

UNIVERSITY OF ILLINOIS BULLETIN vol. III AUG. 15, 1906 No. 22

[Entered at Urbana, Illinois, as second-class matter.]

FUEL TESTS WITH ILLINOIS COALS

L. P. BRECKENRIDGE S. W. PARR H. B. DIRKS

BULLETIN NO. 7 OF THE UNIVERSITY OF ILLINOIS ENGINEERING EXPERIMENT STATION

> URBANA, ILLINOIS PUBLISHED BY THE UNIVERSITY

T 潔

HIS BULLETIN is the seventh of a series of bulletins published by the Engineering Experiment Station of the University of Illinois. The Engineering Experiment Station was established by action of the Board of Trustees December 8, 1903. It is the purpose of the Station to

carry on investigations along various lines of engineering, and to study problems of importance to professional engineers and to the manufacturing, railway, mining, constructional and industrial interests of the state.

The control of the Engineering Experiment Station is vested in the heads of the several departments of the College of Engineering. These constitute the Station Staff, and with the Director, determine the character of the investigations to be undertaken. The work is carried on under the supervision of the Staff; sometimes by a Fellow as graduate work, sometimes by a member of the instructional force of the College of Engineering, but more frequently by an investigator belonging to the Station Corps.

The results of these investigations will be published in the form of bulletins, and will record mostly the experiments of the Station's own staff of investigators. There will also be issued from time to time in the form of circulars, compilations giving the results of the experiments of engineers, industrial works, technical institutions and governmental testing departments.

The volume and number at the top of the title page of the cover refer to the general publications of the University of Illinois; at the bottom is given the number of the Engineering Experiment Station bulletins or circulars.

For copies of bulletins, circulars or other information, address the Engineering Experiment Station, Urbana, Illinois.

university of illinois Engineering Experiment Station

BULLETIN NO. 7

AUGUST 1906

FUEL TESTS WITH ILLINOIS COALS

BΥ

L.	Ρ.	BRECK	ENF	RIDO	GE,		PROFESSOR (\mathbf{DF}	MECHANICAL E	NGINEERING
s.	w.	PARR,					PROFESSOR (ЭF	APPLIED CHE	MISTRY
H.	в.	DIRKS,	•	•		•	ASSISTANT I	N	MECHANICAL	CECHNOLOGY

During the last ten years a considerable number of boiler trials have been made at the University of Illinois. Many of these have been made under the boilers in the power plant of the University. Still other trials have been made with boilers in use at the plants in neighboring cities. In some instances experts representing several special stoker and furnace companies have been present at these trials and operated the devices in which they were interested. For the most part, however, the tests have been made in order to instruct students in the usual methods of boiler testing, and the boilers themselves have been operated under such usual conditions as happened to obtain. In some of the earlier tests all of the data relating to the heating value of the coals were not obtained, and for such tests several items depending on these values are necessarily omitted. While in most cases these tests have not been made with the object of making a comparison of coals or of appliances, nevertheless, it has seemed wise to publish the results obtained and also to exhibit these results side by side as they apply to various forms of furnaces, types of boilers or kinds of coal. It is entirely probable that the results obtained are equal to those generally obtained under the varying conditions of plants using Illinois coals. Many more boiler trials have been

made than are here reported, but only such are included in this report as appear to be free from any indications of errors in methods or results. For the purpose of this bulletin all of the results of the tests have been carefully rechecked.

The work of the department of Applied Chemistry has not only supplemented the work relating to boiler trials by furnishing the composition and heating value of the coals used in these trials, but it has also examined and tested a large number of Illinois coals not yet tested under boilers. In connection with this subject this department has perfected several new devices very useful to chemists and engineers, designed for making the ordinary determinations of the heating values and composition of coals. The Parr calorimeter, one of these devices, has found ready sale among the operators of many of the power plants of the country as well as among the consulting chemists and fuel experts. It is expected that a separate bulletin will soon be published setting forth in detail many of the new methods which have been developed by this department, and giving the complete results of its investigations relating to Illinois coals. It is hoped that the tables of the chemical composition and heating values of Illinois coals, which form a part of this bulletin, will furnish engineers and manufacturers with useful information in this important field.

With the above somewhat general statement in explanation of the character of this bulletin, it may now be advisable to refer more in detail to the special features which are intended to be brought out in the following pages.

BOILER TESTING

For many years engineers have been making "boiler tests" with the object of finding out how many pounds of water in the boiler could be evaporated with one pound of coal. In order that the results of the tests might be comparable, it became evident that some common method of making tests should be agreed upon and also that the tests made should be reported in a uniform manner. A committee of the American Society of Mechanical Engineers recommended to that Society in 1899 a method of testing boilers and also a method of reporting such tests. These methods have been largely used since their recommendation at that time. The many expert engineers who are to-day so familiar with these methods will probably not be interested in the pages

 $\mathbf{2}$

BRECKENRIDGE, FUEL TESTS WITH ILLINOIS COALS

immediately following. Having in mind the owners and operators of power plants as well as manufacturers and young technical students, it has seemed worth while to present somewhat in detail the following subjects:

(1) Observations to be made during a boiler trial.

(2) Appliances used during a boiler trial.

(3) Form of report, methods of operation and explanation of computations.

I OBSERVATIONS TO BE MADE DURING A BOILER TRIAL

In the report of the committee of the American Society of Mechanical Engineers,¹ 1899, on the revision of the standard code for conducting steam boiler trials, two forms of report are submitted, a Complete Form and a Short Form. These are both shown in Section III, page 21. The observations necessary to complete either of these forms are given in Table I. An explanation of some of the methods used in obtaining these observations and the forms used in recording them follow.

COAL, WATER AND ASH

The two fundamental points to be determined in every test of a steam boiler or furnace, regardless of the special or specific purpose of such test, are the pounds of water evaporated by the boiler and the pounds of fuel necessary to produce such evaporation. To determine these two points it is necessary to know the number of pounds of water fed into the boiler and the pounds of fuel fed into the furnace. The possibility of an error in either throws doubt upon all the indications of the test. Each item, therefore, should be ascertained in a manner that proves its own correctness, and the records must be such that if errors are made, they will be clearly exposed.

Coal.—The weight of the coal is best obtained by means of a barrow or car with a capacity of 500 pounds. The car should be loaded uniformly each time and weighed on platform scales in front of the furnace. The total weight and the time of weighing should be recorded in the log. From the car the coal should be fired directly into the furnace and the weight of the separate

¹ See Trans. A. S. M. E, Vol. XXI, p. 34.

TABLE I

OBSERVATIONS TO BE MADE DURING A BOILER TRIAL

Short Trial	Standard Trial	Observations
1	1 2	Weight of water fed to boiler Weight of coal as fired (sample)
ã	3	Weight of ash and refuse (sample)
4	4	Moisture in coal
5	5	Steam pressure by gage
6	6	Force of draft: between damper and boiler
7	7	in furnace
	8	in ash-pit
8	9	Temperature: of feed water entering boiler
9	10	of escaping gases from boiler
	11	of external air
	12	of fire-room
	13	of steam
	11	of feed water entering heater
	15	of feed water entering economizer
	16	of escaping gases from economizer
	17	of gases in furnace
10	18	Moisture in steam by calorimeter
	19	Analysis of nue gases
	. 20	Smoke observations
	21	Average unickness of nre, intervals of nring

charges and time of firing entered in the log. After the entire car-load of coal has been fired, the weight of the empty car and the time should be recorded. The sum of the separate charges must then be equal to the difference in weight of the car when loaded and empty. A convenient form for recording the coal fired is shown in Form I. From each car-load of coal fired an average sample of coal should be taken for moisture determination and chemical analysis. The sample of course must be taken before the coal is weighed and should be about two per cent of every carload, or about ten pounds. At the end of the test these samples from the different cars are mixed, pounded into small sizes, and then quartered until enough is left to fill a two-quart jar. The jar should then be sealed, to prevent loss of moisture, and sent to the chemist.

Feed Water.—The water fed to the boiler should be both weighed and measured, as dependence upon measuring alone will introduce errors due to uneven filling and variations in temperature; for the latter, however, corrections may be made. The measuring tank or preferably two tanks should be set on scales in such a position that the water can be delivered directly into the suction or settling tank as shown in Fig. 1. The measuring tanks should be filled and emptied alternately, the time of each weighing to be noted when the tank is empty, the tanks being designated as No. 1 and No. 2. In no case should a simple tally be recorded for

FIG. 1 ARRANGEMENT OF TANKS AND SCALE FOR MEASURING FEED-WATER FED TO BOILER

each tankful, as the liability of error is thereby increased. When the boiler tested is of small capacity, one weighing tank will be sufficient. A convenient form for recording the feed water measurements is shown in Form II.

To guard against the loss of all data, due to accidents, it is best to have coincident records of the water and coal fed to boiler. For this reason it is well to have a float in the suction or settling tank, and each time an entire car-load of coal has been fired, the time on the feed water log should be recorded, also the height of water in the boiler and in the settling tank. This will also provide a check on the uniformity of operations.

Ash.—The ashes and refuse should be weighed dry. The time of each raking of the fire and cleaning of the ash-pit and the weight

FORM I

LOG OF BOILER TRIAL NO

Made at.....

Date	By
------	----

Boiler No.....

Fireman.															
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

COAL SHEET

TIME	COAL DELIVERED TO SCALES POUNDS	COAL ON SCALES AFTER EACH FIRING POUNDS	COAL FIRED EACH TIME POUNDS	FUEL
	ł			Moist coal consumed, pounds
				Moisture in coal, per cent
				Dry coal consumed, pounds
	••••••			Wood consumed, pounds
•••••			•••••	
				Coal equivalent of wood (-wood x-4) b Total dry coal consumed including wood equivalent, pounds
				Total dry refuse, pounds
•••••••	•••••		••••	Total dry refuse, per cent
•••••	•••••	•••••		Total combustible
· · · · · · · · · · · · · · · ·	•••••		••••••	DESCRIPTION OF FUEL
•••••	•••••	•••••	•••••	••••••
				Commercial Name
				Commercial size
·····				Lumps, per cent
•••••			•••••	Small goal nor cont
				Small coal, per cent
				Slack, per cent
•				Appearance of coal
••••••			••••	S Record the times when fires are cleaned
•••••	•••••		•••••	

BRECKENRIDGE. FUEL TESTS WITH ILLINOIS COALS

FORM II

LOG OF BOILER TRIAL NO.....

	Μ	ac	le a	t.																			
--	---	----	------	----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Date

By			• • • • • • • •
----	--	--	-----------------

Boiler No	Fireman

FEED WATER SHEET

TIME	WATER DELIVERED TO FEED TANK POUNDS	TEMP. OF WATER IN TANK	TIME	WATER DELIVERED TO FEED TANK POUNDS	TEMP. OF WATER IN TANK	REMARKS
			•			Test began at
						o'clock M.
•••••						Date
	,					Test closed at
		••••••				o'clock M.
•••••		••••••			•••••	Date,
	•••••	•••••		·····		
					•••••	
	•••••				•••••	
	•••••					

FORM III

LOG OF BOILER TRIAL NO.....

Made at.....

Date.....

|--|

Boiler No.....

Fireman...

	PR	ESSUR	ES		TEMPI	ERATUI	RES		ER	
TIME	STEAM GAGE	DRAFT GAGE	BAROM- ETER	BOILER BOOM	EXTERNAL AIR	FLUE GASES	FEED WATER	STEAM	HEIGH OF WAT IN GLASS GAGE	REMARKS
										Test began at
										o'clock M.
										Date,
										Test closed at
										o'clock M.
								••••••		
										,

BRECKENRIDGE. PARR AND DIRKS FUEL TESTS WITH ILLINOIS COALS

FORM IV

LOG OF BOILER TRIAL NO.....

Made at.....

Date.....

By.....

Fireman.....

Boiler No....

	CA	LORIME	TER	D	RAFT			~	
TIME	GAGE PRESSURE	STEAM DISCHARGE OR CALORI- METER TEMP.	WATER SEPARATED OR CALORL- METER PRESSURE	BETWEEN DAMPER AND BOILER	FURNACE	IN ASH PIT	HEIGHT OF WATEH IN TANK	HEIGHT OF WATEI IN GLASS GAGE	REMARKS
1				-					
									·····
•••••		•••••						•••••	
									·····
,			•••••						
·····		•••••							
								•••••	
•••••									
					····			•••••	••••••
								·····	
			•••••						••••••
		•••••						•••••	
•••••									
			•••••						

FORM V

LOG OF BOILER TRIAL NO.....

Made at	
Date	By
Boiler No	Fireman

FLUE-GAS SHEET

TIME	CO ₂	O 2	CO	HYDROGEN AND HYDROCAR- BONS	TOTAL	REMARKS
2						
••••		····		•••••		
·····						
•••••						
			····;···			
				· · · · · · · · · · · · · · · · · · ·		
						······
•••••						
	1	1	1			

BRECKENRIDGE, PARR AND DIRKS FUEL TESTS WITH ILLINOIS COALS

of ash removed should be recorded in the same log as the weight of coal, Form I. A representative sample of ash should be taken at every cleaning and saved in order to determine the principal characteristics of the ash, a proximate analysis giving the actual amount of incombustible material being made of each sample.

GENERAL OBSERVATIONS

Although the main points to be determined in a boiler trial are the weight of water evaporated and the amount of fuel burned, the general observations of pressures, temperatures, etc., under which this evaporation takes place and which tend to secure the accuracy of these two measurements must not be overlooked. It is necessary that all available data be obtained and recorded in the log for use in making comparisons. The value of the observation will depend primarily upon its correctness and the greatest care should be exercised in obtaining and recording observations. Too often the observer is guided by personal opinion and former readings, and the value of the observation as an indication of some specific occurrence is entirely lost.

All general observations should, as nearly as possible, be taken at the same instant, the exact time in all cases being recorded in the log. As a rule all observations should be recorded in duplicate, this being necessary especially where several persons are concerned with the results. Duplicates are easily obtained by placing carbon copying paper below the original log. The duplicates are then obtained as the results are originally recorded. Forms for recording the general observations are shown in Forms III to V.

For convenience it is best to have the log sheets tacked to a board, which may be suspended on the wall at some convenient point. This avoids the accumulation of dust and dirt when the sheets are lying around unattached in a horizontal position.

Sufficient time should elapse between temperature measurements if only one thermometer serves for taking several observations, in order to allow the thermometer to assume the new temperature. Where the range of temperature is large, however, this should never be practised, and it will be preferable in most cases to take only the most important of the readings, being certain of its correctness.

Determinations of the moisture in the steam are necessary to make corrections in the amount of water evaporated, and should be made at regular intervals and entered in the log.

The analysis of the flue gases is important as it indicates to some extent the progress of combustion in the furnace. Notwithstanding, the general use of this analysis is still very limited, although in some instances a record of the CO_2 in the flue gases is regularly kept. The value of the analysis consists in its being an indication of the amount of excess air being used. The flue gas to be analyzed should be an average sample taken continuously over a considerable period of time. This is necessary as the composition of the gases varies from minute to minute. Under ordinary conditions an analysis every half-hour is sufficient; special readings, however, may be taken more often. The apparatus for sampling will be explained in the following section.

II APPLIANCES USED DURING A BOILER TRIAL

Since the corrections to be applied to the weights of fuel and water fed to the boiler are dependent on the general observations, the appliances necessary for their determination must be considered. The correctness of the observations will depend primarily on the instruments used and their location. In the following paragraphs these are discussed to some extent.

DESCRIPTION OF APPLIANCES

A list of the apparatus necessary to take the observations given in Section I is shown in Table II. The apparatus required

TABLE II

APPLIANCES FOR OBSERVATIONS GIVEN IN TABLE I

Short Trial	Standard Trial	Appliances	
1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9 10 11 12	Measuring and suction tanks for measuring water Platform scales for weighing water Car or barrow for handling coal Platform scales for weighing coal Standard calibrated steam gage Draft gages, U tubes or otherwise Thermometers according to observations made Flue gas thermometer Pyrometer for furnace temperatures Throttling or separating calorimeter Orsat apparatus for flue gas analysis Smoke charts	10 I I I

BRECKENRIDGE, PARR AND DIRKS FUEL TESTS WITH ILLINOIS COALS

in the determination of the weights of coal and water was discussed in the previous section and needs no explanation other than that the scales used should be calibrated so that a correction may be applied if necessary. The suction tank should also be calibrated so that the contents of the tank are known for all positions of the float.

