

Buel. 23 n.uns invers

81

:

White Pine Forest.
U. S. DEPARTMENT OF AGRICULTURE.
DIVISION OF FORESTRY.

\qquad

THE WHITE PINE.

 (PINUS STROBUS Linnæus.)BY
V. M. SPALDING, Professor of Botany in the University of Michigan.

REVISED AND ENIARGED BY
B. E. FERNOW, Clief of the Division of Forestry.

WITH CONTRIBUTIONS :

INSECT ENEMIES OF THE WHITE PINE. . By F. H. CHITTENDEN, Division of Entomoiogy. THE WOOD OF THE WHITE PINE By FILIBERT ROTH, Division of Forestry.

WASHINGTON:
GOVERNMENTPRINTINGOF゙FICE。 I 899.

$$
\begin{aligned}
& Q L \\
& 21 \\
& 2 P_{5 m} \\
& S_{65} \\
& 1899
\end{aligned}
$$

LETTTER OF TRANSMITY'AI.

U. S. DFphrtmient of Agiriculture,
Division of Forestiry, Washington, U. C., Merch 15, 1898.

Sir: I have the honor to submit herewith for publication a monograph on the White Pime of the Northern United States.

The first draft of this monograph, like the one on "The Timber Pines of the Southern United States" (Bulletin No. 18, Division of Forestry), by Dr. Charles Mohr, was prepared more than ten years ago by Prof. V. M. Spalding, of Ann Arbor, Mich.; but it was then found that much informa. tion of practical value was still lacking, and hence publication was delayed until the deficiencies could be supplied. Professor Spalding, after having made several revisions, under the pressure of other work had to abandon the idea of amplifying and perfecting the monograph itself, and this was left to the undersigned, with the collaboration of the stati of the Division of Forestry.

The undersigned is responsible not only for the plan of the work, but especially for the portions referring to forest conditions, forestal treatment, and for the discussion on the rate of growth, to which Mr. Mlodziansky also contributed.

Mr. Filibert Roth, of the Division, besides furnishing the study on the wood of the species, has also contributed the portions on the history of the lumbering operations, while the discussiou on the injurious insects is by Mr. F. II. Ohittenden, of the Division of Entomology.

A very comprehensive investigation into the rate of growth of the White Piee has been carried on since 1892 as opportunity afforded and funds permitted. The resnlts of this iuvestigation, comprising the analysis of over seven hundred trees, in the form of tables and notes, will be found in the Appendix. The measurements in the field were mainly executed by Mr. Austin Cary, of Bangor, Me., and by Mr. A. K. Modziansky, of the Division. The latter also performed the calculatious and tabulations in the Division, and in this work developed a short and satisfactory method of tabulating, aualyzing, and using the large mass of data readily for the purpose of summariziug, averagiug, and generalization. This method is described in Bulletin No. ©0, Division of Forestry.

The situation regarding White-Pine supplies has materially changed since this monograph was first conceived, so that it might almost be charged that this publication comes too late. This would be a misconception both as to the situation and the objects of the monograph. No information of any kind could have arrested the decimation of our White-pine supplies, which proceeds through the momentum of cconomic laws; and even now, when it is well known that a few years will see their exhaustion, no change in the methods of milling with a view to lengthening the supplies is contemplated by the manfacturer, who is only concerned in keeping his mill ruming. The mamufacturer is a harvester, not a forest grower.

The object of this monograph is to lay the basis for an intelligent recnperation of the virgin growth by the forest grower of the future, work which will surely be begun presently, but which would not have been undertaken ten years ago.

In the preparation of this monograph use has been made of all available sources of informa tion. Acknowledgments are due to a large number of correspondents, mamed in the proper connection, who have rendered valuable aid by coutributing notes on distribution or have assisted in other ways.

The botanical illustrations showing extermal chatacters are by Mr. (icorge B. Sudworth; those of the anatomy of the wool are by Mr. N. B. Pieree and Mr. Filibert Roth, and those of parasitic organisms and disease conditions are from Hartig's "Lehrbuch der Bammkrankheiten" and "Zersetzungserscheimungen des Hohzes." The illustrations accompanying the section on ingurious insects were furnished by the Division of Entomology. The map of distribution was prepared in the Division of Forestry.

The monograph is believed to be just in time for the use for which it is intended, namely, to prepare for the application of sylviculture to the remant of our pineries.

Respectfully,
B. E. Felenow, Chief of Division.
Hon. James Wilson, Secretary of Agriculture.

CONTENTS

Page
Introduction 11
Geographical distribution 11
Character of distribution, by regions 1 1
Notes on general distribution 15
Conclusions regarding natural distribution 16
The White Pine lumber industry 16
Original stand and present supplies 14
Natural history 20
Botanical description 20
Relationship $\because 1$
Morphological characters 21
Root, stem, and bramele sistoms 21
Leaves \because
Floral organs 29
Sectls. 23
Seed supply 23
The wood 21
Growth and development 26
late of growth 27
Height growth 27
Seedling stare $\because 7$
Tevelopment in open stand 2N
Jevelopment in the forest 30
Effect of composition of forest upon height growth 32
Effect of locality upon height growth 33
Growth in thickness 34
Detail measurements of annual gain in circumference 3
Area accretion. 0
Form development, or taper $: 6$
(irowth in rolume $: 37$
('ubie contents of trees 3
Lumber contents of trees 3N
('onditions of development 39
Hemands upon climate and soil $: 9$
Associated species 10
Light rerguirements 13
Yield of White Piue 41
Dangers and diseases 49
Injuries by human agency $4!$
Injuries ly storms 51)
Diseases $\therefore 1$
Effect of heat and dronght 51
Parisitic diseases 51
Insect enemies of the White I'ine. Bg F. H. Cmiterden, Division of Entomology 55
Introduction 5
The destructive pine liark-beetle 5.5
Remedies ก1)
Other injurious bark-heetles. in
Timber-bectles and other Scolytidie 87
l'ine saw yers aud other horers 5
The white-pine weevil CN
Moth caterpillars and plant-lice on trunks and limbs 59
Leaf-foeding insects 60
rago.
Forest management 61
Natural reproduction 62
Notes on natural reproduction 62
Irtiticial wproduction 6
Planting notes. 68
Tho White l'ine as a forest tree in Germany 67
Tho wood of the White l'ine. By Finiment IRotn, Division of Forestry 73
Character and plyssical properties of the wronl 73
Specitic weight 73
Shrinkage 77
Sirminth 7
lurahility 80
Comparien with other woods. so
l'res of White Iine 81
Appendix:
Tables of measurements 5

ILLUSTRATIONS.

PLATES.
Yage
White Pine forest Frontiguiere
Plate I. Map showiug original distribution of White Pine (Pinus strobus L.11
II. Fig. 1.-White Pine mixed with hardwoods in central Now York. Fig. 2.-Old White Pine tree in mixed forest (young pine in the foreground) in New lorls State 19
14
14
III. Map showing forest conditions of northern Wiscousin
20
20
IV. Fig. 1.-Transporting logs over ice road in Michigan. Fig. 2.-Lumber camp in Michigan
IV. Fig. 1.-Transporting logs over ice road in Michigan. Fig. 2.-Lumber camp in Michigan
22
22
V. Leaves and hud of the White Pine 23
YI. Cones, seeds, etc., of the White Pine 26
VII. Sections of young shoot of White Pine
26
26
VIII. Sections of wood of White Pine 27
IX. Seedlings of White Pine
IX. Seedlings of White Pine
48
48
X. Fig. 1.-A thinned pine grove in New Hanpshire. Fig. 2.- Young pine in New Hampshire
X. Fig. 1.-A thinned pine grove in New Hanpshire. Fig. 2.- Young pine in New Hampshire
50
50
XI. Fig. 1.-Young pine in need of pruning. Fig. 2.-Young pine pruned
XI. Fig. 1.-Young pine in need of pruning. Fig. 2.-Young pine pruned
54
54
XII. Disease of White Pine: Igavicus mellens.
XII. Disease of White Pine: Igavicus mellens. 54
XIII. Disease of White Pine: Polyparus annosus.
TEXT FIGURES.
Fig. 1. Bark of old White Pine $\because 1$
2. Dingram showing height growth of mixed and of pure growth White Pine in Presigue Isle County, Mich 32
3. Diagran showing height growth of White Pine in forest of varying composition in l'ennsylvania 33
4. Girdled Whito Pine continning to grow 49
5. Hendroctonus frontalis \therefore
6. Tomicus cacographus 56
7. Galleries of Tomicus cacoyraphus 57
8. Gnathotrichus materiarius 5%
9. Gallery of Gnathotrichus materiovius 5
10. Chalcophora virginiensis $\because 8$
11. Pisкodes strobi 59
12. Larval mines under bark and pupal cells of Pissorles strobi 59
13. Lophyrus abbotii. 00
14. Tubes of pino leaves made by pino tube-builder 60
15. Chionaspis pinifolier b0
16. Diagram showing specific weight of wool at different cross sections of the stem; also a decrease of weight from the stump upward, and the similarity of the wood of diflerent trees. 76
17. Diagram showing specific weight of kiln-dry wood at difierent points in the stem from ground upwarl. 76
18. Diagram showing effect of moisture on crushing strength $\times 1$
19. Diagram showing rate of height growth of dominant trees 93
20. Diagram showing rate of height growth of cotominant trees 91 91
21. Diagram showing rate of height growth of oppressed trees 4.5
22. Diagram showing height growth of dominant, codominant, and oppressed trees throughout range 96
23. Diagram showing volume growth of dominant, codominant, and oppressed trees throughout range 97
21. Diagran showing lieight growth of dominant trees, by States 100
2 25. Diagram showing height growth of codominant trees, by States 2 101
26. Diagram showing height growth of oppressed trees, by States 101
27. Diagram showing volume growth of dominant trees, by States. 10:
28. Diagram showing volmme mrowth of codominant trees, by States 103
29. Diagram showing volume growth of oppressed trees, ly statos 104
Pago.
Fif. 30. Diagram ahowing average progress of diameter growth (breast high) of dominant trees 108
31. Diagram showing diancter growth of doninant trees at various hoights from ground (average throughout range) 108
32. Diagram showing diameter growth of codominant trees at various heights from ground (average throughout range) 109
33. Diagran showing diameter growth of oppressed trees at various heights fron hround (average throughout range) 109
34. Diagram showing diameter growth of dominant trees at varions heights from ground in Wisconsin. 111
35. Diagram showing diameter growth of oppressed trees at various heights from gronnd in Wisconsin. 111
36. Diagram showing diameter growth of dominant trees at various heights from gronud in Pennsylvania.
37. Diagram showing dianeter growth of collominant trees at varions heights from ground in Pennsylvania
38. Diagram showing diancter growth of dominant trees at various heights from ground in Michigan... 113113
115
30. Diagram showing diameter growth of colominant trees at various heights from gronnd in Michigan. 115
40. Diagram showing sliameter growth of oppressed trees at various heights from ground in Michigan... 116

THE WHITE PINE.
 (PINUS STROBUS Linnæus.)

synonyms.
Pinus strobus Linnaus, Spec. Pl. ed. 1, 1001 (1731).
f'inus tenuifolia Salishury, Prodr. 349 (1796).
hoCal oli Common names.
White Pine (Maine, New Hampshire, Massachusetts, Rhode Island, Connecticut, New York, New Jerser, Pennsylrania, Delaware, Virginia, West Virginia, North Carolina, (ieorgia, Indiaua, Illinois, Wisconsin, Michigan, Minnesota, Ohio, Ontario, Nebraska).
Weymonth Pine (Massachusetts, South Carolina, European literature).
Soft Pine (Pennsylvania).
Northern Pine (South Carolina).
Spruce Pine (Tennessee).
.

THE WHITE PINE.

INTRODUCTION.

For two centuries and a half the White Pine has been universally employed for purposes of construction in the Northern United States. Its abundance and the combination of qualities which adapts it to an almost unlimited number of uses have made it the most important and the most highly prized of all the timber trees of the region to which it is indigenons. In several of the Northern States it has been a more constant source of wealth and has yielded larger returns than any other single product. Thus, for instance, in 1879, a fair year for comparison, the natural products of the State of Michigan were estimated by Governor Jerome as follows:'

According to this estimate the value of the timber products, chiefly White Pine, was at that time, in round numbers, six times that of the iron, seven and one-half times that of the copper, and thirty times that of the salt product of the State, and amonnted to about 35 per cent of all the products of the State combined; and if the value of the entire White Pine product of the present year (1898), some 7 billion to 8 billion feet B. M., be taken into consideration, it will exceed in value at first points of production the entire gold and silver output of the country, which is not much less than $\$ 100,000,000$.

Commercial interests of great magnitude, dependent upon the handling and transportation of the White Pine product, have been built up in Chicago and other northern cities, and the diminution or failure of the supply must inevitably result in the transfer of the capital thus employed to other purposes or to other centers of distribution. In fact, such changes have already been aud are now being made with great rapidity, and mnch of the capital formerly invested in the pine lands and mills of the northern lake region has been transferred to those of the Gulf States and the Pacific coast.

A multitude of industries is dependent upon a continued and large production of pine lumber, and its failure, though perhaps not threatening such a collapse of business interests as alarmists have pictured, will nevertheless involve serious if not disastrous consequences to the commmities relying upon its continuance. The maintenance of an adequate future supply, especially in view of the well-known fact that the existing forests of White Pine cau last but a few years longer, at most, is therefore a matter of great economical importance and can not receive too prompt attention.

GEOGRAPHICAL DISTRIBUTION.

The White Pine is a tree mainly of northern distribution, although it oceurs along the mountain ranges as far south as northern Georgia. It occupies in this distribution the Boreal and Transition life zones, as defined by Dr. C. Mart Merriam.

The botanical range of the White l'ine may be circumseribed as follows: From Newfoundland and the Atlantic roast morth of the Gulf of St. Lawrence its northern limit runs in a wavy line between the forty-ninth and fifty-first degree of latitude, its most northern extension occurring near its western limit, when, skirting the southeastern end of Lake Winnipeg, it turns southward, following more or less closely the minety-sixth meridian of longitule, and in a southeastern direction the line which demarcates the boundary between forest and prairie to the Cedar liver at the Iowa line, and along the Mississippi River, crossing it near Rock River, when, following this river for some time, it takes an casterly course to the head of Lake Michigan, then in a northeasterly dircetion through Michigan to the shores of Lake St. Clair and across Ontario, skirting the sonthern shores of Lake Erie in the two most northeasterly countios of Ohio, then turns sonthward through the eastern counties of that State, and following into West Virginia near the 1,000 -foot contour line along the foothills of the Alleghenies throngh Kentucky and Tennessee, gradually withdrawing to higher olevations (1,200 feet) into northeastern (deorgia; the line then returning northward along the eastern slope and crossing uper Delaware, reaches the Atlantic coast in southern New Jersey.

The distribution of commercially valuable timber is, to be sure, very different and much more confined. The northern parts of Minnesota, Wisconsin, and Michigan contained probably the largest amount of White Pine, the broad belt of commercial pine of these States contimuing eastward throngh Ontario, northern New York, and the northern New England States to New Brunswick and Newfoundlam, and following the New England coast, while the higher elevations of the New England States showed preponderantly spruce with pine intermixed. The northern counties of western l'ennsylvania also contained a large amount of White l'ine timber mixed with Hembock and hardwoods. 'The character of this distribution is exhibited by general outlines and shadings on the accompanying map ($[1,1$). The extreme limits of its sporadic occurrence can not be fixed with absolute precision, and from the nature of the case must remain more or less indefinite. Similarly, the limits of greater or less development can only be approximately stated.

The occurence of the White Pine was generally as a component of the mixed hardwood forest of the Atlantic, even in the best developed portions of its range, and under such conlitions, that is, in mixture with other species, it seems to attain its most perfect development.

The finest specimens of the highly esteemed "Cork Pine" of Michigan grew among hard. woods on a better quality of soils than those which produced less valued grades. On the lighter sands true pinery (pure or nearly pure growth of White Pine) occurs. Here its admixtures are most frequently of Ked l'ine (Pinus resinosu) and in its northern limits of Jack P'ino (Pinus dirar. icutr), while on the better and cooler situations it accompanies the spruces (riced mariame and I^{\prime}. crmalensis) with Bahsam Fir (Abies balsamen) and Hemlock (Tsuga canadensis).

CEARACTER OF DISTRIBUTION, BY REGIONS.

The character of the occurrence of the White Pine in the forest within its field of distribution will readily appear from the descriptions in the tables of acre yield in the A ppendix.

In , Maine, the lower altitudes, along the coast and some of the river valleys, contained in their havelwod forests the White Pine in fine development, which gave to that State its cognomen of the "Pine Tree State." Reports of trees 6 to 7 feet and over in diameter and up to 250 feet in height. lestify to the capacity of the species in this region. The original stand of this pine in the State is practically entirely removed, while the young growth furnishes now again small quantities of logging material. The higher altitules, with their slate and granite soils, are stocked entirely with the spruce and lardwood forest in which the pine ocenss only as a seattering mixture and of inferion development.

This same mamer of distribution applies more or less to Vere Hampshire and northern Ver Fork. In the Adironlacks the pine, now almost entirely removed, fringes with the Spruce and Dialsam Fir the many lakes and water courses and keeps to the lower altitudes; mixed in with the Maples, Birches, Beceh, and spruce, it towers 50 to 60 feet above the general level of the woods, with diameters of 30 to 10 inches. Its reprolantion umler the shate of its competitors, however, is prevented, young pine being rarely seen exeept on old abandoned openings in the forest. (See ['1. 11.)

Fig. 1. White Pine mixed with Hardwoods in Central New York.

Fig. 2. Old White Pine Tree in mixed Furest iYoung Pine in the Foregroundi in New York State

In western New Fork the White Pino was once quite abundant as a concomitant of the hardwood forest. Young growth is now creeping into every wood lot, while in I'ennsylcentin the White Pine oceurred undoubtedly in the lower eastern comnties in commercial quantities as well as in the adjoining counties of New Jersey, where it begins to be a trea of the mountains, the higher slopes, ridges, and tops becoming its fivorite habitat. It is here largely associated with Hembock, which olten becomes the prepouderant tree. Pure pine growth is rare, but the mixed hardwood forest is seddom without an admixture of White Pine to the extent, as a rule, of about 30 per cent numeri. cally, the soils within the range of its occurrence being seemingly everywhere quite firvorable to its growth.

Besides the Lemlock, the coniferous species with which it is found associated are l'itch P'ine (Pinus rigidr) and Spruce, while Red Pine (Pinus resinosu), the most successful rival of the White Pine in the lake region, is here rarely met, and then only in single individuals. The hardwoods most frequently represented are Maple, Beech, and Birch, more rarely Oak and Chestnut, with Basswood, Cucumber, Hickory, Cherry, etc., interspersed in single individuals.

The best development of the White Pine is usually found along the water courses. Thus, in Pennsylvania, in Luzerne County the White Pine is situated along Bear Oreek and its tributaries; in Clinton County the pine is found on both branches of Hyner Run and along Youngwomans Creek; in Clearfield County there were $\mathbf{3 0 , 0 0 0}$ acres along Sandy Creek and its tributaries heavily timbered with White Pine, of which about 2,000 acres of primeval timber are left, which would cut about 100 million feet B . M. of White Pine. In Jefferson County a tract of IIemlock and White l'ine forest of about 90 square miles, known as the Hay's tract, is traversed by the North Fork and its tributaries. In Forest County the areas heavily covered with pine were situated along Hickory and Tionesta creeks. There is as yet standing over 100 million feet B. M. of White Pine along IIckory Creck and its tributaries.

The heavy cut of pine in Elk County came from Medix Run, Dents Run, and their tributaries. The courses of the streams follow the trend of the ridges, the substrata of which are usually of a porous nature, consisting in most cases of slate or laminated shale, a soil very favorable to pine situated on moderately elevated grounds and slopes along the hollows and gorges, which, on account of the pervious substratum, offer most satisfactory soil-moisture conditions.

From New Jorsey the White Pine has practically vanished long ago as a factor-in lumber production, and almost as a tree of common occurrence.

With the extension of the distribution southward, the White Pine becomes less frequent and of inferior development; the climate forces it to higher and higher altitudes. It occurs in quantity only in islands or in small bodies on the crests and along the slopes of the Alleghenies, both east and west, usually accompanying water courses in broader or narrower belts.

Regarding the mauner of occurrence of the White Pine in these sonthern regions, the remarks of Mr. W. W. Ashe on the distribution in North Carolina (Bulletin No. 6, North Carolina geological survey, 1898) are more or less applicable:

Abstract

Tho woodland iu which White Pine is the dominant coniferons treo is not extensive, but lics in isolated, small bodies along the crest and southern and eastern slopes of the Blue Ridge, or on the low hills on the west, extensive forests seldom being found above the higher limit (3,000 feet in Macon and Jackson counties), or perfect indivilual development attained below the lower (2,800 feet). In a few places on the southern slope of the line Ridge " * * the White Pine is associated with Yellow Pines as well as with deciduous trees, lut the trees are generally short-boled, and neither so large nor tall as those growing at a higher clevation to the west of this rage. Singlo specimens or small groups of trees are locally dispersed in the broad-leaf forests throughout the monntain counties between the limits of altitude given above.

It appears from these statements that in these latitudes below the 2,000 -foot level this pine can hardly be expected to be of commereial or forestal value for the future.

The area of greatest quantitative development is found around the Great Lakes and in the basin of the St. Lawrence and its tributaries, in the very places most perfectly adapted to its ready aud economical exploitation and easy shipment to markets, the large number of streans that are capable of carrying logs, the accessibility of natural ports of distribution, and favorable climatic condutions inviting the logger and Lumberman. Michigan, Wisconsin, and Minnesota have thus become known as the great lumber region of the United States.

In Michigun the distribution of the species is entirely controlled by the character of the soil, all sandy areas beinf pinery proper, with large areas of puro growth of several square miles in extent contaming only White Pine. Occasionally, and especially on the driest and poorest sandy gravels, the hed Pine (limus resinosu) associates and sometimes predominates, the White Pine not representing more than 10 to 20 per cent of the number of trees. In the northern regions Jack l'ine (l'mas divericuta) takes the place of the lied Pine.

The typical pine forest on fresh sandy noils consists of White l'ine (45 to 55 per cent of the dominant growth) mixed with Ied Dine (5 to try per cent) with scattering Hemlock (10 to 15 per (ent) amd oceasional Fir and hardwoods. The undergrowth, usually moderately dense, consists mainly of small Ilemlock, Fir, and young hardwoods.

On moister sand with loam or clay subsoil Hemlock and hardwoods replace the pines, the Red Pine vanishing entirely and the White Pine oceurring only in large isolated individuals. Into wet or swampy places the White Pine also penetrates in single individuals among Arborvite, Hackmatack, and Spruce.

As the loam in the composition of the soil increases, the hardwoods increase mmerically, the White Pine oceurring only in single individuals and groups, and Red Pine and Hembock only occasionally. l'inally, the heavy clay soils toward the sonthern range of the species give absolute preponderance or exclusive possession to the hardwoods, mainly Sugar Maple, Fellow Birch, and Beech, although occasionally White Pine appears scattered, or even in smaller or larger groups.

Lumbering of White l'ine in Michigan began about 1835, and was at its best in 1883 , but now the virgin pine is nearly cut out. Reproduction is satisfactory on the sandy areas wherever fires are kept out, which is rare; on the chay-loam areas reproduction under the shade of the lardwoods is practically impossible.

In Wisconsin the same dependence on soil conditions in the distribution of the species prevais as in Michigath. The accompanying map of the forest areas of Wisconsin, taken from Bulletin No. $\mathbf{1 6}$, of the Division of Forestry, will serve to give an idea of the manner in which this distribution appears within the belt of best development. (See [']. II.) From this map it will be seen that the distribution is to the largest extent dependent on soil conditions, the sandy soils representing the pinery areas, in which merchantable hardwoods and Hemlocks are wanting; the loam and clay areas are stocked with the hardwood forest, in which both Hemlock and l'ine oceur scattering or in isolated groves, represented almost entirely by mature old timber. Saplings, bushy young trees, and seedlings are comparatively scarce, an active reproduction of the pine evidently not going on. This condition is found especially on the heaviest soils, where the hardwoods crowd out the pine, while on the sandy or gravelly soils the pine holds its own and forms a fair proportion of the sapling timber. In the true pinery of the sandy soils the hardwoods are scantily represented by small White Birch, Aspen, and Maple. The llembock is entirely wanting. On the barrens proper the White l'ine is replaced by Jack Pine and Red line, one, or both together, forming forests of considerable extent, usually with hardly any undergrowth or admixture save some scattering Scrub Oak.

In Wimesote climatic conditions again begin to assert themselves in inthencing the distribution of the White Pine.

The conifers become preponderant over the hardwoods everywhere. Pines, both lied and White, together with Tamarack (Larix lericima) and Arborvite (Cedar-Thuja occidentalis) and some admixture of Spruce ocenpy those sites, both swamp and dry lands, which elsewhere would be occupied by hardwoods. With this change in composition goes a decrease in development; the sizes both in diameter amd height are reduced.

It is an interesting fact that both in Wisconsin and Mimesota the pine area does not, as in the eastern field of distribution, gradually fade out toward the prairie, but tho true pine woods rease abruptly within 30 or 40 miles at most from the demarcation line of the prarie, leaving the intervening ground to birch aud Aspen or Scrubby Oak and Jack l'ine openings.

In the Camadian extension of the species pure pinery is very rare. The great bulk of the most productive pine country lies northward and westward from the mouth of the Ottawa River to Georsian bay in mixed growth, which consists mainly of hardwoods, with Hembock, Spruce, Arborvite (Cedar), and Balsam, while the lower tiers of Ontario are of the same character of hardwoods, with little scattering pine, as in southern Michigan. The eastern extension of the

field of commercial pine in Canada followed mainly the St. Lawrence liver as far as Quebec. On Newfoundland the species is indigenous to nearly the whole of the island, and in some parts produces considerable quantities of merchantable timber. At its northwestern limit the forest fades out into prairie, the White l'ine gradually disappearing, while at the northern limit the change is into Spruce forest.

NOTES ON GENERAL DISTRIBUTION.

Dr. N. L. Brittom, for some years connected with the geological survey of Now Jorsey, writes of tho ocenrence of White Pine in that State as follows:

Pine Brook Ntation and sparingly northward along tho Sonthern IRailroal of New Jersey (Jritton); sparingly 3 miles south of Woodbury, Gloucester Connty (Canby), aud frequent in the mildle and northern portions of thes state. Thero are no White Pine forests in New dersey, and the largest grove known to me is of hut a few acres in oxtent. It evidently prefers a heaver soil than does P. rigida, which forms the forests of the pino barrens, On Staten Islaud, Now York, there are a few scattered treos of I^{\prime}. strobus.

Mr. William M. Canby, of Wilmington, Del., reports the existence of a grove of White Pine trees in upper Delaware, and Mr. Thomas Mcehan, of Germantown, 1'a., states that White Pine grows (or did recently) at the Soapstone quarry, on the east side of the Schuylkill, some 8 or 10 miles above Philadelphia. Mr. Canby alds: "It is a very difficult thing to detine the limit of a species that is being so rapidly destroyed, and doubtless the southern line is being rapidly effaced."

1'rof. Lester F. Ward, of Washington, D. C., is of the opinion that Pinus strobus is not indigenous around Washington, and that the few trees met with in wild situations in its vicinity grew from seeds blown from planted trees. He has never met it in his botanical excursions into southeastern Maryland and Virginia,

Mr. F. E. lboynton writes from Highlands, N. C. :
I have seen some very fine specimens growing in Pickens and Oconee counties, S. C., but I have never seen it in this part of the country except in high altitudes, say from 2,500 to 3,000 feet usually. I havo never seen or heard of its forming forests here. I have seen groves of a few acres where it might be said to predominate. As a rule, it is foumb scattered amons other forest trees. It nearly always grows in or quito noar Rhododendron and Monatain Laurel thickets, which indicate a moist soil. It often grows to be a very large tre here I measured a log in thes mill yard near here last night that was 37 inches through. Considerable lumber is cut from White Pine in this monntain regiou, but, as a rule, the lumber is of inferior quality, being very knoty and often shaky. Cultivated specimens thrive and grow very fast. It is usually found most common on sonthern exposures. The rock formation is granite, and soil nsually a sandy or gravelly loam wherever I have observed the White Pine in this region.

The following has been furnished by Prof. W. R. Lazenby, of the State agricultural experiment station at Columbus, Ohio:

From all the data in my possession, I should say that White Pine is rarely met with in Ohio outside the borders of two of our northeastern counties, viz, Ashtabula aud Lake. Occasionally a sporadic pateh has been noted aloner the banks of streams in some of tho eastern counties. I havo never heard of its spontaneons occurrence any where thromghout the central or southern portions of the State. It appears to thrive well here at Colmbus amd sulnmits kindly to change of soil. Wherever I have seen it in Ohio under artificial cultivation it has presented athrifty appearance, although the young plants do not make a very rapid growth for the first few sears.

Concerning the occurrence of White I'ine near the head of Lake Michigan, Prof. E. J. Hill, of Normal Park, Ill., writes:

It begins at Whiting Station, on the Michigan Southern Railroad, and extents eastward to Michigan City. I came across a clump of White Pine once, ahout a mile north of Otis, where the Michigan Southern Railroal crosses the New Albany road. - * lon would be pretty safe in taking the Calumet River as the southern boundary. * * * I do not know of a single native tree in Cook Connty, Ill.

Mr. M. S. Bebb, of Kockford, Ill., communicates the following concerning the occurrence of White Pine in the northern portion of that State:

In a few localities on Kents Creek and Rays Creek, in Winnebago County, and giving the name to l'ine Crenk in Ogle, the county immediately north of this, the White Pine is certainly indigenous, but occurring only as a eparse growth, cresting precipitous banks, where it seems to have found it favorable environment.

To this Mr. S. B. Wadsworth, of Oregon, IlI., adds:
The White Pino in Ogle County grows in some cases to a height of 40 or 50 feet. * * * Nearly all the suall streams in Pine Rock township have some pines near the mouths of the stroams if there are any rocks alung the banks. * * * The White l'ine prefers the St. Peters sandstone, but in some cases grows ou limestone rucks.

Mr. N. Williams, of Streator, Ill., says:
White l'ine is without doubt a native of La Salle Counts. It occurs on the Vermilion and its little tributaries wherever there is an exposure of carboniferous sandstone, and more frequently is seen chose to the edre of the highest blufts, where the soil is largely composed of the disintegrated rock. Fo dind one begond the intluence of the sand rock would be almost phenomenal. The number is very small and their sitnation dons not permit than to attain much size. I think that 40 feet is about the limit of height. Small thrifty plants from one to a fuw fent in height occur here and there, and are sometimes transplanted to the prairje soil, where they make a vinorous growth, outstripping Norway Spruce, Scotch and Austrian Pine, Hemlock, aud White Cedar. Pines planted Mre in icju or 1855 are now (1886) about 40 feet high.

The limiting line of the White Pine heyond the Mississippi northwestward is traces sulnstantially as indicated by Mr. Warren Upham in the (ieological and Natural History Survey of Minnesota. Mr. Upham serds the following :

The White Pine, wherever I have seen it in New Hampshire and other parte of New Eugland and in the Northwest, prefers somewhat clayey land. It does not thrive on wholly sandy plains ("modified drift" of" glatialists),
which aro denominated "pino larrens," the congenial dwelling placo in tho Fast for the Pitch l'ine (P, rigida), and in the Northwent for tho lanksian or fack line (1 ' dimaricala) ; nor dnos the White Pino in either region grow plentifully and of largest sizo on very clayoy land, which is tho favorito location for Maples, Basswond, Elms, and other decishons trees. 'Ihe White Pine in this matter of its choice of soil follows the injumetion, Mcdio fulissimus ibis. The led l'ine (I^{2}, resinosa), so far as I hive ohservel, can thrive better on tho very sandy phains and "barreas" than tho White l'ine, being intermediato in this betweon the White l'ine and tho litch and Jack pinos.

I'rof. 'I'. H. Machrile, of the State Lniversity of Jowa, says:
I havo collected Whito l'ine in tho following counties in this State: Mitchell, Howard, Winneshiok, Allamakeo, Clayton, Duburne, Delaware, Jackson, and Miscatine. It is, by others, reported from scott. It ourht to lio found also in loayetto, hat I have never run across it there.
['This would confine the White l'ine in lowa to the connties bordering tho Mississippi River and tho Minnesota State line as far wost as the Cedar River Valley.]

CONCLUSIONS REGARDING NATURAL DISTRIBUTION.

The leading conclusions to be drawn from what has been stated regarding the natural distribution of White Pine seem to be the following:
(1) Leaving out of consideration all the outlying portions of the reswion under discussion, there is left an area of not less than 400,000 square miles in the United States and Dominion of Canada within which the White Pine is in its home and surrounded by the conditions of its own choice, throughout which its successtul cultivation is fully assured.
(3) A much larger territory than this is included within the limits of extreme distribution as detined above, and there is abundant evidence to show that over nearly the whole of this wide area, and in some directions far beyond it, this species makes under cultivation it healthy and rapid growth. There is apparently no species of equal value indigenons to eastern North America that is at the same time adapted to so wide an area.
(3) The habits of this species near the western limit of its natural occurrence, as well as experimental planting, indicate plainly that its successful growth can not be depended upon much beyond this limit.

THE WHITE PINE LUMBER INDUSTRY.

No species of American timber has been so much used for lumber as the White Pine, and the development of the lumber industry in this country is coincident with the exploitation of the White Pine forests.
'The commercial use of White Line began with the first settlement of New England. The first sawmills were established in the seventeenth century, and mumerous small sawmills, which were usually an attachment of the neighorhood gristmill, were in operation early in the eighteenth century. Timber was exchanged for merchandise, and the collections thas made were floated to ports of shipment, whence they were exported. This primitive industry, contined largely to White L'ine, was continued well into the third decade of the present century. In $1850, \mathrm{~J}$. S. Springer, of Maine, wrote: "Thirty years ago it was unecessary to search for a locality for a lumber camp on the Penobscot, for a man could step from his house to his day's work, tho pine, that forest king, abounding on every side. Fifty years hence the vast pine forests through which the Penobseot flows will be on the eve of destruction." This prophecy has long since been verified, for the Surnce has practically taken the place of the White Pine in the lumber output of Manc.

This early trade in White l'ine, though involving small capital and limited operations on the part of each dealer, was by no means unimportant in the aggregate, lumber being a leating industry in New England from the dirst. The Bangor Weekly Register of March 2,1816 , noted that between 300 and 400 sleigh loads of lumber, etc., came into helfast in one day. The Gazette of July $10,15^{2}=$, says that 136,086 feet of humber and 35,000 shingles were hauled in on one Saturday by teams. In 1825 twenty-five vessels wore engaged in the lumber trade from Bangor to tho West. Indies. The mills of those days were all small affitirs, generally single-sash saws, driven by water power, with a capacity of 1,000 to 3,000 feet per day. About 1830 the construction of larger mills began, and in 1890 a capital of nearly $\$ 13,000,000$ was invested in the sawmilling industry in the State of Maine alone.

In general, it may be said that the White Pine of New England was cut by numerous small concerns, and that the butk of the supplies was cut before modern sawmiling began.

Althongh the great forests of White l＇ine in Maine have disappeared，a small amount of this material is still cut in the State every year，so that since 1881，on the renobscot，for instance，out of a total cut of about 150 million feet per year between 24 and 30 million feet have been pine，the pine thus generally forming 15 to 20 per cent of the entire output．

In Pennsylvania the oxploitation of White Pine likewise began quite early．Pittsburg furnished pine lumber to points along the Ohio and even to St．Louis，Mo．As late as 1 sü0 Philadelphia recoived its 150 million teet of lumber，largely White Pine，from the State，importing but very little from New lingland and the South．At Williamspoic，the center of White Pine lumbering in Penusylvania，the first large mills were erected about $18: 38$ ，and the bulk of the pine was cut prior to 1870 ．

In the forties the White P＇ine product marketed at Williamsport excelled in quantity all other points of production．The highest production was reached in 1873 ，with nearly 300 million feet B．M．in logs boomed，which in 1893 had sunk to a little over one－tenth of that amount．While in 1873 the amount of timber standing was estimated as 3,300 million feet 13．M．，in 1890 the State commissioner of forests places the remainder at 500 million feet B．M．

The only uncut White Pine forests of Pennsylvania now standing are isolated bodies in the more inaccessible parts of Clearfield，Lycoming，and Tioga counties．

In the State of New York，too，which in the Adirondacks and in the western connties con－ tained considerable quantities of White Pine，the species is largely cut out．Hardly more than 5 per cent of the cut is now of White Pine，the output from the Adiroudack mills being in the neighborhood of 25 million feet B．M．

The exploitation of White Pine in the Lake region began luring the thirties，when small mills were erected at various points，both in Hichigan and Wisconsin．The first steam sawmill at Saginaw was built in 1834，and the first mill at Alpena was built two years later．Nevertheless the lumber industry of both Michigan and Wisconsin remained insignificant until toward the close of the fifties，when most of the present sites of manufacture had been established．Ten years later（ $\mathbf{1 8 7 0}$ ）the ammal cut of White Pine in Michigan and Wisconsin amounted to nearly 4 billion feet；Minnesota had searcely begun to contribute to the output；and in the marketing the rail－ way was fast displacing the older method of rafting．The progress of lumbering is well illus－ trated in the following figures from the Northwestern Lumberman，representing the aunual cut of lumber alone from 1573 to 1597 ：

Innual cut of lumber（exclusire of shingles and laths）of the three Lahe Shates，Michigan，Hisconsin， and Minnesote，15\％3－159\％．

1873	$\begin{gathered} \text { Feet B. M. } \\ 3,993,780,000 \end{gathered}$	1886	Feet Ih．M $7,425,368,443$
1874	3，751，306， 000	1887	7，757，916， 781
1875	3，968，553，000	1888	8，388，716， 460
1876	3，879，046，000	1889	8，305，833， 277
1877	5，595，333， 496	1890	8，664，504，715
1878	3，699，47， 759	1891	7，913，137，012
1879	4，806，943，000	1892	8，903，748， 123
1880	5，651，295， 006	1843	7，599，748，458
1881	6，768，8．56， 749	1894	6，763，110， 6113
1882	7，552，150， 744	1845	7，093，3012， 50.8
1883	т，位生，789， 7×6	$1 \times \%$	可，725． 7 （03，（1）
1881	7，935，033，054	1×97	（6，293，1．51，0\％1
188	7，053，094，		

Or，dividing the time into periods of tive years each，the figures are as follows：
Cut of lumber（cxelusive of shingles and laths）in Michigan，Hisconsin，and Minnesola，by priods of fice years．

1881－1885．．．－．．

1891－1895．．．．．．．．－．．．．．．．．－．－．．． 113,140
Total．．． $137,340,498,068$
$20233-$ No． $22-2$

From the fignes, to which about 10 per cent must be added for shingles, laths, ete., it appears that the yearly ontput did not reach 4 billion feet until 1859 , and that the greatest increase in the cut oecurred between 1576 and 1882 , when the -billion mark was reached. This enormous cut continned until the deneral business depression of 1894 called a temporary halt. In Minnesota, pine lumbering began on the St. Croix and did not reach conspicuons dimensions until during the eighties, when the regions along the upper Mississippi, as well as the Duluth district, wereopened. This progress westward is well illustrated by the following figures, which show the percentage of the total cut of lumber alone from period to period, by districts:

I'ercentage of total cut of lumber, 1873 to 1595 , by districts.

In this comection the White Pine trade of St. Louis presents an interesting illustration. The first pine lumber was received from Pittsburg in 1819 , and this point remained the principal source of supplies for years. In 1843 a boom on the St. Croix River broke and the liberated logs were gathered and rafted to S. Louis, where they were sawn. In 18.30 the first regular raft of Wisconsin \log s was brought to the city. In $18 \sin ^{3}$ Schulenberg and boeckler built a large sawmill on the St. Croix, and from this time on rafts of sawed White Pine were sent to St. Louis from the northern rivers.

The receipts of White Pine at St. Louis were: In 1853 , about 60 million feet; in 185^{2}, about 160 million feet. Similarly the lumber trade of the city of Chicago, the greatest lumber market in the United States, if not in the world, illustrates well the development of the White Pine lumber industry. In 1847 only 32 million feet of White Pine lumber were received. The annual receipts at intervals of ten years since 1855 to 1895 were as follows:

The receipts reached their maximum in 1892 with $2,203,874,000$ feet, and the heavy diminution since that date is not greater than would be accounted for by the general business depression throughout the country.

In Canada, as in New England, the exploitation of White I'me began almost with the first settlement. Logs, hewn timbers, and especially ship spars, were exported in ealy days, and of late years an extensive trade in sawn lumber, as well as saw logs, has sprung up between that conntry and the United States. Since reliable statistics of the lumber output of this region are wanting, the following figures for the dues on crown timber in Ontario and Quebec must sullice to illustrate the development of the industry:

The export into the United States for 1894 , the heaviest year, was: lumber, 1,155 million feet ('ine and Spruce); pine logs, $277,9+5,000$ feet, or less than $1 /{ }_{2}$ billion feet 13. M.

Though scattering White Pine oceurs in all provinces of eastern Canada, large bodies of merchantable timber are only to be found on the upper waters of the Ottawa, and on the shores
of Lake IIuron (Georgian Bay district) and Lake Superior, and the White Pine lumbering is practically confined to these districts. The output of White Pine in the Dominion is estimated at $1 \frac{1}{2}$ to 2 billion feet per year.

ORIGINAL STAND AND PRESENT SUPPLIES.

What the original stand of White l'ine was is dificult even to estimate. The amount of White Pine cut in the New England States, New York, Pemsylvania, and the eastern Provinces of Canada is not known, and the only reliable figures which give an indication of what has been harvested are the figures for the Lake States above mentioned. For the Lake region alone the estimated original stand for Wisconsin may serve as an illustration. For the pine-stocked area of this State, a total stand of about 150 million feet per township (23,000 acres) has been shown to be a fair average. This would indicate a total of about 130 billion feet, of which about 66 billion feet were cut between 1873 and 1897, and about 20 billion feet are supposed to have been cut prior to 1873 , making a total of about 86 billion feet as actually harvested, while about 18 billion feet were believed to be still standing in 1897. These tigures are based upon a thorough canvass made by Mr. Filibert Roth and published in detail in Bulletin No. 16 of the Division of Forestry. On the same basis, Michigan possessed fully 150 billion feet and Minnesota may be assumed to have had about, 70 billion feet, which would make an aggregate of about 350 billion feet of pine for the Lake States. Of this about 170 billion feet were cut between 1873 and 1897 , and about 50 billion feet were probably cut prior to this time, accounting for about 220 billion feet out of 350 billion feet. While it must remain mere conjecture, it seems quite fair, nevertheless, to assume that the total supplies of White Pine aggregated probably not less than 700 billion feet of standing timber originally. Of this total, then, not less than 50 per cent was contained in Canada and the Eastern States, the United States portion representing about two-thirds of this heritage, the Canadian portion showing less than so per cent of total supplies.

Of this large amount of virgin supplies, a little over 15 per cent, or 100 billion feet, may be estimated as standing. These supplies may be approximately distributed as follows:

Canada is credited by the statistician of its department of agriculture with about 37 billion feet of standing pine, an estimate probably far below the real truth. For the Lake States the following estimates were made in 1897 by the best-informed man of the Lake region: Minnesota, 36 billion feet; Wisconsin, 18 billion feet; Michigan, 10 billion feet. These estimates are considered quite high by many. The standing pine in Michigan is placed by a detail township canvass in 1890 at only about 6 billion feet; the standing White Pine of Minnesota is estimated by the State chief fire warden at only about 12,600 million feet, while an estimate for Wisconsin made in 1895 places the standing pine of that State at only 8 billion feet.

Retaining the larger figures as probably the nearest correct, there exist to-day: In the Lake States, about 64 billion feet; in Canada, over 40 billion feet; in New York and Pennsylvania, not over 2 billion feet; in New England, not over 3 billion feet; in West Virginia aud Tennessee, not over 1 billion feet; making a total of about 110 billion feet, or about 22 per cent of what may fairly be believed to have been standing originally. Of this standing supply, about 100 billion feet are so located that the present rate of exploitation (over 6 billion feet per year) can be, and probably will be, continued until over 75 per cent of the present supply is cut, when, of course, a lack of logs will lead to a reduction in output. This condition may be looked for before the end of the next ten or twenty years, and from that time, unless recuperative measures are adopted, White Pine will cease to be the great staple of our lumber markets.

In former years lumbering of all kinds was careless, and even in the White Pine forests the prevailing "inexhaustible supply" notion led to enormous waste. Stumps were lelt i" to $\&$ feet high, all defective trees were left, and top logs burned up with the debris. Hany of these ofd slashings have been logged for the second and even the third time, often yielding agreater profit than when first culled.

At present this is no longer the case. Ligh stumpage prices and a perfect market lave led to the closest conomy in logging, milling, and shipping of White Pine. The trees are felled with the saw, the stumps are 15 inches and less, care is had in the making and sawing of logs, and the top is utilized, irrespective of knots, just as far as it will make saw timber. Defective logs
are ancly left behind, and "clean cutting" now means the removal of all logs, however defective. In logema, ice roads, improved by nightly sprinkling, enable the transport of enormons loads (obono leet and mome by single or double teams. The logging xalway is fast finding fivor, and in many plates the logging is thereby made continuons, being carried on at all seasons. (See Pl. IV.)
'Tho yields in White line are, as might be expected, very variable.
A cut of 2 million feet 13 . M. on a "forty," or 50,000 fect per acre, was not a rare one in the pineries of southern Michigan, and ocrasionally such cuts are made in Wisconsin and Minnesota. To yibld such aresult the entire "forty" must be well and evenly stocked. The best acre, then, need not be far above the average, and, in fact, rarely exceeds 75,000 feet.

A stand of 1 million feet on al "forty", or 25,000 feet per acre, is a good one, but was of quite rommon oceurence in all White l'ine districts, and may still be found in many places, while whole fownships or counties have averaged 10,000 feet per acre.

These yields depend, of course, on the character of the forest growth, the greater or smaller admixture of other species occasioning the diferences. 'Thus, if any large territory of the pine districts were taken into consideration, a yield of 150 million feet per township would be found a fair statement for most parts of the pineries of Wisconsin and Michigan.

The best yields do not usually come from those tracts which contain the largest trees, but where the pine is least mixed with other species and stands most dense.

Such areas, pineries proper, where no merchantable hardwoods were mixed with the pine, are usually tracts of loamy samd, and occur in extensive bodies in all three of the Lake States. Generally, White Pine cuts more wasteful than Norway or lied line, has a thicker bark, more large dead limbs and knots, these latter often coming to within 20 fectof the ground, even on large trees, and is quite given to forking. This latter peculiarity seems natural to the tree, and has been observed abroad as well as here. It seems independent of the character of the soil, as it oceurs on clay and samd alike, but it is often localized, so that on amall tract of 10 or 20 acres nearly all trees are forked. Trees with three and four forks are not rare, and five forks occur. In addition, White l'ine is extensively defective by decay, so much so that in some localities 15 to 20 per cent must be allowed for the loss from this source.

NATURAL HISTORY.

The oldest deseription of the White Pine appears to he that of Plakenet, published in $\mathbf{1 7 0 0}$. Its scientilic name of l'inus strobus was given the species by Linnins in 1753 , and unlike most trees but one other scientific name has been applied to it, the synonym being Pimustrmuifolia Salisbury, 1796. Besides the generally accepted common namo of White Pine, the species is locally known in the United States as Soft Pine, Northern Pine, and Spruce l'ine, and to a limited extent by its usual European name of Weymouth Pine.

