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tested--the PT-1 module, composed of steel-pipe buoyancy chambers and truck 

tires, and the PT-2 module, composed of telephone poles and car tires. Each 

design was 12.2 meters wide in the direction of wave propagation and was held 

together by conveyor-belt loops. Wave attenuation and mooring-force features 

were established based on data from 402 separate runs in which incident and 

transmitted wave heights were recorded, along with the tension in the seaward 

mooring line. Test results are compared with those of earlier experiments 

made on the Goodyear floating tire breakwater. The construction of these PT- 

Breakwater modules is outlined, along with the cost estimates for construction 

of components. A breakwater buoyancy test was made and the flotation require- 

ments calculated. The influence of stiffness on the mooring system was exper- 

imentally investigated and conveyor-belt material tested to the point of 

failure. Design curves for determining the proper anchor requirements and 

breakwater size are given. 

Apart from the incident wave height, the transmitted wave height and peak 

mooring force are shown to depend primarily on four dimensionless parameters: 

the relative wavelength, wave steepness, relative breakwater draft, and 

breakwater aspect ratio. The wave attenuation performance of PT-Breakwaters 

improves as either wavelength or water depth decreases, or the wave steepness 

increases. The shelter afforded by a particular PT-Breakwater is strongly 

dependent on the incident wavelength, L: substantial protection is provided 

from waves that are shorter than the width, B, of the breakwater but very 

little from waves longer than three times the width of the breakwater. 

The wave attenuation performance of PT-1 was found to be superior to 

that of PT-2 and the Goodyear breakwater: for L/B = 1 and deep water with 

H/L = 0.04; for example, the wave height transmission ratios are approximately 

0.6, 0.4, and 0.2 for the Goodyear, PT-2, and PT-1 breakwaters, respectively. 

For the conditions investigated, the peak mooring force increases approxi- 

mately with the square of the wave height, more precisely: F « H" where 

n= 1.5, 2 and 2 for the PT-1, PT-2, and Goodyear breakwaters, respectively. 
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PREFACE 
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CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT 

U.S. customary units of measurement used in this report can be converted to 

metric (SI) units as follows: 

Multipl by To obtain 

2-54 centimeters 

square inches 6-452 Square centimeters 

cubic inches 16.39 cubic centimeters 

feet 30.48 centimeters 

0.3048 meters 

square feet 0.0929 Square meters 

cubic feet 0.0283 cubic meters 

yards 0.9144 meters 
Square yards 0.836 square meters 

cubic yards 0.7646 cubic meters 

miles 1.6093 kilometers 

square miles 259.0 hectares 

knots 1.852 kilometers per hour 

acres 0.4047 hectares 

foot-pounds 1.3558 newton meters 

nabelenares 1.0197 x 1073 kilograms per square centimeter 

ounces 28.35 grams 

pounds 453.6 grams 

0.4536 kilograms 

ton, long 1.0160 metric tons 

ton, short 0.9072 metric tons 

degrees (angle) 0.01745 radians 

Fahrenheit degrees 5/9 Celsius degrees or Kelvins! 

lfo obtain Celsius (C) temperature readings from Fahrenheit (F) readings, 

use formula: C = (5/9) (F -32). 

To obtain Kelvin (K) readings, use formula: K = (5/9) (F -32) + 273.15. 



SYMBOLS AND DEFINITIONS 

width or beam of breakwater (dimension in direction of wave motion) 

breakwater aspect ratio 

wave height transmission ratio, C, = H,/H 

tire diameter 

relative draft 

water depth 

peak mooring force on seaward mooring line (per unit length of 

breakwater) 

center-to-center distance between pipes of PT-Breakwater 

gravitational acceleration 

incident wave height 

wave steepness 

transmitted wave height 

wavelength 

relative wavelength 

wave period 

specific weight of water 

horizontal displacement of breakwater from equilibrium position 

length of breakwater (dimension at right angles to direction of wave 

motion) 

kinematic viscosity of water 



WAVE TRANSMISSION AND MOORING-FORCE CHARACTERISTICS 

OF PIPE-TIRE FLOATING BREAKWATERS 

by 
Volker W. Harms, Joannes J. Westerink, 

Robert M. Sorensen, and James E. McTamany 

I. INTRODUCTION 

This report presents methods for constructing a recently developed float- 

ing breakwater that consists largely of scrap pneumatic-tire casings, and 

also provides basic data for the design of such structures. The idea of con- 

structing floating breakwaters almost entirely from scrap tires was originally 

conceived two decades ago by R.L. Stitt and resulted in a patent for the wave- 

maze floating tire breakwaters (Stitt, 1963; Kamel and Davidson, 1968). More 
recently, this concept was adapted in the development of the Goodyear floating 

tire breakwater (Kowalski, 1974; Candle, 1976). Both these breakwaters 

are flexible in all directions since there are no rigid structural members 

utilized. The Goodyear module ciffers from the Wave-Maze in the size of the 

tires used (automobile as opposed to truck tires), geometric arrangement of 

the tires (single-layer upright versus triple-layer “sandwich”), and binding 

materials and techniques used (typically conveyor-belt loops as opposed tb 

bolted-tire connections). A number of floating breakwaters of both types have 

been installed on the Great Lakes, the east and west coasts of the United 

States, and overseas, with various levels of success. 

Although the installation of floating breakwaters is frequently favored 

over bottom-resting structures for a number of environmentally related reasons 

(e.g., impact on water circulation, fish migrations), the principal reason for 

considering floating breakwaters made of tires is their relatively low cost. 
For small marinas of less than 100 boat slips, floating breakwaters are fre- 

‘quently the only wave protection system that is economically feasible with 

costs ranging from $10 to $100 per horizontal square meter of breakwater. At 

the same time, it must be recognized that floating tire breakwaters provide 

less wave protection, are less rugged, and have lower extreme event survival 

capabilities than conventional bottom-resting structures, such as rubble-mound 

and sheet-pile breakwaters. A comparison of knowledge acquired from field 

installations and prototype-scale laboratory tests suggests that the Goodyear 

and Wave-Maze floating tire breakwaters should be limited to semiprotected 

sites, or short fetch applications (e.g., 10 kilometers or less), with signif- 

icant wave heights below 0.9 to i.2 meters. At locations with severer wave 

climates (larger wave height and period), several limitations have been 

encountered with regards to: 

(a) Structural Integrity. The response behavior of wave-induced 

mooring loads increases approximately with the square of the wave 

height. While under severe wave action the following problems have 

been encountered: (1) modules connected to the seaward mooring lines 

separate because of excessive loads, (2) anchors fail or “walk” 

because of the large mooring forces, (3) flotation material is lost 

from individual tires because of the excessive stretching and twist- 

ing, and (4) tire connection and binding materials reach their fail- 

ure limit. 



(b) Breakwater Size. As with all breakwaters, the size of a 

floating tire breakwater is site specific. The dimension of the 

breakwater in the direction of wave propagation (width or beam) must 

generally be at least as large as the locally predominant wavelength 

(design wave). This implies that a very large breakwater will be 
required at sites with long period waves, which not only increases 

the breakwater's cost but also may not be feasible because of space 

limitation. 

(c) Buoyancy. Portions of the breakwater configuration may begin 

to sink if individual tires lose their flotation material (e.g., 

caused by stretching and twisting while under high loads) or if the 

structure gains too much weight with time (caused by deposition of 

suspended sediments in the tire casings or excessive marine growth). 

In an attempt to improve on the design characteristics of the floating 

breakwaters discussed above, another wave protection concept utilizing 

pneumatic tire casings as the major construction material has recently been 

developed by the senior author at the State University of New York at Buffalo 

(Harms and Bender, 1978; Harms, 1979a). It is referred to as the Pipe-Tire 

Breakwater (PT-Breakwater), or Harms Breakwater, and is basically a hybrid 

structure with massive, rigid, cylindrical members (e.g., steel or concrete 

pipes) embedded in a flexible matrix of scrap tires. Experiments performed 

with several small-scale PT-Breakwater models (Harms, 1979b) and one full- 

scale breakwater demonstrated that this design provides significantly more 

wave protection than the Goodyear or Wave-Maze breakwaters constructed of 

equal size. These early laboratory tests also suggested that a full-scale 

PT-Breakwater would have superior extreme event survival capabilities, while 

preliminary calculations indicated that costs would remain low enough for this 

wave protection system to be economically attractive. 