For measurement of the steam pressure an ordinary steam gage calibrated by comparison with a standard gage or other means will suffice. A good recording steam gage carefully adjusted and compared at frequent intervals with the steam gage provides a good check. Various forms of draft gages are used to determine the draft pressure. The ordinary U tube is the most common form and gives very satisfactory results. A gage of the type shown in Fig. 2 has been extensively used at the University and gives results which can be read with greater accuracy than the U tube.

FIG. 2 DRAFT GAGE

In the choice of thermometers care should be taken that the range of readings will fall within that of the thermometer. Where thermometers are likely to be handled constantly, a metal casing is desirable. Where temperatures within a pipe are required, as in steam or water pipes, thermometer cups, as shown in Fig. 3 will need to be used.

Either mercury or a heavy cylinder oil may be used in these cups; the former, however, is preferable both for cleanliness and accuracy. For the measurement of flue gas temperatures a special mercury thermometer is used, reading up to 1000° F., with nitrogen compressed above the mercury.

The thermometer should be calibrated from time to time to insure its correctness. The location of the thermometer will be discussed in the following section.

FIG. 3 THERMOMETER CUP, USED TO OBTAIN TEMPERATURES WITHIN A PIPE

The measurement of furnace temperatures is very difficult, and no especial form of pyrometer has proved to be entirely satisfactory. The Wanner optical pyrometer is being used at the Government Coal-Testing Plant at St. Louis, and seems to be giving fair results.

FIG. 4 SAMPLING NOZZLE FOR STEAM CALORIMETER

For determining the moisture in the steam, as long as the moisture remains below three per cent, any one of several forms of calorimeters may be used with good results. Above this point, all calorimeters are inaccurate, owing to the inability to obtain an average sample of the steam. The sampling nozzle, Fig. 4, should be made of $\frac{1}{2}$ -in. pipe, and should extend across the diameter of

BRECKENRIDGE. FUEL TESTS WITH ILLINOIS COALS

the steam pipe to within half an inch of the opposite side, being closed at the end, and perforated with not less than twenty $\frac{1}{8}$ -in. holes equally distributed along and around its cylindrical surface, but none of these holes should be nearer than $\frac{1}{2}$ inch to the inner side of the steam pipe. The calorimeter and pipe leading to it should be well covered with felt. When a separating calorimeter with attached gage for determining the amount of steam passing through the calorimeter is used, such gage should be calibrated by taking readings over twenty minutes in length, and condensing the steam passing through the calorimeter during that time, the weight of condensed steam being compared with the indication on the gage. This should be repeated for the entire range of the gage. Superheating should be determined by means of a thermometer placed in a mercury well, inserted in the steam pipe.

FIG. 5 FLUE GAS SAMPLER, ADVISED IN THE A. S. M. E. STANDARD CODE FOR CONDUCTING STEAM BOILER TRIALS

For determining the composition of the flue gases a sampling tube for drawing the sample of gas from the flue is necessary, also apparatus for analyzing the gas. There has been a great diversity of opinion regarding the method to be used in obtaining the

FIG. 6 ORSAT APPARATUS FOR ANALYZING FLUE GAS

sample, due probably to the varying conditions in different boiler settings and at different points in the same flue. In the trials carried on by the United States Geological Survey at St. Louis, both the sampler advised in the A. S. M. E. code, Fig. 5, and an ordinary pipe closed at the end and perforated with holes equally spaced along its entire length have been used. The results indicate the advisability of using the latter, and it has been adopted for use in all future trials. To get a uniform flow through all the perforations, they are made of such size and number that the sum of the areas of the perforations is less than the cross sectional area of the sampling tube. The Orsat apparatus is the one mostly used for analyzing the flue gases, as it is simple in operation, and with a little care gives reliable results. To insure the

FIG. 7 THE RINGELMAN SCALE FOR GRADING THE DENSITY OF SMOKE

total absorption of the various gases, care must be taken that the absorbing solutions are in good condition, and they should therefore be renewed from time to time. If the flue gas is to be collected over water, a saturated salt solution should be used, as water has a tendency to retain some of the CO₂ when a considerable quantity is present, and to give it up later when there is a smaller quantity of this gas, thus causing errors in the results. Fig. 6 shows the type of Orsat apparatus generally used.

If determinations of the relative density of the smoke are to be made during the trial, the Ringelman smoke charts shown in Fig. 7 may conveniently be used. These are placed in a horizontal row about fifty feet from the observer, and as nearly as convenient in line with the chimney. At this distance the lines become invisible and the cards appear as different shades of gray. The observer by glancing from the chimney to the cards determines which card most nearly corresponds to the color of the smoke and makes a record accordingly.

LOCATION OF APPLIANCES

Of prime importance in taking observations is the location of the apparatus used. On account of the variation in different types of boiler settings it will always be necessary to describe clearly in the report of the test the location of all apparatus. This is best done by indicating on drawings or diagrams their position on the setting.

Feed Water Temperature.—As the methods used in supplying feed water to a boiler vary, so does also the location of the thermometer for the temperature measurement of such feed water. If an injector be used, it should receive steam directly through a covered pipe from the boiler being tested, and the temperature of the feed water should in this case be taken from the supply tank furnishing the water to the injector. It is here assumed that the heat of the steam operating the injector is returned to the boiler from which it was taken, so that the supply pipe between the boiler and injector, if long, should be covered to prevent radiation. If a pump be used for feeding the boiler, the temperature of the feed water should be taken by a thermometer in the discharge pipe as near the boiler as possible. If this is done, the water may or may not be pumped through a feed water heater after leaving the pump.

BRECKENRIDGE. FUEL TESTS WITH ILLINOIS COALS

It is always essential that the heat carried into the boiler by the feed water should be known, and it is well to record its temperature before and after it passes through any kind of heater or economizer in order that the effect of such device may be given proper credit.

The location of thermometers for the determination of boiler room and external air temperatures should be such that drafts or heat rays will be avoided. The flue gas temperature should be taken at a point where the gases leave the boiler and pass into the breeching on their way to the stack. As the temperature in a transverse section of the flue will vary, several readings should be taken at different points of the same section. Observations of the draft are usually made at several points of the setting. The one between the damper and the boiler is, however, the more important, and should be taken at a point close to the flue gas thermometer or possibly in the same transverse section. The force of draft in furnace and ash-pit may be taken through the firing and ash-pit doors, but is preferably taken through holes left in the side walls. The calorimeter and the thermometer cup for determining superheat should be attached to the vertical steam pipe as it leaves the boiler. The sampling tube for the flue gas was explained in the last section. It should be inserted in the flue at the point where the flue gas temperature and draft are obtained.

III REPORT OF THE TRIAL

Forms.—The data and results of a boiler trial should be reported in the manner given in Form VI, which is the complete form advised by the Boiler Test Committee of the American Society of Mechanical Engineers, Code of 1899. The items printed in italics correspond to the items in the "Short Form" of report recommended for commercial tests. For more elaborate trials the code recommends that the full log of the trial be shown graphically by means of a chart, Fig. 8.

 $\mathbf{20}$

BRECKENRIDGE, PARR AND DIRKS FUR

FORM VI

DATA AND RESULTS OF EVAPORATIVE TESTS

Arranged in accordance with the Complete Form advised by the Boiler Test Committee of the American Society of Mechanical Engineers. Code of 1899.

Made by	of	boiler at	to
determine			
Principal conditions governing th	ne trial		
Kind of fuel*			
Kind of furnace			
State of the weather			
Method of starting and stopping	g the test ("stan	idard" or "alternate")	
1. Date of trial			
2. Duration of trial			hours

Dimensions and Proportions

(A complete description of the boiler and drawings of the same if of unusual type, should be given on an annexed sheet.)

3.	Grate surface	sq. ft.
4.	Height of furnace	in.
5.	Approximate width of air spaces in grate	in.
6.	Proportion of air space to whole grate surface	per cent
7.	Water-heating surface	sq. ft.
8.	Superheating surface	sa. ft.
9.	Ratio of water-heating surface to grate surface	to 1
10.	Ratio of minimum draft area to grate surface	1 to-

Average Pressures

11.	Steam pressure by gage	os, per	sq. in.
12.	Force of draft between damper and boiler	n. of	water
13.	Force of draft in furnacein	n. of	water
14.	Force of draft or blast in ash pitin	n. of	water

Average Temperatures

15.	Of external air	deg.
16.	Of fireroom	deg.
17.	Of steam	deg.
18.	Of feed water entering heater	deg.
19.	Of feed water entering economizer	deg.
20.	Of feed water entering binler	deg.
21.	Of escaping gases from boiler	deg.
22.	Of escaping gases from economizer	deg.

Fuel

23.	Size and condition	
24.	Weight of wood used in lighting fire	lbs.
25.	Weight of coal as fired	lbs.
26.	Percentage of moisture in coal	per cent
27.	Total weight of dry coal consumed	lbs.
28.	Total ash and refuse	lbs.
29.	Quality of ash and refuse	
30.	Total combustible consumed	lbs.
31.	Percentage of ash and refuse in dry coal	per cent

Proximate Analysis of Coal

32. 33. 34. 35.	Fixed carbon Volatile matter Moisture. Ash		Of Coal. per cent per cent per cent per cent	Of Combustible. per cent per cent
36.		100	per cent per cent	100 per cent per cent

"The items printed in italics correspond to the items in the "Short Form of Code,"

	Ultimate Analysis of Dry Coal	
37. 38. 39. 40. 41. 42.	Carbon (C) Of Coal. Of Coal. Hydrogen (H) per cent per Oxygen (O) per cent per Nitrogen (N) per cent per Sulphur (S) per cent per Ash.' per cent per	r cent r cent r cent r cent r cent r cent
43.	Moisture in sample of coal as received 100 per cent 100	per cent per cent
	Analysis of Ash and Refuse	
44. 45.	Carbon Earthy matter	per cent per cent
	Fuel per Hour	
46. 47. 48. 49.	Dry coal consumed per hour. Combustible consumed per hour Dry coal per square foot of grate surface per hour. Combustible per square foot of water-heating surface per hour.	lbs. lbs. lbs. lbs.
	Calorific Value of Fuel	
50. 51. 52. 53.	Calorific value by oxygen calorimeter, per lb. of dry coal Calorific value by oxygen calorimeter, per lb. of combustible Calorific value by analysis, per lb. of dry coal Calorific value by analysis, per lb. of combustible	B. T. U B. T. U B. T. U B. T. U
	Quality of Steam	
54. 55. 56.	Percentage of moisture in steam Number of degrees of superheading Quality of steam (dry steam =unity). (For exact determination of the factor of correction for quality of steam see section on computation of results.)	per cent deg.
	Water	
57. 58, 59. 60. 61.	Total weight of water fed to boiler Equivalent water fed to boiler from and at 212 degrees. Water actually exported, corrected for quality of steam. Factor of exaporation. Equivalent water evaporated into dry steam from and at 212 degrees. 59 × Item 60.	lbs. lbs. lbs. lbs. lbs.
	Water per Hour	
62. 63. 64.	Water evaporated per hour, corrected for quality of steam Equivalent evaporation per hour from and at 212 degrees Equivalent evaporation per hour from and at 312 degrees per square foot of water-heating surface	lbs. lbs.
	Horse-Power	1001
65. 66. 67.	Horse-power developed. (34½ lbs of water evaporated per hour into dry steam from and at 212 degrees, equals one horse-power.). Builders' rated horse-power Percentage of builders' rated horse-power developed.	H. P. H. P. per cent
	Economic Results	
68. 69. 70. 71.	 Water apparently evaporated under actual conditions per pound of coal as fired. (Hem 57+-Hem 25.) Equivalent evaporation from and at 212 degrees per pound of coal as fired. (Hem 61+-Hem 25.) Equivalent evaporation from and at 212 degrees per pound of dry coal. (Hem 61+-Hem 27.) Equivalent evaporation from and at 212 degrees per pound of combustible. (Hem 61+-Hem 26.) (If the equivalent evaporation, Hems 69.70 and 71. is not corrected for the output of steam the fact chould be screed.) 	lbs. lbs. lbs. lbs.
	Efficiency	
72	Efficiency of the boiler heat absorbed by the boiler per pound of combustible	1.0

 $\mathbf{22}$

BRECKENRIDGE. FUEL TESTS WITH ILLINOIS COALS PARR AND DIRKS

Cost of Evaporation

74. 75. 76.	Cost of coal per ton—lbs, delivered in boiler room Cost of fuel for evaporating 1,000 lbs of water under observed conditions Cost of fuel used for evaporating 1,000 lbs, of water from and at 212 degrees,	\$ \$ \$
	Smoke Observations	
77. 78. 79.	Percentage of smoke as observed Weight of soot per hour obtained from smoke meter Volume of soot per hour obtained from smoke meter	per cent ounces cu. in.
	Methods of Firing	
80. 81. 82. 83.	Kind of firing (spreading, alternate, or coking) Average thickness of fire Average intervals between firings for each furnace during time when fires are in normal condition Average interval between times of levelling or breaking up	
	Analyses of the Dry Gases	
84. 85. 86. 87. 88.	Carbon dioxide (CO ₂) Oxygen (O) Carbon monoxide (CO) Hydrogen and hydrocarbons. Nitrogen (by difference) (N).	per cent

100 per cent

HEAT BALANCE, OR DISTRIBUTION OF THE HEATING VALUE OF THE COMBUSTIBLE TOTAL HEAT VALUE of 1 lb. of CombustibleB. T. U.

		B. T. U.	Per Cent
1.	Heat absorbed by the boiler = evaporation from and at 212 degrees per pound of combustible \times 965.7.		
2.	Loss due to moisture in coal = per cent of moisture referred to combustible $\div 100 \times [(212 - t) + 966 + 0.48 (T - 212)] (t = temperature of air in the boiler room, T = that of the flue gases)$		
3,	Loss due to moisture formed by the burning of hydrogen = per cent of hydrogen to combustible $\div 100 \times 9 \times [(212-t)+966+0, 48(T-212)]$		
4.*	Loss due to heat carried away in dry chimney gases = weight of gas per pound of combustible $\times 0.24 \times (T-t)$.		
5,†	Loss due to incomplete combustion of $\operatorname{carbon} = \frac{1}{\operatorname{CO}_2 + \operatorname{CO}_2}$		
	$\times \frac{\text{per cent C in combustible}}{100} \times 10,150.$		
6.	Loss due to unconsumed hydrogen and hydrocarbons, to heating the moisture in the air, to radiation, and unaccounted for. (Some of these losses may be separately itemized if data are obtained from which they may be calculated.)		
	Totals		100.00

*The weight of gas per pound of carbon burned may be calculated from the gas analyses as follows: $11 \text{ CO}_2 + 80 + 7 \text{ CO} + (N)$

, in which CO₂, CO, O, and N are the Dry gas per pound carbon =

 $3 (CO_2 + CO)$ percentages by volume of the several gases. As the sampling and analyses of the gases in the present state of the art are liable to considerable errors, the result of this calculation is usually only an approximate one. The heat balance itself is also only approximate for this reason as well as for the fact that it is not possible to determine accurately the percentage of unburned

We has for the fact that it is in the fue gases. The weight of dry gas per pound of combustible is found by multiplying the dry gas per pound of carbon by the percentage of carbon in the combustible, and dividing by 100. $^{+}CO_{2}$ and CO are respectively the percentage by volume of carbonic acid and carbonic oxide in the flue gases. The quantity 10,150 – Number of heat units generated by burning to carbonic acid one pound of carbon contained in carbonic oxide.

STARTING AND STOPPING THE TEST

Standard Method.—Steam being raised to the working pressure, remove rapidly all fire from the grate, close the damper, clean the ash pit, and as quickly as possible start a new fire with weighed wood and coal, noting the time and the water level while the water is in a quiescent state, just before lighting the fire. At the end of the test, remove the whole fire, which has been burned low, clean the grates and ash-pit, and note the water level when the water level is in a quiescent state, and record the time of hauling the fire. The water level should be as nearly as possible the same as at the beginning of the test. If it is not the same a correction should be made by computation, and not by operating the pump after the test is complete.