The species was first introduced in Europe at Badminton, England, and was soon after extensively planted on the estate of Lord Weymouth, whence its common name abroad. It wats also extensively planted in (iermany at the end of the last century under the same name, Weymuthkiefer.

BOTANICAL DESCRIPTION.

White l'ine (l'imus strobus $I_{\text {。 }}$) in its natural habitat is a tree of large size, 100 feet or more in height (not unfreruently attaining a hoight of over 150 feet, even trees of an0 feet in height having been reported), with smooth, thin, grayish bark (tig. 1), becoming at the baso thick and deeply furrowed with age. The leaves are slender, straight, triangular in section, five in a sheath, $2 \frac{1}{2}$ to 4t inches long; resin duets, chiefly two near the doisal face; stomata in three to five rows on the ventral faces; fibro-vascular bundle, one. Cones, single or in groups of two to three, stalked and pentulous, 4 to t inches lons. cylindrical, slightly tapering and curved, fruitscales oblong wedge. shaped, the apophysis half pyramidal, with a triangular blunt point. Seeds, one-fifth to one fourth inch long, grayish-brown, with a thin membranaceons wing. Cotyledons, seven to eleven.

A number of varieties, more or less distinetly marked, are recognized in cultivation. Among these are mene, a dwarf, bushy form, cultivated in gardens in the Old World; micea, virilis, and anred, named from the color of their leaves; brevifolia, and several others (umbraculifera, minima,

Fig. 1.-Transporting Logs over ice Road in Michigan.

Fig. 2.-Lumber Camo in Michigan.
fastigiata, gracilifolid, variegata, zehrinn, and prostrata), some of which are propagated and sold as special attractions in nurseries.

RELATIONSHII.

The White Pine (Pinus strobus) is closely related to the lohotan l'ine (Pimus excelsí) of India, the Swiss Stone Pine (I'mus cembra) of sonthern Lurope, the White Pine (limus flexilis) of the Rocky Mountains, the Sugar Pine (l'inus lambertiona) of the P'acilic coast, and a mumber of others less generally known, of which Pinus monticola, P^{\prime}. albicaulis, I^{\prime}. strobiformis, I^{\prime}. quadrifolia, I^{\prime}. parryana, and I^{\prime}. cembroides are natives of the Inited States.

The species belouging to this section of the pine genus are distinguished by their slender, delicate leaves, five in a sheath; by the exceptionally soft and even texture of their wood, and by certain well-fetined botanical characters, by which they are marked as a natural and easily recognized group.

The group of species just named shows a preference, generally characteristic of this section of pines, for elevated, mountain regions, and a light rather than a heavy soil, making, as a rule, a healthy growth on sandy and rocky places, and manifestly preferring these to low and heavy soil. All are handsome trees, symmetrical in form, some of them, as the Sugar Pine (Pinus lambertiana), of rapid growth, and forming magnificent specimens from 150 to over 200 feet in height, while others are of slow growth, as the Stone Pine of the Alps, which produces, however, a beantiful, fine-grained wood, extensively used by the Swiss peasants for carving. The Bhotan Pine of the Himalayas is the representative of the White Pine in Asia, resembling it very closely in habit, size, structure of wood, and various technical characters.

Fig. 1.-lbark of old White Pine.

Admitting the common ancestry of these various species, a more extended comparative study of their preferences and habits would be of much interest in relation to their cultivation beyond their natural range, considering the fact that, whatever their enviromment, such ancestral traits are certain to manifest themselves.

MORPHOLOGICAL CHARACTERS.

ROOT, STHM, AND BRANCII SVSTEM.
In the natural forest, with a due amount of shade, the White Pine has at maturity a straight columnar trunk, destitute of branches for half to two-thirds of the distance from the ground to the tip of the leader.

The branches are for many years disposed regularly in whorls, and during this early period the tree retains a symmetrical, conical form, and is one of the most graceful of the pines for ornamental cultivation, but, as is the case with other conifers, the lower branches are short lived, and ultimately, by their decay, the tree becomes unsightly. This fact, which renders this species, in common with all other conifers, undesirable during part of their lifetimo for ormamental purposes, gives it the greater value as a timber tree.

The crown, at first pyramidal, is finally less regular, although ravely Hattening, and, owing to the rapid and persistent growth of the tree, conspicuonsiy overtops the surrounding forest of deciduous trees. The root system is small compared with the sizo of the tree and spreads near the surface of the ground; its comparatively slight development is in larmony with the less pronounced dependence of this species on the soil and its grater dependence on the atmosphere.

Nursery sedlings produce nmmerous slender, fibrous roots, the delicate tissues of which are as in most conifers easily dried at the time of transplanting, resulting in very serious injury or loss of plant material. White Pines phated upon the dry sand along the Lake Michigan shore and frimmed of their lower branches have been observed restoring these lower limbs and forming a thick, green rovering over the roots before making any height growth, suggesting in atriking manner the necessity of protecting the root system aganst too rapid evaporation and a too highly heated suil. In the natural forest, am in artificial groves properly planted, the fallen leaves finlill this function by making a decp, thick coating over the roots.

LEAVES.

The leaves arise from greatly reduced short branchlets and are produced five together, surrombled at the base by a thin deciduous sheath, and are further distinguished by being more. slemter and delicate than those of our other native pines. ($11 . V, 1,2,3,4$.) The relative position of the five leaves inclosed in their common sheath is shown in 1 'l. V, 5 , and in Pl. V, 6 , is represented a cross section of a single leaf, magnified sufficiently to show the characteristic arrangement of the tissues.

Without entering into a detailed account of its functions, which would here be irrelerant, it may nevertheless be remarked that the leaf of the White l'ine constitutes a highly complicated and delicate piece of apparatus. Like all foliage leaves, the leaf of the White Pine fulfills the important functions of respiration and the manufacture of starchy food, during which processes large amomits of watery vapor are exhaled.

A liealthy pine seedling, three years old, in the air of a dry room, lost by evaporation in twenty-four hours 81.1 per cent and in the following twenty-five hours 90.7 per cent of its entire dry weinht. 'The evaporation, chietly through the leaves, is more rapid in the daytime than in the night, in clear than in cloudy weather, and most rapid of all in a drying wind. It will readily be seen that if a tree is planted on a clear, dry, and windy day, the conditions are the most unfavorable that could possibly be chosen, the rapid evaporation carrying off the water of the plant beyond the capacity of the roots, not yet adapted to their new place, to meet the demand, which results in the drying up of the tissues and often in the death of the tree.

The various forms of modified leaves are characterized by extreme delicacy. Winter buds (l'l. V, \%), with their thin and small seales, present a striking contrast to those of Longleaf Dine, for example, and other species that produce large buds with relatively thick and coarse scales. The very loose leaf sheaths and scale-like leaves of the young shoots are early deciduous, a fact that contributes to the growth of the smooth, clean bark characteristic of the branches of White Pine, in which it differs in so marked a way from the species of the Yellow line group.

In I'l. V , 1 , the modified, scale-like leaves that constitute the loose sheaths are conspicuously shown. Separate fascicles, with their sheaths, are represented in Pl. V at 2 and 3 , while at 4 is an older one as it appears at the end of the summer after the sheath has fallen.

FXIIANATION (OF゙ MLATE V.

1. Shoot showing foliago and scolle leares of difterent ades.
?. Young fasciclo with sheath.
2. Joung fascide further doveloped.
f. Still older fascicle from which the devinhous sheath has fallen.
3. secelon of fascicle inclosme in theath.
r). Section of leaf magniticel.
\therefore Wintar bull.
HLORAL OHRANS.
Filowers and frnit are ramely produced to any considerable extent before the tree has attained the age of fifteen or twenty years, though occasionally trees may bear fruit at ten to twelve years of age.

The staminate and pistillate flowers are separate, but produced on the same tree. They appear in May, the pollen ripening and pollination taking place (in the latitude of Ann Arbor,

[^0]$\stackrel{+}{ }$

Mich.) between the middle and the end of the month. The staminate flowers are borne laterally on the shoots of the season (P'V.VI, 1). They are extremely simple in structure, consisting of numerous pollen sacs borne in pairs on the onter face of tho scale like staminal leaves. The pollen is produced in great abundauce and is carried by the wind to great distances. Fertilization, however, notwithstanding the profuse production of pollen, often fails to take place. In fact, failure appears to be rather the rule than the exception, if we consider the frequency of "ofl years," in which little, if any, good seed is produced. But doubtless other causes often combine to prevent the production of a full crop of seeds.

The pistillate flowers occupy the apex of the young shoot (I'l. VI, 2), finally forming a bunch of cones pendent from the ends of the branches. At the time of pollination they are about one. fourth of an inch in length and have the appearance of minute theshy cones, which by the end of the first summer's growth have attained the length of three-fourths of an inch to an inch, and have the appearance represented in P1. VI, 3. They are not ripe until the fall of the succeeding year, when the cones, having now attained their full size, as shown in Pl. VI, 5 and 6 , open and allow the winged seeds to escape. In order to prevent loss of seeds it is necessary to gather the cones a little before they ripen, which occurs during early September in most localities of the natural range. Afterwards, if kept in a dry place, they will open readily themselves and allow the seeds to fall out. The ripening is signalized by the change of color to a yellow brown and the forming of a resin coat.

SEEDS.

The seeds are one-fourth of an inch in length by about half that measure in breadth, of an oval form, grayish-brown in color, sprinkled with darker spots, and provided with a thin, delicate wing, by means of which they are disseminated through the agency of the wind (Pl. VI, S). The seed coats consist of a hard outer shell, or testa, inside of which is a thinner membrane, the endopleura. Inside of the seed coats is the whitish endosperm, constituting the food of the germinating plant, within which, occupying the center of the seed, is the small, straight embryo, the three parts of which, stem, radicle, and cotyledons, are plainly distinguishable.

To get 1 pound of seed from 2 to $2 \frac{1}{2}$ bushels of cones are necessary.
Concerning the production of seed, the experience in this country is but fragmentary. The individual tree begins to bear quite early. Isolated specimens, or trees in open groves, bear cones before they are twenty years old, and even trees in the dense forest seem to bear generally before they are forty years of age. The capacity to bear abundantly is retained to old age, the oldest trees seen still bearing heavily, and even mutilation by fire or otherwise does not prevent the trees from bearing.

EXPLANATION OH PLATE VI.

1. Staminato tlowers of Pinus strobus just before shedding of pollen.
2. Pistillato llowers, terminating young shoot.
3. Young cones in antumn of first year.
4. Young cones early in summer of second year.
5. Cones at close of second year's growth before opening of scales
6. Mature cono, the scales separated to admit of dissemination of seeda.
\%. Single scale, showing onter surface.
S. Single scale, showing innor surface with seeds in place.

SEED SUPPLY.

A full crop of seeds is usually produced by the same tree only at intervals of several years. Cones may be formed year after year, but upon examination it is often found that many of the seeds are abortive. Of a large number of cones gathered at Ann Arbor, Mich., in 1ssib, not a single one showed a perfect seed. Mr. John L. Hobbs states that the same year ($1 \mathrm{~s} 8 \mathrm{~s}^{\circ}$) was a good seed year in Maine, and that trees had not produced so largely before since 15\%!. According to Mr. J. Dawson, of the Arnold Arboretum, a crop of seed may be looked for about once in five years, though others make intervals between seed years shorter. The frequency of seed years has not been suficiently noted as yet to warrant any general statement, but it is known that during certain seasons the seed production is perfectly general over large areas, while in other years it is not. Thus, in 189 the White Pine bore heavily in every pine county in morthern Wisconsin.

The frequoncy of semb years varies of course not only on account of more or less favorable soasons, but according to locality and climatic conditions. In liurope the White Pine is regarded as a freguent and heavy seeder, one year out of three being generally broductive. A grove of 8 acres near Frankfort on the Main produced during twenty years, on an average, 8100 worth of seed, with a maximum yield of $\$ 500$, and with but three "ofl" or fail years in the twenty. Similarly all area of abont 40 acres in the Pitatinate furnishes as high as 1,700 bushels of cones, or about 1,300 pounds of seed, supplying all tho murseries of the l'alatinate State forests with seed.

THE W00D.

The structure and development of the wood of the White Pine may be studied to the best advantage by beginning with a young shoot cut from a vigorous tree in early summer. A cross section of such a shoot in the first season of its growth (Pl. VII, 1) shows three planly marked zones-the pith (m) surrounded by the wood (x) and the inner bark ($p h$), which together form the conspicuous zone crossed by radiating bands, the so-called medullary rays, and outside of the parts just deseribed, a broad zone of cellular tissue, constituting the middle bark, which is bounded externally by the epidermis.

The pith, medullary rays, and middle bark consist of simple cells, originally of an irregularly rounded form. 'Together they constitute the so-called ground tissue of the stem, as distinguished from the fibro-vascular portion, which inchdes the wood and inner bark.

Withim the cortical portion of the ground tissue numerous large openings ($\mathbf{P}=\mathrm{V}$. $\mathrm{H}, 1$, rd) are seen, of diferent sizes and apparently without definite arrangement. These are the resin ducts. Euch duct runs longitudinally through the stem, and consists of a central cavity filled with resin, around which is a single layer of secreting cells, easily distinguished by the nature of their contents from the surroumling cells of the cortex. At this stage of development the resin ducts are confined to the cortical parenchyma, none baving yet been formed in the woody portion of the stem; but later in the season, as may be seen in older sections, a number of ducts are formed, arranged in a circle near the periphery of the wood. These have essentially the same structure as those of the cortex, but are of smaller size and are surrounded by fewer secreting cells. In cross sections of older stems the resin ducts are seen, arranged in an irregular circle, in each ammal ring. Their physiological significance is not fully understood, thongh there can be little doubt that De Vries is correct in assuming that the abundant resin is of service to the growing tree, when wounded, in preventing decay of the wood, and that its preservative influence is contimed after the tree has been cut into lumber.

In such a young shoot as has been described the cells are vitally active, and are filled with granular protoplasm, in addition to which several other substances are either produced or stored up in them, particularly in the cells belonging to the ground tissue. Chlorophyll occurs in the pith and medullary rays as well as in the cortical portion. It is most abundant in the cells of the cortical parenchyma, oceurring in the form of minute grains, irregular in shape and size. Starch, in rounded granules, occurs abundantly throughout the ground tissuc, the cells of the cortex containing a larger proportion than those of the pith. Resin, as already stated, fills the resin ducts and the secreting cells around them, though starch is often found in the latter.

Passing now to the woody portion immerliately surrounding the pith, two characteristic features at once attract attention. The elements composing the wood, x (Pl. VII, 1 and 3), have a much narrower lumen than those of the pith, and are regularly disposed in radiating rows. These elements, the tracheids, are elongated thick-walled cells, four to six sided, according to the number of tracheids by which they are surrounded. Their walls are lignified and are marked by the peculiar structures called bordered pits. Their structure, when fully developed, is shown in 1'l. VIII, 1,2 , and $\%$. In the cconomy of the tree the wool fultills the function of mechanical support, and serves as the conducting tissue through which the water, evaporated from the leaves, is carried up from the roots.

The medullary rays are composed of cells so flattened by the pressure of the tracheids that on longitudinal sections they appear as represented in Pl. VIII, 3. They contain a couspicuous muclens, are closely packed with grambar food substances, and serve collectively as a storebouse
of reserve materials. Communication between these and the tracheids is effected by means of simple pits on their radial walls.

The imner bark, or phloem, ph (Pl . VII, 1 and 3), closely resembles the young wood on cross section, its elements being arranged in radiating rows and traversed in like manner by the medullary rays. The cells composing it differ, however, in various important particulars from those of the wood. Their walls are of cellulose, and although important as conducting tissue, they contribute comparatively little to the rigidity of the stem.
between the wood and inner bark is the cambinm or formative tissue, represented in Pl. VII, 1, as a light band of extremely small and delicate cells, and in the same plate as a zone of cells with thin walls and large lumen, contrasting strongly with the wool elements and those of the inner bark between which they lie. It is from the cells of the cambium that those of the wood are formed on the one hand and those of the bark on the other. The process is a dradnal one, and no absolute line of demarcation can be drawn between the cambinm and the tissues flerived from it. The cells of the cambium multiply by tangential division. The essential features of this process, as regards the position of the cell walls, are represented in I'I. VIII, A, in which the lightest lines represent the youngest walls and the heavier ones those of greater age, successively. It is by the constant repetition of this process of tangential division and the subsequent thickening of the walls of the cells thus formed that the wood and imer bark make their yearly increase in thickness. In the spring the cells of the cambium are large and vigorous, and a rapid formation of wood elements with relatively thin walls and large cavities takes place, while later in the season much smaller tracheids with thicker walls are formed. This results in the strong contrast between the wood last produced in any given year and that formed at the beginaing of the next season's growth, giving rise to the sharp distinction of annmal rings so clearly brought out in Pl. VIII, 1.

The histological characters thus briefly summarized hold true, in a general way, for other conifers as well as the White Pine. This species, however, presents a number of peculiarities that are of both physiological and economical interest.

The resin ducts of the White Pine are larger and more numerous in the cortex than in the wood, an arrangement well adapted to secure the protective action of the resin contained in them without introducing an element of weakness into the wood. Comparisons with other species bring ont this fact in a striking manner. Thus, upon comparing the distribution of the resin ducts in stems of the White and scotch pines, as nearly alike as possible, it was found that in the cortex of White Pine stems of one year's growth the number of resin passages ranged from 30 to 47 , the average being about 33 . The number in the wood was more uniform and averaged about 13. In the Scotch Pine the average for the wood was found to be 33 and for the corter 10 . Taking the second year's growth in the same way, the average number for cortex of White Pine in the specimens examined was 28 and for wood 27 ; in Scotch line, for cortex 9 and for wood $37 .{ }^{1}$ The small size of the resin ducts in the wood contrasts strongly with the very large ones of Scotch Pine, which seriously interfere with the continuity of the wood and tend both to weaken it and to give it an uneven texture.

The extremely small number of thick-walled tracheids constituting the summer wood of the White Pine is in marked contrast with the broad band of summer wood formed in various other species. Comparing the annual rings of White l'ine with those of Longleaf line, tor example, it is seen that while the thick-walled tracheids of the former make hardly more than the mere outer edge of each ring, those of the latter constitute one-third or more of its entire width. Moreover, the gradual, almost imperceptible, transition from spring to summer wood in the White Pine contrasts strongly with the abrupt line of demareation seen in Longleaf Pine and all other Yellow Pines. It is to this very gradual transition that the uniform texture of the wood of White Pine is chietly due. The medullary rays of the different groups of pines show certain structural peculiarities that appear to be constant for the group of species in which they occur. The writer is indebted to Mr. Filibert Roth for the following notes in regard to this feature:

In all pines the medullary ray is made up of two kinds of cells which dilfer in their general form, and still more in the configuration of the cell wall and pits. 'Ihe ono kind occupies the upper and lower rows of each ray,
nul are therefore tormed the wher cells; the wther kind makes up the intermediate rows and are known as the inture celle.

In the appearance of louth onter and imer cells there is a marked and constant ditiderence in litierent groups of pinms. White the interior of the wall of tho onter cells (transverso tracheids) is smonth in some groups, it is buset with mamerons bold propections in others. Shamiarly the imner cells (parmachyma) of tho spring wood of each ray in sone groups have but a single large pit comanaicating with the noightoring tracheid, while in other groups this is brought ahont ley thre to six smaller pita.

Ibased upon these differences, the following classitication of the wood of difterent speries of pines is proposed ly Dr. J. sichroeter:1
seratus t. Walle of the tracheils of the pith ray with ildentato projocsons.
 only by F. resinora.
 most of our "harel" anl "y ellow" pithes.

 trim White linea.
 l'. balfouriema.
Returning to the modullary ray of the White l'ine, it is observed that the walls of the outer cells are thin (1.5μ to 2μ); the round pits quite variable in umber and size, but always as small, and often smaller, than the pifs of the tracheids in tho summer woot; also that tho walls of the inner colls are thin ($1.5, \mu$ to 3μ), for the most part very thin, being largely nccupical hy pits; that the pits aro large ovals on the radial walls of the cells in tho spring wood, small erect ovals in the summer wood, and small and irregular in outlino above and helow whore tho inner cells rommunicate with oach othor. The length of these cells varies, evon in tho same risy, between 50 , and $800 / 1$; the width was fomd to be about 7μ for the onter aml 12μ for the imer cells; the height, more variable in the onter than in the inner cells, and less variable than cither width or length, may be set at about 23μ for outer and inner cells. The average number of coll rows in ono methllary ray, for the spacimens studicd, is 7.5 , whoreof 2.6 fall to the onter cells and 4.9 to the imer cells. Tho limits of the total mumber of cell rows were 2 and 16 ; the heimht of the ray, therefore, 46μ to $36 x$, , dimmsions scarcoly appreciable to tho maidedeyo. What is lost in size is gained in number; on an average 21.3 medullary rays were connted on 1 synaromillimeter, or 13 ,312 to 1 square inch of tangential section.

A study of the wool in its physieal and mechanical properties, by Mr. Filibert Roth, will be found thrther on in this monograph.

NXPIANATION OF IPIATE: VII.

1. 'Transverse section of fresh shoot, cht in summer of first year $\times 25$. Tho zone of small cells surrounding the pith inclules the wood and inner hark, both of which are traversed radially by the medullary rays. The thick cortical parenchyma ontside of these is marked by the presence of a mumber of large resin ducts.
2. Portion of epidermis, with appendages. Jeneath the epidermis af fow cells of the cortical parenchyma containing starch.
C. Highly mannified siew of a part of the transverse section, showing the structure of wood and inner bark, with the thin-walled cells composing the cambium lying botween them.
[Fins. 2 and 3 wero drawn with groat care with tho camora, hat unfortunatoly no statemont or the macrification
was preservel with them.]

EXILANATION Of hlatis VHif.

1. Cross section of wood $\times 175$. The section includes parts of threo medullary rays, the midnlle one of which is rut party through the inner cells and partly through the cross tracheids. The gradual kransition from spring to summer wood is clearly shown. Part of a resin duct is seen on the right.
2. Kadial longitudinal section of wool $\times 200$, showing a lew of tho thick-walled tracheids of tho summer wood followed loy the large thin-walked ones of the succeeding spring, both crossed by a mednllary ray. The hordered pits of the muter cells of the ray, shown hoth in section and surfice view, are in strong contrast with the simple pits of the inner celle.
3. Tangential section of wool $\times 200$.
4. ('ross section of part ol twig collected May $20,1886, \times 175$, showing cambinm and development of wool and bark. 'lho woody riner is aloout one-third its final thickuoss.

GROWTH AND DEVELOPMENT.

The seeds of the White Pine rotain their vitality for a long period. Trustworthy observers state that a fair percentage will grow after being kept five years or more. The conditions of germination and successful growth are, in general, the same as for other pines, namely, a suitable

[^1]

Sections of Young shoot of White Pine.

Sections of Wood of White Pine.

Seedlinas of White Pine.
soil, moderately warm and moist (not wet), in which the seeds are covered at a depth not exceeding twice their own diameter, and, further, protection of the young seedlings against the hot sun and drying winds. Special attention is required in the nursery to avoid undue moisture when the seedlings appear above the ground, as they are often attacked by a destructive disease very common in propagating beds, known as "damping oft:" If, however, no adverse influences have interfered with its normal development, the young plant presents itself after some months' growth as a slender shoot, crowned by the persistent seed leaves, in the midst of which is the terminal bud, the latter having already formed numerous short foliage leaves. No branches have appeared, and the foliage leaves arise singly instead of in groups of five. The whole plant, as it appears at this time, with its slender stem and long taproot, is represented, natural size, in Pl. IX, drawn from a specimen obtained in the pine woods of Michigan, in September, 1ssb. Earlier and later stages of development of the seedlings are shown in the same plate ($1, \ldots, n, f, 5,6)$ drawn from nursery specimens.

For the first two or three years the growth of the seedling is slow, and is so greatly intluenced by its surroundings as to make it impossible to give averages that will fairly represent the yearly increase in height and diameter.

Thus, a healthy seedling, three years old, from the nursery row, measured 4.6 inches, while a self-sown specimen from Maine, four years old, measured only 2.7 inches in height. But, if the circumstances are favorable, after the third year a growth of one to several inches is made each year, and from this time on the yearly increase in height is clearly defined by alternating nodes and internodes, a whorl of branches being formed at each node.

The leading shoot is from the first the most conspicuous and the most important part of the plant, branches being manifestly subordinate, dying off in later years as in other conifers. The rate of growth being of most important practical interest, much space has been devoted to this part of the developmental history.

The tree rarely reaches a height of more than 160 feet and diameters of more than 40 inches, more usually 30 inches. Occasionally these dimensions are exceeded; trees of 200 feet in height and of 60 inches in diameter have been reported. The largest actually measured by the Division of Forestry was 48 inches in diameter breast high and 170 feet in height, with an age of about four hundred and sixty years, containing 738 cubic feet of wood, standing in a group of similarly old and large pines in Michigan. Another tree of this group, with 47 inches diameter and $16 \pm$ feet in leight, contained 855 cabic feet, being less tapered.

1. Seedling as it first appears with seed coat attached to seed leaves.
2. Seedling with seed coat detached.
3. Seedling with seed leaves and primary foliage leaves disposed singly on stem; five months old.
4. Seedling in its second year, showing primary leaves ant secondary leaves (mature form), the latter in clusters of five.
5 and 6 . Seedlings three to five years old.

RATE OF GROWTH.

The following statements regarding the progress and rate of growth of White Pine are based mainly upon the very comprehensive data collected by the Division of Forestry in Maine, New Mampshire, Massachusetts, Pennsylvania, Michigan, and Wisconsin. These data, involving measurements and detailed analyses of over seven hundred trees grown under varying conditions, together with records of the conditions under which they grew, and the amounts of timber which were produced under such conditions per acee, are presented fully in the tables, with accompanying notes, in the Appendix to this monograph. It appeared, however, desirable to present in the text not only the generalizations and conclusions, but also some typical cases. Some other measurements, made before this comprehensive investigation and recorded by the writer in his origimal manuscript, are also produced.

HEIGHT GROWTH.

NEFILLING STAGE.
The growth of the seedling is variable, according to the conditions under which it grows. In the forest it is much slower than under cultivation, as would naturally be expected. The common
practice of nurserymen is to sow the seed broadeast in carefully prepared beds, where the seedlings stand from two to four years before transplanting. Standing very close, the trees do not make as stocky growth as they otherwise would. Under these conditions the average growth of untransplanted seedlings, according to statements by the well-known nurserymen, Thomas
 three years, 12 to 15 inches; four years, 24 to 3 inches.

The late Mr. Robert Donglas, the veteran murseryman, of Waukegan, Ill., wrote:
White line seedlings one year old are 1 to 2 inches bigh and altogether too small and tenter for transplanting. At two years ohl they are much stronger, from 3 to $\mathrm{b}^{\text {in }}$ inches high, with fine librous roots and in fine condition for transplanting. At three years old they are 6 to 9 inches high and ghould not be allowed to stand another year, as they would add about 10 inches to their height during the next year and would not be suitable for planting.

The first seavon alter transplanting, the Whit" l'ine (like other trees) will not increase much in height, but will establish itself, extending its ronts and forming is strong terminal bud, so that when it is six years old it will exceed in weight and bulk over one humben times its proportions when transplanted, and thereafter will increase in growth from 18 to 30 inches in height annually in gool soil for many vears.

Gardner \& Sons, whose nursery is about 90 miles west of the Mississippi River, in Iowa, and therefore outside of the natural range of the species, submit the following measurements, coinciding with the above, as representing average growths at their uurseries before and after transplanting: One-year-old seedling, $1 \frac{1}{2}$ inches high; two-year-old seedling, 4 inches high; threc yearold seedling, 7 inches high. The trees are transplanted at three years of age and thereater the average height for the three following seasons are: Four years old, 12 inches high; five years old, 16 inches high; six years ofd, 33 inches high. Another establishment reports as the average height of two year-old trees in seed bed, $3 \frac{1}{2}$ inches; of three year seedlings, 7 inches.

Casual observations and measurements of some forty-five seedlings in the forest permit the following as to the height growth of seedlings in the forest:

Height growth of White l'ine in the forest for the first six ycars.

These measurements show that the rapid height growth begins with the sixth year, when the total growth of the first five years is almost doubled in one season. This, to be sure, holds only for seedlings favorably situated. In those less fivored the rapid stage of development comes more gradually. This slow progress in younger years is naturally retlected in a retardation of the year of maximum height growth, which in dominant trees oceurs about the twentieth year, while in oppressed trees it may not come before the fortieth year.

Trees on lawns and in pastures, which grow up in full enjoyment of light, are somewhat different from trees in the forest. The slow seedling stage is followed by a very rapid increase in the rate, which attains its maximum before the twentieth year and then declines gradually.

Table I, on the next page, presents a complete record from year to year of the growth of eight trees planted on a lawn at Am Arbor, Mich., which were measured in 1886, the annual increase being measured between the whorls of branches. These measurements also exhibit the great variability of growth from season to season and from tree to tree, even under otherwise similar conditions. In some of the trees, evidently, injuries or accidents retarded development. Such apparent deficiencies have been left out of consideration in averaging the data.

Table: I. -Height growth of White I'ine planted in lawn at Ann Arbor, Mich, by years, in inchen.

Nute.-Tress Nos 1 to 6 stood in shallow soil on gravel subsoil; Nos. 7 and 8 in deep loam.
From this table it appears that these eight trees grew on an average hardly more than 6 inches during the first six years, more than three times as fast during the next six years, and reached a maximum rate of over 27 inches per year during the third period of six years, the decline beginning after the twentieth year and the rate decreasing until it has fallen to about 15 inches near the thirticth year.

To show how, under less favorable conditions, the progress of self-sown trees is very nearly the same, the following measurements may serve, from which it appears that natural seedlings on pastures, standing more or less crowded, reach at ten years a height of 10 feet; at the age of twenty years about 25 feet, and trees thirty five to forty years of age, with diameters of 6 to 9 inches, attained and even passed the height of 60 feet, showing an average growth for that period of 15 to 18 inches per year:

Table II.-Measurcments of self-soun White Pine on pasture.

NOTES TO TABLE If.

[^2]No. פ. botvel grouml, poil hravy loant, momowhat mhated.

So. 13. Sacel gronma, suil heavy loam, somewhat ahated,

Sib. 18. Bavel ground, noill baty loam, womewhat whathe.

So. 20. Le日ed granad, soil heavy lona, sumewhat mhated.

Concerning trees $1,2,5,6,7,5$, and 10 ('lable 1 I), Mr. Hobls sent the following interesting commmaication, under date of Jamary 11, 1857:

All these trees were fomd in an old pasture adjoining my land on the north and having similar aspect and soil. A fringe of tall White litue timber surronnds it on three sides, north, east, and sonth. The distance acruss this open land from north to somth is about 60 rods. This land has heen in pasture from fifty to one hundred years. It was formerly thickly covered with moss, sweet fern, and other low-growing lonshes, in the shade of which animals foumd some grass. Althongh thus surrounded by tall pines their seeds selelom sprung up.

Not many years lefors these trees started a portion of this land was plowed and planted with potatoes one year, and then turned out to pasture again, whercupon young pines immediately sprung up. These were cut down first, but they continued to come up so abundantly that they were allowed to grow, and now the patch that was planted with potators is guite thickly covered, in many places ton thickly, with trees like those mearured. This fact shows the importance of thrning up the soil so that the seods that fall upon it may lave a chance to take root. Only here and there a seed will dind lodgment on land that is covered with moss and low-growing bushes, no mattor how abundantly seeds may he sown upon it.

How such trees continue to grow is shown in Table III. From the measurements it appears that a steady growth continues, which, by the hundredth year hats brought the tree to a height of near 100 feet.

Table 11I.-Measurcments of Hhite l'ine, groun on thandoned fields.
[Furniaheal by Mr. J. L. Hobles, of North lherwick, Me.]

$\begin{aligned} & \text { Nitmaior of } \\ & \text { trev. } \end{aligned}$	Aym.	Diam. cler hreshat high.	Diam. eter below crown.	$\begin{aligned} & \text { Levighth } \\ & \text { of } \\ & \text { crown. } \end{aligned}$	$\mathbf{L} \cdot \mathrm{n}_{\mathrm{y}} \mathrm{th} \mathrm{l}^{\prime}$	Total height.		Height at -											$\begin{aligned} & 1: 0 \\ & y \mathrm{rN} \end{aligned}$
					for lase five years.			10 38.8	$\begin{gathered} \mathbf{2 0} \\ y \mathrm{ra} \end{gathered}$	$\begin{gathered} 30 \\ 3 \mathrm{rs} . \end{gathered}$	40 354.	$\begin{gathered} 50 \\ y \Gamma 8 . \end{gathered}$	$\begin{gathered} 60 \\ \text { yrs. } \end{gathered}$	$\begin{gathered} 70 \\ 3 \mathrm{rs} \end{gathered}$	$\begin{gathered} \mathbf{s} 0 \\ y \Gamma m_{0} \end{gathered}$	$\begin{gathered} 90 \\ y \times 8 . \end{gathered}$	$\begin{gathered} 100 \\ y г \% \end{gathered}$	$\begin{array}{r} 110 \\ 3 \mathrm{ra} \end{array}$	
	F'ars.	Inches.	Inches.	Ft. In.	Inches.	Ft,		Fret.	Fere	Fept.	Weet.	Fect.	Feet.	Fect.	Fect.	Fict.	Ferl.	Fect.	Fect.
1.	is	16	13	500	66	80	10	15	28	42	55	69							
4	59	143	101	$30 \quad 0$	69	67	6	10	20	31	45	57	-						
3	61	123	73	330	48	78	3	12	25	37	47	62	77						
4.	64.	$15 \frac{1}{3}$	10	286	56	70	2	11	24	36	47	58	68						
5	$71)$	151	113	136	50	84	6	$14 \frac{3}{2}$	30	46	60	68	$76 t$	831					
1	82	113	81	380	72	91	1		Only	ne lot	cut	ciocht	at dift	- einh	y ear	i. f	0	hes.	
7	\cdots	2013	13	388	40	110	8	9	21	39	54	71	82	91	99				
8	8.5	$\because 3$	161	45 6	G6	91	6	9	19	28	41	52	63	75	10	-...-	-	
9	4.7	18	$12 \frac{1}{2}$	394	6^{8}	92	7	8	16	26°	33	513	64	76	87				
10.	\cdots	25	18	4.10	36	104	10	8	16	28	47	66	77	87	97			
11.	87	194	121	404	72	100	2	9	21	35	48	60	70	81	9.3				
1:3.	1110	32	215	$5 \% 6$	28	112	9	13	25	39	53	66	79	86	92	119	106		
13.	104	31	91	(i) 4	40	112	9					Not	cat int	0 sect	¢0ns.				
14	117	29	23	570		101	10	14	27	40	48	55	62	69	76	83	90	97	
15	122	23	16	550	30	107	5	8	16	25	39	49	6\%	70	77	84	92	19	141614
	123	シ8	19	500	24			10	21	35	52	58	63	69	74	80	83	40	(H)

NUTFE 10 TABLE HIL.

 Harml over 20 fuet derp, well stecket with White Pise".

Nin. 3. North, Jirwirk, Mo, ; gear foot of hill mloping to north; growth, dense; apparently abamboned farm band; ahallow, sandy soil.

 saml over 20 feet depl, wall stowhed with White l'ine.

In the dense forest the same general law of development, namely, of slow and rapid stages, prevalis for dominant trees as is exemplifed by the foregoing measurements of trees grown in the diehl, although the quantitative progress varies somewhat. According to the relative amount
of light at the disposal of the crown the rate of growth diflers, and there is foum, therefore, in the forest trees, though very nearly the same age, trees of different heights, according to the success of the struggle for light which they have had with their neighbors. At every stage of the development of a forest growth, after its juvenile period, the trees can be classified into dominant, the tallest, which grow with their entire crown in full enjoyment of light and space, overtopping their neighbors; codominant, which, although of same height, have their crowns narrowed in, but still unimpeded at the top; while others (oppressed) are pressed in from sides and top, and finally are entirely suppressed and die. This relationship of individuals changes from time to time, some of the codominant gradually falling into the class of oppressed, and of these a large number become suppressed. Occasionally a codominant becomes dominant, or an oppressed one, by liberation of its oppressors, through storms or accident, finds opportunity to push forward and make up for lost time. Thus, a natural growth may start with a hundred thousand seedlings per acre; by the twentieth year these will have been reduced by death to 6,000 , and by the hundredth year hardly 300 may be left, the rest having succumbed under the shade of the survivors.

It is owing to these changes that in analyzing treo growth we find great, often unaccountable, variation in the rate of growth of even the same individual, and hence, in order to recognize the average, a very large number must be measured to even out the deviations from the law.

For the same reason it is desirable to classify the trees as iudicated above and ascertain the rate of growth of trees grown under different light conditions. To be sure trees belave also somewhat differently under varying conditions of soil, climate, and exposure; hence, a further classitication is necessary if it is desired to establish more than the mere general law of progress and also to ascertain the influence of these variable conditions.

In a general way, we find, as in the trees grown in the open, the slow seedling stage followed by a very rapid increase in the annual rate of growth, beginning with the sixth year and reaching a maximum of 16 inches with the tenth year in dominant trees. With trees which have not enjoyed access to light to the same extent the maximum occurs later; hence, in corlominant trees it is reached, with 13 inches, in the twentieth year, while the oppressed trees reach their maximum current accretion still later, namely at forty years, with less than 12 inches for the year. As soon as this highest rate is reached decline takes place gradually in all classes, much faster in the dominant trees than in the less-favored ones, which decline in the rate of annual height growth much more slowly.

By the one hundreth year the annual height growth is reduced to from 6 to 7 inches, the dominaut trees showing the lower rate, which contimues to decline until about the one hundred and sixtieth to one hundred and seventieth year, when all tree classes have come to a rate of about 2 inches, at which they continue to grow, slowly but evenly, for another century.

This persistence of the height growth, which makes old trees tower 40 to 50 feet above their broad-leafed neighbors, influences also the shape of the crown, whict does not flatten, as is the case with most pines. Very old trees, four hundred years and over, rarely exceed a height of 160 feet, although exceptional individuals have been found of the unusual height of 200 feet.

It will thus appear that the principal height growth is made during the first century, the second century uroting a persisteut but only slow progress.

If we take the average of all the yearly accretions at any one year of the life of the tree (the average annual accretion at that year), the inthences which have been at work during the whole lifetime are of course reflected; therefore, since the juvenile period shows a slow growth, the average accretion attains its maximm much later. This culmination of the average ammal accretion takes place much earlier in the more fivored tree classes, namely, at about the twentieth to fortieth year, after that dechining, while in the oppressed it does not occur until the seventieth year, maintaining itself afterwards for a long period.

This difference would also appear if we compared better and poorer sites. In other words, when the annul rate of growth is slow it remains more persistent than when it is rapid. The persistence noted in oppressed trees indicates also the shade endurance of the species. From Table IV, which gives the accretions from decade to decade (periodic accretion), we see the capacity of the species to thrive in spite of the shade, even in later stages of its life. Even after ninety years of oppression, when the tree is given opportunity by increase of light, it is still able
to make ats gool an ammal height growth as its more-favored neighbors, and ean continue the same to the second century. From the table of heights at various ages it is learned that the suceess in tho juvenile stages after all tolls on the total height growth.
'Asurs IV.-I'eriodio height growth, by decades, of dominant, codominant, and oppressed pine.

Fiffect of composition of forest "pon height groceth.
The height development of White l'ine seems to progress more rapidly when it grows mixed with other species. A striking instance showing how the height growth of White Pine is benefited by the presence of other species is given in the diagram (fig. 2), which represents the height growth of White Pine taken from two sites (1 and b) in Presque lsle County, Mich. The sites

 1wha Connty, Mich:: Sito a, in mixall μ rowth; wite b, in pure growth. were abont 5 or 6 miles distant trom each other. The soil and the moisture conditions on both sites were apparently identical (fresh sand), as were the total number of trees to the acre (the sample area on site a contained 181 trees and that on site $b 189$ trees) and the age of the trees and their distribution over the ground (density of crown cover). The only difference found between the sample areas staked off on both sites was the composition of the forest. Site a consisted of a mixed srowth of Norway and White Pine, while site b represented practically a pure growth of White line save a few small Hemlock and an oceasional Norway Pine. The diagram shows that the White Pine on site a was exceeningly stimulated in its height growth by the presence of the Norway Pine.

The associated species entering into the struggle for light with the White Pine naturally affect the progress of the height growth of the pine. The effects of the associated species upon the height growth of White l'ine and the period of their influence depend upon the capacity of the associated species to grow in height as well as upon the time when the associated species are cither introluced among the pine or received it under their shelter. In case, for instance, hardwoods accompany White Pine from the very start the influence of the hardwood upon the height frowth of the pine will last only for the first sixty or seventy years, that is, up to the age at which most of the hardwoods practically reach their maximam height. In case the Norway Pine or the Hemlock starts simultaneously with the White Pine, the height growth of the White I'ine will be stimulated to a considerably later age, because the Hemlock or Norway Pine continues to grow in fomint at a similar rate for a longer time. When the White lime happens to start on ground already covered with other speeies in such it manner as not to be interfered with in its growth the associated species, if capable of growing in height to a later age, will stimulate the height growth of the White l'ine for considerably longer period. All this is clearly demonstrated in the accompayying liagram (fig. 3), representing the height growth of White Pine taken from three sites $(f, f$, and $i)$ of identically the same conditions except as to composition of the forest and the difier. enco in the ages between the pine and associated species. All three sites had a welldrained clayey loam underdaid by a laminated shale of indetinite depth. The White Pine on site f (Clearfichl County, L'a.) was mixed with Hemlock of a lare size; the pine ou this site had started
among the Hemlock, which stimulated the height growth of the pine during all its lifetime. The White Piue on site k (Jefferson County, Pa.) was mixed with Hemlock of a small ummerchantable size. The pine here had started simultancously with the Hemlock, which stimulated the height growth of the pine only for a certain period, after which the Liemlock, being overtopped by the pine, was out of the struggle and left in the capacity of an underwood. The White Pine on site i, which merged into site k, was mixed with hardwoods, which stimulated the height growth of the pine for the first sixty years, when the hardwoods reached their maximum height and then withdrew from the competition, leaving the pine to increase the height on its own account.

The influence of climate and soil on height growth will further appear from a study of the tables in the Appendix. This influence on height growth is not very great, if we confine our inquiry to regions of best development, the difference rarely exceeding from 5 to 10 per cent.

Fig. 3.-Diagram showing height growth of White I'ine in forest of varying composition in Penusylvaniar site f. Cleartield County; bites k and i, Jefterson County.

Effect of locality upon height grouth.

Comparing the growth in different localities, it appears that the trees from Fennsylvania started at a lower rate than those in all other localities, but after the twentieth to the twenty-fifth year they surpass all others. If this can be accepted as correct, the deduction of the development in early youth from old trees being subject to errors, it may be explained by the fact that these trees grew in mixture with Hemlock and were kept back by the shade of their neighbors, but when they had outgrown these they felt the stimulus exerted by them.

The trees from Maine and Wisconsin, also starting more vigorously than those from Michigan, decline and sink below the Michigan trees between the eightieth and ninetieth year, which may for Wiscousin be possibly explained by the retarding inthence of winds after the pines have ontgrown the hardwoods, while in Maine the poorer soil may account for it. Michigan, with its tempered lake climate, presents a most regular and persistent height curve, coming nearest to tho average of all locations.

In codominant and oppressed trees these differences do not come to an expression, but since the classification is somewhat doubtful and variations within wide ranges are possible, these data are hardly to be used for comparison as to locality effects.

GROW'MH IN THICKNESS.

The growth in thickness, or diameter aceretion, although remarkably regalar in this species, is much more variable, but it is also more persistent, thath the height growth, as will appear from the following comparisons: Thus, in five groups of trees from different sites, ninety-four to one humdred and nine years old, the heights difler only by a little over 8 per cent, varying from 91 to 9s. 1 feet, while the diameters diftered by almost 50 per cent, varying from 16 to 23.7 inches. Again the persistence is illustrated by the comparison of the height growth of five groups from two hundred and seven to two hundred and thirty-three years old, which showed an increase over the group iust mentioned of somewhat over 20 per cent, while the diameters were by 30 per cent greater; and if the poorest groups of the two sets had been compared the difference wonld have been still more striking, namely, 15 per cent for the height as against 37 per cent for the diameters.

This is in part explained by the fact that, where the seedling springs up in the virgin forest, it is very apt to be suppressed for a longer or shorter period by the large mother frees and the host of deciduous and other forms which make up the forest cover. While the height growth is by this shade also impeded, this is not so to the same degree as the diameter, which is a direct fuuction of the amount of foliage that is at work.

The sapling may thus remain a slender pole for many years, and not until it is able to lift its head above its crowding neighbors, or until light has been admitted to its branches, does it begin to expand its crown and consequently thicken its stem.

In managed forests, or in tracts where from any canse crowding las been prevented, the growth in dianeter progresses somewhat more in the manner of the height growth, namely, slowly at first, then rapidly until the maximum is attained, when a slowly decreasing rate sets in. In the seedling the diameter growth is exceedingly small, very rapid in the young trees, when the annal ring is often one-sixth to one half of an inch wide, but decreases with the slower rate of height growth. When the tree is sixty to eighty years old, the yearly ring is commonly not more than one-twelfth of an inch wide; it then gradually sinks to one fifteenth of an inch, which is then maintained throughout life, rarely falling to one twenty-fifth of an inch.

The average annual aceretion reaches its maximum about the fiftieth to the sixtieth year with somewhat over one-fifth of an inch on the diameter of dominant trees, which rate is nearly maintained to the one lundred and fiftieth year.

Thrifty trees at forty years of age grown in the forest, measure from 6 to 9 inches in diameter breast high; at fifty years, from 10 to 12 inches; at eighty years, 15 to 17 inches; and they reach a diameter ol 18 to 20 inches by the time they are a hundred years odd.
'lo attain a diameter of 30 to 40 inches, which represents the best merchantable material of days now almost passed, more than two hundred years have been required, while trees four hundred to four hundred and fifty years old attain diameters of 50 to 60 inches and over. Trees of 40 inches diameter at three hundred years were by no means rare.

To be sure, there are exceptional individuals which exceed these dimensions, and variation in the rate of growth, clue to soil, climate, and surrounding conditions, are naturally as frequent as in height growth.

The progress of diameter development of dominant, codominant, and oppressed tree classes, and in different localities, is exhibited in the tables and diagrams in the Appendix.

The usual method is to determine the diameters at $4 \frac{1}{2}$ feet from the ground (breast high), not only because when measuring standing trees the measurement is most conveniently made at this height, but because the lower diameters show much more irregularity. There is also more wood deposited near the base at ind above the root collar, giving rise to the so called root swelling (butt swelling), undoubtedly a provision to strengthen the stability of the tree. Unfortunately for the investigations here recorded, it was not practicable to have the trees cut and measured at breast height, since the measurements were made on trees felled in regular lumbering operations, exposing only the cross sections at the height of the stump, mostly $2 f$ fect above ground, and at log lengths. Even at that height ($2 \frac{1}{2}$ feet above ground), a diflerence in the progress of diameter growth from that on higher cross sections is noticeable and becomes especially pronounced in later life, as is shown in the curves ropreserting the progress of diameter growth on cross sections at various heights.

The diameters here given for the lowest section are, therefore, somewhat larger than those usually employed, namely, breast high, especially in later years.