Because of the PTI-Breakwater's potential contribution to low-cost wave 

protection, prototype-scale experiments over a wide range of wave conditions 

were conducted in a joint test program between the State University of New 

York at Buffalo and the U.S. Army Coastal Engineering Research Center (CERC). 
Full-scale tests, which are the subject of this report, were conducted in the 

large wave tank at CERC. Investigations were aimed at defining the wave 

transmission and mooring-force characteristics of PT-Breakwaters; it was also 

intended that structural failure modes be analyzed, should it be possible to 

induce them within the range of wave conditions that could be generated in the 

tank. 

Figures 1 and 2 provide a general impression of a floating PT-Breakwater. 

This field installation at Mamaroneck, New York, is based on the PT-1 module 

discussed in this report; it is constructed of truck tires with steel pipes 

serving as the structural members and flotation chambers. The orientation of 

the pipes with respect to the incident wave train is shown in Figure 3. 

II. THE PIPE-TIRE BREAKWATER 

The PTI-Breakwater is basically a mat composed of flexibly interconnected 

scrap tires, floating near the surface, into which massive cylindrical members 

are inserted to provide stiffness in the direction of wave motion and to serve 

as buoyancy chambers. Major structural features of the PTI-Breakwater are 

10 



Figure 1. PT-Breakwater field installation (PT-1 

modules; Mamaroneck, New York). 

Figure 2. Typical PT-Breakwater module with tire- 

armored pipes (Mamaroneck, New York). 
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Figure 3. Orientation of PT-Breakwater. 

(a) densely spaced tires, (b) tire-armored longitudinal stiffeners (frequently 

steel pipes), and (c) flexible connections and binding materials (no steel-to- 

rubber connections). The orientation of the pipes with respect tio the inci- 

dent wave train is shown in the drawing in Figure 3, with major structural 

features of the breakwater shown in the module schematic in Figure 4 and the 

definition sketch in Figure 5. 

1. Breakwater Modules and Components. 

Two versions of the PT-Breakwater, designated as the PT-1 and PT-2 mod- 

ules, were tested in the large wave tank at CERC (Fig. 6). The PT-1 module, 
which is the most massive of the two due to its composition of truck tires and 

steel pipes, is shown in the foreground. The PT-2 module is constructed from 

car tires and used telephone poles. From the detailed drawing of the PT-1 

module (Fig. 4), several important structural features of the breakwater 

emerge: 

(a) A series of parallel conveyor-belt loops receive all lateral 

loads (at right angles to the direction of wave motion), supports all 
tires that are not “riding” on the pipe, and couples one module to 

the next. 

(b) Wave-induced hydrodynamic loads are ultimately transferred 

from tire strings to the tire-armored steel pipe. This takes place 

in stages. Wave action displaces tire strings and belt loops in the 

direction of the wave motion (along the pipe) causing the pipe tires 

to slide along the pipe and become compressed as they transfer their 

load to the tire retainer at the end of the pipe (Figs. 4 and 7). 

(c) The pipe itself effectively floats in a dense matrix of 

flexibly connected tires. 

12 



——12' x 40'PT BREAKWATER MODULE — — 

56 SU5H, 04048 A544 M4039 3035, IISD, 2125, 25222) BW 9854 eee EEL RES byipunven) 
“52 mM 43423837 343398 5409S =——BELT Loop TIRES 

: =: + ee ==> 16" STEEL PIPES 
(49 long, I2'apart ) 

12 STRINGS, 
(10 tires each) 

TIRE RETAINER ne 

faa (405 dione 56 TIRES PER PIPE Lae ae 
Si sR 

ey Vane oe See lr 1 10 a Me 6 5 3 4 
“| ( dA Vo De ve is UNG ee aD) 

SHORE WARD [+ -— = -—- - === | SEAWARD 
TE= TRAILING EDGE WIDTH B= 40' LE = LEADING EDGE 

Note :!£ Truck fires used, 40” diameter 

Figure 4. Schematic of PT-1 breakwater module. 

Figure 5. Definition sketch for PT-Breakwater. 
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Figure 6. Assembly of PT-1 (foreground) and PT-2 modules. 

—— PIPE RETAINER —— 

4 SECTIONS OF 2" STEEL PIPE 

SCREWED INTO PIPE-CROSS 
AT CENTER 

16" STEEL-PILE PIPE, 
0.281" WALL 

‘STEEL END PLATE, 
5/16" 

FLOTATION CRAMBER 

( foam filled ) 

Figure 7. Tire retainer at end of pipe. 
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The tire retainer used in the PT-1 module is shown in Figures 4 and 7. In 

the case of the PT-2 module, the retainer was a tire casing that was held in 

place by a 1.9-centimeter threaded steel rod extending through the telephone 
pole and casing. 

Standard marine steel-pile pipes were utilized as buoyancy chambers and 

stiffeners in the PT-1 module; they were 12.2 meters long and 41 centimeters 

in diameter, with a wall thickness of 0.71 centimeter. Scrap telephone poles 

were used for the PT-2 module; they were 12.2 meters long with a diameter of 

33 centimeters at the butt end and 23 centimeters at the tip. 

Truck tires ranging in size from 9.00-18 to 10.00-20, with an average 

diameter of 102 centimeters were used for PT-l. Car tires with rim sizes 

ranging from 32 to 38 centimeters were used for PT-2; the average diameter was 
about 65 centimeters. 

A three-ply conveyor belt strip, 14 centimeters wide and 1.3 centimeters 

thick, was used as the binding material; this had a rated breaking strength of 

7900 kilograms. A five-hole bolted connection (Figs. 8 and 9) was used to tie 
the belt into continuous loops. 

Figure 8. Breakwater and mooring-system components. 
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Conveyor belt 

(5% x V2, 3 ply) 
Auto 
tires 
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5— hole 
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@eoq 

<a 

Steel— pipe 

rope guide 

Conveyor belt 

Figure 9. Tire mooring damper (six tires are used in the 

MS-1 mooring system discussed in Sec. III,2). 

2. Construction Procedures. 

The floating tire breakwater is a modular construction concept. The pro- 

cedures followed in the actual construction of the PT-1 modules are described 

in this section. The procedures used for the PTI-2 modules are very similar 

and therefore are not covered. When constructing these modules onsite and 

at field installations, it should be insured that a crane with sufficient 

lifting capacity is provided as the two-pipe PT-1 module weighs approximately 

11 metric tons and the PT-2 module weighs about 4 metric tons. 

Assembly of the breakwater is begun by arranging the tires according to 

the pattern shown in Figure 4 but leaving out those tires labeled free ttres 
(i.e., all tires not connected in some way to a belt). This phase is depicted 

in Figure 10, where the last tire is just being rolled into place, and also in 

Figure 11, where the conveyor-belt strips are being prepared by cutting to 

length and punching the five-hole bolted pattern with a gasket or leather 

punch (also shown in Fig. 6). 

Having assembled the tires, the belts are then guided through the tire 

casing according to the pattern shown in Figure 4. An illustration of this 

procedure is shown in Figures 12 and 13. The belt-to-belt connection is then 

completed by overlapping the belt ends and inserting the five bolts required 

for each connection (see Fig. 14). A single bolt is used to fix each belt 

loop to the sidewall of one belt-loop tire (see Figs. 15 and 4); this prevents 

the belt from rotating under wave action. 

After all the belt loops: have been bolted together and anchored, the 

remaining free tires are rolled into place. The unit is then ready for inser- 

tion of the pipe. One forklift is used to raise the pipe and position it for 

entry into the long tunnel created by the 56 alined tires; a second forklift, 

or similar device, pushes and alines the pipe as required. This having been 

accomplished, the module appears as shown in Figure 6. The tire retainer 

shown in Figure 7 (or the one depicted in Fig. 8) is then installed at each 

end of the pipe, and the PT-1 module is ready to be lifted into the water (see 

Bale wli6) re 
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Figure 12. Guiding conveyor-belt strip through tire casings. 