Alternate Method.—The boiler being thoroughly heated by a preliminary run, the fires are to be burned low and well cleaned. Note the amount of coal left on the grate as nearly as it can be estimated: note the pressure of steam and the water level. Note the time and record it as the starting time. Fresh coal, which has been weighed, should now be fired. The ash-pits should be thoroughly cleaned at once after starting. Before the end of the test the fires should be burned low, just as before the start, and the fires cleaned in such a manner as to leave a bed of coal on the grates of the same depth and in the same condition as at the start. When this stage is reached, note the time and record it as the stopping time. The water level and steam pressure should previously be brought as nearly as possible to the same point as at the start. If the water level is not the same as at the start, a correction should be made by computation, and not by operating the pump after the test is completed.

The two methods given above for starting and stopping the test are taken from the A. S. M. E. Code for conducting steam boiler trials. When the alternate method is used, several precautions regarding the observations are necessary. The time of starting and stopping should be noted when the smallest amount of fuel is on the grate, and when it is in the most burned-out condition, i. e., just before firing fresh coal after cleaning, and when the water level is in its most quiet condition and the least raised by ebullition. This condition of fire and of water level can be duplicated immediately after cleaning the fire, but there is no certainty of duplication of any condition when there is a bright fire

BRECKENRIDGE, PARR AND DIRKS FUEL TESTS WITH ILLINOIS COALS

and consequent rapid steaming. If the water level is noted at the starting of the test when it is raised by a bright fire, and at the end of a test when it is depressed by the stoppage of violent ebullition or of rapid circulation due to the cooling of the fire, the boiler will be credited with more water than was really evaporated. As such a fall in water level is easily produced by opening fire doors and checking draft, it should be guarded against especially when using bituminous or flaming coals. The greatest care should also be taken that the bed of coal at the end does not contain more waste material, which belongs to the ash, than it did at the beginning.

Computation of Results

On account of the variations in the types of boilers and furnaces, no specific directions can be given for the measurement of grate surface, height of furnace and other furnace proportions. The heating surface should be computed from the surface of shells, tubes and fire-boxes in contact with fire or hot gases. The outside diameter of water tubes and the inside diameter of fire tubes should be used in this computation. All surfaces below the mean water level which have water on one side and products of combustion on the other are to be considered as water-heating surface, and all surfaces above the mean water level which have steam on one side and products of combustion on the other are to be considered as superheating surface.

The following directions show how some of the results to be derived from a boiler trial may be obtained. The calculation of other items is self-evident.

Item 26, the moisture in the coal, should be obtained by the chemist by drying the sample collected during the test, for one hour in a sand or air bath at a temperature between 240° and 280° F. Sometimes the moisture is obtained by drying a known quantity of the coal above the boiler; however, if this method is used, it should be so stated in the report. The first method is always to be preferred. (See Section VI, page 48).

Item 27=Item $25 \times (100 - \text{Item } 26)$

Item 30=Item $27 \times (100 - \text{Item } 42) - (\text{Item } 28 \times \text{Item } 44)$

As this is dependent upon the ultimate analysis of the coal, which is not always available, the following may be used:

Item 30=Item 27-Item 28

The latter, however, is in error, due to the unaccounted-for ash passing over the bridge wall.

Item 51=Item $50 \div (100 - \text{Item 42})$

or =Item 50÷[Item 27-(Item 28×Item 45)]

in which the former depends again upon the ultimate analysis of the coal.

Items 52 and 53=14,600 C+62,000(H
$$-\frac{O}{8}$$
)+4,000 S,

in which C, H, O and S refer to the proportions of carbon, hydrogen, oxygen and sulphur respectively, as determined by the ultimate analysis.

Item 54=100×
$$\frac{H-1146.6-0.48 (T-212)}{L}$$

or =100× $\frac{lbs. of moisture separated}{lbs. of steam+lbs. of moisture separated}$

in which H=total heat and L=latent heat per pound of steam at the pressure in the steam pipe, and T=temperature of the throttled and superheated steam in the calorimeter. The first formula applies to throttling and the second to separating calorimeters.

Item 55 should be taken as the difference between the reading of the thermometer for superheated steam and the readings of the same thermometer for saturated steam at the same pressure as determined by a special experiment and not by reference to the steam tables.

Item 56=100-Item 54

For the exact determination of the factor of correction for quality of steam we have the following:

For wet steam,
$$F = Q + P(\frac{T_1 - J_1}{H - I_1})$$
, and

For superheated steam, $F=1+\frac{0.48K}{H-J_1}$, in which

F = factor of correction

Q = quality of steam

P = per cent of moisture in steam

K = degrees of superheating in steam

- H = total heat of the steam due to the steam pressure
- T₁== total heat in the water at the temperature due to the steam pressure

J₁= total heat in the feed water due to the temperature Item 59=Item $57 \times$ Item 56 BRECKENRIDGE. PARR AND DIRKS FUEL TESTS WITH ILLINOIS COALS

Item $60 = \frac{H-h}{965.7}$, in which H and h are respectively the total

heat in the steam of the average observed pressure and in water of the average observed temperature of the feed. This item may usually be obtained directly from steam tables giving the factors for different pressures and feed water temperatures.

Item 61 =Item $59 \times$ Item 60

Item 62 = Item $59 \div$ Item 2

Item 63 = Item $61 \div$ Item 2

Item 64 = Item $63 \div$ Item 7

Item 65 = Item $63 \div 34.5$

This is held to be equivalent to 30 pounds of water evaporated from 100° F. into dry steam at 70 pounds gage pressure. The former equals 33,317 B. T. U. per hour and the latter 33,305 B. T. U. per hour.

Item 66.—This item should give besides the rated horsepower the basis (square feet of heating surface) upon which this rating is made.

Item 67 = Item $65 \div$ Item 66

The necessary computations for economic results and efficiency, items 68 to 73, are indicated in the form of report.

IV REPORT OF BOILER TESTS WITH ILLINOIS COALS

The following tables contain a summary of the results of boiler tests made by the department of Mechanical Engineering at the University of Illinois. For the most part these tests have been made, as stated in the introduction, for purposes of instruction in the method of boiler testing, although a considerable number were made for investigational purposes or as thesis work. As a rule, they have been conducted under the direct supervision of a member of the instructional staff of the department, but at times when experiments were being made with special appliances, the representative of the company interested was present to take charge of the test.

COALS TESTED

The coals used in these tests were mostly those purchased under the yearly contracts of the University. In a few cases, special coals were purchased, while other tests were made on

coals sent to the University by various coal companies and manufacturing concerns to determine the evaporative efficiency or their behavior on various kinds of stokers.

35 coals were tested, representing 14 counties of Illinois. These are given in the list below together with the commercial size of the coal.

	County	Town	Commercial Size
1	Christian	Pana	
2	Christian	Pana	
3	Christian		Srceenings
4	Coles	Paradise	Lump
5	Gallatin	Junction	Pea
6	Macon	Niantic	Nut
7	Macoupin	Mt. Olive	Lump
8	Madison	Glen Carbon	Lump
ğ	Marion	Odin	Lump
10	Marion	Odin	Pea
11	Marion		Slack
12	McLean.	Bloomington	
13	McLean	Colfax	Lump
14	Menard	Athens	Lump
15	Perry	Du Quoin	Lump
16	Perry	Du Quoin	Pea
17	Perry	Du Quoin	Slack
18	sangamon	Barclay	Pea
19	Sangamon	Dawson	Pea
20	Sangamon	Divernon	Lump
21	Sangamon	Lowder	
22	Sangamon	Ridgely	Pea
23	Sangamon	Riverton	Pea
24	Sangamon	Sringfield	Pea
25	Sangamon		Lump
26	Shelby	Moweagua	Lump
27	Vermilion	Catlin	
28	Vermilion	Fairmount	Screenings
29	Vermilion		Slack
30	Vermilion	Oakwood	Lump
31	Vermilion	Oakwood	Pea
32	Vermilion	Oakwood	Screenings
33	Williamson	Carterville	
34	Williamson	Herrin	New Kentucky Pea
35	Williamson	Herrin	New Kentucky Screenings

BOILERS TESTED

The tests were made at the power plants of the University and the neighboring towns, under water-tube and fire-tube boilers of the following types:

Stirling water-tube boiler	2	settings
National water-tube boiler	2	settings
Heine water-tube boiler	1	setting
Babcock & Wilcox water-tube boiler	8	settings
Horizontal tubular boiler	11	settings
The settings of these boilers include the follow	wii	ng:

- 1 Murphy smokeless furnace
- 2 Roney automatic stokers
- 2 Green chain grate stokers

BRECKENRIDGE, PARR AND DIRKS FUEL TESTS WITH ILLINOIS COALS

1 Babcock & Wilcox chain grate

1 Brightman stoker

The remainder of the furnaces were hand-fired with plain or rocking grates.

RESULTS OF TESTS

The results of these tests are shown in Tables III and IV, arranged according to the counties in which the coal was mined. Table III gives the conditions of temperature, pressure, heating surface and grate area under which the tests were made, and Table IV gives a few of the most important results. In some cases the heat value of the coals used was not obtained and several of the columns dependent upon it are left vacant. The headings of the tables are self-explanatory. Where a series of tests was made with the same coals under like conditions, the average of the series is reported together with the number of tests in the series. Where the coal and steam have been assumed moisture free and when the moisture in the coal was obtained by drying a known amount above the boiler, indications have been made in the tables.

In the computation of results, the usual correction for quality of steam by proportional weights of steam and water was used. The combustible was computed from the weights of coal and ash and not from the ultimate analysis of the coal, and it is, therefore, in slight error to the extent of the ash which passed over the bridge wall. The basis for the rating of the boilers varied from 10 to 15 square feet of heating surface per horse-power according to the different types of boilers used. The B. T. U. of the coal, given in the table, were obtained from an analysis of the sample taken during the test.

DISCUSSION OF RESULTS

On account of the wide variation of conditions obtaining in the tests reported, an exact comparison was hardly possible. A general comparison of results with different types of boilers and grates has, however, been attempted. Such a comparison is shown in Table V, which contains the general average of the results of all trials made with the same type of boiler and grate, irrespective of all other conditions. It also shows the average of

 $\mathbf{29}$

TABLE III BOILER TESTS WITH ILLINOIS COALS MADE BY THE MECHANICAL ENGINEERING DEPARTMENT, UNIVERSITY OF ILLINOIS, 1894-1905. GENERAL DESCRIPTION AND PROPORTIONS

səsen ə	onlA zaiqeo	11122 -		86	84	64	29	49	81 85	67	11	83	80	80	94
-sH to	Hours Hours Hours Hours Duration of Trial Sq. ft. Grate Surface Sq. ft. Grate Surface Sq. ft. Surface Sq. ft. Surface Sq. ft. Tore of Damper Sq. ft. Temperature of Sq. ft. Temperature of Sufface Tore of Damper Mater Foote of Damper Mater Foote of Damper Mater Temperature of District Mater Temperature of District		82		4	14	2	0. Ör	44	5	0	4	2 6	1 5	3 4
10 T			20	59.1	60.9	60.(60.7	47.5	49.1 49.6	47.(60.0	56.5	53.	61.1	59.6
tt pe-			12	.220	.220	.200	325	.405	.300	.470	.600	.262	.200	.163	.200
ure,			11	90.2	91.3	95.9	95.0	82.1	108.1 59.5	0 11	10.01	100.4	59.0 59.0	67.8	73.0
Zu			2	2340	2264	2264	2264	533	2579 2450	£ 90	1400	1100	533	533	547
ə			en	52.1	51.0	51.0	51.0	18.7	60.7	1 0	10.0	10.0	18.7	18.7	16.6
l.siT			8	10.12	10.00	10.00	10.18	8.00	$7.25 \\ 10.00$	5	8.0	B. 1	10.10	9.50	8.00
				1894	1894	1894	1894	1897	1899	100%	1001	Inel	1895	1896	1896
			1	June	June	June	June	Feb.	Mar. Jan.	dola 1	L'EU.	A 10 TAL	Apr.	June	Oet.
Type of Boiler Boiler Boiler			. Code No.	Urbana & Cham.	klee. Light Pl'nt.	do	do	Univ. of Illinois, M. E. Lab	Univ. of Illinois, Cent. Heat. Pl'nt.	Univ. of Illinois.	Univ. of Illinois.	Univ. of Illinois,	M. E. Lao	do	do
			A. S. M. E.	B. & W. No. 1 & 2,	plain grate	do	do	Hor. Tub. No. 2, plain grate	National W. T. No. 4 Murphy furnace B. & W. No. 5,	Hor. Tub. No. 2.	B. & W. No. 2,	Hor. Tub. No. 1,	plain grate	plain grate	plain grate
Commercial			,	Slack	Pea	Screenings	Lump and slack	Lump	Pea	Lump	Lump	Lump	Lump	Pea	Pea
scription of Coa				Pana	do	do	do	Paradise	Junction	Mt Olive	Glen Carbon	Odin	do	do	do
Dec		County		hristian 1	do	do	do	Coles	Gallatin	Macoupin]	Madison	Marion	do	do	do
		teat	UDM	1	~		4	5	1 0	1	N O	1 0		5	5

ILLINOIS ENGINEERING EXPERIMENT STATION
BRECKENRIDGE, PARR AND DIRKS

FUEL TESTS WITH ILLINOIS COALS

D Pea	Hor. Tub. No. 3, 4,	Urbana & Cham., Works	Jan. 1897	8.00	45.(2260	70.8	.394	128.0	359
:	Hor. Tub. No. 4.	Univ. of Illinois	Mar. 1895	9.38	30.0	1010	69.4	.219	52.2	560
:	B. & W. No. 5, nlain grate	do	Jan. 1895	8.71	51.() 2450	67.8	.330	50.9	479
	Stirling No. 3.	do	Mar. 1899 Nov 1896	8.00	51.	0 2450 5 525	103.7	.250	49.7 21.8	518 544
	B. & W. No. 2 plain grate	Urbana & Cham. Elec. L. & P. Co	June 1894	10.00	51.(2264	98.5	.210	59.5	482
	. Stirling No. 7 & 8, ploin grate	do	Dec. 1896 Mar. 1905	8.00 23.60	50.5	9 2587	110.6	.650	178.5	591
	. Nat. W. T. No. 4, Murphy furnace.	do	Jan. 1899	8.00	60.5	7 2579	84.7	.515	53.0	502
	. Hor. Tub. No. 2, plain grate	Univ. of Illinois, Cent. Heat. Pl'nt.	Feb. 1895	10.76	18.	7 533	65.6	.243	52.2	578
	B. & W. No. 5, plain grate.	Univ. of Illinois. M. E. Lab	Dec. 1894	6.00	51.0	2450	53.6	.300	53.6	
:	B. & W. No. 1, plain grate	Univ. of Illinois, Cent. Heat. Pl'nt	May 1902	8.00	35.0	1486	106.3	.500	70.5	÷
	Hor. Tub. No. 2, plain grate	do	Mar. 1897	7.83	18.	7 533	77.5	.190	50.6	523
	Hor. Tub. No. 1, plain grate	Univ. of Illinois, M. E. Lab	Oct. 1895	8.00	16.0	3 547	63.1	.236	63.6	528
	Hor, Tub, No. 2. plain grate	do	June 1896	9.25	18.	7 533	69.0	.180	61.6	503
	Hor. Tub., plain grate	do	Apr. 1898	8.00	22.	5 870	93.0	.320	1.77.1	535
:	Hor. Tub. No. 4, rocking grate	Twin City Ice & Cold Storage Co	Feb. 1895	9.00	30.0	0101	65,6	.257	48.4	519
	3. & W. No. 5, plain grate	Univ. of Illinois, Cent. Heat. Pl'nt	Feb. 1895	9.50	51.0	2450	68.3	.303	49.8	515
	B. & W. No. 2, plain grate	do	Mar. 1901	12.00	51.(2264	108.5	.700	69.2	420
	Hor, Tub. rocking grate	Urbana & Cham. Elec. L. & P. Co	Apr. 1898	7.50	25.(. 88.8	.300	100.1	403
	B. & W. No. 5 & 6. plain grate	Decatur, Illinois. Water Works	Mar. 1899	8.00	51.(2450	105.8	.600	53.4	539
	Nat. W. T. No. 4, Murphy furnace	Univ. of Illinois. Cent. Heat. Pl'nt	Mar. 1899	8.00	60.	2579	104.3	.540	52.1	503
•	B, & W. No. 2, chain grate	do	May 1901	× •	28.	1486	102.3	.600	60.6	512
	Nat. W. T. No. 4. Murphy furnace	do do do	Feb. 1899	8.00	60.09	0011 2579	106.5	.550	49.5	495