The higher sections exhbit not only a regular course, but an entirely similar one, from cross section to cross section. There is no reason to assume that the course at breast height would not follow the same law; therefore there can be constructed a curve for this height similar to the curves of higher sections, using for guide points the data obtained from a series of measurements made to establish the yield of pine in which trees were measured at breast height (compiled in tables in the Appendix). This has been done on the diagram in the Appendix, which shows the diameter development of different cross sections for dominant trees. From this can be read the following average dimensions as approximating the dianeters of each decare, leaving out the uncertain juvenile stage:

Wiameter, breast high, of White Pine (averages approximated), in inches.

That these figures may be considerably exceeded (even by 50 to 60 per cent) under favorable conditions will appear from the various tables of measurements in the Appendix. Especially is this the case in the second-growth groves of pine.

As will be readily seen in the curves after the juvenile stage, during which the diameter grows very slowly, an acceleration in the rate takes place, which soon reaches a maximum, continuing at that for a short time, and then slowly and persistently declining from about :3 inches per decade between forty and fifty years to $1 \frac{1}{4}$ inches at one hundrel years, and half that amount at two hundred years.

HETAIJ, MEASURLMENTS OF ANNUAL GAIN IN CIRCUMFEIRENCE.
An interesting set of most accurate observations have been made and reported by Mr. Nathaniel Morton, of Plymonth, Mass., exhibiting 38 young trees of White Pine, which had sprung up among oak and other hardwoods, mixed with White Pine and a fer Pitch Pine in an old, rather-neglected piece of woods, and which were measured every year from 1891 up to 1898 . The trees stand rather open. The age varied from twenty eight to forty-two years, most trees being between thirty and thirty-six years old and their average age thirty-six years in 1891.

In 1891 the average cross section 3 feet from ground was 131 square inches; in 1898, 197 square inches; the growth 66 square inches, or about 9 square inches per year, one tree making 15 square inches per year. This growth corresponds to a growth in circumference of about 1.3 inches per year, or a growth in diameter of four-tenths of an inch per year.

The detail measurements are giveu in the following table:
Table V.-Anuual gain in circumference of White Pine trecs in Massachusetts.

Number of tree.	Circumference in 1890.	Gain, in quarter inches.						Total in six years.	Number of treo.		Circum. ference in 1890.	Gain, in quarter inches.						Total in six years.	
		1891	1892	1893	1894	1895	1896				1891	1892	1893	1894	189.0	1596			
1	Tuches. 55	3	5	5	5	4	5	27	27			Inches.	4	6	6	\cdots	1	8	38
2	$\bigcirc 6$	3	6	5	6	4	5	29	28		47°	5	7	7	6	7	6	38	
3	26	4	5	6	6	5	6	32	29		42	4	4	6	5	5	5	23	
4	50	1	1	2	2	3	2	10	30		$40 \frac{1}{2}$	4	5	6	5	5	5	:30	
5	28	1	3	4	3	1	3	15	31		57	0	2	5	5	4	4	20	
6	387	0	1	3	3	2	1	10	32		448	5	4	6	6	4	3	30	
7	44	1	3	4	4	4	2	18	33		4212	1	5	5	\pm	5	5	25	
8	27	2	3	4	5	4	5	23	34		441	3	5	6	5	4	4	27	
9	35	3	3	3	6	3	4	22	35		$46 \frac{1}{1}$	4	4	6	4	5	5	28	
10	402	3	4	6	6	3	4	25	36		44t	3	3	4	4	3	3	20	
11	$34 \frac{1}{2}$	1	2	4	3	3	4	17	37		47	4	4	7	5	4	5	$\because 9$	
12	22	3	2	4	5	3	5	22	38		$36 \frac{1}{2}$	2	4	6	3	4	4	23	
13	4412	1	4	4	3	2	2	16											
14	33 y	4	4	7	5	5	4	29		Total		103	139	190	181	157	168	938	
15	$24 \frac{1}{2}$	4	4	5	7	4	4	28											
16	26.	5	5	6	6	5	4	31		Total in inches.		$25 \frac{3}{3}$	343	472	438	3914	42	2345	
17	283	1	3	3	4	3	3	17											
18	19	1	2	4	3	3	3	16		Percentage of									
19	48.	1	1	4	2	3	2	13		gain as com.									
20	$50 \frac{4}{2}$	2	4	5	5	4	6	26		pared with									
21	493	5	6	7	6	7	8	39		gain of 1891...		100	135	184	176	153	163		
2.	44	4	2	3	6	5	4	24					=						
23	$35 \frac{1}{3}$	3	4	5	6	6	5	29		Average gain									
21	33	4	3	5	5	5	6	28		per tree (in									
25	51	2	3	6	5	5	7	28		inches).......		ค日*	1140	1.10	483	183	1138		
26	371	3	3	6	5	5	5	27											

While the diameter arcretion decreases in rate continuously after the juvenile stage, the growth of the areas or layer of wood corresponding to the diameter increments follows by no means the same course.

After the juvenile stage, which is determined by the formation of a definite crown, and when the diameter has attained at least 6 inches the cross-section area begins to increase in arithmetical progression; a constantly increasing rate prevails until a maximum is attained, which comes between the sixticth and one hundred and twentieth yenr, and then continues remarkably uniform for a long period. No decline is noticeable until after the second century has begun. In codominant and oppressed trees the area is well as the diameter accretion move somewhat differently, the maximum rate coming later and lasting a shorter time, the decline foliowing soon after the maximum.

ド(OKM IHFVKLOI'MENT, OH TALJ:R.
Since size of crown and light conditions regulate the amount of diameter growth, it is evident that trees with well-developed free crowns form more wood than those crowded, the dominant more than the oppressed, and those on lawns more than those in the dense forest. Moreover, in these latter the wood is differently disposed along the trunk than in the former. Not only do trees grown in the open throw their energy into branch growth, but the accretion on the bole is laid on in layers, increasing in width from top to base. The result is a more rapid taper than in forestgrown trees, in which each anmual layer is wher at the top than at the base of the tree, producing thereby a more cylindrical form.

The following table exhibits in the measurements of six trees this variation in the width of the same annual rings at different heights, and also in general the mode of diameter growth in these trees. More elaborate tables, showing the diameter growth of White l'ine at various heights from the ground for dominant, codominant, and oppressed trees in various parts of its range, together with diagrams, will be found in the Appendix:

Diameter growth of forest-grown trees at various heights from ground.

Irom such tabulations the taper, factor of shape, or form factor, may be derived (see Tables II and V in Appendix), which denotes the deviation of the shape of the tree from a cylinder. This factor varies between 0.40 for the older trees and larger diameters to 0.50 for younger and
more slender trees, a factor of 0.45 being about the average for centenarians-that means the volume of a hundred-year-old tree is forty-five one-hundredths of a cylinder of the diameter, measured at breast height and the height of the tree.

This factor varies, of course, according to the ratio between diameter and height, and since in codominant and oppressed trees this ratio is a different one from that of dominant trees, as we have seen, their factor of shape is also different from that for dominant trees, that is, their taper differs, the former being more cylindrical than the latter. This will appear from a comparison of the taper of trees as recorded in Table II of the Appendix, in which small diameters with comparatively long shafts indicate the codominant and suppressed trees. Those with short lengths and large diameters are trees grown in open stand.

From Table II, Appendix, we also see that the taper varies within wide limits from less than I inch to 5 inches for every 16 feet, although in the majority of cases it lies between 2 and 3 inches. The tops taper, to be sure, much faster than the middle portion; and, again, in older trees especially, the butt logs much faster than the upper portions, which are outside of the influence of the root swelling.

In young trees which make three \log lengths of 16 feet, it will be safe to allow $1 \frac{1}{2}$ inches for the first two logs and 2 inches for the last one as the average taper. In medium-sized trees, making four to tive \log lengths, an allowance of 2 inches on the whole will fairly represent the average taper, or one-eighth of an inch for every foot in length. In old trees which furnish five and six or more logs, an allowance of 4 to 5 and even 7 to 8 inches must be made for the first \log and 3 to 4 inches for the two top logs, while the middle portions show a more regular and less variable taper of about 3 inches, or one-eighth of an inch per foot.

GROWTH IN VOLUME.

During the juvenile stages the volume growth of the White Pine, as of most trees, is insignificant, a dominant tree of twenty years measuring not more than 0.5 cubic foot, which means an average accretion of 0.025 cubic foot per year. For the third decade the amount of wood formed is over three times what it was during the first two decades, and at fifty years the bole of a dominant tree may contain from 10 to 14 cubic feet and over, the average annal accretion having come up to one-fourth of a cubic foot, or ten times what it was at twenty years.

Now, after the rapid height-growth period, with fully developed crowns, a rapid rate of volume growth sets in, increasing with each year, in arithmetical progression, until at sixty to seventy years the current accretion has become 1 cubic foot and over, and at one hundred years as much as $1 \frac{1}{2}$ cubic feet is attained. After the one hundred and twenty-fifth year the increase in the rate abates, yet before the second century it has become 2 cubie feet, and remains then practically stationary for another century at least.

Some of the oldest trees (four hundred and fifty years and over) measured contained 600 to S00 cubic feet of wood in the stem alone, the largest, with 855 cubic feet, indicating an average annual accretion for this long life of over 1.8 cubic feet.

While the current annual accretion after the fiftieth year is rapidly increasing, the average annual accretion, affected by the earlier stages of slow growth, increases naturally more slowly. For the first one hundred years the average is about two-thirds to three-fourths of a cubic foot for dominant pine, making the volume about 70 cubic feet. It increases to 1 cubic foot at one hundred and tifty years and $1 \frac{1}{4}$ cubic feet at two hundred years, and, as shown above, gains gradually until old age.

The progress in volume growth naturally varies under different soil conditions and with tree classes. In a general way, the oppressed trees and those on poorer sites do not begin the period of rapid volume growth as early as the dominant classes, but just as in the height growth, which is similarly delayed, the rate when once at its maximum persists with great uniformity until about the one hundred and fortieth to one hundred and sixtioth year, when a decrease becomes noticeable.

The tables and diagrams in the Appendix show, by figures and graphically, the progress of diameter, height, and volume accretion for dominant, codominant, and oppressed trees throughout the range of the species. Comparing the growth from the several localities represented, a striking
difference is not sbservel. It wonld appear that in similar soils the White Pine grows at about the same rate, with similar persistence, and to the same dimensions in all parts of its range.

In Europe, too, as appears from a table on page 69 , its grow th as well as its gencral behavior, at least in the forests of Ciermany, is fully as favorable as at home.

Besides differences as result of soils, an influence of the composition of the forest is noticeable. White l'ine mixed with Hemlock (l'ennsylvania stations) shows a more rapid growth for the first one humlred and thirty years, while among hardwoods (Wisconsin stations) the next one hundred years seem to produce the thriftiest growth. This is perhaps explained by the fact that in the latter mixture the W'hite Pine has after the first one hundred years its entire crown above the shorter hardwoods, and hence is in full enjoyment of light.

The so called "second growth" pine develops somewhat differently, because, as a rule, it does not start in at dense wrowth, enjoying the light conditions of the open stand, the single individuals make a more rapid volume growth, until they have closed up, and forest conditions prevail. This is fully exhibited in the measurements of young groves in Massachusetts and New Hampshire, tabulated in the Appendix.

In managed woods, where the number of trees allowed to grow per acre is under control, the volume accretion may also be accelerated; the growth energy of the site being then exerted on fewer individuals, each one deposits larger amounts. What this increase can be may be inferred from the table on page 69, which records the growth of White Pine in Germany.

CUHIC CONTENTS OF TBRES.
Having ascertained by a large number of measurements the diameters, heights, and factors of shape possessed by trees under all sorts of conditions, the cubic contents of such trees can be calculated and recorded in a table for further use, by reference, in measuring contents of trees. Such table for White Pine of different diameters and heights will be found in the Appendix, from which the contents in cubic feet of the bole of a tree whose diameter at breast height has been measured and whose height has been estimated or measured can at once be read off.

LCMHEL CONTENTS OH THEES.
The total cubic contents, being hased on mathematical considerations alone, is the only rational measure of the volume. By stating contents in board measure we introduce at once a number of uncertain factors, which are variable in the practice, such as the lowest-size diameter to which logs are taken; the size of the lumber that is cut, from one-half-inch boards to square beams; the saw used, which determines the loss in kert, and the skill of the sawyer, who can Waste a large proportion in slabs and inconsiderate use of the logs. ${ }^{1}$

In these losses there is no allowance made for crooks or rot, which would reduce the results still further, so that hardly one third of the total volume of the tree would seem to reappear in the shape of lumber, provided the log scales used are correct, which anticipate a loss of 44 per cent (Scribner) to 50 per cent (Doyle) in sawdust, slabs, and edgiugs for $14-i n c h l o g s, ~ t h e ~ a v e r a g e ~$ size of logs in the northern pineries.

As a matter of fact, in good modern mill practice, not only does no such waste oceur as is indicated in these !oys scales, even if all logs were cut into inch boards, but in addition small logs are worked into dimension material " by 4,2 by 6,4 by 4 , etc., in which the loss is reduced to a minimum; thus an sinch logr may be cut to 6 by 6 inches. It then would make, if 16 feet long, not 16 to 2 geet 13. M., but 48 feet. Since the bulk of our pine material is now obtained from small logs (over one half below 14 inches diameter), these ditterences are of considerable practical importance.

A carefill examination and measurement of one bumlred trees of White Pino was mado by Mr. Filibert loth to ascertain what rational allowance shomble mald on the cubic contents of tres when comverted intolumber. The arerage diameter uf the trees measured was 28 inches, breast high with bark, and the height 100 fect, the factor uf shape (0.43 , that is to sis, they wero old treen with a moderato taper. They averaged d.2 loge of 16 feet per tree, which representeal 76 per cent of the tutal volnme of the bole with bark, $2 f$ per cent being lost in the top and stump and in the hark. The lumber contents of these logs, calculated ly Scribner's log rule, represented only 39.5 per cent of the total olume of the tree, that is to say, over 60 por cent of the whole tree is supposed not to reappear in the lumber, the saw wasto represcating 48 per cent of the log volume and 36 per cent of the total volume of the tree.

Based upon a proper consideration of these practices, it will appear that an average allowance of 30 per cent in saw waste on the volume of logs of all sizes is more than ample, and that the lumber yield given in the following table and computed on this assumption of waste, althongh being for same sizes even 100 per cent above the \log scales in use, remains still below the practically obtainable results:

Lumber cuitents in 16-foot logs.

Dianster at small end.	Thison's favorite.	Doylorule.	Scribner rule.	Computed for 30 per cent waste.	Waste.	
					Iny Sicrib. ner.	Py Doyle.
Inches.	Ficel B. M.	Feet E M.	Feet B. M.	Feet 13. M.	ler cent.	Per cent.
8	22	16	25	$\frac{32 \text { to } 48}{46}$	61	76
10	37	36	- 49	$\frac{60 \text { to } 85}{72}$	50	65
12	64	64	79	100 to 130	47	57
14	95	100	114	105	4	51
16	142	144	159	187	11	46
18	197	196	213	237	37	$4{ }^{43}$
20	248	256	280	202	33	34
23	3?4	324	334	336	34	36
4	342	400	404	429	33	33
26	476	484	500	492	70	32
28	562	576	582	564	29	30

In estimating the cut of lumber that may be obtained from a given area, there must, to be sure, an allowance be made in addition for unserviceable, crooked, knotty, rotten material, which may reach from 15 to 20 per cent, and, furthermore, an allowance for the loggers' risk in breakages and other losses, which may be figured at 10 to 12 per cent.

To give, however, an approximate idea of the lumber contents of trees of varions diameters and heights, these have been calculated for a number of trees and recorded in Table II, p. 87, in the Appendix.

From these measurements, which are based upon Doyle's log scale, the following tabulation is made, showing approximately the increase of lumber contents with diameter growth and age. From this it would appear that the greatest per cent of increase occurs during the period from the fortieth to seventieth year, while in the forticth year the average annual growth in voiume has been about one-third of a cubic foot, in the seventieth year it is nearly "2 cubic feet, ar six times as great, and by the one hundredth year this rate is doubled, centenarians containing about 400 feet B. M. During the next century the trees make twice as much lumber wood, for now all wood deposited makes lumber:

Increase in lumber conlents with size.

CONDITIONS OF WFVELOPMEN'T.
bemands umon chimate and some
The wide field of its uatural distribution and the thriftiness with which the White Pine develops in climates outside of its native home show that it is quite adaptive as far as climatic conditions are concerned. Yet, from the manner of its development within the climatic range of its
occurrence, its use for forestal purposes would seem to be circumseribed by conditions of humid and cool atmospheres, such as are found in northern latitudes and high altitudes. Its distribution is manifestly more dependent on humidity than on temperature, or rather, on a low transpiration factor, that is, such a relation of heat and moisture, both at the foot and at the top, that the thin foliage can realily perform its functions; hence, its failure in cultivation in the trans-Missouri States, the contraction of its southern field to the high altitudes, and its best development in fuantity if not in quality within the inthence of the Great Lakes and to the northward and eastward.

While adapting itself realily to almost any variety of soil, the White Pine manifestly prefers one with a fatir admixture of sand, insuring a moderately rapid drainage. The pine tribe in general occupies the sandy soils, to which it is better adapted than most of tho deciduous tree species; but the White line is capable of disputing possession with its competitors oven of the fresh medium-heasy loam and clay soils, making here the best individual growth.

Its shallow root system, in which it resembles, as in many other respects, the spruces, permits it to accompany the latter to the thinner soils of the rocky slopes in the Adirondacks and New Lingland States, although here its development is naturally less thrifty. Its growth on the rocky hills of Massachusetts within the hardwoods of that region is, however, at least for the first sixty to cighty years not much less thrifty than in the better soils in the valleys. It does not shun even the wetter and occasionally overflowed and swampy ground, and is here found, together with the Fir, Arborvitie, and even T'amarack; yet, on the dry, light sandy, coarse, and gravelly soil the led Pine and dack line seem to be able to outdo it.

ASBOCIATEH SIECIES.
The White Pine is less gregrarious than any other pines of the Eastern United States. Although it occurs in pure growths as true pinery on the red clays and moister gravels, it more frequently is an admisture in the hardwoods, sharing with them the compacter, heavier soils from which the other pines are excluded.

Spruce, llemlock, and Arborvita (Cedar) are most frequent concomitants of the White l'ine in Canada; various species of Birch and Maple with Beech and Spruce form the composition of the forest in the Adirondacks, overtowered by the pines, and there is hardly any species of the Northern Atlantic forest which in one or the other region of its distribution may not be found in association with the White Pine.

Owing to the fact that the hardwoods as a rule occupy the better soils, the best individual development of the White Pine is also found in these mixtures. In the pinery of the northwest lied Pine and Jack Pine are the associates, while the Pitch Pine (P. rigida), and, in the southern field, the Shortleaf Pine (I^{\prime}. cchinata) are not unfrequently found in its company.

The samples of "acre yields" following will serve to illustrate more in detail the manner of distribution, the associations, and the capacity of White line in the native forests in different parts of its range. More exteusive tabulation will be found in the Appendix.

Table VI.-Acre yicld of White I'ine on sites in IFisconsin, Michigan, I'ennsyltania, and Maine.
WISCONSIN.
Site a: Washburn County.

Average annual accretion: White Pine, 75 cubic feet.
452 feet B. M
MICHIGAN
Site d: Montmorency Connty.

Description of site.	White Pine.					lied l'ine.			Hemlock.		
			$\begin{aligned} & \dot{B} \\ & \text { B } \\ & \end{aligned}$	Volume.							
				$\frac{\dot{x}}{\stackrel{\rightharpoonup}{\hat{a}}}$	券						
Sample area, 1 acre. Age of pine, 250 to 270	2	Inches. 10	Feet.	Cu.ft.	Ft. T3. Mr.		Inches.	Feet.		Inches.	Fect.
years. Number of trees, 113 : Whito Pine, 54	1	12		38			14)				
per cent; Red Pine, 35 per cent; Hemlock, 11	3	13		159			15			11	
per cent, Locality damaged by fire twelvo	${ }_{3}^{1}$	14		60 207			16			12	50 to 80
years before; 15 per cent dead trees and 20 per	3	10		231			17 18			150	
White Pine mixed with Fed Pine and inter.	1	17		86			19				
mixed with Hemlock. Soil, fresh, loose sand	1	18		945			20				
of a gray color, turniug brown and red under-	3	19		315		91	$\dot{\square}$	
neath, With a surface cover of brakes, checker-	2	${ }^{21}$	\cdots	280			${ }_{23}^{24}$	$\stackrel{7}{7}$	
berry. The subsoil is a brown sand, sometimes loamy and in spots clayey. Density of crown	${ }_{5}^{6}$	22	$\stackrel{\sim}{\circ}$	${ }_{8}^{906}$			23	$\stackrel{5}{5}$			
cover, 0.5.	9	24	\%	1,611			30	会			
	4	25		800							
	${ }_{3}^{1}$	27		216 696						\ldots
	$\stackrel{3}{7}$	28		498					
	7 2	39 30		1, 862							
	1	31		${ }^{560}$							
	1	33		340							
	61			10, 154	60,900						

Totalyiph: 86, 100 feet 13. MI. of which White ${ }^{\text {I }}$ 'ine 66 per cent.
Volume of Ret Pime: loles, 5,256 cubic feet; merchantable timber, 25,200 feet 13. M.
Average annual accretion: White Pine, 59 cubic feet.

MNNSVLVANIA.

Siti: f: 1)nhoin, Clarfield Connty

MAINE。
sitte b: York County.
Whita I'me

Dowription of site.

Sample area, one fourth acre, Aco bif pine, 50 tu 60 vioars. Numbur ol trees: Mature Whito lims, se8; young White I'ine, lfor mature Hemlock, 20; Young Hemlock, 20. Clamitication for White J'sue: Dominant, 3 pre cent: codominabi, 45 per cent: op. pressed, 23 per cent; suppressed, 23 per rent.
White line, with acattering Hembock and ocrasuonal spruce and bir, on a plain and level site. Sianty undergrowth of Hazel and youmg Hemlock. Soil, at wray sand. sometimes brown or loamy, with a vegeta blo molal of 3 juches, deep, fireah, with a
 crown cover, 0.7.

Irertuc anmmal accretion: Whitu I'ine $7+$ rulbic feet
(hurrent acerction: Wैhite Dinu* 133 'anbic fuet.

MAINE:
SITE e: Vork Comnty.

Deacription of nite.
Whiteline.

Sample area, onefourth acre. Age of pine, 50 fo 60 years. Nimber of trees: Mature White Jine, 396. Clawification for White Tines: Dommantit, I6 jur crent colommant, 27 per cent; oppressed, 24 per cent; sup pressed, 31 per irint.
White I'ine, with occasional Norvay l'ine, an a slope to morth 5 to 10 . seanty undergrowth of Memlock, Oak, and Fir. Soil, a sandy loam, with little vebbles in it of a brown color, domp aud fresh, with lilack soil and mold of 3 juches on top and leafy sarfice cover; clay probably \& to 12 feet down. Demsity of crown corer, 0.8

Averagc annual accretion: Whito Pine, 131 cubic feet.

The capacity of the White Pine to keepits place in mixture with the hardwoods is probably mainly due to its shade endurance. In this respect it excels all pines with which we are acquainted. Pines are, as a rule, rather light-needing species, and are usually at a disadvantage in the mixed forest, unless compensating influences are in their favor. The White Pine is an exception. As a consequence, it is capable of forming dense thickets, supporting a larger number of trees per ace and producing a larger amount of material than the more light-needing species. Also, as a consequence of its shade endurance, it does not clean itself of its bramehes as readily as other pines; not only to the lower branches remain green for a long period in spite of the shade of the superior tiers of foliage, but they persist after they are dead for many years.

As this shade endurance is, however, only relative, and as many of the associates possess it in greater degree, the additional advantage of rapid height growth alone saves the pine from being after all suppressed by its shadier companions. Yet, these succeed in keeping the young progeny of the pine subdued, and hence the observation that in the dense virgin forest of hardwools the reproduction of White Pine is scanty.

The difficulty of cleaning itself of dead branches seems to be overcome by association with shadier companions, for, as a rule, the best quality, cleaner boles, and absence of black knots, which denotes earlier cleaning, are form in such association. Yet, in these mixtures the trees are apt to be shorter bodied, since the hardwood companions are shorter bodied and the stimulus to height growth ceases sooner. In the pinery proper the stimulus to height growth exerted by the neighbors continues longer; hence, longer shatts are found here, other conditions being the same, although the boles are less clean and less free of knots.

Its shade endurance is decidedly less than that of the Spruce, which maintains itself, but not thriving under the dense shade of Maple, Birch, and Beech, where White Pine seedlings and saplings are not to be found, although they sustain perfectly the shade of oaks. To be sure, this shade endurance is to some extent dependent on moisture conditions of soil, being less on the drier than on the fresher soils.

This relatively ligh shade endurance permits ready natural reproduction of the pine, especially where the hardwoods have been thinned out to some extent, or where, after clearing, all species start their race for reoccupation of the soil with equal chance. The pine then appears in the young hardwood growth in single individuals at first, somewhat behind in height, but finally, when it enters upon the periol of rapid height growth, it outgrows its competitors and is assured of its place.

More frequently does the reproduction take place in groups, smaller or larger, the many areas of "second growth" of several acres in extent, which are found thronghout the hardwood coppice of Massachusetts, showing that tendency toward gregariousness so characteristic of the conifers. A further discnssion of the conditions of reproduction and the yield occurs in the portion devoted to the discussion of forest management and of forest yield.

In these natural reproductions the trees grow close together, that is, close for maided natural reproduction, as is apparent from the following table of acre yields of young growth taken at various places in New England:

TABt: V'II.-Icre yield of young pine groves-Contimed.

It wonld be possible to increase the number of trees that could grow per acre and develop satisfactorily by attention of the forester, as will appear from the statements regarding the White Pine forest plantations in Germany, where pure White Pine growths showed at sixty eight years still over six humdred and seventy trees, and in another place at eighty-two years seven hundred and twenty-three trees, and at one humdred and four years over two hundred and fifty trees per acre. Even in such close stand the crown of living branches remains long, oceupying one-third of the bole, and dry branches persist down to over half the length. The stems are straight and cylindrical, in this respect also reminding one of the Norway Spruce, although the tendency to fork seems more frequently developed.

YIELD OF WHITE PINE.

The question as to the amount of material which the White Pine is capable of producing per acre is diflicult to answer. It can not, of course, be deduced from a knowledge of the development of the individual tree, since there remains one factor unknown, namely, the number of trees of diflerent classes that can occupy an acre. Nor can the capacity of production, as a rule, he ascertained from the actual proluction or acre yield of natural virgin growths, for these usually not only do not occur in pure growths, but also are usually not developed under most advantageons conditions, and do not, therefore, represent the possible or normal yield which could be secured. Only by selecting smaller, seemingly normally and favorably developed gronps in the forest at different ages and in various localities and measuring the same may we arrive at an approximation of what the species is capable of producing by itself.

Such measurements have not been attempted, but the yield of virgin acres under varying conditions has been ascertained to give at least a forecast of the possibilities, although mot representing the normal or possible yield of fully stocked acres of White Pine. In addition we may utilize the results recorded from Germany (page 69) of a number of plantations, which have had the advantage of at least the partial care of forest management.

From these indications, we are justified in the assertion that the White Pine produces per acre as well as any species with which we are acquainted in our northeastern woods, and at a rate which is not excelled by any of the lumber trees within its range.

In this respect, again, it approaches the German Spruce, though it probably excels this species in persistency, as it does in the dimensions which it can produce. We can, therefore, for the first
hundred years at least, approximate the capacity of our White Pine by reference to experience tables of the German Spruce.

As with all conifers, the rate of proluction at first is very slow, not more than 40 to 70 enbie feet in the average per year for the first twenty years. With the better development of crowns and the assertion of individual superiority in the struggle of neighbors, which leads to the estab. lishment of dominant classes, the production increases rapidly, and by the fiftieth year, in fully stocked areas, the average rate of 140 to 160 cubic feet per acre may be attained, so that at that age we may, with five hundred to six hundred trees to the acre, find 7,000 to 8,000 cubic feet of wood stored up in the boles of the trees. The current annual accretion, then, may readily be at the rate of 160 to 180 cubic feet, keeping the average annmal aceretion of fully stocked acres very nearly to those figures, so that at one hundred years we should find, under favorable conditions, as much as 15,000 cubic feet of wood, of which at least 80,000 to 90,000 feet B . M . is saw material.

The persistency of growth seems to continue beyom that age, and the indications are that the decrease of the current as well as average accretion per acre during the next century takes place so gradually that at one hundred and fifty years it may still be over 100 eubie feet, and not much below at two hundred years, when the burden of the acre may be near 20,000 cubic feet, with over 120,000 feet B. M., and double the amount in the oldest growths of two hundred and fifty or more years, which may possibly be the limit of production.

While these figures, which differ very materially from those proposed in the tables by Messrs. Pinchot and Graves, may stand for the better soils, as ideally possible, practically, perhaps, rarely attainable, especially in older stands, poorer soil sites will vary from them by from 20 to 40 per cent, so that a yield of 9,000 cubic feet at a hundred years, or 50,000 feet of lumber, would still be quite reasonable to expect on the poorest soils on which White Pine can be satisfactorily grown. On the sandy soils of Wisconsin whole forties are found to average 50,000 feet per acre of naturally grown unattended forests of one hundred and fifty years of age.

Table VIII summarizes the measurements of sample areas, which are given in detail in the Appendix. It will serve to show what our native woods, without attention, stocked with partly useless trees and in open stand, exhibiting much wastage in unoccupied ground, are capable of producing.

If we assume that the areas might have been stocked with pine alone, that they would have produced at only the same rate as they have under their present conditions, even though the acres had been fully stocked and not in the fractional manner which is indicated by the decimal giving density of cover (all assumptions), and if in connection with the density factor we consider the number of all trees per acre and the percentage which the pine represents, we may, as a mere matter of judgment not fit for tabulation, arrive at an indication as to what the acre might possibly have produced. Such indication of possibility has been attempted in the last column of the table, and has served in the above discussion in connection with all other data presented. This is all that can be done in the absence of the measurements above indicated. These figures are of no direct practical application except to give a general notion of the productivity of White Pine and the variability of yields.

An inspection of the table of yield in Germany, on page 69, will show that these approximations are not unreasonable. The lumber contents in board feet may be approximated by multiplying these figures by 4 or 5 in the younger growths and by 6 or 7 in the older. Assuming a moderately careful practice of logger and sawyer, by no means mathematically tenable, the above tentative propositions for normal yields might be even increased.

To assume, as is done by certain authorities, that tables of normal yield could be constructed by using the density indicated by a decimal as a mathematical factor, using that factor as a divisor of the actually measured yield in order to arrive at the normal, is to mistake the value of the density factor. Not only would trees and whole acres have developed very differently when grown under different density conditions during their life, but the estimate of the density is such a vague and uncertain one, a mere opinion, that even if the greatest care were exercised, its use as a mathematical factor would not be admissible. It is a mere indication of the present condition of the growth, and its meaning at different periods of life is very different in its plysiological eflects as expressed in volume accretion.
Table VIII.-Acre yield of White l'ine in natural forest.

$$
\begin{array}{ccc:c}
\vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots
\end{array}
$$

$$
\begin{array}{cc:cc}
\vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & & \vdots \\
\vdots & \vdots & & \vdots
\end{array}
$$

It may bo of interest to record more especially the data of a small clamp of young White line sprung up naturally on an abandoned field of less than three-fourths of an acre in extent, situated near Farmington, N. H., which its owner (Mr. J. D. Lyman, of Exeter) had from time to time thinned out for the last twenty-two years, with a view of accelerating the grow th of the trees. Uufortunately, no record of previous conditions and frequency and extent of operations was attainable, but the present condition (three or four years ago) is exhibited in the following table:

Thet of a clump of naturally grou'n young W'hise l'ine.

This would indicate a yield per acre of about 6,000 cubic feet, from which, with the dimensions attained under careful mill practice, some 36,000 feet of lumber might be cut. To be sure, with such open stand much of this must be knotty, even though the trees were pruned as far as possible.

By comparison with the measurements of naturally grown unthimed acres, we find that two to three times the number of trees of the age indicated in the above table might stand on an acre and make as much total product (see Massachusetts, site c, which, with 324 trees, produced 6,188 cubic feet); and although a few trees in the thimed grove had reached larger dimensions, the total proluct of trees over 12 inches in diameter is almost the same, the difference in favor of the thinned part being only 100 cubic feet. From this comparison it would appear that the thinning was too severe to secure the most desirable results. Pl. X shows the condition of the grove when the measurements were taken.

Allowance, however, should be made for the amount utilized in thinnings. Whether this inferior material would pay in most cases the cost of its removal is questionable. A very uncertain estimate by the man who performed the thimnings places the amount of wood removed equal to that now standing, among which is 5,000 shingles.

The following table shows the measurements of one of the largest trees in the grove:

This tree, when felled and cut into waney edged boards, made lumber to the amount of 36 feet.

Fig. 1. A th.nned Pine Grove in New Hampshire ITrees 51 Years O_= i86 tu the Acre

DANGERS AND DISEASES.
The White Pine is subject to a considerable number of destructive influences even when growing spontaneously, but a large proportion of these might be avoided if properly understood and guarded against, since they are in great part due to human agency.

INJURIES BY HUMAN AGENCY.

The subject of forest fires has been so fully discussed that it is menceessary here to treat it in detail, although the pine forests of the Northern States have suffered more irreparable injury from this than from all other destructive agencies combined. Hrom the mumerous suggestions that have been made respecting protection from fire and from unuecessary injuries in general, the most important appear to be:
(1) That a well-digested code of laws, capable of prompt enforcement, based upon the recommendation of a nonpolitical forest commission, is of primary importance.

Fig. 4.-Girdled White Pine continuing to grow.
(?) That a correct public sentiment, encouraged by a wider dissemination of information concerning the value of forest products and the time required for their growth, will have more influence than all other means together in preventing unnecessary destruction.

Unlike the Loblolly Pine of the Southern States, or the Red Pine with which it is commonly associated, White Pine has a thin bark during the first thirty to difty years, which affords but slight protection from fire. Consequently, the species suffers much in young growths from surface fires, which do little or no harm to the thick-barked pines and hardwoods. In the mature trees the growing layer is much better protected, as the bark with age becomes proportionately thicker than that of lied Pine.

Related to the foregoing, and properly placed under the head of injuries to be charged to human responsibility, are wounds occasioned by cattle. A pine forest is less liable to injury from the browsing of cattle than one composed of deciduous trees, and in the Eastern States old pastures commonly grow up to pine, the deciduous species being kept down by the cattle. But in 20233-No. 20-4 4
any casc, when the grow th of timber is the primary object, domestic animals should be rigorously excladed, as they are certain to do more or less injury to the growing trees. A pine forest, or a forest of any kind, is no more properly a "run" for cattlo than a dield of stamding grain, and the damage is likely to be more extensive and less capable of repair in the former than in the latter canc.

Tho White IDino shows considerable recuperative power, which is cxhibited in the ready reastablishment of broken leader and the healing of wounds, in which the prolifie resin exudations assist by keeping out water and fungi.

The expericnces of Mr. Nathaniel Morton, of Plymouth, Mass., in trimming pines, recorded in The Forester (June, 1898), show the absolnte safety of pruning live limbs of 3 to 5 inches and more in diameter, which are covereal in a few years by new growth (I'l. XI). An interesting case of pertinacity of life and recuperative power, which at the same time throws light on the muchdebuted question of fool and water movement in trees, is also reported from the same sonrce, and represented in fig. 4.

A young pine in the forest was, two years ago, not only girdled, but the bark peeled off for 11 inches all around the tree. The tree has a perfectly healthy appearance, and has continued to grow in length, although apparently about half as fast as before. The measurements of internodes of this tree during the last six years follow. The diameter growth above the wound has continued, while below the wound it has remained stationary, as will appear from the measurements made two years after the removal of the bark.

	Inclien.
Circumference near the ground	. 15
Circumference just below the wound	11
('ircumference where lark is ntripped	11
Circumference just alrove lirst row of	11
Circumference above second row of hi	. 11

The wound is entirely covered by pitch. The growth just above the wound has a baggy appearance, showing an accumulation of wood deposit, which shows the arrest of the food materials due to the absence of the cambium layer and bark.

It would appear that the roots could either live without the food supply from above (at least for two years), or else that a suflicient amount can pass through the dead wood of the trunk, and at least the water necessary for the claboration of food materials in the foliage ean be supplied through the old wood. The writer inspected this tree, and can vouch for the truthfulness of the description. A similar case with a sonthern pine (species undetermined) came to his aftention, where the tree was older and had grown over twenty years above the wound; but as only a eut was inspected the possibility of a cambial comection of the upper and lower parts was not absolately excluded, as in the present case.

INJURIES BY STORMS.

Of injuries not within human control may be mentioned, first, those resulting from storms, snow, and ice. 'The soft texture of the wool and the short-lived branches of the White l'ine would naturally suggest its being more liable to injury by storms than are deciduons trees. This, however, is not the case. The angle which the branches make with the trunk admits of their readily bending, and under such a weight it is fond that Maples and other hardwood trees break down much more frequently. Mr. B. I'. Hoyt, of Manchester, Iowa, states that "a whole summer's observation among the White l'ines of Tennessee failed to reveal a single case in which a tree of that species was injured by the wind," attributing the fact to the mechanical disposition and structure of the trunk and branches. In this respect, then, the White Pine stands at a decided advantage as compared with many decidnons trees with which it is naturally associated.

Like the shallow-rooted Spruce, the White Pine is liable to be uprooted and thrown by storms, although to a less degree.

While, however, the mechanical efleets of the wind and of storms of snow and ice are not sullicient to require special consideration, the injurions consequences of drying winds are such as

to become an important factor in determining the limits of the artificial cultivation of this species. At the time of planting, deciduous trees are not in leaf, and accordingly there is but little evaporation of water, while the leaf surface of conifers is exposed then as much as ever to the drying effects of the atmosphere, often resulting in their death before they are fully established in the soil. It is for this reason and because of the general lack of a sufficient amount of atmospheric moisture that comparatively slight success has attended the cultivation of the White Pine on the plains west of the Mississippi. The raw winds from the Atlantic again have been found to be much more injurious to this species than to the Pitch Pine (Pinus rigida), and the latter is therefore decidedly preferable for planting in the immediate vicinity of the coast.

DISEASES

EFFECL OF IIEAT AND DROUGHT.

In Germany, plantations of White Pine thirty-five to forty years old have sutfered much injury from a disease which appears to be occasioned by unusual heat and drought, and which was particularly severe after the hot, dry summer of 1876. ${ }^{1}$ The disease manifests itself externally by dried-up patches on the trunks, the spots being largest 3 to 6 feet from the ground, gradually running out above and below this, and often reaching a height of 15 to 18 feet. The spots may be only an inch or two wide, but frequently the bark is dead nearly around the entire trunk. As a rule, these dead spots are on the south and west sides of the tree. The wood is often penetrated by larva of insects, but these are not the cause of the disease, since in many cases they are not present.

Dr. R. Hartig, from a comparison of specimens and study of the disease in question, concludes that it is due to extreme dryness and that the White Pine can not be trusted to endure such extremes. He further states that it suffers greatly from dry air even in the winter time.

PARASITIC DISEASES.

The White Pine is subject to a number of parasitic diseases, some of which attack it when growing spontaneously in the forest, while others are highly destructive to the tree in cultivation, especially in Europe under changed climatic conditions. A few only of the best known of these, including several due to fungi, will be cousidered in detail.
(1) Agaricus melleus Vahl.-This fungus, of common occurrence in the United States as well as Europe, is exceedingly destructive to coniferous trees, the White Pine in particular suffering greatly from its attacks. It also fastens upon various deciduous species as a parasite, attacking living trees of all ages, but living as well upon dead roots and stumps and on wood that has been cut and worked up, occurring frequently on bridges, railroad ties, and the like, and causing prompt decay wherever it has cffected an entrance. The most conspicuous part of the fungus is found frequently in the summer and fall on the diseased parts of the tree or timber infested by it. It is one of the common toadstools, this particular species being recognized by its yellowish color, gills extending downward upon the stem, which is encircled a little lower down by a ring, and by its habit of growing in tufts or little clumps of several or many individuals together (I'I. XH, 1 and 2). It is also particularly distinguished by the formation of slender, dark-colored strings (Pl. XII, 2 and 3), consisting of compact mycelium, from which the fruiting parts just described arise. These hard root-like strings (called rhizomorphs) extend along just beneath the surface of the ground, often for a distance of several feet, and penetrate the roots of sound trees. By carefully removing the bark from a root thus invaded the fungus is seen in the form of a dense, nearly white, mass of mycelium (Pl. XII, $3, c$), which, as the pàrts around decay, gradually produces again the rhizomorphs already described. These rhizomorphs are a characteristic part of the fungus. Occurring both in the decayed wood, from which they spread to the adjacent parts, and extending in the soil from root to root, they constitute a most effective agency in the extension of the disease.

The symptoms of the disease are marked, and, taken together, sutliciently characteristic to admit of its ready recognition. External symptoms, to be observed especially in young specimens
recently attacked, consist in a change of the leaves to a pale sickly color and often tho production of short stunted shoots. A still more marked symptom is the formation of ereat guantities of resin, which llow downward through the ingured parts and out into the ground, resulting in the sticking together of the roots and masses of dirt that havo been penetrated by the resin. P'assing up a little way into the trunk, the canse of this is seen in the active working of the fungus in the medullary rays and around the resin canals, where apparently both cell walls and cell contents undergo degeneration and partial conversion into resin. This flows downward, as already stated, and also works laterally into the cambinm, producing great blisters in the younger parts where growth is going on, and also resulting in the formation of abnormally large resin canals. .

As the disease advances the fungus continues to attack the tracheids of the sound wood and soon induces marked changes. Underits julluence the walls lose their lignified character, become softer, and give the cellulose reation, while the mycelium of the fungus penetrates and fills the enlarged cavities of the tracheids. ($1^{\prime} 1$. NII, $\left.4,5,6.\right)$

The whole inside of the trunk may finally become hollow for some distance above the stump, its interior being filled with a loose rotting mass, penetrated by rhizomorph strings, and only becoming worse the longer it stands. The disease having once reached this stage, there is of course nothing to be done for the tree but to fell it as soon as possible and save whatever wood remains unalfected.
(2) P'olyporus annosus Fries (Trametes radiciperda li. Hartig).-This is one of the most dangerous parasites of coniferons trees, cansing "red rot" and the dying out of plantations both of young and old pines. In (iermany it infests varions species of pines, including Pinus strobus and Pinus sylcestris; also Picea excelsa, oluniperus communis, and others. It is more destructive to the White Pine than to the Scoteh l'ine.

The disease appears in plantations of various ages, from five to ono hundred years old, showing itself by single plants here and there becoming pale, then yellow, and suddenly dying. These external symptoms are altogether similar to those observed in trees infected by fifaricus melleus. Other trees are attacked in the neighborhood of the infected ones, and so the disease spreads centrifugally.

The fruiting portion of the fungus (I'l. XIII, 1 to 6) grows on the roots near the surface of the ground, forming yellowish-white cushions (white on the spore-bearing surface) that may tinally, though rarely, become a foot or more in diameter. Between the wood and bark of the affected tree are extremely thin layers of mycelinm, distinguished from those of Agaricus melleus by their softuess and delicacy. The tissue of the roots and the inside of the stem is decayed to a considerable height.

The disease is spread by the spores, which are carried away by mice and other burrowing animals and deposited on the roots of adjacent trees, where they germinate and penetrate the living tissues of the bark, passing thence into the wood elements and growing in them toward the stem. It is also communicated by the roots of infected trees crossing those of soumd ones in the ground (${ }^{\prime}$ 'l. $\mathcal{X} H 1, r$), the fungus growing directly from one to the other.

A violet discoloration of the wood is the external symptom of begiuning decomposition, in which the contents of the parenchyma cells die and turn brown through the action of the mycelium. This color disappears with the loss of the cell contents, and a clear brownish-yellow takes its place, with scattering black spots here and there. These are surrounded at a later period with a white zone (${ }^{\prime} l$. $\left.\mathrm{KII}, \delta\right)$, and at the same time the wood becomes continually lighter and more spongy. At last mumerous openings arise, the wood is separated into its constituent fibers, and becomes watery and of a clear brownish-yellow color. The cell wall undergoes decomposition, giving the cellulose reation instead of remaming lignified, and finally even the entire middle lamella disappars. The process may go on until the wood clements are isolated, so that they are easily pieked apart bike threads of asbestos.

The parasite advances rapidly in the wood elements, deromposition sometimes going on in this way to the height of as feet. In the bark it proceeds more slowly, but is tinally none the less dangerous, since it causes the death of the cortical part of the root in which it originates, and when after reaching the trunk it passes into the other roots, their death inally resulting in the death of the whole tree.

In the Scoteh Pine a great amount of resin is produced, and this, accumulating in the lower part of the stem, probably acts as a barrier to the growth of the mycelium upward. In the White Pine the fungus extends much farther in the trunk.

Pl. XII, r', represents a stump of White Pine that has been attacked by lolyporus amosus. The heart is surrounded by decayed wood and spots filled with masses of resin. Pl. XII, ?, represents parts of adjacent wood elements of Norway Spruce after they have been acted upon by the fungus; the mycelium hyphae and spores, highly magnified, are represented in 10 of the same plate.
(3) Coleosporium senccionis Pers.-This fungus, under the name of "pine blister," infests varions species of pines, growing in the aecidium stage on both leaves and bark, and sometimes proving very destructive. When growing on the leaves it affects but little the vitality of the tree, but is highly injurious when the bark is the place of attack. It penetrates the bark, apparently through wounds occasioned by insects, woodpeckers, or other agencies, and its mycelium spreads through the cortical parenchyma and bast, and into the wood to the depth of several inches, passing through the medullary rays.

Under its influence the starch and other cell contents disappear and a resinous substance collects in their stead, a mass of dead tissue soon taking the place of the living cells. This change of the cell contents results in a great accumulation of resin, which often exudes in large quantities from the diseased parts of the tree.

The mycelium is perennial, extending itself through the stem from year to year, particularly in a longitudinal direction. Where it is present the growth of the stem is prevented and the formative materials are diverted to the opposite side of the stem, causing there a greatly stimulated and abnormal growth. The death of the leader often results, especially in dry summers, for the reason that the wood, thus choked with resin, is unable to supply it with sufficient water.

The researches of Wolf lead to the conclusion that this parasite of the pine lives in the form known as Colcosporium senecionis on various species of Senccio, and that it is communicated to pine shoots from them. He proposes the extermination of these hosts as a preventive measure. Later investigations of Kleebahn go to show that a blister rust which he observed badly affecting the bark of Pinus strobus, in the neighborhood of Bremen, is caused by a closely related parasite form which he names Peridermium strobi, and considers to be the ecidium stage of Cronartium ribicola.

All these fungi have probably caused far more destruction of timber than casual observation would indicate, but the limited extent to which artificial cultivation of forests has thus far been carried on in this country gives comparatively few exact data regarding them. The facts, as above stated, have therefore been drawn largely from the works of Hartig and other European authorities. With increasing eultivation of timber and probable increase of such diseases, their investigation and the employment of protective measures must necessarily receive far more attention.

Several diseases attributable to the action of fungi, but as yet imperfectly investigated, are of frequent occurrence in this country. One of these, known as "damping off," characterized by the sudden decay of seedlings at the surface of the ground, is common in nurseries, and attacks young julants of different kinds, the White Pine among them.