SAT : Ser 

SEE Sc ai Ses SRS 

Figure 13. Tensioning belt before completing belt-to-belt connection. 
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Figure 14. Belts are overlapped and bolted together. 

Figure 15. Belt is anchored to sidewall of one tire. 
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Figure 16. PT-l module ready for lift into wave tank. 

3. Breakwater Buoyancy. 

a. Pipe Buoyancy Test. A simple buoyancy test was executed by resting 

steel I-beams on top of one of the tire-armored pipes of the PT-1 module until 

total submergence was attained (i.e., crown of tires just at the water sur- 

face, case B in Fig. 17). Starting from the static, no-load equilibrium 

position of the breakwater (i.e., crown of pipe at water level and interior 

of the tire vented to atmosphere, case A), two steel I-beams, each 10.7 meters 

long and weighing 98 kilograms per meter, were placed onto the tire-armored 

pipe. These beams provided the loading needed to attain total submergence of 

the pipe-tire unit. In each case, equilibrium demands that 

Bar yn oF Up) eg SB ce ae (1) 

where 

F = added external load 

Tes = extraneous loads (from mooring system, etc.) 

F, = buoyancy force per tire due to entrapped air 

Fy = net buoyant force due to pipe (lift minus weight) 

Wey = weight of tire segment submerged in water 

Wea = Weight of tire segment in air 

n = number of tires on pipe 
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Figure 17. Forces on pipe-tire unit. 

In this case the pipe is 12.2 meters long (4l-centimeter outside diameter 

and 70.2-kilogram-per-meter weight in air), provides a net lift of 59.5 kilo- 
grams per meter when totally submerged, and supports 49 truck tires. Truck 

tires have a specific gravity of approximately 1.2 with a weight of W,, = 41 

kilograms in air for the sizes predominantly used (i.e., 10.00-20 and 9.00-18 

truck tires). Submerged in water this weight is reduced to approximately one- 

sixth of Wr,, or 6-8 kilograms if all air is expelled. Applying these val- 

ues to case A (which corresponds to F = F, = 0 and approximately three-fourths 

of tire material submerged) and using equation (1), it follows that the extra- 

neous load is a small lift force of 26 kilograms, (i.e., F, = -26 kilograms). 
When the external load F is applied (case B), the buoyancy force resulting 

from air entrapped in each tire may be calculated from equation (1) to be: 

10.7(196) + 49(0 + 6.8) + (-26) 12.2(59.5) + 49F, 

tes] i] 34.2 kilograms per tire 

On an average, this implies that 34 liters of air is trapped in the crown 

of each tire. It is not know at what rate this trapped air would escape 

under static conditions; during wave action the tire crown would be alter- 

nately vented and replenished with air. In determining the flotation require- 

ments for the complete structure, the weight of suspended sediments that may 

accumulate in the tire casings as well as the influence of marine growth 

should be considered. 

b. Equilibrium of Breakwater. The load-carrying capacity of the break- 

water must be carefully considered, particularly in areas where the weight of 

the breakwater is likely to increase substantially with time due to deposition 

of suspended sediments within the tire casings, biofouling, etc. In extreme 

cases, all the tires may have to be foamed to provide adequate reserve buoy— 

ancy, whereas at other sites the lift provided by the steel-pipe flotation 
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chambers 

F 

alone is sufficient. Equation (1) may be used to estimate the 

reserve buoyancy provided by a clean single-pipe PT-1 module if some terms 

are redefined: 

Foeq = sediment and biofouling load (per tire) 

extraneous load (from binding material, tire retainers, pipe end 

caps, shackles, etc.) 

buoyancy force due to entrapped air (for each tire not foamed) 

buoyancy force due to submersed foam (for each tire that is foamed) 

number of tires per module 

number of tires foamed (per module) 

This leads to 

nF ood + nWiw + F 

(2) 
1 m 

Fea Ch > Wee) = Oy = 15) = (Fe = ¥,) 

Using the following approximate values and estimates for the PT-1l module: 

1 = 220 kilograms 

Fy = (60 kilograms per meter) (12 meters) = 720 kilograms 

Wey = 7 kilograms 

19 = 17 kilograms (50 percent of value from buoyancy test) 

Fe = 34 kilograms (crown fully foamed, 34 liters) 

n = 176 tires 

to obtain 

F (17 71) + : ) (720 280) Z (34 7) = = a - +/{— = 1 

eed 176 (=) 

m (3) 
ovaay @ US ae 17 (=) (estograns per tire) 
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The following examples demonstrate the increased load-carrying capacity 

when foam is added to the tires: ; 

(a) Example 1. If none of the tires are foamed, m = 0 and m/n = 

0 in equation (3) so that F..qg = 13 kilograms per tire. Therefore, a 

weight increase of approximately 13 kilograms per tire can be accom- 

modated before the breakwater starts to submerge. 

(b) Example 2. If all the tires are foamed, m =n and m/n = 1 
above so that F..q = 30 kilograms per tire. In this case, each tire 

can carry approximately 30 kilograms of additional load for a total 

reserve buoyancy of about 5300 kilograms per single-pipe module. 

4. Cost Estimates. 

Major construction components for the PT-1 module and their respective 

costs as of mid-1980 are listed in Table 1. It should be noted that the steel 

pipe accounts for nearly 60 percent of the total cost. Therefore, substantial 

savings are possible if used pipe can be purchased, which was done for the 

floating breakwater at the Mamaroneck site where used dredge pipe was obtained 

at a fraction of the cost indicated in Table 1. As a precautionary measure, 

steel pipe should be filled with foam before the end caps are welded into 

place. The total component cost amounts to $19.60 per square meter of 

breakwater. 

Table 1. Cost estimates of PT-Breakwater components. 

Module dimensions: 3.7 by 12.2 m (B = 12.2 m) 

Materials: Truck tires (9.00-18 and 10.00-20) 
Steel pipe (4l-cm-diameter steel-pile pipe) 

Conveyor-belt material (three-ply, 14 by 1.3 cm) 

Nylon bolts, washers, and nuts (13 mm) 

Steel pipe 12.2 m $43.00 $524.60 $11.60 

Polyurethane foam 2.4 m9 75.00 180.00 4.00 
(pipe plus 20 percent of tires) 

Tying material 94m 1.15 108.10 2.40 

(conveyor belt) 

Tires 176 0.25 44.00 1.00 

(transportation cost) 

Nylon bolts, washers, and nuts 80 0.35 28.00 0.60 

Cost of breakwater $19.60 

(excluding mooring system and assembly) 



Assembly and launching procedures should be carefully considered and 
planned in advance so as to take full advantage of cost-saving site condi- 

tions. Since the anchoring system can be very costly, alternatives should be 

carefully investigated (e.g., the use of anchor piles may be less costly than 

concrete clump anchors or steel embedment anchors, depending on availability 

of pile-driving equipment and geotechnical conditions). 

III. EXPERIMENTAL SETUP AND PROCEDURES 

1. Test Facility and Instrumentation. 

a. Wave Tank. Experiments were conducted in CERC's large wave tank which 

is 194 meters long, 4.6 meters wide, and 6.1 meters deep. The tank was oper- 

ated at two water depths, 2.0 and 4.7 meters, using regular waves ranging in 

period from 2.6 to 8.1 seconds and height from 0.15 to 1./8 meters. A sche- 

matic of the wave tank operating with a piston-type wave generator at one end 

and a relatively ineffective rock revetment wave energy dissipator at the 

other end is shown in Figure 18. The breakwater at high and low water is 

shown in Figures 19 to 23. 

b. Wave Gage. Two Marsh McBirney voltage-gradient water level gages 

(Model 100) were used to measure incident and transmitted waves. The waves 

were calibrated twice daily over a range of 2.0 meters by manually lowering 

and raising the wave staff. The output was recorded on a six-channel Brush 

oscillographic recorder. 

c. Force Gage. Loads on the seaward mooring line were measured by a 

single force gage located above the tank near the wave generator. The force 

gage consisted of a cantilevered steel plate with strain gages mounted near 

its base, as shown in Figure 24. The strain gages formed two arms of a full 

Wheatstone bridge that was driven at carrier frequencies. The sensitivity of 

the force gage could be varied over a broad range, not only electronically but 

also mechanically, by varying the mooring-cable attachment point on the can- 

tilever (Fig. 24). The force gage was generally calibrated before and after 

each test (one wave generator stroke setting) by applying a series of loads 

to the cantilever using a mechanical load tightener (come-along) and a 2270- 
kilogram dial force gage. The electrical output was displayed on the six- 

channel Brush oscillographic recorder; typical calibration curves are shown in 

Figure 25. 