TABLE III (Concluded)

	487		301		634	616		565		592		593	609		529	534		657	
-	54.0		140.0		182.8	200.0	2	178.0		63.5		98.3	61.0		65.0	62.0		57.8	
	.740		.430		064.	064		.330		.710		. 226	.236		.490	.540		.166	
-	108.2		74.8		112.3	110.7		102.0		111.9		133.2	132.9		117.0	120.1		117.9	
	2264		1060		2587	2587		2860		3160		2353	2353		1486	1486		2353	
	51.0		22.5		50.9	50.9		64.0		72.0		51.0	51.0		28.0	23.0		51.0	
	8.00		10.00		24.00	10.80		10.33		8.03		10.00	10.00		9.33	20.00		12.00	
	1896		1895		1905	1905		1905		1905		1905	1905		1904	1904		1904	
	Dec.		NOV.		Mar.	Apr.		Apr.		May		Nov.	Nov.		Apr.	Apr.		Feb.	
Io. 2, Urbana & Cham.	te Elec. L. & P. Co.	No. 2 & 3 Urbana & Cham.	te Water Works	o. 7 & 8, Urbana & Cham.	te Elec. L. & P. Co.	do		te do		te do	Vo. 6, Univ. of Illinois.	coker Cent. Heat. Pl'nt.	do	0. 2,	ate do do	do	10. 5 &6,	oker do	
B. & W. N	plain gra	HOL. TUD.	plain gra	Stirling N	plain gra	do	B. & W.	plain gra	Heine	chain gra	B. & W. 1	Roney st	do	B. & W. N	chain gr	do	B. & W. N	Roney st	
Screenings		Slack		Lump		Screenings	Screenings		Screenings		Pea		W. Pea& duff	New Ky. Pea		do W. Scre'n	do W. Scre'n		
Fairmount		Muncie		Uakwood		do	do		do		do		Carterville	Herrin		do	do		
01				0		0	0	*.	0		0		amson	0		0	0		
0		0		0		b	d		d		d		Willia	d		d	d		
22		0	-	20		80	6	-	0	-	1		53	3		4	2	-	-

		Efficiency of Boiler including Grate	%	73				59.6								09.90
	ło	B. T. U. per pound Dry Coal		50				11430								110/01
	ation Fahr.	to bruod ref 9IditzudmoD	lbs.	71	6.39	6.63	7.44	7.78	60.7	5.95	7.53	7.17	7.73	7.44	0.20	1.32
	. Evapoi d at 2120	Per pound of Dry Coal	lbs.	02	4.90	5.44	0.50	7,05	6.36	4.89	6.96	5.15	6.48	6.19	00.0	6.13
	Equiv from an	Per sq. ft. of Waterheating Surface per hr.	lbs.	64	1.60	1.69	2.99	3.37	2.76	1.19	3.38	3,14	2.37	2.82	RC.1	2.24
	pədo q	Percentage of Rate Horsepower Develo	%	67	51.7	52.8	93.5	130.0	82.5	61.5	130.2	90.1	91.5	114.7	C.10	88.7
	pəd	Horsepower Develo		65	108.5	110.8	196,4	52.0	206.3	135.4	52.1	135.1	36.6	45.9	24.0	35.5
	10 11.	Dry Coal per sq. ft. Grate Surface per l	lbs.	49	15.10	13.80	20.40	13.56	18.43	18.74	13.79	32.40	10.38	13.63	8.41	11.99
	b92619	vA sts9T to r9dmuN	See	10.	44	±:	1+	53	4+	1*	53	60	ũ	*0	5	1
		Type of Boiler and Grate		A. S. M. E. Code	B. & W. No. 1 & 2, nlain trate	do	do	grate.	Murphy furnace	grate. No. 2. plai	B. & W. No. 2. chai	grate. No. 1, plai	grate	grate	Hor. Tub. No. 1, plai	grate
		Commercial Size			Slack	Pea	Lump and Slack	Lump	Pea	Lump	Lump	Lump	Lump	5	Pea.	
	scription of Coals	Томп			Pana	do	do	Paradise	Junction	Mt. Olive	Glen Carbon.	Odin	do		do	
	Des	County		``	Christian	do	do do	Coles	Gallatin	Macounin	Madison	Marion	do		do	
			nber	inN	-	62	34	0	3.0	- 00	0	10	II	. :	13	

TABLE IV BOILER TESTS WITH ILLINOIS COALS MADE BY THE MECHANICAL ENGINEERING DEPARTMENT UNIVERSITY OF ILLINOIS 1894-1905

AVERAGED RESULTS

14	do	do	Pea	Hor. Tub. No. 3 & 4	3	10.31	84.6	47.0	1.29	6.29	7.49		
15	do	do	Lump	plain grate Hor. Tub. No. 4	2*	22.49	135.0	135.0	4.61	6.91	7.87		:
16	do	do	Lump	B & W No. 5 plain	r0	20.20	176.4	80.2	2.48	5.91	7.00		
17 18	do do	do do	Pea	grate	- 1-	27.10 19.91	555.7	126.3 85.3	3.91	6.92	8.82		
19	do	do	Lump	B & W No. 2 plain	1+	15.20	129.1	61.5	1.97	5.74	6.51	COULT	0. 50
20	do	do do	Slack	grate do Stirling No. 7 & 8	11	23.51	205.8 382.6	98.0	3.14	5.92	6.83	11195	
22	do	do	Pea	plain grate	2+	21.04	216.9	86.8	2.90	5.86	7.13	COLLI	99.8
23	McLean	Bloomington	Lump	Murphy furnace Hor. Tub. No. 2 plain	10*	11.34	40.7	101.7	2.64	6.64	8.01		:
24	do	do	Lump	B & W No. 5 plain	1*	24.76	194.2	88.3	2.73	5.30	6.26		:
25	do	Colfax	Lump,	B & W No. 1 plain	63	22.70	116.3	77,5	2.70	5,06	6.64	12025	4.06
26	Menard	Athens	Lump	Hor. Tub, No. 2 plain	53	11.63	41.0	102.5	2.66	6.49	7.09		
27	Perry	Du Quoin	Lump	Hor. Tub. No. 1 plain	4*+	10.66	28.6	71.5	1.80	5.54	6.49	11250	47.6
28	····· do ·····	do	Lump	Hor. Tub. No. 2 plain	62	7.37	24.6	61.5	1.59	6.15	6.85		
53	····· do ·····	do	Slack	grate	1	15.96	73.9	123.2	2.93	7.10	8.60		
30	do	do	Lump	Hor. Tub. No. 4	1*	18.24	117.0	117.0	4,00	7.38	8.30	11250	63.4
31	do	do	Lump	B & W No. 5 plain	2*	19.59	190.3	86.5	2.68	6.57	7.52		
32	do	do	Pea	B & W No. 2 plain	62	16.06	118.5	56.4	1.81	5.00	5.87		
33	Sangamon	Barclay	Pea	grate	62	24.31	118.7			6.74	24		:
34	do	Dawson	Pea	grate. B & W No, 5 & 6 plain	1	29.00	543.7	123.6	3.83	6.34	7.64		:
35	do	do	Pea	National W. T. No.4	60	15.95	152.2	60.9	2.04	5.42	6.21		
36	do	Divernon	Lump	Murphy furnace B & W No. 2 chain	3	28.60	125.9	83.9	2.92	5.42	6.98		
332	do do	Lowder	Slack	grate	61 50	22.40 18.00	103.5	69.0 71.9	2.41 2.40	5.69	7.06	11700	
	*Steam assume	d dry. ‡Coal as	sumed dry. †Moi	sture obtained by dryin	g coal	above b	oiler.	-	-	-	-	-	

BRECKENRIDGE, PARR AND DIRKS

FUEL TESTS WITH ILLINOIS COALS

'	Efficiency of Boiler including Grate	R	73		62.2	51.7	53.3	62.2		55.1	52.4	51.5				49.8	39.7	48.3
to b	B. T. U. per pound		50		3975	11152	11152	11152		11980	11930	12162				12591	13026	12369
ation • Fahr.	Per pound of Ombustible	lbs.	11	6.76	8.12	7.95	8.26	8.93	22.0	7.83	7.44	8.21	5.18	7 75		61.7	6.27	8.15
Evapor id at 212	Per pound of Dry	lbs.	20	6.07	6.43	5.96	6.15	7.11		6.84	6.47	6.67	4.27	R.16	0110	6.51	5.35	6.19
Equiv. From ar	Per sq. ft. of Waterheating Surface per hr.	lbs.	64	2.75	3.39	3.85	2.07	2.67	21.2	3.13	2.66	4.61	2.58	4 09	00. E	3.44	2.32	1.58
eloped	Percentage of Rate	ge	29	82.1	105.3	110.4	59.4	76.6		120.7	76.4	134.3	74.2	117 5		101.4	74.7	66.7
pədo	Horsepower Devel by Boiler		65	205.2	463.1	185.7	89.1	114.9	TITO	48.3	114.6	335.8	111.3	176.3	0.011	238.4	164.4	100.1
ft. 0f .7d 790	Dry Coal per sq. Grate Surface p	lbs.	48	19.21	24.30	34.30	17.90	19.90	00.00	13.00	21.84	30.52	25.70	06 86	N# . 0#	24.37	20,78	11.27
beraged	vA sizeT to red muN	See	0.	00	1	4 6	4	4 x	2	4	\$	44	2+	+6	2	62	1*	1
	Type of Boiler and Grate		A. S. M. E. Code 1	National W.T. No. 4 Murphyfurnace B. & W. No. 5 & 6	Roney stoker B. & W. No. 2 chair	grate	do	do	Hor. Tub. No. 2 plair	B. & W. No. 2 chair	grate National W. T. No.	chain grate	B. & W. No. 1 plair grate	B. & W. No. 2 chair	B. & W. No. 6 Roney	B. & W. No. 5 plair	grate Tub	No. 1, 2, 3. rocking grate
ls	Commercial Size			Pea	Pea	Pea	Pea	Реа	Lump.	Pea.	Pea	Pea	Pea	Pea	Pea	Lump	Screenings	
Description of Co	Тоwn		Riverton	do	do	do	do					Springfield	do	do	Moweaqua	Catlin		
I	County			Sangamon	do	do	do	do	do	đo	do	do	do	do	do	Shelby	Vermilion	
		ianu	nAT	6 0	1	67	3	4 10	0	1	00	6	0	-	2	3	4	_

TABLE IV (Concluded)

BRECKENRIDGE, PARR AND DIRKS

	39.5		51.0	57.9	47.1	66.8	2.00	52.1	58.6	55.57	55.0		60.5	
	12413		12503	11427	10299	11067		13251	13408	12769	13156		12364	
	5.95	7.50	8.07	8.39	6.59	9.64		8.58	8.89	8.74	8.89		9.21	
	5.08	6,07	6.63	6.85	5.02	7.66		7.15	8.14	7.34	7.50		7.75	
	3.51	1.76	3.32	3.38	2.01	4.18		3.39	3.52	4.55	4.88		4.55	
	109.6	63.5	95.7	97.6	64.2	109.3		98.3	102.2	130.7	140.2		132.1	
	230.1	107.9	497.6	507.4	166.9	382.7		230.9	240.2	196.0	210.3		620.7	
	30.67	13.62	25.42	25.09	17.91	23.94		22.40	19.96	32.93	34.60		26.55	
	1	1‡	1	-	1	52		2		3	1		1	
B. & W. No. 2 plain	grate. Hor. Tub. No. 2 & 3	Stirling No. 7 & 8	plain grate	do	B. & W. plain grate	Heine chain grate	3. & W. No. 6 Roney	stoker	3. & W. No. 2 chain	grate	do	3. & W. No. 5 & 6	Roney stoker	
Screenings	Slack]	Lump		Screenings	Screenings	Screenings]	Pea1		W. Pea & Duff.		do W. Screen	do W. Screen H		-
Fairmount	Muncie	Oakwood		····· op ····	do	···· do ····	do		Herrin		do	do		
do	do	do	40	····· 00 ····	00	do	do		vi do		···· 00 ····	···· do ····		
55	56	57	0 H	00	RC	00	10	00	63	10	10	00		

†Moisture obtained by drying coal above boiler. ‡Coal assumed dry. *Steam assumed dry.

NOTE: Column headed "Number of Tests Averaged" gives the number of boiler tests, the average of whose results is recorded in the Table.

the results of the ten highest tests together with the single highest result obtained. The basis of comparison is the equivalent pounds of water evaporated from and at 212° F. per pound of dry The same table also contains the average of the results of coal six tests with Illinois coals made by the Boiler Division of the Fuel Testing Plant of the United States Geological Survey at St. Louis. It is interesting to note that in these latter tests in which hand-firing and plain grates were used, the results obtained are better than any of the others recorded, including the results of tests in which mechanical stokers were used. This fact may be taken to indicate that the maximum efficiency of Illinois coals is rarely obtained under present average conditions. It is probable that with a closer study of furnace conditions, even these results may be improved. The general tests reported in Tables 3 to 5 include a number of trials made with special objects in view. Several of these trials are described as follows:

1. Tests of a small horizontal tubular boiler of 40 horsepower, to determine its performance with varying rates of combustion. The results of these tests are given below.

Results of a Boiler Trial Showing Effects of Rate of Combustion on the Performance of Horizontal Tubular Boiler

Dry coal per square foot of grate surface per hour Equivalent evaporation	6.80	9.30	11.00	12.00	14.00
pound of dry coal	6.20	6.55	6.57	6.37	5.75
Horse-power in per cent of rated capacity (40)	52 50	87.50	107 50	115.00	122.50
Temperature of escaping		01.00	101.00	110.00	122.00
gases	432.00	447.00	501.00	516.00	553. 0 0

The same kind of coal was used in all these tests, and conditions remained nearly constant. It is evident that the maximum results were obtained with the boiler running at its rated capacity, with the flue gas temperature about 500° F. With an increase in the rate of combustion, the capacity and flue gas temperature increased and the evaporation dropped off.

2. Tests to determine the effect of soot deposits on the evaporation of a small horizontal tubular boiler. These tests were made on the same boiler as the preceding series and with results as follows:

BRECKENRIDGE, PARR AND DIRKS FUEL TESTS WITH ILLINOIS COALS

ONTAL IUBUL	AR BOILER	
First Series (5 days) Soot allowed to remain on tubes	Second Series (5 days) Tubes cleaned each morning	Third Series (5 days) Soot allowed to remain on tubes
6.20	7.04	6.23
13.40	9.09	13.40
111.00	99,00	115.00
627.00	546.00	698.00
	First Series (5 days) Soot allowed to remain on tubes 6.20 13.40 111.00 627.00	First Series (5 days) Soot allowed to remain on tubes Second Series (5 days) Tubes cleaned each morning 6.20 7.04 13.40 9.09 111.00 99.00 627.00 546.00

Results of Boiler Trials Made to Determine the Effect of Soot Deposits on the Evaporation of a Horizontal Tubular Boiler

It is evident from the results that the effect of the soot deposit on the evaporation is not very marked. It is interesting to note that in the first and last series, in which the soot was allowed to remain on the tubes, the soot burned upon reaching a certain thickness, leaving but a very thin layer. In all three series the conditions were held as nearly constant as possible, although in the second series the load fluctuated somewhat on the different days. COMPARISON OF RESULTS OF BOILER TESTS WITH ILLINOIS COALS ON HORIZONTAL TUBULAR AND WATER-TUBE BOILERS TABLE

Eff. of Boiler and Grate ~~~ 20 0.0 55.7 63.4 4 9 0 47.8 6 59.3 13 54. 59. 53. 60 57. 52 B. T. U. Per lb. of Dry Coal 13034 13034 12364 11562 1809 1809 1250 11532 12293 1430 1608 11427 1821 20 Combus-Per lb. Equiv. Evap. F. and A. 2120 tible 8.53 8.53 9.21 7.82 01 7.957.958.30 7.48 7.78 6.67 39 64 92 60.7 53 12 00 00 0.0 000 Per lb. of Dry Coal 7.32 6.81 6.81 7.38 7.05 5.75 7.55 8.04 29 33 38 85 5.87 36 20 14 9.9 8.9 . . 1 Per cent of rating Heating Dev'p'd Surface per hr. 3.57 3.57 4.55 43 3.76 4.18 3.70 3.70 4.00 45 16 37 2.62 38 2.53 76 3.36 64 . 00 00 3 3 3 Develop'd Per cent by of rating Boiler Dev'p'd 113 05 32 86 80 95 130 192 98 76 82 96 29 Horse-power 305 180 202 121 52 176 220 202 189 205 201 22 Dry Coal per sq. ft. of Grate Surface Per hr. 01-1-1 02 10 20.5 20.5 18.2 11.5 13.6 20.6 18.3 18.4 50 00 -48 25. 22.22. 28. 22. 27 Flue Gas Temp. 605 605 656 592 473 473 519 534 549 552 616 595 188 521 181 21 Aver. Force of Draft 214 214 166 571 323 323 257 404 064 530 527 493 354 405 580 12 No. of Coals Aver. 1010-6 Code No. 4-4 4-010 -0 4 -10 4 4--Highest Single Highest Single Highest Highest 10 Highest Single Highest Single 39 Highest 18 Highest 10 Highest Highest Highest No. of Tests Aver. E. Single 46 99 45 10 10 9 66 M. in A. Type of Boiler and Grate Water-Tube Murphy Furnace U. S. G. S. Tests Water-Tube rocking grate Roney stoker Hor. Tubular Hor. Tubular Water-Tube Water-Tube chain grate Water-Tube plain grate plain grate

ILLINOIS ENGINEERING EXPERIMENT STATION

BRECKENRIDGE, PARR AND DIRKS FUEL TESTS WITH ILLINOIS COALS

3. Tests of a water-tube boiler with chain grate stoker to determine the relative economy of a 6-inch and an 8-inch fuel bed with various rates of combustion.