The disease is most prevalent in plants growing in a damp soil in a warm, moist atmosphere. As observed in the Ann Arbor (Michigan) greenthouses for several years in various plants propagated from slips, the disease appears a few days after tho slips are set, giving the lower part of the stem a wet, unhealthy appearance, which extends to the lower leaves, particularly where these touch the sand in which they are growing. Upon taking up, the specimens, the parts affected are found to be in the early stages of decay, and penetrated throughout, even in the interior of the epidermal appendages, by the branching filaments of a fungus. The fungus appears to live in the sand in which the plants are propagated, and to run in it from one to another, resulting often in the rapid destruction of the plants in the bed.
"Damping off" is due to the action of several different parasitic organisms, of which the potting-bed fungus, I'ythium de buryanum Hesse, is one of the most common, thongh a number of other species have been shown to be capable of producing the disease. 'lhe relief measures recommended by those who have studied the disease are the use of fresh soil free from decaying
matter, as much sumlight as the plants will endure without wilting, a farly low temperature, and an abumbant supply of fresh air. Mr. J. Dawson, of the Arnold Arboretum, suggests watering the goung plants from below, so as to avoid wilting the leaves, as a means of prevention. Other sugrestions will be found in recent literature of the subject, practically in the reports of various agricultural experiment stations.'

A disease which attacks the trunk of the tree, at varions ages, is very prevalent in pine forests, and occasions the condition known among lumbermen as "punky pine." A diseased tree can frequently be recognized by its having one or more knots with a rongh, irregular coutour, at aconsilerable height above the ground, commonly conspicuons by a considerable outtlow of resin. These seem to result from the breaking off of branches, followed by gradual decay at the place where they have separated from the tree, in such a way as to admit water into the trunk, the opening being atterwards partially covered by subsequent growth of the tree while decay is going on inside.

Upon examining the wood of snch a tree, it is seen to be discolored and in varions stages of decay, the diseased condition extending inward from the knot hole, and both upward and downward from it in the trunk. By inspecting logs cut from such trees, it will be noticed that the decayed portion may have filled up the center, making a rotten heart; or it may follow the rings of growth for some distance, midway from the center to the periphery; or it may be still nearer to the surface, its position and extent being very variable and following no recognizable rule. The parts diseased are utterly worthless, though boards containing a greater or less imount of wood thus atfected are common in the market. Microscopic examination shows that the wood is penetrated by the filaments of a fungus, and that the elements of which the wood is made up have been greatly altered, and to a considerable extent decomposed by its action.

Continued observation in the pine woods of Michigan, in different years, loes not so far justify the reference of this disease to any single species of the various fungi found growing upon the trunks and logs of decaying pine trees. Hut whatever the species, one or several, concerned in producing or hastening the condition described, the general facts, as stated above, appear to be that the disease finds its way where the separation and decay of a branch presents a favorable place for the entrance of water and the spores of fungi, and that it spreads so extensively in the trunk as to entirely ruin large and valuable trees.

In our natural forests there is, of course, neither remedy nor prevention, but in artificial cultivation careful and seasonable pruning would doubtless be the most effectual preventive, since, if properly performed, the wounds left by the removal of branches would soon be grown over and there would be no further langer from this source.

F:NIIANATBON OF HLLATE XII.

1. Alfarirus melleus, clnster of young sporophores.
2. Agaricus malieus, larger Aporophore with root-like organ of attachmont.
3. Jioot of sprume tree invaded by mycelium of Agaricus melleus; rhizomorph of same fungus on the right.

A-t, Jragments of pine wood showing the destructive action of I!faricus melleus.
\%. Shmp of Whitu Dine attarked by Polyporus amosus; the heart is still somol, hut is surroundel by decayed wood and spots filled with masses of resin.
S. Wool of Norway Spruce in early stages of dreay occasioned by action of folyporus amosus: tho white areas have becomo lelignilied, amb the wood elements composing them aro soft amb easily separable.
9. Wood olemonts of Norway Spruce isolated and showing the mycolium of tho Iolyporus amosus.
10. F'ruiting hyphan and spores of Polyporus annosus.

F゙N1JANATHON (HF JIATH: XIH.

1. Simmp of Nurmay Spruce, with a sporophore of lolyporus annonus several years obl; the inner portions of tho stump wholly decayed.
foots of a distased spruse tree, with numerous small sporophores of I'olyporus annosus attached.
\therefore Sthmp and part of root system of a young pine tre killed ly the action of Iolyporns annosus, the sporophores of Whicll have frown entirely aroum the base of the trunk.
2. Mature sporophore of lolyporus annoнus seen from below, showing the porous spore-bearing surface.
\therefore Natno spurophom of lohyporus annosus from above, showing tho velvety upper anface and concentric bants.
3. Minturo sporophoro of l'olyporus annosis in suction.

Monde of infection; whore the smaller cliseased root crosses the larger one, the mycelinm of the Jolyporus annosus has penelrated the latter abul spread in both directions for wome distance.

[^3]

Disease of White Pine: Agaricus melleus

Disease of White Pine: Polyporus annosus.

INSECT ENEMIES OF THE WHITE PINE

IBy F. II. Chitteninen, Division of Enfomology.

INTRODUCTION.

Of all coniferons plants, perhaps none are more subject to insect attack than the White Pine. Upward of a hundred species are reported to affect this tree, and a careful compilation of all known species would probably add many more to this list. The more important are found in the order Coleoptera, and of these the cylindrical bark-beetles of the family Scolytide hold the highest rank. Most of the Scolytide live within the cambium of dead or dying trees, but a few penetrate the solid wood, and several forms, when excessively abundant, do not hesitate to attack healthy growth. Numerous other Coleoptera belonging to the families Cerambycide and buprestidae similarly infest the White Pine, but are for the most part secondary in the nature of their attack, and will therefore require only passing mention. One species, however, the white-pine weevil (l'issodes strobi Peck), is a pest of the most pernicious type. In addition to the bark-boring and wood-boring insects, several species infest the roots, some only the branches or twigs, some the cones, and others injure growing trees by defoliation. The leaf-feeding species comprise the larvie of several sawflies, the caterpillars of numerous moths, and a number of beetles. Various species of plant-lice and scale insects also occur upon the leaves, and often the limbs and trunks of trees are injured by them.

Most of our injurious forest insects are native to this country, in which respect they differ markedly from those which affect field and garden crops. Only such species as experience has shown to be more or less injurious either to living trees or to cut timber will be considered in this paper. Some few forms that have not been recorded on White Pine are mentioned, as it is more than probable that they are capable of injury to this tree. The majority, however, have been observed on White Pine.

In the preparation of the present paper the writer has drawn freely from the published works of Packard, Fitch, and Hopkins, as well as from personal experience in pine forests, particularly of New York.

THE DESTRUCTIVE PINE BARK-BEETLE.

The last decade witnessed very extensive destruction of pine and spruce forests in portions of the United States east of the Rocky Mountains. The principal injury, which dates from about the year 1888, has been attributed to the so-called destructive pine bark-beetle (Dendroctonus frontalis Zimm.), one of a genus of six described species, all of wide distribution and all destructive to the Conifere. It is quite possible that some predisposing agency had first caused a weakened condition of the trees in the infested districts, but it is fairly certain that this species of beetle was responsible for much injury. The infested area observed comprised the pine and spruce forests from Maryland in the North to aud including North Carolina in the South, an area estimated at upward of 10,000 square miles in extent. In some sections entire forests were killed.

The accompanying illustration of this species (tig . 5) will enable its recognition. 'It ranges from reddish to dark brown in color, and measures about one. eighth of an inch in length, being the smallest species of its gemus. Its credited distribution includes Lake Superior to Georgia, and it is recorded also from Arizona and Califoruia. The adult beetle appears some time in May, the date depending upon season and locality, bores into living trees and its larvie develop under the greeu sappy bark. Copious quantities of turpentine exude from the holes made by the beetles and dry in masses upon the bark. The manuer of work of the larve in great numbers beneath the bark produces about the same effect as that of girdling, thus cutting off the flow of sap, the natural supply of plant food and moisture, greatly weakening and eventually killing the trees. The first outward manifestation of injury is the accumalated masses of pitch, followed by the leaves turning yellow and then red, as though scorched by fire.
\pm singnlar feature in connection with the irruption of this species is that it was practically unknown save in the collections of specialists until its sudden appearance in 1888 , but still more remarkable is its maccountable, but almost entire, disappearance in 1893 , not, however, before it had done a great amonnt of damage, which las been estimated at upward of a million dollars. The apparent extermination of this bark-beetle in the district where it was most destructive is believed to have been due to a fungoid disease.

REMFDIES.

After boring insects of this class once gain access to a tree it is practically impossible to eject them, and to save the tree recourse must be lad to preventive measures. For this purpose various protective washes are in use. One of these consists of lime, to which has been added a sulicient quantity of Paris green to give it a slight green color and enough glue to cause it to be adhesive. Another wash consists of soft soap reduced to the consistency of a thick paint by the addition of washing soda in water. A thick wash of soap, plaster of Pa.is, and Paris green is also of value. A carbolated wash, which is in successful use against the peach tree borer, is pro. pared by mixing a pint of crude carbolie acid with a gallon of soft soap in eight gallons of soft water. Fish or train oil is valuable as a deterrent, but should

Fig. 6--Tomicus cacographus: beetle, showing dor sal vjew at loft, in jrofile at right-enlarged alont ten times; antenna above, higbly mag. nitied (origimal). not be used except with the greatest caution upon young trees. Whatever wash is employed should be applied to the trees on the first appearance of the beetles in May, and should be renewed if found necessary.
lietter than any other measure, however, is the observance of clean cultural method. Owners of pine forests or groves will do well to cut down all dead and trim all injured trees. For the protection of pines, dead spruces and other coniferous trees, and such as are infested and too much weakened to recuperate, should be cut down and destroyed by burning. A great deal of good can be accomplished merely by removing the bark of dead timber. The progeny of the insects that have deposited their eggs in one season so loosen the bark that it is an easy matter to remove and burn it before the following spring. By pursuing this method millions of the insects will be destroyed before they have an opportunity to issue and lay their eggs for the destruction of other valuable trees. A practice known as "rossing" is in ase on borer-infested lumber in Canarla. It consists in cutting a strip of bark along the full length of the upper side of a \log, which causes the bark to dry up and eventually drop away.

OTEER INJURIOUS BARK-BEETLES.

Of the other species of Dendroctonus, one has recently been reported as ravaging the spruce forests of New Hampshire. It is tho species at present known as D. rufipenuis Kiby., and although not known to affect White Pine, it is not impossible that it might attack this tree in case it extends its present depredations. The species of Dendroctonus are peculiarly periodical in their attacks. There is, however, one exception, D. terelrans Ol., which is usually common at all times over a very wide area of the United States and Canada, infesting all the pines. According to information received in May, 1 s 98 , this or a related species is now ravaging the pine forests of a portion of southern New Jersey.

The genus Tomicus contains perhaps quite as dangerous forms as those which have just been mentioned. The appearance of the beetles is somewhat similar, as is also their method of life. A species that has been associated with the mortality of pines in the region about and south of the District of Columbia is T. crtcographus Lece, or southern pine bark-beetle, which is illustrated much enlarged at fig. 6\% It is reddish in color and may be realily separated from any of the preceding
species by the structure of its antenne and by the toothed apex of the elytra or wing-covers. Its mine is shown as it appears on the under side of the bark of a tree at fig. 7 .

Tomicus pini Say, the northern pine bark-beetle, is destructive to pine forests in the North in a very similar manner to the preceding species, which it much resembles in structure as in habit, but is less injurions firther South. T. calligraphus (ierm., a similar species to the two preceding and about equally destruc tive, abounds in the pine woods of both the North and South, and T. celatus Zimm. and T.arulsus Eich. also infest White Pine.

Among other well-known white-pine bark-beetles may be mentioned Crypturgus pusillus Gyll., Ilylurgops glabratus Kett., and several species of Hylastes and Dryocotes.

The remedies to be employed against these insects are practically the same as for the destructive pine bark-beetle.

TIMBER-BEETLES AND OTHER SCOLYTIDA.

While the majority of the pine-infesting Scolytidae breed between the bark and the wood, a considerable number, called timber-beetles, live enticely within the sapwood; others, the twig-beetles in the small twigs and branches, and a third group, represeuted by Pityophthorus coniperda Sz., inhabits the cones.

The chief danger from the bark-beetles, as has been shown, is from their attacks on living trees. They do comparatively little damage to timber, except as they loosen the bark and thus afford ready access to water and mold and to other destructive insects. The timber-beetles, or ambrosia beetles, as they are sometimes called, live almost exclusively in greenwood, preferring that which is slightly injured, of impaired vitality, or such as has been newly felled, but they often attack and kill healthy growth, and in the process of their work in timber cause a staining or "bluing" which entails a still greater loss than results from their direct attack to living trees. The presence of these beetles in a tree is manifested by the little piles of white sawdust which they eject from the "pin-hole" entrance to their

Fig. 7.-Galleries of Tomicus cacographus on wool under bark of pine (uriginal). galleries. The pine timber-beetles are found in the genera Gnathotrichus, Xyloterus, Xyleborus, and Platypus. Gnathotrichus materiarius Fitch is the commonest of three species of the

Fig. 8.-Gnathotrichus ma. teriarius: beetle, enlarged; antenna, still more enlarged at left (Marx del.). genus, all of which attack pine. This species is shown groatly enlanged at fig. S, and its characteristic galleries in the wood of pine are well illustratial at fig. 9.

The same remedies advised against bark-beetles will prove valuable against the timber-beetles. Kerosene emulsion or a carbolated wash would accomplish the destruction of the timber-bectles even after they have attained entrance to a tree, provided the application be made in time.

The twig-beetles are represented by the genera Pityophthorus and Hypothenemus. Of the former genus, P.sparsus Lec., caviniceps Lec., pullus Lec., lautus Eich., plagiatus Lec., are all well-known pine species. The genus Hypothenemus inhabits alike deciduous and coniferous trees.

Remedies are the same as for bark-beetles. Pruning and burning infested twigs and branches and the clearing away and burning of brush heaps during winter are iudicated. For choice ornamental trees in private grounds and in parks plugging the "pin holes" with wire and stimulatiug the trees with manures and fertilizers to assist them to recuperate from attack are advisable.

PINE SAWYERS AND OTHER BORERS.

Of all the insects that occur in pine timber the Cerambycid, or long-liorned beetles, of the genns Monohammus, are the best known, and are credited with being the most destructive. If
we excent the losses occasioned by the more or less sporadic attacks of certain species of the Scolytidtr already mentioned, probably this opinion is about correct. Five of these species have been deseribed, all pine feeders and beetles of the largest size, with elongate cylindrical bodies and extremely long antenure, those of the male being two or three times as long as the remainder of the insect. The pine sawyers are most tromblesome in the mill yard, and their large white larve often do mach damage to logs by eating great holes through their solid interior. While burrowing in the wood the larvar make a peculiar grating sound that may be leard on quiet nights at a considerable distance. 'This is a familiar somed in the lumber camps of the North, and has probably

Fra, 4.-(iallery of Gnathotriches materiarius in gine (adapted from adratwing ly. A. 1). Hopkinn).
given rise to the name of pine sawyors, by which these insects are known. Monohemmus confusor Kloy. is a large gray species destructive in the lumbering districts of the Northern United States and Canada; M. fitillator Fab., a mottled brown beetle, replaces the above species in the South, and M. moculosus Hald. oceurs in the West; M. scutellatus Say. is widely distributed and abumlant from the Atlantic to the Pacific, and M. mamorator Kby. is a rather rare northern form.

Among other borers helonging to the sume family as the sawyers, the majority of which infest White line, may be mentioned Criocephalus agrestis Kby., 0 . obsoletus Land., Asemum mrstum Hahl., Orthosoma brunneum Forst., Prionus pocularis Dalm., IIylotrupes bejulus Limn., Callivium

Fin. 10.-Chatcmihorn rirginiensis-natural size (3arx del). antennatum Newm., Rhegium lineatum Ol., ('raphisurus pusillus Kiby., Aeanthocimus. obsolctus Ol., A. nodosus Eab., and Neoclytus muricutulus Kby.

In the Coleopterous family Buprestidie are many borers which infest pine. These inchde five species of Chalcophora, one of which, C. virginicnsis Dru., is fisured (lig. 10); Dicerca muetulate Sch., D. tenebrosa Kby., Siuprestis strinta Fah., Mehemophila fūrogmttata IIarr, M. longipes Say., Chrysobothris dentipes Germ., C. floricola Gory, and U.scabripennis Lap. and Gory. These beetles are gracefil in form, hard of texture, and many are brilliantly metallic. Their larvie are slender, white grubs with very large, round that heads. Some of this family attack living trees and do injury to the sapwood and to felled timber in the same manner as the sawyers, but the majority of them prefer devitalized material, and their attacks aro usually secondary to some more injurious species.

THE WHITE-PINE WEEVIL.

In the White Pine forests of the Northern States, particularly in those of a second growth, one"s attention is often drawn to the great mumber of deformed trees. They sometimes ocur singly, but more often in gronps. The insect that is responsible for this damage is the white-pine weevil (lissodes strobi Peck). This beetle is a momber of the family Curenlionider, and is about a fourth of an inch in length, of oval form, red and brown in color, with its elytra marked with white
spots, as shown in the accompanying illustration (fig. 11). It is provided with a rather long rostrum or snout to which are attached its elbowed antemar. 'The larva, which is white and footless, is illustrated at a, and the pupa, also white, is figured at b.

This weevil is one of the first spring visitants in the North, oceurring as early as March about Washington City and in April or May farther north. Its eges are deposited on the terminal shoots of pine, particularly of young trees, but sometimes also in the bark of old trees. The larva, when hatched, bores into the pith or mines the sapwood. Toward the end of summer it attains full growth, when it goes into hibernation until the next spring, transforming to pupa and soon afterward to the mature or beetle form. The presence of this insect in a tree is first manifested by the wilting of the leading shoots, which becomes most evident toward the close of summer. The identity of the species at work may be established at once from its peculiar cells beneath the bark. (See fig. 12.) These cells, which are destined for its winter nest and for further transformation, are sunk into the pith and covered over with long fibers of chipped

Firo, 11.-Pissodes strobi: beetlo at deft; a, larva; b, pupa-cnlarged alout three times (from Packaril). wood. When a terminal shoot of a small tree becomes filled in the summer with these larvie, to the number sometimes of a score or more, the shoot, with its lateral branches, as well as the stock below, wilt and gradually die, tho bark becomes loosened, pitch oozes out, and by autumn the shoot turns black, and the bark is covered with masses of pitch. A tree thus damaged will fail sometimes for several successive seasons to send out a new terminal shoot, with the result that

Firi.12.-Tissodes stroli: a, larval mines under bark; b, pupal cells-natural eize (from liiles). the lateral shoots continue to grow, and the tree becomes more or less distorted.

Owners and overseers of pine groves will do well to make a practice of examining the young trees each year, say in August, and when one with a wilting terminal shoot is found to cut or break it off and commit it to the Hames. With every blighted twig thus treated from a dozen to fifty or more weevils will be destroyed, and thus the numbers of the insects for the coming year will be greatly lessened. All dead growth or such trees as have from any cause been injured beyond recovery and which might serve as centers of infestation by harboring this weevil or other injurious species should be similarly treated. What is most needed is a preventive, and for this purpose a good thick fish-oil soap mixed with Paris green and carbolic acid, in the proportion of about a pound of the former and a quart of the latter to 100 gallons of the wash, is recommended. It should be sprayed in April and May on the terminal shoots of the trees and repeated at the end of a month it necessary.

MOTH CATERPILLARS AND PLANT-LICE ON TRUNKS AND LIMBS.

The trunks and limbs of pine are also subject to the attack of sereral insects besides those in the order Coleoptera that have been mentioned. Of these are three tortricid moths of the genus letinia, which affect the pitch and other pines. Two other moths of similar habits to the above occur on White Pine, wounding the trunk below the insertion of tho branches and causing the resinous sap to exude. These are the pitch-drop worm (Pinipestis aimmermami Grote) and IIermoniu pini Kell.

The same remedies advised for other boring species, and particularly those specified to be used against the white-pine weevil, are indicated for the present class of insects.

Several species of plant-lice affect the White Pine. The white-pine aphis (Lachmes strohi Fitch) is very abundant in the Northern States, living in colonies on the branches of trees and puncturing and extracting their juices. The so-called "pine blight," Chermes pinicorticis l'itch, is sometimes very destructive, its presence being manifested by large patches of a white, Hocenlent
secretion, beneath which covering are conceated myriads of minnte lice. Sehizoneura pinicola Thos. feeds on the tender shoots of young White Pinc.

Keroseno emmision applied as aspray is the appropriato remedy for these phant-lice.

LEAF-FEEDING INSECTS.

The most destructive insects of tho foliage of pine are several species of sawfies of the genera Lophyrus amb Lyda, one of which is represented in its several stages at fig. 13. It is called

Fic. 13.-Tophyrus ablotii; 1 fomale, enlarget; 2, 3, pupa, enlargen; 4, 4, larvin, natural rizn: 5, cormon, natural size; (6, mate antunat, 7, femalo antemna, emlarged (from Iiley).

Fifo. 14.-Tuhen of pine leaven made by pino tule-builder-natural nize (from lackavi)

Abbot's white-pine sawfly (Lophyrus abbotii Leach.), and is perhaps the most injurious foliage feeder which infests the pine woods of the North.

The caterpillar of a single species of butterlly, Thecha niphon Hbn, is known to feed upon the foliage of White Pine, but among the larvie of moths of different fimilies are immmerable pine-

feeding species. Prominent among them is the magnificent sulphur-yellow imperial moth (Eitcles imperialis Dru.), whose larvir attacks the leaves of varions forest trees. Of other moths whose caterpillars devour the foliage of White loine may be mentioned: Harris's pine hawk moth (Ellemu
 tufted caterpillar (Ilatycerura furcilla Patk.), the redhead inchworm (Semiothisa bisignata Walk.),
the sulphur leafroller moth (Inchelia sulphureana Clem.), Teras formana S. V., and Amorbia homerosthu Clem. An interestingspectes is tho pine tube-huider (fophoderus politame Haw.), which, in its larval stage, lives within a tube formed by webbing together a mumber of pine needles as shown in fig. 14.

A mumber of species of adult Coleoptera, whose larval habits are imperfecty anderstood, subsist upon the leaves of White Pine. Of these are the Scarabeid, Dichelongche albicollis Burm., and the Chrysomelid, Glyptoscelis pubescens liab.

The best remedy for tho sawfly larvie, caterpillars, and beetles is a spray ol l'aris green, applied upon the first appearance of theso insects on the trees.

The consideration of the insect enemies of the White l'ine may couclude with the mention of the pine-leaf scale insect (Chionaspis pinifolie Fitch), which forms its scales unon tho leaves, oxhansting them of their juices and causing them to turn yellow. This species is illustrated at fig. 15.

A strong spray of kerosene cmulsion will be found an officient remedy against these seale insects.

FOREST MANAGEMENT.

As regards forest management, we have, unfortunately, in this country no experiences which would permit us to form very positive opinions based on actual observation regarding this species or any other. The study of the natural history of the species in its native occurrence permits us, nevertheless, to draw conclusions which may at least serve as a basis for its future sylvicultural treatment.

In the first place, it may be declared that the White line is the most important and promising species upon which to expend attention in our coming forestry operations within the limits of its natural occurrence. Its adaptation to a variety of soils and situations within these limits, its rapid growth, its excellent form, its remarkable mass development per acre, its shade endurance, its all-round useful wood product, and its propagation, both by natural and artificial reproduction, give it a position among our timber trees hardly approached by any other.

There are certain general principles which are the result of experience in forest management in Durope and elsowhere, applying to this as to most species. The first is, that mixed growth is in every respect superior to pure growth; it will therefore be proper policy to grow White Pine preferably, if not altogether, in mixture with other species. This advice is given in spite of the fact that the White Pine grows rather well in pure stand, and that, owing to its shady crown during a long period of its life and the density of stand in which it can develop, and the large quantity of foliage which it sheds, the soil conditions are not in dauger of deteriorating, as would be the case with more light-needing species. But, as has been observed in its natural occurrence, its development is more favorable in companionship, and especially is this the case with regard to the cleaning of the bole of its branches, which are peculiarly persistent. Whether it would pay to substitute an artificial cleaning by pruning the young growths is still doubtful; meanwhile the self-proning performed by mixture with shady companions will have to be encouraged, especially as thereby other valuable advantages are secured which attach to the mixed forest in general.

Unfortunately, our irrational exploitation has reduced the White Pine in the natural forest areas often to such an extent that its reestablishment is possible only by artificial means. Wherever the culling has not been too severe, aud cither young growth has developed or seedling trees have been left, the natural reproduction should be encouraged by favoring the young growth and by removing or thinning out other species which interfere with the starting of a young growth. Fortunately, the White Pine, owing to its shade endurance, is specially fitted for natural reproduction from the seed of mother trees, more so than most other pines, and the rapidity of its growth, in which it oxcels most other shade-enduring species, is also favorable in this respect.

We are not yet prepared to determine the most profitable rotation in which the species is to be managed under varying conditions. The fact that it is not only a very rapid but one of the most persistent growers, trees making wood at tho rate of $1 \frac{1}{2}$ to 2 cubic feet ber year up to the one hundred and fortieth year, permits a wide range of choice for rotations, and since its wood, being rapidly changed into heartwood, becomes scrviceable very early, the rotations may be cither low or high, varying from fifty to one hundred and fifty years, according to local economic and soil couditions.

NATURAL REPRODUCTION.

The White Dine reproluces itself readily in the virgin forest on all sandy and loany sand soils where the hardwoods do not interfere. On these areas thickets of young growth, sapling timber, and dense groves of mature trees are scattered without regularity, and there is no indication that this pine forest has undergone material change for centuries. In the hardwood districts of the heavier soils of the Lake region, where the pine is met with chiclly as old, overripe timber, the reproduction of the pino seems, temporarily at least, to be interfered with by the associated growth. Lange, old trees ocenr, thinly scattered or in clusters, but sapling timber and young growth is often entirely wanting over considerable areas. Similar conditions prevail, or have prevailed, in the mountains of Pennsylvania, and also in New England and in the Adirondacks. Where the pine is cut and some seed trees are left the ground soon covers itself with young growth. This, contrary to the common notion, is true even where fire has rin over the slashings and the ground for a time is stocked with Poplar and other brush. Such groves or thickets of young pine occur in all parts of the pinery of the Lake region, and in the aggregate cover several hundred thonsand acres. Ciencrally, however, the fire returns from time to time, the young scedlings, as well as the mother trees, are finally all destroyed, and thas the reproduction is completely prevented. On such lands, impoverished by fire and exposure to sun and wind, not even the Poplar returns. In the hardwood, Spruce, and Hembok regions the cutting of the pine in the usual manner simply assists its competitors, and its reproduction is seriously hampered and frequently prevented altogether. Where these clay and loam lands are completely cleared and then abandoned, as has been the case with thousands of acres of New Ingland forests, the White Pino is one of the first to return if any sced trees exist in the vicinity. Hundreds of groveshave sprung up in New England in this way.

NOTPS ON NATUILAL REPRODUCTION.

A case of the kind above referred to was observed in 1880 in York County, Me., and the following notes on the subject will, no doubt, prove of interest:

[^4]tracts in Maine and Massachusetts are coming up in this way to second-growth pine, and as the profit arising from the protectiou of these young forests is better understood, there is no reason to doubt that the whole matter will in a great measure regulate itself.

In the Allirondack region and in the pine belt of Michigan, Wisconsin, and Minnesota the case is far different. Under the prosent system forest fires are an almost necessary result of all lumbering operations. To start with, all trees that are large enough are cut, and if by chance here and there ono has escaped that might produce a crop of seeds, it perishes in the fires that soon sweep over the ground, leaving hardly a living thing behind them, and burning tho seeds that under other conditions might have sprung up to form a second growth of pine. On all such burued tracts pine scedlings are rarely found in any number, ant yet here and there they are scen growing where the fire had left a seed tree by the side of a stream or a piece of unburned ground, thus giving the secd a chance to grow.

After making a careful study of the pine lands of Michigan for several years the conclusion seoms plain that here, exactly as in Now England, everything practically depends upon reseoding. Here in the Northwest the seed trees have been destroyed, the seods in the ground have heen burned, and, as an inevitable conseruence, the land remains a wilderness and must remain so until some means are found of restoring the forests by artificial sowing or planting. There is nothing in the soil itself that prevents reforesting the pine lands of Michigan at once, It is becańse seeds are, to a great extent, wanting, and the seedlings that do start are not protected, that these pine lands are left in their desolate aud unproductive condition. ${ }^{1}$

The experience with White Pine in Europe fully confirms the correctuess of the observations above recited. White Pine abroad reproduces well, seeds abundantly, and is so particularly well suited to natural reproduction that the most experienced and competent recent writers claim that this tree fairly "demands" this form of regeneration.

ARTIFICIAL REPRODUCTION.

Concerning the artificial reproduction by seeding or planting, the experience, both in this country and Europe, is quite extensive. Not only has this species been planted frequently and for a long time in New England and in other parts of its natural range, even for forest purposes, but thrifty groves have been established also in the Western mairies beyond the limits of natural distribution. In Germany larger or smaller plantations were made in many localities near the beginning of the century.

The planting in this country has, however, not usually procecded with a knowledge of proper forestry practice. As a rule, plants have been set out too old, and hence the planting has proved expensive; usually, also, it has been too wide spaced to secure the most desirable result in form development. Another point also usually neglected is the admixture of other species to stimulate the growth of the pines and possibly to reduce the expense of covering the ground.

In Europe the majority of pine plantations made with Scotch Pine (Pinus silvestris) is made with one-year-old seedlings, which is done very cheaply and expeditiously, often ou unprepared ground, when one mau may set 1,000 to 1,500 plants in a day.

For White Pine, especially under our conditions, where the young plants have much to contend with in the way of climatic ills, weed growth, etc., this method is probably not applicable.

Two-year and even threc-year old plants, grown in seed beds and once transplanted in nursery rows, to produce a stocky root system and growth, will probably be more successful, being better prepared to overcome adversities.

The seedlings, grown from seed sown either broadcast or in drills in the seed beds, must be shaded during the first two years, as is usual with conifers in this country. After the second year they will endure the hottest sun. The shade must be graduated according to the weather, as the seedlings are liable to damp off the first season if too much shaded and to burn oft if not shaded enough.

As there are abont 1,800 seeds to the ounce, it will take about 5 to 6 ounces to the 100 feet of drill, unless the seed be specially poor, when greater allowauce will have to be made in proportion

[^5]to the percentage of germination. In ordinary collecting the percentage of germinating seeds may not exceed 75 per cont, and, as is indicated in the discussion on seed supply (pago e33), it may fall fan below this ligure in some years. Even if 20,000 to $2 \pi, 000$ seeds should germinate per pounl, it wonld not be sale to count on more than 5,000 to 5,000 seedlings that will grow to use, and in the transplanting to mussery rows an allowance of at least 5 to 10 per cent should be made for losses, so that to secure 10,000 transplants at least 1 pounds of seed is needed, to secure which it may take from 3 to 4 bushels of cones.

Close planting is indicated on account of the dithouly with which this pine cleans atselfo of its branches. It should be planted not more than 4 feet apart or, preferably, set ont in mixture with athaly, slower growing companion, the Black Spruce (lice nigro) being an ideal choice within its habitat, and of broad-leafed trees the Sugar Maple (Acer saccharinum), which, for the sake of economy, may be sown between the wider spaced (8 feet or more) plants of White Pine. The mixture should not stop here, but other kinds chosen with circumspection from the many that are fonnd associated with the White Pine in its natural habitat should be added, as Chestnut, Yellow, and Red Birch, Basswood, Hickories, and Oaks, and of conifers, the Red Pine, Hemlock, and occasionally in some localities Arborvitau.

Dr. Fernow hats for some time (since 1887) advocated a method of forest planting in which the main or "final harvest crop" is distinguished from the mere "nurse crop" or "filler," when only 500 or 600 trees per acre, or even less, of the better kinds ane set out with care as the main crop, receiving due attention in their further development, and the nurse crop is introduced of the cheapest kinds and in the cheapest manner to act as soil cover to check weed growth and stimulate height growth, straight form, and cleaning of the man crop. The White line wonld, of course, be a most excellent main crop.

By the fiftieth year or so the pines, if set out at the rate of 500 , will have overtopped the nurse crop, except where trees of the latter have taken the place of a failing pine, and their crowns will have closed up, their boles straight and clean, furnishing clear lumber, if the murse crop was properly chosen and has done its duty. The further management then would concern itself mostly with gradual thiming ont of the main crop to secure the diameter accretion due to increased crown development and light. By the one hundredth year it will be reasonable to expect at least half the trees set ont to have reached their highest value in maturity and size, with 15,000 to 20,000 cubic fect to the acre, for the White Pine is not only a rapid grower, but a large producer, its shade endurance permitting as large a number of trees to develop satisfactorily ber acre as the Spruce, which it outgrows in height and diameter.

While phanting nursery-grown seedlings as a rule furnishes better results, sowing the seeds into permanent sites may, under certain conditions, especially on soils not too prone to weed growth and in the more humid climate of the Northeasteru States, prove satisfactory and cheaper.

Various methods can be employed according to circumstances. On light soils sowing broadcast on snow may furnish satisfactory results; on heavier soils preparation of the ground to receive the seed will prove indispensable. This may be done by plowing furrows or by hoeing plats of "ٌ or 3 feet square (the larger size where overgrowing by brushwood is to be feared) and sowing into these in drills or broadcast. Dr. Hernow devised such a method for reclothing cut-over lands on slopes in Pemusylvania grown up with brush, where it would be too expensive to prepare the entire ground. Here the plats were made larger, 4 or even 6 feet square, and into these not only pines were cither phanted or sown but also a nurse crop surounding the pines, expectation being that this nurse crop will protect the pines against the encroachment of the surounding brush growth until the pines are tall enough to fight their own battle and finally kill out the brush. A fuller deseription of these plantings is to be found in Bulletin 17, "Check list of the forest trees of the United states," cte., of the Division of Forestry.

PLANTING NOTES.

The following notes on planted groves, their condition, wrowth, and results are given a pace here as recording individual experiences in various parts of the country, without intending to recommend the practices of the planters, which, from the forester's point of view, are faulty in some directions, especially in the open stand, which is advocated:

In liastern Missachusetts, particularly in ['lymouth and Bristol conntios, there are numerous small holjes of White l'inc that wereset ont from forty to fity years ago, and whoso rapid grow th and healthy couditions show that
there the work of plauting at least has been successful. The trees composing thom averaged at thirty to thirty-fiven Pears from the time of planting, not far from 45 feet in height, and measurmb approximately 2 feet 6 inches in circumference, breast high. These measuroments vary for different bodies of pine, but are believed to represent very closely the average size at the age indicated, and in many cases the trees are considerably larger (see measurements of growth on page 88). This grow th of pine is of such value that according to competent julges of property in that region, much of the land that without the pine would he worth only $\$ 3$ to $\$ 10$ per acre, is worth with the standing pine 䊉0 to $⿻ \begin{aligned} & \text { tis } \\ & \text { or more per acre according to location. }\end{aligned}$

Upon visiting these different groves and conversing with men who had planted some of them, it was found that opinions and practice were fuite variable, both as to time and manner of planting. Mr. S. E. Hall, of Raynham, who has had long experience, states that he has set the White l'ine successfully every month in the year. The joung trees, 4 to 6 inches, or even a foot high, are taken up with a piece of sod on their roots and set ont in a wet time. These two conditions were particularly emphasized loy Mr. Hall, who says that if they are observed the trees "will grow anywhere." He plants 10 feet apart each way and recommends this as the hest distance, which is, however, not good forestry practice. In a grove set by him forty gears ago the trees were set in rows at the above distance and had made a vigorous and healthy growth. In another grove, planted about the same time, the trees stood 8 feet apart each way and were apparently doing quite as well as in the first one. On the other hand, Mr. Spencer Leonard, of Bridgewater, after may years of practical trial and observation, states that having formerly set out pine troes 10 feet apart, he is now setting them at a distance of 15 feet, with a view to rednce the expense of planting and because they soon luecame crovded if planted closer. He, too, sets out the trees with a sod, simply plowing a furrow and setting the seedlings at tho right distance. Mr. Hall digs a hole for each tree, but says that the work can be done very rapidty, and that he has himself set an acre a day.

One of the many plantations in southeastern Massachnsetts known as "Leb. Pratt's grove," is within less than a mile of the village of North Middleboro. It was set ont forty-two years ago. The trees were set in rows 10 feet apart each way. The grove twelve years ago even was practically impenetrable by reason of the dead interlocking branches that had never been removed.

Four trees of average size were measured in 1886 and showed diameters of 7 to 9 inches. Some were of larger and others of smaller size, thongh the growth was fairly even. The average lieight was estimated at 40 feet; the branches were dead three-cparters of the way to the top, the remaining one-fourth, say 10 feet, constituting the crown, was green and bealthy. The soil was poor, that passed over from the road in reaching the grove being light sand with some gravel.

Another grove, some 3 miles nolthward of North Middleboro, was visited in 1886, and a greater number of measurements made. According to Mr. S. Hayward, near whose farm it stands, this grove was set out rather more than thirty, not more than thirty-five, years ago, but had not made fuite as good a growth as some others have. The trees are in rows, $7 \frac{1}{2}$ to 8 feet apart each way, and are fuite uniform in size. Beginning with the thirl from the north side, a fair average row, the following measurements were mado of the trees taken in order as they stood. The circumference, breast high, was:

		Ins. 1		Ft.	Ins.
No. 1.	2	10	N*, 7	2	${ }_{6}$
No. 2	2	CiF_{1}	No. 8.	2	11
No. 3	2	9	No. 9.	2	10
No. 1.	\because	$4 \frac{1}{1}$	No. 10	1	5
No. 5.	2	,	No. 10	10	10
No. 6	2	1	No. 11	2	0

a'Tuo main stems aud had lost a third.
The largest tree measured in the grove was 3 feet 1 inch in circumference or 1 foot in diameter, breast high. A very few have been choked ont and have died after living diftecn or twenty years. An averago tree on the south side measured 45 feet in height. All the trees of the grove that were still living seemed healthy and vigorons. The lower brancies had diet at an earlier age than in the preceding grove and the trunks were free from them for ame 8 feet or more. Above this line the dead branches still remained on the trees, only those of the crowns being green and living.

Near Bridgewater, Mass., a piece of land had been sown with pine seets some thirty-five years before, the seeds being sown broadcast and dragged in. The trees were sleuder and too much crowded, the smallest ones dying out. They seemed much in need of proper thinning. Some of the best specimens measured 2 feet 7 inches in circumference, breast high, but they were very uneven in size, and did not impress one nearly as favorably as those in the groves that hail been regularly plantel at a distance of 8 or 10 feet apart.

This second growth pine finds a ready market at the box factories of Bridgewater, Halifax, Taunton, and various other towns in this part of the state. Six dollars per cord is the price paid at present ($1886 ;$ nuw $\$ 8$ to $\$ 9$) for logs delivered at the factory. Logs are accepted down to 8 inches in diameter, and in establishments where staves are made a smaller size is taken. There is no trouble in olitaining all that is wanted, there leing an abundant supply of pine for box boarls, staves, and the like in the immediate vicinity of the towns where they are manufactured.

A few notes on plantations made on the Western border and outside of the natural range of the White Pine will show the alaptability of the species in those regions:

There is an instructive plat of White Pines in the forest phantation of the state Lniversity of Illinois. This institution is located at Champaign, abont 200 miles south of Chicaro and much beyond the natural range of the
pine. Tho history of tho phat, as givonin Bulletin No. ©h of tho University Agricnltural kxperiment Station, is as follows:

White Ping seedlings were collected in tho spring of 1869 , put in close nursery rows and shaded with lath frames. About 8 per cent died the first year. Of a few handred trees, purposely left withont shading, j2 per cent died. Aft.r baving grown in the nursery three years, they were decmed in good condition for transplanting. They ware at this time 12 to 15 inches high, well-formed, healthy trees.

The land, 1 acre, where the White lines are planted, is quite liat, what slope there is heing to the sonth; and at least one-half of it is too wet in spring, and often in the early part of summer, for the bost results in tillage. 'Iho woil is black, part of it macky, 1 to 2 foet in depth, and underlaid, for the most part, with a rather stiff, blue clay. The treos were planted May $4,1872,4$ fect apart cach way. The White l'ine in a comparatively hard tree to transplant sucerssfully (1). The routs are noft, long and naked, with very few small or fibrous roote near the tree. Knowing the necessily of carefinl handling, no eflort was spared, from digeing in tho nursery to setting in permanent place, forectre sucess(inl rosults.
'llowghont the senson the ground was kept in a good state of tillage ly fremment cultivation, but it wat exceedingly dry; abd of nearly three thousand trees planted, two-thirds died during the summer. Of Norway Sprnce, planted the samo day, in the same mannor, and on vory similar soil, mot more than 2 per cent diond. It is elificult to explain this greatur per cent of loss in the pines, except as we take into account the comparative method of development of tho roots of the two specics [and its high transpiration factor, - 13.1 E . F.].

In the spring of 1873 the vacant spaces were filled from the nursery, and again in 1874 trees were set where necded. The result of the three plantings was an almost perfect stand of trees. The cultivation with borse and hoe was kept up thoronghly for threo years. During the fourth, fifth, and sixth years the weeds were mowed. Dut little cultivating wan done, hecause the ground was too wet in the early part of the season.

For anmber of years after tho Whito linen wore fairly started they made admirable growth, and promised to furnish very valuable timber for the prairie soil here, as well as for their nativeregions. In a roport made in 1886 the following statement is male: "From the fist the living trees have done exccedingly well. Very few trees have died from any canse since they began their growth in their present position. They aro now remarkably healthy and Vigorous, and the plantation vies with that of the European Larch in beaty and prospective value." At present they are not maintaining the early promise.

No thinuing or pruning of any kind was done, except what nature does, until the winter of $1889-90$. 1 Juring that winter and tho next the dead branches, to an average heipht of about 10 feot, were trimmed oft, and the dead trees (some more than three hundred and fifty) were cnt ont. Dnring the winter of 1891-92 sixty-eight more dead trees were cut out, and there are at present difty-two still standing that have died since the last were cut. The trees cut out the first thme had not all died recently. Some of them gave evidence of having been dead foc a mumber of vars, while others had died so lately that thev still carried dead leaves. Most of the trees that have died were tho smaller ones, such as were overgrown or badly crowded. A fow ouly of the larger trees have died. Of the trees still alive, very few have any live branches lower than 20 feet. Many of them lave an unthrifty look, either in the top or on the trank, and the prospect is that there will he a very considerable number of trees to cut out year by year for some time.

The principal reason for so many trees dying is probably overcrowding [more likely owing to the stiff subsoil. 13. F. F^{\prime}]. As the trees now stand they occupy is space of less than 7 feet square cach. The trees have been damaged in other ways than crowling, but not, so far as can be judged, until after they had already begun to die. There is continually a thick mat of leaves on the ground, and these have been partially burned off wice, both times injuring the trees more or less from the ground up 2 or 3 feet, but apparently not any higher. Boys reem to delight to cut their names or lesigns in the smooth bark of the trees. Occasionally a tree is ontirely girdled. The girdling soon kills the trees, but most of the smaller damage to hark soon grows over. A woolly plant louso (Chumus pimicorticis Fitch) has been very abundant on many of the trees, attacking the trunks and larger branches for several years. They are sometimes so abundant that the whole trunk has from a little distanco a white or grayish-white appearance.

The White Pines do not cast so dense a shade now as they did ten years ago. At that time there was no nudergrowth among them. At present there are small wooled plants, such as (irape, Raspberry, Cherry, Box Eider, "tc., besides weeds, coning in, and there would likely be more of these were it not for the heavy mulch of leaves that covers the ground.

In 18×6 the average size of the better trees was: Height, $2 f$ feet 9 inches, and a little less than 6 inches in diameter. At present, 1895 , the better trees are 38 to 40 feethigh, and 8 to 9 inches in diametor. During the winter of $18 \times 2-83$ the leaders of a considerable proportion of tho trees were broken down by the weight of sleet. This was the cause of many trees being crooked at that point, and of othors having more than ono leader. Fixcent for the trees deformed in this way nearly all have almost perfectly straight trunks. The trees are much more noarly uniform in height than in diameter. The sizes of the trees in the plat are as follows: Fifty-eight are 3 inches in diameter; one hindred and ninety-four, 4 inches; two hondred and fifty-six, 5inches; two hundred and thirty-six, 6 inches; one hundred and forty-four, 7 inches; seventy, 8 inches; "leven, 9 inches; five, 10 inches.

In the antumn of 1895 the thirty-nino trees constituting the central row of the plantation wore measured, and the arevage diameter, breast high, was 5.9 inches, tho range leing from 4.1 inches to 8.6 inches.

At tho old Elgim murneries, plantod in open prairio about $1 t$ miles west of the Fox River, black loam soil, from I to 5 fect to gravel, White Pines, forty to forty-fivo years old, with Norway Spruce amd Seoteh l'ine as neighbors, measure $2 \boldsymbol{z}$ inches in liameter, hreast high, and are 5e feet high. In in noighboring frove, twenty-five years from seen, planted exclusively to White Pine, the trecs averate 11 inches in diamoter and fob foet high. When plantod alternately with European Larch 5 to 6 feet apart, the White Pines, thirty-five to thirty-six years oh, are perfectly straight and average 13 inches in diameter and 75 feet in height. The linropean Larch proves to bo the hest treo to plant with White Pine as anme. When planted with box Lilder and Ash the frowth of the pincs is not so satisfactory. Where Scotch I'ino has bean planted alternately with White line the later has outgrown the Scotch, nearly all of which are kildod ont. In the groves where larch is planted with White line tho ground is completely mulched from the foliage of the Larch; drought has never affoctod the trees, and no irass or weeds can grow among them.

Mr. Thomas Hunt, of lallott, Ilh., set out Whito Lime in a plantation of 10 acres twenty-two years ago. The trees were 10 to 18 inches high whon set, making their ago at time of measurement abont twenty-8oven years.

The grove is planted on a ridgo with thin clay loamumbrlaid wath broken laminated limestonc. Mr. Hunt found the land ungrofitalle umler tillago after several years' trial. The trece of each variety are planted in solid rown, harelwomls aml conifers :klternatiug. In a plat of White and Scotch Pine, Sorway Sprnce, Arborvitar, Furopean Latch, White Elm, Bos Elder, Green Suh, and Willow, the conifers have almost shaled out the hardwoods. Lhe

Larch are the tallest and tho Arborvita the lowest, the remaniug conifers being of about coual height, averaging Bō feet. Seventy White Pines wero measured, taking all the trees as they eame in the rows, and including the center of the plantation. The average diameter, breast high, was G.2 inches. The branches wro dead, hut still persistent to a height of 18 to 20 feet.

At the Bryant nurseries, l'rinceton, Ill., somewhat south of the natural limit of tho White l'ine, trees that wero grown as ornamental mursery stock have been permitted to stand, givinir some notion of the growth of the species in the rich prairie loam of that region. The oldest specimens vere net in 1858 and were imported seedlings. They are now about forty-two years of age, and average about 65 feet in height. Measured trees range from 9 inches to 26 inches in diameter. Norway Spruce of the same planting equal tho pinos in height, lut the average diameter is less. These trees staud abont 30 foot apart. On tho margin of a natural hardwood grove an acre of the richest prairie land was plantel to White and scotch l'ine seedlings about twonty-two jears ago. The trees were set 3 ly 4 feet, and have nover been thinnol. Lach species was planted puro, and ono of the tallest Whito Pines mearured 33 feet higb, tho average height being estimated at $2 \mathrm{t}_{\mathrm{f}}$ feet. Vifty Whito limes, taken as they came in the rowe, were measured, breast high, the average diameter beinf $4 \frac{7}{\delta}$ inches. Scotch I'iue showed about equal growth.