Se Wave goge ee A ; 

k Vinee 1LOm_ Me eee Tee 

ae | —— mss i THY = = INOING/ x 

Ibs d=46m ond 20m 

fasim 30m ao 20 m——~ n 122m- ‘ +|- 19m—— oo 31m = 

65m 

Tire mooring damper 

12" pulley Saas st OD TEGO Ea 000d. ye 

re = 43m == a =>—___—_—_-—__]] 

Timah: -22oooo 
' 

brie Ny 19m | 
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Figure 18. Large wave tank at CERC with breakwater and MS-1 mooring system. 
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Figure 21. Inserting PT-1 breakwater. 

Figure 22. Turbulence associated with wave damping. 
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Figure 23. Attachment of seaward mooring line (MS-1 mooring system). 

alae 
ji SIZ wee” Silas PUNE 

3/4" BOLT SHACKLE 

1/4" MOORING 
CABLE 

STRAIN GAGES 

STRAIN- GAGE - CANTILEVER STEEL BEAM ACROSS 

UNIT WAVE TANK 

— CANTILEVER FORCE GAGE —— 

Figure 24. Strain-gage-cantilever force gage. 
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Figure 25. Force gage calibration record and curve. 

2. Mooring System. 

The basic mooring-line arrangement used throughout the test program is 

shown in Figure 18. The mooring lines were 6-millimeter-diameter wire rope, 

except for two removable segments 6 meters long that are labeled ttre mooring 

damper as shown in Figure 18 and in more detail in Figure 9. These sections 
were installed in order to determine whether a pliant mooring-line insert such 

as the six-tire mooring damper could significantly reduce peak mooring forces. 

Should a relatively “soft" mooring system be desirable, it may be achieved by 

installing a tire mooring damper. The shoreward mooring bridle was always 

attached directly to the steel pipes; no mooring-line inserts were used on 

this side of the breakwater. On the seaward side the mooring bridle was 

most often attached to the steel pipe with cables connected to shackles 

extending through the pipe wall. An exception to this is the third mooring 

system tested in which the mooring bridle was attached to the breakwater via 

conveyor-belt loops that were laced through two tires armoring the pipe. In 

this case the mooring-line forces are first transmitted to those two tires, 

then transmitted to the pipe itself after the tires have shifted some distance 

along the pipe and encountered the compressive resistance of the other tires 

restrained by the retainer at the end of the pipe (Fig. 7). 

The following mooring configurations were tested (major features are 

listed in Table 2): 

(1) Damper Pipe Connection (MS-1). In this module the tire 

mooring-force dampers are installed and the mooring bridle is con- 

nected directly to the pipes (soft line, hard connection) (see Figs. 
18, 23, and 26). 
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Table 2. Compliance of mooring systems. 

Mooring system 

Type of mooring-line insert! Belting 

(hard) 

Type of breakwater connection Tires on pipe 

(soft) 

Mooring line stiffness (ranked) 2 

linserts are 6 meters long; belting is in the form of a loop 

(used double strength) with elongation characteristics under 

load approximately equal to that of wire rope used. 

Figure 26. Mooring bridle used in field installation. 

(2) No-Damper Pipe Connection (MS-2). In this module the mooring 

bridle remained attached to the pipes but the mooring-force damper was 

removed and replaced with a conveyor-belt loop of equal length. The 

load elongation characteristics of the conveyor-belt loop are similar 

to those of the wire rope used (hard line, hard connection) (Fig. 27). 

(3) No-Damper Tire Connection (MS-3). In this module the conveyor- 
belt loop remained in place, but connection to the breakwater was made 

by guiding the belt around two tires located on each pipe. Im the 

PT-1 module, tires numbered 9 and 10 were used for this purpose; in 

the PT-2 module, tires numbered 15 and 16 were used (hard line, soft 

connection). 
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Figure 27. Load elongation curves for mooring-line inserts. 

A stress-strain diagram for the conveyor belt with a five-hole bolted connec- 

tion is shown in Figure 28. The strain values are influenced by the connec- 

tion itself (i.e., elongation of the boltholes is being measured along with 

any stretching of the belt). The belt failed at a load of 2270 kilograms, not 

at the five-hole bolted connection but at the transition, where the belt had 

to be reduced in width from 14.3 to 8.9 centimeters in order to fit into the 
testing machine. 

Force displacement relationships for MS-1 and MS-2 were obtained by ten- 

sioning the insert, using a large dump truck, and determining deflection and 

force, using a measuring tape and a dial force gage. The results are plotted 

in Figure 27. Corresponding relationships for MS-3 were not determined, but 

observations indicate that the elastic properties of MS-3 are between those of 
MS-2 and MS-1. 

A mooring bridle utilizing both truck and automobile tires is shown in 

Figure 26. This unit was not tested at CERC; however, it has been used in 

field installations. 

3. Test Procedure and Conditions. 

This experimental program is limited to two designs, the PT-1 and PT-2 
modules, and two water depths, 2.0 and 4.7 meters. The summary of the test 

conditions shown in Table 3 lists one other breakwater design--the PT-DB mod- 

ule; this design is simply a PT-] breakwater that has been lengthened in the 
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Figure 28. Stress-strain diagram for belt connection. 

Table 3. Summary of test conditions. 

Breakwater No. of Water Mooring Generator Wave height Wave period 
Type Beam runs depth system stroke 

(m)~ (m) (cm) (cm) (s) 

PT-1 12.2 101 2.0 MS-1 61 to 213 15 to 113 2.6 to 8.1 

PT-1 12.2 92 4.7 MS-1 61 to 168 42 to 178 2.6 to 8.0 

PT-1 12.2 62 4.7 MS-2 61 to 152 32 to 132 2.6 to 8.1 

PT-1 12.2 SU 4.7 MS-3 61 to 122 30 to 130 2.6 to 8.1 

PT-2 12.2 40 2.0 MS-3 61 to 122 18 to 110 2.6 to 8.1 

PT-2 12.2 36 4.7 MS-3 61 to 122 30 to 150 2.6 to 8.1 

PT-DB 25.9 34 2.0 MS-3 61 to 122 28 to 132 2.6 to 8.1 

shoreward direction by flexibly attaching the PT-2 module by use of conveyor- 

belt loops. Data for the PT-DB configuration are listed in Appendix A. 

The PT-1 module was tested with three different mooring systems and was, in 

general, emphasized in the experimental program. Out of 402 runs tested, 290 

were devoted to the PT-1 breakwater. Wave heights ranged from 0.15 to 1.78 
meters, with wave periods ranging from 2.6 to 8.1 seconds; the wave generator 

stroke varied from 0.61 to 2.13 meters. 

With the breakwater floating in the wave tank and attached to the mooring 

system, test preparations were generally initiated each day by adjusting the 

water level, calibrating the wave and force gages, and checking the stroke 
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setting of the wave generator. The generator was adjusted to the desired 

frequency, started, and waves generated for about 5 minutes; this constituted 

a run. After shutdown of the wave generator, a necessary waiting period 

followed in order to regain quiescent conditions in the wave tank. When these 

conditions were attained, waves of another frequency were generated and this 

process was repeated until all the desired wave periods for that stroke 

setting were obtained; this process constituted a test. One, and sometimes 

two, tests were completed per day, and the generator stroke was changed in the 

afternoon so that a new test could be started the following morning. Wave and 

force gages were calibrated both at the beginning and end of each day's 

testing (and sometimes more frequently). 

