yard. Since the actual volume is not measured, the number of yards is taken from the bill of lading submitted by the shipper, which is approximate and is usually too small; and consequently the weight per cubic yard derived by this method is usually somewhat too great. For example, the Superintendent of the Wabash, Chester and Western Railway weighed a large number of cars of stone at Chester, and obtained by this method weights of 2600 pounds and over per cubic yard. In all his observations the number of yards was taken as given on the bills.

To determine the relation between the actual weight of crushed stone and the weight found as above, accurate measurements of ten cars being loaded at Chester were made by Mr. Schafmayer to ascertain if the high weights per cubic yard obtained by the railroad were due to overloading. The results of these tests are shown in Table 15. In every case the actual contents of the car are greater than the number of yards in the bill. The average excess is 1.71 yards for an average nominal load of 26 yards, an average excess of 6.6 per cent. This gives an apparent average weight of 2558 pounds for a yard actually weighing only 2400 pounds. It can be readily seen that under such conditions, it is not surprising that railway officials have an exaggerated idea as to the weight of a cubic yard of crushed stone.

Ref. No.	No. of Yds. Named in Bill of Lading	Actual Number of Cu. Yd.	No. of Yds. in Excess of the Billing	Per Cent of Excess	Actual Wt., 1b. per cu. yd.	Apparent Wt., lb. per cu. yd.
1 2 3 4 5 6 7 8 9 10 Av.	25 25 25 25 25 25 30 25 30 25 30 25 26	$\begin{array}{c} 25.7\\ 25.7\\ 27.7\\ 27.7\\ 27.7\\ 25.8\\ 32.0\\ 25.7\\ 31.4\\ 27.7\\ 27.7\\ 27.71\end{array}$	$\begin{array}{r} 0.7\\ 0.7\\ 2.7\\ 2.7\\ 2.7\\ 0.8\\ 2.0\\ 0.7\\ 1.4\\ 2.7\\ \hline 1.71\\ \end{array}$	2.8 2.8 10.8 10.8 10.8 3.2 6.7 2.8 4.7 10.8 6.6	2420 2420 2420 2420 2420 2420 2420 2420	2488 2488 2684 2684 2684 2510 2583 2488 2534 2684 2581

			TABLE	15				
EXCESS	\mathbf{OF}	ACTUAL	LOADING	IN	CARS.	OVER	BILLING	

VI. COEFFICIENTS FOR DETERMINING WEIGHT OF CRUSHED STONE

In the introduction it was suggested that possibly coefficients could be determined by which to deduce the weight per unit of volume of crushed stone when the weight of a unit of solid stone or the specific gravity was known. Table 16 shows such coefficients for the various sizes for three kinds of stone, at the crusher and also at the destination, both in cars and in wagons. The