At the Iowa Aericultural College, Ames, Iowa, in the center county of the State, a piece of waste land of allout 3 acres was planted to White Pine, Enropean Larch, Box Elder, (ireen Ash, and Cottonwood in 1875. The plat occupies a gravelly knoll sloping to the north. The soil is a yellow clay, with much gravel, and of unknown depth. The top of the knoll forming the south side of the plantation is set with pure Larch. The Pine, Box Elder, and Ash are nixed, evidently without order. The original planting was $3 \frac{1}{2}$ by $3 \frac{f}{2}$ feet apart, and the trees now average about 10 feet apart each way. The White lines are estimated to average 30 feet high, and twenty-six measured trees, taken as they came, ranged from 5 to 14 inches in diameter, the average being 8.7 inches. The pines are now the dominant trees of the mixture and are fully 10 feet higher than the Box Elder, which exceed the Ash 5 feet. The following diameter measurements will serve as an alditional basis of comparison:
Incles.

Creen Ash, as ahove (21 trees) .. 3

It should be added that the Cottonwoods stand wider apart than the mixture of Pine, Box Elder, and Ash, while the Larch stand closer together. All were set originally $3 \frac{1}{2}$ by $3 \frac{2}{2}$ feet, and the alternate rows have been removel throughout the plantation.

At Windom, Minn., in the sonthwest part of the State, Mr. E. Sevatson has included two rows of White Pine in a plantation covering 10 acres. These trees were sel abont thirteen years ago, when 8 to 12 inches high, and are presumably not over eighteen years old. The two rows of pine are between rows of Arlorvite and Balsam Fir. They are abont 25 feet in height, and the average diameter, breast high, of seventeen trees, taken as they came in the rows, was 5 inches. The soil is a stity clay loam, and the plantation is about 100 feet ahove the surface of a lake which joins the farm. The entire country is treeless, excepl for groups of trees on the lake shore and groves along the Des Moines River, 3 miles distant. The White Pine in this location is less vigorous than Scotch Pine, European Larch, or Norvay Spruce.

Fine trees of White l'ine, set in single specimeus about thirty years ago, are growing at Arbor Lodge, Nebraska City, Nebr., the home of Ilon. J. Sterling Morton, ex-Secretary of Agriculture. These stand in bluff soil (a fine loam) about 2 miles west of the Missouri River. A few fine specimens may also be seen in the lawn at the homestead of Hon. A. H. Whiting, at Whiting, Monona County, Iowa, in the deep black loam of the Missouri bottoms. At Brookings, S. Dak., within 17 miles of the Minnesota line, repeated plantings of the White Pine have resulted in failure. At Franklin, Nebr., about halfway across the State, near the Kansas line, this species has failed after extended trial. Very few trees can loe seen in Lincoln, Nebr., though it has been repeatedly tested there as an ornamental tree. The climinished amount of atmospheric moisture will necessarily prevent general satisfactory cultivation beyond the western boundary of Missouri, Iowa, and Minnesota.

A number of fine specimens of White Pine stand in the lawn of the Rollius homestead at Colnmbia, Mo., about 10 miles worth of the Missouri River and halfway between the cast and west boundaries of the State. The soil is a clay loam, underlaid with limestone, which outcrops at many places in the vicinity. These trees were planted in 1855 , when two or three years old, by Col. J. H. Rollins. The largest is now (1897) 29 inches in diameter, hreast high, and 64 feet 9 inches in height. One of the smallest is about 56 feet high and 16 inches in diameter.

Additional notes of plantations in the West might be giren, but the above is suticient to show the White Pine can be successfully grown somewhat beyond its natural range, but does not woll eudure the dry conditions of soil and atmosphere which it must meet in the region west of the Missouri Niver.

THE WHITE PINE AS A FOREST TREE IN GERMANY.

As has been stated, the White Pine was introduced quite early into England, and from there it found its way into various parts of the Continent. In England it remained largely a park tree. In Germany it has been a forest tree proper for over a century, being used quite frequently, on account of its hardiness and shade endurance, as "gap cover" to fill fail pilaces. It has also been planted in many places on small areas as pure growth or mixture with the common European or Scotch Pine (Pinus silvestris) and Spruce. For a long time this "nowcomer" was regarded with a
feeling of doubt and even suspicion, and long before anything definite could possibly be said about the matter the merits amd fants of the White Pine were extensively discussed. The "practical" man, and with him some seientific men, were satisfied that such a light-colored softwood could not possibly be durable or otherwise desirable, and the small quantities oflered from time to time did not always tind ready market. Of late years this condition has changed. In a series of excellent articles, Dr. L. Wappes, a Bavarian forester, records the experience had in one of the oldest bodies of White line in Germany, in which he shows that the tree in pure growth, and also as mixture with pine, spruce, or hardwoods, has proven a most excellent factor of the German forest; that it seeds early and heavily, and as plant material is easily aud cheaply secured; that it is readily and even preferably reproduced by natural seeding, a rapid grower, capable to withstand crowding and shading, and that it is a tree especially capable of producing a large amount of timber even on poor soils, all of which coincides with the observations on its native habitat laid down in this monograph. He shows that besides the Fir (Balsam), the White Pine is the only tree which, in the Palatinate and on poor soils will, at the age of one humbed and ten years, make timber of Class I (according to (ierman notation, diameter at half length, 2.2 inches and better); that while the common pine at that age furnishes only $1: 3$ per cent of Class 111 and better (diameter 12 inches and over), the White Pine furnishes 27 per cent, or more than double this amonnt of these and more valuable diameter classes. Dr. Wappes emphatically states that White Pine, wherever known, is eagerly bought, and that the opinion of the consumers has radically changed. He proves by the digures of large sales from the State forests, that since 1882 the valne of White Pine has nearly doubled, while that of Spruce and common Scotch Pine has increased by only 20 per cent, and that of Fir and darch has actually declined during this period. The following figures give an idea of the grow th of White Pine abroad. The qroves of the Palatinate are stocked on very inferior soil, nearly all other groves cited being on loamy sand. The figures for total volume are somewhat misleading, since they do not include the timber which has been removed from the older groves in thinnings, which would add probably from 10 to 15 per cent to make up whole production.

It will be of interest to give more in detail the conditions of the last-mentioned plantation, reported this year in Dr. Lorey's Allgemene Forst und Jagdzeitung:

The plantation of about 9 acres, on fresh loamy sand, situated at an elevation of 2,200 feet above sea level in Wurtemberg, consists of White Pine mixed with Scotch Pine, Spruce, and l'ir in single individuals or groups. The White Pine represents, numerically, two-thirds of the total number, scoteh Pine is found among the dominant growth in part, but the Spruce and the small number of Firs show only codominant aud oppressed trees.

The density of the growth was reported as satisfactory until in 1875, when a snowstorm broke down much material, so that at present the density does not average over 0.7.

The stand, originating from seed, was several times thinned, and the last time, occasioned by the snowstorm, 400 White lines were removed, with over 10,000 cubic feet of wood. The number of trees averaged 183 per acre, of which 142 White lines, with diameters varying from 7 to 24 inches, and 16 inches in the average, yielded altogether 9,510 cubic feet, while the other species added only 1,290 cubic feet. Comparison with the other acre yields recorded shows that under these conditions the product was less than in more favored situations, either the site or light conditions reducing the growth.

The diameters represented on a sample area were distributed as follows:

Of the Scoteh Pines only four had reached diameters over 16 inches, and of the Spruces none over 14 inches. The superionity of the White line also appears from the comparison of height growth, which was established for every five years by the measurement of average sample trees, as follows:

Meight growth of White l'ine, Scotch l'ine, and spruce, by years.

Sample trees.	Age (years) and height growth (in teet).																	
	\%	10	1is	20	8.5	30	35\%	(1)	1.i	B11	5is	60	(3i\%	30	\% 5	80)	Mis	911
White I'ine lueight growelt	2. 1	9	18	29	38	45	59	(1)	di.i	71	if	$x 1$	85	4 4	93	9.5	!	1171
Soutch l'ine hrighe growtli	4	12	20	49	35	42	44	if	fir	1i:	(i)	78	7	A1	2:	- 1	n:	- 8
Suruce lietght kiuwtl....	:	-	1 fi	24	$3{ }^{1}$	4:	4*	it	S:	1,:	4,4	\because	\because	TK	*1	n'	$\cdots 1$	- ${ }^{\text {i }}$

The preceding table shows how the slow growth of the first five years which the White line has in common with the Norway Spruce is overcome before the fifteenth year, and by the twentieth year the White Pine has distanced the Scotch Pine, gaining on it constantly until, by the ninetieth year, it has outgrown it $1^{\prime 2}$ per cent.

From these figures the capacity of the White Pine to produce large amounts of valnable stemwood is apparent. Thus, on soil on which the 100 -year-old trees developed only a height of 92 feet, over 13,000 cubic feet of stemwood, corresponding to about 60,000 to 70,000 feet B. M., American scale, were cut per acre over aud above about 1,200 cubic feet of material removed in previous thinnings. In every case the White Pine excels the common pine, and even the Spruce in this respect. It should be added that most of these plantations, made in the early part of this century, were not executed according to present superior metbods, the species being an exotic and expensive was set out more in orchard fashion, as most planters in our country have been apt to do, at distances of $S, 12$, and more feet apart. Owing to this fact the development was probably not as satisfactory in the carlicr years as it might have been had the method of close planting, either pure or in mixture, prevailed.

The superiority of growth over the German Spruce and Pine is more fully illustrated in the following table, which shows the distribution and proportion of trees of White Pine and Spruce and of White Pine and Scotch Pine that are found in given diameter classes in two mixed planted growths of these species:

Distribution and proportion of White Pine and Spruce and W'hite' Pine and Scotch Pine.

It appears that nearly 32 per cent of the White Pine is over 12 inches in diameter, as against less than 7 per cent of the Spruce, while 35 per cent of White line, as against 6.5 per cent of Scotch Pine, developed over 12 inches in the mixture of these two, and over 11 per cent of the former belongs to sizes above 14 inches, which is hardly reached at that age by its competitor. These figures prove clearly that the White Pine excels the Scotch Pine even during the age of
most rapid growth, so that the difierence in view of the stealy growth of White Pine and the marked decrease in rate of growth in the Scoteh line, would be markedly greater if older timber had been compared.

Just as in its native range, the White Pine is decidedly a heart pine, the sapwood changing carly into the durable and more valuable heartwood. In timber one hundred years old grown in the Palatinate the sap in many cases is less than 1 inch thisk, so that 75 per cent and more of the entire stem is composed of heartwood.

In view of these facts it is quite safe to say that the White l'ine in the future will be one of the prominent forest trees of Ciermany, and perhaps of Lurope, as it will always be the king of roods in our Northern and Eastern States.

THE WOOD OF THE WHITE PINE.

THE WOOD OF THE WHITE PINE.

By Fillbert lioti, Division of Forestry.

White Pine is a favorite material with the wood consumer in the Northeastern States on account of the combination of qualities it possesses. It is a light, soft, uniform, straight-grained timber, to be bad in all markets in any quantity and in all dimensions, from the ship's mast to the clapboard. It seasons well, shrinks and warps but little, is quite durable, insect-proof, and takes oil and paint and has a good color, is light to handle, easy to saw and plane, takes nails without splitting, and is, in short, the ideal material for the carpenter and joiner, who handles the bulk of the 30 to 40 billion feet of sawed timber and lumber annually used in this country, of which White Pine furmishes over 30 per cent.

CHARACTER AND PHYSICAL PROPERTIES OF THE WOOD.

The structure of White Pine, like that of other pines, is simple. Ninety per cent and more of the weight of the dry wood is formed by the common wood fibers, or tracheids, 0.12 to 0.20 inches long, well suited for pulp material. The spring wood of cach anmual ring passes gradually into the summer wood and thus the sharply defined bands of hard, dark and soft, light-colored material so conspicuous in the rings of all hard pine, especially Longleaf and Cuban Pine, are absent in White Pine, making the cutting of the wood by either plane or saw much easier than is the case with hard pines. Sapwood and heartwood are quite distinct-the former white, the latter with a slightly brownish cast. The change from sapwood to heartwood takes place earlier in the young tree and the younger portions of old trees than in older timber. Thus, in a thrifty sapling thirty yeurs old the sapwood shows about eighteen rings on the stump, but only ten rings 35 feet from the ground. In trees over one hundred years old the number of rings in the sapwood is generally over thirty at the stump, decreasing often to fifteen or twenty near the top. The number of rings in the sap, as in other pines, is smaller in thrifty and greater in slow-growing trees, while the width of the sapwood is generally least in slow-growing timber. Compared to other pines, White Pine has a narrow sap at all periods of its growth. While in the hard pines, like the Longleaf I'ine, and still more in Loblolly and Shortleaf Pines, the sap forms generally from 50 to 75 per cent of the \log, it is generally less than 35 per cent of mill-sized timber in White Piue. This highly valuable property of the White Pine is found in all localities, even in Europe, where the tree has been widely planted.

SPECIFIC WEIGHT

To determine specific the weight of the wood and other plysical properties a collection of seventy-three trees was made, including material from the New England States, Michigan, and Wisconsin, and also from the mountains of North Carolina.

The speciife weight of the greeuwood varies chiefly with the amount of sapwood and consequent abundance of moisture, since the heartwood contains but little water outside of its cell walls (except in some cases where the heartwood near the stump also contains liquid water). Generally the weight of the greenwood varies from about 40 to 50 pounds per cubic foot, and is greater in young poles than in old timber, which latter on this account floats readily, rarely sinking, even after years of immersion.

The specific weight of the kilndry wood varies, generally from 0.3% to 0.40 (20 to 25 pounds per cubic foot), is greater in the old tree than in the young sapling, is greater at the stump than
farther up in the same stem, is independent of orientation (as great on the north side as on the south sifle), is mo wreater on elay land than on the satmly soils, and seems in these particulars quite independent of bocality. The wood from the swamp trees is no heavier nor lighter than the wood from the npland trees, the trees from New lingland diflering apparently in no way from those of either the Lake region or North Carolina.

Leaving out of consideration the specific weight of the limbs and knots (these being always heavy, as in atl pines), the average specitic weight of the dry wood of the stem was found to be for-

	$\begin{aligned} & \text { Specitie: } \\ & \text { gravity. } \end{aligned}$
Five trees $2(0)$ to $20^{2} 0$ yeare old	0.3815
Fine trees 125, to 1600 years adel.	. 3 \%
Five trees 100 (1) 120 years ald.	. 383
	.378
Ten trees 50 fo 71 suars ohld.	. $3: 36$
Nimeten trees 40 to 19 yaras old	. 23.3
Nincteen treca 30 to 39 years old	351

From the above, and still more from the table following, in which the trees are grouped according to age, it will be seen that White Pine displays a uniformity of specifie weight, and other properties dependent on weight, such as is entirely unknown in any other pine of the Eastern United States.

Average weight (hiln dry and green), moisture content, and shrinkage per cent of White Iine.

VI.-TLEEES 40 TO 49 YEALS OLD.

VII.-THEES 30 TO 39 YEARS OLD.

VIII--TREES 00 TO 30 YEALS OLI.

$\begin{gathered} \text { Linville, N. } \mathrm{C} \\ \text { Do....... } \end{gathered}$	$\begin{aligned} & 459 \\ & 460 \end{aligned}$	22 26	$\begin{array}{r} 4.0 \\ 7.0 \end{array}$	3.7 2.8	$\begin{aligned} & 34.7 \\ & 36.9 \end{aligned}$	$\begin{aligned} & 83 \\ & 85 \end{aligned}$	164 150	19.3
Average					33.5	84	165	9.8

From the table it appears that the specitie weight of the timber is quite independent of the rato of erowth, and that the individual variation gencrally moves within very narrow limits. The diagrams (hiss. 16 and 17) show the relation of weight for the diflerent sections from the stump

upward; the slightly greater weight of the older timber, as compared to saplime material, the miform decrease in weight from stump upward, and also the uniformity of the several individuals of any wroup of trees is clearly apparent from the lines. The same decrease in weight from below

 ohl; foighten tresg, to to 49 yeirs ald; g, nimetentrees, 30 to 39 years old.
upward is observed in the wood of any given period of growth; thus, the wood of the last forty rings (next to the bark) was found to be as follows:

Wecrense in uritht of the wood of the last (outwr) forty rings in the severnl dishs from stump upuras.

		Sureitic ¢ravity.			
		$\begin{aligned} & \text { Irme No. } \\ & \text { 4.jos. } \end{aligned}$	So. 1	S1s.	$1{ }^{\text {N }}$, ${ }^{\text {a }}$
I.		11. 37	11.42	11.44	11.4.5
II		31	. 34	. 111	. 40.6
III		. 30	. 36	. 36	. 39
IV.		- 296	. 3.5	. 36	. 60
$1 \cdot$.		. 31	$\therefore 3$ 37

As in other pines, there is usually an increase of weirht in the crown, apparently due to an influence of the limbs, but as this infuence is local, so the apparent result is local, and the weight is very irregular for the crown part of the stem; the pronounced increase is apparent only in the immeriate vicinity of the limbs. The absence of a pronounced or sharply defined summer wood makes it difficult and impracticable to apply the microscopie methods to determine the variation of weight from pith to bark on any cross section. From the actual determinations of weight, it appears that for the lower portions of any normally grown tree there is usually at first an increase of weight from the pith outward, reaching a maximum somewhere between the fiftieth and eightieth ring, maintained for a long period and usually followed by a very slow decrease in weight from there on outward. This variation is generally small, and never reaches the proportions met in sections of hard pine, such as Longleaf Pine, where it commonly amounts to 75 to 100 per cent of the weight of the lightest portion.

Usually about half the weight of a green \log is water. The amount of moisture generally varies in the sapwood from about $1: 0$ to 160 per cent and from 40 to 60 per cent in the heartwood, the amount for the entire log, therefore, varying with tho proportion of sap and heart is greatest in saplings and least in large mature trees, in the latter from about 90 to 120 per cent of the weight of the timber after it is kiln-dried. The wood parts with its moisture as easily as any wood in the market, dries rapidly, with little injury, and may safely be kiln-dried fresh from the saw, thongh in actual practice this method is almost unknown in the White Pine regions, the usual way of drying by carefully piling in immense piles, being the universal way of seasoning. Well air-died White Pine, as in in ordinary room, still retains 8 to 9 per cent moisture, and if unprotected by oil, paint, etc., is quite susceptible to changes of humidity, absorbing and giving off moisture at every change of temperature and lumidity of the air.

SHRINKAGE

In keeping with its smaller specifie weight, the shrinkage of White Pine is less than that of other pines. It is greater for sap than heart, and therefore greater for sapling timber than for older trees. From the table on page $7 t$ it appears that the shrinkage in volume varies for the several groups of trees from 8 to 9 per cent, and, like the weight, is quite uniform for the different individuals of each group.

The ease and rapidity with which White Pine seasons, and the manner of distribution of White Pine lumber, encouraging proper seasoning before use, have done much to earn for White Pine the fame of being one of the woorls which do "not shrink" nor "work," a virtue which is not only in part due to the small weight and consequent small shrinkage, but is largely the result of proper handling.

STRENGTH.
being the lightest, White Pine is also the weakest among the pines of the Lastern United States, as appears from the following general average:

Strength of White l'ine at 1.- per cent moisture.

	l'ounde par spuare inch.
Compression endwise and in bendinig to true elastio lin	5,200
Beuding to rupture.	7.900
Moululus of elasticity	1. 410, (16)
Compression acruss the grain (3 per cent deformation)	720
Shearing parallel to dibur	: 51

Ont of about seven hundred tests made by the Division of Forestry, about 55 per cent fall within 10 per cent of this general average, and 90 per cent within 25 per cent of the same. Though the test series for White Pine was by no means as fall as is desirable, the above average results will probably be found fairly aceurate and sutitient for general purposes. The table on the next page presents the average results for the several trees.

Arevage xhongth of the wod of Hhile l'ine of different trees at $1: 3$ per cent moisture.

In the above table the data for trees 101 to 116 are insubicient. Both material amd tests for trees 601 to 600 were satisfactory in every respect, and the results, therefore, of fiar wreater value than those for trees 101 to 116.

In keeping with its greater weight, the wood of the butt logs is slightly stronger than that of the top logs, and there is generally a regular difference between different parts of the same cross section, the center, as appears usual in pine, being the weakest, the heavier intermediate portion the strougest, and the peripheral part lying between the two.

For a more careful stuly of this relation, tests were made of a set of 22 by 2 inch sticks cut ont of one log from each of three trees, in such a mamer that the centers of the logs formed one set, the part milway from center to bark another set, and the onter portion of the logs a third or onter set, the latter two being all quarter-sawed pieces. The tests furnished the following average results:

Strength of :2 hy ? pieces at 12 per cent moisture.

It is apparent from the above that the perfect puarter-sawed material confirmed the other test results in showing the great similarity of the wood of these three trees. It also shows, however, that the effect of defects in an unselected lot reduces the strength values markedly in this species.

Arranging the results according to the position of the test pieces in the log, it is found that in compression endwise the strength was: Conter pieces, $5,-20$ pounds, or 78 per cent; intermediate, 7,000 poums, or 100 per cent; ontside picees, 6,680 pounds, or 9 per cent; showing that the heart pieces, as has been found in other conifers, are always the weakest, thus verifying the results of the general series. The slight decrease from the intermediate to the outside pieces is in keeping with the smaller weight of the latter and need not be ascribed to the fact that these pieces contained small proportions of sapwood. As might be expected, the uniformity of results in this properly selected and prepared material was greater than in the ordinary series. Of 58 tests, all fell within 2.7 per cent of the average strength and 76 per cent within 10 per cent of the average.

In connection with ageneral study into the maximum muformity of wood, three scantlings of White l'ine, with an average specific gravity of about 0.34 and an anerage compressive strength at S per cent moisture of 4,900 pounds, were examined, two being tested air dry (8 per cent) and
the other after being soaked for three months in cold water. The results of these tests on White Pine are embodied in the following tatble:

Strength of contiguous blocks of the same scantling of White Pine, select material, in compression enduise.

It appears that in the tests on dry material the greatest difference between any two contiguous blocks of select quarter-sawed White line was 190 pounds per square inch, or 3.8 per cent of the total strength; that generally it was less than 2 per cent, and several times only about 0.2 per cent, but that in tests of this kind less then 200 pounds in the results can not be regarded as any difference at all, this amount being due to indeterminable differences found even in the best material, and partly due also to imperfections in the means and methods of testing. It is also clear that in the same scantling, though select and of small dimension (only 6 feet long) a difference of nearly 900 pounds per square inch, or 18 per cent of the strength, in compression endwise may be found, so that any inferences from scantling to scantling must be taken with great caution, and any accurate relations, such as the influence of seasoning, ete., can be made only in a mamer similar to that employed in these uniformity tests.

From the general series of tests, also from the tests on the select 2 by 2 inch pieces, and in way of indication also from some of the tests in maximum uniformity, it appears that seasoning aflects the rool of White line to about the same degree as that of other pines. The strength of greenwood, or wood soaked to a point where additional immersion no longer changes the volume, is independent of differences in moisture. This is quite clear from the test in miformity of the scantling immersed for three months. Though the bocks differed (especially near the ends) within wide limits as to the amount of moisture they contained, yet the strength was found to be as miform as in evenly dried timber. By drying green or fully saturated wood to abont 2 per cent moisture (kiln-drying at $80^{\circ} \mathrm{O}$.), the strength is more than doubled; and even if pieces well airdried are kiln-dried the strength is still increased by over 40 per cent. For timber to be used under cover and kept properly ventilated, it is safe to presume that the strength, once seasoned, will be 50 per cent greater than when green, and if used in heated rooms, an increase of 100 per cent on the strength of the green timber may reasonably be expected. The diagram (fig. 18) well illustrates this feature.

DURABILITY.

With regard to its durability, White l'ine is generally underrated. The soft, light-colored wood suggests general frailty and a lack of resistance, in which resistance to decay is included. In the region where it grows the unusual great durability of the heartwood of White Pine is well known; "the stumps of White I'ine last a lifetime;" old logs, covered with moss and often with young Poplars and Birch growing from their surface are uncovered and utilized as shingle bolts. White Pine shingles wear out, but rarely decay, and a good sidewalk of White Pine is considered the best to be lud. As in other pines, the sapwood decays readily, but this being narrow in grood logs, more than half of all White Pine sawed is good durable heart, a wood which is neither subject to deray nor to the boring insects any more than the heavy resinous heart of the lied Pine or of the Southern pines.

COMPARISON WITH OTHER WOODS.

(ienerally Whito line is loged amt milled on a large seale, cut mostly into boards and plank, and there is to-day no common wood which is more economically hatuded and more carefully selected.
(ompared to other pines, the Whito l'ine is oftered more extensively and has a greater influence on limber markets than any other wool nsed. It is more miform, lighter, softer, and
shrinks less than any other pine; it is durable, insect proof, and suited to a much greater number of uses than the wood of other pine...

The following table exhibits the position of White Pine as to weight and strength:

Weight and strength of White Pine compared with other pines.

Name of pines.	Speciice gravity*		Bendiog.				Compression endwise.	
			İupture.		To relative elastic limit.			
	Actial.	Ielative.	I'ounds per squaze inch.	Relative.	Pouncla per square inch.	Tielative.	Pounds per square inch.	Relatise.
Longleaf.	61	100	12,800	100	10,300	100	8.306	104
Loblolly	53	87	11,800	92	9,500	92	7, 800	94
Shortleaf	51	84	10,400	81	7,800	76	6,500	78
Red or Norway	48	78	2.100	71	7.700	75	6,700	81
White	38	$6:$	7,900	62	6,400	62	5,200	64

Of the several columns, that on specific weight being at once the simplest and most truly representative of the entire stem of mature timber, illustrates probably the relative position of these five pines most perfectly. The Sonthern pines, if only the saw timber is considered, will prove even heavier and stronger by several per cent than appears from this table.

USES OF WHITE PINE.

There is no wood in the United States, perhaps in the world, of which there is a greater quantity used, nor one which is put to a greater variety of uses than that of the White Pine. At present the great mass of White Pine, probably not less than 95 per cent of the entire output, is cut into even lengths, usually 12 to 18 feet long, preferably 16 feet (full 75 per cent being 16 feet), and is converted principally into boarìs, plank, and "dimension stuff", 1 to 4 inches thick and 4 inches and upward in width, the widths varying always by an even number of inches.

In all the better mills the slabs are cut into laths, pickets, etc., while the thickest slabs and the sound portions of very defective logs are cut into shingles. These "shingle cants" are of variable sizes, usually containing knots and decayed portions; these defects in the shingle are cut out subsequently by the knot sawyers. Shingles of regular widths are rarely made. In the sawing of the great mass of lumber the main saw merely cuts slices of varions thicknesses from the logs, and their conversion into certain widths, as well as the removal of uneven edges, is left to the edger, on whose knowledge and skill much of the success of the mill depends. Usually the clear stuff, whenever possible, is left in broad and thick planks; the rest is cut into different widths so as to insure the greatest value, in most cases boards of extra width and select boards, for siding, etc., receiving preference and determining the conversion. The clear stnff, or "uppers," rarely forming over 15 per cent of the cat in our times, are used by manufacturers of sash, doors, and blinds, and by furniture men, and the most select portions by model makers and other special manufacturers where the price of the material is of secondary consideration. For material of this kind the consumer generally pays over $\$ 50$ per 1,000 feet B. M., and in some cases it is retailed at over $\$ 100$. Of the remainder, the great mass is used in the construction of frame houses, where commonly everything of wood, from cellar to roof, is made of this material. Of the inferior grades, enormous quantities are used for boxes, and much also is used as fencing and barn lumber.

For box shooks, straight-stave cooperage, pails, tubs, etc., a great deal of small sapling pine is employed. Smaller quantities of better-grade White Pine are used in mill constructions (for chutes, elevators, etc.); also in the manufacture of farm implements, for large surfaces, panelwork, etc., and in boat and ship building for decking, in fitting up cabins, for all kinds of spars, where its lightness, stiffness, and durability, together with its tine form and dimensions, render it a special favorite.

Considerable quantities of hewn and round timbers are still brought to market for export, but on the whole this trade is insigniticant when compared to the entire output.

White Piue is universally seasoned in the yard; most of the lumber does not reach the consumer until a year after manulacture. The case of working induces the consumers to do a great deal of 20233-No. $22 \longrightarrow 6$
resawing. The flooring, and even siding for the smaller markets, and for cheap construction are commonly the selected parts of sheathing and other inferior grades, as classed at the mill, and it is rave to find, in recent years, the best grades of White Pine in the smaller retailers' yards.

In the classification of White Pine a great degree of tinesse has been introduced, and the closest attention is paid here, as well as in edging and trimming, to the probable future use of a given piece of material.

Firom the enormons consumption of White Pine alone, and also from the great variety of uses to which it is put, it is clear that any material diminution of supplies must atfect extensively and intimately the wood market and wood industries of this country. The common claim of substitution of some other pine or conifer, and still more the belief in the use of hardwoods in the place of White Pine, have but little in their favor. A shipping case of White Pine requires about half the eflort to make and only 50 to 65 per cent of the eflort to hanl or handle as one made of Southern l'ine, its most uatural substitute. Similarly, a White Pine lath nails with half the effort, surinks less, and thas is far more satisfactory than one made of hard pine. Nor a good door or for satisfactory sash aud blinds only the Cypress and White Cedar can enter as a substitute, and both are too restricted in their oceurence, and the Cypress has too little chance of future regeneration to deserve consideration as a general substitute. The transportation of Pacific coast timbers, a small portion of which have the properties of White Pine, to the densely populated Eastera United States is not likely to occur on a large scale, for the cost of hauling alone equals the value of good grades of Eastern lumber.

APPENDIX.

TABLES OF MEASUREMENTS.

APPENDIX.

TABLES OF MEASUREMENTS.

The following tables record the detail investigations, measurements, and tabulations which have served as a basis for the discussion of the growth of the White Pine. The measurements in the field were made by Mr. Austin Cary, of Bangor, Me., and by Mr. A. K. Modriansky, of the Division of Forestry. Mr. Mlodziansky has also executed the laborions calculations, and is responsible for their accuracy.

The methods employed in this investigation have been described in general in Bulletin No. 20, "Measuring the forest crop," of the Division of Forestry. They are in the main similar to those practiced by European foresters, with some minor and one important modification, which latter Mr. Mlodziansky has developed during the course of his work in collating the data. This moditication, which refers to the analyzing of trees for ascertaining the rate of growth, consists in grouping by age classes, and instead of analyzing each single-measured tree, as is usually done in European practice, averages the data of measurement from a number of trees grouped and then analyzes the growth of the average tree thus constructed of each age class or group. In this way the work of collating is very considerably reduced and the measurements of a very much larger number of trees can be expeditiously utilized for average statement. It is needful, however, in order to be quite satisfactory, that the classification or grouping of trees be made in the woods while measuring, a task which requires considerable judgment. When the classification is so done in the woods, the mechanical work is further simplitied by entering the measurements for each group in sets, the measurements of cross sections taken at the same height being entered on the same sheet for all trees of the group, when the averaging of the measurements can at once be performed on the same sheets.

The forms used in the investigation are also appended, and will serve to further elucidate the methods pursued.

Since it was not expedient to fell trees specially for these measurements, it was not always possible to secure all measurements in the most desirable form; for instance, the desirable measmement and correlation to age of diameters at breast height, and at short intervals of the height, could not be obtained, because the work was performed on trees cut in regular lumbering operations; hence, the data had to be manipulated and interpolations used so as to secure satisfactory approximations for the periodic growth. The number of trees analyzed (some 700) is so large that any deficiency of method may be considered as neutralized.

TABLES OF CUBIC AND BOARD CONTENTS OF WHITE PINE.

The tables of cubic and board contents of White Pine are based upon the measurements of pine taken for analysis from the various sites described in the tabulations of acre yields.

The stem of each individual tree was calipered at intervals of 4 or 8 feet, and the volumes of the portions between two successive diameter measurements were calculated separately, considering them as frustrums of cones. From the volumes of stems of similar heiwht and diameter, breast high, the average volume was noted. The volumes of stems of missing dimensious was calculated by employing the corresponding factors of shape. The factor of shape is determined by dividing the volume of a tree by that of a cylinder of the same height and diameter, breast high; it shows the taper of the stem and is usually expressed in decimals, thus representing arithmetically the form of the stem. For determining the volume of a tree by means of the factor of shape, it is necessary only to measure the diameter and height of the tree, find the volume of a cylinder of the corresponding height and diameter, and multiply that volume by the factor of shape.

The lumber of stems in board feet was determined by employing Scribuer's rule.
Table I.-Volumes of boles of White I'ine.

Height of tree in

 	Ereast high.
 	16 feet.
 	32 feet.
	48 feet.
	64 feet.
	80 feet.
	96 feet.
	112 feet.
	Number of 16 -foot logs of 5 inches and wore at small end.
	Lumber.

录皆 1068
0
0

 1
10
1
1
1
1
1
-1.016

6	1,14
6	6
5	
6	
6	3
7	1
7	1
7	1

4	8.8	$\ldots \ldots$
5	10.1	$\ldots \ldots$
3	13.8	110.2

1. 100
7×1
97
2.

8.8
1.296
1.215
1,515
1,713
1.73
934
631
1.418
1 1.
1.57

1.
1.1
1.2

-i-i-i

TABIE: III.- Vranuremenfa of White Pine grove under similur conditions, grouped in age classea for areraging.
["1"lumgroups of trees measured are mample frees recorded in Titble VI.]

TABLE III.-Mensurements of Hhife l'ine grown under similur comditions, groupeal in age elasses for areraging-Continuol.

	Tren nutis. bur.	Aro.	Hiameter with lark (bresant high).	Tontal levight.	$\begin{gathered} \text { Factor of } \\ \text { shapo. } \end{gathered}$	Katio of thelength of crown to the to. tal Joight of this trer.	Volıma of loles.	Acr Gurrest ambunl.	ation. Average annual.
ralkotil x. 1"ichigun. der roof of Buach, Maple, Wrir, and necasionatly Whitu of young harilwornls and l'ir. Soil, brownloany sathl, frosh, monerately lowne, with atsurfacu cuver of brakos and grass; sulosoil, samd with stones.									
	11	Jis.	Juchire. (2), 11	Fert. $11!$	10.37	13. 40	Pubie ft. 163.51	Crluieft.	'mbie fl.
	7	20.2	29, ${ }^{2}$	139	. 41	. 40	103. 21	
	is	852	25.5	157	- in	. ik	20, 21		
	$\because 3$	2165	2\%.11	1218	. 41	41	307.07		
	13	\%rs	30.11	135	. 314	. 15	259. 1:		
	30	20, 6	32.0	142	- 31	. i)	361.	
	14	260	31.5	132	- ${ }^{\text {c }}$. 4 A	275. 29
	42	260	39.5	155	. 42	. 4x	:311. 41	
	11°	$\because 51$	33.10	$1+4$. 33	. 11	313.17	
	2	250	31.0	145	. 41	.:4	314.106		. .-.
	35	23.5	31.5	14	. 10	. 33	314. 38	
	6	206	33.10	139	. 38	. 31	316.81		
	15	2.5	32.0	154	. 41	. 33	360.75		
	5	258	- 31, 11	138	. 42	. 59	370.80		
	17	260	336.0	145	. 31	.45	404. 18		
		258	30.5	141	. 39	.46	285. 011	1. 80	1. 111
Moderately elemafereve of Whife l'ime intermixed with harduobsls and Hembok, with ocrasional Nurway I'inu, on a leval bain; mobrgrowth, of young Hemlock and hatadwords. soil, brown loamy sand, modinum tine grain, light, looso, very deep, fresh, well drainct, wifla moterately leaty aurface cover.	5	117	37.0	1.83	10.37	11. 1.11	4:3: ${ }^{\text {a }}$ -	
	1	115	3is, 5	1.11	.53	. 51	510.5	.	.
	4	45.7	41.0	150	. 11	. 5.5	512.3. 7		
	9	426 4150	43.0	164	-42	. 418	di7\% ${ }^{\text {fin }}$		
	4 7	45	46.0 47.0	160	. 80	.48 .45	621.9 621	
	3	461	48.0	170	. 38	. 56	737.4
	6	435	46.0	168	. 42	. 81	819.6		
	10	45 K	47.0	16.3	. 43	. 77	853. is		
		416	43.0	157	. 11	. 50	630.4	$\therefore \mathrm{C0}$	1. 80
Hemlonk mixed with Whiom Hine, with seattering hard wornls; malergrowth, morlerately dense, of Jound hardwomls sum Hemblock. Soil, yellow clay lonim of a medium grain, derp, fresh, whll drained, with 2 to 3 inches mold on top, and a surtaco cover of scanty loaves, Ferm and Teaberrices.	1	$\because 60$	35.5	158	0. 40	0. 415	435.4	-..	-
	\because	240	36, 0	157	.43	.42	4×1.1	--
	: 1	$\because 59$	32.0	15\%	. 46	. 44	106. 11	
	4	241	32.0	150	. 41	. 59	347.7		
	10	214	33.0	146	-12	- 34	365. 11		. .
	1:1	268	$2 \mathrm{2x} .11$	156	.43	. 4.6	?xi.x		
	18	$\underline{265}$	214.0	15.3	- 40	. 42	511.1		. .
	19	250	34.0	150	. 42	. 48	4118.4		
	20	2651	14.0	144	. 42	. 30	ti38. 1		
	21	245	34.0	146	. 411	.37	366.7		. . .
	23	4 4 x	34.0	142	-4:	.31	376.4-....
	33	259	33.0	133	.40	. 31	304.5		
	34	263	33.11	146	. 42	. 38	369. 2		
	35	263	31.0	114	- 36	. 43	275.2		
	36	241	\$1.5	134	.42	. 34	317.7		
	37	261	317.0	146	- 44	- 8	$4 x^{4} .9$		
- Weraga		255	31.01	147	$\therefore 1$. 8	390, 0	$\because 16$	1.5;

(A) OLID-(GROW'TH PINE.
(1) HEMINANT THELS

Avaragat throughout tho range.!
(2yd frees.)

Fif. 19.-Diagram showing rato of helght growth of dominant trees.

(1) OLADGBoWTM ILNE-Continucal.
(2) CODOMNANT TREFA.
[Averayn - hirourfiont the ranger.]
(106 trees.)

Ayr.	1)iatnetr . 1 hempla -18 21 fiet (w) 1 hont larh.	$\begin{aligned} & \text { Thisal } \\ & \text { heizht } \\ & \text { of tree. } \end{aligned}$	Volumas. of At est (willown) harh).	doblative fur ant of total vollille.						Averagn Einrent anmual \| antural aceretion, areretion.	
				114:sirt wormel.		Harb.	Whot adet.	14.inht	Volumat.		
years.	Inelies.	fire.	rubir fl.	Jir cont.	Jer crut.	lercint.		Fi,	('ubic ft.	('nuicft.	rixher flo
10 00	11. 8	1.0	(l)				1				
$\frac{80}{30}$	2.3	$1+3.0$	U. 4				2	11.0	(1)	0. 02	(1)
30	40	$2=.5$	1.6			3	1:00	1.2	. 0.3	-1. 12
40	5.8	"ia. 0	4.4	, . .	. -	4	4.5	2.9	. 11	. 29
50	55	43.5	7.7	5	9.5	3. 3	. 15	. 33
(ri)	11. 11	iti. 5	11.3	-	6	!1. 11	3.6	. 19	. 36
70	105	1:4.0	17.4	.			7	7.5	6.1	. \because	. 61
rl	11.1	-1. 5	24.9	. . .			8	7. 5	7. $\%$. 31	.75
90	13.3	73.0	34.4	\cdots			9	7.5	9, 5	, 38	. 95
1110	14. 7	-4. 5	44.5			10	$\therefore 5$	10.:	. 45	1.02
110	16.0	- $\because .5$	5iv. 5			11	C. 0	11.11	- 10	1. 10
120	13.3	14. 5	67.5		.		12	5.0	12.11	. 56	1. 20
130	1. 6	! 0.0	78.6	- .			13	4.5	11. ${ }^{\text {1 }}$. 61	1.1\%
140	$14+3$	103.0	91.5				14	4.0	12. !	, bits	1. 29
150	20	117. 0	10.4				15	1. 0	12.5	. 69	1.25
180	2:11	111.0	115.9	.	.	.	16	I. 17	$1 \div 0$. 72	1.20
170	2311	114.0	127 i	- ...	11	$\therefore 0$	11.r	. 75	1. 18
1×0	2: $=$	117.5	129.:				18	$\therefore 5$	13. 3	. 72	1.39
190	24 ?	124.0	142. 1			19	3.5	1:1. 7	. 75	1.37
$\because 10$	25, 6	12.5	152. 7				20	3.5	9. 8	.76	. 98
210	20	1250	165.			.	21	2.5	12.8	. 79	1.28
0	270	127	179.3				-2)	$\because 5$	13. α	. 81	1.38
230	2\%	1:i\%, 0	195. 11	..			$\because 1$	$\because .5$	15. 7	. 84	1. 5 t

F゙uck. 2n. - liantam sbowing rate of bejght growth of anloninant trees

(3) OPPIRESSED TREES.
[Average throughout the range.]
(104 trens.)

FWi. $21 .-$ Disgram showing rato of height grow th of oppressen trees,

$\because 0$ OB3-No. $2 \times$
'IABL: IV.-Dimensions, volume, and rate of grovth, by decades, efc,-Contimued.
((i) ULAD.(indow Tli PINE-Continued.
(1) IMBMISANT THEFK.
[Averago in Winconsin.]
(is 8 Ireen.)

A \% ${ }^{\text {a }}$	Diameter	Total holyith of treo.	Folume of sten (without lark).	Id dative jer cent of total volunne.			I'ariontic arretion.			Average a0nual sccretion.	Current аивиа! arerction.
	(withont lunk).			Hoart worul.	Sapwomal.	\matk.	Hecade.	Height.	V̌ulume.		
lirars.	Inches.	Herl.	Cubic fl.	Per cent.	I'er cent.	fer conl.		Hel.	Cubic fl.	Cubic fl.	Cubic ft.
111	1.0	9	(!)				1	$\begin{array}{r} 9 \\ 18 \end{array}$		(i)	(?)
?0	2.2	(19)	0.5				\%	13	(1)		(1)
34	3.8	3	1. 11				3	12	1.4	. 06	0.14
10	3.3	46	3.5				4	12	1.6	. 02	. 116
511	6.6	57	7.6				5	11	4.1	-15	-41
(in)	8.0	66	13. ${ }^{10}$				6	9	5.6	- 22	. 5
-11	9.3	74	$\because 1.0$				7	8	7.8	- 10	. 78
(1)	11.0	80	\%10.0				8	6	9.0	. 38	. 90
90	13.0	86°	41.5				9	6	11.5	. 16	1. 15
110	15.3	91	58.0				10	5	16.5	- 88	1. 65
110	17.4	1.)	78.0				11	4	20.0	. 71	2.100
1:0	19.6	100	100.5				12	5	20.5	.84	2.85
13:11	21.8	104	124.0				13	4	23.5 23.5	-95	2.35 2.35
$1+11$	21.0	108	147.5				14	4	23.5	1. 05	2. 35
1:0	35. 7	111	169.0				15	3 3 3	21.5 21.5	1.13 1.10	2.15
110 $1 \% 0$	27.1	114	100.5				16	3	21.5 32.0	1. 10	2. 15
100 180	24.0	117	212.5				17	3 3	12.0 22.0	1.30	2. 20
180 1149	30. ${ }^{5}$	120	234.5				18	3	22.0	1.30	2. 20
$1!9$ \square	320 0	122	256.0				19	2	21.5	1.35	2.15 $\pm .10$
$\because(0)$	3\%.3	124	277.0	65	23	12	$\because 0$	2	21.0	1.38	$\rightarrow 10$

[Averago in Wisconsin.]
(55 trees.)

(G) DOMINANT TREKS.
[Avernge in Michigan.]
(75 trees.)

(:)

'IABhe IV.-Dimensions, volume, and vate of grouth, by decades, etc.-Continned.
(.1) OLIS.G1LOW'LII LINE—Continacu.
(7) Codobinant treeg.
[Average in Michigan.]
(28 trees.)

- r r O.	Diameter at lieight of 21 fuot (without bark).	Total heipht of treo.	Volume of stem (without bark).	Helative per cent of total volume.			Perionlic acervtion.			Average antrual accretion.	Current anumal accretion.
				Heartwood.	SSapwesd.	Imark.	Decade.	Height.	Volusne:		
Years.	Inches.	Feet.	Cubic ft.	l'er cent.	I'r cent.	I'er cent.		Nert.	Cubic fl.	Cinbic Jl.	Cubic ft.
10	0.7		(?)				1	7	(!)	(3)	(1)
$\because 0$	2.2		0.4				2	9	(!)	0.02	(1)
30	4.0	28	1.3				3	13	U. 9	. 01	0.09
(1)	5.7	37	4.0				4	8	2.7	. 10	. 27
50	7.3	47	7.6				3	10	3.6	.15	. 36
60	8.8	57	11.5				6	10	3.0	. 19	. 39
70	10.1	65	18.0				7	8	6.5	. 26	. 65
80	11.7	74	26.4		-.		8	9	8.4	. 3:3	. 84
90	13.2	83	38.0				9	9	11.6	. 12	1.16
100	11.6	89	50.0				10	6	12.0	. 50	1.20
110	15.9	94	63.0				11	5	1:3,0	. 57	1. 30
120	17.2	99	77.0				12	5	14.0	. 64	1.40
130	18.5	104	92.0				13	5	15.0	.71	1.50
140	19.8	108	106.0				14	4	14.0	.76	1. 40
150	20.9	112	119.0				15	4	13.0	. 79	1.30
160	22.1	116	130.0				16	4	11.0	. 81	1.10
170	23.2	119	140.0				17	3	10.0	. 82	1.00
180	24.1	123	(?)				18	4			
190	25.1	126	(7)				19	3			
290	26.0	129	(1)				20	3			
210	26.7	132	(1)				21	3			
220	27.4	135	(1)	63	24	13	22	3			
230	28.0	138	(${ }^{\text {(})}$				23	3			

(8) ORPRESSED TREES.
[Average in Michigan.]
(36 troen.)

10	0.7	4	(?)				1	4	(?)	(!)	(?)
20	1.8	12	0.3				2	8	(1)	0.01 .5	(!)
30	3.3	40	.7				3	8	0.4	. 03	0.04
40	5.0	2 s	1.8				4	8	1.1	. 04	. 11
50	6. 6	37	4.0				5	9	2.2	. 08	. 22
60	8.0	17	7.0				f	10	3.0	12	.30
70	9.2	6	11.0				7	9	4.0	. 16	. 40
80	10.5	$6!$	16.6				8	8	5.6	. 21	. 56
90	11.8	71	230				9	7	6.4	. 25	. 64
100	13.2	77	30.0				10	6	7. 0	. 30	. 70
110	14.6	83	37.0			13	11	6	7.0	. 31	. 70
120	15.8	88	45.0	31	26	1.3	12	5	8.0	. 37	.80
130	17.0	12	54.0				13	4	9.0	. 41	. 30
140	18.0	97	64.0				14	5	10.0	. 46	1.00
150	19.0	100	74.0				15	3	10.0	. 50	1.00
160	20.0	103	84.0				16	3	10.0	. 52	1.00
170	20.8	!06	95.0				17	3	11.0	. 56	1.10
180	21.6	109	106.0				18	3	11.0	. 61	1.10
190	23.4	111	116.0				19	2	10.0	. 61	1.00
200	23. 2	113	126.0				20	2	10.0	. 63	1.00
210	23.8	115	137.0				21	2	11.0	. 65	1.10
230	24.4	117	147.0				22	2	10.0	. 67	1.00
230	24.9	119	157. U	68	19	13	23	2	10.0	. 68	1.00

(9) DOMINANT THEES
[Average in l'ennsylvania.]
(81 trees.)