The results of these tests are best shown by the curves in Fig. 9.

FIG. 9 CURVES SHOWING THE RELATIVE ECONOMY OF A 6-INCH AND 8-INCH FUEL BED IN A CHAIN GRATE STOKER

They show that under the conditions of the test, the 8-inch fire was the more efficient, giving an equivalent evaporation per pound of dry coal 10 per cent greater than the 6-inch fire, when operating at the rated capacity of the boiler. The same coal was used throughout this series. The averages of the results of these tests are reported in Tables III and IV, viz., Nos. 41, 42, 43 and 44. In Figs. 10, 11 and 12 are shown a few of the characteristic results of boiler trials made on water-tube boilers with chain grate stokers. These diagrams are plotted from the results of 38 trials, and each point on the diagram represents the average of 5 trials. It is safe to assume, therefore, that the results represent average conditions.

Fig. 10 shows the results of trials, in which coals of highest, lowest and mean heat values were used, plotted on a basis of heat value. The sudden drop in the equivalent evaporation per pound of dry coal, with coals of low and medium heat value is no doubt due to the large increase in the flue gas temperature with constant rate of combustion and capacity. With coals of medium and high heat value the equivalent evaporation increases with increasing rate of combustion and capacity, the flue gas temperature remaining constant. It is evident from the diagram that the effect of the heat value of the coal is not very marked, a large increase, however, other conditions remaining constant, causing an increase in the evaporation per pound of coal, as will be seen in Fig. 12.

FIG. 11 CHART SHOWING VARIATION IN BOILER PERFORMANCE WITH VARYING RATES OF COMBUSTION

In Fig. 11 the results of a boiler trial are plotted on a basis of rate of combustion. It is evident from the diagram that the equivalent evaporation per pound of dry coal increases with the rate of combustion until the capacity reaches 100 per cent, or the rated capacity, the heat value of the coal remaining approximately constant, the flue gas temperature at this point being 500° F. With a further increase in the rate of combustion the capacity and flue gas temperature still increase but the equivalent evaporation per pound of coal decreases. This curve, if it may be called such, might be named the characteristic curve of the boiler, and is important because it shows the rate of combustion above which the evaporation per pound of coal decreases.

FIG. 12 CHART SHOWING VARIATION IN THE PERFORMANCE OF A BOILER WORKING AT DIFFERENT CAPACITIES

The effect of capacity on the evaporation is shown by the diagram in Fig. 12. It is seen that here as in the previous figure the evaporation per pound of dry coal again increases with an increase in the capacity due to an increased rate of combustion. However, instead of attaining a maximum at 100 per cent capacity, it increases with a further increase of capacity and rate of combustion. At first sight this seems contradictory to the previous diagram, Fig. 11; however, it is evident that this increase is not due to this further increase in the rate of combustion and capacity, but is due to the sudden increase in the heat value of the coal (about 10 per cent) used.

V ARRANGEMENTS FOR FUTURE FUEL TESTS

In publishing this bulletin it has been the desire to record the results of the most important tests of boilers fired with Illinois

BRECKENRIDGE, PARR AND DIRKS FUEL TESTS WITH ILLINOIS COALS

coals, that have been made up to date. During the year 1906 the Engineering Experiment Station at the University purchased and installed a plant designed especially for conducting a series of fuel tests of Illinois coals. The plant consists of a 210 H. P. Heine water-tube boiler together with a Green chain grate stoker and a Sturtevant economizer and induced draft fan and engine. This boiler is a duplicate of the boilers used by the United States government in the fuel tests in progress at St. Louis under the direction of the United States Geological Survey. It was thought that in this way the fuel tests here at the University would be in a measure comparable with the tests made by the government on coals from all parts of the United States.

The rapid growth of the industrial interests of Illinois demands a careful study of the great fuel supply, and no effort should be spared in the introduction and promulgation of improved methods and processes in the production, treatment and consumption of its coal. In the tests of Illinois coals which it is now proposed to make, less attention will be paid to routine boiler tests, familiarly known as such, and more attention will be given to a scientific study of fuel treatment before burning and to a study of those furnace constructions and conditions which give promise of maximum results. In order that future tests may be conducted along lines which will meet with the general approval of the various interests of the state, a Conference Committee on Fuel Tests has been appointed consisting of the members named below and representing the organizations indicated:

H. Foster Bain, Director State Geological Survey, Urbana, Ill., representing the State Geological Survey;

A. Bement, Consulting Engineer, Chicago, the Western Society of Engineers;

Edwin H. Cheney, President Fuel Engineering Co., Chicago, the Building Managers' Association of Chicago;

F. H. Clark, Gen. Supt. Motive Power Burlington Road, C. B. & Q. Ry., Chicago, the Western Railway Club;

Adolph Mueller, President H. Mueller Mfg. Co., Decatur, Ill., the Illinois Manufacturers' Association;

Carl Scholz, President Coal Valley Mining Co., Chicago, the Illinois Coal Operators' Association;

A. V. Schroeder, Decatur Railway and Light Company, Decatur, Ill., the State Electric Light Association; Wm. L. Abbot, Chief Operating Engineer, Chicago Edison Co., Chicago, the Board of Trustees University of Illinois;

BRECKENRIDGE, PARR AND DIRKS FUEL TESTS WITH ILLINOIS COALS

L. P. Breckenridge, Director Engineering Experiment Station, University of Illinois, Urbana, Ill.

Reference has been made to the government fuel tests at St. Louis. It should be stated that the work of the boiler division of these tests has been carried on under the direction of the Director of the Illinois Engineering Experiment Station, who will also have charge of the tests made at the University of Illinois. Copies of Professional Paper No. 48, containing a report on the operations of the government coal testing plant at St. Louis may be obtained upon application to a member of Congress or to the Director of the United States Geological Survey, Washington, D.C.

It is not the intention of this bulletin to discuss the subject of fuel testing. A future bulletin will take up that subject and will also describe in full the plant provided for such tests at this University. Attention is called, however, to the facilities now offered for this important work. It is hoped that mine owners and manufacturers will find it advantageous to cooperate with the Engineering Experiment Station in the proposed tests. The Station Staff will always be glad to receive such suggestions concerning this work as those interested may desire to offer.

VI CHEMICAL ANALYSIS AND HEAT VALUES OF ILLINOIS COALS

By S. W. PARR, Professor of Applied Chemistry

The accompanying results of chemical analyses of Illinois coals may be divided into three classes: first, those which were directly connected with the boiler tests conducted by the department of Mechanical Engineering, and which are listed in a separate table. covering such work from the year 1894 to 1905; second, in connection with thesis work by Mr. F. C. Koch in 1901, there were assembled by him the results of all analyses of Illinois coals which had been made by the department of Chemistry previous to that These results were published together with his own work date. in a bulletin through the courtesy of Secretary Ross of the Bureau of Labor Statistics in the report of that Bureau in 1902. Thev are designated in the tables by the letters B. L. S. The third series of results comprises the work on one hundred fifty samples of Illinois coal collected in 1904 and published in a separate bulletin in connection with the exhibit of mines and minerals at the St. Louis Exposition. These results are designated in the tables by S. W. P. The sum total of data which has thus resulted, while of a somewhat desultory nature, constitutes a very considerable contribution to our knowledge of the constituents of Illinois coals. It is to be noted that the processes employed in connection with this series were confined almost exclusively to the method of proximate analysis. In the future the more exacting demands of modern methods will require extended data such as are furnished by both proximate and ultimate analysis, including of course the determination of calorific units. It may be well therefore, at the present time, to assemble the information obtainable up to the present date, compiling it as in the accompanying tables, and also to discuss briefly some of the terms which are used in connection with the chemical work on coals. The chemist employs terms and processes which are also used by the engineer, but it does not always follow that their use of terms is in accord.

Moisture.—Moisture in coal is constantly undergoing a change as to quantity. The percentage contained at the time of breaking out the coal from the vein is greater than at any subsequent stage of its history, unless possibly it be under the conditions of rain or snow or drenching with the hose. Some of this moisture which is normally contained in the coal is lost when the coal is exposed to the air, being in this respect like water which has been poured upon the coal. But there remains moisture in the coal after air-drying and which is removed only at the temperature of boiling water. This moisture is described as hygroscopic. If now the chemist works upon a sample which is overcharged with moisture, as is the condition when the sample is freshly mined, it will be constantly losing in weight and modifying his results. Similarly, if he works upon a sample which has been completely dried in the oven, it will have great avidity for moisture and be constantly gaining in weight throughout his work. He, therefore, proceeds in his determinations, as a rule, with the coal in that condition which is least affected by external conditions, viz., in the airdry state with the normal amount of hygroscopic moisture present, but without the excess of water, which might be termed water of saturation.

Therefore, we have three distinctly different conditions: first, the wet coal; second, the air-dry coal; and third, the oven-dry state. The engineer, however, not having to do with the condi-

BRECKENRIDGE, PARR AND DIRKS FUEL TESTS WITH ILLINOIS COALS

tions under which the chemist works, recognizes only the two phases, either the wet or dry, and by this latter term he means the oven-dry state. The failure on the part of the engineer and the chemist to recognize these terms often leads to misinterpretation of results. The chemists, therefore, should agree to such use of terms relating to water as have become firmly established in engineering literature: viz., that dry coal refers to moisture free coal or to the oven-dry state, and second, that wet coal refers to the condition as received or previous to any process of air-drying, and that it is one or the other of these conditions that is of interest to the engineer, regardless of how important it may be to the chemist to proceed upon the basis of the air-dry condition.

It may not be out of place further to indicate how results may be transferred from one basis to the other. It is not an uncommon practice for the chemist to report his results on the air-dry basis, in which case he should also report the amount of moisture lost upon air drying, provided his sample comes to him sealed in such a way as to make this factor possible. Suppose, for example, that the loss of moisture upon air-drving is 4 per cent, then all his results reported on the air-dry basis would be changed to the wet coal basis by multiplying each by 96 per cent; not by dividing by 104 per cent as is often erroneously done. This will make small difference in a constituent which has a low percentage factor, but the error is very considerable in a factor like the fixed carbon which is from 40 to 50 per cent. This may seem like a simple arithmetical problem to mention in this connection, but it is one not always correctly interpreted.

Conversely, if it is desired to change factors to the dry coal basis, each factor should be divided by 100 minus the percentage content of water in that condition from which the transfer is being made. For example, if we are calculating this coal from the *air-dry* state, supposing it to have 6 per cent of moisture present, each factor should be divided by 94 per cent, but it should be noted that if we are calculating from the *wet-coal* condition our divisor will not be 100 per cent minus the sum of the two factors, 6 and 4, as in the above illustration, but 100 minus 96 per cent of 6 plus 4, or 90.24. Here again is a not uncommon place for stumbling in what might seem to be a simple arithmetical problem.

Volatile Matter.—When coal is subjected to high temperature out of contact with the air, a considerable amount is driven off as

volatile matter. This includes, also, of course, any moisture in the sample, if we start with a portion which has not been dried in the oven. Now an even greater discrepancy in the use of terms has come into use in connection with this constituent than is the case with different forms of water. One of the oldest terms is that of volatile carbon. This is both incorrect and meaningless because carbon is not volatile, and because the constituents of this material are numerous and complex. The term that is perhaps most frequently met designates this material as volatile combustible. This again is incorrect and misleading, as this material in the ordinary bituminous type of coal has from one-third to one-half of its weight made up of non-combustible material. It is evident, therefore, that the only proper term among those commonly in use for this constituent is that of *volatile matter*. The only restriction indeed in connection with this term is to understand, as is the uniform custom, that the moisture of the coal is not included. A word may be in place here in connection with a term which is occasionally met, and is likely to be more frequently used than formerly. This term is intended to designate that part of the volatile matter which does not burn. This constituent is sometimes referred to as "water of composition". It is not included in any of the resuits listed in the following tables, and hence its use does not enter into any of the discussions in this bulletin. It is noted in this connection, however, in order that it may not be confused with any of those terms which are intended to designate the water in its ordinary form and which are capable of being driven off at the temperature of boiling water. This property does not belong to the water of composition, as this substance like the other part of the volatile matter, requires a red heat for its dissociation.

Fixed Carbon and Ash.—Concerning these constituents there is no disagreement as to the use of terms unless it be the occasional use of the word coke. Coke in its proper and technical sense should apply to the residue including the ash after subjecting the coal to destructive distillation. It is, therefore, not proper to designate the fixed carbon as coke, though it would be proper, of course, to use the term "coking carbon" in this connection. The preferable term and the one commonly employed, however, for this material is that of fixed carbon.

Methods of Analysis.—The methods of analysis employed are those in common use and their description is so easily accessible

BRECKENRIDGE, PARE AND DIRKS FUEL TESTS WITH ILLINOIS COALS

that no repetition is necessary here. Reference may be made to the report of the committee of the American Chemical Society on coal analysis.¹

Calorific Value.—The determination of heat units in coals is, of course, a necessity in connection with any well conducted boiler test. Two systems of units are employed, viz., the kilo calories and the British Thermal Units, designated as B. T. U. Each unit is the measure of heat imparted to the water by an equal weight of coal. They would, therefore, be identical if it were not for the fact that the one is read on the Centigrade scale and the other on the Fahrenheit scale. The transfer, therefore, of calories per kilo over to B. T. U. per pound is effected by multiplying by the ratio of 9:5 or 1.8.

There are four types of instruments in use for measuring the heat value of coals. The first and most elaborate is the Mahler instrument which has numerous modifications as to detail, but which embodies the use of a steel bomb capable of maintaining oxygen from twenty to twenty-five atmospheres pressure. The next in the order of time is the Fisher calorimeter which burns the sample of coal in a small chamber supplied with oxygen at atmospheric pressure. The third type may be designated as the L. Thompson calorimeter, wherein the coal is mixed with a chemical which in itself supplies the oxygen for carrying on the combustion and in which the gaseous products are allowed to bubble up through the water, thus imparting their heat to the liquid. The fourth type may be designated as the Parr calorimeter which also employs a chemical having its own supply of oxygen, but which absorbs the gaseous products, thus retaining all the heat of the reaction for more accurate measurements by the thermometer. Of the second and third types, it may be said that owing either to incompleteness of combustion or to loss of heat by transmission of the gases, results are obtained which are not of sufficient accuracy for reliable work. Results from the Thompson calorimeter are reported by certain authorities to admit of variations amounting to 15 per cent. The Mahler type of calorimeter is accurate when operated by one thoroughly familiar with such processes. The Parr calorimeter is the one used in connection with the analyses in these tables of all coals made since 1900, and is now the instru-

¹Jour. Am. Chem. Soc. Vol. XXI. p. 1130.

ment most commonly used in technical work. A brief description of this apparatus follows:

Fig. 13 shows the relative position of parts. The can A.A. for the water has a capacity of 2 litres. The insulating vessels B.B. and C.C. are of inducated fiber. The charge of coal and chemical is put in the cartridge D. Upon ignition, the heat generated is imparted to the water and the rise in temperature is indicated on the finely graduated thermometer T. The cartridge or bomb rests on the pivot F and is made to revolve, and by aid of the small turbine wings attached effects a complete circulation of the water and equalization of temperature.