TABLE 16

COEFFICIENTS BY WHICH TO DETERMINE THE WEIGHT IN POUNDS PER CUBIC YARD OF CRUSHED LIMESTONE

	2	Havi	ng t	he	Н	aving	the					
Vind	Ciro	Weig Cu. Solid	ht c Ft. I Sto	of a of one	W C Sc	eight u. Yd. olid St	of a of one	H Spec	aving aific Gi	the ravity		
of Stone	of Stone	Solid , lb.	Co cie	effi- nt	ld stone, u.yd.	Coefi	cient	Gr. one	Coefficient			
	-	Wt. of Stone per cu	Car	Wagon	Wt. of sol lb. per o	Car	Wagòn	Sp. of St.	Car	the avity cient 954.5 849.8 931.0 911.8 890.8 912.1 854.2 921.0 921.0 1096.9 934.7 1033.3 1021.6 975.5 1004.7 915.1		
		We	eight	at	Crush	ner						
Chester Joliet	$\frac{4}{2}$ -in. Scr. $\frac{1}{2}$ -in. Scr.	$160.4 \\ 169.1 \\ 169.1$	$15.9 \\ 15.7 \\ 15.4$	$\begin{smallmatrix}15.3\\13.6\end{smallmatrix}$	$\begin{array}{r} 4331 \\ 4566 \\ 4566 \end{array}$	$0.588 \\ 0.582 \\ 0.572$	$\begin{array}{c} 0.566 \\ 0.504 \end{array}$	$2.57 \\ 2.71 \\ 2.71$	990.7 981.2	$954.5 \\ 849.8$		
Kankakee	² -in. Ser. ⁸ / ₈ -in. Ser.	169.1 162.8	19.4	14.9	4397	0.012	0.553	$\frac{2.71}{2.61}$	963.8	931.0		
Mean	$\frac{1}{2}$ -in. Scr.	165.4	15.7	14.6	4465	0.581	0.541	2.65	978.6	911.8		
Kankakee	$1\frac{1}{4}$ in $\frac{8}{8}$ in.	162.8		14.3	4397		0.529	2.61		890.8		
Chester Joliet " Kankakee	2 in $\frac{8}{4}$ -in. 2 in $\frac{1}{2}$ -in. 2 in $\frac{8}{4}$ -in. 2 $\frac{1}{4}$ in $\frac{8}{8}$ -in.	$\begin{array}{c c} 160.4 \\ 169.1 \\ 169.1 \\ 162.8 \end{array}$	$14.1 \\ 13.6 \\ 13.9$	$\begin{array}{c} 14.6\\ 13.7\end{array}$	$\begin{array}{r} 4331 \\ 4566 \\ 4566 \\ 4397 \end{array}$	$0.523 \\ 0.503 \\ 0.514$	$\begin{array}{c} 0.541 \\ 0.507 \end{array}$	$2.57 \\ 2.71 \\ 2.71 \\ 2.71 \\ 2.61$	$880.4 \\ 847.2 \\ 865.9$	$\begin{array}{c} 912.1 \\ 854.2 \end{array}$		
Mean	$\frac{1}{2}$ in. $-\frac{1}{2}$ in.	165.4	13.9	14.2	4465	0.513	0.524	2.65	864.5	883.2		
Chester Joliet	3 in2 in. 3 in _x -2 in.	$ \begin{array}{c} 160.4 \\ 169.1 \end{array} $	$14.9\\14.0$	14.8	$\begin{array}{c} 4331\\ 4566\end{array}$	$\begin{array}{c} 0.554 \\ 0.517 \end{array}$	0.546	$2.57 \\ 2.71$	$\begin{array}{c} 933.1\\871.2\end{array}$	921.0		
Mean	3 in2 in.	164.8 Weig	14.4 ht a	14.8 it De	4448 estina	0.536 ation	0.546	2.64	902.2	921.0		
Chester	⁴ -in. Scr.	160.4	17.8	17.6	4331	0.658 0.636	0.651 0.555	2.57	1108.9 1072.0	1096.9		
Kankakee	$\frac{2}{4}$ -in. Scr. $\frac{2}{8}$ -in. Scr.	$ \begin{array}{c} 109.1 \\ 169.1 \\ 162.8 \end{array} $	16.9	16.6	4566 4397	0.625	0.613	$2.71 \\ 2.61$	1072.0	1033.3		
Mean	1-in. Scr.	165.4	17.3	16.6	4465	0.640	0.606	2.65	1078.1	1021.6		
Kankakee	1¼ in8-in.	162.8		15.6	4397		0.579	2.61	ev 1 1	975.5		
Chester Joliet "Kankakee	2 in. $-\frac{8}{4}$ -in. 2 in. $-\frac{1}{2}$ -in. 2 in. $-\frac{8}{4}$ -in. 2 $\frac{1}{4}$ in. $-\frac{8}{4}$ -in.	$\begin{array}{c c} 160.4 \\ 169.1 \\ 169.1 \\ 162.8 \end{array}$	$15.3 \\ 14.9 \\ 14.7$	$\begin{array}{c} 16.1 \\ 14.7 \end{array}$	$\begin{array}{r} 4331 \\ 4566 \\ 4566 \\ 4397 \end{array}$	$0.568 \\ 0.551 \\ 0.544$	$0.596 \\ 0.543$	$2.57 \\ 2.71 \\ 2.71 \\ 2.61$	$956.5 \\ 928.4 \\ 915.7$	$1004.7 \\ 915.1$		
Mean	2 in _+-in	165.4	15.0	15.4	4465	0.554	0.570	2 65	933 5	959 9		
Chester Joliet	3 in2 in. 3 in2 in.	160.4 160.4 169.1	15.9 15.1	16.0	4331 4566	0.588	0.593	$2.57 \\ 2.71$	990.2 942.0	1000.0		
Mean	3 in2 in.	164.8	15.5	16.0	4448	0.574	0.593	2.64	966.1	1000.0		

means are stated in Table 16 in such a manner as to show the average result for each size.

Disregarding whether the stone is measured in a car or a wagon, and also disregarding whether it is measured at the crusher or at its destination, the following summary of Table 16 is obtained.

SIZE OF STONE MEAN COEFFICIENT BY WHICH TO MULTI. THE WEIGHT OF A CUBIC FOOT OF SO LIMESTONE TO OBTAIN THE WEIGHT OJ CUBIC YARD OF THE CRUSHED ST	LID F A
t-in. screenings	15.5
2 in. to $\frac{1}{2}$ inch	4.6
3 in. to 2 inch	5.2
4 V07900	5 1

Notice that the coefficient is largest for the finest stone, and smallest for the intermediate size. The same is true for trap (see Table 17) even though the sizes slightly differ. This seems to prove that the weight of screenings is greater than that of coarser stone, while the weight of the intermediate size is less than that of either extreme size.