10	1.0	7	(1)				1	7	(1)	(i)	(?)
$\because 0$	2.8	21	0.5				2	11	(1)	0.02	(?)
30	3.5	35	2.6				3	11	2.1	. 10	0.21
40	8.0	49	7.8				4	11	5.2	. 20	,is
50	10. 2	60	14.4	40	47	13	5	11	6.6	- 3	. 66
60	12.2	70	24.9				G	$1{ }^{11}$	10.5	.41	1. 15
70	14.0	78	36.1				7	8	11.2	. 5.	1.12
80	15.6	86	48.3				8	8	12.2	. 60	1. 2 2
90	17.1	83	59.6				9	7	11.3	. 68	1.13
100	18.6	99	74.6				10	G	15.0	. 75	1.54
110	20.0	104	90.7	53	33	12	11	5	16.1	. 82	1. 61
130	21.5	108	106.9				I2	4	16.2	. 89	1. 68
1.10	23. 9	112	123.6				13	1	16.7	. 9.	1. 67
110	$\because 4.1$	116	140.9				11	4	13. 3	1. 011	1. 73
150	25.2	119	158.2				15	3	17. 3	1. 06	1. 73
110	26.4	1203	176.9				16	3	18.7	1.10	1.87
170	27.5	125	196.2				17	3	19. 3	1. 15	1.93
180	± 8.0	128	217. 5				18	3	21.2	1.21	2.12
1 HH	29.6	131	2988. 0				13	3	211. 6	1.2.1	$\because 14{ }^{\circ}$
200	30.8	134	260.5				$\because 11$	3	20.3	1.311	2.25
210	31.3	137	$2 \mathrm{S4}, \%$				21	3	\%\%. 7	1. 35	2.35
220	33.0	140	309.7				22	3	25. 5	1.41	2.55
230	34.0	143	335.4	69	21	10	38	3	25.7	1. 46	2. 57

> (i) (HAD.1:
(10) follominant ibhris
(Average in lownsy) |vanias.
(is (104*)

Fin. 2t.-1)ingram slowing height growth of dominant trees, by Status.

Fig. $25 .=$ Diagran showing height growth of codominant trees, by States.

Fuc: edo- Diagram showing height growth of opprossed tree's by stateo.

Ftg, 27.-Diagram showing volume growth of hominant trecs, ley stateg.

Firs, 28.-Diagram showing volumu growth of codominant trob, by states.
'TABLe IV.-Dimensions, rolume, and rale af arowh, by decades, che-Continued.

(11) Site a : Yobe Con'Nт, ME.

IWMINANT DGENS
(11 trues.)

Age.	Diancerer at height. of 24 luet (wifhowl b:a! h) 。	$\begin{aligned} & \text { Tobal } \\ & \text { height } \\ & \text { ol'traw" } \end{aligned}$	Tolumo	landatives prenent of fotal vil口й.			Puriorlie: arotelioblo			$\begin{gathered} \text { Average } \\ \text { autubit } \\ \text { acrertios. } \end{gathered}$	("иrra-3! atuhmal aceretion
			barli).	Heart. would.	Sapiwomb	Jiak.	Becaule.		Vislumar.		
1.ars 10	Inrlus $\cdots .1$	Hert.	Crebic fle	ler cont.	I'racers.	lercrut.	1	Jiuf. 71	$\begin{gathered} \text { C'ubir } \mathrm{H} \text {. } \\ 0 .!1 \end{gathered}$	Crubic ft. 13. 0.5	
$\because 0$	5.	$21{ }^{1}$	2.1				4	1318	1.6	.111	. 16
34	111.3	37	6.5				3	$16 i$	4.4	. $\because 1$. 44
10	14. 11	494	17.0				1	124	10.5	4*	1. 05
[14	18.13	(ix) ${ }^{1}$	34.0				5	11	17.0	, 6x	1. 70
(ii)	+3. 1	69	Ret, 3				6	${ }_{8}^{1}$	16. ${ }^{3}$	1.00	$\because 8.8$
51	$\because 4.6$	77	8.2	$5 \times$	24	10	$\%$	8	21.6	1. 17	? 14
(1)	$\because 6$	8.7	100.0	10	111	(1)	8	$\stackrel{8}{8}$	17.8	1. 25	1. is
(11)		96	(1)	(6)	:	111	9	5			

COHOMLS INE THESE.
(3) 1rues.)

OPPRESAED TRELSA.
(12 treas.)

(12) SITE c: JORK (OUNJY, ME.

DOMINANT JREFS.
(10 trees.)

DHMANANT TKEES.
(8 trees.)

(13) MASSMCIUSETTS AND NEW HAMINHIRE:
mominant thbes.
(12) trees.)

10	2.5	10	0.5				1	10	0.5	0. 11.5	0. 0.7
20	5.4	113	$\stackrel{1}{2} .0$				2	$\because 3$	1. 5	. 10	. 15
30	7.8	48	65				:	15	4. 5	20	4.5
40	9.4	58	12.5	43	4 t	6	4	10	6. 0	. 31	(i)

T'anes: IV,-Jimensions, rolume, and rate of growth, by decader, etco-Continued.

(11) SITE ! 7 CLEAHFIF:L, CoUNTY, 1'A.
jominant theres.
$1+$ treans.)

(15) Site i : Fonest (ou'NTY, I's.

HOMLNANT TMELAS.
(\% treesa)

CODMMINANT TREES,
(10 trees.)

(5 trens.)

(16) SITR C : bovernse COUNTY, I'A.

IUMBNANT TIEKES.
(!) (rees.)

Tablef V．Crowth of diameter and crosw－sechion arch at rarious heighta from the gronnd．

Charne ter of growth．	$\begin{gathered} \text { Height } \\ \text { of nection } \\ \text { from } \\ \text { ground. } \end{gathered}$	hameter accretion，in inches，foh deraden－																						
		1	\pm	3	4	\％	6	7	8	9	10	11	12	13	14	1．5）	16	17	18	19	20	1		：
	Feet．${ }_{24}$	1.9	2.2	2.1	2.0	1.7	1.7	1.6	1.6	1.8	1.8	1.7	1.6	1.6	1.5	1.3	1.2	1.2	1.2	1．1，	1.0	0．9	1．0	9
	18	2.8	2． 6	1.9	1.7	1． 5	1.1	1.4	1.3	1． 2	1．2	1.2	1.1	$1.1)$	0.9	0.9	0.8	11.8	0.8	0．7．	0．7，	0． 5.5	0.5	
者需	34	2.7	$\because 6$	2.2	1.8	1．6	1．5	1.4	1.3	1.2	1.1	1.1	10.9	0.9	0.8	0.8	0.7	0． 7	0.7	0.8	14． 6			
ㄷ．	50	2.6	2.8	2.3	1.9	1.6	1． 5	1.3	1.1	1.1	0.9	0.9	0.9	0.8	1.8	0.8	0.7	0.7	0.7	II． 6				
클	66	2.5	2.6	2.1	2． 1	1.6	1． 3	1．2	1.1	1.0	1．0	0.8	0.8	0.7	0.7	0.7	0.6	0.6						
気突	82	2． 3	2.1	1.7	1.5	1．4	1.8	1.1	1.0	1.0	0.8	0．8	0． 8	${ }_{0}^{0.8}$	${ }^{11} .8$	0． 7	0.7							
	100	$\begin{aligned} & 1.9 \\ & 1.4 \end{aligned}$	1.9	1.6 1.5	1．5	1.3	1.2	1.0	1.0	0.9 0.9	0．9	0.9		0.9										
	2.	1.6	1.9	1.8	1.7	1.6	$1.4{ }^{\prime}$	1.4	1.5	1.4	1．3	1.3	1． 4	1.2	1.1	1.1	1.1	1.11	0.9	0.9	0.8	0． 7	． 7	
	18	$\stackrel{3}{4}$	2.5	1.8	1.6	1.3	1.2	1.2	1.1	1.0	1．11	0.9	1.11	0.8	0.7	0.7	0.7	0.7	0.6	0． 6	0． 6	0.6	0．6	
玉．${ }^{\text {¢ }}$	34	2.6	2.5	1.9	1.6	1.4	1.2	1.1	1.0	0.9	0.4	0． 8	0.8	0.7	0． 7	0.6	0.7	0.6	0． 6	I1． 5	U． 7	0．6		
E	50	2.6	2.3	2.0	1.7	1.5	1.3	1.0	1.0	0.9	11.9	11.8	0.8	0.7	0.7	0.7	${ }_{0}^{0.6}$	0.7		0．${ }^{\text {a }}$				
5	66	2． 2	2.1	1.8	1.5	1.3	1.1	1.0	0.9	0.8	0.8	0.8	0.7	0.7	0． 3	0.7	0.6	0.6						
\％	82	1.9	1.9	1.5	1.4	1．2	1.1	1.0	0.9	0.8	0.7	11.7	0.6	0.6	0.7									
－	98	1.6	1.3	1.3	1.2	1.1	1.1	0.9	1.1	0.6	0.6	0.7												
		1.0	1.	，	1.1	$1{ }^{1}$																		
	18	1.4 2.1 	1.7 2.1	1． 1.6	1.6 1.3	1．3	1.11	1.4	1.2	1.5 1.2	1.3 1.0	1.4	1.8 0.9	1.2 0.8	1． 1.8	1． 1.8		1.0 0.6	0． 0.5	11． 4.	0．8 0.4			
	18	2．${ }^{2}$	2．1	1.8	1.7	1.4	1.2	1.1	1.1	（0． 9	0.8	0.8	0.8	4.7	0.7	0.6	0.4	0.4	0.3					
	50	2． 1	2	1.9	1.5	1.4	1.3	1．2＇，	1.0	1.0	0． 9	0.9	0.8	0． 6	0． 6	0.4	0.4	0.5						
或岳	66	2． 4	2.3	1.7	1.5	1.2	1.2	1.10	0.9	0.7	0.6	0.5	0.5	0.5	0.5	0.4								
¢0	8.3 100	－3．3	1.8 1.9	1．6	1.2 0.9	0.9 0.8	0.6 0.7	$\begin{aligned} & 0.7 \\ & 0.7 \end{aligned}$	10.7 0.5	0.4 0.4				0.5										

Charac－ ter of growth．	Meight of section from groumd．	Correspondtwa																						
		1	g	3	4	\％	6	7	＊	9	10	11	12	13	14	15	16	17	18	19	20	$\because 1$	セ2	23
	Fept．	0.02	0.07	0． 13	0.16	0.18	0.20	0.21	0． 24	0． 30	0，33	0.35	0.35	0， 36	0.89	0.35	0.36	0． 38	0.38	0.37	0． 34	0．32	19．35	
	12	． 01	．12	． 13	． 16	． 17	． 17	． 19	． 20	－ 20	． 22	．23：3	－ 2	． 22	－ 20	． 21	． 21	． 20	2 2	－		． 14	． 15	
E	34	04	12	． 15	－17	． 18	－ 18	． 20	－ 20	． 30	－ 20	． 11	18	19	－17	19	．18	－15	－16	－ 15	16	，		
큰	50	04	． 113	16	－15	18	－19	－17	． 12	17	． 118	17	15	14	． 14	1.	． 15	11	12					
를	88	． 03	${ }^{11} 1$	11	． 11	． 12	． 13	． 12	12	． 14	． 13	．12	． 12	． 14	． 13	13	． 11							
A	100	． 02	， OH^{1}	． 18	． 11	． 10	． 12	． 11	． 12	． 12	． 13	． 12	． 12	＋16	． 14									
	115	01	03	07	． 117	． 19,	． 10	． 11	． 11	． 11														
		． 01	． 06	． 09	． 11	． 13	． 15	． 16	19	． 21	21	23	． 27	24	23	． 24	． 27	24	231	23	22	211	21	21
	18.	． 03	． 10	． 12	． 13	． 12	14	． 11	． 1.	． 15	15	1.5	． 17	． 15	． 14	． 14	． 15	． 14	14	． 13	14	14	． 15	
品	31	04	10	． 13	． 13	． 14	14	． 11	． 11	． 14	11	14	． 13	．18	． 13	112	14	：13	13	19		13		
믈̈ㅜ	50	． 04	． 09	． 14	． 14	． 1.5	． 15	． 13	． 11	． 14	． 14	13	－14	． 13	． $1: 3$	113	18	－ 11	． 12	． 13				
\％	6.6	． 03	． 07	10	． 11	12	． 11	． 12	． 11	． 11	．11	12	． 11	． 12	－ 10	． 11	． 10	． 12						
－	82	（12）	06	． 08	． 09	． 08	． 10	． 10	． 11	． 111	． 05	14	． 09	－181	． 111									
8．	98	．02	． 0.3	． 06	． 66	－107	． 08	－0K	10	． 10	.07	－ 19												
	114	． 11	． 01	．193	． 115	－0．）																		
		． 01	． 04	． 07	． 10	． 111	11	． 15	． 14	.19	． 201	． 22	． 210	2	． 22	． 23	． 2				－ 31	15	． 14	． 13
	182	． 02	． 08	． 08	． 09	． 08	． 10	． 113	． $1: 5$	． 1.	－ 14	． 15	． 14	． 14	$1: 1$	． 11	． 12	． 11	31	．4）${ }^{\text {a }}$	． $0 \cdot$			
置宽	34	． 103	－118	． 11	． 13	． 13	11：	13	． 14	． 13	． 12	． 12	． 13	－13	－114	． 12	． 08	． 14	is					
2 2	51	． 0	． 118	． 11	． 11	． 12	． 14	． 14	． 1.4	． 13	． 13	． 13	． 13	－10	． 11	． 07		14						
E	fif	－103	． 09	． 11	． 12	． 11	． 12	． 12	． 11	． 10	（19］	． 07	． 118	． 07	． 14	． 17								
59	82	．0．3	． 14 i	． 09	． 08	． 17	． 03	． 18	． 07	0.10	， 04	． 150	． 05	． 06										
	10%	． 02	． 1113	． 16	． 10	． 05	． 06	． 16	． 04	． 04														

Fig. 32.-Diagram showing diameter growth of colominant trees at various leinhts from ground (average throughont range)

Fig. 32.-Diagram showing dianeter growth of oppressed tues at vativus heights figm ground (averoge throtighout range).
'IMBle: V.-Growth of diameter and cross-seclion area al various heights from the ground-Continued.
(2) AVEHAGE FOH: WHCONSIN.

Fig. 31.-Diagram showing diameter growth of dominant trees at various heights from ground in Wisconsin.

Fig. 35.-Diagram showing diamotor growth of oprressed trees at rarions heights from ground in Wisconsin.

Fig. 36.-Diagraw showing diameter growts of dominant trees at various heights from ground in Pennsylvania.

20233--No. 2:-S

(J) AVERKAGI: JOH MICHIG:AN.

Fig. :38.-Diagram showing diameter growth of dominant trees at various heights from groum in Michigan.

Fra. 39.-Diagram showing diameter growth of comominant trees at various heights Irom erombin Michigan.

Fig. 40.- Diagran shoming diameter growth of oppressed trees at various heights from ground in Michigan.
'Mals: V1.—Acre yiclds of H'hite l'ine and measurements of sample trees.

A.-M1CHIGN:

(1) Stte a :

I'resrue Islo County.
[700 to 800 leet abovo sea levol.]
Noil: Yellow or gray sand, moderately loose, deep; sulboil with small stomes, surface cover of brakes hnckleberry ete
Foreat condilions: Lial Pints (61 per cent), mixel with White l'ine (30 yer cent), and occasional Maphe, Loplar, Cedar (3 per cent), on levol.
lassification:
Dominant
Oppressed.
Suppressed. 27
27
43

ACRE YIELI.

White Pine

for trem:
Total cubiv feet. 2,990
Totalleqt Ib. M

Sample area: 1 acre.

Age of pine: 100 to 150 Jears. Density of crown cover: 0.6 .
Number of trees: 181 .

Table VI.- Acre yields of White line and masurcmonts of sample troc-Continued.

A.-MICIIIGAN-Continued.

MEASUILUMETS OH: SAMILE TREES
Age class: 80 to 100 years.
DOMINANT UROWTH.

OPPRESSEI) (iHOWTH.

StPPRESMED (THOWTH.

19....	92 84	10.5 10.0	73.0	8.2 7.6	20.6 20.9	0.47 .53	0.26 .48	1.2	$\begin{array}{r} 0.25 \\ .77 \end{array}$	0. 22
Arerage..	88	10.2	72.5	7.9	20.7	50	37	2.4	. 51	23

Age class: 100 to 150 yenrs
DUMINANT GROWTH.

OPPRESNED GROWTH.

9	102	16.0	85.0	6.6	48.8	0.41	0.46	2. 5	1. 22	0. 47
31	102	15.1	86.0	6.7	49.4	. 46	. 10	1.4	. 69	. $4 \times$
4.5	102	17.0	84.0	6.0	58.5	. 44	. 61	1.7	. 99	. 57
43.	10.5	16.8	87.0	6.1	67.3	. 49	4:	. 7	. 47	. 6.4
Average...	103	16. 2	85.5	6.3	56.0	. 45	. 47	1.6	. 81	. 54
4.	127	17.0	88.0	6. 7	56.9	. 41	. 54	5.2	2.96	. 44
40................	134	15.0	94.0	8.6	57.6	. 50	. 30	2.2	1.26	. 43
3.................	147	18.0	91.0	7.9	66.0	. 41	. 44	4.9	3.23	. 44
Average...	136	16.7	91.0	7.7	60.2	. 41	. 43	4.1	2.48	. 44

CHPPRESSED (iROWTH.

Atfe clase: 2.0 to :300 yrars.
MOMINANF (iRthwtI

Tants：VI．－Acre yields of llhite line and measuremonts of sumple trees－Continuml．
A．－MICHIS．IN－Gontinusd．
（2）ぶなだい：
［Thto to 800 feet alwew mealered．］
Soril：Deep，lowso，gray amm，coveroll with leaves；said to lue mulerlaid by clay．
 （18 pur cent），with nealtering Cendar．
Clasification：

（Upprassidl
Suppremacal

ACHE Y Chill ．

White Pize．					Hedl I＇ine．			Hembock．		
Sumber of trees．	Diameter （breast high）．	Height．	Solmme．		Number of trees．	Diameter （breast． hight．	Height．	Ninmlier of treers．	Diameter （Hreast hignlo．	Heizht．
			Fiole．	$\begin{aligned} & \text { Mer } \\ & \text { chantable } \\ & \text { timber. } \end{aligned}$						
$2 \times$	Buehes． fito 111	Hiet．	$\begin{gathered} \text { Cubic fret. } \\ 280 \end{gathered}$	Fcct Ib．Mr．	1	$\begin{aligned} & \begin{array}{l} \text { Inches. } \\ 60 \text { to } 10 \end{array} \end{aligned}$	Fecol	20	Inches， 61010	Hect．
5	111		135		1	14		11	10tol4	10
${ }_{6}^{6}$	11		192		1	15		3	146：18	
${ }_{6}$	12		269		6	16	100			
${ }_{11}$	118		558		${ }^{6}$	18	810			
9	15		52		3	19				
${ }^{6}$	110		381		2	20				
10 α	17	100	720		5	21				
${ }^{N}$	18	10	640		1	22				
${ }_{6} 1$	， $\begin{aligned} & 19 \\ & 20\end{aligned}$		616 600							
6	121		711							
7	$\underline{22}$		945							
1	2.8		117							
1	24 24 24		153 55.5							
1	1 －		199							
，	30		240							
120 trees：					26 trerat			St trese：		
					Total culsic feet－2，443			＇s	culuic fo	．．．5：0

Totat yield：All apecies， 11,162 cubic fect，of which Whito fine is pre cent．
Averago amunal accretion：Whito Hine， 63 cubie fect

MEASUREMENTS OF 太心MPLE TREFA．
Age clase： 1314 to 1.50 yeara．
NOMINANT GEGWTIt

Tanls VI.-Acre yields of bhite I'ine and measurements of sample frees-Continmod.
A.-MICHIGAN-Continned.

MEASUREMENTS OF SAMPLE TIREES- (\%Ontinucl

ACYMRESARD (HROWTHI.

(3) SITE d :

Montmorency County.
Age of pine: 250 to 270 sears. Density of crown cov (er: 11.5 Fit: Fresh, loose gray sand, tmming brown and red below, with surface Forestconditions Whan Phe (54 per cent) mixed with lhed Pine (35 per cent) sund Hemlock (11
fer cent). by fire twolve years before; sample area shows 15 per cent dead trees and 20 per Dammged by fot

ACRE IIELI).

Average annual accretion: 1'ine, 59 eubic feet.

Tлин: Vt.-Serc yields of lihite l'ine and measurcments of sample trecs-Continned.

A.-MICHIGAN-Continnavd.
(1) Site e:

Montmorency Counts.
Sample area: one-half ncre.
Noil: Bromn or rel nandy loam, light, loone, dry, with stones, and surface cover of brakea and othar vectis
rest conditions: Ibed line (59 yer cent) mixal wilh White I'ino (41 per cent); no undergrowth; level.

HADFACLEVELELD

Total yifld: Pine, 23,8:30 feot 13. M., of which White Pine 38 per cent.
iverage annual ascretion: I'ne, 51 cubic feet.
217 foet B. M.
MEASURFMHETS OF SAMPLE THEES.
DOMENAN GHOWTIL.

Tande VI.-Aere yichls of white line and measmramento of sample trecs-Continued.
A.-MICIIIGAN-Comtinurd.
(5) Site f:

Montmorenes Comnts.
soil: Brown, dry" sand, with stomes, ame surfare eoner of hrahen and rrass.

 Abont 15 per cent of troes injured by lire in 88.11.
Classification
Donsinant
 supuressel \qquad
d(ILE: YIELD.

Total yiell: Pine, 30,490 feet Ib. M. of which Whits l'ine 5 per cent.

- Iverage annual accretion: Pine, 42 cubic feet.
(6) Sive $g:$

Crawford County.
[A bont 1,200 feet above sea level.]
Soil: Brown, loamy sand, deep, fresh, morlerately loose, with surface cover of fern and grans; sand with stones underlies the suil.
Forest condutions: 'Two-story staml, upper story of White Pine (1 Ienl Pine of ghinclues in diameter), with 0.3 deasits of crown cover, lower story of Fir (22 from 4 to 10 inches in diameter), lieceln (4 from 4 to 10 inches in diameter), and Hemlock (19 from 4 to 10 ineheo in diameter); undergrowth monlerately denset of Maple, Fir, Hemlock, and beech. Dercontages: White I'ine, 50; Hewlock, 20; Hir, 45 ; liardwoods, 5 .
Classificrtion:

suppressed

White Pine.
77
13
13
10

Simplo arra: 1 arro
Agro of pibe: 1 fis tu lans year lenality of crown rover: 0 , th,

Number of treces: 115.

It of clase: $1: 10$ to 150 y wara.
imsuinang hbowty.

'Treer mumbur.	I曲0.	Hinmater (hreast hight.	Meirht.	$\begin{gathered} \text { Singy } \\ \text { nes int } \\ \text { thl } \end{gathered}$ $\text { nt } 11111 \text {. }$	Volama* of $1 r^{\prime} \boldsymbol{z}^{2}$.	F'arfor al^{\prime} slaspo.	Kation of length of crown to total luight of	Curren :10"T	Illunal ion.	$\begin{aligned} & \text { Ab"ram. } \\ & \text { shmatal } \\ & \text { anecre } \\ & \text { tion. } \end{aligned}$
	leary.	frolurs.	rect.	No.	Cu. fl.			ler cent.	('u. jit.	(u, fte.
:12	$1: 33$	15.2	9	X.3	48.59	0.43	0.43	2.2	1,117	0, 36
85	111	15.3	420	6. 3	5.0 , 38	. 413	, 42	2.3	1.27	- 39
12	13:	10. 3	88	7.5	61.80	.47	. 60	. 8	. 49	. 46
411	14.7	18.6	101	7.11	71.11	. 68	. 14	\%. 11	1.12	. 4 !
2.	1108	20. ${ }^{\text {a }}$	98	7.0	94, 56	.12	. 40	1.5	1.42	. 73
$\because 7$.	1:3	1:10	104	7.3	84.37	. 41	.	1.1	1.19	. 55
$!$	111	2\%. 5	11:	5. 1	139. 13	. 41	.46	. 7	. 91	. 98
2 ti .	11%	23.6	116	6. ${ }^{\text {¢ }}$	137.91	. 41	. 46	1.8	2. 62	. 31
31.	1:3	${ }^{2} 38.0$	100	?. 01	137.03	. 47	. 10	1.7	2.10	. 510
11...	1..1i	28.6	115	5. 2	1.14.12	. 41	. 40	1.4	2.10	1. 13
Averstar	110	13, x	102	6.9	97.5	. 43	. 43	1.6	1.44	. 69

Age clabr: 220 to 240 years.
HOMINANT GROWTH.

A.-MICTHIGAN-Contimmen.

(7) STTE 1 :

Craw ford Connty

Agerlask: 400 for 40, yearn.
HOMINANT: \&ROWTM.

- Tree number.	Sma.	$\begin{aligned} & \text { Ibimeter } \\ & \text { (breast } \\ & \text { high). } \end{aligned}$	Husight.	$\begin{aligned} & \text { linigy } \\ & \text { per iaich } \\ & \text { onn } \\ & \text { stoung. } \end{aligned}$	Volume witron.	$\begin{aligned} & \text { Fartur } \\ & \text { ol } \\ & \text { whape. } \end{aligned}$	Ratio of lengits of crown fo total heinht of tree.	$\begin{aligned} & \text { Current atmolal } \\ & \text { atrotanh. } \end{aligned}$		$\begin{aligned} & \text { Avertare } \\ & \text { annmat! } \\ & \text { accre } \\ & \text { tion. } \end{aligned}$
5.	lears. 417	Anches. 37.0	$\begin{gathered} \text { Fect. } \\ 15.5 \end{gathered}$	$\begin{aligned} & \text { Nn. } \\ & 14.0 \end{aligned}$	('u. Il. 4:3.3:	11.37	0.4.7	Per cemp 0 0	$\text { r }^{1 n .} \frac{f 1}{1.0}$	$\begin{array}{r} 1+, f t \\ 1.138 \end{array}$
1	415	3is. 5	141	10. 0	510.5	. 52	. 39	. 6	3, 019	1.15,
4.	4.5	41.0	152	11.10	5×13.7	. 41	, 51]	\because	1.17	1.98
9.	426	43.11	16i)	10, 5	677.: ${ }^{\text {a }}$. 4.	. 510	. 4	2.71	1.54
8.	460	46.0	150	(1)	604.1	-111	. 18	+3	2.08	1.51
7.	457	47.11	1100	(1)	721. 1	.37	. 4.7	. 4	2. $8: 1$	1. 5 \%
3.	4131	46.0	170	10.0	735.9	, is	. 519	. 3	2.21	1. 60
6.	435	46.11	18 A	(?)	819.16	4*	. 51	. 4	3.28	1. 88
10.	4.8	47.0	168	10. 5	85.\%. ${ }^{\text {a }}$. 4.9	. 57	. 5	4. 28	1. Nfi
Average	4410	45.0	157	11.0	670.4	. 41	. 510	. 4	2. 611	1.50

Age class: 270 to 290 years.

Soil: Prown, loany saml of medhum grain, hight, lonse, fleep, tresh, well drained, with 2 to 3 inches mold on top and surtace cover of leavos.
Forest conditions: White line (47 per cent) mixed with hardwomds (30 pere rent) and Hemlorla (ers

('lassijictrtions:
Dominant -------- White l'ine Oppresseql

White Pine.				
Nrmmlier af trees.	$\begin{gathered} \text { Diameter } \\ \text { (ireast } \\ \text { hisht. } \end{gathered}$	Meiolit.	Volnme.	
			Hole.	Mer clanitable thmber.
1	Inches. $3 \text { to } 6$	Fipt.	Cu.ft.	Feet IS. M.
\%	C1010		500	
$?$	10		160	
8	11		256	
12	12		454	
15	13		6 6i0	
16	14		200	
11	1.5	\$10	6388	
11	16		704	
13	17			
8	18		640	
5	19		4:35	
4	20		384	
3	21		309	
1	23		$1 \because 2$	
1	45		143	

Nim- her of tione trees.	Diameter (breast high).	Height.	$\begin{aligned} & \text { Num- } \\ & \text { brel of } \\ & \text { treets. } \end{aligned}$	$\begin{aligned} & \text { Diameter } \\ & \text { (breast } \\ & \text { high). } \end{aligned}$	ITeight
18 44 3 3 4	Imeles. 3106 (f) 1010 10 11	Heet.	26 8 \square	Jmbus 31006 $6 t 010$ 10	$\} \begin{aligned} & \text { Fece } \\ & 40\end{aligned}$

Namblo area: 1 arrs.
Age of pine: 95 lo 105 yerars. Thensity of crown cover: 0.6 .
Number of' trees: 364.
Suppressed

White Ibirch.


```
173 truos:
```



```
17. trmos
Total culice feet ................... 7,165
```

 Tostal fent 13. M1 4, is
 31 trems.

A wraft ammul accretimu: White l'ine, 71 cubic foct.

TAbli：VI．－Acre yiclis of While l＇ine ant mrasurcmenta of sample trees－Coutinued．
A．－MICHIVAAN－Contimmed．
MEASUREMENTS OF SAMPLE TJEFES．
HOMINANT GHDWIL．

Trie numiner．	Are．	$\begin{aligned} & \text { Diameter } \\ & \text { (hreax } \\ & \text { higin). } \end{aligned}$	Heimht．	1：inga per inch at 110 n 亿。	Volume of irev．	$\begin{aligned} & \text { F'artor } \\ & \text { oft } \\ & \text { mhape。 } \end{aligned}$	Ratio of length af crown （1）toral herght of irce．	$\begin{aligned} & \text { Curren } \\ & \text { acer } \end{aligned}$	annual 101.	Average annual accre tion．
	Iears．	Inches．	Pret．	Nir．	Cr．ft．			Per cent．	Cu．ft．	Cu．f\％
3.	100	16．5		（1）	64.5	0.44	0.45	1.7	1． 10	14． 68
7	98	11． 5	106	（1）	68.4	4：3	． 40	2.2	1． 50	． 30
6	103	17．0	104	5.3	71.7		．45	1.5	1.07	． 70
1	100	19.5	100	4.1	94.6	－． 45	（1）	1.7	1.61	9.
8	103	$1 \times .5$	109	4.8	9．5． 3	.47	． 37	2.1	2.41	． 03
Average	101	17.6	103	5.0	79.0	． 44	． 42	1.8	1.46	． 78

comominait folmoth．

：	9.	14.0	91	f． 6	49.6	0.49	0.38	2.0	0.99	0． 52
1.	101	15．3	91	5． 8	T2． 1	． 43	（1）	4.4	2.46	． 51
	111	15.5	96	（i． 10	62.8	． 49	． 57	2.6	1． 633	62
A verane	9	15.0	4	15， 1	54.8	47	44	$\underline{9} .9$	1． 69	． 55

（9）SHTEj：
Crawiord County：
Soil：Gray or light and，mellium fino grain，porous，light，looso，dry（in places fresh），with g moultrateby lealy warface cover．
Forest conditons：Open wham of mixed White l＇ine and Norway l＇ine with seattering Wbite Girch abul wrasional Oak．Ifackmatack，and Banksian l＇ine on a level phain along the banke of

MEASVIREMENTS ON SAMPLE TIEELS．
Age class： 90 to 110 years．
DOMINANT GROWTH．

Treonmmber．	Age．	Diameter （breast highli）．	Height．	$\begin{gathered} \text { limas } \\ \text { yer juch } \\ \text { on } \\ \text { stump. } \end{gathered}$	Fiolume of trene	Finctor of shape．	Ratio of lenath of crown to total lucizht of tree．	Current acer	nnual ion．	Averagra ลแทแล। aecre－ tion．
	Fears．	Inches．	Feet．	So．	C＇u．fl．			Percent．	Cu．ft．	Cu．ft．
5.	119	13.0	94.0	7.6	4．3． 7	0.52	0.51	\＄3．2	1． 46	0.42
2 l	112	14.0	96.0	7.3	50．${ }^{3}$	． 47	． 47	3.5	1.75	． 44
－	109	14.8	93.0	ti． 7	W1．4	.45	.47	2．5	1.14	.45
$1 i$	106	15.3	85.0	6.5	53， 3	.47	.37	2.5	1． 233	． 50
7	110	16.5	104.10	6.5	64． 3	.41	.30	\＃．${ }^{2}$	1.41	． 58
6	1109	17.0	101.0	6.3	67.15	－42	． 59	1.8	1． 22	． 62
$\because 0$.	112	17.0	100．0	6.1	72.4	.45	（i）	3.4	2.40	． 65
4	11：	18.3	103.0	5.8	80，\％	－ 44	$\therefore 16$	2.5	2.13	． 71
$1!1$	108	20.5	105．0	4.8	99． 1	． 41	.49	1.9	1． 88	． 01
21.	109	20.8	105.0	5.0	99.8	． 39	． 42	1.6	1． 60	.91
Average	109．6	16.7	98.6	6.3	68.9	.44	． 46	2.5	1.64	． 63

conmminast gumwtit．

1	100	13.5	94.0	7.0	41.0	C． 44	0.57	2.0	0.82	0.41
\because	06	14.4	90.0	6． 63	4N． 7	.47	（1）	4.3	2.08	． 50
IK	$8:$	16．5	94.0	4.8	65． 7	.47	． 5.3	4.0	2．6\％	80
$!$	（0）	20． 0	100．0	4.4	50． 3	． 41	.46	3.3	：3． 00	.91
	94	16． 1	91.5	5.7	61． 6	.45	.52	3.4	2． 13	． 65

Age class：150 to 160 years．
Imvinanir growtis．

TAnLs VI.-Acre yields of Hhite line aud meastremonts of sumple trees-Continued.

- MICHIGAN-Contimued.
(10) Site k :

Kobcommon Connty.
Sitmple arcis: 1 acre.

$$
\text { Halfaere lo. } 1
$$

 Hemloek, Deerob, and ilwart Maple.
Classification
Dominant
Gprressed

Hitussu

Total yicha: All apocies $=0,0$ en cubic feet, of which White Iino was 01 per cent. Average annual accretion: White Pine, s", eubic feet.

MEASULEAKNT' OF SAMLLE TREES.
Age class: 230 to 250 years.
DOMINANT GHOWTH.

Tree number.	\pm gro.	$\begin{aligned} & \text { Diameter } \\ & \text { (breast } \\ & \text { high). } \end{aligned}$	Height.	```lings wer inch on stump.```	Volume of trie.	Factor of shape.	Ratio of lencrih of crown to total height of trea.	Current accre	annual tion.	Average anumal aceretion.
	Iears.	Inches.	Feet.	Fo.	Cu.fect.			Pereme.	u.fect.	Cuefiet.
3.	234	23.2	137	10.0	169.0	0.43	0. 39	0.8	1. 35	0. 72
2	236	23.8	142	9.6	197.3	44	. 4.3	. 7	1.38	. 83
11	235	24.5	142	9.2	19!). 1	. 43	. 43	.7	1. 39	. 8.4
1	± 37	283.5	140	9.6	202.6	. 46	-340000	. 8	1. 62	. 86 i
6	237	24.5	145	9.0	205.4	. 43	.40	. 5	1. 03	. 86
17.	23.3	24.7	145	(1)	207.0	.43	.47	1.0	2.07	. 89
(1)	233	25.5	14.3	8.4	212.6	. 42	-4\%	. 5	1. Ut	. 91
16.	237	25.5	145	9.1	2:27. 3	. 44	. 44	. 9	2.04	. 56
15.	235	26.0	143	9.0	231.1	. 43	. 23	. 7	1. 62	. 98
18.	245	30.15	122	(3)	233.3.9	. 34	. 35	. 8	1. 87	. 45
9.	936	26.2	145	9.0	240.2	. 44	.42	. 3	0.72	1.61
4.	236	27.0	150	8.5	271.5	. 45	. 41	. 8	2. 17	1.15
8.	238	29.0	$141)$	7.8	281.1	. 43	. 40	. 6	1. 69	1.18
19	244	34.0	130	7.0	348.1	. 42	. 62	. 5	1.74	1. 42
12	. 233	32.0	144	7.0	349.6	.43	. 39	1.0	3.50	1. 50
20.	$\because 51$	27.0	120	9.1	206.8	.43	. 36	. 5	1. 03	. $8:$
A verago	237	26.6	144	8.7	236.4	. 43	. 41	. 7	1.64	. 69

'Tanle: VI.-Acre gields of I'hite l'ine and mastercments of sumple trex-Continned.
A.-M1CHICiN-Continned.

Halr acre No.

60 trers

\qquad

Homblowh.

Sis 1teres:
Contial rabice furt fifm

Toral yield: White Pine and Hrmhork :lont cubic foet, of which white lime 71 per cent.
I ecrayc anmual accretion: White l'ine, T0 cubic fert. 423 feet 13. M.
(11) SITE 1:

Jioscomanom County:
Samplearea: 1 acre.
 murlang eoper of leanver
 sional bereh on a gentlo slone (angle 5°); to uatererowth.

Aycolt pine: (?)
llensity of crown cover: (?)
Number of trees: 136

ACHE YIELI

T'ance VI.-A IVe yields of White l'ine and measurements of sample trees-Contiuucd.
A.-MICIIMG: N -Continned.
(12) SITE ル:

Loscommon County.
Satupho area: 4 atres
[500 to b,000 leet aloave seal level.]

$$
\text { Icre No. } 1
$$

ACIE YIBIIS.

Total michi : Pine, 10.913 exthio feet.
58,600 feet 1\%. M. of waich White Pine 50 per cent
Avcrage annual accretion: l'ine, 61 cubic foet

> Acre No.?

 Classification.

.. 62 lite line. Fiod
Oppressed .per cont.. 62
Suppressed
1(FE YIELD

White I'iac.					leil I'ine.		
1 Number of trees.	Diameter (breast his(1).	Height.	Volume.				Heigist.
			Isole.	Mer chantable timber.	Number of trees.	$\begin{gathered} \text { Hiameter } \\ \text { (hineatst } \\ \text { higha). } \end{gathered}$	
\because	/nches. (i) 1010	Fect.	Cubic fe	Feet 1\% M.		Inchis. 6 to 10	Hict.
1	11				3	111	
1	12				4	12	
4	14				12	13	
1	15				8	14	(1)
7	16				32	15	10
1	17	tor			17	16	1:0
3	18	120			18	ii	
3	19				8	1%	
1	31				4	111	
i)	?1					20	
$\stackrel{3}{3}$	"198						
1	25						
						,	
- \%istrees: 1113 trees							
					Total colnce feret		

Total iriche : l'sue, 11.246 cubic ruect.
of which White line 3 ver ecut.
4 veraye annwal accretion: 1 'iue. 95 culnic feet

lere Nu. S.

ACRE, Yibirn

Number of thers.	Diameter (brcast lifith).	White Jime.			Number of trens.	Seal lines.	Height.
		Height.	Volume.				
			Bule.	Mer. chantable		$\begin{gathered} \text { Hameter } \\ \text { (hryist } \\ \text { high). } \end{gathered}$	
1	$\begin{aligned} & \text { Muchog } \\ & \text { of to } 10 \\ & 1: \end{aligned}$	Fict.	Cubicfent 10	Feet 15. Mr.	5	$\begin{gathered} \text { Muches. } \\ \text { Gtole } \\ 10 \end{gathered}$	Fect.
	14		110		1	11	
1	19		96		${ }^{6}$	12	
1	\bigcirc	1:0	10.5		3	13	
?	通		369 318		12	14	100
1	\%		169		15	16	19
					2	17	1:0
					13	16	
					4	35	
					\because	21	
					"	23	
					1	23	

12 traes:		10.3 treen:
'lotal cuhic feet	1. 2 ± 1	Tortal culvie fret- 8, 170
'lotal fort 13. M	5,120	'Total fort 1\% M. 34,300

Iverayc amual accretion: Linto 52 cubic feet.
219 fect 15 . 1 l .
Acre los.

Noil: Lisht-lorown, fresh, lonse nand, medinm dino, deep, well deaned, with a monderately leafy

Arequf pine: 16010:00 yebrs. Afoon pino: 16010 goo yebrs

- CLE 5 IELD.

I veraye anmmal acerction: l'ine bie rubic lant
'TABEE VI.-Acre yields of W'hite l'ine and measurements of sample trees-Continuod.

A.-MICHIGAN-Contimed.

MLASUKKMHNTSOH' SAMPL, THEFE
A ge class: 160 to 180 yerars.
InMMNANT GHtowTH.

CUDOMINANT GBOWTH.

OPPRESSED GROWTH

$36 \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	165	18	103	8.7	87.9	0.47	0.46	1.2	1.05	0.53

Age class: Over 200 years.
DOMINANT GROWTH.

OPPRESSED GHOWTH.

13.	206	22	119	9.7	144.4	0.46	0.38	0.6	0.87	0.70

[^6]＇l＇Ause VI．－Icre yiulds of H＇hite l＇ine and measurcments of sample trees－Continued．

（13）Sitren：
 top，and athriace cover ol ahnathat hodves．

 Clasnification．
llominant．
Dproswed

ACLE YLEL」1）．

Average annualaccretion：Whitu I＇ins，te cubie frest oun foot B．M1

18.-VVISCGNLIN:

(1) Nite $a_{\text {: }}$

Wambinta Connty

[1,200 fiect alsose anat luvel.]
I cre te. 1.

 handwomle, 44 precent.

Number uf trees: 76.
Chersimeation:
White line.

WCLE YIELD.

Number of treses.	$\begin{gathered} \text { Diameter } \\ \text { (hriast } \\ \text { high). } \end{gathered}$	Whito I'in				Maple.			
		Ilejght.	Volume.		Number of trues.	Diametor (breast himbly.	Heirsbt.		
			IBole.	Mer. chantable timber.					
-	Inches. 11	Feet.	Oubicfeet.	Wece B. 14.	1	Inches. 3 ta 6	Feet.		
3	14	-	64 10.5		18	6 to 10	60		
1	16	$\begin{gathered} 80 \\ \text { to } \\ 1 \geq 0 \end{gathered}$	71		- \quad 10told, 80				
1			7988						
1					$=$	-			
1	19		30		Elin.		.		
1			105						
1	96		114420			-			
3		12010135							
3	24		480		9	6 to 10	60		
2	$\square 6$		384						
\because			621		Yellow kirch.				
1	28		${ }^{224}$						
4	39		207						
1	31		1,040 280						
3	32		891		4	10 told			
4	33		1,260		4	10 tol 14 to 18	80		
$\stackrel{3}{1}$	34		694 367			14 to 18			
1			329						
43 trees:					33 trees:				

Average annual acerction: Whito Pine, 38 cubic feet.

'「Abse: VI.-Icre yidho of White l'ine and measurementa of sample trees-Contimerl.

13.-W1N(ON-IN-Continued.
lere No. \sim

Classificafion: Cassificatum:

5	Inches. 3 to	Feet. 40
	Ela.	
1	3106	41)
Hornbeam.		
5	336	40
1	61010	64

69 trees:

Total cubic feet \qquad
'lotal fert Is. $\mathbf{3 I}$ 95.040

6:3 trees.

Arerage annual accretion: Whito Pine, 75 cubic fect.

MEASUREMFNTS OF SAMPLE TREEN.

Tree mumber.	Aц̇e.	Diameter (Jrenat high).	Height.	Folume of tree.	Factur of 8haje.	Latio of length of crown to total height of tree.	Average gllinual accretion.
1.	Irars. 204	Inches. 24.7	Feet. 102. 11	Cu. 1ℓ. 166	0.40	0.45	$\begin{gathered} C u . f l \\ 0.81 \end{gathered}$
2	221	27.0	113.0	183	. 41	. 37	. 82
3	213	2%	121.5	191	.40	. 53	. 90
4.	214	-2f) 1	126.0	201	.4\%	. 52	. 94
5	216	26.N	125.0	210	. 42	. 46	. 97
f	20%	21.0	134.0	187	. 44	- 40	, 9:3
$\overline{7}$	204	29.0	lise 0	2:s	. 34	.39	1.17
8	215	-0.0	$13 \% .0$	$2: 11$. 11	.12	1.14
9	$21:$	30.0	13:\%-\%	291	. 14	. 47	1.37
Averase	211	85,0	124.0	413	.42	. 44	1.01

Table VI.-Acre yields of H'hite l'ine and meusuremonfs of sample trees-Continuent.

13.-NISCONNIN-Contiuned.

(2) SITE c :

Washburn (:ount
[1,400 feet above sea level.]
Acre No. I.
Soil: Light-colored clay, underlaid by sand at a depthof abont 2 foct; frosh, moist in hollem: wath 3 inches mold on top and surface cover of leaves
Forest coudhtions Two story stand of typical open pine growib, upoer story of whitu bima (2x per cent), lower story of bardmonts (74 per renif), manly liock Naple, seatterine
 ately dense, of young hardwoots.

Average anmual aceretion: White IBene 26 cubic feet 155 feet 13. MI.

Acre No. 2.

Soil: Light-colored clay, underlaid by sand at a depth of about 2 feet; fresh, moist in hollow, Age of pine: 200 to 220 (few 160) with 3 inches mold on top and surface cover of leares.
Foret conditions: Twostory stand of White Pine (4t per cent) mixed with hardwools (an per Deveity of crown cover: (!) cent), upper story of pine, the lower story of harilwouds (Fock Maple intermixed with Yellow lirch and dcattering Hornbeam and Elin) and occasional Fir (3 per cent) ; no undergrowtli.
Classification:

() p1 гressed.

AURE VIELI).

A verage afınual accretion: White Fine, 58 cabic feet.

Taber: VI.- teve yidle of While rine and meanarements of sample trces-Continned.
tere No. 3.

ACLE: Y'IELL).

Aterage annual accretion: Whifo Pine, 58 cubic feet.

MEASUREMENTS OF' SAMPLE TREES
Age class: 100 to 150 years.