The reaction accompanying the combustion may be represented by the equation:

BRECKENRIDGE, PARR AND DIRKS FUEL TESTS WITH ILLINOIS COALS

With certain substances such as coke, anthracites, petroleums, etc., a more strongly or vigorously oxidizing medium is needed than exists in the peroxide alone. This may be secured by various additions. The most effective are: A mixture of potassium chlorate and nitrate in the proportion of 1 to 4 and this mixture used in the ratio of 1 to 10 of the sodium peroxide: another effective mixture is an addition of potassium persulphate in the ratio of 1 to 10 of the sodium peroxide. Other substances facilitate the oxidation, notably ammonium salts and certain organic substances, as tartaric or oxalic acid, benzoic acid, etc. In the work on Illinois coals, while ordinarily no extra chemical would be necessary, still in certain cases, such as extra slaty coals and coals with excessive volatile matter, and also to guard against variations in the quality of the sodium peroxide, a mixture as first described above, of chlorate and nitrate, has uniformly been used throughout these tests.

Further extension of the use of the instrument to other types of coal and to petroleum has made it necessary to extend still further the oxidizing power of the chemicals employed beyond what is afforded by the chlorate mixture. In addition to this the use of the residue for determining the total carbon and sulphur has made it highly desirable in such additional chemicals to avoid the use of compounds containing carbon or sulphur. To meet these conditions, the so-called "boro-mixture" has been devised. It consists of:

Boric acid		parts
Potassium chlorate		parts
Magnesium powder	1	part

Its correction factor is found by trial with a pure chemical of known heat value, such as napthalene or by burning with a coal whose heat value is already accurately known. This mixture has the further advantage of carrying on a combination with material so low in carbonaceous matter as to be non burning by ordinary methods, such as ashes and coals of very high ash content.

Still further modifications relate to the bomb as shown in Fig. 14, and have to do mainly with the avoidance of screw threads on the interior of the combustion chamber, especially in the upper part, where particles tend to lodge and thus escape combustion; also in jacketing the lower part of the chamber to avoid direct contact with the water, thereby avoiding rapid cooling of the parts and extending somewhat the period of high temperature, thus securing a more perfect combustion.

Calorific Values By Calculation.—Numerous methods for calculating the calorific value of coal have been proposed, but no method can be said to have any value which is not based on a knowledge of the percentage constituents of the total carbon, available hydrogen and sulphur. Even under these conditions the results by calculation are not always in agreement with the indicated results by means of the calorimeter, and in any event, of course, results from proximate analysis do not furnish the neces-

BRECKENRIDGE, PARE AND DIRKS FUEL TESTS WITH ILLINOIS COALS

sary data for this calculation. When this method is used the Dulong formula is considered the most nearly accurate and is as follows:

Cal. = 8080 + 34,500 H + 2250 S

In the results here recorded the necessary factors were not always available for applying this formula, but it is the one used wherever calorific values by calculation are included. VI CHEMICAL ANALYSIS AND HEATING VALUES OF ILLINOIS COALS USED IN STEAM BOILER TRIALS AT UNIVERSITY OF ILLINOIS 1894-1905 TABLE

B. T. U. per lb. of Total Dry Coal 1,430 11,203 2,522 12,11011,569 11,070 12,665 11,880 12,130 12,025 11.761 12.174 12.174 11,239 Sulphur 2.12 3.43 5.63 5.09 6.03 4.19 3.43 3.65 4.87 1.80 5.14 : : Proximate Analysis-Air-Dry Coal $\begin{array}{c} 14.68 \\ 6.24 \\ 6.24 \\ 11.56 \\ 7.53 \\ 9.83 \\ 9.83 \end{array}$ 15,4315,4315,8611,958.808.058.059.119.119.217.667.6612.90 12.55 12.55 12.83 $6.39 \\ 10.33 \\ 20.79$ 12.36 9.91 Ash Moisture 7.85 $\begin{array}{c} 7.10\\ 5.09\\ 6.32\\ 6.20\\ 6.20\\ 8.02\\ 8.02\\ \end{array}$ 8.00 7.21 6.70 $\begin{array}{c} 3.80\\ 8.02\\ 8.02\\ 7.59\\ 8.13\\ 8.13\\ 7.43\\ 7.43\\ 7.43\end{array}$ 3.76 3.76 8.69 9.80 9.80 0.72 4.44 Volatile Matter 34.56 39.13 $\begin{array}{c} 34.90\\ 37.93\\ 41.25\\ 31.95\\ 37.73\\ 37.73\\ 34.65\\ 334.65\\ 37.06\\ 37.06\end{array}$ 34.31 31.79 31.79 34.65 $\begin{array}{c} 43.90\\ 441.35\\ 35.18\\ 35.77\\ 33.15\\ 33.95\\ 39.81\\ 39.81\\ 39.81\\ 39.81\\ \end{array}$ 338.15338.65333.65334.72351.00351.00371.3334.25 Fixed Carbon 448.09 445.23 445.23 446.02 446.70 445.10 45.10 45.10 45.10 45.70 48.33 48.33 43.52 40.55 40.66 :0446046 0128112 Boiler Test No. June 94 June 94 June 94 June 94 June 94 Jan 20, 299 Jan 16, 95 Jan 14, 99 Jan 14, 99 Jan 26, 99 Jan 20, 99 Jan 20, 90 Jan Date of Analysis Nut..... Pea.....dumdum Pea..... ea..... Pea..... Pea..... Lump..... Slack..... Slack....dunr Pea..... Duff Lump..... Slack..... Pea Lump..... Lump..... Lump....Slack..... Pea..... ump..... Lump.....dum Pea..... Pea..... Lump..... Description of Coaldunr tump..... Pea.duinr Lump Slack. Pea..... Screenings. Lump..... Odin Pana..... Paradise Niantic..... Divernon.... Lowden Ridgely..... Pana..... Pana.... Glen Carbon Odin..... Odin..... Odin..... Du Quoin.... Du Quoin.... Dawson..... Odin.... Odin..... Odin..... Odin.... Odin.....Bloomington..... Bloomington.... Jawson..... Odin..... Odin.... Colfax..... Athens..... Barclay..... Town Mt. Olive. Source of Coal Odin. Marion..... Marion..... Sangamon..... Christian.... Coles. Madison.... Marion..... Marion. Marion. Marion..... Marion.... Sangamon..... Christian.... Macon..... Macoupin Marion..... Perry.... Perry..... Perry. Perry. Perry.... Sangamon..... Christian..... Christian..... Sangamon McLean County Marion.... McLean. Perry. No.

56

ILLINOIS ENGINEERING EXPERIMENT STATION

BRECKENRIDGE, PARR AND DIRKS	FUEL TESTS WITH I
9,975 9,975 111,152 111,152 111,152 111,152 111,980 111,980 111,980 12,162 12,162	12, 591 13, 591 13, 595 13, 309 13, 309 13, 309 12, 413 12, 413 13, 551 11, 057 11, 057 13, 251 13, 264 12, 769 12, 364 12, 364

4.99		1.01	1.01	1.01	1.01	4.10		3.65	3.42	3.76			6.14		2.12			3.40	3.23	3.21	3.14	3.63	1.97	1.42	1.42		
14 10	21.52	16.46	16.46	16.46	16.46	16.46	11.52	10.33	13.08	17.20			15.55	7.49	19.57	13 02		10.67	14.02	21.67	16.91	13.06	8.76	10.64	10.64	10.62	
8.83	8.23	3.38	3.38	3.38	3.38	3.38	12.47	9.11	8.79	9.19			5.42	9.18	7.41	10.67		6.80	8.24	6.02	6.08	5.62	3.33	2.94	2.94	5.00	
36.51	36.27	36.96	36.96	36.96	36,96	36.96	35.44	37.04	36.56	32.28			36.59	39.58	29.62	36.46		37.40	35.55	33.43	35.25	39,85	32,40	33.10	33.10	31.12	
40.57	33.98	43.20	43.20	43.20	43.20	43.20	40.57	43.52	41.57	41.33			42,44	43.75	43.40	39.85		45.13	42.19	38.88	41.76	41.47	55.52	53,32	53,32	53,26	
39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	
Mar '99	Jan '04	Dec '03	Jan '04	Feb '04	Mar 04	Jan '04	Feb '97	Apr '04	Jan '05	Apr '05	Apr '01	Apr '01	Nov '05	Jan. 19, 95	Mar '05	Dec '96	Nov. 26, '95	Mar '05	Apr '05	Apr '05	May '05	NOV. 25, '05	Nov 107	Apr '04	Apr '04	F'eb '04	
Pea	Lump				Pea	Pea	Pea	Lump	Screenings	Screenings	Slack	Lump	Screenings	Screenings	Screenings	Pea	W. Pea, Duff	New Ky. Pea	N. Ky. W. Scr.	N. Ky, W. Scr.							
Riverton		*******			Springfield	Springfield	Springfield	Moweaqua	Catlin	Fairmount	Muncie	Oakwood	Oakwood	Uakwood	Uakwood	Uakwood	Carterville	Herrin	Herrin	Herrin							
Sangamon	Sangamon	Sangamon	Shelby	Vermilion	Vermilion	Vermilion	Vermilion	Vermilion	Vermilion	Vermillon	Verminion	WILLIAM SOLUTION	WIIIIamson	Williamson	W IIIIamson												

S
н
PA
ň
10
0
B
3
H
Τ
Ē
0
U)
E
P
11
5
-
Ċ
Z
E
Ā
E
Η
0
E
A
70
H
22
5
A
Ż
H
5
Ĕ
N
H
5
H
\geq
H
H
щ
A
H

В T II ner	lb. of total Dry Coal	2, 966 13, 915 13, 915 13, 915 13, 915 13, 915 13, 915 13, 915 13, 915 13, 538 13, 638 13, 638 14, 638
Joal	Sulphur	49999999
vir-Dry (Ash	19, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25
nalysis-A	Moisture	4.8.1.9.9.9.9.1.1.8.1.9.9.9.9.1.2.8.2.9.9.9.1.1.9.9.9.9.9.9.9.9.9.9.9.9.9.9
ximate A	Volatile Matter	8888888949198888888988888898989888888888
Pro	Fixed Carbon	4. 20 4. 20 5.
Analvsis	Obtained from	A Construction of the cons
	Date of Analysis	Mar. 28 0 Mar. 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
n	Geol. Seam	ณณ ณณณณ ณณณณ
Descriptio	Size	Drill Core- Drill Core- W. Stack. W. Stack. W. Stack. Drill Core. Drill Core. Block. Stack. Stack. Slack. Slack. Slack. Lump Lump Lump Nut. Nut. Nut. Slack. Slack. Lump Lump Nut. Slack. Slack. Lump Lump Nut. Slack. Slack. Slack. Lump Lump Slack. S
of Sample	Town	Elm Grove Elm Grove Ladd. Ladd. Ladd. Ladd. Fresdale Frestale Assumption. Assumption. Assumption. Assumption. Assumption. Assumption. Assumption. Assumption. Assumption. Assumption. Assumption. Pana Pana Pana Pana Pana Pana Pana Pa
Source	County	Adams Adams Adams Bureau Bureau Bureau Champeign Christian Fulton
	No.	

11,767	11,379	12,061	13,941	12,058		#10° A	10, 101	140.0	13,531	12,967	13,402	13,164		11.249		19 580	10 500	10.124	10.104	13.140	11,787	12,183					•	• • • • •			10,000	10 000	10.010	19 218	10 918	19.945	13.258	11.137	13.476	11.821	13.046	13.259			13,185	11,253	12,999		12,474	13,597	13,824
1.93	1.98	2.63	3.23	6.80	3.60	0.00 0.00		0.90	2.10	3.20	2.77	2.48	4.62	3.96	0000	22.0	00.2	2.00	N2.	:	:	:	1.46	1.73	2 03	1 100	9.06	08.2	00 0	08.2	00.5	01.	20.	1 7.0	0.10	10 6	16.6	4 96	3.04	28.6	3 99		2.02	2.27	2.62	4.66	:	3.05	4.30	3.38	3.00
14.18	19.70	11.38	5.75	86.6	10.33	01.10	4.02	28.30	5.36	13.22	10.11	. 3.53	06.6	16.35	111	2 01		00.7	04.1	4.60	7.92	10.60	10.42	8.06	8 39	62 0	10.02	(1.80	11 100	40.70	2.10	4.10	80.4	7.00	00.26	80.02	820	22.60	5.10	14.90	8.08	8.43	7.72	3.72	4.09	17.54	6.61	4.54	11.98	6.35	5.40
11.78	9.44	10.25	3.08	2.90	9.11	01.8	02.11	02.1	11.44	.31	5.04	10.78	12.60	10.39	15 80	10.10	01.01	60. P	0.32	4.25	6.08	6.18	4.32	5.27	4 34	06 1	9 20	9.0%	00	20.20	6.12	02.5	00.4	10.01	10 16	21.7	1.68	5.81	7.54	7.87	7.56	8.22	12.12	10.06	10.28	8.28	8.00	10.30	8.47	1.96	5.52
33.20	33.68	36.43	40.21	39.05	37.04	00.02	20, 02	20.04	37.09	38.46	34.34	44.37	28.96	36.72	97 BO	00.14	00.10	64.10	20.40	33.65	39.78	34.10	34.08	34.63	35.72	26 76	26.77	11.00	1-1 00	11.22	24.05	10.00	04.02	02.10	90.00 21 10	49 51	38.01	33.05	45.30	38.91	41.78	39.40	30.84	30.34	42.03	35.92	37.19	33.90	36.03	39.84	30.74 42.10
40.84	37.18	41.94	50.96	48,06	43.52	52.25 FZ.25	40.80	34.01	46.11	48.01	50.51	41.32	48.54	36.54	10.66	10.01	10.01	64.44	88. BC	57.50	46.22	49.12	51.18	52.04	51 62	00 00	12.12	07.20	00 0L	28.65	56.38	00.37	00.03	01.10	14.11 29 RF	46.46	44 88	38.54	42.06	39.02	49.58	43.95	49.32	55.88	43.60	38.26	47.20	51.26	43.52	45.85	46.98
P. '04	P. '04	. Dept	. Dept	. Dept	Dept		25.5 5.5	. 0 ⁴	P. '04	. Dept	. Dept	S. '02	S. '02	0			53 4		2. 02.	S. '02	S. '02	S. '02	S. '00	8	0		: 202	20.02	e01 0				5.2 5.2			Dent	P '04	P. '(4.	P. '04	P .04	P .04	S '02	S. '02.	S. '02	P. '04.	P. 04	S. '02.	S. '02	P. '04	P. '04	P. 04
'04 S.W.	'04 S. W.	'06 Chem	'06 Chem	06 Chem	Ba Chem	10 to		04 N	04 S. W.	'06 Chem	'05 Chem	'98 B. L.	78 B. L.	1 B B			100		78 B. L.	B. L.	'96 B. L.	'96 B. L.	1 B 99	DO B	OO R L	T a voi		APD. T.	T CL OUT	.99 B. L.	78 B . L.	M B P	N 10			Northomore	M S M.	M S M	04 S W	W S NO.	M S M	80 B. L.	78 B. L.	78 B. L.	'04 S. W.	'04 S. W.	.89 B. L.	78 B. L.	'04 S. W.	04 S. W.	04 S. W.
		Feb. 28,	May 12.	May 12.	Mar. 20,	•••••••••••••••••••••••••••••••••••••••	•••••••			Jan. 31,	July	July		Oet		••••			••••••		May	May	Nov	Nov	Nov	North	Now.			NOV		Mar	••••		• • • • • • • • •	E.ob 91	T. CO. %1	•		•											
20	NO.					22	22	52	2						:		0 0	9	:	•						:	:			••••••	••••••		,	- 0	0 9	0	r	• 1	• 6	20	20	5	2	2 67	61	61		2.3	67	61	- 1-1-
Lump	Slack	Nut No.2	Drill Core	Drill Core	Pea	Slack	Tump	Slack	Lump	Drill Core			Vein Sample	······································	Train Commits	A CITI Daniputor	INUL	Slack	Vein Sample	•			Mine Run	No 1 W	NO 9 W	NO 9 187	NO. 3 W	N0.4 W	Keruse From	Water	Vein Sample	Tump	Lump	Tump	Lump	Duill Cono	Lumn	Slool Street	Lumm	Clock	Dag		2nd Vein	3rd Vein	Fee	Slack		Vein Sample.	Slack	Lump	Slack
Norris	Norris	St. David	St. David	St. David	Junction	Braceville	Braceville	S. Wilmington.	S. Wilmington.	Delafield	McLeansboro	Augusta	Rriar Bluff	Colwa	L'autra a series a se	Newanee	Kewanee	Kewanee	Carbondale	Carbondale	Carbondale	Carbondale	De Soto	De Soto	De Coto		Do 50to	De Soto	De Soto		Mt. Carbon	Murphysboro	Murphysboro	Murphysboro	Ethoriz	Conounillo	Vanalaw	Kanaley	La Salle	T.a Calla	L'a Colla	La Salle	Ogleshy	Ogleshy	Ogleshy	Ogleshy	Pern	Peru	Streator	Streator	Streator
Fulton []	Fulton 1	Fulton	Fulton	Fulton	Gallatin	Grundy	Grundy	Grundy	Grundy	Hamilton	Hamilton 1	Hancock	Hanry	Honry	TTOTT A	THERE'S	Henry	Henry	Jackson	Jackson	Jackson	Tackson	Tackson	Tackson	Tacheon	Tooleon	Jackson	Jackson	Jackson		Jackson	Jackson	Jackson	Jackson	X00X	TZ DOT	T o Collo	T.a Salla	La Salle	T.a Salla	T.o Sollo	T.a Salle	La Salle	La Salle	La Salle	La Salle	[a Salle	La Salle	La Salle	La Salle	La Salle
44	45	46	47	48	48	20	10	22	53	54	55	56	22	201	0	200	83	19	62	63	64	65	RR	32	88	00	RO	2	E	-	22	2	14	2	21	10	202	2	200	100	200	38	100	88	100	88	68	8	16	63	94