APPENDIX I

WEIGHT OF VOIDS OF CRUSHED TRAP

A careful search has been made of engineering literature, and below is the only definite information discovered.

In the Journal of the Association of Engineering Societies, Volume 11 (1892), page 424, W. E. McClintock, at present Chairman of the Massachusetts Highway Commission, gives an account of six experiments made by him to determine the weight of a unit of volume of crushed trap. In the first experiment he weighed the contents of a bin holding 29¹/₃ cubic yards,* and found the weight of stone that had passed a $\frac{1}{2}$ -inch screen to be 2605 pounds per cubic yard, and in another test under the same conditions, to be 2690 pounds; and when the broken stone was wet the weight was 2480 pounds per cubic yard. In another experiment he weighed the stone in a bin holding 89.8 cubic yards, and found the weight of stone that had passed a $1\frac{1}{2}$ -inch screen and had been caught on a $\frac{1}{2}$ -inch screen to be 2423 pounds per cubic yard. In a third experiment he weighed the stone in a bin containing 89.7 cubic yards, and found the weight of the stone that had passed a 3-inch screen and had been caught on a 1^{1/2}-inch screen to be 2522 pounds per cubic yard. He also measured six cars and weighed the contents, and found the weight of the last mentioned size to be 2531 pounds per cubic yard. The following statement shows the relative proportions of the several sizes of crushed trap.

SIZE OF STONE	PER	CENT
¹ / ₁ -inch screenings		13.24
$1\frac{1}{2}$ inch to $\frac{1}{2}$ -inch		23.89
3 inch to 1 ¹ / ₂ inch		62.87
	•	

Total output of crusher..... 100.00

From the weight per cubic foot of solid stone given by Mr. McClintock and the above weights of the broken stone, the per cent of voids was computed. A summary of Mr. McClintock's experiments is given in Table 17, and the coefficients for trap are given in Table 18.

^{*}Mr. McClintock privately informed the writer that the average drop of the stone into the bins was about 8 feet.

TABLE 17

WEIGHT AND VOIDS OF CRUSHED TRAP

Ref. No.	Size of Stone	Weight in lb. per cu. yd.	Per Cent of Voids, computed
$\frac{1}{2}$	1-in. Screenings, in bin, dry	$\begin{array}{c} 2605\\ 2690 \end{array}$	
	Mean	2648	46.5
3	in bin, wet	2480	
4	$1\frac{1}{2}$ in. to $\frac{1}{2}$ in. in bin	2432	50.2
5 6	3 in. to $1\frac{1}{2}$ in. in bin in cars	$\begin{array}{c} 2522\\ 2531 \end{array}$	
	Mean	2526	48.1

TABLE 18

COEFFICIENTS BY WHICH TO DETERMINE THE WEIGHT IN POUNDS PER CUBIC YARD OF CRUSHED TRAP

Ref.	Size of Stone	Having the Weight of a Cubic Foot of Solid Stone		Having the Weight of a Cubic Yard of Solid Stone		Having the Specific Gravity	
10.		Wt. of Sol. Stone lb. per cu. yd.	Coeffi- cient	Wt. of Sol. Stone lb. per cu. yd.	Coeffi- cient	Specific Gravity	Co- effi- cient
1	1/2-in. screenings	180.7	14.6	4879	0.541	2.90	914.4
2	$1\frac{1}{2}$ in. $-\frac{1}{2}$ in.	180.7	13.5	4879	0.500	2.90	839.7
3	3 in1½ in.	180.7	13.9	4879	0.515	2.90	872.2
-	Mean		13.7	•••••	0.519		875.4

29

PUBLICATIONS OF THE ENGINEERING EXPERIMENT STATION

Bulletin No. 1. Tests of Reinforced Concrete Beams, by Arthur N. Talbot. 1904. (Out of print.)

Circular No. 1. High Speed Tool Steels, by L. P. Breckenridge. 1905.

Bulletin No. 2. Tests of High-Speed Tool Steels on Cast Iron, by L. P. Breckenridge and Henry B. Dirks. 1905.

Circular No. 2. Drainage of Earth Roads, by Ira O. Baker. 1906.

Bulletin No. 3. The Engineering Experiment Station of the University of Illinois, by L. P. Breckenridge. 1906. (Out of print.)

Bulletin No. 4. Tests of Reinforced Concrete Beams, Series of 1905. by Arthur N. Talbot. 1906.

Bulletin No. 5. Resistance of Tubes to Collapse, by Albert P. Carman. 1906. (Out of print.)