IV. DATA REDUCTION AND ANALYSIS 

1. Dimensional Analysis. 

For a particular breakwater and mooring system, the transmitted wave 

height, H,, may be expressed as a function of the following variables: 

H, = f(H,L, B,D,G,A,m, k,e, d,y,v,g) 
where 

€ = horizontal excursion of the breakwater from its equilibrium position 

k = measure of mooring-system stiffness (equivalent spring constant per 

unit length, i) 

m = mass of breakwater (per unit length, A) 

Y = specific weight of water 

v = kinematic viscosity of water 

g = gravitational acceleration 

The remaining terms are defined in the definition sketch (Fig. 5). Since 
this expression contains three dimensionally independent physical variables 

(length, mass, time), this relationship involving 14 physical variables may be 

replaced, according to Buckingham's t-Theorem, by one involving 11 dimension- 

less groups: 

= wave transmission ratio, Ce 

structure parameters oO} a 

wave steepness 
em 

u 
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ye = wave structure parameters 

2 BD = fluid structure parameters 
d * mg 

(z)( DY gL a Reynold's number 

Delete the following parameters for the stated reasons: 

o|> 

ial5 

==} Ku) 

(ee) 

Only quasi-two-dimensional experiments will be 

considered (i.e., diffraction effects are 

absent when the breakwater extends across the 

full width of the tank). 

This is the ratio of mooring-system static 

restoring force to structure weight and is not 

changed during the experiment. 

Assumed to be a weak parameter that is of 

little importance for small values of e/H 

(i.e., for horizontal motions of the structure 

that are small compared to the wave height). 

This parameter relates the mass of fluid dis- 

placed by the breakwater to the mass of the 
breakwater itself. It would remain constant 

for geometrically similar breakwaters con- 
structed from the same materials. 

This Reynold's number is based on the tire 

diameter and a velocity that is related to the 

maximum wave-induced water particle velocity; 

it will be assumed large enough to insure 

Reynold's number independence. 

By eliminating the above dimensionless groups, the following is obtained 

L 
Cc. =f 3 

ei als ol|lw Se 
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This is the relationship on which the experimental program was based. 

Similarly, consider the mooring-force relationship to be 

ye £(H,H, >L, B,D,G,A,m, k,e, d,y,v,g) 

and, by similar reasoning, obtain 

F My al YD) B 
=—SSEl=pPoKose (5) 

L 

2. Data-Reduction Procedures. 

Analog signals from the wave gages and force transducer were recorded on 

three channels of a six-channel Brush oscillographic recorder. Typical 

records of the seaward mooring-line force and the incident and transmitted 

waves are reproduced in Figures 29 to 32. 

Wave reflections from the steep, rock-armored beach at the end of the wave 

tank (Fig. 18) were an annoyance, particularly for the longer waves generated. 

The incident and transmitted wave heights were therefore generally obtained 

from the first 5 to 10 waves in the run (i.e., before wave reflections could 

substantially influence wave height measurements. Beach reflections were 

particularly bothersome when generating waves of low steepness and of periods 
larger than about 5 seconds. 

From the force gage records it can be seen that the seaward mooring load 

fluctuates with the passage of each wave between a maximum value, which varies 
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Figure 29. Wave and force record for long waves (d = 4.7 m, T = 8.0 s). 
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Figure 32. Wave and force record for shallow-water waves (d = 2.0 nm, 

T= 5.5 8). 

throughout the run, and a minimum value, which remains essentially constant. 

The individual force peaks occur as the breakwater surges shoreward during 

the passage of each wave crest, but is prevented from moving too far in this 

direction by the mooring-line restraint. On the other hand, the seaward 

movement of the breakwater is not similarly opposed, since no force cantilever 

was installed on the leeward side of the breakwater. Instead, only a constant 

negative restoring force or preload of approximately 113 kilograms was exerted 

on the breakwater via the shoreward mooring line and pulley-weight arrangement 

shown in Figure 18. The zero-force referen¢e position recorded at the begin- 

ning of each run always corresponds to this static preloaded condition of the 

cantilever force gage. Negative force values up to the magnitude of this 

preload can consequently be obtained as the breakwater surges seaward; these 

constitute the stable lower limit of the force records. 

A time-series analysis of the force data was not performed because the 

experiments were limited to regular waves and because the level of effort 
required did not make it feasible. For practical purposes, each force record 

is therefore characterized by a single force value that is considered most 

useful for design purposes—the peak force, F, occurring during the length 

of record (excluding wave generator start-and-stop transients, which have no 

counterpart in nature). Typically, this implies that the first 5 to 10 waves 

were not included in the analysis, nor were those last waves propagating down 

the tank after shutdown of the wave generator. Each run consists of at least 

50 waves. In addition to the peak mooring force, F, an approximation to the 

drift force, F, is also obtained, as is the significant peak force, F 

The drift force F is the net, time-averaged force acting on the seaward 

mooring line; it was determined “by eye” as show in Figure 33 and is there- 

fore subject to larger errors. The significant force, Fz. represents the 

average of the largest one-third of the force peaks, again excluding stop-and- 

start transients; it is obtained manually, directly from the data trace. 

If stop-and-start transients are included in the determination of the peak 

mooring force, as has been done by other investigators (Giles and Sorensen, 
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Figure 33. Definition sketch for force analysis. 

1978), the difference between F and this peak force is frequently small, but 

on the other hand can be quite large as shown in Appendix B. In that appendix 

the peak mooring force, F, is also compared to the significant peak force, 

F,, for a large number of the tests. 

The cantilever force gage is calibrated at least once at the beginning and 

ending of each day's testing; if zero drifts are observed, it is calibrated 

more frequently. Calibration is accomplished manually via a separate cable 

with mechanical load tightener and 2270-kilogram dial force gage in series, 

attached close to the cantilever. A typical calibration record is shown in 

Figure 25. The force values are always referenced to the static no-load 

condition (i.e., with pully preload but no waves). 

V. EXPERIMENTAL RESULTS 

1. Wave Transmission Data. 

For each breakwater configuration and water depth, the transmitted wave 

height depends primarily on the width of the structure and the incident wave- 

length (or period) and wave height. Dimensional analysis and physical insight 

were invoked in Section IV to arrive at dimensionless parameters that would 

describe the problem more succinctly and clearly and would also guide the 

experimental effort and analysis of the results. This evolved in the presen- 

tation of the data in the format shown in Figure 34. The wave height trans-— 

mission ratio, C, = H,/H, is presented as a function of relative wavelength 

L/B, with different symbols designating ranges of wave steepness H/L. These 

are the primary parameters. The secondary parameters are listed in the insert 

of each figure. These parameters specify the water depth (relative depth, 
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Figure 34. Wave transmission data for PT-1 breakwater (d = 4.7 m). 

D/d) and breakwater geometry (aspect ratio, B/D, and pipe spacing, G/D). 

For design purposes, the transmission characteristics of each breakwater are 

summarized in the form of a single wave height transmission curve. This curve 

corresponds to a wave steepness of H/L = 0.04 (a moderate value frequently 

encountered in practice) and different values of D/d. Although much data 

have been obtained at wave steepness other than 0.04, indicating that the 

transmission ratio, Ces generally decreases with increasing wave steepness, 

the available data are not adequate for defining transmission curves for wave 

steepness other than 0.04. Nevertheless, the influence of wave steepness has 

been preserved to a large extent by grouping the data according to steepness 

categories; in Appendix C the value of H/L is actually listed next to each 

data point. Appendix C should be particularly useful for design cases with 

wave steepness near the extremes encountered in nature, either high or low 

(e.g-, H/L larger than 0.08 or less than 0.02), since deviations from the 4- 
percent design curve may then become significant. The wave transmission data 

in Appendix C have also been segregated with respect to the type of mooring 

system installed, but it was found that this had no discernible influence on 

wave transmission characteristics. It is therefore permissible to combine the 

data for all of the mooring systems as has been done in Figure 34. 

a. PT-1 Breakwater. Wave transmission data for the PT-]1 module (truck 

tires, steel pipe) are show in Figures 34 and 35 for two water depths, D/d = 

0.22 and 0.51. In both cases the transmission ratio, C., increases mono- 

tonically with relative wavelength L/B. The breakwater is very effective 
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Figure 35. Wave transmission data for PT-1 breakwater (d = 2.0 m). 

in filtering out waves that are shorter than the width of the structure, but 

becomes increasingly less effective as the wavelength increases. 

breakwater is significantly more effective at the lower depth, 

particularly for longer waves. The influence of water depth, or relative 
draft D/d, becomes particularly apparent in Figure 36 where the transmission 

dent that the 

curves are compared. 
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36. Wave transmission design curves for PT-1 breakwater. 