Tree number.	Age.	Diameter (breast himh).	Meight.	Volume of trce.	$\begin{aligned} & \text { Factor } \\ & \text { of } \\ & \text { shapo. } \end{aligned}$	Ratio of length of crown to total beight of tree.	$\begin{aligned} & \text { A verage } \\ & \text { ammual } \\ & \text { accro. } \\ & \text { tion. } \end{aligned}$
46.	Inars. 107	Thehes. 18.5	Hect. 86.0	Cur. ft.	0.39	0.44	Ou. ft 0.59
47.	104	18.0 18.0	80.0	70	. 49	0.47 .63	. 69
48.	102	18.7	86.5	74	.45	. 01	.73
49	120	19,3	(10, 0	81	. 46	. 55	. 68
513.	101	14.0	75.13	41	.52	. 40	. 41
Average	107	17.7	$8: 3.5$	66	.46	. 59	. 61
45.		12.8	77.5	34	. 49	.30	. 34
26	102	13.2	73.5	36	. 51	. 48	.35
27.	100	14.0	75. 4	46	. 57	. 37	. 46
Ix.	10:	15.7	79, ${ }^{1}$	56	. 52	. 58	. 59
29.	10.3	22. ${ }^{2}$	83, 0	97	. 43	. 49	.94
311.	112	18.8	86.0	81	- 49	. 50	- 70
: 11.	118	17.0	86.5	69	. 50	. 41	. 59
32.	10.5	5.6	41.5	4	. 56	. 504	. 38
Avarate	105.	15.0	75.0	53	. 51	. 46	. 54
1.	104	15.3	01.0	54	.45		. 50
2.	104	15.5	96, 0	63	. 50	. 51	. 61
:3..	101	16.5	98.0	65	.44	. 41	. 64
4.		19,5	100.0	15	. 45		. 90
5	100	14.0	94.0	50	. 50	. 38	. 50
6.	105	17.0	108.0	72	. 44	. 45	-69
7.	10\%	16,5	106, 0	68	. 413	. 41	.67
8.	105	18.5	109.0	00	. 47	. 38	.91
Avarage	10.3	16.6	100. 0	70	.46	. 42	68
1.		24.0	105.0	118	, 36	. 31	. 86
2	14:	27.8	108.0	201	. 41	. 43	1.42
Average	1:3! 5	20, 4	104i. 5	159	. 40	. 37	1.14

Table VI．－Acre yields of White Pine and measurcments of sample trees－Continned
13．－WISCONSIN－Contiancel．
MEASURFMENTS OF SAMPLF THEES－Continucd．
Age class： 150 to 200 yけatra．

	出出出志出			©		
気				茄		5
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	ocairo $=$	oooceocurocio	 －ジくに	$\begin{array}{ll} \boxed{6} & 10 \\ 0 & 0 \end{array}$		
$\stackrel{\circ}{\circ}$		000000000000	000＝0	$\begin{array}{ccc} \stackrel{\rightharpoonup}{0} & \Xi \\ 0 & = \\ 0 & \end{array}$	ocoersosurionoonvirovoeour	
令			cisw	式㦴		a a 3 3
ts	出出山容㟧		－\sim_{-1}	$\stackrel{\text { ¢ }}{\sim}$		
出			cisersicis	$\pm \frac{\square}{6}$		
$\stackrel{-}{-}$	菏灾灾			icc	为的	

Tann: VI.-Acre yields of $\mathrm{W}^{\circ} h i l e$ Pine and measurements of ample trees-Continned.
13.-W゙IGCON:IN-Comtinumd.
(3) Sitfer:
Jisrron County.
Sample area: 3 acrea.
derp So. 1.
Noil: Clarer loam mixed with annd and amones, leat corer underlajl hy 2 tos incher mold; anbsoil, clay in ulaces and in of hars mand

 but nore often open, gransy wwangs, with A later and Hackinatack, frimged by pine.
Classificution:
 Supprased A(CRF YIHLA).

108 1rees:

Total entic fert
\qquad
12, 230
Totrl feet IB. M
Totrl feet IB. M 58, 990

Age of juine: 160 to 200 (fow
yo to 100 y yeara
Dersisty of crowal cover: (1)
Number of irces: 166 .

[^7]Table: VI.- Icre yiflds of Hhile l'ine and measurements of simple trees-Continurd
13.-WISCONSIN-Contimed.

> Acre In.
 clay in plates and in others sand
Foregt conditions : Rulgay covered with White line (49 per cent) intermixal with hardwothls

Inemwity of erowncover: (?

Simblier of trene: 110
assticationt Wrlatue Ine

ACIE Y1FLD

54 trees:
'Lotal cubic feet 9,200 I 56 trees. 'lotal feet B. M .-... 41, 160

Average annual accretion: White Fine, 48 cubic feet.

Thats: VI.- Icre gichds of While l'ine and measurements of ample trexs-Continned.

 - diby in paces and in others mand.

('absificafion

(01: Y! 1 LL .

Avprage anumal acerefion: Whito I'ine, Go culvic feet

Age clase: 160 tu 180 years.

18.	168	30.0	121.5	2046	0, 3.)	0.4!	1. 28
$1!9$.	16.7	28.4	120.0	22.4	. 41	. 0.0	1.86
20.	173	2R. 4	127.0	257	. 46	. 35	1. 49
11.	163	17.8	911.5	72	. 46	. 34	. 41
43	162	23.0	101.0	1:30	. 46	, 51	. 80
23	174	38.0	1115.5	167	.36	. 54	.96
$\because 4$.] 616	85.4	144.0	166	. 45	.5\%	1. 00
	167	20.0	110.0	174	. 42	.47	1.14

＇T＇sus．VI．－Acre yields of White lime ami mensurementa of sample trees－Continued．
13．－WINCONSIN゙ーContinumd．
（b）StTEf：
Washburn County．
 dant leaty burlace cover．
forest condifions：An open ataml of harilwoond（Jinck Maplo，Vellow Birch，amb ncattoring bass－ semel，whth Hembork，and oreasional bied lak．Whate Jirch，and Joplary，an which White I＇ine is suattered an varying propurtions，ols lorok ont daml．with frequent wwamps in tho holluwa；

Stre clases： 81010 100 years．

＇reeonumber．	Age．	Hiatneter （hremat high）．	Height．	```Kings per juclı Ol stump.```	Foltame of tree．	$\begin{aligned} & \text { Fiactor } \\ & \text { of } \\ & \text { shape. } \end{aligned}$	ILation of length of crown to Iotal height of＂ tree．	Current ascr	numual tion．	Average sumual sucre－ thon．
	Teary．	Inchers．	Fiet．	Vo．	Cubicfert．			lercent．	Cubicfeet	Gubicfert．
¢ 1.	51	5.5	37		3.2	（0，5：	0.57			Tubicfert． ．（ti）
53.	（i）：	6.0	40		4.3	． 53	， 510			.07
63.	4，8	6． N	46		5.5	． 48	． 73			． 118
54.	40	6.8	38		4.8	． 30	，4t			． 115
Averag＊	cos 5	t． 3	411		4.4	.51	． 56			（t）

GPPRESEE GROWTH．

26	82	11.3	101	6． 6	30.0	0．43	0.40	3.1	0.93	0.36
3：	81	11.8	77	6.2	30.5	． 50	． 37	4.0	1.22	． 37
29	RII	11.9	81	5.7	32.8	． 51	． 33	4.6	1.51	－41
$\because 1$.	92	14.5	79	5.6	39.7	． 43	． 54	3.6	1.43	． 43
A verage	84	12.1	84.5	6． 11	33.3	.46	.41	3.8	1.87	39

SUPPRESSED GBOWTH．

$18 \ldots \ldots \ldots \ldots \ldots$	127	14	$-\ldots 3$	6.5	39.7	0.50	0.31	4.3	1.71

Age class： 120 10 130 years．
gomisant fikow＇il．

Aye class：2ut 10230 years．

TABte Vh.-Aere yields of thile l'ine and motsurements of sumple trees-Continmed

I3.-WIS(O)NかIN-Cunlinmed.
(5) Sites 9 :
 of leaves.

 scanty, of young hardwonds, whencil and wher.

Washburn Comaty.

Whar Pine

suppressed

ACIEE YLELD.

Number of trees.		hite Pin		- -	Number of trees.	İod Pimo.		Maple.					
	Diameter (ureast high).	Height.	Volume.			Itameter			Diameter ${ }^{\text {' }}$				
			Siule.	Mer chantable timher.		(breast high).	Hejrint.	Number	(breast Liglt.	Height.			
	Inches.	Fect.	Cubicfet.	Fect B. Mr		Inches.	Fept.	9	Inches. 3 to 6	Fect. 40			
3	6 to $\begin{aligned} & 10 \\ & 11\end{aligned}$		30 84		9	16		16	6 to 10	60			
3 1	112		34		1	17		3	10 tol4	80			
3	13	80 10	117 180		$\stackrel{1}{1}$	18	80 t.0						
4	14	100	180 260		3	30	120		Birch.				
2	16		116		1	24 25							
5	17		325		1								
2	18		176					2	3106	40			
5	19		480					3	61010	60			
5	20		912					1	14	80			
8	21		492					1	16	1			
3	23		402					-	-				
3 5	24	100	438						Fir.				
5	25	100	1, 01.4										
6 2	27		1,364					- -	-				
3	29		627					16	3 to 6	40			
1	31		237					2	6 to 10	60			
1	32		251										
1	33		($\begin{aligned} & 267 \\ & 566\end{aligned}$										
Total feet B. M 41, 400								53 trees					

Average annual accretion: I'int, 51 cubic feet.

MEASUREMENTS OF SAMILE THEES.
Age cluss : 220 to 230 years.

- -							
	180	93.5	104. 5	127	0.40	0. 40	0. 79
3 -	170	24.11	119.0	17	. 46	. 41	1.01
4.	170 178	24.8	114.0	176	. 48	. 38	. 49
6.	170	25.1	111.5	181	. 45	. 11	1.17
7.	17.5	27.3	129.6	$\because 17$.43	. 46	1. 24
8.-................	168	30.5	114.0	456	. 44	.12	1.52
15.	185	23.2	110.5	138	. 42	. 34	. 71
9.	173	36.0	113.0	190	.46	. 28	1.111
Avoragu...	172	25.5	113.0	182	. 44	. 31	1. 06

I'anse VI.- lere yiedds of H'hite l'ine and measuremenis of sample trecs-Continued.

(f) Site if:
1.incouln Cousty。

Aye clase: 100 (0) 150 yomrs.

'Tree mumber.	$\begin{aligned} & \text { Diameter } \\ & \text { (lorestst } \\ & \text { hingli). } \end{aligned}$	Height.	Vilume of tren.		'Lree mumber.	1)iamoter (breist himit).	Meirnt.	Volume of tree.	$\begin{aligned} & \text { Factor } \\ & \text { of } \\ & \text { mhape. } \end{aligned}$
6is.	Inches. 21.0 20.5	Feef. 97	Cu.fi. 108. 1 105.8	0.18 .48		$\begin{gathered} \text { Iuches. } \\ 36.5 \end{gathered}$	ficet. 114	$\begin{gathered} \text { Cu. It. } \\ 308.5 \end{gathered}$. 38
mi.	36.5	101	276.2	.37	Averayu	28.6	103	109.6	. 43

- Ife clase: 200 fore 50 years.

Age chars: 300 to 350 yearm.

Tables VI.-Acre yiclds of thite line aud measurements of semple trces-Contimucd.

(:-I'RNNAVLVANIA:

(1) Site d :

Clinton Connty
simpletariat: abras
[2,000 fret alsove sea luvel.]

 slopes.
black birch and Jublow Birch and oceasjonal (Oak, Chasinut, and Maplo, on atwep alopers
 Birch and hardwoods above named nose top of stopo.

YIELI FOLE TILE TWO ACHES.

Average annual accretion: All spocies, 49 cubic fent
264 feet 13. B.

MEASULEMLNTS Ol' NAMPIE TRLES.
Aye cless: 180 to 200 years.

Aye class: 230 to :50 years.
BOMINANX GROWZH.

Tabus: VI.- fore yirlds of White l'ine and measurements of sample trees-Continmed.

IEASUHEMENTS OF NAMHLL THFES-Cuntnhumi.

Afe cland: wisu to :my guarn.
cummivant abumtut.

(D) SITEf:

Clearfiell Count
[1,200 tu 1,500 feet above sea level.]
Noil: Lellow clayey loam of mediun grain (fine slates in it), deep, fresh, well drained, with : in 3 joches moin on top, and murface cover of acanty leaves, Fern, 'reaberrices, aml scattering Dogwoud (Laurel northeast corner and north side); subosoil, laminated shale of indefnile
Forest conditions: Hewlock (62 per cent) mixel witl, White Pine (28 per cent), with ocanional hardwonls (to per cemb). Maple, Beerh, and Birch, on hill sloping toward southwest, bordered by left-hand branch of Narrow Creek; umiergrowth, moderatcly dense, of very young Beech, Hemlock, and occasional Birch and Cucumber.

ACHE YIELD.

Niumber of trees.	White Pine.				Hemlock.			Maple.		
			Volu	ume.						
	Diameter (breast high).	Height.	Ibole.	Mer- chantable timber.	Number of treus.	Dianucter (breast high).	Height.	Numier of trees.	Diameter (breast high).	Height.
	Inches.	Feel.	Cubicfeet.	Feet IS.M.		Inches.	Fret.		Inches.	Feel.
,	15	120) 360	1,360	17	6 tol 10		8	6 to 10	40 to 60
1	19	130			4	15			$=$	- -
1	80	130	1,370	6,420	1	16			Reech.	
4	21	130			8	17			Beach.	
2	910	130			6	18				
3	23	130) 500	3,000	6	14	80			
1	24	130		3,000	*	20	to	1	101014	50
3	25	133	651	3,690	5	- 21	100		14 to 18	
1	26	135	257	1,390	8	22				
\because	9	135	,		3	23				
1	28	135	1 1,140	6,600	3	25			Birch.	
1	29	13.7			1	26 :			Birch.	
12	30	145	610	3,900	1	27				
t	31	115	1.2:0	7, 800	1	28				
1	32	145	390	2, 34010	1	39		1	6 10	
2	34	145	800	4,800	1	30		2	10 to 14	40
1	40	145	511	3,300						
1	11	14.5	511	3,300						
1	45	145	638	4.400						
37 treen:					9.itrues:					
					Motal cubic trat . 15,006					
					1otal fect 13. M 90.103

Average unnual accretion: All qpecies, 6.3 rubic feret, 60 feet 13. M

comominant arowth

28.	262	28.5	138	75	9.8	264.3	1,5.51	0. 43	0.45	49
$\because 5$	244	28.5	138	107	7.7	295.1	1,954	. 49	.2"	54
24.	245	25.0	1:30	84	9.3	192.1	1,102	. 43	. 35	48
2	246	31.11	130	83	7. 3	310.3	1,731	. 45	. 37	46
5.	264	29.0	140	100	8.4	300.4	1,905	. 47	. 28	52
4	264	29.0	140	110	8.5	291.4	1.631	.45	21	47
7.	264	29.0	152	112	9.5	303.8	1, y, id	. 46	. 26	31
8.	$\because 35$	29.4	143	86		$2+8.0$	J, 318	. 38	. 31	41
19	$\underline{26}$	32.0	14*	84		287.7	1,64.	. 36	. 41	48
11	344	30. 11	141	81	7.5	30.5	1,947	. 44	4. ${ }^{2}$	53
13.	258	23.10	147	93	9.6	906, 11	1,04:	. 48	. 37	$4 *$
11.	242	25.0	134	$9{ }^{\circ}$		217.1	1,233	. 46	. 30	47
15.	262	26.4	136	98		257.2	1,389	. 51	. 28	45
1 i.	235	24.5	121	93		1173	815	.10	\cdots	41
17.	262	25.0	128	108		214.4	1.183	. 49	. 16i	46
$\because 6$	245	± 6.9	136	08	9.3	199.9	1. 021	. 40	. 28	47
30.	$\because 59$	26.5	134	(6)	9.2	928. 1	1,336	. 44	. 32	48
± 9.	264	28.0	141	84	9.2	$\because 6.5$	1.577	. 46	. 40	47
31.	262	3.5	132	88	10.0	191.8	863	. 41	. 33	37
3	261	2150	142	99	9.1	3.89 .9	1,3:2	. 46	. 30	46
Average...	253	27	138	93	9.0	$\because 250.0$	1,421	.44	. 32	47

"MPRESMEI GROW'III.

20233 - No. $22-10$
'T'sus. V. I- icre yiclds of White l'ine and measurements of sample frees-Continued.

(3) Nite: C :

Cleartiehl Connty
Simples are:t: 1 acre.
[1.200 to 1.5 the feel almove seab level.]

(4) Site i:

Jellerson County.
[1.ju0 to 1,800 fent aboves nea level.]

 nite depth.
Foresi confitions: Hardwoots (Tl jur ceat)-mainly buech W'hite Oak, and Miple-mixed with
 ately dense, of very young becell and some Maple.

Sample areas: 1 acto.
(u) jum 2in

Deusity of crown cover: $0 . \overline{7}$; in places 0.8 .

Number of trees: 155^{2}.

ACHR: リ1LLD.

[^8]TAnLs: VI.-Acre yiedds of Hhile Pine and masurements of somple trees-Continued.

C.OPNNSIAKANIA-Continum.

MEASULEMENTS OF SAMHAE THEFS.
Lesmisis. tikowth.

MPPRESEED GBOWTIL.

8	$\begin{array}{r}235 \\ 23 \\ \hline 23\end{array}$	23.0 34.5	$\begin{aligned} & 123 \\ & 120 \end{aligned}$	80 98	9.3 8.7	152.3 174.9	$\begin{aligned} & 650 \\ & 820 \end{aligned}$	0. 43	0. 29	$\begin{aligned} & 35 \\ & 30 \end{aligned}$
Average.	236	23.5	124	89	9.0	163. 0	738	. 42	. 24	35

sUPPRESSEI ARKUWT11.

	19 17	102	50 80	(?)	9.3 .3 70.2	$\begin{array}{r} 386 \\ 236 \end{array}$	$\begin{array}{r} 0.44 \\ .44 \end{array}$	$\begin{array}{r} 0.51 \\ .19 \end{array}$	$\begin{aligned} & 35 \\ & 20 \end{aligned}$
- veramge...	18	100	65		80.0	311	. 44	. 35	31

(5) SHEEK:

Jefterson County.
[1,500 to 1,600 fect abovo sea level.]
Soil: Reddish-brown clayey loan, deep, fresh, aod drained by W"julfall Lams.
Forest conditions: Whitu linu, with IIemlock and occasional hardwouls: Hemlock comparatively small, actiog as an undervood, riviner anple shate to the stems of the White J'ino.

MEASUREMENTS OF SAMPLE TREE゙S.

Tree number.	Ane.	Dianneter (breast hight.	Height.	Height to base of crown.		V olu	ume.		\|	Inmber
					```liugs por iuch OL stump.```	Trec.	Mer.   chatatabe   timatrer.	$\begin{aligned} & \text { l:ulur } \\ & \text { ol } \\ & \text { shape. } \end{aligned}$	Ration of lencrill of crown to total beight of tree.	under   prescat practice   (per cent usced ot total volume of stent).
11	Yeurs	Inches. 32.5	Fect. $146$	Fect.	Ho. 6.3	Cubic feet 398.0	vect $\boldsymbol{H}$	0.47	0.34	413
12.	$2+1$	35.0	176	90	7.3	$4!9+$	3,003	.42	. 49	50
13	208	$3 \cdot 5$	143	16	6.8	3390.7	2.053	. 41	. 32	48
14	:16	32.5	158	96	8.2	Sx6. 3	9,244	- 42	. 40	45
15	2\%	31.0	148	96	6. 2	38.	2, 236	. 41	. 35	41
16.	$2+1$	30.0	143	19	8.0	132.…	1, 835	. 46	. 33	47
17.	23	31.0	145	90	6.5	did. 1	$\because .464$	. 42	. 38	$6 i$
18.	$2 \times 7$	-29.5	143	88	6.6	255.8	1,391	. 38	. 38	45
11.	342	32.0	153	100	7. ${ }^{\text {a }}$	33.5 .5	1. 985	. 39	. 34	46
$\because 0$	936	35.0	158	112	6.3	485. 3	2,745	. 46	. 29	48
21	241	34.5	152	10	6. ${ }^{2}$	39t\% 8	$\because 313$	. 4.5	. 41	49
22.	$\because 6$	:52. 5	158	$9{ }^{2}$	5.8	387.3	9.843	42	. 11	48
Average	338	33.5	153	9.7	6.7	$37 \times 11$	1 シ, 231	. 43	.37	49

## YIELD OF SECOND-GROWTH WHITE PINE, WITH MEASUREMENTS OF YOUNG PINE TAKEN FOR ANALYSIS.

The yield of secomd growth White line on selected sample areas in the States mamed is shown in the following notes and tabmations, which alsogive, for ilhstration, the number of trees, volume, and arerage ammal aceretion ol pine, the soll, forest conditions, acre yields, and measurements of sample young pines taken for analysis:



Luzran County
Simple atreat: 1 atre.
[1, f(10) t1, 1, 5u0 feet above seat level.]

$$
\text { Halfaere to. } 1 .
$$


 fite cover of aboundat feavess ame seanty forn.
 Whate Ibireh, Whfe aml Jod oak, and orasional Blatk Cherry, in an valley sloning towand suntlwest amd burkered on ath sides ly lolls over 300 teet above station; undergrowth moder. ately deysc, of youngr ITembock, lbeceh, Maple, Bireh.s

Number of tregs: 216.


Nirmilor of trees.	White Pins.			
	$\begin{gathered} \text { Diamethr } \\ \text { (lireinat } \\ \text { lights. } \end{gathered}$	Ilejght.	Volıme.	
			\|-	Nur chatiotalbe tiouluar.
2	, Inches,	Fiect. ( 81	Cubicfert 11	Fect 13. 11.
2	7	511)	12	
2	81	30	19	
111	1 ! 1	511	115	
1	110 !	50	60	
ti	11 1	(ii)	126	
b	12	(ii)	150	
*	1:3	(it)	20x	
$\star$	14	(ii)	$\because 60$	
4	15	(1)	171	
1	16	81	151	
8	17	80	4.215	
2	14	(1)	135	
4	19 \|	(1)		
i	?	n)		
4	?	80	750	
$:$	3	80		
S0) (reros :				
Tontal cubix fant . . . . . . . . . . . . . . . . .				
'lotal firnt 13. M... ................. 11, 1166				

Aterage annual accretion: Whote lime, 41 chbie fect.



Half nere No.




 lock, lieech, Maple, amd a fow yotug Suruce'

```
J^naily bf crown rosi-r: 0.J to
```

    HOR
    HALF-ACRE YIELI).


14	Inches. $3106$	Wect. 41	('ubic fert.
2	0	. 50	11
4	7	50	24
12	8	511	114
10	4	54	115
14	10	50	210
10	11	(i)	213
¢	12	(i)	2111
12	13	(it)	312
16	14	(i)	4, 10
4	15	80	176
4	16	$\times 0$	184
14	17	818	798
8	19	8il	550
$t$	31	$\times 11$	
6	21	810	
4	22	*	1,650
4	24	80	
2	25	811	
154 trees:			

Averane annmal arcretion: White Pine, 72 cubic feet.

MEASUREMFNTS OF NAMPLE YOUNG PINE TLEES.
Forest conditions: ILidge land densely coverel with young hardwoots-mainly White Oak and Lied Oah, among which White Ping is scattercd.

a Oppressed for the last forty years.

1 Intermixed species: Maple, 36 ; 11 embork. 10 ; leenh, 18 ; suruce, 8
Iradergrowth: Young Liembek, wou; Leech, t6; Maple, 24.

T'A $n:$ VII.-Icre yields of sccond-growth IVhile I'inc, with measurments of youn! pine taken for analysis-Continned.

## 

 of ubuhtant loaver.
Forme rondifions: Itarilwoomb-mainly Browh Gok, Maphe, Choment, and birch-mixad with W'hite l'ino, "itets l'im", Hemberk, ami oceasonal spruce,

MRASUREMENTA OF SAMPhE VOUNG PINE TLEES.
vemasant abowni.

Tren number.	Ag\%	biameter (breas hight.	Jfeight.	Ileight to baso of crown.	Rings buer inch (11) к九иแр.	Volume.		$\begin{aligned} & \text { Factor } \\ & \text { of } \\ & \text { shat!o. } \end{aligned}$	Ratio of   lsongth of crown to tola] Jevight of tren.	Iollmber neohlact muder prosent practien (phreont nsurl of total volther of alemil.
						Tree.	Merchantable			
1.	$\begin{gathered} \text { Tears. } \\ 163 \end{gathered}$	Inches. 29	$\underset{116}{ }$	Ficet. 50	Wno $5.0$	Cubricfeet. 191. 4	$\begin{gathered} \text { Fect } \% .1 \% \\ 917 \end{gathered}$	0.36	0.57	41
1	98	25.0	84	32	3.5	121.2	530	. 42	62	36
	\%	20.0	73	32	4.3	76.1	360	. 48	. 54	40
,	92	31.1	97	32	2.5	210.0	976	. 41	. 617	40
4.	97	19.5	76	26	4.3	67.0	363	. 42	6t	45
A verage.	90	21.0	82	30	3.5	118.0	557	. 43	-6,3	40

Noil: F'reah bambi, well drained.
 ing haviwools.

'Irea sumber.	Ago.	Diameter (breast higlı.	Trimht.	IIcight to hase of crown.	$\begin{aligned} & \text { limgs } \\ & \text { pre inch } \\ & \text { on } \\ & \text { athap. } \end{aligned}$	$\qquad$   'Tree	Ime.   Mer. chantable fimber.	Factor of shapr.	liat io of length of crown to total height of tren.	Lnthber product under present practics (perembt hacd ot total voluthe of $\mathrm{A}(\mathrm{em})$.
	Irars.	Inchics. 14.5	Feet.	Fect.	$\cdots$	Cubic fert	Fict Hi, M.			
1.			54 58	${ }_{20}^{18}$	4.0	28.7 31.4	110	0. 46	0.6f	31
3.	59	8.5	50	20	4.8	9.5	43	. 48	, 60	36
4.	47	8.0	46	18	5,0	7.3	32	. 45	. 61	37
5.	52	11.0	510	90	3.7	14.2	5.1	. 43	. 60	31
6.	49	11.5	46	18	3.6	15.7	59	.47	, 61	31
7.	59	9. 5	53	18	4.0	12. 3	48	- 46	. 66	33
8.	5.4	8.0	54	18	5.7	10.1	34	. 53	. 66	37
9.	54	10.0	56	18	4.3	18.7	59	.48	. 68	33
Average	53	10.5	52	19	4.2	16,0	65	. 47	. 04	333

Clinton County.
[1,500 ta 1,600 feet abose sca level.]
Noil: Loamy sadd with rocks on face of slope, the brown-yellowish coarse menin fall of shates surfaco cover of 2 to 3 inches mold and abundant leaves.
 pino (14) and creasional Chosimut Gak (G) Jack jine (3) and Norway Wing (2) ou it stcen hill
 as above.

Age of pinc: 120 to 130 years bensity of crown cover: 0.2 (seattered).

Numbur af troes: 25.

Ninmber of irres.	Diameter (breast higul.		Volume.	
		Ifoiglit.	Bunle.	Mer.   chantablo timbor.
1	Juchrs. 10	Pres. TII	Cubicfoct 19	Hect JK.M.
1	15	76	46	161
1	19	H	66	370
3	21	- 5	270	1,245
1	22	87	99	438
3	34	85	345	1,449
3	25	85	372	2.004
1	29	8.5	151	760

If trues:


Ipreage annual acerction: W'hute I'ime, 11 cubliv fiemo.



## 

MEASUEEMENTS OF SAMPLE YOUNG IPNE TLEESS.

Soil: Follow charey loam, medium grain, deep, frosh, well drained (three small streams cross tho d de of jithe: 25 tos 35 gears.
hollow in different dircetions), with to 3 inches mold on top, surface cover of lenten, Irrs, Gromml Pine Wintergeen, Elderberry, Blacklversy, and Dogwood; subsoil laminated shate Donsity of crown cowar: us of imblofinite depth.

Density of crown covar: 0.5 (1) 0.6 .

Fortst conditions; Young Whito line intermixed with young hardwools in hollow extemding north
and sonth, asmb hounded on the went by hill over 2 feet abose station: andergrowth denne ot and sonth, ant hounded on the went by hatl ant varions Ifardwods, mainly Black Birch, Maple, and Beech, and few White Birch and Jlemlock.

ACRE YIFLI


Average anuzal accretion: Whito I'ine, $3 s$ cubiu fert.
 1 Intrmixel spers: 1 Tulip, 1 's small; Ironwoml, 2 satall; Chestnut, 2 small; 'WiHow, 10 small; Hemlock, 50 simall.



mmmiNANT aHowTH．


ACHE どHんL

Number of itces．	$\begin{aligned} & \text { Diamoter } \\ & \text { (bryast } \\ & \text { high). } \end{aligned}$	Height．	Volnme．	
			Butes．	Mer． chantable timher．
144 41	Inches．   3 alm   nuder   4	$\begin{array}{r} \text { Fert. } \\ 20 \text { to } 10 \end{array}$	Cubie fer	Feet 13． 12.
44	5	46	） 5	
34	6	46	572	
23	7	46	）	
21	8	34		
28	9	54	835	
21	10	54	）	
12	11	58		
4	12	58	\} 306	
1	13	58	）	
1	14	61	） 56	
1	1.5	61	56	1

3 s 3 treas
Total cubic fert．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．1，826
 A.-DENNSVIACNIA-Comtimath.

MEASLIEEMENTS OU' \&AMIJ, YOIVG DINE THLEK,


CODOMLNANT GHOWTH.

12.	43	9.5	50.0	28	4.1	13.9	0.50	0.50
14.	43	10.0	52.5	30	4. 2	13.9	. 18	. 43
-4.	46	10.0	53.0	28	3.9	13.7	.47	47
11	45	9.5	58.0	30	4.9	13.1	. 46	48
17.	44	9.0	58.0	32	3.9	12.9	47	44
4.	45	9.6	46.0	23	4.9	11.4	46	59
26.	45	8.5	50.0	311	4.6	10.0	. 51	- 40
13.	43	8.0	54.0	28	3.7	9.6	. 51	- 48
1	47	8.0	50.0	30	5.1	9.2	, 4	.60 .53
10.	44	8.0	56.0	36	5.1	8.6	, 4	
Average ...	44	9.0	54.0	28	4.4	11.5	. 48	. 49

OPPRESEES ATSOWTIL.

'lisul: Vll.-Iere yichls of second-growth I'hile J'ine, with mearurcments of young pine talien for analysis-Continned.
18.一MANV:

HALE NCLE VIELSH.


A merage annual recretion: White line, 77 cmbie fert.
'rurrent anmual arerction: White l'ine, 160 cubic fort.

A ye class: 50 to lon years.


Tre4 manispr.	Ago.	Diametor (brenset hisht.	Heimht.	$\begin{aligned} & \text { lings } \\ & \text { berinch } \\ & \text { on } \\ & \text { stumpr. } \end{aligned}$	Volume of iree.	$\begin{aligned} & \text { Factor } \\ & \text { of } \\ & \text { whide. } \end{aligned}$	Tatio of - lengih of crown to total height of treo.	Current annual accretion.	Averagu лининй accrefion.
7	Fents. ! 1	Inches. $2 \times .11$	Fret. 101	No. $\because .9$	$\begin{gathered} \text { Cubic ft. } \\ \text { 175. } \end{gathered}$	0.41	0.60	I'ercent. Cu.ft.	Cu. 71.
12.	13)	88.0	$110 \%$	2.7	161. 11	. 36	. 61		
:	98	95.0	92	3.2	140.3	.46	. 48	-...-.... ...	
17.	(1)	27.	91	3.0	1365	.42	. 56		
I.	(1)	[55. 11	98	3.2	131.7	.41	. 410		
$\because 3$	47	\%-1. 0	9 s	3. ${ }^{\text {d }}$	119.4	.46	. 413	-........ ... .	...
21.	0	26, 6	112:	1.1	118.1	. 35	. 45		
16	90	22. 5	91	3.4	115. 1	.46	. 52	-+-. -	
$!$	102	20.0	1011	4.1	104.0	. 47	. 13	-......... .-.-.	
-11	104	20.3	103	4.3	98. $\%$	.41	. 40		--...
A verages	H)	23.7	97	3.5	1:50,0	.42	- 80	...........	


 13.-MAINE-Comtimuti.

OPJUKASEA? "MOWTH.

Traen namber.	Age.	$\begin{aligned} & \text { Diameter } \\ & \text { (breatst } \\ & \text { lighti). } \end{aligned}$	160junt.	$\begin{aligned} & \text { hinges } \\ & \text { perinich } \\ & \text { ont } \\ & \text { sh114!. } \end{aligned}$	Volume af 1rum.	$\begin{aligned} & \text { Fictor } \\ & \text { of } \\ & \text { shitpe } \end{aligned}$	$\begin{gathered} \text { ILafion of } \\ \text { longth } \\ \text { of crown } \\ \text { to total } \\ \text { height of } \\ \text { trew. } \end{gathered}$	Gurrent ammant arretion.	```Averag" smuHal acere- tion.```
25.	$\begin{aligned} & \text { Iefres } \\ & 160 \end{aligned}$	Inchers. 15,0	Fece.	No. 5. 4	$\begin{gathered} \text { r'ubic ft } \\ 55.5 \end{gathered}$	0.45	0. 37	frercent. riw. fl.	Ciu. ft.
1.	100	15. 0	[10	(6. 5	5.i. 3	. 51	.36	.......... . . . . .	
26	69	14.0		(i. 0	47.3	. 49	. 21	-+-...... . . .	
6	84	14.3	88	5.0	43.1	.43	. 18		
$\because 4$	97	13.5	81	5.8	:37.3	. 46	. 30		
5	99	12.6	80	7.9	37.1	. 50	. 14		
13	91	13.2	80	5.3	35.9	. 48	. 30		
37	99	12.0	*11	6. 3	:310. 7	. 49	. 23		
Averase.	96	13. 7	815	6,0	48.8	. 48	.23		

$$
\text { Aye class: } 50 \text { to } 60 \text { years. }
$$

mbMinan ghowth.

(2) SITE C:

York Counts:
One jourth acre No. 1.
Noil: Gray sand, sometimes brown or loamy, deep, fresh, with 3 inches regetable mold, and a leaty surface cover; sumail clayey, probably 4 or 5 fcet helow surfice.
Forest conditions: White l'ine, with seatherins Hemiock and oceasional spruco and Fir, on a lavel plain; umbergrowth, seanty, of Hazel and young IIeulock.'
Classification:

Codominant
Oppressed
Suppressetl


ONE-FO(TVTII ACIE YIFLI)

Number of trees.	Diametor (breast ligh).	Hosight.	Volume.	
			Sunde.	Mer-   hantable timurr.
4	Inclifs.	Fret.	('mbiefere	'lieet 7. 1 I
32	7	. 5	250	
60	7	45	230	
H4	$\checkmark$	5.7	- 40	
8	8	45	73	
36	9	55	41.	;
8	10	6i.	144	
\%2	111	55	780	
8	11		144	
12	12	ti.)	306	
12	12	55	210	
4	13	65	116	
8	15	35	408	

328 treas:
Total eubic fient $\qquad$

Average amual accretiont White Pine, $7 t$ whin font.
Cherrent annual accretion: White 1 'ine, 133 enbice feet
${ }^{1}$ Intermixed species: Ioungr Whita 1 'ine, $160 ; 11$ molock, 20 mature and 20 small.

13.-M.XIXV:-Comtinned.

[mMINANT GMOWTH.



11.	52	10.1	59	4.3	16. 1	0.50	0.40
!	50	9.0	58	4.3	13.4	. 54	. 41
21.	51	8.8	58	4.6	13.3	5 5	. $3 \times$
7	010	9.4	54	4.3	12.3	. 46	(1)
27	51	8.1	56	5.1	10.7	. 5,5	. 35
6	50	8.4	55	4.5	10.6	. 50	. 40
1	49	8.1	56	5.0	10.2	. 52	. 34
29.	52	8.0	57	5. 5	10.1	. 514	. 37
Averago...	51	8.7	57	4.7	12.1	. 51	. 39

OPIRESGED HROWTH.

22.	49	7.7	53	5. 2	9.6	0. 56	0.30
2	52	7.8	54	5.11	9, 5	. 50	. 26
21.	49	8. 0	51	5.0	5.5	. 53	. 39
:111.	48	7.7	5.4	5.1	9.11	5\%	40
\%".	50	7.4	58	5. 6	d. 0	. 50	. 33
11.	51	8. 2	$4 \%$	5.1	8.9	.51	.34
17.	50	7.4	54	5, 6	R,0	. 50	. 30
	50	7.8	73	5.2	0.1	. 52	.33

EUPPMESSEI GBROWTH.

14...	$\therefore$	6. 3	5.7	(?)	6.3	0.51	0.31
16.	48	6.9	49	5.7	5.8	. 44	. $2 \times$
46	46	6. 3	51	5.5	5. 5	. 47	30
13.	46	6. 2	47	-1. x	5.1	. 51	27
15.	4 K	5.6	50	7.0	4.3	.5\%	3
28.	50	(5, 0	39	8.0	3.7	. 48	. 56
23.	48	5. 3	41	7.6	3. 6	.47	26
34.	52	5.0	48	8.3	3.4	. 52	. 43
18.	52	5.0	46	111.0	3.2	- 50	. 27
Average...	50	5.8	48	7.3	4.5	.49	.31


13.-MANE-Comtinuen.

$$
\text { Onefourth acre No. } 2
$$





Average anntal accretion: White l'ine, 131 eulie feet.

$$
\text { Ome-half acre No. } 3 .
$$

 Worest condtions: White Jino intor orest conditons: White Ime intermasid with Norway Ping and occasional spruce and Fir, on

Density of crown cover:
Number of trees: 314 .


Supprusяе ................................................................................................................................................................................ 0
IIAI.F.NCHE YILLD.

Number of trees.		Meight.	Volume.	
			Liole.	Mer.   chantable timber.
	Inches.	Feet.	Cubicfeet.	Fect L. M.
18	7	6.5	168	
48	7	53	384	
60	4	65	720	
$\because 6$	8	. 5	$\because 60$	
44	3	6.5	038	
6	9	55	60	
4	10	75	82	
38	111	65	681	
10 \|	11	75	2.50	
U81	11	65	610	
	1:	75	118	
14 \|	12	6.5	354	
1	13	75	13k	
fi	13	65	174	
2	$14$	75	77	
$\geq 1$	15	65	73	
314 trues Tota	loubic fint		. .	. 4,800

Average anneal accretion: White I'ine, 87 cubic fect.
 13．－MANE：Continued．

ME．ASUREMENTS OF SAMBLE YOUNG PINE：TRELS．
EOMINANT UHOWIM．

＇Tres mumber．	入 ${ }^{\prime \prime}$	biameter   （breant bight．	Height．	$\begin{aligned} & \text { Rinqus } \\ & \text { per incls } \\ & \text { on } \\ & \text { m\&113日! } \end{aligned}$	Voluthe of irce．	Factor of shane	Ratio of lengrth of crown to total height ef tré．
7	Feare.	laches． $21.8$	Fere．   86	No． 3.7	$\begin{aligned} & \text { Cur. } f t, \\ & x!, 0 \end{aligned}$	0.46	0．12
8.	－5	19.0	85	4.0	76． 5	． 43	． 50
5.	12	17.3	87	4.4	69． 5	． 48	． 54
13.	12	19． 3	75	4． 2	6．1．is	42	． 17
2	N：	18.8	（11）	3． 8	tix． 15	． 4.1	． 39
10．．	$8:$	17.7	$\times 5$	4.4	67.4	.46	． 11
14.	9 H	18. is	75	4.4	tith，it	． 42	． 46
11.	91	17． 2	$\times 5$	4.5	Bie． 4	． 49	． 48
15.	91	17．3	N：	4.4	ti3． 7	.49	． 15
Average	89	18.6	83	4． 2	70.8	． 45	.46
9	81	21.0	85	3.3	123． 5	． 45	． 54

SUPrはKMSEE（HMOWTH．


1＊ENOBFCOT COUNTY．


Table VII.-Acre yields of second-growth H'hile Pine, with measurements of youny pine laken for analysis-l'ontinued.

## 

(i) Site $a$ :

Mollrrook, Norfolk Cunnty.
 "rately ledy surfaco cover"; sthsoil, same with stomes nad gravel.
 with scattoriag Homlock and White and lied Oid.

Satuple areat: 1 acre.
Agent bille: 35 to 38 yeara.

Number of trues: 886.

ACHEF YIELB.


A保捒e annual accretion: Whito Pine, 131 cubic feet.
 and Hornbeam; undergrowth moderately dense of above species of hardwoods. ${ }^{2}$

Sample area: 1 acre.
A ge of pine : 50 to 55 years. Density ufcrowncover: Thick and quite usen.
Number of troes: 339 .

A(:RE YIEIL).


A verafe comual accretion: White Pine, פ2 cubic fret.









Culeryrowth: Gray Lirch, 21; Maple, 3 ; Hornbean, 1, and Sussatras, 3.


## 

(3) SITt: C:

Hanson, l"dsmonth Connts".



 site; undergrowth of harilwinets.'

Simplo arma: 1 ance.

Density of crown cover: (1)

Number of trew : 310.



Iverase annual acercion: Whitn l'ino, 123 enbic feot.
(4) Sive de

W'eymouth, Norfolk County.
Sample area: 1 acre.
 with 1 or 2 inchs mohl on topand surface cover of abondant leaves; subsoil, gravel and stone.
Forcst combitions: Whire line, with scattering hod Gak abd ocensional Maple and Hornbean on monowhat Lilly sito; undergrowth dense, of White Oak, Ked Oak, Gray birch, and Black Bircls. ${ }^{2}$

Age of pine: 50 yearm.
Debsty of crown cuver: \&

Number of treen: 295 .
(CHE VINLI).

White I'jue.				
Number of trees.	Dianeter (breast higls).	Height.	Folume.	
			Bute.	Mer. chantable timbur.
	Inchers.	Feet.	Cubic fect.	Feet 13. M.
174		60	1,740	
16	10	65	612	
$\because 6$	11	70	578	
21	12	70	516	
16	13	70	496	
10	14	70	350	
4	15	70	1619	
3	16	71	135	
1	17	70	51	
3	19	70	$18 \%$	
1	21	70	78	
095 trepy				

I everage amual acerction: White I'in". I8 cubic tixt.










( (J) STTE ©
Bridyewator, PJymouth Comes:
Sumple arcat: 1 acre. [100 luet aboves seal leved.]



of meattering Oak ame Maple.!
In+maity of crown comer: (?
Number of traces: 374.

	Whiturine.			
			Voll	umo.
	$\begin{gathered} \text { Diarneler } \\ \text { (breast } \\ \text { hingu). } \end{gathered}$	Heirsht.	Sole.	Mros.   Chantalole timber.
340	Tuches. 8	Feet. 55	$\left\lvert\, \begin{gathered} \text { Cubicfect } \\ 2,160 \end{gathered}\right.$	Freel 1i, M.
1	10	55	15	
42	10 :	60	672	
$\because 3$	11	(i)	418	
27	12	60	621	
15	13	60	390	
13	11	6.3	429	
6	351	65	2x:	
$\because$		65	84	
4	17	70	20.4	
$\because$	18	70	112	
$37+$ trees:				

I veraye amwal accrction: White I'ine, 118 cubic fuet.
(6) Sitef:

Sridsewater, Dymonth Conaly. [100 fret above sea level.]
Soit: Lighthrown sandy loam, medium frain, shallow, light, loose, dry, well deamed, with alhout

 (I'ine seedlings from wouds, 1 to 2 feet bigh, set in durrows at for 8 leet each way $)^{2}$

## ICRE YEELI).

White Piue,				
Nimber of trees.	Diancerer   (breatst   light.	Height.	Volume.	
			Lole.	11er. chantable tialner.
115	Inches. 3	Fece. $20$	(Cubicfee	Firct JS. M
181	'3 to 6	30		
211	(1) to 8	30	1, 015	
47	81010	30	423	
1	10	3.3	11	
2	14	35	46	
560 treas:				
Tot	1 l cubie feet			. 1,836

560 treas:
Total cubie feet $\qquad$ 1, 8314

Sample area: 1 acre.

Aro of pine: 25 yeara. bensity of chown cuner: (?).
Number of treas: 5bu.

Averate anmalacortion: White I'int, 61 enhise feet.
 IJdergrouth: Wै lite Oak, 23; Maphe, is.

 inchas hameier and maler 30 feet high.

$20: 3: 3-\mathrm{No} .22-11$

I'sum VII.- Jere yiehls of accond growth White l'ine, with measurements of young pine faken for analysis-Continued.

(7) Site g:
(irafton, Midalesex County.
Sample area: 1 acre.
[500 feret abuve seatlevel.]
 inche* buhd on top, and molerately lealy surlice cover; subsuil, ruek on ridge, yellowish namblon bow yroumi
 Cherry, firay lyirchs, aul other hardwoods. I

ACHE: YIFLD.


Arerage annual accretion: White Pine, 134 cubic feet.
(8) Site $h$ :

Noil: Brown mandy loam, mediamgrain, deep, fresh, well draiget, with about 1 inch mohl on fop

Foreaf conditions: W'hito l'ine, with acattering firay Birch and occasional Pophar and L'jteh l'imes on a laill; uulergrowth, scanty, of Hemlock. ${ }^{2}$

Age of pine: so to as yeara. Density of erown cover: 0.610 0.8 (in places 0.2 abl 0.4 ). Number of trees: 301 .

## ACLE IIELJ.



Irerage annwal aecretion: White I'ine, $1 \$ 1$ embic feet.

[^9]TABLAS VII.- Acre yields of second-groteth While l'ine, with measurements of young pine taken for annlysis-Continued.
C.-MASSACHUNE゙MIS-Continued.
(9) SITE $i=$

Northbrider, Worcenter Cominty.
[500 foct above seal level.]
 atul a moderately leaty surfince cover; subsoil, prohatbly ladgo roct.
 ately duase, of Uak, Maplo, aud Chestnut.
. © Cl I IELI).



413 rees:
Trotal cubic fent-.................................5,540
-
$\qquad$

Dro "f piun: 3i yeara. J"'Hsity uf crown cover: 0.8 . Number of irecs: 413.

A verage anntal accretion: White Pine, 158 cnbic feet.
(10) Site $j$ :

> Inookfielil, Worcester County.
sample area: 1 acre
[800 to !50 feet above sea level.]

Wfoil: Dark brown or blate loam, fing grain, light, deep, frosh, well dratined, with athout 2 inches mold on top and a moderately leafy surfice cover', subsoil, rock not far le law surface.

Ageof pine: sip to to years Density: of crowncover: 0.8 Forest condifions: Whitas I'ine, with occasional I'itch Pine and bardwouls on morth slope of uneven Number of trees: 303. land; undergrowth dense, of various hardwoods, with Oak atud Chestmut produminatine.2

ACIEE YIELD.


I verage annual accretion: White line, 104 cubic feet.
1 Intermixed species: Whits Maple, 1 over 6 inches diameter and under 60 feet hiwh: 2 from 3 for 6 jnches alianteter and orer 40 fient high Daple, 2 from 10 to 14 inches diameter ambluder 80 feet high; 8 from 3 to 6 inches diametur amb over 40 feet high; 1 over 3 inclus dianuer


 high. Oak, 1 over 6 inches diameter and under 60 feet high; 1 over 3 inches diamoter and over 40 fuet high; 1 over : 3 inches diameter and


 ter ind under 40 feet bigl. Chestant, 1 over 10 inches dianefcr and under 80 t
 numerous small treest, 1. Numerous swall Ioplars not conntod.

Tans: VII.- Jere michs of secomi-growth "hite l'ine, with meastrements of youny pine taken for analysis-Continued.

(11) NITR $k$ :

Charlfon, Worceater County.
Sanule arca: 1 acre.
[Alosint sow fort aboyem'a lever].]


 Chestaut, Maple, Oak, and Cherry:

ACIEN YIELJ.

- да оf ןino: $4 \times$ yeara Densify of crow cover: 0.6.

Number of treen: 46.

W"hitr l'inu".				
	bibunator (bromant higly).	Vohlume.		
Sorniner ol trees.		Height.	Inole:	Mer-   - hantable timber.
1	Incher.	Peet.	Cubie feet	I Peet Jo. M.
277	8	50	2.770	
$6{ }^{3}$	10	70	1.178	
50	11	70	1,100	
99	12	71	\%.94	
13	13	70	$40: 5$	
$!$	14	710	315	
3	15	70	120	
3	16 :	70	135	
+16 trees				

Average annwal accrefivn: White l'ine, 111 rubic fert.

stre: $\%$.



## I).-NEW IIAMIPはII!

(1) Site $l$ :
Boscawen, Mrerimack Connty
Samplo area: 1 acro
[300 fiet aboveson level.]
Soil: Iark-brown lommy sand, coarse grain, yorona, looso, shallew, dry, well drained, with 1 inch mold on top thul molerately leafy surlace corer ; subsoil, yellow mand.
Anro bif yille: 40 years


 lock and smatl White Pint.!
Numbrrof troes: 1,077.