Bulletin No. 6. Holding Power of Railroad Spikes, by Roy I. Webber. 1906.

Bulletin No. 7. Fuel Tests with Illinois Coals, by L. P. Breckenridge, S. W. Parr and Henry B. Dirks. 1906.

Bulletin No. 8. Tests of Concrete: I. Shear; II. Bond, by Arthur N. Talbot 1906. (Out of print.)

Bulletin No. 9. An Extension of the Dewey Decimal System of Classification Applied to the Engineering Industries, by L. P. Breckenridge and G. A. Goodenough. 1906.

Bulletin No. 10. Tests of Concrete and Reinforced Concrete Columns, Series of 1906, by Arthur N. Talbot, 1907.

Bulletin No. 11. The Effect of Scale on the Transmission of Heat through Locomotive Boiler Tubes, by Edward C. Schmidt and John M. Snodgrass. 1907. (Out of print.)

Bulletin No. 12. Tests of Reinforced Concrete T-beams, Series of 1906, by Arthur N. Talbot. 1907.

Bulletin No. 13. An Extension of the Dewey Decimal System of Classification Applied to Architecture and Building, by N. Clifford Ricker. 1907.

Bulletin No. 14. Tests of Reinforced Concrete Beams, Series of 1906, by Arthur N. Talbot. 1907.

Bulletin No. 15. How to Burn Illinois Coal without Smoke, by L. P. Breckenridge. 1908.

Bulletin No. 16. A Study of Roof Trusses, by N. Clifford Ricker. 1908,

Bulletin No. 17. The Weathering of Coal, by S. W. Parr, N. D. Hamilton. and W. F. Wheeler. 1908.

Bulletin No. 18. The Strength of Chain Links, by G. A. Goodenough. 1908.

Bulletin No. 19. Comparative Tests of Carbon, Metallized Carbon and Tantalum Filament Lamps, by Thomas H. Amrine. 1908.

Bulletin No. 20. Tests of Concrete and Reinforced Concrete Columns, Series of 1907, by Arthur N. Talbot. 1908.

Bulletin No. 21. Tests of a Liquid Air Plant, by C. S. Hudson and C. M. Garland. 1908.
 Bulletin No. 22. Tests of Cast-Iron and Reinforced Concrete Culvert Pipe, by Arthur N.
 Talbot. 1908.

Bulletin No. 23. Voids, Settlement and Weight of Crushed Stone, by Ira O. Baker. 1908.

UNIVERSITY OF ILLINOIS

THE STATE UNIVERSITY

THE UNIVERSITY INCLUDES THE

- COLLEGE OF LITERATURE AND ARTS (Ancient and Modern Languages and Literatures, Philosophical and Political Science Groups of Studies, Economics, Commerce and Industry).
- COLLEGE OF ENGINEERING (Unexcelled library; spacious buildings; well-equipped laboratories and shops. Graduate and Undergraduate courses in Architecture; Architectural Engineering; Architectural Decoration; Civil Engineering; Municipal and Sanitary Engineering; Electrical Engineering; Mechanical Engineering; Railway Engineering).
- COLLEGE OF SCIENCE (Astronomy, Botany, Chemistry, Geology, Mathematics, Physics, Physiology, Zoölogy).
- COLLEGE OF AGRICULTURE (Animal Husbandry, Agronomy, Dairy Husbandry, Horticulture, Veterinary Science, Household Science).
- COLLEGE OF LAW (Three years' course).
- COLLEGE OF MEDICINE (College of Physicians and Surgeons, Chicago). (Four years' course).

COLLEGE OF DENTISTRY (Chicago). (Three years' course).

- SCHOOLS-GRADUATE SCHOOL, MUSIC (Voice, Piano, Violin), LIBRARY SCIENCE, PHARMACY, (Chicago). EDUCATION, RAILWAY ENGINEERING AND ADMINISTRATION.
- A Summer School with a session of nine weeks is open each summer.
- A Military Regiment is organized at the University for instruction in Military Science. Closely connected with the work of the University are students' organizations for educational and social purposes. (Glee and Mandolin Clubs; Literary, Scientific, and Technical Societies and Clubs, Young Men's and Young Women's Christian Associations).
- United States Experiment Station, State Laboratory of Natural History, Biological Experiment Station on Illinois River, State Water Survey, State Geological Survey.
- Engineering Experiment Station. A department organized to investigate problems of importance to the engineering and manufacturing interests of the State.
- The Library contains 95,000 volumes, and 17,000 pamphilets.
- The University offers 526 Free Scholarships. For catalogs and information address

W. L. PILLSBURY, Registrar,

Urbana, Illinois,

Illinois State Reformatory Print.