39 

It is evi- 



The influence of wave steepness is most readily detectable for longer 

waves (e.g-, L/B larger than 2) and may be important at low water depths. 

For L/B = 2.9 and D/d = 0.51 (Fig. 35), the value of C, decreases dramati- 

cally from 0.9 to 0.4 as H/L increases from 0.007 to 0.028 (refer also to 

Fig. C-7 in App. C). The data in Figures 34 and 36 apply to the PT-1 module, 

which has a pipe spacing of G/D = 3.3, aspect ratio of B/D = 12, and beam 
B = 12.2 meters. These conditions may not be altered greatly without also 

influencing the wave transmission characteristics. For example, the design 

curves of Figure 36 may not apply to a structure with a much larger beam, 

e.g-, B = 24 meters (i.e., or B/D = 24). Until further data on the importance 

of B/D are obtained, it is suggested that the PT-l1 wave transmission design 

curves of Figure 36 be limited to beam dimensions in the range from 9 to 15 

meters. Such information has been recently provided in Harms, Bishop, and 

Westerink, 1981. Existing data from small-scale experiments (Harms, 1979) 

indicate that the transmission curve for D/d = 0.22 does not change signifi- 

cantly as the water depth increases. For deepwater applications with D/d 

less than 0.2, it is therefore suggested that the D/d = 0.22 curve be used for 

design purposes, at least until further data become available. In addition, 

curves should not be extrapolated beyond the range of data shown (i.e., 

L/B > 4.5 and 3.0). 

b. PT-2 Breakwater. Wave transmission data for the PT-2 module (con- 

structed of automobile tires and telephone poles) are shown in Figures 37 and 

38, with design curves given in Figure 39. The behavior of the PTI-2 module is 
very similar to that of the PT-1 module, although a decrease in wave attenua- 

tion performance is indicated, at least at the larger water depths considered 

in Figure 40. It was observed that the influence of wave steepness H/L is 

again particularly apparent at the lower water depth (D/d = 0.33, Fig. 38) and 

large values of L/B. The actual H/L values associated with each data point 

are given in the appendixes. Again, curves should not be extrapolated beyond 

the range of the data shown (i.e., L/B > 4.5 and 3.0). 
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Figure 38. Wave transmission data for PT-2 breakwater 

(d = 2.0 m). 

H/L =0.04 

D/d=0.14 

G/D D(cm) 

5.5 66 

6) 0.50 1,00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 

Relative Wavelength (L/B) 

Figure 39. Wave transmission design curves for PT-2 breakwater. 
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Figure 40. Comparison of PT-1 and PT-2 wave 

attenuation (d = 4.7 m). 

c. Goodyear Breakwater. Giles and Sorensen (1978) obtained prototype- 

scale wave transmission data for the Goodyear floating tire breakwater using 

the large wave tank at CERC. Data for the 6-module-wide Goodyear breakwater 

are plotted in Figures 41 and 42, along with the wave transmission curve for 

the PT-2 module. Both breakwaters are constructed from automobile tires and 

have a beam of 12.2 meters which is equivalent to B/D = 18.5. For the lower 

water depth case considered in Figure 42, it is evident that the PT-2 break- 

water is substantially more effective than a Goodyear breakwater of equal 

size. At the larger water depth considered in Figure 41, the PT-2 breakwater 

is still superior but not as much so as at the lower water depth. 

From extensive small-scale experiments by Harms (1979a, 1979b), the 

influence of water depth is found not to be of practical importance for the 

Goodyear breakwater, at least for values of D/d less than 0.4, although 

C clearly decreases as D/d increases. How significant the influence of 

pid is for the full-scale Goodyear breakwater (Figs. 41 and 42) is shown in 

Figure 43 where the data for D/d = 0.16 and 0.33 may be compared while keep- 

ing L/B, H/L, and B/d constant; the difference in C, is typically less 

than 0.1 (the C, values near L/B = 2 are probably false). Small-scale and 

prototype-scale data are therefore in agreement and the single Goodyear wave 

transmission curve of Figure 44 (Harms, 1979a) may be used for most practical 

applications as long as D/d does not exceed 0.4; near D/d = 0.4 the design 
curve will be somewhat more conservative than at lower values of D/d. 

The performance of the PT-1 module is compared to that of a Goodyear 

breakwater of equal size in Figure 44. It is apparent that the PT-Breakwater 

provides substantially more wave protection than the Goodyear breakwater. It 

42 



=} 1,00 
oO 

S) 
=) 
log 0.80 

5 x 
a 
o 
E 0.60 2 LEGEND 

= (H/L) 10? = 
~ + 0.6 to 1,9 

‘& 0.40 © 2.0 to 6.0 
@ xX 6.0 tc 98 
I= 

© D/d B/D Dicm) G/D 

= 0:20 PT-BW 014 185 64 55 
+ 0 X GOODYEARO.I6 18.5 64 

0 | aah NL l l if Nl L 
o) 0.50 1.00 1.50 2.00 2.50 3,00 350 4.00 4.50 

Relative Wavelength (L/B) 

Figure 4]. Comparison of Goodyear and PT-2 wave attenuation (d = 4.7 m). 

Goodyear data 

a 

LEGEND 

(H/L) 10° 

Ve ae + 06 to 119 
o 2.0t0 6.0 

X 6,0 to 89 

D/d B/D D(cm) G/pD 

0,33 18.5 64 55 

enlees 
0.50 1,00 1,50 2.00 2.50 3.00 3.50 4.00 4.50 

Relative Wavelength (L/B) 

Wave Height Transmission Ratio (Cy) fo) iS} 9° ° = = N 7s (on) @ (e) nN 

° iS) iS) ) fs) } iS) a ae a ae rl 

oom 

% xCOD = 

if x00aD 

lo eee) @wo+ 0 | 

ocodgD 

COD +4#+ 

O+FOF+ + 

+ + 

Figure 42. Comparison of Goodyear and PT-2 wave attenuation (d = 2.0 m). 

43 



H/L In % 

Wave Height Transmission Ratio (Cy) 

0.0 1.0 2.0 3.0 

Relative Wavelength (L/B) 

Figure 43. Influence of D/d on Goodyear wave attenuation. 

1.2 

H/L = 0.04 

° = @ le) 

Wave Height Transmission Ratio (Cy) 

oO oa 

0.2 B/D G/D D (cm) 

PT- BW 12.0 3.3 102 
—-—-— Goodyear 7- 42 815, 64 

(0) 
0) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Relative Wavelength (L/B) 
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should be noted that the Goodyear design curve in Figure 44 is independent of 

B/D, having been tested over a broad range of B/D during experiments at 

the Canada Centre for Inland Waters (CCIW) (Harms, 1979a, 1979b). A similar 

series of experiments for the PT-Breakwater was scheduled at CCIW in September 

1980 (see Harms, Bishop, and Westerink, 1981 for results). 

2. Mooring-Force Data. 

a. PT-l1 Breakwater. This breakwater was tested most extensively in 

the MS-1 mooring configuration (i.e., with a six-tire mooring-force damper 

installed). It was also tested with the MS-2 and MS-3 mooring systems at the 

deepest water depth of 4./ meters. As is explained in Section III, the MS-2 

mooring configuration is the “stiffest” system tested and the MS-1 is the most 

elastic or “softest” system tested with the elastic properties of the MS-3 

system lying somewhere between them. 