FUEL TESTS WITH ILLINOIS COALS

BRECKENRIDGE. PARR AND DIRKS

B. T. II. net	lb. of Total Dry Coal	13, 301 12, 653 12, 653 12, 653 12, 653 12, 653 12, 653 12, 653 13, 755 13, 755 14, 755 15, 75
loal	Sulphur	4888897558 · · · 48899 · · · · · · · · · · · · · · · · · ·
Illinois C	Ash	9.88 9.87 9.77
nalysis of	Moisture	100 100 100 100 100 100 100 100
ximate A	Volatile Matter	888882525005255555555555555555555555555
Pro	Fixed Carbon	4 4 5 5 5 5 5 5 5 5
Anglyeis	Obtained	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
	Date of Analysis	Ссс. 30 Ссс. 30 Ссс. 32 Мау Пес. 30 Ссс. 25 Мау Ссс. 32 Мау Ссс. 32 Ссс.
n	Geol. Seam	ນ ຊາວ ແມ່ນ ແມ່ນ ແມ່ນ ແມ່ນ ແມ່ນ ແມ່ນ ແມ່ນ ແມ່ນ
Descriptio	Size	Lump Slack Luaop Drill Core Drill Core Drill Core Lump Lump Lump Lump Slack Lump Lump Lump Lump Lump Lump Lump Lump
of Sample	Town	Cardiff Cardiff Fairbury Forest Forest Frorest Frorest Frorest Frorest Frorest Froest
Source c	County	Livingston Livingston Livingston Livingston Logan Logan Logan Logan Logan Logan Logan Logan Logan Logan Logan Logan Logan Logan McLean McLean McLean McLean McLean McLean McLean McLean McLean McLean McLean McLean McLean McLean McLean McLean McLean Macoupin
S.	No.	95 95 95 95 95 95 95 95 95 95 95 95 95 9

TABLE VII (Continued)

60 ILLINOIS ENGINEERING EXPERIMENT STATION

BI PA	tE RH	CK	EN		D DI	G I R F	, (S]		F	T	JE	L	. :	C)	ES	r	s	1	W	ľ	ΓŦ	ł	Ι	L]	LI	N	Ó	18	3	C	D.A	I	s										6	1
12,802	13.059	12,997	11,928	11,895	141044	•	11.620	12.327		12,542	12,665		12,110	11,009	11 105	11,100	10 537	12.609	12.777	12, 307	12.874	12,597	12,482	11.741	11,684		••••••	00M 01	19 574	13,457			12,072	12.175	11,000	19 940	162 61	12.885	11.861	13,630	12,230	12,685	11,444	13 894	12,443
3.09	8.00 8.00	2.96	4.74	00.4	10.F	4 04	4.36	3.60	7.25	:	::	:	:	:		:	-						:	3.61	:		3.43	4.80	:	:	4.31	2.68	3.88	90.8 00.8	02.20	× ×	09.6		4.64	. 79	2.67	4.44	4-20	2.40	3.15
11.06	7.40	8.77	14.40	15.76	00.%T	96.40	18.36	12.41	17.44	11.15	7.53	11.50	19.91	14.58 6 94	19.00	0.20	11 54	15.43	10.85	15.51	15.70	11.20	14.42	11.35	11.50	22.03	11.95	15.47	00 · R	6 10	22.03	11.91	14.01	9-85	06.01	19.67	11 94	6.88	16.66	2.32	13.14	9.04	16.62	10.02	8.65
8.26	8 08	4.87	7.76	00 E	00.1	0.50	6.75	5.43	6.15	7.00	6.20	6.32	7.10	60.e	07-1	42.1	0.11	8	3 50	4 90	8.42	8.55	7.71	7.25	6.32	6.48	6.70	4.70	0.0	8.10 90	6.48	6.81	7.27	8.52	26.92	1.21	22	2.19	8.95	10.94	10.31	9.32	10.10	10.01	10.94
38.34	30.91 80 88	40.83	36.93	36.37	00.10	96.10 26.10	34.13	38.17	33.63	34.00	40.25	37.73	31.90	37.93	02.14	01 . 04 00 00	00.00	24 21	38 30	26.99	20 12	36.10	35.43	38.17	37.73	31.95	34.65	33.78	55. 99 96 40	30.40	31.95	37.05	35.76	37.11	36.16	31.73	26 61	35 07	33 07	36.59	33.49	39.32	34.82	30.07	39.20
42.34	38.67	45.53	40.91	39.33	40.00	00.64	40.76	43 99	42.78	47.45	46.02	44.45	48.09	42.30	62.65	11.64	10.01	10 96	14.25	14 99	41 85	44.15	49.44	42.23	44.45	39.54	46.70	46.05	90.86	47.22	30.54	44.23	42.96	44.55	40.97	40.14	10.07	50.86	41 39	50.15	43.06	42.32	38.46	43.60	41.21
P. '04		P. 04	P. '04	P. 04					50	S. 02	S. '02	S. 02	S. 02	S. 02				20,02					60, 5	0.00	S. 02	S. '02	S. 02	S. 02	20. 20. 20.	N. 03		S0	S. '02.	P., '04	P., '01	. Dept	Dept	100. 2		P. 101	P. '04	P. '04.	P. '04		3., '02
.04 S. W. J	.04 S. W.		.04 S. W.	.04 S. W. J	01 10.	22 D. L.			'97 B. L.	BI	'95 B. L.	'95 B. L.	'95 B. L.	'96 B. L.	90 B.	96 B. L.	- 1 - C	100 D. LI.	100 D. 17.	10. D. L.	10. H	07 B L	107 B T.	10% B. L.	'95 B. L.	'97 B. L.	.99 B. L.	.99 B IT.	'89 B. L.	. 100 B. L.	107 B. L.	197 B. L.	, 00 B. L.	.'04 S. W.	.04 S. W.	'05 Chem.	Inau of co	W	D D D	M S 107	N N	.04 S. W.	.04 S. W.	.97 B. L.	97 B. L.
3					May	•••••	••••••				Jan.	Feb	Apr	July	Oct	Nov		NOV.	Dec.	J 24.11	U dull	Feb.	Mar	Mar	Mar	Mar.	Mar			Feb.		•	May.			Mar. 28.	Uct. 30,		Tallar	0 ut y					July
0	99	0 0	9	9			0	2 9	0		=											•									:			9	9			9		G	20	210	20		
Nut	Pea	W. Nut.	Nut	Slack	Lump		Dull	Nut	1 n n n		Tumn	Lump	Lump	Pea.	Pea	Lump	Fump	dung	Slack	Lump	rea	Lump	Dow	Pea	T 00000	Pea	Pea	Pea		Lump		Fea	Pea	Nut	Slack	Duff	Vein Sample	Lump.		T	Slack	Tumo	Slack.		
Collinsville	Collinsville	Donkville	Edwardsville	Edwardsville	Glen Carbon	Centralia	Centralia	Centralia	Centralia	dv	Odin	Odin	Odin	Odin	Odin	Odin	Odin	Odin	Udin	Odin	Odin	Odin	Odin	Odin	Odin	Odin	Odin.	Odin	Odin	Odin	Odin	Odin	Odin	Odin.	Odin	Odin	Sandoval	Sandoval	Sandoval	Toluca	Welloug	Athens	Athens	Athens	Athens
Madison	Madison	Madison	Madison	Madison.	Madison	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion	M&rion	Marion	Marion	Marion	Marion	Marion	Mariou.	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marion.	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Marshall	Marshall	Menard	Menard	Menurd	Menard
38	39	9	49	43	44	45	46	47	20	84	212	25	23	54	155	156	21	20	28	09	19	65	201	5	601	87	88	69	021	171	21	21	-	92	221	178	AL.	80	10	20	101	100	186	187	88188

	B. T. U. per	lb. of Total Dry Coal	12,757	11,803	10 033	10,806	13.027	12.588	12,508	11,479	13.136	10,104	12 290	13,606	13,603	12,879	12.403	10 000	12,033	14,000		12,355	11,820	13,064	10,213	12.174	13,273	11,762	11,819	13,055	12,110	19,700	13.067	10,784	13,245	13,104	12,738	12,744
	oal	Sulphur	2.41	3 (14 10 10	2 10 0 19	0.10 7 88	01.0	3.93	4.00	4.86	3.02	9.10	21.0	2.61	2.75	1.29	3.16	2.18	2.41	61.6	. 68	1.88	:	:				5.14		-1.83 201	8.0 1	17.	1 88	3.10		:	2.40	3.45 3.13
	ir-Dry C	Ash	8.11	14.26	8-80 10 90	10.60	11 1	10.86	11.78	20.26	80.00 200	18.39	10.01 K 0.0	5.41	6.37	10.37	11.30	8 20 2	29 .	00 1	9.21	7.00	13.34	7.44	06.0	0.11	5.40	16.40	13.39	6.52	10.04	10.12	1 20	22.22	2.27	6 38	8.64	8.93 13.15
	nalysis-A	Moisture	9.46	9 58	10.04	10.01	1 20	9.02	9.02	7.48	9.60	1.84	40. O	38.6	8.70	10.55	9.30	2.60	2.20	0.04	0.13	88.89	7.03	6.84	10.0	7 50	9.14	6.05	7.02	00.44 44	42.1	11. 2	7 54	7.26	9.63	10.72	7.44	2.17
	ximate A	Volatile Matter	37.62	36,28	30.03 99.19	00.16	90.00 25 04	39.34	37 77	36.94	39.36	36.72	40 00 12 00	44.45	43.63	26.78	35 50	27.60	42.66	41.13	33 15 33 15	23.54	35.03	32.03	30.30	10.86	34.61	35.95	35.03	35.97	38.72	10 01	40.01 20 90	31.36	37.00	34.56	37.64	36.75
	Pro	Fixed Carbon	44.81	39.88	43.17	10.10	10. 00 FO 00	40.78	41.43	35.32	42.22	37.05	41.00	40.00	41.30	42.30	43.90	55 30	41.80	43.03	40.51	60.60	44.60	53.69	54.08	40.10	50.85	41.60	44.56	49.07	44.00	48.45	45.23	39.16	51.10	48.34	46.28	47.23
	Analysis	nalysis Obtained			04 S. W. F., 04.	17 101 OL OL OL OL OL	11, . 04 Chelli, Dept	. IV ON S MU P '04	04 S. W. P. '04.	y				v '08 R L S '09	V	y. '98 B. L. S. '02,	y		04 S. W. P., 04	04 S. W. F., 04.	16 16, . 38 Chem. Dept	778 B. L. S. '02.	B. L. S. '03.	B. L. S. '02	B, L. S. 02.	0	796 B. L. S. 102	y	1		'04 S. W. P. '04.	r. 27, 76 Chem. Dept	y	10, J. M. 5 M.	V 106 B. L. S. 702	b	04 S. W. P. '04	
		eam	5		: :	:: :: c		ne		[n[1	:	:	Tu.	3 Ju	5 Ju	6 Ju		**	.,	n [:		:		9.H.		Ma	Jaı	9	6	Ma	np,	0 4	E.	Fe	8	6
and the second se	Description	Size	Lump	Slack	dun?	Slack	SI&CK	Lump	Slack		Lump	Slack	Slack	Lump	Vein Sample	Vein Sample	Vein Sample.	Vein Sample	Lump	Nut	Lump	Vein Samula				Lump	Lumm	Slack		Nut	Nut	Lump	Lump	Lump	Tumn	Lumb	Lump.	Nut.
	of Sample	Town	Greenview	Greenview	Middletown	Middletown	Petersburg	Petersburg	Cable	Gilchrist	Sherrard.	Sherrard	Litchfield	Litchneid	Filmwood	Elmwood	Elmwood	Elmwood	Holles	Holles	Du Quoin	Du Quoin	Du Quoin.	Du Quoin	Du Quoin	Du Quoin	Du Quoin	Du Quoin.	Du Quoin.	Du Quoin	Du Quoin	DuQuoin	Muddy Valley.	Pinckneyville.	Ct Tohn	St. John.	Sparta	Sparta.
	Source	County	Menard	Menard	Menard	Menard	Menard	Menard	Mercer	Mercer	Mercer	Mercer	Montgomery	Montgomery	Paoria.	Peoria	Peoria.	Peoria	Peoria	Peoria	Perry.	Parny	Perry	Perry	Perry	Perry	Perry	Perry	Perry	Perry	Perry	Perry	Perry	Perry	Perry	Perry	Randolph	Randolph
		No.	190	191	192	193	194	195	PAL PAL	198	199	200	201	202	202	202	208	202	208	209	210	112	213	214	215	218	210	219	220	221	222	223	224	077	022	295	229	230

TABLE VII (Continued)