ACLE YIELD.


Averayp annual accretion: White 'ine, 71 culise feet.
(2) Site on:

Franklin, Merrimack ('ountro.
[ 900 to 1,000 feet abover real devel.]
Nuil: Brown samly ham, melium grain, compact, moist, Fell trainet, with 1 to inches mold on top amd moderately lealy surface cover: subwit, rock.
Forest conditions: White Pine intermixed with Maple : mil Pirels, an a hill; undergrowth, moderately dense, of young Maplo. Hirch, and otler ncatterimg liarilwouds: ${ }^{2}$

Sample area: 1 arre.

Age of fine: 411045 years. Dedatiy of crown cover: $\mathbf{v . 9}$. Number of trees: 410.

ACLE SLELD.

White l'ine

drerage annual accretion: White I'ine, 120 cubic fent.




lnderyrowth: Hemlock, 20; (iray lircho. 1.




 over 6 inchas diameter and over bo tept tiah. Young White l'ise, 119.


Tanc: VH.-Acre yields of second-growth White linc, wilh measurcments of young pine taken for analysis-Continued.
13.-NEW HAMPNIIIBE-Continuct.
13) Site: $n$ :

Hopkinton, Merrimack Connty. [8in to ghe fret ahovo ara lavel.]
shil: 1kown gray, or nearly hack sanily lotm, fino grain, moist, well drained, with mold on top and momarately lealy sitface cover; subsoil, rock.
 of Herntock and scat coring kardwoods: on uccasions deal and lifte suppressed freve cut out and irimming dano.!

Sonnplenarea: lacre.

Ago of pine: 60 to 65 years. 1 Hensity of crown cover: 0.8 110.9.

Nimber of trees: 291.

ACLE: YELI),

Whiln I'jne.				
			Soll	nme.
Number of trees.	Dinmeter (breast high).	Ilright.	Juble.	Mer. chantable tiutur.
	Incher.	Pret.	Cubicfeet.	Hepel H, M.
54	8	64	540	
43	10	70	817	
48	11	70	1.056	
36	12	70	936	
37	13	70	1. 147	
27	14 !	70	945	
14	15 I	70	560	
14	16	70	63.30	
8	17	80	464	
3	18	80	192	
3	19	80	210	
1	20	81	77	
2	22	$\times 1$	192	
1	23	80	104	
291 trees:				

Avernge anmual accretion: White l"inc, 127 rubie feet.

Mopkinton, Merrimack County.
[ 800 to 900 feet above sea level.]
ANil: Brown loam, finn grain, moderately loose, fresh, Tell drained, with 3 10 4 ineles mold on top and lealy surface cover; subsoil, rocks not very far down.
Forpat conditions: White line with weasional led l'ine on a north slope of hill; untergrowth, moderately ilense, of Bim, Maplo, Homlock, and occasional hardwools. ${ }^{2}$

Sample area: 1 ncre.

Age of pine: 35 to 40 rears. Densily of crown nover: 0.8 .

Number of trecs: 435.

ACIEE VIELI.


Average annual aceretion: White Pine, 148 eubic fert.

[^10]TABLI VII.-Acre yiflds of sccond-growth White I'me, with motarements of goung pine taken for analysis-Continnod.
1).-NEW HAMDSHILE:-Continmed.
(5) Site $p$ :

Litchtichl, Millsboro Connty.
s:ample area: 1 : wre.
[About 250 feot alowe rea level.]
Noml: Iark-brown andy loam, fine grain, porons, light, loose, shallow, dry, well draimod, with Age of pino: 35 to fo geare.
 with clay about 4 to 6 fest bulow surfice.
forest comdifions: W'hite l'ino with srattering l'iteh l'ine on lovel plain; malergroveth scauty, of Maple, Kirch, and lew other hardwools. :

Numbur of truas: $51 \%$.

## A(JEN VINELI.

White l'ine.				
			Vol	unte.
Number of trees.	```Diame*er (breast high).```	Meight.	Soble.	Merclantable timber.
5	Inches.   Under 3	Fept. 20	Cubiefert	Feet 1: M. ${ }^{\text {a }}$
$18:$	3 ta 6	4)	--- - .	
$2: 33$	Gitall 10	50	2,097	
30	10	60	480	1
19	111	60	361	
13	112	fil	199	
10	113	6i)	260	
12	14	6.5	396	
6	15	65	228	
$\stackrel{9}{2}$	16	6.5	84	
9	17	70	102	
1	18	70	56	
1	19	71	81	
11	122	70	7*	
517 trees:				

A verage anntal acerefion: Whito l'ine, 15 enbic fot.


Ancrage annual accretion: White Pine, 107 culnie lect.

[^11]
## 


(7) Stヶ: $r$

Milforil, Hillmboro (ionuty.
[3an) to too thet above rea level.]

$$
\text { lere inn. } 1 .
$$


 deop, probably samily lower down.
 ami other scatterinar harilwouls."



Amerame annual aceretion: White Pine, 109 cubic feet.

Acre Vo.
Soil: Brown sandy loam, medium grain, looso, fresh, 1 foot deep, with 2 inches mohl on top and a moderately leafy surface cover,
Forest condifions: Whito Pine with geattering Maple on morth slope of hill; whlergrowth, fa parta moderately lense, of $A$ sh, Maple, and few ofler hardwoods, and in denser parts very little nndergrow 4.2

Age oft pine: 35 to 40 yonrs.
Density of crown cover: 0.C to 0.7 .

## -

AClEE YIELD.


## Average annual accretion: White l'im, 127 cubic fect.

[^12]


4yf cless: limler 50 yoars.
-IIE $\ell$.


NITE $m$.


STTE 0 .

site $r^{\circ}$

	$\begin{aligned} & 81 \\ & 77 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 73 \\ & 74 \end{aligned}$	4	$\begin{aligned} & 48.9 \\ & 50.4 \end{aligned}$	$\begin{array}{r} 0.42 \\ 44 \end{array}$	$\begin{array}{r} 1.53 \\ .55 \end{array}$	4.6 3.0	2. 297	$\begin{array}{r} 0.59 \\ .68 \end{array}$
Average . ...	74	17	73.5	4	50.3	. 43	. 54	3.8	1. 89	. 63

SCHEDULES AND SAMPLE RECORDS.

## SCHEDULES AND SAMPLE RECORDS.

## FORMS USED IN THE INVESTIGATION.

## FORM NO. 1.

United States Department of Agriculture. DIVISION OF* FORESTRY.

## RECORDS OF TREE MEASUREMENTS.

Name of collector: N.
Species: White line.
Year: 1897.
(GENELSAK, IHENCLIIITION OF NTATION.
[Denoted by capital letter.]
State: l'ennsylvania. County: Clarield. Town: Dubois.
Longitude: $7 \times 45$. Latitude: $41^{\circ} 3^{\prime}$. Atitude: 1,200 to 1,500 feet.
Goneral contiguration: l'ains hills plateau mountainous.
(dencral trend of valleys or hills: (Not noted.)
Climatic feutures: (Muteorolorical tables furnishel.)
General forest conditions of the region: This region in 1876 extended over 20,000 acres. The lumber operation carried on for twenty years by Mr. Da Bois left for the present only from 1,500 to 2,000 acres standing timber in a primeval condition.

Three typical forms of forest conditions are suggested to the ubserver:
(1) Hembock and White Pine forest, with an admixture of mature hardwoods and ammber of young latrdwoods and young llembok, wheh form the undererowth.
(2) Hembock mixed with Whito line, with sattering hatwoods; the undergrowth usnally moderately dense, consists mainly of young liemlock with the admixture al omm hardwoods.
(3) Hardwoods intermixed with White l'ine and scattering Hemlock. The underarowth here consisis manary of young harelwonds.

Among the hardwoots, the Oak, Birch, amd Maphe form the staple of the hamelwod forest, while the Beech. Chestnnt, Hickory, Cucmmer, Ash, Cherry, and basswoot are comparatively few in mumber. Tho region lass a uniform soil and subsoil as it may bo judped by tho sample areas NX. 5,6 , and 7 , and is well provided with monisture loy the many streams crossing it ill over in dillerent directions.

FORM NO. 2.

[10emoted liy small letter.)
Sample aroa, Nu, is: (One arre.)
Conformation of surface: Hidl moping towat ansthwest, where it is bordered by the lett-hand banch of Irish Narrow Crook.
soil and drainage conditions: Yollow clay lwam ot a modiun grain (fine shate in it), ulcep, fresh, well drained, wiflu $210: 3$ inches mold on top.

Solsonil: Laminated dhato of an intefinite slepth.
soil cover: scanty leaves, forn, and teaberries.
Origis of stand: Natural regencration.
Form: Iniform; storied. Whito lime forms first and Hombek tho secomd.
Composition: A stanc of Momlock mixel with White l'mo, intermixed with scabtering Maple, Bench, and bireh.
Thererowth: Absent; dense; molerately dense; seanty; consists of very young beoch, Hombok, and oceasional Birch, Cuchmber, and Iogwood (Laturel in northeast corner).

Density of stand: 0.7 (in places $0 . x$ ).
hrimaks.-Crowns of White line generally woll doveloped; clear and straght stems. Age of White l'ine 20\% \&0 260 years. Ago of Hemlock almost the same as that of Whito l'inc.

A(CLE-YHELD MEASUREMENTS.


[ootal manaber of trens on tho acre: lize, of which there were-
First specios: White P'ine, : 3 ; domiant, 11 per cont; conhminant, 48 por cent; oppreased, 11 per cent.
second: Homlock, 81 ; dominant, " $\quad$ per cout; codominant, 26 per cent; oppresserl, 42 prr cent.
lhud: Mapla,
Fiourth: Bieoch, 3.
F"iftl: 1sirchl, 3 .
Total yield of the acre: Volume of stems, 15,686 cubic fect; merchantable timber, 90,103 feet $\mathrm{B} . \mathrm{M}$.
Of which there were-
F'irst spocies: White line, ix pur cent of total yield.
Socond species: Ilemlack, fe per cent of total yield.
Third, fourth, and fifthspecies: Hosmlock not takea intoronsibleration.

FORM NO. 3

FORM NO. 4.
MEASTREMENIS OF DLAMFTEIS DEVEDODMENT.
Nb:TON: 大immp.


FORM NO. 4-Coutinued.


20233-No. 2n- 12

FORM NO. 5

Sumeres: White I'ine.

FORM NO． 6.

		Total hejght of tree.		Lelatiseper cent of total volame．			Perioutical accretion．																						
							Decade．	Diameter and corresponding area．																					
				${ }^{\text {c／}}$					Cross section 1 ． at height of $2 \frac{1}{2}$ feet		Cross section 2, at height of 18 feet．		C＇ross section 3 ， at height of 34 feet．		Cross section 4 ， at height of 50 teet．		Cross section 5 ， at height of 66 feet．		Cioss section 6 at height of $8=$ feet．		Cross section 7 at heigb of 99 feet．		Cross section 8 ， at beiglit of 114 teet．		Cross   section 9   at height   of 129 feet				
				毞	会	亲				号	官总	$\begin{aligned} & \text { s. } \\ & \text { ¢ } \end{aligned}$	E．	感	关	シ	音要	毕	至	突	要	毕	先等		第至	先			
$\begin{gathered} \text { Frs } \\ 10 \end{gathered}$	In． 1.2	$\begin{gathered} \text { Feet. } \\ 8 \end{gathered}$	Cubic feet． （？）	$\left\lvert\, \begin{aligned} & \text { rer } \\ & \mathrm{ct} . \end{aligned}\right.$		$\mid$	First	Ft．	${ }_{2}^{1 n} 2$.	$\begin{aligned} & S_{y} y_{1} \\ & \text { feet. } \\ & 0.03 \end{aligned}$	In． 3.4	$\begin{gathered} s_{1}^{\prime}, \\ \text { feet. } \\ 0.060 \end{gathered}$	In． 3.1	$\begin{aligned} & \text { Sq. } \\ & \text { feet. } \\ & 0.05 \end{aligned}$	${ }_{3.2}$	$\begin{gathered} s q, \\ \text { seq. } \\ \text { fect. } \\ 0.05 \end{gathered}$	${ }_{2.7}^{\text {In．}}$	$\begin{aligned} & s q . \\ & \text { seet. } \\ & 0.01 \end{aligned}$	$\begin{aligned} & I n . \\ & 2.4 \end{aligned}$		In． 1.7	$\begin{gathered} s_{s} q_{i} \\ \text { feet. } \\ 0.01 \end{gathered}$	${ }_{\text {In }}^{1.4}$	$\begin{gathered} s_{i} i_{i} \\ \text { feet. } \\ 0.001 \end{gathered}$	${ }_{1.1}^{1 n .}$	$\begin{aligned} & \begin{array}{c} s q \\ \text { feet. } \\ 0.01 \end{array} . \end{aligned}$	Cudio feet． （？）	Cubic feet． （？）	$\begin{aligned} & \text { cu. } \\ & \text { fect. } \\ & \text { (1) } \end{aligned}$
20	3.4	23	0．8				Second	15	2.8	． 11	2.9	． 16	3.4	． 18	2.9	． 15	2.4	． 10	2.2	． 08	1.7	． 05	1.5	． 03	－1．2	． 02	（1）	0.04	（！）
30	6.1	38	3.6				Third	15	2.3	． 16	2.0	． 15	$\stackrel{2}{2}$	． 16	2.1	． 17	2． 3	． 16	1.7	11	1.6	． 08	1.3	． 06	1.1	． 03	2.8	－ 12	0．${ }^{3}$
40	8.2	51	9．0				Fourth		2.1	． 19	1.6	． 19	1.7	.18	1． 6	－ 15	1.6	． 14	1.5	． 11	1.3	． 10	1.2	． 06	1.1	． 05	5． 8.	$\stackrel{22}{ } 3$	． 34
50	10.2	64	17.0				Fifth．	13	1.9	－	1．${ }^{\text {b }}$	． 19	1． 4	． 16	1．2	－ 14	1．2	． 13	1.3	－12	1.4	． 11	1.1	． 178	1.1	． 106	8.0 10.0	－ 34	－i0
60	13.2	731	27.0				Sixth	92		－	1．2	－16	1．2	． 115	1．1	－ 14	1.2	． 15	1.12	${ }^{.13}$	1.2 1.0	． 110	1.1	． 08	． 9	． $0_{i}$	13.0	． 51	1．00
70	14.2	$4{ }^{2}$	40． 51				Seventh	$8!$	12.1	．33 3	1.2   1.0	． 17	1.0	． 15	1.1	． 15	1.2 1.1	． 16	1.1 1.1	． 14	1.0 1.1	． 113	1.1 .9	． 09	\％9	． 08	13.0 12.0	． 67	1．30



## INDEX．

1』ロット
Abbot＇s white pine sawily，note．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Accretion，area，in White l＇ine avorage annual，for uhll trees diameter，of pine，discnssion yearly，of White Pine，notes
$\qquad$
$\qquad$ young pino White line，with measurements of White Pine in natural forest $\qquad$young pino groresregion，destruction of young pine growth lyy tiro．．

Adirondreks，composition of forest． condition as to reprodtection of White Fino． growth of White Pine
Agaricus melleus，injury to Whito Pino．
Age classes of White I＇ine，tables of measurements．
$\qquad$
Alleghenies，occurrenco of Whito I＇ine
Alpena，Mich．，first sawmill
Ann Arbor，Mieh ${ }_{-1}$ growth of pine．
Annual height growth of White Pine in first humelred yetrs．．． rings，comparison for varieties of pines．
Aphis，White I＇ine，note．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Arhorvita concomitant of White Pine mixture witl White Pine．
Area accretion of White Pine
Artificial reproduction of ping，discussion．
Ash，result of planting with White I＇ine．
Atlantic，injury by xaw winds to White Pine
Balsam Fir，admixture with White Pive．
Bark－beetle，destructive to pine，disenssion pine，description amb injury
Bark－lueetles other than pino bark－beetlo，injurious to pino trees． Bark of pine，manner of crow th and function White l＇ine，slight protection against fire
Barn lumber，use of pino．
Behb，M．S．，note on White l＇ine in Illinois
Beech，Birch，and Maple，ctrect of shate on UY hite Pine．．．．．．．．．．．

Beetles，bark，destructire to pine． Buprestida，injurious to pine，description．
Belfast，Mo．，trade in White Pine．
Bhotan Pino，relatiouship to White Pine．
Birch Maple and Beech，eftect of shado On White Pine．．．．．．－ with pine in Adirondacks．

Board and cubic contents of White line，tables ．．．．．．．．．．．．．．．．．
Boards，plank，and＂dimension stull＂of White Pine，sizes．．
Boat builling，use of White Pine．
Boles of pines，vaxiation with charactor off associated trees．．．．
Borers and pine sawzers，discussion．
Botanical description of White Pino． range of Whito Pine．
Box Elacr，result of planting with Whito Pino
Hoxes，use of White Eino．
Roynton $F$ F．nloto on Occurronco of thito Pine linas
Branch，root，and stom system of White Pino
Britton，N．Le，note on occurrence of White Jincin Now Jersoy．
Brookings，S．Dak．，fallure of plantings of White Pino．
luprestidx，species injurious to pine；ruscriptuon ．．．．．．．．．．．．．．．．．．．．$\quad$ 58．
Cambinn of pinc，characteristics．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．


orisinal aml present supplics of W＂hito l＇ine．．．．．．．．．．．．． 10
＂rossing＂as protection from ping bark－borer ．．．．．．．．．．．§f

Canarlian pinory，note ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 14

ware

Carbolated wash，remedy for loectles on pino．．．．．．．．．．．．．．．．．．．．．．．．．． 5 ．
Carbolic acid，uso against pino weevjl．－．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 59

Caterpillar injurious to pine，notos．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 60
Catth，injurions to pine formts ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 49
Celar，White，ant Cypross as substitutes for Whife l＇ine\％．．．．．8．
Cells in pino wood，discussion．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．－5，玉6
Cerambycid beetles，injury to bino．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 5 ．
Chalcophora，species injurions to pine ．－．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．bs
Champaign，Ill．，instructivo ulat of White I＇ine．．．．．．．．．．．．．．．．．．．．．．．．．．． 65
Chermes minicortiris，＂pine blight，＂noto－－．．．－．．．．．．．．．．．．．．．．．．．．．．．．．． 50

Chionaspis pinifolix，manner of injury to pine．．．．．．．．．．．．．．．．．．．．．．．．．．

Pino＂－．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Chloropleyll，occurrence in young pine．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $2 f$
Circumference of pine trees，measurements of annual main．．．． 35
Cassification of White I＇ine．．．．．．．．．．．－．－．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Clay and loam lanis，reproluction of White Pine．．．．．．．．．．．．．．．．．．．．．．in
land，relation of specific weight of pine wool．
Climato and soil，demands for dovelopment of White l＇ine．．．．． 39 influcuce on height growth．．．．．．．．．．．．．．．．．．．．．．－． 33


Colcosporinu senccionis，canse of divease in pine．．．．．．．．．．．．．．．．．．．．．．．．． 5
Compression endwise，trests of Whito l＇ine．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．77，78，79
Concs，age of trees at firat production．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 23

Conifers and lardwoots，planting in alternato rows．．．．．．．．．．．．．．．．．．． 60
，langer of drying atmosphere in planting．．．．．．．．．．．．．．．．．．．．．．．． 51


＂Cork Pine＂of Michigan，localityv of growth．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 12
Cortex of pimp，characters．．．．．．．．．．．．－．．．－．．．－．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Crioccphalus agrestis and other suecies injurious to White line is
Cronartium ribicola，relation to cause of discase in pine ．．．．．．．． 53

Crown of Whito Pino，deseription．．．
Cubic and hoard contenta of Whito l＇ine，tables．．．．．．．．．．．．．．．．．
Cultivation of pino nutsery at Unirersity of Illimais．．．．．．．．．．．．．．． 60
White Pine，area of probahle success．．．．．．．．．．．．．．． 16
Curculionidte，beetle damage to White I＇ine．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．is
Cypress ant Whito Cedar as substitutes for Whito l＇ino．．．．．．．．． 8 g－
＂Dampingr oft＂parasitic organisms as cautso．．．．．．．．．．．．．．．．．．．．．．．．．．．． 53

Ihangers and discases of Whito I＇ine，discussion ．．．．．．．．．．．．．．．．．．．．．49－5．
｜Dawson，J．，statement as to secol crop of Whlite I＇ino ．．．．．．．．．．．．．． 2 ．
Do Vries，assumption as nse of resin in plant crowth ．．．．．．．．．．．．． 24
Delawitre，ncenrrence of Whito l＇ine ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 15
Dendroctonus frontalis，pino hark－bectle，degeription．．．．．．．．．．．．．．．．．．． 5


Growih in thicknesя of pinc ................................................. volume of White line 3
of diameter and cross aection, tablea and diagrams ..... 107-116pine, rate.27
Hall, S. F., statement as to time of sotting pine ..... 65
Hard pine, variation in weight ..... 77
Hardwool fureat, notes on growth of White I'ine. ..... 43
intermixturo with White Pino ..... 12
apecies uneful for planting with pine ..... 64
Hardwouls and conifers, planting in alternato rows ..... 66
mixture with Whito lino ..... 14
Marmonia zini, oneny of pine, noto. ..... 6
Hartig, Ib, conclusion as to enlurance of extrems weather by pintes. ..... 31
Heart woon of Whito lime, instances of remarkable durability. ..... 80
varjation io musiature ..... 87
lleat and drought, effect on pine ..... 51
lleight growth of piue, secdling stage ..... 27
treces after first century of difo ..... 31
Whito I'ine, tables ..... 29
Hemlock, concomitant of white Pire. ..... 40
growill of White Pine in misture ..... 38
mixture ingrow th with White line ..... 32
occurrence with White l'ine in I'ennsylvania. ..... 12
Hill, Ls, J., uote on White Pine at heat of Lake Michiman. ..... 15
Histological characters of pine. ..... 2.
Hobbs, Juhn E., mtatements as to seed production of White l'ine ..... 23
table on height growth of pine ..... 29
Hoyt, B. Fo, statement as to effect of wind on White Pines ..... 50
Humidity, relation to development of White l'ine ..... 40
Hunt, Thomas, plantation of White l'ine at lidotet, 111 . ..... 6
Hypothenemus, twig leetles injurious to pine ..... 51
ree roads, noto on use in logging ..... 20
Illinois, growth of apruce and pine in forty the years ..... 68
orcurrence of White Pine ..... 15
University; note on forest plantation ..... 6.
India, note on Bhotan l'ine
49
Injuries to pine by hmman agency55
Inset oncmies of Whire Pine, discussion.................................... broal-leafel trees of 1875 ..... 64
growth of White Pine at Whiting ..... 67
occurrence of White l'ine ..... 16
Jack l'ine, admixture with White Pine ..... 12, 14
associate of White Pine ..... 40
Jerome, Governor, estimate of Michigan prolucts. ..... 11
Jurenile stage, determination of limit for pine. ..... 36
Kerosene emulsion, remedy for bectles on pine ..... 57
use against plaut-lice. ..... (6)
Kleebahn, investigation of blister rast ..... 53
Lachnus strobi, enemy of pine ..... 59
Lako Michigan, note on growth of White l'ine on shore ..... 22
region, comltion as to reproluction of White Pine ..... C. oricimal atand and present supplies of White I'ine ..... 19
718
Land in Mrasachusetts, estimate of value added by fitty years growth of pine ..... 0
Lath of Whito P'ine, mumatagea ..... 82
Lathe and pickets, use of White l'ino. ..... 81
Laws against injuries to foresta, suggestion ..... 49
Lazenliy, W. K., sute on White Pine in Ohio ..... 15
Leaf fereding insecte injurions to pine, discussion ..... (60Leaves of White I'ine, description
Leonard. spencer practice in setting out pine ..... 2
Life zones of Whlite l'inn ..... 11
Light requirements of White Pine ..... 43
Gime and l'aris green, used against pine bark beetle ..... 56
Iincoln, Nobr. comparative failure in growing White l'ine.. ..... 67
lonm and clay lands, reproduction of White l'ine ..... 62
aflect on growth of bardwoods. ..... 14
prairle, growth of pine in Illinois. ..... 67
wtifl clay, growth of pine at Windom. Minn. ..... 67
Loany and santy soils, reproduction of White l'ine ..... 62
Locality, elfect on height growth of trees. ..... 33
loggers" riald in breakages, etc., allowance. ..... 39
Logging railway, note on eflect on lumbering. ..... 19

1rage.
Loge, swall, reduction of loss
Long-hornel beetles, enemies of pine
Longleat Pine, comparison of anmual rings with White line. specific weight for crown part of stem...........
Lumber contents in 10 foot logs of trees
cut in Lako rogion, by districts, 1873 to 1895.
industry, White Pine, discussion.
markets, iulluenco of Whito lime
of stem of tree, reckoning.
pine, importance of production.
ratio to total volume of pino tree. $\qquad$
ng districts for Whito Piue in Canada.
Lumbering districts for Whito Piue in Canada
of White Pine, change of sucthods.
in Michigan, note.. waste.
Lumbermen, name for tisease of pine tree
Lyman, J. D., record of growth of White Pine
Macbride, T. H., note on White Pine in Iowa.
Maine, acre yield of Whito Pine.
character of White Pine growth
second-growth pine, note
trade in White Pine, and supply
W isconsin and Michigan, comparison of growth of piae.
Maple, Birch, and Beech, effect of shade on White Pive
with Beech and pine in Adirondacks
Market for second-growth pime in Massachusetts
White Piae, change in Germany
Markets for lumber, influence of White Pine
Maryland, oceurrence of White Piue
Massachusetts, market for second-growth pine.
note on groves of pine set fifty years afo ...... second-growth pine, note soil of pine groves and value of young pine growth.
table of annual gain in circumference
Measurements, detail, of anuual gain in circumference of pine. diameter, of trees
of sample trebs and acre yields of White Pine. 116-147 White Pine, tables
Medullary nays in pine, notes
Meeban, Thomas, \&e Sons, statements as to growth of seedling pine.
note on occurrence of White Pine in I'emusylvania.
Mice, spread of fungus discase
Michigan, acre yield of White l'ine, table.
yields of White I'ine and measurements of sam. ple trees

116-131
destruction of young pine growth by fire.
Maine, and Wisconsin, comparison of growth of pine necel of seed for reforesting bare pine lands occurrence of White Pine
original stand and present supply of White Pine value of pine and other products in 1879
Wisconsin, and Minnesola, annual cut of white Pine, 1873-1897.
yield of White Pine, per acre.
Mill construction use of White Pine
Minnesota, beginniug of pine lumbering
destruction of young pine growth by fire
Michigan, and Wiscc=sin, annual cut of White l'ine, 1873-1897
occurrence of White live
original stand and present supplies.
Windom, growth of W bite Pine
Missouri (river) bottoms, growth of White Pine.
growing specimens of White Pine at Columbia
Mixed growth, advantages for pine
Mlodziansky, A. К., measurements and calculations of White
Pine
Model makers, use of White Pine.
Modulus of elasticity of White Pine
Moisture content of White Piue, table
Monohammus, beetles most destructive to pine
confuzor and othor species injurious to pine....
Morphological characters of White Pine
20
8118
1714

Morton, J. Sterling, note on White I'ine trees at home........... Ving.
Nathaniel, experienco in trimming pines ...su
Mond caterpillars aud plant lice on trunks and limbe ..... 59
Mothes, species injurious to pince. ..... fir)
Nancs synougrons with White line. ..... 20
Natural history of Whit. P'me. ..... 30
reproduction of White l'ine, discussion. ..... 62
Nebraska, White Pine at Arbor Loolge ..... B2
New England, condition as toreroduction of White l'in .....
16 .....
16
early commercial use of Whito Pine.
early commercial use of Whito Pine.
83
83
present supply of White l'ine ..... 15
Newfoundland, occurrence of White Dine...


New Jersey, occurrence of White lone ..... $1: 1$,
Now York and Penusylvania, present supply of White I'int ..... 13
distribution of White l'ine

occurrence of White Pine. ..... 17
Nomenclature, synonyms of White l'ane. ..... 3
North Carolina, occurrence of White l'ine ..... 13 growth ..... 6.3
Middleboro, Mass., notes on pine groves of dorty years'
Middleboro, Mass., notes on pine groves of dorty years'
Northwestern Lumberman, ligures for aunual cut of lumber in
Lake States, 1893-1897 ..... 17
Norway Pine, growth in mixture with White line. ..... 32
Spruce, growth in forty-live years at Irrinceton, 111 ..... 67
Nurse crop of trees, cheap method of uso ..... 6
Nursery, growth of White Pine ..... -8
Nurserymen, practice in sowing pine seeds
Nurserymen, practice in sowing pine seeds ..... $\because$ ..... $\because$
Ohio, occurreace of White Pine
$3 \cdot 100$
$3 \cdot 100$
Old-growth pine, tables of measurementy and diagrams
Old-growth pine, tables of measurementy and diagrams ..... 18
Ontario and Quebec, average anuual atues on crown
Orientation, relation to specific weight of pine wood ..... it
Pacific coast timbers, barrier to substitution for White l'ine on82
68
Eastern markets ........................................ ..... 68
supply of cones for seed ..... 24
P'arasitic diseases of White Pino. ..... 51
organisms, cause of "damping off" iu pines.
organisms, cause of "damping off" iu pines. ..... 53
56
Paris green and lime, use against pimes bark-lueetle ..... 59
use against pine weevil.61
Pennsylvania, acre yield of second-growth White I'ine, with measurements of young pine.. 148-169White line.$4:$
and New York, present supply of White l'ine. ..... 19
conditions as to reproluction of White l'ine. ..... 62
occurrence of White I'ine. ..... 13, 15
trade in White Pine; present sapply ..... 17
Penobscot, White Pine trade and supply ..... 17 ..... 25
Peridermium strobi, cause of disease in White I'ine.
Peridermium strobi, cause of disease in White I'ine.
Phloém of pine, characteristics. Physical properties and character of Whito 1'ine wood. ..... 73
lickets and laths, use of White l'ine.
rinets and har of pino per acr ..... 45Pinchot and Graves, Messrs, imures for fitho or pino ver actline bark-bectle, destructive, discussion of injuries.............blight, note
blister disease causod by Coleosporium senecionissurater of a $l u 0$ fret af atril
percentage of heartwood in several kinds.value per acre of tifty years' growth, not
Pines, comparison weight and streugth, table
note as to slarinkage

1haius, reason fur slight success fin cultivation of pino.......... 51
l"lakk, Leards, and " dimension stult" of Whito l'ine sizes.
1lauting notes for Whito lino.
of pine, comparison of nursery grown scellingg with sowing scol.
distance between 1 rees
notes
White line, note on oxperiment at llinois Uhiversity
time for White line, note
Plant-lice, and south caterpillars, on trunka and limiss. korosene emulsions as remedy
luuse, attacks on pine, noto
l'olles, rigening, and pollination.
Pollination of Whise l'ine, sotes
Polyporus annosus, imjary to coniferous irces
P'oplar, grow th ou pine slashings
Prespue Isto County, Mich., height growth of trees
I'rinceton, $11 \mathrm{l}_{\mathrm{o}}$ pine of forty-live years' growth.
1'rotective washes against pine bark-bectle.
l'ublie sentiment, value in preservation of forests
" l"unky pine" disease of trunk of pine tree
I'ythium de baryanum, causo of "damping oll" in joung pines
Quelsec ant Ontario, average anumal dues on crown timber...
liate of growth and volume of Whito I'ine tables.............. of White l'ino
lied line, admixture with White leine
assochate of White l'ine
mixturo with White l'ine
E foresting with White line, caso.
Ifemedies for pine bark-bectle.
Ibeproluction, artiticial, of pine, discussion of White l'ine, natural, discussion
liesceding, importance ins reforesting with piae
Lesin ducts, discussion
in cortex of pine
of pino, ctiect of fungis diseases
1:hizomorpls, action in fungus disease of Whito line
linges, annual, comparison for varicties of pine
Locky Mountains, noto on Whito l'iue.
Loot, stem, aud branch of Whito I'ine.
systen of White l'ine, relation to place of growth.
Loots, seat of fungus disease of jiucs
" lhossing " protcction against pine bark-lorer.
Ihotation of trees in forest management.
Loth, fillabert, articto on "Woon of the White I'ine"
conclusions as to allowanco for wasto in saw. ing...
Saginaw, Mich., first sawmill
St. Lawrence liver, occurrence of White line
St. Louis, growth of White l'ine trade
sand, loany, growth of Whito l'ine.
preference of White l'ino.
spread of fungus in cansing "damping off" of pines.
Samdy and loamy aoils, reproduction of White Irine. scils, relation to specitio weight of pine wood
Sapwoul of tree, variation of moisture.
White l'ine, note on change to heart woorl
Sawlies, eneruies of pino, notes
Sawing of fumber from White liac, zotes.
Sawyer, jussible wath of pine.
Sawyers, fine, and other burers, dasussion.
Scale iusects, kerosene emulsion as remedy
schedules and sample records, forms.
Schizoneura pinicola, enemy of Whito l'ine, note.
Schrocder, $J_{\text {. proped }}$ prassification of wool of pine.
Scolytidit, chemices of White l'ine other, timber beetles.
Scotch ${ }^{\prime}$ 'ine, conparison of resin tucts with White $\mathrm{I}^{\text {Pin }}$, growth in forty-livo years at Princeton, 111 . Germany
sesult of planting wath white Pine
Seasoning and drying, etfect on strength of White Pine of White l'ine, comparison with other pines. notu...
Seconfl-growth pine, ilevelopment
secoud-growth pine, market rnd use in Massachuseth.
Page
tables of measurcment and diagram. ..... 00-10665
White line, acro yich, with measurements of
young piue148-169
Seeding of Wbite line in Germany, noto. ..... -109
Secdling stage of pine, height growth. ..... 68
27
Seedlings of yiue, growth; destruction by fire ..... 62
protection. ..... 27
Sed, unmber to the ounce for pine; to 100 fuet of drill. ..... 63
of pine, method of sowing. ..... 63
White Diwe, cillect of exposure upou vitality ..... 62
production, discussion ..... 23
Seeds of pine, conditions for germination ..... 27
percentago germinating. ..... 64
retention of vitality. ..... 26
White l'ine, descrijution. ..... ※
ripening. ..... 33
Shade emblurance of White Piue, noto. ..... 43
for seed beds of pine ..... 63
Sirape, factor, in Whito Pine ..... 37
use in finding cubic and boral content of treo. ..... 85
Shingles, laths, ctc., note ou output in lake States ..... 18
of Whito Pine, durability ..... 80
nse of White Pine. ..... 81
Shipbuilding, use of White Yine ..... 81
Shipping case of Whato line, advantages ..... $8:$
Shortleaf Prine, associato of White l'jne ..... 40
Shrinkage of White Pine, lliscussion ..... 77
Size of White line tablo ..... 74
Suap, fisl-oil, uso against pine weevil.20
soft, use against pinc.bark beotlo. ..... 5
soda, washing, use against pine bark boe llo ..... 510
Soil and climate demands for development of Whito l'ine ..... 30
inflaence on hegght growth of trees ..... 33
Mack loan, grow th of pine ..... c6
character for use against "damping off" ..... 53
for White l'ine, notes ..... 15
of l'alatinate, character for growth of puo. ..... 68
soils and soil canditions for White line ..... 13, 14
light, advisability of sowing seed of phe broadcast ..... 61
south Carolina, occarrenco of White line15
Dakota, failuro of plantiogs of White Pineat Lrookings. ..... 67
Succitio weight of pine notes ..... 73, 71
Spores of Polyporus annosus, spread of disoaso in pines.52
springer, J. S., noto on White l'ine. ..... 16
Spruce, concomitant of White Piue ..... 40
forest of Canada, noto ..... 15
liability to beang uprooted ..... 50
mixture with White line ..... 14
Norway, recorl of grow th in Germany. ..... 69
Sprucus, armixture with White Dino ..... 12
Staminato llowers of Whito line description ..... 23
Sicm, root, and branch system of White l'ine ..... 21
Storms, injurics to forest ..... 50
strength and weight of pinos, comparison ..... 81
of pine, variation with Jocation of wood in ireo ..... 78
White Pine, diseussion ..... 77-7!
Sirncture of White line, notes ..... 73
Subsoil, stifl, effect on young pine ..... 66
Sugar Maplo, usefuluess for planthip with pino ..... 6
Pine, relationship to White l'ine ..... 21
Sunlight, valuo against "daropiug of" is pines. ..... 5
Supples of White Pine, original and preseat, disenssion. ..... 15
Swanp trees, note on aprecific weight. ..... 74
twiss Stono Piue, relationship to White lino71
21
Synonyms of White Pine. ..... 0
'Gamarack, mixture with White lime. ..... 14
'laper of pine tree, relation to conditions of gruwth ..... 36
White I'ine, variations ..... 37
Temperature, relation to development of White line ..... 40
to prevent "damping of " ..... 54
Touncsseo and West Virginia, present aupply of White line ..... 10
Thecla niphon, injury to pine ..... 60
Thimbing of pine noto ..... 66
Whito Dine, conclusion from record at Jarming- ton, N. LI ..... 48
'Timber heetles and other scolytildo, discussioncommercially valuable, distribution of White l'ineof White liue, diagrams on weight...........................variation in atreneth with lucatiun in
products of Michigan, comparison for 1879 with othetproducts

I'ag".| $5 i$ |
| :--- |
| $1 i$ |$1:$

trew

                    ation in atrenth with location in
    
                    tressproducts of Michigan, comparison for 1879 with othercacographus, injury to pites, doscriptionpini and other sporeios, injury to pine.
    Tortricid moths, cnemies of pine, remodies. .
Tomicus cacographus, injury to pines, doscription
Tracheids in pime, putes.
Tramete* radicijerda, ixjury to cuniferous trees
Transplantimg pine secdlings, notes.
Tree, largest pine actually measured
measurementa and calculation for determimation of volum
Trees, cubic and lumber contents, note deformed, damaged by White l'ine weeril. $\qquad$ forest.grown, diameter growth at various licights. living, danger of attacks from bark beetles. $\qquad$of different agen, table showing arerage weight, moisture content, and slirinkageyoung, averago taper.
74, 75
Trunks and limbs of pine, moth caterpillars and plant-Jice(Sere also Stems and Holes.)
Tube-builder, pine, mavner of injury
Turpentine flow from holes mate loy bark beetle.
Twig beotles, genera injurious to pine
Upham, Warren, note on soil for White Pine.
Upland trees, note on specific weight.
TIrooting danger of Whitu Pine.
Uprooting danger of Whito Pine.
Uses of White Pine, disoussion.
Varieties of White Line $\qquad$
Vircinia, occurrence of White I'ine15
Volume and rate of growth of White L'ine, tables.-1015
grow th of pine, variation with soil
of tree, measurements and calculation ..... 85
Wadsworth, S. A., note on White P'ine in Illinois15
Wappes, L. Bavarian forester, report on White Pine ..... 68
Ward, Lester F'., noteon oceurrence of White Pine in Marylaniland Virainia
Wash, composition for uso against bark beetles for protection against Whito I'ine weevil
Washes, protective, against pine bark-bcetlo
Washington City, first apriog visitation of White I'ino weeril.
Watering, method for prerention of "dampiug off"
Weather, relation to shading of pine seedlings.
Weed growth, drawback to reproduction of pine.
Weevil, White Pine, discussion
measures for protection of pine ...........
time of appearance

of White l'ino timber, tiagrams......................
woul of Whilo L'ine, dise'nasion . ............ 73

Western prairides, astablishment of pitus groves.......................... 6 .
White I'ine, advautage ovor other pines in reproduction frosn มง-णh..............................
frues in withe ntorm .........
lurmag of wilting terminal as protection againat. weevil

59


Whiting, A. H., growth of White l'ine at home ...................... 67
Williams, R., note on Whites'ine in Iliuois.............................. . . .
Williamsport, Pa., trade in W'hite I'in..................................... 1 .
Wind, imuunity of White l'iae from injury'.......................... 50
Windom, Minn., growth of Whito IPine in thirteen years ...... 67
Winds, drying, injurious conserfuencers to pine.................... . . . 50
Wisconsin, acre yield of White l'ine, table............................. 41
yields of White I'inn and measurements of
satmple trets..............................................31 18 .
destruction of young piue growth ly fire.......... 6 .
first lons takon to St.. Louis .................................. 1 .
heary production of pine secd ........................... 23
Maines and Michigan, conpurisonof frowth of pine $\quad 3 / 3$
Michigan and Minuesoth, anmal cut of White
l'ine, 187: 1897 .................................................. 17
oncurrence of White Pine
11
original stand and present supply of White l'ine.. 19
yield of White l'ine. per atro ---.-. -...................... 20
Wood, amount formed in pine in differcnt decades of growilı.. 37
unction in economy of 1 reo .........................................

24
kiln-dry, variation in specitic weight............................. $\quad 73$
note on change in White Pine . . . . . . . . . . . . . . . . . . . . . . . . . 70
of White l'ine, character and plysical properties........ 73

remarks.................-...-.......................... 14 - 26
Woorls, other, comparison with White I'ine.............................. 80
Wurtemburg, srowth of White Pino............................................... 68
Yield, arce, of White I'ine in natural forest ................................. 46



second-growth White I'ine with measurements of

Yields, acre, of Whito Pine and measurements of sample
trees ...................................... ............................... . . . 116147
Fork County, Me., statement as to reproduction of pine........ 62
-
-
A


[^0]:    

[^1]:    

[^2]:    No. 1. From old pasture after one year's tillage; 5 fect from No. 6 ; bore cones.
    No. 2. With Nos. 1 and 3 , and from similar trees.
    No. 3. Oht pasture, suil shathow, gravelly loam on compact subsoil of sand; pine mixed with Hembeck, Oah, and Maphe
    No. 4. Level ground, soil heavy loam, bomewhat shaded.
    No. 5. From ull pasture after ono Jear's tillage; 5 feet from No. 6 ; bore cones.
    No. 6. From old pasture after one year's thllage; 5 fect from No. 1; bore cones.
    
    No. 8. From old pasture after one yoar's tillage; 5 foet trom No. 6; bore cones; touchod anuther t-inch diameter.

[^3]:    'Cf. Athinson, Cornell Univ., Agr. Exp. Sta. Bull. 9t, 189.".

[^4]:    In compinny with Mr. Juhn l\&. Hublus, who is thoroughly familiar with the history of the various pioces of forestexamined, it visit was made to a mmber of places on which White liue was growing, others on which gonng pine serdlings wero coming in, and still others in the immediate vicinity where none were to be seen, although the general conditions of soil and situation were pratically itontical. The soil, much of it, was light and sandy, with a erowth ul Comptonia, P'eris, Cinttheria, and other plants common on pine land.

    A large number of trees had a crop of cones, the last year before this visit in which there was a good crop having been $1 \times 79$, accurding to Mr. Hoblos. Going lirst to an open field that was furmerly covered with pine trees, it was found to be very thickly coveral with young seadlings, from abs fuches to 2 feet or more in heient, that had sprums "p in such abuudance that a bare spot was hardly to bo seen over the whole tract. This picco was cut over in tho winter of $1879-x 0$, the ground was not burned orer, and there being a good crop of seeds, these had

    On froing to other pieces in tho vicinity, from which tho pine hal beon cut at different times since $1 \times 79$, a most. striking contrast was olscrsed. On theso pieces that seomed otherwise just liko the first, aud with the conditions just as favorable for at second growth, only a very fow pino seedlings were to be seen. "These few may latve eome from secls carrich ly wiud from the neighboring forests, but evilently the gromud had not been secded as tho first piece bad, and it was impossible not to draw tho conclusion that tho difionenco was due simply to tho fact that tho first pieco was fully secded, while tho others weve not. Repeated observations of similar pieces of land lal further to tho conchasion that no thendence can bo placel upou the springing up of sects that have lain dormant in the gromme for a torm of years; or, in other words, althongh tho scenls of the White pine retain their vitality for a long time if lopt in in ury hace, there is a lack of evilence to show that this is the case in the natural forest, where they are alternately elry and wet.

    Other interesting conditions of growth were noticed in the samo region. In tho vicinity of standing pine forests, partimbarly on their beeward side, seedlings of diticont ages wero coming np, offen very thickly, but upon entering tho forest, :fter the lins 2 or 3 ronds, no nore of these were to he seen, their growth having ovidently been freventod hy the dense shate of the standing trees. In hardwoods, on the other hand, where the surgoundings were a jittlo more favorable, some young pines wero growing here and there.

    All ubservations remforeen the truth that there is no mysterioustuccession of forest grow th, involving necessary altornations, and that the White l'ine dows actually grow and fourish fom an indefinite number of generations on the same laud, if only the necessary seediug has heon insured.

    In such recions as have just been described reforesting with the White line is a comparatively simple matter. Where mothing more is done than to thke alvantage of natural comlitions loy felling the trues in seed years, or by leaving secd trees lure and there, an ahumbant crop of young pimes may often lo secured. As a matter of fact, large

[^5]:    We are likely to repeat in the Northwest, on an extensive scale, the history of several of the Eastern States. Under inducements held oat to encourage immigration, many settlers have been led to take up laud all through the worst part of Michigan and Wisconsin, including the "barrens." They clear the land, seed it, if they can, with clover, and put in other crops, work in the adjacent pine woods for a living, and "develop the country," thus doing for the State exactly what needs to be done and what the state has neglected to do for itself; but it is a disastrous experiment for the settlers. The many farms kept up in this way for a while may liually be abandoned, but the whole region will then be in a great measure secured against extensive fires, and tho lands that have been plowed and worked over will be in a better condition for reforestiag.

[^6]:    20233-No. 28-9

[^7]:    Average annual accretion: White Pine, 65 cubie feet 311 liect B. M.

[^8]:    Itrrage anawal accretion: White l'ine, 12 cubic feet
    71 feet 13. M

[^9]:    
     jnches diameter amal under 40 fect himh. Foung White line, 35 .
    
    
    
    
     Whito J'ine, go.

    Cndergrowth: Oak, 53; Gray líreh, 1, amu a few small Cherry, mot counted.

[^10]:    Intermixed species: died Pine, 6 from 10 to 14 inches diameter and under sol ferthigh; Maph, 1 over 10 incles diameter and under 80 feet high.

    Vindergromth: Hemlock, 9R; Jirech, 4.
    ${ }^{2}$ Intermixcel sprcies: Licel l'ine, 3 from 10 to 14 inches diameter and under 80 feet high. Miaple, 2 from 3 to 6 inches diameter ami orer
    
    
     Maples; minall gake.

[^11]:    
     feet high. l'itch l'ine, 1 over 10 inchos diameter and over su feet high; 9 from 10 to 14 inches ditmeter and umber fo fet high.

    Cudergromth: Maple, 9; (iray Birch, 8; Cherry, 1; Oak, 4 ; Npruce, 1; numeroms suall ( aksamh l'oplars
    
    
    
    
    
    

[^12]:    Infermixed species: Oak. 1 over 10 inchog diametor and over 50 feet high; 1 over 8 isches diameter and under 50 feet higli; 3 from 3 to 6 inclios diameter and over 40 feet hierh.

    C'mileryronth: Oak, 381 ; Maple, 64 ; Chestnit, 41; Gray lijeh, 1; Iellow Birch, 1: Jemlock, 1; Cherry, 14, with numerous amall treen.
    
    
    
     lianmets and over Gol feet lugh.

    C'ulerurowth: Ash, 45; Maple, 8; Cherry, 3; Onk, ${ }^{5}$; Hamamehs, 10; C'Hestnut, 1; EIm, 2.