The peak mooring force is plotted in Figures 45 and 46 as a function of 

wave height for the case of MS-1 and two water levels, D/d = 0.51 and 0.22. 

An exponential relationship between the mooring force and the wave height can 

be detected in the data, even though this information is masked at times by 

the relatively large scatter of data (even at fixed L/B) that is common in 

this type of measurement. The best “by eye” fit has been drawn and indicates 

that at both water levels F is proportional to H3/2. For a given wave 

height and wavelength, the peak mooring forces are clearly higher at the lower 

water level. This is shown in Table 4 where the value of the force coeffi- 

cient K is listed and defined. The influence of L/B is difficult to quan- 

tify from the data: an increase of F with L/B appears to be indicated, 

particularly at D/d = 0.51, but additional tests would have to be made to 

define this relationship. 
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Figure 45. PT-1 peak mooring-force data (MS-1, d = 2.0 m). 
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Table 4. Summary of mooring-force data.! 

Mooring Force coefficient, K 

system Goodyear 

lFor design purposes, suggest that F be increased 

by 100 kilograms per meter. 

2Estimated values. 

3Data not available. 
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How the mooring-system elasticity affects the peak mooring force is shown 

in Figures 46, 47, and 48. In each case the water level is fixed and only the 

mooring-line flexibility is changed. A substantial increase in F is noted 

when the six-tire mooring-force damper is removed and replaced with a rela- 

tively inflexible section of conveyor belt (i.e., switching from the MS-1 to 

the MS-2 system). This is apparent in Figure 47 where the MS-2 data are shown 

with relation to the MS-1 curve from Figure 46; all the data are above the 

MS-1 curve with much of the data far above it. The MS-3 data and curve- 

through data are shown in Figure 48. This system results in forces that are 

somewhat higher than those for the MS-l1 system but lower than those for the 

MS-2 system. The corresponding values of K are provided in Table 4. 

b. PI-2 Breakwater. The PT-2 module was tested only in the MS-3 mooring 

configuration; test results are shown in Figures 49 and 50. Again as for PT- 

1, the force is proportional to He. but for PT-2 the appropriate exponent is 

2, not 3/2 as it is for PT-1. The curves for n = 2, fitted by eye, are shown 

in Figures 49 and 50; the corresponding values of K are listed in Table 4. 
Although PT-2 was tested with the MS-3, and not the preferred MS-1 mooring 
system, the effect of a change from MS-3 to MS-1 may be estimated by assuming 

that the ratio of the respective forces is the same as for the PT-1 module 

(for which such data exist and are conveniently summarized in Table 4). For 

PT-1 it is noted 

K(MS-1) _ 280 _ 
KQis=3)) 370 7 7 

Assuming that this ratio holds for the PT-2 module as well, the estimated MS-1 
values, shown in Table 4, are obtained. Although the peak mooring forces for 

the PT-1 module are higher than those for the PT-2 module for the same wave 
height and water depth, it should be noted that the transmitted wave is also 

smaller in the case of the PT-1 module. 
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Figure 47. Effect of mooring-system compliance on F 
(MS-1 and MS-2, d = 4.7 m). 

47 



Peakload F (kg/m) 

300 |- 

mae Ooh ay aie 
o ot 

° ° 

a 
° 

150}- Oo ° LEGEND _ 

©) AN 
°o° 2.5 to 43 

BS tov 1 20 
eh Otes {t) 066 

tl ObetOmalee. 

a TE Oe Se | 
O 2B 50 75 100 125 150 175 200 

Incident Wave Height H (m) 

Figure 48. PT-1l peak mooring-force data (MS-3, 

d= 400i/ me 

D/d =O.14 

Peakload F (kg/m) 

LEGEND 

2.5 to 4.3 

1.7 to 2.4 

I3 to V6 

10 to 1.2 

fe) .25 50 as) 00 l25 150 7S 200 

Incident Wave Height H (m) 

Figure 49. PT-2 peak mooring-force data (MS-3, 

d = 4.7 m). 

48 



525 > 

O/d = 0.33 

450 

uw NI e,) 
—E ° 
~ 

= 

% 300 al 
a=) 
o 

: | = + 

cs Ses 

LEGEND 
sob 

L/B + 

© 25 to 2.9 

4 #61.7 to 24 

75 e 13 to 1.6 | 

op Ikey tts ThA 

ee la Gk che est le neh OP i a | 
0) 25 50 75 Koyo) 125 I) 175 200 

Incident Wave Height H (m) 
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c. Goodyear Breakwater. The Goodyear module tests by Giles and Sorensen 

(1978) also included an evaluation of the breakwater mooring loads. Data from 

those experiments are plotted in Figures 51 and 52 for the case corresponding 

most nearly to the conditions in the present study (i.e., for the six-module- 

beam Goodyear breakwater that is also 12.2 meters wide). The curves shown in 

Figures 51 and 52 indicate that F is proportional to H%; the correspond- 

ing force coefficient K is listed in Table 4. The hyperbolic relationship 

between F and H adequately describes the data. 
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Figure 51. Goodyear peak mooring-force data 

(Giles and Sorensen, 1978; d = 2.0 m). 
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(Giles and Sorensen, 1978; d = 4.0 m). 

For a given wave height and length, the mooring forces on the Goodyear 

breakwater are clearly much lower than those for a PT-Breakwater of equal 

size. 

importance of which cannot be quantified at this time: 

This finding is attributed principally to three factors, the relative 

(1) The transmitted -wave for the PT-Breakwater is smaller than 

that for the Goodyear breakwater; 2lL6Qa 6 different levels of energy 

dissipation occur on each structure (wave breaking and impact, etc.). 

(2) Different mooring systems were utilized. The importance of 

this has already been demonstrated with regard to the PT-1 breakwater 

(see Table 4). 

(3) The Goodyear breakwater design stretches extensively under 

load, being very pliable throughout. This influences or perhaps even 

dominates the mooring dynamics and load transmission characteristics. 

VI. SUMMARY AND CONCLUSIONS 

Two prototype-scale PT-Breakwaters were tested in CERC's large wave tank 

using regular waves: the PT-1 module, constructed of truck tires and steel 

pipes in waves up to 1.8 meters high, and the smaller PT-2 module, constructed 

from automobile tires and telephone poles in waves up to 1.5 meters high. 
Wave 

data 

were 

transmission and mooring-load characteristics were established based on 

from 402 separate runs in which incident and transmitted wave heights 
recorded, along with tension in the seaward mooring line. 

In the course of the investigation, it became increasingly evident (during 

construction, crane operations, and early experiments) that the PT-] break- 
water was more rugged and could potentially function and survive under more 
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severe wave conditions than those normally considered acceptable for floating 

tire breakwaters. For this reason, the PT-]1 module was emphasized in the test 

program. Although structural failures were not experienced on either the PT-1 

or the PT-2 breakwaters throughout the many weeks of testing, and posttest 

inspections did not reveal areas of imminent failure or excessive wear, it 

became clear that the PT-2 module was inherently more pliable than the PT-1 

module because it was composed of automobile tires, not truck tires. Conse- 

quently, as waves broke over the structure, greater compression and displace- 

ment of leading-edge tires occurred on the PT-2 module than was true for the 

PT-1 module under the same conditions. Although PT-Breakwaters were designed 

to be pliable, with relative motion between individual components, under 

severe wave-induced loads, the observed compression of leading-edge tires 

on the PT-2 module is felt to be excessive for continuous operation. It is 

therefore suggested that the PT-2 breakwater be limited to sites with signifi- 

cant wave heights of less than 0.9 meter; this condition is considered to be 

equally appropriate for Goodyear or Wave-Maze floating tire breakwaters that 

are composed of automobile tires as well. The value of 0.9 meter was chosen 

by the researchers as representing the best, though inherently somewhat sub- 

jective, estimate for the maximum acceptable significant wave height; it is 

based on extensive laboratory observations and experience with a variety 

of field installations. The above rule is considered to be of practical 

importance because it reminds the designer that the environment is hostile 

and that PT-Breakwaters constructed from automobile tires are inherently less 

rugged than those composed of truck tires; both have survival limitations. 