62

ILLINOIS ENGINEERING EXPERIMENT STATION

BRECKENRIDGE. PARR AND DIRKS	FUEL TESTS W	VITH ILLINOIS COALS	63
12,620 12,564 11,564 11,564 11,760 12,670 12,670 13,805 13,805 13,805 13,805 10,874 11,078 10,874 11,078	13,009 13,603 13,603 13,665 13,665 13,993 13,993 13,099 14,000 14,000 14,000 14,000 14,0000000000	11,831 11,831 12,832 12,832 12,839 11,339 11,339 11,339 11,319 11	11,545 12,544 12,571 12,571 12,571 12,591 12,591 12,291 11,098 11,099
34 20 1 1 3 3 3 2 0 0 0 2 2 2 0 0 0 2 2 2 2 2 2 2	2,222,251,000,000,000,000,000,000,000,000,000,0	3.02 3.15 4.10 4.10 5.03 5.03 5.14 1.73 5.03 5.03 5.14 1.73 5.03 5.03 5.14 1.73 5.13 1.44 5.03 5.03 5.14 1.75 5.13 1.44 5.13 5.13 5.13 5.14 5.14 1.75 5.13 5.15 5.14 5.15 5.15 5.15 5.15 5.15 5.15	1.01 3.55 2.99 2.90 2.90 2.90 2.90 2.90
7, 73 8, 33 1, 43 2, 5, 6, 1 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	11.92 6.48 6.48 15.80 15.80 16.37 16.37 16.37 10.42	17.00 10	11.55 11.56 11.98 11.98 11.98 11.98 11.56 11.78 12.96 11.78 12.96 12.36 13.67
80.88 80.88 81.15 87.15 80.88 87.15 80.88 80.88 80.88 80.88 80.88 80.88 80.88 80.88 80.88 80.88 80.88 80.88 80.98 80	6.01 6.01 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} 3.38\\ 12.47\\ 10.45\\ 5.47\\ 11.32\\ 5.47\\ 5.42\\ 8.55\\ 9.95\\ 10.95\end{array}$
81.30 841	33.11 33.11 33.11 33.11 33.11 33.11 33.11 33.11 33.25 33.11 33.25 33.111	8,88,83,84,88,83,84,88,83,84,84,84,84,84,84,84,84,84,84,84,84,84,	88.88 87.55 84.88 84.88 85.55 84.88 85.55
46.53 48.53 48.121 56.78 48.121 56.78 45.70 56.78 45.70 56.78 56.78 56.78 56.78 56.78 56.78 56.78 56.78 57 56.78 56.78 57 56.78 57 56.78 57 56.78 57 56.78 57 56.78 57 56.78 57 56.78 57 56.78 57 56.78 57 56.78 57 56.78 57 56.78 57 57 57 57 57 57 57 57 57 57 57 57 57	88, 28, 28, 28, 28, 28, 28, 28, 28, 28,	00000000000000000000000000000000000000	$\begin{array}{c} 43.2\\ 440.57\\ 471.68\\ 471.28\\ 481.74\\ 421.74\\ 42.52\\ 44.52\\ 44.52\\ 41.12\\ 35.452\\ 35.7$
W. P. '94. W. P. '94. W. P. '94. W. P. '94. M. P. '94. M. P. '94. W. P. '94.	 m. Dept. m. Dept. m. Dept. m. P. 04. N. P. 04. 	HALL CLC AAAAH CCC	M. Dept. V. P. 903. V. P. 904. M. P. 904. Dept. M. Dept. M. Dept.
04 S. 04 S.	(uly	H = 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +	Peb
00000 nncr		ם. סו מימימיקי איי מימימיקי פי	
Luump Slack Slack Luump Nut. Luump Luump Slack Luump Slack Luump	Lump Lump Lump Lump Lump Slack Lump Slack Lump Slack Slack Slack Slack	Slack Pean Sample Pean Nut: Nut: Nut: Nut: Pean Pean Pean Pean Pean Pean Pean Pean	Pea. Lump Lump Lump Slack Pea.
Tilden Village French Village French Village Marissa Marissa Marissa Bildorado Bildorado Bildorado	Galatia Harrisburg Harrisburg Harrisburg Harrisburg Harrisburg Harrisburg Auburn Auburn Auburn	Auoluru Barclay Barclay Barclay Cantrall Cantrall Dawson Dawson Dawson Dawson Dawson Davson Davson Barclay Ridgely Kidgely Ridgely Ridgely Riverton Riverton Riverton Riverton	Riverton Spaulding Springfield Springfield Springfield Springfield Springfield
Randolph St. Clair St. Saine Saine Saine	Saline Saline Saline Saline Saline Saline Saline Sangamon Sangamon Sangamon Sangamon Sangamon	Sangamon Sangamon	Sangamon Sangamon Sangamon Sangamon Sangamon Sangamon Sangamon Sangamon Sangamon
23: 23: 23: 23: 23: 23: 23: 23: 23: 23:	241 241 241 241 241 241 241 241 241 241	2255 2255 2256 2258 2268 2268 2268 2268	2715 2775 2775 2775 2779 2779 2779 2779 277

Conolo and	Conceuted
TTT	
ET TO	DID
V r	4

н П л	Dry Coal	11, 980 11, 980 11, 980 11, 980 11, 885 11, 885 11, 885 11, 885 11, 886 11, 88
Joal	Sulphur	\$
vir-Dry C	Ash	10.33 11.53 14.54 15.55 15
nalysis-A	Moisture	9 11 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
oximate A	Volatile Matter	222 222 222 222 222 222 222 222
Pro	Fixed Carbon	#4####################################
Analvsis	Outained from	Chem. Dept. Chem. Dept.
	Date of Analysis	Freb 73 Freb 73 Jan 06 Jan 06 Jan 06 Jan 06 Jan 06 Jan 06 Mar 06 Mar 06 Mar 00 Mar
по	Geol. Seam	00 00 -10-1-1-1
Descripti	Size	Lump Lump Lump Lump Lump Lump Lump Slack Slack Slack Slack Vein Sample Screen Slack Lump Lump Lump Lump Lump Lump Lump Lump
of Sample	Town	Springfield Jc. Moweaqua Catin Danville
Source	County	sangamon Sangamon Sangamon Sangamon Sangamon Sangamon Sangamon Sangamon Sangamon Shelby Shelby Vermilion
	No.	284 284 284 284 284 284 284 284 284 284

1

64 ILLINOIS ENGINEERING EXPERIMENT STATION

		12,760	10.812	13,866	14,014	13.844	12.829	12.477	13.422	13.563	12.986	12.839	12.886	13.517	12.976	13.179	12.716	13.352	12.986	13.408	12,769	12,364	12,974	13,498	12.846	13.590	12.508	12.673	11.221	13,004
1 011 1	01.1	CA.I	2.34	2.24	2.01	2.43	1.97	1.15	1.03	1.00	68	.85	.74	86.	1.15	1.18	1.05	2.10	.89	1.97	1.42		2.22	.83	1.85	.82	2.78	1.72	1.14	:
2 20	0010	4.20	10.35	4.42	4,14	4.28	96.6	12.24	7.62	6,10	8.52	8.85	7.14	5.56	6.59	6.67	6.11	9.87	8.52	8.76	10.64	10.62	10.62	6.36	11.17	5.46	9.63	4.08	17.80	6.89
R 02	11 44	11.44	20.01	11.98	10,35	11.52	5.90	4.92	6.04	6.32	3.28	4.87	4,66	4.31	4.86	5.76	7.35	5.00	3.28	3.33	2.94	5,00	5.00	5.87	5.46	6.00	4.22	3.42	6.35	3.97
41 30	00.06	07.00	10.20	38.00	36.57	36.26	35.00	35.64	33.18	32.58	32,00	34.11	33,99	35.12	33.26	30.25	34.20	35.15	32.00	32.40	33.10	31.12	31.76	33.53	30.96	32.32	34.66	39.30	40.81	33.86
48 79	48.00	01 0F	11.00	40.00	48.94	47,94	49.14	47.20	53.16	54.99	56.20	52.17	54.21	55.01	55.29	57.32	52.34	49.98	56.30	55.52	53.32	53.26	52.62	54.24	52.41	56.22	51.49	53.20	35.04	55.28
01 B. L. S. '09	PU. d. M. S. PU.	NUL AL SING		no no citati Trabin	Ju US Chem. Dept	pt 05 Chem. Dept				'04 S. W. P. '04		v '00 B. L. S. '02	y 00 B. L. S. 02	y 00 B. L. S. 02	y 00 B. L. S. '02	r 29 B. L. S. '02	r 29 B. L. S. '02	y. 26, '05 Chem. Dept	c. 19. [05]Chem. Dept]	v05 Chem Dept	r 04 Chem. Dept	0 (04 Chem. Dept	04 S. W. F. 01.	04 S. W. P. '04			00 B. L. S. 02.	r		1 02 B. L. S. (02
Jaj	6		2					L	7	1	7	Ma	Ma	Ma	Ma	Ma	Ma	Ma	De	0N	AP 	ə. I	:	:	:			Ma		1911
Hand Sample.,	Lumo	Slack	No 1	No a	NTO 0		rump	Slack	Slack	Trumb	W. Nut	Mine Kun	W. NO. I	W. NO. 2	W. NO. 4	W. NO. 2	W. NO. 2.	W. INUL NO. 2.	W. INUE NO. 2.	W. Fea Dull	N IZ IN PER.	TAL CLOSE . VV. SUC	W. SidCh	TXT CUPOL	T number	Trein Commis	V EIII Sample.		SIACK	
Sugar Creek	Braidwood	Braidwood.	Inliet.	Toliat	Toliot	Duck	Dust	usna	Carterville	Carterville	Carterville	Carterville	Carterville	Carberville	Carlerville	Carberville	Carberville	Carton 110	Carberville,	Unine VILLE.	Hamin	Howin	Howin	Hamin	Homin	Homin	Talza Cwool-	Landou CICCK	Launer	·····anic funne
Wabash	Will	Will	Will	Will	TATAL	TATilliomoon	VV IIIIaulioneen	WITIBILITY W	W IIIIaIIIAUU.	VV IIIIGHTIGHTISOIT.	WILLIAMSON.	Williemson.	W IIIIdullouin.	Williamson.	Williamon.	Williomcon.	Williameon	Williameon	Williameon	Williomeon	Williameon	Williamson	Willigmeon	Williamson	Williamson	Williamson	Williamson	Williomeon	Willigmeon	
326	327	328	329	330	100	1000	2000	000	100	000	000	100	0000	000	110	110	210	244	ELC SYE	AAR	247	878	OFE	350	351	32.9	323	25.4	195	3

TABLE VIII

LIST OF ILLINOIS COALS ANALYZED. ARRANGED BY TOWNS

Town	County	Ref. Number in Table of Analyses
Assumption	Christian	8-12
Astoria	Fulton	28-30
Athens	Menard	185-188
Auburn	Sangamon	252-255
Barciay	Sangamon Franklin	256-258
Bloomington	McLean.	110-116
Braceville	Grundy	50-51
Braidwood	Will	327-328
Breese	Clinton	20-21
Briar Bluff	Henry	57
Brighton	Macoupin	124
Buston	Clinton	30% 99
Cable	Mercer	196-197
Canton	Fulton	31-32
Cantrall	Sangamon	259 260
Carbondale	Jackson	62-65
Cardiff	Livingston	95-96
Carterville	Williamson	334-345
Controlio	Marion	290-299
Colchester	McDonough	109
Colfax.	McLean.	117
Collinsville	Madison	138-139
Cuba	Fulton	33 –36
Danville	Vermilion	300-310
Dawson	Sangamon	261-264
Delafield	Hamilton	54
De Soto	Jackson	66-71
Divernon	Sangamon	265
Donkville	Madison	140-141
Dunfermline	Fulton	38
Du Quoin	Perry.	210-223
Edwardsville	Madison,	142-143
Eluorauo	Adams	209-240
Elmwood	Peoria	203-207
Etherly	Knox	76-77
Fairbury	Livingston	97-98
Fairmount	Vermilion	311-313
Farmington	Fulton	39-42
Flatroak	Crowford	43
Forest.	Livingston	99-100
French Village	St. Clair.	233-234
Galatia	Saline	244
Galva	Henry	58
Gilchrist	Mercer	198
Glen Carbon	Madison	144
Grape Creek	Mensud	180-101
Greenridge	Macoupin.	125-126
Harrisburg	Saline	245-251
Herrin.	Williamson	346-352
Holles	Peoria	208-209
Ivesdale	Champaign	7
Jonetion	Will.	329-331
Kangley	La Salle	79-80
Kewanee	Henry	59-61
Kinmundy	Marion	149-150
Ladd	Bureau	3-4
Lake Creek	Williamson	353

•
TABLE VIII (Concluded)

Town	County	Ref. Number in Table of Analyses
T - Calle	La Calla	01.04
La Salle	Williamson	81-84
Lauder		101-108
Lincoln	Montgomery	101-100
Lattennela	Ruroou	201-202
Lombaruvine	Sangamon	966
Mal oppshore	Jangamon	55
Mericea	St Cloir	00
Middlotown	Monard	109-109
Mawaaana	Shelby	192-193
Mt Carbon	Jaelzeon	209-290
Mt Olivo	Magoupin	197-199
Mt Dulocki	Logen	107-108
Muddy Volloy	Doppy	107-108
Mumbreboro	Taakson	79_75
Nieptie	Magon	110-192
Nonvia	Fulton	110 120
Onlywood	Vormilion	217-299
Odin	Marion	151-179
Oulin		101 170
Delmano	Magoupip	122-125
Pannyra	Christian	12-10
Pana	Colos	13-19
Paraulse,		20 20
Peru	La Salle	104 105
Petersburg	Bowwy	194-190
Pinckneyville	Perry	220-220
Ridgely	Sangamon	207-208
Riverton	Sangamon	209-214
St. David	Fulton	40-48
St. John	Perry	227-228
Sandoval	Marion	179-181
Snerrard.		199-200
Soperville	Knox	18
Sparta	Kandolph	229-230
Spaulding	Sangamon	210
Springheid	Sangamon	210-283
Springheid Junction	Sangamon	204
Spring valley		01-04
Streator.	La Salle	91-94
Sugar Creek	Wabash	020
Sunnyside	Williamson	000
Tildell	Manchall	100
Toluca	Clinton	92-94
Trenton	Magounin	198-197
VIruen	Macoupili	199_194
Wenona	Varsilan	100-104
Westville	Vermilion	040
S. Westville	Compar	021 020 K0_59
5. willington	Grunuy	02-00

PUBLICATIONS OF THE ENGINEERING EXPERIMENT STATION

Bulletin No. 1. Tests of Reinforced Concrete Beams, by A. N. Talbot. 1904.

Circular No. 1. High-Speed Tool Steels, by L. P. Breckenridge. 1905.

Bulletin No. 2. Tests of High-Speed Tool Steels on Cast Iron, by L. P. Breckenridge and Henry B. Dirks. 1905.

Circular No. 2. Drainage of Earth Roads, by Ira O. Baker. 1906.

Bulletin No. 3. The Engineering Experiment Station of the University of Illinois, by L. P. Breckenridge. 1906.

Bulletin No. 4. Tests of Reinforced Concrete Beams, Series of 1905, by A. N. Talbot. 1906.

Bulletin No. 5. Resistance of Tubes to Collapse, by A. P. Carman. 1906.

Bulletin No. 6. Holding Power of Railroad Spikes, by R. I. Webber. 1906.

Bulletin No. 7. Fuel Tests with Illinois Coals, by L. P. Breckenridge. 1906.

68

UNIVERSITY OF ILLINOIS

THE STATE UNIVERSITY

THE UNIVERSITY INCLUDES THE

- COLLEGE OF LITERATURE AND ARTS (Ancient and Modern Languages and Literatures, Philosophical and Political Science Groups of Studies, Economics, Commerce and Industry).
- **COLLEGE OF ENGINEERING** (Unexcelled library: spacions buildings; well-equipped laboratories and shops. Graduate and Undergraduate courses in Architecture: Architectural Engineering, Architectural Decoration: Civil Engineering; Municipal and Sanitary Engineering; Electrical Engineering; Mechanical Engineering; Railway Engineering).
- COLLEGE OF SCIENCE (Astronomy, Borany, Chemistry, Geology, Mathematics, Physics, Physiology, Zoölogy).
- COLLEGE OF AGRICULTURE (Animal Husbandry, Agronomy, Dairy Husbandry, Horticulture, Veterinary Science, Household Science).
- COLLEGE OF LAW (Three years' course).
- COLLEGE OF MEDICINE (College of Physicians and Surgeons, Chicago). (Four years' course).

COLLEGE OF DENTISTRY (Chicago), (Three years' course). SCHOOLS MUSIC (Voice, Piano, Violin), LIBRARY SCIENCE, PHARMACY, (Chicago), EDUCATION, CER-AMICS, and the GRADUATE SCHOOL.

A Summer School with a session of nine weeks is open each summer.

- A Military Regiment is organized at the University, for instruction in Military Science. Closely connected with the work of the University are students' organizations for educational and social purposes. (Glee and Mandolin Clubs; Literary, Scientific and Technical Societies and Clubs; Young Men's and Young Women's Christian Associations).
- United States Experiment Station, State Laboratory of Natural History, Biological Experiment Station on Illinois River, State Water Survey, State Geological Survey.
- Engineering Experiment Station A department organized to investigate problems of importance to the engineering and manufacturing interests of the State.
- The Library contains 80,000 volumes, and 30,000 pamphlets.
- The University offers 526 Free Scholarships. For catalogs and information address

W. L. PILLSBURY, Registrar

Urbana, Illinois

UNIVERSITY OF CALIFORNIA LIBRARY BERKELEY

Return to desk from which borrowed. This book is DUE on the last date stamped below.

		10 19 6
. 7. 14	37:6	UG IO ISIC
1		
Contraction of the second	Carl Constraints	
		/
-		
		1-11
		1 mi
100 C		1 725
		1.100
		¥.07 5
		150219
		100040
	/ to and	and the second
	1 and and	
	RETTORM	
UNIVE	HOR OK A	E AARY .