The wave attenuation performance of PT-Breakwaters improves as either 

wavelength or water depth decreases, or the wave steepness increases (i.e., 

C, increases with L/B and decreases with D/d or H/L). The shelter 

afforded by a particular PT-Breakwater is strongly dependent on the incident 

wavelength: substantial protection is provided from waves that are shorter 

than the width of the breakwater (i.e, L< B), but very little from waves 

longer than three B. As the water depth decreases, the wave attenuation 

performance improves; a breakwater that provides inadequate shelter at high 

tide may therefore be satisfactory at low tide. Wave attenuation generally 

improves with increasing wave steepness, especially for relatively long waves 

in shallow water (e.g., L > 3B and d < 3D). This behavior is attributed 

principally to the inherent instability of waves, which increases with wave 

steepness and, for waves near the breaking limit, is so great that only a 

small perturbation is required to “trigger” the breaking process. For steep 

waves, breaking was observed to start just seaward of the breakwater with 

large amounts of energy being dissipated as the wave rolled and surged over 

the breakwater. The wave attenuation performance of the PT-1 module was found 

to be superior to that of the PT-2 module and the Goodyear breakwater. For 

L/B = 1 (and deep water with d > 3D and H/L = 0.04), for example, the wave 
height transmission ratio was approximately C, = 0.6, 0.4 and 0.2 for the 

Goodyear, PT-2, and PT-] breakwaters, respectively. Wave transmission curves 

given in this report should not be used to design breakwaters that are less 

than 9 meters wide or more than 15 meters wide (see Harms, Bishop, and 

Westerink, 1981 for further data). 

For a given breakwater, the peak mooring force, F (on the seaward moor- 

ing line, per unit length of breakwater) was found to depend primarily on the 

wave height, H, and water depth, d, with wavelength, L, apparently only 

of secondary importance. For the conditions investigated, F increases 
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approximately with the square of the wave height; more specifically, F« Ho 

where n = 1.5, 2 and 2 for the PT-1, PT-2, and Goodyear breakwaters, respec- 

tively. For design purposes, and until the results from ongoing experiments 

become available, it is suggested that the following formula be used to cal- 

culate anchor requirements for breakwaters that range in width from 9 to 15 

meters: 

F = 100(1 + 10 KH”) (6) 

where 

H = wave height (meters) 

F = restraining force (kilograms per meter) to be provided by the 
anchor system for each meter of breakwater length 

n = 3/2 for the PT-1 breakwater or 2 for the PT-2 and Goodyear 

breakwaters 

K = force coefficient from Table 4. 

The available small-scale and prototype-scale data have recently been 

synthesized into detailed design curves (Harms, Bishop, and Westerink, 

1981). In order to be conservative, mooring loads should be determined from 

these design curves as well as equation (6), and the larger value chosen for 

design purposes. 
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APPENDIX A 

TABULATED TEST RESULTS 

DS) 



GH H/DT (DT) (OT) 

L/B 

H/L 

PT-1 breakwater with MS-1 (d = 4.7 m). 

Table A-l. 

4.650 (m) 

= 101.600 (cm) 

3.350 (m) 12.200 (m) 0.218 
12.008 

3.297 

Hl 

3sDT 3B : BLOG :DT/D :B/DT :BLOG/DT = 

(8) 

D (m) 

Relative draft Tire diameter Breakwater beam Log spacing B/DT Water depth BLOG/ DT 

(cm) 
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y) (DT) (DT) 

H/ DT 

CT 

L/B 

PT-1 breakwater with MS-1 (d = 4.7 m).--Continued 

4.650 (m) 

= 101.600 (cm) 

3.350 (m) 12.200 (m) 0.218 12.008 
3.297 

Table A-l. 

BLOG BLOG/ DT :DT/D B/DT sDT B ° ° ° ° ° ° ° ° 
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(y) (DT) (DT) 

CT H/ DT 

H/L L/B 

(m) 

PT-1 breakwater with MS-1 (d = 2.0 m). 

Table A-2. 
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D DT B BLOG DT/D B/DT BLOG/ DT 

(8) 

Relative draft 

(m) 
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CT H/ DT 

L/B 
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PT-1 breakwater with MS-1 (d = 2.0 m).--Continued 

3.350 (m) 0.508 12.008 12.200 (m) 
3.297 2.000 (m) 
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PT-1 breakwater with MS-2 (d = 4.7 m). 

Table A-3. 
4.640 (m) 

= 101.600 (cm) 

Water depth Tire diameter 

DT 3B 

12.200 (m) 

Breakwater beam Log spacing 

3.350 (m) 0.219 12.008 3.297 

BLOG DT/D 

Relative draft B/DT 

B/DT BLOG/ DT 

BLOG/ DT 

CT H/DT 

L/B 

HT 

(y) (DT) (DT) 

(m) (s) (cm) 

(cm) 
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(y) (DT) (DT) 

CT H/DT 

L/B 

B/L 

PT-1 breakwater with MS-3 (d = 4.7 m). 

Table A-4. 

4.640 (m) 

= 101.600 (cm) 

3.350 (m) 0.219 12.008 12.200 (m) 3.297 

BLOG BLOG/ DT DT/D B/DT B 

Relative draft 

(m) 

Tire diameter Breakwater beam Log spacing B/DT Water depth BLOG/ DT 

(cm) 
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PT-2 breakwater with MS-3 (d = 4.7 m). 

Table A-5. 

4.700 (m) 
66-000 (cm) 

Water depth Tire diameter 

DT 
:B 

12.200 (m) 

Breakwater beam Log spacing 

3.660 (m) 0.140 18.485 

: BLOG DT/D 

Relative draft B/DT 

B/DT 
° : 

5-545 

BLOG/DT = 
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L/B CT H/DT 
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(y) (DT) (DT) 

(m) 

(cm) 
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cr W/DT TyTN) T) 

L/B 

PT-2 breakwater with MS-3 (d = 2.0 m). 

(kg/m) 

(kg/m) 

Table A-6. 

(kg/m) 

3.660 (m) 2.000 (m) 
66.000 (cm) 12.200 (m) 

0.330 
18.485 

5-545 

:D :DT 2B : BLOG :DT/D :B/DT :BLOG/DT = 

T 

Water depth Tire diameter Breakwater beam Log spacing Relative draft B/DT BLOG/ DT 
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PT-DB breakwater with MS-3 (d = 4.7 m). 

Table A-7. 
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APPENDIX B 

FORCE MEASUREMENT CORRELATION (PT-1) 
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Figure B-]. Correlation of F and F, (MS=1, d = 2.0 m). 
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Figure B-2. Correlation of F and F (MS-1, d = 4.7 m). 
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Figure B-3. Correlation of F and F, (MS-2, d = 4.7 m). 
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Figure B-4. Correlation of F and 13s (MS-3, d = 4.7 m). 
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Figure B-5. Correlation of F and 19 (MS-1, d = 2.0 m). 
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Figure B-6. Correlation of F and 13 (MS-1, d = 4.7 m). 
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Figure B-7. Correlation of F and F, (MS-2, d = 4.7 m). 
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Figure B-8. Correlation of F and F, (MS-3, d = 4.7 m). 
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APPENDIX C 

DETAILED WAVE TRANSMISSION DIAGRAM 
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Figure C-1. PT-1 wave transmission data for MS-l. 
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Figure C-2. PT-l wave transmission data for MS-1 

(discrete H/L). 
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Figure C-3. PT-1 wave transmission data for MS-2. 
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Figure C-5. PT-1l wave transmission data for MS-3. 
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Figure C-6. PT-l wave transmission data for MS-3 
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Figure C-7. PTI-l wave transmission data for MS-3 

(d = 2.0 m, discrete H/L). 
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Figure C-8. PTI-2 wave transmission data for MS-3 

(discrete H/L). 
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